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Timothy J. Dwyer
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0. C. Zienkiewicz

AN OVERVIEW AND CATEGORIZATION OF MODERN

I. INTRODUCTION

He shall try, in this chapter, to
(a) define the finite element method in its general form, and

(b) show its different facets which to a greater or lesser ex-
tent have been used to date.

We shall see how within a broad definition, the finite difference
techniques fall into a 'sub-class' of the general finite element methodology
which indeed embraces many other classical approximation procedures. This
generalization of the finite element concept is by no means a 'power bid' by
its over-enthusiastic adherents. On the contrary, it serves, we believe, to
lay a firm foundation to a wide variety of solution methods and provide ex-
pandzd possibilities of application.

Before embarking on the main theme of this introduction, the reader
may well ask the further question, "Does the finite element method in fact
provide tools which are in all respects superior to those of the more tradi-
tiona]l methods?" To this question the answer must be left to his intuition.
However, the observation of the field of structural and solid mechanics in
which finite element procedures have today 'taken over' other alternatives
may provide a clue. The research developments of the last fifteen years
(since the first mention of the "finite element" name was made) have become
everyday practice in many stress analysis/structures situations. It is, by
analogy, probablie that in such fields as fluid mechanics, neutron flux analysis
and many more similar revolutions are now feasible.

Il. THE FINITE ELEMENT CONCEPT

The finite eiement method is concerned with the solution of mathe-
matical or physical problems which are usually defined in a continuous domain
either by local differential equations or by equivalent global statements. To
render the problem amenable to numerical treatment, the infinite degrees of
freedom of the system are discretised or replaced by a finite number of un-
known parameters as indeed is the practice in other processes of approximation.
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The original 'finite element' concept replaces the continuum by a
number of subdomains (or elements) whose behavior is modeled adequately by
a limited number of degrees of freedom and which are assembled by processes
well known in the analysis of discrete systems. Often at this early stage
the model of the element behavior was derived by a simple physical reasoning
avoiding the mathematical statement of the problem. While one can well arque
that such a approach is just or realistic as formal differential statements
(which imply the possibility of an infinite subdivision of matter), we prefer
to give here a more general definition embracing a wider scope.*

Thus, ve define the finite element process as any approximation pro-
cess in which

(a) the behavior of the whole system is approximated by a
finite number, n, of parameters, a5 i=1l,....n for which

(b) the n-equations governing the behavior of the whole system,
i.e.,

F. (a.) =0 i=1,....n (1)

can be assembled by the simple process of addition of
terms contribyted from all subdomains (or elements) which
divide the system into physically identifiable entities
(without overlap or exclusion). Thus,

FJ.=ZF§ (2)

where F? is the element contribution to the quantity under

consideration.

This broad definition allows us to include in the process both phy-
sical and mathematical approximations and if the 'elements' of the system are
simple and repeatable, to derive prescriptions for calculation of their con-
tributions to the system equations which are generally valid. Further, as

*Although in some situations, such as for instance the behavior of granular
media the first approach is still one of the most promising as continuously
defined constitutive relations have not yet been adequately developed.
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zhe process {s precisely analogous to thal used in discrete system assanhly,
computer programs and experience accumulated in dealing vith discrete s/-
stems can be immediately trans ferred.

An important practical point of the approximalicn has been specifically
e:cluded here. This concerns the fact that often contributions .of the elemants
are highly localized and only a few non-zero terms are ccntributed by each el-
e~ent. In practice this localization results in sparse and often banded eq-
sation systems reducing computer storage requirements. While most desirable
in practice this feature is not essential to the definition of the finite
element process. ) |

What are then the procedures by which a finite element approximation
can be made? We have already mentioned - but exclude now from further dis-
cission here the direct physical approach and will concentrate on any problem

which can be defined mathematically either by a (set) of differential eguations
valid in a domain Q

D (8) = 0 (3)

“cgether with their associated boundary conditions. on boundaries of the
Zomain T "

B (¢) = 0 ‘ (4)

or by a variation principle requiring stationarity (max, min or 'saddle') of
some scalar functional I

‘m=[C(s) da+ [C(¢)dr (5)
Q Q

in both stateménts ¢ represents either the single unknown function or a
‘set of unknown functions. ) \
To clarify ideas consider a particular problem presented by seepage

flow in a porous medium where ¢ is the hydraulic head (a scalar quantity).

The specific governing equation is now in a two-dimensional doiain

Do) = L (k3 + 5o (k3H+a=0 . (6)
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together with boundary conditions

B (s) =¢ -9 on T (7)

9
B (s) +K3E-q on. T,
in which K the permeébi]ity, and Q the flow input, may be functions of
position (and in non-linear problems - of the gradients or values of ¢).

An alternative formulation (for 1inear problems) requires stationarity
(a minimum) of a functional

T 2 2
n=£{%K &+ k(3 S0 ede- [ gt dr(s)
' q

for ¢ which satisfies only the first boundary condition.
In general if a functional 1 exists, then an associated set of (Eu}er)
differential equations can always be found but the reverse is not necessarily

true, .
To obtain a finite element approximation to the general problem defined

by Equation 3 to 5 we proceed as follows:

(a) the unknown function is expanded in a finite set of
assumed, known trial functions Ni and unknown parameters

3

6= N a.=Na (9)
~and

(B) the approximatidn must be cast in a form of n equations which
are defined as integrals over @ and T i.e.

Fo=fE (3) da +[e (3) dr
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Immediately, we note that the basic definitions of the finite
element process previously qgiven apply as for integral functions

J()daz5 [ () de (1)
Q e
0
and
JOYdr-s [ ()dr (12)
r ].e

in which Qe, ré represent "element" subdomains.
The problem of how the integrals of approximations are formed is thus
the first, crutial, question of casting a problem in a finite element form.

T, APPROXTMATION INTEGRALS

1. Variational Princip]es(]’z)

If the problem is stated in terms of a stationary functional 1 then
the formulation is most direct. We can write the approximate form of the
functional as

m=1n=n(s) (13)
and for stationarity we have a set of equations

’FJ.=§ET=0 (14)
- ~J

which by definition of n is already cast in an integral form. This basis
of forming a finite element approximation has been and remains most popular,
providing a physically meaningful variational principle exists and can be
readily identified. This has led to statements of the kind that the finite
element method is a 'variational process' which is, however a too limited
definition, as other alternatives, often more powerful, are present. The
important question of how to proceed from the differential eugation directly
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in cases where a variational principle does not exist or rannot be
identified remains. The answer Lo it lies in the reformulation by use of
weighting function, or by the introduction of 'pscudo-varational' principles.

2. Meighted Integral Statements

It is obviously possible to replace the governing equations (6)
or (7) by an integral statement in all respects equivalent, i.e.,

-T

W D (s)de+ [ W B(4)dr (15)
Q- - - r - - -

in which U and U are completely arbitrary, 'weighting' functions. Immediately,
an approx1mat1on is possible in an integral form by choosing specific functions

(3)(4)

%j and Hj and writing

Fs é ;D (3) do + f WoB () dr (16)
The process is known as the weighted residual method if D (%) and B (;) are
recognized as residuals by which the approximation mises the zero value re-
quired. Classical procedures of Galerkin's method, collocation, etc. are
immediately recognized.

Either form of deriving integral statements and hence the set of
approximating equations can be and has been used in practice. The variational
principle possesses however a unique advantage. If the function is quadratic
in a the set of approximationg equations (14) can be written as

Ka+P=0 (17)

in which K is always a symmetric matrix (KijT = Kji)' For linear differential

equations the weighting processes will also result in a similar set of equations
via (16) - however, these will not in general be symmetric. The user of finite
difference procedures may well be acquainted with such dissimetries which present
often computational difficulties. This symmatry can indeed be shown to be a
precondition for the existence of a variational principle - and it will indeed

be found that the Galerkin's method of weighting will yield identical equations
as those derived from a variational principle whenever this exists.
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Because of this (and certain other) advantages of varjational
formulations much work of theoretical nature has been put in io estahlish
equivalent functionals for problems defincd by differential equations or
to create pseudo-variational functionals(g)_(8).

3. Psudo-Variational Principles - Constraints by lLagrange
Multipliers or Penalty Functions. Adjoint Variables and
Least Square Processes

Such pseudo-variational principles can be established by various
means. These include constrained variational principles and the extreme
cases obtained from these by the use of adjoint functions, or the application
of least square parameters.

Constrained variational principles require the stationarity of some
function - subject to constraints say of the type given by some differential
relations.

1O
——
L =

Y=0 in ¢ (18)

In such cases we can proceed to establish a new variational prin-
ciple in either of two ways. In the first we introduce an additional set of
functions > known as Lagrangian multipliers and require the stationarity of

-~

T=i(8 =n+f A Cdo (19)
A Q - -

The variation of this functional results in
= _ T T
=6+ [a&' C do + [ &6C da (20)
0 Q

which can only be true if both the stationarity of It and the constraints
(18) are satisfied.
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The use of Lagrangian multipliers in practice is somrwhat 1imited
due to two drawbacks. First the additional functions A have tp he dis-

cretized thus requiring a larger number of unknowns in the final prablem.

Second it will always be found that, if 1 is quadratic and C a linear ;
ing to the parameters discretizing 1 (this is obvious from the inspection
of equation 20). )

To obviate some of the difficulties associated with the use of
Lagrangian multipliers it is possible to require the stationarity a modified
functional based on a penalty function. For, it at the solution we require

a simultaneous satisfaction of the stationarity of n and tne satisfaction of
constraints we can minimize approximately

T =n+a [C C do (21)
-

in which o is some large (positive) number 'penalizing' the error of not
satisfying the constraints. As no procedure is without a drawback, we note
here a purely numerical difficulty: as o becomes large the discretized
equations tend to become ill-conditioned. With modern computers and high
precision arithmetic penality function operations are becoming increasingly
popular and their use more widespread(g)’ (]0).

What if even a constrained variational principle does not appear to
be identified? Clearly both methods given above are still applicable by putting

m=0. Thus, we can make stationary either

i=ﬁ(;)=£éT(de ‘ (22)

C dn (23)

The first is equivalent to the use of adjoint functions while the
latter is the straight-forward application of the least square procecures of

(3), (4)

approximation
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v The pseudo variational principle estahlished by equation (22) in
which a new, adjoint, function ) is introduced is of little practical use
The resulting discretized equation systems for parameters defining ¢ and A
are entirely decoupled and indeed there is little virtue in the symmptry
arising from the whole system as zero diagonal exists throughout. Neverthe-
less, this approach gives another interpretation of the Galerkin weighting
process if similar expansions are used for ¢ and A. The least square formu-
lation on the other hand results in well conditioned equation systems and
deserves much wider attenticn in the finite element literature than it has

so far received(]1)(12). -

4, Direct Integral Statements - Virtual Work

In many physical situations it is possible to formulate the problem
directly in an integral form avoiding the necessity of writing down differential
equations. In particular the principle of virtual work in mechanics can be

so stated with,gréater generality than that arising from differential equations.
" Indeed in such cases the weighted residual form given by equations (15) arises
in a form which can be obtained from this equation by the use of integration

by parts. Such integration reduces the continuity requirement imposed an .hoth
functions % and N by "integrability" (to which we shall refer in next sept%dn).
This due to the relaxation of requirements is known ma'thematically as a “weak
formulation" of the problem. 1t is of pHi1osophica1 interest to interject here
a thought that perhaps such weak formulations are indeed the requirements of
nature opposed to differential equations which, at certain physical discon-
tinuities, are meaningless. -

In structural mechanics virtual work principles have almost displaced
the formulation based either directly on energy statements (due to the wider
applicability of virtual work) or on differential equations (due to the avoid-
ance of other 'complex algebraic manupulating). In the chapter of these notes
dealing with "Viscous Flow" the author shows how such statements form an extremely
realistic and simple approach to fluids.

In Table I we summarize the basic processes by which the integral forms
of approximation can be made as a preliminary to finite element analysis.
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IV, PARTIAL DISCRETIZATINY

At this point it is appropriate to mention that it is oftlen con-
venient to discretize the problem only partially in a manner which, say.
redgces a set of differential equations in three independent variables not
directly to a numerical set of equations but to.a lower order differentil
equation, say, with‘qniy one variable. This first differential cquation ran
then, on occasion, be solved more efficiently by exact procedures or al-
ternative numerical solutions.

Such 'partial discretization' is particularly useful if the 'shape'
of the domain in oné of the independent directions is simple. This may arise
if prismatic or axigymmetric shapes are considered in a three dimensional
probiem or if one dimension is that of time.

Considering ‘the last case as a concrete example, the trial function

expression discretizing the unknown ¢
6 =06 (X, ¥, 2, t) (23)
is made by modifying the equation (9) to

(24)

-
-0
i
™~
=
Q
1}
=
[+ 1]

in which

N, = Ny (%, y, 2) (25)

i.e., is only a function of position and a is now a set of parameters vhich

are a function of time

2= a(t) (26)
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"Partial variations" of variation principles equation (13) or
any of the weighting procedures, equation (16) in which the weighting
functions do not include the independent variable t can now be used re-

ducing the formulation to a set of ordinary differential equations.

In fluid mechanics and flow problems we shall often find such a
discretization useful and the ordinary set of differential equations can
often be solved efficiently by simple finite difference schemes as well as

by a secondary application of the finite element methodo]ogy(]3)(]4).

V. TRIAL FUNCTIONS

1. General Principles

So far beyond mentioning that the unknown function ¢ is expanded as
in equation (9) by a set of trial functions N no specific mention was made
of the form these trial functions should take or what limitations have to be
imposed on them. We shall here consider, in very general terms, some of the
guidelines though by necessity the discussion cannot do justice to the problem
vihich is crucial to the success of the finite element process. For details
therefore the reader is referred to references 13 and 14 and to numerous other
publications in which different trial (or shape) functions are discussed.

A~ the trial functions N are constructed for practical reasons in a
piecewise manner i.e., using a different definition within each "element"

the question of required interelement continuity is crucial in their choice.
This continuity has to be such that either the integrals of the approximation
given in general by equation (10) or in particu 1ar forms by equations (14) and
(16) can be evaluated directly, without any contribution arising at the element
"interfaces." Alternatively, such interelement contributions must be of a kind
which decreases continuously with the fineness of element subdivisions. The
class of functions satisfying the first conditions shall be called conforming
vinile the ones which satisfy only the second one are named non-conforming

(admissible).
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In general it is quite easy to specify the 'conformity' condition-..

If the 1nfogrand contains m-th derivative: of the unknown functions & then the
shape functions N have to be such that the funct1on itself and its drr1vat1ve
up to the orer m-1 are required to be continuous (c" m-1 continuity).

In-practice it is difficult to define conforming functions in a piece-
wise manner for any order of m greater than one and because of this many 'non-
conforming' elements have originated in the past with the hope, sometimes proved
a posteriori, that admissibi]ity‘is achieved. The question of establishing
admissibility 1s a difficult one and much work on this area is highly mathe-
matical and not easy to 1nterpret(]5)(]6) Some tests of adinissibility have
however been devised and it is essential to subject any new non-conforminq
element to such an éiamination(]7)(18).

In Table Il we show these two main directions on which finite element
approximation is based. There is however an intermediate position where in-
—.—_terelement contribution can be evaluated without the imposition of full con-
formity. This arises either, if the derivatives of N occur in a linear form
in the>integra1s and continuity can be relaxed by one further order(]s)
in the basic formulation interface contributions are specifically inserted.

The latter is the position with-certain hybrid'formulations(]g)(zo) or Lam 2nge
mu]tip]in« forms which specifically imposo conformity as a constraint(2|)(?2).
In this simple eprse vie shall not be further concerned with these special
situations. They are taken up in more detail in two chapters by Professor
Gallagher  Herein we will subsequently treat the conforming formulation as
standard and the non-conforming one as a special variant of it.

A further condition which has to he imposed on shape function is fhat
of "comp]eteness,h_i.e., the requirement that in the limit, as the element size
decreases indefinitely, the combination of trial functions should exactly -e--
produce the exact solution of this if available. This condition is simple to
satisfy(]g) if polynomial expressions are used such that the complete m-th order
of polynomial is present, when m-th order derivatives exist in the integrai of

or vhere

approximation.
-To demonstrate a few simple shape functions in one and two dimensional

problems we show in Figure 1 and Figure 2, some piccewise defined shapes in one
and two dimensional domains in which to ensure C° conformity the system parameters
a; take on simply the value of the unknown function of certain points (often
referred to as nodgs) and which are common to more than one 'element.' With this
device a‘simp)e repeatable formula can be assigned ot define Ni within any element.
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It will be immediately recognized that as the parameter ap influences
the value of ¢ only in elements adjacent to a 'node' i its contribution to
the integrals will be limited to elements containing that node, hence the
'banded’ feature of approximating equations already referred to.

It is of interest to note that such piecewise defined functions
which to many are the essence of the finite element metnod have been used
for the first time as late as 1943 by Courant(23) despite the fact that in-
tegral approximation procedures are much nlder.

Today many complex forms of shape function definition exist, mostily
developed in the last decade, which are capable of being piecewise defined
and giving high orders of approximation. Some such functions are in fact
defined not in the simple original coordinate system in which the problem is
given but with a suitable transformation refer to curvilinear coordinates by
means of which most complex shapes of regions can be subdivided. Figure 3
shows some such elements of an "isoparametric" kind(24) much used in practice.
In al1 C° continuity only is imposed and relatively simple formulation suf-
fices.

2. Particular Example

To illustrate the process of discretization which by this time appear
somewhat abstract to the reader we shall return to the specific example given
by equation (6) and its associated boundary conditions (7).

Assuming that the potential ¢ (here a scalar quantity) can be approxi-
mated as

o =1 N, a. (27)

in which both Ni and a; are scalars and a; in fact is identified with nodal
values of ¢ we shall first use the variational principle of equation (8).
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Substituting (27) into equation 8 and differentiating with respert
to a parameter éi gives

o3 1. (3 2.1, 9 2 e
Fo=Sa © T [fé {7 K (5x(eHa,))%+ 7 K (sy-xmiai) = QuN;a, bexdy

- [ a tN;a, dr]

T
. aN. oN. al.
= Jy_1 —dJy_1 -
fo[K ax L oax 23 t K 3y L 5y QNj] dxdy
(28)
q
or for the whole equation systenm
W=ka+P =0 (29)
\ ‘
with }
aN, aN . oN. aN.
= 1 J 1 J
, Kij f£ K Gt 3y ° dy ) dxdy
P.=- [fQ N, dxdy - [ qMN.d * (30)
J q 3 T J

q

with trial function assumed piecewise element by element it is simplie to
evaluate the integrals for each element obtaining their contributions K, ¢
and PJ.e and obtain the final equation by simple summation over all eleme:r s

- e

Pj =3 pje (31)
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Alternative forms of approximation can be derived by the reader
using some weighting procedures described. 1t can be shown that in this
Yinear case (i.e. in which K and () are functions of position only) identical
anoroximation will be available by application of Galerkin weighting but
that that other approximations will arise from use of alternative pro-
cedures. He will find that for instance application or least square pro-
cesses (equation 22) will result in second derivatives being present and
111 need C] prime continuity trial functions with subsequent difficulties of
determining such functions. He will however observe that the Galerkin
crocess is available for non-linear problems where the simple form of the
variational principle is no longer applicable.

At this stage it is of interest to insert a particular shape function
and obtain in detail a typical equation for the parameter j.

Let us consider a typical internal node j = 0 on a regular mesh of
triangular elements as shown in Figure 4 in which a linear interpolation is
used.  Assuming K and Q as constants and that the contributions of the
coundary do not occur in the vicinity, the contributions of all elements are
found and coefficients KO]e, Koze etc. evaluated. After assembly the typical
equation becomes

K (89 + 03 + 65+ 65 = & <) + Qh°=0 (32)

The reader will recognize this as the standard finite difference equation
obtained by direct, point, differencing of equation 5 and may well enquire
what advantage has been here gained. Obviously, the numerical answers in
this case are going to remain the same, at least if boundary of type rq does
not occur. Immediately, however it is important to point out that if K
varied discontinuously between elements (such as may be the case at inter-
faces between two regions of different impermeability) the finite element
r~ethod would have yielded in one operation answers which direct finite dif-
ference procedures would tackle only by the introduction of additional con-
straints and interface conditions. Further the variational form allows the
gradient boundary condition to be incorporated directly.

Pursuing the problem further we try a rectangular element with a
bilinear interpolation of ¢ as in Figure 1b. The resulting finite element
equation gives

K (o) * -oon + 8] —B¢0+6Qh2=0 (33)
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applicable to the differentials occurring in the integrals
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a form substantially different from the standard finite difference equation
which although convergent to the same order of approximation reduces the
truncation error. Again the sane comments can be made as before regarding
the advantages of the finite element approximation.

In recent years much progress has been made in the finite differcnce
methodology, and in particular integral forms including variational principles
have been used as the basis of approximation in which the differences are only

{ .
\25 3]). Comparison

of such processes with finiie element methods have been made by Pian(32)

showing
somz details of the problem discussed above. Such approaches eliminate some

of the drawbacks of the finite differences procedures and indeed bring it close
to the finite element process as will be shown in the next section. However,
the difficulty of increasing the order of approximation or of using irreqgular

meshes still preserves the advantages of finite element process.

VI. SOME_ASPECTS OF NON-CONFORMITY - COMPLETIMG THE CIRCLE
TO FINITE DIFFERENCES

As mentioned before many non-conforming eler2nts have been implemented
in practice and convergence proofs obtained. Indeed very often these non-
conforming elements have proved to produce results of higher accuracy than
corresponding conforming ones. What is the reason for this and is it desirable
on occasion to introduce non-conformity deliberately to produce better results?

To answer this question it is of interest to consider the terms on which
the performance of an element is based. It is found by mathematical reasoning
that the order of convergence of a particular element is dependent only on the

(]8). This indeer may

complete polynomial terms which occur in the expressions
be anticipated by considering the remainder terms in a local Taylor expancion
of the unknown functions near the vicinity of a point of the domain.

In order to introduce conformity it is often found that either in-
complete polynomial expansions are used, as for instance in the bilinear
rectangle of Figure 2b in which only one quadratic term (xy) occurs in addition
to a complete linear expansion or else, as in C] - class elements, sinquliarities
or rational fractions are introduced in addition to ordinary pclynomial terms
within the element. It is often the existence of such terms which causes the
performance of an element to deteriorate and perhaps some means of eliminating

these should be sought.
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One answer to this problem has bezn recently supplied hy-lrons

33)

The essential idea is to replace the original conforming, shape which con-

and Razzaque( who introduce the concey’ of substitute shape functrons.
tains superfluous high order terms of expansion or sinqularities by another
function which is an exact polynomial and inich in the least squre sense,
represents thes best fit to the original _hzo2 function. This if N is the
original function and H its polynomial su>stitute of the kind

& = B'I +

(83

) + 23 .- (34)

we determine the coefficients 8 by minimizing

f, ()2 do (35)
Q

with respect to these parameters. This results in a set of equations

-y 2 4 (36)
ée 381

's are readily found. Clearly in general N will not be 'con-

from which :
forming.'

Convergence of elements derived on such substitute basis can be
argued from the fact that in the limit (discounting any singularities present)
the combination of either N or N is capable of representing a simple polynomial
Taylor expansion in an identical manner.

The improvement of the performance of elements derived on the basis
for some C] continuity problems in the context of plate bending has been demon-
strated in reference 34 and indeed in othar situations a simi]af improvement is
expected.

An apparently alternative path to inprovement of element performance
has been recently demonstrated in the context of numerically integrated elements
by reducing (rather than increasing) the order of numerical integration(3h).

It is easy to show that one of the reasons of the success of this process is
in fact its identity with the use of substitute shape functions. To show

this it is of interest to record some properties of Gauss integration points
used in numerical integration. Thus if n Gauss sampling points are used in an
integration domain -1 < x > 1 then
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(a) a polynomial of degrees 2n-1 is integrated exactly.

(b) The n Gauss points define uniquely a polynomial of degree
n-1 which is tie least square approximation of any polynomial
of degree n which has the same sampling values.

Further, we can observe that if N represents a least square approvi-

mation to N then %g— is also a least square approximation to %g etc. for all
derivatives.
To iTlustrate these properties observe that any parabolic curve ik
in x direction is represented in a least square approximation by a straight line
an' ol

f passing through the two Gauss points. Further, the values of X and 3%

obtained by ‘one Gauss point sampling are identical, as shown in Figure 5.

In practical application orie dimensional domains are of little interest,
but in two or three dimensions we observe immediately that for a bilinear e«-
pansion of Figure 2b the effects of sampling N or %grat one central Gauss point
is equivalent to passing a least square substitute linear expansion T as shown
in Figure 6. ‘ \

In second order rectangular elements used frequently in finite element
analysis, Figure 7, terms such as xzy, xy2 arise qjving first derivatives which
vary parabolically in one direction. -The effect of using a 2x2 Gauss sampling
is to approximate to such derivatives by a bilinear expansion which eliminates
the effect of these terms in a least square manner, effectively approximating
to the original shape function by a complete second order expansion. The
success of 2x2 Gauss integration achieved in many situations is undoubtedly due
to this fact. Table III shows a typical application in which dramatic im-

provement of results occurs by reduction of integration.
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TABLE 111
Central Deflections of a Square Plate Under Lateral Uniform
Load. Solution Using Four 'Parabolic' Three Dimensional
Elements with Reduced Integration
| W, - Exact Solution, <« L-Span, « t-Thickness)

L/t = 200 10

3x3x3
Gauss
point

v_ .
W

. 0.60 0.85

2x2x2
Geuss
coint

W 1.00 0.98
w

c

The above remarks show that in many situations improvement of results i;
acnieved by introduction of admissible, non—conforming, shape functions.
£+ this stage it is of interest to examine the finite difference approximation
and to how that these are in face simple applications of such non-conforming
trial function assumptions.

Consider for instance a 'direct' finite difference approximation to
an ordinary differential equation

2
d , g=0 (37)

The standard 'local' approximation to the second derivative in the vicinity of
goint, i.e.

QEQ.: 1 (¢ -2 + ¢ ) (38)
is in fact identical to the choice of a trial function which is a parabola
fitting the three consecutive values of ¢. The governing equation well kncwn

in finite differences

2

ey - 2¢n + ¢n_]‘h Q=0 (39)
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can be obtained by an integral approximation of the form given by equation
15 with a weighting function shown in Fiqure 8.

Clearly the shape functions chosen here are non-conforming and show
discontinuities between successive elements. Convergence is dependent only
on the ‘interweaving' nature of those which quarantee that in the 1imit the
discontinuity disappears.

A further much used finite difference approximation is presented in
Figure 9 where, say in a variationally formulated problem, an expression for
a gradient is written as

26 - s

X P ] (40)

n+l, m+l * *nel, m " °n, m+l " ®m,n

It is immediately evident that this is precisely the value obtaired
by use of the substitute shape function in Figure 6 (or simply one point
integration) and indeed jdentical approximation will result.

Pursuing the line of thought indicates that all finite difference
processes can be considered as specialfcaees of the finite elemant proces<
with non-conforming but usually admissible shape function assumptions,

The success of finite difference methods is indea2d dependent on the
convergence of the trial function approximation and is indeed a particular
case of the finite element process which originated in a different manner. [t
is more than likely that the future optimal methods of numerical discretization
can borrow from the successes of both procedures. The finite element method-
nology based on irregular subdivision of elements and often a variational
formulation frees the standard finite difference analyst from his shackles of
regular mesh subdivision. The finite element method may well make greater use
of non-conforming assumptions for trial functions implicit in the finite dif-
ference approximation. One such interesting 'marriage' was indicated re-
cently by Utku(36) where an interweaving mesh is used on an irregular basis
in two dimensions by passing a least square quadratic surface fit of a local
expansion which yields second derivatives in an 'element' association with
the locality as shown in Figure 10.
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Questions such as the adequacy of 'interweaving' required to
obtain admissibility of such non-conforming shape functions remain yet
to be answered, but, as mentioned before, pragmatic tests exist to judge
whether convergence will be obtained. Problems such as instabiiity of
equation systems derived from certain function assumptions (e.g. for
certain subdivisions using the one point integration rule of Figure 6 or
or equivalent finite difference model of equation 40) still need to be
further investigated. Nevertheless, today it can be stated that the finite
element methodology represents a very considerable generalization of the
finite difference ideas and hence opens the way at least to more efficient
methods of solving already solvable problems - at best opens new ways to
problems which previously defied analysis.

21




0. C. Zienkiewicz

10.

11.

12.

REFERENCES

Washizu, K. "Variational Methods in Elasticity and Plasticity,”
Pergamon Press, Oxford, 1968.

Mikhlin, S. G.,, "Variational Methods in Mathematical Physics,"
Pergamon Press, Oxford, 1964,

Crandall, 5. H., "Engineering Analysis," licGraw-Hi1l, New York,
1956.

Finlayson, B. A., "The Method of Weighted Residuaic and Variational
Principles,” Academic Press, New York, 1972.

Oden, J. T., "Finite Element Models of Non-Linear Operator
Equations," Proc. 3rd Conf. on Matrix Meth. in Struct. Mech.,
Wright-Patterson Air Force Base, Ohio 1971.

Tonti, E., "Variational Formulations on Hon-Linear Differential
Equations," Bull. Acad. Roy. Belgique, Series 5, V. 55, pp.
139-165, 262-278, 1969.

Sandhu, R. S. and Pister, K. S., "Variational Principles for
Boundary Value and Initial Value Problems in Continuum Mechanics,"
Int. J. Solids Structures, V. 7, pp. 639-654, 1971,

Zienkiewicz, 0. C. and Taylor, C., "Weighted Residual Process in

Finite Element Method with Particular Reference to Some Transient

and Coupled Problems," Lectures on Finite FElement Methods in

Continuum Mechanics Proc. NATO Symp. Lisbon, edited J. T. Oden

and E. R. A, Oliveira. University of Alabama at Huntsville Press, 1973.

Zienkiewicz, 0. C. "Constrained Variational Principles and Penalty
Function Methods in Finite Element Analysis,” Conference on the
Numerical Solution of Differential Equations, University of Dundee,
July, 1973 (to be published Springer V.)

Moe, J., "Penalty-Function Methods in Optimum Structural Design",
edited by Gallagher, R. H., and Zienkiewicz, 0. C. J. Wiley, London,
1973.

Lynn, P. P. and Arya, S. K., "Use of the Least Square Criterion
Finite Element Formulation," Int. J. Nwn. Meth. Eng., V. 6,
pp. 75-88, 1973.

Zienkiewicz, 0. C., Owen, D. R. J., and Lee, K. N. "Least Square - Finite
Element for Elasto-Static Problems. Use of Reduced Integration".
Int. J. Num. Meth. Eng., V. 8, No. 2, 1974, pp. 341-358.




0. C. Zienkiewicz

13.

14,

15.

17.

18.

19.

20.

21.

22.

23.

24.

Zienkiewicz, 0. C., "The Finiz2 Element Method in Engineering
Science," McGraw-Hill, London, 1971.

Gallagher, R. H.. "Finite Ele~2nt Analysis: Fundamentals," Prentice-
Hall, Englewood Cliffs, Hew  zrsey, 1975.

Uliveira, E. R. A., "Theore*izal Foundations of the Finite Element
iiethod," Int. J. Solids Strz:.rzs, V. &, pp. 929-52, 1968,

Ciarlet, P. C., "Conforming 2-d Non-Conforming Finite Element Methods
for Solving the Plate Probler," Zonference on the Numerical Solution
7 Differential Eouations, .nisersity of Dundee, July, 1973. (to

be published by Springer, V.

