

PROBABILIDAD Y ESTADISTICA

INTRODUÇÇION A LA TEORIA DE PROBABILIDADES

DR. OCTAVIO A. RASCON CHAVEZ

Junio, Julio, 1979

Polocia da Minaria

Culle de Tecubo 5

primer place

MASTER L D. F.

• • • . 1 ,

-

INTRODUCCION A LA TEORIA DE PROBABILIDADES

SIMBOLOS DE DESIGUALDADES:

POR: DR. OCTAVIO A. RASCON CHAVEZ

- < menor que
- menor o igual que
- > mayor que
- mayor o igual que

TEORIA DE CONJUNTOS

UN CONJUNTO ES UNA COLECCION BIEN DEFINIDA DE OBJETOS.

NOTACION: LOS CONJUNTOS SE DENOTAN USUALMENTE CON LETRAS MAYUSCU-LAS, Y SUS ELEMENTOS SE ANOTAN DENTRO DE UN PAR DE LLAVES.

EJEMPLOS

- A) EL CONJUNTO DE NUMEROS ANOTADOS EN UN DADO ES $S = \{1, 2, 3, 4, 5, 6\}$
- B) EL CONJUNTO DE LOS NUMEROS ENTEROS MENORES QUE 5 ES $S = \{-\infty, \ldots, -3, -2, -1, 0, 1, 2, 3, 4\}$
- o $S = \{x: x \in S \in X \in A\}$
 - C) EL CONJUNTO DE LOS NUMEROS ENTEROS POSITIVOS MENORES QUE 5 ES
 E = {0, 1, 2, 3, 4}
 E = {x: ES ENTERO Y 0<x<4}</pre>
 - D) EL CONJUNTO DE LOS CONTINENTES ES C ={ASIA, EUROPA, AMERICA, AFRICA, OCEANIA}
 - E) EL CONJUNTO DE MARCAS QUE TIENE UNA MONEDA ES
 M = {CARA, CRUZ}
 - F) EL CONJUNTO DE NUMEROS MAYORES DE 5 PERO MENORES O IGUALES

 QUE 10

 S, = {x: 5<x<10}

4

FINITOS - CUANDO TIENEN UN NUMERO FINITO
DE ELEMENTOS

CONJUNTOS

IMFINITOS - CUANDO TIENEN UN NUMERO INFINITO
DE ELEMENTOS

SUBCONJUNTOS

PARA EXPRESAR QUE UN ELEMENTO PERTENECE A UN CONJUNTO SE USA EL SIMBOLO €. PARA EXPRESAR QUE NO PERTENECE SE USA EL SIMBOLO €.

EJEMPŁO

SI $S_1 = \{X: 5 < x \le 10\}$, ENTONCES.

'3 ¢ S₁ ; 5 ¢ S₁ ; 8 ε S₁; 10 ε S₁

PARA EXPRESAR QUE UN CONJUNTO ESTA CONTENIDO EN OTRO SE USA EL SIMBOLO C; SI NO ESTA CONTENIDO SE USA EL SIMBOLO Q.

PARA QUE UN CONJUNTO ESTE CONTENIDO EN OTRO SE REQUIERE QUE TODOS SUS ELEMENTOS DE ESTEN, ES DECIR, QUE TODOS SUS ELEMENTOS PERTENEZCAN A AMBOS CONJUNTOS.

-EJEMPLO

SEAN E={3,5}; F={3,8}; G={7,9}. EgS₁; FgS₁; GCS₁
SI UN CONJUNTO, B, ESTA CONTENIDO EN OTRO, S, SE DICE QUE B
ES <u>SUBCONJUNTO</u> DE S.

EJEMPLO

 $B = \{X: 3 \le X \le B\} \quad Y \quad S_1 = \{X: 5 < X \le 10\}$

EN ESTE CASO:

 $GCS_1 \rightarrow G$ ES SUBCONJUNTO DE S_1 $B \not \subset S_1 \rightarrow B$ NO ES SUBCONJUNTO DE S_1

SE DICE QUE <u>DOS CONJUNTOS SON IGUALES</u> CUANDO CONTIENEN LOS MISMOS ELEMENTOS (NO IMPORTA EL ORDEN EN QUE ESTOS SE ESCRIBAN)

EJEMPLO

SEAN $A=\{1,3,5,7\}$, $B=\{7,5,1,3\}$ Y $C=\{7,5,1\}$

EN TAL CASO, A = B≠C

CONJUNTO VACIO

DE LA MISMA MANERA QUE EXISTE EL CERO EN LOS NUMEROS, EN LA TEORIA DE CONJUNTOS EXISTE EL <u>CONJUNTO VACIO</u>, EL CUAL NO TIENE ELEMENTOS. USUALMENTE SE DENOTA Ø.

EJEMPLO

¿CUAL ES EL CONJUNTO DE ELEMENTOS, X, TALES QUE 2X=7 Y X ES ENTERO?

SOLUCION - ES EL CONJUNTO VACIO, Ø.

A Ø SE LE CONSIDERA COMO SUBCONJUNTO DE CUALQUIER CONJUNTO. ASI, POR EJEM, TODOS LOS SUBCONJUNTOS DEL CONJUNTO

 $S = \{2,5,10\} \text{ SON: } \{2\}; \{5\}; \{10\}; \{2,5\} ; \{2,10\}; \{5,10\}; \{2,5,10\} \}$

ESPACIO DE EVENTOS

ASOCIADO A UN EXPERIMENTO SIEMPRE HAY UN CONJUNTO DE RESULTADOS POSIBLES; A DICHO CONJUNTO SE LE LLAMA ESPACIO DE EVENTOS.

EJEMPLOS

EL ESPACIO DE EVENTOS ASOCIADO AL EXPERIMENTO DE LANZAR UN DADO Y ANOTAR LA CARA QUE QUEDA HACIA ARRIBA ES

 $S = \{1, 2, 3, 4, 5, 6\}$

EL ESPACIO DE EVENTOS CORRESPONDIENTE AL EXPERIMENTO DE LANZAR DOS DADOS Y ANOTAR LOS NUMEROS QUE QUEDAN HACIA ARRIBA ES

$$S = \begin{cases} (1,1), (1,2), (1,3), (1,4), (1,5), (1,6) \\ (2,1), (2,2), (2,3), (2,4), (2,5), (2,6) \\ (3,1), (3,2), (3,3), (3,4), (3,5), (3,6) \\ (4,1), (4,2), (4,3), (4,4), (4,5), (4,6) \\ (5,1), (5,2), (5,3), (5,4), (5,5), (5,6) \\ (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) \end{cases}$$

SI EN ESTE EXPERIMENTO LA OBSERVACION DE INTERES FUESE LA SUMA DE LOS DOS NUMEROS OBSERVADOS, ENTONCES EL ESPACIO DE EVENTOS DEL EXPERIMENTO SERÍA

$$S = \{2,3,4,5,6,7,8,9,10,11,12\}$$

A TODO SUBCONJUNTO DE UN ESPACIO DE EVENTOS SE LE LLAMA EVENTO. A LOS EVENTOS QUE TIENEN UN SOLO ELEMENTO DEL ESPACIO SE LES LLAMA EVENTOS SIMPLES.

SI AL REALIZAR UN EXPERIMENTO SE OBSERVA UN ELEMENTO DEL EVENTO A, ENTONCES SE DICE QUE <u>OCURRIO</u> O <u>SE VERIFICO</u> EL EVENTO A. POR : EJEMPLO, SI A={2,4} Y AL LANZAR UN DADO SE OBSERVA EL 2 O 4, SE DICE QUE OCURRIO EL EVENTO A; SI SE OBSERVA CUALQUIER OTRO NUME-RO, ENTONCES SE DICE QUE NO OCURRIO A.

ESPACIOS DE EVENTOS

DISCRETOS - SI SUS ELEMENTOS PUEDEN NUMERARSE O CONTARSE. TIENEN UN NUMERO
FINITO O INFINITO NUMERABLE DE ELEMENTOS.

CONTINUOS - SI SUS ELEMENTOS NO PUEDEN
ENUMERARSE. TIENEN UN NUMERO INFINITO NO
NUMERABLE DE ELEMENTOS

EVENTOS MUTUAMENTE EXCLUSIVOS

CUANDO DOS O MAS EVENTOS NO PUEDEN OCURRIR SIMULTANEAMENTE AL REALIZAR UNA SOLA VEZ UN EXPERIMENTO, SE DICE QUE ESTOS SON MUTUAMENTE EXCLUSIVOS; ES DECIR, DOS EVENTOS SON MUTUAMENTE EXCLUSIVOS CUANDO NO TIENEN NI UN SOLO ELEMENTO EN COMÚN.

EJEMPLO

- A) CUALQUIER EVENTO Y SU COMPLEMENTO SON MUTUAMENTE EXCLUSIVOS.
- B) ¿SON E={Y: 0 < Y < 25} Y A={2,50,100} MUTUAMENTE EXCLUSIVOS?</p>
 NO, PORQUE TIENEN EL ELEMENTO 2 EN COMUN.

OPERACIONES CON EVENTOS

LA UNION DE DOS EVENTOS ES OTRO EVENTO CUYOS ELEMENTOS SON TODOS
LOS DE AMBOS. LA OPERACION DE UNION SE DENOTA CON EL SIMBOLO U.

EJEMPLOS

- A) SI $A=\{2,4,6\}$ Y $B=\{1,6,12\}$, ENTONCES $G=AUB=\{1,4,6,12,2\}$
- B) 2SON A Y B MUTUAMENTE EXCLUSIVOS? NO PORQUE TIENEN EL 6 EN COMUN.
- C) SI D={Y: $0 \le Y \le 13$ } Y =={Y: $20 \le Y \le 50$ }, ENTONCES DUE={Y: $0 \le Y \le 13$, $20 \le Y \le 50$ }
- D) SI $F=\{Y: 8 \le Y \le 20\}$, ENTONCES DUF= $\{Y: 0 \le Y \le 20\}$.
- E) SI G={Y: 3 \leq Y \leq 10}, ENTONCES

 DUG={Y: 0 \leq Y \leq 13} = D; OBSERVESE QUE EN ESTE CASO GCD. EN GENERAL,

 SI ACB, ENTONCES AUB=B.
 - EN GENERAL, LA UNION DE VARIOS EVENTOS ES OTRO EVENTO CUYOS ELEMENTOS SON TODOS LOS DE LOS EVENTOS QUE SE UNEN.

LOS ESPACIOS DE EVENTOS $S_1=\{CARA, CRUZ\}; S_2=\{1,2,3,4,5,6,\};$ $S_3=\{VERDE, ROJO\}$ SON DISCRETOS. LOS ESPACIOS DE EVENTOS $S_4=\{X: -\infty < X \le 0\}; S_5\{Z: Z \ge 3\}; S_6=\{Y: 3 \le Y \le 80\}$ SON CONTINUOS.

EJEMPLO

¿QUE TIPOS DE ESPACIOS DE EVENTOS CORRESPONDEN A LOS SIGUIENTES EXPERIMENTOS?

- A) CONTEO DEL NUMERO DE GRANOS DE UNA MAZORCA DE MAIZ S={0,1,2,3,...,∞}, ES DISCRETO E INFINITO
- B) MEDICION DE LA LONGITUD DE UNA ESPIGA DE TRIGO $S=\{X:\ 0< X< =\}$, X EN CM, ES CONTINUO E INFINITO
- C) MEDICION DEL EFECTO DE UNA VACUNA, EN TERMINOS DE "EXITO" O
 "FRACASO"
 - S={EXITO, FRACASO} ES DISCRETO Y FINITO.
- D) MEDICION DEL DE UN ANTIBIOTICO EN UNA CAPSULA S={Y:0<Y<=} Y en mg, ES CONTINUO E INFINITO.

COMPLEMENTO DE UN EVENTO

EL COMPLEMENTO DE UN EVENTO A ES OTRO EVENTO QUE CONTIENE TODOS LOS ELEMENTOS DEL ESPACIO DE EVENTOS CORRESPONDIENTE QUE NO ESTAN EN A. USUALMENTE SE DENOTA CON UNA TILDE SOBRE EL SIMBOLO QUE CORRESPONDE AL EVENTO QUE COMPLEMENTA, A.

EJEMPLOS

SI $S=\{1,2,3,4,5,6\}$ Y $A=\{1,3,5\}$ ENTONCES $\bar{A}=\{2,4,6\}$.

SI $S=\{X: 0 \le x \le 58\}$ Y $A=\{X: 3 \le x \le 17\}$, ENTONCES $\bar{A}=\{X: 0 \le x \le 3, 17 \le x \le 58\}$

AUBUF = $K = \{1, 2, 4, 6, y: 8 \le y \le 20\}$

INTERSECCION

LA INTERSECCION DE DOS EVENTOS ES EL CONJUNTO DE ELEMENTOS QUE PERTENECEN SIMULTANEAMENTE A AMBOS. PARA DENOTAR LA OPERACION DE INTERSECCION SE USA EL SIMBOLO Ω

EJEMPLOS

- A) $A = \{2,3,6\} \ Y \ B = \{2,6,10\} \ ENTONCES \ A\cap B = C = \{2,6\}$
- B) $D = \{Y: 4 \le Y \le 5\}$, ENTONCES AND = \emptyset .

OBSERVESE QUE EN ESTE EJEMPLO A Y D SON MUTUAMENTE. EXCLUSIVOS,
YA QUE NO TIENEN NINGUN ELEMENTO EN COMUN. SIEMPRE QUE DOS EVENTOS
SON MUTUAMENTE EXCLUSIVOS, SU INTERSECCION ES EL CONJUNTO VACIO.

EN GENERAL, LA INTERSECCION DE VARIOS EVENTOS ES EL CONJUNTO DE ELEMENTOS QUE TODOS ELLOS TIENEN EN COMUN.

EJEMPLO

SI A = $\{2,3,6,8\}$; B= $\{2,3,10,100\}$; C= $\{Y: 0 \le Y \le 5\}$ Y D= $\{Y: 2 \le Y \le 4\}$, ENTONCES

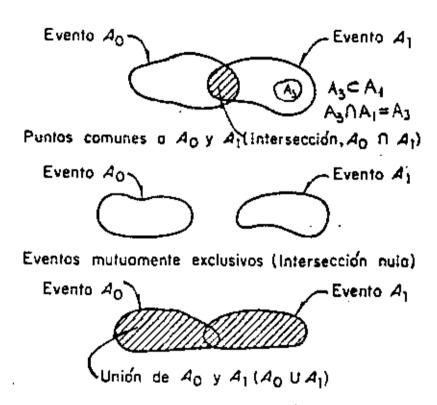
 $A \cap B \cap C \cap D = E = \{2,3\}$

AUBUCUD = $F = \{Y: 0 \le Y \le 5, 6,8,10,100\}$

LA OCURRENCIA DE UN EVENTO'Y OTRO IMPLICA LA <u>OCURRENCIA DE AMBOS</u>
A LA VEZ, ES DECIR, QUE SE VERIFIQUE LA INTERSECCION. LA OCURRENCIA
DE UN EVENTO O'ALGUN OTRO, IMPLICA LA <u>OCURRENCIA DE CUALQUIERA</u>
DE ELLOS, ES DECIR DE LA *UNION*.

DIAGRAMAS DE VENN

UNA MANERA DE ILUSTRAR GRAFICAMENTE LAS OPERACIONES CON CONJUNTOS ES MEDIANTE LOS <u>DIAGRAMAS DE VENN</u>. EN ESTOS, CADA CONJUNTO SE REPRESENTA POR UNA CURVA CERRADA QUE ENCIERRA LOS ELEMENTOS QUE LE CORRESPONDEN.

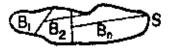


Diagramas de Venn (unión e intersección de eventos)

EVENTOS COLECTIVAMENTE EXHAUSTIVOS

SE DICE QUE LOS EVENTOS B_1 , B_2 , ..., B_n SON COLECTIVAMENTE EXHAUSTI-VOS CUANDO LA UNION DE TODOS ELLOS ES IGUAL AL ESPACIO DE EVENTOS, ES DECIR, SI

$$B_1UB_2U...UB_N \Rightarrow S$$



TEORIA DE PROBABILIDADES

AL LANZAR UNA MONEDA NO PODEMOS PREDECIR CON CERTEZA CUAL CARA QUEDARA HACIA ARRIBA. LO UNICO QUE SE PUEDE ASEGURAR, SI LA MONEDA
NO ESTA CARGADA, ES QUE AMBAS CARAS TIENEN LA MISMA OPORTUNIDAD DE
SALIR, ES DECIR, QUE LOS EVENTOS SIMPLES (CARA) Y (CRUZ) TIENEN LA
MISMA PROBABILIDAD DE OCURRIR.

COMO YA SE DIJO, LA PROBABILIDAD DE QUE OCURRA UN EYENTO ES UNA MEDIDA DEL GRADO DE CONFIANZA QUE SE TIENE DE QUE ESTE OCURRA AL REALIZAR EL EXPERIMIENTO CORRESPONDIENTE.

AXIOMAS DE LA TEORIA DE PROBABILIDADES

LAS PROBABILIDADES QUE SE ASIGNAN A LOS DIFERENTES EVENTOS RELACIO NADOS CON UN FENOMENO ALEATORIO DEBEN CUMPLIR CON LOS SIGUIENTES TRES AXIOMAS:

AXIOMA 1: LA PROBABILIDAD DE OCURRENCIA DE UN EVENTO A ES UN NUME

MERO, P(A), QUE SE LE ASIGNA A DICHO EVENTO, CUYO VALOR

QUEDA EN EL INTERVALO

0< P(A) ≤1

AXIOMA 2: SI S ES UN ESPACIO DE EYENTOS, ENTONCES

 $P(S) \neq 1$

AXIOMA 3: LA PROBABILIDAD, P(C), DE LA UNION, C, DE DOS EVENTOS

MUTUAMENTE EXCLUSIVOS, A Y B, ES IGUAL A LA SUMA DE LAS

PROBABILIDADES DE ESTOS, ES DECIR,

 $P(AUB) = P(C) \neq P(A) + P(B)$

EXISTEN POR LO MENOS CUATRO MANERAS DE ASIGNARLE UNA PROBABILIDAD A
UN EVENTO:

- 1. EN TERMINOS DE LOS RESULTADOS DE REPETIR VARIAS VECES UN EXPERIMENTO (METODO FRECUENCIAL).
- 2. APLICANDO LA DEFINICION CLASICA DE PROBABILIDADES.
- 3. CON BASE EN UN MODELO MATEMATICO (PROBABILISTICO) DEL FENOMENO DE QUE SE TRATE.
- 4. MEDIANTE UN ANALISIS SUBJETIVO DEL PROBLEMA ...

<u>METODO FRECUENCIAL</u>

SI N(A) ES EL NUMERO DE VECES QUE SE OBSERVA EL EVENTO A AL REA-LIZAR N VECES UN EXPERIMENTO, LA FRECUENCIA RELATIVA DE A, DEFINIDA COMO N(A)/N, SE CONSIDERA COMO ESTIMACION DE LA PROBABILIDAD DE A, $P(A) = \frac{N(A)}{N}$

YA QUE, EN EL LIMITE, $P(A) = \frac{11m}{N+\infty} \frac{N(A)}{N}$

EJEMPLO

DE UNA URNA QUE CONTIENE BOLAS ROJAS, BLANCAS Y AZULES, SE SACO
UNA BOLA, SE ANOTO SU COLOR Y SE REGRESO A LA URNA. SI ESTE EXPE_
RIMENTO SE REPITE 20 VECES Y LOS RESULTADOS SON

b,b,a,r,r,a,b,r,a,b,b,a,r,b,r,r,a,r,a,DONDE

r = ROJA, b = BLANCA, a = AZUL

OUE DEGRAPHINDADES IF ASIGNADIA & LOS EVENTOS B={b}

¿QUE PROBABILIDADES LE ASIGNARIA A LOS EVENTOS $B=\{b\}$, $A=\{a\}$, Y $R=\{r\}$, DE ACUERDO CON EL MÉTODO FRECUENCIAL?

EN ESTA MUESTRA SE TIENE QUE N(B)=6, N(A)=6, N(R)=8, N=20

POR LO QUE P(B) =
$$\frac{6}{20} = \frac{3}{10}$$
; P(A) = $\frac{6}{20} = \frac{3}{10}$; P(R) = $\frac{8}{20} = \frac{4}{10}$

NOTESE QUE LOS EVENTOS B, A Y R SON MUTUAMENTE EXCLUSIVOS, YA QUE SON EVENTOS SIMPLES, Y QUE

$$P(B) + P(A) + P(R) = \frac{3}{10} + \frac{3}{10} + \frac{4}{10} = 1 = P(S)$$

EN DONDE $S = \{r,b,a\}$

DEFINICION CLASICA DE PROBABILIDADES

SI M(A) ES EL NUMERO DE MANERAS <u>IGUALMENTE PROBABLES</u> EN QUE PUEDE OCURRIR EL EVENTO A Y M ES EL NUMERO TOTAL DE ELEMENTOS DEL ESPACIO DE EVENTOS CORRESPONDIENTE, ENTONCES LA PROBABILIDAD DE A ES

$$P(A) = \frac{M(A)}{M}$$

EJEMPLOS

A) SI EN UNA URNA SE TIENEN 5 BOLAS BLANCAS Y 15 NEGRAS, Y SE VA
A SELECCIONAR UNA AL AZAR, ¿CUAL ES LA PROBABILIDAD DE QUE
SEA BLANCA(A={BLANCA})?;

M= 5+15=20; M(A)=5
$$\Rightarrow$$
P(A)= $\frac{5}{20}$ = $\frac{1}{4}$

- B) SI SE LANZAN DOS DADOS, ¿CUAL ES LA PROBABILIDAD DE QUE "
 - SALGA UN 2 Y UN 5 (EVENTO B)?
 - 2. LA SUMA SEA 7 (EVENTO A)

PARA EL INCISO 1 EL ESPACIO DE EVENTOS ES:

$$S = \begin{cases} (1,1) & (1,2) & (1,3) & (1,4) & (1,5) & (1,6) \\ (2,1) & (2,2) & (2,3) & (2,4) & (2,5) & (2,6) \\ (3,1) & (3,2) & (3,3) & (3,4) & (3,5) & (3,6) \\ (4,1) & (4,2) & (4,3) & (4,4) & (4,5) & (4,6) \\ (5,1) & (5,2) & (5,3) & (5,4) & (5,5) & (5,6) \\ (6,1) & (6,2) & (6,3) & (6,4) & (6,5) & (6,6) \end{cases}$$

SI EL DADO NO ESTA CARGADO, CADA PAREJA DE NUMEROS ES IGUALMENTE PROBABLE. EN TAL CASO, M=36 y M(B)=2 (APARECE (2,5) O $\{5,2\}$) \Rightarrow P(B)=2/36=1/18.

PARA EL INCISO 2 EL ESPACIO DE EVENTOS ES

$$S_1 = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

PERO NO TODOS LOS ELEMENTOS (EVENTOS SIMPLES) SON IGUALMENTE PROBA-

BLES, YA QUE, POR EJEMPLO, EL 2 SOLO APARECERA SI SE OBSERVA LA PAREJA (1,1), EN CAMBIO EL 3 APARECERA SI OCURREN LAS PAREJAS (1,2) O (2.1), ES DECIR, EL 3 TIENE EL DOBLE DE PROBABILIDAD QUE EL 2. POR ESTO, PARA CALCULAR LA PROBABILIDAD DE QUE LA SUMA SEA 7 ES NECESARIO TRABAJAR CON EL ESPACIO S Y CONTAR LAS MANERAS POSIBLES DE QUE LA SUMA SEA 7, LO CUAL OCURRE SI SE OBSERVA CUALQUIERA DE LAS PAREJAS (6,1), (5,2), (4,3), (3,4), (2,5) o (1,6), ES DECIR, HAY 6 MANERAS IGUALMENTE PROBABLES DE QUE OCURRA EL EVENTO A. POR LO TANTO

$$P(A) = \frac{M(A)}{M} = \frac{6}{36} = \frac{1}{6}$$

PROCEDIENDO DE ESTA MANERA SE PUEDEN CALCULAR LAS PROBABILIDADES DE QUE LA SUMA SEA 2,3,4,ETC. LOS RESULTADOS SON:

$$P(\{2\}) = \frac{1}{36}; \ P(\{3\}) = \frac{2}{36}; \ P(\{4\}) = \frac{3}{36}; \ P(\{5\}) = \frac{4}{36};$$

$$P(\{6\}) = \frac{5}{36}; \ P(\{7\}) = \frac{6}{36}; \ P(\{8\}) = \frac{5}{36}; \ P(\{9\}) = \frac{4}{36};$$

$$P(\{10\}) = \frac{3}{36}; \ P(\{11\}) = \frac{2}{36} \text{ y } P(\{12\}) = \frac{1}{36}$$

$$OBSERVESE \ QUE \ \frac{12}{12} P(\{1\}) = 1$$

ASIGNACION DE PROBABILIDADES MEDIANTE UN MODELO MATEMATICO

MEDIANTE ESTE METODO LAS PROBABILIDADES SE ASIGNAN A PARTIR DE UN MODELO MATEMATICO QUE INVOLUCRE TODOS LOS FACTORES POSIBLES QUE INTERVIENEN EN LA ALEATORIEDAD DEL FENOMENO.

ASIGNACION DE PROBABILIDADES MEDIANTE UN ANALISIS SUBJETIVO DEL PROBLEMA.

EN ESTE CASO LAS PROBABILIDADES SE ASIGNAN DE MANERA SUBJETIVA, CON BASE EN LA EXPERIENCIA QUE SE TENGA SOBRE UN PROBLEMA SEMEJANTE, - PROPIA O AJENA, DE CARACTER TEORICO O EXPERIMENTAL.

A) EN EL PROBLEMA DEL LANZAMIENTO DE UN DADO QUE NO ESTA CARGADO

SE PUEDE ASIGNAR A CADA NUMERO (A CADA EVENTO SIMPLE) UNA PRO
BABILIDAD DE 1/6, SI A={2,4} Y B={5,6}, ENTONCES, PUESTO QUE

A ={2}U {4} Y B={5}U{6}, Y QUE LOS EVENTOS ELEMENTALES SON MU
TUAMENTE EXCLUSIVOS ENTRE SI, APLICANDO EL AXIOMA 3 SE OBTIENEN:

$$P(A) = P(\{2\} + P(\{4\}) = \frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$$

$$P(B)=P(\{5\} + P(\{6\}) = \frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$$

SI C=AUB, Y DADO QUE A Y B SON EVENTOS MUTUAMENTE EXCLUSIVOS:

$$P(C) = P(A) + P(B) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$$

ADEMAS, OBSERVESE QUE SE CUMPLE CON LOS AXIOMAS 1 y 2, YA QUE $P(S) = P(\{1\}) + P(\{2\}) + P(\{3\}) + P(\{4\}) + P(\{5\}) + P(\{6\})$ $= \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{6}{6} = 1$

EJEMPLO

EN EL PROBLEMA DEL LANZAMIENTO DE DOS DADOS, ¿CUAL ES LA PROBABILIDAD QUE AL REALIZAR UNA VEZ EL EXPERIMENTO LA SUMA DE LOS DOS NUMEROS QUE QUEDEN HACIA ARRIBA SEA 7 U 11? ESTO ES EQUIVALENTE A PRE
GUNTAR POR LA PROBABILIDAD DE QUE OCURRA EL EVENTO
C = {7} U {11}. PUESTO QUE {7} Y {11} SON EVENTOS MUTUAMENTE
EXCLUSIVOS:

$$P(C) = P({7}) + P({11}) = \frac{6}{36} + \frac{2}{36} = \frac{8}{36} = \frac{2}{9}$$

EN UN LABORATORIO SE PROBARON 100 VIGAS DE CONCRETO REFORZADO NOMINALMENTE IDENTICAS, Y SE ANOTARON LAS CARGAS CON LAS CUALES FALLO CADA UNA. DE ESTA SUCESION DE EXPERIMENTOS SE ASIGNARON, EN TER MINOS DE LAS FRECUENCIAS RELATIVAS CORRESPONDIENTES, LAS SIGUIENTES PROBABILIDADES:

```
SI A = \{X: 0 \le X \le 20 \text{ ton}\}; P(A) = 0.17(17/100)
```

SI B =
$$\{X:20 \le X \le 40 \text{ ton}\}_{i}$$
 P (B) = 0.24 (24/100)

SI C =
$$\{X:40 < X \le 60 \text{ ton}\}: P(C) = 0.27(27/100)$$

SI D =
$$\{X:60 < X < 80\};$$
 P (D) = 0.13 (13/100)

SI E =
$$\{X:80 \le X \le 100\}$$
; P(E) = 0.11 (11/100)

SI F =
$$\{X;100 \le X\};$$
 P (F) = 0.08 (8/100) $\Sigma P(.) = 1.00$

SI SE REALIZA UNA VEZ MAS EL EXPERIMENTO, CALCULEMOS LAS SIGUIENTES PROBABILIDADES:

- A) QUE LA RESISTENCIA SEA MENOR O IGUAL QUE 80 TON. PUESTO QUE $G = \{X: 0 < X \leq 80 \text{ ton}\} \text{ SE TIENE QUE } G = \text{AUBUCUD, POR LO QUE}$ P(G) = P(A) + P(B) + P(C) + P(D) = 0.17 + 0.27 + 0.27 + 0.13 = 0.81
- B) LA PROBABILIDAD QUE RESISTA MAS DE 60 TONS. PUESTO QUE $H = \{X: 60 < X \le \infty\} \text{ O } H = \{X: X > 60\} \text{ SE TIENE QUE } H = DUEUF,$ POR LO QUE P(H) = P(D) + P(E) + P(F) = 0.13 + 0.11 + 0.08 = 0.32

C) LA PROBABILIDAD QUE RESISTA MAS DE 40 TON, PERO CUANDO MUCHO 100 TON.

PUESTO QUE I * $\{X: 40 < X \le 100\}$ SE TIENE QUE I * CUDUE POR LO QUE P(I) = P(C) + P(D) + P(E) = 0.27 + 0.13 + 0.11 * 0.51

18.

TEOREMAS

DOS TEOREMAS IMPORTANTES QUE SE DEDUCEN A PARTIR DE LOS AXIOMAS SON:

TEOREMA 1.

SI A ES UN EVENTO DEL ESPACIO S, ENTONCES $P(\tilde{A})=1-P(A)$

<u>DEMOSTRACION</u>

PUESTO QUE A Y \overline{A} SON MUTUAMENTE EXCLUSIVOS Y ADEMAS AU \overline{A} =S, ENTONCES, P(S)=P(A)+P(\overline{A})=1 \Rightarrow P(\overline{A})=1-P(A)

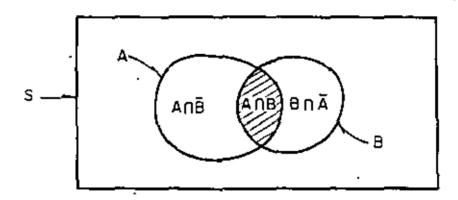
CASO PARTICULAR: PUESTO QUE $P(\vec{S})=1-P(s)=0$ Y $\vec{S}=\emptyset$, SE TIENE QUE $P(\emptyset)=0$

TEOREMA 2.

SI A Y B SON DOS EVENTOS CUALQUIERA DE S, ENTONCES
.
P(AUB)=P(A)+P(B)-P(AAB)

DEMOSTRACION

SEA EL DIAGRAMA DE VENN:



AUB= (A\(\text{A}\)B) U (A\(\text{B}\)) U (B\(\text{A}\)). PUESTO QUE A\(\text{B}\), A\(\text{B}\) Y B\(\text{A}\) SON MUTUAMENTE EXCLUSIVOS, SE TIENE QUE P(A\(\text{B}\)) =P(A\(\text{B}\)) +P(B\(\text{A}\)). SUMANDO Y RESTANDO P(A\(\text{B}\)) Y AGRUPANDO TERMINOS SE OBTIENE P(A\(\text{B}\)) = \big(\text{A\(\text{B}\)}) +P(\(\text{A\(\text{B}\)}) \big) +P(\(\text{A\(\text{B}\)}) +P(\(\text{B\(\text{A}\)}) \big) -P(\(\text{A\(\text{B}\)}) \big) =P(\(\text{A\(\text{B}\)}) \big) P(\(\text{A\(\text{B}\)}) +P(\(\text{A\(\text{B}\)}) =P(\(\text{A}\))

Y B= (A\(\text{B}\)) U (B\(\text{A}\)) => P(\(\text{A\(\text{B}\)}) +P(\(\text{B\(\text{A}\)}) =P(\(\text{B}\)) =P(\(\text{A}\))

P(\(\text{A\(\text{B}\)}) U (\text{B\(\text{A}\)}) => P(\(\text{A\(\text{B}\)}) +P(\(\text{B\(\text{A}\)}) =P(\(\text{B}\)) =P(\(\text{A}\))

P(\(\text{A\(\text{B}\)}) U (\text{B\(\text{A}\)}) => P(\(\text{A\(\text{B}\)}) +P(\(\text{B\(\text{A}\)}) =P(\(\text{B}\)) =P(\(\text{A}\))

P(\(\text{A\(\text{B}\)}) U (\text{B\(\text{A}\)}) => P(\(\text{A\(\text{B}\)}) +P(\(\text{B\(\text{A}\)}) =P(\(\text{B}\)) =P(\(\text{A}\))

EN UNA URNA SE TIENEN 28 TIRAS DE PAPEL Y EN CADA UNA SE ENCUEN-TRA ANOTADA UNA LETRA DISTINTA DEL ALFABETO. CALCULE LA PROBA-BILIDAD DE QUE AL EXTRAER AL AZAR UNA TIRA:

- A) SE OBTENGA UNA VOCAL
- B) SE OBTENGA a O z
- C) OCURRAN C Y D, DONDE C={x,y,z} y
 D={b,c,y,z}
- D) OCURRA C O D

Respuestas

A)
$$A = \{a, e, 1, o, u\} = P(A) = \frac{5}{28}$$

B)
$$B = (a, z) \Rightarrow P(B) = \frac{2}{28}$$

C)
$$F = C \cap D = \{y,z\} = P(F) = \frac{2}{28}$$

D)
$$E = CUD = \{b,c,x,y,z\} = P(E) = \frac{5}{28}$$

$$o P(E) = P(C) + P(D) - P(C \cap D)$$

$$P(C \cap D) = P(F) = \frac{2}{28} = P(E) = \frac{3}{28} + \frac{4}{28} - \frac{2}{28} = \frac{5}{28}$$

REGLAS DE CONTEO

AL ASIGNAR PROBABILIDADES A LOS EVENTOS APLICANDO LA TEORIA CLA-SICA ES NECESARIO CALCULAR N(A) Y N PARA APLICAR LA FORMULA P(A)=N(A)/N.

SEAN, POR EJEMPLO, LOS EVENTOS A={b,c} Y B={a,a,1,0,u} CON LOS CUALES SE FORMAN PALABRAS DE DOS LETRAS, LA PRIMERA DE A Y LA SEGUNDA DE B. EL EVENTO QUE SE FORMA ASI ES

C={xy: xeA; yeB}

SI ENUMERAMOS LOS ELEMENTOS:

CON LA c: ca.ce.ci.co.cu } 10 ELEMENTOS

SIN EMBARGO, LA SOLUCION SE PUEDE OBTENER RAPIDAMENTE SIN NECESIDAD DE ENUMERAR TODAS LAS POSIBILIDADES, OBSERVANDO QUÉ LA PRIMERA LETRA SOLO PUEDE SER DE DOS TIPOS DO C, MIENTRAS QUE LA
SEGUNDA, DE CINCO TIPOS A,6,1,0,0, POR LO QUE EL TOTAL DE ELEMENTOS ES 2x5=10, ES DECIR, EL EVENTO C PUEDE OCURRIR DE 10 MANERAS DISTINTAS E IGUALMENTE PROBABLES.

REGLA DE LA MULTIPLICACION

EN GENERAL, SI DOS EVENTOS, A Y B, PUEDEN OCURRIR DE N(A) Y N(B)

MANERAS DISTINTAS, RESPECTIVAMENTE, ENTONCES EL TOTAL DE MANERAS

EN QUE AMBOS PUEDEN OCURRIR, EN EL ORDEN INDICADO, ES N(A) X N(B).

ESTA REGLA SE PUEDE GENERALIZAR A MAS DE DOS EVENTOS.

CUANTOS NUMEROS PARES DE TRES CIFRAS SE PUEDEN FORMAR UTILIZANDO LOS DIGITOS 5,677,8 9 9, SIN QUE SE USE EL MISMO DIGITO EN LAS
DECENAS Y LAS CENTENAS?

SOLUCION .- SEAN LOS EVENTOS

A ={X: X ESTA EN LAS CENTENAS}

 $B = \{Y: Y \text{ ESTA EN LAS DECENAS}\}$

C = {Z: Z ESTA EN LAS UNIDADES Y ES PAR}

D ={XYZ: XeA; YeB; ZeC}

SI ENUMERAMOS LOS ELEMENTOS:

PUESTO QUE NO SE PERMITE REPETICION DE DIGITOS, $N(A) = 5c Y_A N(B) = 4c$ ADEMAS, PUESTO QUE EL NUMERO DEBE SER PAR, N(C) = 2c, POR LO TANTO

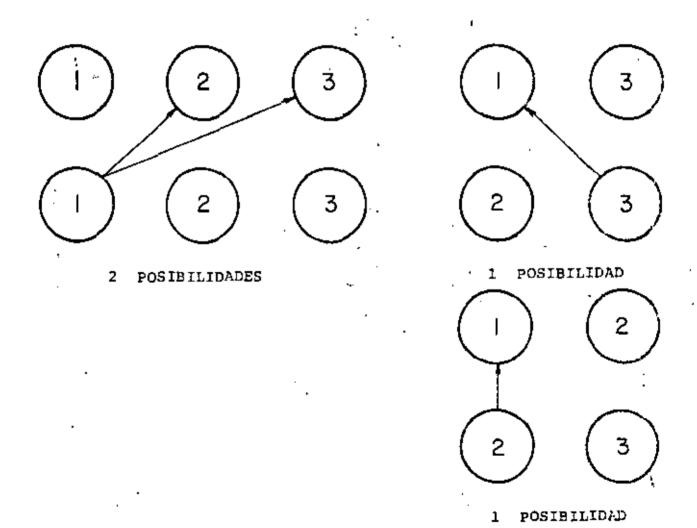
SIN EMBARGO, LA SOLUCION SE PEREZ GREETER PAPET MES (D) N

SIDAD DE ENUMERAR TODAS LAS POSIBILIDADES, OBSEDANCE (495;494,493;574); STAR PRO PRO PRO PRO PROPERTO DE DOS TIPOS DO C. MIENTO. CELAR SOLO POEDE SER DE DOS TIPOS DO C. MIENTO. (2504); STAR DE DOS TIPOS DO C. MIENTO.

CON FSTO, CALCULEMOS LA PROBABILIDAD DE QUE/SDIEN ESPACIO DE CEVENTOS

EN QUE APBOS PUEDEN OCURATISON : A. ONEN DE LOS ETES $\frac{O \, V}{N} = \frac{(A) \, N}{N} = \frac{(A) \, N}{N} = (A) \, Q$ ZETA RECLA SE FUEDE GENERALIZAR A MAS DE DOS ETES.

EN UNA CAJA SE TIENEN TRES PERFORACIONES NUMERADAS DEL UNO AL TRES. SI SE HECHAN EN ELLA TRES BOLAS TAMBIEN NUMERADAS DEL 1 AL 3 Y SE AGITA LA CAJA, CALCULAR LA PROBABILIDAD DE QUE NINGUNA BOLA CAIGA EN LA PERFORACION QUE TIENE SU NUMERO (EVENTO A)



$$N(A) = 2x1x1=2$$

N = 3x2x1=6

$$P(A) = \frac{N(A)}{N} = \frac{2}{6} = \frac{1}{3}$$

SE DISPONE DE TRES BANDERAS: UNA BLANCA, UNA NEGRA Y UNA VERDE.

1. SI CADA PAREJA DE BANDERAS DE DISTINTO COLOR CONSTITUYE UNA SEÑAL, ¿CUANTAS SEÑALES SE PUEDEN HACER SI EL ORDEN DE COLOCA-CION DE LAS BANDERAS ES IMPORTANTE (EVENTO A)?

N(A) = 3x2=6

2. SI TRES BANDERAS TAMBIEN CONSTITUYEN UNA SEÑAL CUANDO TODAS SON DE DIFERENTE COLOR ¿CUANTAS SEÑALES PODEMOS HACER CON LAS 3 BANDERAS A LA VEZ (EVENTO B)?

N(B) = 3x2x1=6

- 4. SI CADA SEÑAL DEL EVENTO C SE DIBUJA EN UNA TIRA DE PAPEL Y
 LUEGO SE COLOCAN EN UNA URNA, ¿CUAL ES LA PROBABILIDAD DE QUE
 SI SE TOMA UNA AL AZAR,
 - A) SALGA UNA SEÑAL ESPECIFICA (EVENTO F): (5 = C)P(F) = N(F)/N(C) = 1/12
 - B) SALGA UNA SEÑAL CON DOS BANDERAS POR LO MENOS (EVENTO G): $G=C \Rightarrow N(G)=12 \Rightarrow P(G) = \frac{12}{12} = 1$
 - C) SALGA UNA SEÑAL CON DOS BANDERAS, UNA DE ELLAS VERDE (EVENTO H): $N(H) = 1 \times 2 + 2 \times 1 = 4 \implies P(H) = \frac{4}{12} = \frac{1}{3}$
 - D) SALGA UNA SEÑAL CON TRES BANDERAS, UNA DE ELLAS VERDE (EVENTO I) N(I) = 1x2x1+ 1x1x2+ 2x1x1 =6
 P(I) = 6/12 = 1/2 = 50%

E) SALGA UNA SEÑAL CON DOS O TRES BANDERAS EN QUE SE USE UNA VERDE (EVENTO J)

$$J = HUI \Rightarrow N(J) = N(H) + N(I) = 4 + 6 = 10$$

 $P(J) = 10/12 = 5/6$

26.

PERMUTACIONES

EL ARREGLO DE N OBJETOS EN CIERTO ORDEN SE DENOMINA <u>PERMUTACION</u>,

POR EJEMPLO, TODAS LAS PERMUTACIONES QUE PUEDEN HACERSE CON LAS

LETRAS A,B,C SON: ABC, ACB, BAC, BCA, CAB, CBA, EL TOTAL ES

3x2x1=6 PERMUTACIONES (N=3).

_EN GENERAL, EL NUMERO DE PERMUTACIONES ES N(N-1)(N-2)(N-3)x...x1=n!

EJEMPLO

¿CUANTAS PERMUTACIONES SE PUEDEN HACER CON 5 OBJETOS?

5! = 5x4x3x2x1=120

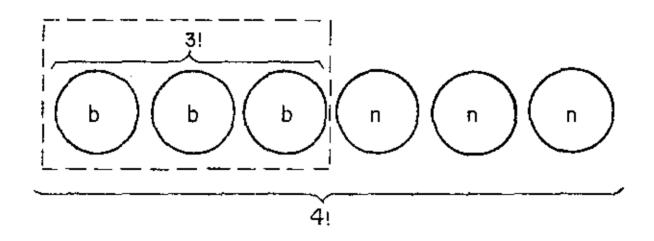
EJEMPLO

EN UN LIBRERO SE COLOCARAN AL AZAR 7 LIBROS. CALCULEMOS LA PRO-BABILIDAD DE QUE EL DE HISTORIA Y EL DE GEOGRAFIA QUEDEN JUNTOS (EVENTO A).

N=7! = 7x(6x5x4x3x2x1) = 7x6!

$$N(A) = 2!x6!$$
; $P(A) = \frac{2!x6!}{7!} = \frac{2!x6!}{7 x6!} = \frac{2}{7}$

EN UNA URNA SE TIENEN 6 ESFERAS, DE LAS CUALES 3 SON BLANCAS Y 3 SON NEGRAS. SI LAS SEIS SE EXTRAEN AL AZAR, UNA TRAS OTRA, SIN - REMPLAZO LA PROBABILIDAD DE QUE LAS 3 BLANCAS SALGAN EN FORMA CON SECUTIVA (EVENTO F) ES:



$$N(F) = 3! \times 4! ; N = 6!$$

$$P(F) = N(P)/N = \frac{3! \times 4!}{6!} = \frac{3! \times 4!}{6 \times 5 \times 4!}$$

$$P(F) = \frac{3x2x1}{6x5} = \frac{1}{5}$$

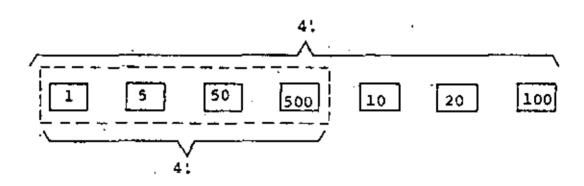
LA PROBABILIDAD DE QUE LAS TRES BLANCAS SALGAN AL PRINCIPIO (EVENTO G)

ES:

$$N(G) = 3! \times 3!$$
, $P(G) = \frac{3! \times 3!}{6!} = \frac{3! \times 3!}{6 \times 5 \times 4 \times 3!} = \frac{1}{20}$

EN UNA URNA SE TIENEN 7 SOBRES IDENTICOS Y CADA UNO CONTIENE UN BILLETE DE DIFERENTE DENOMINACION (1,5,10,20,50,100 y 500 PESOS)

¿CUAL ES LA PROBABILIDAD DE 1,5,50 y 500 PESOS SALGAN CONSECUTIVAMENTE EN CUALQUIER ORDEN, SI SE SACAN LOS SIFTE AL AZAR, UNO TRAS OTRO (EVENTO A)?..



$$N(A) = 4!x4!; N=7!$$

$$P(A) = \frac{4!x4!}{7!} = \frac{4!x4!}{7x6x5x4!} = \frac{4x3x2x1}{7x6x5} = \frac{4}{35}$$

PERMUTACIONES PARCIALES

EL NUMERO DE MANERAS EN QUE SE PUEDEN ORDENAR N OBJETOS TOMANDO DE r EN r ES:

$$N^{p}r = \frac{N!}{(N-r)!}$$

ESTO ES EQUIVALENTE A DECIR QUE N^p r ES EL NUMERO DE DIFERENTES MANERAS EN QUE r OBJETOS PUEDEN SER SELECCIONADOS DE N OBJETOS $(r \le N)$ SIN REEMPLAZAR NINGUNO DE ELLOS AL LOTE ANTES DE SACAR EL SIGUIENTE.

OBSERVESE QUE SI r=N:

$$N^{p}N = \frac{N!}{(N-N)!} = \frac{N!}{0!} = N!$$

EJEMPLO

SI SE TIENEN LAS LETRAS A,B,C,D, EL NUMERO DE MANERAS EN QUE SE PUEDEN ORDENAR TOMANDO DE 2 EN 2 ES

$$_{4}P_{2} = \frac{4!}{(4-2)!} = \frac{4 \times 3 \times 2!}{2!} = 12$$

EL CONJUNTO DE ESTAS POSIBILIDADES ES:

S ={AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC}

OBSERVESE QUE CUANDO EL ORDEN ES IMPORTANTE, AC NO ESLO MISMO QUE CA, ETC.

LA PROBABILIDAD DE QUE SALGAN CONSECUTIVAMENTE Y EN EL ORDEN 1,5, 50,500 ES:

$$N(B) = 1 \times 4!$$
, $P(B) = -\frac{4!}{7!} = \frac{4!}{7 \times 6 \times 5 \times 4!} = \frac{1}{210}$

COMBINACIONES

CUANDO EL ORDEN NO ES IMPORTANTE, ES DECIR, SI EL AGRUPAMIENTO

GA ES EL MISMO QUE EL AC, A LOS AGRUPAMIENTOS SE LES DENOMINA

COMBINACIONES. POR EJEMPLO, SI SE FORMARA UNA COMISION DE 2 INDI
VIDUOS DE UN GRUPO DE 8 TOMANDO SUS NOMBRES AL AZAR DE UNA URNA,

Y DESEAMOS SABER CUANTOS COMITES DE 2 MIEMBROS PODRIAN FORMARSE

COMO RESULTADO DEL PROCESO, ENTONCES LOS RESULTADOS (PEDRO, JOSE)

Y (JOSE, PEDRO) CONSTITUIRIAN EL MISMO COMITE, ES DECIR, NO IMPOR
TARIA EN QUE ORDEN SE SACARAN SUS NOMBRES DE LA URNA.

ASI, SE PUEDE DEMOSTRAR QUE EL NUMERO DE COMBINACIONES POSIBLES DE FORMAR DE N OBJETOS TOMANDO DE r EN r ES:

$$N^{C}r = \binom{N}{r} = \frac{N!}{(N-r)!r!}$$

ESTO EQUIVALE A DECIR QUE n^C_r ES EL NUMERO DE MANERAS DISTINTAS EN QUE r OBJETOS PUEDEN SELECCIONARSE DE N $(r \le n)$ SIN REEMPLAZO Y SIN IN-PORTAR EL ORDEN EN QUE APAREZCAN.

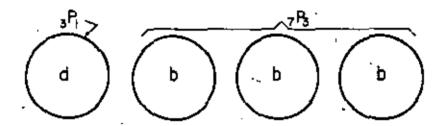
CUANDO UNO SE ENFRENTA A UN PROBLEMA QUE IMPLICA LA REPETICION DE UN EXPERIMENTO, ES NECESARIO DETERMINAR SI HAY O NO REEMPLAZO DE LAS OSSERBACIONES. POR EJEMPLO, EL REPETIR EL LANZAMIENTO DE UN DADO Y OBSERVAR CADA VEZ EL NUMERO QUE QUEDA HACIA ARRIBA LLEVA IMPLICITO QUE HAY REEMPLAZO.

UNA CAJA CONTIENE 10 FOCOS, DE LOS CUALES 3 SON DEFECTUOSOS. SI SE LECCIONAMOS 4 AL AZAR SIN REEMPLAZO

A) ¿CUANTOS SON LOS RESULTADOS POSIBLES, ES DECIR, CUANTOS ELEMEN TOS TIENE EL ESPACIO DE EVENTOS?

$$N(S) = {10}P_4 = {10! \over (10-4)!} = 10 \times 9 \times 8 \times 7 = 5040$$

B) ¿CUANTOS ELEMENTOS DE S TIENEN COMO PRIMER RESULTADO UN FOCO DEFECTUOSO Y TRES FOCOS BUENOS EN LOS OTROS TRES?

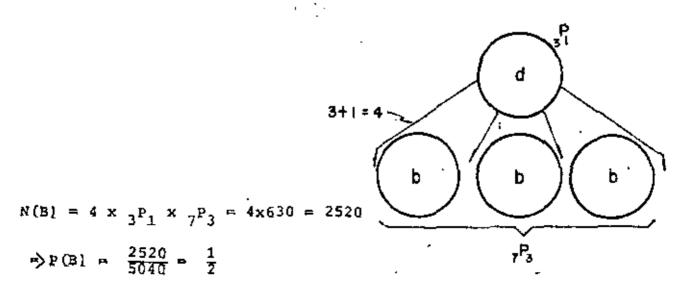


$$N(A) = {}_{3}P_{1} \times {}_{7}P_{3} = \frac{3}{(3-1)!} \times \frac{7!}{(7-3)!} = \frac{3!}{2!} \times \frac{7!}{4!}$$

$$N(A) = 3 \times (7 \times 6 \times 5) = 630$$

$$\Rightarrow$$
 P(A) = 630/5040 = 63/504

C) ¿CUANTOS ELEMENTOS DE S TIENEN UN FOCO DEFECTUOSO Y 3 BUENOS?



PERMUTACIONES DE GRUPOS DE OBJETOS

"EL NUMERO DE PERMUTACIONES POSIBLES DE N OBJETOS DE LOS CUALES SE TIENEN N_1 IGUALES ENTRE SI EN EL PRIMER GRUPO, N_2 IGUALES ENTRE SI EN EL SEGUNDO GRUPO, ETC. HASTA N_K IGUALES EN EL K-ESIMO GRUPO (LOS GRUPOS SON DISTINGUIBLES ENTRE SI), DE MANERA QUE $N_1 + N_2 + \ldots + N_K = N$ QUEDA DADO POR LA FORMULA:

$${}^{1}_{N} {}^{P}_{N_{1}, N_{2}, \dots, N_{K}} = \frac{N!}{N_{1}! N_{2}! \dots N_{K}!}$$

EJEMPLO

EN EL INCISO C DEL EJEMPLO ANTERIOR SE TIENEN DOS GRUPOS EN LA MUESTRA, EL DE DEFECTUOSOS CON UN SOLO ELEMENTO, ES DECIR $N_1=1$, Y EL DE BUENOS, CON TRES ELEMENTOS, $N_2=3$, QUE SE PERMUTAN POR GRUPO DE $4^P1,3=\frac{4!}{1!3!}=4$ MANERAS DISTINTAS.

EJEMPLO

ENUMERE LAS PERMUTACIONES QUE SE PUEDEN HACER CON DOS GRUPOS DE BOLAS, 2 NEGRAS Y 2 BLANCAS.

UNA CAJA CONTIENE 25 TRANSISTORES DE LOS CUALES 3 SON DEFECTUOSOS.

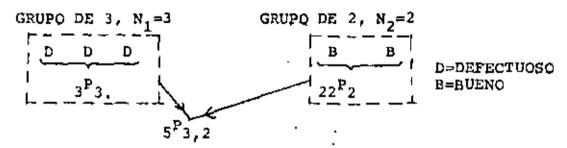
¿CUAL ES LA PROBABILIDAD DE QUE, SI SE EXTRAEN 5 AL AZAR SIN

REMPLAZO,

- A) SE OBTENGAN LOS 3 DEPECTUOSOS
- B) SE OBTENGAN SOLO 2 DEFECTUOSOS
- C) SE OBTENGA SOLO 1 DEFECTUOSO
- D) NO SE OBTENGA NINGUNO DEFECTUOSO?

SOLUCION:

A)
$$N(S) = 25^{P}5 = \frac{25!}{(25-5)!} = \frac{25!}{20!}$$



$$N(A) = 3^{P_3} \cdot 22^{P_2} \cdot 15^{P_3}, 2 = 3! \times \frac{22!}{(22-2)!} \times \frac{5!}{3! \cdot 2!}$$

$$N(A) = 60 - \frac{22!}{20!}$$

$$P(A) = \frac{60\frac{22}{20!}}{\frac{25}{20!}} = 60 \frac{22!}{25!} = \frac{60}{13800}$$

$$N(B) = 3^{P}2 \times 22^{P}3 \times 5^{P}2, 3 = \frac{3!}{(3-2)!} \frac{.22!}{(22-3)!} \frac{.5!}{.2! \times 3!}$$

 $N(B) = 3! \frac{.22!}{.19!} \frac{.5 \times 4}{.2} = 60 \frac{.22!}{.19!}$

$$P(B) = \frac{60\frac{22!}{19!}}{\frac{25!}{20!}} = 60 \quad \frac{22!}{25!} \cdot \frac{20x19!}{19!} = \frac{1200}{13800}$$

C)
$$N_1=1$$
 $N_2=4$ $N(C) = 3 \times 22^P 4 \times 5^P 1, 4$ $N(C) = 3 \times 22^P 4 \times 5^P 1, 4$ $N(C) = 3 \times 22^P 4 \times 5^P 1, 4$ $N(C) = 3 \times 22^P 4 \times 5^P 1, 4$ $N(C) = 3 \times 22^P 4 \times 5^P 1, 4$ $N(C) = 3 \times 22^P 4 \times 5^P 1, 4$

N(C) =
$$3 \times 22^{P}4 \times 5^{P}1,4$$

N(C) = $3 \frac{22!}{(22-4)!} \times \frac{5}{1! \times 4!}$
N(C) = $3 \frac{22!}{18!} \frac{5 \times 4!}{1 \times 4!} = 15 \frac{22!}{18!}$

$$P(C) = \frac{15 \frac{22!}{18!}}{\frac{25!}{20!}} = \frac{15 \times 20 \times 19 \times 18!}{\frac{25!}{22!} \times 18!} = \frac{5700}{13800}$$

D) B B B B B B N(D) =
$$22^{P_5} = \frac{22!}{(22-5)!} = \frac{22!}{17!}$$

$$22^{P_5}$$

$$P(D) = \frac{22!/17!}{25!} = \frac{20x19x18x17!}{25!} \times 17!$$

P(D) = 6840/13800

OBSERVESE QUE EN ESTE EJEMPLO HEMOS CALCULADO LAS PROBABILIDADES DE TODOS LOS ELEMENTOS DEL ESPACIO DE EVENTOS CORRESPONDIENTE AL "NUME RO DE DEFECTUOSOS QUE SE PUEDEN OBSERVAR EN UNA SELECCION AL AZAR DE 5 ELEMENTOS", EN LA CUAL SOLO SE PUEDEN TENER 0,1,2, 8 3 DEFECTUOSOS, ES DECIR.

$$S = \{0,1,2,3\}$$

VERIFIQUENOS QUE, EN EFECTO, P(S) = 1:

$$P(S) = P({0}) + P({1}) + P({2}) + P({3})$$

$$= \frac{6840}{13800} + \frac{5700}{13800} + \frac{1200}{13800} + \frac{60}{13800}$$

PROBABILIDAD CONDICIONAL

LA PROBABILIDAD CONDICIONAL, P(A|B), DEL EVENTO A, DADO QUE EL B HA OCURRIDO SE CALCULA CON LA FORMULA

$$P(A|B) = \frac{P(A\cap B)}{P(B)} ; P(B) > 0$$
 (1)

EVENTOS INDEPENDIENTES

SI DOS EVENTOS, A Y B, SON INDEPENDIENTES, LA PROBABILIDAD DE A

NO SE ALTERA SI OCURRE EL EVENTO B; ES DECIR, DOS EVENTOS SON
INDEPENDIENTES SI

$$P(A|B) = P(A)$$

EN TAL CASO, DE LA ECUACION 1;

$$P(A\cap B) = P(A) \times P(B) \tag{1'}$$

PUESTO QUE P(AAB) = N(AAB)/N(S) Y P(B) = N(B)/N(S) LA ECUACION 1 SE PUEDE ESCRIBIR COMO

$$P(A|B) = \frac{\frac{N(A\cap B)}{N(S)}}{\frac{N(B)}{N(S)}} = \frac{N(A\cap B)}{N(B)}$$

$$A\cap B = \frac{1}{N(B)}$$

$$S$$
(2)

EL TRABAJAR CON LA ECUACION 2 EQUIVALE A EMPLEAR UN ESPACIO DE EVEN TOS REDUCIDO DE S A B.

