

#### UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

# PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

#### FACULTAD DE INGENIERÍA

# TRATAMIENTO DE AGUAS RESIDUALES PARA LA INDUSTRIA PORCÍCOLA POR MEDIO DE BIOFILTRACIÓN SOBRE LECHO ORGÁNICO

#### **TESIS**

QUE PARA OPTAR POR EL GRADO DE:

### MAESTRA EN INGENIERÍA

AMBIENTAL - AGUA PRESENTA:

ING. ALMA LILIA HERNÁNDEZ CASTILLO

TUTOR:
M. en I. ESPERANZA RAMÍREZ CAMPEROS

2010



#### **JURADO ASIGNADO:**

Presidente: Dr. Simón González Martínez

Secretario: Dr. Marco Antonio Garzón Zúñiga

Vocal: M. en I. Mercedes Esperanza Ramírez Camperos

1<sup>er</sup> Suplente: Dr. Oscar González Barceló

2 do Suplente: Dr. Víctor Manuel Luna Pabello

Lugar donde se realizó la tesis:

UNAM, Campus Morelos.

#### **TUTOR DE TESIS:**

M. en I. MERCEDES ESPERANZA RAMÍREZ CAMPEROS

| <br>  |  |
|-------|--|
| FIRMA |  |

¡Honremos la primavera eterna de la vida que todo lo creó!; hasta lo minúsculo tiene su creación merecida, sólo la forma se perdió. De estirpes nacen estirpes que alcanzan mayor perfección; de especies nacen especies, millones de años de resurrección.

¡Alégrate tú que tuviste la suerte de participar como flor en su primer abril y, en honor a lo eterno, el día disfrutar como ser humano y de poner tu grano en la tarea de la eternidad; pequeño y débil inhalarás un único soplo del día que no acaba jamás!

Bjørnstjerne Bjørnson, Psalmo II

#### DEDICATORIA

El inicio de todo proyecto requiere de un impulso, de una motivación y, sobre todo de amor, el cual nunca me falto gracias a ti MAMÁ y a ti JORGE, es por ello que esta tesis se las dedico a ustedes; sin olvidar a tres personas que en vida compartieron su sabiduría y su alegría para tomar de la mejor manera las enseñanzas de la vida: PAPÁ, ABUELITA y TIO DANIEL.

#### AGRADECIMIENTOS

Gracias....

A la UNAM y al IMTA por brindarme los apoyos y la infraestructura necesarios para este trabajo, por darme la formación de Maestra en Ingeniería.

Al Consejo Nacional de Ciencia y Tecnología (CONACYT), por el apoyo económico otorgado, sin el cual hubiese sido difícil realizar este trabajo.

A Dios por ser mi gran amigo, por ponerme en mi camino a todas esas personas que han sido fundamentales para que Crezca Como persona, por las fuerzas que me da para librar los obstáculos y por tantas bendiciones recibidas.

A mi mamá, por su apoyo y amor durante toda mi vida, por su confianza y sacrificio. Enseñándome que se puede salir adelante aunque el camino este lleno de piedras.

A mi hermano Jorge, que ha estado siempre al pendiente de mi, gracias por tu Cariño, tu ayuda y Comprensión.

A mi tutora, la M. en I. Esperanza Ramírez, por la asesoría y revisión de este trabajo, por su paciencia, sus consejos que no solo fueron académicos y sobre todo gracias por brindarme su amistad.

A mis sinodales, por sus Comentarios y aportaciones que ayudaron a mejorar la Calidad de este trabajo.

A mis compañeros de generación, con los que compartí muchos momentos en estos meses, diferentes de carácter pero siempre mostrando nuestra solidaridad, por eso y más cosas gracias Rosa, Temy, Lupis, Lili, Yola y Luis.

Gracias Rosa por todas las ocasiones que estuviste para apoyarme y asesorarme, por ofrecerme una amistad sincera en estos años y la cual espero siga creciendo.

A las excelentes personas que conocí en la planta de tratamiento del IMTA, por su orientación, por compartir conocimientos y por la Valiosa amistad que me brindaron.

A mis Amigos de años, que siempre han estado "JUNTO" a mí y con los que sigo Compartiendo logros, penas, dichas y aventuras. A los niños y niñas que a pesar de los años y la distancia me mandan su buena vibra.

A mis confidentes de vida, que siempre han tenido palabras de aliento Erika V., Jaina, Roberto, Erika D., Saúl, David y Pedro que han estado conmigo en las buenas y en las malas, con los que se qué siempre contaré, por los momentos inolvidables que hemos pasado, por las porras recibidas y por sus contribuciones a este trabajo, que aún sin saber del tema me daban consejos para mejorarlo.

A todas aquellas personas de las Cuales he recibido apoyo en algún momento de mi vida, porque ese apoyo me sirvió para Construir un escalón más para poder Cumplir esta meta.

A ti por leer esta tesis.

| ÍNDICE DE TABLAS                                                                                   | IV               |
|----------------------------------------------------------------------------------------------------|------------------|
| ÍNDICE DE FIGURAS                                                                                  | ٧                |
| NOMENCLATURA                                                                                       | VI               |
| RESUMEN                                                                                            | VIII             |
| ABSTRACT                                                                                           | X                |
| ABSTRACT                                                                                           | ^                |
| 1 INTRODUCCIÓN                                                                                     | 1                |
| 1.1 Justificación                                                                                  | 1                |
| 1.2 Objetivos<br>1.2.1 Objetivo general                                                            | 2                |
| 1.2.2 Objetivo generali 1.2.2 Objetivos específicos                                                | 2<br>2<br>2<br>2 |
| 1.3 Alcances                                                                                       | 2                |
| 2 ANTECEDENTES                                                                                     | 3                |
| 2.1 Industria porcícola                                                                            |                  |
| 2.1.1 Impacto de la porcicultura en el medio ambiente                                              | 3<br>6<br>8      |
| 2.2 Remoción de sólidos suspendidos totales (SST)                                                  |                  |
| 2.3 Remoción biológica de la materia orgánica carbonosa                                            | 9                |
| 2.3.1 Cinética del proceso anaerobio                                                               | 10               |
| 2.3.2 Estequiometría del proceso anaerobio                                                         | 11               |
| <ol> <li>2.3.3 Parámetros que influyen en la degradación anaerobia de la r<br/>orgánica</li> </ol> | 11 11            |
| 2.4 Remoción biológica del nitrógeno                                                               | 13               |
| 2.4.1 Nitrificación                                                                                | 17               |
| 2.4.1.1 Estequiometría                                                                             | 17               |
| 2.4.1.2 Cinética                                                                                   | 18               |
| 2.4.1.3 Parámetros que influyen en la nitrificación                                                | 21               |
| 2.4.2 Desnitrificación 2.4.2.1 Estequiometría                                                      | 22<br>23         |
| 2.4.2.2 Alcalinidad                                                                                | 23<br>24         |
| 2.4.2.3 Cinética                                                                                   | 24               |
| 2.4.2.4 Parámetros que influyen en la desnitrificación                                             | 24               |
| 2.5 Tecnologías fisicoquímicas y biológicas aplicadas a aguas residual                             |                  |
| provenientes de la industria porcícola                                                             | 25               |
| 2.6 Biofiltración                                                                                  | 35               |
| 2.6.1 Material de empaque 2.6.2 Colonización del empaque                                           | 35<br>36         |
|                                                                                                    |                  |
| 3 METODOLOGÍA 3 1 Caracterización del agua residual                                                | <b>39</b><br>39  |
| <ul><li>3.1 Caracterización del agua residual</li><li>3.2 Tren de tratamiento</li></ul>            | 39               |
| 3.2.1 Sistema de pretratamiento                                                                    | 39               |
| 3.2.2 Descripción del sistema de tratamiento                                                       | 40               |
| 3.3 Empaque del biofiltro                                                                          | 41               |
| 3.4 Caracterización del material filtrante                                                         | 42               |

|   | 3.4.1 Preparación del material filtrante                                     | 42       |
|---|------------------------------------------------------------------------------|----------|
|   | 3.4.2 Prueba de vaciado para determinar porosidad                            | 43       |
|   | 3.5 Determinación de la hidrodinámica de los biofiltros                      | 44       |
|   | 3.5.1 Determinación de los espacios vacíos en los biofiltros con respecto    |          |
|   | flujo de salida                                                              | 44       |
|   | 3.5.2 Determinación de TRH                                                   | 44       |
|   | 3.6 Parámetros de operación del sistema de tratamiento                       | 45       |
|   | 3.6.1 Parámetros de operación del biofiltro sin aire                         | 45       |
|   | 3.6.2 Parámetros de operación de biofiltros con aire                         | 45       |
|   | 3.7 Elaboración del diseño experimental                                      | 46       |
|   | 3.7.1 Selección de parámetros de control del proceso                         | 46<br>47 |
|   | 3.8 Seguimiento de los sistemas de biofiltración 3.8.1 Métodos de análisis   | 47       |
|   | 5.6.1 Metodos de ariansis                                                    | 41       |
| 4 | ANÁLISIS Y DISCUSIÓN DE RESULTADOS                                           | 49       |
|   | 4.1 Características del agua residual porcícola                              | 49       |
|   | 4.2 Desempeño del biofiltro sin aire (BFSA)                                  | 51       |
|   | 4.2.1 Carga orgánica superficial (COS)                                       | 51       |
|   | 4.2.2 pH y temperatura                                                       | 52       |
|   | 4.2.3 Conductividad                                                          | 53       |
|   | 4.2.4 Alcalinidad                                                            | 54       |
|   | 4.2.5 Remoción de sólidos suspendidos (SS)                                   | 55       |
|   | 4.2.6 Remoción de materia orgánica carbonosa                                 | 57       |
|   | 4.2.6.1 Demanda química de oxígeno (DQO)                                     | 57       |
|   | 4.2.6.2 Demanda bioquímica de oxígeno (DBO)                                  | 60       |
|   | 4.2.7 Biotransformación del nitrógeno                                        | 62       |
|   | 4.2.7.1 Nitrógeno de ion amonio (N-NH <sub>4</sub> )                         | 62       |
|   | 4.2.7.2 Nitrógeno de ion nitrito (N-NO <sub>2</sub> )                        | 63       |
|   | 4.2.7.3 Nitrógeno de ion nitrato (N-NO <sub>3</sub> )                        | 64       |
|   | 4.2.8 Remoción de fósforo de ortofosfatos (P-PO <sup>-3</sup> )              | 66       |
|   | 4.2.9 Remoción de coliformes totales y fecales (CT y CF)                     | 67       |
|   | 4.3 Desempeño de los biofiltros aireados (BFA)                               | 67       |
|   | 4.3.1 pH y temperatura                                                       | 68       |
|   | 4.3.2 Conductividad                                                          | 69       |
|   | 4.3.3 Alcalinidad                                                            | 70       |
|   | 4.3.4 Remoción de sólidos suspendidos (SS)                                   | 71       |
|   | 4.3.5 Remoción de materia orgánica carbonosa                                 | 72       |
|   | 4.3.5.1 Demanda química de oxígeno (DQO)                                     | 72       |
|   | 4.3.5.2 Demanda bioquímica de oxígeno (DBO)                                  | 74       |
|   | 4.3.6 Biotransformación del nitrógeno                                        | 76       |
|   | 4.3.6.1 Nitrógeno de ion amonio (N-NH <sub>4</sub> )                         | 76       |
|   | 4.3.6.2 Nitrógeno de ion nitrito (N-NO <sub>2</sub> )                        | 77       |
|   | 4.3.6.3 Nitrógeno de ion nitrato (N-NO <sub>3</sub> )                        | 78       |
|   | 4.3.7 Remoción de fósforo de ortofosfatos (P-PO <sub>4</sub> <sup>-3</sup> ) | 83       |
|   | 4.3.8 Remoción de coliformes totales y fecales (CT y CF)                     | 84       |

| 4.4 Comparación del sistema utilizado en este trabajo con otras tecnologías | 84                    |
|-----------------------------------------------------------------------------|-----------------------|
| 5 CONCLUSIONES Y RECOMENDACIONES 5.1 Conclusiones 5.2 Recomendaciones       | <b>88</b><br>88<br>90 |
| 6 REFERENCIAS                                                               | 91                    |
| ANEXOS                                                                      | 97                    |
| ANEXO I: Características de Ficus benjamina                                 | 98                    |
| ANEXO II: Cálculos para la determinación de la porosidad in situ del MF     | 99                    |
| ANEXO III: Reporte fotográfico                                              | 104                   |
| ANEXO IV: Datos experimentales                                              | 107                   |
| ANEXO V: Análisis estadístico                                               | 137                   |

# **ÍNDICE DE TABLAS**

| Tabla 2.1 | Producción de carne porcícola 2007-2010 (miles de toneladas)          | 4  |
|-----------|-----------------------------------------------------------------------|----|
| Tabla 2.2 | Características del agua residual por unidades de granjas             |    |
|           | porcícolas (Modificado Montalvo, 2004)                                | 6  |
| Tabla 2.3 | Características de aguas residuales de granjas porcícolas             | 7  |
| Tabla 2.4 | Unidades típicas de remoción de sólidos                               | 8  |
| Tabla 2.5 | Cuadro comparativo de tecnologías                                     | 32 |
| Tabla 3.1 | Seguimiento de parámetros de calidad                                  | 48 |
|           | Características del agua residual porcícola con pretratamiento        | 50 |
| Tabla 4.2 | Valores cinéticos para la remoción de MO medida como DQO              |    |
|           | en el BFSA                                                            | 59 |
| Tabla 4.3 | Valores cinéticos para la remoción de MO medida como DBO              |    |
|           | en el BFSA                                                            | 61 |
| Tabla 4.4 | Valores cinéticos para la remoción de MO medida como DBO              |    |
|           | en el BFA1, BFA2 y BFA3                                               | 75 |
| Tabla 4.5 | Valores cinéticos para la producción de N-NO <sub>3</sub> en el BFA1, |    |
|           | BFA2 y BFA3                                                           | 79 |
| Tabla 4.6 | Comparación del sistema utilizado en este trabajo con otras           |    |
|           | tecnologías                                                           | 87 |

# **ÍNDICE DE FIGURAS**

| Figura 2.1               |                                                                                |             |
|--------------------------|--------------------------------------------------------------------------------|-------------|
|                          | (Cordero, 2005)                                                                |             |
| Figura 2.2               | Producción porcícola en el estado de Morelos                                   |             |
| Figura 3.1               | Fotografía del MF tamizado                                                     |             |
| Figura 3.2               | Esquema del BFSA                                                               |             |
| Figura 3.3               | Esquema de los BF aireados                                                     |             |
| Figura 3.4               | Fotografía del MF humedecido                                                   |             |
| Figura 3.5               | Curva teórica de espacios vacios vs caudal (Garzón-Zúñiga, 2003).              |             |
| Figura 4.1               | Comportamiento de la COS durante el experimento                                |             |
| Figure 4.2               | Variación de pH en el BFSA                                                     |             |
| Figure 4.3               | Variación de la conductividad en al BESA                                       |             |
| Figura 4.4<br>Figura 4.5 | Variación de la conductividad en el BFSAVariación de la alcalinidad en el BFSA |             |
| Figura 4.5<br>Figura 4.6 | Variación de SST en el BFSA                                                    |             |
| Figura 4.7               | Variación de MO medida como DQO en el BFSA                                     |             |
| Figura 4.8               | Remoción de MO medida como DQO en el BFSA                                      |             |
| Figura 4.9               | Variación de la MO medida como DQOd                                            |             |
| •                        | Variación de MO medida como DBO                                                |             |
|                          | Remoción de materia orgánica medida como DBO en el BFSA                        |             |
|                          | Variación de N-NH en el BFSA                                                   |             |
| •                        | Variación de N-NO <sub>2</sub> en el BFSA                                      |             |
|                          | Variación de N-NO <sub>3</sub> en el BFSA                                      |             |
|                          | Variación de N-NO <sub>2</sub> y N-NO <sub>3</sub> en BFSA                     |             |
|                          | Variación de P-PO-3 en el BFSA                                                 |             |
|                          | Variación de pH en BFSA, BFA1, BFA2 y BFA3                                     |             |
|                          | Variación de temperatura en BFSA, BFA1, BFA2 y BFA3                            |             |
| _                        | Variación de la conductividad en BFSA, BFA1, BFA2 y BFA3                       |             |
|                          | Variación de alcalinidad en BFSA, BFA1, BFA2 y BFA3                            |             |
| _                        | Alcalinidad consumida durante la nitrificación                                 |             |
| Figura 4.22              | Variación de SST en BFSA, BFA1, BFA2 y BFA3                                    | . 72        |
| Figura 4.23              | Variación de MO medida como DQO en BFSA, BFA1, BFA2 y BF                       |             |
| Figura 4 24              | Variación de MO medida como DQO <sub>d</sub> en BFSA, BFA1, BFA2 y BF          | . /3<br>5∆3 |
| rigura 4.24              | wandelon de Me medida como baca en bi ex, bi xi, bi xi y bi                    |             |
| Figura 4.25              | Variación de MO medida como DBO en BFSA, BFA1, BFA2 y BFA3                     | 375         |
|                          | Variación de N-NH <sub>4</sub> en BFSA, BFA1, BFA2 y BFA3                      |             |
|                          | Variación de N-NO2 en BFSA, BFA1, BFA2 y BFA3                                  |             |
| =                        | Variación de N-NO <sub>3</sub> en BFSA, BFA1, BFA2 y BFA3                      |             |
| _                        | Biotransformación de N en BFA1                                                 |             |
|                          | Biotransformación de N en BFA2                                                 |             |
|                          | Biotransformación de N en BFA3                                                 |             |
|                          | Variación de P-PO <sup>-3</sup> en BFSA, BFA1, BFA2 Y BFA3                     |             |

#### **NOMENCLATURA**

BFA Biofiltro aireado

BN Bacterias nitrificantes

BFSA Biofiltro sin aire
CF Coliformes fecales

C/N Relación carbono nitrógeno COS Carga orgánica superficial

CT Coliformes totales

DBO Demanda bioquímica de oxígeno DQO Demanda química de oxígeno

DQOd Demanda química de oxígeno disuelta EBN Eliminación biológica de nitrógeno

EFL Efluente

IMTA Instituto Mexicano de Tecnología del Agua

INFL Influente

K Constante de velocidad

MF Medio filtrante
MO Materia orgánica
N<sub>2</sub> Nitrógeno molecular
N-NH<sub>4</sub> Nitrógeno de ion amonio

 $N - NH_4^-$  Nitrogeno de ion amonic  $N - NO_2^-$  Nitrogeno de ion nitrito  $N - NO_3^-$  Nitrogeno de ion nitrato

NT Nitrógeno total

NTK Nitrógeno total Kjeldahl

OD Oxígeno disuelto

P-PO<sup>3</sup> Potencial de hidrógeno Fósforo de ortofosfatos

PT Fósforo total

Q Caudal

r Coeficiente de correlación

SAGARPA Secretaría de agricultura, ganadería, desarrollo rural, pesca y

alimentación.

SDT Sólidos disueltos totales
SSF Sólidos suspendidos fijos
SST Sólidos suspendidos totales
SSV Sólidos suspendidos volátiles

ST Sólidos totales

TRH Tiempo de retención hidráulico

Por sus siglas en inglés, Upflow anaerobic sludge bed reactor (Reactor anaerobio de lecho de lodos y flujo ascendente) Por sus siglas en inglés, United States Department of Agriculture-UASB

**USDA-FAS** 

Foreign Agricultural Service (Servicio Agrícola en el Exterior del

Departamento de Agricultura de EE.UU.)

#### RESUMEN

Se utilizó un sistema de biofiltración sobre lecho orgánico que consta de un biofiltro sin aire (BFSA) acoplado a un biofiltro aireado (BFA) para tratar agua residual proveniente de una granja porcícola. El influente se hizo pasar a través de una cama de material orgánico, donde habrá una colonización de microorganismos. El material filtrante (MF) que se utilizó son trozos de madera del árbol de *Ficus benjamina*. El BFSA fue operado a dos cargas orgánicas superficiales (COS), durante la primera etapa la COS fue de 250 gDQO m<sup>-2</sup> d<sup>-1</sup> y durante la segunda etapa la COS fue de 350 gDQO m<sup>-2</sup> d<sup>-1</sup>. El BFSA alimentó de manera paralela a tres BFA que operaron a diferentes tasas de aireación, las cuales fueron 3.4 (BFA1), 4.4 (BFA2) y 9.4 (BFA3) m³aire m<sup>-2</sup>h<sup>-1</sup>. Se dio seguimiento a pH, temperatura, conductividad, alcalinidad, sólidos suspendidos totales, materia orgánica medida como DQO y DBO, nitrógeno de amonio, nitrógeno de nitratos y nitrógeno de nitritos, ortofosfatos, coliformes fecales y coliformes totales.

En el BFSA se obtuvieron remociones de SST de 70±18% y de materia orgánica medida como DQO de 86±6% y de DBO de 89±5% para una carga orgánica de 250 gDQO m<sup>-2</sup>d<sup>-1</sup>. Al aumentar la COS a 350 gDQO m<sup>-2</sup>d<sup>-1</sup> las remociones de SST fue de 80±13%, materia orgánica medida como DQO fue de 87±4%, y medida como DBO de 94±2%.

En los BFA la remoción de materia orgánica se vio afectada por la tasa de aireación, teniendo mejor remoción de materia orgánica en el BFA3 (9.4 m³aire m²h⁻¹). La remoción de materia orgánica medida como DQO y DBO en la primera etapa en el BFA1 fue de 52±22% y 91±4%, respectivamente; en el BFA 2 de 54±17% y 91±2%, respectivamente; en el BFA3 de 59±22% y 93±3%. Durante la segunda etapa, la remoción de materia orgánica medida como DQO y DBO en el BFA1 fue de 50±14% y 69±17%, respectivamente; en el BFA2 de 50±15% y 68±13%, respectivamente; y en el BFA3 de 64±11 y 87±7%, respectivamente. En los BFA el amonio se removió principalmente por nitrificación, alcanzando remociones durante la primera etapa en el BFA1 y BFA2 de 96±3% y para BFA3

de 98±2%. Mientras que en la segunda etapa las remociones en el BFA1, BFA2 y BFA3 fueron de 78±11%, 75±12% y 80±10%, respectivamente.

El sistema de biofiltración BFSA+BFA1 obtuvo remociones de SST, materia orgánica medida como DQO y DBO y de N-NH<sub>4</sub> de 89±9, 94±2, 98±1 y 87±10% respectivamente. En el sistema de BFSA+BFA2 se obtuvieron remociones de SST de 90±8%, DQO de 94±2%, DBO de 98±1% y N-NH<sub>4</sub> de 85±12%.En el sistema BFSA+BFA3 las remociones fueron de de SST de 92±6%, DQO de 95±1%, DBO de 99±1% y N-NH<sub>4</sub> de 88±10%.

El sistema de biofiltración sobre cama orgánica de *Ficus benjamina* es una tecnología que remueve los contaminantes presentes en el agua residual porcícola, presentando remociones iguales o mejores que otras tecnologías.

#### **ABSTRACT**

A biofiltration system packed with an organic media was used. The system to treat piggery wastewater consist of a biofilter without forced aeration (BFSA) coupled to a biofilter with forced aeration (BFA). The influent was passed through a bed of organic material, which is expected to have a microbial colonization. The filter material (FM) used were pieces of wood *Ficus benjamina* tree. The BFSA was operated at different surface organic loading rate (OLR). During the first stage, the OLR was 250 gDQO m<sup>-2</sup> d<sup>-1</sup> and during the second stage, it was 350 gDQO m<sup>-2</sup> d<sup>-1</sup>. The BFSA effluent was used to feed in parallel three aerobic biofilters operating at different aeration rates, which were 3.4, 4.4 and 9.4 m<sup>3</sup>aire m<sup>-2</sup>h<sup>-1</sup>. Parameters measured were pH, temperature, conductivity and alkalinity. Total suspended solids (TSS), organic matter measured as COD and BOD, ammonia nitrogen, nitrates, nitrites, orthophosphate, fecal coliforms and total coliforms were analyzed.

BFSA achieved a removal of TSS and organic matter measured as COD and BOD of  $70\pm18$ ,  $86\pm6$  and  $89\pm5\%$ , respectively for an OLR of 250 gDQO m<sup>-2</sup>d<sup>-1</sup>. When the OLR was increased to 350 gDQO m<sup>-2</sup>d<sup>-1</sup>, the removal of TSS was  $80\pm13\%$ , organic matter measured as COD was  $87\pm4\%$ , and measured as BOD, of  $94\pm2\%$ .

In the aerated biofilters (BFA), matter organic removal was affected by the rate of aeration, with the best removal of organic matter in BFA3 (9.4 m³aire m⁻²h⁻¹). The removal of organic matter measured as COD and BOD in the first stage in the BFA1 was 52±22 and 91±4%, respectively; BFA2 was 54±17% and 91±2%, respectively; and BFA3 was 59±22% and 93±3% respectively. During the second stage, the removal of organic matter measured as COD and BOD in BFA1 was 50±14% and 69±17%, respectively; BFA2 50±15% and 68±13%, respectively; and BFA3 was 64±11% and 87±7%, respectively. The ammonia was removed mainly by nitrification, removals achieved during the first stage in the BFA1 and BFA2 of 96±3% and for BFA3 of 98±2%. While in the second stage the removal in BFA1, BFA2 y BFA3 were 78±11%, 75±12% and 80±10%, respectively.

The biofiltration system BFSA+BFA1 removals of TSS, organic matter measured as COD and BOD and N-NH<sup>+</sup> were 89±9%, 94±2%, 98±1% and

 $87\pm10\%$  respectively. In the system of BFSA+BFA2 removals of TSS were  $90\pm8\%$ , COD of  $94\pm2\%$ , BOD  $98\pm1\%$  and N-NH $_4^+$   $85\pm12\%$ . In the system of BFSA+BFA3 removals of TSS were  $92\pm6\%$ , COD of  $95\pm1\%$ , BOD of  $99\pm1\%$  and N-NH $_4^+$   $88\pm10\%$ .

The system of organic bed biofiltration on *Ficus benjamina* is a technology that removes contaminants in piggery wastewater, showing equal or better removal than other technologies.

#### 1 INTRODUCCIÓN

#### 1.1 Justificación

A la crianza de cerdos se le denomina porcicultura, dentro de esta crianza hay diferentes vertidos de aguas residuales las cuales se descargan de manera irregular, dichas descargas causan daños ambientales. Por ejemplo, la existencia total de cerdos en el estado de Yucatán se estimó en 670,174 y generan diariamente 3,885 toneladas de excretas, 9,428 m³ d⁻¹ de aguas residuales altamente contaminadas y una carga orgánica de 443,133 kg d⁻¹ medida como DQO. Esta carga orgánica es similar a la que se produciría con las descargas de aguas residuales de 4,431,334 personas (Méndez *et al.*, 2008).

Se propone evaluar un proceso de biofiltración sobre cama orgánica (maderas mexicanas), la cual es una tecnología que se encuentra en desarrollo en el Instituto Mexicano de Tecnología del Agua (IMTA) y que se probó con éxito en el tratamiento de aguas municipales y algunas descargas industriales para la remoción de color, nitrógeno y fósforo. Los biofiltros, son dispositivos que eliminan una amplia gama de compuestos contaminantes de una corriente de fluido (aire o agua) mediante un proceso biológico. Este sistema se basa en la interacción del agua con un medio orgánico sólido, cuya actividad de degradación proviene de los microorganismos que viven y se desarrollan en él, es una alternativa barata y presenta altas remociones de contaminantes que se encuentran en las aguas residuales domésticas e industriales. Los biofiltros que se desarrollan en el IMTA constan de una capa de grava seguida por una capa de medios orgánicos, en los

cuales se desarrollan los microorganismos. Los medios orgánicos que se utilizan son fibra de coco, jacaranda, casahuate, entre otros.

#### 1.2 Objetivos

#### 1.2.1 Objetivo general

Remover los contaminantes del agua residual de la industria porcícola por medio de biofiltración.

#### 1.2.2 Objetivos específicos

- Evaluar el desempeño de un biofiltro sin aire (BFSA) acoplado con uno aireado (BFA).
- Determinar el efecto de la carga orgánica sobre la remoción de contaminantes en el sistema de biofiltración (BFSA y BFA).
- Determinar el efecto de la tasas de aireación en los BFA sobre la remoción de contaminantes.
- Evaluar los mecanismos de degradación de materia orgánica y biotransformación de nitrógeno, por medio de la determinación de sólidos suspendidos, demanda química de oxígeno, demanda bioquímica de oxígeno y nitrógeno de amonio en el influente y efluente de los biofiltros.

#### 1.3 Alcances

- Estudiar a escala laboratorio la tecnología de biofiltración sobre lecho orgánico para tratar aguas residuales porcícolas.
- Operar el BFSA con cargas orgánicas superficiales de 250 gDQO m<sup>-2</sup>d<sup>-1</sup> y de 350 gDQO m<sup>-2</sup>d<sup>-1</sup>
- Seleccionar entre las tasas de aireación aplicadas (3.4 m³aire m⁻²h⁻¹, 4.4 m³aire m⁻²h⁻¹ y 9.4 m³aire m⁻²h⁻¹) cuál es la que más favorece la remoción de materia orgánica y nitrógeno de amonio.

#### **2 ANTECEDENTES**

#### 2.1 Industria porcícola

La industria de alimentos es tan extensa que incluye todos los aspectos de producción de alimentos, por lo tanto la crianza de animales es parte importante de dicha industria. La industria porcícola es aquella que se encarga de la crianza de cerdos, su importancia se debe a los altos patrones de consumo de carne porcícola en el mundo, ya que no sólo se produce para consumo nacional, sino también para exportar. En la tabla 2.1 se observa que en el 2008 a nivel de los países más relevantes en el mercado porcino se produjeron 87.93 millones de carne de cerdo, cabe mencionar que México se encuentra dentro de los principales países productores de cerdo (USDA-FAS).

La producción de carne de porcino en México alcanzó en el 2005 un volumen de 1,102,940 toneladas que resultó 3.6% superior a la del 2004 (SAGARPA, 2006).

Los cerdos se crían en granjas, las cuales están tipificadas de la siguiente manera:

Instalaciones tecnificadas: Los porcinos que se producen de manera tecnificada se crían en granjas generalmente grandes que pueden llegar a tener hasta 100,000 cerdos de diferentes edades, están ubicados en instalaciones donde casi todo es automático: los bebederos, los comederos y los sistemas de ventilación. Además utilizan lo último en tecnología para su producción. Generalmente los animales producidos en estas instalaciones van a los mercados de las grandes ciudades como Guadalajara y el Distrito Federal, entre otras.

3

Tabla 2.1 Producción de carne porcícola 2007-2010 (miles de toneladas)

| País          | 2007   | 2008   | 2009   | 2010   |
|---------------|--------|--------|--------|--------|
| China         | 42,878 | 46,205 | 48,500 | 50,300 |
| EU (27)       | 22,858 | 22,596 | 22,000 | 21,900 |
| Brasil        | 2,990  | 3,015  | 3,123  | 3,249  |
| Rusia         | 1,910  | 2,060  | 2,205  | 2,290  |
| Vietnam       | 1,832  | 1,850  | 1,850  | 1,850  |
| Canadá        | 1,746  | 1,786  | 1,790  | 1,660  |
| Japón         | 1,250  | 1,249  | 1,285  | 1,270  |
| Filipinas     | 1,250  | 1,225  | 1,225  | 1,225  |
| México        | 1,152  | 1,161  | 1,150  | 1,175  |
| Corea del Sur | 1,043  | 1,056  | 1,016  | 1,009  |
| Otros         | 5,714  | 5,726  | 5,646  | 5,770  |
| Total         | 84,623 | 87,929 | 89,790 | 91,698 |

Nota: Datos 2009 son preliminares y 2010 son estimados.

Fuente: Modificada USDA-FAS

Instalaciones tradicionales o semitecnificadas: Los porcinos se crían en explotaciones de diferente tamaño, donde se tienen desde 100 animales en adelante y su objetivo es la venta del ganado para abasto. A diferencia de las instalaciones tecnificadas estas instalaciones son tradicionales y no usan lo último que hay en tecnología. Este tipo de producción se realiza principalmente en los estados del centro del país: Guanajuato, Michoacán, Jalisco y Estado de México.

Traspatio, sistema rural o de autoabastecimiento: Los porcinos que se producen en traspatio, también denominado sistema rural o de autoabastecimiento, generalmente se mantienen en corrales rústicos construidos sin tecnología alguna con materiales de la región. En este tipo de sistema hay productores que tienen hembras para obtener lechones que se venden a otros productores para su engorda. Este tipo de producción se da principalmente en las zonas rurales de México y son explotaciones de pocos animales, en la mayoría de los casos no pasan de 10.

En la figura 2.1 se observa que la producción en México, se estima que un 60% es tecnificada, un 20% semitecnificada y el 20% en traspatio (Cordero, 2005).

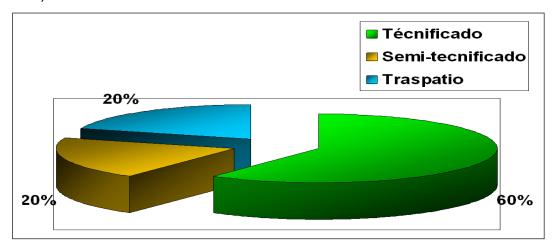



Figura 2. 1 Porcentaje de granjas en México de acuerdo al grado de tecnificación (Cordero, 2005)

La producción porcícola en el estado de Morelos, aporta el 3% del PIB pecuario estatal, con una producción anual promedio de de 2,591 toneladas. Se cuenta con 24 granjas tecnificadas y 8, 068 predios de traspatio. El estado ocupa el 30° lugar en producción de carne en el ámbito na cional. En la figura 2.2 se muestra la producción porcícola en el Estado de Morelos.

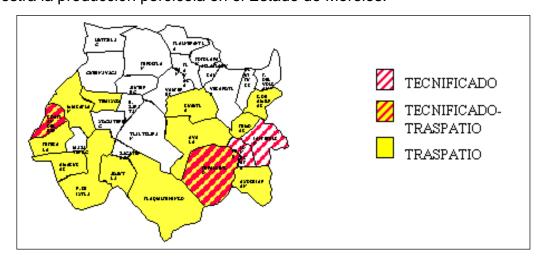



Figura 2. 2 Producción porcícola en el estado de Morelos

#### 2.1.1 Impacto de la porcicultura en el medio ambiente

La mayoría de las granjas dedicadas a la crianza de cerdos consumen grandes volúmenes de agua diariamente cuando se lavan las porquerizas; estas aguas se conducen a un punto determinado donde se concentran y permanecen sin ningún tipo de tratamiento. Los desechos sólidos se transportan manualmente y se vierten en los alrededores de las granjas, debido a que no hay un sitio determinado para su disposición. Las características de las descargas dependen en gran parte de las tasas de excreción de heces y orina, que a su vez dependen de múltiples factores: la edad del animal, su madurez fisiológica o crecimiento, como se muestra en la tabla 2.2.

Tabla 2.2 Características del agua residual por unidades de granjas porcícolas (Montalvo, 2004 modificado)

| Parámetro                                | Unidad maternidad | Unidad destete | Unidad<br>gestación | Unidad<br>Engorda | Intervalo     |
|------------------------------------------|-------------------|----------------|---------------------|-------------------|---------------|
| рН                                       | 8.24              | 8.33           | 9.12                | 8.46              | 8.24-9.12     |
| Temp ℃                                   | 21.9              | 25.9           | 20.9                | 20.5              | 20.5-25.9     |
| Conductividad (mS cm <sup>-1</sup> )     | 2.94              | 4.45           |                     | 7.99              | 2.94-7.99     |
| Sólidos Sed. (mL L <sup>-1</sup> )       | 0.15              | 8              | 8                   | 32.50             | 0.15 - 32.5   |
| SST (mg L <sup>-1</sup> )                | 690               | 1000           | 2980                | 1000              | 690-2980      |
| SSF (mg L <sup>-1</sup> )                | 370               | 810            | 1400                | 340               | 340-1400      |
| SSV (mg L <sup>-1</sup> )                | 320               | 190            | 1580                | 660               | 190-1580      |
| ST (mg L <sup>-1</sup> )                 | 6620              | 9280           | 10810               | 5420              | 5420-10810    |
| STF (mg L <sup>-1</sup> )                | 4680              | 6040           | 5720                | 2710              | 2710-6040     |
| STV (mg L <sup>-1</sup> )                | 1940              | 3240           | 5090                | 2710              | 1940-5090     |
| DBO (mg L <sup>-1</sup> )                | 1065              | 2162           | 1157                | 2135              | 1065 -2162    |
| DQO (mg L <sup>-1</sup> )                | 2404              | 3777           | 3468                | 4489              | 2404 – 4489   |
| DBO/DQO                                  | 0.493             | 0.573          | 0.333               | 0.478             | 0.44-0.48     |
| $N - NH_4^+ \text{ (mg L}^{-1}\text{)}$  | 165.41            | 539.39         | 64.73               | 1085.96           | 64.73-1085.96 |
| Nitrógeno orgánico (mg L <sup>-1</sup> ) | 0.72              | 1.01           | 0.72                | 2.17              | 0.72 - 2.16   |
| NT(mg L <sup>-1</sup> )                  | 166.13            | 540.40         | 65.45               | 1088.13           | 65 – 1088     |
| Grasas (mg L <sup>-1</sup> )             | 7.2               | 36.7           | 89                  | 155               | 7.2-155       |

La tabla 2.3 muestra las características de diferentes aguas residuales provenientes de granjas de cerdos.

6

Tabla 2.3 Características de aguas residuales de granjas porcícolas

| Parámetros          | Fuente: Lee et al. | Fuente: Garzón-              |
|---------------------|--------------------|------------------------------|
| Parametros          | (2004)             | Zúñiga e <i>t al.</i> (2007) |
| рН                  | 7.5-8 u            | 7.1 u                        |
| Color               | 250-760 ADMI       | ND                           |
| Sólidos suspendidos | 7300-9500*         | 1970*                        |
| DQO                 | 10000-15000*       | 15462*                       |
| DBO                 | 3000-7000*         | 9320*                        |
| NTK                 | 2000-2500*         | 2080*                        |
| Nitrógeno orgánico  | 850-1000*          | ND                           |
| N-NO <sub>3</sub>   | ND                 | 4.5*                         |
| N-NO <sub>2</sub>   | ND                 | 6.7*                         |
| PT                  | 150-220*           | ND                           |

<sup>\*</sup> mg L<sup>-1</sup>; ADMI, por sus siglas en inglés "American Dye Manufacturers Institute" (Instituto americano de fabricantes de colorantes); ND, información no disponible.

Como se puede observar en la tabla 2.2, las características del agua residual proveniente de las granjas porcícolas dependen en gran parte de la etapa de crecimiento de los cerdos, se nota que en la etapa de engorda es donde se genera la mayor cantidad de DQO, de sólidos sedimentables y de NT con 4489 mg L<sup>-1</sup>, 33 mL L<sup>-1</sup> y 1088 mg L<sup>-1</sup>, respectivamente.

Las aguas residuales de esta industria contienen un pH relativamente neutro, grasas y aceites que van desde bajas concentraciones de 7 mg L<sup>-1</sup> hasta 150 mg L<sup>-1</sup>. En la tabla 2.3 se observa que la materia orgánica medida como DBO puede alcanzar concentraciones de 9320 mg L<sup>-1</sup>. También presenta concentraciones de nutrientes de 2500 mg L<sup>-1</sup>de NTK y 220 mg L<sup>-1</sup>de PT.

Las descargas de esta industria generan problemas de contaminación en el suelo y también por la infiltración de las aguas hasta alcanzar los mantos de agua subterránea, la cual recibe una gran cantidad de contaminantes, tanto de materia orgánica como de microorganismos patógenos. Esto se comprobó por análisis de laboratorio de esas aguas, en los que se reportaron CF y CT de  $8.8\times10^7$  y  $2.495\times10^8$  NMP 100 mL<sup>-1</sup>, respectivamente (Zanotelli *et al*, 2002). Aún en el caso

de que las excretas sean separadas de las aguas se tiene un efecto muy similar, ya que se depositan directamente sobre el suelo, donde se descomponen permitiendo la proliferación de moscas y otros insectos (Vázquez *et al.*, 1996).

#### 2.2 Remoción de sólidos suspendidos totales (SST)

El agua residual contiene una variedad de materiales sólidos que varían desde palos hasta materiales coloidales. Los SST es la fracción de sólidos retenidos sobre un filtro con tamaño de poro específico una vez que la parte líquida se ha evaporado y el remanente se ha secado a peso constante de 103 a 105°C. Los sólidos suspendidos volátiles (SSV) se d eterminan mediante la ignición de la muestra a una temperatura de 550±50°C, los SSV son un indicador del población microbiana activa en los procesos biológicos. Los SSF es el residuo remanente después de calcinar SST (Crites y Tchobanoglous, 2000).

El límite entre los sólidos suspendidos y los sólidos disueltos se determina basándose en el tamaño de sus partículas: sedimentables (>100 μm), supra coloidales (1-100 μm), coloidales (1nm-100 μm) y solubles (<1 nm). El tamaño de las partículas afecta la transformación biológica del sustrato, las partículas relativamente grandes, tienen un tiempo de descomposición mayor (Barajas-López, 2002). En la tabla 2.4 se muestran las unidades típicas de remoción de sólidos (Metcalf y Eddy, 2003).

Tabla 2.4 Unidades típicas de remoción de sólidos

| Operación      | Aplicación                                                  |  |
|----------------|-------------------------------------------------------------|--|
| Cribado        | Remoción de sólidos gruesos                                 |  |
| grueso         | Remocion de solidos graesos                                 |  |
| Cribado fino   | Remoción de pequeñas partículas                             |  |
| Micro cribado  | Remoción de sólidos finos, materia flotable y algas.        |  |
| Floculación    | Aglomeración de partículas desestabilizadas en flóculos más |  |
| Floculacion    | grandes que tienden a depositarse en el fondo.              |  |
| Sedimentación  | Remoción de sólidos sedimentables                           |  |
| Flotación      | Remoción de sólidos suspendidos y partículas con densidades |  |
| Fiolacion      | cercanas a las del agua.                                    |  |
| Filtración     | Remoción de sólidos suspendidos                             |  |
| Filtración con | Remoción de sólidos suspendidos y coloidales y materia      |  |
| membrana       | orgánica disuelta.                                          |  |

8

#### 2.3 Remoción biológica de la materia orgánica carbonosa

La industria porcícola genera efluentes con alta carga de materia orgánica. En los procesos biológicos, la materia orgánica contaminante es utilizada como alimento por los microorganismos presentes en los tanques o reactores. De esta forma pueden obtener la energía necesaria para reproducirse y llevar a cabo sus funciones vitales y la materia orgánica es transformada en nuevas células y en otros productos que se pueden separar más fácilmente del agua. Los procesos anaerobios se usan principalmente en el tratamiento de lodos residuales y descargas con alta carga orgánica.

Los procesos anaerobios son ventajosos, debido al bajo rendimiento de biomasa y porque se puede obtener energía de la conversión de los sustratos orgánicos (Metcalf y Eddy, 2003). El rendimiento de la biomasa de los procesos anaerobios es más bajo que en los sistemas aerobios, cerca de 0.1 a 0.4 kg de biomasa/kg de DBO eliminada (Winkler, 2008).

En general se diferencian tres grupos principales de microorganismos en la digestión anaerobia (Mara y Horan, 2003):

El primer grupo se compone de bacterias hidrolíticas, este grupo microbiano es el primero que interviene en el proceso de mineralización de la materia orgánica. Se encargan de degradar lípidos, proteínas, carbohidratos y materia orgánica particulada a componentes solubles sencillos tales como ácidos grasos de cadena corta, glicerol, péptidos, aminoácidos, oligosacáridos y azúcares.

El segundo grupo se conoce como bacterias formadoras de ácido y se compone por bacterias acidógenas y bacterias acetógenas. Ambos grupos convierten los productos de las bacterias hidrolíticas a sustratos clave de la metanogénesis, particularmente acetato, hidrógeno, dióxido de carbono, y productos intermediarios tales como formiato, propionato, butirato, etc.

El proceso se completa con el tercer grupo bacteriano, las metanógenas, las cuales consumen los productos del grupo anterior y los convierten en los productos finales del proceso, metano y dióxido de carbono. Las metanógenas abarcan dos grupos de bacterias formadoras de metano que difieren

fisiológicamente entre sí; bacterias metanógenas acetoclásticas y bacterias metanógenas hidrogenófilas.

Otros organismos que pueden presentarse en los procesos anaerobios son las bacterias sulfato reductoras, las cuales pueden ser un problema cuando las aguas residuales contienen cantidades significativas de sulfatos. Estos organismos pueden reducir el sulfato a sulfuros de hidrógeno, el cual puede ser tóxico para las bacterias metanógenas cuando se encuentra en concentraciones altas (Mara y Horan, 2003).

En la figura 2.3 se muestra cómo se realiza la degradación anaerobia de los compuestos orgánicos complejos.

