IV CURSO INTERNACIONEL DE INGENIERIA SISMICA

DINAMICA ESTRUCTURAL (del 3 al 21 de julio, 1978)

FECHA	HORARIO	TEMA	PROFESOR	ł
3,5y7 de julio	17 a 20 h cada día	In troducción. Vibración de Sistemas Elásticos e Inelásticos de un grado de liber tad	DR. OCTAVIO A. RASCON CHAVEZ	
10 y 12 de julio	17 a 20 h cada día	Vibraciones libres y forzadas de sistemas elásticos lineales de varios grados de liber tad. Métodos de Holtzer y Newmark. Aná- lisis modal.	M. EN C. JORGE PRINCE A.	
14 de julio	17 a 18:30 h	Método ß de Newmark para obtener la res- puesta sísmico de sistemas inelásticos.	DR. OCTAVIO A. RASCON CHAVEZ	
	18:40 a 20:10 h	Respuesta sísmica de sistemas no lineales con varios grados libertad.	DR. LUIS ESTEVA MARABOTO	
17 de julio	17 a 19 h	Vibración de vigas de flexión y vigas de cortante	DR. OCTAVIO A. RASCON CHAVEZ	
	19:10 a 20:10 h	Introducción al método del elemento finito	DR. PORFIRIO BALLESTEROS B.	
19 y 21 de julio	17 a 20 h	Introducción al método del elemento finito	DR. PORFIRIO BALLESTEROS B.	
1				

CLAUSURA

'pmc.

· · ·

DR. PORFIRIO BALLESTEROS BAROCIO JEFE DE LA SECCION MECANICA TEORIA Y APLICADA DIVISION DE ESTUDIOS SUPERIOR ES, FACULTAD DE INGENIERIA, UNAM CIUDAD UNIVERSITARIA MEXICO 20, D.F. TEL: 550. 52, 15 ext. 4498

M. EN C. JORGE PRINCE ALFARO SUBDIRECTOR INSTITUTO DE INGENIERIA, UNAM CIUDAD UNIVERSITARIA MEXICO 20, D.F.

DR. OCTAVIO A. RASCON CHAVEZ INVESTIGADOR INSTITUTO DE INGENIERIA, UNAM CIUDAD UNIVERSITARIA MEXICO 20, D.F. TEL: 550. 52. 15 ext. 4473

(i'

DR. LUIS ESTEVA MARABOTO INVESTIGADOR INSTITUTO DE INGENIERIA, UNAM CIUDAD UNIVERSITARIA MEXICO 20, D.F. TEL: 548. 97. 94

'pmc.

Centro de educación continua división de estudios superiores facultad de ingeniería, unam

IV CURSO INTERNACIONAL DE INGENIERIA SISMICA

DINAMICA ESTRUCTURAL

DR. OCTAVIO A. RASCON CHAVEZ

JULIO, 1978.

DEFINICION.

DR. OCTAVIO A RASCON CH.

GRADOS DE LIBERTAD = NUMERO DE COORDENADAS GENERALIZADAS (DESPLA-ZAMIENTOS O GIROS) QUE SE REQUIEREN PARA DEFINIR LA POSICION DEL SISTEMA EN CUALQUIER INSTANTE.

EJEMPLOS

UN GRADO DE LIBERTAD

DOS GRADOS DE LIBERTAD

DOS GRADOS DE LIBERTAD

Chimenca-77777777777

DOS GRADOS DE LIBERTAD n GRADOS DE LIBERTAD INFINITO NUMERO DE GRADOS DE LIBERTAD

METODOS DE DISCRETIZACION DE SISTEMAS CONTINUOS

1. POR CONCENTRACION DE MASAS

2. EXPRESANDO LA CONFIGURACION DE VIBRACION DE LA ESTRUCTURA COMO UNA SERIE DE FUNCIONES ESPECIFICADAS. POR EJEMPLO, SI ESTAS FUNCIONES SON ARMONICAS:

$$Z(\mathbf{x},t) = \sum_{i=1}^{N} b_i \operatorname{sen} \frac{i\pi x}{L}$$

EN GENERAL, PARA CUALQUIER TIPO DE FUNCION $\psi(\mathbf{x})$:

$$z(x,t) = \sum_{i=1}^{N} z_{i}(t)\psi_{i}(x)$$

3. MEDIANTE ELEMENTOS FINITOS

AL PLANTEAR LAS ECUACIONES DE EQUILIBRIO DE CUERPOS RIGIDOS ES A ME-NUDO NECESARIO CONOCER LOS MOMENTOS DE INERCIA DE MASA. A CONTI-NUACION SE PRESENTAN ALGUNOS CASOS:

RESPUESTA DINAMICA DE SISTEMAS ELASTICOS LINEALES DE UN GRADO DE LI ERTAD CON AMORTIGUAMIENTO VISCOSO

 $X_{O}(t) = DESPLAZAMIENTO DEL SUELO$

EL AMORTIGUAMIENTO VISCOSO ES TAL QUE PRODUCE UNA FUERZA DE RESTAU-RACION PROPORCIONAL A LA VELOCIDAD RELATIVA DE LA MASA RESPECTO AL SUELO.

EL AMORTIGUAMIENTO SE DEBE PRINCIPALMENTE A LA FRICCION INTERNA ENTRE LOS GRANOS O PARTICULAS DEL MATERIAL DE LA ESTRUCTURA, Y A FRICCION EN LAS JUNTAS Y CONEXIONES DE LA MISMA. ES EL ELEMENTO DEL SISTEMA QUE DISCIPA ENERGIA.

2a. LEY DE NEWTON:

"LA RAPIDEZ DE CAMBIO DEL MOMENTUM DE CUALQUIER MASA, m, ES IGUAL A LA FUERZA QUE ACTUA SOBRE ELLA"

$$p(t) = \frac{d}{dt} (m\frac{dx}{dt}) = \frac{d}{dt} (mx)$$

p(t) = FUERZA ACTUANTE

x = DESPLAZAMIENTO

t = TIEMPO

SI m ES CONSTANTE: p(t) = mx

PRINCIPIO DE D'ALAMEERT

SI LA 2a. LEY DE NEWTON LA ESCRIBIMOS COMO

p(t) - mx = 0

AL SEGUNDO TERMINO DE LA ECUACION SE LE CONOCE COMO FUERZA DE INERCIA; EL CONCEPTO DE QUE UNA MASA DESARROLLA UNA FUERZA DE INERCIA PROPOR-CIONAL A SU ACELERACION Y QUE SE OPONE A ELLA SE CONOCE COMO PRIN-CIPIO DE D'ALAMBERT, Y PERMITE QUE LAS ECUACIONES DE MOVIMIENTO SE EXPRESEN COMO ECUACIONES DE EQUILIBRIO DINAMICO.

ECUACION DE EQUILIBRIO

Xo(t)

DIAGRAMA DE CUERPO LIBRE

EQUILIBRIO:
$$f_e + f_a + f_i = p(t)$$
 (1)

PARA UN SISTEMA ELASTICO: $f_e = K(x - x_o) = ky$ PARA AMORTIGUAMIENTO VISCOSO: $f_a = c(x - \dot{x}_o) = C\dot{y}$ (2) POR EL PRINCIPIO DE D'ALAMBERT: $f_i = m\dot{x} = m(\dot{y} + \dot{x}_o)$ SUSTITUYENDO LAS ECS. 2 EN LA EC. 1 SE OBTIENE: $m(y + x_0) + cy + ky = p(t)$

DE DONDE

$$My + cy + Ky = p(t) - Mx_{o}$$
 (3)

DIVIDIENDO ENTRE M AMBOS MIEMBROS DE LA EC.3:

$$\dot{y} + \frac{C}{M}\dot{y} + \frac{K}{M}y = \frac{p(t)}{M} - \dot{x}_{o}$$

SI $\frac{C}{M} = 2h$, y $\frac{K}{M} = \omega^2$, DONDE ω = FRECUENCIA CIRCULAR NATURAL, EN RAD/SEG:

$$y' + 2h y + \omega^2 y = \frac{p(t)}{M} - x_0$$
(4)

CUANDO SE TIENEN EXCITACIONES EN EL SISTEMA SE TRATA DE UN PROBLEMA DE VIBRACIONES FORZADAS; EN CASO CONTRARIO EL PROBLEMA ES DE VIBRA-CIONES LIBRES.

VIBRACIONES LIBRES

EN ESTE CASO LA ECUACION DIFERENCIAL DE EQUILIBRIO RESULTA SER

$$\frac{1}{y} + 2h y + \omega^2 y = 0$$

CUYA SOLUCION ES

$$y(t) = e^{-ht} (C_1 \operatorname{sen} \omega' t + C_2 \cos \omega' t)$$
 (5)

DONDE $\omega' = \sqrt{\omega^2 - h^2}$ = FRECUENCIA CIRCULAR NATURAL AMORTIGUADA Y C₁ Y C₂ SON CONSTANTES QUE DEPENDEN DE LAS CONDICIONES INICIALES (EN t=0) DE DESPLAZAMIENTO Y VELOCIDAD QUE TENGA LA MASA DEL SIS-TEMA.

ESTAS RESULTAN SER

$$C_1 = \frac{\dot{y}(0) + hy(0)}{\omega} Y C_2 = y(0)$$
 (6)

LA EC (5) SE PUEDE ESCRIBIR TAMBIEN COMO:

$$y(t) = Ae^{-ht} \cos (\omega't - \theta)$$
DONDE $A = \sqrt{C_1^2 + C_2^2}$ $Y = \theta = tan^{-1} \frac{C_1}{C_2} = ANGULO DE FASE$
(7)

 $f' = \frac{1}{T'}$ = FRECUENCIA NATURAL AMORTIGUADA, cps

VEAMOS EL CASO ESPECIAL DE LA EC. (5) EN QUE $h \rightarrow \omega$. EN TAL CASO, $\omega' = \sqrt{\omega^2 - h^2}, \cos \omega' \pm 1$ Y sen $\omega' \pm \omega' \pm$, CON LO CUAL LA EC. (5) SE REDUCE A

$$y(t) = e^{-\omega t} \{ [(y(0) + hy(0))/\omega'] (\omega't) + y(0) \}$$
$$= e^{-\omega t} [y(0)t + (1 + \omega t)y(0)]$$

Y OBVIAMENTE NO REPRESENTA UN MOVIMIENTO OSCILATORIO, POR LO CUAL SI $h = \omega$ SE DICE QUE SE TIENE AMORTIGUAMIENTO CRITICO. EN TAL CASO:

$$h_{cr} = \omega = \frac{C_{cr}}{2M} = \sqrt{\frac{K}{M}}$$

DE DONDE $C_{cr} = 2\sqrt{KM^{2}}$. (8) A LA RELACION $\zeta = C/C_{cr}$ SE LE LLAMA FRACCION DEL AMORTIGUAMIENTO CRITICO.

DESPEJANDO A M DE LA EC. (8) Y SUSTITUYENDOLA EN LA EC. h = C/(2M)SE OBTIENE:

$$h = \frac{C}{\frac{C^2}{2 \frac{C^2}{4K}}} = \frac{C}{C_{cr}} \frac{2K}{2\sqrt{KM}} = \zeta \sqrt{\frac{K}{M}} = \zeta \omega$$

ADEMAS:

$$\omega' = \sqrt{\omega^2 - h^2} = \sqrt{\omega^2 - \omega^2 \zeta^2} = \omega \sqrt{1 - \zeta^2}$$

$$\omega' = \omega \sqrt{1 - \zeta^2}$$
(9)

LOS VALORES USUALES EN ESTRUCTURAS QUE ASUME ζ VARIAN ENTRE 2 Y 5%. EN ESTE INTERVALO ω ' Y ω SON CASI IGUALES; VEAMOS, POR EJEMPLO, EL CASO EN QUE $\zeta = 0.1$

$$\omega' = \omega \sqrt{1 - 0.01} = 0.995 \omega$$

OTRA FORMA DE MEDIR EL GRADO DE AMORTIGUAMIENTO QUE TIENE UNA ES-TRUCTURA ES MEDIANTE EL <u>DECREMENTO</u> LOGARITMICO, EL CUAL SE DEFINE COMO EL LOGARITMO DEL COCIENTE DE DOS AMPLITUDES CONSECUTIVAS

$$L = \ln \frac{y(t)}{y(t + T')} = \ln \frac{Ae^{-ht}\cos(\omega't-\theta)}{Ae^{-h(t+T')}\cos[\omega'(t+T')-\theta]}$$

$$= \ln\{\frac{e^{-ht}}{e^{-h(t+T')}} \frac{\cos(\omega't - \theta)}{\cos(\omega't + \omega'T' - \theta)}\}$$

$$= \ln\{\frac{e^{-ht}}{e^{-ht}} \frac{\cos(\omega't - \theta)}{\cos(\omega't - \theta + 2\pi)}\}$$

$$= \ln e^{+hT'} = hT' = \zeta \omega T' = \zeta \omega \frac{2\pi}{\omega \sqrt{1-\zeta^2}}$$

$$L = \frac{2\pi\zeta}{\sqrt{1-\zeta^2}}$$
(10)

SI ζ ES PEQUEÑO,

$$L \doteq 2\pi\zeta$$
(11)

ECUACION DE MOVIMIENTO GENERALIZADA.

HAY PROBLEMAS QUE APARENTEMENTE CORRESPONDE A VIBRACIONES DE SIS-TEMAS DE VARIOS GRADOS DE LIBERTAD PERO QUE EN REALIDAD SON DE UN GRADO SOLAMENTE.

TOMANDO COMO COORDENADA GENERALIZADA A Z(t):

 $f_{R1} = k_1(EE') = k_1 \frac{3}{4} Z(t) ; f_{R2} = k_2(GG') = K_2 \frac{1}{3} Z(t)$

$$f_{D1} = C_1 (\frac{d}{dt}DD') = C_1 \frac{1}{4} \dot{z}(t); f_{D2} = C_2 \dot{z}(t)$$

$$f_{II} = m_1 \frac{1}{2} \vec{z}(t) = \vec{m}L \frac{1}{2} \vec{z}(t) = 2\vec{m}\vec{z}$$
 (t)

 $f_{12} = m_2 \frac{2}{3} \ddot{z}$ (t)

$$M = I_{0} \frac{1}{4a} \ddot{Z}(t) = \frac{\bar{m}L}{4a} \frac{L^{2}}{3} \ddot{Z}(t) = \frac{4}{3} a^{2} \bar{m}Z(t)$$
$$P_{1} = 8\bar{p}a\zeta(t)$$

LA ECUACION DE MOVIMIENTO DEL SISTEMA SE PUEDE ESTABLECER IGUALANDO A CERO EL TRABAJO VIRTUAL REALIZADO POR TODAS LAS FUERZAS AL DARLE AL SISTEMA UN DESPLAZAMIENTO VIRTUAL EN EL PUNTO B IGUAL A &Z. EN TAL CASO

$$\delta W = -k_1 \frac{3}{4} Z(t) \left(\frac{3}{4} \delta Z\right) - K_2 \frac{1}{3} Z(t) \left(\frac{1}{3} \delta Z\right) - C_1 \frac{Z(t)}{4} \left(\frac{\delta Z}{4}\right) - C_2 Z(t) \left(\delta Z\right) - 2a\overline{m} Z(t) \left(\frac{\delta Z}{2}\right) - m_2 \frac{2Z(t)}{3} \left(\frac{2}{3}\delta Z\right) - \frac{4}{3} a^2 \overline{m} Z(t) \left(\frac{\delta Z}{4a}\right) + 8\overline{p}a\zeta(t) \left(\frac{2}{3}\delta Z\right) = 0$$

SIMPLIFICANDO SE OBTIENE

$$\left[\left(a\bar{m} + \frac{a\bar{m}}{3} + \frac{4m_2}{9}\right)\ddot{z}(t) + \left(\frac{c_1}{16} + c_2\right)\dot{z}(t) + \left(\frac{9}{16}k_1 + \frac{k_2}{9}\right)z(t) - \frac{16}{3}p\bar{a}\zeta(t)\right]\delta z = 0$$
(A)

COMO EL DESPLAZAMIENTO VIRTUAL &Z NO ES CERO, SE DEBE CUMPLIR QUE EL TERMINO ENTRE PARENTESIS ES CERO. EN TAL CASO:

. .

$$\widetilde{m}$$
 $Z(t)$ + \widetilde{C} $Z(t)$ + \widetilde{k} $Z(t)$ = $\widetilde{p}(t)$

EN DONDE

•

•

$$\tilde{m} = \frac{4}{3} \quad \bar{m}a + \frac{4}{9} \quad m_2 \quad ; \quad \tilde{c} = \frac{C_1}{16} + C_2$$

 $\tilde{k} = \frac{9}{16} \quad k_1 + \frac{k_2}{9} \quad ; \quad \tilde{p}(t) = \frac{16}{3} \quad \tilde{p}a\zeta(t)$

ESTOS PARAMETROS SE DENOMINAN MASA, AMORTIGUAMIENTO, RIGIDEZ Y FUERZA GENERALIZADAS, RESPECTIVAMENTE.

CONSIDEREMOS AHORA EL CASO DE LA FUERZA NORMAL N SOLAMENTE:

EL TRABAJO VIRTUAL ES:

$$\delta W = N \delta e = \frac{7}{12} \frac{NZ}{a} (\delta Z)$$

COMO EL SISTEMA ES LINEAL SE PUEDE SUMAR ESTE TRABAJO VIRTUAL AL DE LA ECUACION (A), CON LO CUAL LA RIGIDEZ GENERALIZADA SE MODIFICA, QUEDANDO EN LA FORMA:

$$\tilde{k} = \frac{9}{16} k_1 + \frac{1}{9} k_2 - \frac{7}{12} \frac{N}{a}$$

DE ESTA RIGIDEZ SE PUEDE SACAR, DE PASO, LA CARGA CRITICA DE PANDEO HACIENDO $\tilde{k} = 0$:

$$N_{cr} = \left(\frac{27}{28}k_1 + \frac{4}{21}k_2\right)a$$

DETERMINACION EXPERIMENTAL DE Ç EN ESTRUCTURAS REALES O EN MODELOS SI SE REALIZA UN EXPERIMENTO EN EL CUAL SE SACA A LA ESTRUCTURA DE SU POSICION SE SACA A LA ESTRUCTURA DE SU POSICION DE EQUILIBRIO ESTATICO Y SE DEJA VIBRANDO LIBREMENTE, EL REGISTRO DE LAS ACELERA-CIONES QUE SE REGISTREN EN LA MASA TENDRA LA MISMA FORMA QUE LA GRA-FICA DE LA EC.7.

SI DE DICHO REGISTRO SE MIDEN $\dot{y}(t + T')y \dot{y}(t)$ SE PUEDE OBTENER L Y, DE LA EC. (11), DESPEJAR A ζ

$$\zeta = \frac{L}{2\pi}$$

PRINCIPIO DE HAMILTON

$$\int_{t_1}^{t_2} \delta(T-V) dt + \int_{nc}^{t_2} \delta W_{nc} dt = 0$$

DONDE

- T = ENERGIA CINETICA TOTAL
- V= ENERGIA POTENCIAL TOTAL, INCLUYENDO ENERGIA DE DEFOR-MACION Y ENERGIA POTENCIAL DE LAS FUERZAS CONSERVATIVAS
- W_{nc} = TRABAJO REALIZADO POR LAS FUERZAS NO CONSERVATIVAS (TALES COMO LAS DE AMORTIGUAMIENTO)
 - δ = VARIACION TOMADA DURANTE EL INTERVALO DE TIEMPO DE t₁ A t₂

EN ESTE PRINCIPIO SE ASUME QUE LA VARIACION, δx , DEL DESPLAZAMIENTO EN LOS INSTANTES t₁ Y t₂ ES NULO.

EJEMPLO

$$\mathbf{M} = \mathbf{p}(t) \quad \mathbf{T} = \frac{1}{2} \quad \mathbf{mx}^2 \quad ; \quad \mathbf{V} = \frac{1}{2} \quad \mathbf{kx}^2 \quad (\text{ES LA ENERGIA DE DEFOR-MACION, UNICAMENTE})$$

 $\delta W_{nc} = p(t) \delta x - c x \delta x$

$$\int_{t_{1}}^{t_{2}} \delta(\frac{1}{2} mx^{2} - \frac{1}{2}kx^{2})dt + \int_{t_{1}}^{t_{2}} (p(t)\delta x - cx\delta x)dt$$

$$\int_{t_1}^{t_2} (mx \, \delta x \, - \, kx \, \delta x) \, dt \, + \, \int_{t_1}^{t_2} (p(t) \, - \, cx) \, \delta x \, dt \, = \, 0$$

$$\int_{t_1}^{t_2} \left[mx \, \delta x - (cx + kx - p(t)) \, \delta x \right] dt = 0$$

INTEGRANDO POR PARTES EL PRIMER TERMINO DE ESTA INTEGRAL;

$$\int_{t_1}^{t_2} \frac{1}{mx \, \delta x} dt = \frac{1}{mx \, \delta x} \int_{t_1}^{t_2} - \int_{t_1}^{t_2} \frac{1}{mx \, \delta x} dt$$
$$= \int_{t_1}^{t_2} \frac{1}{mx \, \delta x} dt$$

$$\int_{t_{1}}^{t_{2}} [-mx - cx - kx + p(t)] \delta x dt = 0$$

PUESTO QUE δx ES ARBITRARIA, LA ECUACION ANTERIOR SE SATISFACE EN GENERAL SOLO SI

mx + cx + kx - p(t) = 0

EJEMPLO

POR LO QUE

ENERGIA POTENCIAL DEBIDA A LA FUERZA NORMAL: $V_{\rm N} = -\frac{\rm N}{2} \int^{\rm L} \left[v'(x,t) \right]^2 dt$

EN ESTAS ECUACIONES:
$$\dot{v} = dv/dt$$
; $v' = dv/dx$
 $v''= d^2v/dx^2$

PUESTO QUE NO HAY FUERZAS DINAMICAS EXTERNAS, Y SI CONSIDERAMOS AMOR-TIGUAMIENTO NULO, ENTONCES $\delta W_{nc} = 0$, POR LO QUE

$$\int_{t_{1}}^{t_{2}} \delta(T-V) dt = 0 \qquad o$$

$$\int_{t_{1}}^{t_{2}} \left[\int_{0}^{L} m(x) \dot{v}_{t}(x,t) \dot{\delta v}_{t} dx - \int_{0}^{L} EI(x) v''(x,t) \dot{\delta v''} dx + N \int_{0}^{L} v'(x,t) \dot{\delta v'} dx \right] = 0$$

TOMANDO EN CUENTA QUE

$$\dot{\mathbf{v}}_{t} = \dot{\mathbf{v}} + \dot{\mathbf{v}}_{o}, \ \mathbf{v}'' = \psi'' \mathbf{Z}, \ \mathbf{v}' = \psi' \mathbf{Z} \quad \mathbf{v} = \psi \mathbf{Z}$$
$$\dot{\delta \mathbf{v}}_{t} = \delta \mathbf{v}, \ \delta \mathbf{v}'' = \psi'' \delta \mathbf{Z}, \ \delta \mathbf{v}' = \psi' \delta \mathbf{z}, \ \delta \mathbf{v} = \psi \delta \mathbf{z}$$

SE OBTIENE

$$\int_{t_{1}}^{t_{2}} \left[z \delta z \int_{0}^{L} m(x) \psi^{2} \delta x + \delta z v_{0}(t) \int_{0}^{L} m(x) \psi \delta x - t_{1} \int_{0}^{L} EI(x) (\psi'')^{2} \delta x + Nz \delta z \int_{0}^{L} (\psi'')^{2} \delta x | dt = 0$$

INTEGRANDO POR PARTES LAS PRIMERAS DOS INTEGRALES Y HACIENDO

$$\tilde{\mathbf{m}} = \int_{\mathbf{O}}^{\mathbf{L}} \mathbf{m}(\mathbf{x}) \psi^2 d\mathbf{x} = MASA GENERALIZADA$$

 $\tilde{K} = \int_{0}^{L} EI(x) (\psi'')^{2} dx = RIGIDEZ GENERALIZADA SIN CONSIDERAR$ FUERZA NORMAL $<math display="block">\tilde{K} = \int_{0}^{L} EI(x) (\psi'')^{2} dx - N \int_{0}^{L} (\psi')^{2} dx = RIGIDEZ GENERALIZADA CON N$ $\tilde{p}(t) = FUERZA GENERALIZADA EFECTIVA = -\tilde{v}_{0} \int_{0}^{L} m(x) \psi \delta x$

SE OBTIENE LA ECUACION

$$\int_{t_1}^{t_2} [\tilde{m}z + \tilde{k}z - \tilde{p}(t)] \delta z dt = 0$$

POR LO QUE

$$\tilde{mz} + \tilde{kz} = \tilde{p}(t)$$

 $\frac{\text{CASO PARTICULAR}}{\text{SEA}} = 1 - \cos\frac{\pi x}{2L} \text{ ; EN TAL CASO:}$ $\tilde{\mathbf{m}} = \int_{0}^{L} \bar{\mathbf{m}}(\psi)^{2} d\mathbf{x} = \bar{\mathbf{m}} \int_{0}^{L} (1 - \cos\frac{\pi x}{2L})^{2} d\mathbf{x} = 0.228 \ \bar{\mathbf{m}}L$ $\frac{\text{SI N=0:}}{\tilde{\mathbf{k}}} = \int_{0}^{L} \text{EI}(\psi^{"})^{2} d\mathbf{x} = \text{EI} \int_{0}^{L} (\frac{\pi^{2}}{4L^{2}} \cos\frac{\pi x}{2L})^{2} d\mathbf{x} = \frac{\pi^{4}}{32} \frac{\text{EI}}{L^{3}}$ $\tilde{\mathbf{p}}(\mathbf{t}) = -\ddot{\mathbf{v}}_{0}(\mathbf{t}) \int_{0}^{L} \bar{\mathbf{m}}\psi \ d\mathbf{x} = -\bar{\mathbf{m}}\ddot{\mathbf{v}}_{0}(\mathbf{t}) \int_{0}^{L} (1 - \cos\frac{\pi x}{2L}) \ d\mathbf{x} = -0.364 \ \bar{\mathbf{m}}L\ddot{\mathbf{v}}_{0}(\mathbf{t})$ $\frac{\text{SI N\neq0:}}{\tilde{\mathbf{SI N\neq0}:}}$

$$\overline{\tilde{k}} = \frac{\pi^4}{32} \frac{EI}{L^3} - N \int_0^L (\psi')^2 dx = N \int_0^L (\frac{\pi}{2L} \sin \frac{\pi x}{2L})^2 dx$$

$$\tilde{k} = \frac{\pi^4}{32} \frac{EI}{L^3} - \frac{N\pi^2}{8L}$$
PARA CARGA DE PANDEO: $\frac{\pi^4}{32} \frac{EI}{L^3} - \frac{N_{cr}\pi^2}{8L} = 0 \Rightarrow N_{cr} = \frac{\pi^2}{4} \frac{EI}{L^2}$
CON LO QUE $\tilde{K} = \frac{\pi^4 EI}{32L^3} (1 - \frac{N}{N_{cr}})$ Y LA ECUACION DE EQUILIBRIO

QUEDA EN LA FORMA:

$$0.228 \ \bar{m}Lz(t) + \frac{M^{4}EI}{32L^{3}} (1 - \frac{N}{N_{cr}}) z(t) = 0.364 \bar{m}Lv_{o}(t)$$

LA FRECUENCIA CIRCULAR NATURAL CORRESPONDIENTE ES

.

.

$$\omega = \sqrt{\frac{\pi^4 \text{EI}(1 - \frac{N}{N_{cr}})}{\frac{7.296 \text{ mL}^4}}}$$

΄,

EJEMPLO

A UNA ESTRUCTURA DE UN PISO SE LE APLICA UNA CARGA HORIZONTAL DE 20 TON EN SU MASA, OBSERVANDOSE UN DESPLAZAMIENTO ESTATICO DE 0.2 CM. AL SOLTAR SUBITAMENTE LA FUERZA SE REGISTRA UN PERIODO DE OSCILACION DE 0.2 SEG, Y QUE LA AMPLITUD EN EL SEGUNDO CICLO ES DE 0.14 CM.

CALCULAR ω , ω ',f',L y ζ

1. DE T'
$$\doteq \frac{2\pi}{\omega} = \frac{\pi^2}{\sqrt{\frac{K}{M}}} = \frac{2\pi\sqrt{W}}{\sqrt{Kg}} = 0.2$$
 Y $K = \frac{2.0}{0.2} = 100 \frac{\text{TON}}{\text{CM}}$

SE OBTIENE

$$W = T'^2 Kg/4\pi^2 = (0.2)^2 x 100 x 981/4\pi^2 = \frac{0.04 x 100 x 981}{4}$$

W = 99.4 TON

2.
$$\omega' = \frac{2\pi}{T'} = \frac{2\pi}{0.2} = 10\pi \frac{\text{RAD}}{\text{SEG}}$$
; $f' = \frac{1}{T'} = \frac{1}{0.2} = 5 \text{ cps}$

3.
$$L = ln \frac{0.2}{0.14} = ln 1.43 = 0.357$$

$$\zeta = \frac{L}{2\pi} = \frac{0.357}{2\pi} = 0.0568$$
 $\zeta = 5.68$ %

$$C = \zeta C_{cr} = \zeta 2\sqrt{KM} = 0.1132 \sqrt{100 \times 99.4/981}$$

$$=$$
 1.132 x 0.318 = 0.36 TON SEG/CM

EJEMPLO

CALCULAR LA RESPUESTA DE UN SISTEMA DE UN GRADO DE LIBERTAD SUJETO A LA SIGUIENTE EXCITACION: $\beta \in \Lambda$

$$CON \quad C = 0$$

$$mx + kx = p_0$$

$$x = C_1 \text{ senwt} + C_2 \cos \omega t + p_0/k$$

$$SI \quad EN \quad t = 0, \quad x = 0 \quad Y \quad x = 0:$$

$$C_2 = -F_0/k \quad Y \quad C_1 = 0$$

$$B = FACTOR \quad DE \quad AMPLIFICACION \quad DINAMICA = \frac{x}{(\frac{p_0}{k})} = (1 - \cos \omega t)$$

 $B_{MAX} = 2$, EN t = T/2, 3T/2...

AHORA, SI LA EXCITACION ES DE DURACION t_o :

SI
$$t > t_0$$
, $x = A \cos \omega t' + B \sin \omega t'$, CON $t' = t - t_0$

1

EN t' = 0 (t = t_0), SE DEBEN CUMPLIR LAS CONDICIONES INICIALES AN-TERIORES, LO CUAL CONDUCE A

$$A = \frac{P_0}{k} (1 - \cos\omega t_0) \quad Y \qquad B = \frac{P_0}{k} \sin\omega t_0$$
POR LO QUE $x = \frac{P_0}{k} (1 - \cos\omega t_0) \cos\omega t' + \frac{P_0}{k} \sin\omega t_0 \sin\omega t'$

$$= \frac{P_0}{k} \sqrt{(1 - \cos\omega t_0)^2} + \sin^2 \omega t_0 \sin(\omega t' - \theta)$$

$$x = \frac{P_0}{k} \sqrt{2(1 - \cos t_0)} \sin(\omega t' - \theta)$$

$$B = FACTOR DE AMPLIFICACION$$

$$B_{MAX} = 2 \sin\frac{\omega t_0}{2} = 2 \sin(\pi\frac{t_0}{T})$$
CUANDO $\frac{\pi t_0}{T} = \frac{\pi}{2}$, $B_{MAX} = 2$
FUMAX A
2.4
EL MAXIMO OCURRE DURANTE LA EXCITACION
EL MAXIMO OCURRE DURANTE LA EXCITACION
EXCITACION

١

SI t_o/T ES MUY PEQUEÑO, $sen \frac{\pi t_o}{T} = \pi t_o/T$

$$Y x_{MAX} = \frac{2p_o}{k} \frac{\pi t_o}{T} = \frac{2p_o}{mk} \frac{\omega t_o}{2} = \frac{p_o t_o}{m\omega} = \frac{I}{m\omega}$$

EN DONDE i = $p_0 t_0$ = AREA BAJO LA EXCITACION

<u>EJEMPLO</u>: EXCITACION DADA POR UN IMPULSO-SEA UN IMPULSO APLICADO DURANTE UN INTERVALO DE TIEMPO Δt MUY PEQUEÑO, TAL QUE $\Delta t/T \ll 1$:

POR EL PRINCIPIO IMPULSO - MOMENTO SE TIENE QUE

$$\int_{0}^{\Delta t} \frac{dt}{dt} = mx$$

EN DONDE x ES LA VELOCIDAD QUE EL IMPULSO LE IMPRIME A LA MASA DEL SISTEMA. DESPUES DE Δt EL SISTEMA QUEDA VIBRANDO LIBREMENTE CON VELOCIDAD INICIAL $\dot{x}(0) = \frac{I}{m}$, MIDIENDO EL TIEMPO EN LA ESCALA DE t', Y CON DESPLAZAMIENTO INICIAL QUE PUEDE CONSIDERARSE NULO, DEBIDO A QUE EN EL CORTO INTERVALO DE TIEMPO Δt LA MASA ADQUIERE UN DES-PLAZAMIENTO DE MAGNITUD DESPRECIABLE. EN TAL CASO LA RESPUESTA RESULTA SER

$$x(t') = \frac{x(o)}{\omega} \operatorname{sen}\omega t' = \frac{I}{m\omega} \operatorname{sen}\omega t'$$

SI EL SISTEMA TIENE AMORTIGUAMIENTO,

$$x(t') = \frac{I}{m\omega} e^{-\zeta \omega t'} sen \omega' t'$$

A. FUERZA EXTERNA

VEAMOS PRIMERO EL CASO EN QUE EXISTE p(t) Y QUE $x_0(t) = 0$, SIENDO p(t) ARBITRARIA

PUESTO QUE d $\tau << \tau$, la fuerza aplicada en t= τ producira un incremento instantaneo en la velocidad de la masa igual a

$$y = \frac{p(\tau)d\tau}{M}$$

Y UN INCREMENTO INSTANTANEO NULO EN EL DESPLAZAMIENTO, ES DECIR, y=0. TOMANDO ESTOS INCREMENTOS COMO CONDICIONES INICIALES EN $t=^{-1}$, LA EC.5 DA COMO RESULTADO

$$y(t) = \frac{p(\tau)d\tau}{M\omega'} \quad \text{sen } \omega'(t-\tau) e^{-h(t-\tau)} ; t \ge \tau$$

PUESTO QUE EL SISTEMA ES LINEAL ES POSIBLE SUPERPONER LOS EFECTOS OCASIONADOS POR LOS IMPULSOS APLICADOS EN CADA τ QUE HAYAN OCURRIDO ANTES DEL INSTANTE t DE INTERES; ES DECIR,

$$y(t) = \frac{1}{M\omega'} \int_{-\infty}^{t} p(\tau) e^{-h(t-\tau)} \sin\omega'(t-\tau) d\tau$$
(12)

LA FUNCION $\frac{1}{M\omega'} e^{-h(t-\tau)} sen\omega'(t-\tau)$, que es la respuesta a un impulso instantaneo unitario de fuerza, se le conoce como *Funcion de transferencia del* SISTEMA.

LA SOLUCION DADA EN LA EC. (12) SE DENOMINA INTEGRAL DE DUHAMEL. ESTA CONSTITUYE LA SOLUCION PARTICULAR DE LA ECUACION DIFERENCIAL DE EQUI-LIBRIO; LA SOLUCION GENERAL ES:

$$y(t) = Ae^{-ht} \cos(\omega't-\theta) + \frac{1}{M\omega'} \int_{-\infty}^{t} p(\tau)e^{-h(t-\tau)} \sin\omega'(t-\tau)d\tau$$

EN DONDE A y θ DEPENDEN DE LAS CONDICIONES INICIALES DE DESPLAZAMIENTO Y VELOCIDAD, y(O) Y y(O), RESPECTIVAMENTE. EN GENERAL LA PARTE DE LA RESPUESTA DADA POR LA SOLUCION PARTICULAR ES LA MAS IMPORTANTE, YA QUE LA OTRA PARTE SE AMORTIGUA RAPIDAMENTE.

B. MOVIMIENTO DEL SUELO

PARA ESCRIBIR LA SOLUCION PARTICULAR DE LA ECUACION DIFERENCIAL DE EQUILIBRIO PARA EL CASO DE VIBRACION FORZADA POR MOVIMIENTO DE LA BASE DE LA ESTRUCTURA, BASTA CAMBIAR $p(\tau)/M$ DE LA EC. (12) POR $-\dot{x}_{o}$, YA QUE EN DICHA ECUACION APARECE EN EL MIEMBRO DERECHO p(t)/M CUANDO LA EXCITACION ES P(t) Y APARECE $-\ddot{x}_{o}$ CUANDO LA EXCITACION ES POR MOVIMIENTO DEL SUELO. EN ESTE CASO LA SOLUCION PARTICULAR ES, ENTONCES

$$y(t) = \frac{-1}{\omega'} \int_{-\infty}^{t} x_{o}(\tau) e^{-h(t-\tau)} \operatorname{sen}_{\omega'} (t-\tau) d\tau \qquad (14)$$

EJEMPLO

CALCULAR LA RESPUESTA DE UN SISTEMA DE UN GRADO DE LIBERTAD CON AMOR-TIGUAMIENTO NULO, CUANDO LA EXCITACION ES LA SIGUIENTE:

CONSIDERESE QUE y(0)=0 Y y(0)=0. PUESTO QUE LAS CONDICIONES INICIALES SON NULAS SE TIENE QUE A=0 (UTILIZANDO LA EC. (13) Y LA SOLUCION PAR-TICULAR QUE SIGUE, EC. (A)):

$$y(t) = \frac{-1}{\omega} \int_{-\infty}^{t} a \operatorname{sen}_{\omega} (t-\tau) d\tau = \frac{-a}{\omega} \int_{0}^{t} \operatorname{sen}_{\omega} (t-\tau) d\tau$$
$$= \frac{-a}{\omega^{2}} (1 - \cos \omega t) \qquad \text{SI} \quad 0 \le t \le t_{0}$$
(A)

PARA FINES DE DISEÑO ESTRUCTURAL ES IMPORTANTE CONOCER LA RESPUESTA MAXIMA; ESTA OCURRE CUANDO $\cos\omega t = -1$, O SEA, CUANDO

$$\omega t = \pi$$
 O $t = \frac{\pi}{\omega} = \frac{\pi}{\frac{2\pi}{T}} = \frac{T}{2}$

Y VALE

MAX { | y(t) | } =
$$\frac{2a}{\omega^2} = \frac{a}{2\pi^2} T^2$$
, SI $0 \le \frac{T}{2} \le t_0$ $0 \le T \le 2t_0$

PATA $t>t_{0}$, O SEA, PARA $T/2>t_{0}$ ES NECESARIO OBTENER LA RESPUESTA EN VI-BRACION LIBRE CON LAS CONDICIONES INICIALES DE VELOCIDAD Y DESPLAZA-MIENTO CORRESPONDIENTES A $t=t_{0}$:

$$y(t_0) = \frac{-a}{\omega^2} (1 - \cos\omega t_0) ; y(t_0) = \frac{-a}{\omega} \sin\omega t_0$$

APLICANDO LAS ECS. (5) Y (6) OBTENEMOS:

$$y(t) = \frac{-a}{\omega^2} \left[\operatorname{sen}\omega t_0 \operatorname{sen}\omega t' - (1 - \cos\omega t_0) \cos\omega t' \right]$$
$$= \frac{-a}{\omega^2} \sqrt{\operatorname{sen}^2 \omega t_0} + (1 - \cos\omega t_0)^2 \operatorname{sen} (\omega t' - \emptyset)$$
$$y(t) = \frac{-2a}{\omega^2} \operatorname{sen}\omega t_0 \operatorname{sen} (\omega t' - \emptyset)$$

DONDE t' = t -t_o Y Ø = tan⁻¹ $\left(\frac{1-\cos\omega t_o}{\sin\omega t_o}\right)$

EL VALOR MAXIMO DE LA RESPUESTA EN ESTE INTERVALO ES

MAX{
$$|y(t)|$$
} = $\frac{2a}{\omega^2} \left| \operatorname{sen} \frac{\omega t_o}{2} \right|$, SI t>t_o 0 T>2t_o

EXCITACION ARMONICA

CONSIDEREMOS AHORA EL CASO EN QUE LA ESTRUCTURA ES EXCITADA POR LA FUERZA ARMONICA

$$p(t) = p_sen\Omega t$$

DE DURACION INDEFINIDA.

LA SOLUCION DE ESTE PROBLEMA SE PUEDE ENCONTRAR SUSTITUYENDO A $p(t) = p_0 sen \Omega t$ EN LA INTEGRAL DE DUHAMEL Y OBTENIENDO SU SOLUCION. SIN EMBARGO, EL RESULTADO LO OBTENDREMOS DE LA CONSIDERACION DE QUE PARA QUE EL MIEMBRO DERECHO DE LA ECUACION DIFERENCIAL DE EQUILIBRIO APAREZCA UN TERMINO ARMONICO ES NECESARIO QUE EN EL IZQUIERDO SE TENGAN COMBINACIONES DE TERMINOS TAMBIEN ARMONICOS. CONSIDEREMOS, POR LO TANTO, LA SOLUCION

$$y(t) = A \operatorname{sen}\Omega t + B \cos\Omega t$$
 (14)

Y DETERMINEMOS LOS VALORES QUE DEBEN TENER A Y B PARA SATISFACER LA ECUACION DIFERENCIAL DE EQUILIBRIO, PARA LO CUAL HAY QUE SUSTITUIR A y(t), $\dot{y}(t)$ Y $\dot{y}(t)$ EN LA ECUACION DIFERENCIAL. HACIENDO ESTO Y FAC-TORIZANDO:

 $(-A\Omega^{2} - 2h\Omega B + \omega^{2}A) \operatorname{sen}\Omega t +$ $(-B\Omega^{2} + 2hA\Omega + \omega^{2}B) \operatorname{cos}\Omega t = \frac{P_{O}}{M} \operatorname{sen}\Omega t + 0 \times \operatorname{cos}\Omega t$ PARA QUE ESTA IGUALDAD SE CUMPLA SE REQUIERE QUE $-A\Omega^{2} - 2h\Omega B + \omega^{2}A = \frac{P_{O}}{M}$ $-B\Omega^{2} + 2h\Omega A + \omega^{2}B = 0$

RESOLVIENDO ESTE SISTEMA DE ECUACIONES SE OBTIENE:

$$A = \frac{\frac{P_o}{M} (\Omega^2 - \omega^2)}{(\omega^2 - \Omega^2)^2 + 4h^2 \Omega^2}$$
$$B = \frac{-2h\Omega}{(\omega^2 - \Omega^2)^2 + 4h^2 \Omega^2}$$

SUSTITUYENDO A Y B EN LA EC. (14):

$$y(t) = \frac{\frac{P_0}{M}}{(\omega^2 - \Omega^2)^2 + 4h^2\Omega^2} \{ (\Omega^2 - \omega^2) \operatorname{sen}\Omega t - 2h\Omega \cos\Omega t \}$$
(15)

O, TAMBIEN

$$y(t) = \frac{\frac{P_0}{M}}{\sqrt{(\omega^2 - \Omega^2)^2 + 4h^2 \Omega^2}} \operatorname{sen}(\Omega t - \emptyset)$$
(16)

EN DONDE
$$\emptyset$$
 = ANG TAN $(\frac{-B}{A})$ = TAN⁻¹ $\frac{2h\Omega}{\omega^2 - \Omega^2}$ = ANGULO (17)
DE FASE

DIVIDIENDO NUMERADOR Y DENOMINADOR DE LAS ECS, (16) Y (17) ENTRE ω^2 SE OBTIENE:

$$y(t) = \frac{\frac{p_{o}}{k}}{\sqrt{(1 - \frac{\alpha^{2}}{\omega^{2}}) + (2\zeta -)^{2}}} \operatorname{sen}(\alpha t - \emptyset)$$

$$(18)$$

$$\emptyset = \operatorname{TAN}^{-1} \frac{2\zeta \frac{\alpha}{\omega}}{1 - \frac{\alpha^{2}}{\omega^{2}}}$$

$$(19)$$

SI SE TIENE EXCITACION ARMONICA EN LA BASE DE LA ESTRUCTURA $x_{o}(t) = \operatorname{asen}\Omega t$, O SEA, $x_{o} = a\Omega^{2}\operatorname{sen}\Omega t$, BASTA CAMBIAR A p_{o}/M EN LA EC. (16) POR $-a\Omega^{2}$; HACIENDO ESTO SE OBTIENE

$$y(t) = \frac{(\Omega/\omega)^2}{\sqrt{(1 - \frac{\Omega^2}{\omega^2})^2 + (2\zeta_{\omega}^{\Omega})^2}} a \operatorname{sen}(\Omega t - \emptyset)$$
(20)

FACTOR DE AMPLIFICACION DINAMICA DE DESPL. = $B_d = MAX \left| \frac{y(t)}{a} \right|$

FIG. 1. CURVAS DE AMPLIFICACION DINAMICA PARA EL CASO DE FUERZA EXTERNA

$$B_{d} = \frac{1}{\sqrt{(1 - \frac{\Omega^{2}}{\omega^{2}})^{2} + (2\zeta_{\omega}^{\Omega})^{2}}}$$
(21)

LOS FACTORES DE AMPLIFICACION DINAMICA DE VELOCIDAD Y ACELERACION SE SE PUEDEN OBTENER DERIVANDO RESPECTO A t LA EC. (16) O LA (20), SEGUN SEA EL CASO. LOS RESULTADOS SON, RESPECTIVAMENTE,

$$MAX \left| \frac{y(t)}{a\omega} \right| = B_{v} = \frac{\Omega}{\omega} B_{d} \qquad \underline{Y} \qquad B_{a} = \left(\frac{\Omega}{\omega} \right)^{2} B_{d} = MAX \left| \frac{y(t)}{a\omega^{2}} \right| \quad (22)$$

EJEMPLO

CON UNA MAQUINA VIBRATORIA PORTATIL QUE PRODUCE FUERZAS ARMONICAS SE PROBO UNA ESTRUCTURA, AJUSTANDO LA MAQUINA EN LAS FRECUENCIAS $\Omega_1 = 16 \frac{\text{RAD}}{\text{SEG}}$ Y $\Omega_2 = 25 \frac{\text{RAD}}{\text{SEG}}$, CON UNA FUERZA MAXIMA DE 500 LB EN CADA CASO. LAS AMPLITUDES Y ANGULOS DE FASE DE LA RESPUESTA QUE SE MIDIE-RON FUERON:

$$\rho_1 = 7.2 \times 10^{-3} \text{in}, \ \theta_1 = 15^{\circ} (\cos \theta_1 = 0.966 ; \ \sin \theta_1 = 0.259)$$

 $\rho_2 = 14.5 \times 10^{-3} \text{in}, \ \theta_2 = 55^{\circ} (\cos \theta_2 = 0.574; \ \sin \theta_2 = 0.819)$

EVALUAR LAS PROPIEDADES DINAMICAS DEL SISTEMA.

HACIENDO:

$$\rho_{i} = \frac{P_{o}}{k} B_{d_{i}} = \frac{P_{o}}{k} \frac{1}{1 - \beta^{2}} \left\{ \frac{1}{1 + [2\zeta\beta/(1-\beta^{2})]^{2}} \right\}_{i}^{1/2}$$

$$\rho_{i} = \frac{p_{o}}{k} \frac{\cos \emptyset_{i}}{1 - \beta^{2}} ; \beta = \Omega/\omega$$

0

$$k - k\beta^{2} = \frac{p_{o} \cos \theta_{i}}{\rho_{i}} = k - \Omega^{2} m \qquad (23)$$

SUSTITUYENDO LOS VALORES EXPERIMENTALES DE LAS DOS PRUEBAS:

$$k - (16)^{2}m = \frac{500 (0.966)}{7.2 \times 10^{3}}$$

$$k - (25)^{2}m = \frac{500 (0.574)}{14.5 \times 10^{-3}}$$

$$k = 100 000 \frac{1b}{in}$$

$$m = 128.5 \frac{1b \text{ SEG}^{2}}{in}$$

$$\omega = \sqrt{\frac{k}{m}} = 27.9 \frac{\text{RAD}}{\text{SEG}}$$

USANDO LAS ECS. (17) Y (23) SE OBTIENE:

$$\zeta = \frac{p_0 \operatorname{sen} \emptyset_i}{2\beta_i k\rho_i}$$
; DE DONDE $\zeta \frac{500 (0.259)}{2\frac{16}{27.9} 100 000(7.2 \times 10^{-3})} = 15.7$ %

RESONANCIA

CUANDO LA EXCITACION TIENE FRECUENCIA IGUAL A LA NATURAL DEL SIS-TEMA, SE DICE QUE SE PRESENTA EL CASO DE RESONANCIA. DE LA EC.(20) ES EVIDENTE QUE SI $\beta=\Omega/\omega=1$ SE TIENE

$$y(t) = \frac{1}{2\zeta} a \operatorname{sen}(\Omega t - \emptyset)$$

B

 $O(B_d)_{res} = \frac{1}{2\zeta}$ EN CASO DE MOVIMIENTO DEL SUELO Y DE FUERZA EXTERNA SIN EMBARGO, AUNQUE ESTA RESPUESTA ES CASI IGUAL A LA MAXIMA, ESTA OCURRE CUANDO $\alpha = \omega \sqrt{1-2\zeta^2}$. EN EL CASO DE y(t) y y (t), EL MAXIMO OCU-RRE, RESPECTIVAMENTE, CUANDO

 $\Omega = \omega$ Y $\Omega = \frac{\omega}{\sqrt{1-2\zeta^2}}$ · SI $\zeta \leq 20$ %, LOS VALORES DE ESTAS Ω NO

DIFIEREN EN MAS DE 2%. EL MAXIMO VALOR DE B_d (PARA $\Omega = \omega \sqrt{1-2\zeta^2}$) ES

$$(B_d)_{MAX} = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$$
 0 $(B_d)_{MAX} = \frac{(\Omega/\omega)^2}{2\zeta\sqrt{1-\zeta^2}}$

SI SE TIENE FUERZA EXTERNA O MOVIMIENTO DEL SUELO, RESPECTIVAMENTE. SE OBSERVA EN ESTAS ECUACIONES QUE SI $\zeta=0$, $(B_d)_{MAX} = \infty$. SI SE ANALIZA LA SOLUCION GENERAL DE LA ECUACION DIFERENCIAL DE MOVIMIENTO PARA EL CASO DE CONDICIONES INICIALES NULAS Y 8=1 SE TIENE QUE:

$$y(t) = e^{-ht} (A \operatorname{sen} \omega' t + B \cos \omega' t) - \frac{P_0}{k} \frac{\cos \omega t}{2\zeta}$$

$$y(0) = B - p_0/(2\zeta k) = 0$$

DE DONDE, HACIENDO y(0)=0 Y y(0)=0, SE OBTIENEN:

$$A = \frac{P_0}{k} \quad \frac{\omega}{2\omega'} = \frac{P_0}{k} \quad \frac{1}{2\sqrt{1-z^2}} \quad ; \quad B = \frac{P_0}{k} \quad \frac{1}{2z}$$

POR LO QUE

$$y(t) = \frac{1}{2\zeta} \frac{p_0}{k} \left[e^{-ht} \left(\frac{\zeta}{\sqrt{1-\zeta^2}} \operatorname{sen}\omega't + \cos\omega't \right) - \cos\omega t \right]$$

PARA AMORTIGUAMIENTOS PEQUEÑOS:

SI $\zeta = 0$, APLICANDO LA REGLA DE L'HOSPITAL, SE OBTIENE:

$$\frac{y(t)}{p_0/k} = \frac{1}{2} (\text{sen}\omega t - \omega t \cos \omega t)$$

O SEA, EL MAXIMO DE LA RESPUESTA TIENDE A INFINITO GRADUALMENTE.

