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Abstract

Due to the complexity of the heavy fraction in these fluids, cases have been
reported in which the rheology of heavy and extra-heavy oil at reservoir does not
correspond to the classic flow models used to estimate reserves and characterize the
productivity parameters of the well-reservoir system. A natural consequence of this is that
the production forecasting done with classic models does not correspond to the real

behavior of the wells.

This research is centered in the development of analytical models that help to
describe the radial-flow of heavy and extra-heavy oil with non-Newtonian rheologies of
the type of a Power-law and Bingham-plastic fluids at reservoir. A new model to treat the
power-law type fluids with a pseudo-skin factor is presented, as well as two new solutions
for the transient-flow of a Bingham-plastic fluid. To validate the new models, synthetic
data from numerical simulation studies was used. The obtained results were satisfactorily

compared.

It is expected that the implementation of this models will improve the productivity
analysis of wells, permitting an accurate study of these fluids, so that possible treatments

can be precisely evaluated.
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Chapter 1

Introduction

The reserves of heavy oil in the world are estimated to be near to 7.5 billion barrels,
reason for which the understanding and development of these reservoirs are necessary
for satisfying the global energy demand in the next decades’. Heavy oils can be classified

according to their density and viscosity as (Fig. 1.1):

e Conventional Heavy Oils, for fluids with lower densities than 21 °API, and
viscosities between 10 and 100 cp.

o Extra-Heavy Oils, which are fluids with densities between 10 and 7 °API, and
viscosities in a range of 100 and 10 x 103 cp.

¢ Oil Tar and Bitumen, which are fluids with lower densities than 7 °API, and

higher viscosities than 10 x 103 cp.
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Figure 1. 1. Heavy oil classification (Modified from Benerjee?).



As a result of the formation environments, heavy oils possess a complex

composition, which normally includes large amounts of asphaltenes, resins and other

heavy molecules® 4 5 ¢ as well as low gas content. Fig. 1.2 shows typical distributions of

the asphaltene and resin content of some crude oils against its API density, it is seen that

the quantity of C7-asphaltenes in high API-density crude oils is normally less than 1%,

while in heavy and extra heavy oils, it may overtake values of 20% of its total mass.
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Figure 1. 2. Correlation between the API density and content of resins and

asphaltenes for different oil mixtures3 4 5,

The high content of asphaltenes in heavy and extra-heavy oil, as well as the

presence of sand and metals, provoke several effects in its flow behavior, being some of

them related with the existence of non-Newtonian rheologies. This research is conducted

to understand and model the production mechanisms associated with rheologies of the

type of power-law and Bingham plastic fluids.



Chapter 2

Literature review

Many heavy and extra heavy oil reservoirs around the world produce at higher
rates than expected at primary conditions® 78 9 10, Regardless of the existence of several
theories which try to explain this phenomenon, high production rates are mostly attributed
to: non-Newtonian flow'!- 12 13 solution-gas drive processes™ % 16 and sand production

effects!”. 18.19.20,

In this chapter, these theories are presented to clarify the state of the art and
principal problems related to the production mechanisms in heavy and extra-heavy oils

reservoirs.

2.1 Non-Newtonian Flow Behavior of Heavy Oil

Besides saturated and aromatic compounds, heavy and extra heavy oil systems
contain several large and complex molecules; asphaltenes, resins and some metals (like
vanadium and nickel) are found in these mixtures. As a result, the viscosity of these fluids
has a wide range of values which spreads from 100 to over 10,000 cp, and some of them

exhibit viscoelastic properties at reservoir conditions™ 12 13, 21,

Generally, for the problem of oil flow through a reservoir, the fluid is assumed to
have a small and constant compressibility, a Newtonian viscosity and a laminar flow state
(according to Darcy’s model). However, it has been found that some heavy and extra
heavy oil present a non-Newtonian behavior?? 23 24_|n these cases, the pressure drop in

the Darcy equation can be correlated with the shear stress of a rheological model 6.

In this section, some flow models reported in the literature are presented.



2.1.1 Newtonian model

According to its rheological behavior, a Newtonian fluid exhibits a direct and

constant proportionality between the exerted shear stress (7) and its strain rate (y), as

where u is named the dynamic viscosity.

The basic model to correlate flow velocity (v) as a result of a pressure drop (Vp) in
a porous media with laminar state conditions is the Darcy equation?®, which indicates that

these parameters are directly proportional to each other:

being the mobility (k/u) the adjusting factor in the relation.

Because of its simplicity, and since most of the reservoir fluids exhibit a Newtonian
behavior, modified versions of this model are widely used to study wells productivity, as

long as Newtonian viscosities exist.

2.1.2 Ostwald-de Waele model

There exist laboratory information which points that some heavy and extra-heavy
oil reservoirs around the world exhibit a non-Newtonian Ostwald-de Waele (or power-law)

behavior''- 21: 26, This model is defined by the next relation:

where n is the power-law index and H is called the consistence coefficient. In this case
an apparent viscosity (u,) is used to study the resistance of the fluid to gradual

deformation:
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For power-law fluids, the next analogous of the Darcy equation can be used?? ?7

where the mobility is defined in terms of an effective viscosity (u.s¢):

H
Herr = ﬁ(g + 3/n)”(150k¢)(1‘")/2 s et eeeaeeeeaeesaeeasaseeaeeaeeeasaennsaernaaeennn 2.6

The applications found for this model are mainly focused on polymers, and some

authors report its use to simulate the flow of heavy and extra-heavy oils'® 2428,

2.1.3 Bingham plastic model

Some authors have reported that some heavy and extra heavy oil reservoirs
require a minimum pressure drop to start production' 23 2°. This corresponds to the
description of a Bingham plastic fluid, which possess an internal structure that prevents
the movement for values of shear stress less than a yield magnitude (7, ), so the shearing

movement only occurs when 7 > 7,,. Once the deformation starts, these fluids exhibit a

constant pseudo-viscosity (ug), so its rheological model is defined by the following

expression

At a macroscopic scale, the following transport equation can be used to model the

flow of a Bingham plastic in the reservoir??
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for |Vp| < G

where the parameter G accounts for the minimum pressure gradient required to start the

flow, which is related with 7, as:

being d the characteristic pore size of the porous medium.

