

JURADO ASIGNADO:

Presidente:	Dr. RAMÓN DOMÍNGUEZ MORA
Secretario:	Dr. JESÚS GRACIA SÁNCHEZ
Vocal:	Dr. ÓSCAR FUENTES MARILES
1er. Suplente:	Dr. CARLOS ESCALANTE SANDOVAL
2do. Suplente:	M.I. VÍCTOR FRANCO

Lugar donde se realizó la tesis:

MÉXICO, D.F.

TUTOR DE TESIS:

Dr. ÓSCAR A. FUENTES MARILES

FIRMA

PÉRDIDAS MENORES DE ENERGÍA EN REDES DE TUBERÍA DE AGUA POTABLE:

CASO CRUCES DE TUBERÍAS

JAIME ANDRÉS PATIÑO MÁRQUEZ

AGRADECIMIENTOS

A Dios A mis padres A mis hermanos y familiares A vos por ser todo lo que busqué A todos mis amigos de Colombia y México A la Universidad Nacional Autónoma de México Al Instituto de Ingeniería de la UNAM A mis profesores del Posgrado Al Doctor Oscar Fuentes A Ramiro Marbello

TABLA DE CONTENIDO

		Pág.
	INTRODUCCIÓN	1
_		_
1.	FUNDAMENTOS TEORICOS.	5
1.1.		5
1.2.	MODELO TEORICO DE UNA RED HIDRAULICA A PRESION	5
1.3.	ECUACIONES QUE DESCRIBEN EL FLUJO EN TUBERÍAS	6
1.3.1.	Ecuación de Continuidad	7
1.3.2.	Ecuación de Energía	8
1.3.3.	Pérdidas de energía	10
1.3.4.	Comparación de ecuaciones para estimación de pérdidas longitudinales	24
2.	PÉRDIDAS LOCALES O MENORES	29
2.1.	CONSIDERACIONES GENERALES	29
2.2.	ALGUNOS VALORES DEL COEFICIENTE K	31
2.2.1.	Pérdida por entrada	31
2.2.2.	Pérdida por ampliación súbita	32
2.2.3.	Pérdida por ampliación gradual	33
2.2.4.	Pérdida por reducción súbita	34
2.2.5.	Pérdida por reducción gradual	35
2.2.6.	Pérdida por codos	35
2.2.7.	Pérdida por bifurcaciones	37
2.2.8.	Pérdida por uniones	39
2.2.9.	Pérdida en válvulas	40
2.3.	LONGITUD EQUIVALENTE	41
2.3.1.	Longitud equivalente con la ecuación de Darcy-Weisbach	42
2.3.2.	Longitud equivalente con la ecuación de Hazen-Williams	42
2.3.3.	Longitud equivalente con la ecuación de Manning	43
3.	PERDIDAS MENORES EN CRUCES DE TUBERIAS	4 7
3.1.	INTRODUCCION	47

		Pág.
3.2.	ESTADO DEL ARTE	50
4.	MODELO EXPERIMENTAL E INSTRUMENTACIÓN	55
4.1.	MODELO EXPERIMENTAL	55
4.2.	DISEÑO DE LAS MEDICIONES	59
5.	ANÁLISIS DE RESULTADOS	63
5.1.	NOMENCLATURA	63
5.2.	DEDUCCIÓN DE LAS EXPRESIONES EMPLEADAS PARA ESTIMAR Ki	64
5.2.1.	Caso de alimentación doble	64
5.2.2.	Caso de alimentación simple	66
5.3.	ANÁLISIS DE CRUCES CON ALIMENTACIÓN DOBLE	67
5.3.1.	Relación de los coeficientes k con otros parámetros hidráulicos	67
5.3.2.	Gráficas de contorno	75
5.4.	ANÁLISIS DE <i>CRUCES</i> CON ALIMENTACIÓN SIMPLE	81
5.4.1.	Relación de los coeficientes <i>Ki</i> con otros parámetros hidráulicos	81
5.4.2.	Gráficas de contorno	88
6.	EJEMPLOS DE APLICACIÓN	95
6.1.	EJEMPLO 1	95
6.2.	EJEMPLO 2	
7.	CONCLUSIONES	105
	BIBLIOGRAFÍA	109
	ANEXO 1. Fotografías del modelo experimental	111
	ANEXO 2. Gráficas de contorno no publicadas en el cuerpo de la tesis	117

LISTA DE FIGURAS

Pág.

Capítulo 1. Fundamentos teóricos		
Figura 1.	Representación gráfica del balance de energía entre dos secciones	9
Figura 2.	Gráfica del experimento de Nikuradse sobre tuberías de rugosidad artificial	11
Figura 3.	Esquema de flujo laminar en un tramo recto	12
Figura 4.	Esquema de flujo turbulento en un tramo recto	13
Figura 5.	Diagrama Universal de Moody	20

Capítulo 2. Pérdidas locales o menores

Figura 6.	Pérdidas locales producidas por una placa de orificio	30
Figura 7.	Esquemas de varios tipos de entradas a tuberías	32
Figura 8.	Esquema de una ampliación súbita	32
Figura 9.	Esquema de una ampliación gradual	33
Figura 10.	Esquema de una reducción súbita	34
Figura 11.	Esquema de una reducción gradual	35
Figura 12.	Esquema de algunos tipos de codos	36
Figura 13.	Valores de K para codos de cobre [Fuentes y Rosales, 2004]	37
Figura 14.	Esquema de bifurcación de tuberías	38
Figura 15.	Valores de K para tees de cobre, tramo principal [Fuentes y Rosales, 2004]	39
Figura 16.	Esquema de unión de tuberías	39
Figura 17.	Coeficientes K para válvulas de globo de diferentes diámetros	41

Capítulo 3. Pérdidas menores en cruces de tuberías

Figura 18.	Cruces para tuberías de diferentes materiales	48
Figura 19.	Esquema de una red de incendios con rociadores o sprinklers	49
Figura 20.	Esquema de los cuatro posibles casos de flujo en <i>cruces</i> de tuberías	49
Figura 21.	Gráfica para estimación de K en cierto tipo de cruces [Sharp, 2009]	52
Figura 22.	Gráfica para estimación de <i>K</i> en cierto tipo de <i>cruces</i> [Miller, 1996]	53

Capítulo 4. Modelo experimental e instrumentación

Figura 23.	. Esquema del modelo físico construido	57
------------	--	----

	Pág.
Figura 24. Medidores de flujo empleados en el modelo físico	58
Figura 25. Sensores de presión absoluta empleados en el modelo físico	59

Capítulo 5. Análisis de resultados

Figura 26.	Nomenclatura asumida para los tramos en <i>cruces</i> de tuberías	63
Figura 27.	Gráficas de Re contra K para <i>cruces</i> de dos diámetros diferentes	67
Figura 28.	Gráficas de Re3/Re1 contra K3 para <i>cruce</i> de 13mm	68
Figura 29.	Gráficas de Re4/Re2 contra K4 para <i>cruce</i> de 13mm	68
Figura 30.	Gráficas de Re3/Re1 contra K3 para <i>cruce</i> de 19mm	68
Figura 31.	Gráficas de Re4/Re2 contra K4 para <i>cruce</i> de 19mm	69
Figura 32.	Gráficas de Re3/Re1 contra K3 para <i>cruce</i> de 25mm	69
Figura 33.	Gráficas de Re4/Re2 contra K4 para <i>cruce</i> de 25mm	69
Figura 34.	Gráficas de Re3/Re1 contra K3 y de Re4/Re2 contra K4 para <i>cruce</i> de 32mm	70
Figura 35.	Gráficas de Re3/Re1 contra K3 y de Re4/Re2 contra K4 para <i>cruce</i> de 38mm	70
Figura 36.	Gráficas de Re3/Re1 contra K3 para <i>cruces</i> de 13, 19 y 25mm	72
Figura 37.	Gráficas de Re4/Re2 contra K4 para <i>cruces</i> de 13, 19 y 25mm	72
Figura 38.	Gráficas de K3 y K4 unificadas para <i>cruces</i> de 13, 19 y 25mm	73
Figura 39.	Gráficas de K3 y K4 unificadas para <i>cruces</i> de 13, 19 y 25mm	74
Figura 40.	Gráfica de contorno de K3 para <i>cruces</i> de 13mm	76
Figura 41.	Gráfica de contorno de K3 para <i>cruces</i> de 19mm	76
Figura 42.	Gráfica de contorno de K3 para <i>cruces</i> de 25mm	77
Figura 43.	Gráfica de contorno de K4 para <i>cruces</i> de 13mm	77
Figura 44.	Gráfica de contorno de K4 para <i>cruces</i> de 19mm	78
Figura 45.	Gráfica de contorno de K4 para <i>cruces</i> de 25mm	78
Figura 46.	Gráfica de contorno unificada para cruces de 13mm	79
Figura 47.	Gráfica de contorno unificada para cruces de 19mm	80
Figura 48.	Gráfica de contorno unificada para cruces de 25mm	80
Figura 49.	Gráficas de Re contra K para <i>cruce</i> de 13mm (Trifurcación)	81
Figura 50.	Gráficas de Re contra K para <i>cruce</i> de 19mm (Trifurcación)	81
Figura 51.	Gráficas de Re4 contra K4 para <i>cruces</i> de 13 y 19mm (Trifurcación)	82
Figura 52.	Gráficas de Re2/Re1 contra K2 y Re3/Re1 contra K3 para <i>cruce</i> de 13mm. (Trifurcación).	82
Figura 53.	Gráficas de Re2/Re1 contra K2 y Re3/Re1 contra K3 para <i>cruce</i> de 19mm. (Trifurcación).	83
Figura 54.	Gráficas de Re2/Re1 contra K2 y Re3/Re1 contra K3 para <i>cruce</i> de 25mm. (Trifurcación).	83
Figura 55.	Gráficas de Re2/Re1 contra K2 y Re3/Re1 contra K3 para <i>cruce</i> de 32mm. (Trifurcación).	84
Figura 56.	Gráficas de Re2/Re1 contra K2 y Re3/Re1 contra K3 para <i>cruce</i> de 38mm. (Trifurcación).	84
Figura 57.	Gráficas de Re4/Re1 contra K4 para <i>cruces</i> de 13 y 19mm. (Trifurcación)	84
Figura 58.	Gráficas de Re4/Re1 contra K4 para <i>cruces</i> de 25 y 32mm. (Trifurcación)	85

	Pág.
Figura 59. Gráficas de Re4/Re1 contra K4 para <i>cruces</i> de 38mm. (Trifurcación)	. 85
Figura 60. Gráficas de Re2/Re1 contra K2 para <i>cruces</i> de 13, 19 y 25mm. (Trifurcación)	. 86
Figura 61. Gráficas de Re3/Re1 contra K3 para <i>cruces</i> de 13, 19 y 25mm. (Trifurcación)	. 86
Figura 62. Gráficas de K3 y K4 unificadas para <i>cruces</i> de 13, 19 y 25mm. (Trifurcación)	. 87
Figura 63. Gráficas de K3 y K4 unificadas para <i>cruces</i> de 13, 19 y 25mm. (Trifurcación)	. 88
Figura 64. Gráfica de contorno de K2 para <i>cruces</i> de 13mm (Trifurcaciones)	89
Figura 65. Gráfica de contorno de K3 para <i>cruces</i> de 13mm (Trifurcaciones)	89
Figura 66. Gráfica de contorno de K4 para <i>cruces</i> de 13mm (Trifurcaciones)	90
Figura 67. Gráfica de contorno de K2 para <i>cruces</i> de 19mm (Trifurcaciones)	90
Figura 68. Gráfica de contorno de K3 para <i>cruces</i> de 19mm (Trifurcaciones)	91
Figura 69. Gráfica de contorno de K4 para <i>cruces</i> de 19mm (Trifurcaciones)	91
Figura 70. Gráfica de contorno de K2 para <i>cruces</i> de 25mm (Trifurcaciones)	92
Figura 71. Gráfica de contorno de K3 para <i>cruces</i> de 25mm (Trifurcaciones)	92
Figura 72. Gráfica de contorno de K4 para <i>cruces</i> de 25mm (Trifurcaciones)	93

LISTA DE TABLAS

Capítulo 1. Fundamentos teóricos

Tabla 1.	Comparación de expresiones para flujo turbulento hidráulicamente liso	14
Tabla 2.	Valores de la <i>rugosidad absoluta - e -</i> para diferentes tipos de tuberías	16
Tabla 3.	Comparación de expresiones explícitas para flujo turbulento hidráulicamente liso	17
Tabla 4.	Valores del <i>coeficiente de rugosidad de Manning - n - p</i> ara diferentes tipos de tuberías	22
Tabla 5.	Valores del <i>coeficiente de Hazen-Williams - C</i> _{HW} - para diferentes tipos de tuberías	23

Capítulo 2. Pérdidas locales o menores

Tabla 6.	Valores de coeficiente K para entradas a tuberías	32
Tabla 7.	Valores de coeficiente K para ampliación súbita	33
Tabla 8.	Valores de coeficiente K para ampliación gradual	34
Tabla 9.	Valores de coeficiente K para reducción súbita	35
Tabla 10.	Valores de coeficiente K para reducción gradual	36
Tabla 11.	Valores de coeficiente K para codos	37
Tabla 12.	Valores de coeficiente K para bifurcaciones a 45° y 90°	38
Tabla 13.	Valores de coeficiente K para uniones a 45º	40
Tabla 14.	Longitudes equivalentes para tubería de PVC con D=0.15m	43
Tabla 15.	Longitudes equivalentes para tubería de PVC con D=0.30m	44
Tabla 16.	Longitudes equivalentes para tubería de PVC con D=0.50m	44
Tabla 17.	Longitudes equivalentes para tubería de PVC con D=1.00m	44
Tabla 18.	Valores de <i>longitudes equivalentes</i> para diversos accesorios	45

Capítulo 3. Pérdidas menores en cruces de tuberías

Tabla 19. Valores de coeficiente K para cruces de tuberías.	50
---	----

Capítulo 4. Modelo experimental e instrumentación

Tabla 20. Diámetros empleados, valores nominales y reales.	60
Tabla 21. Combinación de gastos en los tramos para alimentación doble	61
Tabla 22. Combinación de gastos en los tramos para alimentación simple	61

Capítulo 5. Análisis de resultados

Tabla 23. Ecuaciones de ajuste para los coeficientes de pérdidas K para 13, 19 y 25mm.	71
Tabla 24. Ecuaciones de ajuste unificadas para los <i>coeficientes de pérdidas K</i> para 13, 19 y 25mm	73
Tabla 25. Ecuación de ajuste unificada para el <i>coeficientes de pérdidas K</i> para 13, 19 y 25mm	74
Tabla 26. Ecuaciones de ajuste para los <i>coeficientes de pérdidas K2 y K3</i> para <i>cruces</i> de 13 y 19mm	83
Tabla 27. Ecuaciones de ajuste para <i>K2 y K3</i> unificados para <i>cruces</i> de 13, 19 y 25mm	85
Tabla 28. Ecuaciones de ajuste para K_{\perp} para <i>cruces</i> de 13, 19 y 25mm	87

Pág.

RESUMEN

Como resultado de la presente Tesis se establecieron una serie de expresiones para estimar los coeficientes de pérdidas locales ó menores en las salidas de cruces de tuberías, en función de las proporciones de los números de Reynolds de algunas entradas y salidas del cruce. Con el fin de obtener la información necesaria, se construyó un modelo físico experimental en uno de los laboratorios del Instituto de Ingeniería de la Universidad Nacional Autónoma de México. El modelo, construido en PVC, permitía el uso de cruces de cinco diámetros diferentes (de 13 a 38mm) y la variación de los flujos, tanto en las entradas como en las salidas del accesorio. Se recolectaron datos de gastos y presiones en los cuatro lados de los cruces. Las presiones fueron medidas en puntos ubicados a longitudes de diez veces el diámetro de la tubería estudiada. Un total de 168 pruebas fueron desarrolladas variando diámetros y gastos. Se estudiaron dos tipos de flujo diferentes: en uno, dos tramos adyacentes alimentaban el cruce, para luego salir por los otros dos tramos; en el otro, el gasto que entraba por un único tramo se dividía en gastos menores que salían por los tres tramos restantes. En general, las relaciones obtenidas representaron adecuadamente la tendencia de las mediciones de laboratorio. Adicionalmente, se construyeron gráficos para la determinación visual de los coeficientes K, en función de los gastos de entrada y de salida de los cruces, para tres de los cinco diámetros estudiados y los dos casos de flujo considerados.

Palabras clave: pérdidas locales, pérdidas de energía, cruces, tuberías.

ABSTRACT

Some expressions have been developed to estimate the *minor-loss coefficients in* outlet lines of cross junctions, also known as *energy-loss coefficients* or just *K-factors*. In order to gain information, a PVC experimental model was built in a laboratory of Instituto de Ingeniería of Universidad Nacional Autónoma de México. A total of five diameters were used to modify the geometric characteristics ($\frac{1}{2}$ " to 1 $\frac{1}{2}$ "). Two flow cases have been considered: first, the entrance flow to the cross junction was through two adjacent branches and then expelled through the other two; second, the entrance ocurred through only one branch and then was expelled through the other three branches. Flow rates and pressures in each branch of the cross junction were measured each time. Pressure transducers were installed in the four pipes, in points located ten times the pipe diameter from the cross. A total of 168 tests were carried out. In general, the found expressions represent a good approximation of the data collected. Furthermore, a graphical method for the determination of K-factors is provided.

Keys: minor losses, energy losses, cross junctions, pipes.

INTRODUCCIÓN

A más de ciento cincuenta años desde que el mundo científico conoció los primeros estudios sobre las pérdidas de carga por fricción en conductos cerrados, nadie conserva alguna duda acerca de la importancia que ellas tienen en el diseño y concepción, a toda escala, de los mismos. Tanto así, que a ningún diseñador en sus cinco sentidos se le ocurriría prescindir de la estimación de éstas en cualquier tipo de proyecto: desde la extensa longitud de tuberías del acueducto de una gran metrópoli; pasando por las intrincadas redes de distribución de agua potable en ciudades y poblaciones; el oleoducto que atraviesa grandes extensiones de un país; las redes de irrigación de cultivos y campos; hasta las pequeñas redes de acueducto de unidades habitacionales, edificios, hospitales ó, incluso, de una pequeña casa.

Ahora bien, tan negligente como omitir *a priori* las pérdidas de carga ocasionadas por la fricción en cualquiera de estos proyectos, lo sería también el desestimar las pérdidas que pueden ocasionar los múltiples accesorios empleados en algunas redes de flujo a presión, y que pueden llegar a ser tanto o más importantes que las primeras.

Por mencionar algunos casos, las tomas domiciliarias en general, contienen gran cantidad de válvulas y accesorios que reducen la carga disponible en la acometida del acueducto de abastecimiento; asimismo, los emisores de inserción en los sistemas de riego por goteo, implican pérdidas importantes, sobre todo en redes pequeñas o puntos alejados del sitio de toma; en general, las redes de agua potable de viviendas y edificios contienen, necesariamente, continuos cambios de alineamiento de la tubería, ramificaciones, válvulas y otros tantos accesorios, que afectan el óptimo funcionamiento de la red.

Aunque la práctica común puede llevar a pensar que dichas pérdidas de carga podrían ser despreciadas, o representadas como un pequeño porcentaje de las longitudinales, el hecho es que,

en conjunto, la suma de todas ellas podría representar un porcentaje mucho mayor al que usualmente se cree.

Adicionalmente, el continuo crecimiento de las poblaciones, y aún, de las grandes ciudades, lleva consigo una reducción de la carga disponible en la acometida de las redes domiciliarias, que pueden representar, a mediano ó corto plazo, el incumplimiento del límite mínimo de presión de servicio en algunas de las salidas de la red. Esto, por no mencionar las afectaciones que pudieran llegar a producir las fluctuaciones en la demanda horaria del líquido.

Ciudades costeras, de llanura o en valles muy extensos, como es el caso del Valle de México, en los que el suministro directo de agua está prácticamente descartado, haciendo necesario el empleo de tinacos y tanques para alimentación por gravedad en las viviendas, y de sistemas de bombeo en edificaciones de altura, hacen plausible la necesidad de considerar las pérdidas locales ó menores en los diseños, de modo que los sistemas de suministro puedan trabajar en condiciones mínimas de confort y servicio.

Ahora bien, para que ello sea posible, es necesario el análisis detallado de los accesorios y elementos que producen este fenómeno. Gracias a los estudios de muchos investigadores, llevados a cabo desde muchas décadas atrás, actualmente se cuenta con una buena cantidad de información al respecto. La gran mayoría de los accesorios han sido estudiados y pueden encontrarse, con mayor o menor precisión, los *coeficientes de pérdidas locales* que los representan.

Existe un grupo de accesorios sobre el cual ha recaído el interés en las últimas décadas: es el grupo al que pertenecen aquellos elementos en los cuales convergen/divergen dos o más flujos. Las *tees*, las *yees y* los *cruces*, hacen parte de él. El grueso de los estudios se ha concentrado en los dos primeros, conocidos también como *bifurcaciones*, por el hecho de dividir un flujo principal en *dos* flujos secundarios. No mucho se sabe acerca de *los cruces*, y lo poco que se ha indagado, corresponde al caso conocido como *trifurcación* (un flujo principal que se divide en *tres* flujos más pequeños). Esto representa una gran carencia, si se tiene en cuenta que dichos accesorios empiezan a ser muy utilizados en el medio constructivo, precisamente en redes pequeñas, donde su influencia sobre la *energía* del flujo puede llegar a ser importante.

Partiendo de este hecho, se creyó pertinente y valioso llevar a cabo una investigación que permitiera subsanar dicha carencia de información, obteniendo como resultado, una serie de relaciones y gráficas, que permitieran estimar las *pérdidas de energía* que se producen en los *cruces*

de tuberías, para una condición diferente a la de una *trifurcación*. Todo el proceso de dicha investigación se recapitula en la presente Tesis de Maestría.

