

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

Diseño de Interfaces y Pruebas del SIMISE

INFORME DE ACTIVIDADES PROFESIONALES

Que para obtener el título de Ingeniero en Computación

PRESENTA

Diana Guadalupe Pérez Peñaloza

ASESOR(A) DE INFORME

Ing. Marco Antonio Martínez Quintana

Ciudad Universitaria, Cd. Mx., 2018

Índice

INTRODUCCIÓN1
CAPÍTULO 1. ORGANIGRAMA DEL PROYECTO SIMISE
CAPÍTULO 2. SISTEMA DE MODELACIÓN INTEGRAL DEL SECTOR ENERGÉTICO 5
2.1. Introducción
2.2. Metodología de la Planeación Energética5
2.3. Funciones del SIMISE8
2.4. Etapas del SIMISE9
2.5. Consideraciones de modelación y necesidades de datos
2.5.1 Modelación9
2.5.2 Datos
2.6. Situación actual de SIMISE11
2.6.1. Macroeconomía11
2.6.2. Demanda
2.6.3. Oferta
2.6.4. Optimizador 12
2.6.5 Aplicaciones Auxiliares12
2.7. PARTICIPACIÓN PROFESIONAL12
2.7.1. Mantenimiento preventivo y correctivo de equipos de cómputo e instalación de Red
2.7.2. Diseño y programación de interfaces gráficas de usuario en Matlab y C# 13
2.7.3. Migración de aplicaciones24
2.7.4. Depuración de programas
2.7.5. Generación de gráficas para el módulo de visualización
2.7.6. Generación de manuales de usuario final y manuales técnicos
2.7.7. Generación de la gestión del conocimiento de diferentes módulos del SIMISE.
CAPÍTULO 3. RESULTADOS Y APORTACIONES
CONCLUSIONES
REFERENCIAS
ANEXOS
A. Aplicación Conversor de Unidades53

B. Aplicación Cálculo de Emisiones y Consumo de Combustible	
C. Aplicación Datos de Oferta	73
D. Aplicación Visualizador de Oferta	
E. Módulo Nuclear	
F. Evolución de las pantallas	
Cuadro de Mando	
Macroeconomía	
Demanda	
Oferta	
Optimizador	
Aplicaciones Auxiliares	
Conversor	
Nuclear	
Emisiones	

INTRODUCCIÓN

El presente reporte muestra un panorama general acerca del proyecto SIMISE (Sistema de Modelación Integral del Sector Energético), en el cual estuve participando desde marzo del 2016.

Este proyecto está enfocado en el desarrollo de una solución Business Intelligence (BI) que le servirá como herramienta computacional a la Secretaría de Energía (SENER) para una planeación estratégica del sistema energético mexicano, creando así balances energéticos óptimos a partir de la aplicación de algoritmos de optimización en el análisis de oferta y demanda de energía, tomando en cuenta el crecimiento poblacional, económico, las innovaciones tecnológicas, así como las políticas generadas y el agotamiento de los recursos naturales.¹

Para comenzar se muestra una visión clara de la estructura del proyecto, mostrado como un árbol de jerarquía.

En el segundo capítulo se hace una descripción del proyecto SIMISE, incluyendo sus objetivos, la forma de modelación, la importancia de los datos, así como su estructura y funcionamiento del mismo. Mostrando el resultado final que se entregó a la Secretaria de Energía

Por otra parte en este mismo capítulo se describe de forma detallada mi participación en el proyecto.

En el apartado correspondiente a resultados y aportaciones menciono para que sirvieron y como ayudaron mis aportaciones a la entrega final de SIMISE.

Y por último, pero no menos importante, comparto mi conclusión acerca de este reporte, con el cual me presento como Ingeniero en Computación de la Facultad de Ingeniería de UNAM ante la sociedad y el mundo entero como un ingeniero capacitado para resolver problemas aplicando todos los conocimientos adquiridos en las aulas y a través de este gran proyecto.

¹ MARTÍNEZ QUINTANA, MARCO ANTONIO, "Sistema de Modelación Integral del Sector Energético". Tesis de Ingeniero en Computación. Facultad de Ingeniería UNAM, 2015

-

CAPÍTULO 1. ORGANIGRAMA DEL PROYECTO SIMISE

A lo largo del proyecto me tocó participar en diferentes áreas del SIMISE, como fueron el área técnica, algunos submódulos del módulo de oferta y de aplicaciones. Una de las principales actividades en las que estuve participando, fue el análisis de requerimientos para el diseño, desarrollo y programación de las interfaces gráficas.

-

CAPÍTULO 2. SISTEMA DE MODELACIÓN INTEGRAL DEL SECTOR ENERGÉTICO²

2.1. Introducción

El Sistema de Modelación Integral del Sector Energético, a partir de ahora SIMISE, es una solución Business Intelligence que fue desarrollado por la Universidad Nacional Autónoma de México (UNAM) a través de la Facultad de Ingeniería (FI), el Instituto de Geofísica, el Instituto de Investigaciones Económicas (IIE), la Dirección General de Tecnologías de la Información y Comunicaciones (DGTIC) y la Coordinación de Innovación y Desarrollo (CID) bajo las especificaciones de la Secretaría de Energía (SENER).

El objetivo que persigue es que la SENER cuente con una herramienta computacional propia para modelar de manera integral el sistema energético de México y realizar la planeación estratégica del sector de energía dentro de un contexto de sustentabilidad económica, ambiental y social.

El proyecto inicio en octubre de 2013 y terminó en septiembre de 2017, durante estos cuatro años de desarrollo, la SENER recibió versiones parciales del SIMISE que constituyen herramientas computacionales que podrán ser utilizadas para las actividades propias de la SENER.

2.2. Metodología de la Planeación Energética

La planeación energética requiere tomar en cuenta la interacción del sector de energía con el resto de la economía. El proceso de planeación es bastante complejo, debido a que las necesidades de energía que se deben satisfacer cambian continuamente y las posibilidades de la oferta también. La planeación energética es un proceso interactivo y dinámico que involucra varios tipos de análisis que se tienen que repetir periódicamente y ajustar a las condiciones cambiantes, como son el crecimiento poblacional y económico, las innovaciones tecnológicas, el agotamiento de los recursos naturales y la contaminación ambiental, entre muchas otras.

El estudio y procesamiento sistemático de la información acerca de la demanda y la oferta de energía, histórica y prospectiva, son herramientas para los tomadores de decisiones, quienes deberán definir un conjunto de programas y medidas orientadas a mantener un balance energético al menor costo y con el nivel adecuado de confiabilidad y calidad.

² MARTÍNEZ QUINTANA, MARCO ANTONIO, "Sistema de Modelación Integral del Sector Energético". Tesis de Ingeniero en Computación. Facultad de Ingeniería UNAM, 2015. Pagínas: 9-13, 17-18.

El plan de expansión energético es una declaración de las acciones seleccionadas por los tomadores de decisiones, en un punto del tiempo, para alcanzar metas y objetivos específicos.

El desarrollo del SIMISE, permitirá como herramienta computacional, realizar estudios del comportamiento del sector ante cambios en parámetros técnicos, económicos, ambientales y sociales, obteniendo como resultados planes de expansión y la evaluación de política pública, que permitan colocar a México en el camino del desarrollo y la sustentabilidad.

La planeación energética requiere principalmente:

- Conocer las tendencias, limitaciones y comportamiento del sector, con una visión de largo pazo.
- Atender los requerimientos específicos del sector energético.
- Mantener el control de la información energética.
- Enlazar la demanda y la oferta de energía en las diferentes regiones.
- Evaluar el impacto de las políticas públicas en materia de energía.
- Evaluar las implicaciones de diversos escenarios.

metodología de planeación energética incluye análisis macroeconómicos, La proyecciones de la demanda de energía, análisis de recursos energéticos, caracterización adecuada de las tecnologías de conversión de energía y la optimización del balance de oferta y demanda de energía, en donde se relaciona la demanda de cada sector de la economía con los recursos y las tecnologías disponibles para producir los energéticos y la electricidad. El balance de oferta y demanda es un insumo fundamental para el análisis de impactos ambientales del sector energético. Toda la información, obtenida hasta ahora por los diferentes análisis, se alimenta a un análisis de toma de decisiones que debe contener suficientes elementos para seleccionar el o los mejores planes de expansión energética. La figura 1 muestra el conjunto de análisis requeridos para la planeación energética.

Figura 1. Análisis para la planeación energética.

A continuación se explican los diferentes análisis mostrados en la figura 1 sobre la planeación energética.

Los análisis económicos consideran el comportamiento histórico de las características macroeconómicas y como pueden cambiar en el futuro. Se analiza el crecimiento socioeconómico y demográfico y se obtiene el producto interno bruto (PIB) nacional y de cada sector de la economía, así mismo, se hacen proyecciones de los precios de los energéticos en el contexto del comercio internacional.

El análisis de demanda evalúa los consumos anuales de energía en los diferentes sectores de la economía como lo son el sector industrial, transporte, agropecuario, residencial público y comercial. Así también para la electricidad se proyecta la demanda máxima de potencia que se espera para cada año dentro del periodo de estudio.

La evaluación de recursos energéticos examina la disponibilidad y oferta de los recursos energéticos potenciales, incluyendo: combustibles fósiles, recursos de energías renovables, energía nuclear y también energía importada.

La caracterización de las tecnologías energéticas permite identificar todas las tecnologías que pueden ser utilizadas para ampliar la infraestructura energía teniendo en cuenta sus costos y parámetros técnicos de operación.

En el balance de oferta y demanda de energía se consideran adecuadamente las cadenas energéticas completas del sistema mexicano como se muestra en la figura 2. Este balance y sus respectivos impactos ambientales, deben ser optimizados para obtener la producción de energía de menor costo teniendo en cuenta que es un problema multiregional y de largo plazo, sujeto a restricciones financieras, ambientales, tecnológicas y de seguridad energética, dentro de un contexto internacional y con un enfoque de desarrollo sustentable.

Figura 2. Ejemplos de sistema de referencia energético compuesto por cadenas energéticas.

Con base en un proceso iterativo se analizan diferentes escenarios, con cambios en las variables importantes, para obtener como resultado una gama de planes de expansión energética a largo plazo con diferentes atributos económicos, ambientales y de seguridad energética. Estos resultados son presentados a los tomadores de decisión para que sirvan de información muy valiosa para la definición de planes y prospectivas integrales del sector energético.

Es importante destacar que el sector energético de nuestro país es muy complejo, pues se trata de un país con una extensión territorial muy grande, con distribución de recursos naturales fósiles y renovables muy heterogéneos, con diferencias importantes en la distribución de la riqueza entre centros urbanos y zonas rurales con desarrollos de infraestructura energética desigual. A todo lo anterior, hay que sumarle que en este momento, México se encuentra en medio de una transición y reformas energéticas de gran impacto.

2.3. Funciones del SIMISE

El SIMISE en su versión integral cubre las siguientes funciones:

- Revisión de la situación actual de la oferta y la demanda.
- Evaluación de necesidades futuras de demanda por sector, región y energético.
- Pronósticos de la demanda de energéticos de uso final para diferentes escenarios.
- Análisis de elasticidades de la demanda de energéticos.
- Recopilación de información sobre recursos energéticos disponibles.
- Evaluación conjunta de opciones tecnológicas de las etapas de trasformación y transporte: infraestructura en refinerías, plantas endulzoras de gas, y plantas generadoras, así como los requerimientos de infraestructura de trasporte y transmisión.
- Desarrollo de escenarios alternativos de balances de oferta y demanda por sector, por región y por energético.
- Identificación de obras de infraestructura y montos de inversión necesarios para cubrir los escenarios de oferta.
- Impacto de la intermitencia de energías renovables.
- Evaluación de medidas económicas, financieras y ambientales.
- Escenarios de impactos atribuibles a innovaciones tecnológicas.

Es preciso señalar que las diferentes funciones para el SIMISE son altamente dependientes de una gran cantidad de información, la cual debe ser confiable y recibida a través de SENER de manera oportuna.

Asimismo, el balance de oferta y demanda representa adecuadamente las cadenas energéticas del país con suficiente detalle, pero sin perder de vista que la modelación simple puede tener ventajas para analizar el comportamiento de las variables que tienen mayor influencia sobre los costos de producción de energía.

2.4. Etapas del SIMISE

Por la gran complejidad que tiene el desarrollo del SIMIE, se trata de un proyecto de cuatro años, el cual inició en octubre de 2013 y terminará en septiembre de 2017. Las principales etapas del desarrollo se muestran en la Figura 3.

Figura 3. Etapas del desarrollo del SIMISE

2.5. Consideraciones de modelación y necesidades de datos

2.5.1 Modelación

La modelación energética en todo el mundo está lidiando con una serie de retos sin precedentes como los son la descarbonización, la seguridad energética, la efectividad de costos, la intermitencia de las redes eléctricas, la regionalización de los sistemas, entre otros. Los modelos energéticos proveen ideas cuantitativas esenciales para estos retos.

La experiencia, la teoría, los modelos y la práctica no son lo mismo, muy comúnmente para un problema dado se requiere de una gran gama de modelos. El SIMISE es "muchos modelos en uno", es una orquesta de modelos complejos, coordinados por un sistema gestor y un optimizador.

El SIMISE es un modelo complejo que puede contribuir a un gran número de áreas de investigación, debido a sus componentes robustos en macroeconomía, representación de la tecnología, determinación de costos, comportamientos sistémicos y sus componentes regionales.

A pesar de ello, las partes más importantes de un modelo son las personas que lo crean, lo corren y hacen uso de sus salidas. El desarrollo de una comunidad de usuarios y desarrolladores es tan importante como el desarrollo del modelo.

También es fundamental ser muy transparente acerca del diseño de los supuestos inherentes de los modelos que se utilizan. Todos los modelos tienen supuestos importantes y limitaciones e incluso los modelos con mismos paradigmas son utilizados de forma diferente.

2.5.2 Datos

Es importante recalcar que los modelos son tan buenos como los datos que se tengan para llenarlos o para retarlos.

Un modelo que recibe basura, entrega basura. Garbage In, Garbage Out (abreviado como GIGO en inglés, referido a Basura que Entra, Basura que Sale) es un término del campo de las ciencias de la computación o de las tecnologías de la información y la computación.

Se usa primordialmente para llamar la atención del hecho de que las computadoras incuestionablemente procesarán cualesquiera datos sin sentido (basura entra) y producirán salidas sin sentido (basura sale). También se utiliza para describir las fallas de la toma de decisiones humanas debidas a datos erróneos, incompletos o imprecisos.

Es imprescindible que el equipo de modelación del SIMISE tenga los datos necesarios para probar las hipótesis y preguntas que son de interés para la SENER. Estos datos deben ser previstos de forma exógena al modelo, y tienen que estar ordenados, completos y validados, además de ser proporcionados en el tiempo y con la frecuencia necesaria.

Dada la gran diversidad de fuentes de información (algunas de ellas ya en uso), de acceso público o privado, con niveles de calidad diferente, con tiempos de respuesta diferente, con presentaciones diferentes a las requeridas, con acceso restringido, entre otros factores, se recomienda con la más alta prioridad que la SENER considere el desarrollo de una base de datos única del sector energético mexicano, misma que brindaría toda la información necesaria para el SIMISE.

Los datos a utilizar por parte del equipo de modelación del SIMISE determinarán en buena medida el alcance de los modelos en cuanto a las posibles respuestas a las preguntas que plantee la SENER a ser analizadas.

2.6. Situación actual de SIMISE

En la actualidad SIMISE como se entregó a la Secretaría de Energía (SENER) el pasado septiembre del 2017 está compuesto por los módulos:

- 1. Macroeconomía
- 2. Demanda
- 3. Oferta
- 4. Optimizador
- 5. Aplicaciones Auxiliares

2.6.1. Macroeconomía

Este módulo cuenta con tres aplicaciones que son:

- Módulo Macroeconómico
- Precios de los energéticos
- Modelo

El objetivo del apartado de macroeconomía es crear análisis económicos que consideren el comportamiento histórico de las variables macroeconómicas y cómo éstas pueden cambiar en el futuro. Así también analiza el crecimiento socioeconómico y demográfico para obtener el producto interno bruto (PIB) y a partir de ello crear las proyecciones de los precios de los energéticos.

2.6.2. Demanda

Contiene tres aplicaciones los cuales se dividen en:

- Demanda Nacional
- Demanda Regional
- Modelo

El objetivo de este apartado es evaluar los consumos anuales de energía de los diferentes sectores de la economía (Industrial, transporte, agropecuario, residencial, público y comercial) así como realizar sus respectivas proyecciones de manera regional y nacional.

2.6.3. Oferta

Este apartado cuenta con seis aplicaciones las cuales son:

- Hidrocarburos
- Consulta
- Nuclear
- Costel
- Carga Horario
- Visualizador

Su objetivo es evaluar los recursos energéticos examinando la disponibilidad y oferta de los mismos, para lo cual se toman en cuenta combustibles fósiles, energías renovables (hidroenergía, biomasa, solar, eólica, etc.), energía nuclear, así como energía importada.

2.6.4. Optimizador

El objetivo de este módulo es encontrar planes de expansión energética al mínimo costo tomando en cuenta los resultados del módulo de Oferta acerca de la disponibilidad de recursos y satisfaciendo las salidas del módulo de demanda para cada sector de la economía, tomando en cuenta metas de energía limpia, política pública y topes de generación.

2.6.5 Aplicaciones Auxiliares

Este módulo cuenta con las siguientes aplicaciones:

- Conversor
- Emisiones
- Visualizador

Este apartado tiene como objetivo apoyar en las actividades del día a día en la utilización de los módulos de SIMISE anteriormente mencionados, como lo pueden ser conversiones de unidades cálculo de emisiones y visualización de los resultados.

2.7. PARTICIPACIÓN PROFESIONAL

Durante el periodo de marzo 2016 a septiembre 2017, colaboré en el proyecto SIMISE con las siguientes actividades:

- Mantenimiento preventivo y correctivo de equipos de cómputo e instalaciones de Red.
- Diseño y programación de interfaces gráficas de usuario en Matlab y C#.
- Migración de aplicaciones a C#.
- Depuración de programas.
- Generación de gráficas para el módulo de visualización.
- Generación de manuales de usuario final y manuales técnicos.
- Generación de la gestión del conocimiento de diferentes módulos del SIMISE.

Algunas de las actividades descritas a continuación no se encuentran de forma detallada, es decir, no se agrega código, diagramas de flujo, lógica de programación o diagramas entidad-relación por cuestiones de confidencialidad, ya que es un proyecto de la Secretaría de Energía que no es público.

2.7.1. Mantenimiento preventivo y correctivo de equipos de cómputo e instalación de Red.

De manera periódica estuve apoyando en la limpieza de los servidores utilizados para el desarrollo, ejecución y pruebas del SIMISE. Asimismo se revisó y reconfiguró la infraestructura de la red donde se encuentran dichos servidores.

Respecto al mantenimiento de servidores, realicé limpieza de hardware e instalación de discos duros, tarjetas de red y memorias RAM.

2.7.2. Diseño y programación de interfaces gráficas de usuario en Matlab y C#.

Para el diseño y programación de interfaces gráficas propuse los siguientes diseños, los cuales comenzaron como una propuesta para los fondos y el tipo de accesos que las aplicaciones iban a tener. Inicialmente comencé a trabajar en C# todas las aplicaciones de acuerdo al menú principal, esto debido a que es un lenguaje orientado a objetos y cuenta con los cuatro pilares de este paradigma, los cuales nos brindan diferentes ventajas al desarrollar este tipo de software, las cuales son:

- Abstracción: Permite modelar cada elemento diferenciando sus atributos y métodos, es decir sus características y funciones.
- Encapsulamiento: Brinda seguridad a cada interfaz, ya que cuenta con getters y setters para la validación de los parámetros de entrada.
- Herencia. Aprovecha la reutilización de código, al generar nuevos elementos a partir de otros, en este caso las validaciones de entrada de cada interfaz.
- Polimorfismo. Permite aprovechar al máximo las operaciones de herencia para utilizar algunas funciones que hacen lo mismo, pero de diferentes maneras.