EJEMPLO

EN UNA URNA HAY 10 TRANSISTORES BUENOS Y 10 DEFECTUOSOS. ¿CUAL ES LA PROBABILIDAD DE SACAR UNO BUENO Y UNO DEPECTUOSO (EN CUALQUIER ORDEN) AL REALIZAR DOS EXTRACCIONES AL AZAR?, <u>SI HAY REEMPLAZO</u> DEL PRIMER TRANSISTOR OBSERVADO?

HAY VARIAS FORMAS DE RESOLVER ESTE PROBLEMA:

1. PUESTO QUE EL NUMERO DE DEFECTUOSOS ES IGUAL AL DE BUENOS, SE
PUEDE FORMULAR EL SIGUIENTE ESPACIO DE EVENTOS, EN EL QUE
TODOS LOS ELEMENTOS SON IGUALMENTE PROBABLES:

 $S = \{(d,d), (d,b), (b,b), (b,d)\}$

EL EVENTO DE INTERES ÉS:

 $A = \{(d,b), (b,d)\}$

POR LO QUE N(S) = 4, N(A) = 2

Y P(A) = 2/4 = 1/2

2. HAY 10 x 10 MANERAS DISTINTAS DE QUE SALGA PRIMERO EL BUENO Y LUEGO EL DEFECTUOSO, Y OTRAS TANTAS DE QUE OCURRA DE MANERA INVERSA. POR LO TANTO:

$$N(A) = (10 \times 10) \times 2 = 200$$

 $N(S) = 20 \times 20 = 400$

P(A) = 200/400 = 1/2

- 3. SEAN LOS EVENTOS
 - B = {SALE PRIMERO EL BUENO Y LUEGO EL DEFECTUOSO} = {(b, d)}
 - $F = \{SALE PRIMERO EL DEFECTUOSO Y LUEGO EL BUENO\} = \{\{d, b\}\}$
 - D = {SALE PRIMERO EL BUENO}
 - E * {SALE SEGUNDO EL DEFECTUOSO}
 - O = {SALE PRIMERO EL DEFECTUOSO}
 - R = {SALE SEGUNDO EL BUENO}

POR LO TANTO, AL REALIZAR LAS DOS EXTRACCIONES CONSECUTIVAMENTE:

B = DAE Y F = OAR

SI A = {SALE UNO BUENO Y UNO MALO} = BUF

SE TIENE QUE P(A) = P(B)+P(F)

YA QUE B Y F SON MUTUAMENTE EXCLUSIVOS, Y

$$P(B) = P(DDE) = \frac{10}{20} \times \frac{10}{20} = \frac{100}{400} = \frac{1}{4}$$

$$P(F) = P(O \cap R) = \frac{10}{20} \times \frac{10}{20} = \frac{1}{4}$$

YA QUE D Y E, Y O Y R SON INDEPENDIENTES. ESTO CONDUCE A $P(A) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

RESOLVAMOS AHORA ESTE PROBLEMA SI NO HAY REEMPLAZO:

$$P(DnE) = P(E|D)P(D) = \frac{10}{19} \times \frac{10}{20} = \frac{10}{38}, \text{ YA QUE}$$

$$P(D) = 10/20, P(E|D) = 10/19 \text{ ANALOGAMENTE, } P(F) = \frac{10}{38}, ,$$

$$POR LO QUE P(A) = \frac{10}{38} + \frac{10}{38} = \frac{10}{19}.$$

INDEPENDENCIA DE UN GRUPO DE EVENTOS

EN GENERAL, LOS EVENTOS A1, A2,...,AM.

SON INDEPENDIENTES SI, Y SOLO SI,

$$P(A_{K_1} \cap A_{K_2} \cap \dots \cap A_{K_R}) = P(A_{K_1}) \times P(A_{K_2}) \times \dots \times P(A_{K_R})$$

PARA CUALQUIER GRUPO DE ENTEROS k_1 , k_2 ,..., k_R , CON $k_R \le m$ (TODAS LAS PAREJAS, TERCIAS, ETC, DE EVENTOS POSIBLES DE FORMARSE DEBEN SER INDEPENDIENTES).

DICHO DE OTRA MANERA, LOS EVENTOS A_1 , A_2 ,..., A_M SON INDEPENDIENTES SI LOS ELEMENTOS DE TODOS LOS SUBCONJUNTOS POSIBLES DE $R=\{A_1,A_2,\ldots,A_M\}$

SI M=3, A_1 , A_2 y A_3 SON INDEPENDIENTES SI, Y SOLO SI,

$$P(A_1 A_2) = P(A_1) P(A_2)$$

$$P(A_1 A_3) = P(A_1) P(A_3)$$

$$P(A_2 A_3) = P(A_2) P(A_3)$$

$$P(A_1 A_2 A_3) = P(A_1) P(A_2) P(A_3)$$

TODAS LAS COMBINACIONES QUE PUEDAN FORMARSE CON DOS EVENTOS:

$$\{A_1, A_2\}, \{A_1, A_3\}, \{A_2, A_3\}$$

SI M=4, PARA QUE \mathbf{A}_1 , \mathbf{A}_2 , \mathbf{A}_3 Y \mathbf{A}_4 SEAN INDEPENDIENTES SE REQUIERE QUE SE CUMPLA QUE

$$P(A_1 \cap A_2 \cap A_3 \cap A_4) = P(A_1) P(A_2) P(A_3) P(A_4)$$

$$P(A_1 \cap A_2 \cap A_3) = P(A_1) P(A_2) P(A_3)$$

$$P(A_1 \cap A_2 \cap A_4) = P(A_1) P(A_2) P(A_4)$$

$$P(A_2 A_3 A_4) = P(A_2) P(A_3) P(A_4)$$

$$P(A_1 \cap A_3 \cap A_4) = P(A_1)P(A_3)P(A_4)$$

$$P(A_1 A_2) = P(A_1)P(A_2)$$

$$P(A_1 \cap A_3) = P(A_1) P(A_3)$$

$$P(A_1/A_4) = P(A_1)P(A_4)$$

$$P(A_2/A_3) = P(A_2)P(A_3)$$

$$P(A_3 A A_4) = P(A_3) P(A_4)$$

TODAS LAS COMBINACIONES DE TRES EVENTOS QUE PUEDAN FOR-MARSE = $4^{C_3} = \frac{4!}{3! \cdot 1!} = 4$

TODAS LAS COMBINACIONES DE DOS EVENTOS QUE PUEDAN FOR-MARSE = $4^{C}2 = \frac{4!}{2! \cdot 2!} = 6$

LA URNA A CONTIENE 10 ARTICULOS, DE LOS CUALES 3 SON DEFECTUOSOS; LA URNA B CONTIENE 6 ARTICULOS DE LOS CUALES 2 SON DEFECTUOSOS. SI SE SACA AL AZAR UNO DE CADA URNA:

> a. ¿CUAL ES LA PROBABILIDAD DE QUE UNO SEA DEFECTUO-SO Y EL OTRO NO (EVENTO R)? SEN LOS EVENTOS

EN TAL CASO

$$P(C) = \frac{3}{10} \times \frac{4}{6} \times \frac{1}{5}$$

$$P(D) = \frac{2}{6} \times \frac{7}{10} = \frac{7}{30}$$

$$P(R) = P(C) + P(D) = \frac{1}{5} + \frac{7}{30} = \frac{13}{30}$$

b. ¿CUAL ES LA PROBABILIDAD DE LOS DOS SEAN DEFECTUO-SOS (EVENTO T)?

T = { (DEFECTUOSO DE A, DEFECTUOSO DE B) }

$$P(T) = \frac{3}{10} \times \frac{2}{6} = \frac{1}{10}$$

C. ¿ CUAL ES LA PROBABILIDAD DE QUE LOS DOS SEAN BUE NOS (EVENTO V)?

$$P(V) = \frac{7}{10} \times \frac{4}{6} = \frac{7}{15}$$

OBSERVESE QUE P(R) + P(T) + P(V) =
$$\frac{13}{30}$$
 + $\frac{1}{10}$ + $\frac{7}{15}$ = 1

EN UN ESTUDIO SOCIOLOGICO SE INTERROGARON 1200 PERSONAS DE UNA COLONIA RESIDENCIAL, Y SE OBTUVIERON LOS SIGUIENTES DATOS:

GUSTO POR LA MUSICA CLASICA	TITULO UNIVER- SITARIO		SIN TITULO UNI VERSITARIO		_
· · · · · · · · · · · · · · · · · · ·	VARONE	S DAMAS	VARONES	DAMAS	Σ
ALTO,	100	50	200	250	600
BAJO	150	100	150	200	600
Σ	250	150	350	450	1200

SI
$$A = \{VARON\}$$
, $B = \{CON TITULO\}$
 $C = \{GUSTO ALTO\}$

¿CUAL ES LA PROBABILIDAD DE QUE SI SE SELECCIONA UN CIUDADANO AL AZAR DE LA MISMA COLONIA, ESTE SEA VARON, TENGA TITULO Y GUSTO ALTO POR LA MUSICA?

POR EL METODO FRECUENCIAL:

NUMERO DE VARONES = 250 + 350 = 600

NUMERO DE PERSONAS CON TITULO = 250 + 150 = 400

NUMERO DE PERSONAS CON ALTO GUSTO POR LA MUSICA CLASICA = 600

POR LO TANTO

$$P(A) = 600/1200 = 1/2, P(B) = 400/1200 = \frac{1}{3}$$

Y - P(C) = 600/1200 = 1/2. PUESTO QUE

D = ANBAC Y A, B Y C SON INDEPENDIENTES, SE TIENE QUE

$$P(D) = \frac{1}{2} \times \frac{1}{3} \times \frac{1}{2} = \frac{1}{12}$$

DE OTRA MANERA: P(D) = 100/1200 = 1/12

LEY GENERAL DE MULTIPLICACION!

DE LA ECUACION (1):

P(AAB) = P(AB)P(B)

ESTA ECUACION SE PUEDE GENERALIZAR A MAS DE DOS EVENTOS ASI:

$$P(E_1 \cap E_2 \cap ... \cap E_k) = P(E_1) P(E_2 \mid E_1) ... P(E_k \mid E_1, E_2, ..., E_{k-1})$$
POR EJEMPLO, SI K=4

$$P(E_1 \cap E_2 \cap E_3 \cap E_4) = P(E_1)P(E_2 | E_1)P(E_3 | E_1, E_2) \times P(E_4 | E_1, E_2, E_3)$$

EJEMPLO

¿CUAL ES LA PROBABILIDAD DE QUE AL EXTRAER SIN REEMPLAZO CUATRO CARTAS AL AZAR DE UN PAQUETE DE 52, LAS DOS PRIMERAS SEAN DIA-MANTES Y LAS DOS ULTIMAS SEAN CORAZONES (EVENTO E)?

SEAN A = {LA 1a. ES DIAMANTE}, B = {LA 2a. ES DIAMANTE}, $C = \{LA 3a. ES CORAZON\}, D = \{LA 4a. ES CORAZON\}.$

EN TAL CASO

E = AMBACAD =
$$\{(d,d,c,c)\}$$

P(A) = 13/52, P(B|A)=12/51, P(C|A,B)=13/50
P(D|A,B,C)=12/49

APLICANDO LA ECUACION 3 SE OBTIENE

$$P(E) = \frac{13}{52} \frac{12}{51} \frac{13}{50} \frac{12}{49} = \frac{78}{20825}$$

SI LOS EVENTOS E, QUE APARECEN EN LA ECUACION (3) SON INDEPEN-DIENTES, ENTONCES

$$P(E_1 \cap E_2 \cap ... \cap E_k) = P(E_1) \times P(E_2) \times ... \times P(E_k)$$

QUE ES LA LEY GENERAL DE MULTIPLICACION .

SE TIENEN EN UNA URNA TRES BOLAS BLANCAS Y TRES NEGRAS. ¿CUAL ES LA PROBABILIDAD DE QUE APAREZCAN LAS TRES BLANCAS AL PRIN-CIPIO SI SE EXTRAEN SIN REEMPLAZO SUCESIVAMENTE LAS SEIS?

6!

CON PERMUTACIONES:

$$N(A) = 3! \times 3!$$

$$N(S) = 6!$$

$$P(A) = 3! \ 3! \ / \ 6! = 1/20$$

CON PERMUTACIONES POR GRUPOS:

$$N(A) = 1$$

 $N(S) = {}_{6}P_{3,3} = \frac{6!}{3!3!} = 20$

$$P(A) = 1/20$$

Э.

PROBABILIDADES:

CON PROBABILIDADES CONDICIONALES:

$$P(A) = \frac{1}{2} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{20}$$

AHORA, ¿CUAL ES LA PROBABILIDAD DE QUE LAS TRES BLANCAS APAREZCAN CONSECUTIVAMENTE?

CON PERMUTACIONES (P(A) =
$$\frac{3!4!}{6!}$$
 = $\frac{1}{5}$

CON PERMUTACIONES POR GRUPOS:

$$N(A) = {}_{4}P_{1,3} = \frac{4!}{1!3!} = 4, N(S) = {}_{6}P_{3,3} = \frac{6!}{3!3!} = 20$$

$$P(A) = 4/20 = 1/5$$

CON PROBABILIDADES CONDICIO-NALES:

$$P(A) = (\frac{1}{2}x\frac{2}{5}x\frac{1}{4})_4P_{1,3} = \frac{4}{20} = \frac{1}{5}$$

DE UN LOTE DE 100 EJES DE RELOJERIA SE EXTRAEN CUATRO AL AZAR SIN REEMPLAZO, ¿CUAL ES LA PROBABILIDAD DE QUE APAREZCAN DOS DEFECTUOSOS?

TUOSOS (EVENTO A) SI EN EL LOTE HAY 20 POR CIENTO DE DEFECTUOSOS?

CON PROBABILIDAD CONDICIONAL:

$$P(A) = \frac{20}{100} \quad \frac{19}{99} \quad \frac{80}{98} \quad \frac{79}{97} \quad 6 = 0.15$$

CON PERMUTACIONES PARCIALES Y EN GRUPOS:

$$P(A) = \frac{\frac{20!}{18!} \frac{80!}{78!} \frac{4!}{2!2!}}{\frac{100!}{96!}}$$

$$= \frac{(20x19)(80x79)(6)}{100x99x98x97} = 0.15$$

LEY GENERAL DE LA ADICION

SI TODOS LOS EVENTOS E $_1$ SON MUTUAMENTE EXCLUSIVOS ENTRE SI, EL AXIOMA 3 TAMBIEN SE GENERALIZA A:

$$P(E_1UE_2U...UE_k) = P(E_1)+P(E_2)+...+P(E_k)$$

$$P(\{150\}|A_2|, = \frac{P(\{150\})P(A_2|\{150\})}{0.2 \times 0.6076 + 0.5 \times 0.3797 + 0.25 \times 0.0127}$$

$$= \frac{0.12152}{0.12152 + 0.18975 + 0.00318} = \frac{0.12152}{0.31445} = 0.386$$

$$P((200)|A_2) = \frac{P((200))P(A_2|(200))}{0.31445} = \frac{0.18975}{0.31445} = 0.604$$

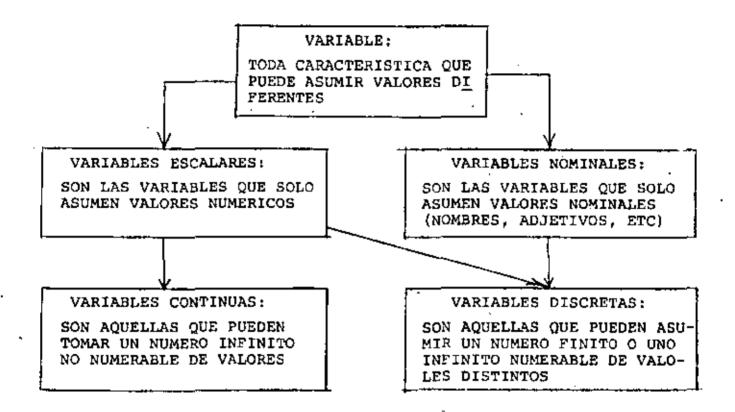
$$P((250)|A_2) = \frac{P((250))P(A_2|(250))}{0.31445} = \frac{0.00318}{0.31445} = 0.010$$

QUE SON IGUALES A LAS ANTERIORES.

CON LO ANTERIOR SE DEMUESTRA QUE LAS PROBABILIDADES SE PUEDEN ACTUA-LIZAR CONFORME SE VA OBTENIENDO NUEVA INFORMACION EXPERIMENTAL.

VARTABLES ALEATORIAS

CLASIFICACION DE VARIABLES



CON CERTEZA EL VALOR QUE ASUMIRA AL REALIZAR UN EXPERIMENTO.

POR EJEMPLO, LA RESISTENCIA O CARGA DE FALLA DE UNAS VIGAS ES UNA

VARIABLE ALEATORIA, YA QUE ANTES DE ROMPER UNA VIGA TOMADA AL AZAR

NO SE PUEDE PRECISAR CUAL SERA SU RESISTENCIA. EN LA SIGUIENTE

TABLA SE PRESENTAN LOS RESULTADOS EXPERIMENTALES CON 15 VIGAS DE

CONCRETO REFORZADO, OBSERVANDOSE QUE ESTOS VARIAN DE UNAS A OTRAS

DE MANERA ALEATORIA.

UNA VARIABLE ALEATORIA ES UNA VARIABLE TAL QUE NO PUEDE PREDECIRSE

TABLA 2. PRUEBAS DE VIGAS DE CONCRETO REFORZADO

Número de la viga	Carga de agrieta- miento, en kg, X	Carga de falla, en kg, Y
1	4700	4 700
2	3 840	4 220
3	3 270	4 360
4	2 310	4 680
5	2 950	4 270
6	4810	4810
7	2 720	4 590
8	2 720	4 490
9	4310	4 3 1 0
10	2 950	4 630
11	4 2 2 0	4 220
12	2 720	4 340
13	2 720	4 340
14	2 630	4 770
15	2 950	4 630

A TODO EXPERIMENTO SE LE PUEDE ASOCIAR AL MENOS UNA VARIABLE ALEATORIA, DEPENDIENDO ESTA DEL PROBLEMA QUE SE TENGA PLANTEADO. POR
EJEMPLO, EN EL CASO DE LA RESISTENCIA DE LAS VIGAS DE VARIABLE
ALEATORIA PUEDE SER DIRECTAMENTE : DICHA RESISTENCIA, EN CUYO
CASO SU ESPACIO DE EVENTOS SERIA

$$S_1 = \{X: 0 < X < \infty\}$$

LA VARIABLE TAMBIEN PUDO HABER SIDO UNA CUYO ESPACIO DE EVENTOS .

$$S_2 = \{EXITO, FRACASO\}$$

EN DONDE EL EXITO CCURRIRIA SI LA VIGA RESISTIERA MAS DE CIERTA CANTIDAD, POR EJEMPLO 4600 KG, Y EL FRACASO OCURRIRIA SI RESISTIERA MENOS, ES DECIR:

EXITO: SI X≥4600 KG

FRACASO: SI X<4600 KG

LEYES DE PROBABILIDADES

EL COMPORTAMIENTO DE UNA VARIABLE ALEATORIA SE DESCRIBE MEDIANTE SU LEV DE PROBABILIDADES, LA CUAL PUEDE ESPECIFICARSE DE DIFERENTES FORMAS. LA MANERA MAS COMUN DE HACERLO ES MEDIANTE SU DISTRIBUCION O DENSIDAD DE PROBABILIDADES.

A FIN DE EVITAR CONFUSION, SE EMPLEARA UNA LETRA MAYUSCULA PARA DENOTAR UNA VARIABLE ALEATORIA, Y LA MINUSCULA CORRESPONDIENTE PARA LOS VALORES QUE PUEDE ASUMIR. SI LA VARIABLE ALEATORIA X ES DISCRETA Y PUEDE ASUMIR LOS VALORES \times_1 , SU DENSIDAD DE PROBABILIDADES, $f_{\chi}(x)$ SERA EL CONJUNTO DE LAS PROBABILIDADES

$$P_{X}(x_{1}) = P(X = x_{1})$$

LA CUAL SE LEE "PROBABILIDAD DE QUE X = x,". ESTO ES

$$f_{X}(x) = \{p_{X}(x_{i})\}$$

PARA QUE UNA DENSIDAD DE PROBABILIDADES SATISFAGA LOS TRES AXIOMAS
DE LA TEORIA DE PROBABILIDADES, SE DEBEN CUMPLIR LOS SIGUIENTES
REQUISITOS

- A) $0 \le P_X(x_i) \le 1$ PARA TODA x_i
- B) $\sum_{i=1}^{n} P_{X}(x_{i}) = 1$, DONDE n ES EL NUMERO TOTAL DE VALORES QUE

PUEDE ASUMIR X

C)
$$P(x_{m} \leq X \leq x_{T}) = \sum_{i=m}^{i=T} P_{X}(x_{i})$$
; $m \leq r$, DONDE LAS x_{i} ESTAN

ORDENADAS EN FORMA CRECIENTE, ES DECIR,

$$x_1 < x_2 < x_3 < \dots < x_n$$

- DISTRIBUCION DE PROBABILIDADES ACUMULADAS O FUNCION DE DISTRIBUCION

OTRA FORMA DE ESPECIFICAR LA LEY DE PROBABILIDADES DE UNA VARIA-BLE ALEATORIA ES MEDIANTE LA DISTRIBUCION DE PROBABILIDADES ACU-MULADAS, $F_X(x)$, QUE SE DEFINE COMO EL CONJUNTO DE LAS SUMAS PAR-CIALES DE LAS PROBABILIDADES, $P_X(x_1)$, CORRESPONDIENTES A TODOS LOS VALORES DE X MENORES O IGUALES QUE x_1 . POR LO TANTO, ESTA FUNCION DA LAS PROBABILIDADES DE QUE LA VARIABLE ALEATORIA TOME VALORES MENORES O IGUALES QUE x_m PARA CUALQUIER m, ES DECIR

$$F_X(x) = \{F_X(x_m)\}$$
 ; $m = 1, 2, ..., n$

EN DONDE

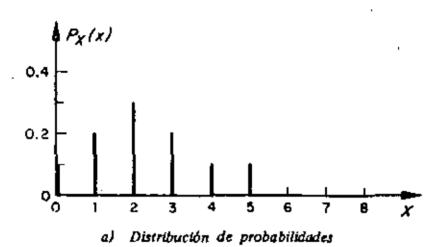
$$F_{X}(x_{m}) = \sum_{i=1}^{i=m} P_{X}(x_{i}) = P(X \le x_{m})$$

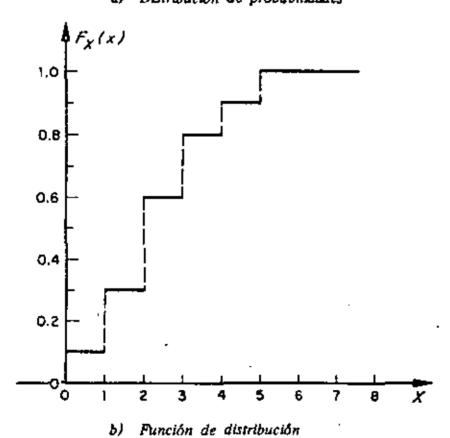
SEA X LA VARIABLE ALEATORIA DISCRETA "NUMERO TOTAL DE CARROS QUE SE
DETIENEN EN UNA ESQUINA DEBIDO A LA LUZ ROJA DE UN SEMAFORO". SI
LAS PROBABILIDADES ASOCIADAS A CADA VALOR, DETERMINADAS POR EL
METODO FRECUENCIAL, SON

$$P_{X}(x) = \begin{cases} 0.1 & \text{SI } x = 0 \\ 0.2 & \text{SI } x = 1 \\ 0.3 & \text{SI } x = 2 \\ 0.2 & \text{SI } x = 3 \\ 0.1 & \text{SI } x = 4 \\ 0.1 & \text{SI } x = 5 \\ 0 & \text{SI } x \ge 6 \end{cases}$$

LA DISTRIBUCION DE PROBABILIDADES Y LA DE PROBABILIDADES ACUMULADAS CORRESPONDIENTES SERAN

LAS GRAFICAS DE ESTAS DISTRIBUCIONES SE PRESENTAN EN LA FIGURA DE LA SIGUIENTE HOJA.





Ley de probabilidades del ejemplo del tráfico

SEA LA VARIABLE ALEATORIA X DEFINIDA POR LA SUMA DE LOS DOS NUMEROS QUE QUEDEN HACIA ARRIBA AL LANZAR DOS DADOS. EN ESTE CASO EL ES-PACIO DE EVENTOS ES

$$S = \{2,3,4,5,6,7,8,9,10,11,12\}$$

Y LA DENSIDAD-DE PROBABILIDADES ES

$$f_{X}(x) = \{\frac{1}{36}, \frac{2}{36}, \frac{3}{36}, \frac{4}{36}, \frac{5}{36}, \frac{6}{36}, \frac{5}{36}, \frac{4}{36}, \frac{3}{36}, \frac{2}{36}, \frac{1}{36}\}$$

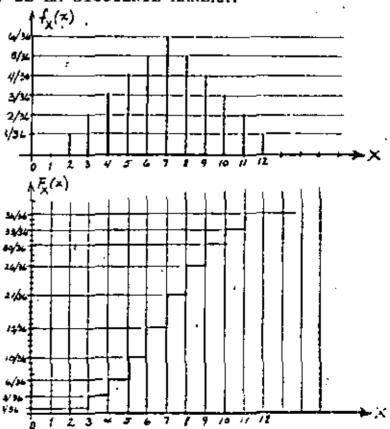
EN ESTE CASO
$$X_1=2$$
, $X_2=3$,..., $X_{11}=12$

$$Y = f_X(2) = \frac{1}{36}, f_X(3) = \frac{2}{36}, \dots, f_X(12) = \frac{1}{36}$$

ESTAS PROBABILIDADES FUERON CALCULADAS EN UN EJEMPLO PREVIO SOBRE PROBABILIDADES DE EVENTOS .

CON ESTAS PROBABILIDADES SE PUEDE OBTENER LA FUNCIÓN DE DISTRIBUCION O DE PROBABILIDADES ACUMULADAS, DE LA SIGUIENTE MANERA:

<u>x</u>	f _x (x)	$F_{\mathbf{x}}(\mathbf{x})$
<2	0.	0
2	1/36	1/36
3	2/36	3/36
4	3/36	6/36
5	4/36	10/36
<u>,</u> 6	5/36	15/36
7	6/36	21/36
8	5/36	26/36
9	4/36	30/36
10	3/36	33/36
11	2/36	35/36
12	1/36	36/36=1
>12	0	1
. !	Σ=1	•



EN EL CASO DE UNA VARIABLE ALEATORIA CONTINUA, X, LA PROBABILIDAD DE QUE ESTA TOME UN VALOR COMPRENDIDO ENTRE $x \ Y \ x + dx$ ESTA DADA POR $f_X(x) dx$, DONDE $f_X(x)$ ES LA DENSIDAD DE PROBABILIDADES DE X. POR LO TANTO, LA PROBABILIDAD DE QUE X ASUMA VALORES COMPRENDIDOS EN EL INTERVALO $x_1 \le x \le x_2$ ES

$$P(x_1 \le X \le X_2) = \int_{x_1}^{x_2} f_X(x) dx$$

LA INTERPRETACION GRAFICA DE ESTA PROBABILIDAD ES QUE CORRESPONDE AL AREA BAJO LA CURVA DE $f_X(x)$ COMPRENDIDA ENTRE x_1 Y x_2 .

PUESTO QUE $F_X(x) = P(X \le x) = P(-\infty \le X \le x)$, Y EN VIRTUD DE LA ECUACION ANTERIOR SE TIENE QUE LA FUNCION DE DISTRIBUCION ES:

$$\mathbf{F}_{\mathbf{X}}(\mathbf{x}) = f_{-\infty} \mathbf{f}_{\mathbf{X}}(\mathbf{U}) d\mathbf{U}$$

DONDE U ES SOLO UNA VARIABLE MUDA DE INTEGRACION. EL VALOR DE ESTA INTEGRAL ES IGUAL AL AREA BAJO LA CURVA DE $F_X(x)$ A LA IZQUIERDA DE x. DE ESTA ECUACION SE CONCLUYE QUE

$$\frac{d\mathbf{F}_{\mathbf{X}}(\mathbf{x})}{d\mathbf{x}} = \frac{d}{d\mathbf{x}} \left(\int_{-\infty}^{\mathbf{x}} \mathbf{f}_{\mathbf{X}}(\mathbf{U}) d\mathbf{U} \right) = \mathbf{f}_{\mathbf{X}}(\mathbf{x})$$

ALGUNAS PROPIEDADES DE $F_{\chi}(x)$ SON:

$$0 \le F_{X}(x) \le 1$$

$$F_{X}(-\infty) = 0$$

$$F_{X}(\infty) = 1$$

$$F_{X}(x + \epsilon) \ge F_{X}(x), \text{ SI } \epsilon \ge 0$$

$$F_{X}(x_{2}) - F_{X}(x_{1}) = P(x_{1} \le x \le x_{2})$$

PARA SATISFACER LOS AXIOMAS DE LA TEORIA DE PROBABILIDADES SE NECESITA QUE

$$f_X(x) \ge 0$$
 para toda x

$$f_{-\infty}^{\infty} \mathbf{f}_{\mathbf{X}}(\mathbf{x}) \ \mathbf{d}\mathbf{x} = 1$$

 $f_{Y}(y) = -\frac{1}{12}y + \frac{1}{3}$

SEA UNA VARIABLE ALEATORIA CONTINUA CUYA DENSIDAD DE PROBABILIDA-DES ES DE FORMA TRIANGULAR DADA POR LAS SIGUIENTES ECUACIONES:

$$f_{Y}(y) = \frac{1}{6} y + \frac{1}{3}, \text{ SI } -2 \le Y \le 0$$

$$f_{Y}(y) = -\frac{1}{12} y + \frac{1}{3}, \text{ SI } 0 \le Y \le 4$$

$$f_{Y}(y) = 0 \qquad \text{SI } Y \le 2 \text{ O } Y \ge 4$$

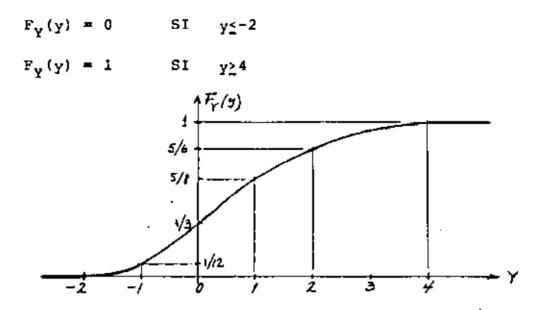
$$f_{Y}(y)$$

$$f_{Y}(y)$$

$$f_{Y}(y) = \frac{1}{6} y + \frac{1}{3}$$

LA DISTRIBUCION DE PROBABILIDADES ACUMULADAS ES, ENTONCES:

$$\begin{aligned} \mathbf{F}_{\mathbf{Y}}(\mathbf{y}) &= \int_{-\infty}^{\mathbf{Y}} f_{\mathbf{Y}}(\mathbf{U}) d\mathbf{U} = \int_{2}^{\mathbf{Y}} \left(\frac{1}{6} \mathbf{U} + \frac{1}{3}\right) d\mathbf{U} \\ &= \left[\frac{\mathbf{U}^{2}}{12} + \frac{\mathbf{U}}{3}\right]_{-2}^{\mathbf{Y}} = \frac{\mathbf{y}^{2}}{12} + \frac{\mathbf{y}}{3} + \frac{1}{3} \\ \mathbf{SI} \quad 0 \leq \mathbf{Y} \leq 4 & \mathbf{F}_{\mathbf{Y}}(\mathbf{0}) = \frac{1}{3} \mathbf{Y} \\ \mathbf{F}_{\mathbf{Y}}(\mathbf{y}) &= \mathbf{F}_{\mathbf{Y}}(\mathbf{0}) + \int_{0}^{\mathbf{Y}} \left(-\frac{1}{12} \mathbf{U} + \frac{1}{3}\right) d\mathbf{U} = \frac{1}{3} + \left[-\frac{\mathbf{U}^{2}}{24} + \frac{\mathbf{U}}{3}\right]_{0}^{\mathbf{Y}} = \\ &= \frac{1}{3} - \frac{\mathbf{y}^{2}}{24} + \frac{\mathbf{Y}}{3} & \mathbf{SI} \quad 0 \leq \mathbf{y} \leq 4 \end{aligned}$$



SI SE DESEA CALCULAR LA PROBABILIDAD DE QUE AL REALIZAR UNA VEZ EL EXPERIMENTO QUE INVOLUCRA A DICHA VARIABLE, EL VALOR QUE SE OBSERVE CAIGA EN EL INTERVALO $1 \le Y \le 2$, ENTONCES

$$P[1 \le Y \le 2] = \int_{1}^{2} (-\frac{1}{12} y + \frac{1}{3}) dy = [-\frac{y^{2}}{24} + \frac{y}{3}]_{1}^{2} = \frac{5}{24}$$

..0

$$P[1 \le Y \le 2] = F_Y(2) - F_Y(1) = \frac{5}{6} + \frac{5}{8} = \frac{5}{24}$$

UN INGENIERO ESTA INTERESADO EN DISEÑAR UNA TORRE QUE RESISTA LAS CARGAS DEBIDAS AL VIENTO. DE UNA SERIE DE OBSERVACIONES DE LA MAXIMA VELOCIDAD ANUAL DEL VIENTO CERCA DEL SITIO DE INTERES, SE ENCUENTRA QUE EL HISTOGRAMA PUEDE AJUSTARSE RAZONABLEMENTE, DESDE UN PUNTO DE VISTA ESTADISTICO, MEDIANTE UNA DISTRIBUCION DE PROBABILIDADES EXPONENCIAL DE LA FORMA

$$f_{Y}(x) = Ke^{-\lambda x} \; ; \; x > 0$$

DONDE X ES LA MAXIMA VELOCIDAD DEL VIENTO, λ ES UNA CONSTANTE Y K ES OTRA CONSTANTE TAL QUE OBLIGA A QUE EL AREA BAJO LA CURVA DE $f_\chi(X)$ SEA IGUAL A UNO. POR TANTO,

$$\int_0^{\infty} K e^{-\lambda x} dx = \frac{-K}{\lambda} \left[e^{-\lambda x} \right]_0^{\infty} = \frac{K}{\lambda} = 1.$$

DE DONDE

POR TANTO

$$f_{\chi}(x) = \lambda e^{-\lambda x} \; ; \; x > 0$$

LA <u>FUNCION DE DISTRIBUCION</u> SERA

$$F_X(x) = \int_0^x f_X(u) \, du = \int_0^x \lambda e^{-\lambda u} \, du = \left[-e^{-\lambda u} \right]_0^x = 1 - e^{-\lambda x} \; ; \; x > 0$$

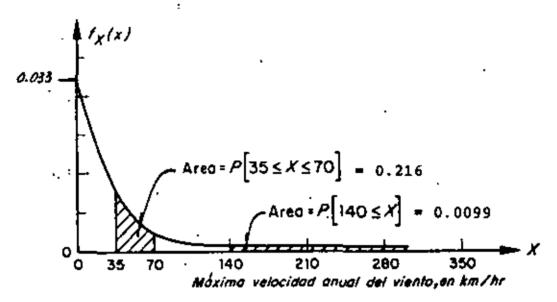
EL VALOR DE λ SE PUEDE TOMAR, POR EJEMPLO, DE MANERA QUE $F_X(x)$ SE AJUSTE PARA QUE COINCIDA CON UN VALOR EMPIRICO. ASI, SI LA FRECUENCIA RELATIVA DEL EVENTO A = $\{X \le 70 \text{ km/H}\}$ ES 0.9, ENTONCES

$$P(0 \le X \le 70) = F_{X}(70) = 0.9$$

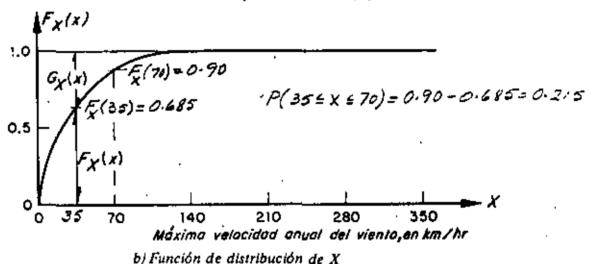
DE DONDE

$$0.9 = 1 - e^{-70\lambda}$$

POR LO CUAL $\lambda = 0.033$.



a) Densidad de probabilidades de X



Ley de probabilidades correspondiente al ejemplo de la máxima velocidad anual del viento

SI SE DESEA CALCULAR, POR EJEMPLO, LA PROBABILIDAD DE QUE LA VELO-CIDAD MAXIMA DEL VIENTO EN UN AÑO DADO ESTE ENTRE 35 Y 70 KM/H, SE TENDRA;

$$P(354x470) = \int_{35}^{70} 0.033e^{-0.033x} dx = \left[-e^{-0.033x}\right]_{35}^{70} =$$

$$= -e^{-0.033x70} - (-e^{-0.033x35}) = -e^{-2.31} + e^{-1.155} =$$

EN TERMINOS DE $F_X(x)$ ESTA PROBABILIDAD QUEDA DADA POR $P(354x470) = F_X(70) - F_X(35) = 0.90 - (1 - e^{-1.155}) = 0.90 - 0.685$ = 0.215

=-0.099 + 0.315 = 0.216

66

FUNCION DE DISTRIBUCION COMPLEMENTARIA

EL COMPLEMENTO, G_X(x), DE LA DISTRIBUCION DE PROBABILIDADES

ACUMULADAS SU UTILIZA CUANDO LAS DECISIONES SE TOMAN CON BASE

EN PROBABILIDADES DE QUE <u>SE EXCEDA</u> UN VALOR DADO DE LA VARIABLE.

LA FUNCION DE DISTRIBUCION COMPLEMENTARIA SE DEFINE COMO

$$G_X(x) = P(x > x) = 1 - P_X(x)$$

EJEMPLO

PARA EL PROBLEMA ANTERIOR DE LA VELOCIDAD MAXIMA ANUAL DEL VIENTO, CALCULEMOS LA PROBABILIDAD DE QUE ESTA SEA MAYOR DE 140 KM/H:

$$G_{X}(140) = P(X>140) = \int_{140}^{\infty} 0.33e^{-0.033x} dx^{\frac{1}{2}} = 0.0099$$

O, ALTERNATIVAMENTE

$$P(X \ge 140) = 1 - F_X(140) = G_X(140) = 1 - (1 - e^{-0.033 \times 140}) = e^{-4.62} = 0.0099$$

ESPERANZAS

LA ESPERANZA DE UNA FUNCION g(X), DE UNA VARIABLE ALEATORIA DISCRETA, X, ES, POR DEFINICION

$$E(g(X)) = \sum_{i=1}^{i=n} g(x_i) P_{X}(x_i)$$

O PARA UNA VARIABLE CONTINUA

$$E(g(X)) = \int_{-\infty}^{\infty} g(X) f_{X}(X) dX$$

EJEMPLOS

1. SI g(X) = CONSTANTE = c

$$E(c) = c \int_{-\infty}^{\infty} f_{\chi}(x) dx = c$$

2. SI g(X) = x

$$E[x] = \bigcup_{-\infty}^{\infty} x f_{X}(x) dx$$

3. SI g(x) = a + bx

$$E[a+bx] = a \int_{-\infty}^{\infty} dx(x)dx + b \int_{-\infty}^{\infty} xdx(x)dx = a+bE[X]$$

4. SI $g(x) = g_1(x) + g_2(x)$

$$E[g_{1}(X) + g_{2}(X)] = \int_{-\pi}^{\pi} g_{1}(x) \delta_{X}(x) dx + \int_{-\pi}^{\pi} g_{2}(x) \delta_{X}(x) dx$$
$$= E[g_{1}(X)] + E[g_{2}(X)]$$

5. SI $g(x) = \frac{x - c}{d} = \frac{1}{d} x - \frac{c}{d}$

$$E\left(\frac{x-c}{d}\right) = \frac{1}{d} E(x) - \frac{c}{d} = \frac{E(x) + c}{d}$$

6. SI $g(X) = ax^2$

$$E(ax^2) = a \int_{-\infty}^{\infty} x^2 f_x(x) dx = a E(x^2)$$

SI X ES UNA VARIABLE ALEATORIA CON DENSIDAD DE PROBABILIDADES EXPONENCIAL, CALCULAR LA ESPERANZA DE LA FUNCION

$$g(x) = x^2$$

EN ESTE CASO SE TIENE QUE

$$f_X(x) = \lambda e^{-\lambda x}$$
, si $0 \le x \le \infty$, $Y = f_X(x) = 0$, si $x < 0$

POR LO QUE

$$E(x^{2}) = E[g(x)] = \int_{-\infty}^{\infty} g(x) f_{X}(x) dx = \lambda \int_{-\infty}^{\infty} x^{2} e^{-\lambda x} dx$$

$$=\lambda \left[\frac{-x^2e^{-\lambda x}}{\lambda}\right]_0^\infty + \frac{2\lambda}{\lambda} \int_0^\infty xe^{-\lambda x}dx = \frac{-2}{\lambda^2} \left[e^{-\lambda x}(1+\lambda x)\right]_0^\infty = \frac{2}{\lambda^2}$$

EN CENERAL, A LA ESPERANZA DE X² SE LE DENOMINA <u>VALOR MEDIO CUADRATICO</u>.

Ejemplo. Construcción de la carpeta de una carretera.

Un contratista construirá la carpeta de una carretera en tramos de 50 m; el gobierno aceptará o rechazará cada tramo de acuerdo con una prueba de control de calidad. El contratista tiene la opción de pedir el concreto a una de dos plantas premezcladoras: la planta A cobra 140 pesos/m³ y la 8 160 pesos/m³, pero, el control de calidad que se lleva en la planta 8 es mejor, lo cual hace más probable que un tramo dado pase favorablemente la prueba de aceptación. Tomando en cuenta que en cada tramo se usan 100 m³ de concreto y que la probabilidad de que el proveniente de la planta A no pase la prueba de control es 0.10, y la de B es 0.05, el constructor deberá decidirse por cuál planta usar. El árbol de decisiones de este problema es el mostrado en la fig 6.4, donde $P(\theta_1)$ y $P(\theta_2)$ son las probabilidades de que ocurran θ_1 y θ_2 , respectivamente. La utilidad $u_1 = a(a_1, a_1)$ es la que corresponde a utilizar la planta A y que la carpeta pase la prueba de control de calidad; en este caso la utilidad (negativa) es el costo del concreto (\$14,000.00) más la colocación (supongamos \$100,000.00), por lo cual U_{\bullet} = -114,000.00. $U_2 = u(a_1, \theta_2)$ es la que corresponde a usar la 'planta A y que la carpeta no pase la prueba de calidad; este caso el constructor deberá demoler y reconstruir el tramo con los siguientes costos: .

	Pérdida de prestigio \$	5,000.00
Carpeta demolida	Mano de obra de demolición	15,000.00
Carpeta demolida	Concreto	14,000.00
	Mano de obra de colocación	100,000.00

De manera similar se obtienen u_3 y u_4 , cuyos valores resultan ser u_3 = - \$116,000.00 y u_4 = - \$252,000.00.

Si la decisión se tomara sin considerar las probabilidades de aceptar la carpeta, el constructor se decidiría por la planta A, ya que la pérdida (utilidad negativa) sería menor. Si sí se toman en cuenta y adoptamos como criterio de decisión el escoger la planta que conduzca a una esperanza de pérdida menor se tendrá (recuerde que la esperanza de la variable aleatoria X; E[X], es $E[X] = \begin{bmatrix} x \\ z \end{bmatrix} P[X] X_i$, donde las X, son los valores que pueda asumir X, y P[X] son las probabilidades correspondientes):

Para la planta A:

$$\varepsilon[u] = 0.90 \times (-114,000) + 0.10 \times (-248,000) = -$127,400.$$

Para la planta 8:

$$= E[u] = 0.95 \times (-116,000) + 0.05 \times (-252,000) = -$122,800.$$

Comparando ambas cifras se concluye que la decisión de comprar el concreto de la planta 8 conduce a una pérdida esperada menor que la de la planta A, es decir, se escoge la planta 8 aunque el precio unitario del concreto sea mayor.

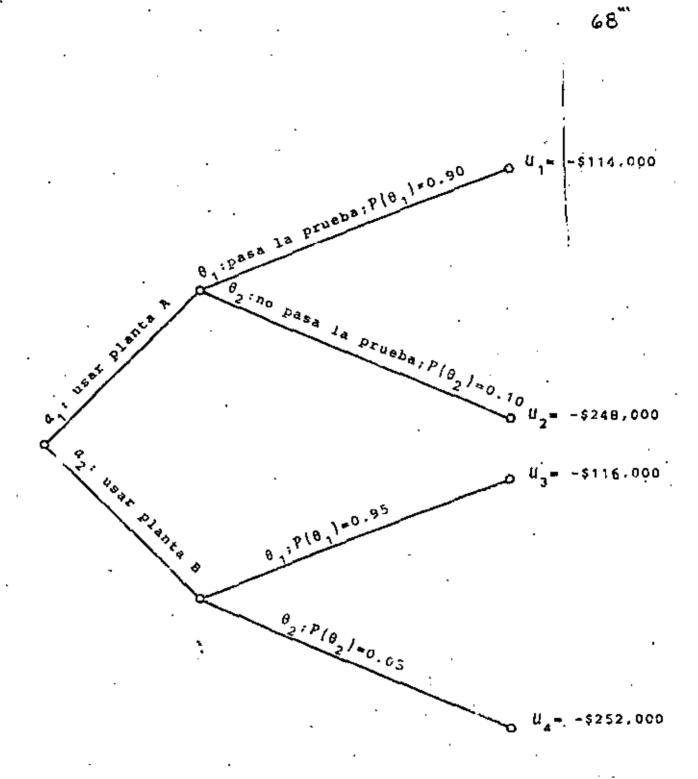


Fig 6.4 Arbot de decisiones del ejemplo 6.2

MEDIDAS DE TENDENCIA CENTRAL

LA MEDIA O ESPERANZA, E[X], DE UNA VARIABLE ALEATORIA, X, SE CALCULA
CON LAS ECUACIONES ANTERIORES PARA EL CASO EN QUE g(X)=X. DE ESTA
MANERA, SI LA VARIABLE ES DISCRETA, SU ESPERANZA QUEDA DADA POR

$$E(X) = \int_{1}^{1} \sum_{i=1}^{n} x_{i} P_{X} \{x_{i}\}$$

DONDE n ES EL TOTAL DE VALORES QUE X PUEDE ASUMIR.

PARA EL CASO DE UNA VARIABLE ALEATORIA CONTINUA, LA MEDIA ES

$$m_{\chi} = E(X) = \int_{-\infty}^{\infty} x \partial_{\chi}(x) dx$$

OTRAS MEDIDAS USUALES DE TENDENCIA CENTRAL DE UNA VARIABLE ALEATORIA SON LA MEDIANA Y EL MODO, LA PRIMERA SE DEFINE COMO EL VALOR
DE LA VARIABLE AL CUAL CORRESPONDE UNA PROBABILIDAD ACUMULADA DE
50%, Y LA SEGUNDA, COMO EL VALOR DE LA VARIABLE AL CUAL CORRESPONDE
LA MAYOR PROBABILIDAD.

EJEMPLO

SI LA DENSIDAD DE PROBABILIDADES DE LA VARIABLE ALEATORIA X CORRESPONDE A LOS ERRORES EN UNA NIVELACIÓN, ES LA DE LA SEGUNDA COLUMNA
DE LA SIGUIENTE TABLA, LA MEDIA DE DICHA VARIABLE RESULTA SER 4 167
LA MEDIANA 4000 Y EL MODO 4000 MICRAS. LOS CALCULOS CORRESPONDIENTES SE LOCALIZAN EN LA TERCERA COLUMNA.

x ¿, EN MICRAS	$P_{X}(x_{\hat{\mathcal{L}}})$	$x_{i}P_{X}(x_{i})$, EN MICRAS	FX(xi)
G	6/60	C	6/60
1 000	2/60	2 000/60	8/60
2 000	4/60	8 000/60	12/60
3 000	8/60	24 000/60	20/60
4 000	13/60	52 000/60	33/60:0.5
5 000 .	12/60	60 000/60	45/60
6 000	7/60	42 000/60	52/60
7 000	4/60	28 000/60	56/60
B 000	2/60	16 000/60	58/60
9 000	2/60	18 000/60	60/60
<u> </u>	TOTAL: E	$[x] = 250\ 000/60=4\ 167$	MICRAS

CALCULAR LA ESPERANZA DE UNA VARIABLE ALEATORIA CUYA DENSIDAD DE PROBABILIDADES ES TRIANGULAR DADA POR

$$f_{Y}(y) = \frac{1}{6} y + \frac{1}{3}$$
 SI $-2 \le y \le 0$

$$f_{Y}(y) = \frac{-1}{12} y + \frac{1}{3}$$
 SI $0 \le y \le 4$

$$f_{y}(y) = 0 SI \quad y \le -2 \quad 0 \quad y \ge 4$$

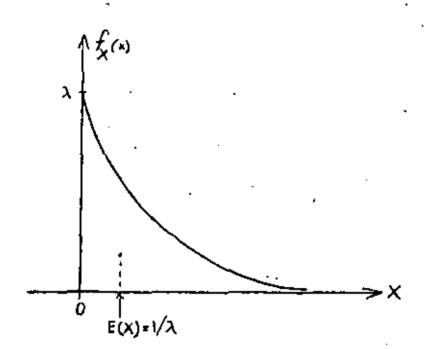
$$E(Y) = \int_{-\infty}^{\infty} y f_y(y) dy = \int_{-2}^{0} y (\frac{y}{6} + \frac{1}{3}) dy + \int_{0}^{4} y (\frac{-y}{12} + \frac{1}{3}) dy$$

$$= \left[\frac{y^3}{18} + \frac{y^2}{6} \right]_{-2}^{0} + \left[\frac{-y^3}{36} + \frac{y^2}{6} \right]_{0}^{4} = \frac{2}{3}$$

CALCULAR LA ESPERANZA DE UNA VARIABLE ALEATORIA CON DENSIDAD DE PROBABILIDADES EXPONENCIAL

$$f_{x}(x) = \lambda e^{-\lambda x}$$

$$E(X) = \int_{-\infty}^{\infty} x f_{X}(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \lambda \left[\frac{-e^{-\lambda x}}{\lambda^{2}} (1 + \lambda x) \right]_{0}^{\infty} = \frac{1}{\lambda}$$



MEDIDAS DE DISPERSION

UNA MEDIDA MUY COMEN DE LA DISPERSION O VARIABILIDAD DE LOS VALORES QUE PUEDE ASUMIR UNA VARIABLE ALEATORIA ES LA VARIANCIA, LA CUAL SE DENOTA COMO $\sigma^2(X)$ O VAR (X), LA CUAL SE DEFINE COMO LA ESPERANZA DE LA FUNCION $\dot{g}(X) = \left[X-E(X)\right]^2$. ASI, PARA UNA VARIABLE ALEATORIA DISCRETA

$$\sigma^{2}(X) = VAR(X) = \sum_{i=1}^{i=n} (x_{i} - E(X))^{2} P_{X}(x_{i})$$

Y PARA UNA CONTINUA

$$\sigma^2(X) = VAR(X) = \int_{-\infty}^{\infty} (x - E(X))^2 f_X'(x) dx$$

DESARROLLANDO EL INTEGRANDO DE ESTA ULTIMA ECUACION:

$$\sigma^{2}(x) = \int_{-\infty}^{\infty} (x^{2} - 2xE(x) + E^{2}(x))f_{X}(x)dx$$

$$= \int_{-\infty}^{\infty} x^{2}f_{X}(x)dx - 2E(x)\int_{-\infty}^{\infty} xf_{X}(x)dx + E^{2}(x)\int_{-\infty}^{\infty} f_{X}(x)dx = E[x^{2}] - E^{2}[x]$$

ES DECIR, LA VARIANCIA SE PUEDE CALCULAR COMO LA DIFERENCIA DEL VALOR MEDIO CUADRATICO Y EL CUADRADO DE LA MEDIA DE X.

OTRAS MEDIDAS DE DISPERSION DE LA VARIABLE ALEATORIA X. SON LA <u>DESVIACION ESTANDAR</u>, σ(X), LA CUAL ES IGUAL A LA RAIZ CUADRADA DE LA VARIANCIA, Y EL <u>COEFICIENTE DE VARIACION</u> QUE SE DEFINE COMO

$$v(X) \neq \sigma(X) / E(X)$$
, SI $E(X) \neq 0$.

EJEMPLO

EN LA SIGUIENTE TABLA SE CALCULA LA VARIANCIA DE LA VARIABLE ALEATORIA CUYA DENSIDAD DE PROBABILIDADES SE PRESENTO EN EL EJEMPLO ANTERIOR (E(x) = 4167 MICRAS)

x _i -E(X) EN MICRAS	$(x_i - E(x))^2$ MICRAS ²	P _X (x _i)	$(x_i - E(X))^2 P_X(x_i),$ EN MICRAS
-4 167	17 363 889	6/60	1 736 388
-3 167	10 029 889	2/60	334 329
-2 167	4 695 889	4/60	313 059
-1 167	1 361 889	8/60	181 585
- 167	27 889	13/60	6 042
833	693 889	12/60	,138 777
1 833	3 359 889	7/60	391 987
2 833	8 025 889	4/60	535 059
3 833	14 691 889	2/60	489 729
4 833	23 357 889	2/60	778 596

TOTAL:

4 405 551 MICRAS²= $\sigma^2(X)$

LA DESVIACION ESTANDAR Y EL COEFICIENTE DE VARIACION DE ESTA VARIABLE ALEATORIA SON, RESPECTIVAMENTE,

$$\sigma(X) = \sqrt{4.405} \, \overline{551} = 2.215 \, \text{MICRAS}, \, Y \, \nu(X) = \sigma(X) / E(X) = \frac{2.215}{4.167} = 0.531$$

SI X ES UNA VARIABLE ALEATORIA CON DISTRIBUCION DE PROBABILIDADES EXPONENCIAL, CALCULAR SU VARIANCIA, DESVIACION ESTANDAR Y COEFICIENTE DE VARIACION:

$$\sigma^{2}(X) = E(X-E[X])^{2} = \int_{-\infty}^{\infty} (x-E[X])^{2} \lambda e^{-\lambda X} dx = \lambda \int_{0}^{\infty} (x^{2}-2xE[X]+E^{2}[X]) e^{-\lambda X} dx$$

$$= \lambda \int_{0}^{\infty} x^{2} e^{-\lambda X} dx - 2E[X] \lambda \int_{0}^{\infty} x e^{-\lambda X} dx + E^{2}[X] \int_{0}^{\infty} e^{-\lambda X} dx$$

$$= \frac{2}{\lambda^{2}} - 2 \frac{1}{\lambda} \frac{1}{\lambda} + \frac{1}{\lambda^{2}} = \frac{1}{\lambda^{2}}$$

YA QUE E(X) = $1/\lambda$. Y E[x2]= $2/\lambda^2$.

USANDO LA FORMULA $\sigma^2(x) = E[x^2] - E^2[x]$, Y TOMANDO EN CUENTA QUE $E[x^2] = 2/\lambda^2$ SE OBTIENE:

$$\sigma^2(x) = 2/\lambda^2 + 1/\lambda^2 = 1/\lambda^2$$

EN CONSECUENCIA, LA DESVIACION ESTANDAR ES

$$\sigma(X) = \sqrt{1/\lambda^2} = 1/\lambda$$

Y EL COEFICIENTE DE VARIACION

$$v(X) = \sigma(X)/E(X) = \frac{\frac{1}{\lambda}}{\frac{1}{\lambda}} = 1$$

SEA Y UNA VARIABLE ALEATORIA CON DENSIDAD DE PROBABILIDADES
TRIANGULAR DADA POR

$$f_{Y}(y) = \frac{1}{6} y + \frac{1}{3} \qquad \text{SI } -2 \le y \le 0$$

$$f_{Y}(y) = \frac{-1}{12} y + \frac{1}{3} \qquad \text{SI } 0 \le y \le 4$$

$$f_{Y}(y) = 0 \qquad \text{SI } y \le -2 \text{ O } y \ge 4$$

CALCULAR LA-VARIANCIA, LA DESVIACION ESTANDAR Y EL COEFICIENTE DE VARIACION.

CALCULAREMOS PRIMERO EL VALOR MEDIO CUADRATICO PARA LUEGO APLICAR LA ECUACION $\sigma^2(Y) = E(Y^2) - E^2(Y)$

$$E[Y^{2}] = \int_{-2}^{0} y^{2} (\frac{1}{6} + y + \frac{1}{3}) dy + \int_{0}^{1} y^{2} (-\frac{y}{12} + \frac{1}{3}) dy = [\frac{y^{4}}{24} + \frac{y^{3}}{9}]_{2}^{0} + [\frac{-y^{4}}{48} + \frac{y^{3}}{9}]_{9}^{4} = 2$$

$$\sigma^2(Y) = 2-(2/3)^2=14/9$$

$$\sigma(Y) = 1.25 (\sqrt{14/9})$$

$$v(Y) = 1.25/(2/3) = 1.88$$

EJEMPLO

SI SE HACE LA TRANSFORMACION Y= ax, ¿CUANTO VALE LA VARIANCIA DE Y EN TERMINOS DE LA DE X? DE LO VISTO ANTERIORMENTE, $E(Y) = aE(x) \cdot Y \cdot E(Y^2) = a^2 E(x^2)$

$$\sigma^2 (Y) = E(Y^2) - E^2(Y) = a^2 E(x^2) - a^2 E^2(x) = a^2 [E(x^2) - E^2(x)] = a^2 \sigma^2(x)$$

DISTRIBUCIONES PARTICULARES

VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCION BINOMIAL O DE BERNOULLI

LA DISTRIBUCION BINOMIAL O DE BERNOULLI SE EMPLEA COMO DENSIDAD

DE PROBABILIDADES DE VARIABLES ALEATORIAS DISCRETAS ASOCIADOS

A EXPERIMENTOS EN LOS QUE SOLO HAY (O SOLO IMPORTAN) DOS RESUL
TADOS POSIBLES, UNO DE LOS CUALES USUALMENTE SE DENOMINA "EXITO"

Y, EL OTRO, "FRACASO". (S = {EXITO, FRACASO}).

SEAN p= PROBABILIDAD DE OBSERVAR "EXITO" AL REALIZAR UNA VEZ
EL EXPERIMENTO

e= PROBABILIDAD DE "FRACASO" = 1-p

X= VARIABLE ALEATORIA "NUMERO DE EXITOS OBSERVADOS AL REPETIR

n VECES EL EXPERIMENTO "CON REEMPLAZO"

LA DISTRIBUCION DE PROBABILIDADES BINOMIAL ES

$$f(x) = \frac{n!}{x!(n-x)!} p^{x}q^{n-x} : x = 0, 1,...,n$$

SE PUEDE DEMOSTRAR QUE LOS PARAMETROS DE ESTA DISTRIBUCION SON

$$E(X) = np$$
, $\sigma^2(X) = npq$

REFERENCIA: W. BEYER, "HANDBOOK OF TABLES FOR PROBABILITY AND STATISTICS", THE CHEMICAL RUBBER, CO. (1966).