El primer capítulo aborda temas fundamentales de la teoría de Mecánica de Fluidos, y que representan la base sobre la que se apoya toda la investigación. Es un breve vistazo a las leyes e hipótesis que se emplean en el desarrollo del trabajo. El tema de las pérdidas menores o locales en conductos cerrados es tratado en el segundo capítulo; en él, se hace un repaso general de la teoría del cálculo de las mismas y se presentan los coeficientes de pérdidas menores, K, para los accesorios más comunes. El capítulo tres contiene información puntual sobre el uso de los cruces de tuberías, así como un breve recorrido cronológico que revela los estudios hechos, hasta la fecha, sobre los mismos. La descripción del modelo físico construido para la recolección de datos, aparece detallada en el capítulo cuatro. El capítulo cinco, el más extenso de todos, muestra el proceso de análisis al que fueron sometidos los datos tomados en el laboratorio, y que llevaron a la obtención de las relaciones indicadas en el mismo. Adicionalmente, contiene una serie de gráficas que posibilitan la estimación de los coeficientes K, para varias condiciones de flujo en cruces. Finalmente, en el capítulo seis, se presentan las conclusiones a las que se llegó una vez terminado el proceso de análisis, así como un conjunto de aclaraciones y recomendaciones, encaminadas a garantizar el adecuado uso de los resultados aquí obtenidos, y a indicar el rumbo hacia el cual encaminar nuevos posibles temas de investigación.

1. FUNDAMENTOS TEÓRICOS

Objetivo del capítulo:

Describir los conceptos fundamentales en los que se basa el estudio y análisis de las redes hidráulicas a presión. Se plantean los componentes básicos, tipos de redes, concepto de energía de flujo y pérdidas de energía.

1.1. INTRODUCCIÓN

Se entiende por *red hidráulica a presión* como aquel sistema de conductos cerrados, encargado del transporte y distribución de un fluido, usualmente agua, desde uno o varios puntos de abastecimiento hasta otros puntos de entrega o de consumo, a través de un sistema de tuberías que se mantienen completamente llenas de líquido.

La red deberá estar diseñada de tal forma que se satisfagan las demandas o necesidades para las cuales se concibió, de manera que cumpla con algunas condiciones de funcionamiento y operatividad.

1.2. MODELO TEÓRICO DE UNA RED HIDRÁULICA A PRESIÓN

Con el *modelo teórico* se pretende conformar una versión simplificada de un sistema real, de tal forma que permita establecer una serie de relaciones físicas y matemáticas, de origen preferiblemente teórico. Con ello se describe y predice adecuadamente el comportamiento del sistema.

Un *modelo* adecuado para representar una red hidráulica a presión consiste en un conjunto de líneas y puntos topológicamente coherente con las condiciones de abastecimiento y demanda que se poseen realmente. Las líneas representarían las *tuberías*, caracterizadas a su vez por un tipo de material, longitud, diámetro, espesor de pared y rugosidad interna. Los puntos corresponderían a los *nodos* (*o nudos*) de la red, y pueden ser de abastecimiento (entra fluido), de entrega (sale fluido), o simplemente de conexión.

Adicionalmente a las *tuberías* y a los *nodos*, existen otros elementos en las redes que, bajo ciertas condiciones, pueden llegar a tener cierta importancia en el comportamiento del sistema. Cambios de dirección, bifurcaciones, cruces, ampliaciones o reducciones de sección, válvulas, medidores de flujo, bombas, entre otros, conforman este conjunto de elementos.

Por otra parte, con el fin de llegar a la descripción teórica del funcionamiento de una red a presión, que lleve a deducir las ecuaciones que lo rigen, es necesario también adoptar una serie de hipótesis que reduzcan las complicaciones del problema. Atendiendo a este concepto, se enuncian a continuación las principales hipótesis simplificativas para el análisis hidráulico del flujo a presión a través de tuberías:

- ✓ Flujo permanente.
- Flujo unidimensional en el sentido del eje de la conducción.
- ✓ Distribución uniforme de velocidades y presiones en cualquier sección del conducto.
- ✓ Fluido incompresible, newtoniano y de características homogéneas.

En la realidad, el flujo no se desarrolla en *régimen permanente* en casi ninguna ocasión, pero cuando los cambios en el tiempo son de pequeña magnitud o se desarrollan muy lentamente, la primera hipótesis resulta apropiada. De igual forma, las hipótesis restantes se acercan bastante a la realidad y representan de manera adecuada las características, tanto del flujo como del fluido tratado.

1.3. ECUACIONES QUE DESCRIBEN EL FLUJO EN TUBERÍAS

Independiente de la topología de la red y de las características propias de cada elemento que la compone, la distribución de los flujos de líquido a través de ella está regida por algunas leyes físicas. Con ellas se determinan los gastos en cada tubería, para un estado de consumos y de alimentación dados, y las cargas de presión en sus extremos. A continuación, se mencionarán las

ecuaciones generales que representan el comportamiento del flujo a través de una red de tuberías a presión.

1.3.1. Ecuación de Continuidad.

Partiendo de una de las ecuaciones de Saint-Venant, que para el caso de una sola dimensión y fluido incompresible no permanente sería:

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0$$
 [1a]

Puede establecerse una relación matemática más sencilla, bajo la hipótesis de que el flujo no cambia con el tiempo, es decir, que es permanente:

$$\frac{\partial Q}{\partial x} = 0$$
 [1b]

$$\frac{\partial(VA)}{\partial x} = 0$$
 [1c]

$$VA = C$$
[1d]

$$Q = V_a A_a = V_b A_b$$
 [1e]

donde Q representa el gasto que fluye por la conducción; $V_a y V_b$, son las velocidades medias en las secciones extremas a y b del volumen de control, C es una constante, $y A_a y A_b$ son las áreas transversales respectivas.

Cabe aclarar que en condiciones normales, una red hidráulica que funciona a presión (y por lo tanto a tubo lleno), puede estar sometida a constantes variaciones de gasto, tal como sucede en las redes de distribución de agua potable, donde la demanda del líquido varía de un instante a otro. Sin embargo, la suposición de flujo permanente puede tomarse como válida con el fin de simplificar la modelación y análisis de las redes.

En términos más sencillos, la ecuación de continuidad dice que la masa que entra a un volumen de control definido, en la unidad de tiempo, debe ser igual a la que sale (flujo permanente y fluido incompresible). O que el *gasto* que entra debe ser igual al *gasto* que sale.

1.3.2. Ecuación de Energía.

La ecuación de energía, determina la energía por unidad de peso de un fluido en determinado punto sobre el eje de una conducción. Para un fluido no compresible, la energía total E_T , en cualquier punto, se cuantifica como:

$$E_T = z + \frac{p}{\gamma} + \frac{\alpha V^2}{2g}$$
[2a]

donde z es la cota geométrica con respecto a un nivel de referencia o *energía potencial por unidad de peso de fluido; p/* γ representa la carga de presión del fluido, expresada habitualmente como presión relativa o manométrica o *energía de presión por unidad de peso de fluido*, y en donde γ corresponde al peso específico del fluido; y $\alpha V^2/2g$ es la carga de velocidad del fluido o *energía cinética por unidad de peso de fluido*. En este último término, v representa la velocidad media en la sección transversal, g la aceleración de la gravedad de la tierra y α es el *coeficiente de Coriolis*, empleado para corregir el efecto de considerar la velocidad media.

A cada uno de los términos del lado derecho que intervienen en la ecuación 2a se les refiere como energía, altura, carga ó cabeza, indistintamente. A la suma de los términos que representan la energía potencial (cota geométrica) y la energía de presión, se les conoce como altura piezométrica. Una revisión simple de las dimensiones de la ecuación de energía, permite verificar que las magnitudes resultantes vienen dadas en unidades de longitud [L]. Lo más común en Latinoamérica es expresar tales valores en metros columna de agua (mca).

$$z \leftrightarrow [L]$$
 [2b]

$$\frac{p}{\gamma} \leftrightarrow \begin{bmatrix} F/L^2 \\ F/L^3 \end{bmatrix} = \begin{bmatrix} L \end{bmatrix}$$
[2c]

$$\frac{\alpha V^2}{2g} \leftrightarrow \frac{\left[(L/T)^2 \right]}{\left[L/T^2 \right]} = \left[L \right]$$
[2d]

La ecuación 2a, también conocida como *ecuación de Bernoulli*, permite medir la energía de un fluido en una sección determinada de una conducción, pero también permite realizar balances de energía entre dos puntos distintos de la misma. En un caso ideal, la energía total de un fluido debería permanecer constante a lo largo de todo su recorrido, sufriendo únicamente transformaciones de una forma a otra (cinética a potencial, potencial a de presión o cualquier otra combinación); sin embargo, debido a factores como el rozamiento del fluido con las paredes rugosas del interior de la conducción, reducciones o ampliaciones de la sección de la misma o a la presencia de válvulas u otros elementos, parte de esa energía se transforma en calor que no se aprovecha, por lo que se dice que se "pierde"; de este modo, es necesario incluir un nuevo término en el balance. Así, entre dos secciones a y b de una conducción:

$$Z_a + \frac{p_a}{\gamma} + \frac{\alpha V_a^2}{2g} = Z_b + \frac{p_b}{\gamma} + \frac{\alpha V_b^2}{2g} + h_{ab}$$
^[3]

donde h_{ab} es el término que toma en cuenta las pérdidas de energía entre ambas secciones, sean debidas a la fricción a lo largo de la longitud de la tubería o a elementos localizados en su recorrido. La Figura 1 muestra los términos de la ecuación 3 para los puntos extremos a y b de una tubería. A ella se le denomina *ecuación de conservación de energía* o simplemente, *ecuación de la energía*.

Figura 1. Representación gráfica del balance de energía entre dos secciones.

1.3.3. Pérdidas de energía.

Son numerosas las expresiones que permiten encontrar un valor aproximado para las pérdidas de energía h_{ab} , también llamadas pérdidas de carga. Como se mencionó, tales pérdidas suelen categorizarse en dos grupos principales: las producidas por el rozamiento del fluido con la superficie interna del tubo, conocidas como *pérdidas longitudinales o de fricción* (h_f); y las producidas por elementos localizados, conocidas como *pérdidas locales o menores* (h_L). Es bueno recordar que, aunque suele denominarse a la pérdida de carga como pérdida de energía, nunca sucede tal pérdida, lo que pasa es que parte de la energía disponible se disipa bajo la forma de calor (más importante en el flujo de gases que en el de líquidos).

A continuación se presentan las expresiones más empleadas para estimar las pérdidas longitudinales. Respecto a las pérdidas locales, por ser el tema principal de esta tesis, se dedicará el capítulo siguiente.

a. Ecuación de Darcy-Weisbach:

Propuesta por Weisbach a mediados del siglo XIX y modificada posteriormente por Darcy, es tal vez la expresión más recomendada debido a que, aparte de gozar de homogeneidad dimensional y de tener bases teóricas, considera las condiciones del régimen en qué se desarrolla el flujo: laminar, de transición o turbulento. Puede llegarse a ella mediante análisis dimensional [Azevedo, 1973]. La expresión general es la siguiente:

$$h_f = f \frac{L}{D} \frac{V^2}{2g}$$
[4a]

donde f es el factor de fricción [adimensional]; L es la longitud del tramo considerado [L]; D es el diámetro interior de la tubería [L]; V es la velocidad media de circulación del líquido, [L/T]; y g es la aceleración de la gravedad [L/T²]. También puede expresarse en términos del gasto que fluye, teniendo en cuenta que Q=VA. De esta forma:

$$h_f = \left(\frac{8fL}{\pi^2 g D^5}\right) Q^2$$
 [4b]

El *factor de fricción f*, o *coeficiente de Darcy*, es un factor adimensional que depende básicamente del tipo de flujo que se desarrolla dentro de la tubería, representado por el número adimensional de Reynolds, Re, y de la relación entre el diámetro interior y la rugosidad de la misma. Se recuerda que Re está definido como:

$$\operatorname{Re} = \frac{VD}{V} = \frac{4Q}{\pi D V}$$
[5]

donde V es la velocidad media de circulación del líquido por la tubería, [L/T]; D es el diámetro interior de la misma, [L]; y ν es la viscosidad cinemática del líquido a la temperatura de servicio, [L²/T]. Para el caso del agua $\nu = 1.0 \times 10^{-6} \text{ m}^2/\text{s}$ a una temperatura de 20°C.

Consideraciones acerca del factor de fricción f

Igual que para el caso de las pérdidas de carga, existen numerosas expresiones, gráficas, ábacos y tablas que permiten estimar el valor del factor de fricción f de Darcy.

En la década de los años 30 del siglo XX, *Nikuradse* dio a conocer los resultados de una gran cantidad de experimentos que desarrolló sobre tuberías a las que proporcionó rugosidades artificiales con arena de diferente tamaño, consiguiendo rugosidades relativas e/D desde 1/30 hasta 1/1,024. A partir de los resultados obtenidos, *Nikuradse* obtuvo una gráfica semejante a la mostrada en la Figura 2, en la que se grafica el factor de fricción f contra el valor del número de Reynolds Re, para varios valores de e/D, en escala logarítmica para ambos ejes.

Figura 2. Gráfica del experimento de Nikuradse sobre tuberías de rugosidad artificial.

Los resultados a los que llegó Nikuradse mediante sus rugosidades artificiales, permitieron corroborar algunas conclusiones obtenidas por investigadores previos a él. A continuación se

mencionan las principales, para los tipos de flujo *laminar*, *turbulento y de transición*, clasificación basada en la viscosidad del fluido.

Flujo Laminar. Caracterizado porque las partículas se mueven siguiendo trayectorias separadas, casi paralelas, bien definidas y sin que exista movimiento en la dirección transversal al flujo. Numéricamente, está limitado por un valor crítico del número de Reynolds, Re_{crít}, que casi la totalidad de los autores ubican dentro del intervalo [2,000 - 2,300].

Particularmente, se tomará como Reynolds crítico, $Re_{crít} = 2,000$. La Figura 3 muestra un esquema idealizado de este tipo de flujo.

Figura 3. Esquema de flujo laminar en un tramo recto.

En esta zona se aplica la ecuación conocida como de *Hagen-Poiseuille*, por haber sido determinada experimentalmente de manera independiente por ambos autores hacia 1840, pese a haber sido deducida de manera analítica por Wiedermann en 1856 [Azevedo, 1976]. Ella es:

$$h_f = \frac{128\nu LQ}{\pi D^4 g}$$
[6a]

Mediante algunas transformaciones algebraicas simples puede convertirse en:

$$h_f = \frac{64}{\text{Re}} \frac{L}{D} \frac{V^2}{2g}$$
[6b]

Y al compararla con la ecuación de Darcy-Weisbach (ecuación 4a), se concluye que:

$$f = \frac{64}{\text{Re}}$$
[6c]

Este tipo de flujo se presenta con poca frecuencia en la realidad, sobretodo en el caso del agua que posee una viscosidad relativamente baja ($v = 1.01 \times 10^{-6} m^2/s$ para una temperatura de 20°C). Es un poco más común en fluidos más viscosos.

Flujo Turbulento. Se caracteriza por el movimiento errático que siguen las partículas, presentándose movimientos en dirección transversal a la del flujo. A este tipo corresponden todos los flujos cuyo Re > 4,000. En la figura 4 se ilustra este tipo de régimen.

Figura 4. Esquema de flujo turbulento en un tramo recto.

Se distinguen tres tipos de flujo turbulento: uno, denominado *flujo turbulento hidráulicamente liso*, otro de *transición o intermedio* y el tercero, *rugoso*. Dichas denominaciones están relacionadas con el comportamiento de la tubería de acuerdo a la rugosidad relativa de la misma y por ello, el sufijo, suele asociarse también a la tubería; es decir, tubería *hidráulicamente lisa, de transición* ó *intermedia* y *rugosa*.

En el primer caso, *el flujo turbulento hidráulicamente liso*, el valor del factor de fricción no se ve afectado por la rugosidad de la tubería, variando únicamente con el valor del número de Reynolds, comportándose como si fuera prácticamente liso en su interior. En la segunda década del siglo XX y basándose en experimentos de otros investigadores, Blasius sugirió la siguiente expresión:

$$f = \frac{0.3164}{\text{Re}^{0.25}}$$
[7]

con validez dentro del intervalo 4,000 $\leq \text{Re} \leq 100,000$.

De igual forma, Prandtl, basado en experimentos propios y otros cuantos de Karman [Bhave, 2006], sugirió la siguiente expresión:

$$\frac{1}{\sqrt{f}} = 2Log\left(\operatorname{Re}\sqrt{f}\right) - 0.8$$
[8a]

que también puede ser escrita de la siguiente forma:

$$\frac{1}{\sqrt{f}} = -2Log\left(\frac{2.51}{\operatorname{Re}\sqrt{f}}\right)$$
[8b]

La ventaja de la ecuación 7 es que es explícita para la variable *f*, lo que no sucede con la ecuación 8, que por ser implícita debe resolverse mediante algún método iterativo. Pese a esto, métodos numéricos para solución de ecuaciones no lineales, como el de *punto fijo* [Nakamura, 1992], proporcionan rápida convergencia después de pocas iteraciones.

Dentro del rango de Re planteado para este tipo de flujo, las diferencias entre usar una u otra expresión, están por debajo del 3%. La Tabla 1 reporta algunos de los valores de f calculados usando las ecuaciones 7 y 8, así como la diferencia en porcentaje respecto a la primera de ellas.

Re [adim.]	f según Blasius [Ec.5]	f según Prandtl [Ec.6]	Diferencia (%)
4,000	0.0398	0.0399	0.3
8,000	0.0335	0.0328	2.0
16,000	0.0281	0.0274	2.8
32,000	,000 0.0237 0.02		2.2
64,000	0.0199	0.0198	0.5
100,000	0.0178	0.0180	1.1

Tabla 1. Comparación de expresiones para flujo turbulento hidráulicamente liso.

Para el caso de *flujo turbulento hidráulicamente rugoso*, correspondiente a la zona ubicada a la derecha de la línea punteada del *diagrama de Nikuradse* (figura 2), Prandtl determinó la siguiente expresión:

$$\frac{1}{\sqrt{f}} = 1.14 - 2Log\left(\frac{e}{D}\right)$$
[9a]

en ella, e representa la rugosidad absoluta de la tubería, en ocasiones representada por k, [L] y D es el diámetro interior de la tubería, [L]. También puede escribirse como:

$$\frac{1}{\sqrt{f}} = -2Log\left(\frac{e/D}{3.71}\right)$$
[9b]

Finalmente, para el caso intermedio conocido como *flujo turbulento de transición o intermedio*, se emplea la ecuación de Colebrook-White:

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{e/D}{3.71} + \frac{2.51}{\operatorname{Re}\sqrt{f}}\right)$$
[10]

Esta última es aplicable a tubos lisos, semirugosos y rugosos, y, por el ámbito de su aplicación, se trata de una fórmula universal. La única excepción corresponde a la circulación laminar (Re< 2,000) en la que se debe usar la *fórmula de Poiseuille* (ecuación 6c). Como en el caso de la ecuación de Prandtl para *flujo turbulento hidráulicamente liso*, se observa que la ecuación 10 es una función implícita para f y debe, por lo tanto, resolverse mediante aproximaciones sucesivas. De igual forma que en aquel caso, el método de *punto fijo* [Nakamura, 1992] represente una buena opción para solucionarla.

Flujo de Transición. Comprendido por los flujos cuyo número de Reynolds está entre los valores 2,000 < Re < 4,000. En otras palabras, el régimen de transición está limitado por los regímenes laminar y turbulento. Para estimar el factor de fricción en esta zona suele usarse la ecuación de Colebrook-White (ecuación 10).

Es de uso común que los valores de la *rugosidad absoluta* 'e' estén en milímetros cuando se trabaja en el Sistema Internacional de Unidades. Como es de esperarse, ésta varía de acuerdo con el material con que esté fabricada la tubería y con el nivel de su acabado interior. Algunos valores de 'e', tomados de *Sotelo* (1999), se muestran en la Tabla 2.

Algunas expresiones explícitas para estimar el factor de fricción f

Pese a que a partir de la ecuación de *Poiseuille* para *flujo laminar* (ecuación 7) y de la de *Prandtl* para *flujo turbulento hidráulicamente rugoso* (ecuación 9a), se puede obtener el valor del factor de fricción directamente, las ecuaciones de Prandtl para *flujo turbulento hidráulicamente rugoso* (ecuaciones 8a y 8b), y la más general ecuación de Colebrook-White (ecuación 10), deben resolverse mediante algún método iterativo como ya se mencionó previamente. Por esta razón, múltiples investigadores han

establecido algunas expresiones explícitas para aquellas condiciones de flujo. A continuación se mencionan algunas de ellas.

Material	e (mm)
Vidrio, latón, plástico, hule, madera bien cepillada	0.0015
Hierro fundido (nuevo)	0.25
Hierro fundido (oxidado)	1.00 - 1.50
Hierro fundido (con incrustaciones)	1.50 - 3.00
Hierro fundido con bridas o juntas macho y campana (nuevo)	0.15 - 0.30
Hierro fundido con bridas o juntas macho y campana (usado)	2.00 - 3.50
Hierro galvanizado	0.15
Acero soldado con una mano interior de pintura (nuevo)	0.0015
Acero soldado (nuevo)	0.05 - 0.10
Acero soldado (limpiado después de mucho uso)	0.15 - 0.20
Acero soldado (moderadamente oxidado, pocas incrustaciones)	0.40
Acero soldado (moderadamente oxidado, muchas incrustaciones)	3.00
Asbesto-cemento (nuevo)	0.025
Asbesto-cemento (con protección interior de asfalto)	0.0015
Concreto con acabado liso	0.025
Concreto con acabado normal	1.00 - 3.00
Concreto con acabado rugoso	10.00
Cemento liso	0.30 - 0.08
Cemento no pulido	1.00 - 2.00

Tabla 2. Valores de la *rugosidad absoluta - e -* para diferentes tipos de tuberías.

Para el caso de *flujo turbulento hidráulicamente liso*, en 1965 Techo, Tickner y James, sugirieron la siguiente expresión:

$$\frac{1}{\sqrt{f}} = 0.86859 \ln\left(\frac{\text{Re}}{1.964 \ln(\text{Re}) - 3.8215}\right)$$
[11]

Años más tarde, en 1985, Chen propuso la siguiente relación:

$$\frac{1}{\sqrt{f}} = 2\log\left(\frac{4.52}{\text{Re}}\log\left(\frac{\text{Re}}{7}\right)\right)$$
[12]

En la Tabla 3 se calculan los valores de f y se comparan con los encontrados con las fórmulas de *Poiseuille* y *Prandtl*, y que se reportaron en la Tabla 1.