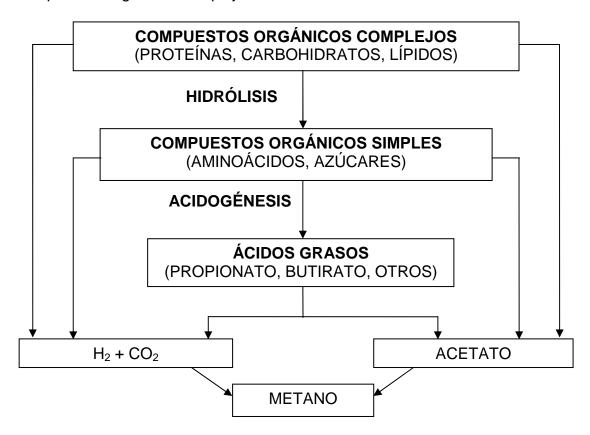



Figura 2. 3 Esquema de degradación anaerobia de MO compleja (Modificado Speece, 1996)

La cinética es un parámetro importante para garantizar la estabilidad del proceso. La ecuación de Monod se fórmula de la siguiente manera (Speece, 1996):

$$\frac{dS}{dt} = \frac{k_{max}SX}{K_s + S}$$
(1)

Donde:

dS/dt= Tasa de utilización del sustrato (mg L<sup>-1</sup>d<sup>-1</sup>)

k<sub>max</sub> = Tasa específica máxima de utilización del sustrato (g DQO g SSV<sup>-1</sup>d<sup>-1</sup>)

S= Concentración del sustrato limitante (mg L<sup>-1</sup>)

X= Concentración de biomasa (mg L<sup>-1</sup>)

K<sub>S</sub>= Constante de saturación media (mg L<sup>-1</sup>)

#### 2.3.2 Estequiometría del proceso anaerobio

La reducción de contaminantes orgánicos se relaciona directamente con la producción de metano. La composición química de la alimentación determina la producción de gas. La ecuación 2 predice la composición de gas (Speece, 1996):

$$\begin{array}{l} C_{n}H_{a}O_{b}N_{c} + (2n+c-b-9sd/20-ed/4) \ H_{2}O \rightarrow \\ \\ (de/8) \ CH_{4} + (n-c-sd/5-de/8) \ CO_{2} + (sd/20) \ C_{5}H_{7}O_{2}N + \\ \\ (c-sd/20)NH_{4}^{+} + (c-sd/20)HCO_{3}^{-} \end{array} \tag{2} \end{array}$$

Donde:

d= 4n+a-2b-3c

s= Fracción DQO para síntesis

e= Fracción de DQO para producción de metano

# 2.3.3 Parámetros que influyen en la degradación anaerobia de la materia orgánica

Para que el proceso de degradación anaerobia funcione adecuadamente se deben de tener en cuenta algunos parámetros (Speece, 1996):

#### a) pH

Las bacterias que intervienen en la metanogénesis prefieren intervalos neutros de pH, aceptan un intervalo óptimo de 6.5 a 8.2 de pH, en condiciones

por arriba o por debajo de este intervalo de pH, la velocidad de producción de metano decrece.

#### b) Alcalinidad

La alcalinidad es uno de los principales factores que influyen en los procesos anaerobios. La alcalinidad se conforma por diferentes especies de sales de ácidos débiles, convencionalmente se expresa en equivalentes de CaCO<sub>3</sub>. La importancia de la alcalinidad recae en que ésta es una medida de la capacidad de un sistema acuático de amortiguar el pH en la presencia de ácidos adicionales.

#### c) Toxicidad

Muchos tóxicos son biodegradables sólo bajo condiciones anaerobias, por ejemplo, tetracloruro de carbono y tetracloroetileno. Esta es una característica importante de los procesos anaerobios, y por lo cual muchas industrias lo utilizan.

#### d) Transferencia de Masa

Un factor muy importante en el diseño del proceso es asegurar una transferencia de masa adecuada entre los contaminantes orgánicos en el agua residual y la biomasa responsable de su bioconversión, haciendo posible que ambas fases mantengan un contacto y tiempo de exposición adecuado. El contacto de las fases va más relacionado con el tipo de técnica utilizada para la inmovilización.

#### e) Nitrógeno y metanogénesis

La relación teórica mínima de DQO/N/P para sistemas de alta carga es 350/7/1, mientras que para sistemas de alta carga es 1000/7/1 debido a que se reduce la síntesis neta de biomasa para sistemas con altos tiempos de retención celular.

#### f) Fuente de Carbón para síntesis

Debido a que los sistemas anaerobios son heterótrofos, excepto por las metanógenas autótrofas que convierten H<sub>2</sub> a metano, la fuente de carbono para la síntesis de la biomasa heterótrofa proviene de los compuestos orgánicos en el agua residual a tratar. Para las formas autótrofas que intervienen en el consorcio anaerobio, la fuente de carbono puede ser el CO<sub>2</sub> disuelto en el reactor.

#### g) Donador de electrones

El donador de electrones que provee energía para la actividad de la biomasa es el constituyente orgánico del agua residual, la materia orgánica.

#### h) Aceptor de electrones

Los sistemas anaerobios operan en la ausencia de oxígeno y utilizan al CO<sub>2</sub> o al sulfato como su aceptor de electrones. La reducción del CO<sub>2</sub> resulta en la producción de CH<sub>4</sub>, la reducción del sulfato resulta en producción de H<sub>2</sub>S. Los organismos productores de ácidos grasos volátiles son fermentativos, oxidan una fracción del sustrato y reducen el remanente.

#### i) Concentración

La concentración de materia orgánica medida como DQO superior a 1500 mg L<sup>-1</sup> es necesaria para producir suficientes cantidades de metano para calentar el agua sin una fuente externa de calor. Es preferible seleccionar algún proceso aerobio a una DQO menor de 1300 mg L<sup>-1</sup> (Metcalf y Eddy, 2003).

#### 2.4 Remoción biológica del nitrógeno

La presencia de compuestos de nitrógeno en un efluente contamina el cuerpo receptor. Los compuestos de nitrógeno se presentan en las aguas residuales como amonio, nitratos y nitritos, compuestos orgánicos solubles y materia orgánica en suspensión o en forma de partículas. Los nitritos y los nitratos son un riesgo para la salud, el amonio tiene una alta demanda de oxígeno, y es tóxico para la fauna acuática. Las fuentes más importantes de los residuos

nitrogenados son los sectores de la industria química que fabrican y utilizan compuestos de nitrógeno y las fuentes "biológicas", como los residuos humanos, animales y los de las industrias procesadoras de alimentos (Winkler, 2008).

El nitrógeno orgánico proviene de proteínas, aminas, ácidos nucleicos, péptidos, aminoácidos y otros componentes celulares provenientes de la materia fecal. El amonio se origina de la mineralización de proteínas y urea. En la mayoría de los casos, los nitritos y los nitratos no se encuentran originalmente en el agua residual, porque el agua residual no contiene oxígeno libre para la nitrificación. Los nitratos se encuentran solamente en agua residual que tiene contribuciones significativas de las industrias (Reddy, 1998).

El amonio constituye aproximadamente el 60% del NT de las aguas residuales municipales (Reddy 1998). El amonio puede ionizarse a amoniaco, depende del pH y de la temperatura del agua residual. A un pH por debajo de 8, la proporción de amonio excede 99%. A un pH de 11, el amoniaco predomina (figura 2.4). El equilibrio amoniaco y amonio se describe de la siguiente manera:

$$K_a = \frac{[NH_3][H^+]}{[NH_4^+]}$$

(3)

Donde:

[NH<sub>3</sub>] = Concentración de amoniaco, moles L<sup>-1</sup>;

|H<sup>+</sup>| = Concentración del ion Hidrógeno, moles L<sup>-1</sup>;

 $[NH_{\downarrow}^{+}]$  = Concentración del ion amonio, moles L<sup>-1</sup>;

K<sub>a</sub> = Constante de ionización.

Los compuestos de nitrógeno se pueden eliminar de las aguas residuales por medio de procesos de tratamiento químicos, físicos y biológicos pero el proceso biológico es todavía uno de los más económicos para la remoción de nitrógeno de las aguas residuales, industriales y domésticas (Winkler, 2008).

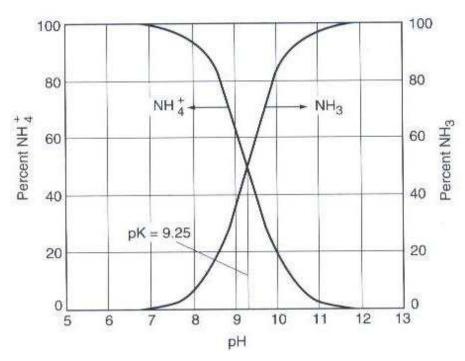



Figura 2. 4 Distribución de amoniaco y del ion amonio con respecto al pH (Metcalf y Eddy, 2003)

Para la remoción de nitrógeno, hay cinco procesos factibles (Reddy, 1998):

- ➤ Conversión de nitrógeno a gas nitrógeno (N₂), el cual escapa a la atmósfera. Esto se logra por un sistema de tratamiento biológico a través de la nitrificación y de la desnitrificación.
- Asimilación. La asimilación es el uso de formas inorgánicas del nitrógeno para el crecimiento de microorganismos (Ha and Ong, 2007). La principal forma asimilable es N-NH<sup>+</sup> (Garzón-Zúñiga, 2005).
  - Desorción de amoniaco, con pH alto.
- ➤ Intercambio iónico. El proceso de intercambio iónico se da por el intercambio del ion amonio por otro catión, o por el intercambio de nitrato por otro anión.
- Ósmosis inversa. Su rendimiento varía con el tipo de membrana y la forma de nitrógeno.

El proceso biológico más significativo para la remoción del amonio es la oxidación bacteriana del amonio a nitritos y nitratos, conocida como nitrificación.

La nitrificación elimina amonio, pero no remueve el nitrógeno, sino que lo convierte en una forma diferente. Los nitritos y nitratos, producidos por nitrificación o presentes en aguas residuales originales, se pueden eliminar por reducción microbiológica a nitrógeno gaseoso. Este proceso se conoce como desnitrificación y ocurre en condiciones anóxicas, donde ciertos microorganismos utilizan los nitritos y nitratos como una fuente optativa de oxígeno. Debido a que el producto final de la desnitrificación es un gas no contaminante (N<sub>2</sub>), que se libera de la fase acuosa, la desnitrificación constituye un verdadero proceso de remoción de nitrógeno. Una porción de nitrógeno orgánico no es metabolizada a amonio y pasa a través del proceso como NTK no biodegradable. Se cree que esta porción de TKN consiste en nitrógeno heterocíclico como purina, piridina y pirimidina (Reddy, 1998).

En los procesos de eliminación biológica de nitrógeno (EBN) intervienen dos grupos de bacterias. Las bacterias nitrificantes (BN) constituidas por los géneros Nitrosomonas y Nitrobacter (ecuación 4), encargadas de oxidar el N-NH<sub>4</sub><sup>+</sup> a óxidos de nitrógeno (N-ox). Nitrosomonas y Nitrobacter son autotróficas, además de ser aerobias obligadas, lo que significa que solo pueden crecer en ambientes donde haya oxígeno disuelto (OD).

Posteriormente, el grupo de las bacterias conocidas como desnitrificantes emplean, los N-ox producidos por las BN como aceptor final de electrones; reduciendo el nitrógeno a su forma molecular. El cual, escapa como gas del sistema (ecuación 5). El proceso de nitrificación, por lo tanto, no constituye por sí solo la solución a la contaminación por nitrógeno, pero es importante que los procesos de tratamiento biológico efectúen una nitrificación completa, ya que de este paso depende eliminación del nitrógeno por procesos de desnitrificación (Garzón-Zúñiga y González-Martínez, 1996). Una amplia variedad de organismos facultativos pueden efectuar la desnitrificación, donde se incluyen *Alcaligenes*, *Achromobacter, Pseudomonas* y *Micrococcus* (Winkler, 2008).

#### **Nitrificación**

$$NH_4^+ \longrightarrow NO_2^- \longrightarrow NO_3^-$$

Nitrosomonas Nitrobacter (4)

#### Desnitrificación

$$NO_3^- \longrightarrow NO_2^- \longrightarrow NO \longrightarrow N_2O \longrightarrow N_2$$
 (5)

#### 2.4.1 Nitrificación

La oxidación del ion amonio a nitrato, y la reducción de oxígeno a agua se representa de la siguiente manera:

$$NH_4^+ + 1.863 O_2 + 0.098 CO_2 \rightarrow 0.0196 C_5H_7NO_2 + 0.98NO_3^- + 0.0941 H_2O + 1.98H^+$$
(6)

Por cada gramo de nitrógeno de amonio convertido, se utilizan 4.25 g de O<sub>2</sub>, se transforman 0.16 g de nuevas células, se remueven 7.07 g CaCO<sub>3</sub> de alcalinidad, y 0.08 g de carbono inorgánico se utilizan en la formación de nuevas células (Reddy, 1998).

#### 2.4.1.1 Estequiometría

La reacción de oxidación por Nitrosomonas es:

$$NH_4^+ + 1.5O_2 \rightarrow 2H^+ + H_2O$$
 (7)

El nitrito que se produce, es a su vez oxidado por *Nitrobacter*, como se muestra a continuación:

$$NO_2^- + 0.5O_2 \to NO_3^-$$
 (8)

Por lo tanto la reacción completa es:

$$NH_4^+ + 2O_2 \rightarrow NO_3^- + 2H^+ + H_2O$$
 (9)

De acuerdo a la estequiometría de la reacción completa, se requieren 2 moles de oxígeno para oxidar 1 mol de  $N-NH_4^+$  a  $N-NO_3^-$ . Esto equivale a que se consumen 4.57 g de oxígeno por cada gramo de  $N-NH_4^+$  que se oxida.

Dos equivalentes de  $H^+$  se producen de la oxidación de 1 mol de amonio. El  $H^+$ , reacciona con 2 equivalentes de bicarbonato que se encuentran en el agua residual. En consecuencia 7.14 g de alcalinidad (CaCO<sub>3</sub>) serán consumidos por gramo de  $N-NH_4^+$  oxidado.

La reacción 9 puede ser alterada si se considera la biosíntesis, porque una parte de amonio y bicarbonato puede incorporarse en la masa celular. El oxígeno se obtiene de la fijación de dióxido de carbono y nitrógeno en la biomasa. Si se considera la biosíntesis, la reacción completa puede variar dependiendo de la producción de bacterias. La reacción total se basa en la producción de 0.17 g de bacterias nitrificantes que oxidan amonio hasta nitrato, como se muestra en la reacción 10.

$$1.02NH_{4}^{+} + 1.89O_{2} + 2.02HCO_{3}^{-} \rightarrow 0.021C_{5}H_{7}O_{2}N + 1.06H_{2}O + 1.00NO_{3}^{-}$$
(10)

Cuando se considera la biosíntesis, el oxígeno que se requiere y el consumo de alcalinidad en la nitrificación cambia poco debido a la baja producción de la masa bacteriana en la reacción. El oxígeno que se requiere disminuye a 4.3 gO<sub>2</sub> g<sup>-1</sup> de N-NH<sub>4</sub> oxidado, mientras que el consumo de la alcalinidad incrementa a 7.2 g CaCO<sub>3</sub> por gramo N-NH<sub>4</sub> oxidado (Reddy, 1998).

#### 2.4.1.2 Cinética

La ecuación de Monod se usa para describir el efecto del sustrato limitante en el crecimiento de los microorganismos. El amonio y OD son sustratos para que se lleve a cabo la nitrificación. Cualquiera o ambos sustratos pueden estar en concentraciones suficientemente bajas para limitar la tasa de crecimiento de las bacterias nitrificantes en el sistema de tratamiento de aguas residuales.

Debido a que son dos sustratos limitantes en la nitrificación, se presenta una forma dual de la ecuación de Monod de la siguiente manera (Reddy, 1998):

$$\mu_{A} = \hat{\mu}_{A} \left[ \frac{S_{NH}}{S_{NH} + K_{NH}} \right] \left[ \frac{S_{O}}{S_{O} + K_{OA}} \right]$$

$$(11)$$

Donde:

 $\mu_{\text{A}}~=$  Velocidad específica de crecimiento de biomasa nitrificante, d $^{\text{-1}}$ ;

 $\mu_{A}$  = Velocidad máxima específica de crecimiento de biomasa nitrificante, d<sup>-1</sup>;

S<sub>NH</sub> = Concentración de nitrógeno de amonio, mg N L<sup>-1</sup>;

K<sub>NH</sub> = Coeficiente de saturación media del nitrógeno de amonio, mg N L<sup>-1</sup>;

 $S_O$  = Concentración de OD, mg  $O_2$ ; y

K<sub>OA</sub> = Coeficiente de saturación media del oxígeno, mg O<sub>2</sub> L<sup>-1</sup>.

La velocidad de crecimiento de microorganismos es el aumento de la cantidad de microorganismos por unidad de tiempo y se expresa matemáticamente como dX/dt. Es proporcional al número de células presentes; alcanza un valor máximo y constante, siempre y cuando no haya un sustrato que limite su crecimiento.

La velocidad específica de crecimiento es la velocidad de aumento de la concentración celular por unidad de tiempo. La velocidad máxima específica de crecimiento es la velocidad máxima de multiplicación que puede alcanzar el microorganismo, en las condiciones en las que está creciendo.

El coeficiente de cada sustrato es la constante de utilización del sustrato limitante y representa la afinidad de los organismos por este sustrato. Es la concentración del sustrato a la que se producen microorganismos con una velocidad igual a la mitad de velocidad específica de crecimiento máximo. Si el

organismo tiene gran afinidad por el sustrato limitante, el valor de la constante es bajo (Hernández *et al.*, 2003).

En la figura 2.5 se muestra el efecto de la concentración del amonio sobre la tasa específica de crecimiento (Reddy, 1998), en este gráfico se puede observar que si la concentración del sustrato limitante es cero, la velocidad específica de crecimiento también lo es y cuando el sustrato limitante tiene concentraciones altas, la velocidad máxima específica de crecimiento tiende a la velocidad máxima.

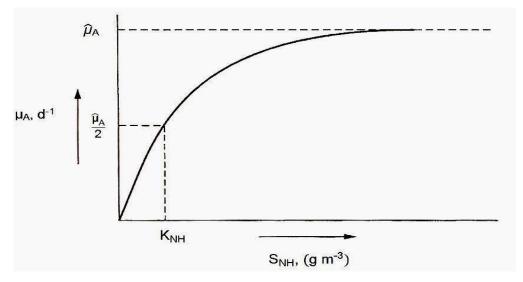



Figura 2. 5 Efecto de un nutriente limitante en la tasa específica de crecimiento

El crecimiento específico de las bacterias nitrificantes se relaciona con la tasa específica de oxidación de amonio en el proceso de tratamiento de aguas residuales, como se muestra en la siguiente expresión:

$$q_A = \frac{1}{Y_A} \mu_A \tag{12}$$

Donde:

q<sub>A</sub>= Velocidad específica de oxidación de amonio, gramos de amonio oxidado por día por gramo de biomasa presente, y

Y<sub>A</sub>= Producción autotrófica, gramos de biomasa nitrificante producida por gramo de nitrógeno de amonio oxidado.

El coeficiente de producción autotrófica, representa la cantidad de bacterias nitrificantes que debe ser formada si toda la energía capturada por las bacterias fuera usada para la síntesis de células.

#### 2.4.1.3 Parámetros que influyen en la nitrificación

#### a) Temperatura

La temperatura óptima para la nitrificación está entre 30 y 36 ℃, sin embargo los intervalos se deben obtener por medio de estudios experimentales con el agua problema (Reddy, 1998).

#### b) pH

Un pH de 7 a 7.2 se usa normalmente para aguas con baja alcalinidad. La alcalinidad es adicionada en la planta de aguas residuales para mantener un pH aceptable (Metcalf y Eddy, 2003).

#### c) Toxicidad

Las bacterias *Nitrosomonas y Nitrobacter* son inhibidas por el amoniaco libre y el ácido nitroso. Las *Nitrobacter* son más sensibles al amoniaco libre que las *Nitrosomonas*. Algunos estudios revelan que la oxidación del nitrito fue inhibida a concentraciones de 0.1 a 1.0 mg L<sup>-1</sup> N-NH<sub>3</sub>(g) (amoniaco libre) (Reddy, 1998).

#### d) Potencial de óxido-reducción

La capacidad de un organismo para llevar a cabo reacciones de óxidoreducción depende del estado de oxidación-reducción del ambiente, debido a que
algunos microorganismos solo pueden estar activos en ambientes oxidados y
otros solamente pueden vivir en ambientes reducidos. En una disolución, la
proporción de componentes oxidados en relación a los reducidos constituye el
potencial de oxidación-reducción o potencial redox (Eh). Los microorganismos
aerobios estrictos solo son metabólicamente activos a potenciales redox positivos,
mientras que los anaerobios estrictos solo son activos a potencial redox negativo.

El potencial redox está muy influido por la presencia o la ausencia de oxígeno molecular. Los ambientes en equilibrio con el oxígeno atmosférico poseen

una presión Eh alrededor de +800 mV; los ambientes con una presión de oxígeno reducido tienen el potencial redox más bajo (Atlas *et al.*, 2002).

#### e) Carbono

La mayoría de las bacterias nitrificantes son autótrofas y requieren el CO<sub>2</sub> como fuente de carbono, esta reducción tiene lugar a través de la oxidación de N-NH<sub>4</sub><sup>+</sup>. Se requieren aproximadamente 0.14 gDQO/gN-NH<sub>4</sub><sup>+</sup> (Metcalf y Eddy, 2003). Uno de los parámetros más importantes en el proceso de nitrificación es la relación entre el carbono orgánico y el nitrógeno, debido a que el contenido de estos compuestos en el agua residual determina la competencia en el crecimiento establecida entre las poblaciones de microorganismos autótrofos y heterótrofos. Valores elevados del cociente C/N significan que la materia orgánica está en exceso con respecto a las formas de nitrógeno (Ferrara y Ramírez, 2008), por lo tanto, las bacterias heterótrofas están favorecidas, debido a que las autótrofas tienen un rendimiento de crecimiento bajo (Cervantes *et al.*, 2000).

#### f) Luz

Las bacterias nitrificantes son organismos quimioautótrofos, es decir, son organismos que obtienen energía de la oxidación de compuestos inorgánicos (Metcalf y Eddy, 2003). Su crecimiento es inhibido por la luz. *Nitrobacter* es más sensible a la fotoinhibición que *Nitrosomonas*. En el crecimiento de las bacterias que oxidan amonio se puede reducir la sensibilidad a la luz mediante ausencia de oxígeno o altas concentraciones de amonio (Prosser, 1989).

#### 2.4.2 Desnitrificación

La mayoría de las bacterias desnitrificantes son facultativas, esto significa que ellas pueden usar el oxígeno o los nitratos como aceptores finales de electrones en la respiración. Se llama respiración aerobia cuando el oxígeno es el aceptor final de electrones, y respiración anóxica cuando el aceptor final son los nitratos o los nitritos. La diferencia entre respiración aerobia y respiración anóxica

(16)

es la enzima catalizadora presente al ocurrir la transferencia final de electrones (Reddy, 1998).

#### 2.4.2.1 Estequiometría

Las ecuaciones estequiométricas para la desnitrificación dependen del sustrato y de la fuente de nitrógeno. Las siguientes reacciones muestran al metanol, al ácido acético, al metano y al agua residual como donadores y al nitrato como aceptor final:

$$6NO_{3}^{-} + 5CH_{3}OH \rightarrow 3N_{2} + 5CO_{2} + 7H_{2}O + 6OH^{-}$$

$$8NO_{3}^{-} + 5CH_{3}OOH \rightarrow 4N_{2} + 10CO_{2} + 6H_{2}O + 8OH^{-}$$

$$8NO_{3}^{-} + 5CH_{4} \rightarrow 4N_{2} + 5CO_{2} + 6H_{2}O + 8OH^{-}$$

$$(14)$$

$$8NO_{3}^{-} + 5CH_{4} \rightarrow 4N_{2} + 5CO_{2} + 6H_{2}O + 8OH^{-}$$

$$(15)$$

$$10NO_{3}^{-} + C_{10}H_{9}O_{3}N \rightarrow 5N_{2} + 10CO_{2} + 3H_{2}O + NH_{3} + 10OH^{-}$$

El ion de hidróxido que se forma durante la desnitrificación reaccionará con el dióxido de carbono en el agua, para formar iones de bicarbonato de acuerdo a la siguiente ecuación:

$$OH^{-} + CO_{2} \rightarrow HCO_{3}^{-}$$

$$(17)$$

Si se incluye la biosíntesis hay cambios en la estequiometria, la demanda de oxígeno se reduce a 2.86 g de oxígeno por gramo de nitrato reducido, la alcalinidad producida es aproximadamente 3.57 g CaCO<sub>3</sub> por gramo de nitrato reducido si el nitrato es la fuente de nitrógeno para la biosíntesis. Si las células tienen amonio disponible, la producción de alcalinidad puede ser más baja, de 2.9 a 3.0 g de alcalinidad producida por gramo de nitrógeno-nitrato reducido (Reddy, 1998).

#### 2.4.2.2 Alcalinidad

La cantidad de alcalinidad que se produce en la desnitrificación se puede calcular con la siguiente reacción:

$$NO_3^- + 1.08 CH_3OH \rightarrow 0.065 C_5H_7O_2N + 0.47 N_2 + 0.76 CO_2 + 1.44 H_2O + OH^-$$
(18)

Por lo tanto, 3.57 mg  $L^{-1}$  de alcalinidad es producida por mg  $L^{-1}$  N-NO $_3^-$  reducido, cuando las bacterias de desnitrificación utilizan NO $_3^-$  para la síntesis de la célula (Reddy, 1998).

#### 2.4.2.3 Cinética

La velocidad de desnitrificación varía según el tipo y concentración del compuesto que se usa como sustrato. La desnitrificación es esencialmente de orden cero con respecto a la concentración del nitrato. La velocidad de desnitrificación es afectada por la concentración de OD, pH, temperatura y la configuración del reactor (Reddy, 1998).

#### 2.4.2.4 Parámetros que influyen en la desnitrificación

#### a) pH

La desnitrificación ocurre en un intervalo amplio de valores del pH, entre 4 y 9.5. En condiciones ácidas, el óxido nítrico (NO) es uno de los principales productos, mientras que por encima de pH 7, se produce óxido nitroso ( $N_2O$ ), que es reabsorbido o reducido a nitrógeno gaseoso. Como la desnitrificación produce iones hidroxilo, esto se puede utilizar en un sistema que enlaza la nitrificación y desnitrificación a fin de equilibrar los iones de hidrógeno producidos por la nitrificación (Winkler 2008).

#### b) Toxicidad

El oxígeno inhibe la reducción de nitritos, es decir, desacelera la velocidad de reducción de nitritos. Los nitritos empiezan a acumularse cuando el oxígeno se adiciona al sistema de desnitrificación. Los nitritos también pueden inhibirse por causa de ácido nitroso (HNO<sub>2</sub>) (Reddy, 1998).

#### c) Relación Carbono/Nitrógeno (C/N)

Si el agua residual presenta un contenido alto de materia orgánica, será necesario un reactor metanogénico previo al desnitrificante para distribuir biológicamente la relación C/N y obtener una mayor eliminación de carbono y nitrógeno.

Uno de los factores que determinan el tipo de ruta que seguirá el nitrato en su reducción, es la relación C/N. La relación estequiométrica C/N es 1.28, en la práctica, es necesaria una relación superior debido a la demanda adicional para la síntesis celular. Se han realizado estudios empleando fuente de carbono como metanol, glucosa o acetato para determinar la relación DQO/N que permita obtener una completa desnitrificación, obteniéndose un amplio intervalo de 2 y 9 (Méndez *et al.*, 2007). Aunque depende del donador de electrones, se puede considerar que con una relación C/N menor a 5, pero superior a la relación estequiométrica, el proceso de desnitrificación se lleva a cabo sin limitación; con una relación entre 5 y 21.3 se lleva a cabo la desnitrificación y producción de metano. En otros estudios se muestra que se deben tener relaciones de C/N con un valor mínimo de 3 gDQO/gN-NO<sub>3</sub> para garantizar una buena desnitrificación en reactores anóxicos (Rusten *et al.*, 1994).

# 2.5 Tecnologías fisicoquímicas y biológicas aplicadas a aguas residuales provenientes de la industria porcícola

Debido a la contaminación del agua y con el fin de reducir la carga de nitrógeno que se descarga en los suelos, Béline *et al.* (2008) estudiaron el porcentaje de remoción del tratamiento biológico aerobio de aguas residuales de granjas de cerdos para la eliminación de nitrógeno y fósforo, el efecto de este tratamiento en la emisión de gases y eliminación de microorganismos patógenos. Se estudiaron cuatro trenes de tratamiento que incluían un pretratamiento y el tratamiento biológico que consta de un reactor biológico con fases alternadas anóxicas y aerobias para permitir la nitrificación-desnitrificación. Los arreglos son: 1) el reactor biológico recibe el agua sin un tratamiento previo, 2) hay separación líquida-sólida por medio de un filtro prensa antes del reactor biológico, 3) la

separación líquida-sólida antes del reactor es por decantación con centrífuga, 4) a la entrada y salida del reactor biológico, la separación líquida-sólida es mecánica. Se obtuvo una remoción entre 60-70% de nitrógeno por medio de la nitrificación-desnitrificación, 68% de reducción de amonio y 55% de gases de efecto invernadero. La separación de líquido-sólido por medio de filtro prensa obtuvo una concentración del 22 al 26% de fósforo en la fase sólida y con decantación con centrífuga se obtuvo un 80% en fase sólida.

Garzón-Zúñiga *et al.* (2007) estudiaron el efecto de diferentes tasas de aireación (3.4, 4.4, 9.4 y 34 m³ m²h¹) sobre la remoción de materia orgánica y nitrógeno y sobre la formación de NH₃, N₂O y N₂ en un sistema de biofiltración empacado con un medio orgánico, el cual se usó para tratar aguas de granjas de cerdos. Durante la parte experimental se aplicaron tres diferentes cargas debido a un taponamiento en el MF, las cargas orgánicas fueron de 526, 323 y 277 gDQO m²d¹ y las cargas de nitrógeno fueron de 60, 42 y 31 gN-NH⁴ m²d¹. Los resultados muestran una alta remoción de DBO y SST (99 y ≥98%), el promedio en la concentración de DBO en el influente fue de 9,320 mg L¹ y en un periodo de 30 días todos los biofiltros removieron más del 98% de DBO. La nitrificación completa se observó después de 100 días de operación, excepto en el biofiltro con menor tasa de aireación. La desnitrificación se estableció simultáneamente en todos los biofiltros. Al usar una tasa de aireación de 9.4 m³ m²h¹ se obtuvo una remoción de 1.2 kg de N₂ por m³ de agua tratada.

La remoción de nitrógeno de agua proveniente de la granja de cerdos fue investigada por Hwang *et al.* (2005), al combinar los procesos SHARON-ANAMMOX (sistema único de eliminación de altas cargas de amonio a nitritos – proceso de oxidación anaerobia de amonio). El agua proveniente de la granja de cerdos fue caracterizada como alta en nitrógeno con baja proporción C/N, la relación en el influente fue de 1.26. En el proceso SHARON el 59% de amonio se biotransformó a nitratos y nitritos, 16% se removió por volatilización del NH<sub>3</sub> y por la síntesis de células y 25% no se removió. La alcalinidad que se consumió para la conversión de amonio fue de 8.5 g de bicarbonato por gramo de amonio convertido a N-NO<sub>2</sub> o N-NO<sub>3</sub>. El reactor ANAMMOX se alimentó con el efluente del

reactor SHARON. La proporción promedio de biotransformación N-NO<sub>2</sub> /N-NH<sub>4</sub> por la reacción ANAMMOX fue de 2.13.

En el proceso original SHARON, el control de la oxidación de nitritos impide la acumulación de nitratos. Por consiguiente, en la desnitrificación los nitritos ahorran hasta un 40% de la demanda de carbono en comparación con la desnitrificación convencional. El proceso SHARON presenta un beneficio adicional debido a que puede ahorrar hasta un 25 % de oxígeno.

SHARON: 
$$2NH_4^+ + 2HCO_3^- + 1.5O_2 \longrightarrow NH_4^+ + NO_2^- + 2CO_2 + 3H_2O$$
 (19)

El suministro constante de efluentes ricos en nitritos es un requisito previo para la operación del ANAMMOX. El proceso ANAMMOX es una tecnología adecuada para la remoción de nitrógeno con baja energía de carbono.

ANAMMOX: 
$$NH_4^+ + NO_2^- \longrightarrow N_2 + 2H_2O$$
 (19)

Con la combinación de los procesos SHARON-ANAMMOX, la remoción general del amonio puede ser realizada sin la adición de carbono orgánico:

SHARON - ANAMMOX : 
$$2NH_{4}^{+} + 2HCO_{3}^{-} + 1.5O_{2} \longrightarrow N_{2} + 2CO_{2} + 5H_{2}O$$
 (20)

La velocidad de conversión de nitrógeno y la velocidad de remoción específica fueron de 0.72 kg N-soluble m<sup>-3</sup> reactor d<sup>-1</sup> y 0.44 kg N-soluble kg<sup>-1</sup> VSS-d<sup>-1</sup>, respectivamente a una velocidad de carga de 1.36 kg N-soluble m<sup>-3</sup> reactor-d<sup>-1</sup>.

Varios tipos de coagulantes se estudiaron por Lee *et al.* (2004) para llevar a cabo la precipitación química de aguas residuales provenientes de una granja de Chachengsao, Tailandia. Los coagulantes que se estudiaron fueron Sulfato de aluminio (Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>), cloruro de polialuminio (PAC), cloruro férrico (FeCl<sub>3</sub>), sulfato férrico (Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>), sulfato ferroso (FeSO<sub>4</sub>) y cloruro ferroso (FeCl<sub>2</sub>). La dosis óptima para FeCl, Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, FeSO<sub>4</sub> y FeCl<sub>2</sub> fue de 2.0 g L<sup>-1</sup>, para el PAC fue de 0.3125 g/L y para el Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> fue de 2.5 g L<sup>-1</sup>. El pH óptimo esta en un intervalo de 4-5, excepto para el sulfato ferroso y el cloruro ferroso, que está a un valor mayor de 6. Las pruebas fueron hechas en un reactor batch y en un reactor continuo, el

reactor batch muestra una mayor remoción que el reactor continuo, aunque la diferencia no es significativa. La remoción que se obtuvo con  $Al_2(SO_4)_3$ , PAC, FeCl<sub>3</sub> y Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> fueron: DQO 60-75%, N-orgánico 90-93%, NTK 20-30%; mientras que el FeSO<sub>4</sub> y FeCl<sub>2</sub> presentaron una menor remoción.

Sezerino et al. (2003) realizaron un post-tratamiento por medio de humedales con flujo vertical para agua proveniente de una granja porcícola con 45 000 animales; dicha granja produce 600 m<sup>3</sup> d<sup>-1</sup> de agua residual. El tren de tratamiento que opera desde 1996, se compone de 1 tanque de sedimentación y 7 lagunas (2 lagunas anaerobias, 1 laguna facultativa, 1 laguna aireada y 3 lagunas de maduración). Las lagunas reducen de un 90 a 98% de DBO, DQO y SSV, sin embargo, no son capaces de remover eficientemente el nitrógeno y el fósforo. Es por ello que usaron como post tratamiento humedales que son capaces de oxidar el amonio a nitrato y de absorber el fósforo. El experimento constó de cuatro humedales que usaron Typha spp., y dos diferentes tipos de arena como MF. Los humedales 1 y 3 con la arena 1 y los humedales 2 y 4 con la arena 2. Los humedales con arena 1 operaron durante 111 días y los de la arena 2 durante 280 días. La DQO en la entrada de los humedales estaba en un intervalo de 12.12 a 23.75 g m<sup>-2</sup>d<sup>-1</sup>, la remoción obtenida estuvo en un intervalo de 25 a 54% en los humedales con arena 1 y de 12 a 43% en los humedales con arena 2. La carga de NH<sub>4</sub> varió de 9.36 a 14.36 g m<sup>-2</sup>d<sup>-1</sup>, la remoción para los humedales de arena 1 estuvo entre 7 a 67% y para la arena 2 de 2 a 68%.

Zanotelli *et al,* (2002) investigaron la importancia de los deflectores en las lagunas facultativas para el tratamiento de residuos provenientes de granjas porcícolas. El sistema de tratamiento está compuesto por un tanque de homogenización, un decantador, dos lagunas anaerobias (LA1 y LA2), una laguna facultativa (con 5 deflectores) y una laguna de maduración. Las concentraciones promedio del influente son de 26387 mg L<sup>-1</sup>, 2539 mg L<sup>-1</sup>, 1215 mg L<sup>-1</sup> y 22867 mg L<sup>-1</sup> para DQO, NT, PT y ST, respectivamente. El sistema se siguió durante 12 meses en la región oeste de Santa Catarina, Brasil. Al sistema se le suministraron 3 m<sup>3</sup> d<sup>-1</sup> de los residuos de la granja. La LA1 fue la principal responsable para la remoción de sólidos volátiles y DQO, la remoción fue de 66 y 82%,

respectivamente. En la laguna facultativa las remociones de DQO, NT y PT fueron 43, 47 y 54%, respectivamente. Se encontró que el primer deflector de la laguna fue el principal responsable de que la laguna mejorara en las remociones de contaminantes, y lo compararon con otro estudio, y se obtuvo que la introducción de los deflectores mejora la remoción de fósforo en un 20%. El sistema de tratamiento obtuvo los siguientes porcentajes de remoción: DQO 98%, NT 92%, PT 98% y ST 93%.

Alarcón (2002) realizó un trabajo con el propósito de obtener constantes cinéticas de degradación de materia orgánica y bacteriana en un tren de tratamiento piloto y realizar el diseño a escala completa para una granja pequeña ubicada en una zona con clima cálido del estado de Morelos, tipificada como granja porcícola de traspatio (no tecnificada). Para llevar a cabo éste objetivo se realizó la caracterización, el diseño, la selección del sitio, el estudio del terreno, la construcción del sistema lagunar piloto. El diseño considera separación física de sólidos, laguna anaerobia, laguna facultativa y tres lagunas de maduración. La remoción de materia orgánica en el sistema fue del 93 % y de CF de 99.999%.

Garzón-Zúñiga *et al.* (2002) utilizaron un biofiltro aireado a escala laboratorio de 20 L de capacidad, el biofiltro lo empacaron con turba y pedazos de madera, para tratar aguas residuales provenientes de una granja porcícola. El biofiltro se alimentó por la parte superior (0.03 m³/m²MF/d) y escurre lentamente por gravedad para salir posteriormente por la parte baja de la columna. Todas las formas del nitrógeno presentes en el influente y efluente líquido (NTK, N-NH¼, N-NO½, N-NO¾), así como aquellas presentes en la fase gaseosa (N-NH¾, N-N2O, N2) fueron monitoreadas durante 180 días de operación. Se sabe que el pH y la aireación son dos parámetros importantes que controlan la formación y volatilización del NH₃. Durante toda la experimentación la tasa de aireación (13.6 m³ m-²MF h-¹) permaneció constante. El pH del influente se mantuvo entre 7.0 y 7.5 con algunas excepciones en las que el pH fue de 6.6 y 6.9. Los resultados muestran que existe una sucesión de mecanismos físico-químicos y biológicos de eliminación del nitrógeno y que su importancia específica varía con el tiempo. Durante los primeros días la volatilización del NH₃ es el principal mecanismo de

eliminación del nitrógeno. Más del 50 % del NTK de entrada se eliminó como NH $_3$ . Con el tiempo, este mecanismo es inhibido por la implantación y crecimiento de una importante actividad nitrificante, la cual consume la alcalinidad del medio y hace caer el pH a su paso por la cama filtrante. La hipótesis de la existencia de un proceso de nitrificación y desnitrificación simultánea fue comprobada a través de la detección y cuantificación de  $N_2O$  y  $N_2$ . Además, se comprobó que este mecanismo es el principal proceso de eliminación del nitrógeno dentro del sistema de biofiltración aireado. A partir del día 142 de operación, más del 60 % del NTK se eliminó como  $N_2$  (45%) y como nitratos (19%).

Vázquez *et al.* (1996), evaluaron el comportamiento de un digestor anaerobio en el tratamiento de aguas residuales de granjas porcícolas, para desarrollar modelos matemáticos que permitan predecir la remoción de la materia orgánica en función del TRH y la concentración de DQO del influente para este tipo de desecho. El reactor, de 534 litros está constituido por un UASB en la parte inferior y por un sedimentador de alta tasa en la parte superior. Se reportan los resultados obtenidos durante el experimento para establecer los parámetros críticos de trabajo, habiéndose obtenido remociones de materia orgánica de 72 % con TRH de 1 día y la carga orgánica fue 3 kg DQO/ m³/día. Además el proceso anaerobio demostró ser buen amortiguador de las variaciones de concentración del influente, característica deseable de todo tratamiento.

En la tabla 2.5, se muestra un cuadro comparativo de las diferentes tecnologías descritas anteriormente para el tratamiento de aguas residuales provenientes de las granjas porcícolas.

Uno de los procesos biológicos que más se utiliza en el tratamiento de efluentes porcícolas son las lagunas de estabilización, debido a su bajo costo de mantenimiento y operación, además que no requieren un alto consumo en energía eléctrica. Una de las desventajas de los sistemas lagunares es que necesitan una extensión amplia de terreno. En la tabla 2.5 se observa que la remoción de materia carbonosa en los sistemas lagunares es del 93-98%, las lagunas de maduración actúan como tratamiento de desinfección, por lo tanto, realiza una importante remoción de CF. Los sistemas lagunares también remueven nitrógeno

y fósforo, teniendo remociones de 92 y 98%, respectivamente (Zanotelli *et a*l., 2002 y Alarcón 2002). Cabe mencionar que la remoción de PT de 98% se alcanzó colocando previamente un decantador.

Los tratamientos con humedales remueven DQO en un intervalo de 12-54%, P-PO<sub>4</sub> de 26-95% y N-NH<sub>4</sub> en un intervalo de 2-68%. Los porcentajes de remoción son afectados por las características físico-químicas de la arena que se utiliza en los humedales (Sezerino *et al.*, 2003).

Si se utilizan los procesos SHARON y ANAMMOX, los porcentajes de remoción de N-NH<sub>4</sub> son 76.9 y 56.8 % (Hwang *et al.*, 2005). La precipitación química es una tecnología relativamente eficiente pero tiene la gran desventaja de que es de alto costo, debido al consumo de energía y por el costo de los coagulantes; dependiendo del tipo de coagulante que se utilice es la eficacia de dicha tecnología. El porcentaje de remoción de DQO se encuentra en un intervalo de 60-75%, la remoción de N-orgánico de 90-93% y de PT de 80-94% (Lee *et al.*, 2004).

En el trabajo realizado por Vázquez *et al.* (1996) la remoción de DQO fue de 72%. En el proceso biológico aerobio la remoción de nitrógeno por medio de nitrificación-desnitrificación es de 60-70%, y la remoción de PT está en un intervalo de 22-80% (Béline *et al.*, 2008)

En los estudios que realizaron Garzón-Zúñiga *et al.* (2007) sobre el porcentaje de remoción de un filtro empacado con materiales orgánicos, se obtuvo que la remoción de DBO fue del 99%, y que la remoción de N-NH<sub>4</sub> fue de 99.7%, se concluyó que la remoción de nitrógeno se ve afectada por la velocidad de aireación.

Tabla 2.5 Cuadro comparativo de tecnologías

| Tecnología                                                                                                                                                                                                                                                                | Remoción de<br>Materia<br>carbonosa | Remoción de<br>nutrientes                                                                                                                 | Remoción de<br>microorganismos<br>patógenos | Observaciones                                                                                                                                                                                                                                                                                                                | Fuente                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Tratamiento biológico aerobio: 1) Sin un tratamiento previo, 2)Separación líquidasólida por medio de un filtro prensa, 3)Separación líquidasólida por decantación con centrífuga, 4) A la entrada y salida del reactor biológico, la separación líquidasólida es mecánica |                                     | NT: Nitrificación- desnitrificación: 60-70% PT: Separación de líquido-sólido por filtro prensa: 22 al 26% Decantación con centrífuga: 80% | ND*                                         | Si presentó disminución en bacterias entéricas.                                                                                                                                                                                                                                                                              | Béline et al., 2008                |
| Filtro empacado con<br>materiales orgánicos.                                                                                                                                                                                                                              | DBO:<br>99%                         | N-NH <sub>4</sub> <sup>+</sup> : 3.4 m/h: 60% 4.4 m/h: 96.5% 9.4 m/h: 99.5 % 34 m/h: 99.7 %                                               | ND*                                         | En el arranque se recomienda aplicar una velocidad de aireación de 3.4 m/h. Para llevar a cabo la nitrificación (alrededor del día 60), la velocidad de aireación se debe aumentar a aproximadamente 4.4 m/h para mejorar la remoción de DQO y N-NH <sup>+</sup> <sub>4</sub> , nitrificación y desnitrificación simultánea. | Garzón-Zúñiga <i>et al</i> ., 2007 |

Tabla 2.5 Cuadro comparativo de tecnologías (continuación)

| Tecnología                                                   | Remoción de<br>Materia<br>carbonosa        | Remoción de<br>nutrientes                                                                                                                       | Remoción de<br>microorganismos<br>patógenos            | Observaciones                                                                                                                                                                 | Fuente                      |
|--------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Procesos de remoción<br>de nitrógeno:<br>SHARON y<br>ANAMMOX | ND*                                        | N-soluble:<br>67%                                                                                                                               | ND*                                                    | No presenta los resultados de la remoción de materia orgánica.                                                                                                                | Hwang <i>et al.</i> , 2005. |
| Precipitación Química                                        | DQO:<br>60-75%                             | N-orgánico:<br>90-93%<br>NTK:<br>20-30%<br>PT:<br>80-94%                                                                                        | ND*                                                    | El agua residual de las granjas porcícolas contiene una alta cantidad de amonio el cual no puede ser fácilmente removido por precipitación química.                           | Lee et al., 2004.           |
| Humedales con flujo<br>vertical                              | DQO:<br>Arena 1: 25-54%<br>Arena 2: 12-43% | N-NH <sub>4</sub> <sup>+</sup> :<br>Arena 1: 7-67%<br>Arena 2: 2-68%<br>P-PO <sub>4</sub> <sup>-3</sup> :<br>Arena 1: 62-95%<br>Arena 2: 26-91% | ND*                                                    | Sistema económico para remover nutrientes. Fluctuaciones en los porcentajes de remoción. Las remociones en el sistema lagunar se afecta con la disminución de la temperatura. | Sezerino et al., 2003.      |
| Laguna facultativa con deflectores.                          | DQO:<br>Facultativa: 43%<br>Sistema: 98%   | NT:<br>Facultativa: 47%<br>Sistema: 92%<br>PT:<br>Facultativa: 54%<br>Sistema: 98%                                                              | CF:<br>Sistema: 99.999%<br>CT:<br>Sistema:<br>99.9999% | La introducción de deflectores no mejora la remoción de NT, pero sí mejora la remoción de PT en un 20%.                                                                       | Zanotelli et al., 2002.     |
| Lagunas en serie.                                            | DQO:<br>93%                                |                                                                                                                                                 | CF:<br>99.999%                                         | Efluente de laguna de maduración cumple con la norma para reúso de riego agrícola.                                                                                            | Alarcón, 2002.              |

Tabla 2.5 Cuadro comparativo de tecnologías (continuación)

| Tecnología                              | Remoción de<br>Materia<br>carbonosa | Remoción de<br>nutrientes | Remoción de<br>microorganismos<br>patógenos | Observaciones                                                                                                                                                                                                                 | Fuente                              |
|-----------------------------------------|-------------------------------------|---------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Biofiltro aireado con soporte orgánico. | ND*                                 | NTK:<br>NDS: 60%          | ND*                                         | Los primeros días la volatilización del NH <sub>3</sub> es el principal mecanismo de eliminación del nitrógeno.                                                                                                               | Garzón-Zúñiga <i>et al</i> ., 2002. |
| Reactor anaerobio                       | DQO:<br>72%                         | ND*                       | ND*                                         | El proceso de digestión anaerobia es factible de aplicarse para el tratamiento de este tipo de aguas residuales, ya que entre las características de éstas, está la de contener elevadas concentraciones de materia orgánica. | Vázquez <i>et al.</i> , 1996.       |

<sup>\*</sup>Información no disponible

#### 2.6 Biofiltración

La biofiltración es un proceso de filtración biológica en el que la biomasa está fija. La biofiltración es una modificación de los filtros percoladores. En los biofiltros (BF), el material de empaque está constituido por algún medio orgánico (paja, madera, turba, etc.) y además, los tiempos de retención hidráulicos son más largos que en los filtros percoladores (Garzón-Zúñiga *et al.*, 2002).