DEMOSTRACION

3

SI n=2, ENTONCES X PUEDE ASUMIR LOS VALORES 0, 1 y 2, ES DECIR $S=\{0,1,2\}$. EL ESPACIO DE EVENTOS DEL EXPERIMENTO ES

$$(EXITO, EXITO)$$
}
$$X = 2$$

$$f_{X}(x) = \{f_{X}(0), f_{X}(1), f_{X}(2)\}$$

OBSERVESE QUE x=0 OCURRE DE UNA MANERA, x=1, DE DOS, Y x=2, DE UNA. ESTOS RESULTADOS SE PUEDEN OBTENER PERMUTANDO DOS GRUPOS, UNO CON x Y EL OTRO CON n-x ELEMENTOS:

$$x=0: \quad 2^{p_{0,2}} = \frac{2!}{0!x2!} = 1 \; ; \; P(\{0\}) = q \; x \; q = q^{2} = p^{0}q^{2}$$

$$x=1: \quad 2^{p_{1,1}} = \frac{2!}{1!x1!} = 2 \; ; \; P(\{1\}) = 2pq$$

$$x=2: \quad 2^{p_{2,0}} = \frac{2!}{2!x0!} = 1 \; ; \; P(\{2\}) = pxp = p^{2} = p^{2}q^{0}$$

$$x=2: \quad 2^{p_{2,0}} = \frac{2!}{2!x0!} = 1 \; ; \; P(\{2\}) = q^{2} + 2pq + p^{2} = (p+q)^{2} = 1$$

(OBSERVESE QUE LOS ELEMENTOS DE S₁ NO SON IGUALMENTE PROBABLES, A MENOS QUE p=q=1/2.)

SI
$$n = 3$$
, $S = \{0,1,2,3\}$, $e = EXITO Y f = FRACASO$, ENTONCES

 $S_1 = \{(f,f,f), (e,f,f), (f,e,f), (f,f,e), (e,e,f), (e,f,e), (f,e,e), (f,e,e), (e,e,e)\}$
 $x = 0$: $3^p_{0,3} = \frac{3!}{0!x_3!} = 1$; $P(\{0\}) = 1$ $p^0q^3 = q^3$
 $x = 1$: $3^p_{1,2} = \frac{3!}{1!x_2!} = 3$; $P(\{1\}) = 3$ pq^2
 $x = 2$: $3^p_{2,1} = \frac{3!}{2!x_1!} = 3$; $P(\{2\}) = 3p^2q$
 $x = 3$: $3^p_{3,0} = \frac{3!}{3!x_0!} = 1$; $P(\{3\}) = 1p^3q^0 = p^3$
 $\sum_{i=0}^{\infty} P(\{i\}) = (p+q)^3 = 1$

PASANDO AL CASO GENERAL DE CUALQUIER VALOR DE n, LA PROBABILIDAD DE QUE OCURRAN x EXITOS Y n-x FRACASOS EN UN ORDEN DETERMINADO ES $P(X=x) = p^X e^{n-x}$

EN VIRTUD DE LA LEY GENERAL DE MULTIPLICACION. UN ORDEN POSIBLE SERIA, POR EJEMPLO,

AHORA BIEN, LOS x EXITOS PUEDEN OCURRIR EN $_{n}^{P}$ ORDENES DISTINTOS, CADA UNO CON PROBABILIDAD $p^{X}q^{n-X}$, POR LO TANTO, EN VIRTUD DE LA LEY GENERAL DE ADICION, LA DISTRIBUCION DE PROBABILIDADES DE X RESULTA SER

$$f_X(x) = \frac{n!}{x!(n-x)!} p^x q^{n-x} ; x = 0,1,...,n$$

LA CUAL SE CONOCE CON EL NOMBRE DE BINOMIAL O DE BERNOULLI.

LA ESPERANZA DE LA DISTRIBUCION DE BERNOULLI ES

$$E(x) = \sum_{k=0}^{n} x \frac{n!}{x! (n-x)!} p^{k} q^{n-k} = \sum_{k=1}^{n} x \frac{n!}{x! (n-x)!} p^{k} q^{n-k}$$

$$= np \underbrace{\sum_{k=1}^{n} \frac{(n-1)!}{(x-1)! (n-k)!} p^{k-1} q^{n-k}}_{(p+q)^{n-1}} = np (p+q)^{n-1} = np$$

LA VARIANCIA DE LA DISTRIBUCION BINOMIAL ES

$$\sigma^{2}(X) = E[(X-E(X))^{2}] = E[(X-np)^{2}]$$

$$PERO E[(X-np)^{2}] = E(X^{2}-2npX + n^{2}p^{2}) = E[X + X(X-1) - 2npX + n^{2}p^{2}]$$

$$= E[(1-2np)X] + E[X(X-1)] + E(n^{2}p^{2})$$

$$= (1-2np)np + n^{2}p^{2} + \sum_{x=0}^{n} \frac{n!}{x!(n-x)!} p^{x}q^{n-x}x(x-1)$$

$$= np-n^{2}p^{2} + \sum_{x=2}^{n} n(n-1) \frac{(n-2)!}{(x-2)!(n-x)!} p^{2}p^{x-2}q^{n-x}$$

$$= np-n^{2}p^{2} + n(n-1)p^{2}\sum_{x=2}^{n} \frac{(n-2)!}{(x-2)!(n-x)!} p^{x-2}q^{n-x}$$

$$= np-n^{2}p^{2} + n(n-1)p^{2}(p+q)^{n-2} = np-np^{2}=np(1-p)=npq$$

EN RESUMEN, PARA LA DISTRIBUCION BINOMIAL,

$$E(X) = np$$
; $\sigma^{2}(X) = npq$; $\sigma(X) = \sqrt{npq}$

TABLA 1
FUNCION DE DISTRIBUCION BINOMIAL

$$F_{\chi}(x) = \sum_{k=0}^{x} \frac{n!}{k! (n-k)!} p^{k} q^{n-k}$$

				P		,
π	×	0.10	0.20	0.30	0.40	0.50
2	0	.8100	.6400	.4900	.3600	.2500
	;]	.9900	.9600	.9100	.8400	.7500
3	0	.7290	.5120	.3430	2160	1250
	- 1 .	.9720	,8960	,7840	.6480	.5000
	2	.9990	.9920	,9730	.9360	.8750
4	0	.6561	,4096	.2401	.1296	.0625
	1	.9477	.8192	.6517	.4752	.3125
	2 -	.9963	.9728	9163	.8208	6875
	3	.9999	.9984	.9919	.9744	.9375
5	0	.5905	.3277	.1681	.0778	.0312
	1 1	.9185	.7373	,5282	.3370	.1875
	2	.9914	,9421	.4369	.6826	.5000
	3	.9995	.9933	.9692	.9130	.8125
	4	1.0000	.9997	.9976	.9898	.9688
6	-o \	3314	.2621	,1176	.0467	.0156
	2	.8857	.6554	.4202	.2333	.1094

TABLA 1 (continuación)
FUNCION DE DISTRIBUCION BINOMIAL

$$F_X(x) = \sum_{k=0}^{x} \frac{n!}{k!(n-k)!} p^k q^{n-k}$$

				 -		 -
л	*	0.10	0,20	0.30	0.40	0.50
6	2	.9842	,901 L	.7443	.5443	.3438
	3	.9987	,9830	.9295	.8208	.6562
	4	. 9999	.9984	.9891	.9590	.8906
	5	1.0000	,9999	.9993	.9959	.9844
7	Ö	.4783	.2097	.0824	.0280	.0078
	1	8503	.5767	.3294	.1586	.0625
	2	.9743	.8520	.6471	.4199	.2266
	3	.9973 ` •	,9667	.8740	.7102	.5000
	4	.9991	.9953	.9712	.9037	.7734
-	5	1.0000	.9996	.9962	.9812	.9375
	6	1.0000	1,0000	.9998	.9984	.9922
8	0	.4305 .	.1678	.0576	.0168	.0039
	1	.8131	.5013	.2553	1064	.0352
	2	.9619	.7969	.5518	.3154	.1445
	3	.9950	,9437	.8059	.5941	.3633
	4	.9996	,9896	.9420	.8263	.6367
	5	1.0000	ا 9889. '	.9887	.9502	.8555
	6	1.0000	9999	.9987	.9915	.9648
	7	1.0000	1,0000	.9999	.9993	.9961
9	0	.3874	.1342	.0404	.0101	.0020
_	·i	.7748	4362	.1960	.0705	0195
	2	.9470	,7382	.4628	.2318	.0898
	3	.9917	.9144	.7297	.4826	.2539
	4	,9991	_9804	.9012 .	.7334	.5000
	٠ ,	.9999	.9969	.9747	.9006	.7461
	6	1.0000	9997	.9957	.9730	.9102 -
	7	1.0000	1,0000	.9996	.9962	.9805
	8	0000.1	1.0000	1.0000	.9997	.9980
10	0	.3487	-1074	.0282	.0060	0010
	Ť	.7361	.3758	.1493	.0464	.0107
	2	,9298	.6778	.3828	.1673	.0547
! !	3	.9872	.8791	.6496	.3823	.1719
	4	.9984	.9672	8497	.6331	.3770
	. •		·			

TABLA 1 (continuación) .

FUNCION DE DISTRIBUCION BINOMIAL

$$F_{\chi}(x) = \sum_{k=0}^{x} \frac{n!}{k!(n-k)!} p^{k} q^{n-k}$$

F				- : -		
#	x	0.10	0.20	Р 0.30	0.40	0.50
10	5	.9999	.9936	.9527	.8338	.6230
	5 6	1,0000	.9991	.9894	.9452	.8281
	7 '	1.0000	.9999	.9984	.9877	,9453
	8	1.0000	1,0000	.9999 .	.9983	.9893
	9_	1.0000	1,0000	1.0000	.9999	.2990
11	0	.3138	.0859	.0198	.0036	.0005
•	1	.6974	.3221	.1130	.0302	,0059
ł .	2	.9104	.6174	.3127	.1189	.0327
	3	.9815	.8389	.3696	.2963	.1133
ŀ	4	.9972	.9496	.1897	.5328	.2744
ł	5	.9997	.9883	.9218	.7535	.5000
1	6	1.0000	.9980	.9784	.9006	.7236
}	7	1.0000	.9998	.9957	.9707	.8867
1	8	1.0000	1,0000	,9994	.9941	.9673
	9	1.0000	1,0000	1.0000	.9993	.9941
L	. 10_	1.0000	1,0000	1.0000	1.0000	9995
12	0	.2824	,0687	.0138	.0022	.0002
ŧ	ı	.6590	.2749	.0850	.0196	.0032
F	2	.8891	,5583	.2528	.0834	.0193
	3	, .9744	.7946	.4925	.2253	.0730
]	4	.9957	.9274	.7237	.4382	.1938
1	5	.9995	.9806	.8822	.6652	.3872
1	6	.9999	.996 1	.9614	.8418	6128
ŀ	7	1.0000	.9994	.9905	,9427	.8062
	8	1.0000	,9999	.9983	.9847 -	.9270
1	` 9	1.0000	1,0000	.9998	.9972	.9807
ŀ	50	1.0000	1,0000	1.0000	9997	.9968
\ .	13	0000.1	1,0000	1.0000	1.0000	.9998
13	0	.2542	.0550	.0097	.0013	.0001
ŀ	ı	.6213	,2336	.0637	.0126	,0017
	2	.8661	.5017	.2025	.0579	.0112
	3	9658	.7473	.4206	.1686	.0461
	4	.9935	.9009	.6543	.3530	.1334
	5	.9991	.9700	.8346	.5744	.2905
	6	9999	.9930	.9376	.7712	.5000
L	7_	1.0000	.9988	.9818	.9023	.7095

TABLA 1 (continuación)
FUNCION DE DISTRIBUCION BINOMIAL

$$F_X(x) = \sum_{k=0}^{x} \frac{n!}{k! (n-k)!} p^k q^{n-k}$$

A	×	0.10	0.20	0.30	0.40 ,	0.50
13	8	1.0000	.9998	.9960	.9679	.8666
	9	1.0000	1.0000	.9993	.9922	.9539
	10	1.0000	1.0000	.9999	.9987	.9888
	- 13	1.0000	1.0000	: 1.0000	.9999	.9983
	12	1.0000	1.0000	, 1.0000	1.0000	,9999
14	0	.2288	0440	.0068	.0008	, .0001
	. 니	. • .5846	.1979	0475	.0081	.0009
	2	∵.8416 -	.4481	.1608	.3398	.0055
	31	.9559	.6982	.3552	.1243	.0287
	- 4	.9908	8702 .,	.5842	.2793	0898
	5	.9985	.9561	.7805	.4859	.2120
	6	,9998	.9884	.9067	. 5925	.3953
	7	1.0000	,9976	.9685	.8499	.6047
	8	1.0000	.9996	.9917	.9417	.7880
	9 ·	1.0000	1.0000	.9983	.9825	9102
	20	1.0000	1.0000	.9998	9961	.9713
	11	1.0000	1.0000	1.0000	.9994	.9935
	12	1.0000	1.0000	1.0000	9999	.9991
	13	1.0000	0000.1	1.0000	1.0000	.9999
15		.2059	.0352	.0047	.0005	.0000
	1 1	.5490	.1671	.0353	.0052	.0005
	2	.8159	.3980	.1268	.0271	.0037
	3	.9444	.6482	.2969	.0905	.0176
	- 4	.9873	.8358	.5155	.2173	.0592
	5	.9978	.9389	.7216	.4032	1,1509
	6	9997	.9819	.8689	.6098	.3036
	7	1.0000	.9958	.9500	.7869	.5000
	8	1.0000	9992	9848	1.9050	.6964
	9	1.0000	.9999	.9963	.9662	,8491
	10	1.0000	1.0000	.9993	.9907	.9408
	11	0000.1	0000,1	.9999	.9981	.9824
	12	1.0000	1.0000	1.0000	.9997	.9963
	í <u>.</u>	1.0000	1,0000	1.0000	1,0000	.9995
	14	1.0000	1.0000	1.0000	1,0000	1,0000

TABLA 1 (continuación)
FUNCION DE DISTRIBUCION BINOMIAL

$$F_{\chi}(x) = \sum_{k=0}^{x} \frac{n!}{k!(n-k)!} p^{k} q^{n-k}$$

				P		
	Х	0.10	0.20	0.30	0.40	0.50
18	O	. 1501	.0180	.0016	.0001	,0000
	, 1	.4503 `	1990.	.0142	£100.	.0001
	2	.7338	.2713	.0600	.0082	.0007
	3	9018	.5010	.1646	.0328	.0038
	4	.9718	.7164	.3327	.0942	.0154
	5	.9936	.8671	.5344	.208\$.0481
	6	.9988	.9487	.7217	.3743	.1189
	7	1.9998	.9837	.8593	.5634	,2403
	8	1.0000	.5 .9957	.9404	.7368	.4073
	9	1,0000	.9991	.9790	.8653	.5927
	10	.0000	.9998	.9939	.9424	.7597
	11	1.0000	1.0000	9986	.9797	.8811
	12	1.0000	1.0000	.9997 🐪	9942	, 9 519
	13	1.0000	1.0000	1.0000	.9987	.9846
	14	1.0000	. 1.0000	1.0000	.9998	.9962
٠,	15	1.0000	E.0000	1.0000	1.0000 .	.9993
	16	1.0000	1.0000	1.0000	1.0000	.9999
	17	1.0000	. 1.0000	1.0000	1.0000	1.0000
19	0	.1351	.0144	.00(1	1000.	.0000
	1	.4203	.0829	.0104	.0008	0000
	2	.7054	.2369	.0462	.0055	0004
	3	.8850	.4551	.1332	/ .0230	.0022
	4	.9648	.6733	.2822	.0696	.0096
	5	.9914	.8369	.4739	.[629	.0318
	6	.9983	.9324	.6635	.3081	.0835
	7	.9997	.9767	0818.	.4878	.1796
	8	1.0000	.9933	.9161	.6675	.3238
	9	1.0000	.9984	.9674 ,	8139	.5000
	10	1.0000	.9997	.9895	.9115	.6762
	11	1.0000	1.0000	.9972	.9648_	.3204
	12	1.0000	1.0000	.9994	.9884	,9165
	, 13	1.0000 '	1.0000	.9999	.9969	,9682
	14	1.0000	1.0000	1.0000	.9994	,9904
	15	1.0000	1.0000	1.0000	9999	.9978
	16	1.0000	1.0000	1.0000	1,0000	.9996
	17	1.0000	1.0000	1.0000	1.0000	1.0000

TABLA I (continuación)

FUNCION DE DISTRIBUCION BINOMIAL

$$F_{\chi}(x) = \sum_{k=0}^{x} \frac{n!}{k!(n-k)!} p^{k} q^{n-k}$$

n	х	0.10	0.20	φ.30	0.40	0.50
16	0	.1953	.0281 .	.0033	.0003	.0000
	1	.5147	1407	.0261	,0033	E000,
	2	.7892	.3518	.0994	- 0183	.0021
	3	9316	.5981	.2459	.0651	.0106
	4	.9830	,7982	.4499	.1666	.0384
	5	.9967 .	:9183	,659B	.3288	.3051
	6.	.9995	.9733	.8247	.5272	.2272
	7 : [.9999	.9930	.9256	7161	.4018
	B, {	1.0000	. 9985. ~	. ,9743	.8577	.5982
	9	1,0000	.9998	.9929	.9417	.7728
-	10 '	1.0000	1.0000	9984	.9809	.8949
	्,11	1.0000	1.0000	,9997	.9951	.9616
1 .	/ l2	1.0000	1.0000	1.0000 -	.9991	.9894
	-13	1.0000	1.0000	1,0000	.9999	.9979
	14	1.0000	1.0000	1.0000	1.0000	.9997
	15	1.0000	1.0000	1.0000	1.0000	1.0000
17	. 0	.1668	, .0225	0023	.0002	.0000
	1	.4818	4 .1182 -	.0193	- 1,0021	,000,
	2	.7618	.3096	.0774	/ .0123	.0012
•	· 3	,9174	5489	.2019	.0464	.0064
	- 4	.9779	.7582	.3887	.1260	.0245
	5	.9913	.8943	.5968	.2639	.0717
	6	.9992	.9623	.7752	.4478	.1662
	7	.9999	.9891	,8954	.6405	.3145
4	8	1.0000	.9974	.9597	.8011	.5000
	9	1.5000	.9995	.9873	.9081	.6855
	10	1.5000	.9999	.9968	.9652	.8338
	11	1,0000	1.0000	.9993	.9894	.9283
	12	1.0000	1.0000	9999	.9975	.9755
	13	1.0000	1.0000	1.0000	.9995	9936
	14	1.0000	1.0000	1.0000	.9999	.9988
	15	1.0000	1.0000	1.0000	; 1,6000	.9999
1	16	1.0000	1.0000	1.0000	1.0000	1,0003

TABLA 1 (continuación)
FUNCION DE DISTRIBUCION BINOMIAL

$$F_{\chi}(x) = \sum_{k=0}^{x} \frac{n!}{k!(n-k)!} p^{k} q^{n-k}$$

н	x	0.10	0.20	0.30	0.40	0.50
20	0	.1216	0115	.0008	.0000	.0000
	1	.3917	.0692	.0076	.0005	.0000
	2	.6769	.2061	.0355	.0036	.0002
	3	.8670	.4114	.1071	.0110.	.0013
	- 1	.9568	.6296	.2375	.0510	.0059
	5	.9887	.8042	.4164	.1256	.0207
	6	.9976	.9133	.6080	.2500	.0577
	7	.9996	.9679	.7723	.4159	.1316
	8	.9999	,9900	.8867	.5956	.2517
	9	1.0000	.9974	.9520	7553	.4119
	10	1.0000	,9994	.9829	.8725	.5831
	- 11 }	0000.1	.9999	,9949	.9435	.7483
	12	1.0000	1.0000	.9987	.9790	.8684
	13	1.0000	1.0000 .	.9997	.9935	,9423
	14	1.0000	1.0000	1.0000	.9984	,9793
	15	1.0000	1.0000	1.0000	.9997	.9941
	16	1.0000	1.0000	1.0000	- 1.0000	- 9987
	17	1.0000	1.0000	1.0000	1.0000	9999
	18	1.0000	1,0000	1,0000	1.0000	1.0000

SI SE LANZA AL AIRE SEIS VECES UNA MONEDA HOMOGENEA.

- A) ¿CUAL ES LA PROBABILIDAD DE OBTENER DOS "CARAS"?
- B) ¿CUAL ES LA PROBABILIDAD DE OBTENER POR LO MENOS CUATRO "CARAS" (X>4)?
- C) ¿CUANTO VALEN LA ESPERANZA Y LA DESVIACION ESTANDAR? SOLUCION
- A) PUESTO QUE LA MONEDA ES HOMOGENEA SE TIENE p=1/2 Y q=1-1/2=1/2,

 DONDE P ES LA PROBABILIDAD DE OBSERVAR "CARA" (CARA = EXITO) EN

 UN LANZAMIENTO. POR TANTO

$$P[X = 2] = f_{X}(2) = \frac{6!}{2!(6-2)!} (\frac{1}{2})^{2} (1/2)^{6-2} = \frac{6!}{2! \cdot 4!} (1/2)^{6} = \frac{15}{64}$$

(DE LA TABLA: $P(x=2)=P(x\leq3) < P(x\leq2) = 0.3438-0.1094 = 0.2344$)

B) PARA QUE SE CUMPLA X24 EN SEIS LANZAMIENTOS, SE NECESITA QUE SE OBSERVEN 4,5 o 6 CARAS. PUESTO QUE ESTOS TRES EVENTOS SON MUTUAMENTE EXCLUSIVOS, SE TIENE

$$P[X \ge 4] = f_{x}(4) + f_{x}(5) + f_{x}(6)$$

CALCULANDO LOS TRES SUMANDOS COMO EN LA PREGUNTA ANTERIOR, RESULTA

$$P[X \ge 4] = \frac{6!}{4! \cdot 2!} (1/2)^{4} (1/2)^{6-4} + \frac{6!}{5! \cdot 1!} (1/2)^{5} (1/2)^{6-5} + \frac{6!}{6! \cdot 0!} (1/2)^{6} (1/2)^{6-6}$$
$$= \frac{15}{64} + \frac{6}{64} + \frac{1}{64} = \frac{11}{32} = 0.3438$$

(DE LA TABLA: $P(x \ge 4) = 1 - P(x \le 3) = 1 - 0.6562 = 0.3438$)

E[X] = np = 6(1/2) = 3

$$\sigma^{2}[x] = npq = 6(1/2)(1/2) = 3/2, \ \sigma(x) = \sqrt{3/2} = 1.22$$

SI CON BASE EN LA EXPERIENCIA DE MUCHO TIEMPO SE SABE QUE UNA MAQUINA IMPRIME COLORES DEFECTUOSOS EN UN 5 POR CIENTO DE LAS VECES, CALCULAR LA PROBABILIDAD DE QUE DE 10 IMPRESIONES SE OBTENGA:

- a. NINGUNA DEFECTUOSA
- b. UNA DEFECTUOSA
- G. MAS DE UNA DEFECTUOSA

ASIMISMO, CALCULAR LA MEDIA Y LA DESVIACION ESTANDAR DEL NUME RO DE DEFECTUOSAS.

Solución

SEA EXITO = IMPRESION DEFETUOSA EN TAL CASO $p = 0.05 \cdot Y \cdot q = 1 \cdot 0.05 = 0.95$

a. NINGUNA DEFECTUOSA ES LO MISMO

QUE X = 0; ENTONCES n-x=10-0=10 Y:

$$P(x=0) = f_{x}(0) = \frac{n!}{x! (n-x)!} = \frac{10!}{0! (10-0)!} (0.05)^{0} (0.95)^{10}$$

$$= \frac{10!}{10!} (0.95)^{10} = 0.599 = 59.98$$

b. UNA DEFECTUOSA ES LO MISMO QUE X = 1; ENTONCES n-x = 10-1 = 9 Y:

$$P(x = 1) = f_{x}(1) = \frac{10!}{1! \ 9!} (0.05)^{1} \{0.95\}^{9}$$
$$= \frac{10 \times 9!}{9!} (0.05) (0.6302) = 0.315$$

c. MAS DE UNA DEFECTUOSA ES LO MISMO QUE x > 1

$$P(X > 1) = 1-P(X \le 1) = 1-[P(X = 0)+P(X = 1)]$$

= 1-(0.599+0.315) = 0.086

E(x) = np =
$$10x0.05 = 0.5$$

 $\sigma^{2}(x) = npq = 10 \times 0.05 \times 0.95 = 0.0475$
 $\sigma(x) = \sqrt{0.0475} = 0.2179$

RESOLVER AHORA EL INCISO b. DEL EJEMPLO ANTERIOR, PARA EL CASO EN QUE p = 0.1

$$P(x = 1) = \frac{10!}{1! \ 9!} (0.10)^{1} (0.90)^{9} = 0.3874 = 38.748$$

USANDO LAS TABLAS DE LA DISTRIBUCION BINOMINAL:

$${X = x} \ U \ {X \le x-1} = {X \le x}$$

POR LO TANTO $P{X = x} + P{X \le x-1} = P{X \le x}$
 $Y \ P{X = x} = P{X \le x} - P{X \le x-1}$

EN ESTE EJEMPLO x = 1 y x-1=0, POR LO QUE

$$P(X=1) = P(X \le 1) - P(X \le 0)$$

= 0.7361 - 0.3487 = 0.3874

DISTRIBUCION GEOMETRICA

EL PRIMER EXITO OCURRIRA EN EL EXPERIMENTO NUMERO x SI, Y SOLO SI, EN LOS x-1 ANTERIORES HUBO PUROS FRACASOS. LA PROBABILIDAD DE ESTE EVENTO, DADO QUE LOS EXPERIMIENTOS SON INDEPENDIENTES, ES

$$f_{X}(x) = (1-p)^{X-1}p$$

ESTA FUNCION SE DENOMINA DISTRIBUCION GEOMETRICA. SE PUEDE CEMOSTRAR QUE LA <u>DISTRIBUCION DE PROBABILIDADES ACUMULADAS</u> ES

$$F_X(x) = \sum_{k=1}^{n} p(1-p)^{k-1} = 1 - (1-p)^n$$

Y QUE

$$E(X) = \sum_{x=1}^{\infty} x(1-p)^{x-1}p=1/p$$

$$\sigma^{2}(X) = \sum_{x=1}^{\infty} (x-\frac{1}{p})^{2} (1-p)^{x-1} p = (1-p)/p^{2}$$

EJEMPLO

¿CUAL ES LA PROBABILIDAD DE OBTENER UN TORNILLO DEFECTUOSO POR PRIMERA VEZ EN LA SEXTA EXTRACCION, SI EL PORCENTAJE DE DEFECTUOSOS DEL LOTE DEL CUAL SE MUESTREA ES DE 5 POR CIENTO?

$$P(X=6) = f_X(6) = (1-0.05)^5 \times 0.05 = 0.95^5 \times 0.05 = 0.03869$$

DISTRIBUCION HIPERGEOMETRICA

CUANDO SE TIENE UNA VARIABLE ALEATORIA DISCRETA CUYO ESPACIO DE EVENTOS TIENE SOLO DOS ELEMENTOS, DIGAMOS S=(EXITO, FRACASO), Y SE REALIZA UN MUESTREO SIN REEMPLAZO, ENTONCES LOS RESULTADOS DE CADA EXPERIMENTO NO SON INDEPENDIENTES NI LA PROBABILIDAD DE EXITO PERMANECE CONSTANTE, COMO EN LA DISTRIBUCION BINOMIAL, POR LO QUE ESTA ULTIMA NO ES APLICABLE.

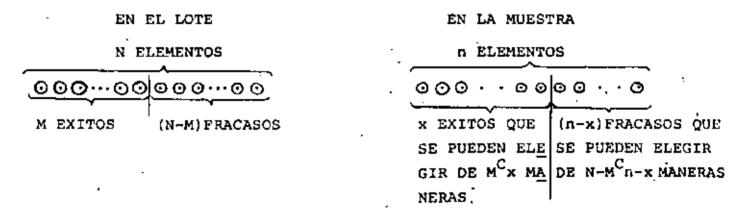
SEA X LA VARIABLE ALEATORIA NUMERO DE EXITOS OBSERVADOS AL REPETIR

N VECES EL EXPERIMENTO CONSISTENTE EN EXTRAER, SIN REEMPLAZO, ELEMENTOS DE UN LOTE QUE TIENE N OBJETOS DE LOS CUALES M SON "EXITOS".

EL NUMERO DE ELEMENTOS QUE TIENE EL ESPACIO DE EVENTOS DEL EXPERIMENTO ES

$$N(S) = {}_{N}C_{n}$$

EL NUMERO, N({X=x}), DE MANERAS POSIBLES E IGUALMENTE PROBABLES DE OBTENER x EXITOS ES



CADA ELECCION POSIBLE DE x EXITOS SE COMBINA CONICADA ELECCION POSIBLE DE (n-x) FRAÇASOS; POR LO TANTO, EL NUMERO TOTAL DE MANERAS DE OBTENER x EXITOS EN n EXTRACÇIONES SIN REEMPLAZO ES

$$N(\{X=x\}) = \binom{M}{N} \binom{N-M}{N-M} \binom{N-M}{N-M}$$

POR LO TANTO

$$P(\{X=x\}) = f_{X}(x) = \frac{\binom{M^{C}x}{N^{C}n}\binom{N-M^{C}n-x}{n-x}}{\binom{N}{n}} = \frac{\binom{M}x\binom{N-M}{n-x}}{\binom{N}n} \qquad x=0,1,\ldots,n$$

EN DONDE
$$\binom{M}{x} = \frac{M!}{x!(M-x)!}, \binom{N-M}{n-x} = \frac{(N-M)!}{(n-x)!(N-M-n+x)!}$$

$$Y \qquad {N \choose n} = \frac{N!}{n! (N-n)!}$$

QUE SE CONOCE COMO DISTRIBUCION HIPERGEOMETRICA, LA MEDIA Y LA VARIAN-CIA DE ESTA DISTRIBUCION SON

$$E(X) = \sum_{x=0}^{n} x \frac{{\binom{M}{x}} {\binom{N-M}{n-x}}}{{\binom{N}{n}}} = nM/N = np , si p = M/N$$

Y

$$\sigma^{2}(X) = \sum_{k=0}^{n} (k - \frac{nM}{N})^{2} \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}} = \frac{Mn(N-M)(N-n)}{N^{2}(N-1)} = p(1-p) \frac{n(N-n)}{N-1}$$

RESPECTIVAMENTE.

EN UN PROBLEMA DE CONTROL ESTADISTICO DE CALIDAD, SE TIENE UN LOTE DE 100 TRANSFORMADORES DE CORRIENTE ELECTRICA, DE LOS CUALES 40 SON DEFECTUOSOS (NO CUMPLEN LAS NORMAS DE FABRICACION). ¿CUAL ES LA PROBABILIDAD DE OBTENER UNO DEFECTUOSO DE TRES SELECCIONADOS AL AZAR SIN REEMPLAZO?

$$P[x=1] = \frac{\binom{40}{1}\binom{100-40}{3-1}}{\binom{100}{3}} = \frac{\binom{40}{1}\binom{60}{2}}{\binom{100}{3}}$$

$$= \frac{\frac{40!}{39! \times 1!} \times \frac{60!}{59! \times 2!}}{\frac{100!}{97! \times 3!}} = 0.438$$

APROXIMACION DE LA DISTRIBUCION HEPERGEOMETRICA MEDIANTE LA BINOMIAL

CUANDO N ES GRANDE Y n PEQUENO (N ≥ 10 m), LA DISTRIBUCION BINOMIAL SE PUEDE USAR COMO APROXIMACION DE LA HIPERGEOMETRICA. DE ESTA APROXIMACION SE HECHA MANO CUANDO LOS CALCULOS CON ESTA ULTIMA RESULTAN TEDIOSOS.

EN EL CASO DEL EJEMPLO ANTERIOR, SI SE USA LA DENSIDAD BINOMIAL SE OBTIENE, CON p=40/100 = 0.40 y n=3

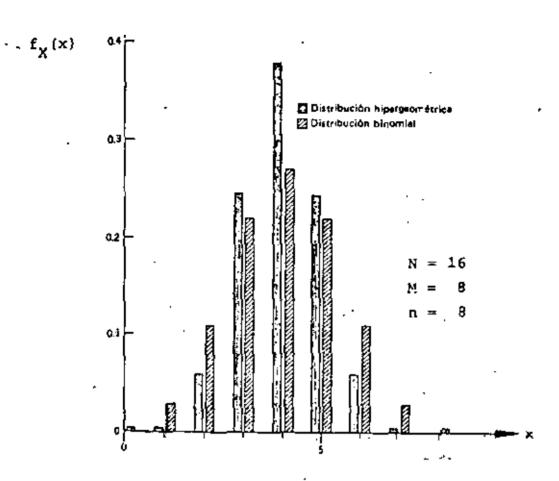
$$P[X=1] = \frac{3!}{1! \cdot 2!} (0.40)^{1} (0.60)^{2} = 0.432$$

FORMULA DE STIRLING

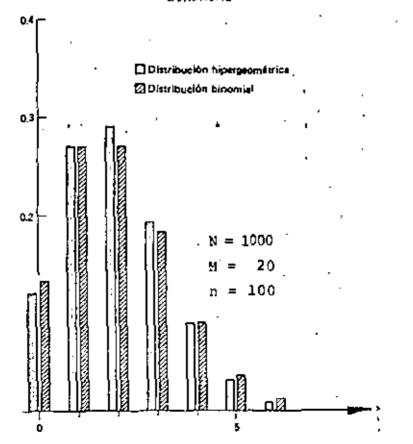
$$N! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
; (e = 2.718...)

Error = 2% SI n = 4

Error = 0.8% SI n = 10



COMPARACION DE LAS DISTRIBUCIONES HIPERGEOMETRICA Y BINOHIAL



DISTRIBUCION DE POISSON

UNA DISTRIBUCION DE PROBABILIDADES PARA UNA VARIABLE ALEATORIA DIS-CRETA, X, DE LA FORMA

$$f_X(x) = \frac{\lambda^x e^{-\lambda}}{x!} : x = 0, 1, 2, ...$$

SE LLAMA <u>DISTRIBUCION DE POISSON</u>; EN ESTA ECUACION À ES UNA CONSTAN TE. SE PUEDE DEMOSTRAR QUE LA <u>MEDIA Y LA VARIANCIA</u> PARA ESTA DIS-TRIBUCION QUEDAN DADAS POR

$$E(X) = \sum_{x=0}^{\infty} x \frac{\lambda^x e^{-\lambda}}{x!} = \lambda$$

$$\sigma^{2}(x) = x^{\infty}_{\pm 0} (x-\lambda)^{2} \frac{\lambda^{x} e^{-\lambda}}{x!} = \lambda$$

UNA VEZ CONOCIDA λ , CON ESTA DISTRIBUCION SE PUEDEN CALCULAR LAS PROBABILIDADES DE QUE UN EVENTO OCURRA \times VECES.

ES POSIBLE DEMOSTRAR QUE LA DISTRIBUCION DE POISSON PUEDE EMPLEARSE COMO UNA PROXIMACION DE LA DE BERNOULLI, TOMANDO $\lambda = np$, CUANDO n ES GRANDE Y p PEQUEÑA, PERO DE TAL MANERA QUE npq > 1. AL RESPECTO, SI n=20 y p=0.05, ENTONCES EL ERROR QUE SE TIENE AL USAR DICHA APRO XIMACION ES MENOR DE 3 POR CIENTO PARA VALORES DE X MENORES DE 3; PARA X=4 y X=5 LOS ERRORES RESPECTIVOS SON 15 Y 41 POR CIENTO, DEBI DO A QUE NO SE CUMPLE CON LA CONDICION DE QUE npq SEA MAYOR DE UNO, YA QUE $npq = 20 \times 0.05 \times 0.95$

TABLA 2
FUNCION DE DISTRIBUCION DE POISSON

$$F_{\chi}(x) = \sum_{k=0}^{x} \frac{e^{-\lambda} \lambda^{k}}{k!}$$

	1	- -			_	1				
بر	.50	1,0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
0	.607	-368	.135	.050	.018	.007	.002	100.	.000	.000
ı	.910	.736	.406	.199	.092	.040	.017	.007	.003	100.
2	.986	.920	.677	.423	.238	.125	.0024		.014	.006
3	.998	.981	.857,	.647	.433	.265	.1515		.042	.021
4	1.000	.996	.947	.815	.629	.440	.285		.100	.055
	Į.				11					
5	1.000	.999	.983	.961	.785	.616	.445	.301	3191	.116
6	1.0/0	000.1	.995	.966	889	.762		. ,450	.313	.267
7	1.000	1.000	.999	988	949	.867	.744	.599	.453	.324
8 -	1.000	1.000	1.000	•	.979	.932	,847		.593	.456
9	1,000	1.000		,999		.968	.916	,830	.717	.587
		:			•		17			
10	1.000	000,1	1.000	1.000	.997	.986	.957	.901	.816	.706
11	1.000	1.000	1,000	1.000	.999	.995	.022.	,947	.888	.803
12	1.000	1.000	1.000	1.000	1.000		199.		936	.876
13	1.000	1.000	1.000	1.000	1.006	.999 .	.396	.987	.966	.926
14	1.000	1,000	1.000	1.000	1.000	1.000	999	,994	.983	.959
	i .							:		
15	1.000	1.000	1.000	1.000	1.000	1.000	.9991	.998	.992	.978
16	1.000	1.000	1.000	1.000	1.000	1.000	1.000	,999	.996	.989
17	1.000	1.000				1.000	1.000	1,000	.998	.995
18	1.000	1.000		1.000	1.000	1.000	1.000	1.000	.999	.998
19	1.000	1.000		1.000	1.000	1.000	1,600	1.000	1.000	.999
7	1 .		3.220				111			-
20	1.000	1.000	1.000	1.600	000.1	1.000	1.000	1.000	1,000	1,000

TABLA 2 (continuación)
FUNCION DE DISTRIBUCION DE POISSON

$$F_{\chi}(x) = \sum_{k=0}^{x} \frac{e^{-\lambda} \lambda^{k}}{k!}$$

				. i		· ·
x	~ t0.0	11.0	12.0	13.0	14.0	15.0
2	.003	.001	.001	,000	.000	.000
3	, ,010	.005	.002	.001	.000	.000
. 4	.029	.015	,008	.004	,002	,001
5	067	.038	.020	.01*	.006	.003
6	²L30	,079	,046	.026	.014	.008
7	.220	.143	,090	.054	.032	.018
. 8	.333	.232	.155	.100	.062	.037
.9	.458	:341	.242	.166	.109	.070
10	.583	460	,347	.252	.176	
it i	697	.579	.462	.353	.260	.115
12	792	.689	.576	,462	.358	.268
13	,864	.781	.682	.573	.464	.363
14	917	.854	.772	.675	.570	.466
١	•		•			
15	.951	.907	.844	.764	.669	.568
. 16	.973	.944	.899	.835	,75 6	,664
17	* .986	.968	.937	. 890	.827	.749
18	993	.982	.963	.910	.883	.819
19	.997	.991	.979	.957	.923	.875
20	.998	.995	.988	.975	.952	.917
21	,999	.998	.994	.986	.971	.947
22	1.000 .	.999	.997	.992	.983	,967
23	1,000	1.000	.999	.996	.991	.981
24	1.000	1.000	.999	.998	.995	.989
25	1.000	1.000	1,000	.999	.997	.994
26	1.000	1.000	1.000	1.000	.999	.997
27	1.000	1.000	1.000	1.000	.999	.998
28	1.000	1.000	1.000	1.000	1.000	999
29	1.000	1.000	1.000	1.000	1.000	1.000

SI LA PROBABILIDAD DE QUE FALLE UNA VARILLA DE ACERO AL APLICARLE UNA DETERMINADA FUERZA DE TENSION ES DE 0,001, ¿CUAL ES LA PROBABILIDAD DE QUE DE 2000 VARILLAS PROBADAS FALLEN A) TRES, B) MAS DE DOS?

CON λ = 2000 x 0.001 = 2 Y CONSIDERANDO QUE npq = 1.9>1,SE PUEDE USAR LA DISTRIBUCIÓN DE POISSON COMO APROXIMACION DE LA BINOMIAL:

a)
$$P(X = 3) = \frac{\lambda^3 e^{-\lambda}}{3!}$$

$$P(X = 3) = \frac{2^3 e^{-2}}{3!} = 0.18$$

EN ESTE CASO LA DISTRIBUCION BINOMIAL DA COMO RESULTADO

b)
$$P[X > 2] = 1 - P[X < 2] = 1 - F_X(2) = 1 - \left\{ P[X = 0] + P[X = 1] + P[X = 1] + P[X = 2] \right\} = 1 - \frac{2^0 e^{-2}}{0!} - \frac{2^1 e^{-1}}{1!} - \frac{2^2 e^{-2}}{2!} = 1 - \frac{1}{e^2} - \frac{2}{e^2} = 1 - \frac{5}{e^2} = 0.323$$

 $P[x=3] = \frac{2000!}{3! \times 1997!} (0.001)^3 (0.999)^{1997} = 0.184$

UNA COMPANIA ASEGURADORA DESPUES DE MUCHOS AÑOS DE EXPERIENCIA HA
HA ESTIMADO QUE EL 0.004% DE LA POBLACION FALLECE ANULAMENTE POR ACCIDENTE AUTOMOVILISTICO. SI ESTA COMPAÑIA TIENE 40,000 ASEGURADOS,
¿CUAL ES LA PROBABILIDAD DE QUE 2 DE ELLOS MUERAN EN UN AÑO POR ESTE
TIPO DE ACCIDENTE?

SEA X EL NUMERO DE PERSONAS QUE MUEREN ANUALMENTE DE ENTRE LOS ASE-GURADOS, POR ACCIDENTE, LA MEDIA DE X ES

$$E[X] = 0.00004 \times 40,000 = 1.6 = \lambda$$

ADEMAS, TOMANDO EN CUENTA QUE npq>1, SE PUEDE USAR SIN GRAN ERROR LA DISTRIBUCION DE POISSON:

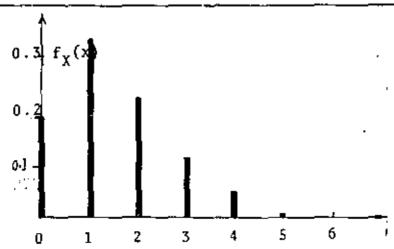
$$P[X=x] = \frac{\lambda^{X}e^{-\lambda}}{x!} = \frac{(1.6)^{X}e^{-1.6}}{x!}$$
; x=0, 1, 2,...

POR LO QUE

$$P[X=2] = \frac{(1.6)^{2}e^{-1.6}}{2!} = \frac{0.2019 \times 2.56}{2!} = 0.26$$

LA DISTRIBUCION DE PROBABILIDADES PARA ESTA VARIABLE ALEATORIA ES:

x	0	1	2	3	4	5	6	
$f_{\chi}(x)$	0.202	0.323	0.258	0.138	0.055	0.018	0,7005	· · · ·



EN LA AMPLIACION DEL CARRIL PARA DAR VUELTA A LA IZQUIERDA EN UNA AVENIDA, SOLO HAY CAPACIDAD PARA 3 AUTOS COMO MAXIMO ESPERANDO LA FLECHA LUMINOSA DEL SEMAFORO. EN UN ESTUDIO ESTADISTICO DEL TRANSITO EN ESE LUGAR SE ENCONTRO QUE EN CADA CICLO DE LUCES DEL SEMAFORO HAY EN PROMEDIO 6 AUTOS QUE VAN A DAR VUELTA. ¿CUAL ES LA PROBABILIDAD DE QUE EN UN CICLO DEL SEMAFORO, TOMADO AL AZAR, SE CONGESTIONE EL TRANSITO POR EXCEDERSE LA CAPACIDAD DEL CARRIL?

$$P[X>3] = ?$$

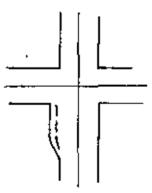
$$SI \quad A=\{X>3\}, \ \overline{A} = \{X \le 3\}$$

$$P(\overline{A}) = 1-P(A) \quad O \quad P(A) = 1-P(\overline{A}), \quad CON \quad \lambda=6,$$

$$P(\overline{A}) = P[X \le 3] = \sum_{x=0}^{x=3} f_{x}(x) = \sum_{x=0}^{x=3} \frac{e^{-6}6^{x}}{x!}$$

$$P(\overline{A}) = e^{-6}(1 + 6 + \frac{6^{2}}{2} + \frac{6^{3}}{6}) = 61e^{-6} = 0.151$$

$$P[A] = P[X>3] = 1-0.151 = 0.849$$



PROCESO ESTOCASTICO DE POISSON

CON BASE EN LA DISTRIBUCION DE POISSON SE PUEDE DEDUCIR QUE LA DISTRI-BUCION DE PROBABILIDADES DEL NUMERO DE OCURRENCIAS DE UN EVENTO DURANTE UN PERIODO t QUEDA DADA POR

$$f_{X}(x) = P[X = x \text{ EN UN LAPSO t}]$$

$$f_{X}(x) = \frac{(\lambda t)^{X} e^{-\lambda t}}{x!}, x = 0, 1, 2, \dots$$

DONDE

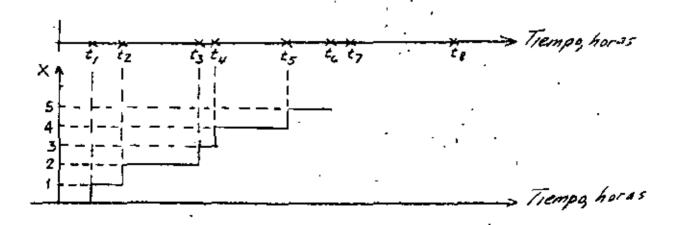
λ = NUMERO MEDIO DE OCURRENCIAS POR UNIDAD DE TIEMPO.

LA ESPERANZA Y LA VARIANCIA DE ESTE PROCESO, PARA UN LAPSO t, SON

$$E(X) = \lambda t$$

$$\sigma^{2}(X) = \lambda t$$

PARA QUE ESTA DISTRIBUCION SE APLIQUE SE REQUIERE QUE EL EVENTO OCURRA CADA VEZ DE MANERA INDEPENDIENTE DE LAS OCURRENCIAS PREVIAS, Y QUE λ SEA CONSTANTE. A λ SE LE CONOCE COMO INTENSIDAD DEL PROCESO; A SU RECIPROCO, $1/\lambda$ SE LE DENOMINA PERIODO DE RECURRENCIA.



SE PUEDE DEMOSTRAR QUE

CUANDO UN EVENTO OCURRE SIGUIENDO UN PROCESO DE POISSON, LA VA-RIABLE ALEATORIA "TIEMPO ENTRE UNA OCURRENCIA CUALQUIERA Y LA SIGUIENTE" TIENE UNA DISTRIBUCION DE PROBABILIDADES EXPONENCIAL.

EJEMPLO

SI LOS MAREMOTOS QUE SE REGISTRAN EN UN PUNTO DE LA COSTA ME- λ XICANA DEL OCEANO PACIFICO OCURREN SIGUIENDO UN PROCESO DE POISSON CON λ = 0.01, CALCULAR LA PROBABILIDAD DE QUE ENTRE UN
MAREMOTO Y EL SIGUIENTE TRANSCURRA UN TIEMPO

- a. MAYOR DE 100 AÑOS
- b. ENTRE 50 Y 100 AÑOS

a.
$$P(t > 100) = \int_{100}^{\infty} \lambda e^{-\lambda t} dt = e^{-0.01 \times 100} = e^{-1} = 36.798$$

b.
$$P(50 \le t \le 100) = \int_{50}^{100} 0.01 e^{-0.01 t} dt = F(100) - F(50)$$

$$= (1 - e^{-0.01 \times 100}) - (1 - e^{-0.01 \times 50}) = e^{-0.5} e^{-1}$$

$$0.6065 - 0.3679 = 0.2386$$

EN UNA CENTRAL DE COMUNICACIONES SE TIENE UNA DEMANDA MEDIA DEL SERVICIO DE 8 LLAMADAS CADA MINUTO. CALCULAR LAS PROBABILIDADES DE QUE EN 2 MINUTOS NO SE SOLICITE EL SERVICIO, DE QUE SE SOLICITE SOLO UNA VEZ, Y MAS DE UNA VEZ.

$$f_X(0) = P[X=0] = \frac{(\lambda t)^0 \cdot e^{-8x^2}}{0!} = e^{-16} = 0.00004$$

$$f_{\chi}(1) = \frac{16^1 e^{-16}}{1!} = 0.00064$$

$$P[X>1] = 1 - (0.00004 + 0.00064) = 0.99932$$

MEDIANTE UN ESTUDIO ESTADISTICO SOBRE LA OCURRENCIA DE MAREMOTOS

EN LA COSTA MEXICANA DEL OCEANO PACIFICO SE ESTIMO QUE UNA OLA

DE 4m DE ALTURA O MAYOR SOBRE EL NIVEL DE LA MAREA TIENE UN PERIO
DO DE RECURRENCIA DE 100 AÑOS. CALCULAR LAS PROBABILIDADES DE QUE

EN LOS PROXIMOS 10, 50 y 100 AÑOS NO OCURRA NINGUN MAREMOTO EN DICHA

REGION CUYA OLA MAXIMA EXCEDE DE 4m; SUPONIENDO QUE LA OCURRENCIA

DE LOS MAREMOTOS SE PUEDE MODELAR MEDIANTE UN PROCESO ESTOCASTICO

DE POISSON.

LA DISTRIBUCION DE PROBABILIDADES DE LA VARIABLE ALEATORIA X=NUMERO DE MAREMOTOS CUYA OLA MAXIMA ES MAYOR DE 4m, CON $\lambda=1/100=0.01$ ES

$$f_{x}(x) = \frac{(\lambda t)^{x}e^{-\lambda t}}{x!} = \frac{(0.01t)^{x}e^{0.01t}}{x!}$$

FOR LO TANTO, PARA t=10, 50 Y 100 ANOS, SE TIENE, RESPECTIVAMENTE, QUE:

$$f_{X}(0) = \frac{(0.01 \times 10)^{0} e^{-0.01 \times 10}}{0!} = e^{-0.1} = 0.905$$

6)
$$f_X(0) = \frac{(0.01 \times 50)^0 e^{-0.01 \times 50}}{0!} = e^{-0.5} = 0.607$$

6)
$$f_X(0) = \frac{(0.01 \times 100)^0 e^{-0.01 \times 100}}{0!} e^{-1} = 0.368$$

PARA ESTE MISMO PROBLEMA, LAS PROBABILIDADES DE QUE OCURRA AL MENOS UN MAREMOTO CON OLA MAXIMA MAYOR DE 4m SON, RESPECTIVAMENTE,

a)
$$P[X \ge 1] = 1 - f_X(0) = 1 - 0.905 = 0.095$$

(b)
$$P[X \ge 1] = 1 - 0.607 = 0.393$$

c)
$$P[X \ge 1] = 1-0.368 = 0.632$$

SE SABE QUE UNA MAQUINA QUE PRODUCE PAPEL PARA DIBUJO, LO HACE CON UN DEFECTO POR CADA 100 M FABRICADOS

> a. ¿CUAL ES LA PROBABILIDAD DE TENER CERO DEFECTOS EN UN PLIEGO DE 20 M?

 $\lambda = 1/100 = 0.01$ DEFECTOS /METRO

$$P(X = 0) = \frac{\lambda t e^{-\lambda t}}{x!} = \frac{0.01x20 e^{-0.01x20}}{0!} = \frac{0.01x20 e^{-0.01x20}}{0!}$$

$$\frac{0.2 e^{-0.2}}{0!} = 0.164$$

(EN ESTE CASO t = LONGITUD)

b. ¿CUAL ES LA PROBABILIDAD DE TENER UN DEFECTO EN 20m)

$$P(X = 1) = \frac{0.2 e^{-0.2}}{1!} = 0.164$$

c. ¿CUAL ES LA PROBABILIDAD DE TENER UNO O CERO DEFECE TOS?

$$P(0 \le x \le 1) = P(X = 0) + P(X = 1) = 0.164 + 0.164 = 0.328$$

d. ¿CUAL ES LA PROBABILIDAD DE TENER MAS DE UN DEFECTO?

$$P(X > 1) = 1 - P(X \le 1) = 1 - 0.328 = 0.672$$

SE SABE QUE EN CIERTA ZONA GEOGRAFICA SE LOCALIZA UNA ESPECIE ANIMAL RARA A RAZON DE 2 EJEMPLARES POR 100 KM². SI SE TOMA UNA FOTOGRAFIA AEREA QUE ABARQUE 120 KM², ¿CUAL ES LA PROBABILIDAD DE LOCALIZAR 5 ANIMALES?

CON
$$\lambda = \frac{2}{100} = 0.02$$
 ANIMALES/KM²

$$P(X = 5) = \frac{\lambda t e^{-\lambda t}}{x!} = \frac{0.02 \times 1.20 e^{-0.02 \times 1.20}}{5!} = \frac{2.4 e^{-2.4}}{5!} = \frac{0.219}{5!} = 0.00183$$

(EN ESTE CASO t= AREA)

¿CUAL ES LA PROBABILIDAD DE LOCALIZAR UN ANIMAL?

$$P(X = 1) = \frac{2.4 e^{-2.4}}{1!} = 0.219$$

¿CUAL ES LA PROBABILIDAD DE NO LOCALIZAR NINGUNO?

$$P(X = 0) = \frac{0.219}{0!} = 0.219$$

¿CUAL ES LA PROBABILIDAD DE LOCALIZAR MAS DE UNO?

$$P(X > 1) = 1 - P(X \le 1) = 1 - (0.219 + 0.219) = 0.562$$

VARIABLES ALEATORIAS CONTINUAS

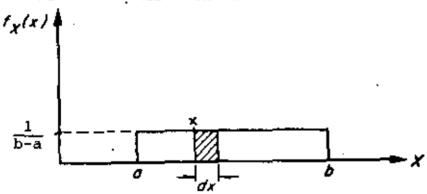
DISTRIBUCION UNIFORME

SE DICE QUE UNA VARIABLE ALEATORIA CONTINUA, X, TIENE DISTRIBUCION UNIFORME ENTRE $X = a \ Y \ X = b(b > a)$ SI

$$f_X(x) = CONSTANTE = \frac{1}{b-a}$$
 $\beta = 0.003 \pm \frac{1}{b}$

LO QUE SIGNIFICA QUE LA PROBABILIDAD DE OBTENER UN VALOR ENTRE
X Y x + dx ES LA MISMA PARA CUALQUIER x COMPRENDIDA ENTRE a Y b.

LA GRAFICA DE DICHA DISTRIBUCION ES



Distribución uniforme de una variable aleatoria continua

LA ESPERANZA Y LA VARIANCIA DE LA DISTRIBUCION UNIFORME SE CALCULAN DE LA SIGUIENTE MANERA:

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \left[\frac{x^{2}}{2(b-a)} \right]_{a}^{b} = \frac{b^{2}-a^{2}}{2(b-a)} = (b+a)/2$$

$$\sigma^{2}(X) = \int_{a}^{b} (x-E[X])^{2} \frac{1}{b-a} dx = \int_{a}^{b} \frac{x^{2}}{b-a} dx + \int_{a}^{b} \frac{(E[X])^{2}}{b-a} dx - \int_{a}^{b} \frac{2xE[X]}{a-b} dx$$

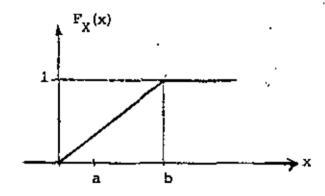
$$= \left[\frac{x^3}{3(b-a)}\right]_a^b + \left[\frac{(E[X])^2}{b-a} \times \right]_a^b - \left[\frac{2[E[X]]}{b-a} \frac{x^2}{2}\right]_a^b =$$

$$= \frac{b^3 - a^3}{3(b-a)} + (E[X])^2 - E[X](b+a) \approx \frac{(b-a)^3}{12}$$

LA DISTRIBUCION DE PROBABILIDADES ACUMULADAS ES

$$F_{X}(x) = \int_{a}^{x} f_{X}(u) du = \int_{a}^{x} \frac{1}{b-a} du = \frac{x-a}{b-a}, a \le x \le b$$

LA GRAFICA DE ESTA FUNCION ES UNA LINEA RECTA DE a A b:



EJEMPLO

¿CUANTO VALE LA PROBABILIDAD DE QUE X SEA MENOR QUE 1/3, SI ES UNA VARIABLE ALEATORIA CON DISTRIBUCION UNIFORME EN EL IN-TERVALO 0-1?

$$F_X(\frac{1}{3}) = \frac{x-a}{b-a} = \frac{\frac{1}{3}-a}{b-a}$$

PARA a = 0 Y b = 1 NOS QUEDA

$$F_X(\frac{1}{3}) = \frac{\frac{1}{3} - 0}{1 - 0} = \frac{1}{3}$$

DISTRIBUCION NORMAL

UNA DE LAS DISTRIBUCIONES DE VARIABLES ALEATORIAS CONTINUAS MAS UTIL ES LA DISTRIBUCION NORMAL O DE GAUSS, DEFINIDA POR LA ECUACION

$$f_{\chi}(x) = \frac{1}{\sigma/2\pi} e^{-(x-\mu)^2/2\sigma^2}$$

DONDE μ ES LA MEDIA Y σ LA DESVIACION ESTANDAR DE χ .

SI SE HACE LA TRANSFORMACION

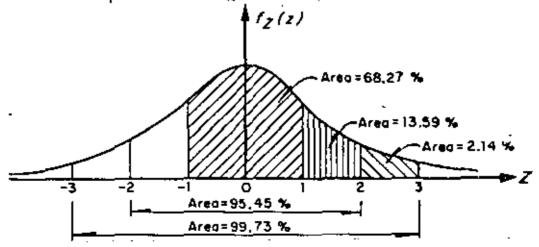
$$Z = (X-\mu)/\sigma \ (E(Z) = E \frac{x-\mu}{\sigma} \frac{E(x)-\mu}{\sigma} = 0; \ \sigma^2(Z) \frac{\sigma^2(x)}{\sigma^2} = 1)$$

ENTONCES LA ECUACION ANTERIOR SE REDUCE A LA LLAMADA FORMA ESTANDAR, CUYA ECUACION ES

$$f_z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} ; F_z(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

EN ESTE CASO LA VARIABLE ALEATORIA Z TIENE DISTRIBUCION NORMAL CON MEDIA IGUAL A CERO Y VARIANCIA IGUAL A UNO.