En las siguientes figuras se muestran los diseños iniciales (izquierda) y finales (derecha) de las aplicaciones en las que estuve trabajando (véase anexo X para ver la evolución de las mismas).

Figura 4. Diseño inicial y diseño final del cuadro de Mando

Figura 5. Diseño inicial y diseño final de la aplicación Macroeconomía

Figura 6. Diseño inicial y diseño final de la aplicación Demanda

Figura 7. Diseño inicial y diseño final de la aplicación Oferta

	Optimizador	0	
Nombre del caso	Carpeta Salir	Configurar E	scenario
Archivos de Entrada	Númaro de Períodos a Considerar		
Costos		Aão do Inicio	
Datos de Tecnologías	Paso de Tiempo	Ano de Inicio	Ontimizar
Cadenas Energéticas	Margen de Producción	6 Año do Ein	Optimizar
Capacidad Instalada			
Túneles de Capacidades y Sectores de Demanda	Analizar Caso		
Energia Ofertada Año Base	Visualizar	SENER (A)	
Validar Archivos Excel Carga	ar Datos	SIMIS	

Figura 8. Diseño inicial y diseño final de la aplicación Optimizador

Figura 9. Diseño inicial y diseño final de la aplicación Aplicaciones Auxiliares

Figura 10. Diseño inicial de la aplicación Conversor

Figura 11. Diseño inicial de la aplicación Nuclear

Cabe mencionar que después el equipo de SIMISE decidió que los fondos fueran más unificados y que tuvieran un toque más serio, dándome la idea de hacer diseños de tipo "ejecutivo" lo que generó los siguientes diseños.

Figura 12. Diseños "ejecutivos" iniciales

Al hacer los diseños anteriores se decidió crear el diseño definitivo combinando el fondo del diseño 3 con la barra izquierda del diseño 1, lo que nos dio como resultado el actual fondo que la mayoría de las aplicaciones de SIMISE contiene.

Figura 13. Diseño para los fondos de las aplicaciones definitivas del SIMISE

A lo largo de la creación de SIMISE algunos de los diseños de los accesos para las aplicaciones también fueron cambiando véase anexo H.

Para la etapa final del SIMISE diseñé y creé el módulo de Consulta de Datos en el que desde una base de datos en MySQL, el usuario puede consultar los datos de:

- Generación
- Hidroeléctrica
- Capacidad, Generación y Eficiencia
- Características Históricas
- Degradación

Figura 14. Módulo de Consulta de Datos de Oferta

Para el módulo de generación el usuario puede ver los datos de todas las plantas, tipo, tecnología, combustible, suministro de combustible, región de control, región de exportación, entre otros datos (véase el anexo C).

Para la conexión de C# con bases de datos se utilizó la librería "MySQL.data", la cual nos permite hacer consultas, inserciones, actualizaciones y borrado de información en bases de datos que utilizan el Sistema Manejador de Base de Datos MySQL.

	_									
\bigcirc			id_generado	nombre	tipo	tecnologia	combustible	combustible_sumini	region_control	regior ^
		•	1	Cerro Prieto I U5	En Operacion	Geotermica	null	null	08-Baja California	48-Me
			2	Cerro Prieto II Ce	En Operacion	Geotermica	null	null	08-Baja California	48-Me
			3	Cerro Prieto III Ce	En Operacion	Geotermica	null	null	08-Baja California	48-Me
			4	Cerro Prieto IV C	En Operacion	Geotermica	null	null	08-Baja California	48-Me
			5	Cerro Prieto_Foto	En Operacion	Solar fotovoltaica	null	null	08-Baja California	48-Me
z			6	Cipres_TG	En Operacion	Turbogas	Diesel	D_BCN	08-Baja California	47-En:
ē			7	Mexicali PIE	En Operacion	Ciclo combinado	Gas natural	G_I_NORO	08-Baja California	48-Me
AC			8	Mexicali_TG 1	En Operacion	Turbogas	Diesel	D_BCN	08-Baja California	48-Me:
Ľ.			9	Mexicali_TG 2	En Operacion	Turbogas	Diesel	D_BCN	08-Baja California	48-Me
N N			10	Mexicali_TG 3	En Operacion	Turbogas	Diesel	D_BCN	08-Baja California	48-Me
O			11	Presidente Juare	En Operacion	Ciclo combinado	Gas natural	G_I_NORO	08-Baja California	46-Tiju
₹			12	Presidente Juare	En Operacion	Termoelectrica c	Combustoleo	C_N_VIZC	08-Baja California	46-Tiju
L H H			13	Presidente Juare	En Operacion	Termoelectrica c	Combustoleo	C_N_VIZC	08-Baja California	46-Tiju
Ь			14	Tijuana_1_TG	En Operacion	Turbogas	Gas natural	G_I_JOVIBN	08-Baja California	46-Tiju
ш			15	Tijuana_2_TG	En Operacion	Turbogas	Gas natural	G_I_JOVIBN	08-Baja California	46-Tiju
s			16	Tijuana_3_TG_1	En Operacion	Turbogas	Gas natural	G_I_JOVIBN	08-Baja California	46-Tiju 🧹
2		<								>
SIMISE – DA			ECRETARIA DE INERCIA			Desca	irgar Base d Datos	e		

Figura 15. Aplicación Datos de Oferta - Generación

El usuario tiene la oportunidad de descargar los datos al presionar el botón lo que le dará la oportunidad de descargar un archivo de Excel.

Para descargar los datos hacia un libro de Excel se utilizó la librería "Microsoft.Office.interop.excel", la cual nos permite crear, abrir y modificar libros Excel.

Para este apartado el algoritmo utilizado fue el siguiente:

- 1. Inicio
- 2. Hacer una consulta a la base de datos "Generación" con MySQL.data
- 3. Obtener todos los datos de la base de datos
- 4. Guardar e imprimir los datos en el datagrid
- 5. Al presionar el botón "Descargar Base de datos".
 - a. Crear un nuevo Excel con nombre "Generación"
 - b. Abrir el archivo en modo escritura con Microsoft.Office.interop.excel
 - c. Guardar los datos del datagrid en las celdas del Excel
 - d. Mostrar ventana de exploración de archivos
 - e. Guardar el archivo
 - f. Cerrar el archivo
- 6. *Fin*