Los primeros reportes del uso de los sistemas de biofiltración datan de 1923 y se utilizaron para remover el azufre (H<sub>2</sub>S) proveniente de una planta de tratamiento de aguas residuales. Los primeros biofiltros fueron sistemas abiertos en los que se empleaba suelo poroso como soporte. Se hacían huecos en el suelo y se colocaba un sistema de tubos perforados en la base que dejaban pasar aire a través del suelo. La primera patente de esta tecnología se registró en 1934, para el tratamiento de compuestos olorosos. A partir de 1950 se publican los fundamentos de la tecnología de la biofiltración y se difunde en los Estados Unidos de América y Alemania occidental. En esta década, se instalan biofiltros de tierra para el tratamiento de olores en California, E.U.A. y en Nuremberg, Alemania.

#### 2.6.1 Material de empaque

El material de empaque del medio biológico filtrante es una mezcla de materiales naturales con un área específica y espacios vacíos grandes; puede ser composta o turba. El medio provée la superficie para que se desarrolle una biopelícula de microorganismos que serán responsables de la degradación de los contaminantes. Las superficies mojadas del medio de empaque desarrollan una película de lama microbiana, y el agua residual fluye sobre la superficie del empaque en una delgada capa que está en contacto con la lama microbiana por un lado y con la atmósfera en los espacios intersticiales del empaque del otro (figura 2.6). El oxígeno se disuelve en la superficie del líquido en movimiento y es transferido a través de la capa líquida a la capa de lama microbiana. El oxígeno y los nutrientes del líquido se difunden hacia dentro de la capa microbiana para ser metabolizados por la población microbiana.

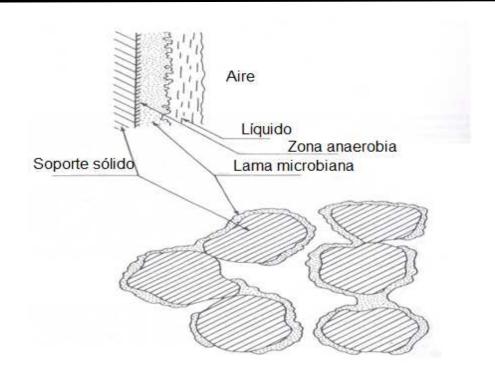



Figura 2. 6 Esquema básico de biomasa adherida (Winkler, 2008)

La biofiltración es un proceso complejo al que afectan varios factores, como la oxigenación del medio, el contenido de humedad y nutrientes, pH, temperatura y patrones de flujo en el medio. El desempeño del biofiltro, depende del tipo de contaminante a tratar y de sus concentraciones.

#### 2.6.2 Colonización del empaque

Si se comienza con un medio de soporte limpio, el crecimiento inicial de los microorganismos podrá necesitar varias semanas para alcanzar su desarrollo sobre la superficie del empaque, un proceso que se conoce como "maduración" o "maduramiento". Al principio, el porcentaje de remoción de purificación es baja pero aumenta según se acumula la película de microorganismos sobre las superficies del empaque. Según se consumen los nutrientes, la película de microorganismos se hace más gruesa hasta que es suficientemente pesada para separarse del empaque por su propio peso y el flujo del fluido lo arrastra fuera del sistema. A la película de microorganismos se le conoce como biomasa, la

separación de la biomasa de la superficie del empaque se llama "desprendimiento", y a la biomasa separada "humus".

La comunidad biológica en los biofiltros incluye bacterias, hongos, algas y protozoarios, y vida superior como gusanos, larvas de insectos y caracoles. Las algas pueden crecer en la parte superior del filtro donde la luz solar está disponible; *Phormidiun, Chorella, y Ulothrix* son algunas especies encontradas en los biofiltros.

Las bacterias facultativas son predominantes en los biofiltros, las cuales descomponen la materia orgánica en las aguas residuales junto con bacterias aerobias y anaerobias. *Achromobacter, Flavobacterium, Pseudmonas* y *Alcaligenes* son algunas bacterias asociadas con los biofiltros.

Los protozoarios predominantes en el filtro son el grupo de los ciliados, incluyendo *Vorticella, Opercularia* y *Epistylis* (Metcalf y Eddy, 2003).

En reactores con biopelícula fija, como los biofiltros, la competitividad entre bacterias heterotróficas y autotróficas es más importante que en los sistemas de crecimiento en suspensión. La significativa presencia de sustrato orgánico en un reactor de película fija permite a la biomasa heterotrófica confundir a la autotrófica e impide su crecimiento. Una ventaja de los sistemas de crecimiento adherido es que no necesitan recirculación de lodo para mantener la biomasa necesaria para realizar el tratamiento por que la biomasa se adhiere a un soporte sólido en el reactor (Reddy, 1998).

La biofiltración sobre lecho orgánico se caracteriza por una lenta tasa de filtración (≤0.50 m³ m⁻²d⁻¹). La turba se utiliza desde hace mucho tiempo como lecho orgánico para el tratamiento de aguas residuales por sus propiedades: alta porosidad (aproximadamente 90%), alta capacidad de absorción, área específica alta (≥200 m³ m⁻²d⁻¹) para la adhesión de microorganismos y por su capacidad de desinfección. En el caso de las aguas residuales de la agro-industria como la proveniente de las granjas porcícolas, el cual tiene una alta carga de materia orgánica y nitrógeno, la remoción de contaminantes que se obtuvo con biofiltración pasiva fue baja, especialmente para nitrógeno, solamente se observó una nitrificación parcial y se acumuló nitrito en el biofiltro. Se reportó que al aplicar

fuerza de aireación la remoción de los contaminantes fue notablemente mejor, 99% para DBO y 95% para TKN (Garzón-Zúñiga *et al.*, 2007).

En los biofiltros tienen lugar una serie de mecanismos que llevan a cabo la remoción de nitrógeno, principalmente volatilización, sorción, filtración, asimilación, nitrificación, desnitrificación y reacciones de óxido-reducción (Garzón-Zúñiga *et al.*, 2005).

## **3 METODOLOGÍA**

#### 3.1 Caracterización del agua residual

La composición del agua residual porcícola es muy variable, es por ello que el agua a tratar se caracterizará cada vez que se haga el transporte desde la granja al laboratorio. El agua residual a tratar proviene de la etapa de engorda de una granja ubicada en el municipio de Jojutla, Morelos.

#### 3.2 Tren de tratamiento

El objetivo de este trabajo es remover los contaminantes presentes en el agua residual proveniente de la industria porcícola. Por lo tanto, el tren de tratamiento está compuesto por un pretratamiento (cribado y sedimentación) y proceso biológico (figura 3.1). El proceso biológico será biofiltración sobre lecho orgánico, que consta de un biofiltro sin aire (BFSA) que alimenta a tres biofiltros aireados (BFA) que trabajaran en paralelo (BFA1, BFA2 y BFA3).

#### 3.2.1 Sistema de pretratamiento

El agua residual proveniente de la industria porcícola tiene alta concentración de sólidos tanto sedimentables como suspendidos, es por ello que el agua residual pasará a través de un pretratamiento que consta de 3 cribas y una sedimentación. Las cribas (figura 3.2) tienen una abertura de 0.46 mm, 0.38 mm y 0.23 mm (criba rotatoria). La sedimentación se llevará a cabo durante 180 min.

El propósito del pretratamiento es que al sistema de biofiltración no entren altas concentraciones de sólidos suspendidos, debido a que pueden ocasionar un taponamiento en los biofiltros.

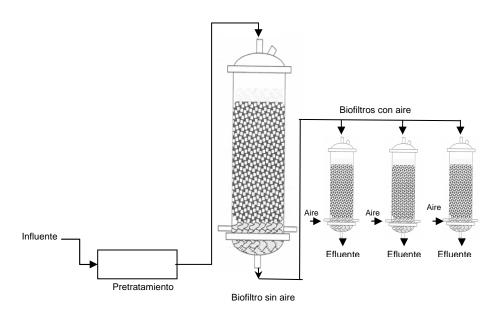



Figura 3. 1 Sistema de tratamiento propuesto



Figura 3. 2 Fotografía de pretratamiento con cribas

#### 3.2.2 Descripción del sistema de tratamiento

La alimentación de los biofiltros se realiza en forma descendente, el agua es bombeada a los biofiltros por medio de una bomba peristáltica Masterflex modelo 7554-80.

Los reactores tienen una salida en la cual se encuentra conectado un manómetro para medir la pérdida de carga de los mismos, los cuales indican en

centímetros la diferencia de presión que se va a obtener a lo largo del experimento y que es el resultado de la saturación de los espacios vacios en los materiales. Los biofiltros se empacaron con MF constituido por madera de *Ficus benjamina* que fue triturada y tamizada (figura 3.3).



Figura 3. 1 Fotografía del MF tamizado

Biofiltro sin aire: El biofiltro sin aire es un reactor cilíndrico de acrílico de 0.23 m de diámetro y 1.80 m de longitud.

BFA: Son reactores cilíndricos de acrílico de 0.095 m de diámetro y 0.40 m de longitud.

#### 3.3 Empaque del biofiltro

El material de empaque está dividido en tres capas (Figuras 3.4 y 3.5):

Primera capa: Con grava de un diámetro máximo de 0.0127 m (0.5 pulgadas), con un espesor para el biofiltro sin aire de 0.08 m y para biofiltros con aire de 0.04 m. Esta capa sirve para soportar el MF y dar una mejor distribución al aire, en el caso de biofiltros que van a ser aireados.

Segunda capa: Está constituida por el MF, dicho material se tritura y se tamiza. Se utiliza trozos de madera de *Ficus benjamina* (Anexo I). El biofiltro sin aire se empaca con el material retenido en las mallas de 0.009525, 0.0127 y 0.01905 m (0.375, 0.5 y 0.75 pulgadas), y para los biofiltros con aire, el material que se utiliza es el retenido en la malla de 0.009525 m (0.375 pulgadas). El espesor de la capa de MF fue de 1.68 m para biofiltro sin aire y 0.3 m para BFA.

La última, fue una capa delgada de trozos de madera que favorece la distribución del influente sobre el material filtrante.

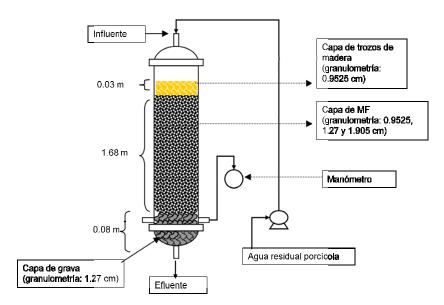



Figura 3. 2 Esquema del BFSA

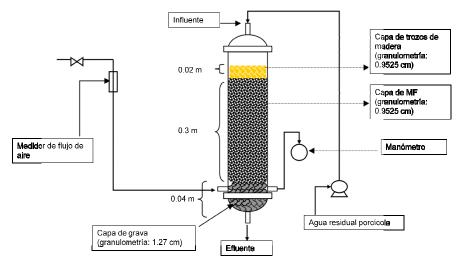



Figura 3. 3 Esquema de los BF aireados

#### 3.4 Caracterización del material filtrante

#### 3.4.1 Preparación del material filtrante

El material de empaque (madera de *Ficus benjamina*) se obtiene de la poda de jardines del municipio de Jiutepec, dicho material se prepara de la siguiente manera:

- 1) El material se pone a secar al sol, y posteriormente se tritura.
- 2) El material se tamiza

3) El material tamizado, es el MF que se va a ocupar para empacar los reactores, dicho material se humedece al 65% (figura 3.6) antes de empacar los reactores, tal y como se describe en Garzón-Zúñiga (2001).



Figura 3. 4 Fotografía del MF humedecido

#### 3.4.2 Prueba de vaciado para determinar porosidad

Las pruebas de vaciado se realizaron según la metodología descrita por Garzón-Zúñiga *et al.* (2003):

- 1. Pesar columnas de acrílico vacías (reactores).
- 2. El reactor que va a operar sin aire se empaca con 3500 mL de grava y los reactores que van a utilizar aire se empacan con 500 mL de grava; cada reactor se pesa. Se agrega el material filtrante húmedo a cada columna.
- 3. Se llenan los reactores con agua hasta el nivel de la grava, se vacían y se mide el agua evacuada. Esto es para saber el valor de los espacios vacíos que se encuentran en el volumen de la grava.
- 4. Cada uno de los reactores se llena por el fondo con agua hasta que el MF esté completamente inmerso, el llenado se debe realizar lentamente para prevenir la expansión del mismo y la formación de burbujas de aire. Se deja reposar toda la noche.
- 5. Las columnas se vacían.
- 6. Las columnas se llenan nuevamente con agua y se comienzan las pruebas de vaciado. La duración de la prueba es de 1200 minutos y se repite 3 veces para cada columna. El volumen de agua que se encuentra en los reactores es vaciado y se mide el volumen acumulado en intervalos de tiempo (1, 2, 4, 15, 30, 60, 120, 240, 420 y 1200 minutos).

- 7. Al terminar las pruebas de vaciado se toman muestras del material filtrante de la parte alta, media, baja de los biofiltros y se determina el contenido de agua haciendo un promedio de las tres muestras de cada reactor.
- 8. Con los resultados se calcula la porosidad *in situ* (Anexo II), la porosidad debe ser igual al valor del volumen del agua acumulada al final de las pruebas de vaciado, adicionado al volumen de agua contenido en el MF.

#### 3.5 Determinación de la hidrodinámica de los biofiltros

# 3.5.1 Determinación de los espacios vacíos en los biofiltros con respecto al flujo de salida

Para determinar el volumen de los espacios vacíos se utiliza el volumen de agua obtenido de las pruebas de vaciado de cada intervalo de tiempo y graficando la siguiente ecuación:

$$Q = \frac{\Delta \text{ volumen acumulado}}{\Delta \text{ intervalo de tiempo}}$$
 (21)

En la siguiente figura 3.7 se muestra el comportamiento de la curva teórica de volumen de espacios vacíos versus caudal.

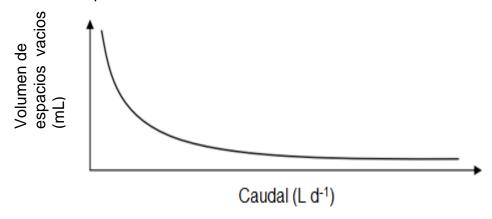



Figura 3. 5 Curva teórica de espacios vacios vs caudal (Garzón-Zúñiga, 2003)
3.5.2 Determinación de TRH

El TRH se determina por medio de la siguiente ecuación (Garzón-Zúñiga, 2001):

$$TRH = \frac{V_t}{Q}$$

(22)

Donde:

TRH: Tiempo de residencia hidráulica

V<sub>t</sub>= Volumen total de agua residual en tratamiento (volumen correspondiente a la porosidad-volumen de espacios vacíos)

Q= Caudal

#### 3.6 Parámetros de operación del sistema de tratamiento

#### 3.6.1 Parámetros de operación del biofiltro sin aire

Volumen del reactor (V<sub>R</sub>):

$$V_R = \pi \times r^2 h = 0.07479 \text{ m}^3$$

Área superficial

$$A_S = \pi \times r^2 = 0.042 \text{ m}^2$$

- Carga orgánica. Se considerarán dos diferentes cargas orgánicas para la realización del experimento, lo cual marcará dos etapas del trabajo experimental:
  - ✓ Primer etapa 250 gDQO m<sup>-2</sup>d<sup>-1</sup>
  - √ Segunda etapa 350 gDQO m<sup>-2</sup>d<sup>-1</sup>
- Caudal. El Q a tratar se calculará dividiendo la COS a aplicar entre la concentración de materia orgánica, para así obtener la tasa de filtración y posteriormente multiplicarla por el área superficial del biofiltro.
- Tiempo de residencia hidráulica (TRH). Para determinar el TRH se dividirá el volumen real de agua a tratar (volumen correspondiente a la porosidad in situ menos el volumen de espacios vacíos) entre el Q:

#### 3.6.2 Parámetros de operación de biofiltros con aire

Volumen del reactor (V<sub>R</sub>):

$$V_R = \pi \times r^2 h = 0.00284 \text{ m}^3$$

#### Área superficial

$$A_S = \pi \times r^2 = 0.0071 \text{ m}^2$$

#### > Tasa de filtración

Garzón-Zúñiga *et al.* (2007) utilizaron una tasa de filtración de 0.065 m<sup>3</sup> m<sup>-2</sup>d<sup>-1</sup>, sin embargo esta tasa de filtración disminuyó a 0.045 m<sup>3</sup> m<sup>-2</sup>d<sup>-1</sup>y posteriormente a 0.035 m<sup>3</sup> m<sup>-2</sup>d<sup>-1</sup>. Estas disminuciones fueron a causa de un taponamiento del medio. Tomando en consideración que el agua residual pasa previamente por un pretratamiento y por el BFSA; la tasa de filtración a utilizar será de 0.065 m<sup>3</sup> m<sup>-2</sup>d<sup>-1</sup>. Para determinar el Q se multiplicará éste valor por el área superficial.

Carga orgánica. La COS se determinará multiplicando la tasa de filtración por la concentración de materia orgánica en la entrada de los biofiltros.

#### > Tasas de aireación

Las tasas de aireación utilizadas por Garzón-Zúñiga *et al.* (2007) fueron de 3.4 m³aire m⁻²h⁻¹, 4.4 m³aire m⁻²h⁻¹, 9.4 m³aire m⁻²h⁻¹ y 34 m³aire m⁻²h⁻¹, cuyas remociones de N-NH<sup>+</sup><sub>4</sub> fueron 60, 96.5, 99.5 y 99.7%, respectivamente. Estos autores notaron que con una tasa de aireación de 3.4 m³ aire m⁻²h⁻¹, la concentración de nitritos variaba inversamente con la concentración de nitratos, este comportamiento podría sugerir una limitación en el oxígeno para la nitrificación. Para el presente trabajo los BFA se trabajarán con:

✓ BFA1= 
$$3.4 \text{ m}^3$$
aire  $\text{m}^{-2}\text{h}^{-1}$ =  $402 \text{ mL min}^{-1}$ 

✓ BFA2= 
$$4.4 \text{ m}^3$$
aire  $\text{m}^{-2}\text{h}^{-1}$ =  $521 \text{ mL min}^{-1}$ 

✓ BFA3= 
$$9.4 \text{ m}^3$$
 aire  $\text{m}^{-2}\text{h}^{-1}$ =  $1112 \text{ mL min}^{-1}$ 

#### 3.7 Elaboración del diseño experimental

#### 3.7.1 Selección de parámetros de control del proceso

Las variables independientes del proceso serán la COS y la dosis de oxígeno suministrada a los biofiltros con aire.

Durante el desarrollo del experimento se manejarán dos cargas orgánicas y se proporcionará diferente tasa de aireación a cada biofiltro, por lo tanto se tendrán 3 diferentes tasas de aireación (BFA1, BFA2 y BFA3).

Por lo tanto serán seis combinaciones posibles con las dos variables independientes, las COS marcarán dos etapas en el experimento.

Para comparar las dos etapas y las diferentes tasas de aireación se utilizarán pruebas estadísticas como el ANOVA y la prueba de Kruskal-Wallis (método no paramétrico, no asume normalidad en los datos).

#### 3.8 Seguimiento de los sistemas de biofiltración

Para el seguimiento de los diferentes parámetros de calidad se tomarán muestras en la entrada y salida del biofiltro sin aire y a las salidas de los biofiltros con aire (tabla 3.1).

#### 3.8.1 Métodos de análisis

Para el seguimiento de los biofiltros los parámetros de campo medidos fueron el pH, temperatura, conductividad y SDT. Las determinaciones de alcalinidad, SST, SSV, DQO, DQOd y DBO se realizan de acuerdo al *Standard Methods for Examination of Water and Wastewater,* 2005. Los análisis de N-NH<sub>4</sub><sup>+</sup>, NO<sub>2</sub><sup>-</sup>, N-NO<sub>3</sub><sup>-</sup> y P-PO<sub>4</sub><sup>-3</sup> se realizan mediante una determinación espectrofotométrica utilizando el espectrofotómetro Hach DR-2500 con los métodos 8038, 8153, 8039 y 8048, respectivamente. Para determinar CT y CF se utiliza el método de tubos múltiples.

Tabla 3.1 Seguimiento de parámetros de calidad

| Parámetro            | Frecuencia                             | Influente<br>BFSA | Efluente<br>BFA | Efluentes BFA |  |
|----------------------|----------------------------------------|-------------------|-----------------|---------------|--|
| рН                   | Diario                                 | Х                 | Χ               | Х             |  |
| Temperatura          | Diario                                 | Χ                 | Χ               | Х             |  |
| Conductividad        | Diario                                 | Χ                 | X               | Х             |  |
| SDT                  | Diario                                 | Χ                 | Χ               | Х             |  |
| Pérdida de<br>carga  | Diario                                 | Х                 | Х               | Х             |  |
| Alcalinidad          | 1 vez/semana                           | Х                 | Х               | Х             |  |
| DQO                  | 2 veces/semana                         | Х                 | Х               | Х             |  |
| DQO <sub>d</sub>     | 2 veces/semana                         | Х                 | Х               | Х             |  |
| DBO                  | 1 vez/semana                           | Х                 | Х               | Х             |  |
| SST                  | 2 veces/semana                         | Х                 | Х               | Х             |  |
| SSV                  | 2 veces/semana                         | Х                 | Х               | Х             |  |
| SSF                  | 2 veces/semana                         | Х                 | Х               | Х             |  |
| N-NH <sub>4</sub>    | 2 veces/semana                         | Х                 | Х               | Х             |  |
| N-NO <sub>3</sub>    | 2 veces/semana                         | Х                 | Х               | Х             |  |
| N - NO <sub>2</sub>  | 2 veces/semana                         | Х                 | Х               | Х             |  |
| P-PO <sub>4</sub> -3 | 2 veces/semana                         | Х                 | X               | Х             |  |
| CT y CF              | Al término de<br>etapa<br>experimental | Х                 | Х               | Х             |  |

## **4 ANÁLISIS Y DISCUSIÓN DE RESULTADOS**

El trabajo experimental duró 231 días, durante los cuales se alimentó agua residual porcícola a un sistema de biofiltración. Para la realización del experimento se consideraron dos cargas orgánicas, las cuales marcaron dos etapas experimentales: la primera etapa comprendió del 17 de Julio al 11 de noviembre del 2009, en la que se trabajó con una COS de 250 gDQO m<sup>-2</sup>d<sup>-1</sup> y la segunda etapa inició el 12 de noviembre del 2009 y se terminó el 3 de marzo del 2010, en esta etapa se trabajó con una carga orgánica de 350 gDQO m<sup>-2</sup>d<sup>-1</sup>.

#### 4.1 Características del agua residual porcícola

Las variaciones en las características del agua residual utilizada están determinadas por el origen de las mismas, ya que cambian dependiendo del volumen de agua utilizada durante las labores de limpieza de los corrales, así como de la cantidad de excretas producidas por los cerdos. En la tabla 4.1 se presentan los resultados promedio obtenidos durante la caracterización del agua residual de la granja porcícola semitecnificada ubicada en Jojutla, Morelos después de haber pasado por un pretratamiento. Se observa que el pH del agua residual porcícola es neutro, presentando un valor promedio de 7.28; la temperatura es de 22°C; la conductividad se encuent ra entre 12980 y 5060 µS cm<sup>-1</sup>; tiene una concentración promedio de OD de 0.21 mg L<sup>-1</sup>; una alcalinidad promedio de 4014 mgCaCO<sub>3</sub> L<sup>-1</sup>. Los SST tienen una concentración promedio de 1342 mg L<sup>-1</sup>, de los cuales un 78% pertenece a sólidos totales volátiles. Uno de los principales contaminantes del agua residual porcícola es la concentración de

materia orgánica medida como DQO y DBO, teniendo valores promedio de 13000 y 6350 mg L<sup>-1</sup>, respectivamente. También presenta altas concentraciones de nutrientes los cuales causan eutrofización en los cuerpos receptores, tales como el NT y el PT teniendo concentraciones promedio de 1007 y 270 mg L<sup>-1</sup>, respectivamente. Los CT y CF son de 4.9x10<sup>6</sup> y 5x10<sup>5</sup> NMP 100mL<sup>-1</sup>, respectivamente.

Tabla 4.1 Características del agua residual porcícola con pretratamiento

| Parámetro                                          | Promedio            | Desviación | Máximo              | Mínimo              | Número<br>de |
|----------------------------------------------------|---------------------|------------|---------------------|---------------------|--------------|
|                                                    |                     | estándar   |                     |                     | muestras     |
| рН                                                 | 7.28                | 0.19       | 7.95                | 6.79                | 179          |
| T (℃)                                              | 22.12               | 2.06       | 25.4                | 15                  | 179          |
| Conductividad (µS cm <sup>-1</sup> )               | 8417                | 2460       | 12980               | 5060                | 171          |
| SDT (mg L <sup>-1</sup> )                          | 4669                | 1511       | 8410                | 2600                | 171          |
| OD (mg L <sup>-1</sup> )                           | 0.21                | 0.06       | 0.39                | 0.11                | 92           |
| Alcalinidad (mgCaCO <sub>3</sub> L <sup>-1</sup> ) | 4014                | 866.10     | 5740                | 2960                | 26           |
| SST (mg L <sup>-1</sup> )                          | 1342                | 524.79     | 2780                | 840                 | 48           |
| SSV (mg L <sup>-1</sup> )                          | 1069                | 453.63     | 2200                | 420                 | 48           |
| SSF (mg L <sup>-1</sup> )                          | 273                 | 221.14     | 1160                | 40                  | 48           |
| DQO (mg L <sup>-1</sup> )                          | 13074               | 3325.10    | 20452               | 7200                | 57           |
| DQO <sub>d</sub> (mg L <sup>-1</sup> )             | 5091                | 1538.83    | 10247               | 2300                | 57           |
| DBO (mg L <sup>-1</sup> )                          | 6352                | 1449.46    | 8600                | 3600                | 25           |
| N-NH <sub>4</sub> (mgN L <sup>-1</sup> )           | 612                 | 152.20     | 932                 | 412                 | 58           |
| $N - NO_3^- $ (mgN L <sup>-1</sup> )               | 0.03                | 0.10       | 0.6                 | 0                   | 58           |
| $N-NO_2^-$ (mgN L <sup>-1</sup> )                  | 0.10                | 0.45       | 3                   | 0                   | 58           |
| NT (mgN L <sup>-1</sup> )                          | 1007                | 106.26     | 1260                | 800                 | 29           |
| PT (mg P L <sup>-1</sup> )                         | 274                 | 115.54     | 458                 | 178                 | 8            |
| P-PO <sub>4</sub> -3 (mgP L <sup>-1</sup> )        | 100.08              | 37.74      | 189                 | 55                  | 53           |
| CT (NMP 100 mL <sup>-1</sup> )                     | 4.9x10 <sup>6</sup> | 0.1        | 4.8x10 <sup>6</sup> | 4.9x10 <sup>6</sup> | 3            |
| CF (NMP 100 mL <sup>-1</sup> )                     | 5x10 <sup>5</sup>   | 0          | 5x10 <sup>5</sup>   | 5x10 <sup>5</sup>   | 3            |

#### 4.2 Desempeño del biofiltro sin aire (BFSA)

De acuerdo a las pruebas de vaciado se determinó que el BFSA (biofiltración pasiva) operó con un TRH promedio de 22 días. El agua residual pasa primero por el BFSA, donde se espera que se lleve a cabo principalmente la remoción de materia orgánica. Dubé *et al.* (1995) reportaron que la remoción de contaminantes con una biofiltración pasiva es baja, especialmente para nitrógeno. En el Anexo IV se muestran los resultados obtenidos a lo largo de la experimentación.

#### 4.2.1 Carga orgánica superficial (COS)

Como se mencionó en la sección 3.7.1 se consideraron dos diferentes cargas orgánicas. En la figura 4.1 se muestra el comportamiento de la carga a lo largo del experimento.

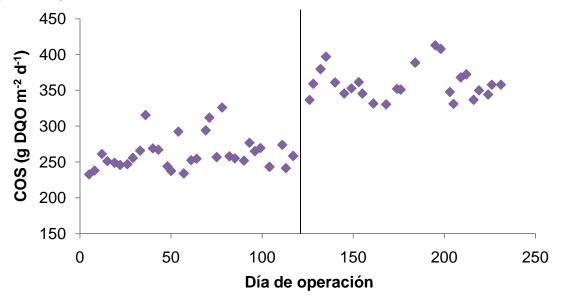



Figura 4. 1 Comportamiento de la COS durante el experimento

La primera COS se aplicó del día 1 al 117, a partir del día 70 se observó que la concentración de materia orgánica en el efluente tuvo un comportamiento constante, por lo tanto, a partir de este día se consideró al biofiltro estable. Los resultados de la primera etapa son del día 70 al 117, la COS tuvo valores entre 233 y 325 g DQO m<sup>-2</sup>d<sup>-1</sup>, con un promedio de 262 ± 23 g DQO m<sup>-2</sup>d<sup>-1</sup>, durante esta parte experimental se lograron remociones de SST, DQO y DBO de 70±18, 86±6 y

89±5%, respectivamente. La segunda COS aplicada tuvo valores entre 330 y 413 g DQO m<sup>-2</sup>d<sup>-1</sup>, con un promedio de 359±23 g DQO m<sup>-2</sup>d<sup>-1</sup> y duró del día 118 al 231 obteniendo remociones de SST, DQO y DBO de 80±13, 87±4 y 94±2%, respectivamente; se observa que al cambiar la COS no hubo una variación significativa en la remoción de contaminantes.

#### 4.2.2 pH y temperatura

En la figura 4.2 se muestra la variación del pH en la entrada y en la salida del BFSA. El valor promedio de pH en la entrada es de 7.21 ± 0.2 unidades, los valores están entre 7.9 y 6.8; el pH en la salida tiene fluctuaciones. Al inicio del período experimental el pH disminuyó con respecto al del influente, esto se atribuye a los ácidos húmicos presentes en el material de empaque (Garzón-Zúñiga et al., 2002; García 2006), el valor mínimo que se presentó fue de 5.6. Sin embargo, después aumentó, teniendo un promedio a lo largo de la experimentación de 7.73±0.6 unidades. El pH óptimo para la actividad de los diferentes grupos involucrados en la degradación anaerobia, depende del grupo al que pertenecen; sin embargo, se sabe que el intervalo en el que todas las bacterias pueden interactuar es alrededor de la neutralidad (6.2 a 7.8) con preferencia entre 7 y 7.2 (McCarty, 1964).

En la figura 4.3 se muestra el comportamiento de la temperatura en el influente y en el efluente del BFSA. El agua residual a la entrada tiene una temperatura promedio de 22℃ con una desviación est ándar de 2℃ teniendo valores entre 15 y 25℃. El efluente tiene una temperatura promedio de 23±1.8℃ teniendo valores entre 17.7 y 26.8℃. Se observa que no hubo variaciones significativas de temperatura del efluente con respecto al influente.

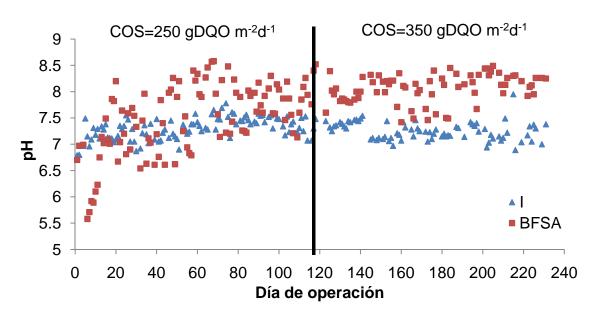



Figura 4. 2 Variación de pH en el BFSA

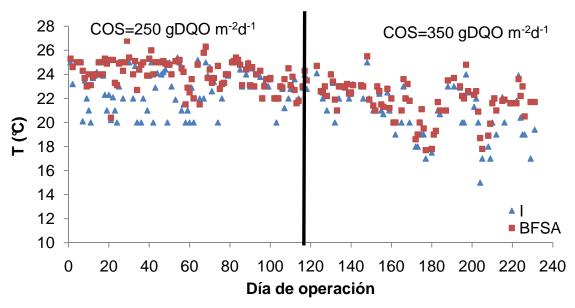



Figura 4. 3 Variación de temperatura en el BFSA

#### 4.2.3 Conductividad

La conductividad en el influente es variable, cabe mencionar que los valores del influente son del agua cruda, no se adiciono ningún compuesto para aumentar la conductividad. Los primeros días presentó valores por debajo de 7000 µS cm<sup>-1</sup>, a partir del día 145 la conductividad incrementó a valores mayores de 9000 µS cm<sup>-1</sup>; en la figura 4.4 se aprecia que en la segunda etapa de experimentación se

presentaron los valores más altos de conductividad. Con respecto al efluente se observa que la conductividad disminuye ligeramente a la salida del BFSA durante los primeros días de operación, lo cual se puede atribuir a una adsorción al material filtrante. Se presentó una remoción promedio a lo largo de la experimentación del 5%, a partir del día 55 se aprecia que los valores del efluente se acercan a los valores del influente; sin embargo del día 123 al 140 existe un comportamiento cinético de primer orden, con una K= 2.59x10<sup>-2</sup> d<sup>-1</sup>, por lo tanto, todavía existe retención de sales en el BFSA.

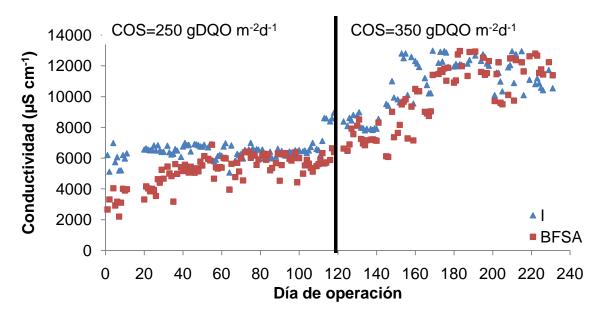



Figura 4. 4 Variación de la conductividad en el BFSA

#### 4.2.4 Alcalinidad

La alcalinidad promedio en el influente del BFSA es de 4014 ± 866 mg CaCO<sub>3</sub> L<sup>-1</sup>, en la figura 4.5 se observa que en la primera etapa la concentración de alcalinidad es menor en el efluente con respecto al influente, el consumo promedio de alcalinidad hasta el día 57 es del 50%, el principal consumo de alcalinidad en el reactor es por el dióxido de carbono, el cual se produce durante la etapa de fermentación (Metcalf y Eddy, 2003). Sin embargo, en la segunda etapa la alcalinidad tiene valores mayores a los del influente, alcanzando concentraciones por arriba de 4000 mg L<sup>-1</sup>; en los últimos días de operación la concentración de

alcalinidad es mayor de 6000 mg L<sup>-1</sup>, la alcalinidad se genera debido a la degradación de sustratos orgánicos (Malina y Pohland, 1992).

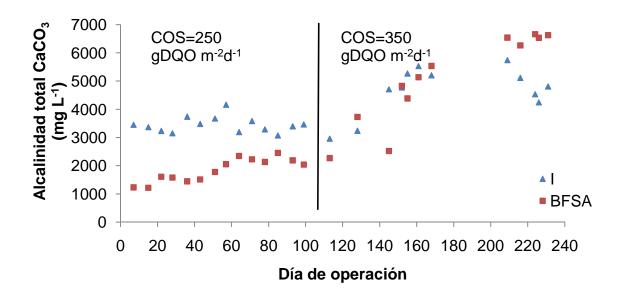



Figura 4. 5 Variación de la alcalinidad en el BFSA

#### 4.2.5 Remoción de sólidos suspendidos (SS)

Las aguas residuales porcícolas se caracterizan por tener altas concentraciones de SST, es por ello que antes de alimentar al BFSA el agua residual cruda tuvo un pretratamiento para disminuir la concentración. La concentración promedio de SST en el influente es de 1342 ± 525 mg L<sup>-1</sup>, se tiene una relación de SSV/SST de 0.80, lo cual representa la presencia de materia orgánica biodegradable, teniendo una concentración promedio de SSV de 1069 ± 454 mg L<sup>-1</sup>. En la figura 4.6 se observa que la concentración de SST disminuye en la salida con respecto a la entrada, teniendo concentraciones promedio en el efluente de 294 ± 164 mg L<sup>-1</sup>. Durante las dos etapas la remoción promedio fue de 75±16%.En el BFSA se presenta la remoción de SSF con un 58±37%, esta remoción se atribuye a una filtración física (Dubé *et al.* ,1995). De igual forma se presenta una remoción de SSV de 78±15%, teniendo una concentración promedio en el efluente de 209 ± 127 mg L<sup>-1</sup>.

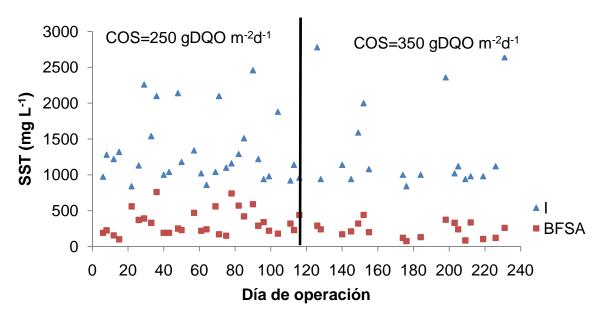



Figura 4. 6 Variación de SST en el BFSA

Durante la primera fase de experimentación, las concentraciones de SST en el efluente variaron entre 150 y 740 mg L<sup>-1</sup>, y los SSV entre 80 y 500 mg L<sup>-1</sup>, obteniendo remociones de 70±18 y 76±17%, respectivamente. La relación SSV/SST disminuye de 0.86 a 0.70, de lo que se deduce que hay reducción de materia orgánica biodegradable en el BFSA. Cuando se aplicó la COS de 350 g DQO m<sup>-2</sup>d<sup>-1</sup>, las concentraciones de SST en el efluente variaron de 75 a 440 mg L<sup>-1</sup>, obteniendo remociones de SST y SSV de 80±13%, manteniendo la relación SSV/SST de 0.72 para el influente y el efluente, esto indica que la parte fija de los sólidos se remueve dentro del biofiltro. De hecho se presenta una reducción de SSF de 71±34%, mientras que en la primera etapa se obtuvo una remoción de 46±37%.

Al aplicar la prueba no paramétrica Kruskal-Wallis (Anexo V) se concluye que no hay diferencia significativa en la remoción de SST al aplicar las dos cargas orgánicas (P>0.05). Respecto a la remoción de SSV no hay diferencia significativa entre las dos etapas experimentales (P>0.05) al aplicar la prueba no paramétrica Kruskal-Wallis.

## 4.2.6 Remoción de materia orgánica carbonosa

En el apartado 4.1 se muestran las características del agua residual porcícola, se observa que presenta altas concentraciones de materia orgánica medida como DQO y DBO. La relación promedio de DBO/DQO es de 0.48, lo cual indica que es biodegradable, porque para relaciones DBO/DQO superiores a 0.40, el agua se considera biodegradable (Doménech y Peral, 2006). La relación en el efluente del BFSA disminuye a valores menores de 0.40, lo cual indica que la materia biodegradable si fue removida.

### 4.2.6.1 Demanda química de oxígeno (DQO)

La materia orgánica medida como DQO tiene un valor promedio de 13074 ± 3325 mg L<sup>-1</sup>. Inicialmente se presentan mecanismos de adsorción sobre el MF y posteriormente hay formación de zonas aerobias, anóxicas y anaerobias, donde se desarrollan diferentes consorcios microbianos que degradan la materia orgánica. En la figura 4.7 se observa que hasta el día 71 la concentración en el efluente fue mayor a 3000 mg L<sup>-1</sup>, a este periodo se le consideró de estabilización para el reactor.

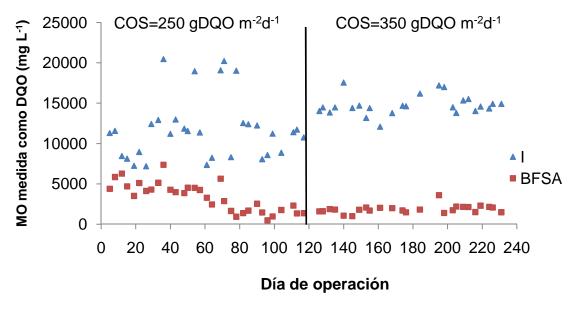



Figura 4. 7 Variación de MO medida como DQO en el BFSA

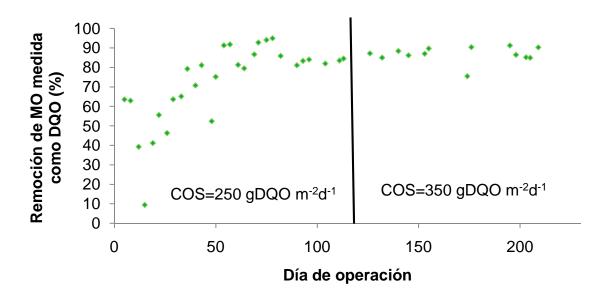



Figura 4. 8 Remoción de MO medida como DQO en el BFSA

Durante la primera etapa la concentración promedio de materia orgánica medida como DQO en el efluente fue de 1634 ± 601 mg L<sup>-1</sup>, obteniendo una remoción promedio de 86±6% como se observa en la figura 4.8. En la segunda etapa la concentración promedio de materia orgánica medida como DQO en el efluente fue de 1976 ± 571 mg L<sup>-1</sup>, obteniendo una remoción de 87±4%. Se observa en la figura 4.8 que no hay una disminución en la remoción de DQO al aplicar una mayor COS, ni al aumento de la concentración de conductividad en el influente en la segunda etapa (figura 4.4).

En el BFSA la remoción de DQO sigue un comportamiento cinético de primer orden. Teniendo valores de K de 2.48x10<sup>-2</sup> d<sup>-1</sup> y 2.51x10<sup>-2</sup> d<sup>-1</sup> para la etapa de estabilización y la primera etapa, respectivamente (tabla 4.2). Por lo tanto la constante de velocidad no varía. De los días 126 a 195 el comportamiento cinético fue de primer orden con una K de 7x10<sup>-3</sup>, esta disminución del valor de K se atribuye a que la remoción permanece constante con respecto al tiempo.

Κ Etapa **Ecuación** r 2.48x10<sup>-2</sup> d<sup>-1</sup> Estabilización 0.76  $= 2.48 \times 10^{-2} \text{ t} + 0.3306$ 2.51x10<sup>-2</sup> d<sup>-1</sup> Primera etapa 0.75  $= 2.51 \times 10^{-2} \text{ t} + 4.3937$ 7.00x10<sup>-3</sup> d<sup>-1</sup> Segunda etapa 0.85  $= 7.00 \times 10^{-3} \text{ t} + 1.0798$ 

Tabla 4.2 Valores cinéticos para la remoción de MO medida como DQO

De acuerdo a la prueba no paramétrica Kruskal-Wallis (Anexo V) no hay diferencia significativa en la remoción de materia orgánica en las dos etapas de experimentación (P>0.05). De acuerdo a lo anterior se concluye que al BFSA no le afectó el aumento de la COS de 250 a 350 g DQO m<sup>-2</sup> d<sup>-1</sup>.

El agua residual porcícola tiene una concentración promedio de materia orgánica medida como DQOd de  $5091 \pm 1539 \text{ mg L}^{-1}$ , en el efluente del BFSA se obtuvo una concentración promedio de  $1705 \pm 1199 \text{ mg L}^{-1}$  (figura 4.9), lo cual representó un 67% de remoción.