EXISTEN TABLAS PARA CALCULAR LAS PROBABILIDADES DE UNA VARIABLE ASO-CIADA A UNA DISTRIBUCION NORMAL ESTANDAR. EN LA SIGUIENTE FIGURA SE MUESTRA LA FORMA DE CAMPANA DE ESTA DISTRIBUCION, OBSERVANDOSE LA SIMETRIA RESPECTO A Z=E(Z)=O Y QUE ES ASINTOTICA AL EJE Z.



Distribución normal de una unrichle alegatoria constiuu

LA UTILIDAD DE LA DISTRIBUCION NORMAL ESTANDAR RADICA EN QUE

$$P[x_1 \le x \le x_2] = \int_{x_1}^{x_2} f_X(x) dx = P[z_1 \le z \le z_2] = \int_{z_1}^{z_2} f_Z(z) dz$$

DONDE

$$z_1 = \frac{z_{1-\mu}}{\sigma} \quad y \quad z_2 = \frac{x_{2-\mu}}{\sigma}$$

EJEMPLO

COMO RESULTADO DE UNA LARGA SERIE DE EXPERIMENTOS PROBANDO A COMPRESION SIMPLE CILINDROS DE CONCRETO, SE HA ESTIMADO QUE LA ESPERANZA DE LA RESISTENCIA ES DE 240 KG/CM² Y LA DESVIACION ESTANDAR DE
30 KG/CM².

- A) ¿CUAL ES LA PROBABILIDAD DE QUE OTRO CILINDRO TOMADO AL AZAR RESISTA MENOS DE 240 KG/CM²?
- B. ¿CUAL ES LA PROBABILIDAD DE QUE RESISTA MAS DE 330 KG/CM²?
- C) ¿CUAL ES LA PROBABILIDAD DE QUE SU RESISTENCIA ESTE EN EL INTER-VALO DE 210 A 240 KG/CM²?

SUPONGASE QUE LA DISTRIBUCION DE PROBABILIDADES ES NORMAL. SOLUCION

A) PARA EMPLEAR LAS TABLAS DE DISTRIBUCION NORMAL ES NECESARÍO ESTANDARIZAR LA VARIABLE X, EMPLEANDO $\mu=240$ Y $\sigma=30$, CON $x_1=240$:

$$z_1 = \frac{240 - 240}{30} = 0$$

RECURRIENDO A LA TABLA DE LA DISTRIBUCION NORMAL SE OBTIENE

$$P[X \le 240] = P[Z \le 0] = 0.5$$

O SEA, LA PROBABILIDAD QUE CORRESPONDE AL AREA SOMBREADA DE LA SI-GUIENTE FIGURA:

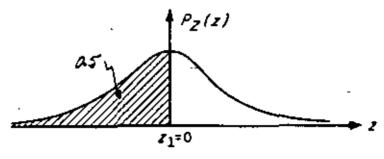


Fig 16. Distribución normal correspondiente al inciso c del ejemplo

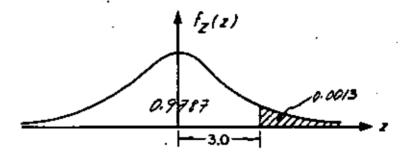
B) EL VALOR ESTANDARIZADO DE LA VARIABLE, PARA $x_1 = 330 \text{ kg/cm}^2$, ES

$$z_1 = \frac{330 - 240}{30} = 3$$

POR LO QUE

$$P[X \ge 330] = P[Z \ge 3] = 1-0.9987 = 0.0013$$

QUE ES EL AREA SOMBREADA DE LA SIGUIENTE FIGURA:



Distribución normal correspondiente al inciso b del ejemplo

c) los valores estandarizados de la variable, para $x_1=210 \text{ Y}$ $x_2=240 \text{ SQN}$:

$$z_1 = \frac{210 - 240}{30} = -1$$

$$z_2 = \frac{240 - 240}{30} = 0$$

POR LO QUE

$$P[210 \le X \le 240] = P[-1 \le Z \le 0] = 0.3413$$

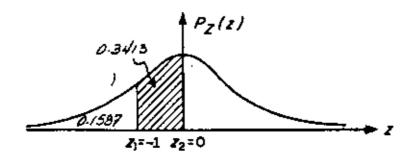


Fig 16. Distribución normal correspondiente al inciso c del ejemplo

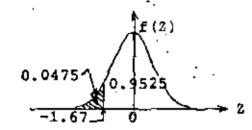
EJEMPLO

SE HA ENCONTRADO QUE LA VARIABLE ALEATORIA "ERROR EN LA MEDI-CION DE LAS DISTANCIAS ENTRE DOS PUNTOS" TIENE DISTRIBUCION NORMAL CON MEDIA CERO. SI SE SABE QUE EL TAMAÑO VERDADERO DE UNA LINEA ES DE 2 M Y QUE LA VARIANCIA DE SUMEDICION ES 9CM², CALCULAR LA PROBABILIDAD DE QUE EN UNA MEDICION LA LONGITUD QUE SE REGISTRE SEA

- a, MENOR DE 195 CM
- b. MAYOR DE 203 CM
- c. COMPRENDIDO ENTRE 198 Y 202 CM.

a.
$$P(X < 195) = ? CON \mu = 200 CM Y \sigma = \sqrt{9} = 3 CM$$

$$z = \frac{195-200}{3} = \frac{-5}{3} = -1.6$$



 $P(X/<195) = P(Z<+1.67) = 0.0475=4.75e^{-1}$

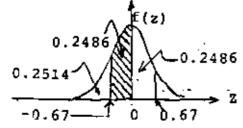
b.
$$z = \frac{203 - 200}{3} = 1$$

$$P(X > 203) = 1 - P(X \le 203) = 1 - P(Z \le 1) = 1 - 0.8413 = 0.1587 = 15.87$$

c.
$$P(198 < X < 202) = ?$$

$$z_1 = \frac{198 - 200}{3} = -0.67, z_2 = \frac{202 - 200}{3} = 0.67$$

P(198 < X < 202) = P(-0.67 < Z < 0.67) = 2x0.2486 = 0.4972 = 49.72 < 0.67



TEOREMA CENTRAL DEL LIMITE

SEAN LAS VARIABLES ALEATORIAS X₁, X₂,..., X_k, CON/DENSIDADES DE

PROBABILIDADES (ARBITRARIAS), CUYA SUMA SE DENOTARA COMO W, ES DECIR

$$-w = x_1 + x_2 + \dots + x_k$$

ES POSIBLE DEMOSTRAR EL TEOREMA DENOMINADO TEOREMA CENTRAL DEL LIMITE,

CUYO ENUNCIADO INDICA QUE CONFORME AUMENTA EL NUMERO DE VARIABLES

INVOLUCRADAS EN LA SUMA ANTERIOR (AL AUMENTAR k), LA DENSIDAD DE

PROBABILIDADES DE W TIENDE A SER LA DISTRIBUCION NORMAL. ADEMAS

SE PUEDE DEMOSTRAR QUE SI TODAS LAS VARIABLES X1, X2, ..., Xk TIENEN

DISTRIBUCION NORMAL, ENTONCES, RIGUROSAMENTE, W TAMBIEN LA TIENE,

INDEPENDIENTEMENTE DEL NUMERO DE VARIABLES QUE APAREZCAN EN LA SUMA.

A PARTIR DEL TEOREMA DEL LIMITE CENTRAL SE DEMUESTRA QUE LA DISTRIBUCION DE BERNOULLI SE PUEDE APROXIMAR MEDIANTE LA NORMAL CUANDO EL NUMERO DE REPETICIONES DEL EXPERIMENTO ES GRANDE (30 O MAS), CON LO CUAL SE LOGRA UN AHORRO CONSIDERABLE DE LABOR NUMERICA EN LA SOLUCION DE ALGUNOS PROBLEMAS. PARA MEJORAR ESTA APROXIMACION, CONVIENE EFECTUAR UNA CORRECCION POR CONTINUIDAD, LA CUAL SE JUSTIFICA POR USAR UNA DISTRIBUCION CONTINUA EN VEZ DE UNA DISCRETA, SUMANDO O RESTANDO, SEGUN SEA EL CASO, 0.5 AL VALOR DE X QUE SE USE. POR EJEMPLO, SI SE DESEA CUANTIFICAR LA PROBABILIDAD DE QUE DE 2000 ENSAYES SE LOGREN DE 3 A 6 EXITOS, LOS LIMITES REALES QUE SE DEBEN USAR AL APLICAR LA DISTRIBUCION CONTINUA SON X1=2.5 Y X2=6.5.

EJEMPLO

SI LA PROBABILIDAD DE QUE FALLE UNA VARILLA DE ACERO AL APLICARLE CIERTA CARGA ES DE 0.001, DETERMINAR LA PROBABILIDAD DE QUE EN 2000 VARILLAS PROBADAS FALLEN MAS DE DOS.

USANDO LA DISTRIBUCION DE BERNOULLI SE OBTIENE

$$P[X > 2] = 1 - P[X \le 2] = 1 - \{P[X = 0] + P[X = 1, + P[X = 2]) = 1 - \{\frac{2.000!}{2.000!} (0.001)^{0} (0.999)^{2.000} + \frac{2.000!}{1.999!} (0.001)^{1} (0.999)^{1.999} + \frac{2.000!}{1.998!} (0.001)^{2} (0.999)^{1.998} \} = 0.3233$$

LOS CALCULOS NECESARIOS PARA OBTENER LA SOLUCION SON BASTANTE MAS TEDIOSOS QUE LOS QUE DEBEN EFECTUARSE APROVECHANDO QUE EL NUMERO. DE REPETICIONES DEL EXPERIMENTO ES GRANDE, A FIN DE UTILIZAR LA DISTRIBUCION NORMAL. EN ESTAS CIRCUNSTANCIAS, LA PROBABILIDAD DE QUE X<2 EN EL CASO DISCRETO, EQUIVALE A LA DE QUE X<2.5 EN EL CONTINUO; ASI

$$\mu = np = 2 000 \times 0.001 = 2 \text{ (SE USA LA MISMA MEDIA)}.$$

$$\sigma = \sqrt{npq} = \sqrt{2 000 \times 0.001 \times 0.999} = 1.41$$

$$P[X \le 2.5] = P[Z \le \frac{2.5 - 2}{1.41}] = P[Z \le 0.355] = 0.6387$$

DE DONDE

$$P[x>2,5]=1-P[x\leq2.5]=1-0.6387=0.3613$$

EJEMPLO

EN UNA SERIE DE 462 EXPERIMENTOS CON FINES ANTROPOLOGICOS, CONSISTENTES EN MEDIR EL TAMAÑO DE LA CABEZA DE LOS INDIGENAS RESIDENTES EN UNA ZONA TROPICAL, SE OBTUVIERON LOS RESULTADOS ANOTADOS EN LAS DOS PRIMERAS COLUMNAS DE LA SIGUIENTE TABLA. SI LA VARIABLE ALEATORIA "TAMAÑO DE LA CABEZA" SE CONSIDERA QUE TIENE DISTRIBUCION NORMAL, ¿QUE CANTIDAD DE RESULTADOS SE ESPERARIA OBTENER ANTES DE HACER LAS MEDICIONES, SI SE CONSIDERA QUE $\mu=\bar{x}=191.8$ mm y $\sigma=s=6.48$ mm, Donde $\bar{x}=$ Promedio Aritmetico y s=Desviacion estandar DE LOS DATOS?

$$z_1 = \frac{171.5 - 191.8}{6.48} - 3.13; \ z_2 = \frac{175.5 - 191.8}{6.48} - 2.51; \ x_3 = \frac{179.5 - 191.8}{6.48} =$$

= -190; ETC.

 $P(-3.13 \le Z \le -2.51) = 0.0051; P(-2.51 \le Z \le -1.90) = 0.0227;$

 $P(-1.90 \le Z \le -1.28) = 0.9716$, ETC.

 $462 \times 0.0051 = 2.4$; $462 \times 0.0227 = 10.5$; $462 \times 0.0716 = 33.1$, ETC.

INTERVALO DE VALORES DE X, EN MM	NUMERO DE OB- SERVACIONES (frecuencia,f)	INTERVALO DE $Z = \frac{X - \mu}{\sigma}$	PROBABILIDAD	FRECUENCIA ESPERADA = 462 P
171.5-175.5	3	(-3.13)-(-2.51)	0.0051	2.4
175.5-179.5	9	(-2,51)-(-1.90)	0.0227	10.5
179.5-183.5	29	(-1.90)-(-1.28)	0.0716	33.1
183.5-187.5	76	(-1.28)-(-0.66)	0.1543	71.3
187.5-191.5	104	(-0.66)-(-0.05)	0.2255	104.2.
191.5-195.5	110	(-0.05)- 0.57	0.2356	108.8
195,5-199,5	88	0.57 - 1.19	0.1673	77.3
199.5-203.5	30	1.19 - 1.80	0.0811	37.5
203.5-207.5	6	1.80 - 2.42	0.0281	13.0
207.5-211.5	4	2.42 - 3.04	0.0066	3.0
211.5-215.5	2	3.04 - 3.66	0.0011	0.5
215.5-219.5	1	3.66 - 4.27	0.0001	0.0
			, 	

TOTAL: 462

TOTAL: 461.6

TABLA 3

					DAR .	•					
F	UNCI	ON D	E DI	STRI	BUCIO	ON NO	RMAL	EST	ANDAI	٦,	f _z (z)
				:	Z						'Z 147
		_		[1 1	-e-u	2/2				
		F,	(z) '	■	73	-e ^{-u}		du -	- ,	A	\
		_		1	V 2 T						\
							•			*	
			_							2	<u> </u>
Ž	0	1	2	3	4	5	.6	. 7	8	9]
-3.	.0013		`				и. ;				
-2.9	.0019	8100.	.0017	.0017	.0016	.0016	.0015	.0015	.0014	.0014	,
-2.8		,0025				.0022	.0021	.0021	.0020	.0019	
-2.7	.0035		.0033			.0030		.0028	.0027	.0026	I
~2.6	.0047			.0043		.0040		.0038	.0037	.0036	
-2.5		.0060				.0054		.0051	.0049	.0048	
	İ						***				
	.0082		.0078		.0073	.0071	.0069	.0068	.0066	,0064	}
-2.3		.0104	.0102	.0099		.0094	.0091		.0087	.0084	ì
-2.2	.0139		.0132			.0122		.0116	.0113	.0110	i
-2.1	.0179		.0170			.D158		.0150	.0146	.0143	
-2.0	.0227	.0222	.0217	.0212	.0207	.0202	.0197	.0192	8810.	.0183	
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	,0233	
-1.8	.0359	.0351	.0144	.0336	.0329	.0322	.0314	.0307	.0300	.0294	
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367	ł
-1.6	.0348	.0537	.0526	-0216	.0505	.0495	.0485	.0475	.0465	.0455	
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559	
-1.4	.0808	.0793	.0778	0764	.0749	.0735	0721	.0708	.0694	.0681)
-1.3	.0968		.0934		.0901	.0885		.0853	.0838	.0823	!
-1.2	.1151	.1131	.1112		.1075		.1038	.1020	.1003	.0985	ĺ
-1.1	.1357	.1335	.1314		.1271	.1251	.:230	.1210	.1190	.1170	ł
-1.6	.1587	.1562	.1539	.1515		.1469		.1423	.1401	.1379	i
9	.184)	1814	.1788	.1762	1716	.1711	1625	1660	.1635	.1611	
8	.2119	.2090	.2061	.2033			.1949	.1921	.1894	.1867	I
_;;; <u> </u>						.2266				.2148	
	.2743					.2578			2483		I
~.5						.2912				2776	ļ
					-]
						.3264			.3156		1
						.3632				.3483	1
						.4013			.3697		i
						.4404			,4286		1
—.0 i	.5000	.4950	.4920	.4880	,4840	~4801	.4761	.4721	.4681	.4641	1

TABLA 3 (continuación)

FUNCION DE DISTRIBUCION NORMAL ESTANDAR

$$F_{Z}(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-u^{2/2}} du$$

DAR	f _Z (z) ↑	
X		
		 >z

Z	`0	l,	2	3	4	5	6	7	8	9
.0	.5000	.5040	5080	,5120	.5160	.5199	.5239	.5279	.5319	.5359
1,	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	,6141
.3	.6179	.6217	.6255	,6293	.6331	.636%	.6406	.6443	.6480	.6517
,4 .	.6554	.6591	. 66 28	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	6985	,7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	,7422	.7454	3486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	,7823	.7852
.в	,7881	7910	.7939	.7967	.7995	.802.3	.8051 -	.8079	,8106	.8133
٠,٧	.8159	.8186	.8212	,8238	.8264	.82E9	.8315	.8340	.B365	.8389
1.0	.8413	8438	.8461	.8485	.8508	.8531	-8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
2.4	.9192	.9207	9222	.9236	.9251	.9265	.9279	,9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	9370	:9406	.9418	.9429	.9441
1.6	.9452	.9463	,9474	.9484	,9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	,9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	1.9656	.9664	.9671	.9678	,9686	.9693	.9700	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	,9750 [†]	.9756	.9761	.9767
2.0	.9773	.9778	.9783	,9788	.9793	,9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838		9846	.9830	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	1880.	.9884	.9887	.9890
2.5	.9893	.9896	.9898	.9901	.9904	.9906		.9911	.9913	.9916
2,4	.9918	.9920	,9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	1.9948	.9949	.9951	.9952
2.€	.9953	,9955	,9956	,9957	.9959	.9960	1899,	.9962	.9963	,9964
2,7	.9965	.9966	,9967	.996B	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9935	.9986	.9986
3.	.9987						,			

- ILCUTOSPATIA SELECCIONADA SOBRE TEORIA DE LA PRODABILIDAD.
 STADISTICA MATEMATICA, ESTADISTICA APLICADA, MUESTREO, Y
 PROCESOS ESTOCASTICOS, Y SUS APLICACIONES A LA INGENIERIA,
 DISPONIBLE EN LA BIBLIOTECA DE LAS DIVISIONES DE INVESTICATION Y DE ESTUDIOS SUPERIORES.
- Anderson, T., and D. Darling, Asymptotic theory of certain goodness of fit criteria based on stochastic processes. C-1097, A
- Arrow, K., et al. Bayes and minimax solutions of sequential decision problems. C-1101, A
- Bair, D., Experimentation: an introduction to measurement theory and experiment design, Prentice Hall, 1962, QC39-82
- Barucha-Reld, A., ed., Probabilistic methods in applied mathematics, Academic Press, 1968, QA273 842
- Bellman, R., Programmed statistics; with chapters on probability, computer theory, and programmed instruction, Holt, Rinehart and Winston, 1970, HA29 B45
- Benjamin, J., Probability, statistics, and decision for civil engineers, NcGraw-Hill, 1970, QA273 646
- 7. Bhat, U., Elements of applied process, Wiley, 1972. QA274 B42
- Blackman, R., Linear data-smoothing and prediction in theory and practice. Addison-Wesley, 1965. QA275 855
- Blackwell, D., Another countable Markow process with only instantaneous states. C-1589. B.
- i. Box. G.. A bayesian approach to\some outlier problems. C-1586, 8

- 1). Box, G., Time series analysis; forecasting and contri-Holden-Day, 1970, QA276 B6
- 12. Box, G., Evolutionary operation; a statistical method for process improvement, Wiley, 1969, TPISS.7 860.
- 13. Breiman, L., Probability and stochastic processes. Houghton Hifflin, Co., 1969, QA273 873
- 14. Breipohl, A., Probabilistic system analysis; an introduction to probabilistic models, decisions, and applications of random processes, Wiley, 1970. QA273 8746
- 15. Brown, R., Smoothing, forecasting and prediction of discrete time series, Prentice-Hall, 1963, TA168 B6
- 16. Brown, W., and C. Palermo, Hundon processed, communications, and radar, McGraw-Hill, 1969, TK5101 B75
- Brownlee, K., Statistical theory and methodology in science and engineering, Wiley, 1960. QAZ76 B77
- Bruning, J. and B. Kintz, Computational handbook of statistics, Scott, Foreman and Co., 1968. HA29 877
- Bush, R., A stochastic model with applications to learning. C-1590, 'B
- 20. Castro, G. de, Introducacio ao curso sobre Instrumento matematicos da estatística, F-2164, C.
- Clarke, B., Probability and random processes for engineers and scientists, Wiley, 1970. QA273 C48
- Cochran, W., Experimental designs, Wiley, 1957.
 Q180 A106
- 23. Conover, V., Practical nonparametric statistics, Viley, 1971. QAZ78.8 C65

- Cooper, G. Probabilistic methods of signal and systems analysis, Holt, Rinehart and Winstons, 1971. TK454.2 C664
- 25. Cornell, C., A probability-based structural code, ACI, 1968.
- 26. Derman, C., Finite state markovian decision processes.
 Academic Press, 1970.
- 27. Deutsch. R., Nonlinear transformation of random processes. \$17.7 D.
- 28. Dubes, R., The theory of applied probability, Prentice-Hall, 1968. TK5101 08
- 29. Dynkin, E., Harkow processes; theorems and problems, Plenum Press, 1969. QA273 0894
- 30. Edwards, A., Experimental design in psichological research, Holt-Rinehart and Winsont, 1968.
 BF59 E37
- 31. Ehrenfeld, S. and S. Littauer, introduction to statistical method, McGraw-Hill, 1964, 519.9 E
- Esteva, L.. Consideraciones práctias en la estimación bayesiana de riesgo sísmico, México, UNA. Instituto de Ingeniería, 1970. F-8843. E
- 33. Feller, W.._Introducción a la teoría de probabilidades y sus aplicaciones, Limusa-Wilesy, 1973. QA273 F3714
- ¿. forcadas, J., Estadística aplicada a la ingeniería, 1969, QAZ76 F66
- 35. Freeman, H., Introducción a la inferencia estadística, Trillas, 1970, QAZ76 F6845...
- 36. Freund, J., Hathematical statistics, Prentice Hail, 1971. QA276 F692

- 37. Freudenthal, H., Probability and statistics, Elsevier, 1965. QA273 F75
- 38. García, A.. Elementos de método estadístico. México, UNA, 1966, HA29 G146
- 39. Gotkin, L., Estadística descriptiva; texto programa: Limusa-Wiley, 1967, BA29 G695
- Greenwood, A. and H. Hartley, Guide to tables in mathematical statistics, Princenton University Pres 1962, 519.9 G
- 41. Grenander, U., Statistical spectral analysis of time series arising from stationary stochastic processes C-1588, G
- 42. Hanman, H., Hodern factor analysis, University of Chicago Press, 1967, QA276 H38
- 43. Hanna, E., Time series analysis, Methuen, 1960. QA76 x32
- 44. Hays, W., Statistics: probability inference and decisions, Holt-Rinchart and Winston, 1970, QA276 #3
- 45. Hoel, P., Elementary statistics, Wiley, 1971, HQ29 HS
- 46. Hoel, P., et al. introduction to stochastic processes. Houghton, Hifflin, 1972, QA274 H63
- 47. Howard, R., Dynamic probabilistic systems, Wiley. 1971 T57.95 H66
- 48. Iosifoscu, M., Random process and learning. **
 Springer Verlag, 1969. QA273 164
- 49. Jazwinski, A., Stochastic process and filtering theory, Academic Press, 1970. QA276 J38
- 50, Kefer, J. and J. Wolfowitz, Sotchastic estimation of the maximum of a regression function. C-1481, K

- 51. kemeny, J., Finite Markow chains, Van Nostrand, 1960. QA273 K33
- 52. Kish, L., Huestreo de encuestas, Trillas, 1972. HN29 K5
- Kozin, F. and J. Bogdanoff, An introduction to random function for engineer, 1963. F-1930. K
- 54, Kyburg, H., Probability theory, Prentice-Hall, 1969. 0A273 K92
- 55. Lange, F., Correlation techniques: Foundation and applications of correlation analysis in modern communications, measurement and control, Iliffe, 1967. TK7870 L34
- 56, Larson, H.. Introduction to probability theory and statistical inference, Wiley, 1969. QA273 L37
- 57. La Valle, I., An introduction to probability decision, and inference, 1970, QA276 L36
- Lecture notes in mathematics, probability and information theory, Springer Verlag, 1964, QAI L42
- 59. Lee, T., et al. Estimating the parameters of the Markow probability model, North Holland, 1970. HB74 H3L43
- 60. Lindgren, B., Statistical theory, Macmillan, 1968. QA276 L55
- 61. Lin, Y., Random processes, F-8709, L
- Prelewicz, D., Range of validity of the method of averaging, F-9116, P
- 63. Prohorov: Y., Probability theory: basic concept, light theorems, random processes, Springer Verlag, 1969, QAZ73 P75

- 64. Raiffa, H. and R. Schlaifer, Applied statistical decision theory, Harvard University Press, 1971. QAZ79,4 834
- 65 Raj, D., Sampling theory, McGraw-Hill, 1968, 0A276.6 R33
- 66. Raj, D., Design of sample survey, McGraw-Hill, 1972. HA312 R33
- 67. Rascón, O., Introducción a la teoría de probabilidades México, UNA, 1971, QAZ73 R37
- 68: Rascón, O., Introducción a la estadística descriptiva. 1970. RA31 R37
- 69. Ravindra, M., Probabilistic evaluation of safety factors, University of Waterloo, 1969, F-8680, R
- Robinson, E., Hultichanel time series analysis with digital computer programs, Holden-Day, 1967. QA276 R633
- Rosenblueth, E., Current research on probabilistic methods at the National University, C-1517, R^{*}
- 72. Ross, S., Applied probability models with optimization applications, Holden-Day, 1970. QA273 R67
 - Sage, A., Estimation theory with applications to communications and control, McGraw-Hill, 1971. QA276.8 S33
- __74_ Savage, L., The theory of static decision, C-1098, S
 - 75. Sawaragi, Y., Statistical decision theory in adaptive control system. Academic Press, 1967. QA402.3 S37
 - 76. Schäl, H., Harkow renewal processes with auxiliary phass, C-1617. S

- 77. Schlaifer, R., Probability and statistics for business decisions and introduction to mangerial. economics under uncertainty, HcGraw-Hill, 1959. HD38 S35
- 78. Schwarts, J., Statistical methods in traffic engineering, The Ohio State University, 1967. HE336 S7S3
- 79. Searle, S., Linear models, Wiley, 1971. QA279 S4
- 80. Sengupta, J., Stochastic programming methods and applications, North Holland, 1973. T57.79 S44
- 81. Sengupta, S. and S. Jain, A representative theory for measurable random variable, F-5967, 5
- 82. Sheppard, R., Multidimensional scaling, Seminar Press, 1972. CF39 H84
- 83, Spiegel, H., Theory and problems of statistics, Schaum's Publishing, Co., 1960, HA29 S65
- 84. Sterling, T., Introduction to statistical data processing, Prnetice-Hall, 1968, QA276.4 S82
- 85. Stratonovich, R., Conditional Markow processes and their application to the theory of optimal control. Elsevier, 1968. QA273 S76
- 86. Symposium on time series analysis proceedings, held at Brown University, June 11-14, 1962, Ed. by Murray Rosenblatt, New York, John Wiley and Sons, 1963, 519.9.5
- 87. Tannur, H., Statistics: a guide to the unknow, Holden Day, Inc., 1972, QA276 S82
- 88. Thell, H., Statistical decomposition analysis with applications, North Holland, 1972, H61 T43

- 89. Thomas J., An introduction to statistical, communication theory, Wiley, 1989. TK\$102.5 T45
- 90. Tinther, G., Stochastic economics, stochastic processes, control and programming, Academic Press, 1972. QA274 T5%
- 91. Turkstra, C., Applications of bayesian decision theory, University of Waterloo, 1969, F-8619, T
- 92. Turkstra, C., Elements of probability theory. F-9105, T
- 93. Turkstra, C., Theoretical distribution functions. F-9104, T
- 94. Valdes, R., Nociones de cálcuiu de probabilidades y estadística, Limusa-Wiley, 1970. QAZ73 V34
- 95. Van der Gerr, J., Introduction to multivariate analysis for the social sciences, Freeman, 1971. QA278 V34
- 96; Vere-Jones, D., Stochastic models for earthquake occurence; discussion_ F-9247, V
- 97. Waerden, 8.. Hathematical statistics. Springer-Verlag. 1957. QA276 W3
- 98. Wold, H., ed., Bibliography on time series stochastic processes: an international team project. Edinburgh, Oliver and Boyd, 1965.
- 99. Yaglom, A., An Introduction to the theory of stationar random function, Prentice-Hall, 1962, 517.5 Y

Recopilación elaborada par el provesor Autol Kleimon .

BIBLIOGRAFIA DE CONTROL DE CALIDAD

- Mathematical methods of statistical quality control,
 V. Sarkadi, Academic Press, 1974
- Sensibilidad estadística de cartas de control de calidad, Universidad de La Habana, Centro de Información Científica y. Técnica, 1971
- Control de calidad, Seminario, Memoria del Instituto Mexicano del Petróleo, Publicación No. 69 JF/050, Ed. Instituto Mexicano del Petróleo, 1969
- 4. Control de calidad estadístico, E.L. Grant, Ed. CECSA, 1974
- Control total de la calidad, A.V. Feigenbaum, Ed. CECSA, 1975
- 6. Practical Quality Control, Simmons A. David, Ed. Addison-Wesley Publishing Company, 1970
- 7. Quality Control Handbook, J.M. Juran, Gryna, F.M. y R.J. Bingham, 3a. edición, Ed. McGraw-Hill, 1974
- 8. Quality Planning and Analysis, J.M.Juran y F.M. Gryna, Ed. McGraw-Hill, 1970
- Construction Specifications Writing: Principles and Procedures, H.J. Rosen, Ed. J. Wiley, 1974
- 10. Transactions of the American Society for Quality Control.

Kreyszig, E., "Introducción a la estadística matemática", Limusa-Wiley (1973)

Larson, H.J., "Introducción a la teoría de probabilidades e inferencia estadística", Limusa-Wiley (1978)

>		
`,		

PROBABILIDAD Y ESTADISTICA

ESTADISTICA DESCRIPTIVA

DR. OCTAVIO A. RASCON CHAVEZ

Junio, Julia, 1979

Poigole de Minerio - Celle de Tocubo 5. primer piso. - Máxico i

				٠ سد	
•					
				-	
					.)
					.,
			•		
		•			
	,				

ESTADISTICA DESCRIPTIVA

POR DR. OCTAVIO A. RASCON CH.

EXPERIMENTO

PARA FINES DE ESTE CURSO, SE ENTENDERA POR EXPERIMENTO A TODO PROCE SO DE OBSERVACION DE UN FENOMENO O VARIABLE DE INTERES. ASI UN EXPERIMENTO PUEDE SER PLANEADO Y REALIZADO POR EL HOMBRE, O PUEDE SER EFECTUADO POR LA NATURALEZA, EN CASO DE UN FENOMENO NATURAL. POR EJEMPLO, EL LANZAR UNA MONEDA O UN DADO Y OBSERVAR LA CARA QUE QUE DA HACIA ARRIBA ES UN EXPERIMENTO PLANEADO Y REALIZADO POR EL HOMBRE. EL OBSERVAR LA CANTIDAD DE AGUA QUE LLUEVE ANUALMENTE EN UNA CIUDAD, ES UN EXPERIMENTO ASOCIADO A UN FENOMENO NATURAL.

AL RESULTADO DE UN EXPERIMENTO SE LE DENOMINA <u>DATO</u>.

A UN GRUPO O COLECCION DE DATOS SE LE LLAMA MUESTRA.

PROBABILIDAD

ES UNA MEDIDA DE LA CERTIDUMBRE QUE SE LE ASOCIA A LA OCURRENCIA U
OBSERVACION DE UN RESULTADO DETERMINADO, AL REALIZARSE EL EXPERIMEN
TO CORRESPONDIENTE.

LA <u>TEORIA DE PROBABILIDADES</u> ES UNA RAMA DE LAS MATEMATICAS APLICADAS QUE TRATA LO CONCERNIENTE A LA ASIGNACION Y MANEJO DE PROBABILIDADES. ESTADISTICA: ES LA RAMA DE LAS MATEMATICAS QUE SE ENCARGA DE ENSE-NAR LAS REGLAS PARA COLECTAR, ORGANIZAR, PRESENTAR Y PROCESAR LOS DATOS OBTENIDOS AL REALIZAR VARIAS VECES EL EXPERIMENTO ASOCIADO A UN FENOMENO DE INTERES Y PARA INFERIR CONCLUSIONES ACERCA DE ESTE ULTIMO. PROPORCIONA, ADEMAS, LOS METODOS PARA EL DISEÑO DE EXPERIMENTOS Y PARA TOMAR DECISIONES CUANDO APARECEN SITUACIONES DE INCERTIDUMBRE.

* <u>DESCRIPTIVA.</u>- TRATA LO CONCERNIENTE A

LA OBTENCION, ORGANIZACION, PROCESA
MIENTO Y PRESENTACION DE LOS DATOS.

ESTADISTICA

* INFERENCIAL. - TRATA LO CONCERNIENTE A

LOS METODOS PARA INFERIR CONCLUSIONES

ACERCA DEL FENOMENO DEL CUAL PROVIENEN

LOS DATOS

MUESTREO: ES EL PROCESO DE ADQUISICION DE UNA MUESTRA

CON REEMPLAZO. - CUANDO CADA ELEMENTO OBSERVADO SE REIN TEGRA AL LOTE DEL CUAL FUE EXTRAIDO, ANTES DE EXTRAER EL SIGUIENTE.

MUESTREO

SIN REEMPLAZO. - CUANDO CADA ELEMENTO OBSERVADO NO SE - REINTEGRA AL LOTE.

<u>POBLACION</u>: TOTAL DE DATOS QUE SE PUEDEN OBTENER AL REALIZAR UNA SE CUENCIA EXHAUSTIVA DE EXPERIMENTOS

DISCRETA. - TIENE UN NUMERO FINITO O UN NUMERO INFINITO NUMERABLE DE DATOS POSIBLES

POBLACION.

CONTINUA. - TIENE UN NUMERO INFINITO NO NUMERABLE DE DATOS POSIBLES

EJEMPLOS

1. EXPERIMENTO: LANZAMIENTO DE UNA MONEDA DIEZ VECES

POBLACION: SUCESION INFINITA NUMERABLE DE "CARAS" Y "CRUCES"

(DISCRETA)

MUESTRA: GRUPO DE 10 OBSERVACIONES

2. EXPERIMENTO: MEDICION DE LA PRECIPITACION PLUVIAL DIARIA EN LA

CIUDAD DE MEXICO DURANTE DIEZ AÑOS

POBLACION: SUCESION INFINITA NO NUMERABLE DE VALORES (CONTINUA)

MUESTRA: GRUPO DE 3652 OBSERVACIONES (TOMANDO DOS AÑOS

BISIESTOS DE 29 DIAS EN FEBRERO)

MUESTRA ALEATORIA: ES UNA MUESTRA OBTENIDA DE TAL MANERA QUE TODOS
LOS ELEMENTOS DE LA POBLACION TIENEN LA MISMA PROBABILIDAD DE SER
OBSERVADOS Y, ADEMAS, LA OBSERVACION DE UN ELEMENTO NO AFECTA LA
PROBABILIDAD DE OBSERVAR CUALQUIER OTRO, ES DECIR, SI SON INDEPENDIENTES.

TABLA DE NUMEROS ALEATORIOS: ES UNA TABLA QUE CONTIENE NUMEROS QUE CONS-TITUYEN UNA MUESTRA ALEATORIA OBTENIDA DE UNA DISTRIBUCION DE PRO-BABILIDADES UNIFORME, QUE GENERALMENTE CORRESPONDE A UNA VARIABLE ALEATORIA QUE PUEDE ASUMIR VALORES ENTRE 0 Y 1, MULTIPLICADOS POR 10°, EN DONDE Y ES EL NUMERO DE DIGITOS QUE SE DESEA TENGAN LOS NUMEROS.



LAS TABLAS QUE SE USEN PARA OBTENER UNA MUESTRA ALEATORIA DEBEN CONTENER NUMEROS CON MAYOR NUMERO DE DIGITOS QUE LOS QUE TIENE EL
TOTAL DE ELEMENTOS DE LA POBLACION QUE SE VA A MUESTREAR. POR
EJEMPLO, SI SE VA A OBTENER UNA MUESTRA ALEATORIA DE UN LOTE DE
LENTES PARA MICROSCOPIO QUE TIENE 10,000 ELEMENTOS, LA TABLA QUE
SE USE DEBERA TENER NUMEROS ALEATORIOS CON 5 O MAS DIGITOS.

METODO DE MUESTREO ALEATORIO

- 1. SE ENUMERAN LOS ELEMENTOS DE LA POBLACION.
- SE FIJA EL CRITERIO DE SELECCION DE LOS NUMEROS ALEATORIOS (POR EJEMPLO, SE DEFINE QUE RENGLONES Y QUE COLUMNAS SE VAN A LEER).
- 3. SE INDICA QUE DIGITOS SE VAN A ELIMINAR EN CASO DE QUE LOS NUMEROS DE LA TABLA TENGAN MAS DIGITOS QUE LOS NECESARIOS
- 4. SE LEEN LOS NUMEROS, DE ACUERDO CON LO FIJADO EN LOS PUNTOS 2

 Y 3, Y SE EXTRAEN DEL LOTE LOS ELEMENTOS QUE TIENEN LOS NUMEROS

 LEIDOS. ESTOS CONSTITUYEN LA MUESTRA FISICA CON LA CUAL REALIZAR

 LOS EXPERIMENTOS. LAS OBSERVACIONES CONSTITUIRAN LA MUESTRA

 ALEATORIA DESEADA.

NOTA: TODOS LOS NUMEROS QUE SE REPITAN SE CONSIDERAN SOLO UNA VEZ.

TAMBIEN SE ELIMINAN LOS NUMEROS MAYORES DEL TAMAÑO DEL LOTE.

EJEMPLO

SE TIENE UN LOTE DE 1,000 TRANSISTORES NUMERADOS DEL UNO AL MIL, CUYA CALIDAD SE VA A VERIFICAR ESTADISTICAMENTE, PARA LO CUAL SE DECIDE TOMAR UNA MUESTRA DE 40 ELEMENTOS Y MEDIR SU AMPLIFICACION, USANDO LA TABLA DE NUMEROS ALEATORIOS ANEXA, CON EL CRITERIO DE TOMAR TODOS LOS RENGLONES IMPARES ELIMINANDO EL ULTIMO DIGITO. LA MUESTRA FISICA SERIAN LOS TRANSISTORES CORRESPONDIENTES A LOS NUMEROS 0415, 0006, 0394, 0998, 0530, 0394, 0160, ETC.

TABLA DE NUMEROS ALEATORIOS

Columna Renglón	1	2	3	4	5	6	7	8	9	10	11
1	16408	81899	04153	53381	79401	21438	83035	92350	36693	31238	59649
2	18629	B1953	05520	91962	04739	13092	37662	94822	94730	06496	35090
3	73115	47498	47498	87637	99016	00060	88824	71013	18735	20286	23153
4	57491	16703	23167	49323	45021	33132	12544	41035	80780	45393	44812
5	39405	03946	23792	14422	15059	45799	22716	19792	09983	74353	68668
6	_ 16631	35006	85900	32 388	52390	52390	16815	69298	38732	38480	73817
7	96773	20206	42559	78985	05300	22164	24369	54224	35083	19687	11052
8	38935	64202	14349	82674	66523	44133	00697	35552	35970	19124	63318
9	31624_	76384	17403	03941	44167	64486	64758	75366	76554	01601	12614
10	78919	19474	23632	27889	47914	02584	37680	20801	72152	39339	34806

AGRUPAMIENTO DE DATOS

FRECUENCIA DE UN EVENTO: ES EL NUMERO DE VECES QUE OCURRE EL EVENTO
AL OBTENER UNA MUESTRA DE LA POBLACION CORRESPONDIENTE.

FRECUENCIA RELATIVA DE UN EVENTO: ES EL COCIENTE DE SU FRECUENCIA ENTRE EL TOTAL DE ELEMENTOS (TAMAÑO) DE LA MUESTRA.

FRECUENCIA RELATIVA ACUMULADA: ES LA ACUMULACION (SUMA) DE LAS FRECUEN-CIAS RELATIVAS HASTA UN VALOR DADO, PARTIENDO DEL VALOR (O DEL INTERVALO) MAS PEQUEÑO. EN OTRAS PALABRAS, ES LA FRECUENCIA DE VALORES MENORES O IGUALES QUE UN VALOR DADO.

FRECUENCIA COMPLEMENTARIA: ES LA FRECUENCIA DE VALORES MAYORES QUE UN VALOR DADO = NUMERO DE DATOS - FRECUENCIA ACUMULADA.

DISTRIBUCION DE FRECUENCIAS

CON OBJETO DE FACILITAR LA INTERPRETACION DE LOS DATOS QUE SE TIENEN EN UNA MUESTRA, ES CONVENIENTE AGRUPARLOS POR VALORES O POR INTERVALOS DE VALORES, FORMANDO ASI UNA TABLA DE DISTRIBUCION DE FRECUENCIAS.

PARA FACILITAR EL CALCULO DE LAS FRECUENCIAS ES UTIL ORDENAR LOS DATOS EN FORMA CRECIENTE O DECRECIENTE DE VALORES, FORMANDO ASI UNA TABLA DE DATOS ORDENADOS.

EJ DVPLO

EN UNA ESCUELA SECUNDARIA SE LES APLICO A 30 PROFESORES UN EXAMEN SOBRE PEDAGOGIA. LAS CALIFICACIONES (DATOS) QUE SE OBTUVIERON FUERON (YA ESTAN ORDENADOS EN FORMA CRECIENTE)

AGRUPAMIENTO DE VALORES

CALIFICACION	FRECUENCIA	FRECUENCIA RELATIVA	FRECUENCIA RE~ LATIVA ACUMULADA
57	1	1/30	1/30
59	1	1/30	2/30
65	1	1/30	3/30
67	3 (3/30	6/30
69	1	1/30	7/30
72	1	1/30	8/30
73	2	2/30	10/30
77	1	1/30	11/30
78	2	2/30	13/30
81	2	2/30.	15/30
83	3	3/30	18/30
84	2	2/30	20/30
87	1	1/30	21/30
88	1	1/30	22/30
89	2	2/30	24/30
91	2	2/30	26/30
93	1,	1/30	27/30
95	1	1/30	28/30
97	1	1/30	29/30
99	_1_	1/30	30/30=1
	Σ=30	Σ=30/30=1	REMODER & TELLETER OF

¿CUAL ES LA FRECUENCIA RELATIVA DE VALORES MENORES O IGUALES QUE 93?

AGRUPAMIENTO POR INTERVALOS

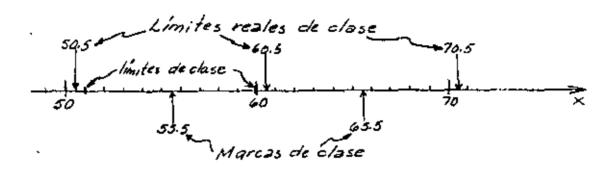
LIMITES DE CLASES: SON LOS VALORES MINIMO Y MAXIMO DE CADA INTERVALO MARCAS DE CLASE: SON LOS VALORES MEDIOS DE CADA INTERVALO DE CLASE LIMITES REALES DE CLASE: SON LOS VALORES MINIMO Y MAXIMO QUE SON FRONTERA ENTRE LOS INTERVALOS. ESTOS DEBEN TENER UNA CIFRA DECIMAL MAS QUE LOS DATOS.

EVENTO	(INTERVALO DE CALIFICACIONES)	ELEMENTOS OBSERVADOS	FRE- CUENCIA	FRECUENCIA RELATIVA
A =	(51-60)	57,59	2	2/30
B =	{61-70}	65,67,67,67,69	5	5/30
c =	(71-80)	72,73,73,77,78,78	6	6/30
. D =	{81-90}	81,81,83,83,83,84,		
		84,87,88,89,89	11	11/30
E =	{91-100}	91,91,93,95,97,99	6	6/30
			Σ=30	30/30=1

LIMITES INFERIORES LIMITES SUPERIORES
DE CLASE DE CLASE

EVENTO	LIMITES DE CLASE		LIMITES DE CI	. MARCAS DE CLASE	
	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	
A	51	60	50,5	60,5	55.5
В	61	· 70	60.5	70.5	. 65.5
С	71	80	70.5	80.5	75.5
D	81	90	80.5	90.5	85.5
E	91	100	90.5	100.5	. 95.5

Elementos corresp. a los intervalos	Frecuencia	Frecuencia relativa	Frecuencia acumulada	Frecuencia relativo acumulada
59,57	2	2/30=0.067(6.7%)	2	0.067
67,65,69,67,67	5	5/30=0.165(16.6%)	2+5=7	0.067+0.166=0.233
72,73,73,77,78,78,	6	6/30=0.200(20%)	7+6=13	0.233+0.200=0.433
83,88,84,89,83,84, 89,87,81,83,81	11	11/30=0.367(36.7%)	13+11=24	0.433+0.367=0.800
99,91,97,95,91,93	6 30	6/30=0.200(20%) 1.000	24+6=30	0.800+0.200=1.000
	a los intervalos 59,57 67,65,69,67,67 72,73,73,77,78,78, 83,88,84,89,83,84, 89,87,81,83,81	a los intervalos Frecuencia 59,57 67,65,69,67,67 72,73,73,77,78,78, 83,88,84,89,83,84, 89,87,81,83,81 99,91,97,95,91,93 6	a los intervalos Frecuencia relativa 59,57 2 2/30=0.067(6.7%) 67,65,69,67,67 5 5/30=0.166(16.6%) 72,73,73,77,78,78, 6 6/30=0.200(20%) 83,88,84,89,83,84,89,83,81 11 11/30=0.367(36.7%) 99,91,97,95,91,93 6 6/30=0.200(20%)	a los intervalos Frecuencia relativa acumulada 59,57 2 2/30=0.067(6.7%) 2 67,65,69,67,67 5 5/30=0.166(16.6%) 2+5=7 72,73,73,77,78,78, 6 6/30=0.200(20%) 7+6=13 83,88,84,89,83,84, 11 11/30=0.367(36.7%) 13+11=24 89,87,81,83,81 6/30=0.200(20%) 24+6=30



 $A = \{X: 50.5 < X \le 60.5\}$

 $B = \{X: 60.5 < X \le 70.5\}$

 $C = \{X: 70.5 < X < 80.5\}$

 $D = \{X: 80.5 < X \le 90.5\}$

 $E = \{X: 90.5 < X \le 100.5\}$

LIMITES REALES

LIMITES REALES SUPE-

INFERIORES DE CLASE

RIORES DE CLASE

PROCEDIMIENTO DE AGRUPAMIENTO

A MAYOR NUMERO DE DATOS SE REQUIERE MAYOR NUMERO DE INTERVALOS,
PERO SE RECOMIENDA QUE ESTE NUMERO ESTE ENTRE 5 Y 20, SUPONIENDO
QUE EN PROMEDIO CAIGAN 5 O MAS ELEMENTOS EN CADA INTERVALO. ASI, SI
SE TIENEN 30 DATOS, SE RECOMIENDA USAR 30/5=6 INTERVALOS.

EL PROCESO DE AGRUPAMIENTO SE INDICARA AL MISMO TIEMPO QUE SE REA-LIZA EL SIGUIENTE EJEMPLO.

EJEMPLO

EN UN ESTUDIO ANTROPOLOGICO SE OBTUVO UNA MUESTRA DE 30 ESTATURAS

DE LOS VARONES ADULTOS RESIDENTES EN UNA REGION. LOS DATOS, ORDENADOS EN FORMA CRECIENTE DE VALORES, FUERON LOS SIGUIENTES:
159, 161,163,163,163,167,167,167,167,168,168,168,169,169,170,
171,171,173,174,175,175,175,178,179,181,181,183,184,187,191 CM.
OBTENER LA TABLA DE DISTRIBUCION DE FRECUENCIAS.

SOLUCION:

- 1. <u>DETERMINACION DEL RANGO DE LA MUESTRA</u>

 RANGO = VALOR MAXIMO VALOR MINIMO = 191-159=32 CM
- 2. DETERMINACION DEL NUMERO DE INTERVALOS $\text{NUMERO DE INTERVALOS} = \frac{30}{5} = 6$
- 3. DETERMINACION DE LOS LIMITES DE CLASE

ANCHO DE LOS INTERVALOS = $\frac{RANGO}{NUMERO} = \frac{32}{6} = 5.3$

TOMAREMOS UN ANCHO DE 6 CM, CON LO CUAL EL RANGO DEL AGRUPAMIENTO ES 6 \times 6 = 36 CM. LA DIFERENCIA DE RANGOS ES 36-32=4, QUE SE REPARTE EN LOS DOS INTERVALOS EXTREMOS EQUITATIVAMENTE. POR LO TANTO, LOS INTERVALOS RESULTAN SER:

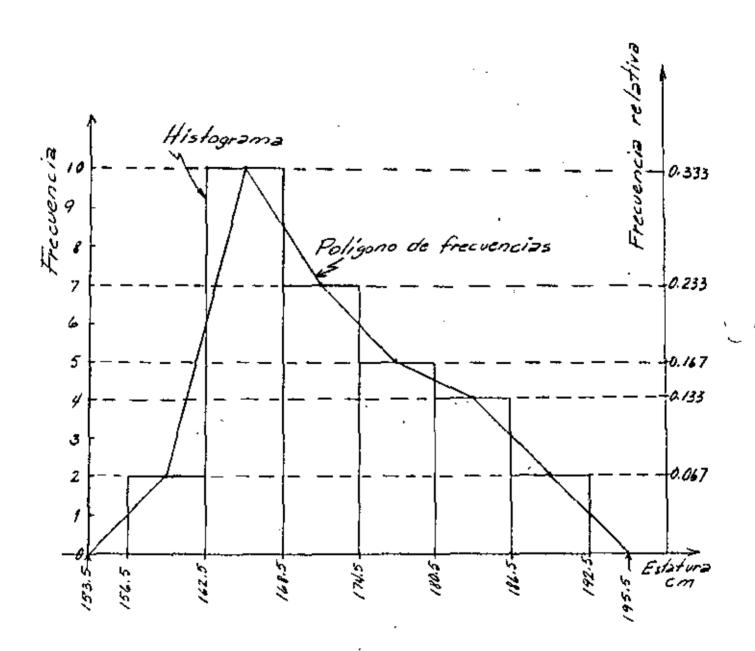
157-162, 163-168, 169-174, 175-180, 181-186, 187-192

4. INTEGRACION DE LA TABLA:

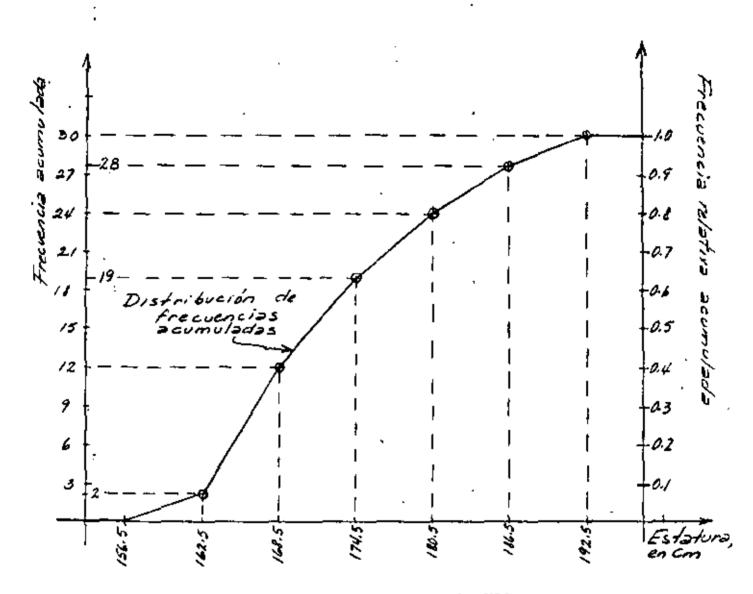
INTERVALO	LIMITES INF.	REALES SUP.	FREC.	FREC. REL.	FREC. ACUM.	FREC.REL.
157-162	156.5	162.5	2	$\frac{2}{30} = 0.067$	2	0.067
163-168	162.5	168.5	10	$\frac{10}{30} = 0.333$	12	0.400
169-174	168.5	174.5	7	$\frac{7}{30} = 0.233$	19	0.633
175-180	174.5	180,5	. 5	$\frac{5}{30} = 0.167$	24	0.800
181-186	180.5	186.5	4	$\frac{4}{30} = 0.133$	28	0,933
187-192	186.5	192.5	2	$\frac{2}{30} = 0.067$	30	1.000
<u> </u>			Σ=30	£=1.000		

.

PRESENTACION GRAFICA DE LAS DISTRIBUCIONES DE FRECUENCIAS



DISTRIBUCION DE FRECUENCIAS DE LOS DATOS DE LAS ESTATURAS DE LOS VARONES RESIDENTES EN UNA REGION

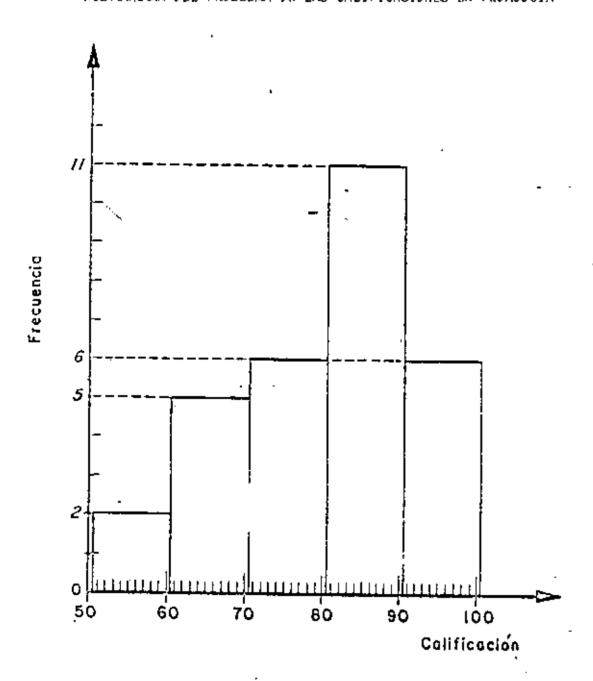


DISTRIBUCION DE FRECUENCIAS ACUMULADAS

¿CUAL ES LA FRECUENCIA DE VALORES MAYORES QUE 180.5?: 30-24=6

LA FRECUENCIA RELATIVA ACUMULADA COMPLEMENTARIA ES: 1-0.800=0.200 (20%)

HISTOGRAMA DEL PROBLEMA DE LAS CALIFICACIONES EN PEDAGOGIA

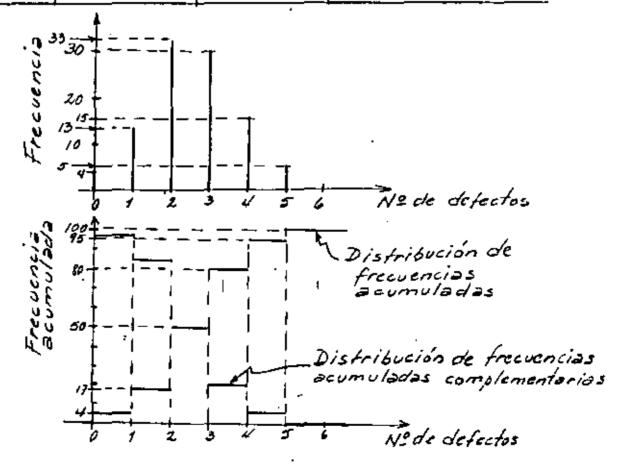


TAREA: DIBUJAR EL POLIGONO, DE FRECUENCIAS Y LAS CURVAS DE FRECUENCIAS RELATIVAS ACUMULADAS Y COMPLEMENTARIAS.

EJEMPLO

EN UN ESTUDIO SOBRE LA CALIDAD DE LOS MONOBLOCKS PRODUCIDOS POR UNA FABRICA, SE OBTUVO UNA MUESTRA ALEATORIA DE 100 ELEMENTOS, A LOS CUALES SE LES CONTO EL NUMERO DE DEFECTOS DE FABRICACION. LA DISTRIBUCION DE FRECUENCIAS QUE SE OBTUVO ES LA SIGUIENTE:

NUMERO DE DEFECTOS	FRECUENCIA	FRECUENCIA ACUMULADA	FRECUENCIA ACUMULADA COMPLEMENTARIA	
0	4	4	96	(100-4)
1	13	17	` 83	(100-17)
,2	33	50	50	(100-50)
3	30	80	20	(100-80)
4	15	95	5	(100-95)
5	5	100	. 0	(100-100)
	100	_		



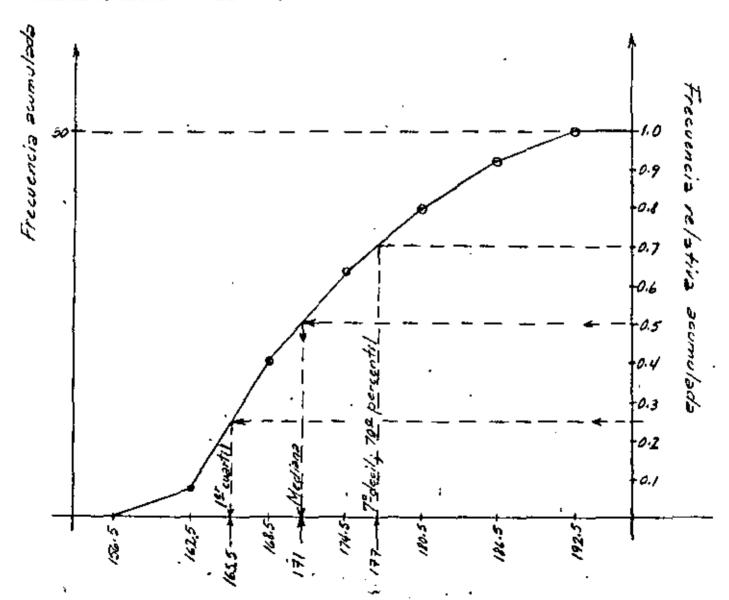
PERCENTILES: SON LOS VALORES DE LA VARIABLE CORRESPONDIENTES À FRECUENCIAS RELATIVAS ACUMULADAS QUE SON MULTIPLOS DE 1 POR CIENTO.

DECILES: SON LOS VALORES DE LA VARIABLE CORRESPONDIENTES À FRECUENCIAS RELATIVAS ACUMULADAS QUE SON MULTIPLOS DE 10 POR CIENTO.

CUARTILES: SON LOS VALORES DE LA VARIABLE CORRESPONDIENTES À FRECUENCIAS RELATIVAS ACUMULADAS QUE SON MULTIPLOS DE 25 POR CIENTO.

