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“ADDRESS: The tool implementing the mediation between theory and practice, between
thought and observation, is mathematics. Mathematics builds the connecting bridges and is
constantly enhancing their capabilities. Therefore it happens that our entire contemporary
culture, in so far as it rests on intellectual penetration and utilization of nature, finds its
foundations in mathematics.

Already some time ago GALILEO said “Only one who has learned the language and
signs in which nature speaks to us can understand nature.”

This language however is mathematics, and these signs are the figures of mathematics.
KANT remarked “I maintain that, in any particular natural science, genuine scientific

content can be found only in so far as mathematics is contained therein.”
In fact we do not have command of a scientific theory until we have peeled away and fully

revealed the mathematical kernel. Without mathematics, modern astronomy and physics
would be impossible. The theoretical parts of these sciences almost dissolve into branches of
mathematics. Mathematics owes its prestige, to the extent that it has any among the general
public, to these sciences along with their numerous broader applications. Although all math-
ematicians have denied it, the applications serve as the measure of worth of mathematics.

GAUSS speaks of the magical attraction which made number theory the favorite sci-
ence of the first mathematician—not to mention the inexhaustible richness of number theory
which far surpasses that of any other field of mathematics.

KRONEKER compares number theorists with the lotus eaters, who, once they started
eating this food, could not let go of it.

The great mathematician POINCARE once sharply disagreed with Tolstoy’s declaration
that the proposition "science for the sake of science" would be silly.

The achievements of industry for example would not have seen the light of the world if
only applied people had existed and if uninterested fools had failed to promote these achieve-
ments.

The honor of the human spirit, so said the famous Konigsburg mathematician JACOBI,
is the only goal of all science. We ought not believe those who today, with a philosophical air
and reflective tone, prophesy the decline of culture, and are pleased with themselves in their
own ignorance. For us there is no ignorance, especially not, in my opinion, for the natural
sciences.

Instead of this silly ignorance, on the contrary let our fate be: “We must know, we will
know”. ”

David Hilbert
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Chapter 1

Introduction

In the automatic control area, a plant is defined as a mechanism or process that needs
to be controlled or supervised. For the modeling of the plant, the concept of state
variables is frequently used, which represents the more important variables that bet-
ter describe the system behavior. The knowledge of state variables at each instant of
time (by means of their measurement) leads to a better supervision of the plant or a
better performance of the controlled system. However, the measurement of all state
variables is not always feasible, either due to the nonexistence of an appropriate
measuring instrument, or because of its high cost, or due to other factors.

To deal with the problem of not being able to directly know some or all the state
variables, a state estimator or observer is used. A state observer is a dynamic system
based on a model of the plant that uses the available information from its inputs and
outputs in order to provide estimated states that converge to the real state values of
the plant.

The presence of internal or external perturbations, parametric uncertainties, in
the following will be referred to simply as uncertainty/perturbation (UP) and the
plant model as the uncertain system, gives rise to the problem of designing unknown
input observers (UIO). The UIO are estimators or observers of states that provide
estimates which convergent to the real state variables of the plant, in spite of the
presence of UP considered as the unknown input of the observers.

This work deals with the problem of designing UIO for uncertain nonlinear sys-
tems using sliding-mode techniques and a dissipative approach. The sliding-modes
and the dissipative approach are some of the techniques most used to design UIO,
because of their properties of robustness. The dissipative observers unify well-
known observers, e.g. the Luenberger-like observer and the High-gain observer,
which provide global exponential convergence to the real states when their required
conditions are satisfied. Among these conditions, there is the relative-degree-one re-
striction, which means that the arbitrary UP affect only the first time derivative of a
measured output of the plant. The sliding-mode observers (SMO) provide finite-
time convergence of the output estimation error and asymptotic convergence to
the real states. These robustness properties of SMO are obtained when the UP is
bounded and the bounded-input-bounded-state (BIBS) property in the plant is sat-
isfied. In the next section, a review of the literature is given.

1.1 Observers construction: art state

1.1.1 Dissipative approach on the observer design

The dissipativity is an energy concept with a direct physical interpretation: a sys-
tem is dissipative if the energy it stores is less than that which is supplied to it
(Byrnes, Isidori, and Willems, 1991). In the framework of dynamical systems, the
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energy or power supplied to a system is proportional to the product of the input
and the output, in this sense dissipativity, which is a generalization of passivity, is an
input-output concept. The dissipativity plays a fundamental role in control theory
(Brogliato et al., 2007), and the idea of using dissipativity concepts for the design of
observers has been used in Moreno, 2001; Shim, Seo, and Teel, 2003; Moreno, 2004;
Moreno, 2005. Moreno, 2004 uses the dissipativity theory to counteract the non-
linearity effects in the basic linear observer design, where the design methodology
generalizes and unifies several standard design methods such as Luenberger-like
observer (Ciccarella, Mora, and Germani, 1993; Rajamani, 1998); the use of linear
matrix inequalities to design the observer gains for globally Lipschitz (Ciccarella,
Mora, and Germani, 1993; Rajamani, 1998; Zemouche and Boutayeb, 2013), or mono-
tonic nonlinear systems (Arcak and Kokotovic, 2001); High-gain observer (Atassi
and Khalil, 1999). Moreover, the class of dissipative systems can be expanded, even
for systems that are not dissipative by nature, but that under certain conditions can
become dissipative, either through state feedback or output (Byrnes, Isidori, and
Willems, 1991; Rocha-Cózatl and Moreno, 2001).

In the case of Linear Time Invariant (LTI) systems with UP, the existence problem
of UIO, when the UP is arbitrary, has been studied for a long time, where strong* de-
tectability (strong detectability and relative degree one) is a necessary and sufficient
condition to ensure the existence of an observer (Hautus, 1983). Consequently, many
different design methodologies are known (Hou and Muller, 1994; Chu, 2000; Saberi,
Vogel, and Sannuti, 2000). The existence problem of OUI for LTI system with arbi-
trary UP has been also analyzed under a dissipativity approach, by Moreno, 2001,
where the existence of an observer is equivalent to the possibility of rendering the
plant dissipative by output injection.

In nonlinear systems with UP, the conditions for the existence of UIO are not
very well established as is the case for LTI systems (Hautus, 1983; Hou and Muller,
1994; Moreno, 2001). For a class of nonlinear systems with UP, Seliger and Frank,
1991; Moreno, 2000 propose a method to construct an observer and some conditions
for its existence are given. A similar analysis to the case of liner systems (Moreno,
2001) derives an incremental dissipativity property for the multiple-input-multiple-
output nonlinear systems with arbitrary UP, where the possibility of rendering the
plant dissipative by output injection, which includes the satisfaction of relative-
degree-one condition, is a sufficient condition for the existence of OUI (Rocha-Cózatl
and Moreno, 2004). This existence condition can be made computable for the ob-
server design, where the required storage function and the output injection can be
calculated, under generic conditions, by Linear Matrix Inequalities (Rocha-Cózatl,
Moreno, and Zeitz, 2005; Moreno, 2008a; Angulo, Moreno, and Lazaro, 2010; Rocha-
Cózatl and Moreno, 2011). The dissipative approach is also applicable to systems
with discontinuous or multivalued nonlinearities (Osorio and Moreno, 2006; Guzman-
Baltazar and Moreno, 2010). A dynamical interpretation of strong observability and
detectability concepts for nonlinear systems with UP is made in Moreno, Rocha-
Cózatl, and Wouwer, 2014, which allows dealing with the observer existence prob-
lem.

The dissipative approach on the observer design has applications on areas as
chemical reactor, biochemical processes and tubular reactors (Schaum et al., 2008;
Moreno, 2008b; Schaum, Moreno, and Alvarez, 2008a; Schaum, Moreno, and Al-
varez, 2008b; Moreno, Rocha-Cózatl, and Wouwer, 2014).

The relative-degree-one condition is necessary for the existence of UIO in lin-
ear and nonlinear systems with arbitrary UP (Hautus, 1983; Moreno, 2001; Moreno,
2004). But in the realistic framework the presence of UP with relative degree grater
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than one is given in many systems, e.g. mechanical systems (Davila, Fridman, and
Levant, 2005; Shtessel, Shkolnikov, and Levant, 2007; Nehaoua et al., 2014), electro-
mechanical systems (Utkin, Guldner, and Shi, 2009). When the relative degree is
grater than one it is necessary to know some characteristic of the UP, e.g. the UP is
bounded, for designing observers.

If the UP is bounded, the dissipative observers may provide the convergence of
the estimation error to a bounded region around the origin (Moreno, 2005) and a
possible amplification of measurement noise (Ahrens and Khalil, 2009). But for this
case, a theoretical exact convergence of the estimation error output, the estimation
error precision under measurement noise, and a reconstruction of the bounded UP
are not obtained.

1.1.2 Sliding-mode differentiators/observers

One of the techniques most commonly used for designing UIO, when the UP is
bounded and with a relative degree greater than one, is the sliding modes. The
sliding-mode observers (Barbot, Djemai, and Boukhobza, 2002; Edwards, Spurgeon,
and Tan, 2002; Yan and Edwards, 2007; Shtessel et al., 2014) have proven to be ef-
ficient for providing theoretically exact finite-time convergence of the output esti-
mation error, asymptotic convergence to the real states, and in some cases even the
reconstruction of the UP.

In LTI systems with bounded UP and under the strong detectability/observability
condition the design of sliding-mode observers (SMO) has been extensively studied
in the last decade (see e.g. Bejarano and Fridman, 2010; Bejarano, Pisano, and Usai,
2011; Fridman, Levant, and Davila, 2007; Fridman, Davila, and Levant, 2011) to
overcome the relative-degree-one restriction with respect to (w.r.t.) the UP (Hautus,
1983; Moreno, 2001). However, one drawback of the SMO is that, most of them, need
the state vector affected by UP to be uniformly bounded, here the bounded-input-
bounded-state (BIBS) property is required. To overcome the BIBS restriction for LTI
systems with bounded UP, the work in Fridman, Levant, and Davila, 2007 proposes
a strategy where the Luenberger observer driving the estimation error to a bounded
region of the origin, in cascade with a high-order sliding mode (HOSM) differentia-
tor allows global theoretically exact finite-time estimation of the system states. The
applicability of this strategy is not clear for the case of nonlinear systems.

In nonlinear systems with bounded UP and with relative degree higher or equal
to one, the sliding-mode observers provide theoretically exact convergence to the
real system states (Floquet and Barbot, 2007; Fridman et al., 2008; Barbot and Flo-
quet, 2010; Ríos et al., 2015) where the BIBS property is required. The BIBS property
allows dealing with nonlinear terms, which are not necessarily Lipschitz, e.g. the
quadratic nonlinearity terms obtained from Coriolis and centrifugal forces in the
mechanical systems (Xian et al., 2004; Davila, Fridman, and Levant, 2005; Rosas,
Alvarez, and Fridman, 2007).

The crucial point for the success of SMO is that they bring with them an im-
plicit or explicit use of a differentiation process, which is the key to why the relative-
degree-one restriction can be surpassed. One of the most well-known SM differ-
entiators, which is also the first SM differentiator to appear in the literature, is the
Super-Twisting Algorithm (STA) based SM differentiator (Levant, 1998). This SM
differentiator is defined as{

ż1 = −1.5L1/2|z1 − f(t)|1/2 sign(z1 − f(t)) + z2,

ż2 = −1.1Lsign(z1 − f(t)),
(1.1)
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which guarantees a finite-time estimation of time derivative of f(t) when |f̈(t)| ≤ L,
where z1−f(t) and z2−ḟ(t) are robustly driven to zero in finite-time. In the presence
of deterministic noise bounded by a constant ς > 0, the precision for estimation of
time derivative is O(

√
ς). Generalizations of the STA based differentiator (Levant,

1998) were presented in Moreno, 2009; Moreno, 2011; Cruz-Zavala, Moreno, and
Fridman, 2011, and from these works some SM differentiators of arbitrary order are
obtained (Levant, 2003; Angulo, Moreno, and Fridman, 2013).

The SMO have applications in specific problems, e.g. robust and early detection
of oscillatory failure case for the electrical flight control system of new generation
aircraft (Efimov et al., 2012); estimate Lean and Steering motorcycle dynamics (Ne-
haoua et al., 2014); missile guidance application (Shtessel, Shkolnikov, and Levant,
2007); wind energy conversion optimization (Evangelista et al., 2013), and analysis
and identification of vehicle dynamics (Imine et al., 2011).

Conclusion. The dissipative observers and sliding mode observers require restric-
tive conditions for their good performance in presence of UP: the BIBS condition for
SM observers and relative degree one for dissipative observers, see Table 1.1. The
following motivation example illustrates the importance of these conditions.

Observers UP Relative degree BIBS property Estimation Type of observer
Dissipative arbitrary one no required asymptotic global

Sliding mode bounded greater than one required in finite time local

TABLE 1.1: Conditions and properties of the sliding-mode observers
and dissipative observers.

1.1.3 Motivational example

Consider the system (1.2), which illustrates the loss of the effectiveness of sliding-
mode differentiators and dissipative observers,{

ẋ1 = x2,

ẋ2 = sin2(0.5x1)
2(1+cos2(x1))

x2 − 9.8 sin(0.2x1)
4(1+cos2(x1))

+ w(t),
(1.2)

where x1, x2 ∈ R are the states, x1 is the measurable state,w ∈ R is an UP. The system
(1.2) does not have BIBS property. The non linearity ϕ(x1, x2) = sin2(0.5x1)

2(1+cos2(x1))
x2 −

9.8 sin(0.2x1)
4(1+cos2(x1))

is not globally Lipschitz (because ∂ϕ
∂x1

is not uniformly bounded), but
it is Lipschitz with respect to the second variable with Lipschitz constant Lϕ = 1/2.
This system has relative degree two w.r.t. the measured output x1 and the UP as
w(t).

Sliding-mode observer. Applying the Levant’s differentiator (Levant, 1998) in
(1.1) to the measured variable x1 of the system (1.2), one obtains the following ex-
pression {

ż1 = −1.5L1/2|z1 − x1|1/2sign(z1 − x1) + z2,

ż2 = −1.1Lsign(z1 − x1).
(1.3)

The simulations withL = 8 for the gains of (1.3), initial conditions (x1(0), x2(0)) =
(−0.5, 6.3), (z1(0), z2(0)) = (3, 3) and the UP as

w(t) = sin(2t) + 0.5 sin(3t)cos(t)− 1.5cos(t) + 1, (1.4)
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show that the estimation state z2 converges to the true state x2 in finite time at t =
1.47. But this finite-time convergence is affected from t = 3.3, see Figure 1.1.
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FIGURE 1.1: The estimation state z2(t) in the sliding-mode differen-
tiator (1.3), and the true state x2(t) in (1.2) and its estimation error

e2 = x2 − z2.

This happens because the magnitude of the nonlinearity along the trajectories
ϕ(x1(t), x2(t)) together with w(t) exceeds the gain of 8.8 of the discontinuous term
in the differentiator (1.3), see Figure 1.2.
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FIGURE 1.2: The function ϕ(x1(t), x2(t)) + w(t) exceeds the gain 8.8
of the discontinuous term in the differentiator (1.3)

Dissipative observer. The nonlinearity ϕ(x1, x2) in (1.2) satisfies a dissipative
property, since the nonlinearity ϕ̃(x1, x2, h) := ϕ(x1, x2)−ϕ(x1, x2 +h) defined from
ϕ̃ is {−1, 0, L2

ϕ} − dissipative, i.e.[
ϕ̃
h

]T [−1 0
0 L2

ϕ

] [
ϕ̃
h

]
≥ 0 for all h ∈ R, is satisfied.

Applying the observer in the dissipative approach (Rocha-Cózatl and Moreno,
2011) one obtains: {

v̇1 = v2 + l1(v1 − y),

v̇2 = ϕ(x1, v2 + l3(v1 − y)) + l2(v1 − y),
(1.5)

where the parameters l1 = −1.74, l2 = −3.57, l3 = −0.38 are obtained as it is pro-
posed in Rocha-Cózatl and Moreno, 2011. The simulations with initial conditions
(x1(0), x2(0)) = (−0.5, 6.3), (v1(0), v2(0)) = (30, 30) and the UP as in (1.4), show that
the estimated trajectory v2 in (1.5) does not converge to the true state x2 of (1.2); but
it converges to some neighborhood of x2, see Figure 1.3.

This motivational example illustrates the lack of effectiveness of both the sliding-
mode and dissipativity approaches for the observer design when the system does
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FIGURE 1.3: The estimation state v2(t) in (1.5) and the true state x2(t)
in (1.2) and its observation error e2 = v2 − x2

not have the BIBS property and has a relative degree greater than one w.r.t. the
bounded UP.

1.2 Problem statement

The problem of the design of observers for nonlinear systems in presence of uncer-
tainty and perturbation is addressed, where the UP is bounded, the BIBS property is
not required, and the relative degree is greater than one. In this sense, the following
classes of nonlinear systems are considered.

1.2.1 Chain of integrators with uncertainty and perturbation

Consider the following chain of integrators with nonlinear terms and UP,

Σ1 :

{
ẋ = Ax+B (ψ(x) + w(t, x)) + ϕ(u, y),

y = Cx,
(1.6)

where

A :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 · · · 0 0 1
0 · · · 0 0 0

 ∈ Rn×n, B :=


0
0
...
0
1

 ∈ Rn×1, C :=


1
0
...
0
0


T

∈ R1×n.

The state vector is x ∈ Rn; y ∈ R is the measured output; ψ(·, ·) ∈ R and ϕ(·, ·) ∈ Rn
are continuous nonlinearities; u ∈ Rp is the control input; w(t, x) ∈ R is the bounded
UP, i.e. |w(·)| ≤ %w. Assume that the system (1.6) is forward complete, i.e. the
trajectories do not escape to infinity in finite time, and the system (1.6) is not required
to be BIBS.

The chain of integrators is a very versatile and well studied form since all linear
controllable systems and many nonlinear ones can be transformed to it through a
coordinate transformation. Some examples can be found: nonlinear observers with
approximately linear error dynamics (Banaszuk and Sluis, 1997; Nicosia, Tomei, and
Tornambe, 1988; Lynch and Bortoff, 2001); uniformly (in the input) observable non-
linear systems (Gauthier and Bornard, 1981; Gauthier, Hammouri, and Othman,
1992) and into this particular form (Khalil, 2002; Polyakov, Efimov, and Perruquetti,
2016).

The works in Gauthier, Hammouri, and Othman, 1992; Lynch and Bortoff, 2001;
Moreno, 2004; Moreno, 2005; Rocha-Cózatl and Moreno, 2011 provide observers
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with asymptotic convergence to unmeasurable states of (1.6) for the case without
UP, otherwise, they are not applicable. The results in Barbot, Boukhobza, and Dje-
mai, 2003; Levant, 2003; Angulo, Moreno, and Fridman, 2013 provide observers of
theoretically exact convergence in finite time to unmeasurable states of (1.6) under
condition BIBS for bounded UP.

The aim of this work is to provide a global exact finite-time convergent observer
for the system (1.6), where the UP is bounded and the system may not have the BIBS
property. For this purpose, the proposed observer combines the components of a
dissipative observer (Rocha-Cózatl and Moreno, 2011) and a HOSM differentiator
(Levant, 2003) under a cascade scheme taking advantage of the dissipative proper-
ties (Moreno, 2004) that could provide the nonlinearities in the system.

When n = 2 in (1.6), the resulting class of system coincides with the nonlinear
mechanical systems with one degree of freedom (1-DOF) where the nonlinearities
are obtained from Coriolis force and frictions. This class of uncertain nonlinear sys-
tem will be analyzed.