2.1.4 Herschel-Bulkley model

The Herschel-Bulkley (or modified power-law) model was developed as a

generalization for time-independent non-Newtonian fluids?3, and it is given by

In this case, the following transport equation can be used to represent the flow

velocity in the reservoir3?

{< kv>[1 G]n for |Vp| > G

— pl|1—a—| , or |Vp

U = ! Hers Vel e 2. 11
|

0, for |Vp| <G
where pes is
Hepr = 2H(L/M 4 3) K10 | s 2.12

and «
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2.1.5 Viscoelastic effects

It has been seen that some emulsions of bitumen with water possess a complex
internal structure that rearranges with the exerted stress'3 22 27, As consequence, the
flowing phase exhibit viscoelastic properties in the porous media and its rheological
behavior can be divided in regions, Fig. 2. 1: 1) a Newtonian flow region that exist at low
flow velocities, 2) an intermediate power-law transition, and 3) a Newtonian flow region

at high flow velocities. For the above, these fluids are named as power-law type'3 31,

Depending on the behavior of the apparent viscosity, power-law type fluids can be
classified as pseudo-plastic kind, if u, decreases with the flow velocity, and as dilatant
kind, when p, increases with the flow velocity. Even though there exist rheological models
to describe the complete behavior of power-law type fluids'3, for its simplicity, the use of
time-independent coupled expressions is preferred for simulation purposes. However, the

applications found are, as with purely power-law fluids, mainly focused on polymers.

Pseudo-plastic Fluid — Dilatant Fluid

LI Illlllr;

LI lllllll

1L, apparent viscosity

Non-Newtonian Region

< >
< >

I lllllll

{

L il L anul Ll Ll
u, flow velocity

Figure 2. 1. Apparent viscosity for a power-law type fluid as a function of the flow

velocity (after Poon and Kisman'3 and Bondor3?).



2.2 Gas Drive Mechanisms in Heavy Oil Reservoirs

At conditions bellow the bubble point, depending on the depletion rate and viscous
forces, heavy oils can act as super-saturated liquids, meaning that they have more
dissolved-gas than they would at equilibrium. Hence, gas liberation does not start until a

threshold-pressure is reached3? 33,

Once the gas starts to evolve, it randomly forms micro-bubbles within the oil-
phase3* 3% and, as the capillary effects are inversely proportional to the size of bubbles,
the flow of the gaseous phase may be delayed, and the critical saturation in the porous

media will increase, enhancing the expansion mechanisms within the reservoir36: 37,

In spite of this behavior, high-pressure gradients may cause viscous forces to
prevail over the capillary effects®® 3% and the tiny bubbles can be entrained by the
viscosity of heavy oils. It has been observed that the simultaneous flow of the phases
provides a “foamy” morphology to oil and improves the expansion mechanisms along the

flow paths in the production system?40. 41,4243,

2.3 Sand Production in Heavy Oil Reservoirs

Sand production is an induced phenomenon, which results from the drag viscous
forces once the well is opened in unconsolidated formations**. As a result, the porous
media acts as a plastic material until it reaches an elastic limit, after which fractures are
formed. These fractures, better known as “wormholes,” create flow channels of high

permeability in the reservoir and enhance well’s productivity'4, 4% 46,

Besides the changes in permeability and compaction of the system, sand
production also improves the foamy oil formation processes*’- 48 49 50 and provides
dilatant characteristics to the mixture'3. Without sand production effects, the final recovery
in several heavy oil reservoirs of Canada and Venezuela would be lower and

unprofitable®'.



Chapter 3

Thesis statement

As the importance of unconventional resources has increased, considerable
progress has been made in understanding the flow mechanisms associated with the
production of heavy and extra heavy oils. Even when the influence of complex rheologies,
gas drive processes and sand production was identified for these reservoir fluids, the
literature review shows that commercial simulators do not have procedures to incorporate
the non-Newtonian effects to evaluate the reservoir performance, and that the only way
to match the calculated results with the production history is through the alteration of the
permeability, saturation pressures or gas mobility, which not always permits accurate

forecasts —mainly in low bubble point pressure and matrix consolidated systems.

This research is conducted to obtain analytical expressions and develop practical
models to represent the effect of non-Newtonian flow in heavy and extra heavy oil

reservoirs. For it, the following assumptions are considered:

1. The temperature is constant along the system, which is homogeneous and

isotropic in its flow-properties.

2. The porous media is saturated by water and under-saturated oil, and the

second is the only flowing phase in the system.

3. The system is formed by a central well producing at constant rate in a
cylindrical reservoir, as shown in Fig. 3. 1. Hence, radial flow exist and it can be

represented with the continuity equation as:

10 0
;a(rpou) = _a(ngC’DO) ) eeeeeeeeeeeeeeneeeeieeeeieee e 3.1

where p,, u and ¢y are the oil's density and velocity, and the hydrocarbon porosity,

respectively.
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Figure 3. 1. Representation of the radial flow problem for a single well producing

at constant rate q,, in a volumetric reservoir.

4. Oil is a slightly compressible fluid of constant compressibility, which
equation of state is:

and the porous media is also assumed to have a constant modified formation

compressibility, which is modeled as

1 aquC
Ccp=— ) eeeeeeeeeeeeeeeeeesbeeseeeeeeeeiseeesssssesseeseseesstsseseseeeseesioiesesseeeeeeeeanains 3.3
F $uc Op
so the total compressibility of the system is defined as:
Ct = € CF & teeeeeeeeaeeeeeeeeeesssssnneennnseanneennnnennnneennntennneennnttnnntnnnntnnnnnnnennnnnnnnnennns 3.4

10



Chapter 4

Solutions for power-law type fluids

The power-law is the most widely used model to represent the flow of polymers
and foams through a porous media. However, as discussed previously, some authors
suggest its use in heavy and extra-heavy oil reservoirs'® 24 26, For time-independent
power-law fluids, the reference study was developed by Ikoku and Ramey?’, who derived
a flow equation when substituting the modified Blake-Kozeny model (Eqg. 2. 5) into the

continuity equation (Eq 3. 1):

