

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

FACULTAD DE INGENIERÍA

ESTIMACIÓN DE LA RELACIÓN DE LLUVIA "R" PARA LA DETERMINACIÓN DE LAS CURVAS INTENSIDAD-DURACIÓN-FRECUENCIA EN LA PROVINCIA DE LOJA-ECUADOR CON ESCASA O NULA INFORMACIÓN PLUVIOGRÁFICA

TESIS

QUE PARA OBTENER EL GRADO DE:

MAESTRO EN INGENIERÍA (HIDRÁULICA)

PRESENTA:

JOSÉ ANTONIO SERRANO OJEDA

DIRECTOR DE TESIS:

DR. CARLOS AGUSTÍN ESCALANTE SANDOVAL

MÉXICO AGOSTO DE 2011

ESTIMACIÓN DE LA REIACIÓN DE LIJVIA "R" PARA LA DETERMINACIÓN DE LAS CURVAS INTENSIDAD-DURACIÓN-FRECUENCIA EN LA PROVINCIA DE LOJA-ECUADOR CON ESCASA O NU LA INFORMACIÓN PLUVIOGRÁFICA

JOSÉ ANTONIO SERRANO OJEDA

JURADO ASIGNADO:

Presidente:	Dr. Rodolfo Silva Casarín.
Secretario:	Dra. Lilia Reyes Chávez.
Vocal:	Dr. Carlos Escalante Sandoval.
1er. Suplente:	Dr. Jesús Gracia Sánchez.
2 do. Suplente:	M.I. Víctor Franco.
Lugar donde se	realizó la tesis:
MÉXICO, D.F.	
	TUTOR DE TESIS:
1	Dr. CARLOS AGUSTÍN ESCALANTE SANDOVAL.
	FIRMA

AGRADECIMIENTOS

En una conversación con mi tutor, para elegir el tema de Tesis de Maestría para mi titulación hace ya casi un año atrás, llegó a colación el tema de "qué producto final se espera en un estudio, o para que se hace una Tesis". A lo cual se concluyó que todos esperamos al desarrollar una Tesis, es la ejecución de un trabajo tangible que contribuya a incrementar los escasos conocimientos que tenemos a la sociedad en general y a la Ingeniería Civil. Además que uno anhela siempre que el trabajo refleje adecuadamente todos o parte de los conocimientos adquiridos durante los años de estudio de posgrado y los esfuerzos que lo llevaron a cabo.

Pero a más de eso, ahora que he concluido este trabajo puedo acotar, que los productos resultantes a los cuales se les dedica esfuerzo y sacrificio brindan otro tipo de satisfacciones más allá de las académicas. He tenido la dicha y suerte de haber conocido a un gran número de personas que de una u otra forma han dejado huella en esta constante formación de mi vida profesional y personal. El enumerarlos a todos seria quimérico y hasta rutinario, por lo que quisiera agradecer en estos párrafos, libres de forma y ni mucho menos elegantes ni adornados, a algunos de ellos, esperando que comprendan que su apoyo y ejemplo han sido muy valiosos.

En primer lugar agradezco a **Dios** por todo lo que moldeaste y sigues moldeando en mí.

A mis padres que se dedicaron a darme la posibilidad de recibir la mejor educación posible, por ser un ejemplo a seguir de respeto, cariño y honestidad. Sin ustedes no hubiera podido culminar esta etapa.

Mi agradecimiento perecedero a la Universidad Nacional Autónoma de México, y a todos aquellos maestros que laboran en esta alta casa de estudios mexicana, los que me permitieron entender que el esfuerzo, el sacrificio, la humildad y la preparación constante es lo que nos diferencia a todos los seres humanos, a esta grande institución conformado por seres irremplazables muchas gracias por haberme acogido y creído en mí.

Al Dr. Carlos Agustín Escalante Sandoval por la oportunidad que me dió de poder desarrollar este trabajo bajo su tutela, por sus invaluables conocimientos y amistad desinteresada.

A mis sinodales que a la vez fueron maestros de mis cursos: Dr. Rodolfo Silva, Dra. Lilia Reyes, Dr. Jesús Gracia, M.I. Víctor Franco, los que me supieron guiar en sus clases y en esta tesis con sus sugerencias, palabras de aliento, con una amistad y generosidad hacia mi invaluable.

Al personal del **INAMHI** de manera especial a su Director el Met. Carlos Naranjo, gracias por la apertura

que por primera vez se dió en mi País de facilitar toda y gran cantidad de información solicitada para un

estudio de este tipo.

A la SENESCYT, institución que confió en mí y me apoyo en una parte de mi beca de estudios, de cuarto nivel.

A la U.T.P.L. y a sus directivos gracias por ayudarme siendo la institución que auspicio mis estudios para

postular a un porcentaje de beca otorgado por la SENESCYT.

A mis compañeros de vida y de estudio gracias por el respaldo y la confianza que depositaron en mi, por haber

estado en esos momentos dulces-tristes.

A mi segunda familia Zaragoza-Zaragoza, gracias por haber hecho de esta estadía un poco más alegre,

siempre estarán en mis pensamientos.

A México gracias por la acogida en estos dos años de estadía en este hermoso País que nunca olvidaré y que

ya es parte de mí.

A todos muchas gracias!!

DEDICATORIA

Dedico esta tesis a Dios quien nunca ha desistido de sus planes en mi vida, quien ha puesto a Pepe, Martha, Marthina, a ti morena porque eres parte de mi, a Él, El que Es, Fue y Será.

Este trabajo constituye el reflejo del esfuerzo de mis padres durante 28 años de estar y luchar juntos, por entregar el regalo y el legado más grande que los padres pueden dar a sus hijos: La Educación. Este logro profesional es suyo.

Un esfuerzo que se constituye en arduo trabajo, mucho desvelo, lágrimas compartidas y no compartidas, sueños y amor. Lo único que puedo decirles a ellos Dios les pague.

"Serpiente es la soberbia, serpiente es la avaricia, serpiente la lujuria, la ira, y la gula, serpiente la envidia; la pereza no es serpiente porque no pica, es un animal inmundo que duerme en su fango su sueño perpetuo". Juan María Montalvo Fiallos (13 abril 1832 – 17 enero 1889)

RESUMEN

En lugares con escasa o nula información pluviográfica como es el caso de la República del Ecuador y particularmente en la provincia de Loja, es posible estimar, a partir de datos de lluvia diaria, láminas máximas de duraciones menores o iguales a 24 horas, utilizado en el diseño de obras hidráulicas. Técnica basada en la existencia de relación o vínculo entre la lluvia máxima diaria (un día pluviométrico), máxima en 24 horas y duraciones menores.

En este trabajo se propone una regionalización del factor de convectividad R (Relación entre la precipitación máxima anual en 1 hora para un periodo de retorno T y la precipitación máxima anual en 24 horas para el mismo periodo de retorno; $R = \frac{P_1^T}{P_{24}^T}$). La relación de convectividad permitirá obtener la lluvia máxima de 1 hora para cualquier periodo de retorno. Que para la provincia de Loja -Ecuador varía desde 0.49 a 0.79 con un valor medio para toda el área de estudio de 0.64.

Se discutió la competencia de diversas técnicas de cálculo para determinar la Iluvia máxima en 1 hora a partir de la de 24 horas y sugerir una metodología en particular para la estimación de la misma, detectando límites y errores esperados en su aplicación y en cada técnica estudiada. En la que la subestimación de la cantidad de Iluvia máxima puede llegar hasta el 50%.

Se obtuvo lluvias de corta duración (5 a 60 min), para 21 lugares representativos de la provincia y para periodos de retorno de 2 a 100 años. Complementando esto con el trazo de sus respectivas curvas Hp-d-T para 1 a 24 horas.

Se analizaron 28 registros pluviométricos y 1 registro pluviográfico disponibles en la provincia de Loja-Ecuador, estudiando: la calidad y cantidad de información, estimación de datos faltante a una longitud de registro común mediante 8 métodos de interpolación espacial de lluvia, prueba de independencia de eventos para determinar si se contaba con variables aleatorias, análisis de frecuencias para determinar la lámina máxima de lluvia en 24 horas por 6 distribuciones de probabilidad y 4 estimadores de parámetros. El periodo de análisis abarcó el lapso comprendido entre 1970 a 2009.

Descriptores: Precipitación máxima en 24 horas, relación de convectividad R, interpolación, independencia, análisis de frecuencias, lluvia máxima en 1hora, curvas Hp-d-T.

ABSTRACT

In places with little or no pluviographs information as in the case of the Republic of Ecuador, particularly in the province of Loja, can be estimated from daily rainfall data, maximum sheet lengths less than or equal to 24 hours, used in the hydraulic design. This technique is based in the existence of a relationship or link between the maximum daily rainfalls, maximum in 24 hours and shorter.

In this paper we propose a regionalization of the R factor convection (Relation between annual maximum rainfalls in 1 hour for a return period T and maximum annual rainfall in 24 hours for the same return period; $R = \frac{P_1^T}{P_{24}^T}$). The relationship convection will get 1 hour maximum rainfall for any return period. For the province of Loja-Ecuador ranges from 0.49 to 0.79 whits a mean value

for the entire study area of 0.64.

We discussed the suitability of various estimation techniques to determine the maximum rainfall in 1 hour from 24 hours and suggest a particular methodology to estimate it, detecting boundaries and expected errors in its application and in each techniques studied. In the understatement of the maximum amount rainfall can reach 50%.

Is calculated brief rain (5-60 min), for 21 sites representing the province and returns periods from 2 to 100 years. Complementing this whit the stroke of their Hp-d-T curves for 1 to 24 hours.

We analyzed 28 daily rainfall records and 1 record rainfall of short duration available in the province of Loja-Ecuador, studying: quality and quantity of information, estimation of missing data to a common record length by 8 spatial interpolation methods of rain, test of independence of events to determine if there were random variables, frequency analysis to determine the maximum sheet of rain in 24 hours for 6 probability distributions and 4 parameter estimates. Analysis covered the period from 1970 to 2009.

Keywords: Maximum rainfall in 24 hours, convection ratio R, interpolation, independence, frequency analysis, maximum rainfall in 1 hour, curves Hp-d-T.

CONTENIDO

AGRADECIMIENTOS DEDICATORIA RESUMEN

Introducción general	1
Objetivos	3
Motivación	5
Metodología	7
Descripción y organización del trabajo	9
1. Ecuador y su provincia de Loja (Información preliminar)	13
1.1. Características generales del Ecuador y provincia de Loja	
1.2. Orografía e hidrografía de la provincia de Loja	16
1.2.1. Orografía	16
1.2.2. Hidrografía	18
1.3. Clima de la provincia de Loja	21
1.4. Distribución de la temperatura	23
1.5. Distribución de la pluviometría en la provincia de Loja	28
2. Información de precipitación disponible	37
2.1. Obtención de la información	37
2.2. Selección de un periodo común para las estaciones	
involucradas en el análisis	42
2.3. Caracterización de las muestras	44
3. Técnicas de interpolación de lluvias	51
3.1. Método de Thiessen	52
3.2. Método de interpolación de la distancia inversa lineal	52
3.3. Método de interpolación de la distancia inversa cuadrada	53
3.4. Interpolación Polinomial	53
3.4.1. Aproximación polinomial por mínimos cuadrados	54

	3.4.2. Interpolación por aproximación de Lagrange	. 55
	3.5. Método de interpolación multicuadrática	.56
	3.6. Métodos de interpolación Óptima	.56
	3.7. Método de Kriging	.58
4.	Análisis de interpolación para datos de la provincia de Loja	.63
	4.1. Procedimiento usado para la interpolación	.63
	4.2. Revisión de datos interpolados	112
5.	Análisis de precipitaciones máximas	123
	5.1. Precipitaciones máximas diarias por año	123
	5.2. Prueba de independencia de eventos (prueba de Anderson)	128
	5.3. Precipitaciones máximas diarias a máximas en 24 horas	140
6.	Análisis de frecuencias de lluvias máximas	147
	a. ALAMOR (M435)	148
	b. SOZORANGA (M434)	149
	c. SABIANGO (M439)	150
	d. SAUCILLO (M437)	151
	e. ZAPOTILLO (M151)	152
	f. CARIAMANGA (M146)	153
	g. GONZANAMA (M149)	154
	h. CATACOCHA (M515)	155
	i. COLAISACA (M544)	156
	j. JIMBURA (M438)	157
	k. CELICA (M148)	158
	I. AMALUZA (M150)	159
	m. EL LUCERO (M433)	160
	n. NAMBACOLA (M763)	161
	o. SARAGURO (M142)	162
	p. YANGANA (M147)	163
	q. SAN LUCAS (M432)	164
	r. MALACATOS (M143)	165
	s. LA ARGELIA (M033)	166
	t. VILCABAMBA (M144)	167

u. (QUINARA (M145)	168
7. Regional	ización provincia de Loja	173
7.1. Relac	ión entre la lluvia en una hora y la de veinte	
y cuat	tro horas	175
7.1.1.	Método de Grunsky (Iluvia en una hora)	177
7.1.2	Procedimiento de Elías y Ruiz .1979 (Iluvia en una hora)	180
7.1.3	Ecuaciones representativas propuestas por INAMHI	
	para determinadas zonas en la provincia de Loja	
	(Iluvia en una hora)	182
7.1.4	U.S. Weather Bureau (Iluvia en una hora)	185
7.1.5	Lluvia en una hora estación La Argelia	
	(con registros pluviográficos)	189
	7.1.5.1. Compilación de la información pluviográfica de	
	La Argelia Loja (Iluvia en una hora)	189
	7.1.5.2. Prueba de independencia de eventos	
	La Argelia-Loja (Iluvia en una hora)	193
	7.1.5.3. Análisis de frecuencias de lluvias máximas	
	La Argelia-Loja (Iluvia en una hora)	193
7.1.6.	Selección mejor procedimiento de obtención de la lluvia	
	en 1 hora para regionalización total de la provincia	194
7.2. Lluvia	n menores a una hora y diferente periodo de retorno	
estac	ciones Provincia Loja	199
7.3. Aplica	aciones	203
Ejemp	olo 1	204
Ejemp	olo 2	206
Ejemp	olo 3	208
8. Conclusion	ones y recomendaciones	211
Referencias	s bibliográficas	219

Tabla 1.1:	Ubicación del Ecuador	13
Tabla 1.2:	Distribución de pisos térmicos de la Provincia de Loja	23
Tabla 1.3:	Clasificación del clima según Thornwhite (Provincia de Loja)	25
Tabla 1.4:	Temperatura media anual de la Provincia de Loja	26
Tabla 1.5:	Tipos de pluviometría en la Provincia de Loja	29
Tabla 1.6:	Zonas Pluviométricas de la Provincia de Loja	30
Tabla 1.7:	Precipitación media mensual	30
Tabla 1.8:	Clima según Koppen	32
Tabla 2.1:	Clasificación de las estaciones meteorológicas	37
Tabla 2.2:	Estaciones meteorológicas de la provincia de Loja	38
Tabla 2.3:	Características generales de las estaciones recopiladas	39
Tabla 2.4:	Estaciones involucradas en el análisis (Coordenadas UTM)	42
Tabla 2.5:	Características del periodo común seleccionado	43
Tabla 2.6:	Puntos extraños en el registro	45
Tabla 2.7:	Clasificación final de las zonas homogéneas	46
Tabla 2.8:	Estadísticos muéstrales de estaciones de la provincia de Loja	47
Tabla 2.9:	Tendencia de registros a lo largo del tiempo	48
Tabla 3.1:	Monomios	54
Tabla 3.2:	Tabla de monomios del polinomio	55
Tabla 4.1:	Relleno de ceros ZONA 1	64
Tabla 4.2:	Registros faltantes mensuales después de la	
	reducción inicial ZONA 1	65
Tabla 4.3:	Relleno de ceros ZONA 2	67
Tabla 4.4:	Registros faltantes mensuales después de la	
	reducción inicial ZONA 2	68
Tabla 4.5:	Relleno de ceros ZONA 3	70
Tabla 4.6:	Registros faltantes mensuales después de la	
	reducción inicial ZONA 3	71
Tabla 4.7:	Combinación vectores totales encontrados para	

•	estación Alamor (Thiessen)	. 74
Tabla 4.8: (Combinación vectores totales encontrados para	
•	estación Alamor. (Distancia Inversa Lineal)	. 75
Tabla 4.9: (Combinación vectores totales encontrados para	
•	estación Alamor. (Distancia Inversa Cuadrada)	. 76
Tabla 4.10:	Combinación vectores totales encontrados para	
	estación Cariamanga. (Thiessen)	. 79
Tabla 4.11:	Combinación vectores totales encontrados para	
	estación Cariamanga. (Distancia Inversa Lineal)	.80
Tabla 4.12:	Combinación vectores totales encontrados para	
	estación Cariamanga. (Distancia Inversa Cuadrada)	.81
Tabla 4.13:	Matriz de polinomios estación Cariamanga con 8 estaciones	
	vecinas homogéneas k=3	.83
Tabla 4.14:	Combinación vectores totales encontrados para	
	estación Cariamanga. (Polinomial Mínimos Cuadrados)	. 85
Tabla 4.15:	Matriz de polinomios estación Cariamanga con 8	
	estaciones vecinas homogéneas k=8	.86
Tabla 4.16:	Combinación vectores totales encontrados para estación	
	Cariamanga. (Polinomial por Lagrange)	. 88
Tabla 4.17:	Combinación vectores totales encontrados para	
	estación San Lucas. (Thiessen)	.91
Tabla 4.18:	Combinación vectores totales encontrados para	
	estación San Lucas. (Distancia Inversa Lineal)	. 92
Tabla 4.19:	Combinación vectores totales encontrados para	
	estación San Lucas. (Distancia Inversa Cuadrada)	. 92
Tabla 4.20:	Matriz de polinomios estación San Lucas con 6	
	estaciones vecinas homogéneas k=3	. 93
Tabla 4.21:	Combinación vectores totales encontrados para estación	
Tabla 4.21:	Combinación vectores totales encontrados para estación San Lucas. (Polinomial por Mínimos Cuadrados)	. 95
		. 95
	San Lucas. (Polinomial por Mínimos Cuadrados)	

	San Lucas. (Polinomial por Lagrange)98
Tabla 4.24:	Matriz distancias estación San Lucas (Multicuadrática)99
Tabla 4.25:	Combinación vectores totales encontrados para estación
	San Lucas. (Multicuadrática)
Tabla 4.26:	Matriz de correlaciones ajustada Estación
	Nambacola (8 completas)102
Tabla 4.27:	Factores de pesos interpolación óptima estación Nambacola 105
Tabla 4.28:	Matriz semivariograma ajustada Estación
	Nambacola (8 completas)106
Tabla 4.29 :	Factores de pesos interpolación krigging estación Nambacola 112
Tabla 4.30:	Características iniciales generales muestras zona 1112
Tabla 4.31:	Matriz correlaciones iniciales zona 1
Tabla 4.32:	Tendencias iniciales series zona 1
Tabla 4.33:	Días con lluvia iniciales zona 1
Tabla 4.34:	Características finales generales muestras zona 1
Tabla 4.35 :	Matriz correlaciones finales zona 1
Tabla 4.36:	Tendencias finales series zona 1
Tabla 4.37:	Días con lluvia finales zona 1
Tabla 4.38:	Características iniciales generales muestras zona 2
Tabla 4.39:	Matriz correlaciones iniciales zona 2
Tabla 4.40:	Tendencias iniciales series zona 2
Tabla 4.41:	Días con lluvia iniciales zona 2
Tabla 4.42:	Características finales generales muestras zona 2
Tabla 4.43:	Matriz correlaciones finales zona 2
Tabla 4.44:	Tendencias finales series zona 2
Tabla 4.45:	Días con lluvia finales zona 2
Tabla 4.46:	Características iniciales generales muestras zona 3117
Tabla 4.47:	Matriz correlaciones iniciales zona 3118
Tabla 4.48:	Tendencias iniciales series zona 3118
Tabla 4.49:	Días con lluvia iniciales zona 3
Tabla 4.50:	Características finales generales muestras zona 3119
Tabla 4.51:	Matriz correlaciones finales zona 3

Tabla 4.52: Tendencias finales series zona 3
Tabla 4.53: Días con lluvia finales zona 3
Tabla 5.1: Precipitación máxima diarias anuales zona 1
Tabla 5.2: Precipitación máxima diarias anuales zona 2 125
Tabla 5.3: Precipitación máxima diarias anuales zona 3 126
Tabla 5.4: Correlograma muestra 1 ALAMOR
Tabla 5.5: Correlograma muestra 2 SOZORANGA
Tabla 5.6: Correlograma muestra 3 SABIANGO
Tabla 5.7: Correlograma muestra 4 SAUCILLO
Tabla 5.8: Correlograma muestra 5 ZAPOTILLO1
Tabla 5.9: Correlograma muestra 1 CARIAMANGA
Tabla 5.10: Correlograma muestra 2 GONZANAMA 132
Tabla 5.11: Correlograma muestra 3 CATACOCHA
Tabla 5.12: Correlograma muestra 4 COLAISACA
Tabla 5.13: Correlograma muestra 5 JIMBURA
Tabla 5.14: Correlograma muestra 6 CELICA
Tabla 5.15: Correlograma muestra 7 AMALUZA
Tabla 5.16: Correlograma muestra 8 EL LUCERO 135
Tabla 5.17: Correlograma muestra 9 NAMBACOLA
Tabla 5.18: Correlograma muestra 1 SARAGURO
Tabla 5.19: Correlograma muestra 2 YANGANA 137
Tabla 5.20: Correlograma muestra 3 SAN LUCAS 137
Tabla 5.21: Correlograma muestra 4 LA ARGELIA
Tabla 5.22: Correlograma muestra 5 MALACATOS 138
Tabla 5.23: Correlograma muestra 6 VILCABAMBA
Tabla 5.24: Correlograma muestra 7 QUINARA 139
Tabla 5.25: Precipitación máxima en 24 horas anuales zona 1
Tabla 5.26: Precipitación máxima en 24 horas anuales zona 2
Tabla 5.27: Precipitación máxima en 24 horas anuales zona 3
Tabla 6.1: Estadísticos muéstrales máximos anuales estación Alamor 148
Tabla 6.2: Errores de ajuste probados para la estación Alamor
Tabla 6.3: Estadísticos muéstrales máximos anuales estación Sozoranga 149

1 abia 6.4: Errores de ajuste probados para la estación Sozoranga
Tabla 6.5: Estadísticos muéstrales máximos anuales estación Sabiango 150
Tabla 6.6: Errores de ajuste probados para la estación Sabiango
Tabla 6.7: Estadísticos muéstrales máximos anuales estación Saucillo 151
Tabla 6.8: Errores de ajuste probados para la estación Saucillo
Tabla 6.9: Estadísticos muéstrales máximos anuales estación Zapotillo 152
Tabla 6.10: Errores de ajuste probados para la estación Zapotillo 152
Tabla 6.11: Estadísticos muéstrales máximos anuales estación
Cariamanga153
Tabla 6.12: Errores de ajuste probados para la estación Cariamanga 153
Tabla 6.13: Estadísticos muéstrales máximos anuales estación
Gonzanamá154
Tabla 6.14: Errores de ajuste probados para la estación Gonzanamá
Tabla 6.15: Estadísticos muéstrales máximos anuales estación Catacocha 155
Tabla 6.16: Errores de ajuste probados para la estación Catacocha
Tabla 6.17: Estadísticos muéstrales máximos anuales estación Colaisaca 156
Tabla 6.18: Errores de ajuste probados para la estación Colaisaca
Tabla6.19: Estadísticos muéstrales máximos anuales estación Jimbura 157
Tabla 6.20: Errores de ajuste probados para la estación Jimbura
Tabla 6.21: Estadísticos muéstrales máximos anuales estación Celica 158
Tabla 6.22: Errores de ajuste probados para la estación Celica
Tabla 6.23: Estadísticos muéstrales máximos anuales estación Amaluza 159
Tabla 6.24: Errores de ajuste probados para la estación Amaluza
Tabla 6.25: Estadísticos muéstrales máximos anuales estación El Lucero 160
Tabla 6.26: Errores de ajuste probados para la estación El Lucero
Tabla 6.27: Estadísticos muéstrales máximos anuales estación Nambacola 161
Tabla 6.28: Errores de ajuste probados para la estación Nambacola
Tabla 6.29: Estadísticos muéstrales máximos anuales estación Saraguro 162
Tabla 6.30: Errores de ajuste probados para la estación Saraguro
Tabla 6.31: Estadísticos muéstrales máximos anuales estación Yangana 163
Tabla 6.32: Errores de ajuste probados para la estación Yangana
Tabla 6.33: Estadísticos muéstrales máximos anuales estación San Lucas 164

Tabla 6.34: Errores de ajuste probados para la estación San Lucas
Tabla 6.35: Estadísticos muéstrales máximos anuales estación La Argelia 165
Tabla 6.36: Errores de ajuste probados para la estación La Argelia
Tabla 6.37: Estadísticos muéstrales máximos anuales estación Malacatos 166
Tabla 6.38: Errores de ajuste probados para la estación Malacatos
Tabla 6.39: Estadísticos muéstrales máximos anuales estación Vilcabamba 167
Tabla 6.40: Errores de ajuste probados para la estación Vilcabamba
Tabla 6.41: Estadísticos muéstrales máximos anuales estación Quinara 168
Tabla 6.42: Errores de ajuste probados para la estación Quinara
Tabla 6.43. Lluvias máximas en 24 horas y diferentes periodos
de retornos estaciones Provincia Loja
Tabla 7.1: Guía de selección de cocientes entre la lluvia una hora y
T=2 años y la de 24 horas y T=2años176
Tabla 7.2: Lluvia máxima en una hora y diferente periodo
de retorno (Grunsky)
Tabla 7.3: Relaciones lluvia máxima en una hora y la de
24 horas (Grunsky)
Tabla 7.4: Lluvia máxima en una hora y diferente periodo de retorno
(Elías y Ruiz)181
Tabla 7.5: Relaciones lluvia máxima en una 1 y la de 24 horas
(Elías y Ruiz)182
Tabla 7.6: Ecuación de las zonas para obtener la precipitación
máxima en 1 hora según INAMHI
Tabla 7.7: Lluvia máxima en una hora y diferente periodo
de retorno (INAMHI)
Tabla 7.8: Relaciones lluvia máxima en 1 hora y la de
24 horas (INAMHI)
Tabla 7.9: Relaciones lluvia máxima en 1 hora y la de 24 horas
(US Weather Bureau)186
Tabla 7.10: Lluvia máxima en una hora y diferente periodo de
retorno (U.S. Weather Bureau)187
Tabla 7.11: Precipitación máxima anual en una hora La Argelia

Tabla 7.12: Estadísticos muéstrales máximos en 1 hora una hora	
estación La Argelia	194
Tabla 7.13: Errores estándar de ajuste probados para estación	
La Argelia Iluvia 1 hora	194
Tabla 7.14: Estimación lluvia en hora a partir de registros pluviométricos y	
la extraída de pluviogramas	195
Tabla 7.15: Diferencia (%) de lluvia estimada con la calculada Estación	
La Argelia (Grunsky)	196
Tabla 7.16: Diferencia (%) de lluvia estimada con la calculada	
Estación La Argelia (INAMHI)	197
Tabla 7.17: Diferencia (%) de lluvia estimada con la calculada	
Estación La Argelia (Elías y Ruiz)	197
Tabla 7.18: Diferencia (%) de lluvia estimada con la calculada	
Estación La Argelia (U.S. Weather Bureau)	198
Tabla 7.19: Relaciones promedio de la lluvia en una hora (Bell)	200

ÍNDICE DE CUADROS

Cuadro 4.1: Días sin registro Alamor (menos datos faltantes zona)	73
Cuadro 4.2: Distancia entre estaciones	73
Cuadro 4.3: Días sin registro Cariamanga	78
Cuadro 4.4: Distancia entre estaciones	78
Cuadro 4.5: Coordenadas UTM estaciones Zona 2	82
Cuadro 4.6: Días sin registro San Lucas	90
Cuadro 4.7: Distancia entre estaciones	90
Cuadro 4.8: Coordenadas UTM estaciones Zona 3	93

ÍNDICE DE GRÁFICOS

Gráfico 1.1: Mapa del Ecuador	14
Gráfico 1.2: Ubicación de la Provincia de Loja	15
Gráfico 1.3: Mapa político y relieve de la provincia de Loja	16
Gráfico 1.4: Sistema Hidrográfico de la Provincia de Loja	19
Gráfico 1.5: Diagrama fluvial de la Provincia de Loja	20
Gráfico 1.6: Temperatura media anual de la Provincia de Loja	24
Gráfico 1.7: Relación entre la elevación y temperatura (Provincia de Loja)	27
Grafico 1.8: Variación de la temperatura media anual	28
Grafico 1.9: Regímenes pluviométricos	32
Gráfico 3.1: Interpolación de lluvias	51
Gráfico 3.2: Interpolación Inversa	53
Gráfico 3.3: Aproximación Lagrange	55
Gráfico 5.1: Independencia de Anderson	128
Gráfico 5.2: Independencia de Anderson ALAMOR	129
Gráfico 5.3: Independencia de Anderson SOZORANGA	130
Gráfico 5.4: Independencia de Anderson SABIANGO	130
Gráfico 5.5: Independencia de Anderson SAUCILLO	131
Gráfico 5.6: Independencia de Anderson ZAPOTILLO	131
Gráfico 5.7: Independencia de Anderson CARIAMANGA	132
Gráfico 5.8: Independencia de Anderson GONZANAMA	132
Gráfico 5.9: Independencia de Anderson CATACOCHA	133
Gráfico 5.10: Independencia de Anderson COLAISACA	133
Gráfico 5.11: Independencia de Anderson JIMBURA	134
Gráfico 5.12: Independencia de Anderson CELICA	134
Gráfico 5.13: Independencia de Anderson AMALUZA	135
Gráfico 5.14: Independencia de Anderson EL LUCERO	135
Gráfico 5.15: Independencia de Anderson NAMBACOLA	136
Gráfico 5.16: Independencia de Anderson SARAGURO	136
Gráfico 5.17: Independencia de Anderson YANGANA	137

ÍNDICE DE GRÁFICOS

Gráfico 5.18: Independencia de Anderson SAN LUCAS
Gráfico 5.19: Independencia de Anderson LA ARGELIA
Gráfico 5.20: Independencia de Anderson MALACATOS
Gráfico 5.21: Independencia de Anderson VILCABAMBA
Gráfico 5.22: Independencia de Anderson QUINARA
Gráfico 6.1: Distribución de frecuencias de probabilidad
Gráfico 7.1: Relación empírica para estimar la lluvia de una hora y
periodo de retorno de dos años, en ausencia de
registros pluviográficos
Gráfico 7.2: Lluvia de 24 hora y periodo de retorno de
dos años y R adimensional187
Gráfico 7.3: Lluvia de 1 hora y periodo de retorno de
dos años y R adimensional
Gráfico 7.4: R adimensional para la provincia de Loja – Ecuador
Gráfico 7.5: Independencia de Anderson La Argelia – Loja (Pluviografía) 193
Gráfico 7.6: Relación frecuencia – Iluvia para U.S.A,
Australia, Puerto Rico, Alaska, Hawái y Sud África
Según F.C Bell 1969
Gráfico 7.7: Relación duración – Iluvia para .U.S.A y Australia,
Según F.C Bell 1969201
Gráfico 7.8: Relación generalizada Precipitación-Duración-Periodo
de retorno TR=10 años202
Gráfico 7.9: Relación generalizada Precipitación-Duración-Periodo
de retorno TR=2 años203

ÍNDICE DE IMÁGENES

Imagen 1.1: Orografía de la Provincia de Loja	18
Imagen 1.2: Climas según Thornwhite	26
Imagen 1.3: Zonas Pluviométricas de la Provincia de Loja	29
Imagen 1.4: Clasificación climática según Koppen	33
Imagen 7.1: Pluviógrafo y banda de registro	190
Imagen 7.2: Banda pluviográfica con registro de precipitación	191
Imagen 7.3: Volumen de información pluviográfica analizada	
Estación La Argelia (M033)	192

ÍNDICE DE IMÁGENES

INTRODUCCIÓN GENERAL

La importancia del correcto dimensionamiento de obras hidráulicas es primordial ya que garantizará vida útil de una carretera, una vía férrea, un aeropuerto, un sistema de alcantarillado pluvial, un diseño de descargas pluviales en edificios, etc. Los cuales están en función directa del gasto de diseño o caudal máximo de diseño, siendo este uno de los temas más estudiados en la hidrología, en vista de la necesidad de estimar la probabilidad de ocurrencia de crecidas para el diseño. Dicho gasto puede estimarse mediante dos métodos bien diferenciados:

- 1. Análisis estadísticos de gastos máximos: En el que se analizan los valores registrados de escurrimientos máximos generalmente anuales de una estación hidrométrica en el sitio de interés. El evento se estima a través de un análisis de frecuencias. Por otro lado, cuando la información en el sitio es escasa o nula se pueden construir modelos regionales como son el de la avenida índice, las estaciones-año, o el que emplea las técnicas de correlación y regresión múltiple. Esto, siempre y cuando se disponga de estaciones de aforos en cuencas vecinas, las cuales deben pertenecer a la misma región meteorológicamente homogénea.
- 2. Hidrometereológico: Es otra forma de estimar dichos eventos en sitios no aforados mediante el empleo de las relaciones intensidad de lluvia-duración-periodo de retorno (I-D-T), para luego ser convertida en avenida de diseño mediante la aplicación de algún modelo lluvia-escurrimiento.

La construcción de las curvas I-D-T se realiza de acuerdo con la fuente de información disponible, ya sea pluviográfica o pluviométrica. El segundo caso es el más común en Ecuador, ya que menos del 25% de las estaciones climatológicas en todo el país cuentan con pluviógrafo, además, en la provincia de Loja solo el 4% de las estaciones cuenta con registro de pluviometría. Siendo por lo tanto, la información pluviográfica muy escasa en el país como en distintos lugares del mundo.

Sin embargo existen grandes volúmenes de datos pluviométricos, con información espacio-temporal muy buena, con los que a partir de ellos y con técnicas apropiadas, se pueden estimar lluvias extremas de duraciones pequeñas.

Para solventar la escases de datos pluviográficos existen varias investigaciones como: Hershfield (1961), Reich (1963), Bell (1969), Pierrehumbert (1977), Chen (1983), Franco et al. (1996), U.S. Soil Conservation Service. Los cuales proponen expresiones para calcular láminas de lluvia asociadas a distintas duraciones y periodos de retorno, verificados en distintas partes del mundo con resultados aceptables, por medio de líneas de igual relación R de lluvia entre 1 h a 24 h, para que por medio de esta, y con el análisis de lluvia máxima en 24 horas se determinen la curvas I-D-T.

Su aplicación va desde el uso de valores puntuales de precipitación en el método racional para determinar los gastos pico en alcantarillados de aguas de lluvia y alcantarillas de carreteras, hasta el uso de histogramas de tormenta como las entradas para el análisis de lluvia-escurrimiento en embalses de detención de aguas urbanas o el diseño de vertedores en proyectos que involucran grandes presas.

OBJETIVOS

El objetivo principal de este trabajo de investigación es desarrollar expresiones para calcular la precipitación asociada a distintas duraciones y periodos de retorno, por medio de líneas de igual coeficiente R (relación de lluvia de 1 h a 24 h), para que a través de él, y con el análisis de la lluvia máxima en 24 horas se estimen la curvas I-D-T.

Como meta para lograr el objetivo principal se pretende presentar mapas de la Provincia de Loja, con una regionalización del factor de covectividad R (Relación entre la precipitación máxima anual en una hora para un periodo de retorno T, y la precipitación máxima anual en 24 horas para el mismo periodo de retorno T; $R = \frac{P_1^T}{P_{24}^T}$).

El factor de covectividad permitirá obtener lluvias de 1 hora para cualquier periodo de retorno.

Adicionalmente, con la ayuda de los resultados investigados por Chen, también se pretende obtener las lluvias máximas para duraciones menores a una hora y diferentes periodo de retorno.

En resumen se pretende establecer las bases técnicas necesarias que permita solventar la escases de datos pluviográficos en diferentes zonas del país, principalmente en la provincia de Loja, aprovechando los grandes volúmenes de datos pluviométricos, con gran información tanto espacial como temporal. Con los que a partir de ellos y con técnicas apropiadas, se pueden estimar lluvias extremas de duraciones pequeñas, cuyo fundamento se basa en la relación o vínculo existente entre los máximos precipitados en un día y los menores a este o más breves.

MOTIVACIÓN

La disponibilidad de datos es imprescindible para el diseño y planificación de actividades físicas. Pero, muchas veces no se dispone de registros de caudales, o éstos no tienen la suficiente duración como para hacer los análisis de frecuencia requeridos; debe entonces usarse la información pluviométrica o pluviográfica existente en el lugar para estimar crecidas de cierta frecuencia. Por lo tanto, es necesario presentar esta información correspondiente a una tormenta o lluvia en formas de intensidades, a partir de los registros de las estaciones pluviométricas o pluviográficas en el lugar de estudio.

Para predecir estos gastos críticos a través de registros pluviométricos o pluviográficos, es esencial asociar una probabilidad a lluvias máximas de distinta duración y deducir la probabilidad de ocurrencia de un evento futuro. Requiriendo para tal efecto contar con registros continuos de precipitación (pluviógrafo), muy escasos en Ecuador como en distintas partes del mundo, tanto por su cobertura espacial de las mismas y por el tiempo de funcionamiento.

Sin embargo existen grandes volúmenes de datos pluviométricos, con mucha información tanto espacial como temporal, con los que a partir de ellos y con técnicas apropiadas, se pueden estimar lluvias extremas de duraciones pequeñas, utilizadas grandemente en obras de Ingeniería Civil como: diques para el control de avenidas o crecientes; captación para proyectos de irrigación o de generación de energía; programas para manejo, desarrollo y administración para controlar un sistema existente; obras de defensa ribereña por ejemplo mapas de planicies de inundación para limitar la construcción cerca de un río; obras de drenaje urbano; control de inundaciones urbanas y sub urbanas. Obras que se ven altamente influenciadas por factores climáticos, entre los que se destaca por su importancia las precipitaciones pluviales.

METODOLOGÍA

La metodología que se siguió para la realización de este trabajo fue la siguiente.

Primeramente se investigó y estudió las características principales de lluvia, temperatura, orografía e hidrografía de la zona de estudio. Procediendo a la búsqueda de bases de datos para el análisis respectivo, principalmente de lluvia.

Con los datos de precipitación se procedió a analizar la información disponible (27 estaciones que registran pluviometría y 1 estación pluviográfica), verificando calidad, cantidad de información y selección de un registro común para la zona de estudio, para posteriormente rellenar y generar datos faltantes mediante 8 métodos de interpolación espacial de lluvias.

El proceso de generación e interpolación de registros es un proceso bastante laborioso, que implica gran cantidad de tiempo invertido, ya que el proceso de relleno de datos es a nivel diario durante los cuarenta años de registro de periodo común utilizado.

Posteriormente se analizó la independencia de los eventos, esto como un paso previo a realizar el análisis de frecuencias de lluvias máximas en 24 horas por medio de diferentes funciones de distribución de probabilidad, con sus parámetros estimados también por diferentes métodos.

Adicionalmente, mediante las investigaciones realizadas por la U.S. Soil Conservation Service, se obtuvo la relación matemática para la obtención de las curvas Hp-d-T en 21 lugares representativos de la provincia de Loja. Para finalmente determinar el mapa provincial de R, de las lluvias máximas en 24 horas para diferentes periodos de retorno entre 2 a 100 años y de la lluvia máxima en una hora y periodo de retorno de dos años, necesarios e indispensables en una regionalización para la determinación de las curvas Hp-d-T de cualquier lugar en la zona.

DESCRIPCIÓN Y ORGANIZACIÓN DEL TRABAJO

El estudio se realizó en la provincia de Loja-Ecuador con un área comprendida de 10.793 km² cuya altitud varía de 250 a 2500 msnm.

Para cumplir los objetivos planteados, el trabajo se ha organizado de la siguiente manera:

Capítulo 1. Ecuador y su provincia de Loja (Información preliminar)

En el Capítulo 1 se presenta la descripción de las características orográficas, hidrográficas, climáticas y de temperatura del Ecuador y especialmente de la Provincia de Loja. Estas particularidades propias de cada lugar fueron la base para la agrupación de regiones homogéneas en el área de estudio.

Capítulo 2. Información de precipitación disponible

La calidad y cantidad de información de precipitación disponible, así como la selección de zonas homogéneas y periodo común de registros se estudiaron en el segundo capítulo, donde además se determina las características generales iniciales de cada estación disponible.

Capítulo 3. Técnicas de interpolación de Iluvias

Se muestra la descripción de los conceptos y parámetros matemáticos característicos de las 8 técnicas de interpolación espacial utilizadas para relleno y generación de registros de lluvia diaria, en las estaciones con particularidades homogéneas en común.

Capítulo 4. Análisis de interpolación para datos de la provincia de Loja

Se presenta la descripción paso a paso seguida para la interpolación o generación de registros de datos faltantes de lluvia diaria en la provincia de Loja, además, se muestra los resultados de las características finales de las muestras después de la interpolación o generación de registros de la zona.

Capítulo 5. Análisis de precipitaciones máximas

La determinación, para cada año, de la lluvia máxima ocurrida en cada una de las estaciones de las tres zonas homogéneas, así como los resultados para determinar si las muestras son independientes mediante prueba de independencia de eventos se presenta en el capítulo cinco.

Capítulo 6. Análisis de frecuencias de lluvias máximas

En el Capitulo seis se llevó a cabo un análisis estadístico de eventos máximos, con el fin de establecer a qué distribución de probabilidades se ajustaba cada estación con mayor precisión. Se estudiaron varias funciones de distribución de probabilidad, con sus parámetros estimados por diferentes métodos.

Capítulo 7. Regionalización provincial de Loja

La obtención de las relaciones R de 1 a 24 horas de cada estación (plano provincial propuesto para valores de R), necesarias para la obtención de las Curvas I-D-T de toda la Provincia de Loja, así como tres ejemplos de aplicación práctica se plasman en el capítulo siete.

Capítulo 8. Conclusiones y recomendaciones

Se presentan las principales conclusiones y recomendaciones a las que se llega en este trabajo y se indican algunas de las futuras líneas de investigación sobre el tema en la zona de estudio.

CAPÍTULO 1

ECUADOR Y SU PROVINCIA DE LOJA

CAPÍTULO 1 ECUADOR Y SU PROVINCIA DE LOJA (INFORMACIÓN PRELIMINAR)

1.1 CARACTERÍSTICAS GENERALES DEL ECUADOR Y PROVINCIA DE LOJA

El Ecuador se encuentra situado en la costa occidental de América del Sur, en las coordenadas angulares:

Tabla 1.1: Ubicación del Ecuador

	ı	Desde	Hasta		
	Grados	Minutos	Grados	Minutos	
Latitud	1	28	5	1	
Longitud	75	11	81	01	

Fuente: García C & Palacios Ch, 2010

El territorio ecuatoriano está limitado políticamente al norte con Colombia, al sur y este con Perú, y al oeste con el Océano Pacífico.

El principal sistema montañoso de América del Sur es la Cordillera de los Andes, que divide al país en tres regiones naturales fisiográficamente diferentes y claramente definidas entre sí ya sea por su geomorfología, geología, mineralogía, clima, vegetación y población.

La región costa, está constituida de tierras generalmente bajas que no sobrepasan los 800 msnm, húmedas y exuberantes. Extendiéndose de Norte a Sur desde el Río Mataje, hasta el rio Zarumilla y desde Oeste a Este desde el Océano Pacífico hasta las estribaciones de la Cordillera de los Andes.

La región Sierra o denominada también callejón interandino por estar atravesada por la cordillera de los Andes que la recorre de Norte a Sur. La cordillera se divide en dos sistemas paralelos: Cordillera Oriental y Occidental, separados por una llanura longitudinal que está dividida en varios valles por nudos transversales, las altitudes varían desde los 1200 hasta los 6000 m.

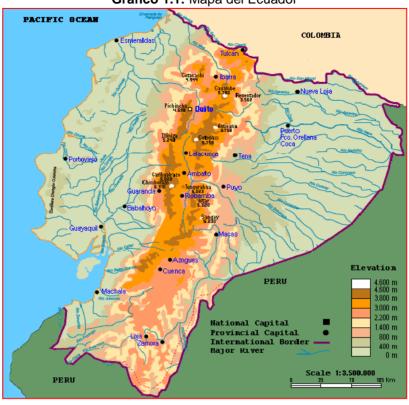


Gráfico 1.1: Mapa del Ecuador

Fuente: http://facee.wordpress.com/2007/08/19/mapas/

La región del oriente, o conocida como zona amazónica se extiende desde las estribaciones orientales de la cordillera Central de los Andes hasta los límites con el Perú, al este, y desde la frontera norte colombiana hasta los límites con el Perú, al Sur. En el Oriente existen llanuras virtualmente no exploradas. Sus condiciones naturales son semejantes a todas las regiones tropicales del mundo.

El Archipiélago de Colón o Galápagos, se sitúa en el Océano Pacífico, a 972 kms. en el oeste de la costa ecuatoriana.

Al suroccidente del Ecuador se encuentra ubicada la provincia de Loja, entre las latitudes Sur: 03°39'55" y 04°30'38" (9501249 N - 9594638 N); y, 79° 05' 58" y 79° 05' 58" de longitud Oeste (661421 E -711075 E). Se encuentra ubicada en el sur de la cordillera Oriental de los Andes ecuatoriana, formando parte de la región sur conjuntamente con las provincias vecinas de El Oro y Zamora Chinchipe.

Fuente: http://www.luventicus.org/mapas/ecuador/loja.html

Constituye la provincia más austral del Ecuador. Tiene una superficie aproximada de 10.793.99 km² equivalente al 4% de la superficie del país.

El 45% del territorio lojano es de topografía accidentada conformada por rocas, peñones y terrenos muchas veces de difícil acceso. A pesar de presentarse alturas de hasta 4.107 m, no existen nevados. La línea divisoria continental separa la capital del resto de la provincia drenando sus alrededores hacia el Amazonas.

Limita con las provincias de El Oro al oeste; con la provincia de Zamora Chinchipe al este; con la provincia del Azuay al norte; y al sur con la República del Perú, siendo la provincia más extensa de la sierra ecuatoriana.

La provincia de Loja está dividida políticamente en 16 cantones: Loja, Calvas, Catamayo, Chaguarpamba, Celica, Espíndola, Gonzanamá, Macará, Paltas, Puyango, Saraguro, Sozoranga, Zapotillo, Pindal, Quilanga, Olmedo.

Gráfico 1.3: Mapa político y relieve de la provincia de Loja

Fuente: http://www.ilustresdelecuador.com/loja.php

1.2 OROGRAFÍA E HIDROGRAFÍA DE LA PROVINCIA DE LOJA 1.2.1 Orografía

Su topografía es muy accidentada y de difícil acceso, comprendida por la parte alta de la Hoya del Jubones y de las cuencas del Catamayo. Macará y Puyango. Posee elevaciones muy bajas si se las compara con las cumbres que dominan el norte y centro de los andes ecuatorianos; a pesar de esto su relieve presenta ramales de orientación variada entre los que sobresalen el nudo de Guagrahuma, Cajanuma, las estribaciones de Santa Rosa, Zamora y Huachanamá. (OLIVERA. 2003).

GUAGRAHUMA-ACACANA

Se ubica entre los límites de los cantones Loja y Saraguro, de él se desprenden la cordillera de Tahuín que se dirige a la Costa y la "cordillera Larga" que penetra en el territorio provincial primero con dirección Norte a Sur y luego Este a Oeste, por Selva Alegre, Gualel, Las Chinchas, Catacocha, Guachanamá y Celica, desde donde se bifurca con dirección

Noroeste hacia Alamor y al Suroeste, a través de las bajas estribaciones de Cabeza de Toro, hacia el cantón Zapotillo.

CAJANUMA

Situado en la parte centro-oriental, a siete kilómetros al Sur de la ciudad de Loja, envuelve al valle de Cuxibamba por las estribaciones del Villonaco, Churiquiribamba y Gualel, para luego unirse al nudo de Guagrahuma por la cordillera del cerro Santa Bárbara.

SABANILLA

Al igual que el nudo de Guagrahuma-Acacana, posee las mayores altitudes de la provincia, algunas de las cuales se aproximan a los 4.000 m. De este nudo, con rumbo Noroeste, se desprende la cordillera de Santa Rosa, que más adelante cambia a dirección Suroeste para desaparecer cerca de Macará.

Loja está formado por un laberinto intrincado de elevaciones, que es atravesado de norte a sur por la cordillera oriental de los andes (la cordillera occidental no penetra en la provincia). Estos ramales de la escalera andina que se cruzan y entrecruzan con sus estribaciones, dejan varios valles cálidos al fondo, siendo la región de más irregular relieve del país.

La orografía local da paso a los vientos marinos del Oeste y Alisios del Este, así mismo interfiere la penetración del aire húmedo de los diversos frentes, lo que provoca fuertes contrastes térmicos a corta distancia. Esto explica el carácter peculiar del clima de la provincia caracterizado por la presencia de una gran diversidad de microclimas, suelos y especies vegetales de trópico hasta frío húmedo.

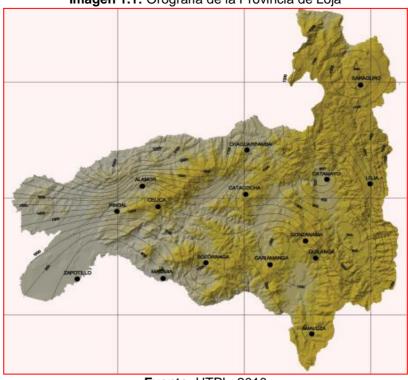


Imagen 1.1: Orografía de la Provincia de Loja

Fuente: UTPL, 2010

1.2.2 Hidrografía

La red hidrográfica es abundante, destacándose los ríos Puyango, Catamayo y Macará, todos pertenecientes a la cuenca del Pacífico; mientras que el río Zamora que nace en esta provincia avanza hasta unirse con el Paute para juntos formar el Santiago que desemboca en el Amazonas. (OLIVERA. 2003).

La provincia de Loja es drenada por cuatro sistemas hidrográficos (cuencas):

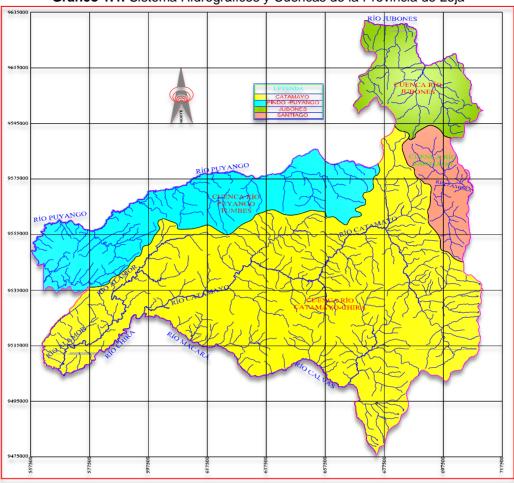


Gráfico 1.4: Sistema Hidrográficos y Cuencas de la Provincia de Loja

Elaboró: El autor

Al norte es drenada por la cuenca del río Jubones que es compartida también por las provincias de Azuay y El Oro; cubriendo aproximadamente un 10% del de la Provincia de Loja (1.076 km²).

Hacia el Noroeste de la provincia se encuentran los afluentes de la margen izquierda del río Puyango que también es limítrofe con la provincia de El Oro y forma parte del sistema Puyango-Tumbes. Ocupan una extensión de 1.997 km².

Al extremo Este de la provincia se encuentra la cuenca alta del río Santiago, en la que está ubicada la ciudad de Loja. Esta cuenca que cubre una superficie de 634 km², forma parte de la vertiente del Atlántico, y limita con la provincia de Zamora-Chinchipe.

Finalmente, en el centro y Sur de la provincia, ocupando el 65 % de su área, se encuentra el sistema Chira-Catamayo (7.086 km²) conformado por tres grandes cuencas: en el centro la cuenca del río Catamayo, al Sur la cuenca del río Macará, que limita con el Perú y al Noroeste la cuenca del río Alamor.

A partir de la unión de los ríos Catamayo y Macará se inicia la cuenca baja (Inferior) o cono de deyección del sistema Catamayo-Chira, que constituye la franja de Zapotillo.

Todas las cuencas, subcuencas y microcuencas generan agua que escurre a través de un sistema de drenaje "dendrítico", característico de ríos de "alta montaña", genéticamente en estado "juvenil", y de "valle" en las partes bajas y planas donde el río ha llegado a su estado de semi madurez.

En el Gráfico 1.5 se esquematiza las características del sistema hidrográfico, particularmente las longitudes y pendientes de los principales ríos de cada cuenca.

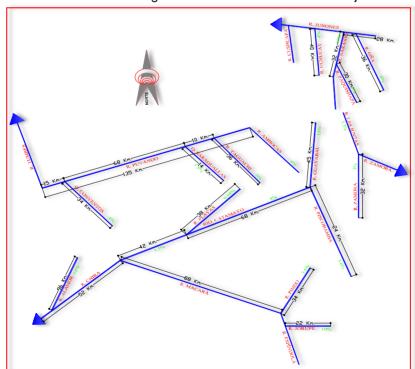


Gráfico 1.5: Diagrama fluvial de la Provincia de Loja

Elaboró: El autor

1.3 CLIMA DE LA PROVINCIA DE LOJA

De lo alto hacia lo bajo, del frío hacia el calor, de la humedad hacia la sequedad; una frontera climática (GONDARD.1983).

En general, se podría decir que la provincia de Loja posee un clima predominante, que varía entre tropical sabana¹, meso térmico húmedo² y semi húmedo, también existen sitios con climas de páramo localizados en las zonas de mayor altitud. Al sur de la provincia, se encuentran sectores áridos secos en las proximidades con Perú. La temperatura promedio es de 16 °C.

Se puede decir que los mismos factores genéticos del clima que afectan al país y a la región andina inciden sobre el territorio de Loja; es decir, sobre la provincia actúan la Zona de Convergencia Intertropical³ (ZCIT), caracterizada por el frente intertropical; el efecto de la interacción Océano Pacífico-atmósfera (Corriente del Niño y Corriente Fría de Humboldt); los vientos alisios y la típica orografía serrana y costanera, e indudablemente la posición geográfica de zona ecuatorial ligada estrechamente con el factor radiación solar (INERHI-PREDESUR-CONADE, 1994).

El hecho de que Ecuador se halle ubicado en la faja de bajas Latitudes (zona ecuatorial) significa que carece de variaciones estacionales en la temperatura y que el gradiente térmico tenga un descenso de aproximadamente 5°C por cada 1.000 metros de ascenso altitudinal; por eso, en la sierra, las condiciones calurosas de clima ecuatorial son temperadas.

Uno de los fenómenos más importantes, es el denominado la corriente de El Niño, en el cual por los meses de Enero hasta los meses de Abril o Mayo, la corriente introduce al continente aire húmedo y caliente que produce lluvia convectiva. Su

Página 21

¹ Clima tropical de la sabana o clima mojado y seco tropical es un tipo de clima que corresponde a las categorías Aw dentro de la Clasificación del clima de Köppen. Estos climas tienen temperatura mensual sobre 18º C en cada mes del año y de una estación seca pronunciada, con el mes más seco teniendo precipitación menos de 60 milímetros y también menor que (– 100 [precipitación anual total (mm) /25]).

² El **clima mesotérmico húmedo** no tiene estación seca y depende de la Masa Polar Atlántica (invierno y otoño) y de la Masa Tropical Atlántica (verano y primavera) para los cambios de estación y temperatura.

³ La **zona de convergencia intertropical (ZCIT)** es un cinturón de baja presión que ciñe el globo terrestre en la región ecuatorial. Está formado, como su nombre indica, por la <u>convergencia</u> de aire cálido y húmedo de latitudes por encima y por debajo del ecuador. A esta región también se la conoce como *frente intertropical* o *zona de convergencia ecuatorial*

influencia cubre casi todo el territorio de la provincia, incluyendo la faja Saraguro-Yangana, con la excepción de una pequeña área ubicada alrededor de la población de Jimbilla, que presenta marcada influencia amazónica.

La ZCIT en las tierras bajas, hasta los 1.000 m es lo suficientemente pequeño para originar en la mayoría de los casos distribuciones de lluvia de tipo monomodal, con sólo un máximo y un mínimo por año.

Pero en las regiones montañosas el régimen pluviométrico es bastante diferente, porque gran parte de la humedad contenida en las grandes masas de aire que atraviesan la zona, precipita a altitudes inferiores a los 2.000-2.500 m. En el sector montañoso e incluso en los valles interandinos, la lluvia se debe principalmente a la convección local y presenta una clara distribución bimodal cuando el lugar se encuentra cerca de la línea equinoccial (INERHI-PREDESUR-CONADE, 1994).

La particularidad del clima, que lo hace diferente al resto del país, está sujeto al caótico relieve, con la ausencia de la cordillera occidental y el fenómeno muy latente en los últimos años que es la desertificación, que avanza desde el Sur, desde nuestro vecino el país del Perú.

El factor orográfico, conformado por un relieve que desciende de Este a Oeste, con un gradiente general del 2,4%, ha contribuido a que en Loja se forme una micro zona de convergencia, perpendicular a la ZCIT, donde los vientos marinos del oeste tocan la cumbre de la cordillera Real y los vientos alisios del este sobrepujan el centro de la provincia, configurando una situación de "Sahel", es decir, de transición entre la zona montañosa de los Andes Meridionales del Ecuador y el desierto de Sechura del Perú. Por eso, el régimen de Iluvias, unimodal hacia el Sector Occidental Bajo (con un solo pico en los primeros meses del año), paulatinamente tiende a homogeneizarse a medida que se asciende y avanza hacia el Oriente.

Los relieves locales interceptan, como barreras, la penetración del aire húmedo de los dos frentes y provocan fuertes contrastes térmicos a corta distancia (por ejemplo, entre las ciudades de Loja y Catamayo). El río Catamayo, que atraviesa por el centro la provincia, permite el paso durante la mayor parte del año del aire

cálido y seco, que viene del desierto del sur, provocando el fenómeno de la desertificación, más acentuado hacia los extremos occidentales y suroccidental. En los valles del Catamayo, río Playas (Yamana, Casanga, Zapotepamba, Almendral) y en la margen izquierda superior del río Jubones, aparecen mesoclimas tropicales semidesérticos como consecuencia de la presencia de fenómenos climáticos ligados al relieve (Efecto Föhn⁴ y Sombra Pluviométrica⁵).

1.4 DISTRIBUCIÓN DE LA TEMPERATURA

De acuerdo con la clasificación de pisos térmicos⁶, en Loja se distribuyen los climas térmicos siguientes:

Tabla 1.2: Distribución de pisos térmicos de la Provincia de Loja

No.	CLASE	RANGO TERMICO °C	SUPERFICIE Km ²	%
1	Frío (Glacial)	0 a 5.9	511	4.7
2	Subtemperado (Paramos)	6 a 11.9	611	6.1
3	Temperado (Frío)	12 a 17.8	2959	27.4
4	Subtropical (Templado)	18 a 21.9	2836	26.2
5	Tropical (Cálido)	Más de 22.0	3826	35.6
TOTAL			10793	100.0

Fuente: INERHI-PREDESUR-CONADE, 1994

Página 23

⁴ El **viento Foehn** o **Föhn** (nombre alemán tomado de un característico viento del norte de los Alpes) se produce en relieves montañosos cuando una masa de aire cálido y húmedo es forzada a ascender para salvar ese obstáculo. Esto hace que el vapor de agua se enfríe y sufra un proceso de condensación o sublimación inversa precipitándose en las laderas de barlovento donde se forman nubes y lluvias orográficas. Cuando esto ocurre existe un fuerte contraste climático entre dichas laderas, con una gran humedad y lluvias en las de barlovento, y las de sotavento en las que el tiempo está despejado y la temperatura aumenta por el proceso de compresión adiabática. Este proceso está motivado porque el aire ya seco y cálido desciende rápidamente por la ladera, calentándose a medida que aumenta la presión al descender y con un humedad sumamente escasa. El efecto Foehn es el proceso descrito en las laderas de sotavento y resulta ser un viento "secante" y muy caliente.

Sombra pluviométrica nos referimos a las áreas que por su configuración orográfica de características más o menos local reciben menos precipitación que áreas circundantes, normalmente por estar situadas en valles, cuecas o zonas deprimidas. Así, en los mapas de precipitación media anual (por ejemplo) se detectan como unas islas de poca precipitación rodeadas de amplias zonas más lluviosas. Estas islas más secas son las sombras pluviométricas, que suelen corresponder a valles rodeados de grandes montañas. Estos sistemas montañosos hacen de barrera orográfica o de efecto pantalla, por lo que no pueden penetrar los vientos húmedos portadores de lluvias o nevadas.

⁶ Los pisos térmicos, son un sistema de medida que nos permite definir la temperatura de una zona, de acuerdo a la altura sobre el nivel del mar en que se encuentre. Este sistema, sólo se puede aplicar en el trópico americano, debido a sus características geográficas y atmosféricas. Dentro de los pisos térmicos se han definido cinco niveles denominados cálido, templado, frió, páramo y glacial.

Abarcando una pequeña superficie (10.8 % de la superficie total de la provincia de Loja) los climas subtemperados y fríos se extienden sobre las cordilleras más altas (Sector en cúspides de Saraguro y Loja), se podría llamar la serranía de la provincia de Loja.

A altitudes más bajas que bordean entre los 1200 y 1900 metros de altura, se presentan los climas temperados cubriendo el 27.4 % de la superficie de Loja (un tercio de la superficie).

Con el 26.2 % (una cuarta parte de la superficie de la provincia de Loja) y altitudes comprendidas entre los 1200 y 1900 metros está comprendida por un clima subtropical. El clima tropical se ubica por debajo de la cota 1200 abarcando el 35.6 % (más de un tercio de la superficie) y comprendiendo cantones como Zapotillo, Macará, Pindal y Catamayo, hasta cerca de la zona de Chinguilamaca.

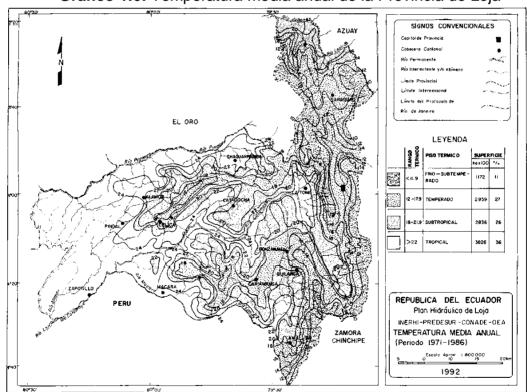
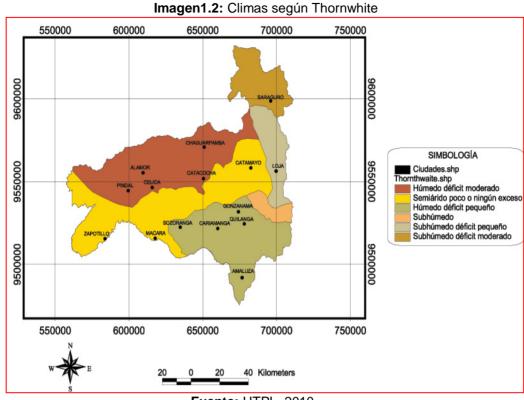


Gráfico 1.6: Temperatura media anual de la Provincia de Loja

Fuente: INERHI-PREDESUR-CONADE, 1994

De acuerdo a la clasificación climática según Thornwhite⁷ en la provincia de Loja se encuentran las zonas climáticas siguientes:

Tabla 1.3: Clasificación del clima según Thornwhite (Provincia de Loja)


CIUDAD	TIPO
Pindal	
Alamor	
Celica	Húmedo déficit moderado
Catacocha	
Chaguarpamba	
Saraguro	Subhúmedo déficit moderado
Loja	Subhúmedo déficit pequeño
Zapotillo	
Macará	Semiárido poco o ningún exceso
Catamayo	
Amaluza	
Cariamanga	
Quilanga	Húmedo déficit pequeño
Sozoranga	
Gonzanamá	

Fuente: UTPL, 2010

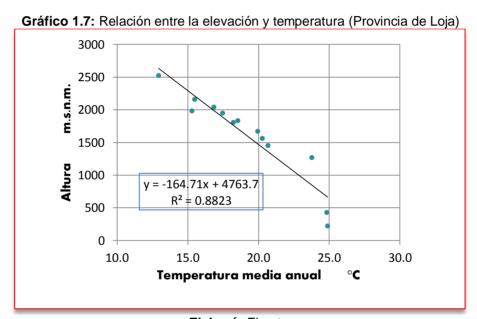
A continuación se puede apreciar la distribución espacial de climas de la provincia de Loja según Thornwhite:

Página 25

⁷ Se basa en el concepto de evapotranspiración potencial y en el balance de vapor de agua, y contiene cuatro criterios básicos: índice global de humedad, variación estacional de la humedad efectiva, índice de eficiencia térmica y concentración estival de la eficacia térmica. La evapotranspiración potencial (ETP) se determina a partir de la temperatura media mensual, corregida según la duración del día; y el exceso o déficit se calcula a partir del balance de vapor de agua, considerando la humedad, que junto con la ETP permite definir los tipos de clima, que se subdividen en otros en función del momento del año con exceso o falta de agua y de la concentración estacional de la eficacia térmica.

Fuente: UTPL, 2010

En la Tabla 1.4 se puede observar la temperatura media anual (20 años de registro) de los lugares más representativos de la Provincia:


Tabla 1.4: Temperatura media anual de la Provincia de Loja.

	TEMPERATURA	ELEVACION
ESTACIÓN	MEDIA ANUAL °C	msnm
Zapotillo	24.9	223
Macará	24.8	430
Catamayo	23.8	1270
Malacatos	20.7	1453
Vilcabamba	20.3	1563
Amaluza	19.9	1672
Catacocha	18.2	1808
Yangana	18.5	1835
Cariamanga	17.5	1950
Celica	15.3	1984
Gonzanamá	16.8	2042
La Argelia	15.5	2160
Saraguro	12.9	2525

Fuente: El autor

Como se puede observar la temperatura es inversamente proporcional a la elevación, es decir la temperatura será mayor en cotas inferiores por ejemplo: Zapotillo, Macará, Catamayo y menores conforme la elevación o altura va ascendiendo.

Claro está que la altitud es un factor predominante para la variación de la temperatura, se debe tomar en cuenta la gran irregularidad del gradiente térmico (irregularidad de la temperatura), ya que depende en muchísimos casos, antes que la altura (msnm), de la orientación del relieve con respecto, a la dirección y corrientes de viento predominantes, sean de origen local o regional.

Elaboró: El autor

A esto se debe la explicación en que Celica y La Argelia-Loja, situadas a diferente altitud (1.970 y 2.135 m, respectivamente), tienen casi similares temperaturas medias anuales, mientras que Yangana y Catacocha, localizadas aproximadamente a 1.850 m y Cariamanga y Celica, ubicadas también a altitudes casi iguales, tienen diferentes características térmicas (temperatura).

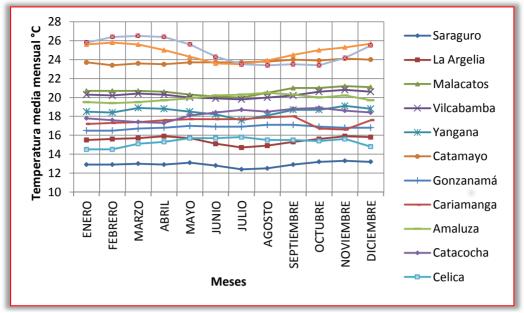


Grafico 1.8: Variación de la temperatura media anual

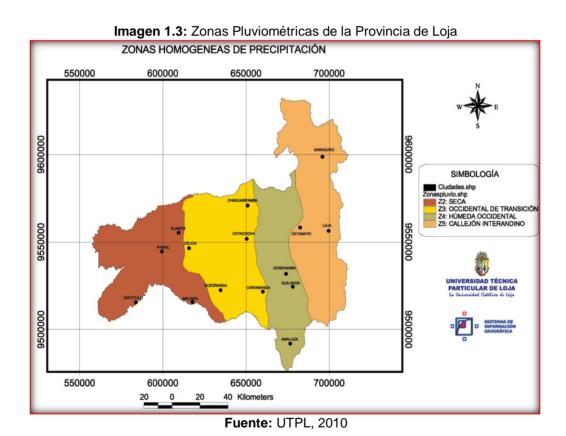
Elaboró: El autor

1.5 DISTRIBUCIÓN DE LA PLUVIOMETRÍA EN LA PROVINCIA DE LOJA

Todas las estaciones de la provincia del sur del Ecuador (Loja), están marcadas por un máximo de precipitación a finales y principios del año con un reinicio más o menos marcado a partir del mes de octubre. Las diferencias existentes entre las estaciones radican en primer lugar con la máxima precipitación con relación al total anual y a los valores de las precipitaciones en cada una de las estaciones.