1.2.2 1-DOF mechanical systems with uncertainty and perturbation

Consider the following second-order system

Σ :

{
ẋ1 = x2,

ẋ2 = ψm(x1, x2) + ϕm(u, y) + w(t, x),
(1.7)

which is obtained from the following 1-DOF mechanical system with UP

m(q)q̈ + c(q)q̇2 + g(q) + ψ(q, q̇) + h · q̇ + λ · sign(q̇) = u+ δ̃(t, q, q̇), (1.8)

where x1 = q, x2 = q̇ and

ψm(x1, x2) = −m−1(x1)c(x1)x2
2 −m−1(x1)ψ(x1, x2)−m−1(x1)h · x2,

ϕ(u, y) = −m−1(y)g(y) +m−1(y)u,

w(t, x1, x2) = −m−1(x1)λsign(x2) +m−1(x1)δ̃(t, x1, x2).

The state q ∈ R is the measured position; m(q) ∈ R is the inertia term; c(q)q̇2 repre-
sents Coriolis and centrifugal forces; ψ is a continuous nonlinearity (e.g. other types
of frictions, air resistance, etc.); the parameters h, λ ∈ R; h · q̇ and λ · sign(q̇) are vis-
cous and dry frictions; g(q) denotes gravitational forces; δ̃(t, q, q̇) is an UP and u ∈ R
is the control input.

The following classes of mechanical systems will be considered.

1.2.3 2-DOF mechanical systems with uncertainty and perturbation

Consider the nonlinear system

Σ2 :


ẋ = z,

ż = ψM (x, z) + ϕ(u, y) + w(t, x, z),

y = x,

(1.9)

which is obtained from the following mechanical system with UP

M(x)ẍ+ C(x, ẋ)ẋ+G(x) + ψ(x, ẋ) +Hẋ+ Λsign(ẋ) = Du+ δ̃(t, x, ẋ), (1.10)
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where

ψM (x, z) = −M−1(x)C(x, z)z −M−1(x)ψ(x, z)−M−1(x)Hz,

ϕ(u, y) = −M−1(y)G(y) +M−1(y)Du,

w(t, x, z) = −M−1(x)Λsign(z) +M−1(x)δ̃(t, x, z).

The state x ∈ R2 is the measured position; M(x) ∈ R2×2 is the inertia matrix;
C(x, ẋ)ẋ represents Coriolis and centrifugal forces; ψ is a continuous nonlinearity
(e.g. other types of frictions, air resistance, etc.); the matricesH,Λ, D ∈ R2×2;Hẋ and
Λsign(ẋ) are viscous and dry frictions; G(x) denotes gravitational forces; δ̃(t, x, ẋ) is
an UP and u ∈ R2 is the control input.

One of the problems on the global observer design for (1.8), (1.10) has been deal-
ing with the nonlinearities of Coriolis and centrifugal forces, which have attracted
the attention of several researchers (Besançon, 2000; Mabrouk, Mazenc, and Vivalda,
2004; Astolfi, Ortega, and Venkatraman, 2010; Stamnes, Aamo, and Kaasa, 2011) for
the case without frictions and UP. Through state transformations, Astolfi, Ortega,
and Venkatraman, 2010; Stamnes, Aamo, and Kaasa, 2011 propose observers with
fairly high dimension, namely 3n+ 1 and 2n+ 2 respectively, where n is the dimen-
sion of the unmeasured velocity. Besançon, 2000; Mabrouk, Mazenc, and Vivalda,
2004 propose observers with the same dimension of the system for a class of me-
chanical systems.

The challenge of dealing with viscous and dry frictions, UP can be tried by SM
observers/differentiators (Levant, 1998; Xian et al., 2004; Davila, Fridman, and Lev-
ant, 2005; Moreno, 2009) providing local observer with convergence theoretically
exact in finite time to the velocity, where BIBS property in the system is required.

The aim is to provide a global exact finite-time convergent observer for the sys-
tems (1.8), (1.10), where the UP is bounded and the system may not have the BIBS
property. For this aim, the proposed observer combines the components of a dissi-
pative observer (Rocha-Cózatl and Moreno, 2011) and a HOSM differentiator (Lev-
ant, 2003) using the Generalized Super Twisting Algorithm (GSTA) (Moreno, 2009)
taking advantage of the dissipative properties (Moreno, 2004) that could have the
nonlinearities in the system.

1.3 Main contributions of this work

Two classes of nonlinear systems (a chain of integrators and a class of mechanical
systems) were considered, with uncertainties and perturbations, which have been
extensively studied in the literature for the case without UP. This work consider a
bounded UP which does not necessarily vanish. The difference between this work
and other works that use the sliding-mode technique (Xian et al., 2004; Davila, Frid-
man, and Levant, 2005; Floquet and Barbot, 2007; Fridman et al., 2008; Polyakov,
Efimov, and Perruquetti, 2016) is that here global observers conserving the finite-
time convergence to the unmeasured states are provided. This work considers non-
linear systems with relative degrees higher than one, where the use of dissipative
properties of nonlinearities for the observer design is maintained as it is used by the
dissipative observer for nonlinear system with relative degree one (Rocha-Cózatl
and Moreno, 2011), see Table 1.2.
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Observers UP Relative degree BIBS property Estimation Type of observer
Dissipative arbitrary one no required asymptotic global

Sliding mode bounded greater than one required in finite time local
Proposed bounded greater than one no required in finite time global

TABLE 1.2: Conditions and properties of the sliding-mode observers,
dissipative observers and proposed observers.

This work proposes two structures of observers:

i) The first one uses the terms of the dissipative observer and a HOSM differ-
entiator under a cascade scheme. It permits to show that the dissipative ob-
server and a HOSM differentiator can work together under a cascade scheme
such as in the linear case (Fridman, Levant, and Davila, 2007) with the Lu-
enberger observer and a HOSM differentiator. This structure lets us use the
Lyapunov functions of each one providing convergence in finite time to the
real states. This structure allows considering nonlinear systems with relative
degrees higher than one w.r.t. the UP. A modification of the dissipative ob-
server is given for a chain of integrators with nonlinearities and UP, and is
called scaled dissipative stabilizer. This one allows to obtain uniformly ulti-
mately bounded where it is shown that increasing the gain of the observer it is
possible to reduce the ultimate bound. This allows to finally improve the inde-
pendence of the gains between the scaled dissipative stabilizer and a HOSM
differentiator in a cascade scheme.

ii) The second one introduces correction terms in the nonlinearities and it uses
the Generalized Super-Twinting algorithm (Moreno, 2009) which combines the
terms of the dissipative observer and the Super-Twinting algorithm. Unlike the
first structure in the case of second-order systems, the second structure allows
more flexibility in the design of gains. A Lyapunov function which considers
the dissipative properties of the nonlinearities in the system and ensures finite-
time convergence is proposed. Unlike global observers for mechanical systems
(Besançon, 2000; Mabrouk, Mazenc, and Vivalda, 2004; Astolfi, Ortega, and
Venkatraman, 2010; Stamnes, Aamo, and Kaasa, 2011) which only consider the
problem of Coriolis, this structure is applied to a class of mechanical systems
with terms of Coriolis, viscous and dry frictions and UP.

The gain design for the observers is performed through matrix inequalities, for
which their feasibility is assured. In the experimental area, an implementation test
on the pendulum-cart system (INTECO, 2008) for one of the proposed observers is
performed.

Partial results of this work have been reported in international conferences (Apaza-
Perez, Fridman, and Moreno, 2015; Apaza-Perez, Moreno, and Fridman, 2016) and
scientific journals (Apaza-Perez, Fridman, and Moreno, 2017; Apaza-Perez, Moreno,
and Fridman, 2018).

This work is organized as follows. A chain of integrators is considered in Chapter
2, where a scaled dissipative stabilizer is proposed which combined with a HOSM
differentiator under a cascade scheme provides a global observer. Nonlinear me-
chanical systems of one-degree-of-freedom and two-degree-of-freedom are consid-
ered in Chapter 3 and Chapter 4, respectively. In these classes of nonlinear me-
chanical systems, Coriolis and centrifugal forces, dry and viscous frictions, pertur-
bations with relative degree two were considered. In Chapter 5, one of the proposed
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observers is used in the experimental framework through a car-pendulum system
where its effectiveness, robustness, and applicability are shown.
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Chapter 2

HOSM observer with a scaled
dissipative stabiliser for a chain of
integrators of arbitrary order

2.1 Introduction

The chain of integrators is a very versatile and well studied system. All linear
controllable systems and many nonlinear ones can be transformed into this form
through a coordinate transformation. Some examples of these transformations are
nonlinear observers with approximately linear error dynamics (Banaszuk and Sluis,
1997; Nicosia, Tomei, and Tornambe, 1988; Lynch and Bortoff, 2001); uniformly
(in the input) observable nonlinear systems (Gauthier and Bornard, 1981; Gauthier,
Hammouri, and Othman, 1992) and into this particular form (Khalil, 2002; Polyakov,
Efimov, and Perruquetti, 2016).

The works in Gauthier, Hammouri, and Othman, 1992; Lynch and Bortoff, 2001;
Moreno, 2004; Moreno, 2005; Rocha-Cózatl and Moreno, 2011 provide observers that
converge asymptotically to the unmeasurable states of (1.6), only for the case with-
out UP, otherwise, they lose the good performance. The results in Barbot, Boukhobza,
and Djemai, 2003; Levant, 2003; Angulo, Moreno, and Fridman, 2013 provide ob-
servers with theoretically exact finite-time convergence to unmeasurable states of
(1.6), under the BIBS condition with respect to bounded UP.

The aim of this chapter is to present a global exact finite-time convergent ob-
server for a chain of integrators of arbitrary order with nonlinear terms and a boun-
ded UP, and which might not have the BIBS property. It is shown and proved that the
direct cascade connection of the dissipative observer with the HOSM differentiator
provides a theoretically exact estimation in finite time of the real states. This direct
connection presents some drawbacks due to the fact that the gains of the HOSM
differentiator grow along with the dissipative observer gains. That is why a scaled
dissipative stabiliser (SDS) is proposed. This SDS ensures that the HOSM differ-
entiator gains can be chosen, according to the upper-bound of the unknown input.
Also, the scaled dissipative stabiliser gains can grow and do not affect the HOSM
differentiator gains. Consequently, the global finite-time exact convergence of the
cascaded scaled dissipative-HOSM differentiator observer can be achieved.

The rest of this chapter is organized as follows. In Section 2.2 the problem state-
ment is shown. In Section 2.3, the dissipative observer and a cascade connection
with the HOSM differentiators are exposed. In Section 2.4, a scaled dissipative sta-
biliser is introduced. In Section 2.5, the proposed global exact observer and the main
result are exposed. The main results are applied to examples in order to show its
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effectiveness. In Section 2.6, some conclusions are provided. The proofs of all results
are in Appendix A.

2.2 Problem Statement

Consider the following chain of integrators with nonlinear terms and UP,

Σ :

{
ẋ = Ax+B (ψ(x) + w(t, x)) + ϕ(u, y),

y = Cx,
(2.1)

where

A :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 · · · 0 0 1
0 · · · 0 0 0

 ∈ Rn×n, B :=


0
0
...
0
1

 ∈ Rn×1, C :=


1
0
...
0
0


T

∈ R1×n.

The state vector x ∈ Rn; y ∈ R is the measured output; ψ(·, ·) and ϕ(·, ·) are contin-
uous nonlinear functions; u ∈ Rp is the control input; w(t, x) ∈ R is a bounded UP,
e.i. |w(·)| ≤ %w. Assume that system (2.1) is forward complete, i.e. the trajectories do
not escape to infinity in finite time. Note that system (2.1) is not required to be BIBS.

The aim of this paper is to present a global exact finite-time convergent observer
for system (2.1). This work proposes a scaled dissipative stabiliser ensuring that,
when the HOSM differentiator gains are chosen according to the upper-bound of
the UP, the SDS gains can grow without affecting the HOSM differentiator gains
and global finite-time exact convergence of the cascaded scaled dissipative-HOSM
differentiator can be achieved. The idea of the proposed observer is illustrated in
Figure 2.1.

2.3 HOMS and dissipative observers under a cascade scheme

The dissipative observer was introduced in Moreno, 2004, Rocha-Cózatl and Moreno,
2011 the following form

v̇ = Av +Bψ(v +N(Cv − y)) +K(Cv − y) + ϕ(u, y). (2.2)

It considers the structure of system (2.1) along with two terms containing the output
error injection (Cv−y). The first one appears additively in the system and the second
one appears in the argument of the nonlinear term ψ.

Definition 1 (Rocha-Cózatl and Moreno, 2004). A nonlinearity time variant γ : [0,∞)×
Rp → Rm, piecewise continuous in t, locally Lipschitz in ν such that γ(t, 0) = 0 is called
{Q,S,R}−dissipative, if for each t ≥ 0 and ν ∈ Rp[

γ(t, ν)
ν

]T [
Q S
ST R

] [
γ(t, ν)
ν

]
≥ 0, (2.3)

where Q ∈ Rm×m, S ∈ Rm×p, R ∈ Rp×p, and Q, R are symmetric matrices. �
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FIGURE 2.1: Proposed global exact observer

Assumption 1. There exists q < 0, S ∈ R1×(n−1) and R ∈ R(n−1)×(n−1) such that the
nonlinearity

Ψ(x, h) := ψ(x1, x2 + h1, ..., xn + hn−1)− ψ(x1, x2, ..., xn), (2.4)

is {q, S,R}−dissipative, i.e.[
Ψ(x, h)
h

]T [
q S
ST R

] [
Ψ(x, h)
h

]
≥ 0, ∀ x ∈ Rn, h ∈ Rn−1. (2.5)

�
Lemma 1. If Assumption 1 is satisfied, then Ψ(x, h) is {−q2, 0, R̃}−dissipative with

R̃ =
({
−λmax(R)q + λmax(STS)

}1/2
+
{
λmax(STS)

}1/2
)2
In−1, (2.6)

i.e. [
Ψ
h

]T [−q2 0

0 R̃

] [
Ψ
h

]
≥ 0.

N

The proof of Lemma 1 is in Appendix A.1.
Lemma 1 shows that Assumption 1 implies that the nonlinearity ψ(·) in (2.1)

is uniformly Lipschitz with respect to the last (n − 1)-variables, i.e. there exists a
constant %ψ > 0 such that

|ψ(x1, x2+h1, ..., xn+hn−1)−ψ(x1, x2, ..., xn)| ≤ %ψ‖(h1, ..., hn−1)‖ ∀x ∈ Rn, h ∈ Rn−1,
(2.7)

in this case, %ψ = 1
|q|
(
{−λmax(R)q + λmax(STS)}1/2 + {λmax(STS)}1/2

)
.
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2.3.1 A direct connection of HOSM and dissipative observers for a chain
of integrators of second order

Consider system (2.1) with n = 2. The observer obtained by a cascade scheme (see
Figure 2.1) formed by the dissipative observer (2.2) with n = 2, and a STA based
differentiator (1.1) is given by

v̇1 = v2 + l1(v1 − y),

v̇2 = ψ(x1, v2 + l3(v1 − y)) + l2(v1 − y),

ż1 = −1.5L
1
2
f |z1 − (v1 − y)| 12 sign (z1 − (v1 − y)) + z2,

ż2 = −1.1Lf sign (z1 − (v1 − y)) ,

x̃1 = v1 − z1,

x̃2 = v2 + l1(v1 − y)− z2,

(2.8)

where x̃1, x̃2 are the estimates of the states x1 and x2, respectively.

Theorem 1. If the nonlinearity ψ, in (2.1) with n = 2, is uniformly Lipschitz (%ψ > 0) with

respect to the second variable, and there exists a matrix P =

[
p1 p2
p2 p3

]
> 0 and constants

ε, k1, k2, N1 with ε > 0 such that the inequality1

 2(l1p1 + l2p2) + %2
ψl

2
3 + ε ? ?

p1 + l1p2 + l2p3 + %2
ψl3 2p2 + %2

ψ + ε ?

p2 p3 −1

 ≤ 0 (2.9)

is satisfied, then

• the estimation error ev = v − x of the dissipative observer is uniformly ultimately
bounded, with ultimate bound

‖ev‖ <
2‖PB‖%w

ε

√
λmax(P )

λmin(P )
. (2.10)

Also, the second derivative of the measured output of the dissipative error evy = Cv−y
is bounded, with bound

Lf = R

(
%ψ

√
l23 + 1 +

√
(l21 + l2)2 + l21

)
+ %w, (2.11)

where R = 2%w‖(p2,p3)‖+δ
ε

√
λmax(P )
λmin(P ) and δ > 0 is an arbitrary constant,

• the estimated states of the proposed observer (2.8) converge to the true states of system
(2.1) in finite time.

N

The proof of Theorem 1 is in Appendix A.2.

1(?) indicates that the matrix is a symmetric matrix.
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2.3.2 Motivational example of Chapter 1

Recall the example (1.2) given in Section 1.1.3. Assumption 1 is satisfied with ψ = ϕ,
q = −1, S = 0, R = L2

ϕ. Solving the inequality (2.15), the values found are p1 = 1.33,
p2 = −0.53, p3 = 0.53, l1 = −1.74, l2 = −3.57, l3 = −0.38, ε = 0.5. Thus Lf = 31.1149
with δ = 0.0001. The proposed observer is given by



v̇1 = v2 − 1.74(v1 − y),

v̇2 = ϕ(x1, v2 − 0, 38(v1 − y))− 3.57(v1 − y),

ż1 = −1.5(31.1149)
1
2 |z1 − (v1 − y)| 12 sign (z1 − (v1 − y)) + z2,

ż2 = −1.1(31.1149)sign(z1 − (v1 − y)),

x̃1 = v1 − z1,

x̃2 = v2 − 1.74(v1 − y)− z2.

(2.12)

For the simulations, consider the initial conditions v1(0) = 30, v2(0) = 30, z1(0) = 0,
z2(0) = 0 and the UP as in (1.4). The estimated state x̃1 converges to x1 in finite time
at t = 2.58, and the estimated state x̃2 converges to x2 at t = 2.605 as illustrated in
Figure 2.2 and Figure 2.3, respectively.
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The observer (2.8) obtained from a cascade structure between the dissipative ob-
server and a HOSM differentiator has the following drawbacks:

i) The existence of a dissipative observer is not ensured because the feasibility of
the matrix inequality (2.9) requires a special analysis.

ii) It is not clear if it is necessary to grow the gains li to reduce the estimation error
of the dissipative observer (2.10).

iii) There is a direct connection between the dissipative observer gains and the es-
timation error of the highest derivatives defining the HOSM differentiator gain
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(2.11): the greater the dissipative observer gains li are the greater the differen-
tiator gain Lf should be.

In the next section the scaled dissipative stabiliser will be introduced. This sta-
biliser has the following two main properties:

- Assumption 1 and the structure of the SDS ensure the design feasibility,

- the gain Lf for the finite-time estimation of the derivatives of measurable out-
put error evy = Cv − y is not affected when the SDS gains grow.

2.4 Scaled dissipative stabiliser

Let us introduce the structure of the SDS adding a matrix scaling factor, ∆l = diag{li}
for i = 1, ..., n to the dissipative observer structure (2.2), in the linear injection of out-
put error:

v̇ = Av +Bψ(v +N(Cv − y)) + ∆lK(Cv − y) + ϕ(u, y), (2.13)

where K, N ∈ Rn with N =
[
−1 N2 · · · Nn

]T are design parameters.

Defining ev := v − x one can obtain the dynamics of the estimation error as

ėv = (A+ ∆lKC)ev +B (ψ(v +NCev)− ψ(x)− w(t, x)) . (2.14)

Theorem 2. If Assumption 1 is satisfied, then

i) there exist matrices P = P T > 0 and Q = QT > 0 with P,Q ∈ Rn×n, K ∈ Rn,
Ñ =

[
N2 · · · N3

]T ∈ R(n−1) and scalars ε > 0, l0 ≥ 1 such that the inequalityl
(
PAK +ATKP + εQ+

1

l2n
(Ĩn∆l)

T
lÑ
R(Ĩn∆l)lÑ

)
?