1
d’p nop epr\Y/™ ¢ Op\' ndp 4.1
SEr=aem (B (-3) "or

which was solved by the Laplace transform for the following conditions

DTt = 0) = Di ) oo 4.2
Qs T 0) = Qo ) oot e e e 4.3
2l G e T A ) B TSRt 4.4

To generalize the solution, they proposed the following dimensionless groups:

k (Znh)"( ) 45
Poyn 0, fT'Mll_n qB D 7 Di) 5 e .
L8 Nt O A 7RI 4.6
NN
bpyy = B L 4.7
w

11



where 1 is defined as:

n-—1

_ k <2nh> 48
nNN d)#eff Ctn qB B E E W NN NN NN R NN NN EE NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE NN NN NN -

Considering the above definitions, the Laplace solution for transient radial flow of

a power law fluid in a homogenous reservoir is

1-n

1-n 2 3-n

FDNN(rD,Z) = R T PP 4.9
2
Z32K 5 (5——VZ
ﬁ(3—n )

where FDNN is the dimensionless pressure-drop in the Laplace domain, Z is the Laplace

variable, and K, are K-Bessel functions of v order. Also, the following asymptotic

approximation was obtained for Eq. 4. 9

2(n-1) -
(3 - n) 3-n 3—n 1
pDNN(rD = 11 tD) = 2 tDNN - 1 —n ) eeessssassssssssssssssssssssssssssss 4 10
(1 -mn)r (3 — n)

where TI'(x) is the gamma function. The obtained expression was validated with a
numerical simulator for an infinite reservoir based on the Douglas-Jhones method®2.
Later, the same authors extended their simulation models to contemplate the wellbore-
storage and boundary dominated effects®® 5. Also, Ikoku presented a method for well-

test interpretation in presence of non-Newtonian power-law fluids®°.

Besides the importance of the cited developments, since there exist different flow
velocities through the reservoir, they are not useful for viscoelastic materials of power-
law type. Hence, in this chapter a practical model, which is based in the definition of a
pseudo-skin factor, is proposed for these fluids.

12



4.1 Conceptual frame of the skin factor

When studying pressure-production data with analytical or numerical models, the
skin factor approach provides a simple mathematical tool to adjust the ideal formulations
to a real measured response. In general, the total skin factor (S) is defined as the sum of

the true formation damage (S;,-) with other skin effects (S;) as

i=1

where 1 is a weight factor defined for each term in the sum. With the inclusion of the skin-

factor, the real dimensionless pressure-drop (pp,.,,;) is defined as follows:

pDreal = pDideal + S ) eeesasssssssanesaasssssssstEEEEEEasssssaEaEEEEEEEEs s tEaEE R s s s R s 4 12

where pp is the ideal dimensionless pressure-drop.

ideal

Because the flow conditions change during the production, S is a time-dependent
parameter®®. However, as the skin-factor is assumed to change very slowly, it is normally
considered as constant for punctual studies, and only as variable for long term
simulations, in where S serves as a general tuning parameter for any change over time in

the fluid or reservoir properties that is not contemplated by the analytical model.

4.2 Problem statement

The flow velocity and shear rate in a reservoir are related, and are proportional to
the pressure gradient in the porous media. Hence, high velocities exist near the wellbore,
where the bigger pressure-drop have place, and its magnitude blur as the radius
advances into the reservoir. For power-law type fluids it means that, as a flow velocity

distribution exist, the apparent viscosity has different behaviors along the system?3.

13



The Fig. 4. 1 schematize the flow regions in a radial reservoir for power-law type
fluids. As mentioned in Chapter 2, these materials exhibit power-law effects as a

transition between two Newtonian sections of different viscosities (uy, and uy,, at high

and low shear rates respectively). In consequence, the measured response of the system
is expected to be affected’®: for a pseudo-plastic kind behaving fluid (when n is less than
one) the apparent viscosity is expected to increase as the pressure gradient extends on
the reservoir. Hence, initially it would be easy to produce the fluids around the wellbore —
because the shear rate in this zone is high—, but after a long period —when the drainage
radius is bigger— the production would be more difficult and a larger pressure drop would
be required to produce the fluids at a distance away from the wellbore. In this case, as
the mobility is improved, and considering the definition of the skin factor, the non-
Newtonian effect can be interpreted as a stimulation. In contrast, for a dilatant kind
behaving fluid (when n is greater than one) the apparent viscosity would reduce as the
pressure gradient extends into the reservoir, and the resulting behavior can be interpreted

as an obstruction.

[:] Newtonian flow at high shear rates

‘ Non-Newtonian transition

|:] Newtonian flow at low shear rates

E Undreined region in the reservoir

Production well

Figure 4.1. Flow regions in a radial reservoir for a power-law type fluid.

14



As the flow velocities are reasonably slow at the reservoir, in this work it is
supposed that, for power-law type fluids, the Newtonian flow governs the production and
that Non-Newtonian effects are restricted to a finite area within the porous media, as

shown in Fig. 6. 2. Also, for the analysis, skin-factor is assumed as constant.

Wellbore
l Static pressure

Newtonian pressure
drop across the low
z shear rate zone

Non-Newtonian

High shear pressure drop

rate zone \

Psyyps

Downhole
Dy pressure

Figure 4. 2. Representation of the pressure drop behavior across the reservoir.