Re	Blasius	Pra	ndtl	Techo, Tickn	ier y James	Ch	en
[adim]	f [Ec.5]	f [Ec.6]	Dif. (%)	f [Ec.11]	Dif. (%)	f [Ec.12]	Dif. (%)
4,000	0.0398	0.0399	0.3	0.0398	0.0	0.0398	0.0
8,000	0.0335	0.0328	2.0	0.0328	2.1	0.0328	2.1
16,000	0.0281	0.0274	2.8	0.0274	2.7	0.0274	2.7
32,000	0.0237	0.0231	2.2	0.0231	2.1	0.0231	2.2
64,000	0.0199	0.0198	0.5	0.0198	0.4	0.0198	0.5
100,000	0.0178	0.0180	1.1	0.0180	1.2	0.0180	1.2

Tabla 3. Comparación de los resultados de expresiones explícitas para flujo turbulento hidráulicamente liso.

Cuando se trata de *flujo turbulento de transición o hidráulicamente intermedio*, Moody recomendó en 1944 la siguiente expresión:

$$f = 0.0055 \left[1 + \left(20,000 \frac{e}{D} + \frac{10^6}{\text{Re}} \right)^{1/3} \right]$$
[13]

válida para 4,000 < Re < 10^7 y (e/D) < 0.01. En 1966, Wood sugirió:

$$f = 0.094 \left(\frac{e}{D}\right)^{0.225} + 0.53 \left(\frac{e}{D}\right) + 88 \left(\frac{e}{D}\right)^{0.44} \operatorname{Re}^{-1.62 \left(\frac{e}{D}\right)^{0.134}}$$
[14]

efectiva para Re > 10,000 y $10^{-5} < (e/D) < 4x10^{-2}$. Hacia 1972, Barr encontró:

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{e/D}{3.7} + \frac{5.15}{\text{Re}^{0.892}}\right)$$
[15]

modificándola posteriormente, en 1975, por la siguiente:

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{e/D}{3.7} + \frac{5.1286}{\text{Re}^{0.89}}\right)$$
[16]

Un año más tarde, en 1976, Jain propuso:

$$\frac{1}{\sqrt{f}} = 1.14 - 2\log\left(\frac{e}{D} + \frac{21.25}{\text{Re}^{0.9}}\right)$$
[17]

Simultáneamente, unido con Swamee, Jain publicó también la siguiente expresión:

$$f = \frac{0.25}{\left[\log\left(\frac{e/D}{3.7} + \frac{5.74}{\text{Re}^{0.9}}\right)\right]^2}$$
[18]

Con validez para $5,000 < \text{Re} < 10^8$ y $10^{-6} < (e/D) < 10^{-2}$. En el año de 1977, Churchill propuso:

$$\frac{1}{\sqrt{f}} = -2\log\left[\frac{e/D}{3.7} + \left(\frac{7}{\text{Re}}\right)^{0.9}\right]$$
[19]

para $4,000 < \text{Re} < 10^8$ y $0 < (e/D) < 5x10^{-2}$. Es bueno aclarar que las ecuaciones 17 y 19 pueden ser llevadas a la forma de la ecuación 18 de Swamee y Jain, que es tal vez la más difundida de todas éstas, obteniendo prácticamente la misma expresión, variando sólo el coeficiente 5.74 por 5.72 y 5.76 respectivamente.

En la década de los 80, más precisamente en 1982, Zigrang y Sylvester encontraron la expresión:

$$\frac{1}{\sqrt{f}} = -2\log\left\{\frac{e/D}{3.7} - \frac{5.02}{\text{Re}}\log\left[\frac{e/D}{3.7} - \frac{5.02}{\text{Re}}\log\left(\frac{e/D}{3.7} + \frac{13}{\text{Re}}\right)\right]\right\}$$
[20]

La cual, pese a su aparente complejidad, proporciona gran precisión para valores de 4,000 < $\text{Re} < 10^8$ y 0 < (e/D) < 5x10⁻². Para estos mismos intervalos, en 1983, Haaland sugirió:

$$\frac{1}{\sqrt{f}} = -1.8 \log \left[\left(\frac{e/D}{3.7} \right)^{1.11} + \frac{6.9}{\text{Re}} \right]$$
[21]

Chen propuso en 1985, con los mismos rangos de aplicación de las ecuaciones 20 y 21, la siguiente expresión:

$$\frac{1}{\sqrt{f}} = -2\log\left[\frac{e/D}{3.7} + \frac{4.52}{\text{Re}}\log\left(\frac{\text{Re}}{7}\right)\right]$$
[22]

Para el caso de *flujo turbulento hidráulicamente rugoso*, en el año 2008, Valiantzas propuso algunas expresiones para estimar *f* con el fin de transformar la ecuación de *Darcy-Weisbach* en una de tipo potencia como la de *Manning* (Valiantzas, 2008). Ellas son:

$$f = 0.18 \left(\frac{e}{D}\right)^{1/3}$$
[23]

En el intervalo 0.001 < (e/D) < 0.05. O con mayor precisión, para el intervalo 0.001 < (e/D) < 0.02, la siguiente:

$$f = 0.152 \left(\frac{e}{D}\right)^{0.30}$$
 [24]

Finalmente, aplicable a todos los tipos de flujo, Churchill sugirió en 1977:

$$f = 8 \left[\frac{1}{\left(A+B\right)^{3/2}} + \left(\frac{8}{\text{Re}}\right)^{12} \right]^{1/12}$$
[25a]

donde:

$$A = \left[2.457 \ln \frac{1}{\left(\frac{7}{\text{Re}}\right)^{0.9} + \left(\frac{0.27e}{D}\right)} \right]^{16} \qquad B = \left(\frac{37,530}{\text{Re}}\right)^{16}$$
[25b]

De igual complejidad han sido propuestas otras tantas, como las de Romeo *y otros* [Romeo *et al*, 2002], Yoo y Singh [Yoo y Singh, 2004], Nian-Sheng Cheng [Nian-Sheng Cheng, 2008], o la de Koutsoyiannis [Koutsoyiannis, 2008]; sin embargo, en la práctica, cualquiera de las expresiones más sencillas, como las propuestas por Barr (ecuación 16), Jain (ecuación 17), Swamee y Jain (ecuación 18), Churchill (ecuación 19), Haaland (ecuación 21) y Chen (ecuación 22) pueden ser usadas sin incurrir en grandes errores.

En este trabajo se recomienda el uso de la ecuación de Swamee y Jain (ecuación 18), debido a su gran precisión y a que es una de las más difundidas en el medio.

Vale la pena mencionar que existen otros tantos diagramas y ábacos, mediante los cuales es relativamente fácil determinar el valor de *f*, siendo tal vez el más difundido de ellos, el *Diagrama de Moody*, que se muestra en la Figura 5.

Figura 5. Diagrama Universal de Moody [Sotelo, 1999].

b. Ecuación de Manning:

Presentada a finales del siglo XIX [Chow, 1994], de carácter empírico, es más usada en flujo a superficie libre, aunque también se ha generalizado su uso en flujo a presión. Involucra un factor de rugosidad, n, al que suele denominarse *coeficiente de rugosidad de Manning*, y que se encuentra tabulado para gran variedad de materiales en la mayoría de libros del tema [Chow, 1994; Sotelo, 1999]. La expresión es la siguiente:

$$V = \frac{1}{n} R_H^{2/3} S^{1/2}$$
 [26]

donde V es la velocidad de flujo del líquido en [m/s]; n es el coeficiente de rugosidad de Manning¹; R_H es el radio hidráulico de la sección, que para el caso de secciones circulares es igual a D/4 (D: diámetro de la tubería en [m]); y S es la pendiente del lecho en el caso de canales y la pendiente friccionante para el caso de tuberías (también conocida como pérdida unitaria de carga: $S=J=h_f/L$) en [m/m]. Ambas equivalentes bajo la suposición de flujo uniforme.

Si se despejara h_f de la ecuación 26, la expresión para estimar las pérdidas de carga por fricción resultante, sería:

$$h_f = \frac{10.2936 \, n^2 L}{D^{16/3}} Q^2 \tag{27}$$

con L en [m], Q en [m³/s] y los demás factores con las unidades mencionadas antes.

Algunos valores del *coeficiente de rugosidad de Manning* se presentan en la Tabla 4, cuyos valores fueron tomados de *Sotelo* (1999). Tablas más completas pueden ser consultadas en otras referencias acerca del tema.

¹ Existe una discusión mundial sobre las dimensiones de *n*. Es claro que para que exista homogeneidad dimensional en la ecuación 26, el factor *n* debería tener dimensiones de $[m^{-1/3}s]$; sin embargo, resultaría ilógico un coeficiente de rugosidad con dimensiones de Tiempo. Algunos autores asumen que el numerador contiene \sqrt{g} , lo que llevaría a que *n* tuviera dimensiones de $[m^{1/6}]$, haciéndolo a la vez más lógico. Pero, en tal caso, *n* sería diferente para los distintos sistemas de unidades. Otros autores prefieren argumentar que *n* es adimensional, y que el numerador "1" es el que contiene las unidades que hacen coherente la ecuación. En tal caso, la ecuación 26 sólo sería válida para el S.I.; para el sistema Inglés de Unidades, el "1" debería ser sustituido por "1.49". En este último caso, *n* tendría el mismo valor en ambos sistemas. Para mayor detalle al respecto se puede consultar *Chow*, 1994.

Material	n
Acero galvanizado (nuevo y usado)	0.014
Acero remachado (nuevo)	0.015 - 0.016
Acero soldado o con remache avellanado (nuevo)	0.012 - 0.013
Hierro fundido limpio (nuevo)	0.013
Concreto monolítico cimbrado deslizandte (D<1.25m)	0.010 - 0.011
Concreto monolítico bien cimbrado y pulido (D<1.25m)	0.011 - 0.0123
Concreto monolítico bien cimbrado y sin pulir (D<1.25m)	0.014 - 0.015
Concreto con acabado tosco (D<1.25m)	0.015 - 0.017
Concreto con juntas macho y campana (D>0.80m)	0.0105 - 0.012
Concreto con juntas toscas (D>0.50m)	0.0125 - 0.014
Concreto con juntas toscas (D<0.50m)	0.014 - 0.017
Tubos de barro vitrificado	0.011
Túneles perforados en roca sin revestimiento	0.025 - 0.040
Madera cepillada	0.0105 - 0.012

Tabla 4. Valores del *coeficiente de rugosidad de Manning - n - p*ara diferentes tipos de tuberías.

c. Ecuación de Hazen-Williams:

Es una expresión semiempírica que, debido a su gran sencillez y aplicabilidad, goza de gran aceptación en el campo de la hidráulica. Propuesta a principios del siglo pasado, la ecuación de Hazen-Williams para unidades del Sistema Internacional² es la siguiente:

$$V = 0.355 C_{HW} D^{0.63} S_f^{0.54}$$
^[28]

donde V corresponde nuevamente a la velocidad media del líquido, en [m/s]; C_{HW} es el *coeficiente de rugosidad de Hazen-Williams*, que depende del material de la tubería; D es el diámetro interior de la tubería, en [m]; y S_f es la pérdida unitaria de carga ($S_f = h_f/L$), en [m/m].

Ahora, si en la ecuación 28 se sustituye S_f por h_f/L , V por Q/A (con $A = \pi D^2/4$) y se despeja h_f , puede encontrarse la expresión para estimar las pérdidas de energía por fricción:

$$h_f = \frac{10.6470L}{C_{HW}^{1.852} D^{4.871}} Q^{1.852}$$
[29]

² La ecuación original en unidades del Sistema Inglés es v=cr^{0.63}s^{0.54}0.001^{-0.04} [Williams y Hazen, 1920]. En ella, v es la velocidad en pies por segundo, s es la pendiente hidráulica, r es el radio hidráulico en pies, y c es el coeficiente de rugosidad. El último término, la constante $0.001^{-0.04}$, lo usaron para igualar el valor de c con el usado en la fórmula de Chezy, v=cs^{0.5}r^{0.5}, cuyos valores eran bien conocidos en la época para pendientes comunes de 1 en 1000.

El coeficiente C_{HW} de Hazen-Williams se encuentra tabulado en la gran mayoría de los manuales de hidráulica, y sus valores suelen estar entre 80 y 160. Cabe aclarar que, en su monografía, Hazen y Williams señalaron que, aunque el coeficiente C_{HW} se aproximaba a una constante, éste no solo dependía de la rugosidad interior de la tubería, sino también del radio hidráulico y de la pendiente de la misma (su forma más difundida corresponde a una pendiente de 0.001) [Williams y Hazen, 1920]. Incluso llegaron a mencionar que este inconveniente dificultaba el empleo de la fórmula [Williams y Hazen, 1920]. Algunos valores se reportan en la Tabla 5.

Material	C _{HW}
Acero corrugado	60
Acero galvanizado (nuevo y usado)	125
Acero remachado (nuevo)	110
Acero remachado (usado)	85
Acero soldado o con remache avellanado (nuevo)	120
Acero soldado o con remache avellanado (usado)	90
Hierro fundido limpio (nuevo)	130
Hierro fundido sin incrustaciones (usado)	110
Hierro fundido con incrustaciones (viejo)	90
Plástico	150
Asbesto-cemento (nuevo)	135
Cobre o latón	130
Acabado interior en cemento pulido	100
Concreto, acabado liso	130
Concreto, acabado común	120
Tubos de barro vitrificado	110
Madera cepillada	120

Tabla 5. Valores del *coeficiente de Hazen-Williams - C*_{HW} - para diferentes tipos de tuberías.

Debe tenerse en cuenta que esta ecuación es de carácter semiempírico y que carece de homogeneidad dimensional, por tanto, debe ser empleada con sumo cuidado, sobre todo en el caso de tuberías de gran diámetro. Pese a que su uso está muy difundido, la mayor parte de los diseñadores que la emplean desconocen que ella tiene un rango de aplicación no muy bien definido.

Williams y Hazen, a principios del siglo XX, llegaron a ella mediante experimentación en tuberías de diversos diámetros y materiales; sin embargo, cerca del 92% de ellos no superaba los 1.50m [Bombardelli y García, 2003]. Adicionalmente, en cerca del 80% de los ensayos, los flujos se ubicaron por debajo del límite de régimen turbulento liso del Diagrama de Moody [Bombardelli y García, 2003]. De hecho, algunos autores recomiendan el uso de la ecuación de Hazen-Williams, sólo para valores de C_{HW} entre 100 y 160 [Diskin, 1960]; otros advierten acerca de su imposibilidad

de aplicación en todas las condiciones de flujo [Vennard, 1958; Daugherty y Franzini, 1965]; y otros, incluso llegan a sugerir su desuso [Liou, 1998; Bombardelli y García, 2003].

1.3.4. Comparación de ecuaciones para estimación de pérdidas longitudinales.

Con el objetivo de comparar los resultados que pueden obtenerse con el uso de las tres fórmulas para estimación de pérdidas mencionadas en los apartados anteriores, supóngase que se tiene una tubería de 5 Km de longitud que debe conducir un gasto de 0.30 m³/s, el diámetro interior del tubo es de 0.40m. La idea es estimar las pérdidas longitudinales de carga usando las ecuaciones de *Darcy-Weisbach, Manning* y *Hazen-Williams*. Adicionalmente, se considerarán dos materiales diferentes, PVC y hiero fundido nuevo. Para el caso de la ecuación de *Darcy-Weisbach*, se considerará una viscosidad cinemática del agua de $v = 1.0 \times 10^{-6} \text{ m}^2/\text{s}$.

Según las tablas 2, 4 y 5, los coeficientes de rugosidad para los dos materiales y las fórmulas correspondientes, son las siguientes:

Material	e [mm]	n	C _{HW}
PVC	0.0015	0.009	150
Hierro fundido nuevo	0.25	0.013	130

Los resultados obtenidos con cada una de las ecuaciones son:

a. Material de la tubería: PVC.

Resumiendo, los datos del problema son los siguientes:

Longitud :	L = 5.0 Km
Diámetro :	D = 0.40 m
Gasto :	$Q = 0.30 \text{ m}^3/\text{s}$
Material :	$\frac{PVC}{e = 0.0015mm}$ n = 0.009 C _{HW} = 150

Se calcula el número de Reynolds, Re:

$$Re = \frac{VD}{v} = \frac{QD}{Av} = \frac{4Q}{\pi Dv}$$
$$Re = \frac{4 \cdot (0.30m^3 / s)}{\pi \cdot (0.40m) \cdot (1x10^{-6} m^2 / s)} = 954,930$$
Como es evidente, Re > 4,000, por lo tanto el régimen de flujo es *turbulento*, y puede emplearse la ecuación de *Colebrook-White* para estimar el *factor de fricción*:

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{e/D}{3.71} + \frac{2.51}{\operatorname{Re}\sqrt{f}}\right) \qquad \to \qquad f = 0.01182$$

Que al sustituirlo en la ecuación de Darcy-Weisbach:

$$h_{f(DW)} = \left(\frac{8fL}{\pi^2 g D^5}\right) Q^2$$
$$h_{f(DW)} = \left(\frac{8 \cdot 0.01182 \cdot (5,000m)}{\pi^2 \cdot (9,82m/s^2) \cdot (0.40m)^5}\right) \cdot (0.30m^3/s)^2$$
$$h_{f(DW)} = 42.88m$$

Por otra parte, usando la ecuación de Manning:

$$h_{f(M)} = \frac{10.2936 n^2 L}{D^{16/3}} Q^2$$
$$h_{f(M)} = \frac{10.2936 \cdot (0.009)^2 \cdot (5,000 m)}{(0.40 m)^{16/3}} \cdot (0.30 m^3 / s)^2$$
$$h_{f(M)} = 49.73 m$$

~

Finalmente, usando la ecuación de Hazen-Williams:

$$h_{f(HW)} = \frac{10.6470L}{C_{HW}^{1.852}} Q^{1.852}$$
$$h_{f(HW)} = \frac{10.6470 \cdot (5,000m)}{(150)^{1.852} \cdot (0.40m)^{4.871}} \cdot (0.30m^3 / s)^{1.852}$$
$$h_{f(HW)} = 46.35m$$

De esta forma, los resultados obtenidos con las tres fórmulas para el caso de tubería de PVC son:

$$h_{f(DW)} = 42.88 m$$

 $h_{f(M)} = 49.73 m$
 $h_{f(HW)} = 46.35 m$

Como se puede observar, aunque los valores encontrados pueden considerarse del mismo orden de magnitud, debe notarse que el valor estimado por la ecuación de *Manning* es casi 7.0m superior al calculado por la ecuación de *Darcy-Weisbach*, lo que podría significar presiones de servicio inferiores a las esperadas en algunos nudos de la red. Es bueno aclarar que la estimación de las pérdidas longitudinales será tan acertada como la selección de las 'rugosidades', *e*, *n*, C_{HW} o cualquier otra, lo sea.

b. Material de la tubería: Hierro fundido nuevo.

Las rugosidades son las siguientes:

Material :	Hierro fundido nuevo
	e = 0.25mm
	n = 0.013
	$C_{HW} = 130$

Como el número de Reynolds no depende del material de la tubería, éste continúa invariable y por lo tanto, el flujo continúa siendo *turbulento*:

$$Re = 954,930$$

Se estima el factor de fricción usando la ecuación de Colebrook-White:

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{e/D}{3.71} + \frac{2.51}{\operatorname{Re}\sqrt{f}}\right) \qquad \to \qquad f = 0.01801$$

Sustituyendo f en la ecuación de Darcy-Weisbach:

$$h_{f(DW)} = \left(\frac{8fL}{\pi^2 g D^5}\right) Q^2$$
$$h_{f(DW)} = \left(\frac{8 \cdot 0.01801 \cdot (5,000m)}{\pi^2 \cdot (9,82m/s^2) \cdot (0.40m)^5}\right) \cdot (0.30m^3/s)^2$$
$$h_{f(DW)} = 65.46m$$

Asimismo, usando la ecuación de Manning:

$$h_{f(M)} = \frac{10.2936 \, n^2 L}{D^{16/3}} Q^2$$

$$h_{f(M)} = \frac{10.2936 \cdot (0.013)^2 \cdot (5,000 \, m)}{(0.40 \, m)^{16/3}} \cdot (0.30 \, m^3 \, / \, s)^2$$
$$h_{f(M)} = 103.76 \, m$$

Finalmente, con la ecuación de Hazen-Williams se obtiene:

$$h_{f(HW)} = \frac{10.6470L}{C_{HW}^{1.852} D^{4.871}} Q^{1.852}$$
$$h_{f(HW)} = \frac{10.6470 \cdot (5,000m)}{(130)^{1.852} \cdot (0.40m)^{4.871}} \cdot (0.30m^3 / s)^{1.852}$$
$$h_{f(HW)} = 60.42m$$

De esta forma, para el caso de tubería de *hierro fundido nuevo*, los resultados obtenidos con las tres fórmulas son los siguientes:

$$h_{f(DW)} = 65.46 m$$

 $h_{f(M)} = 103.76 m$
 $h_{f(HW)} = 60.42 m$

En este caso, pese a que las pérdidas longitudinales estimadas por las ecuaciones de *Darcy-Weisbach* y *Hazen-Williams* son muy aproximadas entre sí, la hallada con la ecuación de *Manning* difiere bastante de estos valores, llegando casi a duplicarlos. Muy probablemente ello se deba, como se mencionó en el caso del PVC, a la selección del valor de la rugosidad del material. De hecho, si se considera como acertado el valor estimado por la ecuación de *Darcy-Weisbach*, el coeficiente de rugosidad de Manning, *n*, que correspondería al *hierro fundido nuevo*, debería ser del orden de 0.010. Con éste, el valor de las pérdidas sería $h_{f(HW)} = 61.39m$.

2. PÉRDIDAS LOCALES O MENORES

Objetivo del capítulo:

Presentar las ideas básicas acerca del concepto de pérdidas locales de energía en tuberías, su fórmula general, algunos valores característicos de las mismas para diferentes tipos de accesorios, así como el concepto de longitud equivalente de tubería.