Uno de los mayores retos de esta etapa, fue probar con diferentes sistemas operativos Windows, así como versiones distintas de la paquetería de Microsoft Office, pero dado que el equipo contaba con dispositivos con diferentes sistemas operativos y versiones de Excel, pudimos hacer las pruebas respectivas en todas las versiones.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RCHIVO	100	NSERTA	R DISE	ÑO DE P	PÁGINA	FÓRMULAS	DATOS	REVISAR	VISTA											
Population N K S	n ×	Calibri		- 11 -	A A	= =	- 37-	📴 Ajustar ter	to	General	•		2	2				∑ Autosu	na · Ar	46	
All Functional* como tables* Cellos* Cellos* Cellos* Cellos* Cellos* Mittar* salecionar* A1 * Imación 6 Número 6 Estiles Certas Matticar* A1 * Imación 6 Número 6 Estiles Certas Matticar* A1 * Imación 5 Imación J K L M N O P 2 Cerro Preto En Operaciol Geotermica null null 0 Baja Calif 48-Mexicali 20 20 Cerro Preto En Operaciol Geotermica null null 0 Baja Calif 48-Mexicali 20 20 Cerro Preto En Operaciol Geotermica null null 0 8.33239988 3.13 3 Cerro Preto En Operaciol Geotermica null null 0 8.44 Mexicali 20 20.500000 rull 0 6.0999999 0.06 87.1179962 3.3529988 3.13 4 Cerro Preto En Operaciol Certor En Operaciol Certor En Operaciol Ceroborinull null 0	Реды	N K	ş -	E - 3	- A -			Combinar	y centrar *	\$ - 96 000	-3 -09	For	mato Darfo	innato E	stilos de	Insertar E	liminar Formate	Presena	Ordenar	ry Buscary	
Integrate is in the set of the s			2 J.				1.11		5 223		c	conde	cional = como	tabla *	celda *			e borrar -	filtrar	seleccionar*	•
A1 * X A B C D E F G H J X L M N O P 1 (d generad is generad combustible combustible combustible region, contregion transcapacidad capacidad, fluindad retirregimen_ter uses, propio cotos, varia cotos fjios cotos, varia co	irtapapeles 15		Fue	nte	10	6	Alin	tación	5	Número	19		Estilo	15			Celdas		Modificar		
A B C D E F G H I J K L M N D P 1 Idgenerac(nombre tipo tipo consustible combustible region contregion trans capacidad capacidad funidad retiregimen. Ter ussa propio costos. Juso tasa 3 2 Cerro Priteto En Operaciol Geotermica null null 08-Baja Calif 48-Mexicali 200 206,580002 null 0 6,099999 0,06 87,1179962 33,529998 5,11 4 Cerro Priteto En Operaciol Geotermica null null 08-Baja Calif 48-Mexicali 200 206,580002 null 0 6,099999 0,06 87,117962 33,529998 5,11 6 S cerro Priteto En Operaciol Torbogenasio Geotermica null null 06-Baja Calif 48-Mexicali 26 7,99991 18,00000 2,150000 19,3520000 19,3500000 19,3520000 12,350000 19,3330000 19,2437000 19,2437000 19,2437000 19,2437000 19,2437000 19,2437000 19,2437000 19,24370000 10,24370000 10,2	A1	• :	ж	√ fr	id_s	generado															
I I I I I I I I I I Camparation Geotermica null null Obselpa Calif 48-Mexicali 20 28,1700001 t 0 6,099999 0,00 87,117990 3,529998 5,11 4 3 Cerro Prieto In Operaciol Geotermica null null 08-Baja Calif 48-Mexicali 200 200,530002 null 0 6,099999 0,00 87,117990 3,529998 5,11 4 Cerro Prieto In Operaciol Geotermica null null 08-Baja Calif 48-Mexicali 200 3,500002 null 0 6,099999 0,00 87,117990 3,529998 5,11 6 Cipres TG In Operaciol Color Introbgas Disel 0 0 0 9,42 47,4200001 27,200001 7,4245 2,50000 1,210000 1,210000 1,210000 1,210000 1,210000 1,210000 1,210000 1,210000 1,210000 1,210000 1,210000 1,210000 1,210000 1,210000 1,210000 1,210000 1,210000 1,2100000 1,2100000 <td>A</td> <td></td> <td>в</td> <td>с</td> <td></td> <td>D</td> <td>ε</td> <td>F</td> <td>G</td> <td>н</td> <td>1</td> <td></td> <td>1</td> <td>к</td> <td></td> <td>ι</td> <td>м</td> <td>N</td> <td>0</td> <td>р</td> <td>(</td>	A		в	с		D	ε	F	G	н	1		1	к		ι	м	N	0	р	(
2 1 Cerro Prieto En Operacio Geotermica null null 08-Baja Calif 48-Mexicali 20 28,70001 t 0 6,099999 0,06 87,1179902 33,529988 5,11 3 2 Cerro Prieto En Operacio Geotermica null null 08-Baja Calif 48-Mexicali 200 206,580002 null 0 6,099999 0,06 87,1179902 33,529985 5,11 5 4 Cerro Prieto En Operacio Geotermica null null 06-Baja Calif 48-Mexicali 100 0,00005 7,117902 33,529985 5,11 7 6 Cipres To En Operacio Turbogas Diesel D,EN 06-Baja Calif 48-Mexicali 24 7,4807456 2,9000001 2,7300001 2,1370000 0 9 8 0 9 Mexicali TG En Operacion Turbogas Diesel D,EN 06-Baja Calif 48-Mexicali 18 17,5499921 2,2465867 2,5 3,1500000 21,370004 0 9,2 10 Mexicali TG En Operacion Turbogas Diesel D,EN 06-Baja Calif 48-Mexicali 18 17,5499921 2,2465867	id_genera	dcinomb	re	tipo	teo	nologia	combustible	combustible	region_cont	tiregion_trans	capacidad	i ci	apacidad_fi u	unidad_	retir reg	imen_ter	usos_propio	costos_varia	costos_fijos	costos_uso	tasa_n
3 2 Cerro Prieto: En Operacio Geotermica null null 08-Baja Calif 48-Mexical 220 206,580002 null 0 6,099999 0,06 87,117996 33,329988 5,11 6 A Cerro Prieto: En Operacio Geotermica null null 08-Baja Calif 48-Mexical 0 9,000001 null 0 6,099999 0,06 87,117996 33,229988 5,11 6 Cerro Prieto: En Operacio Tobogas Diseto 0 9,00000 1,00000 2,7200003 1,00000 2,730000 1,350000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,000000 1	2	1 Cerro	Prieto	En Opera	cio: Ge	otermica	null	null	08-Baja Cali	f 48-Mexicali		30	28,1700001 t			0	6,0999999	0,06	87,1179962	33,5299988	5,115
4 3 Cerro Prieto En Operacio Geotermica null null 08-Baja Calif 48-Mexicali 220 206,580002 null 0 6,099999 0,06 87,1179962 33,22988 5,11 5 4 Cerro Prieto En Operacio Geotermica null null 08-Baja Calif 48-Mexicali 100 3,000015 null 0 <td< td=""><td>1</td><td>2 Cerro</td><td>Prieto</td><td>En Opera</td><td>cloi Ge</td><td>otermica</td><td>null</td><td>null</td><td>08-Baja Cali</td><td>f 48-Mexicali</td><td>2</td><td>220</td><td>206,580002 n</td><td>null</td><td></td><td>0</td><td>6,0999999</td><td>0,06</td><td>87,1179962</td><td>33,5299988</td><td>5,115</td></td<>	1	2 Cerro	Prieto	En Opera	cloi Ge	otermica	null	null	08-Baja Cali	f 48-Mexicali	2	220	206,580002 n	null		0	6,0999999	0,06	87,1179962	33,5299988	5,115
5 4 Cerro Prieto En Operacio Geotermica null null 08-Baja Calif 48-Mexicall 100 93,900015 null 0 6,00000 7,1179923 13,529988 5,1179923 13,520988 5,1179923 13,520988 5,1179923 13,520000 2,1570004 0 5 8 C Cipres To En Operacio Turbogas Diesel D,BCN 08-Baja Calif 48-Mexicall 429 27,430000 2,2458367 2,5 3,1900000 2,1570004 0 9,22 9 Mexicall TG En Operacio Turbogas Diesel D,BCN 08-Baja Calif 48-Mexicall 18 17,5499992 t 22,3463687 2,5 3,1900000 2,1570004 0 9,22 10 Mexicall TG En Operacio Turbogas Diesel D,BCN 08-Baja Calif 48-Mexicall 18 17,5499992 t 22,3463687 2,5 3,1900000 1,3570004 0 9,22 11 10 Mexicall TG En Operacio Turbogas Diesel D,BCN 08-Baja Calif 46-Tiyuana 16 149,759997 t 11,0159119 6,400001 3,13000011 3,1523987 0 11,4	1	3 Cerro	Prieto	En Opera	cio: Ge	otermica	null	null	08-Baja Cali	f 48-Mexicali	2	20	206,580002 n	llur		0	6,0999999	0,05	87,1179962	33,5299988	5,115
5 5 Cerro Price In Operacion Solar fotowolnull null 08-Baja Calif 48-Mexical 5 5 null 0 0.1 0 19 0 6 Cipres_T6 En Operacion Turbogas Diesel 0.BCN 08-Baja Calif 47-Ensenaa 26,7399981 18,2034082 2.5 3,1900000 12,3570004 0.9 9.4 0 9 Mexicall TG En Operacion Turbogas Diesel D_BCN 08-Baja Calif 48-Mexical 26 2,3500004 2.2,346383 2.5 3,1900006 21,3570004 0.9 9.2 1 10 Mexicall_TG En Operacion Turbogas Diesel D_BCN 08-Baja Calif 48-Mexicali 18 17,54999921 22,346383 2.5 3,1900000 3,1300001 3,182993 0.9 9.2 2,345383 2.5 3,1900000 3,1300001 3,182993 0.0 9,2 2,345383 2,3999999 2,7699999 1,75499992 2,345383 2,699999 2,7699999 2,7699999 2,7699999 1,75410002 3,000001 3,1829987 0.	j	4 Cerro	Prieto	En Opera	cio: Ge	otermica	null	null	08-Baja Cali	f 48-Mexicali	1	100	93,9000015 n	null		0	6,0999999	0,05	87,1179962	33,5299988	5,115
r 6 Cipres_TC In Operation Turbogas Diesel D_ECN 08-Baja Califi 42-Insenada 27,300003 26,739999 t 18,204002 2.5 3,1000006 21,357004 0 9,23 0 7 Mexical PIE En Operacion Turbogas Diesel D_BCN 08-Baja Califi 43-Mexicali 429 474,820007 null 7,94877456 2,5000001 2,13570004 0 9,22 0 9 Mexical TG En Operacion Turbogas Diesel D_BCN 08-Baja Califi 43-Mexicali 18 17,5499992 t 2,2465867 2,5 3,1900006 21,3570004 0 9,22 1 10 Mexical TG En Operacion Turbogas Diesel D_BCN 08-Baja Califi 43-Mexicali 18 17,5499992 t 22,3463687 2,5 3,1900006 3,13570004 0 9,22 2 11 Presidente J En Operacion Turbogas Diesel D_BCN 08-Baja Califi 43-Tipuana 10 149,759955 t 11,0159119 6,400001 3,13000011 3,1829987 0 11,4 1 14 <tipprasidnet en="" j="" operacion="" td="" turbogas<=""> Gas natural G_J_OVIBN</tipprasidnet>	5	5 Cerro	Prieto	En Opera	cio: So	lar fotovo	Inull	null	08-Baja Cali	f 48-Mexicali		5	5 n	null		0	0,1	0	19	0	
7 Mexicall TE En Operacion Ciclo combine as natural G_1_NOR0 08-Baja Calif 48-Mexicali S Mexicali_TG En Operacion Turbogas 0.2700001 2,7200001 2,7200001 2,7200001 2,7200001 0.94874 0 9 Mexicali_TG En Operacion Turbogas Diesel D_BCN 08-Baja Calif 48-Mexicali 26 25,3500041 2,2463687 2.5 3,19000006 21,357004 0 9,22 1 Mexicali_TG En Operacion Turbogas Diesel D_BCN 08-Baja Calif 48-Mexicali 18 17,5499992 t 22,446367 2.5 3,19000006 21,3570004 0 9,22 1 10 Mexicali_TG En Operacion Turbogas Diesel D_BCN 08-Baja Calif 48-Mexicali 18 17,5499992 t 22,446367 2.5 3,1900006 21,3570004 0 9,22 1 11 President J En Operacion Turbogas Gas natural G_L/OVIRM 08-Baja Calif 46-Tijuana 160 149,759957 t 11,0159119 6,400001 3,1800011 3,1829987 0 11,4 1 14 TijuanaT (En Operacion Turbogas Gas natural G_L/OVIRM 08-Baja Calif 46-Tijuana <td></td> <td>6 Cipre</td> <td>TG_</td> <td>En Opera</td> <td>cio: Tu</td> <td>rbogas</td> <td>Diesel</td> <td>D_BCN</td> <td>08-Baja Cali</td> <td>f 47-Ensenada</td> <td>27,43000</td> <td>003</td> <td>26,7399998 t</td> <td></td> <td>18</td> <td>3,2094082</td> <td>2,5</td> <td>3,19000006</td> <td>21,3570004</td> <td>0</td> <td>9,220</td>		6 Cipre	TG_	En Opera	cio: Tu	rbogas	Diesel	D_BCN	08-Baja Cali	f 47-Ensenada	27,43000	003	26,7399998 t		18	3,2094082	2,5	3,19000006	21,3570004	0	9,220
8 Mexicali_TG En OperacionTurbogas Diesel D_BCN 08-Baja Calif 48-Mexicali 12 2,1463687 2,5 3,19000006 21,3570004 0 9,22 10 Mexicali_TG En OperacionTurbogas Diesel D_BCN 08-Baja Calif 48-Mexicali 18 17,5499992 t 22,3463687 2,5 3,19000006 21,3570004 0 9,22 10 Mexicali_TG En OperacionTurbogas Diesel D_BCN 08-Baja Calif 48-Mexicali 18 17,5499992 t 22,3463687 2,5 3,19000006 21,3570004 0 9,22 11 Presidente J En OperacionTurbogas Diesei J OB-Baja Calif 48-Tijuana 170 140,959959 t 11,0159119 6,4000001 3,1800011 3,182987 0 11,4 14 Tijuana_T(En OperacionTurbogas Gas natural G_L JOVIBN 08-Baja Calif 46-Tijuana 30 29,25 t 10,846406 2,5 3,19000005 21,3570004 0 9,22 15 Tijuana_S T(En OperacionTurbogas Gas natural G_L JOVIBN 08-Baja Calif 46-Tijuana 30 29,25 t 10,846406 1,00000002 3,2000005 7,		7 Mexic	ali PIE	En Opera	cio: Cio	lo combin	Gas natural	G_I_NORO	08-Baja Cali	f 48-Mexicali	4	189	474,820007 n	llur	7,	94877456	2,9000001	2,72000003	15,3800001	0	6,96
9 Mexicall_TG En OperacionTurbogas Desel D_BCN 00-Baja Calif 48-Mexicali 18 17,5499992 t 22,345867 2,5 3,1900006 21,357004 0 9,22 11 President j En OperacionTurbogas Diesel D_BCN 06-Baja Calif 48-Mexicali 18 17,5499992 t 22,345867 2,5 3,1900006 21,357004 0 9,22 11 Presidente j En OperacionTermoelectr Combustoler, C.N. VIZC 06-Baja Calif 46-Tijuana 160 149,759995 t 11,0159119 6,400001 3,1800011 35,1829987 0 11,4 13 Presidente J En OperacionTurbogas Gas natural G_JOVIRN 06-Baja Calif 46-Tijuana 160 149,759995 t 11,0159119 6,400001 3,1800006 21,8570004 0 9,22 15 Tijuana_3_T(En OperacionTurbogas Gas natural G_JOVIRN 06-Baja Calif 46-Tijuana 30 29,25 t 10,846406 1,8000002 3,2000005 7,10200024 0 9,22 13 Tijuana_3_T(En OperacionTurbogas Gas natural G_JOVIRN 06-Baja Calif 46-Tijuana 135 133,52004 null 10,846406 1,800000		8 Mexic	ali_TG	En Opera	cio: Tu	rbogas	Diesel	D_BCN	08-Baja Cali	f 48-Mexicali		26	25,3500004 t		22	2,3463687	2,5	3,19000006	21,3570004	0	9,22
10 Mexicali, TG En Operacion Turbogas Deskel D_BCN 06 Baja Calif 48-Mexicali 18 17,5499992 t 22,446367 2,5 3,1900006 21,357004 0 9,22 11 Presidente J En Operacion Turbogas Deskaja Calif 48-Tijuana 773 749,09997 ault 11,0159119 3,099999 2,7699998 15,7410002 6,89 12 Presidente J En Operacion Termoelectr Combustoler C, N, VIZC 06 Baja Calif 46-Tijuana 160 149,75995 t 11,0159119 6,400001 3,1800011 35,1829987 0 11,4 13 Presidente J En Operacion Turbogas Gas natural G_J JOVIBN 06-Baja Calif 46-Tijuana 160 149,75995 t 11,0159119 6,400001 3,1800011 35,182987 0 11,4 14 Tijuana, J, TG En Operacion Turbogas Gas natural G_J JOVIBN 06-Baja Calif 46-Tijuana 30 29,25 t 10,846406 1,0000002 3,2000005 7,1200024 0 9,22 12 Tijuana, TG En Operacion Turbogas Gas natural G_J JOVIBN 06-Baja Calif 46-Tijuana 130 148,33006 t 10,846406 1,0000002 3,2000002 9,2000005 1,2500		9 Mexic	ali_TG	En Opera	ciórTu	rbogas	Diesel	D_BCN	08-Baja Cali	f 48-Mexicali		18	17,5499992 t		22	2,3463687	2,5	3,19000006	21,3570004	0	9,22
11 Presidente J én Operaciot Ciclo combir Gas natural G_L_NRO 08 Baja calif 46-Tijuana 772 749,039978 null 11,0159119 3,0999999 2,7699998 12,7410002 0 6,94 12 Presidente J én Operaciot Termoelectr Combustoler, N_VIZC 08-Baja Calif 46-Tijuana 160 149,759955 t 11,0159119 6,400001 3,13000011 35,1829987 0 11,4 13 Presidente J én Operaciot Termoelectr Combustoler, N_VIZC 08-Baja Calif 46-Tijuana 160 149,759955 t 11,0159119 6,400001 3,13000011 35,1829987 0 11,4 14 Tijuana, J_T(En Operaciot Turbogas Gas natural G_L/JOVIBN 08-Baja Calif 46-Tijuana 30 29,25 t 10,846406 1,0000002 3,2000005 7,10200024 0 9,22 15 Tijuana, J_T(En Operaciot Turbogas Gas natural G_L/JOVIBN 08-Baja Calif 46-Tijuana 30 29,25 t 10,846406 1,0000002 3,2000005 7,10200024 0 9,22 12 Tijuana, J_T(En Operaciot Turbogas Gas natural G_L/JOVIBN 08-Baja Calif 46-Tijuana 135 135,20004 null 10,846406 1,0000002 3,2000005 7,10200024 0 9,22 13 Culad		10 Mexic	ali_TG	En Opera	ció: Tu	rbogas	Diesel	D_BCN	08-Baja Cali	f 48-Mexicali		18	17,5499992 t		23	2,3463687	2,5	3,19000006	21,3570004	0	9,22
12 Presidente J én Operacion Termoelectr Combustoler C., V/UZC 08-Baja Calif 46-Tijuana 160 149,759995 t 11,0159119 6,400001 3,1800011 35,1829987 0 11,1 14 Tijuana_1_T(En Operacion Turbogas Gas natural G_J/OVIBN 08-Baja Calif 46-Tijuana 160 149,759995 t 11,0159119 6,400001 3,18000011 35,1829987 0 11,4 14 Tijuana_1_T(En Operacion Turbogas Gas natural G_J/OVIBN 08-Baja Calif 46-Tijuana 30 29,25 t 10,8466406 2,5 3,19000006 21,5570004 0 9,22 15 Tijuana_3_T(En Operacion Turbogas Gas natural G_J/OVIBN 08-Baja Calif 46-Tijuana 10 148,350006 t 10,8466406 1,0000002 3,2000005 7,10200024 0 9,22 13 Tijuana_T(En Operacion Turbogas Gas natural G_J/OVIBN 08-Baja Calif 46-Tijuana 135 135,20004 null 10,846406 1,0000002 3,2000005 7,10200024 0 9,22 13 Gludad Conse To Operacion Turbogas Destal Calif 50-Villa Con 33,2000011 10,885748 3,599999 8,01000023 2,0000005 7,10200024 0 9,22 20 Guerr		11 Presid	iente J	En Opera	cio: Cio	lo combin	Gas natural	G_I_NORO	08-Baja Cali	f 46-Tijuana	7	773	749,039978 n	hull	13	1,0159119	3,0999999	2,76999998	15,7410002	0	6,96
13 Presidente J En Operacion Termoelectr Combustoler C. N. VIZC 08-Baja Calif 46-Tijuana 160 149,759995 t 11,0159119 6,4000011 3,1800011 3,1829997 0 11,1 14 Tijuana_1_T(En Operacion Turbogas Gas natural G_I_OVIBN 08-Baja Calif 46-Tijuana 30 29,25 t 10,8466406 2,5 3,19000006 21,3570004 0 9,22 15 Tijuana_2_T(En Operacion Turbogas Gas natural G_I_OVIBN 08-Baja Calif 46-Tijuana 30 29,25 t 10,8466406 1,0000002 3,2000005 7,10200024 0 9,22 16 Tijuana_3_T(En Operacion Turbogas Gas natural G_I_OVIBN 08-Baja Calif 46-Tijuana 130 148,350006 t 10,8466406 1,0000002 3,2000005 7,10200024 0 9,22 18 Baja Calif for En Operacion Turbogas Gas natural G_J_OVIBN 08-Baja Calif 50-Villa Cont 33,2200012 32,839995 null 10,2857143 3,599999 8,01000023 3,2000002 61,8520012 0 11,1 19 Cludad Conts in Operacion Turbogas Diesel D_BCN 09-Baja Calif 50-Villa Cont 33,2200012 32,839995 null 10,2857143 3,5999999 8,01000002 3		12 Presid	iente J	En Opera	cio:Te	rmoelectr	Combustole	C_N_VIZC	08-Baja Cali	f 46-Tijuana	1	160	149,759995 t		1	1,0159119	6,4000001	3,13000011	35,1829987	0	11,4
14 Tijuana, 17 (En Operaciot Turbogas Gas natural G_J/OVIBN 08-Baja calif 46-Tijuana 30 23,25 t 10,446406 2,5 3,1900006 21,3570004 0 9,22 15 Tijuana, 2, TCEn Operaciot Turbogas Gas natural G_J/OVIBN 08-Baja calif 46-Tijuana 30 23,25 t 10,846406 2,5 3,19000006 21,8570004 0 9,22 16 Tijuana, 3, TCE N Operaciot Turbogas Gas natural G_J/OVIBN 08-Baja calif 46-Tijuana 130 148,350006 t 10,846406 1,0000002 3,2000005 7,10200024 0 9,22 17 Tijuana, 3, TCE N Operaciot Turbogas Gas natural G_J/OVIBN 08-Baja calif 46-Tijuana 135 133,52004 null 10,846406 1,0000002 3,2000005 7,10200024 0 9,22 18 Baja Califor En Operaciot Turbogas Diesel 0_BCN 10-Mulege 53-Mulege 12,1899995 null 10,2857143 3,599999 8,0100002 2,3370004 0 9,22 21 Guerrero Ne En Operaciot Turbogas Diesel 0_BCN 10-Mulege 53-Mulege 13,530001 null 10,2857143 8,5 3,16000005 2,13370004		13 Presid	iente J	En Opera	cio:Te	rmoelectr	Combustole	C_N_VIZC	08-Baja Cali	f 46-Tijuana	1	160	149,759995 t		11	1,0159119	6,4000001	3,13000011	35,1829987	0	11,4
15 Tijuana, 2, T(En Operaciot Turbogas Gas natural G_J_OVIBN 08-Baja Calif 46-Tijuana 30 29,25 t 10,846406 2,5 3,1900006 21,357004 0 9,22 16 Tijuana, 2, T(En Operaciot Turbogas Gas natural G_J_OVIBN 08-Baja Calif 46-Tijuana 150 148,350006 t 10,846406 1,000002 3,2000005 7,1020024 0 9,22 17 Tijuana_TG(En Operaciot Turbogas Gas natural G_J_OVIBN 08-Baja Calif 46-Tijuana 150 148,350006 t 10,846406 1,000002 3,2000002 7,1020024 0 9,22 18 Baja Calif Gne Deparatoit Turbogas Deselo D_EN 09-Baja Calif 50-La Paz 128,539996 null 10,8257148 3,599999 8,0100023 3,0500006 21,3570004 0 9,22 20 Guerrero Ne En Operaciot Turbogas Diesel D_EN 10-Mulege 3-Mulege 12,5 12,189996 null 10,8257148 5,5 3,19000006 21,3570004 0 9,22 21 Guerrero Ne En Operaciot Turbogas Diesel D_EN 09-Baja Calif 51-La Paz 18 13,5370821 2,5 3,19000006 21,35700		14 Tijuar	a_1_T	En Opera	cio: Tu	rbogas	Gas natural	G_I_JOVIBN	08-Baja Cali	f 46-Tijuana		30	29,25 t		10	,8466406	2,5	3,19000006	21,3570004	0	9,220
16 Tijuana 3 (Tén Operaciol Turbogas Gas natural G_J (VIBN 08-Baja Calif 46-Tijuana 105 148,350006 t 10.8466406 1,10000002 3,2000005 7,10200024 0 9,22 17 Tijuana TG CEn Operaciol Turbogas Gas natural G_J (JOVIBN 08-Baja Calif 46-Tijuana 135 133,520004 null 10,846406 1,10000002 3,2000005 7,1020024 0 9,22 18 Baja Caliform Fn Operaciol Turbogas Diesel 0.8-Baja Calif 50-VIIIa Cont 33,2200012 32,389999 null 10,8357143 3,3999999 8,0000022 6,15000006 21,3570004 0 9,22 20 Guerrero Ne En Operaciol Turbogas Diesel D_BCN 09-Baja Calif 50-VIIIa Cont 33,2200012 32,389994 tt 19,1795418 2,5 3,1900006 21,3570004 0 9,22 21 Guerrero Ne En Operaciol Turbogas Diesel D_BCN 09-Baja Calif 51-La Paz 18 17,5499992 tt 18,2370821 2,5 3,1900006 21,3570004 0 9,22 22 La Paz_TG1 En Operaciol Turbogas Diesel D_BCN 09-Baja Calif 51-La Paz 18 17,549992 tt		15 Tijuar	a_2_T	En Opera	cio: Tu	rbogas	Gas natural	G_1_JOVIBN	08-Baja Cali	f 46-Tijuana		30	29,25 t		10	0,8466406	2,5	3,19000006	21,3570004	0	9,220
17 Tijuana_TGC Én Operaciol Turbogas Sas natural G_1_JOVIBN 08-Baja Calif 44-Tijuana 135 135,320004 null 10,4846406 1,0000002 3,2000005 7,10200024 0 9,22 18 Baja Californ En Operaciol Turbogas Diesel D_BCN 09-Baja Calif 50-UIIa 08-Baja Calif 50-UIIa 23,3899994 10,2857143 3,599999 8,01000023 61,8520012 0 11,2 13 G'Uada Cons En Operaciol Turbogas Diesel D_BCN 10-Mulege 53-Mulege 12,3 12,1899959 null 27,755606 2,5 3,1900006 21,3370004 0 9,22 12 Guerrero Ne En Operaciol Turbogas Diesel D_BCN 10-Mulege 53-Mulege 13,54000011 null 10,2857143 8,5 3,16000002 21,3370004 0 9,22 12 La Parz, TGL En Operaciol Turbogas Diesel D_BCN 09-Baja Calif 51-La Parz 18 17,5499952 t 18,2370021 2,5 3,1900006 21,3370004 0 9,22 12 La Parz, TGL En Operaciol Turbogas Diesel D_BCN 09-Baja Calif 51-La Parz 12 14,847049 1,0000005 4,1357004 0 9,22 12 Los Cabo	1	16 Tijuar	a_3_T	En Opera	cioi Tu	rbogas	Gas natural	G_I_JOVIBN	08-Baja Cali	f 46-Tijuana	1	150	148,350006 t		10	0,8466406	1,10000002	3,20000005	7,10200024	0	9,220
18 Baja Californ En Operacio Combustion Combustation Combustion Combustion Combustion Combustion C	1	17 Tijuar	a_TG (En Opera	ciorTu	rbogas	Gas natural	G_I_JOVIBN	08-Baja Cali	f 46-Tijuana	1	135	133,520004 m	llur	10	0,8466406	1,10000002	3,20000005	7,10200024	0	9,220
19 Cludad Cons En Operaciol Turbogas Diesel D, BCN 09-Baja calif 50-Villa cons 33,2200012 32,3899994 t 19,1795418 2,5 3,1900006 21,3570004 0 9,22 20 Guerrero Ne En Operaciol Turbogas Diesel D,BCN 10-Mulege 53-Mulege 12,2 12,1899996 null 27,756808 2,5 3,1900006 21,3570004 0 9,22 21 Guerrero Ne En Operaciol Turbogas Diesel D,BCN 10-Mulege 53-Mulege 10,800002 9,80000011 null 10,2857143 8,5 3,1900006 21,3570004 0 9,22 22 La Paz_TG1 En Operaciol Turbogas Diesel D,BCN 09-Baja Calif 51-La Paz 18 17,5499992 t 18,2370821 2,5 3,1900006 21,3570004 0 9,22 24 Los Cabos (C En Operaciol Turbogas Diesel D,BCN 09-Baja Calif 52-Los Cabos 104 102,75 null 11,4467409 1,2000005 4,1900006 8,5170002 0 9,22 25 Los Cabos (C En Operaciol Turbogas Diesel D,BCN 09-Baja Calif 52-Los Cabos 20,25 null		18 Baja (aliforn	En Opera	cioi Co	mbustion	Combustole	C_N_CHIH	09-Baja Cali	f 51-La Paz	162,6999	97	156,839996 n	Ilur	10	0,2857143	3,5999999	8,01000023	61,8520012	0	11,22
20 Guerrero Ne En Operaciol Turbogas Desel D_BCN 10-Mulege 53-Mulege 12,3 12,1389999 null 27,756306 2,5 3,1900006 2,1377004 0 9,22 21 Guerrero Ne En Operaciol Turbogas Diesel D_BCN 10-Mulege 53-Mulege 10,800000 9,8800011 null 10,2857143 8,5 3,16000000 21,3370004 0 9,12 22 La Paz_TG1 Doperaciol Turbogas Diesel D_BCN 09-Baja Calif 53-La Paz 18 17,5499992 t 18,2370821 2,5 3,1900006 21,3370004 0 9,22 22 La Paz_TG1 Doperaciol Turbogas Diesel D_BCN 09-Baja Calif 51-La Paz 25 24,379992 t 18,2370821 2,5 3,1900006 21,3370004 0 9,22 24 Los Cabos (C En Operaciol Turbogas Diesel D_BCN 09-Baja Calif 52-Los Cabot 10 102,75 null 14,467409 1,2000005 4,1900006 8,5170002 0 9,22 25 Los Cabos (L En Operaciol Turbogas Diesel D_BCN 09-Baja Calif 52-Los Cabot 10 102,7	t i	19 Ciuda	d Cons	En Opera	cioi Tu	rbogas	Diesel	D_BCN	09-Baja Cali	f 50-Villa Con:	33,22000	12	32,3899994 t		15	9,1795418	2,5	3,19000006	21,3570004	0	9,220
21 Guerrero Ne En Operacior Combustion Combustion Combustion Combusteder C, V/IZC 10-Muldege 53-Muldeg 10,800002 9,88000011 null 10,2857143 8,5 3,16000009 28,0440006 0 11,1 22 La Paz_TG1 En Operacior Turbogas Diesel D_BCN 09-Baja calif 51-La Paz 18 17,5499992 t 18,2370821 2,5 3,19000006 21,3570004 0 9,22 23 La Paz_TG2 En Operacior Turbogas Diesel D_BCN 09-Baja calif 51-La Paz 25 24,3799921 18,2370821 2,5 3,19000006 21,3570004 0 9,22 24 Los Cabos (C En Operacior Turbogas Diesel D_BCN 09-Baja calif 52-Los Cabos 10 102,75 null 11,4457049 1,2000005 4,1900006 8,5170002 0 9,22 25 Los Cabos (_E n Operacior Turbogas Diesel D_BCN 09-Baja calif 52-Los Cabos 10 102,75 null 11,4457049 12,000005 4,1900006 8,5170002 0 9,22 26 Los Cabos _1 En Operacior Turbogas Diesel D_BCN 09-Baja calif 52-Los Cabos 30 29,25		20 Guerr	ero Ne	En Opera	cioi Tu	rbogas	Diesel	D_BCN	10-Mulege	53-Mulege	12	2,5	12,1899996 n	Ilur	2	7,7563608	2,5	3,19000006	21,3570004	0	9,220
22 La Paz_TG2 En OperacionTurbogas Desel D_BCN 09-Baja calif 51-La Paz 18 17,5499992 t 18,2370821 2,5 3,19000006 21,3570004 0 9,22 23 La Paz_TG2 En OperacionTurbogas Diesel D_BCN 09-Baja calif 51-La Paz 25 24,3799992 t 18,2370821 2,5 3,19000006 21,3570004 0 9,22 24 Los Cabos (C En OperacionTurbogas Diesel D_BCN 09-Baja calif 52-Los Cabos 104 102,75 null 11,4467409 1,2000005 4,1900006 8,5170002 0 9,22 25 Los Cabos (C En OperacionTurbogas Diesel D_BCN 09-Baja calif 52-Los Cabos 104 102,75 null 11,4467409 1,2000005 4,1950006 8,5170002 0 9,22 25 Los Cabos_1 En OperacionTurbogas Diesel D_BCN 09-Baja calif 52-Los Cabos 30 29,25 t 18,1451613 2,5 3,19000006 21,3570004 0 9,22 27 Los Cabos_2, En OperacionTurbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 26,54999992 t 18,1451613	1	21 Guerr	ero Ne	En Opera	cioi Co	mbustion	Combustole	C_N_VIZC	10-Mulege	53-Mulege	10,80000	002	9,88000011 n	llur	10	0,2857143	8,5	3,16000009	28,0440006	0	11,22
23 La Paz, TG2 En Operacion Turbogas Desel D_BCN 09-Baja calif 51-La Paz 25 24,3799992 t 18,2370821 2,5 3,19000006 2,13570004 0 9,22 24 Los Cabos (C En Operacion Turbogas Diesel D_BCN 09-Baja calif 52-Los Cabos 75 74,0999985 null 9,60256068 1,2000005 4,19000006 8,5170002 0 9,22 25 Los Cabos (C En Operacion Turbogas Diesel D_BCN 09-Baja calif 52-Los Cabos 104 102,75 null 11,4467409 1,20000005 4,19000006 8,5170002 0 9,22 26 Los Cabos 1, En Operacion Turbogas Diesel D_BCN 09-Baja calif 52-Los Cabos 30 29,25 t 18,1451613 2,5 3,19000006 8,1370004 0 9,22 27 Los Cabos 2, En Operacion Turbogas Diesel D_BCN 09-Baja calif 52-Los Cabos 26,2599998 t 18,1451613 2,5 3,19000006 21,3570004 0 9,22 28 Los Cabos 2, En Operacion Turbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 27,2599995 t 18,1451613 2,5 3,19000006 21,3570004 0 9,22 28 Los Cabos 2, En Operacion Turbogas Diesel D_BCN		22 La Paz	TG1	En Opera	cio: Tu	rbogas	Diesel	D_BCN	09-Baja Cali	f 51-La Paz		18	17,5499992 t		18	8,2370821	2,5	3,19000006	21,3570004	0	9,220
24 Los Cabos (C En Operacion Turbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 75 74,0999985 null 9,60256088 1,2000005 4,1900006 8,5170002 0 9,22 25 Los Cabos (C En Operacion Turbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 104 102,75 null 11,4467409 1,2000005 4,1900006 8,5170002 0 9,22 26 Los Cabos, 1 En Operacion Turbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 30 29,25 t 18,1451613 2,5 3,1900006 21,3570004 0 9,22 27 Los Cabos, 1 En Operacion Turbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 26,7399999 t 18,1451613 2,5 3,19000006 21,3570004 0 9,22 28 Los Cabos, 1 En Operacion Turbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 26,7399999 t 18,1451613 2,5 3,19000006 21,3570004 0 9,22 28 Los Cabos, 1 En Operacion Turbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 27,2299995 26,5499992 t 18,1451613 2,5		23 La Pag	TG2	En Opera	cio: Tu	rbogas	Diesel	D_BCN	09-Baja Cali	f 51-La Paz		25	24,3799992 t		11	8,2370821	2,5	3,19000006	21,3570004	0	9,220
25 Los Cabos (C En Operacioi Turbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 104 102,75 null 11,446709 1,2000005 4,1900006 2,1370002 0 9,22 26 Los Cabos_1_En Operacioi Turbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 30 29,25 t 18,1451613 2,5 3,19000006 21,357004 0 9,22 27 Los Cabos_2_En Operacioi Turbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 20 29,25 t 18,1451613 2,5 3,19000006 21,357004 0 9,22 28 Los Cabos_2_En Operacioi Turbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 27,2299995 26,3499992 t 18,1451613 2,5 3,19000006 21,357004 0 9,22 28 Los Cabos_2_En Operacioi Turbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 27,2299995 26,3499992 t 18,1451613 2,5 3,19000006 21,357004 0 9,22 28 Los Cabos_2_En Operacioi Turbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 27,2299995 26,3499992 t 18,1451613 2,5 <td< td=""><td></td><td>24 Los Ca</td><td>bos (C</td><td>En Opera</td><td>cio: Tu</td><td>rbogas</td><td>Diesel</td><td>D_BCN</td><td>09-Baja Cali</td><td>f 52-Los Cabos</td><td></td><td>75</td><td>74,0999985 n</td><td>llur</td><td>9,</td><td>60256068</td><td>1,20000005</td><td>4,19000006</td><td>8,5170002</td><td>0</td><td>9,220</td></td<>		24 Los Ca	bos (C	En Opera	cio: Tu	rbogas	Diesel	D_BCN	09-Baja Cali	f 52-Los Cabos		75	74,0999985 n	llur	9,	60256068	1,20000005	4,19000006	8,5170002	0	9,220
26 Los Cabots, 1 En Operacion Turbogas Diesel D, BCN 09-Baja Calif 52-Los Cabot 30 29,25 t 18,1451613 2,5 3,19000006 21,3570004 0 9,22 27 Los Cabots, 2 En Operacion Turbogas Diesel D, BCN 09-Baja Calif 52-Los Cabot 27,4300003 26,7399998 t 18,1451613 2,5 3,19000006 21,3570004 0 9,22 28 Los Cabots, 2 En Operacion Turbogas Diesel D, BCN 09-Baja Calif 52-Los Cabot 27,4300003 26,7399998 t 18,1451613 2,5 3,19000006 21,3570004 0 9,22 28 Los Cabots, 2 En Operacion Turbogas Diesel D, BCN 09-Baja Calif 52-Los Cabot 27,239995 18,1451613 2,5 3,19000006 21,3570004 0 9,22		25 Los Ca	bos (C	En Opera	cio: Tu	rbogas	Diesel	D_BCN	09-Baja Cali	f 52-Los Cabos	1	104	102,75 m	null	1	1,4467409	1,20000005	4,19000006	8,5170002	0	9,220
27 Los Cabos_2 En OperacionTurbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 27,4300003 26,7399998 t 18,1451613 2,5 3,19000006 21,3570004 0 9,22 28 Los Cabos_3 En OperacionTurbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 27,2299995 26,5499992 t 18,1451613 2,5 3,19000006 21,3570004 0 9,22	1	26 Los Ca	bos_1	En Opera	ciór Tu	rbogas	Diesel	D_BCN	09-Baja Cali	f 52-Los Cabos		30	29,25 t		11	8,1451613	2,5	3,19000006	21,3570004	0	9,220
28 Los Cabos_3 En Operacio:Turbogas Diesel D_BCN 09-Baja Calif 52-Los Cabos 27,2299995 26,5499992 t 18,1451613 2,5 3,19000006 21,2570004 0 9,22	3	27 Los Ca	bos_2	En Opera	cio: Tu	rbogas	Diesel	D_BCN	09-Baja Cali	f 52-Los Cabos	27,43000	003	26,7399998 t		11	8,1451613	2,5	3,19000006	21,3570004	0	9,220
	9	28 Los Ca	bos_3	En Opera	cio: Tu	rbogas	Diesel	D_BCN	09-Baja Cali	f 52-Los Cabos	27,22999	995	26,5499992 t		12	8,1451613	2,5	3,19000005	21,3570004	0	9,220