Bazeley, G. P., Cheung, Y. %., Irons, B. M. and Zienkiewicz, 0. C.,
'Triangular Elements in Bendira-Conforming and Non-Conforming
Solutions," Proe. Conf. llazri. ''zth. Struct. Mech., Wright-Patterson
AFB, Ohio, 1965.

Strang, G., and Fix, G., "An Z1alysis of The Finite Element Method,"
Prentice-Hall, Englewood, Cii<’s, New Jersey, 1973.

lemat-Nasser, S., and Lee, 4. 'v., "Application of General Variational
Methods with Discontinuous 7iz ds to Bending, Buckling and Vibration
ot Beams," Corp. Methods ir. -::.Zed iMech. Eng., January, 1973.

Pian, T. H. H., and Tong, Pin. "Finite Element Methods in Continuum
vechanics," 4Advances in Cors- . im Hzchanics, Academic Press, Mew
York, 1971.

Harvey, J. W. and Kelsey, S., Triangular Plate Bending Element with
tnforced Compatibility," A+~ -“2urnal, V. 9, No. 6, pp. 1023-1026,
1971.

Szabo, B. A., Tsai, C. T., "T-2 Quadratic Programming Approach to
The Finite Element Method," -.-. J. Nwn. Meth. Eng., V. 5, pp.
375-381, 1973.

Courant, R., "Variational let-2ds for the Solution of Problems of

Equilibrium and Vibration," Z.22. Am Math. Soc. V. 49, pp 1-23,
1943, .
Zienkiewicz, 0. C., Irons, 8. “., Ergatoudis, J., Ahmad, S., ani

Scott, F. C., "Iso-parametric 2nd Association Element Families ior
Two- and Three-Dimensional Arzlysis,” (Ch 13 of Finite Element
Method in Stress Analysis). =2dited by I. Holand and K. Bell,
Tapir Press, Trondheim, Morwa,. 1969.




D, C. Zienkiewicz

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

Courant, R,, and Hilbert, P., "Methods of Mathematical Phy-ics,”
Vo. 1, Interscience Publ. Inc., Mew York, 1953.

Forsythe,.G. E., and Yasow, W. R., "Finite Difference Methods for
Partial Differential Equations.," Section 20, John Wiley & Sons, inc.,
New York, 1960.

Young,‘DQ.M., Jr., "The Numerical Solution of Elliptic and Parabolic
Partial Differential Equations," in Survoy of lumerical Aanlysi.,
J. Todd, Ed., J. Wiley Book Co., 1962.

Greenspan, D., "On Approximating Extremals of Functionals - 1. The
Method and Examples for Boundary Value Problems." Bull. Int. Corp.
Centre 4, pp. 99-120., 1965.

{alton, W. C., Jr., "Application of General Finite Difference Method
for Calculating Bending Deformations of Solid Plates," NASA TN D-536,
1960.

Schaefer, H. G., and Heard, W. L., Jr., "Evaluation of an Energy
Method Using Finite Differences for Determining Thermal Mid-Plane
Stresses in Plates," NASA TN D-2439, 1964.

Griffin, D. S. and Kellog, R. B., "A Numerical Solution of Axially
Symmetrical and Plane Elasticity Problems," Int. J. 5olids and
Structures, V. 3, pp. 781-794, 1967.

Pian, T. H. H., "Variational Formulation of Numerical Methods in
Solid Continua," Proe. of Syrposium on Cormpuler Ai’zl Engineerirs,
G. H. L. Gladwell, Ed., University of Waterloo, Ontario, Canada,
1971.

Irons, B. M., and Razzaque, A., "Shape Function Formulations for
Elements Other Than Displacement Models," Symposium on Variatioral
Methods, University of Southampton, pp. 4-49, 4-71, 1972.

Razzaque, A., "Program for Triangular- Bending Element with Derivative
Smoothing," Int. J. Num. Methols Eng., V. 6., pp. 333-345, 1973.

Zienkiewicz, 0. C., Too, J., and Taylor, R. L., "Reduced Integration
Technique in General Analysis of Plates and Shells," Int. J. Nwn.
Meth. Eng., V. 3, pp. 275-290, 1971. -

Ney, R. A., and Utku, S., "An Alternative for the Finite Element
Method," Symp. Variational Metnods, University of Southampton, 1972.




5. C. Zienksovicz

; ,
FINITE ELEMENT APPROXIMATION
INTEGRAL FORMS OF CONTINUUM PROBLEMS DMRECT PHYSICAL
TRIAL FUMCTION MODEL
2=Z N a.
|
v \V/ v

VARIATIONAL PRINCIPLES

|
v

MEAMNINGFUL

GLOBAL PHYSICAL
STATEMENTS
(EG.VIRTUAL WORK]

WEIGHTED INTEGRALS
OF P.D.E.GOVERNING
{WEAK FORMULATIONS)

A

T ]

PHYSICAL
PRINCIPLES
' CONSTRAINED M[ljsr&.r'mem
LAGRANGIAN F ONS
%7 COLLOCATION g
| FoRMsS (POINT OF |
PENALTY SUBDOMAIN)
| avsoint FUNCTION U WV A
i FUNCTIONS FORMS o i
| LEAST GALERKIN
| SQUARE (ﬁjr-ﬁi)
FORMS i
L 1
TABLE I

NATURE OF TRIAL

( Q-PROBLEMDOMAIN; I'-BOUNDARY; I -ELEMENT INTERFACE)

FUNCTIONS USEDINF E.M.

\Y%
CONFORMING
(SQUAREINTEGRABLE)
TRIALFUNCTIONSIN O

ALY

INTEGRABLE

‘Jump'

TRIAL FUNCTIONS
VITHINTERFACE TERMS /( )dI
e

vV
NON CONFORMING |
TRIAL FUNCTIONS i
(NON INTEGRABLE)

STANDARD ELEMENT
WITHNOINTERFACE TERMS

CONTRIBUTIONS
DERIVED
MATHEMATICALLY

v

EXACT
INTEGRALS

NUMERICALLY SUFFICIENT

INTEGRATION FINITE DIFFERENCE
| SUBSTITUTE BAS\S
NON CONFORMING
l TRIAL FUNCTIONS ZP‘ [P
L DERIVED AS LEAST L _ ]

I §
LAGRANGIAN ﬁ <7
IMTERFACE ENGINEERING
CONSTRAINTS "inTutTiON”

SUGGESTS
FUNCTIONS

"INTERWEAVING'

OR TAYLOR

EXPANSION FORMS
GUARANTEE CONVERGENCE

SQUARE APPROX,
OF CONFORMING
FUNCTIONS

TARI F T




:

g1

dix) A
d(x)

FiG.| ONE DIMENSIONAL,SIMPLE,
LOCALIZED TRIAL FUNCTIONS
OF C° CONTINUITY

DOMAIN SUBDIVIDED INTQO ELEMENTS

APPROXIMATION TO AN ARBITRARY FUNCTION $(X)

®E 6

LOCALIZED TRIAL FUNCTION FOR PARAMETER 0i= P

F1G. 2 TWO -DIMENSIONAL LOCALIZED

TRIAL FUNCTIONS OF C® CONTINUITY

TRIANGULAR ELEMENTS (LINEAR EXPANSION)

RECTANGULAR ELEMENTS (B(-LINEAR EXPANSION)

zolmaLuatz '3 0




N
FIG.3 SOME MORE ELABORATE ELEMENTS
WITH CURVILINEAR CO-ORDINATES
4 3 2 4 3 2 .
5 () I 5 0 [
\ h
(] 4 8 6 7 BJ
bt —f be—h —] FIG.5 APROPERTY OF GAUSS POINTS
@ @ TWO GAUSS POINTS DEFINE A
STRAIGHT LINE,N,WHICH IS
FIG.4 REGULAR TRIANGLE AND SQUARE ) ALEAST SQUARE APPROXIMATION

SUBDIVISIONS ) OF ANY PARABOLA N' PassING
THROUGH THESE POINTS

® %%L ISA (CONSTANT) LEAST SQUARE

2N
APPROXIMATION TO T x
u

LOLESLRUDLZ "9 0




gl
pap——
-

FIG.6 ONE GAUSS POINT INA TWO
DIMENSIONAL SQUARE SAMPLES CORREGCTLY
N anD g—N— L ARE LEAST
x  dy
SQUARE APPROXIMATIONS BY ALINEAR
EXPANSION TO A BILINEAR FUNCTION N

/7‘7 77 /

/‘———.’-4
0.57135 0.57735

1.0

- .0 -

FIG.7 FOUR GAUSS POINTS INATWO i
DIMEMNSIONAL SQUARE SAPLE CORRECTLY

N AND ITS DERIVITIES WHERE ’\-l >!S
ALEAST SQUARE APPROXIMATION BY A
PARABOLIC EXPANSION TO'A BI-PARABOLIC FUNCTION N

F1G.8 EQUIVALENCE OF FINITE DIFFERENCE

APPROXIMATION TO 424 WITH

d x?
A COLLATION FINITE ELEMENT
APPROACH USING DISCONTINUOUS
(NON-CONFORMING)TRIAL FUNCTIONS

N

n m+l n+l,m+l

K
% |

nmn+lm

FIG.9 AN EQUIVALENCE OF AFINITE
DIFFERENCE APPROXIMATION FOR
FIRST DERIVATIVE 1N 0°
TOONE POINT NUMERICAL SAM2LING
OF BILINEAR EXPANSION OF F16.6

[
%)

ZoLMaLYUBLZ *)




FIG.10 NON-CONFORMING BUT INTERWEAVING
AND ADMISSIBLE EXPANSION FOR

¢ IN 0% By IMPOSING A

LOCAL PARABOLIC EXPANSION FOR ¢,
IN TERMS OF A LEAST SQUARE FIT
SURFACE WITH NEIGHBOURING POINTS
{SEE REF. 36)

‘50

ZOLIBLYUBLY



O




centro de educacion continua /~ "\

divisién de estudios superiores /
facultad / de ingenierfa, unam o

"ADVANDED TOPICS IN FINITE ELEMEN'
ANALYSIS. "

"TEMAS AVANZADOS DE ANALISIS POR
ELEMENTOS FINITOS. "

MARCH 22-26, 1976.
MARZO 22-26, 1976.

Direcior de la Facultad, M. en Ing. Enrique Del Valle Caldcrén
Jefe de la Divisién, Dr. Octavio Rascén Chavez
Jefe del C.E.C. / Dr. Pedro Martinez Pereda

Palaclo de Mineria
Tacuba 5, primer piso. México 1, D. F.
Tels.: 521.40-23 521-73-35 5i2-31-23




;

ﬁ‘ﬁ ? centro

V division

O M facultad

de educacion continua
de estudios. superiores

de ingenierfa, unam

MONDAY, MARCH 22, 1976.

MIXED AND HYBRID F.E.M. FFORMUT,A TIONS

PROFLESSORS:

0.C. Zienkiewicz
R.H. Gallagher
P.V. Marcal

T. Dwyer

P. Ballesteros

CO-ORDINATORS:

T. Dwyer
P. Ballesteros

Palaclio de Minerla
Tacuba 5, primer piso. México 1, D. F.
Teis.s 521-40-23 521-73-35 5(2-31-23

RO |




O

R. H. Gallagher

MIXED VARIATIONAL PRINCIPLES AND HYBRID FORMULATIONS

I. INTRODUCTION

Alternatives to the potential or compiimentary enerqgy formulations
teither in the conventional or generalized forms) are the mixed and hybrid

energy formulations.
Mixed variational principles lead directly to mixed formats of the

element force-displacement equations. Because the Luier equations of thesec
functionals are the more basic equations of elasticity, with lower order deri-
vatives, the continuity requirements on the assumed fields arc of lower order
than for the conventional variational principles.

Hybrid formulations involve not only the generalization of the con-

ventional energy principles but also introduce multi-field representations of
element behavicr. One form of stress or displacement field is described within
the element and independent stress and/or displacement fields are described on
the boundary of the element. A}l but one.of the fields is described in terns of
generalized paraheters; that field is given in terms of physical d.o.f. The
appropriate energy expression (a generalization of either potential or comple-
mentary energy) is first formed in terms of both classes of parameters and then
the stationary condition is applied to the generalized parameter set. This
yields a system of equations for the generalized parameters in terms of the physical
d.o.f. These equations are used to eliminate the generalized parameters from
the energy expression. The resulting energy expression then contains an idonti-
fiable stiffness or flexibility matrix of conventional form.

We examine mixed formulations in some detail in the next section.
Then, in subsequent sections, three alternative hybrid formulations are studied.

IT. MIXED VARIATIONAL PRINCIPLES

A. Reissner Variational Principle

The simplest and most widely used mixed variational principle in finite
element analysis is that which is associated with Reissner [1]. We can develop
this quite readily, using the potential energy principle as a starting point.
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We have

= U+ )

but, by definition (with U* = Compleﬁentary Energy)
U + U = fVol w9 {e} d(Vol) (2)

or,
\U = fVol Wy {e} d(Vol) - U* : (3)

and, by substitution into Equation (1), we have the Reissner functional, "R'
Mg = !Vol Lol {e} d(Vol) - U* + V (4)

where now the functional is expressed in terms of both stresses and strains.
Furthermore, we note that if independent choices are made for both stress-related
and strain-re]ated fields, then the surface integral V must account for both
prescribed stresses and prescribed displacements, i.e.,

V= ]S q.AdS + [SAq.(A;B)dS (5)

where now SA is the portion upon which the displacements A are prescribed.

- The Euler equations of this functional are the equilibrium and stress-
displacement equations. Analysts are generally familiar with such basic equations
and it is of interest to examine how one proceeds from the basic equations to the
integral form. To do this, we employ the method of weighted residuals dith the
Galerkin criterion in the choice of weighting functions.

Let us consider the case of a uniform axial member subjected to a
distributed load q. In this case the equilibrium equation is

w t R0 (6)
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and, after substitution of the strain-displacement equation into the stress-
strain law, we have the stress-displacement equation

g

gle
1
i
n
(=]

(7)

In developing algebraic equations for this formulation we apply a
weighting factor ¥ to the equilibrium differential equation and a weighting
factor ¢ to the stress-displacement differential equation

L do
ol + )y Adx =0 (8)

L - o
du _ x -
The approximations to stress and displacement are chosen as

O = LN {u) | (10)

Qt

= i) {o} : (1)

where the terms of [N] are the displacement shape functions and [1] is employed
to-designate the stress-shape functions. In-selecting weighting factors from
these terms we employ the displacement shape functions Ni for ¥ and the -stress

shape functions ¥ for ¢. Consider first the weighted integral of the equilibrium
differential equation. By introduction of y = Ni we have

do
j(—m’% + %) N;Adx = 0 (8a)
ond, after integration by parts of the first term, and rearrangement

LdN, _ b L
Jo —ax ox Mdx = NAo |+ [ aN,dx {8b)
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We begin with potential energy (np) and for simplicity exclude
initial strains and body forces and assume that all prescribed loads are

distributed tractions T . Then we have

no=y J  clE)e dvol.) - [ Tu ds (1.2)

P Vol. So

where all terms are as defined previously. The volume integral indicates
that the displacement fields‘chosen to approximate "p will result in lack
of satisfaction of the equilibrium condition %4 j=0 and the surface

integral indica;es that the condition T = T wil) not be met along S;,

where T denotes the edge forces given by the internal stresses ¢ . At the
samé time the functional implies that the displacement boundary condition,
- ]

u=u on'Su and\the strain-displacement equatwns_eij =5 (uij + pji? = 39

will be satisfied throughout the volume of the structure.

Suppose we desire to work with displacement function which will not
meet the disp1acehent boundary condition and the strain-displacement equation.
Ve can then append these conditions to the functional, using the Lagrange

mulliplier method. The new functional is
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Introducing Eq. 11 for Gx and noting that NiAax = F;» we have for all values
of Ni

[0,] to} = (F} + {F%) (12)
where
L dNi o
[92«'] = fo('&—'}[i] Adx (12a)
d L ‘
{(F7) = {Io qudx} (12b)

end {F} is the conventional listing of joint forces.

Considering next the weighted integral of the stress-displacement
equation we have, upon introduction of ¢ = DR
[L(gg - éﬁ) I, Adx = 0 (9a)

0 dx E i

and, after introduction of Eqs. (10) and (11) for u and ;x‘ we have

for all :i -

[nm]T {u} + [9] Lo} = 0 (9b)

where [:2]] is as defined by Eq. (12a) and

L -
[nn] = - [j {z} _L%.l_ Adx] (12¢)
.0 ’

We see that this relationship connects {u} and (o} so it is co:-
venient to group both Eq. (12) and Eq. (9b) into a single matrix equation

1] o 0

u F+Fd

M

1y

Thus, we have derived finite element equations in the mixed format.
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My =2 o1 © [E] € dlvol) - IQ;T L uds
(14) . -
+ fsukg U N 8- fygy (e -28) 2, d(Vol)

vhere.3a denotes the displacement derivatives corresponding to the strains

e . From the prior Lecture notes we can recognize tHat the langrange multipliers

A and Ay must be edge tractions T and the stresses ¢ , respectively, so we can

write

-~

] ]
M- 2 Jvor ¢ [ED ¢ dlVol) - fg T . uds

+ IS (v - 9) “T ds - !Vol (E-BQ) od(V61) (14a)

This is the Hu-Washizu functional, containing displacements and stresses as

independent variables. Note that we caused the strains to be independent of
the displacements by "disconnecting" the strain-displacement equation. The

subsidiary condition is—fhat the tractions T correspond to the stresses o .
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B. RELATIONSHIPS AMONG MIXED VARIATIONAL PRINCIPLES.

In the previous section we first justified the Reissner functional
simply by the substitution of an identity for the strain energy into the
potentional energy functional. A more elegant way to establish the Reissner
functional, and all other functionals in elasticity, is to start vith the
potential energy functional and successively "relax" conditions on the
potential enerqy and effect satisfaction of certain other conditens. In this

(15, 34)

vay, Pian(ao), and others s have shown how it is possible to progress

from the potential energy functional to the complementary energy functional with

(15)

the identification of the Reissher and Hu-Washizu functionals at intermediate

steps.

Before detailing this process, it is useful to elaborate upon the
meaning of the term "relax conditions on". One must first recognize that each
integral in ah'energy expression can be identified (through the Euler equatinns
of the functional) with a basic condition that is not satisfied pointwise in an
approxivate solution obtained with use of the functional. There are of course
other conditions that exist, and it is implied that such conditions are met exactily
by the functions chosen in approximation at the functional. In potential energy,
for example, it is implied that the chosen displacement fields meet exactly all

approoriate conditions on displacement.

Now, suppose it is expected that the satisfaction of the conditions which
must be met exactly will be difficult. If it is intended that a choice be made of
a function which will not exactly meet certain of these conditions, then we are
"relaxing conditions on" the original functional and one must modify the original
function by adding terms to it.
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The Euler equations are T =T on Sa. U =uon Su’ the equilibrium and strain-
disb]acement equations in the interior, and the constitutive law o= [E] € on

the interior.

If we now integrate by parts the integral fVo1 o . 3 d (Vol) and

substitute the result into the fourth integral on the right-side of Equation
(14.a), assume that stress fields will be chosen which satisfy the equilibrium
conditions and that the constitutive law is satisfied we obtain Lhe Reissner (or

Hellinger-Reissner) functional. We must eliminate the strains from TR by

i

substitu’ing ¢ = [E]'] o

~

no=3f o[E]Todvol) + [ o. aad (Vol)
P Vol - - Vol ~ =~

-f Twds- [ (u-u) TdS (15)
s - S -

o u

If we further assume that the strain-displacement conditions are

satisfied, as well as the conditions on boundary tractions, we reach the

3
principle of complementary energy

ne = 3 fo o Cejy”! g d(Vol) - .7 ds (16)

Su

e e
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Oden(3]), in a recent paper, describes 14 different variational
principies in elasticity theory. These alternatives stem from use of different-
variables (strains, displacements, stresses, stress functions) and conditions
not explicitly treated above, such as the stress-strain law and the comparibility

(18) and Kikuchi and Ando(7o) have also contributed
(55)y.

equations. Sandhu and Pister
to the formulation of more general variational principles. (See also Karcher

It is important to recognize that the above integral relaticnships, which
are the basis for finite element representations, can be developed by use of the
method of Weighted Residuals with Galerkin weighting factors. This was domonstrated

in the previous saction, where we developed the integral of Reissner by opurating

.on the equilibriun and stress-displacement conditions. One can consult a recent

paper'by Connor(zs) for the development of a wide range of alternative varialinnal
principies along these lines. One advantage of this approach, which has nut been
exploited in practice, is that certain integrals appear which do not appear in the

virtual work formulation.

C. APPLICATIONS OF THE MIXED VARIATIONAL PRINCIPLES
IN FINITE ELEMENT ANALYSIS

Mixed variational principles have not gained wide popularity in finite
element structural analysis. The rcasons for this would appear to be the

following:

(1) Unfamiliarity of practioners with related concepts.

(2) Concern that they will not fit in with established
finite element programs.

(3) Lack of positive-dafiniteness of the algebraic equations.
(4) Larger number of solution unknowns.
{(5) No clear advantage over stiffness formulation for ® continuity.

Still other reasons could no doubt be identified.
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Mixed methods hava nevertheless proved of advantajge in certain pioblems,
as outlined below. As far as is known, however, these applications have been
accomplished with computer programs especially written for the purpose.

(3,4,7,8,13) was probably the first to apply mixed variational

(29)

Herrmann
principles to finite element analysis, although we must emphasize that Klien
established extensive mixed formulations of finite element analysis in a nen-
variational manner and there arc others (e.qg., all workers involved in the "transfer
matrix" approach) who also dealt with mixed algehraic developments at earlier times.
In one group of papers, Herrmann dealt with fiat plate bending problems. The
advantage of this mixed formulation is that the requirements on continuity of dis-
placement can be reduced to ¢®. This is done by modifying Reissner's principle
(Equation 15) by integrating by -parts the term fc . aA d(Vol). In plate bending,
where the strain measure is the plate curvature (the second derivative of the dis-
placement) the 1ntegration by parts transforms the functional into one containing
only first derivatives of displacement and so only c° .continuity is needed across

element boundarics.

Figure 2 shows results obtained by Hermann(4) for the problem of a simply-
supported square plate under central concentrated Toad. He uses a triangular elunent
based on linear displacement and constant moment. The resuits are not good. and it

(30) that identical results can be obtained with the

can in fact be demonstrated
use of a stiffness formulation that uses quadratic‘disp1acoments(32). On the other

hand, Visser(s) gives results for a quadratic variation of displacement and ]inéarly—
varying bending moments and these have not been duplicated by a stiffness formulation.

Other work on plates is described by Bron and Dhatt(47).

Mixed variational principles are regarded by many as especially useful for
thin shell analysis, where displacements can be used to describe stretching behavior
and stresses can be used to describe bending, again permitting a low order of
continuity between elements. Herrmann and Campbell 7 have analyzed shells with use
of flat segments and, subsequently, Herrmann and Mason formulated a curved sheil
element. A more sophisticated form of this has been developed by Visser(G).
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CG!ﬁDr(]O) has given a detailed account of formulations via Reissner's
s (52) .., (1) . (33) . .44 (32)
prirciple. Gould and Sen , Prato , Elias , and Conner and Will

have made effective use of mixed formulations in shell analysis.

Hermann(TB) aiso identified the mixed variational approach as being
uszful for the analysis of incompressible materials. Due to a Poisson's valio
of 3.5 such materials present difficulties in potential energy {siiffness)
en2lysis. Key(]q), among others, has oxtended Hermann's work in this connection,

ana fwang, et 61(5]) have applied it in soils analysis.

In concluding this section it should be noted that mixed variational

fo~ulations have been adopted quite naturally in the development of finiie

(34) (35) each

ele—zont fluid flow analysis. Taylor and Hood and Kawahara, ot ai‘”

2d--7 the mixed approach in dealing with viscous, incompressible fiow.
g i

~

I, HYBRID STRESS FORMULATION

Related to the generalized variational principles are the hybri!
for-ulations pioneered by Pian(Z]), which accomplish the formulation of bath
stiffness and flexibility matrices through specification of independent ficlds
within and on the boundary of the element. The approach will be described for
the case of the "assumed stress" hybrid method, in which a stress field is

seiected for the interior of the element and displacement field is independently
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assigned to the element boundary. Then, the principle of minimum complemen ary
energy is utilized to produce, directly, the element stiffness matrix.
We begin with the selection of an assumed stress field for the inrerior

region of the element, which can be designated as
{o} = [P] te) (20)

where {3} = [8;...8 ] are the undetermined parameters of the stress field

and the coefficients, B, are functions of the spatial coordinates of the cionent.
Tne surface forces T can be expressed in terms of the parameters & by means of
Equation (20}, in the form

T =[R] {8} (21)

The boundary displacements are now independently prescribed. The ais-
placements along the surface are specified by a column vector u and can be re-
lated to the prescribed edge displacements, which are written in terms cof the

ele~ent joint displacements {a}, as follows
u= [V} (a} (22)

Figure 3 summarizes the above assumed fields.
We now write the complementary encrgy in the more appropriate form

(tacking initial strain terms)

Te = % Jyop o [E] o d(Vol) -] ;T i ds (23)

whara Su, the portion of the surface on which the displacements are prescriled,

is here the complete surface.

A1l ingredients are now available for transformation of the compiementary

enargy functional into discrete form. We have, by substitution of (20), (21),
and (22} into Equation (23)

B
e = —5 [H] () - tas [Q] (n) (24)
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Cornir(]o) has given a detailed account of formulations via Reissner's
srirciple. Gould and Sen(52) (1) (33)
hava mado effective use of mixed formulations in shell analysie.

,(12)

, Prato , Elias , and Connor and Wil

Hermann(13) also identified the m{xed variational approach as being
us=ful for the analysis of incompressible materials. Due to a Poisson's ratio
of 1.5 such materials present difficulties in potential energy {stiffness)
an2lysis. Key(]q), amonqg others, has extended Hermann's work in this coanection,

ang Hwang, et a1(5]) have applied it in soils analysis.

In concluding this section it should be noted that mixed variational
fo-ulations have been adopted nuite naturaliy in the deyé]opment of finite
ele—ant fluid flow analysis. Taylor and Hood(qa) and Kawahara, et a1(35) each

eds>- the mixed approach in dealing with viscous,” incompressible flow.

i, HYBRID STRESS FORMULATION

Related to the generalized variational principles are the hybr .

(2]), which accomplish the formulation of loth

for-ulations pioneered by Pian
stiifness and flexibility matrices through specification of independent ticlds
within and on the boundary of the element. The approach will be describd for .
the case of the "assumed stress" hybrid method, in which a stress field s

selected for the interior of the element and displacement field is indep: ndcently
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assigned to the element boundary. Then, the principle of minimum complementary
energy is utilized to produce, directly, the element stiffness matrix.
We begin with the selection of an assumed stress field for the interior

region of the element, which can be designated as
{o} = [P] (8} (20)

wnere {3} = [B]...Bm] are the undetermired parameters of the stress field:

and the coefficients, B> are functions of the spatial coordinates of the element.
The surface forces T can be expressed in terms of the parameters 8 by means of
Equation {20), in the form

T= [R] {8} (21)

The boundary displacements are now independently prescribed. The dis-
piacements along the surface are specified by a column vector u and can be re-
iated to the prescribed edge displacements, which are written in terms of the

ele~ent joint displacements {a}, as folliows
u=[¥] {a} . (22)

Figure 3 summarizes the above assumed fields.
We now write the compiementary en~rgy in the more appropriate fora

(lacking initial strain terms)
_ ) -
. =5 fVo] o (€] o d(Vol) - s, T u ds (23)

whars Su’ the portion of the surface on which the displacements are prescribed,

is here the complete surface.

A1l ingredients are now available for transformation of the complementary

energy functional into discrete form. We have, by substitution of (20}, {21},
and (22) into Equation (23)

B
ne = —7 (M1 (8) - 181 Q) (a) (24)
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with : .
(43 <[fyoy (P17 [E37" 17D avon)] (25)

and

ORINGEGEY | (26)

The stress and boundary displacement parameters have been chosen
independently so that independent variation of m with respect to {8} and {a}
is called for. For {3}, this yields '

[H] (8} - [Q] (A} =0

or
(61 = [KT7' [Q) (a) (27)
<:) By back-sybstitution into n (Equation 24)
s - @ mr@er o (28)

C

and it is apparent that the element stiffness matrix can be defined as

B S S WS ) LI (") R ) (29)

Due to the independence of assumptions\relating 10 stress and dis-
placement, any number of terms may be chgsen‘in representation of the stress
field (one generally seeks the simplest representation of edge displacement).
It has been observed, however, that in order to avoid kinematic instabilities in
the modeling of the complete structure the condition m > n - & should be met,
where m is the number of B-parameters; n is thg number of displacement d.o.f.,
and ¢ is the number of rigid body modes of the.element.
Various degrees of refinement in stré§s representation have been studied
<:>‘ _ numerically (Ref. 21-23, 56), leading to the co&slusion that no significant advantages
are gained with use of more complex assumed streég fields.
. 5
A
| \
5
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ASSUMED DISPLACEMENT HYBRID

We examine in this section two hybrid formuiations which derive from
. potential energy functional. In the first of these [24] the element in-
tarior displacement field 1s expressed in terms of generalized displacements
and the boundary stress field is independently described in terms of joint
farces. This yields an element flexibility matrix. The second hybrid formu-
1ation [25]) is an extension of the above concept in that both the interior dis-
;14 2sents and the edge (boundary) stresses are described in terms of general-
1+ parameters, while the boundary displacements are independentiy described
in terms of joint displacements. This leads to an element stiffness matrix.

In order to deal with independent fields a "generalizatien" of the
;otential energy principle is needed. In describing the generalization appli-
cable to the first of the two displacement~hybrid schemes we again consider only
“interior" elements, i.e., elements with no boundaries on the edges of the
structure, and exclude body or initial forces. The periinent "boundary” of
the element is the complete boundary (Sn) and this is loaded by the interelement
tractions 7. Thus, we have the modified potential energy

n';' =U-[g Tuds (30)
n
vhore u represents the boundary displacements consistent with the chosen in-
teriorvdisp1acement field A. The generalization of the conventional polential
energy consists of the fac£ that T will be written in lerms of joint force
parameters so that both the displacement parameters of u (and a) and the joint
force parameters will appear as unknowns in HE. A conventional potential
energy principle involves only displacement parameters. We designate the gen-
eralized parameters of the interior displacement field as {a} and have, for the

usual polynomial representation
& =fp] (a) {31)
and, by application of the strain-displacement equations

e = [Cc] {ap) (32)
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where (a } refers to the d.o.f. remaining after the rigid-body-motion

d.o.f. {a } have been eliminated through the differentiation associated

with the straln displacement equations. We also require the boundary values

v of this field, which can be obtained simply by evaluating A along the element

boundar1es

’ a
u=[7] (a) = [z 7] f (33)

A

where, for purpcses of the development tc follow, we have preserved the dis-
tinclion between {a } and {a 1.