MEDIANA: VALOR DE LA VARIABLE CORRESPONDIENTE À LA FRECUENCIA

RELATIVA ACUMULADA DE 50%.



MEDIDAS REPRESENTATIVAS DE LOS DATOS

MEDIDAS DE TENDENCIA CENTRAL

VALOR MEDIO O PROMEDIO ARITMETICO

PARA DATOS NO AGRUPADOS

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

DONDE x_1 SON LOS VALORES DE LOS DATOS Y n ES EL <u>TAMAÑO</u> DE LA MUESTRA.

SI LOS DATOS ESTAN AGRUPADOS Y f_j ES LA <u>FRECUENCIA</u> DEL 1-ESIMO INTERVALO Y x_j ES LA <u>MARCA DE CLASE</u> CORRESPONDIENTE, ENTONCES

$$\bar{x} = \frac{1}{n} \sum_{j=1}^{K} f_j x_j$$
; K = NUMERO DE INTERVALOS

EJEMPLO

SEA EL EJEMPLO ENUNCIADO ANTERIORMENTE DE LOS DEFECTOS EN MONOBLOCKS. SE TENIA:

!	j	No. DE DEFECTOS	FRECUENCIA f			fx	:	
	1	0	4	4	×	0	=	0
	2	1	13	13	x	1	=	13
	3	2	33	33	x	2	ᄑ	66
	4 -	3	30	30	x	3	=	90
	5	4	15	15	x	4	=	60
	K≖6	5	5	5	x		=_	25
			E=100			Σ]=1		254

 $\vec{x} = \frac{254}{100}$ $\vec{x} = 2.54$ DEFECTOS
POR MONOBLOCK

MODO, ES EL VALOR DE LA VARIABLE QUE APARECE CON MAYOR FRECUENCIA EN UNA MUESTRA. SI LOS DATOS ESTAN AGRUPADOS, EL MODO ES LA MARCA DE CLASE DEL INTERVALO QUE TIENE LA MAYOR FRECUENCIA.

EJEMPLO

EN EL PROBLEMA DE LOS MONOBLOCKS EL MODO ES 2. EN EL PROBLEMA
DE LAS ESTATURAS DE LOS VARONES ADULTOS DE UNA CIUDAD EL MODO ES
165.5 CM.

MEDIANA: ES EL VALOR DE LA VARIABLE QUE CORRESPONDE AL 50% DE LA FRECUENCIA RELATIVA ACUMULADA.

SI LOS DATOS ESTAN AGRUPADOS POR INTERVALOS, LA MEDIANA SE PUEDE CALCULAR CON LA FORMULA (ADEMAS DE GRAFICAMENTE, COMO YA SE VIO):

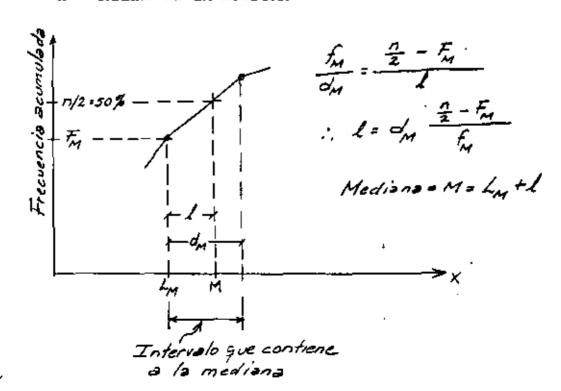
$$MEDIANA = M = L_M + \frac{\frac{n}{2} - F_M}{f_M} d_M$$

DONDE L_{M} = LIMITE INFERIOR REAL DEL INTERVALO QUE CONTIENE A LA MEDIANA

 f_M Y d_M = RESPECTIVAMENTE, A LA FRECUENCIA Y ANCHO DEL INTER-VALO QUE CONTIENE A LA MEDIANA

F_M = FRECUENCIA ACUMULADA HASTA EL INTERVALO QUE CONTIENE A LA MEDIANA EXCLUSIVE

n = TAMAÑO DE LA MUESTRA



EJEMPLO

EN UN ESTUDIO PARA DETERMINAR LOS TIEMPOS EN QUE UNA MUESTRA ALEA-TORIA DE INDIVIDUOS REACCIONABA A CIERTOS ESTIMULOS PSICOLOGICOS SE OBTUVO LO SIGUIENTE:

j	MARCA DE CLASE x, EN SEG	LIMITES REALES	FRECUENCIA f	FRECUENCIA ACUMULADA, F	fx,SEG
1	0.10	0.075-0.125	2	2	0.20
2	0.15	0.125-0.175	7	. 9	1.05
3	0.20	0.175-0.225	14 .	23	2.80
4	0.25	0.225-0.275	4	27	1,00
K=5	0.30	0.275-0.325	3	30	0.90
i	<u>.}</u>	<u> </u>	£=30	£	f _i x _i =5.95
	PROMEDIO AR	ITMETICO		j=1	.

 $\ddot{x} = \frac{5.95}{30} = 0.198$ SEG

MODO = 0.20 SEG

$$\frac{\text{MEDIANA}}{d_{\text{M}} - 0.05}, L_{\text{M}} = 0.20 - \frac{0.05}{2} = 0.175, F_{\text{M}} = 9$$

$$n/2 = 30/2 = 15$$
, $f_{M} = 14$

$$MEDIANA = M = 0.175 + \frac{15 - 9}{14} 0.05$$

$$M = 0.175 + \frac{0.30}{14} = 0.175 + 0.021 = 0.196$$
 SEG

MEDIDAS DE DISPERSION

RANGO = MAXIMO VALOR OBSERVADO - MINIMO VALOR OBSERVADO

VARIANCIA - SI LOS DATOS NO ESTAN AGRUPADOS;

$$s_{x}^{2} = \frac{1}{n} \int_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n} \int_{i=1}^{n} x_{i}^{2} - \bar{x}^{2} = \bar{x}^{2} - \bar{x}^{2}$$

SI LOS DATOS ESTAN AGRUPADOS:

$$s_{x}^{2} = \frac{1}{n} \int_{j=1}^{K} f_{j}(x_{j} - \bar{x})^{2} = \frac{1}{n} \int_{j=1}^{K} f_{j} x_{j}^{2} - \bar{x}^{2} = \bar{x}^{2} - \bar{x}^{2}$$

DONDE LAS X, SON LOS VALORES DE LAS MARCAS DE CLASE DE LOS INTER-VALOS O LOS VALORES DE AGRUPAMIENTO.

DESVIACION_ESTANDAR

$$s_x = \sqrt{s_x^2}$$

COEFICIENTE DE VARIACION

$$v_X = S_X/\tilde{x}$$

EJEMPLO

EN UN ESTUDIO SOBRE LA TEMPERATURA MAXIMA DIARIA EN UNA CIUDAD SE OBTUVO LO SIGUIENTE DURANTE UNA PRIMAVERA:

j .	INTERVALOS DE TEMPERATURA,°F	MARCA DE CLASE,°F	FRECUENCI f	A xf	x-x	(x-x̄) ²	(x-x) ² f
1	55 – 63	59	2	118	-21.3	453.7	907.4
2	6472	68	6	408	-12,3	151.3	907.8
3	73 - 81	77	7	539	- 3,3	10.9	76.3
4	82 – 90	86	9	774	5.7	32.5	292.5
5	91 - 99	95	<u>6</u>	570	14.7	216.1	1296.6
			. 30	2409	<u> </u>	[3480.6

$$\bar{x} = \frac{2409}{30} = 80.3 \text{ °F.}$$

$$s_X^2 = \frac{3480.6}{30} = 116 \text{ °F}^2$$

$$s_X = \sqrt{116} = 10.8 \text{ °F}$$

$$v_X = \frac{10.8}{80.3} = 0.134$$
(13.4%)

$$MODO = 86$$

$$d_{M}=9$$
, $L_{M}=72.5$, $f_{M}=7$, $F_{M}=8$, $\frac{n}{2}=\frac{30}{2}=15$

MEDIANA = M =
$$72.5 + \frac{15 - 8}{7}$$
 9 = $72.5 + 9 = 81.5$ °F

MEDIDA DE DISPERSION (DATOS AGRUPADOS POR VALORES)

Rango = 1.48 - 0.18 = 1.30

Datos x	Frecuencia	хf	x 2.	x²f
0,18	4	0,72	0.032	0.128
0,28	1	0,28	0.078	0.078
0.36	2	0.72.	0.130	0.260
Ö.38	1	0.38	0.144	0.144
0.48	7	3.36	0.230	1.610
Q.49	1 1	0,49	0.240	0.240
0,51	1	0.51	0.260	0.260
0.55	1	0.55	0,302	0.302
0.57	3	1.71	0.325	0.975
0.65	i2	7.80	0.422	. 5.064
0.72.	9 .	6.48	0.518	4.662
0.78	14	10,92	0.608	8.512
0.83	7.	5,81	0.689	4.823
0.88	. 2	1.76	0.774	1.548
0,92	. 5	4.60 .	0.846	4.230
0.96	8	7.68	0.922	7.376
1,00	·1	1.00	1,000	1.000
1.03	4	4.12	1.061	4.244
1.06	, 2	2.12	1.124	2.248
1.09	3	3.27	1.189	3.567
1,12	2	2.24	1,254	2,508
1.18	1	1.18	1,392	1,392
1.21	2	2.42	1.464	2.928
1.23	1	1.23	1.513.	1.513
1.26	1	1.26	1.588	1.588
1.34	1	1.34	1.796	1.796
1.36	1	1,36	1,850	1.850
1.40	1	1.40	1.960	1.960
1.43	1	1.43	2.045	2.045
1,48	1	1.48	2.190	2.190
	1	Σ=79.62	İ	Σ=71.041

$$\bar{X} = \frac{79.62}{100} = 0.796$$

$$S_X^2 = \bar{x}^2 - \bar{x}^2 = 0.710 - 0.634$$

= 0.076

$$= \frac{1}{x}^2 = 0.634$$

$$S_{x}^{2} = 0.076$$

$$S_{x} = \sqrt{S_{x}^{2}} = \sqrt{0.076} = 0.276$$

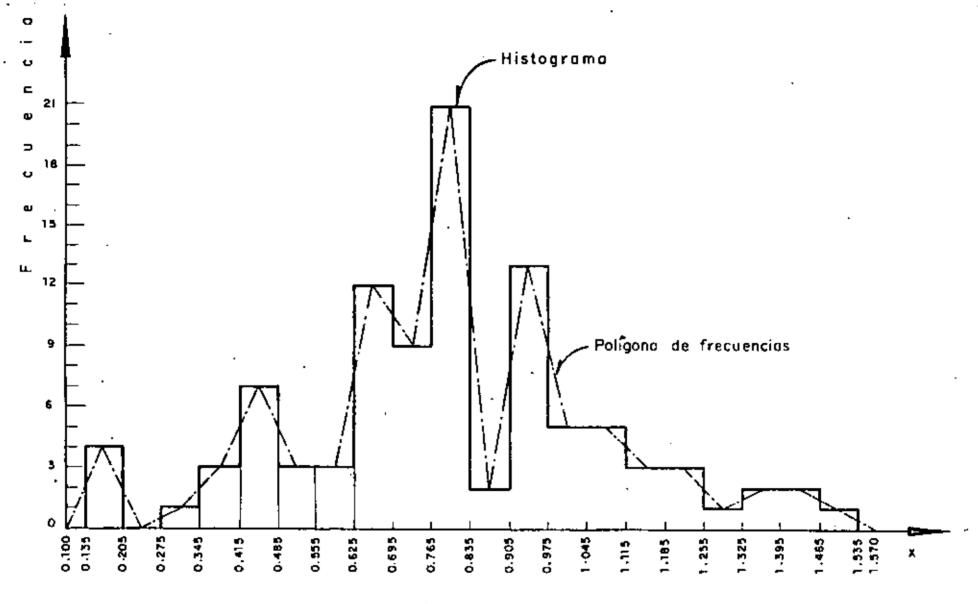
Coeficiente de variación =
$$V_x = \frac{s_x}{\bar{x}} = \frac{0.276}{0.796} = 0.347 = 34.78$$

	Intervalo		reales	PREC.	FRECUENCIA	FREC.	FREC. REL.
	Intervato	INP.	SUP.	1,00.	RELATIVA	ACUM.	ACUMULADA
1	0.14-0.20	0.135	0.205	4	4/100=0.04	4	0.04
2	0.21-0.27	0.205	0.275	٥	0/100=0.00	4	0.04
3	0.28-0.34	0.275	0.345	1	1/100=0.01	5	0.05
4	0.35-0.41	0.345	0.415	3	3/100=0.03	8	0.08
5.	0.42-0.48	0.415	0.485	7	7/100=0.07	1-15	0.15
6	0.49-0.55	0.485	0.555	3	3/100=0.03	18	0.18
7	0.56-0.62	0.555	0.625	3	3/100=0.03	21	0.21
8	0.63-0.69	0.625	0.695	12	12/100=0.12	33	0.33
9	0.70-0.76	0.695	0.765	9	9/100=0.09	42	0.42
10	0.77-0.83	0.765	0.835	21	21/100=0.21	63 .	0,63
11	0.84-0.90	0.835	0.905	2	2/100=0.02	65	0.65
12	0.91-0.97	0.905	0.975	13	13/100=0.13	78	0.78
13	0.98-1.04	0.975	1.045	2	5/100=0.05	83	0.83
14	1.05-1.11	.1.045	1.115	5	5/100=0.05	88	0.88
15	1.12-1.18	1.115	1.185	3	3/100=0.03	91	0.91
16	1.19-1.25	1.185	1.255	j	3/100=0.03	94 .	0.94
17	1.26-1.32	1.255	1.325	1	1/100=0.01	95 .	0.95
18	1.33-1.39	1.325	1.395	2	2/100=0.02	97	0.97
19	1.40-1.46	1.395	1.465	2	2/100=0.02	99	0.99
20	1.47-1.53	1.465	1.535	1_	1/100=0.01	100	1.00
	1	į į		100	Σ= 1.00	{	

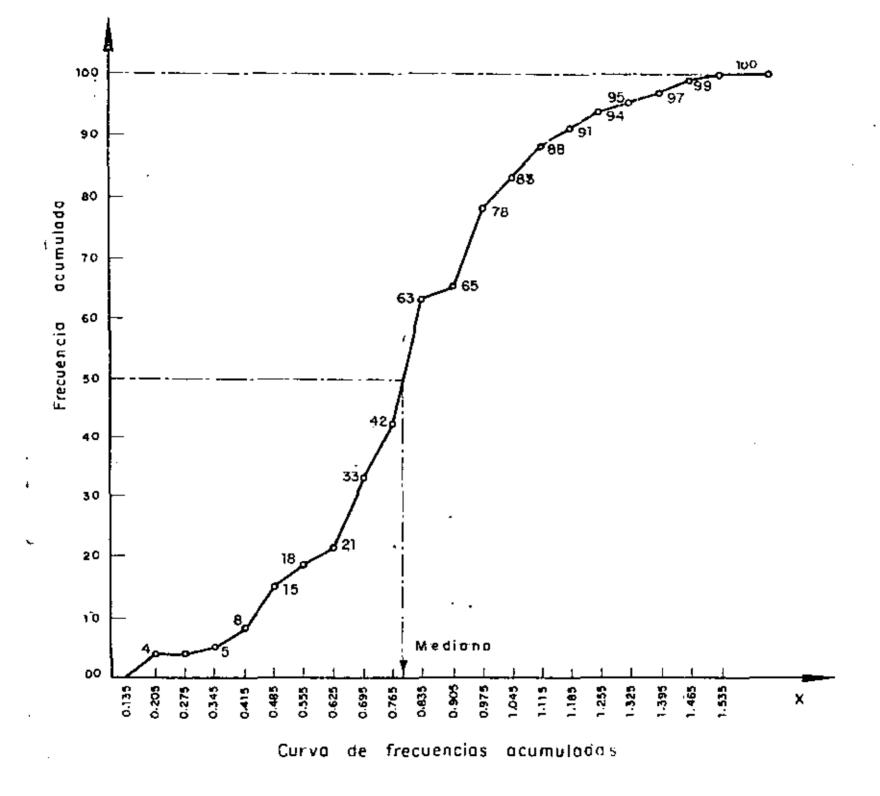
· .· .· .· .·

```
0.78
                               0.78
                               0.78
                               0,78
                               0.78
                               0.78
                               0.78
                               0.78
                               0.78
                               0.78
                               0.78
                                         0.96
                          0.65 0.78
                                         0.96
                          0.65 0.78
                                         0.96
                         0.65 0.78
                                         0.96 1.09
                          0.65 0.72 0.88 0.96 1.09
               0.49
                          0.65 0.72 0.88 0.96 1.09
                         0.65 0.72 0.83 0.96 1.06
               0.48
               0.48
                        . 0.65 0.72 0.83 0.96 1.06
               0.48 0.57 0.65 0.72 0.83 0.92 1.03
               0.48 0.57 0.65 0.72 0.83 0.92 1.03
0.18
                                                         1.26
          0.38 0.48 0.57 0.65 0.72 0.83 0.92 1.03 1.18 1.23
0.18
        0.36 0.48 0.55 0.65 0.72 0.83 0.92 1.03 1.12 1.21 1.36 1.43
9.18
0.18 0.28 0.36 0.48 0.51 0.65 0.72 0.83 0.92 1.00 1.12 1.21 1.34 1.40
```

HISTO GRAMA



Histograma y polígono de frecuencias



MEDIDAS DE TENDENCIA CENTRAL

J	Marca de clase x	Limites . reales	Frecuencia f	Frecuencia A- acumulada, F	£x
1	0.17	0.135-0.205	4	4	^ FO
2	0.24	0.205-0.275			0.68
3	0.31	0.275-0.345		4	0.00
4	0.38	0.345-0.415		. 5	0.31
5	1		3	8	1.14
1	0.45	0.415-0.485	7 .	15	3.15
6	0.52	0.485-0.555	3	18	1.56
7	0.59	0.555-0.625	3 .	21	1.77
8	0.66	0.625-0.695	12	33	7.92
9	0.73	0.695-0.765	9	42	6.57
10	0.80	0.765-0.835	. 21	63	16.80
11	0.87	0.835-0.905	2	65	1.74
12	0.94	0.905-0.975	13	78 .	12.22
13 -	1.01	0.975-1.045	5	83	5.05
14	1.08	0.045-1.115	5	88	5.40
15	1.15	1.115-1.185	3	91	3.45
16	1.22	1.185-1,255	3	94	3.66
17	1.29	1.255-1.325	1	. 95	1.29
18	1.36	1.325-1.395	2	97	2.72
19	1.43	1.395-1.465	2 .	99	2.86
20	1.50	1.465-1.535	1 1	100	1.50
					²⁰ Σfj×j=

***79.79**

Promedio aritmético

$$\bar{X} = \frac{79.79}{100} = 0.7979$$

MODO:=0.80

$$Mediana=M = L_{M} + \frac{\frac{D}{2} - F_{M}}{f_{M}} d'_{M}$$

$$d_{...} = 0.07$$

$$f_{M} = 21$$

$$n = 100$$

Mediana =
$$0.765 + \frac{50-42}{21}$$
 0.07

$$= 0.765 + 0.026 = 0.794$$

MEDIDAS DE DISPERSION (DATOS AGRUPADOS)

Rango = máximo valor observado - mínimo valor observado = 1.48 - 0.18 = 1.30

ا ,	Intervalo	Marca de clase x	Frecuencia f	xf	_{x-x}	(x- x) ²	$(x-\bar{x})^2$ f
1.	Incervato	CIAGE X		-^-	- x-x	(x-x)	(X-X) L
1	0.14-0.20	0.17	4	0.68	-0.628	000394	1.576
2	0.21-0.27	0.24	0	0.00	-0.558	0.311	0.00
3	0.28-0.34	0.31	1	0.31	-0.488	0.238	0.238
j 4 '	0.35-0.41	0.38	3	1.14	-0.418	0.175	0.525
5	0.42-0.48	0.45	7	3.15	-0.348	Ò.121	0:487
16	0.49-0.55	0.52	3	1.56	-0.278	0.077	0.231
7	0.56~0.62	0.59	3	1.77	-0.208	0.043	0.129
8	0.63-0.69	0.66	12	7.92	-0:138	0.019	0.228
9	0.70-0.76	0.73	9	6.57	-0.068	0.004	0.036
10	0.77-0.83	0.80	21	16.80	0,002	0.00	0.000
11	0.84-0.90	0.87	2	1.74	0.072	0.005	0.010
12	0.91-0.97	0.94	13	12.22	0.142	0.020	0.260 ;
13	0.98-1.04	1.01	5	5.05	0.212	0.045	0.225
14	1.05-1.11	1.08	5	5.40	0.282	0.079	0.395
15	1.12-1.18	1.15	3	3.45	0.3521	0.123	0.369
16	1.19-1.25	1.22	3	3.66	0.422	0.178	0.534
17	1.26-1.32	1.29	1	1.29	0.492	0.242	0.242
18	1.33-1.39	1.36	2	2.72	0.562	0.316	0.632
19	1.40-1.46	1.43	2	2.86	0.632	0.399	0.798
20	1.47-1.53	1.50	1	1.50	0.702	0.493	0.493
f			100	79.79	}		7.76B
•	ì	l	l	ì	1		l t

Mediana =
$$\bar{X} = \frac{79.79}{100} = 0.7979$$

$$S_X^2 = \text{Variancia} = \frac{7.768}{100} = 0.077$$

Desviac. estândar =
$$S_x = 0.277$$
 $(S_x = \sqrt{S_x^2})$

Coeficiente de variación =
$$V_x = \frac{S_x}{\overline{X}} = \frac{0.277}{0.7979} = 0.347$$

TAREA

		• • •						 	
0.78	0.38	0.72	0.65	0.72	0.92	0.78	0.05	0.92	0.78
1.38	1.43	0.65	0.48	0.83	0.48	0.72	0.48	0.65	0.78
0.35	1.00	0.78	0.78	1.03	1.26	0.48	0.48	1.06	0.95
0.65	0.92	0.72	0.78	0.78	0.48	0.28	0.56	0.83	0.48
0.78	0.49	0.36	0.78	0.78	0.83	0.88	0.96	1.03	1.21
0.68	0.57	0.72 1	1.03	0.92	0.96	0.78	1.00	0.92	1.12
0.65	0.65	0.83	0.72	0.72	0.78	0.72	1.09		0.83
0.83	1.06	0.57	0.78	1.23	1.09	1.03	0.18	0.65	1.34
39.0	0.65	0.48	1.18	- 1.12	0.18	0.48	0.72	0.57	0.65
0.08	0.65	0.96	0.41	0.65	1.21	1.48	0.96	0.96	1.40

- Agrupar datos por intervalos y elaborar tabla con frecuencias, frecuencias relativas, frecuencias acumuladas y frecuencias relativas acumuladas (anotar límites, límites reales y marcas de clase).
- 2. Dibujar: a) Histograma
 - b) Polígono de frecuencias
 - c) Curva de frecuencias acumuladas
- Calcular todas las medidas de tendencia central y de dispersión que se han estudiado
 - a. Sin agrupar datos
 - b. Con datos agrupados

TRANSFORMACION LINEAL DE VARIABLES

SI SE TIENE UNA MUESTRA DE TAMAÑO n DE LA VARIABLE X, A CADA VALOR $\mathbf{x_i}$, DE DICHA MUESTRA LE CORRESPONDE UN VALOR, $\mathbf{y_i}$, DE LA MUESTRA DE Y, DADO POR

$$y_i = a + bx_i$$
.

POR LO TANTO, EL PROMEDIO ARITMETICO DE LAS $y_{\underline{i}}$ ES

$$\bar{y} = \frac{1}{n} \frac{n}{n} y_i = \frac{1}{n} \frac{n}{n} (a + bx_i) = \frac{1}{n} \frac{n}{n+1} + \frac{b}{n} \frac{n}{n} x_i = a + b\bar{x}$$
.

ANALOGAMENTE, EL VALOR MEDIO CUADRATICO RESULTA SER

$$\frac{1}{y^{2}} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} = \frac{1}{n} \sum_{i=1}^{n} (a+bx_{i})^{2} = \frac{1}{n} \sum_{i=1}^{n} a^{2} + \frac{1}{n} \sum_{i=1}^{n} 2abx_{i} + \frac{1}{n} \sum_{i=1}^{n} b^{2}x_{i}^{2} = \frac{1}{n} \sum_{i=1}^{n} a^{2} + \frac{1}{n} \sum_{i=1}^{$$

$$= a^2 + 2ab\bar{x} + b^2\bar{x}^2$$

Y, LA VARTANCIA,

$$s^{2}(y) = \overline{y^{2}} - \overline{y}^{2} = a^{2} + 2ab\overline{x} + b^{2}\overline{x^{2}} - (a+b\overline{x})^{2} = b^{2}\overline{x^{2}} - b^{2}\overline{x}^{2} = b^{2}s^{2}(x)$$

ESTAS TRANSFORMACIONES SE PUEDEN EMPLEAR PARA CALCULAR EL PROMEDIO \bar{y} , y la variancia s $^2(y)$ de la muestra de una variable que resulta de una transformacion y, con base en ellos, calcular \bar{x} y s $^2(x)$ de la muestra original, mediante las ecuaciones

$$\bar{x} = (\bar{y} - a) / b$$

 $s^2(x) = s^2(y) / b^2$

ESTE PROCEDIMIENTO AHORRA BASTANTE TIEMPO DE CALCULOS CUANDO LOS DATOS ESTAN AGRUPADOS, EN CUYO CASO LOS \times_1 SON LAS MARCAS DE CLAÇ \times_2 SE:

EN OCASIONES LA TRANSFORMACION LINEAL SE PLANTEA COMO

$$y = \frac{x - c_1}{c_2}$$

DONDE C1 Y C2 SON CONSTANTES. EN ESTE CASO SE OBTIENEN

$$\tilde{y} = \frac{\bar{x} - c_1}{c_2} \quad y \quad s^2 \quad (y) = \frac{1}{c_2^2} \quad s^2(x)$$

DE ESTAS ECUACIONES SE LLEGA A

$$\bar{x} = c_2 \bar{y} + c_1$$

$$S^{2}(x) c_{2}^{2} S^{2}(y)$$

EJEMPLO

EN EL PROBLEMA DE LOS RESULTADOS, x₁, DE UN EXAMEN SOBRE PEDAGO-GIA SE OBTUVO LA DISTRIBUCION DE FRECUENCIAS INDICADA EN LAS DOS PRIMERAS COLUMNAS DE LA SIGUIENTE TABLA:

MARCAS DE CLASE ×i	FRECUENCIAS fi	MARCAS DE CLASE TRANSFORMADA, y	y _i f _i	Y ₁	$y_i^2 f_i$
55.5	2	-2	- 4	4	8
65.5	5	, - 1	- 5	1	5
75.5	· 6	o	0	o	0
85.5	11	1	11	1	11 ,
95.5	6	`. 2	12	4	24
	Σ=30	,	Σ=14		<u></u>

$$\overline{y} = 14/30 = 0.467$$
, $\overline{y^2} = 48/30 = 1.6$, $S^2(y) = 1.6 - (0.467)^2 = 1.382$
 $\overline{x} = 0.467 \times 10 + 75.5 = 80.17$, $S^2(x) = 1.382 \times 10^2 = 138.2$

CALCULAREMOS EL PROMEDIO Y LA VARIANCIA DE ESTA MUESTRA, CALCULAN-DO PRIMERO \bar{y} y s 2 (y) de la transformación

$$y = \frac{x - c_1}{c_2}$$

CON C1 - MARCA DE CLASE CENTRAL Y

C2 = ANCHO DE CLASE

TOMANDO $C_1 = 75.5 \text{ y } C_2 = 10$, SE TIENE $y_i = (x_i - 75.5)/10$.

POR LO QUE

$$y_1 = (-75.5 + 55.5)/10 = -2$$
 $y_2 = (-75.5 + 65.5)/10 = -1$
 $y_3 = (-75.5 + 75.5)/10 = 0$
 $y_4 = (-75.5 + 85.5)/10 = 1$
 $y_5 = (-75.5 + 95.5)/10 = 2$

OBSERVESE QUE SE OBTIENE y = 0 PARA EL INTERVALO CORRESPONDIENTE A $x_1 = c_1$, y para los intervalos con valores mayores de x easta con irle sumando una unidad, mientras que a los de valores menores, irle restando una unidad.

REGRESION LINEAL

CON MUCHA PRECUENCIA SE PRESENTAN PROBLEMAS EN QUE INTERVIENEN

DOS VARIABLES ALEATORIAS (O UNA ALEATORIA Y UNA DETERMINISTA) Y

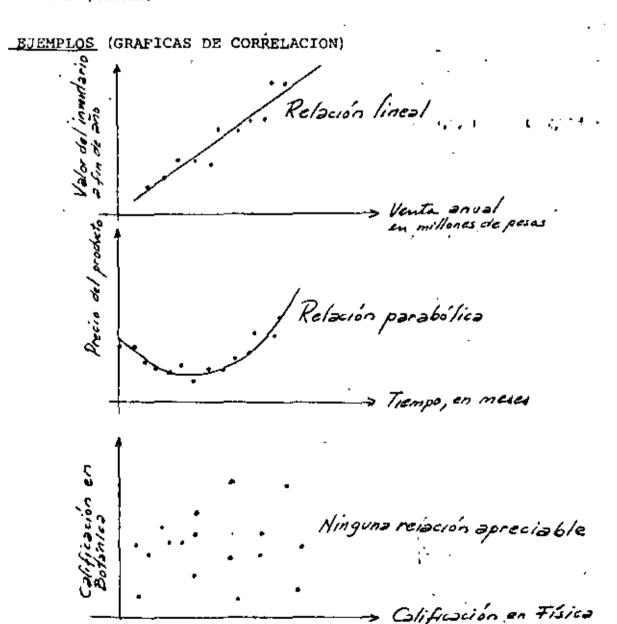
SE DESEA DETERMINAR UNA RELACION FUNCIONAL ENTRE ELLAS. SI SE

OBTIENE UNA MUESTRA DE PAREJAS DE DATOS (x₁, y₁) Y SE ANOTAN EN

UNA GRAFICA X-Y, VISUALMENTE SE PODRA PREVEER EL TIPO DE RELACION

ENTRE AMBAS VARIABLES, Y LUEGO HACER UN AJUSTE MATEMATICO DE ALGUN

TIPO DE CURVA.



PARA AJUSTAR ALGUNA CURVA A UN GRUPO DE DATOS SE PUEDE PROCEDER

DE DIFERENTES MANERAS, DE LAS CUALES LA MAS SENCILLA ES "A OJO",

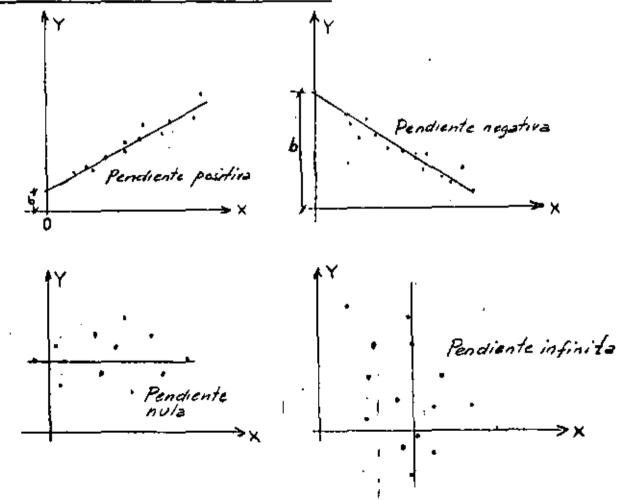
PERO TIENE LA DESVENTAJA DE QUE, POR NO SER SISTEMATICO, DIFERENTES

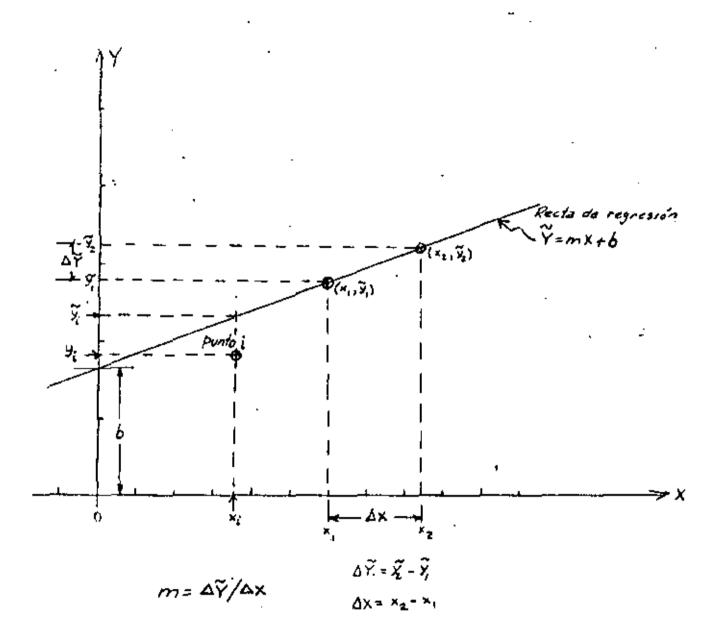
PERSONAS PROPONEN DISTINTAS CURVAS. DE LOS METODOS ANALÍTICOS O

MATEMATICOS, EL MAS COMUN ES EL DE MINIMOS CUADRADOS,

SI X ES LA VARIABLE INDEPENDIENTE Y Y LA DEPENDIENTE, SE DICE QUE LA REGRESION ES DE <u>Y CON BASE</u> EN X, Y VICEVERSA.

EN ESTE CURSO NOS CONCRETAREMOS AL CASO DE UN AJUSTE LINEAL, ES DECIR, MEDIANTE UNA LINEA RECTA, DE ECUACION Y-mx + b, EN DONDE m ES LA PENDIENTE Y b LA ORDENADA AL ORIGEN.





AGRUPAMIENTO DE DATOS POR PAREJAS

CUANDO SE TIENE UNA MUESTRA CON MUCHOS DATOS TOMADOS POR PAREJAS,
CORRESPONDIENTES A DOS VARIABLES ALEATORIAS, ES A MENUDO CONVENIENTE AGRUPARLOS POR VALORES O POR INTERVALOS Y LUEGO OBTENER LA
DISTRIBUCION CONJUNTA DE FRECUENCIAS, DE LA MANERA QUE SE MUESTRA EN EL
SIGUIENTE EJEMPLO.

EJEMPLO

EN UN ESTUDIO CON FINES ANTROPOLOGICOS REALIZADO EN UNA MATERNIDAD, SE OBTUVO LA MUESTRA POR PAREJAS, MOSTRADA EN LA TABLA 1, CORRES-PONDIENTE A LAS VARIABLES ALEATORIAS

X = ESTATURA

Y = CIRCUNFERENCIA DE LA CABEZA

DE LOS NIÑOS AL NACER.

CALCULAR LA DISTRIBUCION CONJUNTA DE FRECUENCIAS Y DIBUJAR EL HISTOGRAMA CORRESPONDIENTE.

PROCEDIMIENTO:

- Determinar los valores máximos y mínimos de los datos X y Y.
- 2. Elaborar la tabla de conteo
- 3. Elaborar la tabla con la distribución conjunta de frecuencias.

TABLA 1 . ESTATURA, x (EN CM), Y CIRCUNFERENCIA DE LA CA-BEZA, Y (EN CM), EN BEBES AL NACER (DATOS DEL PROF. E. NAVRATIL, UNIVERSITY HOSPITAL, GRAZ, 1962)

£	y	.	¥	z	y		<u> </u>	£	¥
52	36	50	33	51	34	5L	36	48	33
48	34	48	34	49	34	53	33	48	ננ.
50	34	51	36	51	36	51	36	50	35
51	34	54	38	51	34	49	34	49	32
47	35	49	34 -	50	35	51	35	49	35
51	35	49	33	47	35	50	34	48	35 34
52	36	49	33	49	. 34	49	35	50	34
52	36	50	34	49	33	50	33	49	34
53	37	48	33	49	35	47	33	49	34
48	34	52	34	52	36	50	35	49	33
50	34	50	34	51	37	49	34	48	34
52	37	50	. 33	50	35	50	34	50	35
52	36	49	35	56	39	48	34	49	33
50	33	51	35	52	34	47	35 .	50	32
50	34	53	35	47	34	50	35	54	37
49	34	48	32	53	36	53	36	50	35
48	34	48	3)	49	34	52	36	52	34
48	33	50	33	49	33	53	38	51	35
50	33	51	35	49	بَدَا	50	34 -	52	35
50	33	52	36	· 51	35	53	39	48	33

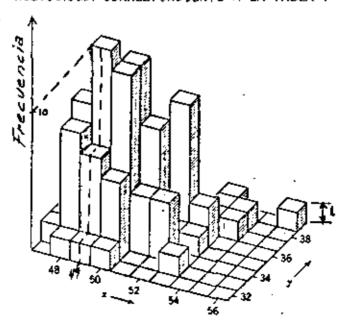
TABLA 2, GRAFICA DE CONTEO CORRESPONDIENTE A LA MUESTRA DE LA TABLA 1.

Cizounferencia de la cabeza		Estatura x (en cm)									
y (en cm)	47	45	49	50	St	52	sj	54	55	56	
. 39	Ť						 	-		1	
38	7						1	1			
37				Ī	Τ	1	1	1			
36			,	ī	1111	##	- 11				
35	181		411	##	##	1	1	ļ			
34	1	#	##	Htr iiii	111	111					
33	1	###	H#f	1111			Ī				
32		1	1	1							

TABLA 3. DISTRIBUCION DE FRECUENCIAS DE LA MUESTRA DE LA TABLA 11

Circunferencia	Estatura a (en em)										
de la cabeza y (en em)	47	48	49	50	51	52	53	54	55	16	
39		⁻	-			<u> </u>	ī	 		1	
38	<u> </u>	•					1	1			
37			_		ı.	1	1	1			
36				1	4	7	2			-	
35	3		5	9	6	ı	1				
34	1	7	10	9	3	3				\Box	
33	ī	6	5	4			1	1			
32	_	1	1	1						\vdash	

HISTOGRAMA CORRESPONDIENTE A LA TABLA 1



METODO DE MINIMOS CHADRADOS

EL METODO DE MINIMOS CUADRADOS TIENE COMO CRITERIO EL QUE LA SUMA DE LOS CUADRADOS DE LAS DESVIACIONES DE LAS ORDENADAS, γ_1 , RESPECTO A LA RECTA DE REGRESION, $\widetilde{\gamma}_1$, SEA MINIMA, ES DECIR, SE TIENE UN METODO DE OPTIMIZACION EN EL QUE SE PRETENDE QUE

$$D = \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2 SEA MINIMO$$

$$D = \sum_{i=1}^{n} [Y_i - (b + mx_i)]^2$$

$$\frac{\partial D}{\partial b} = 2 \sum_{i=1}^{n} (y_i - b - mx_i) (-1) = 0$$

$$\frac{\partial D}{\partial m} = 2 \sum_{i=1}^{n} (y_i - b - mx_i) (-x_i) = 0$$

CON ESTO SE TIENE UN SISTEMA DE ECUACIONES LINEALES CON DOS INCOG-NITAS, b y m, QUE CONDUCE A

$$m = \frac{n\Sigma x_1 y_1 - \Sigma x_1 \Sigma y_1}{n\Sigma x_1^2 - (\Sigma x_1)^2} = \frac{\frac{1}{n}\Sigma x_1 y_1 - \overline{x}\overline{y}}{S^2(x)} = \frac{\frac{1}{n}\Sigma (x_1 - \overline{x}) (y_1 - \overline{y})}{S^2(x)}$$

$$b = \frac{Ex_1^2 Ey_1 - Ex_1 Ex_1 y_1}{nEx_1^2 - (Ex_1)^2} = \overline{y} - m\overline{x}$$

ESȚA ULTIMA ECUACION INDICA QUE LA RECTA PASA POR EL PUNTO (\bar{x},\bar{y}) .

SI LAS PAREJAS DE DATOS ESTAN AGRUPADAS EN K CELDAS Y LA FRECUENCIA DE LA CELDA 1 ES f_{1xy} , Y x_j Y y_j Son sus marcas de Clases, entonces, $\frac{1}{n} \frac{R}{j} \frac{R}{j} f_{1xy} x_j y_j - \overline{x} \overline{y} = \frac{1}{n} \frac{R}{j} f_{1xy} (x_j - \overline{x}) (y_j - \overline{y})$ $= \frac{1}{n} \frac{R}{j} \frac{R}{j} f_{1xy} x_j y_j - \overline{x} \overline{y} = \frac{1}{n} \frac{R}{j} \frac{R}{j} f_{1xy} (x_j - \overline{x}) (y_j - \overline{y})$

METODO CORTO PARA CALCULAR LA RECTA DE REGRESION

A MENUDO SE PRESENTAN PROBLEMAS DE REGRESION LINEAL EN LOS QUE SE
MANEJAN GRANDES CANTIDADES DE DATOS Y, ADEMAS, SUS VALORES SON DE
VARIAS CIFRAS. PARA REDUCIR LA LABOR NUMERICA SE RECURRE A AGRUPAR LOS DATOS Y A TRANSFORMAR LAS VARIABLES DE LA MANERA SIGUIENTE:

$$x' = \frac{x + c_1}{c_2}$$
 $y' = \frac{y - c_3}{c_4}$; $c_2 > 0$, $c_4 > 0$

DE DONDE
$$x = C_2x' + C_1$$
 $y = C_4y' + C_3$

EN TAL CASO, EL PRIMER TERMINO DEL NUMERADOR DE LA FORMULA PARA CALCULAR m SE TRANSFORMA A:

$$\frac{1}{n} \int_{j+1}^{K} f_{jxy} x_{j} y_{j} = \frac{1}{n} \int_{j=1}^{K} f_{jxy} (c_{2} x_{j}^{i} + c_{1}) (c_{4} y_{j}^{i} + c_{3})$$

$$= \frac{1}{n} \int_{j=1}^{K} f_{jxy} (c_{2} c_{4} x_{j}^{i} y_{j}^{i} + c_{2} c_{3} x_{j}^{i} + c_{1} c_{4} y_{j}^{i} + c_{1} c_{3})$$

$$= c_2 c_4 \frac{1}{n} \int_{j=1}^{K} f_{jxy} x_j^{!} y_j^{!} + c_2 c_3 \int_{j=1}^{K} \frac{1}{n} f_{jxy} x_j^{!} + c_1 c_4 \int_{j=1}^{K} f_{ixy} y_j^{!} + c_1 c_3 \frac{n}{n}$$

$$= c_{2}c_{4} \frac{1}{n} \int_{j=1}^{K} f_{jxy}x^{j}y^{j} + c_{2}c_{3}\overline{x} + c_{1}c_{4}\overline{y} + c_{1}c_{3}$$

EL SEGUNDO TERMINO DE LA MISMA FORMULA QUEDA:

$$\bar{x}\bar{y} = (c_2\bar{x}' + c_1)(c_4\bar{y}' + c_3) = c_2c_4\bar{x}'\bar{y}' + c_2c_3\bar{x}' + c_1c_4\bar{y}' + c_1c_3$$

ADEMAS, TOMANDO EN CUENTA QUE

$$s^{2}(x) = c_{2}^{2}s^{2}(x^{\dagger})$$

LA FORMULA PARA CALCULAR LA PENDIENTE CAMBIA A

$$m = \frac{C_4 C_{2j} \frac{x}{z_1} \frac{1}{n} \frac{f x_j' y_j' - C_2 C_4 \overline{x}^{\dagger} \overline{y}^{\dagger}}{C_2^2 S^2 (x^{\dagger})} = \frac{C_4}{C_2} \frac{(\frac{1}{n}) \frac{x}{z_1} \frac{f_{jxy} x_j' y_j' - \overline{x}^{\dagger} \overline{y}^{\dagger}}{S^2 (x^{\dagger})}$$

EN ESTAS TRANSFORMACIONES C_1 Y C_3 <u>DEBEN SER IGUALES A ALGUNA DE LAS MARCAS DE CLASE CENTRALES</u> DE x Y y, RESPECTIVAMENTE, Y C_2 Y C_4 DEBEN SER <u>IGUALES A LOS ANCHOS DE LOS INTERVALOS</u> DE LOS DATOS DE x Y de y, RESPECTIVAMENTE.

EJEMPLO

CALCULAR LA RECTA DE REGRESION DE LOS DATOS ANOTADOS EN LA SIGUIENTE TABLA, MEDIANTE EL METODO DE MINIMOS CUADRADOS.

х	у	жу	x ² -
.8	7	56	64
6	12	72	36
4	2	8	16
6	6	36	36
13	7	91	169
10	3	30	100
1:	6	6	1
7	2	14	49
3	9	27	9
12	11	132	144
Σ= 70	65	472	624

$$\bar{x} = 70/10=7$$
, $\bar{y} = 65/10=6.5$, $x^2=624/10=62.4$
 $S^2(x) = 62.4 - 7^2 = 13.4$
 $m = \frac{\frac{1}{10}}{13.4} \frac{472 - 7 \times 6.5}{13.4} = 0.13$
 $b = 6.5 - 0.13 \times 7 = 5.59$

EJEMPLO
OBTENER LA RECTA DE REGRESION DE LAS CARGAS EN LOS PISOS 1 Y 9
DE UN EDIFICIO

	CARGAS EN	TON/M ²					
ZONA	PISO 1	PISO 9					
	x	У					
A	38	355					
ъ.	354	370					
С	207	307					
D	273	270					
E	127	182					
F	324	962					
G	358	222					
H	519	405					
I	147	315					
J	181	420					
K	118	484					
L	114	287					
М	243	228					
N	522	470					
0	236	194					
P	269	260					
Ω	268	679					
R	321	366					
s	305	358					
T	335	317					
U	577	368					
v	271	284					

RANGO DE X: 577-38

RANGO DE Y: 962-182

TABLA 4. DISTRIBUCION CONJUNTA DE FRECUENCIAS DE LAS CARGAS EN LOS PISOS 1 V 9.

						_			•		
\ ·	0.5	100.5	200.5	300.5	400,5	500,5	600,5	700.5	800,5	900.5	Ţ
\Y	а	a	a	a	a	a	a	a	a	a	l
х \	100.5	200.5	300,5	400.5	5,005	600.5	700.5	800.5	900.5	1 000.5	
0.5		'								•••	Ì
a			'					.			l
100.5				X . (1)							ļ
100.5										,	Ī
a				,			ŀ	•	-		ļ
200.5		X (1)	X (1)		XX (2)			,		·	١
200.5					1	1	, ·				Ì
a		ŀ							.	Į	١
300.5		X (1)	XXXX (4)	X (1)		٠,	X (1)				1
300.5	<u> </u>						1	<u> </u>			Ì
a	١.			}		-	ļ				
400.5			x (1)	XXXX (4)						X (1)]
400.5											۱
a								ļ.	.		l
500.5								<u> </u>	<u> </u>		l
500.5				[,	l			[-
a	1										1
600.5				X (1)	XX (2)					[1
			<u> </u>		<u> </u>					└	_

CALCULO DE X y S(x)

INTERVALOS	MARCAS I CLASE	DE	f	xf	x ²	x ² f
0.5 -100.5	50.5	-	1	50.5	2,550.25	2,550.25
100.5-200.5	150.5]	5	752.50	22,650.25	113,251.25
200.5-300.5	250.5		7	1,753.50	62,750.25	439,251,25
300.5-400.5	350.5	j	6	2,103.00	122,850.25	737,101.50
400.5-500.5	450.5		0	0.00	164,430.25	0.00
500,5-600.5	550.5	1	3	1,651.50	303,050.25	909,150.75

$$\bar{x} = \frac{6,311.00}{22} = 286.86, \quad \bar{x}^2 = 82,288.66$$

$$x^2 = \frac{2,201.304.50}{22} = 100,059.30$$

$$s^{2}(x) = 100,059.30 - 82,288.66 = 17,770.64$$

$$S(x) = \sqrt{17,770.64} = 133.31$$

CALCULO DE \bar{y} y S(y).

INTERVALOS	MARCAS DE CLASE, Y	f	y.f	y ²	y ² f
100.5-200.5	150.5	2	301.00	22,650.25	45,300.50
200.5-300.5	250.5	6	1,503.00	62,750.25	376,501.50
300.5-400.5	350.5	8	2,804.00	122,850.25	982,802.00
400.5-500.5	450.5	4	1,802.00	202,950.25	811,801.00
500.5-600.5	550.5	0	. 0.00	303,050.25	0.00
600.5-700.5	650.5	1	650.50	423,150.25	423,150.25
700.5-800.5	750.5	0	0.00	563,250.25	0.00
800.5-900.5	850.5	0	0.00	723,350.25	0.00
900.5-1000.5	950.5	1	950.50	903,450.25	903,450.25
			··	 -	
		ε = 22	Σ=8,011.00		E=3,543,005.50

$$\tilde{Y} = \frac{8,011,00}{22} = 364.14$$
, $\tilde{Y}^2 = 132,597.94$

$$\frac{72}{Y} = \frac{3,543,005.50}{22} = 161,045.70$$

$$s^{2}(y) = 161,045.70 - 132,597.94 = 28,447.76$$

$$S(y) = \sqrt{28,447.76} = 168.66$$

TAREA: CALCULAR \bar{x} , $s^2(x)$, \bar{y} y $s^2(y)$ DE LOS DATOS AGRUPADOS ANTE-RIORES, MEDIANTE TRANSFORMACIONES APROPIADAS DE VARIABLES.

MARCAS DE CLASE		FRECUENCIAS		
×	У	f _{xy}	ху	f _{xy} xy
	- <u> </u>			,
50.5	350.5	1	17,700.25	17,700.25
150.5	150.5	1	22,650.25	22,650.25
150.5	250.5	1	37,700.25	37,700.25
150.5	350.5	1 .	52,750.25	52,750.25
150.5	450.5	2	67,800.25	135,600.50
250.5	150.5	1	37,700.25	37,700.25
250.5	250.5	4 .	62,750.25	251,001.00
250.5	350.5	1	87,800.25	87,800.25
250.5.	650,5	, 11	162,950.25	162,950.25
350.5	250,5	1	87,800.25	87,800.25
350.5	350.5	4	122,850.25	491,401.00
350,5	950,5	1	. 333,150.25	333,150.25
550.5	350.5	1	192,950.25	192,950.25
550.5	450.5	2	248,000.25	496,000.50
		Σ = 22	,	Σ = 2,407,155.50

PUESTO QUE $\bar{x} = 286.86$, $\bar{y} = 364.14$ Y $s^2(x) = 17,770.64$. SE OBTIENE FINALMENTE QUE

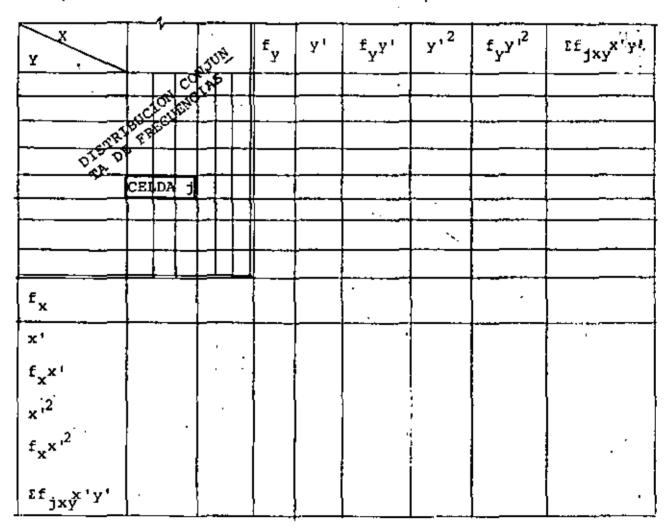
$$m = \frac{\frac{2,407,155.50}{22} - (286.86)(364.14)}{17,770.64} = 0.28$$

 $b = \bar{y} - m\bar{x} = 364.14 - 0.28 \times 286.86 = 283.82$ $\tilde{Y} = 0.28 \times + 283.82$

EJEMPLO

RESOLVER EL PROBLEMA ANTERIOR MEDIANTE EL METODO CORTO.

PARA APLICAR EL METODO CORTO SE EMPLEA UNA TABULACION COMO LA SIGUIENTE:



, PARA LA TRANSFORMACION DE VARIABLES

$$x' = \frac{x - c_1}{c_2} - x - y' = \frac{y - c_3}{c_4}$$

TOMAREMOS $C_1 = 250.5$, $C_2 = 100$, $C_3 = 350.5$ Y $C_4 = 100$.

Y	0	50.	00,5	100	.5-2 150.	200.5	200. 250	,5-3),5	00.5	300	,5-4 i0.5	100.5	500 51	0.5-6 50.5	00.5	fy	Y'	₽ _y y'	<u>v</u> ,2	f _y y' ²	Σf _{jx} y'y'
100,5-200,5				2	1_	2	0	1	0							2	-2	-4	4	8	. 2
200.5-300.5 250.5				1	1	1	0	4	0	-1	ij	-1				6	-1	-6	1	6	. 0
300.5~400.5 350.5	0	1	0	0	1	0	0	1	0	0	4	0	0	i _	0	8	0	0	0	0	0
400.5-500.5 450.5		 		-1	2	-2							3	2	6	4	1	4	1	4	4
600.5-700.5 650.5	_						0	1	0			-				1	3	3	9	9	- 0
900.5-1000.5 950.5					,					6	1	6				1	6	6	36	36	6
fx		1	 		5		<u> </u>	7			6		 	3	ļ	22		3		63	12
х'		~2			-1			.0	<u> </u>		1	<u> </u>		3	<u>L</u>			· 			!
f _x x'		-2		-	-5		[0			6		 :	9 _	<u> </u>	8					
x, 2		4			1_			0			1			9							
f _x x' ²		4			5			0			6			27		42					
Σf _{j×y} ×'y'			0_			1			0			5			6	12			i i	<u> </u>	

$$\bar{x}' = \frac{8}{22} = 0.3636; \ \bar{y}' = \frac{3}{22} = 0.1364; \ \bar{x}^2 = \frac{42}{22} = 1.9091, \ \bar{y}'^2 = \frac{63}{22} = 2.8636$$

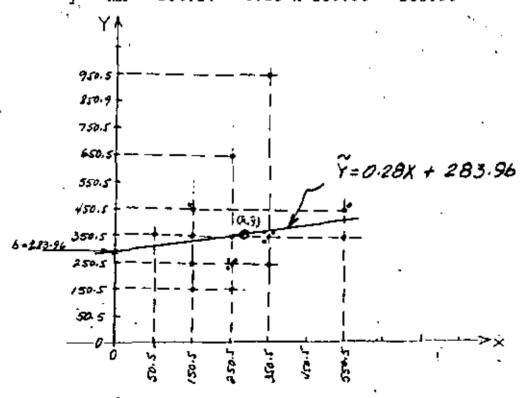
$$\bar{s}^2(x') = 1.9091 - (0.3636)^2 = 1.7769; \ \bar{s}^2(y') = 2.8636 - (0.1364)^2 = 2.8450$$

$$\bar{x} = C_2 \bar{x}' + C_1 = 36.36 + 250.5 = 286.86$$

$$m = \frac{100}{100} \frac{\frac{1}{22} \cdot 12 - (0.3636) \cdot (0.1364)}{1.7769} = \frac{0.4959}{1.7769} = 0.28$$

 $\vec{y} = C_4 \vec{y}' + C_3 = 13.64 + 350.5 = 364.14$

 $b = \bar{y} - m\bar{x} = 364.14 - 0.28 \times 286.36 = 283.96$



TAREA: CALCULAR LA RECTA DE REGRESION, Y TRAZAR LA GRAFICA CORRES-PONDIENTE, DE LOS DATOS AGRUPADOS DE LA TABLA 3.

VARIANCIA Y ERROR ESTANDAR DE LA ESTIMACION MEDIANTE LE RECTA DE REGRESION

CMD VA SE INDICO, EL TERMINO $y_1 - \tilde{y}_1$ REPRESENTA LA DIFERENCIA ENTRE EL VALOR OBSERVADO DE LA VARIABLE Y Y EL VALOR PREDICHO (LA ORDENADA DE LA RECTA DE REGRESION) CORRESPONDIENTE A x_1 . DICHO TERMINO SE LLAMA <u>ERROR DE PREDICCION O DE ESTIMACION</u>. POR EJEMPLO, SI PARA x_3 =50 SE OBSERVA QUE y_3 =65, Y LA ECUACION DE LA RECTA DE REGRESION ES \tilde{y} =70 x + 21.9, EL VALOR PREDICHO RESULTA \tilde{y}_3 =0.70 x 50 + 21.9=56.9, Y EL ERROR DE PREDICCION CORRESPONDIENTE ES 65 - 56.9 = 8.1.

LA "ARIANCIA DE LA PREDICCION O DE LA ESTIMACION, $s_{y|x}^2$, QUE ES UNA ESTIMA"GION GLOBAL DEL ERROR DE PREDICCION PARA TODOS LOS PUNTOS OBSERVADOS, SE DEFINE MEDIANTE LA FORMULA

$$s_{vix}^{2} = \frac{\sum_{i=1}^{i=N} (y_{i} - \vec{y}_{i})^{2}}{N}$$
 (1)

EN DONDE N ES EL TOTAL DE DATOS DE Y. ADEMAS, SE PUEDE DEMOSTRAR QUE $s_{y\mid x}^2$ SE RELACIONA CON LA PENDIENTE DE LA RECTA DE REGRESION MEDIANTE LA ECUACION

$$s_{y|x}^2 = s_y^2 - m^2 s^2(x)$$

PUESTO QUE LA ECUACION y = mx + b SE OBTIENE MEDIANTE EL METODO DE MINIMOS CUADRADOS, EN EL CUAL $(y_1 - y_1)^2$, TIENE EL MINIMO VALOR PO
SIBLE, Y COMO LA VARIANCIA DE LA PREDICCION SE CALCULA CON LA

EC (I), LAS PREDICCIONES BASADAS EN LA RECTA DE MINIMOS CUADRADOS

SON TALES QUE LA VARIANCIA DE LA PREDICCION ES MINIMA.