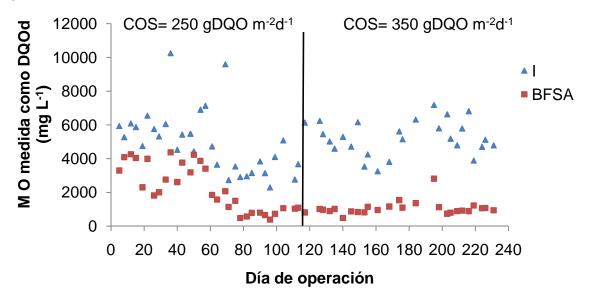



Figura 4. 9 Variación de la MO medida como DQOd

La remoción de DQOd durante la primera etapa fue de 78±9% y durante la segunda etapa de 76±16%.

### 4.2.6.2 Demanda bioquímica de oxígeno (DBO)

La COS durante la primera etapa fue de 118±22 gDBO m<sup>-2</sup>d<sup>-1</sup> y durante la segunda etapa de 186±13 gDBO m<sup>-2</sup>d<sup>-1</sup>. El influente tiene una concentración promedio de materia orgánica medida como DBO de 6352 ± 1449 mg L<sup>-1</sup>; en la salida del BFSA se tienen concentraciones promedio de 1135 ± 983 mg L<sup>-1</sup> (Figura 4.10). La remoción de la materia orgánica se presentó desde los primeros días de operación, sin embargo después del día 70 el biofiltro se considera estable, obteniendo concentraciones por debajo de 800 mg L<sup>-1</sup>.

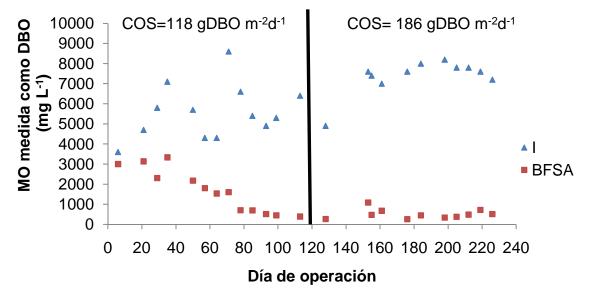



Figura 4. 10 Variación de MO medida como DBO

En la tabla 4.3 se muestra el comportamiento cinético de la remoción de DBO, se observa que sigue un comportamiento cinético de segundo orden. Para el periodo de estabilización la K es de 10x10<sup>-6</sup> L mg<sup>-1</sup>d<sup>-1</sup>, para la primera etapa es de 4x10<sup>-6</sup> L mg<sup>-1</sup>d<sup>-1</sup> y para la segunda etapa la remoción de la materia orgánica tiende a ser constante y tiene una K de 1x10<sup>-6</sup> L mg<sup>-1</sup>d<sup>-1</sup>.

En la figura 4.11 se muestra como es el comportamiento de la remoción de materia orgánica medida como DBO durante la experimentación. Durante la primera etapa la concentración promedio en el efluente fue de 548 ± 143 mg L<sup>-1</sup> representando una remoción promedio de 89±5%, mientras que en la segunda etapa la concentración promedio fue de 445±148 mg L<sup>-1</sup> obteniendo una remoción promedio de 94±2%.

Tabla 4.3 Valores cinéticos para la remoción de MO medida como DBO en el BFSA

| Etapa          | Ecuación                                               | K                                                      | r    |
|----------------|--------------------------------------------------------|--------------------------------------------------------|------|
| Estabilización | DBO= $-10 \times 10^{-6} \text{ t } +7 \times 10^{-4}$ | 10x10 <sup>-6</sup> L mg <sup>-1</sup> d <sup>-1</sup> | 0.84 |
| Primera etapa  | DBO= 4×10 <sup>-6</sup> t - 2×10 <sup>-4</sup>         | 4x10 <sup>-6</sup> L mg <sup>-1</sup> d <sup>-1</sup>  | 0.99 |
| Segunda etapa  | DBO= $-1 \times 10^{-6} \text{ t} + 3 \times 10^{-4}$  | 1x10 <sup>-6</sup> L mg <sup>-1</sup> d <sup>-1</sup>  | 0.77 |

La relación de DBO/DQO en el efluente del BFSA disminuye en las dos etapas con respecto al influente. En la primera etapa disminuye de 0.47 a 0.34 y en la segunda etapa de 0.49 a 0.22; indicando que el efluente presenta menor cantidad de materia biodegradable.

El análisis de varianza (Anexo V) muestra que no hay diferencia significativa con respecto a la remoción de MO medida como DBO al aplicar las dos cargas con un  $\alpha$ =0.05.

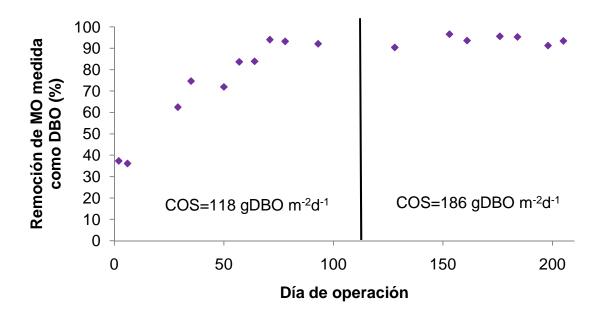



Figura 4. 11 Remoción de materia orgánica medida como DBO en el BFSA

### 4.2.7 Biotransformación del nitrógeno

### 4.2.7.1 Nitrógeno de ion amonio (N-NH<sub>4</sub>)

El influente del BFSA tiene una concentración promedio de N-NH, de 612 ± 152 mg L<sup>-1</sup>, en el efluente la concentración promedio es de 461 ± 199 mg L<sup>-1</sup>. En la figura 4.12 se observa que en los días en que el BFSA aun no se estabilizaba se obtuvieron concentraciones menores de 400 mg L<sup>-1</sup>. Durante la primera etapa se obtuvo una remoción de 24±17%, esta remoción se atribuye a la asimilación, es decir, al uso de las formas inorgánicas del nitrógeno para el crecimiento de microorganismos (Reddy et al., 1998), el amonio es la forma de nitrógeno más utilizada, esta forma reducida es utilizada para el metabolismo anabólico (Badillo, 2009). Además, la capacidad de adsorción y la capacidad de absorción del material filtrante son mecanismos que contribuyen con la remoción de N-NH, (Garzón-Zúñiga et al., 2005, Jun and Wenfeng, 2009). En la segunda etapa hay una remoción promedio de 7±22%, la cual es menor que la de la primera etapa. Se observa que en algunos de los últimos días de operación la concentración de este ión es más alta en el efluente que en el influente, esto se puede atribuir a que el nitrógeno de amonio se forma durante la transformación anaerobia de compuestos orgánicos nitrogenados tales como proteínas, aminoácidos y de la hidrólisis de la urea (Malina y Pohland, 1992; Flores, 2007). Esta transformación de N-org a N-NH, también pudo ocurrir durante la primera etapa, sin embargo no se observa el incremento de amonio en el efluente debido a que existen otros mecanismos de retención de éste ión en el BF tales como filtración, adsorción, absorción y asimilación (Garzón et al., 2005).

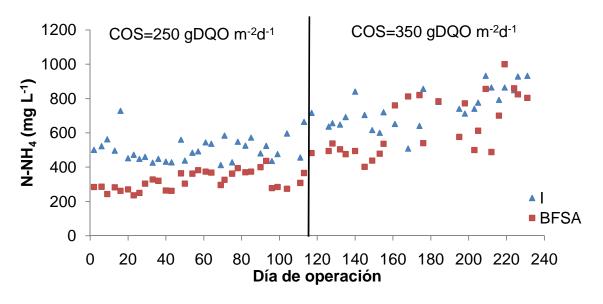



Figura 4. 12 Variación de N-NH<sup>+</sup> en el BFSA

De la etapa 1 a la etapa 2 hay un aumento en el influente con respecto a los valores de conductividad, alcalinidad y N-NH<sup>+</sup><sub>4</sub> (figuras 4.4, 4.5 y 4.12, respectivamente), de igual forma aumenta las concentraciones de estos parámetros en el efluente. De acuerdo al análisis no paramétrico Kruskal-Wallis (Anexo V) se concluye que hay diferencia significativa en la remoción de este compuesto con respecto a las cargas aplicadas, sin embargo la remoción no se atribuye directamente al cambio de la COS sino a los diferentes mecanismos en los que está involucrado el nitrógeno.

# 4.2.7.2 Nitrógeno de ion nitrito (N-NO<sub>2</sub>)

La concentración promedio de N-NO $_2^-$  en el influente es  $0.10 \pm 0.4$  mg L $^{-1}$ ; en el efluente del BFSA aumento la concentración de N-NO $_2^-$  con respecto a la entrada (figura 4.13), teniendo una concentración promedio de 18  $\pm$  16 mg L $^{-1}$ ; esta concentración de nitritos puede ser debido a que se hayan formado pequeñas zonas aerobias en la parte superior del biofiltro, es decir, que por la aeración pasiva que existe en el biofiltro, se lleve a cabo la oxidación de N-NH $_4^+$  a N-NO $_2^-$  tal y como lo indica Dubé *et al.* (1995).

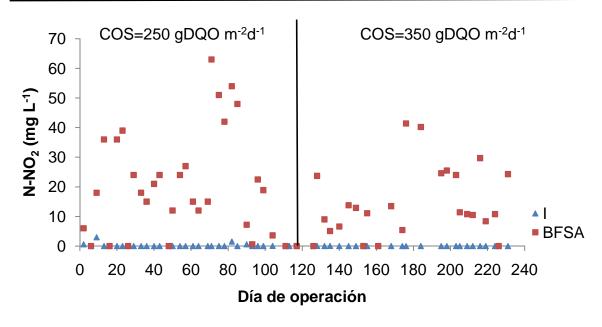



Figura 4. 13 Variación de N-NO<sub>2</sub> en el BFSA

## 4.2.7.3 Nitrógeno de ion nitrato (N-NO<sub>3</sub>)

La concentración promedio de N-NO<sub>3</sub> en el influente es de 0.06 ± 0.10 mg L<sup>1</sup>, en la figura 4.14 se observa que la concentración de nitratos aumenta en la salida del BFSA, con una concentración promedio de 20 ± 15 mg L<sup>-1</sup>. Dentro del BFSA no se pudo llevar a cabo la nitrificación, debido a que cuando se quiere conseguir la nitrificación se utilizan concentraciones de OD mayores de 2 mg L<sup>-1</sup> (Ramalho et al., 1996), otros autores como Ujan et al. (2002) mencionan que para la nitrificación es necesario una concentración de OD mayor de 1 mg L-1. En el Anexo IV se muestra la concentración promedio de OD en el influente y efluente del BFSA la cual es de 0.21 y 0.41 mg L<sup>-1</sup>, respectivamente, la cual no fue la suficiente para realizar la nitrificación. Al respecto, Winkler (2008) menciona que existen reportes sobre la inhibición de la nitrificación a niveles entre 0.2 y 0.5 mg L de OD. No se ha reportado que en procesos anaerobios se obtenga transformación a nitratos, por este motivo se realizaron cambios en la técnica de análisis para disminuir interferencias; sin embargo, los resultados fueron parecidos a los que se habían obtenido.

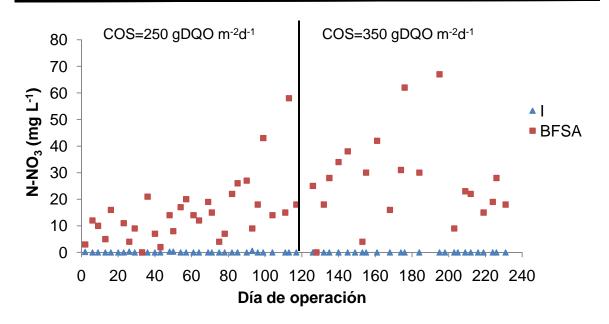



Figura 4. 14 Variación de N-NO<sub>3</sub> en el BFSA

Se observa en la figura 4.13 y 4.14 que existe mucha variación en el efluente con respecto a la concentración de N-NO<sub>2</sub> y N-NO<sub>3</sub>. No tienen un comportamiento uniforme, es decir, la concentración de N-NO<sub>2</sub> varía inversamente con la concentración de N-NO<sub>3</sub>; en la figura 4.15 se observa que en los días 13, 23, 71, 78 y 82 el N-NO<sub>2</sub> presenta las concentraciones más altas durante el experimento, mientras que el N-NO<sub>3</sub> presenta concentraciones menores de 15 mg L<sup>-1</sup>. Garzón-Zúñiga *et al.* (2007) menciona que este comportamiento se debe a la limitación de oxígeno para la nitrificación, cabe mencionar que este comportamiento lo observaron en un biofiltro aireado donde las concentraciones de N-NO<sub>2</sub> y N-NO<sub>3</sub> fueron valores más altos de los que se presentan en esta gráfica.

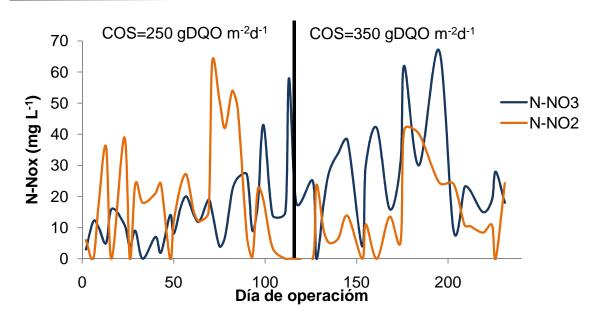



Figura 4. 15 Variación de N-NO<sub>2</sub> y N-NO<sub>3</sub> en BFSA

# 4.2.8 Remoción de fósforo de ortofosfatos (P-PO-3)

Los compuestos de fósforo son componentes característicos de los organismos vivientes y son liberados por la descomposición de células, de manera que los residuos de los humanos y animales y las aguas residuales procedentes de industrias que procesan materiales biológicos, como la industria alimentaria, constituyen las fuentes principales de los compuestos de fósforo.

La concentración promedio de P-PO $_4^{-3}$  en el agua residual es de 100  $\pm$  38 mg L<sup>-1</sup>, en la figura 4.16 se observa que la concentración de P-PO $_4^{-3}$  en la salida del biofiltro tuvo una ligera disminución con respecto a la concentración de entrada. La concentración promedio de P-PO $_4^{-3}$  en la salida del BFSA es de 46  $\pm$  27 mg L<sup>-1</sup>. Durante la primera etapa se obtuvo una remoción de 45 $\pm$ 29%, mientras que en la segunda etapa fue de 49 $\pm$ 24%. Dubé *et al.* (1995), indica que la eliminación de fósforo en los biofiltros se da especialmente por filtración física. Parte de esta remoción, tiene relación con la utilización del fósforo por parte de los microorganismos para el proceso de síntesis (Correa y Sierra, 2004; Badillo, 2009).

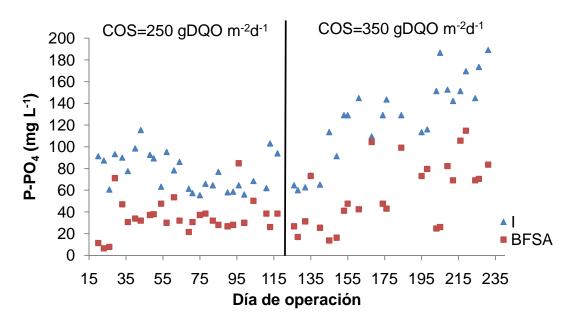



Figura 4. 16 Variación de P-PO<sub>4</sub><sup>-3</sup> en el BFSA

### 4.2.9 Remoción de coliformes totales y fecales (CT y CF)

Las determinaciones de CT y CF se realizaron al inicio y al final de cada etapa, las concentraciones de CT y CF en el influente fueron de 4.9x10<sup>6</sup> y 5x10<sup>5</sup>, respectivamente. En la primera etapa se obtuvieron concentraciones en el efluente del BFSA de CT y CF de 5.0x10<sup>4</sup> y 3.9x10<sup>4</sup> NMP 100 mL<sup>-1</sup>, respectivamente, lo cual indica que hubo una remoción en el biofiltro de dos unidades. Sin embargo en la segunda etapa la concentración de CT fue de 1.5x10<sup>6</sup> y de CF de 9.3x10<sup>5</sup>, lo cual indica que solo hubo una disminución de una unidad logarítmica de CF. En otros sistemas de tratamiento (Williams *et al.*, 2007 y Moreno *et al.*, 2005) se ha concluido que la remoción de coliformes disminuye al incrementar las cargas hidráulicas. La reducción de coliformes fecales en el BFSA se puede atribuir a la sorción y a la depredación de microorganismos por macro-organismos (Linping Kuai *et al.*, 1998)

# 4.3 Desempeño de los biofiltros aireados (BFA)

Estos biofiltros empezaron a operar el 16 de julio del 2009, los cuáles fueron alimentados con el efluente del BFSA. El TRH para los BFA tiene variaciones que se deben a que cada biofiltro tiene un volumen de espacios vacíos diferente,

variable la cual afecta directamente al volumen real de agua en tratamiento. El TRH para BFA1, BFA2 y BFA3 fueron 0.59, 0.55 y 0.65 d, respectivamente. En el Anexo IV se muestran los valores de los diferentes contaminantes en los efluentes de los BFA.

Los BFA trabajan con las siguientes tasas de aireación:

- $\rightarrow$  BFA1= 3.4 m<sup>3</sup>aire m<sup>-2</sup>h<sup>-1</sup>= 402 mL min<sup>-1</sup>
- $\rightarrow$  BFA2= 4.4 m<sup>3</sup>aire m<sup>-2</sup>h<sup>-1</sup>= 521 mL min<sup>-1</sup>
- $\rightarrow$  BFA3= 9.4 m<sup>3</sup>aire m<sup>-2</sup>h<sup>-1</sup>= 1112 mL min<sup>-1</sup>

#### 4.3.1 pH y temperatura

El comportamiento del pH en los BFA se muestra en la figura 4.17, donde se observa que en los primeros días el pH del efluente de los BFA se encuentra entre valores de 8.5 y 9.5. A partir del día 82 el pH en el BFA1 disminuye a valores por debajo de 8.5, los biofiltros BFA2 y BFA3 disminuyen su pH en los días 86 y 88, respectivamente. Los valores de pH que se encuentran entre 7.5 a 8.0 son óptimos para llevar a cabo la nitrificación (Metcalf y Eddy, 2003); se observa que después del día 80 el pH de la salida disminuye con respecto al de la entrada, lo que hace suponer que en los BFA se ha establecido la nitrificación.

La temperatura es una variable importante en los sistemas biológicos. Para que se lleve a cabo la nitrificación, la temperatura óptima es de 30-36  $^{\circ}$ C (Morales 2006), pero hay un posible crecimiento de bacterias nitrificantes entre 4 y 50  $^{\circ}$ C (Reddy *et al.*, 1998) y de 10 a 30 $^{\circ}$ C para que se lleve a cabo la desnitrificación (Morales 2006). Las temperaturas en los biofiltros estuvieron entre 17.6 y 27.2  $^{\circ}$ C tal y como se muestra en la figura 4.18, por lo tanto, la temperatura que se present en los biofiltros es adecuada para que se lleve a cabo la nitrificación-desnitrificación.

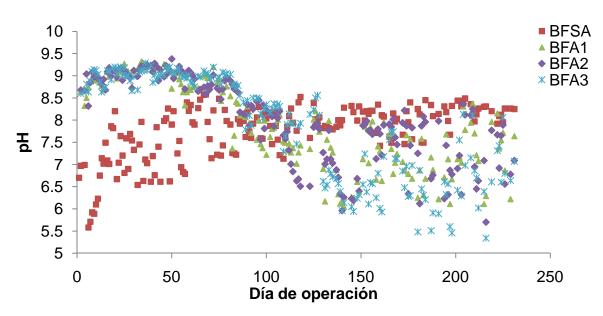



Figura 4. 17 Variación de pH en BFSA, BFA1, BFA2 y BFA3

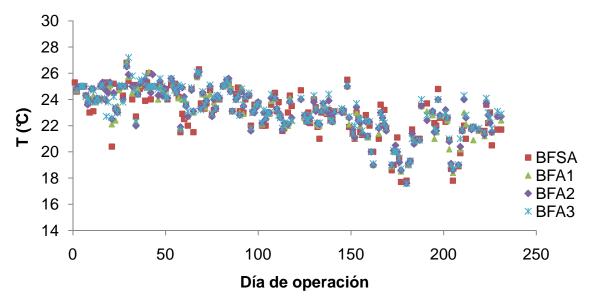



Figura 4. 18 Variación de temperatura en BFSA, BFA1, BFA2 y BFA3

#### 4.3.2 Conductividad

En la figura 4.19 se muestra el comportamiento de la conductividad en influente y efluente de los BFA, en el día 7 de operación se presenta una disminución en los valores de este parámetro en la salida de los biofiltros con respecto a la entrada, teniendo valores de 922, 987 Y 993 µS cm<sup>-1</sup> para BFA1, BFA2 y BFA3, respectivamente. Sin embargo, la conductividad no se mantiene y

los valores aumentan alcanzando valores cercanos a los 5000 µS cm<sup>-1</sup> al final de la primera etapa experimental. En la segunda etapa se observa que los valores de conductividad en el influente aumentan y en consecuencia la de los efluentes también incrementa. De lo que se deduce que durante los primeros días de operación el material filtrante retuvo las sales que vienen en el agua residual, por ende, la conductividad del agua en los efluentes disminuyó. La remoción de conductividad en BFA1, BFA2 y BFA3 fue de 36±9, 31±9 y 30±11%, respectivamente.

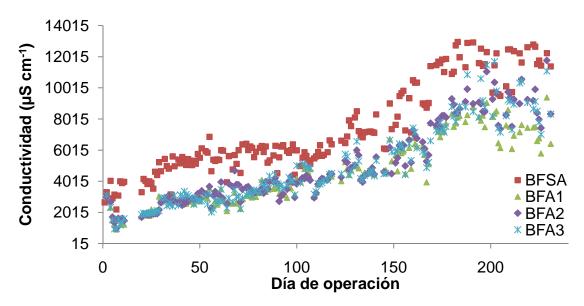



Figura 4. 19 Variación de la conductividad en BFSA, BFA1, BFA2 y BFA3

#### 4.3.3 Alcalinidad

Durante el proceso de nitrificación la alcalinidad se consume desplazando la ecuación NH<sub>3</sub>←→N-NH<sub>4</sub><sup>+</sup> hacia la formación de N-NH<sub>4</sub><sup>+</sup>. Por cada gramo de N-NH<sub>4</sub><sup>+</sup> convertido, 7.14 g de alcalinidad como CaCO<sub>3</sub> son removidos. En la figura 4.20 se observa el comportamiento de la alcalinidad a la salida del BFSA y de los BFA. La alcalinidad en los BFA se consume, de lo que se deduce que existe una actividad nitrificante. La eliminación de alcalinidad durante la primera etapa fue de 75±18 en el BFA1, 80±12 en el BFA2y 76±15 en el BFA3. Al final de la segunda etapa la alcalinidad tuvo concentraciones menores de 400 mg CaCO<sub>3</sub> L<sup>-1</sup>, teniendo una reducción en el BFA1 de 93±3%, en el BFA2 de 92±8% y en el BFA3 de 97±3%.

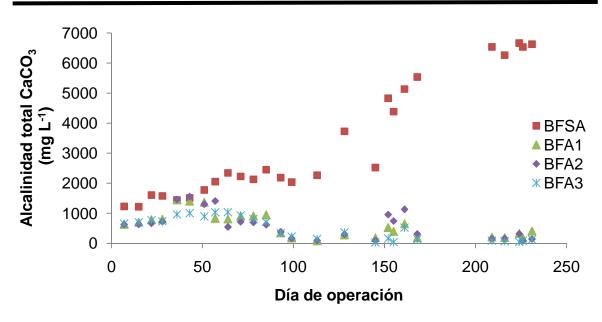



Figura 4. 20 Variación de alcalinidad en BFSA, BFA1, BFA2 y BFA3

En la figura 4.21 se muestra la alcalinidad en el influente de los biofiltros y la alcalinidad teórica usada en la nitrificación, la cual se realiza mediante la siguiente fórmula (Flores, 2007):

Alcalinidad usada para la nitrificación=  $(7.14 \text{ g CaCO}_3) (\text{g N-NH}_4^{\dagger})^{-1} \text{ x (cantidad de N-NH}_4^{\dagger} \text{ convertida a N-NO}_3^{-} \text{ y N-NO}_2^{-}).$ 

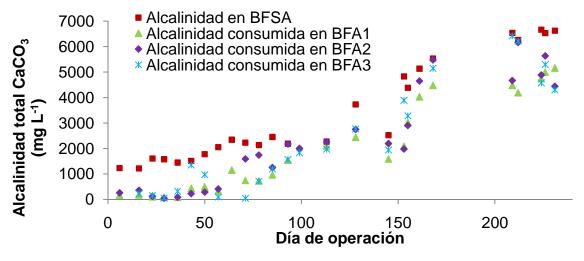



Figura 4. 21 Alcalinidad consumida durante la nitrificación

### 4.3.4 Remoción de sólidos suspendidos (SS)

La concentración promedio de SST a la entrada de los BFA fue de 294±164 mg L<sup>-1</sup>, con esta baja concentración de sólidos no hubo problemas de colmatación

durante el experimento. Cuando los biofiltros se estabilizaron se obtuvo una reducción de SST de 58±25, 59±24 y 66±20% en BFA1, BFA2 y BFA3, respectivamente, respecto a SSV la reducción en BFA1, BFA2 y BFA3 fue de 62±29, 62±26 y 71±19%, respectivamente. En la figura 4.22 se observa que en el efluente de los BFA se tienen concentraciones de 15 mg L<sup>-1</sup>, siendo el BFA3 quien presenta las mejores remociones de SST y SSV. Esto se comprueba con la relación de SSV/SST, la cual disminuye de 0.71 en el influente a 0.67, 0.66 y 0.60 en los efluentes de BFA1, BFA2 y BFA3, respectivamente, teniendo la menor relación en el BFA3.

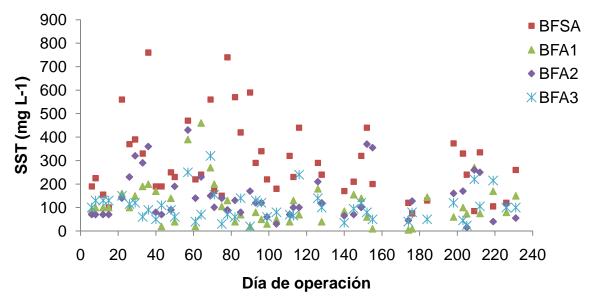



Figura 4. 22 Variación de SST en BFSA, BFA1, BFA2 y BFA3

De acuerdo al análisis estadístico, no hay diferencia significativa en la remoción de SST al aplicar las diferentes tasas de aireación (P>0.05).

# 4.3.5 Remoción de materia orgánica carbonosa

## 4.3.5.1 Demanda química de oxígeno (DQO)

Las COS de los BFA durante la estabilización, la primera y segunda etapa fueron de 300, 87 y 120 gDQO m $^{-2}$ d $^{-1}$ . Las tasas de aireación aplicadas si afectaron en la remoción de la materia orgánica medida como DQO, se obtuvieron concentraciones promedio en el efluente de 937 ± 455, 927 ± 438 y 730 ± 331 mg L $^{-1}$  para BFA1, BFA2 y BFA3, respectivamente. En la figura 4.23 se observa que la

remoción de la materia orgánica comienza desde los primeros días de operación estabilizándose en el día 70; la concentración disminuye a valores por debajo de 1000 mg  $L^{-1}$  a partir del día 78, 69 y 48 en los biofiltros BFA1, BFA2 y BFA3, respectivamente. En la segunda etapa la concentración en el efluente aumentó, presentando valores por arriba de 1000 mg  $L^{-1}$ . En el experimento se presentó una mayor remoción de materia orgánica en el biofiltro con mayor tasa de aireación (BFA3), obteniendo una remoción promedio de  $62\pm16\%$ , mientras que los biofiltros BFA1 y BFA2 tuvieron una remoción promedio de  $51\pm17\%$  y  $51\pm15\%$ , respectivamente. Esto se confirma con el análisis estadístico, donde hay diferencia significativa entre los biofiltros BFA1 y BFA3, y entre BFA2 y BFA3 con un  $\alpha$ =0.05

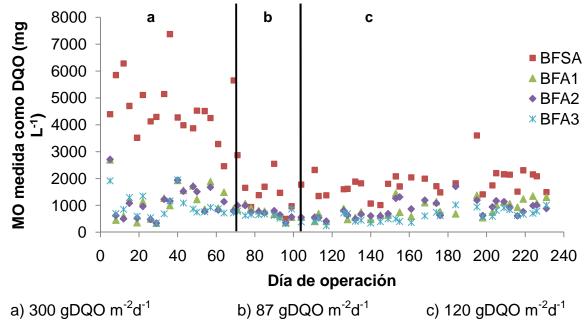



Figura 4. 23 Variación de MO medida como DQO en BFSA, BFA1, BFA2 y BFA3

Con respecto a la demanda química de oxígeno disuelta (DQO<sub>d</sub>), la remoción fue de  $36\pm26$ ,  $46\pm21$  y  $52\pm15\%$ , obteniendo valores por debajo de 800 mg L<sup>-1</sup> a partir del día 78 en el BFA1 y BFA2 y 48 en el BFA3. En la figura 4.25 se observa la variación en la concentración de la DQO<sub>d</sub>, y el comportamiento es similar en los tres biofiltros; no obstante en el BFA1 hay un incremento de DQO<sub>d</sub> a partir del día 209, donde se observa que hay concentraciones por arriba de 750 mg L<sup>-1</sup>.

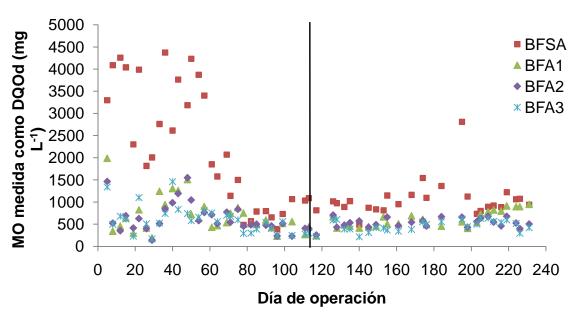
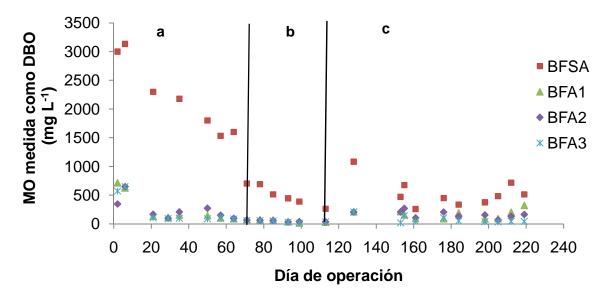



Figura 4. 24 Variación de MO medida como DQO<sub>d</sub> en BFSA, BFA1, BFA2 y BFA3


### 4.3.5.2 Demanda bioquímica de oxígeno (DBO)

Las COS de los BFA durante la estabilización, la primera y segunda etapa fueron de 160, 47 y 33 gDBO m<sup>-2</sup>d<sup>-1</sup>. La concentración promedio de DBO en el influente de los BFA fue de 1135 ± 983 mg L<sup>-1</sup>. Durante la primera etapa las remociones en BFA1, BFA2 y BFA3 fueron de 91±4, 91±2 y 93±3%. En la figura 4.25 se observa que la concentración de la materia orgánica medida como DBO disminuye con respecto al tiempo, a partir del día 70 los biofiltros se estabilizan presentando concentraciones menores de 100 mg L<sup>-1</sup>. En la segunda etapa de experimentación hubo un incremento en las concentraciones de los efluentes de los biofiltros con respecto a las concentraciones de la primera etapa, disminuyendo la remoción promedio a 69±17, 68±13 y 87±7% en BFA1 y BFA2, y BFA3, respectivamente.

El comportamiento de la DBO en los BFA sigue una cinética de primer orden para las dos etapas experimentales, los datos obtenidos se muestran en la tabla (4.4):

Tabla 4.4 Valores cinéticos para la remoción de MO medida como DBO en el BFA1, BFA2 y BFA3

| Biofiltro | Ecuación                                                       | K                                     | r    |
|-----------|----------------------------------------------------------------|---------------------------------------|------|
| BFA1      | $\ln\left(\frac{DBO_0}{DBO}\right) = -1.36x10^{-2} t + 3.5478$ | 1.36x10 <sup>-2</sup> d <sup>-1</sup> | 0.86 |
| BFA2      | $\ln\left(\frac{DBO_0}{DBO}\right) = -1.65x10^{-2} + 3.886$    | 1.65x10 <sup>-2</sup> d <sup>-1</sup> | 0.93 |
| BFA3      | $\ln\left(\frac{DBO_0}{DBO}\right) = -0.9x10^{-2} t + 3.2367$  | 0.9x10 <sup>-2</sup> d <sup>-1</sup>  | 0.89 |



a) 160 gDBO  $m^{-2}d^{-1}$ 

b) 47 gDBO m<sup>-2</sup>d<sup>-1</sup>

c) 33 gDBO m<sup>-2</sup>d<sup>-1</sup>

Figura 4. 25 Variación de MO medida como DBO en BFSA, BFA1, BFA2 y BFA3

La relación promedio en el influente de los BFA DBO/DQO es de 0.25, y en efluente de BFA1 la relación promedio disminuye a 0.14, cabe mencionar que en la etapa 1 la relación es de 0.09 y en la etapa 2 es de 0.17, lo cual indica que disminuye la degradación de materia orgánica en la etapa 2, el mismo comportamiento se presenta en BFA2 y en BFA3. La disminución en la remoción de materia orgánica posiblemente se debe al aumento de la conductividad durante la segunda etapa (figura 4.19).

En el análisis estadístico, hay diferencia significativa entre los biofiltros BFA1 y BFA3 y entre BFA2 y BFA3 en la remoción de MO medida como DBO (P<0.05).

### 4.3.6 Biotransformación del nitrógeno

# 4.3.6.1 Nitrógeno de ion amonio (N-NH<sub>4</sub>)

La remoción de N-NH<sub>4</sub><sup>+</sup> en los BFA se le atribuye a los procesos de sorción, asimilación, volatilización y nitrificación. La nitrificación es efectuada por bacterias autótrofas o también pueden ser heterótrofas, pero con un metabolismo aerobio estricto. El comportamiento de amonio se presenta en la figura 4.26, se observa que durante la primera etapa la concentración de este ión en el influente es de 358 ± 63 mg L<sup>-1</sup>, representando una carga de amonio promedio de 23 g N-NH<sub>4</sub><sup>+</sup> m<sup>-2</sup>MF d<sup>-1</sup>, cabe mencionar que el efluente del BFA3 alcanzó valores mínimos de 2 mg L<sup>-1</sup>. Las remociones en los biofiltros BFA1 y BFA2 fueron de 96±3% y para BFA3 de 98±2%. Durante la segunda etapa la concentración de amonio aumentó en el influente a concentraciones promedio de 643 ± 170 mg L<sup>-1</sup>, con una carga de amonio promedio de 42 g N-NH<sub>4</sub><sup>+</sup> m<sup>-2</sup>MF d<sup>-1</sup>, este incremento en la carga disminuyó la remoción promedio de los biofiltros a 78±11, 75±12 y 80±10% en BFA1, BFA2 y BFA3, respectivamente.

Los resultados obtenidos no provienen de una distribución normal, por lo tanto la prueba estadística que se utilizó es Kruskal Wallis, donde indica que no hay diferencia significativa al aplicar las diferentes tasas de aireación en la remoción de amonio.

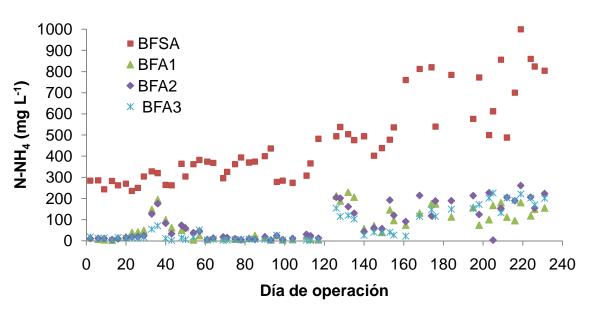



Figura 4. 26 Variación de N-NH<sub>4</sub><sup>+</sup> en BFSA, BFA1, BFA2 y BFA3

# 4.3.6.2 Nitrógeno de ion nitrito (N-NO<sub>2</sub>)

En la figura 4.27 se muestra la variación de la concentración de N-NO $_2^-$  en BFA1, BFA2 y BFA3. Se observa que en el BFA1 hubo un aumento en la concentración de N-NO $_2^-$  a partir del día 40, alcanzando valores de 90 mg L $_2^-$ 1, esta concentración bajó a valores menores de 20 mg L $_2^-$ 1 en el día 90, es decir, la presencia de N-NO $_2^-$  en el efluente es muy irregular, el mismo comportamiento se da en los otros biofiltros.

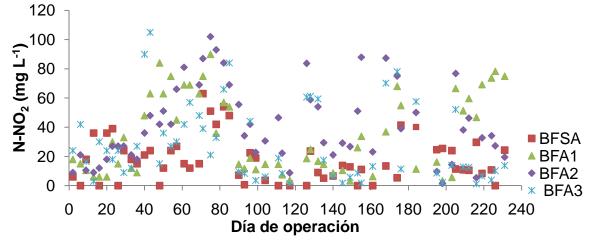



Figura 4. 27 Variación de N-NO<sub>2</sub> en BFSA, BFA1, BFA2 y BFA3

### 4.3.6.3 Nitrógeno de ion nitrato (N-NO;)

El N-NO<sub>3</sub> es detectado desde los primeros días de operación, sin embargo, hay un notorio aumento en su concentración en el BFA3 a partir del día 40, mientras que en el BFA1 en el día 48 y en el BFA2 en el día 61. Garzón-Zúñiga *et al.* (2001) menciona que cuando la nitrificación aparece en el proceso, la volatilización de NH<sub>3</sub> se detiene, es decir, el principal mecanismo de remoción de amonio es la nitrificación.

Se observó que la concentración de éstos tiene variaciones, pero teniendo un comportamiento ascendente (figura 4.28). Alcanzando concentraciones de 1000 mg L<sup>-1</sup> en el BFA3, mientras que en BFA1 y BFA2 las concentraciones máximas son de 730 y 870 mg L<sup>-1</sup>, respectivamente, se deduce que el nitrógeno en los efluentes de los BFA se encuentra en su forma más oxidada.

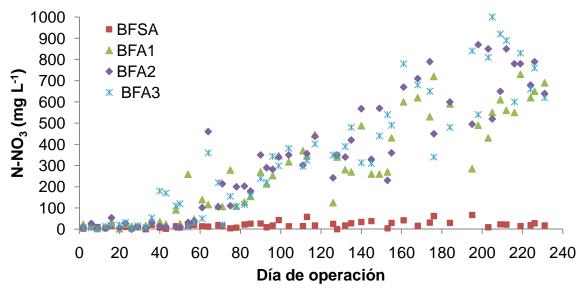



Figura 4. 28 Variación de N-NO<sub>3</sub> en BFSA, BFA1, BFA2 y BFA3

La producción de nitratos en los biofiltros aireados sigue un comportamiento cinético de orden cero (tabla 4.5).

Tabla 4.5 Valores cinéticos para la producción de N-NO<sub>3</sub> en el BFA1, BFA2 y BFA3

| Biofiltro | Etapa   | Ecuación                               | K                                         | r    |
|-----------|---------|----------------------------------------|-------------------------------------------|------|
| BFA1      | Primera | $NO_3^-(NO_3^-)_0 = -5.8122t + 307.39$ | 5.8122 mg L <sup>-1</sup> d <sup>-1</sup> | 0.83 |
|           | Segunda | $NO_3^-(NO_3^-)_0 = -3.7781t + 214.06$ | 3.7781 mg L <sup>-1</sup> d <sup>-1</sup> | 0.72 |
| BFA2      | Primera | $NO_3^- (NO_3^-)_0 = -4.7634 + 187.99$ | 4.7634 mg L <sup>-1</sup> d <sup>-1</sup> | 0.83 |
|           | Segunda | $NO_3^-(NO_3^-)_0 = -4.3415t + 230.22$ | 4.3415 mg L <sup>-1</sup> d <sup>-1</sup> | 0.73 |
| BFA3      | Primera | $NO_3^-(NO_3^-)_0 = -6.7032t +411.51$  | 6.7032 mg L <sup>-1</sup> d <sup>-1</sup> | 0.88 |
|           | Segunda | $NO_3^-(NO_3^-)_0 = -4.3665t + 200.28$ | 4.3665 mg L <sup>-1</sup> d <sup>-1</sup> | 0.73 |

En las siguientes figuras (4.29, 4.30 y 4.31) se presenta el comportamiento de N-NH<sub>4</sub><sup>+</sup>, N-NO<sub>2</sub><sup>-</sup> y de N-NO<sub>3</sub><sup>-</sup> en cada uno de los biofiltros, se observa como la concentración del amonio disminuye mientras que la concentración de nitratos aumenta, estableciéndose en los biofiltros una nitrificación, es decir, en todos los biofiltros la aireación fue suficiente para que se estableciera la nitrificación, Garzón-Zúñiga *et al.* (2007) mencionan que con una aireación de 3.4 m³ aire m⁻² d⁻¹ hay una limitante de oxígeno para la nitrificación, sin embargo, este comportamiento no se presentó en BFA1 (Figura 4.29) debido a que el agua residual proviene de un BFSA, por lo tanto, entra con menor concentración de materia orgánica, es decir, la COS aplicada por Garzón-Zúñiga *et al.* (2007) es de 277 a 526 gDQO m⁻²d⁻¹ y la aplicada en el BFA1 es de 120 a 300 gDQO m⁻²d⁻¹.

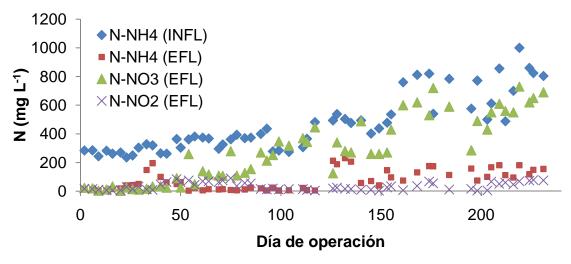



Figura 4. 29 Biotransformación de N en BFA1

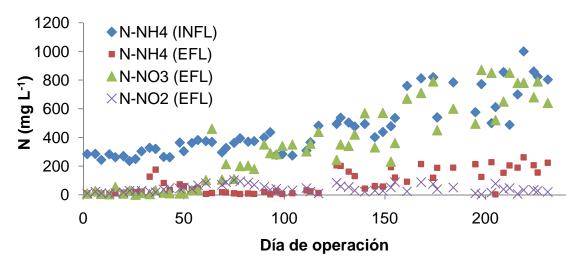



Figura 4. 30 Biotransformación de N en BFA2

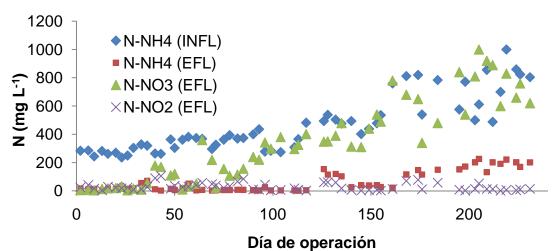



Figura 4. 31 Biotransformación de N en BFA3

En la figura 4.30 se presenta el comportamiento del N en el BFA2 se observa que de los días 36 a 57 es más alta la concentración de nitritos que de nitratos, sin embargo, este comportamiento no se vuelve a presentar durante el experimento, indicando que la forma que predomina en el efluente es el nitrato. Durante la segunda etapa de experimentación se observa una similitud entre la concentración de N-NH<sub>4</sub><sup>+</sup> y la concentración de N-NO<sub>3</sub>.

El comportamiento de las formas de N en el BFA3 se muestran en la figura 4.31, se observa que en este biofiltro se alcanzaron concentraciones más altas <sup>de</sup> N-NO<sub>3</sub>.

Durante el experimento se esperaban valores bajos de amonio y nitratos, debido a que se podía presentar el proceso simultáneo de nitrificación-desnitrificación y poder hacer una remoción del nitrógeno, sin embargo, se observa en la figura 4.26 y 4.28 que existe bajas concentraciones de amonio y altas concentraciones de nitratos, lo que indica que solo se presentó el proceso de nitrificación. Los nitratos producidos por las bacterias nitrificantes en las capas aerobias más superficiales de la biopelícula pueden penetrar hacia las capas más profundas por un gradiente de concentración o bien difundirse hacia la capa de agua en tratamiento (Garzón-Zúñiga y González 1996). La desnitrificación no se llevó a cabo, de esta afirmación se propone la hipótesis de que la biopelícula no fue lo suficientemente densa para que se formaran zonas anóxicas.

Otro de los factores que pudieron afectar en la desnitrificación es la concentración de OD en los biofiltros, las cuales fueron de 2.05, 2.10 y 2.40 en los efluentes de BFA1, BFA2 y BFA3, respectivamente. No obstante, Castrejon (2005) obtuvo remociones de NT del 40% con concentraciones de oxígeno mayores de 2 mgL<sup>-1</sup> pero esta remoción se atribuye principalmente a la formación de una biopelícula densa que permitió la existencia de zonas anóxicas en el medio de soporte.

Las bacterias desnitrificantes son microorganismos heterótrofos que requieren una fuente de carbono orgánico para la síntesis de nuevas células, es por ello, que la relación C/N es un parámetro que influye en la desnitrificación. La

relación de DBO/N-NH $_4^+$  y DQO/N-NH $_4^+$  en el influente de los BFA fue en 1 y 3, respectivamente. En otros estudios en los que han utilizado biofiltros, se han reportado remociones de nitrógeno de 75±8% para relaciones de DBO/NTK de 3 y 84±3% para relaciones DBO/NTK de 8.2 (Gilbert *et al.*, 2008). Ying-Chih *et al.* (2007) muestran que en un reactor discontinuo secuencial con relaciones de DQO/N-NH $_4^+$  de 6.3, 11.1 y 19.7 obtienen una eficiencia de nitrificación-desnitrificación simultánea de 1.02, 98.7 y 97.1%, respectivamente. Estos resultados demuestran que a concentraciones bajas de carbono el proceso de nitrificación y desnitrificación simultánea no es eficiente.