The f1na1 1ngred1ent of the subject displacement-hybrid method is the
description of the boundary tractions T in terms of joint forces {F }. The
subscript f designates a system of Jo1nt forces exclusive of those necessary to
furnish statjtaily -determinate support of the element. This is a consequence

- of the reoquirement that the vector T represents a system of self-equilibrating
(:) forces for ca?es of zero body force. He symbolize these relationships as follows

T= [0 (Fp) (34)

We may now construct the discretized form of the modified potential
energy. First, we observe that in constructing the work of the boundary trac-
tions (the“infegral over Sn) the contribution of these self-equilibrated forces
acting through rigid body displacements is zero. Since the rigid body dis-

. placements are equal to [Zs] {a;} in Eq. 33, we consider only the product

[Zf] {a;) in treating u. With U = % fVol e[E] ¢ d(Vol) and by substitution
of Eqs. 33 and 34 into Eq. 30, we have

m Laf.J
Hp = -wjf—[H] {af} - éﬁﬂ ] {Ff} (30a)
where
MY = [y (61" [ED [C d(voi) (35)

O Pl = fg 227 01 ¢  (36)
n
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By variation of Eq. 30a with respect to ac
(H] tag) - (9] (Fp) = 0 |

or )
fag) = [H]™' (9] ¢Fp)

By substitution into Eq. 30a.

(F¢l
my = —a— 8] (Fp) (37)

where the derived flexibility matrix is given by
_ T -1
[s] = [91" [HI™' [9] (38)

The second assumed dlsplacement hybrid method( extends further
the above concept to produce d1rect1y an element stiffness matrix. We choose
here a system of interelement- compatible boundary displacements u, expressed
in terms of joint dispiacements {A}. These are chosen 1ndependent1y of the
field 4 which describes displacements within the element in terms of parameters
{a}. Thus, in the general case, there is a disparity of these displacements
along the element boundaries, as given by (u u), where, as before, u are the
boundary displacements consistent with A This disparity can be reﬁoved by the
constraint condition

i - u)ds =
Js (@ - u)

Using the Lagrange multiplier concept the modified potential energy for this
development beco es

=U- [ TudS- [ a (G-u)ds (39)
S0 i Sn R

m
n
p

where A is the Lagrange multiplier.
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The Lagrange multiplier has here the units of a load parameter and in this
casc it is the boundary traction associated with the gap (G~Q).'Hith this

in mind we designate X as the traction I. Also, in this dévéiopment Sn is
the full boundary of the structure. Since we restrict our attention to the
formulation of interior elements we disregard the integral on So in what follows. .
Thus, the modified potential energy for this development becomes

M2 = - fo T (G- u) ds (40)
Ly

The discretization of Eq. 40 requires field representations of ¢,
u, U, and T. The representations of ¢ and u are already in hand via Eqs. 32

5nd~33. We must now establish approp;iato ;epresentations of u and T.
It is reguired that u be expressed in terms of joint displacements

" {a}, so we have (as in Equation 22)

- g = {Y] (&) (41)

A]éo,‘the boundary tractions T are to be written in terms of generalized
parameters {Bf} . We invoke the designation of parameters which exclude
rigid-body terms (the subscript f) consistent with our prior discussion of the

“definition of boundary tractions (see Eq. 34). Hence, we denote these re-

lationships

T = [Q] (8 (42)

The above assumed fields are summarized in Figure 5.
A discretization of an can now be formed by substitution of Eq. 32,
the Teft partition of Eq. 33, Eq. 41 and 42 into Eq. 40. There results

m2 _ lafj

“p == {H] {af} - ns_fJEx] {a) + fL[o] (8¢} (43)
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where [H] is as defined by Eq. 35 and

X1 = Js. [a1" [Vids ‘ (44)

[el = Jg [Zf]T [Q]ds (45)
n . -

To develop the desired stiffness matrix we construct algebraic
equations by first varying Eq. 43 with respect to {af} and then with respect
to (Bf}, yielding

[H] {ag} + [0] (8.} = 0 (46a)
- X3y o+ [d]T [a%} =0, {46b)

B& solution of these for {af} and {8f} in terms of {A} and by back-substitution
into Eg. 43, there is obtained

s 25 K | (47)
-where
1 = 0" [te)” 1! o1 ]! 0 Qs

‘This is the element stiffness matrix derivable through the potential energy

hybrid method.
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V. ALTERNATIVE HYBRID FORMULATIONS AND APPLICATIONS

One may perceive froh the previous two sections that a very great
variety of hybrid formulations is possible via the conventional and mixed
variational principles. Many of these possibilities have been cutlined by
Pian(ag), At]uri(27), wolf(39) and others. A réview of all such possibilities
is beyond the scope of these notes. The writer has cxamined a wider range of
possibilities in Ref. 48 and has illustrated their use through explicit
formulalion of Lhe bezam element. Extensive numerical comparisons are found in

Reference 56.

Two areas in which,hybrid formulations have proved effective have been
in plate and shell bonding analysis and in linear fracture mechanics. ‘The
bending formulations use.the assumed stress hybrid approach in order to avoid
the requirement of C] continuity displacement field. Pian summarizes work at
M.1.T. in Ref. 40 while Henshall surveys work at Nottinghém Univ. in Ref. 41.
Other contributions have been made by Al]mann(qz) (43),
Dungar and Severn(44), Cook(23’45), Ho]f(39), and A1lvood and Cornes -

» Chatterjee and Setlur ‘
(46); Yoshida(sg’éo) '
among others. More recently,. Pian, et. a].(53’ 54) have given extensions of the
assumed-stress hybrid concept to creep and plasticity. Other hybrid applications, to
problems of linear fracture mechanics, are described in the notes devoted to that

topic.
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{a) Description of displocements (surfoce displocements
expressed in terms of joint displocemenis {A)
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(b} Description of stresses {interinr ond surlace siresses
expressed interms of generolized porameters {B'},

FIG. 3 ASSUMED STRESS HYBRID
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{o) ODescription of displocemen? (interior ond surface
displocements expressed in terms of scme
generciized porometers {o})

é ‘« % £, typical)

{b) Description of stress (surfoce forces expressed in
terms of forces ot joints free 1o displace )

~

FI1G. 4 FIRST ASSUMED DISPLACEMENT
HYBRID APPROACH.
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(o} Description of dispiocements {interior and ossociated surfoce
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porometers {o, . Prescribed surfoce disptacements {u)
expressed in lerms of joint dispiacement {A}),

Vv / I/, /f¢,_-—} ~
////?/ /= e [01{B)

{b} Descriplion of stresses (surfoce forces expressed in ferms of
generalized paromefcrs. B’ ).

FIG. 5 SECOND ASSUMED DISPLACEMENT
HYBRID APPROACH.
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VISCOUS FLOW

L. LHTRODUC TIN

In this chapter we are concerned with the problems of incon -
pressibi2 viscous flow and their discrelization by the linit» «lement
process. Yz shall in the wain concenirale our exanplaes on creping type
proble~s in which dynamic terms can be ncglected. The approach qiven he

is hosever comnletely general and lforms the basis of dealing with mnst

incompressible fluid mechanics problems.

The approach to discretization taken here is via dii. ot inteqgral
state-z ts available from the use of virtual work principles in a manncr
similar to that widely practiced in solid mechanics. This has o doubic
advantage over processes which start explicitly from the governing ilavie: -
Stokes =gquations. In the first place tedious algeh aic operaiions ar-
avoidec - in the second, a directly analngous treatment to Lhal of soiid
mechanics becomes available and il is possible not only to gain a deeper
insignht into problems presented but also to use diraectly many of the avaiioble

progré:s.

liuch practical need exists for creeping flow solutions for non-
ilewtonian fluids in which the viscosity is strain rate dependent., All ti
formulztions presented here are valid for such problems and indeed we sha

demonstrate several applications of this, non-linear kind.
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OF veriicular vutereat bivn . prehlemns ob metal practivity
when larje doiermation oc nre and fras se sirains are neglinitie. Su,
probl s ol stand aa vhe hardey 1y of fluid and <9lia mechattics Ofl_l

£

Trequenil;, in all kisds «F  “ipy., o + forming processes an! have muc)

cuirrenl intarost,

I1. S22TC FORMI /i t0il FOR VIS(OUS FLOM
By coatrast tu tie solid mecnanics problen vhere we oo priviariiy
conceried L ith stalic response and can-zatrate on a displacaenl. of a
material pziat - din fluid mechanics Uin main variablc of interosi 1s the
velocity a. a poinL in space. The Lravangian descriptien is Uhus pre-
dowineat it solids vi1le here we shall foliow an Eulerian one. HMovey [he!s o3

the simila -ty of asneral concepts is areat and we shall therefore borr .

heavily or e methedelogy used in solids (1).

o

Let u, v,-u describe the threa Cartesiahr;ompgnonts of the velaciiy
u of a print x,y,z. _fFurther let. b dencvte the body forces per unit volua in
part duc to exteinal causes (go) and in bart reprgSenting the dynamic o( ler-
ation effects. Thus,

- pa . (1)

in which a2 stands for the acceleraticn of a point in the fluid and p is ne

density.

Jo—

- N
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TF equilibrium 1s considered belween the 1nternal <l essen veant Lody

forczs = nave pro-1-cly the saie equaaion sot as in solid machanics

probiz : - .o,
Ly~t+tt 0 (2)
ar e.” "Iitly g sov of equations
Zx Tay Cxy sz ows T 70 (2)

ete.

with o tzing the x component of b etc.

~ mzjor difference from solid mechanics is dua hovrver to the

culert=- tz2ecviprion of motion which even in stealy state cases resultle in.
an acce z:ition g,

~

Chnsider the acceleration cowpouent in direction ¥ for a wass o ine

which ~:3 2 velocity u at a point of space x, y, z. Its velocity rate »

changz “z- a particle of fluid depends not only on rate. of change of vonith

rasps.T to tine but also on the changes of posicien. Thus,
As %% =y etc.
e ha - = definition of Lhe 'convactive’ acceleration operaior
%{'= %E.+ u §§'+ v §§'+ W ?Eft gf-f u'. grad (5)

Y

“ere lies the major difference from solid mechanics whore, as

the ai::z 3zements are referred Lo a particle and not to an element of spuce

only -z simple diftarentiation of displacemen! with respect to time sui:ices.

3

e WOREN
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ooolete iho formulation of a4 solid wiechenics prebiem we

pitroduce A Cioinilion of strain in teons of digpl rconents épd a
comsiitutive Do dofining a styels JLrain relatior (1), Foo 1luids we

$all preca i ciaiiarty,

Frest o ente of doformationg ¢, s defined i
terms of velecities. dhas o wriic
£ - Ly (€)
s u .
with o= %; etc. delining the operator L.
N ’ —
If tansorial representation is preferred Lhe equivaient defini! n
is '
i Cl.l1 N
. - —~ ! 1 =1 - {Ha)

The constitutive relationshin for Fluids is more com:lex than i

the solid mechanics problems, as in gemral stresses depend not only on ..alcs
of strain out also on the strain iiself.

We shall thercvfore resirict oa
attentien here t

i alh-
ing is zero, i. e.
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TA
LN

clute 4ho formulation of a s0lid wechamics prehrem we
ibrodiuce A Cromilion of strain in teone of displcoments erd a

consiitutiva lay dofiing a styess JLain redlatior (1), for viuids e
$aall precas b ciwiiarly, !

test g rrte of doformaet o, , 15 Jdefined in

termz of veleoities,  dhas uo wric

e = Lu (€)

. T .
with o= %; etc. delning the operator L
L ,

If tansorial representation is preferred- Lhe equivaient defini! an

The constitutive relationshin for Fluids is more comnilex ihan i

the solid mechanics problems, as in gem ral stresses depend not only on .ales

of strain out also on the strain itself. He shall thercfore resirict oa

attenlion hare to incompressible flow for which the rate of volumetric

S5:0adlh-
ing is zero, i. e.

-

Q

e =]~
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with 0" = [1,1.1,0,0.0]:  we wite

- . . . . . ’[-
= toode o= dive = #

. = 0 {
- v XX yy ‘<7 11

For cuch fluids the mown <iiess s not dofined aind ta. 1o
be 'sought trum equilibrium 1elatin ;. Detining the wesn slrens o) vr ohs

pressura p, .«

& [¢] a
N 4 F
[ p = «.x.\-“-_.-})'_y.ﬂ.-_. ._Z_.Z (“’

tle dzfine the deviatoric portion of the stress, S, as a2 finction

ol strain rate ¢ in a matrix notation as

r.ll
I .
See-|jlnsa b R £ ‘ (e
0
0
0
O |
. —~ 2 1. 1 -
with 3- - 3‘ - :3 0 0 (] 1
2 1
3 -3 0 0 0
E = 2 .
E 3 0 0 0
SYM ] n- 0
1 0

)
¢

For a Yinear fluid we can write relation (9) as

@ . \ S = De 1)

— s L
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Yhere Ddis o matrid of censit by, In tensoridl SO DRATRS FO T

can reurize abaove ac
(10"

vhis is eatiralv wralonurs te the definition of hahaane o

' elastic sslias which are ircureressible with D playivg the role of :ne

1

amatrty 0° elesiic constanly. Foy 150t onic linear vekavior 11 can b

readily sqovn that ve can v 1te

P4 .
J T u =|:QO 2u ' (i

OR Dijkk = 2u

inwhick  dc knom as viccsity and boas a diagme] vatrix.  In g e
e wWill 22 a Tuncticn of ;:and the femislation that jollows ie pplican «
in this form to Hon-Mowioni- o (non-Tinear) fluids.

The viscous f]bu problem 1s now fully defined and we can Farmmlaie
its appraximete solution mathematically proceeding Tormally by Galer!in o
other vzighting method. Hovaver, en examination of ihe 2qualions qovert ing
the flow and oi the boundary conditions, which specify either tractions -n
velecities at all external boundarios,\?ermits us to edapt here thz ooc-
cedures used in solid wechanics. In ocﬁti(ulur the "virtual vork prin i ic’
can be anplied with virtual yglggjt)§§_p}ayinq the part of viiitual die-
placer ents used in solid mechanics. }

Indeed one can con-lude that th@ solution of a viscous Tlow oy slom
is identical to the solutior of an equiv{lent incemp essible elastic .

blem in which displacements are replacad py velocitios and the boty 7.+,

(::D described by equation 1 are inserted. '
. , g
]

i
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Thus, all the techniques available in the literature for iiho
solution of one problem are available to the other -- applicabilitly
being direct if the fiuid flow is sufliciently slow so that acreleration
effects can be disregarded.

111. VISCOUS FLOW - VELOCITY AS THE BASIC UilKNOWH

1. Virtual Hork Statements

The equilibrium statement 3 can be replaced by an equivalent
virtual work statement requiring that for any virtual velocity and strzin
rate changes, Su and 6é, which are compatible, external and internal rates
of work are identical. Thus, we can vrite

[oc! o da- [su' bda- [ cu”
Q

Q T, t

dr (12)

1
o

for any flow domain 9 in which tractions t are specified on boundary Ty
and where 8u s zero on boundary Pu where velocities are given. Further,

for compatibility

e =L su  and su=0onr, (13)
As ¢ is not uniquely defined by é_(being indeterminate due to the
~undefined pressure p), an additional equation needs to be written to en-
force the incompressibility. As for any pressure variation ép internal
work is zero due to incompressibility we can write

[ &p év do = 0 (14)
Q
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Inserting the constitutive relition 9 to 11 wo can rewrite equition

12 as
J . . [y (15)
Jew D7 e dn+ [ gp oo dro- Jeu hlda ;
a7 L ' o
r.
- s dr - 0
1
Ubserving Lhat by 7
. . : S .
- +oE : < !
R O TR (15a)

cquatiors 15 and 14 Tead divectly to a discretization. (o have wow séviial
chojces open. Firsc, we can allov 20 unrestricted deiinition of the Ticids

o7 u and p ant proceed vsing both cqualions.  Second, we can confine our Ztietion
to velocity fields which automatira1?} satisfy incampreasibilticy. In tic lattor
case the equation 14 as vell as thz second term of equation 15 disappear and

the full apgroxingiior invalver onle velecity paramecers. We shell explor: boin
forndlations i tuen. )

The veader couid ab this siage with prefit radevive the abproxinaiicn
rquatien: using a sirainnLioviard Gelerkin procedure, ant as usual will chserve
the int»g-~ation ond interprotation difficulties presene,

TF 3: and b are fur the morent treated as functions of position oniy
it will he noted thai equaiions 14 end 15 are in fact equivalent to a varielioncl
pirincipla of making stalienary a functional

ofli via o gdhe-s WTter a6
D c r
t

with respect to variations of u and subject to the constraint

. N R
{{Ev = ’]’ :"_. [ (] . (]66)

The precssure p, in equation 14 pleys nere the role of a Lagrangian muitiplier

introduc ed to satisfy the constraint.
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vie mzke this remark not cnly because the reader will oo :inrve (11
the ne. . section thal the charatuistic structure of the dis.ronized
equevivi Will contain Lie usual &b wbacks of Langrangs multiy bier forms
Vidhoeo o dizgonzn] terns in Phe mad ices), bul alse netalise ol vay exi ot

I

o
¢ “afacing the Lonshiaint 6.,

- e Bagmchizating Hith Yelecity wd Pressors Fields

i nseal wmior e des L ibe the displecoicnt and feessure ficlds

TYOLOTE Lneuions as

WU H '] u
R R -1 ¢
= 1 . X -
(17,
1] 1) J
0= ’q' th - ;"' oA
1 t ] 4 _' ) a

1 ]

e T ana §T ere eppropriate hape furctions, deiined elwioni by
i1 bz oebserved Trom the nature of intearets invalved thie o

PLGatt. o continuaiy for Lhe velocity icid but discentintiou- functions can

Leoar oo desovibs Ehe presswe 7. 1d.
1l
, . L u
b - Loou s (LNY) san

()

)
and cbs- ving that 14 and 15 are truc for all variations da_ we have {row

eGqu= o 15

R e (LY o] M LT P d2]al’
: Q

(19)

s e

[
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and from conation 14

T R S I (20)

Fo~ cases of slow steady state viscous flou vhere b - 90 this

crsults da 2 sanple syen.ucic set of equations wnich can be written as:

S R i
A " 2 r
l ; + =0 (27)
Ko !ap{ 0
. | {
whprd
U uyT u
K= L™ wng (LY (22)

Indoed this formulation i1s almost 1dentical to that used in Tinaur,

meomprassible elaslicity and which has been derived by imposing constraints

on an energy functional (2). If u is velocity independent 21 represents a

simple Tinear equation system but the formulation is generally valid.



0. C. Zienkieuicz

depzndant.
Returning tn equation 1 and the explicil exnression for the

\lhen considering unsieady stite the coefficients ¢ are time

zcceleration of equatioa 5, w2 role fnal we can v 1to

where

given

H
~

b-b 1~ —+pdu

LA ag o P el
u LX) Ju
X a2y ¥4
o oV gV

Jd - oX dy 27

v v W
ax oy 9z

fhe terim fy of equation 21 now has, in addition to tne
by constant body forces and boundary traction, fo’ a form

u
fu = [f EPT o Hy dal ﬂg + [f NuT g_tV dola

dt Q

[

J

The discretized equation 21 becomes now

T

(25}

contrii.ition

(24}
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l
| R ¢
ro . Q dt
!

[}
<
o

In the above the transient case can bo solved by time stepping

ceLzadures hit even nocteady state the fors matris equation: obtained
oitting the secons torm 1s non-lincar and non-symaztric.
The mitrix K dopends on the current velocity and ils fuom ¢ non-
TaeLric inte preosents dilticulties in solving viscous flouw problems

JArhoapprrciable dne tia oand several alternative procedures have heen used
<,4).  In seae, the no. - Yinzar and non-symeeiric matrix Eu is taken care
.= by repected iteretior using only the symmetric part.  In othes, atlompls

27 a direct sojution uf the non-linear equations have been made using a non-

Coownetric solution scnenz

(8]

Miscratization Using Incompressible Velocity Fields

The most usual procedure of describing incompressible velocities is
T/ the use of stream function in two-dimensional problems or by introduciion

2% a vector potential in three dimensions.

Thus, if wz confine our attention to plane flow with u and v veiocily

1

~omponents in x and y directions, we can write

-2y
U= 5 .
ORu=1Luv (26)
= _ 3%
VT T3
It is easily verified that
S oL du Ay
v 7 txx Ty Tax Ty 0 - (27)

—— S e
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In an axisymietric flou similarly we can write for radial and

axial velocity componentis

u - L sy
rooey
N T}
r "X

and once again incompressibility 1s obtained.

(28)

Finally, in three-dimensional flow we define the velocity in terms

of a veccer potuntial with three components

wnere

= >

Tor.
vy = [ry9 ‘rya wz]
w=curl 4 =Ly
._a a -~
32 0 Y]
d d
- ° % %
d 3
5y °
— —J

Again it is easily verified that incompressibility is satisfied as

(as ey

W

u v
= = = 4+ = =
“vTom Ty taz 70
= div u and div curl ¢ = 0).

(29)

(30)

(31)
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with velocities specified on the boundaries it is possible* to
determine {he stream function and its noranl gradient (or vector potontial

components) there tu within an arbitrary constant. For discretization
therefore e can assuma an exnansion for o
f

.V"."ﬂi iizﬂﬁ

(32)
and use the virtual vorkb expression 15 with the second term dropped, (as it
nowW is iazntically zero). i.e. ‘

o © T S A
[se Do g d -~ [ 6u b dsu - Jou Tdr=o0 (33)
2 £ r
t
Uriting for all cases cotisidered above ‘
usLly=LWasc-Lu-Lina (34)

with corresponding variations, we can iumediately obtain the discretized form
of equz*ions For which a can be obtained as (as usual taking sa’ outside in

33 aft>: substitution and equating the multiplier to ZCero).

t

L EDT L D (L L de] @ - f(L 1) Tha
0 : Q2

(35)
L =0
Ty
or the usual form
‘ Ka-f=0 (36)

¥

*If boundaries are simply connected
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with expressions for Kij and fi apparent from 35.

Imrediately an observation can be made that the shape functions N
nuw require C] continuity as second derivatives operate on thesz in the in-
tegrals. Unile ir two-dimensional problems the use of such functions presents
litole difficulty, in three-dimensions no satisfactory piecewise defined funct%ons
are available.

Confihinq our attention to the scalar stream function v defined for
axisymnelric or plane probleas it is readily seen that the sarie shape functions

. as used Tor plate bending analysis are available. It is therefore possible to
432 dany of the numerous plate functions for solution of viscous flow.
Indeed for the linear case of slow viscous flow equations the whole
vo~mulation may be identified with plate bending equat1on and any standard plate
bending program adapted iimediately. :

While in the first type of formulation (Sgc. III-2) we have 'borrowed’
heavily from previous methods used extensively in the solution of incompressihle
solids, in the second type (Sec. IT11-3) we have introduced standard fluid
mechanics concepts for enforcing incompressibility. These appear not to have
been used w1d°1y in so]1d mechanics and a "reverse borrOIing" is obviously
possible. rhevct ~‘m function conCept can be used d1rect1y in solid mechanics
and only recent]y has such a de velopment been put 1nto pract1cn(r)

Once again 1nb1us1on of the dynamic term can be made pursuing the pro-
cess of modifying the f term, as described in the previous section.

The use of stream function introduces several drawbacks into many pro-
blems. Unless the ve10c1t1es are entvrely prescr1bed on all boundaries,it is
often impossible to estab11sh a priori, the values of stream functions on same
positions of the boundary. This is particularly serious in multiple connected
boundaries as are presented by flows around obstacfés, etc., and to overcome
the difficulties it is necessary to introduce addit%bna] constraints on the rate
of boundary work. Th1s, even in linear problems presents serious d1ff1cult1es
and when formu]at1ng general problems considerable thought should be given to the
nature of the toundary conditions. In reference (5) and (6) we discuss this
matter in deta i
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. JESCOUS FLOW - EQUILIBRTNM AND HTAED FORHULATION

“he need for enforcing incumpressibility has presented some difiiculties
in the velocity type of formulation used in the previous secticn, this arising
L sceuse the strasses are not cempletely defined by the strain rates (vide
cgualion 27, Or the other hand strasses define uniquely the sirain rales and
it s ouviously pnssible to use the aquivalents of equilibrium virtual work
statements o~ of the "mixed” formulations well-known in solid machanics with
wdventage. Possihilities here are enormous and have only been hurely explored.
L2 shall hesre vastrict ourselves to a brief statcment of the equilibrium formu-
iation. ‘

IT tre unknown function is the stress field g which is so chosen as
Le satisty enaztly the equilibrium conditions thep the virtual work done by

‘compatible' strain rates must be zero

[s¢ eda-f st dr-0 (37)
Q n !

. . . o s -

1n vhich “y ¥s now the portion of the boundary on which velocities u = u are

snecified, and &t are the boundary tractions resulting from stresses éc, i.e.,
' g

St = G ir , ‘ (38)

prore G is a suitable matrix of direction cosines of the normal to the surface.

F'rom equatioﬁ 9-11 the strain rates are defined in terms of stress as
I

Ro =wubsc (39)

or

Eo g (40)
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in which
-t 0 0 o
.- Yo 0 o
SYM 1 0 0
1 0
1

To achieve an equilibrating field, stresses can be definad in terms
ot a stress funciion set ¢ a=z

g=E¢o+Q (47)
kWhoie ¢ is a particular solulion which equibrates the applied body
forces and ¢ is so constrained as to salisfy prescribed boundary tractions.

Use of stress function in context of solid mechanics has been pionecred
by Fraeijs de Veubeke and Zienkiewicz (7) with a subsequent development by Sander
(8) uhich in a sense is an application of certain special mixed formulations.
Datails of the procedure are discussed elsewhere but some of the difficulties in
Lhe Tluid mochanics context should now b2 noted.

First, if the flow is not so slos that dynamic terms c:n be negiected
these will appear in the inncmogeneous terms definining the stress fieid @ in terms
of velocities. As velocities can only be obtained by integration of ths siress
field similar difficullies will arise as at those encountered in dynamic of solids
vhen equilibrating forms are used. These difficulties can be ovorcome as shown
by Tabarrok (9) but for practical application the equilibrating formuiation appears
only simple in cases of slow viscous flow. ‘

Further, in three-dimensional problems the use of the stress function
necessitates again C] continuity to be introduced in appropriate expansions with
near impossibility of achieving this in practice. Two-dimensional use of the Airy
stress function is however practical and useful.
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Possivilities of using a "mixed" formulation in which both stre<s
and velocity field simultaneously appear has not yet been explorved and presents

a fruitful fieid for rezearch.

v. SONE OTHER SOIUTTON POSSIBILITIES

In preceding we have used simple virtual work or which is equivalent,
Galerkin foraulation. (Virtual work avoiding the difficulties of integralion
oy parts and giving a direct physical interpretation of Lhe various terms).
Other forins of discretizacion are obviously possible and have heen used in
practice.

In some, following classical p;ocedures ot fluid dynamics, the
governing eguations are rewritten in terms of .both stream function and vorticity.
Direct approxination can thén be used with Galerkin or other processes. Al-
ternatives with lhe use of l=2ast square principle are possible, and can be
applied dire~tly to the equations in terms of all the variables.

Mositple direct possibilily can be used if we consider the analcyy
of fluid ficw and incomnressible elastic formulation. In the latler, to side-
stap the difflculties nvolved due to incompressibility in a direct displace-
mant fo:mu]it:on, tha engineers have often used standard displacement proyrams
with near incompressibility imposed. In terms of elastic constants this is
equivalent to using a high Poissons ralio (say 0.49) in place of 0.5 for vhich
a singularity arises. For simple finite element representation this usually
leads to inaccurate results but with isoparametric parabolic elements good
accuracy can be found with Poissons ratio as high as 0.49995 -- especially
if "reducad integration" of 2x2 Gauss points is used.

This procedure is particularly simple as existing finite element
progranms can be used. ’

) We siiow here that this Termulation is equivalent to the use of the
constrained wvariational princip]e?of equation 16/16a and introduction of this
constraint via a penalty function approach (10).

‘ In this approach we replace the functional of equation 15 by one
embodying the square of the constraint multip]ied by a 'penalty' positive
large number », and seek its statiynarity.' Thus; we start with a functional

e st




= [ e d-ful b odn-jult dreaf i d (42)
-6 O r Y v
inserting eonooshion () 1le
SV L (7)
wa note tnat the new funclional can be written as
7=1’—]2—§_D_5_ da - [u' b dsz-fETi dr (43)
0y Q r
t
W ith
Bou D+ 2o MmN (44)

Loroarison o7 {42) with the solid mechanics problem immediately identifies
cr2 enalogy of 2¢ and the bulk mndulus of the solid. However, without any
~ulh pnysical reasoning we immediately note how o discretization can be

o

soactly achieverd for the incomprassible flow problem. Use of this pro-
cadure with isonaramatric elements will be indicated in the next section.

+ 1. SOME I _USTRATIVE LINEAR-CREEPING FLOW APPLICATIONS
t.o Eptry Flow - Two and ihiree Divensions

O~z of the first finite element solutions to such probhlems was

e . . . . . 1
acnieved - Ackinson et al. with a stream Tunction formu]at1on( 1)

Ir this situation the velocities have heen assumed entirely specified
¢ the extarnal boundary and no prescribed tractions introduced. The singly
connected ooundary allows the stream function and its normal gradient to be
datermined “rom the velocity defin%ﬁions (equations 26 and 28) and no problems
erise {an arditravy constant in the valuz of ¢ is obtained by specifying this

et some point of the boundary).

S VR




N. C. 21 nkya

in
altern ziv-

the firsT a

cZ

Vigure 1 owe show a simple .oiution recenlly obtained by tvo
aensedures bul now using arfferent boundary cor-biians.  Ir

s:r2a functien approxanation 1< used wilh a recluigular,

compatioiz 1 wizne of Four deyrees of freelom at each cornes {(1ntrodiced

by Dot or gt

~0
cl.( 1Y, In the second the simple ponaley function approach

15 uter as dreoribed in thr previous <oction and Lno variables are directly

the vz.zc1.3..

Psapar= 2010

(0.40720% 304
and selocit
resulis o--

o

velocis. su

but ¢ inuy

near Sitc.
quire fing s
<:> SNOW ir s el
region. ile-

Ir
fusctiz bec
velocit, dis

approacn, or
with « = 0.4

Hero o scuntard solid rechanics mrogram (1) using parabolic
Fierants wis caployed wiath an effzctive Poisson's ratio of
2.2 Gauss rule. Both elerent subdivisions are noted in Figure |1
t

©distributions arve virtuzlly uot distinguishabie. For compariscn

(13)

avyid Jirficulties introducaed at the eniry section wherz 2

inod by Lew and Fung are given.

calarity is present at (A), Figure 1, wa have assumed a rapid

15 trensition of velocity near that point. MNevertheless, this

rity introduces a considerable distrubance to the solution and

ugbdivisions arce needed for rcasonable accuracy. Tn Figure 2 we

~ct of this sulhJivision on vzlocity d-evelopment for a plane ontry

& once againh a standavd displacement typne program is used.

a three-dimensional context as already indicated the use of strean

omas immracliicable. UWe show in the exeuple of Figure 3, an eniry

tribution in a rectangular conduit using again a penalty funciion
indirectly a standard three-dimensional solid analysis program

G595 and a 2x2x2 Gauss integration.

The reader should note again similar errors to those shown in Figure 2

vhen a coars

e mesh is used. In Figure 4 and Figure 5 we show further pro-

pertics of the velocity distribution. o alternative creeping flow solution
appears to be available and for comparison results of a higher Reynolds number

investication by Carlson et al.