BTP +
1

l2n−1
S(Ĩn∆l)lÑ lq

 ≤ 0, (2.15)

with

AK := A+KC, and (Ĩn∆l)lÑ := Ĩn∆l + lÑC,

Ĩn :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 · · · 0 0 1

 ∈ R(n−1)×n,

is satisfied for all l ≥ l0.

ii) the estimation error (2.14) of the SDS is uniformly ultimately bounded with ultimate
bound

‖ev‖ <
b

l
, for all l ≥ l0, (2.16)

where b := 2‖PB‖%w
ελmin(Q)

√
λmax(P )
λmin(P )n. N

The scaling factor ∆l in Theorem 2 ensures the convergence of the estimation er-
ror (2.14) to the desired neighborhood of the origin. If the UP is vanishing, Theorem
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2 ensures exponential convergence to the origin of the dissipative error dynamics
(2.14).

From the proof of Theorem 2 in Appendix A.3, one can derive the following
selection rules for the parameters in the matrix inequality (2.15).

Algorithm for the SDS design:

i) Choose K such that AK is a Hurwitz matrix.

ii) Select Q = QT > 0, Ñ and ε > 0.

iii) Find P = P T > 0 such that the Lyapunov inequality PAK+ATKP+εQ+Λ%ψ <
0, with

Λ%ψ := diag

{
%ψ

(n− i+ 1)2

}
for i = 1, ..., n,

is satisfied.

iv) Grow the parameter l to fulfill the matrix inequality (2.15).

2.5 Higher-order sliding-mode observers with a scaled dissi-
pative stabiliser

The higher-order sliding-mode observer with scaled dissipative stabiliser proposed
in this work consists of two structures: a scaled dissipative stabiliser and a HOSM
differentiator (see also Figure 2.1):

v̇ = Av +Bψ(v +N(Cv − y)) + ϕ(u, y) + ∆lK(Cv − y), (2.17a)
ż = W (z, Cv − y), (2.17b)

x̂ = v − O−1z, (2.17c)

where W (·, ·) corresponds to the HOSM differentiator (Levant, 2003) defined as

W (z, Cv − y) :=


−α1L

1/n
f dz1 − Cv + yc(n−1)/n + z2

−α2L
1/(n−1)
f dz2 − ż1c(n−2)/(n−1) + z3

...
−αn−1L

1/2
f dzn−1 − żn−2c1/2 + zn
−αnLfdzn − żn−1c0

 , (2.18)

with d◦cs := | ◦ |s sign(◦), and O defined as

O =


C

C(A+ ∆lKC)
...

C(A+ ∆lKC)n−1

 , (2.19)

and ∆l, K, N , Lf are design parameters and the αi’s are taken as in Levant, 2003.
The gains of the system (2.17a) are designed such that the estimation error dy-

namics (2.14) converges to a neighborhood of the origin, where its measured output
Cv(t) − y(t) has a bounded n-th derivative with bound Lf . This bound Lf ensures
the globally exact finite-time convergence of the HOSM (2.17b) to the derivatives of
Cv(t) − y(t). Finally, the equation (2.17c) describes the estimated state x̂ combining
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the information of both systems, (2.17a) and (2.17b).

Main result. The following Theorem ensures global exact finite-time of the higher-
order sliding-mode observer with a dissipative stabiliser to the real system’s states
(2.1).

Theorem 3. Suppose that assumption 1 is satisfied, then

i) there exist matrices P = P T > 0 and Q = QT > 0 with P,Q ∈ Rn×n, K ∈ Rn,
Ñ =

[
N2 · · · N3

]T ∈ R(n−1) and scalars ε > 0, l0 ≥ 1 such that the matrix
inequality (2.15), is satisfied for all l ≥ l0,

ii) the estimation error (2.14) is uniformly ultimately bounded, where the n-th derivative
of the measured output of the estimation error evy = Cv − y is bounded, with bound

Lf =

{
2‖PB‖+ δ

ελmin(Q)

[∥∥∥∥(A+KC)nGTdiag

{
λmax(P )

λi(P )

}∥∥∥∥√n + (2.20)

+ %ψ

∥∥∥∥(In + ÑC)
∆l

ln+1
GT
∥∥∥∥]+ 1

}
%w,

where %ψ = 1
−q

(√
−λmax(R)q + λmax(STS) + {λmax(STS)}1/2

)
, G is an ortho-

gonal matrix, and D = diag{λi(P )} with λi(P ) the eigenvalues of the matrix P , for
i = 1, ..., n, such that P = GTDG,

iii) the estimated state x̂ in (2.17c) converges globally exactly and in finite time to the state
x of the system (2.1)

N

The proof of Theorem 3 is in Appendix A.4 and one can derive the following
selection rules of the parameters in the matrix inequality (2.15) and the value of Lf
(2.20).

Algorithm for the HOSM observer design with SDS:

i) Choose K such that AK is a Hurwitz matrix.

ii) Select Q = QT > 0, Ñ and ε > 0.

iii) Find P = P T > 0 such that the Lyapunov inequality PAK+ATKP+εQ+Λ%ψ <
0, with

Λ%ψ := diag

{
%ψ

(n− i+ 1)2

}
for i = 1, ..., n, and %ψ defined as in (2.7),

is satisfied.

iv) Grow the parameter l to fulfill the matrix inequality (2.15).

v) Find the orthogonal matrix G and the diagonal matrix D associated with the
matrix P such that P = GTDG.

vi) Calculate the parameter Lf in (2.20) and the matrix O−1 in (2.19).
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2.5.1 Example

Consider the following third order chain of integrators
ẋ1 = x2,

ẋ2 = x3,

ẋ3 = ψ1(x1, x2, x3) + w,

(2.21a)

where the y := x1 is the measurable output and the nonlinearity ψ1 is

ψ1(x1, x2, x3) :=
sin(0.2x1)

2 + 2 cos2(x1)
+

sin2(x1) + 1/4

2 + 2x2
2

+
arctan(x3)

4
+

5x3 cos2(x1)

28
+ 2.

(2.21b)
The nonlinearity ψ1 is greater than 1.5 when the variable x3 is non negative. If the
bound of the UP w(t) is less than one, and the initial condition x3(0) is non negative,
then ẋ3 > 0.5 and x3(t) ≥ 0.5t+ x(0). Thus, the system (2.21a)-(2.21b) does not have
the BIBS property. This is illustrated in Figure 2.4, for initial conditions x1(0) = −0.5,
x2(0) = 0.5, x3(0) = 1 and an UP as

w(t) := 0.3 sin(2t)− 0.5 cos(πt) + 0.2. (2.21c)
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FIGURE 2.4: The states x1, x2, x3 of the system (2.21)

Dissipative observer. The nonlinearity

Ψ1(x1, x2, x3, h2, h3) := ψ1(x1, x2 + h2, x3 + h3)− ψ1(x1, x2, x3), (2.22)

defined from the nonlinearity in (2.21b), is {q, S,R}−dissipative with q = −1, S =[
0 0

]
and R = (1.5)2I2.

A dissipative observer for the system (2.21), with parameters obtained from Rocha-
Cózatl and Moreno, 2011, is given as

v̇1 = v2 − 10.2436(v1 − x1),

v̇2 = v3 − 43.4485(v1 − x1),

v̇3 = ψ1(x1, v2 − 3.8698(v1 − x1), v3 − 24.3475(v1 − x1))− 75.6773(v1 − x1).

(2.23)
Note that the dissipative observer can only ensure practical stability in the pres-

ence of bounded UP (see Figure 2.5).
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FIGURE 2.5: The estimation errors ev1 = v1 − x1, ev2 = v2 − x2,
ev3 = v3 − x3 of the dissipative observer (2.23)

Sliding-mode observer. On the other hand, applying a second-order sliding-
mode differentiator2 (Levant, 2003) to the measured state x1 of the system (2.21),

ż1 = −3L
1/3
f |z1 − x1|2/3sign(z1 − x1) + z2,

ż2 = −1.5L
1/2
f |z2 − ż1|1/2sign(z2 − ż1) + z3,

ż3 = −1.1Lfsign(z3 − ż2),

(2.24)

to estimate the states x2 and x3, one obtains the estimation error simulations (see
Figure 2.6) with the parameter Lf = 6 and initial conditions z1(0) = z2(0) = z3(0) =
15.
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FIGURE 2.6: The estimation errors ez1 = z1 − x1, ez2 = z2 − x2, ez3 =
z3 − x3 of the sliding-mode differentiator (2.24)

Figure 2.6 illustrates the loss of finite-time estimation of the sliding-mode differ-
entiator. This happens because the system (2.21) does not have the BIBS property
and consequently ẋ3 is not bounded (see Figure 2.7). This drawback is also present
when the robust exact uniformly convergent arbitrary order differentiator (Angulo,
Moreno, and Fridman, 2013) and when the sliding-mode observer proposed by Flo-
quet and Barbot, 2007 are implemented for this case.

This example illustrates the lack of effectiveness of both of the above mentioned
approaches, when the system does not have the BIBS property and has relative de-
gree higher than one w.r.t. the bounded UP.

Proposed observer. Consider again the system (2.21) where %ψ = 2. Find the
parameters as follows

i) We chose K =
[
−1.39 −1.288 −0.892

]T , for which AK is a Hurwitz matrix.

2Solutions of differential equations with discontinuous right-hand sides will be understood in Fili-
ppov’s sense (Filippov, 1988).
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FIGURE 2.7: Upper envelope (Uenv) and Lower envelope (Lenv) of
the signal ẋ3

ii) We selected Q = I3, Ñ =
[
−10 −80

]T and ε = 0.093.

iii) The matrix P =

 31.32 −22.37 7.36
−22.37 29.83 −18.74

7.36 −18.74 26.9

 > 0 satisfies the Lyapunov in-

equality PAK +ATKP + εQ+ Λ%ψ < 0, with

Λ%ψ =

%ψ9 0 0
0

%ψ
4 0

0 0 %ψ

 .
iv) With the parameter l = 6 the matrix inequality (2.15) is satisfied.

v) The orthogonal matrix G =

0.49 −0.65 0.58
0.75 −0.04 −0.66
0.45 0.76 0.47

 and the diagonal matrix

D =

3.88 0 0
0 1.49 0
0 0 62.68

, O−1 =

 1 0 0
8.34 1 0

46.368 8.34 1

 associated with the ma-

trix P satisfies P = GTDG.

vi) We calculated the parameter Lf = 160246 in (2.20) and the matrix

O−1 =

 1 0 0
8.34 1 0

46.368 8.34 1

 in (2.19).

From the parameters found for the HOSM observer with SDS (2.17) one has the
simulations (Figure 2.8) of the estimation error with initial conditions vi(0) = zi(0) =
15 for i = 1, 2, 3.

From the simulations (see Figure 2.8) it is clear that the proposed HOSM observer
with SDS successfully achieves the exact estimation of the state.

It is well-known that Lf obtained in (2.20) can be a very crude estimation of the
true value, so that in practice it is better to obtain its value by means of simulations.
In the next section, a method allows an acceptable estimate of the parameters of the
HOSM observer with SDS.
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FIGURE 2.8: The estimation errors e1 = x̂1 − x1, e2 = x̂2 − x2, e3 =
x̂3 − x3 of the proposed observer (2.17)

2.5.2 Proposed tuning method for observer gain design

Remember and define the following estimation errors:

ezy = z −
[
evy ėvy · · · e

(n−1)
vy

]T
, ev = v − x, evy = Cv − y, e = x̂− x.

(2.25)

Remark 1. If the measured output error (Cz − evy) satisfies Cz − evy = 0, then the dif-
ferentiator error satisfies ezy = 0 and the estimation error of the HOSM observer with SDS
(e = x̂− x) satisfies e = 0. �

Tuning rules. The effectiveness of the proposed observer is verified through the
available signal Cz − evy.

i) Decrease the parameter Lf from the previously obtained and verify that Cz −
evy = 0 holds,

ii) From a reasonable estimate of the gain Lf , decrease the parameter l in the SDS,
verifying that it satisfies Cz − evy = 0.

It is also possible to reduce both parameters Lf and l simultaneously.

For the example (2.21), parameters Lf and l can be reduced to Lf = 15 and l = 1,
where the proposed HOSM observer with SDS has the form



v̇1 = v2 − 1.39(v1 − x1),

v̇2 = v3 − 1.288(v1 − x1),

v̇3 = ψ1(x1, v2 − 10(v1 − x1), v3 − 80(v1 − x1))− 0.892(v1 − x1),

ż1 = −2(2.47)dz1 − y + Cvc2/3 + z2,

ż2 = −1.5(3.87)dz2 − ż1c1/2 + z3,

ż3 = −1.1(15)dz3 − ż2c0,
x̂1 = v1 − z1,

x̂2 = v2 − 1.39z1 − z2,

x̂3 = v3 − 1.288z1 − 1.39z2 − z3.

(2.26)

The simulations of Figures 2.9, 2.10, 2.11 are obtained with initial conditions
vi(0) = zi(0) = 15 for i = 1, 2, 3. Figure 2.9 illustrates the estimation error of the
SDS alone. Although its efficiency is not as good, the proposed HOSM observer
with SDS ensures finite-time convergence to the true states, see Figure 2.10.
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FIGURE 2.9: The estimation errors ev1 = v1 − x1, ev2 = v2 − x2,
ev3 = v3 − x3 of the scaled dissipative stabiliser in (2.26)
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FIGURE 2.10: The estimation errors e1 = x̂1 − x1, e2 = x̂2 − x2, e3 =
x̂3 − x3 of the proposed HOSM observer with SDS (2.26)

Remark 2. It necessary to remark that the zoom in Figures 2.8 (right) and 2.10 (right)
illustrates for a discrete realization the precision of the observer with gains selected according
to the Theorem 3 is greater than the observer with tuned gains. �

Figure 2.11 shows that the third derivative of the output error evy is bounded
through its upper and lower envelope.
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FIGURE 2.11: Upper envelope (Uenv) and Lower envelope (Lenv) of
the third derivative of the output error e(3)vy

Table 2.1 helps to summarize the results of the simulations illustrating the ob-
server properties.
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HOSM observer
Dissipative Sliding-Mode HOSM observer with SDS and

observer differentiator with SDS gain tuning
Figure 2.5 Figure 2.6 Figure 2.8 Figure 2.10
Uniformly Finite-time Finite-time

Precision ultimately divergence after theoretically theoretically exact
bounded a finite time exact with better precision

in discrete realization

TABLE 2.1

2.6 Conclusions

An observer that estimates globally, exactly and in finite time the unmeasured states,
despite the presence of bounded UP, is designed for a class of chain of integrators
which may not have the BIBS property. It is shown that the standard dissipative
structure can be used for stabilization of the observation error, but in this case, the
highest derivative of the output dissipative error depends on the dissipative ob-
server gains and consequently it is not suitable to use it. A scaled dissipative sta-
biliser is proposed, ensuring that the highest derivative of the output estimation er-
ror is independent of the stabiliser gains. After this, a HOSM differentiator with the
adjusted gains to the upper-bound of the unknown inputs is used. The properties of
the suggested observer are illustrated by computer simulations.
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Chapter 3

Dissipative approach to global
sliding mode observers design for
1-DOF mechanical systems

3.1 Introduction

The control of mechanical systems requires information of both variables: position
and velocity. Since usually only the position is measured, it is necessary to estimate
the velocity by means of an observer. When the model of the system is nonlinear
and the parameters, the inputs of the system are well known, there is extensive
literature providing global and asymptotically converging velocity estimation, see
e.g. (Gauthier, Hammouri, and Othman, 1992; Besançon, 2000; Besançon, 2007; As-
tolfi, Ortega, and Venkatraman, 2010). However, in the presence of uncertainty and
perturbation (UP) (e.g. dry friction, unknown torque, etc.) the challenge of esti-
mating globally, exactly the value of the velocity becomes more difficult, even more
if finite-time convergence is required. If the perturbation in the system is arbitrary,
the unknown input observer theory (Hautus, 1983; Rocha-Cózatl and Moreno, 2004;
Rocha-Cózatl and Moreno, 2011) requires that the measured output has relative de-
gree one with respect to (w.r.t.) the UP, but mechanical systems with UP have relative
degree two w.r.t. the measured position. To allow the estimation of the velocity in
this work one assumes that the UP is bounded.

For this purpose a discontinuous estimation algorithm is required, such as sliding-
mode observers (Edwards, Spurgeon, and Tan, 2002; Barbot, Boukhobza, and Dje-
mai, 2003; Spurgeon, 2008). One of their advantages is that they provide theoretically
exact convergence to the true system’s states, even in the presence of bounded per-
turbations and under the condition that the nonlinear system has a Bounded-Input-
Bounded-State (BIBS) property w.r.t. the perturbations. Moreover, HOSM observers
(Fridman et al., 2008; Barbot and Floquet, 2010; Bejarano, Pisano, and Usai, 2011;
Pisano and Usai, 2011; Efimov et al., 2012) ensure this convergence in finite time.

In particular, for nonlinear mechanical systems with bounded UP the sliding-
mode observers/differentiators (Levant, 1998; Davila, Fridman, and Levant, 2005;
Xian et al., 2004; Moreno, 2009) require the system to be BIBS. To overcome this re-
striction (Apaza-Perez, Fridman, and Moreno, 2017) proposes a strategy connecting
two observers in cascade: (i) A Luenberger observer ensuring that the estimation
error converges to a neighborhood of zero; (ii) A higher-order sliding-mode differ-
entiator that guarantees the global finite-time theoretically exact convergence to zero
of the estimation error. However, this design strategy grows twice the order of the
observer, and requires restrictive conditions for the gains design.
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For observation of nonlinear systems that do not necessarily have the BIBS prop-
erty, a dissipative approach is presented in Shim, Seo, and Teel, 2003; Moreno, 2004;
Moreno, 2005 for systems without UP, and in Rocha-Cózatl and Moreno, 2004; Rocha-
Cózatl and Moreno, 2011 with the presence of UP, results to be efficient. This tech-
nique contains as particular cases well-known observer design methods, e.g. Lips-
chitz (Rajamani, 1998) and high gain observers (Gauthier, Hammouri, and Othman,
1992). For systems with UP satisfying the conditions for existence of an observer,
among them the relative-degree-one condition, the dissipative observer is able to es-
timate globally and exponentially the real states (Rocha-Cózatl and Moreno, 2004;
Rocha-Cózatl and Moreno, 2011). But, when the relative-degree condition is not met
but the UP is bounded the dissipative observer assures the convergence to a neigh-
borhood of the origin of the estimation error (Moreno, 2005).

Summarizing, one can conclude that the observer design for mechanical systems
with UP presents the following challenges: (i) relative degree two w.r.t. the UP; (ii)
the system could be not BIBS, i.e. the sliding-mode differentiators cannot be used
directly; (iii) the Coriolis term depending quadratically on the velocity; iv) there are
uncertainties on the parameters of model, e.g. dry friction, hysteresis, etc; v) the
system can be affected by external perturbations.

Main contribution. One-degree-of-freedom mechanical systems with Coriolis term,
dry friction, bounded UP and other nonlinearities are considered. These systems
may not have the BIBS property. For this class of systems, a global sliding-mode
observer estimating the velocity theoretically exactly in finite time, is proposed.

The rest of the chapter is organized as follows. Section 3.2 contains a motivating
example of the system class for which sliding-mode differentiators cannot ensure
finite-time estimation. The problem statement is presented in Section 3.3. Section
3.4 presents a state transformation, to deal with the Coriolis term, and the proposed
observer. The main results are presented in Section 3.5. Section 3.6 illustrates the
main results with computer simulations. Section 3.7 provides some conclusions.