Para el balance en los BFA se considerará que el nitrógeno orgánico fue retenido en el MF o que pasó a formar parte del material celular, por lo tanto, se tomarán el nitrógeno de amonio y los productos que resultan de los procesos de nitrificación, mediante la siguiente fórmula (Reddy, 1998):

$$(N-NH_4^+)_{INFL} = (N-NH_4^++N-NO_3^-+N-NO_2^-)_{EFL}$$

BFA1

461 mg L<sup>-1</sup>=(76.5 mg L<sup>-1</sup>+281 mg L<sup>-1</sup>+35 mg L<sup>-1</sup>)<sub>EFL</sub>  
461 mg L<sup>-1</sup>=392.5 mg L<sup>-1</sup>+ 
$$\propto$$

BFA2

461 mg L<sup>-1</sup>=(84 mg L<sup>-1</sup>+329.5 mg L<sup>-1</sup>+43 mg L<sup>-1</sup>)<sub>EFL</sub>  
461 mg L<sup>-1</sup>=456.5 mg L<sup>-1</sup>+
$$\propto$$

BFA3

461 mg L<sup>-1</sup>=(64 mg L<sup>-1</sup>+337 mg L<sup>-1</sup>+28 mg L<sup>-1</sup>)<sub>EFL</sub>  
461 mg L<sup>-1</sup>=429 mg L<sup>-1</sup>+ 
$$\propto$$

Donde α es la concentración restante de amonio que no fue medida, que implica la concentración de nitrógeno removido por medio de los otros mecanismos, como sorción, asimilación y volatilización. Al respecto, Garzón *et al.* 

(2005) mencionan que la capacidad de adsorción y absorción está relacionada con la cantidad de MF usado y con el promedio de humedad del MF.

Estos resultados solo son de los valores promedio, es decir, el resultado de toda la experimentación.

# 4.3.7 Remoción de fósforo de ortofosfatos (P-PO<sub>4</sub><sup>-3</sup>)

Reportes anteriores muestran que tratando agua residual porcícola por medio de biofiltración se obtiene una remoción de 80% de fósforo, obteniendo concentraciones menores a 50 mg L<sup>-1</sup> (Buelna *et al.*, 2008). La figura 4.32 muestra que durante la primera etapa las concentraciones promedio en BFA1 y BFA2 son de 6±4 mg L<sup>-1</sup> y en el BFA3 de 4±3 mg L<sup>-1</sup>. En la segunda etapa las concentraciones promedio fueron de 34±18, 32±17 y 31±19. Se obtuvo una reducción promedio de 41±65, 48±47 y 49±65% en BFA1, BFA2 y BFA3, respectivamente, teniendo concentraciones promedio en el efluente de 24±20, 23±19 y 22±20 mg L<sup>-1</sup>.

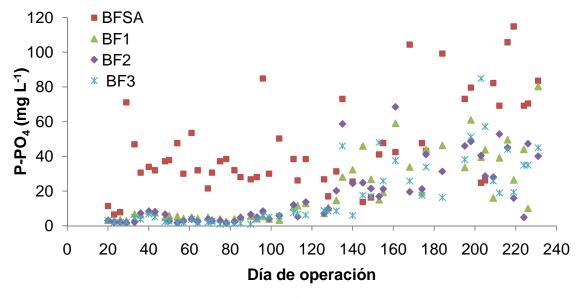



Figura 4. 32 Variación deP-PO<sub>4</sub> en BFSA, BFA1, BFA2 Y BFA3

Una pequeña parte de la remoción de fósforo se da por medio de la incorporación de este nutriente en los microorganismos, también se debe a la retención física y a una posible precipitación hacia el MF por la presencia de carbonatos o bicarbonatos.

## 4.3.8 Remoción de coliformes totales y fecales (CT y CF)

La concentración de CT y CF en el influente de los BFA en la primera etapa, fue de 5.0x10<sup>4</sup> y 3.9x10<sup>4</sup> NMP 100 mL<sup>-1</sup>, respectivamente. La concentración de CT en BFA1, BFA2 y BFA3 es de 2.2x10<sup>3</sup>, 2.7x10<sup>3</sup> y 3.3x10<sup>3</sup>, respectivamente, respecto a las CF la concentración es de 2.2x10<sup>3</sup>, 2.5x10<sup>3</sup> y 1.7x10<sup>3</sup>, respectivamente, de lo que se deduce que hay una reducción de una unidad logarítmica de CT y CF en los BFA, por lo tanto, al sistema de tratamiento estudiado se recomienda agregarle un sistema de desinfección para la eliminación de los microorganismos patógenos.

Buelna y Belanger (1990) reportan altas remociones de CF en el tratamiento de aguas residuales municipales empleando una biofiltración sobre turba, y mencionan que la altura de la cama filtrante y el caudal de alimentación juegan un papel importante en la remoción de patógenos. En la segunda etapa la concentración del influente fue de CT fue de 1.5x10<sup>6</sup> y de CF de 9.3x10<sup>5</sup> NMP 100mL<sup>-1</sup> y en los efluentes los CT: 9.3x10<sup>4</sup>, 4.6x10<sup>5</sup> y 9.3x10<sup>4</sup>; para CF: 2.3x10<sup>4</sup>, 9.3x10<sup>4</sup> y 4.3x10<sup>4</sup>, se reduce solo una unidad logarítmica en los BFA. Piet *et al.* (1994) reportan que en un biofiltro empacado con turba operado a 0.075 g cm<sup>-3</sup> se redujeron de 3 a 4 unidades logarítmicas.

#### 4.4 Comparación del sistema utilizado en este trabajo con otras tecnologías

A continuación se hace la comparación de los resultados obtenidos del sistema de biofiltración empleado con otras tecnologías que se han utilizado en el tratamiento de aguas residuales porcícolas.

Dubé *et al.* (1995) utilizaron biofiltración pasiva (sin aireación inducida) con una tasa de filtración de 0.06 m<sup>3</sup> m<sup>-2</sup> d<sup>-1</sup> obteniendo una remoción de materia orgánica medida como DBO de 92%, mientras que en el BFSA fue de 94±2%, sin embargo, la tasa de filtración que se utilizó fue de 0.024 m<sup>3</sup> m<sup>-2</sup> d<sup>-1</sup>.

Ayala (2007) reporta que al tratar agua residual porcina con concentraciones promedio de 2997 mg L<sup>-1</sup> y de 1695 mg L<sup>-1</sup> para DQO y DBO, respectivamente, en reactores biológicos con medio de soporte tezontle sin aireación inducida, con tasas de filtración de 1, 3 y 5 m<sup>3</sup> m<sup>-2</sup>h<sup>-1</sup>, se obtuvieron

resultados de 85 a 93% de DQO y de 97 a 99% de DBO. La remoción promedio que se presentó en el BFSA para DQO fue de 86±5% y de DBO de 94±2% con una tasa de filtración de 0.0010 m<sup>3</sup> m<sup>-2</sup>h<sup>-1</sup>.

Kornboonraska y Lee (2009) estudiaron la eficiencia de un sistema que consta de un pretratamiento con precipitación química seguido de un bioreactor con membrana (CP-MBR). Cuando se incrementó la concentración de amonio en el influente del MBR de 154 a 248 mg L<sup>-1</sup>, la remoción promedio disminuyó de 93 a 69%. Relacionando esto con lo que sucede en el BFA3 la concentración promedio de amonio en el influente de la primera etapa fue de 358 mg L<sup>-1</sup>, alcanzando una remoción promedio de 98±2% de amonio, mientras que en la segunda etapa la concentración promedio en el influente aumentó a 643 mg L<sup>-1</sup>, logrando una remoción promedio de 80±10%. Se obtienen mejores resultados en el BFA3 que en el MBR.

Con respecto a otros BFA que han sido empacados con otro tipo de MF, han obtenido remoción de materia orgánica de 98±1% aplicando una tasa de filtración de 0.017 m³ m⁻²d⁻¹ y una COS de 260 gDQO m⁻²d⁻¹ (Gilbert *et al.*, 2008), en el presente trabajo se alcanzó una remoción de materia orgánica medida como DQO de 62±16% en el BFA3 aplicando una tasa de filtración de 0.065 m³ m⁻²d⁻¹ y una COS de 87 a 120 gDQO m⁻²d⁻¹.

Garzón-Zúñiga *et al.* (2007) utilizó un biofiltro sobre medio orgánico utilizando turba como MF. Emplearon una tasa de aireación de 9.4 m³ m⁻²d⁻¹ y una carga de amonio de 60, 42 y 31 gN-NH¼ m⁻²MF d⁻¹ obteniendo una remoción de este ion de 99.7%, mientras que en el presente trabajo se utilizó una carga de amonio promedio de 35 gN-NH¼ m⁻²MF d⁻¹ obteniendo una remoción de 86±12% en el BFA3.

El sistema de biofiltración que se utilizó en el presente trabajo, compuesto de un BFSA y de BFA la remoción de materia orgánica medida como DQO fue de 94±2% para BFSA+BFA1 y para BFSA+BFA2, mientras que para BFSA+BFA3 fue de 95±1%. Karakashev *et al.* (2008) reportan haber obtenido 96% de remoción de DQO utilizando un sistema compuesto por digestión anaerobia (carga orgánica de 4.6 kgDQO m<sup>-3</sup>d<sup>-1</sup>), decantación, una post-digestión en reactor UASB (carga

orgánica promedio de 3.8 gDQO L<sup>-1</sup>d<sup>-1</sup>), oxidación parcial (tasa de aireación de 1500 mL aire min<sup>-1</sup>) y el proceso OLAND (35℃ y TRH de 2 días). Lee et al. (2004) trataron agua residual porcícola con una concentración de DQO de 10000 a 15000 mg L<sup>-1</sup>, utilizaron diferentes coaquiantes Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> (dosis optima de 2.5 g L<sup>-1</sup> <sup>1</sup>), PAC (dosis optima de 0.3125 g  $L^{-1}$ ), FeCl<sub>3</sub> (dosis optima de 2.0 g  $L^{-1}$ ) y Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> (dosis optima de 2.0 g L<sup>-1</sup>), las remociones obtenidas fueron de 60 a 75% para DQO, teniendo como principal desventaja los altos costos de operación. Los sistemas lagunares también se utilizan para el tratamiento de agua residual porcícola, siendo su principal desventaja que ocupan grandes extensiones de terreno. Zanotelli et al. (2002) trataron agua residual proveniente de una granja de cerdos con una concentración promedio de DQO de 26387 mg L<sup>-1</sup>, obtuvieron una remoción de materia orgánica medida como DQO de 98%, el sistema de tratamiento está compuesto por un tanque de homogenización, un decantador, dos lagunas anaerobias (LA1 y LA2), una laguna facultativa (con 5 deflectores) y una laguna de maduración. En un sistema lagunar compuesto por laguna anaerobia (carga orgánica promedio de 295 g m<sup>-3</sup> d), laguna facultativa (350 kg ha <sup>1</sup>d<sup>-1</sup>) y tres lagunas aerobias la remoción de DQO fue de 95% (Estrada y Hernández, 2002).

En el presente trabajo la remoción de materia orgánica medida como DBO en el BFSA+BFA1 y BFSA+BFA2 es de 98±1%, y de BFSA+BFA3 de 99±1%. El sistema BIOSOR que consta de decantación-digestión anaerobia, prefiltro y biofiltro trato agua residual porcícola con una concentración de materia orgánica de DBO de 13000 mg L<sup>-1</sup>, el sistema alcanzó una remoción promedio de materia orgánica medida como DBO >97% (Buelna *et al.*, 2008).

De lo anterior se puede concluir que el sistema acoplado de biofiltración pasiva y biofiltración forzada analizado en este trabajo alcanza remociones iguales o mayores que otro tipo de tecnología. Sin embargo, obtiene remociones menores que otros estudios que han empleado biofiltración sobre cama de turba, Garzón *et al.* (2007) mencionan que con un BFA empacado con turba, operando con COS de 526, 323 y 277 gDQO m<sup>-2</sup>d<sup>-1</sup> alcanza remociones de 99% de remoción de materia orgánica medida como DBO y 98% de SST.

En la tabla 4.6 se muestra un cuadro comparativo de las remociones obtenidas en este y en otros estudios para el tratamiento de aguas residuales provenientes de las granjas porcícolas.

Tabla 4.6 Comparación del sistema utilizado en este trabajo con otras tecnologías

| Sistema                                                        | Condiciones de operación                                                                                                             | Remoción                                                                             | Fuente                       |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------|
| BFSA+BFA1                                                      | COS: 250 y 350 gDQO m <sup>-2</sup> d <sup>-1</sup><br>Tasa de aireación: 3.4 m <sup>3</sup> aire<br>m <sup>-2</sup> h <sup>-1</sup> | SST: 89±9%<br>DQO: 94±2%<br>DBO: 98±1%<br>N-NH <sub>4</sub> <sup>+</sup> :<br>87±10% |                              |
| BFSA+BFA2                                                      | COS: 250 y 350 gDQO m <sup>-2</sup> d <sup>-1</sup><br>Tasa de aireación: 4.4 m <sup>3</sup> aire<br>m <sup>-2</sup> h <sup>-1</sup> | SST: 90±8%<br>DQO: 94±2%<br>DBO: 98±1%<br>N-NH <sub>4</sub> <sup>+</sup> :<br>85±12% |                              |
| BFSA+BFA3                                                      | COS: 250 y 350 gDQO m <sup>-2</sup> d <sup>-1</sup><br>Tasa de aireación: 9.4 m <sup>3</sup> aire<br>m <sup>-2</sup> h <sup>-1</sup> | SST: 92±6%<br>DQO: 95±1%<br>DBO: 99±1%<br>N-NH <sub>4</sub> <sup>+</sup> :<br>88±10% |                              |
| Reactores<br>biológicos con<br>medio de<br>soporte<br>tezontle | Tasas de filtración de 1, 3 y 5 m <sup>3</sup> m <sup>-2</sup> h <sup>-1</sup>                                                       | DQO: 85 a<br>93%<br>DBO: 97 a<br>99%                                                 | Ayala (2007)                 |
| BF empacado<br>con mezcla de<br>maderas y<br>turba             | Tasa de filtración: 0.017 m <sup>3</sup> m <sup>-2</sup> d <sup>-1</sup> . COS 0.20±0.02 kgDBO m <sup>-2</sup> d <sup>-1</sup>       | DQO: 98±1%<br>DBO: 99±1%<br>NT: 75±8%                                                | Gilbert <i>et al.</i> (2008) |
| Precipitación<br>química                                       | DQO en el influente de<br>10000 a 15000 mg L <sup>-1</sup>                                                                           | DQO: 60 a<br>75%<br>NTK: 20 a<br>30%                                                 | Lee <i>et al.</i> (2004)     |

#### **5 CONCLUSIONES Y RECOMENDACIONES**

Se utilizó un sistema acoplado a nivel laboratorio de biofiltración sin aireación inducida (pasiva) seguida de biofiltración forzada para el tratamiento de aguas residuales provenientes de una granja porcícola. Los biofiltros se empacaron con *Ficus benjamina*, madera que se obtuvo de la poda de árboles en parques y jardines de Jiutepec.

El sistema trabajó con dos diferentes cargas, las cuales marcaron las dos etapas de experimentación. El BFSA alimentó de forma paralela a tres biofiltros, los cuales tenían diferentes tasas de aireación.

#### 5.1 Conclusiones

El BFSA remueve de manera simultánea SST (75±16%), SSV (78±15%), materia orgánica medida como DQO (86±5%) y DBO (94±2%), N-NH<sub>4</sub><sup>+</sup> (16±21%) y P-PO<sub>3</sub> (47±26%), durante las dos etapas experimentales.

No existen diferencias significativas en la remoción de SST, SSV y materia orgánica medida como DQO y DBO al incrementar la COS de 250 a 350 g DQO m<sup>-2</sup>d<sup>-1</sup>.

La remoción de amonio dentro del BFSA se atribuye a los mecanismos de retención, sorción y asimilación de este ión para el crecimiento de los microorganismos.

En los BFA el incremento en la tasa de aireación favoreció la remoción de materia orgánica medida como DBO y DQO.

La tasa de aireación que favorece la remoción de materia orgánica es la de 9.4 m³ m⁻² d⁻¹. En la remoción de amonio no hay diferencia significativa al aplicar las tasas de aireación de 3.4, 4.4 y 9.4 m³ m⁻² d⁻¹.

La nitrificación se logró en los tres BFA, siendo suficiente una tasa de aireación de 3.4 m<sup>3</sup> m<sup>-2</sup> d<sup>-1</sup>.

La remoción de amonio en los BFA disminuyó al incrementarse la carga de nitrógeno. Se observaron diferencias significativas al cambiar la carga de amonio de 23 a 42 g  $NH_4^+$  m<sup>-2</sup> d <sup>-1</sup>.

Los BFA1, BFA2 y BFA3 presentaron una remoción promedio de P-PO<sub>4</sub><sup>3</sup> de 41±65, 48±47 y 49±65%. La eliminación de fósforo en los biofiltros se da especialmente por filtración física. Parte de esta remoción, tiene relación con la utilización del fósforo por parte de los microorganismos para el proceso de síntesis.

El sistema de biofiltración acoplado (BFSA+BFA3) obtuvo remociones de SST, materia orgánica medida como DQO y DBO, y de N-NH<sup>+</sup> de 92±6, 95±1, 99±1 y 88±10%, respectivamente. Por lo tanto, se puede considerar una alternativa viable para el tratamiento de aguas residuales porcícolas. Es una tecnología económica comparada con otros tratamientos y ocupa menor extensión de terreno que los sistemas lagunares y los humedales construidos.

En los biofiltros se presentaron una sucesión de mecanismos físicos, químicos y biológicos, los cuáles ayudaron a remover los contaminantes presentes en el agua residual.

La filtración remueve gran parte de la materia suspendida presente en el agua residual.

En los biofiltros se desarrollan diferentes consorcios microbianos que degradan la materia orgánica.

La remoción de amonio que se da en los biofiltros se atribuye a una retención fisicoquímica, posteriormente se presenta el proceso de adsorción el cual está relacionado directamente con el tipo de material de soporte. También participa la asimilación de este ión, es decir, al uso de las formas inorgánicas del nitrógeno para el crecimiento de microorganismos. El proceso de volatilización

también contribuye a la remoción de amonio, la cual se presentó durante la primera etapa. Tal y como anteriormente fue reportado por Garzón-Zúñiga *et al.* (2007) después de 40 a 60 días de operación en los BFA el principal mecanismo de biotransformación de amonio es la nitrificación.

#### 5.2 Recomendaciones

Los resultados obtenidos durante el presente trabajo muestran que el BFSA tuvo un buen desempeño al aplicar dos diferentes cargas, por lo que se recomienda evaluarlo a cargas orgánicas superficiales superiores a 350 gDQO m<sup>-2</sup> d<sup>-1</sup> para definir el intervalo de carga en el cual se obtienen resultados satisfactorios.

Se utilizó como material de empaque madera de ficus (*Ficus benjamina*) sin embargo, se recomienda utilizar otras maderas como el tabachín (*Caesalpinia pulcherrima*) o la jacaranda (*Jacaranda mimosifolia*) para poder hacer una comparación y evaluar que madera es mejor como MF en el tratamiento de aguas residuales porcícolas.

De acuerdo a los parámetros analizados, el efluente del sistema (BFSA+BFA) cumple con la NOM-001-SEMARNAT-1996 con respecto a SST y DBO. Sin embargo, para nitrógeno, fósforo y coliformes fecales no se cumple. Es por ello que se recomienda seguir estudiando el sistema de biofiltración para determinar las condiciones en que pueda eliminar nitrógeno, es decir, se lleve a cabo la desnitrificación. Además de agregar un sistema de desinfección para reducir CF y tener un efluente con mayor calidad.

#### **6 REFERENCIAS**

- Alarcón Hernández D. (2002). Tratamiento de efluentes porcícolas, cinética y diseño. Tesis de Maestría. Programa de Maestría y Doctorado en Ingeniería. UNAM, 115 pp.
- APHA-AWWA-WPCF (2005). Standard Methods for Examination of Water and Wastewater. 21st Edition. Washington DC, USA.
- Atlas M. y Bartha R., (2002). Ecología microbiana y microbiología ambiental, Pearson Educación, 4ª edición, Editorial Addison-Wesley,.
- Badillo Salas C. (2009), Reducción de sólidos en suspensión (incluidos patógenos) en agua residual utilizando un proceso anaerobio. Tesis de maestría. Posgrado de Ingeniería Ambiental. UNAM 120 pp.
- Barajas López M. G. (2002). Eliminación de nutrientes en un reactor biológico secuencial, caracterización y estimulación de las fuentes de carbono del agua residual urbana. Tesis doctoral. Universidad Politécnica de Catalunya. Departamento de Ingeniería Hidráulica. Barcelona, España. 330 pp.
- Buelna G., Dubé R., y Turgeon N. (2008), Pig manure treatment by organic bed biofiltration. *Desalination* 231, 297-304.
- Buelna G. y Belanger G. (1990). Biofiltration a base de tourbe pour le traitement des eaux usées de petit municipalités. *Sciences et techniques de l'eau*. Aout, 1990, 259-264.
- Béline F., Daumer M., Loyon L., Pourcher A., Dabert P., Guiziou F. y Peu P. (2008). The efficiency of biological aerobic treatment of piggery wastewater to control nitrogen, phosphorus, pathogen and gas emissions. *Wat. Sci. Tech.*, **57**(12), 1909-1914.

- Castrejon T. (2005). Comparación dedos medios de soporte de biopeliculas (liso y poroso) para nitrificación y desnitrificación de lixiviados de un relleno sanitario. Tesis. Programa de Maestría y Doctorado en ingeniería ambiental. UNAM.
- Cervantes Carrillo F., Pérez J. y Gómez J. (2000). Avances en la Eliminación Biológica del Nitrógeno de las Aguas Residuales, *Revista Latinoamericana de Microbiología*, **42**, 73-82.
- Cordero Lannoy A. (2005). Situación actual de la porcicultura en México, *Facultad de Medicina Veterinaria y Zooctenia*, UNAM.
- Correa M. y Sierra J. (2004). Remoción integrada de materia orgánica, fósforo y nitrógeno en un sistema de filtros (biofiltros) en serie anaerobio/anóxico/aerobio en condiciones dinámicas. Revista Facultad de Ingeniería, **31**, 5-22.
- Crites R. y Tchobanoglous G. (2000). Tratamiento de aguas residuales en pequeñas poblaciones. Mc Graw Hill. Colombia. 776 pp.
- Doménech X. y Peral J. (2006). Química ambiental de sistemas terrestres. Editorial Reverté, S. A., España 239 pp.
- Dubé R., Buelna G., y Lessard, P. (1995). Traitment du lisier de porc par biofiltrationsur milieu organique aéré. Technologie de biofiltration pour le traitement du lisier de porc. *Proc. of the 18<sup>th</sup> Symposium on wastewater treatment*. November 1995, Montréal, Québec, Canada, pp. 298-309.
- Estrada V. y Hernández D. (2002). Treatment of piggery waste stabilization ponds. *Wat. Sci. Tech.*, **45** (1), 55-60.
- Ferrara de Giner G. y Ramírez A. (2008). La influencia de la relación C/N en la remoción de nitrógeno usando un sistema combinado de reactores por carga secuenciales. XXXI Congreso Interamericano AIDIS. Santiago-Chile.
- Flores Contreras E. (2007). Evaluación de la combinación de dos medios de soporte en reactores de lecho móvil para la remoción de nitrógeno. Tesis de maestría. Posgrado de Ingeniería Ambiental. UNAM. 95 pp.
- Gilbert Y., Le Bihan Y., Aubry G., Veillette M., Duchaine C. y Lesaard P. (2008). Microbiological and molecular characterization of denitrification in biofilters treating pig manure. *Bioresource Technology*, **99**, 4495-4502.
- García Sánchez L. (2006). Decoloración fúngica de efluentes industriales con colorantes azo en sistemas de biofiltración con diferentes empaques orgánicos. Tesis de maestría. Posgrado de Ingeniería Ambiental. UNAM 149 pp.

- Garzón-Zúñiga M. A. (2001). Mécanismes d'enlévement de l'azote du lisier de porc par Biofiltration aérée sur tourbe. Ph.D. Thesis. Department of Civil Engineering, Laval University, Québec, Canada.
- Garzón-Zúñiga M. A. y González-Martínez S. (1996). Biologicalphosphate and nitrogen removal in a biofilm sequencing batch reactor. *Wat. Sci. Tech.*, **34**,(1-2), 293-302.
- Garzón-Zúñiga M. A., Lessard P., Aubry G. y Buelna G. (2007). Aeration effect on the efficiency of swine manure treatment in a trickling filter packed with organic materials. *Wat. Sci. Tech.*, **55**(10), 135–143.
- Garzón-Zúñiga M. A., Lessard P., Aubry G. y Buelna G. (2005). Nitrogen elimination mechanism in an organic media aerated biofilter treating pig manure. *Environ. Technol.*, **26**, 361–371.
- Garzón-Zúñiga M. A., Lessard P., Aubry G. y Buelna G. (2003). Determination of the hydraulic residence time in a trickling biofilter filled with organic matter, *Environmental Technology*, **24**, 605–614.
- Garzón-Zúñiga M. A., Lessard P. y Buelna G. (2002). Transformación y eliminación del nitrógeno en el tratamiento de efluentes de granjas de puerco, empleando un biofiltro aireado con soporte orgánico. XIII Congreso Nacional de la Federación Mexicana de Ingeniería Sanitaria y Ciencias Ambientales. Guanajuato, México.
- Garzón-Zúñiga Zúñiga M. A. (2005). Mecanismos no convencionales de transformación y remoción del nitrógeno en sistemas de tratamiento de aguas residuales. *Ingeniería hidráulica en México*, **XX**(4), 137-149, octubrediciembre.
- Ha H. and Ong S. (2007). Nitrification and denitrification in partially aerated biological aerated filter (BAF) with dual size sand media. *Wat. Sci. Tech.*, **55** (1–2), 9-17.
- Hernández A., Alfaro I. y Arrieta R. (2003). Microbiología industrial. Editorial EUNED. Costa Rica. 296 pp.
- Hwang I., Min K., Choi E. and Yun Z. (2005). Nitrogen removal from piggery waste using the combined SHARON and ANAMMOX process. *Wat. Sci. Tech.*, **52** (10–11), 487–494.
- Karakashev D., Schmidt J. y Angelidaki I. (2008). Innovative process scheme for removal of organic matter, phosphorus and nitrogen from pig manure. *Wat. Res.*, **42**, 4083-4090.

- Kornboonraska T. y Lee S. (2009). Factors affecting the performance of membrane bioreactor for piggery wastewater treatment. *Bioresour. Technol.*, **100**, 2926-2932.
- Lee S., lamchaturapatr J., Polprasert C. and Ahn K. (2004). Application of chemical precipitation for piggery wastewater treatment. *Wat. Sci. Tech.*, **49** (5–6), 381–388.
- Linping Kuai, Wim Kerstens, Nguyen Phu Cuong y Willy Verstraet (1998). Treatment of domestic wastewater by enhanced primary decantation and subsequent naturally ventilated trickling filtration. *Water, air & soil pollution*, 113 (1-4), 43-62.
- Malina J.F. y Pohland F. G. (1992). Design of anaerobic processes for the treatment of industrial and municipal wastes. *Water Quality Management Library Vol. 7 Technomic.* 214 p.
- Mara D. y Horan N. (2003). The Handbook of Water and Wastewater Microbiology. Academic Press.
- McCarty, P. (1964). Anaerobic waste water treatment fundamentals. Public Works. 95:107-112.
- Méndez R., Castillo E., Vázquez E. y Briceño O. (2008). Impacto de las descargas porcinas al acuífero del estado de Yucatán, México. XXXI Congreso Interamericano AIDIS, Santiago-Chile, 12-15 Octubre.
- Méndez R., Vidal G., Lorber K. y Márquez F. (2007). Producción limpia de la industria de curtiembre. Universidad de Santiago de Compostela. España. 401 pp.
- Metcalf y Eddy Inc (2003). Wastewater Engineering, Treatment and Reuse. 4a Edición. Mc Graw Hill. Nueva York. 1819 pp.
- Morales Mejía J. (2006). Remoción biológica simultánea de fósforo y nitrógeno de agua residual en un reactor de lecho móvil. Tesis de maestría. Posgrado de Ingeniería Ambiental. UNAM. 106 pp.
- Monroy C. y Monroy R. (2004). Análisis preliminar de la dominancia cultural de las plantas útiles en el estado de Morelos. *Boletín de la sociedad botánica de México.* **74**, 77-95.
- Montalvo C., López F. y Luna S. (2004). Caracterización del agua residual de una granja porcícola en el municipio de Palmar Bravo Puebla, XIV Congreso Nacional. FEMISCA. Mazatlán, Sinaloa.

- Moreno B., Gómez M., González J. y Hontoria E. (2005). Inoculation of a submerged filter for biological denitrification of nitrate polluted groundwater: a comparative study. *Journal of Hazardous Materials* **B117**, 141–147.
- Piet N., Piet M., Lode S. y Williy H. (1994). Direct treatment of domestic wastewater by percolation over peat, bark and woodchips. *Wat. Res.*, **28** (1), 17-26.
- Prosser J.I. (1989). Autotrophic nitrification in bacteria. *Adv. Microb. Physiol.* 30:125-181.
- Ramalho R., Jimenez D. y De Lora F. (1996). Tratamiento de aguas residuales. Editorial Reverté S. A., España.
- Reddy Movva, (1998). Biological and Chemical Systems for Nutrient Removal, Water Environment Federation.
- Rusten B., Siljudalen J., y Nordeidet B. (1994). *Upgrading to Nitrogen Removal with the KMT Moving Bed Biofilm Process. Wat. Sci. Tech.*, **29**(12), 185-195.
- SAGARPA (2006). Situación Actual y Perspectiva de la Producción de Carne de porcino en México 2006. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. México, D. F.
- Sezerino P., Reginatto V., Santos M., Kayser K., Kunst S., Philippi S. y Soares H. (2003). Nutrient removal from piggery effluent using vertical flow constructed wetlands in southern Brazil. *Wat. Sci. Tech.*, **48** (2), 129–135.
- Speece R. (1996). Anaerobic Biotechnology for industrial wastewater. Vanderbilt University. Archae Press USA. 394 pp.
- United States Department of Agriculture-Foreign Agricultural Service (2009). Livestock and Poultry: World Markets and Trade. Octubre 2009. www.fas.usda.gov
- Ujang Z., Salim M. y Khor S. (2002). The effect of aeration and non-aeration time on simultaneous organic, nitrogen and phosphorus removal using and intermittent aeration membrane bioreactor. *Wat. Sci. Tech.*, **46**(9), 193–200.
- Vázquez E., Martínez P., Fernández G., Méndez R. y Magaña A. (1996). Evaluación de un reactor anaerobio para el tratamiento de aguas residuales de granjas porcícolas. *AIDIS. Consolidación para el desarrollo.* México, D.F. 1-6 pp.
- Williams G., Sheikh B., Holden R., Kouretas T. y Nelson K. (2007). The impact of increased loading rate on granular media, rapid depth filtration of wastewater. *Wat. Res.*, **41**, 4535-4545.

- Winkler A., (2008). Tratamiento biológico de aguas de desecho, Ed. Limusa, México. 338 pp.
- Zanotelli C., Medri W., Belli P., Perdomo C., Mulinari M. y Costa R. (2002). Performance of a baffled facultative pond treating piggery wastes. *Wat. Sci. Tech.*, **45**(1), 49–53.
- Ying-Chih Chiu, Li-Ling Lee, Cheng-Nan Chang y Allen C. Chao (2007). Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor. *International biodeterioration and biodegradation*, **59**, 1-7.
- Yun Y. and Wenfeng X. (2009). Ammonia biofiltration and community analysis of ammonia-oxidizing bacteria in biofilters. *Bioresour. Technol.*, **45**(1), 49–53.

# **ANEXOS**

## ANEXO I: Características de Ficus benjamina

Nombre científico: Ficus benjamina

#### Características generales

Árbol siempre verde de 4-6 m de altura, con copa densa y ramillas colgantes, muy ornamental. Corteza lisa, gris. Yemas terminales de color verde, agudas. Hojas alternas, de unos 10-12 cm de longitud, de forma ovado-elíptica, con la superficie brillante. El ápice es bastante acuminado, la base es redondeada y su textura es un poco coriácea. Pecíolos largos, de 2.5 cm de longitud, glabros, algo acanalados por la parte de arriba. Frutos axilares, sésiles, de globulares a oblongos, de alrededor de 1 cm de diámetro, de color purpura-rojizo en la madurez, contrastando con el verde del follaje. Es nativo de India y Malasia

#### Usos

Se usa como adorno de jardines y para proporcionar sombra

#### Características fisicoquímicas

EC50: Por contacto con el látex que tiene una acción irritante sobre la piel, por acción de las furocomarinas. También el simple contacto con la planta puede producir fotosensibilidad, que se muestra en forma de ampollas. Se tiene que evitar comer frutos no maduros, pues resultan tóxicos al aparato digestivo y pueden producir lesiones en las manos.

#### Costo y disponibilidad

Se puede obtener sin costo ya que es un desecho de la poda de jardines y áreas verdes municipales. Su disponibilidad es durante todo el año. Monroy-Ortiz y Monroy (2004) mencionan que el primer género de plantas útiles dominantes culturalmente (parámetro utilizado para expresar el grado en que una especie acapara el espacio de crecimiento en una comunidad) en Morelos obtenida con base en el número de especies es *Ficus*, con una dominancia absoluta de 11 especies y una relativa de 1.8%.

### ANEXO II: Cálculos para la determinación de la porosidad in situ del MF

Los cálculos realizados en este anexo, así como la técnica fueron tomados de García (2006) y Garzón-Zúñiga et al. (2003).

El MF se prepara humedeciéndolo al 65%, se toma una muestra y se coloca en una cápsula a peso constante, se pesa, se seca en la estufa por 3 h, se pesa, se seca por 24 h en la estufa y se pesa nuevamente.

Tabla 1. Peso de cápsulas después de humedecer el MF

|                     | Peso<br>cte.<br>cápsula | Cápsula<br>+MF | MF peso<br>húmedo<br>(PH) | Peso 3h | Peso 24<br>h | Masa MF<br>seco<br>(PS) | Humedad | MF<br>seco<br>(MS) | Masa<br>de<br>agua |
|---------------------|-------------------------|----------------|---------------------------|---------|--------------|-------------------------|---------|--------------------|--------------------|
|                     | (g)                     | (g)            | (g)                       | (g)     | (g)          | (g)                     | (%)     | (g)                | (g)                |
| Biofiltros con aire | 74.7583                 | 79.9469        | 5.1886                    | 77.6515 | 76.2809      | 29.3451                 | 70.6549 | 1.5226             | 3.6660             |
| Biofiltro sin aire  | 55.2102                 | 62.6268        | 7.4166                    | 59.2515 | 57.9621      | 37.1046                 | 62.8954 | 2.7519             | 4.6647             |

# Determinación del volumen de agua retenida al final de los ensayos de drenaje en los reactores

Al terminar las pruebas de vaciado se tomaron muestras del material y se determino el peso seco de estas muestras.

Tabla 2. Peso de cápsulas después de las pruebas de vaciado

| Reactor | Peso cte.<br>Cápsula | Cápsula<br>+MF | MF peso<br>húmedo<br>(PH) | Peso 3h Peso 24 h |         | Masa MF<br>seco<br>(PS) | Humedad | MF<br>seco<br>(MS) | Masa de<br>agua |
|---------|----------------------|----------------|---------------------------|-------------------|---------|-------------------------|---------|--------------------|-----------------|
|         | (g)                  | (g)            | (g)                       | (g)               | (g)     | (g)                     | (%)     | (g)                | (g)             |
| BFA1    | 54.2326              | 57.8990        | 3.6664                    | 55.7758           | 55.7412 | 41.1466                 | 58.8534 | 1.5086             | 2.1578          |
| BFA2    | 74.3490              | 79.9930        | 5.6440                    | 77.6038           | 76.6810 | 41.3182                 | 58.6818 | 2.3320             | 3.312           |
| BFA3    | 78.4610              | 83.5122        | 5.0512                    | 80.5146           | 80.3992 | 38.3711                 | 61.6289 | 1.9382             | 3.113           |
| BFSA    | 53.7437              | 58.1220        | 4.3783                    | 55.5300           | 55.4971 | 40.0475                 | 59.9525 | 1.7534             | 2.6249          |

Además de determinar el porcentaje de humedad, se midieron el volumen acumulado de agua en el material filtrante y el volumen acumulado en la capa de grava durante las pruebas de vaciado, para obtener el % de porosidad en cada reactor.

Tabla 3. Determinación de volumen de agua retenido

| Reactor | Masa MF<br>húmedo<br>(MMH) | Volumen de<br>agua real<br>acumulado<br>(VR) | MF<br>húmedo<br>(PH) | MF<br>seco<br>(MS) | Contiene<br>agua (MA) | Humedad | g agua/g<br>de MF<br>seco (GA) | Volumen de<br>agua<br>contenido<br>en MF (VM) | Volumen<br>de agua<br>retenido<br>(VAR) |
|---------|----------------------------|----------------------------------------------|----------------------|--------------------|-----------------------|---------|--------------------------------|-----------------------------------------------|-----------------------------------------|
|         | (g)                        | (mL)                                         | (g)                  | (g)                | (g)                   | (%)     |                                | (mL)                                          | (mL)                                    |
| BFA1    | 390.8929                   | 1085                                         | 3.6664               | 1.5086             | 2.1578                | 58.8534 | 1.1914                         | 465.7190                                      | 1551                                    |
| BFA2    | 371.8639                   | 1140.2                                       | 5.644                | 2.332              | 3.312                 | 58.6818 | 1.1796                         | 438.6386                                      | 1579                                    |
| BFA3    | 345.3397                   | 1178                                         | 5.0512               | 1.9382             | 3.113                 | 61.6289 | 1.4010                         | 483.8038                                      | 1661                                    |
| BFSA    | 11053.111                  | 36001                                        | 4.3783               | 1.7534             | 2.6249                | 59.9525 | 1.4270                         | 15772.6517                                    | 51774                                   |

Tabla 4. Determinación de porosidad in situ

| Reactor | % Porosidad |
|---------|-------------|
| BFA1    | 70.4812     |
| BFA2    | 71.7654     |
| BFA3    | 75.5153     |
| BFSA    | 73.9628     |

## Espacios vacios en los biofiltros con respecto al flujo de salida

En las siguientes tablas se muestran los datos de las pruebas de vaciado y sus respectivas gráficas:

Tabla 5. Prueba de vaciado de BFA1

| Tiempo<br>(min) | Volumen<br>(mL) | Volumen<br>acumulado<br>(mL) | Q de salida (L d <sup>-1</sup> ) |
|-----------------|-----------------|------------------------------|----------------------------------|
| 1               | 1189            | 1189                         | 1712.1600                        |
| 2               | 27.4            | 1216.4                       | 39.4560                          |
| 4               | 17              | 1233.4                       | 12.2400                          |
| 15              | 32              | 1265.4                       | 4.1891                           |
| 30              | 16              | 1281.4                       | 1.5360                           |
| -60             | 8               | 1289.4                       | 0.3840                           |
| 120             | 5.2             | 1294.6                       | 0.1248                           |
| 240             | 6               | 1300.6                       | 0.0720                           |
| 420             | 3               | 1303.6                       | 0.0240                           |
| 1200            | 4.6             | 1308.2                       | 0.0085                           |

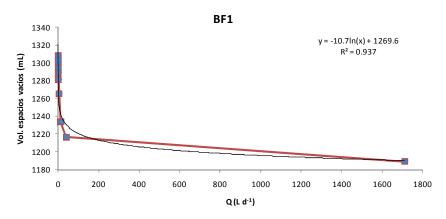



Figura 1. Gráfica de volumen de espacios vacíos vs caudal del BFA1

| Tiempo<br>(min) | Volumen<br>(mL) | Volumen<br>acumulado<br>(mL) | Q de salida (L d <sup>-1</sup> ) |
|-----------------|-----------------|------------------------------|----------------------------------|
| 1               | 1247            | 1247                         | 1795.6800                        |
| 2               | 31              | 1278                         | 44.6400                          |
| 4               | 24.2            | 1283.2                       | 17.4240                          |
| 15              | 25              | 1308.2                       | 3.2727                           |
| 30              | 14              | 1322.2                       | 1.3440                           |
| 60              | 13              | 1335.2                       | 0.6240                           |
| 120             | 8.2             | 1347.4                       | 0.1968                           |
| 240             | 6               | 1349.4                       | 0.0720                           |
| 420             | 2.2             | 1351.6                       | 0.0176                           |
| 1200            | 5.6             | 1357.2                       | 0.0103                           |

Tabla 6. Prueba de vaciado de BFA2

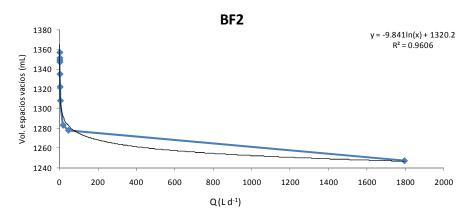



Figura 2. Gráfica de volumen de espacios vacíos vs caudal del BFA2

Tabla 7. Prueba de vaciado de BFA3

| Tiempo<br>(min) | Volumen<br>(mL) | Volumen<br>acumulado<br>(mL) | Q de salida (L d <sup>-1</sup> ) |
|-----------------|-----------------|------------------------------|----------------------------------|
| 1               | 1263            | 1263                         | 1818.72                          |
| 2               | 28              | 1291                         | 40.3200                          |
| 4               | 29              | 1320                         | 20.8800                          |
| 15              | 26              | 1346                         | 3.4036                           |
| 30              | 15              | 1361                         | 1.44                             |
| 60              | 13              | 1374                         | 0.6240                           |
| 120             | 8.6             | 1382.6                       | 0.2064                           |
| 240             | 6.6             | 1389.2                       | 0.0792                           |
| 420             | 3               | 1392.2                       | 0.0240                           |
| 1200            | 3               | 1395.2                       | 0.0055                           |

BF3 y = -11.66ln(x) + 1354.1  $R^2 = 0.9305$ Vol. espacios vacíos (mL) Q (L d<sup>-1</sup>)

Figura 3. Gráfica de volumen de espacios vacíos vs caudal del BFA3

Tabla 8. Prueba de vaciado de BFSA

| Tiempo<br>(min) | Volumen<br>(mL) | Volumen<br>acumulado<br>(mL) | Q de salida (L d <sup>-1</sup> ) |
|-----------------|-----------------|------------------------------|----------------------------------|
| 1               | 2165            | 2165                         | 3117.6                           |
| 2               | 1970            | 4135                         | 2836.8                           |
| 4               | 3828            | 7963                         | 2756.16                          |
| 15              | 16390           | 24353                        | 2145.6                           |
| 30              | 11650           | 36003                        | 1118.4                           |
| 60              | 290             | 36293                        | 13.92                            |
| 120             | 320             | 36613                        | 7.68                             |
| 240             | 270             | 36883                        | 3.24                             |
| 420             | 179             | 37062                        | 1.432                            |
| 1200            | 341             | 37403                        | 0.6295                           |

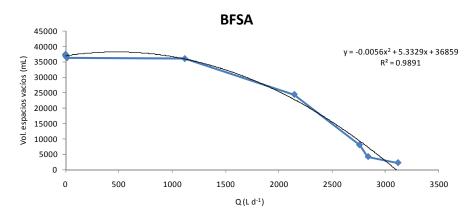



Figura 4. Gráfica de volumen de espacios vacíos vs caudal del BFSA

#### Determinación del TRH en los biofiltros

Para calcular el TRH se hace a partir de las fórmulas obtenidas en los gráficos anteriores para determinar el volumen de espacios vacíos en el MF para cualquier Q y, por la diferencia entre el volumen total de agua contenido en los diferentes biofiltros (porosidad *in situ*) y el volumen de espacios vacíos se obtiene el volumen de agua en tratamiento, la cual se va a dividir entre el Q.