2.

(]4’]5)are shown.

Flow Past Asymmetrically and Non-Symmetrically Piaced
Obstructions in Parallel! Flow -

This example is illustrated in Figure 6 in which once again both

approaches used in the previous example have been employed. In Figure 6ab

<:> ve give ths

PP

velocity (strecamline pattern obtained) while in Figure 7c shear

y
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stress and pressurce gradients are compared. The asymuctric placing of the
cbstacle necessitates in the stream function approach a special treatment
discussed in reference 6 ir which two solutions for arbitrary values of
stream function assum:d at inner houndary are superimposed. tn the u/v
penalty function formulation, no such difficulty is present ana direct
sofution 1s obtained from both symuetric placing of cbstacle (not illustrated)

and unsyrmevric situalions.

3. lse of Triangular Versus Rectanqular Elenents in

stream Function Formulation

In the previous examples we nave used simple rectanqgular elements
For the stream function formulation as with these it is simple to satisfy C
continuicy using polynomial expreﬁsions(])(lz). The problem od devising
arbitrary triongular or quadrilateral elewents with such a coatinuity is much
more cuplex and in the toxt (1) tne various difficulties and their solutinn
are discusced.  One of thz most satisfactory triangular elewencs produced s

{(16)

one bascd on the orivginal conforming triinole of Baszeley et al. using

substitute smoothed (least square fit) shape function of cubic form(}7)(]8).

lo test tho eiriciency of such elenents a simple case of Poisseniile
flo.s betueen parallel plaies 15 considered (Figure 8). On two sactions AA and
53 the velocity distribution is prescribad and the total pressure drop is com-
pared with the exact soluiion. The rectangular elemenis for all subdivisions
aave exact answers being totally conforming and having a complete cubic ex-
sarsion available., With trianqular clements an erroi arises and its decrease
with finsess of subdivision is given in Figure 8. Thc convergence is approxi-
mately of order h3.

Numerous direct solutions in terms of velocity and prassures are given

for creeping flow problems in refz2icnce 3.

VII. HOH -NEWTONIAL FLOU

In non Hewtonian fluids the viscosity u depends in same manner as

the rate of straining .

y = ule) (45)
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d4are using the formulations of section II to V we have (in the

absence o7 c_namic terrs) a discretized system of equations in the form
K{u)a-%£=0 (46)

fne matrix K 1s dependent on ; and hence on a. A simple intcrative
orocedure =+ > be adopted, and has teen shown to converge quite rapidly
even with 's.astantially non-linear behavinr.

Assuming sone value of . = _° the first solution is obtained

o' =kt (a7)

end hence é :nd new value of a' at all points of the region is available to

coraipute K..  The next approximation is
= K f etc. (48)

= leading to = standard iterative algoritnr

n . -1 s
" ekt (49)

1

L is usuzi -o assume that viscosity is simply a function of the second sirain

rate invariznt = i.e.,

e = 2éij “U | (50)
s 2 2 2 PSR YA 2
( =2, 7 4 ?Lyy + Zezz + \thy) + (ZE_yz) +(2€Zx)
A frequentl. used expression is of a form
Z.n-1
W= Lo (2) (51)

!

with index '{< 1.

:
i
f
/
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Some solutions for a fluid of this type are ablained by Palit and
Fcnnertig)'using stream furiction formulation and 'incompatible' triangular
elemznts. ) . )

In l1gure 9 solutions for two-dimensional ilow around a cylinder
with rn  and n=0.5 arc compared for an assumed uniform entry flow velocity
distr’ .Zion at BA. The study iilustrates well the loucal eifects of non-
linezr-<,; on velocity\(stream 1inzs) changes.

In this prablem once again a stream function formulation is employed,
and tr  ngular elemenis with nine degrees of freedom are used Lo deal with

the genzral boundary shape.

YITI,  PLASTIC OR VISCOFLASTIC BEHAVIOR OF EXTRUDED METALS -
A CASE OF NUI-HEHTONIAN FLOW

A particularly interesting case of non-ilewtonian creeping flow is
that ol 2 Sindham fluid or its genzralization, the visco-plastic material.

Such materials behave as solids exhibiting a zero raic of straining
for st-essas which, are in sowme measure, below a threshhold or yield value.
Uhizn ~<is yield is exceeded flow begins at a rate which is a funciion of ihe
excess siress.

Lat F(o) = O represent this yield condition and we shall assume
there?c o this if F(o) < 0 no flow occurs.- Assuming further that the various
compor<its of strain rate are proportional to the gradients of F with respect
to fhese {i.e. the so-called associated plasticity condition) we can describe

-

with sc .e generality the behavior of the material by writing

e =1 %g: (52)
1]
or in tansorial form
L n_ oF |
€., = — <F > = : (52)
where < - means that
<F> = 0 if F <0
. (53)

' <F> = F if F >i0
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and U Gs soue “viscesity" parameter.

1o anpears that we have here ornce again 3 case of viscous flow with
& vari.ze viscosity dependent now on the current stresses. Tt is however
possit = 2 reduce the problen to that discussed in the previous section

whera - .3c0sity is a function of the strain rate {as in equation 44).

‘0 do this we shall find it convenient to use a tensorial notation -
and o3 772 concept of deviatoric strescs. Thus, eguation 10 defining vis-
cosi

%)
I
|2
|59
o
m
e
(%]
&>
[+2]
wosr

becoi == in tensor notation

<

~{54b)

iaking the yield conditions dafined simply by the second invariunt
of S,;. - i.e. the so-cdlled von Mises yield criterion

/
=y 1 -
F=/ 5 Sij Sij Y » (55}

]

Wl =

in whizn Y is the yield stress in simple tension, we find that

,‘3[" - aF = 1 1 S.. {56)
eJ. . 3s.. yi 1)
1] LR v l.s S ‘
2 Tij Tij
and thz: wa can write equation 52b as
] <
Ei-‘ = ]—"’4 < |/l S-i‘ Si’ - l Y )n_ il Si- Si- SIJ (57)
- Z: 2 J 1} - /5 2 J ‘] y
,/,\‘\ \~'
S ‘

e T ine e
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Comparison with the definition of visco. .y in equation 54b gives

€S - "
;_— ii Sy v
11— (58)
[ T
u /gfsij Sij
tJt we note that by 54b
1SS, =u /o _ :

Inserting this in equation 58 we see that u can be obtained in terms of :
Fzr n=1 it ‘can easily be verified that

!
] |~

Yirus (60)

=
€

d the general-form identical with that discussed in previous section is
obtainad (eauation 45).

\

o ¢ ~ (. However,

Computaticnally the expression 60 appears to preéent a QIff1cu1tj as
with p ~ = ¢ this problem is readily overcome by limiting the
yoper value of ¢ to some large numher.

+

The viscoplastic model used is one of a class suggested by PePLyna (20)
_and is of quite wide applicability (21).

It is intercsting to note thq} as the
coefficient p » 0 the viscoplastic and plasticity formulation Lecome idcntical

ne solution procedure is therefore applicable to problems of both plastic and
viscoplastic kind.

v

X
s

The solution of such plastic ‘and visco- -plastic problems is of great
Mpor.ance in the working (forming and extrusion) processes of metals and \°\\
pla§c1cs and treatment proposed here is capable of providing simply such so-
lutjons.
r{/\\ ;
\\-/b

In another paper (reference 6) the authors outiine some applications

|
\
5

- e
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and illustraticns of Lhis process. [igures 10 and 12 show a solution to a
simple plastic extrusion process through a die with 504 reduction. Uith
n =0 assumcd the stress dist=ibulion and hence the forces required to sus-

. tain extrusion are indepandeni of velocity of the piston U, and good cchparison
is obtainad with results available for this case from simple slip line solutions.
For diffarent values of y b.th the piston force and the velocity pattern de-
pend stronjly ch the vatuz of U, This dependence %s'shown in Figure 1.

IX. OQUAST-STATIC TRANSIZNT SOLUTIONS

If the process of viscous flow is sufficiently slow for dynamic effects
tn be ignored we may still be faced with a transient (time variable). problem.

If at a particular configuration with a boundary re on which tractions arc
prescribed resulting velocities are not found to be entirely parallel to the
surface, then clearly ithe configuration of the problem will change with time.

(i} A free surface is a pariicular example of such a problem which frequently arises
in stov viscous processes such as indentation etc.

The treatment of such problems is relatively simple. Once tha velocities
of Uy -are found in the manner previously described, by a time stepping Eﬂtrapo—
lation, the frea surface change can be predicted. Using a straightforward
Eulerian prediction tha change ot position of a boundary in a direction § in a
time increment can be predicted as

A S = Vs At

where VS represents the corresponding velocity component.
Once the new position of the boundary is known a new solutien can be

readily obtained and the process continued.
In Figure 14 we show successive stages of an indentation process (Figure %

13) in an ideally plastic @ate?ia] solved using triangular elements and a stream ) .
function formulation. In figure 15 the variations of indenting forces with
depth of penetration is in?icated. Again here the solution is independent of

) velocity of ihdentation asﬂﬁ = 0 was assumed. For true viscopﬁastic materials

<:> the solution could be obtaﬁned equally easily and would show (as in the previous
example) a velocity dependance.

s
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An iteration of the type

an - _g_'v-i f ((ln'l) (63)

is effective howerver only at very low velocities and at higher ones does not

converge. Alternatively we use the non-linear form

Ka+fo = 0 (64)
in which
K= K (a) (65)
end iterate as
" sk @) £ (66)

This process has proved effective for quite high velocities (Raynolds)
numbers) but is obviousfy more cestly requiring repeated inversion of a non-
symmetric matrix which has to be recalculated at each stage.

Formulations used so far in Lhis problein include both the approaches
cutlined in previous sections, i.e. the use of velocities and pressures as
unknown or the use of stream function (in two-dimensional situations}).

Reference 3 shows some problems solved using the first type of formu-

lation and an ‘interpolation of C, continuity using isoparametric, parabolic
alements. "
In Non-Newtonian situations iL is 1ikely that relatively small effects

For such situations a combination of interation

of inertia will only be present.
in

of the Llype given by equations 61-63 combined with incorporation of changes
K., as in equation 47-49 proves effective and indeed can be accomplished at
little more coﬁt than either non-lincarity treated independently. Examples

of such app]i(@tion will be published elsewhere.

5
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——————
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The process of adjusting the free surface profile in sucressive
time steps c-scables thil used previously for transient seepoye solutions.
J2¢)y (23). Tieently hprovedents in ihat context have been made by the
introductinng o7 a predictor -correcior prozess in free surface erlrapolation
oy Sandnu en” tormil Jarge Gime steps to be 'oken without inctability.

"5ing such 2 process in the quasi-static viscous problem way well improve

£ nole sheuld be made here of the necessity of periodic mesh shape
3
¢diustiients 23 the process continues. These are necessitated by drastic
surface ciniigiration changes which are clearly indicated on Figure 14.

i TICLUSION OF DYHAMIC LFFLCTS - WAVIER STOKES PROBLEM

1T was shown in seclion I11-2 how the inclusion of Lhe dynawic term in
~ae virtual Lork discretizaiion gave rise to a non-linearity and to non-
sonvetric meorices.  The Tack of symuetry is due to the absence of a varictional
zrinciple fo- f0ll viscous fiow problems.

Tr.e problem jresented is known to have unique solution at iow Reva.ids

Jmbers but Tor large Reynnlds number steady state solution apparently do not

@nist and t-= Tlow becomes tnrbulent, a fact found experimentally. Solution
ta the steady state problem will thus be only sought for fairily low velozity
Tows. Mith the transient g%—(vide equation 5) includad, in principle a solution
could bz obtiinad for any velocity but due to the nature of turbulence and
its rapid velocity changes numerical errors could well be expected unless both
time and spac2 subdivisions are very fine.

in the low velocity steady state problem we can proceed numerically
in two ways: =cither by isolating the non-linearity in the "force" terms and

uriting equations corresponding to 24 as

Ko a +f = 0 (61)

in which Ea is the symmetric, constant, matrix and f is dependent on velocity

and hence ‘

f o= 1(a) (62)



Xi.  ZDILADING REMARKS
tnis chapter we nave indicated very many alternatives possible
for the s-luticen of viscous tlow problems with Newlcnian or non -Newtonian
viscosity.  Sove of the PossibiTities have nol yet been explored, and many
others hasz not been rrentioned here. Ve hope however that sufficient in-
dicatior ¢f tne possible applications and relative merits oi various approaches
“has becr :ven.
r-cr tne physical viewpoint we have limitad the discussion to several
ralative], simple situations.
Fosyibilities and indeed the nszed for extending the solution technique
to new sit.ations are being explored. Here we mention a few:

{:} : (2) ~Coupled thermal/Flow bréb]ems where viscosity is
temparature dependent.

(D)j Problems where surface tension effecis are present,

(c). Problems in which straining history causes anisotropy
of flow anu changes in properties.

Q
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'
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ENVIRONMENTAL PRORLEMS ASSOCTATED WYTII FLUID FIL.OW
R. H. Gallagher and D. L. Young

I. INTRODUCTION

The topic of computational {luid mechanics does not have a
_long history. \By the 1830's there were only a limitcd number of
papers on this topic, a condition that was duec not only tc the
absence of high speed computational facilities but also to dif-
ficulties in dealing with the inherent ;onlinerrity of most
problems of interest. Thus, computational fluid mechanics has
developed in tandem with the finite element method. Very many
applications of the latter to flow probiems have been recorded,
as described in References 1-4. As these references demonstrate,
a detailed review of the complete field would require a complete
text. We therefore limit our attention, in these lecture notes,
to the application of the finite element method to environmental
problems associated with fluid flow.

A large number of conditions can bé grouped under the
heading of "environmental problems™. In the preseﬂt case we
refer principally to the transport of heat or the concentration

.

_of a substance through a body of water. The processes of con-
vec;ion and diffusion participate in the transport process.
Velocities appear in the convective terms and, although the most
vigorous treatment of the problem will involve coupling of

i .
velocity and temperature (or concentration) equations, practical
considerations may require independent solutions for the two

fields. We thercfore include in ocur review a discussion of solu-

tions for flow velocities alone for lake and .stream situations.




A study‘of ihe literature of topic under review disclosecs
that althoﬁgh the prohlemszare basically fhree-dimensional, no
numerical solutions of this scale have yet been éttempted.
Simplifying assumptions(are customarily made about onc of the
dimensions and Fhe problem is reduced to one of analysis in the
plane: Indeed,,some investigations\make‘gssumptions regarding
two of theydimeﬁsions and study the velocity in one dimension
together with tﬁe temperature.

In view of the above circumstance, these notes are catcgorized
with respect to the different types of two-dimensional situations.
Only the cascs of flow in planform and that of flow on the narrow
cross-section of a lake or similar body of water are treated in
this review. ‘ L -

First we define the coordinate systems associated with the
respectivgltypes of problems. ‘Thenﬁ sepé}ate section§ are

: N

devoted to‘eachftype.

t
'

" II. COORDINATE SYSTEMS AND GOVERNING EQUATIONS

Figure 1 illustrates the body of water and the associated
coordinate systems. The body of water we have in mind is a lake,
although cases will be treated which refér to streams and estu-

aries. In}the latter circumstances the flow is predominantly in
the y-direCtion. '

The planfofm (x-y plane) is the bas%s for analysis of wind-
driven circulat}on and of fléy through b%sins and estuaries.
The assumptions that are invoked are diséussed in some detail

later, but, for the present we simply note that they are directed

to climination of the z-coordinate from the problem. The maximum




Planform

@}

Z,W B
? U " gﬁé
TN NS ST ST v-/“‘““"@ |
M SZ ld

\\7/ y /%'

B

Section A-A

Figure 1 Lake-Planform and Side Views

Figurc 2 Narrow-Cross-Section (Scction B-B)
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z-dimension is very mucn smaller than the y- and x-dimensions.
<i> The latter muylsc of approximately the same magnitude.

The narrow ‘cross-section (x-z)} is intended tc represent the-
section of a lake or similar body of water. Here, the x- and
z-dimcnsioﬁs aré of similar magnitude and the y-direction is
very large. Finally, we have thc side v%pw {(y-z), which refers
principally to flow in strcams and estuaries and which is often
reduced to just the y-direction.

Physically, the velocity and temperature fields are deter-
mined through the conservation of mass, momentum and energy. The
governing equations are

Continuity (Conservation of mass)

t — t =

Ju oV oW
x 3y 0z 0 : (1)

x~Momentum

du ou u du _ .1 3 9 ..M 3du
3t T Yaax T Vay "VYaz fu Eg 5x * 3x Kxx 3%
3 M 2u 3. M 3u N
* ay( xy ay M TACSE ) (2

and correspondingly for y and z. (In theé z-direction there is no

Coriclis force (- fu) but a buoyancy term (él gx) must be added

0
to the left side.)
Temperature (Consefvation of Energy)
T, 423l , 3t _m_a“‘*a”f+a aT
pt - Uax T Vay Y azr T k5% ay( y 3y
H 9T .

In these equations u, v, and w are the x, y, and z-directison
i
velocities, g is the gravitational acceleration, p is pressure,

p is density, Py is reference density, T is temperature. f is

i;) the Coriolis paramcter and M and k!t (with appropriate directional
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subscripts) are the viscosity and diffusivity. The above equa-
tions arc supplemented by equations of state, such as density
as a function of temperaturc, pressure and, concentration cf a
substance, and the viscositics and diffusivitices as a function
of "stability parameters', e.g., Richardson Number, Prandtl Number,
Monin-Obukhov Length, etc.

These are very general equations. Consequently, in fact,
the following approximations may be introduced, depending on the
analyst's interests and goal. *

1) The Boussinesq approximation: ‘The variation of density is

small, so that the fluid can be treated as an incompressible

fluid. The variation of density is only considered in the
! {

buoyancy term él g in the z-momentuﬁ‘equation.
o

2) The shallow water approximation: The inertia forces are

negligible 'compared to the other forces. Also, the

w-component is much smaller than the' horizontal components,

so that the pressure is hydrostatic (g = - % %% , where

g is the acceleration due to gravityj.

3) The eddy viscosity and diffusiﬁity approximations: Since

the stratification is almost perpendicular to the gravi-

tational force, it is customary to assume that the horizontal
' {

M

eddy viscosity (Kxx, etc.

) andfdiffﬁsivity (Ki) are approxi-
matedwby constants, while the ?ertiqal onés are functions
of thé graéients of density ana velécity, The exact rela-
fionships are still hot debate, In;practical analysis, the

determinatjon must come from semi-empirical stratified

turbulent theory. (Monin-Yagl@h, Ref. 5)
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ITI. PLANFORM ANALYSTS. WIND-DRIVEN CTRCULATTON AND FI.OW
THROUGH BASINS

The cross-section ;hown in Figure 2 defincs the basic
geometric paramcters of this dcveclopment, which is due to
Liggett and Hadjitheodourou(ﬁ) in its fundamental thcoretical
form. The origin of coordinates is fixed at the surface of the
lake, with velocity w = 0 at z = o. (The 'rigid lié' assump-
tion). The physical properties of the lake, including the eddy
viscosity and the mass density per unit volume, are zssumed to
be constan% and the Coriolis parameter is also assumed constant.
The pressure is taken to vary hydrostatically. The suivface
wind stresses Ty, and Ty are presc;ibed. Under these assump-
tions the momentum equations take the form

2

M
-fv:-%aR-!-aju. KO (4)
9z
fu = - L3, 23% . M (5)
‘5
The contlnplty equation is unmodified.

A stream function ¢ is defined as follows

LA
3y

Y
9Xx

uh {7)

vh (8)

in which u and v are depthwise averages of the component veloci-
ties. After combination of the above eduations, with consideration

of the boundary conditions (zero velocity on all solid surfaces

M du M 9v
d = =
an Txz Ko ax ’ Tyz Ko ) one obtalns




) ! , _8_12 .
_2 + 2‘ + I\(X,)) 3X + B(Xr}I)

Sy Cxy) =0 (9

The terms A(x,y), B(x,y) and C(x,y) are those which result {rom
cbnsidcrntion of the varying depth and, as indicated, arc func-
tions «of the planform cocrdinates x and y. Thus, they account
for the varying depth.

Transformation of Eq. (9) into the finite element form,
given in detail in Ref. 7, is accomplished by means of the
Galerkin method. The approximation of ¢ is by means of the trial
function P, which has the form

VJ. = N, U.' = L_N.J{lf)} (10)

wherein the N, are the shape functions and {y} are the nodal

~

values of the stream function. Abpl?ing now the weighted residual

" concept

2 2 '
3 a2 N
fA{N}( N3 AN RO (‘)dA {y} = (11)

3x2 8)’2 oXx qy

Next, integration by parts in the plane is applied te reduce
the order of the derivatives appearing in this integral and to

produce boundary terms. One obtains

-9 3lNJ 3wy AN BLNJ
d{ [ o B A 20

+ B{N} LN" {p} + {N}C]dA

+§ (N} 3;2’ {v} dS = 0 (12)

The values of {¢} are zero on the entire exterior boundary
and the closure integrals along interclement boundaries vanish
if qontinuity is preserved across these boundaries. Thus, the

contour integral term is excluded from subsequent consideration.




Evaluation of the remaining integrals for all i then yields the

following system of element cquations

(x%3tp) = %) (13)
in'which
) 3{N} BLNJ 0{N} 3 Nj a Ng BLVJ
f (- — T 3y Oy A{N} —5== + BN} 3y ——==) dA
(r®) = - j (N} C dA ] (14)
| SNy d \41

1t should be noted that due to the terms A{N} T and B{N} —

the resulting algebraic cquations will be nonsymmetric.

The cquations for the complcte lake are constructed from
the cquations of the elements by imposing the condition of strcam
function continuity at cach element,joiﬁt. Thﬁs, the global
equations hrc, by simple addition of all coefficients with like
subscripts

' [K]{y} = (R} (15)

After solution for {w]'the other va;iables, such as averaged
velocities and pressure gradients, can subscquently be evaluatcd
by back substitution.

Numerical'solutions to Eq. (15) have been obtaincd for both
simple test problems and for Lake Ontar10(7) Since field data
is not available for Lake Ontario the convergence of the solution
has been studied with use of higher-order e]ements(sj. Cheng(g)
has analyzed Lake Erie, using a formulation which excludes con-
sideration of variable depth. Tong(lo) includes this factor in
a finite element formulation based on Welander's theory,(ll)

which does not differ significantly from the theory cited above.




If a stream function is adopted as the dependent variabic,
as is done 1n the formulaticns discussed previously, the presence
of islands raises a basic complication in thc definition of the
boundary conditions at the node points of the isiand shore linc,
The strcam function is zcro at points on the shore of the lake
but takes on a constant, undefined value on each of the islands.
Thus, as Tong(loj proposcs, the values of the stream function on
a given island are set equal to a single value that is determincd
in the solution process. This substantially contracts the number
of unknowns in the equations to be solved.

Cheng(9) adopts a diffcrent approach to the treatment of
islands. The system of global ecquations is first assembled
without consideration of the islands and their boundary condi-
tions. We denote this solution as {Wo}. Then, in succession,
‘unit' solutions {Wi} (i=1, .. M, where M is the number of
islands) arc obtained for Wj = 1 for node points on the respecrive
islands. Finally, an M x M system of equations must be solved
to give the amplitudes Gi (i=1..M) which apply to the unit solu-
tions. The complete solution is then represented by

M

{y} = {wo} + 5 G;{wi} (16)

i=1
The detcrmination of the planform distribution by transpert
of temperature in a lake or basin with known flow is also a
problem of major practical importance, especially for cooling
ponds and similar basins. Temperature distributions have bcen
determined for such conditions by Loziuk, Anderson, and

(12,13) (10)

Belytschko Tong presented a more general development




along these lines which pefmfts the finite clement calculation
of any concentration,of substance in a lake. ‘We outline the
latter in this section,

If we'dcfinq ¢ as the average concentration across the
depth (h) of the substance under”study, the governing difféfcn-

tial cquation can bc written as

p(3he) . g 3(he) , ¥ (he)y . 2 athe) , B Kl; 2he) . g
| (17)
wherc Kg and Kg are thec eddy diffusivity coefficients and Q is
a source or sink term. Now, the ap%roximation of ¢ can be
(written in the form of the trial function
$= N;¢, = LNJ‘1¢} i (18)

where {¢} ‘represents nodal values of h¢ and LNJ is the relevant
set of shape functlons When the ana1y51s is perfqrmed for
temperature, with a single;tcmperature across tﬁe depth of the
lake, T = he. | |

Application of the Galerkin«approach can again be made to

construct element equations. Using Eqs. (17) and (18), one

obtains

) [h1{¢} + [s]{¢} = {Q) . 19)

where :
(hl = [, (N} (N, dal (20)

9 v 9N
[s1 = [[ {{N}(“ L M )
H 9{N} 23 Ny H 9{N} a.,N; )

* K 5 5& + y 3y 5}_]dA] (21)




The vector {Q} accounts for the source or sink terms and any
prescribed boundary conditions. Finally, by asscmbly of the
global equations from the clement equations

(H) () + [S]M6} = (Q} L (22)
where [H], [S] and {6} correspond to [h}; [s] and {Q}:

The idealization for transport analysis is done in the same
way as for flow analysis. After calculation of the velocities
in the flow analysis the values obtained are used in the forma-
tion Bf the matrix [s].

> Loziuk, et 31(12’13) apply the above approach to various
practical problems, including an actual lake with irregular
boundary. Available field data indicate;a reasonable level of
agrecment with the analysis results. Tong(lo) calculates the
diffusion of a substance in a rectangular basin containing a
circular island. | |

Solutions for transicnt flow governed by the shallow water
cquations have been given by Connor and Wang(24). By integrating
across the depth .and assuming uniform velocity and hydrostatic
pressure over the depth they establish equations in terms of
nodal valucs of flux and clevation. Solufions are given for
harmonic forcing of a rectangular basin énd for tidal circula-
tion in Massachusetts Bay.

(

Taylor ;nd Davis 26) have developed finite clement representa-
tions of tidal propagation in estuaries. The unknowns in

these equations arc the node point velocities and elevations.
Surface runoff, described by means of the shallow-water equa-

tions, has been studied by Al-Mashidani and Taylor (Ref. 30).

’




They trcat a one-dimcnsionql casc, with velocity and surface
clevation as problem unknowns.

Taylor and Davis (26) and Adcy and Brebbia (27) have
studied‘disporsion in cstuarics. Ref. 27 uses known values of
velocily and solves foi1 the concentration. Taylor and Davis,
on the other hand, solve for conccntratibn, velocity, and
surface clevation.

Planform (x-y} finite element analysis of a rather diffcrent
environmental probiem has been pcrsented by Mercer and Pinder (29).
They examinc hecat transport in the liquid and solid phascs in a
ground-water flow system. The fiqite element equations to be
solved consist of two sets, one being a flow equétion in terms
of pressure and the secondAbeing a temperature equation. The

solutions are marched in time.

IV. CROSS-SECTION ANALYSIS

The motivation for cross-section analysis (x-z) has prin-
cipally becn the prediction of thermal stratification, although
attempts have also been made to deal with more basic phenomcna
in viscoﬁs flow.

Thermal stratification is widely believed to exert an
important influence on lake flow phenomena through its effects
on density variatioms and other phfsical factors. In many lakes
uniform temperature cohditions are realized in winter and, as
summer atmospheric conditions approach, a rise in temperature
occurs in the upper regions of the lake. The peak is reached

in these regions towards the end of summer. Since the rise in




temperature pencirates to only a limited depth (say 20 to 40
fect) the lower portinus of the lake are not affected, and a
somewhat 'stratificd' temperature piofile prevails., The heated
upper region is known as the epilimnion while the unheoted lower
region is tcrmed the hypolimnion.

The problem to be solved is the vertical temperature profile.
There is an influcnce, however, of the action of the wind and
this produces a two-dimensional problem.

Ligget® and Bedford (Refl. 14) and Bedford (Ref. 15) have
dealt with the steady-state problem of a two-dimensional cavity
containing 2 nonhomegencous {luid subjected to surface shear.

No considerution was given to eddy viscosity and diffusivity
variations. The latter was accounted for by Young, Liggett, and
Gallagher (Ref. 16) and the rcsults demonstrate that stratifica-
tion, as well as circulation patterns, can be predicted with

the proper empirical definition of these variations. Skiba,

Unny and Weaver (Ref. 17), Debongnic (Ref. 18), and Kawahara,

et al (Ref. 19) have studicd cavity flow without the considera-
tion of temperaturc. Coupled velcocity-temperature solutions

are also described by Zienkiewicz, Gallagher, and Hood (Ref. 20).
In the {ollowing we describe the development of Young, Liggett
and Gallagher.(16}

The physical properties which enter’into the differential
equations of the problem are the cddy viscosity and the eddy
diffusivity. The eddy viscosity and diffusivity in the herizontal

M

direction (ny ¢tc. and Kz) can rcalistically be taken as constant.

Valucs of these coefficients are customarily taken as the samc




magnitude as thosc which are mcasured under neutral stratifica-
tion. The vertical eddy viscosity and diffusivity (K'::Z etc. and
KE) vary highly within the wholec basin, hcowever, and are depondeﬁt
on suph factors as the turbulence level in the surface laver,
the depth, the local density gradient and the overall motion
with respect to the specified gecomectry.

No satisfactory thecory for the prediction of these varia-
tions {rom the more basic environmental and physical paramecters

is presently available and dependence must be placed on empirical

relationship. 1In this work the relationships employed arc
extended forms of those proposcd by Sundaram and Rchm(21), as
follows
)
M _ M _ M ) . .
K., =K, =K (1- o Ri) (23)
H H .
= - 4
Kz Ko (1 oth) (24)

where Ri, the Richardson number, is

U
pO

in which U is a characteristic velocity, o and o, are empirical
H
o
diffusivity under neutral stratification. The continuity equa-

constants, and Kr and K are the vertical eddy viscesity and

tion, with the assumption of incompressibility, simplifies to

[+%4
<,

Ju W
5;'+ = 0 (26)

(=%
~N

In defining the relevant forms of the momentum equations we
assume that Boussinesq'‘s approximation applies (p is taken as

constant exccpt when multiplied by g, 'i.e., in buoyancy terms).




Thus,

Ju Ju 1 9p 9 M Qu 9 M 3u
Uag * oz B; 3x T ax (ko ax) oz ( z az) (27)
o, Aw 13, 3 M3w o d o Mw e
Ukt Woag B; 9z 5x (Ko 3%) Y 3z (Kz 9z Py g (28)

wherce p is the locul pressure.
The diffusion-advection of tcmperature is given by

JH 3T 3 H aT
Ko 3% * oz (Kz 9z (29)

—
=
'
|

t

M VT A T
ax a9z 9x 0 9X
Finallyv, the ecquation of state can be written morc explicitly
- - - rv_ N
as p = oyl - B(T - T3] (30}
in which g is the coeflficient of volumetric expansion (assumed
consiant) and To is the point about which the true relationship
is linecarized.

We introduce the stream function ¢ in place of u and v,

such that :

u = tA w = r\%% (31)

The resulting two differential cquations, which replace Egs.
(27-30), can then be written in terms of nondimensional variables

as follows

, 2
- . 4 (VTy, ) _ . op
D, (¥, 0) v'y + Re —3—6(—’;73 Re Ri_ 22
2 2
+o Ri {2 (202020
3z Z 3z
2 .2 ~
3 2 3p 379 b _ o
¥ 9x3z (z z 3xaziﬁ 0 (32)

‘and,

= . gl ,
DZ(WaD) = Vop + Re Pr 3%, 27 .