CARACTERISTICAS DINAMICAS DE LOS REGISTRADORES DE SISMOS.

SI LA ACELERACION DE LA BASE DE UN INSTRUMENTO ES ARMONICA, DADA POR LA ECUACION

$$x_{o}(t) = a \operatorname{sen}\Omega t$$

EL FACTOR DE AMPLIFICACION RESULTA SER

$$\vec{B}_{d} = \frac{1}{\sqrt{\left(1 - \frac{\Omega^{2}}{\omega^{2}}\right)^{2} + \left(2\zeta\frac{\Omega}{\omega}\right)^{2}}} \quad \frac{1}{\omega^{2}} = \frac{B_{d}}{\omega^{2}}$$

PUESTO QUE LA FIG I CORRESPONDE A B_d , Y EN ELLA SE OBSERVA QUE PARA $\zeta = 0.7$ SE TIENE $B_d \doteq 1$ PARA $0 \le \Omega/\omega \le 0.6$, SE CONCLUYE QUE EL DESPLA-ZAMIENTO DE LA MASA DE UN SISTEMA ES PROPORCIONAL A LA ACELERACION DE SU BASE, SI ESTE TIENE AMORTIGUAMIENTO DEL 70% Y SI LAS EXCITACIONES QUE SE TRATAN DE REGISTRAR TIENEN FRECUENCIAS INFERIORES AL 60% DE LA FRECUENCIA NATURAL DEL SISTEMA. SI ESTO SE CUMPLE, EL APARATO RESULTA SER UN ACELEROMETRO.

EN INGENIERIA SISMICA LA MAXIMA FRECUENCIA DE INTERES ES DEL ORDEN DE 10 CPS (T = 0.1 SEG), POR LO QUE LOS ACELEROMETROS TIENEN FRECUENCIA NATURAL DE 16 A 20 CPS. POR OTRA PARTE SI LA EXCITACION DEL SUELO ES $x_0 = a \ sen \Omega t$, O SEA, $x = -a \ \Omega^2 sen \Omega t$, ENTONCES EL FACTOR DE AMPLIFICACION RESULTA SER EL SEMALADO EN LA ECUACION (20), ES DECIR,

$$B_{d}' = \frac{(\Omega/\omega)^{2}}{\sqrt{(1-(\Omega/\omega)^{2}) + (2\zeta\Omega/\omega)^{2}}}$$

EN LA GRAFICA CORRESPONDIENTE SE OBSERVA QUE SI $\zeta=0.5$ Y $\Omega>\omega$ EL DES-PLAZAMIENTO DE LA MASA ES PROPORCIONAL AL DEL SUELO; SI ESTO SE CUMPLE, EL APARATO, CONSTITUYE UN DESPLAZOMETRO, CONOCIDO TAMBIEN COMO SISMOMETRO.

DETERMINACION EXPERIMENTAL DEL AMORTIGUAMIENTO DE UNA ESTRUCTURA ME-DIANTE VIBRACIONES FORZADAS ARMONICAS

SI SE DETERMINA B_d EXPERIMENTALMENTE MEDIANTE UNA SERIE DE PRUEBAS DE VIBRACION FORZADA CON FUERZAS ARMONICAS, Y ADEMAS SE DETERMINA ρ_{o} , ENTONCES

$$\zeta \doteq \frac{\rho_0}{2(B_d)_{MAX}}$$
(24)

OTRO METODO PARA DETERMINAR ζ CON BASE EN LA CURVA EXPERIMENTAL DE B_d SE CONOCE CON EL NOMBRE DE "METODO DEL ANCHO DE BANDA DE LA MITAD DE POTENCIA". ESTE SE BASA EN DETERMINAR LAS FRECUENCIAS QUE CORRES-PONDEN AL VALOR rms DE LA AMPLITUD EN RESONANCIA, EL CUAL VALE $(B_d)_{MAX}/\sqrt{2}$; SEAN β_2 Y β_1 ESTAS FRECUENCIAS. DE LA ECUACION DE B_d SE OBTIENE: $rms = \frac{A}{\sqrt{2}} = RAIZ$ CUADRADA DEL VALOR MEDIO CUADRATICO

$$\frac{1}{\sqrt{2}} \frac{\rho_{0}}{2\zeta} = \rho_{0} / \sqrt{(1-\beta^{2})^{2} + (2\zeta\beta)^{2}}$$

ELEVANDO AL CUADRADO AMBOS MIEMBROS:

$$\frac{1}{8\zeta^2} = \frac{1}{(1-\beta^2)^2 + (2\zeta\beta)^2}$$

DE DONDE $\beta^2 = 1 - 2\zeta^2 + 2\zeta \sqrt{1 + \zeta^2}$

DE AQUI, DESPRECIANDO EL TERMINO ζ^2 DEL RADICAL, SE OBTIENE

$$\beta_{1}^{2} \stackrel{i}{=} 1 - 2\zeta - 2\zeta^{2} ; \qquad \beta_{1} \stackrel{i}{=} 1 - \zeta - \zeta^{2} \\ \beta_{2}^{2} \stackrel{i}{=} 1 + 2\zeta - 2\zeta^{2} ; \qquad \frac{\beta_{2} \stackrel{i}{=} 1 + \zeta - \zeta^{2}}{\beta_{2} - \beta_{1} \stackrel{i}{=} 2\zeta}$$

METODO NUMERICO β DE NEWMARK PARA RESOLVER EL PROBLEMA DE VIBRACIONES FORZADAS.

EL METODO QUE A CONTINUACION SE DESCRIBE ES ADAPTABLE A SISTEMAS NO LINEALES CON VARIOS GRADOS DE LIBERTAD.

PROCEDIMIENTO:

- 1. SEAN y_i , y_i , y_i , y_i , CONOCIDOS EN EL INSTANTE t_i , $y t_{i+1} = t_i + \Delta t$. SUPONGAMOS EL VALOR DE y_{i+1}
- 2. CALCULEMOS $y_{i+1} \doteq y_i + (y_i + y_{i+1})\Delta t/2$ (26)

3. CALCULEMOS
$$y_{i+1} \doteq y_i + y_i \Delta t + (\frac{1}{2} - \beta) y_i (\Delta t)^2 + \beta y_{i+1} (\Delta t)$$
 (27)

4. CALCULEMOS UNA NUEVA APROXIMACION PARA y_{i+1} A PARTIR DE LA ECUACION DIFERENCIAL DE EQUILIBRIO:

5. REPITAMOS LAS ETAPAS 2 A 4 EMPEZANDO CON EL NUEVO VALOR y_{i+1} HASTA QUE EN DOS CICLOS CONSECUTIVOS SE TENGAN VALORES DE y_{i+1} CASI IGUALES.

SE RECOMIENDAN VALORES DE β DE 1/6 A 1/4 Y $\Delta t \doteq 0.1T$ PARA ASEGURAR CONVERGENCIA Y ESTABILIDAD.

CALCULAR LA RESPUESTA DE LA ESTRUCTURA APLICANDO EL METODO β DE NEWMARK

$$\omega = \sqrt{K/M} = \sqrt{36/4} = 3 \frac{RAD}{SEG}$$

h = $\zeta \omega = 0.2 \times 3 = 0.6$; T = $\frac{2\pi}{3}$ = 2.09 SEG

TOMAREMOS $\beta = 0.2 \text{ Y} \Delta t = 0.2 (\doteq 0.1T)$ SUSTITUYENDO EN LAS ECS. (26), (27) y (28):

$$\dot{y}_{i+1} \doteq y_i + 0.1 \quad (\ddot{y}_i + \ddot{y}_{i+1})$$

$$y_{i+1} \doteq y_i + 0.2\dot{y}_i + 0.012\dot{y}_i + 0.008\dot{y}_{i+1}$$

$$\ddot{y}_{i+1} = -1.2\dot{y}_{i+1} - gy_{i+1} - (\ddot{x}_0)_{i+1}$$

EN t=0 SABEMOS QUE SE TIENE y=0, y=0 Y y=0 EN t=0 + Δt = 0.2 SEG; SUPONGAMOS y_{i+1} = 5.0 IN/SEG²; x_0 =-6 y_i = 0 y_i = 0

	$i+1 \doteq 0 + 0.1$ = 0.04032 $i+1 = -1.2 \times 0$	(0 + 5.04) = 0.5 .504 - 9 x 0.4032	04 ; $y_{i+1} \doteq 0+ 0$ - (-6) = 5.033	+ 0 + 0.008 x5 IN/SEG ²	5.04 =
t			y .	y]	
SEG	IN/SEG ²	ING/SEG ²	ING/SEG	IN	
0	0	0	0	0	
0.2	-6	5.0000	0.5000	0.04000	
		5.040	0.5040	0.04032	
		5.033	0.5033	0.04026	
		5.034	0.5034	0.04027	
0.4 -	-12	8.0000	1.8078	0.26536	
	1	7.442	1.7510	0.26079	
		7.534	1.7602	0.26163	
		7.533	1.7601	0.26162	
0.4	0	-4.467	1.7601	0.26162	
0.6	0	-6.000	0.7134	0.51204	
		-5.464	0.7670	0.51633	
		-5.550	0.7584	0.51564	
		t •	•	•	
		•	•	•	
		•	•	•	

•

•

ESPECTROS DE RESPUESTA ESTRUCTURAL

RECORDEMOS QUE LA SOLUCION DEL PROBLEMA DE VIBRACIONES FORZADAS CON EXCITACION SISMICA ES

$$Y(t) = \frac{-1}{\omega'} \int_{-\infty}^{t} x_0(t-\tau) e^{-\zeta \omega (t-\tau)} \operatorname{sen} \omega' (t-\tau) d\tau$$

DE LA OBSERVACION DE ESTA ECUACION SE CONCLUYE QUE EL DESPLAZAMIENTO RELATIVO, Y(t), ES FUNCION DEL TIEMPO, t. EL AMORTIGUAMIENTO, ζ , Y LA FRECUENCIA CIRCULAR NATURAL, ω (O DEL PERIODO NATURAL): y(t) = f(t, ω , ζ)

FIJEMOS UN VALOR DE ζ , POR EJEMPLO $\zeta=0$, Y LUEGO ASIGNEMOS VALORES A ω , POR EJEMPLO 0.1, 0.2. 0.3, ETC, HASTA CUBRIR UN INTERVALO DE INTE-RES, Y PARA CADA CASO CALCULEMOS LA FUNCION RESULTANTE DE APLICAR LA ECUACION ANTERIOR. CON ESTA OBTENEMOS

 $y_{1}(t) = f_{1}(t, 0.1, 0) = f_{1}(t)$ $y_{2}(t) = f_{2}(t, 0.2, 0) = f_{2}(t)$ $y_{3}(t) = f_{3}(t, 0.2, 0) = f_{3}(t)$

SEAN $D_1 = MAX |y_1(t)| = D(\omega_1, \zeta)$ $D_2 = MAX |y_2(t)| = D(\omega_2, \zeta)$ $D_3 = MAX |y_3(t)| = D(\omega_3, \zeta)$

Respuesta de un sistema amortiguado simple con $T_i = 1.0 \text{ seg y } \zeta = 0.10$, al sismo de El Centro, Cal., 1940, componente N-S

ES EL ESPECTRO DE RESPUESTA DE DESPLAZAMIENTOS PARA $\zeta = 0$. SI ESTE PROCESO DE REPITE FIJANDO OTROS VALORES DE ζ . POR EJEMPLO, $\zeta = 0.02$, 0.05, 0.1, 0.2, ETC, SE OBTENDRAN LOS ESPECTROS DE DESPLAZAMIENTOS CORRESPONDIENTES

DE MANERA ANALOGA SE PUEDEN OBTENER LOS ESPECTROS PARA OTROS TIPOS DE RESPUESTA, TALES COMO VELOCIDAD RELATIVA, ACELERACION ABSOLUTA, ETC, QUE SON, RESPECTIVAMENTE

$$V = MAX |Y(t)|_{\zeta, \omega} ; A = MAX |X(t)|_{\zeta, \omega}$$
(29)

PSEUDO - ESPECTROS

ESTADISTICAMENTE SE HA ENCONTRADO QUE

 $S_{V} = \omega D = V$ (30)

$$S_{\lambda} = \omega^2 D \stackrel{\bullet}{=} A \stackrel{\bullet}{=} \omega v \tag{31}$$

A S, Y S, SE LES LLAMA PSEUDOESPECTROS.

DE LA EC. (30): log D = log V - log ω = log V + log T - log 2 DE LA EC.(31): log A = log V + log ω = log V - log T + log 2 ESTAS ECUACIONES CORRESPONDEN A LINEAS RECTAS EN PAPEL LOGARITMICO; LA PRIMERA CON PENDIENTE -1 Y LA SEGUNDA CON PENDIENTE +1, SI SE USA ω COMO VARIABLE INDEPENDIENTE; SI SE USA T, LA PRIMERA TENDRA PENDIEN-TE + 1, Y LA SEGUNDA, -1.

EJEMPLO

.

CALCULAR EL ESPECTRO CORRESPONDIENTE A LA EXCITACION (CONSIDERESE $\zeta=0$)

EN UN EJEMPLO ANTERIOR SE OBTUVO

$$y(t) = \frac{-a}{\omega 2} (1 - \cos \omega t), \text{ SI } 0 \le t \le t_0$$

$$D = MAX | Y(t) | = \frac{2a}{\omega 2} ; 0 \le \frac{T}{2} \le t_0, (0 \le T \le 2t_0)$$

$$S_v = \omega D = \frac{2a}{\omega} , S_A = \omega V = 2a$$

$$D = MAX | y(t) | = \frac{2a}{\omega^2} \operatorname{sen} \frac{\omega t_0}{2} , \quad SI T > 2 t_0$$

$$S_V = \omega D = \frac{2a}{\omega} | \operatorname{sen} \frac{\omega t_0}{2} | ; \quad S_A = \omega V = 2a | \operatorname{sen} \frac{\omega t_0}{2}$$

$$\operatorname{LIM} S_V = \underset{\omega \to 0}{\operatorname{LIM}} \{ \operatorname{at}_0 \quad \frac{\operatorname{sen} \frac{\omega t_0}{2}}{\frac{\omega t_0}{2}} \} = \operatorname{at}_0$$

SI $t_0 = 1 \text{ SEG y a} = 100 \text{ IN/SEG}^2$ CASO PARTICULAR:

$$S_V = \frac{2 \times 100}{\frac{2\pi}{T}} = \frac{100}{\pi} T$$
, $S_T = 0 \le T \le 2$ SEG

$$S_{V} = \frac{100T}{\pi} | \operatorname{sen} \frac{\frac{2\pi}{T} \times 1}{2} | =$$
$$= \frac{100T}{\pi} | \operatorname{sen} \frac{\pi}{T} | \text{ SI } T > 2 \text{ SEG}$$

-

.

.

$$\underset{T \to \infty}{\text{LIM S}} = 100 \text{ IN/SEG}$$

.

Espectro no amortiguado correspondiente a un pulso rectangular de aceleraciones. Según N. Newmark y E. Rosenblueth, ref 1

Espectros de velocidades y de aceleraciones.Sismo de Tokachi-Oki, Japón (1968).Según H.Tsuchida, E.Kurata y K.Sudo, ref 4

Acelerogramas originales del sismo registrado el 11-V-1962, en la ALAMEDA CENTRAL, Mex. D. F.

DISTRIBUCION DE LAS FUERZAS CORTANTES EN UN ENTREPISO

DISTRIBUCION DE FUERZAS CORTANTES DIRECTAS Y POR TORSION

42'

$$F_{i} = K_{i}\delta$$

$$\Sigma F_{i} = \Sigma K_{i}\delta = V_{x} \therefore \delta = \frac{V_{x}}{\Sigma K_{i}}$$

$$F_{i} = V_{x} \frac{K_{i}}{\sum K_{i}}$$

$$F_{x_{i}} = K_{x_{i}}\delta_{x_{i}} = K_{x_{i}}X_{i}^{*}\theta$$

$$F_{x_{i}} = K_{y_{i}}\delta_{y_{i}} = K_{y_{i}}Y_{i}^{*}\theta$$

$$\Sigma M_{C.R.} = \Sigma F_{x_{i}}X_{i}^{*} + \Sigma F_{y_{i}}Y_{i}^{*}$$

$$= \theta(\Sigma K_{x_{i}}X_{i}^{*2} + \Sigma K_{y_{i}}Y_{i}^{*2})$$

$$= M_{T_{x}}$$

, 1

POR LO QUE

$$F_{x_{i}} = M_{TX} \frac{K_{x_{i}} X_{i}'}{\Sigma K_{x_{i}} X_{i}'^{2} + K_{y_{i}} Y_{i}'^{2}}; \quad F_{y_{i}} = M_{TX} \frac{K_{y_{i}} Y_{i}'}{\Sigma K_{x_{i}} X_{i}'^{2} + \Sigma K_{y_{i}} Y_{i}'^{2}};$$

SISTEMAS NO LINEALES DE UN GRADO DE LIBERTAD

 $Q = Q_1 + C_Y$, SI Y<0 $Q = Q_2 + C_Y$, SI Y<0 EN DONDE C = CONSTANTE. SE HA EMPLEADO COMO MODELO EN EL ANALISIS DE TALUDES Y CORTINAS DE PRESAS DE TIERRA Y ENROCAMIENTO

SE EMPLEA COMO MODELO EN EL ANALISIS DE ESTRUCTURAS DUCTILES. FACTOR DE DUCTILIDAD = $\mu = y_u/y_e$ y_u = DESPLAZAMIENTO MAXIMO QUE PUEDE SOPORTAR EL SISTEMA SIN FALLAR.

4. TIPO MASING

(INCLUYE A LOS ANTERIORES COMO CASOS ESPECIALES) $\frac{Q - Q_0}{2} = Q_1 \left(\frac{y - y_0}{2}\right)$ $E = Q_1 \left(\frac{y - y_0}{2}\right)$ $Q_0 = FUERZA EN y = y_0$ $y_0 = DESPLAZAMIENTO EN EL CUAL EL PROCESO SE INVIRTIO (Y CAMBIO$ DE SIGNC) POR ULTIMA VEZ

CASO PARTICULAR DEL ESQUELETO

$$\frac{Y}{Y_1} = \frac{Q}{Q_1} + \alpha \left(\frac{Q}{Q_1}\right)^r \qquad (MODELO RAMBER - OSGOOD)$$

DONDE Y_1 , Q_1 , α y r son constantes positivas

CASO ELASTOPLASTICO

METODO B DE NEWMARK

PARA EL ANALISIS DE SISTEMAS NO LINEALES SE PUEDE USAR EL METODO β . DE NEWMARK DESCRITO ANTERIORMENTE.

ECUACION DE EQUILIBRIO DINAMICO , MY + Q(Y) = P(t)

$$Y = \frac{P(t) - Q(Y)}{M} = \frac{P(t) - Q(Y)}{2}$$
(1)

PARA LA APLICACION DEL METODO DE NEWMARK SE TIENEN LAS SIGUIENTES EXPRESIONES:

$$t_{i+1} = t_i + At$$

$$\dot{Y}_{i+1} = \dot{Y}_i + (\ddot{Y}_i + \ddot{Y}_{i+1}) \Delta t/2$$

$$Y_{i+1} = \dot{Y}_i + \dot{Y}_i At + (0.5 - \beta) \ddot{Y}_i (\Delta t)^2 + \beta \ddot{Y}_{i+1} (\Delta t)^2$$
CONSIDERANDO $\Delta t = 0.10$ SEG. $Y \beta = 1/6$ SE PUEDE ESCRIBIR;

$$\dot{Y}_{i+1} = \dot{Y}_i + \frac{1}{20} (\dot{Y}_i + \dot{Y}_{i+1})$$
 (II)

$$Y_{i+1} = Y_i + Y_i(0.10) + \frac{1}{600} (2Y_i + Y_{i+1})$$
 (III)

EL PROCEDIMIENTO DE CALCULO ES COMO SIGUE:

PARA LA FUNCION DE RESISTENCIA Q SE TIENEN LOS SIGUIENTES CASOS:

$$x_{o} = 0.9375 \text{ CMS} \qquad ; \quad Q_{o} = 30.0 \text{ TON}$$

PARA t = 0, $y = \frac{p}{M} = \frac{50}{2} = 25 ; y = 0; y = 0$

PARA t = 0.10, $y_{i} = y_{i} = 0 ; y_{i} = 25$

ler. CICLO

SEA $y_{i+1} = 20$ COMO PRIMER TANTEO. EN TAL CASO

 $y_{i+1} = 0 + \frac{1}{20} (0 + 25) = 2.25$

 $y_{i+1} = 0 + 0.10 \times 0 + \frac{1}{600} (2 \times 25 + 20) = 0.1167$

 $Q = 32 \times 0.1167 = 3.7330$

 $y_{i+1} = \frac{50 - 3.733}{2} = 23.134$

20. CICLO

 $y_{i+1} = 73.134/600 = 0.1219$

 $Q = 32 \times 0.1219 = 3.9000$

 $y_{i+1} = (50 - 3.9)/2 = 23.050$

3er. CICLO

٠

 $y_{i+1} = 23.052$ $y_{i+1} = 23.052/2 = 2.4026$ $y_{i+1} = 73.052/600 = 0.12175$ $Q = 32 \times 0.12175 = 3.8960$ $y_{i+1} = (50 - 3.8960)/2 = 23.052 \dots ETC.$

LOS CALCULOS BASICOS SE MUESTRAN EN LA TABLA SIGUIENTE:

.

	· · · · ·	••	•		
SEGS	p TONS	$CM SEG^{-2}$	CM SEG ⁻¹	Y CMS	Q TONS
0.0	50.00	25.000	0.00	0.00	0.00
0.10	50.00	20.000 23.134 23.050 23.052	2.2500 2.4070 2.4025 2.4026	0.1167 0.1219 0.12175 0.12175	3.7330 3.9000 3.3960 3.8960
0.20	50.00	20.000 17.445 17.513 17.511	4.5552 4.4270 4.4310 4.43075	0.4722 0.46793 0.46804 0.46204	15.110 14.970 14.977 14.977
0.30	50.00	10.000 9.560 9.569	5.8060 5.7840 5.7848	0.98610 0.98540 0.98543	30.8750 30.8620 30.8630
0.40	50.00	0.00 4.0750 4.0141 4.0150	6.2630 6.4670 6.4640 6.4640	1.5958 1.6026 1.6025 1.60250	41.849 41.972 41.970 41.970
0.50	50.00	0.00 -1.9230	6.6650	2.2623	53.846
		-1.8944 -1.8946	6,5700 [°]	2.2591	53.789
0.50+	5.00	-24.3946	6.5700	2.25912	53.789
0.60	5.00	-30.000 -29.126 -29.136 -29.138	3.8503 3.8940 3.89347 3.89347	2.7848 2.78626 2.78624 2.78624	63.251 63.278 63.277 63.277
0.70	5.00	-32.000 -31.289	0.83657	3.025127	67.577
		-31.320 -31.299 -31.301	0.87057	3.02626	67.598
0.7278	5.00	-31.620	-0.00313	3.03850	67.818
	<u>.</u>	-31.420	-0.000352 -0.000205	3.03853 3.03853	67.818 67.818
En $t=0$.	5 + SEG,	$\Delta y = -45/2 = -$	22.522.	5 - 1.8946 =	-24.3946

1

•

CONTINUACION DEL CUADRO ANTERIOR

1	•	•				
t	р	Ŷ	Ŷ	Y	Q	
0.80	5.0	-28.000	-2,1449	2,959611	65.293	
	i	-30.000 -30.118	-2.21708	2.957874	65.237	
	•••••	-30.117	-2.22127	2,95777	65.234	
0.90	5.0	-27.00	-5.07712	2.59025	53.473	
1	,	-25.00	-4.97712	2.59358	53.580	
:		-24.294 -24.308	-4.94182 -4.94242	2.59476 2.59474	53.617 53.617	
1.00	5.0	-14.00	-6.85782	1.99614	34.461	
		-14.7200 -14.7120	-6.89382 -6.89342	1.99494 1.99495	34.423 34.423	

EN ESTOS CALCULOS SE INTRODUJO $t = 0.50^{-} \text{ y } 0.50^{+}$ PORQUE PARA ESTE INSTANTE SE PRODUCE UN CAMBIO BRUSCO EN LA CARGA P(t) DE 50.00 TONS A 5.00 TONS, CON LO CUAL SE PRODUCE UN CAMBIO BRUSCO EN LA ACELERA-CION DEL SISTEMA Y. EN ESTE INSTANTE NO SE PRODUCEN CAMBIOS EN Y Y Y. EL TIEMPO t = 0.7273 SEG. SE INTRODUJO POR LA NECESIDAD DE CALCULAR LOS VALORES DE Y Y DE Q, PUES A PARTIR DE DICHO INSTANTE SE INICIA LA DESCARGA DEL SISTEMA. ESTA CONDICION SE ENCONTRO SOBRE LA BASE DE APROXIMAR Y A CERO, OBTENIENDOSE Y_{MAX=3.03853} CMS y

 $Q_{MAX} = 67.818$ TON.

EN EL CUADRO SIGUIENTE SE PRESENTA UN RESUMEN DE LOS RESULTADOS.

	t	 Y(supuesta)	Р	Y	Ω	 Y(calculado)	Ŷ	NOTAS
	Seg.	Cm Seg ⁻²	Ton	Cm.	Ton	$Cm Seg^{-2}$	$Cm Seg^{-1}$	i -
		· ··· · ··· ··· ··· ··· ··· ··· ··· ··			e a latit de la	······································		
1	0.0		50.00	0.00	0.00	25.00	0.00	1 1
:	0.10	23.0520	50.00	0.12175	3.896	23.0520	2.40260	
1	0.20	17.5110	50.00	0.46804	14.977	17.5110	4.43075	
;	0.30	9.5690	50.00	0.98543	30.863	9.5690	5.78480 -	- CAMBIO DE RIGIDEZ
•	0.40	4.0150	50.00	1.60250	41.970	4.0150	6.4640	
	0.50	-1.8946	50.00	2.25912	53.789	-1.8946	6.5700	
	0.50+	· · ·	5.00	2.25912	53.789	-24.3945	6.5700 -	- CAMBIO DE CARGA
	0.60	-29,1380	5.00	2.78624	63.277	-29.1380	3.89347	
	0.70	-31.3010	5.00	3.02641	67.600	-31.3010	0.87147	
	0.7278	-31,4093	5.00	3.03853	67.818	-31.4093	-0.000205 -	- Omáx, Ymáx.
	0.800	-30.1170	5.00	2.95777	65.234	-30.1170	-2.22127	
!	0.90	-24.3080	5.00	2.59474	53.617	-24.3080	-4.94242	
2	1.00	-14.7120	5.00	1.99495	34.423	-14.7120	-6.89342	

.

 $\begin{cases} Y \text{ max} = 3.03853 \text{ cms} \\ Q \text{ max} = 67.818 \text{ tons} \end{cases}$

RESPUESTA MAXIMA

• .

.

CRITERIOS PARA TRAZAR ESPECTROS DE DISENO ELASTOPLASTICOS A PARTIR DEL ELASTICO

CRITERIO DE IGUAL DESPLAZAMIENTO MAXIMO DEL SISTEMA ELASTICO 1. Y EL ELASTOPLASTICO DE IGUAL PERIODO:

2. CRITERIO DE IGUAL

$$y_{y} = \frac{y_{e}}{\sqrt{2\mu - 1}}$$

 $y_{y}_{MAX} = D_{p} = \frac{y_{e}}{\sqrt{2\mu - 1}} = \frac{D_{e}}{\sqrt{2\mu - 1}}$

...

POR LO TANTO

د

$$D_{p} = D_{e}/\sqrt{2\mu - 1}$$
 Y $Q_{p} = Q_{e}/\sqrt{2\mu - 1}$

AMORTIGUAMIENTO HISTERETICO

SI SE CUENTA CON EQUIPO PARA MEDIR EL ANGULO DE FASE ENTRE LA FUERZA DE EXCI-TACION Y EL DESPLAZAMIENTO RESULTANTE, SE PUEDE EVALUAR EXPERIMEN-TALMENTE EL AMORTIGUAMIENTO DEL SISTEMA CON UNA SOLA PRUEBA DE VIBRACION ARMONICA EN RESONANCIA. ESTA SE LOGRA CUANDO SE AJUSTA LA FRECUENCIA DEL EXCITADOR DE TAL MANERA QUE EL ANGULO DE FASE SEA 90°, YA QUE:

EN ESTAS CONDICIONES LA FUERZA DE EXCITACION QUEDA EN FASE CON LA VELOCIDAD DE LA MASA YA QUE

 $y = A \operatorname{sen}(\omega t - \theta) = -A \operatorname{cos}\omega t, \quad SI \quad \theta = 90^{\circ}$ $y = A \omega \operatorname{sen}\omega t \quad ; \quad y = A \omega^2 \operatorname{cos}\omega t$

Y DE LA ECUACION DIFERENCIAL DE EQUILIBRIO:

 $MA\omega^2 \cos \omega t + CA\omega \sin \omega t + K(-A \cos \omega t) = p_0 \sin \omega t$

SE VE QUE SE DEBE CUMPLIR QUE:

Y

$$CA\omega = p_0$$
, DE DONDE $C = \frac{p_0}{A\omega}$ (I)

DE LAS ECUACIONES ANTERIORES SE DEDUCE QUE:

$$y^{2} = A^{2} \cos^{2} \omega^{2} ; \qquad \frac{y^{2}}{A^{2}} = \cos^{2} \omega t$$

$$p^{2} = p_{o}^{2} \operatorname{sen}^{2} \omega t ; \qquad \frac{p_{o}^{2}}{p_{o}^{2}} = \operatorname{sen}^{2} \omega t$$

$$SUMANDO: \qquad \frac{y^{2}}{A^{2}} + \frac{p_{o}^{2}}{p_{o}^{2}} = \operatorname{sen}^{2} \omega t + \cos^{2} \omega t$$

SI EL AMORTIGUAMIENTO NO ES EXACTAMENTE VISCOSO, LA GRAFICA QUE SE OBTENDRIA DE p CONTRA y NO SERIA EXACTAMENTE ELIPTICA, SINO ALGO COMO LA LINEA PUNTEADA AHI MOSTRADA. EN ESTE CASO SE PUEDE UTI-LIZAR UN AMORTIGUAMIENTO VISCOSO EQUIVALENTE, DE TAL MANERA QUE EL AREA W_d , DE ESTA CURVA SEA IGUAL A LA DE LA ELIPSE EQUIVALENTE, $W_{eq}=\pi Ap_o$, ES DECIR

$$W_d = \pi A p_o$$
, DE DONDE $p_o = \frac{W_d}{\pi A}$

POR LO QUE, DE LA EC. (I)

$$C_{eq} = \frac{W_d}{\pi \omega A^2}$$
(II)

ADEMAS, $C_{cr} = 2\sqrt{KM} = 2K/\omega$; DE FIG. 2 : $C_{cr} = 2(\frac{2WS}{A^2})/\omega$, DE DONDE $\zeta_{eq} = \frac{C_{eq}}{C_{cr}}$

$$\varsigma_{eq} = W_d / (4\pi W_S)$$
 (II')

DE LAS ECS. (I) Y (II) SE CONCLUYE QUE EL FACTOR DE AMORTIGUAMIENTO VISCOSO ES FUNCION DE LA FRECUENCIA, ω .

EXISTE OTRO TIPO DE AMORTIGUAMIENTO QUE ES INDEPENDIENTE DE LA FRE-CUENCIA, QUE SE CONOCE COMO <u>AMORTIGUAMIENTO HISTERETICO</u>, EL CUAL PRODUCE UNA FUERZA EN FASE CON LA VELOCIDAD RELATIVA DE LA MASA, PERO PROPORCIONAL AL DESPLAZAMIENTO, ES DECIR

$$f_{a} = \eta k | y(t) | \frac{y(t)}{|\dot{y}(t)|}$$
(III)

DONDE η ES EL COEFICIENTE DE AMORTIGUAMIENTO HISTERETICO. EL DIA-GRAMA DE f_a DURANTE UN CICLO ES

SI SE CONSIDERA QUE LA ENERGIA PERDIDA POR HISTERESIS SE PUEDE REPRE-SENTAR MEDIANTE UN AMORTIGUADOR VISCOSO, ENTONCES, DE LA EC. (II') Y FIG 2:

$$\zeta = \frac{2A^2nk}{4\pi\frac{KA^2}{2}} = \frac{n}{\pi} \qquad O \qquad \boxed{\eta = \pi\zeta} \qquad (IV)$$

59

centro de educación continua división de estudios superiores facultad de ingeniería, unam

IV CURSO INTERNACIONAL DE INGENIERIA SISMICA

Ł

DINAMICA ESTRUCTURAL (SEGUNDA PARTE)

DR. OCTAVIO A. RASCON CHAVEZ

្តព

JULIO, 1978.

.

.

•

METODO β DE NEWMARK PARA SISTEMAS LINEALES DE VARIOS GRADOS DE LIBERTAD

.

•

$$\begin{split} \underline{\text{EJEMPLO}} & \underline{\text{K}} = \begin{bmatrix} 10 & 1 \\ 1 & 5 \end{bmatrix} \qquad \underline{\text{M}} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}; \quad C_{1} = 0 \text{ para todo i} \\ & \dot{x}_{1+1} = \dot{x}_{1} + (\ddot{x}_{1} + \ddot{x}_{1+1}) \frac{\Delta t}{2} \\ & \lambda t = 0.2 ; \quad \beta = 1/6 \end{split} \qquad \begin{array}{c} \text{PARA CADA} \\ \text{MASA O GRADO} \\ & \Delta t = 0.2 ; \quad \beta = 1/6 \end{array} \\ \hline & \underline{\text{MOVIMIENTO DEL SUELO:}} \quad x_{0} = 1.2t \quad (x_{0} \text{ EN CM Y t EN SEGUNDOS)} \\ & \text{SI} \quad 0 \le t \le 2 \text{ SEG}, \quad Y \quad x_{0} = 4.8 - 1.2 \text{ t SI} \quad 0 \le 2 \le 4 \text{ SEG} \\ & Y \quad x_{0} = 0 \text{ SI } t < 0 \quad 0 \quad t > 4 \text{ SEG} \\ & \text{SI} \quad Y_{1} = x_{1} \cdot x_{0} \quad Y \quad Y_{2} = x_{2} - x_{0} \\ & \underline{\text{M} \ Y} + \underline{\text{K} \ Y} = 0 \quad + \quad \underline{\text{M} \ Y} + Q = 0 ; \quad Q = \begin{bmatrix} Q_{1} \\ Q_{2} \end{bmatrix} \\ & (\text{PUESTO QUE \ \ddot{x}_{0} = 0) \\ & m_{1} \quad Y_{1} + Q_{1} = 0 \quad + \quad \ddot{Y}_{1} = -Q_{1}/m_{1} \\ & m_{2} \quad \ddot{Y}_{2} + Q_{2} = 0 \quad + \quad \ddot{Y}_{2} = -Q_{2}/m_{2} \\ & \text{EN t=0, 2, SUPONGAMOS } \quad \ddot{x}_{1} = 1.35 \quad Y \quad \ddot{x}_{2} = 1.50 \quad \frac{\text{CM}}{\text{SEG}^{2}} \\ & x_{0} = 1.2 \times 0.2 = 0.24 \end{aligned}$$

	PARA LA MASA 1:
ļ	$\dot{x}_1 = 0 + (1.35 + 0) \frac{0.2}{2} = 0.135$
	$X_1 = 0 + 0 + (\frac{1}{2} - \frac{1}{6})(0.2)^2 \ge 0 + \frac{1}{6} \ge 1.35 (0.2)^2 = 0.009 \text{ CM}$
	$Y_1 = 0.009 - 0.24 = -0.231$
C F 0	PARA LA MASA 2:
н 5 - Х	$\dot{x}_2 = 0 + (1.5 + 0) \frac{0.2}{2} = 0.15$
l er	$X_2 = 0 + 0 + 0 + \frac{1}{6} \times 1.5(0.2)^2 = 0.01$
	$Y_2 = 0.01 - 0.24 = -0.23$
~	$\begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} = Q = \begin{bmatrix} 10 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} -0.231 \\ -0.23 \end{bmatrix} = \begin{bmatrix} -2.54 \\ -1.381 \end{bmatrix} + \begin{array}{c} X_1 = 2.54/2 = 1.27 = Y_1 \\ X_2 = 1.381/1 = 1.381 = Y_2 \end{array} + \begin{array}{c} ETC.$

.

l

	TABLA 2.1, EXEMPLO 2											
	t	91	X ₄ N Sec	х,	. Х р	$\mathbf{X}_{1} = \mathbf{X}_{1}$	ů Let	X2 /scat	Χ ₂ cm/ini	χ : σ· i	12-10	0
,			4			1	n	0	0	0	:•	(
		2.	1.5%	5.135	1 for 100	ere There	1.34	1.500	0.150	0,0+00	:401	26
		2.546	3,7,7.3	0.127	Q1-15	C ZAJA	1,386	1,380	0.138	<u>`0 '+'</u>	19.18.30	
	, č	, 541.	1.73	5127	0.00.35	0.2315	1.386	1.3Ai	9,138	0.009.	6.2361	0,24
	12.4	4.548	+2.300	0.484	+0.06%2	-0,4148	2.468	2 100	0.465	+0.0631	0,4107	·-8
	04	4 548	2,274	0.481	0.0660	-04140	2.455	2.468	0.523	て読ん	- 404	<i>'</i> 2
	21 .	4.56F	2.274	0.481	0.0650	-0.4140	2.45	2.455	0.522	5.0,4+1	5.445.44	
	1. ja	4,548	1.2.74	0.481	0.0660	-0,4+4 -	2.455	2.45%	0.522	6017	14.784	C .44
		ר 585°	2.700	0,978	0.2105	-0.5095	2. 96 0	3 200	1,088	0.2301	-0.489	
	5 K	5 5 8 1	2,793	0.987	0.211.	0.5089	2.967	2.960	1.064	0.2285	U 4915	0,7
i t	、 •	5 5 80	2.790	0.987	0.2111	-0,5089	2.96 6	2.967	1.065	0.2284) 4914	<i>(</i> , -,
	÷.,,	5,580	2790	0.987	0.2111	0.5084	2,956	2.966	1.065	0.2286	-7.49.6	· ·
Ì	<u>р</u> я	5409	2.900	1.556	0.4650	-0.4950	2.790	2,980	1.660	0.50.0	-3459.1	,
	1.15	0.423	2.704	1.536	0.4637	-0.4963	2.798	2.790	1,641	0.4907	-0,466.5	<u>р</u> а,
	19 . 1	5.42.1	2.711	1.537	0.4638	-0.4962	2.797	2.798	1,642	0,4098	-6-4602	G ·
	.:	5 4 2 2	2.711	1.537	0.4638	-0,4962	2.797	2,797	1,642	0.4398	-0.4602	C
ĺ	+ Q	4.104	2.150	2.023	0.8216	-0.3784	1.977	2.200	2. 1 4 2	0.880.0		L.e
-	1.0	4.111	2.052	2.013	0.8210	- 0.3790	1.985	1.977	2.120	6.878**	-0.3213	1 2 C
	τQ	4.111	2.055	2.014	0.8210	- 0.3790	1.985	1,985	2.121	0.8787	-07213	1.1.
	' Q	4.111	2.05	2.014	0.8210	-0,3790	1.985	1,985	2.121	0,8787	-0,3213	
	· 2	1.93	0,950	2.315	1.2575	-0.1825	0.712	0.700	. 2.390	1.3341	-0,1055	1 - 4
	5 1	1.930	0.965	2.316	1.2576	-0.1824	0.712	0.712	2,391	1.334)	-0.11 59	1,44
	: .	: 930	0.965	2,316	1.2 5 7 6	- 0,1824	0.712	.).73,1	2.391	1.3341	-0.1059	.44
	.4	- 0.651	0.320	2.381	1.7316	0.0516	-0.735	0.800	2.382	1.8165	O NO.	1.15 10
	- 4	- 0.650	-0.326	2.380	1.7.7.15	0.0515	- 0.735	-0.735	2,388	1,8169	0.1364	1.1.2
	1.0	- 0.61 -	0.326	2.380		0.0515	- 0.775	0.73	2,388	8169	0.1769	1.65
	1.	- ` OH .	-1.50 /	2.197	2.1932	: 2732	6 20. ء	- 2.100	. 2.104	2.2707	0.350 *	·.u.
	I	- E OF	F, F, 4 (2.193	2.1929	0.27 2,9	- 2,029	- 2.02F	2,113	2,2712	2 55 2	· · .
	16	3-0-5	.54%	2.193	2.1929	0.2729	2 .029	·2.029	2.111	2,2712	0.351.	
	~	- 4 530	-2.500	1.789	2.5943	0.4343	- 2,869	-2.900	1,618	2.0471	0.6871	216
	19,	4.93€	-2.4 15	1.797	2.5949	0.4349	- 2.871	-2.869	1.621	2.6473	0.4873	
	1	- 4,836	-2.418	1.797	2.5949	0.4349	- 2.87	- 2.87	1.621	2 64 73	0,48.13	
	<i>'</i> .	- 3 54 '	- 2.800	1.2 *5	2.9034	0.5034	- 3.069	3.000	1.034	2.913.	0.513	!
)	2 .	- 1544	-2773	1.278	2 9036	0.5036	- 3.068	-3.069	1.027	2.912	0.572	
	2.0	- 5.544	-: 774	279	2.9076	0.50 %	3.068	- 3.068	027	2.912	- 5,27	

1

.

3

		موجودة بالمهام مراجع ومعمور	نى جو بىنەتور بىلۇرىغا بى كۈرۈ ، ھ					ta De . espèr		. بست م	
.			TAB	LE 2	.1, 1	EXAME	LE :	2.73		1	•
	0 19	×	X Lm/sec	X I c m	X X X V	Q : 100	X calleef	X Pm/sec	X 7 077	7. X.	X. En
•	•	-51.00	0.481	3.08-15	0.97 15	- 5.332	- 5 460	0. :74	3.0408	···. ij	2. 1
•	• (), (), ⁽	- 07B	0.493	3.0883	0 מירי ס	5.337	- 5.332	0.187	3.0417	6 291 *	··
	·····	- 2.05.3	0.493	2.0483	2.9505	5.337	- 5.337	0 186	1.04 7		2.11
2.	- 578	· 6, 700	- 0. *05	3.0731	1.1531	6.386	- 4.200	-0.968	2.9665	.046%	1.05
. •	·.u. ·	- 6.289	-0.644	.0772	1,1572	- 6.383	- 6.386	-0,987	2,965 c	1.015.2	1.2
	2.6	6.703	-0.646	3.0770	5.1570	- 6.383	- 6.383	-0.986	2.0.00	.041.5	<i>.</i> 6.
·	2.015	-6.308	-0.646	3.0770	1,1570	- 6.383	- 6.383	-0.986	2.58.52	10412	
<u></u>	-12 388	- 6.200	-1.897	2.8225	1.1425	- 5.958	- 6.000	-2.224	2.6424	0.4629	i 1.6f
25	723	-6.194	- 1.896	2.8225	1.142%	- 5. 9 5 9	-5.958	-2.220	2.6432	0.9632	1.63
· · · · · · · · · · · · · · · · · · ·	01.358	-6 194	-1 296	2 8225	1 425	- 5 959	- 5 959	-2 220	26-32	09572	1 65
•••• •	0.573		2.945	2 3 7 2 0	0.8620	0.000	0.000	1 206	14 1625	0.5526	
	9.540	4 787	-2.945	2.33288	0.8920	- 4 1 5 0	- 4.100	-1.2.2	2 092	0.0525	
•	- 1.541	4.770	-2.992	2.3289	0.8869	- 4.150	- 4.150	-3.211	2.0921	0.052	•••
 -,	(- 1, d)	770		2 3289	6.8889	- 4 150	- 4 150	.7 2 1		0.652	
	- 468"	- 2 5 0 0	3 7 19	1.6502	0.4502	1 376	- 1 400	-3.766	1 364 3	.) . 9 . 7	
• • •	4.699	-2 343	- 3. 703	1.6517	0.45/3	- 1.378	- 1.376	-3.764	1.3854	0.1854	1
·· ,		2.740									
·	- 4.698	-2.349	- 3.704	1.6513	0.4515	- 1,378	- 1.378	-3.764	1.,7854	0,185.4	1.21
3.2	0.090	0.800	-3.859	0.8845	-0.0755	1.748	1.700	-3.732	0.6255	-0.334 p	0.96
3.4 7 ·	1,106	0.545	-3.884	0.8828	-0.0772	1.748	1.748	-3.727	0.6259	- 0.334	0.93
	1. 05	1.053	- 0. 88 5	0.8529	-0.077	1.748	1.748	-3.727	0.6259	-0.3341	0.96
3.7	1. 105	0.553	-3.883	0.8829	-0.0771	1.748	1.748	-3.727	0.6259	-0.3341	0.9+
3.4	6.608	3.600	-3.468	C.1377	-0.5823	4.506	4.700	-3.082	-0.0649	-0.7849	0.77
3.4	6,629	3.304	- 3. 438	0.1357	-0.5843	4.515	4.506	-3.101	- 0.0662	-0.7862	0.72
1.4	6.628	3.314	-3.439	0.1358	-0.5842	4.5 15	4.515	-3.100	- 7.0661	-0.7861	072
3.4	5.628	3.714	-7.439	0.1358	-0.5842	4.5 15	4.515	-3.100	- 0,066 (-0.7861	0.72
².6	0.5 "8	5,400	-2.568	- 0.4718	-0.9518	6.251	6.900	-1.958	-0.5799	- 1.0599	0.46
۰۵.	-0.589	5.289	-2.579	-0.4725	-0.9525	6.277	6.25	-2.023	-0.5842	- 1.0642	0.45
•	58.	5.239	-7.577	-0.4725	- 9525	6,277	6.277	·2.020	-0.5841	- 1,064	0.49
56	, • • •	1.299	-2.577	- 0.4725	0.95.5	G.277	6.277	-2.020	-0.5841	-1.06	0.40
3.C	29- 1	C2.5	-1,427	-0.8750	1.1160	6.612	6.800	-0.712	-0.811	.,093.	0,24
38	1 2 1 11	1 + . 30	434	-0.8764	- 1,1 * 1.14	6.618	6.612	-0,731	• 0. •• * *	1003	024
3,8	1	1 .32	-1,434	2.8764	-1.1164	v,ë18	6.618	-0.730	-1181 3	- 1, ego (0.24
4.0	11 182	5.611	-0.260	-1.0441	-1.0441	£ 454	5,400	0.472	-0.8-1	-0.862	(
40	11 7 . 1	5.51	-0.255	-1.0437	-1,0477	<u> </u>	5,454	0.477	0.8% 7	O HS :	ļ ,
40	11.1	660	0.255	-1.0437	- 1 - 1 - 7	17. 49.4	5.453	0.477	-0.8617	-0 8RT 7	.)
4.2	10.70		0.841	-0.9836	-119836	5.330	5,300	1,549	-0 Herei	-0.81, 1	
a 2	10 7 1	e, 115 %	1 9 4 6	-0.007.0	.0.00.74						

· ·

.

1

•

•

.

1

i

:

Método B de Newmark Compertamiento inelástico 1 Ejemplo

Cada masa rígida del sistema de la fig. (a.1) pesa 9.81 Ton (métricas). Ambos resortes son clasta plásticos con rigideces iniciales de 50 y 25 Ton /em. para el primero y segundo entrepiso respectivamente Calcúlese numéricamente el des plaza miento mázia. absoluto, en valor numérico, del primer piso como tes pueste a un desplazamiento brusco de 2cm. del apoyo (Io=o para téo, zo= 2cm para to).

Procedimiento iterativo :

۲.

- 1. Supendremos los valères de Q, y Qe
- 2. Calculamos Z, y Z, de (a.1) y (a.2).
- 3. Obtenemos Ž, 4 X, ; Ž, 4 Xz con las expr<u>e</u> siones del B-newmark.
- 4. Obtenemos Qi y Qz en función de (X,-X); (Xz-Xi) respectivamente. Si las B calculadas dificren de las supuestas se repite el ciclo.