Durante los meses de verano que, generalmente, casi para toda la provincia son en los meses de junio, julio y agosto, pueden ser totalmente secos, con valores de precipitación igual o cercanos a *0 mm*, también pueden estar en valores cercano al promedio mensual anual, o pueden acentuar una fuerte reanudación de las lluvias por los meses de julio.

Estas observaciones nos permiten definir tres tipos de características máximas de lluvia encontradas en el territorio Ecuatoriano:


Tabla 1.5: Tipos de pluviometría en la Provincia de Loja

DESCRIPCIÓN	TIPO
Un solo máximo, a principios de año	Costa o Pacífico
Dos máximos, uno al final y otro a	Tipo Sierra (Ecuatorial), encontrado en el Ecuador
principios de año	únicamente en los Andes
Un máximo a mediados de año	Tipo Oriente o Amazónico

Fuente: Gondard, 1983

La precipitación media anual de toda la provincia de Loja es de aproximadamente 950mm (INERHI-PREDESUR-CONADE, 1994), por lo que se diría que es un lugar semihúmedo. Esto no da una idea certera de cómo está realmente distribuida espacialmente la lluvia en toda la provincia de Loja, siendo un factor importante para determinar en que localidades corresponden al mismo patrón o masa de lluvia.

En la Imagen 1.3 se puede apreciar de mejor manera la distribución de la Iluvia:

A partir de la distribución espacial de precipitación en la provincia se pueden identificar cuatro zonas homogéneas de precipitación:

Tabla 1.6: Zonas Pluviométricas de la Provincia de Loja

LUGARES	ZONA
Zapotillo Pindal Macará Alamor	Seca
Celica Sozoranga Cariamanga Catacocha Chaguarpamba	Occidental de transición
Gonzanamá Quilanga Amaluza	Húmeda Occidental
Catamayo Loja Saraguro	Callejón Interandino

Fuente: UTPL, 2010

Una mejor manera de analizar objetivamente la precipitación es mensualmente:

Tabla 1.7: Precipitación media mensual

			i abi	a 1.7: 1	recipit	acion	media	ınen	Suai				
Estación	E	F	M	Α	M	J	J	Α	S	0	N	D	Total
Saraguro	73,3	101,6	117,0	85,8	53,4	43,4	39,1	35,2	37,5	57,5	55,6	70,4	769,8
San Lucas	73,1	103,1	108,5	107,9	84,2	88,7	83,5	69,0	65,9	80,5	82,2	72,5	1019,1
La Argelia	87,7	109,2	122,9	90,2	54,1	56,8	58,3	49,9	47,8	70,4	58,6	75,7	881,6
Malacatos	67,6	88,1	120,0	98,0	40,1	16,7	10,0	14,3	28,0	62,1	54,4	87,6	686,9
Yangana	129,7	176,0	136,3	136,4	85,9	85,2	77,6	56,6	72,3	98,4	94,1	105,3	1253,8
El Cisne	138,5	204,2	193,1	145,0	50,1	12,8	9,2	10,5	22,3	72,8	71,7	113,5	1043,7
Catamayo	33,4	69,4	71,5	60,2	23,0	8,1	2,5	6,2	13,5	39,4	23,5	27,0	377,7
Gonzanamá	146,7	189,8	201,6	184,8	74,8	27,2	19,8	17,0	42,6	99,4	81,2	111,3	1196,2
Cariamanga	130,9	207,3	261,2	199,1	79,3	22,6	7,9	12,7	26,4	68,8	52,8	87,9	1156,9
Amaluza	103,1	154,5	161,2	136,3	63,8	14,2	10,2	8,8	22,2	55,2	65,4	76,7	871,6
Chaguarpamba	274,7	269,2	269,5	265,9	102,4	28,4	5,2	9,3	13,7	39,1	26,8	97,1	1401,3
Catacocha	107,3	183,3	214,8	144,3	47,6	8,3	3,9	7,4	16,4	31,8	25,4	55,8	846,8
Colaisaca	130,1	193,0	228,7	195,3	81,0	22,9	6,0	15,1	21,0	55,8	39,4	80,8	1069,1
Celica	197,7	275,0	340,6	223,0	62,0	16,8	3,3	7,3	8,5	18,9	24,5	81,8	1259,4
Macará	66,3	113,1	238,4	138,1	30,5	9,6	0,6	0,6	1,4	7,2	4,0	20,5	630,3
Alamor	159,6	251,4	372,2	261,5	90,8	21,7	8,5	5,6	9,5	19,2	19,8	76,9	1296,7
Saucillo	81,8	121,0	298,8	127,8	22,9	5,4	2,0	0,0	0,2	3,4	5,2	23,3	691,8
Zapotillo	55,0	117,0	126,2	112,9	34,0	6,0	0,5	0,0	0,3	3,8	2,9	12,6	591,2

Fuente: INAMHI (Registros pluviométricos)

De acuerdo al Plan Integral de Desarrollo de Recursos Hidricos realizado por el INERHI-PREDESUR-CONADE en el año de 1994, en la provincia de Loja se han determinado cinco tipos de regimen pluviométrico con la ayuda del coeficiente pluviométrico de Angot, los 5 tipos de lluvia siguen una división entre cada uno, la

orientación paralela a la Cordillera de los Andes, es decir de norte a sur, en sentido longitudinal:

El coeficiente de Angot resulta de dividir el número que expresa la lluvia media observada en un mes dado, por la que se observaría si la suma anual estuviese igualmente repartida a lo largo del año. Para tener en cuenta la desigualdad de los meses, la suma anual se divide por 365 y se multiplica por el número de días del mes considerado:

Coeficient e relativo de Angot =
$$\frac{p \times 365}{P \times d}$$
, (1.1)

donde

p = Precipitación media mensual.

P = Precipitación media anual.

d = Días del mes considerado.

Los tipos de lluvia en Loja y su provincia son:

Tipo I: Lluvia de enero a mayo (Tipo Costa).

Tipo II: Lluvia de diciembre a mayo.

Tipo III: Lluvia de octubre a mayo.

Tipo IV: Lluvia en todo el año, casi uniformemente distribuida.

Tipo V: Lluvia bien distribuida durante todo el año.

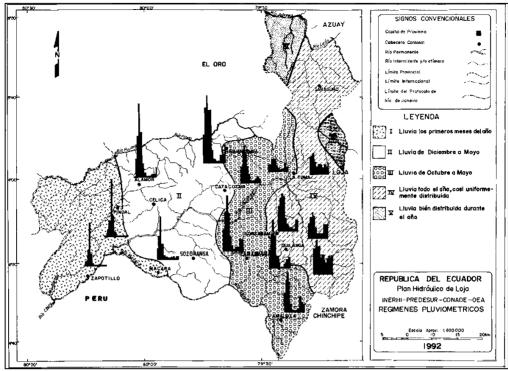


Grafico 1.9: Regímenes pluviométricos

Fuente: INERHI-PREDESUR-CONADE, 1994

En general, la clasificación de climas según Köppen de la provincia de Loja se pueden encontrar seis tipos de clima:

Tabla 1.8: Clima según Koppen

Tipo Climático	Fórmula	Área Km²	% Cobertura
Tropical	Aw	1.975	18.3
Tropical de Altura	AwH	1.544	14.3
Tropical con lluvia en verano muy caliente	BSW	3.250	30.1
Templado con invierno seco	Cw	1.457	13.5
Templado húmedo sin estación seca	Cf	1.358	12.5
Templado húmedo con invierno seco	Dw	1.209	11.3

Fuente: El Autor

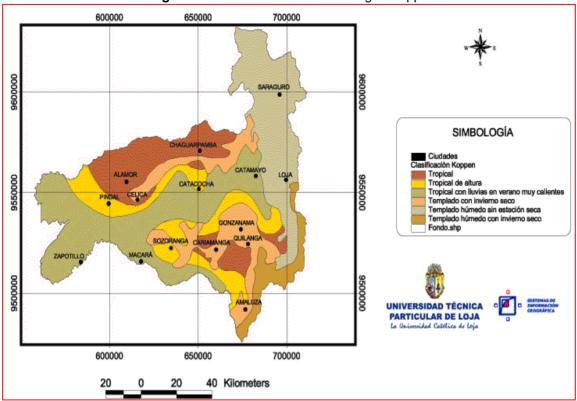


Imagen 1.4: Clasificación climática según Koppen

Fuente: UTPL, 2010

CAPÌTULO 2

INFORMACIÓN DE PRECIPITACIÓN DISPONIBLE

CAPÌTULO 2 INFORMACIÓN DE PRECIPITACIÓN DISPONIBLE

2.1. Obtención de la información

La Institución encargada del manejo y procesamiento de la información prioritaria sobre el tiempo, el clima y recursos hídricos del pasado, presente y futuro, que necesita conocer el país para la prevención y protección de la vida humana y los bienes materiales es el Servicio Meteorológico e Hidrológico Nacional del Ecuador creado por Ley (INAMHI).

Del Instituto Nacional de Meteorología e Hidrología (INAMHI) se obtuvieron los registros, pluviométricos y pluviográficos disponibles para toda la provincia de Loja. Agrupados en diferentes tipos de estaciones meteorológicas, cuya clasificación según la Organización Meteorológica Mundial, en el Ecuador es la siguiente:

Tabla 2.1: Clasificación de las estaciones meteorológicas

SEGÚN SU FINALIDAD	CLĂSIFICACIÓN
	Climatológica
	Agrícolas
Sinóptica	Especiales
	Aeronáuticas
	Satélites
	Principales
De acuerdo a la magnitud de las observaciones	Ordinarias
	Auxiliares o adicionales
Por el nivel de observación	Superficie
For entitled de observacion	Altitud
Sogún al lugar do absorvación	Superficie
Según el lugar de observación	Altitud

Fuente: Organización Metereológica Mundial, 1994

De estos tipos de estaciones meteorológicas se obtuvieron los valores diarios de precipitación (pluviómetros), calculados como la suma de las observaciones de las 23 y 19 horas, más la observación de las 7 horas del día siguiente, y de un pluviógrafo existente en la provincia.

En la Tabla 2.2 se describe el nombre, código, y tipo de estación meteorológica, disponible en la provincia de Loja, que se pudo recolectar para ser analizada.

Tabla 2.2: Estaciones meteorológicas de la provincia de Loja

	Tabla 2.2. Estaciones meteorologicas de la provincia de Loja					
COD	NOMBRE	TIPO	LAT	LONG	ELEV	CLASE DE INFORMAC
	No.III.	0		20.10		EXTRAIDA
M033	LA ARGELIA	AG	040211S	791204W	2160	Pluviométrica y
IVIUSS	LA ARGELIA	AG	0402113	79120400	2100	pluviográfica
M142	SARAGURO	CO	033643S	791402W	2525	Pluviométrica
M143	MALACATOS	CO	041258S	791616W	1453	Pluviométrica
M144	VILCABAMBA	CO	041546S	791304W	1563	Pluviométrica
M145	QUINARA INAMHI	CO	041850S	791436W	1559	Pluviométrica
M146	CARIAMANGA	CO	042000S	793316W	1950	Pluviométrica
M147	YANGANA	CO	042205S	791029W	1835	Pluviométrica
M148	CELICA	CO	040617S	795705W	1904	Pluviométrica
M149	GONZANAMA	CO	041349S	792552W	2042	Pluviométrica
M150	AMALUZA INAMHI	CO	043505S	792550W	1672	Pluviométrica
M151	ZAPOTILLO	CO	042257S	801411W	0223	Pluviométrica
M763	NAMBACOLA	CP	040826S	79 262W	1822	Pluviométrica
M432	SAN LUCAS INAMHI	PV	034355S	791541W	2525	Pluviométrica
M433	EL LUCERO INAMHI	PV	042359S	792818W	1180	Pluviométrica
M434	SOZORANGA INAMHI	PV	041929S	794720W	1427	Pluviométrica
M435	ALAMOR	PV	040107S	800140W	1250	Pluviométrica
M437	SAUCILLO(ALAMOR EN)	PV	041651S	801155W	328	Pluviométrica
M438	JIMBURA	PV	043741S	792754W	2100	Pluviométrica
M439	SABIANGO INAMHI	PV	042140S	794837W	700	Pluviométrica
M515	CATACOCHA	PV	040321S	793840W	1808	Pluviométrica
M544	COLAISACA	PV	041900S	794135W	2410	Pluviométrica
MB88	NAMBACOLA COLEGIO AGROP CUEVA	PV	040813S	792552W	1835	Pluviométrica
M768	SOZORANGA PREDESUR	PV	041929S	794720W	1427	Pluviométrica
MB87	POZUL COLEGIO AGROP.RODRIGUEZ	PV	040654S	800324W	1739	Pluviométrica
M767	SAN LUCAS PREDESUR	PV	034337S	791543W	2380	Pluviométrica
M764	QUINARA (PREDESUR)	PV	041850S	791436W	1559	Pluviométrica
M761	EL LUCERO PREDESUR	PV	042400S	792800W	1300	Pluviométrica
M750	AMALUZA PREDESUR	PV	043500S	792500W	1720	Pluviométrica

Fuente: El autor

Simbología

AG= Agrometereológica.

CO= Climatológica Ordinaria

CP= Climatológica Principal.

PV= Estación Pluviométrica.

Para determinar la probabilidad de ocurrencia de un evento futuro, se requiere disponer de registros pluviográficos continuos, existiendo uno solo en la provincia de Loja como se pudo observar en la **Tabla 2.2**, siendo muy escasos en Ecuador y en la mayor parte del mundo, tanto por el espacio que abarcan (muy pocas en una gran área), como por el tiempo en que se encuentra funcionando.

Pero existen grandes volúmenes de registros pluviométricos con poca o mucha cantidad de información y con buena o mala calidad, tanto en espacio como en tiempo.

Estos registros de pluviómetro se pueden utilizar para estimar lluvias extremas de pequeñas duraciones, pero antes de eso se debe proceder a verificar la calidad y cantidad de información de tal manera que se considere aquellas estaciones que aporten información y no generen "ruido" al momento de analizar nuestros registros, a continuación se presentan las características de cada una de las estaciones conforme se ha obtenido del INAMHI:

Tabla 2.3: Características generales de las estaciones recopiladas							
NOMBRE:	САТАСОСНА	COLAISACA	SABIANGO INAMHI	ALAMOR			
CODIGO:	M515	M544	M439	M435			
ELEVACIÓN:	1808	2410	700	1250			
INICIA REGISTRO	01/01/1964	01/02/1964	01/11/1964	01/01/1964			
FINALIZA REGISTRO	31/12/2009	31/12/2009	31/12/2009	31/12/2009			
TOTAL DIAS	16802	16771	16497	16802			
TOTAL AÑOS	46.0	45.9	45.2	46.0			
DIAS CON REGISTRO	14816	14422	12658	15265			
AÑOS CON REGISTRO	40.6	39.5	34.7	41.8			
DÍAS SIN REGISTRO	1986	2349	3839	1537			
AÑOS SIN REGISTRO	5.4	6.4	10.5	4.2			
% FALTANTE	11.8	14.0	23.3	9.1			
NOMBRE:	SAN LUCAS INAMHI	GONZANAMA	YANGANA	CARIAMANGA			
CÓDIGO:	M432	M149	M147	M146			
ELEVACIÓN:	2525	2042	1835	1950			
INICIA REGISTRO	01/01/1964	01/01/1964	01/01/1964	01/01/1964			
FINALIZA REGISTRO	31/12/2009	31/12/2009	30/12/2009	30/12/2009			
TOTAL DIAS	16802	16802	16801	16801			
TOTAL AÑOS	46.0	46.0	46.0	46.0			
DIAS CON REGISTRO	15047	15598	15518	15744			
AÑOS CON REGISTRO	41.2	42.7	42.5	43.1			
DÍAS SIN REGISTRO	1755	1204	1283	1057			
AÑOS SIN REGISTRO	4.8	3.3	3.5	2.9			
% FALTANTE	10.4	7.2	7.6	6.3			
NOMBRE:	SARAGURO	CELICA	LA ARGELIA LOJA	MALACATOS			
CÓDIGO:	M142	M148	M033	M143			
ELEVACIÓN:	2525	1984	2160	1453			
INICIA REGISTRO	01/01/1964	01/01/1970	01/01/1970	01/01/1970			
FINALIZA REGISTRO	31/12/2009	29/06/2005	31/12/2005	30/05/2005			
TOTAL DIAS	16802	12964	13149	12934			
TOTAL AÑOS	46.0	35.5	36.0	35.4			
DIAS CON REGISTRO	15909	11369	12779	11865			

AÑOS CON	l	l	1	1
REGISTRO	43.6	31.1	35.0	32.5
DÍAS SIN REGISTRO	893	1595	370	1069
AÑOS SIN REGISTRO	2.4	4.4	1.0	2.9
% FALTANTE	5.3	12.3	2.8	8.3
NOMBRE:	ZAPOTILLO	VILCABAMBA	QUINARA INAMHI	AMALUZA INAMHI
CÓDIGO:	M151	M144	M145	M150
ELEVACIÓN:	223	1563	1559	1672
INICIA REGISTRO	01/01/1970	01/12/1968	01/01/1982	01/01/1975
FINALIZA REGISTRO	31/12/2005	31/03/2000	31/12/2009	31/12/2009
TOTAL DIAS	13149	11444	10227	12784
TOTAL AÑOS	36.0	31.4	28.0	35.0
DIAS CON REGISTRO	11113	10130	5866	11480
AÑOS CON REGISTRO	30.4	27.8	16.1	31.5
DÍAS SIN REGISTRO	2036	1314	4361	1304
AÑOS SIN REGISTRO	5.6	3.6	11.9	3.6
% FALTANTE	15.5	11.5	42.6	10.2
NOMBRE:	EL LUCERO INAMHI	SOZORANGA INAMHI	SAUCILLO (ALAMOR EN)	JIMBURA
CÓDIGO:	M433	M434	M437	M438
ELEVACIÓN:	1180	1427	328	2100
INICIA REGISTRO	10/02/1971	01/02/1971	01/01/1968	01/10/1975
FINALIZA REGISTRO	31/12/2009	31/12/2009	31/12/2009	31/12/2009
TOTAL DIAS	14205	14214	15341	12511
TOTAL AÑOS	38.9	38.9	42.0	34.3
DIAS CON REGISTRO	10173	11099	13483	11507
AÑOS CON	07.0	00.4	20.0	31.5
REGISTRO	27.9	30.4	36.9	
REGISTRO DÍAS SIN REGISTRO	4032	3115	1858	1004
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO	4032 11.0	3115 8.5	1858 5.1	1004
REGISTRO DÍAS SIN REGISTRO	4032 11.0 28.4	3115	1858 5.1 12.1	1004 2.8 8.0
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE:	4032 11.0 28.4 EL LUCERO PREDESUR	3115 8.5 21.9 NAMBACOLA	1858 5.1 12.1 QUINARA (PREDESUR)	1004 2.8 8.0 SAN LUCAS PREDESUR
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO:	4032 11.0 28.4 EL LUCERO PREDESUR M761	3115 8.5 21.9 NAMBACOLA M763	1858 5.1 12.1 QUINARA (PREDESUR) M764	1004 2.8 8.0 SAN LUCAS PREDESUR M767
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACION:	4032 11.0 28.4 EL LUCERO PREDESUR	3115 8.5 21.9 NAMBACOLA	1858 5.1 12.1 QUINARA (PREDESUR)	1004 2.8 8.0 SAN LUCAS PREDESUR
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACION: INICIA REGISTRO	4032 11.0 28.4 EL LUCERO PREDESUR M761 1300 01/01/1982	3115 8.5 21.9 NAMBACOLA M763 1822 04/02/1971	1858 5.1 12.1 QUINARA (PREDESUR) M764 1559 01/11/1975	1004 2.8 8.0 SAN LUCAS PREDESUR M767 2380 01/01/1982
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACION: INICIA REGISTRO FINALIZA REGISTRO	4032 11.0 28.4 EL LUCERO PREDESUR M761 1300 01/01/1982 24/03/1984	3115 8.5 21.9 NAMBACOLA M763 1822 04/02/1971 31/12/1999	1858 5.1 12.1 QUINARA (PREDESUR) M764 1559 01/11/1975 31/12/1999	1004 2.8 8.0 SAN LUCAS PREDESUR M767 2380 01/01/1982 31/05/1992
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACION: INICIA REGISTRO FINALIZA REGISTRO TOTAL DIAS	4032 11.0 28.4 EL LUCERO PREDESUR M761 1300 01/01/1982 24/03/1984 814	3115 8.5 21.9 NAMBACOLA M763 1822 04/02/1971 31/12/1999 10558	1858 5.1 12.1 QUINARA (PREDESUR) M764 1559 01/11/1975 31/12/1999 8827	1004 2.8 8.0 SAN LUCAS PREDESUR M767 2380 01/01/1982 31/05/1992 3804
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACION: INICIA REGISTRO FINALIZA REGISTRO TOTAL DIAS TOTAL AÑOS	4032 11.0 28.4 EL LUCERO PREDESUR M761 1300 01/01/1982 24/03/1984 814 2.2	3115 8.5 21.9 NAMBACOLA M763 1822 04/02/1971 31/12/1999 10558 28.9	1858 5.1 12.1 QUINARA (PREDESUR) M764 1559 01/11/1975 31/12/1999 8827 24.2	1004 2.8 8.0 SAN LUCAS PREDESUR M767 2380 01/01/1982 31/05/1992 3804 10.4
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACION: INICIA REGISTRO FINALIZA REGISTRO TOTAL DIAS TOTAL AÑOS DIAS CON REGISTRO	4032 11.0 28.4 EL LUCERO PREDESUR M761 1300 01/01/1982 24/03/1984 814	3115 8.5 21.9 NAMBACOLA M763 1822 04/02/1971 31/12/1999 10558	1858 5.1 12.1 QUINARA (PREDESUR) M764 1559 01/11/1975 31/12/1999 8827	1004 2.8 8.0 SAN LUCAS PREDESUR M767 2380 01/01/1982 31/05/1992 3804
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACION: INICIA REGISTRO FINALIZA REGISTRO TOTAL DIAS TOTAL AÑOS DIAS CON REGISTRO AÑOS CON REGISTRO	4032 11.0 28.4 EL LUCERO PREDESUR M761 1300 01/01/1982 24/03/1984 814 2.2 814	3115 8.5 21.9 NAMBACOLA M763 1822 04/02/1971 31/12/1999 10558 28.9 5831 16.0	1858 5.1 12.1 QUINARA (PREDESUR) M764 1559 01/11/1975 31/12/1999 8827 24.2 5677 15.6	1004 2.8 8.0 SAN LUCAS PREDESUR M767 2380 01/01/1982 31/05/1992 3804 10.4 617 1.7
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACION: INICIA REGISTRO FINALIZA REGISTRO TOTAL DIAS TOTAL AÑOS DIAS CON REGISTRO AÑOS CON REGISTRO DIAS SIN REGISTRO	4032 11.0 28.4 EL LUCERO PREDESUR M761 1300 01/01/1982 24/03/1984 814 2.2 814 2.2	3115 8.5 21.9 NAMBACOLA M763 1822 04/02/1971 31/12/1999 10558 28.9 5831 16.0 4727	1858 5.1 12.1 QUINARA (PREDESUR) M764 1559 01/11/1975 31/12/1999 8827 24.2 5677 15.6 3150	1004 2.8 8.0 SAN LUCAS PREDESUR M767 2380 01/01/1982 31/05/1992 3804 10.4 617 1.7 3187
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACION: INICIA REGISTRO FINALIZA REGISTRO TOTAL DIAS TOTAL AÑOS DIAS CON REGISTRO AÑOS CON REGISTRO DIAS SIN REGISTRO AÑOS SIN REGISTRO	4032 11.0 28.4 EL LUCERO PREDESUR M761 1300 01/01/1982 24/03/1984 814 2.2 814 2.2 0 0.0	3115 8.5 21.9 NAMBACOLA M763 1822 04/02/1971 31/12/1999 10558 28.9 5831 16.0 4727 13.0	1858 5.1 12.1 QUINARA (PREDESUR) M764 1559 01/11/1975 31/12/1999 8827 24.2 5677 15.6 3150 8.6	1004 2.8 8.0 SAN LUCAS PREDESUR M767 2380 01/01/1982 31/05/1992 3804 10.4 617 1.7 3187 8.7
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACION: INICIA REGISTRO FINALIZA REGISTRO TOTAL DIAS TOTAL AÑOS DIAS CON REGISTRO AÑOS CON REGISTRO DIAS SIN REGISTRO	4032 11.0 28.4 EL LUCERO PREDESUR M761 1300 01/01/1982 24/03/1984 814 2.2 814 2.2	3115 8.5 21.9 NAMBACOLA M763 1822 04/02/1971 31/12/1999 10558 28.9 5831 16.0 4727	1858 5.1 12.1 QUINARA (PREDESUR) M764 1559 01/11/1975 31/12/1999 8827 24.2 5677 15.6 3150	1004 2.8 8.0 SAN LUCAS PREDESUR M767 2380 01/01/1982 31/05/1992 3804 10.4 617 1.7 3187
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACION: INICIA REGISTRO FINALIZA REGISTRO TOTAL DIAS TOTAL AÑOS DIAS CON REGISTRO AÑOS CON REGISTRO DIAS SIN REGISTRO AÑOS SIN REGISTRO	4032 11.0 28.4 EL LUCERO PREDESUR M761 1300 01/01/1982 24/03/1984 814 2.2 814 2.2 0 0.0	3115 8.5 21.9 NAMBACOLA M763 1822 04/02/1971 31/12/1999 10558 28.9 5831 16.0 4727 13.0	1858 5.1 12.1 QUINARA (PREDESUR) M764 1559 01/11/1975 31/12/1999 8827 24.2 5677 15.6 3150 8.6	1004 2.8 8.0 SAN LUCAS PREDESUR M767 2380 01/01/1982 31/05/1992 3804 10.4 617 1.7 3187 8.7
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACION: INICIA REGISTRO FINALIZA REGISTRO TOTAL DIAS TOTAL AÑOS DIAS CON REGISTRO AÑOS CON REGISTRO DIAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE	4032 11.0 28.4 EL LUCERO PREDESUR M761 1300 01/01/1982 24/03/1984 814 2.2 814 2.2 0 0.0 0.0 0.0 POZUL COL. AGROP.RODRI.	3115 8.5 21.9 NAMBACOLA M763 1822 04/02/1971 31/12/1999 10558 28.9 5831 16.0 4727 13.0 44.8 SOZORANGA	1858 5.1 12.1 QUINARA (PREDESUR) M764 1559 01/11/1975 31/12/1999 8827 24.2 5677 15.6 3150 8.6 35.7 NAMBACOLA COL. AGROP.CUEVA MB88	1004 2.8 8.0 SAN LUCAS PREDESUR M767 2380 01/01/1982 31/05/1992 3804 10.4 617 1.7 3187 8.7 83.8 AMALUZA PREDESUR
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACION: INICIA REGISTRO FINALIZA REGISTRO TOTAL DIAS TOTAL AÑOS DIAS CON REGISTRO AÑOS CON REGISTRO DIAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE:	4032 11.0 28.4 EL LUCERO PREDESUR M761 1300 01/01/1982 24/03/1984 814 2.2 814 2.2 0 0.0 0.0 0.0 POZUL COL. AGROP.RODRI. MB87 1739	3115 8.5 21.9 NAMBACOLA M763 1822 04/02/1971 31/12/1999 10558 28.9 5831 16.0 4727 13.0 44.8 SOZORANGA PREDESUR	1858 5.1 12.1 QUINARA (PREDESUR) M764 1559 01/11/1975 31/12/1999 8827 24.2 5677 15.6 3150 8.6 35.7 NAMBACOLA COL. AGROP.CUEVA MB88 1835	1004 2.8 8.0 SAN LUCAS PREDESUR M767 2380 01/01/1982 31/05/1992 3804 10.4 617 1.7 3187 8.7 83.8 AMALUZA PREDESUR
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACION: INICIA REGISTRO FINALIZA REGISTRO TOTAL DIAS TOTAL AÑOS DIAS CON REGISTRO AÑOS CON REGISTRO DIAS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACIÓN: INICIA REGISTRO	4032 11.0 28.4 EL LUCERO PREDESUR M761 1300 01/01/1982 24/03/1984 814 2.2 814 2.2 0 0.0 0.0 0.0 POZUL COL. AGROP.RODRI. MB87 1739 01/10/2004	3115 8.5 21.9 NAMBACOLA M763 1822 04/02/1971 31/12/1999 10558 28.9 5831 16.0 4727 13.0 44.8 SOZORANGA PREDESUR M768 1427 01/01/1975	1858 5.1 12.1 QUINARA (PREDESUR) M764 1559 01/11/1975 31/12/1999 8827 24.2 5677 15.6 3150 8.6 35.7 NAMBACOLA COL. AGROP.CUEVA MB88 1835 01/12/2004	1004 2.8 8.0 SAN LUCAS PREDESUR M767 2380 01/01/1982 31/05/1992 3804 10.4 617 1.7 3187 8.7 83.8 AMALUZA PREDESUR M750 1720 01/01/1982
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACION: INICIA REGISTRO FINALIZA REGISTRO TOTAL DIAS TOTAL AÑOS DIAS CON REGISTRO AÑOS CON REGISTRO DIAS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACIÓN: INICIA REGISTRO FINALIZA REGISTRO FINALIZA REGISTRO	4032 11.0 28.4 EL LUCERO PREDESUR M761 1300 01/01/1982 24/03/1984 814 2.2 814 2.2 0 0.0 0.0 POZUL COL. AGROP.RODRI. MB87 1739 01/10/2004 30/12/2009	3115 8.5 21.9 NAMBACOLA M763 1822 04/02/1971 31/12/1999 10558 28.9 5831 16.0 4727 13.0 44.8 SOZORANGA PREDESUR M768 1427 01/01/1975 31/12/1999	1858 5.1 12.1 QUINARA (PREDESUR) M764 1559 01/11/1975 31/12/1999 8827 24.2 5677 15.6 3150 8.6 35.7 NAMBACOLA COL. AGROP.CUEVA MB88 1835 01/12/2004 29/04/2009	1004 2.8 8.0 SAN LUCAS PREDESUR M767 2380 01/01/1982 31/05/1992 3804 10.4 617 1.7 3187 8.7 83.8 AMALUZA PREDESUR M750 1720 01/01/1982 23/03/1984
REGISTRO DÍAS SIN REGISTRO AÑOS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACION: INICIA REGISTRO FINALIZA REGISTRO TOTAL DIAS TOTAL AÑOS DIAS CON REGISTRO AÑOS CON REGISTRO DIAS SIN REGISTRO % FALTANTE NOMBRE: CÓDIGO: ELEVACIÓN: INICIA REGISTRO	4032 11.0 28.4 EL LUCERO PREDESUR M761 1300 01/01/1982 24/03/1984 814 2.2 814 2.2 0 0.0 0.0 0.0 POZUL COL. AGROP.RODRI. MB87 1739 01/10/2004	3115 8.5 21.9 NAMBACOLA M763 1822 04/02/1971 31/12/1999 10558 28.9 5831 16.0 4727 13.0 44.8 SOZORANGA PREDESUR M768 1427 01/01/1975	1858 5.1 12.1 QUINARA (PREDESUR) M764 1559 01/11/1975 31/12/1999 8827 24.2 5677 15.6 3150 8.6 35.7 NAMBACOLA COL. AGROP.CUEVA MB88 1835 01/12/2004	1004 2.8 8.0 SAN LUCAS PREDESUR M767 2380 01/01/1982 31/05/1992 3804 10.4 617 1.7 3187 8.7 83.8 AMALUZA PREDESUR M750 1720 01/01/1982

DIAS CON REGISTRO	1816	5724	1387	813
AÑOS CON	5.0	15.7	3.8	2.2
REGISTRO	5.0	13.7	3.0	2.2
DIAS SIN REGISTRO	101	3407	224	0
AÑOS SIN REGISTRO	0.3	9.3	0.6	0.0
% FALTANTE	5.3	37.3	13.9	0.0

Elaboró: El autor

Las estaciones pluviométricas o pluviográficas necesarias para el estudio de lluvias máxima en zonas homogéneas, requiere de un minucioso análisis, involucrando dos variables muy importantes a considerar que son: el número de estaciones y el tamaño de la muestra, de esto depende la confiabilidad del campo de lluvias.

Por lo que como una primera selección de las estaciones involucradas para el estudio, se empezará a escoger el mayor número de estaciones posibles con una correlación y dependencia aceptable entre cada una de ellas, pero también el mayor número de años registrados, descartando aquellas estaciones con longitud de registros pequeños. Ya que, cuando la longitud de registro es menor a 20 años, la relación R de lluvia entre 1 a 24 horas tiende a variar en forma significativa, y los eventos para el diseño de una obra hidráulica pueden subestimarse o sobrestimarse. Para longitudes mayores a 20 años la relación R se estabiliza (Escalante Sandoval & Reyes Chávez, 2004)

Por lo que se procedió a descartar aquellas estaciones con registros menores a 20 años, observándose que en este estudio las estaciones a descartar tienen registros menores a 6 años, o ya fueron levantadas.

Además agrupando 2 estaciones en 1 sola, es decir se unirá, completará o rellenará registros en aquellas estaciones que involucran el mismo lugar pero de diferente organismo operador, ya que como se puede observar que en un determinado lugar fueron implantados dos pluviómetros uno de INAMHI y otro del Programa de Desarrollo del Sur (PREDESUR), abarcando el mismo lugar y altitud.

Resumiéndose en 21 estaciones, que luego se agrupan en zonas homogéneas para poder, transferir información faltante de una estación a otra.

Tabla 2.4: Estaciones involucradas en el análisis (Coordenadas UTM).

COD	NOMBRE	ESTE (X)	NORTE (Y)	
M033	La Argelia	699710.80	9553629.61	
M142	Saraguro	696167.21	9600575.80	
M143	Malacatos	691893.90	9533771.71	
M144	Vilcabamba	697803.51	9528597.53	
M145	Quinara INAMHI	694953.32	9522951.77	
M146	Cariamanga	660414.32	9520874.38	
M147	Yangana	702555.79	9516943.44	
M148	Célica	616393.33	9546220.83	
M149	Gonzanamá	674127.28	9532242.79	
M150	Amaluza INAMHI	674106.43	9493048.96	
M151	Zapotillo	584726.51	9515549.46	
M763	Nambacola	673838.70	9542164.64	
M432	San Lucas INAMHI	693085.96	9587311.43	
M433	El Lucero INAMHI	669587.42	9513515.37	
M434	Sozoranga INAMHI	634395.14	9521872.03	
M435	Alamor	607924.94	9555751.25	
M437	Saucillo (ALAMOR EN)	588930.28	9526784.04	
M438	Jimbura	670274.10	9488265.58	
M439	Sabiango INAMHI	632014.98	9517852.62	
M515	Catacocha	650478.14	9551575.13	
M544	Colaisaca	645032.92	9522745.06	

Fuente: El autor

2.2. Selección de un periodo común para las estaciones involucradas en el análisis

Debido a que todas las estaciones tienen fechas distintas de inicio y final de toma de datos, en otras palabras, tienen distintas longitudes de registro, fue necesario seleccionar un periodo de registro que fuera común a todas ellas, y que a la vez, fuera lo menos poroso posible y abarque la mayor cantidad de datos, y, consecuentemente falten pocos datos, ya que para la construcción de curvas IDT es de gran importancia tener una longitud de registro común para homogeneizar las muestras, en toda la región de análisis.

Siendo necesario, disgregar y analizar todas las muestras día a día, para identificar que existe o no modificación en los patrones climatológicos, y sean considerados en la longitud de registro común.

A continuación se presentan las características del período común seleccionado.

Tabla 2.5: Características del periodo común seleccionado

Tabla	Tabla 2.5: Características del periodo común seleccionado								
NOMBRE:	САТАСОСНА	COLAISACA	SABIANGO INAMHI	ALAMOR	SAN LUCAS INAMHI				
CÓDIGO:	M515	M544	M439	M435	M432				
ELEVACIÓN:	1808	2410	700	1250	2525				
INICIA PERIODO	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970				
FINALIZA PERIODO	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009				
TOTAL DIAS PERIODO	14610	14610	14610	14610	14610				
TOTAL AÑOS PERIODO	40	40.0	40.0	40.0	40.0				
DIAS CON REGISTRO	13020	13114	12993	13440	13318				
DIAS SIN REGISTRO	1590	1496	1617	1170	1292				
% FALTANTE	10.2	10.2	11.1	8.0	8.8				
NOMBRE:	GONZANAMA	YANGANA	CARIAMANGA		CELICA				
CÓDIGO:	M149	M147	M146	M142	M148				
ELEVACION:	2042	1835	1950	2525	1984				
INICIA PERIODO	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970				
FINALIZA PERIODO	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009				
TOTAL DIAS PERIODO	14610	14610	14610	14610	14610				
TOTAL AÑOS PERIODO	40.0	40.0	40.0	40.0	40.0				
DIAS CON REGISTRO	13777	13701	14146	14107	11369				
DIAS SIN REGISTRO	883	909	464	503	3241				
% FALTANTE	5.7	6.2	3.2	3.4	22.2				
MIALIANIE	LA ARGELIA	0.2	5.2	5.4	QUINARA				
NOMBRE:	LOJA	MALACATOS	ZAPOTILLO	VILCABAMBA	INAMHI				
CÓDIGO:	M033	M143	M151	M144	M145				
ELEVACIÓN:	2160	1453	223	1563	1559				
INICIA PERIODO	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970				
FINALIZA PERIODO	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009				
TOTAL DIAS PERIODO	14610	14610	14610	14610	14610				
TOTAL AÑOS PERIODO	40.0	40.0	40.0	40.0	40.0				
DIAS CON REGISTRO	12779	11865	11113	10464	9630				
DIAS SIN REGISTRO	1831	2745	3497	4146	4980				
% FALTANTE	12.5	18.8	23.9	28.4	34.1				
	AMALUZA	EL LUCERO	SOZORANGA	SAUCILLO					
NOMBRE:	INAMHI	INAMHI	INAMHI	(ALAMOR)	JIMBURA				
CÓDIGO:	M150	M433	M434	M437	M438				
ELEVACIÓN:	1672	1180	1427	328	2100				
INICIA PERIODO	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970				
FINALIZA PERIODO	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009				
TOTAL DIAS PERIODO	14610	14610	14610	14610	14610				
TOTAL AÑOS PERIODO	40.0	40.0	40.0	40.0	40.0				
DIAS CON REGISTRO	11845	10747	12562	13117	11872				
DIAS SIN REGISTRO	3765	3863	2048	1493	2738				
% FALTANTE	18.9	26.4	14.0	10.2	18.7				
NOMBRE:	NAMBACOLA			•					
CODIGO:	M763								
ELEVACION:	1822								
INICIA PERIODO	01/01/1970								
FINALIZA PERIODO	31/12/2009								
TOTAL DIAS PERIODO	14610								
TOTAL AÑOS PERIODO	40.0								
DIAS CON REGISTRO	7583								
DIAS SIN REGISTRO	7027								
% FALTANTE	48.1								

Elaboró: El autor

Nótese que existen 5 estaciones con porcentajes faltantes relativamente altos, esto se debe a que en realidad no son datos faltantes a rellenar, si no que se trata de datos a generar.

2.3. Caracterización de las muestras

Como se mencionó los registros proporcionados no son comunes, ni completos, con huecos y con diferente inicio de periodo y fin entre cada estación; se procede luego de determinar un registro común, a interpolar y a generar datos faltante a una longitud común de registro.

Debiendo agrupar las estaciones con similitud de comportamientos, es decir agruparlas en **regiones homogéneas**, de tal manera poder construir un plano de lluvias y ver en que medida aporta cada estación (peso) al modelo regional, altamente correlacionado una de otra o escasamente correlacionado.

Esto se realiza debido a que la información que se transferirá de una estación a otra debe ser de una región homogénea, con la premisa de escoger el mayor número de estaciones pero homogéneas.

La importancia y el nivel de análisis que se debe aplicar a esta etapa de selección y agrupamiento del número de estaciones involucradas en el modelo es muy alta, ya que de esto depende el tener un campo de lluvias, confiable, y por ende una generación o determinación de curvas I-D-T confiables. La justificación de esto es debido a que los modelos matemáticos responden a impulsos y si nuestros impulsos están mal estimados, nuestro modelo estará mal determinado y por ende nuestras obras estarán mal dimensionadas.

Antes de hacer una agrupación en regiones homogéneas, se procedió a realizar una verificación final de la calidad de información ya que la cantidad de la información ya fue analizada y descrita anteriormente. En dicha verificación de la calidad procedemos a identificar puntos extraños, en el registro, enfocándonos en las lecturas con precipitaciones diarias altas.

En esta identificación se logró comprobar que en 4 estaciones, había existido una lectura o anotación errónea en el registro, tal como se describe el cuadro adjunto.

Tabla 2.6: Puntos extraños en el registro.

NOMBRE:	Fecha de lectura errónea	Lectura errónea	Lectura antes Del día	Lectura después Del día	Lectura de estaciones vecinas en la misma fecha	Lectura Asumida
Alamor	20-06-92	999	0	0	0	0
Alallioi	31-12-92	999	0	0	0	0
Sabiango	31-10-92	999	0	0	0	0
Sabialigo	31-08-92	999	0	0	0	0
	30-06-92	999	0	0	0	0
Colaisaca	31-08-92	999	0	0	0	0
Colaisaca	31-10-92	999	0	0	0	0
	31-12-92	999	0	0	0	0
Lucero	31-10-92	999	0	0	0	0
Lucero	31-12-92	999	0	0	0	0

Elaboró: El autor

Luego como un primer intento de agruparlo en regiones homogéneas o comunes, fue la de los pisos térmicos, descrito en el capitulo anterior, en el que considera dos características primordiales en cada una de las estaciones que es la temperatura y la elevación o altitud. Agrupándose de acuerdo a este criterio en 3 grupos claramente diferenciados, para nuestro caso en: Cálido, templado o medio y frío.

Seguido de esto se procedió a afinar esta agrupación con una segunda categorización o criterio, con la clasificación del clima que hace Thornwhite en la que considera dos factores predominantes que son la humedad y la masa de lluvia; que para la región en estudio se clasifica en 7 zonas climáticas: Semiárido poco o ningún exceso, húmedo déficit moderado, húmedo déficit pequeño, semiárido poco o ningún exceso, subhúmedo, subhúmedo déficit pequeño, subhúmedo déficit moderado.

Con dos criterios de agrupación entre estaciones (homogéneas), se utilizó un tercer criterio de clasificación por zonas pluviométricas de lluvia, que para la provincia de Loja está agrupada en 4 grandes zonas: seca, occidental de transición, húmeda occidental y callejón interandino.

Como una subclasificación de la anterior, se utiliza una categorización en base a regímenes pluviométricos, agrupándolos en cuatro zonas: regímenes de lluvia los

primeros meses del año, lluvia de diciembre a mayo, lluvia de octubre a mayo, lluvia todo el año casi distribuida uniformemente.

Por último, pero no menos importantes se procedió a agruparlos en base a sus estadísticos muéstrales básicos resumido en el coeficiente de variación, y el coeficiente de correlación. Tomando en cuenta también para este criterio de clasificación y para los anteriores descritos la ubicación espacial (lugar de ubicación) de cada una de las estaciones, ya que dos estaciones con coeficientes de variación parecidos puede que no pertenezcan, a la misma zona homogénea, y por ende al mismo patrón de lluvia, por estar ubicada a cientos de kilómetros entre las dos, o también dos estaciones relativamente cercanas pueden estar bajamente correlacionadas y no pertenecer la misma zona homogénea.

Con estos criterios de selección se trató de agrupar zonas con patrones climáticos comunes entre sí, que sean homogéneos y tengan algún grado de correlación, observándose tres zonas claramente diferenciadas, basadas en todos los criterios antes mencionados que se detalla a continuación:

Tabla 2.7: Clasificación final de las zonas homogéneas

	Tabla 2.7: Clasificación final de las zonas nomogeneas										
	NOMBRE	CÓDIGO		NOMBRE	CODIGO		NOMBRE	CÓDIGO			
	ZAPOTILLO	M151		COLAISACA	M544		QUINARA INAMHI	M145			
	SAUCILLO (ALAMOR EN)	M437		CELICA	M148		YANGANA	M147			
	SABIANGO INAMHI	M439		САТАСОСНА	M515		MALACATOS	M143			
	ALAMOR	M435		NAMBACOLA	M763		VILCABAMBA	M144			
100	SOZORANGA INAMHI	M434		GONZANAMA	M149		LA ARGELIA LOJA	M033			
				CARIAMANGA	M146	A 3	SARAGURO	M142			
				EL LUCERO INAMHI	M433	/NOZ	SAN LUCAS INAMHI	M432			
			NA 2	AMALUZA INAMHI	M150						
			20	JIMBURA	M438						

Elaboró: El autor

En el **ANEXO 2.1** se puede observar el resumen de la agrupación de zonas homogéneas, para la provincia de Loja, de acuerdo a los diferentes criterios de clasificación utilizados y descritos anteriormente.

A continuación se detallan los estadísticos muéstrales de las estaciones en estudio como: media, coeficiente de variación y desviación estándar:

Tabla 2.8: Estadísticos muéstrales de estaciones de la provincia de Loja

NOMBRE	CODIGO	MEDIA	DESV. EST.	CV
CATACOCHA	M515	2.529	7.917	0.319
COLAISACA	M544	3.344	8.893	0.376
SABIANGO INAMHI	M439	3.518	10.967	0.321
ALAMOR	M435	3.921	12.062	0.325
SAN LUCAS INAMHI	M432	3.425	6.275	0.546
GONZANAMA	M149	3.584	9.810	0.365
YANGANA	M147	3.196	7.189	0.445
CARIAMANGA	M146	3.730	9.867	0.378
SARAGURO	M142	2.266	4.715	0.481
CELICA	M148	3.394	9.739	0.348
LA ARGELIA-LOJA	M033	2.515	5.410	0.465
MALACATOS	M143	1.861	5.479	0.340
ZAPOTILLO	M151	2.102	9.940	0.211
VILCABAMBA	M144	2.386	6.683	0.357
QUINARA INAMHI	M145	2.334	7.126	0.328
AMALUZA INAMHI	M150	2.421	7.015	0.345
EL LUCERO INAMHI	M433	2.991	7.326	0.408
SOZORANGA INAMHI	M434	3.988	15.787	0.253
SAUCILLO(ALAMOR EN)	M437	2.305	10.528	0.219
JIMBURA	M438	3.794	9.739	0.390
NAMBACOLA	M763	2.624	8.139	0.322

Elaboró: El autor

Como se puede observar, los estadísticos muestran cierta agrupación, entre estaciones con características similares en su orden de magnitud para las 21 estaciones. Esto es un buen indicador, pues puede significar que las estaciones están ubicadas en una zona de características meteorológicas muy parecidas, y que, por lo tanto, las interpolaciones que se requieran para llenar datos faltantes para una estación, pueden basarse en las restantes sin mayor problema.

De igual forma se determinó el *número de días con lluvia apreciable*, que se define como aquellos días en los que se reportó precipitación superior o igual a 1mm, que para la provincia se registra como valor promedio mínimo de lluvia apreciable la estación Zapotillo (M151) con 35 días de lluvia en promedio, y máxima la estación San Lucas (M432) con 154 días en promedio anual de los 40 años registrados en total. En el **ANEXO 2.2**, se registran el número de días con lluvia que se apreció en cada año, y el promedio de la longitud en registro común.

Los años en que no se reporta valor, corresponden a años ausentes de registros completamente. De nuevo, se observa similitud en la cantidad de días con lluvia para las estaciones estudiadas. Finalmente, y para identificar la tendencia de los registros a lo largo de los años, se calculó la pendiente de una línea recta que se ajustará a las medias anuales de precipitación, para cada estación. En el **ANEXO** 2.3 se reportan las medias anuales y al final de la misma, se incluye la pendiente de tal ajuste. A manera de resumen se observa, que las pendientes de los ajustes para cada una de las muestras, son casi nulas; ello refleja que la región no registró, para el periodo de 1970 a 2009, cambios significativos en el comportamiento meteorológico debidos a agentes como el cambio climático:

Tabla 2.9: Tendencia de registros a lo largo del tiempo

			- 9		
NOMBRE	COD.	PEND. AJUSTE	NOMBRE	COD.	PEND. AJUSTE
CATACOCHA	M515	0.02	MALACATOS	M143	0.02
COLAISACA	M544	0.03	ZAPOTILLO	M151	0.02
SABIANGO INAMHI	M439	0.00	VILCABAMBA	M144	0.01
ALAMOR	M435	0.03	QUINARA INAMHI	M145	0.04
SAN LUCAS INAMHI	M432	0.03	AMALUZA INAMHI	M150	0.01
GONZANAMA	M149	0.06	EL LUCERO INAMHI	M433	0.00
YANGANA	M147	0.02	SOZORANGA INAMHI	M434	-0.04
CARIAMANGA	M146	0.04	SAUCILLO (ALAMOR)	M437	0.03
SARAGURO	M142	0.00	JIMBURA	M438	0.03
CELICA	M148	-0.02	NAMBACOLA	M763	0.02
LA ARGELIA LOJA	M033	0.00			

Elaboró: El autor

Las pendientes negativas reflejan un leve decremento a lo largo del tiempo de la variable precipitación, y las negativas un aumento leve de las lluvias a lo largo del tiempo, con incrementos mayores en la Zona de Sozoranga, Cariamanga, Gonzanamá, Alamor, Quinara y Colaisaca.

En el capítulo siguiente, se describirá el proceso mediante el cual se llevaron a cabo las interpolaciones de los datos faltantes, y/o generación de registros a un periodo común para cada una de las estaciones.

CAPÍTULO 3

TÉCNICAS DE INTERPOLACIÓN DE LLUVIAS

CAPÍTULO 3 TÉCNICAS DE INTERPOLACIÓN DE LLUVIAS

Cuando no se posee información completa de datos de precipitación y, existen registros de puntos o estaciones alrededor del sitio en estudio, estos se pueden inferir a través de interpolación.

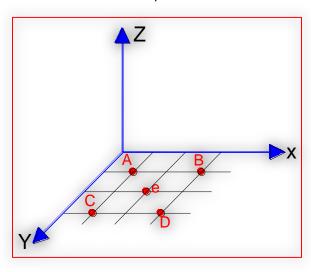


Gráfico 3.1: Interpolación de lluvias

Fuente: El autor

Sean (X_j, Y_j) las coordenadas de un punto j, y P_j una función de estas coordenadas, la que denota el proceso en n estaciones de medición; j, indica el subíndice de n.

Siendo Pe una estimación del proceso en un sitio de coordenadas (Xe, Ye), con base en los sitios j de la forma, tenemos que:

$$Pe = \sum_{j=1}^{n} \omega_j P_j$$
 (3.1)

donde

 ω_j = factor de peso

 P_i = evento

Esta técnica es aplicable para inferir lluvias, temperatura, viento, y no solo utilizables para rellenar el registro, sino también para rellenar huecos con la información regional homogénea.

Trata de construir un plano de lluvias y determinar en que medida (peso) aporta cada estación al modelo regional, ya sea altamente correlacionada una de otra o bajamente correlacionada (dependencia). Sacando una correlación ajustada de la región en estudio.

La distancia entre dos estaciones se obtiene utilizando la ecuación siguiente:

$$dej = \sqrt{(Xe - Xj)^2 + (Ye - Yj)^2}$$
 (3.2)

Para $j=1,2,\ldots,n$ sitios

3.1. Método de Thiessen

Este método asume el valor para $P_{\rm e}$ como el proporcionado por la estación donde $d_{\rm ej}$ es mínima. La precipitación calculada en cada pluviómetro se pondera por la fracción del área total de la cuenca comprendida en cada zona de influencia. Las subregiones se determinan de manera tal que todos los puntos incluidos en esa subregión estén más cercanos al pluviómetro correspondiente que a cualquier otra estación.

3.2. Método de interpolación de la distancia inversa lineal

Esta técnica pertenece a la familia de métodos de distancias pesadas, en la que los pesos se determinan como:

$$\omega_{j} = \frac{\left[\frac{1}{dej}\right]^{\beta}}{\sum_{j=1}^{n} \left[\frac{1}{dej}\right]^{\beta}}$$
(3.3)

En la que la suma de los pesos debe ser igual a 1.

donde

β = 1 (Interpolación distancia inversa)

 d_{ei} = distancia entre dos puntos (Km.)

La distancia entre dos puntos en coordenadas UTM, en Km., es igual a:

$$dej = \sqrt{(Xe - Xj)^2 + (Ye - Yj)^2}$$
 (3.4)

Este método generalmente da mejores resultados que el método de Thiessen y la interpolación polinomial de primer grado.

1 2 3

Gráfico 3.2: Interpolación Inversa

Fuente: El autor.

3.3. Método de interpolación de la distancia inversa cuadrada

Es una variación de la ecuación del método de interpolación de la distancia inversa lineal antes descrito, con la diferencia que $\beta=2$, ya que ésta interpolación es el cuadrado de la distancia inversa. Generalmente, da mejores resultados que el método de Thiessen y la Polinomial de primer grado.

3.4. Interpolación Polinomial

El método consiste en ajustar una ecuación global para el área en estudio, en función de las coordenadas, se determina a través de la ecuación:

$$Pe = \sum_{k=1}^{m} a_k \phi_k (Xe, Ye)$$
 (3.5)

donde

a_k = k- ésimo cociente polinomial

 $\emptyset_k(X_e, Y_e) = k$ - ésimo monomio en términos de las coordenadas Xe, Ye

m = número total de monomios

Los monomios en términos de las coordenadas X e Y son:

Tabla 3.1: Monomios

Grado Polinomio	k	Formación de los monomios $\emptyset_k(X,Y)$	m
0	1	1	1
1	2-3	XY	3
2	4-6	X^2XYY^2	6
3	7-10	$X^3 X^2 Y X Y^2 Y^3$	10
4	11-15	$X^4 X^3 Y X^2 Y^2 X Y^3 Y^4$	15
5	16-21	$X^5 X^4 Y X^3 Y^2 X^2 Y^3 X Y^4 Y^5$	21
6	22-28	$X^{6} X^{5} Y X^{4} Y^{2} X^{3} Y^{3} X^{2} Y^{4} X Y^{5} Y^{6}$	28

Fuente: Escalante Sandoval, 2010

donde

 $X \in Y =$ coordenadas de las estaciones.

Cabe resaltar que entre más estaciones homogéneas involucradas se tengan en el análisis, mayor será el orden del polinomio a aplicar.

3.4.1. Aproximación polinomial por mínimos cuadrados

Sea \mathcal{O}_k (X_i , Y_i) una matriz de m reglones y n columnas, \mathcal{O}_e (X_e , Y_e) un vector con m reglones. El producto θ_{ki} es una matriz de orden ($m \times n$)

$$\theta_{ki} = \sum_{j=1}^{n} \phi_k \left(X_j, Y_j \right) \phi_i \left(X_j, Y_j \right)$$
(3.6)

donde

 X_{j} , Y_{j} = coordenadas de los sitios en el área

 X_e , Y_e = coordenadas del sitio a interpolar

De esta matriz de monomios θ_{ki} , se obtiene su traspuesta, dando como resultado la matriz φ_{ki}

$$\left[\psi_{kj}\right] = \left[\theta_{ki}\right]^{-1} \tag{3.7}$$

Los factores de peso se obtienen de:

$$\omega_{j} = \left[\alpha_{kj}\right]^{T} \left[\phi_{K}(Xe, Ye)\right] \tag{3.8}$$

donde

$$\left[\alpha_{kj}\right] = \left[\psi_{kj}\right]\phi_{kj}$$
 (3.9)

$$\left|\phi_{ki}\right|$$
 = matriz de monomios

En este método no es necesario que la matriz sea cuadrada, es decir, no necesariamente n debe ser igual a m. Siendo conveniente tener más estaciones que monomios para no hacer un sobreajuste.

3.4.2. Interpolación por aproximación de Lagrange

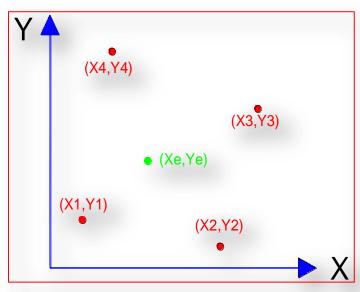

La diferencia con el método anterior radica en que en este, se requiere que el número de monomios sea igual al número de estaciones; *m=n*.

Tabla 3.2: Tabla de monomios del polinomio.

			Número de e	staciones (n)		
sc	K	1 Ø ₁ (X _{1,} Y ₁)	2 Ø ₂ (X ₂ ,Y ₂)	3 Ø ₃ (X _{3,} Y ₃)	4 Ø ₄ (X ₄ ,Y ₄)	n Ø _n (X _n ,Y _n)
n jë jë	1	1	1	1	1	1
6 9	2	X_1	X_1	X_1	X_1	X ₁
monomios	3	Y_1	Y_1	Y_1	Y_1	Y ₁
0 0						
	-					
erc	-					
ĔĒ						
Número (m) en	m	$X_{m}Y_{m}$	$X_{m}Y_{m}$	$X_{m}Y_{m}$	$X_{m}Y_{m}$	$X_{m}Y_{m}$

Fuente: Escalante Sandoval, 2010

Gráfico 3.3: Aproximación Lagrange

Fuente: El autor

3.5. Método de interpolación multicuadrática

Dada la matriz de distancias.

$$Dij = \begin{bmatrix} 0 & d_{12} & d_{13} & d_{14} & . & . \\ d_{21} & 0 & & & & \\ d_{31} & & 0 & & & \\ d_{41} & & & 0 & & \\ . & & & 0 & & \\ . & & & & 0 \end{bmatrix} \qquad Dej = \begin{bmatrix} d_{e1} \\ d_{e2} \\ d_{e3} \\ . \\ . \end{bmatrix}$$

donde

$$\delta_{ij} = \left[D_{ij}\right]^{-1} \tag{3.10}$$

Los factores de peso se obtienen como:

$$\omega_i = \left[\delta_{ii} \, \middle| D_{ei} \, \right] \tag{3.11}$$

La sumatoria de los pesos es igual a 1.

$$\sum \omega_i = 1 \tag{3.12}$$

3.6. Métodos de interpolación Óptima

Para la aplicación de esta técnica es necesario contar con una buena cantidad de información de los sitios aledaños al estudio.

A continuación se debe obtener la correlación espacial real entre los sitios y se construye la matriz $[\rho(dij)]$ para las estaciones i, j:

$$\hat{\rho}_{(dij)} = \frac{1}{N-1} \frac{\sum_{i=1}^{N} \left[Pt^{i} - \hat{m}_{i} \right] Pt^{j} - \hat{m}_{j}}{\hat{S}_{i} \hat{S}_{j}}$$
(3.13)

donde

Pt = observaciones de las series de tiempo del proceso P en la estación i para t=1,....n años

 \hat{m}_i = media de las observaciones Pt^i

 \hat{S}_i = desviación estándar de Pt^i

N = número total de datos

 Pt^{j} , \hat{m}_{i} , \hat{S}_{i} = similares all anterior para el sitio

$$\rho_{(dij)} = \begin{bmatrix} \rho_{(d11)} & \rho_{(d12)} & . & . & \rho_{(d12)} \\ \rho_{(d21)} & \rho_{(d22)} & . & . & \rho_{(d2n)} \\ . & . & . & . \\ \rho_{(dn1)} & \rho_{(dn2)} & . & . & \rho_{(dnn)} \end{bmatrix} \quad \rho_{(dej)} = \begin{bmatrix} \rho_{(d_{e1})} \\ \rho_{(d_{e2})} \\ . \\ . \\ . \\ \rho_{(d_{en})} \end{bmatrix}$$

En la que los pesos se determinan como:

$$\omega_{j} = \left[\hat{\rho}_{(dij)}\right]^{-1} \left[\hat{\rho}_{(dej)}\right] \tag{3.14}$$

De la matriz $P_{(dij)}$ se consideran las diferentes combinaciones entre estaciones sin repetirlas y se forman los pares.

 $\left\{ \!\!\left| \rho_{(dij)} = = = = = = = dij \right| \!\!\right\} \!\!=$ correlación entre valores absolutos.

Con el objetivo de construir la llamada función de correlación espacial que puede representarse por:

a. Modelo inverso

$$\rho_{(dij)} = \frac{1}{1 + \frac{dij}{c}} \tag{3.15}$$

b. Potencia inversa

$$\rho_{(dij)} = \frac{1}{\left(1 + \frac{dij}{c}\right)^a} \tag{3.16}$$

c. Modelo exponencial

$$\rho_{(dij)} = e^{-\left(\frac{dij}{c}\right)}$$
(3.17)

Para la interpolación óptima se debe garantizar que:

$$\sum \omega i = 1 \tag{3.18}$$

Si esto no ocurre se debe obtener el llamado multiplicador de Lagrange (λ) de la forma:

$$\omega_{j} = \begin{bmatrix} \omega_{1} \\ \omega_{2} \\ \vdots \\ \omega_{n} \\ \lambda \end{bmatrix} \begin{bmatrix} \rho_{(de1)} \\ \rho_{(de2)} \\ \vdots \\ \rho_{(den)} \\ 1 \end{bmatrix} = \begin{bmatrix} \rho_{(d11)} & \rho_{(d12)} & . & . & \rho_{(d1n)} & 1 \\ \rho_{(d21)} & \rho_{(d22)} & . & . & \rho_{(d2n)} & 1 \\ \vdots & & & & & 1 \\ \vdots & & & & & 1 \\ \rho_{(dn1)} & & & & & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

3.7. Método de Kriging

$$\left[\omega_{i}\right] = \left[\hat{\gamma}_{(dij)}\right]^{-1} \left[\hat{\gamma}_{(dej)}\right] \tag{3.19}$$

Donde el semivariograma entre las estaciones i, j es:

$$\gamma_{(dij)} = \frac{1}{2N} \sum_{t=1}^{n} \{ (P_i^t - \hat{m}_i) - (P_j^t - \hat{m}_j) \}^2$$
(3.20)

donde

 P_k^t = representa las observaciones de la serie de tiempo en la estación k desde t=1,..... n datos.

 \hat{m}_k = media de los valores P_k^t de la estación k.

N = número total de observaciones.

De manera similar a la técnica de interpolación óptima se debe obtener una relación espacial $\gamma_{(dij)}$ en función de la distancia, para la cual se deben ajustar los pares $\gamma_{(dij)}$ ------ γ_{ij} a las relaciones:

a. Lineal

$$\gamma_{(dij)} = a \ d_{ij} \tag{3.21}$$

b. Monómico

$$\gamma_{(dij)} = a d_{ij}^b \tag{3.22}$$

Donde b pertenece al intervalo (0,2) sin tomar sus extremos.

c. Modelo Exponencial

$$\gamma_{(dij)} = a \left[1 - \exp^{-cdij} \right]$$
(3.23)

d. Modelo Gausiano

$$\gamma_{(dij)} = a \left[1 - \exp^{-cdij^2} \right]$$

$$C>0$$
(3.24)

e. Modelo esférico

$$\gamma_{(dij)} = \frac{1}{2} a \left[3 \frac{dij}{C} - \left(\frac{dij}{C} \right)^3 \right]$$

$$\text{dij} \leq C$$

$$\gamma_{(dij)} = a \text{ para } dij > c$$
(3.25)

CA	D	T	TI	\cap	1
ı.A					4

CAPÍTULO 4

ANÁLISIS DE INTERPOLACIÓN PARA DATOS DE LA PROVINCIA DE LOJA

CAPÍTULO 4

ANÁLISIS DE INTERPOLACIÓN PARA DATOS DE LA PROVINCIA DE LOJA

Para la estimación de los datos faltantes de las estaciones pluviométricas estudiadas se utilizaron varios métodos de interpolación que se enumeran a continuación. Los detalles teóricos se han descrito en el capítulo 3.

- 1. Método de interpolación de Thiessen
- 2. Método de interpolación de la distancia inversa lineal
- 3. Método de interpolación de la distancia inversa cuadrada
- 4. Método de interpolación polinomial (por mínimos cuadrados)
- 5. Método de interpolación de aproximación de Lagrange
- 6. Método de interpolación multicuadrática
- 7. Método de interpolación óptima.
- 8. Método de interpolación de Kriging

Es importante recordar que las tres primeras técnicas, así como la sexta, se basan en las *distancias* existentes entre el punto donde se desea conocer la precipitación y las demás estaciones con precipitaciones conocidas. La cuarta y la quinta, se basan en las *coordenadas* de todas las estaciones. Y las dos últimas, adicionalmente a considerar la ubicación espacial de los puntos conocidos y el que se desea conocer, también tienen en cuenta el histórico de los registros de precipitación existente, a través de utilizar un *correlograma* y el *semivariograma*, respectivamente.

4.1. Procedimiento usado para la interpolación

El relleno y generación de datos faltantes, se la generó para cada día, con la información de precipitación diaria existente, tomada de los registros, y, correspondiente al periodo común seleccionado de **1970** a **2009**, para las tres regiones homogéneas de estudio.

A continuación se describe el proceso llevado a cabo para el relleno de los 50248 datos faltantes y de generación en las muestras de las tres zonas homogéneas:

a. Primer paso: Reducción inicial de datos faltantes (Relleno de ceros)

Debido a que los ocho métodos empleados para las interpolaciones, calculan factores de ponderación para estimar un dato faltante mediante una combinación de datos conocidos, es evidente que si estos datos son todos simultáneamente nulos, el dato resultante será nulo también. Basados en esta premisa, se procedió a identificar en las muestras, los días sin registro cuyas estaciones vecinas o estaciones homogéneas en cada zona reportaran simultáneamente ceros, y de esta forma llenarlos automáticamente. De esta manera se redujo el número de datos faltantes de 9825 a 3531 en la zona 1, de 24017 a 15051 en la zona 2 y de 16406 a 13398 en la zona 3. El resumen total, y mensual se reportan en las tablas siguientes:

Tabla 4.1: Relleno de ceros ZONA 1

Table 4.1. Nolicito de celos ZONA 1											
Antes de la re	educción inici	al de datos fa	Itantes: relle	no de ceros zo	ona 1						
NOMBRE:	ZAPOTILLO	SAUCILLO	SABIANGO	ALAMOR	SOZORANGA						
CODIGO:	M151	M437	M439	M435	M434						
INICIA PERIODO	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970						
FINALIZA PERIODO	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009						
TOTAL DIAS PERIODO	14610	14610	14610	14610	14610						
TOTAL AÑOS PERIODO	40.0	40.0	40.0	40.0	40.0						
DIAS CON REGISTRO	11113	13117	12993	13440	12562	TOTAL					
DIAS SIN REGISTRO	3497	1493	1617	1170	2048	9825					
% FALTANTE	23.9%	10.2%	11.1%	8.0%	14.0%						
Después de la	reducción ini	cial de datos f	faltantes: rell	eno de ceros	zona 1						
NOMBRE:	ZAPOTILLO	SAUCILLO	SABIANGO	ALAMOR	SOZORANGA						
CODIGO:	M151	M437	M439	M435	M434						
INICIA PERIODO	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970						
FINALIZA PERIODO	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009						
TOTAL DIAS PERIODO	14610	14610	14610	14610	14610						
TOTAL AÑOS PERIODO	40	40	40	40	40						
DIAS CON REGISTRO	12886	14091	14099	14312	14131	TOTAL					
DIAS SIN REGISTRO	1724	519	511	298	479	3531					
% FALTANTE	11.8%	3.6%	3.5%	2.0%	3.3%						

Elaboró: El autor

Tabla 4.2: Registros faltantes mensuales después de la reducción inicial ZONA 1

DENOMINACIÓN	SABIANGO	ALAMOR	ZAPOTILLO	SOZORANGA	SAUCILLO	
CÓDIGO:	M439	M435	M151	M434	M437	TOTAL
DIAS SIN REGISTRO ENEROS	38	22	225	83	36	404
DIAS SIN REGISTRO FEBREROS	72	28	215	69	99	483
DIAS SIN REGISTRO MARZOS	73	31	187	82	59	432
DIAS SIN REGISTRO ABRILES	55	26	195	64	46	386
DIAS SIN REGISTRO MAYOS	76	19	185	46	54	380
DIAS SIN REGISTRO JUNIOS	74	43	103	25	53	298
DIAS SIN REGISTRO JULIOS	13	41	56	17	33	160
DIAS SIN REGISTRO AGOSTOS	28	6	39	15	14	102
DIAS SIN REGISTRO SEPTIEMBRE	10	14	65	9	23	121
DIAS SIN REGISTRO OCTUBRES	29	21	136	16	29	231
DIAS SIN REGISTRO NOVIEMBRES	4	19	153	11	25	212
DIAS SIN REGISTRO DICIEMBRES	39	28	165	42	48	322
TOTAL		•				3531

MES	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Datos faltantes mensuales	404	483	432	386	380	298	160	102	121	231	212	322
Porcentaje	11.4%	13.7%	12.2%	10.9%	10.8%	8.4%	4.5%	2.9%	3.4%	6.5%	6.0%	9.1%

Alamor es la estación con menos datos a interpolar y corresponde a la Zona 1, con un periodo común de cuarenta años de registro seleccionado, se tiene un 2% de registro faltante (298 días), después de la primera reducción de registros mediante relleno de ceros.