. ' 2
+ o, Ri g% {(z 3%) }' =0 (33)




whei1e Re = UH/KS 1s the Reynolds number, Pr = K?/Kg is the
turbulent Prandtl number under necutral stratification, and
RiO = - Ang/pOUZ is the overall Richardson number. H is the
depth of the cavity. All parameters and variables have been
nondimensionalized, e.g., x and z have becn divided by H.

To transform the above into a finite clement reprcsenta-
tion we’adopt shape function approximations for ¢ and p and
usc the GCalerkin method. Thus, with ¢y = Niwi and p = Qipi vie

have the following weighted integrals

( . = _ .
Ja NiIBy (9,05 ]dA =0 (34)
[ Q0.5 dA = 0 (35)
A
This lcads to the following sct of nonlinear algebraic
equations
1 2 . o3
J .
Sij‘bj + Re Sijkwjvk + Re Rlo Sijp3
. 4 _

- O Rlo oijkwjpk + Pi 0 (36)
5 6 . 7 _ -
Sijpj + Re Pr Sijkwjpk oy R10 Sijkpjpk 0 (37)

The multipliers Re, Rio, Pr, o and oy have been precserved in

these representations to enable identification of the source
of each term.

The specific algebraic form of the coefficients Sij""’Sij
is obtained after per{formance of the integration indicated in
Eqs. (34) and (35).

' The global representation is obtained by summation, from
the coefficicnts of the above element equations, of all coef-

ficients with like subscripts. The resulting equations are of




a (orm identical to that of Eqs. (36) and (37).l The Newton-

Raphson appioach is adopted as the method of solution of these

coupled nonlincar cquations.

Numerical calculations were performed for the square cavity
of Fig. 3a for the boundsry conditinns shown and for various assumed
vertical formulations of the eddy viscosity and diffusivity. The
tiniic clement representation consisted of 72 elements arrayed in
the 6x6 pridwork. (Fig. 3b).

Stecady state calculations have been performed for Re = 1 to
Re = 1000, Cr = 0 to Gr = 10000, and Pr = 1 to Pr = 10 where Gr is
the Grushof number (The Grashof number is‘Gr = Re2 Rio.). Addi-
tional numerical experiments were performed to test the sensitivity
of the solution on the assumed behavior of the eddy viscosity and
eddy diffusivity. Ten such computations were performed, all using
Re = 100, Pr = 1, Ri0 = 1 but different choices of 9 and’om and
also different assumptions as to the form of the depthwise variation

M H

of sz and Kz as summarized in Table 1. The values of the charac-

teristic numbers represent, of course, an infinite variety of

physical data, but the following are typical: Pg = 1.0 gr/cm3,

o _ ] 2 M _ L H_
4°C), T, = 1.0 dyne/cn”, Ko Ko
980 cm/se;z. These are approximately

pp = 0.9999 gr/cm> (T, - Ty =

100 cm®/sec, H = 10m, and g

equivalent to the experimental data of Sundaram et al(zz). How-~
ever, in the present case the boundary conditions have been chosen
so that a steady-state solution exists, a condition relaxed in some

subscquent computations.
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TAD

LE 1

Summary of Computations

for Re = 100,

Pr = 1, Rlo = 1

RUN | 2 2 ¢« 1 s
NO. Cut-off Below the
%y 9y Depth-Dependent | First Cut-off Depth | Plot Symbols
i

i 0 0 .- S O

2{0.1]0.035 No A

3:0.210.07 Yes -

4 10,310.1 Yes ---

5S70.5710.15 Yes . 2

610.6]0.25 Yes .en

7172.0]0.35 No No A

8 {3.0[0.35 Yes No O

9 |2.0/0.35 Yes Yes o
i012.010.70 Yes No o




Conciusions resulting from the first set of stcady-state runs
are shown in Table 7 (Ref.19), In these runs ¢ddy viscosity and
eddy diffusivity were held constant. A typical picture of stream-
lines and isopycnals is shown in Figure 4. The influence of the
stratification on the circulation is obvious. Additional runs
could probably have elicited a specific velationship between the
formation of multiple, closed circulation cells and the three
parameters, Re, Pr, and Gr. tHowever, such a relationship was not
pursued since it would undoubtedly be altered with different geome-
trics and since the cddy viscosity and eddy diffusivity relation-
ships probably have a large effect.

That effcct has been tested in ten subsequent runs which are
summarized in Figures 5 and 6. In thesce cases the same sort of
cell structure formed as shown in Figure 4, but with considerable
variation in the details of the velocity, shape and size of the
cells, snd the density distribution.

The latter computations show that the density structure con-
.tinues to have a largec effect on the velocity structure and also the
velocity structure greatly alters the density distribution. With
the eddy viscosity and eddy diffusivity formulation that Sundaram
and Rchm(ZI) found necessary in their one-dimensional analysis,
the surface shear alone is sufficient to form a thermocline typec of
structurc., This result is quite different, but does not conflict
with, those of previous investigators who have used a onc-dimensional
analysis. In those previcus investipations the thermocline struc-
ture formed over a pceriod of time (several weeks) while unsteady
heat inputs were applied. We have shown, however, that given an

initial inhomogenicty in density, a wind shear is quite sufficient




O

O

an increascd Pr encouraycs the formation of
celis. The angle of tilt between cells in-
creases with decrecasing density diffusien.

. ‘ Table 2, Summary of Results N
Streanfimction Results Density Ficld Rosules
o
l}

Re An ineroasing Ro rcflects an incrcese in wind [Density transport 1s increasingly by advection.
shear, the prirary source of kinctic encrgy. qlgh Re encourages the accunulation of a
Momentum transport is increasingly by convec- |thickening reglon of light he: azancous fluid
tion, which discourages the formationcfcells.|at the tep of the dosnaand portion of the
The primary vortex cecnter noves downstrceam andicavity. Vertical anc }oklhongdl density
toward the surfuce with decrcasing momentum pragients risc with the leoss of diffusion.
diffusion,

Gr AT all bur the lowest levels of kinctic encrgyj\n increasing applied dencity difference or
(Re = 1.0) an incrcasing Gr encourages the buoyuancy strength sceks te create o lincarly
growth of cells, by increaging the strength of arytnb vertical density profile. Additicnal
the applied vertical density gradicnts. The low field cnergy is rvgu;rcd for the read-
angle of tilt between the cells diminishes Ju>tm ent as reflected in the i- creasing Or.
with increasing Gr.

Pr By severely increasing the density gradients, |3y Lu““'cr diminishing aan 1ty Jdiffusion with

increasing Pr an addition
lighter honugenuou_ f\dld occurs. Also an

additional incrcase in the energy absorbing
vertical and rzontal deasity gradicats is
noted. J

'Lov Aspect

The unimportance of horizontal diffusion results

in a more cxageerated density and flow el
Pr. Vor-

Ratio response to any change in the Re, Pr, and Gr. Therefore cells form at lower Gr, or
(shallow tex centers are cenvected fartker apart horizontally with increasing transport by inertia.
cavity) |For a given wind and appliecd density diffevence, the vertical densaty gradient is core scvere
] ond thereby requires more kinetic eoncrgy to overcone.
Hign Asncet {liomogencous circulation cells appear when All test cases were henogencous.
Ratic momentun diffusion can'e penetrate the wall
(czep shear resistance. Each cell rotates in the
cavity) lenposite dircction to and is O(10) less in-

teiase than the cell above,
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Figure 5 Vertical Distribution of Eddy Viscoesity (Kg)
and Eddy Diffusivity {(i)) at x = 0.8333.

(Sce Tatle 1 for definition of symbols)




a. x = 0.1667 - b. x = 0.8333

Figure 6 Density (p) versus Depth (z) at x = 0.1667

(See Table 1 for definitien of syrbols)




to form the the;mocline. Unsteady computations, shown below,
indicate the time scalce involved in such a formatioh and also the
extent of the fecdback which influences the current structure.

Fewer transient computations of cavity flow were made due to
the computer costs. A total of five runs with Reynolds numbers of
100 and 1000 and Richardson numbcrs of 1 and 10 were made. Two
values of 0, were used. Figure 7 indicates the results of one of
these calculations. In all cases in which the motion begins from
rest, the entire cavity begins to circulate as a whole; that is, the
cavity forms a single circulation cell. As time progresses the
flow may break up into two or more cells, as is indicated in Figure
7. At the same time the dcnsityrdistribution is altered to show the
typical thermocline shape.

The flow docs not change from a state of rest to the final cell
formation montonically. Instead thc velocities increase rapidly to
a value not far from the stecady state valuc and then osciliate about
this value. The frequency of oscillation is near the Brunt-Vaisala
frequency. ther characteristics of the flow, the density gradient,
the cell location, and the streamline positions, show similar dampcd
oscillations.

The number of cells can be calculated, using certain gross
approximations, from the theory of Turner(sz)(as expanded for this
problem by Young(31l This theory has been compared with the transi-
ent and stcadyjétate computations with rough agreement. The dif-
ficulty in the applicatiom of such theories to real lakes (or even
cavities) is that all the factors, the most important becing the
density distribution, and the interaction of those factors cannot

te considered adequately. Results indicate that multiple cells are
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likely to form in the case of a diffuse metalimmion whereas a sharp
thermoclinc'promgtos two ceil circulation. However, the fecdback
of the cur%gnts into the density structurc hés not been conéidercd,'
and this fecdback may alter the density di;tribution, thus changing
the rosﬁltg of the thecory.

Variable viscosity, especially a formulation which is strongly
dependent qﬁ'thc density gradient, has a great cffect on the
ability of“thc’currcﬁt structure to alter the density distribution.
A reduction of viscosity in zones of steep density gradient promotes
the oscillations observed previously and increases their amplitude
(but docs not affect the frequency). The reduction in viscosity
also increascs the timg to ‘'equilibrium significantly in those cases
in.which a stcady state exists. N

A particularly striking result of the transient calculations
is thq time scale involved in thermocline formation. A shear
applied at the surface may alter the density distribution and
create a thermocline-like structure in a few hours versus the weecks
involved in the one-dimensional computations. Thus the entire
process of the development, maintenance, and erosion of the thermo-
cline is a complex pro&ess strongly influenced by the current
structure. The "physical constants'" (i.e., eddy diffusivity)

derived for the one-dimensional analysis have, in reality, little

physical meaning when the current structures is neglected.
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R. H. Gallagher

5. CONSTITUTIVE EQUATIONS TFOR PLASTICITY AND CREEP
R. ii. Gallagher

I. INTRODUCTION
‘ Analyses [(or material nonlincarities have been of increasing
importance in recent years in conjunction with nuclear powerplant
désign. A fairly complete finite clement approach to the analysis
of 'such problecns Has developed and at the present time these cap-
abilitics arc routinely operational in many large design offices.
It is the purposc of these notes to present the relevant basic re-
lationships in finite element\inelastic analysis, to describe the
established cohputational algorithms, and to identify some signi-
ficant ncw developments and dircctions of-future work. As in any
nonlinear aspect of analysis, where the costs of current procedures
arc substantially greater than for clastic analysis, new develop-
nents ‘are pursued vigorously for the sake of improvements in com-
putational efficiency.

It is customary‘to divide the problems of inelastic analysis
into the categories of time-independent and timé-dependent bchavior.
Time-independent inelastic behavior occurs when a structure is loaded
in such a way that strains in excess of the elastic limit are sus-

tained. In time-dependent behavior permanent deformation accumulates

with the passage of time even under stresses which are well within

the elastic limit. This division into two categories is realistic
for many design situations. Noting that there are design situations
where this division is unrealistic and that some finite element
analysis work has been addressed to more general material behavior,

“we nevertheless follow these divisions in this and the next lecture.
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A subscquent lecture, dealing with "viscoplasticity', crascs these
distinctions.

In extending the {finite clement method from clastic to inelas-
tic analysis two considerations stand foremost: (1) the establish-
weat of inclastic stress-strain {constitutive) relationships, and
(&) the fornuiation of reliable and cfficient algorithms for the
solution of the associated large-ovrder systems of nonlinear algebraic
cyuatvions. The first of thesc topics is examined in the present

section.

IT. TIML-INDEPLNDENT PLASTICITY

1. UNTANTAL STRESS-STRAIN BEHAVIOR

Tnis section 1s devoted to an outline of thosc considerations
<:> which are relevent to our formulation of finite element time-inde-

pendent inclastic analysis. Detailed developments of plasticity
theory can be found in Refs. 1-5. [n constructing the rciationship
between stress and strain in the inelastic range of multiaxial
states of stress one must define (a) the condition for yicid, (b)
the general form of the desired stress-strain law, and (¢} a criterion
for work hardening. Preliminary to these operations, however, an
understanding must be gained of uniaxial stress-strain bchavior into
tiie inelastic range because the theory of multioxial plasticity is
largely concerncd with the analytical transformation of such behavior
into two- and three-dimensions.

The '"basic' uniaxial stress-strain relationship, obtained in
a standard tension tesf, is given by the solid curve in Fig. 1.

<:> Engineering strains (the specimen elongation divided by the nominal

lcngth of the specimen), rather than truc strains, are rcprescnted.
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fest speciaens, at a cestain stroin, arce reduced un arca in 2

sitall region ("necking®”) and it is this arca which is uscd in

toe calcuiation of truc siresscs. The nominal stress, however,
is usually represented 1n figures such as Fig. 1. The point A

is the clastic lwumit, which is hercin assumecd to be synonymous

with the yield point.

Mild stcel, of the type generally used in civil enginecring
structures, displays a somewhat different stress-strain diagram
(vee Fig. 2) in that it has a flat yield rcgion. This phenomenon
is attributed to slip along slip planes of the crystals.

Materials which demonstrate very little pilastic dcformation
belove breaking (such as cast iron, beryllium, rock) are called
brittle materials. This bchavior is shown in Fig. 3. It has been
dgenonstrataed experimentally that rocks tend to become brittle when
suvjected to large hydrostatic pressure.

Consider the (Fig. 1) application of load past the yield point
to point B. The load is then rcmoved and the strains dccrcase
linearly until at zcro load {point €) the residual total strain 1is
0C. If the load is then recapplied, the straight iine TB is retraced.
For stresses higher than Ops the original stress-strain curved
(solid 1line) is followed.

If compressive loading wecrc applicd beyond point C, it would be
expected that strains would continue to develop linearly up to a
point. The point at which the stress-strain relationship again
becomes non-linear is often assumed to be equally distant from C as
the length BC. Thereafter, for continued compressive leading,

Figure 1 shows the curve BCB' being followed, where the curve CBD
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., is 1dentical in shape to CB'D'. The analytical represcntation

o this behavior is tcrmed an isotropic hardening reprecsentation.
Often, when a recal metal is deiormed in tension and the load

is then reduccd and progressed to compression yield, it will be

“ound that the yield stress in conpression is considerably less

than that orf tension. This is termed the Bauschinger effect and

if it is taken into account the length CB", in Figure 1, would
ae considerably less ihaﬁ CB. Theoretical plasticity has attempted
to account for effect through what is termed a kinematic hardening
represcntation.

Plastic dcformation is physically anisqtropic. The process
of slip on a crystal plane is clearly directional. As a consequcnce,
any initial isotropy which may have been prescnt is usually destroyed
by plastic deformation. From the point of view of the dislocation
theory, slip is an irrcvérsible process; every slip produced a ncw
material. These changes are revealed in the Bauschingér cffect and

~

in the anisotropy of materials after plastic deformation.

2. YIELD CRITERION-MULTIAXIAL STRESS

In order to be able to solve multiaxial stress problems, one
must be able to relate increments in stress {do} with increments
in the corresponding strains {de} by extrapolating {rom a simple
uniaxial tension test into the nultidimensional situation.

The definition of a yield criterion, the combination of stresses

that Brings about yield, is an initial step in the formulation of the
incremcntal elastoplastic stress-strain law. Experiments have shown
that the shear stress is the major cause of yielding. DMoreover,

hydrostatic pressures of the order of the yield stress have little
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in{luence on yiclding »f metals. The chosen form of the yield

\
criterion nust reflect these considerations. Altheough "alternative
rorms are available and have been used in finite clement aralysis
the Von Mises criterion has overwhelmingly becn fhc chéice: This
is due to the continuous nature of the function defining this
criterion and because it holds reasonably well for the commonly-
encountered ductile materials. It states that yield occurs when
the effective stress (o) ecquals the yield stress (&y) measured in

a uniaxial test. For an isotropic material

2 2 2

+ (03' 01) ]

Q!
n
] 4=

[(01 - 02) + (02 -0 (1)

3)

1

where © 0,, and 0, are the principal stresses. A Poisson's ratio

R 3
o % has been introduced, consistient with incompressible material
behavior, since yielding is assumed to be an incompressible phenom-
enon.
o can also be expresscd in terms of non-principal stresses,
2 )Z
X y y z

2 2

2
+ 6 (Txy + Tyz

(0, - 9]
1
. Tzi)ﬁ (2)

This can also be written in terms of the second invariant (JZ) of

the stress deviation o = /5; (3)

The corresponding expression for effective plastic strain, ép,

is given in diffcrential form, as a function of incremcnts in the

principal plastic strains. Thus

o VI 2 2 2.3
aeP ="%  [(del - deD)? + (deD - deb)? « (deg - deh)®17 (4)
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The plastic strains here have the usual meaning, that is they
represcnt the differcnces between the total strains and the elastic
sirains as obtaincd by llooke's law. TIxpresscd in terms of incre-
ments of non-principal strains,

- /I
deP = 3 [(dEE - ésg)z + (de? - d€2)2\+ (dez - dez)

1
2 3

2 2
ayP_“+ avb ]

3 P
a2 (dny Xz ZX (5)

Note that according to these definitions neither & nor déP can
assume necgative values.

With these expressions in mind, it is possible to conduct a
multiaxial test in which the stresses arc statically known at all
times, and to measure the corresponding incremental plastic strains.
From their the effcctive stresses and effective plastic strains may
be calculated and plctted as in Figure 4. The effective plastic
strain €P is the integral of Eq. 4 (or Eq. 5) taken along the loading
path so that all of the incremcnts of plastic strain are included.
As a special case, for uniaxial stress where the only stress compo-
nent different from zero is S g = o and eP = ezu Thus Figure 4
may be ohtained direcctly from Fig. 1 by first subtracting out the
elastic strains o/FE from the total strains €. (Note that urloading
along the linc BC corrcesponds to zero change in ceffcctive strain).
According to the theory, a variety of loading combinations could
be investigated experimentally, and for a given material, all should
give the samé o vs eP curve.

3. FLOW RULE
Two concepts are central to the establishment of the elasto-

plastic material stiffness matrix [Eep]: the slope (H') of the
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tanuent to the cffeclive stress-ellective plastic strain (6-.0)

diagram, otherwise known as the hardening cocificient, asad the

"Mlow rule', or description of the differential changes in the

plastic strain componcnts {deP) as a function of the rates of

change of stress.

Wwith respect to H', it is apparent from Fipgure 4 that

H'deP = do (6)

Fuithermore, the total diffcrential do can be written as

a0 _ 30

do = 55 doy * 55 49, * 55, 495 " gy Ao (D)
i Z 3
so that, from Eq. 6
-p _ 90
”Fd&_i —Lf)_():..l {dO}

For the flow rule we choose thc commonly employed Prandtl-Reuss

representation, with isotropic hardening

Py o 2D (90) .
{deP) = as {&3 (9)

The significance of this representation is described in Figure 5,
illustrating the "stress-space' for the two-dimcnsional case. The

solid curve gives the yield surface (locus of all points (stress

states) causing yield) as defined by the Von Mises criterion, Lguation
1.

Equation 9 expresscs the condition that the direction of in-
elastic straining bc normal to the yield surfacc and is therefore
alternatively termed the normiality condition.

To clgporatc upon Iiy. 9 algebraically, we consider the typical
term deg in the vector {deP}. 0 is given by Eq. 1 and performing on

it the required operation %% s we obtain
1
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de? = de” (o, - - (02 + 03)}

1 177 (10)

Consider now the differential form of the familiar stress-

strain law with the plastic strains interpreted as initial strains

{do} = [T] (de)} - [1] (deP} (i1)

which becomes, after substitution of Equation §

{do} = [E] {de} - [E]{?’-gj acP (12)
Multiplying through by %%J
L
30 30 . 30 30) = <
!__3—6..! {dc} =L§EJ [F] {dh} - L-é—(;__! [E] %-} dgp (1.5)

and, with use of Equation 8, in place cf the leflt-hand side

P . 39 (g } . 80 {8_9; -p
H'de ry [E] {de} o LBl {54 de (14)
By rearrangement
30
— [E] {de}l
deP = L90 — (15)
. %5 pa
HT + L9304 (E] 30}
Finally, by substitution of this expression into Equation 12, we
obtain '
{do} = [E°P] {de} ' (16)
where
(E°P1 = [£] - [P (17)

with [E] the conventional elastic material stiffness matrix and

~ 3G 30
WL g 5w

90 o
(H' MR [E] (5_0)

(18)
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It is of i1nterecst to obscrve that [Eep] (and [ﬁp]) are
symmetric and that the case of perfect plasticity, where H' =
0, causcs no difficulty.

In isotropic hardening the yield surface expands uniformly
about the origin in stress space. In kinematic hardening the
yield surfacc translates as a rigid body in stress space, main-
taining the shape and orientation of the yield surface. The yield

surface in kinematic hardening is given by

’~ _ 1 } _ ;
¢ = 3 (Sij aij) (sij aij) k (19)

where s.. = o, . - 1 S. .
ij 3

i ] i j Gkk (8.. is the Kronecker delta) (sij is a

£

deviatoric stress component), @5 3 is the translation of the yield
locus, and ; is a constant. By supplanting o by ; in the previous
developiment we can establish the incremental stress-strain relation-
ships {for this condi£ion.

(6)

Mroz has produced a workhardecning representation that is
similar to kinematic hardering. Illunsaker, et ai (7) have recently
conducted an evaluation of various workhardening rules, including
isotropic, kinematic, and Mroz's, with a mind towards finite element

applications.

ITI. LINEAR VISCOELASTICITY

Linear viscoelasticity attempts to deal with time-dcpendent
material behavior by establishing mathematical forms of the con-
stitutive relat/ionships involving time (t) and derivatives with
respect to time that are linear in the stresses and strains. Many

thorough accounts of this topic, including both the representation
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of the constitutive relationships and methods of structural anal-
ysis bascd on these rclationships, are available (sce Ref. 8-12).
The following is a bricf outlinc of comsiderations in reprecsenta-
tion of viscoclastic constitutive equations, which are important
to the mecthods of viscoelastic finite e1§mcnt analysis to be de-
scribed subscquently.

Before discussing specific _forms of viscoeclastic constitutive
rclationships, it is esscntial to digtinguish between such expres-
sions when written for stress in terms of strain, and vice versa.
when stress is written in terms of strain, strain rates, and time,
the variation in stress with respect to time for constant strain
can be established. This variation, portrayed schematically in

<:> Fi1g. Ga, is tefmed relaxation, so that the terms relating stress

to strain are collectively designated as the relaxation modulus.

Converscly, when strain is expressed in terms of stress, deriva-
tives with respect to time, and timc, the case of constant applied
stress (Fig. 6b.) produced creep behavior and the constitutive

relationships define the crecp compliance.

Mcasured (experimental) data are usually obtained in the creep
compliance format. The principle of minimum potcntial energy, the
almost universally employed approach to finite element analysis,
involves the rclaxation modulus format for the constitutive rela-
tionships. This presents no practical difficulty for the usual
approach to finite element viscoelastic analysis (the time incre-
ment-initial strain method) since the coefficients of the constitu-

<:> tive relationships are defined '"instantaneously' as numerical values

determined separately by reference to the functional (differential
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or integral) form of thesc relationships.

Viscoelastic constitutive rclationships may be assumed to
be represented by mechanical models consisting of springs and
dashpots. This l1lcads dircctly to the differcential form of the
constitutive relationship. The simplest rcepresentations are
those duc to Maxwell and Kelvin respectively (scc Fig. 7).

The Maxwell model consists of a spring and dashpot in series,
representing the following analytical cxp}cssion for strain versus
stress and time (Fig. 7a).

=949
S TR (20)

Deficiencies of this represcentation iﬁcludc the lincarity of the
strain versus time variation and a failure to>rcpfcscnt any ''re-
covery" 6f<§jscoclustic strain upon rcemoval of l1load. Recovery is
an~cxperimen£ally observed phenomenon. By combining a spring and

dashpot in parallel (Fig. 7b), thc bchavier is represented as

1

.\
m

(21)

|

0 = Ee +n

[N

t
This representation is also deficient because it does not account
for the initial elastic strain, as was done in the Maxwell model.
Thus, to obtain features of both models it is feasible to tie to-

gether four elements (Fig. 7c¢), to yiclid
-

2 2
do a0 _ de d“e .
9+ Py gt tP2 po s U T R {22)

wihere Py» }g.'qz are material constants.
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Successively more sophisticated and recalistic viscoclastic
cunstitutive relationships can be formed by combining still more
springs and dashpots, The most general viscoelastic rclationship

is then of the form:

m k n k

1"o . d ¢
Lp S———7 = Iq ~ (23)
o K atk o K giK
where po, e pk, . Pm’ qo, .. qk, ‘e qn arc material constants.

For tlic purposcs of analysis onc secks a dircct viscoclastic
veiationship in either the crecp compliance [e(t) = J(t)00] or

T

Q

claxation modulus [o(t) = Y(t)eo] format, each referring to an
initially applied stress (oo) or strain which is held constant;
rather than the differential form of Eq. 23. This is conveniently
accoinplished by use of Laplace transform tcchniques. The analysis
proolem requires consideration of a time-history of stress and

strain intensities, however, and for these cases the concept of the
hereditary integral is introduced. As in the case of constant

stress or strain, elther creep or relaxation formats of this integral

may be written. For creep we have

e (t) = o(t)J(0) +.f0(t') dI(t-t’) g¢v (24)

o d(t-t")
where t' is the time parameter to measure the stress variation and
t measures time from the start of viscoelastic deformation.
Any attempt to introduce computational economies by dircct usec
of the functional form of the constitutive relationships in the stiff-
ness equations and integration thercof in time confronts formidable

difficulties. Inversion of the creep compliance to define the
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relaxation wodulus can be costly. Procedures for this arc given
in Refs. 15-106 and an illustration of the related computational
cxpensc 1s presentced by Vhlte.17
To avoid the difficulties of tue formalized represcntation

of viscoelastic constitutive equations and yet retain the hered-
itary nature of the phenomenon, while dealing with a form appro-
priate to iinite element analysis, the scheme cmployed in Ref. 18
can be considered. With reference to the Kelvin model (Eq. 21)

Tor a singl2 element (element i} we have

de© Ei c
T = — - — € Zla
dt l]i ni ( )

Here, since the elastic strain is not rcpresented, we have set
C

m
[0

o]

"

or a series of Kelvin models (1, ... i, ..., 1) and a

finite increment of time (At), the increment of creep strain is

E.
e = [ £ (& - L 98t (21b)
RN ni i

1

0t
=

- c ..
and the values of o and ei for this interval are taken as those

cxisting at the start of the interval.

The zcneralization of the above to multiaxial states of stress

is accomplished straightforwardly, adopting the assumption that
linear creep occurs only for the deviatoric components of stress,
so that Poisson's ratio equals one-half.
IV. CRE:z?

Althcugh many efforts have becn launched by material scien-
tists in rveccnt years to gain a more complete understanding of
creep behavior in mCta]S,(Sl) many qucstions remain unanswercd and

rcliable thecoretical procedures are not yet available for the
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calculation of crecp representations from more fuﬂdamental
physifal propertics. Thus, dependence is placed upon mathe-
matical/rcpiesentations drawn from test data.

Coimprehensive studics of both the creep response of mater-
ials and of procedures for structural analysis in the presence
of this response are given in Refs..19-27. In the latter con-
text these references deal almost exclusively with classical
analysis procedures whose results arc of extremely limited ap-
plicability. Nevertheless, common considerations underlie both
classical and numerical mcthods and decpendence must be placed by
the reader on thesec references for detailed development of that
which wiil be sketched in the following.

Three questions require study.of the definition of appropriate

‘constitutive relationships for crecp analysis: (1) the form of

uniaxial creep data and its dependence- upon such factors as time
and témpeTature, tZ) the géneralization of uniaxial creep data to
multiaxial states of stress, and (3) the manner in which creep
strains are accumulated under varying stress and temperature histor-
ies.

In diséussing (1), uniaxial creep’data, it is useful to refer
to the original representation of E. N. Costa ‘de Andrade28 shown
in Fig. 8. Here, the creep strain is plotted as a function of time
for a given stress level and temperature. This behavior is approx-
imated by an expression of the form -

€€ = gt™ + yt (25)

where B, Y, and m are material constants. By differentiation with

respect to time
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'c
de o [T *C -C .
L = = - + ~
Jt ¢ mpt + Y €9 £ (26)
The cxpéncnt m is less than one so that for short times the

first cxﬁroésion predominales wihilc for long time the sccond term,
v, is of preatest value. The carly portioﬁ, uovéincd by ot™, is
tcermed the primary phasce of creep. The portion governed by yt is
“axacter1zed as scconddry creep. The thira,ﬂor %crtiary phase,
lcadinglfokcrcgp rqpturc generdlly reﬁreécnts a highly nonlinear
fo;n of behavior where the usual engineering definition of strain
does not suffice for valid characterization. Due te the high cost
of crcep analysis it is usually not fcasiblc to conduct analyscs
into the tertiary phasc with representation of phenomena cncountered
in this phase. 4

\ For analysis purposes it 1S nccessary to expréss the material
constants m, B, and y as functions of stress and, if possible,
teaperature. This is desirable e¢ven for finite element analysis,
which doesAnot‘require such functional represcntation, because of
the extensive data,tabulatiops needed to account for all ranges of
benhavior. One of thelmost popular basic forms of the steady-state

creep rate e;, is that due to qutOng

e$ = Bo" ' (27)

“where B and n are material parameters (If this cquation 1is employed

as a representatlon of primary creep then B is a function of time).
Bd11ey generallzed Eq. 27 to accouﬁt for temperature dependence
by dcflnlng B as follows (see Refs. 23-25 for discussion of this

woTk) B = DePt(eCy P (28)




R. H. Gallagher

o ¥

10.

11.

12.

13.

14.

15.

16.

References

Pracer, W., An Introduction to Plasticity, Addison-Weslcy

Publishing Co., Rcdading, Yiass. 1959.

Funz, Y. C., Foundations of Solid Mechanics, Prentice-Hall
Booxk Co., Fnﬂlewood Cliffs, New Jersecy 1965.

Mendelson, A,, Plasticity: Tohcory and Application, Macmillan
Co., New York 196S.

Lin, T. l., Theory of Inelastic Structurcs, J. Wilcy, New York
1968.

Calladine, C. R., Engingering Plasticity, Pergamon Press,
Oxford, 1969.

Mroz, Z., "An Attcmpt to Describe the Behavior of Metals under
Cyclic lLoads Using a Morc Cencral WorkHardening Model", Acta
Mccnaaica, V. 7, No. 2-3, pp. 199-212, 1909.