Expresiones del B-Newmark para B= = + 4 St= 0.150g. $\vec{x}_{i+1} = \vec{x}_i + \frac{o_{i+1}}{2} (\vec{x}_i + \vec{x}_{i+1})$ $= \tilde{Z}_{1} + 0.05(\tilde{Z}_{1} + \tilde{Z}_{1} + 1) \quad . \quad .$ (2.3) $X_{i+1} = X_i + 0.1 X_i + (\frac{1}{2} - \frac{1}{6})(0.1)^2 X_i + (0.1)^2 (\frac{1}{6}) X_{i+1}$ $= \mathcal{Z}_{i} + 0.1 \mathcal{Z}_{i} + \frac{10^{2}}{3} \mathcal{Z}_{i} + \frac{10^{2}}{4} \mathcal{Z}_{i} + \frac{10^{2}}{4} \mathcal{Z}_{i+1} + \frac{10^{2}}{4} \mathcal{Z}_$

Expresiones para la determinación de Qiy Qe.

$$\begin{array}{l} Pare \ t = 0^{+}, \ \chi_{0} = 2:0, \ \vartheta_{1} = -50, \ \vartheta_{2} = 0.0 \\ applicando las cc \ n + y \ a.z \ obtenermos \\ \chi_{1}^{\circ} = \frac{\Im_{2}^{\circ} - \Im_{1}}{M} = 50 \ j \ \chi_{2}^{\circ} = -\frac{\Im_{2}^{\circ}}{M} = 0.0 \\ \chi_{1}^{\circ} = 0 \ j \ \chi_{1} = 0 \ j \ \chi_{2} = 0 \ j \ \chi_{2} - \chi_{2} = -2 \\ \chi_{2}^{\circ} = 0 \ j \ \chi_{2} = 0 \ j \ \chi_{2} = 0 \ j \ \chi_{2} = -2 \end{array}$$

como se muestra en la siguiente figura

 $\begin{aligned} \hat{x}_{2} &= 0 \neq 0.05 \ (0 \neq 0) = 0.0 \\ \hat{x}_{2} &= 0 \neq 0.1 \ (0) \neq \frac{15}{5} \ (0) \neq \frac{15}{6} \ (0) = 0.0 \\ \hat{y}_{1} &= -50 \neq 50 \\ \hat{x}_{1} &= -37.50 \\ \hat{y}_{2} &= 25 \ (x_{2} - x_{1}) = 25 \ (0 - 0.25) = -1.25 \\ en csin forma se contruye la siguiente tabla. \end{aligned}$

1	20	<i>G</i> ₁	<i>Q</i> 2	z,	2., X.,	π,	<i>X</i> ,	Ž,	×2
0.0	2.0	-50.00	0.000	50.000	0.000	0.000	0.020	0.0 00	8.000
2.1	2.0	-50.00	0.000	50.000	0.000	5.000	0.250	0.000	0.000
-		-37.500	- 6.25	37.500	0.313	4.385	0.259	0.313	0.010
	,	-38542	- 5.435	32.292	0.273	4.115	0.230	0.273	0.009
		-33.976	-5.272	83.511	0.264	4.176	0.2¢3	0.264	0.009
`		-38.874	-6.355	33.602	0.268	\$1.180	0.223	0.248	0.009
		-33.867	- 5.352	33.512	0.268	4.176	0.223	0.248	0.639
2.2	2.0	-20.00	-10.000	12.000	1.036	6.352	0.769	1.036	0.070
		_ 11.552	-13.467	1.553	1.509	5.927	0.455	1.109	0.093
		-12.256	-16.506	-5.211	1.376	5.571	0.744	1.376	0.082
1		+12.820	-16.559	- 3.986	1.354	5.652	0.946	1.364	0.051
		-12.717	-16.619	- 3.842	1.367	5.6.30	0.746	1.347	0.081
		- 12. 705	- 16.616	- 3. 914	1.366	5. 656	0.746	1.366	0.081
0.3	2.0	10.000	-25.000	-35.000	3.447	3.710	1.240	3.447	0.315
· ,		12.010	-23.134	- 37.010	3.354	3.610	1.237	3.354	0.312
		11.843	- 23.136	-3%.977	3.354	3.71	1.240	3 . 354	0.312
,		12.012	- 23.211	- 35. 148	3.357	3.703	1.240	3.357	0.312
		11.998	-23.208	- 35. 209	2 357	3.700	1-240	3.357	0.3/2
<i>p.</i> 4	2.0	25.000	- 25.000	-50.000	5.767	- 0.55	1.499	5.767	0.967
		21.993	- 16.057	- 33.993	S 320	0.090	1.431	5.320	0.752
		21.549	-16.980	- 37.605	5.966	0.059	1.430	5.566	0.753
		21.498	- 16.916	- 38. 478	5.363	0.016	1.429	5.333	0.753
		21.425	- 16.894	- 38. 341	5.362	0.028	1.429	5.362	0.753
		Q1. 433	- 16.895	- 39. 331	5.362	0.023	1439	5.962	0.753
		La	velocida	d se h	120 Casi	nules	4		
	· .	por	lo cual	el desp	la zamiel	sto .			
	·	ma	zimo se	ra de:					
			(3.)) máx = la	43 cm.		'		
									1
		• •		$\tilde{\mathcal{L}}$	es de zamis	cate schal	10=X, - X0	± =0.5	7/ 0-

; ج

-- - -----

VIBRACION DE VIGAS EN FLEXION

$$V + pdz - (V + \frac{\partial V}{\partial z} dz) - f_I dz = 0$$
 (1)

EN DONDE
$$f_I dz = m dx \frac{\partial^2 x}{\partial t^2}$$
 (2)

SUSTITUYENDO (2) EN (1) Y SIMPLIFICANDO:

$$\frac{\partial V}{\partial z} = p - m \frac{\partial^2 x}{\partial t^2}$$
(3)

$$M + Vdz - (M + \frac{\partial M}{\partial z} dz) = 0 \qquad \frac{\partial M}{\partial z} = V \qquad (4)$$

(DESPRECIANDO LOS TERMINOS DE SEGUNDO ORDEN DE LOS MOMENTOS DE p Y f_I)

SUSTITUYENDO (4) EN (3) SE OBTIENE

$$\frac{\partial^{2} M}{\partial z^{2}} + m \frac{\partial^{2} x}{\partial t^{2}} = p \qquad (4')$$
TOMANDO EN CUENTA QUI $\frac{M}{EI} = \frac{\partial^{2} x}{\partial z^{2}}$ SE OBTIENE FINALMENTE

$$\frac{\partial^{2} 2}{\partial z^{2}} (EI \frac{\partial^{2} x}{\partial z^{2}}) + m \frac{\partial^{2} x}{\partial t^{2}} = p \qquad (5)$$

- b. AMORTIGUAMIENTO VISCOSO
 - FUERZA DE AMORTIGUAMIENTO POR VELOCIDAD TRANSVERSAL = $c(z) \frac{\partial x}{\partial t}$

$$\frac{\partial V}{\partial z} = p - m \frac{\partial^2 x}{\partial t^2} - c \frac{\partial x}{\partial t}$$
(6)

- FUERZA DE AMORTIGUAMIENTO POR DEFORMACION DE LA VIGA. ACEPTANDO LA HIPOTESIS DE NAVIER DE DEFORMACION PLANA

INCORPORANDO EL MOMENTO DEBIDO AL AMORTIGUAMIENTO EN LA EC. (5)

$$\frac{\partial^2}{\partial z^2} (EI \frac{\partial^2 x}{\partial z^2} + C_d I \frac{\partial^3 x}{\partial z^2 \partial t}) + m \frac{\partial^2 x}{\partial t^2} + C_d I \frac{\partial^3 x}{\partial t} = p$$
(6)

SI LA EXCITACION ES POR MOVIMIENTO DE LOS APOYOS, SE PUEDE DEMOSTRAR (CLOUGH Y PENZIEN, PAG 303) QUE:

$$\frac{\partial^2}{\partial z^2} (EI \frac{\partial^2 x}{\partial z^2} + C_d I \frac{\partial^3 x}{\partial z^2 \partial t}) + m \frac{\partial^2 x}{\partial z^2} + c \frac{\partial x}{\partial t} = p_{efect}.$$

EN DONDE

$$p_{efect} = \frac{-\partial^2}{\partial z^2} (EI \frac{\partial^2 x_s}{\partial z^2} + C_d I \frac{\partial^3 x_s}{\partial z^2 \partial t}) - m \frac{\partial^2 x_s}{\partial t^2} - C \frac{\partial x_s}{\partial t}$$
(7)
$$x(z,t) = x_{est}(z,t) + x(z,t)$$

x = DESPLAZAMIENTO PSEUDOESTATICO OCASIONADO POR EL MOV. DE LOS APOYOS DE MANERA ESTATICA

x = DESPLAZAMIENTO DINAMICO

INCORPORANDO (8) EN (7):

$$P_{efect} \stackrel{4}{=} \sum_{i=1}^{\infty} \{ m \emptyset_i \delta_i(t) + c \ \emptyset_i \delta_i(t) + \frac{\partial^2}{\partial z^2} [c_d I(z) \frac{\partial^2 \emptyset_i(z)}{\partial z^2} \delta_i(t)] \}$$
(9)

EN LA MAYORIA DE LOS CASOS EL AMORTIGUAMIENTO INFLUYE POCO EN LA FUERZA EFECTIVA Y LA EC.(9) SE SIMPLIFICA A

$$p_{efect} = -\sum_{i=1}^{4} m \emptyset_i(z) \delta_i(t)$$

 $\emptyset_1(z) = 1$

EN EL CASO DE UN VOLADIZO

Y

 $p_{efect} = -m(z) \delta_1(t)$

CONSIDEREMOS UNA VIGA DE SECCION CONSTANTE (EI= CONSTANTE ; \bar{m} =MASA POR UNIDAD DE LONGITUD).

DE LA EC. (5): EI $\frac{\partial^4 x}{\partial z^4} + \bar{m} \frac{\partial^2 x}{\partial t^2} = 0$ $\frac{\partial^4 x}{\partial z^4} = \frac{\bar{m}}{EI} \frac{\partial^2 x}{\partial t^2} = 0$ (10)

RESOLVIENDO LA EC. (10) POR SEPARACION DE VARIABLES:

$$x(z,t) = \theta(z) Y(t)$$

$$\theta^{IV}(z) Y(t) + \frac{\bar{m}}{EI} \theta(z) \dot{Y}(t) = 0 ; \frac{\theta^{IV}(z)}{\theta(z)} + \frac{\bar{m}}{EI} \frac{\dot{Y}(t)}{\dot{Y}(t)} = 0$$

POR LO QUE

$$\frac{\theta^{IV}(z)}{\theta(z)} = -\frac{m}{EI} \frac{\dot{Y}(t)}{\dot{Y}(t)} = C = a^4 \quad (C = CONSTANTE)$$

POR LO TANTO OBTENEMOS DOS ECUACIONES DIFERENCIALES ORDINARIAS:

 $\theta^{IV}(z) - a^{4} \theta(z) = 0$ $\dot{Y}(t) + \omega^{2}Y(t) = 0 \quad \text{DONDE} \quad \omega^{2} = \frac{a^{4}EI}{\overline{m}}$ $0 \quad a^{4} = \frac{\omega^{2}\overline{m}}{EI}$

LA SOLUCION DE LA SEGUNDA DE ESTAS ES:

$$Y(t) = \frac{Y(o)}{\omega} \operatorname{sen} \omega t + Y(o) \cos \omega t$$
(11)

LA SOLUCION DE LA PRIMERA ES:

 $\theta(z) = A_1 \text{ sen az} + A_2 \cos az + A_3 \text{ senhaz} + A_4 \cosh az$ (12) EN DONDE LAS A_i SE CALCULAN EN FUNCION DE LAS CONDICIONES DE FRON-TERA DE LA VIGA EN AMBOS EXTREMOS.

EJEMPLO

VIGA SIMPLEMENTE APOYADA

LAS CUATRO CONDICIONES DE FRONTERA SON:

en z=0: $\theta(o)=0$, $M(o)=EI \ddot{\theta}(o)=0$

en $z=L: \theta(L)=0, M(L)=EI\theta''(L)=0$

SUSTITUYENDO $\theta(o)=0$ Y $\theta''(o)=0$ EN LA EC.(12) Y SU SEGUNDA DERIVADA:

$$\begin{array}{c} \theta(o) = A_2 + A_4 \cosh 0 = 0 \\ \theta'(o) = a^2(-A_2 + A_4 \cosh 0) = 0 \end{array} \end{array} \xrightarrow{A_2} A_2 = A_4 = 0$$

HACIENDO LO MISMO CON $\theta(L) = 0$ y $\theta''(L) = 0$:

$$\begin{array}{l} \theta(L) = A_1 \quad \text{sen aL} + A_3 \quad \text{senh aL} = 0 \\ \theta'(L) = a^2(-A_1 \quad \text{sen aL} + A_3 \quad \text{senh aL}) = 0 \end{array} \end{array} \rightarrow A_3 = 0 \\ \begin{array}{l} \Rightarrow A_3 = 0 \\ \end{array} \\ \begin{array}{l} POR \quad LO \quad TANTO, \quad \theta(L) = A_1 \quad \text{sen aL} = 0 \end{array}$$

PUESTO QUE A₁=0 ES LA SOLUCION TRIVIAL, SE DEBE TENER QUE A₁ SEA ARBITRARIA Y QUE

sen aL = 0 \rightarrow a^T = n π ; n = 0, 1, 2,..., POR LO TANTO, a = n π /L. RECORDANDO QUE a⁴ = $\omega^2 \bar{m}$ /EI, SE TIENE QUE

$$\omega_n^2 = (n\pi/L)^4 EI/\bar{m}$$
 0 $\omega_n = \frac{n^2 \pi^2}{L^2} \sqrt{EI/\bar{m}}$

SON LAS FRECUENCIAS CIRCULARES NATURALES DE VIBRACION DE LA VIGA.

LAS CONFIGURACIONES MODALES SON

$$\theta_n(z) = A_1 \operatorname{sen} \frac{n\pi}{L} z$$

Consideraremos el problema del movimiento de una viga en voladizo, empotrada en un extremo y libre en el otro, que tiene la propiedad de deformarse exclusivamente por efecto de las fuerzas cortantes. Este sistema puede servir de modelo sencillo para estudiar, al menos cualitativamente, el comportamiento de edificios altos estructurados a base de marcos rígidos así como la transmisión de ondas planas de corte que se propagan verticalmente en un estrato de suelo horizontal. No obstante lo dicho, la ecuación diferencial se establecerá con alguna generalidad algo mayor de manera que sea aplicable a otros casos.

Consideremos la viga de Fig. 1a, empotrada en O y libre en su otro extremo. El movimiento lo referiremos a un sistema de referencia absoluta (sistema inercial); elegiremos además un sistema de referencia móvil, solidario con la base de la estructura y animado de un movimiento de traslación horizontal y rectilíneo.

De manera que si 0₀ y 0 son, respectivamente, los orígenes de los

dos sistemas de referencia mencionados

$$\overline{O_0 0} = S(t) \tag{1}$$

es una función conocida del tiempo t, que representa el movimiento del suelo en la dirección Ox. Supondremos que el movimiento de la base es inexorable; es decir, la base tiene un movimiento impuesto por el suelo, no hay desplazamiento de la base respecto del suelo circundante, ni tampoco la base gira. Dicho de otro modo, ignoramos o no tenemos en cuenta la interacción dinámica entre el suelo y la estructura. Tendremos, entonces, que

$$S(t) = a(t)$$
 (2)

es la componente horizontal de la aceleración del suelo en la dirección Ox.

Llamaremos, x(z,t) el desplazamiento horizontal de la estructura en el punto de cota z, referido a su base O; z la cota de un punto cualquiera de la viga; A el área de la sección transversal de la viga, G el módulo de elasticidad transversal del material de la viga, K un factor que depende la forma de la sección transversal (adimensional) y H el largo de la viga, que representa la altura total del edificio que pretendemos modelar, o el espesor de la capa de suelo, si es eso lo que pretendemos representar. Finalmente, llamaremos m la masa por unidad de largo de la viga y Q el esfuerzo cortante en la sección a cota z.

Del segundo principio de Newton aplicado a un segmento de viga (ver Fig 1b) obtenemos la ecuación diferencial

m
$$\Delta z \frac{\partial^2}{\partial t^2} (x + s) = -Q + Q + \frac{\partial Q}{\partial Z} \Delta Z$$

O BIEN

$$m \frac{\partial^2 x}{\partial t^2} + ma(t) = \frac{\partial Q}{\partial z}$$
(3)

La ecuación constitutiva de la viga de corte es

$$Q = KAG \frac{\partial x}{\partial z}$$
(4)

eliminando Q entre las ecuaciones (3) y (4), obtenemos

$$m\frac{\partial^2 x}{\partial t^2} + ma(t) = \frac{\partial}{\partial z} [KAG\frac{\partial x}{\partial z}]$$
 (5)

En general, m y KAG son funciones de z (viga de sección variable y con distribución variable, mejor dicho no uniforme, de la masa). En el caso general tendremos, entonces, poniendo explícitamente esta dependencia funcional

$$\begin{array}{c} m = m(z) \\ KAG = k(z) \end{array} \right\}$$
(6)

en que m(z) y k(z) representan la masa local y la rigidez de corte local de la viga.

En el caso particular de una viga uniforme, que será el que trataremos en detalle, m(z) y k(z) son costantes y la ecuación (5) toma la forma

$$\frac{\partial^2 x}{\partial t^2} = \frac{KAG}{m} \frac{\partial^2 x}{\partial z^2} - a(t)$$
(7)

Pondremos

$$c^2 = \frac{KAG}{m}$$
 (8)

con lo cual la ecuacion (7) se transforma en

$$\frac{\partial^2 x}{\partial t^2} = c^2 \frac{\partial^2 x}{\partial z^2} - a(t)$$
(9)

que es la forma más cimple de la ecuación de ondas.

El parámetro c tiene dimensiones $|LT^{-1}|$ y, según veremos, representa la velocidad de propagación de las ondas a lo largo de la viga. Para resolver cualquiera de las dos ecuaciones (5) o (9) necesitamos conocer las condiciones iniciales y las condiciones en los extremos o condiciones de borde. Las primeras se refieren al estado en que se encuentra la viga en un instante determinado, t=o, por ejemplo. Las segundas describen las condiciones de vínculo. Las condiciones iniciales se pueden dar especificando, por ejemplo, la posición y la velocidad de todos los puntos de la viga en el instante t=o:

 $x(z,0) = f_{i}(z)$ (10)

$$x_{H}(z,0) = f_{2}(z)$$
 (11)

Las condiciones de borde pueden ser muy variadas. En nuestro caso se tiene

$$x(o,t) = 0$$
 (12)
 $x_{H}^{*} = (H,t) = 0$ (13)

La primera de estas ecuaciones dice que el extremo inferior de la viga se mueve junto con la base. La última expresa que el esfuerzo

de corte es nulo en el extremo superior.

Observemos, aunque sea trivial, que la ecuación diferencial |ec (5) o ec (9), según el caso | es independiente de las condiciones iniciales y de borde; por lo tanto, su validez es general. Esto fluye indistintamente del borde de dichas condiciones no han tenido para que ser tomadas en cuenta en la deducción de la ecuación diferencial y que la consideración del caso particular de la viga en voladizo no ha tenido otro fin que fijar la atención sobre un caso concreto.

2. MODOS NORMALES DE LA VIGA DE CORTE EN VOLADIZO

Consideramos el caso particular de una viga uniforme en voladizo que se deforma por corte exclusivamente, suponiendo que la base se encue<u>n</u> tra en reposo (S(t) = constante). Trataremos de determinar movimie<u>n</u> tos en que x(z,t) pueda expresarse como el producto de dos funciones, una que depende exclusivamente de z, y otra que es función de t sol<u>a</u> mente. Veremos que esto es posible siempre que la función de t sea una función sinusidal cuya frecuencia sea igual a uno de un conjunto de valores discretos. Resultará así que todos los puntos de la viga se moverán con movimiento armónico simple, con la misma frecuencia y en fase o en oposición. Las funciones de z quedarán completamente determinadas, salvo un factor de amplitud arbitrario. A estos movimientos tan especiales los llamaremos modos normales o modos principales de oscilar.

Pongamos entonces

$$\mathbf{x}(z,t) = \emptyset(z)\mathbf{f}(t) \tag{1}$$

La ecuación diferencial para la viga uniforme con base fija (s(t) = constante) se obtiene de la ecuación (1.9) poniendo en ella a(t) = 0. Resulta

$$\frac{\partial^2 x}{\partial t^2} = c^2 \frac{\partial^2 x}{\partial z^2}$$
(2)

Sustituyendo la expresión (1) obtenemos

$$\emptyset(z) \frac{d^2 f}{dt^2} = c^2 \frac{d^2 \emptyset}{dz^2} f(t)$$

o bien

$$\frac{\frac{d^2 f}{dt^2}}{\frac{f}{f(t)}} = c^2 \frac{\frac{d^2 \emptyset}{dz^2}}{\emptyset(z)}$$
(3)

Ahora bien, el primer miembro de (3) es función de t solamente, mientras que el segundo miembro depende sólo de z. Pero t y z son variableś independientes; luego, para que se pueda cumplir (3) es precico que ambos miembros sean iguales a una misma constante. Llamemos $-\omega^2$ dicha constante. Obtenemos así las dos ecuaciones dife-

renciales ordinarias siguientes

$$\frac{\mathrm{d}^2 f}{\mathrm{d} t_2} + \omega^2 f = 0 \tag{4}$$

$$\frac{\mathrm{d}^2 \emptyset}{\mathrm{d}z^2} + \frac{\omega^2}{\mathrm{c}^2} \theta = 0$$
 (5)

Decimos que hemos logrado separar las variables de la ecuación en derivadas parciales (2), o que hemos separado dicha ecuación en dos ecuaciones diferenciales ordinarias. La constante ω recibe por ello el nombre de constante de separación. La solución general de (4) se puede escribir en la forma

$$f(t) = R \cos(\omega t + \varepsilon)$$
(6)

que representa una oscilación armónica simple de frecuencia circular ω y fase inicial ε

La solución general de (5) es

$$\emptyset(z) = A \operatorname{sen}(\frac{\omega z}{c}) + B \cos(\frac{\omega z}{c})$$
 (7)

Recurrimos ahora a las condiciones de borde (1.12) y (1.13) que se pueden expresar en la forma

$$\begin{cases} \emptyset(o) = 0 \\ \emptyset'(H) = 0 \end{cases}$$

$$(8)$$

Sustituyendo la expresión de $\emptyset(z)$ encontrada en (7) obtenemos

$$\begin{array}{c} B = 0 \\ \\ \frac{\omega}{c} A \cos\left(\frac{\omega H}{c}\right) = 0 \end{array} \right\}$$
(9)

Este sistema admite la solución trivial $\frac{\omega A}{c}=0$, B=0, que corresponde al reposo en la posición de equilibrio y no nos interesa. Por lo tanto, suponemos $\frac{\omega A}{c} \neq 0$, con lo cual nos vemos obligados a concluir que un movimiento del tipo postulado sólo es posible si ω es raíz de la ecuación trascendente

$$\cos\left(\frac{\omega H}{c}\right) = 0 \tag{10}$$

cuyas soluciones son

$$\omega_n = (2n-1)\frac{\pi c}{2H}$$
 (n = 1,2,3,...) (11)

Las frecuencias ω_n reciben el nombre de frecuencias normales o frecuencias naturales de la viga. La ec (10) es la ecuación de frecuencias. Observemos que

$$\omega_1: \ \omega_2: \ \omega_3: \ \ldots \ = \ 1: \ 3: \ 5: \ \ldots \tag{12}$$

Las frecuencias naturales, ordenadas de menor a mayor, son entre sí como la sucesión de los números impares. Los períodos correspondientes valen

$$T_n = \frac{4H}{c} \cdot \frac{1}{(2n-1)}$$
 (13)

y forman, por consiguiente, una progresión armónica.

Finalmente el conocimiento transversal de la sección de la viga situada a la cota z, para un instante t cualquiera, está dado por

$$x_n(z,t) = A_n \operatorname{sen}(\frac{2n-1)\pi z}{2H} \cos(\omega_n t + \varepsilon_n) \quad (n = 1, 2, 3, ...) \quad (14)$$

Cada uno de estos movimientos recibe el nombre de modo normal o modo principal de oscilar. Nótese que las constantes $A_n \ y \ \varepsilon_n$ han quedado sin determinar. Esto es así porque no hemos hecho uso de las condiciones inciales. A_n es la amplitud del modo de orden n; ε_n es su fase inicial o simplemente fase. Al modo de menor frecuencia se le da el nombre de modo fundamental. Los demás se designan como 20., 3er...modo, o, genéricamente, como modos superiores. En el caso particular que nos ocupa, dada la relación armónica de los períodos, establecida anteriormente, se habla de armónicas superiores. Las frecuencias ω_n y las funciones $\emptyset_n(z)$ reciben el nombre de frecuencias modales y funciones modales, respectivamente. También se usan los apelativos de frecuencia característica, valor característico, frecuencia propia, valor propio, eigenvalue y los correspondientes función caracterírica, etc.

Convendremos en normalizar o estandarizar las funciones modales, elijiendo su amplitud igual a la unidad. Con esta convención tendremos

$$\emptyset_n(z) = \operatorname{sen} \frac{(2n-1)\pi z}{2H} \qquad (n = 1, 2, 3, ...) \quad (15)$$

Las fuerzas cortantes del modo de orden n quedan dados (para $A_n=1$) por

$$Q_n(z,t) = kAG \frac{\partial x_n(z,t)}{\partial z} = kAG \frac{(2n-1)\pi}{2H} \cos(\frac{(2n-1)\pi z}{2H}) \cos(\omega_n t + \varepsilon_n)$$

El corte en la base es (para $A_n=1$)

$$Q_{n}(0,t) = kAG \frac{(2n-1)\pi}{2H} \cos(\omega_{n}t + \varepsilon_{n})$$
(16)

Luego, el corte en la sección situada en la cota z referido al corte basal valdrá

$$\frac{Q_n(z,t)}{Q_n(o,t)} = \cos\frac{(2n-1)\pi z}{2H} \qquad (n = 1, 2, 3,...) (17)$$

Y

El momento de volteo (positivo en el sentido trigonométrico positivo 7) está dado por (para $A_n=1$)

$$M_{n}(z,t) = kAG\left[(-1)^{n} + sen\frac{(2n-1)\pi z}{2H}\right] cos(\omega_{n}t + \varepsilon_{n})$$

Luego

$$M_{n}(o,t) = (-1)^{n} kAG \cos(\omega_{n}t + \varepsilon_{n})$$
(18)

Por lo tanto el momento de volteo referido al momento de volteo local es

$$\frac{M_{n}(z,t)}{M_{n}(o,t)} = 1 + (-1)^{n} \operatorname{sen} \frac{(2n-1)\pi z}{2H}$$
(19)

Finalmente, llamemos k_n la altura a la cual habría que aplicar el corte basal para obtener en la base un momento estático igual (numéricamente, o sea, en valor absoluto) al momento de volteo basal. Tendremos

$$|Q_n(o,t)|h_n = |M_n(o,t)|$$

de donde

$$\frac{h_n}{H} = \frac{2}{(2n-1)\pi} \qquad (n = 1, 2, 3, ...) \qquad (20)$$

expresión que se ha tabulado a continuación.

n	$\frac{h_n}{H}$	
1	0.6366	
2	0.2122)4 12
3	0.1273	A F F
4	0.0909	; ;
5	0.0707	i i
		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

La tabla anterior da los valores de h para los cinco primeros $\frac{n}{H}$

modos. Así, si se aplica el corte basal correspondiente al primer modo como una fuerza estática horizontal a la cota 0,6366 H, el momento de dicha fuerza respecto de la base es igual al momento de volteo basal en el modo fundamental. El resultado de ec (20) y la tabla muestran que, a igualdad de corte basal, el modo fundamental es el que tiene importancia predominante en el momento de volteo basal.

A una conclusión análoga llegamos examinando las ecuaciones (16) y (18). A igualdad de amplitud de oscilación, mientras los cortes basales máximos crecen con el número de orden del modo, según la serie de los números impares (1, 3, 5,...), el momento de volteo basal máximo permanece el mismo (en valor absoluto) para todos los modos.

En la Fig 2 hemos representado esquemáticamente las funciones modales y las razones $\frac{Q_n(z,t)}{Q_n(o,t)}$, $\frac{M_n(z,t)}{M_n(o,t)}$ para n = 1, 2, 3

11.

<u>.</u>`

Los puntos para los cuales $\emptyset_n(2)$ se anula se llaman *nodos*; aquéllos para los cuales $\emptyset_n(2)$ es extremo (máximo o mínimo) se llaman vientres. Podemos observar que $\emptyset_n(z)$ presenta exactamente n vientres y n nodos (si se cuenta con tal el punto z=o).

Observemos también que, salvo para x=1, en que el mayor momento de volteo ocurre en la base, en los modos superiores el momento de volteo máximo no ocurre en la base y es numéricamente igual al doble del momento de volteo máximo basal. 3.- <u>ORTOGONALIDAD DE LOS MODOS NORMALES, VIBRACIONES LIBRES</u> Las funciones modales encontradas en la Sección 2 satisfacen la <u>re-</u> lación de ortogonalidad

$$\int_{0}^{H} m\phi_{i}(z) \phi_{j}(z) dz = 0 \quad \text{para } i \neq j \quad (1)$$

En efecto

$$\int_{0}^{H} \operatorname{sen} \frac{(2i-1) \, \pi z}{2H} \, \operatorname{sen} \frac{(2j-1) \, \pi z}{2H} \, dz = \frac{1}{2} \int_{0}^{H} \left[\cos \frac{(i-j) \, \pi z}{H} - \cos \frac{(i+j-1) \, \pi z}{H} \right] dz$$
$$= 0 \qquad (i \neq j)$$

Esta propiedad tiene extraordinaria importancia para el desarrollo de la teoría de las vibraciones libres y de las vibraciones forzadas.

Las funciones $\phi_{i}(z)$ forman una base ortogonal (completa) en el inter valo (0,H) y, con algunas restricciones que no tienen importancia en las aplicaciones prácticas, cualquiera función se puede represen tar en dicho intervalo como una combinación lineal de las $\phi_{i}(z)$. No entraremos aquí a establecer la posibilidad de tal representación ni su unicidad. Nos limitaremos a establecer cómo se pueden calcular los coeficientes de la combinación lineal.

Sea

$$f(z) \qquad 0 < z < H$$

una función cualquiera de z, y admitamos que es posible representa<u>r</u> la en la forma

$$f(z) = \sum_{i=1}^{\infty} \alpha_i \phi_i(z)$$
(2)

Para determinar los coeficientes α_j multiplicamos ambos miembros de (2) por $\phi_j(z)$ e integramos entre 0 y H, teniendo en cuenta las rel<u>a</u> ciones de ortogonalidad. Obtememos

$$\alpha_{j} = \frac{\int_{0}^{H} f(z) \phi_{j}(z) dz}{\int_{0}^{H} \phi_{1}^{2}(z) dz}$$
(3)

Que la representación (2) es única es una consecuencia directa del hecho que las funciones $\phi_i(z)$ son linealmente independientes.

El resultado recién encontrado nos permite resolver de inmediato el problema de las vibraciones libres. Se trata de resolver el sistema diferencial

$$\frac{\partial^{2} \mathbf{x}}{\partial t^{2}} = \mathbf{c}^{2} \frac{\partial^{2} \mathbf{x}}{\partial z^{2}}$$

$$\mathbf{x}(0,t) = 0 , \mathbf{x}_{z}(\mathbf{H},t) = 0$$

$$\mathbf{x}(z,0) = \mathbf{f}_{1}(z) , \mathbf{x}_{t}(z,0) = \mathbf{f}_{2}(z)$$

$$(4)$$

correspondiente a las vibraciones libres de una viga uniforme que se deforma exclusivamente por corte, empotrada en z=0 y libre en z=H, sujeta a las condiciones iniciales expresadas en la última línea de (4).

La función

$$\mathbf{x}(\mathbf{z},\mathbf{t}) = \sum_{i=1}^{\infty} \left[\alpha_{i} \cos \omega_{i} \mathbf{t} + \beta_{i} \sin \omega_{i} \mathbf{t} \right] \phi_{i}(\mathbf{z})$$
(5)

satisface la ecuación diferencial y las condiciones de borde. Determinaremos los coeficientes α_i , β_i de manera que las condiciones iniciales queden también cumplidas. Derivando (5) respecto del tiempo obtenemos

$$\mathbf{x}_{t}(z,t) = \tilde{\Sigma} \begin{bmatrix} -\omega_{i}\alpha_{i} & \sin\omega_{i}t + \omega_{i}\beta_{i} & \cos\omega_{i}t \end{bmatrix} \phi_{i}(z) \quad (6)$$

Haciendo t=0 en (5) y (6) y tomando en cuenta las condiciones inicia les, obtenemos

$$\mathbf{x}(\mathbf{z},\mathbf{0}) = \sum_{i=1}^{\infty} \alpha_i \phi_i(\mathbf{z}) = \mathbf{f}_1(\mathbf{z})$$
(7)

У

$$\mathbf{x}_{t}(z,0) = \sum_{i=1}^{\infty} \omega_{i}\beta_{i} \phi_{i}(z) = f_{2}(z)$$
(8)

Por lo tanto

$$\alpha_{i} = \frac{\int_{0}^{H} f_{1}(z) \phi_{i}(z) dz}{\int_{0}^{H} \phi_{i}^{2}(z) dz}$$
(9)

$$\omega_{i}\beta_{i} = \frac{\int_{0}^{H} f_{2}(z) \phi_{i}(z) dz}{\int_{0}^{H} \phi_{i}^{2}(z) dz}$$
(10)

y el problema queda resuelto. La vibración libre consiste en una superposición de moviméentos armónicos simples de frecuencias igua les a las frecuencias modales, cuyas amplitudes y fases quedan deter minadas por las condiciones iniciales.

Pongamos

$$\xi_{i}(t) = \alpha_{i} \cos \omega_{i} t + \beta_{i} \sin \omega_{i} t , \qquad (11)$$

entonces

$$\mathbf{x}(\mathbf{z},\mathbf{t}) = \sum_{i=1}^{\infty} \xi_i(\mathbf{t}) \phi_i(\mathbf{z})$$
(12)

Los variables $\xi_i(t)$ las llamaremos <u>coordenadas normales</u> del sistema.

4.- <u>SIGNIFICADO FISICO DE LAS RELACIONES DE ORTOGONALIDAD,OSCILADO</u>-RES MODALES

En la Sección 3 hemos establecido las relaciones de ortogonalidad para las funciones modales de la viga de corte en voladizo como una propiedad matemática de dichas funciones. Queremos ahora darle a dichas relaciones un significado o interpretación física.

Empezaremos por establecer expresiones para la energía cinética y la energía potencial de la viga cuando ésta se encuentra animada de un movimiento libre arbitrario que como hemos visto recién se puede representar por la expresión (3.12).

Por definición la energía cinética del sistema es

$$T = \frac{1}{2} \int_{0}^{H} m\left(\frac{\partial x}{\partial t}\right)^{2} dz = \frac{m}{2} \int_{0}^{H} \left[\sum_{i=1}^{\infty} \dot{\xi}_{i} \phi_{i}(z) \sum_{j=1}^{\infty} \xi_{j} \phi_{j}(z)\right] dz \quad (1)$$

Invirtiendo el orden de integración y de suma y teniendo en cuenta las relaciones de ortogonalidad obtenemos

$$T = \frac{m}{2} \sum_{i=1}^{\infty} \dot{\xi}_{i}^{2}(t) \int_{0}^{H} \phi_{i}^{2}(z) dz$$
(2)

Para obtener la energía potencial observamos que ésta es simplemente el trabajo acumulado por las fuerzas internas (esfuerzos de corte) desde la posición de equilibrio en reposo (configuración no deformada) basta la configuración definida por (3.12). En un elemento de viga como el de fig la se ha acumulado la energía

$$\delta V = \frac{1}{2} Q \gamma \delta z \tag{3}$$

en que Ω es el corte y γ la distorsión. Pero según (1.4)

 $Q = kAG \frac{\partial x}{\partial z}$

y para pequeñas amplitudes

 $\gamma = \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$

Luego,

$$\delta \mathbf{V} = \frac{1}{2} \, \mathrm{kAG} \left(\frac{\partial \mathbf{x}}{\partial \mathbf{z}} \right)^2 \, \delta \mathbf{z} \tag{4}$$

y por lo tanto

$$\mathbf{V} = \frac{1}{2} \operatorname{kAG} \int_{0}^{H} \begin{bmatrix} \tilde{\Sigma} & \xi_{i} \phi_{i}'(z) & \tilde{\Sigma} & \xi_{j} \phi_{j}'(z) \\ i=1 & j=1 & j \phi_{j}'(z) \end{bmatrix} dz$$
(5)

Una integración por partes nos da

$$\int_{0}^{H} \phi'_{i}(z) \phi'_{j}(z) dz = \left[\phi'_{i} \phi_{j}\right]_{0}^{H} - \int_{0}^{H} \phi''_{i}(z) \phi_{j}(z) dz \qquad (6)$$

Pero, según las condiciones de borde $\phi_j(0) = 0$, $\phi'_i(H) = 0$; luego, el primer término del segundo miembro es nulo para toda combinación de i y de j. Por otro lado según la ec (2.5)

$$\phi_{i}^{"}(z) = -\frac{\omega_{i}^{2}}{c^{2}} \phi_{i}(z)$$
(7)

Luego, la integral

$$\int_{0}^{H} \phi'_{i}(z) \phi'_{j}(z) dz \qquad (6 \text{ bis})$$

es nula si i \neq j, en virtud de las relaciones de ortogonalidad, Cuando i = j tenemos

$$\int_{0}^{H} \phi_{\mathbf{i}}'(z) \phi_{\mathbf{i}}'(z) dz = \int_{0}^{H} \left[\phi_{\mathbf{i}}'(z)\right]^{2} dz = \frac{\omega_{\mathbf{i}}^{2}}{c^{2}} \int_{0}^{H} \left[\phi_{\mathbf{i}}(z)\right]^{2} dz \qquad (8)$$

En consecuencia, inviertiendo en (5) el orden de integración y suma:

$$\mathbf{v} = \frac{1}{2} \frac{\mathbf{k} \mathbf{A} \mathbf{G}}{\mathbf{c}^2} \sum_{\mathbf{i}=\mathbf{1}}^{\infty} \boldsymbol{\xi}_{\mathbf{i}}^2(\mathbf{t}) \quad \boldsymbol{\omega}_{\mathbf{i}}^2 \int_{\mathbf{0}}^{\mathbf{H}} \boldsymbol{\phi}_{\mathbf{i}}^2(\mathbf{z}) \, d\mathbf{z} \tag{9}$$

Pero

$$c^2 = \frac{kAG}{m}$$

Luego, finalmente

$$\mathbf{v} = \frac{1}{2} \ \mathbf{m} \ \sum_{i=1}^{\infty} \ \xi_{i}^{2}(t) \ \omega_{i}^{2} \ \int_{0}^{H} \phi_{i}^{2}(z) \ dz = \frac{1}{2} \ \mathbf{k} \ \mathbf{A} \ \mathbf{G} \ \sum_{i=1}^{\infty} \ \xi_{i}^{2} \ \int \left[\phi_{i}'(z)\right]^{2} \ dt \ (10)$$

Lo interesante de los resultados (2) y (10) es que en las expresiones de V y de T solamente aparecen cuadrados de las coordenadas normales ξ_i (en la expresión de V) o cuadrados de los derivadas tem porales $\dot{\xi}_i$ de dichas coordenadas (en la expresión de T). No aparecen productos de la forma $\xi_i \xi_i$ o $\dot{\xi}_i \dot{\xi}_i$ con $i \neq j$.

Este resultado le expresamos diciendo que hemos <u>diagonalizado</u> simu<u>l</u> táneamente las expresiones de la energía cinética y de la energía potencial. La <u>consecuencia inmediata es que la ecuación del movimien-</u> to (2.2). que es una ecuación a derivadas parciales, se puede representar por una infinidad numerable de ecuaciones diferenciales ordinarias no acopladas; es decir, en cada una de las cuales aparece una y sólo una de las coordenadas ξ_i . Esto facilita enormemente el problema de integrar las ecuaciones del movimiento.

Empleando las ecuaciones de Lagrange

$$\frac{d}{dt} \frac{\partial T}{\partial \dot{q}_{i}} - \frac{\partial T}{\partial q_{i}} = - \frac{\partial V}{\partial q_{i}} (i=1,2...)$$
(11)

encontramos inmediatamente que las coordenadas normales satisfacen las ecuaciones

$$\frac{1}{\xi_{i}} + \omega_{i}^{2}\xi_{i} = 0 \qquad (i = 1, 2, 3, ...) \quad (12)$$

Como era de esperar, si se tiene en cuenta la relación (3.11). Cada modo normal se comporta, entonces, como un oscilador armónico simple, independiente de los demás. Si M_i y K_i son, respectivamente, la masa y la constante elástica del oscilador que corresponde al modo i, debemos tener necesariamente

$$\frac{K_{i}}{M_{i}} = \omega_{i}^{2} \qquad (i = 1, 2, 3, ...) \qquad (13)$$

Por lo tanto, para determinar completamente el oscilador que representa al i^{ésimo} modo nos bastará determinar su masa M_i . La ecuación de frecuencias y ecs. (13) nos dan los K_i .

Llamaremos <u>oscilador modal equivalente</u> o simplemente <u>oscilador modal</u>, a un oscilador armónico simple cuya masa y rigidez (o constante elástica) son tales, que es capaz de oscilar de manera que, en cada constante, su energía cinética, su energía potencial y su cantidad de movimiento sean iguales a los del sistema estudiado oscilando en un modo normal.

Si M_i y K_i son respectivamente, la masa y la constante elástica del oscilador modal equivalente al i^{ésimo} modo debemos tener

$$\frac{1}{2} M_{i} R_{i}^{2} \xi_{i}^{2} = \frac{m}{2} \dot{\xi}_{i}^{2} \int_{C}^{H} g_{i}^{2}(z) dz$$
(14)

$$\frac{1}{2} \kappa_{i} R_{i}^{2} \xi_{i}^{2} = \frac{m}{2} \xi_{i}^{2} \omega_{i}^{2} \xi_{j}^{H} \varphi_{i}^{2}(z) dz$$
(15)

$$M_{i}R_{i}\dot{\xi}_{i} = m\dot{\xi}_{i}\int_{0}^{H} \mathscr{O}_{i}(z)dz$$
 (16)

en que R_i es un factor de escala.

De (14) y (15) obtenemos inmediatamente (13), dividiendo miembro a miembro. Elevando al cuadrado (16) y dividiendo por (14) resulta

$$M_{i} = m \frac{\left[\int_{0}^{H} \emptyset_{i}(z) dz\right]^{2}}{\int_{0}^{H} \emptyset_{i}^{2}(z) dz} = \frac{\left[\int_{0}^{H} m \emptyset_{i}(z) dz\right]^{2}}{\int_{0}^{H} m \emptyset_{i}^{2}(z) dz}$$
(17)

Sustituyendo en (17) las expresiones de las funciones modales encontradas en (2.15), concluimos que las masas de los osciladores modales para una viga uniforme en voladizo que se deforma exclusivamente por corte están dadas por la expresión

$$M_{i} = \frac{8M}{(2i-1)^{2}\pi^{2}} \qquad (i = 1, 2, 3, ...) \qquad (18)$$

en que M es la masa total de la viga.

La tabla siguiente da los valores de M_i/M para los cinco primeros modos.
i	$\frac{M}{\frac{1}{M}}$
1	0.81057
2	0.09006
3	0.03242
4	0.01654
5	0.01001

Observemos que los osciladores modales de los tres primeros modos contienen, en conjunto, poco más del 93% de la masa to tal de la viga, y que entre los cinco primeros completan alrededor del 96%.

Se demuestra en los libros de teoría de las series de Fourier que

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$$
(19)

Concluímos, entonces, que

$$\sum_{i=1}^{\infty} M_i = M$$
 (20)

La suma de las masas de los osciladores modales, definidos en la forma que se ha hecho más arriba, es igual a la masa total de la estructura. Podemos establecer este resultado sin necesidad de recurrir a la relación (19). Concibamos un movimiento impulsivo de la viga a partir de su configuración de equilibrio con reposo, por el cual damos a cada punto de la viga una velocidad igual a la unidad. Evidentemente la cantidad de mov<u>i</u> miento inicial de la viga será igual a su masa total M.

Ahora bien, para este movimiento tan especial tenemos las condiciones iniciales

$$x(z,0) = 0 = f_1(z)$$
 (21)

$$x_{t}(z,0) = 1 = f_{2}(z)$$
 (22)

Luego, las ecuaciones (3.9) y (3.10) nos dan

$$\alpha_{i} = 0 \tag{23}$$

$$\omega_{i}\beta_{i} = \frac{\int_{0}^{H}\phi_{i}(z)dz}{\int_{0}^{H}\phi_{i}^{2}(z)dz}$$
(24)

y la cantidad de movimiento inicial será, de acuerdo con (3.8),

$$\int_{0}^{H} mx_{t}(z,0)dz = \int_{0}^{H} \sum_{i=1}^{\infty} m\omega_{i}\beta_{i}\phi_{i}(z)dz = \sum_{i=1}^{\infty} m \frac{\left[\int_{0}^{H} \phi_{i}(z)dz\right]^{2}}{\int_{0}^{H} \phi_{i}^{2}(z)dz} =$$

$$= \sum_{i=1}^{\infty} M_{i}$$

$$i=1^{1}$$
(25)

por (17). Luego, $\Sigma M = M$. i=1

Profundizando en el significado físico de las relaciones de or togonalidad, demostraremos que: <u>el trabajo virtual de las fuer-</u> <u>zas de inercia desarrolladas en un modo para un desplazamiento</u> virtual correspondiente a un modo distinto es idénticamente nu<u>lo</u>. Análogamente, <u>el trabajo virtual de las fuerzas elásticas inter-</u> <u>nas</u> (esfuerzos de corte) <u>desarrollado en un modo para un desplaza-</u> <u>miento correspondiente a un modo distinto e idénticamente nulo</u>.

En efecto, las fuerzas de inercia correspondientes al modo están dadas por (ver ec. 3.12)

$$-m \xi_{i}(t)p_{i}(z)dz \qquad (26)$$

y un desplazamiento virtual correspondiente al modo j está dado por

$$\xi_j(t) \emptyset_j(z) \delta t$$
 (27)

Llamemos δW_{ij} el trabajo virtual; tendremos

$$\delta W_{ij} = -m \, \tilde{\xi}_{i}(t) \, \tilde{\xi}_{j}(t) \, \delta t \, \int_{0}^{H} \mathcal{G}_{i}(z) \, \mathcal{G}_{j}(z) \, dz \qquad (28)$$

Si
$$i \neq j$$
 $\delta W_{ij} = 0$ $(i \neq j)$ (29)

en virtud de las relaciones de ortogonalidad

Para i=j, la ec. (28) dá

$$\delta W_{ii} = -m\xi_i\xi_i \delta t \int_0^H g_i^2(z) dz$$

o sea

$$\delta W_{ii} = -\frac{d}{dt} \left[\frac{1}{2} m \xi_i^2 \int_0^H \vartheta_i(z) dz\right] \delta t = -\delta T_i$$
(30)

El trabajo de las fuerzas de inercia desarrolladas en el modo i para un desplazamiento correspondiente al mismo modo es igual al decremento de la energía cinética de dicho modo. Analizando ahora el trabajo virtual de las fuerzas elásticas internas, encontramos, llamando δU_{ij} el trabajo realizado por las fuerzas elásticas del modo i para un desplazamiento correspondiente al modo j

$$\delta U_{ij} = \int_{0}^{H} Q_{i} \frac{\partial x_{j}}{\partial z} \delta t dz$$
(31)

pero

$$Q_{i} = KAG \frac{\partial x_{i}}{\partial z} = KAG \xi_{i}(t) \beta_{i}^{\prime}(z)$$
 (32)

$$y \qquad \frac{\partial x_j}{\partial z} = \dot{\xi}_j(t) \theta'_j(z) \qquad (33)$$

Luego
$$\delta U_{ij} = \delta t \ KAG \dot{\xi}_{j}(t) \xi_{j}(t) \int_{0}^{H} \emptyset_{i}^{1}(z) \vartheta_{j}^{1}(z) dz$$
 (34)

que según hemos demostrado en (6 bis) es igual a cero⁵ para $i\neq j$.

Ahora bien, para i=j, tenemos

$$\delta U_{ii} = \delta t \text{ KAG } \xi_{i}(t) \dot{\xi}_{i}(t) \int_{O}^{H} [\mathscr{G}_{i}(z)]^{2} dz$$

o sea

$$\delta U_{ii} = \frac{d}{dt} \left[\frac{1}{2} \text{ KAG } \xi_i^2(t) \right]_0^H \left[\beta_i^0(z) \right]^2 dz \delta t = \delta V_i \quad (35)$$

en que V_i es la energía elástica del modo i. Tenemos en concecuencia que <u>el trabajo de las fuerzas elásticas desarrolladas en el modo</u> <u>i para un desplazamiento correspondiente a ese mismo modo es igual a</u> <u>la variacion de la energía potencial del modo en cuestión</u>. Con esto terminamos la demostración de que <u>no hay interacción entre los</u> <u>modos de vibrar</u> durante una oscilación libre. Cada modo se comporta como si los demás no existieran. Resulta, entonces, que no sólo el sistema como un todo es conservativo, sino que, además, la energía se conserva dentro de cada modo.

5. <u>RESPUESTA DE LA VIGA DE CORTE EN VOLADIZO PARA UN MOVIMIEN-</u> TO ARBITRARIO DE SU BASE.

Supongamos cumplidas las hipótesis sobre el movimiento del suelo enunciadas al comienzo de la sección 1. Las expresiones de la energía cinética y potencial en términos de las coorden<u>a</u> das normales, serán (nótese que T es la energía cinética absoluta; es decir, la del movimiento referido a un sistema ini cial):

$$T = \sum_{i=1}^{\infty} \frac{1}{2} M_{i} (R_{i}\dot{\xi}_{i} + \dot{s})^{2}$$
(1)

$$V = \sum_{i=1}^{\infty} \frac{1}{2} K_{i} R_{i}^{2} \xi_{i}^{2}$$
(2)

Las ecuaciones de Lagrange

$$\frac{\delta}{\delta t} \left(\frac{\partial T}{\partial \xi_{i}} \right) - \frac{\partial T}{\partial \xi_{i}} = - \frac{\partial V}{\partial \xi_{i}} \qquad (i=1,2,3,\ldots)$$
(3)

nos dan

$$M_{i}R_{i}^{2}\xi_{i}^{"} + M_{i}R_{i}^{"}S(t) = -K_{i}R_{i}^{2}\xi_{i}$$

o bien

$$\ddot{\xi}_{i} + \omega_{i}^{2}\xi_{i} = -\frac{a(t)}{R_{i}}$$
 (i=1,2,3...) (4)

La solución de estas ecuaciones esta dada por la conocida integral de Duhamel

$$\xi_{i} = -\frac{1}{\omega_{i}R_{i}} \int_{-\infty}^{\tau} a(\tau) \sin \omega_{i} (\tau - \tau) d\tau \quad (i=1,2,3...) \quad (5)$$

Recurriendo a la ecuación (3.12) obtenemos inmediatamente para el corrimiento lateral de la sección de la viga a la cota z en el instante t:

$$\mathbf{x}(\mathbf{z},\mathbf{t}) = -\sum_{i=1}^{\infty} \frac{\phi_i(\mathbf{z})}{\omega_i^{\mathbf{R}}_i} \int_{-\infty}^{\mathbf{t}} a(\tau) \operatorname{sen} \omega_i(\mathbf{t}-\tau) d\tau \quad (6)$$

De la ec (4.16 se tiene, tomando en cuenta (4.17),

$$\frac{1}{R_{i}} = \frac{M_{i}}{m \int_{0}^{H} \phi(z) dz} = \frac{\int_{0}^{H} \phi_{i}(z) dz}{\int_{0}^{H} \phi_{i}^{2}(z) dz}$$
(7)

Luego, finalmente,

$$\mathbf{x}(z,t) = -\sum_{i=1}^{\infty} \phi_i(z) \frac{\int_{\mathbf{\phi}_i}^{\mathbf{H}} (z) dz}{\int_{\mathbf{\phi}_i}^{\mathbf{H}} (z) dz} \frac{1}{\omega_i} \int_{-\infty}^{\mathbf{H}} a(\tau) \sin \omega_i (t-\tau) d\tau$$
(8)

La respuesta queda así expresada como una superposición de las funciones, modales multiplicada cada una por una función del tiempo que no es otra cosa que la respuesta del oscilador modal correspondiente y que un factor constante, característi co de cada modo, que se ha dado en llamar <u>factor de participa-</u> ción. Para nuestro caso dicho factor vale

$$\frac{1}{R_{i}} = \frac{\int_{\phi_{i}}^{H} (z) dz}{\int_{\phi_{i}}^{H} (z) dz} \qquad (i=1,2,3...)$$

Sustituyendo las expresiones de ϕ_i (z), encontramos

$$\frac{1}{R_{i}} = \frac{4}{(Zi-1)\pi}$$
(9)

En la tabla siguiente se dan los valores de $\frac{1}{R}$ para los cinco primeros modos de la viga de corte uniforme i en voladizo

26.

40

i	$\frac{1}{R_{i}}$ i
1	1.2732
2	0.4244
3	0.2546
4	0.1819
5	0.1415

Para el esfuerzo cortante tenemos la expresión

$$Q(z,t) = KAG \frac{\partial_{xe}(z_{1}t)}{\partial z} = -KAG \sum_{i=1}^{\infty} \frac{\phi_{i}(z)}{i^{R}i} \int_{-\infty}^{t} a(\tau) \sin \omega_{i}(t-\tau) d\tau$$
(10)

y para el momento volcante

$$\mathcal{M}(z,t) = - \operatorname{KAG} \sum_{i=1}^{\infty} \frac{(-1)^{i} + \phi_{i}(z)}{\omega_{i}^{R}_{i}} \int_{-\infty}^{t} a(z) \operatorname{sen} \omega_{i}(t-\tau) d\tau \qquad (11)$$

4

6. EJEMPLO.

Calcular las respuestas modales máximas de una viga de corte uniforme, en voladizo, cuyo período fundamental es 3 seg, sometido a un "temblor" cuyo espectro de aceleraciones absolutas \mathbf{s}_{a} (T_o) es el dado por la Fig. 3.