4.3 Formulation of a pseudo-skin factor for power-law type fluids

To include the effects of the power-law section, a steady state solution was used
considering that this pressure drop has place in a limited section of the reservoir. Hence,

the dimensionless form of the Eq. 4. 1 results in

d dpp
— n_ e
ary <7‘D er> 0 e 4.13

which was solved for the following conditions

dpp

TDE(TDZZL):—:[, ..................................................................................... 414

15



pD(rD:TDNN)ZO ) e eeea e e s eesaaeesaaa e s esasaeeasatesateaant e ras 4. 15

where 7, is the dimensionless radius of influence of the non-newtonian power-law

effects. The resulting solution at the wellbore is:

T,
pD(TDzl):_—; ...................................................................... 4.16
or in terms of normal variables:

Pin — Pw

( qB )n terr [ryn" — 1w " 417
2rth k 1—n '

Now, defining the pressure drop at the non-newtonian skin zone as

ApSNN = APVIXN - Ap\l;lﬁieal =

where Syy is the pseudo-skin factor, and Api¢¢® is defined with a steady state solution:

ideal _ qBM |7'N_N
Aply —anhln e 4.19
Now combining Eq. 4. 17 and 4. 19in 4. 18
qB )“ Hepr ran" — 1™ qBu |rNN|
A = - 1 ) eeeeeeeer e e e e e ———— 4. 20
Psnn (2nh k 1—-n 2mkh T
or in terms of the pseudo-skin factor
B n-1 1-n _ ..1-n
Sy = (‘7 ) Herr [Tun™ = T ]_1n|rNN| e 4.21
2mh U 1—n Ty

16



In Eq. 4. 21, a negative value of Syy, would be characteristic of pseudo-plasticity,

a positive one of dilatancy, and zero would correspond to an entirely Newtonian regime.

17



Chapter 5

Solutions for Bingham plastic fluids

The flow of asphaltene-rich oils in porous reservoirs may involve the presence of
an initial pressure gradient??, which has been associated with a reduction of the oil
recovery and with the formation of stagnation areas within the reservoir. To represent the
flow of this materials, the Bingham plastic model has been suggested'" 22 23 for which
the following flow equation was derived by Wu et al.®” when substituting the

Mirzadjanzade model (Eq. 2. 8) into the continuity equation (Eq 3. 1):

T PSP 5.1
or2 ror r ngot’
where
__k 5.2
Ng BaC, T :

A solution for the Eq. 5. 1 was found by the authors for the following conditions

with a polynomial approach based on the integral method

o G A 0 T 7T PP 5.3
T A V) T R 5.4
P(r = 00, > 0) = Di + oo 5.5

To validate their results, as no analytical solution exist, the line-source solution
(Theis equation) was used for the special case of G = 0. Also a numerical simulator was

developed.

18



In this chapter, dimensionless groups are proposed to generalize the Wu’s solution
for the Bingham plastic fluid problem. Also, analytical solutions where obtained by the
Laplace transform method and a numerical model was developed to validate them.
Finally, a method is proposed to approximately estimate the value of the minimum

pressure drop at reservoir conditions.

5.1 Problem statement

The flow of a Bingham plastic can be practically understood as the superposition
of two conditions: the transport of the pressure drop in the porous media and the flow
below the threshold flow gradient (G). As shown in Fig. 5.1, there exist a zone between
the boundaries of the named conditions in which the fluids remain static (as if it has an
infinite viscosity, 14 ); and in the zone where Ap < G, the flow resembles to the Newtonian

case with a viscosity of ug, which is assumed constant for the following analysis.

I: Newtonian flow below the
threshold gradient condition

lag between transport and

flow boundaries = f (Gp) 5 Non-Newtonian transport of

4 the pressure drop front

E Unaffected region in the reservoir
Production well

g

(@)

HUB

Figure 5.1. Flow regions in a radial reservoir for a Bingham plastic fluid.
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5.2 Dimensionless variables

To generalize the resulting models, in this work the following groups are proposed:

2mkh

Poyn :qB_,uB(pi_p) ) eeeeeeaaeeeaaeeaaeeeeaaseessaaasssssssssssssssssasasasasasassaaannannnnannnnannnnes 5.6
r
TD_T—, ........................................................................................................... 57
w
B
tDNN_r_M%tI .................................................................................................... 5 8
2nkhr,,
S0 . s 5.9
P qBug

5.3 Transient flow solutions

Considering the aforementioned dimensionless groups, the Eq. 5. 1 is rewritten as

aZPDNN 1 apDNN GD apDNN
2 o T o=
o, rp 01p p  Otpyy

and the considered boundary conditions, with v = v, + (k/ug)G, are

Poaun (70, 0) = 0, s 5. 11
dp
<TD %) =-1 EDun = 0 e 5.12
rD TD=1
pDNN(T'D 4 OO) =0 tDNN D 5 13

Wu’s polynomial approach is obtained as a solution for the above problem, and is
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expressed in terms of dimensionless variables as follows:

)

2 1
pDNN(TD =1 tDNN) = GD6(tDNN) —26In Q

where Q =1+ 8(tp,y ) © = [1+28(tpyy)]/48(tnyy) and 8(¢p,, ) is the dimensionless

penetration distance of the wellbore stimulus into the reservoir, which can be known from:

t =G & Q+1+®[39 1 —In|Q*| 1+<1 4Q>1 2 1] 5.15
cony = 2|6 T 273 T 0 n o \q "ozl Y

In Eq. 5. 15, tepun is presented as a material balance time, as

tCDNN = nptc/tw = Mp/1e) X (QpBi/qB) ) eeeeererereeeeeereareereeeeeereeaeereerarareaaaanas 5.16

where Q,, is the cumulative production.

In this work, the following two solutions where obtained (as shown in Appendix A)

for the transient flow of a Bingham plastic fluid

1 025\ 1

oy (o = 1tp) = —5E - — +5In1-Gpl + Go[1+8(tpyy)] » oo 5.17
1 0.25

pDNN(rD — 1, tD) = __Ei — + GD(S(tDNN)w AT e P PP PP P PEPPEPPRRPPEPPERS 5.18
2 toyy

where @ = 0.00191n|ty . |* — 0.00721n|t,,, | + 0.6173.

To model the penetration distance, the steady-state solution of this problem was

used and compared with Eq. 5. 17. The resulting Expression is

8(toyy) = J(1 — Gp)tppyy €XP(0.8091 + 2Gp) , oo, 5.19
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which for Newtonian fluids results in the classical radius of investigation formula:

5(tDNN) = 4‘\/5 © e eemmmmaaassssssssraaasasassssssssEsassssssssssssEEasasassasststaaEaaaannrnnanaaaannn s 5 20

The full development of Eq. 5.19 is presented in Appendix B. In general, it has been
seen that Eq. 5. 20 results in a good approximation for Bingham plastic fluids with values
of G, between 0 and 1.