Figura 16. Archivo de Excel con los datos de Generación

Para el módulo de Hidroeléctricas el usuario puede consultar los datos de alguna de las plantas de la lista. Para esta aplicación el usuario también puede descargar los datos de la planta que desee (véase anexo C).

- 1. Inicio
- 2. Seleccionar planta
- 3. Hacer una consulta a la base de datos con el nombre de la planta seleccionada con MySQL.data
- 4. Obtener todos los datos de la base de datos
- 5. Guardar e imprimir los datos en el datagrid
- 6. Al presionar el botón "Descargar Base de datos".
 - a. Crear un nuevo Excel con el nombre de la planta
 - b. Abrir el archivo en modo escritura con Microsoft.Office.interop.excel
 - c. Guardar los datos del datagrid en las celdas del Excel
 - d. Mostrar ventana de exploración de archivos
 - e. Guardar el archivo
 - f. Cerrar el archivo
- 7. Fin

0								
S	Plantas Ianuel Moreno Torres 🗸							
CA	Aguamilpa		FEO	Gerencia_Control_F	Capacidad_Efective	Cantidad_Unidades	Capacidad_Efective	Nivel_Minimo_Emb;
Ř	Angostura El Caión	•	0		2400	1	>= 300	380
S.	El Caracol		0		2400	2	>= 600	380.4
	Infiernillo		0		2400	3	>= 900	381.2
ō.	La Villità La Yesca		0		2400	4	>= 1200	381.9
Ľ.	Luis Donaldo Colosio		0		2400	5	>= 1500	382.6
Ŧ	Malpaso Manual Marana Tarraa		0		2400	6	>= 1800	383.3
A	Mazatepec		0		2400	7	>= 2100	384.2
K	Peñitas		0		2400	8	>= 2400	385
E	Plutarco Elías Calles							
Ŭ.	Valentin Gomez Farias	<					1	>
SIMISE – DATOS D	Zimapán SENER NICHTANIA DE ENERGIA				Descargar B Datos	ase de		

Figura 17. Aplicación Datos de Oferta - Hidroeléctricas

En el módulo de Capacidad, Generación y Eficiencia el usuario puede consultar los datos de las plantas de acuerdo a Centrales en Operación y Programa Indicativo. De igual forma puede descargar los datos en un archivo de Excel (véase anexo C).

- 1. Inicio
- 2. Seleccionar centrales en operación
- 3. Hacer una consulta a la base de datos con el nombre de la central en operación seleccionada con MySQL.data
- 4. Obtener todos los datos de la base de datos
- 5. Guardar e imprimir los datos en el datagrid de centrales en operación
- 6. Seleccionar programa indicativo
- 7. Hacer una consulta a la base de datos con el nombre del programa indicativo seleccionado con MySQL.data
- 8. Obtener todos los datos de la base de datos
- 9. Guardar e imprimir los datos en el datagrid de programa indicativo
- 10. Al presionar el botón "Descargar Base de datos".
 - a. Crear un nuevo Excel con el nombre de la central en operación
 - b. Abrir el archivo en modo escritura con Microsoft.Office.interop.excel
 - c. Guardar los datos del datagrid de centrales en operación en las celdas del Excel 1
 - d. Crear nuevo Excel con el nombre del programa indicativo
 - e. Abrir el archivo en modo escritura con Microsoft.Office.interop.excel

- f. Guardar los datos del datagrid de programa indicativo en las celdas del Excel 2
- g. Mostrar ventana de exploración de archivos
- h. Guardar los archivos
- i. Cerrar los archivos

```
11. Fin
```

5			No	Nombre	Unidad	Tecnologia	Tipo Tecnologia	Modalidad	^
-		•	1	Agua Prieta (Vale	1	Hidroeléctrica	Limpia	CFE	
Ā			2	Agua Prieta (Vale	2	Hidroeléctrica	Limpia	CFE	
NC	Centrales en Operación		3	Aguamilpa Solida	1	Hidroeléctrica	Limpia	CFE	
<u>C</u>	Generación 🗸		4	Aguamilpa Solida	2	Hidroeléctrica	Limpia	CFE	
Ľ,			5	Aguamilpa Solida	3	Hidroeléctrica	Limpia	CFE	
IÓN			6	Alameda (LyFC)	1	Hidroeléctrica	Limpia	CFE	
AC			7	Alamada (LvEC)	2	Hidmeláctrica	Limpia	CEE	4
Ë		<						>	-
GEI			No	Nombre	Tecnologia	TipoTecnologia	Modalidad	EntidadEed	~
ÅD,		•	1	CCC. Aqua Prieta II	Ciclo Combinado	Convencional	CFE	Sonora	•
8		ŕ	2	CG. Azufres III Fa.	Geotémica	Limpia	CFE	Michoacán	
APA	Programa Indicativo		3	CCC. Centro I	Ciclo Combinado	Convencional	CFE	Morelos	
2	Generación 🗸 🗸		4	CCGE. Salamanc	Cogeneración Efi	Limpia	CFE	Guanajuato	
TA			5	CE. Sureste Fas	Eólica	Limpia	CFE	Oaxaca	
ER			6	CS. Termosolar A	Solar	Limpia	CFE	Sonora	
0			7	CCC RM Poza R	Ciclo Combinado	Convencional	CEE	Varachuz	۷
SDE		<						>	_
- DATO	SENER			De	scargar Bas	se de			
ISE	SECRETARÍA DE ENERGÍA				Datos				
SIMIS								00000	

Figura 18. Aplicación Datos de Oferta - Capacidad, Generación y Eficiencia

Para la aplicación de Características Históricas el usuario puede consultar las características de la planta seleccionada. De la misma forma el usuario puede descargar los datos de cada una de las plantas al presionar el botón (véase anexo C).

- 1. Inicio
- 2. Seleccionar planta
- 3. Hacer una consulta a la base de datos con el nombre de la planta seleccionada con MySQL.data
- 4. Obtener todos los datos de la base de datos
- 5. Guardar e imprimir los datos en el datagrid
- 6. Al presionar el botón "Descargar Base de datos".
 - a. Crear un nuevo Excel con el nombre de la planta
 - b. Abrir el archivo en modo escritura con Microsoft.Office.interop.excel
 - c. Guardar los datos del datagrid en las celdas del Excel
 - d. Mostrar ventana de exploración de archivos
 - e. Guardar el archivo
 - f. Cerrar el archivo
- 7. Fin

Adolfo Ruiz Cortines		Fecha	Area	Nivel	Volumen	ObraToma	Vertedor	
Aguamilpa	•	01/09/1963	1030.86	120.82	100.53	244.87	0.46	
Aniaro Obregon Amistad		02/09/1963	996.55	120.35	95.49	230.01	0.34	
Angostura Chiapas		03/09/1963	989.25	120.25	94.41	226.11	0.65	
Angostura Sonora		04/09/1963	1000.2	120.4	96.02	232.14	0.55	
El Cajón		05/09/1963	1003.85	120.45	96.56	234.41	0.69	
El Caracol		06/09/1963	1007.5	120.5	97.1	235.77	0.79	
Excame		07/09/1963	1007.5	120.5	97.1	233.96	0.54	
Gustavo Diaz Ordaz		08/09/1963	978.3	120.1	92.8	226.46	0.43	
Infiemillo		09/09/1963	945.2	119.7	88.73	111.68	0.56	
La Boguilla		10/09/1963	1014.8	120.6	98.17	0.68	0.64	
La Villita		11/09/1963	1065.9	121.3	105.69	0.53	0.54	
Laguna Catemaco		12/09/1963	1121.15	122.05	113.8	0.5	0.63	
Malpaso		13/09/1963	1166.8	122.6	120.43	0.44	0.67	
Minuel Midelee	1							

Figura 19. Aplicación Datos de Oferta – Características Históricas

Por último la aplicación Degradación muestra los datos de degradación de las diferentes plantas en un año deseado. Al igual que las demás aplicaciones de este módulo el usuario puede descargar el archivo Excel con los datos (véase anexo C).

- 1. Inicio
- 2. Seleccionar año
- 3. Hacer una consulta a la base de datos del año seleccionado con MySQL.data
- 4. Obtener todos los datos de la base de datos
- 5. Guardar e imprimir los datos en el datagrid
- 6. Al presionar el botón "Descargar Base de datos".
 - a. Crear un nuevo Excel con el nombre del año
 - b. Abrir el archivo en modo escritura con Microsoft.Office.interop.excel
 - c. Guardar los datos del datagrid en las celdas del Excel
 - d. Mostrar ventana de exploración de archivos
 - e. Guardar el archivo
 - f. Cerrar el archivo
- 7. Fin

0	Año 2007 ∽								
	2007 2008		Fecha	Angostura	Chicoasen	Malpaso	Peñitas	Caracol	Infiemillo
	2009	•	ENE	528.23	392.1	180.79	85.9	519.71	167.43
	2010		FEB	527.65	392	182.39	84.75	518.56	165.82
z	2012		MAR	527.22	391.86	179.91	85.98	517.43	163.76
С,	2013		ABR	525.59	391.29	178.98	85.98	514.73	160.41
Ă	2014		MAY	524.23	391.34	176.98	86.06	513.6	157.55
AI			JUN	523.66	391.62	173.11	86.32	513.38	154.77
ö			JUL	524.04	389.9	169.75	85.96	513.59	151.13
ä			AGO	524.32	387.74	167.64	86.36	516.27	152.14
A			SEP	526.54	389.24	168.33	84.98	514.89	160.07
			OCT	529.33	388.72	171.55	85.42	515.94	167.65
L H			NOV	531.88	391.26	180.98	90.1	519.02	167
Ш			DIC	533.19	388.3	184.22	87.36	516.12	165.14
		٠							
ğ		<							>
A			California Maria						
1	SEN	JER				Descargar I	Base de 📄		
ISE	SECRETARÍA	DE ENERGÍA		·		Dato	s J		
SIM									

Figura 20. Aplicación Datos de Oferta – Degradación

2.7.3. Migración de aplicaciones.

Mi participación en la migración de aplicaciones fue dependiendo del avance de las mismas, algunas se migraron de Excel a C#, otras de Matlab a C# y otras de C# a Matlab para la integración completa de la plataforma SIMISE.

2.7.3.1. Módulo Nuclear

Para llevar a cabo la migración de este módulo tuve varias juntas con el Ing. Marco Antonio Martínez Quintana, para poder así programar con precisión cada una de las funciones de los diferentes apartados del módulo, debido a que dichas funciones ya se encontraban programadas bajo el paradigma orientado a objetos y se pudo utilizar la herencia para aprovechar el código ya generado heredando de la clase principal (véase anexo E).

Quedando el algoritmo de la siguiente manera:

- 1. Inicio
- 2. Seleccionar el tipo de planta
 - Si se selecciona la opción "Nueva" el usuario debe llenar los datos
 - i. Validar que los datos sean solo números
 - ii. Validar que no existan espacios vacíos

En caso contrario llenar los input text con los datos correspondientes ya cargados previamente.