2.1. CONSIDERACIONES GENERALES

También referidas por algunos autores como *pérdidas singulares, localizadas, secundarias, accidentales* o *por accesorios,* son aquellas *pérdidas de energía* (h_L) ocasionadas por todos esos elementos que se emplean para darle funcionalidad y geometría a la red: codos, tees, cruces, reducciones, ampliaciones y válvulas, entre muchos otros. A diferencia de las pérdidas por fricción (h_f) , no se presentan a lo largo de los tramos de las tuberías, sino que ocurren en los puntos específicos donde están ubicados tales elementos, a ello se debe que se llamen también *pérdidas localizadas*.

Las pérdidas menores se producen, básicamente, por las perturbaciones que los elementos mencionados inducen en el flujo a presión, normalmente desarrollado, y que ocasionan la aparición de turbulencias, torbellinos y vórtices, haciendo que parte de la energía del fluido se disipe en forma de calor. Como ejemplo, en la Figura 6 se presenta la pérdida ocasionada por la presencia de una placa de orificio, usada comúnmente para estimar el gasto que fluye por la tubería. Como se puede observar en ella, la turbulencia ocasionada por el elemento va acompañada por un descenso rápido de la *carga estática* (que se denota como h en la figura), a la vez que se registra un aumento en la *carga de velocidad* debida a la reducción de la sección de flujo. Alguna longitud aguas abajo (L3 en la figura) la carga estática se levanta nuevamente, pero no logra alcanzar el nivel con el que entró al accesorio; esta diferencia corresponde a la *pérdida menor* h_L .

Figura 6. Pérdidas locales producidas por una placa de orificio.

Las longitudes L1, L2 y L3, donde suelen ubicarse los piezómetros o cualquier otro dispositivo para medir las presiones del flujo, es común que se expresan en múltiplos del diámetro de la tubería.

Cabe mencionar que, aunque el apelativo de "pérdidas menores" puede llevar a pensar que no son de gran importancia, hecho que se ha visto reflejado en que muchos diseñadores las omitan en sus proyectos, ellas cobran gran relevancia cuando se trata de redes con longitudes cortas y con gran densidad de accesorios y cambios de alineamiento. Tal es el caso, por ejemplo, de las redes domiciliarias, y más específicamente de las tomas domiciliarias, en las que algunos autores reportan pérdidas por accesorios del orden de unas 2 a 5 veces la magnitud de las pérdidas por fricción, para diámetros entre 13 y 19mm, y gastos entre 0.20 y 0.40 l/s [Fuentes y Rosales, 2004], por citar solo un caso.

A diferencia del caso de las *pérdidas por fricción*, donde existen numerosas expresiones para su determinación, ya sean de origen teórico o empírico, en el caso de las *pérdidas menores* son pocos los resultados que tiene fundamentación puramente teórica; por el contrario, lo usual es encontrar variedad de resultados experimentales reportados por diferentes investigadores y compañías proveedoras o fabricantes de los accesorios. Sin embargo, en muchas ocasiones, puede llegar a encontrarse resultados muy diferentes para accesorios similares, por los que debe tenerse mucha precaución en su utilización.

Como convención casi universal, se ha aceptado representar a las *pérdidas menores* como una proporción de la *carga de velocidad* de la sección inmediatamente aguas abajo de donde se encuentre localizado el accesorio estudiado:

$$h_L = K \frac{V^2}{2g}$$
[30]

donde K, el coeficiente de proporcionalidad, suele llamarse *coeficiente de pérdidas* del accesorio, o simplemente *coeficiente K del accesorio*.

Aunque para la mayoría de los accesorios, se ha encontrado una variación del factor K con el número de Reynolds, Re, también se ha hallado que éste permanece constante para valores de Re superiores a 50,000. En otras palabras, se puede tomar K como constante para los casos en que el flujo se desarrolle en régimen turbulento. Lo que sí debe recordarse es que el valor de dicho coeficiente depende del tipo de accesorio y de su configuración particular.

2.2. ALGUNOS VALORES DEL COEFICIENTE K.

Múltiples han sido los estudios que se han realizado al respecto a lo largo de los años, y en la mayoría de libros acerca del tema aparecen registrados los resultados para gran variedad de accesorios usados comúnmente en las redes de distribución. Lo más común es que los valores del *coeficiente K* aparezcan en forma de gráficas, o simplemente en tablas, pero también es probable encontrarlos en forma de nomogramas o incluso expresiones con mayor o menor grado de precisión.

A continuación se reportan, para diferentes tipos de accesorios comunes, algunos valores del *coeficiente de pérdidas menores*, encontrados en las referencias consultadas. Al final de cada una de las tablas se indica la referencia de donde fueron tomados.

2.2.1. Pérdida por entrada.

En este caso el coeficiente *K* varía en mayor o menor medida como brusco sea el ingreso del fluido a la tubería. Entradas con cantos redondeados producirán pérdidas inferiores a las ocasionadas por entradas con cantos filosos o angulosos. En la Tabla 6 se reportan algunos de los *coeficientes* reportados en la literatura, correspondientes a los esquemas de la Figura 7.

Figura 7. Esquemas de varios tipos de entradas a tuberías.

Entrada		
Tipo	Coeficiente K	
a. Angulosa a 90°	0.50	
b. Angulosa a θ°	$0.50 + 0.30 \cos\theta + 0.20 \cos^2\theta$	
c. Ingreso troncocónico	0.15 - 0.25	
d1. Ingreso redondeado r/D = 0.04	0.26	
d2. Ingreso redondeado r/D = 0.08	0.15	
d3. Ingreso redondeado r/D = 0.12	0.09	
d4. Ingreso redondeado r/D = 0.16	0.06	

Tabla 6. Valores de coeficiente K para entradas a tuberías.

Tomado de Sotelo, 1999

2.2.2. Pérdida por ampliación súbita.

Se da por un aumento súbito del diámetro de la tubería, desde uno D_1 a otro D_2 mayor que el primero, como se observa en la Figura 8. La fórmula de pérdidas locales (ecuación 30) debe ser empleada con la velocidad en la sección 1, es decir, aquella con el diámetro menor D_1 . Algunos de estos *coeficientes* se muestran en la Tabla 7.

Figura 8. Esquema de una ampliación súbita.

Ampliación súbita			
	Coeficiente K		
D1/D2	V1=0.6 m/s	V1=13 m/s	
1.00	0.00	0.00	
0.83	0.11	0.08	
0.71	0.26	0.20	
0.63	0.40	0.32	
0.56	0.51	0.40	
0.50	0.60	0.47	
0.40	0.74	0.58	
0.33	0.83	0.65	
0.25	0.92	0.72	
0.20	0.96	0.75	

Tabla 7. Valores de coeficiente K para ampliación súbita.

Tomado de Bhave and Gupta, 2006

De forma alternativa a los valores tabulados y determinados experimentalmente, puede emplearse la ecuación conocida como fórmula de Borda-Carnot, deducida a partir de las ecuaciones de *energía* y la de *impulso y cantidad de movimiento* [Sotelo, 1999]. Esta expresión es exclusiva para el caso de ampliación súbita y está dada por:

$$h_{L} = \left(\frac{A_{2}}{A_{1}} - 1\right)^{2} \frac{V_{2}^{2}}{2g}$$
[31]

En ella, el subíndice "1" corresponde a la sección antes de la ampliación, y los subíndices "2" a la sección después de la misma.

2.2.3. Pérdida por ampliación gradual.

En este caso el cambio del diámetro de la tubería es gradual y forma un ángulo θ con el eje de la misma, tal como se muestra en la Figura 9.

Figura 9. Esquema de una ampliación gradual.

En este caso, la ecuación de pérdidas locales a emplear es la siguiente:

$$h_L = K \frac{{V_1}^2 - {V_2}^2}{2g}$$
[32]

Donde V_1 y V_2 son las velocidades correspondientes a cada uno de los tramos antes y después de la ampliación gradual, es decir, aquellos con diámetros D_1 y D_2 respectivamente. La Tabla 8 contiene algunos de los coeficientes encontrados en la literatura.

Ampliación gradual		
θ Coeficiente <i>K</i>		
2°	0.033	
4°	0.039	
6°	0.046	
8°	0.055	
10°	0.078	
12°	0.10	
15°	0.16	
20°	0.31	
30°	0.49	
40°	0.60	
50°	0.67	
60°	0.72	
75°	0.72	
90°	0.67	

Tabla 8. Valores de coeficiente K para ampliación gradual.

Tomado de Bhave and Gupta, 2006

2.2.4. Pérdida por reducción súbita.

Para el caso de reducción o contracción súbita, mostrada en la Figura 10, la velocidad que se usa en la ecuación de pérdidas locales, es la correspondiente al tramo reducido, es decir, el que está aguas abajo de la reducción y que tiene diámetro D_2 . En la Tabla 9 aparecen algunos de estos valores.

Figura 10. Esquema de una reducción súbita.

Reducción súbita		
	Coeficiente K	
D1/D2	V1=0.6m/s	V1=13m/s
1.00	0.00	0.00
1.20	0.11	0.07
1.40	0.20	0.17
1.60	0.26	0.24
1.80	0.34	0.27
2.00	0.38	0.29
2.50	0.42	0.31
3.00	0.44	0.33
4.00	0.47	0.34
5.00	0.48	0.35

Tabla 9. Valores de coeficiente K para reducción súbita.

Tomado de Bhave and Gupta, 2006

2.2.5. Pérdida por reducción gradual.

También depende del grado de contracción del diámetro D_1 al D_2 , reflejado en el ángulo θ que forma la reducción con respecto al eje de la tubería, según aparece en la Figura 11. La velocidad a usar es la correspondiente al tramo reducido de diámetro D_2 . En la Tabla 10, distintos valores de K para diversos grados de contracción.

Figura 11. Esquema de una reducción gradual.

2.2.6. Pérdida por codos.

Si se considera que la tubería tiene el mismo diámetro antes y después del codo, la ecuación de pérdidas locales debe emplearse con la velocidad media V del tramo correspondiente. En este caso, suelen clasificarse los codos según diversos criterios: según el radio de giro, se clasifican en *regulares* o de *gran radio*; de acuerdo la forma en que se unen a la red, se clasifican en *soldados* o *roscados*.

Reducción gradual		
θ Coeficiente I		
4º a 5º	0.060	
7°	0.160	
10°	0.160	
15°	0.18	
20°	0.20	
25°	0.22	
30°	0.34	
35°	0.26	
40°	0.28	
45°	0.30	
60°	0.32	
75°	0.34	
80°	0.35	

Tabla 10. Valores de coeficiente K para reducción gradual.

Tomado de Sotelo, 1999

A continuación, en la Figura 12, se muestran algunos esquemas de diferentes tipos de codos.

Figura 12. Esquema de algunos tipos de codos.

La Tabla 11 contiene algunos valores representativos de los *coeficientes* K para algunos de estos casos.

Codos 45°		
Tipo	Coeficiente K	
Soldado regular	0.20 - 0.30	
Soldado gran radio	0.18 - 0.20	
Roscado regular	0.30 - 0.42	

Retorno de 180° (2 codos 90°)		
Тіро	Coeficiente K	
Soldado regular	0.38	
Soldado gran radio	0.25	
Roscado regular	2.20	

Codos 90º			
Tipo	Coeficiente K		
Soldado regular	0.21 - 0.30		
Soldado gran radio	0.18 - 0.20		
Giro no redondeado	1.25 - 1.80		
Roscado radio pequeño	0.90		
Roscado radio medio	0.75		
Roscado gran radio	0.60		

Información tomada de Bhave and Gupta, 2006

Para el caso de diámetros pequeños, de 13, 19 y 25mm, Fuentes y Rosales [2004] reportan la gráfica que se presenta en la Figura 13, para codos de 90° de cobre.

Figura 13. Valores de K para codos de cobre [Fuentes y Rosales, 2004].

2.2.7. Pérdida por bifurcaciones.

Se entiende por bifurcación, aquel punto de una tubería de la que sale un nuevo ramal, dividiéndose el gasto que llega en dos gastos divergentes. Un ejemplo de ello aparece en la Figura 14.

Figura 14. Esquema de bifurcación de tuberías.

Para este caso, se presentan los *coeficientes K*, en la Tabla 12, para cada uno de los dos ramales: el principal y el que diverge formando un ángulo con el primero. Coeficientes negativos significan ganancia de energía.

<u> </u>		
Bifurcaciones a 45° (Gasto divergente)		
	Coeficiente K	
Qdiverg/Qtotal	Tub. divergente	Tub. principal
0.00	0.90	0.40
0.20	0.66	-0.06
0.40	0.47	-0.04
0.60	0.33	0.07
0.80	0.29	0.20
1.00	0.35	0.33

Tabla 12. Valores de coeficiente K para bifurcaciones a 45° y 90°.

Tomado de Pürschel, 1966

Bifurcaciones a 90° (Gasto divergente)		
	Coeficiente K	
Qdiverg/Qtotal	Tub. divergente	Tub. principal
0.00	0.96	0.05
0.20	0.88	-0.08
0.40	0.89	-0.04
0.60	0.96	0.07
0.80	1.10	0.21
1.00	1.29	0.35

Tomado de Pürschel, 1966

Para diámetros de 13, 19 y 25mm, Fuentes y Rosales [2004] estimaron los valores de los *coeficientes de pérdidas locales K*, en bifurcaciones a 90° (tees) en tubería de cobre. La gráfica se muestra en la Figura 15. Los valores reportados, corresponden al tramo principal.

Figura 15. Valores de K para tees de cobre, tramo principal [Fuentes y Rosales, 2004].

2.2.8. Pérdida por uniones.

Se entiende por unión, aquel punto en el que una tubería afluente llega a otra que denominaremos principal, formando un ángulo determinado con la misma. El gasto aguas abajo de dicho punto es el resultado de la suma de los dos gastos que convergen, bajo las suposiciones dadas en el capítulo anterior. El esquema se muestra en la Figura 16.

Figura 16. Esquema de unión de tuberías.

De igual forma que para el caso anterior, se presentan los *coeficientes* para ambas tuberías, esta vez en las Tabla 13. Valores negativos representan incrementos de energía.

Uniones a 45° (Gasto convergente)							
	Coeficiente K						
Qafluente/Qtotal	Tub. afluente	Tub. principal					
0.00	-0.90	0.05					
0.20	-0.37	0.17					
0.40	0.00	0.18					
0.60	0.22	0.05					
0.80	0.37	-0.20					
1.00	0.38	-0.57					

Tabla 13.	Valores d	e coeficiente K	para	uniones	a 45°

Tomado de Pürschel, 1966

Uniones a 90° (Gasto convergente)							
	Coeficiente K						
Qafluente/Qtotal	Tub. afluente	Tub. principal					
0.00	-1.04	0.06					
0.20	-0.40	0.18					
0.40	0.10	0.30					
0.60	0.47	0.40					
0.80	0.73	0.50					
1.00	0.92	0.60					

Tomado de Pürschel, 1966

2.2.9. Pérdida en válvulas.

En el caso de válvulas, el valor de las *pérdidas locales* dependerá no solo del tipo de válvula que se tenga, sino también del grado de apertura de la misma. Existe mucha información al respecto y para mayor detalle se recomienda consultar manuales especializados como el de CRANE (CRANE, 1992). En él, se indican *coeficientes de pérdidas* para válvulas de globo convencionales, válvulas angulares de globo, válvulas de globo en Y, válvulas de retención y cierre (de paso recto, de paso angular, de obturador oscilante, de obturador ascendente), válvulas de compuerta, válvulas de mariposa, válvulas de pie, entre otras.

La Figura 17 muestra tres gráficas presentadas por Fuentes y Rosales [2004], para válvulas de globo con diferentes porcentajes de apertura.

Figura 17. Coeficientes K para válvulas de globo de diferentes diámetros.

2.3. LONGITUD EQUIVALENTE.

A la hora de modelar una red hidráulica, puede resultar un poco engorroso trabajar con los valores del *coeficiente de pérdidas menores K* de los accesorios que la componen. Una forma más eficiente de hacerlo es la de trabajar con lo que se ha denominado *Longitudes Equivalentes*, y que consiste en agregar al modelo longitudes ficticias de tubería en los tramos donde se ubican los accesorios, de tal forma que se produzcan las mismas pérdidas de energía que las que ocasionaría cada uno de los accesorios ubicados en ella. Evidentemente, los tramos ficticios ocasionarían *pérdidas por fricción* en lugar de *pérdidas localizadas*, pero ello no importaría dado que el efecto adverso sobre la *energía* del fluido sería el mismo.

Teóricamente, este artificio se logra igualando la ecuación de *pérdidas por fricción* que se use: Darcy-Weisbach (ecuación 4ª), Hazen-Williams (ecuación 27) ó Manning (ecuación 29), con la ecuación general de *pérdidas locales* (ecuación 30).

2.3.1. Longitud equivalente con la ecuación de Darcy-Weisbach.

Se igualan las ecuaciones de Darcy-Weisbach (4a) y de pérdidas locales (30):

$$f\frac{L_{eq.}}{D}\frac{V^2}{2g} = K\frac{V^2}{2g}$$

y se despeja L_{eq} :

$$L_{eq.} = \frac{KD}{f}$$
[33]

Como el factor de fricción f depende de Re y por lo tanto del gasto que fluye por la tubería, la longitud equivalente dependerá también del gasto Q. Si se conoce dicho gasto, L_{eq} podrá ser calculada directamente, pero si se desconoce, deberá usarse algún procedimiento de ensayo y error para estimarla.

2.3.2. Longitud equivalente con la ecuación de Hazen-Williams.

En este caso se igualan las ecuaciones de Hazen-Williams (29) y de pérdidas locales (30):

$$\frac{10.6470L_{eq.}}{C_{HW}^{1.852}D^{4.871}}Q^{1.852} = K\frac{V^2}{2g}$$

Sustituyendo V = Q/A = 4Q / πD^2 en el lado derecho:

$$\frac{10.6470L_{eq.}}{C_{HW}^{1.852}D^{4.871}}Q^{1.852} = K\frac{8Q^2}{\pi^2 g D^4}$$

despejando $L_{eq.}$ y considerando $g=9.82 m/s^2$:

$$L_{eq.} = \frac{KD^{0.871}C_{HW}^{1.852}}{129.0}Q^{0.148}$$
[34]

En este caso, la *longitud equivalente* también depende del gasto que fluye por la tubería.

2.3.3. Longitud equivalente con la ecuación de Manning.

Ahora se igualan las ecuaciones de Manning (27) y de pérdidas locales (30):

$$\frac{10.2936n^2 L_{eq.}}{D^{16/3}}Q^2 = K\frac{V^2}{2g}$$

Nuevamente, sustituyendo V = $Q/A = 4Q / \pi D^2$ en el lado derecho:

$$\frac{10.2936n^2 L_{eq.}}{D^{16/3}}Q^2 = K \frac{8Q^2}{\pi^2 g D^4}$$

Con g=9.82 m/s2 se llega a:

$$L_{eq.} = \frac{KD^{4/3}}{124.71n^2}$$
[35]

Se observa que para el caso de la ecuación de Manning, la *longitud equivalente* es independiente del gasto Q que fluye por la tubería.

A partir de las ecuaciones 33, 34 y 35 pueden calcularse las *longitudes equivalentes* para diferentes valores del *coeficiente K*. Es claro que dichas *valores* variarán también con las condiciones de flujo (gasto, sección y rugosidad de la tubería), tal como se mencionó en la presentación de dichas ecuaciones. Las Tablas 14 a 17 tienen consignados algunos valores de *longitudes equivalentes* para una tubería de PVC (e = 0.0015mm, n = 0.009 y $C_{HW} = 150$), estimados con las tres expresiones deducidas en los numerales anteriores: *Darcy-Weisbach* (Leq_{DW}), *Manning* (Leq_M) y *Hazen-Williams* (Leq_{HW}). En ellas, se varía el *coeficiente K*, el diámetro de la tubería D y el gasto conducido Q. El rango de *velocidades de flujo* se limitó al intervalo comúnmente recomendado.

							c con D-or		TT 1 00			
D =	0.15 m			$\mathbf{K} = 0.20$			K = 0.50			K = 1.00		
Q [m³/s]	V [m/s]	f	Leq _{DW} [m]	Leq _M [m]	Leq _{нw} [m]	Leq _{DW} [m]	Leq _M [m]	Leq _{нw} [m]	Leq _{DW} [m]	Leq _M [m]	Leq _{нw} [m]	
0.01	0.57	0.01867	1.61	1.58	1.61	4.02	3.94	4.03	8.03	7.89	8.05	
0.02	1.13	0.01623	1.85	1.58	1.78	4.62	3.94	4.46	9.24	7.89	8.92	
0.03	1.70	0.01502	2.00	1.58	1.89	4.99	3.94	4.74	9.99	7.89	9.47	
0.04	2.26	0.01424	2.11	1.58	1.98	5.27	3.94	4.94	10.53	7.89	9.89	
0.05	2.83	0.01369	2.19	1.58	2.04	5.48	3.94	5.11	10.96	7.89	10.22	
0.06	3.40	0.01326	2.26	1.58	2.10	5.66	3.94	5.25	11.31	7.89	10.50	
0.07	3.96	0.01292	2.32	1.58	2.15	5.80	3.94	5.37	11.61	7.89	10.74	

Tabla 14. Longitudes equivalentes para tubería de PVC con D=0.15m.

D =	0.30 m			K = 0.20			K = 0.50			K = 1.00	
Q [m³/s]	V [m/s]	f	Leq _{⊳w} [m]	Leq _M [m]	Leq _{нw} [m]	Leq _{⊳w} [m]	Leq _M [m]	Leq _{нw} [m]	Leq _{⊳w} [m]	Leq _M [m]	Leq _{нw} [m]
0.04	0.57	0.01619	3.71	3.98	3.62	9.26	9.94	9.04	18.53	19.88	18.08
0.07	0.99	0.01454	4.13	3.98	3.93	10.32	9.94	9.82	20.63	19.88	19.64
0.10	1.41	0.01362	4.41	3.98	4.14	11.01	9.94	10.35	22.03	19.88	20.71
0.13	1.84	0.01300	4.62	3.98	4.31	11.54	9.94	10.76	23.08	19.88	21.53
0.16	2.26	0.01255	4.78	3.98	4.44	11.95	9.94	11.10	23.90	19.88	22.20
0.19	2.69	0.01219	4.92	3.98	4.55	12.31	9.94	11.38	24.61	19.88	22.77
0.22	3.11	0.01189	5.05	3.98	4.65	12.62	9.94	11.63	25.23	19.88	23.27

Tabla 15. Longitudes equivalentes para tubería de PVC con D=0.30m.

