UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO

Vniver4dad Nacional AvFnºma de Mexico

PROGRAMA DE MAESTRIA Y DOCTORADO EN INGENIERÍA

FACULTAD DE INGENIERIA

EVALUACIÓN DEL COMPORTAMIENTO ESTRUCTURAL DE UNA ESTRUCTURA CONTINUA TIPO CAJON DE CONCRETO REFORZADO EN SUELO COMPRESIBLE

T E S I S

QUE PARA OPTAR POR EL GRADO DE:

MAESTRO EN INGENIERIA INGENIERIA CIVIL - ESTRUCTURAS

PRESENTA:

JULIO CESAR OSORIO SANTIAGO

TUTOR: DR. MARIO E. RODRÍGUEZ

Octubre 2007

JURADO ASIGNADO:

Presidente:	Dr. Gabriel Auvinet Guichard
Secretario:	Dr. Oscar López Bátiz
Vocal:	Dr. Mario E. Rodríguez Rodríguez
1 ^{er.} Suplente:	Dr. Eduardo Reinoso Angulo
2 ^{do.} Suplente:	Dr. Jaime García Pérez

Lugar o lugares donde se realizó la tesis:

Instituto de Ingeniería de la UNAM.

TUTOR DE TESIS:

Dr. Mario E. Rodríguez R.

FIRMA

A mi señor Jesucristo mi salvador.

A mis padres Elizabeth y Noe.

A mis tres grandes amores Perla Koral, Cesar Samuel y Perla Elizabeth.

A mis hermanos Ricardo, Norma, Sandra, Ivonne y Adriana

A cada uno de mis compañero del posgrado que me apoyaron durante la elaboración de este trabajo, Roque, Miguel, Humberto y Emilio.

Un agradecimiento especial al Dr. Mario Rodríguez por su dirección, apoyo, confianza y darme la oportunidad de terminar lo que parecía imposible.

Índice

	Res	sumer	ח1
1	Intr	oduco	ción2
	1.1	Antec	edentes2
	1.2	Objet	ivos y alcances6
2	P	lante	amiento del Problema7
	2.1	Cond	iciones geotécnicas del sitio7
	2.2	Hund	imiento regional11
	2.3	Evalu	ación de la deformación del cajón en el periodo 1987 al 2001,.12
3	Е	studi	os previos15
	3.1	Revis	ión del provecto original (Colinas de Buen S.A. de C.V. 1989)15
		3.1.1	Geometría de las secciones
		3.1.2	Armado de las secciones17
		3.1.3	Tipos y características de juntas17
		3.1.4	Ubicación de las juntas
		3.1.5	Materiales utilizados
	3.2	Evalu	ación y levantamientos de daños en el cajón
		3.2.1	Clasificación de los daños observados en las estructuras
			que integran el cajón20
		3.2.2	Fallas en las juntas20
		3.2.3	Fallas en los tramos24
4	Δ	nális	is y revisión estructural del cajón
	4.1	Tipific	cación de la estructura del caión
	4.2	Identi	ficación y evaluación de cargas actuantes
	4.3	Mode	lo no lineal del cajón del metro de los casos en estudio
		4.3.1	Modelo esfuerzo-deformación del acero de refuerzo32

4.3.2 Modelo esfuerzo-deformación del concreto confinado......34

	4.3.3	Capacidad de deformación máxima del concreto confinado	35	
	4.3.4	Diagramas momento curvatura de las secciones tipo cajón36		
	4.3.5	Curvatura última de la sección tipo cajón	.43	
	4.3.6	Modelo analítico empleado para el análisis de la estructura	46	
		4.3.6.1 Modelo analítico con elementos tipo <i>frame</i>	47	
		4.3.6.2 Modelos analítico con elementos Shell cascaras	53	
4.4	Limita	aciones de los modelos analíticos	58	
5 E	Evalua	ación analítica del comportamiento del cajón y		
(compa	aración con el comportamiento observado	59	
5.1	Evalu	ación Analítica del comportamiento del cajón y comparación		
	con e	el comportamiento observado	.59	
	5.1.1	Tramo caso "A"	.56	
	5.1.2	Tramo caso "B"	64	
5.2	Anális	sis de alternativas de solución	67	
6 (Conclu	usiones y recomendaciones7	1	
6.1	Conc	lusiones	72	
6.2	Reco	mendaciones	74	
Anex	o A Se	cciones tipo tramos en estudio caso "a" y "b"7	'5	
Anex	<mark>o B</mark> Cá	Iculo de la deformación del Metro utilizando8	1	
Anex	<mark>o C</mark> Eva	aluación y levantamientos de daños en estructura8	8	

Referencias......121

Resumen

Debido al hundimiento regional que presenta el valle de México, las estructuras cimentadas en esos suelos sufren deformaciones que afecta su funcionamiento estructural, cambiando sus condiciones geométricas originales, y generando flexión, torsión, fuerzas cortantes y normales. Estos efectos son importantes en estructuras continuas de concreto reforzado como es el caso en estudio. Se realizó una evaluación de campo de los tramos para clasificar y tipificar los tipos de fallas observadas, se elaboraron modelos analíticos que consideran la rigidez efectiva de las secciones, el comportamiento no-lineal de los materiales, concentrando la no-linealidad de los elementos en articulaciones plásticas. Se validó el modelo analítico con los daños observados en campo y se proponen alternativas de solución, finalmente se proponen recomendaciones para mejorar el comportamiento de la estructura.

Capítulo 1 Introducción

1.1 Antecedentes

En la ciudad de México, a lo largo de la historia, el transporte ha facilitado el traslado de personas y mercancías, pero también ha permitido el intercambio de ideas y costumbres. El transporte de la ciudad ha evolucionado como se muestra en la tabla 1.1 generando una red de comunicación e intercambio cultural a través de las distintas épocas.

Época	Transporte
Prehispánica	Las canoas que navegan por lo canales de la gran Tenochtitlan.
En el siglo XVIII	carruajes y diligencias
La primera mitad del siglo XIX	los ómnibus, que eran grandes carretones tirados por animales
1856	Tranvías de tracción animal conocidos como tranvía de mulas.
La segunda mitad del siglo XX	Autobuses y transportes eléctricos
1967	El Metro de la ciudad de México, con recorrido subterráneo.
La época de los 80	Modernos trolebuses serie 9000
En 1983	Conclusión de la líneas 1, 2, 3 La construcción de las líneas 6 y 7
En 1984	La ampliación de la líneas 6 y 7 Inicia la construcción de la línea 9
En 1985	El tren ligero línea "A"
En 1988	El tren ligero línea "A"
En 1994	Se inicia la construcción de la línea B
En 1995	Modernos trenes modelos TE-90 y TE-95 línea Taxqueña xochimilco.

TABLA 1.1 EVOLUCION DEL TRANSPORTE EN LA CIUDAD DE MEXICO, EN DISTINTAS EPOCAS.

Para cada medio de transporte mencionado ha sido necesario construir o adecuar la infraestructura para la operación y mantenimiento, de los equipos garantizando en todo momento la seguridad de los usuarios.

En el caso del metro de la ciudad de México se construyeron líneas subterráneas, superficiales y aéreas, o una combinación de estas soluciones. En la línea A, tramo Pantitlan La Paz se optó por una solución de superficie y trenes de ruedas férreas en lugar de neumáticos, ya que se reducían los costos de construcción y

mantenimiento. Esta línea en particular necesitó de una estructura continua tipo cajón de concreto reforzado, que como se explicará más adelante ha sido afectada por el hundimiento regional de la zona lacustre del Valle de México.

En esta línea Pantitlan-la Paz se centra este estudio particularmente en dos casos:

a) Caso "A", tramo del cadenamiento 16+100 al 18+280 entre las estaciones Guelatao-Peñón Viejo, en este primer tramo se presentaron los hundimientos regionales como se indica, cadenamiento 16+500 del orden de 5m, en el cadenamiento 17+300 se alcanzó una magnitud del orden de 63 cm en la cercanía del peñón viejo, en un periodo de observación de 10 años. Esta diferencia de hundimientos genera asentamiento diferenciales del orden de 4m, ante lo cual el cajón del metro presenta deformaciones, fisuras, agrietamiento y fracturas, lo cual motivo esta investigación.

b) Caso "B", comprendido entre los cadenamientos 21+200 al 23+000 entre las estaciones Santa Marta-los Reyes, en este tramo los hundimientos son menores al caso anterior del orden de 21cms y 1.45m, generando asentamientos diferenciales del orden de 1.2m; sin embargo, la observación de campo indica que se presenta daños en la estructura del cajón, similar al observados en el caso "A".

Se investigó y estudió el proyecto original realizado por la empresa Colinas de Buen en el año 1987, lo cual permitió conocer las características de los materiales, la geometría de las secciones, el tipo de juntas existentes y su ubicación, con esta información se generaron los modelos matemáticos para comprender los mecanismos que se están presentando.

La línea "A" del Metro en el caso en estudio es de tipo superficial, tiene una trayectoria NE-SW, como se muestra en la figura. 1.1 y 1.2, está desplantada sobre lo que fue el lago de Texcoco y la laguna de Santa Marta, tocando el cerro del peñón y las faldas de la sierra de Santa Catarina. Su recorrido se caracteriza por presentar profundos estratos arcillosos con alto contenido de agua, baja resistencia, y gran deformabilidad, en contraste también atraviesa la denominada zona de transición, constituida predominantemente por estratos arenosos y limo-arenosos intercalados con capas de arcilla lacustre de espesor variable entre decenas de centímetros y pocos metros.

Figura 1.1 Línea A del STC, carta corográfica, Instituto de Ingeniería UNAM (2007)

Figura 1.2 Línea A del STC, carta corográfica, Instituto de Ingeniería UNAM (2007)

Está línea inicio operaciones el 12 de agosto de 1991, agregó diez estaciones y 17 kilómetros de longitud a la red del Metro de la ciudad de México. La estación Pantitlán la pone en correspondencia con las líneas 1, 5 y 9.

Con 20 años de vida útil, se han presentado movimientos diferenciales del suelo, a lo largo del tramo delimitado por las estaciones Guelatao-los Reyes, generando

deformaciones en la estructura del cajón y oquedades bajo la losa, induciendo esfuerzos para los cuales la estructura no fue diseñada, así como desplazamientos relativos entre las diferentes secciones, los cuales han ocasionado las deformaciones horizontales de las vías, el agrietamiento de los muros y finalmente provocó el descarrilamiento del tren en marzo del año 2002.

Como consecuencia de estos problemas detectados entre las estaciones Guelatao-Peñón Viejo, se han realizado diversos trabajos de reparación del cajón del Metro, los cuales han sido solamente soluciones temporales, sin que hasta ahora se conozca la evolución del fenómeno.

Los problemas generados por los asentamientos diferenciales en el cajón del Metro se manifiesta cada vez con mayor frecuencia y se debe fundamentalmente al tipo de suelo de la zona y al proceso de hundimiento regional que afecta a toda la zona lacustre del valle de México, los cuales son evidentes al circular por la vialidad coincidente, calzada Ignacio Zaragoza, ver figura 1.3, donde se observa la ondulación de la superficie de rodamiento que obliga al conductor a disminuir la velocidad

Figura 1.3 ondulaciones en la calzada Ignacio Zaragoza.

Se estudió el problema planteado, realizando las siguientes actividades:

En el capítulo dos se revisan las condiciones geotécnicas y la estratigrafía de los tramos en estudio, el hundimiento regional de la zona, se evaluó la deformación del cajón del periodo comprendido entre 1987 al 2001.

En el capítulo tres se realizan los estudio previos necesarios para conocer; las características de la estructura, las dimensiones de las secciones, las cuantías del

acero de refuerzo, los tipos y características de las juntas, las propiedades de los materiales utilizados en la construcción.

Se presenta la evaluación del estado actual del cajón del Metro, clasificando los daños observados a lo largo de los tramos en estudio.

En el capítulo cuatro se realiza la tipificación de la estructura, se identificaron las cargas que afectan al cajón del Metro, se elaboraron modelos analíticos para entender el comportamiento de las juntas de construcción y expansivas, utilizando el método de elementos finitos (MEF) y paquetería especializada en análisis y diseño estructural, SAP2000 *Advanced Computers and Structures* (2007), los resultados del análisis fueron comparados con el comportamiento observado en campo.

Se estudió el comportamiento del cajón del Metro con modelos analíticos, utilizando elementos tipo *frame*, se incluyó el comportamiento no lineal de los materiales en los modelos mencionados.

En el capítulo cinco estos modelos se evalúan con los daños observados en campo, se obtuvo una buena correlación entre las fallas observadas y las analíticas, lo cual permitió proponer alternativas de solución y observar su comportamiento.

En el capítulo seis se muestran las conclusiones obtenidas del análisis de los modelos analíticos, se propone una serie de recomendaciones para mejorar el comportamiento del cajón del Metro.

1.2 Objetivos y alcances

El objetivo principal de este estudio fue proponer medidas para mejorar el comportamiento observado en la línea "A" del Metro en sus tramos Guelatao-Peñón Viejo (caso "A"), y Santa Marta-los Reyes (caso "B"), provocado por el hundimiento regional de la zona. Como objetivos secundarios se evaluaron los daños existentes en las estructuras que integran el cajón del Metro, se desarrollaron modelos analíticos para el análisis de las diferentes secciones estructurales del cajón del Metro.

Capítulo 2 Planteamiento del problema

2.1 Condiciones geotécnicas del sitio

La estratigrafía del subsuelo, a lo largo de los tramos en estudio caso "A" y caso "B", se elaboró con base en la información geotécnica proporcionada por el Sistema de Transporte Colectivo (STC), proveniente del proyecto original, Colinas de Buen (1987), de estudios previos realizados por la compañía Integradora de Procesos de Ingeniería, S.A de C.V. (IPISA, 2001) y LAC Mecánica de Suelos y Cimentaciones S.A. de C.V. (LAC, 2005), así como, de los sondeos contenidos en la base de datos del Sistema de Información Geográfica para Sondeos Geotécnicos, SIG-SG (Laboratorio de Geoinformática, Instituto de Ingeniería, UNAM)

Los tramos en estudio, están afectados por la presencia de la Sierra de Santa Catarina, especialmente por el Cerro del Peñón Viejo, para el tramo caso "A", y por otros cerros de origen volcánico, que afectan especialmente al tramo caso "B"

En las figuras 2.1 y 2.2 se presentan los cortes por tramos en estudio, en el mismo corte se indica la ubicación de las estaciones, las juntas de construcción, las juntas de expansión y los cadenamientos referidos al trazo geométrico de la Línea A

(a) Estratigrafía del tramo caso "A"

Costra Superficial (CS). Desde la superficie del terreno hasta 2.0 m de profundidad, se encuentra el relleno superficial constituido por limos arenosos (tepetate) de color café, con 20% de contenido natural de agua. Entre 2.0 y 4.6 m de profundidad, se encuentra un estrato de arena fina arcillosa compacta, con contenido de agua de 40%. Entre los cadenamientos de 16+800 al 17+500, se reduce por la presencia del Peñón del Marqués y continúa hasta la estación Peñón Viejo

Formación Arcillosa Superior (FAS). Del km 15+620 al 16+800 y de 4.6 hasta 65.0 m de profundidad, se ubica un estrato arcilloso con una consistencia de blanda a muy blanda, de colores verde olivo, café oscuro, gris olivo y café rojo; intercalada con lentes de arena fina, gris y vidrio volcánico, con un contenido de agua que varía entre 100 y 370%. A la profundidad de 12 m se presenta un lente de arena de 3m de espesor. En el cadenamiento donde interactúa con el Peñón del Marqués se reduce hasta 33.4 m y del km 17+500 hasta la estación Peñón viejo aumenta hasta 79.50 m

Capa Dura (CD). Del km 15+620 al 16+800, se infiere, por columna litográfica de pozos de agua, que la capa dura se encuentra a unos 80 m de profundidad, con un espesor de 3 a 4 m. Del km 16+800 al 17+500 y de 33.4 hasta 35.5 m de profundidad, se encontró un limo arenoso, color gris, con un porcentaje de finos de 35%, de arena de 37% a 48% y de grava de 38%. Del km 17+500 hasta el 18+500, a una profundidad de 80 m, se encuentra una formación limo arenosa de 8 a 10 m de espesor

Formación Arcillosa Inferior (FAI). Del km 17+500 hasta el 18+500, a una profundidad de 90 m, se encuentra una formación arcillosa, la cual se desconoce su espesor al no encontrarse los depósitos profundos

(d) Estratigrafía del tramo caso "B"

Costra Superficial (CS). Del km 21+300 al 22+600, desde la superficie del terreno hasta una profundidad aproximada de 3.0 m; se encontró el relleno superficial constituido por limos arenosos (tepetate) de color café. De 3.0 a 5.0 m de profundidad, se detectó una formación de arcilla arenosa con grava de tezontle, color café amarillento, con contenido de agua que varía de 20% a 160%. A partir del km 22+600 al 22+980 la costra superficial aumenta a 5.5 m, con contenido de agua que varía de 35 a 100%.

Formación Arcillosa Superior (FAS). Del km 21+300 al 22+260 y de 5.0 hasta 30.0 m de profundidad, se encontró un estrato de arcilla de consistencia muy blanda a blanda, colores verde olivo, café oscuro y gris olivo, con lentes de arena fina y alto contenido de microfósiles. El contenido natural de agua varía de 100% a 350%, con un valor medio de 200%.

Del km 22+260 al 22+600 y de 5.0 hasta 12.5 m de profundidad, se encontró un estrato de arcilla de consistencia muy blanda, colores café rojizo, verde olivo y gris, con poca arena fina y microfósiles. El contenido de agua varía entre 30 y 535%, con un promedio general de 225%. De 12.5 a 14.6 m de profundidad, se encontró un lente de arena fina arcillosa, muy compacta, con contenido de agua de 20%. A partir de 14.6 hasta 40.6 m de profundidad, se encontró un estrato de arcilla de consistencia muy blanda de colores café rojizo y gris olivo, con lentes de arena fina, vidrio volcánico y alto contenido de microfósiles. El contenido de agua varía de 200 hasta 340%, siendo el promedio general del orden de 200%.