- 3. Presionar botón "Analizar Caso". Hacer los cálculos correspondientes
- 4. Imprimir los cálculos en los input text de la pantalla resultados
- 5. *Fin*

La evolución de las interfaces graficas fue la siguiente:

En la figura 21 se muestra la versión 1 del módulo Nuclear.

Figura 21. Versión 1 del módulo nuclear

Para la segunda y actual versión del módulo nuclear me base en la versión anterior pero utilizando el elemento *TabControl* que funciona para poder poner diferentes pestañas en un mismo panel, así cada uno de los apartados de datos que componen el módulo quedaría en cada una de las pestañas. A su vez decidí separar las partes de Captura de Datos y Resultados en diferentes pantallas, esto con el fin de darle al usuario una mejor visión a la hora de consultar los datos requeridos.

La figura 22 y 23 muestra las pantallas que conforman la versión final del módulo nuclear:

Figura 22. Apartado de Captura de Datos de la versión final del módulo nuclear

Figura 23. Apartado de Resultados de la versión final del módulo nuclear

2.7.3.2. Emisiones

Para llevar a cabo la migración de este módulo también tuve varias juntas con el Ing. Marco Antonio Martínez Quintana, para poder así programar con precisión la obtención de los resultados, ya que los factores de emisión por tecnología varían dependiendo la fuente de información, así que se uniformizaron a través de toda la plataforma.

La versión 1 del módulo de Emisiones se presenta en la figura 24.

Figura 24. Versión 1 del módulo emisiones

Para la versión final creé tres apartados:

- Cálculo de Emisiones Simples
- Cálculo de Emisiones de Archivo
- Cálculo de Consumo de Combustible

Figura 25. Versión 2 del módulo Emisiones

En el primer apartado el usuario ingresa la generación de electricidad que la tecnología produjo y como resultados se muestran las cantidades de emisiones que dicha tecnología generó (véase anexo B).

El algoritmo de este apartado es el siguiente:

- 1. Inicio
- 2. Seleccionar el tipo de tecnología de la cual se desean conocer las emisiones
- 3. Ingresar el valor de generación en MWh
- 4. Presionar botón Calcular. Hacer los cálculos para las emisiones:
 - a. CO2 = valor ingresado * emisiones CO2
 - b. SO2 = valor ingresado * emisiones SO2
 - c. NOX = valor ingresado * emisiones NOX
 - d. Partículas Suspendidas = valor ingresado * emisiones partículas suspendidas
- 5. Imprimir CO2, SO2, NOX, partículas suspendidas en las salidas correspondientes
- 6. Imprimir CO2/1000, SO2/100, NOX/1000, partículas suspendidas/1000 en las salidas correspondientes
- 7. *Fin*

Esto se puede apreciar en la figura 26.

Figura 26. Apartado Cálculo de Emisiones Simple

El segundo apartado le pide al usuario la ubicación del archivo, en Excel, donde se encuentran los datos para calcular las emisiones de las generaciones. Los resultados los guarda en el mismo Excel que el usuario ingresó (véase anexo B).

ara la adquisición de datos de este apartado, al igual que en el módulo de Oferta, utilicé la librería *"Microsoft.Office.interop.excel"*, la cual nos permite crear, abrir y modificar libros Excel.

El algoritmo de este apartado quedo de la siguiente manera:

- 1. Inicio
- 2. Al presionar el botón de examinar mostrar ventana de exploración de archivos
- 3. Seleccionar el archivo donde se encuentran los datos de entrada
- 4. Abrir el archivo con la librería Microsoft.Office.interop.excel en modo lectura/escritura
- 5. Introducir el número de hoja donde se encuentran los datos
- 6. Introducir el rango de las celdas donde están contenidos los datos
- 7. Al presionar el botón calcular, hacer el cálculo de cada fila
 - a. CO2 = valor celda * emisiones CO2
 - b. SO2 = valor celda * emisiones SO2
 - c. NOX = valor celda * emisiones NOX
 - d. Partículas Suspendidas = celda * emisiones partículas suspendidas
- 8. Grabar los datos calculados en las siguientes columnas

- 9. Guardar el archivo
- 10. Cerrar el archivo
- 11. *Fin*

En la figura 27 se puede observar el funcionamiento de dicho apartado, mientras que en la figura 28 se muestra el archivo que se genera al calcular las emisiones.

Figura 27. Apartado Cálculo de Emisiones de Archivo

Calibri	- 11 - A A	:=== *	- 🔐 Ajustar	texto	General	•			× 🖬 Σ· Αγ	46
			an El Cambi	and the second sec	\$ + 04 mm	•.0 00 Fr	ormato Dar form	nato Estilos de Insertar Elim	inar Formato Ordenar y	Buscar y
- 😽 🛄 K 🖉	- m - 1 🚾 - 🗮 -		E E Comon	nai y central	\$ - X0 +++	con	dicional * como ta	bla - celda	- 🗶 - filtrar -	seleccionar *
papeles 12	Fuente	5	Alineación	1	 Número 	ra i	Estilos	Cel	das Modifi	tar
• : ×	√ fx Tec	nología								
A	B	c	D	F	F	G	н	1	i i	κ
						~				
		Emisiones (Kg	Emisiones	Emisiones	Emisiones (Ton	Emisiones	Emisiones	Emisiones (Kg Particulas	Emisiones (Ton Particulas	
Tecnología	Generación [MWh]	CO2 eq)	(Ton CO2 eq)	(Kg SO2 eq)	SO2 eq)	(Kg NOx eq)	(Ton NOx eq)	Suspendidas eq)	Suspendidas eq)	
Hidroeléctrica	54,667,718.51	820015777.6	820015.7776	0	0	0	0	0	0	
Cogeneración	45,401,389.32	23810304615	23810304.61	8172250.08	8172.250078	28602875.3	28602.87527	0	0	
Turboeléctrica	2,786,729.58	1461472463	1461472.463	501611.325	501.611325	1755639.64	1755.639637	0	0	
Ciclo Combinado	240,044,352.63	1.25889E+11	125888860.3	43207983.5	43207.98347	151227942	151227.9422	0	0	
Eólica	43,074,932.39	904573580.3	904573.5803	0	0	0	0	0	0	
Solar	3,840,709.64	407115222.1	407115.2221	0	0	0	0	0	0	
Termoeléctrica	2,219,674.36	1825460197	1825460.197	6636826.35	6636.82635	2796789.7	2796.789699	0	0	
Carboeléctrica	10,472,865.54	11341903920	11341903.92	47337352.2	47337.35223	13614725.2	13614.7252	10577594.19	10577.59419	
Combustión Interna	162,720.11	130664248.9	130664.2489	279878.59	279.8785904	154584.105	154.5841052	0	0	
Bioenergía	1,079,989.37	1516035082	1516035.082	4557555.15	4557.555154	3574764.82	3574.764825	0	0	
Nuclear	39,761,692.56	2584510016	2584510.016	0	0	c	0	0	0	
Geotérmica	18,611,711.46	4116724458	4116724.458	54346197.5	54346.19747	0	0	0	0	
Lecho Fluidizado	17,726,674.48	19197633931	19197633.93	80124568.7	80124.56866	23044676.8	23044.67683	17903941.23	17903.94123	
Múltiple	237,545.29	124578251.5	124578.2515	42758.1521	42.75815205	149653.532	149.6535322	0	0	

Figura 28. Archivo resultado del cálculo de las emisiones.

Por último, el apartado de Cálculo de Consumo de Combustible es parecido a Emisiones simple ya que de igual manera le pide al usuario que ingrese la generación de energía de la tecnología, sin embargo, como resultado muestra el consumo de combustible que la tecnología utilizó en el año (véase anexo B).

Su algoritmo quedo de la siguiente manera:

- 1. Inicio
- 2. Seleccionar el tipo de tecnología de la cual se desean conocer el consumo de combustible
- 3. Ingresar el valor de generación en MWh
- 4. Presionar botón Calcular. Hacer el cálculo del consumo de combustible:
 - a. Combustible = (valor ingresado * 3600) / eficiencia / poder
 - Si la tecnología es limpia el valor de consumo de combustible será 0.
- 5. Imprimir Combustible
- 6. *Fin*

En la figura 29 se muestra el uso de esta aplicación.

Figura 29. Apartado Cálculo de Consumo de Combustible

2.7.3.3. Conversor

Igual que en las migraciones pasadas, para la creación de este módulo tuve juntas con el Ing. Marco Antonio Martínez Quintana para el diseño y el funcionamiento que este módulo debía tener.

En la fase preliminar el módulo contaba con la conversión simple y la conversión de archivos en conjunto. En la figura 30 se aprecia la versión 1 del módulo.

n conversor	– 🗆 X
Coordinación de lanovación y Desarrollo	SENER
Cargar matrices 0 >>>	0
- · · Convertir -	× - ×
Conversión de archivo Nombre Hoja Rango	Convierte Archivo

Figura 30. Versión 1 del módulo Conversor

Para la versión actual de este módulo el Ingeniero y yo decidimos separar las aplicaciones, así que creé dos apartados:

- Conversión Simple
- Conversión de Archivos

La figura 31 muestra la interfaz del módulo Conversor.

Figura 31. Módulo Conversor

Debo especificar que para esta versión se agregaron las magnitudes a utilizar:

- Energía-Masa
- Energía-Volumen
- Masa-Energía
- Volumen-Energía

En el apartado de Conversión Simple se elige la magnitud, las unidades y los prefijos iniciales y finales de la conversión (véase el anexo A).

El algoritmo de este apartado fue el siguiente:

- 1. Inicio
- 2. Seleccionar magnitud
 - a. Rellenar prefijos y unidades de acuerdo a la magnitud
 - b. Si magnitud es igual a moneda, mostrar año
 - i. Seleccionar año
 - c. Si magnitud es igual a energía-masa, energía-volumen, masa-energía o volumen-energía, mostrar energético
 - i. Seleccionar energético
 - d. En caso contrario ocultar año y energético
- 3. Ingresar valor a convertir
- 4. Seleccionar el prefijo de entrada
- 5. Seleccionar la unidad de entrada

- 6. Seleccionar el prefijo de salida
- 7. Seleccionar la unidad de salida
- 8. Presionar el botón "Convertir". Hacer el cálculo de la conversión:
 - a. Valor convertido = valor ingresado * (valor de la posición de los prefijos * valor de la posición de las unidades)
- 9. Imprimir el valor convertido
- 10. *Fin*

La figura 32 muestra un ejemplo de una conversión simple.

Figura 32. Ejemplo de conversión simple

El apartado de Conversión de Archivos sirve para convertir varios valores a la vez, para ello el usuario debe de especificar, al igual que en la conversión simple, la magnitud, las unidades y los prefijos iniciales y finales. Además, debe especificar el archivo origen, es donde están los datos a convertir, y el archivo donde se van a guardar los datos convertidos (véase anexo A).

El algoritmo de este apartado fue el siguiente:

- 1. Inicio
- 2. Seleccionar magnitud
 - a. Rellenar prefijos y unidades de acuerdo a la magnitud
 - b. Si magnitud es igual a moneda, mostrar año
 - i. Seleccionar año

- c. Si magnitud es igual a energía-masa, energía-volumen, masa-energía o volumen-energía, mostrar energético
 i. Seleccionar energético
- d. En caso contrario ocultar año y energético
- 3. Al presionar el botón de examinar archivo origen, mostrar ventana de exploración de archivos
- 4. Seleccionar el archivo donde se encuentran los datos de entrada
- 5. Abrir el archivo con la librería Microsoft.Office.interop.excel en modo lectura
- 6. Introducir el número de hoja donde se encuentran los datos
- 7. Introducir el rango de las celdas donde están contenidos los datos
- 8. Al presionar el botón de examinar archivo destino, mostrar ventana de exploración de archivos
- 9. Seleccionar el archivo donde se guardaran los datos de entrada
- 10. Abrir el archivo con la librería Microsoft.Office.interop.excel en modo escritura
- 11. Introducir el número de hoja donde se escribirán los datos
- 12. Introducir el rango de las celdas donde se escribirán los datos
- 13. Seleccionar el prefijo de entrada
- 14. Seleccionar la unidad de entrada
- 15. Seleccionar el prefijo de salida
- 16. Seleccionar la unidad de salida
- 17. Al presionar el botón calcular, hacer el cálculo de cada celda
 - a. Valor convertido = valor celda * (valor de la posición de los prefijos * valor de la posición de las unidades)
- 18. Escribir cada celda en el archivo seleccionado
- 19. Guardar el archivo de destino
- 20. Cerrar los archivos de origen y de destino
- 21. Fin

La figura 33 muestra un ejemplo de una conversión de archivos. Por su parte las figuras 34 y 35 muestran los archivos de origen y de destino de los datos respectivamente.

Figura 33. Apartado Conversión de Archivos

ARC		C [≫] - ∓ O INSERTAJ	R DISEÑO I	DE PÁGINA	FÓRMULAS	DATOS	Cor REVISAR N	nversion [solo /ISTA DES/	lectura] - Ex ARROLLADO	cel DR COMPLEM	IENTOS EQU	IPO			?	- 8 ×
Pe	gar →	Calibri N <i>K</i> <u>S</u> -	• 11 • A		= ∛ •	🚰 Ajustar tex	to y centrar *	General \$ + % 000	* *0 00 *0	Formato Dar condicional = com	formato Estilos no tabla - celda	de Insertar E	iliminar Formato	∑ - ▼ ₹.	Ardenar y Busca filtrar * seleccio	in y nar *
Port	apapeles ⊊	Fue	nte	G.	Aline	ación	Ģ	Número	r,	Est	tilos		Celdas		Modificar	^
A1	L Ŧ	$\pm \times$	$\sqrt{f_x}$	49407395.256												~
	A	В	С	D	E	F	G	н	- I	J	К	L	М	N	0	P 🔺
1	49407395.3	52505420	52771422.2	53094640	54617916.9	56596960.5	57429459.4	58727330.9	1							
2	13139789.8	13745198.8	14078412.9	16888883.7	18875178.8	21958519.6	14306622.8	14396837.4	•							
3	1190628.14	1122625.93	1130047.1	1174324.95	1145057.22	1133537.96	1150980.04	1155864.52								
4	132713413	140918191	146119787	147391264	152327554	149993330	160811814	165113210								
5	7/23061.78	8089064.71	8388067.1	9285334.84	8998566.43	8990882.76	9106/00.63	9255/18.49								
7	8001507.42	10970012.5	10820629.9	10283009.2	10032018.3	10007443.0	12441757.9	11338211								
8																
9																
10																
11																
12																
13																
14																
15																
16																
17																
18																
19																
20																
21																
22																
23																
24																
25																
	$\leftarrow \rightarrow$	Hoja1	+							: (Þ
UST	o 🛅													1		— + 100 %

Figura 34. Archivo Origen de los datos

1 8 4)· (ð · ÷					R	esultadosConve	rsion - Exce	4						7		8 ×
ARCHIVO	NICIO INSERTA	R DISEÑO	DE PÁGINA	FÓRMULAS	DATOS	REVISAR	VISTA DESA	RROLLADO	R COMPL	EMENTOS	EQUIPO						
ĥ.	Calibri	• 11 • A	, ™ ≡ =	≡ ∛≁-	🚏 Ajustar tex	to	General	*			2	•	i	Σ-	AZ Y	H	
Pegar	N K <u>5</u> -	🗄 • [💩 • 🔒	A - = =	= € €	E Combinar	y centrar *	\$ = 96 000	* 8 .98	Formato	Dar formato Est	ilos de	Insertar E	liminar Formato		Ordenar y	Buscar y	
Portananalar i		ente		Aline	ación		Número		condicional * (como tabla * c	elda *		Caldar	- ·	filtrar * se	leccionar*	
Portapaperes		ente		20110	arion		reamero			C31003			00000		mountea	-	
A1	* ± 📉	$\sqrt{f_x}$															~
A	В	с	D	E	F	G	н	1	L J	к		ι	м	N	0	5	P 🔺
1	0.01372429	0.01458485	0.01465874	0.01474852	0.01517166	0.01572139	0.01595264	0.01631	316			-					
2	0.00364994	0.00381811	0.00391067	0.00469136	0.00524311	0.00609959	0.00397407	0.00399	912								
3	0.00033073	0.00031184	0.0003139	0.0003262	0.00031807	0.00031487	0.00031972	0.00032	107								
4	0.03686487	0.03914397	0.04058886	0.04094205	0.04231324	0.04166485	0.04466998	0.04586	482								
5	0.0021453	0.00224696	0.00233002	0.00257926	0.0024996	0.00249747	0.00252964	0.00257	103								
6	0.00238933	0.00304889	0.00300573	0.00285712	0.00278684	0.00279651	0.00345605	0.003333	294								
7																	
8																	
9																	
10																	
11																	
12																	
13																	
14																	
15																	
16																	
17																	
18																	
19																	
20																	
21																	
22																	
23																	
24																	
25																	_
()	Hoja1	(+)							: [•						_	•
usto 🛅		<u> </u>															100 %

Figura 35. Archivo Destino de los datos convertidos

2.7.3.4. Splash y Cuadro de Mando

Esta migración sólo fue pasar las pantallas de Splash y Cuadro de Mando de C# a Matlab debido a que la plataforma SIMISE se integraría en dicho programa. Ambas partes quedaron con el diseño original sin modificaciones.

La principal dificultad de esta etapa fue conservar el mismo diseño de interfaces en C# al migrarlas a Matlab, ya que Matlab no está diseñado para el diseño de interfaces complejas. Esto lo solventé utilizando el posicionamiento de gráficos con un fondo tipo imagen, para asemejarlo a los diseños originales.

Las figuras 36 y 37 muestran las pantallas de Splash y Cuadro de Mando respectivamente migradas a Matlab.

Figura 36. Pantalla del Splash

Figura 37. Pantalla del Cuadro de Mando

2.7.4. Depuración de programas.

Para cada uno de los módulos se estuvo revisando su funcionamiento de manera independiente, así como su integración con los demás módulos.

Para ello se debía de ejecutar la plataforma SIMISE desde el inicio y así poder ingresar a cada uno de los módulos y comprobar que funcionaran de manera adecuada.

Esto consistió en la generación de pruebas unitarias, así como de integración. Para las primeras se probó de forma aislada cada una de las funcionalidades de los módulos y para las de integración se verificó el funcionamiento descrito por el árbol de la figura 38.

Figura 38. Árbol de depuración de SIMISE

2.7.5. Generación de gráficas para el módulo de visualización.

Para este apartado se utilizó la base de datos de oferta (Centrales en operación y Programa Indicativo) y se dividió en:

- Capacidad
- Generación
- Eficiencia
- Combustible

(Véase anexo D).

A su vez cada uno de los gráficos se puede observar por:

- Planta \rightarrow Región \rightarrow Planta
- Tecnología

\bigcirc	SIMISE Sistema de Mo	delación Inte	gral del Sec	tor Energétic	0	SENER SECRETARIA DE INVERSIA		
		Cap	acidad - C	Centrales e	n Operac	ión		
			De	scargar Base de Dato	5			
Planta	\sim		Baja California	\sim		Cerro Prieto IV		~
25 🛔	••							•
20 -								
15 -								
10 -								
5 -								
2012	2014	2016	2018	2020	2022	2024	2026	2028
				Cerro Prieto IV				

Fuente: SIMISE 2017

Figura 40. Apartado de Capacidad por Tecnología

Figura 42. Apartado de Generación por Tecnología

Figura 43. Apartado de Eficiencia por Planta/Región

Figura 45. Apartado de Combustible por Planta/Región

Figura 46. Apartado de Combustible por Tecnología

Para crear estas gráficas se utilizaron consultas hacia la base de datos a través de PHP, con ayuda de JavaScript se llenaron los campos y aprovechando la librería C3.js, se cargaron los datos de manera dinámica hacia la visualización.