El espectro dado corresponde al que se puede obtener en un terreno relativamente duro. En ese tipo de terreno y para una estructura de período fundamental igual a 3 seg, la interacción entre el nulo y la estructura puede no tenerse en cuenta, aunque esta asección debe tomarse con alguna precaución.

La estructura misma podría ser el modelo ultra-simplificado de un edificio en forma de torre, estructurado a base de marcos rígidos de acero, de unos 30 a 35 pisos de altura.-

No nos va a interesar el valor mínimo de cada una de las respuestas modales, sino más bien comparar la influencia relativa de las diferentes modos. No interesa, por lo tanto, el valor absoluto de las ordenadas espectrales, sino su forma en relación con los períodos de la estructura.

El espectro de desplazamientos relativos $S_d(T_o)$ (para amorti guamiento nulo) está relacionado con el de aceleraciones absolutas a través de la ecuación.

$$S_{d}(T_{o}) = \frac{1}{\omega_{o}^{2}} S_{a}(T_{o}) = \frac{T_{o}^{2} S_{a}(T_{o})}{4\pi^{2}}$$
 (1)

Entonces

$$S_{d}(T_{o}) = \frac{T_{o}^{2}}{4\pi^{2}} |a|_{max} \quad \text{para } T_{o} \leq 0.3 \text{ seg}$$
(2)

$$S_{d}(T_{o}) = \frac{0.3T_{o}}{4\pi^{2}} |a|_{max} para T_{o} \ge 0.3 seg$$
 (3)

Los períodos naturales cumplén la relación

$$T_1: T_2: T_3: \ldots = 1 : \frac{1}{3} : \frac{1}{5} : \ldots$$

Luego, con $T_1 = 3$ seg, tendremos $T_2 = 1$ seg, $T_3 = 0.6$ seg, ... El corte basal máximo para el modo i^{ésimo} se puede expresar en la forma siguiente

$$|Q_i(o,t)|_{Max} = M_i S_a(T_i)$$

en que M_i es la masa del oscilador modal correspondiente al modoi Llamando W el peso total de la viga obtenemos los cortes barales máximos por modo que se tabulan a continuación

i	$\frac{W_{i}}{W} = \frac{M_{i}}{M}$	T _i (seg)	$\frac{S_a(T_i)}{g}$	Q _{ibasal} máx
				r •
1	0.81057	3.000	0.1 <u> a māx</u>	0.081057 Wamax:g
2	0.09006	1.000	0.3 "	0.027018 W a māx:g
3	0.03242	0.600	0.5 "	0.016210 W a māx:g
4	0.01654	0.429	0.7 "	0.011578 W a máx:g
5	0.01001	0.333	0.9 "	0.009009 W a máx:g
6	0.00670	0.273	1.0 "	0.006700 W a máx:g

La suma de los cortes basales modales máximos, tomados en valor absoluto, representa una cota superior para el corte basal total, ya que los máximos de cada modo no ocurren simultáneamente. A partir del sexto modo $T_i < 0.3$ seg; luego, a partir de dicho modo, las ordenadas del espectro de aceleraciones son cortantes, e iguales, a |a|máx. Luego,

$$|Q|_{\text{base}} < \sum_{i=1}^{\infty} |Q_i|_{\text{base,max}} = \begin{bmatrix} 0.144872 + \sum_{n=6}^{\infty} \frac{1}{(2n-1)^2} \cdot \frac{8}{\pi^2} \end{bmatrix} \frac{W|a|max}{g}$$

La serie que aparece en esta expresión es convergente y sus valores

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \frac{8}{\pi^2} - \frac{8}{\pi^2} \sum_{n=1}^{S} \frac{1}{(2n-1)^2} = 1 - \sum_{i=1}^{S} \frac{Mi}{M} = 1 - 0.45960 = 0.04040$$

Luego

$$\Sigma |Q|_{\text{base,max}} = 0.185272 \frac{W|a|max}{g}; |Q|_{\text{base}} < 0.185272 \frac{W|a|max}{g}$$

Por otro lado, la expresión

$$\int_{i=1}^{\omega} Q_i^2$$
 base, máx

llamada superposición cuadrática representa el valor más probable de $|Q|_{basal}$, en la hipótesis de que las respuestas modales no están correlacionadas entre sí. Esta expresión dá una estimación por defecto, ya que la hipótesis de partida es falsa. Efectuado el cálculo obtenemos

$$\sum_{i=1}^{\infty} Q^{2}_{i \text{ base,máx}} = 0.08877 \quad \underline{W|a|máx}_{g}$$

Entonces

$$0.08877 \frac{W|a|max}{g} < |Q_{base}|_{max} < 0.18527 \frac{W|a|max}{g}$$

Desgraciadamente no disponemos de una teoría realmente confiable para tener estimaciones más estrechas y realistas de $|Q_{base}|_{max}$ basados en un análisis modal. La norma chilena para el diseño sísmico de edificios permite emplear el promedio de los resultados

05

 \mathbf{i}_{j}

÷.

. *

13

obtenidos superponiendo los valores modales en valor absoluto y en forma cuadrática y exije emplear, por lo menos, los tres primeros modos. Procediendo de esta manera resulta

$$|Q_{\text{base}}|_{\text{máx}} = 0.106 \dot{w} \frac{|a| \text{máx}}{g}$$

si se consideran los tres primeros modos

$$|Q_{\text{base}}|_{\text{max}} = 0.137 \text{ W} \frac{|a| \text{max}}{g}$$

si se consideran todos los modos.

En la Fig 4, hemos representado los cortes (en valor absoluto) como función de $\frac{Z}{H}$ para los tres primeros modos, a una misma escala. La Fig 5, muestra los cortes de los tres primeros modos superpuestos en valor absoluto.

Se puede apreciar que la influencia de los modos 20. y 30. es muy importante en el tercio superior de la estructura. En los que en lenguaje vulgar se describe con los nombres de efecto de "chicoteo" o de "coleo".

Consideremos ahora el caso de una viga más rígida, con un período fundamental de 0.3 seg, que podría corresponder a un edificio de hormigón armado de unos cuatro o cinco pisos.

Repitiendo los cálculos tenemos

La superposición en valor absoluto da simplemente

$$\Sigma |Q_{i base}| = W|a|_{max}/g$$

Mientras que la superposición cuadrática da:

$$\sqrt{\Sigma Q_{i \text{ base,máx}}^2} = 0.816 \text{ W}|a|_{máx}/g$$

Ahora las dos estimaciones son más parecidas y podemos encerrar $|Q_{base,máx}|$ entre límites más estrechos

0.816
$$W|a|_{max}/g < |Q_{base,max}| < W|a|_{max}/g$$

· · · · · ·

La Fig 6 muestra que en las estructuras de período relativamente corto (para el espectro de respuesta que hemos supuesto), la influencia de los modos superiores es menor importante que en la del período fundamental largo. También resulta menos importante el efecto de

FIG 6

Examinemos ahora los momentos de volteo. Para ello aprovechamos el resultado encontrado en (2.20) que determina el momento de volteo basal en función del corte basal para cada modo. Encontramos para la viga cuyo período fundamental es 3 seg, los valores que se anotan en la tabla que va a continuación.

35.

;

,

FIG 7

se a 🎲 teg^o

Centro de educación continua división de estudios superiores facultad de ingeniería, unam

IV CURSO INTERNACIONAL DE INGENIERIA SISMICA

DINAMICA ESTRUCTURAL

VIBRACION DE SISTEMAS DISCRETOS DE VARIOS

GRADOS DE LIBERTAD

M. en C. JORGE PRINCE ALFARO.

JULIO 1978.

VIBRACION DE SISTEMAS DISCRETOS DE VARIOS GRADOS DE LIBERTAD

Ejemplos de sistemas de n GL

Características:

- con una coordenada por masa queda definida la confiru nación del sistema
- equivale a:

Además, la consideramos elástica, lineal

Supongamos:

n

17-1

2

1

aislemos una masa:

 $F_{r1} = \sum_{ca} fuerzas resistencia elásti-$ ca a la deformación

Las ecuaciones condensadas de movimiento serán:

. la determinación de estas fuerzas es un problema estático.

Coeficientes de influencia

f = despl. de la coord. i debido a una carga unitaria en ij coord. j (desplazamiento y fuerza en = dirección)

Por superposición

 $\begin{aligned} x_1 &= f_{11} Q_1 + f_{12} Q_2 + f_{13} Q_3 \\ x_2 &= f_{21} Q_1 + f_{22} Q_2 + f_{23} Q_3 \\ x_3 &= f_{31} Q_1 + f_{32} Q_2 + f_{33} Q_3 \end{aligned}$ inv. (1)

Por superposición

$$Q_{1} = K_{11} X_{1} + K_{12} X_{2} + K_{13} X_{3}$$

$$Q_{2} = K_{21} X_{1} + K_{22} X_{2} + K_{23} X_{3}$$

$$Q_{3} = K_{31} X_{1} + K_{32} X_{2} + K_{33} X_{3}$$
(2)

. . .

Desde luego $K_{ij} = K_{ji}$ (y $f_{ij} = f_{ji}$) (Maxwell-Mohr) La ecuación 2 también puede escribirse:

$$Q_{i} = \sum_{\mu=1}^{3} \kappa_{ij} x_{j}$$

o bien, en notación matricial

$$\begin{pmatrix} Q_1 \\ Q_2 \\ Q_3 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$$

$$\begin{array}{c} \text{matriz de ri-} \\ \text{gideces} \end{pmatrix}$$

Ponemos:

• -

$$\begin{cases} Q \\ \end{bmatrix} = \begin{bmatrix} K \end{bmatrix} \\ X \\ \end{bmatrix}$$

Claro•que $\begin{bmatrix} K \end{bmatrix}^{-1} = \begin{bmatrix} F \end{bmatrix} = \begin{bmatrix} f_{ij} \end{bmatrix}$

Sustituyendo (2) o (3) en ecuaciones de movimiento:

$$m_{1}\ddot{X}_{1} + K_{11}X_{1} + K_{12}X_{2} + K_{13}X_{3} = P_{1}(t)$$

$$m_{2}\ddot{X}_{2} + K_{21}X_{1} + K_{22}X_{2} + K_{23}X_{3} = P_{2}(t)$$

$$m_{3}\ddot{X}_{3} + K_{31}X_{1} + K_{32}X_{2} + K_{33}X_{3} = P_{3}(t)$$

o bien:

$$\begin{bmatrix} m_{1} & 0 & 0 \\ 0 & m_{2} & 0 \\ 0 & 0 & m_{3} \end{bmatrix} \begin{pmatrix} X_{1} \\ X_{2} \\ X_{3} \end{pmatrix} + \begin{bmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix} \begin{pmatrix} X_{1} \\ X_{2} \end{pmatrix} = \begin{pmatrix} P_{1}(t) \\ P_{2}(t) \\ P_{3}(t) \end{pmatrix}$$

o también:

$$\begin{bmatrix} M \end{bmatrix} \left\{ \dot{X} \right\} + \begin{bmatrix} K \end{bmatrix} \left\{ X \right\} = \begin{cases} P(t) \\ forzada \end{bmatrix}$$
$$= \begin{cases} 0 \\ libre \end{bmatrix}$$

1. VIBRACION LIBRE

$$\begin{bmatrix} M \end{bmatrix} \left\{ \ddot{x} \right\} + \left[\kappa \right] \left\{ x \right\} = \left\{ o \right\}$$
(1.1)

Supongamos la solución

$$\begin{cases} X \\ = \underbrace{\{r\}} & (A \text{ sen pt } + B \text{ sen pt}) = \{r\} & Y (t) \\ \text{constante} & \text{escalar} & \longrightarrow \text{define:} \\ \text{con t} & \text{-variación armónica} \\ \text{- amplitud} \end{cases}$$

tenemos:

$$\begin{cases} x_{j}^{2} = \{r\} (A \text{ sen pt} + B \cos pt) = r Y(t) \\ \{\dot{x}\}^{2} = \{r\} (Ap \cos pt - B p \text{ sen pt}) \\ \{\ddot{x}\}^{2} = \{\dot{r}\}^{2} (-Ap^{2} \text{ sen pt} - B p^{2} \cos pt) = -p^{2} \{r\} Y(t) \end{cases}$$

$$(1.2)$$

Sustituyendo 1.2 en 1.1 y dividiendo entre Y(t) nos queda:

$$-p^{2}[M] \{r\} + [K] \{r\} = \{0\}$$

o sea:

$$\begin{bmatrix} [K] - p^2 [M] \\ \hline [F] \end{bmatrix} \{ r \} = \{ 0 \}$$
(1.3)

 $\left[K \right] \left\{ r \right\} = p^2 \left[M \right] \left\{ r \right\}$ $[K] \{r\} = r^2 [M] \{r\}$ pre x $[K]^{-1}$ · $\frac{1}{r^2}$ pre x $M_{\rm M}^{-1}$ $\frac{1}{r^2} \{\mathbf{r}\} = [\mathbf{K}]^{-1} [\mathbf{M}] \{\mathbf{r}\}$ $\left[M\right]^{-1} \left[K\right] \left\{r\right\} = p^{2} iri$

١Å

En las dos formas llegamos a un problema de VAC

$$[\mathbf{L}] \{\mathbf{u}\} = \lambda \{\mathbf{u}\}$$

Problema de valores característicos:

- Dada una matriz cuadrada de orden (nxn) [L], que representa una transformación lineal de vectores n-dimensionales, debe encontrarse un vector $\{u\}$ que transformado por [L] resulte en otro vector λ $\{u\}$ en la misma "dirección". O sea, [L] solo cambia la magnitud de $\{u\}$ sin cambiar la dirección. El vector es un vector característico (o eigenvector) de [L]. λ (escalar) representa la relación entre las "longitudes" antes y después de la transformación y para llegar a los VEC debe tomar valores de un conjunto de valores característicos (VAC) (o eigenvalores).

El problema de encontrar frecuencias y modos naturales puede considerarse un problema de VAC. - (STD)

Tenemos

 $\left[\begin{bmatrix} K \end{bmatrix} - p^2 \begin{bmatrix} M \end{bmatrix} \right] \left\{ r \right\} = \left\{ 0 \right\}$ (1.3)

Si en el sistema de ecuaciones

$$\begin{bmatrix} A \end{bmatrix} \begin{cases} x \end{cases} = \begin{cases} 0 \end{cases}$$

[A] es no singular, la solución única es la trivial

 $X_{i}^{2} = \{0\}$, de donde; nos interesa el caso en que [A] es singular. En este caso la adjunta* [Â] existe y puede pre X por ella, con el resultado

$$|A| \{X\} = \{0\}$$
porque $[A] [A] = |A| [I] \neq [A] (nxn)$
Puesto que $|A| = 0, \{x\}$ no necesariamente es nulo, pero si
se asigna un valor dado a uno de sus elementos los demás que
dan determinados en forma única.
También notamos que si $\{X\}$ es solución de $[A] \{X\} = \{0\}$
y \ll es una constante, entonces $\ll \{X\}$ es también solución.
Por lo tanto, hay un número infinito de soluciones. Todos es-
tqs se considerarán juntqs y hablaremos de una "solución" co-
mo un conjunto de relaciones entre los elementos de $\{x\}$.
Volvemos a $\left[[K] - p^2 [M]\right] \{r\} = \{0\}$ (1.3)

Al desarrollar |E| = 0 llegamos a una ecuación de grado n en p², cuyas raíces son los VAC. - Como [K] y [M] son simétricos y positivas definidas*,

*Transpuesta de la matriz de cofactores. ** [A] es POS. DEF. si $\{\dot{q}\}$ [A] $\{\dot{q}\}>0$ para todo $\{\dot{q}\}$ no nulo puede demostrarse que las raíces de la ecuación característica son reales y positivas. Las llamamos p_1^2 , p_2^2 ,..., p_n^2 . Las n frecuencias naturales son los términos positivos de las raíces y la más baja es llama-

da frecuencia fundamental.

- Para la gran mayoria de los casos de interés las frecuencias son diferentes entre sí.

- Para cada frecuencia p; existe una VEC asociado:

 $\begin{bmatrix} K \end{bmatrix} \begin{cases} r \\ i \end{cases} = p_i^2 \begin{bmatrix} M \\ M \end{bmatrix} \\ r \\ i \end{cases}$ i = 1,..., n o sea para cada p_i existe una solución $\{r\}$ no trivial - Normalización (solo conveniencia, sin significado físico) Varias formas:

Los modos y frecuencias naturales del sistema son propiedades características derivados de las propiedades de inercia y rigidez expresados por los elementos de [M] y [K].
Llamaremos matriz modal [R] a la que tiene los VEC, o vecto-

res modales, como columnas.

ORT:)GONALIDAD DE MODOS DE VIBRACION

Se fice que dos vectores $\{a\}$ y $\{b\}$ son <u>ortogonales</u> con respecto a la matriz simétrica [J] si

$$\{a\}' [J], b\} = \{b\}' [J] \{a\} = 0$$

Demostremos que dos vectores modales $\{r_{j}^{i}\}_{j}$ y $\{r_{j}^{i}\}_{j}$, asociados a frecuencias diferentes ($P_{i} \neq P_{j}$) son ortogonales con respecto a las matrices de inercia y elástica.

- Cada uno de estos vectores satisface la ecuación 1.3

 $p^{2} [M] \{r\} = [K] \{r\} \qquad [M] \{r\} = \frac{1}{p^{2}} [K] \{r\}$

es decir:

 $P_{i}^{2} [M] \{r\}_{i} = [K] \{r\}_{i} [M] \{r\}_{i} = \frac{1}{P_{i}^{2}} [K] \{r\}_{i}$ $P_{j} [M] \{r\}_{j} = [K] \{r\}_{j} [M] \{r\}_{j} = \frac{1}{P_{j}^{2}} [K] \{r\}_{j}$

pre X i y j por $\{r\}_{j}$ 'y $\{r\}_{i}$ 'respectivamente p_{i}^{2} $[r]_{j}$ [M] $\{r\}_{i} = \{r\}_{j}$ [K] $\{r\}_{i}$ $\{r\}_{j}$ [M] $\{r\}_{i} = \frac{1}{p_{i}^{2}}$ $\{r\}_{j}$ [K] $\{r\}_{i}$

 $p_{j}^{2} \{r\}_{i}^{i} [M] \{r\}_{j} = \{r\}_{j}^{i} [K] \{r\}_{j} \} \{r\}_{i}^{i} [M] \{r\}_{j} \frac{1}{p_{j}^{2}} \{r\}_{i}^{i} [K] \{r\}_{j}$ pero como [M] y [K] son simétricas:

 $\begin{cases} \mathbf{r} \\ \mathbf{j} \\ \mathbf{k} \end{cases} \begin{bmatrix} \mathbf{K} \\ \mathbf{k} \end{bmatrix} \left\{ \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{k} \end{bmatrix} \left\{ \mathbf{r} \\ \mathbf{r} \\ \mathbf{i} \end{bmatrix} = \left\{ \mathbf{r} \\ \mathbf{i} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{k} \end{bmatrix} \left\{ \mathbf{r} \\ \mathbf{j} \\ \mathbf{k} \end{bmatrix} \right\}$

..., restando miembro a miembro en ecuaciones (a):

$$(p_{i}^{2} - p_{j}^{2}) \left(\left\{ r \right\}_{i}^{\prime} \left[M \right] \left\{ r \right\}_{j}^{\prime} \right) = 0 \quad 0 = \left(\frac{1}{p_{i}^{2}} - \frac{1}{p_{j}^{2}} \right) \left[r \right\}_{i}^{\prime} \left[K \right] \left\{ r \right\}_{j}^{\prime}$$

$$y \text{ come } p_{i}^{2} \neq p_{j}^{2}$$

$$\left\{ r \right\}_{i}^{\prime} \left[M \right] \left\{ r \right\}_{j}^{\prime} = 0 \quad \left\{ r \right\}_{i}^{\prime} \left[K \right] \left\{ r \right\}_{j}^{\prime} = 0$$

$$\left\{ r \right\}_{i}^{\prime} \left[M \right] \left\{ r \right\}_{j}^{\prime} = 0$$

$$\left\{ r \right\}_{i}^{\prime} \left[K \right] \left\{ r \right\}_{j}^{\prime} = 0$$

$$sii \neq j$$

La eċ

۰.

$$\begin{bmatrix} M \end{bmatrix} \left\{ \dot{x} \right\} + \left[\dot{K} \right] \left\{ x \right\} = \left\{ 0 \right\}$$
(a)

y la matriz modal [R] Hagamos:

$$\{x\} = [R] \{y\}$$

y sustituyendo en (a):

- .,

$$\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} R \end{bmatrix} \begin{cases} y \\ y \\ \end{cases} + \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} R \end{bmatrix} \begin{cases} y \\ \end{bmatrix} = \begin{cases} 0 \\ \end{cases}$$
premultiplicando por $\begin{bmatrix} R \\ \end{bmatrix}'$:

М, К

• --

$$\begin{bmatrix} R \end{bmatrix}' \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} R \end{bmatrix} \begin{cases} y \\ y \end{bmatrix} + \begin{bmatrix} R \end{bmatrix} \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} R \end{bmatrix} \begin{cases} y \\ y \end{bmatrix} = \begin{cases} 0 \\ \end{pmatrix}$$
(b)
A diagonales

) . . i≢j ;

Llamemos

$$\begin{bmatrix} R \end{bmatrix} \cdot \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} \kappa * \\ \kappa \end{bmatrix}$$
$$\begin{bmatrix} R \end{bmatrix} \cdot \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} \kappa * \\ \kappa \end{bmatrix}$$

. . la ec (b) (p. 14) puede ponerse:

$$[M*] \{y\} + [K*] \{y\} = \{0\}$$

que equivale a:

$$m_{11}^{*} \dot{y}_{1} + k_{11}^{*} y_{1} = 0$$

$$m_{22}^{*} \dot{y}_{2} + k_{22}^{*} y_{2} = 0$$

$$m_{nn}^{*} \dot{y}_{n} + k_{nn} y_{n} = 0$$

de las que

 $p_1^2 = \frac{k_{11}}{m_n}, \dots, p_n^2 = \frac{k_{nn}}{m_{nn}}$ Recordar que para $m\ddot{x} + kx = 0$ $\ddot{x} + p^2 x = 0 \quad y \quad p^2 = \frac{k}{m}$

O sea, con la transformación

$$\left\{ \mathbf{x} \right\} = \left[\mathbf{R} \right] \left\{ \mathbf{y} \right\}$$

aplicada a la ecuación

$$[M] [x] + [K] {x} = \{0\}$$

hemos descompuesto un sistema de 1GL en <u>n sistemas de 1GL in-</u> dependientes.

Consideremos el producto

$$\begin{bmatrix} M^{*} \end{bmatrix}^{-1} \begin{bmatrix} K^{*} \end{bmatrix} = (\begin{bmatrix} R \end{bmatrix}^{-1} \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} R \end{bmatrix})^{-1} \qquad \begin{bmatrix} V \end{bmatrix} \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} K^{*} \end{bmatrix} \begin{bmatrix} M^{*} \end{bmatrix}^{-1} \\ = \begin{bmatrix} R \end{bmatrix}^{-1} \begin{bmatrix} M \end{bmatrix}^{-1} \begin{bmatrix} R \end{bmatrix}^{-1} \begin{bmatrix} R \end{bmatrix}^{-1} \begin{bmatrix} R \end{bmatrix}^{-1} \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} R \end{bmatrix} \\ = \begin{bmatrix} R \end{bmatrix}^{-1} \begin{bmatrix} M \end{bmatrix}^{-1} \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} P \end{bmatrix} \end{bmatrix}$$

contiene las frecuencias naturales en la diagonal principal
 El problema de encontrar frecuencias y modos naturales equi
 vale al de encontrar la matriz [R] que diagonalice [M] y [K]
 de acuerdo con

$$\begin{bmatrix} R \end{bmatrix} \cdot \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} M \\ K \end{bmatrix}$$
$$\begin{bmatrix} R \end{bmatrix} \cdot \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} K \\ K \end{bmatrix}$$

Las frecuencias naturales se obtendrán de

$$\begin{bmatrix} M & 3 \end{bmatrix}^{-1} \begin{bmatrix} K & 3 \end{bmatrix} = \begin{bmatrix} K & 3 \end{bmatrix} \begin{bmatrix} M & 3 \end{bmatrix}^{-1} = \begin{bmatrix} P \end{bmatrix}$$

Veámos'lo en otra forma

 $\begin{bmatrix} M \end{bmatrix} \left\{ \begin{matrix} x \\ x \end{matrix} \right\} + \begin{bmatrix} K \end{bmatrix} \left\{ x \end{matrix} \right\} = \left\{ P(t) \right\}$ Sustituyendo $\left\{ x \right\} = \left\{ R \end{bmatrix} \left\{ y \right\}$

$$\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} R \end{bmatrix} \langle y \end{bmatrix} + \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} R \end{bmatrix} \langle y \end{bmatrix} = \langle P(t) \rangle$$

premultiplicando por
$$\langle \mathbf{r}'_{ij}$$

 $\begin{pmatrix} \mathbf{r}_{ij} \\ \mathbf{a} \end{pmatrix} \begin{bmatrix} \mathbf{R} \end{bmatrix} \{ \mathbf{y} \} + \langle \mathbf{r}_{ij} \\ \mathbf{x}_{jj} \end{bmatrix} \begin{bmatrix} \mathbf{R} \end{bmatrix} \{ \mathbf{y} \} = \{ \mathbf{r}_{jj} \\ \mathbf{y} \end{bmatrix} \begin{bmatrix} \mathbf{P}(\mathbf{t}) \\ \mathbf{escalar} \end{bmatrix}$
En los productos (a) y (b) solo queda (por ortogonalidad):
 $\mathbf{r}_{jj} \begin{bmatrix} \mathbf{M} \end{bmatrix} \{ \mathbf{r}_{ij} \\ \mathbf{y} \end{bmatrix} + \{ \mathbf{r} \} \begin{bmatrix} \mathbf{K} \end{bmatrix} \{ \mathbf{r}_{ij} \\ \mathbf{y} \end{bmatrix} \mathbf{y} = \{ \mathbf{r} \} \begin{bmatrix} \mathbf{y} \end{bmatrix} \mathbf{P}(\mathbf{t}) \}$
 $\mathbf{M}_{jj} \\ \mathbf{M}_{j} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{ij} \\ \mathbf{y} \end{bmatrix} + \{ \mathbf{r} \} \begin{bmatrix} \mathbf{K} \end{bmatrix} \{ \mathbf{r}_{ij} \\ \mathbf{r} \end{bmatrix} \mathbf{y} \end{bmatrix} = \{ \mathbf{r} \} \begin{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{y} \end{bmatrix} \mathbf{P}(\mathbf{t}) \}$
 $\mathbf{M}_{j} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{ij} \\ \mathbf{y} \end{bmatrix} \mathbf{r} + \{ \mathbf{r} \} \begin{bmatrix} \mathbf{K} \end{bmatrix} \{ \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{y} \end{bmatrix} = \{ \mathbf{r} \} \begin{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{P}(\mathbf{t}) \}$
 $\mathbf{M}_{j} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{ij} \\ \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \begin{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \mathbf{r}$
 $\mathbf{r} \end{bmatrix} \mathbf{r} \begin{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \begin{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \begin{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \begin{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \begin{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \begin{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r}$
 $\mathbf{r} \end{bmatrix} \mathbf{r} \begin{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \begin{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} \mathbf{r}$
 $\mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \begin{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \begin{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} \mathbf{r} \end{bmatrix} \mathbf{r}$

o bien

 $M_{j}^{*} \dot{y}_{j} + K_{j}^{*} y_{j} = P_{j}^{*}(t)$

análoga a la ecuación de movimiento para 1 GL:

 $m \ddot{x} + k x = P(t)$

En (1.5) tenemos:

n ecuaciones independientes para nGL

1 ecuación independiente para cada modo

Para vibración libre (1GL)

$$\ddot{x} + p^2 x = 0$$
 $p^2 = \frac{\dot{k}}{m}$

12.

(1.5)

la solución es:

 $x = A \cos pt + B \sin pt$ (c)

y para el modo j tendremos $(P_{i}(t) = 0)$

$$y_j = A_j \cos p_j t + B_j \sin P_j t$$
 (d)

Si en (c) hacemos

$$\dot{\mathbf{x}}_{t=0} = \dot{\mathbf{x}}_{o}$$
 $\dot{\dot{\mathbf{x}}}_{t=0} = \dot{\mathbf{x}}_{o}$

llegamos a

$$x(t) = X_{o} \cos pt + \frac{X_{o}}{p} \sin pt$$

y.'. en (d):

$$y_j = y_{oj} \cos p_j t + \frac{y_{oj}}{P_j} \sin p_j t$$

Cualquier configuración del sistema puede expresarse como una suma de formas modales multiplicadas por ciertos coeficientes. Esquemáticamente:

En nuestra expresión

$${x} = [R] {y}$$
 1.4

De la ec. (e):

 $\left\{c\right\} = \left(R\right]^{-1} \left\{1\right\} \left(\left[R\right] NOSING\right)$

En 1.4 también podriamos hacer

 $\{Y\} = [R]^{-1} \{x\}$

pero sigamos otro camino, premultiplicando por $\{r\}_{j}^{\prime}$ [M]o por $\{r\}_{j}^{\prime}$ [K]

$$[\mathbf{M}]_{\{\mathbf{X}\}} = \{\mathbf{r}\}_{\mathbf{j}}^{\dagger} [\mathbf{M}][\mathbf{R}]_{\mathbf{y}}\} = \{\mathbf{r}\}_{\mathbf{j}}^{\dagger} [\mathbf{M}]_{\mathbf{r}}^{\dagger} \mathbf{r}\}_{\mathbf{1}}^{\dagger} \mathbf{y}_{\mathbf{1}} + \\ + \{\mathbf{r}\}_{\mathbf{j}}^{\dagger} [\mathbf{M}]_{\mathbf{z}}^{\dagger} \{\mathbf{r}\}_{\mathbf{2}}^{\dagger} \mathbf{y}_{\mathbf{2}} + \cdots \\ + \{\mathbf{r}\}_{\mathbf{j}}^{\dagger} [\mathbf{M}]_{\mathbf{z}}^{\dagger} \{\mathbf{r}\}_{\mathbf{2}}^{\dagger} \mathbf{y}_{\mathbf{2}} + \cdots \\ + \{\mathbf{r}\}_{\mathbf{j}}^{\dagger} [\mathbf{M}]_{\mathbf{z}}^{\dagger} \{\mathbf{r}\}_{\mathbf{z}}^{\dagger} \mathbf{y}_{\mathbf{n}}$$

Por ortogonalidad todos estos productos son nule to el termino ${r \atop i} \left[M \right] \begin{Bmatrix} r \atop i \\ j \end{matrix}$

de donde tenemos

$$\{r\}_{j}' \cdot [M] \{x\} = \{r\}_{j}' [M] \{r\}_{j} y_{j}$$

de donde:

$$y_{j} = \frac{\left\{r\right\}_{j}^{\prime} \left[M\right]\left\{x\right\}}{\left\{r\right\}_{j}^{\prime} \left[M\right]\left\{r\right\}_{j}^{\prime}} = \frac{\left\{r\right\}_{j}^{\prime} \left[M\right]\left\{x\right\}}{M_{j}^{\ast}} = \frac{\left\{r\right\}_{j}^{\prime} \left[K\right]\left\{x\right\}}{K_{j}^{\ast}} = \frac{\left\{r\right\}_{j}^{\prime} \left[K\right]\left\{x\right\}}{P_{j}^{2} M_{j}^{\ast}}$$

(coeficiente de participación)

Ejemplo (vigas rígidas)

. . . .

M3=1.0							
$m_2 = 1.5$	60	T/cm		[2.0	0	0	•
$m_1 = 2.0$	120	T/cm	[M] =	0	1.5	0	$ton seg^2$
		T/cm		L o	0	1.0_	cm

Matriz de rigideces

$$\begin{bmatrix} E \end{bmatrix} = \begin{bmatrix} [K] - p^2 & [M] \end{bmatrix} \qquad M = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= 60 \begin{bmatrix} (5 - \frac{2}{60} p^2) & -2 & 0 \\ -2 & (3 - \frac{1 \cdot 5}{60} p^2) & -1 \\ 0 & -1 \end{bmatrix} \begin{pmatrix} 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 & p^2 \end{pmatrix}$$

si d =
$$p^2/60$$
:
[E] = 60 (5-2d) -2 0
- 2 (3-1.5 d) - 1
0 -1 (1-d)

 $(E) = 0 = 60 (d^3 - 5.5 d^2 + 7.5 d - 2) = 0$

$$d_1 = 0.35$$

 $d_2 = 1.61$
 $d_3 = 3.54$

 $p^{2} = 60 \text{ d}$: $p_{1}^{2} = 21.0$ $p_{2}^{2} = 96.5$ $p_{3}^{2} = 212.4$ $p_{3}^{2} = 14.56$ frecuencias naturales

Modos:

$$\begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} 1.000 & 1.000 & 1.000 \\ 2.135 & 0.899 & -1.044 \\ 3.285 & -1.474 & 0.411 \end{bmatrix}$$

$$\begin{bmatrix} M^* \end{bmatrix} = \begin{bmatrix} R \end{bmatrix}' \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} 19.629 & 0.038 & 0.007 \\ 0.037 & 5.386 & -0.014 \\ 0.006 & -0.014 & 3.804 \end{bmatrix}$$
Ej:
$$19.6296 = \{ r \}_{1}^{'} \begin{bmatrix} M \end{bmatrix} \{ r \}_{1}^{'} = M_{1}^{*} = \sum_{l}^{'} r_{l1}^{'2} m_{l}^{'}$$

 $\begin{bmatrix} K^{*} \end{bmatrix} = \begin{bmatrix} R \end{bmatrix}' \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} R \end{bmatrix} = 60 \begin{bmatrix} 6.899 & 0.042 & 0.034 \\ 0.042 & 8.651 & -0.040 \\ 0.034 & -0.040 & 13.473 \end{bmatrix}$ Comprobación con $\begin{bmatrix} K^{*} \end{bmatrix} = \begin{bmatrix} p^{2} M^{*} \end{bmatrix} =$

$$\begin{bmatrix} 412.209 & 0 & 0 \\ 0 & 519.749 & 0 \\ 0 & 0 & 807.970 \end{bmatrix} = \begin{bmatrix} 4^2 & M^* \end{bmatrix}$$

$$\begin{bmatrix} K^* \end{bmatrix} = \begin{bmatrix} 413.940 & 0 \cdots & 0 \cdots \\ 0 \cdots & 519.060 & 0 \cdots \\ 0 \cdots & 0 \cdots & 808.380 \end{bmatrix}$$

 $P_1 = 4.58$

 $P_2 = 9.82$

 $P_3 = 14.56$

En p.

0.930	cm					
0.051	cm	son	amplitudes modos	de	los	
0.026	cm					

Para obtener los desplazamientos de las masas debemos multiplicar por las configuraciones modales:

$$x_{i1} = \begin{cases} r \\ 1 \end{cases} \quad Y_{1}(t) = \begin{cases} 1.0 \\ 2.135 \\ 3.285 \end{cases} \quad 0.93 \cos 4.58 t$$
$$x_{i2} = \begin{cases} r \\ 2 \end{cases} \quad Y_{2}(t) = \begin{pmatrix} 1.0 \\ 0.899 \\ -1.474 \end{cases} \quad 0.051 \cos 9.82 t$$
$$x_{i3} = \begin{cases} r \\ 3 \end{cases} \quad Y_{3}(t) = \begin{pmatrix} 1.00 \\ -1.474 \\ 0.411 \end{cases} \quad 0.0266 \cos 14.56 t$$

<u>y sumar</u>. O sea los desplazamientos $x_i(t)$ de las masas serán $\{x(t)\} = [R] \{y(t)\}$

$$\begin{aligned} x_{1}(t) &= r_{11} Y_{1}(t) + r_{12} Y_{3}(t) + r_{13} Y_{3}(t) \\ x_{2}(t) &= r_{21} Y_{1}(t) + r_{22} Y_{2}(t) + r_{23} Y_{3}(t) \\ x_{3}(t) &= r_{31} Y_{1}(t) + r_{32} Y_{2}(t) + r_{33} Y_{3}(t) \end{aligned}$$

Otro ejemplo

La ec:

$$x + P^2 x = \frac{P(t)}{m} = \frac{P(t)}{m}$$

y para CI = 0 la solución

$$x = \frac{P_o}{K} \left(1 - \cos pt\right)$$

Tenemos ahora el problema de encontrar la respuesta de

Para el modo j:

Cálculo de P_i

$$P_{j}^{*} = \left\{ r \right\}_{j}^{\prime} \left\{ P(t) \right\} = \left\{ r \right\}_{j}^{\prime} \left\{ \begin{array}{c} 360 \\ 120 \\ 60 \end{array} \right\}$$

modo

$$P_{1}^{*} = P_{1}r_{11} + P_{2}r_{21} + P_{3}r_{31} = 360+256.2+197.1 = 813.3$$

 $P_{2}^{*} = P_{1}r_{12} + P_{2}r_{22} + P_{3}r_{32} = 360+107.88-88.4 = 379.48$
 $P_{3}^{*} = P_{1}r_{13} + P_{2}r_{23} + P_{3}r_{33} = 360-125.28+24.66 = 259.98$

Ahora bien,

$$Y_{j(st)} = \frac{P_{j}^{*}}{P_{j}^{2}} = \frac{P_{j}^{*}}{K_{j}^{*}}$$
$$Y_{1(st)} = \frac{813.30}{21 \times 19.629} = 1.973 \text{ cm}$$
$$Y_{2(st)} = \frac{379.48}{965 \times 5.386} = 0.730 \text{ cm}$$
$$Y_{3(st)} = \frac{259.38}{212.4 \times 3.804} = 0.321 \text{ cm}$$

. de donde

. •

$$Y_{j} = \frac{P_{j}^{*}}{P_{j}^{2}M_{j}^{*}} (1 - \cos P_{j}t), \text{ y tenemos:}$$

$$Y_{1}(t) = Y_{1(st)} (1 - \cos p_{4}t)$$

$$Y_2(t) = Y_2(st) (1-\cos \phi_2 t)$$

$$Y_{3}(t) = Y_{3(st)} (1 - \cos p_{3}t)$$

y, finalmente:

$$\begin{cases} x(t) \\ = \\ r_1 \\ Y_1(t) \\ x_2(t) \\ x_2(t) \\ x_3(t) \\ \end{cases} \begin{cases} 1.000 \\ 2.135 \\ 3.285 \\ \end{cases} \begin{array}{c} 1.973 \\ (1 - \cos p_1 t) \\ + \dots \\ + \\ \\ 1.000 \\ -1.044 \\ 0.321 \\ (1 - \cos p_3 t) \\ 0.411 \\ \end{array} \right)$$

EXCITACION SISMICA

A. Sistemas 1GL $m \dot{x} + kx + P(t)$ (a)

Para P(t) cualquiera y para CI $\neq 0$ la solución de (a) es: x(t) = x_ocos pt + $\frac{\dot{x}_o}{p}$ sen pt + $\frac{1}{mp} \int_0^{t} P(z)$ sen p(t-z)dz

Para excitación sísmica:

De la comparación de (a) y (b), la solución completa de ésta es:

$$x(t) = x_0 \cos pt + \frac{\dot{x}_0}{p} \sin pt - \frac{1}{p} \int_0^{t} \dot{u}(z) \sin p(t-z) dz$$

B. Sistemas de nGL:

23.

que puede escribirse:

$$y_{j}(t) = -\frac{m_{j}^{*}}{p_{j}M_{j}^{*}} \int_{0}^{t} \tilde{u}(Z) \operatorname{sen} p_{j}(t-Z) dZ$$

+ $y_{oj} \cos p_{j}t + \frac{y_{oj}}{p_{j}} \operatorname{sen} p_{j}t \qquad \text{termino/a} para CI \neq 0$

Una vez obtenidos los elementos de $\{y\}$ solo falta premultiplicar por [R] para obtener $\{x\}$:

$$\left\{ x(t) \right\} = \left[R \right] \left\{ y(t) \right\}$$

GENERALIZACION DE LAS CONDICIONES DE ORTOGONALIDAD

Tenemos la ecuación:

$$\left[\begin{bmatrix} K \end{bmatrix} - p^2 \begin{bmatrix} M \end{bmatrix} \right] \left\{ X \right\} = \left\{ 0 \right\}$$

que convenimos en escribir en la forma:

 $(K - p^2 M) x = 0$

como los vectores modales la satisfacen:

$$K \mathbf{r}_{j} = \oint_{j}^{2} M \mathbf{r}_{j} \qquad (a)$$

y premultiplicando por: $\mathbf{r}_{i}^{'} M M^{-1}$ tenemos:
 $\mathbf{r}_{i}^{'} M M^{-1} \qquad K \mathbf{r}_{j} = p_{j}^{2} M M^{-1} \qquad M \mathbf{r}_{j} = p_{j}^{2} M M^{-1} K \mathbf{r}_{j} = 0$

que puede escribirse

$$r_{i}' M (M^{-1} K)^{2} r_{j} = 0$$

y así podría seguirse para llegar a:

$$r_{i}^{\prime} M (M^{-1}K)^{\ell} r_{j} = 0 - \begin{cases} \ell \text{ entero} \\ -\infty < \ell < \infty \end{cases}$$

 $r_{i}^{\prime} M (M^{-1}K)^{\ell} r_{j} = 0 \qquad (b)$

en forma análoga podemos obtener

, ا

$$r'_{i} (MF)^{\ell} M r_{j} = 0$$
 (c)
 $r'_{i} (K M^{-1})^{\ell} K r_{j} = 0$

En (b):

$$l = -2$$
 M (M⁻¹K)⁻² = M (M⁻¹K)⁻¹ (M⁻¹K)⁻¹
(en (c), con $l = 2$) = M K⁻¹ M K⁻¹ M = M F M F M
 $l = -l$ M (M⁻¹K)⁻¹ = M K⁻¹ M = M F M
 $-l = o$ M (M⁻¹K)⁰ = M
 $l = l$ M (M⁻¹K)¹ = M M⁻¹ K = K
 $l = 2$ M (M⁻¹K)² = M M⁻¹ K M⁻¹ K = K M⁻¹ K
 $l = 3$ M (M⁻¹K)³ = M M⁻¹ K M⁻¹ K M⁻¹K = K M⁻¹ K M⁻¹

K

Las ecuaciones de equilibrio dinâmico son:

$$\left\{F_{I}\right\} + \left\{F_{a}\right\} + \left\{F_{r}\right\} = \left\{P(t)\right\}$$

Ya tenemos:

$$\left\{ F_{I} \right\} = \left[M \right] \left\{ \ddot{x} \right\}^{T}$$

$$\left\{ F_{I} \right\} = \left[K \right] \left\{ x \right\}$$

y ahora hacemos

$${F_a} = [c] {\dot{x}}$$

donde

y c_{ij} = fuerza de amortiguamiento en la coordenada i debido a una velocidad unitaria en la coordenada j.

La ecuación de movimiento es

$$\begin{bmatrix} M \end{bmatrix} \left\{ \ddot{x} \right\} + \begin{bmatrix} c \end{bmatrix} \left\{ \dot{x} \right\} + \begin{bmatrix} K \end{bmatrix} \left\{ x \right\} = \left\{ P(t) \right\}$$

Hagamos: $\{x\} = [R] \{y\}$ premultiplicando por $\{r\}_{j}^{\prime}$ $\{r\}_{j}^{\prime} [M] [R] \{y\} + \{r\}_{j}^{\prime} [C] [R] \{y\} + \{r\}_{j}^{\prime} [K] [R] \{y\} = \{r\}_{j}^{\prime} \{P(t)\}$

Para desacoplar estas ecuaciones debemos tener

$$\left\{ r \right\}_{j}^{\prime} \left[M \right] \left\{ r \right\}_{i}^{\prime} = 0 \quad i \neq j \\ \left\{ r \right\}_{j}^{\prime} \left[K \right] \left\{ r \right\}_{i}^{\prime} = 0 \quad i \neq j \end{cases}$$
 cierto por ortogonalidad

$$\left\{ r \right\}_{j}^{\prime} \left[C \right] \left\{ r \right\}_{i}^{\prime} = 0 \quad i \neq j \qquad \text{pero ésta? (a)}$$

1° admitamos que se cumple:

Ya definimos

$$\left\{ r \right\}_{j} \left[M \right] \left\{ r \right\}_{j} = M_{j}^{*}$$

$$\left\{ r \right\}_{j}^{*} \left[F(t) \right\} = P_{j}^{*}$$

$$\left\{ r \right\}_{j}^{*} \left[K \right] \left\{ r \right\}_{j}^{*} = K_{j}^{*}$$

y ahora

$$\left[r\right]_{j}\left[C\right]\left\{r\right]_{j}==C_{j}^{*}=2\beta_{j}P_{j}M_{j}^{*}$$

y nuestra ecuación para el modo j queda:

$$M_{j}^{*}_{j}^{*}_{j}^{+2\beta}_{j}^{\dagger}_{j}^{M}_{j}^{*}_{j}^{*}_{j}^{+\frac{1}{2}M}_{j}^{*}_{j}^{*}_{j}^{+\frac{1}{2}M}_{j}^{*}_{j}^{+\frac{1}{2}M}_{j}^{+\frac{$$

o bien:

$$\ddot{y}_{j} + 2\beta_{j} \dot{P}_{j} \dot{y}_{j} + \dot{P}_{j}^{2} y_{j} = \frac{P_{j}^{*}}{M_{i}^{*}}$$

Como las soluciones para un sistema de 4GL (cuya ec. es $\ddot{x}+2\beta p\dot{x}+p^2x = \frac{P(t)}{m}$) ya las conocemos, solo nos faita saber cómo debe ser [C] para que se cumpla

$${r}_{i}^{c} [c] {r}_{j}^{c} = 0 \quad i \neq j$$
 (a)

además, claro, de

У

$$\begin{cases} \mathbf{r} \\ \mathbf{j} \\ \mathbf{i} \\ \mathbf{M} \\ \mathbf{k} \\ \mathbf{r} \\ \mathbf{j} \\ \mathbf{k} \\ \mathbf{r} \\ \mathbf{j} \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{r} \\ \mathbf{j} \\ \mathbf{k} \\ \mathbf{k}$$

La ec. (a) se satisface si

i) [C] es proporcionala [M] o a [K]
ii) [C] es una combinacion lineal de [M] y [K], o sea:

$$\begin{bmatrix} C \end{bmatrix} = a_0 \begin{bmatrix} M \end{bmatrix} + a_1 \begin{bmatrix} K \end{bmatrix}$$

esto es muy restringido.

iii) En forma más general:

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} M \end{bmatrix} \sum_{l=1}^{\infty} \begin{bmatrix} M^{-1}K \end{bmatrix}^{l} = \sum_{l=1}^{\infty} \begin{bmatrix} C_{l} \end{bmatrix}$$
(38.1)

pues ya sabemos que todas las posibles formas

 $[M] [M^{-1}K]^1$ son satisfactorias y (38.1) es

una C. L de matrices de este tipo.

La selección adecuada de a_1 dará ϵ [C] las propiedades de₇ seadas, o sea, podremos dar valores ϵ specíficos a los elementos de [C] . ¿Cuáles le damos?

Asignamos un cierto valor de β a cada modo. $C_{j}^{*} = \{r\}_{j}^{*} [C] \{r\}_{j}^{*} = 2\beta_{j} p_{j}^{*} M_{j}^{*} = \sum_{l} \{r\}_{j}^{*} [C_{l}] \{r\}_{j}^{*} = \sum_{l} (38.2)$ De 38.1 y A

 $C_{j1}^{*} = \{r\}_{j}^{'} [M] [M^{-1}K]^{1} \{r\}_{j}^{a_{1}}$ (38.3)

Por otra parte, para vibración libre:

$$(K - \frac{p_{j}^{2}M}{r_{j}} = 0$$

$$Kr_{j} = \frac{p_{j}^{2}Mr_{j}}{p_{j}^{2}} \leftrightarrow \frac{1}{p_{j}^{2}}r_{j} = FMr_{j}$$

premultiplicando por r¦M:

$$\frac{1}{p_j^2}r_j^Mr_j = r_j^MFMr_j$$

es decir

$$(p_{j}^{2})^{-1}M_{j}^{*} = r_{j}^{*}M(M^{-1}K)^{-1}r_{j}$$

y así podríamos llegar a que, para cualquier 1:

30.

$$(P_{j}^{z})^{1}M_{j}^{*} = r_{j}^{'}M(M^{-1}K)^{1}r_{j} = \frac{C_{j1}^{*}}{a_{1}}$$

De 39.1:

$$C_{j1}^{*} = (p_{j}^{2})^{1}M_{ja_{1}}^{*}$$

 $C_{j1}^{*} = (p_{j}^{2})^{1}M_{ja_{1}}^{*}$

y sumando sobre 1:

$$\sum_{\substack{j \in \mathbb{Z} \\ j \in \mathbb{Z}}} \sum_{j \in \mathbb{Z}} (P_j^2)^{1} M_{ja_1}^*$$

pero ya teníamos que

$$\Sigma C_{j1}^{*} = 2\beta_{j} p_{j} M_{j}^{*}$$

$$2\beta_{j} p_{j} M_{j}^{*} = \Sigma (P_{j}^{2})^{l} M_{j}^{*} a_{l}$$

de •donde:

$$\beta_{j} = \frac{1}{2p_{j}} \sum_{1} (p_{j}^{2})^{l} a_{l}$$

Con los n valores de β_j para los n modos podemos resolver para los n valores de a_1 y formar nuestra [C] con la ecuación

39.1

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} M \end{bmatrix} \sum_{i=1}^{n} \begin{bmatrix} M^{-1} \\ K \end{bmatrix}^{i}$$

Por ejemplo para nuestra estructura de 3GL asignemos:

$$\beta_{1} = 0.10, \qquad \beta_{2} = 0.05, \qquad \beta_{3} = 0.02$$

$$\beta_{1} = 0.10 = \frac{1}{2P_{1}} \left[a_{1}(P_{1}^{2})^{-1} + a_{0}(P_{1}^{2})^{0} + a_{1}(P_{1}^{2})^{1} \right]$$

$$\beta_{2} = 0.05 = \frac{1}{2P_{2}} \left[a_{-1}(P_{2}^{2})^{-1} + a_{0}(P_{2}^{2})^{0} + a_{1}(P_{2}^{2})^{1} \right]$$

$$\beta_{3} = 0.02 = \frac{1}{2P_{3}} \left[a_{-1}(P_{3}^{2})^{-1} + a_{0}(P_{3}^{2})^{0} + a_{1}(P_{3}^{2})^{1} \right]$$

o, en forma matricial:

$$\begin{cases} 0.10\\ 0.05\\ 0.02 \end{cases} = \frac{1}{2} \begin{bmatrix} 1/4_{1}^{3} & 1/4_{1} & 4_{1} \\ 1/4_{2}^{3} & 1/4_{2} & 4_{2} \\ 1/4_{3}^{3} & 1/4_{3} & 4_{3} \end{bmatrix} \begin{cases} a_{-1}\\ a_{0}\\ a_{1} \end{cases}$$

al resolver para a_l resulta

$$\begin{bmatrix} C \end{bmatrix} = a_{-1} \begin{bmatrix} MFM \end{bmatrix} + a_0 \begin{bmatrix} M \end{bmatrix} + a_1 \begin{bmatrix} K \end{bmatrix}$$

En p. tenemos que para CI = 0 y $\beta = 0$, para excitación sísmica

$$y_j(t) = -\frac{m_j^*}{P_j M_j^*} \int_0^t \frac{u}{u} (\Theta \operatorname{sen} P_j(t-\omega) dZ$$

coefficiente de participación

31。

$$C_{j} = \frac{m_{j}^{*}}{M_{j}^{*}} = \frac{\left\{r\right\}_{j}^{'}\left\{m\right\}}{\left\{r\right\}_{j}^{'}\left[M\right]} = \frac{\sum_{i=1}^{m} i^{r}i^{j}}{\sum_{i=1}^{m} i^{r}i^{j}}$$

y ... podemos poner:

$$y_j(t) = C_j z_j(t)$$

en la que C_i está definida arriba y

$$z_{j}(t) = - \frac{1}{p_{j}} \int_{0}^{t} \ddot{u}(z) \operatorname{sen}_{j}(t-z) dz$$

(y semejante si $\beta \neq 0$)

$$y_{i}(t) = C_{i} z_{i}(t)$$

Además, tenemos

$$\{x\} = [R] \{y\}$$

 32.