Tabla 16. Longitudes equivalentes para tubería de PVC con D=0.50m.

D =	0.50 m			K = 0.20			K = 0.50		K = 1.00		
Q [m³/s]	V [m/s]	f	Leq _{⊳w} [m]	Leq _M [m]	Leq _{нw} [m]	Leq _{⊳w} [m]	Leq _M [m]	Leq _{нw} [m]	Leq _{⊳w} [m]	Leq _M [m]	Leq _{нw} [m]
0.10	0.51	0.01495	6.69	7.86	6.46	16.72	19.64	16.15	33.44	39.29	32.31
0.20	1.02	0.01316	7.60	7.86	7.16	19.00	19.64	17.90	37.99	39.29	35.80
0.30	1.53	0.01226	8.16	7.86	7.60	20.39	19.64	19.01	40.78	39.29	38.01
0.40	2.04	0.01168	8.56	7.86	7.93	21.40	19.64	19.83	42.81	39.29	39.67
0.50	2.55	0.01126	8.88	7.86	8.20	22.20	19.64	20.50	44.40	39.29	41.00
0.60	3.06	0.01093	9.15	7.86	8.42	22.87	19.64	21.06	45.75	39.29	42.12
0.70	3.57	0.01067	9.37	7.86	8.62	23.43	19.64	21.55	46.86	39.29	43.09

Tabla 17. Longitudes equivalentes para tubería de PVC con D=1.00m.

D =	1.00 m			K = 0.20			K = 0.50			K = 1.00	
Q [m³/s]	V [m/s]	f	Leq _{DW} [m]	Leq _M [m]	Leq _{нw} [m]	Leq _{DW} [m]	Leq _M [m]	Leq _{нw} [m]	Leq _{DW} [m]	Leq _M [m]	Leq _{нw} [m]
0.40	0.51	0.01314	15.22	19.80	14.51	38.05	49.50	36.27	76.10	99.00	72.55
0.80	1.02	0.01164	17.18	19.80	16.08	42.96	49.50	40.19	85.91	99.00	80.39
1.20	1.53	0.01089	18.37	19.80	17.07	45.91	49.50	42.68	91.83	99.00	85.36
1.60	2.04	0.01040	19.23	19.80	17.81	48.08	49.50	44.54	96.15	99.00	89.07
2.00	2.55	0.01004	19.92	19.80	18.41	49.80	49.50	46.03	99.60	99.00	92.06
2.40	3.06	0.00977	20.47	19.80	18.92	51.18	49.50	47.29	102.35	99.00	94.58
2.80	3.57	0.00954	20.96	19.80	19.35	52.41	49.50	48.38	104.82	99.00	96.76

Adicionalmente, algunos autores se han dedicado a elaborar tablas y ábacos en las que reportan las *longitudes equivalentes* de múltiples accesorios, como una proporción del diámetro de la tubería. Un ejemplo de ello se muestra en la Tabla 18, elaborada por Barnard, Zimke y Warring [Bhave, 2006].

	<u> </u>	A	
Accesorio	Criterio	Valor criterio	Leq / D
		0.75	7
Ampliación súbita	D1/D2	0.50	22
		0.25	31
Reducción súbita	D1/D2	2.00	12
Entrada	Bordes	Filosos	18
		Soldado regular	6
Codos 45 ⁰	Ti o	Soldado gran radio	4
		Roscado regular	8
		Soldado regular	24
Codec 000	Tipo	Soldado gran radio	18
C0005 90		Fundido regular	32
		Fundido gran radio	20
Cup/o 1000	Tipo	Regular	73
	про	Gran radio	39
Too	Tuboría	Principal	60
166	Tubena	Derivació	300
		100%	6.7
Válvula de compuerta	Porcentaie de anertura	75%	39
valvula ue compuella	r orcentaje de apertura	50%	190
		25%	800

Tabla 18. Valores de *longitudes equivalentes* para diversos accesorios.

Para efectos de cálculos preliminares o poco refinados, la expresión:

$$L_{eq.} = 35 KD$$
^[36]

Proporciona una muy buena aproximación de la *longitud equivalente* correspondiente a las pérdidas menores de un accesorio [Bhave, 2006].

3. PÉRDIDAS MENORES EN CRUCES DE TUBERÍAS

Objetivo del capítulo:

Hacer una breve descripción acerca de los estudios, investigaciones o menciones que, sobre pérdidas menores en cruces de tuberías, aparezcan en la literatura especializada.

3.1. INTRODUCCIÓN.

Pese a que en el capítulo anterior se reportaron numerosos valores del *coeficiente de pérdida local K*, para la mayoría de accesorios de uso común en tuberías, es realmente poca la información que se encuentra disponible en los libros de *flujo en tuberías*, acerca de las pérdidas de energía que pueden producirse en un cruce de tuberías. Incluso, los manuales especializados en el tema poseen escasa información acerca de los efectos producidos por este tipo de accesorio.

Tal vez ello pueda deberse a la poca difusión que tales elementos tenían en el pasado, hecho que podía verse reflejado en la casi inexistente oferta de los mismos en el mercado. Sin embargo, en la actualidad, pueden encontrarse *cruces* de tuberías en los materiales de uso más frecuente, desde el PVC, pasando por el cobre, el acero carbón y el hierro galvanizado, hasta materiales más modernos como el polietileno de alta densidad. Adicionalmente, aunque lo usual es encontrarlos en diámetros grandes, del orden de varias pulgadas, también pueden conseguirse fácilmente en diámetros inferiores a 1 pulgada.

En la Figura 18 pueden observarse cuatro *cruces* de diferentes materiales: PVC (a), polietileno (b), cobre (c) y acero carbón (d).

Figura 18. Cruces para tuberías de diferentes materiales.

Las *cruces* son empleadas actualmente en gran variedad de redes de distribución de agua a presión, siendo las más habituales *las redes contra incendio*, específicamente las que cuentan con sistemas de rociadores o *sprinklers*, muy comunes en edificios de oficinas, bodegas, almacenes departamentales, supermercados y en general, construcciones del tipo *grandes superficies*. Estas redes tienen la particularidad de estar compuestas por tuberías con diámetros pequeños. Un esquema aproximado de este tipo de sistemas es mostrado en la Figura 19.

De igual modo, las *cruces* son empleadas en las pequeñas redes de agua potable y gas domiciliar de casas y edificaciones, también usando diámetros pequeños. Ocasionalmente son usadas en las grandes redes de distribución de las ciudades, en este caso, con diámetros superiores (de varias pulgadas).

Figura 19. Esquema de una red de incendios con rociadores o sprinklers.

Existen cuatro casos de flujo posibles en todo *cruce* de tuberías: el *primero* de ellos se da cuando el flujo llega por uno de los cuatro tramos y sale por los tres restantes, en cuyo caso suele denominarse *trifurcación*; en el *segundo* y el *tercero*, el flujo llega por dos tramos y sale por los otros dos, con la diferencia de que en uno, los tramos de llegada son adyacentes, y en el otro son opuestos entre sí; finalmente, en el *cuarto* caso el flujo llega por tres tramos y sale por el único restante. La Figura 20 muestra una idea de los cuatro escenarios descritos.

Figura 20. Esquema de los cuatro posibles casos de flujo en *cruces* de tuberías.

3.2. ESTADO DEL ARTE.

Una simple inspección de la gran mayoría de libros académicos, tradicionalmente empleados para la enseñanza de *Mecánica de Fluidos*, puede constatar que, en todos ellos, existe algún apartado dedicado a las *pérdidas menores* en tuberías, que en algunos representa un capítulo y en otros tan sólo un breve inciso, dependiendo de la calidad y del grado de especialización del libro. Sin embargo, y como se mencionó, pocos de ellos hacen referencia a las pérdidas en *cruces*, incluidos los más recientes.

Uno de estos libros es el llamado *Water Distribution Modeling*, de los autores *T.M. Walski*, *D.V. Chase* y *D.A. Savic* [Walski *et al*, 2001]. En él, los autores presentan una tabla que contiene un par de líneas dedicadas a los *coeficientes de pérdidas menores*, para este tipo de accesorios, y que se reproducen a continuación, en la Tabla 19. Por la información presentada en la tabla, se deduce que el flujo en el *cruce*, pertenece al caso 1, también conocido como *trifurcación*. En este punto es bueno aclarar que existen muchos tipos de *trifurcaciones* y que no necesariamente tienen que tener forma de *cruces*. De hecho, un *cruce* es una *trifurcación* en la que los tramos forman ángulos de 90°, de dos en dos.

Tabla 19. Valores de coeficiente K para cruces de tuberías.

Cruz (trifurcación)					
Flujo sobre tramo	Coeficiente K				
a. Recto	0.30				
b. Perpendicular	0.50				

Asimismo, al efectuar una revisión exhaustiva de las publicaciones periódicas especializadas, como lo son: Journal of Hydraulic Engineering, Journal of Water Resources Planning and Management y Journal of Irrigation and Drainage Engineering de la American Society of Civil Engineering (ASCE); Proceedings of the Institution of Mechanical Engineering Science de Profesional Engineering Publishing; Proceedings of World Academy of Science: Engineering Technology de la World Academy of Science; Urban Water Journal de Taylor & Francis Ltd.; entre muchas otros, es curioso notar que muchas de ellas publican, continuamente, nuevos estudios acerca de pérdidas por fricción, deducción de nuevas fórmulas para estimación de coeficientes de fricción y estudios de pérdidas menores en muchos tipos de accesorios, pero no mucho acerca de pérdidas en cruces. Lo poco que se encuentra, está dedicado al caso de trifurcaciones. Alrededor de la década del 60 del siglo XX, algunas investigaciones dirigidas por *Daniel y Pelton* (1959) y por *Christ* (1966) reportaron pérdidas de energía negativas en el tramo central de las *trifurcaciones* [Ramakrishna y Kumar, 2009].

En 1999, *Basara y Grogger* (1999) construyeron un modelo a escala de una trifurcación real con el objetivo de cuantificar la caída de presión producida aguas abajo de la divergencia de los flujos, y compararlas con las estimadas mediante un modelo matemático basado en las ecuaciones de Navier-Stokes. Adicionalmente, estudiaron los efectos de la turbulencia en el sistema mediante varios modelos numéricos [Basara y Grogger, 1999]. Los autores no estimaron valores del *coeficiente de pérdidas menores, K.*

Diez años más tarde, Ramakrishna y Kumar (2009) estudiaron un tipo específico de trifurcación, con tramos divergentes a 0°, 90° y 120° con respecto al tramo alimentador, con el fin de comprobar experimentalmente lo reportado por Daniel, Pelton y Christ hacía algunas décadas. Ellos llegaron a la conclusión de que las pérdidas de carga negativas en el tramo central podían reducirse al incluir el coeficiente de Coriolis, α , en las ecuaciones de balance de energía. Para ello, estimaron experimentalmente los perfiles de velocidad en varios puntos de los cuatro tramos de la trifurcación. Adicionalmente, estimaron los coeficientes de pérdidas locales K para varias condiciones de flujo, reportándolas gráficamente en función de una relación de velocidades: la del tramo de interés y la del tramo alimentador, afectada por el seno del ángulo formado por los dos tramos. Cabe resaltar, que estos autores despreciaron las pérdidas por fricción en la vecindad del accesorio, asumiendo que toda la pérdida de carga se debía a la presencia del mismo [Ramakrishna y Kumar, 2009].

El mismo año, *Sharp* (2009) elabora una Tesis de Maestría en la *Utah State University*, en la que estudia un *cruce* para tubería de *acero carbón* de 6" de diámetro nominal. Como resultado, el autor obtiene una serie de gráficas de las que pueden determinarse los *coeficientes K*, tres para cada *cruz*, en función de algunas relaciones de gastos existentes en ella [Sharp, 2009]. En la Figura 21 se reproducen algunas de dichas gráficas. Se aclara que, aunque *Sharp* reporta diagramas para los cuatro casos de flujo que pueden presentarse en un *cruce* de tuberías, en función de los gastos de entrada y de salida del mismo, los resultados se basaron en pruebas hechas en un modelo de diámetro fijo, por lo que no se sabe nada acerca de la pertinencia de aplicar los resultados en tuberías de diámetro diferente. Este hecho es resaltado por el mismo autor en las conclusiones de su trabajo. Adicionalmente, no resulta muy claro el porqué asigna tres valores de *K* para un accesorio que posee cuatro tramos, independientemente del caso de flujo que ocurra (para cada caso, calcula tres coeficientes: K_{12} , K_{13} y K_{14})

Figura 21. Gráfica para estimación de K en cierto tipo de cruces [Sharp, 2009].

En cuanto al caso de textos especializados en el tema de *pérdidas menores*, existen dos que son de consulta obligatoria: el *primero* es el 'Manual de flujo de fluidos en válvulas, accesorios y tuberías', preparado por la división de ingeniería de *CRANE* (1992); y el *segundo* es el 'Internal flow Systems' del autor *Donald S. Miller* (1978, 1996).

El *Manual de Crane*, pese a ser una guía de diseño muy práctica y completa, con información detallada de ecuaciones, características de algunos fluidos y especificaciones acerca de materiales y accesorios en general, no dispone de información respecto a las pérdidas en *cruces*, incluso tampoco en *trifurcaciones* en general.

Finalmente, *Miller* (1996), dedica un capítulo completo a lo que denomina 'flujos combinados y divididos', para hacer referencia a aquellos accesorios que convierten varios flujos en uno solo, o dividen uno en varios más pequeños. Es el caso de las *Tees* (3 tramos), *Yees* (3 tramos en diversos ángulos), *Cruces* (4 tramos) y *Estrellas* (hasta 6 tramos). Es curioso, pero el autor hace mayor énfasis en los accesorios con seis tramos que en los de cuatro. Para éstos últimos, reporta sólo dos gráficas para la estimación de K, de nuevo para el caso de flujo que se trifurca, y que se reproducen en la Figura 22.

Como puede concluirse de este breve repaso bibliográfico, la poca información existente en cuanto a pérdidas en *cruces* de tuberías, está más enfocada al caso de *trifurcaciones* y, aunque éstas tienen un comportamiento interesante, en cualquier red de distribución es factible que se presenten también cualquiera de los otros tres casos de flujo. La investigación que se desarrolló para subsanar dicha carencia (Sharp, 2009), no tuvo en cuenta la posibilidad de considerar al diámetro de la tubería como variable dependiente en los estudios. Es importante entonces, desarrollar un estudio que involucre diferentes diámetros de tubería y, por lo menos, alguno de los tres casos de flujo no considerados por investigaciones pasadas.

Figura 22. Gráfica para estimación de K en cierto tipo de cruces [Miller, 1996].

4. MODELO EXPERIMENTAL E INSTRUMENTACIÓN

Objetivo del capítulo:

Hacer una breve descripción del modelo experimental construido para conseguir el objetivo de la tesis, así como la instrumentación usada para la obtención de los datos en qué se basarán los resultados.

4.1. MODELO EXPERIMENTAL

Con el fin de encontrar los *coeficientes de pérdidas menores* para *cruces* de tuberías, y reportarlos mediante gráficas, ó mediante alguna relación funcional con alguno ó algunos de los parámetros físicos ó hidráulicos involucrados en el sistema, se diseñó un modelo experimental que fuera lo suficientemente versátil y práctico como para hacer mediciones continuas, bajo diferentes condiciones de flujo, para varios diámetros de tubería y que permitiera, a la vez, el registro continuo de los datos pertinentes para la obtención de resultados. El modelo se ubicó en el laboratorio del Edificio 11 del Instituto de Ingeniería de la Universidad Nacional Autónoma de México (II-UNAM).

En este orden de ideas, dicho modelo físico debería cumplir con las siguientes condiciones mínimas:

- Tener un sistema de recirculación del agua, con el fin de que existiera flujo continuo del líquido, y así el sistema fuera práctico y sostenible.
- Garantizar el cumplimiento de la hipótesis de *flujo permanente* en las tuberías durante cada prueba.
- Poder usar los *cruces* de diferentes diámetros en el mismo sistema de alimentación y recuperación de agua.

- Posibilidad de cambiar la configuración de las entradas y las salidas de los *cruces*, de tal forma que pudieran conseguirse, por lo menos, dos de los cuatro casos de flujo en *cruces*.
- Poseer válvulas en los cuatro brazos, con el fin de jugar con las magnitudes de los gastos, tanto en las entradas como en las salidas.
- Contar con medidores de flujo en, al menos, tres de los cuatro tramos de cada cruce.
- Tener algún dispositivo que permitiera medir las presiones aguas arriba y aguas abajo de los *cruces*, de tal forma que no se causaran perturbaciones adicionales en el flujo.

Para garantizar *la recirculación del agua*, se configuró un sistema mixto de bombeo y descarga a gravedad. Una bomba de 2HP que tomaba el agua desde un cárcamo inferior de 2.10m x 1.50m de área y 0.70m de profundidad (2.20 m³ de volumen), subiría el agua hasta dos tinacos de 400 litros de capacidad cada uno, ubicados a una altura de 3.40m sobre el nivel del piso del laboratorio. Una vez que los tinacos estuvieran llenos, el agua descendería y empezaría a circular por las tuberías de tal forma que al salir de ellas, pudiera redirigirse al cárcamo de bombeo. De esta forma, no se requerirían fuentes continuas de agua, y se descartarían posibles desperdicios del líquido.

Con este sistema combinado de bombeo-gravedad, podía cumplirse también con el requisito de *flujo permanente*. Para ello, se dotaron los tinacos con tuberías de rebose que dirigían el agua de exceso al cárcamo de bombeo. De este modo, los tinacos tendrían niveles de agua constante. Adicionalmente, cerca a la salida de la bomba, se ramificó la tubería de impulsión con regreso al cárcamo, y se puso una válvula que permitiera regular indirectamente la cantidad de agua que subiría a los tinacos.

Con el fin de permitir el intercambio de los *cruces* de diferentes diámetros, acoplándolos rápidamente a las alimentaciones y salidas del agua, el material debería ser liviano, de fácil manipulación, y con accesorios de acoplamiento tipo rosca, que no requirieran uso de soldaduras o cortes continuos del sistema. Por esto, se decidió trabajar con tubería y accesorios de PVC, material ampliamente difundido y de características y propiedades bastante conocidas. El sistema de tuercas también permitía convertir un *cruce* de doble alimentación y doble salida, en uno de una alimentación y triple salida.

Las válvulas en entradas y salidas, eran un requisito obvio. Se usaron con el fin de permitir la variación de los gastos y poder obtener múltiples puntos en las gráficas resultantes del posterior análisis. En la Figura 23 se puede observar un esquema del montaje completo.

Figura 23. Esquema del modelo físico construido.

Los *medidores de flujo* empleados, de fabricación española, se ubicaron a las entradas y a las salidas del *cruce*. Estos funcionan mediante una turbina alineada con el flujo, y reportan los gastos instantáneos en una pantalla digital ubicada en su parte superior. La comunicación entre las dos partes, se produce mediante sensores que interpretaban el giro de la turbina [Contazara, 2007]. Los valores del gasto instantáneo eran reportados en pantalla, con una incertidumbre de ± 1.0 l/h. La Figura 24 muestra el aspecto exterior del medidor, así como un corte longitudinal que permite observar la ubicación de la turbina de medición.

Figura 24. Medidores de flujo empleados en el modelo físico.

Para garantizar una medición sin perturbaciones, los medidores se ubicaron lejos de cualquier tipo de accesorio, válvula o cambio de dirección, a una distancia aproximada de diez veces el diámetro (10D) de la tubería conectada a los mismos. Los cuatro medidores empleados tenían conexiones en sus extremos de 1", por lo que se conectaron a tubos de 1" de diámetro nominal (29.80 \pm 0.01 mm reales) y de 30.0cm de longitud libre. Este hecho puede apreciarse en el esquema de la Figura 23.

Finalmente, se usaron cuatro *sensores de presión absoluta*, que iban conectados mediante mangueras a unas boquillas ubicadas aguas arriba y aguas abajo de los *cruces*. Las boquillas se pegaron en orificios previamente hechos en los tubos, de tal modo que quedaran a tope con la pared interior del tubo, evitando perturbaciones adicionales en el flujo. Las mangueras, tipo acuario, eran transparentes con el fin de que lograra verificarse, desde el exterior, la posible presencia de burbujas de aire que pudieran distorsionar las lecturas de los sensores u ocasionarles algún tipo de daño. Las boquillas fueron ubicadas a una distancia de 10D de las *cruces*, longitud en la que puede aproximarse la llamada *entrada hidrodinámica para flujo turbulento* y después de la cual puede considerarse que el flujo está *totalmente desarrollado* [Çengel y Cimbala, 2006].

Los sensores de presión estaban conectados a una consola que se encargaba de convertir las señales físicas en digitales, para posteriormente ser almacenadas en una laptop. Se seleccionaron sensores de 50 KPa (5.10 mca), con una incertidumbre de ± 0.025 KPa (± 0.0025 mca), y que tomaran lecturas de presión cada segundo. De esta forma se contaría con un grupo robusto de mediciones y se reduciría la incertidumbre en los cálculos. Los sensores, y su forma de conexión a las tuberías, se muestran en la fotografía de la Figura 25.

Figura 25. Sensores de presión absoluta empleados en el modelo físico.