2.7.6. Generación de manuales de usuario final y manuales técnicos.

Durante la construcción de la plataforma SIMISE se realizaron entregas semestrales de los manuales de usuario final y manuales técnicos en los cuales estuve participando en su redacción, corrección y actualización de los mismos.

Los manuales de usuario consisten en la explicación de los pasos que el usuario debe realizar para el correcto funcionamiento de la aplicación seleccionada. Los manuales que ayudé a crear están conformados por el objetivo de la aplicación y los pasos detallados a través de imágenes que el usuario debe seguir para utilizar dicha aplicación.

Dichos manuales son:

- Conversor de unidades
- Cálculo de Emisiones y Consumo de Combustible
- Datos de Oferta
- Visualizador de Oferta
- Nuclear
- Requerimientos para el correcto funcionamiento de SIMISE
- Inicio de la plataforma SIMISE

En la última versión ayude a actualizar los manuales de Macroeconomía y Demanda debido a que se actualizó la base de datos a utilizar, en este caso yo agregué cómo utilizar la base de datos del 2017.

Los manuales actualizados fueron:

- Macroeconomía
- Precio de los energéticos
- Demanda Nacional
- Demanda Regional

Para los manuales técnicos se explicó la interacción que tenía la aplicación con otros módulos, así como los datos requeridos para que la aplicación funcionara de manera correcta. Ayude con la realización de:

- Conversor de unidades
- Emisiones

2.7.7. Generación de la gestión del conocimiento de diferentes módulos del SIMISE.

Realicé la gestión del conocimiento a través de la investigación de diferentes lenguajes de programación y manejadores de bases de datos, los cuales se muestran a continuación:

- D3 y C3
- Ajax
- Angular JS
- AutoCAD
- Curso Básico de R
- Django
- Generación de PDF con HTML
- Interfaces gráficas con C#
- Interfaces gráficas con Python
- JavaScript
- PHP
- SCRUM
- SQL
- SQL Server
- SVN Tortoise
- SWIFT
- Utilización de Excel Con XML y VBA
- WebView

Con ello, como resalto más adelante en el capítulo de resultados y aportaciones, más personas que no son del ámbito computacional, pueden comprender el potencial de SIMISE al integrar diferentes tecnologías como las mostradas anteriormente.

CAPÍTULO 3. RESULTADOS Y APORTACIONES

Como resultado general del presente reporte constato que se cumplieron las expectativas del proyecto SIMISE para el entregable final, de acuerdo a nuestro plan de trabajo ilustrado en la Figura 3 "Etapas del desarrollo del SIMISE", se entregó a la SENER una herramienta computacional equipada con las siguientes características:

- a) Diferentes análisis de modelos de planeación energética.
- b) Obtención, verificación y ordenamiento de datos clave para el desarrollo del sistema.
- c) Interfaces de usuario para la manipulación de los diferentes módulos del sistema.
- d) Un módulo de visualización en el cual se pueden encontrar los diferentes resultados obtenidos del SIMISE.

Como parte de mis aportaciones al proyecto SIMISE, pienso que contribuí a la unificación de las interfaces gráficas de usuario, así como su usabilidad, es decir, tienen un diseño más sofisticado y son fáciles de utilizar. Esto lo logré a través del análisis de requerimientos para su diseño y desarrollo, así como para la depuración de las mismas con las personas que lo van a utilizar.

Con la aportación al mantenimiento preventivo y correctivo de los equipos de cómputo y de la red donde se encontraban los servidores que se utilizan para el funcionamiento de SIMISE, pude ayudar para que la plataforma no tuviera problemas a la hora de ejecutarse. Asimismo se optimizaron los recursos para que dicha ejecución fuera satisfactoria y se hiciera de forma más rápida, estando disponible en cualquier momento.

Como parte de la creación de los manuales de usuario y técnicos de los diferentes módulos de SIMISE pude ayudar a que más personas que no son del área de informática pudieran utilizar sin ningún problema los diferentes módulos de la plataforma SIMISE, así como conocer los pasos a seguir para que la aplicación responda de manera correcta y puedan consultar los datos en caso de que lo requieran.

Para finalizar considero que mi mayor aportación a la plataforma SIMISE fue la generación de conocimiento para que así más personas puedan entender y analizar de manera objetiva la fuerte plataforma que es SIMISE. Además que esto da pie a que el personal involucrado pueda entender la programación, creación y depuración de los diferentes módulos que conforman la plataforma.

N.

-

CONCLUSIONES

Con ayuda de este proyecto me di cuenta que estoy cumpliendo la misión de un ingeniero, es decir, aplicar todos y cada uno de los conocimientos adquiridos durante mi carrera para poder resolver problemas de la sociedad.

Otro aspecto que quiero resaltar es que con este proyecto aprendí más temas y obtuve más conocimiento para poder crear las interfaces gráficas del proyecto, programar de forma óptima, así como crear, diseñar y programar páginas web.

Otra cosa es que a lo largo de este proyecto obtuve una experiencia muy grata como diseñadora y desarrolladora dándome cuenta que puedo ayudar en la creación de programas y plataformas que compiten a nivel internacional. Además que me di cuenta que el ingeniero en computación puede desempeñarse en áreas diferentes a las áreas de informática o tecnologías como en este caso es el área energética.

Para finalizar debo reconocer que este proyecto me ayudo a ser más dinámica con mi trabajo, crear y diseñar interfaces más amigables para el usuario final, así como mejorar mis estrategias de organización y trabajo en equipo y desarrollaron mi ingenio a lo largo de todo el proyecto.

Me siento muy orgullosa de haber podido participar en el mejoramiento y el desarrollo de lo que ahora es la plataforma SIMISE.

-

REFERENCIAS

- MARTÍNEZ QUINTANA, MARCO ANTONIO, "Sistema de Modelación Integral del Sector Energético". Tesis de Ingeniero en Computación. Facultad de Ingeniería UNAM, 2015
- MARTIN DEL CAMPO MARQUEZ, CECILIA, MARTINEZ QUINTANA, MARCO ANTONIO, "Gestión de conocimiento en un sistema de planeación energética", Segundo Simposio Internacional sobre Educación, Capacitación, extensión y Gestión del Conocimiento en Tecnología Nuclear, Buenos Aires, Argentina, Noviembre 2017
- MathWorks, Documentación de Matlab [http://www.mathworks.com/help/matlab/] Consultado el 26 Diciembre del 2017
- MSDN, Catálogo de Referencia y API de Microsoft [https://msdn.microsoft.com/library] Consultado el 4 Julio del 2017
- D3, Data Driven Documents [https://github.com/mbostock/d3/wiki] Consultado el 17 Noviembre del 2016
- MySQL, Documentation [http://dev.mysql.com/doc/] Consultado el 21 Julio del 2016
- WAMP, Documentation [http://www.wampserver.com/en/] Consultado el 15 Junio del 2016

-

ANEXOS

A. Aplicación Conversor de Unidades

Figura 1. Aplicación Conversor

Objetivo

El objetivo de esta aplicación es dotar al SIMISE y a la SENER de una herramienta que le ayude a las tareas del día a día referentes a la conversión de unidades, especializándose en unidades energéticas, de tasa de cambio y los prefijos más usuales en esta rama del conocimiento.

Selección de tipo de conversión

Podemos elegir si queremos hacer una conversión simple, es decir, de un solo valor; o si queremos hacer la conversión de varios valores contenidos en un archivo.

Conversión simple

Figura 2. Conversión simple

Para poder hacer una conversión debemos de seleccionar la magnitud en la que queremos trabajar para realizar la conversión y configuración del valor a convertir y en que deseamos convertirlo.

Figura 3. Selección de la magnitud

Al hacer este paso, podrá observarse que en algunas opciones se cargan nuevas listas. Estas son unidades que pueden utilizarse para la conversión, y dependen de la selección de la magnitud que hicimos al principio.

Selección del prefijo de la unidad

El siguiente paso es elegir el prefijo en el que se encuentra la unidad. Dependiendo de la unidad seleccionada, la lista de prefijos disponibles puede cambiar.

Figura 4. Selección del prefijo de la magnitud (Categoría 1)

Figura 5. Selección de prefijo de la magnitud (Categoría 2)

Selección de la unidad

Después del prefijo tenemos la opción para seleccionar las unidades en las que vamos a medir la magnitud seleccionada.

Figura 6. Selección de las unidades

Configuración del valor a convertir

Ya que tenemos configurado los parámetros del valor que vamos a convertir, debemos hacer lo mismo para el valor que queremos obtener. Seleccionamos el prefijo y la unidad en la que estará el valor obtenido de la conversión.

Figura 7. Configuración del valor a convertir (prefijo)

0	Conversion Simple		×
Ø	ELIGE UNA MAGNITUD	Introduce el valor que desea convertir	
	Volumen ^ Energia Masa Tiempo Potencia v	Prefijo Prefijo	
IÓN SIMPLE		peta v Unidad Unidad joule v Joule British Thermal Un caloria Watt hora Watt año	- iit
SIMISE - CONVERS	SENER	Convertir TOE	0

Figura 8. Configuración del valor a convertir (unidad)

Ingreso del valor a convertir

Por último, ingresamos el valor que queramos convertir en el campo de la izquierda.

Figura 9. Ingreso del valor a convertir

Este paso puede hacerse en cualquier momento, no es necesario que esté todo configurado para poder ingresar valores.

Conversión del valor ingresado

Ya que tenemos todos los parámetros configurados, presionamos el botón de *Convertir* para que la aplicación realice los cálculos necesarios y nos devuelva el resultado en el campo de la derecha.

Figura 10. Conversión del dato ingresado

Conversión de archivos

0	Conversión de Archivos							×
Ø			Elige los p	refijos de l	a convers	ión		
	ELIGE LA MAGNITUD		Prefijo ∽	Unidad	. •	Prefij	io l	Jnidad ~
	Volumen Energía Masa Tiempo	^	Elig	e el archivo	o de orige	n		
HIVOS	Potencia	*	Orige	en 🔤		Hoja	Ran Cl	go CF
I DE ARC			Elig	e el archivo	o de destir	no		
'ERSIÓN			Desti	no		Hoja	Ran Cl	go CF
SIMISE - CONV	SEENER_	۲		Con	vertir			

Figura 11. Conversión de archivos

Podemos hacer la conversión de los valores contenidos en un archivo, siempre y cuando estos valores se encuentren dentro de un archivo de Excel.

Para poder hacer la conversión es necesario configurar el tipo de conversión que deseamos hacer, es decir, seleccionar los campos de **Magnitud, prefijos** y **unidad** como se hace en la conversión simple.

Figura 12. Configuración de los campos Magnitud, prefijos y unidades

Selección del archivo origen

Debemos seleccionar el archivo en el cual se encuentran los datos que queremos convertir, esto lo hacemos seleccionando el archivo con el botón de examinar.

Figura 13. Botón examinar del archivo origen.

Figura 14. Selección del archivo origen

Cuando hayamos seleccionado el archivo, presionamos "Abrir" para guardar el nombre del archivo en el campo correspondiente.

Ahora tenemos que indicarle en qué hoja del archivo se encuentran los valores a convertir. No es necesario poner el nombre de la hoja, sólo hay que poner el número de su índice, es decir, 1 para la primera hoja, 2 para la segunda, etc.

Finalmente, le indicamos el rango de celdas que queremos convertir de esa hoja. Ponemos la celda inicial en el campo izquierdo y la celda final en el campo derecho.

Figura 15. Ingreso de los campos para la hoja y rango

Selección del archivo destino

Debemos elegir en que archivo destino deseamos guardar los valores convertidos, para esto siguiendo los pasos del archivo origen configuramos el archivo destino. Se puede guardar los valores en el mismo archivo origen, se puede elegir otra hoja o se pueden sobrescribir los valores de las celdas origen.

00	Conversión de Archivos	Elige los profilos de la conversión	×
\circ		Elige los prenjos de la conversion	
	ELIGE LA MAGNITUD	Prefijo Unidad Prefijo Unidad peta v joule v mega v Watt hora v	
	Volumen ^ Energía Masa Tiempo	Elige el archivo de origen	
RCHIVOS	Potencia	Origen Hoja Rango C:\Users\JAVISS\L 1 B6 111	
DEA		Elige el archivo de destino	
IVERSIÓN		Destino Hoja Rango C:\Users\JAVISS\L 2 A1 1	
MISE - CON		Convertir	

Figura 16. Configuración del archivo destino

Ya teniendo todos los campos configurados presionamos el botón *Convertir* para iniciar la conversión. Nos aparecerá un aviso de que la conversión será iniciada, así que presionamos en *Aceptar*.

Conversión en Progreso 🛛 🗙
Convirtiendo Archivo
Aceptar

Figura 17. Inicio de conversión de archivo

Por último nos mostrará otro aviso de que la conversión ha finalizado

Figura 18. Conversión finalizada

Si abrimos el archivo, veremos que tiene guardados los valores convertidos del rango que le indicamos.

🕅 🖯 🏷 🖓 🖓	Consumo electrico co	n Acciones de EE-E	strategia 2016v08	3.xlsx - Excel	?	T –	x c
ARCHIVO INICIO INSERTAR DISE	ÑO DE PÁGINA FÓF	MULAS DATO	S REVISAR	VISTA		Iniciar sesi	ón 🔍
$Pegar \checkmark N K \underline{S} \lor \Box \checkmark \Box$		General General \$ - % €0 - 90	 ▼ Format 000	to condicional * mato como tabla * de celda *	 Insertar ▼ Eliminar ▼ Formato ▼ 	∑ - ^A Z▼- ↓ - M - ≪ -	
Portapapeles 🖓 🛛 Fuente	G Alineación	G Número	Gi I	Estilos	Celdas	Modificar	~
17 $\overline{}$: $\times \checkmark f_x$							~
A B	C D	E	F	G	н	1	
1 49,407,395.3 52,505,420.0 52,77	71,422.2 53,094,640.	0 54,617,916.9	56,596,960.5	57,429,459.4	58,727,330.9		
2 13,139,789.8 13,745,198.8 14,07	78,412.9 16,888,883.	7 18,875,178.8	21,958,519.6	14,306,622.8	14,396,837.4		
3 1,190,628.1 1,122,625.9 1,13	30,047.1 1,174,325.	0 1,145,057.2	1,133,538.0	1,150,980.0	1,155,864.5		
4 132,713,412.8 140,918,190.7 146,11	19,787.0 147,391,263.	8 152,327,553.6	149,993,329.7	160,811,814.3	165,113,209.8		
5 7,723,061.8 8,089,064.7 8,38	38,067.1 9,285,334.	8 8,998,566.4	8,990,882.8	9,106,700.6	9,255,718.5		
6 8,601,567.4 10,976,012.5 10,82	20,629.9 10,285,609.	2 10,032,618.3	10,067,443.6	12,441,757.9	11,998,571.0		
7							
8							
9							
10							
11							
Consumo Electrico c-E	E Hoja1 (+)	: •				•
LISTO					😐	+ 1	00 %

Figura 19. Archivo con los valores convertidos

B. Aplicación Cálculo de Emisiones y Consumo de Combustible

Figura 1. Aplicación Emisiones

Objetivo

El objetivo de la aplicación Emisiones es calcular las emisiones producidas por ciertas tecnologías, así como el cálculo de consumo de combustible dada una generación de energía. Este cálculo lo puede hacer tanto de manera simple, es decir de un solo dato como de una tabla en un archivo Excel al igual que la aplicación conversor de unidades.

Selección de tipo de cálculo

En esta aplicación podemos elegir el tipo de cálculo que deseamos realizar, puede ser un cálculo de emisiones simple, desde un archivo o cálculo de consumo de combustible.

Cálculo de emisiones simple

Figura 2. Cálculo de emisiones simple

Para poder hacer un cálculo de emisiones simple lo primero que debemos hacer es seleccionar la tecnología de la cual deseamos encontrar el número de emisiones.

Figura 3. Selección de tecnología

Ingreso del dato

Después debemos ingresar la generación que se hizo de dicha tecnología en Mega Watt hora para realizar el cálculo.

Figura 4. Ingreso de la generación

Calcular las emisiones

Luego de hacer los dos pasos anteriores presionamos el botón de *Calcular* para que la aplicación realice los cálculos necesarios y nos devuelva los resultados en la parte de abajo.

Figura 5. Resultado de las emisiones

Cálculo de emisiones desde archivo

🔘 Emis	iones de Archivos	×
0	Elige el archivo del cual deseas calcular las emisiones	
ARCHIV	Archivo	
ES DESDI	Ноја	
EMISION	Rango CI : CF	
LCULO DE	Calcular	
SIMISE – CA	SENER CONTRACTOR	

Figura 6. Aplicación emisiones desde archivo

Podemos hacer el cálculo de emisiones de los valores de generación contenidos en un archivo, siempre y cuando estos valores se encuentren dentro de un archivo de Excel con la siguiente estructura.