. . .

$$x_{i} = \sum_{j=1}^{n} y_{j} = \sum_{j=1}^{n} z_{j} z_{j}(t)$$

De aquí (sin sumar para todos los modos)

$$\begin{vmatrix} x_{ij} \\ max = r_{ij} c_{j} \\ z_{j}(t) \\ max = r_{ij} c_{j} \\ s_{d} \\ s_{d} = p \\ s_{v} = p^{2} \\ s_{d} \\ s_{d} \\ s_{d} \\ s_{j} \\ s_{j} \\ s_{d} \\$$

De esta ec. pasamos a:

$$\begin{vmatrix} X_{i} \\ max \\ ABS \end{vmatrix} = \sum_{j=1}^{n} \sum_{j$$

centro de educación continua dívisión de estudios superiores de ingeniería, facultad unam

IV CURSO INTERNACIONAL DE INGENIERIA SISMICA

DINAMICA ESTRUCTURAL

INTRODUCCION AL METODO DEL ELEMENTO FINITO

DR. PORFIRIO BALLESTEROS BAROCIO

JULIO, 1978.

.

۴

. |

74

20 ft

A

30 ft

nhii

76

SELECTED REFERENCES

- 3-1 Rogers, G. L. and M. L. Causey, Mechanics of Engineering Structures. New York: John Wiley & Sons, Inc., 1962.
- 3-2 Carpenter, Samuel, Structural Mechanics. New York: John Wiley & Sons, Inc., 1960.

<u>c</u>

Problems

4-1 to 4-6. Analyze the structural system for the indicated loading, and draw the shear and moment diagrams for each member; E = constant and the relative value of moment of inertia is indicated for each member.

4-7. Analyze the rigid frame of Prob. 4-2 for a settlement of the center support of 0.6 in.; I = 500 in⁴, E = 30,000 ksi.

4-8. Determine the final member end actions and the support reactions for the frame of Prob. 4-3 caused by a clockwise rotation of the left support of 2°; $I = 5000 \text{ in}^4$, E = 3000 csi.

4-9. Analyze the planar orthogonal frame of Prob. 4-4 for a settlement of the left column support of 0.6 in. and of the right column support of 0.8 in.; $I = 6000 \text{ in}^4$, E = 3000 ksi.

4-10 to 4-12. Calculate the final member end actions and the support reactions for the indicated loading of the structure, and draw the shear and moment diagrams for each member; E = 30,000 ksi.

4-13. Determine the final member end actions and the support reactions for the frame of Prob. 4-11 if member a is fabricated with a 6° bend (rotating the right end of the member counterclockwise) at a point 5 ft from the left end of the member.

4-14. Analyze the frame of Prob. 4-12 for a fabrication error of 0.75 in. which resulted in the 33 WF 118 being too short.

4-15. Analyze the continuous beam for the given loading. The beams are 1.5-ft wide and have straight haunches; E = 3000 ksi.

Prob. 4-15

4-16. Analyze the continuous beam for the indicated loading condition. Draw the shear and moment diagrams for each beam. The relative values of moments of inertia for each member are indicated; E = constant.

4-17. Write a computer program using the stiffness method to analyze a continuous beam for a uniform vertical load applied to any span and acting over the entire span. Assume that the moment of inertia is constant over the span of each beam and is different for each beam; E is constant for the structure.

4-18. Develop a computer program to analyze a general planar orthogonal frame by the stiffness method for the following load cases: (1) a uniform normal load over the span of a member; (2) a normal concentrated load applied at point within the span of a member; (3) a vertical or horizontal concentrated load applied at a joint; and (4) a moment applied at a joint. Assume that the beam elements are $prisme^{+irr}$ and that E is constant for the structure.

Ch. 4 Sec. 4-7

4-19. Write a computer program to develop the member stiffness matrix and to compute the fixed end actions for a uniform normal load acting over the entire span for a non-prismatic beam element.

SELECTED REFERENCES

- 4-1 Pei, Ming L., "Stiffness Method of Rigid Frame Analysis," ASCE, Second Conference on Electronic Computation. Pittsburgh, Pa.: September 8 and 9, 1960.
- 4-2 Kinney, J. Sterling, Indeterminate Structural Analysis. Reading, Mass.: Addison-Wesley Publishing Co., Inc., 1957.
- 4-3 Gere, James M., and William Weaver, Jr., Analysis of Framed Structures. Princeton, N.J.: D. Van Norstrand Co., Inc., 1965.
- 4-4 Wang, Chu-Kia, Statically Indeterminate Structures. New York: McGraw-Hill Book Company, 1953.
- 4-5 Morice, P. B., Linear Structural Analysis. London: Thames and Hudson, 1959.
- 4-6 Hall, A. S., and R. W. Woodhead, Frame Analysis. New York: John Wiley & Sons, Inc., 1961.
- 4-7 Rubinstein, Moshe F., Matrix Computer Analysis of Structures. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1966.
- 4-3 Willems, Nicholas, and William M. Lucas, Jr., Matrix Analysis for Structural Engineers. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1968.
- 4-9 Livesley, R. K., Matrix Methods of Structural Analysis. New York: The Macmillan Company, Inc., 1964.

Ch. 6

The stiffness method is a very powerful tool when coupled with the electronic digital computer for analyzing complex as well as simple structures. The procedure for carrying out the analysis is a very orderly, systematic procedure that is not restricted to a particular type of system. Only those matrices that are required to describe the behavior of particular structural elements are different. Thus, the problem of analyzing a given structure becomes one of developing the proper matrices to describe the response of the elements which make up the system.

6–9

Ch. 4

Problems

6-1. Determine the final end actions developed at the end of each member and the support reactions of the rigid frame caused by the indicated loading. For each member, $I_x = 3I/2$, $I_y = 2I$, $I_z = 4I$, and $A_x = I/4$; E = constant and G = E/2. The relative value of I for each member is given in the box adjacent to the member. The $y_m - x_m$ plane of each member is perpendicular to the X-Z reference.

Prob. 6-1 Note: The $y_m - x_m$ plane of each member is perpendicular to the X-Z plane.

6-2. Analyze the space frame for the imposed loading condition. The members are prismatic 24 W= 100 steel beams; E = 30,000 ksi and G = 12,000 ksi. The members are

10

oriented such that the $y_m - x_m$ plane of each beam, where the y_m axis defines the minor axis of the cross-section, is perpendicular to the X-Z reference plane.

100 k

Prob. 6-2 Note: The $y_m - x_m$ plane of each member is perpendicular to the X-Z plane.

Ь

6-3. Compute the support reactions and final end actions. For members 1 and 2, $I_x = 2I/3$, $I_y = I$, $I_z = 3I$, and $A_x = I/5$; for member 3, $I_x = I$, $I_y = 2I$, $I_z = 5I$, and $A_x = I/4$; E = constant and G = E/2. The $y_m - x_m$ plane of each beam is perpendicula, to the X-Y reference axis.

Prob. 6-3 Note: The $y_m - x_m$ plane of each member is perpendit to the X-Y plane.

6-4. The space frame is to be analyzed for the indicated loading condition. With the y_m axis defining the minor principal axis of the cross-section, the y_m-x_m plane of each beam is perpendicular to the X-Y reference plane and the y_m-x_m plane of each column is perpendicular to the X-Z reference plane; E = 30,000 ksi and G = 12,000 ksi.

Prob. 6-4 Note: The $y_m - x_m$ planes of the beams are perpendicular to the X-Y plane, and the $y_m - x_m$ planes of the columns are perpendicular to the X-Z plane.

6-5. Determine the final end actions for each member and the support reactions for the structure caused by the applied loading. For members 1 and 2, $I_x = I/2$, $I_y = 6I$, $I_z = 8I$, and $A_x = I/5$; for member 3, $I_x = I$, $I_y = 10I$, $I_x = 10I$, and $A_x = I/4$; E = constant and G = E/2. Letting the y_m axis define the minor principal axis of a member's cross-section, the y_m - x_m plane of members 2 and 3 are perpendicular to the X-Z reference plane and the y_m - x_m plane of member 1 coincides with the X-Y reference plane.

6-6. Develop the complete structure stiffness matrix for the rigid space frame described in the figure and set up the complete joint load matrix for the indicated loading condition. Letting the y_m axis define the minor principal axis of a cross-section, the y_m-x_m plane of each column is parallel to the Y-Z reference plane and for each bear is perpendicular to the X-Y reference plane; E = 30,000 ksi and G = 12,000 ksi.

20 ft

12 ft

Problems 289

90

6-10. Analyze the rigid space frame of Prob. 6-6 for the indicated loading.

Stiffness Method of Analysis : Three-Dimensional Structures

6-11. Analyze the rigid frame structure of Prob. 6-6 for an increase in temperature of 40° of members *a* over the other members of the structure.

6-12 to 6-15. Determine the bar forces developed in the space truss. The orientation of the local axes for each member may be selected for convenience of computation; E = 30,000 ksi. The cross-sectional area of each member (in terms of sq in.) is indicated adjacent to the member.

Prob. 6-12

6-16. Compute the bar forces developed in the space truss of Prob. 6-12 if member a is fabricated 0.5 in. too short.

6-17. Analyze the space truss of Prob. 6-13 for a settlement of support a of 0.75 in.

6-18. Determine the bar forces in each member and the support reactions for the structure if member a of the truss of Prob. 6-14 is fabricated 0.25 in. too long.

6-19. Analyze the structure of Prob. 6-15 for a fabrication error of 0.3 in. shortening the length of member α .

Prob. 6-5 Note: The y_m-x_m plane of member 1 coincides with the X-Y reference plane. The y_m-x_m plane of members 2 and 3 is perpendicular to the X-Z plane in both cases.

6-7. Analyze the frame of Prob. 6-2 for a vertical settlement of 0.75 in. of the support a.

6-8. Determine the final end actions and support reactions developed by the rigid frame of Prob. 6-2 if member b is fabricated 1 in. too short.

1

Prob. 6-13

6-20 to 6-23. Analyze the planar grid structures for the indicated loading. Each member is positioned in the X-Y reference plane so that the major principal axis (y_m) of each cross-section lies in the plane; E = 30,000 ksi and G = 12,000 ksi.

Prob. 6-20 Note: Major principal axis of the cross sections each member lies in the X-Y reference plane.

ec. 6-9

Prob. 6-23 Noie: Major principal axis of the cross section of each member lies in the X-Y reference plane.

6-24. Analyze the planar grid structure shown in the figure for the indicated loading. For each member, $I_x = 3I/2$, $I_z = 2I$, $I_z = I$, and $A_x = I/6$. The major principal axis (y_m) of the cross-section of each member lies in the X-Y reference plane. The relative value of I for each member is given in the box adjacent to the member; E = constant and G = E/3.

Prob. 6-24 Note: Major principal axis of the cross section of each member lies in the X-Y reference plane.

6-25. Determine the final end actions and the support reactions for the structure of Prob. 6-21 if member a is fabricated with a bend of 5° (rotating right end in a counter-clockwise direction) at midspan.

6-26. (a) Establish all of the matrices for a beam element with either a variable or constant cross-section over its span length, arbitrarily oriented in a three-dimensional space, with both ends of the member restrained against translation in the x_m , y_m , and z_m directions, both ends restrained against rotation about the x_m and y_m axes, and both ends free to rotate about the z_m axis so that this type of member could be handled in a stiffness analysis.

(b) Evaluate the member stiffness matrix for this beam element if it were a prismatic member.

6-27. Develop the grid member stiffness matrix $[K_{G}]_i$ for a prismatic grid member with a pin at the *j*-end of the member so that it is free to rotate about the major principal axis y_m . The member is assumed to be restrained against all other possible components of end displacement. Also, establish the transformation matrix $[T_G]_i$ and the transformed grid member stiffness matrix $[K_G]_i$ for this member.

6-28. Establish the member stiffness matrix $[K^*]_i$ for a prismatic 12 in. [25# beam. Note that for this member the shear center and the centroid of the cross-section do not coincide. The x_m axis will define the centroidal axis of the beam and the z_m principal axis will contain both the centroid and the shear center of the channel section.

6-29. Develop a computer program to analyze by the stiffness method a planar grid frame for any possible loading condition. *Hint*: Let fixed end actions be input data.

6-30. Write a computer program to analyze by the stiffness method a space truss system for loads applied only at the joints.

6-31. Write a computer program to carry out the analysis of a rigid space frame by the stiffness method for any possible loading condition. *Hint*: Use fixed end actions as input.

SELECTED REFERENCES

- 6-1 Willems, Nicholas, and William M. Lucas, Jr., Matrix Analysis for Structural Engineers. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1968.
- 6-2 Gere, James M., and William Weaver, Jr., *Analysis of Framed Structures*. Princeton, N.J.: D. Van Nostrand Company, Inc., 1965.
- 6-3 Seely, Fred B., and James O. Smith, Advanced Mechanics of Materials, 2nd ed. New York: John Wiley & Sons, Inc., 1952.
- 6-4 Timoshenko, S. P., and J. H. Goodier, *Theory of Elasticity*, 2nd ed. New York: McGraw-Hill Book Company, 1951.

Margo-1976 P. Ballesteros DESFI-UNAM 1 METO DO DE LAS RIGIDECES PARA 1 ANALIZAR ESTRUCTURAS ORTOGONALES PLANAS 1.1 Convención de signos. La siguiente convención de signos será utiligada en el desarrollo del método de las vigideces y sus aplicaciones en marcos progonales planos. Ц Дт mã Upg basil. Desplaza mientos MP Ss generales en extremos ; os Pr-Đą. S 1 Pi Xi $\Theta_{P} = 1 +$ 11 Œ Rgp ⊖_P=1 Rsp $\Theta_q = 1$ $\Theta_{c_{k}} = 1$ Rag Rra Risq +Sr=11 ksr + Rq.5 185=1 S=1 Ros Cor tantes Fig. 1.1

Margo-1976 P. Ballesteros 2 DESFI-UNAM De la Fig. 11 aceptando el principio de superposisión se tiene: mi = Rpp Op + Rpq Oq + Rpr Sr + Rps Ss + Mp mag = Rap Op + Rag Og + Rag Sr + Rags Ss + Mag (1.1)pr = krp 0, + krg 0g + krr Sr + krs Ss + Vr (1.1) se desprecia el efecto de la carga normal expre-sando (1.1) matricialmente se tiene (1.2) $\{m\}_{i} = [k]_{i} \{s\}_{i} + \{\mu\}_{i}$ donde: $\{m\}_{i} = \begin{cases} m_{p} \\ m_{q} \\ m_{r} \\$ {mil; componentes de acciones sobre barra para mantener equil. {S}: ; Desplazamientos en los extremos del miembro (2) {U}; Momentos y cortantes de empotermiento perfecto en (i) [R];; Matriz de rigidez del miembro (D), la cual despreciando el efecto de cortante y carga normal, para un miembro de seccion constante es:

DESFI-UNAM Margo-1976 P. Ballesteros 4 El pórtico de la Fig. 1.2 es indeterminado de tercer grado con O1, O2 y S3, por que las condiciones de aboyo anulan a St, SE, OG, ST, BE, Sq. Como primera etaba considera mos la estructura con los nudos fijos determinando la suma de momentos y cortantes correspondientes Bmo. Aplicando las ecuaciones (1.1) al marco de la Fig.1.2 $[m]_{i} = k_{i1} \theta_{i} + k_{i6}(0) + k_{i3} \delta_{3} + k_{i7}(0) + \mu_{i}$ (1.5) $\begin{bmatrix} M_{1}^{2} = k_{11}^{2} \Theta_{1} + k_{12}^{2} \Theta_{2} + k_{14}^{2}(0) + k_{15}^{2}(0) + \mu_{1}^{2} \\ M_{2}^{2} = k_{21}^{2} \Theta_{1} + k_{22}^{2} \Theta_{2} + k_{24}^{2}(0) + k_{25}^{2}(0) + \mu_{2}^{2} \end{bmatrix}$ 3 Juembro (1.6) $- p_{4}^{2} = k_{41}^{2} \theta_{1} + k_{42}^{2} \theta_{2} + k_{44}^{2}(0) + k_{45}^{2}(0) + V_{4}^{2}$ $\left(p_{5}^{2}=k_{51}^{2}\theta_{1}+k_{52}^{2}\theta_{2}+k_{54}^{2}(0)+k_{55}^{2}(0)+V_{5}^{2}\right)$ $\begin{cases} m_2^3 = k_{22} \theta_2 + k_{28}^3(0) + k_{23}^3 \delta_3 + k_{29}^3(0) + \mu_2^3 \\ m_8^3 = k_{82}^3 \theta_2 + k_{88}^3(0) + k_{83}^3 \delta_3 + k_8^3(0) + \mu_8^3 \end{cases}$ Ю Membro (1.1) $-\left(k_{3}^{3}=k_{32}^{3}\Theta_{2}+k_{38}^{3}(0)+k_{33}^{3}S_{3}+k_{39}^{3}(0)+X_{3}^{3}\right)$ $\left[\hat{P}_{q}^{3} = \hat{R}_{q2} \hat{\Theta}_{2} + \hat{R}_{q8}^{3}(0) + \hat{R}_{q3}^{3} \hat{\Theta}_{3} + \hat{R}_{qq}(0) + V_{q}^{3}\right]$

P. Ballesteros DESFI-UNAM Margo-1976 5 Como se de mostro prevamente el analisis de la estructua indéterminada de la Fig.1.2 puede ser evaluado de $[S_{ii}]{S_{i}} = \{Q_{ii}\}$ (1.8) en el caso de la Fig. 1.2, (1.8) es igual a $\begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{41} & S_{51} \end{bmatrix} \begin{pmatrix} \Theta_1 \\ \Theta_2 \\ \Theta_2 \\ \Theta_3 \end{pmatrix} = \begin{pmatrix} \mathcal{H}_{21}^{1} + \mathcal{H}_{23}^{2} \\ \mathcal{H}_{32}^{2} + \mathcal{H}_{34}^{3} \\ \mathcal{H}_{32}^{1} + \mathcal{H}_{34}^{3} \end{pmatrix}$ (|q)S12 $f \Theta_i = 1$ $\theta_2 = 1$ 13 3 ₿,=1 Π 3 3 @ 381 ST2 (D) S62 Saz D JSG S₄I Set Stz S52 S 33 ~ S23 る 3 Fig. 1.3 Rigideces 3 \Box <u>Sn3</u> ×93 (7)

DESFI-UNAM Margo-1976 P. Ballesteros 7 De la Fig. 1.4 el desarrollo completo de las ecuacionar de superposision incluyendo reacciones es $S_{11} D_1 + S_{12} D_2 + S_{13} S_3 + S_{14} S_4 + S_{15} S_5 + S_{16} D_6 + S_{17} S_7 + S_{18} D_8$ $+S_{19}S_{9}+\mu_{21}+\mu_{25}^{2}=0$ S2101 + S22 Oz + S23 S3+ S24 S4 + S25 S5 + S26 O6 + S27 87 + S28 O8 $+ S_{29} S_{9} + \mu_{32}^{2} + \mu_{34}^{3} = 0$ $S_{31}\theta_1 + S_{32}\theta_2 + S_{33}S_3 + S_{34}S_4 + S_{35}S_5 + S_{36}\theta_6 + S_{37}S_7 + S_{38}\theta_8$ $+ 5_{39} S_9 + V_{21} + V_{21}^3 = Q$ $S_{41}\theta_1 + S_{42}\theta_2 + S_{43}S_3 + S_{44}S_4 + S_{45}S_5 + S_{46}\theta_6 + S_{47}S_7 + S_{48}\theta_8$ (1.10) $+S_{49}S_{9}+V_{23}^{2}$ $= R_4$ S51 A+S52 O2 + S53 S3 + S54 S4 + S55 S5 + S56 O6 + S57 S1 + S58 Og $+55989+V_{32}^{2}$ =R5 56101 + S6202 + S6383 + S6984 + S6585 + S66 86 + S6787 + S6808 $= R_6$ + Sca Sg + Hiz S71 81+ S72 82 + S73 83 + S74 84 + S75 85 + S76 86 + B77 87 + S78 88 $= R_7$ + S79 S9 + V12 S810,+S82 02+ S83 83 + SE4 84 + S85 85 + S86 06 + S87 87 + S88 08 $+ \operatorname{Sen} \operatorname{Sen} + \mu_{43}^3 = \operatorname{Re}$ Sai A + Saz Dz + Saz Sz + Saz Sz + Saz Sz + Saz Dz + Saz Dz + Saz Dz $+S_{qq}S_{q}+V_{43} = Rq$ expresando (1.10) matricialmente se obtiene:

DESFI-UNAM

Margo-1976

P. Ballesteros

8

Ð, Uz1 + 1/23 SII SIZ SI3 SIA SIS SI6 SI7 SI8 SIA 0 Ц²32+Ц³4 SZI SZZ SZZ SZA SZ5 SZ6 SZ7 SZ8 SZ9 θz 0 S31 S32 S33 S34 S35 S36 S37 S38 S29 --S3 $V_{21}' + V_{21}'$ Q S41 S42 S43 S44 S45 S46 S47 S48 S49-۔ 84 ₽₄ (11)S51 502 S53 SE4 S55 S56 S51 S58 S59-25 R5 S61 S62 S63 S64 S65 S66 S67 S68 S69. 6 Rь SII SI2 SI3 SI4 SI5 SI6 SI7 SI8 SIA 57 ∇T_{i} R SEI SE2 SE3 SE4 SEE SE6 SET SEE SE9 μ^{3}_{43} Ðs R8 Sal Saz Saz Saz Saz Saz Saz Saz Saz Saz Sq Ra {S} {M} {R} See Expresando (1.11) matricialmente con la notación indicada (1.12) $[S_{ke}]{S_{k}} + {\mu}_{e} = {R}$ El analisis por el método de las rigideoss se reduce à evaluar, de (1.8) {Si} o sea (1.13) $\{S_i\} = [S_{ij}]^{-1} \{Q_i\}$ y substituyendo (1.13) en (1.2) se obtiene para cada bara $\{m_i\} = [k]_i [S_{ij}]' \{Q_i\} + \{\mu\}_i$ (1.14)y las reacciones se obtienen substituyendo (1.13) en (1.12) {R}= [Spe][Sij] Qif + Ju}k (1.15)

Margo de 1976 | P. Ballesteros DESFI-UNAM 9 METODO DE LAS RIGIDECES DE ANALISIS 2 ESTRUCTURAS TRIDIMENCIONALES DE 2.1 ELEMENTO VIGA. sistema de referencia M_{μ} globa 500 Þ, Miz Ms P2 ι ί P3 me g ma +3 sistema de referencia local Fig. 2.1 <u>Elemento viga</u>; ejes 4,3 son centroidales y principales ($Q_r = Q_3 = I_{rz} = 0$) El elemento estructural j. R, se supone una barra capaz de resistir fuergas axiales, momentos flectores respecto a dos ejes principales en el plano de la sección transversal, y momentos de torsion respecto a su eje centroidal. Las siguientes fuergas actuan en la viga jk: Fuergas axiales P. y P. ; Fuergas cortantes Pz, P3, Pay Pq; Momentos flectores ms, ms, miny miz; y Momentos de torsion may mo. la localización y dirección positiva se muesta en Fig. 2.1

DESFI-UNAM | Margo de 1976 | P. Ballesteros 0 Los desplazamentos correspondientes seran 1, 12, 12, 11, ..., 112 serais positivos en la dirección positiva de las fuergas. La posision dell'elemento viga je sera especificado por las coordenadas del extremo j y los cosenos directores del ele x (dirección j k) y del eje y con respecto al sistema global (Z, J, Z). La matriz de rigidez delle le mento viga sera de 12×12 pero siempre es posible integrarla con serb ma trices de 2x2 y dxd. De la teoría de flexion y torsion de vigas las fuerges, pi y for dependen solo de sus desplazamientos correspondientes; lo mismo es cierto para los momentos torsionantes May Mio. Sinembargo, para una selección arbitraria de los planos de flexión, los nomentos flectores y fuerzaz de corte en él plano xy dependención no solo de sus desplazamiento correspondientes pero también en los desplagamientos correspondientes a las fuerzos en los planos xy. Solamente si los xy y xz coinciden con los ejes principales de la sección transversal puede considerarses la flexión y corte sobre dichos planos independiente una de la otra.

____ Ø, R" R1,12 k12 kin Q16 Rig RI,10 k.,11 \mathcal{S}_{i} P, 名 R1A **R**is K15 P. Ballesteros R26 R27 R28 \$21 R25 Ś2 Pz R22 k23 R.24 R29 P2 R2,11 \$2,12 \$2,10 R31 P3 R3,12 83 Ð **K**33 R4, 12 kai M4 $\hat{\Theta}_4$ μ₄ R5,12 **DEI** Ц5 M5 θ_{5} 55 RU Raiz 06 ЦĿ Ms (2.1) +Ru R7,12 Si P р.т k77 Marzo-1976 Rai **k**88 R0,12 PB Ps Ss Si metrica) Ra, 12 Rai Pa Sq pa Raa R10,12 Rib Rigio MID Θιο Дю k 11, 121 RIJI ЮII Ðıı $\mu_{\rm H}$ RILI Riz, Riz, 12 ·012 Uiz Miz V DESFI-UNAM [8]; $\{\mathcal{H}\}_{i}$ [kij] رزا فكتوتيه 144005 \$ 513145 002 496 27 144005 \$ 513145 00 1455 144005 \$ 513145 05 1455

P. Ballesteros Margo-1976 DESFI-UNAM 12 Ponde: {b}; vector de caigas actuando sobre à le [kij]; matriz de rigidez de la barra je {S}; vector de desplazamientos nodales 122; vector de reacciones de empotramiento perfecto 2.2 Elementos de la matriz de raidez [kij]. En el calculo de las rigideces kij se utilizan los principios energencos expuestos considerandoso la energia clástica de deformación por flexion corte y carepa normal. 2.2.1 Fuergas axiales & y &. R. Fig. 2.2.1.1 De la ler de Hooke sy la Fig. 2.2.1.2 se obtiene $k_{11} = \frac{P_1}{S_1} = \frac{EH}{l} \quad ; \quad k_{71} = -\frac{EH}{l}$ (a) $k_{11} = \frac{E}{2} = \frac{E}{2}$; $k_{11} = -\frac{E}{L}$ (6)
DESFI-UNAM Margo-1976 P. Ballesteros 13 2.2.2 Momentos de torsión M4 y Mio. MA $\theta_{10}=0$ Q4 70 (2) ► Mio Dio≠0 $\theta_4 = 0$ (6) Fig. 2.2.2.1 De la teoría de torsion de barras y la: fig. 2.2.2.1 se obtiene $k_{44} = \frac{m_4}{\theta_4} = \frac{GJ}{l}$; $k_{104} = -\frac{GJ}{l}$ (a)(6) $k_{10,10} = \frac{m_{10}}{\Phi_{10}} = \frac{GJ}{0} ; k_{4,10} = -\frac{GJ}{l}$ 2.2.3 Fuergas de corte Rzy Pa. ms AB2 -)m12 012=0 €6=0 (a) Pa →× M12 P2 ms (_____ (b) E12=0 86=0 86=0 Fig. 2.2.3.1 De la Fig. 2.2.3,1 y los principios energeticos previamente expuestos, coniderando la energia de deformación por flexion y cortante se obtiene

.

DESFI-UNAM Margo-1976 P. Ballesteros 15 De la Fig. 2.2.4.1 y los principios energéticos previamente expuestos, considerando, la energía de deformación por flexión y corte se dofiene $\hat{R}_{66} = \frac{M_6}{\Theta_6} = \frac{(4+\Phi_Y)EI_3}{(1+\Phi_Y)l}$ $k_{86} = \frac{p_8}{\Theta_6} = -\frac{6EI_8}{(1+\Phi_r)l^2}; \ k_{68} = \frac{M_6}{\delta_8} = -\frac{6EI_8}{(1+\Phi_r)l^2}$ $\hat{R}_{12,6} = \frac{M_{12}}{\Theta_6} = \frac{(2 - \Phi_r) EI_8}{(1 + \Phi_r)l}; \quad \hat{R}_{6,12} = \frac{M_6}{\Theta_{12}} = \frac{(2 - \Phi_r) EI_8}{(1 + \Phi_r)l} = \frac{M_6}{(1 + \Phi_r)l}$ $k_{12,12} = \frac{M_{12}}{\Theta_{12}} = \frac{(4 + \phi_r) E_{13}}{(1 + \phi_r) l}$ $k_{8,12} = \frac{k_8}{\Theta_{12}} = -\frac{6EI_8}{(1+\Phi_r)l^2}; \quad k_{12,8} = \frac{M_{12}}{\delta_8} = \frac{R_{8,12}}{\delta_8}$ $k_{6,12} = \frac{M_6}{\Theta_{12}} = \frac{(2 - \Phi_Y) E I_3}{(1 + \Phi_Y) l}; \quad k_{12,6} = \frac{M_{12}}{\Theta_6} = k_{6,12}$ 2.2.5 Fuergas de corte P3 y Ra. Los coeficientes de rigidez relacionados con los des plaza muentos 33 y 39 se obtienen de los resultados previos. De be observarse, que con la convención de signos adoptada en la Fig 2.1 las direcciones de los momentos flectores pox3: 3 + x , la convenció , la-convención

P. Ballesteros DES FI-UNAM Margo-1976 16 plano xy, (13) $\xrightarrow{} M_{12} \rightarrow X$ M6 (-В Þa \rightarrow plano x z, $\{I_r\}$) m,, Fig. 2.2.5 Convención de signos para fuergas de corte y momentos Electores; de signos se muestra en la Fig. 2.2.5, basado en lo anterior es evidente que $\hat{R}_{33} = \frac{\hat{P}_3}{\hat{S}_3} \equiv -\hat{R}_{22} \equiv -\frac{\hat{P}_2}{\hat{S}_2}$ $k_{53} = \frac{m_5}{S_3} = -k_{62} = -\frac{m_6}{S_2}$ d $k_{qs} = \frac{p_q}{s_2} = -k_{e2} = -\frac{p_s}{s_2}$ $k_{11,3} = \frac{m_{11}}{S_2} = -k_{12,2} = -\frac{m_{12}}{S_2}$ $k_{qq} = \frac{k_q}{s_q} = -k_{88} = -\frac{k_8}{s_q}$ $R_{11,q} = \frac{m_{11}}{S_q} = -R_{12,8} = -\frac{m_{12}}{S_8}$ Pebe considerarse en el plano X3 a Iry 9; como momento de inercia y parametro de cortante.

DESFI-UN, Margo-1976 P. BallesTeros 2.2.6 Momentos Flectores M5 y M1 17 Aplicando las mismas observaciones de la seccion anterior, se obtiene $R_{55} = \frac{M_5}{\Theta_5} = R_{66} = \frac{M_6}{\Theta_6} = \frac{(4+\varphi_3)}{1+\varphi_3} \frac{EI_7}{l}$ $k_{95} = \frac{p_{9}}{p_{5}} = -k_{86} = -\frac{p_{9}}{p_{6}} = +\frac{GEI_{Y}}{(1+q_{3})l} = k_{59}$ $R_{11,5} = \frac{M_{11}}{A_5} = R_{12,6} = \frac{M_{12}}{\Theta_6} = \frac{(2 - \Phi_8)EI_{1}}{(1 + \Phi_3)l} = R_{5,11}$ substituyendo los valores Rij obtenidos en las subsecciones anteriores se obtiene la mating de rigidez de la barra je de la Fig. 2.1 ecuación 2.5. en donde $\phi_{\rm Y} = \frac{12EJ_3}{GA_{\rm SY}l^2} = 24(1+\gamma)\frac{A}{A_{\rm SY}}\left(\frac{J_3}{l}\right)^2 = \frac{12f_{\rm Y}EJ_3}{GRl^2}$ (2,3) $\Phi_z = \frac{12EI_r}{(A_{cr})^2} = 24(1+y)\frac{A}{A_{sz}}\left(\frac{Y_r}{l}\right)^2 = \frac{12f_sEI_r}{GRl^2}$ ~) = relación de Poisson, A=avea total de la sección, Asry Asz= areas efectivas en cortante en direcciones y y g resp. Fry Fs = radios de giro respectoa y y resp. a x. Oy y og = Parametros de deformación de corte. Sé F3/2 y F8/2 son pequeños comparados con la unidad, como son en elementos flexibles, ambos dryds se jueden considerar cero. Los factores de forma son $f_{Y} = \frac{A}{T_{z}} S(\frac{Q_{z}}{B})^{2} dA , f_{z} = \frac{A}{T_{z}} S(\frac{Q_{z}}{B})^{2} dA$ (2.4)

DESFI-UNAM Margo-1975 P. Ballesteros 19 Para problemas Bi-dimensionales, el elemento viga je se reduce a seis fuergas y momentos nodales seis desplazamientos y 10 taciones nodales. Ulilizando sistemas dloba 25 P2 = 52 M3 & sistema Local S. Me Sa Fig. 2.2 Elemento viga para estructuras bidimensionales la nomenclatura de la Fig.2.2 (21) 2 queda en RI- P12 R13 R14 \$15 \$16 -81-P2 - R26--2-2-U3 (2.6)34 _S5 Rec. | De);-1. Ho); o sea: $\{P_{i}^{k} = [k_{ij}], \{S_{i}^{k}, + \{\mu\}\}$ (2.7)De los resultados discutidos previamente matriz de rigidez de la barrai figura 2.2 gueda

represente las matrices de los cose nos directores TZOU ZOW ZOY = ZOY [rol rom rol] = ro K (Z1.2) xor strob = XOX MOX Nox = $\left\{\overline{\mathcal{S}}\right\}\left[\overline{\mathcal{X}}\right] = \left\{\overline{\mathcal{S}}\right\}$ 225 0 (11:3) <u>{</u><u>S</u>} $\{S\}$ [A]ζoγ z I ^zⁱO "Θ "₫ γø Q 0 0 °'Ð 129 1291 zovi 5 Yol O 0 Q 83 12/12 1Yox ٢Z 1807 Ð (3.10)0 Yor 0 Ċ ₅Ø Yox G For ٤S 28 zZ Yor Q Q Q 18, Υ^όΥ 13 de la forma 29 1.2. Pit ticilmente demostrarse para el elemento viga mostrado en sisteme coordenado local y el global. Rede situs 9 matrice (ebeionando los desplaçamentos ecuacion 0-DESFI-UNAM Margo-1976 P. Ballesteros 2

P. Ballesteros DESFI-UNAM Margo-1976 22 para las direcciones 0X, 04, y 03, respectivamente, referidas al sistema global X, J J J, y {3}, representa los desplaza mientos de la barra [i] respecto al sistema global. Para proble mas bidimensionales la matriz de transitor macion [] se reduce a lox Mox 0 0 0 0 loy Mor 0 0 0 O 0 0 1 0 0 0 (2.13) $|\lambda| \equiv$ 0 0 0 lox Mox 0 0 0 0 loy Mor 0 00000 1 El analisis de marcos tridimensionales se puede describir por las mismas ecuaciones básicas usadas en la descripción del anglisis de estructuras planas. Considerando el sistema total, el equilibrio estático nodal es definido por la ecuación matricial (6.14) $[S_{2}]{S_{2}} + \{\mu_{c}\} = \{R_{c}\}$ donde: [5] = Matriz de rigidez completa de la estructura. [Sc] = vector de desplazamientos nodales completo

Iliz = vector de cargas nodales completo

איזידיאיני

DESFI-UNAM Marzo-1976 P. Ballesteros {R} vector de reacciones de la estructura y de (2.14) se obtiene la ecuación (2.15) $[S_{\mu\mu}]{S_{\mu}} + \{\mu_{\mu}\} = 0$ de donde se obtiene $\{3, i\}$ y $\{3, c\}$, el que substituyéndolo en (2.14) y(2.1) se obtiene $\{R_{c}\}$ y $\{p\}$ como (2.16) $\{R_{2}\} = -[S_{2}][S_{44}]^{-1}\{\mu_{4}\}$ $\{P\}_{i} = [R_{ij}]_{i} [S_{ij}]_{i} [M_{ij}] + \{M_{i}\}_{i} (i=1,2...,n) (2.17)$ Ejemplo: En el sistema estructual de la Fig. 2.3, determine las reacciones nodales {P}: en los extremos de cada miembro y las reacciones originadas por las cargas indicadas. La estructura tiene miembros prismaticos con las siguientes propiedades : $EI_r = EI_s = EI$ (2.18) $GI_x = \frac{EI}{A}$ $EA_{\star} = \frac{EI}{4}$ la estructura es flexible, yse puede considerar $la(\phi_{Y} = \phi_{z})$ deformación por cortante despreciable

P. Ballesteros : 24 DESFI-UNAM Margo-1976 Ч g=4.8 m $\widehat{}$ 3 2 10 m 2 3 Fig. 2.3 Estructura espacial rigida Las tablas 2.1 y 2.2 dan la información requenda para cada nodo y miembro Nodo $\overline{\mathsf{X}}$ M 3 0 0 0 10.0 2 0 D -10.00 10.0 0 3 -10.00 - 10.00 10.0 Tabla 2.1 coordenadas nodales en metros.

DESFI-UNAM Margo-1976

P. Ballesteros

WATTERNAL 12 281 SO SWEETS 5 SCULTER

2

P. Ballesters 26 DESFI- UNAM Margo-1976 vector columna de des plaza mientos nodales {82} {S_1} (2.19)Drz Sus 527= <u> 9</u>12 <u>5</u>14 · 016 Ðn 01620 101020 100100 1022 <u>.</u> $\overline{ heta}_{23}$ <u>.</u> 1024

P. Ballesteros DESFI-UNAM Margo-1976 27 Matriz de rigidiz de cada miembro Para cada elemento viga, la matriz de rigidez se establece por medio de (2.1) con respecto a los ejes locales; la matriz de transformación se puede establecer por medio de la exfresión (2.10); y la matriz de rigidez de miembro transformada, [k;]: respecto a l'sistema global se obtiene de (2.20) $[k_{ij}] = [\lambda]_i^T [k_{ij}]_i [\lambda]_i$ Miembro II 100000000000 0101000000000 00 1000000000 000000000000000 0000101000000 $= [I]; [k_{ij}] = [I]^{T} [k_{ij}] [I]$ $\lceil \lambda \rfloor = \mid$ 00000000000000 (2.21) =[kij] 0000000000000 000000000000000 000000000000000 000000000000 13 14 15 3 2 16 18 17 ·025 O 13 Õ -.025 0 0 0.012 .060 -.012 14 0 0 0 0 O 0 0 .060 0.012 0 -.060 0 -.012 0 -.060 15 0 ٥ Ô 0.025 0 0 -.025 0 0 О O 0 0 16 0.4 0 .06 0 0.2 0 -106 0 O 0 17 (2.22) .06 0 -.06 0 0 0 0.4 0 18 0 0 0 0.2 025 0 0 .025 0 0 0 0 0 0 l .012 0 2 О -.06 0 -.06 0 0 0 0 -.012 0 -.012 0 .06 0 0 0 .012 0 .06 0 0 7.025 0 0 .025 0 0 Ο 0 0 0 0 -.06 0 0.2 0 5 -4 0 .06 0 0 0 .06 0 0 0 0.2 0 -.06 .4 0 0 0

Marzo-1976 | P. Ballesteros DESFI- UNA M Miembro [2] De (2.5) se obtiene: -.025 .06 .012 Ο .012 ο ·012 -.06 .06 .012 .025 0 .025 ο -.06 10.4 0 .06 0.2 (2,23) .06 0.4 0.2 -.06 [kij]=EI ,025 .025 ð О -.06 0 .012 .012 -.06 Ο .012 0 .06 .012: .06 -.025 0 O О .0251 .06 i O ,4 0.2 -.06 D .4 .06 0.2 0 -.06 De(2.12); $\overline{\lambda}_{ox} = \begin{bmatrix} 0 & 0 & -1 \end{bmatrix}_{z}, \quad \overline{\lambda}_{oy} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}_{z}, \quad \overline{\lambda}_{oz} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}_{z} \quad (2.12)a$ Subst. (2.12) a en (2.10) se obtiene 00-1 O 00-1 (2.24)0.0 $[\lambda]_{z} =$ 00 -00-Subst (2.24) y(2.23) en (2.20) SQ Obt 12. 012 0 0 0 -.06 .06 -.0121 0 .012 0 .06 -.012 .06 O .025 0 -.025 .4 0 1 .06 -. 06 0.2 Ô Ô 0.4 6 -.06 .06 .2 (2.25) -.025 ·025; 0 Ô -.012 0 .06 0, .06 Ô -.06 -.012 Ô .012 0 -.06 O -.025 Ó .025. Ð 0.2 -.06 •4 ゥ .06 -.06 0.2 0 .06 •4 Ο 0 0 0 -.025 0 0 ĩυ .025 D

ġ

DESFI-UNAM Margo-1976 P. Ballesteros 29 Miembro 131, De (2.5) se obtiene la matriz de rigidez. la cual resulta igual a la de los miembro 田江 $[R_{ii}]_{=} = [R_{ii}]_{=} = [R_{ii}]_{i}$ (2.26) De(2.12) se obtiene $\lambda_{0X_{3}} = [010]_{3}, \lambda_{0Y_{2}} = [001]_{3}, \lambda_{0Z_{3}} = [100]_{3}, (27)$ De (2.27) y (2.10) se obtiene 010 001 100 010 1 0 0 1 0 0 (2.28) $\left[\lambda\right]_{3} =$ 010 001 100 001 De (2.20) (2.26) y(2.28) se obtiene 21 22 23 24 7 8 9 11 12 10 19 | 20 -.06 -.012 0 0 .012 0 Ο. 0. o . 0 - 06 19 0 -.025 0 Ø Ø Ø 20 0 0 -.012 .06 0 0 -.06 .2 .06 .012 0 Ð 0 21 .4 .06 0 0 22 0 0 1025 0 (2.29) 0 0 -.025 23 0 . o .4 ,06 ° 0 0 24 [Rij=EI 0 .06 .012 0 0 0 0 0 .025 0 0 0 7 0 0 8 -.012 -.06 0 0 -.06 9 .06.200 ,4 0 10 11 .2 .06 0 0 0 12

DESFI-UNAM | Margo-1976 | P. Ballesteros 3Ò Matriz de rigidez de la estructura. La matriz completa de la estructura [5.] se obtiene sumando los coeficientes de rigidez de miembro dados en las expresiones (2.22), (2.25) y (2.29) con respecto a la identificación de subindices de los elementos se obtiene .037 -.06 ο -.012 0 .024 . 06 -.06 .06 .037 .06 0 -.025 0 ·425 0 0.2 .06 -.06 0.2 ..06 -.06 ο 0.8 .06 .425 0 -.025 -.06 Ø 0,06 .024 .06 .06 Ο -.012 0 -.06 0 0 .037 0 -.06 0-.025 0 0 0 .037 -.06 0.200 .06 -.06 -.06 .8 0 0.2 .425 -.06 0 .06 0 0 -.025 .06 S_=EI .425 (2.30) -.025 0 Ο -.012 .06 Ο -.012 0 / -.06 O -.025 .06 0.2 O -.06 0.2 0 -.012 G --.06 0 0 0 0 0 0 0 0 0 0 0 0 0 -.025 0 -.012 .06 Ο ο -.06.2 -.025 О .06 De(2.30) se obtiene $[S_{\mu\mu}]^{-1}$

3	31	· · · · · · · · · · · · · · · · · · ·					2.31)		,			·		
yo-19 (6 Y. Dalles eros			2	3	4	5	6	7	8	9	0	!	12	-
		38.396	1.266	-6.236	0.001	1.750	0.085	11.279	-0.403	- 5.028	-0.503	3.005	-1.578	
		1.266	210.745	-43.160	-21.908	5.487	30.182	-39.151	11.279	-50.707	-13.286	3.124	7.303	
		-6.236	-43.160	102.028	2.421	-11.235	+6.537	50.707	5,028	24.038	9.312	-2.752	-7.543	
		0.001	-21.908	2.42	5.546	-0.346	-3.130	3.124	3005	2.152	0.688	-0.278	-0.625	
		1,750	5.487	-11.235	-0.346	3.048	0.988	-13,286	.0.503	-9.312	-1.061	0.688	1.928	
		0.085	30, 182	-6,537	-3.130	0.338	6,698	-7.303	1,597	-7.543	-1.728	0.625	1.425	
		11.279	-39,15]	50.707	3.124	-13.286	-7.303	210.745	1.266	43.160	5.487	-21.903	-30,182	
		-0.403	11.279	5.028	3.005	-0.503	1.587	1.266	38.596	6.236	ן זינ <u>ו</u>	0.00	-0.085	•
(all		-5,028	-50,707	84,038	2.752	-9.312	-7.5.13	43.160	6.236	102.028	//.235	-2.421	-6.537	
2		-0,503	-13.286	9.312	0.688	-1.061	-1,928	5,437	1.750	11.235	3.048	-0.346	-0.888	
		3.005	3.124	-2.752	-0.278	0.683	0.625	-21.908	0.00]	-2.421	-0.346	5.546	3,130	
2 4 7 7		-1.587	7.303	-7.543	-0.625	1.928	1.425	-30.182	-0.085	-6,537	-0.888	3.130	6.698	
5		4				: :	: 		· · · ·	,	· ¦		_	
5					·	۱	: : :	i i	. .	, , ,	,	, , ,	. ,	
Ч Г		•		-		•			•					
•			<u></u>			NBILUN						· · ·		-

- /

31

• ---

P. Ballesteros 32 DESFI-UNAM Margo-1976 Vector de momentos y reacciones fijas membro II (2,32) $\{\overline{\mu}\}_{I} = [\lambda]^{T} \{\mu\}_{I}$ (2.33) $\{\mu\}_{2} = 0$; $\{\bar{\mu}\}_{2} = 0$ $\{\mathcal{M}\}_{2}=0 \quad ; \quad \{\overline{\mathcal{M}}\}_{3}=0$ Habiendo definido las cargas nodales en termínos de las acciones fijas en los extremos con respecto a los ejes de referencia, se deduce el vector de cargas nodales competo fllet, como.

. . .

DESFI-UNAM

(

42.391 30 SHLETS 3 SOUAP 42.382 100 SHLETS 5 SOUAP 42.389 200 SHLETS 4 SOUAP

L'ar

Marzo-1976

P. Ballesteros

DESFI-UNAM Margo-1976 P. Ballesteros 34 Substituyendo (2.21) y (2.34) en (2.15) se obtiene (2,35)ISI Si -26.984 -3850.6 <u>5</u>3 774.36 Đ4 400.592 $\bar{\theta}_{5}$ -96,168 (2.36) -456. 448 Ð 57 $\{\bar{S}_{\mu}\}^{=}$ EI 647.504 50 -207.216 -59 915.248 Đio 241.744 - 49.976 Є -11.8.272 Điz Los valores de los desplazamientos dados por (2.36) con respecto al sistema global son valores relativos, pag obtener los valores se substituye E en ton/m² e Ien mª en (2:36) y se obtiene Si en metros y o en radianes. Acciones Finales en los extremos. Habiendo evaluado las componentes de los desplagamiento nodales con respecto al sistema global de referencia por medio de (2.10) se evaluan con respecto a las coordenados locales de cada bana y las acciónes

DESFI-UNAM Margo-1976 P. Balle steres finales para cada membro de la estructura se cal culan de (2.1) (2.37) $\{k\}_{i} = [k_{ij}][\lambda]_{i}\{\bar{S}\}_{i} + \{\mu\}_{i}$ De la Fig.24 se tiene para el membro III S13 Ī14 в <u>Sis</u> $\bar{\mathfrak{S}}_{16}$ 0 DIT DIE SI 0 (2.38) 0 -26.984 -3850.6 774.36 400.592 ⊕₅ ⊕₅ -96.168 11 -456.448/1 De (2.21), (2.38), (2.1) 4(2.5) se obtiene

P. Ballesteros DESFI-UNAM 36 Marzo-1976 0.7 Ton £ŀ 42.8 Ton \$2 (Indices seguin -3.5 Ton P3 aonvención Fig. 2.4) -10.0 Ton-m m4 27.2 Ton-m M 5 179.7 Ton-m (2.39) Mь -0.7 Ton F7 5.2 Ton P.8 3.5 Ton (a 10.0 Ton-m M.10 8.0 Ton-m 8.5 Ton-M MI M12 Miembro [2], $\{5\}_2 = \{S_n\} = [\lambda]_2 \{S_n\} + \{M\}_2 = \{0\}$ De , (2.24) (2.25), (2.1) y (2.5) se obtiene ¢, 3.5 Ton Ø2 -5.2 11 (indices sequin Þ3 11 0.7 convención Fg. 2.4) 8.5 Ton-m (M₄ (240)ų M5 -8.0 Mb -10.0 11 Ton R -3.5 П 5.2 -0.7 11 Pa -8.5 ton-m M0 12 Mi M12 -41.8

Margo-1976 | P. Ballesteros DESFI-UNAM 37 Miembro BI 520 520 0 0 0 0 0 (2.41)13 ĒJ 0 647.504 -207.216 915.248 241.744 - 49.976 -118.272/3 13 También $\{\mu\}_3 = 0$, De (2.28) (2.29), (2.1) 3 en y (2.5) se obtiene Pi 5.2 Ton P2 P3 3.5 11 -0.7 m4 1.2 Ton-m 2.42 MБ $\{ p \}_{a}$ 15,2 11 M6 -6.6 11 Pr -5.2 Ton P8 -3.5 11 Pa 07 1 -1.2 Ton-m Mio -8,5 11 \mathbb{M}^{\parallel} 41.8 " M12/3 て

P. Ballesteros DESFI-UNAM Margo-1976 . 38 Reacciones. Substituyendo las matrices apropiadas en {R}=[Sru]{Su}-{Ur} se obtiene Riz 0.7 Ton 42.8 RIA -3.5 RIS 10.0 Ton-m R16 RII 27.2 Ton-m 2.43 R18 179.7 Rig ton -0.7 R20 5.2 1 Rzi 3,5 11 Rzz -6,6 Ton-m R23 1.2 \mathbf{h} 15.2 11 Rza

9 BTm 8Tm P.Ballesteros 10Tm 8.5 Tm 15.2T 1.2Tm 5.21 M 077 ¥ 3.5T 41.8Tm 3.5T g 5.2T TT.O/ 8.5Tm 8.5 Tm IOTm NTRO 8.5TM 5,21 41.8 Tm -Margo-1976 . 1.2Tm Π 2 0 3 7 DESFI-UNAM Fig. 2.6 Diagrama de cuerpo libre de los nodos @ A 3

METODO DE ANALISIS POR ELEMENTOS FINITOS.