La estación con mayor número de datos faltantes en el rango común, después de la reducción inicial de ceros, es la estación Zapotillo, con 11.8% (1724 días). En ésta, se generará un registro de los últimos 4 años, pues no existen o no se han registrado. Por lo que para una determinación más confiable de los eventos faltantes en esta estación, se decidió que sea la última en ser interpolada; de esta manera se podrá aplicar todas las técnicas de interpolación en especial **Óptima**, **Kriging**, que necesitan de por lo menos tres estaciones a su alrededor completas para poder aplicarlas y, obtener un campo de lluvias confiable de toda la zona.

Además los métodos de interpolación por Lagrange, Polinomial y Multicuadrática también requieren disponer de por lo menos tres eventos (tres registros) alrededor del lugar o punto a interpolar. Por lo cual las estaciones con

mayor registro a rellenar o generar, serán las últimas a interpolar empezando por las de menor registro.

Como se observa en la Tabla 4.2 en los meses de julio a noviembre son los que menos datos faltantes tienen, y los restantes a estos no llegan a superar el 13.7% que corresponde al mes de febrero. Es importante resaltar el hecho de que en los meses de mayor precipitación (Diciembre a Mayo) se da la mayor falta de datos.

Tabla 4.3: Relleno de ceros ZONA 2

		1 4 5 10	1101 110110110	de celos ZOI	''' ' 				•
	Antes de la	reducción ini	cial de datos fa	ltantes: relleno	de ceros zona 2				
COLAISACA	CELICA	САТАСОСНА	NAMBACOLA	GONZANAMA	CARIAMANGA	EL LUCERO	AMALUZA	JIMBURA	
M544	M148	M515	M763	M149	M146	M433	M150	M438	
01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	
31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	
14610	14610	14610	14610	14610	14610	14610	14610	14610	
40.0	40.0	40	40.0	40.0	40.0	40.0	40.0	40.0	
13114	11369	13020	7583	13777	14146	10747	11845	11872	TOTAL
1496	3241	1590	7027	833	464	3863	2765	2738	24017
10.2%	22.2%	10.9%	48.1%	5.7%	3.2%	26.4%	18.9%	18.7%	
	Después de	la reducción in	icial de datos f	altantes: rellen	o de ceros zona	2			
COLAISACA	CELICA	САТАСОСНА	NAMBACOLA	GONZANAMA	CARIAMANGA	EL LUCERO	AMALUZA	JIMBURA	
M544	M148	M515	M763	M149	M146	M433	M150	M438	
01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	
31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	
14610	14610	14610	14610	14610	14610	14610	14610	14610	
40	40	40	40	40	40	40	40	40	
13618	12697	13629	10039	13982	14325	12429	12767	12953	TOTAL
992	1913	981	4571	628	285	2181	1843	1657	15051
6.8%	13.1%	6.7%	31.3%	4.3%	2.0%	14.9%	12.6%	11.3%	
	M544 01/01/1970 31/12/2009 14610 40.0 13114 1496 10.2% COLAISACA M544 01/01/1970 31/12/2009 14610 40 13618 992	COLAISACA CELICA M544 M148 01/01/1970 01/01/1970 31/12/2009 31/12/2009 14610 14610 40.0 40.0 13114 11369 1496 3241 10.2% 22.2% Después de COLAISACA CELICA M544 M148 01/01/1970 01/01/1970 31/12/2009 31/12/2009 14610 14610 40 40 13618 12697 992 1913	COLAISACA CELICA CATACOCHA M544 M148 M515 01/01/1970 01/01/1970 01/01/1970 31/12/2009 31/12/2009 31/12/2009 14610 14610 14610 40.0 40.0 40 13114 11369 13020 1496 3241 1590 10.2% 22.2% 10.9% Después de la reducción in COLAISACA COLAISACA CELICA CATACOCHA M544 M148 M515 01/01/1970 01/01/1970 01/01/1970 31/12/2009 31/12/2009 31/12/2009 14610 14610 14610 40 40 40 13618 12697 13629 992 1913 981	COLAISACA CELICA CATACOCHA NAMBACOLA M544 M148 M515 M763 01/01/1970 01/01/1970 01/01/1970 01/01/1970 31/12/2009 31/12/2009 31/12/2009 31/12/2009 14610 14610 14610 14610 40.0 40.0 40.0 40.0 13114 11369 13020 7583 1496 3241 1590 7027 10.2% 22.2% 10.9% 48.1% Después de la reducción inicial de datos f COLAISACA CELICA CATACOCHA NAMBACOLA M544 M148 M515 M763 01/01/1970 01/01/1970 01/01/1970 01/01/1970 31/12/2009 31/12/2009 31/12/2009 31/12/2009 14610 14610 14610 14610 40 40 40 40 13618 12697 13629 10039 992 1913 981 4571 <	COLAISACA CELICA CATACOCHA NAMBACOLA GONZANAMA M544 M148 M515 M763 M149 01/01/1970 01/01/1970 01/01/1970 01/01/1970 01/01/1970 31/12/2009 31/12/2009 31/12/2009 31/12/2009 31/12/2009 14610 14610 14610 14610 14610 40.0 40.0 40.0 40.0 40.0 13114 11369 13020 7583 13777 1496 3241 1590 7027 833 10.2% 22.2% 10.9% 48.1% 5.7% Después de la reducción inicial de datos faltantes: rellent COLAISACA CELICA CATACOCHA NAMBACOLA GONZANAMA M544 M148 M515 M763 M149 01/01/1970 01/01/1970 01/01/1970 01/01/1970 01/01/1970 31/12/2009 31/12/2009 31/12/2009 31/12/2009 31/12/2009 14610 14610 14610	COLAISACA CELICA CATACOCHA NAMBACOLA GONZANAMA CARIAMANGA M544 M148 M515 M763 M149 M146 01/01/1970 01/01/1970 01/01/1970 01/01/1970 01/01/1970 01/01/1970 31/12/2009 31/12/2009 31/12/2009 31/12/2009 31/12/2009 31/12/2009 14610 14610 14610 14610 14610 14610 14610 40.0 40.0 40.0 40.0 40.0 40.0 40.0 13114 11369 13020 7583 13777 14146 1496 3241 1590 7027 833 464 10.2% 22.2% 10.9% 48.1% 5.7% 3.2% Después de la reducción inicial de datos faltantes: relleno de ceros zona COLAISACA CELICA CATACOCHA NAMBACOLA GONZANAMA CARIAMANGA M544 M148 M515 M763 M149 M146 01/01/1970 01/01/1970 <t< th=""><th>M544 M148 M515 M763 M149 M146 M433 01/01/1970 31/12/2009 31</th><th>COLAISACA CELICA CATACOCHA NAMBACOLA GONZANAMA CARIAMANGA EL LUCERO AMALUZA M544 M148 M515 M763 M149 M146 M433 M150 01/01/1970 0</th><th>COLAISACA CELICA CATACOCHA NAMBACOLA GONZANAMA CARIAMANGA EL LUCERO AMALUZA JIMBURA M544 M148 M515 M763 M149 M146 M433 M150 M438 01/01/1970</th></t<>	M544 M148 M515 M763 M149 M146 M433 01/01/1970 31/12/2009 31	COLAISACA CELICA CATACOCHA NAMBACOLA GONZANAMA CARIAMANGA EL LUCERO AMALUZA M544 M148 M515 M763 M149 M146 M433 M150 01/01/1970 0	COLAISACA CELICA CATACOCHA NAMBACOLA GONZANAMA CARIAMANGA EL LUCERO AMALUZA JIMBURA M544 M148 M515 M763 M149 M146 M433 M150 M438 01/01/1970

Tabla 4.4: Registros faltantes mensuales después de la reducción inicial ZONA 2

NOMBRE:	COLAISACA	CELICA	CATACOCHA	NAMBACOLA	GONZANAMA	CARIAMANGA	EL LUCERO	AMALUZA	JIMBURA	
CÓDIGO:	M544	M148	M515	M763	M149	M146	M433	M150	M438	TOTAL
DIAS SIN REGISTRO ENEROS	132	184	135	550	103	19	239	218	173	1753
DIAS SIN REGISTRO FEBREROS	106	246	121	528	86	44	290	218	162	1801
DIAS SIN REGISTRO MARZOS	108	241	178	526	132	44	267	228	171	1895
DIAS SIN REGISTRO ABRILES	100	249	130	552	104	8	269	197	181	1790
DIAS SIN REGISTRO MAYOS	43	206	91	467	90	27	227	155	173	1479
DIAS SIN REGISTRO JUNIOS	51	84	30	263	37	15	120	115	126	841
DIAS SIN REGISTRO JULIOS	20	70	15	176	10	14	97	75	88	565
DIAS SIN REGISTRO AGOSTOS	16	59	30	110	0	2	56	74	83	430
DIAS SIN REGISTRO SEPTIEMBRE	36	85	41	225	2	43	95	97	91	715
DIAS SIN REGISTRO OCTUBRES	121	151	73	362	64	31	147	132	160	1241
DIAS SIN REGISTRO NOVIEMBRES	130	157	75	392	0	8	150	162	136	1210
DIAS SIN REGISTRO DICIEMBRES	129	181	62	420	0	30	224	172	113	1331
									TOTAL	15051

Meses	Ene	Feb.	Mar	Abr.	Mayo	Jun.	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.
Datos faltantes mensuales	1753	1801	1895	1790	1479	841	565	430	715	1241	1210	1331
Porcentaje	11.6%	12.0%	12.6%	11.9%	9.8%	5.6%	3.8%	2.9%	4.8%	8.2%	8.0%	8.8%

Así mismo la estación con menos datos a interpolar en la **zona 2** es la estación Cariamanga en la que en cuarenta años de registro seleccionado como periodo común, tiene un 2% de registro faltante (285 días) después de la primera reducción de registros mediante relleno de ceros.

La estación con mayor número de datos faltantes en el rango común de registro, después de la reducción inicial de ceros, es la estación Nambacola, con 31.3% en un periodo de 40 años (4571 días). En esta estación se deberá generar y completar el registro ya que en los años 70, 94 y finales del 2009 no se han registrado mediciones en ésta estación o no se dispone de datos de la misma. Por lo que al igual que la **zona 1** para una determinación más confiable de los eventos faltantes en esta estación, se ha decidido que sea la última en ser interpolada, de esta manera se podrá aplicar todas las técnicas de interpolación. Entonces las estaciones con mayor registro a rellenar o a generar serán las últimas a interpolar empezando por las de menor registro a rellenar.

Como se observa en la Tabla 4.4, los meses de Junio a Septiembre son los que tienen menos datos faltantes, variando de 2.9% a 5.6%, y los restantes a estos meses no llegan a superar el 12.6% que corresponde al mes de Febrero. Por otra parte, en el registro mensual se puede observar que la mayor cantidad de datos faltantes se da en los meses de lluvias y verano (octubre a mayo).

Tabla 4.5: Relleno de ceros ZONA 3

Tabla 4.5: Relieno de ceros ZONA 3										
Antes de la re	ducción inicia	al de datos fal	tantes: relleno	de ceros zona	a 3					
QUINARA	YANGANA	MALACATOS	VILCABAMBA	LA ARGELIA	SARAGURO	SAN LUCAS				
M145	M147	M143	M144	M033	M142	M432				
01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970				
31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009				
14610	14610	14610	14610	14610	14610	14610				
40.0	40.0	40.0	40.0	40.0	40.0	40.0				
9630	13701	11865	10464	12779	14107	13318	TOTAL			
4980	909	2745	4146	1831	503	1292	16406			
34.1%	6.2%	18.8%	28.4%	12.5%	3.4%	8.8%				
espués de la	reducción inic	ial de datos fa	ltantes: rellen	o de ceros zor	na 3					
QUINARA	YANGANA	MALACATOS	VILCABAMBA	LA ARGELIA	SARAGURO	SAN LUCAS				
M145	M147	M143	M144	M033	M142	M432				
01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970				
31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009				
14610	14610	14610	14610	14610	14610	14610				
40	40	40	40	40	40	40				
10442	13921	12383	11171	13062	14239	13654	TOTAL			
4168	689	2227	3439	1548	371	956	13398			
28.5%	4.7%	15.2%	23.5%	10.6%	2.5%	6.5%				
	QUINARA M145 01/01/1970 31/12/2009 14610 40.0 9630 4980 34.1% espués de la la QUINARA M145 01/01/1970 31/12/2009 14610 40 10442 4168	Antes de la reducción inicia QUINARA YANGANA M145 M147 01/01/1970 01/01/1970 31/12/2009 31/12/2009 14610 14610 40.0 40.0 9630 13701 4980 909 34.1% 6.2% espués de la reducción inicia QUINARA YANGANA M145 M147 01/01/1970 01/01/1970 31/12/2009 31/12/2009 14610 14610 40 40 10442 13921 4168 689	Antes de la reducción inicial de datos fals QUINARA YANGANA MALACATOS M145 M147 M143 01/01/1970 01/01/1970 01/01/1970 31/12/2009 31/12/2009 31/12/2009 14610 14610 14610 40.0 40.0 40.0 9630 13701 11865 4980 909 2745 34.1% 6.2% 18.8% espués de la reducción inicial de datos fa QUINARA YANGANA MALACATOS M145 M147 M143 01/01/1970 01/01/1970 01/01/1970 31/12/2009 31/12/2009 31/12/2009 14610 14610 14610 40 40 40 10442 13921 12383 4168 689 2227	Antes de la reducción inicial de datos faltantes: relleno QUINARA YANGANA MALACATOS VILCABAMBA M145 M147 M143 M144 01/01/1970 01/01/1970 01/01/1970 01/01/1970 31/12/2009 31/12/2009 31/12/2009 31/12/2009 14610 14610 14610 14610 40.0 40.0 40.0 40.0 9630 13701 11865 10464 4980 909 2745 4146 34.1% 6.2% 18.8% 28.4% espués de la reducción inicial de datos faltantes: rellendor QUINARA YANGANA MALACATOS VILCABAMBA M145 M147 M143 M144 01/01/1970 01/01/1970 01/01/1970 31/12/2009 31/12/2009 31/12/2009 31/12/2009 31/12/2009 31/12/2009 14610 14610 14610 14610 40 40 40 40 40 10442 13921 12383 11171	Antes de la reducción inicial de datos faltantes: relleno de ceros zona QUINARA YANGANA MALACATOS VILCABAMBA LA ARGELIA M145 M147 M143 M144 M033 01/01/1970 01/01/1970 01/01/1970 01/01/1970 01/01/1970 31/12/2009 31/12/2009 31/12/2009 31/12/2009 31/12/2009 14610 14610 14610 14610 14610 40.0 40.0 40.0 40.0 40.0 9630 13701 11865 10464 12779 4980 909 2745 4146 1831 34.1% 6.2% 18.8% 28.4% 12.5% espués de la reducción inicial de datos faltantes: relleno de ceros zon QUINARA YANGANA MALACATOS VILCABAMBA LA ARGELIA M145 M147 M143 M144 M033 01/01/1970 01/01/1970 01/01/1970 01/01/1970 01/01/1970 31/12/2009 31/12/2009 31/12/2009 31/12/2009 31/12/2009	Antes de la reducción inicial de datos faltantes: relleno de ceros zona 3 QUINARA YANGANA MALACATOS VILCABAMBA LA ARGELIA SARAGURO M145 M147 M143 M144 M033 M142 01/01/1970 01/0	Antes de la reducción inicial de datos faltantes: relleno de ceros zona 3 QUINARA YANGANA MALACATOS VILCABAMBA LA ARGELIA SARAGURO SAN LUCAS M145 M147 M143 M144 M033 M142 M432 01/01/1970 11/01/1970 11/01/1970 11/01/1970 14610<			

Tabla 4.6: Registros faltantes mensuales después de la reducción inicial ZONA 3

NOMBRE:	SAN LUCAS	YANGANA	SARAGURO	LA ARGELIA	MALACATOS	VILCABAMBA	QUINARA	
CÓDIGO:	M432	M147	M142	M033	M143	M144	M145	TOTAL
DIAS SIN REGISTRO ENEROS	53	56	37	118	148	262	446	1120
DIAS SIN REGISTRO FEBREROS	102	25	3	136	149	266	389	1070
DIAS SIN REGISTRO MARZOS	139	92	0	146	181	289	443	1290
DIAS SIN REGISTRO ABRILES	104	42	2	147	155	319	382	1151
DIAS SIN REGISTRO MAYOS	82	49	25	126	158	292	377	1109
DIAS SIN REGISTRO JUNIOS	117	101	11	119	198	284	362	1192
DIAS SIN REGISTRO JULIOS	45	50	50	104	175	306	313	1043
DIAS SIN REGISTRO AGOSTOS	37	19	64	109	194	279	291	993
DIAS SIN REGISTRO SEPTIEMBRE	29	49	62	113	222	273	248	996
DIAS SIN REGISTRO OCTUBRES	48	57	64	125	236	304	272	1106
DIAS SIN REGISTRO NOVIEMBRES	130	89	39	136	189	276	277	1136
DIAS SIN REGISTRO DICIEMBRES	70	60	14	169	222	289	368	1192
							TOTAL	13398

Meses	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Datos faltantes mensuales	1120	1070	1290	1151	1109	1192	1043	993	996	1106	1136	1192
Porcentaje	8.4%	8.0%	9.6%	8.6%	8.3%	8.9%	7.8%	7.4%	7.4%	8.3%	8.5%	8.9%

La estación con menos datos a interpolar en la **zona 3** es la estación Saraguro en la que en cuarenta años de registro seleccionado como periodo común, tiene un 2.5% de registro faltante (371 días) después de la primera reducción mediante relleno de ceros.

La estación con mayor número de datos faltantes en el rango común de registro, después de la reducción inicial de ceros, es la estación Quinara, con 28.5% en un periodo de 40 años (4168 días). Para una determinación más confiable de los eventos faltantes en esta estación, será la última en ser interpolada, de esta manera se podrá aplicar todas las técnicas de interpolación. Entonces las estaciones con mayor registro a rellenar o a generar serán las últimas a interpolar empezando por las de menor registro a rellenar.

Como se observa en la tabla 4.6, los meses de Enero a Diciembre son los que tienen datos faltantes en forma casi uniforme, variando de 7.4% a 9.6%.

b. Segundo paso: Relleno de las estaciones con menos datos faltantes

ZONA 1 PASO 2

Una vez identificadas las estaciones con la menor cantidad de datos faltantes en la **zona 1**: **Alamor** con 298 huecos, **Sozoranga** con 479 y **Sabiango** con 511; se procedió a llenarlos con ayuda de la información disponible de las estaciones vecinas restantes (en algunos casos se contaba con 4 estaciones con datos, pero en otras tan solo se disponía de 3 o 2).

Adaptándonos a la información disponible, se logró interpolar estas tres estaciones de las cinco correspondientes a esta zona con las técnicas de Thiesen, distancia inversa lineal y distancia inversa cuadrada, ya que se adecuan a la cantidad de datos que se dispone de las estaciones vecinas en un evento determinado. El motivo de utilizar solo estas tres técnicas en esta etapa se debe a que las técnicas de interpolación: Polinomial, multicuadrática, Lagrange, Óptima y Kriging hacen uso de datos de por lo menos tres estaciones vecinas y, en algunos casos, en las tres estaciones no disponemos de datos para el relleno de registros simultáneos de

esta índole. La técnica óptima y Kriging hacen uso de registros completos de precipitación de las series, por lo que se usaron para llenar la cuarta y quinta estación en la zona uno; una vez completadas las tres primeras con los otros métodos.

A continuación se muestra el proceso de interpolación de los datos faltantes de una de las tres estaciones con menor registro a rellenar de la zona 1. Debido al largo proceso que resulta la interpolación, se tratará de reportar prácticamente el producto final obtenido. De las dos estaciones en estudio restantes se omitirá el proceso y solo se reportara el resultado final, que es la obtención de la precipitación máxima anual registrada del periodo común de registro en la parte pertinente donde se muestre el mismo.

Estación Alamor

Cuadro 4.1: Días sin registro Alamor (menos datos faltantes zona)

NOMBRE:	SABIANGO	ALAMOR	ZAPOTILLO	SOZORANGA	SAUCILLO
CÓDIGO:	M439	M435	M151	M434	M437
DIAS SIN REGISTRO	511	298	1724	479	519

i. Método de Thiessen

Para este método se necesitan las distancias desde las otras estaciones con la estación a interpolar:

Cuadro 4.2: Distancia entre estaciones

Distancia en Km							
Estación	M435						
M439	44.91						
M151	46.42						
M434	42.99						
M437	34.64						

← Menor Distancia

En este caso, se toman como valores para la estación Alamor (M435) los de la estación más cercana (Saucillo M437) y si no existen, se tomará la estación que le sigue en menor distancia y así sucesivamente. Las combinaciones de vectores (factores de ponderación) para interpolar la estación Alamor de acuerdo a la

información disponible de estaciones vecinas (estación más cercana) y, que ha registrado el evento a ser buscado por este método, serían entonces:

Tabla 4.7: Combinación vectores totales encontrados para estación Alamor (Thiessen)

	Thi	Thiesen (Estación más cercana M437)									
	M439	M151	M434	M437	Suma w	Нре					
11/10/1971	0	1	0	0	1.00	3.1					
27/08/1974	0	0	1	0	1.00	0.2					
22/10/1974	1	0	0	0	1.00	1.2					
14/07/2004	0	0	0	1	1.00	6.7					

Elaboró: El autor

La Tabla 4.7 muestra un extracto de las combinaciones totales registradas en el proceso de interpolación, de acuerdo a los datos disponibles de estaciones vecinas por el método Thiesen de 298 datos a ser interpolados para la estación Alamor. Las demás fechas no mostradas de registros a interpolar (294 restantes) para la mencionada estación se encuentran contenida en una de estas combinaciones mostradas.

ii. Método de Distancia inversa lineal

Con las distancias reportadas en el caso anterior, se calculan los factores de ponderación con la expresión conocida:

winvlj =
$$\frac{\frac{1}{d_e - j}}{\sum_{i=1}^{N} \frac{1}{d_e - i}}$$
 (4.1)

Las combinaciones de vectores de los factores de ponderación para interpolar la estación Alamor de acuerdo a los datos disponibles de estaciones vecinas en el día del evento a buscar o de acuerdo a lo registrado en estaciones vecinas por este método y para esta zona serían:

		Dista	ancia in	versa (l	ineal)	
	M439	M151	M434	M437	Suma w	Нре
11/10/1971		1.000			1.00	3.1
27/08/1974	0.489		0.511		1.00	0.1
18/10/1974	1.000				1.00	0.1
01/07/1984	0.299		0.313	0.388	1.00	0.6
01/02/1993	0.306	0.296		0.397	1.00	11.6
01/07/1994	0.232	0.225	0.242	0.301	1.00	0.1
12/11/2005		0.427		0.573	1.00	0.6

Tabla 4.8: Combinación vectores totales encontrados para estación Alamor (Distancia Inversa Lineal)

La Tabla 4.8 al igual que la de Thiesen muestra un extracto de las combinaciones totales registradas en el proceso de interpolación de acuerdo a los datos disponibles de estaciones vecinas por el método distancia inversa lineal de 298 datos para la estación Alamor. Las demás fechas no mostradas de registros a interpolar (291 restantes) se encuentran contenidas dentro de las combinaciones mostradas.

iii. Método de Distancia inversa cuadrática

En este método, los factores se calculan como:

winvlj =
$$\frac{\left(\frac{1}{d_e - j}\right)^2}{\sum_{i=1}^{N} \left(\frac{1}{d_e - i}\right)^2}$$
 (4.2)

De esta forma las combinaciones de vectores de los factores de ponderación (pesos) para interpolar la estación Alamor de acuerdo a los datos disponibles de estaciones vecinas en el día del evento por este método son:

Tabla 4.9: Combinación vectores totales encontrados para estación Alamor (Distancia Inversa Cuadrada)

Distancia inversa (cuadrada)

		Distan	cia inve	rsa (cua	adrada)	
	M439	M151	M434	M437	Suma w	Нре
11/10/1971		1.000			1.00	3.1
27/08/1974	0.478		0.522		1.00	0.1
18/10/1974	1.000				1.00	0.1
01/07/1984	0.265		0.289	0.446	1.00	0.5
01/02/1993	0.276	0.259		0.465	1.00	11.6
01/07/1994	0.212	0.199	0.232	0.357	1.00	0.1
12/11/2005		0.358		0.642	1.00	0.5

Al igual que la técnica de Distancia Inversa Lineal la Tabla 4.9 muestra todas las combinaciones totales registradas en el proceso de interpolación de acuerdo a los datos disponibles de estaciones vecinas por el método de distancia inversa cuadrada de 298 datos a ser interpolados para la estación Alamor. Las demás fechas no mostradas de registros a interpolar (291 restantes) para la mencionada estación se encuentran contenidas dentro de las combinaciones mostradas.

Con esto se encontró los factores de ponderación (pesos) para cada método de interpolación que se pudo utilizar (Thiesen, Distancia Inversa Lineal, Distancia Inversa Cuadrada) y, de cada una de las tres estaciones involucradas en el estudio con menores registros a rellenar (Alamor, Sozoranga y Sabiango). Esto como segundo paso de la interpolación total de la zona 1.

A partir de los datos estimados por los diferentes métodos, se procede a calcular los valores finales interpolados para la zona 1 de la siguiente manera:

- Se descartan los métodos que arrojan valores de precipitación negativos (En este caso, suelen ser los métodos de interpolación polinomial y Lagrange)
- Para cada día, se suprimen los valores máximos y mínimo de todos los encontrados, en nuestro caso como solo logramos interpolar por tres métodos para estas tres estaciones, se obtendrá el valor esperado como el promedio de las tres interpolaciones.
- Se calcula la precipitación en la estación como el valor esperado de los valores calculados.

De esta forma, los eventos buscados e interpolados de las estaciones en estudio y en esta etapa resultaron obtenidos.

ZONA 2 PASO 2

De la misma forma, una vez identificadas las estaciones con menos datos faltantes en la **zona 2**: **Cariamanga** con 285 huecos, **Gonzanamá** con 628 y **Catacocha** con 981, se procede a rellenar los datos faltantes con ayuda de la información disponible de las estaciones restantes (estaciones vecinas de la misma zona), en la que en algunos casos se contaba con 8 estaciones con datos, pero en otras tan solo se disponía de 3.

Acomodándose a la información disponible se logró interpolar estas tres estaciones de las nueve correspondientes a esta zona con las técnicas: Thiesen, distancia inversa lineal, distancia inversa cuadrada, polinomial por mínimos cuadrados, polinomial por Lagrange ya que se adaptan a la cantidad de datos que se dispone de las estaciones vecinas en un evento determinado.

El utilizar las cinco técnicas en esta etapa y zona se debe a que se dispone de datos o registros simultáneos a ser utilizados alrededor de la zona de estudio que superan por lo menos en tres estaciones con datos a su alrededor. No pudiendo utilizar la técnica de interpolación multicuadrática aunque el mínimo número de estaciones para ser utilizada es de tres. La suma de los pesos ponderados durante su estimación no sumó uno, por lo que se desechó este criterio. En esta etapa no se utilizó la técnica óptima y Kriging ya que hacen uso de registros completos de precipitación de las series, por lo que se usaron para rellenar la cuarta, quinta, hasta la novena estación en la zona dos. Una vez completadas las tres primeras con los otros métodos.

A continuación se muestra el proceso de interpolación de los datos faltantes de una de las tres estaciones con menor registro a rellenar (estación Cariamanga) de la zona 2. Debido al largo proceso que resulta durante la interpolación se tratará de reportar prácticamente el producto final obtenido.

De las dos estaciones en estudio restantes se omitirá el proceso y solo se reportara el resultado final que es la obtención de la precipitación máxima anual registrada del periodo común de registro en la parte pertinente.

Estación Cariamanga

Cuadro 4.3: Días sin registro Cariamanga

NOMBRE:	COLAISACA	CELICA	CATACOCHA	NAMBACOLA	GONZANAMÁ
CÓDIGO:	M544	M148	M515	M763	M149
DIAS SIN REGISTRO	992	1913	981	4571	628
NOMBRE:	EL LUCERO	AMALUZA	JIMBURA	CARIAMANGA	
CODIGO:	M433	M150	M438	M146	
DIAS SIN REGISTRO	2181	1843	1657	285	

i. Método de Thiessen

Se necesitan las distancias desde las otras estaciones a la estación a interpolar:

Cuadro 4.4: Distancia entre estaciones

Distancia	en Km	
Estación	M146	
M544	15.49	
M148	50.80	
M515	32.27	
M763	25.17	
M149	17.81	
M433	11.76	← Menor distanci
M150	31.01	
M438	34.07	

En este caso, se toman como valores para la estación Cariamanga (M146), los de la estación más cercana (El Lucero M433), en caso de no existir el valor de ésta estación, se tomará la estación que le sigue en menor distancia y así sucesivamente. Las combinaciones de vectores (factores de ponderación), para interpolar la estación Cariamanga de acuerdo a la información disponible de estaciones vecinas (estación más cercana), y que ha registrado el evento a ser buscado por este método serían entonces:

Thiesen (Estación más cercana M433) M544 | M148 | M515 | M763 M149 M433 M150 M438 Suma w Hp e 01/01/1970 1 0 0 0 0 0 0 1.00 0.5 01/10/1973 0 0 0 0 0 0 0 1.00 0.0

 Tabla 4.10: Combinación vectores totales encontrados para estación Cariamanga (Thiessen)

La Tabla 4.10 muestra un extracto de las combinaciones totales registradas en el proceso de interpolación de acuerdo a los datos disponibles de estaciones vecinas por el método Thiesen de 285 datos a ser interpolados para la estación Cariamanga. Las demás fechas no mostradas de registros a interpolar (283 restantes) para la mencionada estación se encuentran dentro de las combinaciones mostradas.

ii. Método de Distancia inversa lineal

Con las distancias reportadas en el caso anterior, se calculan los factores de ponderación con la expresión conocida:

winvlj =
$$\frac{\frac{1}{d_e - j}}{\sum_{i=1}^{N} \frac{1}{d_e - i}}$$
 (4.3)

Las combinaciones de vectores de los factores de ponderación para interpolar la estación Cariamanga de acuerdo a los datos disponibles de estaciones vecinas en el día del evento a buscar o de acuerdo a lo registrado en estaciones vecinas por este método y zona serían:

Tabla 4.11: Combinación vectores totales encontrados para estación Cariamanga (Distancia Inversa Lineal)

				Dista	ancia in	versa (l	ineal)			
	M544	M148	M515	M763	M149	M433	M150	M438	Suma w	Нре
01/01/1970	0.460	0.140			0.400				1.00	0.6
01/02/1970	0.377	0.115	0.181		0.328				1.00	0.8
23/12/1970	0.426		0.204		0.370				1.00	2.2
04/02/1971	0.306	0.093	0.147	0.188	0.266				1.00	1.2
01/10/1973	0.252	0.077	0.121		0.219	0.332			1.00	0.4
13/08/1986	0.237	0.072	0.114	0.146	0.206		0.118	0.108	1.00	0.2
01/02/1992	0.203	0.062	0.097		0.177	0.267	0.101	0.092	1.00	1.2
10/03/2001	0.246	0.075	0.118			0.325	0.123	0.112	1.00	0.2
10/01/2004	0.280	0.085				0.368	0.140	0.127	1.00	1.2
17/02/2004	0.225	0.069			0.196	0.296	0.112	0.102	1.00	3.3
30/04/2004	0.241				0.210	0.318	0.121	0.110	1.00	1.0
31/12/2004			0.133		0.240	0.364	0.138	0.126	1.00	1.6
01/01/2005		0.067	0.106	0.136	0.191	0.290	0.110	0.100	1.00	3.2
05/02/2005	0.180	0.055	0.087	0.111	0.157	0.238	0.090	0.082	1.00	6.1
14/09/2005	0.191		0.092	0.118	0.166	0.252	0.095	0.087	1.00	0.0
10/01/2006	0.255		0.122	0.157	0.222		0.127	0.116	1.00	1.7
31/12/2006	0.216		0.104		0.188	0.285	0.108	0.098	1.00	0.6
31/01/2009	0.211		0.101	0.130	0.184	0.278		0.096	1.00	14.8
31/03/2009	0.243		0.116		0.211	0.320		0.110	1.00	1.3

Al igual que Thiesen muestra las combinaciones totales registradas en el proceso de interpolación de acuerdo a los datos disponibles de estaciones vecinas por el método distancia inversa lineal de 285 datos para la estación Cariamanga. Las demás fechas no mostradas de los registros a interpolar (266 restantes) para esta estación se encuentran contenidas dentro de las combinaciones mostradas.

iii. Método de Distancia inversa cuadrática

En este método, los factores se calculan como:

winvlj =
$$\frac{\left(\frac{1}{d_e - j}\right)^2}{\sum_{i=1}^{N} \left(\frac{1}{d_e - i}\right)^2}$$
(4.4)

De esta forma las combinaciones de vectores de los factores de ponderación (pesos) para interpolar la estación Cariamanga de acuerdo a los datos disponibles de estaciones vecinas en el día del evento por este método son:

Tabla 4.12: Combinación vectores totales encontrados para estación Cariamanga (Distancia Inversa Cuadrada)

		Distancia inversa (cuadrada)									
	M544	M148	M515	M763	M149	M433	M150	M438	Suma w	Нре	
01/01/1970	0.541	0.050			0.409				1.00	0.4	
01/02/1970	0.481	0.045	0.111		0.364				1.00	1.0	
23/12/1970	0.503		0.116		0.381				1.00	2.6	
04/02/1971	0.407	0.038	0.094	0.154	0.308				1.00	1.0	
01/10/1973	0.262	0.024	0.060		0.198	0.455			1.00	0.4	
13/08/1986	0.343	0.032	0.079	0.130	0.260		0.086	0.071	1.00	0.3	
01/02/1992	0.234	0.022	0.054		0.177	0.406	0.058	0.048	1.00	1.4	
10/03/2001	0.284	0.026	0.066			0.494	0.071	0.059	1.00	0.1	
10/01/2004	0.304	0.028				0.528	0.076	0.063	1.00	0.5	
17/02/2004	0.247	0.023			0.187	0.429	0.062	0.051	1.00	3.0	
30/04/2004	0.253				0.192	0.440	0.063	0.052	1.00	1.3	
31/12/2004			0.073		0.238	0.546	0.079	0.065	1.00	1.2	
01/01/2005		0.025	0.063	0.104	0.207	0.475	0.068	0.057	1.00	2.8	
05/02/2005	0.215	0.020	0.050	0.081	0.163	0.373	0.054	0.044	1.00	7.9	
14/09/2005	0.219		0.051	0.083	0.166	0.381	0.055	0.045	1.00	0.0	
10/01/2006	0.354		0.082	0.134	0.268		0.088	0.073	1.00	1.6	
31/12/2006	0.239		0.055		0.181	0.415	0.060	0.049	1.00	0.6	
31/01/2009	0.232		0.054	0.088	0.176	0.403		0.048	1.00	17.7	
31/03/2009	0.254		0.059	·	0.193	0.442		0.053	1.00	0.6	

Elaboró: El autor

La Tabla 4.12 muestra todas las combinaciones totales registradas en el proceso de interpolación de acuerdo a los datos disponibles de estaciones vecinas por el método distancia inversa cuadrada de 285 datos a ser interpolados para la estación Cariamanga. Las demás fechas no mostradas de registros a interpolar (266 restantes) para la mencionada estación se encuentran contenidas dentro de las combinaciones mostradas.

iv. Método de Interpolación Polinomial (mínimos cuadrados)

Para este método se requieren las coordenadas de las estaciones (pueden estar referidas a un sistema de coordenadas relativo). En coordenadas UTM son:

Cuadro 4.5: Coordenadas UTM estaciones Zona 2

COD	NOMBRE	ESTE (X)	NORTE (Y)
M146	CARIAMANGA	660414.32	9520874.4
M148	CELICA	616393.33	9546220.8
M149	GONZANAMA	674127.28	9532242.8
M150	AMALUZA INAMHI	674106.43	9493049
M763	NAMBACOLA	673838.7	9542164.6
M433	EL LUCERO INAMHI	669587.42	9513515.4
M438	JIMBURA	670274.1	9488265.6
M515	CATACOCHA	650478.14	9551575.1
M544	COLAISACA	645032.92	9522745.1

Fuente: El autor

Polinomios de primer grado (3 monomios) en el caso de disponer de 8 estaciones vecinas en la combinación de datos para esta estación son:

Tabla 4.13: Matriz de polinomios estación Cariamanga con 8 estaciones vecinas homogéneas k=3

	M544	M148	M515	M763	M149	M433	M150	M438	M146
k	Øk(X1,Y1)	Øk(X2,Y2)	Øk(X3,Y3)	Øk(X4,Y4)	Øk(X5,Y5)	Øk(X6,Y6)	Øk(X7,Y7)	Øk(X8,Y8)	Øk(Xe,Ye)
1	1	1	1	1	1	1	1	1	1
2	645.03292	616.39333	650.47814	673.8387	674.12728	669.58742	674.10643	670.2741	660.41432
3	9522.7451	9546.2208	9551.5751	9542.1646	9532.2428	9513.5154	9493.049	9488.2656	9520.8744

Elaboró: El autor

A continuación se muestra un ejemplo de la serie de cálculos requeridos para el caso de la combinación en que se disponga de datos de las 8 estaciones vecinas para interpolar la estación Cariamanga por el método de Polinomial por Mínimos Cuadrados:

$$\theta \text{ki} := \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 645.03292 & 616.39333 & 650.47814 & 673.8387 & 674.12728 & 669.58742 & 674.10643 & 670.2741 \\ 9522.74506 & 9546.22083 & 9551.57513 & 9542.16464 & 9532.24279 & 9513.51537 & 9493.04896 & 9488.26558 \end{pmatrix} \begin{pmatrix} 1 & 645.03292 & 9522.74506 \\ 1 & 616.39333 & 9546.22083 \\ 1 & 673.8387 & 9542.16464 \\ 1 & 674.12728 & 9532.24279 \\ 1 & 669.58742 & 9513.51537 \\ 1 & 674.10643 & 9493.04896 \\ 1 & 670.2741 & 9488.26558 \end{pmatrix} = \begin{pmatrix} 8 & 5.274 \times 10^3 & 7.619 \times 10^4 \\ 5.274 \times 10^3 & 3.48 \times 10^6 & 5.022 \times 10^7 \\ 7.619 \times 10^4 & 5.022 \times 10^7 & 7.256 \times 10^8 \\ 7.619 \times 10^4 & 5.022 \times 10^7 & 7$$

$$\Psi \text{ki} := \theta \text{ki}^{-1} = \begin{pmatrix} 3.314 \times 10^4 & -2.164 & -3.33 \\ -2.164 & 4.48 \times 10^{-4} & 1.962 \times 10^{-4} \\ -3.33 & 1.962 \times 10^{-4} & 3.361 \times 10^{-4} \end{pmatrix}$$

 $\psi ki := \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 645.03292 & 616.39333 & 650.47814 & 673.8387 & 674.12728 & 669.58742 & 674.10643 & 670.2741 \\ 9522.74506 & 9546.22083 & 9551.57513 & 9542.16464 & 9532.24279 & 9513.51537 & 9493.04896 & 9488.26558 \end{pmatrix}$

$$\alpha k i := \Psi k i \cdot \phi k i = \begin{pmatrix} 34.1 & 17.901 & -73.685 & -92.899 & -60.485 & 11.7 & 70.073 & 94.294 \\ -6.552 \times 10^{-3} & -0.015 & 1.544 \times 10^{-3} & 0.01 & 8.346 \times 10^{-3} & 2.637 \times 10^{-3} & 6.464 \times 10^{-4} & -2.009 \times 10^{-3} \\ -3.114 \times 10^{-3} & -8.437 \times 10^{-4} & 7.643 \times 10^{-3} & 9.064 \times 10^{-3} & 5.786 \times 10^{-3} & -1.398 \times 10^{-3} & -7.389 \times 10^{-3} & -9.749 \times 10^{-3} \end{pmatrix}$$

Los factores ωi:

$$\phi ke := \begin{pmatrix} 1 \\ 660.41432 \\ 9520.87438 \end{pmatrix}$$

$$\omega j := \alpha k i^{\mathsf{T}} \cdot \phi ke = \begin{pmatrix} 0.126 \\ 0.11 \\ 0.105 \\ 0.111 \\ 0.118 \\ 0.132 \\ 0.147 \\ 0.15 \end{pmatrix}$$

De esta forma las combinaciones de vectores de los factores de ponderación (pesos) para interpolar la estación Cariamanga de acuerdo a los datos disponibles de estaciones vecinas en el día del evento por este método son:

Tabla 4.14: Combinación vectores totales encontrados para estación Cariamanga. (Polinomial Mínimos Cuadrados)

		Polinomial por mínimos cuadrados										
	M544	M148	M515	M763	M149	M433	M150	M438	Suma w	Нре		
01/01/1970	0.888	-0.21			0.322				1.00	0.0		
17/05/1970	0.745	-0.067	-0.174		0.495				1.00	5.6		
23/12/1970	0.678		-0.255		0.576				1.00	3.5		
04/02/1971	0.754	-0.049	-0.23	0.093	0.432				1.00	0.5		
01/10/1973	0.333	0.047	-0.029		0.207	0.443			1.00	0.4		
13/08/1986	0.14	0.107	0.115	0.133	0.143		0.18	0.183	1.00	0.1		
01/02/1992	0.121	0.089	0.162		0.189	0.159	0.146	0.134	1.00	0.7		
10/03/2001	0.114	0.022	0.319			0.254	0.174	0.117	1.00	0.0		
10/01/2004	0.221	0.079				0.785	0.128	-0.213	1.00	0.0		
17/02/2004	0.146	0.143			0.311	0.201	0.119	0.081	1.00	2.8		
30/04/2004	0.435				0.281	0.2	0.043	0.041	1.00	0.6		
31/12/2004			0.503		-0.088	0.157	0.143	0.285	1.00	3.0		
16/01/2005		0.164	0.121	0.107	0.119	0.147	0.167	0.177	1.00	0.8		
05/02/2005	0.126	0.11	0.105	0.111	0.118	0.132	0.147	0.15	1.00	4.3		
14/09/2005	0.297		0.153	-0.001	0.032	0.134	0.169	0.217	1.00	0.0		
10/01/2006	0.277		0.209	0.088	0.099		0.149	0.177	1.00	1.2		
20/10/2007	0.246		0.227		0.126	0.143	0.121	0.137	1.00	2.1		
31/01/2009	4.076		2.068	-2.391	-2.14	-0.631		0.017	1.00	0.0		
31/03/2009	0.251		0.2		0.149	0.186		0.213	1.00	2.6		

Elaboró: El autor

Se muestra todas las combinaciones totales registradas en el proceso de interpolación de acuerdo a los datos disponibles de estaciones vecinas por el método de polinomial por mínimos cuadrados de 285 datos a ser interpolados para la estación Cariamanga. Las demás fechas no mostradas de registros a interpolar (266 restantes) para la mencionada estación se encuentran contenidas dentro de las combinaciones mostrada.

v. Método de Interpolación por Aproximación de Lagrange

En este caso se requiere de 8 monomios para la combinación en la que se tenga disponible 8 estaciones vecinas a la estación en estudio, caso contrario los monomios se reducen de acuerdo al número de estaciones disponibles para interpolar (combinaciones), se mostrará para el caso antes mencionado el proceso, siendo igual para las demás combinaciones utilizadas.

Tabla 4.15: Matriz de polinomios estación Cariamanga con 8 estaciones vecinas homogéneas k=8

	M544	M148	M515	M763	M149	M433	M150	M438	M146
k	Øk(X1,Y1)	Øk(X2,Y2)	Øk(X3,Y3)	Øk(X4,Y4)	Øk(X5,Y5)	Øk(X6,Y6)	Øk(X7,Y7)	Øk(X8,Y8)	Øk(Xe,Ye)
1	1	1	1	1	1	1	1	1	1
2	645.03292	616.39333	650.47814	673.8387	674.12728	669.58742	674.10643	670.2741	660.41432
3	9522.7451	9546.2208	9551.5751	9542.1646	9532.2428	9513.5154	9493.049	9488.2656	9520.8744
4	416067.468	379940.737	423121.811	454058.594	454447.59	448347.313	454419.479	449267.369	436147.074
5	6142484.05	5884226.85	6213090.82	6429879.82	6425944.9	6370130.21	6399325.34	6359738.67	6287721.78
6	90682673.5	91130332.1	91232587.5	91052906	90863652.6	90506974.7	90117978.6	90027183.7	90647049
7	5.8493E+10	5.6172E+10	5.9345E+10	6.1355E+10	6.1254E+10	6.0602E+10	6.0749E+10	6.0343E+10	5.9865E+10
8	3962104424	3626998180	4041479763	4332701857	4331904760	4265359054	4313826362	4262768115	4152501503

Elaboró: El autor

Se procede a mostrar un ejemplo de la serie de cálculos requeridos para el caso de la combinación anterior para interpolar la estación Cariamanga por el método de Lagrange:

$$\phi kj := \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 645.03292 & 616.39333 & 650.47814 & 673.8387 & 674.12728 & 669.58742 & 674.10643 & 670.2741 \\ 9522.74506 & 9546.22083 & 9551.57513 & 9542.16464 & 9532.24279 & 9513.51537 & 9493.04896 & 9488.26558 \\ 416067.4679 & 379940.7373 & 423121.8106 & 454058.5936 & 454447.5896 & 448347.313 & 454419.479 & 449267.3691 \\ 6142484.052 & 5884226.846 & 6213090.825 & 6429879.816 & 6425944.904 & 6370130.212 & 6399325.344 & 6359738.672 \\ 90682673.48 & 91130332.14 & 91232587.46 & 91052906.02 & 90863652.61 & 90506974.7 & 90117978.56 & 90027183.72 \\ 58493309667 & 56172128889 & 59344803801 & 61354971822 & 61253666983 & 60602331678 & 60749108804 & 60342889541 \\ 3962104424 & 3626998180 & 4041479763 & 4332701857 & 4331904760 & 4265359054 & 4313826362 & 4262768115 \end{pmatrix} \phi ke := \begin{pmatrix} 1 \\ 660.41432 \\ 9520.87438 \\ 436147.0741 \\ 6287721.779 \\ 90647048.96 \\ 59864609199 \\ 4152501503 \end{pmatrix}$$

$$\beta kj := \phi kj^{-1} = \begin{pmatrix} 6.218 \times 10^5 & -1.335 \times 10^3 & -101.606 & 0.612 & 0.194 & 3.82 \times 10^{-3} & -5.67 \times 10^{-6} & -6.414 \times 10^{-5} \\ -4.321 \times 10^5 & 765.124 & 82.203 & -0.183 & -0.135 & -3.867 \times 10^{-3} & 5.745 \times 10^{-6} & 1.924 \times 10^{-5} \\ 1.956 \times 10^6 & -3.09 \times 10^3 & -398.592 & 0.274 & 0.611 & 0.02 & -3.013 \times 10^{-5} & -2.885 \times 10^{-5} \\ -1.995 \times 10^7 & 3.17 \times 10^4 & 4.061 \times 10^3 & -2.73 & -6.274 & -0.206 & 3.093 \times 10^{-4} & 2.86 \times 10^{-4} \\ 3.16 \times 10^7 & -5.026 \times 10^4 & -6.421 \times 10^3 & 4.534 & 9.916 & 0.326 & -4.872 \times 10^{-4} & -4.748 \times 10^{-4} \\ -1.572 \times 10^7 & 2.548 \times 10^4 & 3.149 \times 10^3 & -3.225 & -4.897 & -0.157 & 2.334 \times 10^{-4} & 3.377 \times 10^{-4} \\ -7.91 \times 10^6 & 1.161 \times 10^4 & 1.671 \times 10^3 & 0.277 & -2.474 & -0.088 & 1.317 \times 10^{-4} & -2.908 \times 10^{-5} \\ 9.832 \times 10^6 & -1.488 \times 10^4 & -2.042 \times 10^3 & 0.441 & 3.059 & 0.106 & -1.572 \times 10^{-4} & -4.608 \times 10^{-5} \end{pmatrix}$$

De esta forma las combinaciones de vectores de los factores de ponderación (pesos) para interpolar la estación Cariamanga de acuerdo a los datos disponibles de estaciones vecinas en el día del evento por este método son:

Tabla 4.16: Combinación vectores totales encontrados para estación Cariamanga (Polinomial por Lagrange)

				La	grange)						
		Polinomial por Lagrange									
	M544	M148	M515	M763	M149	M433	M150	M438	Suma w	Нре	
01/01/1970	0.888	-0.210			0.322				1.00	0.0	
17/05/1970	0.813	-0.135	-0.091		0.413				1.00	4.8	
23/12/1970	0.678		-0.255		0.576				1.00	3.5	
04/02/1971	0.556	-0.117	0.191	-0.821	1.191				1.00	0.0	
01/10/1973	0.433	-0.082	0.156		0.008	0.487			1.0	0.0	
13/08/1986	0.550	-0.116	0.196	-0.604	0.914		0.071	-0.011	1.00	0.5	
01/02/1992	0.414	-0.075	0.135		-0.089	0.713	0.010	-0.108	1.0	2.5	
10/03/2001	0.629	-0.126	0.138			0.269	0.560	-0.470	1.00	0.0	
10/01/2004	2.302	-0.498				-1.709	5.279	-4.374	1.00	0.0	
17/02/2004	-7.649	1.831			-3.422	17.404	-20.646	13.482	1.00	0.0	
30/04/2004	0.174				-0.732	2.379	-0.265	-0.556	1.00	7.1	
31/12/2004			0.288		0.403	0.146	-1.466	1.630	1.00	16.6	
16/01/2005		0.049	-0.051	1.847	-3.155	2.894	-0.178	-0.406	1.00	0.2	
05/02/2005	0.193	-0.009	0.035	0.986	-1.726	1.878	-0.090	-0.267	1.00	19.7	
14/09/2005	0.163		0.022	1.120	-1.948	2.036	-0.104	-0.289	1.00	0.0	
10/01/2006	-0.044		0.352	-2.319	3.357		-2.261	1.914	1.00	0.0	
20/10/2007	0.096		0.130		-0.220	1.373	-0.806	0.429	1.00	0.4	
31/01/2009	0.173		0.006	1.286	-2.204	2.134		-0.395	1.0	2.4	
31/03/2009	0.212		-0.063		-0.982	2.871		-1.038	1.00	0.0	

Elaboró: El autor

Al igual que las técnicas anteriores, la Tabla 4.16 muestra todas las combinaciones totales registradas en el proceso de interpolación de acuerdo a los datos disponibles de estaciones vecinas por el método de Lagrange de 285 datos a ser interpolados para la estación Cariamanga. Las demás fechas no mostradas de registros a interpolar (266 restantes) para la mencionada estación se encuentran contenidas dentro de una de las combinaciones mostradas.

vi. Método de Interpolación Multicuadrática

Se probó este método de interpolación para el caso de las tres estaciones a calcular en esta parte y mediante este método ninguna de las estaciones, la sumatoria de los pesos resultó uno, por lo que se desechó este criterio, no reportándolo para esta etapa y caso de estas tres estaciones.

Con las técnicas anteriormente descritas para esta zona se encontró los factores de ponderación (pesos) por cada método de interpolación disponible y que se pudieron utilizar (Thiesen, distancia inversa lineal, distancia inversa cuadrada, polinomial, Lagrange) y de cada una de las tres estaciones involucrada en el estudio (Cariamanga, Gonzanamá y Catacocha). Esto como segundo paso de la interpolación total de la zona 2. A partir de los datos estimados por los diferentes métodos, se procede a calcular los valores finales interpolados para la zona 2 de la siguiente manera:

- Se descartan los métodos que arrojan valores de precipitación negativos (usualmente, suelen ser los métodos de interpolación Polinomial y Lagrange)
- Para cada día, se suprimen los valores máximo y mínimo de todos los encontrados.
- Se calcula la precipitación en la estación como el valor esperado de los valores restantes.

De esta forma, los eventos buscados e interpolados de las estaciones en estudio y en esta etapa resultaron alcanzados.

ZONA 3 PASO 2

Se identifica las estaciones con menos datos faltantes en la **zona 3**: **Saraguro** con 371 huecos, **Yangana** con 689 y **San Lucas** con 956, se rellena los datos faltantes con ayuda de la información disponible de estaciones restantes (estaciones vecinas de la misma zona), en algunos casos se cuenta con 6 estaciones, pero en otras solo se dispone de 3.

Con la información disponible se logra interpolar estas tres estaciones de las siete correspondientes a esta zona con las técnicas: Thiesen, distancia inversa lineal, distancia inversa cuadrada, polinomial por mínimos cuadrados, polinomial por Lagrange y multicuadrática, ya que se adaptan a la cantidad de datos disponibles de las estaciones vecinas en un evento determinado.

El utilizar las seis técnicas en esta etapa y zona se debe a que se dispone de datos o registros simultáneos a ser utilizados alrededor de la zona de estudio que superan por lo menos en tres estaciones con datos a su alrededor. Utilizando también la técnica de interpolación multicuadrática, ya que la suma de los pesos ponderados durante su estimación sumó uno. Por lo tanto, se aprovecha este criterio. No se utiliza en esta etapa la técnica óptima y Kriging ya que hacen uso de registros completos de precipitación de las series, por lo que se usaron para rellenar la cuarta, quinta, hasta la séptima estación en la zona tres; una vez que se completa las tres primeras con los otros métodos.

Se muestra el proceso de interpolación de los datos faltantes de una de las tres estaciones con menor registro a rellenar (estación San Lucas) de la zona 3. De igual forma, debido al largo proceso que resulta la interpolación, se reporta el producto final obtenido. De las dos estaciones en estudio restantes se omitirá el proceso y solo se reportara el resultado final que es la obtención de la precipitación máxima anual registrada del periodo común de registro en la parte pertinente.

Estación San Lucas

Cuadro 4.6: Días sin registro San Lucas

NOMBRE:	SAN LUCAS	YANGANA	LA ARGELIA	MALACATOS
CÓDIGO:	M432	M147	M033	M143
DIAS SIN REGISTRO	956	689	1548	2227
NOMBRE:	VILCABAMBA	QUINARA	SARAGURO	
CÓDIGO:	M144	M145	M142	
DIAS SIN REGISTRO	3439	4168	371	

i. Método de Thiessen

Se necesitan las distancias desde las otras estaciones a la estación a interpolar:

Cuadro 4.7: Distancia entre estaciones

Distancia en Km						
Estación	M432					
M033	34.33					
M143	53.55					
M144	58.90					
M145	64.39					
M142	13.62					
M147	71.00					

← Menor distancia

Se toman como valores para la estación San Lucas (M432), los de la estación más cercana (Saraguro M142) al igual que en los casos anteriores, de no existir el valor de esta estación, se tomará la estación que le sigue en menor distancia y así sucesivamente. Las combinaciones de vectores (factores de ponderación), para interpolar la estación San Lucas de acuerdo a la información disponible de estaciones vecinas (estación más cercana), y que ha registrado el evento a ser buscado por este método serían entonces:

Tabla 4.17: Combinación vectores totales encontrados para estación San Lucas (Thiessen)

		Thiesen (Estación más cercana M142)								
M033 M143 M144 M145 M142 M147 Suma w Hp						Нре				
02/10/1971	0	0	0	0	1	0	1.00	0.0		

Elaboró: El autor

La Tabla 4.17 muestra un extracto de las combinaciones totales registradas en el proceso de interpolación de acuerdo a los datos disponibles de estaciones vecinas por el método Thiesen de 956 datos a ser interpolados para la estación San Lucas. Las demás fechas no mostradas de registros a interpolar (955 restantes) para la mencionada estación se encuentran dentro de la combinación mostrada.

ii. Método de Distancia inversa lineal

Con las distancias reportadas en el caso anterior, se calculan los factores de ponderación con la expresión conocida:

winvlj =
$$\frac{\frac{1}{d_{e} - j}}{\sum_{i=1}^{N} \frac{1}{d_{e} - i}}$$
 (4.5)

Las combinaciones de vectores de los factores de ponderación para interpolar la estación San Lucas de acuerdo a los datos disponibles de estaciones vecinas en el día del evento a buscar o de acuerdo a lo registrado en estaciones vecinas por este método y zona serían:

Tabla 4.18: Combinación vectores totales encontrados para estación San Lucas (Distancia Inversa Lineal)

		Distancia inversa (lineal)								
	M033	M143	M144	M145	M142	M147	Suma w	Нре		
02/10/1971	0.215	0.138			0.543	0.104	1.00	0.3		
29/06/1972	0.191	0.123	0.111		0.482	0.092	1.00	7.2		
04/07/1976	0.174	0.111	0.101	0.093	0.438	0.084	1.00	0.2		
01/11/1982	0.193	0.124		0.103	0.487	0.093	1.00	11.0		
01/04/1985		0.135	0.122	0.112	0.529	0.102	1.00	2.2		
15/04/1990	0.195		0.114	0.104	0.492	0.094	1.00	4.0		
01/04/2006				0.151	0.713	0.137	1.00	5.8		

Muestra las combinaciones totales registradas en el proceso de interpolación de acuerdo a los datos disponibles de estaciones vecinas por el método distancia inversa lineal de 956 datos para la estación San Lucas. Las demás fechas no mostradas de los registros a interpolar (949 restantes) para esta estación se encuentran contenidas dentro de las combinaciones mostradas.

iii. Método de Distancia inversa cuadrática

En este método, los factores se calculan como:

winvlj =
$$\frac{\left(\frac{1}{d_e - j}\right)^2}{\sum_{i=1}^{N} \left(\frac{1}{d_e - i}\right)^2}$$
 (4.6)

De esta forma las combinaciones de vectores de los factores de ponderación (pesos) para interpolar la estación San Lucas de acuerdo a los datos disponibles de estaciones vecinas en el día del evento por este método son:

Tabla 4.19: Combinación vectores totales encontrados para estación San Lucas (Distancia Inversa Cuadrada)

		Distancia inversa (cuadrada)								
	M033	M143	M144	M145	M142	M147	Suma w	Нре		
02/10/1971	0.125	0.051			0.794	0.029	1.00	0.1		
29/06/1972	0.120	0.049	0.041		0.762	0.028	1.00	10.3		
04/07/1976	0.116	0.048	0.039	0.033	0.737	0.027	1.00	0.4		
01/11/1982	0.121	0.050		0.034	0.767	0.028	1.00	10.7		
01/04/1985		0.054	0.045	0.037	0.834	0.031	1.00	1.2		
15/04/1990	0.122		0.041	0.035	0.774	0.028	1.00	1.7		
01/04/2006				0.041	0.925	0.034	1.00	6.0		

Elaboró: El autor

La Tabla 4.19 muestra todas las combinaciones totales registradas en el proceso de interpolación de acuerdo a los datos disponibles de estaciones vecinas por el método distancia inversa cuadrada de 956 datos a ser interpolados para la estación San Lucas. Las demás fechas no mostradas de registros a interpolar (949 restantes) para la mencionada estación se encuentran contenidas dentro de las combinaciones mostradas.

iv. Método de Interpolación Polinomial (mínimos cuadrados)

Para este método se requieren las coordenadas de las estaciones (pueden estar referidas a un sistema de coordenadas relativo). En coordenadas UTM son:

Cuadro 4.8: Coordenadas UTM estaciones Zona 3

COD	NOMBRE	ESTE (X)	NORTE (Y)
M033	LA ARGELIA	699710.80	9553629.61
M142	SARAGURO	696167.21	9600575.80
M143	MALACATOS	691893.90	9533771.71
M144	VILCABAMBA	697803.51	9528597.53
M145	QUINARA INAMHI	694953.32	9522951.77
M147	YANGANA	702555.79	9516943.44
M432	SAN LUCAS INAMHI	693085.96	9587311.43

Polinomios de primer grado (3 monomios) en el caso de disponer de 6 estaciones vecinas en la combinación de datos para esta estación son:

Tabla 4.20: Matriz de polinomios estación San Lucas con 6 estaciones vecinas homogéneas k=3

	M033	M143	M144	M145	M142	M147	M432
k	Øk(X1,Y1)	Øk(X2,Y2)	Øk(X3,Y3)	Øk(X4,Y4)	Øk(X5,Y5)	Øk(X6,Y6)	Øk(Xe,Ye)
1	1	1	1	1	1	1	1
2	699.7108	691.8939	697.80351	694.95332	696.16721	702.55579	693.08596
3	9553.6296	9533.7717	9528.5975	9522.9518	9600.5758	9516.9434	9587.3114

Elaboró: El autor

Se muestra la serie de cálculos requeridos para el caso de la combinación en la cual se disponga de datos de las 6 estaciones vecinas, para interpolar la estación San Lucas, por el método de polinomial por mínimos cuadrados:

$$\theta ki := \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 699.7108 & 691.8939 & 697.80351 & 694.95332 & 696.16721 & 702.55579 \\ 9553.62961 & 9533.77171 & 9528.59753 & 9522.95177 & 9600.5758 & 9516.94344 \end{pmatrix} \begin{pmatrix} 1 & 699.7108 & 9553.62961 \\ 1 & 691.8939 & 9533.77171 \\ 1 & 697.80351 & 9528.59753 \\ 1 & 694.95332 & 9522.95177 \\ 1 & 696.16721 & 9600.5758 \\ 1 & 702.55579 & 9516.94344 \end{pmatrix} = \begin{pmatrix} 6 & 4.183 \times 10^3 & 5.726 \times 10^4 \\ 4.183 \times 10^3 & 2.916 \times 10^6 & 3.992 \times 10^7 \\ 5.726 \times 10^4 & 3.992 \times 10^7 & 5.464 \times 10^8 \end{pmatrix}$$

$$\Psi ki := \theta ki^{-1} = \begin{pmatrix} 3.01 \times 10^4 & -12.789 & -2.22 \\ -12.789 & 0.015 & 2.665 \times 10^{-4} \\ -2.22 & 2.665 \times 10^{-4} & 2.131 \times 10^{-4} \end{pmatrix} \quad \phi ki := \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 699.7108 & 691.8939 & 697.80351 & 694.95332 & 696.16721 & 702.55579 \\ 9553.62961 & 9533.77171 & 9528.59753 & 9522.95177 & 9600.5758 & 9516.94349 \end{pmatrix}$$

$$\alpha \text{ki} := \Psi \text{ki-}\phi \text{ki} = \begin{pmatrix} -56.349 & 87.697 & 23.603 & 72.585 & -115.227 & -11.308 \\ 0.04 & -0.08 & 5.383 \times 10^{-3} & -0.038 & 5.131 \times 10^{-4} & 0.072 \\ 2.994 \times 10^{-3} & -3.321 \times 10^{-3} & -2.849 \times 10^{-3} & -4.812 \times 10^{-3} & 0.012 & -4.067 \times 10^{-3} \end{pmatrix} \quad \phi \text{ke} := \begin{pmatrix} 1 \\ 693.08596 \\ 9587.3114 \end{pmatrix}$$

Los factores ωi

$$\omega j := \alpha k i^{\mathsf{T}} \cdot \phi k e = \begin{pmatrix} 0.136 \\ 0.347 \\ 0.018 \\ 0.108 \\ 0.702 \\ -0.31 \end{pmatrix}$$

De esta forma las combinaciones de vectores de los factores de ponderación (pesos) para interpolar la estación San Lucas de acuerdo a los datos disponibles de estaciones vecinas en el día del evento por este método son:

Tabla 4.21: Combinación vectores totales encontrados para estación San Lucas (Polinomial por Mínimos Cuadrados)

		Polinomial por mínimos cuadrados						
	M033	M143	M144	M145	M142	M147	Suma w	Нре
02/10/1971	0.15	0.436			0.688	-0.274	1.00	0.0
29/06/1972	0.139	0.414	0.052		0.69	-0.296	1.00	9.3
04/07/1976	0.136	0.347	0.018	0.108	0.702	-0.31	1.00	0.4
01/11/1982	0.139	0.35		0.113	0.702	-0.304	1.00	18.3
01/04/1985		0.333	0.047	0.111	0.76	-0.251	1.00	2.2
15/04/1990	0.07		0.167	0.482	0.753	-0.472	1.00	0.0
01/04/2006				0.573	0.8	-0.373	1.00	10.6

Elaboró: El autor

Se muestran todas las combinaciones totales registradas en el proceso de interpolación, de acuerdo a los datos disponibles de estaciones vecinas por el método de polinomial por mínimos cuadrados de 956 datos a ser interpolados para la estación San Lucas. Las demás fechas no mostradas de registros a interpolar (949 restantes) para la mencionada estación se encuentran contenidas dentro de una combinación mostrada.

v. Método de Interpolación por Aproximación de Lagrange

En este caso se requiere de 6 monomios para la combinación en la que se tenga disponible 6 estaciones vecinas en la estación en estudio, caso contrario los monomios se reducen de acuerdo al número de estaciones disponibles para interpolar (combinaciones), se mostrará para el caso antes mencionado el proceso, siendo igual para las demás combinaciones utilizadas:

Tabla 4.22: Matriz de polinomios estación San Lucas con 6 estaciones vecinas homogéneas k=6

	M033	M143	M144	M145	M142	M147	M432
k	Øk(X1,Y1)	Øk(X2,Y2)	Øk(X3,Y3)	Øk(X4,Y4)	Øk(X5,Y5)	Øk(X6,Y6)	Øk(Xe,Ye)
1	1	1	1	1	1	1	1
2	699.7108	691.8939	697.80351	694.95332	696.16721	702.55579	693.08596
3	9553.6296	9533.7717	9528.5975	9522.9518	9600.5758	9516.9434	9587.3114
4	489595.204	478717.169	486929.739	482960.117	484648.784	493584.638	480368.148
5	6684777.82	6596358.49	6649088.8	6618006.95	6683606.07	6686183.72	6644830.95
6	91271838.7	90892803	90794170.9	90686610.4	92171055.7	90572212.4	91916540.5

Se muestra un ejemplo de la serie de cálculos requeridos para el caso de la combinación anterior para interpolar la estación San Lucas por el método de Lagrange:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 699.711 & 691.894 & 697.804 & 694.953 & 696.167 & 702.556 \\ 9.554 \times 10^3 & 9.534 \times 10^3 & 9.529 \times 10^3 & 9.523 \times 10^3 & 9.601 \times 10^3 & 9.517 \times 10^3 \\ 4.896 \times 10^5 & 4.787 \times 10^5 & 4.869 \times 10^5 & 4.83 \times 10^5 & 4.846 \times 10^5 & 4.936 \times 10^5 \\ 6.685 \times 10^6 & 6.596 \times 10^6 & 6.649 \times 10^6 & 6.618 \times 10^6 & 6.684 \times 10^6 & 6.686 \times 10^6 \\ 9.127 \times 10^7 & 9.089 \times 10^7 & 9.079 \times 10^7 & 9.069 \times 10^7 & 9.217 \times 10^7 & 9.057 \times 10^7 \end{bmatrix}$$

$$\phi \text{ke} := \begin{pmatrix} 1 \\ 693.08596 \\ 9587.31143 \\ 480368.1479 \\ 6644830.946 \\ 91916540.46 \end{pmatrix} \beta \text{kj} := \phi \text{kj}^{-1} = \begin{pmatrix} 6.58 \times 10^4 & -107.071 & -5.99 & 0.016 & 8.848 \times 10^{-3} & -8.812 \times 10^{-6} \\ -7.395 \times 10^4 & 34.191 & 12.998 & 0.012 & -5.413 \times 10^{-3} & -4.826 \times 10^{-4} \\ -2.842 \times 10^5 & 284.08 & 38.807 & -0.059 & -0.021 & -1.257 \times 10^{-3} \\ 2.505 \times 10^5 & -197.964 & -38.016 & 0.015 & 0.019 & 1.313 \times 10^{-3} \\ 7.508 \times 10^3 & 14.724 & -2.652 & -2.588 \times 10^{-3} & -1.167 \times 10^{-3} & 1.818 \times 10^{-4} \\ 3.432 \times 10^4 & -27.959 & -5.146 & 0.017 & 4.223 \times 10^{-4} & 2.537 \times 10^{-4} \end{pmatrix} \quad \omega \text{j} := \beta \text{kj} \cdot \phi \text{ke} = \begin{pmatrix} -1.485 \\ 1.769 \\ 3.943 \\ -3.872 \\ 0.865 \\ -0.221 \end{pmatrix}$$

De esta forma las combinaciones de vectores de los factores de ponderación (pesos) para interpolar la estación San Lucas de acuerdo a los datos disponibles de estaciones vecinas en el día del evento por este método son:

Tabla 4.23: Combinación vectores totales encontrados para estación San Lucas (Polinomial por Lagrange)

				olinomial p	or Lagrai	nge		
	M033	M143	M144	M145	M142	M147	Suma w	Нре
02/10/1971	-0.902	0.441			1.148	0.313	1.00	1.0
29/06/1972	-1.511	0.346	0.236		1.402	0.527	1.00	10.2
04/07/1976	-1.485	1.769	3.943	-3.872	0.865	-0.221	1.00	0.4
01/11/1982	-1.513	0.256		0.246	1.436	0.575	1.00	30.5
01/04/1985		83.083	215.826	-225.164	-29.775	-42.970	1.00	1148.6
15/04/1990	-1.517		-0.667	0.943	1.532	0.709	1.00	17.5
01/04/2006				0.573	0.800	-0.373	1.00	10.6

Elaboró: El autor

Al igual que las técnicas anteriores, la Tabla 4.23 muestra todas las combinaciones totales registradas en el proceso de interpolación de acuerdo a los datos disponibles de estaciones vecinas por el método de Lagrange de 956 datos a ser interpolados para la estación San Lucas. Las demás fechas no mostradas de registros a interpolar (949 restantes) para la mencionada estación, se encuentran contenidas dentro de una combinación mostrada.