Del km 22+600 al 22+980 y de 5.5 hasta 40.3 m de profundidad, se encontró un estrato de arcilla de consistencia muy blanda a blanda, colores café rojizo, gris olivo y verde olivo, con lentes de arena fina, vidrio volcánico y alto contenido de microfósiles. El contenido de agua varía de 100% hasta 350%, con un promedio general del 200%.

Capa Dura (CD). Del km 21+300 al 22+260 y de 30.0 hasta 40.6 m de profundidad, se encontró un estrato de arena fina, de color café grisáceo, de compacidad media a muy compacta, poco arcillosa y con lentes de vidrio volcánico. El contenido de agua varía de 10 hasta 50%, siendo el promedio general del orden del 25 %.

Figura 2.1 Corte estratigráfico tramo caso "A"

Figura 2.2 Corte estratigráfico tramo caso "B"

2.2 Hundimiento regional

Se presenta el análisis geoestadístico de la configuración espacial de hundimiento regional, durante el período comprendido entre los años 1998 a 2005, originado por los estratos de suelo lacustre en la Zona Oriente de la Ciudad de México, particularmente en la zona donde se ubica la línea "A" del Metro. Los datos empleados para este estudio corresponden a nivelaciones topográficas en bancos de nivel superficial efectuadas por la Comisión de Aguas del Valle de México.

La aplicación se realiza en un área aproximada de 59.13 km², en el oriente de la Ciudad de México donde se ubica la Línea "A" del Metro, mostrada en la Figura 2.3

En la misma Figura 2.3, se indica la ubicación de los 127 bancos de nivel superficial utilizados como soporte de datos, donde las coordenadas (x,y) definen la posición de los pozos en el sistema de referencia geográfico UTM. Como se observa en la Figura 2.3, hay ausencia de datos en el tramo caso "B"

La interpretación de los resultados numéricos obtenidos en la estimación no es sencilla, por lo que conviene recurrir a la técnica de mapeo y construir un mapa de contornos a partir de los valores puntuales estimados. Este mapa permite apreciar, en forma visual, la distribución espacial de los asentamientos dentro del área estudiada, Figura 2.3

Figura 2.3 Mapa de contornos del hundimiento estimado (Período 1998-2005)

En este mapa se aprecia que las zonas de menores hundimientos coinciden aproximadamente con la ubicación del cerro del Marqués y de la sierra Santa Catarina, asimismo, los hundimientos más pronunciados se presentan en aquellas zonas donde existen espesores de arcilla considerables.

La configuración del hundimiento regional (obtenida a partir de nivelaciones en bancos de nivel ubicados alrededor de la Línea "A") que se observa en la Figura 2.3 a lo largo de los tramos en estudio presenta una distribución que concuerda con los perfiles de deformación de los tramos en estudio como se ilustra en las figuras 2.4, 2.5, 2.6 y 2.7.

2.3 Evaluación de la deformación del cajón del periodo comprendido entre 1987 al 2001

Para poder evaluar la deformación del cajón del Metro en los tramos en estudio, se obtuvo el perfil de construcción del proyecto original, Colinas de Buen (1989), y la nivelación realizada por la empresa Integradora de proyectos de Ingeniería S.A. de C.V. IPISA (2001). Esta información se muestra en el anexo B (cálculo de la deformación del Metro).

Para el tramo caso "A" se dibujó el perfil de las nivelaciones de los años 1987 y 2001, figura 2.4. Se observa el punto "duro" en el cadenamiento 17+300 donde el hundimiento regional es mínimo, en el kilómetro 16+600 los hundimientos son máximos.

Figura 2.4 Nivelación de los años 1987 y 2001, tramo caso "A"

Por diferencia de estos niveles se calculó la deformación del tramo caso "A", en la figura 2.5 se observa la deformación que presenta el cajón del Metro.

Para el tramo caso "B", se dibujó el perfil de las nivelaciones de los años 1987 y 2001, figura 2.6, la cual ilustra la variación del hundimiento regional a lo largo de su longitud.

Por diferencia de estos niveles se calculó la deformación del tramo caso "B", en la figura 2.7 se observa la deformación que presenta el cajón del Metro.

Figura 2.7 Deformación del cajón del metro tramo caso "B"

El hundimiento regional está provocado por la sobre explotación de los mantos acuíferos, cerca de los tramos estudiados se encontró que existen grupos de pozos de bombeo, actualmente continúan en operación por parte de la DGCOH, se ubican en las partes bajas del cerro del Peñón Viejo, de los cuales 9 se localizan cercanos al tramo caso "A", 5 de ellos del lado sur y 4 del lado norte.

La distancia de cada pozo a la línea del Metro es variable, los más cercanos se encuentran aproximadamente a 400m de distancia, es decir, aproximadamente a unas 3.6 veces la profundidad de succión o del nivel dinámico de los pozos.

Existe una batería del orden de 18 pozos, denominados del grupo de Chimalhuacán, en el Estado de México, que tiene influencia en el tramo caso "B", están a distancias variables, los pozos se encuentran aproximadamente a 500m de distancia del eje de la estructura tipo cajón.

Capítulo 3 Estudios previos

3.1 Revisión del proyecto original (Colinas de Buen S.A. de C.V. 1989)

Se revisó, analizó y procesó la información existente del proyecto ejecutivo (Colinas de Buen, 1989)

Con la revisión y el análisis de esta documentación, se integró la información siguiente: geometría de las secciones estructurales, materiales utilizados, tipo y características de las juntas.

3.1.1 Geometría de las secciones

En los tramos en estudio existen doce secciones estructurales tipo, una sección tipo con celdas de compensación se observa en la figura 3.1. Los datos geométricos, dimensiones y posición de las secciones se presentan en el anexo A.

Las diferencias más importantes entre las distintas secciones son, el ancho de la losa, la altura de los muros y sus propiedades geométricas.

Figura 3.1 Sección tipo del cajón con celda de compensación

El perfil de la figura 3.2 (IPISA, 2001) ilustra la ubicación de las secciones en el tramo "A" (cadenamiento del 16+100 al 18+280) y los niveles correspondientes a la corona del muro norte.

La figura 3.3 representa el perfil topográfico del tramo "B" (cadenamiento del 21+250 al 22+990).

Para el análisis estructural se escogieron veinte cadenamiento representativos de los tramos en estudio, en cada uno se calculó su diagrama momento-curvatura y rigidez efectiva. los cuales se utilizaron en los modelos analíticos.

Figura 3.2 Perfil de la sección del cajón en el tramo "A", IPISA (2001)

Figura 3.3 Perfil de las secciones del cajón en el tramo "B", IPISA (2001)

3.1.2 Armado de las secciones

Se revisaron los armados de las distintas secciones y se encontró que las cuantías de acero de refuerzo horizontal, varían entre 0.3% y 0.2%, Colinas de Buen (1989). Con lo cual se concluyó que los muros fueron armados por cuantía mínima, no por requerimientos de resistencia. En la figura 3.4 se muestra la sección tipo B, su armado es característico del cajón del Metro. Básicamente tiene varillas del No. 3 a cada 30cm de separación, en las uniones de los muros con las losas existe un refuerzo adicional de 4 varillas del No. 4 como se observa en la figura.

SECCION ESTRUCTURAL TIPO B

Figura 3.4 Sección tipo del cajón con celda de compensación (cadenamiento del 16+280 al 16+385)

3.1.3 Tipos y características de juntas

Las juntas que están a lo largo de los tramos en estudio, son de dos tipos, juntas de construcción y juntas de expansión. En la figura 3.5 se muestra una junta de construcción tipo. Se observa que la abertura original de 10 cm ya fue absorbida por los movimientos diferenciales.

Figura 3.5 Junta de construcción (cadenamiento 19+035)

Las juntas de construcción se distribuyen a intervalos de 50 a 100m, básicamente consisten en ranuras de 10cm de abertura en los muros. La losa a nivel de subrasante le da continuidad a las secciones, funciona como una articulación física, ya que permite rotación entre las secciones, y trata de mantener una superficie adecuada para el balasto y las vías.

En el cadenamiento 17+490 la losa falló por cortante, generó un desplazamiento relativo vertical como se ilustra en la figura 3.6.

Figura 3.6 Junta de construcción (cadenamiento 17+490)

La junta de expansión tiene forma de Z invertida, presenta una separación horizontal entre los muros de 10cm. En la figura 3.7 se observa el agrietamiento provocado por el asentamiento diferencial, el diente trabajó como ménsula y se produjo la falla por cortante.

Figura 3.7 Junta de expansión (cadenamiento 17+020)

La forma de la junta permite un deslizamiento horizontal por efecto de la temperatura. El hundimiento regional provocó al diente flexión y cortante. El diente tiene poca longitud y un gran peralte, por lo que su falla está controlada por corte, el hundimiento del suelo y

la deformación de la estructura del cajón continúa incrementándose, llevando al diente a la falla.

3.1.4 Ubicación de las juntas

La ubicación de las juntas de construcción y juntas expansivas se muestran en la tabla 3.1, Colinas de Buen (1987), en esta tabla JC representan juntas de construcción, JE juntas de expansión, P representa puertas cercanas a la junta y H huecos cercanos a la junta.

Tramo Guelatao Peñón Viejo. Tramo Santa Marta Los Reyes. tipo de junta tipo de junta cad. cad. 16+191 JC 21+285 JC 16+291 JE 21+310 JE JC 21+335 JC 16+391 16+492 JE 21+367.00 JE JC P 16+591 21+400.00 JC 16+690 JE 21+450 JE JC P 21+500 JC 16+792 16+841 JC H 21+550 JE 16+891 JE 21+575 JC 16+941 JC_H 21+600 JE 16+991 21+650 JC P JC 17+041 JC H 21+700 JE 17+091 JE 21+727 JC 17+154 JC H 21+800 JE JC P 17+191 21+825 JC 17+208 JC ESP 21+850 JE 17+241 JC_H 21+900 JC 17+291 21+950 JC JE 17+341 JC H 22+000 JC 17+391 JC P 22+050 JE JC_H 17+441 22+150 JC 17+491 22+250 JE JE 17+541 JC_H 22+300 JC JC P 17+591 22+350 JE JC H 22+400 JC 17+641 17+691 JE 22+450 JE JC H 17+741 22+500 JC JC_P 17+791 22+550 JE 17+841 JC_H 22+600 JC 17+891 JE 22+650 JE 17+941 JC H 22+750 JE JC_P 17+993 22+800 IC 18+091 JE 18+191 JC P

,	,
TADLA 3. I UDICACIUN DE JUNTAS D	E CONSTRUCCIÓN TEAPANSIVAS.

3.1.5 Materiales Utilizados

En los planos del proyecto original, Colinas de Buen (1989), se especifica que el concreto utilizado en la construcción del cajón tiene una resistencia especificada (f_c) de 250 kg/cm², y que el acero de refuerzo tiene una resistencia a la fluencia (fy) de 4200 kg/cm². En este estudio se emplearon dichos valores, debido a que no se cuenta con valores experimentales.

3.2 Evaluación y levantamientos de daños en el cajón

3.2.1 Clasificación de los daños observados en las estructuras que integran el cajón

El cajón del Metro tiene 20 años de vida útil, a la fecha presenta movimientos diferenciales, generando deformaciones, agrietamientos, fracturas, oquedades bajo la losa, y finalmente deformaciones de las vías, estas deformaciones provocaron el descarrilamiento del tren en el año 2002.

Estas fallas se identificaron y clasificado de la siguiente manera:

3.2.2.- <u>Fallas en las juntas</u>: Estas fallas se presentan en las juntas constructivas y de expansión. El daño observado determina la siguiente subdivisión.

a).- Falla por compresión del patín superior: este tipo de falla se presenta cuando el hundimiento regional del suelo genera desplazamiento relativo entre las secciones adyacentes, induce una rotación de la junta, la parte superior de los muros se unen cerrando la abertura, posteriormente genera un choque de los muros en su parte superior, esto provoca despostillamiento de la zona en contacto, la figura 3.8 muestra este tipo de falla.

Figura 3.8 Falla por compresión del patín superior, junta expansiva (foto izquierda, cadenamiento 18+680) y de construcción (foto derecha, cadenamiento 19+035)

El mecanismo que genera este tipo de falla se muestra en la figura. 3.9, se observa la condición original de la junta, figura 3.9 (a), con el paso del tiempo se presenta el asentamiento del suelo, figura 3.9 (b), el peso que soporta la estructura genera que el cajón del Metro, se deforme tomando la configuración del suelo, figura 3.9 (c)

Figura 3.9 Mecanismo de formación de la falla por compresión del patín superior.

b).- Falla por separación del patín superior: esta falla se presenta cuando el asentamiento regional del suelo forma desplazamientos relativos entre las secciones, generando una rotación de la junta, las partes superiores de los muros se separan como se observa en la figura 3.10.

Figura 3.10 Falla por separación del patín superior, junta expansiva (cadenamiento 22+250)

El mecanismo que genera esta falla se muestra en la figura. 3.11, se observa la condición original de la junta, figura 3.11 (a), con el paso del tiempo se presenta el asentamiento del suelo, figura 3.11 (b), el peso que soporta la estructura genera que el cajón del Metro, se deforme tomando la configuración del suelo, figura 3.11 (c).

Figura 3.11 Mecanismo de formación de las fallas por separación del patín superior

c).- Falla a compresión por desplazamiento horizontal: se presenta por hundimiento en longitudes importantes del suelo, los desplazamientos horizontales tienden a cerrar la abertura de las juntas en forma constante. En el caso mostrado en la figura 3.12, la losa de rasante falla por aplastamiento.

Figura 3.12 Falla a compresión por desplazamientos horizontales (cadenamiento 22+450)

En la junta expansiva mostrada en la figura 3.12 (cadenamiento 22+450), la foto de la izquierda (tomada el 25/01/07), y la foto de la derecha (tomada 06/06/07) ilustra como los movimientos diferenciales siguen incrementándose.

d).- Falla a tensión de la losa de rasante: la deformación del cajón incrementa su longitud, lo que genera esfuerzos de tensión en algunas zonas de la estructura, la losa de la rasante falla por la ruptura del acero y los muros tienden a separarse. Se observa en la figura 3.13 (cadenamiento 17+495).

Figura 3.13 Falla a tensión de la losa (cadenamiento 17+495)

e).- Falla por desplazamiento vertical: en las juntas de construcción se presenta asociada a movimientos verticales relativos, esta deformación induce la falla de la losa de rasante, figura 3.14 (foto de la izquierda).

En la junta de expansión, el movimiento vertical, obliga a funcionar al diente como una ménsula, este trabajo del diente provoca agrietamiento, fisuras y la falla. Este tipo de falla se observa en la figura 3.14.

Figura 3.14 Falla por desplazamientos verticales

La foto de la izquierda (cadenamiento 17+495) muestra una junta de construcción, la losa del cajón falló por corte, en la foto de la derecha (cadenamiento 17+020), junta expansiva, la falla es por cortante.

3.2.3.- Fallas en los tramos de los muros localizados entre juntas: las fallas se presentan en la estructura, al actuar los hundimientos diferenciales, el cajón trabaja como una viga con fundación elástica, éstas se pueden clasificar de la siguiente manera:

a)- Falla por momento negativo: esta falla es originada por flexión, el acero de la parte superior de los muros falla por tensión, el concreto de la losa, para lograr el equilibrio, trabaja a compresión. Esta falla tipo se observa en la figura 3.15

Figura 3.15 Falla por tensión momento negativo (cadenamiento 21+355), la fuerza que puede desarrollar el área de acero es pequeña comparada con la que puede genera la losa de cimentación, el acero fluirá y llegar a su ruptura antes que el concreto se aplaste

El mecanismo que explica la falla en los muros por tensión se muestra en la figura 3.16, se observa la condición original de la junta, figura 3.16 (a), con el paso del tiempo se presenta el asentamiento del suelo, figura 3.16 (b), el peso que soporta la estructura genera que el cajón del Metro, se deforme tomando la configuración del suelo, figura 3.16 (c)

Figura 3.16 Mecanismo que ilustra la falla por momento negativo, en la parte superior del muro el acero fluye y llega a la ruptura

b).- Falla por momento positivo:

Caso I. la falla de los muros a compresión es generada por flexión, la losa de cimentación trabaja a tensión y la parte superior de los muros a compresión. En la losa existe una cuantía de acero que genera fuerzas a tensión superiores a las fuerzas de compresión en los muros, la falla se presenta por aplastamiento del concreto y deformaciones fuera del plano, esta falla se observa claramente en las figura 3.17

Figura 3.17 Falla por momento positivo, compresión en los muros (cadenamiento 21+280)

El mecanismo que explica este tipo de falla en los muros por compresión, se muestra en la figura 3.18, se observa la condición original de la junta, figura 3.18 (a), con el paso del tiempo se presenta el asentamiento del suelo, figura 3.18 (b), el peso que soporta la estructura genera que el cajón del Metro se deforme, tomando la configuración del suelo, figura 3.16 (c)

Figura 3.18 Mecanismo que ilustra la falla por momento positivo, los muros sufren aplastamiento y deformaciones fuera del plano

Caso II:- la flexión provoca que la losa de cimentación trabaje a tensión y la parte superior de los muros a compresión, la falla se presenta en la losa y crea una grieta ascendente, como se observa en las figura 3.19.

Figura 3.19 Falla por compresión en los muros del cajón del metro, (cadenamiento 17+143)

El mecanismo que explica este tipo de falla se muestra en la figura 3.20, se observa la condición original de la junta, figura 3.20 (a), con el paso del tiempo se presenta el asentamiento del suelo, figura 3.20 (b), el peso que soporta la estructura genera que el cajón del Metro, se deforme tomando la configuración del suelo, figura 3.20 (c).

Figura 3.20 Mecanismo que ilustra la falla por momento positivo, la losa falla por tensión

Los tipos de fallas mencionadas en la clasificación anterior, se presentan a lo largo de los tramos en estudio caso "A" y caso "B".

En la figura. 3.21 se observan las fallas detectadas en los recorridos de campo, para el tramo caso "A", la ubicación y tipo de falla se puede consultar en la tabla 3.2.