ARCHIVO INICIO INSERTAR DISEÑO DE PÁGINA FÓMULAS DATOS REVISAR Pegar	x	1 5 -	C	I	Emisiones.xlsx - E	xcel	? 📧	- 🗆	×
A E %	ARC		D INSERTA	r dise	ÑO DE PÁGINA	FÓRMULAS	DATOS	REVISAR	Þ
H15 I X fx A B C D E F 1 Tecnologia Generación [MWh] Image: Comparison of the state of the s	Pe	gar ≪ Fu	A Ente Alineació	n Número *	Formato co Dar format Estilos de co Es	ondicional * to como tabla * telda * tilos	Celdas Modifi] car	^
A B C D E F 1 Tecnología Generación [MWh] 2 Hidroeléctrik 54,667,718.51 3 Cogeneración 45,401,389.32 4 Turboeléctrik 2,786,729.58 <td< td=""><td>H:</td><td>15 *</td><td>: ×</td><td>✓ f_x</td><td></td><td></td><td></td><td></td><td>~</td></td<>	H:	15 *	: ×	✓ f _x					~
1 Tecnología Generación [MWh] 2 Hidroeléctri 54,667,718.51 3 Cogeneració 45,401,389.32 4 Turboeléctri 2,786,729.58 5 Ciclo Combir 240,044,352.63 6 Eólica 43,074,932.39 7 Solar 3,840,709.64 8 Termoeléctri 10,472,865.54 10 Combustión 162,720.11 11 Bioenergía 1,079,989.37 12 Nuclear 39,761,692.56 13 Geotérmica 18,611,711.46 14 Lecho Fluidi: 17,726,674.48 15 Múltiple 237,545.29 16		Α	В		С	D	E	F	
2 Hidroeléctrik 54,667,718.51 3 Cogeneració 45,401,389.32 4 Turboeléctri 2,786,729.58 5 Ciclo Combir 240,044,352.63 6 Eólica 43,074,932.39 7 Solar 3,840,709.64 8 Termoeléctri 10,472,855.54 10 Combustión 162,720.11 11 Bioenergía 1,079,989.37 12 Nuclear 39,761,692.56 13 Geotérmica 18,611,711.46 14 Lecho Fluidi: 17,726,674.48 15 Múltiple 237,545.29 16	1	Tecnología	Generación	[MWh]					1
3 Cogeneració 45,401,389.32	2	Hidroeléctric	54,667,	718.51					
4 Turboeléctri 2,786,729.58 5 Ciclo Combir 240,044,352.63 6 Eólica 43,074,932.39 7 Solar 3,840,709.64 8 Termoeléctri 2,219,674.36 9 Carboeléctrii 10,472,855.54 10 Combustión 162,720.11 11 Bioenergía 1,079,889.37 12 Nuclear 39,761,692.56 13 Geotérmica 18,611,711.46 14 Lecho Fluiditi 17,726,674.48 15 Multiple 237,545.29 16	3	Cogeneració	45,401,	389.32					
5 Ciclo Combir 240,044,352.63 6 Edica 43,074,932.39 7 Solar 3,840,709.64 8 Termoeléctri 2,219,674.36 9 Carboeléctri 10,472,865.54 10 Combustión 162,720.11 11 Bioenergía 1,079,989.37 12 Nuclear 39,761,692.56 13 Geotérmica 18,611,711.46 14 Lecho Fluidi: 17,726,674.48 15 Multiple 237,545.29 16	4	Turboeléctri	2,786,	729.58					
6 Eölica 43,074,932.39 7 Solar 3,840,709.64 8 Termoeléctr 2,219,674.36 9 Carboeléctri 10,472,865.54 10 Combustión 162,720.11 11 Bioenergía 1,079,989.37 12 Nuclear 39,761,692.56 13 Geotérmica 18,611,711.46 14 Lecho Fluidi: 17,726,674.48 15 Múltiple 237,545.29 16	5	Ciclo Combir	240,044,	352.63					
7 Solar 3,840,709.64 8 Termoeléctr 2,219,674.36 9 Carboeléctri 10,472,865.54 10 Combustión 162,720.11 11 Bioenergía 1,079,989.37 12 Nuclear 39,761,692.56 13 Geotérmica 18,611,711.46 14 Lecho Fluidi: 17,726,674.48 15 Múltiple 237,545.29 16	6	Eólica	43,074,	932.39					
8 Termoeléctr 2,219,674.36 9 Carboeléctri 10,472,85.54 10 Combustión 162,720.11 11 Bioenergía 1,079,989.37 12 Nuclear 39,761,692.56 13 Geotérmica 18,611,711.46 14 Lecho Fluidi: 17,726,674.48 15 Múltiple 237,545.29 16 17 Hoja1 ⊕ E € € € € € € € € € € € € € € € € € €	7	Solar	3,840,	709.64					
9 Carboeléctri 10,472,865.54 10 Combustión 162,720.11 11 Bioenergía 1,079,889.37 12 Nuclear 39,761,692.56 13 Geotérmica 18,611,711.46 14 Lecho Fluidi: 17,726,674.48 15 Múltiple 237,545.29 16 17 ↓ Hoja1 ④ ⋮ ∢ ▲ ▶	8	Termoeléctr	2,219,	674.36					
10 Combustión 162,720.11 11 Bioenergía 1,079,989.37 12 Nuclear 39,761,692.56 13 Geotémica 18,611,711.46 14 Lecho Fluidi: 17,726,674.48 15 Múltiple 237,545.29 16	9	Carboeléctri	10,472,	865.54					
11 Bioenergía 1,079,989.37 12 Nuclear 39,761,692.56 13 Geotérmica 18,611,711.46 14 Lecho Fluidi: 17,726,674.48 15 Múltiple 237,545.29 16	10	Combustión	162,	720.11					
12 Nuclear 39,761,692.56 13 Geotérmica 18,611,711.46 14 Lecho Fluidi: 17,726,674.48 15 Múltiple 237,545.29 16	11	Bioenergía	1,079,	989.37					
13 Gectérmica 18,611,711.46 14 Lecho Fluidi: 17,726,674.48 15 Múltiple 237,545.29 16 17 ↓ Hoja1 ⊕ : ∢ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	12	Nuclear	39,761,	692.56					
14 Lecho Fluidi: 17,726,674.48 15 Múltiple 237,545.29 16 17 4 → Hoja1 ⊕ : 4 → ↓	13	Geotérmica	18,611,	711.46					
15 Múltiple 237,545.29 16	14	Lecho Fluidia	17,726,	674.48					
16 17 ← → Hoja1 ⊕ :	15	Múltiple	237,	545.29					
17. → Hoja1 (+) : (16								-
	17	4	Hoia1	A		: 4			
	1163	10	nojan	U	Ŧ			100.0	-1

Figura 7. Estructura de un archivo Excel

Selección del archivo origen

Debemos seleccionar el archivo en el cual se encuentran los datos de la generación de cada tecnología para el cálculo de las emisiones, esto lo hacemos seleccionando el archivo con el botón de examinar.

🔘 Abrir				×
$\leftarrow \rightarrow \land \uparrow$	→ Est	equipo > Desktop > Trabajo > 🗸 💆 Buscar er	n Trabajo	P
Organizar 🔻 🛛 N	ueva ca	peta		?
Manuales	^	Nombre	Fecha de modifica	Ti ^
📊 Trabajo		Formatos!!!	16/06/2016 05:44	Ca
a OneDrive		Georeferencia	25/08/2016 02:12	Ci
_		Manuales	28/08/2016 02:37	Ci
💻 Este equipo		Presentaciones	24/08/2016 03:12	Ca
👆 Descargas		SIMISE_web	27/08/2016 09:22	Ca
📃 Desktop		Consumo (MWh) Escenario Base y Alternativo.xlsx	23/08/2016 09:39	He
Documentos		Consumo electrico con Acciones de EE-Estrategia 2016v	27/08/2016 12:36	He
		Copia de Consumo electrico con Acciones de EE-Estrate	27/08/2016 11:10 a	He
integenes		🖬 Copia de Libro1.xlsx	24/08/2016 01:10 a	He
J Música		Demandas%20regionales.xlsx	25/08/2016 01:29	H
Vídeos		Emisiones.xlsx	28/08/2016 02:56	H
🏪 OS (C:)		Libro1.xlsx	24/08/2016 01:21 a	Hev
	~	<		>
	Nom	re: Emisiones.xlsx ~ Archivos	Excel (*.xlsx)	\sim
		Ab	ir Cancelar	

Figura 8. Botón examinar del archivo

Figura 9. Selección del archivo

Nos sale un aviso de que el cálculo de las emisiones se guardará en el mismo archivo de origen.

🔘 En	nisiones de Archivos		÷	2 2		×
0	Elige el archivo del cual	deseas calcular la	s emision	es		
OVIH	Archivo C:\SIMISE\Recursos	sWat_En				
DESDE ARG	Ноја		EL CÁLC EMISI GUARD MISMO A	ULO DE ONES S ARÁ EN ARCHIVO	E LAS	
SIONES	Rango C/ : CF		U	KIGEN		
CULO DE EMIS		Calcular)			
SIMISE - CAL						

Figura 10. Aviso

Cuando hayamos seleccionado el archivo, presionamos "Abrir" para guardar el nombre del archivo en el campo correspondiente.

Ahora tenemos que indicarle en qué hoja del archivo se encuentran los valores a convertir. No es necesario poner el nombre de la hoja, sólo hay que poner el número de su índice, es decir, 1 para la primera hoja, 2 para la segunda, etc.

Finalmente, le indicamos el rango de celdas que queremos convertir de esa hoja. Ponemos la celda inicial en el campo izquierdo y la celda final en el campo derecho.

Figura 11. Ingreso de los campos para la hoja y rango

Luego de llenar los campos indicados presionamos el botón de *Calcular* para que la aplicación realice los cálculos necesarios y nos devuelva los resultados en el
archivo indicado. Cuando se terminen de calcular las emisiones nos aparecerá un aviso de que se terminó de calcular y presionamos en *Aceptar*.

Figura 12. Cálculo de emisiones completa

Si abrimos el archivo podemos observar cómo se tienen los valores de las emisiones tanto en kilogramos como en toneladas.

x	1 🗄 5-	⊘~ ∓			Emisi	ones.xlsx - Excel			? 🖻 – 🗗 🗙
AR		CIO INSERTAR DI	SEÑO DE PÁGINA FO	ÓRMULAS DATOS RI	EVISAR VISTA				Iniciar sesión 🔍
Per Port	egar 💉	Calibri • 11 N K <u>S</u> • ⊞ • s Fuente	$ \begin{array}{c} \bullet \\ \bullet $	Image: SO2 eq) Image: Application of the second	centrar + \$ + % 001	Go Condicional * condicio	ar formato Estilos de mo tabla * celda *	tar Eliminar Formato Celdas	ilenar* Ordenary Buscary irrar* filtrar* seleccionar* Modificar
	А	В	с	D	E	F	G	н	
1	Tecnología	Generación [MWh]	Emisiones (Kg CO2 e	Emisiones (Ton CO2 eq)	Emisiones (Kg SO2 eq	Emisiones (Ton SO2 eq)	Emisiones (Kg NOx eq)	Emisiones (Ton NOx eq)	Emisiones (Kg Particulas Suspendida
2	Hidroelécti	ric 54,667,718.51	820015777.6	820015.7776		0 0) 0	
3	Cogeneraci	ó 45,401,389.32	23810304615	23810304.61	8172250.07	8 8172.250078	28602875.2	28602.87527	
4	Turboeléct	ri 2,786,729.58	1461472463	1461472.463	501611.32	5 501.611325	1755639.63	7 1755.639637	
5	Ciclo Comb	ir 240,044,352.63	1.25889E+11	125888860.3	43207983.4	7 43207.98347	151227942.2	151227.9422	
6	Eólica	43,074,932.39	904573580.3	904573.5803		o () () 0	
7	Solar	3,840,709.64	407115222.1	407115.2221) () () 0	
8	Termoeléc	tr 2,219,674.36	1825460197	1825460.197	6636826.3	5 6636.82635	2796789.69	2796.789699	
9	Carboeléct	ri 10,472,865.54	11341903920	11341903.92	47337352.2	47337.35223	13614725.2	13614.7252	10577
10	Combustió	n 162,720.11	130664248.9	130664.2489	279878.590	4 279.8785904	154584.1052	154.5841052	
11	Bioenergía	1,079,989.37	1516035082	1516035.082	4557555.15	4 4557.555154	3574764.825	3574.764825	
12	Nuclear	39,761,692.56	2584510016	2584510.016		D 0) () 0	
13	Geotérmica	18,611,711.46	4116724458	4116724.458	54346197.4	7 54346.19747	(0 0	
14	Lecho Fluid	li: 17,726,674.48	19197633931	19197633.93	80124568.6	5 80124.56866	23044676.83	3 23044.67683	17903
15	Múltiple	237,545.29	124568749.7	124568.7497	42758.1520	5 42.75815205	149653.532	149.6535322	
16									
17									

Figura 13. Archivo de Excel con las emisiones calculadas

Cálculo de consumo de combustible

Figura 14. Aplicación Consumo de Combustible

Para hacer el cálculo de consumo de combustible debemos elegir la tecnología de la cual deseamos conocer el consumo de combustible.

0	Calculo de Consumo de Combustible	×
۲ س	Elige una Tecnología	
CULO DE CONSUMO DE COMBUSTIBL	Hidroeléctrica Cogeneración Turboeléctrica Ciclo Combinado Eólica Solar Termoeléctrica	Ingresa la generación (MWh) para calcular el consumo de combustible Calcular
SIMISE - CAL	SENER	

Figura 15. Selección de la tecnología

Ingreso de la generación

Ingresamos la generación de dicha tecnología en Mega Watt hora para poder realizar el cálculo de consumo de combustible.

Figura 16. Ingreso de datos

Calcular el consumo de combustible

Luego de poner ambos parámetros presionamos el botón de *Calcular* para que la aplicación realice los cálculos necesarios y nos devuelva los resultados en la parte de abajo.

Figura 17. Resultados del consumo de combustible

ANEXOS

C. Aplicación Datos de Oferta

Figura 1. Aplicación Datos de Oferta

Objetivo

El objetivo de esta aplicación es dotar al SIMISE y a la SENER de una herramienta que le ayude consultar la información de la base de datos de Oferta de una manera amigable, así como a descargar información en formato Excel referente a Generación, Capacidad, Eficiencia, entre otras, relativas a la Oferta de Energía dentro de SIMISE.

Datos de Oferta

La aplicación cuenta con cinco apartados que nos muestran los datos de las diversas plantas de Electricidad con las que cuenta el país.

Generación

Este apartado nos muestra toda la información de las plantas, desde su nombre, su región de control, su tipo de tecnología, hasta sus costos de operación, costos de uso y tiempo de vida.

id_generado	nombre	tipo	tecnologia	combustible	combustible_sumini	region_control	regior
▶ 1	Cerro Prieto I U5	En Operacion	Geotermica	null	null	08-Baja California	48-Me
2	Cerro Prieto II Ce	En Operacion	Geotermica	null	null	08-Baja California	48-Me
3	Cerro Prieto III Ce	En Operacion	Geotermica	null	null	08-Baja California	48-Me
4	Cerro Prieto IV C	En Operacion	Geotermica	null	null	08-Baja California	48-Me
5	Cerro Prieto_Foto	En Operacion	Solar fotovoltaica	null	null	08-Baja California	48-Me
6	Cipres_TG	En Operacion	Turbogas	Diesel	D_BCN	08-Baja California	47-En
7	Mexicali PIE	En Operacion	Ciclo combinado	Gas natural	G_I_NORO	08-Baja Califomia	48-Me
8	Mexicali_TG 1	En Operacion	Turbogas	Diesel	D_BCN	08-Baja Califomia	48-Me
9	Mexicali_TG 2	En Operacion	Turbogas	Diesel	D_BCN	08-Baja Califomia	48-Me
10	Mexicali_TG 3	En Operacion	Turbogas	Diesel	D_BCN	08-Baja California	48-Me
11	Presidente Juare	En Operacion	Ciclo combinado	Gas natural	G_I_NORO	08-Baja California	46-Tiju
12	Presidente Juare	En Operacion	Termoelectrica c	Combustoleo	C_N_VIZC	08-Baja California	46-Tiju
13	Presidente Juare	En Operacion	Termoelectrica c	Combustoleo	C_N_VIZC	08-Baja California	46-Tiju
14	Tijuana_1_TG	En Operacion	Turbogas	Gas natural	G_I_JOVIBN	08-Baja California	46-Tiju
15	Tijuana_2_TG	En Operacion	Turbogas	Gas natural	G_I_JOVIBN	08-Baja California	46-Tiju
16	Tijuana_3_TG_1	En Operacion	Turbogas	Gas natural	G_I_JOVIBN	08-Baja Califomia	46-Tiju

Figura 2. Apartado Generación

El botón *Descargar Base de Datos* nos ayuda a descargar los datos a un Excel y guardarlo donde deseemos.

🔘 Guardar como			\times
← → ~ ↑	> Este equipo > Escritorio > Recursos	V 🖸 Buscar en Recursos	D
Organizar 🔻 🛛 N	lueva carpeta		?
Este equipo Autodesk : Descargas Document Escritorio Elmágenes Música Vídeos CS (C:)	Nombre	Fecha de modifica Tipo 03/09/2017 01:30 a Carpeta de archivos	Tar
💣 Red 🗸	<		>
Nombre: Tipo:	Generación Excel (*.xls)		~
∧ Ocultar carpetas		Guardar Cancelar	
Figura	3. Descarga de la ba	se de datos Generación	

Hidroeléctricas

Este apartado nos muestra la información de las plantas hidroeléctricas del país.

Figura 4. Apartado Hidroeléctricas

Selección de la planta

En la parte izquierda se cuenta con un listado de la planta que queremos seleccionar para ver su información. Con el simple hecho de seleccionar la planta sus datos aparecen el recuadro de la derecha.

O F	lidroeléctricas							- 🗆	×
0									
10	Plantas La Yesca 🗸 🗸								
ICA:	Aguamilpa		FEO	Gerencia_Control_F	Capacidad_Efective	Cantidad_Unidades	Capacidad_Efective	Nivel_Minimo_B	imb;
Ř	El Caión	•	2012	OCC	750	2	>= 750	556.2	
ů.	El Caracol		2012	OCC	750	1	>= 375	556.2	
	Infiernillo								
OFERTA - HIDROI	La Yesca Luis Donaldo Colosio Malpaso Manuel Moreno Torres Mazatepec Peñitas Plutarco Elías Calles Temascal								
H	Valentin Gomez Farias	<							>
SIMISE – DATOS I	SENER VICENTARÍA DE INIMIZIA				Descargar B Datos	ase de			0%

Figura 5. Selección de la planta

El botón de *Descargar Base de Datos* nos ayuda a descargar la base de datos de la planta que se esté visualizando en ese momento.

🥥 Guardar como				×
\leftrightarrow \rightarrow \checkmark \uparrow	> Este equipo > Escritorio > Recursos	✓ ³ Buscar en R	ecursos ,	Q
Organizar 🔻 🛛 N	ueva carpeta			?
💻 Este equipo 🔷	Nombre	Fecha de modifica	Tipo	Tan
Autodesk :	SIMISE_web	03/09/2017 01:30 a	Carpeta de archivos	
🖊 Descargas				
🔮 Document				
Escritorio				
📰 Imágenes				
🁌 Música				
🙀 Vídeos				
🏪 OS (C:)				
💣 Red 🧹	<			>
	Lide déstries la Vesse			
Nombre:				
Tipo:	Excel (*.xls)			~
∧ Ocultar carpetas		Guarda	r Cancelar	

Figura 6. Descarga de los datos de la planta seleccionada

Capacidad, Generación y Eficiencia

Este apartado se divide en dos secciones **Centrales en Operación** y **Programa** *Indicativo*.

0	apacidad, Generación y Eficiencia		– 🗆 X
VERACIÓN, EFICIENCIA 🚫	Centrales en Operación		
E OFERTA – CAPACIDAD, GEN	Programa Indicativo ~		
SIMISE – DATOS D	SENER NEXEMAN DE INNEGA	Descargar Base de Datos	

Figura 7. Apartado Capacidad, Generación y Eficiencia.

Centrales en Operación

Nos muestra la información de **Capacidad, Eficiencia, Generación o Combustible** de las Centrales que están en Operación. Con seleccionar uno de las opciones de la izquierda nos muestra su información en el recuadro de la derecha.

		N	N. I	an sa a	T 1 -	T. T. J	MIL
		NO	Nombre	Unidad	Techologia	Tipo Techologia	Modal
	•	1	Agua Prieta (Vale	1	Hidroeléctrica	Limpia	CFE
		2	Agua Prieta (Vale	2	Hidroeléctrica	Limpia	CFE
entrales en Operación		3	Aguamilpa Solida	1	Hidroeléctrica	Limpia	CFE
Eficiencia 🗸 .		4	Aguamilpa Solida	2	Hidroeléctrica	Limpia	CFE
Capacidad		5	Aguamilpa Solida	3	Hidroeléctrica	Limpia	CFE
Generación		6	Alameda (LyFC)	1	Hidroeléctrica	Limpia	CFE
Eficiencia		7	Alameda (LvEC)	2	Hidroeléctrica	Limpia	CEE
Programa Indicativo							
Programa Indicativo ~							
Programa Indicativo ~							

Figura 8. Selección alguna opción para las Centrales en Operación.

Programa Indicativo

Igual que la sección de Centrales en Operación el programa indicativo nos muestra información de **Capacidad**, **Eficiencia**, **Generación o Combustible** del programa indicativo. Al seleccionar una de las opciones del lado izquierdo la información se muestra del lado derecho.