Se debe resaltar que en el caso de la combinación del ejemplo anterior para la fecha 01/04/1985 y demás fechas de esta combinación, resultó que mediante el cálculo de valores del evento esperado manifestaron valores excesivamente grandes, por lo que se justifica descartar el máximo, el mínimo y obtener el valor esperado con las técnicas aplicadas.

vi. Método de Interpolación Multicuadrática

Para este método y para el ejemplo mostrado (Estación San Lucas), se necesita la matriz de distancias de la estación. Mostrando el caso para San Lucas y con combinación de 6 estaciones completas, siendo el proceso igual para las demás combinaciones y estación.

				10.0.0.	a = a. o a. c	(- a.
	M033	M143	M144	M145	M142	M147	M432
M033	0	21.341	25.105	31.045	47.080	36.796	34.327
M143	21.341	0	7.855	11.244	66.941	19.922	53.553
M144	25.105	7.855	0	6.324	71.997	12.586	58.903
M145	31.045	11.244	6.324	0	77.634	9.690	64.387
M142	47.080	66.941	71.997	77.634	0	83.876	13.618
M147	36.796	19.922	12.586	9.690	83.876	0	71.002

Tabla 4.24: Matriz distancias estación San Lucas (Multicuadrática)

Elaboró: El autor

Los cálculos para San Lucas en la combinación de seis disponibles son los siguientes:

$$\text{Dij} := \begin{pmatrix} 0 & 21.341 & 25.105 & 31.045 & 47.080 & 36.796 \\ 21.341 & 0 & 7.855 & 11.244 & 66.941 & 19.922 \\ 25.105 & 7.855 & 0 & 6.324 & 71.997 & 12.586 \\ 31.045 & 11.244 & 6.324 & 0 & 77.634 & 9.690 \\ 47.080 & 66.941 & 71.997 & 77.634 & 0 & 83.876 \\ 36.796 & 19.922 & 12.586 & 9.690 & 83.876 & 0 \end{pmatrix} \qquad \text{Dej} := \begin{pmatrix} 34.327 \\ 53.553 \\ 58.903 \\ 64.387 \\ 13.618 \\ 71.002 \end{pmatrix}$$

$$\vec{\alpha}j := Dij^{-1} = \begin{pmatrix} -0.034 & 0.018 & 9.169 \times 10^{-3} & -5.627 \times 10^{-3} & 0.01 & 2.39 \times 10^{-3} \\ 0.018 & -0.082 & 0.047 & 0.024 & 1.829 \times 10^{-3} & -7.149 \times 10^{-3} \\ 9.169 \times 10^{-3} & 0.047 & -0.128 & 0.054 & -2.162 \times 10^{-3} & 0.017 \\ -5.627 \times 10^{-3} & 0.024 & 0.054 & -0.114 & 1.799 \times 10^{-3} & 0.043 \\ 0.01 & 1.829 \times 10^{-3} & -2.162 \times 10^{-3} & 1.799 \times 10^{-3} & -4.753 \times 10^{-3} & 4.978 \times 10^{-3} \\ 2.39 \times 10^{-3} & -7.149 \times 10^{-3} & 0.017 & 0.043 & 4.978 \times 10^{-3} & -0.051 \end{pmatrix}$$

$$\vec{\omega}j := \delta j \cdot Dej = \begin{pmatrix} 0.261 \\ 0.054 \\ -0.036 \\ 0.022 \\ 0.722 \\ -0.016 \end{pmatrix}$$

Las combinaciones de vectores de los factores de ponderación (pesos) para interpolar la estación San Lucas de acuerdo a los datos disponibles de estaciones vecinas en el día del evento por este método son:

Tabla 4.25: Combinación vectores totales encontrados para estación San Lucas (Multicuadrática)

		Multicuadrática					,	
	M033	M143	M144	M145	M142	M147	Suma w	Нре
02/10/1971	0.2580	0.0440			0.7230	-0.0170	1.0	0.0
29/06/1972	0.2600	0.0580	-0.0260		0.7230	-0.0079	1.0	10.6
04/07/1976	0.2610	0.0540	-0.0360	0.0220	0.7220	-0.0160	1.0	0.4
01/11/1982	0.2580	0.0410		0.0064	0.7230	-0.0210	1.0	9.4
01/04/1985		0.1890	0.0340	-0.0210	0.7990	0.0020	1.0	1.2
15/04/1990	0.2720		-0.0055	0.0380	0.7230	-0.0210	1.0	0.7
01/04/2006				0.1620	0.8280	0.0120	1.0	6.7

Se muestra todas las combinaciones totales registradas en el proceso de interpolación de acuerdo a los datos disponibles de estaciones vecinas por el método de multicuadrática de 956 datos a ser interpolados para la estación San Lucas. Las demás fechas no mostradas de registros a interpolar (949 restantes) para la mencionada estación se encuentran contenidas dentro de una combinación mostrada.

Con las técnicas anteriormente descritas para esta zona se encontró los factores de ponderación (pesos) por cada método de interpolación disponible y que se pudieron utilizar (Thiesen, distancia inversa lineal, distancia inversa cuadrada, polinomial, Lagrange y multicuadrática) y de cada una de las tres estaciones involucradas en el estudio (Saraguro, Yangana y San Lucas). Esto como segundo paso de la interpolación total de la zona 3. También a partir de los datos estimados por los diferentes métodos, se procede a calcular los valores finales interpolados para la zona 3 de la siguiente manera:

- Se descartan los métodos que arrojan valores de precipitación negativos (usualmente, suelen ser los métodos de interpolación polinomial y Lagrange)
- Para cada día, se suprimen los valores máximo y mínimo de todos los encontrados.
- Se calcula la precipitación en la estación como el valor esperado de los valores restantes.

De esta forma, los eventos buscados e interpolados de las estaciones en estudio y en esta etapa resultaron alcanzados.

c. Tercer paso: Relleno de las estaciones restantes, partiendo de las completas

Una vez obtenidas 3 estaciones completas en cada zona (Paso b), se procede a rellenar la: Cuarta y quinta para la zona 1; cuarta, quinta, sexta, séptima, octava y novena, para la zona 2; cuarta, quinta, sexta y séptima en la zona 3, todas por orden de datos faltantes es decir de menor a mayor numero de huecos a rellenar o generar.

A partir de este punto se incluyeron, adicionalmente a los métodos antes descritos, los métodos de Interpolación óptima y Kriging. Es importante aclarar que ambos métodos deben emplearse mes por mes, construyendo diferentes modelos espaciales de interpolación. Ello se debe a que, por considerar los datos de las muestras completas, debe tenerse en cuenta la variación mensual de los patrones de lluvia. De este modo se tienen 12 modelos distintos para la interpolación: uno para todos los Eneros, otros para los Febreros, y así sucesivamente hasta terminar con uno distinto para los Diciembres.

Cuando se disponga de *cuatro* estaciones completas, se pasará a llenar la siguiente (quinta), y así sucesivamente hasta llegar a la última estación en cada zona. Se desarrolla de la misma manera que para el caso de la cuarta estación hasta el final.

Para el caso de los métodos de Kriging y óptima, es necesario recalcular las matrices de correlación y los semivariograma mensuales, para cada interpolación de estaciones debido a la inclusión de los valores interpolados previamente. Adicionalmente, se aclara que ahora dichas matrices serán cuadradas, en función del hecho de contar con información completa de para cada interpolación de estaciones.

A continuación se muestran los cálculos seguidos con dichos métodos para interpolar algunos de los meses de la estación Nambacola disponiendo de 8

estaciones completas (Cariamanga, Gonzanamá, Catacocha, Colaisaca, Jimbura, Celica, Amaluza, El Lucero) para el caso de la zona 2 como ejemplo de cálculo para todas las demás estaciones.

i. Método de Interpolación Óptima

Luego de haber explorado los diferentes modelos (inverso, potencia inversa y exponencial) y ajustarle el mejor modelo de correlación de de la zona, las nuevas matrices 8x8 de correlaciones son las siguientes:

Tabla 4.26: Matriz de correlaciones ajustada Estación Nambacola (8 completas)

	MEJOR MODELO:MODELO INVERSO								
	ENIE	1	2	3	4	5	6	7	8
	ENE	M146	M149	M515	M544	M438	M148	M150	M433
1	M146	1	0.551	0.404	0.585	0.391	0.301	0.413	0.650
2	M149	0.551	1	0.417	0.416	0.331	0.269	0.358	0.531
3	M515	0.404	0.417	1	0.427	0.248	0.388	0.257	0.339
4	M544	0.585	0.416	0.427	1	0.338	0.371	0.344	0.454
5	M438	0.391	0.331	0.248	0.338	1	0.216	0.781	0.464
6	M148	0.301	0.269	0.388	0.371	0.216	1	0.218	0.259
7	M150	0.413	0.358	0.257	0.344	0.781	0.218	1	0.510
8	M433	0.650	0.531	0.339	0.454	0.464	0.259	0.510	1

CORRELA	CORRELACION POTENCIAL DEL							
SITIO EST	SITIO ESTUDIO e CON DEMAS							
ENE	M763	[Correl.]						
EINE	DIST(dij)	ρ						
M146	25.17	0.46						
M149	9.93	0.69						
M515	25.18	0.46						
M544	34.74	0.39						
M438	54.02	0.29						
M148	57.59	0.27						
M150	49.12	0.31						
M433	28.96	0.43						

	MEJOR MODELO:MODELO INVERSO								
	בבה	1	2	3	4	5	6	7	8
	FEB	M146	M149	M515	M544	M438	M148	M150	M433
1	M146	1	0.611	0.465	0.644	0.451	0.355	0.475	0.704
2	M149	0.611	1	0.478	0.478	0.388	0.320	0.417	0.592
3	M515	0.465	0.478	1	0.488	0.297	0.448	0.307	0.397
4	M544	0.644	0.478	0.488	1	0.396	0.431	0.403	0.516
5	M438	0.451	0.388	0.297	0.396	1	0.261	0.820	0.526
6	M148	0.355	0.320	0.448	0.431	0.261	1	0.263	0.310
7	M150	0.475	0.417	0.307	0.403	0.820	0.263	1	0.572
8	M433	0.704	0.592	0.397	0.516	0.526	0.310	0.572	1

_ [CORRELACION POTENCIAL DEL								
	SITIO ESTUDIO e CON DEMAS								
	FFB	M763	[Correl.]						
	FEB	DIST(dij)	ρ						
	M146	25.17	0.53						
	M149	9.93	0.74						
	M515	25.18	0.53						
	M544	34.74	0.45						
	M438	54.02	0.34						
	M148	57.59	0.33						
	M150	49.12	0.36						
	M433	28.96	0.49						

	MEJOR MODELO:MODELO INVERSO								
	NAAD	1	2	3	4	5	6	7	8
	MAR	M146	M149	M515	M544	M438	M148	M150	M433
1	M146	1	0.559	0.412	0.593	0.399	0.308	0.421	0.658
2	M149	0.559	1	0.425	0.425	0.338	0.275	0.366	0.540
3	M515	0.412	0.425	1	0.435	0.254	0.396	0.264	0.347
4	M544	0.593	0.425	0.435	1	0.346	0.379	0.352	0.463
5	M438	0.399	0.338	0.254	0.346	1	0.222	0.787	0.472
6	M148	0.308	0.275	0.396	0.379	0.222	1	0.223	0.266
7	M150	0.421	0.366	0.264	0.352	0.787	0.223	1	0.519
8	M433	0.658	0.540	0.347	0.463	0.472	0.266	0.519	1

CORREL	ACION POTE	NCIAL DEL							
SITIO ESTUDIO e CON DEMAS									
NAAD	M763	[Correl.]							
MAR	DIST(dij)	ρ							
M146	25.17	0.47							
M149	9.93	0.69							
M515	25.18	0.47							
M544	34.74	0.39							
M438	54.02	0.29							
M148	57.59	0.28							
M150	49.12	0.31							
M433	28.96	0.44							

	MEJOR MODELO:MODELO INVERSO								
	A D D	1	2	3	4	5	6	7	8
	ABR	M146	M149	M515	M544	M438	M148	M150	M433
1	M146	1	0.519	0.374	0.554	0.361	0.275	0.383	0.621
2	M149	0.519	1	0.387	0.386	0.304	0.245	0.329	0.500
3	M515	0.374	0.387	1	0.396	0.225	0.358	0.234	0.311
4	M544	0.554	0.386	0.396	1	0.311	0.342	0.317	0.423
5	M438	0.361	0.304	0.225	0.311	1	0.196	0.758	0.432
6	M148	0.275	0.245	0.358	0.342	0.196	1	0.197	0.236
7	M150	0.383	0.329	0.234	0.317	0.758	0.197	1	0.479
8	M433	0.621	0.500	0.311	0.423	0.432	0.236	0.479	1

CORRELACION POTENCIAL DEL								
SITIO ES	SITIO ESTUDIO e CON DEMAS							
ABR	M763	[Correl.]						
ADN	DIST(dij)	ρ						
M146	25.17	0.43						
M149	9.93	0.66						
M515	25.18	0.43						
M544	34.74	0.36						
M438	54.02	0.26						
M148	57.59	0.25						
M150	49.12	0.28						
M433	28.96	0.40						

	MEJOR MODELO:MODELO INVERSO								
	NAAV	1	2	3	4	5	6	7	8
	MAY	M146	M149	M515	M544	M438	M148	M150	M433
1	M146	1	0.464	0.323	0.498	0.311	0.233	0.332	0.567
2	M149	0.464	1	0.335	0.335	0.259	0.206	0.282	0.444
3	M515	0.323	0.335	1	0.344	0.188	0.309	0.196	0.266
4	M544	0.498	0.335	0.344	1	0.265	0.294	0.270	0.370
5	M438	0.311	0.259	0.188	0.265	1	0.163	0.715	0.379
6	M148	0.233	0.206	0.309	0.294	0.163	1	0.164	0.198
7	M150	0.332	0.282	0.196	0.270	0.715	0.164	1	0.424
8	M433	0.567	0.444	0.266	0.370	0.379	0.198	0.424	1

CORRELACION POTENCIAL DEL								
SITIO E	SITIO ESTUDIO e CON DEMAS							
MAY	M763	[Correl.]						
IVIAY	DIST(dij)	ρ						
M146	25.17	0.38						
M149	9.93	0.61						
M515	25.18	0.38						
M544	34.74	0.31						
M438	54.02	0.22						
M148	57.59	0.21						
M150	49.12	0.24						
M433	28.96	0.35						

	MEJOR MODELO:MODELO INVERSO								
	HIN	1	2	3	4	5	6	7	8
	JUN	M146	M149	M515	M544	M438	M148	M150	M433
1	M146	1	0.528	0.382	0.563	0.369	0.282	0.391	0.629
2	M149	0.528	1	0.395	0.395	0.311	0.251	0.337	0.509
3	M515	0.382	0.395	1	0.405	0.231	0.366	0.240	0.319
4	M544	0.563	0.395	0.405	1	0.318	0.350	0.324	0.432
5	M438	0.369	0.311	0.231	0.318	1	0.201	0.765	0.441
6	M148	0.282	0.251	0.366	0.350	0.201	1	0.203	0.242
7	M150	0.391	0.337	0.240	0.324	0.765	0.203	1	0.488
8	M433	0.629	0.509	0.319	0.432	0.441	0.242	0.488	1

CORR	CORRELACION POTENCIAL							
SITIO ES	SITIO ESTUDIO e CON DEMAS							
HIN	M763	[Correl.]						
JUN	DIST(dij)	ρ						
M146	25.17	0.44						
M149	9.93	0.67						
M515	25.18	0.44						
M544	34.74	0.36						
M438	54.02	0.27						
M148	57.59	0.26						
M150	49.12	0.29						
M433	28.96	0.41						

	MEJOR MODELO:MODELO INVERSO								
		1	2	3	4	5	6	7	8
	JUL	M146	M149	M515	M544	M438	M148	M150	M433
1	M146	1	0.418	0.284	0.453	0.273	0.201	0.292	0.521
2	M149	0.418	1	0.295	0.295	0.225	0.177	0.246	0.399
3	M515	0.284	0.295	1	0.304	0.162	0.271	0.169	0.231
4	M544	0.453	0.295	0.304	1	0.231	0.257	0.236	0.328
5	M438	0.273	0.225	0.162	0.231	1	0.139	0.676	0.336
6	M148	0.201	0.177	0.271	0.257	0.139	1	0.140	0.170
7	M150	0.292	0.246	0.169	0.236	0.676	0.140	1	0.379
8	M433	0.521	0.399	0.231	0.328	0.336	0.170	0.379	1

CORRELACION POTENCIAL								
SITIO ESTUDIO e CON DEMAS								
	M763	[Correl.]						
JUL	DIST(dij)	ρ						
M146	25.17	0.34						
M149	9.93	0.56						
M515	25.18	0.34						
M544	34.74	0.27						
M438	54.02	0.19						
M148	57.59	0.18						
M150	49.12	0.21						
M433	28.96	0.31						

	MEJOR MODELO:MODELO INVERSO								
	AGOS	1	2	3	4	5	6	7	8
,	4005	M146	M149	M515	M544	M438	M148	M150	M433
1	M146	1	0.675	0.534	0.705	0.520	0.421	0.544	0.759
2	M149	0.675	1	0.547	0.547	0.456	0.383	0.485	0.657
3	M515	0.534	0.547	1	0.557	0.358	0.517	0.369	0.465
4	M544	0.705	0.547	0.557	1	0.464	0.499	0.471	0.585
5	M438	0.520	0.456	0.358	0.464	1	0.318	0.858	0.594
6	M148	0.421	0.383	0.517	0.499	0.318	1	0.320	0.372
7	M150	0.544	0.485	0.369	0.471	0.858	0.320	1	0.638
8	M433	0.759	0.657	0.465	0.585	0.594	0.372	0.638	1

CORRELACION POTENCIAL							
SITIO ESTUDIO e CON DEMAS							
AGOS	M763	[Correl.]					
AGUS	DIST(dij)	ρ					
M146	25.17	0.59					
M149	9.93	0.79					
M515	25.18	0.59					
M544	34.74	0.52					
M438	54.02	0.41					
M148	57.59	0.39					
M150	49.12	0.43					
M433	28.96	0.56					

	MEJOR MODELO:MODELO INVERSO								
	CEDT	1	2	3	4	5	6	7	8
	SEPT	M146	M149	M515	M544	M438	M148	M150	M433
1	M146	1	0.434	0.297	0.469	0.286	0.212	0.306	0.537
2	M149	0.434	1	0.309	0.309	0.236	0.187	0.258	0.415
3	M515	0.297	0.309	1	0.318	0.171	0.284	0.178	0.243
4	M544	0.469	0.309	0.318	1	0.242	0.270	0.247	0.342
5	M438	0.286	0.236	0.171	0.242	1	0.147	0.690	0.351
6	M148	0.212	0.187	0.284	0.270	0.147	1	0.148	0.180
7	M150	0.306	0.258	0.178	0.247	0.690	0.148	1	0.395
8	M433	0.537	0.415	0.243	0.342	0.351	0.180	0.395	1

CORRELACION POTENCIAL DEL							
SITIO EN ESTUDIO e CON DEMAS							
SEPT	M763	[Correl.]					
SEPT	DIST(dij)	ρ					
M146	25.17	0.35					
M149	9.93	0.58					
M515	25.18	0.35					
M544	34.74	0.28					
M438	54.02	0.20					
M148	57.59	0.19					
M150	49.12	0.22					
M433	28.96	0.32					

		r	MEJOR I	MODELO	D:MODI	ELO INV	ERSO		
	ОСТ	1	2	3	4	5	6	7	8
	ОСТ	M146	M149	M515	M544	M438	M148	M150	M433
1	M146	1	0.494	0.350	0.528	0.338	0.255	0.359	0.596
2	M149	0.494	1	0.362	0.362	0.282	0.226	0.307	0.474
3	M515	0.350	0.362	1	0.372	0.207	0.335	0.216	0.290
4	M544	0.528	0.362	0.372	1	0.289	0.319	0.295	0.398
5	M438	0.338	0.282	0.207	0.289	1	0.180	0.739	0.407
6	M148	0.255	0.226	0.335	0.319	0.180	1	0.181	0.218
7	M150	0.359	0.307	0.216	0.295	0.739	0.181	1	0.453
8	M433	0.596	0.474	0.290	0.398	0.407	0.218	0.453	1

CORR	ELACION PO	TENCIAL		
SITIO ES	STUDIO e CO	ON DEMAS		
ОСТ	M763	[Correl.]		
UCI	DIST(dij)	ρ		
M146	25.17	0.41		
M149	9.93	0.64		
M515	25.18	0.41		
M544	34.74	0.33		
M438	54.02	0.24		
M148	57.59	0.23		
M150	49.12	0.26		
M433	28.96	0.37		

			MEIOD I	MODELO	O-MODI	MEJOR MODELO:MODELO INVERSO										
		1														
NOV		M146	M149	M515	M544	M438	M148	M150	8 M433							
1	M146	1	0.457	0.317	0.491	0.305	0.228	0.326	0.560							
2	M149	0.457	1	0.329	0.328	0.253	0.201	0.276	0.437							
3	M515	0.317	0.329	1	0.338	0.184	0.303	0.192	0.260							
4	M544	0.491	0.328	0.338	1	0.259	0.288	0.265	0.363							
5	M438	0.305	0.253	0.184	0.259	1	0.159	0.709	0.372							
6	M148	0.228	0.201	0.303	0.288	0.159	1	0.160	0.193							
7	M150	0.326	0.276	0.192	0.265	0.709	0.160	1	0.417							
8	M433	0.560	0.437	0.260	0.363	0.372	0.193	0.417	1							

CORR	RELACION PO	TENCIAL
SITIO EN	ESTUDIO e O	ON DEMAS
NOV	M763	[Correl.]
NOV	DIST(dij)	ρ
M146	25.17	0.37
M149	9.93	0.60
M515	25.18	0.37
M544	34.74	0.30
M438	54.02	0.22
M148	57.59	0.21
M150	49.12	0.23
M433	28.96	0.34

		ſ	MEJOR I	MODELO	D:MODI	ELO INV	ERSO		
	DIC	1	1 2 3 4 5		5	6	7	8	
	DIC	M146	M149	M515	M544	M438	M148	M150	M433
1	M146	1	0.516	0.370	0.550	0.358	0.272	0.380	0.617
2	M149	0.516	1	0.383	0.383	0.301	0.242	0.326	0.496
3	M515	0.370	0.383	1	0.393	0.222	0.355	0.231	0.308
4	M544	0.550	0.383	0.393	1	0.308	0.339	0.313	0.420
5	M438	0.358	0.301	0.222	0.308	1	0.193	0.756	0.429
6	M148	0.272	0.242	0.355	0.339	0.193	1	0.195	0.233
7	M150	0.380	0.326	0.231	0.313	0.756	0.195	1	0.475
8	M433	0.617	0.496	0.308	0.420	0.429	0.233	0.475	1

CORF	RELACION PO	TENCIAL
SITIO EN	ESTUDIO e C	ON DEMAS
DIC	M763	[Correl.]
DIC	DIST(dij)	ρ
M146	25.17	0.43
M149	9.93	0.66
M515	25.18	0.43
M544	34.74	0.35
M438	54.02	0.26
M148	57.59	0.25
M150	49.12	0.28
M433	28.96	0.40

Los factores encontrados para cada uno de los meses son los siguientes, con la debida aclaración que en algunos de los meses la sumatoria no resultaba uno. Por lo que a las matrices de la Tabla 4.26, se las debe afectar por el multiplicador de Lagrange, para obtener el resultado deseado:

Tabla 4.27: Factores de pesos interpolación óptima estación Nambacola

			RESUM	EN PESC	OS INTE	RPOLA	CION OP	TIMA		
ORDEN	PESOS	M146	M149	M515	M544	M438	M148	M150	M433	MESES
1	ω	0.033	0.578	0.2	0.054	0.031	0.047	0.032	0.027	ENEROS
2	ω	0.045	0.606	0.216	0.036	0.026	0.044	0.019	0.0077	FEBREROS
3	ω	0.043	0.571	0.207	0.039	0.027	0.053	0.025	0.036	MARZOS
4	ω	0.042	0.554	0.197	0.055	0.028	0.057	0.032	0.035	ABRILES
5	ω	0.055	0.517	0.193	0.058	0.03	0.062	0.04	0.044	MAYOS
6	ω	0.045	0.561	0.199	0.038	0.03	0.06	0.033	0.034	JUNIOS
7	ω	0.068	0.479	0.191	0.06	0.034	0.068	0.048	0.052	JULIOS
8	ω	0.0098	0.65	0.214	0.042	0.032	0.033	0.013	0.0065	AGOSTOS
9	ω	0.061	0.499	0.188	0.057	0.034	0.068	0.047	0.046	SEPTIEMBRES
10	ω	0.062	0.542	0.201	0.045	0.029	0.059	0.038	0.025	OCTUBRES
11	3	0.056	0.512	0.189	0.055	0.049	0.071	0.026	0.043	NOVIEMBRES
12	ω	0.049	0.552	0.2	0.04	0.029	0.06	0.033	0.037	DICIEMBRES

Elaboró: El autor

ii. Método de Kriging

Los nuevos semivariograma (8x8), incluido el factor multiplicador de Lagrange para lograr corregir la sumatoria de pesos a uno para la estación que se muestra como ejemplo de cálculo son los siguientes:

Tabla 4.28: Matriz semivariograma ajustada Estación Nambacola (8 completas)

			MA	TRIZ DE	SEMIVA	RIOGRA	MA					
	MEJOR MODELO: MODELO MONOMICO											
_	NEDOS	1	2	3	4	5	6	7	8	λ		
ENEROS		M146	M149	M515	M544	M438	M148	M150	M433	٨		
1	M146	0	46.839	59.818	44.227	61.168	72.101	58.847	39.481	1		
2	M149	46.839	0	58.481	58.529	68.054	76.898	64.801	48.380	1		
3	M515	59.818	58.481	0	57.520	80.472	61.489	78.842	67.055	1		
4	M544	44.227	58.529	57.520	0	67.148	63.305	66.383	54.929	1		
5	M438	61.168	68.054	80.472	67.148	0	86.534	30.192	54.081	1		
6	M148	72.101	76.898	61.489	63.305	86.534	0	86.236	78.495	1		
7	M150	58.847	64.801	78.842	66.383	30.192	86.236	0	50.083	1		
8	M433	39.481	48.380	67.055	54.929	54.081	78.495	50.083	0	1		
	λ	1	1	1	1	1	1	1	1	0		

SEMIVARIO	GRAMA POTE	NCIAL DEL
SITIO EN ES	STUDIO e COI	N DEMAS
ENERGE	M763	SEMI
ENEROS	DIST(dij)	γ(dej)
M146	25.17	54.002
M149	9.93	36.819
M515	25.18	54.016
M544	34.74	61.663
M438	54.02	73.948
M148	57.59	75.923
M150	49.12	71.109
M433	28.96	57.215
	λ	1

			N	/ATRIZ DE	SEMIVA	ARIOGRAI	MA					
	MEJOR MODELO: MODELO MONÓMICO											
EE	PDEDOC	1	2	3	4	5	6	7	8	λ		
FEBREROS		M146	M149	M515	M544	M438	M148	M150	M433	٨		
1	M146	0	93.339	96.295	92.659	96.569	98.615	96.094	91.328	1		
2	M149	93.339	0	96.018	96.028	97.891	99.428	97.282	93.725	1		
3	M515	96.295	96.018	0	95.815	100.005	96.634	99.745	97.707	1		
4	M544	92.659	96.028	95.815	0	97.724	96.993	97.582	95.254	1		
5	M438	96.569	97.891	100.005	97.724	0	100.935	88.258	95.065	1		
6	M148	98.615	99.428	96.634	96.993	100.935	0	100.891	99.689	1		
7	M150	96.094	97.282	99.745	97.582	88.258	100.891	0	94.139	1		
8	M433	91.328	93.725	97.707	95.254	95.065	99.689	94.139	0	1		
	λ	1	1	1	1	1	1	1	1	0		

SEMIVARIOGE	SEMIVARIOGRAMA POTENCIAL DEL							
SITIO EN EST	UDIO e CON	DEMÁS						
FERREDOC	M763	SEMI						
FEBREROS	DIST(dij)	γ(dej)						
M146	25.17	95.048						
M149	9.93	90.519						
M515	25.18	95.051						
M544	34.74	96.668						
M438	54.02	98.933						
M148	57.59	99.266						
M150	49.12	98.441						
M433	28.96	95.750						
λ		1						

			ı	MATRIZ D	E SEMIVA	RIOGRAM	1A					
	MEJOR MODELO: MODELO MONÓMICO											
N	IADZOS	1 2		3	4	5	6	7	8	λ		
MARZOS		M146	M149	M515	M544	M438	M148	M150	M433	^		
1	M146	0	118.422	122.440	117.499	122.813	125.599	122.167	115.693	1		
2	M149	118.422	0	122.063	122.076	124.613	126.708	123.784	118.946	1		
3	M515	122.440	122.063	0	121.787	127.495	122.901	127.140	124.362	1		
4	M544	117.499	122.076	121.787	0	124.386	123.390	124.191	121.024	1		
5	M438	122.813	124.613	127.495	124.386	0	128.765	111.536	120.767	1		
6	M148	125.599	126.708	122.901	123.390	128.765	0	128.704	127.063	1		
7	M150	122.167	123.784	127.140	124.191	111.536	128.704	0	119.509	1		
8	M433	115.693	118.946	124.362	121.024	120.767	127.063	119.509	0	1		
	λ	1	1	1	1	1	1	1	1	0		

SEMIVARIO	GRAMA POT	SEMIVARIOGRAMA POTENCIAL DEL							
SITIO EN ES	SITIO EN ESTUDIO e CON DEMAS								
NAADZOS	M763	SEMI							
MARZOS	DIST(dij)	γ(dej)							
M146	25.17	120.743							
M149	9.93	114.597							
M515	25.18	120.747							
M544	34.74	122.948							
M438	54.02	126.033							
M148	57.59	126.487							
M150	49.12	125.362							
M433	28.96	121.699							
7		1							

			ľ	MATRIZ [DE SEMIN	/ARIOGF	RAMA					
	MEJOR MODELO: MODELO MONOMICO											
	DDII EC	1	2	3	4 5		6 7		8			
A	BRILES	M146	M149	M515	M544	M438	M148	M150	M433	λ		
1	M146	0	87.104	85.043	87.595	84.858	83.502	85.180	88.574	1.000		
2	M149	87.104	0	85.232	85.225	83.976	82.977	84.379	86.829	1.000		
3	M515	85.043	85.232	0	85.370	82.609	84.814	82.775	84.098	1.000		
4	M544	87.595	85.225	85.370	0	84.086	84.573	84.180	85.756	1.000		
5	M438	84.858	83.976	82.609	84.086	0	82.024	90.931	85.887	1.000		
6	M148	83.502	82.977	84.814	84.573	82.024	0	82.051	82.810	1.000		
7	M150	85.180	84.379	82.775	84.180	90.931	82.051	0	86.535	1.000		
8	M433	88.574	86.829	84.098	85.756	85.887	82.810	86.535	0	1.000		
	λ	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0		

SEMIVARIO	GRAMA POTE	NCIAL DEL
SITIO EN ES	STUDIO e CON	N DEMAS
ADDILEC	M763	SEMI
ABRILES	DIST(dij)	γ(dej)
M146	25.17	85.899
M149	9.93	89.181
M515	25.18	85.897
M544	34.74	84.791
M438	54.02	83.296
M148	57.59	83.081
M150	49.12	83.616
M433	28.96	85.414
7	λ	1

			MA	ATRIZ DE	SEMIVA	RIOGRA	MA						
	MEJOR MODELO: MODELO MONOMICO												
	AAVOC	1	2	3	4	5	6	7	8	,			
IN	//AYOS	M146	M149	M515	M544	M438	M148	M150	M433	λ			
1	M146	0	25.603	25.749	25.568	25.763	25.862	25.739	25.501	1			
2	M149	25.603	0	25.736	25.736	25.827	25.901	25.797	25.622	1			
3	M515	25.749	25.736	0	25.726	25.928	25.766	25.916	25.818	1			
4	M544	25.568	25.736	25.726	0	25.819	25.783	25.812	25.698	1			
5	M438	25.763	25.827	25.928	25.819	0	25.972	25.342	25.689	1			
6	M148	25.862	25.901	25.766	25.783	25.972	0	25.970	25.913	1			
7	M150	25.739	25.797	25.916	25.812	25.342	25.970	0	25.643	1			
8	M433	25.501	25.622	25.818	25.698	25.689	25.913	25.643	0	1			
	λ	1	1	1	1	1	1	1	1	0			

SEMIVARIO	SEMIVARIOGRAMA POTENCIAL DEL							
SITIO EN E	SITIO EN ESTUDIO e CON DEMAS							
MAYOS	M763	SEMI						
MAYOS	DIST(dij)	γ(dej)						
M146	25.17	25.688						
M149	9.93	25.459						
M515	25.18	25.688						
M544	34.74	25.768						
M438	54.02	25.877						
M148	57.59	25.893						
M150	49.12	25.853						
M433	28.96	25.723						
	λ	1						

	MATRIZ DE SEMIVARIOGRAMA												
	MEJOR MODELO: MODELO MONOMICO												
	LINIOC	1	2	3	4	5	6	7	8	,			
J	UNIOS	M146	M149	M515	M544	M438	M148	M150	M433	λ			
1	M146	0	4.259	4.064	4.306	4.046	3.921	4.076	4.400	1			
2	M149	4.259	0	4.081	4.081	3.964	3.873	4.002	4.232	1			
3	M515	4.064	4.081	0	4.094	3.839	4.042	3.854	3.976	1			
4	M544	4.306	4.081	4.094	0	3.975	4.020	3.983	4.130	1			
5	M438	4.046	3.964	3.839	3.975	0	3.786	4.632	4.143	1			
6	M148	3.921	3.873	4.042	4.020	3.786	0	3.788	3.857	1			
7	M150	4.076	4.002	3.854	3.983	4.632	3.788	0	4.204	1			
8	M433	4.400	4.232	3.976	4.130	4.143	3.857	4.204	0	1			
	λ	1	1	1	1	1	1	1	1	0			

SEMIVARIOGRAMA POTENCIAL DEL								
SITIO EN E	STUDIO e CON	DEMAS						
HINIOS	M763	SEMI						
JUNIOS	DIST(dij)	γ(dej)						
M146	25.17	4.144						
M149	9.93	4.460						
M515	25.18	4.144						
M544	34.74	4.040						
M438	54.02	3.902						
M148	57.59	3.882						
M150	49.12	3.931						
M433	28.96	4.098						
	λ	1						

	MATRIZ DE SEMIVARIOGRAMA												
MEJOR MODELO: MODELO MONOMICO													
		1	2	3	4	5	6	7	8	λ			
J	ULIOS	M146	M149	M515	M544	M438	M148	M150	M433				
1	M146	0	1.698	1.584	1.726	1.574	1.502	1.591	1.783	1			
2	M149	1.698	0	1.594	1.594	1.527	1.474	1.548	1.683	1			
3	M515	1.584	1.594	0	1.602	1.456	1.571	1.464	1.533	1			
4	M544	1.726	1.594	1.602	0	1.533	1.559	1.538	1.623	1			
5	M438	1.574	1.527	1.456	1.533	0	1.426	1.925	1.630	1			
6	M148	1.502	1.474	1.571	1.559	1.426	0	1.427	1.466	1			
7	M150	1.591	1.548	1.464	1.538	1.925	1.427	0	1.666	1			
8	M433	1.783	1.683	1.533	1.623	1.630	1.466	1.666	0	1			
	λ	1	1	1	1	1	1	1	1	0			

SEMIVARIO	SEMIVARIOGRAMA POTENCIAL DEL							
SITIO EN E	SITIO EN ESTUDIO e CON DEMAS							
111106	M763	SEMI						
JULIOS	DIST(dij)	γ(dej)						
M146	25.17	1.631						
M149	9.93	1.819						
M515	25.18	1.631						
M544	34.74	1.570						
M438	54.02	1.491						
M148	57.59	1.480						
M150	49.12	1.508						
M433	28.96	1.604						
	λ	1						

			MAT	RIZ DE S	SEMIVA	RIOGRA	AMA					
	MEJOR MODELO: MODELO MONOMICO											
	COTOC	1	2	3	4	5	6	7	8	,		
AC	SOSTOS	M146	M149	M515	M544	M438	M148	M150	M433	λ		
1	M146	0	1.172	1.179	1.170	1.179	1.184	1.178	1.167	1		
2	M149	1.172	0	1.178	1.178	1.182	1.186	1.181	1.173	1		
3	M515	1.179	1.178	0	1.178	1.187	1.179	1.186	1.182	1		
4	M544	1.170	1.178	1.178	0	1.182	1.180	1.182	1.176	1		
5	M438	1.179	1.182	1.187	1.182	0	1.189	1.160	1.176	1		
6	M148	1.184	1.186	1.179	1.180	1.189	0	1.189	1.186	1		
7	M150	1.178	1.181	1.186	1.182	1.160	1.189	0	1.174	1		
8	M433	1.167	1.173	1.182	1.176	1.176	1.186	1.174	0	1		
	λ	1	1	1	1	1	1	1	1	0		

SEMIVARIOGE	SEMIVARIOGRAMA POTENCIAL DEL							
SITIO EN ESTUDIO e CON DEMAS								
ACOSTOS	M763	SEMI						
AGOSTOS	DIST(dij)	γ(dej)						
M146	25.17	1.176						
M149	9.93	1.165						
M515	25.18	1.176						
M544	34.74	1.179						
M438	54.02	1.185						
M148	57.59	1.185						
M150	49.12	1.183						
M433	28.96	1.177						
λ		1						

			MATRI	Z DE SE	MIVARI	OGRAN	1A					
	MEJOR MODELO: MODELO MONOMICO											
CED	TIENADDEC	1	2	3	4	5	6	7	8	λ		
SEPTIEMBRES		M146	M149	M515	M544	M438	M148	M150	M433	٨		
1	M146	0	5.231	4.999	5.286	4.979	4.830	5.015	5.399	1		
2	M149	5.231	0	5.020	5.020	4.882	4.773	4.926	5.199	1		
3	M515	4.999	5.020	0	5.036	4.733	4.974	4.751	4.895	1		
4	M544	5.286	5.020	5.036	0	4.894	4.947	4.904	5.079	1		
5	M438	4.979	4.882	4.733	4.894	0	4.669	5.673	5.093	1		
6	M148	4.830	4.773	4.974	4.947	4.669	0	4.672	4.754	1		
7	M150	5.015	4.926	4.751	4.904	5.673	4.672	0	5.166	1		
8	M433	5.399	5.199	4.895	5.079	5.093	4.754	5.166	0	1		
	λ	1	1	1	1	1	1	1	1	0		

SEMIVARIOGRAMA POTENCIAL DEL						
SITIO EN ESTUDIO e CON DEMAS						
SEPTIEMBRES	M763	SEMI				
SEPTIEIVIBRES	DIST(dij)	γ(dej)				
M146	25.17	5.095				
M149	9.93	5.469				
M515	25.18	5.095				
M544	34.74	4.971				
M438	54.02	4.807				
M148	57.59	4.784				
M150	49.12	4.842				
M433	28.96	5.041				
λ		1				

	MATRIZ DE SEMIVARIOGRAMA											
	MEJOR MODELO: MODELO MONOMICO											
00	TUDDEC	1	2	3	4	5	6	7	8	,		
OC	CTUBRES	M146	M149	M515	M544	M438	M148	M150	M433	λ		
1	M146	0	16.168	16.073	16.190	16.064	16.001	16.079	16.234	1		
2	M149	16.168	0	16.082	16.081	16.023	15.976	16.042	16.155	1		
3	M515	16.073	16.082	0	16.088	15.959	16.062	15.967	16.029	1		
4	M544	16.190	16.081	16.088	0	16.028	16.051	16.033	16.106	1		
5	M438	16.064	16.023	15.959	16.028	0	15.931	16.339	16.112	1		
6	M148	16.001	15.976	16.062	16.051	15.931	0	15.932	15.968	1		
7	M150	16.079	16.042	15.967	16.033	16.339	15.932	0	16.142	1		
8	M433	16.234	16.155	16.029	16.106	16.112	15.968	16.142	0	1		
	λ	1	1	1	1	1	1	1	1	0		

SEMIVARIOGRAMA POTENCIAL DEL								
	SITIO EN ESTUDIO e CON DEMAS							
OCTUBBES	SEMI							
OCTUBRES	DIST(dij)	γ(dej)						
M146	25.17	16.112						
M149	9.93	16.261						
M515	25.18	16.112						
M544	34.74	16.061						
M438	54.02	15.991						
M148	57.59	15.981						
M150	49.12	16.006						
M433	28.96	16.090						
λ	λ 1							

	MATRIZ DE SEMIVARIOGRAMA											
	MEJOR MODELO: MODELO MONOMICO											
NIC	OVIEMBRES	1	2	3	4	5	6	7	8			
INC	VIEWIDKES	M146	M149	M515	M544	M438	M148	M150	M433	λ		
1	M146	0	24.060	23.091	24.293	23.005	22.378	23.155	24.761	1		
2	M149	24.060	0	23.179	23.176	22.596	22.137	22.783	23.930	1		
3	M515	23.091	23.179	0	23.244	21.969	22.985	22.044	22.652	1		
4	M544	24.293	23.176	23.244	0	22.647	22.873	22.691	23.425	1		
5	M438	23.005	22.596	21.969	22.647	0	21.702	25.903	23.486	1		
6	M148	22.378	22.137	22.985	22.873	21.702	0	21.715	22.061	1		
7	M150	23.155	22.783	22.044	22.691	25.903	21.715	0	23.791	1		
8	M433	24.761	23.930	22.652	23.425	23.486	22.061	23.791	0	1		
	λ	1	1	1	1	1	1	1	1	0		

SEMIVARIOGRAMA POTENCIAL DEL							
	SITIO EN ESTUDIO e CON DEMAS						
NOVUENADDES	M763	SEMI					
NOVIEMBRES	DIST(dij)	γ(dej)					
M146	25.17	23.492					
M149	9.93	25.053					
M515	25.18	23.491					
M544	34.74	22.974					
M438	54.02	22.283					
M148	57.59	22.185					
M150	49.12	22.430					
M433	23.265						
λ		1					

	MATRIZ DE SEMIVARIOGRAMA											
	MEJOR MODELO: MODELO MONOMICO											
DIC	CIEMBRES	1	2	3	4	5	6	7	8	λ		
DIC	LIEIVIDRES	M146	M149	M515	M544	M438	M148	M150	M433			
1	M146	0	33.826	36.235	33.284	36.464	38.191	36.069	32.237	1		
2	M149	33.826	0	36.006	36.014	37.575	38.889	37.061	34.135	1		
3	M515	36.235	36.006	0	35.838	39.390	36.518	39.163	37.419	1		
4	M544	33.284	36.014	35.838	0	37.433	36.818	37.313	35.377	1		
5	M438	36.464	37.575	39.390	37.433	0	40.203	29.894	35.222	1		
6	M148	38.191	38.889	36.518	36.818	40.203	0	40.164	39.115	1		
7	M150	36.069	37.061	39.163	37.313	29.894	40.164	0	34.469	1		
8	M433	32.237	34.135	37.419	35.377	35.222	39.115	34.469	0	1		
	λ	1	1	1	1	1	1	1	1	0		

SEMIVARIOGRAMA POTENCIAL DEL							
SITIO EN ESTU	SITIO EN ESTUDIO e CON DEMAS						
DICIEMBRES	M763	SEMI					
DICIEIVIBRES	DIST(dij)	γ(dej)					
M146	25.17	35.208					
M149	9.93	31.610					
M515	25.18	35.210					
M544	34.74	36.547					
M438	54.02	38.464					
M148	57.59	38.750					
M150	49.12	38.042					
M433	35.785						
λ		1					

Los factores encontrados para cada uno de los meses son los siguientes:

Tabla 4.29: Factores de pesos interpolación Krigging estación Nambacola

	RESUMEN PESOS INTERPOLACION KRIGGING										
ORDEN	PESOS	M146	M149	M515	M544	M438	M148	M150	M433	MESES	
1	ω	0.08	0.479	0.223	0.044	0.022	0.049	0.036	0.066	ENEROS	
2	3	0.122	0.181	0.144	0.115	0.101	0.116	0.103	0.118	FEBREROS	
3	ω	0.122	0.185	0.145	0.114	0.1	0.115	0.101	0.118	MARZOS	
4	ω	0.126	0.078	0.108	0.132	0.149	0.131	0.147	0.13	ABRILES	
5	ω	0.125	0.136	0.129	0.123	0.12	0.123	0.12	0.124	MAYOS	
6	ω	0.125	0.03	0.088	0.136	0.177	0.135	0.174	0.135	JUNIOS	
7	ω	0.121	-0.022	0.063	0.138	0.215	0.135	0.21	0.139	JULIOS	
8	ω	0.125	0.136	0.129	0.123	0.12	0.123	0.12	0.124	AGOSTOS	
9	ω	0.125	0.034	0.089	0.136	0.175	0.135	0.172	0.134	SEPTIEMBRES	
10	3	0.125	0.114	0.121	0.127	0.13	0.127	0.13	0.126	OCTUBRES	
11	ω	0.125	0.043	0.093	0.135	0.169	0.134	0.167	0.134	NOVIEMBRES	
12	ω	0.117	0.244	0.163	0.102	0.079	0.103	0.083	0.11	DICIEMBRES	

Elaboró: El autor

4.2. Revisión de datos interpolados

Una vez que se termina de rellenar (completar) y generar los registros a la zona común seleccionada de las tres zonas con los procedimientos señalados en la etapa anterior; se procedió a recalcular los estadísticos de las muestra y demás parámetros calculados inicialmente, con el fin de revisar la influencia de los mismos en el comportamiento de las muestras.

Las tablas siguientes reflejan la evolución de los estadísticos conforme se completaron las estaciones.

Tabla 4.30: Características iniciales generales muestras zona 1

NOMBRE:	SABIANGO	ALAMOR	ZAPOTILLO	SOZORANGA	SAUCILLO
CÓDIGO:	M439	M435	M151	M434	M437
ELEVACIÓN:	700	1250	223	1427	328
INICIA PERIODO	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970
FINALIZA PERIODO	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009
TOTAL DÍAS PERIODO	14610	14610	14610	14610	14610
TOTAL AÑOS PERIODO	40.0	40.0	40.0	40.0	40.0
DIAS CON REGISTRO	12993	13440	11113	12562	13117
DIAS SIN REGISTRO	1617	1170	3497	2048	1493
% FALTANTE	11.1	8.0	23.9	14.0	10.2
Media	3.52	3.92	2.10	3.99	2.30
Desv. Estándar	10.97	12.06	9.94	15.79	10.53
CV	0.32	0.33	0.21	0.25	0.22

Elaboró: El autor

Tabla 4.31: Matriz correlaciones iniciales zona 1

	SABIANGO	ALAMOR	ZAPOTILLO	SOZORANGA	SAUCILLO
CORRELACIONES	M439	M435	M151	M434	M437
SABIANGO M439	1	0.44	0.40	0.50	0.49
ALAMOR M435	0.44	1	0.37	0.33	0.48
ZAPOTILLO M151	0.40	0.37	1	0.25	0.57
SOZORANGA M434	0.50	0.33	0.25	1	0.34
SAUCILLO M437	0.49	0.48	0.57	0.34	1

Tabla 4.32: Tendencias iniciales series zona 1

	SABIANGO	ALAMOR	ZAPOTILLO	SOZORANGA	SAUCILLO
	M439	M435	M151	M434	M437
PEND. AJUSTE	0.004	0.034	0.016	-0.042	0.029

Elaboró: El autor

Tabla 4.33: Días con lluvia iniciales zona 1

	SABIANGO	ALAMOR	ZAPOTILLO	SOZORANGA	SAUCILLO
	M439	M435	M151	M434	M437
PROMEDIO	93	86	35	104	44

Elaboró: El autor

Tabla 4.34: Características finales generales muestras zona 1

rabia 4.54. Caracteristicas infaies generales muestras zona 1											
NOMBRE:	SABIANGO	ALAMOR	ZAPOTILLO	SOZORANGA	SAUCILLO						
CODIGO:	M439	M435	M151	M434	M437						
ELEVACION:	700	1250	223	1427	328						
INICIA PERIODO	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970						
FINALIZA PERIODO	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009						
TOTAL DIAS PERIODO	14610	14610	14610	14610	14610						
TOTAL AÑOS PERIODO	40.0	40.0	40.0	40.0	40.0						
DIAS CON REGISTRO	14610	14610	14610	14610	14610						
DIAS SIN REGISTRO	0	0	0	0	0						
% FALTANTE	0.0	0.0	0.0	0.0	0.0						
Media	3.26	3.64	2.14	3.75	2.25						
Desv. Estándar	10.50	11.63	9.75	15.12	10.26						
CV	0.31	0.31	0.22	0.25	0.22						

Elaboró: El autor

Tabla 4.35: Matriz correlaciones finales zona 1

CORERLACIONES	SABIANGO	ALAMOR	ZAPOTILLO	SOZORANGA	SAUCILLO	
	M439	M435	M151	M434	M437	
SABIANGO M439	1	0.44	0.44	0.56	0.50	
ALAMOR M435	0.44	1	0.40	0.35	0.50	
ZAPOTILLO M151	0.44	0.40	1	0.31	0.67	
SOZORANGA M434	0.56	0.35	0.31	1	0.36	
SAUCILLO M437	0.50	0.50	0.67	0.36	1	

Elaboró: El autor

Tabla 4.36: Tendencias finales series zona 1

	SABIANGO	ALAMOR	ZAPOTILLO	SOZORANGA	SAUCILLO	
	M439	M435	M151	M434	M437	
PEND. AJUSTE	0.019	0.021	0.037	0.008	0.029	

Tabla 4.37: Días con lluvia finales zona 1

	SABIANGO	ALAMOR	ZAPOTILLO	SOZORANGA	SAUCILLO
	M439	M435	M151	M434	M437
PROMEDIO	96	86	48	107	48

Elaboró: El autor

Como se puede observar, las características más representativas del patrón de lluvias en cada una de las estaciones, variaron muy poco a medida que se fueron llenando con los datos interpolados. Las correlaciones entre datos prácticamente no aumentaron con respecto a las iniciales.

Las pendientes de la recta de ajuste sobre los promedios anuales de precipitación diaria, poco variaron y se mantienen prácticamente horizontales. Esto es un gran indicador que después de la interpolación se mantuvo prácticamente el mismo patrón de lluvia al inicial.

Finalmente, los días con lluvia se incrementaron en un máximo de 13 días, para la estación Zapotillo. Alamor permaneció idéntica, y las otras solo aumentaron en 3 días.

Tabla 4.38: Características iniciales generales muestras zona 2

NOMBRE:	САТАСОСНА	COLAISACA	GONZANAMA	CARIAMANGA	CELICA	AMALUZA	EL LUCERO	JIMBURA	NAMBACOLA
CODIGO:	M515	M544	M149	M146	M148	M150	M433	M438	M763
ELEVACION:	1808	2410	2042	1950	1984	1672	1180	2100	1822
INICIA PERIODO	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970
FINALIZA PERIODO	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009
TOTAL DIAS PERIODO	14610	14610	14610	14610	14610	14610	14610	14610	14610
TOTAL AÑOS PERIODO	40	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0
DIAS CON REGISTRO	13020	13114	13777	14146	11369	11845	10747	11872	7583
DIAS SIN REGISTRO	1590	1496	833	464	3241	2765	3863	2738	7027
% FALTANTE	10.9	10.2	5.7	3.2	22.2	18.9	26.4	18.7	48.1
Media	2.53	3.34	3.58	3.73	3.39	2.42	2.99	3.79	2.62
Desv. Estándar	7.92	8.89	9.81	9.87	9.74	7.02	7.33	9.74	8.14
CV	0.32	0.38	0.37	0.38	0.35	0.35	0.41	0.39	0.32

Tabla 4.39: Matriz correlaciones iniciales zona 2

	CATACOCHA	COLAISACA	GONZANAMA	CARIAMANGA	CELICA	AMALUZA	EL LUCERO	JIMBURA	NAMBACOLA
CORRELACIONES	M515	M544	M149	M146	M148	M150	M433	M438	M763
CATACOCHA M515	1	0.40	0.42	0.54	0.49	0.34	0.37	0.53	0.37
COLAISACA M544	0.40	1	0.35	0.46	0.41	0.34	0.33	0.40	0.34
GONZANAMA M149	0.42	0.35	1	0.47	0.34	0.37	0.38	0.48	0.39
CARIAMANGA M146	0.54	0.46	0.47	1	0.43	0.37	0.43	0.54	0.35
CELICA M148	0.49	0.41	0.34	0.43	1	0.30	0.36	0.43	0.31
AMALUZA M150	0.34	0.34	0.37	0.37	0.30	1	0.34	0.42	0.30
EL LUCERO M433	0.37	0.33	0.38	0.43	0.36	0.34	1	0.41	0.27
JIMBURA M438	0.53	0.40	0.48	0.54	0.43	0.42	0.41	1	0.34
NAMBACOLA M763	0.37	0.34	0.39	0.35	0.31	0.30	0.27	0.34	1

Elaboró: El autor

Tabla 4.40: Tendencias iniciales series zona 2

	CATACOCHA	COLAISACA	GONZANAMA	CARIAMANGA	CELICA	AMALUZA	EL LUCERO	JIMBURA	NAMBACOLA
	M515	M544	M149	M146	M148	M150	M433	M438	M763
PEND. AJUSTE	0.017	0.032	0.062	0.043	-0.021	0.013	-0.003	0.031	0.022

Elaboró: El autor

Tabla 4.41: Días con lluvia iniciales zona 2

	CATACOCHA	COLAISACA	GONZANAMA	CARIAMANGA	CELICA	AMALUZA	EL LUCERO	JIMBURA	NAMBACOLA
	M515	M544	M149	M146	M148	M150	M433	M438	M763
PROMEDIO	76	94	81	95	94	72	87	96	45

Tabla 4.42: Características finales generales muestras zona 2

NOMBRE:	САТАСОСНА	COLAISACA	GONZANAMA	CARIAMANGA	CELICA	AMALUZA	EL LUCERO	JIMBURA	NAMBACOLA
CODIGO:	M515	M544	M149	M146	M148	M150	M433	M438	M763
ELEVACION:	1808	2410	2042	1950	1984	1672	1180	2100	1822
INICIA PERIODO	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970
FINALIZA PERIODO	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009
TOTAL DIAS PERIODO	14610	14610	14610	14610	14610	14610	14610	14610	14610
TOTAL AÑOS PERIODO	40	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0
DIAS CON REGISTRO	14610	14610	14610	14610	14610	14610	14610	14610	14610
DIAS SIN REGISTRO	0	0	0	0	0	0	0	0	0
% FALTANTE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Media	2.59	3.32	3.61	3.70	3.33	2.63	2.98	3.65	2.96
Desv. Estándar	7.76	8.70	9.71	9.76	9.17	7.05	7.18	9.23	7.71
CV	0.33	0.38	0.37	0.38	0.36	0.37	0.42	0.40	0.38

Elaboró: El autor

Tabla 4.43: Matriz correlaciones finales zona 2

CORERLACIONES	САТАСОСНА	COLAISACA	GONZANAMA	CARIAMANGA	CELICA	AMALUZA	EL LUCERO	JIMBURA	NAMBACOLA
	M515	M544	M149	M146	M148	M150	M433	M438	M763
CATACOCHA M515	1	0.43	0.44	0.54	0.56	0.41	0.44	0.55	0.58
COLAISACA M544	0.43	1	0.37	0.50	0.48	0.40	0.41	0.45	0.41
GONZANAMA M149	0.44	0.37	1	0.49	0.38	0.41	0.47	0.49	0.62
CARIAMANGA M146	0.54	0.50	0.49	1	0.47	0.44	0.55	0.57	0.52
CELICA M148	0.56	0.48	0.38	0.47	1	0.38	0.44	0.48	0.43
AMALUZA M150	0.41	0.40	0.41	0.44	0.38	1	0.49	0.52	0.41
EL LUCERO M433	0.44	0.41	0.47	0.55	0.44	0.49	1	0.53	0.42
JIMBURA M438	0.55	0.45	0.49	0.57	0.48	0.52	0.53	1	0.49
NAMBACOLA M763	0.58	0.41	0.62	0.52	0.43	0.41	0.42	0.49	1

Elaboró: El autor

Tabla 4.44: Tendencias finales series zona 2

	CATACOCHA	COLAISACA	GONZANAMA	CARIAMANGA	CELICA	AMALUZA	EL LUCERO	JIMBURA	NAMBACOLA
	M515	M544	M149	M146	M148	M150	M433	M438	M763
PEND. AJUSTE	0.01	0.03	0.051	0.040	-0.007	-0.011	0.004	0.01	0.01

Tabla 4.45: Días con lluvia finales zona 2

	CATACOCHA	COLAISACA	GONZANAMA	CARIAMANGA	CELICA	AMALUZA	EL LUCERO	JIMBURA	NAMBACOLA
	M515	M544	M149	M146	M148	M150	M433	M438	M763
PROMEDIO	88	104	90	99	113	91	110	110	95

Elaboró: El autor

Así mismo las características más representativas del patrón de lluvias en cada una de las estaciones, variaron muy poco a medida que se fueron llenando con los datos interpolados. Las pendientes de la recta de ajuste sobre los promedios anuales de precipitación diaria, poco variaron y se mantienen prácticamente horizontales. Esto es un gran indicador que después de la interpolación se mantuvo prácticamente el mismo patrón de lluvia al inicial.

Tabla 4.46: Características iniciales generales muestras zona 3

	ALCARDE										
NOMBRE:	SAN LUCAS	YANGANA	SARAGURO	LA ARGELIA	MALACATOS	VILCABAMBA	QUINARA				
CODIGO:	M432	M147	M142	M033	M143	M144	M145				
ELEVACION:	2525	1835	2525	2160	1453	1563	1559				
INICIA PERIODO	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970				
FINALIZA PERIODO	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009				
TOTAL DIAS PERIODO	14610	14610	14610	14610	14610	14610	14610				
TOTAL AÑOS PERIODO	40.0	40.0	40.0	40.0	40.0	40.0	40.0				
DIAS CON REGISTRO	13318	13701	14107	12779	11865	10464	9630				
DIAS SIN REGISTRO	1292	909	503	1831	2745	4146	4980				
% FALTANTE	8.8	6.2	3.4	12.5	18.8	28.4	34.1				
Media	3.42	3.20	2.27	2.51	1.86	2.39	2.33				
Desv. Estándar	6.28	7.19	4.71	5.41	5.48	6.68	7.13				
CV	0.55	0.44	0.48	0.46	0.34	0.36	0.33				

Tabla 4.47: Matriz correlaciones iniciales zona 3

CORERLACIONES	SAN LUCAS	YANGANA	SARAGURO	LA ARGELIA	MALACATOS	VILCABAMBA	QUINARA
_	M432	M147	M142	M033	M143	M144	M145
SAN LUCAS M432	1	0.25	0.31	0.31	0.21	0.23	0.22
YANGANA M147	0.25	1	0.37	0.43	0.30	0.41	0.43
SARAGURO M142	0.31	0.37	1	0.47	0.36	0.40	0.36
LA ARGELIA M033	0.31	0.43	0.47	1	0.34	0.45	0.42
MALACATOS M143	0.21	0.30	0.36	0.34	1	0.46	0.35
VILCABAMBA M144	0.23	0.41	0.40	0.45	0.46	1	0.56
QUINARA M145	0.22	0.43	0.36	0.42	0.35	0.56	1

Tabla 4.48: Tendencias iniciales series zona 3

	SAN LUCAS INAMHI	YANGANA	SARAGURO	LA ARGELIA-LOJA	MALACATOS	VILCABAMBA	QUINARA INAMHI
	M432	M147	M142	M033	M143	M144	M145
PEND. AJUSTE	0.027	0.016	-0.004	0.001	0.018	0.013	0.041

Elaboró: El autor

Tabla 4.49: Días con lluvia iniciales zona 3

	SAN LUCAS INAMHI	YANGANA	SARAGURO	LA ARGELIA-LOJA	MALACATOS	VILCABAMBA	QUINARA INAMHI
	M432	M147	M142	M033	M143	M144	M145
PROMEDIO	154	120	128	132	63	86	64

Tabla 4.50: Características finales generales muestras zona 3

NOMBRE:	SAN LUCAS INAMHI	YANGANA	SARAGURO	LA ARGELIA-LOJA	MALACATOS	VILCABAMBA	QUINARA INAMHI
CÓDIGO:	M432	M147	M142	M033	M143	M144	M145
ELEVACIÓN:	2525	1835	2525	2160	1453	1563	1559
INICIA PERIODO	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970	01/01/1970
FINALIZA PERIODO	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009	31/12/2009
TOTAL DIAS PERIODO	14610	14610	14610	14610	14610	14610	14610
TOTAL AÑOS PERIODO	40.0	40.0	40.0	40.0	40.0	40.0	40.0
DIAS CON REGISTRO	14610	14610	14610	14610	14610	14610	14610
DIAS SIN REGISTRO	0	0	0	0	0	0	0
% FALTANTE	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Media	3.36	3.14	2.29	2.58	2.06	2.49	2.42
Desv. Estándar	6.16	7.08	4.71	5.33	5.54	6.34	6.46
CV	0.55	0.44	0.49	0.48	0.37	0.39	0.37

Tabla 4.51: Matriz correlaciones finales zona 3

CORERLACIONES	SAN LUCAS INAMHI	YANGANA	SARAGURO	LA ARGELIA-LOJA	MALACATOS	VILCABAMBA	QUINARA INAMHI			
	M432	M147	M142	M033	M143	M144	M145			
CATACOCHA M515	0.23	0.32	0.35	0.35	0.36	0.41	0.39			
COLAISACA M544	0.17	0.23	0.26	0.24	0.29	0.31	0.31			
GONZANAMA M149	0.20	0.32	0.32	0.32	0.39	0.41	0.41			
CARIAMANGA M146	0.23	0.33	0.35	0.34	0.37	0.43	0.43			
CELICA M148	0.20	0.28	0.31	0.28	0.30	0.34	0.34			
AMALUZA M150	0.21	0.26	0.31	0.29	0.34	0.36	0.36			
EL LUCERO M433	0.21	0.27	0.30	0.28	0.36	0.35	0.35			
JIMBURA M438	0.25	0.39	0.40	0.37	0.39	0.46	0.46			
NAMBACOLA M763	0.22	0.31	0.35	0.33	0.37	0.42	0.41			

Tabla 4.52: Tendencias finales series zona 3

	SAN LUCAS INAMHI	YANGANA	SARAGURO	LA ARGELIA-LOJA	MALACATOS	VILCABAMBA	QUINARA INAMHI
	M432	M147	M142	M033	M143	M144	M145
PEND. AJUSTE	0.026	0.011	-0.001	0.007	0.023	0.017	0.015

Tabla 4.53: Días con lluvia finales zona 3

	SAN LUCAS INAMHI	YANGANA	SARAGURO	LA ARGELIA-LOJA	MALACATOS	VILCABAMBA	QUINARA INAMHI
	M432	M147	M142	M033	M143	M144	M145
PROMEDIO	164	124	133	144	89	113	105

Elaboró: El autor

Las características más representativas del patrón de lluvias en cada una de las estaciones, variaron muy poco a medida que se fueron llenando con los datos interpolados. Las pendientes de la recta de ajuste sobre los promedios anuales de precipitación diaria, poco variaron y se mantienen prácticamente horizontales. Esto es un gran indicador que después de la interpolación se mantuvo prácticamente el mismo patrón de lluvia al inicial.

CAPÍTULO 5

ANÁLISIS DE PRECIPITACIONES MÁXIMAS

CAPÍTULO 5 ANÁLISIS DE PRECIPITACIONES MÁXIMAS

Las fases de planeación, diseño, construcción y operación de los aprovechamientos hidráulicos están siempre relacionadas con eventos hidrológicos futuros. La complejidad de los procesos físicos de estos eventos hacen casi imposible tener estimaciones confiables de diseño basadas en las leyes de la mecánica o la física, ya sea porque estos métodos son insuficientes o por que el modelo matemático resultante es muy complicado. Una alternativa en el análisis hidrológico es la aplicación de los conceptos de la teoría de la probabilidad y estadística (Escalante Sandoval & Reyes Chávez, 2005).

El análisis de frecuencias de los gastos máximos anuales se emplea para proveer la magnitud de un evento \hat{Q}_T , de cierto periodo de retorno T, para el diseño de una obra hidráulica, el manejo de las llanuras de inundación, y como ayuda en los procesos de planeación y manejo de las cuencas hidrológicas. Sin embargo, el proyectista no solo debe estimar la magnitud del evento de diseño, sino que también debe proporcionar la probabilidad de excedencia, con el fin de fijar la seguridad del funcionamiento de la obra, o bien el riesgo de falla.

5.1. Precipitaciones Máximas diarias por año

Con todos los registros de las estaciones completos, previa interpolación del capítulo anterior, se procede a determinar, para cada año, la lluvia máxima ocurrida en cada una de las estaciones de las tres zonas. En las tablas siguientes aparecen dichas precipitaciones.