Notations. Throughout this paper we avail of the following notations: d·cp :=
| · |psign(·); λM (D) and λm(D) are the largest and the smallest eigenvalue of a square
matrix D.

3.2 Motivation example

The following Lagrangian system was considered by Besançon, 2000

(1 + cos2(q))q̈ − 1

2
sin(2q)q̇2 + g sin(q) = τ, (3.1)

where q ∈ R is the position, (1 + cos2(q)) is the inertia term, −1
2 sin(2q)q̇2 is the

Coriolis force. Consider a more general system adding a continuous nonlinear term
− sin2(q)+1

3 q̇, a discontinuous term (e.g. dry friction) 0.5 sign(q̇) and a bounded per-
turbation δ̃(t) in the form:

(1 + cos2(q))q̈ − 1

2
sin(2q)q̇2 + g sin(q)− sin2(q) + 1

3
q̇ + 0.5 sign(q̇) = τ + δ̃(t). (3.2)

This system has relative degree two w.r.t. the measured variable q and the UP.
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Let’s apply the generalized super-twisting (GST) algorithm (Moreno, 2011) as an
observer to estimate the unmeasured variable in finite time

ż1 = −6.7de1c1/2 − 3.4de1c+ z2, (3.3)

ż2 = −20de1c0 − 33de1c1/2 − 11de1c,

where e1 = z1 − q and the gains are obtained according to its methodology. For the
simulations, consider the perturbation in the form

δ̃(t) = 0.4 sin(3t) cos(4t3) + 0.5 cos(πt) + 0.6, (3.4a)

τ = 0 and the initial conditions as

(q(0), q̇(0)) = (1, 1), (z1(0), z2(0)) = (−20,−20). (3.4b)

Figure 3.1:(a) illustrates that trajectories of system (3.2), with initial condition
(3.4b), are not bounded. Figure 3.1:(a)-(b) illustrates that the differentiator state (3.3)
converges at t = 1.65 [s] to the real state q̇, but after t = 10.2 [s] the differentiator (3.3)
loses convergence. This is because at this time the nonlinearity

ρ(q, q̇) =
sin2(q) + 1

3(1 + cos2(q))
q̇ +

sin(2q)

2(1 + cos2(q))
q̇2 − 9.8 sin(q) + 0.5 sign(q̇)

1 + cos2(q)

with perturbation δ̃(t) exceeds the value 20 corresponding to the gain of the discon-
tinuous term in the differentiator (3.3), see Figure 3.1:(c).
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FIGURE 3.1: (a) The estimation state z2 of differentiator (3.3) and the
real state q̇ of (3.2). (b) The estimation error z2 − q̇. (c) Nonlinearity

and the perturbation ρ+ δ̃ overcome the gain 20

From this example one can conclude that for mechanical systems with UP and
without BIBS property, the observer convergence is lost even if the GST algorithm
based differentiator is applied. Hence, it is necessary to design an observer for sys-
tems not possessing the BIBS property.
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3.3 Problem statement

Consider an one-degree-of-freedom (1-DOF) mechanical systems with UP given as

m(q)q̈ + c(q)q̇2 +H(q, q̇) + η · sign(q̇) + g(q) = τ + δ̃(t, q, q̇) (3.5)

where q ∈ R is the (measured) generalized position, q̇ is the generalized velocity;
m(q) is the inertia term; c(q)q̇2 is the Coriolis and centrifugal force;H(q, q̇) is a contin-
uous nonlinearity (e.g. continuous frictions, air resistance, etc.); η ∈ R and η ·sign(q̇)
is the dry friction, which possibly contains relay terms depending on q̇; g(q) denotes
gravitational forces; δ̃(t, q, q̇) contains UP; and τ is the measured torque.

Suppose that the family of 1-DOF mechanical systems with UP represented by
(3.5) satisfies the following Assumptions:

A1. The inertia term m(q) satisfies

∃ a1, a2 > 0 ;∀q, a1 ≤ m(q) ≤ a2, (3.6)
ṁ(q) = 2c(q)q̇. (3.7)

A2. The UP term δ̃(t, q, q̇) is bounded, i.e. there exists a constant Lδ̃ such that

|δ̃(t, q, q̇)| ≤ Lδ̃.

A3. The nonlinearity H(q, q̇) can be represented as

H(q, q̇) = h1(q, q̇) + h2(q, q̇), such that ,

where

i) for the function ϕ(q, q̇) := −h1(q,q̇)
m(q) there exist {p, s, r}with p < 0 such that

the nonlinearity

Φ(v1, v2, v3) := ϕ(v1, v2 + v3)− ϕ(v1, v2),

is {p, s, r}-dissipative, i.e.[
Φ(v1, v2, v3)

v3

]T [
p s
s r

] [
Φ(v1, v2, v3)

v3

]
≥ 0,

for all v1, v2, v3 ∈ R.

ii) for the function ψ(q, q̇) := −h2(q,q̇)
m(q) there exist {0, s, r}with s < 0 such that

the nonlinearity

Ψ(v1, v2, v3) := ψ(v1, v2 + v3)− ψ(v1, v2),

is {0, s, r}-dissipative, i.e.[
Ψ(v1, v2, v3)

v3

]T [
0 s
s r

] [
Ψ(v1, v2, v3)

v3

]
≥ 0,

for all v1, v2, v3 ∈ R.



3.4. Construction of the observer 29

Remark 3. Assumption (3.7) is a standard condition for inertia and Coriolis terms in me-
chanical systems (Besançon, 2000; Spong, Hutchinson, and Vidyasagar, 2006). The decom-
position of H , for Assumption A3, represents two classes of nonlinearities: the nonlinearity
h1 contains globally Lipschitz functions w.r.t. the velocity (e.g. viscous friction) and the non-
linearity h2 contains monotone functions w.r.t. the velocity that do not need to be globally
Lipschitz (e.g. air resistance −kdq̇c2 or the family −kdq̇cα with α > 0).

Considering ξ1 = q, ξ2 = q̇, the state space representation of (3.5) is given by

ξ̇1 = ξ2, (3.8)

ξ̇2 = ϕ(ξ1, ξ2) + ψ(ξ1, ξ2) + α(ξ1)ξ2
2 + ϑ(ξ1) + u+ w,

y = ξ1,

where

ϕ(ξ1, ξ2) = −h1(ξ1, ξ2)

m(ξ1)
, ψ(ξ1, ξ2) = −h2(ξ1, ξ2)

m(ξ1)
,

α(ξ1) =
−c(ξ1)

m(ξ1)
, ϑ(ξ1) = − g(ξ1)

m(ξ1)
, u =

τ

m(ξ1)
,

w =
η · sign(ξ2)

m(ξ1)
+
δ̃(t, ξ1, ξ2)

m(ξ1)
.

Notice that |w| ≤ Lw with Lw =
η+Lδ̃
a1

. We assume that the solutions of the system
(3.8) are defined in the sense of Filippov, 1988 and they exist for all t ≥ 0.

The main goal of this chapter is to design a global observer for system (3.8) es-
timating the unmeasured velocity q̇ globally, theoretically exactly and in finite time,
without assuming BIBS property for (3.8).

3.4 Construction of the observer

3.4.1 Transformation to deal with the Coriolis force

Consider the function

Υ(y) := exp

(
−
∫ y

a
α(µ)dµ

)
, (3.9)

where α(µ) = − c(µ)
m(µ) and “a” is a constant defined in the domain of α(·). From

the condition (3.7) follows Υ(y) =
√

m(y)
m(a) and its multiplicative inverse as (Υ(y))−1 =√

m(a)
m(y) .

Assumption A1 implies
0 < d1 ≤ Υ(y) ≤ d2, (3.10)

where d1 =
√

a1
m(a) and d2 =

√
a2
m(a) .

Function T1(ξ1) :=
∫ ξ1
a Υ(µ)dµ is a diffeomorphism, since it is differentiable and,

due to (9), it is monotonically increasing, invertible and the inverse T−1
1 (·) is differ-

entiable. One can define a diffeomorphism T (·, ·) as

[
x1

x2

]
=

[
T1(ξ1)

T2(ξ1, ξ2)

]
= T (ξ1, ξ2) :=

∫ ξ1

a
Υ(µ)dµ

Υ(ξ1) · ξ2

 , (3.11)



30
Chapter 3. Dissipative approach to global sliding mode observers design for

1-DOF mechanical systems

and T−1 is given by

T−1(x1, x2) =

[
T−1

1 (x1)

(Υ(T−1
1 (x1)))−1 · x2

]
. (3.12)

This transformation is similar to one used by Krener and Respondek, 1985.
Using the transformation (3.11) we obtain the following transformed system

from (3.8)

ẋ1 =x2, (3.13)

ẋ2 =Υ(T̃1)
(
ϕ(T̃1, (Υ(T̃1))−1x2) + u+ w(t, ξ1, ξ2)

)
+

+ Υ(T̃1)(ψ(T̃1, (Υ(T̃1))−1x2) + ϑ(T̃1)),

where T̃1 := T−1
1 (x1) and x1 is the measured variable. Notice that the transformed

system (3.13) does not contain the quadratic term of the Coriolis force.

3.4.2 Observer structure

For system (3.13), we propose the following observer

˙̂x1 = x̂2 − k1φ1(x̂1 − x1), (3.14a)

˙̂x2 = Υ(T̃1)ϕ
(
T̃1, (Υ(T̃1))−1 (x̂2 + k4φ1(x̂1 − x1))

)
+

+ Υ(T̃1)ψ
(
T̃1, (Υ(T̃1))−1 (x̂2 + k3φ1(x̂1 − x1))

)
+

+ Υ(T̃1)
(
u+ ϑ(T̃1)

)
− k2φ2(x̂1 − x1),

where T̃1 = T−1
1 (x1), the nonlinearities φ1 and φ2 as

φ1(·) := µ1d·c1/2 + µ2d·c, (3.14b)

φ2(·) :=
µ2

1

2
d·c0 +

3µ1µ2

2
d·c1/2 + µ2

2d·c.

where the gains to design for this system are

k1, k2, µ1, µ2 > 0; k3, k4 ∈ R. (3.14c)

This observer is a copy of the transformed system (3.13) with nonlinear injection
terms φ1 and φ2. These injections appear additively in the observer and also within
the nonlinearities ϕ and ψ. The discontinuous term d·c0 in φ2 ensures robustness of
the observer against bounded UP, and the other nonlinear terms ensure finite-time
convergence to the real states.

The estimated state in original coordinates is given by

ξ̂2 = (Υ(T̃1))−1x̂2, (3.14d)
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and the observer dynamics is

˙̂
ξ1 = ξ̂2 −

k1

Υ(ξ̂1)
φ1(T ), (3.15)

˙̂
ξ2 =

Υ(ξ1)

Υ(ξ̂1)

[
ϕ

(
ξ1,

Υ(ξ̂1)

Υ(ξ1)
ξ̂2 +

k4

Υ(ξ1)
φ1(T )

)
+ u

]
+

+
Υ(ξ1)

Υ(ξ̂1)

[
ψ

(
ξ1,

Υ(ξ̂1)

Υ(ξ1)
ξ̂2 +

k3

Υ(ξ1)
φ1(T )

)
+ ϑ(T̃1)

]
+

+ α(ξ1)

(
ξ̂2

2 −
k1

Υ(ξ̂1)
φ1(T )ξ̂

)
− k2

Υ(ξ̂1)
φ2(T ),

where T = T(ξ̂)−T(ξ).

3.5 Main results

Theorem 4. If Assumptions A1, A2 and A3 are satisfied, then there exists a set of gains
(3.14c) such that the system (3.15) is an observer converging globally theoretically exact in
finite time to the states of system (3.8). N

The proof of Theorem 4 is in Appendix B.2.

Design of observer gains. The gains k1, k2, k3, k4, µ1, µ2 of the observer (3.15)-(3.14b)
can be chosen using the matrix inequality (3.16).

Lemma 2. For given constants Lw, d2, p, s, r, s̄, r̄ with Lw ≥ 0, d2 > 0, and p, s̄ < 0,
there exist constants p1, ε, θ3, ki, µi, θi > 0, i = 1, 2, k4 < 0 and k3 such that the following
matrix inequality1

 PA + θ̃1HE + θ2HC + θ̃3H̄E + εI ? ?
BTP θ1p ?

BTP 0 −θ2

(
µ2

1
2d2

)2

 ≤ 0, (3.16)

is satisfied, where A =

[
−k1 1
−k2 0

]
, P =

[
p1 −θ3s̄k4

−θ3s̄k4 −θ3s̄

]
> 0, B =

[
0
1

]
, PA =

ATP+PA,C =
[

1 0
]
, E =

[
k3 1

]
, Ē =

[
k4 1

]
,HE = ET

(
|s|+
√
−pr+s2√
−p

)2

E,

H̄E = ĒT d2r̄(sign(r̄)+1)
2 Ē, HC = CT (Lw)2C, θ̃1 = θ1

µ2
2

and θ̃3 = θ3
µ2

. N

The proofs of Lemma 2 is in Appendix B.1.

1The symbol ? indicates that matrix is symmetric.
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3.6 Simulation Examples

3.6.1 Motivational example of Chapter 1

Returning to example (1.2) given in Section 1.1.3; this system (1.2) is identified by
system (3.5) with m(q) = 1, c(q) = 0, h1(q, q̇) = − sin2(0.5q)

2(1+cos2(q))
q̇, h2(q, q̇) = 0, g(q) =

9.8b sin(0.2q)
4(1+cos2(q))

, η = 0, τ = 0. For this example, Assumptions A1, A2 and A3-i) are
satisfied, with a1 = a2 = 1, p = −1, s = 0, r = 2

3 .
The function Υ(y) in (3.9) for this example is given as Υ(y) = 1, which satisfies

(3.10) with a = 0, d1 = d2 = 1. the state transformation T (ξ1, ξ2) in (3.11) is the
identity function. Then from (3.16) one gets k1 = −2.16, k2 = −3.65, k3 = 0.01,

ε = 0.01 θ1 = 2.35, µ1 = 1, µ2 = 1.15, P =

[
2.48 −1.19
−1.19 1.12

]
. For the simulations

the initial conditions were considered as (x1(0), x2(0)) = (−0.5, 6.3), (x̂1(0), x̂2(0)) =
(3, 3) and the UP is the same as in (1.4).

The estimated states x̂1 and x̂2 converge to real states x1 and x2 from t = 0.20 [s]
as it is illustrated in Figure 3.2. Figure 3.3 illustrates the estimation error.
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FIGURE 3.2: The estimation states x̂1, x̂2 in the observer and real
states x1, x2 of (1.2)
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FIGURE 3.3: The estimation error e1 = x̂1 − x1 and e2 = x̂2 − x2
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3.6.2 Motivational example of Section 3.2.

Let us return to the motivational example (3.2). For this example, Assumptions A1,
A2 and A3-i) are satisfied, with m(q) = 1 + cos2(q), c(q) = −1

2 sin(q), ϕ(q, q̇) =
sin2(q)+1

3(1+cos2(q))
q̇ and parameters p = −1, s = 0, r = 2

3 .

The function Υ(y) in (3.9) for this example is given as Υ(y) =
√

1 + cos2(y) which
satisfies (3.10) with d1 = 1, d2 =

√
2. Fix a = π

2 for transformation (3.11). Then from
(15) one gets k1 = −2.16, k2 = −3.65, k3 = 0.01, ε = 0.01 θ1 = 2.35, µ1 = 1, µ2 = 1.15,

P =

[
2.48 −1.19
−1.19 1.12

]
. For the simulations the initial conditions and the perturbation

are the same as in (3.4).
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FIGURE 3.4: (a) The real states ξ2 on (3.2) and their estimation state
ξ̂2. (b) The estimation error ξ̂2 − ξ2

Figure 3.4 illustrates the convergence for all t > 2.2[s] and it is not lost as in the
motivational example (3.2).

3.6.3 Example

Consider the following system, including nonlinearities with properties as in As-
sumption A3,

q̈ + q̇2sign(q̇)− (cos2(q) + 1)q̇ = τ + δ̃(t). (3.17)

Since the inertia term m(q) = 1 is a constant, there is no Coriolis term, i.e. c(q) = 0,
and Assumption A1 is met. The nonlinearity ϕ = (cos2(q)+1)q̇ satisfies Assumption
A3-i) with parameters p = −1, s = 0, r = 2, while the nonlinearity ψ = −q̇2sign(q̇)
fulfills A3-ii) with parameters s̄ = −1

2 , r̄ = 0.
From the matrix inequality (3.16) one gets k1 = 2.41, k2 = 6.77, k3 = −1, k4 =

−1.28, ε = 440.28, θ1 = 1231.5, θ2 = 1, θ3 = 794.78, µ1 = 8.77, µ2 = 4, p1 = 1793.64.
For the simulations the initial conditions and the perturbation are the same as in
(3.4). Figure 3.5 illustrates that the convergence in finite time is ensured for all t >
0.5 [s].
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3.7 Conclusions

The class of mechanical systems (3.5) with the Coriolis term, dry friction, UP, that
are not BIBS, was considered. The state transformation (3.11) was introduced to deal
with the Coriolis term. For these systems, the global sliding-mode observer (3.15)
with theoretically exact finite-time convergence using dissipative properties, was
proposed. The gains of this observer are obtained from a feasible matrix inequality
(3.16).
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Chapter 4

Dissipative approach to global
sliding mode observers design for
2-DOF mechanical systems

4.1 Introduction

Control of mechanical systems usually requires the information about position and
velocity. Often only the position is available, that is why the observer is needed. One
challenge in building observers to estimate the velocity in mechanical systems is the
presence of uncertainty/perturbation (UP). The sliding-mode (SM) observers/di-
fferentiators (Levant, 1998; Xian et al., 2004; Davila, Fridman, and Levant, 2005;
Fridman et al., 2008; Moreno, 2009; Barbot and Floquet, 2010; Pisano and Usai,
2011; Efimov et al., 2012) provide theoretically exact finite-time convergence to the
real system’s states despite the presence of bounded UP when the system has the
bounded-input-bounded-state (BIBS) property, and consequently the convergence
is semi-global. For systems without the BIBS property, the presence of Coriolis and
centrifugal forces create even more problems in the observer design (Levant, 1998;
Xian et al., 2004; Davila, Fridman, and Levant, 2005; Moreno, 2009) due to their
quadratic terms on velocities.

In this work, a class of two-degree-of-freedom (2-DOF) mechanical systems with
bounded UP, which could not have the BIBS property is considered.
State of art and motivation: 1) The dissipative observers (Rocha-Cózatl and Moreno,
2004; Rocha-Cózatl and Moreno, 2011) result to be efficient to deal with the BIBS
restriction. If the systems with UP satisfy the conditions for the existence of an ob-
server, among them the relative degree one condition, then they are able to estimate
globally and exponentially the real states using dissipative properties which could
have the nonlinearities. But mechanical systems with UP have relative degree two
w.r.t. the measured position.
2) There are many works (Besançon, 2000; Mabrouk, Mazenc, and Vivalda, 2004; As-
tolfi, Ortega, and Venkatraman, 2010; Stamnes, Aamo, and Kaasa, 2011) dealing with
the Coriolis and centrifugal forces, which provide global observers when the model
of the mechanical system is completely known. Through state transformations, As-
tolfi, Ortega, and Venkatraman, 2010; Stamnes, Aamo, and Kaasa, 2011 propose ob-
servers with fairly high dimension, namely 3n + 1 and 2n + 2 respectively, where
n is the dimension of the unmeasured velocity. Besançon, 2000; Mabrouk, Mazenc,
and Vivalda, 2004 propose observers with the same dimension of the system for a
class of mechanical systems. However, the challenge of dealing with viscous and
dry frictions, UP and obtaining an estimation theoretically exact of velocity was not
considered.
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3) To overcome the BIBS restriction and the presence of Coriolis and centrifugal
forces, in Apaza-Perez, Moreno, and Fridman, 2016 a global observer for 1-DOF
mechanical systems with UP is proposed. The state transformation used in Apaza-
Perez, Moreno, and Fridman, 2016 is not applicable to 2-DOF mechanical systems.