4.2. DISEÑO DE LAS MEDICIONES

En esta etapa se consideraron las variables que se describen brevemente a continuación:

a. Tipo de flujos a estudiar: Se definió que se trabajaría con los dos primeros casos, de los cuatro descritos en el capítulo anterior, haciendo especial énfasis en el segundo de ellos, por no haber sido estudiado previamente. Este es, alimentación del *cruce* por dos tramos adyacentes. El primer caso, el de una *trifurcación*, solo se estudiaría para efectos comparativos.

b. Diámetros a considerar: Dado que en la única investigación previa sobre cruces alimentadas por dos tramos, no se consideraron diferentes diámetros para las pruebas, se estableció importante considerar está variable como vital en los estudios, con el fin de establecer su influencia en el valor final del *coeficiente de pérdidas menores K* de los *cruces.* Por tal motivo, se estableció apropiado usar cinco diferentes diámetros para realizar las pruebas, pero sin combinarlos en un mismo *cruce.* Para aprovechar al máximo la carga suministrada por los tanques, se eligieron diámetros pequeños, empezando por el de $\frac{1}{2}$ " (13mm). De esta forma, los diámetros nominales seleccionados fueron los siguientes: $\frac{1}{2}$ " (13mm), $\frac{3}{4}$ " (19mm), 1" (25mm), 1 $\frac{1}{4}$ " (32mm) y 1 $\frac{1}{2}$ " (38mm). En la Tabla 20 se reportan los diámetros interiores reales de cada uno de ellos, obtenidos mediante el uso de un *Vernier*.

Diámetro	Nominal	Diámetro Real			
[pulg] [mm]		[mm]	[pulg]		
1/2"	13	17.54	0.69		
3/4"	19	22.08	0.87		
1"	25	29.80	1.17		
1 1/4"	32	38.06	1.50		
1 1/2"	38	43.84	1.73		

Tabla 20. Diámetros empleados, valores nominales y reales.

Medido con Vernier con incertidumbre de +/- 0.01mm

c. Cantidad de pruebas a realizar: Con el ánimo de tener suficientes puntos experimentales, se definieron números mínimos de pruebas, en cada uno de los dos casos a estudiar. Para el caso de alimentación doble, se fijó el número mínimo de pruebas a ejecutar, con cada uno de los cinco diámetros, en 18. De este modo, se obtendría un número de puntos para estimación de los *coeficientes* K, igual o superior a 90. En el caso de alimentación por un solo tramo, el número mínimo de pruebas por diámetro se estableció en 14, de tal forma que se tuvieran alrededor de 70 puntos experimentales.

d. Combinación de gastos en los tramos. Relacionado con el punto anterior, se definieron unos porcentajes de apertura de las válvulas ubicadas en cada uno de los cuatro tramos, con el fin de obtener, de acuerdo al número de pruebas definido anteriormente, un amplio grupo de combinaciones de gastos de entrada y de salida. Para el caso de alimentación doble se establecieron las combinaciones que aparecen en la Tabla 21, en la que los tramos 1 y 2 son los alimentadores y los 3 y 4, las salidas. En el caso de alimentación simple, a través del tramo 1, se reportan en la Tabla 22. En

ambos casos, los porcentajes de 60% y 30% no son estrictos, simplemente representan un orden de magnitud.

	Porcent	Porcentaje de apertura de la válvula en el tramo							
Prueba	1	2	3	4					
1	100%	100%	100%	100%					
2	100%	100%	100%	60%					
3	100%	100%	100%	30%					
4	100%	100%	100%	0%					
5	100%	60%	100%	100%					
6	100%	60%	60%	100%					
7	100%	60%	30%	100%					
8	100%	60%	0%	100%					
9	100%	30%	100%	100%					
10	100%	30%	100%	60%					
11	100%	30%	100%	30%					
12	100%	30%	100%	0%					
13	60%	100%	100%	100%					
14	60%	100%	60%	100%					
15	60%	100%	0%	100%					
16	30%	100%	100%	100%					
17	30%	100%	100%	60%					
18	30%	100%	100%	0%					

Tabla 21. Combinación de gastos en los tramos para alimentación doble.

Tabla 22. Combinación de gastos en los tramos para alimentación simple.

	Porcent	Porcentaje de apertura de la válvula en el tramo						
Prueba	1	2	3	4				
1	100%	100%	100%	100%				
2	100%	100%	60%	100%				
3	100%	50%	100%	50%				
4	100%	100%	0%	0%				
5	100%	100%	0%	50%				
6	100%	60%	60%	100%				
7	100%	60%	100%	60%				
8	100%	100%	100%	0%				
9	100%	0%	100%	0%				
10	100%	100%	30%	30%				
11	100%	50%	100%	100%				
12	100%	0%	100%	100%				
13	100%	0%	100%	50%				
14	100%	0%	0%	100%				

e. Número de lecturas de presión por prueba. Con el ánimo de reducir las incertidumbres en los resultados estimados a partir de los datos medidos, era apropiado reducir las desviaciones estándar de las mediciones de presión, sin correr el riesgo de que se produjeran posibles cambios en los niveles de los tinacos que llevaran a incumplir la hipótesis de *régimen permanente.* Dado que las incertidumbres serían menores en la medida de que el tamaño de cada muestra fuera superior, se estimó que era apropiado realizar pruebas de 4 minutos de duración, para un total de 240 mediciones por prueba.

Una vez construido el modelo y establecidos todos los requisitos mínimos de funcionamiento, se procedió a realizar todas las pruebas, con el fin de obtener los datos, procesarlos y llegar a los resultados buscados. Los análisis llevados a cabo, así como los resultados obtenidos, se presentan en el capítulo siguiente.

5. ANÁLISIS DE RESULTADOS

Objetivo del capítulo:

Mostrar el proceso al que fueron sometidos los datos obtenidos en el laboratorio hasta conseguir un reporte adecuado de los coeficientes de pérdidas menores buscados.

5.1. NOMENCLATURA

Con el fin de organizar la toma de datos en el laboratorio, y facilitar su posterior procesamiento, se definió una nomenclatura de los tramos de los *cruces*. Esta se mantiene a lo largo de todo el análisis y se muestra en la Figura 26.

Figura 26. Nomenclatura asumida para los tramos en *cruces* de tuberías.
De esta forma, para el caso de alimentación simple, ésta se lleva a cabo por la tubería 1, y se entrega por las tuberías 2, 3 y 4. Para el caso de alimentación doble, el flujo ingresa por las tuberías 1 y 2, y sale por las tuberías 3 y 4. En ambos casos, el tramo 3 es perpendicular al 1, y el 4 al 2.

5.2. DEDUCCIÓN DE LAS EXPRESIONES EMPLEADAS PARA ESTIMAR Ki.

Las expresiones necesarias para estimar los valores de K a partir de los datos medidos en el laboratorio, pueden obtenerse a partir de un *balance de energía* (ecuación 3, capítulo 1), entre dos puntos cualesquiera del *cruce*, siempre que estén en tramos diferentes de éste.

5.2.1. Caso de alimentación doble.

En este caso existen dos flujos de entrada y dos flujos de salida. Se asumirá que las *pérdidas menores* se concentran en los tramos de salida 3 y 4, por lo que existirán dos *coeficientes de pérdidas menores*: $K3 \ y \ K4 \ (Sharp \ [2009], consideró tres$ *coeficientes K*para cada*cruce*). Éstos pueden deducirse haciendo*balance de energía*entre los puntos en qué se hicieron mediciones de presión en las entradas 1 y 2 (donde se conocen, por lo tanto, todos los valores de las diferentes*cargas*), y los puntos de interés en los tramos 3 y 4. El*balance*puede efectuarse iniciando en el tramo 1 ó en el 2, y llegar a ambas salidas.

Expresiones para estimar K3:

Haciendo balance de energía entre los puntos de los tramos 1 y 3 (caso 2 de la Figura 26), se tiene que:

$$E_1 - h_{f1} - h_{f3} - h_{L3} = E_3$$
[37]

Donde Ei represente el nivel de energía en el punto i; h_{fi} , las pérdidas por fricción en el tramo comprendido entre el punto i y el centro del cruce; y h_{L3} , las pérdidas menores correspondientes al tramo que une al punto 3 con el centro del cruce. De la ecuación 37 se puede despejar K3:

$$K_{3\leftarrow 1} = \frac{(E_1 - E_3) - h_{f1} - h_{f3}}{V_3^2 / 2g}$$
[38]

El subíndice $3\leftarrow 1$, indica que se trata del *coeficiente de pérdidas* del tramo 3, calculado a partir del *balance* con el tramo 1. Esta forma de marcar los *coeficientes de pérdidas*, es muy común para

accesorios que implican algún tipo de unión o separación de varios flujos, como es el caso de *Tees*, *Yees, Bifurcacións y Cruces*, entre otros.

En este punto es necesario hacer un paréntesis para aclarar este aspecto: Intuitivamente se puede esperar que el coeficiente K sea único para cada tramo, dada una condición de flujo y geometría dadas, independiente del tramo desde el que se haga el *balance de energía*. Esto es teóricamente cierto, sobre todo si se tiene en cuenta que el nivel de energía en el centro del *cruce* que se obtiene partiendo desde el punto 1, no puede ser distinto al que se obtendría partiendo desde cualquiera de los puntos 2, 3 ó 4. Sin embargo, cómo los cálculos parten de datos obtenidos en laboratorio, se puede esperar alguna diferencia en los resultados que los involucren.

Algunos autores (*Sharp* [2009]), simplemente estiman K desde alguno de los dos tramos de entrada, y lo relacionan con variables de este. Ahora bien, para el caso de *cruces* alimentadas por dos tramos, esto podría llevar a confusiones a la hora de decidir cuál sería el tramo de partida. Algo más adecuado consiste en calcular los *coeficientes de pérdidas menores* desde todos los tramos de entrada, promediarlos y reportarlo como K del tramo de salida estudiado. En este sentido está orientado el presente estudio.

De igual forma, y tal como se procedió desde el tramo 1, se hace *balance de energía* entre los puntos de los tramos 2 y 3:

$$E_2 - h_{f2} - h_{f3} - h_{L3} = E_3$$
[39]

De donde:

$$K_{3\leftarrow 2} = \frac{(E_2 - E_3) - h_{f2} - h_{f3}}{V_3^2 / 2g}$$
[40]

De modo que, finalmente:

$$K_3 = \frac{K_{3 \leftarrow 1} + K_{3 \leftarrow 2}}{2}$$
[41]

Expresiones para estimar K4:

Procediendo como se hizo para el tramo 3, se obtendrían las siguientes expresiones:

$$K_{4\leftarrow 1} = \frac{(E_1 - E_4) - h_{f1} - h_{f4}}{V_4^2 / 2g}$$
[42]

$$K_{4\leftarrow 2} = \frac{(E_2 - E_4) - h_{f2} - h_{f4}}{V_4^2 / 2g}$$
[43]

De tal forma que:

$$K_4 = \frac{K_{4 \leftarrow 1} + K_{4 \leftarrow 2}}{2}$$
[44]

5.2.2. Caso de alimentación simple.

En este caso existe un único tramo de alimentación (caso 1 de la Figura 26), por lo que no es necesario calcular promedios de los *coeficientes de pérdidas menores*. Basta con hacer *balances de energía*, entre un punto del tramo de entrada, y puntos en los tres tramos de salida. Las expresiones que se encontrarían serían las siguientes:

$$K_2 = \frac{(E_1 - E_2) - h_{f1} - h_{f2}}{V_2^2 / 2g}$$
[45]

$$K_{3} = \frac{(E_{1} - E_{3}) - h_{f1} - h_{f3}}{V_{3}^{2}/2g}$$
[46]

$$K_4 = \frac{(E_1 - E_4) - h_{f1} - h_{f4}}{V_4^2 / 2g}$$
[47]

Una vez calculados todos los valores Ki, para los dos casos estudiados, los cinco diámetros usados y la gama de gastos empleados, se procedió a compararlos con diversos parámetros hidráulicos de los tramos de los *cruces*, con el fin de encontrar relaciones coherentes entre ellos, y de ser posible, determinar relaciones funcionales aproximadas que permitieran estimarlos numéricamente (y no solo gráficamente como suele hacerse).

5.3. ANÁLISIS DE CRUCES CON ALIMENTACIÓN DOBLE.

5.3.1. Relación de los coeficientes *Ki* con otros parámetros hidráulicos.

El parámetro inicial y obvio a relacionar correspondía al *número de Reynolds*, Re. Primero se graficaron K_3 y K_4 , contra sus respectivos Re_3 y Re_4 , para cada diámetro estudiado, y aunque se detectó cierta tendencia de la nube de puntos, como las que se muestran en las Figuras 27a y 27b, correspondientes a los *cruces* de 13mm y 19mm respectivamente, se previó que sería importante relacionar además cada coeficiente con, por lo menos, un parámetro de alguna de las dos entradas, ya que un Re de una de las salidas, podría provenir de múltiples combinaciones de Re de las dos alimentaciones.

Figura 27. Gráficas de Re contra K para *cruces* de dos diámetros diferentes

Aún cuando la relación individual de los Re_i con los K_i , fuera independiente de las posibles combinaciones de entrada, se encontró que al hacer una relación entre un Re de salida, con uno de entrada, y graficarla contra los *coeficientes de pérdidas*, la nube de puntos se acomodaba mejor que en el primer caso, sobre todo para los diámetros más pequeños (13mm, 19mm y 25mm). En las Figuras 28 a 33, se reportan estas gráficas, en las que se ha trazado una línea indicando la tendencia aproximada de los puntos. En ellas se relaciona K3 contra la relación Re3/Re1, y K4

contra Re4/Re2. Nótese que en ambos cocientes, se relaciona el Re de cada entrada con el de la salida ortogonal a ella.

Figura 28. Gráficas de Re3/Re1 contra K3 para *cruce* de 13mm.

Figura 29. Gráficas de Re4/Re2 contra K4 para *cruce* de 13mm.

Figura 30. Gráficas de Re3/Re1 contra K3 para *cruce* de 19mm.

Figura 31. Gráficas de Re4/Re2 contra K4 para *cruce* de 19mm.

Figura 32. Gráficas de Re3/Re1 contra K3 para *cruce* de 25mm.

Figura 33. Gráficas de Re4/Re2 contra K4 para *cruce* de 25mm.

En este punto es bueno aclarar un punto importante, nótese que en la Figura 28, existen un par de puntos por debajo del eje principal de las abscisas, lo que implicaría valores negativos de los *coeficientes de pérdidas locales K.* Aunque esto podría representar una contradicción, pues lejos de representar una *pérdida*, estaría indicando una *ganancia* de energía, no puede dejarse de lado el hecho de que estos valores provienen de mediciones de laboratorio y que, por lo tanto, están sujetos a *errores.* Más adelante se ampliará y discutirá este tema particular, pero se puede especular, por ahora, que estos puntos negativos pudieron estar afectados, por ejemplo, por algún error cometido durante el proceso de medición (alguna perturbación externa sobre los sensores de presión, un error en la lectura de los gastos de alguno ó algunos de los medidores de flujo, entre otras posibles faltas).

Las gráficas análogas para los diámetros de 32mm y 38mm, no muestran un comportamiento muy definido. Esto puede deberse a que, durante las pruebas, no se logró aumentar notoriamente los gastos de entrada, de tal modo que pudieran registrarse diferencias de presión importantes, antes y después de los *cruces*, como sí en los casos de 13, 19 y 25mm. De todas formas, se presentan las gráficas correspondientes a estos diámetros en las Figuras 34 y 35.

Figura 34. Gráficas de Re3/Re1 contra K3 y de Re4/Re2 contra K4 para *cruce* de 32mm.

Figura 35. Gráficas de Re3/Re1 contra K3 y de Re4/Re2 contra K4 para *cruce* de 38mm.

Líneas de tendencia

Las líneas de tendencia mostradas en todas las figuras anteriores, corresponden a las curvas de mejor ajuste, de entre varios tipos analizados. Por la tendencia general de los puntos, era necesario considerar curvas que tuvieran las siguientes características: asintótica al eje de las ordenadas, monótona decreciente, cóncava hacia arriba y asintótica a alguna recta paralela al eje de las abscisas. Se ajustaron entonces funciones *exponenciales negativas* y *potenciales inversas* de varios tipos, siendo en todos los casos las segundas, las que presentaron mejores resultados. El parámetro empleado para evaluar la calidad de los ajustes fue el *coeficiente de determinación*, R^2 , encontrado en cada proceso. La forma general de las funciones con mejor ajuste presentaba la siguiente forma:

$$K_{ajust} = \frac{a}{\left(\frac{\operatorname{Re}_{sal}}{\operatorname{Re}_{ent}} + b\right)^{c}} + d$$
[49]

Donde los coeficientes *a*, *b*, *c* y *d*, representan los parámetros a estimar mediante el proceso de ajuste. La Tabla 23 contiene las expresiones de las curvas mostradas en las Figuras 28 a 33, correspondientes a los diámetros de 13, 19 y 25mm. Para cada caso se presenta también el valor del *coeficiente de determinación*.

Diámetro	Figura	Coef. pérdidas	Ecuación de mejor ajuste	R^2
13mm	28	K3	$K_{3ajust} = \frac{0.56}{\left(\frac{\text{Re}_3}{\text{Re}_1} - 0.15\right)^{1.14}} - 0.06$	1.00
13mm	29	K 4	$K_{4ajust} = \frac{22.22}{\left(\frac{\text{Re}_4}{\text{Re}_2} + 1.17\right)^{4.53}} + 0.53$	0.91
19mm	30	K3	$K_{3ajust} = \frac{0.70}{\left(\frac{\text{Re}_3}{\text{Re}_1} - 0.34\right)^{0.56}} - 0.24$	0.87
19mm	31	K 4	$K_{4ajust} = \frac{7.82}{\left(\frac{\text{Re}_4}{\text{Re}_2} + 0.83\right)^{4.31}} + 0.10$	0.81
25mm	32	K3	$K_{3ajust} = \frac{10.33}{\left(\frac{\text{Re}_3}{\text{Re}_1} + 1.10\right)^{3.93}} + 0.33$	0.77
25mm	33	K 4	$K_{4ajust} = \frac{0.73}{\left(\frac{\text{Re}_4}{\text{Re}_2}\right)^{2.13}} + 0.60$	0.82

Tabla 23. Ecuaciones de ajuste para los coeficientes de pérdidas K para 13, 19 y 25mm.

Los valores de R^2 , bastante cercanos a la unidad, soportan la afirmación hecha previamente, de que existe una tendencia clara de los puntos y que, los valores de los *coeficientes de pérdidas locales Ki*, son bien explicados por las relaciones (Re_{salida}/Re_{entrada}).

Unificación de gráficas para diámetros de 13, 19 y 25mm

Al graficar los valores de K₃ ó K₄, para los diámetros de 13, 19 y 25mm en un mismo eje coordenado, contra los correspondientes Re₃/Re₁ ó Re₄/Re₂ respectivamente (lo que equivaldría a fundir las gráficas de las Figuras 28, 30 y 32 ó las de las 29, 31 y 33 en una sola), se obtienen las gráficas mostradas en las Figuras 36 y 37. En ellas puede observarse que la nube de puntos se acomoda de tal forma que continúa evidenciando una tendencia más o menos bien definida y que conserva las características mencionadas anteriormente.

Figura 36. Gráficas de Re3/Re1 contra K3 para *cruces* de 13, 19 y 25mm.

Figura 37. Gráficas de Re4/Re2 contra K4 para cruces de 13, 19 y 25mm.

Estas gráficas pueden ser un indicador de que los *coeficientes de pérdidas menores K2 y K4*, tienden a agruparse de forma independiente del diámetro de los *cruces*. Los parámetros de sus líneas de

tendencia se muestran en la Tabla 24.

Diámetro	Figura	Coef. pérdidas	Ecuación de mejor ajuste	R^2
13, 19 y 25mm	36	K3	$K_{3ajust} = \frac{1.01}{\left(\frac{\text{Re}_3}{\text{Re}_1} - 0.20\right)^{0.65}} - 0.39$	0.94
13, 19 y 25mm	37	K 4	$K_{4ajust} = \frac{42.05}{\left(\frac{\text{Re}_4}{\text{Re}_2} + 1.30\right)^{4.86}} + 0.41$	0.74

Tabla 24. Ecuaciones de ajuste unificadas para los *coeficientes de pérdidas K* para 13, 19 y 25mm.

Unificación de gráficas de K3 y K4

Dada la simetría de los *cruces* estudiados, con tramos ortogonales dos a dos, y dada la forma en que se relacionaron los valores de los *coeficientes de pérdidas menores K* de las salidas, con los *números de Reynolds* de cada una de ellas y el de su correspondiente entrada perpendicular, hace que sea lógico pensar que, sí se tienen dos relaciones *Reynolds*, entre una salida (3 ó 4) y su entrada ortogonal (1 ó 2), idénticas, los *coeficiente K* de las respectivas salidas deben ser necesariamente iguales, independientemente de sí las relaciones corresponden a los tramos 1 y 4, ó a los tramos 2 y 3. En términos más prácticos, sí se superponen algunas gráficas para K3 y K4, los puntos deben seguir conservando tendencias similares y, aún más, deben mezclarse unos con otros hasta el punto de confundirse entre ellos. La Figura 38 muestra una gráfica en la que se hizo esto, con las gráficas de las Figuras 36 (K3) y 37 (K4). En ella también se incluyeron sus respectivas líneas de tendencia.

Figura 38. Gráficas de K3 y K4 unificadas para *cruces* de 13, 19 y 25mm.

Finalmente, a partir de los puntos de la Figura 38, pueden estimarse los parámetros de una línea de tendencia más general, que incluya todos los diámetros considerados y los dos *coeficientes de pérdidas menores* de las salidas. Dichos parámetros se reportan en la Tabla 25, y la curva se reproduce en la Figura 39. Para dar más generalidad a la gráfica, se renombraron relaciones y coeficientes: la relación entre *números de Reynolds* se denotó como (Re_{sal}/Re_{ent}), donde Re_{sal} representa el Reynolds de la salida de la que se desea conocer K, y Re_{ent} el de la entrada perpendicular a ésta; el *coeficiente de pérdidas menores* K se denotará simplemente así: K_{sal} . Adicionalmente, a ambos, se les añadirá el símbolo \perp , para enfatizar la perpendicularidad de los parámetros con qué se debe usar la gráfica.

Tabla 25. Ecuación de ajuste unificada para el *coeficientes de pérdidas K* para 13, 19 y 25mm.