Tabla 5.1: Precipitación máxima diarias anuales zona 1

Nombre:	ALAMOR	SOZORANGA	SABIANGO	SAUCILLO	ZAPOTILLO
Código	M435	M434	M439	M437	M151
Descripción:	Pmáx (mm)				
1970	73.7	27.559584	28.0	26	47.5
1971	60.8	61.3	56.0	105.5	58.9
1972	157.4	102	93.8	85.5	160.3
1973	120.6	81.2	66.0	107.6	132.7
1974	4.91	10	1.2	3.5	3.8
1975	87.9	69.6	100.0	133.2	73.5
1976	90.6	543	159.8	121.7	66.6
1977	110.7	160.3	167.0	155.4	91.8
1978	96.7	117.7	125.0	23	50
1979	65.7	65.5	85.8	45.1	34.5
1980	40.5	173.7	50.0	87.8	107
1981	102.5	41.4	44.0	87.6	85.8
1982	80.5	67.4	89.0	87.3	48.3
1983	147	111.9	80.5	208.2	153.5
1984	94.1	59.4	100.0	97.9	91.2
1985	53.5	45.8	48.7	47.5	61.7
1986	125.7	73.1	120.0	96.4	61.3
1987	88.4	92.3	103.3	76.4	89.6
1988	86.4	40.7	42.5	20.8	17
1989	120.8	103.4	92.7	87.9	86
1990	54.9	20.8	39.4	25	19.4
1991	106.9	82.1	90.0	70.2	40.8
1992	116.5	101.8	124.3	158	137.2
1993	124	112.5	110.0	139	98.4
1994	106.8	62.4	86.0	46.6	41.3
1995	42.4	63.4	53.5	59.2	33.5
1996	57.9	106.6	42.8	55.9	21
1997	111.8	63.3	69.8	82.1	65.3
1998	153.6	112.2	193.2	184.2	160.4
1999	67.7	168.5	116.5	121.5	79.4
2000	68.9	76.7	69.5	106.3	78
2001	109	83.7	90.2	126.8	109.5
2002	91.8	73.4	105.5	127.4	150
2003	91.0	70.4	102.0	40	33.4
2004	127	117.1	57.2	61.9	67.4
2005	79.3	61.5	50.2	127.5	113.3
2006	73.8	89.7	55.2	131.7	113.6
2007	81.4	112.5	100.5	72.8	68.6
2008	100	95.3	81.9	110.7	100.3
2009	75.8	81.6	99.5	93.7	92.0
Media	91.2	95.1	84.8	91.1	78.6

Tabla 5.2: Precipitación máxima diarias anuales zona 2

Nombre:	CARIAMANGA	GONZANAMA	CATACOCHA			CELICA	AMALUZA	EL LUCERO	NAMBACOLA
Código	M146	M149	M515	M544	M438	M148	M150	M433	M763
Descripción:	Pmáx (mm)	Pmáx (mm)	Pmáx (mm)	Pmáx (mm)	Pmáx (mm)	Pmáx (mm)	Pmáx (mm)	Pmáx (mm)	Pmáx (mm)
1970	58.7	47.2	65.0	64.7	50.7	77.8	49.6	46.9	41.6
1971	58.7	101.2	56.6	60.5	53.4	68.8	54.6	79.0	54.2
1972	56.0	32.7	74.4	44.4	51.9	120.4	49.7	74.3	41.1
1973	60.2	50.1	54.1	74.5	51.2	76.2	40.5	102.3	31.1
1974	49.8	47.0	39.6	43.9	49.4	57.3	49.7	48.4	45.5
1975	78.0	60.7	113.1	53.0	49.7	62.5	51.6	68.0	53.3
1976	73.0	51.0	76.4	49.7	65.1	110.7	78.2	48.5	61.3
1977	90.3	51.6	66.5	54.5	55.6	68.1	53.3	61.4	52.2
1978	79.2	70.0	87.4	52.5	56.6	58.0	64.7	55.5	55.7
1979	50.6	45.0	46.6	43.0	55.2	50.8	49.7	36.6	83.0
1980	56.6	52.3	37.1	50.0	45.4	76.5	60.8	48.8	82.0
1981	77.0	52.8	54.2	37.0	63.2	63.2	48.8	52.2	56.7
1982	53.0	91.0	56.0	44.2	69.2	42.8	52.3	78.7	75.0
1983	78.0	62.9	70.4	56.0	103.5	94.5	35.7	87.8	91.0
1984	75.0	77.9	61.5	51.5	79.1	95.5	40.0	60.0	71.3
1985	40.5	50.5	40.6	32.0	50.6	24.0	40.6	44.0	53.2
1986	70.0	45.5	35.0	55.3	91.5	88.0	21.4	65.6	50.2
1987	73.0	19.8	50.6	47.2	80.3	93.5	46.9	35.4	62.2
1988	111.9	41.7	50.0	46.7	94.8	39.1	32.6	100.0	60.0
1989	90.0	53.1	65.0	73.0	73.7	211.0	28.3	54.0	43.7
1990	81.0	50.8	35.0	48.0	44.1	43.0	19.0	27.3	37.8
1991	107.6	76.2	60.3	63.8	52.2	56.6	23.5	28.0	53.4
1992	41.4	61.8	70.8	46.5	87.3	68.0	26.7	21.0	39.6
1993	74.2	67.0	60.0	53.8	68.6	58.0	93.8	35.8	46.6
1994	81.9	80.2	87.0	36.7	59.7	50.5	30.2	22.0	59.8
1995	72.1	52.6	48.5	33.6	68.4	52.8	40.4	23.0	49.5
1996	63.8	76.0	60.5	43.8	80.2	74.8	58.8	20.0	59.2
1997	89.6	72.6	88.0	62.3	69.2	41.5	46.5	33.0	51.0
1998	121.4	65.7	80.8	83.1	122.8	60.0	80.0	31.4	50.1
1999	69.2	67.3	81.0	117.0	100.3	50.9	38.6	34.2	63.5
2000	57.0	58.4	75.0	70.5	77.2	60.5	4.0	32.9	52.2

2001	70.8	87.0	90.2	63.2	61.0	80.4	12.7	24.0	59.6
2002	86.2	90.5	71.5	35.5	70.7	54.3	9.8	20.0	73.1
2003	55.1	41.8	50.0	66.8	49.0	107.2	24.9	17.0	27.7
2004	53.8	58.2	29.3	31.6	50.4	82.3	22.5	19.0	38.5
2005	62.6	88.5	31.0	63.0	34.7	66.5	54.4	29.0	53.1
2006	107.8	121.2	70.1	172.3	60.0	75.9	62.4	65.3	50.9
2007	72.8	81.4	93.3	53.3	68.2	57.8	68.6	61.1	45.5
2008	76.8	151.1	63.6	141.5	95.0	61.9	77.8	46.0	65.0
2009	85.6	160.3	165.4	97.4	61.3	69.7	61.6	81.0	58.0
Media:	72.8	67.8	65.3	60.4	66.8	71.3	45.1	48.0	55.0

Tabla 5.3: Precipitación máxima diarias anuales zona 3

Nombre:	SARAGURO	YANGANA	SAN LUCAS	LA ARGELIA	MALACATOS	VILCABAMBA	QUINARA
Código	M142	M147	M432	M033	M143	M144	M145
Descripción:	Pmáx (mm)	Pmáx (mm)	Pmáx (mm)	Pmáx (mm)	Pmáx (mm)	Pmáx (mm)	Pmáx (mm)
1970	25.2	33.8	64.0	32.2	42.0	28.1	28.3
1971	33.9	19.8	24.6	28.4	40.7	25.6	26.7
1972	29.1	24.9	31.3	56.2	60.6	61.0	42.8
1973	26.0	28.6	165.0	45.3	49.5	51.0	38.5
1974	31.4	47.8	26.1	64.6	33.5	54.8	47.9
1975	44.7	33.5	43.5	28.9	40.4	47.8	36.4
1976	33.9	64.4	32.4	59.4	41.2	50.9	42.0
1977	25.5	28.2	36.9	39.9	47.8	26.7	40.8
1978	40.3	31.3	34.6	63.9	40.8	42.0	32.6
1979	55.2	54.0	29.9	31.7	60.2	42.3	65.0
1980	44.3	50.9	50.8	50.0	54.0	34.4	98.0
1981	50.6	42.1	28.2	39.6	105.0	57.5	63.3
1982	38.2	67.4	47.2	48.2	46.0	32.7	40.1
1983	41.4	87.7	52.6	49.2	48.2	75.8	55.1
1984	57.6	91.8	44.4	65.4	59.1	61.6	44.0
1985	25.0	38.5	36.9	36.6	41.1	32.2	46.3
1986	52.1	64.2	37.6	36.2	32.8	39.8	62.5
1987	27.4	49.9	36.7	50.9	46.5	49.2	41.1
1988	29.9	55.9	59.0	35.1	39.1	43.1	36.1

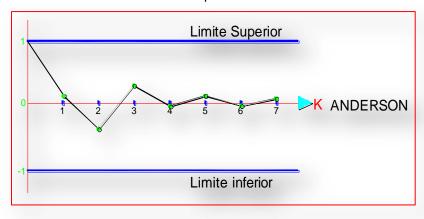
1989	47.7	100.5	38.7	45.9	56.6	51.3	37.7
1990	22.4	43.9	21.7	27.7	39.3	44.0	46.5
1991	24.0	54.7	48.9	59.2	53.5	53.2	46.7
1992	24.5	44.1	48.5	29.1	24.1	44.4	46.4
1993	34.7	55.0	42.6	59.7	28.3	73.4	56.1
1994	24.5	82.4	28.0	53.2	24.0	140.4	60.3
1995	38.2	47.4	31.0	26.6	24.6	76.6	76.0
1996	30.9	54.7	36.3	45.1	26.1	67.5	51.9
1997	25.6	65.4	23.1	24.2	24.2	49.3	54.3
1998	63.5	92.0	47.7	38.7	32.7	45.8	38.9
1999	51.2	44.3	22.4	34.8	37.0	66.2	44.0
2000	35.1	96.6	21.4	46.1	40.6	51.7	54.0
2001	31.7	41.9	23.0	51.6	37.6	28.9	38.0
2002	36.0	50.7	22.3	31.7	29.4	31.8	41.3
2003	31.7	30.6	31.9	38.4	41.2	35.7	34.5
2004	27.6	50.3	34.0	48.6	50.3	38.6	64.3
2005	35.2	41.3	55.0	31.4	92.1	104.6	178.6
2006	27.8	119.6	22.0	39.6	41.8	41.3	50.9
2007	48.6	48.6	20.0	26.6	27.5	30.2	39.8
2008	26.8	61.5	61.3	38.0	44.6	48.0	53.7
2009	31.3	55.4	55.9	35.3	47.1	51.8	60.3
Media:	35.8	54.9	40.4	42.3	43.8	50.8	51.5

5.2. Prueba de independencia de eventos (prueba de Anderson)

Para realizar el análisis de frecuencias se requiere que la muestra Q_j^i de la serie j para i=1,2,...., n_j , esté compuestas por variables aleatorias. Para verificar esto se aplica la prueba de independencia de Anderson⁸, la cual hace uso del coeficiente de autocorrelación serial para diferentes tiempos de retraso k (Salas, Delleur, Yevjevich, & Lane, 1980).

Al determinar que la seria sea aleatoria, garantiza que no exista dependencia entre ciclos largos (que no exista asociación entre variables). Sigue las leyes del azar y que no sean eventos determinísticos es decir que lo de un año no tenga que ver con el otro y así sucesivamente.

La expresión para obtener el coeficiente de autocorrelación serial de retraso k es:


$$r_{k} = \frac{\sum_{t=1}^{n-k} (X_{t} - X)(X_{t+k} - X)}{\sum_{t=1}^{n} (X_{t} - X)^{2}}$$
(5.1)

donde

• K= tiempo de retraso.

$$\bullet \quad X = \sum_{t=1}^{n} \frac{X_t}{n}$$

Gráfico 5.1: Independencia de Anderson

Fuente: El Autor

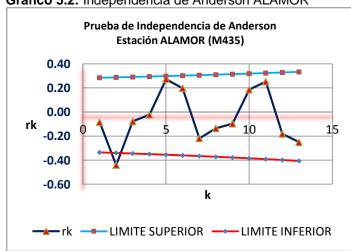
⁸ En base al correlograma, si los datos calculados están dentro de los limites de Anderson se dice que la serie de datos es independiente de lo contrario se dice que tiene problemas de independencia

Los límites al 95% de confianza r_k desde k=1 hasta $k = \frac{n}{3}$ se pueden obtener como:

La gráfica de los valores estimados para $r_{\scriptscriptstyle k}$ (ordenadas) contra los tiempos de retraso k (abscisas), juntos con sus correspondientes límites de confianza, se llama correlograma de la muestra.

Se dice que la serie es independiente si a lo más el 10% de los r_k sobrepasan los límites de confianza.

ZONA 1

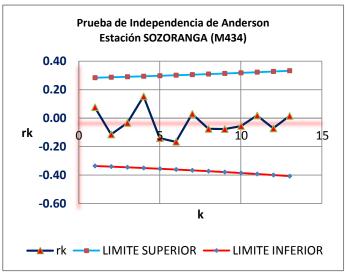

n =

a. Muestra 1 zona 1. (ALAMOR M435)

Tabla 5.4: Correlograma muestra 1 ALAMOR

desde	k =	1	K=tiempo de retraso		
hasta	k =	13	n=tamañ	ío de la mues	tra
	k	Lim. Inf.	rk	Lim. Sup.	
	1	-0.3354	-0.085	0.2842	
	2	-0.3401	-0.441	0.2874	
	3	-0.3449	-0.079	0.2908	
	4	-0.3499	-0.023	0.2943	
	5	-0.3551	0.273	0.2980	
	6	-0.3606	0.198	0.3017	
	7	-0.3663	-0.219	0.3057	
	8	-0.3723	-0.135	0.3098	
	9	-0.3786	-0.097	0.3140	
	10	-0.3852	0.185	0.3185	
	11	-0.3921	0.252	0.3231	
	12	-0.3994	-0.182	0.3280	
	13	-0.4072	-0.251	0.3331	

Gráfico 5.2: Independencia de Anderson ALAMOR

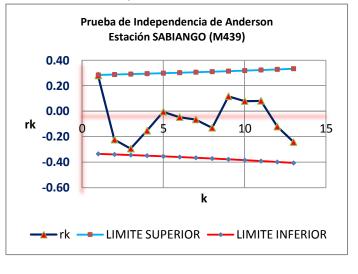

desd hast

b. Muestra 2 zona 1. (SOZORANGA M434)

Tabla 5.5: Correlograma muestra 2 SOZORANGA

	n =	40					
le	k =	1	K=tiempo de retraso				
а	k =	13	n=tamaño	de la muestr	a		
	k	Lim. Inf.	rk	Lim. Sup.			
	1	-0.3354	0.0768	0.2842			
	2	-0.3401	-0.1148	0.2874			
	3	-0.3449	-0.0338	0.2908			
	4	-0.3499	0.1529	0.2943			
	5	-0.3551	-0.1409	0.2980			
	6	-0.3606	-0.1663	0.3017			
	7	-0.3663	0.0305	0.3057			
	8	-0.3723	-0.0757	0.3098			
	9	-0.3786	-0.0770	0.3140			
	10	-0.3852	-0.0557	0.3185			
	11	-0.3921	0.0185	0.3231			
	12	-0.3994	-0.0720	0.3280			
	13	-0.4072	0.0152	0.3331			

Gráfico 5.3: Independencia de Anderson SOZORANGA

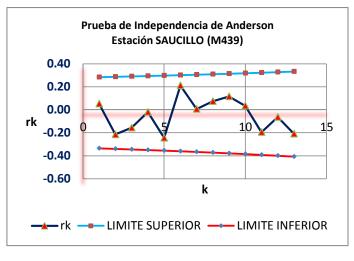


c. Muestra 3 zona 1. (SABIANGO M439)

Tabla 5.6: Correlograma muestra 3 SABIANGO

	n =	40		
desde	k =	1	K=tiemp	o de retraso
hasta	k =	13	n=tamaño	de la muestra
	k	Lim. Inf.	rk	Lim. Sup.
	1	-0.3354	0.2800	0.2842
	2	-0.3401	-0.2235	0.2874
	3	-0.3449	-0.2941	0.2908
	4	-0.3499	-0.1536	0.2943
	5	-0.3551	-0.0046	0.2980
	6	-0.3606	-0.0470	0.3017
	7	-0.3663	-0.0654	0.3057
	8	-0.3723	-0.1307	0.3098
	9	-0.3786	0.1164	0.3140
	10	-0.3852	0.0792	0.3185
	11	-0.3921	0.0809	0.3231
	12	-0.3994	-0.1211	0.3280
	13	-0.4072	-0.2428	0.3331

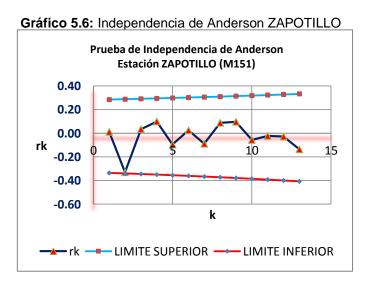
Gráfico 5.4: Independencia de Anderson SABIANGO



d. Muestra 4 zona 1. (SAUCILLO M437)

Tabla 5.7: Correlograma muestra 4 SAUCILLO

		•		
	n=	40		
desde	k =	1	K=tiemp	o de retraso
hasta	k =	13	n=tamaño	de la muestra
	k	Lim. Inf.	rk	Lim. Sup.
	1	-0.3354	0.0530	0.2842
	2	-0.3401	-0.2152	0.2874
	3	-0.3449	-0.1559	0.2908
	4	-0.3499	-0.0195	0.2943
	5	-0.3551	-0.2445	0.2980
	6	-0.3606	0.2114	0.3017
	7	-0.3663	0.0068	0.3057
	8	-0.3723	0.0744	0.3098
	9	-0.3786	0.1161	0.3140
	10	-0.3852	0.0350	0.3185
	11	-0.3921	-0.1945	0.3231
	12	-0.3994	-0.0633	0.3280
	13	-0.4072	-0.2089	0.3331


Gráfico 5.5: Independencia de Anderson SAUCILLO

e. Muestra 5 zona 1. (ZAPOTILLO M151)

Tabla 5.8: Correlograma muestra 5 ZAPOTILLO

			Ī	
	n =	40		
desde	k =	1	K=tiemp	o de retraso
hasta	k =	13	n=tamaño	de la muestra
	k	Lim. Inf.	rk	Lim. Sup.
	1	-0.3354	0.0115	0.2842
	2	-0.3401	-0.3297	0.2874
	3	-0.3449	0.0341	0.2908
	4	-0.3499	0.0997	0.2943
	5	-0.3551	-0.0961	0.2980
	6	-0.3606	0.0244	0.3017
	7	-0.3663	-0.0890	0.3057
	8	-0.3723	0.0881	0.3098
	9	-0.3786	0.0970	0.3140
	10	-0.3852	-0.0571	0.3185
	11	-0.3921	-0.0225	0.3231
	12	-0.3994	-0.0280	0.3280
	13	-0.4072	-0.1362	0.3331

ZONA 2

n =

40

-0.4072

a. Muestra 1 zona 2. (CARIAMANGA M146)

Tabla 5.9: Correlograma muestra 1 CARIAMANGA

desde	k =	1	K=tiempo de retraso		
hasta	k =	13	n=tamaño de la muestra		
	k	Lim. Inf.	rk	Lim. Sup.	
	1	-0.3354	0.1072	0.2842	
	2	-0.3401	-0.1075	0.2874	
	3	-0.3449	0.0244	0.2908	
	4	-0.3499	-0.0003	0.2943	
	5	-0.3551	-0.1010	0.2980	
	6	-0.3606	-0.2492	0.3017	
	7	-0.3663	0.1467	0.3057	
	8	-0.3723	0.1558	0.3098	
	9	-0.3786	-0.0285	0.3140	
	10	-0.3852	0.1233	0.3185	
	11	-0.3921	0.1601	0.3231	
	12	-0.3994	-0.0160	0.3280	

Prueba de Independencia de Anderson
Estación CARIAMANGA

O.40

O.20

rk

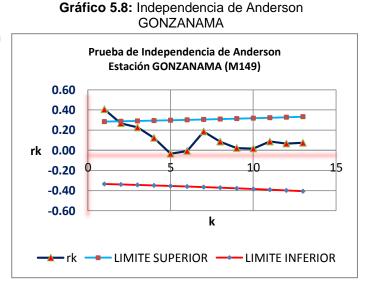
-0.20

O.00

k

rk — LIMITE SUPERIOR — LIMITE INFERIOR

-0.40 -0.60


b. Muestra 2 zona 2. (GONZANAMA M149)

0.3331

Tabla 5.10: Correlograma muestra 2 GONZANAMA

-0.0152

	n =	40		
desde	k =	1	K=tiemp	o de retraso
hasta	k =	13	n=tamaño	de la muestra
	k	Lim. Inf.	rk	Lim. Sup.
	1	-0.3354	0.4063	0.2842
	2	-0.3401	0.2681	0.2874
	3	-0.3449	0.2263	0.2908
	4	-0.3499	0.1226	0.2943
	5	-0.3551	-0.0354	0.2980
	6	-0.3606	-0.0070	0.3017
	7	-0.3663	0.1861	0.3057
	8	-0.3723	0.0851	0.3098
	9	-0.3786	0.0218	0.3140
	10	-0.3852	0.0169	0.3185
	11	-0.3921	0.0862	0.3231
	12	-0.3994	0.0665	0.3280
	13	-0.4072	0.0736	0.3331

10

11

12

13

-0.3852

-0.3921

-0.3994

-0.4072

c. Muestra 3 zona 2. (CATACOCHA M515)

Tabla 5.11: Correlograma muestra 3 CATACOCHA

n =	40		
k =	1	K=tiemp	o de retraso
k =	13	n=tamaño	de la muestr
k	Lim. Inf.	rk	Lim. Sup.
1	-0.3354	0.1488	0.2842
2	-0.3401	0.1020	0.2874
3	-0.3449	0.0506	0.2908
4	-0.3499	-0.2511	0.2943
5	-0.3551	-0.1163	0.2980
6	-0.3606	-0.0246	0.3017
7	-0.3663	-0.0149	0.3057
8	-0.3723	0.1089	0.3098
9	-0.3786	0.0505	0.3140
	k = k = k	k = 1 k = 13 k Lim. Inf. 1 -0.3354 2 -0.3401 3 -0.3449 4 -0.3499 5 -0.3551 6 -0.3606 7 -0.3663 8 -0.3723	k = 1 K=tiemp n=tamaño k = 13 rk 1 -0.3354 0.1488 2 -0.3401 0.1020 3 -0.3449 0.0506 4 -0.3499 -0.2511 5 -0.3551 -0.1163 6 -0.3606 -0.0246 7 -0.3663 -0.0149 8 -0.3723 0.1089

0.0237

-0.0463

-0.0192

-0.0538

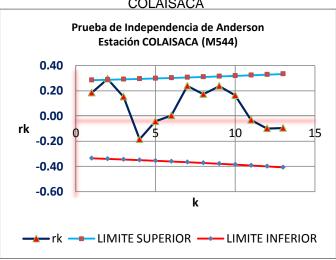

0.3185

0.3231

0.3280

0.3331

Gráfico 5.9: Independencia de Anderson CATACOCHA

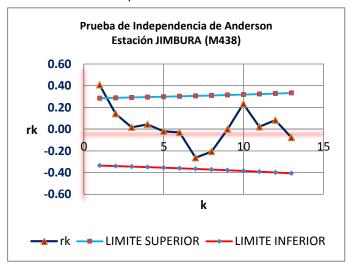


d. Muestra 4 zona 2. (COLAISACA M544)

Tabla 5.12: Correlograma muestra 4 COLAISACA

	n =	40		
desde	k =	1	K=tiemp	o de retraso
hasta	k =	13	n=tamaño	de la muestra
	k	Lim. Inf.	rk	Lim. Sup.
	1	-0.3354	0.1838	0.2842
	2	-0.3401	0.2940	0.2874
	3	-0.3449	0.1516	0.2908
	4	-0.3499	-0.1851	0.2943
	5	-0.3551	-0.0438	0.2980
	6	-0.3606	0.0029	0.3017
	7	-0.3663	0.2373	0.3057
	8	-0.3723	0.1722	0.3098
	9	-0.3786	0.2367	0.3140
	10	-0.3852	0.1631	0.3185
	11	-0.3921	-0.0324	0.3231
	12	-0.3994	-0.0992	0.3280
	13	-0.4072	-0.0964	0.3331

Gráfico 5.10: Independencia de Anderson COLAISACA

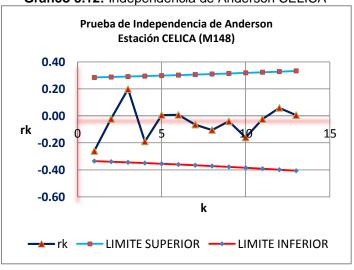


e. Muestra 5 zona 2. (JIMBURA M438)

Tabla 5.13: Correlograma muestra 5 JIMBURA

		_		
	n =	40		
desde	k =	1	K=tiemp	o de retraso
hasta	k =	13	n=tamaño	de la muestra
	k	Lim. Inf.	rk	Lim. Sup.
	1	-0.3354	0.4079	0.2842
	2	-0.3401	0.1426	0.2874
	3	-0.3449	0.0170	0.2908
	4	-0.3499	0.0445	0.2943
	5	-0.3551	-0.0193	0.2980
	6	-0.3606	-0.0306	0.3017
	7	-0.3663	-0.2635	0.3057
	8	-0.3723	-0.2061	0.3098
	9	-0.3786	-0.0005	0.3140
	10	-0.3852	0.2330	0.3185
	11	-0.3921	0.0211	0.3231
	12	-0.3994	0.0827	0.3280
	13	-0.4072	-0.0773	0.3331

Gráfico 5.11: Independencia de Anderson JIMBURA

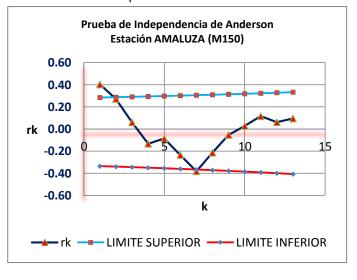


f. Muestra 6 zona 2. (CELICA M148)

Tabla 5.14: Correlograma muestra 6 CELICA

n =	40		
k =	1	K=tiempo de retraso	
k =	13	n=tamaño	de la muestra
k	Lim. Inf.	rk	Lim. Sup.
1	-0.3354	-0.2607	0.2842
2	-0.3401	-0.0228	0.2874
3	-0.3449	0.1982	0.2908
4	-0.3499	-0.1896	0.2943
5	-0.3551	0.0059	0.2980
6	-0.3606	0.0069	0.3017
7	-0.3663	-0.0651	0.3057
8	-0.3723	-0.1052	0.3098
9	-0.3786	-0.0408	0.3140
10	-0.3852	-0.1603	0.3185
11	-0.3921	-0.0244	0.3231
12	-0.3994	0.0587	0.3280
13	-0.4072	0.0050	0.3331
	k = k = k	k = 1 k = 13 k Lim. Inf. 1 -0.3354 2 -0.3401 3 -0.3449 4 -0.3499 5 -0.3551 6 -0.3606 7 -0.3663 8 -0.3723 9 -0.3786 10 -0.3852 11 -0.3921 12 -0.3994	k = 1 K=tiemp k = 13 n=tamaño k Lim. Inf. rk 1 -0.3354 -0.2607 2 -0.3401 -0.0228 3 -0.3449 0.1982 4 -0.3499 -0.1896 5 -0.3551 0.0059 6 -0.3606 0.0069 7 -0.3663 -0.0651 8 -0.3723 -0.1052 9 -0.3786 -0.0408 10 -0.3852 -0.1603 11 -0.3921 -0.0244 12 -0.3994 0.0587

Gráfico 5.12: Independencia de Anderson CELICA

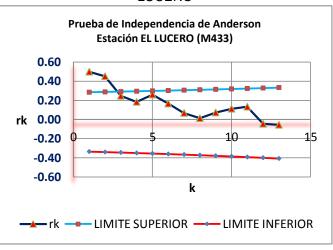


g. Muestra 7 zona 2. (AMALUZA M150)

Tabla 5.15: Correlograma muestra 7 AMALUZA

			-	
	n =	40		
desde	k =	1	K=tiemp	o de retraso
hasta	k =	13	n=tamaño	de la muestra
	k	Lim. Inf.	rk	Lim. Sup.
	1	-0.3354	0.4025	0.2842
	2	-0.3401	0.2720	0.2874
	3	-0.3449	0.0609	0.2908
	4	-0.3499	-0.1328	0.2943
	5	-0.3551	-0.0866	0.2980
	6	-0.3606	-0.2346	0.3017
	7	-0.3663	-0.3815	0.3057
	8	-0.3723	-0.2138	0.3098
	9	-0.3786	-0.0535	0.3140
	10	-0.3852	0.0275	0.3185
	11	-0.3921	0.1159	0.3231
	12	-0.3994	0.0616	0.3280
	13	-0.4072	0.0952	0.3331

Gráfico 5.13: Independencia de Anderson AMALUZA

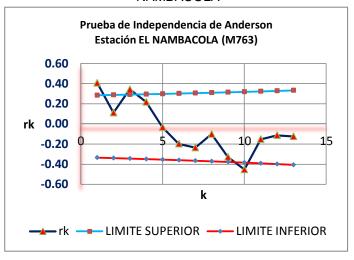


h. Muestra 8 zona 2. (EL LUCERO M433)

Tabla 5.16: Correlograma muestra 8 EL LUCERO

		U		
	n =	40		
desde	k =	1	K=tiemp	o de retraso
hasta	k =	13	n=tamaño	de la muestra
	k	Lim. Inf.	rk	Lim. Sup.
	1	-0.3354	0.4981	0.2842
	2	-0.3401	0.4513	0.2874
	3	-0.3449	0.2462	0.2908
	4	-0.3499	0.1835	0.2943
	5	-0.3551	0.2599	0.2980
	6	-0.3606	0.1660	0.3017
	7	-0.3663	0.0680	0.3057
	8	-0.3723	0.0134	0.3098
	9	-0.3786	0.0724	0.3140
	10	-0.3852	0.1119	0.3185
	11	-0.3921	0.1328	0.3231
	12	-0.3994	-0.0455	0.3280
	13	-0.4072	-0.0559	0.3331

Gráfico 5.14: Independencia de Anderson EL LUCERO



Muestra 9 zona 2. (NAMBACOLA M763)

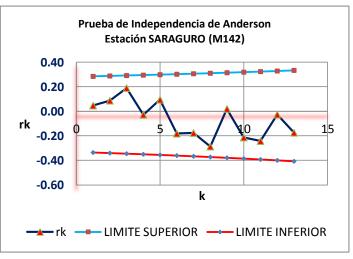
Tabla 5.17: Correlograma muestra 9 NAMBACOLA

	n =	40		
desde	k =	1	K=tiempo de retraso	
hasta	k =	13	n=tamaño	de la muestra
	k	Lim. Inf.	rk	Lim. Sup.
	1	-0.3354	0.4064	0.2842
	2	-0.3401	0.1111	0.2874
	3	-0.3449	0.3428	0.2908
	4	-0.3499	0.2173	0.2943
	5	-0.3551	-0.0333	0.2980
	6	-0.3606	-0.1974	0.3017
	7	-0.3663	-0.2360	0.3057
	8	-0.3723	-0.1020	0.3098
	9	-0.3786	-0.3295	0.3140
	10	-0.3852	-0.4532	0.3185
	11	-0.3921	-0.1525	0.3231
	12	-0.3994	-0.1132	0.3280
	13	-0.4072	-0.1243	0.3331

Gráfico 5.15: Independencia de Anderson **NAMBACOLA**

ZONA 3

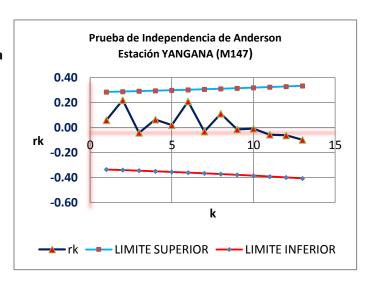
n =


40

a. Muestra 1 zona 3. (SARAGURO M142)

Tabla 5.18: Correlograma muestra 1 SARAGURO

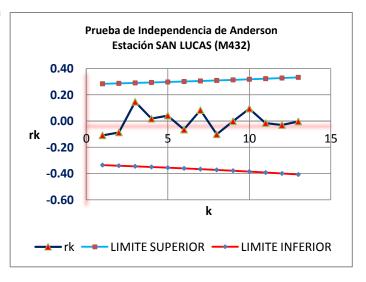
desde	k =	1	K=tiempo de retraso	
hasta	k =	13	n=tamaño de la muestra	
	k	Lim. Inf.	rk	Lim. Sup.
	1	-0.3354	0.0467	0.2842
	2	-0.3401	0.0865	0.2874
	3	-0.3449	0.1890	0.2908
	4	-0.3499	-0.0281	0.2943
	5	-0.3551	0.0943	0.2980
	6	-0.3606	-0.1818	0.3017
	7	-0.3663	-0.1767	0.3057
	8	-0.3723	-0.2871	0.3098
	9	-0.3786	0.0190	0.3140
	10	-0.3852	-0.2135	0.3185
	11	-0.3921	-0.2424	0.3231
	12	-0.3994	-0.0270	0.3280
	13	-0.4072	-0.1745	0.3331
		<u> </u>		


Gráfico 5.16: Independencia de Anderson **SARAGURO**

b. Muestra 2 zona 3. (YANGANA M147)

Tabla 5.19: Correlograma muestra 2 YANGANA **Gráfico 5.17:** Independencia de Anderson YANGANA.

	n =	40		
desde	k =	1	K=tiemp	o de retraso
hasta	k =	13	n=tamaño	de la muestra
	k	Lim. Inf.	rk	Lim. Sup.
	1	-0.3354	0.0592	0.2842
	2	-0.3401	0.2193	0.2874
	3	-0.3449	-0.0421	0.2908
	4	-0.3499	0.0634	0.2943
	5	-0.3551	0.0194	0.2980
	6	-0.3606	0.2088	0.3017
	7	-0.3663	-0.0314	0.3057
	8	-0.3723	0.1106	0.3098
	9	-0.3786	-0.0145	0.3140
	10	-0.3852	-0.0091	0.3185
	11	-0.3921	-0.0569	0.3231
	12	-0.3994	-0.0630	0.3280
	13	-0.4072	-0.0984	0.3331



c. Muestra 3 zona 3. (SAN LUCAS M432)

Tabla 5.20: Correlograma muestra 3 SAN LUCAS

			_	
	n =	40		
desde	k =	1	K=tiemp	o de retraso
hasta	k =	13	n=tamaño	de la muestra
	k	Lim. Inf.	rk	Lim. Sup.
	1	-0.3354	-0.1087	0.2842
	2	-0.3401	-0.0865	0.2874
	3	-0.3449	0.1467	0.2908
	4	-0.3499	0.0178	0.2943
	5	-0.3551	0.0418	0.2980
	6	-0.3606	-0.0653	0.3017
	7	-0.3663	0.0832	0.3057
	8	-0.3723	-0.1009	0.3098
	9	-0.3786	-0.0011	0.3140
	10	-0.3852	0.0946	0.3185
	11	-0.3921	-0.0151	0.3231
	12	-0.3994	-0.0302	0.3280
	13	-0.4072	-0.0032	0.3331

Gráfico 5.18: Independencia de Anderson SAN LUCAS

d. Muestra 4 zona 3. (LA ARGELIA M033)

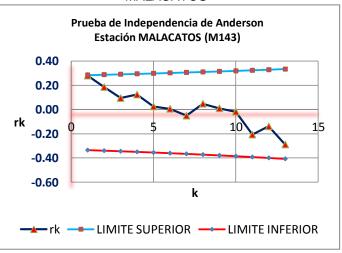
Tabla 5.21: Correlograma muestra 4 LA ARGELIA

	n =	40		
desde	k =	1	K=tiemp	o de retraso
hasta	k =	13	n=tamaño	de la muestra
	k	Lim. Inf.	rk	Lim. Sup.
	1	-0.3354	-0.3077	0.2842
	2	-0.3401	0.3458	0.2874
	3	-0.3449	-0.2156	0.2908
	4	-0.3499	0.1301	0.2943
	5	-0.3551	-0.0299	0.2980
	6	-0.3606	0.0066	0.3017
	7	-0.3663	0.1097	0.3057
	8	-0.3723	-0.0425	0.3098
	9	-0.3786	0.0856	0.3140
	10	-0.3852	0.2121	0.3185
	11	-0.3921	0.0746	0.3231
	12	-0.3994	-0.1191	0.3280
	13	-0.4072	0.0268	0.3331

Prueba de Independencia de Anderson LA ARGELIA

Prueba de Independencia de Anderson Estación LA ARGELIA (M033)

0.40
0.20
0.00
rk
-0.20
-0.40
-0.60
k


LIMITE SUPERIOR — LIMITE INFERIOR

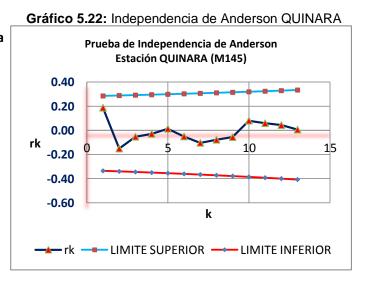
e. Muestra 5 zona 3. (MALACATOS M143)

Tabla 5.22: Correlograma muestra 5 MALACATOS

	n =	40		
desde	k =	1	K=tiemp	o de retraso
hasta	k =	13	n=tamaño	de la muestra
	k	Lim. Inf.	rk	Lim. Sup.
	1	-0.3354	0.2793	0.2842
	2	-0.3401	0.1850	0.2874
	3	-0.3449	0.0941	0.2908
	4	-0.3499	0.1229	0.2943
	5	-0.3551	0.0245	0.2980
	6	-0.3606	0.0055	0.3017
	7	-0.3663	-0.0512	0.3057
	8	-0.3723	0.0474	0.3098
	9	-0.3786	0.0096	0.3140
	10	-0.3852	-0.0185	0.3185
	11	-0.3921	-0.2073	0.3231
	12	-0.3994	-0.1393	0.3280
	13	-0.4072	-0.2892	0.3331

Gráfico 5.20: Independencia de Anderson MALACATOS

f. Muestra 6 zona 3. (VILCABAMBA M144)


Tabla 5.23: Correlograma muestra 6 VILCABAMBA

	n =	40		
desde	k =	1	K=tiempo de retraso	
hasta	k =	13	n=tamaño	de la muestra
	k	Lim. Inf.	rk	Lim. Sup.
	1	-0.3354	0.2611	0.2842
	2	-0.3401	-0.0063	0.2874
	3	-0.3449	-0.0181	0.2908
	4	-0.3499	-0.0970	0.2943
	5	-0.3551	0.0764	0.2980
	6	-0.3606	0.0164	0.3017
	7	-0.3663	-0.1652	0.3057
	8	-0.3723	-0.2050	0.3098
	9	-0.3786	-0.1079	0.3140
	10	-0.3852	0.0709	0.3185
	11	-0.3921	0.3554	0.3231
	12	-0.3994	-0.0362	0.3280
	13	-0.4072	-0.1607	0.3331

g. Muestra 7 zona 3. (QUINARA M145)

Tabla 5.24: Correlograma muestra 7 QUINARA

	n =	40		
desde	k =	1	K=tiempo de retraso	
hasta	k =	13	n=tamaño	de la muestra
	k	Lim. Inf.	rk	Lim. Sup.
	1	-0.3354	0.1868	0.2842
	2	-0.3401	-0.1508	0.2874
	3	-0.3449	-0.0529	0.2908
	4	-0.3499	-0.0294	0.2943
	5	-0.3551	0.0130	0.2980
	6	-0.3606	-0.0509	0.3017
	7	-0.3663	-0.1038	0.3057
	8	-0.3723	-0.0784	0.3098
	9	-0.3786	-0.0564	0.3140
	10	-0.3852	0.0797	0.3185
	11	-0.3921	0.0589	0.3231
	12	-0.3994	0.0427	0.3280
	13	-0.4072	0.0056	0.3331

5.3. Precipitaciones máximas diarias a máximas en 24 horas

La información de precipitación máxima de 24 horas por año determinada anteriormente se dedujo de los registros diarios de precipitación tomadas del INAMHI. Se debe aclarar que estos valores representan lluvia ocurrida en un periodo de 24h (usualmente entre 7am de un día y 7am del siguiente según información del INAMHI). Por ello, para transformarla en lluvia ocurrida en un día exacto (de 0h a 0h), todos los datos deben afectarse por un factor que se encuentra alrededor de 1.13.

F=1.13, es un factor de mayoración que permite transformar los valores diarios en 24 horas fijas a valores en las 24 horas más desfavorables (precipitaciones máximas diarias a máximas en 24 horas). A falta de información se puede aceptar este valor, recomendado y justificado por la Organización Mundial de Meteorología.

Sobre esta información se llevará a cabo un análisis de frecuencias de eventos máximos. La Tabla 5.25, contiene los datos de la información de precipitación máxima diaria anteriormente descrita, pero afectados por el factor de 1.13.

Tabla 5.25: Precipitación máxima en 24 horas anuales zona 1

Nombre:	ALAMOR	SOZORANGA		SAUCILLO	ZAPOTILLO
Código	M435	M434	M439	M437	M151
Descripción:	Pmáx (mm)				
1970	83.3	31.1	31.7	29.4	53.7
1971	68.7	69.3	63.3	119.2	66.6
1972	177.9	115.3	106.0	96.6	181.1
1973	136.3	91.8	74.6	121.6	150.0
1974	5.6	11.3	1.4	4.0	4.3
1975	99.3	78.6	113.0	150.5	83.1
1976	102.4	613.6	180.6	137.5	75.3
1977	125.1	181.2	188.7	175.6	103.7
1978	109.3	133.0	141.3	26.0	56.5
1979	74.2	74.0	97.0	51.0	39.0
1980	45.8	196.3	56.5	99.2	120.9
1981	115.8	46.8	49.7	99.0	97.0
1982	91.0	76.2	100.6	98.6	54.6
1983	166.1	126.4	91.0	235.3	173.5
1984	106.3	67.1	113.0	110.6	103.1
1985	60.5	51.8	55.0	53.7	69.7
1986	142.0	82.6	135.6	108.9	69.3
1987	99.9	104.3	116.7	86.3	101.2
1988	97.6	46.0	48.0	23.5	19.2
1989	136.5	116.8	104.8	99.3	97.2
1990	62.0	23.5	44.5	28.3	21.9
1991	120.8	92.8	101.7	79.3	46.1
1992	131.6	115.0	140.5	178.5	155.0
1993	140.1	127.1	124.3	157.1	111.2
1994	120.7	70.5	97.2	52.7	46.7
1995	47.9	71.6	60.5	66.9	37.9
1996	65.4	120.5	48.4	63.2	23.7
1997	126.3	71.5	78.9	92.8	73.8
1998	173.6	126.8	218.3	208.1	181.3
1999	76.5	190.4	131.6	137.3	89.7
2000	77.9	86.7	78.5	120.1	88.1
2001	123.2	94.6	101.9	143.3	123.7
2002	103.7	82.9	119.2	144.0	169.5
2003	102.8	79.5	115.3	45.2	37.7
2004	143.5	132.3	64.6	69.9	76.2
2005	89.6	69.5	56.7	144.1	128.0
2006	83.4	101.4	62.4	148.8	128.4
2007	92.0	127.1	113.6	82.3	77.5
2008	113.0	107.7	92.5	125.1	113.3
2009	85.7	92.2	112.4	105.9	104.0
Media	103.1	107.4	95.8	103.0	88.8

Tabla 5.26: Precipitación máxima en 24 horas anuales zona 2

Nombre:	CARIAMANGA	GONZANAMA	CATACOCHA			CELICA	AMALUZA	EL LUCERO	NAMBACOLA
Código	M146	M149	M515	M544	M438	M148	M150	M433	M763
Descripción:	Pmáx (mm)	Pmáx (mm)		Pmáx (mm)			Pmáx (mm)	Pmáx (mm)	Pmáx (mm)
1970	66.3	53.3	73.5	73.1	57.3	87.9	56.0	53.0	47.0
1971	66.3	114.4	64.0	68.4	60.3	77.7	61.7	89.3	61.2
1972	63.3	37.0	84.1	50.2	58.6	136.1	56.2	84.0	46.4
1973	68.0	56.6	61.1	84.2	57.9	86.1	45.8	115.6	35.1
1974	56.3	53.1	44.7	49.6	55.8	64.7	56.2	54.7	51.4
1975	88.1	68.6	127.8	59.9	56.2	70.6	58.3	76.8	60.2
1976	82.5	57.6	86.3	56.2	73.6	125.1	88.4	54.8	69.3
1977	102.0	58.3	75.1	61.6	62.8	77.0	60.2	69.4	59.0
1978	89.5	79.1	98.8	59.3	64.0	65.5	73.1	62.7	62.9
1979	57.2	50.9	52.7	48.6	62.4	57.4	56.2	41.4	93.8
1980	64.0	59.1	41.9	56.5	51.3	86.4	68.7	55.1	92.7
1981	87.0	59.7	61.2	41.8	71.4	71.4	55.1	59.0	64.1
1982	59.9	102.8	63.3	49.9	78.2	48.4	59.1	88.9	84.8
1983	88.1	71.1	79.6	63.3	117.0	106.8	40.3	99.2	102.8
1984	84.8	88.0	69.5	58.2	89.4	107.9	45.2	67.8	80.6
1985	45.8	57.1	45.9	36.2	57.2	27.1	45.9	49.7	60.1
1986	79.1	51.4	39.6	62.5	103.4	99.4	24.2	74.1	56.7
1987	82.5	22.4	57.2	53.3	90.7	105.7	53.0	40.0	70.3
1988	126.4	47.1	56.5	52.8	107.1	44.2	36.8	113.0	67.8
1989	101.7	60.0	73.5	82.5	83.3	238.4	32.0	61.0	49.4
1990	91.5	57.4	39.6	54.2	49.8	48.6	21.5	30.8	42.7
1991	121.6	86.1	68.1	72.1	59.0	64.0	26.6	31.6	60.3
1992	46.8	69.8	80.0	52.5	98.6	76.8	30.2	23.7	44.7
1993	83.8	75.7	67.8	60.8	77.5	65.5	106.0	40.5	52.7
1994	92.5	90.6	98.3	41.5	67.5	57.1	34.1	24.9	67.6
1995	81.5	59.4	54.8	38.0	77.3	59.7	45.7	26.0	55.9
1996	72.1	85.9	68.4	49.5	90.6	84.5	66.4	22.6	66.9
1997	101.2	82.0	99.4	70.4	78.2	46.9	52.5	37.3	57.6
1998	137.2	74.2	91.3	93.9	138.8	67.8	90.4	35.5	56.6
1999	78.2	76.0	91.5	132.2	113.3	57.5	43.6	38.6	71.8
2000	64.4	66.0	84.8	79.7	87.2	68.4	4.5	37.2	59.0

2001	80.0	98.3	101.9	71.4	68.9	90.9	14.4	27.1	67.3
2002	97.4	102.3	80.8	40.1	79.9	61.4	11.1	22.6	82.6
2003	62.2	47.2	56.5	75.5	55.4	121.1	28.1	19.2	31.3
2004	60.8	65.8	33.1	35.7	57.0	93.0	25.4	21.5	43.5
2005	70.7	100.0	35.0	71.2	39.2	75.1	61.5	32.8	60.0
2006	121.8	137.0	79.2	194.7	67.8	85.8	70.5	73.8	57.5
2007	82.3	92.0	105.4	60.2	77.1	65.3	77.5	69.0	51.4
2008	86.8	170.7	71.9	159.9	107.4	69.9	87.9	52.0	73.5
2009	96.7	181.1	186.9	110.1	69.3	78.8	69.6	91.5	65.5
Media:	82.2	76.6	73.8	68.3	75.4	80.5	51.0	54.2	62.1

Tabla 5.27: Precipitación máxima en 24 horas anuales zona 3

Nombre:	SARAGURO	YANGANA			MALACATOS		QUINARA
Código	M142	M147	M432	M033	M143	M144	M145
Descripción:	Pmáx (mm)						
1970	28.5	38.2	72.3	36.4	47.5	31.8	32.0
1971	38.3	22.4	27.8	32.1	46.0	28.9	30.2
1972	32.9	28.1	35.4	63.5	68.5	68.9	48.4
1973	29.4	32.3	186.5	51.2	55.9	57.6	43.5
1974	35.5	54.0	29.5	73.0	37.9	61.9	54.1
1975	50.5	37.9	49.2	32.7	45.7	54.0	41.1
1976	38.3	72.8	36.6	67.1	46.6	57.5	47.5
1977	28.8	31.9	41.7	45.1	54.0	30.2	46.1
1978	45.5	35.4	39.1	72.2	46.1	47.5	36.8
1979	62.4	61.0	33.8	35.8	68.0	47.8	73.5
1980	50.1	57.5	57.4	56.5	61.0	38.9	110.7
1981	57.2	47.6	31.9	44.7	118.7	65.0	71.5
1982	43.2	76.2	53.3	54.5	52.0	37.0	45.3
1983	46.8	99.1	59.4	55.6	54.5	85.7	62.3
1984	65.1	103.7	50.2	73.9	66.8	69.6	49.7
1985	28.3	43.5	41.7	41.4	46.4	36.4	52.3
1986	58.9	72.5	42.5	40.9	37.1	45.0	70.6
1987	31.0	56.4	41.5	57.5	52.5	55.6	46.4
1988	33.8	63.2	66.7	39.7	44.2	48.7	40.8

1989	53.9	113.6	43.7	51.9	64.0	58.0	42.6
1990	25.3	49.6	24.5	31.3	44.4	49.7	52.5
1991	27.1	61.8	55.3	66.9	60.5	60.1	52.8
1992	27.7	49.8	54.8	32.9	27.2	50.2	52.4
1993	39.2	62.2	48.1	67.5	32.0	82.9	63.4
1994	27.7	93.1	31.6	60.1	27.1	158.7	68.1
1995	43.2	53.6	35.0	30.1	27.8	86.6	85.9
1996	34.9	61.8	41.0	51.0	29.5	76.3	58.6
1997	28.9	73.9	26.1	27.3	27.3	55.7	61.4
1998	71.8	104.0	53.9	43.7	37.0	51.8	44.0
1999	57.9	50.1	25.3	39.3	41.8	74.8	49.7
2000	39.7	109.2	24.2	52.1	45.9	58.4	61.0
2001	35.8	47.3	26.0	58.3	42.5	32.7	42.9
2002	40.7	57.3	25.2	35.8	33.2	35.9	46.7
2003	35.9	34.6	36.1	43.4	46.6	40.3	39.0
2004	31.2	56.8	38.4	54.9	56.8	43.6	72.7
2005	39.8	46.7	62.2	35.5	104.1	118.2	201.8
2006	31.4	135.1	24.9	44.7	47.2	46.7	57.5
2007	54.9	54.9	22.6	30.1	31.1	34.1	45.0
2008	30.3	69.5	69.3	42.9	50.4	54.2	60.7
2009	35.4	62.6	63.2	39.9	53.2	58.5	68.1
Media:	40.4	62.0	45.7	47.8	49.5	57.4	58.2

		,			
CA	D.	IТ	H	1 (ገ ሬ

CAPÍTULO 6 ANÁLISIS DE FRECUENCIAS DE LLUVIAS MÁXIMAS

CAPÍTULO 6 ANÁLISIS DE FRECUENCIAS DE LLUVIAS MÁXIMAS

Sobre cada una de las 21 muestras de la provincia de Loja se llevó a cabo un análisis estadístico de eventos máximos, con el fin de establecer a qué distribución de probabilidades se ajustaba cada una con mayor precisión. Se estudiaron varias funciones de distribución de probabilidad, con sus parámetros estimados por diferentes métodos. A continuación se resumen las distribuciones empleadas:

- Normal por Momentos
- Normal por Máxima Verosimilitud
- Normal por Momentos-L
- Gumbel por Momentos.
- Gumbel por Máxima Verosimilitud
- Gumbel por Momentos-L
- Gumbel por Máxima Entropía
- Log Normal-2 por Momentos
- Gamma-2 por Momentos
- Gamma-2 por Máxima Verosimilitud
- Gamma-2 por Momentos-L
- Gamma-3 por Momentos
- Gamma-3 por Momentos de Probabilidad Pesada
- General de Valores Extremos por Momentos
- General de Valores Extremos por Máxima Verosimilitud
- General de Valores Extremos por Momentos-L

Cada una de las distribuciones se aplicaron a las 21 muestras, con el fin de determinar la que mejor se adapte, en términos del menor Error Estándar de Ajuste (EEA). A continuación se presenta de manera resumida los resultados obtenidos para cada una de las 21 muestras.

a. ALAMOR (M435)

Tabla 6.1 Estadísticos muéstrales máximos anuales estación Alamor

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	x	103.0809
Varianza	S ²	1,286.2082
Coeficiente de Asimetría	g	-0.1592
Coeficiente de Curtosis	k	3.6120
Desviación Estándar	S	35.8637
Coeficiente de Variación	CV	0.3479
1er. Momento de Probabilidad Pesada	β(0)	103.0809
2do. Momento de Probabilidad Pesada	β(1)	61.6796
3er. Momento de Probabilidad Pesada	β(2)	44.4657
4to. Momento de Probabilidad Pesada	β(3)	35.0030
1er. Momento-L	λ(1)	103.0809
2do. Momento-L	λ(2)	20.2783
3er. Momento-L	λ(3)	-0.2023
4to. Momento-L	λ(4)	3.1620

Elaboró: El autor

Tabla 6.2: Errores de ajuste probados para la estación Alamor

		Error Estándar de Ajuste (EEA) en mm							
ALAMOR	Momentos	Máxima Verosimilitud	Momentos-L	Máxima Entropía	Momentos Prob. Pesada				
Normal	5.406	5.406	5.380	-	-				
Gumbel	9.293	12.516	9.017	10.198	-				
Log Normal 2	25.725	-	-	-	-				
Gamma 2	7.629	10.498	7.552	-	1				
Gamma 3	5.754	-	-	-	8.079				
G.V.E.	5.635	6.642	5.670	-	-				
Mejor distribu	Mejor distribución: NORMAL- por MOMENTOS L								

b. SOZORANGA (M434)

Tabla 6.3: Estadísticos muéstrales máximos anuales estación Sozoranga

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	x	107.4280
Varianza	S ²	8,383.1484
Coeficiente de Asimetría	g	4.5145
Coeficiente de Curtosis	k	27.4039
Desviación Estándar	S	91.5595
Coeficiente de Variación	CV	0.8523
1er. Momento de Probabilidad Pesada	β(0)	107.4280
2do. Momento de Probabilidad Pesada	β(1)	71.0406
3er. Momento de Probabilidad Pesada	β(2)	55.3026
4to. Momento de Probabilidad Pesada	β(3)	46.4433
1er. Momento-L	λ(1)	107.4280
2do. Momento-L	λ(2)	34.6531
3er. Momento-L	λ(3)	13.0000
4to. Momento-L	λ(4)	14.8468

Elaboró: El autor

Tabla 6.4: Errores de ajuste probados para la estación Sozoranga

		Error Estándar de Ajuste (EEA) en mm							
SOZORANGA	Momentos	Máxima	Momentos-L	Máxima	Momentos				
JOZORANGA	Wioiiieiitos	Verosimilitud	Wioinentos-L	Entropía	Prob. Pesada				
Normal	68.332	68.332	65.673	-	-				
Gumbel	58.296	61.233	59.077	59.951	-				
Log Normal 2	53.791	-	-	-	-				
Gamma 2	54.555	58.513	58.858	-	-				
Gamma 3	47.729	-	-	-	52.993				
G.V.E.	50.246		52.149	-	-				
Mejor distribu	ibución: GAMMA 3- por MOMENTOS								

c. SABIANGO (M439)

Tabla 6.5: Estadísticos muéstrales máximos anuales estación Sabiango

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	x	95.7832
Varianza	S ²	1,895.2716
Coeficiente de Asimetría	g	0.5602
Coeficiente de Curtosis	k	4.0337
Desviación Estándar	S	43.5347
Coeficiente de Variación	CV	0.4545
1er. Momento de Probabilidad Pesada	β(0)	95.7832
2do. Momento de Probabilidad Pesada	β(1)	59.9751
3er. Momento de Probabilidad Pesada	β(2)	44.3259
4to. Momento de Probabilidad Pesada	β(3)	35.4915
1er. Momento-L	λ(1)	95.7832
2do. Momento-L	λ(2)	24.1670
3er. Momento-L	λ(3)	1.8880
4to. Momento-L	λ(4)	3.9711

Elaboró: El áutor

Tabla 6.6: Errores de ajuste probados para la estación Sabiango

		Error Estándar de Ajuste (EEA) en mm							
SABIANGO	Momentos	Máxima	Momentos-L	Máxima	Momentos				
JADIANGO	Wioiiieiitos	Verosimilitud	Wioinentos-L	Entropía	Prob. Pesada				
Normal	9.767	9.767	9.922	-	-				
Gumbel	8.887	8.286	8.518	8.142	-				
Log Normal 2	40.995	-	-	-	-				
Gamma 2	8.721	11.017	8.615	-	-				
Gamma 3	8.562	1	-	-	9.507				
G.V.E.	8.493	8.742	8.796	-	-				
Mejor distribu	Mejor distribución: GUMBEL - por MÁXIMA ENTROPIA								

d. SAUCILLO (M437)

Tabla 6.7: Estadísticos muéstrales máximos anuales estación Saucillo

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	Χ̄	102.9656
Varianza	S ²	2,697.3761
Coeficiente de Asimetría	g	0.2834
Coeficiente de Curtosis	k	3.1573
Desviación Estándar	S	51.9363
Coeficiente de Variación	CV	0.5044
1er. Momento de Probabilidad Pesada	β(0)	102.9656
2do. Momento de Probabilidad Pesada	β(1)	66.2964
3er. Momento de Probabilidad Pesada	β(2)	49.3039
4to. Momento de Probabilidad Pesada	β(3)	39.5143
1er. Momento-L	λ(1)	102.9656
2do. Momento-L	λ(2)	29.6272
3er. Momento-L	λ(3)	1.0107
4to. Momento-L	λ(4)	3.7603

Elaboró: El autor

Tabla 6.8: Errores de ajuste probados para la estación Saucillo

	Error Estándar de Ajuste (EEA) en mm				
SAUCILLO	Momentos	Máxima Verosimilitud	Momentos-L	Máxima Entropía	Momentos Prob. Pesada
Normal	7.366	7.366	7.156	1	-
Gumbel	9.643	8.766	8.749	8.568	-
Log Normal 2	33.342	-	-	-	-
Gamma 2	9.274	11.117	8.942	-	-
Gamma 3	6.716	-	-	-	8.998
G.V.E.	6.721	7.097	6.711	-	-
Mejor distribución: GVE - por MOMENTOS L					

e. ZAPOTILLO (M151)

Tabla 6.9: Estadísticos muéstrales máximos anuales estación Zapotillo

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	x	88.8124
Varianza	S ²	2,145.5849
Coeficiente de Asimetría	g	0.3406
Coeficiente de Curtosis	k	2.6877
Desviación Estándar	S	46.3205
Coeficiente de Variación	CV	0.5216
1er. Momento de Probabilidad Pesada	β(0)	88.8124
2do. Momento de Probabilidad Pesada	β(1)	57.7100
3er. Momento de Probabilidad Pesada	β(2)	43.2460
4to. Momento de Probabilidad Pesada	β(3)	34.8217
1er. Momento-L	λ(1)	88.8124
2do. Momento-L	λ(2)	26.6076
3er. Momento-L	λ(3)	2.0287
4to. Momento-L	λ(4)	2.7603

Elaboró: El autor

Tabla 6.10: Errores de ajuste probados para la estación Zapotillo

	Error Estándar de Ajuste (EEA) en mm				
ZAPOTILLO	Momentos	Máxima M	Momentos-L	Máxima	Momentos
		Verosimilitud		Entropía	Prob. Pesada
Normal	6.964	6.964	6.696	-	-
Gumbel	8.521	7.432	7.649	7.551	1
Log Normal 2	25.338	-	-	1	1
Gamma 2	8.054	8.722	7.721	1	1
Gamma 3	6.016	-	-	-	6.460
G.V.E.	5.669	6.454	5.317	-	-
Mejor distribución: GVE - por MOMENTOS L					

f. CARIAMANGA (M146)

Tabla 6.11: Estadísticos muéstrales máximos anuales estación Cariamanga

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	x	82.2123
Varianza	S ²	442.6462
Coeficiente de Asimetría	g	0.6388
Coeficiente de Curtosis	k	3.5318
Desviación Estándar	S	21.0392
Coeficiente de Variación	CV	0.2559
1er. Momento de Probabilidad Pesada	β(0)	82.2123
2do. Momento de Probabilidad Pesada	β(1)	46.9973
3er. Momento de Probabilidad Pesada	β(2)	33.5144
4to. Momento de Probabilidad Pesada	β(3)	26.2749
1er. Momento-L	λ(1)	82.2123
2do. Momento-L	λ(2)	11.7823
3er. Momento-L	λ(3)	1.3149
4to. Momento-L	λ(4)	1.8220

Elaboró: El autor

Tabla 6.12: Errores de ajuste probados para la estación Cariamanga

	Error Estándar de Ajuste (EEA) en mm					
CARIANANICA	Momentos	Máxima	Momentos-L	Máxima	Momentos	
CAMANIANGA	Wioiiieiitos	Verosimilitud	WIOIIIEIILOS-L	Entropía	Prob. Pesada	
Normal	4.508	4.508	4.543	1	1	
Gumbel	3.581	3.051	3.276	3.192	-	
Log Normal 2	3.532	-	1	1	ı	
Gamma 2	3.517	3.745	3.511	1	-	
Gamma 3	3.456	-	1	1	3.562	
G.V.E.	3.389	3.569	3.339	ı	1	
Mejor distribución: GUMBEL - por MÁXIMA VEROSIMILITUD						

g. GONZANAMA (M149)

Tabla 6.13: Estadísticos muéstrales máximos anuales estación Gonzanamá

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	x	76.6315
Varianza	S ²	1,026.0438
Coeficiente de Asimetría	g	1.5806
Coeficiente de Curtosis	k	6.3660
Desviación Estándar	S	32.0319
Coeficiente de Variación	CV	0.4180
1er. Momento de Probabilidad Pesada	β(0)	76.6315
2do. Momento de Probabilidad Pesada	β(1)	46.5866
3er. Momento de Probabilidad Pesada	β(2)	34.5666
4to. Momento de Probabilidad Pesada	β(3)	27.9241
1er. Momento-L	λ(1)	76.6315
2do. Momento-L	λ(2)	16.5416
3er. Momento-L	λ(3)	4.5119
4to. Momento-L	λ(4)	3.8900

Elaboró: El autor

Tabla 6.14: Errores de ajuste probados para la estación Gonzanamá

		Error Estándar de Ajuste (EEA) en mm					
GONZANAMA	Momentos	Máxima Verosimilitud	Momentos-L	Máxima Entropía	Momentos Prob. Pesada		
Normal	12.608	12.608	12.796	-	-		
Gumbel	8.320	9.307	8.755	9.121	-		
Log Normal 2	8.664	-	-	-	-		
Gamma 2	9.199	10.081	9.847	-	-		
Gamma 3	7.622	-	-	-	7.111		
G.V.E.	7.885	8.581	7.258	1	1		
Mejor distribución: GAMMA 3 - por MOMENTOS DE PROB. PESADA							

h. CATACOCHA (M515)

Tabla 6.15: Estadísticos muéstrales máximos anuales estación Catacocha

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	χ	73.7712
Varianza	S ²	795.1323
Coeficiente de Asimetría	g	1.6871
Coeficiente de Curtosis	k	8.5902
Desviación Estándar	S	28.1981
Coeficiente de Variación	CV	0.3822
1er. Momento de Probabilidad Pesada	β(0)	73.7712
2do. Momento de Probabilidad Pesada	β(1)	44.2391
3er. Momento de Probabilidad Pesada	β(2)	32.3526
4to. Momento de Probabilidad Pesada	β(3)	25.8311
1er. Momento-L	λ(1)	73.7712
2do. Momento-L	λ(2)	14.7069
3er. Momento-L	λ(3)	2.4523
4to. Momento-L	λ(4)	3.1410

Elaboró: El autor

Tabla 6.16: Errores de ajuste probados para la estación Catacocha

	Error Estándar de Ajuste (EEA) en mm					
САТАСОСНА	Momentos	Máxima Verosimilitud	Momentos-L	Máxima Entropía	Momentos Prob. Pesada	
Normal	10.660	10.660	10.825	-	-	
Gumbel	7.956	8.342	8.202	8.326	-	
Log Normal 2	8.425	-	-	1	-	
Gamma 2	8.618	9.171	9.005	1	1	
Gamma 3	8.141	-	-	1	8.520	
G.V.E.	7.780	8.114	8.352	1	1	
Mejor distribución: GVE - por MOMENTOS						

i. COLAISACA (M544)

Tabla 6.17: Estadísticos muéstrales máximos anuales estación Colaisaca

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	x	68.2887
Varianza	S ²	1,031.0158
Coeficiente de Asimetría	g	2.3959
Coeficiente de Curtosis	k	9.6524
Desviación Estándar	S	32.1094
Coeficiente de Variación	CV	0.4702
1er. Momento de Probabilidad Pesada	β(0)	68.2887
2do. Momento de Probabilidad Pesada	β(1)	41.6795
3er. Momento de Probabilidad Pesada	β(2)	31.2723
4to. Momento de Probabilidad Pesada	β(3)	25.5631
1er. Momento-L	λ(1)	68.2887
2do. Momento-L	λ(2)	15.0702
3er. Momento-L	λ(3)	5.8457
4to. Momento-L	λ(4)	4.9577

Elaboró: El autor

Tabla 6.18: Errores de ajuste probados para la estación Colaisaca

	Error Estándar de Ajuste (EEA) en mm					
COLAISACA	Momentos	Máxima Verosimilitud	Momentos-L	Máxima Entropía	Momentos Prob. Pesada	
Normal	17.259	17.259	17.236	-	-	
Gumbel	12.298	15.324	13.127	14.060	-	
Log Normal						
2	13.960	-	-	-	-	
Gamma 2	13.026	14.545	14.234	-	-	
Gamma 3	9.091	-	-	-	8.582	
G.V.E.	10.460	9.987	9.377	-	-	
Mejor distribución: GAMMA 3 - por MOMENTOS DE PROB. PESADA						

j. JIMBURA (M438)

Tabla 6.19: Estadísticos muéstrales máximos anuales estación Jimbura

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	x	75.4396
Varianza	S ²	459.0877
Coeficiente de Asimetría	g	0.9487
Coeficiente de Curtosis	k	3.8609
Desviación Estándar	S	21.4263
Coeficiente de Variación	CV	0.2840
1er. Momento de Probabilidad Pesada	β(0)	75.4396
2do. Momento de Probabilidad Pesada	β(1)	43.6438
3er. Momento de Probabilidad Pesada	β(2)	31.4887
4to. Momento de Probabilidad Pesada	β(3)	24.8923
1er. Momento-L	λ(1)	75.4396
2do. Momento-L	λ(2)	11.8479
3er. Momento-L	λ(3)	2.5094
4to. Momento-L	λ(4)	1.4687

Elaboró: El autor

Tabla 6.20: Errores de ajuste probados para la estación Jimbura

	Error Estándar de Ajuste (EEA) en mm				
JIMBURA	Momentos	Máxima	Momentos-L	Máxima	Momentos
JIMBOKA	Wiementos	Verosimilitud	Wiomentos E	Entropía	Prob. Pesada
Normal	5.896	5.896	5.955	-	1
Gumbel	3.338	3.688	3.099	3.505	-
Log Normal 2	4.080	-	-	-	1
Gamma 2	4.141	4.631	4.221	-	1
Gamma 3	3.385	-	-	-	2.593
G.V.E.			2.947	-	-
Mejor distribución: GAMMA 3 - por MOMENTOS DE PROB. PESADA					

k. CELICA (M148)

Tabla 6.21: Estadísticos muéstrales máximos anuales estación Celica

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	x	80.5492
Varianza	S ²	1,183.4780
Coeficiente de Asimetría	g	2.6135
Coeficiente de Curtosis	k	13.6233
Desviación Estándar	S	34.4017
Coeficiente de Variación	CV	0.4271
1er. Momento de Probabilidad Pesada	β(0)	80.5492
2do. Momento de Probabilidad Pesada	β(1)	48.4880
3er. Momento de Probabilidad Pesada	β(2)	35.8313
4to. Momento de Probabilidad Pesada	β(3)	28.9254
1er. Momento-L	λ(1)	80.5492
2do. Momento-L	λ(2)	16.4268
3er. Momento-L	λ(3)	4.6090
4to. Momento-L	λ(4)	4.8756

Elaboró: El autor

Tabla 6.22: Errores de ajuste probados para la estación Celica

	Error Estándar de Ajuste (EEA) en mm				
CELICA	Momentos	Máxima Verosimilitud	Momentos-L	Máxima Entropía	Momentos Prob. Pesada
Normal	17.531	17.531	17.591	-	-
Gumbel	13.421	14.587	14.108	14.403	-
Log Normal 2	14.351	-	-	-	-
Gamma 2	14.375	15.288	15.258	-	-
Gamma 3	12.288	-	-	-	12.597
G.V.E.	12.055		12.317	-	1
Mejor distribu	Mejor distribución: GVE - por MOMENTOS				

I. AMALUZA (M150)

Tabla 6.23: Estadísticos muéstrales máximos anuales estación Amaluza

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	χ	50.9956
Varianza	S ²	522.9321
Coeficiente de Asimetría	g	0.1354
Coeficiente de Curtosis	k	3.0272
Desviación Estándar	S	22.8677
Coeficiente de Variación	CV	0.4484
1er. Momento de Probabilidad Pesada	β(0)	50.9956
2do. Momento de Probabilidad Pesada	β(1)	32.0250
3er. Momento de Probabilidad Pesada	β(2)	23.5479
4to. Momento de Probabilidad Pesada	β(3)	18.7462
1er. Momento-L	λ(1)	50.9956
2do. Momento-L	λ(2)	13.0544
3er. Momento-L	λ(3)	0.1330
4to. Momento-L	λ(4)	1.7920

Elaboró: El autor

Tabla 6.24: Errores de ajuste probados para la estación Amaluza

	Error Estándar de Ajuste (EEA) en mm					
AMALUZA	Momentos	Máxima Verosimilitud	Momentos-L	Máxima Entropía	Momentos Prob. Pesada	
Normal	2.932	2.932	2.819	-	-	
Gumbel	4.786	4.827	4.468	4.508	-	
Log Normal 2	10.985	-	1	-	-	
Gamma 2	4.276	4.773	4.167	-	-	
Gamma 3	2.903	-	1	-	4.205	
G.V.E.	2.931	3.070	2.912	-	-	
Mejor distribución: NORMAL - por MOMENTOS L						

m. EL LUCERO (M433)

Tabla 6.25: Estadísticos muéstrales máximos anuales estación El Lucero

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	Χ̄	54.1948
Varianza	S ²	690.1506
Coeficiente de Asimetría	g	0.6378
Coeficiente de Curtosis	k	2.7763
Desviación Estándar	S	26.2707
Coeficiente de Variación	CV	0.4847
1er. Momento de Probabilidad Pesada	β(0)	54.1948
2do. Momento de Probabilidad Pesada	β(1)	34.5780
3er. Momento de Probabilidad Pesada	β(2)	25.9439
4to. Momento de Probabilidad Pesada	β(3)	20.9198
1er. Momento-L	λ(1)	54.1948
2do. Momento-L	λ(2)	14.9612
3er. Momento-L	λ(3)	2.3905
4to. Momento-L	λ(4)	0.8188

Elaboró: El autor

Tabla 6.26: Errores de ajuste probados para la estación El Lucero

	Error Estándar de Ajuste (EEA) en mm					
EL LUCERO	Momentos	Máxima	Momentos-L	Máxima	Momentos	
EL LOCERO	wioinentos	Verosimilitud	Monitelitos-L	Entropía	Prob. Pesada	
Normal	6.054	6.054	6.016	1	1	
Gumbel	4.182	4.300	3.609	4.013	-	
Log Normal 2	4.286	-	-	-	-	
Gamma 2	3.692	3.872	3.242	-	-	
Gamma 3	4.052	-	-	-	3.231	
G.V.E.	3.954	4.337	3.604	-	-	
Mejor distribución: GAMMA 3 - por MOMENTOS PROB. PESADA						

n. NAMBACOLA (M763)

Tabla 6.27: Estadísticos muéstrales máximos anuales estación Nambacola.