Figura 3.21 planta del tramo caso "A"

En la figura 3.22 se observan las fallas detectadas del tramo caso "B", en la tabla 3.2 se encuentran los cadenamiento y su clasificación.

Figura 3.22 planta del tramo caso "B"

En el anexo "C" (Evaluación y levantamientos de daños en la línea "A" del Metro), se presenta los resultados obtenidos de la evaluación de campo y el reporte fotográfico.

TABLA 3.2 CLASIFICACION DE LOS DISTINTOS TIPOS DE FALLA OBSERVADAS Y SU UBICACIÓN EN LOS TRAMOS EN ESTUDIO.

	Tramo caso A		Tramo caso B	
Clasificación de los distintos	Guelatao- F	Peñón Viejo	Santa Marta-	Los Reyes.
	Ubicación e	n kilómetros	Ubicación en	kilómetros
	Fallas en la	as juntas		
1.1 Falla por giro positivo	16+240		21+337	21+600
	16+340		21+369	
	16+590		21+492	
	16+840		21+402	
1.2 Falla por giro negativo			22+250	
1.3 Falla a compresión por desplazamiento horizontal:	17+994		20+180	22+450
			22+350	22+550
1.4 Falla a tensión de la losa de	17+495			
1.5 Falla por desplazamiento vertical	17+620 17+340 17+495	17+994 17+020	22+250	
	Fallas en los	Tramos		
	16+232	17+040	21+355	22+260
-	16+235	17+210	21+410	22+650
-	16+284	17+510	21+540	22+725
-	16+556	17+520	21+700	22+730
-	16+620	17+560	21+860	22+740
2.1- Falla por momento negativo	16+700	17+720	21+910	22+780
-	16+820	17+940	22+008	22+850
-	17+027	17+980	22+090	22+900
-				22+960
	2.2 Falla por mor	nento positivo:		
Caso I. Este tipo de falla es generada por flexión, compresión	16+580		21+280	
	17+140	17+230		
- Caso II:- Este tipo de falla es generada	17+143	17+360		
por flexión, tensión	17, 101	17, 110		

Capitulo 4 Análisis y revisión estructural del cajón

4.1 Tipificación de la estructura del cajón

La estructura tipo cajón tiene forma de "U", está integrada por una losa horizontal de cimentación, dos muros verticales laterales y un central. En el proyecto original se buscó compensar el peso del suelo extraído con el peso de la estructura, la finalidad fue que no se generaran deformaciones por consolidación. Los muros laterales tiene la función de proteger las instalaciones y en los casos que la compensación lo requiera soportar la presión lateral del suelo (muros de contención), bajo estas suposiciones se calculo la estructura teniendo como resultado muros con bajas cuantías de acero y un pobre confinamiento, este tipo de estructura se puede idealizar como una viga con fundación elástica en la cual la deformación del suelo producto de las cargas es despreciable, para modelar el hundimiento regional se consideró que son desplazamientos forzados.

4.2 Identificación y evaluación de cargas actuantes

Las cargas (acciones) que afectan al cajón del Metro, se clasifican de acuerdo a las Normas Técnicas Complementarias sobre Criterios y Acciones para el Diseño Estructural (NTC2004), de la siguiente manera: acciones permanentes, acciones variables y acciones accidentales, cada una de ellas se describen a continuación;

a) Acciones permanentes: son las que obran en forma continua sobre la estructura y cuya intensidad varía poco con el tiempo. Las principales acciones que pertenecen a esta categoría son: la carga muerta; el empuje estático de suelos y de líquidos, las deformaciones y desplazamientos impuestos a la estructura que varían poco con el tiempo, como los debidos a presfuerzo o a movimientos diferenciales permanentes de los apoyos;

b) Acciones variables: son las que obran sobre la estructura con una intensidad que varía significativamente con el tiempo. Las principales acciones que entran en esta categoría son: la carga viva; los efectos de temperatura; las deformaciones impuestas y los hundimientos diferenciales que tengan una intensidad variable con el tiempo, y las acciones debidas al funcionamiento de maquinaria y equipo, incluyendo los efectos dinámicos que pueden presentarse debido a vibraciones, impacto o frenado.

c) Acciones accidentales: son las que no se deben al funcionamiento normal de la edificación y que pueden alcanzar intensidades significativas sólo durante lapsos breves. Pertenecen a esta categoría: las acciones sísmicas; los efectos del viento; las cargas de granizo; los efectos de explosiones, incendios y otros fenómenos que pueden presentarse en casos extraordinarios. Será necesario tomar precauciones en las estructuras, en su cimentación y en los detalles constructivos, para evitar un comportamiento catastrófico de la estructura para el caso de que ocurran estas acciones.

La estructura tiene características especiales, su comportamiento es diferente al comportamiento de estructuras convencionales. Se revisaron las acciones buscando la causa de comportamiento observado en campo y se concluye lo siguiente:

- a) la masa se concentra al nivel del desplante, el sismo no genera flexión a los elementos verticales, no tiene problemas por cortante sísmico ni por distorsiones o desplazamientos, no hay posibilidad de colapso global, toda la estructura esta apoyada totalmente en el suelo.
- b) el viento no le genera deformación alguna por ser una estructura semienterrada.
- c) El peso del volumen de suelo extraído en la construcción compensa el peso de la estructura, la presión efectiva es cercana a cero, lo cual no explica el mal comportamiento de la estructura.
- d) El hundimiento regional de la zona se refleja en forma de asentamientos diferenciales, deformando al cajón, Estas deformaciones impuestas producen elementos mecánicos (momento flexionante y fuerza cortante) superiores a la capacidad de las secciones, lo que generan agrietamientos, fisuras (articulaciones plásticas) y posteriormente fracturas (fallas).

Por lo anterior se concluye que la acción que genera el mal comportamiento del cajón, es el hundimiento de distintas magnitudes en los diferentes cadenamientos, lo que produce deformaciones indeseables en el cajón del Metro.

4.3 Modelo no lineal del cajón del metro de los casos en estudio.

Se elaboraron modelos de comportamiento no lineal, para los tramos en estudio. Estos modelos incluyen las características siguientes:

- a) comportamiento no lineal del los materiales, para lo cual se consideró relaciones esfuerzo-deformación para el concreto y el acero de refuerzo.
- b) resistencia y rigidez efectiva, para lo cual se calculó diagramas momentocurvatura, de los cuales se obtuvieron las propiedades de resistencia y rigidez efectiva.
- c) Se previó la aparición de articulaciones plásticas, éstas concentra el comportamiento no lineal de los elementos y la estructura.
- d) Se incorporó en el modelo analítico el efecto del hundimiento regional, se aplicó como deformación impuesta a la estructura tipo cajón.

Se utilizaron los programas SAP2000, programa de análisis no lineal estático y dinámico basado en elementos finitos (Computers and Structures, 2007), y el programa BIAX97, el propósito de este programa es la evaluación de esfuerzos y deformaciones de las secciones de concreto reforzado (Wallace, 1997).
Cada una de estas características del modelo se describe a continuación.

4.3.1 Modelo esfuerzo-deformación del acero de refuerzo

El comportamiento del acero de refuerzo puede ser modelo de las siguientes formas:

a) diagrama esfuerzo-deformación elastoplastico: se representa por medio de una recta que pase por el origen con pendiente igual al modulo de elasticidad (E_s) y una recta horizontal que pase por la ordenada correspondiente al esfuerzo de fluencia del acero (f_y). El esfuerzo convencional de fluencia se define por la intersección del diagrama esfuerzo-deformación unitaria con una recta paralela al tramo elástico, cuya abscisa al origen es 0.002, lo cual nos lleva a un comportamiento elastoplastico, el diagrama se observa en la figura 4.1, Gaceta Oficial del Distrito Federal (2004).

b) diagrama esfuerzo-deformación con endurecimiento por deformación: en ensayes de tipo monotónico de barras de refuerzo se ha observado que la grafica esfuerzo deformación tendría la forma mostrada en la figura 4.1 donde claramente se observan las siguientes tres zonas:

1.- Zona elástica esta zona se define por el intervalo esfuerzo deformación indicado

deformación,
$$0 \le \varepsilon_s \prec \varepsilon_v$$
, esfuerzo $f_s = E_s \varepsilon_s$ (1)

Donde \mathcal{E}_y es la deformación donde se presenta la fluencia del acero, E_s modulo de elasticidad.

2.- Zona de fluencia ocurre en los intervalos indicados

deformación $\varepsilon_{y} \leq \varepsilon_{s} \leq \varepsilon_{sh}$ esfuerzo $f_{s} = f_{y}$ (2)

Donde *E*_{sh} es la deformación del inicio del endurecimiento por deformación.

3.- Zona de endurecimiento por deformación.

En este modelo se supone que la deformación ultima \mathcal{E}_{su} , es la correspondiente al esfuerzo máximo alcanzado f_{su} , después de ese esfuerzo máximo hay una zona descendiente de la curva esfuerzo deformación que se considera que no tiene importancia, se toma como referencia la deformación de la ruptura \mathcal{E}_{suu} , la zona de endureciendo por deformación se obtiene con la ecuación propuesta por Mander, (1984).

deformation
$$\varepsilon_{sh} \le \varepsilon_s \le \varepsilon_{su}$$
 esfuerzo $f_s = f_{su} + (f_y - f_{su}) \left[\frac{\varepsilon_{su} - \varepsilon_s}{\varepsilon_{su} - \varepsilon_{sh}} \right]^p$ (3)

Los parámetros básicos para construir la curva esfuerzo deformación son seis f_{y} , f_{su} , \mathcal{E}_{sh} ,

 \mathcal{E}_{su} , E_S y P ante la falta de pruebas de los materiales con los cuales se construyó el cajón se utilizaron las propiedades mecánicas obtenidas por Rodríguez y Botero, (1996), indicadas en la tabla 4.1

	<i>fy</i> (kg∕cm²)	₿ _{sн}	<i>f_{su}</i> (kg∕cm²)	E su	E suu	Р
х	4609	0.006	7436	0.142	0.1815	3.362
S	376	0.0069	297	0.0252	0.0492	0.4496
V	0.082	1.137	0.04	0.177	0.271	0.134
PER5%	3880	0	6860	0.0931		2.491
PER 95%	5338	0.0193	8012	0.1909		4.233

Tabla 4.1 ESTADÍSTICOS DE BARRAS DE DIÁMETRO PEQUEÑO RODRÍGUEZ Y BOTERO, (1996)

En la figura 4.1 se muestran los dos modelos de comportamiento del acero de refuerzo utilizados en este estudio.

Figura 4.1 Curva esfuerzo-deformación típica de una barra de refuerzo en un ensaye a tensión del tipo monotónico Rodríguez, M, y Botero, JC (1996)

En los modelos analíticos del cajón del Metro, se utilizó el diagrama esfuerzodeformación elastoplastico, las razones son las siguientes:

a) La información disponible sobre el hundimiento regional es escasa y únicamente se conoce a cada 20m. lo cual lleva a tener un modelo que no toma en cuenta las variaciones del hundimiento que se presentan a distancias menores. tener un modelo refinado sin conocer la demanda con una mejor precisión, no garantiza tener mejores resultados.

- b) Las secciones del Metro, ancho y altura, son variable en cada cadenamiento. El problema se simplificó tomando 10 secciones para cada tramo en estudio, por lo tanto se busca un modelo simple que represente las fallas observadas.
- c) Se evaluaron los resultados de rigidez efectiva y ductilidad. obtenidos con el modelo elastoplastico y con modelo con endurecimiento por deformación sin obtener diferencias importantes.

4.3.2 Modelo esfuerzo deformación del concreto confinado

El modelo que se utilizó para definir las relaciones esfuerzo deformación para el concreto confinado, fue el propuesto por Kent-Park (1971) y también descrita por Park y Paulay (1975), fue modificada por Park, Priestley y Gill (1982). Las graficas esfuerzo deformación unitaria se muestran en la figura 4.2, se observan las curvas características para el concreto simple y confinado.

Figura. 4.2 Relaciones esfuerzo deformación, concreto simple y confinado. Park, Priestley y Gill (1982)

Las ecuaciones siguientes describen la relación esfuerzo deformación del concreto confinado, unidades en (MPa)

	Deformación		Esfuerzo	
zonas ascendentes.	$0 \le \varepsilon_c \le 0.002K$		$fc = Kf'c \left[\frac{2\varepsilon_c}{0.002K} - \left(\frac{\varepsilon_c}{0.002K}\right)^2\right]$	(4)
zonas descendente	$0.002k \le \varepsilon_c \le 0.2kf''c$		$fc = kf'c \left[1 - z_m \left(\varepsilon_c - 0.002K\right)\right]$	(5)
falla	$0.2kf'c \le \varepsilon_c \le \varepsilon_u$		0.2 <i>kf</i> ~ c	(6)
Donde $K - 1 + \frac{\rho_s f_{yh}}{\rho_s}$	v 7 –	0.5		(7)

Donde
$$K = 1 + \frac{\rho_s J_{yh}}{f'c}$$
 y $Z_m = \frac{0.5}{\frac{3 + 0.29 f'c}{145 f'c - 1000} + \frac{3}{4} \rho_s \sqrt{\frac{h''}{s_h}} - 0.002K}$ (7)

Donde: ε_c = deformación longitudinal del concreto, f_c = esfuerzo longitudinal del concretó (*MPa*), f'c = esfuerzo a la compresión de los cilindros (*MPa*), f_{yh} =esfuerzo a la fluencia del acero de los estribos (*MPa*), ρ_s = relación del volumen de acero transversal entre el volumen del concreto confinado, medido por fuera de los estribos. h'' = ancho de la sección confinado medido en la parte exterior del estribo (mm), s_h = separación de los estribos (mm) y ε_u = máxima deformación del concreto.

Se emplearon las características de los materiales utilizados en la construcción del Metro y la contribución del confinamiento del acero, con lo cual se obtuvieron los diagramas esfuerzo deformación para el concreto reforzado. Estas curvas se ilustran en la figura 4.3, se observan el incremento de la resistencia y de la capacidad de deformación.

Figura 4.3 La curva esfuerzo-deformación de concreto confinado, fue modificada por Park Priestley y Gill (1982)

4.3.3 Capacidad de deformación máxima del concreto confinado

En concretos no confinados las normas técnicas complementarias especifican que la deformación unitaria del concreto en compresión cuando se alcanza la resistencia de la sección es 0.003, NTC DDF (2004), sin embargo las pruebas experimentales sugieren valores mayores de deformación para concretos confinados, algunas ecuaciones empíricas para calcular la deformación máxima fue propuesta por Baker (1965), y por Corley (1966), posteriormente Paulay, y Priestley, (1992), proponen

$$\varepsilon_{cu} = 0.004 + \frac{1.4\rho_s f_{yh}\varepsilon_{sm}}{f'cc} \quad (8)$$

donde: ε_{sm} =deformación máxima de estribo (Mpa), ρ_s = es la relación volumétrica del acero y el concreto confinado para secciones rectangulares se puede utilizar la ecuación siguiente

 $\rho_s = \rho_x + \rho_y$ donde $\rho_x = \frac{A_{stx}}{sh''_y}$ y $\rho_y = \frac{A_{sty}}{sh''_x}$, A_{stx} = área del refuerzo transversal paralelo al

eje Y, A_{sty} = área del refuerzo transversal paralelo al eje X, sh''_{x} = separación del estribo por la dimensión en X y sh''_{y} = separación del estribo por la dimensión en Y.

En este trabajo, se utilizó la deformación máxima de concreto, que propusieron Paulay y Priestley (1992), la deformación propuesta es 0.004, deformación que es un valor conservador, y no toma en cuenta la contribución del confinamiento, las razones para considerar este valor son las siguientes; las cuantías del acero de refuerzo longitudinal en los muros del cajón del Metro son cuantías mínimas y no tienen un detallado del armado para garantizar el confinamiento que incremente su capacidad de deformación y ductilidad.

Si la falla se presenta en el acero antes que en el concreto, se considera la deformación última de acero 0.093, que propusieron Rodríguez y Botero (1996). Estos dos valores máximos de deformación se utilizaron en los criterios para determinar la curvatura máxima de la sección.

4.3.4 Diagramas Momento curvatura de las secciones tipo cajón.

Las secciones estructurales cambian en cada cadenamiento (base y altura), en los modelos matemáticos se simplificó el problema tomando 10 secciones en cada tramo analizado, las dimensiones utilizadas se observan en la figura 4.4 y tabla 4.2. Para los casos "A" y "B", el espesor de la losa y muros es de 25 cms

Figura 4.4 Sección tipo, el tamaño de las celdas y altura de los muros están determinado por la tabla 4.2, tramo caso "A"

TABLA 4.2 GEOMETRÍA DE LA SECCIONES, UTILIZADAS EN EL TRAMO CASO "A", UNIDADES EN CM

Sección	а	b	С	d	е	f	
16140	243	392	517	243	94	250	
16520	243	310	172	243	379	380	
16720	243	178	178	243	350	367	
16820	243	178	178	243	186	310	
17000	243	178	178	243	94	290	
17020	210	210	210	210	0	296	
17220	210	210	210	210	0	372	
17560	243	178	178	243	191	339	
17900	243	178	178	243	128	316	
18260	243	178	178	243	114	246	

Para el caso "B" las dimensiones de las secciones que se utilizaron se encuentran indicadas en la figura 4.5 y tabla 4.3

Figura 4.5 Sección tipo, el ancho y altura de los muros está determinada por la tabla 4.1, tramo caso "B"

TABLA 4.3 GEOMETRÍA DE LA SECCIONES, UTILIZADAS EN EL CASO "B", UNIDADES EN CMS

Sección	а	b
21320	624	234
21600	407	409
21960	407	474
22000	407	532
22100	407	588
22220	407	301
22400	407	217
22620	407	425
22700	407	592
22780	467	636
22940	675	355

El comportamiento de una estructura de concreto reforzado está controlado por la relación entre el momento actuante de la sección y la curvatura (deformación). Las relaciones teóricas momento-curvatura para un elemento de concreto reforzado cuando actúa flexión y carga axial se pueden determinar utilizando las hipótesis siguientes:

1. Las secciones planas antes de la flexión permanecen planas después de la flexión.

- 2. Se conocen las curvas esfuerzo-deformación para el concreto y el acero.
- 3. La resistencia a tensión del concreto es nula.
- 4. Existe adherencia perfecta entre la barra de refuerzo y el concreto.