Main contribution. We consider 2-DOF mechanical systems with Coriolis and cen-
trifugal forces and bounded UP, which may not have BIBS property. For this class
of systems, a dissipativity based sliding-mode observer, is proposed. The observer
gains can be obtained from feasible matrix inequalities.

The rest of the chapter is organized as follows. The problem statement is pre-
sented in Section 4.2. Section 4.3 presents the construction of the proposed observer.
The main results are shown in Section 4.4. Section 4.5 illustrates the proposed ob-
server effectiveness through simulation results using the cart-pendulum system. All
proofs are in the Appendix.

4.2 Problem statement

Consider the 2-DOF mechanical system with UP:

M(x)ẍ+ C(x, ẋ)ẋ+G(x) + ψ(x, ẋ) +Hẋ+ Λsign(ẋ) = Du+ δ̃(t, x, ẋ), (4.1)

where x = (x1, x2)T ∈ R2 is the measured position, M(x) ∈ R2×2 is the inertia
matrix, C(x, ẋ)ẋ represents Coriolis and centrifugal forces, ψ = (ψ1, ψ2)T is a contin-
uous nonlinearity (e.g. other types of frictions, air resistance, etc.), H,Λ, D ∈ R2×2,
Hẋ and Λsign(ẋ) are viscous and dry frictions, G(x) denotes gravitational forces,
δ̃(t, x, ẋ) contains perturbations, and u ∈ R2 is the control input.

The objective is to design an observer with theoretically exact global finite-time
convergence to the real values of the velocity.

In the family of 2-DOF systems (4.1), the entries of the Coriolis and centrifugal

matrixC(x, ẋ) =

[
c11 c12

c21 c22

]
is defined from the entries ofM(x) through the Christof-

fel symbols (Spong, Hutchinson, and Vidyasagar, 2006) as

ckj =
1

2

2∑
i=1

(
∂mkj(x)

∂xi
+
∂mki(x)

∂xj
− ∂mij(x)

∂xk

)
ẋi, (4.2)

for k, j = 1, 2.
Consider the family of systems (4.1), which additionally satisfies the following

assumptions:

P-1 The matrix M(x) depends only on one variable x2 as

M(x2) =

[
m11 m12(x2)

m12(x2) m22(x2)

]
.

P-2 There exist two constants α1 > 0, α2 > 0 such that

0 < α1I ≤M(x2) ≤ α2I, for all x2, (4.3)

is satisfied, where I denotes the identity matrix of dimension 2× 2.
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P-3 The terms (HΥx2)11 and m11(HΥx2)22 − m12(x2)(HΥx2)12 are non negative,

where Υx2 =

[
1
m11

− m12(x2)
m11α(x2)

0 1
α(x2)

]
and α(x2) =

√
det(M(x2))

m11
.

P-4 The perturbation/uncertainty δ̃(t, x, ẋ) is bounded, i.e. there exists a constant
Lδ̃ > 0 such that ‖δ̃(t, x, ẋ)‖ ≤ Lδ̃.

P-5 There exist Q,S,R ∈ R2×2, with Q < 0 such that the nonlinearity

Ψ(ξ1, ξ2, h) := ψ(ξ1, ξ2)− ψ(ξ1, ξ2 + h),

is {Q,S,R}-dissipative, i.e.[
Ψ(ξ1, ξ2, h)

h

]T [
Q S
ST R

] [
Ψ(ξ1, ξ2, h)

h

]
≥ 0,

for all ξ1, ξ2, h ∈ R2.

Using the relationships from the Christoffel symbols (4.2) and Assumption P-1,
the Coriolis and centrifuges matrix is reduced to

C(x, ẋ) =

[
0 m′12(x2)ẋ2

0 1
2m
′
22(x2)ẋ2

]
. (4.4)

4.3 Observer design

Transformation of states to deal with Coriolis term. If the system (4.1) satisfies
the assumptions P1 and P2, then with the notations introduced above and setting
v =

[
v1 v2

]T
= Du−G(x), δ =

[
δ1 δ2

]T
= δ̃ − Λsign(ẋ) system (4.1) is expressed

as {
ẋ = z,

ż = M−1(x) [v − C(x, z)z −Hz − ψ(x, z) + δ(t, x, z)] .
(4.5)

Consider the diffeomorphism (state transformation)
θ1

θ2

w1

w2

 =


x1 +

∫ x2

0
m12(s)
m11

ds

x2

m11z1 +m12(x2)z2

α(x2)z2

 , (4.6)

where its inverse is given by
x1

x2

z1

z2

 =


θ1 −

∫ θ2
0

m12(s)
m11

ds

θ2
1
m11

(
w1 −m12(θ2)α(θ2)−1w2

)
α(θ2)−1w2

 , (4.7)

where α(x2) =

√
det(M(x2))

m11
, and notice that α(x2) ≤ √α2 is satisfied. The trans-

formation (4.6) is inspired by one proposed in Mabrouk, Mazenc, and Vivalda, 2004
for the case H = 0, ψ(x, z) = 0, δ̃ = 0, Λ = 0.
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The transformed system from (4.5) using (4.6) is given as

θ̇1 =
w1

m11
, (4.8)

ẇ1 = −(HΥθ2)11w1 − (HΥθ2)12w2 − ψ1(x,Υθ2w) + v1 + δ1,

θ̇2 =
w2

α(θ2)
,

ẇ2 =
m11[−(HΥθ2)21w1 − (HΥθ2)22w2]

m11α(θ2)
+

− m12(θ2)[−(HΥθ2)11w1 − (HΥθ2)12w2]

m11α(θ2)
+

+
m11(−ψ2(x,Υθ2w))−m12(θ2)(−ψ1(x,Υθ2w))

m11α(θ2)

+
m11v2 −m12(θ2)v1 +m11δ2 −m12(θ2)δ1

m11α(θ2)
,

where Υθ2 =

[
1
m11

− m12(θ2)
m11α(θ2)

0 1
α(θ2)

]
and (HΥθ2)ij denotes the component ij of matrix

HΥθ2 , (i, j = 1, 2).

Observer structure. The proposed observer has the following form

˙̂
θ1 =

ŵ1

m11
− `ko1φ11(eθ1), (4.9a)

˙̂w1 = −(HΥθ2)11ŵ1 − (HΥθ2)12ŵ2 + v1 − `2ko2φ12(eθ1)+

− ψ1(q,Υθ2(ŵ + kolφ1(eθ))),

˙̂
θ2 =

ŵ2

α(θ2)
− `lo1φ21(eθ2)

α(θ2)
,

˙̂w2 =
m11[−(HΥθ2)21ŵ1 − (HΥθ2)22ŵ2]

m11α(θ2)
+

− m12(θ2)[−(HΥθ2)11ŵ1 − (HΥθ2)12ŵ2]

m11α(θ2)

+
m11(−ψ2(q,Υθ2(ŵ + kolφ1(eθ))))

m11α(θ2)

− m12(θ2)(−ψ1(q,Υθ2(ŵ + kolφ1(eθ))))

m11α(θ2)

+
m11v2 −m12(θ2)v1

m11α(θ2)
− `2lo2φ22(eθ2)

α(θ2)
,

where eθ1 = θ̂1 − θ1, eθ2 = θ̂2 − θ2, the nonlinearities are

φi1(eθi) := µi1deθic1/2 + µi2deθic, (4.9b)

φi2(eθi) :=
µ2
i1

2
deθic0 +

3µi1µi2
2
deθic1/2 + µ2

i2deθic, for i = 1, 2,

and the estimated states in original coordinates for (4.5) are given by[
ẑ1

ẑ2

]
= Υθ2

[
ŵ1

ŵ2

]
=

[
1
m11

− m12(θ2)
m11α(θ2)

0 1
α(θ2)

] [
ŵ1

ŵ2

]
. (4.9c)
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The observer (4.9a) is a copy of the transformed system with nonlinear injection
terms φi1 and φi2. These injections appear additively in the system and also within
the nonlinearity ψ. The discontinuous term deθic0 = sign(eθi) ensures robustness of
the observer against bounded UP and the other terms in the nonlinearities ensure
finite-time convergence to the real states.

4.4 Results

The gains to design of the proposed observer are

ko1, ko2, lo1, lo2, µ11, µ12, µ21, µ22 > 0; ` ≥ 1; ko3, lo3 ∈ R. (4.9d)

These gains can be obtained from the matrix inequalities (4.10a), (4.10b) given in the
following Lemma.

Lemma 3. For any positive constants b, d11, hA1, hB1, α(θ2) > 0, and non negative
constants (HΥθ2)11, (HΥθ2)22, d12(θ) (HΥθ2)12, Γj ≥ 0, for j = 1, ..., 4, there exist
constants ` ≥ 1; koi, µmi, loi, γj > 0, and positive definite symmetric matrices Pi > 0, with
i = 1, 2, such that

AT2 P1 + P1A2 < 0, BT
2 P2 + P2B2 < 0, (4.10a)

ΠP1 ? ? ? ? ? ? ?
0 ΠP2 ? ? ? ? ? ?

BTP1 0 −γ1µ
2
m2 ? ? ? ? ?

0 BTP2 0 −γ2µ
2
m2 ? ? ? ?

BTP1 0 0 0 −γ3µ
4
m1`

2 ? ? ?
0 BTP2 0 0 0 −γ4µ

4
m1`

2 ? ?
BTP1 0 0 0 0 0 −γ5µ

2
m2 ?

0 BTP2 0 0 0 0 0 −γ6µ
2
m2


≤ 0,

(4.10b)
are satisfied, where

A1 =

[−ko1 1
m11

−ko2 0

]
, A2 =

−ko1 1
m11

−ko2 −
(

(HΥθ2 )11

`µ12
+ b1

) ,
B =

[
0
1

]
, B̃ =

[
1 0
0 0

]
, B1 =

[
−lo1 1
−lo2 0

]
,

B2 =

−lo1 1

−lo2 −
(
m11(HΥθ2 )22+m12(θ)(HΥ)12

`m11µ22
+ b1

) ,
ΠP1 =`hA1

(
AT1 P1 + P1A1

)
+ γ2Γ2BB

T + γ3Γ3B̃
T B̃+

+ γ4Γ4B̃
T B̃ +

γ5Γ5 + γ6Γ6

`4
∆`E

T
k Ek∆` + εI,

ΠP2 =
`hB1

α(θ2)

(
BT

1 P2 + P2B1

)
+ γ1Γ1BB

T + γ3Γ3B̃
T B̃+

+ γ4Γ4B̃
T B̃ +

γ5Γ5 + γ6Γ6

`4
∆`E

T
k Ek∆` + εI.

N

The proof of Lemma 3 is in Appendix C.1
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The following theorem is the main result of this Chapter.

Theorem 5. Suppose that parameters (4.9d) satisfy the feasible matrix inequalities (4.10a),
(4.10b), then the estimation states (4.9c) converge in finite time to the velocity ẋ in (4.5). N

The proof of Theorem 5 is in Appendix C.2.

4.5 Example

The proposed observer (4.9a) is applied by simulations to the Cart-pendulum sys-
tem. The nonlinear mathematical model of the cart-pendulum is given by

ẋ1 = x3, (4.11)
ẋ2 = x4,

ẋ3 =
a1

(
k1u− x2

4 sinx2 − k2x3

)
+ (g sinx2 − k3x4) cosx2

a1a2 − cos2 x2
,

ẋ4 =

(
k1u− x2

4 sinx2 − k2x3

)
cosx2 + a2 (g sinx2 − k3x4)

a1a2 − cos2 x2
.

where x1 ≡ cart position [m] and x2 ≡ pendulum angular position [rad] are mea-
sured states, x3 ≡ cart velocity

[
m
s

]
and x4 ≡ pendulum angular velocity

[
rad
s

]
are unmeasured states. Moreover, u is the control input [N ]. The cart-pendulum
parameters are obtained from INTECO, 2008 as m = 0.872 [Kg], l = 0.011 [m],
fc = 1

[
N · sm

]
, fp = 1.4 · 10−4

[
N ·m·s
rad

]
, Jp = 0.0034 [Kg · m2], g = 9.81 [m/s2],

p1 = 9.4 [N ], p2 = −0.548 [N · s/m]. Obtaining a1 = JP
ml = 0.3545, a2 = 1

l = 90.9091,
k1 = p1

ml = 979.9833, k2 = fc−p2

ml = 161.3845, k3 =
fp
ml = 0.0146.

Writing the system (4.11) in the form (4.1), one obtains C(x) =

[
0 x4 sinx2

0 0

]
,

M(x2) =

[
a2 − cosx2

− cosx2 a1

]
, G(x) =

[
0

−g sinx2

]
, H =

[
k2 0
0 k3

]
, D =

[
k1

0

]
, ψ(x) =

0, where Assumption P-1 is satisfied. The eigenvalues depending on x2 of M(x2) is

given by a1+a2±
√

(a1−a2)2+4 cos(x2)

2 , from which can obtain α1 =
a1+a2−

√
(a1−a2)2+4

2 ,

α2 =
a1+a2+

√
(a1−a2)2+4

2 that satisfy Assumption P-2.

In this case Υx2 =

[
1
a2

cos(x2)
a2α(x2)

0 1
α(x2)

]
and α(x2) =

√
a1a2−cos2(x2)

a2
, where (HΥx2)11 =

k2
a2
≥ 0, m11(HΥx2)22−m12(x2)(HΥx2)12 = a2k3

α(x2) + cos2(x2)k2

a2α(x2) ≥ 0 satisfy Assumption
P-3. For Assumption P-4 we use Lδ̃ = 1.5. For this system ψ(x) = 0, then any
matrix Q < 0 and S = R = 0 satisfy assumption P-5. The following parameters are
obtained from the transformation

θ1

θ2

w1

w2

 =


x1 − sin(x2)

a2

x2

a2x3 − cos(x2)x4

α(x2)x4

 . (4.12)

Solving the matrix inequalities (4.10) with the parameters: α(θ2) =
√

a1a2−1
a2

=

0.5861, (HΥθ2)12 = k2
a2

√
a2

a1a2−1 , d12(θ2) = 1, (HΥθ2)22 = k3

√
a2

a1a2−1 ,
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hB1 = a2b2`µ22

a2k3

√
a2

a1a2−1
+
k2
a2

√
a2

a1a2−1
+a2b2`µ22

, hA1 = b1
(HΥθ2

)11

`µ12
+b1

, Γ1 =
(
k2
a2

√
a2

a1a2−1

)2
=

9.1755, Γ2 =
(
k2

a2
2

√
a2

a1a2−1

)2
= 0.0011, Γ3 = 4L2

δ1
, Γ4 = 4

(
a2Lδ2+Lδ1

a2

√
a2

a1a2−1

)2
.

For b1 = 2, b2 = 200, one obtains P1 =

[
76.7062 −8.8802
−8.8802 1.7438

]
;

P2 =

[
45.5100 −11.7927
−11.7927 18.2595

]
; ` = 1; ko1 = 0.9594; ko2 = 5.1402; lo1 = 1.1713;

lo2 = 3.0827; µm1 = 3, µm2 = 10; µ11 = 3; µ12 = 300; µ21 = 3; µ22 = 10; ε = 0.0934;
γ1 = 0.9297; γ2 = 0.8079; γ3 = 1.1800; γ4 = 0.9828.

Figure 4.1 illustrates the finite-time convergence of the estimate states to the real
states. Figure 4.2 illustrates all estimation errors, and the control input applied to
the system.
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FIGURE 4.2: Estimation errors and the control input

4.6 Conclusions

In this chapter, the dissipative based sliding-mode observer with theoretically exact
global and finite-time convergence to the real values of velocities for a class of 2-DOF
mechanical systems was proposed. This class of systems may not have the BIBS
property and contains Coriolis and centrifugals forces, dry and viscous frictions,
and uncertainties/perturbations. The gains of the proposed observer are obtained
from the feasible matrix inequalities (4.10). A simulation validation of the proposed
observer on a cart-pendulum is presented.
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Chapter 5

Experimental implementation:
Pendulum-cart system

One of the global observers presented in this work will be used in a mechanical
system with the aim of showing its applicability in the experimental framework.
Many mechanical systems in the experimental field present several terms not con-
sidered in the nominal model such as exogenous perturbations, dry friction, and vis-
cous friction. The last one often is considered as a small and despicable value, but
there are mechanical systems where these values are not despised such as the car-
pendulum system. A car-pendulum system manufactured by the company INTECO
is available in the Sliding-Modes laboratory of the Engineering graduate school at
the National Autonomous University of Mexico (UNAM), see Figure 5.1. This car-
pendulum is a mechanical system of two degrees of freedom for which the Coriolis
force and viscous friction are considered in the model. It is possible to introduce
exogenous perturbations through the pendulum position to show the observer ro-
bustness along to an discontinuous integral control (Zamora, Moreno, and Kamal,
2013).

FIGURE 5.1: Sliding-mode laboratory, Faculty of electrical engineer-
ing, Universidad Nacional Autónoma de México UNAM
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5.1 Model description

FIGURE 5.2: Pendulum on a cart system

Figure 5.2 shows the functional principle of the system, where the states represent
x1 ≡ cart position [m] and x2 ≡ pendulum angular position [rad] which are mea-
sured, m is the equivalent mass of cart and pendulum, g is the gravity acceleration.
The nonlinear mathematical model of the cart-pendulum considering the diagram
depicted in Figure 5.2, is given by INTECO, 2008

ẋ1 = x3, (5.1)
ẋ2 = x4,

ẋ3 =
a1

(
k1u− x2

4 sinx2 − k2x3

)
+ (g sinx2 − k3x4) cosx2

a1a2 − cos2 x2
,

ẋ4 =

(
k1u− x2

4 sinx2 − k2x3

)
cosx2 + a2 (g sinx2 − k3x4)

a1a2 − cos2 x2
.

where x3 ≡ cart velocity
[
m
s

]
and x4 ≡ pendulum angular velocity

[
rad
s

]
which are

unmeasured variables. Moreover, u is the control input [N ]. In Table 5.1, the cart-
pendulum parameters given by the manufacturer INTECO, 2008 are shown

Description Value
m Equivalent mass of cart and pendulum 0.872 [Kg]

l Distance from axis of rotation to center of mass of system 0.011 [m]

fc Dynamic cart friction coefficient 1
[
N · sm

]
fp Rotational friction coefficient 1.4 · 10−4

[
N ·m·s
rad

]
Jp Pendulum inertial moment with respect to rotation axis 0.0034 [Kg ·m2]

g Gravity acceleration 9.81 [m/s2]

p1 Control force to PWM signal ratio 9.4 [N ]

p2 Control force to cart velocity ratio −0.548 [N · s/m]

TABLE 5.1: Table of original system parameters.

obtaining from them the following terms a1 = JP
ml = 0.3545, a2 = 1

l = 90.9091,
k1 = p1

ml = 979.9833, k2 = fc−p2

ml = 161.3845, k3 =
fp
ml = 0.0146.
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5.2 Selection of observer parameters

Writing the system (5.1) in the form (4.1), one obtains M(x2) =

[
a2 − cosx2

− cosx2 a1

]
,

C(x) =

[
0 x4 sinx2

0 0

]
, G(x) =

[
0

−g sinx2

]
, H =

[
k2 0
0 k3

]
, D =

[
k1

0

]
, ψ(x) = 0,

where Assumption P-1 is satisfied. The eigenvalues depending on x2 of M(x2) are

given by a1+a2±
√

(a1−a2)2+4 cos(x2)

2 , from which it can be obtained

α1 =
a1+a2−

√
(a1−a2)2+4

2 , α2 =
a1+a2+

√
(a1−a2)2+4

2 that satisfy Assumption P-2.