		No	Nombre	Unidad	Tecnologia	Tipo Tecnologia	Modalidad
	•	1	Agua Prieta (Vale	1	Hidroeléctrica	Limpia	CFE
		2	Agua Prieta (Vale	2	Hidroeléctrica	Limpia	CFE
Centrales en Operació	n	3	Aguamilpa Solida	1	Hidroeléctrica	Limpia	CFE
Eficiencia ~		4	Aguamilpa Solida	2	Hidroeléctrica	Limpia	CFE
		5	Aguamilpa Solida	3	Hidroeléctrica	Limpia	CFE
		6	Alameda (LyFC)	1	Hidroeléctrica	Limpia	CFE
		7	Alamada (LvEC)	2	Hidmaláctrica	Limpia	CEE
	<						>
		No	Nombre	Tecnologia	Tipo Tecnologia	Modalidad	EntidadFed
	•	1	CCC. Agua Prieta II	Ciclo Combinado	Convencional	CFE	Sonora
		2	CG. Azufres III Fa	Geotérmica	Limpia	CFE	Michoacán
Programa Indicativo		3	CCC. Centro I	Ciclo Combinado	Convencional	CFE	Morelos
Eficiencia		4	CCGE. Salamanc	Cogeneración Efi	Limpia	CFE	Guanajuato
		5	CE. Sureste Fas	Eólica	Limpia	CFE	Oaxaca
Capacidad							
Capacidad Generación		6	CS. Termosolar A	Solar	Limpia	CFE	Sonora
Capacidad Generación Eficiencia Combustible		6	CS. Termosolar A	Solar Ciclo Combinado	Limpia	CFE	Sonora

Figura 9. Selección de alguna opción para el Programa Indicativo

Se pueden poner la misma opción en ambas secciones para ver las diferencias y hacer una comparativa de los datos.

El botón *Descargar Base de Datos* nos ayuda a descargar los datos de ambos secciones, primero nos muestra el guardar las Centrales en Operación y después el Programa Indicativo.

🥥 Guardar como					×
← → • ↑ 📘	> Este equipo > Escritorio > Recursos	~ Ō	Buscar en R	lecursos	Q
Organizar 🔻 N	ueva carpeta				?
💻 Este equipo 🔷	Nombre	Fecha d	e modifica	Тіро	Tan
🔉 Autodesk :	SIMISE_web	03/09/2	017 01:30 a	Carpeta de archivos	
🕂 Descargas					
Document					
Escritorio					
📰 Imágenes					
👌 Música					
Yídeos 🖌					
🟪 OS (C:)					
💣 Red 🗸	<				>
Nombre:	Centrales en Operaciones Eficiencia				~
Tipo:	Excel (*.xls)				\sim
∧ Ocultar carpetas			Guarda	r Cancelar	

Figura 10. Guardar los datos de Eficiencia de Centrales en Operación

Figura 11. Guardar los datos de Eficiencia del Programa Indicativo

Características Históricas

Este apartado nos muestra las características de la planta seleccionada desde su creación hasta la actualidad o su fecha de cierre.

Figura 12. Apartado Características Históricas

Selección de la planta

En la parte izquierda se cuenta con un listado de la planta que queremos seleccionar para ver su información. Con el simple hecho de seleccionar la planta sus datos aparecen el recuadro de la derecha.

Он	istorico					·		- 0	×
\bigcirc	Plantas								
	Malpaso 🗸								
	Adolfo López Mateo Adolfo Ruíz Cortines		Fecha	Area	Nivel	Volumen	ObraToma	Vertedor	^
	Aguamilpa Álvaro Obregón Amistad Angostura Chiapas Angostura Sonora	•	01/06/1966	528.33	100.3	29.31	0	0.16	
			02/06/1966	926.25	102.58	52.52	0	0.31	
			03/06/1966	1327.5	104.5	77.13	0	0.33	
0			04/06/1966	1709.23	106.42	107.06	0	0.46	
ĕ	El Caión		05/06/1966	2039.23	107.65	130.06	0	0.87	_
ь.	El Caracol		06/06/1966	2313.85	108.7	151.46	0	1.07	_
S1	Excame		07/06/1966	2539.44	109.56	172.26	0	1.06	
Ξ.	Gustavo Díaz Ordaz		08/06/1966	2711.02	110.22	188.81	0	1.23	
₫	Infiernillo		09/06/1966	2879.39	110.88	205.89	0	1.31	
i Ki	Jose Lopez Portillo		10/06/1966	3023.4	111.42	220.76	0	1.08	
E	La Villita		11/06/1966	3158.4	111.92	234.76	0	1.13	
ш.	Laguna Catemaco		12/06/1966	3311.6	112.47	252.04	0	1.56	
s	Malpaso		13/06/1966	3475.6	113.06	271.04	0	1.46	~
2	Miguel Hidalgo	<							>
DA	Peñitas Plutarco Elías Calles	1	and Mark					56	
	Sanalona				Desca	irgar Base d	e		
ISI	Santa Rosa Tepuxtenec	1				Datos			
Na li se	Zimapán								

Figura 13. Selección de la planta

El botón *Descargar Base de Datos* nos ayuda a descargar los datos de la planta seleccionada.

🥥 Guardar como					×
← → • ↑	> Este equipo > Escritorio > Recursos	~ Ū	Buscar en R	lecursos	Q
Organizar 🔻 🛛 N	ueva carpeta				?
💻 Este equipo 🔷	Nombre	Fecha d	e modifica	Тіро	Tan
💿 Autodesk :	SIMISE_web	03/09/20)17 01:30 a	Carpeta de archivos	
🖊 Descargas					
Document					
Escritorio					
📰 Imágenes					
👌 Música					
Vídeos					
🏪 OS (C:)					
💣 Red 🗸	<				>
Nombre:	Características Históricas Malpaso				~
Tipo:	Excel (*.xls)				~
∧ Ocultar carpetas			Guarda	r Cancelar	

Figura 14. Guardar los datos de la planta seleccionada

Degradación

Este apartado nos muestra la degradación de las plantas en el año que se seleccione.

Figura 15. Apartado Degradación

Seleccionar un año

En la parte izquierda tenemos una lista de los años que podemos seleccionar para ver la información. Va del año 2006 hasta el año 2015. Al seleccionar un año en la parte derecha se muestran los datos de dicho año.

🔘 De	gradación							-	
0	Año 2011 ∽ 2007								
	2008		Fecha	Angostura	Chicoasen	Malpaso	Peñitas	Caracol	Infiemillo
	2009	•	ENE	532.46	391.96	175.44	86.71	520.33	163.46
	2010		FEB	530.89	391.79	176.67	85.61	519.67	161.19
Z	2012		MAR	529.03	392.08	177.89	85.59	518.87	158.83
Э,	2013		ABR	526.9	392.6	178.8	85.99	517.73	155.66
Ă	2015		MAY	524.96	391.92	175.24	85.94	516.5	152.37
M			JUN	522.69	392.05	171.72	86.13	511.14	150.4
Ö			JUL	521.87	390.93	168.3	86.34	511.36	148.74
ä			AGO	523.7	389.56	169.79	85.69	511.84	160.98
-			SEP	526.42	390.84	170.91	86.46	515.63	163.41
R.			OCT	530.54	392.27	176	86.22	516.64	166.96
L.			NOV	534.68	388.71	180.55	85.91	519.07	167.65
S S			DIC	533.55	392.37	181.18	85.39	519.79	165.71
ĕ		<						-	>
SIMISE – DA1	SEN)		escargar Ba Datos	ase de		

Figura 16. Selección del año para ver su información

El botón *Descargar Base de Datos* nos ayuda a descargar los datos del año seleccionado.

🥥 Guardar como					×
\leftrightarrow \rightarrow \checkmark \uparrow	> Este equipo > Escritorio > Recursos	~ Ō	Buscar en F	lecursos	<i>م</i>
Organizar 🔻 🛛 N	ueva carpeta				?
💻 Este equipo 🔷	Nombre	Fecha de	e modifica	Тіро	Tar
💿 Autodesk :	SIMISE_web	03/09/20)17 01:30 a	Carpeta de archivo	DS .
🕂 Descargas					
🔮 Document					
Escritorio					
📰 Imágenes					
🁌 Música					
📑 Vídeos					
🟪 OS (C:)					
💣 Red 🗸	٢				>
Nombre:	Degradación2011				~
Tipo:	Excel (*.xls)				~
 Ocultar carpetas 			Guarda	ar Cancela	ır

Figura 17. Guardar datos del año seleccionado

D. Aplicación Visualizador de Oferta

Objetivo

El objetivo de esta aplicación es dotar al SIMISE y a la SENER de una herramienta que le ayude visualizar los datos provenientes de la base de datos de Oferta en el que podemos ver las características de las centrales en operación y las del programa indicativo como lo son, capacidad, generación, eficiencia y combustible.

Estas características las podemos visualizar por planta, por región y agrupados de manera nacional.

Visualizador de Oferta

La aplicación visualizador cuenta con dos secciones **Centrales en Operación** y **Programa Indicativo**. Cada una de las secciones cuenta con cuatro apartados: **Capacidad, Eficiencia, Generación y Combustible.**

Cada uno de los apartados se maneja de la misma forma.

Manejo de los apartados

Selección de Planta o Tecnología

Primero elegimos si queremos que la información se muestre por planta o por tecnología.

Si elegimos por Tecnología nos aparecerá la gráfica de la capacidad de cada una de las tecnologías desde el 2014 al 2029.

Figura 3. Capacidad por tecnologías

Selección de la región

Si elegimos que la información se muestre por planta nos aparecerá una lista para seleccionar la región de la planta, así que para mostrarlas debemos seleccionar la región.

Figura 4. Selección de una región

Selección de la planta

Después nos aparecerán las plantas que contiene la región por lo que debemos seleccionar la planta para que se nos muestre la gráfica.

Figura 5. Seleccionamos la planta deseada

Al seleccionar la planta en la parte de abajo nos aparecerá su grafica del año 2014/2015 al 2029. El año de inicio cambia de acuerdo al apartado.

Figura 6. Grafica de la planta seleccionada

E. Módulo Nuclear

Figura 1. Módulo Nuclear

Objetivo

El objetivo de esta aplicación es dotar al SIMISE y a la SENER de una herramienta que le ayude modelar plantas de tecnología nuclear proporcionando datos técnicos de la planta, del ciclo de combustible y del ciclo de irradiación en equilibrio.

Así también, dentro del mismo módulo se encuentran cargados dos casos, los cuales podemos modificar para modelar diferentes configuraciones de una misma planta.

Introducción de datos

Selección del tipo de planta

Podemos elegir si queremos hacer el análisis de una planta del tipo ABWR o una planta CNLV o si lo queremos una planta con las características deseadas.

Figura 2. Selección del tipo de planta a analizar

Planta "Caso Nuevo"

Si seleccionamos una planta para un caso nuevo debemos establecer todos y cada uno de los parámetros que nos piden.

Datos Técnicos de la planta

En este apartado debemos establecer todos los valores que son del tipo técnico de la planta que queremos analizar. Estos valores son:

- Capacidad Eléctrica Bruta. Se proporciona en MW.
- Eficacia Neta. Debe ser un porcentaje (0-100%).
- Eficacia Bruta. Debe ser un porcentaje (0-100%).
- Usos Propios. Debe ser un porcentaje (0-100%).
- Tiempo de Construcción. Establecido en años.
- Vida de la planta. Establecida en años.
- Potencia Térmica. Se debe establecer en MW.

Figura 3. Datos Técnicos de la planta

Datos Técnicos del Ciclo de Irradiación en Equilibrio

En el siguiente apartado debemos establecer todos los datos técnicos de acuerdo con la irradiación del combustible de la planta, los cuales son:

- Duración del ciclo de Irradiación. Establecido en meses.
- Duración del paro programado para recambio y mantenimiento. Establecido en días por cada ciclo.
- Factor de planta durante el ciclo de Irradiación. Debe ser un porcentaje (0-100%).

Figura 4. Datos Técnicos del Ciclo de Irradiación en Equilibrio

Datos Técnicos del combustible

En este apartado se debe especificar cuál es el tamaño y porcentaje de los ensambles del combustible, es decir:

- Número Total de ensambles.
- Peso en ensambles. Establecido en Kilogramos.

🔘 Dat	os Nuclear	- 🗆 X
0	Nuevo ~	Analizar Caso
	Datos Técnicos del Ciclo de Iradiación en Equilibrio	Datos Técnicos del Combustible Dato
	Número Total de Ensambles	
CLEAR	Peso de ensambles (Kg)	
ATOS NU		
simise – D		

Figura 5. Datos Técnicos del combustible.

Datos Técnicos del Ciclo del Combustible

Por último, en este apartado se ponen todos los datos referentes a la especificación técnica del combustible, los cuales son:

- Concentración del UF6 enriquecido de la carga inicial. Establecido en *wfo* U235.
- Concentración del UF6 enriquecido de las recargas. Establecido en *wfo* U235.
- Concentración del UF6 natural. Establecido en wfo U235.
- Concentración del UF6 en las colas. Establecido en wfo U235.
- Pérdidas de U en la fabricación de ensambles. Se debe establecer un porcentaje (0-1000%)

Figura 6. Datos Técnicos del Ciclo del Combustible

Planta ABWR o CNLV

Para las plantas de tipo ABWR o CNLV los parámetros a llenar son los mismos que para las plantas de caso nuevo, sin embargo, los datos ya vienen establecidos por defecto. Así que al seleccionar una de estas opciones los espacios a llenar se llenan de forma automática.

Figura 7. Selección de planta tipo ABWR

Figura 8. Selección de una planta tipo CNLV

Luego de elegir el tipo de planta que deseamos analizar presionamos el botón *Analizar Caso*. Esto nos enviará a la pantalla de los **Resultados**.

Figura 9. Botón Analizar Caso

Resultados del análisis de la planta

Esta parte nos enviará, como su nombre lo indica, a los resultados del análisis de la planta que configuramos anteriormente.

Resultados Técnicos

Nos mostrará los resultados técnicos de la planta con las características técnicas especificadas, esto son:

- Potencia Eléctrica Neta. Especificada en Mega Watts eléctricos.
- Eficacia Termodinámica de la Unidad. Especificada en porcentaje (0-100%).
- Energía Eléctrica Neta Anual Generada. Especificada en Giga Watts hora.
- Régimen Térmico Neto. Especificado en Kilo Joules por cada Kilo Watts hora.
- Régimen Térmico Bruto. Especificado en Kilo Joules por cada Kilo Watts hora.
- Fracción de carga.

Q Resu	Itados Nuclear			- 0	×
0					
	Resultados Técnicos	Resultados Técnicos del Ciclo de I	radiación en Equilibrio	Resultados •	
	Potencia Elé	ctrica Neta (MWe)	779.723		
	Eficacia Terr	nodinámica de la Unidad (%)	34.760		
~	Energía Eléc	trica Neta Anual Generada (GWh)	6,288.248		
CLEA	Régimen Té	rmico Neto (KJ/KWh)	10,733.453		
UN SC	Régimen Té	rmico Bruto (KJ/KWh)	10,356.732		
LTAD	Fracción de	Carga	0.920		
ESU					-
	SENER				
SIMIS	SECRETARIA DE INDICIA			1943	P a

Figura 10. Resultados técnicos

Resultados Técnicos del Ciclo de Irradiación

En este apartado se muestran los resultados técnicos del ciclo de Irradiación en equilibrio que son:

- Duración de Paros Forzados durante el Ciclo. Especificado en días.
- Días de Operación a Plena Potencia durante el Ciclo. Especificado en días.
- Energía Eléctrica Generada durante el Ciclo de Operación. Especificado en *Giga Watts hora.*
- Energía Eléctrica Generada por Ensamble en cada Ciclo. Especificada en *Mega Watts hora.*

Figura 11. Resultados Técnicos del Ciclo de Irradiación en Equilibrio

Resultados Técnicos del Combustible

Los resultados mostrados son:

- Tamaño del Lote de la Recarga en Equilibrio.
- Intervalo del Combustible.
- Masa de la Recarga en equilibrio.
- Quemado Incremental del Intervalo de Combustible.
- Quemado Promedio.
- Quemado Incremental de un Ensamble durante el Ciclo.
- Fracción de la Recarga en Equilibrio.
- Duración Promedio de la Irradiación del Lote de Recarga.
- Duración de la Irradiación del Sublote 1.
- Duración de la Irradiación del Sublote 2.
- Tamaño del Sublote 1.
- Tamaño del Sublote 2.
- Energía Eléctrica Neta Total Generada por el Sublote 1.
- Energía Eléctrica Neta Total Generada por el Sublote 2.

Figura 12. Resultados Técnicos del Combustible

Resultados Técnicos de Carga Inicial

Los resultados mostrados son:

- Alimentación por Unidad de Producto.
- Colas por Unidad de Producto.
- Trabajo Separativo por Unidad de Producto.
- Producto UF6 Enriquecido.
- Alimentación de UF6 natural.
- Colas de UF6 Empobrecido.
- Trabajo Separativo para Enriquecer el UF6.

Alimentación por Unidad de Producto	4 997
Colas por Unidad de Producto	3.887
Trabajo Separado por Unidad de Producto	2.848
Producto de UF6 Enriquecido (Incluye Pérdidas de Fabricación) (Kg U (UF6))	81,137.056
Alimentación de UF6 natural (Kg U (UF6))	396,533.160
Colas de UF6 Empobrecido (Kg U (UF6))	315,396.104
Trabajo Separativo para Enriquecer el UF6 (Kg U (UF6))	231,052.343

Figura 13. Resultados Técnicos de Carga Inicial

Resultados Técnicos de Recarga

Los últimos resultados mostrados son:

- Alimentación por Unidad de Producto.
- Colas por Unidad de Producto.
- Trabajo Separativo por Unidad de Producto.
- Producto UF6 Enriquecido.
- Alimentación de UF6 natural.
- Colas de UF6 Empobrecido.
- Trabajo Sepativo para Enriquecer el UF6.

Alimentesián por Unidad do Dradusto	7.005
Colas por Unidad de Producto	6.625
Trabajo Separado por Unidad de Producto	5.350
Producto de UF6 Enriquecido (Incluye Pérdidas de Fabricación) (Kg U (UF6))	25,583.756
Alimentación de UF6 natural (Kg U (UF6))	195,069.205
Colas de UF6 Empobrecido (Kg U (UF6))	169,485.449
Trabajo Separativo para Enriquecer el UF6 (Kg U (UF6))	136,871.771

Figura 14. Resultados Técnicos de Recarga

El botón de regresar nos ayuda a ir de nuevo a la pantalla de datos para poder realizar el análisis de otra planta u otro caso.

F. Evolución de las pantallas

Cuadro de Mando

Diseño inicial

Diseño final

Macroeconomía

Diseño inicial

Diseño anterior

Diseño final

ANEXOS

Diseño inicial

Diseño anterior

Diseño final

Oferta

Diseño inicial

Diseño anterior

ANEXOS

Diseño final

Optimizador

Diseño inicial

Diseño anterior

Diseño final

Aplicaciones Auxiliares

Diseño inicial

Diseño anterior

Diseño final

Conversor

Diseño inicial
ANEXOS

Diseño anterior

Diseño final

SISTEMA DE MODELACIÓN INTEGRAL DEL SECTOR ENERGÉTICO

Nuclear

	Nuclea	
Selecciona una	planta ~	Anafizar Caso
Datos Técnicos de la Planta	Datos Técnicos del Ciclo de Iradia	ación en Equilibrio Datos Té
Capacidad E	léctrica Bruta (MWe)	
Eficacia Neta	(%)	
Eficacia Bruta	a (%)	
Usos Propios	(%)	
Tiempo de Co	onstrucción (años)	
Vida de la Pla	anta (años)	
Potencia Térr	nica (MW)	

Diseño inicial

Diseño final

Emisiones

Diseño anterior

Diseño final

-