Además, se acepta que la curva esfuerzo-deformación del acero es elastoplástica, respecto al concreto se acepta que la zona de esfuerzos está representado por la curva esfuerzo deformación del modelo propuesto por Park, Priestley y Gill (1982). La capacidad de la sección generalmente queda definida cuando el acero de refuerzo llega a la deformación ultima, aunque es posible que antes falle el concreto.

Utilizando estas hipótesis se calculan los diagramas momento-curvatura de las veinte secciones representativas de los tramos caso "A" y "B", utilizando el programa de análisis de las secciones BIAX97, Wallace, J (1989).

En la figura 4.6 se muestra el calculo del diagrama momento curvatura para la sección del cadenamiento 16+520 del primer tramo del caso "A". De esta figura podemos concluir que para la misma sección las siguientes propiedades cambian según el sentido de momento.

Figura 4.6 Diagrama-momento curvatura, sección 16+520, calculado con el programa BIAX97 Wallace, J (1989)

Este procedimiento se repitió para las nueve secciones restantes. En la figura 4.7 y 4.8 se muestran los diagramas momento-curvatura para todas las secciones para los dos casos de momento positivo y negativo.

Figura 4.7 Diagrama momento-curvatura, secciones del tramo caso "A", momento positivo, alma en compresión, calculado con el programa BIAX97 Wallace, J (1989)

Figura 4.8 Diagrama momento-curvatura, secciones del tramo caso "A", momento negativo, patín en compresión, calculado con el programa BIAX97 Wallace, J (1989)

De estos diagramas se obtuvo la información siguiente, curvatura de fluencia, momento de fluencia, curvatura última, rigidez efectiva (*El*), y la ductilidad de la sección, para el tramo caso "A", todos estos datos se concentran en la tabla 4.4

	Mor	n. nega	tivo			Mom. positivo					
Secc	фУ	Му	φu	φ y/ φψ	Ι	фУ	Му	φu	φ y/ φψ	Ι	
16140	0.0027	726.7	0.0253	9	12,190,502.9	0.0016	2162	0.0036	2	60,815,315.5	
16520	0.0013	3216	0.0127	10	109,483,313.6	0.0011	5134	0.0043	4	209,702,473.5	
16720	0.0012	2917	0.0119	10	106,357,455.5	0.0012	4605	0.0048	4	177,806,072.3	
16820	0.0016	1472	0.0156	10	41,822,838.2	0.0011	2672	0.0058	5	110,337,197.2	
17000	0.0019	879.2	0.0194	10	20,505,052.0	0.0010	1948	0.0054	5	84,780,195.7	
17020	0.0022	369.9	0.0304	14	7,551,022.0	0.0010	794.7	0.0099	10	34,620,016.7	
17220	0.0015	739.7	0.0222	15	22,578,584.9	0.0012	1104	0.0105	9	42,810,072.6	
17560	0.0015	1639	0.0151	10	49,693,032.6	0.0010	3114	0.0042	4	143,094,759.1	
17900	0.0017	1120	0.0158	9	30,081,178.5	0.0009	2388	0.0060	6	115,428,050.7	
18260	0.0019	865.3	0.0183	10	20,859,309.7	0.0012	1786	0.0052	4	65,756,654.2	

TABLA 4.4 PROPIEDADES DE LAS SECCIONES TRAMO CASO "A", CALCULADO CON EL PROGRAMA BIAX97 WALLACE, J (1989)

Los datos mostrados en la tabla 4.4, ilustran los parámetros necesarios para definir las propiedades de las articulaciones plásticas.

Las propiedades de las secciones que fueron utilizadas por los modelos matemáticos, se muestran en la tabla 4.5, para el tramo caso "A".

		Inercia efe	ectiva cm ⁴
Sección	Área cm ²	Mom negativo	Mom positivo.
16140	91,500	12,190,502.9	60,815,315.5
16520	121,462	109,483,313.6	209,702,473.5
16720	110,562	106,357,455.5	177,806,072.3
16820	85,788	41,822,838.2	110,337,197.2
17000	72,788	20,505,052.0	84,780,195.7
17020	42,888	7,551,022.0	34,620,016.7
17220	48,588	22,578,584.9	42,810,072.6
17560	88,588	49,693,032.6	143,094,759.1
17900	78,988	30,081,178.5	115,428,050.7
18260	71,988	20,859,309.7	65,756,654.2

TABLA 4.5 PROPIEDADES DE LAS SECCIONES TRAMO CASO "A"

Para el tramo caso "B" se aplicó el mismo procedimiento, se obtuvo los siguientes resultados. En la figura 4.9 se muestran los diagrama momento-curvatura para la sección del cadenamiento 22+400.

Figura 4.9 Diagrama momento-curvatura, sección 22+400, calculado con el programa BIAX97 Wallace, J (1989)

Este procedimiento se repitió para las nueve secciones restantes en la figura 4.10 y 4.11 se muestras los diagramas momento curvatura para todas las secciones para los dos casos momento positivo y negativo.

Figura 4.10 Diagrama momento-curvatura, secciones del tramo caso "B", momento positivo, alma en compresión, calculado con el programa BIAX97 Wallace, J (1989)

Figura 4.11 Diagrama momento-curvatura, secciones del tramo caso "B", momento negativo, patín en compresión, calculado con el programa BIAX97 Wallace, J (1989)

De estos diagramas se obtuvo la información siguiente curvatura de fluencia, momento de fluencia, curvatura última, rigidez efectiva (EI), y la ductilidad de la sección, para el tramo caso "B", todos estos datos de se concentran en la tabla 4.6

Secc Momento negativo Momento					o Positivo.					
	фУ	Му	φu	φu/φy	l _e	фУ	Му	φu	φy/ φu	l _e
21320	0.00124	187.7	0.03816	30.8	6,843,776	0.00120	737	0.00832	6.91	27,638,091
21600	0.00074	377.7	0.02144	29.1	23,189,427	0.00065	1094	0.00601	9.30	76,386,367
21960	0.00054	506.6	0.01644	30.5	42,420,575	0.00048	1188	0.00704	14.61	111,414,729
22000	0.00051	603.6	0.01541	30.2	53,466,514	0.00056	1638	0.00688	12.38	133,136,817
22100	0.00054	727.7	0.01547	28.4	60,452,740	0.00042	1714	0.00494	11.82	185,108,247
22220	0.00085	255.4	0.03052	35.9	13,578,697	0.00096	752	0.00850	8.86	35,399,157
22400	0.00368	209.6	0.04320	11.8	2,575,838	0.00147	522	0.01471	10.00	16,037,143
22620	0.00067	440.3	0.02168	32.4	29,718,759	0.00078	1240	0.00878	11.25	71,743,853
22700	0.00054	766.6	0.01457	26.9	64,049,429	0.00042	1736	0.00649	15.60	188,566,099
22780	0.00048	839.3	0.01252	25.9	78,500,588	0.00040	1957	0.00604	15.00	219,648,255
22940	0.00103	374.5	0.02655	25.9	16,473,436	0.00076	1097	0.00674	8.84	64,976,408
								promedio	11 0	

TABLA 4.6 PROPIEDADES EFECTIVAS DE LAS SECCIONES TRAMO CASO "B", CALCULADO CON EL PROGRAMA BIAX97 WALLACE, J (1989)

Los datos mostrados en la tabla 4.6, ilustran los parámetros necesarios para definir las propiedades de las articulaciones plásticas.

Las propiedades de las secciones que fueron utilizadas por los modelos matemáticos, se muestran en la tabla 4.7, para el tramo caso "B".

		Inercia Ef	ectiva cm ⁻
Sección	Área cm ²	Mom negativo	Mom positivo.
21320	48,310	6,843,775.9	27,638,091.1
21600	46,290	23,189,427.0	76,386,367.4
21960	49,549	42,420,575.1	111,414,729.5
22000	52,400	53,466,514.2	133,136,817.3
22100	55,245	60,452,739.7	185,108,247.3
22220	40,890	13,578,696.8	35,399,157.1
22400	36,055	2,575,838.3	16,037,143.3
22620	46,425	29,718,759.4	71,743,852.9
22700	54,765	64,049,428.8	188,566,098.9
22780	59,950	78,500,587.7	219,648,254.7
22940	56,350	16,473,436.0	64,976,407.7

TABLA 4.7 PROPIEDADES DE LAS SECCIONES TRAMO CASO "B"

4.3.5 Curvatura ultima de la sección tipo cajón

La figura 4.12 muestra el caso de la sección tipo cajón, cuando la deformación actúa en ambas direcciones, es decir los casos *I* y *II*, donde en el primero el patín está en compresión, y en el segundo caso el patín está en tensión.

Figura 4.12 Perfil de deformaciones de secciones tipo cajón, Paulay y Priestley (1992)

1.- En el caso del cajón I, se requiere una profundidad de eje neutro, c_1 bastante pequeña para lograr el equilibrio de fuerzas internas, su capacidad de curvatura está dada por el perfil de línea punteada de la figura 4.12; por lo tanto la curvatura ultima puede expresarse en función de la deformación del acero de refuerzo, como se indica en la siguiente expressión:

$$\varphi_u = \frac{\varepsilon_y}{lw - c_1} \tag{9}$$

Si suponemos que $lw \approx lw - c_1$, esta es valida cuando el valor de c_1 es pequeño al compararlo con la dimensión *lw*, en esté caso para las secciones tipo cajón la suposición $c_1 < lw$ es correcta, por lo tanto la curvatura última se puede definir aproximadamente como:

$$\varphi_u \approx \frac{\varepsilon_y}{lw}$$
 (10)

La ecuación anterior calcula la capacidad de curvatura de la sección, está dada por la capacidad de deformación en tensión del acero, En este caso se consideró 0.093como la deformación última, Rodríguez y Botero, (1996), la cual generalmente es adecuada.

Se concluyó que la curvatura de la sección tipo cajón es:

$$\varphi_u \approx \frac{0.093}{lw} \qquad (11)$$

Donde: φ_v es la curvatura ultima de la sección, y I_w es la altura del muro.

2.- En el caso del cajón *II*, con el alma en compresión, se requiere una profundidad de eje neutro c_2 , mas grande que permita balancear las fuerzas internas en tensión. La pendiente de la línea punteada de deformaciones para este caso indica la curvatura correspondiente a su capacidad resistente ideal, relacionada con las deformaciones \mathcal{E}_c y \mathcal{E}_y , del concreto y acero en tensión, respectivamente. La pendiente con línea llena del caso del muro *II* indica la curvatura en el muro necesaria para tener un desplazamiento lateral semejante a la del muro *I* (las líneas llenas en ambos casos tendrían la misma pendiente). Sin embargo, como muestra la figura 4.12, se requeriría una deformación en compresión, \mathcal{E}_m , bastante mayor que para el caso "A".

De acuerdo a la figura 4.13 la curvatura a la primera fluencia se puede evaluar como

$$\varphi_{y} = \frac{\varepsilon_{y} + \varepsilon_{ce}}{lw} \quad (12)$$

Donde \mathcal{E}_{y} es la deformación a la fluencia del acero y \mathcal{E}_{ce} la deformación elástica del concreto en el momento que se llega a la primera fluencia, se pueden aproximar como \mathcal{E}_{y} =0.002 y \mathcal{E}_{ce} =0.0005 como lo propone *Paulay y Priestley (1992)*.

Figura 4.13 definición de ductilidad de curvatura, Paulay y Priestley (1992)

Si aceptamos que $\varphi_v \approx 1.33 \varphi_v$ la curvatura de fluencia seria

$$\varphi_y \approx 1.33 \left(\frac{0.002 + 0.0005}{lw} \right)$$
 y por lo tanto $\varphi_y \approx 0.0033 / lw$ (13)

En la mayoría de casos, se tuvo relaciones de esbeltez y ductilidades de desplazamiento μ menores que 5 y 4, respectivamente, lo que lleva de acuerdo con los resultados de la tabla 4.6 a que la ductilidad de curvatura requerida seria aproximadamente igual a 10, es decir se tiene que curvatura última φ_v se pueda evaluar como:

$$\varphi_u \approx 10(\varphi_y)$$
 y por lo tanto $\varphi_u \approx \frac{0.033}{1}$ (14)

Se tienen dos ecuaciones simples que nos determinan de manera aproximada la curvatura última de la sección del cajón del Metro, se aplicaron a diez secciones indicadas en la tabla 4.8 y se compararon con las curvaturas ultimas calculadas con el programa *BIAX97 Wallace, J (1989),* teniendo un error promedio del 7% como se observa en la tabla 4.8

		Caso I, pa	atín compr	esión	Cas	o II, patín t	ensión
Sección	lw/	BIAX97	curv	error	BIAX97	curv	error
21+600	4.090	0.0214	0.0227	1.061	0.0060	0.008	1.342
21+960	4.740	0.0164	0.0196	1.193	0.0070	0.007	0.989
22+000	5.320	0.0154	0.0175	1.134	0.0069	0.006	0.901
22+100	5.880	0.0155	0.0158	1.022	0.0049	0.006	1.135
22+220	3.010	0.0305	0.0309	1.012	0.0085	0.011	1.290
22+400	2.170	0.0432	0.0429	0.992	0.0147	0.015	1.034
22+620	4.250	0.0217	0.0219	1.009	0.0088	0.008	0.884
22+700	5.920	0.0146	0.0157	1.078	0.0065	0.006	0.859
22+780	6.360	0.0125	0.0146	1.168	0.0060	0.005	0.859
22+940	3.550	0.0266	0.0262	0.987	0.0067	0.009	1.379
			promedio	1.066		promedio	1.067

TABLA 4.8 COMPARACION DE CURVATURA ULTIMA OBTENIDA CON EL PROGRAMA BIAX97 Y CON LAS ECUACIONES PROPUESTAS, EN LAS SECCIONES DE TRAMO CASO "B".

4.3.6 Modelo analítico empleado para el análisis estructura

Los modelos desarrollados para estudiar el comportamiento de la estructura tipo cajón fueron de dos tipos, modelo analítico con elementos tipo *frame* y modelo analítico con elementos *Shell* cascaras, sus características principales se describen a continuación:

- a) Modelo analítico con elementos tipo *frame*; se utilizaron para modelar los tramos de los casos "A y caso "B", representan el comportamiento global de la estructura, fueron realizados con elementos tipo frame, se modela el efecto de las juntas como articulaciones físicas y el comportamiento no lineal a través de elementos *frame hinges*, como se describe posteriormente.
- b) Modelos analítico con elementos *Shell* cascaras; Fueron utilizados para modelar las juntas de construcción y de expansión, están construidos con elementos *Shell* cascaras y *Gap*, y representan el comportamiento local de las juntas, como se describe posteriormente.

4.3.6.1 modelo analítico con elementos tipo frame

El comportamiento de los tramos se analizó por medio de un modelo matemático, utilizando el método de Elementos Finitos (MEF) y paquetería especializada en análisis y diseño estructural, SAP2000 Computers and Structures (2007).

El modelo que representa al cajón del Metro, se construyó con elementos tipo *frame,* este elemento fue elegido por las siguientes razones:

Los tramos en estudio son estructuras continuas que tienen en promedio dos kilómetros de longitud, un modelo con elementos *shell* consumiría grandes recursos de cómputo, además, considera un comportamiento de los materiales elástico lineal. El comportamiento observado en campo, evidencia que la estructura se encuentra en etapa inelástica, por lo cual se necesitó un modelo sencillo, que represente el comportamiento global de la estructura, utilizando pocos recursos y que consideré la no lineal de los materiales.

Los elementos tipo *frame* fueron adecuados para modelar el cajón del Metro, éstos incluyen el comportamiento no lineal de los materiales, utilizan elementos *"hinges"* (articulaciones plásticas), como se demostrará en la validación de los modelos.

Los elementos tipo *frame* son utilizados en estructuras de dos y tres dimensiones, tienen una formulación viga columna, que incluyen efectos por flexión biaxial, torsión, deformación normal y deformaciones por cortante, *Bathe y Wilson (1976)*. Los elementos *frame* son representados con una línea entre dos puntos, cada elemento tiene su sistema de coordenadas locales, según el cual se pueden referencial propiedades de las secciones, cargas, y la interpretación de los resultados, los grados de libertad que poseen los nodos de los elementos *frame* son 6 y se observan en la figura 4.14, los elementos mecánicos que actúan en un elemento *frame* se ilustran en la misma figura.

Figura 4.14 (a) Grados de libertad de un nodo del elemento frame, (b) elementos mecánicos de un frame.

En los modelos analíticos del cajón del metro, se utilizaron elementos *hinges* (articulaciones plásticas), concentran comportamiento inelástico, en uno o más grados de libertad, y son colocados en cualquier punto del elemento *frame*. Con el elemento *hinge* se modela el comportamiento inelástico, puede ser de forma desacoplada, o incluir la interacción P-M2-M3 basado en la interacción de las fuerzas.

Parámetros para definir las articulaciones plásticas (rótulas plásticas o *hinges*) en el modelo analítico

La articulación plastica se produce cuando el momento actuante en la sección alcanza el momento de fluencia, en ese punto se presenta deformación angular (rotación), sin incremento de carga, generando una redistribución de momentos, los parámetros calculados con los diagramas momento-curvatura y utilizados en el modelo analítico se observan en la tabla 4.9, para el tramo caso "A", y en la tabla 4.10 para el tramo caso "B".