Tabla 9. Determinación de TRH en BFA

|                                                                    | BFA1                        | BFA2                     | BFA3                     |
|--------------------------------------------------------------------|-----------------------------|--------------------------|--------------------------|
| Ecuación espacios vacios                                           | $y = -10.7 \ln(x) + 1269.6$ | y = -9.841ln(x) + 1320.2 | y = -11.66ln(x) + 1354.1 |
| Q (L d <sup>-1</sup> )                                             | 0.46                        | 0.46                     | 0.46                     |
| Volumen de<br>espacios vacios<br>(L)                               | 1.28                        | 1.33                     | 1.36                     |
| Volumen<br>correspondiente a<br>la porosidad <i>in</i><br>situ (L) | 1.5506                      | 1.5788                   | 1.6613                   |
| Volumen real de<br>agua en<br>tratamiento (L)                      | 0.27                        | 0.25                     | 0.30                     |
| TRH= Volumen real/Q (d)                                            | 0.59                        | 0.55                     | 0.65                     |

# ANEXO III: Reporte fotográfico



Figura 1. Fotografía de la trituración de la madera



Figura 2 Fotografía del material triturado



Figura 3. Fotografía del tamizado del material



Figura 4. Fotografía de un biofiltro empacado



Figura 5. Fotografía de los cerdos



Figura 6. Fotografía de la salida del agua residual que proviene de la granja porcícola



Figura 7. Fotografía del BFSA



Figura 8. Fotografía de la columna que se utilizó para la sedimentación del agua residual porcícola

## ANEXO IV: Datos experimentales

Tabla 1. Valores de pH y Temperatura en el influente y efluente de los reactores

|           |      | pH (ı | unidad | les) |      |      | Tempe | eratura | a (°C) |      |
|-----------|------|-------|--------|------|------|------|-------|---------|--------|------|
| Día de    |      |       | BFA    | BFA  | BFA  |      |       | BFA     | BFA    | BFA  |
| operación | I    | BFSA  | 1      | 2    | 3    | I    | BFSA  | 1       | 2      | 3    |
| 1         | 6.79 | 6.7   |        |      |      | 25   | 25.3  |         |        |      |
| 2         | 6.8  | 6.97  | 8.64   | 8.68 | 8.6  | 23.2 | 24.6  | 24.7    | 24.9   | 24.7 |
| 4         | 6.97 | 6.99  | 8.32   | 8.67 | 8.67 | 25   | 25    | 25      | 25     | 25   |
| 5         | 7.49 |       | 8.5    | 9.04 | 8.81 | 25   | 25    | 25      | 25     | 25   |
| 6         | 7.15 | 5.58  | 8.74   | 8.32 | 8.63 | 25   | 25    | 25      | 25     | 25   |
| 7         | 6.96 | 5.71  | 8.88   | 8.85 | 8.88 | 20.1 | 24.3  | 24.3    | 24.3   | 24.2 |
| 8         | 7.09 | 5.92  | 8.96   | 9.08 | 9.09 | 23.5 | 23.7  | 23.8    | 23.6   | 24   |
| 9         | 7.31 | 5.89  | 8.89   | 8.97 | 9.14 | 22   | 23    | 24      | 23.9   | 23.8 |
| 10        | 7.18 | 6.1   | 9.02   | 9.03 | 9.12 | 21   | 24    | 24.9    | 24.8   | 24.8 |
| 11        | 7.29 | 6.23  | 8.91   | 8.94 | 9.03 | 20   | 23.1  | 24.3    | 24.8   | 24.7 |
| 12        | 7.11 | 6.75  | 8.85   | 8.93 | 8.86 | 23.7 | 23.8  | 23.8    | 23.9   | 23.8 |
| 13        | 7.34 | 7.14  | 8.77   | 8.81 | 8.63 | 23.9 | 24    | 24      | 24.1   | 24.1 |
| 14        | 7.28 | 7.02  | 8.69   | 8.92 | 8.73 | 24.2 | 24    | 24.1    | 24     | 23.9 |
| 15        | 7.38 | 7.49  | 8.7    | 8.68 | 8.74 | 25   | 25    | 25      | 25     | 25   |
| 16        | 7.13 | 7.09  | 9.08   | 9.09 | 9.11 | 24   | 25    | 25.1    | 25.3   | 25.1 |
| 17        | 7.12 | 7.01  | 8.98   | 9.18 | 9.1  | 23.9 | 24    | 24      | 24.8   | 24.1 |
| 18        | 7.11 | 7.86  | 9.14   | 8.99 | 8.91 | 22.3 | 25.3  | 24.8    | 23.9   | 22.7 |
| 19        | 7.04 | 7.82  | 9.13   | 9.12 | 9.17 | 21   | 24.9  | 24.9    | 24.5   | 23.8 |
| 20        | 7.09 | 8.2   | 9.12   | 9.11 | 9.2  | 22.3 | 25.2  | 25.1    | 25.3   | 25.2 |
| 21        | 7.16 | 6.67  | 8.94   | 8.97 | 9.03 | 20.2 | 20.4  | 22.1    | 22.5   | 22.6 |
| 22        | 7.35 | 7.04  | 9.18   | 9.14 | 9.14 | 22.1 | 25.2  | 24.5    | 24.5   | 24.2 |
| 23        | 7.29 | 7.64  | 9.08   | 9.16 | 9.2  | 21   | 23.3  | 22.4    | 23.3   | 23.4 |
| 24        | 7.35 | 7.2   | 9.12   | 8.9  | 9.02 | 20   | 23.1  | 23.5    | 23     | 23   |
| 25        | 7.55 | 6.81  | 9.27   | 9.13 | 9.18 | 23   | 24.9  | 24.7    | 25     | 25.1 |
| 26        | 7.47 | 7.59  | 9.08   | 9.05 | 9    | 25   | 25    | 25      | 25     | 25   |
| 27        | 7.05 | 6.9   | 9.1    | 9.02 | 9    | 22   | 24.3  | 24      | 24     | 23.8 |
| 28        | 7.29 | 7.69  | 9      | 8.95 | 8.89 | 25   | 25    | 25      | 25     | 25   |
| 29        | 7.05 | 7.54  | 8.76   | 8.72 | 8.66 | 25   | 26.8  | 26.8    | 26.5   | 26.6 |
| 30        | 6.87 | 7.33  | 9.1    | 9.12 | 8.98 | 25   | 25.4  | 25.7    | 25.9   | 27.2 |
| 32        | 6.92 | 6.54  | 9.15   | 8.99 | 8.68 | 22   | 24    | 24.5    | 25     | 25.8 |
| 33        | 7.21 | 7.45  | 9.22   | 9.13 | 9.09 | 24.7 | 25.1  | 24.9    | 25     | 24.8 |
| 34        | 7.36 | 7.96  | 9.32   | 9.22 | 9.11 | 20   | 22.7  | 22.3    | 22     | 22.3 |
| 35        | 7.19 | 6.63  | 9.28   | 9.2  | 9.13 | 24.4 | 24.4  | 24.8    | 24.4   | 24.4 |

Tabla 1. Valores de pH y Temperatura en el influente y efluente de los reactores (continuación)

|                     |      |      | ınidad   | es (CC<br>les) |          | Tempe | eratura | a (°C)   |          |          |  |  |  |
|---------------------|------|------|----------|----------------|----------|-------|---------|----------|----------|----------|--|--|--|
| Día de<br>operación | ı    | BFSA | BFA<br>1 | BFA<br>2       | BFA<br>3 | ı     | BFSA    | BFA<br>1 | BFA<br>2 | BFA<br>3 |  |  |  |
| 36                  | 7.02 | 7.11 | 9.26     | 9.2            | 9.29     | 20    | 24.8    | 25.1     | 25.2     | 25.4     |  |  |  |
| 37                  | 7.39 | 7.03 | 9.2      | 9.25           | 9.12     | 22    | 25      | 25.3     | 25.3     | 25.5     |  |  |  |
| 39                  | 7.09 | 6.61 | 9.25     | 9.23           | 9.23     | 21    | 23.9    | 25.3     | 25.5     | 25.8     |  |  |  |
| 40                  | 7.48 | 7.19 | 9.16     | 9.09           | 8.85     | 23.9  | 25.3    | 24.9     | 25       | 24.9     |  |  |  |
| 41                  | 7.05 | 6.76 | 9.2      | 9.28           | 9.02     | 25    | 26      | 26.1     | 25       | 25       |  |  |  |
| 42                  | 7.07 | 7.84 | 9.21     | 9.21           | 8.91     | 20    | 24      | 24.8     | 24.5     | 25       |  |  |  |
| 43                  | 7.22 | 7.4  | 9.18     | 8.89           | 8.99     | 22.9  | 25      | 25       | 25.9     | 25       |  |  |  |
| 44                  | 7.28 | 6.61 | 9.13     | 9.13           | 9.05     | 24.1  | 25      | 25       | 25       | 25       |  |  |  |
| 46                  | 7.12 | 7.98 | 9.26     | 8.98           | 9.01     | 24    | 25      | 24       | 24.3     | 24.8     |  |  |  |
| 47                  | 7.45 | 8.04 | 9.19     | 9.23           | 9.2      | 24.2  | 25.1    | 25       | 25.4     | 25.6     |  |  |  |
| 48                  | 7.2  | 8.26 | 9.08     | 9.06           | 9.13     | 24.4  | 24.9    | 24.7     | 24.3     | 25       |  |  |  |
| 49                  | 7.15 | 6.62 | 9.13     | 9.11           | 9.2      | 20    | 24.8    | 24.6     | 24.3     | 24.6     |  |  |  |
| 50                  | 7.1  | 7.9  | 8.71     | 9.38           | 9.09     | 25    | 24.8    | 24.7     | 24.8     | 24.2     |  |  |  |
| 51                  | 6.9  | 8.2  | 9.03     | 8.94           | 9.04     | 23    | 24      | 24.2     | 24.1     | 24.1     |  |  |  |
| 53                  | 7.37 | 7.25 | 9.06     | 9.1            | 9.17     | 21.9  | 25.1    | 25.6     | 25.6     | 25.6     |  |  |  |
| 54                  | 7.29 | 7.53 | 8.92     | 9.21           | 9.13     | 25.4  | 25.1    | 25.2     | 25.3     | 25.1     |  |  |  |
| 55                  | 7.2  | 6.94 | 8.81     | 9.12           | 9.01     | 25    | 25.2    | 24.8     | 24.8     | 24.7     |  |  |  |
| 56                  | 7.24 | 6.83 | 8.63     | 9.06           | 8.97     | 21    | 24.5    | 24.9     | 24.6     | 24.5     |  |  |  |
| 57                  | 7.38 | 6.79 | 8.33     | 8.7            | 8.98     | 21.5  | 24.2    | 24.1     | 25       | 25.1     |  |  |  |
| 58                  | 7.38 | 8.4  | 8.63     | 9.02           | 8.94     | 20    | 21.5    | 21.9     | 21.9     | 21.7     |  |  |  |
| 59                  | 7.58 | 8.21 | 8.72     | 9.12           | 9.01     | 21    | 22.9    | 24       | 24.9     | 25       |  |  |  |
| 60                  | 7.42 | 8.34 | 8.68     | 9.07           | 8.86     | 20    | 22.5    | 24.1     | 24.2     | 24       |  |  |  |
| 61                  | 7.35 | 7.95 | 8.74     | 9              | 8.84     | 22.9  | 23.6    | 23.6     | 23.5     | 23.6     |  |  |  |
| 62                  | 7.25 | 7.9  | 8.78     | 8.93           | 8.75     | 20    | 22      | 22.7     | 22.7     | 23.1     |  |  |  |
| 64                  | 7.31 | 8.27 | 8.72     | 8.65           | 8.99     | 25.2  | 24.8    | 24.8     | 24.7     | 24.9     |  |  |  |
| 65                  | 7.28 | 8.46 | 8.7      | 8.69           | 8.97     | 22    | 21.5    | 23       | 23.1     | 23.1     |  |  |  |
| 67                  | 7.57 | 8.57 | 9.02     | 8.74           | 9.11     | 22    | 25.8    | 25.7     | 25.8     | 26.1     |  |  |  |
| 68                  | 7.65 | 8.58 | 8.99     | 8.59           | 9.05     | 25    | 26.3    | 26.1     | 26.1     | 26       |  |  |  |
| 69                  | 7.28 | 7.96 | 8.95     | 8.77           | 9.04     | 23.9  | 23.7    | 23.4     | 23.3     | 23.2     |  |  |  |
| 70                  | 7.48 | 7.57 | 8.76     | 8.69           | 8.93     | 24.6  | 24.4    | 24.4     | 24.5     | 24.6     |  |  |  |
| 71                  | 7.47 | 7.14 | 8.84     | 8.8            | 8.96     | 22.6  | 23.3    | 23.4     | 23.6     | 23.6     |  |  |  |
| 72                  | 7.69 | 8.22 | 9.2      | 9.02           | 9.19     | 23.4  | 23.7    | 24.2     | 23.9     | 23.9     |  |  |  |
| 74                  | 7.78 | 7.22 | 8.84     | 8.72           | 8.92     | 20    | 24.7    | 24.4     | 25       | 25.1     |  |  |  |
| 75                  | 7.52 | 8.48 | 8.93     | 8.68           | 8.97     | 22.9  | 22.8    | 22.8     | 22.7     | 22.9     |  |  |  |
| 76                  | 7.12 | 7.2  | 8.43     | 8.47           | 8.8      | 22    | 23.2    | 23.8     | 24       | 24.2     |  |  |  |
| 77                  | 7.61 | 7.43 | 8.63     | 8.7            | 9.08     | 23.3  | 23.3    | 23.4     | 23.3     | 23.3     |  |  |  |

Tabla 1. Valores de pH y Temperatura en el influente y efluente de los reactores (continuación)

|                     |      | pH (ı |          | Temperatura (℃) |          |      |      |          |          |          |
|---------------------|------|-------|----------|-----------------|----------|------|------|----------|----------|----------|
| Día de<br>operación | ı    | BFSA  | BFA<br>1 | BFA<br>2        | BFA<br>3 | ı    | BFSA | BFA<br>1 | BFA<br>2 | BFA<br>3 |
| 78                  | 7.58 | 8.23  | 8.92     | 8.89            | 9.01     | 24   | 24   | 24.2     | 24.3     | 24.3     |
| 79                  | 7.38 | 7.98  | 8.76     | 8.97            | 9.05     | 23.9 | 24   | 24.1     | 24.1     | 24.1     |
| 81                  | 7.45 | 7.9   | 8.54     | 8.89            | 9.03     | 25   | 25   | 25       | 25       | 25       |
| 82                  | 7.44 | 7.26  | 7.36     | 8.81            | 8.79     | 25   | 25.1 | 25.1     | 25.1     | 25.1     |
| 83                  | 7.51 | 7.25  | 7.65     | 8.7             | 8.81     | 25   | 25.4 | 25.5     | 25.5     | 25.5     |
| 84                  | 7.56 | 7.22  | 8.41     | 8.77            | 8.73     | 25.2 | 25.2 | 25.3     | 25.6     | 25.2     |
| 85                  | 7.46 | 8.02  | 8.37     | 8.63            | 8.78     | 24.4 | 24.8 | 25       | 24.6     | 24.6     |
| 86                  | 7.38 | 7.92  | 8.11     | 8.18            | 8.56     | 23   | 23.1 | 23.1     | 23.1     | 23.1     |
| 88                  | 7.43 | 7.98  | 8.1      | 8.14            | 8.4      | 24   | 24.4 | 24       | 24       | 24       |
| 89                  | 7.4  | 7.62  | 8.07     | 8.13            | 7.79     | 25   | 24.9 | 24.3     | 24.2     | 24.3     |
| 90                  | 7.58 | 8.17  | 8.31     | 8.35            | 8.44     | 23   | 23.1 | 23       | 22.8     | 22.8     |
| 91                  | 7.54 | 7.74  | 7.93     | 7.88            | 8.1      | 24.5 | 24.6 | 24.9     | 24.6     | 24.8     |
| 92                  | 7.56 | 7.6   | 7.71     | 8.33            | 7.88     | 23   | 23   | 22.9     | 23.5     | 23.6     |
| 93                  | 7.42 | 7.92  | 8.31     | 8.25            | 8.5      | 24   | 24   | 24.2     | 24.2     | 24.2     |
| 95                  | 7.52 | 8.06  | 7.56     | 8.42            | 8.5      | 23.8 | 24.3 | 24.3     | 24.3     | 24.5     |
| 96                  | 7.55 | 8.3   | 7.99     | 8.45            | 8.48     | 22   | 22   | 21.7     | 21.6     | 21.8     |
| 97                  | 7.3  | 7.59  | 7.46     | 7.56            | 8.15     | 23.3 | 23   | 23.1     | 23.1     | 23       |
| 98                  | 7.57 | 7.58  | 7.37     | 8.33            | 8.04     | 23   | 23.6 | 23.4     | 23       | 23.2     |
| 99                  | 7.49 | 8.14  | 7.99     | 7.81            | 8.26     | 23   | 23.6 | 23.8     | 23.4     | 23.6     |
| 100                 | 7.48 | 8.04  | 7.22     | 8.23            | 8.35     | 23.6 | 23.7 | 23.8     | 23.8     | 23.7     |
| 102                 | 7.34 | 7.87  | 7.62     | 8.16            | 8.17     | 22   | 22   | 22.1     | 22.2     | 22.2     |
| 103                 | 7.17 | 7.46  | 7.8      | 8.08            | 8.26     | 20   | 22   | 23       | 23       | 23.2     |
| 104                 | 7.53 | 8.19  | 7.83     | 7.86            | 8.37     | 22   | 22   | 23       | 22.5     | 22.6     |
| 105                 | 7.23 | 7.87  | 7.9      | 8.1             | 8.29     | 23   | 23   | 23       | 23       | 23       |
| 106                 | 7.38 | 7.56  | 8.01     | 8.04            | 8.36     | 22.8 | 22.9 | 22.9     | 23       | 23       |
| 107                 | 7.43 | 7.21  | 8.12     | 8.2             | 8.31     | 21.2 | 23.6 | 23.9     | 24.1     | 24.4     |
| 109                 | 7.23 | 7.13  | 7.52     | 7.66            | 7.29     | 22   | 24.5 | 24.1     | 24.1     | 24.1     |
| 110                 | 7.31 | 7.6   | 7.49     | 7.58            | 7.64     | 22.8 | 23.1 | 23.3     | 23.3     | 23.3     |
| 111                 | 7.5  | 7.85  | 7.32     | 7.74            | 7.9      | 23   | 23.8 | 23       | 23       | 22.8     |
| 112                 | 7.25 | 8.09  | 7.47     | 7.32            | 8.14     | 23.6 | 22.7 | 22.8     | 22.6     | 22.6     |
| 113                 | 7.53 | 8.26  | 7.27     | 7.01            | 7.93     | 21.7 | 21.6 | 21.8     | 21.7     | 21.8     |
| 114                 | 7.07 | 7.94  | 7.37     | 6.84            | 7.92     | 22   | 21.8 | 21.9     | 22.2     | 22.2     |
| 116                 | 7.07 | 7.76  | 7.02     | 6.63            | 7.46     | 22.9 | 23   | 22       | 22.1     | 22.2     |
| 117                 | 7.3  | 8.4   | 7.27     | 6.67            | 7.86     | 24   | 24.3 | 24.1     | 23.8     | 23.9     |
| 118                 | 7.48 | 8.52  | 7.43     | 6.51            | 7.93     | 22.8 | 23.5 | 22.4     | 22.6     | 22.4     |
| 123                 | 7.44 | 7.6   | 7.35     | 6.51            | 8.13     | 24.1 | 24.7 | 24.1     | 24       | 24.1     |

Tabla 1. Valores de pH y Temperatura en el influente y efluente de los reactores (continuación)

|           |      |      | unidad | •    | J. 1. C. 1. 1. | Temperatura (℃) |      |      |      |      |  |  |
|-----------|------|------|--------|------|----------------|-----------------|------|------|------|------|--|--|
| Día de    |      | · `  | BFA    | BFA  | BFA            |                 |      | BFA  | BFA  | BFA  |  |  |
| operación | I    | BFSA | 1      | 2    | 3              | I               | BFSA | 1    | 2    | 3    |  |  |
| 125       | 7.32 | 8.39 | 8.01   | 7.84 | 8.24           | 22.6            | 22.6 | 22.6 | 22.8 | 22.8 |  |  |
| 126       | 7.25 | 8.02 | 8.2    | 7.9  | 8.5            | 22              | 22.5 | 22.3 | 22.3 | 22.4 |  |  |
| 127       | 7.34 | 7.95 | 7.92   | 7.93 | 8.56           | 22.4            | 23   | 22.4 | 22.3 | 22.4 |  |  |
| 128       | 7.36 | 8.06 | 7.74   | 7.8  | 8.11           | 21              | 22.2 | 22.4 | 22.6 | 22.8 |  |  |
| 130       | 7.42 | 7.82 | 6.9    | 7.27 | 6.62           | 24              | 24   | 24   | 23.8 | 24.3 |  |  |
| 131       | 7.39 | 7.87 | 6.17   | 7.01 | 6.47           | 23.3            | 23.4 | 23.3 | 23.1 | 23.3 |  |  |
| 132       | 7.34 | 7.85 | 7.56   | 7.12 | 6.54           | 20              | 21.9 | 22.1 | 22.2 | 22.2 |  |  |
| 133       | 7.3  | 7.82 | 7.98   | 7.77 | 6.88           | 21              | 21   | 22   | 22.1 | 22.2 |  |  |
| 134       | 7.44 | 7.8  | 7.38   | 7.12 | 6.79           | 22              | 23   | 23.2 | 23.1 | 23.1 |  |  |
| 135       | 7.42 | 7.79 | 7.27   | 7.03 | 6.72           | 23              | 23   | 23.5 | 23.7 | 23.7 |  |  |
| 137       | 7.46 | 7.85 | 6.88   | 6.88 | 6.68           | 23              | 22.9 | 23   | 23.1 | 23.3 |  |  |
| 138       | 7.47 | 8    | 6.33   | 6.71 | 6.57           | 23.2            | 23.2 | 24.1 | 23.9 | 24.4 |  |  |
| 139       | 7.44 | 7.88 | 6.12   | 6.34 | 6.39           | 22              | 22.4 | 22.7 | 22.8 | 22.4 |  |  |
| 140       | 7.49 | 8    | 6.17   | 5.96 | 5.96           | 22.4            | 22.5 | 22.3 | 22.3 | 22.4 |  |  |
| 141       | 7.54 | 8.28 | 6.05   | 6.26 | 6.14           | 23.2            | 23.1 | 23.1 | 23   | 23.1 |  |  |
| 145       | 7.09 | 8.32 | 6.27   | 6.23 | 6.05           | 23              | 23.1 | 23.3 | 23   | 23.3 |  |  |
| 146       | 7.12 | 8.18 | 6.24   | 6.19 | 5.94           | 22              | 23   | 23.1 | 23.2 | 23.1 |  |  |
| 148       | 7.08 | 7.99 | 6.61   | 6.68 | 6.24           | 25              | 25.5 | 25   | 25   | 25.1 |  |  |
| 149       | 7.12 | 8.31 | 6.39   | 6.4  | 6.32           | 22              | 21.9 | 22.1 | 22.6 | 22.7 |  |  |
| 151       | 7.1  | 8.19 | 7.12   | 7.88 | 6.55           | 21              | 21.4 | 21.8 | 21.7 | 21.4 |  |  |
| 152       | 7.14 | 7.99 | 7.85   | 7.9  | 7.24           | 21              | 21   | 21.1 | 21.1 | 22   |  |  |
| 153       | 7.44 | 8.2  | 7.99   | 7.98 | 6.38           | 23              | 23   | 23   | 23.4 | 23.7 |  |  |
| 154       | 7.06 | 8.14 | 7.03   | 7.76 | 6.11           | 22.4            | 22.6 | 22.6 | 22.4 | 22.5 |  |  |
| 155       | 7.12 | 8.21 | 7.84   | 7.77 | 6.59           | 21              | 21.5 | 22   | 22.2 | 22.5 |  |  |
| 156       | 6.97 | 8.21 | 7.97   | 7.68 | 6.57           | 20.7            | 21.3 | 21.4 | 21.4 | 21.6 |  |  |
| 158       | 7.21 | 7.71 | 6.66   | 7.13 | 6.25           | 22.5            | 22.8 | 22.4 | 22.3 | 22.4 |  |  |
| 159       | 7.18 | 8.35 | 7.41   | 7.8  | 6.8            | 21              | 21.2 | 21.1 | 21.2 | 21.2 |  |  |
| 160       | 7.07 | 7.42 | 7.3    | 7.69 | 6.01           | 22              | 22   | 22.3 | 22.3 | 22.3 |  |  |
| 161       | 7.42 | 8.11 | 6.63   | 7.21 | 5.93           | 20              | 20   | 20   | 20   | 20   |  |  |
| 162       | 7.32 | 8.08 | 7.95   | 7.89 | 7.18           | 19              | 20   | 19   | 19   | 19.1 |  |  |
| 165       | 7.28 | 7.63 | 7.69   | 7.91 | 7.56           | 20              | 21   | 21.4 | 21.8 | 21.9 |  |  |
| 166       | 7.15 | 7.49 | 7.35   | 7.85 | 7.73           | 23              | 23.6 | 23   | 23   | 23   |  |  |
| 167       | 7.46 | 8.15 | 6.79   | 8.02 | 7.74           | 22              | 22   | 22.6 | 22.6 | 22.6 |  |  |
| 168       | 7.3  | 7.97 | 7.04   | 7.61 | 7.13           | 22              | 23.2 | 22.3 | 22.1 | 22.2 |  |  |
| 169       | 7.25 | 8.03 | 7.24   | 7.45 | 7.13           | 20              | 21.8 | 21.7 | 21.6 | 21.8 |  |  |
| 172       | 7.24 | 7.67 | 7.06   | 7.94 | 6.85           | 18              | 18.6 | 18.9 | 19   | 19   |  |  |

Tabla 1. Valores de pH y Temperatura en el influente y efluente de los reactores (continuación)

|                     |      | pH (ı | unidad   | les)     |          | Temperatura (℃) |      |          |          |          |  |
|---------------------|------|-------|----------|----------|----------|-----------------|------|----------|----------|----------|--|
| Día de<br>operación | I    | BFSA  | BFA<br>1 | BFA<br>2 | BFA<br>3 | I               | BFSA | BFA<br>1 | BFA<br>2 | BFA<br>3 |  |
| 173                 | 7.05 | 7.46  | 6.87     | 8.22     | 6.48     | 18              | 19   | 20       | 20.1     | 20.1     |  |
| 174                 | 7.23 | 8.2   | 7.66     | 7.87     | 6.96     | 20              | 20   | 20.3     | 20.5     | 20       |  |
| 175                 | 7.1  | 7.95  | 6.79     | 6.34     | 6.28     | 19              | 21.1 | 20       | 20       | 20       |  |
| 176                 | 7.2  | 8.4   | 7.57     | 7.43     | 6.3      | 19              | 19.5 | 19.3     | 19.2     | 19.5     |  |
| 177                 | 7.28 | 7.57  | 6.68     | 7.83     | 6.98     | 17              | 17.7 | 18.5     | 18.6     | 18.7     |  |
| 180                 | 7.15 | 8.25  | 6.25     | 7.25     | 5.48     | 17.5            | 17.8 | 17.6     | 17.6     | 17.6     |  |
| 181                 | 7.2  | 8.13  | 6.87     | 6.12     | 6.87     | 19              | 19   | 19       | 19.1     | 19       |  |
| 182                 | 7.15 | 7.5   | 7.58     | 7.87     | 6.45     | 19.3            | 19.3 | 19.3     | 19.3     | 19.3     |  |
| 183                 | 7.17 | 7.49  | 6.31     | 8.08     | 6.31     | 21              | 21.7 | 21.4     | 21.4     | 21       |  |
| 184                 | 7.16 | 8.45  | 6.68     | 7.96     | 6.21     | 20.7            | 21   | 20.7     | 20.6     | 20.8     |  |
| 187                 | 7.33 | 8.34  | 7.16     | 6.68     | 5.51     | 21              | 21   | 20.9     | 20.9     | 20.9     |  |
| 188                 | 7.31 | 8.09  | 6.88     | 6.76     | 5.91     | 23              | 23.5 | 23.5     | 23.5     | 24       |  |
| 191                 | 7.14 | 8.14  | 6.22     | 7.98     | 5.89     | 23              | 23.7 | 23.1     | 22.4     | 22.8     |  |
| 194                 | 7.42 | 8.31  | 6.71     | 6.23     | 6.61     | 22.9            | 23   | 22.8     | 23.1     | 23       |  |
| 195                 | 7.38 | 8.18  | 7.68     | 7.43     | 6.32     | 20              | 22.2 | 21       | 21.5     | 21.8     |  |
| 196                 | 7.35 | 7.98  | 7.12     | 6.32     | 6.56     | 20              | 22   | 21.5     | 21.6     | 21.6     |  |
| 197                 | 7.4  | 7.67  | 6.11     | 6.87     | 5.6      | 24              | 24.8 | 24       | 24       | 24       |  |
| 198                 | 7.24 | 8.32  | 6.67     | 6.78     | 5.46     | 22.5            | 22.6 | 22.8     | 22.8     | 22.7     |  |
| 201                 | 7.29 | 8.44  | 7.12     | 6.91     | 6.42     | 21.3            | 22.3 | 22.9     | 23.2     | 23       |  |
| 202                 | 6.94 | 8.44  | 7.16     | 7.2      | 7.55     | 22              | 22.6 | 22.4     | 22.6     | 22.6     |  |
| 203                 | 7.03 | 8.31  | 7.04     | 6.32     | 6.29     | 20              | 20.9 | 20.2     | 20.8     | 21       |  |
| 204                 | 7.18 | 8.38  | 8.31     | 8.37     | 8.13     | 15              | 18.7 | 19.1     | 19.1     | 19       |  |
| 205                 | 7.11 | 8.49  | 7.78     | 8.12     | 6.98     | 17              | 17.8 | 18.4     | 18.6     | 18.7     |  |
| 208                 | 7.15 | 8.36  | 7.94     | 8.11     | 7.15     | 18              | 18.9 | 19       | 19       | 19       |  |
| 209                 | 7.07 | 8.13  | 8.37     | 8.25     | 8.11     | 17              | 19.9 | 20.2     | 20.4     | 21       |  |
| 210                 | 7.12 | 7.97  | 7.7      | 6.95     | 6.86     | 20              | 216  | 21.6     | 21.6     | 21.7     |  |
| 211                 | 7.49 | 8.13  | 7.21     | 6.45     | 6.7      | 22              | 22   | 23       | 24       | 24.3     |  |
| 212                 | 7.22 | 8.26  | 7.08     | 6.63     | 6.02     | 19              | 21   | 22.1     | 22.6     | 22.8     |  |
| 215                 | 7.95 | 8.3   | 6.11     | 7.09     | 6.39     | 22.1            | 21.8 | 21.9     | 21.7     | 21.8     |  |
| 216                 | 6.89 | 8.31  | 6.29     | 5.7      | 5.34     | 20              | 21.9 | 20.9     | 21.9     | 21.9     |  |
| 219                 | 7.04 | 8.2   | 7.96     | 7.77     | 6.61     | 21.6            | 21.6 | 21.6     | 21.7     | 21.8     |  |
| 222                 | 7.17 | 7.92  | 8.15     | 7.67     | 7.31     | 21.8            | 21.6 | 21.2     | 21.3     | 21.5     |  |
| 223                 | 7.34 | 8.09  | 7.36     | 6.92     | 7.42     | 23.9            | 23.6 | 23.9     | 23.7     | 24.1     |  |
| 224                 | 7.05 | 8.12  | 7.55     | 7.65     | 6.6      | 20.4            | 22.2 | 22.4     | 22.8     | 23       |  |
| 225                 | 7.37 | 7.95  | 7.72     | 7.89     | 8.06     | 19              | 23   | 22.4     | 22.2     | 22.6     |  |

Tabla 1. Valores de pH y Temperatura en el influente y efluente de los reactores (continuación)

|                     |      | pΗ (ι | unidad   | les)     |          | Temperatura (℃) |       |          |          |          |  |
|---------------------|------|-------|----------|----------|----------|-----------------|-------|----------|----------|----------|--|
| Día de operación    | I    | BFSA  | BFA<br>1 | BFA<br>2 | BFA<br>3 | I               | BFSA  | BFA<br>1 | BFA<br>2 | BFA<br>3 |  |
| 226                 | 7.3  | 8.26  | 6.86     | 6.56     | 6.8      | 19              | 20.5  | 21.5     | 21.5     | 21.8     |  |
| 229                 | 7    | 8.26  | 6.22     | 6.78     | 6.64     | 17              | 21.7  | 22.7     | 22.7     | 23.1     |  |
| 231                 | 7.38 | 8.25  | 7.64     | 7.09     | 7.07     | 19.4            | 21.7  | 22.4     | 22.7     | 22.9     |  |
| Promedio            | 7.28 | 7.73  | 7.96     | 8.06     | 7.89     | 22.1            | 23.07 | 23.1     | 23.1     | 23.2     |  |
| Desviación estándar | 0.19 | 0.60  | 0.95     | 0.94     | 1.16     | 2.06            | 1.79  | 1.75     | 1.73     | 1.73     |  |

Tabla 2. Valores de conductividad y SDT en el influente y efluente de los reactores

|                  | C    | Conduct | tividad | (µS cm | <sup>-1</sup> ) | SDT (mg L <sup>-1</sup> ) |      |      |      |      |  |
|------------------|------|---------|---------|--------|-----------------|---------------------------|------|------|------|------|--|
| Día de operación | I    | BFSA    | BFA1    | BFA2   | BFA3            | I                         | BFSA | BFA1 | BFA2 | BFA3 |  |
| 1                | 6200 | 2660    |         |        |                 | 3980                      | 1850 |      |      |      |  |
| 2                | 5120 | 3310    | 3000    | 3000   | 3120            | 4090                      | 1700 | 1401 | 1403 | 1399 |  |
| 4                | 6980 | 4040    | 2320    | 2680   | 2340            | 3590                      | 2900 | 1027 | 1440 | 1244 |  |
| 5                | 5740 | 2920    | 1529    | 1721   | 1527            | 3030                      | 1480 | 761  | 856  | 763  |  |
| 6                | 6060 | 3160    | 1219    | 1348   | 948             | 3210                      | 1490 | 602  | 668  | 418  |  |
| 7                | 5190 | 2200    | 922     | 987    | 993             | 3220                      | 1117 | 451  | 484  | 487  |  |
| 8                | 5210 | 3100    | 1621    | 1635   | 1591            | 2980                      | 1245 | 567  | 554  | 597  |  |
| 9                | 6200 | 4010    | 1228    | 1567   | 1200            | 3340                      | 1560 | 598  | 510  | 493  |  |
| 10               | 5980 | 3900    | 1598    | 1632   | 1378            | 2990                      | 1340 | 741  | 657  | 876  |  |
| 11               | 6310 | 3980    | 1229    | 1492   | 1617            | 3210                      | 1900 | 712  | 812  | 876  |  |
| 20               | 6560 | 3310    | 1759    | 1706   | 1872            | 3470                      | 1699 | 880  | 662  | 937  |  |
| 21               | 6640 | 4160    | 1881    | 1850   | 1967            | 3520                      | 2160 | 943  | 927  | 986  |  |
| 22               | 6550 | 4030    | 1928    | 1871   | 1942            | 3470                      | 2090 | 967  | 937  | 974  |  |
| 23               | 6510 | 3840    | 2000    | 1885   | 1936            | 3440                      | 1988 | 1006 | 945  | 971  |  |
| 24               | 6570 | 4010    | 1790    | 1880   | 1976            | 3610                      | 2110 | 1100 | 978  | 989  |  |
| 25               | 6820 | 3920    | 2210    | 1909   | 2010            | 3590                      | 1878 | 1056 | 965  | 991  |  |
| 26               | 6490 | 3540    | 2070    | 1912   | 1991            | 3430                      | 1825 | 1042 | 958  | 1000 |  |
| 27               | 6840 | 4630    | 2100    | 1944   | 2040            | 3620                      | 2420 | 1057 | 975  | 1029 |  |
| 28               | 6490 | 4410    | 2010    | 1934   | 2130            | 3440                      | 2300 | 1010 | 970  | 1074 |  |
| 29               | 6400 | 5240    | 3040    | 2180   | 2110            | 3950                      | 2750 | 1562 | 1048 | 1063 |  |
| 30               | 6410 | 4660    | 2670    | 2640   | 2950            | 3380                      | 2440 | 1357 | 1341 | 1504 |  |
| 32               | 6810 | 5450    | 3030    | 2850   | 2940            | 3410                      | 1990 | 1399 | 1432 | 1297 |  |
| 33               | 6380 | 5000    | 2790    | 2820   | 2430            | 3370                      | 2620 | 1422 | 1437 | 1229 |  |
| 34               | 6230 | 4830    | 2970    | 3100   | 2520            | 3300                      | 2530 | 1517 | 1587 | 1281 |  |
| 35               | 6280 | 3170    | 3100    | 2620   | 2630            | 3320                      | 2360 | 1589 | 1626 | 1335 |  |
| 36               | 6580 | 5610    | 2830    | 2800   | 2410            | 3510                      | 2950 | 1445 | 1429 | 1220 |  |
| 37               | 6490 | 4980    | 2910    | 2760   | 3110            | 3290                      | 2760 | 1299 | 1410 | 1638 |  |
| 39               | 6080 | 5410    | 2680    | 2580   | 2470            | 3530                      | 2800 | 1366 | 1310 | 1255 |  |
| 40               | 6750 | 5160    | 2740    | 2790   | 3140            | 3580                      | 2720 | 1395 | 1423 | 1609 |  |
| 41               | 6990 | 5570    | 2640    | 2490   | 3020            | 3710                      | 2930 | 1341 | 1262 | 1542 |  |
| 42               | 6840 | 5230    | 2550    | 2560   | 3370            | 3520                      | 2750 | 1297 | 1293 | 1735 |  |
| 43               | 6870 | 5060    | 2580    | 2860   | 3180            | 3640                      | 2650 | 1312 | 1459 | 1632 |  |
| 44               | 6430 | 5440    | 2740    | 2720   | 3080            | 3400                      | 2860 | 1394 | 1386 | 1580 |  |
| 46               | 6910 | 5050    | 2710    | 2910   | 2950            | 3540                      | 2790 | 1267 | 1269 | 1480 |  |

Tabla 2. Valores de conductividad y SDT en el influente y efluente de los reactores (continuación)

| Conductividad (µS cm <sup>-1</sup> ) SDT (mg L <sup>-1</sup> ) |      |      |      |              |      |      |      |      |      |      |  |  |
|----------------------------------------------------------------|------|------|------|--------------|------|------|------|------|------|------|--|--|
| Día de operación                                               | ı    | BFSA | BFA1 | BFA2         | BFA3 | I    | BFSA | BFA1 | BFA2 | BFA3 |  |  |
| 47                                                             |      |      |      |              |      | _    |      |      |      |      |  |  |
|                                                                | 6890 | 5340 | 2580 | 2870<br>2880 | 2530 | 3610 | 2810 | 1568 | 1632 | 1590 |  |  |
| 48<br>49                                                       | 6840 | 5140 | 2770 |              | 2960 | 3620 | 2700 | 1409 | 1471 | 1513 |  |  |
|                                                                | 6760 | 5770 | 3050 | 3220         | 2760 | 3570 | 3040 | 1562 | 1654 | 1406 |  |  |
| 50                                                             | 6740 | 5520 | 2880 | 2900         | 2740 | 3590 | 3100 | 1618 | 1720 | 1400 |  |  |
| 51                                                             | 6870 | 6130 | 2980 | 3400         | 2740 | 3640 | 3240 | 1523 | 1749 | 1397 |  |  |
| 53                                                             | 6700 | 5950 | 3030 | 3190         | 3120 | 3550 | 3140 | 1552 | 1637 | 1598 |  |  |
| 54                                                             | 6900 | 5850 | 2900 | 3150         | 2540 | 3610 | 3080 | 1483 | 1616 | 1287 |  |  |
| 55                                                             | 6910 | 6870 | 3570 | 3680         | 3230 | 3700 | 3630 | 1843 | 1920 | 1654 |  |  |
| 56                                                             | 5800 | 4660 | 2270 | 2300         | 2030 | 3490 | 2440 | 1146 | 1164 | 1019 |  |  |
| 57                                                             | 5900 | 5400 | 2410 | 3100         | 2230 | 3610 | 2900 | 1324 | 1538 | 1258 |  |  |
| 58                                                             | 6140 | 5320 | 2760 | 3350         | 2780 | 3240 | 2800 | 1406 | 1722 | 1416 |  |  |
| 59                                                             | 6210 | 5420 | 2510 | 3220         | 2660 | 3610 | 2450 | 1210 | 1632 | 1212 |  |  |
| 60                                                             | 6160 | 5380 | 2760 | 3140         | 2750 | 3250 | 2830 | 1406 | 1609 | 1401 |  |  |
| 61                                                             | 6750 | 6010 | 3520 | 3970         | 3490 | 3920 | 3580 | 1812 | 2070 | 1797 |  |  |
| 62                                                             | 6970 | 5980 | 2830 | 2920         | 2740 | 3650 | 3170 | 1447 | 1410 | 1399 |  |  |
| 64                                                             | 5060 | 3950 | 2100 | 2590         | 2290 | 2600 | 2060 | 1056 | 1317 | 1158 |  |  |
| 65                                                             | 6820 | 5630 | 2700 | 3870         | 2940 | 3610 | 3000 | 1374 | 2000 | 1505 |  |  |
| 67                                                             | 5830 | 4770 | 2580 | 3670         | 2670 | 3070 | 2500 | 1312 | 1897 | 1356 |  |  |
| 68                                                             | 6280 | 5700 | 3280 | 4700         | 3480 | 3310 | 3000 | 1686 | 2450 | 1797 |  |  |
| 69                                                             | 6180 | 5130 | 2680 | 3810         | 3020 | 3820 | 3510 | 1363 | 1973 | 1544 |  |  |
| 70                                                             | 6280 | 6010 | 2600 | 3790         | 3040 | 3880 | 3390 | 1324 | 1960 | 1554 |  |  |
| 71                                                             | 5980 | 4550 | 2250 | 2690         | 2240 | 3570 | 2110 | 1134 | 1370 | 1132 |  |  |
| 72                                                             | 6540 | 6380 | 2860 | 3510         | 2940 | 3460 | 3380 | 1462 | 1811 | 1502 |  |  |
| 74                                                             | 6560 | 6420 | 3080 | 3620         | 3130 | 3480 | 3390 | 1577 | 1872 | 1603 |  |  |
| 75                                                             | 6990 | 6020 | 3140 | 3670         | 3250 | 3770 | 3180 | 1610 | 1896 | 1668 |  |  |
| 76                                                             | 6630 | 6250 | 3140 | 3470         | 3350 | 3510 | 3300 | 1610 | 1787 | 1725 |  |  |
| 77                                                             | 6490 | 6160 | 2980 | 3410         | 3070 | 3430 | 3250 | 1522 | 1755 | 1571 |  |  |
| 78                                                             | 6580 | 5560 | 3060 | 3300         | 3450 | 3970 | 2930 | 1565 | 1697 | 1781 |  |  |
| 79                                                             | 6550 | 5910 | 3020 | 3310         | 3410 | 3510 | 3190 | 1598 | 1693 | 1715 |  |  |
| 81                                                             | 6560 | 6160 | 3260 | 3330         | 3350 | 3470 | 3320 | 1673 | 1714 | 1724 |  |  |
| 82                                                             | 5980 | 6280 | 4100 | 3570         | 3930 | 3160 | 3320 | 2130 | 1841 | 2040 |  |  |
| 83                                                             | 5960 | 5890 | 3690 | 3260         | 3630 | 2890 | 2560 | 1911 | 1676 | 1876 |  |  |
| 84                                                             | 6010 | 6250 | 3340 | 3990         | 3920 | 3170 | 3070 | 1720 | 2070 | 2030 |  |  |
| 85                                                             | 6420 | 5210 | 3500 | 3530         | 3490 | 3390 | 2740 | 1805 | 1821 | 1801 |  |  |
| 86                                                             | 5990 | 5360 | 3590 | 4010         | 4350 | 3290 | 3020 | 1900 | 2110 | 2050 |  |  |
| 88                                                             | 6090 | 5670 | 3530 | 3990         | 3890 | 3410 | 2800 | 1810 | 2130 | 2100 |  |  |
| 89                                                             | 6610 | 6290 | 3600 | 4240         | 4450 | 3490 | 3480 | 1859 | 2200 | 2870 |  |  |