IGUAL QUE LA DESVIACION ESTANDAR DE UNA MUESTRA SE DEFINE COMO LA RAIZ CUADRADA DE LA VARIANCIA, EL ERROR ESTANDAR DE LA ESTIMACION O DE LA PREDICCION, Sylx, SE DEFINE COMO LA RAIZ CUADRADA DE LA VARIANCIA DE LA ESTIMACION, ES DECIR

$$s_{y|x} = \sqrt{s_{y|x}^2}$$

YA SE DIJO QUE LA DIFERENCIA $y_1 - \tilde{y}_1$ REPRESENTA LA DESVIACION DE UNA ORDENADA OBSERVADA RESPECTO A SU ORDENADA PREDICHA MEDIANTE LA RECTA DE REGRESION. EXISTE OTRO TIPO DE DESVIACION: LA DE LAS ORDENADAS PREDICHAS MEDIANTE LA RECTA DE REGRESION, \tilde{y}_1 , RESPECTO AL PROMEDIO ARITMETICO, \tilde{y} , DE LAS ORDENADAS OBSERVADAS, y_1 . ESTA DESVIACION, INDICADA COMO $\tilde{y}_1 - \tilde{y}$, SE LLAMA DESVIACION EXPLICADA, YA QUE DE LA ECUACION

$$\vec{y}_{i} = mx_{i} + b = mx_{i} + \vec{y} - m\vec{x} = \vec{y} + m(x_{i} - \vec{x})$$

SE OBTIENE

$$\tilde{y}_i - \tilde{y} = m(x_i - \tilde{x})$$

LA CUAL INDICA QUE LAS DESVIACIONES DE \tilde{y}_i RESPECTO A \bar{y} SE EXPLICAN EXCLUSIVAMENTE POR (SON FUNCION DE) LA DESVIACION DE \star_i RESPECTO A $\bar{\star}$.

SI A LA DIFERENCIA y_1 - \bar{y} SE LE LLAMA <u>DESVIACION TOTAL</u> DE y_1 CON RESPECTO AL PROMEDIO ARITMETICO, \bar{y} , LA ECUACION

$$y_i - \tilde{y} = (\tilde{y}_i - \tilde{y}) + (y_i - \tilde{y}_i)$$

INDICA QUE LA DESVIACION TOTAL ES IGUAL A LA DESVIACION EXPLICADA MAS y_i - \tilde{y}_i . LAS DESVIACIONES y_i - \tilde{y}_i ocurren al AZAR, ES DECIR, EN FORMA INEXPLICABLE, DE AHI QUE SE LES CONOZCA CON EL NOMBRE DE

DESVIACIONES INEXPLICADAS (NO EXPLICADAS).

COMO CONSECUENCIA DE LA ECUACION ANTERIOR, SE PUEDE DEMOSTRAR QUE

$$\frac{\stackrel{\hat{\mathbf{1}}=\mathbb{N}}{\Sigma}}{\stackrel{\hat{\mathbf{1}}=\mathbb{N}}{\mathbb{N}}} = \frac{\stackrel{\hat{\mathbf{1}}=\mathbb{N}}{\Sigma}}{\stackrel{\hat{\mathbf{1}}=\mathbb{N}}{\mathbb{N}}} = \frac{\stackrel{\hat{\mathbf{1}}=\mathbb{N}}{\Sigma}}{\stackrel{\hat{\mathbf{1}}=\mathbb{N}}{\mathbb{N}}} + \frac{\stackrel{\hat{\mathbf{1}}=\mathbb{N}}{\Sigma}}{\stackrel{\hat{\mathbf{1}}=\mathbb{N}}{\mathbb{N}}} + \frac{\stackrel{\hat{\mathbf{1}}=\mathbb{N}}{\Sigma}}{\mathbb{N}}$$

EL MIEMBRO IZQUIERDO DE ESTA ECUACION CORRESPONDE A LA VARIANCIA, $s^2(y)$, de los datos de y. El segundo termino del miembro derecho es precisamente la variancia de la prediccion, $s^2_{y|x}$, conocida tambien como <u>variancia inexplicada</u>, el primer termino del mismo miembro se denomina <u>variancia explicada</u>, y se representa con el simbolo $s^2(\tilde{y})$. En consecuencia, se puede escribir

$$s^{2}(y) = s^{2}(\tilde{y}) + s_{y|x}^{2}$$

MEDIDAS DE CORRELACION

CUANDO SE REALIZAN ESTUDIOS ESTADISTICOS EN QUE SE INVOLUCRAN

DOS O MAS VARIABLES ES A MENUDO CONVENIENTE CONTAR CON UNA MEDIDA

NUMERICA DEL GRADO DE ASOCIACION O RELACION QUE HAY ENTRE ELLAS.

UNA DE ESTAS MEDIDAS SE DENOMINA <u>COVARIANCIA</u>, 5²XY, LA CUAL SR DE-FINE COMO:

$$s_{\mathbf{x}\mathbf{y}}^2 = \frac{1}{N}\sum_{i=1}^{N} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{y}_i - \bar{\bar{\mathbf{y}}}) = \frac{1}{N}\sum_{i=1}^{N} \mathbf{x}_i \mathbf{y}_i - \bar{\mathbf{x}}\bar{\bar{\mathbf{y}}}$$

EN DONDE

 $(x_i, y_i) = PAREJAS DE DATOS$

 \bar{x} = PROMEDIO DE LOS DATOS DE LA VARIABLE X

 \vec{Y} = PROMEDIO DE LOS DATOS DE LA VARIABLE' Y

N = TOTAL DE PAREJAS DE DATOS

OTRA MEDIDA DE CORRELACION, QUE RESULTA ADIMENSIONAL, ES EL COEFI-CIENTE DE CORRELACION, PXY, QUE SE-DEFINE COMO

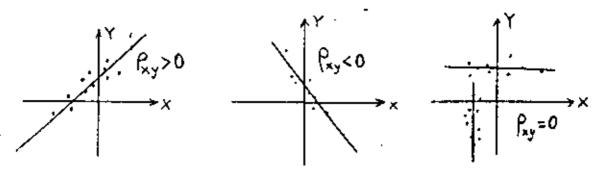
$$\rho_{xy} = \frac{s^2xy}{s(x) s(y)^i} -1 \le \rho_{xy} \le 1$$

EN DONDE

s²_{XY} = COVARIANCIA ENTRE X Y Y

S(x) = DESVIACION ESTANDAR DE LOS DATOS DE X

S(y) = DESVIACION ESTANDAR DE LOS DATOS DE Y



CASO DE CORRELACION PERFECTA

CUANDO SE PLANTEO EL METODO DE MINIMOS CUADRADOS PARA ESTIMAR LA RECTA DE REGRESION LINEAL ENTRE DOS VARIABLES, ESTE SE DESARROLLO SOBRE LA BASE DE HACER MINIMA LA SUMA DE LOS CUADRADOS DE LA DES-VIACION VERTICAL DE CADA PUNTO RESPECTO A LA RECTA DE REGRESION, ESTO ES QUE

$$D = \sum_{i=1}^{N} (y_i - \bar{y}_i)^2 = MINIMO$$
 (1)

EN DONDE

$$\bar{y}_{i} = mx_{i} + b = mx_{i} + \bar{y} - m\bar{x} = \bar{y} + m(x_{i} - \bar{x})$$
 (2)

SUSTITUYENDO A $\widetilde{\mathbf{y}}_i$ EN LA EC (1) Y AGRUPANDO TERMINOS SE OBTIENE

$$D = \sum_{i=1}^{N} \left[(Y_i - \bar{y}) - m(x_i - \bar{x}) \right]^2$$
 (3)

OBSERVESE QUE D ES CERO SI, Y SOLO SI, CADA SUMANDO ES CERO, ES

$$y_1 - \vec{y} - m(x_1 - \vec{x}) = 0$$
 PARA TODO i

PARA LO CUAL SE REQUIERE QUE TODOS LOS PUNTOS (x1, y1) QUEDEN SOBRE LA RECTA DE REGRESION, DADA POR LA EC (2), EN ESTE CASO SE DICE QUE LA REGRESION ES PERFECTA.

POR OTRA PARTE, DESARROLLANDO EL BINOMIO AL CUADRADO DE LA EC (3)
OBTENEMOS

$$D = \sum_{i=1}^{N} \left[(y_i - \bar{y})^2 - 2m(y_i - \bar{y})(x_i - \bar{x}) + m^2(x_i - \bar{x})^2 \right]$$
$$= NS^2(y) - 2mNS^2_{xy} + NS^2(x)_m^2$$

EN EL CASO DE QUE TODOS LOS PUNTOS DE LA MUESTRA QUEDEN SOBRE LA RECTA DE REGRESION SE TIENE QUE

$$D = NS^{2}(y) = 2m NS_{xy}^{2} + m^{2} NS^{2}(x) = 0$$
 (4)

POR OTRA PARTE, TOMANDO EN CUENTA QUE

$$m = \frac{\frac{1}{N} \frac{N}{r} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{s^{2}(x)} = \frac{s_{xy}^{2}}{s^{2}(x)}$$
(5)

LA EC (4) QUEDA EN LA FORMA

$$s^{2}(y) = 2(s_{xy}^{2})^{2}/s^{2}(x) + (s_{xy}^{2})^{2}/s^{2}(x) = 0$$

DE DONDE, EN EL CASO DE REGRESION PERFECTA,

$$(s_{xy}^2)^2 = s^2(x) s^2(y)$$
 (6)

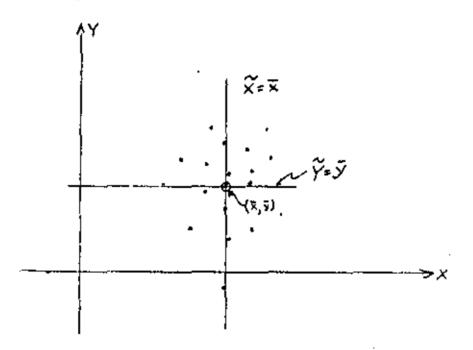
Y, SIS(x)>0 Y S(y)>0,

$$\rho_{xy}^2 = \frac{(S_{xy}^2)^2}{S^2(x)S(y)^2} = \frac{S^2(x)S^2(y)}{S^2(x)S^2(y)} = 1, \text{ 0 SEA, } \rho_{xy} = \frac{1}{2}$$

CUANDO ESTO SUCEDE, ES DECIR, SI $\rho_{xy} = 1$ Ó $\rho_{xy} = -1$, SE TIENE EL CASO DE <u>CORRELACION PERFECIA.</u>

CASO DE CORRELACION NULA

LA CORRELACION ENTRE LOS DATOS DE DOS VARIABLES ALEATORIAS RESULTA NULA SI $S_{XY}=0$ (O $\rho_{XY}=0$) LO CUAL SUCEDE CUANDO m=0 (VER EC (5)). EN TAL CASO, LA RECTA DE REGRESION DE Y CON BASE EN X TIENE COMO ECUACION A $\widetilde{Y}=\widetilde{Y}$, Y LA DE X CON BASE EN Y, A $\widetilde{X}=\widetilde{X}$ (m= ∞).



RELACION ENTRE EL COEFICIENTE DE CORRELACION V LA PENDIENTE DE LA RECTA DE-REGRESION

TOMANDO EN CUENTA QUE

$$\rho_{xy} = \frac{s^2 xy}{s(x) s(y)} , s^2_{xy} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x}) (y_i - \bar{y})$$

Y HACIENDO SUSTITUCIONES EN LA ECUACION PARA CALCULAR LA PENDIENTE DE LA RECTA DE REGRESION SE OBTIENE

$$m = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x}) (y_i - \bar{y})}{s^2(x)} = \frac{s^2}{s^2(x)} = \frac{\rho_{xy} S(x) S(y)}{s^2(x)}$$

O SEA

$$m = p_{xy} \frac{S(y)}{S(x)} \qquad (8)$$

DE ESTA MANERA, SI CALCULAMOS m MEDIANTE EL METODO CORTO DESCRITO ANTERIORMENTE, PODEMOS CALCULAR P_{XY} DESPEJANDOLA DE LA EC (8), ES DECIR, EMPLEANDO LA ECUACION

$$\rho_{xy} = m \frac{S(x)}{S(y)} \tag{9}$$

ALTERNATIVAMENTE, MEDIANTE EL METODO CORTO SE OBTIENE ho_{xy} EN FORMA DIRECTA USANDO LA ECUACION

$$f_{xy} = \frac{\frac{1}{N} \sum_{i=1}^{N} f_{ixy} x^{i} y^{i} - \overline{x^{i}} \overline{y^{i}}}{S(x^{i}) S(y^{i})}$$
(10)

EN DONDE f_{ixy} ES LA PRECUENCIA DE LA CELDA 1, x' Y y' SON LAS MARCAS DE CLASE DE LOS INTERVALOS, $\overline{x'}$ Y $\overline{y'}$ SON LOS PROMEDIOS ARITMETICOS, Y S(x') Y S(y') LAS DESVIACIONES ESTANDAR DE LOS DATOS DE X! Y Y' OBTENIDOS MEDIANTE LAS TRANSFORMACIONES

$$x' = \frac{x - c_1}{c_2}$$
 $y' = \frac{y - c_3}{c_4}$

EN DONDE

 C_1 = MARCA DE CLASE CENTRAL DE LAS x

 C_2 = ANCHO DE LOS INTERVALOS DE CLASE DE LAS x

C = MARCA DE CLASE CENTRAL DE LAS Y

C4 = ANCHO DE LOS INTERVALOS DE CLASE DE LAS Y

RANGO DELCOEFICIENTE DE CORRELACION

DE LA ECUACION CON QUE SE CALCULA LA VARIANCIA DE LA ESTIMACION

$$S_{Y|X}^2 = S^2(y) (1 - \rho_{xy}^2)$$
 (7)

SE CONCLUYE QUE $\rho_{xy}^2 \lesssim 1$, YA QUE $s_{y \mid x}^2 \geqslant 0$; EN CONSECUENCIA

$$-1 \le \rho_{xy} \le 1 \tag{8}$$

EJEMPLO

DIEZ VIGAS DE MADERA NOMINALMENTE IDENTICAS SE PROBARON CON UNA CARGA CONCENTRADA EN EL CENTRO DEL CLARO; LOS RESULTADOS SON LOS ANOTADOS EN LA TABLA SIGUIENTE, CALCULAR EL COEFICIENTE DE CORRELACION, LA RECTA DE REGRESION Y LAS VARIANCIAS EXPLICADA E INEXPLICADA.

CARGA DE FALLA X, EN KG	DE FLEXION MA- XIMA, y, EN CM	x - x	у – ў	(x-x) (y-y)	$(x-\bar{x})^2$	(y - ȳ) ²
950	0.33	140	0.017	2,38	19,600	0.000289
1050	0.37	240	9.057	13.68	57,600	0.003249
750	0.28	- 60	-0.033	1.98	3,600	0.001089
900	0.30	90	-0.013	- 1.17	8,100	0.000169
700	0,27	-110	-0.043	4.73	12,100	0.001849
650	0.28	-160	-0.033	5.28	25,600	0.001089
950	0,35	140	0.037	5,18	19,600	0.001369
850	0.40	40	0.097	3.48	1,600	0.007569
600	0,26	-210	-0.053	11,13	44,100	0.002809
700	0,29	-110	-0.023	2.53	12,100	0.000529
E= 8100	Σ = 3,13	Σ = 0	Σ= 0	E=49.20	Σ=204,000	0.020010

$$\bar{x} = \frac{8100}{10} = 810 \text{ KG}; \quad \bar{y} = \frac{3.13}{10} = 0.313 \text{ CM}; \quad S_{xy}^2 = \frac{49.20}{10} = 4.92$$

$$S^{2}(x) = \frac{204,000}{10} = 20,400; S(x) = \sqrt{20,400} = 142,83$$

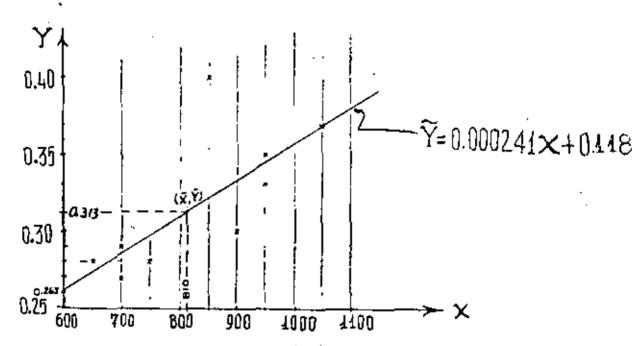
$$s^{2}(y) = \frac{0.020010}{10} = 0.002001; -s(y) = \sqrt{0.002001} = 0.0447$$

$$a_{xy} = \frac{4.92}{142 - 83 \times 0.0447} = 0.77$$

$$m = \rho_{xy} S(y)/S(x) = 0.77 \times 0.0447/142.83 = 0.000241 CM/KG$$

 $b = 0.313 - 0.000241 \times 310 = 0.118 \text{ CM}$

 $\tilde{y} = 0.000241 \times + 0.118$; SI X = 600, $\tilde{y} = 0.145 + 0.118 = 0.263$



$$s_{y|x}^2 = s^2(y)(1 - \rho_{xy}^2) = 0.002001(1 - 0.77)^2 = 0.000106$$

 $s_{y|x} = 0.0103$

$$s^{2}(y) = s^{2}(\tilde{y}) + s_{y|x}^{2} \rightarrow s^{2}(\tilde{y}) = 0.002001 = 0.000106 = 0.001895$$

 $s(\tilde{y}) = 0.0435$

EL AGRIETAMIENTO QUE SE PREDICE, POR EJEMPLO, PARA UNA CARGA DE 1500kg, SI EL COMPORTAMIENTO DE LA VIGA CONTINUA IGUAL, SERA

 $\tilde{y} = 0.000241 \times 1500 + 0.118 = 0.480 \text{ CM}$

EJEMPLO

CALCULAR EL COEFICIENTE DE CORRELACION MEDIANTE EL METODO CORTO DE

LOS DATOS LA SIGUIENTE TABLA. OBTENER TAMBIEN LA ECUACION DE LA

RECTA DE REGRESION CORRESPONDIENTE,

CALIFICACION,	TIEMPO, Y, EN MIN,	CALIFICACION X	TIEMPO, Y, EN MIN.
97	77	87	83
97	86	87, -	58
95	60	87	79
95	52	86,	60
94	62	85	62
94	86	83	72
94	80	82	68
93	79	82	66
93	92	83	71
93	88	81	70
92	74	80	65
92	43	· 80	84 .
92 .	61	79	B2
92	75	79	93
91	.79	79	76
90	62	78	71
90	81	77	89
90	80	77	71
90	76	77	98
90	70	76	92
89	67	76	82
88	69	74	98
88	81	72 · :	78
88	80	79	93
87	91	70	78

DISTRIBUCION CONJUNTA DE FRECUENCIAS:

VX	70-75	76-81	82-87	88-93	94-99	
Y	70-73	1,0-81				
41-50]		<u> </u>	1		
51-60		,	2		2	
61-70	1.	2	3	5	1	
71-80	2	3	3	7	2	
81-90		4	1	3	. 2	
91-100	2	3	1	1	1	

y X		72.	5 !	7	18,	5		34,	5	Ş	ю.	5		96,	5	fy	Υ'	f _y y'	у' ²	fyy ¹²	Σf _{ixy} x'y'
45.5				. — 						-2	1	-2			i	1	-2	-2	4	4	-2
55.5							o	2	0	'	11		-2	2	-4	4	-1	-4	1	4	-4 ·
65.5		1		0	2	0	0	3	0	0	5	0	0	1	0	11	0	0	0	٥	0
75.5	-2	2	-4	-1	3	-3	0	3	0	1	7	7	2	2	4	17	1	17	1	17	4
85.5		1		2	4	-8	0	1	0	2	3	6	4	2	8	10	2	20	4	40	6
95.5	-6	2	-12	-3	3	-9	0	1	Q	3	1	3	L.			7	3	21	9	63	-18
*x		4		12				10)		17			7		50		52		128	-14
'x'	<u> </u>	-2	-	1				()		1			2							
£x',		-8	•	-12)	1	١7			14		11					
14 ^{, 2}		4		1				()		1			4			<u> </u> 				
f _x x ²		16		12		-		()	1	17			28		73	}				
îf _{ixy} x'y'		-	-16		•	-20			0			14			8	-14	}				

$$C_1 = 84.5$$
; $C_2 = 6$; $C_3 = 65.5$; $C_4 = 10$

$$\tilde{x}^{\dagger} = 11/50 = 0.22; \ \tilde{y}^{\dagger} = 52/50 = 1.04$$

$$\bar{x} = 6 \times 0.22 + 84.5 = 85.82;$$

$$\bar{Y} = 10 \times 1.04 + 65.5 = 75.9$$

$$S^{2}(x^{1}) = 73/50 - (0.22)^{2} = 1.42; S(x^{1}) = \sqrt{1.42} = 1.19$$

$$s^{2}(y^{1}) = 128/50 - (1.04)^{2} = 1.49; \quad s(y^{1}) = \sqrt{1.49} = 1.22$$

$$S(x) = 1.19 \times 6 = 7.14; S(y) = 1.22 \times 10 = 12.2$$

$$\rho_{XY} = \frac{-14/50 - 0.22 \times 1.04}{1.19 \times 1.22} = -0.35$$

$$m = -0.35 \times 12.2 / 7.14 = -0.60$$

$$b = 75.9 - (-0.60) 85.82 = 127.39$$

TAREA: TRAZAR EL DIAGRAMA DE CORRELACION Y LA RECTA DE REGRESION CORRES-PONDIENTE, Y CALCULAR EL ERROR ESTANDAR DE LA ESTIMACION.

SERIES CRONOLOGICAS O

SERIES DE TIEMPO

Se le denomina <u>serie cronológica o de tiempo</u> a toda serie de observaciones (datos) tomados en tiempos específicos, que en general están igualmente espaciados (cada hora, cada semana, cada mes, cada año, etc.)

Componentes de una serie cronológica Tendencia general. - Indica hacia donde

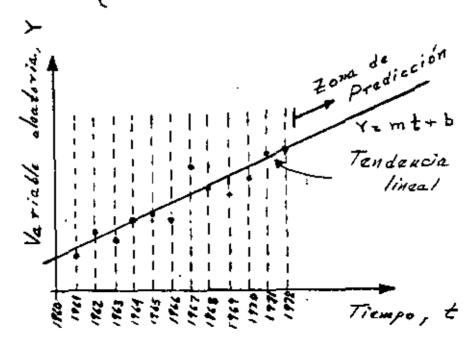
tiende la serie cronológica

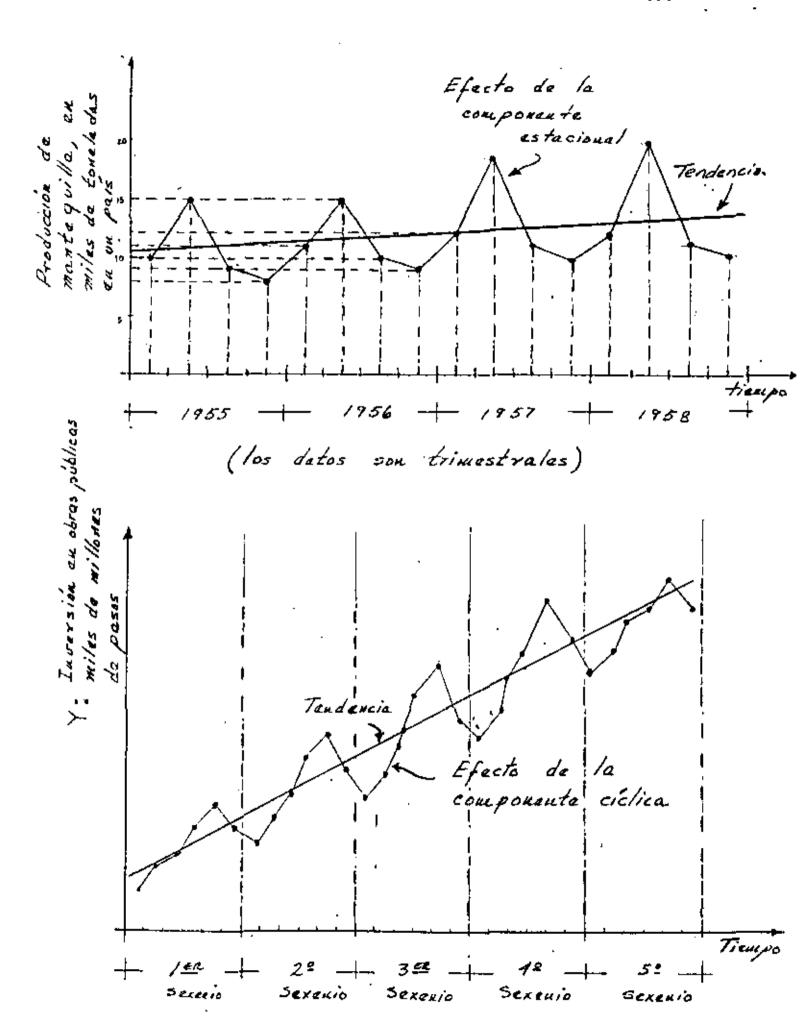
Componente estacional. - Indica las variaciones periódicas que ocurren a corto plazo (en periodos menores de un año)

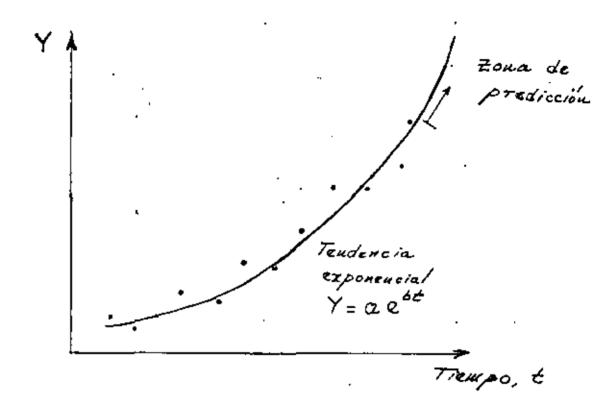
Componente cíclica. - Indica las variaciones periódicas que ocurren a largo plazo

(en periodos mayores de un año)

Componente irregular. - Indica las variaciones que ocurren al azar.







TENDENCIA GENERAL

Métodos de cálculo Mínimos cuadrados Dos promedios Promedios móviles

MINIMOS CUADRADOS

El método de mínimos cuadrados se estudió en el capítulo de regresión lineal para el caso de tendencia modelada mediante una linea recta.

Si la tendencia no se puede modelar razonablemente mediante una recta, es necesario emplear una relación no lineal, que puede ser un polinomio de orden M, dado por

$$\vec{y}(t) = b_0 + b_1 t + b_2 t^2 + \dots + b_M t^M$$

En este caso las constantes b_i que hacen mínimo el error cuadrático respecto a la línea de regresión, q, se obtienen de resolver un sistema de ecuaciones simultáneas que resultan de:

$$\frac{\partial \mathbf{q}}{\partial b_0} = 0, \quad \frac{\partial \mathbf{q}}{\partial b_1} = 0, \quad \frac{\partial \mathbf{q}}{\partial b_2} = 0, \dots, \quad \frac{\partial \mathbf{q}}{\partial b_M} = 0$$

en donde

$$q = \sum_{i=1}^{n} (y_i - \widetilde{y}_i)^2$$

En el caso de un ajuste parabólico (M = 2), por ejemplo,

$$\tilde{y}(t) = b_0 + b_1 t + b_2 t^2$$

$$\tilde{y}_i = \tilde{y}(t_i) = b_0 + b_1 t_i + b_2 t_i^2$$

$$q = \frac{n}{t} (y_i - b_0 - b_1 t_i - b_2 t_i^2)^2$$

$$\frac{\partial q}{\partial b_0} = -2 \frac{n}{t+1} (y_i - b_0 - b_1 t_i - b_2 t_i^2) = 0$$

$$\frac{\partial q}{\partial b_1} = -2 \frac{n}{t+1} (y_i - b_0 - b_1 t_i - b_2 t_i^2) t_i = 0$$

$$\frac{\partial q}{\partial b_2} = -2 \frac{n}{t+1} t_i^2 (y_i - b_0 - b_1 t_i - b_2 t_i^2) = 0$$

Estas tres últimas ecuaciones constituyen un sistema con tres

incógnitas, b_0 , b_1 y b_2 . Este sistema se puede reescribir en la forma:

$$b_0 n + b_1 \varepsilon t_1 + b_2 \varepsilon t_1^2 - \varepsilon y_1$$

$$b_0 \varepsilon t_1 + b_1 \varepsilon t_1^2 + b_2 \varepsilon t_1^3 - \varepsilon t_1 y_1$$

$$b_0 \varepsilon t_1^2 + b_1 \varepsilon t_1^3 + b_2 \varepsilon t_1^4 - \varepsilon t_1^2 y_1^2$$
Y luego resolver para b_0 , b_1 y b_2 .

Cuando al observar la gráfica de Y contra t. se concluye que es razonable ajustar una función exponencial de la forma

$$\tilde{Y}(t) = ae^{int}$$

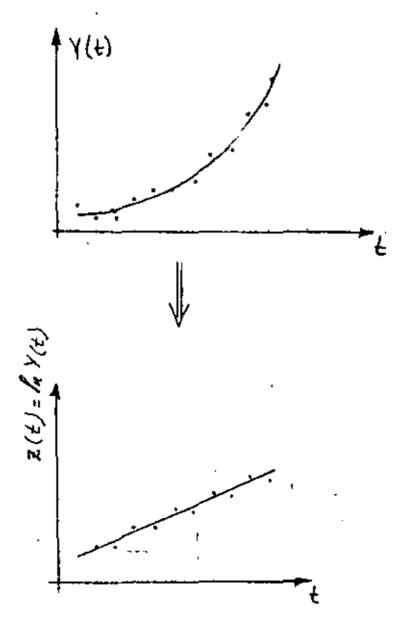
se puede resolver el problema trabajando con logaritmos, ya que, en tal caso,

$$1n\tilde{Y}(t) = 1n \text{ a+mt}$$

o sea

$$\tilde{Z}(t) = mt+b$$

que es la ecuación de una línea recta y, por lo tanto, las constantes m y b = ln a se calculan mediante las fórmulas que se obtuvieron · para el caso de regresión lineal, con \tilde{z}_i = $\ln \tilde{Y}(t_i)$

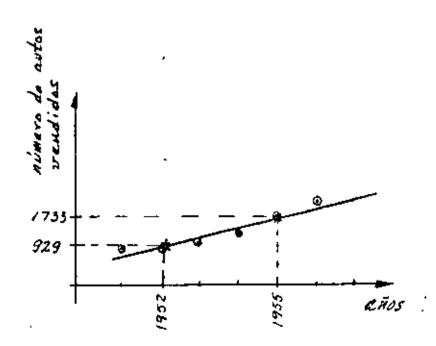


METODO DE DOS PROMEDIOS

El método de dos promedios consiste en <u>dividir los datos en</u> <u>dos partes</u> y calcular el promedio de las Y_i y los tiempos centrales correspondientes a cada parte, con lo cual se obtienen los puntos $(\overline{t}_1,\overline{Y}_1)$ y $(\overline{t}_2,\overline{Y}_2)$ por los cuales pasa la recta buscada

EJEMPLO

Año	Número de autos vendidos	Año central	Promedio
1951	860	· -	1
1952	910	1952	929
1953	1018		
1954	1326	· ·	
1955	1749	1955	1,733
1956	2125		

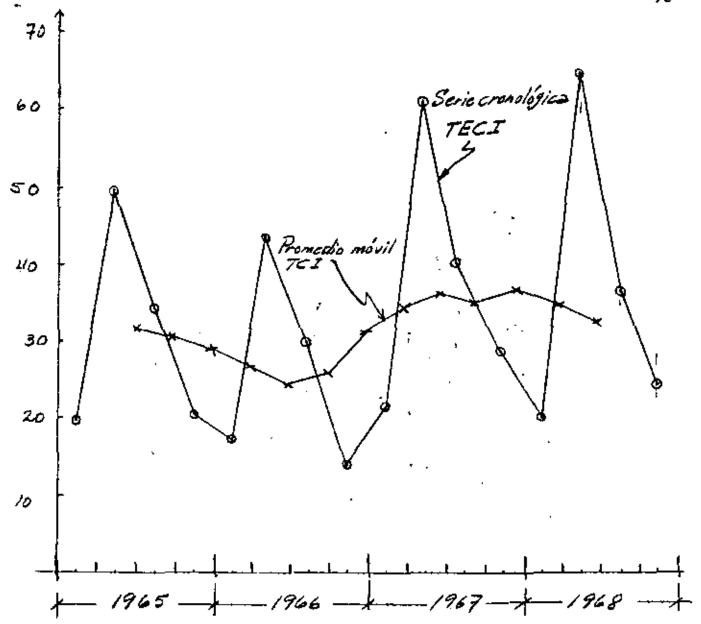


EJEMPLO

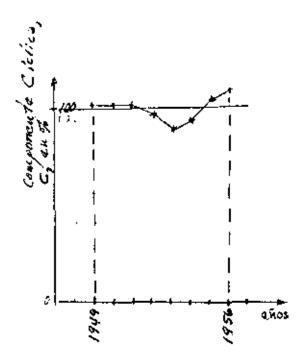
En la siguiente tabla se presenta el consumo promedio por día de fertilizante que se consumió en una región agrícola. Obtener la componente estacional.

Λñο	Trimestre	Consumo, Y ton/día	Suma	Promedio móvil	Promedio môvil centrado, TCI	Porcentaje del promedio móvil Y/TCI = E, %
1	1	20				•
9	2	50		-		
б	3	35		31.5	31.3	111.5
5	4	21	126	31.0	30.2	69.5
1	1	18	124	29.3	28.7	62.7
9	2	43	117	28.0	27.3	157.5
6	3	30	112	26.5	27.0	111.1
6	4	15	106	27.5	29.8	50.3
1	1	22	110	32.0	33.2	66.2
9	2	61	128	34.3	35.9	169.9
6	3	39	137	37.5	37.4	104.2
7	4	28	150	37.3	37.6.	74.5
1	1	21	149	37.8	37.6	55.8
9	2	63	151	37.3	36.8	171.2
6	3	. 37	149	36.3		·
8	4	24	145			

Puesto que los datos están dados por trimestre el índice estacional que se obtendrá será para los trimestres, por lo cual los promedios móviles para eliminar, como primer paso, a la com ponente estacional deben ser de orden 4.



Eliminación de la componente estacional, E, mediante promedios móviles





Para evaluar los índices de la componente cíclica es <u>reco-</u>
mendable contar por lo menos con tres periodos completos de
datos. Los índices cíclicos se calculan de manera semejante a los estacionales.

EJEMPLO

Supóngase que la componente cíclica de las inversiones anuales en un país con periodo sexenal de gobierno federal es la indicada en la siguiente tabla. Calcular los indices cíclicos.

Año	C, en 1
1947	85
48	102
49	117
50	126
51	129
52	137
53	79
54	98
55	121
56	127
57	132
58	143
59	59
60	86
61	121
62	122
63	137
64	149
65	89
66	100
67	172
68	129
69	136
70	138

Año del		np. c		ica	Promedio	Indice ciclico,	
ciclo	1	2	3	4		en 1	
1	85	79	59	89	78.0	67.5	
2	102	98	86	100	96.5	83.5	
3	117	121	121	112	117.8	101.9	
4	126	127	122	129	126.0	109.0	
5	129	132	137	136	133.5	115.4	
6	137	143	149	138	141.8	122.7	
					ε= 693.6	600.0	

 $\frac{600}{693.6}$ = 0.865

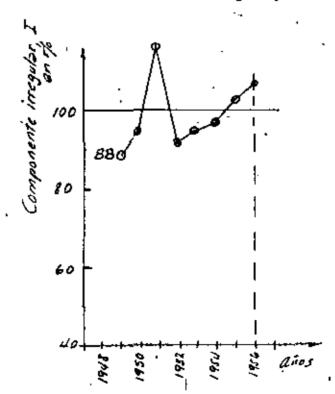
COMPONENTE IRREGULAR

Como se indicó, la componente irregular de una serie cronológica indica las variaciones que en ésta ocurren al azar.

Una vez que se ha calculado C, para obtener I basta dividir CI entre C, es decir

CI/C = I

En la tabla del penúltimo ejemplo se encuentra calculada la componente irregular de la serie cronológica correspondiente a la producción de uva en una granja.



PROBABILIDAD Y ESTADISTICA. FUNDAMENTOS Y APLICACIONES

INFERENCIA ESTADISTICA

M, EN I. AUGUSTO VILLARREAL ARANDA

Junio, Julio, 1979

Palacio de Minería Calle de Tecuba 5,

		٠,	
	•		
		.•	
	4		

INFERENCIA ESTADISTICA

Por: M en I Augusto Villarreal Aranda*

1. Introducción

La parte de la estadística que proporciona las reglas para inferir ciertas características de una población a partir de muestras extraídas de ella, junto con indicaciones probabilís ticas de la veracidad de tales inferencias, se llama inferencia estadística.

En la inferencia estadística se estudian las relaciones existentes entre una población, las muestras obtenidas de ella, y las técnicas para estimar parámetros, tales como la media y la variancia, o bien para determinar si las diferencias entre dos mues tras son debidas al azar, etc.

Distribuciones muestrales

Si se consideran todas las muestras posibles de tamaño Secretario Académico, División de Estudios Superiores, Facultad de Ingeniería, UNAM y Profesor investigador, Instituto de Ingeniería, UNAM

n que pueden extraerse de una población, y para cada una se calcula el valor del promedio aritmético, este seguramente variará
de una muestra a otra, ya que depende de los valores de los datos
que se hayan obtenido en cada muestra. Por lo tanto, el promedio
aritmético es en sí una variable aleatoria, como también lo son,
por la misma razón, el rango y la variancia de la muestra.

A todo elemento que es función de los valores de los datos que se tienen en una muestra se le denomina estadística; to da estadística es, entonces, una variable aleatoria cuya distribución de probabilidades se conoce como distribución muestral. Si, por ejemplo, la estadística considerada es la variancia de la muestra, su densidad de probabilidades se llama distribución muestral de la variancia.

En forma similar se pueden obtener las distribuciones muestrales de la desviación estándar, del rango, etc., cada una de las cuales tendrá sus propios parámetros, lo que permite hablar de la media y la desviación estándar de la variancia, etc.

Muestreo con y sin remplazo

Cuando se efectúa un muestreo en una población de tal manera que cada elemento de la misma se pueda escoger más de una vez, se dice que el muestreo es con nemplazo; en caso contrario, el muestreo es sin nemplazo. Si de una urna se quiere extraer una muestra de bolas de colores, se puede proceder de dos maneras: se saca al azar una bola, se anota su color y se regresa a la urna antes de obtener otra, y así sucesivamente; en este caso el muestreo es con nemplazo. La segunda forma consiste en extraer

al azar todas las bolas que constituyen la muestra sin regresarlas a la urna, siendo entonces un muestreo sin templazo.

4. Distribucion muestral del promedio aritmético

Supéngase que se extraen sin remplazo todas las muestras posibles de tamaño n de una población finita de tamaño n > n. Si la media y la desviación estándar de la distribución muestral del promedio aritmético se denotan con $\mu_{\overline{X}}$ y $\sigma_{\overline{X}}$, y la media y la desviación estándar de la población con μ y σ , respectivamente, entonces es posible demostrar que se cumplen las siguientes ecuaciones

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N_p - n}{N_p - 1}}$$

Además, si la población es infinita (o el muestreo es con remplazo), los resultados anteriores se reducen a

$$\sigma_{\tilde{X}} = \frac{\sigma}{\sqrt{n}}$$

puesto que

$$\lim_{N_{p} \to \infty} \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N_{p} - n}{N_{p} - 1}} = \frac{\sigma}{\sqrt{n}}$$

١,

Para valores grandes de $n(n \ge 30)$ se demuestra, emplean do el teorema del límite central, que la distribución muestral del promedio aritmético es aproximadamente una distribución normal con media $\mu_{\overline{X}}$ y desviación estándar $\sigma_{\overline{X}}$, independientemente de cuál sea la densidad de probabilidades de X, la variable aleatoria asociada a la población. Si esta variable tiene distribución normal, la distribución muestral del promedio aritmético también es normal, aun para valores pequeños de n (n < 30).

Ejemplo 4.1

Supóngase que se tiene una población finita formada por los datos 1,2,3,4,5. Se desea conocer la media y la desviación estándar de la distribución muestral del promedio aritmético, con siderando las muestras de tamaño 3 obtenidas sin remplazo.

Primes procedimiento.

Siendo la población finita y el muestreo sin remplazo, es posible obtener la distribución muestral correspondiente para calcular después sus parámetros, considerando que el número total de muestras distintas de tamaño 3 que pueden obtenerse a partir de una población de 5 elementos es

$$\frac{5!}{3!(5-3)!} = 10$$

Dichas muestras son las siguientes, junto con sus pro-

$$\bar{X}_1$$
1, 2, 3 6/3 3, 4, 5 12/3
1, 2, 4 7/3 3, 4, 1 8/3
1, 2, 5 8/3 4, 5, 1 10/3
2, 3, 4 9/3 4, 5, 2 11/3
2, 3, 5 10/3 5, 1, 3 9/3

Para calcular la media y la desviación estándar, se em plea la siguiênte tabla

$$\bar{X}_{1}$$
 6/3 7/3 8/3 8/3 9/3 9/3 10/3 10/3 11/3 12/3 \bar{X}_{1}^{2} 36/9 49/9 64/9 64/9 81/9 81/9 100/9 100/9 121/9 144/9

Es decir, $\mu_{\overline{X}}$ = 3 'y $\sigma_{\overline{X}}$ = 0.577 .

Segundo procedimiento.

Por tratarse de una población finita, se verifica que

$$\mu_{\overline{X}} = \mu$$
 y $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}} \cdot \sqrt{\frac{N_p - n}{N_p - 1}}$

en donde $N_p = 5$, n = 3 $y \mu = 3$.

El valor de σ^2 de la población es

$$\sigma^2 = \frac{1+4+9+16+25}{5} - (3)^2 = \frac{55}{5} - 9 = 11-9 = 2$$

Por lo tanto, $\sigma = \sqrt{2} = 1.4145$ y

$$\sigma_{\overline{X}} = \frac{1.4145}{\sqrt{3}} \quad \sqrt{\frac{5-3}{5-1}} = (0.8164)(0.7071) = 0.577$$

Es decir,
$$\mu_{\widetilde{X}} = 3$$
 y $\sigma_{\widetilde{X}} = 0.577$

Comparando los resultados, se puede observar que ambos procedimientos conducen a la obtención de los mismos valores de $\mu_{\overline{X}} \quad y \quad \sigma_{\overline{X}} \quad \text{para la distribución muestral del promedio aritmético.}$

Ejemplo 4.2

En una bodega se tienen cinco mil varillas de acero; el valor medio del peso, X, de cada varilla es de 5.02 kg, y la des-viación estándar 0.3 kg. Hallar la probabilidad de que una mues-tra de cien varillas, escogida al azar, tenga un peso total

- a. entre 496 y 500 kg
- b. de más de 510 kg.

Para la distribución muestral del promedio, se tiene que $\mu_{\overline{\psi}} = \mu = 5.02$ kg y, por tratarse de una población finita,

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N_p - n}{N_p - 1}} = \frac{0.30}{\sqrt{100}} \sqrt{\frac{5000 - 100}{5000 - 1}} = 0.027$$

a. El peso total de la muestra estará entre 496 y 500 kg si el peso promedio de las cien varillas se encuentra entre 4.96 y 5.00 kg. Puesto que la muestra es mayor de 30 elementos se puede considerar como aproximadamente normal a la distribución muestral, y los valores estándar correspondientes a $\bar{X}=4.96$ y a $\bar{X}=5.00$ se obtienen mediante la transformación

$$Z = \frac{\overline{x} - \mu \overline{x}}{\sigma_{\overline{x}}}$$

es decir.

$$I_1 = \frac{4.96 - 5.02}{0.027} = -2.22$$

$$Z_2 = \frac{5.00 - 5.02}{0.027} = -0.74$$

En la fig 4.1 se puede apreciar que

$$P[496 \le X \le 500] = P[-2.22 \le Z \le -0.74] =$$

$$= P[-2.22 \le Z \le 0] - P[-0.74 \le Z \le 0]$$

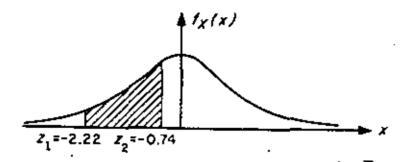


Fig 4.1 Distribución normal correspondiente al ejemplo
Recurriendo a la tabla de áreas bajo la curva normal estándar
entre 0 y Z queda finalmente

$$P[496 \le X \le 500] = 0.4868 - 0.2704 = 0.2164$$

 b. El peso total de la muestra excederá de 510 kg si el peso promedio de las cien varillas pasa de 5.10 kg.

Estandarizando dicho valor, queda

$$Z_3 = \frac{5.10 - 5.02}{0.027} = 2.96$$

Calculando el área bajo la curva normal a la derecha de este $v_{\underline{a}}$. lor (fig 4.2), se tiene que

$$P[X \ge 510] = P[Z \ge 2.96] = P[Z \ge 0] - P[0 \le Z \le 2.96] =$$

= 0.5 - 0.4985 = 0.0015

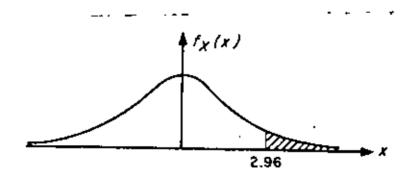


Fig 4.2 Distribución normal correspondiente al ejemplo

5. Distribución muestral de diferencias de promedios aritméticos

Con frecuencia se presenta el caso en el que se tienen datos de dos poblaciones con variables aleatorias asociadas X y Y, respectivamente, surgiendo la duda de si estas se pueden considerar como una sola, es decir, si X = Y. Para probar estadística mente esta hipótesis (como se verá más adelante), es necesario obtener las distribuciones muestrales de la diferencia de los promedios y de las variancias de las muestras de ambas variables.

Sean \bar{X} y \bar{Y} los promedios aritméticos obtenidos de muestras aleatorias de tamaño $n_{\bar{X}}$ y $n_{\bar{Y}}$ de dos poblaciones con características \bar{X} y \bar{Y} , respectivamente. Se puede demostrar que la distribución muestral de la diferencia de los promedios correspondientes a poblaciones infinitas con medias $\mu_{\bar{X}}$ y $\mu_{\bar{Y}}$ y desviaciones estándar $\sigma_{\bar{X}}$ y $\sigma_{\bar{Y}}$, tiene los siguientes parámetros:

$$\mu_{\overline{X}} - \overline{Y} = \mu_{\overline{X}} - \mu_{\overline{Y}} = \mu_{X} - \mu_{Y}$$

$$\sigma_{\overline{X}} - \overline{Y} = \sqrt{\sigma_{\overline{X}}^{2} + \sigma_{\overline{Y}}^{2}} = \sqrt{\frac{\sigma_{X}^{2}}{n_{Y}} + \frac{\sigma_{Y}^{2}}{n_{Y}}}$$

si las muestras son independientes.

Esta distribución también es aplicable a poblaciones finitas si el muestreo es con remplazo. Para el caso de poblaciones finitas en las cuales el muestreo se hace sin remplazo, los parámetros de la distribución muestral de la diferencia de los promedios aritméticos son

$$\begin{split} \mu_{\widetilde{X}-\widetilde{Y}} &= \mu_{\widetilde{X}} - \mu_{\widetilde{Y}} = \mu_{X} - \mu_{Y} \\ \sigma_{\widetilde{X}-\widetilde{Y}} &= \sqrt{\sigma_{\widetilde{X}}^{2} + \sigma_{\widetilde{Y}}^{2}} = \sqrt{\frac{\sigma_{X}^{2}}{n_{X}}} \frac{N_{X} - n_{X}}{N_{X} - 1} + \frac{\sigma_{X}^{2}}{n_{Y}} \frac{N_{Y} - n_{Y}}{N_{Y} - 1} \end{split}$$

suponiendo que las muestras sean; independientes.

Ejemplo 5.1

Considérese que de una población X se obtienen tres mues tras posibles, cuyos correspondientes promedios aritméticos son 3, 7 y 8. De otra población Y se extraen dos muestras posibles, con promedios 2 y 4, respectivamente. Se deben obtener los parámetros de la distribución muestral de las diferencias de los promedios aritméticos.

Primer procedimiento

Todas las posibles diferencias de promedios aritméticos de X con los de Y serían

Es decir,

$$\mu_{\bar{X}-\bar{Y}} = \frac{-1+1+3+4+5+6}{6} = \frac{18}{6} = 3$$

$$\sigma_{\bar{X}-\bar{Y}}^2 = \frac{(-1-3)^2 + (1-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2 + (6-3)^2}{6} = \frac{34}{6} = \frac{17}{3}$$

Segundo procedimiento

Se sabe que

$$\mu_{\overline{X}+\overline{Y}} \ = \ \mu_{\overline{X}} \ - \ \mu_{\overline{Y}} \ ; \quad \sigma_{\overline{X}-\widetilde{Y}}^2 \ = \ \sigma_{\overline{X}}^2 + \ \sigma_{\overline{Y}}^2$$

Por ello,

$$\mu_{\bar{X}} = \frac{3+7+8}{3} = \frac{18}{3} = 6$$

$$\mu_{\bar{Y}} = \frac{2+4}{2} = \frac{6}{2} = 3$$

$$\sigma_{\bar{X}}^2 = \frac{(3-6)^2 + (7-6)^2 + (8-6)^2}{3} = \frac{14}{3}$$

$$\sigma_{\bar{Y}}^2 = \frac{(2-3)^2 + (4-3)^2}{2} = \frac{2}{2} = 1$$

$$\mu_{\bar{X}-\bar{Y}} = 6 - 3 = 3$$

$$\sigma_{\bar{Y}}^2 = \frac{14}{3} + 1 = \frac{17}{3}$$

Se observa que ambos procedimientos conducen a los mismos resultados.

Ejemplo 5.2

Las varillas de acero que fabrica una compañía A tienen un peso medio de 6.5 kg y una desviación estándar de 0.4, en tanto que las producidas por una empresa B tienen un peso medio de 6.3 kg y una desviación estándar de 0.3 kg. Si se toman muestras aleatorias de 100 varillas de cada fábrica, ¿cuál es la probabili dad de que las de la compañía A tengan un peso promedio de por la . menos

- a. 0.35 kg
- b. 0.10 kg

mayor que el de la compañía B?

Se puede suponer en este caso que las distribuciones mues trales involucradas son normales, en virtud de que el tamaño de ambas muestras es mayor de 30 elementos. También se puede suponer que ambas poblaciones son infinitas, y siendo \overline{x}_A y \overline{x}_B los pesos promedios de las muestras de las fábricas A y B, respectivamente, entonces

$$\mu_{\bar{X}_A} - \bar{X}_B = \mu_{\bar{X}_A} - \mu_{\bar{X}_B} = 6.5 - 6.3 = 0.20 \text{ kg}$$

$$\sigma_{\bar{X}_A} - \bar{X}_B = \sqrt{\frac{\sigma_A^2}{n_A} + \frac{\sigma_B^2}{n_B^2}} = \sqrt{\frac{(0.4)^2}{100} + \frac{(0.3)^2}{100}} = 0.05 \text{ kg}$$

La variable estandarizada de la diferencia de los promedios es

$$2 = \frac{(\bar{x}_A - \bar{x}_B) - \mu_{\bar{x}_A} - \bar{x}_B}{\sigma_{\bar{x}_A} - \bar{x}_B} = \frac{(\bar{x}_A - \bar{x}_B) - 0.20}{0.05}$$

'a. Estandarizando la diferencia de 0.35 kg se llega a.

$$z_1 = \frac{0.35 - 0.20}{0.05} = \frac{0.15}{0.05} = 3$$

La probabilidad deseada es el área bajo la curva normal a la derecha de Z = 3, es decir

$$P[\bar{X}_A > \bar{X}_B + 0.35] = P[Z > 3] = 0.500 - 0.4987 = 0.0013$$

b. Al estandarizar la diferencia de 0.10 kg, la varia ble / resulta

$$Z_2 = \frac{0.10 - 0.20}{0.05} = \frac{-0.1}{0.05} = -2$$

La probabilidad requerida es el area bajo la curva normal a la derecha de 7=-2, es decir

$$P[\bar{X}_A > \bar{X}_B + 0.10] = P[2 > -2] = 0.5 + 0.4772 = 0.9772$$

Teoría estadística de la estimación

En la práctica profesional a menudo resulta necesario inferir información acerca de una población mediante el uso de muestras extraídas de ella; una parte básica de dicha inferencia consiste en estiman los valores de los parámetros de la población (media, variancia, etc.) a partir de las estadísticas correspondientes de la muestra, como se explica a continuación.

Estimadores puntuales. Clasificación

Si un estimador de un parametro de la población consigte en un solo valor de una estadística, se le conoce como estimados puntual del parametro.

Cuando la media de la distribución muestral de una estadística es igual al parámetro que se está estimando de la población, entonces la estadística se conoce como εδείπασον ένδεξ gado del parámetro; si no sucede así, entonces se denomina εδεξί madoν δεδεβαdo. Ambos estimadores son puntuales, y sus valores correspondientes se llaman estimaciones insesgadas o sesgadas, respectivamente. Dicho de otra manera, si S es una estadística cuya distribución muestral tiene media μ_S, y el parámetro correspondiente de la población es θ, se dice que S es un estimador insesgado de θ si

$$\mu_{S} = \theta$$

Por otra parte, si la estadística S_n de la muestra tien de a ser iqual al parámetro θ de la población a medida que se

3. Estimación de intervalos de confianza para los parámetros de una población

La estimación de un parámetro de una población mediante un par de números entre los cuales se encuentra, con cierta probabilidad, el valor de dicho parámetro, se llama estimación del intervalo del mismo.

Sea S una estadística obtenida de una muestra de tamaño n para estimar el valor del parámetro θ , y sea σ_S la desviación estándar (conocida o estimada) de su distribución muestral. La probabilidad, $1-\alpha$, de que el valor de θ se localice en el intervalo de $S-z_c$ σ_S a $S+z_c$ σ_S , donde z_c es una constante, se escribe en la forma

$$P[S - z_c \sigma_S \leq \theta \leq S + z_c \sigma_S] = 1 - \alpha$$

Si se fija el valor de 1 - α , se puede obtener el valor de z_c necesario para que se satisfaga la ecuación anterior, con lo cual queda definido el intervalo de confianza del parametro θ , $(S-z_c \sigma_S)$, correspondiente al nivel de confianza $1-\alpha$.

La constante z_c que fija el intervalo de confianza se conoce como valor crítico. Si la distribución de S es normal, el valor de z_c correspondiente a uno de α se obtiene de la tabla de áreas bajo la curva normal o de la tabla 8.1 siguiente.

hace más grande el tamaño de la muestra, entonces la estadística recibe el nombre de estimadon consistente del parámetro.

Empleando símbolos, si

$$\lim_{n\to\infty} S_n = 0$$

resulta que la estadística S_n es un estimador consistente. Por ejemplo, el promedio aritmético es un estimador insesgado y consistente de la média, y la variancia de la muestra es un estimador sesgado y consistente de la variancia de la población.

Si las distribuciones muestrales de varias estadísticas tienen el mismo valor de la media, se dice que la estadística que cuenta con la menor variancia es un estimador esiciente de dicha media, en tanto que las estadísticas restantes se conocen como estimadores inesicientes del parámetro.

Por ejemplo, las distribuciones muestrales del promedio aritmético y de la mediana cuentan con medias que son, en ambos casos, iguales a la media de la población. Sin embargo, la variancia de la distribución muestral del promedio aritmético es menor que la de la distribución de la mediana, por lo que el promedio aritmético obtenido de una muestra aleatoria proporcio na un estimador eficiente de la media de la población, en tanto que la mediana obtenida de la muestra proporciona un estimador ineficiente de dicho parámetro.

Nível de confianza, en porcentaje	z _c
99.73	3.00
99,00	2.58
98.00	2.33
96.00	2.05
95,45	2.00
95.00	1.96
90.00 ·	1.64
80.00	1.28
68.27	1.00
50.00	0.674

TABLA 8.1 VALORES DE z_c PARA DISTINTOS NIVELES DE CONFIANZA

Ejemplo 8.1

Sea el promedio aritmético \overline{X} una estadística con distribución normal. Las probabilidades o niveles de confianza de que $\mu_{\overline{X}}$ (o μ de la población) se encuentre localizada entre los límites $\overline{X} \pm \sigma_{\overline{X}}$, $\overline{X} \pm 2 \sigma_{\overline{X}}$ y $\overline{X} \pm 3 \sigma_{\overline{X}}$ son 68.26, 95.44 y 99.73%, respectivamente, obteniêndose dichos valores de la tabla de áreas bajo la curva normal. Lo anterior significa que el intervalo $\overline{X} \pm 3 \sigma_{\overline{X}}$ contendrá a $\mu_{\overline{X}}$ en el 99.73 por ciento de las muestras de tamaño n, por lo que los intervalos de confianza de 68.26, 95.44 y 99.73 por ciento para estimar a μ son $(\overline{X} - \sigma_{\overline{X}}, \overline{X} + \sigma_{\overline{X}})$ $(\overline{X} - 2 \sigma_{\overline{X}}, \overline{X} + 2 \sigma_{\overline{X}})$ y $(\overline{X} - 3 \sigma_{\overline{X}}, \overline{X} + 3 \sigma_{\overline{X}})$, lo cual se aprecia en la $\{ig$ 8.1 siguiente.

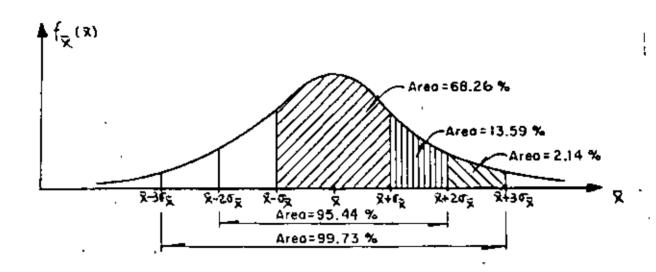


Fig 8.1

Estimación de intervalos de confianza para la media

Los límites de confianza para la media de una población con variable aleatoria X asociada están dados por

en donde $z_{_{\rm C}}$ depende del nivel de confianza deseado. Si $\tilde{\rm X}$ tiene distribución normal, $z_{_{\rm C}}$ puede obtenerse en forma directa de la tabla 8.1. Por ejemplo, los límites de confianza de 95 y 99 por ciento para estimar la media, μ , de la población son $\tilde{\rm X}$ t 1.960 $_{\tilde{\rm X}}$ y $\tilde{\rm X}$ t 2.58 $\sigma_{\tilde{\rm X}}$, respectivamente. Al obtener estos límites hay que usar el valor calculado de $\tilde{\rm X}$ para la muestra correspondiente.