Diámetro	netro Figura Coeficien pérdic		Ecuación de mejor ajuste	R^2
13, 19 y 25mm	39	K _{sal}	$K_{sal\perp} = \frac{0.558}{\left(\frac{\text{Re}_{sal}}{\text{Re}_{ent}}\right)_{\perp}^{1.872}} + 0.323$	0.81

Figura 39. Gráficas de K3 y K4 unificadas para *cruces* de 13, 19 y 25mm.

Es bueno aclarar que, como los *cruces* están formados por tramos del mismo diámetro, toda relación de números de Reynolds, equivaldrá a relacionar las velocidades ó los gastos

correspondientes. Así, para un *cruce* dado, en el que $D_1=D_2=D_3=D_4$, y por lo tanto $A_1=A_2=A_3=A_4$, se tiene que:

$$\frac{\operatorname{Re}_{3}}{\operatorname{Re}_{1}} = \frac{\frac{V_{3}D_{3}}{\nu}}{\frac{V_{1}D_{1}}{\nu}} = \frac{V_{3}D_{3}}{V_{1}D_{1}} = \frac{V_{3}}{V_{1}} = \frac{\left(\frac{Q_{3}}{A_{3}}\right)}{\left(\frac{Q_{1}}{A_{1}}\right)} = \frac{Q_{3}}{Q_{1}}\frac{A_{1}}{A_{3}} = \frac{Q_{3}}{Q_{1}}$$
[50]

De igual forma:

$$\frac{\operatorname{Re}_{4}}{\operatorname{Re}_{2}} = \frac{\frac{V_{4}D_{4}}{\nu}}{\frac{V_{2}D_{2}}{\nu}} = \frac{V_{4}D_{4}}{V_{2}D_{2}} = \frac{V_{4}}{V_{2}} = \frac{\left(\frac{Q_{4}}{A_{4}}\right)}{\left(\frac{Q_{2}}{A_{2}}\right)} = \frac{Q_{4}}{Q_{2}}\frac{A_{2}}{A_{4}} = \frac{Q_{4}}{Q_{2}}$$
[51]

Lo que muestra la gráfica de la Figura 39, y que se hace más evidente al observar la línea de tendencia con la que se aproximaron los datos medidos, puedo resumirse como sigue:

- → Para gastos de salida mayores a 3 veces el valor del gasto de su entrada ortogonal, el valor del coeficiente de pérdidas menores K, es constante y aproximadamente igual a 0.32.
- ➔ Para gastos iguales y hasta 3 veces más grandes de salida, que el de la entrada perpendicular, Koscila ligeramente entre 0.32 y 0.85 aproximadamente.
- →
 - Para gastos de salida menores a los de la entrada perpendicular, el valor de K comienza a aumentar rápidamente desde 0.85 hacia números tanto más altos, como más alta sea la diferencia entre ambos.

5.3.2. Gráficas de contorno.

Una forma habitual y que se ha generalizado bastante, sobre todo para reportar los *coeficientes de pérdidas menores* en *bifurcaciones* y *trifurcaciones*, son las gráficas de contorno. Estas semejan los planos topográficos de curvas de nivel, sólo que en este caso, las curvas son llamadas *curvas de contorno* y corresponden a valores constantes de los *coeficientes K* de alguno de los tramos del *cruce*. En los ejes vertical y horizontal, suelen colocarse relaciones entre parámetros de alguna entrada y alguna salida, usualmente *gastos* o *áreas*, de modo que el *cruce* quede completamente definido. A continuación se presentan, en las Figuras 40 a 45, las *gráficas de contorno* para los *cruces* de 13, 19 y 25mm, y de manera independiente para los dos *coeficientes de pérdidas menores* en las salidas, *K3 y K4*.

Figura 41. Gráfica de contorno de K3 para cruces de 19mm.

Figura 42. Gráfica de contorno de K3 para cruces de 25mm.

Figura 43. Gráfica de contorno de K4 para *cruces* de 13mm.

Figura 44. Gráfica de contorno de K4 para cruces de 19mm.

Figura 45. Gráfica de contorno de K4 para *cruces* de 25mm.

Ahora bien, en las Figuras 46, 47 y 48 se muestran las *curvas de contorno unificadas*, para los diámetros mencionados previamente. En ellas, al igual que se hizo en el caso de las líneas de tendencia de las nubes de puntos, se unieron K_3 y K_4 en un único *coeficiente* K_{sal} , que depende del flujo del tramo analizado y del flujo del tramo de entrada perpendicular a éste. En general, se sugiere el uso de estas gráficas en lugar de las anteriores, por haber sido fabricadas con el doble de información que éstas, proveniente de la unificación.

Las gráficas de los diámetros de 32 y 38mm no se presentan en este capítulo para no causar confusión; ellas aparecen, con fines ilustrativos, en el Anexo 2. Como se mencionó anteriormente, los resultados obtenidos para estos *cruces* fueron considerados no confiables, debido a la semejanza de las presiones antes y después del accesorio, ocasionada por limitaciones en el modelo experimental construido.

Figura 46. Gráfica de contorno unificada para cruces de 13mm.

Figura 47. Gráfica de contorno unificada para *cruces* de 19mm.

5.4. ANÁLISIS DE CRUCES CON ALIMENTACIÓN SIMPLE (TRIFURCACIONES).

5.4.1. Relación de los *coeficientes Ki* con otros parámetros hidráulicos.

De igual forma que en el caso de alimentación doble, el primer paso consistió en observar el comportamiento de los *coeficientes de pérdidas menores Ki* con *el número de Reynolds* de cada uno de los tres tramos de salida (2, 3 y 4). En este caso, los tramos 2 y 3, perpendiculares a la entrada del flujo, presentaban alguna tendencia identificable, tal y como se observa en las Figura 49 y 50, en la que se muestran las gráficas de Re contra K de dichos tramos.

R2 vs K2 - 19mm R3 vs K3 - 19mm 8.00 40.00 7.00 35.00 **♦ K2 ♦ K**3 30.00 6.00 5.00 25.00 K_{2 4.00} **К**з 20.00 3.00 15.00 2.00 10.00 ♦ ٥ 5.00 1.00 8 \$ ۵ 0.00 R2 0.00 Rз 30,000 0 10,000 20,000 40,000 0 5,000 10,000 15,000

Figura 49. Gráficas de Re contra K para cruce de 13mm (Trifurcación).

Figura 50. Gráficas de Re contra K para *cruce* de 19mm (Trifurcación).

El tramo 4, alineado con el tramo alimentador 1, presentaba valores erráticos y muy dispersos, y en la mayoría de los casos, se presentaron valores negativos del *coeficiente K*. Este hecho, que podría entenderse físicamente como una ganancia de energía, habría sido observada y reportada previamente por otros investigadores, como se mencionó en el capítulo 3 [Ramakrishna y Kumar, 2009], y puede evidenciarse en la Figura 51, para los diámetros de 13 y 19mm.

Figura 51. Gráficas de Re4 contra K4 para cruces de 13 y 19mm (Trifurcación).

Ahora bien, ya que en el caso de alimentación doble pudo mejorarse la tendencia y alineación de los puntos, mediante el uso de relaciones de *Reynolds*, en lugar de sus valores íntegros, era lógico intentar hacer lo mismo para el caso de *trifurcaciones*. En esta ocasión, se dividieron los *números de Reynolds* de las tres salidas por el *número de Reynolds* de la única entrada, y se graficaron nuevamente contra los valores de K.

Los resultados para los tramos 2 y 3, perpendiculares al tramo 1, fueron muy satisfactorios para los casos de 13 y 19mm, tal y como se puede observar en las Figuras 52 y 53, en la que también se muestran las líneas de tendencia, cuyas expresiones se indican más adelante, en la Tabla 26. En ella, nuevamente, se presentan los valores de R^2 , hallados luego de probar diferentes modelos de ajuste.

Figura 52. Gráficas de Re2/Re1 contra K2 y de Re3/Re1 contra K3 para cruce de 13mm. (Trifurcación).

Figura 53. Gráficas de Re2/Re1 contra K2 y de Re3/Re1 contra K3 para *cruce* de 19mm. (Trifurcación).

Tabla 26. Ecuaciones de ajuste para los coeficientes de pérdidas K2 y K3 para cruces de 13 y 19mm (Trifurcaciones).

Diámetro	Figura	Coef. pérdidas	Ecuación de mejor ajuste	R^2
13mm	52	K2	$K_{2ajust} = \frac{1.48}{\left(\frac{\text{Re}_2}{\text{Re}_1} - 0.15\right)^{0.75}}$	0.97
13mm	52	K3	$K_{3ajust} = \frac{5.56}{\left(\frac{\text{Re}_3}{\text{Re}_1} + 0.71\right)^{9.11}} + 2.07$	0.99
19mm	53	K2	$K_{2ajust} = \frac{89.24}{\left(\frac{\text{Re}_2}{\text{Re}_1} + 1.20\right)^{7.49}}$	0.78
19mm	53	K3	$K_{3ajust} = \frac{1.16}{\left(\frac{\text{Re}_3}{\text{Re}_1} - 0.06\right)^{1.20}}$	0.99

Para los diámetros de 25, 32 y 38mm, las dispersiones fueron mayores, hecho evidenciado en las Figuras 54 a 56. Aún así, como se verá posteriormente, la unión de todos los puntos en una misma gráfica, para los diámetro de 13, 19 y 25mm, muestra resultados más satisfactorios.

Figura 55. Gráficas de Re2/Re1 contra K2 y de Re3/Re1 contra K3 para *cruce* de 32mm. (Trifurcación).

Figura 56. Gráficas de Re2/Re1 contra K2 y de Re3/Re1 contra K3 para *cruce* de 38mm. (Trifurcación).

Como se observa en la Figura 56, para el diámetro del 38mm, casi la totalidad de los *coeficientes de pérdidas menores K* calculados, fueron negativos, lo que puede deberse, como en el caso de alimentación doble, a la cercanía de los valores de presión medidos antes y después del *cruce*.

Finalmente, para el caso del tramo 4, tal y como sucedió en las gráficas de Re contra K, las nuevas gráficas mostraban bastante dispersión y gran cantidad de valores negativos, como se verá en las gráficas 57 a 59, para los diámetros de 13 a 32mm.

Figura 57. Gráficas de Re4/Re1 contra K4 para cruces de 13 y 19mm. (Trifurcación).

Figura 58. Gráficas de Re4/Re1 contra K4 para *cruces* de 25 y 32mm. (Trifurcación).

Figura 59. Gráficas de Re4/Re1 contra K4 para *cruces* de 38mm. (Trifurcación).

Unificación de gráficas para diámetros de 13, 19 y 25mm

La superposición de las nubes de puntos de los tramos 2 y 3, para los *cruces* de 13, 19 y 25mm, muestra una agrupación clara de los valores de los *coeficientes de pérdidas menores K*. Este hecho, se plasma en la Figura 60 para el caso de Re2/R1 contra K2; y en la Figura 61 para Re3/Re1 contra K3. Las ecuaciones de los ajustes se muestran en la Tabla 27.

Diámetro	Figura	<i>Coeficiente de pérdidas</i>	Ecuación de mejor ajuste	R^{2}
13, 19 y 25mm	60	K2	$K_{2ajust} = \frac{0.58}{\left(\frac{\text{Re}_2}{\text{Re}_1}\right)^{1.71}}$	0.59
13, 19 y 25mm	61	K3	$K_{3ajust} = \frac{10.21}{\left(\frac{\text{Re}_3}{\text{Re}_2} + 0.79\right)^{11.61}} + 1.68$	0.94

Tabla 27. Ecuaciones de ajuste para K2 y K3 unificados para cruces de 13, 19 y 25mm (Trifurcaciones).

Figura 60. Gráficas de Re2/Re1 contra K2 para *cruces* de 13, 19 y 25mm. (Trifurcación).

Figura 61. Gráficas de Re3/Re1 contra K3 para cruces de 13, 19 y 25mm. (Trifurcación).

Unificación de gráficas de K2 y K3

De igual forma que para el caso de alimentación doble, al fusionar las gráficas 60 y 61, dada la simetría del *cruce*, y el hecho de que los tramos 2 y 3 salen perpendicularmente al tramo 1, desde el accesorio, los puntos se superponen y se agrupan mostrando una clara correspondencia. Esto se observa en la Figura 62, en la que también se muestran las líneas de tendencia de cada uno de los casos.

Figura 62. Gráficas de K3 y K4 unificadas para *cruces* de 13, 19 y 25mm. (Trifurcación).

Finalmente, se estimó una curva que representara al conjunto completo de puntos de la Figura 62. La ecuación se muestra en la Tabla 28, y aparece dibujada en la gráfica de la Figura 63. En este caso, el *coeficiente de determinación* fue de 0.88, lo que indica que el ajuste es bueno.

De nuevo, para dar generalidad a la curva, se substituyeron los subíndices 2 y 3 por el símbolo \perp , que indica la perpendicularidad del tramo de salida del que se quiere conocer el *coeficiente de pérdidas menores* K_{\perp} y el subíndice 1 se reemplazó por la abreviatura *'ent.'*, para indicar que se trata del tramo alimentador (o de entrada) del *cruce*.

Diámetro	Figura	<i>Coeficiente de pérdidas</i>	Ecuación de mejor ajuste	R^2
13, 19 y 25mm	63	K⊥	$K_{\perp ajust} = \frac{0.54}{\left(\frac{\text{Re}_{\perp}}{\text{Re}_{ent.}} - 0.04\right)^{1.59}} + 1.44$	0.88

Figura 63. Gráficas de K3 y K4 unificadas para *cruces* de 13, 19 y 25mm. (Trifurcación).

Como se mencionó previamente, para el caso del tramo de salida 4 no se encontraron tendencias apreciables entre las relaciones Re4/Re1 y K4. Incluso al explorar otras opciones de relaciones entre parámetros tipo Reynolds, o incluso geométricos, no se tuvo éxito. Para este caso, entonces, se reportan únicamente las gráficas de contorno presentadas en el siguiente apartado.

5.4.2. Gráficas de contorno

A continuación se presentan las gráficas de contorno para el caso de *cruces* alimentadas por un único tramo, calculadas mediante interpolación de los puntos medidos en laboratorio. Para los diámetros de 13, 19 y 25mm, se reportan las curvas para los tres *coeficientes de pérdidas menores K2, K3* y *K4*. Las Figuras 64 a 72, contienen las gráficas de contorno mencionadas. Se aclara nuevamente que, para los diámetros de 32 y 38mm, las gráficas se incluyen en el Anexo 2, y que tienen carácter meramente ilustrativo, pues, como se mencionó antes, los valores calculados divergían de lo mostrado por los diámetros menores, presentando un comportamiento errático.

Figura 64. Gráfica de contorno de K2 para *cruces* de 13mm (Trifurcaciones).

Figura 65. Gráfica de contorno de K3 para *cruces* de 13mm (Trifurcaciones).

Figura 66. Gráfica de contorno de K4 para *cruces* de 13mm (Trifurcaciones).

Figura 67. Gráfica de contorno de K2 para cruces de 19mm (Trifurcaciones).

Figura 68. Gráfica de contorno de K3 para *cruces* de 19mm (Trifurcaciones).

Figura 69. Gráfica de contorno de K4 para *cruces* de 19mm (Trifurcaciones).

Figura 70. Gráfica de contorno de K2 para *cruces* de 25mm (Trifurcaciones).

Figura 71. Gráfica de contorno de K3 para cruces de 25mm (Trifurcaciones).

Figura 72. Gráfica de contorno de K4 para *cruces* de 25mm (Trifurcaciones).

6. EJEMPLOS DE APLICACIÓN

Con el ánimo de mostrar el procedimiento sugerido para el cálculo de las *pérdidas locales* ocasionadas por *cruces* de tuberías, mediante el uso de las ecuaciones y gráficas desarrolladas en el capítulo anterior, se diseñaron un par de ejemplos bastante ilustrativos al respecto. En base a ellos también se podrán sacar algunas conclusiones interesantes, y que se plasmarán en el capítulo final. Cada uno de los ejemplos estará dedicado a alguno de los dos casos de flujo a través de cruces de tuberías.

6.1. EJEMPLO 1.

A dos lados adyacentes de un *cruce* de tuberías de PVC de $\frac{1}{2}$ " (D_{Nom}=13mm, D_{int}=17.54mm), llegan dos tuberías que transportan flujos de 1,500 l/h y 1,000 l/h. Los tramos tienen una longitud de 4.0m cada uno. Por los dos lados restantes del *cruce*, salen dos tramos con longitudes de 3.5m y 3.0m, que continúan transportando el fluido, de tal forma que el 76% del total se va a través del tramo más largo, ubicado perpendicularmente al que abastece 1,500 l/h. El esquema, en el cual se adoptó la nomenclatura de los capítulos anteriores para los tramos, se observa en la Figura 73.

Se pretende estimar los *coeficientes de pérdidas locales de carga* en cada uno de los tramos de salida, 3 y 4, debidas a la presencia del *cruce*, de las siguientes formas:

- a. Usando las ecuaciones para K3 y K4, para *cruces* de tuberías de 13mm.
- b. Usando las ecuaciones para K3 y K4, unificadas para cruces de tuberías de 13, 19 y 25mm.
- c. Usando la ecuación unificada para K_{sal⊥}, para cruces de tuberías de 13, 19 y 25mm.
- d. Usando las gráficas de contorno para K3 y K4, para *cruces* de tuberías de 13mm.
- e. Usando las gráficas de contorno unificadas para K_{sal⊥}, para *cruces* de tuberías de 13mm.

Figura 73. Esquema del ejemplo 1.

Solución:

El gasto total, Q_T , que llega al *cruce* a través de los tramos 1 y 2 es:

$$Q_T = Q_1 + Q_2 = 1,500l/h + 1,000l/h = 2,500l/h$$

De modo que los gastos de salida del *cruce*, correspondientes a los tramos 3 y 4, son:

$$Q_3 = 0.76 * Q_T = 1,900l / h$$

 $Q_4 = Q_T - Q_3 = 600l / h$

Las relaciones requeridas para el uso de las expresiones y gráficos de contorno, son las siguientes:

a. Usando las ecuaciones para K3 y K4, para *cruces* de tuberías de 13mm.

$$K_{3a} = \frac{0.56}{\left(\frac{Re_3}{Re_1} - 0.15\right)^{1.14}} - 0.06 = \frac{0.56}{(1.27 - 0.15)^{1.14}} - 0.06 = 0.43$$
$$K_{4a} = \frac{22.22}{\left(\frac{Re_4}{Re_2} + 1.17\right)^{4.53}} + 0.53 = \frac{22.22}{(0.60 + 1.17)^{4.53}} + 0.53 = 2.20$$

b. Usando las ecuaciones para K3 y K4, unificadas para *cruces* de tuberías de 13, 19 y 25mm.

$$K_{3b} = \frac{1.01}{\left(\frac{Re_3}{Re_1} - 0.20\right)^{0.65}} - 0.39 = \frac{1.01}{(1.27 - 0.20)^{0.65}} - 0.39 = 0.58$$
$$K_{4b} = \frac{42.05}{\left(\frac{Re_4}{Re_2} + 1.30\right)^{4.86}} + 0.41 = \frac{42.05}{(0.60 + 1.30)^{4.86}} + 0.41 = 2.27$$

c. Usando la ecuación unificada para Ksall, para cruces de tuberías de 13, 19 y 25mm.

$$K_{3c} = \frac{0.558}{\left(\frac{Re_3}{Re_1}\right)^{1.872}} + 0.323 = \frac{0.558}{(1.27)^{1.872}} + 0.323 = \mathbf{0.68}$$
$$K_{4c} = \frac{0.558}{\left(\frac{Re_4}{Re_2}\right)^{1.872}} + 0.323 = \frac{0.558}{(0.60)^{1.872}} + 0.323 = \mathbf{1.77}$$

d. Usando las gráficas de contorno para K3 y K4, para *cruces* de tuberías de 13mm. Para el caso de K3, se entra al gráfico con $Re_1/Re_T = 0.60$ y $Re_3/Re_T = 0.76$; para K4, con $Re_2/Re_T = 0.40$ y $Re_4/Re_T = 0.24$:

De donde se tiene que:

 $K_{3d} = 0.58$ $K_{4d} = 2.35$

e. Usando las gráficas de contorno unificadas para K_{sal}, para *cruces* de tuberías de 13mm. Con los mismos valores que se entró a las figuras anteriores, se ingresa a la gráfica unificada:

En este caso, se tiene:

$$K_{3e} = 0.72$$

 $K_{4e} = 2.10$

Los resultados obtenidos se resumen en la siguiente tabla, al final de la cual se calculó el promedio de los cinco valores estimados:

	а	b	С	d	e	Promedio
K 3	0.43	0.58	0.68	0.58	0.72	0.60
K 4	2.20	2.27	1.77	2.35	2.10	2.14

Como puede observarse, los valores encontrados para los dos *coeficientes de pérdidas locales, K3 y K4*, por los cinco métodos diferentes, poseen el mismo orden de magnitud, y están muy cercanos al valor promedio reportado en la última columna.

Aunque sería aconsejable trabajar con el promedio de los cinco métodos, esto no siempre será posible y podría resultar un poco tedioso. Aun así, los tres primeros métodos corresponden a ecuaciones matemáticas que podrían ser fácilmente calculadas en cualquier hoja de cálculo, o incluso, incluirse en los programas de cálculo de redes de distribución (abiertas y cerradas). Los últimos dos métodos, los gráficos, son menos susceptibles de ser incluidos en paquetes de cálculo, pero por su evidente grado de acierto, podrían ser usadas en cualquier etapa de diseño de una red.

Finalmente, y para hacer énfasis en la importancia de estimar las *pérdidas locales* en algunos tipos de redes, se compararon éstas con las *pérdidas de fricción* de las dos tuberías de salida, y que se calculan, al igual que las de las dos tuberías de entrada, en la siguiente tabla:

Tubería	L[m]	Q [l/h]	V [m/s]	V ² /2g [m]	Re [adim] ³	f [adim] ⁴	h _f [m]
1	4.0	1,500	1.72	0.09	30,246	0.0236	0.47
2	4.0	1,000	1.15	0.06	20,164	0.0260	0.35
3	3.5	1,900	2.18	0.11	38,312	0.0224	0.50
4	3.0	600	0.69	0.04	12,098	0.0296	0.18

³ Se tomó como viscosidad cinemática del agua, la correspondiente a 20°C. $v = 1.00 \times 10^{-6} \text{ m}^2/\text{s}$.