Tabla 2. Valores de conductividad y SDT en el influente y efluente de los reactores (continuación)

|                  | C    | Conduc |      | (µS cm | _    | SDT (mg L <sup>-1</sup> ) |      |      |      |      |  |
|------------------|------|--------|------|--------|------|---------------------------|------|------|------|------|--|
| Día de operación | I    | BFSA   | BFA1 | BFA2   | BFA3 | I                         | BFSA | BFA1 | BFA2 | BFA3 |  |
| 90               | 6260 | 4530   | 3560 | 3900   | 3870 | 3310                      | 2370 | 1835 | 2020 | 2010 |  |
| 91               | 6470 | 5550   | 3220 | 2730   | 3620 | 3920                      | 3440 | 1654 | 1410 | 1870 |  |
| 92               | 6290 | 6240   | 3240 | 3070   | 3780 | 3330                      | 3220 | 1664 | 1572 | 1956 |  |
| 93               | 6160 | 6330   | 3130 | 3200   | 3560 | 3250                      | 3150 | 1608 | 1642 | 1836 |  |
| 95               | 6430 | 5960   | 2960 | 3510   | 3750 | 3400                      | 3130 | 1511 | 1808 | 1942 |  |
| 96               | 6360 | 5840   | 3570 | 3970   | 4250 | 3360                      | 3080 | 1843 | 2060 | 2210 |  |
| 97               | 6190 | 6010   | 3570 | 4320   | 4070 | 3260                      | 3190 | 1846 | 2250 | 2110 |  |
| 98               | 6510 | 6380   | 3960 | 3950   | 4020 | 3440                      | 3380 | 2050 | 2050 | 2080 |  |
| 99               | 6430 | 4430   | 3160 | 2980   | 3150 | 3580                      | 2310 | 1620 | 1527 | 1617 |  |
| 100              | 6520 | 6000   | 4170 | 3850   | 5020 | 3450                      | 3170 | 2170 | 1992 | 2630 |  |
| 102              | 6450 | 4990   | 3980 | 4100   | 3900 | 3870                      | 2990 | 2200 | 2230 | 2340 |  |
| 103              | 6500 | 5530   | 4180 | 4240   | 5140 | 3880                      | 3510 | 2520 | 2540 | 2700 |  |
| 104              | 6330 | 5880   | 4800 | 4190   | 5070 | 3350                      | 3100 | 2560 | 2520 | 2670 |  |
| 105              | 6500 | 5640   | 4220 | 4390   | 4900 | 3710                      | 3620 | 2480 | 2650 | 2650 |  |
| 106              | 6720 | 5360   | 4580 | 4290   | 4860 | 3790                      | 3560 | 2490 | 2640 | 2580 |  |
| 107              | 6990 | 5120   | 4790 | 4080   | 4870 | 3830                      | 3780 | 2510 | 2660 | 2550 |  |
| 109              | 6600 | 5480   | 3020 | 2960   | 3190 | 3940                      | 3140 | 1550 | 1573 | 1639 |  |
| 110              | 6530 | 5610   | 3280 | 3270   | 3350 | 3720                      | 3180 | 1810 | 1650 | 1730 |  |
| 111              | 6220 | 5890   | 3810 | 3830   | 3860 | 3640                      | 3290 | 1975 | 1983 | 2000 |  |
| 112              | 7120 | 6330   | 3990 | 4020   | 3840 | 3990                      | 3150 | 2100 | 2180 | 1985 |  |
| 113              | 8600 | 5650   | 4150 | 4200   | 3920 | 4640                      | 2980 | 2150 | 2190 | 2030 |  |
| 114              | 8588 | 5720   | 4200 | 4150   | 4070 | 4610                      | 3280 | 2190 | 2170 | 2050 |  |
| 116              | 8390 | 5880   | 4220 | 4130   | 4080 | 4520                      | 3620 | 2190 | 2150 | 2120 |  |
| 117              | 8580 | 6640   | 4480 | 4470   | 4450 | 4630                      | 3510 | 2340 | 2330 | 2320 |  |
| 118              | 8950 | 6390   | 4320 | 4480   | 4520 | 4840                      | 3380 | 2250 | 2340 | 2360 |  |
| 123              | 8380 | 6620   | 4020 | 4280   | 4490 | 3880                      | 3510 | 2090 | 2230 | 2340 |  |
| 125              | 8090 | 6470   | 5250 | 5350   | 5750 | 4120                      | 3420 | 2760 | 2810 | 3030 |  |
| 126              | 8610 | 6890   | 4810 | 5220   | 5610 | 4620                      | 3930 | 2670 | 2510 | 2850 |  |
| 127              | 8450 | 7920   | 4430 | 4750   | 4410 | 4730                      | 4250 | 2310 | 2480 | 2300 |  |
| 128              | 8800 | 7560   | 4740 | 4880   | 4660 | 4730                      | 4220 | 2480 | 2560 | 2440 |  |
| 130              | 8780 | 8110   | 4970 | 5060   | 5050 | 4750                      | 4480 | 2610 | 2660 | 2650 |  |
| 131              | 8980 | 8510   | 5990 | 6010   | 6580 | 4950                      | 4710 | 3160 | 3170 | 3540 |  |
| 132              | 7980 | 7240   | 4840 | 5690   | 5310 | 4300                      | 4500 | 3480 | 2850 | 3520 |  |
| 133              | 7960 | 6950   | 4280 | 4100   | 4190 | 3810                      | 3690 | 4230 | 2130 | 2180 |  |
| 134              | 7800 | 6840   | 4110 | 3970   | 4090 | 3760                      | 3620 | 2140 | 2060 | 2130 |  |
| 135              | 7910 | 7160   | 4560 | 4370   | 4390 | 4120                      | 3840 | 2360 | 2220 | 2010 |  |

Tabla 2. Valores de conductividad y SDT en el influente y efluente de los reactores (continuación)

|                  | С     | onducti | μS cm <sup>-</sup> | 1)   | SDT (mg L <sup>-1</sup> ) |      |      |      |      |      |
|------------------|-------|---------|--------------------|------|---------------------------|------|------|------|------|------|
| Día de operación | I     | BFSA    | BFA1               | BFA2 | BFA3                      | ı    | BFSA | BFA1 | BFA2 | BFA3 |
| 137              | 7890  | 7200    | 4680               | 4520 | 4500                      | 4070 | 3670 | 2460 | 2440 | 2130 |
| 138              | 7830  | 7220    | 4740               | 4700 | 4630                      | 3840 | 3790 | 2480 | 2460 | 2420 |
| 139              | 7940  | 7170    | 4830               | 4880 | 4710                      | 4210 | 3970 | 2450 | 2390 | 2220 |
| 140              | 7910  | 7130    | 4450               | 4460 | 4350                      | 3630 | 3790 | 2320 | 2330 | 2260 |
| 141              | 8550  | 8310    | 5610               | 5570 | 5340                      | 4970 | 4590 | 2950 | 2930 | 2810 |
| 145              | 9520  | 6120    | 4700               | 4630 | 4500                      | 5200 | 3490 | 2460 | 2420 | 2350 |
| 146              | 9410  | 6080    | 4720               | 4550 | 4530                      | 5570 | 4210 | 2890 | 3100 | 2630 |
| 148              | 11000 | 9010    | 6720               | 6190 | 6650                      | 6900 | 5030 | 3560 | 3270 | 3520 |
| 149              | 9940  | 7360    | 5300               | 4500 | 5910                      | 5440 | 3930 | 2780 | 2350 | 3120 |
| 151              | 9820  | 7640    | 5690               | 5200 | 5950                      | 5620 | 4980 | 2620 | 2650 | 3160 |
| 152              | 9620  | 8160    | 4660               | 5520 | 5990                      | 5230 | 4190 | 2720 | 2890 | 3170 |
| 153              | 12800 | 9490    | 6000               | 6330 | 6420                      | 7000 | 5210 | 3160 | 3340 | 3390 |
| 154              | 12500 | 9670    | 5820               | 6220 | 6280                      | 6960 | 5260 | 3070 | 3290 | 3320 |
| 155              | 12800 | 9830    | 5920               | 6350 | 6070                      | 7180 | 5360 | 3120 | 3360 | 3210 |
| 156              | 10100 | 7280    | 4500               | 5010 | 4440                      | 5280 | 3880 | 2350 | 2630 | 2310 |
| 158              | 12570 | 9350    | 6160               | 6670 | 6420                      | 6970 | 5080 | 3250 | 3530 | 3400 |
| 159              | 9550  | 7150    | 4820               | 5220 | 5350                      | 5190 | 5110 | 2530 | 2740 | 2810 |
| 160              | 12310 | 10500   | 6800               | 7310 | 7440                      | 6740 | 5750 | 3600 | 3890 | 3970 |
| 161              | 12150 | 10340   | 6400               | 6990 | 7160                      | 6710 | 5660 | 3380 | 3710 | 3810 |
| 162              | 11920 | 10350   | 6270               | 6770 | 6140                      | 6580 | 5660 | 3310 | 3580 | 3240 |
| 165              | 11200 | 9010    | 6260               | 6540 | 5930                      | 6620 | 5290 | 2960 | 3670 | 3850 |
| 166              | 10750 | 8910    | 5710               | 6110 | 5770                      | 5340 | 4810 | 3010 | 3220 | 3040 |
| 167              | 10210 | 8740    | 3950               | 5300 | 4890                      | 5580 | 4730 | 2050 | 2790 | 2560 |
| 168              | 10220 | 9040    | 5110               | 5700 | 5230                      | 5580 | 4900 | 2680 | 3000 | 2750 |
| 169              | 12980 | 11410   | 7760               | 7750 | 6610                      | 7200 | 6280 | 4160 | 4140 | 3490 |
| 172              | 12190 | 11470   | 7540               | 7610 | 7290                      | 6980 | 6820 | 3850 | 3900 | 3690 |
| 173              | 12910 | 11700   | 7200               | 7960 | 7180                      | 7160 | 6450 | 3830 | 4270 | 3820 |
| 174              | 12270 | 11600   | 6850               | 7500 | 7780                      | 6780 | 6390 | 3630 | 4010 | 4170 |
| 175              | 12960 | 11830   | 7170               | 8220 | 7340                      | 7200 | 6520 | 3810 | 4430 | 3910 |
| 176              | 12860 | 11030   | 7230               | 8230 | 7160                      | 7140 | 6060 | 3850 | 4430 | 3810 |
| 177              | 11930 | 11870   | 7720               | 8120 | 7530                      | 6460 | 6570 | 4130 | 4370 | 4020 |
| 180              | 11950 | 10910   | 8320               | 9310 | 8800                      | 6850 | 5990 | 4480 | 5050 | 4760 |
| 181              | 12120 | 11050   | 7510               | 8940 | 8200                      | 7220 | 6000 | 4280 | 4860 | 4570 |
| 182              | 11980 | 12740   | 7730               | 8400 | 7840                      | 6610 | 7060 | 4140 | 4530 | 4200 |
| 183              | 12100 | 12960   | 8110               | 8400 | 8410                      | 7320 | 7190 | 4360 | 4530 | 4530 |
| 184              | 12060 | 11980   | 8210               | 8680 | 8850                      | 7250 | 7090 | 4420 | 4690 | 4790 |

Tabla 2. Valores de conductividad y SDT en el influente y efluente de los reactores (continuación)

|                     | С     |       |      | (CONTI<br>(µS cm <sup>-</sup> |       |      | SE   | T (mg | L <sup>-1</sup> ) |      |
|---------------------|-------|-------|------|-------------------------------|-------|------|------|-------|-------------------|------|
| Día de operación    | ı     | BFSA  | BFA1 | BFA2                          | BFA3  | I    | BFSA | BFA1  | BFA2              | BFA3 |
| 187                 | 12140 | 11340 | 7820 | 9130                          | 8780  | 7300 | 6240 | 4140  | 4950              | 4750 |
| 188                 | 12370 | 12900 | 8260 | 9940                          | 10860 | 7440 | 7160 | 4440  | 5420              | 5960 |
| 191                 | 12670 | 12930 | 8780 | 8990                          | 8490  | 7020 | 7130 | 4740  | 4870              | 4580 |
| 194                 | 12320 | 11600 | 8140 | 9100                          | 8120  | 7810 | 6390 | 4320  | 5000              | 4200 |
| 195                 | 12750 | 12530 | 7900 | 8990                          | 10610 | 7170 | 6950 | 4240  | 4910              | 5810 |
| 196                 | 12580 | 11420 | 8230 | 8500                          | 9200  | 7600 | 6630 | 4220  | 4320              | 5680 |
| 197                 | 12150 | 11530 | 7490 | 8480                          | 8760  | 7530 | 6360 | 4000  | 4560              | 4740 |
| 198                 | 12010 | 12310 | 9050 | 11060                         | 11480 | 7860 | 6820 | 4910  | 6130              | 6320 |
| 201                 | 10100 | 9710  | 8150 | 9290                          | 8190  | 6920 | 5140 | 4360  | 5060              | 4440 |
| 202                 | 11560 | 11460 | 8360 | 10370                         | 11700 | 6370 | 6310 | 4500  | 5670              | 6440 |
| 203                 | 11550 | 12230 | 8510 | 9720                          | 9810  | 6360 | 6760 | 4590  | 5280              | 5360 |
| 204                 | 10980 | 9600  | 6460 | 7600                          | 7430  | 5350 | 5210 | 3430  | 4060              | 3970 |
| 205                 | 10340 | 9500  | 6150 | 7370                          | 7160  | 6070 | 4860 | 3250  | 3930              | 3810 |
| 208                 | 11900 | 10110 | 7600 | 8270                          | 8220  | 7170 | 5220 | 4520  | 4270              | 4510 |
| 209                 | 12040 | 12480 | 8600 | 9750                          | 9240  | 7240 | 6900 | 4640  | 5310              | 5010 |
| 210                 | 12950 | 12490 | 7510 | 9390                          | 9140  | 7120 | 6920 | 4010  | 5040              | 4960 |
| 211                 | 10880 | 9740  | 6090 | 7530                          | 7320  | 8410 | 5320 | 3220  | 4030              | 3900 |
| 212                 | 12760 | 12370 | 6940 | 9280                          | 8960  | 7070 | 6840 | 3680  | 5030              | 4850 |
| 215                 | 12950 | 12230 | 7170 | 9000                          | 10320 | 7190 | 6760 | 3810  | 4880              | 5640 |
| 216                 | 10090 | 11640 | 7630 | 10560                         | 10450 | 5520 | 6440 | 4080  | 5780              | 5720 |
| 219                 | 11090 | 12620 | 7450 | 9260                          | 9070  | 6090 | 6990 | 3980  | 5020              | 4920 |
| 222                 | 10810 | 12800 | 7470 | 9200                          | 8660  | 5930 | 7100 | 3990  | 4990              | 4670 |
| 223                 | 11180 | 12660 | 7500 | 9920                          | 9140  | 6150 | 7010 | 4000  | 5410              | 4960 |
| 224                 | 10860 | 11540 | 6600 | 8410                          | 8520  | 6370 | 6360 | 3490  | 4540              | 4590 |
| 225                 | 10570 | 11770 | 6780 | 7990                          | 7810  | 5160 | 6490 | 3590  | 4280              | 4190 |
| 226                 | 10410 | 11440 | 5800 | 7440                          | 7030  | 5690 | 6360 | 5800  | 7440              | 7030 |
| 229                 | 11730 | 12240 | 9390 | 11780                         | 11090 | 6500 | 8550 | 5090  | 6490              | 6090 |
| 231                 | 10540 | 11390 | 6420 | 8340                          | 8330  | 5750 | 6260 | 3390  | 4490              | 4480 |
| Promedio            | 8417  | 7293  | 4513 | 4936                          | 4874  | 4668 | 3995 | 2406  | 2636              | 2604 |
| Desviación estándar | 2460  | 2862  | 2083 | 2512                          | 2515  | 1511 | 1664 | 1184  | 1439              | 1447 |

Tabla 3. Concentración de OD en el influente y efluente de los reactores

|                  |      | C    | D (mg | L <sup>-1</sup> ) |      | OD (mg L <sup>-1</sup> ) |      |      |      |      |      |  |
|------------------|------|------|-------|-------------------|------|--------------------------|------|------|------|------|------|--|
| Día de operación | I    | BFSA | BFA1  | BFA2              | BFA3 | Día de operación         | I    | BFSA | BFA1 | BFA2 | BFA3 |  |
| 98               | 0.26 | 0.41 | 2.93  | 2.98              | 2.91 | 146                      | 0.16 | 0.5  | 2.01 | 2.12 | 2.15 |  |
| 99               | 0.23 | 0.3  | 2.96  | 3.02              | 3.12 | 148                      | 0.2  | 0.16 | 2.44 | 1.65 | 2.5  |  |
| 100              | 0.28 | 0.25 | 3.08  | 3.3               | 3.45 | 149                      | 0.2  | 0.18 | 2.47 | 2.84 | 2.7  |  |
| 102              | 0.34 | 0.24 | 2.98  | 3.01              | 2.85 | 151                      | 0.2  | 0.17 | 2.19 | 2.33 | 2.76 |  |
| 103              | 0.39 | 0.28 | 2.8   | 2.46              | 2.74 | 152                      | 0.2  | 0.15 | 1.72 | 1.45 | 2.92 |  |
| 104              | 0.32 | 0.32 | 3.17  | 3.2               | 3.54 | 153                      | 0.18 | 0.17 | 1.86 | 1.88 | 2.24 |  |
| 105              | 0.27 | 0.26 | 2.65  | 2.75              | 3.12 | 154                      | 0.22 | 0.18 | 1.51 | 1.61 | 2.66 |  |
| 106              | 0.34 | 0.38 | 2.98  | 2.34              | 2.49 | 155                      | 0.16 | 0.18 | 2.22 | 1.18 | 2.44 |  |
| 107              | 0.29 | 0.27 | 2.15  | 2.34              | 1.95 | 156                      | 0.21 | 0.32 | 1.61 | 1.11 | 2.5  |  |
| 109              | 0.34 | 0.34 | 2.37  | 2.8               | 2.96 | 158                      | 0.24 | 0.64 | 2.35 | 2.36 | 2.56 |  |
| 110              | 0.35 | 0.23 | 2.98  | 2.67              | 3.09 | 159                      | 0.21 | 1.11 | 1.78 | 1.61 | 2.72 |  |
| 111              | 0.29 | 0.25 | 2.99  | 3.03              | 3.12 | 160                      | 0.15 | 0.36 | 2.05 | 1.76 | 2.9  |  |
| 112              | 0.36 | 0.4  | 3.12  | 3.3               | 3.78 | 161                      | 0.18 | 0.18 | 2.67 | 2.48 | 2.95 |  |
| 113              | 0.23 | 0.22 | 3.04  | 2.91              | 3.4  | 162                      | 0.18 | 0.15 | 2.2  | 1.79 | 2.85 |  |
| 114              | 0.25 | 0.44 | 3.56  | 3.27              | 3.96 | 165                      | 0.2  | 0.15 | 1.1  | 1.47 | 1.69 |  |
| 116              | 0.28 | 0.35 | 2.63  | 2.22              | 3.02 | 166                      | 0.18 | 0.11 | 0.73 | 0.98 | 1.5  |  |
| 117              | 0.26 | 0.48 | 2.78  | 3.01              | 3.4  | 167                      | 0.15 | 0.21 | 2.09 | 1.78 | 2.01 |  |
| 118              | 0.28 | 0.5  | 3.33  | 3.51              | 3.55 | 168                      | 0.11 | 0.12 | 1.72 | 1.2  | 2    |  |
| 123              | 0.31 | 0.24 | 3.24  | 3.26              | 3.66 | 169                      | 0.12 | 0.27 | 1.8  | 1.85 | 2.56 |  |
| 125              | 0.28 | 1    | 2.98  | 2.73              | 3.55 | 172                      | 0.23 | 0.27 | 1.98 | 2.07 | 2.6  |  |
| 126              | 0.25 | 0.21 | 1.26  | 1.4               | 1.8  | 173                      | 0.22 | 0.28 | 1.77 | 1.6  | 2.3  |  |
| 127              | 0.17 | 0.15 | 2.76  | 2.91              | 3.2  | 174                      | 0.25 | 0.3  | 1.98 | 2.01 | 2.08 |  |
| 128              | 0.21 | 0.18 | 2.91  | 2.89              | 3.05 | 175                      | 0.14 | 0.18 | 2.44 | 2.63 | 2.98 |  |
| 130              | 0.16 | 0.21 | 2.51  | 2.68              | 3.15 | 176                      | 0.21 | 0.35 | 2.36 | 2.56 | 2.79 |  |
| 131              | 0.17 | 0.27 | 2.78  | 2.88              | 3.22 | 177                      | 0.24 | 0.55 | 2.2  | 2.28 | 2.7  |  |
| 132              | 0.18 | 0.25 | 1.96  | 2.02              | 2.45 | 180                      | 0.2  | 1    | 2.65 | 2.7  | 2.74 |  |
| 133              | 0.18 | 0.28 | 1.17  | 1.46              | 1.5  | 181                      | 0.19 | 0.84 | 2.43 | 1.5  | 2.48 |  |
| 134              | 0.17 | 0.2  | 2.08  | 2.18              | 3.02 | 182                      | 0.2  | 0.61 | 1.51 | 2.2  | 1.65 |  |
| 135              | 0.2  | 0.29 | 1.85  | 1.98              | 2.06 | 183                      | 0.15 | 0.3  | 1.44 | 1.45 | 1.47 |  |
| 137              | 0.19 | 0.27 | 1.89  | 1.86              | 2.36 | 184                      | 0.13 | 0.15 | 1.66 | 1.68 | 1.73 |  |
| 138              | 0.22 | 0.32 | 1.73  | 1.88              | 2.63 | 187                      | 0.15 | 0.79 | 1.38 | 1.5  | 1.51 |  |
| 139              | 0.22 | 0.24 | 2.13  | 2.35              | 2.8  | 188                      | 0.18 | 0.25 | 1.44 | 1.5  | 1.5  |  |
| 140              | 0.2  | 0.13 | 2.46  | 2.53              | 3.14 | 191                      | 0.22 | 0.34 | 1.48 | 1.69 | 1.93 |  |
| 141              | 0.18 | 0.42 | 2.19  | 2.38              | 2.42 | 194                      | 0.2  | 0.4  | 1.38 | 2.01 | 2.13 |  |
| 145              | 0.18 | 8.0  | 1.91  | 1.89              | 2.01 | 195                      | 0.21 | 0.45 | 1.67 | 1.92 | 2.07 |  |

Tabla 3. Concentración de OD en el influente y efluente de los reactores (continuación)

|                        |      | С    | D (mg | L <sup>-1</sup> ) |      |
|------------------------|------|------|-------|-------------------|------|
| Día de<br>operación    | I    | BFSA | BFA1  | BFA2              | BFA3 |
| 196                    | 0.15 | 0.46 | 1.69  | 1.86              | 1.96 |
| 197                    | 0.2  | 0.4  | 1.83  | 1.87              | 1.4  |
| 198                    | 0.2  | 0.48 | 1.34  | 1.35              | 1.28 |
| 201                    | 0.17 | 0.16 | 1.74  | 1.81              | 1.92 |
| 202                    | 0.21 | 0.38 | 0.87  | 1.33              | 1.42 |
| 203                    | 0.17 | 0.21 | 1.5   | 1.4               | 1.54 |
| 204                    | 0.17 | 1.08 | 1.28  | 1.34              | 1.52 |
| 205                    | 0.2  | 1.21 | 1.55  | 1.52              | 1.6  |
| 208                    | 0.2  | 0.24 | 1.79  | 1.86              | 2.1  |
| 209                    | 0.21 | 0.45 | 1.93  | 2.03              | 2.13 |
| 210                    | 0.19 | 0.38 | 1.3   | 1.29              | 1.33 |
| 211                    | 0.2  | 0.23 | 1.06  | 1.2               | 1.51 |
| 212                    | 0.18 | 0.8  | 2.73  | 2.44              | 2.81 |
| 215                    | 0.21 | 1.02 | 1.21  | 1.39              | 1.45 |
| 216                    | 0.2  | 0.99 | 1.42  | 1.51              | 1.54 |
| 219                    | 0.2  | 0.71 | 1.13  | 1.81              | 2.01 |
| 222                    | 0.26 | 0.59 | 1.29  | 2.03              | 1.2  |
| 223                    | 0.23 | 0.92 | 1.07  | 1.21              | 1.13 |
| 224                    | 0.21 | 0.32 | 1.07  | 1.9               | 1.24 |
| 225                    | 0.19 | 0.81 | 1.29  | 1.8               | 1.91 |
| 229                    | 0.19 | 0.85 | 1.56  | 1.89              | 1.96 |
| 231                    | 0.18 | 0.91 | 1.73  | 1.81              | 1.85 |
| Promedio               | 0.21 | 0.41 | 2.05  | 2.10              | 2.40 |
| Desviación<br>estándar | 0.06 | 0.27 | 0.66  | 0.62              | 0.70 |

Tabla 4. Concentración de alcalinidad en el influente y efluente de los reactores

|                     | Δ       | lcalinida | d (mg C | aCO <sub>3</sub> L <sup>-1</sup> | )      |
|---------------------|---------|-----------|---------|----------------------------------|--------|
| Día de operación    | I       | BFSA      | BFA1    | BFA2                             | BFA3   |
| 7                   | 3450    | 1230      | 636     | 630                              | 660    |
| 15                  | 3366    | 1218      | 702     | 636                              | 702    |
| 22                  | 3234    | 1608      | 792     | 672                              | 774    |
| 28                  | 3150    | 1578      | 804     | 726                              | 732    |
| 36                  | 3738    | 1446      | 1446    | 1458                             | 966    |
| 43                  | 3480    | 1510      | 1404    | 1554                             | 1008   |
| 51                  | 3672    | 1778      | 1368    | 1302                             | 900    |
| 57                  | 4160    | 2054      | 832     | 1409                             | 1035   |
| 64                  | 3191    | 2344      | 813     | 547                              | 1039   |
| 71                  | 3583    | 2228      | 908     | 721                              | 929    |
| 78                  | 3288    | 2132      | 912     | 698                              | 812    |
| 85                  | 3073    | 2452      | 955     | 623                              | 710    |
| 93                  | 3398    | 2188      | 353     | 386                              | 341    |
| 99                  | 3464    | 2039      | 183     | 166                              | 229    |
| 113                 | 2960    | 2268      | 87      | 98                               | 151    |
| 128                 | 3239    | 3728      | 283     | 307                              | 365    |
| 145                 | 4709    | 2522      | 188     | 97                               | 31     |
| 152                 | 4774    | 4830      | 530     | 959                              | 165    |
| 155                 | 5268    | 4384      | 398     | 746                              | 44     |
| 161                 | 5531    | 5134      | 655     | 1133                             | 528    |
| 168                 | 5205    | 5535      | 193     | 316                              | 136    |
| 209                 | 5740    | 6538      | 214     | 159                              | 91     |
| 216                 | 5111    | 6262      | 197     | 165                              | 69     |
| 224                 | 4534    | 6663      | 333     | 319                              | 49     |
| 226                 | 4244    | 6534      | 181     | 92                               | 89     |
| 231                 | 4809    | 6627      | 411     | 148                              | 129    |
| Promedio            | 4014.23 | 3339.58   | 606.81  | 617.90                           | 487.81 |
| Desviación estándar | 866.10  | 1977.02   | 401.80  | 451.74                           | 374.41 |

Tabla 5. Concentración de SST y SSV en el influente y efluente de los reactores

|                     |      | SST  | (mg L <sup>-1</sup> ) |      | SSV(mg L <sup>-1</sup> ) |      |      |      |      |      |
|---------------------|------|------|-----------------------|------|--------------------------|------|------|------|------|------|
| Día de<br>operación | I    | BFSA | BFA1                  | BFA2 | BFA3                     | I    | BFSA | BFA1 | BFA2 | BFA3 |
| 6                   | 973  | 190  | 150                   | 70   | 100                      | 848  | 170  | 90   | 60   | 70   |
| 8                   | 1280 | 225  | 120                   | 70   | 130                      | 1220 | 155  | 100  | 50   | 50   |
| 12                  | 1220 | 155  | 120                   | 70   | 130                      | 1020 | 80   | 100  | 50   | 50   |
| 15                  | 1320 | 100  | 120                   | 70   | 130                      | 1260 | 75   | 100  | 50   | 50   |
| 22                  | 840  | 560  | 190                   | 140  | 150                      | 760  | 410  | 160  | 130  | 130  |
| 26                  | 1130 | 370  | 195                   | 230  | 115                      | 950  | 270  | 100  | 110  | 75   |
| 29                  | 2260 | 390  | 190                   | 320  | 120                      | 2000 | 320  | 150  | 260  | 80   |
| 33                  | 1540 | 330  | 230                   | 290  | 60                       | 1480 | 320  | 190  | 240  | 30   |
| 36                  | 2100 | 460  | 220                   | 360  | 90                       | 1800 | 410  | 200  | 330  | 40   |
| 40                  | 1000 | 190  | 180                   | 80   | 50                       | 860  | 170  | 170  | 40   | 30   |
| 43                  | 1040 | 190  | 30                    | 70   | 110                      | 860  | 170  | 20   | 40   | 100  |
| 48                  | 2140 | 250  | 150                   | 90   | 90                       | 1920 | 200  | 140  | 70   | 60   |
| 50                  | 1180 | 230  | 60                    | 190  | 60                       | 1060 | 190  | 40   | 170  | 30   |
| 57                  | 1340 | 470  | 410                   | 430  | 250                      | 1300 | 450  | 390  | 400  | 220  |
| 61                  | 1020 | 220  | 30                    | 140  | 40                       | 920  | 150  | 20   | 70   | 20   |
| 64                  | 860  | 240  | 480                   | 230  | 70                       | 720  | 190  | 460  | 210  | 40   |
| 69                  | 1040 | 560  | 320                   | 150  | 320                      | 820  | 380  | 270  | 100  | 110  |
| 71                  | 2100 | 170  | 220                   | 101  | 155                      | 1840 | 150  | 200  | 70   | 15   |
| 75                  | 1100 | 150  | 120                   | 140  | 30                       | 1040 | 110  | 105  | 115  | 20   |
| 78                  | 1160 | 740  | 220                   | 90   | 70                       | 890  | 500  | 130  | 40   | 30   |
| 82                  | 1290 | 570  | 80                    | 130  | 60                       | 1010 | 480  | 40   | 70   | 40   |
| 85                  | 1510 | 420  | 110                   | 80   | 140                      | 1220 | 370  | 70   | 50   | 80   |
| 90                  | 2460 | 590  | 30                    | 170  | 20                       | 2200 | 440  | 20   | 150  | 10   |
| 93                  | 1220 | 290  | 130                   | 120  | 130                      | 920  | 220  | 80   | 70   | 80   |
| 96                  | 940  | 340  | 70                    | 120  | 120                      | 800  | 180  | 50   | 70   | 80   |
| 99                  | 980  | 220  | 90                    | 60   | 60                       | 680  | 110  | 30   | 30   | 30   |
| 104                 | 1880 | 180  | 60                    | 30   | 80                       | 1600 | 140  | 50   | 10   | 50   |
| 111                 | 920  | 320  | 80                    | 70   | 70                       | 880  | 240  | 40   | 60   | 40   |
| 113                 | 1140 | 230  | 210                   | 100  | 65                       | 1020 | 140  | 130  | 60   | 35   |
| 116                 | 960  | 440  | 110                   | 100  | 240                      | 860  | 250  | 70   | 50   | 20   |
| 126                 | 2780 | 290  | 220                   | 210  | 140                      | 1620 | 240  | 180  | 170  | 110  |
| 128                 | 940  | 240  | 100                   | 120  | 100                      | 600  | 207  | 40   | 60   | 67   |
| 140                 | 1140 | 170  | 115                   | 65   | 35                       | 1060 | 80   | 85   | 45   | 20   |
| 145                 | 940  | 210  | 175                   | 70   | 95                       | 660  | 110  | 155  | 40   | 45   |
| 149                 | 1590 | 320  | 180                   | 100  | 120                      | 750  | 250  | 140  | 90   | 70   |

Tabla 5. Concentración de SST y SSV en el influente y efluente de los reactores (continuación)

|                     | SST (mg L <sup>-1</sup> ) |        |        |        | SSV(mg L <sup>-1</sup> ) |         |        |        |        |       |
|---------------------|---------------------------|--------|--------|--------|--------------------------|---------|--------|--------|--------|-------|
| Día de operación    | I                         | BFSA   | BFA1   | BFA2   | BFA3                     | I       | BFSA   | BFA1   | BFA2   | BFA3  |
| 152                 | 2000                      | 440    | 85     | 370    | 80                       | 1520    | 370    | 60     | 360    | 65    |
| 155                 | 1080                      | 200    | 20     | 355    | 50                       | 660     | 180    | 10     | 285    | 35    |
| 174                 | 1000                      | 120    | 15     | 45     | 40                       | 960     | 70     | 5      | 35     | 30    |
| 176                 | 840                       | 75     | 20     | 128    | 80                       | 660     | 55     | 10     | 111    | 50    |
| 184                 | 1000                      | 130    | 156    | 550    | 50                       | 560     | 110    | 144    | 420    | 30    |
| 198                 | 2360                      | 373    | 120    | 160    | 120                      | 1860    | 180    | 60     | 110    | 70    |
| 203                 | 1020                      | 330    | 140    | 170    | 45                       | 680     | 160    | 100    | 140    | 35    |
| 205                 | 1120                      | 240    | 95     | 15     | 24                       | 820     | 127    | 74     | 5      | 8     |
| 209                 | 940                       | 85     | 450    | 260    | 220                      | 600     | 60     | 270    | 170    | 140   |
| 212                 | 980                       | 335    | 110    | 250    | 105                      | 500     | 260    | 75     | 195    | 70    |
| 219                 | 980                       | 105    | 205    | 40     | 215                      | 640     | 95     | 170    | 15     | 205   |
| 226                 | 1120                      | 120    | 100    | 113    | 100                      | 720     | 85     | 80     | 87     | 62    |
| 231                 | 2640                      | 260    | 160    | 55     | 100                      | 1920    | 230    | 150    | 25     | 90    |
| Promedio            | 1341.94                   | 288.19 | 149.80 | 153.89 | 103.6                    | 1073.92 | 214.76 | 115.07 | 116.41 | 60.75 |
| Desviación estándar | 524.79                    | 150.82 | 102.14 | 114.74 | 62.33                    | 447.61  | 120.92 | 92.22  | 103.34 | 44.20 |

Tabla 6. Concentración de MO medida como DQO en el influente y efluente de los reactores

|                  | DQO (mg L <sup>-1</sup> ) |      |      |      |      |  |
|------------------|---------------------------|------|------|------|------|--|
| Día de operación | I                         | BFSA | BFA1 | BFA2 | BFA3 |  |
| 5                | 11309                     | 4395 | 2698 | 2710 | 1912 |  |
| 8                | 11569                     | 5850 | 455  | 617  | 697  |  |
| 12               | 8463                      | 6283 | 601  | 501  | 852  |  |
| 15               | 8139                      | 4700 | 1189 | 1075 | 1297 |  |
| 19               | 7259                      | 3516 | 358  | 522  | 599  |  |
| 22               | 8965                      | 5110 | 1137 | 957  | 1347 |  |
| 26               | 7200                      | 4127 | 499  | 474  | 545  |  |
| 29               | 12428                     | 4292 | 342  | 338  | 341  |  |
| 33               | 12919                     | 5144 | 1274 | 1229 | 686  |  |
| 36               | 20452                     | 7375 | 998  | 1158 | 1162 |  |
| 40               | 11208                     | 4273 | 1931 | 1939 | 1949 |  |
| 43               | 12987                     | 3985 | 1566 | 1525 | 1090 |  |
| 48               | 11856                     | 3869 | 1729 | 1705 | 867  |  |
| 50               | 11550                     | 4525 | 1221 | 1506 | 750  |  |
| 54               | 18952                     | 4510 | 855  | 778  | 761  |  |
| 57               | 11377                     | 4250 | 1890 | 1674 | 925  |  |
| 61               | 7364                      | 3283 | 901  | 825  | 873  |  |
| 64               | 8249                      | 2458 | 1493 | 1137 | 718  |  |
| 69               | 19064                     | 5649 | 875  | 793  | 722  |  |
| 71               | 20212                     | 2872 | 844  | 993  | 781  |  |
| 75               | 8322                      | 1655 | 1069 | 995  | 625  |  |
| 78               | 19014                     | 939  | 903  | 745  | 665  |  |
| 82               | 12540                     | 1380 | 804  | 765  | 649  |  |
| 85               | 12398                     | 1693 | 784  | 720  | 678  |  |
| 90               | 12244                     | 2547 | 671  | 796  | 626  |  |
| 93               | 8075                      | 1468 | 596  | 646  | 517  |  |
| 96               | 8592                      | 496  | 360  | 357  | 325  |  |
| 99               | 11227                     | 966  | 563  | 568  | 867  |  |
| 104              | 8867                      | 1774 | 568  | 556  | 381  |  |
| 111              | 11414                     | 2319 | 408  | 558  | 398  |  |
| 113              | 11733                     | 1348 | 695  | 536  | 517  |  |
| 117              | 10767                     | 1375 | 398  | 411  | 239  |  |
| 126              | 14029                     | 1601 | 884  | 801  | 719  |  |
| 128              | 14475                     | 1615 | 481  | 638  | 688  |  |
| 132              | 13843                     | 1884 | 556  | 488  | 404  |  |
| 135              | 14475                     | 1822 | 760  | 669  | 450  |  |

Tabla 6. Concentración de MO medida como DQO en el influente y efluente de los reactores (continuación)

|                        | DQO (mg L <sup>-1</sup> ) |         |        |        |        |  |  |
|------------------------|---------------------------|---------|--------|--------|--------|--|--|
| Día de<br>operación    | ı                         | BFSA    | BFA1   | BFA2   | BFA3   |  |  |
| 140                    | 17548                     | 1068    | 481    | 607    | 341    |  |  |
| 145                    | 14400                     | 1014    | 644    | 601    | 397    |  |  |
| 149                    | 14700                     | 1803    | 641    | 684    | 499    |  |  |
| 153                    | 13181                     | 2080    | 1451   | 1259   | 499    |  |  |
| 155                    | 14395                     | 1706    | 745    | 1308   | 403    |  |  |
| 161                    | 12090                     | 2041    | 594    | 862    | 362    |  |  |
| 168                    | 13769                     | 1995    | 1105   | 1192   | 610    |  |  |
| 174                    | 14673                     | 1716    | 1139   | 1080   | 745    |  |  |
| 176                    | 14627                     | 1486    | 765    | 623    | 622    |  |  |
| 184                    | 16192                     | 1823    | 685    | 1702   | 1018   |  |  |
| 195                    | 17202                     | 3602    | 1378   | 1192   | 944    |  |  |
| 198                    | 16991                     | 1409    | 544    | 621    | 578    |  |  |
| 203                    | 14492                     | 1742    | 751    | 939    | 592    |  |  |
| 205                    | 13798                     | 2201    | 1028   | 1164   | 813    |  |  |
| 209                    | 15337                     | 2157    | 1123   | 1138   | 904    |  |  |
| 212                    | 15513                     | 2145    | 1065   | 914    | 841    |  |  |
| 216                    | 14034                     | 1513    | 930    | 607    | 629    |  |  |
| 219                    | 14581                     | 2307    | 1241   | 764    | 669    |  |  |
| 224                    | 14339                     | 2153    | 1349   | 987    | 701    |  |  |
| 226                    | 14910                     | 2084    | 1082   | 1009   | 790    |  |  |
| 231                    | 14915                     | 1496    | 1308   | 883    | 1010   |  |  |
| Promedio               | 13074.15                  | 2717.32 | 936.95 | 927.01 | 729.59 |  |  |
| Desviación<br>estándar | 3325.10                   | 1562.09 | 454.67 | 438.11 | 330.80 |  |  |

Tabla 7. Concentración de MO medida como DQOd en el influente y efluente de los reactores

|                  | DQOd (mg L <sup>-1</sup> ) |      |      |      |      |  |
|------------------|----------------------------|------|------|------|------|--|
| Día de operación | I                          | BFSA | BFA1 | BFA2 | BFA3 |  |
| 5                | 5934                       | 3297 | 1989 | 1465 | 1339 |  |
| 8                | 5280                       | 4089 | 342  | 523  | 500  |  |
| 12               | 6087                       | 4259 | 457  | 351  | 680  |  |
| 15               | 5876                       | 4040 | 642  | 689  | 617  |  |
| 19               | 4751                       | 2300 | 298  | 415  | 229  |  |
| 22               | 6552                       | 3987 | 826  | 625  | 1100 |  |
| 26               | 5760                       | 1815 | 412  | 400  | 509  |  |
| 29               | 5320                       | 2006 | 193  | 138  | 168  |  |
| 33               | 6055                       | 2761 | 1245 | 513  | 524  |  |
| 36               | 10247                      | 4373 | 944  | 846  | 741  |  |
| 40               | 4528                       | 2613 | 1306 | 982  | 1459 |  |
| 43               | 5426                       | 3764 | 1261 | 1191 | 834  |  |
| 48               | 5476                       | 3186 | 1509 | 1548 | 738  |  |
| 50               | 4436                       | 4232 | 722  | 1046 | 581  |  |
| 54               | 6900                       | 3871 | 634  | 580  | 656  |  |
| 57               | 7132                       | 3402 | 900  | 763  | 800  |  |
| 61               | 4728                       | 1851 | 431  | 712  | 754  |  |
| 64               | 3647                       | 1577 | 467  | 512  | 556  |  |
| 69               | 9593                       | 2070 | 536  | 770  | 700  |  |
| 71               | 2735                       | 1140 | 747  | 542  | 677  |  |
| 75               | 3538                       | 1498 | 875  | 836  | 597  |  |
| 78               | 2913                       | 485  | 752  | 453  | 291  |  |
| 82               | 2960                       | 568  | 514  | 485  | 299  |  |
| 85               | 3153                       | 786  | 494  | 501  | 389  |  |
| 90               | 3840                       | 794  | 596  | 476  | 541  |  |
| 93               | 3148                       | 653  | 421  | 461  | 406  |  |
| 96               | 2300                       | 389  | 228  | 233  | 248  |  |
| 99               | 4102                       | 729  | 517  | 514  | 559  |  |
| 104              | 5084                       | 1065 | 558  | 230  | 246  |  |
| 111              | 2765                       | 1034 | 266  | 408  | 279  |  |
| 113              | 3675                       | 1088 | 439  | 402  | 300  |  |
| 117              | 6136                       | 812  | 241  | 256  | 221  |  |
| 126              | 6238                       | 1016 | 666  | 706  | 596  |  |
| 128              | 5453                       | 974  | 412  | 432  | 606  |  |
| 132              | 5024                       | 889  | 481  | 478  | 389  |  |
| 135              | 4593                       | 1021 | 455  | 533  | 391  |  |

Tabla 7. Concentración de MO medida como DQOd en el influente y efluente de los reactores (continuación)

|                        | DQOd (mg L <sup>-1</sup> ) |         |        |        |        |  |
|------------------------|----------------------------|---------|--------|--------|--------|--|
| Día de<br>operación    | I                          | BFSA    | BFA1   | BFA2   | BFA3   |  |
| 140                    | 5293                       | 487     | 415    | 573    | 215    |  |
| 145                    | 4715                       | 872     | 442    | 430    | 309    |  |
| 149                    | 6162                       | 834     | 462    | 489    | 420    |  |
| 153                    | 3534                       | 814     | 666    |        | 410    |  |
| 155                    | 4252                       | 1148    | 506    | 659    | 366    |  |
| 161                    | 3258                       | 953     | 512    | 467    | 341    |  |
| 168                    | 3807                       | 1162    | 689    | 543    | 382    |  |
| 174                    | 5615                       | 1542    | 610    | 583    | 553    |  |
| 176                    | 5148                       | 1096    | 489    | 457    | 494    |  |
| 184                    | 6315                       | 1362    | 457    | 670    | 555    |  |
| 195                    | 7185                       | 2811    | 554    | 660    | 614    |  |
| 198                    | 5801                       | 1123    | 406    | 428    | 443    |  |
| 203                    | 6632                       | 734     | 539    | 559    | 498    |  |
| 205                    | 5185                       | 798     | 729    | 632    | 629    |  |
| 209                    | 4794                       | 892     | 784    | 674    | 638    |  |
| 212                    | 5792                       | 920     | 823    | 548    | 564    |  |
| 216                    | 6813                       | 886     | 798    | 461    | 539    |  |
| 219                    | 3889                       | 1222    | 912    | 678    | 594    |  |
| 224                    | 4699                       | 1063    | 898    | 526    | 516    |  |
| 226                    | 5124                       | 1072    | 898    | 400    | 295    |  |
| 231                    | 4792                       | 939     | 948    | 505    | 422    |  |
| Promedio               | 5091.08                    | 1704.54 | 654.56 | 588.56 | 531.89 |  |
| Desviación<br>estándar | 1538.83                    | 1199.59 | 327.87 | 260.33 | 246.77 |  |

Tabla 8. Concentración de MO medida como DBO en el influente y efluente de los reactores

|                        | DBO (mg L <sup>-1</sup> ) |         |        |        |        |  |
|------------------------|---------------------------|---------|--------|--------|--------|--|
| Día de<br>operación    | I                         | BFSA    | BFA1   | BFA2   | BFA3   |  |
| 2                      | 5000                      |         |        |        |        |  |
| 6                      | 3600                      | 3000    | 715    | 347    | 572    |  |
| 21                     | 4700                      | 3133    | 625    | 650    | 650    |  |
| 29                     | 5800                      | 2300    | 134    | 167    | 108    |  |
| 35                     | 7100                      | 3333    | 110    | 100    | 91     |  |
| 50                     | 5700                      | 2178    | 152    | 210    | 100    |  |
| 57                     | 4300                      | 1800    | 144    | 273    | 89     |  |
| 64                     | 4300                      | 1533    | 100    | 150    | 110    |  |
| 71                     | 8600                      | 1600    | 89     | 98     | 85     |  |
| 78                     | 6600                      | 702     | 78     | 66     | 59     |  |
| 85                     | 5400                      | 692     | 74     | 64     | 57     |  |
| 93                     | 4900                      | 513     | 68     | 59     | 54     |  |
| 99                     | 5300                      | 446     | 38     | 33     | 29     |  |
| 113                    | 6400                      | 388     | 15     | 38     | 12     |  |
| 128                    | 4900                      | 263     | 29     | 37     | 36     |  |
| 153                    | 7600                      | 1083    | 210    | 207    | 210    |  |
| 155                    | 7400                      | 470     | 213    | 210    | 19     |  |
| 161                    | 7000                      | 675     | 157    | 270    | 145    |  |
| 176                    | 7600                      | 258     | 93     | 105    | 45     |  |
| 184                    | 8000                      | 450     | 90     | 207    | 107    |  |
| 198                    | 8200                      | 336     | 190    | 133    | 53     |  |
| 205                    | 7800                      | 375     | 83     | 157    | 39     |  |
| 212                    | 7800                      | 483     | 90     | 70     | 33     |  |
| 219                    | 7600                      | 717     | 203    | 130    | 44     |  |
| 226                    | 7200                      | 513     | 320    | 165    | 44     |  |
| Promedio               | 6352.00                   | 1134.98 | 167.51 | 164.39 | 116.19 |  |
| Desviación<br>Estándar | 1449.46                   | 983.12  | 170.00 | 132.49 | 159.19 |  |