Hunsaker, B., Vaugh, D., Stricklin, J. and Hllsler, w., A
Egﬂﬁjlj:}htllgughzrﬁnt Lork ilardening Modeis Used in the Analysis

ot fi)éﬁiEmﬂgfgfmﬁllpﬁﬁ , Tcxas A and M UnlJCTblLy, Robort
TEES-RPT 2926-73-3, Oct. 1973.

Bland, D. R., The Theory of Lincar Viscoelasticity, Pergamon
Press, Oxford, 1960.

Flugge, W., Viscoclasticity, Blaisdell Publishing Co., 1967.

Lee, E. H., "Viscoelasticity', Handbook of Encineering Mechanics,
Chap. 53, W. Flugge (ed.), chraw H11l, New York, 1962.

Williams, M:, "Structural Analysis of Viscoelastic Materials",
AIAA Journal 2(5), pp. 785-808, May 1970.

Christenscn, R. M., Theory of Viscoelasticity: An Introduction,
Academic Press, New York 1971.

Schapery, R. A., "Approximate Methods of Transform Inversion
for Viscoclastic Stress Analysis', Proccedings of Fourth
U.S. National Congress of Applied Mechanics, p. 1075, 19062.

Cost, T. L. and becker, E., "A Multidata Method of Approximatc
Laplace Transformation'", Intl. J. Num. Meth. in Enginecring 2(2),
pp. 207-220, 1970.

Taylor, R. L., "A Note on Crecep and Relaxation', AIAA Journal
2(9), pp. 1659 60, Scptember 1904,

Adeyeri, J. and Krizek, R., Mimic Source Approach to Viscoclastic
Analysis, Proceedings of S,mposlum on Applications of the Finite
Element Method in Civil Engineering, Vanderbilt Univ., November
1969, pp. 517-528.




R. H. Gallagher

17. White, J. L., Finitc Elements in Lincar VJscoclasticity,

Proceedings of Sccond Conference on Matrix Mcthods in
bxwl}fg3a1 “Mcchanics, AFTFDL-TR-68-150, October 19G8, pp.
P89-517

18. Zienwniewicz, 0. C., Watson, M., and King, I. P., "A

Naimerical Method of Viscoclastic Stress Analysls", Tﬁtl;
J. Mech. Sci., Vol. 10, pp. 807-827, 1968.

19. Odavist, F. G., "Non-Lincar Solid Mechanics, Past, Present,
and {uture'", Proccedings of XII International Congress of
Anplied Mecchanics, Stanford, California, August 1968, M.
Hetenyi and W. Vincenti (eds.), Springer-Verlag, 1969.

20. Lubahn, J. and Felgar, R. P., Plasticity and Creep of Metals,
J. Wiley and Sons, Inc., 1961.

21. Arutynyan, N., Some Problems in the Theory of Creep, Pergamon
Press, Oxford, 1966.

22. Hoff, N. J., (ed.),\Creqp in Structures, Academic Press, New
York, 1962. '

23. Rabatnov, Y. N., Creep Problens in Structural Mechanics, N.
Holland Publishing Company, 1969Y.

24. 0Odqvist, F., Mathematical Thbory of Cfcep and Crcep Rupture,
Clarcndon Press., Oxford, 19066. .

25. Hult, J.,-Crcep in Engincering Structures, Blaisdéll Publ.
Company, haltham, Mass. 1966.

26. Finnie, I. and Heller, W. Creep of Englnecrlnngaterlals,
McGraw-Hil1ll, New York, 1959

27. Finnie; I., "Stress Aﬂalysis in the Presence of Creep™, Appl.
Mcch. Reviews 12(10), pp. 705-12, 1960.

28. Costa de Andrade, E. N., On the Viscous Flow of Mectal and
Allicd Phenomcna, Procecdings of Royal Soc1ety, Serics A,
Vol. 84, No. 1, 1910.

29. Norton, F. H., Crccp of Steel at High Tempecratures, McGraw-
Hi-1, New York, 1927. .

30. Soderberg, C. R., "Interpretation of Creep Tests for Machine
Design'", Trans. ASME, Vol. 58, pp. 733-43, 1936.

31. 'Onat E. T. and Fardshisheh, F., Representation of Creep of
Vetals, Report ORNL-4783, 0ak Ridge National Lab., 197Z.




R. H. Gallagher

O

STRESS
ag
h b
gy ;;ZEEN j//
7 - 0 X
0 == TOTAL STRAIN, ¢

FIG | Rt’.PRr.Ss.NTATIVE STRESS~STRAIN CURV:

/

M
upper yield
point | C
. I
Ai" X Work Hardening
v
1 ’ |
S ‘ . ]
Elastic i
]
l
0 (Exaggerated) :
e(p) .[ c(e) Elongation

O € 4=

FIG. 2 STRESS-STRAIN CURVE FOR MILD STEEL




Pt o I TR ~ -

R. H. Gallagher

O

Stress
1

‘"

o C (Breaking Point).

}_Strain
FIG. 3 STRESS-STRAIN RELATIONSHIP FO
A BRITTLE MATERIAL -
—
o }TAN"H
A o~
O
EFFECTIVE /)7//
STRESS,o
& ==EFFECTIVE PLASTIC
¢ . STRAIN, €”

FIG. 4 EFFECTIVE STRESS—EFFECTIVE PLASTIC STRAIN CURVE




O

R. H. Gallagher

= a,(€)

YIELD SURFACE

FIG 5. YIELD SURFACE AND NORMALITY CRITERION
2-D STRESS SPACE

o €
o A
&
T C
s> TIHE o TINE
(a) RELAXATION (b) CREEP

Fig. 6. Schematic rorm of Basic Repreéentation
of Time-Dependent Material Behavior




O

A

R. H. Gallagher

e RENOVAL OF

A o LOAD

E
o

U -
o AN

(a) MAXWELL MODEL

€

o]

(b) KELVIN-VOIGHT MODEL
€
0

o MV\F g
- e — W\
\\\\\\a~ {1
2= TIME

(c) FOUR-ELEMENT MODEL

Fig. 7. Spring~-Dashpot Models of Viscoelastic Behavior.




CREEP STRAIN ¢°

0

LASTIC

1D

STRAIN ¢

STRALH _ RUPTURE

()

SECONDARY

b <7 -
PRIMARY . TERTIARY PHASE

____kmm-
q

=~ TIME (t)

Fig. 8. Andrade Representation of
Constant-Stress Creep Zzhavior

'H Y

Jaybey {eg




R. H. Gallagher

v

! ’ o TLHE
-(2) ACCUNULATION OF CREEP STRAIN IN PRIMARY CRELP

= TIME

o TIME
(:) (c) ACCUMULATION OF CREEP STRAIN IN SECONDARY CREEP

Fig. 9. Comparison of Rules for Accumulation of Creep Strain




)



centro de educacion continua

divisién de .estudios superiores

M facultad de ingenierfa, unam

"ADVANCED TOPICS IN FINITE ELEMENT
ANALYSIS. "

TEMAS AVANZADOS DE ANALISIS POR
. 'ELEMENTOS FINITOS. "

MARCH 22-26,1976.
MARZO 22-26,1976.

irector de la Facuitad. M. en Ing. Enrique Del Valie Calderén
Jefe de la Divisién. Dr. Octavio Rasc6n Chavez

Jefe del C.E.C. Dr. Pedro Martinez Peveda

L Palaclo de Minerta
Tacuba 5, primer piso. México 1, D. F
Tels.: 521-40-23 521.73-35 512-31-23




':= nU

AN T Al gl

centro de educacion continua

"‘:”; divisién de estudios superiores

M facultad de - ingenierfa, unam

' TUESDAY, MARCH 23, 1976.

F.E. ANALYSIS ALGORITHMS FOR
INELASTIC ANALYSIS el

‘,."

2 \ " PROFESSORS:

. .0.C. Zienkiewicz
R.H. Gallagher
P.V, Marcal '
T. Dwyer
P. Ballesteros

CO-ORDINATORS:

T. Dywer
P. Ballesteros

Palaclo de Minerfa . P
Tacuba 5, primer piso. México 1, D. F. '
Tels: 521-40-22 521-73-35 513-31-23




O

O

O

R. H. Gallagher

0. FIENINT AND GLOBAL TORMULATIONS FOR_TNELASTIC ANALYSIS:
SOLUTION ALGORITIINS-
R. H. Gallagher

T INTRODUCTION

The purposec of these notes is to describe afgorithms for
inelastic finite element analysis which are regarded by many
as ''standard". These aigorithms are found in widecly-distributed
computer programs and havc been tested over the past ten years
in ex;ensi?e practical applicatious. ’

The topic of inelastié4finite element analysis hag'becn the
subject of a number of review papers in recent years, including
Refs. 1-7. Applications in practice are dealt with these refer-
ences and, except for a relatively few citations, are excluded
from the present coverage.

A convenient division of time-independent inelastic analysis
is into the tangent stiffness and initial stress hlgorithms. These
are treated«separ;tely in the next two sections. Then, two sections
are devoted to the newer developmeﬂts in the use of mathematical
programming”and complementary energy concepts. Finally, algorithms

ior viscoelastic and crecp analysis are described.

I1. TANGENT STIFFNESS ALGORITHM

The tangent stiffness algorithm represents direct utilization
oi incremental plasticity concepts. It is an approach which in-

volves revision of the elastic element stiffness matrix to form an

elastoplastic element stiffness matrix [kep] that accounts for the
inclastic material properties. To accomplish this transformation
one merely supplants the elastic material stiffness matrix by the

clastoplastic matcrial stiffnecss matrix [Eep] in the familiar element
{
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stiffness formula

T ’
(kepl = Jyo1 [P17 [E,,1 [D] d (Vol) (1)

The basic scheme in the tangent stiffness algorithm is as

follows:

1) An elastic analysis is performed for an arbitrary load
intensity and this intensity is scaled to the level at
which the yield criterion is satisfied.

2) An increment of loading is selected for the first passage
into the inelastic range.

3) An estimate is made of the stress and strain incfements
caused by the load increment of (2), plastified elements

<:j ‘ are identified, and estimated elastoplastic (tangcnt)
stiffnésses [kep] are calculated for such elements and
incorpor#ted in the systcm stiffness matrix. (The combu-
tational procedure for this %Fep is amplified Dbelow.)

;4) The load increment of step (2) is applied to the revised
system stiffness matrix of step (3) and stress and strain
increments ({do} and {de} ) are calculated.

5) Stresses and accumulated plastic strains are updated
consistent with the results of prior step.

6) Select another increment of load and repeat steps 2-5.
Continue process of loéd incrementation until the maxinum
value of load is reached or until limited by collapse.or
similar phenomena.

<:> The determination of a collapse situation has becn intcrﬁrcted,

(10,11)

by some authors , to occur when the change in effective plastic

e i e o,
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siratn is ncgative.

In siop (3), the estimated (or calculated) stresses arc
cnloyed in the computation of a new effective stress, . Using
i, a new = i< read from the effective stress-effective plastic
strain curve, as obtained from a simple tension test. The quan-
tity deP is the increasc in €?. (If the new ¢ happens to be
smaller than the old, corresponding to unloading, deP will of
course be zero). The values o and aeP are substituied into LCq.
19, Chapter 5, together with the stress valueé’ol, CP &3, and
the m&terial tangential stiffness matrix is formed and émployed
in construction of [kep] via Eq. 1.

In the case of the general nonlinear hardening situation it
is in theory necessary to iterate within a given load increment
(steps 3 and 4) to establish a consistency of the tangential stiff-
ness of yielded elements. It is normally sufficient, however, to
work with an estimated tangent stiffness for the interval. This
bcars a relationship to the chosen size of load increment, about
which comments are given below.

A major aspect in the definition of load increments is the
manner in which new plastified elements are introduced into the

(12) present a careful procedure

stiffness matrix. Some authors
in which the load increment is adjusted to bring in plastified
elements one at a time. Others; however, apply relatively large
increments and delineate an approximate way of accounting for the
"transitional" elements, those which enter the plastic range during

a load increment. In one proposed approach,(IS) if m is the pro-

portion of strain increment to cause yield during the increment,
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<:) o« "weighted" stress-strain rclation {or the transition rcgion can

-

he taken as o

(1-m) (] { } e,
(E°P1 = | (1] - - [B]  (2)

' G .
H +L.§E_l (L] {80}

— -

IT:7. INITIAL SiRAIN ALGORITHMS

The basic concept o’ "initial strain' procedures is to define

a ’°ererence” elastlc naLer1a1 stlfrness, with assoc1ated "reference"

eiastic strains, and to treat the departures from 11near1ty as ini-

tial strains. lMany forms of this approach have been proposed, en-

(10, 11, 14-16)

conpassing various degrees of approximation. The

approach describped here(lo) includes representation of incremental
(:} piasticity theory.
To establish the form of element eduations for initial strain
arzlysis, refekence is made to Eq. 17, Chapter 5, from which [Eep]
[E]’- [Ep]. Substituting this expression into the familiar expres-

sion for an element stiffness matrix, we have®

Kepl = Tyop (B1T [E] [B] d(Vol) - Jyo) [B}T [EP) [B] d(Vol)
(3)

Tne first term on the right-hand-side is the linear elastic stiff-
ness matrix [k]. The second term on the right-hand-side gives what

ma” be termed the element plastic stiffness matrix

*#/B] is the strain-displacement transformation matrix, i.e.
ie}

= [B] {a}.

. -
-
O - i
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_ T (P71 ,
[k,1 = - Ty (BT ] [B] d(Vol) (4)

and tac product of [kp] by the elcment displacements gives a

vectitor oi forces r

(F} = (k)1 {8} (s)

In the initial strain approach an estimated value of {A} (or,
synornyrously, of strains {e} since {e} = [B]{A} is employed to
construct the vector TFp} } and this vector is treated as if it -

}.

were the set of initial forces arising from "initial" strains {

4]

! - _ . P
n describing the algorithm for the inelastic analysis of the

o]

compiqte structure, we first assume that the load level at which
inelastic defornation is initiated has been identified and that an
increment of load has been seiectqd for the first excursion into
‘the plastic range. The computation then progresses as follows (see
Figure 1): .

1) Apnly the first load increment and determine {Ad}l and

e}, elastically (primes denote elastic computations.

1

2) Add {Ad}l to the stresses existing at the start of in-
terval ({00}) to form {o'}l.

3) Calculate a first estimate of the stress change due to
eclastoplastic behavior within the interval from {Ao}l =
[Eep]{As'}l. '

4) The discrepancy ({Ao"}i) between the elastic stress and
the stress estimate of step (3), {Ao"ll = {Aa'}l - {Ao}l,
can be regarded as being supported by '"body forces'". Com-

pute the element initial forces {Fl}l due to this stress

supported by body forces,
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ity =g

T "
1 vo1 (B lao ]1 d(Vol) (6)

Form a global vector of such forces, {Pl}l. Also,

define the current stress and strain

{o}

1]

1 o'}, - {Aoﬂ}l = {0}, + {Ao)y

{e}l {e}o + {Ae'}l

5) Caiculate the'changes in displacement,. stress and Strain
" due to {Pl}1 as {Au 1= [K]_1 {Pl}l. One then determines

the stress and strailn increments

(40"}, = [S] {su}, - {Ag"};

it

(Ae'}z [B'] {Au}1

One repcats steps (2)-(5) until the stress change computed in

'step 5 is acceptably small. The load is then incremented again.

Particular note should be taken of the relationship between

Eqs. (3) and (6). In accordance with a constitutive law, {d} = (L] {e}

and by the relationship between strain and displacemeﬁtr[{;} =
(B} {4}) we have {o} = [E] [B] {4}. Thus, a stiffness ‘equation may

alternatively be written

{F} = [k) {a} = [ fy, [B]T [E] [B] d(Vo1)] {&)

[ Tyor 8]T {0} d(Vol) ] {a)

Thus, in Eq. (6), the stresses are applied directly to define joint
forces and for this reason Zienkiewicz, et al [16] have tcrmed this

the "initial stress' approach.
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Navaxk and Zienkiewicz(17) have refined this approach consid-
crably and have interpreted it as a moaificd Newton-Raphson method
of nonlinear analysis. Comparisons with alternative schemes are
presented in [18]. Yamamoto(lgl_has presented studies of the

rate of convergence of this method.

IV. MATHFMATICAL PROGRAMMING

ineiastic analysis has, for some time,'becn recognized as a
mathematical programming problem, i.e., the problem of minimizing
a fuhetion (the objective function) subject to' constrain conditions
which are expressed as inequalities. Livesley [20] describes the
backgrﬁund of this approach as it applies to the plastic desién of -
beams and {rames. Recentlf, these ideas have drawn the attention of
those intcrested in the application of inelastic analysis of continua
via the finite element method.(ZI’ 22)

The minimum principles of plasticity, which are generalizations
of cérresponaing principles in elasticity, deal with stress and
strain-ratés and define the quantities to be minimized. For per-
fectly plastic materials inequality constraints derive from the con-

dition %%.‘ &ij <0, for £ = a constdﬁt, where £ is the yield
1]

criterion and éij is the stress-rate. Equality constraints may be
present in the usual manner of constraints in elastic analysiﬁ. The
tofal oroblen is therefore one of minimizing a quadratic function
of a system of unknowns, subject to linear constraint conditions.

This is termed a quadratic programming problem.

D. Donato and Maicr [23] have exploited the quadratic program-
ming approacﬂxin finite element plastic analysis. Sayegh and

Rubenstein [24] also. prescnted a development in the context of the
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finite clement. One advantage of this approach would appcar.to be
the applicability of general algorithms for quadratic programming

to the inclastic problcm.
. /

V.  COMPLEMENTARY PROCEDURIS

Coiplcmentary procedures in {inite clement analysis, 1.c.,
proceddfes that arc founded in assumed strcss ficlds which satisfy
the conditions of equilibrium have not made significant inroads
into. the practice of elastic finite element analysis. Nevér;heless,
these procedﬁres hol&;certaih-promise-forninelastic finite element -
analysis and for this reason they have recently drawn considerable
interest.

A conmplementary energy formulation in which stress functions

are chosen as primary (joint) unknowns has special advantage be-
cause of the gorrespoﬁdence of the assumed functions and resulting
equation coefficients with particular aspects of displacement-based
7formulat&ons. Rybicki and Schmit [25] are apparently the fifst to
have -applied these ideas to elastoplastic analysis. They deal with
orthotropic plane stress and employ the Prandtl-Reuss incremental
stress-strain relations in an "initial strain" format.

The element represented in Rybicki and Schmit's development is
a rectangie with a 36 degrees-of-freedom representation of the Airy
stress function (fifth order Hermitian polynomial interpolation).
Clearly, the strain field in -any such element can vary from elastic
to plastic in a complex manner and must be treated via numerical
-integration of the element initial forces. The use of an element
with this numer of degees-of-freedom enﬁblcs direct treatment of all
voundary conditions but is likely to be more sophisticated than is

.regaired by overall structural idealization requirements.
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A simnler }cpresentation, defined also for plane stress and
inoterms of tho‘Airy stress function, has bcen prescented by the
sriter and Dhalla [26]. This formulation of the rcctangular
ciement, with 16 degrces-of-frcedom, requires careful attention
iﬁ the treatment of stress (force) boundary conditions.

An alternative cémplementary approach, based upon direct
representation of stress parameters, has been explored by Belytschko

et al. [27-29] in a series of papers pertaining to both plane stress

and flexure. The adyantage.qf;glgmen;_mq;;i;ggéthgginxg_identiqal;

to those in conventional stiffness analysis are lost in this scheme,

but the matrices required are nevertheless simple in form.

VI. VISCOELASTIC ANALYSIS

The linear form of-time;dependent material behavior,,which is
conventionally termed viscoelasticity, has been studied analytically
for more than a century and the development of related analysis
tools has progressed continuéusly to the present high level of
capability. Nonlinear time-dependent material behavior, or non-
linear creep, has on the other hand been identified in analytical
form only since 1910 and progress towards general analysis capa-
bilities is measured from the late 1950'51

The time:dependent behavior of metals is characterized by
nonlinear creep. This does not entirely discount an interest in
finite element-based solutions of viscoelastic deformation, since
procedures formulated for viscoelasticity]form/a basis for creep
analysis procedures. Certain other viscoelastic analysis procedures
may prove useful for future creep analysis developments.

Published finite element viscoelastic analysis procedures are

/
5‘
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in cach casc.east in the form of the stiff{ness approach but a
varvicty of distinct treatments arc represented. The trecatments
Ziscussed here ave (1) the time increment-initial strain method,
{2) the correspondence principle, and (3) the integral approach.
The time incremcntrinitial strain method is applicable to
all classes of finite element analyses for time-dcpendent mater-
ial response and is also the basis for most of the practical non-
iinear creep analysis. Thus, it is given close attention in the
N

following. This procedure was first introduced for the nonlinear

(15) and was subsequently employed by Zienkiewicz

creep problem
et al.(so) for viscoelasticity.

In this procedure the time-history of loading (and temperature,
if this also varics with tinme) is represente& by a series of con-
stant load inter 215, as portrayed in Fig. 2. The viscoelastic
&eformation accui.>.ated at the closc of a given interval is treated
as an initial strz:n in a determination of the stress prevailing

in the subsequent interval.

The completc algorithm, from time zero (to), is of the form:

(a) Calculate the elastic stress distribution {0}0 at t,
based on {P}o = [K] {A}, and any initial strain due to temperature,
if present.

(b) Refer to the constitutive relationships and calculate
the change in time-dependent strain {AeC}I in the first interval
aty assuming {o}o to be constant within this interval.

(c) Solve the elastic problem at the close of the first
interval, at t; = t  + ot,, using {Aec}l to form an initial force

vector {Fi} (and for temperature Tl’ if present)
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P b, =[xy - (r*;

R (7)

o]

Cnlculate the clastic stressces {0}1 from this solution.

(d) Calculate the increment in time—dcpcndcﬂt strain
{Aec}z for the sccond time interval tt, by reference to the
constitutive relationships and add to the already-sustained
time-dependent strain.

(e) Ewmploy step (c) for the close of the second interval,
using the total timc—dependent strain to calculate {Pi}z.

) (;) Réﬁéatusteps (d)'an& (e) for succeeding intervals.

It is important to noté the sigqificance of the selection
of the time interval with respect to solution accuracy, even
for a viscoelastic analysis. The above procedure implies that
stress does not change during the selected interval. One may
approximate the change in stress, h6Wever, and form an average
stress for the interval in order to minimize the error. Ques-
tions of interval selection will again be taken up in the next
Section.

The viscoelastic constitutive relationship represented by
EG. of Chapter § is the basis for steps (b) and (d) in Ref. 30.
The problem of a prism and a reinforced concrete. cylinder, for
winich exact solutions are available, and the more practical cases
of a solid propellant rocket engine and a tunnel lining, for which
no comparison solutions are available, are solved in Ref. 30.

The correspondence principle of viscoelasticity has been em-
ployed by Webberissknd by Booker and Small(39) in finite element
analysis. 1In accordance with this principle, a Laplace transform

is taken of the elastic solution and the elastic constants; these

{

;
i
y
}
|
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conbinations arc dependent upon the chosen form of the visco-
eiastic constitutive law. The Laplace inversec of the resulting
roiationsnips gives the viscoelastic solution.

"Integral procedurcs' in finite elecment viscoclastic analysis
op2rate upon the integral form of the constitutive relationships.
Ti.2 latter are in the class of Eq. (24) of the notes on Constitutive

. ations for 2lasticity and Crecep. Rashid(SI), Taylor, Pister

1 d
(32)

r—~

(93}

; . 40 42
and Goodreau , chrlchson( ), and Ueda, ct al( ), amongz others,
Rave taken thiils approach. The various devclopments differ prin-

cipally in the manner of approximation of the hereditary integrals.

Vii. CREEP ANALYSIS

Finite element creep analysis has, to date, depended prin-
cipally upon use of the incremental-initial strain method. Ex-

(44)

ceptions have included the works of Cyr, Teeter and Stocks

(8)

and Sharifi and Yates who cast the creep laws into such a form
as to be useful for tangent stiffness analysis.

The work in incremental-initial strain crcep analysis is sum-
narized in Table 1 and is discussed in the following. 1Its earliest
application in finite element creep analysis appears to have been
that of the writer, Padlog, and Bijlaard(ls). Chronologically,
the next significant contribution to finite element crcep analysis

(45), This work, bascd upon

was made by Lansing, Jensen, anq Falby
the matrix force method and the representation of a stiffencd sheet
in plane stress subjected to time-varying loads and temperatures

by mecans of axial force members and shear pancls, is noteworthy for

its contribution of thc most significant test data yct reported.

(An cxtensive development of complex-structure crecep test data has
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recently been completed and 1s reported in Ref. 3§.

The extension of the subject procedurcs to axisymmetric
solids, togetrer with uscful information regarding convergence
of the solution process in time, is given by Greenbaum and

)

4 L
(46 1(ﬂ7). Both papers employ the

Rubenstein and by Sutherlanc
simplest form of axisymmectric solid clement, the triangle with
lincar displacement ficlds (joints only at the vertices).
Re{erences 46 and 47 identify tvro limitations on the tinme-
step length in finite element creep analysis and establish tol-
erances for each of these within the confines of the problem
they study. The first limitation pertains to change of stress
within the time interval. First-order creep analysis features
the assumpti&n of constant stress within the time intefval. To
kcep the error due to this source within acceptable bounds, it

would appear appropriate to limit the change in stress to 5%.

Sutherland(47) employs both 5% and 10% as the upper limits in the

6.35

creep analysis of a flow duct using the creep law éc = B,

The differences in the results did not prove significant.
The second limitation applies to the change in creep strain

(45) that if the

in a given increment in time. It has been found
change in creep strain equals the elastic strain, the solutions
for succeeding intervals oscillate and diverge. Thus the change
in crecp strain is limited to some fraction of the elastic

(46, 47). Alternatively, upon attainment of constancy of

strain
the stress fieid with time, extrapolation may be attempted to esti-.

mate the displacements for a subscquent time.




}K. H. Gallagher

A key aspoct of any creep analysis program is the automattic
,clection of tine increrents, subject to the above critcria.
'ne MA2C progran, for cxasple, asks for an arbitrary initial
estinate of tne time interval. This is doubled in the next in-
crenent if the above criteria are met or halved (and the incre-

(

. . 49
ment repecated) 1f they are not. Cormeau ) has recently pub-

lis.2d o more rigorous dovelopment of this topic.

VIIt. CONCLUDING RIVIARRS

Procedures that have been discussed in these notes have bcen
incorporated in many widely-distributed finitc element analysis
prozrams. Nearly all of these programs employ the more straight-
forvard of the iforegoing methods, e.g., tangent stiffness in time-
indevendent plasticity analysis, the incremental-initial strain
procedure in creep analysis. Since these programs are used through-
out international industry there have been litcrally hundreds of
pracitical applications and very many of these have been described
in thé literature. It would be beyond the scope of these notes to
attempt a review of thege papers.

It is possible to obtain a clear picture of the inelastic
procedures employed in the widely-distributed programs by refer-
ence to either the program user's manuals or the open literature.
The procedures of the MARC and ANSYS programs are to be found in
the relevant user's manuals. ASKA capabilities in this respect are
detailed by Balmer, et al in Ref. 50. Other programs are discussed

in Refs. 51-53.
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SHELL ELENENT
R. H. Gallagher

1. INTRODULIION

Shell structures have come to fruition in the twentieth
ceatury.  The thin-shell roof cmerged as a practical mcans
for spanning large distances in the 1920's. This emcrgence
was due to a multiplicity of factors - the ability to form
and reinforce shallow depths of concrete; architectural imagi-
nation, and the development of analytical tools to insure the
structural integrity of the completed design. Availability
of high-strength sheet metal, at about the same time, had
similar impact on structural form in aerospace and mechanical
engineering design.

Analytical tools for thin shell structures were first
developed much earlier, over a century ago. Lamé and
Clapeyron (Ref. 1) established the fundamental theory for
shell membrane action in 1826. H. Aron (Ref. 2) considered
bending behavior in 1874, but the first general theory was
not advanced until 1888, by A.E.H. Love (Ref. 3). Subsequent
theoretical efforts have been directed towards improvements
of Love's formulation and the solution of the associated dif-
ferential equations. Such solutions were not easily obtained
in the early era of shell analysis. Indeed, one of the
earliest solution procedures of practical applicability,
developed by Carl Ziess in Jena, Germany in 1924, was pat-
ented. This was an important factor in the aforementioned
emergence at that time of thin-shell concrete roof structures.
Analytical formulations have followed rapidly in the interim,
and papers dealing with shell analysis number in the thou-
sands. Coordinated treatments of progress accomplished in
thin shell theory can be found in the texts by Fligge (Ref. 4)
and Kraus (Ref. 5), among others.

Available analytical solutions to thin-shell structural
problems are nevertheless limited in scope and in general do
not apply to arbitrary shapes, load conditions, irregular
stiffening and support conditions, cutouts, and many other
aspects of practical desipn. The finite element method has
consequently come to the fore as an approach to thin shelil
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structural analysis because of its facility to deal with these
complications. Like shell structures themseclves, the finite
elcment method has ceome to fruition in the twentieth century
and 1t promises to be the most powerful and widely used
approach to the design analysis of such structures.

One of the first surveys of finite element representa-
tions for thin-shell analysis was published in 1969 (Ref. 6j.
A significant number of other surveys, including Refs. 7-9,
have since appeared. These demonstrate that a large number
of formulations have preferred to follow the well-established
path of minimum potential energy (displacement-based relation-
ships) and that extreme difficulty is enccuntered in attcmpt-
ing to satisfy the desired conditions, e.g., interelement
aisplacement continuity, zero strain under rigid body motion.
In consequence, the problem of finite element thin-shell
analysis has been a motivating factor in the development of
alternative formulative procedures, such as mixed and hybrid
methods.

There are three distinct approaches to the finite element
representation of thin shell structures: (a) in " faceted"
form, with flat ele@g&}s, (b) via elements formulated on the
basis of curved shell theory, and (c) by means of three-
dimensional (solid) elements. In the following two sections
we deal with the pros and cons of flat-plate representations
and solid elements. Developments in the literature are
largely concerned with elements formulated on the basis of
curved-shell theory. 1In later sections, therefore, we examine
some of the underlying factors of curved shell elements. We
then amplify these factors for displacement-based formulations,
generalized potential energy, and alternative (mixed and
hybrid) procedures.

2. FLAT PLATE ELEMENTS

It is first necessary to clarify the type of represcnta-
tion found in this c¢lass. See Fig, 1lc, which portrays a




triangular clement. This clement is formed of the supcrposi-
tion of stretching behavior (Fig. la) and bending behavior
(Fig. 1b). Any discussion of the suitability of flat plate
clcements in thin-shell analysis must [irst consider thc matter
of available element formulations in the component membrane
and bending behaviors, Figs. la and 1b, respectively.

It suffices to say that acceptable triangular membrane
(plane stress) element formulations are availabie for a
various degrees of higher-order elements, with the use of node
point degrees-of-freedom in terms of either the displacement
function itself (C° representations) or in terms of the func-
tion and various orders of its derivatives (C1 representa-
tions). For bending, however, simple formulations of accept-
able accuracy are not possible for the triangle. One may
employ an elegant, highly accurate, but computationally expen-
sive formulation such as that which is based on a complete
quintic polynomial (21-term polynomial)(lo), or a simpler
formulation based on a complete cubic polynomial with con-
straints imposed to enforce interelement continuitycll).
Alternatively, one may attempt the use of special variational
principles which lead to mixed and hybrid element formula-
(12’13). These and other ideas in flat plate bending
formulations are developed in some detail in Ref. 14.