Hinge	DOF	FD	M+ _{SF}	$arphi_{SF}$	M- _{SF}	$arphi_{SF}$	Lp
Text	Text	Text	Ton-m	1/m	Ton-m	1/m	т
rot16140	Mom. M3	Mom Curv	2162.0	0.0016	726.7	0.002693	1.74
rot16520	Mom. M3	Mom Curv	5134.0	0.0011	3216.0	0.001327	3.80
rot16720	Mom. M3	Mom Curv	4605.0	0.0012	2917.0	0.001239	3.60
rot16820	Mom. M3	Mom Curv	2672.0	0.0011	1472.0	0.001590	2.48
rot17000	Mom. M3	Mom Curv	1948.0	0.001	879.2	0.001937	1.90
rot17020	Mom. M3	Mom Curv	794.7	0.001	369.9	0.002213	1.35
rot17220	Mom. M3	Mom Curv	1104.0	0.0009	739.7	0.001490	1.86
rot17560	Mom. M3	Mom Curv	3114.0	0.001	1639.0	0.001490	2.65
rot17900	Mom. M3	Mom Curv	2388.0	0.0009	1120.0	0.001682	2.22
rot18260	Мот. МЗ	Mom Curv	1786.0	0.0012	865.3	0.001900	1.80

TABLA 4.9 PARAMETROS DE LAS ARTICULACIONES, TRAMO CASO "A".

TABLA 4.10 PARAMETROS DE LAS ARTICULACIONES, TRAMO CASO "B".

Hinge	DOF	FD	M+ _{SF}	$arphi_{SF}$	M- _{SF}	$arphi_{SF}$	Lp
Text	Text	Text	Ton-m	1/m	Ton-m	1/m	т
rot21320	Mom. M3	Mom Curv	737.0	0.00120	187.7	0.00124	1.17
rot21600	Mom. M3	Mom Curv	1094.0	0.00065	378.0	0.00074	2.00
rot21960	Mom. M3	Mom Curv	1188.0	0.00048	506.6	0.00054	2.35
rot22000	Mom. M3	Mom Curv	1638.0	0.00056	603.6	0.00051	2.66
rot22100	Mom. M3	Mom Curv	1714.0	0.00042	727.7	0.00054	2.94
rot22220	Mom. M3	Mom Curv	752.0	0.00096	255.5	0.00085	2.03
rot22400	Mom. M3	Mom Curv	752.0	0.00096	255.5	0.00085	1.50
rot22620	Mom. M3	Mom Curv	1240.0	0.00078	440.3	0.00067	2.23
rot22700	Mom. M3	Mom Curv	1736.0	0.00042	767.0	0.00054	3.00
rot22780	Mom. M3	Mom Curv	1957.0	0.00040	834.0	0.00048	3.15

Tramo caso "A"

Se modeló la estructura continúa tipo cajón del cadenamiento 16+091 al 18+280, caso "A", bajo las siguientes consideraciones:

- Se supuso que la estructura tiene un comportamiento similar al de una viga continua con fundación elástica.
- únicamente se incluyó el efecto del hundimiento regional, el análisis considero las deformaciones impuestas, en los puntos donde se conoce las magnitudes. La ubicación y la magnitud de la deformación están indicadas en el anexo B, se despreció la deformación elástica del suelo, ya que los esfuerzos trasmitidos por las cargas son bajos, del orden de 1 t/m².
- Se tomó en cuenta el comportamiento no lineal de los materiales, como se indica en los puntos 4.3.1 y 4.3.2
- Se utilizaron elementos tipo *frame* para representar los segmentos del cajón, en promedio tienen una longitud de 20m, los elementos *frame* tienen una formulación viga columna que incluye los efectos por flexión biaxial, torsión, deformación axial y deformaciones por cortante biaxial, en el modelo se representó por una línea recta conectada por dos puntos, a cada elementos se adiciona sus propiedades efectivas de la sección.
- El comportamiento inelástico de la estructura se concentró en articulaciones plásticas (*hinges*), fueron idealizadas suponiendo comportamiento elastoplástico. En este modelo se ubicaron en los extremos de los elementos, en estos puntos las demandas de momento flexionante son máximas.
- Se incluyó la participación de las juntas de construcción y expansivas, modeladas como articulaciones físicas, ver la figura 4.15. La ubicación de las juntas constructivas y juntas de expansión se indican el la tabla 3.1.

Figura 4.15 Junta de construcción modelada como articulación física

El modelo mostrado en la figura 4.16, representa el tramo caso "A", se indica la posición de las juntas, el perfil de la deformación impuesta y la ubicación de las condiciones de apoyo (apoyos simples).

Figura 4.16 Estructura del cajón del Metro, del cad 16+100 al 18+280, tramo caso "A"

Se realizó el análisis no lineal con las características mencionadas, en el programa Sap 2000, como resultado se obtuvo el diagrama de momento flexionante a lo largo del tramo caso "A", que se muestra en la figura 4.17.

Figura 4.17 Diagrama momento flexionante, tramo caso "A"

En el diagrama de momento se observan puntos a lo largo de la estructura donde los momentos calculados sobre salen, estos puntos se asociaron a las fallas observadas en el campo, (capitulo 5).

4.3.6.2 Modelo analítico caso "B"

Se modeló la estructura continúa tipo cajón del cadenamiento 21+340 al 23+020, caso "B", bajo las siguientes consideraciones:

- Se supuso que la estructura tiene un comportamiento similar al de una viga continua con fundación elástica.
- únicamente se incluyó el efecto del hundimiento regional, el análisis considero las deformaciones impuestas, en los puntos donde se conoce las magnitudes. La ubicación y la magnitud de la deformación están indicadas en el anexo B, se despreció la deformación elástica del suelo, ya que los esfuerzos trasmitidos por las cargas son bajos, del orden de 1 t/m².
- Se tomó en cuenta el comportamiento no lineal de los materiales, como se indica en los puntos 4.3.1 y 4.3.2
- Se utilizaron elementos tipo *frame* para representar los segmentos del cajón, en promedio tienen una longitud de 20m, los elementos *frame* tienen una formulación viga columna que incluye los efectos por flexión biaxial, torsión, deformación axial y deformaciones por cortante biaxial, en el modelo se representó por una línea recta conectada por dos puntos, a cada elementos se adiciona sus propiedades efectivas de la sección.

- El comportamiento inelástico de la estructura se concentró en articulaciones plásticas (*hinges*), fueron idealizadas suponiendo comportamiento elastoplástico. En este modelo se ubicaron en los extremos de los elementos, en estos puntos las demandas de momento flexionante son máximas.
- Se incluyó la participación de las juntas de construcción y expansivas, modeladas como articulaciones físicas, la figura 4.15. La ubicación de las juntas constructivas y juntas de expansión se indican el la tabla 3.1.

El modelo mostrado en la figura 4.18, representa el caso "B", se indica la posición de las juntas, el perfil de la deformación impuesta y la ubicación de las condiciones de apoyo (apoyos simples).

Figura 4.18 Estructura del cajón del Metro, del cad 21+200 al 23+000, tramo caso "B"

Se realizó el análisis no lineal con las características mencionadas, en el programa Sap 2000, como resultado se obtuvo el diagrama de momento flexionante a lo largo del tramo caso "B", se muestra en la figura 4.19

Figura 4.19 Diagrama momento flexionante, tramo caso "B"

En el diagrama de momento se observan puntos a lo largo de la estructura donde los momentos calculados sobre salen, esos puntos se asociaron a las fallas observadas en el campo, (capitulo 5).

4.3.6.3 Modelo analítico con elementos Shell cascaras

Para analizar el comportamiento de las juntas constructivas y de expansión provocado por el hundimiento regional se utilizaron dos modelos matemáticos basados en el método de Elementos Finitos (MEF), desarrollados en paquetería especializada en análisis y diseño estructural, SAP2000 *Computers and Structures* (2007). Los modelos matemáticos que representan las juntas del cajón del Metro, utilizan elementos *shell* tipo cáscara.

El modelo de elementos finitos en conjunto forma un dominio, cuyo comportamiento está gobernado por ecuaciones y condiciones de frontera. Así, el modelo de las juntas estudiadas está gobernado por la ecuación siguiente:

$$[K]{u} = {f}$$

Donde: [K] es la matriz de rigidez, representa las propiedades del material (con el que está construido el cajón del Metro), {u} el vector de desplazamientos (el comportamiento del sistema) y {F} el vector de fuerzas (la serie de perturbaciones que sufre la estructura).

El elemento *shell* es un elemento plano, que es usado para modelar membranas, placa y cáscaras, en estructuras planas o tridimensionales.

i) El comportamiento de los elementos *shell* tipo membrana utiliza una formulación isoparametrica que incluye componentes de rigidez de translación en su plano y componentes de rigidez rotacional en dirección normal al plano del elemento, *Taylor y Simo* (1985), *Ibrahimbegovic y Wilson* (1991). Solamente tienen dos grados de libertad en su plano y fuerzas axiales en el plano del elemento como se indica en la figura 4.20

Figura 4.20 (a) grados de libertad de los elemento shell tipo membrana, (b) fuerzas en el plano del elemento shell tipo membrana, Computers and Structures (2007)

ii) El comportamiento del elemento *shell* tipo placa está determinado por flexión en dos direcciones fuera del plano, este elemento posee componentes de rigidez rotacional y una componente de traslación en dirección normal al plano del elemento, tiene 3 grados de libertad, las fuerzas del *shell* se indican en la figura 4.21, el programa de análisis por default utiliza una formulación de placa delgada, *thin-plate* que desprecia las deformaciones de cortante transversal, se eligió cambiar a una formulación de placa gruesa, *thick-plate*, que incluye los efectos por cortante transversal.

Figura 4.21 (a) grados de libertad, elemento shell tipo plato, (b) fuerzas en el elemento shell tipo plato, Computers and Structures (2007)

iii) Elemento *shell* tipo cáscara: este elemento fue utilizado en los modelos de las juntas del cajón del Metro, es una formulación de cuatro nodos que combina el comportamiento de membrana y el de plato, tiene 5 grados de libertad, genera fuerzas en el plano del elemento y flexión en dos direcciones como se indican en la figura 4.22, representa de una manera efectiva el comportamiento de la estructura tipo cajón, como se demostrará al comparar los resultados analíticos con los observador en el recorrido de campo.

Figura 4.22 (a) grados de libertad, elemento shell tipo cáscara, (b) fuerzas en el elemento shell tipo cáscara, Computers and Structures (2007)

Este elementó nos permite:

- i) cuantificar los esfuerzos que actúan en cada una de sus caras, los esfuerzos calculados son cinco (S₁₁, S₂₂, S₁₂, S₁₃, S₂₃), donde lo subíndices nos indican la cara y la dirección del esfuerzo, las caras y los ejes locales se observan en la figura 4.23 así como los grados de libertad de los nodos de los elementos *shell*.
- ii) cuantificar las fuerzas resultantes que actúan en una sección de un muro, utilizando los grupos (*section cut*), básicamente integran los esfuerzos de la sección para obtener las fuerzas resultantes.

Figura 4.23 (a) Ejes locales del elemento shell, (b) grados de libertad de los nodos Computers and Structures (2007)

El modelo analítico de la junta constructiva se muestra en la figura 4.24, es tridimensional y está conformado por: 4739 elementos *shell* tipo cáscara, 4672 nodos y 47 elementos *NLink*. El modelo de la junta de expansión se muestra en la figura 4.24, está conformado por 1487 elementos *shell* tipo cáscara, 1645 nodos y 54 elementos *NLink*. El modelo representa la separación de los muros laterales del cajón del metro mediante elementos *NLink* tipo *Gap*, este tipo de elementos *Gap* se describen a continuación.

Figura 4.24 Modelo junta constructiva tipo y junta de expansión

Los elementos *NLink* tipo *Gap* son elementos no-lineales, sus características mas relevantes son; modela la abertura de la junta, únicamente permite la compresión después de haberse cerrado, el programa hace una revisión de los desplazamientos que se presenta en el elemento tipo *Gap* si la deformación es menor que la abertura, define su rigidez igual a cero, caso contrario toma la rigidez asignada, un esquema de su funcionamiento se muestra en la figura 4.25

Figura 4.25 Elementos NLink tipo Gap, Computers and Structures (2007)

Estos modelos sirven para calibrar la respuesta analítica con el comportamiento observado en campo. Los resultados del análisis de la junta constructiva muestra la distribución de los esfuerzos internos para las distintas componentes en el plano del

modelo, como son esfuerzos normales S_{11} y S_{22} paralelos a los ejes globales X y Z respectivamente y compararlos con el comportamiento observado en campo. Como se observa en la figura 4.26 (a) la concentración de esfuerzos es máxima en la parte superior de los muros, disminuye al acercarse uno a la losa de rasante, en la foto de la derecha, figura 4.26 (b), se muestra los daños ocasionados por esta rotación.

Figura 4.26 (a) Distribución de esfuerzos junta constructiva tipo, (b) falla observada en las juntas de construcción.

Los resultados obtenidos del análisis matemático, de la junta de expansión, ilustra la distribución de esfuerzos cortantes S_{12} , como se observa en la figura 4.27 (a), la concentración de esfuerzos es máxima en una franja diagonal, con un ángulo de inclinación de 45 grados aproximadamente, en la foto de la derecha, figura 4.27 (b), se muestra los daños ocasionados por esta rotación.

Figura 4.27 (a) Distribución de esfuerzos junta expansiva tipo, (b) falla observada en la junta expansiva

En conclusión el comportamiento analítico de las juntas, se ajusta con el observado, a medida que se incrementen los movimientos diferenciales, los daños en las juntas seguirán incrementándose hasta la ruptura total.

4.4 Limitaciones de los modelos.

Limitaciones del modelos con el elemento tipo frame

Los modelos que se desarrollaron, son modelos simples que tienen las siguientes limitaciones.

- Es un modelo plano que toma en cuenta solamente la deformación que se presenta longitudinalmente.
- La deformación física que presenta la estructura, se modeló con desplazamientos impuestos, a cada 20m, ya que solo se conoce esa información, nivelación Ipisa (2001).
- La estructura presenta daños locales en las juntas, las cuales no pueden ser modeladas de manera precisa con los datos existentes, esto se debe a que la variación, de hundimiento, que genera estas fallas se presentan en longitudes menos a 20m, como ya se comento solo se tienen datos a cada 20m
- La torsión observada en algunos tramos (como se observa en cad18+900) no se incluyo en estos modelos, la justificación es la siguiente no se cuentan con nivelaciones transversales para poder cuantificar ese efecto en el modelo.
- Al modelarse con elemento frame, no se toma en cuenta la inestabilidad ni pandeo de lo muros del cajón.

Sin embargo, a pesar de lo simple del modelo, la correlación existente entre las fallas observadas contra las analíticas es suficientemente buena, como se demostrará mas adelante.

Limitaciones del modelos con el elemento tipo Shell cáscara

- Es un modelo que toma en cuenta solamente el hundimiento que se presenta longitudinalmente.
- Al no tener información de los asentamientos diferenciales, se supone una distribución probable.
- La torsión observada en algunos tramos (como se observa en cad18+900) no se incluyo en estos modelos, la justificación es la siguiente no se cuentan con nivelaciones transversales para poder cuantificar ese efecto en el modelo.

Sin embargo, la correlación existente entre las fallas observadas contra las analíticas es suficientemente buena, para explicar las fallas observadas.

Capitulo 5 Evaluación Analítica del comportamiento del cajón y comparación con el comportamiento observado

5.1 Evaluación Analítica del comportamiento del cajón y comparación con el comportamiento observado

Se realizó la evaluación analítica del comportamiento del cajón del Metro, de la siguiente manera, se utilizaron los momentos flexionantes del análisis estructural, esos valores se compararon en una gráfica con las capacidades de las secciones en los puntos donde el momento calculado es cercano a la capacidad de la sección, se concluyó que la zona tiene un comportamiento inelástico, a estos puntos los llamamos articulaciones plásticas analíticas, estos resultados se contrastaron con la evaluación y levantamiento de daños realizada en campo (anexo C). El modelo se convirtió en una herramienta importante en la cual se propusieron soluciones y se evaluó su efecto, con el fin de buscar la mejor solución.

5.1.1 Tramo caso "A"

Con la información disponible daño observado, resistencias calculadas, y demanda de momento flexionante, se construye la figura 5.1, adicional a esta información se incluyeron las fallas observadas (círculos llenos).

Figura 5.1 Validación del modelo analítico con los daños observados, tramo caso "A"

En la figura anterior se observan claramente, zonas donde el momento calculado es cercano al momento resistente, estas zonas se seleccionan y registran en la tabla 5.1, estos resultados se comparan con los daños observados.

Daños observados	Articulaciones plásticas (Analíticas)
16232, 16235, 16284	16200 - 16300
	16400-16480
16580, 16556, 16620, 16700	16520 -16700
16820	16800-16900
17027, 17040	17000-17080
17143, 17193, 17210, 17230, 17360, 17410, 17495, 17510, 17515, 17520, 17591, 17560	17150-17650
17720,	17700-17750
17940, 17980, 18040	17900-18050
18190	18200

TABLA 5.1 DAÑOS OBSERVADOS VS ANALITICOS, TRAMO CASO "A"

Se concluyó que el modelo matemático representa de manera aproximada el comportamiento del cajón.

Se muestran, ejemplos de esta relación daño observado y el analítico. El cadenamiento 16+232, tiene grietas producto de la flexión, se observa en la figura 5.2, la articulación analítica obtenida de la figura 5.1, tabla 5.1, explica que en esa zona el momento calculado generó una articulación plástica, lo que explicaría, el agrietamiento observado.

Figura 5.2 se muestra el agrietamiento, generado por la flexión, que presenta los muros laterales cadenamiento 16+232

En los cadenamiento 16+235 (figura 5.3) y 16+284 (figura 5.4), se observa un grupo de grietas, se asociaron a la zona indicada en la tabla 5.1 entre los cadenamientos16+200 y 16+300 donde se deben presentar articulaciones plásticas analíticas.

Figura 5.3 se muestra el agrietamiento, generado por la flexión, que presenta los muros laterales cadenamiento 16+235

Figura 5.4 se muestra el agrietamiento, generado por la flexión, que presenta los muros laterales cadenamiento 16+284

La demanda calculada (figura 5.1) indica que entre los cadenamiento 16+520 al 16+700, se crearon articulaciones plásticas analíticas, en los recorridos de campo el cadenamiento 16+556 (figura 5.5), 16+580 (figura 5.6), y 16+620 (figura 5.7), se observaron grietas en los muros laterales del cajón provocadas por flexión. Se concluyó que en esta zona se alcanzo el momento de fluencia, como lo previó el modelo analítico.