Tabla 9. Concentración de N-NH<sub>4</sub> en el influente y efluente de los reactores

|                  |     | N-N  | IH₄ (m | ng L <sup>-1</sup> ) |      |
|------------------|-----|------|--------|----------------------|------|
| Día de operación | I   | BFSA | BFA1   | BFA2                 | BFA3 |
| 2                | 501 | 284  | 16     | 10                   | 18   |
| 6                | 522 | 286  | 7.5    | 11                   | 11   |
| 9                | 562 | 244  | 5      | 10.5                 | 13   |
| 13               | 496 | 283  | 3.15   | 5.8                  | 2.9  |
| 16               | 728 | 262  | 14.6   | 9                    | 15.6 |
| 20               | 452 | 270  | 18.8   | 15                   | 12.6 |
| 23               | 472 | 236  | 40.2   | 18.1                 | 16.1 |
| 26               | 448 | 250  | 42.6   | 18.7                 | 12.6 |
| 29               | 460 | 304  | 50     | 23                   | 17.4 |
| 33               | 426 | 328  | 148    | 126                  | 55   |
| 36               | 448 | 320  | 195    | 175                  | 71   |
| 40               | 432 | 264  | 99     | 82                   | 11   |
| 43               | 428 | 262  | 62     | 33                   | 2    |
| 48               | 560 | 364  | 50     | 73                   | 14   |
| 50               | 438 | 304  | 63     | 59                   | 6    |
| 54               | 484 | 362  | 4      | 38                   | 18   |
| 57               | 492 | 382  | 25     | 45                   | 51   |
| 61               | 544 | 374  | 6      | 6                    | 4    |
| 64               | 536 | 368  | 14     | 12                   | 7    |
| 69               | 412 | 296  | 12     | 18                   | 2    |
| 71               | 584 | 326  | 14     | 15                   | 3    |
| 75               | 428 | 362  | 8      | 10                   | 6    |
| 78               | 548 | 394  | 5.8    | 5.3                  | 6.1  |
| 82               | 525 | 370  | 12     | 8.7                  | 8    |
| 85               | 572 | 374  | 25     | 5.7                  | 7.3  |
| 90               | 480 | 400  | 19.2   | 19                   | 5.1  |
| 93               | 524 | 436  | 5      | 3.2                  | 2.6  |
| 96               | 436 | 278  | 25     | 24                   | 26   |
| 99               | 476 | 284  | 4.3    | 5.4                  | 3.3  |
| 104              | 596 | 274  | 6      | 10.1                 | 3.6  |
| 111              | 456 | 308  | 23     | 30                   | 3.6  |
| 113              | 664 | 366  | 7.6    | 23.6                 | 1.6  |
| 117              | 716 | 482  | 5      | 12                   | 4.4  |
| 126              | 636 | 494  | 212    | 205                  | 154  |
| 128              | 656 | 538  | 188    | 201                  | 115  |
| 132              | 648 | 504  | 230    | 161                  | 120  |

Tabla 9. Concentración de N-NH<sub>4</sub> en el influente y efluente de los reactores (continuación)

|                     |        | N-NF   | I <sup>+</sup> (mg | J L <sup>-1</sup> ) |       |
|---------------------|--------|--------|--------------------|---------------------|-------|
| Día de operación    | I      | BFSA   | BFA1               | BFA2                | BFA3  |
| 135                 | 692    | 476    | 206                | 130                 | 103   |
| 140                 | 840    | 494    | 57                 | 43                  | 26    |
| 145                 | 704    | 402    | 71                 | 60                  | 40    |
| 149                 | 616    | 438    | 40                 | 57                  | 38    |
| 153                 | 600    | 478    | 146                | 192                 | 40    |
| 155                 | 720    | 536    | 96                 | 120                 | 27    |
| 161                 | 652    | 760    | 74                 | 91                  | 22    |
| 168                 | 508    | 812    | 131                | 214                 | 116   |
| 174                 | 640    | 820    | 175                | 118                 | 147   |
| 176                 | 856    | 540    | 174                | 188                 | 115   |
| 184                 | 780    | 784    | 113                | 189                 | 149   |
| 195                 | 740    | 576    | 158                | 213                 | 152   |
| 198                 | 712    | 772    | 74                 | 124                 | 172   |
| 203                 | 740    | 500    | 100                | 227                 | 202   |
| 205                 | 776    | 612    | 167                | 2.7                 | 226   |
| 209                 | 932    | 856    | 181                | 153                 | 132   |
| 212                 | 864    | 488    | 112                | 205                 | 202   |
| 216                 | 792    | 700    | 95                 | 189                 | 191   |
| 219                 | 864    | 1000   | 181                | 261                 | 221   |
| 224                 | 848    | 860    | 118                | 206                 | 202   |
| 226                 | 928    | 824    | 149                | 155                 | 170   |
| 231                 | 932    | 804    | 155                | 223                 | 201   |
| Promedio            | 612.45 | 461.44 | 76.53              | 84.27               | 64.20 |
| Desviación estándar | 152.20 | 198.75 | 69.95              | 81.89               | 74.01 |

Tabla 10. Concentración de  $N-NO_2^-$  y  $N-NO_3^-$  en el influente y efluente de los reactores

|                  |      | N-N  | 10 <sub>2</sub> (m |      | 10103 |     | N-   | NO <sub>3</sub> (n | ng L <sup>-1</sup> ) |      |
|------------------|------|------|--------------------|------|-------|-----|------|--------------------|----------------------|------|
| Día de operación | I    | BFSA | BFA1               | BFA2 | BFA3  | ı   | BFSA | BFA1               | BFA2                 | BFA3 |
| 2                | 0.6  | 6    | 18                 | 9    | 24    | 0.2 | 3    | 23                 | 8                    | 6    |
| 6                | 0    | 0    | 15                 | 21   | 42    | 0   | 12   | 20                 | 27                   | 7    |
| 9                | 3    | 18   | 10.5               | 10.5 | 16.5  | 0   | 10   | 3                  | 5.5                  | 4.5  |
| 13               | 0    | 36   | 6                  | 9    | 3     | 0   | 5    | 11.5               | 3.5                  | 14   |
| 16               | 0    | 0    | 6                  | 12   | 30    | 0   | 16   | 34                 | 54                   | 18   |
| 20               | 0    | 36   | 6                  | 18   | 24    | 0   |      | 2                  | 8                    | 20   |
| 23               | 0    | 39   | 30                 | 27   | 18    | 0   | 11   | 25                 | 28                   | 32   |
| 26               | 0    | 0    | 15                 | 27   | 24    | 0.3 | 4    | 14                 | 0                    | 5    |
| 29               | 0    | 24   | 33                 | 27   | 9     | 0   | 9    | 11                 | 12                   | 16   |
| 33               | 0    | 18   | 12                 | 21   | 12    | 0   | 0    | 17                 | 5                    | 9    |
| 36               | 0    | 15   | 9                  | 18   | 27    | 0   | 21   | 32                 | 30                   | 54   |
| 40               | 0    | 21   | 48                 | 36   | 90    | 0   | 7    | 35                 | 14                   | 180  |
| 43               | 0    | 24   | 63                 | 48   | 105   | 0   | 2    | 24                 | 10                   | 170  |
| 48               | 0    | 0    | 84                 | 42   | 15    | 0.3 | 14   | 91                 | 9                    | 110  |
| 50               | 0    | 12   | 63                 | 51   | 36    | 0.3 | 8    | 26                 | 9                    | 120  |
| 54               | 0    | 24   | 75                 | 42   | 27    | 0   | 17   | 259                | 32                   | 10   |
| 57               | 0    | 27   | 45                 | 66   | 30    | 0   | 20   | 48                 | 38                   | 30   |
| 61               | 0    | 15   | 69                 | 81   | 42    | 0   | 14   | 139                | 102                  | 50   |
| 64               | 0    | 12   | 69                 |      | 57    | 0   | 12   | 116                | 460                  | 360  |
| 69               | 0    | 15   | 63                 | 69   | 48    | 0   | 19   | 109                | 106                  | 220  |
| 71               | 0    | 63   | 75                 | 87   | 39    | 0   | 15   | 107                | 214                  | 21   |
| 75               | 0    | 51   | 90                 | 102  | 21    | 0   | 4    | 279                | 110                  | 155  |
| 78               | 0    | 42   | 36                 | 93   | 33    | 0   | 7    | 109                | 200                  | 107  |
| 82               | 1.5  | 54   | 57                 | 84   | 66    | 0   | 22   | 128                | 203                  | 116  |
| 85               | 0    | 48   | 54                 | 69   | 84    | 0   | 26   | 154                | 180                  | 157  |
| 90               | 0.6  | 7.2  | 14.7               | 55.5 | 9.6   | 0   | 27   | 270                | 350                  | 240  |
| 93               | 0    | 0.6  | 11.7               | 34.2 | 8.4   | 0.6 | 9    | 213                | 290                  | 221  |
| 96               | 0    | 22.5 | 18.9               | 42   | 44.1  | 0   | 18   | 252                | 282                  | 343  |
| 99               | 0    | 18.9 | 11.1               | 22.8 | 3.6   | 0   | 43   | 347                | 340                  | 299  |
| 104              | 0.06 | 3.6  | 14.7               | 30.6 | 6     | 0   | 14   | 317                | 350                  | 381  |
| 111              | 0    | 0    | 14.7               | 46.5 | 18.9  | 0   | 15   | 370                | 302                  | 296  |
| 113              | 0    |      | 7.5                | 22.2 | 8.4   | 0   | 58   | 344                | 356                  | 326  |
| 117              | 0    | 0    | 3.9                | 8.7  | 1.5   | 0   | 18   | 446                | 438                  | 402  |
| 126              | 0    | 0    | 18.6               | 83.7 | 60.6  | 0   | 25   | 125                | 242                  | 349  |
| 128              | 0.03 | 23.7 | 24.9               | 58.8 | 61.2  | 0   | 0    | 340                | 350                  | 350  |
| 132              | 0    | 9    | 16.8               | 54   | 59.4  | 0   | 18   | 280                | 340                  | 390  |

Tabla 10. Concentración de N-NO<sub>2</sub> y N-NO<sub>3</sub> en el influente y efluente de los reactores (continuación)

|                        |      | N - N | IO <sub>2</sub> (n | ng L <sup>-1</sup> ) |       |      |       | · <b>NO</b> ³ (n | ng L <sup>-1</sup> ) |        |
|------------------------|------|-------|--------------------|----------------------|-------|------|-------|------------------|----------------------|--------|
| Día de operación       | I    | BFSA  | BFA1               | BFA2                 | BFA3  | ı    | BFSA  | BFA1             | BFA2                 | BFA3   |
| 135                    | 0.03 | 5.1   | 14.7               | 29.4                 | 17.4  | 0    | 28    | 270              | 420                  | 480    |
| 140                    | 0    | 6.6   | 8.7                | 21                   | 6.3   | 0    | 34    | 488              | 568                  | 314    |
| 145                    | 0    | 13.8  | 10.5               | 29.1                 | 1.8   | 0    | 38    | 260              | 330                  | 310    |
| 149                    | 0    | 12.9  | 3.3                | 26.7                 | 5.7   | 0    |       | 260              | 570                  | 440    |
| 153                    | 0    | 0     | 26.1               | 51                   | 8.7   | 0    | 4     | 270              | 230                  | 540    |
| 155                    | 0    | 11.1  | 33.9               | 87.9                 | 1.8   | 0    | 30    | 430              | 360                  | 490    |
| 161                    | 0    | 0     | 6.3                | 23.1                 | 13.2  | 0    | 42    | 600              | 670                  | 780    |
| 168                    | 0    | 13.5  | 36.9               | 87.3                 | 70.2  | 0    | 16    | 620              | 710                  | 680    |
| 174                    | 0    | 5.4   | 68.1               | 75                   | 78    | 0    | 31    | 530              | 790                  | 650    |
| 176                    | 0    | 41.4  | 54.9               | 39                   | 11.4  | 0    | 62    | 720              | 450                  | 340    |
| 184                    | 0    | 40.2  | 11.4               | 50.1                 | 57.6  | 0    | 30    | 590              | 600                  | 480    |
| 195                    | 0    | 24.6  | 16.2               | 9.6                  | 8.7   | 0    | 67    | 285              | 495                  | 840    |
| 198                    | 0    | 25.5  | 3.3                | 1.5                  | 2.1   | 0    |       | 490              | 870                  | 540    |
| 203                    | 0    | 24    | 5.7                | 14.4                 | 13.95 | 0    | 9     | 430              | 850                  | 810    |
| 205                    | 0    | 11.4  | 66.6               | 76.8                 | 52.2  | 0    |       | 550              | 520                  | 1000   |
| 209                    | 0    | 10.8  | 51.3               | 38.1                 | 12.9  | 0    | 23    | 610              | 650                  | 920    |
| 212                    | 0    | 10.5  | 59.7               | 46.2                 | 12.6  | 0    | 22    | 560              | 850                  | 890    |
| 216                    | 0    | 29.7  | 46.8               | 5.4                  | 1.2   | 0    |       | 550              | 780                  | 600    |
| 219                    | 0    | 8.4   | 69.3               | 32.7                 | 6.6   | 0    | 15    | 730              | 780                  | 830    |
| 224                    | 0    | 10.8  | 73.8               | 34.2                 | 3.9   | 0    | 19    | 620              | 680                  | 660    |
| 226                    | 0    | 0     | 78.3               | 27.3                 | 10.2  | 0    | 28    | 650              | 790                  | 760    |
| 231                    | 0    | 24.3  | 75                 | 19.5                 | 13.8  | 0    | 18    | 690              | 640                  | 620    |
| Promedio               | 0.10 | 17.82 | 35.00              | 41.29                | 27.84 | 0.03 | 19.60 | 281.44           | 329.50               | 337.28 |
| Desviación<br>estándar | 0.45 | 15.60 | 26.80              | 26.23                | 25.61 | 0.10 | 14.75 | 227.56           | 279.55               | 286.82 |

Tabla 11. Concentración de P-PO<sup>-3</sup> en el influente y efluente de los reactores

|                     |        | P-PC  | )-³ (mọ | g L <sup>-1</sup> ) |       |
|---------------------|--------|-------|---------|---------------------|-------|
| Día de<br>operación | -      | BFSA  | BFA1    | BFA2                | BFA3  |
| 20                  | 91.36  | 11.36 | 3.26    | 3.13                | 3.00  |
| 23                  | 87.45  | 6.53  | 3.17    | 2.09                | 1.99  |
| 26                  | 60.69  | 7.83  | 3.46    | 2.19                | 1.76  |
| 29                  | 93.32  | 71.13 | 2.97    | 1.86                | 1.99  |
| 33                  | 90.06  | 46.99 | 6.79    | 2.09                | 4.80  |
| 36                  | 77.66  | 30.67 | 6.33    | 7.31                | 3.79  |
| 40                  | 98.54  | 33.94 | 8.58    | 8.39                | 6.79  |
| 43                  | 115.51 | 31.98 | 7.50    | 8.16                | 5.06  |
| 48                  | 92.67  | 37.20 | 4.89    | 6.69                | 2.25  |
| 50                  | 89.41  | 37.85 | 5.87    | 2.84                | 2.68  |
| 54                  | 63.30  | 47.64 | 5.51    | 1.83                | 1.73  |
| 57                  | 95.28  | 30.02 | 4.34    | 2.71                | 1.73  |
| 61                  | 78.31  | 53.51 | 5.06    | 3.92                | 3.69  |
| 64                  | 86.14  | 31.98 | 4.27    | 2.38                | 1.73  |
| 69                  | 61.34  | 21.54 | 4.96    | 3.75                | 2.06  |
| 71                  | 57.43  | 30.67 | 3.39    | 2.90                | 2.51  |
| 75                  | 55.47  | 37.20 | 3.95    | 3.03                | 0.88  |
| 78                  | 65.91  | 38.50 | 2.48    | 1.76                | 1.21  |
| 82                  | 64.61  | 31.98 | 3.98    | 2.38                | 1.37  |
| 85                  | 77.01  | 28.06 | 5.19    | 4.76                | 1.47  |
| 90                  | 58.08  | 26.76 | 5.48    | 6.59                | 0.95  |
| 93                  | 58.73  | 28.06 | 4.24    | 4.99                | 3.69  |
| 96                  | 64.61  | 84.84 | 5.32    | 8.48                | 5.81  |
| 99                  | 56.12  | 30.02 | 3.88    | 4.11                | 5.03  |
| 104                 | 68.52  | 50.25 | 3.33    | 5.87                | 5.61  |
| 111                 | 62.00  | 38.50 | 10.96   | 12.14               | 7.54  |
| 113                 | 103.11 | 26.10 | 11.62   | 5.29                | 6.79  |
| 117                 | 93.97  | 38.50 | 12.86   | 13.70               | 6.20  |
| 126                 | 64.61  | 26.76 | 7.18    | 7.18                | 8.81  |
| 128                 | 60.04  | 16.97 | 10.44   | 9.79                | 8.55  |
| 132                 | 62.65  | 31.32 | 14.68   | 20.23               | 8.55  |
| 135                 | 73.74  | 73.09 | 28.06   | 58.73               | 46.01 |
| 140                 | 65.26  | 25.45 | 32.30   | 24.47               | 5.94  |
| 145                 | 113.55 | 13.70 | 46.01   | 24.80               | 17.62 |
| 149                 | 91.36  | 16.32 | 26.76   | 21.54               | 16.97 |
| 153                 | 129.21 | 41.11 | 15.01   | 16.97               | 47.97 |

Tabla 11. Concentración de P-PO<sup>-3</sup> en el influente y efluente de los reactores

|                        |        | P-PC   | ) <sub>4</sub> (mg | J L <sup>-1</sup> ) |       |
|------------------------|--------|--------|--------------------|---------------------|-------|
| Día de<br>operación    | I      | BFSA   | BFA1               | BFA2                | BFA3  |
| 155                    | 129.21 | 47.64  | 19.25              | 21.21               | 25.78 |
| 161                    | 144.88 | 42.42  | 59.06              | 68.52               | 37.52 |
| 168                    | 109.64 | 104.42 | 33.94              | 19.58               | 25.78 |
| 174                    | 129.21 | 47.64  | 19.25              | 21.21               | 17.62 |
| 176                    | 143.57 | 43.07  | 44.05              | 41.11               | 33.94 |
| 184                    | 129.21 | 99.20  | 46.33              | 31.32               | 16.32 |
| 195                    | 113.55 | 73.09  | 33.61              | 46.01               | 38.18 |
| 198                    | 116.16 | 79.62  | 61.02              | 48.62               | 51.23 |
| 203                    | 151.40 | 24.80  | 39.48              | 40.46               | 84.84 |
| 205                    | 186.64 | 26.10  | 43.72              | 28.71               | 57.10 |
| 209                    | 152.71 | 82.23  | 15.99              | 28.06               | 25.78 |
| 212                    | 142.27 | 69.18  | 39.16              | 52.86               | 18.93 |
| 216                    | 151.40 | 105.72 | 49.60              | 45.03               | 44.05 |
| 219                    | 169.68 | 114.86 | 26.43              | 15.99               | 19.25 |
| 224                    | 144.88 | 69.18  | 44.05              | 4.89                | 34.91 |
| 226                    | 173.59 | 70.48  | 10.12              | 47.31               | 34.91 |
| 231                    | 189.25 | 83.53  | 80.27              | 40.13               | 45.03 |
| Promedio               | 100.08 | 45.61  | 18.86              | 17.36               | 16.33 |
| Desviación<br>estándar | 37.74  | 26.59  | 18.95              | 17.68               | 18.79 |

Tabla 12. Pérdida de carga

| Día de operación | BFSA | BFA1 | BFA2 | BFA3 | Día de operación | BFSA | BFA1 | BFA2 | BFA3   |
|------------------|------|------|------|------|------------------|------|------|------|--------|
| 1                |      |      |      |      | 41               | 0    | 0    | 0    | 0<br>0 |
| 2                | 0    | 0    | 0    | 0    | 42               | 0    |      |      |        |
|                  | 0    |      |      |      |                  |      | 0.1  | 0.1  | 0      |
| 4                | 0    | 0    | 0    | 0    | 43               | 0    | 0    | 0.1  | 0.1    |
| 5                | 0    | 0    | 0    | 0    | 44               | 0    | 0    | 0.1  | 0.1    |
| 6                | 0    | 0    | 0    | 0    | 46               | 0    | 0    | 0    | 0.1    |
| 7                | 0.1  | 0    | 0    | 0    | 47               | 0    | 0    | 0    | 0.2    |
| 8                | 0    | 0    | 0    | 0    | 48               | 0    | 0    | 0    | 0.2    |
| 9                | 0    | 0    | 0    | 0    | 49               | 0    | 0.1  | 0    | 0.1    |
| 10               | 0    | 0    | 0    | 0    | 50               | 0    | 0    | 0    | 0      |
| 11               | 0    | 0    | 0    | 0    | 51               | 0    | 0    | 0    | 0      |
| 12               | 0    | 0    | 0    | 0    | 53               | 0    | 0    | 0    | 0      |
| 13               | 0    | 0    | 0    | 0    | 54               | 0    | 0.1  | 0    | 0      |
| 14               | 0    | 0    | 0    | 0    | 55               | 0    | 0    | 0    | 0      |
| 15               | 0    | 0    | 0    | 0    | 56               | 0    | 0    | 0    | 0      |
| 16               | 0.2  | 0    | 0    | 0    | 57               | 0    | 0    | 0.1  | 0      |
| 17               | 0    | 0.1  | 0    | 0    | 58               | 0    | 0.1  | 0.1  | 0      |
| 18               | 0    | 0.1  | 0    | 0    | 59               | 0    | 0.1  | 0.1  | 0      |
| 19               | 0    | 0    | 0    | 0    | 60               | 0    | 0    | 0    | 0      |
| 20               | 0    | 0.1  | 0    | 0    | 61               | 0.1  | 0    | 0    | 0      |
| 21               | 0.1  | 0    | 0    | 0    | 62               | 0    | 0    | 0    | 0.1    |
| 22               | 0.1  | 0.1  | 0.1  | 0    | 64               | 0    | 0    | 0    | 0      |
| 23               | 0    | 0    | 0.1  | 0    | 65               | 0    | 0.1  | 0    | 0      |
| 24               | 0    | 0    | 0.1  | 0.2  | 67               | 0    | 0.2  | 0    | 0.1    |
| 25               | 0    | 0.1  | 0    | 0.2  | 68               | 0    | 0.1  | 0    | 0      |
| 26               | 0    | 0.1  | 0    | 0.1  | 69               | 0    | 0    | 0    | 0      |
| 27               | 0    | 0    | 0    | 0    | 70               | 0    | 0    | 0    | 0      |
| 28               | 0    | 0    | 0    | 0    | 71               | 0    | 0    | 0    | 0.1    |
| 29               | 0    | 0    | 0    | 0    | 72               | 0    | 0    | 0    | 0      |
| 30               | 0    | 0    | 0    | 0    | 74               | 0    | 0    | 0    | 0      |
| 32               | 0    | 0    | 0    | 0    | 75               | 0    | 0    | 0    | 0.2    |
| 33               | 0    | 0    | 0.2  | 0    | 76               | 0    | 0    | 0    | 0      |
| 34               | 0    | 0    | 0.1  | 0    | 77               | 0    | 0    | 0.1  | 0      |
| 35               | 0    | 0    | 0.1  | 0.2  | 78               | 0    | 0.1  | 0.1  | 0.2    |
| 36               | 0    | 0.2  | 0.1  | 0    | 79               | 0    | 0    | 0.1  | 0.2    |
| 37               | 0    | 0    | 0.1  | 0.2  | 81               | 0    | 0    | 0    | 0      |
| 39               | 0    | 0    | 0.1  | 0    | 82               | 0    | 0    | 0    | 0      |
| 40               | 0    | 0    | 0    | 0    | 83               | 0    | 0    | 0    | 0      |

Tabla 12. Pérdida de carga (continuación)

| Día de    |      |      |      |      | Día de    |      |      |      |      |
|-----------|------|------|------|------|-----------|------|------|------|------|
| operación | BFSA | BFA1 | BFA2 | BFA3 | operación | BFSA | BFA1 | BFA2 | BFA3 |
| 84        | 0    | 0    | 0    | 0    | 132       | 0    | 0.1  | 0    | 0    |
| 85        | 0    | 0    | 0    | 0.1  | 133       | 0    | 0    | 0    | 0    |
| 86        | 0    | 0.1  | 0    | 0.2  | 134       | 0    | 0.1  | 0    | 0    |
| 88        | 0    | 0    | 0.1  | 0    | 135       | 0.2  | 0    | 0    | 0    |
| 89        | 0    | 0    | 0    | 0    | 137       | 0    | 0    | 0    | 0    |
| 90        | 0    | 0    | 0    | 0    | 138       | 0    | 0.2  | 0    | 0    |
| 91        | 0    | 0.1  | 0    | 0    | 139       | 0    | 0    | 0    | 0    |
| 92        | 0.1  | 0    | 0    | 0.1  | 140       | 0    | 0    | 0.2  | 0    |
| 93        | 0    | 0    | 0    | 0    | 141       | 0    | 0    | 0    | 0    |
| 95        | 0    | 0    | 0    | 0    | 145       | 0.1  | 0    | 0    | 0    |
| 96        | 0    | 0    | 0    | 0    | 146       | 0    | 0    | 0    | 0    |
| 97        | 0    | 0    | 0    | 0    | 148       | 0.1  | 0    | 0    | 0.1  |
| 98        | 0    | 0    | 0    | 0    | 149       | 0    | 0    | 0    | 0    |
| 99        | 0    | 0    | 0    | 0    | 151       | 0    | 0    | 0.1  | 0    |
| 100       | 0    | 0    | 0.2  | 0    | 152       | 0    | 0.1  | 0.1  | 0    |
| 102       | 0    | 0    | 0.2  | 0    | 153       | 0    | 0    | 0    | 0    |
| 103       | 0    | 0.1  | 0.1  | 0    | 154       | 0    | 0    | 0    | 0    |
| 104       | 0    | 0    | 0.1  | 0    | 155       | 0    | 0    | 0    | 0    |
| 105       | 0    | 0    | 0.1  | 0.1  | 156       | 0    | 0.1  | 0    | 0    |
| 106       | 0    | 0    | 0.1  | 0    | 158       | 0    | 0    | 0.1  | 0    |
| 107       | 0    | 0    | 0.1  | 0.1  | 159       | 0    | 0    | 0    | 0    |
| 109       | 0    | 0.2  | 0.1  | 0    | 160       | 0    | 0    | 0    | 0    |
| 110       | 0    | 0    | 0.1  | 0.1  | 161       | 0    | 0    | 0    | 0    |
| 111       | 0    | 0    | 0    | 0    | 162       | 0    | 0    | 0    | 0    |
| 112       | 0    | 0    | 0    | 0    | 165       | 0.1  | 0    | 0    | 0    |
| 113       | 0    | 0    | 0    | 0    | 166       | 0    | 0    | 0    | 0.1  |
| 114       | 0    | 0    | 0    | 0    | 167       | 0    | 0    | 0    | 0    |
| 116       | 0    | 0    | 0    | 0    | 168       | 0    | 0.2  | 0    | 0    |
| 117       | 0    | 0    | 0    | 0    | 169       | 0    | 0    | 0.1  | 0    |
| 118       | 0.2  | 0    | 0    | 0    | 172       | 0.1  | 0    | 0    | 0    |
| 123       | 0    | 0    | 0    | 0    | 173       | 0    | 0    | 0    | 0    |
| 125       | 0    | 0    | 0    | 0    | 174       | 0    | 0    | 0    | 0    |
| 126       | 0    | 0    | 0.1  | 0    | 175       | 0    | 0    | 0    | 0    |
| 127       | 0    | 0    | 0    | 0    | 176       | 0    | 0    | 0    | 0    |
| 128       | 0    | 0    | 0    | 0    | 177       | 0    | 0    | 0    | 0    |
| 130       | 0    | 0    | 0    | 0    | 180       | 0    | 0    | 0    | 0    |
| 131       | 0    | 0    | 0    | 0    | 181       | 0    | 0    | 0    | 0    |

Tabla 12. Pérdida de carga (continuación)

| Día de operación | BFSA | BFA1 | BFA2 | BFA3 |
|------------------|------|------|------|------|
| 182              | 0    | 0    | 0    | 0    |
| 183              | 0.1  | 0    | 0    | 0    |
| 184              | 0    | 0    | 0    | 0    |
| 187              | 0.1  | 0    | 0.1  | 0    |
| 188              | 0    | 0    | 0    | 0    |
| 191              | 0    | 0    | 0    | 0    |
| 194              | 0    | 0    | 0    | 0    |
| 195              | 0    | 0.1  | 0    | 0    |
| 196              | 0    | 0.1  | 0    | 0    |
| 197              | 0.1  | 0    | 0    | 0.1  |
| 198              | 0.1  | 0    | 0.2  | 0    |
| 201              | 0    | 0.1  | 0    | 0    |
| 202              | 0.1  | 0    | 0.1  | 0    |
| 203              | 0    | 0    | 0    | 0    |
| 204              | 0    | 0.1  | 0    | 0    |
| 205              | 0    | 0    | 0    | 0    |
| 208              | 0    | 0    | 0    | 0    |
| 209              | 0    | 0.1  | 0    | 0    |
| 210              | 0    | 0    | 0    | 0    |
| 211              | 0    | 0    | 0    | 0    |
| 212              | 0    | 0    | 0.1  | 0    |
| 215              | 0    | 0    | 0.1  | 0    |
| 216              | 0    | 0.1  | 0    | 0    |
| 219              | 0    | 0    | 0    | 0    |
| 222              | 0    | 0    | 0    | 0    |
| 223              | 0    | 0    | 0    | 0    |
| 224              | 0    | 0    | 0    | 0    |
| 225              | 0    | 0    | 0    | 0    |
| 226              | 0    | 0    | 0    | 0    |
| 229              | 0.1  | 0    | 0    | 0    |
| 231              | 0.1  | 0    | 0    | 0    |

### ANEXO V: Análisis estadístico

Se aplicó pruebas estadísticas para saber si hay diferencia significativa sobre la remoción de contaminantes (SST, materia orgánica medida como DQO y DBO y N-NH $_4^+$ ) al aplicar las dos COS. Se utilizó análisis de varianza (ANOVA) y la prueba Kruskal Wallis cuando no se cumplía con la prueba de normalidad. Con la prueba de Kruskal Wallis la hipótesis nula se acepta cuando P>0.05 y se rechaza cuando P<0.05. En el ANOVA se realiza un análisis simple de varianza en los datos de dos o más muestras. El análisis proporciona una prueba de la hipótesis de que cada muestra se extrae de la misma distribución subyacente de probabilidades frente a la hipótesis alternativa de que las distribuciones subyacentes de probabilidades no son la misma para todas las muestras. Se especificó un alfa ( $\alpha$ ) de 0.05, este valor especifica el nivel con el que se desea evaluar los valores críticos de la función estadística F. El nivel alfa es un nivel de relevancia que está relacionado con la probabilidad de que haya un error tipo I (rechazar una hipótesis verdadera).

#### Remoción de SST

Tabla 1. Prueba de normalidad para SST

|        | Kolmo     | ogorov-Sm | irnov <sup>a</sup> | S         | hapiro-Wil | k    |
|--------|-----------|-----------|--------------------|-----------|------------|------|
| Etapas | Statistic | df        | Sig.               | Statistic | df         | Sig. |
| 1      | .261      | 15        | 0.007              | .804      | 15         | .004 |
| 2      | .251      | 12        | 0.035              | .872      | 12         | .069 |

a. Lilliefors Significance Correction

La prueba de normalidad indica que p<0.05, por lo tanto, se aplica la prueba no paramétrica Kruskal-Wallis para determinar la igualdad de medianas.

 $H_0: m_1=m_2=m_3$   $H_1: m_1\neq m_2\neq m_3$ 

Tabla 2. Datos estadísticos de SST

| Etapas | Datos | Suma  | Promedio | Varianza |
|--------|-------|-------|----------|----------|
| 1      | 15    | 10.55 | 0.70     | 0.0313   |
| 2      | 12    | 9.66  | 0.80     | 0.0170   |

Tabla 3. Prueba estadística para SST

| Chi-Square  | 3.631 |
|-------------|-------|
| df          | 1     |
| Asymp. Sig. | .057  |

P>0.05, por lo tanto se acepta que sean medianas iguales, no hay diferencia significativa entre las dos etapas en la remoción de SST.

### Remoción de SSV

Tabla 4. Prueba de normalidad para SSV

|        | Kolmo     | ogorov-Sm | irnov <sup>a</sup> | S         | hapiro-Wil | k    |
|--------|-----------|-----------|--------------------|-----------|------------|------|
| Etapas | Statistic | Df        | Sig.               | Statistic | df         | Sig. |
| 1      | .269      | 15        | .004               | .797      | 15         | .003 |
| 2      | .246      | 12        | .043               | .882      | 12         | .093 |

a. Lilliefors Significance Correction

La prueba de normalidad indica que p<0.05, por lo tanto, se aplica la prueba no paramétrica Kruskal-Wallis para determinar la igualdad de medianas.

 $H_0: m_1=m_2=m_3$   $H_1: m_1\neq m_2\neq m_3$ 

Tabla 5. Datos estadísticos de SSV

| Etapas | Datos | Suma  | Promedio | Varianza |
|--------|-------|-------|----------|----------|
| 1      | 15    | 11.33 | 0.76     | 0.0274   |
| 2      | 12    | 9.66  | 0.80     | 0.0170   |

Tabla 6. Prueba estadística para SSV

| Chi-Square  | 1.053 |
|-------------|-------|
| df          | 1     |
| Asymp. Sig. | .305  |

P>0.05, por lo tanto se acepta que sean medianas iguales, no hay diferencia significativa entre las dos etapas en la remoción de SSV.

### Remoción de MO medida como DQO

Tabla 7. Prueba de normalidad para DQO

|        | Kolmo     | ogorov-Sm | irnov <sup>a</sup> | Shapiro-Wilk |    |      |
|--------|-----------|-----------|--------------------|--------------|----|------|
| Etapas | Statistic | df        | Sig.               | Statistic    | df | Sig. |
| 1      | .172      | 16        | .200 <sup>*</sup>  | .946         | 16 | .428 |
| 2      | .276      | 13        | .008               | .793         | 13 | .006 |

a. Lilliefors Significance Correction

La prueba de normalidad indica que p<0.05, por lo tanto, se aplica la prueba no paramétrica Kruskal-Wallis para determinar la igualdad de medianas.

$$H_0: m_1=m_2=m_3$$
  $H_1: m_1\neq m_2\neq m_3$ 

Tabla 8. Datos estadísticos para DQO

| Etapas | Datos | Suma    | Promedio | Varianza |
|--------|-------|---------|----------|----------|
| 1      | 16    | 13.7135 | 0.8571   | 0.0033   |
| 2      | 13    | 11.2703 | 0.8669   | 0.0016   |

Tabla 9. Prueba estadística para DQO

| Chi-Square  | 0.698 |
|-------------|-------|
| df          | 1     |
| Asymp. Sig. | .404  |

<sup>\*.</sup> This is a lower bound of the true significance.

P>0.05, por lo tanto se acepta que sean medianas iguales, no hay diferencia significativa entre las dos etapas en la remoción de materia orgánica medida como DBO.

### Remoción de materia orgánica medida como DBO

Tabla 10. Prueba de normalidad para DBO

|        | Kolmo     | ogorov-Sm | irnov <sup>a</sup> | Shapiro-Wilk |    |      |
|--------|-----------|-----------|--------------------|--------------|----|------|
| Etapas | Statistic | Df        | Sig.               | Statistic    | df | Sig. |
| 1      | .299      | 5         | .164               | .784         | 5  | .060 |
| 2      | .141      | 7         | .200 <sup>*</sup>  | .962         | 7  | .837 |

a. Lilliefors Significance Correction

Datos normales, se aplica ANOVA.

 $H_0$ :  $\mu_1 = \mu_2$   $H_1$ :  $\mu_1 \neq \mu_2$ 

Tabla 11. Datos estadísticos de DBO

| Etapas | Datos | Suma   | Promedio | Varianza |
|--------|-------|--------|----------|----------|
| 1      | 5     | 4.4696 | 0.8939   | 0.0026   |
| 2      | 7     | 6.5616 | 0.9374   | 0.0005   |

Tabla 12. ANOVA para DBO

| Origen de las variaciones     | sc     | gl | Promedio de los<br>cuadrados | F      | Probabilidad | Valor crítico<br>para F |
|-------------------------------|--------|----|------------------------------|--------|--------------|-------------------------|
| Entre grupos<br>Dentro de los | 0.0055 | 1  | 0.0055                       | 3.9907 | 0.0737       | 4.4646                  |
| grupos                        | 0.0138 | 10 | 0.0014                       |        |              |                         |
| Total                         | 0.0193 | 11 |                              |        |              |                         |

 $\alpha = 0.05$   $F_{0.95} > F$ 

Por lo tanto  $H_0$  se acepta, no hay diferencia significativa en la remoción de materia orgánica medida como DBO al aplicar las dos COS.

<sup>\*.</sup> This is a lower bound of the true significance.

# Remoción de N-NH<sub>4</sub>

Tabla 13. Prueba de Normalidad

|        | Kolmogorov-Smirnov <sup>a</sup> |    |      | Shapiro-Wilk |    |      |
|--------|---------------------------------|----|------|--------------|----|------|
| Etapas | Statistic                       | Df | Sig. | Statistic    | df | Sig. |
| 1      | .224                            | 17 | .023 | .883         | 17 | .035 |
| 2      | .206                            | 17 | .055 | .936         | 17 | .270 |

a. Lilliefors Significance Correction

La prueba de normalidad indica que p<0.05, por lo tanto, se aplica la prueba no paramétrica Kruskal-Wallis para determinar la igualdad de medianas.

 $H_0: m_1=m_2=m_3$   $H_1: m_1\neq m_2\neq m_3$ 

Tabla 14. Datos estadísticos para N-NH<sub>4</sub>

| Etapas | Datos | Suma   | Promedio | Varianza |
|--------|-------|--------|----------|----------|
| 1      | 17    | 4.1353 | 0.2433   | 0.0282   |
| 2      | 17    | 1.1374 | 0.0669   | 0.0469   |

Tabla 15. Prueba estadística para N-NH<sub>4</sub>

| Chi-Square  | 5.664 |
|-------------|-------|
| df          | 1     |
| Asymp. Sig. | .017  |

P<0.05, por lo tanto se rechaza que sean medianas iguales, hay diferencia significativa entre las dos etapas en la remoción de  $N-NH_4^+$ .

Se aplicó pruebas estadísticas para saber si hay diferencia significativa sobre la remoción de contaminantes (SST, materia orgánica medida como DQO y DBO y  $N-NH_{4}^{+}$ ) al aplicar las tasas de aireación.

### Remoción de SST

Tabla 16. Prueba de normalidad para SST

|            | Kolmogorov-Smirnov <sup>a</sup> |    |      | ;         | Shapiro-Will | •    |
|------------|---------------------------------|----|------|-----------|--------------|------|
| Biofiltros | Statistic                       | df | Sig. | Statistic | df           | Sig. |
| 1          | .152                            | 27 | .110 | .924      | 27           | .050 |
| 2          | .171                            | 27 | .042 | .913      | 27           | .026 |
| 3          | .138                            | 28 | .184 | .906      | 28           | .016 |

a. Lilliefors Significance Correction

La prueba de normalidad indica que p<0.05 para BFA2 y BFA3, por lo tanto, se aplica la prueba no paramétrica Kruskal-Wallis para determinar la igualdad de medianas.

$$H_0: m_1=m_2=m_3$$
  $H_1: m_1\neq m_2\neq m_3$ 

Tabla 17. Datos estadísticos para SST

| Biofiltros | Datos | Suma    | Promedio | Varianza |
|------------|-------|---------|----------|----------|
| 1          | 27    | 1579.00 | 58.48    | 622.02   |
| 2          | 27    | 1580.06 | 58.52    | 584.21   |
| 3          | 28    | 1858.51 | 66.38    | 400.68   |

Tabla 18. Prueba estadística para SST

| Chi-Square  | .007 |
|-------------|------|
| df          | 1    |
| Asymp. Sig. | .931 |

P>0.05, por lo tanto se acepta la hipótesis nula. No hay diferencia significativa en la remoción de SST al aplicar las diferentes tasas de aireación.

<sup>\*.</sup> This is a lower bound of the true significance.

### Remoción de MO medida como DQO

Tabla 19. Prueba de normalidad para DQO

|            | Kolmogorov-Smirnov <sup>a</sup> |    |                   | ;         | Shapiro-Will | (    |
|------------|---------------------------------|----|-------------------|-----------|--------------|------|
| Biofiltros | Statistic                       | df | Sig.              | Statistic | df           | Sig. |
| 1          | .065                            | 38 | .200 <sup>*</sup> | .967      | 38           | .318 |
| 2          | .120                            | 38 | .188              | .953      | 38           | .113 |
| 3          | .172                            | 38 | .006              | .886      | 38           | .001 |

a. Lilliefors Significance Correction

P<0.05 para BFA3, por lo tanto se aplica prueba no paramétrica.

 $H_0: m_1=m_2=m_3$   $H_1: m_1\neq m_2\neq m_3$ 

Tabla 20. Datos estadísticos para DQO

| Biofiltros | Datos | Suma    | Promedio | Varianza |
|------------|-------|---------|----------|----------|
| 1          | 38    | 1937.99 | 51.00    | 285.34   |
| 2          | 38    | 1947.48 | 51.25    | 238.75   |
| 3          | 38    | 2370.66 | 62.39    | 245.74   |

Tabla 21. Prueba estadística para DQO

| Chi-Square  | 14.526 |
|-------------|--------|
| df          | 2      |
| Asymp. Sig. | .001   |

P<0.05, por lo tanto, al menos dos medianas son diferentes.

Se comprobará al comparar BFA1 con BFA2, BFA2 con BFA3 y BFA1 con BFA3.

Tabla 22. Prueba estadística para DQO entre BFA1 y BFA2

| Chi-Square  | .000  |
|-------------|-------|
| df          | 1     |
| Asymp. Sig. | 1.000 |

P>0.05, no hay diferencia significativa entre BFA1 y BFA2.

<sup>\*.</sup> This is a lower bound of the true significance.

Tabla 23. Prueba estadística para DQO entre BFA2 y BFA3

| Chi-Square  | 11.400 |
|-------------|--------|
| df          | 1      |
| Asymp. Sig. | .001   |

P<0.05 si hay diferencia significativa entre BFA2 y BFA3.

Tabla 24. Prueba estadística para DQO entre BFA1 y BFA3

| Chi-Square  | 10.305 |
|-------------|--------|
| df          | 1      |
| Asymp. Sig. | .001   |

P<0.05 si hay diferencia significativa entre BFA1 y BFA3.

### Remoción de MO medida como DBO

Tabla 25. Prueba de normalidad para DBO

| Biofiltros | Kolmogorov-Smirnov <sup>a</sup> |    | Shapiro-Wilk |           |    |      |
|------------|---------------------------------|----|--------------|-----------|----|------|
|            | Statistic                       | df | Sig.         | Statistic | df | Sig. |
| 1          | .208                            | 17 | .049         | .871      | 17 | .023 |
| 2          | .210                            | 17 | .046         | .837      | 17 | .007 |
| 3          | .183                            | 17 | .132         | .918      | 17 | .135 |

a. Lilliefors Significance Correction

P<0.05 para BFA1 y BFA2, se aplica prueba no paramétrica.

 $H_0: m_1=m_2=m_3$   $H_1: m_1\neq m_2\neq m_3$ 

Tabla 26. Datos estadísticos para DBO

| Biofiltros | Datos | Suma      | Promedio | Varianza |
|------------|-------|-----------|----------|----------|
| 1          | 17    | 1303.7658 | 76.6921  | 302.6891 |
| 2          | 17    | 1295.7631 | 76.2214  | 231.3184 |
| 3          | 17    | 1510.9946 | 88.8820  | 40.0507  |

Tabla 27. Prueba estadística para DBO

| Chi-Square  | 8.573 |
|-------------|-------|
| Df          | 2     |
| Asymp. Sig. | .014  |

P<0.05, por lo tanto, al menos dos medianas son diferentes.

Se comprobará al comparar BFA1 con BFA2, BFA2 con BFA3 y BFA1 con BFA3

Tabla 28. Prueba estadística para DBO entre BFA1 y BFA2

| Chi-Square  | .003 |
|-------------|------|
| Df          | 1    |
| Asymp. Sig. | .959 |

P>0.05, no hay diferencia significativa entre BFA1 y BFA2.

Tabla 29. Prueba estadística para DBO entre BFA2 y BFA3

| Chi-Square  | 6.585 |
|-------------|-------|
| Df          | 1     |
| Asymp. Sig. | .010  |

P<0.05, si hay diferencia significativa entre BFA2 y BFA3.

Tabla 30. Prueba estadística para DBO entre BFA1 y BFA3

| Chi-Square  | 6.151 |
|-------------|-------|
| Df          | 1     |
| Asymp. Sig. | .013  |

P<0.05, si hay diferencia significativa entre BFA1 y BFA3.

## Remoción de N-NH<sub>4</sub><sup>+</sup>

Tabla 31. Prueba de normalidad para  $N-NH_{\Delta}^{+}$ 

|            | Kolmogorov-Smirnov <sup>a</sup> |    |                   |           | Shapiro-Wilk |      |
|------------|---------------------------------|----|-------------------|-----------|--------------|------|
| Biofiltros | Statistic                       | df | Sig.              | Statistic | df           | Sig. |
| 1          | .117                            | 38 | .200 <sup>*</sup> | .915      | 38           | .007 |
| 2          | .117                            | 38 | .200*             | .920      | 38           | .010 |
| 3          | .161                            | 38 | .014              | .891      | 38           | .001 |

a. Lilliefors Significance Correction

P<0.05 para los tres biofiltros, por lo tanto se aplica prueba no paramétrica.

 $H_0: m_1=m_2=m_3$ 

 $H_1: m_1 \neq m_2 \neq m_3$ 

Tabla 32. Datos estadísticos para N-NH<sub>4</sub><sup>+</sup>

| Biofiltros | Datos | Suma      | Promedio | Varianza |
|------------|-------|-----------|----------|----------|
| 1          | 38    | 3194.3129 | 84.0609  | 157.2571 |
| 2          | 38    | 3117.7147 | 82.0451  | 195.3702 |
| 3          | 38    | 3263.5244 | 85.8822  | 151.9035 |

Tabla 33. Prueba estadística para N-NH<sub>4</sub>

| Chi-Square  | 1.853 |
|-------------|-------|
| df          | 2     |
| Asymp. Sig. | .396  |

P>0.05, no hay diferencia entre los tres biofiltros.

<sup>\*.</sup> This is a lower bound of the true significance.