In this case Υx2 =

[
1
a2

cos(x2)
a2α(x2)

0 1
α(x2)

]
and α(x2) =

√
a1a2−cos2(x2)

a2
, where (HΥx2)11 =

k2
a2
≥ 0, m11(HΥx2)22−m12(x2)(HΥx2)12 = a2k3

α(x2) + cos2(x2)k2

a2α(x2) ≥ 0 satisfy Assumption
P-3. For Assumption P-4 we use Lδ̃ = 1.5. For this system ψ(x) = 0, then any
matrix Q < 0 and S = R = 0 satisfy Assumption P-5. The following parameters are
obtained from transformation

θ1

θ2

w1

w2

 =


x1 − sin(x2)

a2

x2

a2x3 − cos(x2)x4

α(x2)x4

 . (5.2)

Solving the matrix inequalities (4.10) with the parameters: α(θ2) =
√

a1a2−1
a2

=

0.5861, (HΥθ2)12 = k2
a2

√
a2

a1a2−1 , d12(θ2) = 1, (HΥθ2)22 = k3

√
a2

a1a2−1 ,

hB1 = a2b2`µ22

a2k3

√
a2

a1a2−1
+
k2
a2

√
a2

a1a2−1
+a2b2`µ22

, hA1 = b1
(HΥθ2

)11

`µ12
+b1

, Γ1 =
(
k2
a2

√
a2

a1a2−1

)2
=

9.1755, Γ2 =
(
k2

a2
2

√
a2

a1a2−1

)2
= 0.0011, Γ3 = 4L2

δ1
, Γ4 = 4

(
a2Lδ2+Lδ1

a2

√
a2

a1a2−1

)2
.

For b1 = 2, b2 = 200, one obtains P1 =

[
76.7062 −8.8802
−8.8802 1.7438

]
;

P2 =

[
45.5100 −11.7927
−11.7927 18.2595

]
; ` = 1; ko1 = 0.9594; ko2 = 5.1402; lo1 = 1.1713;

lo2 = 3.0827; µm1 = 3, µm2 = 10; µ11 = 3; µ12 = 300; µ21 = 3; µ22 = 10; ε = 0.0934;
γ1 = 0.9297; γ2 = 0.8079; γ3 = 1.1800; γ4 = 0.9828.

5.3 Experimental results

The experiment is performed in a cart-pendulum plant developed by INTECO, 2008.
The control law is programmed in MATLAB with SIMULINK and the RTWT (Real
Time Windows Target) MathWorks Toolbox is included. Through a data acquisi-
tion card RT-DAC4/PCI the communication between the plant and a computer is
achieved. The control signal is computed by PC and sent to the DC flat motor as a
PWM signal.

In the experiment, the pendulum is driven near to x0 = (0, 0) by means of a
swing-up algorithm which is taken from the test examples of the INTECO cart-
pendulum system (INTECO, 2008). When the pendulum angular position is in a
region less than 0.2 [rad], i.e., ‖x2‖ < 0.2 [rad] the control signal switch from the
swing up to an Integral-discontinuous Controller (5.3) proposed in Zamora, Moreno,
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and Kamal, 2013, which stabilize the origin of the system

u = −26dsc1/3 − 25dṡc1/2 + v, (5.3)
v̇ = −5 sign(s),

s = x3 + 0.5x̃2 + 4x̃1,

where


x̃1

x̃2

x̃3

x̃4

 =


0.0028 −0.0008 0 −0

0 0 0.0028 −0.0008
0 0.0272 0 0
0 0 0 0.0272

x.

The controller needs information of x3, x4 and these are obtained through the
proposed observer (4.9). Initial conditions are different to zero for all states and the
sample time is 1 [ms].

In experimental development, an impulse-like external force at time t = 17.8s
is applied this for illustrating the robustness of the proposed observer. This ex-
periment can also be visualized through the following link https://youtu.be/
NNQpEaYbZ0c. The experimental results are shown in Figures 5.3 and 5.4. Figure 5.3
illustrates the positions which converge to the origin. Figure 5.4 shows the velocity
estimations obtained by the proposed observer.
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FIGURE 5.3: The cart position and the pendulum angular position

In the cart-pendulum system, the simulation results obtained in Figure 4.1 and
Figure 4.2 illustrate the effectiveness of the proposed observer which does not de-
pend of the BIBS property. The experimental results illustrated in Figure 5.3 and
Figure 5.4 show the applicability of the observer which is used to the stability of the
origin.

https://youtu.be/NNQpEaYbZ0c
https://youtu.be/NNQpEaYbZ0c
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FIGURE 5.4: Estimations of the cart velocity and the pendulum angu-
lar velocity obtained by the observer
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Chapter 6

Conclusions

The design of observers for uncertain nonlinear systems is currently one of the main
topics in control and observation theory. In realistic scenarios, the uncertainty/per-
turbation (UP) is considered for the design of observers, however this usually does
not satisfy the relative-degree-one condition, which is one of the necessary condi-
tions for the existence of observers when the UP is arbitrary. For this reason is
necessary to know some characteristics of the UP, which allow the construction of
observers for uncertain systems with relative degree greater than one.

In this work, the UP is considered as bounded and two problems in the design
of global observers for uncertain nonlinear systems were addressed: i) when the
UP has a relative degree greater than one; where the dissipative observers may only
ensure convergence to a neighborhood of real states, ii) when the uncertain nonlinear
systems do not have the bounded-input-bounded-state property with respect to the
UP; where the sliding-mode observers loose their robust properties. These problems
were satisfactorily solved for some classes of uncertain nonlinear systems such as a
chain of integrators of arbitrary order and a class of mechanical systems, where the
theoretically exact convergence in finite time to real states was assured.

Consequently, two structures of observers have been proposed. (a) The first
one uses a scaled dissipative stabilizer and a HOSM differentiator under a cascade
scheme. This generalizes the structure obtained in the linear case for the nonlinear
case, where the order of observer is two times the order of the system. This struc-
ture has advantages in the stability analysis because it is obtained from the stability
of each substructure. (b) The second one uses the Generalized Super-Twinting al-
gorithm and introduces correction terms in the nonlinearities, where the order of
observer is equal to the order of the system. The stability analysis from this struc-
ture uses dissipative properties of the nonlinearities through the construction of Lya-
punov functions. The second structure allows more flexibility in the design of gains
in comparison with the first structure applied to second order systems.

Scaled gains were introduced in the standard structure of the dissipative ob-
server, which we called scaled dissipative stabilizer (SDS), see Chapter 2 where a chain
of integrators is considered. This SDS allows to obtain the uniformly ultimately
bounded property on the estimation error dynamics, where it is explicitly shown
that if the observer gains grow, then the ultimate bound is reduced. The first ob-
server structure was applied to a chain of integrators, which combines SDS and a
HOSM differentiator under a cascade scheme. The order of the obtained observer
is 2n for a chain of integrators of order and relative degree n, due to its structure.
The independence of the design of the SDS gains and the HOSM differentiator in
the cascade scheme was guaranteed.

A topic for future research that follows from these results is to reduce the order
of the observer by changing the structure. In this case, another alternative for the
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stability analysis will be necessary to ensure the finite-time convergence to the real
states of the plant.

Towards this end, the second structure was proposed and applied to 1-DOF non-
linear mechanical systems in Chapter 3, and extended to a class of 2-DOF in Chapter
4. Lyapunov-like functions were proposed which consider the dissipative properties
of the nonlinearities and ensure finite-time convergence to the velocities. In these
classes of nonlinear mechanical systems, Coriolis and centrifugal forces, dry and
viscous frictions, perturbations with relative degree two were considered. There are
many global observers proposed in the literature which only consider the problem
of the presence of Coriolis and centrifugal forces, and those are not applicable for the
classes of systems considered in this work. There are finite-time observers proposed
in the literature, but they require the BIBS property. Consequently, one of the pro-
posed observers was used in the experimental framework through a car-pendulum
system, where its effectiveness, robustness and applicability are shown, see Chapter
5.

A topic for future research that follows from the classes previously mentioned is
to extend the results to mechanical systems with n degrees of freedom, where the
nonlinearities from the Coriolis forces, viscous and dry frictions and bounded UP
are considered.

The global observers proposed in this work have theoretically exact convergence
in finite time to the unmeasured states, where gains can be obtained from the matrix
inequalities and for which the feasibility was assured.
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Appendix A

HOSM observers with SDS for a
chain of integrators of arbitrary
order: result proofs

A.1 Proof of Lemma 1 (Page 13)

Since the non linearity Ψ := Ψ(x, h) is {q, S,R}−dissipative, i.e.[
Ψ
h

]T [
q S
ST R

] [
Ψ
h

]
= ΨT qΨ + ΨTSh+ hTSTΨ + hTRh ≥ 0.

From which one gets the following relationships:

−q‖Ψ‖2 ≤ ΨTSh+ hTSTΨ + hTRh ≤ 2‖Ψ‖‖h‖
{
λmax(STS)

}1/2
+ λmax(R)‖h‖2.

Consequently, one has

‖Ψ‖ ≤
({
−λmax(R)

q
+
λmax(STS)

q2

}1/2

− {λmax(STS)}1/2
q

)
‖h‖,

≤ 1

−q
({
−λmax(R)q + λmax(STS)

}1/2
+ {λmax(STS)}1/2

)
‖h‖,

and the inequality [
Ψ
h

]T [−q2 0

0 R̃

] [
Ψ
h

]
≥ 0,

is satisfied where

R̃ =
({
−λmax(R)q + λmax(STS)

}1/2
+ {λmax(STS)}1/2

)2
In−1.

�

A.2 Proof of Theorem 1 (Page 14)

Consider ev = (e1, e2), where e1 = v1 − x1, e2 = v2 − x2, which are obtained from
(2.1) with n = 2 and (2.8). One obtains

ė1 = e2 + l1e1, (A.1)
ė2 = Ψ + l2e1 − w,
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order: result proofs

where Ψ = ψ(x1, x2 + e2 + l3e1)− ψ(x1, x2).
The proof of Theorem 1 consists of following two lemmas.

Lemma 4. For systems (A.1), the positive definite function V (e) = eTPe, fulfills

V̇ (ev) < 0, for ‖ev‖ >
2%w‖(p2, p3)‖

ε
. (A.2)

Proof of Lemma 4. Let V (ev) = eTv Pev be a positive definite function, where ev =[
e1 e2

]T . Deriving along the trajectories of system (A.1),

V̇ (ev) =

 e1

e2

Ψ

T  2(l1p1 + l2p2) ? ?
p1 + l1p2 + l2p3 2p2 ?

p2 p3 0

 e1

e2

Ψ

− 2w(p2e1 + p3e2),

≤

 e1

e2

Ψ

T  −rl23 − ε ? ?
−rl3 −r − ε ?
sl3 s −q

 e1

e2

Ψ

+ 2|w| · ‖(p2, p3)‖ · ‖(e1, e2)‖,

pm = ‖(p2, p3)‖

≤ −
[

Ψ
e2 + l3e1

]T [
q s
s r

] [
Ψ

e2 + l3e1

]
− εeTv ev + 2%wpm‖ev‖,

≤− (ε‖ev‖ − 2%wpm) ‖ev‖.

For ‖ev‖ >
2%wpm
ε

, one has V̇ (ev) < 0.

Lemma 5. The trajectories in (A.1) converge in finite time T0 to the compact region
V −1([0, λmax(P )µ2]) contained in D =

{
z ∈ R2 : ‖z‖ ≤

√
λmax(P )
λmin(P ) µ

}
, where µ = 2%wpm+δ

ε

and δ > 0 is an arbitrary constant. An upper bound T for T0, is given by:

• T = 0, if ev(t0) ∈ V −1([0, λmax(P )µ2]);

• T =
λmin(P )c2 − λmax(P )µ2

εµ2 − 2%wpmµ
> 0,

if ev(t0) /∈ V −1([0, λmax(P )µ2]) and ‖ev(t0)‖ ≤
√

λmin(P )
λmax(P )c, for some sufficiently

large constant c.

Proof of Lemma 5. The set V −1([0, λmax(P )µ2]) is a positively invariant set, because
for all ev ∈ fr

(
V −1([0, λmax(P )µ2])

)
it is satisfied that V̇ (e(t)) < 0. The function

f(τ) = ετ2 − 2%wpm defined in τ > 2%wpm
ε > 0 is positive and satisfies f ′(τ) > 0.

Thus, α = εµ2 − 2%wpmµ = min
µ≤‖ev‖≤c

{
ε‖e‖2 − 2%wpm‖ev‖

}
.

For all t ≥ t0 such that

ev(t) ∈ V −1([0, λmin(P )c2])\V −1([0, λmax(P )µ2)) ⊂ {ev ∈ R2 : µ ≤ ‖e‖ ≤ c},

one has

V̇ (ev(t)) < −
(
ε‖ev‖2 − 2%wpm‖ev‖

)
< −α,

V (ev(t)) < V (ev(t0))− α(t− t0) ≤ λmin(P )c2 − α(t− t0),

after T = λmin(P )c2−λmax(P )µ2

α > 0 starting from t0, the trajectory is in
V −1([0, λmax(P )µ2]).
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From Lemma 4 and Lemma 5, the inequality

|ë1| = |ψ(x1, x2 + e2 + l3e1)− ψ(x1, x2) + (l21 + l2)e1 + l1e2 − w|,
≤ L2|e2 + l3e1|+ |w|+ |(l21 + l2)e1 + l1e2|,

≤ L2R
√
l23 + 1 + %w +R

√
(l21 + l2)2 + l21,

= R

(
L2

√
l23 + 1 +

√
(l21 + l2)2 + l21

)
+ %w = Lf , (A.3)

is valid for t ≥ t0 + T0. A Lipschitz constant of ė1 is estimated by Lf . This allows us
to use the sliding-mode differentiator (1.1) to determine ė1, where z1 and z2 converge
in finite time to e1 and ė1, respectively.

Consequently,

x̃1 := v1 − z0 and x̃2 := v2 + l1e1 − z1,

converge to the states x1 and x2 in finite time, respectively. �

A.3 Proof of Theorem 2 (Page 16)

i) Consider a particular choice of parameters as follows: Fix the parameters Q =
QT > 0, Ñ and ε > 0, and choose K such that AK is a Hurwitz matrix. Find
a matrix P = P T > 0 such that the Lyapunov inequality PAK + ATKP + εQ +
(Ĩn+ÑC)TR(Ĩn+ÑC) < 0, is satisfied. As the parameter l appears only in the
main diagonal of the matrix inequality (2.15), there exists a parameter l0 ≥ 1
such that the matrix inequality (2.15) is satisfied for all l ≥ l0.

ii) Consider the transformation

ζ := ln∆−1
l ev, (A.4)

where its time derivative is given by

ζ̇ = ln∆−1
l (A+ ∆lKC)l−n∆lζ + ln∆−1

l B (ψ(v +NCev)− ψ(x)− w) ,

= l (A+KC) ζ +
ln

ln
B
(

Ψ(x, (Ĩn + ÑC)ev)− w
)
,

= l (A+KC) ζ +B
(

Ψ(x, l−n(Ĩn + ÑC)∆lζ)− w
)
. (A.5)
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Let VP (ζ) := ζtPζ and VQ(ζ) := ζTQζ, where the derivative of VP along tra-
jectories of (A.5) is given as

V̇P (ζ) = lζT
[
(A+KC)TP + P (A+KC)

]
ζ + ΨBTPζ + ζTPBΨ− 2ζTPBw,

=

[
ζ
Ψ

]T [
l
[
(A+KC)TP + P (A+KC)

]
PB

BTP 0

] [
ζ
Ψ

]
− 2ζTPBw,

≤
[
ζ
Ψ

]T [
l
[
ATKP + PAK

]
+ l

l2n
(Ĩn∆l)

T
lÑ
R(Ĩn∆l)lÑ ?

BTP + l
l2n
S(Ĩn∆l)lÑ lq

][
ζ
Ψ

]
− 2ζTPBw,

≤ −lεVQ(ζ) + 2
V

1/2
Q (ζ)√
λmin(Q)

‖PB‖|w|,

≤ −V 1/2
Q (ζ)

(
lεV

1/2
Q (ζ)− 2‖PB‖%w√

λmin(Q)

)
.

Let µ := %w(2‖PB‖+δ)
lε
√
λmin(Q)

, where δ > 0 is an arbitrary scalar.

The set V −1
P

([
0, λmax(P )

λmin(Q)µ
2
])

is a positive-invariant set. The trajectories of ζ

converge to the compact region V −1
P

([
0, λmax(P )

λmin(Q)µ
2
])

. The function f(τ) :=

lετ2 − 2%w‖PB‖√
λmin(Q)

τ is positive for τ ≥ µ, and it also satisfies f ′(τ) = 2lετ −
2%w√
λmin(Q)

‖PB‖ > 0. Therefore,

β := εlµ2 − 2%w‖PB‖√
λmin(Q)

µ = min
µ≤V 1/2

Q (ζ)

lεVQ(ζ)− 2
V

1/2
Q (ζ)√
λmin(Q)

‖PB‖%w

 > 0.

(A.6)

For all t ≥ t0 such that VP (ζ(t)) ≥ λmax(P )
λmin(Q)µ

2, one has

V̇P (ζ(t)) ≤ −

lεVQ(ζ)− 2
V

1/2
Q (ζ)√
λmin(Q)

‖PB‖%w

 ≤ −β,
VP (ζ(t)) ≤ VP (ζ(t0))− β(t− t0).

After the time T :=
V (ζ(t0))−λmax(P )

λmin(Q)
µ2

β starting from t0, the trajectories are in

V −1
P

([
0, λmax(P )

λmin(Q)µ
2
])

.

Consider the diagonalization of P

ζTPζ = ζTGTDGζ = αTDα, (A.7)

where G is an orthogonal matrix and D = diag{λi(P )} with λi(P ) the eigen-
values of the matrix P for i = 1, ..., n.
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One obtains

ev =
1

ln
∆lζ =

1

ln
∆lG

Tα =
1

ln
∆lG

Tµ diag

{√
λmax(P )

λi(P )λmin(Q)

}
α̃,

=
%w(2‖PB‖+ δ)

lε
√
λmin(Q)

∆l

ln
GT diag

{√
λmax(P )

λi(P )λmin(Q)

}
α̃,

where ‖α̃‖ ≤ √n and ∆l
ln ≤ In. Then, we obtain

‖ev‖ ≤
%w(2‖PB‖+ δ)

lελmin(Q)

√
λmax(P )

λmin(P )
n. (A.8)

�

A.4 Proof of Theorem 3 (Page 18)

The following Lemma ensures that the n-th derivative of the measured output of the
dissipative error is bounded and that its bound is independent of the growth of the
dissipative observer gains.

Lemma 6. If A, B, ∆l, K and C are defined as in (2.2), then

1) (A+ ∆lKC)m = lm∆l(A+KC)m∆−1
l ,

2) C(A+ ∆lKC)m = lm+1C(A+KC)m∆−1
l for m ∈ N,

3) C(A+ ∆lKC)n−1B = 1.

Proof of Lemma 6. 1) For induction, m = 1

(A+ ∆lLC) =∆l(∆
−1
l A+ LC),

=∆l(lA∆−1
l + LC),

=∆l(lA+ LC∆l)∆
−1
l ,

=∆l(lA+ lLC)∆−1
l ,

=l∆l(A+ LC)∆−1
l .