Given acccptable clement force-displacement relationships,

tions

a number of difficulties and shortcomings are prcsent in the
application of the elements in analysis of the completc shell.
These inciude: (a) the exclusion of the coupling of stretch-
ing and bending within the elements, {(b) the difficulty of
treating junctions where ail elements are co-planar, and -
(c) the presence of '"discontinuity'" bending moments, which do
not appear in the continuously-curved actual structure, at
the element juncture lines.

Straight finite elements represent the behavior of
curved structures in the limit and errors due to the exclusion
of bending-stretching coupling in the elements can be made
small by use of a refined finite element network.
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When celements are co-planar a null stif{fness corrcspond-
ing to rotation about the axis normal to the planc will indced
be present.  Once may definc coordinate axes in the planc
(which 1s generally at un angle with the globai axes) and
eliminate this votational degree-of-freedom. This may be
awkward in practical application since many different such
planes may appear in the structure. Conversely, for smail
angles between the elements, dependence may be placed on this
angle to maintain solution stability. The stiffness equa-
tions approach singularity as the elements approach co-plan-
arity, but numerical evidence discloses that this angle can be
quite small, given the number of significant figures carried
by modern digital computers.

In order to illustrate the presence along element junc-
ture lines of calculated bending moments which do not appear
in continuously-curved actual structures one can consider the
special case of flat elements, that of the axisymmetric trun-
cated cone element, as was done in Ref. 15. Consider such
elements employed in the idealization of a pressurized hemi-
sphere. There are no bending moments in the actual structure,
only membrane stresses 0¢ = 9y = pr/2t, where p = pressure,

r = radius, t = thickness. When the stiffness equations arc
used to solve for the joint forces and moments, however, it
is found that meridional bending moments are determined.

The source of this inconsistency can be visualized by
consideration of the finite element solution for a structure
that actually consists of truncated cones. 1in this case the
finite element geometric model is exact. Also, meridional
bending moments are indeed present at the juncture lines. In
other words, the truncated cone idealization is quite appro-
priatc for the gcometric form it represents exactly. If the
same idealization is applicd in approximation of a mcridion-
ally-curved shell the juncturc linc momcnts constitute the
error duc to this approximation. To remove the error one can

employ curved, rather than flat elements.




The above difficulty can be circumvented if the solved-
for displaccements arc substituted into stress-displacement
cquations written for the curved shells. Furthermore, this
difficulty is associated with regions of the structurc where
membranc stress prcdominates. The question discussed here
might not bc important where bending is the predominant mode
of actual bchavior. ]

It can be seen, therefore, that although there are pit-
falls in the application of flat plate elements in the
analysis of curved shell structures the difficulties can be
surmounted through various artifices and additional computa-
tional expense. The problem that remains is to determine if
the. solutlon accuracy 1s properly balanced by the computa- )
tional cost, given that alternative approaches (as dlscussed

in subsequent sections) are available.

3. SOLID ELEMENTS

Figure 2 shows a solid (three-dimensional) element bascd
on quadratic displacement fields. Because of the isopara-
métri; mode of geomefric description, also with quadratic
fun;tidns; this element, can be used in description of thin
shell structures. "This idea has strong appeal since it seem-
ingly permits one to dispense with the assumptions of special
theories, such as'sheli theory, and the controversies which
surfound them. Certain assumptions must be invoked, however,
if curved thin-shell solutions are to be achieved by this
mode of representation (Ref. 46).

The basic assumptions to be made wben the 20-node brick
element in Fig. 2 is employed in curved thin-shell analysis
are that no strain occurs across the element thickness and
that the direct (- and n- direction) strains vary linearly
in that direction. This enables elimination of the node
points in the middle surface and results, in the equality of
normal displacements (w) of corresponding points on the upper
and lower surfaces of the element. Also, the £- and n-direc-
tion displacements, u and v, of nodal points on the top
surface can be expressed in terms of the u and v displacements
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of the corresponding nod2 on the bottom surface and of the

rotations ag and en of the line betwecn these two nodes. Thus,

ct

the clement nede point displacements are u, v, W, eg and 6r a
. . . )
cach of cight bottom-surface locations (four vertices, four

r w)
%)

midside locations). Note that transverse shear deformation
permitted, because the angular displacements are not tied to
the slope of the middle surface.

Numerical evidence has shown that the above assumptions
are not always sufficient to recapture the behavior of curved
thin shell structures. This inadequacy can be explained by
the casc of a planar rectangular clement intended to represcent
beam flexure (Fig. 3a). The element is formulated on the
basis of linear displacements which give the displacement
pattern of Fig. 3b for the pure bending state. The displace-
ments for pure bending, however, are as shown in Fig. 3c where
the upper and lower surfaces are curved, not straight. This
discrepancy can also be explained as resulting from an over-
emphasis of the shear strain energy.

Various schemes have been proposed to account for the
above difficulty. Ref. 16, using the three-dimensional gen-
eralization of the element shown in Fig. 3a (i.e., a "tri-
linear", eight-noded brick element with straight sides), adds
displacement modes‘("bubble modes') to describe the curvatures
referred to in Fig. 3c. Difficulties have been encountered
with non-rectangular forms of this element, however, in con--
sequence of interelement displacement discontinuities that
are introduced,

The most popular and most effective scheme (Ref. 17}
involves the use of lower-order numerical integration ¢£{ the
strain energy of the element of Fig. 2. The complications of
geometric representation and of the quadratic displacement
fields requires the evaluation of the strain energy, for the
purpose of constructing the element stiffness coefficients,
through use of numerical integration. Accurate evaluation of
the strain energy would suggest a 3x3x3 system of integration
points. Choice cf a 2x2x2 system, however, more properly
represents the shear strain erergy.

‘ ‘ E.7




The above formulation has proved highly effecctive in
practical applications. The 20-node brick element can be
found in most of the widciy-distributed finite clement pro-
grams. If onec is able to specify the constraints cited pre-
viously and a reduced order of numerical integration of the
stiffness coefficients, then a curved-thin-shell analysis is
at hand without the complications of classical shell theory.

The element of Fig. 2 possesses a disadvantazge in common
with flat plate and curved thin shell elements, that of node
points at the vertices. [t may be difficult to attach such
clements to their neighbors at lines of abrupt curvature
change, e.g., at the juncture of a sphere and cylinder. A
development which is intended to surmount this problem has
been prescnted by Irons (Ref. 18) who excludes node point
angular displacement continuify at the vertices, but rather
enforces it at points along the sides. He terms the latter
"Loof" nodes.

4. CURVED THIN SHELL ELEMENTS - SHELL THEORY

In tnis and the following two sections we turn to commnents
that are intended to place in perspective the developments
which appear in later section:s dealing with specific curved
element formulations. These comments have been categorized
under thc headings of '"shell theory', '"geometric representa-
tion" and *'displacement fields".

A substantive rcview o4’ shell theorf with particular ref-
erence to fiﬂite element formulations has been given by
Morris(lg). Other contributions have been made by Cantin
(Ref. 20) and Dawe (Ref. 21). 1In discussing shell theories
it is useful to distinguish between "shallow' and '"nonshallow"
formulations. We comment first on nonshallow shell theories
since they are more generally applicable.

The usual approach in nonshallow shell theory is to des-
cribe behavior with rcfereace to curvilinear coordinates (al,
a,) in the middle surface of the shell (Fig. 4). One may then
d;scribe the in-surface stress and deformational behavior in




terms of "membrane'" stress resultants (N‘l’ N and
L
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diTrect strains (e Moment parameters (M;;, M,,,
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llz) and curvatures (Kll, Kyogs

to the radial behavior in curvilinear coordinates.

Klz) are defined with respect

The basic complexity of the shell analysis problem led
early theorists to establish strain-displacement relationships
with different types of approximations, and to date no one of
these formulations has received exclusive acceptance. - The
significant differcnces between the respective shell theories,
for linecar conditions, arise in conjunction with the strain-
displaccment cxpression for the twisting curvature Kype A
thorough cxamination by Koiter(zz) of available theories dis--
closcs that certain formulations do not properly account for
the condition of zero strain under rigid-body motion in the
representation of this term.

It is essential that thée strain-displacement equations
for finite element shell analysis meet all conditions related
to rigid-body motion. This is a requirement apart from the
rcquirement associated with rigid-body motion cxisting in the
choice of displacement fields, and errors in the satisfaction
of one will reinforce .errors in the other. Hence, theories
that satisfy these reqﬁirements should be choser. Popular
choices f%gzihells of general curvaturizg?ve been those due

"consistent" shell theory has been applied to them because

to Koiter or Budiansky and Sanders The designation
they are consistent with respect to the basic Love-Kirchoff
hypotheses (i.e., normals remain normal, neglect of trans-
verse shear deformation, etc.). Koiter shows, however, that
the "inconsistency" of certain other formulations is manifest
in terms of order t/R (t = shell thickness, R = radius of
curvature)} which have no significance on numerical results.
A lucid development and summary of these and other aspects of
thin-shell thcory is found in the text by Kraus {Ref. §5).
Another caution reparding deep-shell finite clement rep-
rescentations concerns the definition of angular displaccoments.
For curved shells the angular displacement 1s the first

PR j-)l




derivative of the radial displacement plus a term equal to a
displacement component divided by the appropriate radius of
curvaturc of the shell. Thus, when adjacent elements with
dif{crent radii of curvaturc arc joined, onc must be carcful
to evaluate properly the angular displacements. Serious
errors may be introduced in such cases when the angular dis-
placement is cvaluated simply as the first derivative of
radial displacement and continuity of angular displacement 1is
imposed on fhis measure.

The situation in shallow-shell analysis parallels that
of deep-shell theory. Alternative formulations of the strain-
displacement equations have appeared and these differ in the
expression for twisting curvature. Again, certain theories
are not free c¢f strain under rigid-body motion, but this does
not appear to be of as much significance as in deep-shell
theory if the element is indeed shallow.

Although it is appealing to expect that shallow-shell
theory is entirely satisfactory because the individual finite
element of a deep shell is also shallow, it is possible that
" the global solution will be that of a shallow shell. This
circumstance depends upon the particular form of shallow
shell theory employed. Lindberg, et al. (Refs. 72 and 41)
discuss this point in some detail.

5. CURVED THIN SHELL ELEMENTS - GEOMETRIC REPRESENTATION

The ppoblem of geometric representation in finite element

shell analysis is one of its most important aspects and yet
has drawn very little attention to date. Many shell element
formulations pertain to specific geometric configurations
(e.g., cylindrical shell elements) where no considerations
arisc with respect to definition of geometric parameters or
the transformations needed to connect elements with differing
curvatures. In the general case, however, the problem arisecs
of defining not only the.x, y and z coordinates at the element
nodes, but also the physical slopes and curvature parameters.




A mathcematical basis for the rcepresentation of curved
surfaces has been realized in the work of Coons (Ref. 25},
Ferguson (Ref. 26), Bezier (Ref. 27), and others. These tech-
niques arc variants on the mcthod wherein a surface in three
dimensions is cross-hatched with spline curves and the regicnc
between the curves are generated by "surface patches' which
have continuity properties in two dimensions analogous to
those exhibited by splines with respect to one dimension. The
principal advantage of this spline-like approach is that one
can achieve a specified degree of continuity in the represen-
tation.

The surface patch technique, which was developed initially
with computer graphics in mind, has been applied tc finite
element thin-shell analysis in Ref. 28 and elsewhere. Others
(e.g., Refs. 29 and 30) have used the isoparametric approach
to curved elements in describing thin-shell geometry.

Problems related to geometric representation are reduced
when the element formulation is based on shallow-shell theory.
This eliminates difficulty in the establishment of curvilinear
coordinate transformations.

It should be kept in mind that the approximation of
geometry may produce solution errors which are far more seri-
ous than the errors due to the choice of displacement fields.
Note has also been taken of this source of error in our dis-
cussion of the use of flat plate elements. A subtle conse-
quence of this approximation arises in the elastic instability
analysis of thin shells since the critical loads to cause
instability are, under certain conditions, sensitive to imper-

fections in structural geometry.

6. CURVLD SHELL ELEMENTS - DISPLACEMENT FIELDS

In treating the topic of displacement fields for element

formulations we perhaps imply that the minimum potential
energy-assumed displacement approach is the only viable means
for the establishment of element relationships. This, of
course, 1s not the case and approachnes based on assumed stress
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paramcters and on a mixture of stress and displaccment fields
have already shown promise and will surely play an increasing
vole in the future. We will discuss such alternatives in
Sections 8 and 9. Nevertheless, current theory and practice
is mainly tied to assumed displacement formulations and most
developments >in this paper take that approach. We therefore
give some introductory views on the choice of curved shell
element displacement fields. ) R

Three problems which may prove to be of concern in the
definition of displacement functions for curved thin-shell
elements are: (a) the retention of the required degree of
interelement displacement continuity, (b) the representation
of constant states of strain, and (c) the assurance of the
presence of zero-strain-energy modes of rigid-fody displace-
ment. Each of these is meaningful for displacement fields
expressed in terms of curvilinear coordinates. When local
rectangular coordinate axes are employed only items (a) and
(b) exist as problems.

We can illustrate, in a simple way, the source of the
above difficulties by referring to the circular arc element of
Fig. 5. Displacements in the curvilinear coordinate direc-
tions arc designated by u' (circumferential) and w' (radial),
respectively., The rectangular axes are designated as x
(horizontal) and z (vertical), with corresponding displace-
ments u and v. When a z-direction rigid-body-motion is imposed
on the element the displacement at point 1 is fully described
by ui. At point 2, however, the displacement is described by
a combination of ué and wé. This combination involves trigo-
nometric functions of the arc angle of the element (€). Dis-
placement functions defined in this manner for the more diffi-
cult case of shells, especially doubly-curved shells, are
rather move complex. Consequently, there is a preference
among many individuals for conventional polynomial fields
which merely approximate the "rigid-body-motion condition".

(31) that satisfaction of the condition is

(32)

It can be shown
approached in the 1limit by higher-order polynomials




An intcresting approach to the satisfaction of the condi-
tion of zero strain under rigid-body motion has bcen devcloped
by Cantin (Ref. 33) and cmployed by TFonder and Clough (Ref.
34). This approach rccognizcs that it may be most cxpedient
to define, initially, displacement fields which do not meet
the rigid-body-motion condition. Then, by use of transforma-
tion rclationships, the chosen displacement fields are modi-
fied so that they satisfy this condition. Care must be exer-
cised so that singular or ill-conditioned transformations are
recognized.

The inclusion ol all constant states of strain is also a
requirement whose satisfaction is related to the presence of
trigonometric functions in the displacement fields, where now
their presence may have adverse effect. We can see this by
recollecting that certain components of the strains derive
from differentiation of displacement. When the latter contain
trigonometric functions the differentiation produces other
trigonometric functions, rather than constants. Undifferen-
tiated displacements in the strain-displacement equations give
rise to the same condition. Ashwell and Sabir, in Refs. 35-3?f
show how this problem can be surmounted by integrating the
strain—diéplacemeﬁt equations to produce a field which satis-
fies the }igid-body-motion condition. Satisfaction of the '
rigid-body-motion condition'might not be achieved in some of
the more difficult situations, however. '

The condition of interelement displacement continuity is
npé easily satisfied. The problems which are present in the
representation of flat plate flexure, i.e., the provision of
C1 continuity when the conventional Kirchoff theory is em-
ployed, are even more serious in shell formulations. This is
due to the additional terms in the strain-displacement equa-
tions. ' ‘

Cne ongoing debate in curved thin-shell element formulations
concerns the relative order of polynomials used to describe
the in-surface and radial displacements, respectively. Some
autnors (e.g., Cowper, Lindberg, and Olsoh, Ref. 41) argue that
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onc should adhere to the notion that cach ficid should he of
one order less than the highest derivative in which it appears
in the strain cnergy expression, this being the "classical"
congition on pieccewisc approximating functions in the firite
element method. It then transpires that in-surface displace-
ments are to be of lower order than radial displacements in
the subject development.

Dawe(ss)

, through study of arch elements, has concluded
that expansions of the same order are desirable and that this
order should be no less than quintic. This reasoning is based
mainly on substantially improved stress predictions for the
quintic versus cubic polynomials. The predictions were not
improved when cubic polynomials were used for the in-surface
representation and a quintic polynomial for the radial compo-
nent. Dawe also notes the usefulness of the higher-order
terms in the in-surface components in approximating the rigid-
body-motion conditicn.

Others, including Thomas and the writer (Ref. 39), choose
the same order of polynomial for all components, but use only
cubic expansions. The motivation for this is detailed in
Ref. 39, but we can say in brief that it stems principally
from a desire to use the "extra' terms of the In-surface ex-
pansions to approximate more closely the constant strain con-
dition. Numerical evidence of the suitability of this
approach is also found in Ref. 39.

To be sure, a number of elegant developments of thin
shell finite clements have managed to surmount the difficul-
ties cited above through exploitation of advantageous coordi-
nate systems, special construction of the strain-displacement
equations, and the adoption of appropriate displacement expan-
sions. Two noteworthy developments along these lines are due
to Argyris and Scharpf, in the SHEBA element (Ref. 40) and
the formulation by Dupuis (Ref. 30).

Nevertheless, a very great number of theorists and prac-
titioners have sought and continue to seek formulations in

terms of simple expansions and familiar coordinate systems.
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Approximations, the morc important of which arc describceca
above, arc wittingly adopted with the i1dea that the loss 1in
accuracy is mere than compensated for by reduced ccomputationax
cost, Numecrical experimentation plays an important rolic in
determining if such approximations are admissible and, if they
are, in the assessment of relative merit. A paper by Morley
(Ref. 51) addresses itself to the first part of this question.

7. CURVED SHELL ELEMENTS - DISPLACEMENT BASED

This section is devoted to an examination of the more
sophisticated and accurate displacement-based curved shecll
elements now employed in practice. These represent a synthe-
sis and progression from the very many developments reviewed
in Refs. €-9. Moreover, we limit our attention to triangular
elements in view of their generality in déscription of geo-
metric form.

The first of the curved thin-shell finite elcments dis-
cussed in this section is due to Cowper, Lindberg, and Olson
(Refs. 24, 41). Originally formulated in terms of shallow
shell theory (Ref. 24), this element was extended (Ref. 41)
to cover nonshallow applications. A restricted quintic poly-
nomial (containing a complete quartic) was chosen for the
normal displacement field, w, and a complete cubic field for
each of the in-plane displacements, u and v. By imposing
cubic normal rotations along each edge, the derivation satis-
fies interelementvcontinuity. The centroidal values of u and
v can be condensed from the stiffness matrix. The resulting
stiffness matrix then has 36 degrees of freedom, 12 at each
W,

of the corner nodes, consisting of u, u., u Vs Ves V

Y’ y’
¥ Wex? wxy and wyy'

The choice of displacement fields was motivated by the

W W

x’
view thatc the consistency of the corder of the error term in
the strain energy expression for a general displacemcnt
configuration is more important than achieving a zero error
for one particular displacement mode. Because the second
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differential of w and only the first differential of u and v
are present 1n the strain energy expression, the complete
quartic expansion for w is chosen to be cone order higher than
that for u and v. No explicit consideration has been made in
the derivation for rigid-body modes of displacement.

A more recent development by Dawe (38 is very similar to
the foregoing except that quintic polynomials are used for ail
three displacement components. The complete 21-term quintic
expansion is reduced to 18-terms by imposition of constrailnts
that remcve the degrees-of-freedom on the sides (between the
vertices). The motivation for Dawe's choice of displacement
components was discussed in the previous section. Numerical
comparisons given in Ref. 38 disclose the superiority of this
choice of displacement compcnents for deep, thin shells.

The ESHEBA element, formulated by Argyris and Scharpf
(Ref. 40) bears a relationship to the work described above.
Complete quintic polynomials (21 terms each) are utilized for
all three displacement components. Interelement continuity
is assured by the use of midside nodes having all three normal
derivatives as degrees of freedom. The corner nodes have 18
degrees of freedom each: 3 translational displacement, all
six first derivatives and all 9 second derivatives. In con-
trast to Dawe's formulation, the condition of zeroc strain
under rigid-body motion is satisfied exactly. This is done
by using the same interpolating procedure for the surface
location as ror the displacements. The natural strain concept
plays a central role in the shell theorylemployed. Published
results (Ref. 42) demonstrate that 'SHEBA' produces extremely 2
accurate solutions. | )

Anofhe; widely-used triangular 'thin shell finite element
to be commented upon here has been publighed by Dupuis and
Goel (Ref. 43). This formulation satisfies all necessary
requirements for convergence of the potential energy. Raticnal
functions are used for the displacement functions as well as
to dcfinc the position of the shell above a datum plane. The
use of rational functions other than simple poiynomials is




described .in the text by Zienkiewicz (Ref. 44) where they are
called singular functions. In this element the rigid-body-
motion condition is satisfied in the same way as for the SHEBA
clement above, i.e., through choicc of coordinate. Two levels
7{ sophistication of the clement arc available, the first
having the rcquired continuity of first derivatives, wherecas
the sccond has continuity of second derivatives, which are of
course excessive for the imposition of the variational -prin-
ciple. Dupuis and Goel conclude that the second level is the
most efficient.

In a later paper Dupuis (Ref. 30) has used the same
approach to develop an almost identical element. The latter
derivation utilizes cubic rational functions which are some-
what simpler than the previous ones. The element has nine
degrees of. freedom at each of the corner nodes. The element
is incorporated in the MARC program (Ref. 45) and has there-
fore enjoyed intensive and widespread evaluation and applica-
tion in practice.

_ Each of the above elements is complex from the standpoint
of formulative effort. Also, the bandwidth of the algebraic
equations of the problem, when expressed as a percentage of
the total number of structural freedoms, is very high for an
idealization using such elements, in comparison to simpler
elements, and the effort required to solve a system of equa-
tions 1is proportionalﬂtp the square of the bandwidth. One
must also take into account the effort required to construct
the individual element stiffness coefficients. Nevertheless,
accuracy studies and the desire for solution reliability indi-
cate the necessity of developments of this type when the
analyst seceks to employ a conventional potential energy ap-
proach. In the next two sections we discuss the establishment
of simpler formulations by use of modified potential energy

approaches and alternative variational principles.
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S. GENERAITZED POTUNTTAL ENERGY

The ideca of generalized potential energy is to cmploy
simple, nonconforming displacemcnt fields in the elcment
stiffness formulation and "restore" continuity by imposition
of that condition on the interelement boundary. Many differ-
ent forins of this approach are possible but.-in the discussion
which foliows we restrict our attention to'a scheme<given by
Harvey and Kelsey (Ref.. 11). The scheme has been used in the
triangular thin shell formulation by Thomas and the writer
(Ref. 39).

The latter element is shown in Fig. 6. The shell middle
surface corresponds to the orthogonal curvilinear system
a - B. All three displacement components are described by
complete cubic polynomials in triangular coordinates

, u= Nj{u}, v= N {vl, w = N iw} (1)
where ‘ ,
| Y duy duy o du
and\similarly for {v} and {w}. (N, contains the standard

shape functions of a complete cubic correSpondlng to these
degrees- ‘of- frpedom

Eq. (1) does not permit continuity of the angular dis-
placement across element boundaries and leads to very poor
results even for flat-plate flexure. To resolve this, Harvey
and Kelse?”(Ref; 11) }gﬁgoduced the notion of a constraint
condition to "restore" continuity. That is, if A and B are
neighboring -elements and the subscript n denotes the normal
direc¢tion, th relative angular displacement (6) of adjacent
edges at.their midpoinf can be set equal to zero

oAB = gA . 4B = ¢ (3)

n n n . ,
Differentiation of the displacement field (Eq. (1)) gives eA
and 6% in terms of the joint displacements {4} = u v w,

Applying this to each boundary in each displacement component
gives the set of algebraic constraint equations
[C]{a} =0 (4)
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To dcal with this onc-may cmploy the Lagrange multiplicr
technique, as follows. Each row of Eq. (4) is multiplied by
a pavameter Ai’ where the subscript i identifies the row. For
all rows of Eq. (4) we then have LAJ[CI{A}, where the row

matrix \, lists . the parameters A This is added to the
potential energy, resulting in the augmented value H
T= 8, (KIa) - (P + QSTCI(aY (5)

where (K] and {P} are the stiffness matrix and apﬁlled load
vector, respectively. After variation of I with respect to
both {A} and {A} one obtains

N o

Solution of this equation gives the displacements {A} and the
values {A}. The latter are the force quantities corresponding
to the displacement components at the interelement displace-
ment discontinuities. | ' ‘

It is noteworthy thaf the constraint condition can be
directly incorporated in the variational ﬁrinciplewand repre-
sented in the discretized system as a corrective element
boundary stiffness matrix. Kikuchi and Ando (Ref. 47) refer
to-this as the "simplified hybrid displacement method" and
have recently (Ref. 48) applied it to thin shell problenms.

The numerical comparisons found in Refs. 39 and 47-50
demonstrate the accuracy. in displaceﬁent éomputations 6f the
above approaches in a very wide rangé of brdblems. Accuracy
in stress calculations is largely untested. We should note
in this connection, that "extra'" stress iﬁformation is ob-
tained from the solution since, as noted ébove, the Lagrange
mu1t1p11ers represent the 1nternal forces that are conjugate
to the displacements whose contlnu1ty is restored by the con-
straint conditions.

{
!

9. ALTERNATIVE APPROAGHES - MIXED AND HYBRID

The difficulties -attendant upon the formulation of dis-
placement-based shell elements have given rise to many studies
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of alternacive variational principles. These include the hy-
brid and mixed functionals, the "discrete-Kirchoff' approach,
and generalized variational principles.

We have discussed generalized variational principles in
thin-shell analysis in the previous section. These are, in
fact, forms of mixed variational principles. As noted in
reference to the work of XKikuchi and Ando (Refs. 47 and 48),
when the constraints on a conbentional variational principle
are appended to the basic functional by use of the Lagrange
multiplier concept, the Lagrange multipliers can be identified
as the variables conjugate to the variables of the basic
functional. Thus, in the case of potential energy, where the
variables of the 'basic functional are strains, the Lagrange
multipliérs of the appended terms are stresses (or edge trac-
tions)f "The total, augmented functional then contains both
strains (in the form of displacement derivatives) and boundary
tractions. ' | '

" The most widely-uéed mixed functionai in thin-shell
finite element analysis, derived direbtly as such, 1is the
Reissner-Hellinger integral. This can be‘interp}eted as the
complementary energy functional supplemented by constraints
which enforce boundary stress continuity. It is employed
because the functional can be written in such a form that
bending 1is characterized by c® continuity requirements. Thus,
in early developmentg;gﬁ‘this functional in thin-shell finite
element analysis, by Prato (Ref. 52), Connor and Will (Ref.
53) and Herrmann and Mason (Ref. 54), among others, the radial
(bending) behavior is dealt with in this‘hay while a conven-
tional potential energy (assumed disﬁlacement) approach 1is
taken for in-surface behavior. More recently, Tahiani and
Lachance (Ref. 55) used the Reissner-Hellinger approach in the
full development. In all of these developments rather simple
assumed stress and displacement fields, generally of linear
or quadratic form, are employed.

Various theorists have established a connection between
mixed and hybrid formulations. In the view of the writer,
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however, there arc important distinctions betwcen them under
the following conditions. Mixed variational principles are
written directly in terms of stresses and displacements and
both of these are approximated by physical, node point para-
meters. Both parameters appear as solution parameters. Hy-
brid formulations, which have been pioneered by Pian and arec
discussed by him elsewhere in these proceedings, may be based
on modified forms of the conventional variational principles.
One field, say the siresses, are approximated by expressions
in terms of generalized parameters while the other field 1is

written in terms of physical node point parameters. The gen
eralized parameters are eliminated from the element formula-
tion, using the stationary condition of the functional,
resulting in element relationships which have the same alge-
graic form as element stiffneés matrices. Many alternative
hybrid formulations are possible.

The advantage of the hybrid approach in thin-shell for-
mulations is that representations can be developed for the
condition of only c® continuity. The most extensive work in
this area seems to have been done by the group at Nottingham
University, England. A review of these efforts and work done
elsewhere has been given by Edwards and Webster (Ref. 56).

Finally, we take note of the discrete-Kirchoff concept,
which 1s also intended to eliminate the C; continuity require-
ment in the selection of assumed displacement fields. If the
Kirchoff assumption (''nmormals remain normal") is not invoked
one can write the flexural energy expression in terms of first
derivatives of angular displaceménts, 6. One then assumes
independent, c%-continuous expansions for the angular (6) and
radial (w) displacements. The problem is singular, however,
in the absence of transverse shear deformation, which is the
usual circumstance in thin-shell analysis. To render the
problem non-singular one may invoke the Kirchoff condition
(e.g., ex = %g for plates) at discrete péints. As many such
conditions must be introduced as there are rank deficiencics
in the basic formulation.
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Wempner, ct al. (Ref. 57) appear to have introduced the
above idecas and applied them to thin-shell formulation. Sub-
scquently, the same concepts were adapted to this purpose by
Key and Beisinger (Ref. 29), Dhatt (Rei. 58) and Bonnes, ¢t
al, (Ref. 59).

10. AXISYMMETRIC THTN SHELL FORMULATIONS

A review of the linear finite element analysis of curved

thin shells must also consider the special case of shells of
revolution. Many structures take this form and if geometric
symmetry is taken into account, it is possible to realize very
significant computational economies. Early attempts to for-
mulate satisfactory axisymmetric thin shell elements (Refs.
60-62),!which were among the earliest of finite element thin
shell studies of any kind, encountered problems which were

met subsequently in amplified form with general shell ele-
ments. An account of these developments has been given by
Gould and Sen (Ref. 63).

Consequences of the failure to deal properly with rigid
body motion in the chosen displacement fields was studied by
Mebane:and Stricklin (Ref. 31) and Murray (Ref. 32), using the
axisymmetric thin shell element. This type of element was
also used in basic studies of the significance of additional
terms in the displacement expansions.

The trend in recgnt years has been towards formulations
with isoparametric representations of geometry and higher-
order displacement fields, particularly'in the in-surface com-
ponents. Either or both of these characteristics is reflected
in the work of Zudans (Ref. 64), Chan and Firman (Ref. 65),
Gould and Sen (Ref. 63), Webster (Ref. 66) and Adelman, et al
(Ref. 67). Ahmad et al. (Ref. 68) and Cole, Abel and Billing-
ton (Ref. 69) have demonstrated the effectiveness of the
axisymmetric element with a cross-section in the form of an
isoparametric planar domain. In this formulation, reduced in-

tegration may be exploited to represent properly the trans-

verse shear strain energy.

E.22




11. CONCLUDING REMARKS
. e V)
We have attempted, in this paper, to review some of tne

Key fcatures of finite element thin-shell analysis. The com-
ponent aspects, including choices of variational principle,
geometric representation, and displacement (or stress) fields,
could each be the subjects of extensive reviews. Developments
pased on assumed displacement fields no longer appear with

the frequency they once did, but much work will surely appear
in the future with respect to geometric representation and
alternative variational principles.