Since Gy, is inversely proportional to the production rate, it is important to note that
the flow conditions are favored as the value of the initial pressure drop is greater. Also,

permeability has been found to minimize the effect of G, over production.
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Chapter 6

Validation and use of the models

In this chapter, the previews models are used and validated. For the power-law
type fluids, synthetic was analyzed; and for the Bingham plastic fluids, other published

models and a simulator were used.

6.1 Power-law type fluids

For this case, synthetic data from a composite radial model, originally stablished
for an injection problem®s, was used within the developed framework. The simulated
system, Figure 6.1, is a two zones composite reservoir of different viscosities with

homogenous permeability and porosity. The analyzed scenarios are detailed as follows.

B Section with non-Newtonian
flow at high velocities

= Newtonian flow in the
reservoir atlow velocities

Figure 6.1. Representation of the simulated model for a power-law type fluid.
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6.1.1 Pseudo-plastic type fluid

In this case a pseudo-plastic type fluid was analyze. The properties of this system,
initially reported by Lund and Ikoku (1981), are indicated in Table 6. 1, considering for the

simulation a constant radius of influence, for the power-law behavior, of r, ,, = 400 and

no wellbore storage effects.

Table 6. 1. Obtained values of the pseudo-skin factor for power-law type fluids.

Tws M 0.1 k, md 100

h, m 5 g, m3/s  55204x10*
¢, fraction 0.2 ¢, Pa™?t 1%x109

Ny, M 40 H,N-s"/m? 0.003

n 0.6 tn Pa-s  0.003

Figures 6.2 and 6.3 present the diagnostic and semi-log plots for the analyzed
problem. The diagnostic plot shows two recognizable behaviors, the first (from 10 to 104
s) corresponds to the radial flow of a power-law fluid, and the second, to the late-radial
flow of a Newtonian fluid. From the first part of this graph, a slope of 0.1718 can be
identified in Ap and Der Ap curves, which can be interpreted with the method proposed
by Ikoku and Ramey (1979), resulting in a value of n = 0.622, corresponding with the
input value of n = 0.6. Also, the late part of the derivative stabilizes in value of 296634

Pa, from which a permeability of 100 md was interpreted by the classical methods.

On the other hand, the semi-log plot shown a slope of 6.17 x 10° Pa / cycle and
a value of Ap,, at 1 second of 3.17 x 108 Pa, for which a permeability of 100 md and a
total skin factor of —4.11 were estimated. Now, the developed model in Eq. 4.21 was used
to compare with the results of the simulation, (u.rr = 6.02 x 10 N - s°¢ / m'6, Eq. 2.6).
The skin factor obtained with Eq. 4.21 was of -4.4, which matches adequately with the

previous interpreted value.
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Figure 6.2. Diagnostic plot for a power-law type fluid, n = 0.6 (Lund and Ikoku, 1981).

8.E+06
7.E+06
6.E+06
& 5.E+06
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3.E+06
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10 100 1000 10000 100000 1000000
t-s

—— Ap = = Line source model

Figure 6.3. Semi-log plot for a power-law type fluid, n = 0.6 (Lund and lkoku, 1981).
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6.2.2 Dilatant type fluid

The Lund-lkoku model was used to simulate the behavior of a Dilatant type fluid.
The properties for this system are reported in Table 6. 2, considering for the simulation a

constant radius of influence of r,, ., = 300 and no wellbore storage effects. Figures 6.4

and 6.5 present the diagnostic and semi-log plots for the analyzed problem.

Table 6. 2. Obtained values of the pseudo-skin factor for power-law type fluids.

Tws M 0.1 k, md 100

h, m 5 g, m3/s  55204x10*

¢, fraction 0.2 ¢, Pa™?t 1%x109

Ny, M 40 H,N-s"/m? 0.02

n 1.1 Hn, Pa-s 0.02
100,000,000

©
% o ®
. e}
a 10,000,000
o 1—-n
o ‘et aen
1,000,000
10 100 1,000 10,000 100,000 1,000,000
t-s

Figure 6.4. Diagnostic plot for a power-law type fluid, n = 1.1.
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Figure 6.5. Semi-log plot for a power-law type fluid, n = 1.1.

In the diagnostic plot, both the power-law and the Newtonian slopes were analyzed
from the derivative curve. From the first part of this graph, a slope of -0.0485 was
observed, which interpreted with lkoku-Ramey method leads to a value of n = 1.093,
corresponding with the input value of n = 1.1; and at the Newtonian stabilized segment a
value of 1852896 Pa was observed, from which a permeability of 96 md was interpreted.
As well, a slope of 4.1 x 108 Pa / cycle and a value of Ap,, at 1 second of 1.3 x 107 Pa
were obtained from the late straight-line in the semi-log plot, for which a permeability of

100 md and a total skin factor of 3.46 were determined.

Finally, when computing the skin factor with Eq. 4.21 (u.rr = 6.02 x 106 N - 596/

m'8, Eq. 2.6) a value of 3.55 was obtained, which is practically the same interpreted.

6.2 Bingham plastic fluids

The models for the flow of a Bingham plastic fluid were validated with a numerical

simulator, which formulation is included in Appendix C. The cases for G, = 0, 0.01, 0.1
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and 1.0 are presented in Figs. 6.6 to 6.8, respectively; also, for G, = 0, Theis solution
was included. Results for the dimensionless downhole pressure and its logarithmic time
derivative —obtained with the numerical simulator— are presented in Fig. 6.9 for values of
Gp =0, 0.001, 0.01, 0.1, 1.0 and 2.0 in a log-log plot for a finite radial system of r,, =200.