INTRODUCCION.

El ingeniero en la busca de los valores numéricos adecuados para describir su proceso de diseño, se encontraba generalmente con formulaciones mate máticas difíciles. Por ejemplo, considerando el simple caso de teoría de ---flexión de placas, bajo las hipótesis de pequeñas deformaciones y que las secciones planas permanecen planas después de la deformación, la ecuación di ferencial que gobierna el análisis para un material elástico lineal homogeneo e isotrópico es

$$\frac{\partial^4 w}{\partial X^4} + 2 \frac{\partial^4 w}{\partial X^5 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{q}{D}$$
(1)

donde W es la deflexión en el punto (x, y), q es la intensidad de la carga en el punto (x, y), y $D = \frac{Eh^3}{12(1-3^3)}$ es la rigidez flexionante de la placa la cual depende del modulo de elasticidad E, el espesor de la placa h y la relación de Poisson $\sqrt{2}$. En la Fig. 1 se presenta un elemento diferencial de la placa y las acciones y reacciones sobre él. Combinando la flexión simple - en dos direcciones se obtiene para los momentos y cortantes por unidad de lon-gitud de placa lo siguiente:

L

Fig. 1 Superficie media de una placa, y un elemento diferencial dx, dy. (2)

DESFI- UNAM

P. Ballesteros

$$M_{x} = -D\left(\frac{\partial^{2}W}{\partial x^{2}} + \sqrt{\frac{\partial^{2}W}{\partial y^{2}}}\right)$$

$$M_{Y} = -D\left(\frac{\partial^{2}W}{\partial y^{2}} + \sqrt{\frac{\partial^{2}W}{\partial x^{2}}}\right)$$

$$M_{xY} = D\left((1-\gamma)\right)\frac{\partial^{2}W}{\partial x\partial y}$$

$$Q_{x} = -D\frac{\partial}{\partial y}\nabla^{2}W$$

$$Q_{y} = -D\frac{\partial}{\partial y}\nabla^{2}W$$

$$\nabla^{2}W = \frac{\partial^{2}W}{\partial x^{2}} + \frac{\partial^{2}W}{\partial y^{2}}$$
(2)

donde ł

Para el caso particular de la placa libremente apoyada, y rectangular, cuyas condiciones en la frontera (Fig. 2) son:

01

`OX

$$W(o, y) = 0$$

$$W_{XX}(o, y) + \Im W_{YY}(o, Y) = 0$$
⁽³⁾

Navier en 1820 presento a la Academia Francesa de Ciencias, la solución representando la carga q (x, y), por medio de una serie trigonométrica doble

$$\Im(x,y) = \sum_{m=1}^{\infty} \prod_{n=1}^{\infty} \operatorname{Amm} \operatorname{Amm} \frac{m \pi}{a} \times \operatorname{Sau} \frac{m \pi}{b} \mathcal{Y}$$
(4)

substitutye (4) en (1) y considerando las propiedades de ortogonalidad de las series trigonométricas obtiene la solución de la ecuación diferencial bi-armónica

(1) como

$$W = \frac{1}{T^4 D} \sum_{m=1}^{\infty} \frac{q_{mn}}{\left(\frac{m^2}{a^2} + \frac{m^2}{b^2}\right)^2} \int_{a}^{a} \int_{a}^{mT} \chi \int_{b}^{mT} \frac{mT}{b} \chi \int_{b$$

en donde el coeficiente Amn viene expresado por

$$a_{mn} = \frac{4}{ab} \int \int g(x,y) dx dx \frac{m\pi}{a} x \sin \frac{m\pi}{b} y dx dy$$
(6)

El procedimiento de Navier consiste en lo siguiente: Conocida la función de carga q (x,y), se substituye en (6) y se obtiene el coeficiente Amn el cual - nuevamente se substituye en (5) y se obtiene la deflexión W (x,y), y por medio las ecuaciones (2) se obtienen los momentos y cortantes $\{M\}$ y $\{O_{i}\}$. Es importante observar que las limitaciones de Navier se refieren a una placa - rectangular libremente apoyada y con una función de carga q (x,y) impar con - respecto a x, y con respecto a Y, es decir, f(x) = -f(-x) y

Si la función fuese par, la representación de -q(x, y) sería mediante una serie de cosenos, y si q(x, y) fuese una función cual

quiera, se representaría mediante una serie trigonométrica doble completa de senos y cosenos, y se tendrían problemas en satisfacer las condiciones en la frontera. Generalmente la convergencia de la serie (5) es lenta, y en algu nos casos es necesario considerar más de 500 términos para asegurar la solu ción correcta.

Posteriormente en 1900 M. Levy cambia de posición los ejes coordenados (Fig. 3) e utiliza una serie trigonométrica simple

$$W = \sum_{m=1}^{\infty} f_m(g) \operatorname{sen} \frac{m\pi}{a} \chi$$
(7)

El procedimiento de Levy consiste en substituir (7) en (1) obteniendo una ecuación diferencial lineal de cuarto orden en fm(y) con coeficientes constantes no homogenea con la cual ya es posible satisfacer diferentes condiciones en la frontera $3 = \pm \frac{1}{2}$, pero continua limitado a una placa rectangular libremente apoyada en las fronteras x = o y x = a.

Fig. 3 Posición de ejes en solución de M. Levy.

Las limitaciones de análisis tan restringidas, como los ejemplos anteriores, aparecían en innumerables problemas de ingeniería, lo cual originó el principio de los métodos numéricos, el cual presenta dos etapas de desarrollo. Antes de la época de las computadoras, donde representa un importante papel el Prof. Southwell del Colegio Imperial de Inglaterra, desarrollando y aplicando los métodos numéricos de relajación y diferencias finitas, superando las limitaciones restringidas de los métodos analíticos de solución.

. . .

Durante la era de las computadoras digitales, el método de análisis por ele mentos finitos ha obtenido gran popularidad, puesto que en este procedimiento como resultado de la discretización del medio por analizar, se obtienen sistemas grandes de ecuaciones algebraicas lineales simultáneas, lo cual actualmente su solución no representa ningún problema. Por ejemplo, en el caso de análisis elástico lineal de placas, podemos tener cualquier condición de apoyo, de geome tría y de cargas, prácticamente se eliminan la mayoría de las restricciones de las soluciones analíticas mencionadas, el problema más importante es verifiar adecuadamente su convergencia.

El primer trabajo referente al método se debe a Hrenikoff Ref. 1 publicado en 1941, y el segundo a McHenry publicado en 1943 en ambos trabajos (Fig. 4) se verifican soluciones de problemas de elasticidad bidemensional en estado plano de esfuerzos, discretizando el medio y buscando la analogía con la solución estructural.

Posteriormente en 1949 Newmark, en su libro de Métodos Numéricos - - Ref. 3, presenta los métodos de Hrenikoff y McHenry. Sin embargo, el

Fig. 4 Primera solución presentada por Hrenikoff en 1941.

crédito de aplicarlo a medios continuos es de Turner, Clough, Martin y Topp Ref. 5, y no es, sino hasta 1960 con Clough, Ref. 6 nace por primera vez el nombre mágico de "Elemento Finito", derivando más correctamente las propiedades básicas del elemento triangular y el rectangular, y el hecho de que en el mismo tiempo la computadora comienza a ser una herramienta muy efecti va, conduce rápidamente a la solución numérica de problemas elástico lineales complejos, en los cuales una solución analítica no era posible.

Se inician la derivación de las propiedades de rigidez de los elementos finitos, el campo de desplazamientos en el medio se expresa en función de los desplaza mientos nodales del elemento, satisfaciendo continuidad, las fuerzas internas se definen aplicando el principio del traba jo virtual, la identidad de este proceso con el de minimizar la energía potencial total, o sea, el proceso de Rayleigh-Ritz Ref. 7 es obvia. El desarrollo anterior se acentúa en el campo de la Mecánica de Sólidos y posteriormente Zienkiewicz Ref. 13 y Wilson Ref. 14 lo aplican en Mecánica de fluídos y en problemas de análisis de conducción de calor.
Se presenta al final una lista de referencias de importancia del método del elemento finito,

Al iniciar la determinación de esfuerzos y desplazamientos en cierto problema de diseño, las ecuaciones que gobiernan el problema en cualquier forma deben satisfacer equilibrio y continuidad.

El Método del Elemento Finito es un procedimiento analítico, y cuando se aplica a un medio continuo, éste se modela analíticamente subdividiéndolo en sub-regiones (los elementos finitos) en los que el comportamiento de cada uno es definido por grupos separados de funciones que supuestamente definen esfuerzos y desplazamientos en esa región, las funciones se seleccionan en forma tal que se satisfaga la condición de continuidad a través de todo el medio, por lo tanto, el método del elemento finito en común con las soluciones por series y diferencias finitas representa una aproximación a la solución del problema

) Elemento estructural

TIPOS DE ELEMENTOS.

Elementos que son usados comunmente en la práctica son ilustrados en la Fig. 5.

<u>El elemento estructural simple</u>, <u>Fig. 5 (a)</u>, es un miembro de la familia total de elementos finitos. Cuando se usa con elementos del mismo tipo descri be armaduras y estructuras espaciales. Cuando se combina con elementos de tipo diferente, especialmente con elementos de placa generalmente se describen miembros de rigidez.

Los elementos básicos en análisis por elementos finitos son placas delgadas con cargas contenidas en su plano (condición de esfuerzos planos), triangulares y cuadriláteros se ilustran en la Fib 5b. Se denominan básicos porque los primeros desarrollos concernientes con el método se refieren a ellos.

Los elementos sólidos, Fig. 5 (c), son la generalización tridimensional de los elementos de esfuerzos planos. El tetrahedro y el hexaedro son las formas más comunes y son esenciales para modelar analíticamente problemas de mecá nica de suelos, rocas y estructuras nucleares. Es conveniente mencionar que la única forma práctica de resolver problemas tridimensionales prácticos, es el método de elementos finitos.

Uno de los campos más importantes de aplicación del método de elementos finitos es en el análisis de "sólidos axisimétricos", Fig. 5 (d). Una gran varie dad de problemas de ingeniería caen en esta categoría, incluyendo concreto, tan ques, recipientes nucleares, rotores, pistones, flechas de motores, y la cabeza de los roquets. Generalmente son medios de carga y geometría axisimétrica. En la Fig. 5 (d) se muestra el elemento triangular, también se usan secciones cuadriláteras.

Elemento de placa plana en flexión es empleado no solo en conección con el comportamiento de placas planas, sino también en cascarones y miembros de - pared delgada. Fig. 5 (e).

Estructuras de cascarón delgado axisimétricas, Fig. 5 (f), tienen el mismo rango de significado en la aplicación práctica que los sólidos axisimétricos. Sinembargo, las relaciones gobernantes se derivan de la teoría de cascarones delga dos.

Cuando una estructura de cascarón delgado que de hecho es curva, es preferible emplear elementos de cascarón curvos delgados para el modelo analítico, tienen la ventaja de describir más aproximadamente la superficie curva del casca rón, y la apropiada representación del acoplamiento de deformación y equilibrio entre cada elemento. Elementos típicos de cascarones de doble curvatura se mues tran en Fig. 5 (g). Gran número de formulaciones para este elemento existen.

ALGUNAS APLICACIONES DE ELEMENTOS FINITOS.

Examinaremos algunas aplicaciones delmétodo de elementos finitos en diseño estructural con el objeto de ilustrar la forma en la cual se usan los elementos de la Fig. 5, y la escala y complejidad de los problemas.

El desarrollo del método del elemento finito se debe a los investigadores relacionados con la industria aeronáutica. La Figura 6 muestra la forma en que -

se aplicó el análisis por elementos finitos de una porción del avión Boeing 747. La estructura del fuselaje de un avión consiste de laminas de aluminio ligadas a una estructura interna formada por armaduras y atiezadores. La experiencia ha mostrado que los efectos locales de flexión en el cascarón son desprecia bles, por lo tanto, se supone que consiste de elementos en condición plana de esfuerzos Fig. 5(b). El análisis de elementos finitos del Boeing 747, de la parte achurada, región que conecta el cuerpo o Cascarón Monocoque con las alas, área achurada en Fig. 6, consiste de 7000 incógnitas. Por lo tanto, es común en la práctica dividir la estructura en regiones, o subestructuras, y analizar cada una por elementos finitos con el objeto de producir un superelemento. Los superelementos se ligan entre sí por medio de un procedimiento convencional que determina la fase final del análisis.

El esquema de subestructuración del Boeing 747 es mostrado en la Fig. 6 y los detalles son listados en la Tabla 1.

1			-					
	Sub- Estructura	Descripción	Nodos	Condición Carga	Elemento Viga	Elemento Placa	Grados liber tad interac- ción elemen- tos.	Grado de libertad total.
	1	Ala	262	14	355	363	104	796
	2	Centro ala	267	8	414	295	198	880
	3	Cascarón			•	•		
		Monocoque	291	7	502	223	91	1,026
	4	Cascarón M.	213	5	377	185	145	820
	5	Cascarón M	29 2	7.	415	241	200	936
	6	Caja Tren		•				
		Aterrizaje	170	10	221	103	126	686
	7	Cascarón M	285	6	39 2	249	233	909
	8	Caja Tren						
	-	Aterrizaje	129	÷ 10	201	. 93 ·	148	503
	9	Cascarón M	286	<u>7</u> .	497	227	92	1,038
	TOTAL	2,	. 195	63	3,374	1,979	555	7,594

Tablad Subestructuración del Boeing 747

Como es usual en el diseño de aviones, se hicieron pruebas en el prototipo y los resultados se compararon con la solución por elementos finitos, coincidiendo como se muestra en la Fig. 7

Fig. 7 Comparación entre análisis y experimentación del Boing 747

Es importante agregar que la respuesta dinámica de un avión es muy impor tante, así como su inestabilidad elástica es una forma importante de falla. Nin guno de estos fenómenos puede tratarse por los métodos simplificados, pero su análisis usando el método de elementos finitos ha probado ser muy aceptable.

Problemas similares se encuentran en Arquitectura Naval. Figura 8 una porción de una estructura de un transbordador. La parte plana es representada por elementos en estado plano de esfuerzos, Fig. 5 (b). Elementos estructu rales, Fig. 5 (a), son empleados en la representación de la estructura interna. El número total de incógnitas para definir las partes importantes de un barco es del orden de 50,000, y de nuevo se subdivide el problema en subestructuras obteniendo menos incógnitas.

Fig. 8 - Análisis por elemento finito de estructura de un transbordodo.

DESFI-UNAM

Fig 9 Analisis por elementos finitos de un recipiente reactor de concreto presforzado Requerimientos de seguridad en el diseño estructural de los reactores nucleares han causado que la industria use ampliamente el análisis por elementos finitos. Figura 9 (a) un recipiente reactor de concreto presforzado. Debido a la simetría es posible analizar solamente un doceavo de la estructura tot al, -Fig. 9 (b). Su volumen se modela analíticamente en un ensamble de elementos tetaedrales y hexaedrales, Fig. 5 (c). En problemas de este tipo, el número dr incógnitas es del orden de 20,000, y muy común hacer el análisis en condiciones

no lineales en material y geometría.

No todos los problemas de aplicación del método de elementos finitos son de proporciones monumentales. Las figuras 10 y 11 muestran aplicaciones básicas a ciertos problemas de ingeniería civil. Una forma de incrementar la eficiencia de diseño en secciones roladas de acero estructural es cortando el alma en la forma dentada mostrada en la Fig. 10 (a), colocando una sección sobre la otra y soldándolas, Fig. 10 (b). Y se obtiene una viga más aperaltada reduciendo el acero en el alma, y por supuesto que en este problema rutina rio de diseño, no es necesario el uso del método de elementos finitos.

Fig. 10 Análisis de elementos finitos de una viga aperaltada en celosía.

Un problema todavía más común es el de una viga de concreto reforzado, Fig. 11, para el cual se conoce muy poco respecto a la adherencia entre el acero de refuerzo y el concreto, y la formación y crecimiento de las grietas al aumentar la carga. La Figura 11 (a) muestra el modelo analítico de ele-

(16)

mentos finitos y la descripción de las trayectorias de grietas y las gráficas de esfuerzos se muestran en la Fig. 11 (b).

Los pocos ejemplos mostrados muestran que el método de elementos finitos puede ser usado ventajosamente en cualquier situación que se requiera la pre-dicción de esfuerzos y deformaciones internas, desplazamientos, vibraciones, inestabilidad elástica, mecánica de fluídos, transferencia de calor. Situaciones que se levantan de diversos campos que tradicionalmente han sido considerados como disciplinas ingenieriles separadas. Ejem., Ingeniería Civil, Mecánica, -Aeroespacial, Arquitectura Naval. <u>El método del elemento finito proporciona</u> una tecnología unificada de análisis en casi todos los campos.

Es nuestro intento en este curso desarrollar los conceptos teóricos básicos y estudiar problemas específicos de carácter práctico. Un compendio de tales problemas llenaría muchos volumenes, por lo tanto es recomendable consultar las memorias de congresos y publicaciones periódicas correspondientes.

PROGRAMAS DE PROPOSITOS GENERALES.

Se ha indicado que las ecuaciones del método de elementos finitos son de una forma tal que su carácter general permite teóricamente escribir un solo progra ma de computadora que resuelva la mayoría de los problemas que se presentan en la Mecánica de Medio Continuos. Programas de computadora con este objetivo, aún en escala restringida, son llamados programas "de propósitos generales". La ventaja de programas de propósitos generales no es sólo su capacidad,

Fig. 11 <u>Análisis por elementos finitos de una viga de concreto</u> reforzado.

sino también en la instrucción de los probables usuarios respecto a la interpretación de la documentación, los datos y procedimientos de entrada y salida de resultados.

El costo de desarrollo de un lprograma de propósitos generales es usualmente muy alto por lo que la amortización de la inversión es esencial. Ciertos programas de propósitos generales son codificados en un lenguaje computacional que permite operar el programa a muchas organizaciones diferentes localizadas en grandes separaciones geográficas. Otros programas de propó sitos especiales de limitada capacidad se usan en organizaciones industriales y gubernamentales con un costo menor en su desarrollo y operación.

Las cuatro componentes mostradas en el diagrama de flujo de la Fig. 12, son comunes en el desarrollo de programas de propósitos generales, fase de datos de entrada, requiere del usuario información del medio o materal, descripción geométrica de la representación por elementos finitos y las condiciones de carga y de frontera. Los programas de propósitos generales más sofisticados facilitan el proceso de entrada como propiedades constitutivas del material, almacenados previamente, esquemas de modelar analíticamente el medio, trazar esterográficamente la idealización por elementos finitos en forma tal que los errores pueden detectarse antes de efectuar los cálculos.

La fase de biblioteca de elementos finitos es de interés primordial en el curso. En ella se tienen los procesos de codificación formulativos para los elementos individualmente. La mayoría de los programas de propósitos generales contienen todos los elementos de la Fig. 5, así como ciertas otras alternativas de formulación para un tipo dado de elemento, por ejemplo el trián-

Fig. 12 Diagrama de flujo computacional en Análisis Estructural.

gulo en flexión. Teóricamente el elemento biblioteca es de extremos abiertos y capaz de acomodar cualquier nuevo elemento de cualquier grado de complejidad.

La fase elemento de blibioteca recibe los datos almacenados y establece las relaciones algebráicas del elemento por medio de la aplicación de los procesos formulativos relevantes de codificación. Esta fase del programa de propósitos generales también incluye todas las relaciones algebráicas para interconectar los elementos vecinos y la conección del proceso en sí. Las operaciones posteriores producen un conjunto de ecuaciones algebráicas lineales simultáneas para representar la estructura completa por elementos finitos.

La fase so lución del programa de propósitos generales opera sobre las ecua ciones del problema formadas en la fase anterior. En el caso de un problema de análisis estructural solo significa la solución de un conjunto de ecuaciones lineales algebráicas. Soluciones para respuesta dinámica requerirán computaciones más extensas sobre la historia-tiempo de las cargas aplicadas. En algunos casos hay que operar en regiones subdivididas como en el caso del análisis del Boeing 747, o efectuar operaciones especiales en las ecuaciones construídas originalmente. Incluídas en esta fase están las operaciones necesarias de substitución para obtener todos los aspectos deseados de la solución.

La fase salida de resultados presenta el análisis con un registro de la solución sobre la cual se pueden tomar decisiones respecto al dimensionamiento estructural o diseño. El registro comunmente es presentado mediante una lista impresa de esfuerzos y desplazamientos de los respectivos elementos. Así como en la fase de entrada existe una fuerte tendencia a la representación gráfica de datos, - tales como gráficas de trayectorias principales de esfuerzos o modos de pandeo y vibración.

ALGUNOS PROGRAMAS DE PROPOSITOS GENERALES.

ICES-STRUDL II, Integrated Civil Engineering System, (ICES), MIT, Maneja problemas de deformación y esfuerzos planos, cascarones rebajados, sólidos tri dimensionales, flexión de placas con y sin deformación axial. Su uso en problemas muy especializados resulta caro. <u>ASKA</u>, <u>Automatic System for Kinematic</u> <u>Analysis</u>. <u>Desarrollado por J. H. Argyris, H. A. Kamel y otros en la Universidad</u> <u>de Stuttgar</u>. Sistema general muy potente el cual incluye una biblioteca de 42 elementos diferentes. Puede ser costoso para un usuario especializado. <u>SAP</u>, <u>A General Structural Analysis Program, elaborado por E. L. Wilson de la Universidad de California</u>. Incluye análisis lineal estático y dinámico de estructuras elás ticas, estructuras tridimensionales, sólidos axisimétricos, sólidos tridimensionales, esfuerzos y deformación plana, placas y cascarones.

Zienkiewcz, O.C., programa desarrollando en la Universidad de Wales, -Swansea. Incluye lo de los programas anteriores y problemas de Mecánica de Fluídos y transferencia de calor.

NASTRAN, NAsa STRuctural ANalysis. Desarrollado por U. S. National -Aeronautical and Space Administration para análisis elástico de varias estructuras incluye, análisis de expansión térmica, respuesta dinámica a cargas transitorias y exitaciones random, cálculo de valores característicos reales y complejos, esta bilidad dinámica. Ofrece capacidad limitada para análisis no lineal. SAMIS, Structural Analysis and Matrix Interpretarive System. Desarrollado por jet Propulsion Laboratory, y Manned Spacecraft Center. Contiene un ele mento unidimensional general y elementos triangulares para deformaciones por flexión y membrana.

ELAS y ELAS 8, Equilibrium Problems of Linear Structures. Desarrollado por el Jet Propulsion Laboratory. Incluye una biblioteca de elementos unidimen sionales, triangulares, cuadriláteros, tetaedros, hexaedros, cónicos, sólidos axisimétricos de secciones cuadriláteros y triangulares.

MARC, elaborado por P. V. Marcal, incluye análisis lineal y no lineal de pro blemas de Mecánica de Medios Continuos.

LISTA DE REFERENCIAS EN ORDEN CRONOLOGICO DEL METODO DE ELEMENIOS FINITOS

(1) Hrenikoff, A., "Solution of problems in elasticity by the framework method," J. Appl. Mech. 8, A 169-175, 1941.

(2) McHenry, D., "A lattice analogy for the solution of plane stress problems," J. Inst. Civ. Eng 21, 59-82, 1943.

(3) Newmark, N. M., "Numerical methods of analysis in bars plates and elastic bodies," "Numerical Methods of Analysis in Engineering," edited by L. E. Grinter, MacMillan (1949).

(4) Turner, M. J., Clough, R. W., Martin, H. C., and Topp, L. J., Stiffness and deflection analysis of complex structures, "J. Aero Sci. 23, 805-823, 1956; AMR 10 (1957), Rev. 1776.

(5) Clough, R. W., "The finite element in plane stress analysis," Proc. 2nd. ASCE Conf. on Electronic Computation, Pittsburgh, Pa., Sept. 1960.

(6) Argyris, J. H., "Energy Theorems and structural analysis," Butterworth, London (1960). (Reprinted from Aircraft Eng. 1954-55); AMR 15 (1962), Rev. 2705.

(7) Clough, R. W., "The finite element method in structural mechanics," (Ch. 7 "Stress Analysis", O. C. Zienkiewicz and G. S. Holister, edited by, J. Wiley & Son (1965); chapter in AMR 20 (1967), Rev. 3942.

(8) Courant, R., "Variational methods for the solution of problems of equilibrium and vibration," Bull. Am. Math. Soc. 49, 1-23, 1943.

(9) Prager, W., and Synge, J. L., "Approximation in elasticity based on the concept of function space," Quart. Appl. Math. 5, 241-69, 1947.

(10) Synge, J. L., "The hypercircle in mathematical physics, Cambridge Univ. Press (1957); AMR II (1958), Rev. 733.

(11) Schmelter, J., "The energy method of networks of arbitrary shape in problems of theory of elasticity," Proc. IUTAM Symp. on Non-homogeneity in Elasticity and Plasticity, W. Olszak, edited by, Pergamon Press (1959).

(12) Zienkiewicz, O. C., and Cheung, Y. K., "Finite elements in the solution of field problems," Engineer, 200, 507-510, Sept. 1965.

>

(13) Wilson, E. L., and Nickell, R. E., "Application of finite element method to heat conduction analysis," Nuclear Eng. and Design 3, 1-11, 1966.

(95) Ariett, P. L., Bahrani, A. K., and Zienkiewicz, O. C., "Application of finite elements to the solution of Helmholtz's equation (wave guides)," Proc. Inst. El. Eng. 115, 1762-1964, 1968.

(96) Zienkiewicz, O. C., and Newton, R. E., "Coupled vibrations of a structure submerged in a compressible fluid," Int. Symp. on finite element techniques in shipbuilding, Stuttgart, 1969.

(97) Taylor, C., Patil, B. S., and Zienkiewicz, O. C., "Harbour oscillation in a numerical treatment for undampted modes," Proc. Inst. Giv. Eng. 43, 1941-155, 1969.

(98) Archer, J. S., and Rubin, C. P., "Improved linear axisymmetric-shell fluid model for launch vehicle longitudinal response analysis," Proc. Conf. Mat. Meth. in Struct. Mech., Wright-Patterson AFB, Ohio, 1965.

(99) Zienkiewicz, O. C., Irons, B., and Nath P., "Natural frequencies of complex free or submerged structures by the finite element method," Symp. on Vibration in Civ. Eng., Inst. Civ. Eng., (Butterworth), London, 1965.

(100) Sandhu, R. S., and Wilson, E. L., "Finite element analysis of seepage in elastic media,"]. of Engnr. Mech. Div., Proc. ASCE 95, 641-651, 1969.

(101) Rashid, Y. R., "Three-dimensional analysis of elastic solids," Int. J. Solids Struct., "Part I: Analysis procedure," 5, 1311-33, 1969; Part II: "The computational problem," 6, 195-207, 1970.

)

(102) Irons, B. M., "A frontal solution program for finite element analysis," Int. J. Num. Meth. in Eng. 2, 5-32, 1970.

(103) johnson, W. M., and Mclay, R. W., "Convergence of the finite element method in the theory of elasticity," J. Appl. Mech. Trans. ASME, 274-278, june 1968.

(104) Przemieniecki, J. S., "Theory of matrix structural analysis," McCraw-Hill, 1968.

(105) jenkins, W. M., "Matrix and digital computer methods in structural analysis," McGraw-Hill, 1969.

(106) Pope, G. G., "The application of the matrix displacement method in plane elastoplastic stress problems," Proc. Conf. Matrix Meth. in Struct. Mech., Wright-Patterson AFB, Chio, 1965.

(107) Miller, R. E. and S. D. Hansen, "Large Scale Analysis of Current Aircraft," On General Purpose Finite Element Computer Programs, P. V. Marcal (ed), ASME Special Publication, New York, N. Y., 1970. (108) Smith, C. S. and G. Mitchell, "Practical Considerations in the Application of Finite Element Techniques to Ship Structures," Proc. of Symposium on Finite Element Techniques, U. of Stuttgart, Stuttgart, Germany, June, 1969.

(109) Corum, J. M. and J. E. Smith, "Use of Small Models in Design and Analysis of Prestressed-Concrete Reactor Vessels," Report ORNL-4346, Oak Ridge Nat. Lab., Oak Ridge, Tenn., May, 1970.

(110) Cheng, W. K., M. U. Hosain, and V. V. Meis, "Analysis of Castellated Beams by the Finite Element Method," Proc. of Conf. on Finite Element Method in Civil Eng., McGill U., Montreal, Canada, 1972, pp. 1105-1140.

(111) Gallagher, R. H., "Large -Scale Computer Programs for Structural Analysis" in On General Furpose Finite Element Computer Programs, P. V. Marcal (ed.), ASME Special Publication, 1970, pp. 3-34.

(112) Marcal, P. V., "Survey of General Purpose Programs for Finite Element Analysis," in Advances in Computational Methods in Structural Mechanics and Design, J. T. Oden, et al. (ed.), U. of Alabama Press, University, Ala., 1972.

(113) Gallagher, R. H. and O. C. Zienkiewicz, Optimum Structural Design, John Wiley & Sons, Inc., New York, N. Y., 1973.

FINITE ELEMENT METHOD THEORY AND APPLICATION

1. INTRODUCTION

1.1 HISTORICAL BACKGROUND

The finite element method (FEM) has become a powerful numerical technique for solving complex problems in science and engineering, mainly due to the advances made earlier in the numerical methods particularly in matrix methods as well as due to the rapid introduction of high speed computers in the market. However, the introduction of concepts and applications of FEM dates back to the era of mathematicians who tried to calculate the perimeter and area of a circle by idealizing it as a regular polygon. It is also interesting to note that the bound solutions which are often discussed in FEM can be traced back to the solution of the area of a circle. If the circle is modellod with an inscribed polygon, a lower bound solution is obtained whereas an upper bound solution is obtained by replacing the circle by a circums cribed polygon. Even though the basic correpts of FEM existed for over two thousand years, for all practical purposes, one can only say that these concepts were actually used for solving physical problems in 1950s by the aeronautical engineers.

In 1956, Turner et al (Ref 1) presented the stiffness analysis for the complex structures, which is the starting point in the rediscovery of FEM. Nevertheless, Clough (Ref 2) was the one who actually used the term FEM in 1960. A fince then, a truemendous amount of research has been done in this field and quite a large number of papers have been published in almost all the journals related to all fields of engineering as well as some in the fields of mathematics and science. In addition, several conferences have been held all over the world and hundreds of papers have been presented in each. The theory and application of FEM have also been presented in numerous text books (Ref 3-22). In order to help the research workers in tracing the references required for their particular work several bibliographics have either been published or under preparation, among them notably Ref (23) is a good source of information.

1.2 APPLICATIONS OF FEM

The FEM is applicable to a variety of boundary value and initial value problems in engineering as well as applied science. Some of these applications are:

- Stress Analysis of Structures, Stability of Structures, Dynamic response of structures, Thermal Stress Analysis, Torsion of prismatic members
- Stress Analysis of Geomechanics problems, Soil-Structure Interaction, Slope Stability problems, Soil Dynamics and Earthquake Engineering, Seepage in soils and rocks, Consolidation settlement
- 3. Solutions in Fluid Mechanics, Harbour oscillations, Pollution Studies, Sedimentation
- 4. Analysis of Nuclear Reactor Structures
- 5. Stress Analysis and Flow Problems in Elomechanics
- 6. Characteristic Study of Composites in Fibre Technology
- 7. Wave Propagation in Geophysics
- 8. Field Problems in Electrical Engineering

Apart from the above mentioned areas, the FEM is also applicable to any other problem as long as the analyst makes certain that the problem is amenable to solution based on the assumptions introduced in the formulation of FEM and appropriate material properties can be provided in a realistic manner.

1.3 METHODS OF ANALYSIS

In general, there are four basic methods of analysis in FEMdisplacement method, equilibrium method, mixed method and hybrid method. The field variables or unknown quantities in each of these methods are as follows.

Displacement method - displacements and their derivatives Equilibrium method - stress components Mixed method - some displacements and some stress components Hybrid method - displacements or boundary forces

In the displacement method, smooth displacement distribution is assumed within an element, interelement compatibility of displacement is generally assured and minimum potential energy criterion is used in the formulation.

In the equilibrium method, the interior stress distribution is assumed to be smooth, the equilibrium of boundary tractions is maintained and the minimum complimentary energy is the basis for the formulation.

In the mixed method which is generally used for plate and shell problems, both displacements and stresses are assumed smooth

in the interior, the displacement components and the equivalent stress components are considered to be continuous at the interelement boundaries and the formulation is based on Reissner's principle.

In the hybrid method, depending on whether the model is displacement type or equilibrium type, the distribution of displacements or stresses within the element is considered to be smooth and along the interelement boundary either assumed compatible displacements or assumed equilibrating boundary tractions are ensured and either modified complementary energy or modified potential energy principle is adopted for the formulation.

Among these four methods, the displacement method is the most widely used approach. However, for plate bending problems either the equilibrium or mixed method is preferred and for some field problems hybrid method is more suitable.

1.4 DESCRIPTION OF FEM

A structure, continuum or a domain is divided into a number of arbitrary shaped parts or regions known as <u>elements</u>. These elements are interconnected at joints known as <u>nodes</u>. The principal unknown is termed as the <u>field variable</u>. This field variable can be displacement, temperature, pore-pressure or stress. The distribution of the field variable within an element is approximated by the use of certain polynomial functions Variational methods or residual methods are employed

to develop the finite element equations which relate the field variables at the nodes to the corresponding action vector at the nodes of the element. This relationship is provided by the so called property matrix which is based on the material and the geometric properties of the element. Finally these finite element equations are assembled to form a system of algebraic equations for the entire domain. The unknown field variable is obtained by solving this system of algebraic equations.

1.5 BASIC STEPS IN FE ANALYSIS

The basic steps in the finite element analysis of general problems are as follows.

- 1. The continuum is divided into finite elements of any arbitrary shape.
- 2. A suitable polynomial is chosen to represent the distribution of the field variable within an element in terms of its nodal values. Thus, the field variables at the nodes become the primary unknowns.
- 3. Using variational methods or residual methods, the finite element equations are formulated.
- The individual finite element equations obtained in step 3 are assembled to form a set of algebraic equations for the overall continuum.
- 5. The solution of the algebraic equations obtained in step 4 yields the values of the field variables at the nodes.
- 6. From the field variables at the nodes, the secondary variables such as stress, strain for an element can be obtained.

REFERENCES

- 1. TURNER, M. J., CLOUGH, R. W., MARTIN, H. C., and TOPP, L. J., "Stiffness and deflection analysis of complex structures", J. Aero, Sci., Vol. 23, No. 9, 1956, pp 805-823
 - 2. CLOUGH, R. W., "The finite element method in plane stress analysis", Proc. 2nd ASCE Conf. on Electronic Computation, Pittsburgh, 1960, pp 345-378
 - 3. ZIENKIEWICZ, O. C. and CHEUNG, Y. K., The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill, London, 1967
 - 4. ZIENKIEWICZ, O. C., The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971
 - 5. SMITH, G. N., An Introduction to Matrix and Finite Element Methods in Civil Engineering, Applied Science, London, 1971
 - 6. DESAI, C. S. and ABEL, J. F., Introduction to the Finite • Element Method, Van Nostrand and Reinhold, New York, 1972
 - 7. ODEN, J. T., Finite Elements of Nonlinear Continua, McGraw-Hill, New York, 1972
 - 8. URAL OKTAY, Finite Element Method, Intext Educational Publishers, New York, 1973
 - 9. MARTIN, H. C. and CAREY, G. F., Introduction to Finite Element Analysis, McGraw-Hill, New York, 1973
- 10. STRANG, G. and FIX, G. J., An Analysis of the Finite Element Method, Prentice Hall, N. J., 1973
- 11. BREBBIA, C. A. and CONNOR, J. J., Fundamentals of Finite Element Technique, Butterworths, London, 1973
- 12. NORRIS, D. H. and de VRIES, G., The Finite Element Method-Fundamentals and Applications, Academic Press, New York, 1973
- 13. COOK, R. D., Concepts and Applications of Finite Element Analysis, John Wiley, New York, 1974
- 14. WACHPRESS, E. L., A Rational Finite Element Basis, Academic Press, New York, 1975
- 15. FENNER, R. T., Finite Element Method for Engineers, MacMillan Press, London, 1975
- 16. GALLAGHER, R. H., Finite Element Analysis-Fundamentals, Prentice-Hall, N. J., 1975

- 17. HUEBNER, K. H., The Finite Element Method For Engineers; John Wiley, New York, 1975
- 18. ROCKEY, K. C., et al, The Finite Element Method, Crosby, Lockwood, Staples, London, 1975
- 19. CONNOR, J. J. and BREBBIA, C. A., Finite Element Techniques for Fluid Flow, Butterworths, London, 1976
- 20. ODEN, J. J. and REDDY, J. N., An Introduction to Mathematical Theory of Finite Elements, John Wiley, New York, 1976
- 21. SEGERLIND, L. J., Applied Finite Element Analysis, John Wiley, New York, 1976
- 22. BATHE, K. J. and WILSON', E. L., Numerical Methods in Finite Element Analysis, Prentice-Hall, N. J., 1976
- 23. NORRIE, D. H. and de VRIES, G., "A Finite Element Bibliography (3 Parts), Report No. 57, Mechanical Engineering Department, The University of Calgary, Canada, 1974

• ι -,

.

×

APLICACION

#-	I •	50	-	MARCO) A	× 1a	P. B 20	nlle=	1000 +f	4 100)	10	0	da 144 - 1844	214		15,
1	1 22	18	. 64	जि	Ð	96	112	128	144	<u>Ilo</u>	150	[15]	166	182	19	5 214	23,
	в	9B	23		nå	113	38 111	128	53 143	•		•		145	68 14	158 1: 213	83 #1
8	90	158	105	*		30	120	45	135		120			60	150	75	165
20	30	46	62	-	ηв	94	110	124	142	•			164		110	, 10	<u>7\$</u>
	7	97 45	22	RI	าา	112 93	37	127	52 141	9	149	[14]	163	142 171	67 195	157 - <u>21</u>	82 221
	89	14	104			29	119	44	134			. •		59	149	74 10	164
12	28	4	60	-	76	42	108	11			F	· •	100				01
ון י ג סי	6 27	96 45	21 59		पड	111 91	36 10]	126	51 139	• ,	D	,	161	141 171	66 193	155 	225
-	B	13	103	3	74	28 90	118 106	43	123 138	8	148	[]	164	58 176	148 HZ	73 Ег	165
	5	95	20			11D	35	125	50					140	65	155	80
9	25	41	_57		73	89	105	121	37	-	Ē		159	<u></u>	19)	201	223
200	87 	12	102	· ·	78	27 68	IП 104	42	132 136	•)]		158	59 194	147 17:0	η2 26	162. 272
	4	94	19	2	-11	109	34	124	49	5	147	12	157	139	64 157	154 2:5	79 :24
-}' 	- <u>23</u> 86	11	101			26	116	41	131					БЕ	146	ባነ	161
4	2	38	54	I	70	86	<u> </u> 62	118	184	-			156	172	៲េង	202	24
.5	3 V	93 87	।8 इ	. · ·	69	10B 85	33 101	123 117	48 133		٥		155	138 171	63 18]	153	78
 	8	10	100	II	68	25 81	15 100	До	130	ធ	146		154	55 170	145	ηo	160 218
Į.		34				1.0		:00	In					130	62	152	20
1.	2	92	า รา		67	10.1 10.1	32 99	124	41 131				ខេ	169	125	201	217
	84	9	99		- •	24	114	39	129		19			54	144	69	157
	21 · 16	; <u>34</u> !	50		66	82	98	114	130		<u>.</u>		152	168	154	22	216
) is G en	91	16		~ ~	106 81	31	121 113	46	·.	145		151	136 161	61 193	151 เท	76 215
	- 	فتن سبسه	·			4 <u> </u>							في الساري وجاري . ي		, ,		

																																-	41	NS	3TI	ITI	JT	0	C)E	ŀ	NG	E	NIE	ÊR	IA																														
																	,								_		1	-	0	R	M	Α (۰ ۱		F	2	۱F	२ /	A			С	0	D		FI	С	A	С	1	0	N	~		,																					
	PR	00	SRA	MA	_	~	U	R	0.		N	/ [7[<u><u>c</u></u>	20	<u>ک</u>		-					co	DII	FIC		DO		PC	R.	Ľ	Ż	1	10	3	10	<u>) (</u>	$\underline{\gamma}$	<u>``</u>						F	٩E١	vis	SA	DO		PC	วก	$\frac{1}{2}$	Ý	1	11	a	[• 					_				F	FΕ	СЧ	Α.	1	∕.F	<u> </u>	<u>55</u>	Q
	ត				T	1	-	-	T	-1	Т		1	T					100	T	r-	T	<u> </u>		.	Т.		- T -	┰	<u> </u>	-	Т	—	<u> </u>	T	- 1-			Τ.	. T			1.				·						-			- r		-7		~ 7								۶	24	GII	NA	<u> </u>	<u> </u>		_	DE
J D E				10	┢	<u> '</u>			~	$\frac{1}{\lambda}$	+		+	2		+	-		20	╞	┢		╀╴	2:	+	+				7	+	+	┿	+	ᆠ		+-	╇	4(4	÷	+-	+-	45	5-	┿	╇	┿	50	<u>-</u>	┽	╀	╉	5	5		╇	+	6	의	_	\dashv	_		65	\square	H	\dashv		70	┡	72	\square	\vdash	75	_
ر م	1		JÅ	De	╡	M		2	ef	/ [<u>n p</u>	711	2 (24	2	\dashv	5		0	S	E	k	1-	-	₽	\mathbb{P}	4		-/	Ŧ	1	5	-5	┢	Ŧ	뿌	₽	乜	¦≌	牜	₽	<u>۶</u>	5		18	기	G	<u>sh</u>	Þ	¥ _			+-	_	·	-	4	4			4	-		Ц	┢	\square	Ц			 	L	L	\square	\square		
229	E	X	E	<u>4</u>	7	E	\downarrow	Ų	41	2	<u>8</u> [2)	1	D	E	S	F	1	¥	5	M	ŢΪ	4	1	F	2	1/2	<u> </u>	冸	廴	5	1	\downarrow	╇	4	\bot	\downarrow	┶	⊥	1	1		L		Ļ		-						_												\square										
5-	P	R	Ø	<u>1</u> 6	<u> </u> S	S		1	8	<u>2</u>		3	-	rļ	ø	$ \downarrow$	1	8	þ	<u>]</u>	Ŀ																\bot																																					i		
20	B	c	L	Π	9	υ	E													Ĺ	Ĺ																																					Ţ			T	Τ	Τ			Π	Π			\square	Γ	Γ	Π			7
FO	4																			ł																			ł		T			Γ				Τ		Ţ	·	Τ	Τ	T	Τ	Τ				T		T	T			Π						Γ	Π			1
	A	1	1	T	Τ	\mathbf{F}	1		0		5		F	2	R		в	L	E	M	A	Γ	T	G	SE		115	: Ir	z	1		T	T	T	T	T	T	T	T	T	T				T	T	1	┢	T	╋	╈	╋	\uparrow	t	╈	+	╈	+	╈	+	+	+	1			H		+			\vdash	┢	H	\neg		-
	A	N	A		S	1	S		DI	2	l	1	1			E	5	7	R	υ	c	F	·lu	2		Ţ	1			2	1	N	N.	교	$\frac{1}{2}$	5	V	nta.	R	r	·c	1	+-	F			\uparrow	1	┢	╈	╋	1	t	╀	╞	╋	\dagger	╈	╈	+	-	+	+	-	{	H		+				F	$\left \cdot \right $	-¦	-+	+
·	K	1	2			A	n				,	05		Ť		1		-			Ē	ľ	Ť		1					1	1		Ť	T	T	-	Ť		Ť	Ŧ	T	1	+	\uparrow	\dagger		┢	╞	\uparrow	╀	╈	╈	╋	\dagger	╧	╈	╈	╈	+	╉	+	╉	+			Ħ		┥		-		\vdash	\vdash	-+		+
)			/	5	-			2	0		1		2	5		1		1-	┞)	i v	- - (2	1	15	ut_	$\frac{1}{1}$	t,			t	Τ	1.	†	Ţ	ţ	 	, ,	t	1.			\mathbf{h}	t				t	╈					1	+		+			H		+			F		H	-	+	-+
	A	1	ス			F	s	+) (~-	τl	, (7 0		S		0		2	T	Δ	L.	6	1			~		>	\uparrow	1	+	Ŧ	+	+	T	1	Ť	╈	+	+	\uparrow	<u> </u>	╁			Ť	┢	╢			+	' '	+		+	<u>11(</u>	<u> </u>	廾	쁏	Ť	4	4		Ĥ	위	╧╁	거		\vdash	\vdash	H	+	+	+
	Ħ			1	1		-		-		1	+	1	Ť		Ŧ	-	1	Ĭ		ł		1	ſ			+			7	\dagger	┽	+	╈	+	+	+	┢	+	+	╈	+-	+	╞	+	╋	┢	┦	┼	╋	+	+	╉╴	┼╴	╋	+	+	╉	╉	╉	+	+	╉	-		H	-	+	\dashv		\vdash	-	\mathbb{H}	-	╉	+
	L	,	۵		1	-	1	-			$\frac{1}{2}$	╉		5	2		2	1	c	İ.		┢─	┢	-					╎	+	$\frac{1}{1}$		$\frac{1}{r}$	╈	╋	╋	+	┢	┢	╋	┿	╀╴	-		╀	+-	+	╈	+-	╀	+	+	+	╀	+	+	╉	+	╈	╉	+	+	┥	-		┢┥	-	+	+		\vdash	\vdash	\vdash	+	-	-+
	R					,	Ì	-			1	N				<u>,</u>		10	~	0	2	5	+	1-			Ť	+	Ť	╀	Ŧ	ſ	1	1		1	t		+	+	ŧ	, , , , r	10	-	ť		+	1,		+-		+					+	+	+	+	╉	+	┥	-	-	\vdash	-	+	\rightarrow		'	 	\vdash	-	+	+
				<u></u>	f	h					Y.			//×		퀴	-	<u>וא</u>			2			╞	ť	1					+		+	Ŧ	Ŧ	+	÷	t	÷	÷	ť	1			+		10	1	+	+	1					┦	+	+	+-	╉	+	+	┥	\dashv		H	-	+	+	_		-	H	-	-	+
-	Ĥ			20	-	F		N /			1		4		4	듹	2	ם ג		114				1	ŀ	4) L	7/	芈		44	忄	뛰	ᆋᄼ	₽	1	Ŧ	1	₽	╇	f		1	N				<u>//S</u>	+	P	4	+	SIE I	<u>: C</u>	<u>-</u> K	4	p) h	14	냑	ᅪ	+	┥	-		\vdash		-	+			\vdash	\vdash	-	+	4
		,		20	'	\mathbf{L}	/	2					-			Ť	~				┢─	┢		K	1	╈	╉	+			\pm		+	╞	+	+	+	₫.	+	\pm	+		+	┟─	╀	+	╀	╉	╁	+	+	+	┼	╞	╬	╉	╀	+	$\frac{1}{2}$	+	╉	+	+	-		Н	-	-+	+	_	<u> </u>	\vdash	\mathbb{H}	-+	-+	+
	Ĥ	1		<u>,</u>	┼╌	F		<u> </u> 2 へ					4		2	4	4					-		E		╇	╉	-1	4	<u>-</u>	₽	+	4	+	#	╡-	+	10	14	10	中		10	10		4	1	ľΥ	11.	<u> 1</u>	71.7	1	+	F	-		ų,	4	4	≁	+	4	+	-		\vdash	-+	-			<u> </u> '	\vdash	\square	-		-
	Н				╞		2		4		4		• (4	_		_		-	┝	0	•	1	e	' -	╉	╉	╀	╇	+	+		4	4	4	+-	╋	╀	+	+	+		<u> </u>	-	╀	+-		-			-	$\frac{1}{1}$	-	+-	+	+	-	-	+	4	4	-+	\downarrow			\square	-	-					Ц			4
	A	1	4	4	╀	<u>p</u>		2	7 (4	77	E	2	<u>\</u>	5	Ц	1	C	4	ß	-	D	15	+	1	-	<u>}</u>	5		5	4	4	4	10	平	16	42	*	╞	4-	Ц	17	4	0		4.	<u>fr</u>	<u>;</u> ;	1	1	<u>:</u>	<u>=</u>) 7	<u>, [</u>	1	þ	$ \downarrow$	<u> </u>	갖	\parallel	Ы	\downarrow	Д		\square		\downarrow	$ \rightarrow $		${ ot}$				_	_
					-	-		_	2	_	4	4	_	4	-	-	7	0	•	┞	-	╞	-	-			1		5	•	4	+	4	1	4	4		\downarrow	\bot	4	_	-		_			1	_	1	1	\downarrow						1	_		4	_	_	\downarrow			\square	<u> </u>	\square	_				\square		\bot	
				2	<u>'</u>				2	_			_			1	0	0	•			 				_	K	<u>²</u> [<u>\</u>	•			\perp	\bot	\downarrow	\perp		\perp	\bot	⊥	\downarrow																																			
	À	۱	4	5		<u>c</u>	0	0	2	2	ΞÌ		7	24	1	<u>s</u>		P	<u>v</u>	N	þ	<u> </u> C	<u> s</u>		1	<u> 1</u>	<u>2</u> k	2	4	4	<u></u>	3	\bot	\bot		\bot																																								
				1							·	0	• (2								þ).	0									•																											Τ						Π			Τ		Γ		Π			T
				14								đ	-	0							1	E	3 -	C			Ţ			/					Τ	T	T	T	1	n	llc	h	Τ	2		, .	12	1-	1	/:	1	$\mathbf{H}_{\mathbf{c}}$	- 1	1	r.u	ch		2	1	豇	1,	nd	1	5	7	1		J.	1	0	$\left\lceil \cdot \right\rceil$	6	$\overline{\mathbb{N}}$		T	1
				17	<u>'</u>							0		5		Ī						C)。	0	X	T	T		T	T	T		T	T	T	T	T	T	T	T	T	T,	Γ	ľ	Τ		T	T	T	T	T	T	T	T	1	T	1	T	Ť	T	T	1	Ť		 	ſſ	f	+		Ť		Ē	Ń	+	+	†
	П		Π	32	2		Π					0	•	5		1					1	E	3.	1	7		T	1	1	1	T	T	T	T	T	T	T	Ţ	Ţ	h.	đi	12	t		12		di/	1,	7	T,	đr	·Ŧ	t	11	1	0.1	10	2	11	1	\uparrow		t	ず	-	A	7	Π	n	5	10	Ħ	12.	うう しょうしょう ひょうしょう ひょうひょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ	╋	†
	<u>ل</u> مجمعه		. 6.0	50. N		6 ~ 9	•		~ ~			~~~	. 6		 	` ~~	_	f	<u>~</u>			 			<u>م</u> ا	ساست ی ه				<u></u>	 e. 1	 1431	 	 2 7	سانہ ج چچ	سلب م وتق	مت. . هم	 e ~	<u>بہ</u>	تى <u>لىد</u>	 ~	1		 A	_			- <u>1</u>			 	~	<u></u>			P		<u> </u>		- <u>الم</u>		نبلغت			گند	<u> </u>	للنت.	<u>.</u>					. C			
مر	-0-0	8		द्य	****	Ē	6	. E. C	- 6		-7	U	محطح	,	¥4			Ö	- 0-I	4	1	E.	D 8		<u> </u>	2				80	UR.	£	Ţ	61,	2009 B	5.	~() {3		:50	3 22	Å.)	35	5	inin .	<i>a</i>	21	2-	59	F	Ç	RI	P(ï)[ረ ሳ	٨	5	- 02	1 -

ς.