Entonces, los límites de confianza para la media de la población quedan dados por

$$\bar{X} \stackrel{:}{=} z_{c} \frac{\sigma}{\sqrt{n}}$$

en caso de que el muestreo se haya a partir de una población infinita o de que se efectúe con remplazo a partir de una población
finita, o por

$$\bar{X} = z_c \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N_p - n}{N_p - 1}}$$

sí el muestreo es sin remplazo a partir de una población finita de tamaño $N_{\rm p}$

Ejemplo 9.1

Las mediciones de los diámetros de una muestra aleatoria de 100 tubos de albañal mostraron una media de 32 cm y una
desviación estándar de 2 cm. Obtenganse los límites de confianza de

- a. 95 por ciento
- b. 97 por ciento

para el diámetro medio de todos los tubos.

a. De la tabla 8.1, los límites de confianza del 95 por ciento son

$$\bar{X}\pm 1.96\sigma/\sqrt{n} = 32 \pm 1.96(2/\sqrt{100}) = 32 \pm 0.392$$
 cm

o sea 31.608 y 32.392, en donde se ha empleado el valor de S_{χ} para estimar el de σ de la población, puesto que la muestra es suficientemente grande (mayor de 30 elementos). Esto significa

que con una probabilidad de 95 por ciento, el valor de $\mu_{\rm X}$ se encuentra entre 31.608 y 32.392 cm.

b. Si $7 = z_c$ es tal que el área bajo la curva normal a la derecha de z_c es el 1.5 por ciento del área total, entonces el área entre 0 y z_c es 0.5 - 0.015 = 0.485, por lo que de la table de áreas bajo la curva normal se obtiene $z_c = 2.17$. Por lo tanto, los límites de confianza del 97 por ciento son:

 $\bar{X}\pm 2.17\sigma/\sqrt{n}$ = 32±2.17(2/ $\sqrt{100}$) = 32±0.434 cm y el intervalo de confianza respectivo es (31.566 cm, 32.434 cm).

Ejemplo 9.2

Una muestra aleatoria de 50 calificaciones de cierto examen de admisión tiene un promedio aritmético de 72 puntos, con desviación estándar igual a 10. Si el examen se aplicó a 1018 personas, obtener

- a. El intervalo de confianza del 95% para la medía del total de calificaciones,
- b. El tamaño de muestra necesario para que el error en la estimación de la media no exceda de 2 puntos, considerando el mismo nivel de confianza.
- c. El nivel de confianza para el cual la media de la población sea 72 ± 1 puntos.

a. Si se estima a σ de la población con S_X de la muestra y se considera que la población es finita, los límites de confianza son, puesto que $\tilde{X}=72$, $Z_C=1.96$, $S_X=10$, $N_p=1018$ y n=50,

72 ± 1.96
$$\frac{10}{\sqrt{50}}$$
 $\sqrt{\frac{1018 - 50}{1018 - 1}}$

72 '± 1.96 (1.4142) (0.9755)

72 ± 2.704

y el intervalo de confianza respectivo es

 b. Puesto que el error en la estimación de la media es, para población finita,

Error en la estimación =
$$Z_c \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N_p - n}{N_p - 1}}$$

en este caso se tendría

$$Z_{c} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N_{p} - n}{N_{p} - 1}} < 2$$

o sea, para un nivel de confianza de 95%,

$$1.96 \ \frac{10}{\sqrt{n}} \ \sqrt{\frac{1018 - n}{1018 - 1}} < 2$$

$$\frac{19.6}{\sqrt{n}} \qquad \sqrt{\frac{1018 - n}{1018 - 1}} < 2$$

Elevando al cuadrado la desigualdad, queda

$$\frac{38\cancel{4}.16}{n} \quad \frac{10\cancel{16} - n}{10\cancel{17}} < 4$$

o sea

Por lo cual, se requieren al menos 88 elementos en la muestra para que el error en la estimación no exceda de 2 puntos, para $1-\alpha=0.95$.

c. Los límites de confianza son, en este caso

$$72 \pm Z_c \frac{10}{\sqrt{50}} \sqrt{\frac{1018 - 50}{1018 - 1}}$$

o sea

$$72 \pm 1.3795 Z_c$$

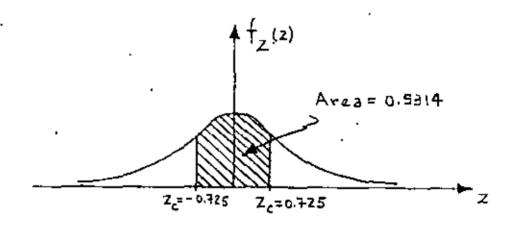
Puesto que se desea que el valor de la media sea 72 ± 1 puntos, se verifica que

$$1 = 1.3795 \ Z_c$$

Es decir

$$Z_c = \frac{1}{1.3795} = 0.725$$

El área bajo la curva normal estándar entre 0 y I_c * 0.725 es, por interpolación lineal, igual a 0.2657. Por lo tanto, el nível de confianza es igual al doble del área anterior, es decir, 2(0.2657) = 0.5314 (0.53.14%), tal como se muestra en la iig 9.1.



Fia 9.1

10. Intervalos de confianza para diferencias de medias

Los límites de confianza para la diferencia de las medias cuando las poblaciones X y Y son infinitas, o cuando el mues
treo se realiza con remplazo de poblaciones finitas, se encuentran dados por

$$\bar{x} - \bar{y} \pm \bar{z}_c \sigma_{\bar{x}} - \bar{y} = \bar{x} - \bar{y} \pm z_c \sqrt{\frac{\sigma_{\bar{x}}^2}{n_{\bar{x}}} + \frac{\sigma_{\bar{y}}^2}{n_{\bar{y}}}}$$

en donde \bar{X} , $n_{\bar{X}}$ y \bar{Y} , $n_{\bar{Y}}$ son los respectivos promedios aritméticos y tamaños de las dos muestras extraídas de las poblaciones, y $\sigma_{\bar{X}}$ y $\sigma_{\bar{Y}}$ las desviaciones estándar de estas últimas.

En el caso de que las poblaciones X y Y sean finitas y el muestreo sin remplazo, los límites de confianza son

$$\bar{X} - \bar{Y} \pm 2c^{\bar{G}}\bar{\chi} - \bar{Y} = \bar{X} - \bar{Y} \pm 2c \sqrt{\frac{\sigma_{X}^{2}}{n_{X}} + \frac{N_{X} - n_{X}}{N_{X} - 1} + \frac{\sigma_{Y}^{2}}{n_{Y}} + \frac{N_{Y} - n_{Y}}{N_{Y} - 1}}$$

en donde N_X y N_Y son los tamaños de las poblaciones X y Y, respectivamente.

Las dos ecuaciones anteriores son válidas únicamente si las muestras aleatorias seleccionadas son independientes.

Ejemplo 10.1

Para el ejemplo de las varillas tratado anteriormente (5.2), encontrar el intervalo de confianza del 95.45% para las diferencias de las medias de las poblaciones.

Siendo $\vec{X}_A = \mu_A = 6.5 \text{ kg}$, $\sigma_A = 0.4 \text{ kg}$, $\vec{X}_B = \mu_B = 6.3 \text{ kg}$,

 $\sigma_8 = 0.3 \text{ kg y } n_A = n_B = 100$, los límites de confianza para la diferencia de las medias son, empleando la tabla 8.1

$$\bar{x}_A - \bar{x}_B \pm z_C \sqrt{\frac{\sigma_A^2}{n_A} + \frac{\sigma_B^2}{n_B^2}} = 6.5 - 6.3 \pm 2 \sqrt{\frac{(0.4)^2}{100} + \frac{(0.3)^2}{100}} =$$

$$= 0.2 \pm 0.1$$

Por lo tanto, el intervalo de confianza respectivo es (0.1, 0.3).

Ejemplo 10.2

Se tienen en una bodega 3000 focos de marca X, y 5000 de marca Y. Se extrae una muestra aleatoria de 150 focos de la marca X, y se obtiene una duración promedio de 1400 horas, con desviación estándar igual a 120 horas. Otra muestra aleatoria de 200 focos de la marca Y tuvo una duración promedio de 1200 horas, con desviación estándar igual a 80 horas. Obtener intervalos de confianza de

a. 95%

h. 99%

para la diferencia de los tiempos medios de duración de los focos de ambas marcas.

a: Puesto que se trata de poblaciones finitas y \bar{X} = 1400 h, S_X = 120 h, N_X = 3000, N_X = 150, \bar{Y} = 1200 h, S_Y = 80 h, N_Y = 5000 y N_Y = 200, se obtiene, estimando a σ_X y σ_Y con S_X y S_Y , respectivamente

$$1400 - 1200 \pm 1.96 \sqrt{\frac{(120)^2}{150}} \quad \frac{3000 - 150}{3000 - 1} + \frac{(80)^2}{200} \quad \frac{5000 - 200}{5000 - 1}$$

200 ± 1.96 (11.04)

200 ± 21.638

o sea, (178.362, 221.638), puesto que de la tabla 8.1, para un nivel de confianza de 95%, $I_a = 1.96$.

b. En este caso, al emplear la tabla 8.1 se obtiene

 $I_{\rm c}=2.58$ para un nivel de confianza de 99%, por lo cual los 11-mites son

$$1400 - 1200 \pm 2.58 \sqrt{\frac{(120)^2}{150} \frac{3000 - 150}{3000 - 1} + \frac{(80)^2}{200} - \frac{5000 - 2000}{5000 - 1}}$$

y el intervalo de confianza es

Pruebas de hipótesis

de decisión.

Supóngase que una empresa armadora de automóviles está en la disyuntiva de emplear una nueva marca de bujías en sus unidades o la que regularmente utiliza, y que su departamento de control de calidad debe decidir, con base en la información de las muestras de las dos marcas distintas. Las decisiones de este tipo, es decir, que se basan en estudios estadísticos, reciben el nombre de decisiones estadísticas, y a los procedimientos que permiten decidir si se acepta o rechaza una hipótesis se les llama pauebas de hipótesis, pauebas de significancia o reglas

Al tomar decisiones estadísticas, es necesario postular las diversas alternativas o cursos de acción que pueden adoptarse

En el caso particular de una prueba de hipótesis solamente se tienen dos cursos de acción posibles, los que se denotarán como H_0 y H_1 . A la acción H_0 se le llama hipótesis nula, y a la H_1 , hipótesis alternativa. Por ejemplo, si la hipótesis nula esta blece que $\mu_1 = \mu_2$, la hipótesis alternativa puede ser una de las siguientes:

$$|\mu_1>\mu_2,\mu_1<\mu_2\circ\mu_1\neq\mu_2$$

Al realizar una prueba de hipótesis, se prueba siempre la verdad de la hipótesis nula H_0 , aun cuando de antemano se de see rechazarla.

12. Errores de los tipos I y II. Nivel de significancia

En muchas ocasiones se presenta el caso de que se recha za una hipótesis nula cuando en realidad debería ser aceptada; cuando esto sucede se dice que se ha cometido un estos de tipo 1. En otras ocasiones se acepta una hipótesis nula siendo en realidad falsa; en este caso se dice que se ha cometido un estos de tipo 11.

Al probar una hipótesis nula, a la máxima probabilidad con la que se está dispuesto a cometer un error del tipo I se le llama nivel de significancia, α , de la prueba, el cual dentro de la práctica se acostumbra establecer de 5 por ciento (0.05) o 10 por ciento (0.1). El complemento del nivel de significancia, $1 - \alpha$, se conoce como nivel de confianza.

Sí, por ejemplo, al realizar una prueba de hípôtesis se escoge un nivel de significancia de 10 por ciento, significa que existen 10 posibilidades en 100 de que se rechace ésta cuan do debería ser aceptada; es decir, que se rechaza a un nivel de significancia del 10 por ciento, y que la probabilidad de que la decisión haya sido errônea es de 0.1.

13. Comportamiento de los errores tipos I y II

Supóngase que se trate de probar la hipótesis nula de que la media, μ_S , de la distribución muestral de la estadística S es μ_1 , en contra de la hipótesis alternativa que establece que $\mu_S = \mu_2$, donde $\mu_2 > \mu_1$, es decir

$$H_0 : \mu_s = \mu_1$$

$$H_1 : \mu_S = \mu_2$$

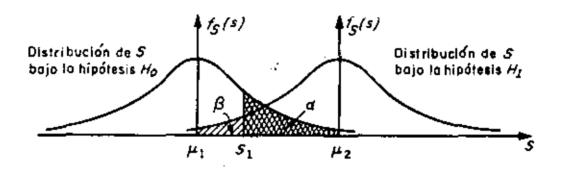
En la fig 13.1 se muestra en forma gráfica la relación entre los errores tipos I y II en el caso en el que la regla de decisión para aceptar o rechazar ${\rm H_0}$ es la siguiente:

Si el valor de la estadistica S obtenido de una muestra excede de cierto valor crítico S_1 , rechácese H_0 ; en caso contrario, acéptese.

Es evidente que si H_0 es verdadera, entonces α (área con rayado doble) es la probabilidad de que $S > S_1$, o sea la de rechazar a H_0 siendo verdadera (error tipo I). Por otro lado, si H_1 es verdadera, entonces β (área con rayado sencillo) es la probabilidad

de que $S < S_1$, o sea la de aceptar H_0 siendo falsa (error tipo II).

Obsérvese que si se aumenta el valor de S_1 se reduce la probabilidad α , pero se incrementa la β ; lo contrario sucede si se disminuye el valor de S_1 .



$$P[S>S_1] = \alpha \text{ (error tipo I)}$$

 $P[S$

Fig. 13.1 Probabilidades de los errores tipos I y II en pruebas de hipótesis.

En realidad, la única forma posible en la cual se pueden minimizar simultáneamente los errores de tipos I y II es aumentan do el tamaño de la muestra, para hacer más "picudas" las distribuciones muestrales de la estadística bajo las hipótesis H_0 y H_1 .

Al observar la fig 15.2 siguiente, es posible concluir

que el tamaño de los errores I y II es menor para un tamaño de muestra igual a 100 que para un tamaño igual a 50, considerando la misma regla de decisión anterior.

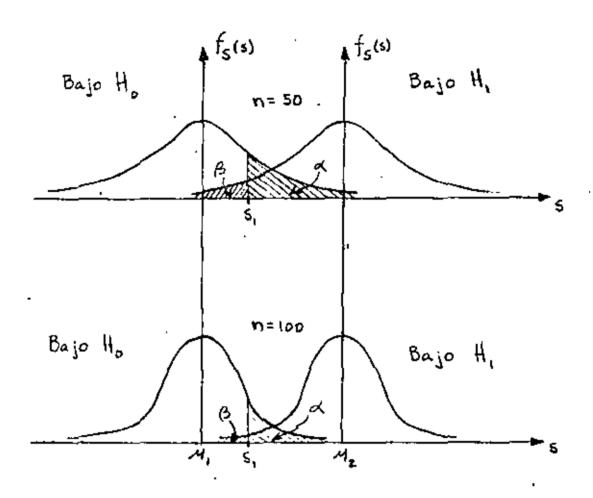


Fig 13.2

Sin embargo, esta técnica de reducción simultánea de ámbos tipos de errores no siempre puede ponerse en práctica, debido a razones de costo, tiempo, etc.

 Regiones críticas, de rechazo o de significancia. Regiones de aceptación.

Cuando una hipótesis nula no se acepta se dice que se rechaza a un nivel de significancia del a por ciento, o que el valor estandarizado de la estadística involucrada es significativo a un nivel de significancia a.

Al conjunto de los valores de la estadística en el que se rechaza la hipótesis nula se le denomina región crítica, de rechazo, o de significancia. Por el contrario, al conjunto de los valores de la estadística en que se acepta la hipótesis, se le llama región de aceptación.

Considérese que la distribución muestral de la estadística S es normal con desviación estándar σ_S , que la variable Z resulta de estandarizar a S, que la hipótesis nula, H_0 , es que la media de S vale μ_S , y que la hipótesis alternativa H_1 es que dicha media es diferente de μ_S , es decir, que

$$z = \frac{s - \mu_S}{\sigma_S}$$

 H_0 : media de la distribución muestral de S= μ_S

 H_1 : media de la distribución muestral de S $eq \mu_S$

Si se adopta la regla de decisión de aceptar la hipótesis H_O, si el valor de 2 caé dentro del intervalo central que encierra al 99 por ciento del área de la distribución de probabilidades, entonces H_O se aceptará en el caso en que

}

empleando la tabla de áreas bajo la curva normal estándar. Pero si el valor estandarizado de la estadística se encuentra fuera de dicho intervalo, se concluye que el evento puede ocurrir con probabilidad de 0.01 si la hipótesis H₀ es verdadera (área rayada total de la fíg 14.1). En tal caso, el valor Z de la variable estándar difiere significativamente del que se podría esperar de acuerdo con la hipótesis nula, lo cual inclina a rechazarla a un nivel de confianza del 99 por ciento.

De lo anterior de deduce que el área total rayada de la fig 14.1 es el nivel de significancia α de la prueba, y representa la probabilidad de cometer un error del tipo I. Por ello, la región de aceptación de H₀ es $-2.58 \leqslant Z \leqslant 2.58$, y la de rechazo es Z > 2.58 y Z < -2.58.

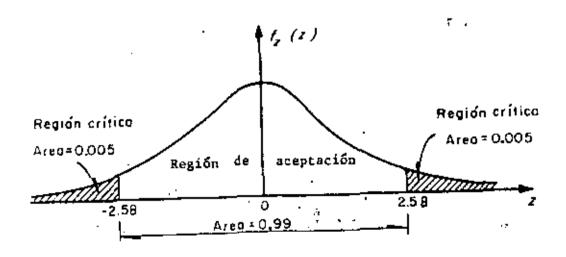


Fig 14.1 Región de significancia

En la tabla 14.1 se presentan los valores de la variable estandarizada, 7, que limitan las regiones de aceptación y de rechazo para el caso en el que la estadística involucrada en la prueba tenga distribución muestral normal. Cuando en alguna prueba de hipótesis se consideren niveles de significancia diferentes a los que aparecen en la tabla mencionada, resulta necesario emplear la de áreas bajo la curva normal estándar.

TABLA 14.1 VALORES CRITICOS DE Z

Nivel de significancia, a	Valores de 2 para pruebas de una cola	Valores de z para pruebas de dos colas
0.1	-1,281 o 1,281	-1.645 y 1.645
0.05	-1.645 o 1.645	1.960 y 1.960
0.01	-2.326 o 2.326	2.575 y 2.575
0.005	-2.575 o 2.575	2.810 y 2.810

Pruebas de una y de dos colas

En la prueba de hipótesis del ejemplo anterior, la región de rechazo de la hipótesis nula quedó en ambos extremos (colas) de la distribución muestral de la estadística involucrada en la prueba; a las pruebas de este tipo se les denomina pauebas de dos colas. Cuando la región de rechazo se encuentra solamente en un extremo de la distribución muestral en cuestión, se les llama pauebas de una cola.

Las pruebas de dos colas se presentan cuando en la hipótesis alternativa aparece el signo / (diferente de), como en el siguiente caso

$$H_0 : \mu_S = \mu_1$$
 $H_1 : \mu_S \neq \mu_1$

en donde μ_S es la media de la estadística S, y μ_1 es un valor fijo.

En los casos

$$H_0 : \nu_S = \mu_1$$

$$H_1 : \mu_S < \mu_1$$

2

$$H_0 : \mu_S = \mu_1$$
 $H_1 : \mu_S > \mu_1$

las pruebas resultan de una cola.

Pruebas de hipótesis para la media

Para el caso de una población infinita (o finita en que se muestree con remplazo), cuya desviación estándar σ se conoce o se puede estimar adecuadamente, si se tiene que la estadística S obtenida de la muestra es el promedio aritmético, entonces la media de su distribución muestral es $\mu_S = \mu_{\overline{X}} = \mu$, y su desviación estándar es $\sigma_S = \sigma_{\overline{X}} = \sigma/\sqrt{n}$, en donde μ y σ son, respectivamente, la media y la desviación estándar de la variable aleatoría X asociada a la población, y n es el tamaño de la muestra. En tal caso, si \overline{X} tiene distribución normal, la variable estandarizada correspondiente será

$$2 = \frac{\bar{x} - \mu_{\bar{x}}}{\sigma_{\bar{x}}} = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

Para el caso de muestreo sin remplazo de población fin<u>i</u> ta, se tiene que $\sigma_S = \sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N_p - n}{N_p - 1}}$, en donde N_p es el tamaño de la población, por lo que la variable estandarizada será

$$Z = \frac{\bar{x} - p}{\frac{\sigma}{\sqrt{n}} \sqrt{\frac{N_p - n}{N_p - 1}}}$$

En los dos casos anteriores, el valor de I correspondiente al de X de la muestra es el que se debe comparar con el valor crítico correspondiente al nivel de significancia fijado, para así aceptar o no la hipótesis nula (prueba de una cola). Si se trata de una prueba de dos colas, el valor de I se debe comparar con los dos valores críticos que corresponden al valor de α seleccionado. En cualquiera de los casos anteriores, el valor o valores críticos se pueden obtener de la tabla 14.1, para valores comunes de α.

Ejemplo 16.1

Se sabe que el promedio de calificaciones de una muestra aleatoria de tamaño 100 de los estudiantes de terger año de ingeniería civil es de 7.6, con una desviación estándar de 0.2. Si periode de media de la población de esas calificaciones, X, y si se supone que X tiene distribución normal, probar la hipótesis

 μ = 7.65 en contra de la hipótesis alternativa μ \neq 7.65, usando un nivel de significancia de

a. 0.05

b. 0.01

Para la solución se deben considerar las hipótesis

$$H_0: \mu = 7.65$$

Puesto que $\mu \neq 7.65$ incluye valores menores y mayores de 7.65, se trata de una prueba de dos colas.

La estadística bajo consideración es el promedio aritmético, \tilde{X} , de la muestra, que se supone extraída de una población infinita. La distribución muestral de \tilde{X} tiene media $\mu_{\tilde{X}} = \mu_{\tau}$, y desviación estándar $\sigma_{\tilde{X}} = \sigma/\sqrt{\pi}$, en donde μ y σ denotan, respectivamente, la media y la desviación estándar de la población de calificaciones.

Bajo la hipôtesis H_0 (considerándola verdadera), se tiene que

$$\mu_{\widetilde{X}} = 7.65 = \mu$$

y utilizando la desviación estándar de la muestra como una estimación de o, lo cual se supone razonable por tratarse de una muestra grande,

$$\sigma_{\overline{X}} = \sigma/\sqrt{\pi} = 0.2/\sqrt{100} = 0.2/10 = 0.02$$

a. Para la prueba de dos colas a un nivel de significancia de 0.05 se establece la siguiente regla de decisión

> Aceptar H_O si el valor I correspondíente al valor del promedio de la muestra se encuentra de<u>n</u> tro del intervalo de -1.96 a 1.96 (tabla 14.1). En caso contrario, rechazar H_O.

Puesto que

$$Z = \frac{\bar{X} - \mu}{\delta / \sqrt{n}} = \frac{7.6 - 7.65}{0.02} = -2.5$$

se encuent a fuera del rango de -1.96 a 1.96, se rechaza la hipôtesis $H_{\rm O}$ a un nivel de significancia de 0.05.

b. Si el nivel de significancia es 0.01, el intervalo de -1.96 a 1.96 de la regla de decisión del inciso α se remplaza por el de -2.58 a 2.58 tabla(14.1). Entonces, puesto que el valor muestral Z=-2.5 se encuentra dentro de este intervalo, se acepta la hipótesis H_0 a un nivel de significancia de 0.01.

Ejemplo 16.2

La resistencia media a la ruptura de cables de acero fabricados por la empresa X es de 905 kg. Una empresa consulto ra sugiere a X que cambie su proceso de manufactura, con lo cual incrementará la resistencia de sus cables. Se prueba el nuevo proceso, y se extrae una muestra aleatoria de 50 cables, obteniéndose para ellos una resistencia promedio de 926 kg, con des-

viación estándar igual a 42 kg. ¿Se puede considerar que el nuevo proceso realmente incrementa la resistencia, con un ni-vel de confianza de 99%?

En este caso, se debe plantear una prueba de hipótesis de una cola, para la cual

$$H_0 : \mu = 905 \text{ kg}$$

Puesto que el tamaño de la muestra es súficientemente grande, se puede aproximar la distribución muestral de la resistencia promedio mediante una normal, y estimar el valor de σ de la población mediante S_{γ} de la muestra.

Considerando a la población infinita, y suponiendo como verdadera a ${\rm H}_0$, se tiene que

$$\mu_{\overline{Y}} \stackrel{.}{=} \mu \stackrel{.}{=} 905 \text{ kg}$$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{42}{\sqrt{50}} = 5.94$$

Para la prueba de una cola a un nivel de significancia de $\alpha = 1 - (1 - \alpha) = 1 - 0.99 = 0.01$, la regla de decisión es

Aceptar H_0 si el valor estandarizado de \bar{X} de la muestra es menor o igual a $I_c=2.326$ (table 14.1); en caso contrario, rechazar H_0 .

En Virtud de que

$$Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{926 - 905}{5.94} = 3.535$$

es mayor de 2.326, se rechaza H₀ a un nivel de significancia de 1%, concluyéndose que en realidad el nuevo proceso sí incrementa la resistencia de los cables.

17. Pruebas de diferencias de medias

Sean \bar{X} y \bar{Y} los promedios aritméticos obtenidos de dos muestras de tamaños n_X y n_Y , extraídas respectivamente de dos poblaciones con medias μ_X y μ_Y , y desviaciones estándar σ_X y σ_Y . Se trata de probar la hipótesis nula, H_0 , de que no existe diferencia entre las medias, es decir, que $\mu_X = \mu_Y$. Si n_X y n_Y son suficientemente grandes (>30), la distribución muestral de las diferencias de los promedios es aproximadamente normal. Dicha distribución muestral es rigurosamente normal si las variables aleatorias X y Y asociadas a la población tienen distribución normal, aunque n_X y n_Y sean menores de 30. Para esta distribución muestral, la variable estandarizada I, que se compara con los valores críticos correspondientes, se encuentra dada por

$$z = \frac{x - y - \mu_{\overline{X} - \overline{Y}}}{\sigma_{\overline{X} - \overline{Y}}} = \frac{x - y - o}{\sigma_{\overline{X} - \overline{Y}}} = \frac{\overline{X} - \overline{Y}}{\sigma_{\overline{X} - \overline{Y}}}$$

con la cual se puede probar la hipótesis nula \mathbf{H}_0 en contra de otras hipótesis alternativas, \mathbf{H}_{I} , a un nivel apropiado de significancia.

Ejemplo 17.1

En el laboratorio de pruebas de una empresa fabricante de aparatos electrónicos se ensayaron dos marcas de transistores, A y B, de características similares, con objeto de comprobar su ganancia de voltaje. Se tomaron muestras aleatorias de 100 transistores de cada marca, arrojando una ganancia promedio de 31 decibeles, con desviación estándar de 0.3 decibeles para la marca A, y 30.9 decibeles de ganancia promedio, con desviación estándar de 0.4 decibeles para la otra. ¿Existe una diferencia significativa entre las ganancias en voltaje de los transistores a un nivel de significancia de

- a. 0.05
- b. 0.017

Si μ_A y μ_B son las medias respectivas de las dos poblaciones infinitas a las que corresponden las muestras, la prueba de hipôtesis adopta la forma siguiente:

$$H_0: \mu_A = \mu_B$$

$$H_1 : \mu_A \neq \mu_R$$

Entonces, el valor de I es, bajo la hipótesis H_0 :

$$Z = \frac{\bar{x}_A - \bar{x}_B}{\sigma_{\bar{x}_A} - \bar{x}_B} = \frac{\bar{x}_A - \bar{x}_B}{\sqrt{\frac{\sigma_A^2}{n_A} + \frac{\sigma_B^2}{n_B}}} = \frac{31^{3} - 30.9}{\sqrt{\frac{(0.3)^2}{100} + \frac{(0.4)^2}{100}}} = 2$$

a. Puesto que se trata de una prueba de dos colas a un nivel de significancia de 0.05, la diferencia es significat<u>í</u> va si el valor de l se encuentra fuera del intervalo de -1.96 a 1.96. Como este es el caso, puede concluirse que efectivamente existe diferencia significativa en la ganancia en voltaje de los transistores.

b. Si la prueba es a un nivel de significancia de 0.01, la diferencia es significativa si ? se encuentra fuera del rango de -2.58 a 2.58. Partiendo del hecho de que ? = 2, la diferencia entre las ganancias es producto del azar, y se acepta la hipôtesis de que ambos tipos de transistores tienen igual ganancia media en voltaje a un nivel de confianza de 99 por ciento.

Ejemplo 17.2

La estatura promedio de 50 estudiantes varones tomados al azar que participan en actividades deportivas es de 173 cm, con desviación estándar de 6.3 cm. Otra muestra aleatoria de 50 estudiantes varones que no participan en ese tipo de actividades tiene promedio de estatura igual a 171 cm, con desviación estándar igual a 7.1 cm. Probar la hipótesis de que los estudiantes varones que practican deportes son más altos que los que no lo hacen, a un nivel de significancia de 0.05.

Se debe decidir entre las hipótesis

$$H_0 : \mu_X = \mu_Y$$

$$H_t = \mu_X > \mu_Y$$

siendo X la variable aleatoria asociada a la población infinita de estaturas de alumnos que practican deportes, y Y la asociada a la de estudiantes que no lo hacen, que también es infinita.

Bajo la hipótesis $\mathbf{H}_{\mathbf{n}}$, se tiene que

$$\sigma_{\overline{X}-\overline{Y}} = \sqrt{\frac{\sigma_{X}^{2}}{n_{X}} + \frac{\sigma_{Y}^{2}}{n_{Y}}} = \sqrt{\frac{(6.3)^{2}}{50} + \frac{(7.1)^{2}}{50}} = 1.3424$$

Entonces, el valor de 2 es

$$Z = \frac{\bar{X} - \bar{Y}}{\sigma_{\bar{X} - \bar{Y}}^2} = \frac{173 - 171}{1.3424} = \frac{2}{1.3424} = 1.489$$

Puesto que se trata de una prueba de hipótesis de una cola, a un nivel $\alpha=0.05$, se rechazaría H_0 si el valor de 7 muestral fuera mayor del valor crítico para dicho nivel, el cual es $Z_c=1.645$. Puesto que Z_c , en este caso se concluye que la diferencia en las estaturas de ambos grupos de estudiantes se debe únicamente al azar.

3.4 Muestras pequeñas

Como ya se indicô, para muestras grandes (n > 30) las distribuciones muestrales de muchas estadísticas son aproximadamente normales, siendo tanto mejor la aproximación cuanto mayor es el tamaño de n. Sin embargo, cuando se trata de muestras en las que n < 30; llamadas muestras pequeñas, la aproximación no es suficientemente buena, por lo que resulta necesario introducir una teoría apropiada para su estudio.

Al estudio de las distribuciones muestrales de las estadísticas para muestras pequeñas se le llama teoría estadística de las muestras pequeñas. Existen al respecto tres distribuciones importantes: Ji cuadrada, F y t de Student.

3.4.1 Distribución Ji cuadrada (x²)

Hasta ahora solo se ha tratado la distribución muestral de la media. En esta sección se verá lo concerniente a la distribución muestral de la variancia, S_X^2 , para muestras alcatorias extraídas de poblaciones normales. Puesto que S_X no puede ser negativa, es de esperarse que su distribución muestral no sea una curva normal, ya que esta

tione ordenadas mayores de cero en el lado de las abscisas negativas. De hecho, la estadística S_X^2 se puede estudiar si se consideran muestras aleatorias de tamaño n extraídas de una población normal con desviación estándar a_X y si para cada muestra se calcula el valor de la estadística.

$$x^{2} = \frac{n_{1}S_{X}^{2}}{\sigma^{2}} \tag{3.14}$$

donde S_X^1 es la variancia de la muestra.

El número de grados de libertad, v, de una estadística se define como

$$v = n - k$$

siendo n el tamaño de la muestra y k el número de parámetros de la población que deben estimarse a partir de ella.

La distribución muestral de la estadística x² está dada por la ecuación

$$f(x^2) = U x^{\nu-2} e^{-\frac{1}{2} x^2}$$

en la que U es una constante que hace que el área total bajo la curva resulte igual a uno, y v = n - 1 es el número de grados de libertad. Esta distribución se llama Ji cuadrada, misma que se presenta en la fig 21 para distintos valores de v.

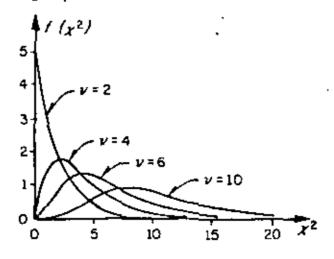
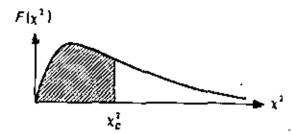


Fig. 21. Distribución Ji cuadrada para distintos valores de v

TABLA 8. VALORES CRITICOS $\chi_{\mathfrak{g}}^{\mathfrak{g}}$



U	X.996	χ 2	X 975	X 2 .95	X.90	X ² .75	X.50	X ² ,25	X 3	χ2.05	X ² ,025	X ¹ ,01	X 2.005
7	7.86	6.63	5.02	3.84	2.71	1.32	.455	.102	,016	.0039	.0010	.0002	.0000
1	10.6	9.21	7.38	5.99	4.61	2.77	1.39	375	,211	.103	.0506	.0201	.0100
(3	12.8	11.3	9.35	7,81	6.25	4.11	2.37	1.71	_384	,352	.216	.115	.072
4	14,9	13.3	11.1	9,49	7.76	5.39	3.36	1.92	1.06	.711	.483	.297	.207
													•
5	16,7	15.2	12.8	11,15	9,2	6.63	4.35	2.67	. 1.61	1,15	.831	.554 1	.413
6	18.5	16.8	14.4	12.6	10.6	7.84	5.35	3.45	2,20	1.64	1.24	.872	-676
7	20.3	.18.5	16.0	14.1	12.0	9.04	6.35	4.25	2,83	2.18 -	1.69	1,24	.989
8	22.0	20,1	17.5	15.5	13.4	10.2	7.34	5-07	3.49	2,73	2.18	1.65	1.34
,	23.6	21,7	19.0	16.9	14.7	11.4	8,34	5.90	4,17	3.33	2,70	2.09	1.73
۱.,	35.0	23.2	1		ا 🛴 ا	l i							l [
10	25.2 26.8	24.7	20.5	18.3	16.0	12,5	9.34	6.74	4,87	3,94	3.25	2.56	2.16
1 !!			21.9	19.7	17.3	13.7	10.35	7.57	5,58	1.57	3.82	3.05	2.60
12	28.3	26,2	23.2	21.0	18.5	14.8	11.3	8.44	6.30	5.23	4.40	3.57	3,07
13	29.8	27.7	24.7	22.4	19.8	16.0	12.3	9.30	7.04	5.89	5.01	4.11	3.57
14	31.3	29.1	26.1	23.7	21.1	17.2	13.3	10.2	7,79	6.57	5.63	4.66	4.07
15	32,7	30.6	27,5	25.1	,,,	18.2							ایرا
16	34.3	32.0	28.8	26.3	22.3	19.4	14.3	11.0	8,55	7.26	6.25	5.22	4.60
1,7	35.7	33.4	30.2	27.6	23.5 24.8	20.5	15.3 16,3	11.9	9.31	7.96	6.91	5.81	5.14
[8]	37.2		31.5	27.5 28.9				12.8	10,1	8.67	7.56	6.41	5.70
19	38.6	34,8 36,2	32.9	30.1	26.0	21.6 22,7	17.3	13.7	10.9	9.39	8.23	7.01	6.26
'7	ا ۵۰۵۰	1.00.2	34.7	30.1	27.2	22,5	1B.3	14.6	11,73	10.1	8.91	7.63	6.84
20	40.0	37.6	34.2	31.4	28.45	23.8	19.3	15.5	12.4	10.9	9.59	8.26	7.43
21	41.4	38.8	35.6	32.7	29.6	24.9	20.3	16.3	13,2	11.6	10.3	8.90	8,02
22	42.8	40.3	36.8	33.9	30.8	26.0	21.3	17.2	14.0	12.3	J1.0	9,54	B 64
23	44.2	41.6	38.1	35.2	32.0	27.1	22.3	18.1	14.8	13.1	11.7	10.2	9.26
24	45.6	43.0	39.4	36,4	33.2	28.2	23.3	19.0	15.7	13.8	12.4	10.9	9.89
•	13.0	15.4	274	,,,,	37.2	•0.1	• • • • •	13.0	15/2	13,0		10.7	''"'
25	46.9	44,3	40.6	37.7	34.4	29.3	24.3	19.9	2-16	14.5	13,15	11.5	201
26	48,3	45.6	41.9	38.9	35.6	30.4	25.3	20.8	17.3	15.4	13.8	J2.2	13.2
27	49.6	47.0	43.2	40.1	36.7	31.5	26.3	21.7	1.81	16.2	14.6	12.9	11.8
28	\$1.0	48,3	44.5	41.3	37,9	32.6	27.3	22.7	18.9	16.9	15.3	13.6	12.5
29	52.3	49.6	45.7	42.5	39.1	33.7	28.3	23.6	19.8	17.7	16.0	14.3	13.1
ļ	, ,	(,	ĺ	. !	. '	' '))]		
30	53.7	50,9	47.0	43.8	40.3	34.8	29.3	24.5	20.5	18.5	16.8	15,0	13.8
40	66.8	63.7	59,3	55.8	5 1.8	45.7	39.3	33.7	29.1	26.5	24.4	22.2	20.7
50	79.5	76.2	71,4	67.5	63.2	56,3	49.3	43.0	37.7	34.8	32,4	29,7	28.0
60	92.0	88.4	83.3	79.1	74,4	67.0	59.3	52.3	46.5	43.2	40.5	37.5	35.5
	ا ا	[. <u></u>]	ا میر ا		45.6			<u>, </u>		1	ا م	46.4	اا
70 80	104.2	100.4	95.0	90.5	85.5	77.6	69.3	61.7	55.3	51.7	48.8	45.4	43.3
90	116.3 128.3	112.3 124.3	106.6	101.9	96.6 107.6	88.1 98.6	79.3	71.1	64,3	60.4	57.2	53.5 61.8	51.2 59.2
100	140.2	135.8	118.1	113.1			89.3	80.6	73.3	69.1	65.6		
00	140.2	133.6	129.6	124.3	118.5	109.1	99.3	90.12	82.4	77.9	74.2	70.L	67.3

No obstante que la distribución Ji cuadrada solo se ha presentado en el estudio de las muestras pequeñas, cabe aclarar que es válida para aquellas mayores de 30 si la variable aleatoria involucrada tiene distribución normal.

3.4.1.1 Intervalo de confianza para la variancia

Tat como se hizo para la distribución normal, se pueden establecer intervalos de confianza para la variancia de la población en términos de la variancia de una muestra extraída de ella, a un nivel de confianza dado 1-a, si se hace uso de los valores críticos χ_1^2 de la tabla 8. Por lo tanto, un intervalo de confianza para la estadística χ_1^2 estaría dado por

$$|\chi_{c'}^2| \le \frac{n|S_X^2|}{|\sigma^2|} < |\chi_c^2|$$

donde x_c^4 , y x_c^4 son los valores críticos para los cuales el (1 - a)/2 por ciento del área se encuentra en los extremos izquierdo y derecho de la distribución, respectivamente.

Can base en lo anterior, se concluye que

es un intervalo de confianza para estimar a a^2 a un nivel de confianza 1 - a.

3.4.1.2 Prueba de hipótesis para la variancia

La prueba de hipótesis para la variancia de una población normul se efectúa calculando el valor de la estadística x^2 y estableciendo las hipótesis H_0 y H_1 apropiadas, es decir, se adoptan reglas de decisión similares a las usadas para la estadística Z,

Ejemplo

La variancia del tiempo de elaboración de cierto producto es igual a 40 min; sin embargo, su proceso de manufactura se modifica y se toma una muestra de

veinte tiempos, para la cual la variancia resulta ser igual a 62 min. ¿Es significativo el aumento del tiempo de elaboración a un nivel de significancia de

- a) 0.05
- b) 0.01?

Se debe decidir de entre las hipótesis

$$H_0$$
: $\sigma^2 = 40 \text{ min}$

$$H_1$$
: $\sigma^2 > 40 \text{ min}$

Suponiendo que la hipótesis nula es correcta, el valor de la estadística x¹ para la muestra considerada es

$$x^2 = \frac{n S_X^2}{\sigma^2} = \frac{(20)(62)}{40} = 31$$

- a) Como se trata de una prueba de una cola, la hipótesis H_0 se rechazaría si el valor de la estadística χ^2 fuera mayor que el de χ^2 para un nivel de significancia igual a 0.05, el cual, para $\nu = 20 1 = 19$ grados de libertad resulta ser 30.1 (tabla 8). Como 31 > 30.1, H_0 se rechaza a un nível de significancia de 0.05.
- b) En este caso, el valor de χ^2 para un nivel de significancia de 0.01 y 19 grados de libertad es igual a 36.2. Puesto que 31 < 36.2, se acepta H_0 a un nivel de significancia de 0.01.

3.4.2 Distribución F

Al efectuar la prueba de hipótesis de igualdad de medias para muestras pequeñas, en la siguiente sección se supondrá que las variancias de las poblaciones a las que corresponden tales muestras son iguales. Por lo tanto, es necesario probar antes si tal suposición es correcta. Para ello, debe considerarse que si S_X^1 , n_X y S_Y^2 , n_Y son respectivamente la variancia y el tamaño de dos muestras extraídas de poblaciones normales que tienen igual variancia, entonces

$$F = \frac{S_X^2}{S_Y^2} \tag{3.15}$$

TABLA 9. VALORES F_c PARA a = 0.01

r ₂ = Grados de libertad del	r = Grados de libertad del numerador																		
denominator	1	2	3	4	5	6	7	8	9	10	12	15	30	24	30	40	60	120	543
ī	4.052	5.000	5.403	5.625	5,764	5.859	5.928	5.982	6.023	6.056	6.106	6.157	6.209	6,235	6,361	6,187	6.313	6.339	6.360
2 {	98.50	99.00	99.20	99,20		99.30	99.40	99.40	99.40	99.40	99.40	99.40	99.40	99_50	9930	99.50	99.50	49.50	99.50
3	34.10	30.80	29,50	28.70		27.90	27,70	27.50	27.30	27.20	27.10	26,90	26.70	26.60	36.50	26.40	26.30	26.20	26,11
4	21.20	18.00	16.70	16.00	15.50	15,50	15.00	14.80	14.70	14.50	14.40	14.20	14.00	13.90	13,80	13.70	13.70	13.60	13.50
5	16.30	13.30	12.10	11.40	11.00	10.70	10.50	10.30	10.20	10.10	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	9.0.
6	13.70	10.90	9.77	9.15	8.75	8 47	8.26	8.10	7.98	7.87	7.72	7.56	7.40	7.31	7,23	7.14	7,06	6,97	h,87
7	12.20	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	3.65
8	11.30	8.65	7.59	7.01	6.63	6.37	6.17	6.03	5.91	5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4,95	4 83
9	10.60	8.02	6.99	6.42	6.06	5.81	5.61	5.47	5.35	5.26	5.11	4.96	4.81	4.73	4 65	4.57	4.48	4.401	4.31
10	10.00	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4,94	4.85	4.71	4.56	4,41	4.33	4,25	4.17	4.08	4.00	3.91
u l	9.66	7,22	6.22	5.68	5.32	5.07	4.89	4,74	4.63	4,54	4.40	47.25	4.10	4.03	3,93	3.86	3.78	3,64	5.60
12	9.33	6,93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	3.36
13	9.07	6.70	5,74	5.21	4.86	4.62	4.44	4.30	4.19	4,10	3.96	3.82	3.66	3.59	3.51	3.43	3.34	3.25	3,17
14	8.86	6.51	3.56	3.04	4.70	4.46	4.28	4.14	4.03	3.94	3.80	3.66	3.51	3.43	3.35	3,27	3.18	3,119	3.00
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.67	3.52	3.3?	3.29	3.21	.3.13	3.05	2.95	2.87
16	8.53	6.23	5.29	4,77	4.43	4,20	4.03	3.89	3.78	3.69	3.55	3,40	3.26	3.18	3.10	3.02	2.93	2 84	2.76
17	8.40	6.11	[5.19 <u>[</u>	4.57	4,34	4.10	3.93	3,79	3.68	3.59	3.46	3.31	3,16	3.08	3.00	2.92	2.83	3.75	2 65
18	8.29	6.01	5.09	4.58	4.35	4.01	3.84	3.71	3.60	331	3.37	3.23	3.08	3.00	2,92	2.64	2.75	2.66	2.57
19	8.19	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.30	3.25	3.00	2.92	2.84	2.76	2.67	2.58	2.49
20	8.10	5.85	4.94	4,43	4.10	3.87	3.70	3.56	3.46	3.37	3.23	3.09	2.94	2.86	2.78	2.69	2.61	222	2.42
21	8.03	5,79	4.87	4.36	4.04	3.81	3.64	3,50	3.41	3.31	3.17	3.03	2.88	2.80	2.72	2.64	2.55	2,46	2,36
22	7.95	5.72	4.83	4.31	3.99	3.76	3.59	3.45	3,35	3.26	3.12	2.98	2.83	2.75	2.67	2.58	2.50	2.40	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	3.07	2.93	2.78	2.70	2.62	2.54	2.45	2.35	2.26
24	7.82	5.61	4,72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.03	2.89	2.74	2.66	2.58	3.49	2.40	2.31	2.21
25	7.77	5.57	4.68	4.18	3.86	3.63	3.46	3.32	3.22	3.13	2,99	2.85	2,70	2.62	2.53	2.45	2.36	2,27	2.17
30	7.56	5.39	4.51	4.02	3.70	3,46	3.30	3.17	3.07	2.98	2.84	2.71	2.54	2,47	2.39	2.29	2.20	2,11	2,01
40	7.31	5.18	4.31	3.83	3.51	3,29	3.12	2.99	2.89	2.80	2.66	2.52	2.37	2.29	2,20	2.11	2.02	1.92	1.80
60	7.08	4.98	4.14	3.65	3,34	3.12	2.95	2.82	2.72	2.63	2.50	2.35	2.20	2.12	2.03	1.94	1.84	1,73	1.60
120	6.65	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47	2.34	2.19	2.03	1.95	1.86	1.76	1.66	1.53	1.38
• ∞	6.63	1.61	3,78	3,32	3.02	2.80	2,64		2.41	2.32	2.18	2.04	1.88	1,79	1.70	1.59	1,47	1.32	1.00

resulta ser el valor de una variable aleatoria (estadística) que tiene distribución F, con parámetros $v_X = n_X - 1$ y $v_Y = n_Y - 1$. Esta distribución (fig 22) cuenta con dos parámetros, v_X y v_Y , que son los grados de libertad que corresponden a la variancia del numerador y del denominador de la ec 3.15, respectivamente. Cuando se hace referencia a una distribución F en particular, siempre se dan primero los grados de libertad para la variancia del numerador; es decir, $F(v_X, v_Y)$. En la tabla 9 se presentan los valores críticos F_c para distintos valores de v_X y v_Y y un nivel de significancia de 0.01. Cuando los grados de libertad v_X o v_Y no se encuentren en dicha tabla, el valor de F se puede obtener mediante interpolación lineal. Si se desea probar la hipótesis a otros niveles de significancia, es factible emplear las tablas de la distribución F (refs. 9 y 11).

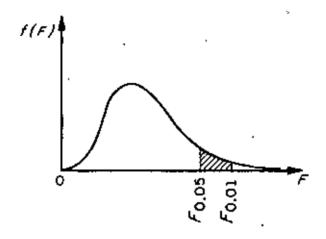


Fig 22, Distribución F.

De acuerdo con lo anterior, se puede probar la hipótesis nula

$$H_0: \sigma_X^2 = \sigma_Y^2$$

en contra de alguna hipótesis alternativa adecuada haciendo uso del hecho de que el cociente S_x^2/S_y^2 es una estadística que tiene distribución F.

Ejemplo

Una empresa manufacturera de cartón prensado va a decidir acerca del empleo de una prensadora A o una B a fin de obtener un grosor determinado en su producto. El problema estriba en que ambas prensadoras proporcionan grosores muy similares, es decir, que la variancia de los grosores para las dos máquinas es la misma. Para decidir acertadamente, se toma una muestra aleatoria de 31 cartones prensados por la máquina A y otra de 41 por la B. Como las variancias del grosor para los cartones de las muestras tesul-

tan ser de 12 y de 5 micras, respectivamente, se establecen las hipôtesis

$$H_0: \sigma_A^2 = \sigma_B^4$$

$$H_1: |\sigma_A^2| > \sigma_B^2$$

con objeto de probarlas a un nivel de significancia de 0,01.

El valor de la estadística E resulta

$$F = \frac{S_A^2}{S_B^2} = \frac{12}{5} = 2.4$$

Puesto que $v_A=31-1=30$ y $v_B=41-1=40$, en la tabla 9 se puede ver que para un nivel de significancia de 0.01 el valor, F_c , de F(30,40) es 2.11. De acuerdo con estos valores, la hipótesis H_0 se rechazaría si el valor de F fuera mayor que F_c (30, 40).

Puesto que lo anterior resulta ser cierto, se rechaza H_0 , concluyéndose que la prensadora B sería fa mejor elección.

3.4.3 Distribución t de Student

Si se consideran muestras de tamaño n extraídas de una población normal con media μ y variancia desconocida, para cada muestra se puede calcular la estadística T definida mediante la fórmula

$$T = \frac{\overline{X} - \mu}{S_X} \sqrt{n - 1} \tag{3.16}$$

donde X es el promedio y S_{χ} la desviación estándar de la muestra.

La distribución muestral de T (fig 23) está dada por la ecuación

$$f(t) = \frac{U}{(1 + \frac{I^2}{\nu})[(\nu + 1)/2]}$$

en la que U es una constante que hace que el área bajo ja curva sea igual a uno, y v = n - 1 es el número de grados de libertad.

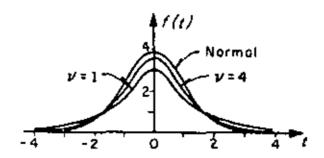


Fig 23. Distribución 1 de Student para distintos valores de v

En la fig 23 se aprecia que conforme ν (o n el tamaño de la muestra) aumenta, la distribución de f(t) se aproxima a la distribución normal.

3.4.3.1 Límites e intervalos de confianza

De manera similar a como se hizo con la distribución normal, es posible estimar los límites de confianza de la media, μ , de una población mediante los valores críticos. t_c , de la distribución t, que dependen del tamaño de la muestra y del nivel de confianza deseado, encontrándose dichos valores en la tabla 10.

Asi pues,

$$-\ t_c < \frac{\overline{X} - \mu}{S_X} \sqrt{n-1} < t_c$$

representa un intervalo de confianza para t, a partir del cual se puede estimar que μ se encuentra dentro del intervalo

$$\overline{X} - t_c \frac{\sigma_X}{\sqrt{n-1}} < \mu < \overline{X} + t_c \frac{\sigma_X}{\sqrt{n-1}}$$

En términos generales, los límites de confianza para la media de la población se representan como

$$\bar{X} \pm t_c \frac{a_X}{\sqrt{n-1}}$$

TABLA 10. VALORES $t_{\rm c}$ PARA LA DISTRIBUCION t DE STUDENT .



				·····						
¥	1,995	ľ ,99	7.975	1,91	1 ,90	1 20	1,75	f .70	1,60	1,5
ı	63,66	31.82	12.71	6,31	3.07	1.376	1.000	.727	.325	.158
2	9.92 -	6.96	4.30	2.92	1.89	1.061	.616	.617	.289	.142
3	5,84	4,54	3.18	2.35	1,64	.978	.765	.584	.275	,138
4	4.60	3.75	2.78	2.13	1.53	.941	.741	.569	.271	.134
s	4,04	1.36	2.58	2.02	1,41	.920	,727	.560	.267	,132
6-	3,71	3.14	2.45	1,94	1,44	.906	,71B		.265	.131
7	3,50	3.00	2.36	1,91	1,43	,896	,711	549	.263	.130
8	3.36	2.90	2,31	1.86	1,40	.889	.706	.546	.262	.130
9	3,25	2.82	2.26	1.83	1,30	.883	.703	.543	.261	,129
10	3.17	2.76	2.23	1,81	1.37	.879	.700	ي	.260	,129
ш	3.11	2,72	2.20	1.80	1,36	.876	.697	.540	.260	.129
12	3.06	2.68	2,18	1,78	1,36	.873	.695	_539	.259	.128
13 ,	3.01	2,65 ·	2.16	1.77	1.36	.871	.694	. ,538	ود2.	.128
14 ,	2.98	2.62	2.14	1,76	1.34	.868	, 69 3	537	.25B	.128
15	. 2.95	2.61	2.13	1.75	1,34	.866	,691	.536	.258	.128
16	2.92	· r 2,58.	2.12	1,75	1,34	.865	.690	.535	,258	.128
17	2.90	2,57	2.11	1,74	1.33	.863	,689	534	.257	.128
18	2.68	2,55	2.10	1,73	1,33	.862	.688	.534	.257	.128
19	2,87	2.54	2,09	1.73	1.33	.861	£8à,	.533	.257	,127
20	2.84	2,53	2.09	1,72	1.32 -	.860	.687	.533	.257	.127
21	2.83	2,52	7.08	1,72	1.32	.859	.686	.532	.256	.127
22	7.82	2,51	2,07	1.72	1,32	.858	.686	.532	.25 6	.127
23	2.81	2.50	2,07	1.71	1.32	.B58	,685	.512	.256	.127
24	2.80	2.49	2.06	1.71	1,32	· .857	.685	,531	.256	.127
25	2,79	2.48	2.06	1,71	1,32	.856	.684	.531	.256	,127
26	2,78	2.48	2,05	1,71	1.32 .	.836	.684	531	,256	.127
27	2.77	+ 2,47	2.05	1.71	1,31	.855	.683	.531	256	.127
28	2,76	2.47	2.05	1.70	1.31	.85.5	,683,	,530	.256	.127
29	2.16	2.46	2,04	1.70	1.31	.854	.683	_330	,256	.)27
30	2.75	2,46	2.04	1.70	1.30	,853	.683	. 30ک	.256	,127
40	2.70	2,43	2.02	1,68	1,30	.851	.681	,529	.255	,126
60	2.66	2,39	2,00	1.67	1,30	.848	.679	.528	.254	.126
120	2.62	2.36	1,98	1.66	1:29	.845	,677	526	.254	.126
360 B	378	2.33	1.96	1.645	1.28	,842	.674	24 ك	.253	.126
——						<u></u>				·

3.4.3.2 Pruebas de hipótesis

La prueba de hipótesis para la media de una población se puede efectuar con muestras pequeñas en forma análoga a la de muestras de tamaño mayor de 30 si en lugar de utilizar a la estadística Z se emplea la T. Entonces, si se consideran dos muestras aleatorias cuyos tamaños desviaciones estándar y promedios son n_X , S_X , X y n_Y , S_Y , Y, respectivamente, extraídas de poblaciones normales de igual variancia $(\sigma_X^2 = \sigma_Y^2)$, se puede probar la hipótesis, H_0 , de que las muestras provienen de una misma población, es decir, de que también sus medias son iguales, utilizando la estadística T definida por

$$T = \frac{\overline{X} - \overline{Y}}{\epsilon \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}}$$
 (3.17)

donde

$$e = \sqrt{\frac{n_X S_{X}^1 + n_Y S_Y^2}{n_X + n_Y - 2}}$$
 (3.18)

cuya distribución es la t de Student, con $v = n_X + n_Y - 2$ grados de libertad.

Ejemplo

Conforme al plan de desarrollo agrícola de una región, se probó un nuevo fertilizante para muíz. Para ello se escogieron 24 ha de terreno, aplicándose dicho producto a la mitad de ellas. El promedio de producción de maíz en la zona que se usó fertilizante fue de 5.3 ton, con una desviación estándar de 0.40 ton, en tanto que en la otra zona el promedio fue de 5.0 ton, con desviación estándar de 0.36 ton.

De acuerdo con los resultados, ¿se puede concluir que existe un aumento significativo en la producción de maiz al usar fertilizante, si se utiliza un nivel de significancia de

- a) 0.01
- 61 0.05?

Solución

Para probar la hipótesis de igualdad de medias es indispensable saber primero si las muestras provienen de dos poblaciones normales de igual variancia. En ese caso, si σ_X^2 y σ_Y^2 denotan a las variancias de la producción de maíz en la zona tratada y en la no tratada, respectivamente, se debe probar la hipótesis nula H_0 : $\sigma_X^2 = \sigma_Y^2$ en contra de la hipótesis alternativa H_1 : $\sigma_X^2 > \sigma_Y^2$ a los dos niveles de significancia establecidos.

El valor de la estadística F es, de la ec 3.15,

$$F = \frac{S_X^2}{S_Y^2} = \frac{(0.40)^3}{(0.36)^2} = 1.27$$

y el valor crítico de F (11, 11), obtenido de la tabla 9 mediante interpolación líneal, resulta 4.47. Por lo tanto, como 1,27 < 4.47, se acepta la hipótesis nula a un nivel de significancia de 0.01.

El valor crítico de F (11, 11) a un nivel de significancia de 0.05 (ref. 9) es 2.82, de ahí que como 1.27 < 2.82, también se acepta la hipótesis H_0 .

Con base en lo anterior, se debe decidir entre las hipótesis

 H_0 : $\mu_X = \mu_Y$ (la diferencia en los promedios se debe al azur)

 $H_1\colon \mu_X > \mu_Y$ (el fertilizante mejora la producción)

Bajo la hipótesis $H_{\mathfrak{g}}$, se tiene que

$$\varepsilon = \sqrt{\frac{n_X S_X^2 + n_Y S_Y^2}{n_X + n_Y - 2}} = \sqrt{\frac{12(0.40)^2 + 12(0.36)^2}{12 + 12 - 2}} = 0.397$$

por lo cua:

$$I = \frac{5.3 - 5.0}{0.397 \sqrt{\frac{1}{12} + \frac{1}{12}}} = 1.85$$

- a) Puesto que se trata de una prueba de una cola a un nivel de significancia de 0.01, se rechaza la hipótesis H_0 si t es mayor que el valor crítico, t_c , correspondiente a dicho nivel, el cual para $v = n_\chi + n_\gamma 2 = 12 + 12 2 = 22$ grados de libertad, se obtiene de la tabla 8 como $t_c = 2.51$. Como $t < t_c$, la hipótesis H_0 no se puede rechazar a un nivel de significancia de 0.01.
- b) Si el nivel de significancia de la prueba es de 0.05, se rechaza H_0 si t es mayor que el valor t_c respectivo que para 22 grados de libertad es $t_c = 1.72$, por lo que de acuerdo con lo anterior, H_0 se rechaza a un nivel de significancia de 0.05.

£5. .. • .

PROBABILIDAD Y ESTADISTICA, FUNDAMENTOS Y APLICACIONES

SISTEMAS EN SERIE Y EN PARALELO

DR. OCTAVIO A. RASCON CHAVEZ

Junio, Julio, 1979

Polacie de Mineria

Celle de Tacuba 5,

primer pisa

México I, D. F.