Figura 5.5 se muestra el agrietamiento que presenta los muros laterales cadenamiento 16+556

Figura 5.6 se muestra el agrietamiento que presenta los muros laterales cadenamiento 16+580

Figura 5.7 se muestra el agrietamiento que presenta los muros laterales cadenamiento 16+620

Los casos mostrados nos permiten validar el modelo matemático, sin embargo, tiene limitaciones, solamente proporciona información confiable con una precisión similar a la proporcionada, (± 20m), por lo tanto se concluyó que las articulaciones analíticas pueden tener esa variación con respecto a lo detectado en campo en el mejor de los casos.

El modelo también indica zonas donde físicamente no se ha evidenciado agrietamiento, tramo 16+400 al 16+480, donde de acuerdo a la predicción del modelo analítico, se deberían presentar zonas plásticas; sin embargo, la observación de campo de los daños no refleja esa condición y podrían ser zonas que en corto tiempo se presente daño.

5.1.2 Tramo caso "B"

Se repitió el procedimiento planteado en el caso "A", con la información disponible, daño observado, resistencias calculadas, y demanda de momento flexionante, se construye la figura 5.8, adicional a esta información se incluyeron las fallas observadas (círculos llenos).

Figura 5.8 Validación del modelo analítico con los daños observados, tramo caso "B"

En la figura anterior se observan claramente, zonas donde el momento calculado es cercano al momento resistente, estas zonas se seleccionan y observan en la tabla 5.2, y se comparan con los daños observados.

Daños observados	Articulaciones plásticas (Analíticas)
21280, 21337, 21335, 21410	21250-21400
21540, 21700	21450-21700
21910	21850-21900
22008	22000-22150
22780, 22850, 22900, 22960	22800-22980

TABLA 5.2 DAÑOS OBSERVADOS VS ANALITICOS, TRAMO CASO "B"

Se muestran, ejemplos de esta relación daño observado y el analítico. En el cadenamiento 21+280 (figura 5.9), se observan daños importantes producto de la flexión, aplastamiento del concreto, las grietas que se observan en la parte inferior, manifiesta que el acero de la losa llegó a la ruptura; el modelo analítico indica que del cadenamiento 21+280 al 21+410, los momentos flexionantes actuantes son cercanos a las capacidades de la sección, se concluyó de acuerdo a los resultados mostrados en la

figura 5.8 y tabla 5.2 que en este cadenamiento la falla observada está modelada correctamente.

Figura 5.9 Se muestra el aplastamiento del concreto, en los muros laterales, la grieta en la parte inferior evidencia la falla a tensión de la losa, cadenamiento 21+280

En el cadenamiento 21+335 (figura 5.10), existe una junta de construcción, en este punto se presento el siguiente mecanismo, el hundimiento regional provocó una oquedad bajo el cajón, estas condiciones indujeron un comportamiento comparable al de una viga en voladizo, los pesos actuantes y la falta de apoyo, generó la falla de la sección. La figura 5.11 muestra la parte "empotrada", en la cual el momento negativo fue superior a la capacidad, esto provocó la ruptura del acero de refuerzo, la figura 5.10 (21+335) indica la parte en "voladizo" donde la separación de la junta de construcción fue absorbida por el desplazamiento generado por la falla, generando un ligero astillamiento.

Figura 5.10 Se muestra el agrietamiento que presenta los muros laterales cadenamiento 21+335

Figura 5.11 Falla por ruptura del acero, momento negativo, cad 21+337

En la figura. 5.8 y tabla 5.2, el modelo analítico previo que en esta zona se debe presentar daño (articulaciones analíticas), la correlación entre el modelo analítico y el daño observado es adecuado, no solamente en estos puntos si no en todas las zonas indicadas en las tablas 5.1 y 5.2 para los distintos tramos en estudio.

5.2 Análisis de alternativas de solución

El modelo matemático demostró una correlación aceptable entre los daños analíticos y los daños observados, sugiere que es una herramienta valiosa que permite modelar y evaluar las distintas alternativas de solución y sus efectos en la estructura.

Las alternativas que se plantearon y estudiaron fueron dos:

1.- <u>Primera alternativa, flexibilizar la estructura del cajón del Metro</u>. Consiste en permitir que la estructura pueda absorber los movimientos que el suelo le provoca, de tal forma que al no existir una oposición por parte de la estructura no se genera elementos mecánicos. La ventaja más importante de esta propuesta es que la estructura tiene la propiedad de adaptarse a la configuración que el suelo le imponga, lo que se traduce en menores daños.

El procedimiento que permitiría que el cajón del Metro se vuelva más flexible lo podemos describir de la siguiente manera: construir juntas en los puntos determinados por los daños observados, las cuales eliminan la continuidad de los muros y disminuyen en ese punto la rigidez de la sección. Existe una relación directa entre la rigidez y los desplazamientos, al disminuir la rigidez incrementamos los desplazamientos, es importante mencionar que la losa de rasante debe ser continua, debe tener un funcionamiento equivalente a una articulación física, como se indica en la figura 4.23

Esta propuesta es la recomendación que la empresa Integradora de Proyectos de Ingeniería S.A. de C.V. dio como solución al problema planteado en su informe final, en el año 2001.

Se aplicó al modelo matemático del tramo caso "A", la propuesta anterior, se adicionaron juntas físicas, en los puntos donde la sección esta en el rango inelástico, estos puntos se observan en la tabla 5.3, es decir se consideró que la estructura permite la rotación.

I RAIVIO GUELATAO PENON VIEJO	
16200	16420
16460	16620
16660	16860
16880	17180
17220	17280
17380	17400
17240	17480
17580	17600

TABLA 5.3 ARTICULACIONES PLASTICAS ANALITICAS, EN LOS CADENAMIENTOS INDICADOS, TRAMO GUELATAO PEÑON VIEJO

Se muestra el modelo en la figura 5.12, las articulaciones plásticas analíticas se incluyeron como articulaciones físicas, en esa figura se indican las juntas del proyecto original, la deformación impuesta, las condiciones de apoyo y en forma de rombos las juntas adicionales.

Figura 5.12 Estructura del cajón del Metro, del cad 16+100 al 18+280, tramo caso "A"

Como resultado del análisis se obtiene el diagrama de momentos flexionante, figura 5.13, es clara la redistribuye de esfuerzos que se presenta al flexibilizar la estructura.

Figura 5.13 Diagrama de momento al incluir las articulaciones plásticas analíticas, obtenidas del modelo matemático para el tramo caso "A"

La conclusión a la propuesta de flexibilizar el cajón seria, desde el punto de vista estructural, flexibilizar la estructura, permite que pueda absorber deformación, y la consecuencia inmediata es que los elementos mecánicos bajan considerablemente

Sin embargo, se debe mencionar que esta solución tiene las siguientes desventajas, al permitir que la estructura se deforme con el suelo, genera que las vías también se deformen como se ilustra en la figura 5.14

Figura 5.14 La deformación que el suelo le impone al cajón del metro, se refleja en el sistema de vías cad 17+500

Esa deformación de las vías afecta de manera relevante la operación de los trenes, generando que la línea tenga impuesta una disminución de la velocidad, también se presentan vibraciones y es posiblemente que se de llegue al descarrilamiento.

Las juntas tienen una capacidad finita que depende del tamaño de la abertura y del sentido del movimiento angular o lineal. Los movimientos generados por el suelo no están limitados, por lo que día con día se incrementan, en el instante en que la juntas se cierran existe compresión de las partes que va generando, agrietamiento, aplastamiento de las zonas en contacto, mismas que visualmente provoca una sensación de inseguridad.

Derivado de lo anterior podemos concluir que no es la solución más viable, la razón principal es que afecta al funcionamiento de los trenes.

2.- <u>Segunda alternativa aumentar la rigidez del cajón del Metro.</u> Esta alternativa de solución consiste en incrementar la rigidez y la capacidad de la sección, esto se logra al modificar la geometría, cuantía de acero longitudinal y el confinamiento, como complemento se deben reparar los daños existentes. La respuesta a estas acciones son el incremento de la rigidez efectiva y el aumento de su ductilidad. La ventaja más relevante es que el sistema de vías no se deformaría, disminuyendo la necesidad de "liberar esfuerzos", ó rectificar el trazo de la misma.

Las posibles desventajas que tiene esta propuesta son:

Problemas constructivos para lograr que una estructura semi-enterrada sea reforzada, en longitudes tan grandes resultaría un proceso costoso, complicado y necesitaría un tiempo de ejecución importante.

Incremento de las oquedades bajo el cajón del Metro, si se incrementa la rigidez de la sección, es probable que el cajón se despegue del suelo, esto generaría oquedades, su repercusión mas relevante seria someter a la estructura a trabajar en condiciones similares a las de un puente. En el cadenamiento 21+337 se presentó esta condición.

En este punto especial el hueco fue detectado por el personal de la STC, pero por tramites administrativos no pudo ser rellenado a tiempo, se presenta la falla frágil como se ilustra en la figura 5.10 y 5.11.

Podemos concluir que la alternativa de rigidizar la sección de la estructura, en longitudes tan grandes, generarían las siguientes desventajas, un alto costo, aumento de las oquedades bajo el cajón, fallas frágiles y pueden generarse defectos constructivos que impidan el comportamiento esperado, por lo tanto no es una solución recomendable.

Capítulo 6 Conclusiones y recomendaciones

En este trabajo se hace énfasis en el desarrollo de modelos analíticos que representen de manera adecuada el comportamiento de la estructura continua tipo cajón de la Línea "A" del metro en los tramos caso "A" y "B", con el objetivo de proponer mejoras en el comportamiento estructural y de servicio de la línea "A"

Las principales actividades efectuadas previas a la elaboración de tales modelos fueron:

- a) Recopilación, revisión y procesado de la información de los dos tramos en estudio. Se puso especial atención a los documentos del proyecto original (Colinas de Buen S.A. de C.V., 1989) y del proyecto de rehabilitación de juntas estructurales (Integración de Procesos de Ingeniería, 2001).
- b) Verificación en campo de la información principal.
- c) Inspección detallada de los cadenamientos afectados por las deformaciones del suelo y de los daños registrados en su estado actual.
- d) Revisión de las medidas correctivas efectuadas en el pasado.

Posterior a la revisión y procesado de información del pasado, y una vez familiarizados con la problemática actual del cajón del Metro en la Línea "A", se realizó una tipificación de los elementos estructurales en dos tramos: caso "A" y caso "B"

La principal información geotécnica que se consideró en la elaboración de los modelos analíticos fue la información disponible sobre el hundimiento regional de la zona en estudio; a partir de la cual se pudo obtener el hundimiento diferencial en diversos cadenamientos (a cada 20m) a lo largo de la Línea "A".

Se debe mencionar que las principales características de los modelos desarrollados consideran tanto el comportamiento no lineal del concreto armado como la rigidez efectiva de las secciones estructurales del cajón. Asimismo, permiten predecir la aparición de articulaciones plásticas en las zonas donde las demandas de momento flexionante alcanzan la capacidad máxima de la sección.

Con base en los resultados de la modelación, se compararon los daños que se infieren de los modelos analíticos (articulaciones plásticas en las zonas que señala el modelo) con los daños observados en los recorridos de campo.

Una vez validado el modelo analítico, se analizaron dos alternativas de solución:

- a) Alternativa A: flexibilizar la estructura construyendo juntas en los cadenamientos donde se presentaron momentos cercanos a la capacidad máxima de la sección estructural del cajón.
- b) Alternativa B: reforzar la estructura aumentando su capacidad y ductilidad.

6.1 Conclusiones

A partir de los cálculos efectuados se pueden establecer las siguientes conclusiones:

- a) El asentamiento diferencial del suelo que deforma el cajón del Metro aumenta a medida que el proceso de hundimiento regional se incrementa, en la zona lacustre del valle de México, lo cual lleva de manera irremediable a la falla del cajón.
- b) La acción que genera el agrietamiento de la sección, es el efecto del hundimiento regional. Empieza cuando el suelo se hunde de forma irregular en la losa del cajón, el peso actuante en la estructura (cargas muertas y vivas) y la longitud importante de la estructura, obligan al cajón a deformarse; en los modelos este efecto se incluye con desplazamientos forzados.
- c) La estructura continúa de concreto reforzado, en la cual actúa el hundimiento diferencial, equivale a una estructura cualquiera en la cual se incrementan las cargas actuantes de manera gradual hasta llevarla a la falla. Esto puede ocasionar que el cajón del Metro falle en el instante en que el hundimiento diferencial genere una demanda superior a su capacidad estructural.
- d) Cuando una sección del cajón alcanza su capacidad máxima, se origina una articulación plástica, la cual redistribuye inicialmente la demanda de momento y posteriormente lleva la sección a la falla (ruptura del acero de refuerzo o aplastamiento del concreto).
- e) La sección del cajón presenta una rotación en el cadenamiento donde se origina la falla. En este punto el momento actuante disminuye prácticamente a cero, ocasionando que el cajón se adapte a la configuración del terreno. Lo anterior es equivalente a generar una junta física.
- Reforzar la sección estructural del cajón del Metro equivale a aumentar su rigidez efectiva. Esto se puede lograr incrementando tanto el acero de refuerzo como el tamaño de la sección.
- g) Tratar de reforzar las secciones estructurales del cajón del Metro, tendría un costo elevado si se considera que se trata de estructuras semi-enterradas de aproximadamente 2km de longitud en cada tramo analizado. Además, con el refuerzo el cajón ya no podría adaptarse al movimiento del terreno, obligándolo a comportarse como *un puente*, es decir, el cajón se separaría del suelo en longitudes importantes. El peligro que esto representa es que podrían ocurrir fallas frágiles debido a que el cajón del metro no fue diseñado para soportar este comportamiento.

h) Agregar juntas en la estructura continua del cajón del Metro, permitiría flexibilizarlo ayudando a absorber los hundimientos diferenciales y reduciendo con ello los daños en el mismo. Sin embargo, resulta claro que las rotaciones que se generarían en las juntas afectarían al sistema de vías provocando ondulaciones y vibraciones, y en casos extremos, el descarrilamiento del tren.

Los análisis presentados muestran que los daños que ha experimentado el cajón del Metro en los tramos estudiados se deben principalmente al hundimiento regional del suelo y a las características estructurales de sus secciones, las cuales resultaron poco apropiadas para absorber las grandes deformaciones del suelo.

En general, se trata de un problema complejo en el que el subsuelo por donde pasa la Línea "A" presenta características geotécnicas muy diferentes de un punto a otro (existen cambios bruscos de material muy compresible como la arcilla de esa zona a materiales más duros debido a la presencia del cerro del Peñón del Marqués y de la sierra Santa Catarina). De acuerdo con la información geotécnica se sabe que el hundimiento regional del suelo de la zona está lejos de estabilizarse.

Tratar de lidiar con el desafortunado comportamiento del suelo de la zona resulta prácticamente imposible. Si lo que se pretende es únicamente aminorar el problema y seguir operando la línea actual, la prioridad debe ser garantizar que el servicio que ofrece el Sistema de Transporte Colectivo Metro sea seguro, constante y con el menor número posible de interrupciones al servicio.

Si se permite que las fallas actuales continúen (las cuales desde el punto de vista estructural tienen un comportamiento similar al de una articulación), existe el peligro de transmitir todos los problemas al sistema de vías del Metro. Se considera que lo más importante es tratar de evitar esto.

6.2 Recomendaciones

De acuerdo con las distintas alternativas de solución analizadas en este trabajo, y tratando de incrementar el tiempo de vida útil del cajón del Metro evitando transferir los problemas a las vías, se recomienda lo siguiente:

- a) Determinar los cadenamientos donde se presenten grietas en la estructura, ruptura del acero de refuerzo o el aplastamiento del concreto.
- b) Llevar a cabo un procedimiento de reparación que consista en retirar el concreto dañado en un longitud suficiente que permita la restitución del acero de refuerzo original que ya llego a la fluencia, con el traslape necesario para garantizar la continuidad de la sección y recuperar la capacidad de absorber las futuras demandas de deformación.
- c) Se recomienda detectar y rellenar las oquedades existentes debajo de la losa de cimentación del cajón del Metro. La finalidad es evitar que la estructura se separe del suelo, trabajando como un puente.
- d) Eliminar las juntas adicionales que se han construido a lo largo de los tramos en estudio, creadas a propuesta de la empresa de consultoría Integración de Procesos de Ingeniería (IPISA), buscando reestablecer las condiciones originales de capacidad de deformación.
- e) Eliminar las juntas que fueron construidas en 2003 a propuesta de la empresa de ingeniería IPISA. El objetivo de esto, es tratar de restituir las condiciones originales del cajón del Metro (como se encontraba en el momento de la construcción de la línea "A" en 1987).

Anexo A Secciones tipo tramos en estudio caso "A" y "B"

Se muestran las secciones del cajón del Metro en el Tramo caso "A" Secciones Tipo y Cadenamiento.

75

SECCION ESTRUCTURAL TIPO C

DEL CAD. 16+385.000 AL CAD. 16+440.016

DEL CAD. 17+819.750 AL CAD.18+280.320

SECCION ESTRUCTURAL TIPO F

DEL CAD. 17+020.000 AL CAD. 17+485.000

Secciones tipo tramo caso "B"

DEL Km 22+458.021 AL Km 22+580.000

25

25

MURD TABLESTACA

DEL Km 22+771.570 AL Km 22+785.642

SECCION ESTRUCTURAL F

VARIABLE DE 461.6 <u>A 468.1</u>

40

_VARIABLE DE 430.1 <u>A 432.7</u>

25

MURD TABLESTACA

25

Anexo B

Calculo de la deformación del metro utilizando la Nivelación del Proyecto original Colinas de Buen (1987), y la realizada por IPISA (2001), Tramo caso "A"

Donde Cad. Es el cadenamiento de la Sección, N Desp., Nivel de desplante, N.G.Sur, nivel de la guarnición Sur, N.G.N Nivel de la Guarnición Norte, N.C.S. Nivel de Corona Sur, N.C.N. Nivel de la corona Norte. Y Def. deformación del Cajon.