						11										ι	J. I	N. 4	۹. I	M.		~																			
										-	- ~		8 A	INS	TI	ГИТ	0	DE	INC	GEN	IER	-	• •	~ •																	
		~ ^	_							r	0	۷۲, ۲۲ ۱۰		il	Р .]	Ał	K A	L	С	01)	- 1 (CA	CI	0 N	\ < ،	{										h . í		70	۱G	.7/
ROGRAMA	<u>v</u> u	$\omega - 1$	WE	<u>VILC</u>	<u>`0</u> _			COL	DIFIC	ADO	POI	، ۲	<u>X1</u>	lie		كىت	<u></u>	Le			F	EVI	SAD	0	POF	<u>ر</u> ۱	a	1190	2						PAG	HA	ند <u>م</u> تر	34.14)	<u>. C U</u>	· · /	<u>, , ,</u>
1.5	7	10	Π	15	Π	20	TT		25	TT	B 0	TT		3:	5		- [·]	40	ТТ		45	.	<u> </u>	50			55	TT		60		6	5	-1-	746		721	1		$\frac{1}{1}$	· 100
33	TT		1	.0			T).	0			$\uparrow \uparrow$							╆╍┝╸	╈		++	+	Ē			†††	++	$\uparrow \uparrow$		-+-					<u> </u>		H	+	++	
48			1	.0			1	3.	0		1				T		\uparrow					+	+-	ĺ-∱				╅╉		-†-			┼┼		┢┼┼	╋	[++	++	
49	Ī		1	.5			T	5.	0												+	++	-†		+		┼╌┼	┼┼	+			$\left \cdot \right $	╋		\vdash	++	;- <u>-</u>	┝┢	++	++	+
64		LIL	1	.5			1	3.	0	<u> </u>	11				+		\uparrow		┼╍┼╴	+		\dagger	1	+			$\left[\right]$		╈		- -	┼╸┼╴			╞┼╴	++	┢╴╂╼╵	\vdash	++	-+	
65			3	· 5			T).	0		1 ľ				1					+1		$\uparrow \uparrow$	╧	╞╌┠╸	┼╌┨	· [-	$\uparrow \uparrow$	╉╉	╉		┟╌╂╍	┟┼╴	+		$ \uparrow$	+		h	++	++	
80			3	•5			1	3.	0		1	11			\uparrow									$\uparrow \uparrow$			┼─╀		╉				+			┽┥	┍╼╞╼┦		++	-{-}	+-
81			4	.0			Te	> .	0				·								- -	++	1					╋	┝┤		┝╼╁╼	┠┼╴	++		$\uparrow \uparrow$	++	┍╼╂╼┦		┿	+	
96			4	.0			13	3.	0		1				\top							$\uparrow\uparrow$					1-1-			-[-	┝╌┨─	╏╴╎╴	╈			++	[$\left \right $	+++	+	+-
97			4	. 5				».	0														+			+-			┼╌┼				╋╋						++	++	+
11/2			4	.5			1	, .	0		1	Π			T					\uparrow			+-						┥┥				╈			+-+	╷╾╌╂╼╼╡	<u>├</u>	\dagger	╶╋╼┾	+-
1/13			5	.0			Tk	>.	0			TT			T								Ť			+-	††						\dagger			++			$\uparrow \uparrow$		
128			5	.0			13	3.	0	\square	1	T			1							$\uparrow \uparrow$		<u> </u>		1										-			11	+++	
129			5	- 5				5.	0			Π			Γ					T						1	\square						\dagger						11		
144			5	• 5			1:	3.	0		1															1										\uparrow		ht	\dagger	+	+
145			6	• 5				5.	0						1		\square						1				11	╈				- -							++	++	+-
150			6	•5			1	3.	0		. 1												1																$\uparrow\uparrow$		+
151			7	.5				3.	0								\square		Π																						
166			2	٠S			1	3 •	0		1									\prod			1	Π											$\prod_{i=1}^{n}$				ĨÌ		1
1/27		8	•b	25			16).	<u>o</u>											Π					Π		\square									\square			11		
182		8	. 0	25			1	3.	0		1								Π	Π										- 1					\square						
183		6	.5	50] -	0								Π			T		TT													\square	$\uparrow\uparrow$		IT	11		
198		B	.5	50			1:	3 -	0		1											Π					T											IT	11		
199		9	.0	75				2.	0								Π								ſ														$\uparrow \uparrow$		+
214		9	1.0	75			1	3.	0		1	\prod																							门	\uparrow		\square		$\uparrow\uparrow$	
215		9	. 6	00			1).	0			\prod			Τ		Π		TT			1-1											ΤÌ		11-			- -	11		

																					ι	J. f	J. /	Δ.	Μ.																									
														5	- 0		1 A		NS		UT A r	0	DE	IN	IGE	NIE				.	~ •1																			
			- 4			~ -								ĩ	- 0	אי 1	τνι 	А 11	j		Ar	(A		(01	Г		A		N C		. 1									55	: с ы	~ r	νr	Śn	71	ว 1	19	7 (
PROGRAM	<u> </u>	NŪ	RO	<u>- N</u>	AN	120	20				С	ODII	FICA	VD0	P	DR _	17.1	Щ		10	<u>\ ('</u>	<u>``</u>		•			RE	VIS	ADC) F	POR		X	141	25				-					м <u>. г.</u> л л	.5		<u> </u>	<u>·</u>		1
1	5	7	The	TT	TT	15	Т	TT	20	7	TT	25	5	Τ	T	30			35	TT	T		40		- T	45	[·]	7	5	50	TT		55			60			6	5	TT	Ť	1701		$\frac{}{}$		<u> </u>			<u>/</u> T,
23	0			9.	. 60	00				1	3	. 0			$\uparrow \uparrow$	7			\uparrow	171	7			1		10		, . .			11			6-	1			+			┼╌┼	+	 	<u> </u>	+-		1	\ddagger	-+-	÷
A147			00			2 n (6.		n f	, Ft	RN	D	0	6				0	1					+					- 1.		Ť	a	4-	14					+-	$\left \cdot \right $	+	+	i-t-		┢┼┤	+	++		+
	1		5			10	7	$\frac{\sum_{i}}{\sum_{j}}$	┡		╡┤			14~		+'					$\leq \prod$		<u>191</u>		$\frac{1}{\mathbb{R}}$	K.		<u>> </u>		-	$\frac{1}{2}$								0	+	$\left \cdot \right $	+-		\rightarrow	+-	\vdash	+	++	+	+
	<u>ل</u> م			1+			+	++	╈		+			┝	$\left - \right $		+		+	╂─┤		+	$\frac{1}{1}$	+	1		1-1-	4			Ŧμ	47	$\left \cdot \right $		1			ł			$\left \right $	4	<u>F (q</u>	17	+		\pm			ť
		++		++			+	++-	┼╌╢	╇	╌┼╌┼	+	╉╉	┢	+	-	+		+	┼┤		┼╌╢	4	+		<u> </u>	┟╌┼╴		$\left - \right $	4	┼╌┼		$\left - \right $	+		┼╌╽		┼┤		+	┼┼	+	$\left - \right $		12	[<u>"</u>]-	$\frac{2\pi e}{1}$	1214	4	4
╶┨╼┧╌┨╶┤	2	+	34	+	+	74		++	+		++			+-	┼-┼	+	$\left \cdot \right $	_	+-	$\left \cdot \right $	+.	$\left \right $					┝╌┝	+	$\left \right $		\square		┝╼┠					$\left \right $			┼╌┼	+-	$\left - \right $	┢╼╂╸	'	┠	+	┽╍┽	+	\downarrow
╶╂┼┼┥┥	1	+		<u>}</u>				┼┼	┽┦		╉╼╫	4	$\left \right $		$\left\{ \cdot \right\}$					┟╌┤		$\left - \right $.					$\left \right $										╎╌╎	+	╄	<u> -</u>		\square	\downarrow	\downarrow	+	\downarrow
╶╂ _╍ ┨╶╂╶╽	8 A	+	36	<u>s</u> -		18		┾╺┼╸	+	-	+	4	$\left \right $		$\left \cdot \right $			·	+	\square	_		_					-										\downarrow			\square	+	╧	┟─┼╴	'	$\left - \right $	-	╇	_	\downarrow
	7	+-!	41	╎╴┼╴	11	49	+-	+	+		++	1		+	$\left\{ \cdot \right\}$					$\left \right $		┞╌┨				<u> </u>		_													┞┼	\perp	\square	j		╏╴╸		\downarrow	4	\downarrow
	0	+	44	┨┤	<u> </u>	50			+			_//			$\left \right $							$\left \right $						_														4		┢╼╌┨╼		Щ	\bot	\prod	\downarrow	
+	4	11	44	·	<u>/</u> ;	54	_				\downarrow	_//																								ŀ						Ŀ								
/	2		47	1	1	57						1																																						
	3		48	₹	1	:0						/																												Τ			\square			\prod		\square		T
/ /	4	//	49	,	1	: B						1										Π						1	Π									Π				Τ				\square	T	Π		T
	5		50		1	16						1	'	Τ					Τ	Π	T	Π								1.										1	Π		\square				1	\square	Ť	T
	2	//	45	;	1	46					\mathbf{T}	2	Ţ	T		T	\square		1				1					1	-	+-										\uparrow	$\uparrow \uparrow$	+	\square		+-		+	$\uparrow \uparrow$	+	Ť
2	0	11	49		1	50						6	,	1						\square			1		-	<u> </u>			-		\dagger									-	╏─╏	17.	Int	int.	21	1,†	店	\dagger	Th	卞
A149		1	NG		0	E	JF	12 2			76	6	0	n lu	F		0		1		50	0		6		5	R		DAR	10	5	+				\uparrow		+	$\left \right $	+	$\left \right $	+		ſŦ	+		===	+	<u>+</u>	Ŧ
	5	70				+++			0		11				F	F	ľ	-4-	+	┢─┤			4					4-						-+							+	+	┼╌┨	\square	╀	$\left\{ + \right\}$	+	+		+
A141	\overline{a}												\mathbf{h}		┼┤	1		4	+									+	5					1.	┝╌┼╌			7					$\left \cdot \right $		+	++	+	++	山	+
	1			۲.					H		1 1				╎								11		105					11						EV				11				<u> </u>	÷+-	$\left \right $	+	┼┼	Ť	+
1110																					11					1										H				<u> </u> 		11	14			坮	4			ť
0000	2010								11	40												17					00	90		00						19			00	90		4	10	$\frac{\partial c}{\partial t}$	10	14	<u> </u>	+		4
	4	++`						<u> -</u>	121					:4:		1	14		╉	14	쒸	2		12	;+	╀	\square		$\left \right $		$\left - \right $	+							┝- -		$\left \right $	+	$\left - \right $	┝─┝	+	┝┥	+	+	-+	+
	<u>\</u>	┼╀	100				믹	0 N		201		42	A	DR	4	90	S		$\frac{ E }{ E }$	10	<u> </u>	14	2	10	<u>\h</u>	<u> I</u>	1	141	╞╌┼	+	┝┥		╞╌┼	+		$\left - \right $		+	┝╌┼╸	+	┨╌┨	7-	┾╌┥	┝╍┼╸	+	<u> </u>]	╧	\downarrow	4	+
	4	++	<u> </u>			╢			44						$\left - \right $		$\left - \right $	\square		╀┤		$\left \right $				<u> </u>	\square			1	↓//	15/1	<u> -1</u>	10	- :		<u>ا</u> ا	۲¢ - ا	1:	12	6	1	19		4	14	平	4	1	+
	Ő		11	11		191		4	• •			52	4														1	·'1	14	11	21		þ. =	74.1	er.	1-	桛	-11	_1	1	11	3 K					1_			

*

	FORMA	PARA		
ROGRAMA MURO-MARCO	CODIFICADO POR	10.1.05	REVISADO POR Scilinas	FECHA N .120 197
	·····			PAGINA DE
	25 30	35 40	45 50 55 60	65 70 72 75
	35	┝╌╏╶╏╴╏╴╏╴╏	┼┽┥┾┍┥┥┥┥┥┥┥┥┥┥┥┥┥	
	47	┝╍┝╺┝╺┝		
16 34 33 49	50			
23 48 47 63	64			
24 67 66 82	83			
30 79 78 94	95			┥╺╞┥┥┥┥┥┥┥┥
31 82 81 97	98			┼╾┠┼┼┼┼┼┼┼┼┼┼┼
38 96 95 111 1	12			╡┤╎╎┥┥
39 99 98 114 1	15			┿╼┟┼╪╾╄╌╄╌┼╌┟╌┝╶┼╶╂╶┾╾┼╴
45 111 110 126 12	27			
46 114 113 129 1	30			┿╾┥┶┽╼┿╌┿╌┥╌┿╼┾╼┼╼┼
53 128 127 143 1	44			┼╂╎╎┼┾┼┼┼┼┼┼┼
54 153 152 168 1	49			
60 165 164 180 1	81	┟┽┼┼┼┼┽╉╌┾		┿┿┿┿┿┿┿┿┿┿┿
61 168 167 183 16	84			
68 182 181 197 1	98			╉╌╂╌╂╼╀╼╂╼╂╼╂╼╂╼╂╼╂
69 185 184 200 2	01		┟┽╪┽╴┟╶┨╼╄╌┝╶╄╶┼╌┝╌┥╴┥╴┥╴┥╴┥╴┥	+++++++++++++++++++++++++++++++++++++++
75 197 196 212 2	13			╅╌╂╌╊╼╋╼╋╼╋╼╋
76 200 199 215 2	16			╅╍╄┽╏╎╎┟┝╞┥┼╎┥╎┝┥┝┝
3 214 213 229 2.	30			╅┼┼┼┽┿┾┾┼┼┼┼┼┼┼
84 3 2 18	19			
90 15 14 30	31			┥╶┧╶┧╺┧╺┧╺┧╺┥╸┥
9////8//7/33	34			
98 32 31 47	48		┟╼┲┼┲┟┥┽┝┝╵╝╞┝┝┝┝┝	╅╫╋╧
99 35 34 5	51			

		, INSTITUTO DE II	NGENIERIA	
	F (ORMA PARA	CODIFICACION	· · · · · · · · · · · · · · · · · · ·
OGRAMA MURO-MARCO	CODIFICADO P	POR PYING- PUTT.	REVISADO POR YUMAS	FECHA MARIO 1976
	25			
105 547 46 62	(8			
106 66 65 81	82			╡╌┠╌┠╌┠╌┨╌┨╌┨╶┨╶┨╶┨╶ ┨
113 80 79 95	96	┯┼╍╂╌╂╼╁╴╁╼╁╴╁╼╆╴┨╾┼╼		╏╺┞╺┠╺┠╺┠╺┠╺┟╺┟╺┟╺┟╺┟╺┥╸
114 83 82 98	99			┤┼╎┨┥┥┥╵┥┥┥┥┥┥
120 95 94 110			┼┼╎╱╎┼┼┼┼┼┼┼┼┼┼┼┼┼	┧╾┥┥┥┥┥┥┥┥┍╹┥╹┥╸╽╵┥╺╽╸┥╺┥
121 98 97 113	114	╼┝╍╎┼╍╎╌╎╌╎╸╎╼╎╼╎╴┤╴	╴╡╡╴┥┥╎┥╎╻┥┥┥╷┥┥┥┥┥	┨╶┼╒┝╶┥╶┥╺╞╶╞╶┨╶╞╶┨╶┨╸
128 112 11/ 127	128	╼┼╼╢╼╄╍┼╍┼╍┼╸┼╌┝╌┾╸┽╺┼╍╎╾┼╸		┟╼╞╼╀╾┠╾┠╾╊╍╂╼╂╼╂╼╂╼╂╼┠╼┨╸
129 115 114 130	131			
135 127 126 142	143			
136 152 151 167	168			
143 166 165 181	182			
144 169 168 184	185			
150 181 180 196	197			
151 184 183 199	200			
158 198 197 213	214			
159 201 200 216	217			
165 213 212 228	229			
1412 CANTIDAD DE N	UDOS RES	STRINGIDOS, CON	DICIONES DE CARGA Y	RIGIDEZ REQUERIDA
15 1 0				
1413 TIPO DE RESTR	ICCION T	DE NUDOS (ADI	0, 125, en U, ASI. C.17, 1057 1-	1213/1-14/ 64 -20
1111 17111 33	111 49	9111 65111	81111 97/11 115	5/11 129/11 145/11
151111 167111 183	111 199	9111 215111		
14141 CANTIDAD DE N	INELES Y	Y NUDOS POR NI	NEU	╡╞╞╎╞╞╞╎╡╞╞╎┥
5 / 5				╏╞╏╸╽╡╎╎╎╎╹╹╹╎╎┝╽┥┥┥┥
14142 INDICACION E	LCALCUL	LO DE RIGIDEZ	DEENREPISO	┟╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷
		and any second secon	مى <u>الى المان المان المان المان من من المان المنافعة المسافعة من المنافعة المنافعة من المنافعة من الم</u>	······································

FORMA P-01-71

		<i>د. با</i>	
	U. N. A	. M.	
	INSTITUTO DE	INGENIERIA	
•	FORMA PARA	CODIFICACION	
PROGRAMA MURO - MARCO	CODIFICADO POR CALLOS CACE	REVISADO POR SUIVICES	FECHA MARZO 197
CALCULO DE LAS PLOIDE			
		╉┼┽┽┽┼┼┼┼┼┼┼┼┼┼┼	┶╄┼┼╉┫╍╄┾┼╌┠┽┼╎╎┼┾┾╌┾╌┝╴
	AUNOS EN CAUM ATVEL	╶┨┥╞╶┫┥╞┥┥╕╞┥┥┥┥┥┥┥	╄┽┽╉┽┿┽┿┿┽┿┼┿┿┿╸
		╶┽┽┾╍╂┊┼┼┽┝┼┽┼┼┝┼┽┽┽┽	┼┾┼┼┼┿┥┥┥
			186 202 218
			189 205 221
			192 208 224
			193 211 22
		144 150 166 182	178 214 230
ATTING ACTORAS VE E	NILLEPISO		
		+++++++++++++++++++++++++++++++++++++++	
		╋┥┥╋┥╋┥╋╹╸╹╹	
ATAID INVILACIÓN D	EL TIPO DE CONULCION		
ARAUTSIS DEL MORO MAR	CO A CONSIDERANDO CA	ZGA ESTATICA Y EFECTO	
ATAILO CANTIVAU DE	BARRAS Y NUDOS CARGA	₽ <mark>0 \$ _ _ </mark>	╄╪╪╡╪╪╪╪_┇╞╪╋╋┥
		┽┼┼┠╏┿┽┽┝╋┾┽┽┽┽┽┼┼┾┼┼	┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┙┙
ALA TATA NUMERIO DEL BA	RRAS CON INDICE DE G	RAFICACION	┿┾╬╌┧┼╍╁╌┼╍╂╴╎┙┥╴┥╸┥
		╶┨╒┨╶┨╶╞╺┠╶╏╶╏╶╎╸┥╺┥╸┥	<u>+</u> <u></u>
AIHITZ CARGAS EN LA	SBARRAS	<u>┽┽┽╍<u></u>╎┼┟┼┼┼┼╎╎╎╎┝┼╎╎┼┼┼</u>	┿┾╾┽┽┽┽┽┼┙┥┝╋╸
	harphipping many 13 Edd	11 rus 12 12 12 1 40h 1/2 10/19/12 10/17	
-			· ·

		U. N. A	. М.		
		INSTITUTO DE	INGENIERIA		
	г. U К M D	HA PARA	CODIFICACIÓN	Calina	- EECHA 14 2770 197
ROGRAMA MURO - MATECO		THE JEANS	REVISADO POR	YILMAS	PAGINA 7 DE //
5 7 10 15	20 25 30	35 40	45 50	55 60	
-0.50	126 20121 100	(1/2), -05	dn/n		
1 9	Eaver. 14-7 4=	What Shigh IN	nternota 49	Hound Costantes	-ph Church 1909/
1 - 0.25	1 Enga Voylle	cill city Ti			
1 4	COLUMINA ITUT	$\Delta = U \partial c \alpha v \tau \tau$	in Fachine a	d lostantes no	
1 0.00	1 = Tipo darge	de a por vale			
1418 CAPGAS F	A LOS NUDOS				+++++++++++++++++++++++++++++++++++++++
0.0	-1.491				┽╂┟╬╌╬╌╬╌╬╌╬╌╬╌╬╌╬╌╢╌╢╌╢
17 0.0	-2.982			╅╋╋╋	
33 0.0	-2.982		┝╌╪╼┼╍┼╍┼╼┽╌┼╼┼╌┼╶┼╌┼		
49 0.0	-2.982				
45 0.0	-2.982			┥╊╋┼┼┥┼┥╎┧┥┼	
81 0.0	-2.982				
97 0.0	-2.982				
1//3 0.0	-2.982			╉╋╉╋	
129 0.0	-2.982				
145 0.0	-2.982				
151 0.0	-2.982				
167 0.0	-2.982				
183 0.0	-2.982				
199 0.0	-2.982				
2/5 0.0	-1.491				
4 0.056	-1.491				
20 0.050	-2.982		┝╁┽┽┼┼┼┼┼┼		
36 0.056	-2.982				
52 0.056	2.982				

٠.

-

.
•	U. N. A. M.	۶,
•	FORMA PARA CODIFICACION	•
OGRAMA MURO-MARCO	_ CODIFICADO POR CALLOS CITAS REVISADO POR SALLAGA	FECHAMATCE 1776
		PAGINA 8 DE · 10
		70 72 75 80
		┦┥┥┥┥
84 5.056		
100 0.050	-2.982	
776 0.056	-2.932	
132 0.056	-2.982	
146 0.056	-2.982	
154 0.056	-2.982	
170 0.054	-2.982	
186 0.056	-2.982	
202 0.056	-2.982	
218 0.056	-1.491	
7 0.112		
23 0.112	-2.982	<u>┤</u> <u>┤</u> <u>┤</u> <u>┤</u> <u>┤</u> <u>┤</u> <u>┤</u> <u>┤</u> <u>┤</u>
39 0-1/2	-2.982	
55 0.112	-2.932	
71 0.112	-2.982	╈╋╌╪╺╬╌╪╼╋╌╪╼╋╌╪╼╋
87 0.112	-2.982	┥╍┾╍╞╍╞╍╡╸╞╺╞ ╼╎╼┥╼┾╼╋
103 0.112	-2.982	┾╍┿╌┼╌╎╌┾╌╎╌┾╌╎╌┾╌┼╼┥
119 0.112		╈╋╌╋╌╋╌╋╌╋╌╋╌╋╌╋
135 0.112		$\frac{1}{1}$
147 0.112		┽┼┼┼┼┼┼┼┼┼┼┥┥┥┥
157 0.112		┼┽┽┼┼┼┼┽┽┥┥┥┩
173 0.112		┿┽┼┽╁┼┼┼┽┽┿┥
189 0.112		┼┼┼┽┼┼┼┼┼┥
205 0.112	$- \cdot g \partial z$	

							2.4														
				ļ	NSTITU	U. N. A	INGEN	IFRIA													
			FOF	R_M A	P A	RA	COD	01F10	CACI	O N		:									
OGRAMA MURO.	-MARCO	CODIFI		Pall	posta	`\7` + ",		REVI	5400		≤ 1	1003-	~				FECH	<u>FA 0</u>	170	<u>, 1</u>	176
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		·								PAGIN	A_4			10_
		20 25		┝┥┥┥	35	40	╶┽╌┼╌┾	15	50	╀╌┼╌┽	55	┞_┨_┤	60	$\left \right $	65		70	72	75	<u> </u>	3
221	0.112	-1.491	╶┽╍┽╌╄╌┾	┝╌┼╌┼╴		┝╌┠╌┠╴╏	-+		╶┼╌┼╌╂												
	0.168	-1.491		┝┼┼┼	<u></u>		┥╢╽														
26	0-168	-2.982																			
42	0.168	-2.982																			
58	0.168	-2.982																			TT
74	0.168	-2.982														11-					$\uparrow \uparrow$
90	0.168	-2.982									11-									++	$\uparrow \uparrow$
106	0.168	-2.982																-[-]-	- -	1-	
122	0.168	-2.982																-†-†-		++	
138	0.168	-2-982													-++	1-1-			 	++-	
148	0.168	-2.982											$\dagger \dagger$		╼┼╼┼	++-	╞╼┼╾┼		┢╼┼╾┼╴		††
140	0.168	-2.982			+++		╶┼╍┼┼			┼┼┼	-1-1-	┝╾┼╼┼	++	$\left[\right]$		+-+-	┟╼╂╼╌╂	╺┼╶┼╴	┟┼┼	+	$\uparrow \uparrow$
176	0.168	-2.982																++-		++-	<u>††</u>
192	0-168	-2.982											++				╎╎╴╎	++-			<u>††</u>
208	0-168	-2.982								+++	++-		++		++		$\left \right $				$\uparrow \uparrow$
224	0.168	-1.491											++			┼┼╴	┟─┼─╂		- - -	++	
/'3	0.220	-1.491									+++-		╺┼╼┟╴					┿╉╴	- <u> </u> - <u> </u> -	++-	<u>†</u> †
29	0.220	-2.982								\uparrow	++-	$\left - \right + \left \right $					┼─┼─┟	+			 -
45	0.220	-2.982		┝╌┼╼┟╼┼	╶┼╾┨╍┼╌				┼┼┼	┼┼┼		$\left\{ + \right\}$				╅╂╍	╏╴┧╸┨		┟╋╋	++	$\uparrow \uparrow$
41	0.220	-2.982		┝┼╍┾╴┼	-+-1-+-				╶┼┼┼	╅╉╡	┼┼	╏╴┨╼╂	++			╶┼╾┼╾	┟╴┟╾┟		$\left + \right $	++-	++
1.77	0.220	-2.982	╶┼╌┼╌┼╶╴		┽┼┼┥				┼┼┼	╈╂╋	+-{-	┠╌╂╶╂	++-			+	╞╌┼╌┼		$\left + + + + + + + + + + + + + + + + + + +$	++-	+
93	0.220	-2.982		┝╌┼╌┼╾┼	╺┼╌╂╼┼╾	┟╍┼╍┼╌╆╼┤			┼┼┼	┼┼┼	+-+-	┠╌┠╌┠	┼╌┼╴		╾┼╼╀	┼╌┼╌	┝╌┼╌╎		╞╋╋	++	+
109	0.228	-2.982		┠╌╂╌╂╌╂	╺┼╌╂╼┼─	╎┽┼┠╎	╼┾╍╁╴╁	╶╁╌┼╴┤	╶┼┼┼	┽╌┼╴┼	┽╉╴	╞╌┼╌┼	+-+-	$\left\{ \begin{array}{c} \\ \end{array} \right\}$	-+-+	┼╌┼╌	┼╌┼╌┼		┢╍╊╼╊	++-	┼╌┤
125	0.220	-2.982		┝┼╌┼─┼	┽┽┼	╎╌╎╶┤╶┤		╶╁╴╁╶┧	┼┼┼	╈		┟╾┼╾┼	++-+-	╆╋	-++	┥┼╴	┟╌┼╌┠	╶┼╌┠╌	┝╂╾╊╴	╉╋	+
141	0.220	1.982	╼┾┽╼┾╌┾╌	┠╾┼╾┽╸┼	┽╉┽			+ ' +	╶┼╾┼╴╉╸	┼┼┼			┼┼		-+-+	┼┼╴	┟╴╁╼╁		<u></u>	++	+

•

OGRAMA MURO - MORCO CODIFICADO POR MA PARA CODIFICACION FECHA_V 1 5 7 10 15 20 25 30 35 40 45 50 55 50 65 70 72	<u>0 DE 10</u> 175 80
OGRAMA MURO - MARCO CODIFICADO POR Dalesteires REVISADO POR Stillings FECHA_M 1 5 7 10 15 20 25 30 35 40 45 50 55 50 65 70 72	<u>0 DE 1977</u> 0 DE 10 175 80
Soname Codificado Por Antest (1) Revisado Por Interto PAGINA_2 1 5 7 10 15 20 25 30 35 40 45 50 55 60 65 70 72 1 1 1 1 20 25 30 35 40 45 50 55 60 65 70 72	DE 10 75 80
	75 80
<u>163</u> <u>c.220 -2.982</u>	
179 0.220 -2.982	
195 0.220 -2.982	
211 0.220 -2.982	
227 0.220 -1.491	
12 0.280 -1.491	
32 0.230 -2.982	
48 0.280 -2.982	
64 0.280 -2.982	+
80 0.280 -2.982	
96 0.280 -2.982	
1/2 0.280 -2.982	
128 0.280 -2.982	
144 0.280 -2.982	
150 0.285 -2.982	╶┼┼╴┟╴┟╶┟╴┾╴╋╸┩
166 0.280 -2.982	
182 0.280 -2.282	
198 0.280 -2.982	
2/4 0.280 -2.982	++
230 0.280 -1.491	
ENDJOB	
	+++++++++++++++++++++++++++++++++++++++
	╋╋
	╈╪╋╌┟╋╌╏

-

i ,

ILISIS DEUNIA ESTRUCTURA TIPO MARCO

· · · · · · · · · ·

6	20 NO. DE FLENE 90 NO. DE ECUAC	HITOS I CHES				
2	-1	H DEHMATERIA 15 DE LA EST 21LATEROS	RUCTURA			
· · · · · · · · · · · · · · · · · · ·	- 0- NC. 5EL PRIM	TET SECCTOR				
COUSTANT	ES ELASTICAS DE	LOS HATERIA	ĹĔŜ			
	10070**2)	CELFICIF TE	DE POISSOF	-PESA VOLT	**3)	
ځ 1	0000000			2-400		······
r A R A	<u>1 E T P B S (</u>)-1)- <u>[</u>	<u>; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; </u>	LAS	SFCCI	E S
Ţ-['() ←	+\$EcciOk+		T17CS * *			
<u>с</u>	ESPECIAL	(^ • I	Z*FY)			
- 2		الو مرا	1) 1, Y, T)			
4	- C A + r A		1 4 4 4 1 2 1 2 4 3 1 7 7			 ,
(ANGULO CIRCULAR	(t)) (C)	(T « V « T)			
é		+ ر ۴۰) (-۴۰) + ۲	(Te∀et) -			
·			VJTJC)			· <u>·</u>
11		(b)t	τις ν. τ.) (γν. τ.)			
*honthula	TUET ** - (VER E	LUURAS DEL C	ATAINGO DE S	SECCINESS		
			772737475777 08 TIRO 10	0 ,,10-∀-11,1		
C	CIAPETRO DE LAS	S SECCIONES	TIPO 6 Y 3			
	<u>/L468A-9E-195-</u> - Espesor (LA	5* 6010865- 7-1 S=66108-6186	199129232444 111. AR HUECA	5-→-7 → ♀ → 1 0 - Ү -	-1 1	
	-ANCHO DEL ALIA	TE LAS SECO	TOLES TIPO	2+3+4+7=9=1	0 Y -1 1	4
T	-ESPESCR-DEL FA ESPESCE DEL FA	TID UE HAS-S TID INFERIOR	ECCTONES TH	ረሰተሚቀንቀ 4-ቀናቀ የሰር ተናዮስ ተረ	· 7-> 9 Y1-1	
12	ESPESOR DEL FA	TI. SUPERIOR	DE LA SECC	INN TIPO 10	}	
	EISTANCIA ENTE RISTANCIA ENTE RESPECTIVAM	E LAS SECO E LAS FIRPAS LATE DE LAS	NU-T-IPO-10- SUPERIURES SECCIPTES	DEL ALMA Y 9 y 10	PATIN RESPE	CTTVAHE
1x+2)	CENTIMETROS METROS A LA SE	CUMBA ELTENS				
		NUTA RESTEC	TO AL FUE Z	·····		
F-¥- <u></u>		A LNEA LE N	1****C10K-4			

......

								2	
rthul		TIP6	B-01-0-A	18 19 19 19 19 19 19 19	ł: (C	-12-TC H)		V-FY	••• •• •• •• •
	1	1	70.000 100.000	-	15. 20.	000 000		0.000	
		Υ + D ()				· · · · · · · · · · ·		· · · · · · · · · · · ·	
·			2)	」 (十-* * 小-)		· · ·			
		-	. · ·			•			
			000000	0,000196	875	-1-2000	00000 00000		· - · ·
:.0:0- ::0:		AORCENADA (H)					*******	,	
1 1	0.000				•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·		
2 	0+000	······································					-		
4	0.000	2.600		•					
5	000-000	. 3.467					,		
7									
e	·······	6 . 067							
-9					,	- ,			
ΗŪ	0.000	7.800						,	
11									
11		10.400					,		
14 -	0+000								
16	$\frac{1}{2}$	13.000							
17	0.500	0.000							
16									
19	0,500-	1.733	<u></u>			ί,	`		
- 2-1				<u>`</u>		; ;			
22	0.500	4.333							
23	0.500	5.200	. .						
24			· · · · · · · · · · · · · · · · · · ·						
20		7+860							
-27	0-500-	€+667	······································		· · · ·				
38	0.500	9.533		-					
30		<u> </u>				· · · · · · · · · · · · · · · · · · ·		-	
31 -	0.500	12 • 133							
32	0.500	- 13.000					· •• · · · ·		
33 SU					····				
35	1.000	1.733							
36	1 . 000-								······ ···
3 i 1 11	1.000	3.467 -	· · · · · · · · · · · · · · · · · · ·			*	•	•	
39	1.000		SIGUE	ignal		· · · ·			
40	1.000	6.067		V		•			•
42	: • 000	. 6.933	V			,			

	•					2	
•	2.650	6+067				3	
	9.600	6.933					
	0.600	2.000					
		2:007		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			· · · · · · · · · · · · · · · · · · ·
	9.600	9.535					•
	9.600	10.400					
		11.207	, ««بيت» «البرينية» والريت المتحدة المرتبط المرتبط المرتبط المرتب				
	9+690	12.133 -	··· ··· · · ····			•	• •
	9+600	13.000 -	· ···· · · · · · · · · · · · · · · · ·				
		·····		• • • • • • • • • • • • • • • • • • •	******	· · · · · · · · · · · · · · · · · · ·	an a
		1 11				• • • •	• · · · • •
'nС,		1 fill U	J	, KU StC.	MUmmmmy buy	Immer APUY	
		6.8-		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •		
1	ጋር ዳድ	7 1	د ۱۰ مورود بیشان دستانه دو او او		U 1 0		2.000
· ·	5	······································	·	<u>ا</u> ۱	1 U	U //	
د. 1	50	77		1		· · · · ·	
•• • .	64	. 80		L	נים גרווים גרווים	ບ ປ	2.000
			••••••••••••••••••••••••••••••••••••••	· · · ·	i0-		
7	135	147	۱۹۹۰ میک میک در میک در ایک ا	- • • • • • • • · ·	· · · · · · · · · · · · · · · · · · ·	0	1.000
	138	148			1 0	0	1.040
り-				· 1	1 0	0	1.000
10	144	150		1	1 0	Ŭ	1.900
21	1.1 5	154		1	1 0	0	1.000
- ::			مرجل متابعين المنظورية تحريات المريات.	1	1 0	0	1.000
: 3	148	160		1 ·	1 0	0	1.000
14		· 163	· · · · · · · · · · · · · · · · · · ·	1	1 0	0	1.000
~:5			·····	i	1 0	0	1,000
	145	146		i	2 0	0	2.600
• •	146	147	:	1 :	2 0	0	2.600
				1	2 0	Ċ.	2.500 -
: 2	148	149		1	2 0	0	ちょんりひ
· 20	142	150		1	2 0	0	2.460

:

.

.

LATO NO. . TIPO DE ELEMENTO

.

		ν μμωνιμής (γιφ) γ
	י ר	
•	3 -	2
		/
) · ·	
ł)	2 2 0
) }	2
i		2
، ا ب ا	3	
	1 , , ,	
::	· ····································	?
1	· · · · · · · · · · · · · · · · · · ·	? ?)
.,	· 1	: Signe and

							4	
145		, 1	5				•	
143			1					
144			l •					
143			3. 1			,		
140	· ·		1					•
		····		· · · · ·				
149		·	1	······································	·	••• •• ••		,
150			I					
			1			· · **********************************		
152								
101			l •			·	<u></u>	
154			1 / . 1 /			· · · · · · · · · · · ·	 .	·····
· · · · · · · · · · · · · · · · · · ·			••••••••••••••••••••••••••••••••••••••					· · · · · · · · ·
		/						
158			1					
:59			1					
100		7.	1		· · · · · · · · · · · · · · · · · · ·			
101	•	ه خبوبست ک د کـــدر محمد ب رو کور	1			-		
			1				•	
±03 16/1			1					
165			1			,		

·· · - ·· ·						. 🖛	· · · · · · · · · · · · · · · · · · ·	
ELEN RUM	:nen I-	-Neco-J-1	1000-K-	NODO	AT, NO, HE	Sherou(M) 1	90 F 4	
ELCH 110-1	:000 I	-NOCO -J-1 	1000-K-	1000 -T-h	AT;NC.+E	SPESOR(M) J	NCFN	
ELEN NUM	:000 I	-NODO -U-1	17	1 A	ΛΤ, ΝΟ, «E	SPESOR(M) J	NGEN	
<u>FLEN 1001</u>	:000 I	- NOCO -J-1	17	1e	AT, NO, - E	0,20	0 1	
FLEN 110+1	:000 I 	1 	17 	1e -22	AT, NO, ~ E 1 	0,20 0,20 0,20	0 1	
FLEH 110-1	:000 I 	1 	17 - 1-9 - 21 - 23	16 	AT, KC, ∝E 1 	0,20 0.20 0.20 0.20	0 1 1 1	
FLEN 10+1	:ncn I 	- NOC ()	17 	1000 <u>1</u> -1 12 -23 -22 -24 -24	AT, NO, ~ E	0,20 0,20 0,20 0,20 0,20 0,20 0,20	0 1 1 1 1	
FLEN 110-1	:000 I 	1 	17 	1 e -23	AT, NO, ~ E 1 	0.20 0.20 0.20 0.20 0.20 0.20 0.20	0 1 1 1 1 1 1	
FLEN 110+1	:000 I 	1 - NOCO -J-I 	17 	18 -22 -22 -24 -24 -28 	AT, NO, ~ E 1 	0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20	0 1 1 1 1 1 1	
FLEN 110+1	:ncn I ? 	1 - NOCO - J - I 	17 	1 e -22 -22 -24 28 30 	AT, NO, ~ E	0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20	0 1 1 1 1 1 1 1 1	
FLEN 110+1	:000 I ? 	1 - NOC () - J - I 	17 - 1-9 - 21 - 23 27 29 	1 e -29 -22 -24 -26 -28 -30 -32 -35 -27	AT, NO, ~ E	0,20 0,20	0 1 1 1 1 1 1 1 1 	
FLEN 110+1	:000 I ? 6 - 6 - 6 - 10 12 14 -16 19 21 -	1 - NOCO - J - I 	17 - 19 - 21 - 23 - 25 - 27 - 29 	1 c -2 2 -2 2 -2 2 -2 4 -2 c -2 8 -3 0 -3 2 -3 5 -3 7 -3 0	AT, NO, ~ E	0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20	NGEN 0 1 1 1 1 1 1 1 0 1 0	
FLEN 110 - 1 	:ncn I ? 	1 - NOCO - J - I 	17 - 1-9 - 21 - 23 - 23 	1 e -29 -22 -24 -26 -28 -30 	AT, NO, ~ E	0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20	NGEN 0 1 1 1 1 1 1 1 1 0 1 	
FLEN 110+1	:000 I ? 	1 - NOC () - J - I 	17 - 1-9 - 21 - 23 - 25 - 27 - 29 	1 e -29 -22 -24 -26 -28 -30 -32 -35 -37 -39 -41 -43	AT, NO, ~ E	0,20 0,20	NGEN 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1	
FLEN 110 - 1 	:ncn I ? 	1 - NOCO - J - I 	$ \begin{array}{c} 10 \\ 0 \\ 17 \\ -19 \\ -21 \\ -23 \\ -25 \\ 27 \\ 29 \\ -31 \\ -34 \\ -34 \\ -36 \\ -30 \\ -40 \\ 42 \\ -44 \\ \end{array} $	1 c -2 2 -2 2 -2 2 -2 4 -2 c 2 8 3 0 -3 2 -3 5 3 7 -3 9 -4 1 -4 3 -4 5	AT, NO, ~ E	0,20 0,20	NGEN 0 1 1 1 1 1 1 1 1 0 1 	
FLEN 110 = 1 	:ncn I ? 	1 - NOCO - J - I 	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ - 1 \\ 2 \\ 2 \\ 2 \\ - 2 \\ 1 \\ - 2 \\ 1 \\ - 2 \\ 1 \\ - 2 \\ 1 \\ - 2 \\ 1 \\ - 2 $	1 c -2 2 -2 2 -2 2 -2 4 -2 c -2 4 -2 c -2 6 -2 7 -2 4 -2 6 -2 7 -2 4 -2 6 -2 7 -2 4 -2 6 -2 7 -2 4 -2 6 -2 7 -2 7 -2 4 -2 6 -2 7 -2 7 -2 7 -2 4 -2 6 -2 7 -2 7 -2 7 	AT, NO, ~ E	0,20 0,20	NGEN 0 1 1 1 1 1 1 1 1 1 0 1 	
FLEN 110 - 1 	:ncn I ? 	1 - NOCO - J - I 	$ \begin{array}{c} 17 \\ -19 \\ -21 \\ -23 \\ -25 \\ -27 \\ 29 \\ -34 \\ -36 \\ -36 \\ -36 \\ -46 \\ -46 \\ -49 \\ -49 \\ \end{array} $	1 e -29 -22	AT, NO, ~ E	0,20 0,20	NGEN 0 1 1 1 1 1 1 1 1 1 1 0 	
FLEN 110 = 1 	:ncn I ? 	1 - NOCO - J - I 	$ \begin{array}{c} 17 \\ -19 \\ -21 \\ -23 \\ -25 \\ -27 \\ 29 \\ -34 \\ -34 \\ -36 \\ -30 \\ -40 \\ 42 \\ -44 \\ -46 \\ 49 \\ 51 \\ \end{array} $	1 e -2	AT, NO, ~ E	0,20 0,20	0 1 1 1 1 1 1 1 1 1 1 1 1 1	
$F_{L} E_{1} I I I I I I I I I I I I I I I I I I I$:ncn I ? -10 12 14 -16 19 21 -23 25 27 -29 -31 34 -36 -36 -36	1 - NOCO - J - I 	$ \begin{array}{c} 17 \\ 19 \\ 21 \\ 23 \\ 25 \\ 27 \\ 29 \\ -34 \\ -34 \\ -36 \\ -36 \\ -36 \\ -36 \\ -46 \\ -44 \\ -46 \\ -51 \\ 53 \\ 55 \\ \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	AT, NO, ~ E	0,20 0,20	0 1 1 1 1 1 1 1 1 1 1 1 1 1	
$F_{L} E_{K} = 110 = 1$ -2 -3 -4 -3 -4 -5 -6 7 -0 9 -10 -10 -10 -12 13 -14 -15 16 -17 -13 19 -20	$ \begin{array}{c} (100) \\ ? \\ -10 \\ 12 \\ 14 \\ -16 \\ 12 \\ 21 \\ -23 \\ 25 \\ 27 \\ -29 \\ 31 \\ 34 \\ -36 \\ -36 \\ -36 \\ 40 \\ -40 \\ \end{array} $	1 - NOCO - J - I 	$ \begin{array}{c} 10 \\ 0 \\ 1 \\ 2 \\ 1 \\ 2 \\ $	$ \begin{array}{c} 1 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	AT, NO, ~ E	0,20 0,20	0 1 1 1 1 1 1 1 1 1 1 1 1 1	
$F_{L} [F_{1} 1 0 = 1$ -2 -3 -4 -5 -6 7 -9 -10 -10 -10 -14 -15 -16 -57 -16 -57 -13 19 -20 -21	:ncn I ? 	1 - NOCO - J - I 	$ \begin{array}{c} 10 \\ 0 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 4 \\ - 3 \\ 4 \\ - 3 \\ 4 \\ - 4 \\ - 4 \\ - 4 \\ - 4 \\ - 4 \\ - 5 \\ $	$ \begin{array}{c} 1 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	AT, NO, ~ E	$ \begin{array}{c} 0, 20 \\ -0, 20 \\ -0, 20 \\ -0, 20 \\ 0, 20 \\ -0, 20 \\ 0,$	0 1 1 1 1 1 1 1 1 1 1 1 1 1	
$ \begin{array}{c} 1 \\ -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ 7 \\ -9 \\ -16 \\ -16 \\ -16 \\ -16 \\ -16 \\ -16 \\ -17 \\ -16 \\ -17 \\ -13 \\ 19 \\ -20 \\ -21 \\ -22 \\ \end{array} $	$ \begin{array}{c} (100) \\ 7 \\ -10 \\ 12 \\ 14 \\ -16 \\ 17 \\ 21 \\ -23 \\ 25 \\ 27 \\ -29 \\ 31 \\ 34 \\ -36 \\ -36 \\ -36 \\ 40 \\ -42 \\ -44 \\ 44 \\ -46 \\ \end{array} $	1 - NOCO - J - 1 	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ - 3 \\ 4 \\ - 3 \\ 4 \\ - 3 \\ 4 \\ - 4 \\ 4 \\ - 4 \\ - 4 \\ - 4 \\ - 4 \\ - 4 \\ - 4 \\ - 5 \\ 5 \\ 5 \\ - 5 \\ $	$ \begin{array}{c} 1 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	AT, NO, ~ E	$ \begin{array}{c} 0, 20 \\ -0, 20 \\ -0, 20 \\ -0, 20 \\ 0, $	NGEN 0 1 1 1 1 1 1 1 1 1 1 1 1 1	
$F_{L} E_{K} = H \cup m H$ -2 -3 -4 -3 -4 -3 -4 -3 -4 -3 -4 -3 -3 -4 -3 -3 -4 -3 -3 -3 -3 -3 -3 -3 -3	:nci) I ? 	$ \frac{1}{3} \frac$	$ \begin{array}{c} 10 \\ 0 \\ 1 \\ 2 \\ 1 \\ 2 \\ $	$ \begin{array}{c} 1 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	AT, NO, ~ E	$ \begin{array}{c} 0, 20 \\ -0, 20 \\ -0, 20 \\ -0, 20 \\ -0, 20 \\ 0,$	0 1 1 1 1 1 1 1 1 1 1 1 1 1	
$F_{L} [F_{1} 1 0 = 1$ -2 -3 -4 -5 -6 7 -9 -10 9 -10 -11 12 13 -14 -15 -16 -57 -13 19 -20 -21 22 -23 -74	$ \begin{array}{c} (1) \mathbf{I} \\ (2) \mathbf{I} \\ $	1 - NOCO - J - 1 	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 4 \\ 2 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 5 \\ $	$ \begin{array}{c} 1 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	AT, NO, ~ E	$ \begin{array}{c} 0, 20 \\ -0, 20 \\ -0, 20 \\ -0, 20 \\ 0, 20 \\ -0, 20 \\ 0,$	0 1 1 1 1 1 1 1 1 1 1 1 1 1	
$ \begin{array}{c} 1 \\ -2 \\ -3 \\ -3 \\ -4 \\ -5 \\ -6 \\ 7 \\ -9 \\ -16 \\ -17 \\ -16 \\ -17 \\ -16 \\ -17 \\ -13 \\ 19 \\ -20 \\ -21 \\ -22 \\ -23 \\ -74 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 $	$ \begin{array}{c} & & & \\ & &$	$ \begin{array}{c} 1 \\ 1 \\ - 3 \\ - 5 \\ - 7 \\ - 1 \\ - 1 \\ - 20 \\ - 22 \\ 24 \\ 26 \\ - 20 \\ - 22 \\ 24 \\ 26 \\ - 26 \\ - 30 \\ 33 \\ 33 \\ 33 \\ 35 \\ 37 \\ 39 \\ - 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 66 \\ - 26 \\ $	$ \begin{array}{c} 17 \\ -19 \\ -21 \\ -23 \\ -25 \\ 27 \\ 29 \\ -34 \\ -36 \\ -$	$ \begin{array}{c} 1 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	AT, NO, ~ E	$ \begin{array}{r} 0.20 \\ - 0.20 \\ - 0.20 \\ - 0.20 \\ - 0.20 \\ 0.20 \\ - 0.20 \\ 0.20 \\$	NGEN 0 1 1 1 1 1 1 1 1 1 1 1 1 1	
$ \begin{array}{c} 1 \\ -2 \\ -3 \\ -4 \\ -3 \\ -4 \\ -4 \\ -5 \\ -4 \\ -5 \\ -6 \\ 7 \\ -9 \\ -16 \\ -16 \\ -16 \\ -16 \\ -17 \\ -16 \\ -17 \\ -16 \\ -17 \\ -13 \\ 19 \\ -20 \\ -21 \\ -22 \\ -23 \\ -74 \\ 25 \\ -26 \\ -7 \\ -37 $	$ \begin{array}{c} (100) \\ ? \\ -10 \\ 12 \\ 14 \\ -16 \\ 12 \\ 14 \\ -16 \\ 21 \\ -23 \\ 25 \\ 27 \\ -29 \\ -31 \\ 34 \\ -36 \\ -36 \\ -42 \\ -42 \\ -46 \\ -46 \\ -46 \\ -67 \\ -7! \\ -$	$ \frac{1}{3} \frac{3}{5} \frac{3}{7} \frac{1}{26} \frac{26}{26} \frac{27}{30} \frac{3}{37} \frac{39}{41} \frac{43}{43} \frac{43}{7} \frac{66}{68} \frac{70}{7} \frac{7}{39} \frac{1}{7} \frac{1}{66} \frac{68}{70} \frac{7}{7} \frac{1}{7} 1$	$ \begin{array}{c} 17 \\ -1^{-} \\ 21 \\ -21 \\ -25 \\ -27 \\ 29 \\ -34 \\ -36 $	$ \begin{array}{c} 1 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	AT, NO, ~ E	SPESOR(M) = 0.20 $- 0.20$	0 1 1 1 1 1 1 1 1 1 1 1 1 1	
$F_{L} [F_{1} 1 0 = 1$ -2 -3 -4 -5 -6 7 -9 -10 9 -10 -11 12 13 -14 -15 -16 -17 -16 -17 -10 21 -20 21 -22 -23 -74 25 -26 -27 20	:nci) I ? 	$ \begin{array}{c} 1 \\ 1 \\ - 3 \\ - 5 \\ - 7 \\ - 7 \\ - 7 \\ - 7 \\ - 7 \\ - 7 \\ - 10 \\ - 7 \\ - 10 \\ - 20 \\ - 20 \\ - 22 \\ - 24 \\ - 20 \\ - 22 \\ - 24 \\ - 20 \\ - 22 \\ - 24 \\ - 20 \\ - 22 \\ - 24 \\ - 20 \\ - 22 \\ - 24 \\ - 20 \\ - 22 \\ - 24 \\ - 20 \\ - 22 \\ - 24 \\ - 20 \\ - 20 \\ - 22 \\ - 24 \\ - 20 \\ - 24 \\ - 20 \\ - 20 \\ - 24 \\ - 20 \\ -$	$ \begin{array}{c} 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} 1 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	AT, NO, ~ E	$ \begin{array}{c} 0, 20 \\ -0, 20 \\ -0, 20 \\ -0, 20 \\ 0, 20 \\ -0, 20 \\ 0,$		
FL E H HUm H 1	$ \begin{array}{c} (100) \\ 7 \\ -10 \\ 12 \\ 14 \\ -16 \\ 12 \\ 14 \\ -16 \\ 21 \\ -23 \\ 25 \\ 27 \\ -29 \\ 31 \\ 34 \\ -36 \\ -36 \\ -42 \\ -42 \\ -46 \\ -46 \\ -46 \\ -46 \\ -71 \\ -71 \\ -73 \\ -75 \\ -77 \\ -7$	$ \begin{array}{c} 1 \\ 1 \\ - 3 \\ - 5 \\ - 7 \\ - 1 \\ - 1 \\ - 20 \\ - 22 \\ 24 \\ 26 \\ - 22 \\ 24 \\ 26 \\ - 26 \\ - 30 \\ 22 \\ 24 \\ 26 \\ - 26 \\ - 30 \\ 33 \\ 33 \\ 33 \\ 35 \\ 37 \\ 39 \\ - 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 66 \\ 66 \\ 68 \\ - 70 \\ 72 \\ 74 \\ 76 \\ \end{array} $	$ \begin{array}{c} 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} 1 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	AT, NO, ~ E	SPESOR(M) = 1 0.20 -0.20 0.20	NGEN 0 1 1 1 1 1 1 1 1 1 1 1 1 1	
$F_{L} [F_{K} $	$ \begin{array}{c} (100) \\ (10$	$ \begin{array}{c} 1 \\ 1 \\ - 3 \\ - 5 \\ - 7 \\ - 7 \\ - 10 \\ - 20 \\ - 20 \\ - 22 \\ 24 \\ 26 \\ - 20 \\ - 22 \\ 24 \\ 26 \\ - 20 \\ 20 \\ - $	$ \begin{array}{c} 10 \ D \ D \ - \ K \ - \ - \ - \ - \ - \ - \ - \ -$	$ \begin{array}{c} 1 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	AT, NO, ~ E	SPESOR(M) = 0.20 $- 0.20$	$ \begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	

10 -

	12	147		•	,
	13	193			6
	1 1	194			
	15	195	,		
•	17	242			7
	77	213			
		207			
				<u></u>	
	27	337			
	23	338		``````````````````````````````````````	
				· · · · · · · · · · · · · · · · · · ·	··· · ··
••• -	- 26			a an an an gant the black and an an an an an an an an	
		307			······································
	30	433			
··· •	- 31				···············
• • •		452		. .	
_ / ~	33	453			
	35	500	•	,	
	- 3 (501		-	
	- 37				
	- 30	540			
	40	595			
•	49	596			
	· · · (; 2; · · · · · · · · · · · · · · · · · ·		and a second	•••••	·
-	44			m	
			· · · · · · · · · · · · · · · · · · ·		
		Ŷ			
		C++	ASR-IG-IDECES		-
· · · · · ·				· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·			
	PULTOS NO	DALES EN CADA H.	IVEL	, m	
¥E-L		ĴÇ?	· · · · · · · · · · · · · · · · · · ·	······	
1-	15	· · · · · · · · · · · · · · · · · · ·			
4	15	<u>,</u>			
5	15				
		······································			-
	turfatele	nk r.E. les bungs r	CONTENINOS FU		1 /
· 4 ·		52 66 84	100 -116132	-146154170	-186- 202 - 21A
			/ u		1
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	)	HONTENTOOS - EN		
7	23 39	55 71 87	103 119 135	147 157 173	199 205 221
		· · • • • • •			
	Hurra As Fr	16 DE LOS NUMBER	alitektens en		······································
10	26 42	58 74 90 1	100 122 118	48 160 17A	) 192 208 221
· •- • · ·					

	7
_ HUPEHACION DE LOS NUDUS CUNTENI	IDOS FN EL NIVEL NO. 4
13	<u>, , , , , , , , , , , , , , , , , , , </u>
1632 48648096 112 12	28 144 150 166 182 198 214 230
ALTUPAS DE LOS ENTREPISOS NTREPISO NO. ALTURA (M)	
2:00	
3	-
5 2.00	· · · · · · · · · · · · · · · · · · ·
IVEL HO, PESO (TON)	
337230	
3 33.230	· · ·
<u>5</u>	
COLFICIENTE SISHICO= 0.080	
-HIVEL */LTURA(H)*FZATRIG1052(T0H)	
1	
A 10.40 3.545	
2 • 9 C 3 6 E + 0 4 1 • 2 2 0 0 E + 0 4 8 • 2 3 2 1 E + 0 3 5	5+8534E+033+3549E+03
، بر الماري ، بر الماري ،	
	,
······································	
•••••••••••••••••••••••••••••••••••••••	
· · ·	
	****

# AHALISIS DEL HURU HARCU A CONSIDERANDO CARGA ESTATICA Y TEFE

8

.