It is seen from Figs. 6.6 to 6.8 that the proposed analytical solutions and the Wu’s
approximation correctly fit the observed behavior of the numerical solution. However, the
use of Eq. 5.17 is bounded for values of G, lower than 1. Also, as expected, from Fig. 6.7
it is concluded that a more efficient use of the pressure energy is achieved when G, has
small values. Indeed, large values of G, may provoke operational problems in a well, such
as production interruption or intermittent production profiles for not overcoming the
condition of the minimum flow gradient in the reservoir?® 24 Yet, as this parameter
inversely depends on the production-rate: the higher the flow velocity gets in the porous

media, the lower the influence of G, is; consequently a small p, and the use of an

artificial lift system may improve conditions of Newtonian flow near the well.
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Figure 6.6. Comparison between flow-solutions for a Newtonian fluid (G, = 0) in a logarithmic plot.
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Figure 6.7. Comparison between flow-solutions for a Bingham plastic fluid of G, = 0.1 in a logarithmic plot.
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Figure 6.8. Comparison between flow-solutions for a Bingham plastic fluid of G, = 1 in a logarithmic plot.
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Figure 6.9. Comparison between the values of the dimensionless pressure drop for a Newtonian and a Non-

Newtonian Bingham plastic fluid in a finite radial reservoir of ., = 200 (cases for G, = 0.001, 0.01, 0.1, 1 and 2).
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Conclusions

A study was made over the rheological aspects of heavy and extra-heavy oil, for

which the following conclusions are made:

1.

Non-Newtonian power-law and Bingham plastic cases were studied, specifically
the models of lkoku and Wu, respectively. For the Bingham plastic case,

dimensionless groups were developed to generalize the analysis.

Considering the existence of viscoelastic effects in a fluid, a model to represent
the power-law effects with a pseudo-skin factor was developed. It was seen that
the required pressure energy for its transport is greater for a pseudo-plastic fluid

than for a dilatant.

Two new analytical solutions were obtained for the case of radial flow of a Bingham
plastic fluid produced at constant rate. Its performance was compared with Wu'’s
integral solution, obtaining a better match when compared with the simulated

values.

An approximation was presented to calculate the value of the penetration distance

of the wellbore stimulus into the reservoir.

With the developed simulator it was seen that, for Bingham plastic fluids, the value
of Gp nor affect the value of time at which the boundaries are affected by a wellbore
stimulus, neither the behavior of the pseudo-steady state period. However, it

considerably affects the pressure response by imposing a restriction to the flow.
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Recomendations

During this research, several aspects that were neglected may require more
consideration and the results of our research should be applied in practice. Hence, some

recommendations will be list as follows:

1. In the case of power-law type fluids, it is expected that the value of n must be
pressure dependent, and more detailed studies can be done to obtain relations
between this parameters for the different kinds of oils. Inconsequence, the radius

of influence for the power-law behavior must be a time dependent value.

2. The validation of the developed model to represent the non-Newtonian pseudo-

skin factor for power-law type fluids can be extended for more cases.

3. During the literature review it was found that, besides TOUGH, commercial
software do not consider the use of non-Newtonian flow models. Hence, the
development of studies should be extended for the correct study of geofluid

systems.
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Appendix A

Development of Egs. 5. 17 and 5. 18: Production of a

Bingham-plastic fluid at constant rate in an infinite

reservoir

TR
ror or k ot’

Dt =0) = Di ) oo

Gyt > 0) = Gy ) ceeeeer e —— e ————aranaeaanaas

P(r = 0, t > 0) =Di v oo

A.1 Development of Eq. 5. 17

The following expression for an effective pressure is proposed:

and the following variable change is made on Eq. A. 1

41



10 Ta_l/)] :#Bct¢a_Pa_¢_HBCt¢a_¢ap
rorl or

k otoy  k otoy’

Now, as the flow-rate across a reservoir section is

_ kAdY
qT - MB ar )
it can be obtained that
Y _ ks
or kA’
and Eq. A. 7 results in:
dp kAG _
—— = L g7 = L X e A.8

1
iy HUB

Strictly, g, changes over the drainage area of a well. However, as flow can only
exist across the radius of investigation if the pressure gradient is more than G, it is

considered that the transient flow can be analyzed as a series of steady periods, for which

q- = qB and the following factor is defined:

dp
frzﬁzl—GD, .......................................................................................... A.9
and Eq. 1 is written as:
li[ra_‘/’ I A. 10
rorl or k at
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Now, based in the statement presented in Section 5.1, it is proposed that the
influence of the threshold gradient can be modeled by adding the initial pressure drop
exerted by the well to induce flow and the pressure drop due to the transport of the

minimum gradient condition across the reservoir as follows:

p(r,t) =p;i — Y, t) + G, + (O]} . e A. 11

Here, considering the dimensionless group presented in Section 5.2, the following

variables are defined:

2mkh

e N USRS A. 12
qBMB(pL Y)

lpDNN =

and the flow problem is rewritten as:

azl/)DNN + iawDNN _ a.QrbDNN

= TSSOSO A.1
org rp 0Tp Otp,n 6
lpDNN(rD'tENN = 0) = 0 ) e eeeaaeeeas e s e s e s e s e e s e s e e e e e et et raa e ranns A 17
)
rD%(l,tENN>O)=—1, ......................................................................... A. 18
D
Wpn (T 200,85, > 0) =0 0 e A. 19

To solve this problem, the Laplace transform method was used, for which it is defined
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and the flow problem is now expressed as

92T, 10,

=+ —
or5  1p 0rp

0P,
o arp

The solution of Eq. A. 21 is

By = a1 Ko(EVZ1p) + aulo(EVZTD) ) s

which evaluated in the boundary conditions leads to:

a, = Z3/2 )

Finally, substituting a; and a, in Eq. A. 24 results in:

P = K1(‘/77”D)Ko(scr‘/77”u)
D — 73/2 ’

which when inverted is expressed as:

2

41y
Yo (1o, tpyy) = —0.5E; - F0.5IN[E] , e,

DNN

=Z%) — Yoy (Ehan =0) 4 o,

1
) TN
(rp ) 7

. 20

.21

.22

.23

.24

.25

. 26

.27

. 28
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and using the dimensionless form of the Eq. A. 11:

2
4rp

pDNN(TD' tDNN) =—-0.5 Ei <— ;

) +0.5In|&| + Gp[1+ 8p(tpyy)] »  coeeerereens A. 29
DNN

where pp, . is defined in Eq. 5. 6.