٠ . • . 1

• T

I

I

- 1

3.9 Sistemas en serie y en paralelo

Puesto que la confiabilidad se ha definido como una probabilidad, ésta se podrá calcular, para un sistema cualquiera,
si se conocen las densidades de probabilidades de falla de cada
uno de sus componentes. Estas densidades se pueden obtener mediante experimentos diseñados exprofeso o mediante consideraciones de carácter subjetivo basadas en experiencias previas
con componentes semejantes, o en la experiencia del que estudia
la confiabilidad del sistema.

Muchos sistemas pueden considerarse con los componentes en serie o en paralelo. Se dice que un sistema es en serie si sus componentes están conectados entre si de tal manera que al fallar uno de ellos falla el sistema; en la fig 3.10 se muestra la representación clásica de un sistema de este tipo. Un sistema es en paralelo si para que falle éste se necesita que fallen todos sus componentes; en la fig 3.11 se encuentra la representación gráfica de un sistema de este tipo.

Para estimar la confiabilidad de un sistema en serie consideraremos que los componentes del mismo son independientes,
es decir, que el hecho de que uno falle no influye en la probabilidad de que cualquier otro falle. En otras palabras, la
confiabilidad del componente se mantiene inalterada cuando
cualquier otro falla.

Puesto que para que un sistema en serie no falle se requicre que ninguno de sus componentes falle, su confiabilidad será igual al producto de las confiabilidades de cada uno de sus componentes (esto se debe a que el evento "no falla el sistema"

. .

es la intersección de los eventos "no falla el componente i" en donde i=1,2,...,n, y n es el total de componentes).

En símbolos, la probabilidad de que no falle el sistema antes del tiempo t es

$$P|T \ge t| = R(t) = R_1(t) \times R_2(t) \times \dots \times R_n(t) = \prod_{i=1}^n R_i(t)$$
 (3.73)

en donde T es la variable aleatoria "tiempo de falla del sistema", t es un valor que puede asumir T, R(t) es la probabilidad de que no falle el sistema hasta el tiempo t (su confiabilidad hasta t), Y $R_{t}(t)$ es la probabilidad de que la componente t no falle antes de t. De la ec 3.73 se concluye que la confiabilidad de un sistema en serie decrece conforme aumenta el número de sus componentes, ya que se están multiplicando entre si números menores de uno. Por ejemplo, si n=4 Y $R_{t}(t)=0.9$ para toda t (los --- componentes son idénticos), entonces $R(t)=0.9 \times 0.9 \times 0.9 \times 0.9 \times 0.9 = 0.59049$

Para que un sistema en paralelo falle es necesario que fallen todos sus componentes. Si dichos componentes son independientes, la probabilidad de falla del sistema en algún instante previo a t será

$$P[T \le t] = F(t) = 1 - R(t) = \frac{n}{\pi} [1 - R_{\lambda}(t)]$$
 (3.74)

por lo que la confiabilidad del sistema será $1-P|T\leq t|$, es decir

$$R(x) = 1 - \frac{n}{n} \left[1 - R_{\lambda}(x) \right]$$
 (3.75)

puesto que todas las probabilidades de falla que aparecen en el miembro derecho de la ec 3.74 son menores que uno, el resultado de aplicarla decrecerá conforme aumenta el número n de componentes, es decir, la probabilidad de supervivencia

de un sistema en paralelo aumenta conforme crece el número de sus componentes y, por consiguiente, su confiabilidad (ec 3.75) aumenta.

Por ejemplo, si un sistema en paralelo tiene cuatro componentes (n=4) y si $R_{\frac{1}{2}}(t)=0.9$, entonces su probabilidad de falla antes del tiempo t es (ec 3.74)

 $P[1 \le t] = F(t) = 0.1 \times 0.1 \times 0.1 \times 0.1 = 0.0001$

por lo que su confiabilidad (probabilidad de sobrevivencia) es

R(t) = 1 - 0.0001 = 0.9999

El hecho de que la confiabilidad de un sistema en paralelo es mayor que la de uno en serie, en igualdad del número de componentes y de sus confiabilidades, hace concluir que una manera de aumentar la confiabilidad de un sistema en serie consiste en ponerle algunos componentes en paralelo a aquellos que tengan baja confiabilidad, con lo cual se forma un sistema mixto, como el de la fig 3.12. A los componentes que se agregan con este objeto se les llama redundantes, porque no son indispensables para que funcione el sistema. Sin embargo, al añadirle componentes redundantes a un sistema se incrementan su costo, volumen, complejidad, etc., lo que en ocasiones desalienta la utilización de este recurso.

Para calcular la confiabilidad de un sistema mixto primero hay que obtener las confiabilidades de los grupos de componentes que están en paralelo, y luego considerar a dicho grupo como si fuese un elemento conectado en serie con una confiabilidad igual a la del grupo en paralelo. Así, en el caso presentado

en la fig 3.12, en que la confiabilidad de cada componente hasta el instante t está anotada abajo de él, el primer grupo de elementos en paralelo tiene una confiabilidad igual a $R_1(t) = 1 - 0.3 \times 0.3 \times 0.3 = 0.973$; la del segundo grupo es $R_2(t) = 1 - 0.2 \times 0.2 = 0.96$ (ver fig 3.13). La confiabilidad del sistema es, entonces,

 $R\{t\} = 0.99 \times 0.95 \times 0.973 \times 0.96 \times 0.90 = 0.7815$ Si no hubiese habido componentes redundantes, la confiabilidad hubiera sido

 $R(t) = 0.99 \times 0.95 \times 0.70 \times 0.80 \times 0.90 = 0.4740$ que es bastante menor que la del sistema que si los tiene.

3.10 El modelo exponencial en la confiabilidad de un sistema

En esta sección emplearemos los resultados obtenidos 'para calcular las confiabilidades de sistemas en serie y en para ralelo, suponiendo que las densidades de probabilidades, $\{(t),$ de los tiempos de falla de los componentes son exponenciales, es decir,

$$d_{\lambda}(t) = \lambda_{\lambda} e^{-\lambda} \lambda^{t}$$

en donde $\lambda_{\vec{\lambda}}$ es la intensidad de fallas (número medio de fallas por unidad de tiempo) del i-ésimo componente.

Tomando en cuenta que

$$R(t) = 1 - F(t) = 1 - \int_{0}^{t} f(t) dt$$

obtenemos

$$R_{\lambda}(t) = 1 - \int_{0}^{t} \lambda_{\lambda} e^{-\lambda_{\lambda} t} dt = e^{-\lambda_{\lambda} t}$$
(3.76)

. . .

Si el sistema es en serie, su confiabilidad, de acuerdo con la ec 3.73, será

$$R(t) = \frac{n}{\pi} e^{-\lambda} i^{t} = e^{-\left(\sum_{i=1}^{n} \lambda_{i}\right)t} = e^{-\theta t}$$
 (3.77)

en donde

$$\theta = \sum_{i=1}^{n} \lambda_{i} \tag{3.78}$$

Puesto que el miembro derecho de la ec 3.77 tiene la misma forma que el de la ec 3.76, deducimos que la densidad de probabilidades del sistema en serie también es exponencial con parámetro θ, es decir, el número medio de fallas del sistema por unidad de tiempo queda dado por la ec 3.78. Además, puesto que el tiempo medio de falla de cada componente es (sec 3.8.2)

$$E_f(t) = \mu_f = 1/\lambda_f$$

tenemos que el tiempo medio falla del sistema, cuando cada componente que falla se reemplaza de inmediato con otro idéntico, es

$$E|T| = \mu = \frac{1}{\theta} = \frac{1}{n} = \frac{1}{\lambda_1 + \lambda_2 + \dots + \lambda_n} = \frac{1}{\mu_1 + \frac{1}{\mu_2} + \dots + \frac{1}{\mu_n}}$$
(3.79)

Para el caso de un sistema en paralelo, si las densidades de probabilidades de falla de las componentes son exponenciales, la confiabilidad es

$$R(t) = 1 - \frac{n}{t-1} \left(1 - e^{\lambda t}\right) \tag{3.80}$$

Esta probabilidad no se puede factorizar en tal forma que tenga la apariencia de la ec 3.76, como sucedió con el

. . .

sistema en serie y, por consiguiente, la distribución de la confiabilidad de un sistema en paralelo no es exponencial. En estas condiciones, la intensidad de falla (fuerza de mortandad) del sistema se tendrá que obtener mediante la ec 3.61, y no resultará ser una constante.

El tiempo medio de falla también es difícil de obtener para el caso general en que las λ_{i} son diferentes. Si todas las λ_{i} son iguales a λ_{i} entonces la ec 3.80 resulta en

$$R(t) = 1 - (1 - e^{-\lambda t})^n$$
 (3.81)

El desarrollo del bonimio del miembro derecho de la ec 3.81 conduce a

$$K(t) = {n \choose 1} e^{-\lambda t} - {n \choose 2} e^{-2\lambda t} + \dots + (-1)^{n-1} e^{-n\lambda t}$$
 (3.82)

en donde $\binom{n}{\ell}$ denota al número de combinaciones que se pueden formar con m objetos tomando de ℓ en ℓ . Puesto que la densidad de probabilidades es

$$f(t) = \frac{dF(t)}{dt} = \frac{d}{dt} \left| 1 - R(t) \right| = \frac{dR(t)}{dt}$$

obtenemos que la densidad de probabilidades del tiempo de falla del sistema en paralelo es

$$6(t) = \lambda \binom{n}{1} e^{-\lambda \cdot t} = 2\lambda \binom{n}{2} e^{-2\lambda \cdot t} + \dots + (-1)^{n-1} n\lambda e^{-n\lambda \cdot t}$$
 (3.83)

La media del tiempo de falla es, entonces

$$\Gamma(t) = \mu = \int_{0}^{\infty} t \int_{0}^{\infty} (t) dt = \lambda \binom{n}{1} \int_{0}^{\infty} t e^{-\lambda t} dt - 2\lambda \binom{n}{2} t e^{-2\lambda t} dt + \dots$$

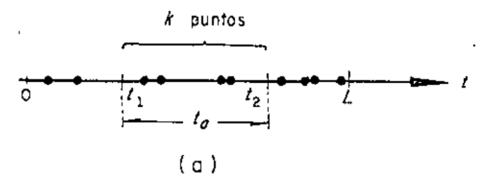
$$+ (-1)^{n-1} \int_{0}^{\infty} n\lambda \int_{0}^{\infty} t e^{-n\lambda t} dt = \frac{1}{\lambda} \left(\binom{n}{1} - \frac{1}{2\lambda} \binom{n}{2} + \dots + (-1)^{n-1} \right) \frac{1}{n\lambda}$$

Por inducción matemática se puede demostrar que esta ecuación es equivalente a

$$\mu = \frac{1}{\lambda} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right)$$
 (3.84)

por lo que la fuerza de mortandad resulta ser

$$\theta = \frac{1}{\mu} = \frac{\lambda}{1 + \frac{1}{2} + \dots + \frac{1}{n}}$$



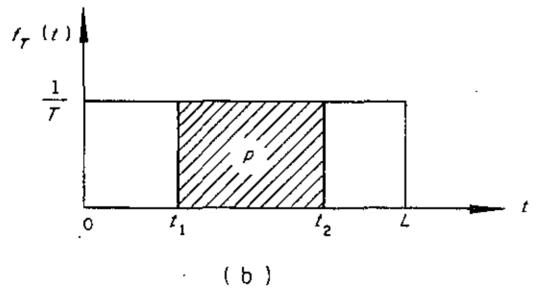


Fig 3.4 Ocurrencia aleatoria de eventos en un lapso de duración Z

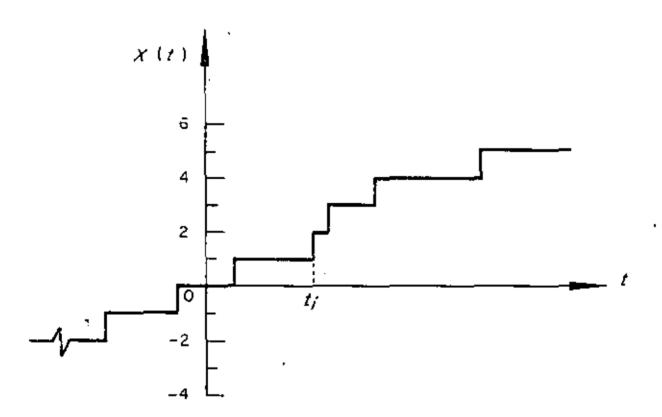


Fig 3.5 Función muestra de un proceso simple de Poisson

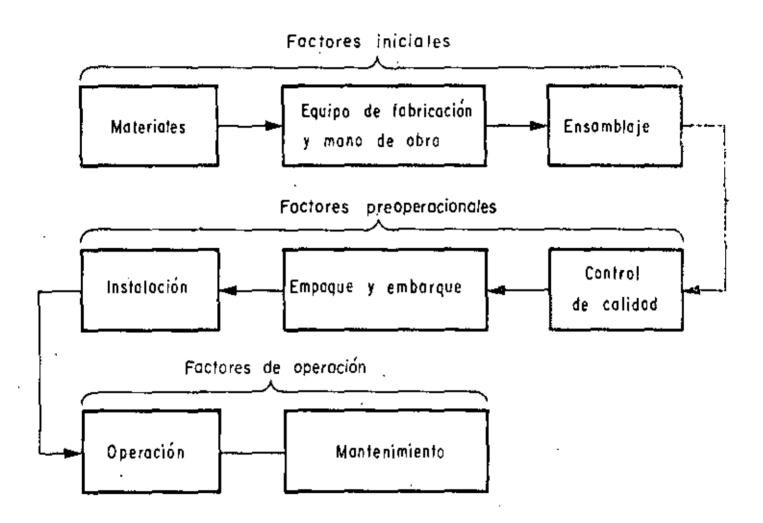


Fig 3.7 Factores que influyen en el comportamiento de un sistema

Fig 3.8 Intensidad de falla en función del tiempo de operación

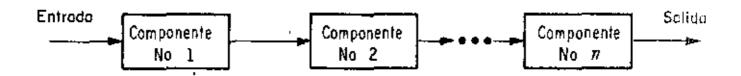


Fig 3.10 Sistema en serie

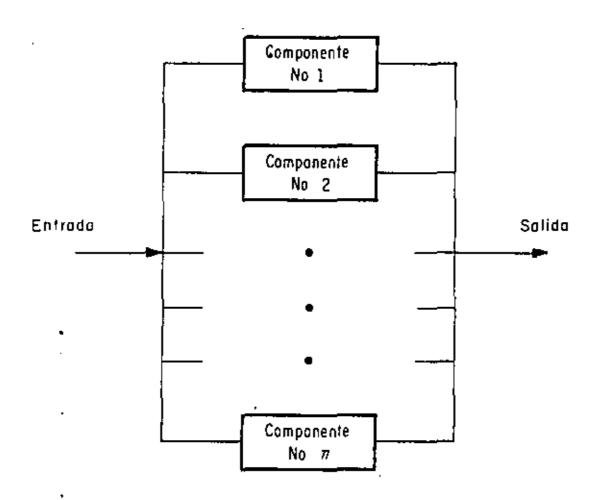


Fig 3.11 Sistema en paratelo

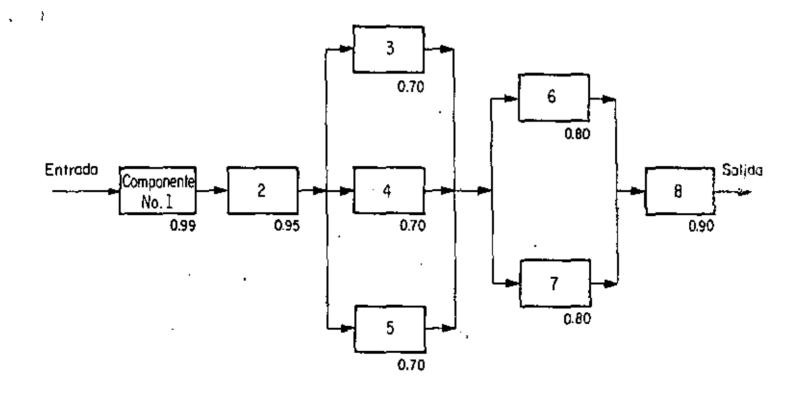


Fig 3.12 Sistema mixto

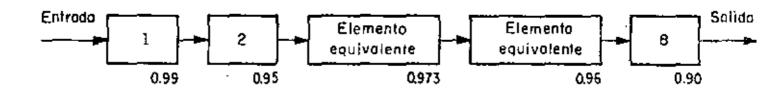


Fig 3.13 Sistema en serie equivalente al de la fig 3.12

P. L'4200N

TABLA 2.1

- ALGUNAS DISTRIBUCIONES DE PROBABILIDADES

	Distribución	Densidad de probabilidades, (x)	Esperanza	Variancia
	Binomial (n=1,2,;0 <u><p<< u="">1; q=1-p)</p<<></u>	$\binom{n}{x}p^{x}q^{n-x}; x = 0,1,\ldots,n$ $0 \qquad ; x < 0$	np	пра
E E S	Poisson (λ > 0)	$\frac{e^{-\lambda}\lambda^{x}}{x!}; x = 0,1,$ $0; x < 0$	λ	λ
ISCR	Geométrica (0 <u><p<< u="">1: q=1-p)</p<<></u>	pq^{x-1} ; x = 0,1, 0; x < 0	1/p	q/p² -
	Binomial negativa $(n=1,2,;0 \le p \le 1; q=1-p)$	$\begin{cases} \left(\frac{h+\frac{i}{x}-1}{x}\right)p^hq^x ; x = 0,1,\dots \\ 0 ; x < 0 \end{cases}$	rq/p	1q/p²
	Normal (∞<η<∞; 0≤σ²<∞)	$\frac{1}{\sigma\sqrt{2\pi}}e^{-(\chi-\eta)^2/2\sigma^2}; -\infty < \chi < \infty$	η	σ²
UAS	Exponencial {λ>0}	λε ^{-λχ} ; x ≥ 0 0 ; x < 0	1/λ	. 1/\lambda^2
HITHO	Uniforme en el in- tervalo de a a b	$\frac{1}{(b-a)}; a \le x \le b$ $0; a > x \cdot o; b < x$	(a+b)/2	→ (b-a)²/12
0 0	J _i -cuadrada (X²) con n grados de li- bertad	$\frac{1}{2^{n/2}\Gamma(\frac{n}{2})} x^{(n/2-1)} e^{-x/2}$	п	2n

PROBABILIDAD Y ESTADISTICA, FUNDAMENTOS Y APLICACIONES

CARTAS DE CONTROL

M. en I. AUGUSTO VILLARREAL ARANDA JULIO 1979

Palacia de Minería - Calle de Tacuba 5, primer pisa- - México 1, D. F.

•			
	•		

CARTAS DE CONTROL

Por: M en I Augusto Villarreal A.

INTRODUCCION

Aunque existe la tendencia generalizada a pensar que el Controlde de Calidad es de desarrollo reciente, realmente no existe nada un nuevo en la idea básica de elaborar un producto caracterizado por un alto grado de uniformidad.

Durante siglos, hábiles artesanos han procurado elaborar productos que se distingan por su superior calidad, y una vez que han logrado obtener un cierto estándar de calidad óptimo, eliminar dentro de lo posible la variación entre productos que nominalmente deben resultar iguales.

La idea de que la Estadística puede resultar un instrumento muy útil para asegurar un estándar adecuado de calidad para los productos manufacturados, se remonta no más allá del advenimiento de la producción masiva, y el uso extendido de los métodos estadísticos para resolver problemas de control de calidad es aún más reciente.

Muchos problemas que aparecen durante la elaboración de un producto son susceptibles de ser resueltos empleando tratamientos estadísticos, por lo que al hablar de control estadístico de calidad, nos estaremos refiriendo esencialmente a las dos técnicas especiales que se discutirán en esta parte del curso: uso de las Cartas de Control y muestreo de aceptación.

Profesor Investigador, División de Estudios Superiores e Inst<u>i</u> tuto de Ingeniería, UNAM Conviene mencionar que la palabra calidad, al ser empleada de aqué en adelante, se referirá a alguna propiedad medible o contable de algún producto, tal como el diámetro de un balín de acero,
la resistencia de una viga de concreto, el número de defectos en
una pieza de tela, la eficacia de cierta droga, etc.

TREAS SOBRE CARTAS DE CONTROL

A muchos individuos les puede sorprender el hecho de que dos artículos aparentemente idénticos, elaborados bajo condiciones cuidadosamente controladas, de las mismas materias primas, y por una misma máquina con diferencia de pocos segundos, puedan, sin embargo, diferir en muchos aspectos.

En efecto, cualquier proceso de manufactura, aun siendo muy bueno, se encuentra caracterizado por una cierta cantidad de variación - que es de naturaleza aleatoria, y que no puede ser eliminada en - forma completa.

Cuando la variabilidad presente en un proceso de producción se li mita a variación aleatoria se dice que el proceso se encuentra en un estado de control estadístico.

Tal estado se puede alcanzar cuando se eliminan aquellos problemas causados por otro tipo de variación, llamada variación sistemática, que es de naturaleza más bien determinística, y que se puede achacar, por ejemplo, a operadores mal entrenados, materia prima de baja calidad, máquinas en mal estado, etc.

Ya que los procesos de manufactura se encuentran rara vez libres

de estos problemas, conviene contar con algún método sistemático para detectar desviaciones serias de un estado de control estadís tico cuando ocurren, o inclusive antes de que ocurran, tales desviaciones.

Ese método sistemático de detección se puede tener mediante el em pleo de las llamadas Cartas de Control.

TIPOS DE CARTAS DE CONTROL

En lo que sique distinguiremos entre las <u>cartas de control para</u> — <u>mediciones</u> o variables (X, R, ø) y las cartas de control para atr<u>i</u> butos (p, c), dependiendo de que las observaciones que estemos ana lizando sean <u>mediciones o datos contados o calculados</u>, respectivamente.

Un ejemplo del primer caso sería la longitud de las varillas de acero de una muestra. Como ejemplo del segundo caso tendríamos - el número de focos defectuosos en una muestra de tamaño dado.

CONFIGURACION DE LAS CARTAS DE CONTROL

En cualquiera de los casos mencionados, una carta de control consiste de una Línea Central, correspondiente a la calidad promedio a la que el proceso debe funcionar, y dos líneas que corresponden al Límite Superior de Control (LSC) y al Límite Inferior de Control (LIC), respectivamente, tal como se muestra en la Fig 1.

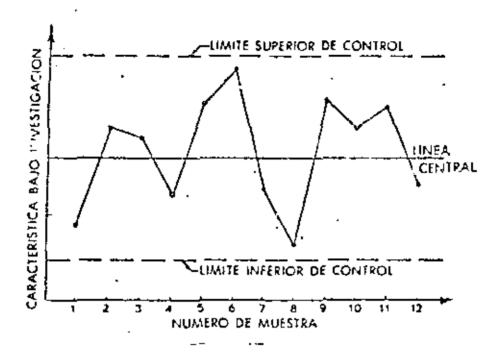


Fig 1. Aspecto general de una carta de control

Estos límites se escogen en forma tal que los valores que se encuentren dentro de ellos se puedan atribuir al azar, en tanto que los valores que caigan fuera de ellos se puedan considerar como indicaciones de falta de control.

No obstante la idea anterior, conviene mencionar que en la Fig 2 que se presenta a continuación se pueden considerar otras posibles situaciones de "falta de control" que ameritan investigarse:

- 1. Cuando dos de tres puntos sucesivos caen en la zona A.
- Cuando cuatro de cinco puntos sucesivos caen en la zona
 B o más allá.
- Cuando ocho puntos sucesivos caen en la zona C o más allá.

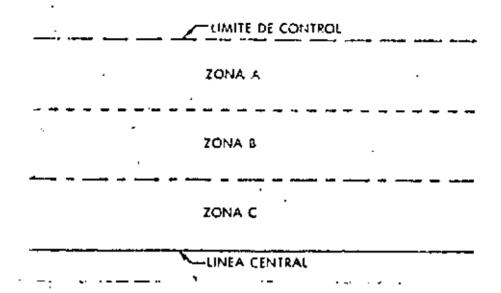


Fig 2 Diagrama que define las zonas A, B y C usadas en el análisis de Cartas de Control.

Debe hacerse notar que cada una de las zonas A, B y C constituye la tercera parte del área entre la línea central y un límite de - control, y que las pruebas mencionadas se aplican a ambas mitades de la carta de control, pero se aplican separadamente para cada - mitad, y nunca a las dos mitades en combinación.

EXPLICACION DEL EMPLEO DE LAS CARTAS DE CONTROL

Si se grafican en una carta los resultados obtenidos a partir de muestras tomadas periódicamente a intervalos frecuentes, es posible verificar por medio de ella si el proceso se encuentra bajo control, o si se encuentra presente en el proceso la variación - sistemática del tipo descrito anteriormente.

Cuando un punto graficado cae fuera de los límites de control, es

necesso so encontrar el problema y capió sal como despres del proceso. Pero sun si los puntos caen dentro de sos límites mencionados, alguna tendencia, o cierto patrón de los mismos, puede indicar que se debe llevar a cabo alguna acción para prevenir y así evitar algún problema serio

La habí idad para "leer" las cartas de control y para determinar a partir de ellas cuál acción correctiva de ellavarse a cabo, — se obtiene a partir de la experiencia y del juicio altamente desarrollado. Un practicante del control estadístico de la calidad debe no sólo comprender los fundamentos estadísticos de la materia, sino también encontrarse identificado plenamente con los procesos que desea controlar.

CARTAS DE CONTROL PARA MEDICIONES (VARIABLES)

Cuando se requiere establecer control estadístico de la calidad de algún producto en términos de mediciones o variables, es costumbre ejercer tal control sobre la calidad media del proceso, - al igual que sobre su variabilidad.

La primera meta se logra al graficar los promedios de muestras - extraídas periódicamente en la llamada carta de control para los promedios, o simplemente carta X. La variabilidad se quede controlar de igual forma si se grafican los rangos o las desviaciones estándar de las muestras en las llamadas cartas R o cartas c, respectivamente, dependiendo de cuál estadística se emplee para estimar la desviación estándar de la población.

Si se conocen la media µ y la desviación estándar o de la pobla-

ción (proceso) y es razonable suponer las mediciones obtenidas - como muestras extraídas de una población normal, se puede asequar que con probabilidad 1 - a el promedio aritmético de una · - muestra aleatoria de tamaño n se encontrará entre

$$\mu - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \qquad y \quad \mu + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$\phi$$

$$\psi - z_{\alpha/2} \frac{\sigma_{\overline{X}}}{X} \qquad y \quad \mu + z_{\alpha/2} \frac{\sigma_{\overline{X}}}{X}$$

puesto que $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$ para el caso de la distribución muestral del promedio aritmético, cuando se muestrea de una población infinita. La suposición de que la extracción de muestras aleatorias se hace de una población infinita es válida en el caso presente, puesto que, por ejemplo, la producción de cierto producto en una fábrica tiende a infinito conforme pasa el tiempo.

Los dos límites anteriores ($y \neq z_{\alpha/2} \circ \tilde{\chi}$) proporcionan entonces límites inferiores y superiores de control y, bajo las suposiciones anteriores, permiten al practicante del control de calidad determinar si se debe o no llevar a cabo algún ajuste en el proceso, al graficar los promedios aritméticos obtenidos de muestras de también n en una carta como la que se muestra en la Fig 1.

Conviene establecer en este momento que al emplear una carta de con trol para los promedios, lo que se hace realmente es probar hipótesis nulas de que a un cierto nivel de confianza 1-a el valor de la media de la desvisación muestral de los promedios sea igual al valor de distribución La calidad nominal del proceso, o al de la calidad macia calculada para el mismo, $\mu_{\rm o}$. Para estas pruebas secuenciales de hipótesis, se emplean como estadísticas de prueba los valores de los promedios — aritméticos obtenidos de muestras alcatorias extraídas de la población (o proceso). Es decir, se realizan pruebas de hipótesis para las quales

en donde μ es la media de la distribución muestral del promedio aritimético, μ_0 la calidad nominal o calidad media calculada del proceso, y \overline{X}_1 (i=1,2,3,...) el valor del promedio aritmético obtenido de la iésima muestra aleatoria. La forma secuencial de estas pruebas de hipótesis se muestra en la Fig 3 que se presenta a continuación.

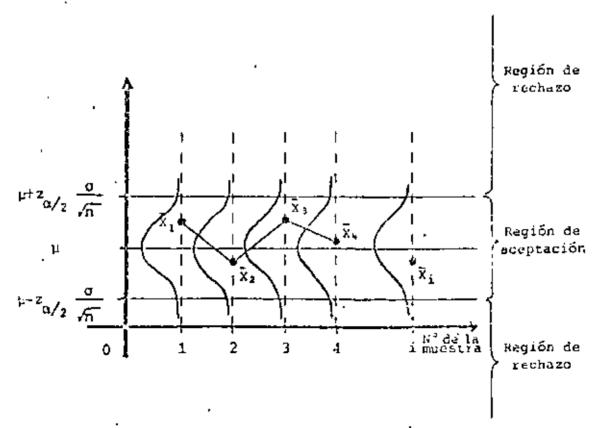


Fig 3 Pruebas de hipótesis que se realizan al emplear una carta de control para los promedios

Si se consideran problemas prácticos, los valores de μ y σ del proceso se desconocen, y es entonces conveniente estimar sus valores a partir de muestras tomadas mientras el proceso se encuentre "bajo control", tal como se explica más adelante. En la práctica es entonces difícil llegar a establecer lúmites de control del tipo $\mu \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ al desconocerse μ y σ , independ entemente de que en muchos casos es demasiado arriesgado considera, a las mediciones como muestras aleatorias extraídas de una población normal.

En lugar de lo anterior, en el control de calidad industrial se em plean comúnmente los límites de control de "tres desviaciones estándar" o de "tres sigmas", que se obtienen al sustituir a $z_{\alpha/2}$ por un 3 al calcular los límites de control.

Conforme a lo anterior, con los límites de control

$$u \pm 3\sigma_{\overline{X}}$$
 o $u \pm 3 \frac{\sigma}{\sqrt{n}}$

se puede confiar en que en el 99.73% de los casos el proceso no será declarado "fuera de control", cuando de hecho se encuentra "ba
jo control".

En otras palabras, estos límites de control permiten considerar - que la probabilidad máxima de rechezar la hipótesis .

$$H_0 : \theta = \theta_0$$

cuando debería de ser aceptada (probabilidad de cometer un error de tipo I) es de 0.27%, siendo 8 un valor de calidad fijo del proceso, y 8 el del parámetro correspondiente de la distribución muestral de la estadística bajo consideración.

ELABORACION DE LA CARTA DE CONTROL PARA LOS PROMEDIOS (X)

a. Caso en que se conocen la media μ y la desviación estándar o de la población.

en donde los valores de A se obtienen de la tabla 1, en función de n, el tamaño de la muestra.

Ejemplo: Sea el proceso de elaboración de varillas de acero para las cuales se sabe que el diametro medio es de 2.5 cm, con una desviación estándar de 0.01 cm. Se desea efectuar control del diámetro de las mismas, para lo cual se extraen periódicamente muestras de cinco varillas. Se pide establecer la 15-nea central y los límites de control para una car ta X.

Siendo u = 2.5 cm, $\sigma = 0.01$ y n = 5, se tiene - que:

Lirea central = $\mu=2.5$

Limites de control:

2.5± 3
$$\frac{\sigma}{\sqrt{n}}$$
 = 2.5± $\frac{3(0.01)}{\sqrt{5}}$ = 2.5± 0.0134 \Longrightarrow 2.5134, 2.4866 o, de la tabla I

2.5: Ad = 2.5: 1.342(0.01) = 2.5: 0.01342
$$\implies$$
 2.5:1342, 2.48658

PROBABILIDAD Y ESTADISTICA:

FUNDAMENTOS Y APLICACIONES

SOLUCION DE TAREAS

DR. OCTAVIO RASCON CHAVEZ AGOSTO, 1979

			,	
•				
	•			
		,		
		•		

CENTRO DE EDUCACION CONTINUA D.E.S.F.I., UNAM

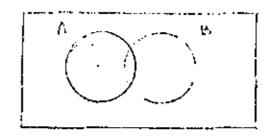
CURSO: PROBABILIDAD Y ESTADÍSTICA. FUNDAMENTOS Y APLICACIONES DR. OCTAVIO A. RASCON CH.

SOLUCION DE TAREA 1

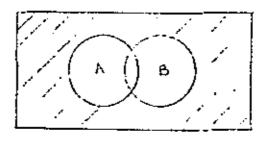
- 1 a AUB = $\{ x: 1 \le x \le 10 \} = B$
 - b) AOB= { x: x es entero y $1 \le x \le 10$ } = A
 - c) AUC= { x: x es entero y $0 \le x \le 10$ }
 - d) ACC= { x: x es entero y $1 \le x \le 6$ }
 - e) AUD= { x: x es entero y $0 \le x \le 10$ } $\cup \{10, 20, 30\}$ = { 0, 1, 2, 3,4,5,6,7,8,9,10,20,30 }
 - f) AND= { 10 }
 - g) BUC= $\{x: 1 \le x \le 10, 0\}$
 - h) $BAC = \{1,2,3,4,5,6\}$
 - i) BUD= { $x: 1 \le x \le 10, 0, 20, 30$ }
 - j) 'BAD= { 10 }
 - k) CUD= { 0 1,2,3,4,5,6,10,20,30 }
 - 1) $COD = \{ 0, \}$
 - m) AUBUC= { $x: 1 \le x \le 10, 0$ }
 - \bar{n}) An(BUC)= {x: x es entero y $1 \le x \le 10$ }
 - 'n)

- \dot{o}) ANBOC = { 1,2,3,4,5,6 }
- p) $CU (AND) = \{0, 1, 2, 3, 4, 5, 6\}$
- q) $(AUB) \cap (CUB) = \{ x: 1 \le x \text{ in } \}$
- 2. a) $\overline{A} = \{4,5,6,7,\ldots,n\}$
 - b) $\overline{B} = \{1, 4, 5, 6, 7, \dots, n-1\}$
 - c) $\overline{A} \cup \overline{B} = \{ \uparrow, 4, 5, 6, 7, 8, \dots, n \}$
 - d) $A \cap B = \{2,3\} = \overline{A \cap B} = \{4,4,5,6,7,8,...,n\}$ o $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- 3.- a) Si $x \in \overline{AUB} => x \notin AUB => x \notin A$ y $x \notin B => x \in \overline{A}$ y $x \in \overline{B} => x \in \overline{A} \cap \overline{B}$ $=> \overline{AUB} \subset \overline{A} \cap \overline{B}$
 - b) Si $x \in \overline{A} \cap \overline{B} \Rightarrow x \in \overline{A} \ y \in \overline{B} \Rightarrow x \notin A \circ x \notin B \Rightarrow x \notin AUB$ de donde $x \in \overline{AUB}$ por lo que $\overline{A} \cap \overline{B} \subset \overline{A\overline{U}B} \ y$ $\overline{AUB} \Rightarrow \overline{A} \cap \overline{B}$
- 4.- a) Sixe ANB => x d ANB => x d A o x d B ·

 -> x ∈ A o x ∈ B => x∈ AUB => ANB C AUB
 - b) Si $x \in \overline{A} \cup \overline{B} \Rightarrow x \in \overline{A} \circ x \in \overline{B} \Rightarrow x \notin A \circ x \notin B$ $\Rightarrow x \notin A \cap B \times E \overline{A \cap B} \Rightarrow \overline{A} \cup \overline{B} \subset \overline{A \cap B}$ $\therefore \overline{A} \cup \overline{B} \Rightarrow \overline{A \cap B}$

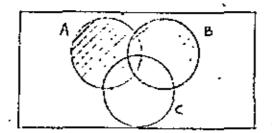


ь)



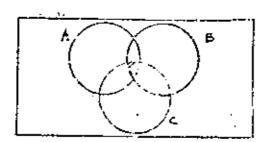
S

c)

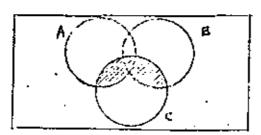


S

d)

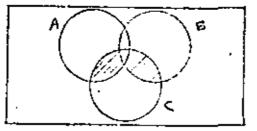


e)



2

f)



CENTRO DE EDUCACION CONTINUA

D.E.S.F.I, UNAM

CURSO: PROBABILIDAD Y ESTADÍSTICA, FUNDAMENTOS Y APLICACIONES

SOLUCION DE TAREA 2

- a) En la revisión del radio i-ésimo el espacio muestral está dado por Ωi= {f, F}, f: funciona, f: no funciona σ En consecuencia el espacio muestral para este experimento es: S = {X}, X, ..., X₅₀: X₁= fo x₁ = F }
 - b) Evento de que todos funcionan bien: $A = \{f_1, f_2, \dots, f_{50}\}$
 - c) Evento de que ninguno funciona correctamente:

$$\mathbf{R} = \{\overline{\mathbf{f}}_1, \, \overline{\mathbf{f}}_2, \, \dots, \, \overline{\mathbf{f}}_{50}\}$$

- d) Evento los dos primeros no funcionan, pero al resto sí: $C = \{\overline{f}_1, \overline{f}_2, f_3, f_4, \dots, f_{50}\}$
- 2.- a) P (c) = $\frac{1}{3}$

a) P $(\overline{A} \cap \overline{B}) = \frac{1}{3}$

b) P (AUB) = $\frac{2}{3}$

e) P $(\overline{A}U\overline{B}) \approx 1$

c) P $(\overline{A}) = \frac{2}{3}/3$

f) P (BUC) = $^{2}/_{3}$

b)
$$P(\overline{B}) = 1 - P(B) = \frac{1}{2}$$

c) P (AOB) = P(A) + P(B) -
$$\hat{P}(AUB) = \frac{1}{2} + \frac{1}{2} - \frac{2}{3} = \frac{1}{3}$$

d)
$$P (\overline{A} \cap \overline{B}) = P (\overline{A} \cup \overline{B}) = -1 - P (A \cap B)$$

= 1 - \frac{1}{1} = \frac{1}{1}.

e) P
$$(\overline{A}U\overline{B}) = P (\overline{A}\overline{A}\overline{B}) = 1 - P (AAB)$$

= $1 - \frac{1}{3} = \frac{2}{3}$

f) P (ANB) = P (A) - P(AB) =
$$\frac{1}{2}$$
 - $\frac{1}{3}$ = $\frac{1}{6}$

g)
$$P(\overline{A} \cap \overline{B}) = P(B) - P(AB) = \frac{1}{6}$$

h)
$$P(\overline{A}UB) = P(\overline{A}) + P(B) - P(\overline{A}\cap B)$$

= $\frac{1}{2} + \frac{1}{2} - \frac{1}{6} = \frac{5}{6}$

$$S = \{(1,1,1), (2,1,1), (1,2,1), (1,1,2), (2,2,1), (2,1,2), (1,2,2), (2,2,2)\}$$

$$P \{ \Sigma | \chi_i = 3 \} = \frac{1}{6}, P \{ \Sigma | \chi_i = 4 \} = \frac{9}{6}, P (\Sigma_i \chi_i = 5) = \frac{3}{6}, P (\Sigma | \chi_i = 6) = \frac{1}{6}$$

5.- a)
$$P(A) = {}^{16}/_{40}$$

d) P (D) =
$$^{1.5}/_{4.0}$$

b) P (B) =
$$\frac{6}{100}$$

e)
$$P(E) = \frac{17}{40}$$

c) P (C) =
$$\frac{7}{\sqrt{60}}$$

f) P (P) =
$$\frac{17}{40} \frac{4}{17} = \frac{4}{17}$$

$$6 = \frac{(\frac{3}{3})}{3} = \frac{9 \cdot 1}{3 \cdot 6^{1}} = 84$$

- 7.~ a) Si se permite repetición de letras y números: $(27)^3 \times 10^5$, si no: $_{27}P_3 \times _{10}P_3$
 - b) $(27)^3 \times 10^3 196 \times 10^3$, o, $\sin petición_2 P_3 \times_{10} P_3 196 \times 10^3$
 - c) (27) 3 x 10 3) x 6^1 o, sin repetición, ($_{27}P_3$ x $_{15}P_3$) x 6^1 .

$$8_{-}$$
 a) $\binom{4}{2}$ $\binom{4}{2}$ $\binom{13}{2}$ $\binom{44}{1}$ / $\binom{52}{5}$

b) 13
$$\times$$
 12 ($\frac{1}{3}$) ($\frac{1}{2}$) / ($\frac{52}{5}$)

c)
$$\frac{1}{4} {\binom{313}{5}} / {\binom{52}{5}}$$

d)
$$\binom{4}{1}^{5}$$
 x 10 / $\binom{52}{5}$

9. - a)
$$\binom{10}{7}$$
, $(\frac{1}{3})^{7}(\frac{2}{3})^{3}$ + $\binom{10}{6}$, $(\frac{1}{3})^{6}(\frac{2}{3})^{2}$ + $\binom{10}{9}$, $(\frac{1}{3})^{9}$, $(\frac{2}{3})^{1}$ + $\binom{10}{10}$, $(\frac{1}{3})^{10}(\frac{2}{3})^{9}$ = 0.20

b)
$$\sum_{X=7}^{10} {10 \choose X} (\frac{1}{4})^{\frac{X}{4}} (\frac{3}{4})^{\frac{10 \times X}{4}} = 0.0035$$

c)
$$\left(\frac{1}{3}\right)^{5} \left(\frac{5}{\Sigma} - \left(\frac{1}{4}\right) - \left(\frac{3}{4}\right)^{5-X} - \right) + \left(\frac{1}{3}\right)^{4} \left(\frac{2}{3}\right)^{5} - \left(\frac{5}{\Sigma} - \left(\frac{5}{\Sigma}\right)\right) \left(\frac{1}{4}\right) - \left(\frac{3}{4}\right)^{5-X} - \right) + \left(\frac{5}{3}\right)^{3} + \left(\frac{1}{3}\right)^{5} + \left(\frac$$

$$\left(\frac{2}{3}\right)^{2} \left(\frac{5}{5}\right)^{2} \left(\frac{5}{3}\right)^{3} \left(\frac{1}{3}\right)^{3} \left(\frac{3}{3}\right)^{5-3} + \left(\frac{5}{2}\right)^{3} \left(\frac{1}{3}\right)^{2} \left(\frac{2}{3}\right)^{5} \left(\frac{1}{3}\right)^{5} = 0.0087$$

10.- a)
$$(\frac{10}{9})$$
 $(\frac{1}{2})^{9}$ $(\frac{1}{2})^{1} = \frac{10}{1024} = 0.011$

b) sí.

CENTRO DE EDUCACION CONTINUA D.E.S.F.I., UNAM

PROBABILIDAD Y ESTADISTICA: FUNDAMENTOS Y APLICACIONES SOLUCION TAREA 3

1.- a)
$$\binom{190}{20}$$
 / $\binom{1000}{26}$

b)
$$\binom{10}{1}$$
 $\binom{990}{15}$ / $\binom{1000}{20}$

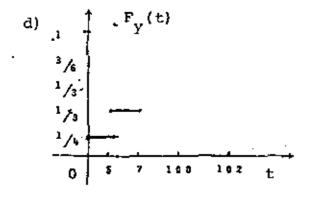
$$2.7 P = 1 \sim (0.9)^{16}$$

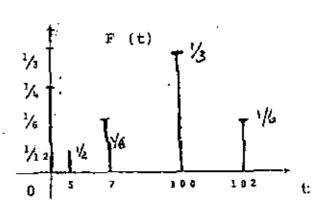
- 3.- a) $^{3}/_{10}$ (le toma 3 minutos de luz roja y 7 de verde)
 - b) 2/10 (le toma 2 minutos de luz roja y 8 de verde)

- 5.- a) $F_y(t) \rightarrow 0$ si t $\rightarrow 0$, $F_y(t) \rightarrow 1$ si t $\rightarrow 1$, $F_y(t)$ es monótona creciente
 - $y = F_y(t)$ es continua por la derecha

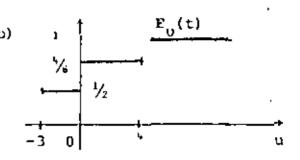
b)
$$\frac{Y}{P_{Y}}$$
 $\frac{0}{(Y)}$ $\frac{5}{1/4}$ $\frac{7}{1/2}$ $\frac{1}{1/6}$ $\frac{1}{1/2}$ $\frac{1}{1/6}$

c) P
$$(Y \le 100) = 5/b$$





$$F_{0}(\frac{\mathbf{t}}{\mathbf{u}}) = \begin{cases} 0 & \text{si } t < -3 \\ \frac{1}{2} & \text{si } -3 \le \mathbf{u} < 0 \\ \frac{1}{6} & \text{si } 0 \le \mathbf{u} < 4 \\ 1 & \text{si } t \ge 4 \end{cases}$$



7.- a)
$$F_{Y}(Y) = \begin{cases} 2_{y} - y^{2} & \text{si} & 0 < y < 1 \\ 0 & \text{en otro caso.} \end{cases} (F_{Y}(Y) = \int_{0}^{Y} 2(1-u) du)$$

8.- a)
$$E\{X\} = \frac{1}{3}$$

c)
$$E\{(x + 10)^2\} = \frac{641}{6}$$

$$e \} \quad \sigma^2 = \frac{1}{1} \epsilon$$

b)
$$\dot{E}\{x^2\} = \frac{1}{6}$$

b)
$$\dot{E}\{x^2\} = \frac{1}{6}$$
 $\cdot \cdot \cdot \cdot d$) $E\{\frac{1}{1-x}\} = 2$

$$f) \quad \sigma_{\mathbf{x}} = \frac{1}{\sqrt{2T} x^3}$$

9.-
$$q_{20} = 0.00178$$
 , $p_{20} = 0.99822$

a)
$$E\{x\}= +1000 \times 0.00178 + 5 \times 0.99822$$

= 4.9911- 1.78 = 3.22

b)
$$E\{x^2\} = 1804.955 \Rightarrow \sigma^2(x) = E\{x^2\} - E^2(x)^2 = 1804.955 - 10.643$$

$$\sigma^2(x) = 1794.64$$

10.-
$$P_D = 0.10 \Rightarrow a$$
 $(0.90)^{16} \Rightarrow 0.3487$, b) $\hat{E}\{X\} = hp = 10 \times 0.10 = 1$

b)
$$E\{X\} = hp = 10 \times 0.10 = 1$$

$$P_{g} = 0.9 \Rightarrow a) / p = 110 \times 0.9 = 99, \quad b) \times p = x \cdot 0.9 = 100$$

$$\Rightarrow x = 100/0.9 = 111.111... \Rightarrow No$$

12.- a)
$$\eta p = 20 \times 0.05 = 1.0$$
 b) $(0.95)^{20} = 0.3585$

b)
$$(0.95)^{20} = 0.3585$$

13.- a)
$$10 \times 0.3585 = 3.505$$

b)
$$(0.3585)^{10} = 3.5 \times 10^{-5}$$

14.- a)
$$\binom{8}{8}$$
 $\binom{5^2}{5}$ / $\binom{150}{5}$

b)
$$\binom{2}{x}$$
 $\binom{5}{5-x}$ / $\binom{15}{5}$

15.- a) P (A) =
$$0.0003 = 8^{\circ}e^{-8}/_{0.1}$$

$$\beta$$
) P (B) = 0.1353 = $2^{\circ}e^{-2}/_{0.1}$

c) P (C) =
$$0.0003 = 8^{\circ}e^{-\theta}/_{0}$$
;

16.- a)
$$\lambda = \eta p = 6$$

b)
$$\sqrt{\lambda} = \sqrt{3}$$

c)
$$P = 0.6065 = (0.5)^{\circ} e^{-0.5}/o1$$

$$17.- (0.999)^5 = 0.995$$

18.- a)
$$e^{-\frac{1}{2}x_{\frac{1}{6}}} = 0.2865$$
, b) 1-e $-\frac{5}{6}x_{\frac{1}{6}}^{1} = 0.5654$, c) 0 ya que t es continua

19.- a)
$$P(x \ge 31) = P(x-30 \ge 31-30) = P(x \ge 0.5) = 0.3085$$

b)
$$P(x \le 32) = P(x-30 \le 32-30) = P(x \le 1) = 0.8413$$

c)
$$P(24 \le x \le 28) = P(-13 \le 8 \le -1) = P(8 \le -1) = P(8 \le -3) = 0.1574$$

20.- a)
$$P\{E \le 1.29\} = 0.9 \Rightarrow x = 129 + 500 = 629$$

b)
$$P(2 < 1.25) = 0.1 \Rightarrow x = 129 + 500 = 371, Q, = 500-67=433$$

c)
$$P(B \le 0) \approx 0.5 \Rightarrow x = 500 = Q_2$$
, $Q_3 = 500 + 67 = 567$

$$P(x < 585) = P(x < 0.85) = 0.80$$

DIRECTORIO DE ASISTENTES AL CURSO: PROBABILIDAD Y ESTADISTICA; FUNDAMENTOS Y APLICACIONES (DEL 12 DE JUNIO AL 2 DE AGOSTO DE 1979)

NOMBRE Y DIRECCION

- ING. JORGE AGUITAR UGARTE

 1a. Cda. Tebas No. 5
 Col. Claveria
 México 16, D.F.
 Tel. 399-05-09 527-32-20
- SR. JESUS ALMAZAN
- MANUEL ALMEIDA VAZQUEZ
 Capilla de los Reyes No. 59
 Col. Azcapozalco
 México 16, D.F.
 Tel. 561-21-39
- 4. ABDON ZENON ALVARADO ALAVEZ
 Av. Jalisco No. 288
 Col. Tacubaya
 México 18, D.F.
 Tel. 516-15-99
- 5. ING. HECTOR GABRIEL AMBRIZ LOPEZ Rubén Dario No. 405 Col. Del Valle San Luis Potosi
- 6. EMILIA ARRIAGA CROTTE
 Tabaquitos No. 38
 Col. Lomas Verdes
 Naucalpan, Edo. de Méx.

EMPRESA Y DIRECCION

DIR. GRAL. AEROPUERTOS S.O.P. Tonalá Esq. Chiapas Col. Roma México 7, D.F. Tel.

BANCOMER, S.A.

COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL NAUCALPAN Av. de los Remedios No. 10 Col. Las Americas Naucalpan, Edo. de Méx.

SECRETARIA DE AGRICULTURA Y RECURSOS HIDRAULICOS Mariano Otero No. 600-A San Luis Potosí Tel. 3-49-12

COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL NAUCALPAN Av. de los Remedios No. 10 Naucalpan, Edo. de Méx.

DIRECTORIO DE ASISTENTES AL CURSO: PROBABILIDAD Y ESTADISTICA: FUNDAMENTOS Y APLICACIONES (DEL 12 DE JUNIO AL 2 DE ACOSTO DE 1979)

NOMBRE Y DIRECCION

- 7. RAUL CARRILLO VALADEZ Manuel González No. 72 Unidad Tlatelolco México 2, D.F. Tel. 583-55-94
- 8. LIC. MA. QURORA CASTILLO BORQUEZ-Arquitectos No. 37 Col. Escandon México 18, D.F. Tel. 516-77-32 ·
- 9. ING. RITO CALZADA SALDAÑA Norte 17 No. 5323 Col. Nueva Vallejo México 14, D.F. Tel. 567-58-81
- 10. ING. PEDRO PABLO CASTELLANOS HDZ. Reforma No. 616-1606 Nte. Col. Tlatelol∞ México 5, D.F. Tel. 529-90-80 Ext. 1606
- 11. ING. CESAR HECTOR GALLARDO LOPEZ Gabino Barreda No. 3-13 Col. Sn. Rafael México 4, D.F. Tel.
- 12. ING. ROBERTO HERCIANDEZ AGUADO Cda. Protasio Tagle No. 36-E Col. San Miguel Capultepec Tel, 516-08-14

EMPRESA Y DIRECCION

ASEGURADORA NACIONAL AGRICULA Y GANADERA, S.A. Benjamin Franklin No. 146 Col. Escandón México 18, D.F. Tel. 515-50-70 Ext. 133

FAC. DE PSICOLOGIA U.N.A.M. Ciudad Universitaria Tel. 548-17-48

INSTITUTO POLITEONICO NACIONAL

SECRETARIA DE AGRICULTURA Y REXURSOS HIDRALILICOS Reforma No. 20-105 Col. Centro México 1, D.F. Tel. 546-46-76

CLA. DE LUZ Y FUERZA DEL CENTRO 🦪 Melchor Ocampo No. 171-40. Pisc México 18, D.F.

DIRECTORIO DE ASISTENTES AL CURSO: PROBABILIDAD Y ESTADISTICA: FUNDAMENTOS Y APLICACIONES (DEL 12 DE JUNIO AL 2 DE AGOSTO DE 1979)

NOMBRE Y DIRECCION

- 13. FRANCISCO HERRERA CARCIA
 Cordilleras No. 17
 Col. U. Iztacalco
 México 8, D.F.
- 14. FELICITAS IBARRA GARCIA
 Pto. Progreso No. 90
 Col. Casa Alemán
 Méxicol4, D.F.
 Tel. 781-97-75
- 15. LIC. EDGARDO A. JIMENEZ ZARCO Fray Angelico No. 45 Col. Mixcoac México 19, D.F. Tel. 598-47-86
- 16. ING. PEDRO ALBERTO LOPEZ GARRIDO Oroya No. 725 Col. Lindavista México 14, D.F. Tel. 586-22-85
- 17. ALEJO MACIAS NEGRETE
 Manz. 161 L. 9-10A
 Col. Las Villas
 Hda. Ojo de Agua
 México, D.F.
- 18. SALVADOR MANRIQUE IEIJA
 Carreteraco No. 32-A-204
 Col. Parque San. Andrés
 México 21, D.F.
 Tel. 689-17-21

EMPRESA Y DIRECCION

CIA. GENERAL DE ELECTRONICA Tezozomoc No. 239 Col. Azcapotzalco México 16, D.F. Tel. 561-74-77

DIR. DE ESTUDIOS DEL TERRITORIO NAL. San Antonio Abad No. 124 Col. Tránsito México, D.F. Tel. 578-62-00

SECRETARIA DE ASENTAMIENTOS HUMANOS Y OBRAS PUBLICAS Lago No. 16 Col. Nativitas México 13, D.F. Tel.

ESCUELA SUPERIOR DE INGENIERIA Y ARQUITECTURA Unidad Profesional Zacatenco Col. Lindavista México 14, D.F. Tel.

BANAMEX, S.A. Isabel La Catolica No. 165-60. Piso México, D.F. Tel. 588-44-00 Ext. 461

DIRECCION DE PLANIFICACION D.D.F. Pino Suarez 15-10. Piso Col. Centro México 1, D.F. Tel. 522-64-38

DIRECTORIO DE ASISTENTES AL CURSO: PROBABILIDAD Y ESTADISTICA: FUNDAMENTOS Y APLICACIONES (DEL 12 DE JUNIO AL 2 DE ASOSTO DE 1979)

NOMBRE Y DIRECCION

- 19. ICNACION MINSALVO ESCAMILIA
 Reforma No. 20-lo. Piso
 Col. Juárez
 México 6, D.F.
 Tel. 592-08-78
- 20. ING. JESUS CCEGUETA NAVARRO
 Viaducto Miguel Alemán No. 63-9
 Col. Buenos Aires
 México 7, D.F.
 Tel.
- 21. ING. JOSE VALENTIN PEREZ ARROYO
 Div. del Norte No. 3390-5
 Col Xotepingo
 México 21, D.F.
 Tel.
- 22. CARLOS RUIZ QUINTANA
 Edif. C-2 Depto. 304
 Centro Urbano Pdte. Juarez
 Col. Roma
 México 7, D.F.
 Tel. 64-86-23
- 23. ING. PEDRO RODARIE MIRELES Guanabana No. 310-2 Col Nva. Sta. María México 16, D.F. Tel. 355-57-38
- 24. ING. FELIPE RAMIREZ COMEZ
 Luis de la Rosa No. 8 Depto. 3
 Col. Const. de la Rep.
 México 14, D.F.
 Tel.

EMRPESA Y DIRECCION

S.A.R.H. Reforma No. 20-10. Piso Col. Juárez México 6, D.F. Tel. 592-08-78

COMISION DEL PLAN NAL. HIDRAULICO Tepic No. 40 Col. Roma México 7, D.F. Tel. 574-17-50

S.A.R.H. Reforma No. 107-ler. Piso Col. Sn. Rafael México 4, D.F. Tel. 566-96-61

S.A.R.H.
Reforma No. 107-ler. Piso
Col. Sn. Rafael
México 4, D.F.
Tel. 566-06-88 Ext. 150

S.A.R.H. Sierra Gorda No. 23 Col. Lomas México 10, D.F. Tel. 5-40-09-43

DIRECTORIO DE ASISTENTES AL CURSO: PROBABILIDAD Y ESTADISTICA: FUNDAMENTOS Y APLICACIONES (DEL 12 DE JUNIO AL 2 DE ACOSTO DE 1979)

NOMBRE Y DIRECCION

ING. FCO. MAYOLO RAZO VILLANUEVA Ahuizotl No. 37 Col. La preciosa México 16, D.F.

Tel. 561-37-61

25.

- 26. LIC. NORMA RIVERA CARRENO Av. del Taller Ret. 46 casa 13 Col. Jardín B. México 9, D.F. Tel. 571-19-51
- 27. GUADALUPE SANCHEZ ACUNA
 Metalurgicos No. 125
 Col. Del Hierro
 México 15, D.F.
 Tel. 567-14-23
- 28. ING. CARLOS P. SAEB GARCIA Praga No. 130 Fracc. Valle Dorado Tlalnepantla, Edo. de Mêx. Tel. 379-02-80
- 29. RICARDO THOMPON RAMIREZ
 Usman 771-302
 Col. Cruz de Atoyac
 México 12, D.F.
 Tel. 559-91-79
- 30. CARLOS VALENCIA CARMONA
 Giotto No. 66-201
 Col. Mixcoac
 Mixico, D.F.
 Tel. 598-50-67
- 31. BERNARDO VILLEGAS ALVAREZ
 P. de la Reforma Nte. No. 616-1606
 Col. Tlatelolco
 México, D.F.
 Tel. 529-90-80

EMPRESA Y DIRECCION

S.A.R.H. Insurgentes Sur No. 670-80. Piso Col. Del Valle México, D.F. Tel. 536-88-40

S. A. R. H.
Sierra Gorda No. 23
Col. Lomas de Chapultepec
México 10. D.F.
Tel. 520-72-46

S. A. R. H.
Paseo de la Reforma No. 69
Col. San Rafael
Máxico 4, D.F.
Tel. 546-19-51

DIR. GRAL. DE CIENCIA Y TECNOLOGIA DEL MAR Bolivar No. 19-ler. Piso Col. Centro México 1, D.F. Tel. 510-04-40

OBRAS PUBLICAS D.D.F. Plaza de la Constitución

• •		
		•
•		
	ŧ.	