Assume that this is valid for m = k, then

(A+ ∆lLC)k+1 =(A+ ∆lLC)k(A+ ∆lLC),

=lk∆l(A+ LC)k∆−1
l l∆l(A+ LC)∆−1

l ,

=lk+1∆l(A+ LC)k+1∆−1
l .

2)

C(A+ ∆lLC)m = lmC∆l(A+ LC)m∆−1
l = lm+1C(A+ LC)m∆−1

l .

3) This happens because the matrix A is a shift function, i.e. for a vector η :=
[η1, η2, ..., ηn]T we obtain

Aη = [η2, ..., ηn, 0]T and ηTA = [0, η1, ..., ηn−1], (A.9)
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(A+ ∆lLC)r =


∗ · · · ll1 1 0 · · ·
∗ · · · l2l2 0 1 · · ·
...

...
...

...
...

. . .

∗ · · · lnln 0 0
...

 , for 1 ≤ r ≤ n, (A.10)

Consequently, C(A+ ∆lLC)n−1B = 1.

Proof of Theorem 3. Consider the diagonalization of P

ζTPζ = ζTGTDGζ = αTDα, (A.11)

where G is an orthogonal matrix and D = diag{λi(P )} and λi(P ) represents the
eigenvalues of the matrix P for i = 1, ..., n. Analyzing the Lipschitz condition for
the (n-1)-th derivative of Cev, one gets

evy = Cev,

ėvy = C(A+ ∆lKC)ev,

...

e(n−1)
vy = C(A+ ∆lKC)n−1ev,

e(n)
vy = C(A+ ∆lKC)nev + C(A+ ∆lKC)n−1BΨ− C(A+ ∆lKC)n−1Bw,

= ln+1(A+KC)n∆−1
l l−n∆lζ + Ψ− w,

= l(A+KC)nGTµ diag

{√
λmax(P )

λi(P )λmin(Q)

}
α̃+ Ψ− w,

=
%w(2‖PB‖+ δ)

ελmin(Q)
(A+KC)nGT diag

{√
λmax(P )

λi(P )

}
α̃+ Ψ− w,

where α := µ diag
{√

λmax(P )
λi(P )λmin(Q)

}
α̃ and ‖α̃‖ ≤ √n. This satisfies the conditions

for using the high-order sliding-mode differentiator (2.18).
The structure of the HOSM differentiator (2.17b) allows us to verify that ezy = 0

is satisfied from Cz− evy = 0. The estimation error of the HOSM observer with SDS
satisfies

e =x̂− x,
=v − O−1z − x,
=ev − O−1z,

=ev − O−1

(
z −

[
evy ėvy · · · ė

(n−1)
vy

]T)
− O−1

[
evy ėvy · · · ė

(n−1)
vy

]T
,

=ev − O−1ezy − O−1 (Oev) ,

=− O−1ezy.
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Dissipative approach to global SM
observers design for 1-DOF
mechanical systems: result proofs

B.1 Proof of Lemma 2 (Page 31)

Choosing the positive parameters k1, k2 > 0, it is possible to ensure that the matrix

A =

[
−k1 1
−k2 0

]
is Hurwitz. Thus, solving the following Lyapunov inequality where

the parameters θ2, ε > 0; k4 < 0, and k3 are fixed

ATP + PA+HE + θ2HC + H̄E + εI︸ ︷︷ ︸
Ã

< 0, (B.1)

the parameters p1 and θ3 are obtained from P . If µ2 is chosen such that µ2 >
√
θ1 +θ3

is satisfied, then θ̃1, θ̃3 ≤ 1. By Schur’s complement in (3.16) using (B.1) one obtains[
θ1p 0

0 −θ2

(
µ1

2d2

)2

]
−
[
BTP
BTP

]
Ã−1

[
PB PB

]
≤ 0,

which ensures that the inequality (3.16) is satisfied for θ1, µ1 > 0 sufficiently large.
�

For the proof of Theorem 4, a definition and a previous result are required, which
are given as follows.

Definition 2 (Rocha-Cózatl and Moreno, 2011). A time-varying nonlinearity γ : [0,∞)×
Rp → Rm with γ(t, υ), piecewise continuous in t, locally Lipschitz in υ and γ(t, 0) = 0, is
called {Q,S,R}-dissipative if for each t ≥ 0 and υ ∈ Rp the following inequality is satisfied

ω(γ(t, υ), υ) =

[
γ(t, υ)
υ

]T [
Q S
ST R

] [
γ(t, υ)
υ

]
≥ 0, (B.2)

where Q = QT ∈ Rm×m, S ∈ Rm×p, R = RT ∈ Rp×p. �
Lemma 7. If a non linearity γ(t, υ) is {Q,S,R}−dissipative with Q a negative definite
matrix, then there exists a matrix R̃ such that γ(t, υ) is {Q, 0, R̃}−dissipative. N

Proof of Lemma 7. Since the non linearity γ := γ(t, υ) is {Q,S,R}−dissipative where
Q < 0, it is satisfied that[

γ
υ

]T [
Q S
ST R

] [
γ
υ

]
= γTQγ + γTSυ + υTSTγ + υTRυ ≥ 0.
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From which we get the following inequalities:

γTSυ + υTSTγ + υTRυ ≥ −γTQγ ≥ −λM (Q)‖γ‖2, (B.3)

2‖γ‖‖υ‖
{
λM (STS)

}1/2
+ λM (R)‖υ‖2 ≥ −λM (Q)‖γ‖2,

where the matrix property λm(Q)‖γ‖2 ≤ γTQγ ≤ λM (Q)‖γ‖2 is used.
Consider the auxiliary inequality bxy + cy2 ≥ ax2, where a, b, c > 0, x, y ≥ 0.

Then from cy2 ≥ −bxy + ax2 by completing squares one gets
(
c/a+ b2/(4a2)

)
y2

≥ x2 − (b/a)xy + (b/(2a))2y2 = (x− (b/2a)y)2. Consequently, the inequality(√
c/a+ b2/(4a2) + (b/2a)

)
y ≥ x,

is obtained. Now substituting x = ‖γ‖, y = ‖υ‖, a = −λM (Q), b = 2
{
λM (STS)

}1/2,
c = λM (R) one gets(√

−λM (R)

λM (Q)
+
λM (STS)

λ2
M (Q)

− {λM (STS)}1/2
λM (Q)

)
‖υ‖ ≥ ‖γ‖,√

−λM (R)λM (Q) + λM (STS) + {λM (STS)}1/2
−λM (Q)

‖υ‖ ≥ ‖γ‖.

According to the inequality 1
λm(Q)γ

TQγ ≤ ‖γ‖2 we obtain

R̃ =
−λm(Q)

λ2
M (Q)

(√
−λM (R)λM (Q) + λM (STS) +

√
λM (STS)

)2

Ip,

where Ip is the identity matrix of size p.

B.2 Proof of Theorem 4 (Page 31)

The error dynamics between the systems (4.8) and (4.9a) with e1 = x̂1 − x1, e2 =
x̂2 − x2 is given by {

ė1 = e2 − k1φ1(e1),

ė2 = Υ(y) (Φ + Ψ− w)− k2φ2(e1),
(B.4)

where Φ := ϕ
(
y, (Υ(y))−1x2 + z

)
− ϕ

(
y, (Υ(y))−1x2

)
,

Ψ := ψ
(
y, (Υ(y))−1x2 + z̄

)
− ψ

(
y, (Υ(y))−1x2

)
,

and z = (Υ(y))−1 (e2 + k3φ1(e1)), z̄ = (Υ(y))−1 (e2 + k4φ1(e1)).
Consider the vector ζ :=

[
φ1(e1) e2

]T , and a Lyapunov function candidate
V (e) = ζTPζ. Before analyzing the time derivative of V (e), we identify the dissi-
pative properties of the non-linearities Υ(y)w

φ′1(e1)
, Υ(y)
φ′1(e1)

Φ and Υ(y)
φ′1(e1)

Ψ with respect to ζ,

where φ′1(e1) = µ1

2 |e1|−1/2 + µ2.

a) The inequality
(

Υ(y) Lw
φ2(e1)

)2
·φ2

1(e1)−
(
−Υ(y)w
φ′1(e1)

)2
≥ 0, is satisfied from the condi-

tion |w(t)| ≤ Lw defined in (3.8). Notice that φ2 = φ′1φ1 is satisfied. The function φ2
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satisfies the condition |φ2| ≥ µ2
1

2 , we can obtain the following dissipative property[
−Υ(y)w(t)
φ′1(e1)

ζ

]T [
−
(
µ2

1
2d2

)2
0

0 HC

][
−Υ(y)w(t)
φ′1(e1)

ζ

]
︸ ︷︷ ︸

ω

(
Υ(y)w

φ′1(e1)
,ζ

)
≥ 0. (B.5)

b) The following dissipative inequality is obtained from Assumption A3-i) applying
Lemma 7 [

Υ(y)
φ′1(e1)

Φ
Υ(y)h
φ′1(e1)

]T  p 0

0

(
|s|+
√
−pr+s2√
−p

)2

[ Υ(y)
φ′1(e1)

Φ
Υ(y)h
φ′1(e1)

]
≥ 0.

When h takes the value of z = (Υ(y))−1 (e2 + k3φ1(e1)) = (Υ(y))−1Eζ defined in
(B.4), as the function φ1 satisfies φ′1(e1) ≥ µ2 > 0 with e1 6= 0, the following inequal-
ity is satisfied [

Υ(y)
φ′1(e1)

Φ

ζ

]T [
p 0
0 HE

][ Υ(y)
φ′1(e1)

Φ

ζ

]
︸ ︷︷ ︸

ω

(
Υ(y)

φ′1(e1)
Φ,ζ

)
≥ 0. (B.6)

c) The following dissipative inequality is obtained from Assumption A3-ii)[
Υ(y)
φ′1(e1)

Ψ

ζ

]T [
0 s̄Ē

ĒT s̄ H̄E

][ Υ(y)
φ′1(e1)

Ψ

ζ

]
︸ ︷︷ ︸

ω

(
Υ(y)

φ′1(e1)
Ψ,ζ

)
≥ 0. (B.7)

The inequality (B.7) is a general representation of the following cases (B.8) and (B.9)
regarding different values for parameter r̄:
Case r̄ ≥ 0. The following dissipative inequality is obtained from Assumption
A3-ii) with r̄ ≥ 0  √ Υ(y)

φ′1(e1)
Ψ√

Υ(y)
φ′1(e1)

h

T [ 0 s̄
s̄ r̄

] √ Υ(y)
φ′1(e1)

Ψ√
Υ(y)
φ′1(e1)

h

 ≥ 0

When h takes the value of z̄ = (e2 + k4φ1(e1)) = Ēζ defined in (B.4), and as the
function φ1 satisfies φ′1(e1) ≥ µ2 > 0 with e1 6= 0, the following inequality is satisfied[

Υ
φ′1(e1)

Ψ

ζ

]T [
0 s̄Ē

ĒT s̄ ĒT r̄d2
µ2
Ē

][ Υ(y)
φ′1(e1)

Ψ

ζ

]
︸ ︷︷ ︸

ω

(
Υ(y)

φ′1(e1)
Ψ,ζ

)
≥ 0. (B.8)

Case r̄ < 0. The following dissipative inequality is obtained from Assumption
A3-ii) with r̄ < 0  √ Υ(y)

φ′1(e1)
Ψ√

Υ(y)
φ′1(e1)

h

T [ 0 s̄
s̄ r̄

] √ Υ(y)
φ′1(e1)

Ψ√
Υ(y)
φ′1(e1)

h

 ≥ 0
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When h takes the value of z̄ = (e2 + k4φ1(e1)) = Ēζ defined in (B.4), and since the
function φ1 satisfies φ′1(e1) ≥ µ2 > 0 with e1 6= 0, the following inequality is satisfied[

Υ(y)
φ′1(e1)

Ψ

ζ

]T [
0 s̄Ē

ĒT s̄ 0

][ Υ(y)
φ′1(e1)

Ψ

ζ

]
︸ ︷︷ ︸

ω

(
Υ(y)

φ′1(e1)
Ψ,ζ

)
≥ 0. (B.9)

Let’s find a bound for the term 2ζTPBΨ, this is going to be used in the analysis
of the time derivative of V (e).

2ζTPBΥ(y)Ψ = 2φ′1(e1)ζ

[
−θ3s̄k4

−θ3s̄

]
Υ(y)Ψ

φ′1(e1)
,

= θ3φ
′
1(e1)

[
Υ(y)Ψ
φ′1(e1)

ζ

]T [
0 −s̄Ē

−s̄ĒT 0

][Υ(y)Ψ
φ′1(e1)

ζ

]
,

= θ3φ
′
1(e1)

[Υ(y)Ψ
φ′1(e1)

ζ

]T [
0 0
0 H̄E

][Υ(y)Ψ
φ′1(e1)

ζ

]
+

−
[

Υ(y)Ψ
φ′1(e1)

ζ

]T [
0 s̄Ē

s̄ĒT H̄E

][Υ(y)Ψ
φ′1(e1)

ζ

] ,

≤ φ′1(e1)θ3ζ
T H̄Eζ, (B.10)

the last inequality is obtained by (B.7), where φ′1(e1)θ3 > 0.
For e1 6= 0, we have

ζ̇ =

[
φ′1(e1) (e2 − k1φ1(e1))
−φ′1(e1)φ1(e1)k2

]
+

[
0

Υ(y) (Φ + Ψ− w)

]
,

=φ′1(e1)

([
−k1 1
−k2 0

]
ζ +

[
0
1

]
Υ(y)

Φ + Ψ− w
φ′1(e1)

)
,

=φ′1(e1)

(
Aζ +BΥ(y)

Φ + Ψ− w
φ′1(e1)

)
. (B.11)

Deriving V (e) = ζTPζ along of trajectories of e using (B.11) when e1 6= 0

V̇ (e(t)) = φ′1(e1)ζT
(
ATP + PA

)
ζ+

+ φ′1(e1)

(
Υ(y) (Φ + Ψ− w)

φ′(e1)
BTPζ + ζTPB

Υ(y) (Φ + Ψ− w)

φ′(e1)

)
,

= φ′1(e1)

 ζ
Υ(y)
φ′1(e1)

Φ
−Υ(y)w
φ′1(e1)


T  ATP + PA ? ?

BTP 0 ?
BTP 0 0


 ζ

Υ(y)
φ′1(e1)

Φ
−Υ(y)w
φ′1(e1)

+

+ 2ζTPBΥ(y)Ψ,
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≤ φ′1(e1)

 ζ
Υ(y)
φ′1(e1)

Φ
−Υ(y)w
φ′1(e1)


T  ATP + PA+ θ3H̄E ? ?

BTP 0 ?
BTP 0 0


 ζ

Υ(y)
φ′1(e1)

Φ
−Υ(y)w
φ′1(e1)

+

+ θ1φ
′
1(e1)ω

(
Υ(y)

φ′1(e1)
Φ, ζ

)
+ θ2φ

′
1(e1)ω

(−Υ(y)w

φ′1(e1)
, ζ

)
,

≤ − ε

λmax(P )
φ′1(e1)ζTPζ,

= − εµ1

2λM (P )

1

|e1|1/2
V − εµ2

λM (P )
V,

≤ −εµ
2
1λ

1/2
m (P )

2λM (P )
V 1/2 − εµ2

λM (P )
V.

The first inequality is obtained from the inequalities (B.6) and (B.5), and the second
one is obtained from (3.16). Note that the trajectories of the estimation error dynam-
ics cannot stay in the set S = {(e1, e2) ∈ R2 \ {0}|e1 = 0}. This means that V is a
continuously decreasing function and using the Lyapunov’s Theorem for Differen-
tial Inclusions [Deimling, 1992; Prop. 14.1 p. 205] (that does not require differen-
tiability of the Lyapunov function). Since the solution of the differential equation
v̇ = −γ1v

1/2 − γ2v is given by v(t) = exp(−γ2t)
[
v

1/2
0 + γ1

γ2
(1− exp(γ2

2 t))
]
, one can

conclude that the equilibrium point (e1, e2) = 0 is reached in finite time from every
initial condition. �
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C.1 Proof of Lemma 3 (Page 39)

The feasibility of the matrix inequalities (4.10) is proved as:
i) Choose the parameters koi, loi > 0, for i = 1, 2, this ensures that Ai and Bi are
Hurwitz matrices.
ii) Find the matrices P1, P2 from Lyapunov inequalities ΠP1 < 0, ΠP2 < 0 and (4.10a),
where ` = 1.
iii) Through Schur complement the inequality (4.10b) is equivalent to

−



γ1µ
2
m2 0 0 0 0 0

0 γ2µ
2
m2 0 0 0 0

0 0 γ3µ
4
m1`

2 0 0 0
0 0 0 γ4µ

4
m1`

2 0 0
0 0 0 0 γ5µ

2
m2 0

0 0 0 0 0 γ6µ
2
m2

− F
T

[
Π−1
P1

0

0 Π−1
P2

]
F < 0,

where F =

[
P1B 0 P1B 0 P1B 0

0 P2B 0 P2B 0 P2B

]
.

iv) For sufficiently large parameters µm1, µm2, the feasibility of (4.10b) is ensured.
�

For the proof of Theorem 5, a definition and some previous results are required,
which are given as follows.
Definition 3 (Rocha-Cózatl and Moreno, 2011). A time-varying nonlinearity γ : [0,∞)×
Rp → Rm with γ(t, υ), piecewise continuous in t, locally Lipschitz in υ and γ(t, 0) = 0, is
called {Q,S,R}-dissipative if for each t ≥ 0 and υ ∈ Rp the following

ω(γ(t, υ), υ) =

[
γ(t, υ)
υ

]T [
Q S
ST R

] [
γ(t, υ)
υ

]
≥ 0, (C.1)

where Q = QT ∈ Rm×m, S ∈ Rm×p, R = RT ∈ Rp×p, is satisfied. �
Lemma 8. If a nonlinearity γ(t, υ) is {Q,S,R}−dissipative with Q a negative definite
matrix, then there exists a matrix R̃ such that γ(t, υ) is {Q, 0, R̃}−dissipative. N

Proof of Lemma 8. As the non linearity γ := γ(t, υ) is {Q,S,R}−dissipative where
Q < 0, it is satisfied that[

γ
υ

]T [
Q S
ST R

] [
γ
υ

]
= γTQγ + γTSυ + υTSTγ + υTRυ ≥ 0.
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From which we get the following inequalities:

γTSυ + υTSTγ + υTRυ ≥ −γTQγ ≥ −λM (Q)‖γ‖2, (C.2)

2‖γ‖‖υ‖
{
λM (STS)

}1/2
+ λM (R)‖υ‖2 ≥ −λM (Q)‖γ‖2,

where the matrix property λm(Q)‖γ‖2 ≤ γTQγ ≤ λM (Q)‖γ‖2 is used.
Consider the auxiliary inequality bxy + cy2 ≥ ax2, where a, b, c > 0, x, y ≥ 0.

Then from cy2 ≥ −bxy + ax2 by completing squares one gets
(
c/a+ b2/(4a2)

)
y2

≥ x2 − (b/a)xy + (b/(2a))2y2 = (x− (b/2a)y)2. Consequently, the inequality(√
c/a+ b2/(4a2) + (b/2a)

)
y ≥ x,

is obtained. Now substituting x = ‖γ‖, y = ‖υ‖, a = −λM (Q), b = 2
{
λM (STS)

}1/2,
c = λM (R) one gets(√

−λM (R)

λM (Q)
+
λM (STS)

λ2
M (Q)

− {λM (STS)}1/2
λM (Q)

)
‖υ‖ ≥ ‖γ‖,√

−λM (R)λM (Q) + λM (STS) + {λM (STS)}1/2
−λM (Q)

‖υ‖ ≥ ‖γ‖. (C.3)

According to the inequality 1
λm(Q)γ

TQγ ≤ ‖γ‖2 we obtain

R̃ =
−λm(Q)

λ2
M (Q)

(√
−λM (R)λM (Q) + λM (STS) +

√
λM (STS)

)2

Ip,

where Ip is the identity matrix of size p.