A.2 Development of Eq. 5. 18

Recalling the slightly fluid approach presented in Section 5.3:

azpDNN + iapDNN + @ _ apDNN

) et A. 30
or? rp Orp  1p Otp,
pDNN(rD' 0) =0 ) e eeamaeeeaeaasaaeaasaseaaeaseaseaseaeeaseasaaetataanaataatannaatantataataneaaranaanaanannn A 31
dp
(rD aDNN> = _1 - GD tDNN > O ) eesasassssssssassssEssEsEsEssEsEEsEsassssasaEsasaEsas A 32
p rp=1
pDNN(T'D 4 OO) =0 tDNN D A 33

And deffining the Laplace transform as

P, =f Doy € CPNNAED ) ceeeeeeeeeeeee e A. 34
0

when transforming the initial problem, it follows that

drg = rpdrp  Zrp

=ZP) — Doy (thyy = 0) 1w A. 35
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dp, 1 G,

—_— 2 1) = m o o e A. 36
™ g, P =D = T
Po(Th = 00) = 0 . eoeeeeei ettt et e e ra e A. 37

Now, defining the Boltzmann variable as X = vZr;,, Eq. A.30 can be expressed as

d?P dP, r
2 D + el 2 + D
dX? dx Z

X GD_XZFDZO.

As seen, Eq. A. 30 is a non-homogenous form of the modified Bessel equation, which its

homogenous associated solution (PDH) is given by:
PDH = a1lo(X) + a, Ko (X)

and its general solution is obtained by including both, the particular (E,p) and associated

solutions as:
FD == FDP + PDH == FDP + 0{110(X) + azKo(X) )

which solution can be known by mean of the variation of parameters method. For it, it is

proposed that particular solution fits to a polynomial of the form of:
FDp = L1 (X) + B(X)Ko(X) ,

where B,(X) and B,(X) are unknown variable coefficients, which satisfy the following

restriction

B1(X)1o(X) + B2 (X)Ko(X) = 0,

where B (X) and pB;(X) are the first derivatives of the coefficients.
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Now, to solve Eq. A. 41, the first and second derivatives are obtained, considering
Eq. A. 42, as:

Py, = B + B (DK
Py, = BIXIHX) + BLCOIE (X) + B3 (XK (X) + B (KG (X)

Both derivatives are substituted in Eq. A. 38

X2[B1XDC0) + f1 (X1 (X) + B2 (XK (X) + B (DK (X)] + X[B1 (XD (X) + B2 (DK (X)]

_ y2 __n
X2 [B1 (X (X) + B2 (X)Ko(X)] Z Gp ,

or rearranging:
X2[B1COI(X) + B3 COK O] + B COLX 215 (X) + X1p(X) — X2 [o(X)]
+ BOOIXPKE () + XK3 () = XK (0] = =26

Since both [,(X) and K,(X) are solutions to the homogenous problem, the second and

third terms are zero. Acknowledging this and rearranging, the resulting expression is:

2 ! l ! 4 — _T_D
X B (01 (X) + B2 (DK (X)] = —— Gy

or

Gp

PLOL(X) + B2 (0K (X) = M2) = = =7+ -

Eqgs. A. 42 and A. 43 can be algebraicly treated so:

o B DK (D)
B0 =~

B3 (X) __ G
~ 200 [OOK () + K (OR(O) = = 770

where the Wronskian of the modified Bessel functions is defined as:
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1
W{KO(X)IIO(X)} = 11(X)K0(X) + Kl(X)Io(X) = } ,

.......................................... A. 44
hence, B, can be easily obtained as:
, Gpl,(X) I,(VZr,
ﬁZ(TDIZ) = DZ;)/Z = GD 0( Z D) ) e e meea s EEEEEEEE s sssEEEEEEEsEEssssssrrEEEEEsnnnnnn A 45
and p; results in:
/ GpKo(X) GDKO(‘/ZTD)
Bilro,2) = -~ =—— OIS A. 46
Now, integrating” for 8, and p, yields to:
Gpr,
B (VZrp) = —1.5708 DZD [Ko(VZrp) Loy (VZrp) + Ky(NZrp) Lo(VZ1p)] . ... A. 47
GpT; VA
,32(‘/77"0) = DZD 1F2 (0-5:{1'1-5}171)) L et a e A. 48

where L,, are modified Struve functions and ,F,,, are confluent hypergeometric functions.

Therefore, the problem’s solution in the Laplace space is:

Pp(rp, 2) = alo(VZrp) + ayKo(VZ1p)

—1.5708 GDZrD [KO(\/ZTD) L_l(\/ZTD) + Kl(\/ZTD) Lo(ﬁrn)]lo(ﬁm) + A 49
GDZrD F, <0.5,{1,1.5},ZTr5> Ko(VZry) .

1 Calculations performed with the use of Wolfram Mathematica.
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To apply the boundary conditions, it is considered that the well’s drainage area is

much more larger than the wellbore radius. Hence, for the outer boundary:

rp—©

hm PD = rhm [allo(ﬁﬁ)) + azKo(\/ZrD)
pD—>0

Gp™p
Z

— 1.5708 [Ko(VZrp) Loa(VZrp) + Ky(VZ1p) Lo(VZ1p) 1o (VZ 1)

GpTp Zrp .
7 a2 (05,0118}, 77 ) Ko(VZn)| = lim [aslo(vVZ7p)] = 0

for which a; = 0; and letting 1, — 0:

dp G
lim r,—= = lim 7, [—azx/flq(\/?r,)) + 0.02367DK0(\/7rD)]

rp—0 dTD rp—0

Gp 1
=—a, + 0.02367K0(\/7rD) =-Z-7

and now valuating in r, = 1, it is obtained that
1 Gp Gy 1
a =+ 0.023671{0(\/7) +t— = 5{1 + Gp[0.0236K,(VZ) + 1]} .

Then, when substituting ; and «a, into Eq. A. 49, the following equation is obtained:

P, (rp,Z) = %{1 + Gp[0.0236K,(VZ) + 1]}Ko(VZ1p)

~1.5708 GDZrD [Ko(VZrp) Lo (VZrp) + Ky (VZrp) Lo(VZrp)|le(VZrp) + .. A.50
GDZrD F, <0.5,{1,1.5},ZTr5> Ko(VZrp) .