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	x	62.1042
Varianza	S ²	235.0257
Coeficiente de Asimetría	g	0.5771
Coeficiente de Curtosis	k	3.7939
Desviación Estándar	S	15.3305
Coeficiente de Variación	CV	0.2469
1er. Momento de Probabilidad Pesada	β(0)	62.1042
2do. Momento de Probabilidad Pesada	β(1)	35.3086
3er. Momento de Probabilidad Pesada	β(2)	25.1061
4to. Momento de Probabilidad Pesada	β(3)	19.6687
1er. Momento-L	λ(1)	62.1042
2do. Momento-L	λ(2)	8.5129
3er. Momento-L	λ(3)	0.8894
4to. Momento-L	λ(4)	1.7894

Elaboró: El autor

Tabla 6.28: Errores de ajuste probados para la estación Nambacola

	Error Estándar de Ajuste (EEA) en mm					
NAMBACOLA	Momentos	Máxima Verosimilitud	Momentos-L	Máxima Entropía	Momentos Prob. Pesada	
Normal	3.179	3.179	3.241	-	-	
Gumbel	2.687	2.314	2.518	2.336	-	
Log Normal 2	2.595	-	-	-	-	
Gamma 2	2.606	2.697	2.653	-	-	
Gamma 3	2.604	-	-	-	2.771	
G.V.E.	2.542	2.702	2.567	-	1	
Mejor distribución: GUMBEL - por MÁXIMA VEROSIMILITUD			D			

o. SARAGURO (M142)

Tabla 6.29: Estadísticos muéstrales máximos anuales estación Saraguro

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	x	40.4192
Varianza	S ²	145.3095
Coeficiente de Asimetría	g	0.8925
Coeficiente de Curtosis	k	3.0705
Desviación Estándar	S	12.0544
Coeficiente de Variación	CV	0.2982
1er. Momento de Probabilidad Pesada	β(0)	40.4192
2do. Momento de Probabilidad Pesada	β(1)	23.5658
3er. Momento de Probabilidad Pesada	β(2)	17.0961
4to. Momento de Probabilidad Pesada	β(3)	13.5501
1er. Momento-L	λ(1)	40.4192
2do. Momento-L	λ(2)	6.7124
3er. Momento-L	λ(3)	1.6009
4to. Momento-L	λ(4)	0.4893

Elaboró: El autor

Tabla 6.30: Errores de ajuste probados para la estación Saraguro

	Error Estándar de Ajuste (EEA) en mm					
CARACURO	Momentos	Máxima	Momentos-L	Máxima	Momentos	
SARAGURO		Verosimilitud		Entropía	Prob. Pesada	
Normal	3.586	3.586	3.601	-	-	
Gumbel	2.150	2.739	2.010	2.366	-	
Log Normal 2	2.506	-	-	-	-	
Gamma 2	2.511	2.805	2.519	-	-	
Gamma 3	2.145	-	-	-	1.566	
G.V.E.	2.182	2.954	2.043	-	-	
Mejor distribución: GUMBEL - por MOMENTOS L						

p. YANGANA (M147)

Tabla 6.31: Estadísticos muéstrales máximos anuales estación Yangana

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	Χ̄	62.0247
Varianza	S ²	655.3078
Coeficiente de Asimetría	g	0.9998
Coeficiente de Curtosis	k	3.8795
Desviación Estándar	S	25.5990
Coeficiente de Variación	CV	0.4127
1er. Momento de Probabilidad Pesada	β(0)	62.0247
2do. Momento de Probabilidad Pesada	β(1)	38.0081
3er. Momento de Probabilidad Pesada	β(2)	28.1523
4to. Momento de Probabilidad Pesada	β(3)	22.6542
1er. Momento-L	λ(1)	62.0247
2do. Momento-L	λ(2)	13.9916
3er. Momento-L	λ(3)	2.8898
4to. Momento-L	λ(4)	2.5878

Elaboró: El autor

Tabla 6.32: Errores de ajuste probados para la estación Yangana

	Error Estándar de Ajuste (EEA) en mm					
YANGANA	Momentos	Máxima Verosimilitud	Momentos-L	Máxima Entropía	Momentos Prob. Pesada	
Normal	7.466	7.466	7.571	-	-	
Gumbel	4.677	5.158	4.563	4.937	-	
Log Normal 2	4.667	-	-	-	-	
Gamma 2	4.958	5.527	5.066	-	-	
Gamma 3	15.664	-	-	-	4.182	
G.V.E.			4.413	-	-	
Mejor distribución: GAMMA 3 - por MOMENTOS PROB. PESADA						

q. SAN LUCAS (M432)

Tabla 6.33: Estadísticos muéstrales máximos anuales estación San Lucas

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	Χ̄	45.6924
Varianza	S ²	716.2543
Coeficiente de Asimetría	g	3.8745
Coeficiente de Curtosis	k	22.5028
Desviación Estándar	S	26.7629
Coeficiente de Variación	CV	0.5857
1er. Momento de Probabilidad Pesada	β(0)	45.6924
2do. Momento de Probabilidad Pesada	β(1)	28.5205
3er. Momento de Probabilidad Pesada	β(2)	21.5647
4to. Momento de Probabilidad Pesada	β(3)	17.6746
1er. Momento-L	λ(1)	45.6924
2do. Momento-L	λ(2)	11.3485
3er. Momento-L	λ(3)	3.9579
4to. Momento-L	λ(4)	3.1039

Elaboró: El autor

Tabla 6.34: Errores de ajuste probados para la estación San Lucas

	Error Estándar de Ajuste (EEA) en mm					
CANLLICAC		Máxima	Momentos	Máxima	Momentos	
SAN LUCAS	Momentos	Verosimilitud	Momentos-L	Entropía	Prob. Pesada	
Normal	17.828	17.828	17.384	-	-	
Gumbel	14.723	16.159	15.080	15.562	-	
Log Normal 2	15.405	-	-	-	-	
Gamma 2	14.672	15.667	15.495	-	-	
Gamma 3	12.974	-	-	-	13.296	
G.V.E.	12.907	12.541	13.163	-	1	
Mejor distribución: GVE - por MÁXIMA VEROSIMILITUD						

r. LA ARGELIA (M033)

Tabla 6.35: Estadísticos muéstrales máximos anuales estación La Argelia

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	Χ̄	47.8329
Varianza	S ²	176.6838
Coeficiente de Asimetría	g	0.4021
Coeficiente de Curtosis	k	2.3082
Desviación Estándar	S	13.2922
Coeficiente de Variación	CV	0.2779
1er. Momento de Probabilidad Pesada	β(0)	47.8329
2do. Momento de Probabilidad Pesada	β(1)	27.7503
3er. Momento de Probabilidad Pesada	β(2)	19.9174
4to. Momento de Probabilidad Pesada	β(3)	15.6315
1er. Momento-L	λ(1)	47.8329
2do. Momento-L	λ(2)	7.6678
3er. Momento-L	λ(3)	0.8352
4to. Momento-L	λ(4)	0.2797

Elaboró: El autor

Tabla 6.36: Errores de ajuste probados para la estación La Argelia

		Error Estánda	r de Ajuste (El	EA) en mn	1	
LA ARGELIA	Momentos	Máxima Verosimilitud	Momentos-L	Máxima Entropía	Momentos Prob. Pesada	
Normal	2.597	2.597	2.539	-	-	
Gumbel	2.646	2.459	2.423	2.459	-	
Log Normal 2	2.285	-	-	-	-	
Gamma 2	2.119	2.218	1.989	-	-	
Gamma 3	2.197	-	-	-	2.078	
G.V.E.	2.084	2.324	2.030	-	-	
Mejor distribu	ıción:	GVE - por MOI	MENTOS L			

s. MALACATOS (M143)

Tabla 6.37: Estadísticos muéstrales máximos anuales estación Malacatos

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	X	49.4686
Varianza	S ²	342.6227
Coeficiente de Asimetría	g	1.8960
Coeficiente de Curtosis	k	8.3726
Desviación Estándar	S	18.5101
Coeficiente de Variación	CV	0.3742
1er. Momento de Probabilidad Pesada	β(0)	49.4686
2do. Momento de Probabilidad Pesada	β(1)	29.3964
3er. Momento de Probabilidad Pesada	β(2)	21.5064
4to. Momento de Probabilidad Pesada	β(3)	17.2182
1er. Momento-L	λ(1)	49.4686
2do. Momento-L	λ(2)	9.3242
3er. Momento-L	λ(3)	2.1289
4to. Momento-L	λ(4)	2.4584

Elaboró: El autor

Tabla 6.38: Errores de ajuste probados para la estación Malacatos

		Error Estánda	r de Ajuste (El	EA) en mn	1			
MALACATOS	Momentos	I Momentos-LI		Máxima Entropía	Momentos Prob. Pesada			
Normal	8.119	8.119	8.203	-	-			
Gumbel	5.942	6.587	6.221	6.411	-			
Log Normal 2	6.574	-	-	-	-			
Gamma 2	6.563	7.015	6.930	-	-			
Gamma 3	5.595	-	-	-	5.821			
G.V.E.	5.572	5.716	5.745	-	-			
Mejor distribu	ición:	GVE - por MOMENTOS						

t. VILCABAMBA (M144)

Tabla 6.39: Estadísticos muéstrales máximos anuales estación Vilcabamba

DESCRIPCIÓN	SÍMBOLO	VALOR	
Tamaño de muestra	n	40	
Media	x	57.3809	
Varianza	S ²	602.4204	
Coeficiente de Asimetría	g	2.2045	
Coeficiente de Curtosis	k	9.9783	
Desviación Estándar	S	24.5443	
Coeficiente de Variación	CV	0.4277	
1er. Momento de Probabilidad Pesada	β(0)	57.3809	
2do. Momento de Probabilidad Pesada	β(1)	34.7614	
3er. Momento de Probabilidad Pesada	β(2)	25.7767	
4to. Momento de Probabilidad Pesada	β(3)	20.8390	
1er. Momento-L	λ(1)	57.3809	
2do. Momento-L	λ(2)	12.1418	
3er. Momento-L	λ(3)	3.4730	
4to. Momento-L	λ(4)	3.2341	

Elaboró: El autor

Tabla 6.40: Errores de ajuste probados para la estación Vilcabamba

		Error Estándar de Ajuste (EEA) en mm											
VILCABAMBA	Momentos	Máxima Verosimilitud	Momentos-L	Máxima Entropía	Momentos Prob. Pesada								
Normal	11.482	11.482	11.563	1	-								
Gumbel	8.080	9.642	8.554	9.105	-								
Log Normal 2	9.108	-	-	-	-								
Gamma 2	8.794	9.723	9.440	1	-								
Gamma 3	6.899	-	•	1	6.964								
G.V.E.	7.162	7.006	6.938	1	-								
Mejor distribu	ción:	GAMMA 3 - po	or MOMENTOS										

u. QUINARA (M145)

Tabla 6.41: Estadísticos muéstrales máximos anuales estación Quinara

DESCRIPCIÓN	SÍMBOLO	VALOR
Tamaño de muestra	n	40
Media	χ	58.2426
Varianza	S ²	775.4161
Coeficiente de Asimetría	g	3.8045
Coeficiente de Curtosis	k	21.1230
Desviación Estándar	S	27.8463
Coeficiente de Variación	CV	0.4781
1er. Momento de Probabilidad Pesada	β(0)	58.2426
2do. Momento de Probabilidad Pesada	β(1)	34.8873
3er. Momento de Probabilidad Pesada	β(2)	25.9520
4to. Momento de Probabilidad Pesada	β(3)	21.1180
1er. Momento-L	λ(1)	58.2426
2do. Momento-L	λ(2)	11.5321
3er. Momento-L	λ(3)	4.6306
4to. Momento-L	λ(4)	4.2041

Elaboró: El autor

Tabla 6.42: Errores de ajuste probados para la estación Quinara

		Error Estánda	r de Ajuste (El	A) en mn	า	
QUINARA	Momentos Máxima Verosimilitud Momentos-L		Momentos-I		Momentos Prob. Pesada	
Normal	18.722	18.722	18.273	1	1	
Gumbel	15.135	16.934	15.673	16.217	-	
Log Normal 2	16.341	-	-	1	-	
Gamma 2	15.720	16.522	16.602	-	-	
Gamma 3	12.063	-	-	1	12.807	
G.V.E.	12.837	14.340	12.767	-	-	
Mejor distribu	ición:	GAMMA 3 - po				

Como se puede observar, las 21 muestras se agruparon y ajustaron a las distribuciones Gamma-3, GVE, Gumbel y Normal con parámetros estimados por momentos, máxima verosimilitud, momentos L, máxima entropía y momentos de probabilidad pesada. Esto era de esperarse en muestras de datos que pertenecen a la misma región climatológica (suelen ajustarse a la misma FDP).

En el Gráfico 6.1 se observa el mapa de como se distribuye y agrupan espacialmente las distribuciones de probabilidad de la provincia de Loja por zonas, se debe resaltar que cada zona muestra una región en la que pertenece la misma frecuencia de distribución de probabilidad. En algunos casos en ciertas estaciones se debió utilizar la distribución de probabilidad que le seguía a la daba el menor error estándar de ajuste debido a que los errores en las mismas difieren en decimales o en unas pocas unidades en mm respecto de otras. Es decir, por ejemplo, una FDP GAMMA 3 en algunos casos difería en decimales o pocas unidades con una GVE, por lo que para zonificar se tomó en cuenta este detalle.

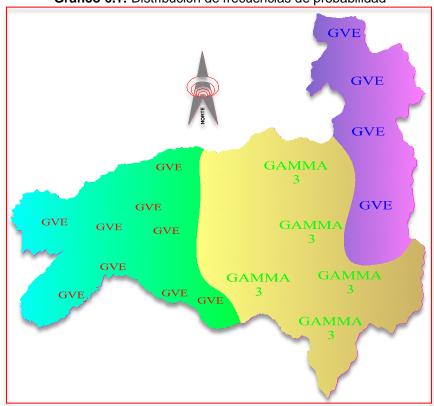


Gráfico 6.1: Distribución de frecuencias de probabilidad

Tabla 6.43. Lluvias máximas en 24 horas y diferentes periodos de retornos estaciones Provincia Loja

Parámetros						Hp [mm] de 24 horas para TR indicados [años]								
Estación	Mejor distribución	Ubica.	Escala	Forma	2	5	10	20	50	100	500	1000	5000	10000
ALAMOR	Normal por Mtos. L	103.081	35.933	1	103.1	133.3	149.1	162.2	176.9	186.7	206.5	214.1	230.3	236.7
SOZORANGA	Gamma -3 por Mtos.	66.866	206.674	0.196	70.2	116.1	177.8	256.4	381.5	489.8	779.5	919.0	1272.5	1436.5
SABIANGO	Gumbel por Máx. Ent.	74.441	36.974	-	88.0	129.9	157.6	184.3	218.7	244.5	304.2	329.8	389.4	415.0
SAUCILLO	GVE por Mtos. L	50.601	0.224	83.132	100.9	147.6	172.5	192.8	214.7	228.3	252.7	260.8	275.3	280.1
ZAPOTILLO	GVE por Mtos. L	43.380	0.152	69.518	85.0	127.7	152.2	173.2	197.2	213.1	243.9	255.0	276.7	284.5
CARIAMANGA	Gumbel por Máx. Ver.	72.426	17.555	-	78.9	98.8	111.9	124.6	140.9	153.2	181.5	193.7	221.9	234.1
GONZANAMA	Gamma -3 por MPP.	37.456	28.632	1.368	67.8	98.4	120.4	142.1	170.8	192.5	243.5	265.7	318.1	340.9
CATACOCHA	GVE por Mtos.	19.751	-0.074	60.826	68.2	92.2	109.2	126.4	150.1	169.0	216.5	238.7	294.8	321.2
COLAISACA	Gamma -3 por MPP.	41.410	41.295	0.651	56.7	85.2	108.9	133.8	168.4	195.7	262.5	292.5	365.0	397.4
JIMBURA	Gamma -3 por MPP.	40.401	14.863	2.357	70.7	91.7	105.8	119.2	136.3	149.0	178.0	190.4	219.1	231.5
CELICA	GVE por Mtos.	20.737	-0.156	64.832	72.7	99.9	120.7	143.2	176.2	204.3	282.3	322.3	433.8	491.1
AMALUZA	Normal por Mtos. L	50.996	23.132	-	51.0	70.5	80.6	89.1	98.5	104.8	117.6	122.5	132.9	137.0
EL LUCERO	Gamma -3 por MPP.	-3.516	13.161	4.385	49.9	75.1	91.0	105.6	123.8	136.9	166.3	178.5	206.5	218.4
NAMBACOLA	Gumbel por Máx. Ver.	54.909	13.442	-	59.8	75.1	85.2	94.8	107.4	116.7	138.4	147.8	169.4	178.7
SARAGURO	Gumbel por Mtos. L	34.829	9.684	-	38.4	49.4	56.6	63.6	72.6	79.4	95.0	101.7	117.3	124.0
YANGANA	Gamma -3 por MPP.	19.686	17.003	0.720	56.6	81.3	97.7	113.3	133.2	147.9	181.5	195.8	228.9	243.1
SAN LUCAS	GVE por Máx. Ver.	11.241	-0.323	34.340	38.7	56.0	71.5	90.3	122.2	153.2	258.2	323.1	543.5	679.9
LA ARGELIA	GVE por Mtos. L	12.015	0.098	41.965	46.3	58.7	66.2	72.9	80.9	86.5	97.9	102.3	111.4	114.9
MALACATOS	GVE por Mtos.	12.485	-0.096	40.955	45.6	61.1	72.3	83.9	100.1	113.2	147.2	163.5	205.8	226.1
VILCABAMBA	Gamma 3 por Mtos.	35.114	27.054	0.823	49.5	71.2	88.2	105.8	129.7	148.4	193.4	213.4	261.3	282.5
QUINARA	Gamma 3 por Mtos.	43.604	52.970	0.276	46.7	64.8	84.7	108.3	144.1	174.1	251.9	288.5	379.9	421.8

CAPÍTULO 7 REGIONALIZACIÓN PROVINCIA DE LOJA

CAPÍTULO 7 REGIONALIZACIÓN PROVINCIA DE LOJA

El concepto de riesgo se refiere a la probabilidad de que ocurra un evento perjudicial, que provoque daño a las personas o a sus bienes, así como también sobre los elementos del medio natural. Con respecto a las precipitaciones, los valores extremos son un factor de riesgo que se traduce en grandes torrentes que pueden provocar inundaciones en determinadas zonas y épocas del año. Así mismo se utiliza para dimensionamiento de obras de control, planicies inundables, diseño hidráulico, hidráulica e hidrología urbana, entre otros como se menciona en el capitulo introductorio.

Por tanto, la prevención de los riesgos climatológicos se realiza recurriendo a la observación de información meteorológica correspondiente a largos periodos de tiempo, que permite distinguir cuales valores pueden ser considerados como habituales (próximos a los valores medios normales) y aquellos que por su marcada diferencia, se vinculan con el riesgo.

La lluvia está definida por tres variables: la intensidad, la duración y el periodo de retorno. La intensidad es la lámina o profundidad total de lluvia ocurrida durante una tormenta y entre una determinada duración. De esta forma, la altura de la lámina de agua caída en el lugar de la tormenta, incorpora la cantidad de lluvia precipitada y la duración del evento. Mientras que el periodo de retorno, es la frecuencia, o intervalo de recurrencia, es decir, el número de años promedio en el cual el evento puede ser igualado o excedido cuando menos una vez. En el entendido, que el riesgo es mayor, cuanto menor es el periodo de retorno o recurrencia.

La relación probabilística entre la intensidad de la lluvia, su duración y frecuencia, es usualmente presentada en forma de gráficas. Estas representaciones son generalmente referidas como curvas de intensidad-duración-periodo de retorno, que resultan de unir los puntos que especifican la intensidad de la lluvia, en intervalos de diferente duración y, también en distintos periodos de retorno.

No solo es importante considerar la cantidad de lluvia que cae en el año, sino también la época en que se presentan las máximas precipitaciones.

En la provincia de Loja y, en general, alrededor de todo el país ecuatoriano, la medición de lluvias de corta duración (menores a 24 horas) y en especial menores a una hora no se encuentran bien establecidas, debido a la carencia de estaciones pluviográficas; en cambio, los registros de precipitación de 24 horas (pluviómetros) son los más utilizados tanto por la amplitud de la información (longitud de registros) y por la densidad de estaciones alrededor de un territorio. Siendo una situación generalizada en todas las regiones de América.

Las lluvias de corta duración, conocidas también como tormentas, son eventos que por lo general tienen duraciones entre 5 minutos y 24 horas, y se utilizan para el cálculo de crecientes. Las lluvias asociadas a diferentes periodos de retornos, utilizadas en hidráulica e hidrología, se fundamenta en la distribución de frecuencias (magnitud evento y su periodo de retorno). Los valores de periodo de retorno utilizados varían deacuerdo a la normatividad local de cada país generalmente los más utilizados varían entre 20 y 1000 años.

Para la obtención de curvas IDT de corta duración en ausencia de registros pluviométricos es necesario relacionar las lluvias de 24 horas con las de 1 hora asociadas a un mismo periodo de retorno T, por lo que una vez estimadas las lluvias en una hora se procederá a obtener las relaciones R de 1 a 24 horas de cada estación (plano provincial propuesto para valores de R), necesarias para la obtención de las Curvas IDT de toda la Provincia de Loja.

Debido a la escasez de Iluvias de cortas duraciones, ha surgido la necesidad de utilizar las relaciones promedio entre Iluvias encontradas en otros países. Así diversos investigadores como: F.C. Bell, D.M. Hershfield, B.M. Reich, L.L. Weis y W.T. Wilson, han demostrado que las relaciones duración – Iluvia encontradas en U.S.A. pueden ser aplicadas a otras partes del mundo, por ejemplo: Sur África, Alaska, Hawái, Puerto Rico, Norte de África y Australia (Campos, 1998).

Como se menciona y se puede deducir, las localización geográfica y por lo tanto la variedad de climas de los lugares enunciados son variados, lo cual da respaldo y de una manera de confiabilidad a la aplicación de las relaciones en la Provincia de Loja y de diferentes partes del mundo.

7.1. Relación entre la lluvia en una hora y la de veinte y cuatro horas

Como se ha hecho hincapié a lo largo de este estudio el registro de cortas duraciones (de una hora o menores a este) son bastante escasos por no decir que no existen en su mayoría. Pero, los registros de lluvias máxima diarias son muy densos (cantidad de estaciones pluviométricas abundantes) y muy amplios (longitud de registro aceptables) en todo el país y porque no decirlo en la mayoría de los países latinoamericanos y, la provincia de Loja no es la excepción.

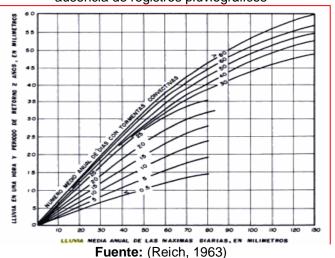
Por lo que la lluvia de una hora y periodo de retorno de 2 años, podrá ser evaluada con una relación u cociente a la de 24 horas desde luego con igual periodo de retorno.

Esta idea no es nueva y varios investigadores desarrollan métodos para estimar el citado cociente tomando como base el número de días con tormentas convectivas al año, por ejemplo en la india se reportan relaciones comprendida entre 0.35 a 0.45 para lluvias comprendidas entre 10 y 80 días en promedio anual.

D.M. Hershfiel (1962) en su publicación para la U.S. Weather Bureau, denominada: "Rainfall frequency atlas of the United States for Durations from 30 minutes to 24 hours and return periods from 1 to 100 years.", indica que el cociente entre la lluvia de una hora y la de 24 horas ambas de periodo de retorno de 2 años, varía para U.S.A. de 0.10 a 0.60. Con un valor medio de 0.40, indicando a la vez donde se presentan dichos cocientes altos y bajos.

Como una guía global de los cocientes se resume el siguiente comentario como guía de selección del cociente (Campos, 1998):

Tabla 7.1: Guía de selección de cocientes entre la lluvia una hora y la de 24 horas para T=2años


Tipo de cociente	Descripción
Bajo (<0.40)	 a. Donde la incidencia de tormentas convectivas es baja y las grandes tormentas provienen de tormentas no convectivas. b. Lado de barlovento de las montañas donde las lluvias comienzan primero y terminan primero y terminan después que en los valles y lado de sotavento de las montañas. c. Donde el proceso orográfico son la causa principal de las fuertes lluvias de invierno.
Alto (>40)	 a. En regiones de baja lluvia anual, donde el número de días con lluvia es pequeño. b. En donde es bastante probable que la lluvia máxima anual en 24 horas provenga de una tormenta convectiva de verano, de duración sustancialmente menor a 24 horas. c. En regiones de alta incidencia de fuertes aguaceros, donde tanto la lluvia máxima anual en una hora, como la de 24 horas generalmente provienen de la misma tormenta.

Fuente: Hershfield, 1961

La OMM también relaciona la lluvia en una hora con periodo de retorno de dos años y la lluvia de 24 horas con periodo de retorno de 2 años, en función del número de días con lluvia es decir con el número de lluvias mayor o igual a un milímetro: en la que el número de días con lluvia por año entre 1,8,16,24, la relación de lluvia de una hora a 24 en un periodo de retorno de dos años es: 0.2, 0.3, 0.4, 0.5 respectivamente.

Un criterio en el que incorpora la lluvia media anual de las máximas diarias y el número de días con tormentas convectivas para estimar la lluvia en una hora y periodo de retorno de dos años es el propuesto por la U.S. Weather Bureau con el criterio que se presenta en el ábaco 7.5, que muestras una manera más completa y confiable de obtenerlo:

Gráfico 7.1: Relación empírica para estimar la lluvia de una hora y periodo de retorno de dos años, en ausencia de registros pluviográficos

Con lluvia media anual de las máximas diarias del periodo común de registro y el número medio anual de días con tormentas convectivas, encuentro lluvia una hora y Tr= 2 años.

Si sobrepasa la lluvia media anual 130 mm y el número de días es mayor a 80 entonces la lluvia en una hora y periodo de retorno de dos horas es igual a 60mm.

Cabe mencionar que la relación de 1 hora a la de 24 horas no cambia conforme el periodo de retorno aumenta. A continuación se procederán a verificar los procesos utilizados para la obtención de la lluvia en una hora y periodo de retorno de dos años necesaria para obtener el valor de R, invariante si Tr. aumenta.

7.1.1. Método de Grunsky (Iluvia en una hora)

Este método será utilizado para la obtención relaciones de lluvia mayores a una hora y menores a 24 horas, ya que la experiencia de diferentes investigadores demuestra que da buenos resultados en estos intervalos y en zonas donde no existe ninguna clase de información pluviográfica, no arrojando tan buenos resultados para duraciones menores o iguales a una hora en la que Bell sobresale en este caso.

La relación de Grunsky⁹ está dada por la siguiente expresión:

$$I_{t}^{T} = I_{24}^{T} \sqrt{\frac{24}{60}}$$
 (7.1)

donde

 $I_{24}^T = \text{intensidad máxima en 24 horas del período de retorno T}$

 $I_t^T = \text{intensidad en } \theta \text{ horas}$

 $\frac{t}{60}$ = duración considerada de la lluvia en minutos

⁹ El método de Grunsky son parábolas que presentan una tendencia sin saltos ya que dependen solo de una ecuación, el cual es un método alternativo a la carencia de pluviogramas para convertir las lluvias diarias máximas en intensidades máximas.

$$I_t^T = \frac{P_t^T}{\frac{t}{60}} \tag{7.2}$$

Para el caso de la duración en horas la ecuación 7.1 quedaría de la siguiente manera.

$$I_{t}^{T} = I_{24}^{T} \sqrt{\frac{24}{t}}$$
 (7.3)

donde

 I_{24}^{T} = intensidad máxima en 24 horas del período de retorno T.

 I_{t}^{T} = intensidad en θ horas.

t = duración considerada de la lluvia en horas.

Ya que:

$$I_t^T = \frac{P_t^T}{t} \tag{7.4}$$

La ecuación 7.3 quedaría de la manera siguiente:

$$\frac{P_t^T}{t} = \frac{P_{24}^T}{24} \sqrt{\frac{24}{t}}$$
 (7.5)

Donde la ecuación de precipitación para diferente periodo de retorno quedaría:

$$P_1^T = t \frac{P_{24}^T}{24} \sqrt{\frac{24}{t}}$$
 (7.6)

Con la ecuación antes descrita se obtuvo los siguientes valores en función de la precipitación máxima diaria y diferente periodo de retorno y una duración de 1 hora:

Tabla 7.2: Lluvia máxima en una hora y diferente periodo de retorno (Grunsky)

	Hp [mm] de 24 horas para TR indicados							p [mm	ո] de 1	hora	s para	TR
		[años]						ndicad	los [aŕ	ios] G	RUNS	KY
ESTACIÓN	2	5	10	20	50	100	2	5	10	20	50	100
ALAMOR	103.1	133.3	149.1	162.2	176.9	186.7	21.0	27.2	30.4	33.1	36.1	38.1
SOZORANGA	70.2	116.1	177.8	256.4	381.5	489.8	14.3	23.7	36.3	52.3	77.9	100.0
SABIANGO	88.0	129.9	157.6	184.3	218.7	244.5	18.0	26.5	32.2	37.6	44.6	49.9
SAUCILLO	100.9	147.6	172.5	192.8	214.7	228.3	20.6	30.1	35.2	39.4	43.8	46.6
ZAPOTILLO	85.0	127.7	152.2	173.2	197.2	213.1	17.3	26.1	31.1	35.4	40.2	43.5
CARIAMANGA	78.9	98.8	111.9	124.6	140.9	153.2	16.1	20.2	22.8	25.4	28.8	31.3
GONZANAMA	67.8	98.4	120.4	142.1	170.8	192.5	13.8	20.1	24.6	29.0	34.9	39.3

	Hp [mm] de 24 horas para TR indicados						H	p [mm	n] de 1	hora	s para	TR
		[años]						ndicad	los [aŕ	ios] G	RUNS	KY
ESTACIÓN	2	5	10	20	50	100	2	5	10	20	50	100
CATACOCHA	68.2	92.2	109.2	126.4	150.1	169.0	13.9	18.8	22.3	25.8	30.6	34.5
COLAISACA	56.7	85.2	108.9	133.8	168.4	195.7	11.6	17.4	22.2	27.3	34.4	40.0
JIMBURA	70.7	91.7	105.8	119.2	136.3	149.0	14.4	18.7	21.6	24.3	27.8	30.4
CELICA	72.7	99.9	120.7	143.2	176.2	204.3	14.8	20.4	24.6	29.2	36.0	41.7
AMALUZA	51.0	70.5	80.6	89.1	98.5	104.8	10.4	14.4	16.5	18.2	20.1	21.4
EL LUCERO	49.9	75.1	91.0	105.6	123.8	136.9	10.2	15.3	18.6	21.6	25.3	27.9
NAMBACOLA	59.8	75.1	85.2	94.8	107.4	116.7	12.2	15.3	17.4	19.4	21.9	23.8
SARAGURO	38.4	49.4	56.6	63.6	72.6	79.4	7.8	10.1	11.6	13.0	14.8	16.2
YANGANA	56.6	81.3	97.7	113.3	133.2	147.9	11.6	16.6	19.9	23.1	27.2	30.2
SAN LUCAS	38.7	56.0	71.5	90.3	122.2	153.2	7.9	11.4	14.6	18.4	24.9	31.3
LA ARGELIA	46.3	58.7	66.2	72.9	80.9	86.5	9.4	12.0	13.5	14.9	16.5	17.7
MALACATOS	45.6	61.1	72.3	83.9	100.1	113.2	9.3	12.5	14.8	17.1	20.4	23.1
VILCABAMBA	49.5	71.2	88.2	105.8	129.7	148.4	10.1	14.5	18.0	21.6	26.5	30.3
QUINARA	46.7	64.8	84.7	108.3	144.1	174.1	9.5	13.2	17.3	22.1	29.4	35.5

Elaboró: El autor.

Este es un método ampliamente utilizado a nivel sudamericano especialmente en Chile y Argentina donde incorporan en su normativa el uso y aplicación de este método.

Tabla 7.3: Relaciones Iluvia máxima en 1 hora y la de 24 horas (Grunsky)

ESTACION	ALAMOR	SOZORANGA	SABIANGO	SAUCILLO	ZAPOTILLO	CARIAMANGA	GONZANAMA	
$R = \frac{P_1^T}{P_{24}^T}$	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
ESTACION	CATACOCHA	COLAISACA	JIMBURA	CELICA	AMALUZA	EL LUCERO	NAMBACOLA	
$R = \frac{P_1^T}{P_{24}^T}$	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
ESTACION	SARAGURO	YANGANA	INA SAN L		MALACATOS	VILCABAMBA	QUINARA	
$R = \frac{P_1^T}{P_{24}^T}$	0.20	0.20	0.20	0.20	0.20	0.20	0.20	

Elaboró: El autor.

Al emplear el cociente para obtener la relación entre 1 y 24 horas, para todas la estaciones se obtiene un valor constante de R= 0.20, no considerando este método el efecto del número de días con lluvia, ni el promedio de las máximas diarias. Observando aparte de arrojar un solo valor de R, un dato relativamente bajo considerando de esta manera que todas las zonas tiene baja incidencia de fuertes aguaceros menor a 0.40 según criterio de la tabla 7.1.

Siendo esto falso ya que el comportamiento real de la provincia es distinto en cada estación. Existiendo regiones de baja lluvia anual, donde el número de días con lluvia es pequeño, también regiones o lugares donde es bastante probable que la lluvia máxima anual en 24 horas provenga de una tormenta convectiva de verano, de duración sustancialmente menor a 24 horas y por último regiones de alta incidencia de fuertes aguaceros, donde tanto la lluvia máxima anual en una hora, como la de 24 horas generalmente provienen de la misma tormenta, en la que la mencionada relación debería ser mayor a 0.40 no menor a esta.

Por lo que esté método subestima los valores de R, además que los considera constantes para toda la zona, debido a los valores invariables asignados en cada estación para determinar el valor de la lluvia en una hora y periodo de retorno indicado. Aunque es un método fácil de usar los valores influyen drásticamente en las relaciones intensidad, duración-periodo de retorno.

7.1.2. Procedimiento de Elías y Ruiz .1979 (Iluvia en una hora)

Método empírico, utilizado en España trata de pasar los valores de intensidad de un periodo de retorno determinado a uno del mismo periodo de retorno pero de duraciones menores:

$$X_{24} = 0, 60. X_{12}$$
 (7.7)

$$X_{12} = 0.58. X_6$$
 (7.8)

$$X_6 = 0.31. X_1$$
 (7.9)

Donde:

Xt es la intensidad máxima horaria para una duración de t horas; así, X24 para un período de retorno de 25 años será (P.máx. 24 h 25).

Relacionando las ecuaciones 7.7, 7.8 y 7.9 entre sí y dejándolas en función de la P máx. de 1 hora y la de 24 resulta:

$$P_1^T = \left(\frac{P_{24}^T}{24}\right) \times 0.60 \times 0.58 \times 0.31$$
 (7.10)

Tabla 7.4: Lluvia máxima en una hora y diferente periodo de retorno (Elías y Ruiz)

	Нр	[mm] de	24 hora	s para T	R indica	Hp [mm] de 1 horas para TR indicados								
			[añ	os]			[años] ELIAS Y RUIZ							
ESTACIÓN	2	5	10	20	50	100	2	5	10	20	50	100		
ALAMOR	103.1	133.3	149.1	162.2	176.9	186.7	39.8	51.5	57.6	62.6	68.3	72.1		
SOZORANGA	70.2	116.1	177.8	256.4	381.5	489.8	27.1	44.9	68.7	99.0	147.3	189.2		
SABIANGO	88.0	129.9	157.6	184.3	218.7	244.5	34.0	50.2	60.9	71.2	84.5	94.4		
SAUCILLO	100.9	147.6	172.5	192.8	214.7	228.3	39.0	57.0	66.6	74.5	82.9	88.2		
ZAPOTILLO	85.0	127.7	152.2	173.2	197.2	213.1	32.8	49.3	58.8	66.9	76.2	82.3		
GONZANAMA	67.8	98.4	120.4	142.1	170.8	192.5	26.2	38.0	46.5	54.9	66.0	74.4		
CATACOCHA	68.2	92.2	109.2	126.4	150.1	169.0	26.3	35.6	42.2	48.8	58.0	65.3		
COLAISACA	56.7	85.2	108.9	133.8	168.4	195.7	21.9	32.9	42.0	51.7	65.0	75.6		
JIMBURA	70.7	91.7	105.8	119.2	136.3	149.0	27.3	35.4	40.9	46.0	52.6	57.5		
CELICA	72.7	99.9	120.7	143.2	176.2	204.3	28.1	38.6	46.6	55.3	68.1	78.9		
AMALUZA	51.0	70.5	80.6	89.1	98.5	104.8	19.7	27.2	31.1	34.4	38.0	40.5		
EL LUCERO	49.9	75.1	91.0	105.6	123.8	136.9	19.3	29.0	35.1	40.8	47.8	52.9		
NAMBACOLA	59.8	75.1	85.2	94.8	107.4	116.7	23.1	29.0	32.9	36.6	41.5	45.1		
SARAGURO	38.4	49.4	56.6	63.6	72.6	79.4	14.8	19.1	21.9	24.6	28.0	30.7		
YANGANA	56.6	81.3	97.7	113.3	133.2	147.9	21.9	31.4	37.7	43.8	51.5	57.1		
SAN LUCAS	38.7	56.0	71.5	90.3	122.2	153.2	15.0	21.6	27.6	34.9	47.2	59.2		
LA ARGELIA	46.3	58.7	66.2	72.9	80.9	86.5	17.9	22.7	25.6	28.2	31.3	33.4		
MALACATOS	45.6	61.1	72.3	83.9	100.1	113.2	17.6	23.6	27.9	32.4	38.7	43.7		
VILCABAMBA	49.5	71.2	88.2	105.8	129.7	148.4	19.1	27.5	34.1	40.9	50.1	57.3		
QUINARA	46.7	64.8	84.7	108.3	144.1	174.1	18.0	25.0	32.7	41.8	55.6	67.2		

Elaboró: El autor.

Se calcula la relación entre 1 y 24 horas en cada estación, obteniendo así mismo un valor constante de R= 0.39 para todas las estaciones de la provincia de Loja, esto considera así mismo que algunas zonas tiene baja incidencia de fuertes aguaceros menor a 0.40 según criterio descrito en tabla 7.1.

Siendo esto falso ya que el valor a lo largo de toda la provincia R es variable debido a la diferencia entre estaciones de la lluvia promedio y de máximas anuales para un mismo periodo de retorno. Aunque mejores a los resultados que arroja Grunsky, también subestima los valores de R en algunos lugares, además que los considera constantes para toda la zona por los valores invariables (valores contantes en la ecuación) asignados en cada estación para determinar el valor de la lluvia en una hora y periodo de retorno indicado.

ESTACION SOZORANGA SABIANGO SAUCILLO ZAPOTILLO **ALAMOR** CARIAMANGA GONZANAMA 0.39 0.39 0.39 0.39 0.39 0.39 0.39 CATACOCHA **ESTACION COLAISACA JIMBURA CELICA AMALUZA EL LUCERO NAMBACOLA** R =0.39 0.39 0.39 0.39 0.39 0.39 0.39 LA SAN **ESTACION SARAGURO YANGANA MALACATOS VILCABAMBA** QUINARA **LUCAS ARGELIA** R =0.39 0.39 0.39 0.39 0.39 0.39 0.39

Tabla 7.5: Relaciones lluvia máxima en 1 hora y la de 24 horas (Elías y Ruiz).

Elaboró: El autor.

Aunque estos valores sean constantes en toda la zona nos da un horizonte por donde fluctúa el valor del índice o relación R, y alrededor de que valores se encuentra en promedio para toda la zona.

7.1.3. Ecuaciones representativas propuestas por INAMHI para determinadas zonas en la Provincia de Loja (Iluvia en una hora)

El Instituto Nacional de Meteorología e Hidrología en el año 1999 propuso una zonificación de intensidades en la que realizó un estudio comparativo de los datos de intensidades obtenidos de algunos pluviógrafos y pluviómetros en el país. Lograron determinar una correspondencia entre los valores de intensidades de lluvias extraordinarias y de las precipitaciones máximas en 24 horas, con la finalidad de que si conocemos este último valor en cualquier lugar de país, se obtenga la intensidad correspondiente para el diseño de la obra hidráulica con la ecuación determinada para la zona.

Por lo tanto, con la observación diaria de precipitación máxima en 24 horas, obtenida de estaciones pluviométricas es factible determinar la intensidad de las lluvias que debieron originarlas y su ecuación respectiva.

Las ecuaciones utilizadas deacuerdo a la ubicación de cada estación en la zona son:

Tabla 7.6: Ecuación de las zonas para obtener la precipitación máxima en 1 hora según INAMHI.

ESTACION	6: Ecuación de las zonas para obtener la ECUACIÓN	ESTACION	ECUACION
ESTACION	ECUACION	ESTACION	ECUACION
ALAMOR	$P_1^T = 174.47 \times 60 \text{min}^{-0.7143} \times \left(\frac{P_{24}^T}{24}\right)$	AMALUZA	$P_1^T = 510.71 \times 60 \text{min}^{-0.849} \times \left(\frac{P_{24}^T}{24}\right)$
SOZORANGA	$P_1^T = 510.71 \times 60 \text{min}^{-0.849} \times \left(\frac{P_{24}^T}{24}\right)$	EL LUCERO	$P_1^T = 480.47 \times 60 \mathrm{min}^{-0.8489} \times \left(\frac{P_{24}^T}{24}\right)$
SAUCILLO	$P_1^T = 174.47 \times 60 \text{min}^{-0.7143} \times \left(\frac{P_{24}^T}{24}\right)$	SARAGURO	$P_1^T = 87.477 \times 60 \text{min}^{-0.5798} \times \left(\frac{P_{24}^T}{24}\right)$
ZAPOTILLO	$P_1^T = 115.98 \times 60 \text{min}^{-0.4844} \times \left(\frac{P_{24}^T}{24}\right)$	YANGANA	$P_1^T = 480.47 \times 60 \text{min}^{-0.8489} \times \left(\frac{P_{24}^T}{24}\right)$
CARIAMANGA	$P_1^T = 510.71 \times 60 \text{min}^{-0.849} \times \left(\frac{P_{24}^T}{24}\right)$	SAN LUCAS	$P_1^T = 125.73 \times 60 \text{min}^{-0.6643} \times \left(\frac{P_{24}^T}{24}\right)$
GONZANAMA	$P_1^T = 480.47 \times 60 \mathrm{min}^{-0.8489} \times \left(\frac{P_{24}^T}{24}\right)$	LA ARGELIA	$P_1^T = 480.47 \times 60 \text{min}^{-0.8489} \times \left(\frac{P_{24}^T}{24}\right)$
САТАСОСНА	$P_1^T = 480.47 \times 60 \mathrm{min}^{-0.8489} \times \left(\frac{P_{24}^T}{24}\right)$	MALACATOS	$P_1^T = 480.47 \times 60 \text{min}^{-0.8489} \times \left(\frac{P_{24}^T}{24}\right)$
COLAISACA	$P_1^T = 510.71 \times 60 \text{min}^{-0.849} \times \left(\frac{P_{24}^T}{24}\right)$	VILCABAMBA	$P_1^T = 480.47 \times 60 \text{min}^{-0.8489} \times \left(\frac{P_{24}^T}{24}\right)$
JIMBURA	$P_1^T = 510.71 \times 60 \mathrm{min}^{-0.849} \times \left(\frac{P_{24}^T}{24}\right)$	QUINARA	$P_1^T = 480.47 \times 60 \text{min}^{-0.8489} \times \left(\frac{P_{24}^T}{24}\right)$
CELICA	$P_1^T = 156.84 \times 60 \text{min}^{-0.6955} \times \left(\frac{P_{24}^T}{24}\right)$		

Elaboró: El autor.

El INAMHI para obtener el valor de la intensidad diaria $Id = \frac{P_{24}^T}{24}$ necesario en la ecuación, propone obtenerlos de los mapas de isolíneas que ellos mismo los brindan y remplazar en la ecuación correspondiente (Minas & Hidrología, 1999).

Haciendo una variante a este procedimiento, se decidió en ingresar los propios valores de precipitación máxima en 24 horas para diferente periodo de retorno obtenido y calculado en este estudio por el autor, cuyo resultado recayó de la siguiente forma:

Tabla 7.7: Lluvia máxima en una hora y diferente periodo de retorno (INAMHI)

Hp [mm] de 24 horas para TR indicados								Hp [mm] de 1 horas para TR indicados						
		,		os]			[años]INAMHI							
ESTACIÓN	2	5	10	20	50	100	2	5	10	20	50	100		
ALAMOR	103.1	133.3	149.1	162.2	176.9	186.7	40.2	52.031	58.205	63.303	69.038	72.861		
SOZORANGA	70.2	116.1	177.8	256.4	381.5	489.8	46.2	76.4	117.0	168.7	251.1	322.3		
SABIANGO	88.0	129.9	157.6	184.3	218.7	244.5	57.9	85.5	103.8	121.3	143.9	160.9		
SAUCILLO	100.9	147.6	172.5	192.8	214.7	228.3	39.4	57.6	67.3	75.3	83.8	89.1		
ZAPOTILLO	85.0	127.7	152.2	173.2	197.2	213.1	56.5	84.9	101.2	115.2	131.1	141.7		
CARIAMANGA	78.9	98.8	111.9	124.6	140.9	153.2	51.9	65.0	73.7	82.0	92.7	100.8		
GONZANAMA	67.8	98.4	120.4	142.1	170.8	192.5	42.0	60.9	74.6	88.0	105.8	119.2		
CATACOCHA	68.2	92.2	109.2	126.4	150.1	169.0	42.2	57.1	67.6	78.3	93.0	104.7		
COLAISACA	56.7	85.2	108.9	133.8	168.4	195.7	37.3	56.1	71.6	88.0	110.8	128.8		
JIMBURA	70.7	91.7	105.8	119.2	136.3	149.0	46.5	60.4	69.6	78.4	89.7	98.1		
CELICA	72.7	99.9	120.7	143.2	176.2	204.3	27.5	37.8	45.7	54.3	66.8	77.4		
AMALUZA	51.0	70.5	80.6	89.1	98.5	104.8	33.6	46.4	53.1	58.6	64.8	69.0		
EL LUCERO	49.9	75.1	91.0	105.6	123.8	136.9	30.9	46.5	56.4	65.4	76.7	84.8		
NAMBACOLA	59.8	75.1	85.2	94.8	107.4	116.7	37.1	46.5	52.7	58.7	66.5	72.3		
SARAGURO	38.4	49.4	56.6	63.6	72.6	79.4	13.0	16.8	19.2	21.6	24.6	26.9		
YANGANA	56.6	81.3	97.7	113.3	133.2	147.9	35.1	50.3	60.5	70.2	82.5	91.6		
SAN LUCAS	38.7	56.0	71.5	90.3	122.2	153.2	13.4	19.3	24.7	31.2	42.2	52.9		
LA ARGELIA	46.3	58.7	66.2	72.9	80.9	86.5	28.7	36.4	41.0	45.2	50.1	53.6		
MALACATOS	45.6	61.1	72.3	83.9	100.1	113.2	28.3	37.8	44.8	52.0	62.0	70.1		
VILCABAMBA	49.5	71.2	88.2	105.8	129.7	148.4	30.7	44.1	54.6	65.5	80.4	91.9		
QUINARA	46.7	64.8	84.7	108.3	144.1	174.1	28.9	40.1	52.5	67.1	89.2	107.8		

Elaboró: El autor.

Para la provincia de Loja se procedió a calcular por este criterio el valor de R en el que relaciona la lluvia en una 1 y la de 24 horas, para cualquier periodo de retorno:

Tabla 7.8: Relaciones lluvia máxima en 1 hora y la de 24 horas (INAMHI)

ESTACION	ALAMOR	SOZORANGA	SABIANGO	SAUCILLO	ZAPOTILLO	CARIAMANGA	GONZANAMA	
$R = \frac{P_1^T}{P_{24}^T}$	0.39	0.66	0.66	0.39	0.67	0.66	0.62	
ESTACION	CATACOCHA	COLAISACA	JIMBURA	CELICA	AMALUZA	EL LUCERO	NAMBACOLA	
$R = \frac{P_1^T}{P_{24}^T}$	0.62	0.66	0.66	0.38	0.66	0.62	0.62	
ESTACION	SARAGURO	YANGANA	SAN LUCAS	LA ARGELIA	MALACATOS	VILCABAMBA	QUINARA	
$R = \frac{P_1^T}{P_{24}^T}$	0.34	0.62	0.35	0.62	0.62	0.62	0.62	

El valor varía entre 0.34 como mínimo que corresponde a la estación Saraguro, a 0.67 en la Estación Zapotillo como máximo valor, esto se debe a la incidencia de fuertes aguaceros y bajo número de días de lluvia en promedio en la zona, de alguna manera confirmando los estudios realizados en otras partes del mundo con similares características y los criterios propuestos para la selección del cociente R (Campos, 1998).

Como valor promedio de R para la provincia de Loja resultó R=0.50, valor casi cercano a los encontrados en estados Unidos (Hershfield, 1961).

7.1.4. U.S. Weather Bureau (Iluvia en una hora)

Este criterio que a consideración de los estudiosos del tema es mucho más completo. Ampliamente estudiados por B.M. Reich en el que propone utilizar las características propia de cada estación, y agrupándolos en función del número de días con tormentas convectivas y el promedio de lluvias máximas del registro común para obtener la lluvia en una hora y periodo de retorno de dos años, en la que dicha relación se mantiene constante conforme R aumenta.

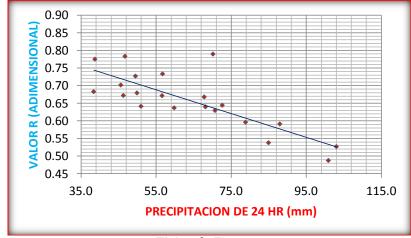
Una vez seleccionado el valor de la lluvia máxima en 24 horas y periodo de retorno de dos años por el método de estimación de frecuencias máximas que arroje el menor error estándar de ajuste, y también obtenida lluvia en una hora y periodo de retorno de dos años mediante el procedimiento de Reich, se obtiene para cada estación de la Provincia de Loja el valor R que relacione ambas precipitaciones de distinta duración pero obtenidas en un igual periodo de retorno.

Tabla 7.9: Relaciones Iluvia máxima en una 1 hora y la de 24 horas (US Weather Bureau)

	Hp [mm]	de 1 horas p Weather	•	[años] US
ESTACIÓN	Lluvia media anual máximas diarias	Número medio anual días tormenta convectiva	Lluvia en una hora y periodo retorno 2 años	$R = \frac{P_1^T}{P_{24}^T}$
ALAMOR	103.1	86	54.3	0.53
SOZORANGA	107.4	107	55.4	0.79
SABIANGO	95.8	96	52.0	0.59
SAUCILLO	103.0	48	49.2	0.49
ZAPOTILLO	88.8	50	45.7	0.54
CARIAMANGA	82.2	99	47.0	0.60
GONZANAMA	76.6	90	45.3	0.67
CATACOCHA	73.8	88	43.6	0.64
COLAISACA	68.3	104	41.6	0.73
JIMBURA	75.4	110	44.5	0.63
CELICA	80.5	113	46.8	0.64
AMALUZA	51.0	91	32.7	0.64
EL LUCERO	54.2	110	33.9	0.68
NAMBACOLA	62.1	95	38.1	0.64
SARAGURO	40.4	133	26.2	0.68
YANGANA	62.0	124	38.0	0.67
SAN LUCAS	45.7	164	30.0	0.77
LA ARGELIA	47.8	144	31.1	0.67
MALACATOS	49.5	89	32.0	0.70
VILCABAMBA	57.4	113	36.0	0.73
QUINARA	58.2	105	36.6	0.78

Elaboró: El autor.

El valor mínimo y máximo estimado en la provincia de Loja se encuentra entre 0.49 correspondiente a la estación Saucillo y 0.79 en la estación Sozoranga respectivamente y como valor medio de 0.64 para toda la provincia de Loja. Sozoranga sobresale este valor ya que según registros del INAMHI se reportaron eventos extremos el 6 de febrero de 1976 y en más meses de ese año en esa zona con precipitaciones máximas en 24 horas de 543 mm deacuerdo a registros brindados por la institución y sin ser afectados por 1.13 como recomienda la OMM.


La sensibilidad del método para obtener el valor de R muestra que registra tales eventos extraordinarios a la perfección, confirmando y validando la técnica.

	Hp [n	nm] de	24 hora	s para	TR indi	Hp [mm] de 1 horas para TR indicados							
			[añ	os]			[años] U.S. Weather Bureau						
ESTACIÓN	2	5	10	20	50	100	2	5	10	20	50	100	
ALAMOR	103.1	133.3	149.1	162.2	176.9	186.7	54.3	70.2	78.6	85.4	93.2	98.3	
SOZORANGA	70.2	116.1	177.8	256.4	381.5	489.8	55.4	91.7	140.3	202.4	301.1	386.6	
SABIANGO	88.0	129.9	157.6	184.3	218.7	244.5	52.0	76.8	93.2	108.9	129.3	144.5	
SAUCILLO	100.9	147.6	172.5	192.8	214.7	228.3	49.2	71.9	84.1	94.0	104.7	111.3	
ZAPOTILLO	85.0	127.7	152.2	173.2	197.2	213.1	45.7	68.7	81.8	93.1	106.0	114.6	
CARIAMANGA	78.9	98.8	111.9	124.6	140.9	153.2	47.0	58.9	66.7	74.2	84.0	91.3	
GONZANAMA	67.8	98.4	120.4	142.1	170.8	192.5	45.3	65.7	80.4	94.9	114.0	128.6	
CATACOCHA	68.2	92.2	109.2	126.4	150.1	169.0	43.6	58.9	69.8	80.9	96.0	108.1	
COLAISACA	56.7	85.2	108.9	133.8	168.4	195.7	41.6	62.5	79.8	98.1	123.5	143.5	
JIMBURA	70.7	91.7	105.8	119.2	136.3	149.0	44.5	57.7	66.6	75.0	85.8	93.8	
CELICA	72.7	99.9	120.7	143.2	176.2	204.3	46.8	64.3	77.8	92.2	113.5	131.6	
AMALUZA	51.0	70.5	80.6	89.1	98.5	104.8	32.7	45.2	51.7	57.1	63.2	67.2	
EL LUCERO	49.9	75.1	91.0	105.6	123.8	136.9	33.9	51.0	61.8	71.7	84.0	93.0	
NAMBACOLA	59.8	75.1	85.2	94.8	107.4	116.7	38.1	47.8	54.2	60.4	68.4	74.3	
SARAGURO	38.4	49.4	56.6	63.6	72.6	79.4	26.2	33.7	38.7	43.4	49.6	54.2	
YANGANA	56.6	81.3	97.7	113.3	133.2	147.9	38.0	54.6	65.6	76.1	89.4	99.3	
SAN LUCAS	38.7	56.0	71.5	90.3	122.2	153.2	30.0	43.4	55.4	70.0	94.7	118.7	
LA ARGELIA	46.3	58.7	66.2	72.9	80.9	86.5	31.1	39.5	44.5	49.0	54.4	58.1	
MALACATOS	45.6	61.1	72.3	83.9	100.1	113.2	32.0	42.9	50.7	58.9	70.2	79.4	
VILCABAMBA	49.5	71.2	88.2	105.8	129.7	148.4	36.0	51.7	64.1	76.9	94.3	107.9	
QUINARA	46.7	64.8	84.7	108.3	144.1	174.1	36.6	47.1	61.6	78.7	104.7	126.5	

Elaboró: El autor.

En los Gráficos 7.2 y 7.3 se representa una comparación de la lluvia de 24 horas y la de una hora con un periodo de retorno de dos años con el coeficiente R adimensional y para cualquier periodo de retorno:

Gráfico 7.2: Lluvia de 24 hora y periodo de retorno de dos años y R adimensional

Es claramente indiscutible como se muestra en el Gráfico 7.2 que la tendencia de los valores de la relación R tiende a disminuir conforme aumenta el valor de la precipitación en 24 horas, de manera similar la tendencia a disminuir R conforme la precipitación en una hora aumenta se evidencia en el Gráfico 7.3.

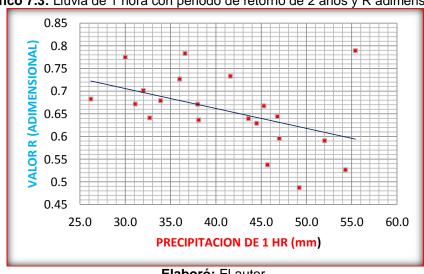
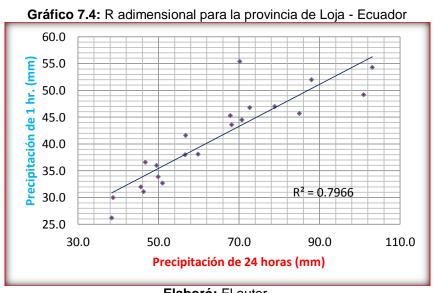



Gráfico 7.3: Lluvia de 1 hora con periodo de retorno de 2 años y R adimensional

Elaboró: El autor.

Los gráficos 7.2 y 7.3 también muestran la dispersión que registra la estación Sozoranga alejándose de la agrupación común de todas las demás, siendo el punto mostrado alejado de la agrupación.

La dispersión de los valores para la provincia de Loja R, para la relación entre la Iluvia entre una hora y la de 24 son:

7.1.5. Lluvia en una hora estación La Argelia (con registros pluviográficos)

Para determinar la intensidad o magnitud de un evento futuro, se requiere disponer de registros pluviográficos continuos y como se ha mencionado en la provincia de Loja del total de las 21 estaciones utilizadas para el estudio, luego de la fusión, selección y eliminación de algunas de ellas solo se dispone con una estación (LA ARGELIA-LOJA) que registra pluviografía en la provincia. Cabe resaltar que además esta estación (LA ARGELIA-LOJA) también registra pluviometría en el mismo lugar un hecho conveniente ya que se pueden empatar, concatenar y verificar los resultados pluviométricos y pluviográficos de un mismo lugar. Se puede decir que a nivel nacional existen grandes volúmenes de registros pluviométricos espacio-temporales pero poquísimos pluviográficos.

En las Tablas 2.2. y 2.4 del segundo capítulo se observa el nombre y tipo de información que se puede extraer de lluvia en la provincia.

Debido a este inconveniente provincial y nacional existente se decidió estimar la lluvia en una hora a partir de la de 24 por métodos empíricos encontrados y utilizados por algunos estudiosos del tema en las 21 estaciones pluviométricas disponible en la provincia, incluyendo la estación pluviométrica en La Argelia - Loja.

También se estimó la lluvia en una hora a partir de pluviogramas de la única estación que dispone de estos tipos de registros en la zona de estudio que es también en La Argelia – Loja, para después comparar cual de los métodos empíricos de estimación de lluvia en 1 hora a partir de la de 24 horas en la Argelia-Loja concuerda mejor o se parece a la precipitación en 1 hora obtenido de las bandas pluviográficas del mismo lugar para los diferentes periodos de retorno y con aquella distribución de probabilidad que se ajuste a los datos. Con esto se adoptará o utilizará aquella metodología que de mejores resultados y aplicarla a los demás lugares que solo se dispone de pluviometría.

7.1.5.1. Compilación de la información pluviográfica de La Argelia Loja (Iluvia en una hora)

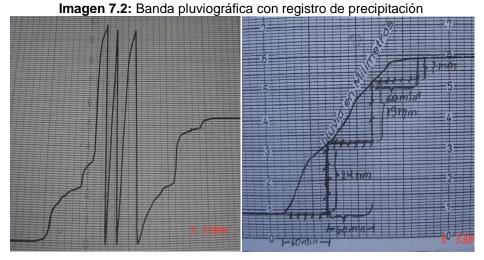
La información necesaria para la obtención de la cantidad de lluvia máxima en una hora para un periodo de retorno determinado a partir de registros pluviográficos, fue facilitada por el Instituto Nacional de Meteorología e Hidrología del Ecuador (INAMHI), Institución que se encarga de la red de estaciones pluviográficas y pluviométricas del país.

Dichas estaciones pluviográficas como la de La Argelia cuentan con equipos, que por medio de bandas en escala milimetrada registran los eventos de lluvia que ocurren durante todo el año, a nivel horario y diario. Esta información pluviográfica se utilizó para determinar la lluvia máxima anual para una hora de duración, para luego ajustarle una distribución de probabilidad que mejor se adapte a los datos (registro).

Imagen 7.1: Pluviógrafo y banda de registro

Fuente: http://www.rumtor.com/pluviografo.html

Con los registros pluviográficos del periodo 1970 – 2000 (31 años) de la estación La Argelia, tenemos una longitud de datos y estadística confiable


La buena calidad y cantidad de información de la cuál se dispone, favorece a este estudio de una manera significativa, ya que casi no existen años en que las bandas presenten zonas defectuosas, estas se encuentran muy bien conservadas. El paso del tiempo no ha afectado su calidad y se han registrado a detalle problemas de funcionamiento del

pluviógrafo, u otros fenómenos. Factor importante al momento de procesar la información ya que los datos de registros se encuentran en su mayoría completos.

Se realizó una revisión previa de los registros anuales de la estación La Argelia, contándose con una estadística promedio mayor a 20 años, cumpliendo con las recomendaciones que se establece para estudiar lluvias extremas.

Para la obtención de las intensidades de lluvia máxima, se analizaron las bandas de registros pluviográficos y se seleccionó los valores extremos de precipitación para el tiempo buscado.

En la Imagen 7.2 se muestra un ejemplo de banda pluviográfica cuyo proceso de análisis consistió en la búsqueda de las cantidades máximas de precipitación (superiores cantidades de lluvia en un periodo de tiempo determinado de cada tormenta presentada en Loja en la longitud de registros disponible) en todos los días transcurridos del rango de estudio seleccionado, para la duración de 1 hora. Una vez obtenidas las máximas precipitaciones de cada tormenta presentada, se determinó la máxima mensual y posteriormente la máxima anual en todo el rango seleccionado de registro del estudio.

Fuente: El autor.

Las mediciones se realizaron tomando como hora de referencia las 07:00 horas en cada día, ya que a esa hora se coloca una nueva faja; luego para 1 hora de duración de se utilizaron intervalos que se desplazaron de forma consecutiva tal como muestra la imagen 7.2.

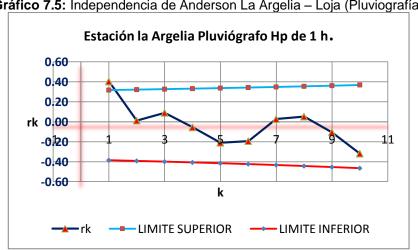
El largo y tedioso proceso que conlleva el realizar este procedimiento, demanda de gran atención y tiempo, ya que el éxito de obtener unas curvas I-D-T adecuadas requiere el analizar la mayor cantidad de lluvias extremas. En este análisis se trabajó con todo el volumen de información generado en el periodo de 31 años de registros pluviográficos diarios. El desarrollo de este trabajo demandó de un arduo esfuerzo para la obtención de la lluvia máxima en una hora para un periodo de retorno determinado se encuentra en esta parte.

Imagen 7.3: Volumen de información pluviográfica analizada Estación La Argelia (M033)

Fuente: El autor.

Una vez extraída la información de lluvias intensas de cada una de las tormentas de las fajas de pluviometría, se procedió a obtener la lluvia máxima anual de la longitud de registro en análisis para la estación La Argelia como se muestra en la Tabla 7.11.

Tabla 7.11: Precipitación máxima anual en una hora La Argelia


	REGISTROS PLUVIOGRAFICOS										
	LLUVIA EN UNA HORA ESTACION LA ARGELIA (M033)										
AÑO	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980
P (mm)	15.6	22.0	22.6	14.3	15.0	20.3	20.8	14.6	20.8	22.1	18.0

_	_			_	_	_	_			_
AÑO	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990
P (mm)	24.8	28.2	36.3	43.8	17.4	17.0	25.6	16.7	15.9	20.4
AÑO	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
P (mm)	29.3	19.0	16.8	15.4	14.5	16.1	17.9	23.9	24.4	25.7

Elaboró: El autor.