What do the developments to date mean to the practitioner?
This depends most strongly on the finite element computer pro-
grams he employs. If he works with marketed programs such as
MARC or ASKA, the curved thin shell elements such as the
Dupuis formulation(so) and SHEBA(4O) are at his disposal and
represceat a high degree of sophistication, accuracy, and reli-
ability. Other widely-distributed programs which do not have
curved shell elements may have isoparametric solid elements
with the reduced integration option. Such elements are also
effective in thin-shell analysis. As more programs become
capable of accommodating alternative approaches we can expect
to see the emergence of mixed, hybrid, generalized variational,
discrete Kirchoff, and perhaps other less orthodox formula-
tions. '

The different element formulations in the references
cited are verified mainly through comparisons with classical
analytical solutions. There is a growing need for experi-
mental data for comparison studies of more complex shell
situations, for which no alternative solutions are available.
The growing field of study of the mathematical convergence
characteristics of the finite eiement method also deserves
application to the shell analysis problem, and a start has
been made in this direction in Refs. 70 and 71. ,

The comparisons of the different element formulations do
not often account for the total analysis costs. Tradeoffs
between element formulative efforts and the size and
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configuration of the equations to be solved are in nced of
stuﬂy. Comparisons of the alternatives, to be valid, must in-
clude not only the operational costs to reach a desirced level
of solution accuracy, but should also reflect an amortization
of costs to develop the associated software.
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10,  THE FINITE ELEMENT METHOD IN FRACTURE MECHANICS ANALYSIS

R. H. Gallagher

I. INTRODUCTION

Despite the relative novelty of f{inite element analysis as
a tool for fracture mechanics studies--the earliest papers
appeared as recently as 1,969--a wide range of alternative formu-
lations have been qulished. The objective of these notes,
therefore, is a classification and review of the various published
methods of finite element fracture mechanics analysis and, to a
limited exteni, an assessment of their advantages and limitations.
These notes update a state-of-the-art review of the topic by the
writer (Ref. 1) in 1971 and incorporate information found in
reviews by Rice and Tracey (Ref. 2), Pian (Ref. 64), and Apostal,
et al (Ref. 65). A symposium on computational fracture mechanjcs
(Ref. 66) is also represented. The present work concentrates its
attention upon papers published iﬁ the_open literature, to which
most readers will have access. It should be observed that as in
any topic thch continues under development there is also a sub-
stantial literature in the form of company and institute reports.

The present topic is conveniently divided into "linear" (or
elastic) and "inelastic'" fracture mecﬁanics. Linear fracture
mechanics is a well-established design analysis tool, so it is
natural that it has been given the most attention in the litera-
ture. We therefore devote most of our effort to this side of the
subject. Brief comments are given with reference to inelastic

finite element fracture-mechanics analysis.
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Because of the scope and diversity of contributions to the
area of finite element linear fracture mechanics analysis, it 1
necessary that certain classifications be made of the area. The
author prefers the following classifications: (1) direct
methods, (2) energy methods, (3) the superposition approach and
(4) singularity funcEE?E formulations. Further subdivisions will
be identified within the respective sections decaling with these
classifications. These classifications are cxamined after a

brief review of the basic notions of linear fracture mechanics.

1. LINEAR FRACTURE MECHANICS

Linear fracture mechanics is concerned with the determination
of the length at which a crack will propagate rapidly, under cir-
cumstances of a brittle nature, due to specified load and geometric
conditions. The concepts stem from work by Griffith (Ref. 71) on
purely brittle materials, and were gcneralized by Irwin (Ref. 3)
to cases of ductile materials wherec the conditions at the crack
are such that the inelastic deformation characteristic of ductile
behavior is confined to a relatively small zone.

The elastic stress field at the tip of the crack can be
characterized by a parameter Kj (j =1, II, or II}), known as the

stress intensity factor. The magnitude of Kj depends on the dis-

tribution and intensity of the applicd loads and the geometry of
the structure. Any combination of these conditions which will
give a stress intensity factor cqual to or greater than the ex-
perimentally determined critical vaiuc Kj will cause failure.

C
The various modes are shown in Fig. 1.




In the mode I case (KI) the stress is applied in the direction
normal to the crack and tends to open the crack. Mode II 1s a
slidiﬁg mode, due to applied shear, and Mode 11T is a bending, or
tearing mode.

The solution for the stresses and displacements in the vicinity
of a sharp crack in the Mode I and 11 conditions for plane strain
or plane stress conditions in isotropic materials can be estab-
lished by conformal mapping techniques (Ref. 70). The series ex-

pansion of the solution for stress contains the terms r'l/z, rl/z,

r3/2’ etc., yhere r is the radius coordinate in a polar coordinate
system originating at the crack tip (see Fig. la). The first
term, r'l/z, predominates at the tip of the crack so only this
term is retained in the customary expressions for the stresses and
displacements in the vicinity of the crack tip. These are, for

the Mode 1 condition:

K

N © (1 - sin & sin 3°
I — cos > (1 sin 5 sin 5 . (1a)
K 8 8 30
Oy = == cos > (1 + sin > sin TT) (1b)
K
I . 6 7] 38
T = 5 = 5
Xy VLT (sin 5 COS > cos 2) (1c)
KI T 6 30
u = 7w ( 7;) [(2x-1)cos 5 - cos TT] (1d)
M (/i) [(2x+1)sin & - sin 38 (le)
M T¢ 27 73 z

where G is the shcar modulus and M is Poisson's ratio, and x =
(3 - 4u) for plane strain and (3 -p)/(1 + p) for planc stress.
Formulations can be constructed in the same general form for other

modes of fracture.




The basic consideration in désign, from the standpoint o1
linear fracture mechanics, is the relqtionship between stress
intensity factor and the strain energy release rate, G, which is
defined aS\thé change in strain energy in the structure per unit
length of crack extcnsion. This relationship has been established
by Irwin (Ref. 3) for plane strain and plane stress conditions,

as

- (k+1) 2 2
G = g5 (K7 * XD (2)

There are other parameters which relate strain energy to stress
intensity factors, such as the J-integral (Ref. 18). These will
be taken up in the section dealing with energy methods.

Extensive catalogs of soluﬁioﬁs for the stress intensity
factors for various simple load and geometric conditions are
available (Refs. 5, 72). These are not adcquatc, however, for
many of the complicated conditions found in practice, where the
load and geometry may be highly irrcgular and the material can in
general be anisotropic. The finite elément)method is a logical

approach to the solution of such problems.

S
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ITT. DIRECT METHODS

We define direct mecthods as thosc which involve the per-

formance of{ a conventional finitc element analysis (one which 1s
based on simple clements and simple polynomial functions) with a
high degree of refinement in the region of the crack tip. They
determine the stress intensity {actor by interpretation of the
calculated stresscs or displacements. Interpretation of some
form is needed since, due to its '"'finite" nature, the conventional
finite element representation is incapable of producing a direct
evaluation of the crack tip stress intensity factor.

We consider first the direct methods which operate on the
calculated node point displacements. One approach, the crack-

opening-displacement method (Kobayashi, et al, Ref. 7) deals with

the displacement of a point close to the crack tip, such as Point A
in Figure la. From Equation (le) we can write the expression for

this displacement in the form

K
- 1 r
Va < VL fl(e,u) (3a)
Solving for KI we have
GVA/5F .
K. o= A (3b)

I ff‘-fl(e,u)
Miyamoto (Ref. 8) employs the same approach in three-dimensional
linear fracture mechanics analysis. He uses tetrahedronal elements.
In an attempt to reduce the amount of grid idealization needed
to obtain an acceptable answer, Chan, et al [9] apply an extra-
polation schemec. One form of this scheme is shown in Fig. 2. A
radial linc at a fixed value of 6 is first established and by

finitc elemcnt analysis the displacements at the node points that



lie- on this line are calculated. Then, using Equation 2 a sircss
intensity factbr (KI) is calculated at each of the node points
along the line. By cxtrapolation of a line through the so-
determined points on a KI vs. radial distance plot, using points
away from the crack iip; the value of KI at zero radius is éstab4
lished. It should. . be noted that the use of this method is not
restricted to cases where conventional elements arc employed in
tge analysis. Subsequently, in our discussion of the use of iso-
parametric elements with singularities, this method will agai# be
employed.

Alternative to the interpretation of displacemenf values to
obtain KI is the interpretation of stresses for this purpose.
The interpretatiéh of stress is effected in the manner of the

above-described procedures. The radial stress field in the vicinity

of the crack tip is, by appropriate combination of Eq. (la)-(lc)

K.f,(0)
g = _I_g,__. (4)
r /2nr
and sdlving for KI:
or./Zn_-rr
K = Py VA } (5)
I fz(e)

~

This expression is evaluated at various locations along a
given radius and the résﬁlts extrapolated in ordcy to definc,l\'I
as r approaches zero. Fig. 2 shows how the stresses might bc
intcrpreted. This procedure is due to Chan, et al [9] and has
also bcen applied by Watwood [11]). Thec-commonly-employed constant-
stress triangular elements give an erratic basis for interpreta-

tion. If linecarly varying stress clements were used the problem

~
'




lie on this line are calculated. Then, using Equation 2 a sticess
intensity factor (KI) is calculated at cach of the nodc poini-
along the linc. By extrapolation of a linc through the so-
determined points on a KI vs. radial distance plot, using points
away from the crack fjp, the value of KI at zero radius 1s cstab-
lished. It should be noted that the use of this method 1s not
restricted to cases where conventional elements arc cmployed in
the analysis. Subsequently, in our discussion of the use of iso-
paramctric elements with singularities, this method will again be
employed.

Adternative to thc interpretation of displacement values to

obtain K, is the interpretation of stresses for this purpose.

I
The interpretation of stress is effected in the manner of the
above-described procedures. The radial stress field in the vicinity

of the crack tip is, by appropriate combination of Eq. (la)-(lc)

K £,(8)
G = - (4)
r J2nr
and solving for Ky
OpY2m 17
17 T,y ()

This expression is evaluated at various locations along a
given radius and the results extrapolated in ordcr to define KI
ds r approaches zero. Fig. 2 shows how the stresses might be
interpreted. This procedure is due to Chan, ct al [9] and has
also becen applied by Watwood [11]. The-commonly-employed constant-
stress triangular elements give an erratic basis for interpreta-

tion. If linearly varying stress clcments were used the problem
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of interpret.tion would be reduced somewhat but the number of
degrees of [{recedom nceded for an adcquate solution would still
be quite large.

An important operational improvement to the above schemes
is the "zoowing' technique used by Miyamoto (8) and Becker, et
al (41). The analysis is {irst performed {or a coarse mesh and
the stresses and displacements on the boundary of a locai
surrounding the crack are determined. The local regicn is then
analyzed with a more refined grid. The localization may then be
applied to still smaller regions. This approach gives a very
significant improvement to computational efficiency of the extra-
polation schemes. Indeed, this technique is used to considerable
advantage when coupled to other general approaches to be discussed
subsequently.

Another approach which one is tempted to take in the interests
of improving the efficiency‘of the direct methods is to use the
simplest type of elements in the regions away from the crack tip
and to use higher-order elements in the vicinity of the crack tip.
Tong and Pian (Ref. 68) and Fried and Yang (40) have shown that
increasing the order of the interpolation functions inside the
element will not result, with a given mesh, in an indefinite in-
crcasc in the rate of convergence. They demonstrate, howeover, that
the ratc of convergence of a given order of interpolation poly-
nomial can bec recaptured by a proper, nonuniform, spacing of the

mesh ncar the singularity.

Fig. 3, taken {rom Referencec 68, illustrates the above point.
The problem shown is a square panel with side cracks under uniform

tension °y' Each analysis point represents the solution for the




- strain energy for a uniform spacing of an element of a given (ype.
<:> The types of elcmeﬂts employéd are constant and linear strain
triangles and twa tfpés_of’hybyid—strcsé’rectangular elements.

The convergence rate in all cases is a lincar function of the
element size. In contra%t, for problems without stress singu
laritics, the convergence rate 1s a function of the element si:ze,
being of higher order as the order of the element approximating

polynomial increases.

Oy . a - g
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IV. ENERGY MLTHODS

A number of distinct approaches can be found under this
heading, including the total energy method and the linc integral

method.

The total energy method invoives a relationship between

the strcss intensity factor and the rate of change of strain
energy with respect to crack length (%g . As was already noted,
according to fracture theory the latter is equal to the strain

energy release rate Gj’ i.e.

. du
G = 33 (6)

For isotropic plane stress Eq. (2) becomes

1o 2 2 2
6 = g (Kp7 + Kpy™ + Ky ) (7

Then, for example, for mode I plane stress conditions we have
2
au _ & 8)
da E

Expressing %g in terms of finite differentials %g and solving

for Ky, we have '

- E(SU)
KI V/ ba (9)

Hence, in this procedure (see Figure 4) one performs an analysis
for a stipulated crack length (a) and computes the strain energy
U. The strain energy is obtained from the solution simply as
% L8 j{P}, where (A and {P} are the node point displacement and
load vectors. The crack is then opened a distance 8a and a new
strain energy U + 8U is calculated.

Finite element fracture mechanics analyses based on this

idea have becn studied and described by Anderson, et al (Ref. 10),

i




Watwood (Ref. 11}, Dixon, et al (Refs. 12, 13), Mowbray (Rer. 1i,,
Blackburn (Ref. 15), Hellan (Ref. 16), and Fuhring (Ref. 17).

As noted above, two solutions arc neccded which differ only
in the increment of crack size. The resulting differcnce in
strain encrgy 1s not as sensitive to grid refinement in the
vicinity of the crack as is the determination of strecss intensity
factors by the "direct" methods. Thus, a relatively coarse mesh
can be used in each analysis.

Computational procedures which improve the efficiency of the
total energy method by requiring a full solution for only one
gridwork are those which are based on an approximation to the
solutions for the gridwork that has been changed on account of the
crack extension. Decsignating the change in the global stiffness
natrix ([K}) due to the opening of the crack by a distance da
as [6K], the stiffness equations of the altered gridwork are

[[K] + [8K]j{{a} + {s8a}} = {P}
or
[K]{2) + [8K]{A} + [K]{8A} + [6K]{sA} = {P)
where {8A} is the change in the solution. Now, since [K]{a} = {P}

and with discard of the product [8K]{8A}, one obtains

{68} = - [k} l{skjray (10)
Only a small portion of [6K] i's populated since the crack exten-
sion affects only a few elements in the global represcntation.
Both Parks (Ref. 44) and llellan (Refs. 16, 73) have exploited this
idea. Hellan (Ref. 44) cmbeds this scheme in the algorithm for
solution of [K], recsulting in further efficiencies.
Other approaches to more cfficient analysis by the total

cnergy mcthod have been devised. An important aspect of most




current applications of the work by Aamodt, et al (43) is the

use of a "multilevel condensation' technique in reducing the
analysis degrees-of-freedom to a relatively small number. In
this approach "superelements'" are formed of a large number of the
basic elements. The interior degrees-of-freedom are eliminated
so that the superelement is represented only in terms of the
boundary points of the superelcment. The superclements are com-
bined to give new, higher-icvel, superelements and the process of
condensation is again applied. There is a similarity to the work
of Miyamoto (Ref. 8) and Becker, et al (41) in that the final
analysis is performed for a few number of elements and the effi-
ciency éf analysis 1s enhanced considerably,.

Various authors SQﬂierson, et al (1), Watwood (11), Fuhring
(17), and Aamodt, Bergan, and Klem (43)) among others have con-
ducted numerical studies which compared the total energy and
direct methods, resulting in the conclusion that the energy

approach is more cfficient.




The line integral, or path-independent integral method was

introduced into lincar f{racture mechanics by Rice (18). Similur
to the local encrgy method, but with no restriction on the snapece
of the region studied, a region containing the crack tip is

delineated as in Figure 4 . Rice (18) shows that the following
integral, taken over the boundary (I') of the region is equal to
a constant J: :

| du

= 1 - T e S
J= ) ey - T gas) (12)

where U is the strain energy density, T is the Traction vector
defined according to the outward normal along I', and u is the
displacement vector. ds is the element of arc along I'. The
stress intensity factor for plane strain is related to J by the

[

expression

= JE
- |2

1/2
= (13)
(1-p7)

To use the finite element method one must delineate an isolated
region around the crack and determine the above line integral.
A finite element application of this concept is described by
Chan, et al (9). It has also been applied in the evaluative
study of Anderson, et al (10), by Leverentz (60), Becker, et al
(41}, and by Kobayashi, et al (62).

V. SUPERPOSITION METHODS

The superposition approaci. seeks the computation of the
stress intensity factor through .. linear combination of classi-
cal singularity solutions and a coarse finite element grid. The
approach has been used successfully in fracture mechanics calcu-
lations by Yamamoto, et al (Ref. 19). Similar ideas have been
discussed by Morley in Ref. 20 and Ando in Ref.69.

The concept is to define the classical solution for a prob-
lem as close to the pfbﬂfem of interecst as possible. For

example, in the present case, the solution for a crack in an




infinite plate subjected to biaxial stress is first obtained.
This solution wi1ll not satisfy all conditions for the actual
problem and disparities can be interpreted as body forces and
edge loadings. The bodv forces and-edge loadings are applied
to the finite element analysis in reversed dircction and the
results {rom the finite element and classical solutions are
superimposed.

The general scheme is sketched in Figure 5. The classical
solution is denoted by T while finite element solutions are
given by o and O The appropriate superpositiocn of solutions

yields the "exact' answer ao%*,

VI. SINGULARITY FUNCTION FORMULATIONS

a. Outline of Alternative Approaches

L

Onc of the most appealing approaches, from both a theoreti-
cal and computational view, is to formulate an element contain-
ing a singularity to be employed in the region of the crack tip.
Regions beyond the crack tip are represented by conventional
elements., Many attempts to exploit this concept have appeared.

Byskov (Ref. 2) was perhaps the first to publish a develop-
ment along these lines, using singularity formulations due to
Muskhelishvili (Ref. 22). His element is shown in Figure 6.
Many alternative schemes have been proposed by Rao, et al (Ref.
23), Blackburn (Ref. 15), Tracey (Ref. 24), Benzley (Ref. 25),
Robinson (Ref. 26), Walsh (Refs. 27, 28), Pian (Ref. 29),
Apostal (Ref. 30), Aberson and Anderson (59), among others.

We examine here four different categories of this general
approach.

b. Embodiment of a Singularity Element
in a Conventional Grid

It is of intcrest to examine in some detail Walsh's approach
to incorporating a singularity element in a mesh that contains
conventional finite clements. The clement itself is conven-
tional in that he first chooses displacement fields (but which
include a singularity) and the basic element stiffness matrix




is then constructed from the usual stiffness formulas. Special .
relationships arc added to these, however, to minimize the
incompatibility between the crack tip clement and the conven-

tional eiements outside of it. Blackburn (15) has formulated a

singularity clement and combined it with the total energy method.

The structure 1s divided into two regions: an "outecr"”
region. consisting of conventional f{inite elements, and an
“inner" ?egion consisting of ra single element encompassing the
crack. The degrees-of-ireedom of points in the outer. region,
excluding the points on the interface of the two recgions, are
designated as - The interface d.o.f. are Ai' The expressions
for displacement of a medium continuing a crack will be charac-
terized-by parameters which are the stress intensity factor and
rigid body motion terms (sce kq. lc, 1d). We designate these
as {As}, noting that they contain the stress ihtensity factors
Ky and/or KII' |

In view of the above, the stiffness equations for the outer

region can be written as

© (14)

Also, by evaluation of Equation (lc) at the juncture points we

can write

{a;} = [T]{ag} (15)

Then using this in a transformation of the degrees-of-{reedom

in Equation (14) we have

P0 Koo “] Koir [Ao
o i FTy FT T (16)
Fs hoi Kii As

where F; represents  the generalized forces of the outer region
corresponding to the degrees-of-frecdom Ai' Counterpart stiff-
ness reclationships between the generalized forces Fz of the

D T
s




inner reqlon (singularity clement) and these d.o.f. can also be

constructed, of the form
S . ¢
o = r Ll7)
{IS} LRSS]{AS}

Finally, then, we cbtain the global stiffness using the condi-

; p 1 o= (9 ;S
tion {xs, tfs) + {}S}.

} [

P K ' K T ] [A

o} - Too ! - 01 il ° (18)
tP P'K, | UK, I+ K__[1&,

{ s} 10 11 ssj| s

Solution of these equations gives the stress intensity factors
directly, as they are included in AS.

We should note that in the above approach there is a sig-
nificant degree of interelement displacement nonconformity.
Nevertheless, results of reasonable accuracy are reported in
Refs. 27 and 28. ‘

The elements of Tracey (24) and Benzley (25) can be regarded
as falling in this category. Each, however, constructs the
singular element displacement fiecld in such a way that displace-
ments on boundaries that connect to conventional elements will

conform to the displacement fields of the latter.

c.. Conformal Mapping

Conformal mapping, which has bccen employed effectively in
classical solutions to stress intensity factor problems, can
also be useful in finite element solutions to such problems.

The related ideas and their application to problems have been
given by Cheng (51) and Armen, et al (52). To describe these
ideas we show the rectangular region of Fig. 8a with a slit
extending from point O to point D. IQ the case where a solution

is sought to the equation

2 2
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where ¢ is the independppt variable in the region, a mapping
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from the x-y to the &-n (complex) plane by use of the transfor-

matlon

where ¢ = £ + in, z = x + iy. The mapping is as shown in

Figure 8b and the equation to be solved is

to
[x 9]
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_ Appropriate boundary. conditions—must of course be defined and

these must also be transformed.

It is apparent that the transformed problem would be diffi-
cult to solve by means of classical methods because of the
irregular boundaries and associated boundary conditions of the
transformed region. It is not difficult, however, to solve the
transformed problem by the finite element metnod, using 1sopara-
metric elements. This is the approach taken in Refs. 51 and 52.
Ref. 52, in particular, gives extensive n@merical results for

fracture mechanics problems.

d. Isoparametric Element

It has long be recognized that the transformation from
physical to isoparametric coordinates can be singular if node
points along the edges of members are positioned in a certain
way. For example, in Fig. 9a, when the side node of a rectan--
gular element with bi-quadratic fields is located one-quarter
of the edge length from the corner (as for point 2}, then the .
transformation will be singular uat the corner. Henshall (Ref.
50), by studying this more closely, and also independently by
Barsoum (Ref. 49) have shown that the singularity is that of
1//7T, which is identical to the form of singularity in fracture
mechanics. Thus, by locating the node point 1 at the crack
tip, as in Figure 9a, it is possible to solve for thec stress
intensity factor without development of a special element.
Neale (Ref. 61) reports the combination of this approach with
the J-integral method.




To examine this more closely we follow the development by
Barsoum (49) and consider the case of a side of total length L
with points 1, 2, 3 (Fig. 10a) and point 2 midway between the
ends. Introducing the nondimensional coordinate § = -1-*%? s
which has values of -1, 0, and 1 at points 1, 2, and 3, respec-
tively, the coordinate x can be written in shape function form

as

E(L-8)x; + (L-8%)x, + 5 £(1+&)x,

»

I

]
rof—

Now, the same expression will hold for other locations of X, if
the definition of § 1is properly revised. To do this we need
only express X, in terms of L and substitute into the above
equation and solve for §. Thus, for X, = L/4 (and Xy = 0,

Xg = L)

x = (1-g5) ¥+ Tea o
and, solving for £
E=(1+2 /1)

or x =7 (g +1)

In an isoparametric formulation the transformation from
physical to isoparametric coordinates 1s based upon the inverse
of the matrix of derivatives of the former with respect to the
latter.

For the present example the only derivative present 1is ,

90X = 0 at £ = -1,

which is, from the above, % (L +&). This gives I
so that the transformation is singular at point 1. To investi-

J"‘r' S'

x:
£
gate the consequences of this singularity we can write the
displacement field (u) in terms of the shape functions given
above, then express the shape functions in terms of x, and

differentiate to give strain. This will disclose that the strain
singularity at point 1 is of the 1//T type.
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In more rcécnt work, ngb}tt (Ref. 77) and Barsogm {Ref., 57,
thé cast doubts\upbn the adequacy of the quadrilateral 1sopara
metric element foi the above application. Uibbitt shows that tuae
stross/sihgu]arj;y is defined only along the boundary and that
the strain cnergy (and, thércforc,/sriffncss) is singular atjthc
crack tip. Barsoum shows that by coalescing points (ﬁig. i}) to

form a triangle the stresssinpularity 1s defined on all radial

“ lines through the crack tip and that the strain energy 1s non-

singular at the crack tip. Thus, triangular isoparametric elcments
are to be preferred when this approach is taken.

It should be noted that in the implementation of thec above
approach one can calculate the displacements {or stresses) which
arc then interpreted in the manner of the "direct" methods dis-

cussed earlier.




e. Assumed Stress lerid Mcethod

Pian, et al (Ref. 24) usec the hybrid stress approach in

their work. In applying the hybrid stress approach to the for-

mulatiorn of a singularity element we expand the characterization
of the internal stress field to account for the singular stress
field.

{0} = [P 118} + [P 1{B)

where [Po} represents the coefficients of a simple (usually
polynomial) expansion in the element, [PS] contains the coeffi-
cients from the singularity stress {ield, and*{Bs} contains the
stress intensity factors. For example, i1f modes I and II are
both included in the analysis

T
K Y
{g } = { I }
S K
11

It follows that the surface tractions (I) are similarly described
T = [R1(B,) + [R1{B)

As before, the edge displacements are simply
u = [Y]{a}
Introducing these expressions into Equation (23) of the

lecture notes on '"Mixed Variational Principles and Hybrid
Formulations' we obtain
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The stationary condition on . with respect to {BO} is
imposed and the result is used to eliminate {BS} from I_. The
stationary condition on I with respect to {85} and {A} then
gives equations of the form '

SR

Solution of these equations gives the stress intensity

factors directly.

A simpler and seemingly more effective hybrid approach has
been presented by Tong, Pian and Lasry (Ref. 47). Recognizing
that the singularity displacement fields they will choose will
represent satisfaction of both continuity and equilibrium condi-
tions within the element, they construct a functional (ﬂm) which
represents the approximation of these conditions on the element

boundary.

- 1
n,o= [ TeudS - 5 [ T-udS

i

where T represents the element edge tractions due to the assuned

. stress field, u are the corresponding edge displacements, and




u are boundary displacements that are independently chosen in
such a way that interelement compatibility 1is satisfied. These

fields -can be discretized as follows

=
1

[R]{B}

_5‘ JJ— Ju

[Z]{B}

-
i

where {B} contains the relevant stress intensity factors as

degrees-of-freedom and
u o= [Y]{a}

one then obtains, after substitution of these in Hm and imposi-
tion of the stationary conditions, the following stiffness

matrix

1

(x] = (Tt q

where [Q] is as previously defined and now
) = 3 | anTe + @ mnaon]

Other investigators (Apostal (1) and Atluri, et al (48))
have applied the "assumed displacement' hybrid method, which
depends on assumed displacement fields, rather than stress
fields, within the element.

VII. INELASTIC ANALYSIS

Finite element analysis possesses special advantages in
elastoplastic analysis where opportunities for classical solu-
tions are very limited and some form of numerical analysis is
rcquired for virtually all circumstances. A description of this
aspect of finite element analysis was given in prior lecture
notes. The significance of elastoplastic studies in the predic-
tion of fracture is reviewed by Rice and Tracey (Ref. 2). Our




purpose here is mcrely to cite efiorts towards thc analysis of
inelastic behavior in the region of the crack tip.

An exposition of the direct method in inelastic fracture
mechanics has been given by Aamodt and Bergan (53, 54).

The represcntation described by Levy, et al (31), formu-
lated for elasto-plastic fracture mechanics analysis, represents
an alternative singularity formulation. The "basic" element,
shown in Figure 7, consists of a transformation edgc-displacencnt
fieid (see Raju and Reo (32) for stifiness cocefficient details).
The singularity 1s achieved by allowing the joints a and b to
coalesce 1nto joint 1 as the element is used as a ‘'near tip
element' with joints 1-2-3. This scheme yields a % singularity
of the type associated with inelastic crack tip phenomena, in
contrast to the 1//r singularity of linear fracture mechanics.
The inelastic analysis procedure used was the tangent stiffness
method.

Armen, et al (52) have used the conformal mapping procedure
in inelastic fraction mechanics analysis.

Another attempt at the representation of the crack tip
singularity is due to Hilton and Hutchinson (33), who employ an
analytical model of the singularity in a circular region sur-
rounding the crack tip and represent the structure outside this
region with conventional finite elements. Swedlow (34) and
Tuba (35) perform finite element elastoplastic analysis for
cracked and notched plates, basing their represcntations entirely
upon conventional elements. Walton, Woodman, and Ellison (Ref.
36) use simple triangular elements and the '"initial strain"
mecthod of inelastic analysis in studies of fatigue-crack growth.
Miyamoto (Refs. 6 and 8) and Yokobori and Kamei (Ref. 37), on
the other hand, combine conventional elements and the tangent

stiffness approach.

VIII. CONCLUDING REMARKS

The following comments, which apply only to the linear
fracture mechanics methods arc intendcd as a summary of the more

apparent advantages and limitations of the respective methods,
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must principally pertain to computational efficiency, rather
than accuracy, since improved accuracy 1is always possible at
increased cost. Furthermore, account must be taken of the
possibility of required additional research or major modifica-
tions of existing computcr programs to establish working capa-
bilities of practical analysis.

The direct methods arc appealing in that any available
computecr program can be cmployed "as is.'" Available cvidence
reflccts unfavorably on the cconomics of such methods, however,
if special steps are not taken to deal with the isolated region
of the crack. The use of 200 to 1000 elements has been found
necessary if an accuracy within 5% 1s to be realized in a plane
stress problem. This degree of refinement is economically
unacceptable for a simple geometry and load condition and 1is
unquestionably so for more complex geometries and three-
dimensional stress situations, This disadvantage is counter-
balanced if '"zooming'" or '"substructuring' capabilities are
available in the program being used.

Among the direct methods, the extrapolation procedure on

displaccments is clearly preferable when the element formula-

tions are based upon assumed displacement fields. Considerable-

reliability is introduced through the device of extrapolation;
many more elements must be employed in the crack-opening-
displacement method to obtain as accurate a result. Extrapola-
tion upon stresses may prove more profitable if the finite
elcment model is an "equilibrium field'" model (see first set of
lecture notes).

Among the energy methods, the total energy scheme 1s the
simplest to apply. Various studies (Refs. 9, 10, 13) have
effected numerical comparisons of procedures in the direct and
energy-based categories. Many of these studies rely upon the
simplest type of element (triangle with linear edge displace-
ments). It is of interest to note that Anderson, et al (10)
found that the order of merit of mecthods 1n the two categories
could be interchanged by appropriate definition of the finite
element grid (node spacing).



For users of widely-availablc computer programs, the total
energy method is immediately applicable. Computational effi-
ciency can be greatly enhanced through efficient computational
algorithms which can effect a:change of crack length without re-
analysis (Parks (44), Hellcn (16)). Superposition methods are
highly efficient from the view of computer costs.

Singularity function elcments represent the most promising
of all approaches. In general, these require that the program
into which they are to be incorporated be able to accommodate
procedures for numerical integration of the individual element
stiffness coefficients. Ref. (46) gives a limited comparison of
energy-based and singularity function methods. It is also
possible to combine the energy-based and singularity-function
methods as was done by Blackburn (15) and Neale (61).

It is clear that relative merit of the many proposed pro-
ccedures depends on the computer programs available for their
application. A review of such programs has been presented by

Benzley and Parks (45) and by Apostal, et al (Ref. 65).
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