Proy	ecto orig	IPISA 2002		Def				
Cad.	N Desp.	N.G.Sur	N.G.N	N.C.S	N.C.N	CAD.	N. 2001	
16091.315					35.596	16091.32	32.7522	-2.8438
16100	31.316	34.519	34.096	35.596	35.596	16100	32.6353	-2.9607
16106.516	31.5867	34.4936	34.0605	35.5862	35.5862	16106.52	32.5476	-3.038626
16120	32.147	34.441	33.987	35.566	35.566	16120	32.3663	-3.1997
16140	31.994	34.458	33.938	35.544	35.544	16140	32.0972	-3.4468
16157.129	31.8630	34.3963	33.9115	35.5260	35.5260	16157.13	31.8667	-3.6593146
16160	31.841	34.386	33.907	35.523	35.523	16160	31.8281	-3.6949
16163.36	31.8166	34.3697	33.8966	35.5208	35.5208	16163.36	31.7829	-3.737916
16180	31.696	34.289	33.845	35.51	35.51	16180	31.5591	-3.9509
16191.315	31.6445	34.2601	33.7811	35.5304	35.5304	16191.32	31.4068	-4.123567
16200	31.605	34.238	33.732	35.546	35.546	16200	31.2901	-4.2559
16220	31.519	34.113	33.655	35.585	35.585	16220	31.1928	-4.3922
16240	31.433	34.081	33.599	35.623	35.623	16240	31.0954	-4.5276
16254.151	31.3714	33.9989	33.5304	35.6506	35.6506	16254.15	31.0265	-4.6240945
16260	31.346	33.965	33.502	35.662	35.662	16260	30.998	-4.664
16280	31.26	33.893	33.414	35.7	35.7	16280	31.0476	-4.6524
16280	31.26	33.893	33.414	35.7	35.7	16280	31.0476	-4.6524
16291.315	31.2074	33.8421	33.3631	35.7221	35.7221	16291.32	31.0758	-4.6462643
16300	31.167	33.803	33.324	35.739	35.739	16300	31.0975	-4.6415
16320	31.074	33.668	33.206	35.777	35.777	16320	31.1474	-4.6296
16340	30.981	33.596	33.129	35.816	35.816	16340	31.1974	-4.6186
16360	30.888	33.478	33.031	35.854	35.854	16360	31.2472	-4.6068
16380	30.795	33.075	32.919	35.893	35.893	16380	31.2971	-4.5959
16385	30.7718	33.1495	32.9195	35.9025	35.9025	16385	31.3096	-4.5929
16391.32	30.7424	33.2437	32.9201	35.9145	35.9145	16391.32	31.3254	-4.589108
16400	30.702	33.373	32.921	35.931	35.931	16400	31.3471	-4.5839
16420	30.606	33.107	32.728	35.967	35.967	16420	31.397	-4.57
16440	30.441	32.901	32.608	35.933	35.933	16440	31.1437	-4.7893
16440	30.441	32.901	32.608	35.933	35.933	16440	31.1437	-4.7893
16460	29.722	32.729	32.471	35.872	35.872	16460	30.8903	-4.9817
16480	29.103	32.54	32.329	35.791	35.791	16480	30.7978	-4.9932
16491.841	28.7069	32.3446	32.1324	35.7318	35.7318	16491.84	30.743	-4.988795
16500	28.434	32.21	31.997	35.691	35.691	16500	30.7052	-4.9858
16520	27.851	32.056	31.856	35.591	35.591	16520	30.6126	-4.9784
16540	27.758	31.885	31.623	35.491	35.491	16540	30.5201	-4.9709
16560	27.666	31.76	31.453	35.392	35.346	16560	30.4275	-4.9185
16580	27.626	31.656	31.356	35.346	35.346	16580	30.4127	-4.9333

Continuación									
16591.291	27.6452	31.6108	31.3120	35.3652	35.3652	16591.29	30.4043	-4.9608947	
16600	27.66	31.576	31.278	35.38	35.38	16600	30.3978	-4.9822	
16620	27.7000	31.663	31.237	35.42	35.42	16620	30.383	-5.037	
16640	27.74	31.641	31.353	35.46	35.46	16640	30.4556	-5.0044	
16660	27.78	31.916	31.575	35.5	35.5	16660	30.5283	-4.9717	
16680	27.82	32.164	31.843	35.54	35.54	16680	30.7458	-4.7942	
16690	27.8400	32.2800	31.9770	35.5600	35.5600	16690	30.8545	-4.7055	
16700	27.86	32.396	32.111	35.58	35.58	16700	30.9632	-4.6168	
16720	28.3300	32.619	32.369	35.62	35.62	16720	31.1807	-4.4393	
16740	28.8	32.938	32.673	35.66	35.66	16740	31.3982	-4.2618	
16760	29.27	32.199	32.953	35.7	35.7	16760	31.6156	-4.0844	
16780	29.74	33.504	32.204	35.74	35.74	16780	31.8331	-3.9069	
16791.591	30.0124	33.7219	32.3709	35.7632	35.7632	16791.59	31.9591	-3.804082	
16800	30.21	33.88	32.492	35.78	35.78	16800	32.0506	-3.7294	
16800	30.31	33.88	32.492	35.78	35.78	16800	32.0506	-3.7294	
16820	30.733	34.232	33.647	35.82	35.82	16820	32.268	-3.552	
16840	31.167	34.4	33.92	35.868	35.868	16840	32.4855	-3.3825	
16841.315	31.2006	34.4256	33.8733	35.8765	35.8765	16841.32	32.4873	-3.3892475	
16860	31.678	34.79	33.209	35.998	35.998	16860	32.5125	-3.4855	
16880	31.958	35.159	34.488	36.228	36.228	16880	32.986	-3.242	
16891.315	32.1628	35.4011	34.6555	36.4045	36.4045	16891.32	33.2539	-3.150614	
16900	32.32	35.587	34.784	36.54	36.54	16900	33.4595	-3.0805	
16920	32.69	36.018	34.784	36.028	36.86	16920	33.9331	-2.9269	
16940	33.06	36.573	35.674	37.583	37.18	16940	34.4066	-2.7734	
16941.315	33.0843	36.6002	35.6330	37.6102	37.2010	16941.32	34.4377	-2.76334	
16960	33.43	36.986	35.05	37.996	37.5	16960	34.8801	-2.6199	
16980	33.8	37.409	36.482	38.419	37.82	16980	35.3536	-2.4664	
16991.315	34.0093	37.5759	36.6591	38.5859	38.0016	16991.32	35.6215	-2.3801057	
17000	34.17	37.704	36.795	38.714	38.141	17000	35.8271	-2.3139	
17020	34.46	38.134	37.187	38.144	38.398	17020	36.2899	-2.1081	
17020	35.31	38.134	37.187	38.144	38.398	17020	36.2899	-2.1081	
17040	35.555	38.667	37.587	39.617	38.646	17040	36.7527	-1.8933	
17041.315	35.5710	38.6926	37.6126	39.6466	38.6684	17041.32	36.7831	-1.8853207	
17060	35.798	39.057	37.977	40.067	38.987	17060	37.2154	-1.7716	
17080	36.059	39.987	38.278	40.497	39.288	17080	37.6782	-1.6098	
17091.315	36.2542	39.9236	38.4460	40.7165	39.4560	17091.32	37.94	-1.5160277	
17100	36.404	39.875	38.575	40.885	39.585	17100	38.1409	-1.4441	
17120	36.766	40.279	38.869	41.289	39.882	17120	38.6037	-1.2783	
17140	37.057	40.589	38.209	41.599	40.251	17140	39.0664	-1.1846	
17154.315	37.2653	40.8395	39.1896	41.8495	40.5144	17154.32	39.374	-1.140396	
17160	37.348	40.939	39.579	41.949	40.619	17160	39.4961	-1.1229	
17180	37.627	41.154	39.954	42.27	40.988	17180	39.9256	-1.0624	
17191.315	37.7345	41.3961	40.2312	42.4522	41.2516	17191.32	40.2838	-0.9678395	
17200	37.817	41.582	40.444	42.592	41.454	17200	40.5596	-0.8944	
17208.154	37.8541	41.6346	40.5651	42.6446	41.5751	17208.15	40.7458	-0.8292869	
17220	37.908	41.711	40.741	42.721	41.751	17220	41.015	-0.736	
17240	38.084	41.588	40.715	42.598	41.725	17240	41.007	-0.718	
17241.315	38.0889	41.5856	40.7086	42.5956	41.7230	17241.32	41.0065	-0.7165275	

Continuación									
17260	38,159	41.552	40.618	42.562	41.695	17260	40.9991	-0.6959	
17280	38.135	41.397	40.467	42.407	41.621	17280	40.9912	-0.6298	
17291.315	38.0648	41.3444	40.3454	41.7886	41.5226	17291.32	40.8006	-0.7219595	
17300	38.011	41.304	40.252	41.314	41.447	17300	40.6543	-0.7927	
17320	37.799	40.954	40.024	41.964	41.2	17320	40.3175	-0.8825	
17340	37.574	40.572	39.7	41.582	40.94	17340	39.9083	-1.0317	
17341.315	37.5593	40.5506	39.6851	41.4949	40.9229	17341.32	39.8814	-1.041505	
17360	37.35	40.247	39.473	40.257	40.68	17360	39.4988	-1.1812	
17367	37.35	40.247	39.473	40.257	40.68	17367	39.3555	-1.3245	
17368	37.35	40.247	39.473	40.257	40.68	17368	39.335	-1.345	
17380	37.09	39.993	39.366	41.003	40.42	17380	39.0893	-1.3307	
17391.315	36.9531	39.7927	39.2874	40.8027	40.3165	17391.32	38.8577	-1.4587678	
17400	36.848	39.639	39.227	40.649	40.237	17400	38.6798	-1.5572	
17420	36.69	39.329	39.143	40.339	40.153	17420	38.5005	-1.6525	
17440	36.55	39.129	39.139	40.139	40.149	17440	38.3223	-1.8267	
17441.315	36.5436	39.1211	39.1381	40.1311	40.1481	17441.32	38.3106	-1.8375453	
17460	36.453	39.009	39.126	40.019	40.136	17460	38.1441	-1.9919	
17480	36.359	38.409	39.012	39.919	40.022	17480	37.966	-2.056	
17485	36.335	38.4530	38.9263	39.8380	39.9363	17485	37.9305	-2.00575	
17485	35.235	38.4530	38.9263	39.8380	39.9363	17485	37.9305	-2.00575	
17491.315	35.1500	38.5086	38.8179	39.7357	39.8279	17491.32	37.8857	-1.9422478	
17500	35.033	38.585	38.669	39.595	39.679	17500	37.8242	-1.8548	
17520	34.789	38.379	38.377	39.389	39.387	17520	37.6824	-1.7046	
17520	34.689	38.379	38.377	39.389	39.387	17520	37.6824	-1.7046	
17540	34.199	38.009	37.931	39.24	39.24	17540	37.6672	-1.5728	
17541	34.1746	37.9945	37.9075	39.2347	39.2347	17541	37.6665	-1.5682	
17560	33.711	37.719	37.46	39.134	39.134	17560	37.6541	-1.4799	
17580	33.243	37.397	37.047	39.048	39.048	17580	37.641	-1.407	
17591.315	33.0314	37.2742	36.8937	39.0531	39.0531	17591.32	37.6335	-1.4195918	
17600	32.869	37.18	36.776	39.057	39.057	17600	37.6278	-1.4292	
17620	33.015	37.24	36.738	39.129	39.129	17620	37.5327	-1.5963	
17640	33.162	37.401	36.883	39.203	39.203	17640	37.4372	-1.7658	
17641.315	33.1717	37.4098	36.8888	39.2078	39.2078	17641.32	37.4309	-1.7768998	
17660	33.309	37.535	36.971	39.276	39.276	17660	37.3416	-1.9344	
17680	33.456	37.598	37.013	39.35	39.35	17680	37.2461	-2.1039	
17691	33.5363	37.6222	37.0136	39.3902	39.3902	17691	37.1935	-2.19665	
17700	33.602	37.642	37.014	39.423	39.423	17700	37.1505	-2.2725	
17720	33.75	37.672	37.054	39.497	39.497	17720	36.9539	-2.5431	
17740	33.897	37.778	37.178	39.57	39.57	17740	36.7573	-2.8127	
17741.315	33.9066	37.7792	37.1798	39.5749	39.5749	17741.32	36.7443	-2.8305655	
17760	34.043	37.797	37.205	39.644	39.644	17760	36.5606	-3.0834	
17780	34.19	37.808	37.225	39.717	39.717	17780	36.364	-3.353	
17791.315	34.2737	37.8363	37.2623	39.7589	39.7589	17791.32	36.2527	-3.5061655	
17800	34.338	37.858	37.291	39.791	39.791	17800	36.1673	-3.6237	
17820	34.482	37.922	37.361	39.864	39.864	17820	35.9707	-3.8933	
17820	34.585	37.922	37.361	39.864	39.864	17820	35.9707	-3.8933	
17840	34.816	37.965	37.461	39.89	39.89	17840	35.774	-4.116	

Continuación										
17841.315	34.8267	37.9695	37.4619	39.8871	39.8871	17841.32	35.7617	-4.125407		
17860	34.978	38.034	37.474	39.846	39.846	17860	35.586	-4.26		
17880	35.134	38.088	37.534	39.8	39.8	17880	35.3981	-4.4019		
17891.315	35.1674	38.1072	37.5498	39.7768	39.7768	17891.32	35.2917	-4.4851043		
17900	35.193	38.122	37.562	39.759	39.759	17900	35.2101	-4.5489		
17920	35.251	38.143	37.576	39.707	39.707	17920	35.3814	-4.3256		
17940	35.31	38.145	37.584	39.63	39.63	17940	35.5527	-4.0773		
17941.315	35.3113	38.1441	37.5856	39.6220	39.6220	17941.32	35.5456	-4.0764443		
17960	35.33	38.132	37.608	39.509	39.509	17960	35.4451	-4.0639		
17980	35.35	38.129	37.6	39.388	39.388	17980	35.3376	-4.0504		
17993.315	35.2967	38.1084	37.5933	39.3068	39.3068	17993.32	35.266	-4.0407785		
18000	35.27	38.098	37.59	39.266	39.266	18000	35.23	-4.036		
18020	35.197	38.079	37.584	39.152	39.152	18020	35.1225	-4.0295		
18040	35.192	38.156	37.667	39.116	39.116	18040	35.3024	-3.8136		
18060	35.159	38.116	37.648	39.135	39.135	18060	35.4823	-3.6527		
18080	35.107	38.072	37.639	39.154	39.154	18080	35.6622	-3.4918		
18091.315	35.1381	38.0465	37.6554	39.1647	39.1647	18091.32	35.764	-3.4007493		
18100	35.162	38.027	37.668	39.173	39.173	18100	35.8421	-3.3309		
18120	35.218	37.968	37.688	39.191	39.191	18120	36.022	-3.169		
18140	35.274	37.948	37.668	39.21	39.21	18140	36.1986	-3.0114		
18160	35.329	38.068	37.792	39.229	39.229	18160	36.3753	-2.8537		
18180	35.382	38.109	37.879	39.248	39.248	18180	36.5519	-2.6961		
18191.315	35.4126	38.1237	37.8762	39.2587	39.2587	18191.32	36.5467	-2.7120493		
18200	35.436	38.135	37.874	39.267	39.267	18200	36.542	-2.725		
18220	35.49	38.152	37.911	39.286	39.286	18220	36.5313	-2.7547		
18240	35.54	38.131	37.962	39.304	39.304	18240	36.5205	-2.7835		
18260	35.6	38.11	37.945	39.323	39.323	18260	36.5205	-2.8025		
18280	35.657	38.093	37.928	39.342	39.342	18280		-2.8025		

Calculo de la deformación del metro utilizando la Nivelación del Proyecto original Colinas de Buen (1987), y la realizada por IPISA (2001), Tramo caso "B"

CAD	N Desp.	Sub.	Rasante	Ancho	Н	CAD.	N. 2001	HD	Def.
		Rasante							
21240	37.864	39.384	40.164	7.917	1.966	21240	39.913	0.251	-0.251
21260	37.848	39.368	40.148	7.437	2.2626	21260	39.935	0.213	-0.213
21280	39.718	39.188	39.968	6.957	2.3228	21280	39.724	0.244	-0.244
21285									-0.257
21300	38.365	38.821	39.601	6.476	2.3731	21300	39.306	0.295	-0.295
21310									-0.312
21320	37.979	38.921	39.201	5.996	2.4135	21320	38.873	0.328	-0.328
21335									-0.318
21340	37.593	38.021	38.801	5.516	2.4408	21340	38.486	0.315	-0.315
21360	37.268	37.682	38.462	5.036	2.4537	21360	38.168	0.294	-0.294
21367									-0.302
21380	37.102	37.502	38.282	4.555	2.4588	21380	37.965	0.317	-0.317
21400	37.085	37.471	38.251	4.075	2.4648	21400	37.785	0.466	-0.466
21420	37.099	37.471	38.251	4.075	2.4803	21420	37.588	0.663	-0.663
21440	37.071	37.471	38.251	4.075	2.5138	21440	37.374	0.877	-0.877
21450									-0.970
21460	37.015	37.415	38.195	4.075	2.5688	21460	37.132	1.063	-1.063
21480	36.771	37.771	37.951	4.075	2.6278	21480	36.839	1.112	-1.112
21500	36.471	36.871	37.651	4.075	2.6682	21500	36.577	1.074	-1.074
21520	36.171	36.571	37.351	4.075	2.6672	21520	36.34	1.011	-1.011
21540	35.931	36.321	37.101	4.075	2.6027	21540	36.163	0.938	-0.938
21550									-0.914
21560	35.781	36.171	36.951	4.075	2.4723	21560	36.062	0.889	-0.889
21575									-0.898
21580	35.731	36.121	36.901	4.075	2.2579	21580	36	0.901	-0.901
21600	35.771	36.171	36.951	4.075	2.3268	21600	36.087	0.864	-0.864
21620	35.921	36.32	37.101	4.075	2.3637	21620	36.275	0.826	-0.826
21640	36.121	36.521	37.301	4.075	2.3642	21640	36.518	0.783	-0.783
21650									-0.767
21660	36.321	36.721	37.501	4.075	2.3405	21660	36.749	0.752	-0.752
21680	36.521	36.921	37.701	4.075	2.3071	21680	36.933	0.768	-0.768
21700	36.689	37.089	37.869	4.075	2.2856	21700	37.118	0.751	-0.751
21720	36.771	37.161	37.941	4.075	2.2186	21720	37.207	0.734	-0.734
21727									-0.717
21740	36.811	37.201	37.981	4.075	2.186	21740	37.295	0.686	-0.686
21760	36.849	37.239	38.019	4.075	2.2078	21760	37.39	0.629	-0.629
21780	36.819	37.209	37.989	4.075	2.1303	21780	37.439	0.55	-0.550
21800	36.721	37.111	37.891	4.075	2.0949	21800	37.4	0.491	-0.491
21820	36.621	37.011	37.791	4.075	2.0981	21820	37.2972	0.4938	-0.494
21825									-0.486
21840	36.521	36.911	37.691	4.075	2.1363	21840	37.228	0.463	-0.463
21850									-0.464