7.1.5.2. Prueba de independencia de eventos La Argelia-Loja (Iluvia en una hora)

Antes de realizar el análisis de frecuencias de la serie de lluvia en 1 hora proveniente de los registros pluviográficos de la estación La Argelia, se requirió así mismo que las muestras de la serie de la Tabla 7.10, estén compuestas por variables aleatorias. Para verificar esto aplicamos la prueba de independencia de Anderson, garantizando así que no exista dependencia o asociación entre variables y que sigan las leyes del azar tal como lo muestra el gráfico 7.5:

Gráfico 7.5: Independencia de Anderson La Argelia – Loja (Pluviografía)

Elaboró: El autor.

7.1.5.3. Análisis de frecuencias de Iluvias máximas La Argelia-Loja (Iluvia en una hora)

Con la finalidad de establecer la mejor distribución ajustable a los registros de lluvia en una hora, evaluable en términos de aquella que brinde el menor error estándar de ajuste, se llevó a cabo un análisis estadístico de eventos máximos con diferentes distribuciones de probabilidad y estimadores que se resume en las Tablas 7.11 y 7.12.

Tabla 7.12: Estadísticos muéstrales máximos en 1 hora una hora estación La Argelia

DESCRIPCION	SÍMBOLO	VALOR
Tamaño de la muestra	n	31
Media	X	21.1355
Varianza	S²	43.9930
Coeficiente de Asimetría	g	1.7343
Coeficiente de Curtosis	k	6.8714
Desviación Estándar	S	6.6327
Coeficiente de Variación	CV	0.3138
1er. Momento de Probabilidad Pesada	β(0)	21.1355
2do. Momento de Probabilidad Pesada	β(1)	12.2901
3er. Momento de Probabilidad Pesada	β(2)	8.9453
4to. Momento de Probabilidad Pesada	β(3)	7.1315
1er. Momento-L	λ(1)	21.1355
2do. Momento-L	λ(2)	3.4447
3er. Momento-L	λ(3)	1.0664
4to. Momento-L	λ(4)	0.6185

Elaboró: El autor.

Tabla 7.13: Errores estándar de ajuste probados para estación La Argelia Iluvia 1 hora

		Error Está	ndar de Ajuste	(EEA)				
LA ARGELIA	Mamantas	Máxima	Mamantas	Máxima	Momentos			
LA ARGELIA	Momentos	Verosimilitud	Momentos-L	Entropía	Prob. Pesada			
Normal	3.658	3.658	3.722	-	-			
Gumbel	1.830	2.410	1.914	2.164	-			
Log Normal 2	2.280	-	-	-	-			
Gamma 2	2.189	2.408	2.309	-	-			
Gamma 3	1.518	-	-	-	1.261			
G.V.E.	1.714	0.922	1.481	-	-			
Mejor distribu	Mejor distribución: GENERAL DE VALORES EXTREMOS – por M.V.							

Elaboró: El autor.

7.1.6. Selección mejor procedimiento de obtención de la lluvia en 1 hora para regionalización total de la provincia

En la región de estudio de las 21 estaciones involucradas, solo una de ella (La Argelia-Loja) cuenta con registros pluviográficos para obtener la lluvia máxima en una hora y diferente periodo de retorno y además cuenta con pluviómetro en el mismo lugar para registrar y calcular la lluvia en máxima 24 horas y diferente periodo de retorno. Las 20 estaciones restantes en la provincia solo disponen de registros pluviométricos hecho recurrente en todo el país.

Por lo que para obtener la lluvia en una hora a partir de la 24 se utilizó procedimientos empíricos ampliamente utilizados, seleccionando aquel método para toda la zona de estudio aquel que se ajuste mejor al obtenido por el único registro pluviográfico (lluvia en una hora la Argelia de pluviógrafo) y la lluvia en una hora a partir de la de 24 obtenido por métodos empíricos la Argelia proveniente de pluviómetro), seleccionando el mejor método para ser aplicado a las demás estaciones.

En la Tabla 7.13 se muestra el cuadro comparativo de la lluvia en una hora estimado por diferentes método empíricos con la lluvia en una hora encontrada con los registros de pluviógrafo de le estación La Argelia.

Tabla 7.14: Estimación lluvia en hora a partir de registros pluviométricos y la extraída de pluviogramas

<u>r</u>										
	lia-Loja	KY La Arge	s] GRUNS	licado [año	ra TR inc	horas pa	tir de 24	ora a par	mm] 1 h	Нр [
FDP	10000	5000	1000	500	100	50	20	10	5	2
GVE-ML	23.5	22.7	20.9	20.0	17.7	16.5	14.9	13.5	12.0	9.4
	ia-Loja	II La Argeli	os] INAMI	dicado [añ	ara TR in	horas p	rtir de 24	nora a pa	[mm] 1 h	Нр
	10000	5000	1000	500	100	50	20	10	5	2
GVE-ML	71.2	69.0	63.4	60.7	53.6	50.1	45.2	41.0	36.4	28.7
	rgelia-Loja	RUIZ La A	os] ELIAS Y	dicado [año	ra TR inc	horas pa	tir de 24	ora a par	n] de 1 h	Hp [mn
	10000	5000	1000	500	100	50	20	10	5	2
GVE-ML	44.4	43.0	39.5	37.8	33.4	31.3	28.2	25.6	22.7	17.9
	ıreau La	Veather Bu	ños] U.S. V	ndicado [a	para TR i	4 horas	artir de 2	hora a pa	nm] de 1	Hp [m
				ia	rgelia-Loj	Aı				
	10000	5000	1000	500	100	50	20	10	5	2
GVE-ML	77.2	74.9	68.7	65.8	58.1	54.4	49.0	44.5	39.5	31.1
	ia-Loja	as La Argel	luviograma	raído de p	ños] ext	dicado [a	ara TR in	1 hora p	[mm] de	Нр
	10000	5000	1000	500	100	50	20	10	5	2
GVE-MV	314.3	242.9	134.9	105.4	60.8	48.5	36.6	29.8	24.6	19.0
GAMMA 3- MPP	82.4	76.8	64.2	58.9	46.9	41.8	35.3	30.4	25.5	19.0
GVE-ML	127.1	109.9	78.4	67.8	48.2	41.5	34.0	29.2	24.8	19.4
GAMMA 3-M	73.9	69.3	58.8	54.4	44.2	39.8	34.1	29.8	25.4	19.4
GVE-M	80.5	74.1	60.4	55.0	43.6	39.1	33.5	29.4	25.4	19.8

Elaboró: El autor.

Como se observa la mejor frecuencia de distribución de probabilidad que se ajusta a la serie de datos obtenida por registros pluviométricos y utilizada para estimar la lluvia en una hora a partir de la de 24 horas por los métodos mostrados en la Tabla 7.13 es la "General de valores extremos estimada por momentos L", pues como es de suponerse la lluvia de una hora extraída de

registros pluviográficos debe ajustarse también a la misma frecuencia de distribución de probabilidad, tal como se muestra el cuadro anterior, esto resulto afirmativo, dándonos la certeza y afianzado el proceso y la metodología adoptada. La mejor FDP estimada por registros pluviométricos también debe dar como resultado la mejor FDP estimada por registros pluviográficos, tal como resultó en nuestro análisis.

En la Tabla 7.13 en la parte lluvia de 1 hora para TR indicado [años] extraído de pluviogramas La Argelia-Loja se muestra las 5 mejores FDP que se ajustaron a los registros pluviógraficos en orden descendente de mejor ajuste.

Como se puede observar la mejor FDP de registros pluviográficos para la lluvia en una hora y diferente periodo de retorno que mejor se ajusta la obtenida por registros pluviométricos, es la GVE, pero existe un sobre ajuste y debido a eso será utilizada la segunda de mejor ajuste en términos del menor error estándar de ajuste que es la Gamma 3 por MPP.

El método empírico de estimación de lluvia de una hora a partir de la de 24 que mejor se adapta a los datos obtenidos de pluviógrafo con el análisis de frecuencia más favorable en este caso Gamma 3 (pluviógrafo) es el utilizado por la U.S Weater Bureau y el método obtenido mediante las ecuaciones propuestas por el INAMHI cuyos resultados son muy similares, en la que se podría decir que casi da iguales resultados.

El método de Grunsky minimiza la estimación de la lluvia para todos periodos de retorno pequeños (2 a 20 años) en un valor superior al 40% y para periodos de retorno grandes alrededor del 30%.

Tabla 7.15: Diferencia (%) de Iluvia estimada con la calculada Estación La Argelia (Grunsky)

Porcei	Porcentaje subestimación de lluvia 1 hora a partir de 24 horas para TR indicado [años] GRUNSKY								
	Estación La Argelia-Loja								
2	5	10	20	50	100	500	1000	5000	10000
-49.6	-47.0	-44.5	-42.2	-39.5	-37.6	-33.9	-32.5	-29.6	-28.5

Elaboró: El autor.

Las ecuaciones propuestas por el INAMHI sobre-estima los valores de la lluvia máxima para periodos de retorno pequeños hasta los 20 años de periodo de retorno en un 35%, superior a este tiende a igualarse y subestimándolo para periodos de retorno grandes alrededor del 10 %.

Tabla 7.16: Diferencia (%) de lluvia estimada con la calculada Estación La Argelia (INAMHI)

Porcentaje subestimación de lluvia 1 hora a partir de 24 horas para TR indicado [años]INAMHI									
Estación La Argelia-Loja									
2	5	10	20	50	100	500	1000	5000	10000
50.6	42.7	35.2	28.1	19.8	14.2	2.9	-1.4	-10.2	-13.6

Elaboró: El autor.

Elias y Ruiz con su metodología nos permite calcular la lluvia de diseño con resultados que deacuerdo a nuestro análisis sub-estiman el valor de la lluvia en un 27 % en promedio. El porcentaje tiende aumentar hasta un 50% para periodos de retorno grandes y tiende a disminuir drásticamente para periodos de retorno pequeños hasta el 6%.

Tabla 7.17: Diferencia (%) de lluvia estimada con la calculada Estación La Argelia (Elías y Ruiz)

Porcent	Porcentaje subestimación de Íluvia 1 hora a partir de 24 horas para TR indicado [años] ELIAS Y RUIZ La								
Argelia-Loja									
2	5	10	20	50	100	500	1000	5000	10000
-6.1	-11.0	-15.7	-20.1	-25.3	-28.8	-35.8	-38.5	-44.0	-46.1

Elaboró: El autor.

La U.S. Weather Bureau y su método de estimación de lluvias, sobre-estima los valores de precipitación para periodos de retorno pequeños pero da resultados muy buenos para periodos de retorno superior a 20 años, llegando casi a igualar el valor calculado y estimado en pluviogramas en periodos de retorno mayores a 20 años. Para T = 2 hasta 10 hay una sobre-estimación superior al 30% por ciento. No se considera una diferencia seria debido a que muchos errores de diseño son menospreciados (Hargreaves & Vogler, 1983). Además la mayoría de obras significativas y de gran relevancia para la población y el entorno son superiores a 50 años periodo de retorno.

Aunque las ecuaciones del INAMHI da buenos resultados y muy cercanos a los resultados de la U.S. Weather Bureau en la que no subestiman los valores de lluvia, se debe considerar que el INAMHI hace una zonificación y encuentra una

ecuación respectiva para cada zona, y por ejemplo la ecuación de la estación Sozoranga es igual a la de Sabiango, Cariamanga, Colaisaca, Jimbura; pero aunque esta ecuación sea representativa para toda la zona, el inconveniente es que todas las estaciones o lugares antes mencionados no tienen el mismo o igual número medio anual de días de tormenta convectiva, ni mucho menos el mismo o cercano promedio de lluvia media anual de las máximas diarias, así como tampoco el mismo promedio de lluvia media, características importantes que dan el comportamiento y particularidades especiales que tiene cada lugar. En cambio la U.S. Weather Bureau si toma en cuenta las características genéticas de cada lugar.

De la misma manera Quinara, Vilcabamba, Malacatos, La Argelia, Nambacola, El Lucero, Catacocha tienen según el INAMHI la misma ecuación representativa, pero como ya se explico anteriormente cada estación tiene su particularidad estadística y representativa en la que la Weather Bureau sobresale y toma en cuenta.

Tabla 7.18: Diferencia (%) de lluvia estimada con la calculada Estación La Argelia (U.S. Weather Bureau)

	Porcent	aje subest	imación d	e Iluvia 1 h	nora a part	tir de 24 h	oras para	TR indicad	o [años] U.	S. Weather
					Bureau L	a Argelia-I	Loja			
	2	5	10	20	50	100	500	1000	5000	10000
Ī	53.4	44.8	36.6	29.0	20.0	13.9	6	0.1	-2.6	-6.3

Elaboró: El autor.

Por lo que se da por aceptado y se tomaran los valores de R para toda la provincia de Loja por la metodología de la U.S. Weather Bureau de acuerdo a la Tabla 7.9 por el criterio de selección enunciado.

Estas relaciones o cocientes se emplean para duraciones de varias horas, hasta algunos días.

Como complemento a la estimación basado en los cocientes o relaciones de lluvia en una hora y 24 horas, la U.S. Soil Conservation Service propone un método para estimar las cantidades de lluvia para diferentes duraciones y periodo de retorno, el cual consiste en dibujar en un papel logarítmico o en papel natural las cantidades de lluvia estimadas para duraciones de una y dos años

periodo de retorno y la correspondiente a 24 horas, trazando a continuación por puntos definidos una línea recta que se puede prolongar a duraciones mayores incluso de días. En el anexo 7.1 al 7.21 se proponen los ábacos para cada una de las estaciones de la Provincia de Loja y para diferentes duraciones (1 a 24 horas) y periodos de retorno comprendido entre 2 y 10000 años, si es que fuere necesario estimar la altura de lluvia para una duración mayor al mostrado se puede hacer aplicando la metodología antes propuesta.

7.2. Lluvia menores a una hora y diferente periodo de retorno estaciones Provincia Loja

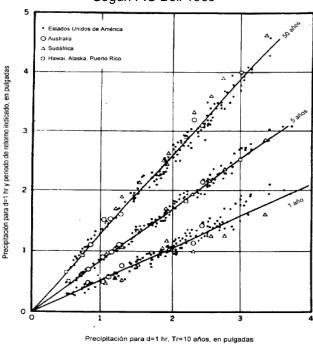
Se procedió a obtener la Iluvia menor a una hora por métodos empíricos luego de haber determinado la Iluvia máxima en 24 horas y diferentes periodos de retorno. Para lo cual se utilizaron, distintas metodologías enunciadas por investigadores del tema.

D.L. Yarnell (1935) y G.A. Hathaway (1945) fueron uno de los primeros investigadores en U.S.A. de lluvias puntuales, el primero estableciendo unas relaciones generales y el segundo estableciendo una relación gráfica entre la intensidad, duración y frecuencia utilizando la intensidad de una hora como índice.

Este método universal de relaciones R, se debe de que altas intensidades provienen de tormentas de tipo convectivo y las leyes físicas que gobiernan las características de tal lluvia son las mismas en cualquier lugar.

EL U.S. Weather Bureau recomendó una relación empírica resultado de un gran número de estudios, en la que la lluvia en t minutos de duración tiene un cociente consistente con la lluvia de una hora e igual periodo de retorno.

F.C. Bell en el año de 1969 reporta las relaciones, para U.S.A, Australia y la U.R.S.S., indicando que tales cocientes tienen una independencia del periodo de retorno, con un error variante entre el 5% al 8%.


 Tabla 7.19: Relaciones promedio de la lluvia en una hora (Bell)

	PAÍS	DURACIÓN EN MINUTOS						
	5	15	30	60	120			
	Valor mínimo	0.26	0.53	0.75	ı	1.17		
U.S.A	Valor máximo	0.32	0.61	0.83	ı	1.31		
	Valor promedio	0.29	0.57	0.79	1.00	1.24		
AUSTRALIA	Valor promedio	0.30	0.57	0.78	1.00	1.25		
U.R.S.S.	Valor mínimo	0.26	0.49	0.71	-	1.20		
U.K.3.3.	Valor máximo	0.37	0.61	0.87	•	1.40		

Fuente: Campos, 1998

Además, Bell ha encontrado cocientes entre la lluvia de una hora y periodo de retorno de 10 años y la lluvia de igual duración pero de diferente periodo de retorno, para U.S.A, Australia, Puerto Rico, Alaska, Hawái y Sud África.

Gráfico 7.6: Relación frecuencia – Iluvia para U.S.A, Australia, Puerto Rico, Alaska, Hawái y Sud África Según F.C Bell 1969

Fuente: Bell, 1969

September of outdates en Estados Unidos de America

157 oudades en Estados Unidos de America

158 oudades en Estad

Gráfico 7.7: Relación duración – Iluvia para .U.S.A y Australia, Según F.C Bell 1969

Bell combinó las dos relaciones duración-lluvia y frecuencia- lluvia, para obtener una ecuación general de Precipitación-Duración-Periodo de retorno que se representa por la siguiente ecuación:

$$P_T^t = (0.21 \ LnT + 0.52)(0.54t^{0.25} - 0.50)P_{10}^{60}$$
 (7.11)
Sí 2≤T≤100 años
5≤t≤120 minutos

donde

 P_T^t = precipitación de duración t minutos y periodo de retorno T, en milímetros.

 $P_{10}^{60} =$ precipitación de duración 60 minutos (una hora) y periodo de retorno 10 años, en milímetros.

La relación general Precipitación – Duración – Periodo de retorno para este caso se ilustra en gráfico 7.3:

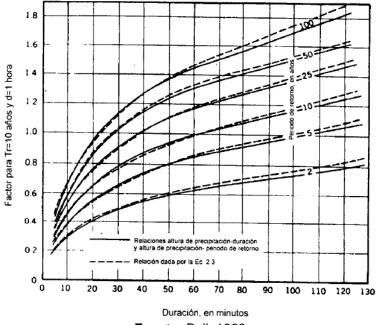


Gráfico 7.8: Relación generalizada Precipitación-Duración-Periodo de retorno TR=10 años.

Fuente: Bell, 1969

Debido a las múltiples investigaciones que se han realizado para obtener la lluvia en una hora y periodo de retorno de 2 años (P_2^{60}) , Bell también representa la ecuación 7.1 en función de dicha lluvia, representado por la siguiente ecuación:

$$P_T^t = (0.35 \ LnT + 0.76)(0.54t^{0.25} - 0.50)P_2^{60}$$
 (7.12)

donde

 P_{T}^{t} = precipitación de duración t minutos y periodo de retorno T, en milímetros.

 P_2^{60} = precipitación de duración 60 minutos (una hora) y periodo de retorno 2 años, en milímetros.

La relación se para el caso de la precipitación de duración una hora y periodo de retorno de 2 años se ilustra en el gráfico 7.4:

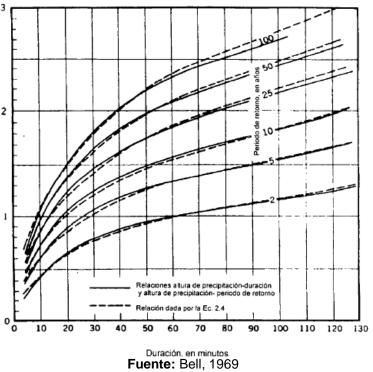


Gráfico 7.9: Relación generalizada Precipitación-Duración-Periodo de retorno TR=2 años.

La ecuación 7.12 permite de la misma forma que la 7.11 estimar la lluvia para cualquier duración desde 5 min. Hasta dos horas y cualquier periodo de retorno de 2 a 100 años, una vez que se conoce la precipitación para 1 hora y 2 años periodo de retorno.

Debido a la forma empírica en que fueron encontradas estas ecuaciones, no es recomendable ser usadas más allá de sus valores recomendados.

En los anexos 7.22 al 7.27 se estimaron los valores de las alturas de lluvia para diferente duración y periodo de retorno para la provincia de Loja mediante la ecuación 7.12 propuesta por Bell, para estimar estos valores de lluvia máxima en duraciones pequeñas.

7.3. Aplicaciones

Para aclarar en forma resumida la metodología propuesta se plantea los siguientes Ejemplos.

EJEMPLO 1

Calcular la altura de lluvia de diseño de la estación Colaisaca asociada a una duración de 6 horas y un periodo de retorno de 2 años.

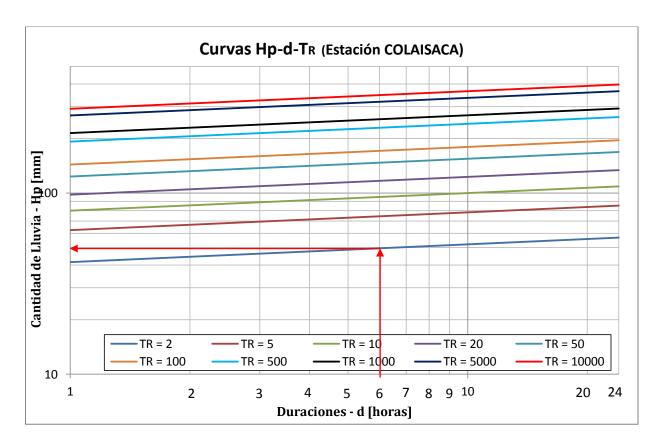
Procedimiento:

1. Con los registros de series históricos de precipitaciones máximas diarias de pluviómetros de la zona, obtenemos la lluvia máxima en 24 horas para un periodo de retorno de 2 años ajustándole la distribución de probabilidad que nos brinde el menor error estándar de ajuste. O en su defecto adoptar el valor de la tabla 6.43 del cap. 6. donde se plantea el valor de la lluvia máxima en 24 horas para el tiempo de retorno indicado donde se le aplicaron a cada estación en estudio 16 modelos de distribución para obtener la lluvia de diseño.

Entonces de la Tabla 6.3 o del mejor modelo de ajuste calculado por el usuario para el efecto tenemos:

		Pa	arámetro	os	Hp [mm] de 24 horas para TR indicados [años]
Estación	Mejor distribución	Ubica.	Escala	Forma	2
COLAISACA	Gamma -3 por MPP.	41.410	41.295	0.651	56.7

- 2. De la Tabla 7.9 del cap. 7 se tiene que la relación de la lluvia en una hora y la de 24 horas para la estación Colaisaca es 0.73 respectivamente.
- Si se requiriera el valor de R o de lluvia máxima en 24 horas distinto a los mencionados en la tabla 7.9 y que pertenezcan a la provincia de Loja, bastaría con interpolar los valores con las técnicas descritas y obtener el valor de los mismos en el lugar deseado o ir a los mapas de isolíneas anexados para obtenerlos de forma gráfica.
- 3. Encontramos la lluvia en 1 hora y periodo de 2 años:


Ya que: R=0.73 (de tabla 7.9)

 $Hp_{24}^2 = 56.7 \text{ mm}$

Como se sabe que: $R = \frac{Hp_1^2}{Hp_{24}^2}$, despejamos el valor de la lluvia de una hora y periodo de retorno de dos años y obtenemos:

$$Hp_1^2 = 41.4 \text{ mm}$$

4. De acuerdo a la U.S. Soil Conservation dibujamos en un papel logarítmico o en papel natural las cantidades de lluvia estimadas para duraciones de una hora y diferente periodo de retorno y la correspondiente a 24 horas.

Una vez graficado los extremos en 1 y 24 horas para el periodo de retorno buscado, unimos mediante una línea recta en caso de contar con papel logarítmico y encontramos el valor de la lluvia en 6 horas y periodo de retorno de dos años buscado:

$$Hp_6^2 = 49.9 \text{ mm}$$

EJEMPLO 2

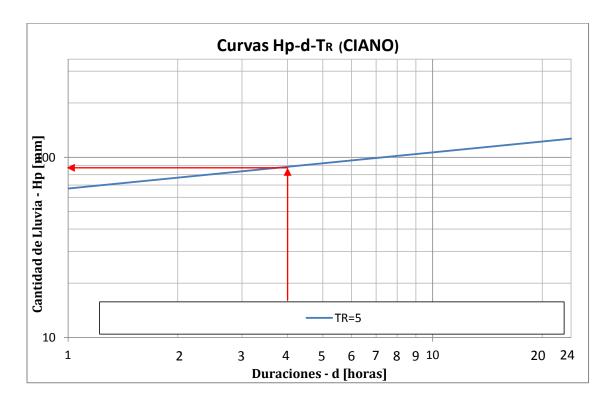
Calcular la intensidad máxima de diseño asociada a una duración de 4 horas y un periodo de retorno de 5 años. Para el Barrio Ciano con coordenadas UTM (625909E; 9569415N).

Procedimiento:

 Entonces de la gráfica (MAPA) del anexo 7.31 (isolíneas de lluvia máxima en 24 horas y periodo de retorno de 5 años) obtenemos la lluvia para un periodo de retorno de 5 años.

LUGA	R Hp	[mm] de 24 horas para TR=5 [años]
CIANC)	126.5

- Del ANEXO 7.28 denominado Isolíneas relaciones R de una a 24 horas, se obtiene que la relación de la lluvia en una hora y la de 24 horas para el lugar buscado, para nuestro caso en Ciano R=0.53 respectivamente.
- 3. Encontramos la lluvia en 1 hora y periodo de 5 años para obtener la grafica en papel logarítmico de las curvas Hp-d-Tr, que nos llevará a la intensidad buscada de lluvia y periodo de retorno necesitado:


Ya que: R=0.53 (de mapa de isolíneas anexo 7.28) $Hp_{24}^5 = 126.5 \text{ mm (de mapa de isolíneas anexo 7.31)}$

Como se sabe que: $R = \frac{Hp_1^5}{Hp_{24}^5}$, despejamos el valor de la lluvia de una hora y periodo de retorno de cinco años y obtenemos:

$$Hp_1^5 = 67.045 \text{ mm}$$

5. De acuerdo a la U.S. Soil Conservation dibujamos en un papel logarítmico o en papel natural las cantidades de lluvia estimadas para duraciones de una hora y periodo de retorno de 5 años y la correspondiente a 24 horas.

CIANO	
d (h) \ TR (años)	5
1	67.045
24	126.5
R	0.53

Una vez graficado los extremos en 1 y 24 horas para el periodo de retorno buscado, unimos mediante una línea recta en caso de contar con papel logarítmico y encontramos el valor de la lluvia en 4 horas y periodo de retorno de dos años buscado para la localidad de Ciano:

$$Hp_4^5 = 88 \text{ mm}$$

6. La intensidad para este lugar con una duración de 4 horas y periodo de retorno de 5 años es: $I_4^5 = \frac{88mm}{4h} = 22mm/h$

7.

EJEMPLO 3

Con los datos del ejemplo anterior calcular la precipitación máxima para un periodo de retorno de 10 años y duración de 5 minutos de la localidad de Ciano con coordenadas UTM (625909E; 9569415N).

Procedimiento:

1. Encontramos la lluvia en 1 hora y periodo de 2 para obtener la lluvia máxima de duraciones menores a una hora:

Ya que: R=0.53 (de mapa de isolíneas del ejemplo anterior)

 $Hp_1^2 = 51.4$ mm (de mapa de isolíneas anexo 7.30)

Aplicando la ecuación 7.2 tenemos:

$$P_{10}^{5} = (0.35 \ Ln10 + 0.76)(0.545^{0.25} - 0.50)51.4 = 24.75mm$$

CAPITULO 8

CONCLUSIONES Y RECOMENDACIONES

CAPITULO 8 CONCLUSIONES Y RECOMENDACIONES

Una vez exploradas las características orográficas, climáticas, hidrográficas en el Ecuador y especialmente en la zona de estudio, esto, como paso previo para la búsqueda y análisis de información principalmente de lluvia diaria. Se procedió a verificar su calidad y cantidad de información, generación y relleno de datos faltantes, independencia de eventos, análisis de frecuencias de lluvia máxima diaria. Para finalmente obtener el mapa de la relación R de lluvia entre 1 a 24 horas en la zona de estudio, curvas Hp-d-T, haber explorado métodos empíricos de obtención de lluvia máxima en una hora y haber obtenido lluvias menores a esta para diferentes periodos de retorno, se llegó a las siguientes conclusiones y recomendaciones.

Se propuso una regionalización de la relación de convectividad (anexo 7.28), como complemento de ayuda para determinar los datos de lluvia menores a 24 horas y periodo de retorno cualquiera, utilizando formulas empíricas para la determinación de la altura de lluvia-duración- periodo de retorno, o utilizando la fórmula empírica de Chen.

Se aprovechó la información recopilada de la provincia de Loja de alrededor de 40 años, para utilizar la gran cantidad de datos de pluviómetro y obtener un mapa de las relaciones de una a veinticuatro horas de tipo convectivo.

El valor de R tiende a aumentar en la parte oriental de la provincia correspondientes a la zona de Loja, San Lucas, Malacatos Vilcabamba, y disminuye en la parte sur occidental de la provincia comprendido en la zona se Zapotillo, Saucillo Macará. Esto contrasta con la topografía en la que en la parte oriente tiene mayor concentración de zonas montañosas (Sierra de la provincia), y las montañas disminuyen en el occidente (zona cálida seca).

Al tratar de aprovechar al máximo los registros totales que disponen las instituciones encargadas en el monitoreo de eventos climatológicos se pudo determinar la existencia de eventos extraordinarios registrados (en Sozoranga 1976), que afectan significativamente las curvas intensidad-duración-periodo de retorno, lo cual traduce en

un subdimensionamiento o un sobredimensionamiento de las obras hidráulicas, con el factor de riesgo incluido en tales obras.

El valor mínimo y máximo de de la relación de lluvia de una a veinte y cuatro horas en la provincia de Loja se encuentra entre 0.49 correspondiente a la estación Saucillo y 0.79 en la estación Sozoranga respectivamente y como valor medio de 0.64 para toda la Provincia, Sozoranga sobresale este valor ya que según registros del INAMHI se reportaron eventos extremos el 6 de febrero de 1976 y en mas meses de ese año en esa zona con precipitaciones de 543 mm.

Como complemento a la estimación basado en los cocientes o relaciones de lluvia en una 1 y 24 horas, se propuso ábacos (Hp-d-T) para estimar las cantidades de lluvia a diferentes duraciones (1 a 24 horas) y para diferentes periodo de retorno (2 a 10000 años) según la U.S. Soil Conservation Service para 21 lugares representativos de la provincia de Loja (anexos 7.1 a 7,21).

Observando la Tabla 7.9. y el mapa de isolíneas del anexo 7.28 en las que se detalla las relaciones de lluvia máxima en una hora y la de 24 horas, se pudo observar que en los lugares donde las lluvias son mas persistentes o mas continuas (Número medio anual de días con tormenta convectiva), la lluvia media anual de las máxima diaria es menor y por ende los valores de R son mayores, es decir en regiones montañosas con humedad continua de varias horas con climas subtemperados y fríos que se extienden sobre las cordilleras más altas (Sector en cúspides de Saraguro y Loja) que se podría llamar la serranía de la provincia de Loja y también a altitudes más bajas que bordean entre los 1200 y 1900 metros de altura.

Existe una zona de transición zona central de la provincia donde encontramos valores medios de R comprendidos en la zona de Celica, Catacocha. Cariamanga, Olmedo, Chaguarpamba, El Lucero, Quilanga, con valores de R de alrededor de 0.65, con una zona con humedad de moderada a pequeña.

Donde las Iluvias son menos persistentes Zapotillo, Saucillo, Macará; es decir en la zona sur occidental de Loja, con clima cálido seco y semiárido con temperaturas

medias sobre los 25 grados centígrados, los valores de R son menores con lluvias media anual de máximas diarias mayores.

Se puede concluir de acuerdo a las características topográficas, que la Provincia de Loja se encuentra protegida de la incidencia directa de eventos de origen ciclónico.

Se muestra la posibilidad de utilizar las grandes bases de datos de registros de lluvias por medio de estaciones pluviométricas del Ecuador, que dispone el INAMHI, y que puede difundir al público en general para la investigación y desarrollo (UNIVERSALIDAD DE LA INFORMACION), para realizar estudios regionales y que sirvan como base para estudios de hidrología de cada lugar.

Se obtuvieron lluvias de corta duración (5 a 60 min) para los principales lugares de la Provincia de Loja y para periodos de retorno de 2 a 100 años (anexos 7.22 -7.27)

Se calcularon las isolíneas que muestran las relaciones de 1 a 24 horas de la Provincia, de Loja (anexo 7.28).

Se calcularon las isolíneas para la lluvia máxima en una hora y periodo de retorno de dos años y las de 24 horas y de igual periodo de retorno (anexo 7.29-7.30).

Se calculó así mismo las isolíneas de precipitación máxima en 24 horas para periodo de retorno de 5 a 100 años para Loja (anexos 7.31-7.34).

Se logro tener una longitud de registro común de datos de lluvia diaria de 21 estaciones pluviométricas de la provincia de Loja con 40 años de registro común aplicando 7 técnicas de interpolación, así mismo se determinó los estadísticos de la serie de datos (características de la zona). Para luego determinar mediante la prueba de independencia de Anderson que en todas las estaciones estudiadas las lluvias máximas anales son independientes y que menos del 10% de los r_k sobrepasan los límites de confianza. Luego se estudiaron varias funciones de distribución de probabilidad (16 funciones de distribución), con sus parámetros estimados por diferentes métodos en las 21 muestras en las que se agruparon y ajustaron a las distribuciones Gamma-3, GVE, Gumbel y Normal con parámetros estimados por

momentos, máxima verosimilitud, momentos L, máxima entropía y momentos de probabilidad pesada.

Se analizó información de pluviometría de la única estación pluviográfica de la zona (La Argelia) para determinar la lluvia máxima anual para una hora de duración, para luego ajustarle una distribución de probabilidad que mejor se adapte a los datos (registro) y obtener la lluvia máxima en una hora para diferentes periodos de retorno de la ciudad capital de la provincia y la más representativa y principal respecto a número de habitantes y extensión urbana.

Se analizaron todas las tormentas que se han presentado desde 1970 al 2000 de El Cantón Loja (M033) según se han registrado en las bandas de los pluviogramas para determinar luego la máxima anual y mensual en una hora de duración.

Se compararon 4 métodos de estimación de la lluvia en una hora a partir de la de 24 y determinar la eficacia de cada uno de estos métodos respecto a la lluvia máxima real medida en los pluviogramas de la estación la Argelia.

La estimación de la intensidad de la lluvia máxima por medio de Grunsky, sub-estima o minimiza los valores de precipitación para todos periodos de retorno pequeños (2 a 20 años) en un valor superior al 40% y para periodos de retorno grandes alrededor del 30%.

Las ecuaciones propuestas por el INAMHI sobre-estima los valores de la Iluvia máxima para periodos de retorno pequeños hasta los 20 años de periodo de retorno en un promedio de alrededor de un 35%, superior a este tiende a igualarse y subestimándolo para periodos de retorno grandes alrededor del 10 %.

Las ecuaciones de una determinada región propuestas por el INAMHI no toman en cuenta las características propias que tiene cada estación o lugar respecto al número de lluvias en promedio, lluvia media anual y el promedio anual de las máximas diarias de cada lugar "características genéticas de cada muestra".

Elias y Ruiz con su metodología para calcular intensidades máximas de acuerdo al análisis hecho en este trabajo y para esta región sub-estiman el valor de la lluvia en un 27 % en promedio. El porcentaje tiende aumentar hasta un 50% para periodos de retorno grandes y tiende a disminuir drásticamente para periodos de retorno pequeños hasta el 6%.

La U.S. Weather Bureau y su método de estimación de lluvias, sobre-estima los valores de precipitación para periodos de retorno pequeños pero da resultados muy buenos para periodos de retorno superior a 20 años. Para T = 2 hasta 10 hay una sobre-estimación superior al 30% por ciento. Arriba de los 20 años de periodo de retorno los valores no se sobre estiman ni se subestiman por ejemplo entre 500 y 1000 años tiende el porcentaje de sobre estimación o subestimación a cero.

Se recomienda continuar con este tipo de estudios para toda la República Ecuatoriana, para precisar y ajustar mejor los resultados. Para ello se necesitaría recabar información pluviográfica y pluviométrica completa de todo el País.

Se recomienda así mismo estudiar cada provincia al nivel de detalle que ha contado este trabajo, zonificarla, determinar curvas I-D-T con una precisión y análisis puntual de cada zona o lugar como se puede evidenciar en este estudio. Ya que desagregando las zonas para su análisis y luego uniendo en un todo da mejor resultado que una zonificación y estudio Global del País (desagregación espacial y temporal). De esta manera tendremos para cada Provincia, Cantón y Parroquia, Barrio, un nivel de estimación de intensidades máximas más confiables, precisas y puntuales.

REFERENCIAS BIBLIOGRAFICAS	
	REFERENCIAS BIBLIOGRÁFICAS

REFERENCIAS BIBLIOGRÁFICAS

- **Bell, F.C.** (1969). "Generalized rainfall-duration-frecuency relationship" [Publicación periódica] // American Society of Civil Engineers / ed. Division Journal of the Hydraulics. No HY1 : Vol. 95. págs. 311-327.
- Campos, A. (1998). "Procesos del ciclo hidrológico" [Libro]. México: Editorial
 Universitaria Potosina. Vol 1. Tercera reimpresión. S.L.P.
- Escalante Sandoval, C.A. (2010). "Conferencía de clase de hidrología urbana"
 [Conferencia] // Técnicas de interpolación espacial de lluvias / ed. Ingeniería
 Posgrado en. México : Ciudad Universitaria.
- Escalante Sandoval, C.A., & Reyes Chávez, L. (2004). "Influence of Length of Record in Estimation of Rain Factor R" [Publicación periódica] // Scientific electronic library online . - México : [s.n.]. - págs. 1-7.
- Escalante Sandoval, C.A., & Reyes Chávez, L. (2005). "Técnicas estadísticas en hidrología" [Libro]. México, D.F.: Universidad Nacional Autónoma de México. Segunda edición: págs. 1-50.
- García, C.F., & Palacios, Ch.E. (2010). "Pronóstico hidrometreológico en el Ecuador" [Informe]. - Quito: Instituto Nacional de Metereología e Hidrología (INAMHI-ECUADOR). - pág. 6.
- Gondard, P. (1983). "Ritmos pluviométricos y contrastes climáticos en la provincia de Loja" [Publicación periódica] // Revista del Banco Central del Ecuador. Quito: [s.n.]. 15: Vol. V. págs. 39-40.
- Hargreaves, G.H., & Vogler, K.J. (1983). "Experiences in the development and Application of Mathematical Models in Hydrology and Water Resources in Latin America (Proceedings of the Tegucigalpa Hydromath Symposium)" [Publicación periódica] // IAHS. Utah: Departamento de agricultura y riego. 152. págs. 165-180.

- Hershfield, D.M. (1961). "Rainfall frecuency atlas of the Unites States for durations from 30 minutes to 24 hours and return periods from 1 to 100 years" [Publicación periódica] // Departament of comerce. - [s.l.]: Engineering Division, Soil Consen:ation Service. - págs. 1-20.
- INERHI-PREDESUR-CONADE. (1994). "Plan Integral de Desarrollo de los Recursos Hídricos de la Provincia de Loja" [Publicación periódica]. - Washington D.C.: Organización de los Estados Unidos Americanos. - págs. 1-3.
- Ministerio de Energía y Minas & Instituto Nacional de Metereología e Hidrología. (1999). "Estudio de Iluvias intensas" [Informe]. - Quito: INAMHI. pág. 126.
- Organización Metereológica Mundial. (1994). "Guía de prácticas hidrológicas"
 [Libro]. Ginebra: OMM. Vol. V: págs. 30-75.
- Olivera Fernández, S.J. (2003). "Diseño y evaluación económica de la propuesta agroforestal promovida en el ámbito de la Coordinadora Ecuatoriana de Agroecología CEA" [Libro]. - Temuco: Universidad de Temuco-Chile. - págs. 60-63.
- Reich B. (1963). "Short duration rainfall intensity estimates and other design aids for regions of sparse data" [Publicación periódica] // Journal of hidrology. - págs. 1-5.
- Salas J.D. [y otros]. (1980). "Applied modeling of hidrologic time series" [Libro]. Michigan: Water resource publications. Cuarta Edición: págs. 12-40.

REFERENCIAS ELECTRÓNICAS.

Academia de Ciencias Luventicus Ecuador [En línea] // "Provincia de Loja". n.d.. - 3 de Enero de 2011. - http://www.luventicus.org/mapas/ecuador/loja.html.

- UTPL. Sistemas de información geográfica [En línea] // "Isoyetas en la provincia de Loja" / ed. Loja Universidad Técnica Particular de. 2010. 8 de Enero de 2011. http://sig.utpl.edu.ec/sigutpl/index.php.
- Madrid Gabriela E, Soria Adrián F y Rodríguez María. "Fundación Simbiosis"
 [En línea] // Mapas de Ecuador. 19 de Agosto de 2007. 14 de 12 de 2010. http://facee.wordpress.com/2007/08/19/mapas/.
- La Luz de La Mancha. "Hombres y mujeres ilustres del Ecuador" [En línea] //
 Provincia de Loja. n.d.. 6 de Enero de 2011. http://www.ilustresdelecuador.com/mapasitio.php.

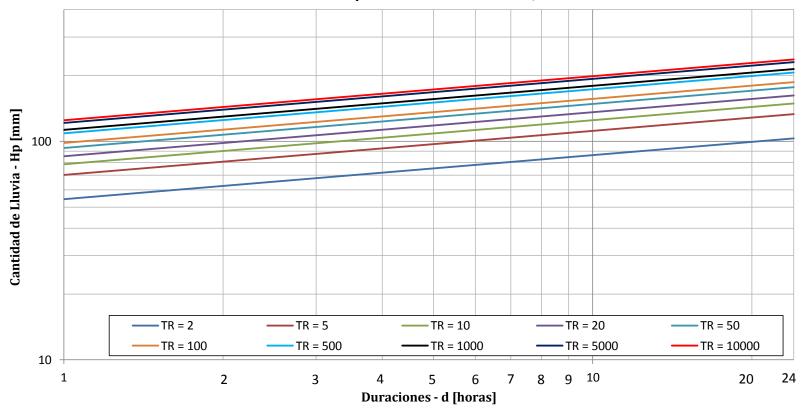
ANEXOS

ANEXO 2.1. CLASIFICACIÓN DE ESTACIONES HOMOGÉNEAS

PIS	OS T	ERMICOS						<u> </u>															
		PISO TERMICO	CALI	DO		TEMP	LADO	O MED	10									FRÍO					
		RANGO DE ALTITUD	0-100	0		1000-	2000											2000-	3000				
TURA		RANGO TERMICO	>24°C	;		17°C-	24°C											12°C-	17°C				
TEMPERATURA	ALTITUD	CODIGO	M151	M437	M439	M435	M434	M148	M515	M146	M433	M150	M763	M145	M147	M143	M144	M438	M149	M544	M033	M142	M432
		ALTITUD	223	328	700	1250	1427	1984	1808	1950	1180	1672	1822	1559	1835	1453	1563	2100	2042	2410	2160	2525	2525
CL	ASIFI	CACION DEL C	LIMA S	SEGUN	TORN	WHITE																	
LUVIA	٥	CLIMA	SEM POC NING EXCI	ES0	0	MODE	EDO DE ERADO		SEMI ARIDO POCO O NINGUN EXCESO		DO DE		PEQUE	ÑO						ÚMEDO	SUB HÚMEDO DÉFICIT PEQUEÑO	DEFIC MODE	RAD
6MASA LLUVIA	нимерар	CODIGO	M151	M437	M439	M435	M148	M515	M763	M434	M544	M146	M149	M433	M150	M438	M145	M147	M143	M144	M033	M142	M432
Ш9	₽	ALTITUD	223	328	700	1250	1984	1808	1822	1427	2410	1950	2042	1180	1672	2100	1559	1835	1453	1563	2160	2525	2525
ZO	NAS	PLUVIOMÉTRIC	AS DE	LA PR	ROVIN	CIA DE																	
	₹.	ZONA	SECA	١				DENTA ISICION				HUME	EDA OC	CIDEN	ITAL		CALL	EJON I	NTERA	NDINO			
LLUVIA	POSICION GEORAFICA	CODIGO	223	328	700 M439	1250	1427	1984	M515	2410	1950	2042	892 1822	1180	1672	2100	1559	1835	1453	1563	E W 033 2160	2525 24 W145	2525
	CIME G O	NES PLUVIOME	_		700	1250	1427	1964	1808	2410	1950	2042	1022	1160	1072	2100	1559	1635	1453	1503	2160	2020	2525
		REGÍMENES DE LLUVIA		EROS S	DE D	ICIEME	BRE A I	MAYO		LLUV	IA DE (остив	REAM	IAYO			LLUV	IA TORMEN		EL A	ÑO CASI	DISTR	IBUIDA
DISTRIBUCION	POSICION GEOGRAFICA	CODIGO	M151	M437	M439	M435	M434	M148	M515	M544	M763	M149	M146	M433	M150	M438	M145	M147	M143	M144	M033	M142	M432
	S S	ALTITUD	223	328	700	1250	1427	1984	1808	2410	1822	2042	1950	1180	1672	2100	1559	1835	1453	1563	2160	2525	2525
ES	TADIS	STICOS MUEST	RALES	3																			
ESTADISTICOS	MUESTRALES	CODIGO	M151	M437	M439	M435	M434	M544	M148	M515	M763	M149	M146	M433	M150	M438	M145	M147	M143	M144	M033	M142	M432
TADIS	ESTR	COEF. VARIACION	0.21	0.22	0.32	0.32	0.25	0.38	0.35	0.32	0.32	0.36	0.38	0.41	0.34	0.39	0.33	0.44	0.34	0.36	0.46	0.48	0.54
ES.	M	DIAS LLUVIA	35	44	93	86	104	94	94	76	45	81	95	87	72	96	64	120	63	86	132	128	154

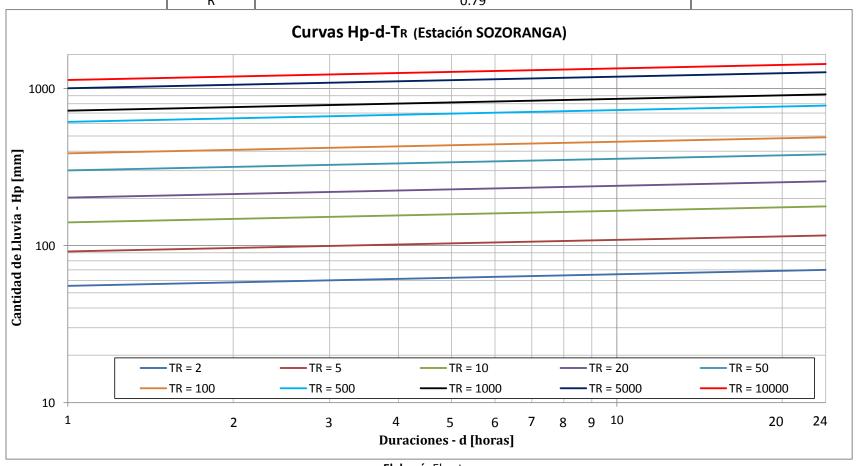
ANEXO 2.2. NUMERO DE DIAS CON LLUVIA APRECIABLE EN EL AÑO, DE LA PROVINCIA DE LOJA

DIAS CON LLUVIA						11110	144	11110	11110	84440	11000	11110	84454		84445	84450		11101	1110	14400	14700
		M544	M439		M432	M149		M146	M142	M148	M033			M144	M145	M150	M433	M434	M437	M438	M763
	56	105	-	51	185	127	160	70	144	83	91	92	14	-	-	-	-	-	22	-	<u> - </u>
	102	132	-	71	162	101	159	102	141	116	148	95	35	4	-	-	101	107	45	-	57
	69	-	48	63	134	96	71	85	118	136	146	91	39	106	-	-	78	97	-	-	83
	43	116	134	98	145	92	119	94	123	131	141	69	38	104	-	-	92	110	49	-	
1974	-	-	1	-	-	12	-	114	158	105	130	98	-	110	-	-	-	10	-	-	ļ
	91	120	104	105	167	73	122	113	157	124	159	98	27	121	9	44	61	78	49	26	11
	75	110	138	124	124	93	103	93	137	139	141	94	38	123	37	97	78	101	65	101	28
	41	79	102	76	140	71	114	70	121	104	143	67	32	78	16	67	-	2	51	72	18
	45	65	52	57	147	52	84	61	124	23	92	65	15	75	-	44	-	-	22	73	-
1979	-	89	64	67	132	85	85	86	109	112	103	71	7	78	40	67	16	19	23	96	54
1980	65	75	61	66	168	84	190	81	145	98	140	65	18	74	35	56	71	27	22	64	37
	34	78	56	65	100	96	111	114	123	99	98	68	22	85	-	68	74	84	25	103	62
	88	94	74	92	110	103	129	110	125	139	132	73	29	56	100	116	100	98	35	105	63
	92	131	153	162	168	89	130	107	120	140	97	61	120	98	77	111	112	147	124	120	80
1984	79	92	133	98	123	112	130	104	129	81	112	94	46	110	99	101	59	134	53	135	45
	67	52	67	48	113	90	118	52	130	15	88	79	20	87	64	50	45	74	21	90	26
1986	82	19	110	80	76	81	133	65	126	54	128	67	28	73	67	59	43	111	36	99	32
1987	60	9	79	96	110	44	106	51	111	22	118	50	41	68	46	48	-	84	52	79	22
1988	90	86	58	53	85	43	125	95	135	-	148	65	17	108	-	82	64	85	15	121	27
1989	85	85	121	82	79	86	121	81	127	105	141	62	45	91	14	104	100	97	48	90	-
1990	78	99	63	68	49	96	128	106	98	103	179	68	22	113	57	48	153	98	16	119	-
1991	73	76	94	98	149	79	127	77	111	98	127	51	26	91	82	71	86	111	28	86	11
1992	78	115	124	127	150	61	90	82	125	122	142	40	47	83	39	55	102	124	59	77	-
1993	104	99	119	122	166	95	140	131	144	130	159	92	44	111	92	99	128	123	56	107	-
1994	103	101	114	121	185	62	134	108	162	105	152	52	4	94	68	113	121	137	40	102	-
1995	87	74	94	83	152	57	108	94	116	89	120	28	8	87	74	51	141	106	22	90	65
1996	37	71	73	71	223	47	119	102	125	29	130	23	17	87	77	-	124	102	18	93	70
1997	80	93	155	146	183	55	105	85	132	110	120	38	66	78	78	37	76	118	37	83	28
1998	82	92	119	131	182	81	131	112	126	98	134	45	97	81	47	95	95	149	106	100	28
1999	118	132	115	106	219	86	142	133	175	82	150	19	53	86	44	111	109	147	62	132	22
2000	109	152	84	91	204	79	123	109	99	78	164	91	39	31	98	18	84	141	68	114	-
2001	77	119	86	81	177	57	70	98	107	68	133	37	47	-	68	24	73	132	48	120	-
2002	83	111	112	79	188	77	103	105	119	77	123	37	41	-	72	57	87	137	63	107	-
2003	-	-	-	-	-	-	-	-	-	92	137	43	28	-	-	-	-	-	-	-	-
2004	22	122	66	38	185	43	114	87	116	100	146	56	25	-	76	53	76	107	30	66	7
2005	69	74	55	15	185	92	134	84	130	70	141	40	32	-	25	55	65	83	32	88	49
2006	81	98	67	80	115	112	86	102	104	-	-	-	-	-	89	75	27	138	45	85	65
	63	94	83	64	187	87	118	99	128	-	-	-	-	-	95	86	81	124	36	86	64
2008	112	134	150	101	254	156	161	134	128	-	-	-	-	-	118	124	136	168	54	149	118
2009	75	78	112	97	215	105	121	92	129	-	-	-	-	-	89	94	104	127	58	102	40
PROMEDIO	76	94	93	86	154	81	120	95	128	94	132	63	35	86	64	72	87	104	44	96	45

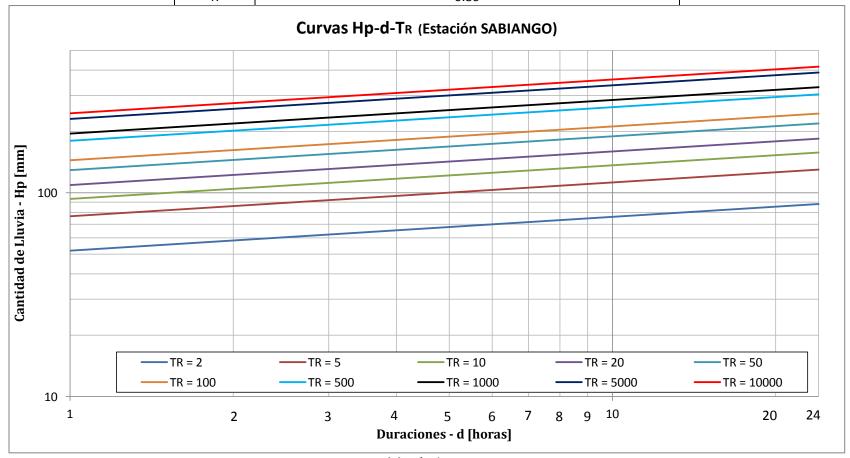

ANEXO 2.3. PROMEDIOS ANUALES DE LLUVIA Y PENDIENTE DE AJUSTE

1970						KON			NUAL			_0 / 1/		LIND				SIL				T
1971 277 4.59 . 3.64 3.36 4.89 2.42 3.52 2.62 3.09 2.26 2.09 2.01 1.66 . . . 3.70 1.62 2.42 . 2.88 2.97 2.91 1.9			_	M439											M144	M145	M150	M433	M434		M438	M763
1972 267 -				-						_	_				-	-	-	-	-		-	-
1973			4.59	-						_						-	-			2.42	-	
1974			-													-	-			-	-	3.07
1975		1.87	3.87		4.38	5.04		3.11				_		1.98		-	-	3.09		2.25	-	-
1976		-	-		-	-		-						-		-	-	-		-	-	-
1977					5.20							_				_		6.72				
1978		2.93														2.20		3.90	38.88			
1979 -		1.58	2.92													1.72	2.53	-	0.30	2.48	3.33	1.68
1980	1978	1.33	1.77	2.72	2.16	2.93		2.56		2.25		1.66	1.26	0.36	1.28	-	1.34	-	-	0.53		-
1881 2.80 2.03 1.40 2.41 1.93 2.96 2.41 3.39 2.05 3.06 3.96 1.78 1.39 2.21 - 2.19 2.03 1.90 1.44 3.52 2.74 1.982 2.16 2.98 2.95 3.53 2.00 4.45 3.46 3.47 5.20 2.22 7.46 2.04 1.57 9.00 3.12 1.99 3.61 4.84 5.87 7.70 6.13 5.98 1.984 2.76 4.83 3.99 4.43 3.07 4.30 3.98 4.42 2.47 9.91 2.46 2.35 7.12 3.05 2.89 2.86 6.74 3.58 2.28 5.25 3.24 1.99 1.66 1.65 1	1979	-	2.67	3.47											2.21	2.89		0.75		0.50	2.99	
1982	1980	1.61	1.97	1.30	1.35	3.18	2.93	3.88	2.30	2.32	1.94	2.63	1.57	2.40		1.88		1.66	2.05	0.96	5.66	1.25
1983 3,37 4,98 7,74 9,91 3,13 4,50 3,47 5,20 2,22 7,46 2,04 1,57 9,00 3,12 1,99 3,61 4,84 5,87 7,70 6,13 5,98 1985 1,42 1,57 1,46 1,50 2,70 2,73 2,51 1,70 2,26 2,43 1,71 0,56 1,76 1,31 1,00 1,36 1,50 0,78 2,94 1,71 0,56 1,76 1,31 5,03 2,00 1,73 1,66 1,66 0,89 2,69 3,27 1,87 2,10 2,68 2,18 1,99 5,38 2,09 1,74 1,27 1,66 1,67 1,31 5,03 2,00 1,89 3,73 1,31 5,03 2,00 1,89 3,73 1,31 3,63 2,02 1,27 1,31 5,03 2,00 3,58 2,90 1,58 1,35 1,35 1,36 3,80 2,02 1,35 1,	1981	2.80	2.03	1.40	2.41	1.93	2.96	2.41	3.39	2.05	3.06	1.96	1.78	1.39	2.21	-	2.19	2.03	1.90	1.44	3.52	2.74
1984 2.76 4.83 3.99 4.43 3.07 4.30 3.98 4.42 2.47 9.91 2.46 2.35 7.12 3.05 2.89 2.86 6.74 3.58 2.28 5.25 3.24 1985 1.42 1.57 1.46 1.50 2.70 2.73 2.51 1.70 2.55 0.76 2.43 1.71 0.56 1.76 1.31 1.01 1.36 1.50 0.70 2.94 1.79 1887 1.67 0.24 3.64 4.08 1.99 0.88 2.41 2.26 1.75 8.03 2.55 1.33 3.36 1.92 1.43 1.13 5.03 2.56 1.58 1.59 2.45 1.51 1.50 1.70 2.45 1.51 1.50 3.70 4.0 2.26 1.75 8.03 2.58 1.29 1.43 1.13 1.03 2.56 1.58 2.28 2.10 2.52 1.43 1.13 4.00 2.28 </th <th>1982</th> <th>2.16</th> <th>2.98</th> <th>2.95</th> <th>3.53</th> <th>2.00</th> <th>4.45</th> <th>3.46</th> <th>3.91</th> <th>2.43</th> <th>3.14</th> <th>2.54</th> <th>2.22</th> <th>1.05</th> <th>2.69</th> <th>2.72</th> <th>3.93</th> <th>3.02</th> <th>2.52</th> <th>1.38</th> <th>4.21</th> <th>3.07</th>	1982	2.16	2.98	2.95	3.53	2.00	4.45	3.46	3.91	2.43	3.14	2.54	2.22	1.05	2.69	2.72	3.93	3.02	2.52	1.38	4.21	3.07
1985	1983	3.37	4.98	7.74	9.91	3.13	4.50	3.47	5.20	2.22	7.46	2.04	1.57	9.00	3.12	1.99	3.61		5.87			
1986	1984	2.76	4.83	3.99	4.43	3.07	4.30	3.98	4.42	2.47	9.91	2.46	2.35	7.12	3.05	2.89	2.86	6.74	3.58	2.28	5.25	3.24
1987 1.67 0.24 3.64 4.08 1.99 0.88 2.41 2.26 1.75 8.03 2.53 1.33 3.36 1.92 1.43 1.13 - 2.78 3.75 2.45 1.51 1988 1.79 2.61 1.66 2.07 2.16 1.82 2.84 3.02 2.18 - 2.47 1.91 0.23 2.20 - 2.38 2.56 1.58 0.09 3.50 1.58 1990 1.89 3.73 1.22 1.86 2.74 2.87 3.16 3.82 1.65 2.06 3.12 2.39 0.30 2.31 1.70 1.16 2.91 1.41 0.32 2.27 1.93 1991 2.64 2.39 2.46 3.29 4.60 3.02 2.69 2.56 1.69 2.67 2.57 1.83 0.88 2.27 1.61 1.59 1.75 7.88 3.44 3.99 2.26 1.93 2.06	1985	1.42	1.57	1.46	1.50	2.70	2.73	2.51	1.70	2.25	0.75	2.43	1.71	0.56	1.76	1.31	1.01	1.36	1.50	0.78	2.94	1.79
1988 1.79 2.61 1.66 2.07 2.16 1.82 2.84 3.02 2.18 - 2.47 1.91 0.23 2.20 - 2.38 2.56 1.58 0.29 3.50 1.58 1899 3.16 3.71 3.81 4.65 3.61 3.37 4.10 4.54 2.65 6.20 2.68 2.10 2.56 2.59 1.72 3.33 2.17 3.37 3.00 4.20 - 1991 2.64 2.39 2.46 3.29 4.60 3.02 2.69 2.56 1.69 2.67 2.57 1.83 0.88 2.27 1.63 1.80 1.83 2.29 1.17 1.75 7.88 3.44 3.99 2.28 1.91 1.59 1.75 7.88 3.44 3.99 2.28 1.93 3.64 6.08 4.17 3.55 4.03 4.41 2.52 2.41 1.80 3.59 2.26 1.20 2.29 2.01	1986	1.65	0.89	2.69	3.27	1.87	2.10	2.68	2.18	1.99	5.38	2.09	1.74	1.27	1.66	1.67	1.31	5.03	2.60	1.36	3.80	2.02
1989 3.16 3.71 3.81 4.65 3.61 3.37 4.10 4.54 2.65 6.20 2.68 2.10 2.56 2.59 1.72 3.33 2.17 3.37 3.00 4.20 - 1990 1.89 3.73 1.22 1.86 2.74 2.87 3.16 3.82 1.65 2.06 3.12 2.39 0.30 2.31 1.70 1.16 2.91 1.41 0.32 3.27 - 1991 2.64 2.39 2.46 3.29 4.60 3.02 2.66 1.69 2.67 1.83 0.88 2.27 1.63 1.80 1.83 2.29 1.35 1992 2.40 13.57 10.71 10.25 5.33 2.88 2.25 2.41 1.86 3.59 2.26 1.20 2.29 2.01 1.63 1.88 1.29 1.35 1.89 1.75 7.88 3.41 4.10 3.29 2.26 2.11 3.37	1987	1.67	0.24	3.64	4.08	1.99	0.88	2.41	2.26	1.75	8.03	2.53	1.33	3.36	1.92	1.43	1.13	-	2.78	3.75	2.45	1.51
1990 1.89 3.73 1.22 1.86 2.74 2.87 3.16 3.82 1.65 2.06 3.12 2.39 0.30 2.31 1.70 1.16 2.91 1.41 0.32 3.27 - 1991 2.64 2.39 2.46 3.29 4.60 3.02 2.69 2.56 1.69 2.67 2.57 1.83 0.88 2.27 1.63 1.80 1.83 2.99 1.32 2.51 1.35 1992 2.40 13.57 10.71 10.25 5.33 2.68 2.25 2.41 1.86 3.59 2.26 1.20 2.29 2.01 1.59 1.75 7.88 3.44 3.99 2.28 1994 3.06 2.94 3.06 4.54 3.48 3.26 3.41 4.41 2.65 2.61 3.21 1.37 0.06 3.01 2.39 4.55 2.31 3.71 1.46 3.76 1995 2.03 1.68	1988	1.79	2.61	1.66	2.07	2.16	1.82	2.84	3.02	2.18	-	2.47	1.91	0.23	2.20	-	2.38	2.56	1.58	0.29	3.50	1.58
1991 2.64 2.39 2.46 3.29 4.60 3.02 2.69 2.56 1.69 2.67 2.57 1.83 0.88 2.27 1.63 1.80 1.83 2.29 1.32 2.51 1.35 1992 2.40 13.57 10.71 10.25 5.33 2.68 2.25 2.41 1.86 3.59 2.26 1.20 2.29 2.01 1.59 1.75 7.88 3.44 3.99 2.28 - 1994 3.06 2.94 3.06 4.54 3.48 3.26 3.41 4.1 2.65 2.61 3.21 1.37 0.06 3.01 2.39 4.55 2.31 3.71 1.46 3.76 1995 2.03 1.68 1.98 2.44 2.50 2.03 2.34 3.27 2.02 1.93 2.00 1.00 0.07 2.33 1.84 2.27 3.15 2.42 0.70 3.85 1.77 1996 2.35	1989	3.16	3.71	3.81	4.65	3.61	3.37	4.10	4.54	2.65	6.20	2.68	2.10	2.56	2.59	1.72	3.33	2.17	3.37	3.00	4.20	-
1992 2.40 13.57 10.71 10.25 5.33 2.68 2.25 2.41 1.86 3.59 2.26 1.20 2.29 2.01 1.59 1.75 7.88 3.44 3.99 2.28 - 1993 3.64 5.07 4.48 7.35 3.68 3.93 3.87 5.96 3.36 4.58 3.15 2.23 5.69 4.13 3.54 6.08 4.17 3.55 4.03 4.14 - 1994 3.06 2.94 3.06 4.54 3.48 3.26 3.41 4.41 2.65 2.61 3.21 1.37 0.06 3.01 2.39 4.55 2.31 3.71 1.46 3.76 1.75 1.98 2.00 1.00 0.07 2.33 1.84 2.27 2.07 0.66 3.06 2.27 2.64 3.23 1.91 1.13 2.08 0.92 0.25 2.53 2.02 2.57 2.07 0.66 3.06 2.23 <th>1990</th> <th>1.89</th> <th>3.73</th> <th>1.22</th> <th>1.86</th> <th>2.74</th> <th>2.87</th> <th>3.16</th> <th>3.82</th> <th>1.65</th> <th>2.06</th> <th>3.12</th> <th>2.39</th> <th>0.30</th> <th>2.31</th> <th>1.70</th> <th>1.16</th> <th>2.91</th> <th>1.41</th> <th>0.32</th> <th>3.27</th> <th>[-</th>	1990	1.89	3.73	1.22	1.86	2.74	2.87	3.16	3.82	1.65	2.06	3.12	2.39	0.30	2.31	1.70	1.16	2.91	1.41	0.32	3.27	[-
1993 3.64 5.07 4.48 7.35 3.68 3.93 3.87 5.96 3.36 4.58 3.15 2.23 5.69 4.13 3.54 6.08 4.17 3.55 4.03 4.14 - 1994 3.06 2.94 3.06 4.54 3.48 3.26 3.41 4.41 2.65 2.61 3.21 1.37 0.06 3.01 2.39 4.55 2.31 3.71 1.46 3.76 - 1995 2.03 1.68 1.98 2.44 2.50 2.03 2.20 1.93 2.00 1.00 0.07 2.33 1.84 2.27 3.15 2.42 0.70 3.85 1.77 1996 2.35 1.88 1.81 1.80 3.87 1.75 2.64 3.23 1.98 1.13 2.08 0.92 2.02 3.16 2.62 2.24 3.19 2.02 1.16 2.67 2.04 2.23 1.66 1.33 3.31	1991	2.64	2.39	2.46	3.29	4.60	3.02	2.69	2.56	1.69	2.67	2.57	1.83	0.88	2.27	1.63	1.80	1.83	2.29	1.32	2.51	1.35
1994 3.06 2.94 3.06 4.54 3.48 3.26 3.41 4.41 2.65 2.61 3.21 1.37 0.06 3.01 2.39 4.55 2.31 3.71 1.46 3.76 - 1995 2.03 1.68 1.98 2.44 2.50 2.03 2.34 3.27 2.02 1.93 2.00 1.00 0.07 2.33 1.84 2.27 3.15 2.42 0.70 3.85 1.77 1996 2.35 1.88 1.81 1.80 3.87 1.75 2.64 3.23 1.98 1.13 2.08 0.92 0.25 2.53 2.02 - 2.57 2.07 0.66 3.06 2.23 1997 2.87 3.45 4.18 5.96 3.56 2.50 2.85 3.62 2.24 3.19 2.02 1.16 2.67 2.04 2.23 1.66 1.39 3.31 4.24 2.83 2.19 3.31 4.61	1992	2.40	13.57	10.71	10.25	5.33	2.68	2.25	2.41	1.86	3.59	2.26	1.20	2.29	2.01	1.59	1.75	7.88	3.44	3.99	2.28	1-
1995 2.03 1.68 1.98 2.44 2.50 2.03 2.34 3.27 2.02 1.93 2.00 1.00 0.07 2.33 1.84 2.27 3.15 2.42 0.70 3.85 1.77 1996 2.35 1.88 1.81 1.80 3.87 1.75 2.64 3.23 1.98 1.13 2.08 0.92 0.25 2.53 2.02 - 2.57 2.07 0.66 3.06 2.23 1997 2.87 3.45 4.18 5.96 3.56 2.50 2.85 3.62 2.24 3.19 2.02 1.16 2.67 2.04 2.23 1.66 1.39 3.31 4.24 3.60 2.87 1998 2.74 5.60 7.24 7.57 3.90 2.96 3.09 2.99 2.09 3.08 2.33 1.67 9.27 2.17 1.90 3.69 2.18 6.49 8.32 4.25 1.52 2000	1993	3.64	5.07	4.48	7.35	3.68	3.93	3.87	5.96	3.36	4.58	3.15	2.23	5.69	4.13	3.54	6.08	4.17	3.55	4.03	4.14	[-
1996 2.35 1.88 1.81 1.80 3.87 1.75 2.64 3.23 1.98 1.13 2.08 0.92 0.25 2.53 2.02 - 2.57 2.07 0.66 3.06 2.23 1997 2.87 3.45 4.18 5.96 3.56 2.50 2.85 3.62 2.24 3.19 2.02 1.16 2.67 2.04 2.23 1.66 1.39 3.31 4.24 3.60 2.87 1998 2.74 5.60 7.24 7.57 3.90 2.96 3.09 6.29 2.09 3.08 2.33 1.67 9.27 2.17 1.90 3.69 2.18 6.49 8.32 4.25 1.52 1999 4.07 6.98 4.80 4.01 4.71 4.10 4.19 5.10 3.38 2.55 3.34 4.03 2.32 2.50 1.31 2.33 5.89 3.02 5.59 1.39 2001 2.71	1994	3.06	2.94	3.06	4.54	3.48	3.26	3.41	4.41	2.65	2.61	3.21	1.37	0.06	3.01	2.39	4.55	2.31	3.71	1.46	3.76	[-
1997 2.87 3.45 4.18 5.96 3.56 2.50 2.85 3.62 2.24 3.19 2.02 1.16 2.67 2.04 2.23 1.66 1.39 3.31 4.24 3.60 2.87 1998 2.74 5.60 7.24 7.57 3.90 2.96 3.09 6.29 2.09 3.08 2.33 1.67 9.27 2.17 1.90 3.69 2.18 6.49 8.32 4.25 1.52 1999 4.07 6.98 4.80 4.10 4.71 4.10 4.19 5.10 3.38 2.55 3.34 4.03 2.32 2.52 1.91 3.13 2.33 5.89 3.02 5.59 1.39 2000 3.82 4.56 3.40 3.59 4.08 3.32 3.60 4.28 2.45 3.18 2.94 7.54 2.42 2.98 2.79 0.17 2.82 4.44 3.40 5.03 4.26 2.08 3.19 <th>1995</th> <th>2.03</th> <th>1.68</th> <th>1.98</th> <th>2.44</th> <th>2.50</th> <th>2.03</th> <th>2.34</th> <th>3.27</th> <th>2.02</th> <th>1.93</th> <th>2.00</th> <th>1.00</th> <th>0.07</th> <th>2.33</th> <th>1.84</th> <th>2.27</th> <th>3.15</th> <th>2.42</th> <th>0.70</th> <th>3.85</th> <th>1.77</th>	1995	2.03	1.68	1.98	2.44	2.50	2.03	2.34	3.27	2.02	1.93	2.00	1.00	0.07	2.33	1.84	2.27	3.15	2.42	0.70	3.85	1.77
1998 2.74 5.60 7.24 7.57 3.90 2.96 3.09 6.29 2.09 3.08 2.33 1.67 9.27 2.17 1.90 3.69 2.18 6.49 8.32 4.25 1.52 1999 4.07 6.98 4.80 4.10 4.71 4.10 4.19 5.10 3.38 2.55 3.34 4.03 2.32 2.52 1.91 3.13 2.33 5.89 3.02 5.59 1.39 2000 3.82 4.56 3.40 3.59 4.08 3.32 3.60 4.28 2.45 3.18 2.94 7.54 2.42 2.98 2.79 0.17 2.82 4.44 3.40 5.03 - 2001 2.71 2.85 3.71 3.60 3.91 2.84 4.07 4.69 1.89 3.13 2.51 1.66 3.38 - 1.95 0.32 1.70 4.58 2.85 5.34 - 2002 <t< th=""><th>1996</th><th>2.35</th><th>1.88</th><th>1.81</th><th>1.80</th><th>3.87</th><th>1.75</th><th>2.64</th><th>3.23</th><th>1.98</th><th>1.13</th><th>2.08</th><th>0.92</th><th>0.25</th><th>2.53</th><th>2.02</th><th>-</th><th>2.57</th><th>2.07</th><th>0.66</th><th>3.06</th><th>2.23</th></t<>	1996	2.35	1.88	1.81	1.80	3.87	1.75	2.64	3.23	1.98	1.13	2.08	0.92	0.25	2.53	2.02	-	2.57	2.07	0.66	3.06	2.23
1999 4.07 6.98 4.80 4.10 4.71 4.10 4.19 5.10 3.38 2.55 3.34 4.03 2.32 2.52 1.91 3.13 2.33 5.89 3.02 5.59 1.39 2000 3.82 4.56 3.40 3.59 4.08 3.32 3.60 4.28 2.45 3.18 2.94 7.54 2.42 2.98 2.79 0.17 2.82 4.44 3.40 5.03 - 2001 2.71 2.85 3.71 3.60 3.91 2.84 4.07 4.69 1.89 3.13 2.51 1.66 3.38 - 1.95 0.32 1.70 4.58 2.85 5.34 - 2002 2.63 1.94 4.05 4.01 3.55 3.62 3.35 4.26 2.08 3.19 2.07 1.69 3.64 - 2.10 0.56 1.74 4.11 2.66 4.18 - 2003 - - - - - - - - - - - <th>1997</th> <th>2.87</th> <th>3.45</th> <th>4.18</th> <th>5.96</th> <th>3.56</th> <th>2.50</th> <th>2.85</th> <th>3.62</th> <th>2.24</th> <th>3.19</th> <th>2.02</th> <th>1.16</th> <th>2.67</th> <th>2.04</th> <th>2.23</th> <th>1.66</th> <th>1.39</th> <th>3.31</th> <th>4.24</th> <th>3.60</th> <th>2.87</th>	1997	2.87	3.45	4.18	5.96	3.56	2.50	2.85	3.62	2.24	3.19	2.02	1.16	2.67	2.04	2.23	1.66	1.39	3.31	4.24	3.60	2.87
1999 4.07 6.98 4.80 4.10 4.71 4.10 4.19 5.10 3.38 2.55 3.34 4.03 2.32 2.52 1.91 3.13 2.33 5.89 3.02 5.59 1.39 2000 3.82 4.56 3.40 3.59 4.08 3.32 3.60 4.28 2.45 3.18 2.94 7.54 2.42 2.98 2.79 0.17 2.82 4.44 3.40 5.03 - 2001 2.71 2.85 3.71 3.60 3.91 2.84 4.07 4.69 1.89 3.13 2.51 1.66 3.38 - 1.95 0.32 1.70 4.58 2.85 5.34 - 2002 2.63 1.94 4.05 4.01 3.55 3.62 3.35 4.26 2.08 3.19 2.07 1.69 3.64 - 2.10 0.56 1.74 4.11 2.66 4.18 - 2003 - - - - - - - - - - - <th>1998</th> <th>2.74</th> <th>5.60</th> <th>7.24</th> <th>7.57</th> <th>3.90</th> <th>2.96</th> <th>3.09</th> <th>6.29</th> <th>2.09</th> <th>3.08</th> <th>2.33</th> <th>1.67</th> <th>9.27</th> <th>2.17</th> <th>1.90</th> <th>3.69</th> <th>2.18</th> <th>6.49</th> <th>8.32</th> <th>4.25</th> <th>1.52</th>	1998	2.74	5.60	7.24	7.57	3.90	2.96	3.09	6.29	2.09	3.08	2.33	1.67	9.27	2.17	1.90	3.69	2.18	6.49	8.32	4.25	1.52
2001 2.71 2.85 3.71 3.60 3.91 2.84 4.07 4.69 1.89 3.13 2.51 1.66 3.38 - 1.95 0.32 1.70 4.58 2.85 5.34 - 2002 2.63 1.94 4.05 4.01 3.55 3.62 3.35 4.26 2.08 3.19 2.07 1.69 3.64 - 2.10 0.56 1.74 4.11 2.66 4.18 - 2003 -	1999	4.07	6.98	4.80	4.10	4.71	4.10	4.19	5.10	3.38	2.55	3.34	4.03	2.32	2.52	1.91	3.13	2.33	5.89	3.02	5.59	1.39
2002 2.63 1.94 4.05 4.01 3.55 3.62 3.35 4.26 2.08 3.19 2.07 1.69 3.64 - 2.10 0.56 1.74 4.11 2.66 4.18 - 2003 -	2000	3.82	4.56	3.40	3.59	4.08	3.32	3.60	4.28	2.45	3.18	2.94	7.54	2.42	2.98	2.79	0.17	2.82	4.44	3.40	5.03	-
2003 - - - - - - - - - - - - - - - - - - 2.45 2.40 1.45 0.92 - - - - - - - - - - 2.45 2.40 1.45 0.92 -	2001	2.71	2.85	3.71	3.60	3.91	2.84	4.07	4.69	1.89	3.13	2.51	1.66	3.38	-	1.95	0.32	1.70	4.58	2.85	5.34	-
2004 0.60 2.26 1.72 4.65 4.67 3.03 3.21 2.59 1.94 2.67 3.07 2.01 1.11 - 2.56 0.52 1.34 2.42 0.74 1.69 2.05 2005 1.78 3.61 2.06 5.51 5.45 4.71 3.28 3.81 2.12 4.23 2.43 3.02 0.72 - 6.68 1.99 4.76 2.68 1.37 2.68 2.10 2006 2.59 4.49 1.86 4.21 3.02 7.82 3.47 5.59 2.11 - <th>2002</th> <th>2.63</th> <th>1.94</th> <th>4.05</th> <th>4.01</th> <th>3.55</th> <th>3.62</th> <th>3.35</th> <th>4.26</th> <th>2.08</th> <th>3.19</th> <th>2.07</th> <th>1.69</th> <th>3.64</th> <th>-</th> <th>2.10</th> <th>0.56</th> <th>1.74</th> <th>4.11</th> <th>2.66</th> <th>4.18</th> <th>-</th>	2002	2.63	1.94	4.05	4.01	3.55	3.62	3.35	4.26	2.08	3.19	2.07	1.69	3.64	-	2.10	0.56	1.74	4.11	2.66	4.18	-
2005 1.78 3.61 2.06 5.51 5.45 4.71 3.28 3.81 2.12 4.23 2.43 3.02 0.72 - 6.68 1.99 4.76 2.68 1.37 2.68 2.10 2006 2.59 4.49 1.86 4.21 3.02 7.82 3.47 5.59 2.11 - <th< th=""><th>2003</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>2.45</th><th>2.40</th><th>1.45</th><th>0.92</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>1- 1</th></th<>	2003	-	-	-	-	-	-	-	-	-	2.45	2.40	1.45	0.92	-	-	-	-	-	-	-	1- 1
2006 2.59 4.49 1.86 4.21 3.02 7.82 3.47 5.59 2.11 - - - - - - - - 3.59 3.22 4.17 4.52 2.60 5.18 4.80 2007 2.29 2.45 2.21 2.74 3.07 5.60 3.28 4.14 2.17 - - - - - - 2.27 3.07 3.63 3.27 0.94 2.39 1.99 2008 4.07 6.56 5.53 6.14 4.47 8.97 4.28 6.14 2.95 - - - - - 3.43 4.67 6.24 8.00 2.34 5.63 4.08 2009 3.63 4.78 5.93 4.06 3.21 7.23 3.61 4.52 1.95 -	2004	0.60	2.26	1.72	4.65	4.67	3.03	3.21	2.59	1.94	2.67	3.07	2.01	1.11	-	2.56	0.52	1.34	2.42	0.74	1.69	2.05
2007 2.29 2.45 2.21 2.74 3.07 5.60 3.28 4.14 2.17 - - - - - 2.27 3.07 3.63 3.27 0.94 2.39 1.99 2008 4.07 6.56 5.53 6.14 4.47 8.97 4.28 6.14 2.95 - - - - - 3.43 4.67 6.24 8.00 2.34 5.63 4.08 2009 3.63 4.78 5.93 4.06 3.21 7.23 3.61 4.52 1.95 - - - - - 2.90 4.18 5.21 5.14 4.86 6.56 6.49	2005	1.78	3.61	2.06	5.51	5.45	4.71	3.28		2.12	4.23	2.43	3.02	0.72	-	6.68	1.99	4.76	2.68	1.37	2.68	2.10
2007 2.29 2.45 2.21 2.74 3.07 5.60 3.28 4.14 2.17 - - - - - 2.27 3.07 3.63 3.27 0.94 2.39 1.99 2008 4.07 6.56 5.53 6.14 4.47 8.97 4.28 6.14 2.95 - - - - - 3.43 4.67 6.24 8.00 2.34 5.63 4.08 2009 3.63 4.78 5.93 4.06 3.21 7.23 3.61 4.52 1.95 - - - - - 2.90 4.18 5.21 5.14 4.86 6.56 6.49	2006	2.59	4.49	1.86	4.21	3.02	7.82	3.47	5.59	2.11	-	-	-	-	-	3.59	3.22	4.17	4.52	2.60	5.18	4.80
2008 4.07 6.56 5.53 6.14 4.47 8.97 4.28 6.14 2.95 - - - - - 3.43 4.67 6.24 8.00 2.34 5.63 4.08 2009 3.63 4.78 5.93 4.06 3.21 7.23 3.61 4.52 1.95 - - - - - 2.90 4.18 5.21 5.14 4.86 6.56 6.49							_				-	-	-	-	-							
2009 3.63 4.78 5.93 4.06 3.21 7.23 3.61 4.52 1.95 2.90 4.18 5.21 5.14 4.86 6.56 6.49	2008	4.07	6.56	5.53	6.14	4.47	8.97	4.28	6.14	2.95	-	-	-	-	-	3.43	4.67	6.24	8.00	2.34	5.63	4.08
					-						-	-	-	-	-							
	PEND. AJUSTE	0.02	0.04	0.01	0.04	0.03	0.06	0.02	0.04	0.00	-0.02	0.00	0.02	0.02	0.01	0.04	0.01	0.00	-0.04	0.03	0.03	0.02