The full inversion of Eq. A. 50 requires the use of numerical methods (P.E.
Schapery, Gaver-Stehfest or Fourier methods). However, to obtain a practical analytical

solution, an asymptotic approach is made for long times (when Z — 0):
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. |1
lim Py (rp, Z) = lim [5{1 + Gp(0.0236K,(VZ) + 1)}k, (VZrp)

—1.5708

"0 |Ko(VZrp) La(VZro) + Ko (VZrp) Lo(VZr)[1o(VZrp)

Gpr; Zrg
Dz > R, (0.5,{1,1.5},TD> KO(\/ZrD)l
which approximates to

_ 1
Py(rp,Z) = —E{l — Gp(0.0236(0.51In|Z| + In|0.5| + ¥) + 1 + 0.52361)}(0.51n|Z]|

+ In[0.57p| + ) ,

or

_ 1
Py(rp,Z) = —E{l — Gp(0.0236(In|0.5| + ¥) + 1 + 0.523615)}(0.5In|Z| + In|0.57p| + )

0.0118Gp In|Z| 0.0059Gp ln|Z|2
+ ~ (In|0.51p| +y) + ~ ,

and directly inverting the terms:

Py (M0, Z) = {1 — Gp(0.0236(In|0.5] + ¥) + 1 + 0.523675)}0.5In|tp , /75| + 0.40455)
— 0.0118G(In|tp | + ¥XIn|0.57p ] + )

2 T2
+ 0.0059G, [ln|tDNN| + ZylnltDNNl +y?— =

which rearranges into:

t
o (rp, tpyy) = 0.5In [ 4 0.40455

p

+ Gp {—(0.997264016 +0.523675)(0.5In|r3| — 0.40455) A 51
— 0.5(0.99045287115418 + 0.523675) In|tp |

+0.0059 In|tp | — 0.007739361243949452} ,

50



where at r, = 1 can be approximated to

1 0.25
pDNN(l’ tD) ~ __Ei _t

> ) + GDa(tDNN)w R PP EPEPTPPIPERPL

DnN

where @ = 0.0019In|tp,, |* — 0.00721n|t,,, | + 0.6173.
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Appendix B

Penetration distance for a Bingham plastic fluid

Under steady state conditions, the flow problem of a Bingham plastic fluid can be

represented as:

d dppyy
er ( D er —_— _GD ) emssseasmssssEsEssEsEsEssEsEssasEssEEEssEsEsEEsssEssasEsEssEsssEEsEssEsEsEsEEsEEEE B 1
apDNN
arD(D_l)__l_GD' .......................................................................... B. 2
TG T R | RO B. 3

The solution of this problem can be easily obtained by direct integration twice:
PDNN(TD) = —GpTp FAIN|TD| F B, e B. 4
and applying boundary conditions:

pDNN(5D) = _GDaD +A1n|5D| + B = O, B = GD(SD —A1n|6D| .

dpDNN

TDW(TD=1)=—GD+A=—1—GD, A:_l

Hence, the resulting expression is

pDNN(TD) = —GDT'D - lnerl + GD6D + 1n|6D| © e iararassasressesrasressessssressssressassareann B 5

Now, evaluating from the wellbore’s radius (r, = 1) and comparing with Eq. 5. 17 at large

times ( > 25), it yields to:

tDNN
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In|8p| = 0.51n|¢tp ,, exp(0.8091 + 2Gp)| ,

or

Sp = J(1 — Gp)tpyy €XP(0.8091 + 2GD) + oo
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Appendix C

Reservoir simulator for Bingham plastic fluids

Considering the Bingham plastic problem, a fully implicit linear simulator was
developed for a central node finite difference scheme. For it, the logarithmic

transformation was applied, Figure C.1:
x = In|rp], p=e*, C. 1

and the resulting problem is

0°pp x dpp
Gp = B2 o e C. 2
ax2 T € ST
pDNN(X: O) = 0 e C 3
dpp
( axNN> =—1=Gp  oyy >0, e C. 4
x=0
pp
<7”’“> =0 oy >0 C.5
X=Xe
Now, applying central differences to the derivatives in Egs. C. 1 to C. 4:
d*pp piT' —2p + T C 6
T = A e :
opp P —pi" c 7
3, o e :
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V4
1 p leD
1 2 3 4 5 6 ., N
V4
0 Xp XeD

(a) Logarithmic transformation for the radial flow problem.

0 1 2 3 4 5 N N+

0 Xp XeD

(b) Representation of the imaginary nodes used for the
boundary conditions.

0 1 2 3 4 N N+1
m+1 —»«—»«—»«—747%74—

I B )

0 1 2 3 4 N N+1

(c) Numerical approximation used for the time derivatives.

Figure C. 1. Schematization of the numerical discretization used for radial flow.

the resulting model is

P — 2+ )M + P = —wiGp — AP ) e C. 8
where
Ax? . .
/11' = EGZAx(l_l) , w; = szeAx(l_l) S e C.9

Similarly, considering that

dPp _ Di+1 — Pi-1
d0x 2Ax




the boundary conditions are expressed as

Pi+1 — Pi-1

=-1-Gp ,
ZAX ve0 15
Pi+1 ~ Pi-1 —0 .
ZAx x=xe --------------------------------------------------------------------

Finally, the numerical model is:

inx=0fori=1

-2+ A)pMt + 2pttt = —2Ax + Gp(2Ax — wy) — 4pT"

inx=x,fori=N

2oy — 2+ 2A)pt = =G (2Ax + wy) — xR,

ingeneralfor1 <i <N

Pttt — 2+ )p™ +piit = —wiGp — A4pT"

Here it is seen that the resulting model is a tridiagonal system with:

a, =0, a; =1, ay =2,
bi:_(2+/1i)r
=2, =1, cy =0,

dy = —2Ax + Gp(2Ax — w,) — ApT* ,  d; = —wiGp — Ap™

dN = _GD(ZAX + (,L)N) - ANp;Vn .

For its solution the Thomas method is suggested.

.1

.12

.13

. 14
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