				Con	tinuación				
21860	36.421	36.811	37.591	4.075	2.2055	21860	37.126	0.465	-0.465
21880	36.321	36.711	37.491	4.075	2.3018	21880	36.978	0.513	-0.513
21900	36.171	36.561	37.341	4.075	2.6284	21900	36.849	0.492	-0.492
21920	35.971	36.361	37.141	4.075	2.9732	21920	36.696	0.445	-0.445
21940	35.771	36.161	36.941	4.075	3.4594	21940	36.503	0.438	-0.438
21950									-0.449
21960	35.571	35.961	36.741	4.075	3.9467	21960	36.282	0.459	-0.459
21980	35.371	35.761	36.541	4.075	4.4542	21980	36.049	0.492	-0.492
22000	34.868	35.561	36.341	4.075	5.0336	22000	35.809	0.532	-0.532
22020	34.361	35.361	36.141	4.075	5.6059	22020	35.578	0.563	-0.563
22040	34.043	35.193	35.973	4.075	6.1658	22040	35.383	0.59	-0.590
22050									-0.587
22060	33.821	35.121	35.901	4.075	6.319	22060	35.318	0.583	-0.583
22080	33.783	35.083	35.863	4.075	6.4218	22080	35.267	0.596	-0.596
22100	33.873	35.173	35.953	4.075	6.37	22100	35.231	0.722	-0.722
22120	34.043	35.243	36.023	4.075	6.1998	22120	35.251	0.772	-0.772
22140	34.473	35.473	36.253	4.075	5.8739	22140	35.392	0.861	-0.861
22150									-0.879
22160	35.263	35.803	36.583	4.075	5.3719	22160	35.687	0.896	-0.896
22180	35.811	36.201	36.981	4.075	4.6306	22180	36.09	0.891	-0.891
22200	36.211	36.601	37.381	4.075	3.8637	22200	36.537	0.844	-0.844
22220	36.609	36.999	37.779	4.075	3.0128	22220	36.982	0.797	-0.797
22240	36.939	37.329	38.109	4.075	2.3511	22240	37.552	0.557	-0.557
22250									-0.664
22260	37.169	37.559	38.339	4.075	2.0513	22260	37.568	0.771	-0.771
22280	37.276	37.689	38.469	4.075	2.0566	22280	37.533	0.936	-0.936
22300	37.329	37.719	38.499	4.075	2.0677	22300	37.4	1.099	-1.099
22320	37.291	37.681	38.461	4.075	2.1089	22320	37.253	1.208	-1.208
22340	37.251	37.691	38.421	4.075	2.1497	22340	37.12	1.301	-1.301
22350									-1.334
22360	37.211	37.601	38.381	4.075	2.1574	22360	37.015	1.366	-1.366
22380	37.171	37.561	38.341	4.075	2.1268	22380	36.933	1.408	-1.408
22400	37.146	37.536	38.316	4.075	2.1144	22400	36.919	1.397	-1.397
22420	37.196	37.586	38.366	4.075	2.1304	22420	36.971	1.395	-1.395
22440	37.256	37.646	38.426	4.075	2.1447	22440	37.047	1.379	-1.379
22450									-1.370
22460	37.316	37.706	38.486	4.070	2.1277	22460	37.126	1.36	-1.360
22480	37.376	37.766	38.546	4.070	2.1177	22480	37.169	1.377	-1.377
22500	37.421	37.811	38.591	4.070	2.1388	22500	37.226	1.365	-1.365
22520	37.376	37.766	38.546	4.070	2.2114	22520	37.235	1.311	-1.311
22540	37.231	37.621	38.401	4.070	2.3532	22540	37.164	1.237	-1.237
22550									-1.190
22560	36.836	37.376	38.156	4.070	2.5795	22560	37.014	1.142	-1.142
22580	36.491	37.031	37.811	4.070	3.265	22580	36.779	1.032	-1.032
22600	35.891	36.631	37.411	4.070	3.7261	22600	36.463	0.948	-0.948
22620	35.491	36.231	37.011	4.070	4.227	22620	36.111	0.9	-0.900
22640	34.851	35.831	36.611	4.070	4.7503	22640	35.768	0.843	-0.843
22650									-0.815

				Con	tinuación				
22660	34.221	35.431	36.211	4.070	5.2778	22660	35.424	0.787	-0.787
22680	33.581	35.031	35.811	4.070	5.7717	22680	35.077	0.734	-0.734
22700	32.866	34.641	35.421	4.070	6.0652	22700	34.747	0.674	-0.674
22720	32.136	34.336	35.116	4.070	6.3052	22720	34.49	0.626	-0.626
22740	31.881	34.131	34.911	4.070	6.4729	22740	34.307	0.604	-0.604
22750									-0.599
22760	31.626	34.026	34.806	4.070	6.5552	22760	34.211	0.595	-0.595
22780	31.619	34.019	34.799	4.391	6.5608	22780	34.21	0.589	-0.589
22800	31.681	34.061	34.841	4.711	6.5037	22800	34.272	0.569	-0.569
22820	31.721	34.121	34.901	5.032	6.3972	22820	34.33	0.571	-0.571
22840	31.921	34.321	35.101	5.352	6.2548	22840	34.566	0.535	-0.535
22860	32.286	34.686	35.466	5.673	5.8227	22860	34.98	0.486	-0.486
22880	33.051	35.201	35.981	5.994	5.2937	22880	35.491	0.49	-0.490
22900	33.891	35.801	36.581	6.314	4.6697	22900	36.097	0.484	-0.484
22920	34.741	36.401	37.181	6.635	4.0617	22920	36.687	0.494	-0.494
22940	35.581	37.001	37.781	6.955	3.4456	22940	37.285	0.496	-0.496
22960	36.431	37.601	38.381	7.276	2.8626	22960	37.85	0.531	-0.531
22980	37.263	38.099	38.879	7.596	2.4146	22980	38.28	0.599	-0.599
23000		38.332	39.112	7.917	2.1386	23000	38.538	0.574	-0.574

Anexo C

EVALUACIÓN Y LEVANTAMIENTOS DE DAÑOS EN LA LINEA "A" DEL METRO.

Se muestra la tabla 4.3 fallas en el tramo en estudio indicando la causa probable que este generando las fallas.

	Tramo								
	Guelatao	Peñón Viejo	Acatitla	Santa Marta					
Tipo de fallas	Peñón Viejo	Acatitla	Santa Marta	Los Reyes.					
-	Fallas e	en las juntas							
1.1 Falla por giro positivo	16240 16340 16590	18670 19035 19435 19635 19785	20180	21337 21369 21492 21600					
1.2 Falla por giro negativo	16840			21402 22250					
1.3 Falla a compresión por desplazamiento horizontal:	17994	18447 18550 19435 19635	20180	20180 22350 22450 22550					
1.4 Falla a tensión de la losa de rasante:	17495	18836 18896 19535							
1.5 Falla por desplazamiento vertical	17620 17340 17495 17994 17020	18605 18872 19785		22250					
	Fallas e	n los Tramos.							
2.1- Falla por momento negativo	16232 16235 16284 16556 16620 16700 16820 17027 17040 17210 17510 17520 17560 17750 17560 17720 17940 17980	18540 18048 18867 18870 18872 18875 18880 19060 19070 19080 19580 19675 19740 19795	20240 20235 20250 20290 20330 20350 20360 20390 20660 20620 20620 20860	21355 21410 21540 21700 21860 21910 22008 22090 22260 22650 22725 22730 22740 22780 22780 22850 22900 22960					
	2.2 Falla po	r momento positi	vo:						
Caso I. Este tipo de falla es generada por flexión, compresión	16580	18910 19000 19750		21280					
Caso II:- Este tipo de falla es generada por flexión, tensión	17140 17143 17191 17230 17360 17410	19003 19005 19080	20230 20250						

1.0 Levantamiento de daños en el tramo caso "A"a) Falla en las juntas:1.1 fallas por giro positivo

Este tipo de falla se presenta cuando el asentamiento regional del suelo genera desplazamiento relativo entre las secciones generando una rotación de la junta, la parte superior de los muros se unen cerrando la abertura de la junta y posteriormente hay un choque de los muros creando despostillamiento de la zona en contacto, esta falla se observo en los cadenamiento siguientes.

cad 16+240

cad 16+340

cad 16+590

1.2.- Falla por giro negativo: este tipo de falla se presenta cuando el asentamiento regional del suelo forma desplazamientos relativos entre las secciones, generando una rotación de la junta, las partes superiores de los muros se separan como esta falla se observo en los cadenamiento siguientes.

cad 16+840

1.3.- Falla a compresión por desplazamiento horizontal: este tipo de falla se presenta cuando el asentamiento diferencial del suelo genera desplazamientos horizontales, esto tiende a cerrar la abertura de las juntas. En este caso es muy probable que la losa de la subrasante falle por aplastamiento, como se observa en los puntos siguientes.

cad 17+994

1.4.- Falla a tensión de la losa de rasante: al deformarse el cajón, su longitud se incrementa, generando esfuerzos de tensión, estos tienden a separar las secciones de la junta, la losa de la rasante falla por la fluencia del acero y posteriormente la ruptura, se observa en las fotografías mostradas.

cad 17+495

cad 17+495

1.5.- Falla por desplazamiento vertical: se presenta cuando las secciones de la junta presenta movimientos verticales relativos, de una sección respecto a la otra, esta deformación induce, la falla de la losa en las juntas de construcción. En las de expansión el diente funciona como una ménsula provocando agrietamiento y posteriormente la falla. Este tipo de falla se incrementa con el tiempo, y se muestran en las fotos siguientes.

cad 17+020

cad 17+340

cad 17+495

cad 17+994

cad 17+994

2.- <u>Fallas en los tramos de los muros localizados entre juntas</u>: se presentan a lo largo de los tramos, el cajón trabaja como una viga con fundación elástica, las podemos clasificar de la siguiente manera:

2.1- Falla por momento negativo: generada por flexión, la losa de cimentación trabaja a compresión, para lograr el equilibrio, el acero que se encuentra en la parte superior de los muros llega a su fluencia, mientras el concreto de la losa dada su gran área solamente necesita deformaciones pequeñas, Esta falla tipo se observo en los cadenamiento siguientes.

cad 16+232

cad 16+235

cad 16+284

cad 16+556

cad 16+620

cad 16+700

cad 16+820

cad 17+027

cad 17+040

cad 17+210

cad 17+510

cad 17+520

cad 17+600

cad 17+720

cad 17+940

cad 17+980

2.2.- Falla por momento positivo:

Caso I. Este tipo de falla es generada por flexión, la losa de cimentación trabaja a tensión y la parte superior de los muros trabaja a compresión. En la losa existe una cuantía de acero que genera fuerzas a tensión muy superiores a las fuerzas de compresión que puede aportar el concreto de los muros, la falla se presenta por aplastamiento del concreto, Esta falla se presenta acompañada de deformaciones fuera del plano (el muro genera ondulaciones en planta) la podemos ver claramente en las fotografías mostradas.

cad 16+580

2.3.- Falla por momento positivo:

Caso II:- Este tipo de falla es generada por flexión, la losa de cimentación trabaja a tensión y la parte superior de los muros trabaja a compresión, la falla se presenta en el acero de la losa, la podemos ver en las fig 4.21

cad 17+140

cad 17+143

cad 17+191

cad 17+230

cad 17+360

cad 17+410

2.0 Levantamiento de daños en el tramo caso "B" a) Falla en las juntas:

1.1 fallas por giro positivo

Este tipo de falla se presenta cuando el asentamiento regional del suelo genera desplazamiento relativo entre las secciones generando una rotación de la junta, la parte superior de los muros se unen cerrando la abertura de la junta y posteriormente hay un choque de los muros creando despostillamiento de la zona en contacto, esta falla se observo en los cadenamiento siguientes.

cad 21+337

cad 21+369

cad 21+492

cad 21+600

1.2.- Falla por giro negativo: este tipo de falla se presenta cuando el asentamiento regional del suelo forma desplazamientos relativos entre las secciones, generando una rotación de la junta, las partes superiores de los muros se separan como esta falla se observo en los cadenamiento siguientes.

cad 21+402

cad 22+250

1.3.- Falla a compresión por desplazamiento horizontal: este tipo de falla se presenta cuando el asentamiento diferencial del suelo genera desplazamientos horizontales, esto tiende a cerrar la abertura de las juntas. En este caso es muy probable que la losa de la subrasante falle por aplastamiento, como se observa en los puntos siguientes.

cad 20+180

cad 22+350

cad 22+450

cad 22+550

1.5.- Falla por desplazamiento vertical: se presenta cuando las secciones de la junta presenta movimientos verticales relativos, de una sección respecto a la otra, esta deformación induce, la falla de la losa en las juntas de construcción. En las de expansión el diente funciona como una ménsula provocando agrietamiento y posteriormente la falla. Este tipo de falla se incrementa con el tiempo, y se muestran en las fotos siguientes.

cad 22+250

2.- <u>Fallas en los tramos de los muros localizados entre juntas</u>: se presentan a lo largo de los tramos, el cajón trabaja como una viga con fundación elástica, las podemos clasificar de la siguiente manera:

2.1- Falla por momento negativo: generada por flexión, la losa de cimentación trabaja a compresión, para lograr el equilibrio, el acero que se encuentra en la parte superior de los muros llega a su fluencia, mientras el concreto de la losa dada su gran área solamente necesita deformaciones pequeñas, Esta falla tipo se observo en los cadenamiento siguientes.

cad 21+355

cad 21+410

cad 21+540

cad 21+700

cad 21+860

cad 21+910

cad 22+090

cad 22+260

cad 22+650

cad 22+725

cad 22+740

cad 22+780

cad 22+850

cad 22+960

2.2.- Falla por momento positivo:

Caso I. Este tipo de falla es generada por flexión, la losa de cimentación trabaja a tensión y la parte superior de los muros trabaja a compresión. En la losa existe una cuantía de acero que genera fuerzas a tensión muy superiores a las fuerzas de compresión que puede aportar el concreto de los muros, la falla se presenta por aplastamiento del concreto, Esta falla se presenta acompañada de deformaciones fuera del plano (el muro genera ondulaciones en planta) la podemos ver claramente en las fotografías mostradas.

cad 21+280

Referencias.

Baker (1965), a. L. L., and Amarakone, a. M. N., "inelastic hyperstatic frames analysis," flexural mechanics of reinforced concrete,sp-12, american concrete institute/american society of civil engineers, Detroit, 1965, pp. 85-142.

Bathe, K. J. and Wil son, E. L., (1976) Numerical methods in finite element analysis, Prentice- Hall, Engle wood Cliffs, N.J.

Colinas de Buen (1987), Proyecto ejecutivo línea "A" del metro elaborado para el sistema de Transporte Colectivo (STC) Metro, México, jul 1989

Computers and Structures, Inc, 2007; SAP2000 Integrated Finite Elements Analysis and Design of Structures, Berkeley, California, U.S.A.

Corley, W. Gene, (1966), "Rotational capacity of reinforced concrete beams," Proceedings, ASCE, V. 92, ST5, Oct. 1966, pp. 121-146.

Ibrahimbegovic and Wilson (1991), "A Unified formulation for triangular and quadrilateral flat shell finite elements with six nodal degrees of free dom," communications in applied numerical methods, Vol. 7, pp. 1–9

Instituto de Ingeniería UNAM (2007), "Análisis y predicción del comportamiento del suelo y del sistema de vías en el tramo Guelatao–Los Reyes, Informe final del Instituto de Ingeniería de la UNAM elaborado para el Sistema de Transporte Colectivo (STC) Metro, México, D.F., julio de 2007.

IPISA (2001), Proyecto de reparación del tramo Guelatao – los Reyes de la linea – "A" del metro férreo, 2001

Kent-Park (1971), "Flexural members with confined concrete", Proceeding ASCE, vol. 97, No st7, july 1971, pp. 1969-1990

Mander, J B, Priestley, M.J N y Park, R (1984), "Seismic Design of Bridge Piers", Report 84-2, Department of Civil Engineering, *University of Canterbury*, Christchurch, Nueva Zelandia

NTC DDF (2004), Normas técnicas complementarias para diseño y construcción de estructuras de concreto del reglamento de construcciones del Distrito Federal, México, DF 2004.

Park R., Priestley, M.J. N., y Gill W., (1982), "Ductility of Square-Confined Concrete columns", Journal of Structural Division, ASCE, Vol 108, ST4, Abril 1982.

Park y Paulay (1975), Reinforced concrete structures, John Wiley y Sons, New Yok, 1975, 769 p.

Paulay, T, y Priestley, MJN (1992), Seismic design of reinforced concrete and mansonry buildings. John Wiley and Sons, Nueva York, EUA

Rodríguez, M, y Botero, JC (1996), Aspectos del comportamiento sísmico de estructuras de concreto reforzado considerando las propiedades mecánicas de aceros de refuerzo producidos en México, publicación *Series del Instituto de Ingeniería*, UNAM, N° 575, ene

Scott B., Park R., y Priestley M.J. N., (1982), "Stress-Strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rate", ACI Journal, Enero-Febrero 1982.

Taylor y Simo (1985), "Bending and Membrane Elements for Analysis of Thick and Thin Shells, "Proceedings of the NUMEETA 1985 Conference, Swan sea, Wales.