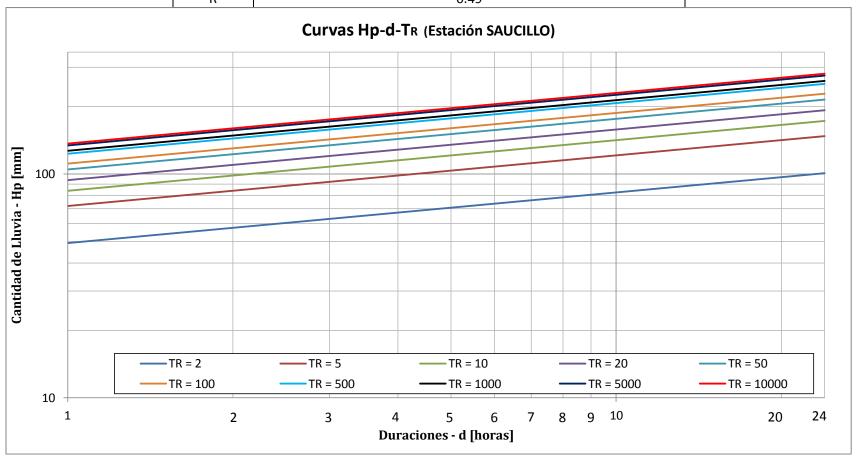
ANEXO 7.1 Curvas HP-d- Tr Estación Alamor


ALAMOR			Hp [mi	n] de du	ración p	ara TR ir	dicados	[años]		
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000
1	54.3	70.23	78.56	85.44	93.18	98.34	108.79	112.80	121.31	124.70
24	103.08	133.32	149.14	162.20	176.89	186.69	206.51	214.13	230.29	236.72
R					0	53				

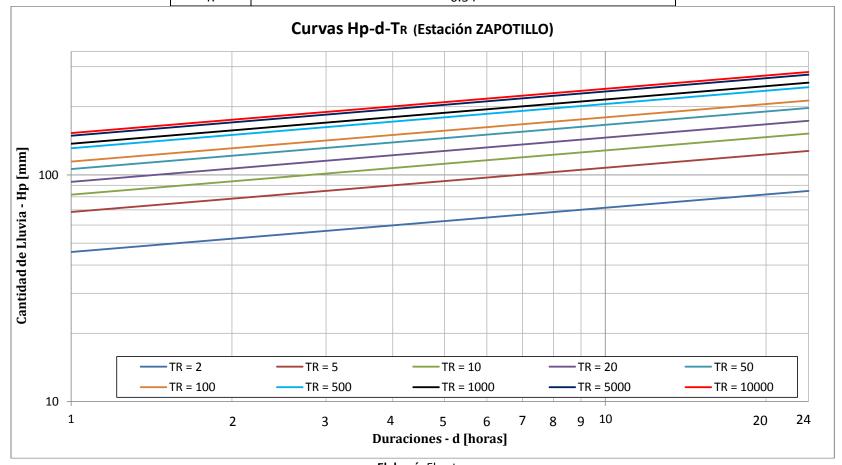
Curvas Hp-d-TR (Estación ALAMOR)


ANEXO 7.2 Curvas HP-d- Tr Estación Sozoranga

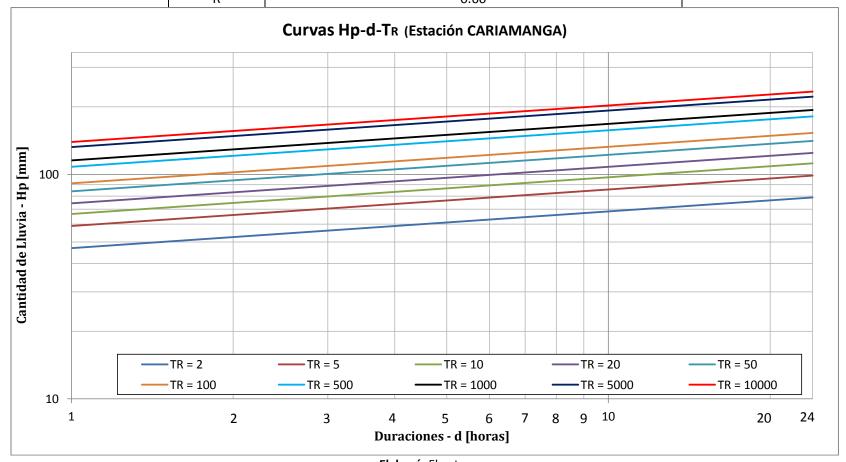
SOZORANGA			Hp [mn	n] de dı	uración	para T	R indica	ados [aí	ños]	
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000
1	55.4	91.7	140.3	202.4	301.1	386.6	615.4	725.4	1004.5	1134.0
24	70.2	116.1	177.8	256.4	381.5	489.8	779.5	919.0	1272.5	1436.5
R						0.79				


ANEXO 7.3. Curvas HP-d- Tr Estación Sabiango

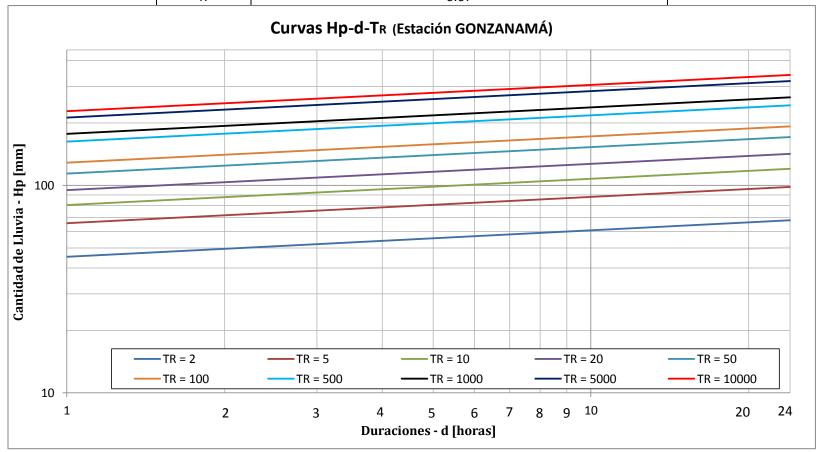
SABIANGO		Н	lp [mm] de du	ración _l	oara TR	indica	dos [añ	os]	
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000
1	52.0	76.8	93.2	108.9	129.3	144.5	179.8	194.9	230.1	245.2
24	88.0	129.9	157.6	184.3	218.7	244.5	304.2	329.8	389.4	415.0
R					0	.59				


ANEXO 7.4. Curvas HP-d- Tr Estación Saucillo

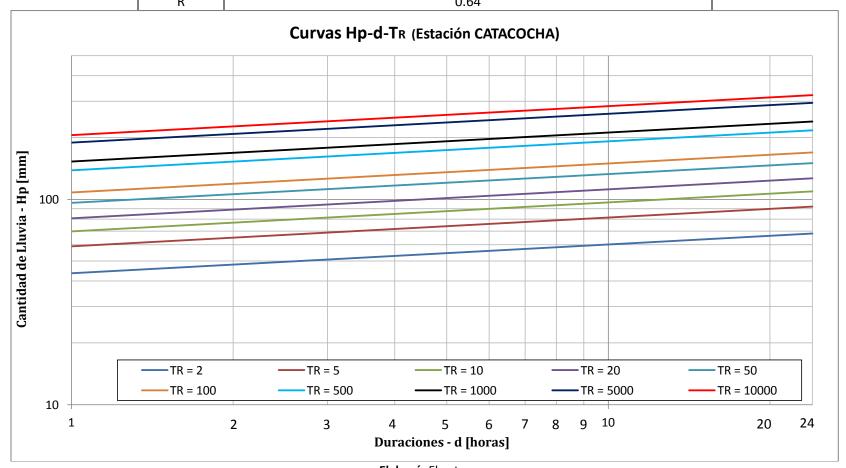
SAUCILLO		Н	p [mm]	de dur	ación p	ara TR	indicad	los [año	os]	
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000
1	49.2	71.9	84.1	94.0	104.7	111.3	123.2	127.1	134.2	136.6
24	100.9	147.6	172.5	192.8	214.7	228.3	252.7	260.8	275.3	280.1
R					0.	49				


ANEXO 7.5. Curvas HP-d- Tr Estación Zapotillo

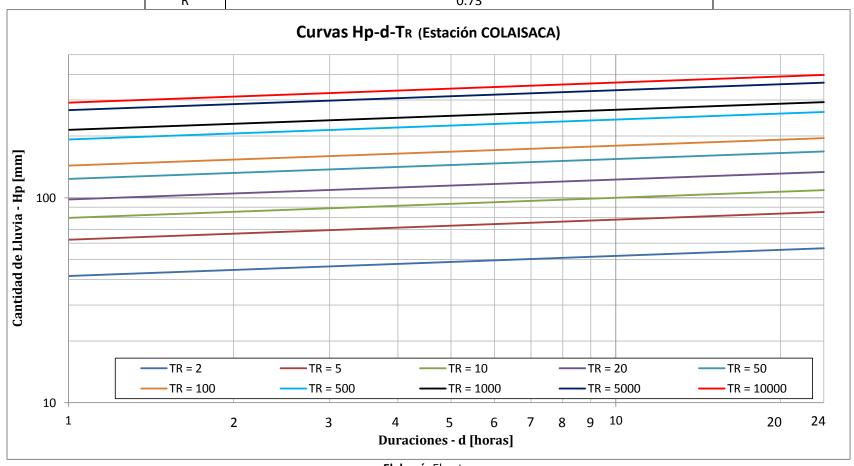
ZAPOTILLO		Н	lp [mm] de du	ración _l	oara TR	indica	dos [añ	os]	
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000
1	45.7	68.7	81.8	93.1	106.0	114.6	131.2	137.1	148.8	153.0
24	85.0	127.7	152.2	173.2	197.2	213.1	243.9	255.0	276.7	284.5
R					0	.54				


ANEXO 7.6. Curvas HP-d- Tr Estación Cariamanga

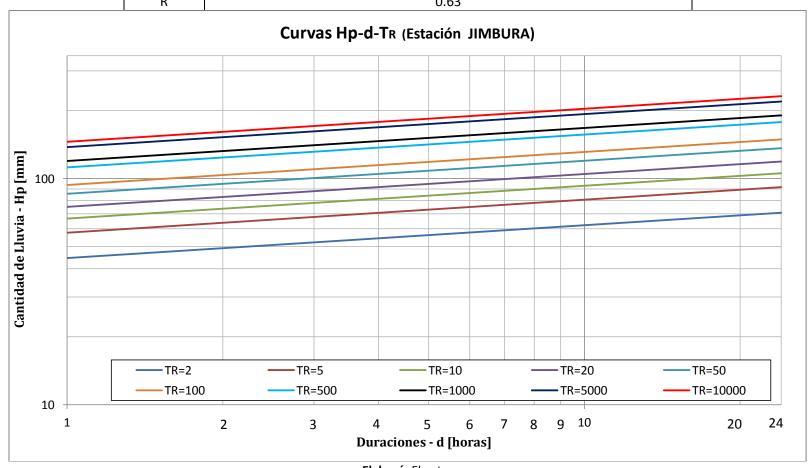
CARIAMANGA		ŀ	lp [mm	n] de du	ıración	para Ti	R indica	dos [aŕ	ňos]	
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000
1	47.0	53.1	60.2	67.0	75.8	82.4	97.6	104.2	119.4	125.9
24	78.9	98.8	111.9	124.6	140.9	153.2	181.5	193.7	221.9	234.1
R					(0.60				


ANEXO 7.7. Curvas HP-d- Tr Estación Gonzanamá

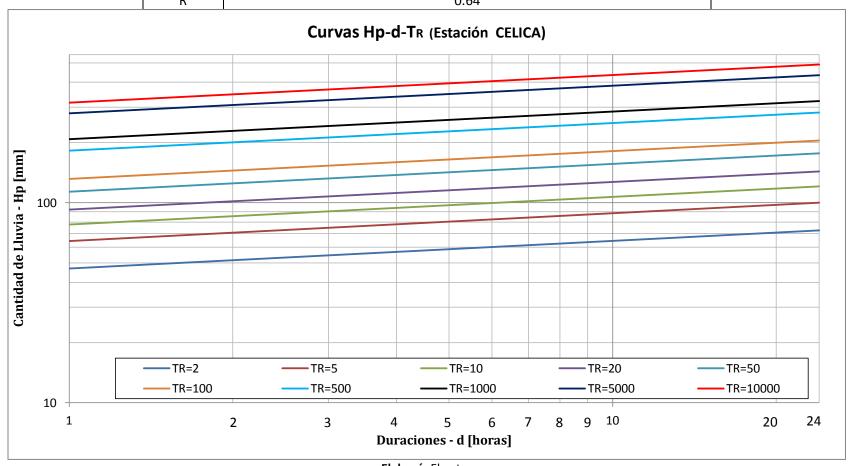
GONZANAMÁ		ı	Hp [mm	ո] de dւ	ıración	para Ti	R indica	dos [ar̂	ios]	
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000
1	45.3	65.7	80.4	94.9	114.0	128.6	162.6	177.4	212.4	227.6
24	67.8	98.4	120.4	142.1	170.8	192.5	243.5	265.7	318.1	340.9
R					().67				


ANEXO 7.8. Curvas HP-d- Tr Estación Catacocha

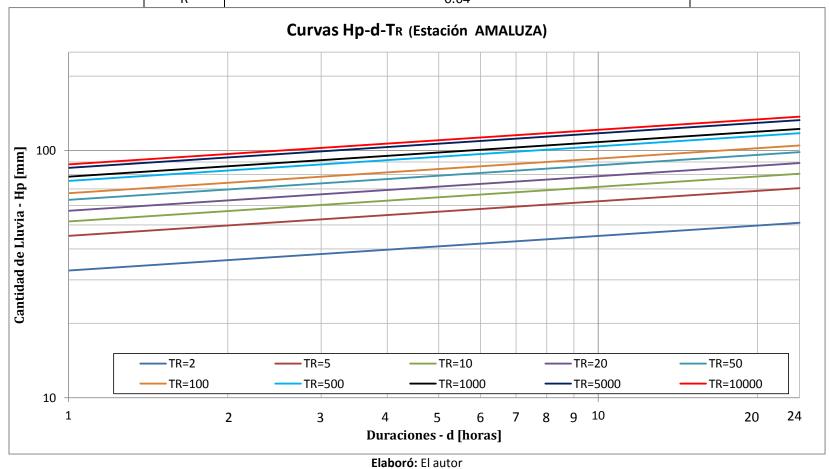
CATACOCHA			Hp [n	nm] de d	uración	para TR	indicado	s [años]		
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000
1	43.6	58.94	69.83	80.85	96.02	108.09	138.46	152.68	188.60	205.43
24	68.16	92.15	109.17	126.40	150.11	168.98	216.47	238.69	294.85	321.16
R					().64				


ANEXO 7.9. Curvas HP-d- Tr Estación Colaisaca

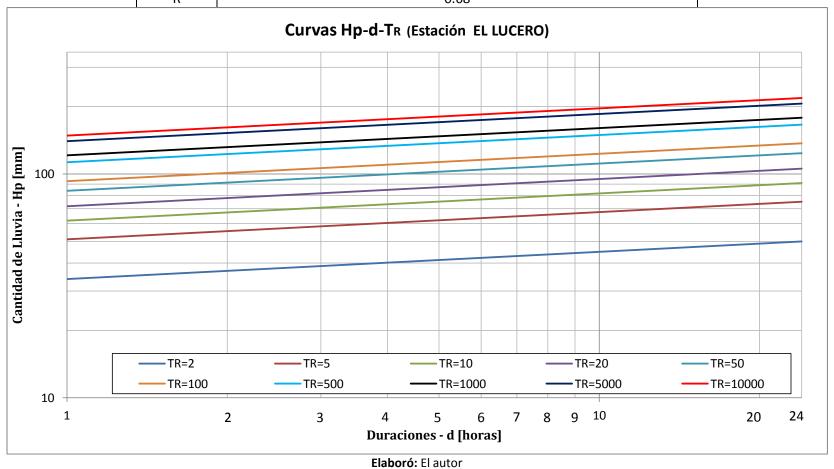
COLAISACA			Hp [n	nm] de d	uración	para TR	indicado	s [años]		
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000
1	41.6	62.49	79.81	98.08	123.47	143.51	192.45	214.48	267.64	291.34
24	56.74	85.23	108.85	133.78	168.41	195.73	262.49	292.54	365.04	397.37
R					C).73				


ANEXO 7.10. Curvas HP-d- Tr Estación Jimbura

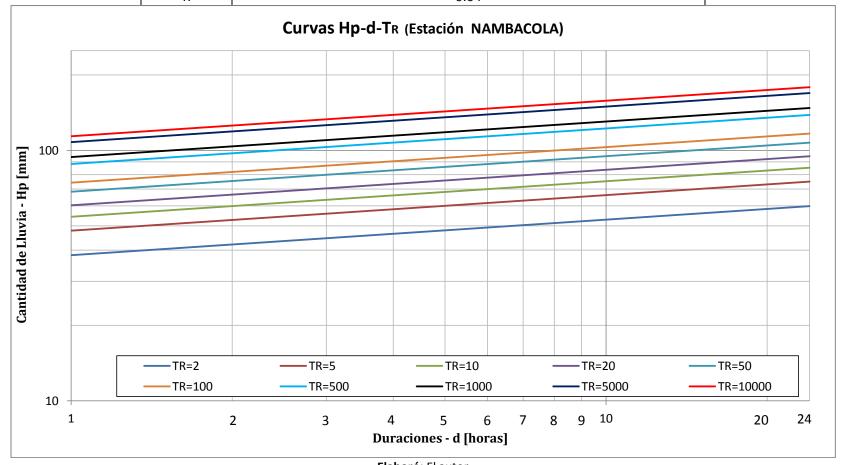
JIMBURA		Hp [mm] de duración para TR indicados [años]										
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000		
1	44.5	57.71	66.57	75.00	85.78	93.76	112.03	119.83	137.91	145.69		
24	70.72	91.71	105.78	119.18	136.31	149.00	178.03	190.43	219.15	231.52		
R					C	0.63						


ANEXO 7.11. Curvas HP-d- Tr Estación Celica

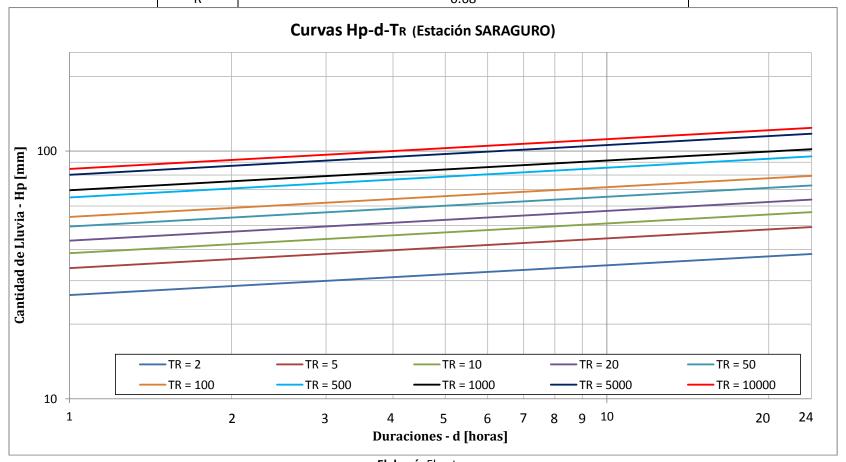
CELICA		Hp [mm] de duración para TR indicados [años]										
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000		
1	46.8	64.33	77.77	92.23	113.51	131.62	181.84	207.63	279.41	316.32		
24	72.65	99.87	120.73	143.17	176.22	204.33	282.29	322.33	433.76	491.06		
R					C	0.64						


ANEXO 7.12. Curvas HP-d- Tr Estación Amaluza

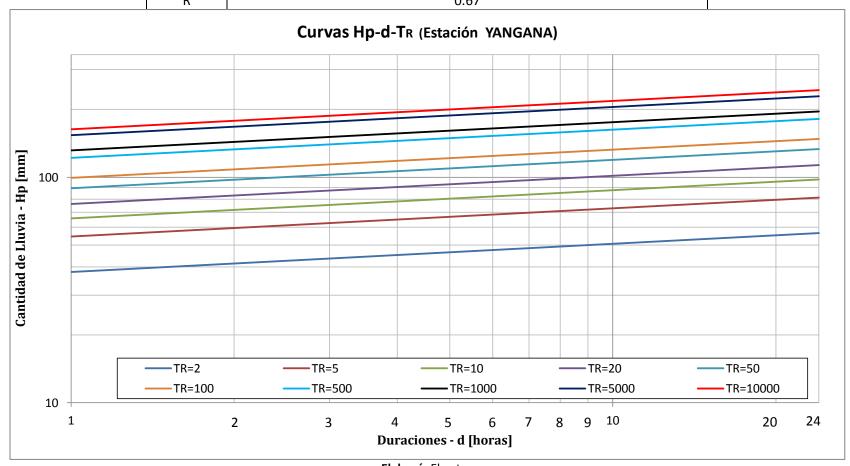
AMALUZA		Hp [mm] de duración para TR indicados [años]										
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000		
1	32.7	45.18	51.71	57.10	63.17	67.21	75.40	78.54	85.21	87.87		
24	51.00	70.46	80.64	89.05	98.51	104.82	117.58	122.49	132.89	137.03		
R						0.64						


ANEXO 7.13. Curvas HP-d- Tr Estación El Lucero

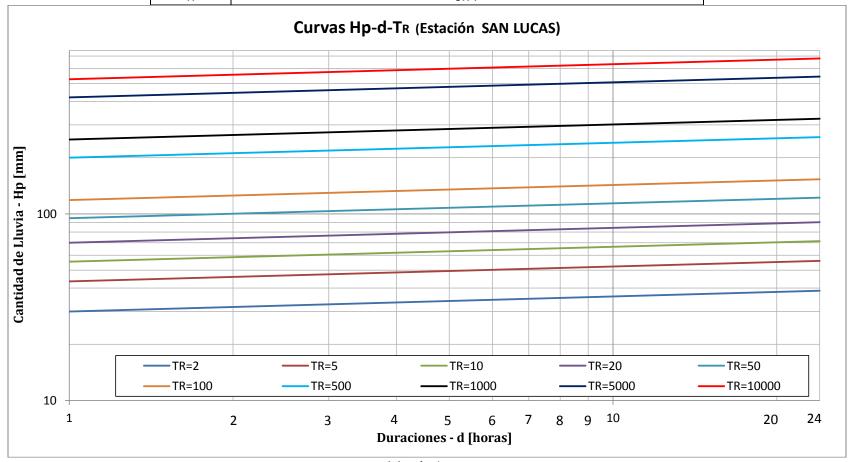
EL LUCERO		Hp [mm] de duración para TR indicados [años]											
d (h) \ TR (años)	2	2 5 10 20 50 100 500 1000 5000 10000											
1	33.9	51.01	61.79	71.72	84.05	92.98	112.91	121.25	140.25	148.32			
24	49.92	75.11	90.99	105.60	123.76	136.92	166.26	178.54	206.52	218.40			
R						0.68							


ANEXO 7.14. Curvas HP-d- Tr Estación El Nambacola

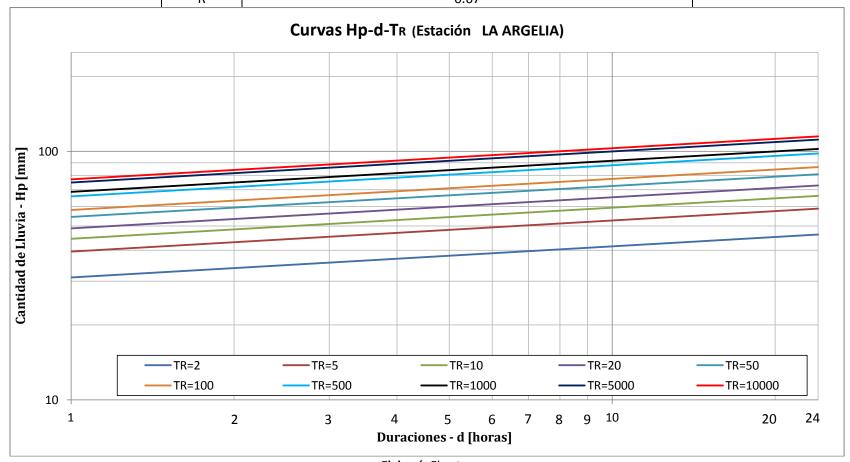
NAMBACOLA		Hp [mm] de duración para TR indicados [años]										
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000		
1	38.1	47.80	54.22	60.39	68.36	74.34	88.15	94.08	107.86	113.79		
24	59.84	75.07	85.16	94.83	107.36	116.74	138.43	147.76	169.40	178.71		
R						0.64						


ANEXO 7.15. Curvas HP-d- Tr Estación El Saraguro

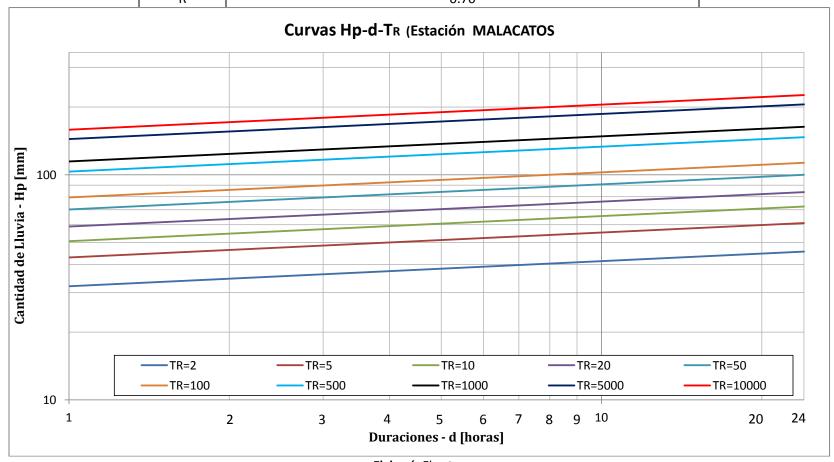
SARAGURO		Hp [mm] de duración para TR indicados [años]											
d (h) \ TR (años)	2												
1	26.2	33.69	38.65	43.41	49.57	54.19	64.86	69.44	80.08	84.67			
24	38.38	49.35	56.62	63.59	72.62	79.38	95.00	101.72	117.31	124.02			
R					(0.68							


ANEXO 7.16. Curvas HP-d- Tr Estación Yangana

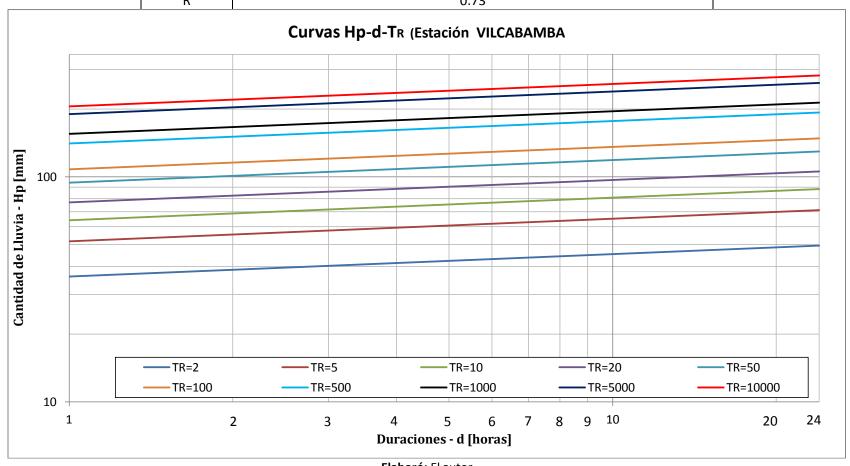
YANGANA		Hp [mm] de duración para TR indicados [años]											
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000			
1	38.0	54.57	65.61	76.08	89.43	99.31	121.83	131.44	153.65	163.20			
24	56.61	81.28	97.73	113.33	133.22	147.93	181.48	195.79	228.88	243.11			
R					(0.67							


ANEXO 7.17. Curvas HP-d- Tr Estación San Lucas

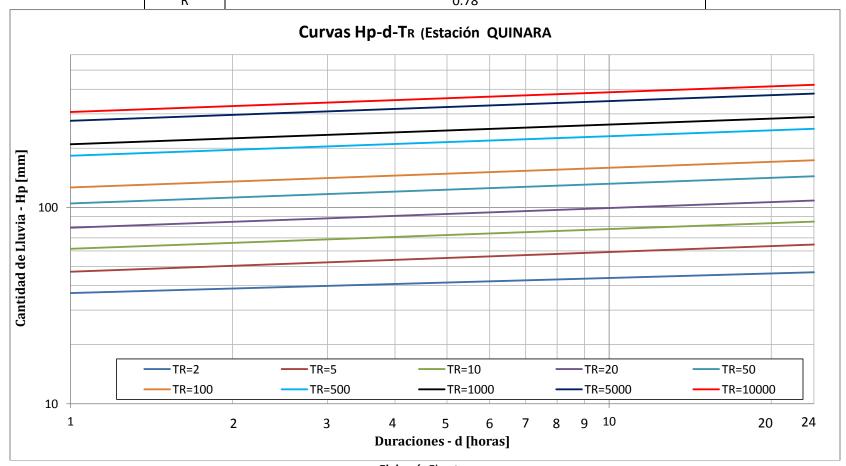
SAN LUCAS		Hp [mm] de duración para TR indicados [años]										
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000		
1	30.0	43.42	55.42	70.01	94.70	118.73	200.09	250.38	421.19	526.87		
24	38.71	56.03	71.51	90.34	122.20	153.21	258.21	323.11	543.53	679.91		
R						0.77						


ANEXO 7.18. Curvas HP-d- Tr Estación La Argelia

LA ARGELIA		Hp [mm] de duración para TR indicados [años]											
d (h) \ TR (años)	2												
1	31.1	39.46	44.50	49.00	54.38	58.10	65.79	68.73	74.86	77.21			
24	46.29	58.73	66.24	72.94	80.94	86.48	97.92	102.31	111.42	114.92			
R					(0.67							


ANEXO 7.19. Curvas HP-d- Tr Estación Malacatos

MALACATOS		Hp [mm] de duración para TR indicados [años]										
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000		
1	32.0	42.87	50.74	58.85	70.22	79.43	103.24	114.68	144.35	158.61		
24	45.61	61.10	72.33	83.89	100.09	113.22	147.17	163.46	205.75	226.08		
R						0.70						


ANEXO 7.20. Curvas HP-d- Tr Estación Vilcabamba

VILCABAMBA		Hp [mm] de duración para TR indicados [años]										
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000		
1	36.0	51.73	64.12	76.89	94.31	107.87	140.56	155.11	189.95	205.38		
24	49.53	71.16	88.20	105.77	129.74	148.40	193.37	213.39	261.31	282.54		
R					(0.73						

ANEXO 7.21. Curvas HP-d- Tr Estación QUINARA

QUINARA		Hp [mm] de duración para TR indicados [años]											
d (h) \ TR (años)	2	5	10	20	50	100	500	1000	5000	10000			
1	36.6	47.11	61.57	78.73	104.73	126.53	183.09	209.71	276.14	306.59			
24	46.73	64.81	84.70	108.31	144.08	174.07	251.88	288.50	379.89	421.78			
R						0.78							

ANEXO7.22. Lluvia máxima en cortas duraciones TR=2

	_	PERIODO DI			TR=	2	AÑOS	
			ALTU	RA DE LLU	VIA EN (m	m)		
ESTACION	d=5min	d=10min	d=20min	d=30min	d=40min	d=45min	d=50min	d=60min
ALAMOR	16.7	25.1	34.9	41.6	46.7	48.9	51.0	54.6
SOZORANGA	17.1	25.6	35.7	42.4	47.7	49.9	52.0	55.7
SABIANGO	16.0	24.0	33.5	39.8	44.7	46.8	48.8	52.3
SAUCILLO	15.2	22.7	31.7	37.7	42.3	44.3	46.2	49.5
ZAPOTILLO	14.1	21.1	29.4	35.0	39.3	41.2	42.9	46.0
CARIAMANGA	14.5	21.7	30.3	36.0	40.4	42.3	44.1	47.3
GONZANAMA	14.0	20.9	29.2	34.7	39.0	40.8	42.5	45.5
CATACOCHA	13.4	20.1	28.1	33.4	37.5	39.3	40.9	43.8
COLAISACA	12.8	19.2	26.8	31.9	35.8	37.5	39.0	41.8
JIMBURA	13.7	20.5	28.6	34.1	38.3	40.1	41.8	44.7
CELICA	14.4	21.6	30.1	35.8	40.3	42.2	43.9	47.1
AMALUZA	10.1	15.1	21.0	25.0	28.1	29.5	30.7	32.9
EL LUCERO	10.5	15.6	21.8	26.0	29.2	30.5	31.8	34.1
NAMBACOLA	11.7	17.6	24.5	29.2	32.8	34.3	35.8	38.3
SARAGURO	8.1	12.1	16.9	20.1	22.5	23.6	24.6	26.3
YANGANA	11.7	17.5	24.5	29.1	32.7	34.2	35.7	38.2
SAN LUCAS	9.2	13.8	19.3	23.0	25.8	27.0	28.2	30.2
LA ARGELIA	9.6	14.4	20.0	23.8	26.8	28.0	29.2	31.3
MALACATOS	9.9	14.8	20.6	24.5	27.5	28.8	30.0	32.2
VILCABAMBA	11.1	16.6	23.2	27.6	31.0	32.4	33.8	36.2
QUINARA	11.3	16.9	23.6	28.0	31.5	33.0	34.3	36.8

ANEXO 7.23. Lluvia máxima en cortas duraciones TR=5

		PERIODO D	E RETORNO		TR=	5	AÑOS	
			ALTU	RA DE LLU	VIA EN (m	m)		
ESTACION	d=5min	d=10min	d=20min	d=30min	d=40min	d=45min	d=50min	d=60min
ALAMOR	22.1	33.1	46.1	54.9	61.7	64.6	67.3	72.1
SOZORANGA	22.5	33.7	47.1	56.0	62.9	65.9	68.6	73.5
SABIANGO	21.2	31.7	44.2	52.6	59.0	61.8	64.4	69.0
SAUCILLO	20.0	30.0	41.8	49.7	55.9	58.5	60.9	65.3
ZAPOTILLO	18.6	27.8	38.8	46.2	51.9	54.3	56.6	60.7
CARIAMANGA	19.1	28.6	39.9	47.5	53.4	55.9	58.2	62.4
GONZANAMA	18.4	27.6	38.5	45.8	51.4	53.9	56.1	60.1
CATACOCHA	17.7	26.6	37.0	44.1	49.5	51.8	54.0	57.9
COLAISACA	16.9	25.3	35.3	42.0	47.2	49.5	51.5	55.2
JIMBURA	18.1	27.1	37.8	45.0	50.5	52.9	55.1	59.1
CELICA	19.0	28.5	39.8	47.3	53.1	55.7	58.0	62.1
AMALUZA	13.3	19.9	27.8	33.1	37.1	38.9	40.5	43.4
EL LUCERO	13.8	20.6	28.8	34.3	38.5	40.3	42.0	45.0
NAMBACOLA	15.5	23.2	32.4	38.5	43.3	45.3	47.2	50.6
SARAGURO	10.7	16.0	22.3	26.5	29.7	31.2	32.4	34.8
YANGANA	15.5	23.1	32.3	38.4	43.1	45.2	47.1	50.4
SAN LUCAS	12.2	18.3	25.5	30.3	34.1	35.7	37.2	39.8

LA ARGELIA	12.7	18.9	26.4	31.4	35.3	37.0	38.5	41.3
MALACATOS	13.0	19.5	27.2	32.3	36.3	38.1	39.6	42.5
VILCABAMBA	14.6	21.9	30.6	36.4	40.9	42.8	44.6	47.8
QUINARA	14.9	22.3	31.1	37.0	41.6	43.5	45.3	48.6

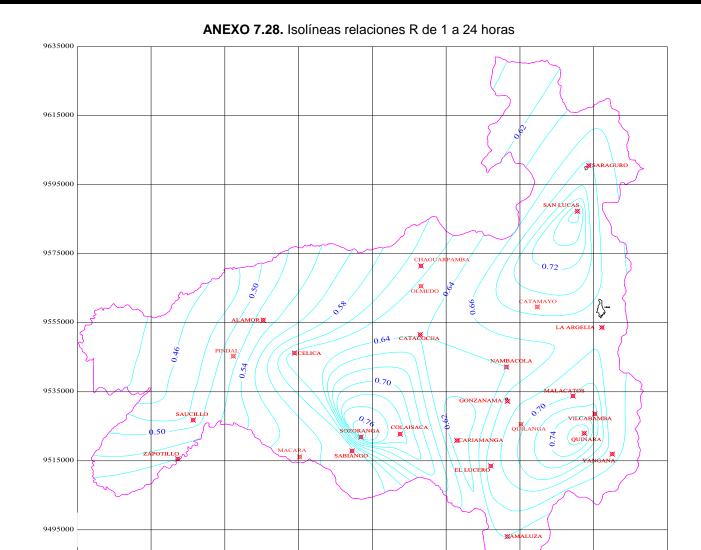
ANEXO 7.24. Lluvia máxima en cortas duraciones TR=10

		PERIODO DI	E RETORNO		TR=	10	AÑOS	
			ALTU	RA DE LLU	VIA EN (m	m)		
ESTACION	d=5min	d=10min	d=20min	d=30min	d=40min	d=45min	d=50min	d=60min
ALAMOR	26.1	39.1	54.6	64.9	73.0	76.4	79.6	85.3
SOZORANGA	26.7	39.9	55.7	66.3	74.4	78.0	81.2	87.0
SABIANGO	25.0	37.5	52.3	62.2	69.9	73.2	76.2	81.7
SAUCILLO	23.7	35.5	49.5	58.8	66.1	69.2	72.1	77.3
ZAPOTILLO	22.0	32.9	45.9	54.7	61.4	64.3	67.0	71.8
CARIAMANGA	22.6	33.9	47.2	56.2	63.1	66.1	68.9	73.8
GONZANAMA	21.8	32.6	45.5	54.2	60.9	63.7	66.4	71.1
CATACOCHA	21.0	31.4	43.8	52.1	58.6	61.4	63.9	68.5
COLAISACA	20.0	30.0	41.8	49.8	55.9	58.5	61.0	65.3
JIMBURA	21.4	32.1	44.7	53.2	59.8	62.6	65.2	69.9
CELICA	22.5	33.7	47.0	56.0	62.9	65.9	68.6	73.5
AMALUZA	15.7	23.6	32.9	39.1	43.9	46.0	47.9	51.4
EL LUCERO	16.3	24.4	34.1	40.5	45.5	47.7	49.7	53.2
NAMBACOLA	18.3	27.5	38.3	45.6	51.2	53.6	55.8	59.8
SARAGURO	12.6	18.9	26.3	31.3	35.2	36.9	38.4	41.1
YANGANA	18.3	27.4	38.2	45.4	51.1	53.5	55.7	59.7
SAN LUCAS	14.4	21.6	30.2	35.9	40.3	42.2	44.0	47.1
LA ARGELIA	15.0	22.4	31.3	37.2	41.8	43.8	45.6	48.8
MALACATOS	15.4	23.1	32.2	38.3	43.0	45.0	46.9	50.3
VILCABAMBA	17.3	25.9	36.2	43.1	48.4	50.7	52.8	56.5
QUINARA	17.6	26.4	36.8		49.2	51.5	53.6	57.5

ANEXO 7.25. Lluvia máxima en cortas duraciones TR=20

	^	ANEXO 1.23. Liuvia maxima en contas duraciones TK=20							
		PERIODO D	E RETORNO		TR=	20	AÑOS		
			ALTU	RA DE LLU	VIA EN (m	m)			
ESTACION	d=5min	d=10min	d=20min	d=30min	d=40min	d=45min	d=50min	d=60min	
ALAMOR	30.2	45.2	63.0	75.0	84.3	88.2	91.9	98.5	
SOZORANGA	30.8	46.1	64.3	76.5	86.0	90.0	93.8	100.5	
SABIANGO	28.9	43.3	60.4	71.8	80.7	84.5	88.0	94.3	
SAUCILLO	27.4	41.0	57.1	68.0	76.3	80.0	83.3	89.2	
ZAPOTILLO	25.4	38.0	53.1	63.1	70.9	74.3	77.4	82.9	
CARIAMANGA	26.1	39.1	54.6	64.9	72.9	76.4	79.6	85.2	
GONZANAMA	25.2	37.7	52.6	62.6	70.3	73.6	76.7	82.2	
CATACOCHA	24.2	36.3	50.6	60.2	67.7	70.9	73.8	79.1	
COLAISACA	23.1	34.6	48.3	57.5	64.6	67.6	70.4	75.5	
JIMBURA	24.7	37.0	51.7	61.5	69.1	72.3	75.3	80.7	
CELICA	26.0	39.0	54.3	64.6	72.6	76.1	79.2	84.9	
AMALUZA	18.2	27.2	38.0	45.2	50.7	53.1	55.3	59.3	

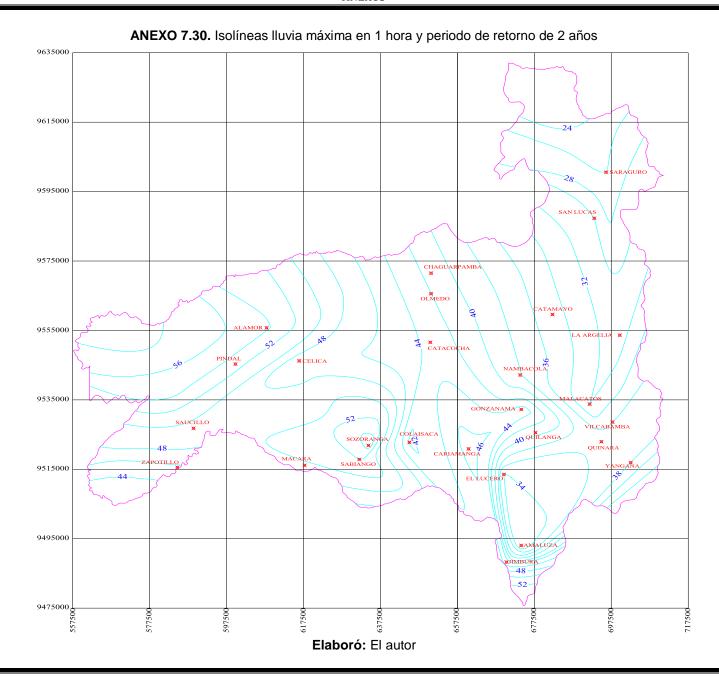
EL LUCERO	18.9	28.2	39.4	46.8	52.6	55.1	57.4	61.5
NAMBACOLA	21.2	31.7	44.2	52.6	59.1	61.9	64.5	69.1
SARAGURO	14.6	21.8	30.4	36.2	40.7	42.6	44.3	47.5
YANGANA	21.1	31.6	44.1	52.5	59.0	61.8	64.3	68.9
SAN LUCAS	16.7	25.0	34.8	41.4	46.6	48.8	50.8	54.4
LA ARGELIA	17.3	25.9	36.1	43.0	48.3	50.5	52.6	56.4
MALACATOS	17.8	26.6	37.2	44.2	49.7	52.0	54.2	58.0
VILCABAMBA	20.0	30.0	41.8	49.7	55.9	58.5	60.9	65.3
QUINARA	20.4	30.5	42.5	50.6	56.8	59.5	62.0	66.4


ANEXO 7.26. Lluvia máxima en cortas duraciones TR=50

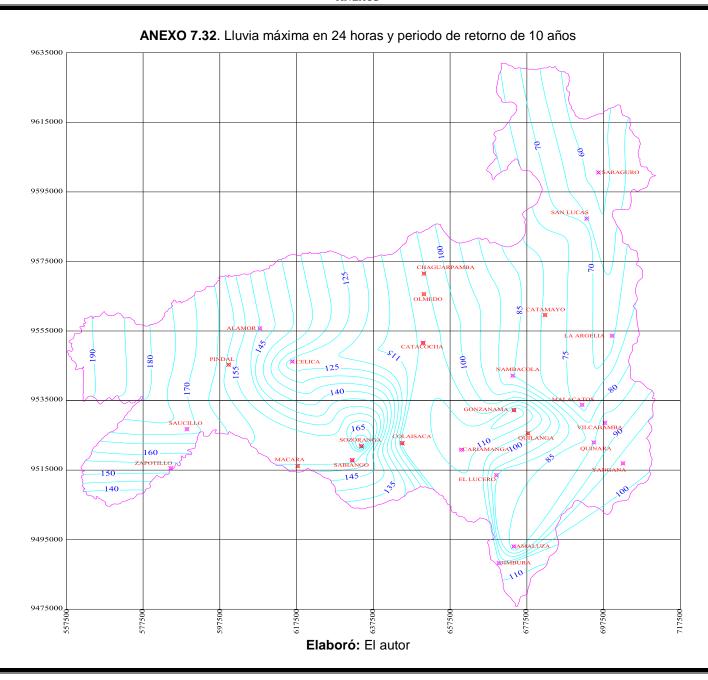
		PERIODO D	E RETORNO		TR=	50	AÑOS	
			ALTU	RA DE LLU	VIA EN (m	m)		
ESTACION	d=5min	d=10min	d=20min	d=30min	d=40min	d=45min	d=50min	d=60min
ALAMOR	35.6	53.2	74.2	88.3	99.2	103.9	108.2	116.0
SOZORANGA	36.3	54.3	75.7	90.1	101.2	106.0	110.4	118.3
SABIANGO	34.0	51.0	71.1	84.6	95.0	99.5	103.6	111.0
SAUCILLO	32.2	48.2	67.2	80.0	89.9	94.1	98.0	105.1
ZAPOTILLO	29.9	44.8	62.5	74.3	83.5	87.4	91.1	97.6
CARIAMANGA	30.8	46.1	64.2	76.4	85.9	89.9	93.7	100.4
GONZANAMA	29.7	44.4	61.9	73.7	82.8	86.7	90.3	96.7
CATACOCHA	28.5	42.7	59.6	70.9	79.7	83.4	86.9	93.1
COLAISACA	27.2	40.8	56.9	67.7	76.0	79.6	82.9	88.8
JIMBURA	29.1	43.6	60.8	72.4	81.3	85.1	88.7	95.0
CELICA	30.6	45.9	64.0	76.1	85.5	89.5	93.3	99.9
AMALUZA	21.4	32.0	44.7	53.2	59.7	62.6	65.2	69.8
EL LUCERO	22.2	33.2	46.3	55.1	61.9	64.9	67.6	72.4
NAMBACOLA	24.9	37.3	52.1	62.0	69.6	72.9	75.9	81.4
SARAGURO	17.2	25.7	35.8	42.6	47.9	50.1	52.2	55.9
YANGANA	24.9	37.2	51.9	61.8	69.4	72.7	75.7	81.1
SAN LUCAS	19.6	29.4	41.0	48.8	54.8	57.4	59.8	64.1
LA ARGELIA	20.4	30.5	42.5	50.6	56.8	59.5	62.0	66.4
MALACATOS	21.0	31.4	43.7	52.0	58.5	61.2	63.8	68.3
VILCABAMBA	23.6	35.3	49.2	58.5	65.8	68.9	71.7	76.9
QUINARA	24.0	35.9	50.0	59.5	66.9	70.0	72.9	78.2

ANEXO 7.27. Lluvia máxima en cortas duraciones TR=100

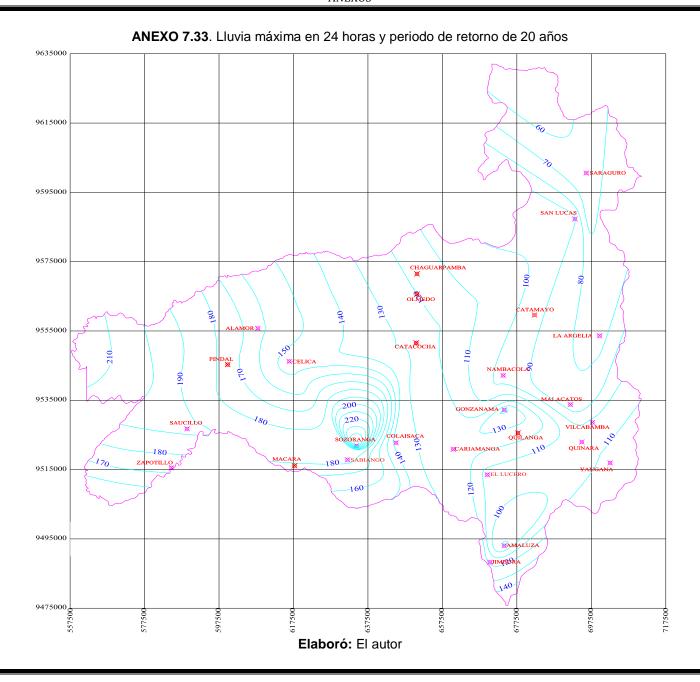
		PERIODO D	E RETORNO		TR=	100	AÑOS	
			ALTU	RA DE LLU	VIA EN (m	m)		
ESTACION	d=5min	d=10min	d=20min	d=30min	d=40min	d=45min	d=50min	d=60min
ALAMOR	39.6	59.3	82.7	98.4	110.5	115.7	120.5	129.2
SOZORANGA	40.4	60.5	84.4	100.4	112.7	118.1	123.0	131.8
SABIANGO	37.9	56.8	79.2	94.2	105.8	110.8	115.4	123.7
SAUCILLO	35.9	53.7	74.9	89.1	100.1	104.9	109.2	117.0
ZAPOTILLO	33.3	49.9	69.6	82.8	93.0	97.4	101.4	108.7
CARIAMANGA	34.3	51.3	71.6	85.1	95.6	100.2	104.3	111.8
GONZANAMA	33.0	49.5	69.0	82.1	92.2	96.5	100.6	107.8


CATACOCHA	31.8	47.6	66.4	79.0	88.7	92.9	96.8	103.7
COLAISACA	30.3	45.4	63.3	75.4	84.7	88.7	92.3	99.0
JIMBURA	32.5	48.6	67.8	80.6	90.6	94.8	98.8	105.9
CELICA	34.1	51.1	71.3	84.8	95.2	99.7	103.9	111.3
AMALUZA	23.8	35.7	49.8	59.2	66.5	69.7	72.6	77.8
EL LUCERO	24.7	37.0	51.6	61.4	69.0	72.3	75.3	80.6
NAMBACOLA	27.8	41.6	58.0	69.0	77.5	81.2	84.6	90.6
SARAGURO	19.1	28.6	39.9	47.5	53.3	55.8	58.2	62.3
YANGANA	27.7	41.5	57.9	68.8	77.3	81.0	84.4	90.4
SAN LUCAS	21.9	32.8	45.7	54.3	61.1	63.9	66.6	71.4
LA ARGELIA	22.7	34.0	47.4	56.3	63.3	66.3	69.0	74.0
MALACATOS	23.3	34.9	48.7	58.0	65.1	68.2	71.0	76.1
VILCABAMBA	26.3	39.3	54.8	65.2	73.3	76.7	79.9	85.6
QUINARA	26.7	40.0	55.7	66.3	74.5	78.0	81.2	87.1

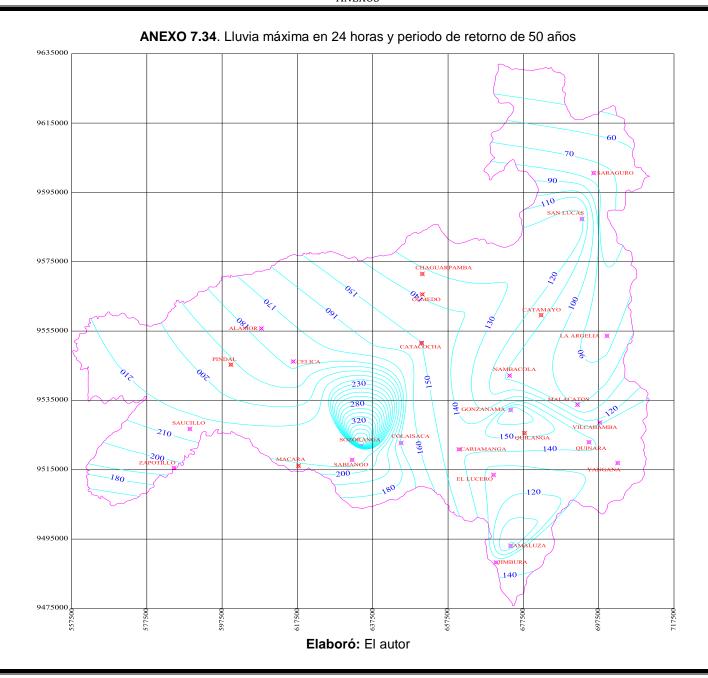
9475000 005255

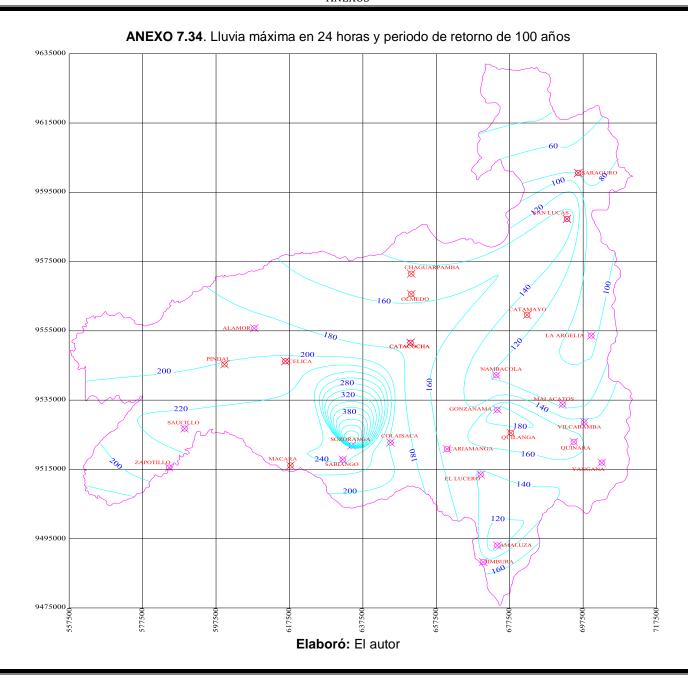

ANEXO 7.29. Isolíneas lluvia máxima en 24 horas y periodo de retorno de 2 años 9635000 9615000 9595000 SAN LUCAS 9575000 CATAMAYO 9555000 САТАСОСНА NAMBAC 9535000 GONZANAMA 🕱 (જે SAUCILLO COLAISACA & MACA 9515000 ELLUCERO 9495000 9475000 Elaboró: El autor

Página 254



ANEXO 7.31. Lluvia máxima en 24 horas y periodo de retorno de 5 años 9635000 9615000 SARAGURO 9595000 SAN LUCAS 9575000 OLMEDO CATAMAYO 9555000 сата осна **X**CELICA NAMBACOLA 80% 9535000 GONZANAMA X SAUCILLO COLAISACA 144 SOZORANG QUINARA CARIAMANGA 135 MACARA SABIANGO 9515000 EL LUCERO 120-9495000 MAMAL 192A JIMBUR 99 9475000 Elaboró: El autor


Página 256


Página 257

Página 258

Página 259

Página 260