Lemma 9. Let γ : I ⊂ R → R a function such that there exist non negative parameters
lγ , Lγ , and

lγ ≤ γ(t) ≤ Lγ , (C.4)

is satisfied, then

a) the equality
γ(t) = h1 · (lγ − a) + h2 · (Lγ + b), (C.5)

is satisfied for h1 :=
Lγ+b−γ(t)
Lγ−lγ+a+b , h2 := 1 − h1 with a, b satisfying a, b ≥ 0 and

lγ − a ≥ 0. The functions h1 and h2 also satisfy

b

Lγ − lγ + a+ b
≤ h1 ≤

Lγ − lγ + b

Lγ − lγ + a+ b
, (C.6)

a

Lγ − lγ + a+ b
≤ h2 ≤

Lγ − lγ + a

Lγ − lγ + a+ b
.

b) and the equality[
a11 a12

a21 γ(t)

]
= h1

[
a11 a12

a21 lγ − a

]
+ h2

[
a11 a12

a21 Lγ + b

]
, (C.7)

is satisfied, where a11, a12, a21 ∈ R.

N
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Proof of Lemma 9. a) Using (C.4) one can verify the inequalities (C.6) from the func-
tions h1 :=

Lγ+b−γ(t)
Lγ−lγ+a+b and h2 =

a−lγ+γ(t)
Lγ−lγ+a+b . For inequality (C.5) consider the follow-

ing

h1 · (lγ − a) + h2 · (Lγ + b) =
Lγ + b− γ(t)

Lγ − lγ + a+ b
· (lγ − a) +

a− lγ + γ(t)

Lγ − lγ + a+ b
· (Lγ + b)

=
γ(t)(Lγ + b− lγ + a)

Lγ − lγ + a+ b
= γ(t).

b) The equality (C.7) is obtained from (C.5) using the condition h1 + h2 = 1.

C.2 Proof of Theorem 5 (Page 40)

To illustrate better the dependence of variables, consider the diffeomorphism (4.6)
as

T (x, z) =

[
T1(x)
T2(x, z)

]
(C.8)

where T1(x) =

[
x1 +

∫ x2

0
m12(s)
m11

ds

x2

]
, T2(x, z) =

[
m11z1 +m12(x2)z2

α(x2)z2

]
. From the time

derivative of (4.6) and the system (4.5) one obtains

θ̇ =
∂T1(x)

∂x
z =

∂T1(x)

∂x
Υθ2w, (C.9)

ẇ =

[
∂T2(x, z)

∂x
− ∂T2(x, z)

∂z
M−1(x2)C(x, z)

]
z+

+
∂T2(x, z)

∂z
M−1(x2) [v −Hz − ψ + δ] ,

=

[
∂T2(x, z)

∂x
− ∂T2(x, z)

∂z
M−1(x2)C(x, z)

]
Υθ2z+

+
∂T2(x, z)

∂z
M−1(x2) [v −HΥθ2z − ψ + δ] . (C.10)

with θ =

[
θ1

θ2

]
, w =

[
w1

w2

]
and Υθ2 =

[
1
m11

− m12(θ2)
m11α(θ2)

0 1
α(θ2)

]
.

Note that M−1(x2) = 1
det(M(x2))

[
m22(x2) −m12(x2)
−m12(x2) m11(x2)

]
, ∂T1(x)

∂x =

[
1 m12(x2)

m11

0 1

]
,

∂T2(x,z)
∂x =

[
0 m′12(x2)z2

0 α′(x2)z2

]
, ∂T2(x,z)

∂z =

[
m11 m12(x2)

0 α(x2)

]
,

∂T2(x,z)
∂z M−1(x2) =

[
1 0

−m12(x2)α(x2)
det(M(x2))

m11α(x2)
det(M(x2))

]
=

[
1 0

− m12(x2)
m11α(x2)

m11
m11α(x2)

]
,

where α(x2) =
√

det(M(x2))
m11

and its derivative w.r.t. x2 is given by

α′2(x2) =
m11m

′
22(x2)− 2m12(x2)m′12(x2)

2α(x2)m11
. (C.11)
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Thus, with the previous derivative (C.11) the equality
∂T2(x,z)

∂x − ∂T2(x,z)
∂z M−1(x2)C(x, z) =

[
0 0
0 0

]
, is obtained. From (C.9) one can obtain

θ̇1 =

(
∂T1(x)

∂x
Υθ2w

)
11

=
w1

m11
,

ẇ1 = v1 − (HΥθ2w)11 − ψ1 + δ1,

θ̇2 =

(
∂T1(x)

∂x
Υθ2w

)
21

=
w2

α(θ2)
,

ẇ2 =

(
∂T2(x, z)

∂z
M−1(x2) [v −HΥθ2z − ψ + δ]

)
21

=
m11[−(HΥθ2)21w1 − (HΥθ2)22w2]

m11α(θ2)
+

− m12(θ2)[−(HΥθ2)11w1 − (HΥθ2)12w2]

m11α(θ2)
+

+
m11(−ψ2(x,Υθ2w))−m12(θ2)(−ψ1(x,Υθ2w))

m11α(θ2)

+
m11v2 −m12(θ2)v1 +m11δ2 −m12(θ2)δ1

m11α(θ2)
.

The dynamics of the estimation error between the systems (4.8) and (4.9a) is
given by

ėθ1 =
ew1

m11
− `ko1φ11(eθ1), (C.12)

ėw1 = −(HΥθ2)11ew1 − (HΥθ2)12ew2 + Ψ1 − δ1 − `2ko2φ12(θ1),

ėθ2 =
ew2 − `lo1φ21(eθ2)

α(θ2)
,

ėw2 =
m11[−(HΥθ2)21ew1 − (HΥθ2)22ew2 ]

m11α(θ2)
+

− m12(θ2)[−(HΥθ2)11ew1 − (HΥθ2)12ew2 ]

m11α(θ2)
+

+
m11Ψ2 −m12(θ2)Ψ1

m11α(θ2)
− m11δ2 −m12(θ2)δ1

m11α(θ2)
− `2lo2φ22(eθ2)

α2(θ2)
,

where eθ1 = θ̂1−θ1, ew1 = ŵ1−w1, eθ2 = θ̂2−θ2, ew2 = ŵ2−w2, Ψ1 := ψ1(x,Υθ2w)−
ψ1(x,Υθ2w + Υθ2(ew + kolφ1(eθ))), Ψ2 := ψ2(x,Υθ2w) − ψ2(x,Υθ2w + Υθ2(ew +
kolφ1(eθ))).

For ζ =

[
φ11(eθ1)
ew1

]
, one has

ζ̇ = φ′11(eθ1)

[−`ko1 1
m11

−`2ko2 − (HΥθ2 )11

φ′11(eθ1 )

]
ζ +

[
0
1

]
︸︷︷︸
B

(−(HΥθ2)12ew2 + Ψ1 − δ1) .

The state transformation
ζ̃ = `2∆−1

` ζ, (C.13)
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leads to

˙̃
ζ = `φ′11(eθ1)

[−ko1 1
m11

−ko2 − (HΥθ2 )11

`φ′11(eθ1 )

]
ζ̃ +B(−(HΥθ2)12ẽw2 + Ψ1 − δ1).

From Assumption P-3, one obtains

0 ≤ (HΥθ2)11

`φ′11(eθ1)
≤ (HΥθ2)11

`µ12
, (C.14)

Now, from Lemma 9 one can get[−ko1 1
m11

−ko2 − (HΥθ2 )11

`φ′11(eθ1 )

]
= hA1 ·A1 + hA2 ·A2, (C.15)

where hA1 = b1
(HΥθ2

)11

`µ12
+b1

= b1`µ12

(HΥθ2 )11+b1`µ12
y hA2 = 0.

Define ϑ0 :=
m11(HΥθ2 )22−m12(θ2)(HΥθ2 )12

m11φ′21(eθ2 )
and η =

[
φ21(eθ2)
ew2

]
, where the time

derivative of η is given as

η̇ =
φ′21(eθ2)

α(θ2)

[
−`lo1 1
−`2lo2 ϑ0

]
η −Bm11δ2 −m12(θ2)δ1

m11α(θ2)
(C.16)

+B
−m11(HΥθ2)21 +m12(θ2)(HΥθ2)11

m11α(θ2)
ew1

+B
m11Ψ2 −m12(θ2)Ψ1

m11α(θ2)
.

From η̃ = `2∆−1
` η it follows

˙̃η =
`φ′21(eθ2)

α(θ2)

[−lo1 1

−lo2 −ϑ0
`

]
η̃ −Bm11δ2 −m12(θ2)δ1

m11α(θ2)
+

+B
−m11(HΥθ2)21 +m12(θ2)(HΥθ2)11

α(θ2)m11
ẽw1

+B
m11Ψ2 −m12(θ2)Ψ1

m11α(θ2)
.

From the inequality

0 ≤ϑ0

`
≤ m11(HΥθ2)22 +m12(θ2)(HΥθ2)12

`m11µ22
, (C.17)

obtained by Assumption P-3, and applying Lemma 9 one has[−lo1 1

−lo2 −ϑ0
`

]
= hB1 ·B1 + hB2 ·B2, (C.18)

where hB1 = b2
m11(HΥθ2

)22+m12(θ2)(HΥθ2
)12

`m11µ22
+b2

and hB2 = 0.
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Consider the following Lyapunov function candidate

V (e) =

[
ζ̃
η̃

]T [
P1 0
0 P2

]
︸ ︷︷ ︸

P

[
ζ̃
η̃

]
,

where P1 (P2) is a common Lyapunov function for A1 and A2 (B1 y B2) respectively,
i.e. the inequalities

AT1 P1 + P1A1 < 0 and AT2 P1 + P1A2 < 0, (C.19)

BT
1 P2 + P2B1 < 0 and BT

2 P2 + P2B2 < 0,

are satisfied.
The time derivative of V is given as

V̇ =`φ′11(eθ1)ζ̃T
(
hA1A

P1
1 + hA2A

P1
2

)
ζ̃+

+ 2ζ̃TP1B(−(HΥθ2)12ẽw2 + Ψ1 − δ1)+

+
`φ′21(eθ2)

α(θ2)
η̃T
(
hB1B

P2
1 + hB2B

P2
2

)
η̃+

+ 2η̃TP2B
−m11(HΥθ2)21 +m12(θ2)(HΥθ2)11

m11α(θ2)
ẽw1+

+ 2η̃TP2B
m11Ψ2 −m12(θ2)Ψ1

m11α(θ2)
+

− 2η̃TP2B
m11δ2 −m12(θ2)δ1

m11α(θ2)
,

where AP1
1 = AT1 P1 + P1A1, AP1

2 = AT2 P1 + P1A2, BP2
1 = BT

1 P2 + P2B1, BP2
2 =

BT
2 P2 + P2B2.
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From which one obtains:

V̇ ≤ `φ′11(eθ1)hA1ζ̃
TAP1

1 ζ̃ − 2ζ̃TP1B((HΥθ2)12ẽw2 −Ψ1 + δ1)

+
`φ′21(eθ2)

α(θ2)
hB1η̃

TBP2
1 η̃ − 2η̃TP2B

m11δ2 −m12(θ2)δ1

m11α(θ2)

+ 2η̃TP2B
−m11(HΥθ2)21 +m12(θ2)(HΥθ2)11

m11α(θ2)
ẽw1

+ 2η̃TP2B
m11Ψ2 −m12(θ2)Ψ1

m11α(θ2)
, (C.20)

≤β`
[
hA1ζ̃

TAP1
1 ζ̃ +

hB1

α(θ2)
η̃TBP2

1 η̃

]
+

+ 2ζ̃TP1B(−(HΥθ2)12ẽw2 + Ψ1 − δ1)+

+ 2η̃TP2B
−m11(HΥθ2)21 +m12(θ2)(HΥθ2)11

m11α(θ2)
ẽw1

+ 2η̃TP2B

(
m11Ψ2 −m12(θ2)Ψ1

m11α(θ2)
− m11δ2 −m12(θ2)δ1

m11α(θ2)

)
,

=βXT



`hA1A
P1
1 ? ? ? ? ? ? ?

0
`hB1

α(θ2)B
P2
1 ? ? ? ? ? ?

BTP1 0 0 ? ? ? ? ?
0 BTP2 0 0 ? ? ? ?

BTP1 0 0 0 0 ? ? ?
0 BTP2 0 0 0 0 ? ?

BTP1 0 0 0 0 0 0 ?
0 BTP2 0 0 0 0 0 0


X, (C.21)

where β = µm1

|eθ1 |
1/2+|eθ2 |

1/2 + µm2, µmj = min{µ1j , µ2j} for j = 1, 2, and

X =



ζ̃
η̃

− (HΥθ2 )12

β ẽw2

−m11(HΥθ2 )21+m12(θ2)(HΥθ2 )11

βα(θ2)m11
ẽw1

− δ1
β

−m11δ2−m12(θ2)δ1
βm11α(θ2)

Ψ1
β

m11Ψ2−m12(θ2)Ψ1

βm11α(θ2)


.

Analyzing the following dissipativity properties of non linearities, one can con-
clude:
i) For ϑ1 := − (HΥθ2 )12

β ẽw2 the following inequality is satisfied

|ϑ1|2 ≤
Γ1

µ2
m2

η̃TBBT η̃, (C.22)

where Γ1 = (HΥθ2)12
2
. Which implies the following dissipativity property[
η̃
ϑ1

]T [
γ1Γ1BB

T 0
0 −γ1µ

2
m2

] [
η̃
ϑ1

]
≥ 0, (C.23)
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for all γ1 > 0.
ii) For ϑ2 :=

−m11(HΥθ2 )21+m12(θ2)(HΥθ2 )11

βα(θ2)m11
ẽw1 , the following inequality is satisfied

|ϑ2|2 ≤
Γ2

µ2
m2

ζ̃TBBT ζ̃, (C.24)

where Γ2 =
(
−m11(HΥθ2 )21+m12(θ2)(HΥθ2 )11

α(θ2)m11

)2

. This implies the following dissipativity
condition [

ζ̃
ϑ2

]T [
γ2Γ2BB

T 0
0 −γ2µ

2
m2

] [
ζ̃
ϑ2

]
≥ 0, (C.25)

for all γ2 > 0.
iii) For − δ1

β the following inequality is satisfied

∣∣∣∣−δ1

β

∣∣∣∣2 ≤
(
|eθ1 |1/2 + |eθ2 |1/2

µm1

)2

L2
δ1 ,

=

(
|eθ1 |1/2 + |eθ2 |1/2

)2
L2
δ1
‖(`φ11(eθ1), `φ21(eθ2))‖2

µ2
m1`

2‖(φ11(eθ1), φ21(eθ2))‖2 ,

≤ 4

µ4
m1`

2
L2
δ1‖(`φ11(eθ1), `φ21(eθ2))‖2,

i.e.  ζ̃
η̃

− δ1
β

T γ3Γ3B̃
T B̃ 0 0

0 γ3Γ3B̃
T B̃ 0

0 0 −γ3µ
4
m1`

2

 ζ̃
η̃

− δ1
β

 ≥ 0, (C.26)

for all γ3 > 0, where B̃ =

[
1 0
0 0

]
and Γ3 = 4L2

δ1
.

iv) For ϑ3 = −m11δ2−m12(θ2)δ1
βm11α(θ2) , with an analysis analogous to the previous one, the

following is obtained ζ̃η̃
ϑ3

T γ4Γ4B̃
T B̃ 0 0

0 γ4Γ4B̃
T B̃ 0

0 0 −γ4µ
4
m1`

2

 ζ̃η̃
ϑ3

 ≥ 0, (C.27)

for all γ4 > 0, where Γ4 = 4
∣∣∣m11δ2−m12(θ2)δ1

m11α(θ2)

∣∣∣2.

v) For the term Ψ1
β , from Assumption P-5 and (C.3) with h = Υθ2 (ew + klφ1(eθ)), one

obtains (
Ψ1

β

)2

≤ Γ5

µ2
m2

[
ζ
η

]T [
ETk Ek 0

0 ETl El

] [
ζ
η

]
, (C.28)

which is equivalent to the inequality ζ̃
η̃

Ψ1
β

T γ5Γ5`
4∆̃1 0 0

0 γ5Γ5`
4∆̃1 0

0 0 −γ5µ
2
m2

 ζ̃
η̃

Ψ1
β

 ≥ 0, (C.29)

for all γ5 > 0, where ∆̃1 = ∆−1
` ETk Ek∆

−1
` , Ek =

[
ko3 1

]
, El =

[
lo3 1

]
and Γ5 =

Γ2
R0λmax

(
ΥT
θ2

Υθ2

)
.
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vi) For the term ϑ4 = m11Ψ2−m12(θ2)Ψ1

βm11α(θ2) , from Assumption P-5 and (C.3) with h =

Υθ2 (ew + klφ1(eθ)), one obtains

ϑ2
4 ≤

Γ6

µ2
m2

[
ζ
η

]T [
ETk Ek 0

0 ETl El

] [
ζ
η

]
, (C.30)

where Γ6 =

(
‖(m11,m12(θ2))‖2Γ2

R0λmax

(
ΥTθ2

Υθ2

)
m2

11α
2(θ2)

)
, which is equivalent to the following

inequality  ζ̃η̃
ϑ4

T γ6Γ6`
4∆̃1 0 0

0 γ6Γ6`
4∆̃1 0

0 0 −γ6µ
2
m2

 ζ̃η̃
ϑ4

 ≥ 0, (C.31)

for all γ6 > 0.
Adding (C.23), (C.25), (C.26), (C.27), (C.29), (C.31) to the inequality (C.20), the

following inequality is obtained

V̇ ≤ βXTDX ,

where D is equal to

ΠP1 − εI ? ? ? ? ? ? ?
0 ΠP2 − εI ? ? ? ? ? ?

BTP1 0 −γ1µ
2
m2 ? ? ? ? ?

0 BTP2 0 −γ2µ
2
m2 ? ? ? ?

BTP1 0 0 0 −γ3µ
4
m1`

2 ? ? ?
0 BTP2 0 0 0 −γ4µ

4
m1`

2 ? ?
BTP1 0 0 0 0 0 −γ5µ

2
m2 ?

0 BTP2 0 0 0 0 0 −γ6µ
2
m2


.

From the inequality (4.10b) in Lemma 3, the time derivative of V satisfies the
next inequality

V̇ ≤ −εβ‖(ζ̃, η̃)‖2, (C.32)

where

β =
µm1

|eθ1 |1/2 + |eθ2 |1/2
+ µm2 ≥

µm1

|eθ1 |1/2 + |eθ2 |1/2
,

≥ µ2
m1

2
√
φ2

11(eθ1) + φ2
21(θ2)

,

≥ µ2
m1`

2‖(ζ̃, η̃)‖
.

Finally, V̇ ≤ − εµ2
m1`
2 ‖(ζ̃, η̃)‖ ≤ − εµ2

m1`

2
√
λmax(P )

V 1/2.

Note that the trajectories of the estimation error dynamics cannot remain in the
set S = {(eθ1 , eθ2 , ew1 , ew2) ∈ R4 \ {0}|eθ1 = eθ2 = 0}. This implies that the derivative
of V along trajectories of (C.12) is a decreasing continuous function and by Lyapunov
theorem for Differential inclusions [Deimling, 1992; Prop. 14.1 p. 205] (this does not
require the differentiability of Lyapunov function), the origin (eθ1 , eθ2 , ew1, ew2) = 0
is reached in finite time for each initial condition. �
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