⁴ Se usó la ecuación explicita de Swamee-Jain (ecuación 18, capítulo 1).

Tubería	K	V ² /2g [m]	h _k [m]	h _f [m]	$\mathbf{h_k}/\mathbf{h_f}$
3	0.60	0.11	0.07	0.50	13%
4	2.14	0.04	0.08	0.18	42%

La comparación de pérdidas locales y de fricción se incluye en la siguiente tabla:

Como puede observarse, en el caso del tramo 2, las *pérdidas locales* son del orden del 42% de las *pérdidas de fricción*, y aunque podría pensarse que su valor neto es muy pequeño como para representar algún peligro, debe tenerse en cuenta que pueden existir varios *cruces* de estos en la red, y su efecto combinado podría llegar a perjudicar el buen funcionamiento de la red.

6.2. EJEMPLO 2.

Se tiene un *cruce* de tuberías de PVC de $\frac{1}{2}$ " (D_{Nom}=13mm, D_{int}=17.54mm), al que entra un gasto de 2,300 l/h por uno de sus tramos. Por los dos tramos perpendiculares a este, salen gastos de 850 l/h cada uno. Por el tramo restante, salen 600 l/h, tal y como se observa en la Figura 74.

Figura 74. Esquema del ejemplo 2.

Tal como en el primer ejemplo, se busca estimar los *coeficientes de pérdidas locales* en cada uno de los tramos de salida, 2, 3 y 4, debidas a la presencia del *cruce*, de las siguientes formas:

a. Usando las ecuaciones para K2 y K3, para *cruces* de tuberías de 13mm.
b. Usando las ecuaciones para K2 y K3, unificadas para cruces de tuberías de 13, 19 y 25mm.

- c. Usando la ecuación unificada para $K_{\text{sal}\perp}$ para cruces de tuberías de 13, 19 y 25mm.
- d. Usando las gráficas de contorno para K2, K3 y K4, para cruces de tuberías de 13mm.

Solución:

Las relaciones requeridas para el uso de las expresiones y gráficos de contorno, son las siguientes:

$$\frac{Re_2}{Re_1} = \frac{Q_2}{Q_1} = \frac{850}{2,300} = 0.37 \qquad \qquad \frac{Re_3}{Re_1} = \frac{Q_3}{Q_1} = \frac{850}{2,300} = 0.37 \qquad \qquad \frac{Re_4}{Re_1} = \frac{Q_4}{Q_1} = \frac{600}{2,300} = 0.26$$

a. Usando las ecuaciones para K2 y K3, para cruces de tuberías de 13mm.

$$K_{2a} = \frac{1.48}{\left(\frac{Re_2}{Re_1} - 0.15\right)^{0.75}} = \frac{1.48}{(0.37 - 0.15)^{0.75}} = 4.61$$
$$K_{3a} = \frac{5.56}{\left(\frac{Re_3}{Re_1} + 0.71\right)^{9.11}} + 2.07 = \frac{5.56}{(0.37 + 0.71)^{9.11}} + 2.07 = 4.83$$

b. Usando las ecuaciones para K2 y K3, unificadas para cruces de tuberías de 13, 19 y 25mm.

$$K_{2b} = \frac{0.58}{\left(\frac{Re_2}{Re_1}\right)^{1.71}} = \frac{0.58}{(0.37)^{1.71}} = \mathbf{3.18}$$
$$K_{3b} = \frac{10.21}{\left(\frac{Re_3}{Re_1} + 0.79\right)^{11.61}} + 1.68 = \frac{10.21}{(0.37 + 0.79)^{11.61}} + 1.68 = \mathbf{3.50}$$

c. Usando la ecuación unificada para K_{sul_1} para cruces de tuberías de 13, 19 y 25mm. En este caso $Re_3/Re_1 = Re_2/Re_1 = 0.37$

$$K_{2c} = K_{3c} = \frac{0.54}{\left(\frac{Re_{2.6.3}}{Re_1} - 0.04\right)^{1.59}} + 1.44 = \frac{0.54}{(0.37 - 0.04)^{1.59}} + 1.44 = 4.59$$

d. Usando las gráficas de contorno para K2, K3 y K4, para cruces de tuberías de 13mm.

Para el caso de K2 y K3, se entra al gráfico con $Re_3/Re_1=0.37$ y $Re_2/Re_1=0.37$; para K4, con $Re_3/Re_1=0.37$ y $Re_4/Re_1=0.26$.

De donde:

 $K_{2d} = 4.65$ $K_{3d} = 5.00$

Resumiendo los datos obtenidos, se tiene que:

	а	b	С	d	Promedio
K2	4.61	3.18	4.59	4.65	4.26
K 3	4.83	3.50	4.59	5.00	4.48

Se observa que el método b, que usa las ecuaciones unificadas para diámetros de 13, 19 y 25mm, es menos conservador que los otros tres, sin embargo, los otros proporcionan valores muy semejantes entre sí de los *coeficientes de pérdidas menores*.

Es importante resaltar la cercanía de los valores promedios de los dos *coeficientes K2* y K3, lo cual es un muy buen indicador, más si se tiene en cuenta que, por la simetría del flujo, los tramos 2 y 3 deberían tener el mismo valor de K.

Tubería	Q [l/h]	V [m/s]	V ² /2g [m]	Re [adim]	f [adim]	h _f [m]
1	2,300	2.64	0.13	46,377	0.0215	0.66
2	850	0.98	0.05	17,139	0.0270	0.31
3	850	0.98	0.05	17,139	0.0270	0.27
4	600	0.69	0.04	12,098	0.0296	0.18

Las *pérdidas por fricción* en los tramo 3 y 4, así como la comparación entre éstas y las *pérdidas locales*, se reportan en las siguientes tablas:

Tubería	K	V ² /2g [m]	h _k [m]	h _f [m]	h _k /h _f
2	4.26	0.05	0.21	0.31	69%
3	4.48	0.05	0.22	0.27	83%

Como era de esperarse, por la magnitud de los *coeficientes K*, las *pérdidas locales* son mayores que en el primer ejemplo, al punto de igualar prácticamente a las *pérdidas por fricción*. De hecho, al observar las *curvas de contorno* para *trifurcaciones* (capitulo 5.4), se puede concluir que en los *cruces* en los que el flujo se *trifurca*, existirán mayores pérdidas menores que en las que el flujo llega solo por dos tramos adyacentes.

Para el caso de K4, sólo se cuenta con el gráfico de curvas de contornos que se presenta a continuación. Como se comentó en el capítulo tres, el tramo en línea con el alimentador, suele presentar *coeficientes de pérdidas locales* negativos, según investigaciones previas.

7. CONCLUSIONES Y RECOMENDACIONES

Antes de pasar a mencionar las conclusiones derivadas del proceso de análisis de los datos obtenidos durante la investigación desarrollada para esta Tesis, se considera pertinente hacer las siguientes aclaraciones:

- ! Para los estudios se emplearon cinco *cruces* de tubería, en PVC cédula 40, con aristas internas no redondeadas, de diámetros nominales de ½" (13mm), ¾" (19mm), 1" (25mm), 1 ¼" (32mm) y 1 ½" (38mm).
- ! Cada *cruce* estaba compuesto por cuatro tramos perpendiculares de igual diámetro. En ningún momento se emplearon *cruces* con diámetros combinados.
- ! El modelo físico tenía la posibilidad de variar los gastos de entrada y de salida de los *cruces*, de tal forma que los flujos generados estuvieron, intencionalmente, dentro de un intervalo del *número de Reynolds* comprendido entre 4,000 y 40,000.
- ! En total, se llevaron a cabo 99 pruebas para el caso de *cruces* con alimentación doble, y 68 para el caso de *cruces* con alimentación simple.
- ! Las pérdidas por fricción en la vecindad del cruce no fueron despreciadas, y se estimaron mediante la ecuación de Darcy-Weisbach (ecuación 4a, capítulo 1). El coeficiente de fricción f, se calculó mediante la ecuación explícita de Swamee-Jain (ecuación 18, capítulo 1).

Adicionalmente a estas aclaraciones, es bueno mencionar que los *coeficientes de pérdidas locales, K*, calculados en la forma indicada en el capítulo cinco (numeral 5.2), y reportados en forma matemática y gráfica (numerales 5.3 y 5.4), partieron de la suposición de un *coeficiente K* por cada tramo de salida de los *cruces*. Así, para el caso de alimentación doble, se estimaron dos *coeficientes*, mientras que para el caso de alimentación simple, se estimaron tres. Algunos autores, reportan tres *coeficientes* para cada *cruce*, como es el caso de *Sharp* [2009], independiente del caso de flujo que se desarrolle en él. Por este hecho, los resultados obtenidos en ambas investigaciones no son

comparables y por lo tanto no se lleva a cabo. Ello no quiere decir que los resultados de una investigación invaliden los de la otra, simplemente se trata de diferentes puntos de vista a la hora de asignar los *coeficientes K*. Al inicio del presente trabajo, no se consideró adecuado tomar el mismo enfoque de *Sharp*, puesto que no resultaba muy lógico, por ejemplo, asignar valores de *K* a dos tramos de salida y a uno de entrada, mientras que al otro tramo de entrada no.

Un tercer enfoque que fue considerado en los análisis de escritorio, previos a los presentados finalmente en esta Tesis, consistió en asignar a cada uno de los cuatro tramos del *cruce* un valor de *K*, independientemente de si el tramo correspondía a una entrada o a una salida. El cálculo de las cuatro *K* se hacía mediante un algoritmo que permitía balancear el valor de la *energía* en el centro del *cruce* y en base a ello estimar las *pérdidas menores* correspondientes a cada tramo. Sin embargo, al intentar relacionar dichos *coeficientes* con los *números de Reynolds* correspondientes, o con proporciones de ellos, no se obtuvieron resultados satisfactorios o que indicaran que mereciera la pena conservar dicho enfoque.

Todo lo contrario sucedió con el enfoque finalmente adoptado (una K por cada salida) y que puede observarse en las gráficas de dispersión presentadas en el capítulo cinco. Pese a que las primeras gráficas, que relacionan K con su respectivo Re, parecen indicar una tendencia, que disminuye el valor del *coeficiente* a medida que aumenta Re, para luego estabilizarse en un valor constante, sería muy arriesgado concluir que esto siempre suceda así: *primero*, los puntos de la gráfica, aunque indican dicha tendencia, presentan una dispersión que no puede desestimarse; y *segundo*, el máximo *número de Reynolds* considerado, no fue superior a *40,000*, por lo que predecir el comportamiento más allá de este número sería un poco especulativo.

Sin embargo, al usar relaciones del *número de Reynolds*, en lugar del número sólo, como variable dependiente, se evidenciaba que la dispersión de los datos disminuía en la mayoría de los casos, sobre todo para el caso de *cruces* alimentadas por dos tramos, objetivo principal de este trabajo. Para este caso específico, se descubrieron relaciones interesantes entre los *coeficientes de pérdidas menores K*, de las dos salidas, con las proporciones obtenidas al dividir el Re respectivo, por el de su entrada ortogonal. En estas gráficas, se observaba una clara tendencia que se conservaba de un diámetro a otro, y que indicaba que *K*, que era grande para relaciones (Re_{sal}/Re_{ent}) pequeñas, disminuía y tendía a volverse constante para valores superiores a, aproximadamente 2.0, es decir, para cuando el gasto de salida era superior, por lo menos en 2.0 veces, al gasto de su entrada ortogonal. En este caso, no se está especulando mucho, si se tiene en cuenta que se lograron relaciones de Reynolds superiores a seis (6.0).

Basados en estas gráficas, se estimaron ecuaciones que permitieran el cálculo directo del *coeficiente* K, de acuerdo a las relaciones de flujo entre salida y entrada, para cada diámetro y para cada uno de los coeficientes K3 y K4. Se aclara que los resultados para los diámetros de 32 y 38mm, no fueron muy claro, debido a que, por limitaciones del modelo físico, las presiones antes y después de los *cruces*, tenían valores muy similares. Posteriormente, se unificaron las gráficas de valores de K3 y K4, en una única gráfica de valores K \perp , y de la que también se determinó una ecuación de ajuste de tipo *potencial inversa*:

$$K_{\perp} = \frac{0.558}{\left(\frac{\text{Re}_{sal}}{\text{Re}_{ent}}\right)_{\perp}^{1.872}} + 0.323$$

$$R^{2} = 0.81$$

Esta expresión, puede usarse para estimar los valores del *coeficiente de pérdidas K*, de cualquiera de las dos salidas de un *cruce* alimentado por dos tramos perpendiculares. Para cálculos más detallados, con cada uno de los diámetros estudiados, se pueden emplear las expresiones que aparecen en el capítulo cinco. Para mayor seguridad, se puede proceder como en los ejemplos del capítulo 6, calculando un promedio de los diferentes métodos expuestos.

Análisis similares se llevaron a cabo con los datos recolectados para *cruces* con alimentación por un único tramo. En este caso, todas las relaciones de número de Reynolds incluían el Re del tramo de entrada en el denominador. Se obtuvieron gráficas con tendencias similares a las observadas en el caso anterior. De nuevo, ecuaciones de tendencia fueron estimadas a partir de las parejas de puntos, para cada diámetro analizado. Adicionalmente, se obtuvo una única ecuación, para los tramos perpendiculares al tramo alimentador:

$$K_{\perp} = \frac{0.54}{\left(\frac{\text{Re}_{\perp}}{\text{Re}_{ent.}} - 0.04\right)^{1.59}} + 1.44$$

$$R^{2} = 0.88$$

Los valores del *coeficiente de pérdidas menores* del tramo restante, aquel que está alineado con el de entrada, no parecían estar relacionados claramente con proporciones como las usadas en los otros casos. Tal como se mencionó en el capítulo tres, y como lo reportaron algunos investigadores [Ramakrishna y Kumar, 2009], este tramo presenta un gran porcentaje de *coeficientes K* negativos, indicando ganancias de energía. El porqué de ello, puede deberse, tal como lo mencionaron estos autores, a la ausencia del *coeficiente de Coriolis*, α , en los cálculos. Sin embargo, este fenómeno se sale de los objetivos del presente trabajo.

Adicionalmente, para los dos casos estudiados, los cinco diámetros considerados, los dos tramos de salida para el caso de alimentación doble, y los tres para el caso de alimentación simple, se presentaron gráficas con curvas de contorno, como suelen presentarse para este tipo de accesorios. Ellas fueron generadas mediante el software CivilCAD, que emplea un algoritmo de triangulación conocido como *triangulación de Delauney* [Cerrolaza y Flórez-López, 2000] para dibujar las curvas de contorno a partir de las nubes de puntos medidas en laboratorio. Es importante aclarar que, aunque las gráficas fueron elaboradas con los datos tomados en el laboratorio, existen zonas donde el algoritmo necesariamente tuvo que extrapolar información, restándole, por consiguiente, un poco de generalidad. En todos los casos, se recomienda el uso de las ecuaciones de ajuste, sobre el uso de las gráficas de contorno.

Finalmente, para futuras investigaciones en el área, podrían considerarse *cruces* de tuberías en materiales diferentes al PVC, sería interesante ver la influencia del material en las relaciones encontradas. De igual forma, quedaría pendiente el análisis de los casos de alimentación por tres tramos y salida por uno solo, y el de alimentación por dos tramos opuestos. Además, podría verificarse si las expresiones encontradas siguen siendo válidas para relaciones de *Reynolds* mayores a las máximas obtenidas en este trabajo. Incluso, probarlas para datos tomados con números de *Reynolds* mayores a los usados.

BIBLIOGRAFÍA

Basara, B. and Grogger, H.A. (1999) "Experimental and numerical study of the flow through a trifurcation". En: *Proceedings of the 28th IAHR Congress*, Graz, Austria.

Bhave, P.R. and Gupta, R. (2006) Analysis of water distribution networks, Alpha Science International Ltd., Oxford, U.K.

Bombardelli, F.A., and García, M.H. (2003) "Hydraulic Design of Large-Diameter pipes". En: *Journal of Hydraulic Engineering*, 129(11), 839-846, ASCE.

Çengel, Y.A. y Cimbala, J.M. (2006) Mecánica de fluidos: Fundamentos y aplicaciones, Mc. Graw Hill, México.

Cerrolaza, M. y Flórez-López, J. (2000) Modelos matemáticos en ingeniería moderna. Consejo de Desarrollo Científico y Humanístico, Universidad Central de Venezuela.

Chow, Ven Te (1994) Hidráulica de canales abiertos, McGraw-Hill Interamericana, Santa Fé de Bogotá, Colombia.

Cheng, Nian-Sheng (2008) "Formulas for friction factor in transitional regimes" En: Journal of Hydraulic Engineering, 134(9), 1357-1362. ASCE.

Christensen, B.A. (2000). "Discussion on `Limitations and proper use of the Hazen-Williams equation' by C.P. Liou". En: *Journal of Hydraulic Engineering*, 126(2), 167-168. ASCE.

Contazara (2007) Manual y especificaciones: Equipos de gestión y medida series CZ3000, Contazara, Zaragoza, España.

CRANE (1992) Flujo de fluidos en válvulas, accesorios y tuberías. División de ingeniería de CRANE, McGraw Hill, México.

Daugherty, R.L., and Franzini, J.B. (1965) Fluid Mechanics with engineering applications, 6th Ed., McGraw Hill, New York, U.S.A.

Diskin, M.H. (1960) "The limits of applicability of the Hazen-Williams formula", La Houille Blanche, 6, 720-723. Francia.

Fuentes Mariles, O.A. y Rosales Plascencia, I.L. (2004) "Estimación de pérdidas locales de energía en tomas domiciliarias de agua potable". En: *Ingeniería Hidráulica en México*, Vol. XIX, Núm. 1, pp. 65-73. México.

Idelchik, I.E. (1994) Handbook of hydraulic resistance, Steinberg, Florida, U.S.A.

Koutsoyiannis, D. (2008) "A power-law approximation of the turbulent flow friction factor useful for the design and simulation of urban water networks". En: *Urban Water Journal*, 5(2), 107-115. Taylor & Francis Group.

Liou, C.P. (1998) "Limitations and proper use of the Hazen-Williams equation". En: Journal of Hydraulic Engineering, 124(9), 951-954. ASCE.

Miller, D.S. (1996) Internal flow systems, 2da Ed., BHR Group Limited. Cranfield, U.K.

Nakamura, S (1992) Métodos numéricos aplicados con software, Prentice Hall Hispanoamérica, México.

Pürschel, W. (1978) Tratado general del agua y su distribución, Tomo 4: El transporte y la distribución del agua, Primera edición en español, URMO S.A. de Ediciones, Bilbao, España.

Rivas, A.I., Placa orificio, IMTA, SEMARNAP y CNA, Ciudad de México, México.

Romeo, E., Royo, C. y Monzón, A. (2002) "Improved explicit equations for estimation of the friction factor in rough and smooth pipes". En: *Chemical Engineering Journal*, 86, 369-374. Elsevier B.V.

Sharp, Zachary B. (2009) Energy Losses in cross junctions, Tesis de Maestría, Utah State University, Logan, Utah.

Sotelo Ávila, Gilberto (1999) Hidráulica General, Volumen 1, Noriega Editores, México.

Sótelo Ávila, Gilberto (2001) Hidráulica de Canales, Universidad Nacional Autónoma de México, Facultad de Ingeniería, México.

Valiantzas, J.D. (2008) "Explicit power formula for the Darcy-Weisbach pipe flow equation: application in optimal pipeline design". En: *Journal of Irrigation and Drainage Engineering.*, 134(4), 454-461. ASCE.

Vennard, J.K. (1958) Elementary fluid mechanics, 4th Ed., Wiley, New York, U.S.A.

Walski, T.M., Chase, D.V. y Savic, D.A. (2001) Water Distribution Modeling, 1st Ed., Haestad Press, Waterbury, U.S.A.

Williams, G.S., and Hazen, A. (1920) Hydraulic Tables, Wiley, Brooklyn, N.Y.

Yoo, D.H., and Singh, V.P. (2004) "Explicit design of commercial pipes with no secondary losses". En: *Journal of Irrigation and Drainage Engineering*, 130(5), 437-440. ASCE. ANEXO 1

FOTOGRAFÍAS DEL MODELO EXPERIMENTAL

Fotografía 1. Vista general del modelo

Fotografía 2. Vista superior del modelo

Fotografía 3. Vista superior de los cruces.

Fotografía 4. Cruces de los cinco diámetros diferentes.

Fotografía 5. Detalle de los sensores de presión.

Fotografía 6. Sistema de almacenamiento de datos: consola de adquisición y software de lectura.

Fotografía 7. Cruce con alimentación individual (trifurcación).

ANEXO 2

GRÁFICAS DE CONTORNO NO PUBLICADAS EN EL CUERPO DE LA TESIS

Se recuerda que las gráficas que se presentan a continuación, poseen únicamente carácter ilustrativo, y por tal hecho, no se recomienda su uso bajo ninguna circunstancia.

Figura A2-1. Gráfica de contorno de K3 para cruces de 32mm (Alimentación doble).

Figura A2-2. Gráfica de contorno de K3 para *cruces* de 38mm (Alimentación doble).

Figura A2-3. Gráfica de contorno de K4 para *cruces* de 32mm (Alimentación doble).

Figura A2-4. Gráfica de contorno de K4 para *cruces* de 38mm (Alimentación doble).

Figura A2-5. Gráfica de contorno de K2 para *cruces* de 32mm (Trifurcaciones).

Figura A2-6. Gráfica de contorno de K3 para *cruces* de 32mm (Trifurcaciones).

Figura A2-7. Gráfica de contorno de K4 para *cruces* de 32mm (Trifurcaciones).

Figura A2-8. Gráfica de contorno de K2 para *cruces* de 38mm (Trifurcaciones).

Figura A2-9. Gráfica de contorno de K3 para *cruces* de 38mm (Trifurcaciones).

Figura A2-10. Gráfica de contorno de K4 para *cruces* de 38mm (Trifurcaciones).

JUNIO DE 2011