-

	1	MU. DE COMBICIER DE CARGA
`	🖍 -:? ()	NO. DET BARRAS -CARGADAS
	00	HO. DE-HUDOS CARGADOS

RRA DO-IND. GRAFT
J 1 4 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
15
BARRAN 2 CAPGA DIST UNIFOR CONTINCTON/Y)=A LA BARRA ANTERIOR
EARRA 4 CARGA DIST UNIFOR CONTINCTON/H)=A LA BARRA ANTERIOR
EARRA 5 CARGA-DIST UNIFOR CONTINCTON/H)=A-LA-BARRA ANTERIOR 
EARRA 7 CARGA EIST UNIFOR CONTIN(TON/M)=A LA BARRA ANTERIOR
HARRA & CARGA DIST UNIFOR CONTIN(TON/H)=A LA BARRA ANTERION -PARRA
DARRA 10 CAPGA DIST UNIFOR CONTINCTON/ND=A LA BAPRA ANTERIOR BARRA 11 CARGA DIST UNIFOR CONTINCTON/ND=A LA BAPRA ANTERIOR
PAREA 13 CARCA LIST UNIFUR CONTINCYCE/PD=A FA BARRA ANTERIOR

	· · · · ·		9	
EALEA	14 CARGA DIST UNI	FOR CONTINCTON/N	DEA LA BARRA ANYERIOP	
BARRA	-is carua-uist-uist	-011-comitantonon	<u>יאדע איזאיאיאייאייד. איזראייד</u> יי	
( EARRA •	LG CARGA DIST UNI	FOR CONTINCION/H	)= 0,000 <b>0</b>	
DARRA	17 CARGA DIST-UNI	FOR CONTINCTON/	)=A LA BARRA ANTERINA	
BARRA	-18-cArcA-p-18-T-u!!1	רטוז־ילסווֹד־זוולידמוּאַע	J=A-UARRA-AUTERING	·····
BARRA	19 CARGA DIST UNI	FOR CONTINCTON/N	)=A LA BAPRA ANTERIOR	-
PARRA	20 CARGA DIST UNI	FORTCONTINCTONY	DEALATBARRATANTERING	
cloues co	HGENTRANAS EN LOS	HUDOS (EN TON Y	ТОN~H)	
UUD 1.0.FZ	A.HGRIZENTAL FZA.	VERTICAL NO	MENTO	
<u>i</u>	0+000		6000000	
42	0.000	<b>*2</b> •982	0.00000	
05	<b>C.</b> COO	-2-982	0.0000	
31	0.000		0.0000	
, 97	• • • • • • • • • • • • • • • • •		· ··· 0 • 0 0 0 0 0	
113		2:982	0.00000	
105	0,000			
115	0.4000	~2.4902 ~2.4902	0.00000	
6-7				
183			0.00000	
- 199	···· C • OC O		0 * UQUOC	
2-1 5				
4	0.056	°1:491	0.00000	
		~ Z+982 <u>~ 0 680</u>	0.00000	
	······································	~2.982	0.0000	
- 68	0,056	-2,002	0.00000	
{ <del>; 4</del>	<u>0 - C 5 6</u>			
100	0.056	*2.982	0.0000	
116	0.056	₩2+962	0.0000	1
		······································	0+0000	
- 154				
1.7.6				
106	0.056	×2.982	0.0000	
202	0.056	-2.982	0.0000	•
21 !!				
··· - 7····· · 0 1	- · 0 * 1 1 3		0.00000	
3G	······································			· · · ··
55	0.112	-2.982	0+0000	
71	0.112	~2.0982	0.00000	
			የ	·
103	0,112		···· 0.0000	
115 				
[ 4 ] [ 4 ]	G.112	-2.932	C. 00000	
157	<b>U</b> .11 ⁷	*2.782	0.0000	

· _____

.

.

•

____

----

$\begin{array}{c} 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 6 & 6 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 &$	-2.982 -2.982 -2.982 -1.491 -1.491 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982	0.0000         10           0.0000         10           0.0000         0.0000           0.0000         0.0000           0.0000         0.0000           0.0000         0.0000           0.0000         0.0000           0.0000         0.0000           0.0000         0.0000           0.0000         0.0000	
C • 1 1 2 C • 1 1 2 C • 1 6 8 C • 1 6 8 C • 1 6 3 C • 1 6 3 C • 1 6 3 C • 1 6 3 C • 1 6 8 C • 1 6 8	- 2 • 902 - 2 • 902 - 1 • 491 - 2 • 932 - 2 • 982 - 2 • 982	0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	
C • 1 • 2 C • 1 • 1 • 2 C • 1 • 6 • 6 C • 1 • 6 • 7 C • 1 • 7 C •		0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	
C • 1 6 8 C • 1 6 3 C • 1 6 8 C • 1 6 8	-1.491 -1.491 -2.932 -2.932 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982	0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	
C • 168 C • 163 C • 163 C • 163 C • 163 C • 168 C •	-1.491 -2.932 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	
C • 168 C • 163 C • 163 C • 163 C • 168 C • 168	-2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	
C • 163 C • 163 C • 163 C • 168 C • 168	2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	
C • 163 O • 163 O • 168 C • 168 D • 168 D • 168 D • 168 D • 168	-2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	
0 • 163 0 • 168 0 • 168	2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982 2.982	0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000	
0 • 1 6 C 0 • 1 6 8 0 • 1 6 8	-2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	
G.168 C.168 C.168 C.168 C.168 G.168 D.168 C.168 C.168 C.168	-2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982 -2.982	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	
0 • 1 6 8 C • 1 6 8	-2.982 	0.00000 0.00000 C.00000 0.00000 0.00000 0.00000	
C • 1 6 8 C • 1 6 3 C • 1 6 3 C • 2 2 0	-2.932 -2.982 -2.982 	0.00000 	
0 • 168			
C • 1 6 8 G • 1 6 8 D • 1 6 8 D • 1 6 8 C • 1 6 8 C • 1 6 3 C • 1 6 3 C • 2 2 0			•
0 • 168 0 • 168 2 • 168 2 • 163 2 • 220		<u> </u>	
0 • 168 0 • 168 0 • 163 0 • 220	-2.982 -2.982		
0.168 2.163 2.220	-2.982	0.0000	
2.163		0.0000	
0 • 550		0.000.00	
	1-+ 491		
0.256	2:02	0.0000	
)+220	<del></del>		
0.220	-2.982	0.00000	
0+220	-2.982	0.0000	
9+550			
0.220		0.0000	
0.220			
)			
0.220	-2.010	0.0000	
0.220	#2.082	0.0000	
3,220	ت ۲۰۷۵ ت محمد معلم الم ۲۰۰۰ م		
),220		······································	
0,220	L + 702	0.0000	
1-221	- <u>L</u> UUL	0.00000	
2.280	a f ////	0.00000	
1.200	- 1 + 4 7 1		
J + 2 U U J 2 A A	E VOZ		
) 200	-2.902 . 	0.0000	
	-2.982	0.0000	
J-&- <u>e-ij-</u> ij			
0.280	<b>~</b> 2•982	0.0000	
3.280	-2.982	0.0000	
•-260			
0.200		0.00000	
.280			
		0-0.000	<b></b>
0.280	<b>"2.982</b>	0.0000	
)•28C	<b>~</b> 2.982	0.00000	
<del>, 28</del> 0			
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

# USCALA DE LA GRAFICA= 1,16380E=02 UNTDADES/COLUMA URDERADA PENCR = 9.02614F=01URDERADA RAYOR = 2.61189E=01

BARRA NOS IPNUDO INICIAL = 52 NUDO FINAL

1 0.00 4	
2 0.01 +	
3	
4 0 • 12 +	·
5 0010 4	
8 0+23 +	
10 0+36 +	,
11 0+40 +	
13 0.48 *	
17 0.64 +	v
-10-0-0-	
19 0.72 +	· · · · · · · · · · · · · · · · · · ·
20 0276 +	······································
	······································
22 0 • 04 +	V
<u> </u>	· V
	••••••••••••••••••••••••••••••••••••••
261+00 +	
	V
28 1+68 +	. <b>V</b>
29 1+12 +	V
- 301+16-+-	
31	V
32 - 1 - 24 +	V
34 1.37 +	V
35 1+36 4	V
-36	
37 -1+44 +	······································
38 1+48 +	У
	уу
40 1.56 +	V M
4 4 - 1-10-17 4 4 -	
113 <b>1</b> •18 +	
43 1•18 4	¥ • • • • • • • • • • • • • • • • • • •
43 1+18 + 44 1+72 + 45 -1+76 +	V
43 1 · · · 8 + 44 1 · · 72 + 45 · · 1 · · 76 + 46 1 · 30 +	VV
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VV V V V H V H V H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VV H H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VV // // // // // // // // // // //
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

• ^ • • .UIA 1.9

IUDO FINAL = 68	;		V	м
· · · · · · · · · · · · · · · · · · ·			• •	
			0,74F+02	2.52F+01
······································	·····	····· V - ····· ··· ··· ··· ··· ··· ···	7.745-02	2+55F=0 <u>1</u>
		V	5774F=02-	
· ·	, <b>A</b>	V 14	L 3.74F-02	2 • 60F #01
•	* V	, h	1,7AF=02	2+615=01
	V*	M		
	·····			2.615 401
	<b>y</b>	••••••••••••••••••••••••••••••••••••••		2.595 -01
	·····			
	v ~ ≠	14		
v v	- -	<u>ــــــــــــــــــــــــــــــــــــ</u>	-41501-07	24546 111
14				
· · · · · · · · · · · · · · · · · · ·	r. 			
, v		M +		Z+41F=01
V	#			7 0 15 F m 1 1
. V -	*		=[ . 37F=01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
V	*	IA 4	· ~?,,∩3F ∾∩1	2.20F =01
V	*	M +		2.125-01
1	*			
-	• • • • • •	+		1.02F-01
	*			1+81F=01
•		+		<u>1-670F=01</u>
÷	*	· · · · · · · · · · · · · · · · · · ·	-3.23F-01	1.575-01
	k '	ki +		1.445-01
-	<del>k</del>			
-				1+155=01
	*	······································		9.915-02
-				A
	*	н ; <del>т</del> М "д		6.535900
	*	, 19	1943F (1)	
		19	······································	
	н	· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·		
			-5+236-01	-10195-02
	·*********************************			
	্ধ শ	· • •	~5 × 7F ~01	• • • • • • • • • • • • • • • • • • •
М	*	· +	"5. A 7F "01	-7 + H2F -02
······································		****	# K.p-() 3 F- = ()-1	
	*		~~~~? 3F ~01	™1 + 2 K F ™ N <u>1</u>
· · · · · · · · · · · · · · · · · · ·	🛊	#	-5,43F-01	m1+52Fm01
<u>H</u>		÷	K » K 3F = M1	-1-78F-01
М	*	++	"∧ <u>•</u> ₽3F"01	¶2•05F=01
- 1	*	+	₩7+03F #01	·2·32F=01
			7 . 2 15 -01-	
	+	······································	-7.A3F-01	-2.405-01
- A			-7.K3F-01	-3.205-01
;		w 		-3.515-01
	*	и Т	-8. A2C -A1	-3,835-01
· · · · · · · · · · · · · · · · · · ·	-	+		@##15E@A4
	*	44		
2	*	<u> </u>	= R + 2 3 F = () 1	-4.405-04
· · · · · · · · · · · · · · · · · · ·	* 	#		-4.40F-01
	+ 	** 	-R, 23F =01 9; 13F = 01 9; K3F = 01	-4.40F=01 -4.83F=01

...

ESCALA DE LA GRAFICA= 7.12272E-03 UNIDADES/COLUPA DRDENADA HENCR = -3.59964E-01GRDENADA HAYOR = 3.52304E-01



DADES/COLUMA

AL = 145.NUDO ETHAL = 146 ۷ M 2.74F=01 =3.60F=01 V 2,74F-01 -3.46F-01 <u>.</u>...... V 2 - 74 - 401 - 3 - 31 - 1 - 401 ٧ 2.745-01 -3.175-01 V 2,745-01 -3.035-01 V <del>"ም</del>" ፖለF ግበ1 – ግ2 ፣ ጸዋ F ግባ 1 11-٧… 2.74F "01 **745** 2.74F-01 -2.605-01 v ۷ **?~74F=01**~~?;46F=01 ? . 7 4 F = 01 -2.325-01 V 2.745-01 ÷ • . ٧ -2.18F-01 ٠v ·ፇ፝፝፝፝፝፝፝፝፝፝፝፝ጛዾ፝፝፝፝፝፝፝ኯ፝፝፝፝፝ በ1- ^መ2ኈበ3<u>₣</u> "በ1 2,715-01 -1. AOF -01 2.74F~01 =1.75F=01 V 2.7AF=01==1:K1F=01 v ۷ 2.745 -01 -1.465-01 7 AF=01 =1.32F=01 V -9:17AF=01-=1:11AF=01 -V -- - . . ۷ 2.7AF=01 =1.04F=01 2.745-01 -8.935-02 V 2-574F=01----7.251F=0 -6.0⁸5-02 2.745-01 ۷ ۷ 2074F=01 =4066F=02 つき745-001-----ろ=-235=0つ 21745-01 - 1 0 81 F = A 7 14 * 2.74F=01 -3.83F-03 *н ? <u>₽-7</u>4 F.ª ∩-}---1-0045 -02-H 2 . 475-00 2,74F=01 ٧ 3.805-02 М ٠V 2 .74F "01 -5 -378 =07 9-1-71F-P01-М 2.74F=01 6.745=00 v М 2.74F = 01 A . 1 KF = 0? v <u>_9...595 = N 2</u> -2-+7-4F-™N1-, μ 2074F=01 1.105-01 ۷ 1.245-01 2.745-01 v ? = 74F = 01 1.535-01 ·-V - 2.745-01 1.675-01 -1*818=01 ?-74F ™01-1.965-01 H 2.7AF*01 V 2 .10F =01 М ۷ 2.74F = 01 2.245-01 74F = 01γ. 2•3⁸F≈01 ----M 2.745-01 -· V .-2.535-01 2,74F=01 М V ----2.675-01 HV.... 2074F-01 2.815-01 2 745 01 VH 2.745-01 2.955=01 V. H ŧ 3.105=01 71F=01 7. 3.245 "01 Y 3.74F=01 М 4 3 + 3 AF = 01 V 2.745-01 14 4 - 3 . 52F = 01 -2.745=01

N 0.	INICIAL F	IMAL N	ORHAL	CORTAN	ΤΕ ΓΕΓΧΊΠΝ	ANTE N
		· ·	:		· ·	
FR. ++	COURTIN	NS (11) +++ *1	FESTUEZES REF	CRIDDS A XY G	[[]]]//++7)+++	FSFIFFTIST
10+	X	· · · · · · · · · · · · · · · · · · ·		YY DIIT		111
		0.133				
2	0.250	2 • 1 6 7	"1.6729E+00.	-1.2962F+02	5-1504F100	*1.44445*6
3	C • 250	3 • 900	1.1331E~01	=1+1664E+02	207319E+90	1.77205-4
-4	0.250	5.033	1-32005+00-	-1.0003E+US		1.3A50540
5 · -	0.250-	7 • 367		1.0671F+02	···· 3。3696F+90	-1.73UGF*^
6 -	0.250		9.4058E C2	- 7.866RF+01	3.77158-01	や。メルバブデック
- 7		10.633			1·07925E+00-	
8	0.250	12.567	*3.4803[+00	-3.0976E+01	2.1333E HOO	■3,3159F+C
9	0+750	1 • 300	2+2900[+00	=2.0299E+02	6.81155+00	2.52%56+0
1)				1-1752-1-16-4024	1:5920[+01	
1	······································	4.167			K.2376E+00	₩6.17AAF #0
5	0.750		2.2005[-01-	1 • 1867E +02	A . 3487E+00	3 * 4 2 3 6 2 2 2
]		0 0 4 7			*5.8073[*01	9.99765-0
<u>م</u>	0.750	41.700		=/+519F+01	1.20105+00	
2	() a / ) ( 	11.100		-3109146+01	~1.5747(+00	7.75.171 - 1 
7	1.256				₹ «₹60001,†90 ₹ . 00×00×00	at 0070541
1 <b>7</b> 1 <b>8</b> 1		3.000			1 0140540A	
10	1.250		<u></u>		-1,2790F400	= 3 • 2 <u>0</u> 1 · · · ·
$\mathbf{x}$	1.250	7,367	1,92650 +00	=1-27415+62	9-6868E+CO	1 00035+(
51	1.250	9.100	3.02465-01	<b>−7</b> ,75900+01	2.2454F-01	3,03115-0
					-A. 4242F+00	■A. £41.45+C
)	- 1.250	- 12.567 -	- 1.7134E+00 -		-2.1240F+00	1.21515+0
54	3.750	- 1.300			7.77665400	2.90045+0
,5		3-+0-3-3		7-86809E+01	1.30748+01	1.12215+1
06	3.750	4.767	*1.8298C+01	-1.161PF+02	1.2253E+11	=1.K7P7F+C
7	3.750	6.500	1.0979E+00	-9.7124E+C1	4.5565E+00	1.32015+0
·8						
- 90	3.756 -	9 • 967	-*1.9853E+01	=9•1638F+01	9.9401E+00	-1.95025+0
30	3.750	11.700 -	5.3633E+00	≈4•8286F+01	1.39258+01.	5, 2096F+1
3-1	4 . 250 -			° 1-• 5290E+02-		
32	4.250	2.167	°5.8700E+00	<b>#1.6255E+02</b>	1.56592+01	-4.32055+0
33	4.250	3.900	A.0725E=01	¶1∗3557E+02	1 . 97 365 +01	3,20255+1
34	4-250	56-3 3	f- + 4 6 1-3 E-+ G 0	1-+-7599F-+0-?-		6-91975+0
35 -	4.250		- "6.1507E+09	1:08975+02	1:01555+01	-5,15705+0
36		9.100-		<b>■7,72355301</b>	\$ .56056401	3.22705+0

	4 . 250.			1- 5290E+02-		
32	4.250	2.167	°5.8700E+00	<b>#1.6255E+02</b>	1.56592+01	-4.320FF+00
33	4.250	3.900	h.0725E=01		1.97365+01	3,20255+(1
- 34-		5-+6-3 3	<del>6</del> • 4 6 <del>1 3 E *</del> 6 0	1-+-0-599F+0-?		6-91975+00
35	4.250	7 • 367	- "6.1507E+09-		- 1001555+01	=5,157#F+0C
36		- 9+100-	2•1116E*01 -	<b>≈7</b> ₀7235£+01-	1.5605E+01	3.22705+00
- 37			6-3101E+00-			60 3150F+00
38	4.250	12.567	-8.9754E+00	-3.3925E+01	2.26555+00	-8. K505F+07
3.9	4.750	1.300	1.16225-01	•2.3719F+02	1.8R95E+01	1.61145+00
- 40	4.750-				1 + 1051F+6+-	
41	4.750	4 • 7 6 7	4 • 9234E+00 -		1 + 0149E+01	5.51925+60
42	4.750	6.500	- 4.3703E*01	- ~1+2396F+C2	·- \$.8857F+01	3.22275+00
43-		8 • 2-3 3			4.2541[+00-	3. KOVJEIUU
<u>۵</u> ۵	4.750	9.967	7.1900E+00	~7.2009F+01.	4.1159[+00	7.40335400
a 5	4.750	11.700	<b>~</b> 6.3367E <b>~</b> 02	•3.766PF+01	1.12488461	A # 7 2 C E E + C C
<b>ђ</b> (-	5.250-	C.• 4-3-3		=3		= 1°UXJ2E 1Ui
47	5.256	2.167	5.6458[+00	-2.R689E+02	0.2046[400	5,93535+67
4	5.250	3.900	#2.8978E~01	-2·1472F+02	5.4979[+01	-1.0045-01
27	5.276	5+633	2+3122(+01			2.2-275111
50	5.260	7.367	1.54966401	-1.23995+02	1.51078+91	1.71775+61
51	.5.250	9+100	1:29460+00	∞7°2611E+01	2.59136+00	1,38935+00
				and the second		

.

NTE

***

ς,

s

 FXTRFMN FTHAL (TNU Y TNN=M)

 N n R M A L
 C n P T A N T F TLFX TNNANTF

FSFUFPZUS PRT	NCTPALTS REEXY	(Tn)r/11 + + + + + + + + + + + + + + + + + +
T11	T22	TAILMAX (GRADDS) T
		· · · · · · · · · · · · · · · · · · ·
	-1.1/42[+02	5.6000/+01 =16.578
■1.4 <u>660</u> F+00	≈1.2982E+02	K. 417.9F+01 23.015
1.77201 -01	= 1 + 1 6 / UE + () 2	5.8440F+01 53.497
	¬1 • ((())/ + 1/2     • () (()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2     • () ()/ + 1/2	
		3+448 (F +()] 2+/40
a2.21505400	#3.1161E101	
2,524555100	m2.03225402	1.02875+02 18.083
-6.170AF-01-	M1.5635€+02	7.78645+01 22.954
3485095-01	=1.1893E+02	5.06005+01 20.010
9.99705-01		
=5,2590F=01	-7.5538E+01	3.7506F+01 9.191
5.55355-01	-3.8976E+01	1.97668+01 -27.801
-3.12556+01		
-1.P472F+00	-2:6639E+02	1:32255+02 0:216
■3·2617F=01	-2:0101E+02	-1.0034F+02 0.613
≈a•4003E+00		
1, 9A23F+00	-1.2746E+02	K. 4722F+01 11, AQA
3.0311F=01	-7.7599E+01	3.8951F+01 1.K51
=A,68A0F+00		
1.8151F+00	4:26585+01	2.22415+01 =27.000
2 • 9004F+00	-8.4859E+01 -	1. 3885F+01 - 51.035 Slave
1+1321F+01		
∞1.6787F+01	■1.1769E+02	5.0450F+01 70.281
1.3201F+00	₩9.2346 <u>E</u> +01	4.68335+01 27.017
●] # 25()25+()1 ·	#942989E+01	3.72h3F+01 77.30R
	-1	2.6861F+01 14.859
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-4.3205F+00	-140410 <u>+</u> 02	
	-] 4 3 0 3 7 E + 0 2	
3,23725+00-		4.17405+01 800.743
6-13150F+00		
-8.65C5F+00	=3+4250E+01	1.28005+01 60.683
1.6114E+00	=2.3860E+02	1.2015F+02 45.242
5.51935+00	1+6809E+02	- A. KADAF+01 33.573
3.22275+00	=1.2675F+02	6.4993F+01 KU,332
	#8 • ·1-9-1-1 E·+ 0 1	
7.4033F+00	-7.2222E+01	3.0A13F+01 20.670
1 ≥ 7 2 C B F + G C	-1.2457F+01	2.3589F+01 185,789
		1 · AAIAF+02 28 · 075
5.93535+60	≈2+8718F+02	1.4K5KF+92 18,008
-1 AAQ1F=01	#7+1426E402	1.07365402 10.678
		$\frac{1}{7} + \frac{1}{2} + \frac{1}$
1 20226400	~! # / \ 0 / L + N / #7.570xF±A4	です」やとうたてい <u>」</u>
しゅうパンスとブリリ	-1037086491	1941746FTF1 1V4320

	,	· · · · · · · · · · · · · · · · · · ·		
1	2 1	C•06401 0•85426	∾3•01552 7∢38013	0,0000 0,0000
 0 1		· · · · · · · · · · · · · · · · · · ·		:
1	18	-0.20195	₩8,65224	0,00060
16 .	34	2.78918	"9.61457	0.00000
	3 3	2:02773	18-02470-	
16	49	• 4 • 46482	10.93291	0,0000
16	50 	°0 a 35209	=19.3A30R	2,0000
- J [' - 1 1	62 61 (
31		₩₩2.705367	0 + 40 4 3 1 K. 20227	0.0000
	···			
46	114	3.90698	-11.91785	0.0000
46	113	2.21670	20.62108	2,00000
			1-3-06553-	-1-0000
46		······································	₩21.76875	2.0000
		1092070		
61	153	₩2×95614	6.82766	0.00000
61	124	0 • 12503	·10.52102	1.00060
-76		1.38672		<u> </u>
76	109 -	2.24360	22.61114	- ·· · · · · · · · · · · · · · · · · ·
76	215		14.12406	1,00000
-/6			- · · 23. AB797	3,0000
91	10	0.93066	■12.98592	•1,64°60
	، ر ۶ ۶	∠≠३३५०4 7∩०4/		0_00000 #1_00000
91	- 3.4	=2.07016 -	··· ··· ··· ··· ··· ··· ···· ···· ······	0,0000
106	<u>66</u>	0+32843	' *3.99070	0.0000
1-176			- 1.42865	0,0000
100	81	•0.63325	5.15606	6,66660
106	82	-0.67772	₩2,59401	0,0000
121				72. 00000
121	113			-1.0000
1-21		*?+···6#25	7.27354	0,00000
136	152	0.34806	-3.76478	. a.conoo
136	151	0 • 77570	1 • 1 7 4 8 0	6, C00C0
1-36				
150 151	1 C O	~0+50624 2,1AK0A		0,0000
151		2 • 1 100 1 		
151	109	-2.40606	19:04229	-2.00000
151	200	1 • 96850	-7073411	0.0000
		· · · · · · · · · · · · · · · · · · ·		•
U U <u>r</u> [0.05 5	0[080]0h	ALTEA = 1184503		-
0.11 5- -C	$\tau = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	n=10n		

PLANE STRESS AND PLANE STRAIN

.

Î.

The displacements of a node have two components

 $\{\delta_i\} = \begin{cases} u_i \\ v_i \end{cases}$ (4.1)

and the six components of element displacements are listed as a vector

Fig. 4.1 An element of a continuum in plane stress or plane strain

The displacements within an element have to be uniquely defined by these six values. The simplest representation is clearly given by two linear polynomials

$$u = \alpha_1 + \alpha_2 x + \alpha_3 y,$$

$$v = \alpha_4 + \alpha_5 x + \alpha_6 y.$$
(4.3)

The six constants α can be evaluated easily by solving the two sets of three simultaneous equations which will arise if the nodal co-ordinates are inserted and the displacements equated to the appropriate nodal displacements. Writing, for example,

$$u_{i} = \alpha_{1} + \alpha_{2}x_{i} + \alpha_{3}y_{i}$$

$$u_{j} = \alpha_{1} + \alpha_{2}x_{j} + \alpha_{3}y_{j}$$

$$u_{m} = \alpha_{1} + \alpha_{2}x_{m} + \alpha_{3}y_{m}$$
(4.4)

4. Plane Stress and Plane Strain

4.1 Introduction

Two-dimensional elastic problems were the first successful examples of the application of the finite element method.^{1,2} Indeed, we have already used this situation to illustrate the basis of the finite element formulation in Chapter 2 where the general relationships were derived. These basic relationships are given in Eqs. (2.1), (2.2), (2.3), (2.9), (2.10), and (2.16) and for quick reference are summarized in Appendix II.

In this chapter the particular relationships for the problem in hand will be derived in more detail, and illustrated by suitable practical examples, a procedure that will be followed throughout the remainder of the book.

Only the simplest, triangular, element will be discussed in detail but the basic approach is general. More elaborate elements to be discussed in later chapters would be introduced to the same problem in an identical manner.

The reader not familiar with the applicable basic definitions of elasticity is referred to elementary texts on the subject, in particular to the text by Timoshenko and Goodier,³ whose notation will be widely used here.

In both problems of plane stress and plane strain the displacement field is uniquely given by the u and v displacements in directions of the cartesian, orthogonal x and y axes.

Again, in both, the only strains and stresses that have to be considered are the three components in the x-y plane. In the case of *plane stress*, by definition, all other components of stress are zero and therefore give no contribution to internal work. In *plane strain* the stress in a direction perpendicular to the x-y plane is not zero. However, by definition, the strain in that direction is zero, and therefore no contribution to internal work is made by this stress, which can in fact be explicitly evaluated from the three main stress components, if desired, at the end of all computation.

4.2 Element Characteristics

4.2.1 Displacement functions. Figure 4.1 shows the typical triangular element considered, with nodes i, j, m numbered in an anti-clockwise order.

we can easily solve for α_1 , α_2 , and α_3 in terms of the nodal displacements u_i , u_i , u_m and obtain finally

$$u = \frac{1}{2\Delta} \left\{ (a_i + b_i x + c_i y) u_i + (a_j + b_j x + c_j y) u_j + (a_m + b_m x + c_m y) u_m \right\}$$
(4.5a)

in which

$$a_{i} = x_{j}y_{m} - x_{m}y_{j}$$

$$b_{i} = y_{j} - y_{m} = y_{jm}$$

$$c_{i} = x_{m} - x_{j} = x_{mj}$$

(4.5b)

with the other coefficients obtained by a cyclic permutation of subscripts in the order, *i*, *j*, *m*, and where

$$2\Delta = \det \begin{vmatrix} 1 & x_i & y_i \\ 1 & x_j & y_j \\ 1 & x_m & y_m \end{vmatrix} = 2 \text{ (area of triangle ijm).} (4.5c)$$

As the equations for the vertical displacement v are similar we also have

$$v = \frac{1}{2\Delta} \{ (a_i + b_i x + c_i y) v_i + (a_i + b_j x + c_j y) v_j + (a_m + b_m x + c_m y) v_m \}.$$
(4.6)

Though not strictly necessary at this stage we can represent the above relations Eqs. (4.5a) and (4.6) in the standard form of Eq. (2.1)

$$\{\mathbf{f}\} = \begin{cases} u \\ v \end{cases} = [N] \{\delta\}^e = [IN'_i, IN'_j, IN'_m] \{\delta\}^e$$
(4.7)

with I a two by two identity matrix, and

$$N'_{i} = (a_{i} + b_{i}x + c_{i}y)/2\Delta$$
 etc. (4.8)

Note: if co-ordinates are taken from the centroid of the element then $x_i + x_m + x_j = y_i + y_j + y_m = 0$ and $a_i = 2\Delta/3 = a_j = a_m$.

The chosen displacement function automatically guarantees continuity of displacements with adjacent elements because the displacements vary linearly along any side of the triangle and, with identical displacement imposed at the nodes, the same displacement will clearly exist all along an interface.

4.2.2 Strain (total). The total strain at any point within the element can be defined by its three components which contribute to internal work.

$$\{\varepsilon\} = \left\{ \begin{aligned} \varepsilon_{\mathbf{x}} \\ \varepsilon_{\mathbf{y}} \\ \gamma_{\mathbf{x}\mathbf{y}} \end{aligned} \right\} = \left\{ \begin{aligned} \frac{\partial u}{\partial \mathbf{x}} \\ \frac{\partial v}{\partial \mathbf{y}} \\ \frac{\partial u}{\partial \mathbf{y}} + \frac{\partial v}{\partial \mathbf{x}} \end{aligned} \right\}.$$

Using Eqs. (4.7) or (4.5a) and (4.6) we have

$$\{\varepsilon\} = \begin{bmatrix} \frac{\partial N'_{i}}{\partial x} & 0 & \frac{\partial N'_{j}}{\partial x} & 0 & \frac{\partial N'_{m}}{\partial x} & 0\\ 0 & \frac{\partial N'_{i}}{\partial y} & 0 & \frac{\partial N'_{j}}{\partial y} & 0 & \frac{\partial N'_{m}}{\partial y} \\ \frac{\partial N'_{i}}{\partial y} & \frac{\partial N'_{i}}{\partial x} & \frac{\partial N'_{j}}{\partial y} & \frac{\partial N'_{j}}{\partial x} & \frac{\partial N'_{m}}{\partial y} \\ \end{bmatrix} \begin{bmatrix} u_{i} \\ u_{j} \\ v_{j} \\ u_{m} \\ v_{m} \end{bmatrix}$$
$$= \frac{1}{2\Delta} \begin{bmatrix} b_{i} & 0 & b_{j} & 0 & b_{m} & 0\\ 0 & c_{i} & 0 & c_{j} & 0 & c_{m} \\ c_{i} & b_{i} & c_{j} & b_{j} & c_{m} & b_{m} \end{bmatrix} \{\delta\}^{\varepsilon}$$
(4.10)

which defines the matrix [B] of Eq. (2.2) explicitly.

It will be noted that in this case the [B] matrix is independent of the position within the element, and hence the strains are constant throughout it. Obviously, the criterion of constant strain mentioned in Chapter 2 is satisfied by the shape functions.

4.2.3 Initial strain (thermal strain). 'Initial' strains, that is strains which are independent of stress, may be due to many causes. Shrinkage, crystal growth or, most frequently, temperature changes will, in general, result in an initial strain vector.

$$\{\varepsilon_0\} = \begin{cases} \varepsilon_{x0} \\ \varepsilon_{y0} \\ \gamma_{xy0} \end{cases}$$
 (4.11)

Although this initial strain may, in general, depend on the position within the element, it will usually be defined by average, constant, values. This is consistent with the constant strain conditions imposed by the prescribed displacement function.

Thus, for the case of *plane stress* in an isotropic material in an element subject to a temperature rise θ^e with a coefficient of thermal expansion α ,

51

(4.9)

)

we will have, for instance,

$$\{\varepsilon_0\} = \begin{cases} \alpha \theta^e \\ \alpha \theta^e \\ 0 \end{cases}$$
 (4.12)

as no shear strains are caused by a thermal dilatation.

In plane strain the situation is more complex. The presumption of plane strain implies that stresses perpendicular to the x-y plane will develop due to thermal expansion even without the three main stress components, and hence the initial strain will be affected by the elastic constants.

It will be shown that in such a case

$$\varepsilon_0\} = (1+\nu) \begin{cases} \alpha \theta^e \\ \alpha \theta^e \\ 0 \end{cases}$$
(4.13)

where v is the Poisson's ratio.

Fig. 4.2 An element of a stratified (transversely-isotropic) material

Anisotropic materials present special problems, since the coefficients of thermal expansion may vary with direction. Let x' and y' in Fig. 4.2 show the principal directions of the material. The initial strain due to thermal expansion becomes, with reference to these co-ordinates for plane stress

$$\{\varepsilon_0\}' = \begin{cases} \varepsilon_{x'0} \\ \varepsilon_{y'0} \\ \gamma_{x'y'0} \end{cases} = \begin{cases} \alpha_1 \theta^e \\ \alpha_2 \theta^e \\ 0 \end{cases}$$
(4.14)

PLANE STRESS AND PLANE STRAIN

where α_1 and α_2 are the expansion coefficients referred to the x' and y' axes respectively.

To obtain the strain components in the x, y system it is necessary to use an appropriate strain transformation matrix [T] giving

$$\{\varepsilon_0\} = [T]^{\mathsf{T}}\{\varepsilon_0\}. \tag{4.15}$$

With the β as defined in Fig. 4.2 it is easily verified that

$$[T] = \begin{bmatrix} \cos^2 \beta & \sin^2 \beta & -2\sin\beta\cos\beta \\ \sin^2 \beta & \cos^2 \beta & 2\sin\beta\cos\beta \\ \sin\beta\cos\beta & -\sin\beta\cos\beta & \cos^2\beta - \sin^2\beta \end{bmatrix}.$$

Thus, $\{\varepsilon_0\}$ can be simply evaluated. It will be noted that no longer is the shear component of strain equal to zero in the x-y co-ordinates.

4.2.4 Elasticity matrix. The matrix [D] of the relation Eq. (2.3)

$$\{\sigma\} = \begin{cases} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{cases} = [D] \left(\begin{cases} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{cases} - \{\varepsilon_0\} \right)$$
(4.16)

can be explicitly stated for any material (excluding here $\{\sigma_0\}$ which is simply additive).

Plane stress—isotropic material. For plane stress in an isotropic material we have, by definition,

$$\varepsilon_{x} = \sigma_{x}/E - v\sigma_{y}/E + \varepsilon_{x0}$$

$$\varepsilon_{y} = -v\sigma_{x}/E + \sigma_{y}/E + \varepsilon_{y0}$$

$$\gamma_{xy} = 2(1+v)\tau_{xy}/E + \varepsilon_{xv0}.$$
(4.17)

Solving the above for the stresses, we obtain matrix [D] as

$$[D] = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & (1-\nu)/2 \end{bmatrix}$$
(4.18)

in which E is the elastic modulus and v is the Poisson's ratio.

Plane strain—isotropic material. In this case a normal stress σ_i exists in addition to the three other stress components. For the special case of isotropic thermal expansion we have

$$\varepsilon_{x} = \sigma_{x}/E - \nu\sigma_{y}/E - \nu\sigma_{z}/E + \alpha\theta^{e}$$

$$\varepsilon_{y} = -\nu\sigma_{x}/E + \sigma_{y}/E - \nu\sigma_{z}/E + \alpha\theta^{e}$$
(4.19)
$$\gamma_{xy} = 2(1+\nu)\tau_{xy}/E.$$

54 FINITE ELEMENT METHOD IN ENGINEERING SCIENCE but in addition

$$\varepsilon_z = 0 = -v\sigma_x/E - v\sigma_y/E + \sigma_z/E + \alpha\theta^e$$
.

On eliminating σ_z and solving for the three remaining stresses we obtain the previously quoted expression for the initial strain Eq. (4.13), and by comparison with Eq. (4.16), the matrix [D]

$$[D] = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1 & \nu/(1-\nu) & 0 \\ \nu/(1-\nu) & 1 & 0 \\ 0 & 0 & (1-2\nu)/2(1-\nu) \end{bmatrix}.$$
 (4.20)

Anisotropic materials. For a completely anisotropic material, 21 independent elastic constants are necessary to define completely the threedimensional stress-strain relationship.^{4,5}

If two-dimensional analysis is to be applicable a symmetry of properties must exist, implying at most six independent constants in the [D] matrix. Thus, it is always possible to write

$$\begin{bmatrix} D \end{bmatrix} = \begin{bmatrix} d_{11} & d_{12} & d_{13} \\ . & d_{22} & d_{23} \\ (sym) & d_{33} \end{bmatrix}$$
(4.21)

to describe the most general two-dimensional behaviour. (The necessary symmetry of the [D] matrix follows from the general equivalent of the Maxwell-Betti reciprocal theorem and is a consequence of invariant energy irrespective of the path taken to reach a given strain state.)

Fig. 4.3 A stratified (transversely-isotropic) material

A case of particular interest in practice is that of a 'stratified' or transversely-isotropic material in which a rotational symmetry of properties exists within the plane of the strata. Such a material possesses only five independent elastic constants.

The general stress-strain relations give in this case, following the notation of Lekhnitskii,⁴ and taking now the y axis as perpendicular to the strata (neglecting initial strain), Fig. 4.3.

$$\varepsilon_{x} = \sigma_{x}/E_{1} - v_{2}\sigma_{y}/E_{2} - v_{1}\sigma_{z}/E_{1}$$

$$\varepsilon_{y} = -v_{2}\sigma_{x}/E_{2} + \sigma_{y}/E_{2} - v_{2}\sigma_{z}/E_{2}$$

$$c_{z} = -v_{1}\sigma_{x}/E_{1} - v_{2}\sigma_{y}/E_{2} + \sigma_{z}/E_{1}$$

$$\gamma_{xz} = \{2(1+v_{1})/E_{1}\}\tau_{xz}$$

$$\gamma_{xy} = \frac{1}{G_{2}}\tau_{xy}$$

$$\gamma_{yz} = \frac{1}{G_{2}}\tau_{yz}$$
(4.22)

in which the constants E_1 , v_1 (G_1 is dependent) are associated with the behaviour in plane of the strata and E_2 , G_2 , v_2 with a direction normal to these.

The [D] matrix in two-dimensions becomes now, taking

$$\frac{E_1}{E_2} = n \quad \text{and} \quad \frac{G_2}{E_2} = m$$

$$D] = \frac{E_2}{(1 - nv_2^2)} \begin{bmatrix} n & nv_2 & 0 \\ nv_2 & 1 & 0 \\ 0 & 0 & m(1 - nv_2^2) \end{bmatrix}$$
(4.23)

for plane stress, or

$$D = \frac{E_2}{(1+v_1)(1-v_1-2nv_2^2)} \begin{bmatrix} n(1-nv_2^2) & nv_2(1+v_1) & 0 \\ nv_2(1+v_1) & (1-v_1^2) & 0 \\ 0 & 0 & m(1+v_1)(1-v_1-2nv_2^2) \end{bmatrix}$$
(4.24)

for plane strain.

When, as in Fig. 4.2, the direction of strata is inclined to the x-axis then to obtain the [D] matrices in the universal co-ordinates a transformation

is necessary. Taking [D'] as relating the stresses and strains in the inclined co-ordinate system (x', y') it is easy to show that

$$[D] = [T][D'][T]^{\mathsf{T}}$$
(4.25)

where [T] is the same as given in Eq. (4.15)

If the stress systems $\{\sigma'\}$ and $\{\sigma\}$ correspond to $\{\varepsilon'\}$ and $\{\varepsilon\}$ respectively then by equality of work $\{\sigma'\}^{\mathsf{T}}\{\varepsilon'\} = \{\sigma\}^{\mathsf{T}}\{\varepsilon\}$

or

$$\{\varepsilon'\}^{\mathsf{T}}[D']\{\varepsilon'\} = \{\varepsilon\}^{\mathsf{T}}[D]\{\varepsilon\}$$

from which Eq. (4.25) follows on substitution of Eq. (4.15). (See also Chapter 1.)

4.2.5 The stiffness matrix. The stiffness matrix of the element ijm is defined from the general relationship Eq. (2.10) as

$$[k] = \int [B]^{\mathsf{T}} [D] [B] t \, \mathrm{d}x \, \mathrm{d}y \tag{4.26}$$

where *t* is the thickness of the element and the integration is taken over the area of the triangle. If the thickness of the element is assumed to be constant, an assumption convergent to the truth as size of elements decreases, then, as neither of the matrices contains x or y we have, simply

$$[k] = [B]^{\mathsf{T}}[D][B]t\Delta \tag{4.27}$$

where Δ is the area of the triangle (defined already by Eq. (3.5)). This form is now sufficiently explicit for computation with the actual matrix operations being left to the computer.

The matrix [B] defined by Eq. (4.10) can be written as

$$[B] = [B_i, B_j, B_m] \quad \text{with} \quad [B_i] = \begin{cases} b_i & 0\\ 0 & c_i\\ c_i & b_i \end{cases} / 2\Delta, \text{ etc.}$$
(4.28)

Now the stiffness matrix can be written in a partitioned form as

$$[k] = \begin{bmatrix} k_{ii} & k_{ij} & k_{im} \\ k_{ji} & k_{jj} & k_{jm} \\ k_{mi} & k_{mj} & k_{mm} \end{bmatrix}$$
(4.29)

in which the 2 by 2 submatrices are built up as

$$[k_{rs}] = [B_r]^{\mathsf{T}}[D][B_s]t\Delta. \tag{4.30}$$

This form is often convenient for computation.

4.2.6 Nodal forces due to initial strain. These are given directly by the expression Eq. (2.12) which, on performing the integration, becomes

$$\{F\}_{\epsilon_0}^{\epsilon} = -[B]^{\mathsf{T}}[D][\varepsilon_0]t\Delta, \text{ etc.}$$
(4.31)

PLANE STRESS AND PLANE STRAIN

Partitioning, one can write alternatively

$$\{F_i\}_{\iota 0}^e = -[B_i]^{\mathsf{T}}[D][\varepsilon_0]t\Delta, \text{ etc.}$$

$$(4.32)$$

These 'initial strain' forces are contributed to the nodes of an element in an unequal manner and require precise evaluation. Similar expressions are derived for initial stress forces.

4.2.7 Distributed body forces. In the general case of plane stress or strain each element of unit area in the x-y plane is subject to forces

$$\{p\} = \begin{cases} X \\ Y \end{cases}$$

in the direction of the appropriate axes.

Again, by Eq. (2.11), the contribution of such forces to these at each node is given by

$$\{F\}_p^e = -\int [N]^{\mathsf{T}} \begin{cases} X \\ Y \end{cases} \, \mathrm{d}x \, \mathrm{d}y$$

or by Eq. (4.7)

$$\{F_i\}_p = - \begin{cases} X \\ Y \end{cases} \int N_i \, \mathrm{d}x \, \mathrm{d}y, \, \mathrm{etc.}$$
(4.33)

if the body forces X and Y are constant. As N_i is no longer constant the integration has to be carried out explicitly. Some general integration formulae for a triangle are given in Appendix III.

In this special case the calculation will be simplified if the origin of co-ordinates is taken at the centroid of the element. Now

$$\int x \, \mathrm{d}x \, \mathrm{d}y = \int y \, \mathrm{d}x \, \mathrm{d}y = 0$$

and on using Eq. (3.8)

$$\{F_i\}_p = - \begin{cases} X \\ Y \end{cases} \int a_i \, \mathrm{d}x \, \mathrm{d}y/2\Delta = - \begin{cases} X \\ Y \end{cases} a_i/2$$

 $\{F_i\}_p = -\begin{cases} X \\ Y \end{cases} \Delta/3 = \{F_j\}_p = \{F_m\}_p$

or

by relations noted on p. 50.

Explicitly, for the whole element

$$\{F\}_{p}^{e} = -\begin{cases} X \\ Y \\ X \\ Y \\ Y \\ X \\ Y \end{cases} \Delta/3$$
(4.35)

57

(4.34)

which means simply that the total forces acting in x and y direction due to the body forces are distributed to the nodes in three equal parts. This fact corresponds with physical intuition, and was often assumed implicitly.

4.2.8 Body force potential. In many cases the body forces are defined in terms of a body force potential ϕ as

$$X = -\frac{\partial \phi}{\partial x}, \qquad Y = -\frac{\partial \phi}{\partial y}$$
 (4.36)

and this potential, rather than the values of X and Y, is known throughout the region and is specified at nodal points. If $\{\phi\}^e$ lists the three values of the potential associated with the nodes of the element, i.e.,

$$\{\phi\}^{e} = \begin{cases} \phi_{i} \\ \phi_{j} \\ \phi_{m} \end{cases}$$
(4.37)

٠

and has to correspond with constant values of X and Y, ϕ must vary linearly within the element. The 'shape function' of its variation will obviously be given by a procedure identical to that used in deriving Eqs. (4.4) to (4.6), and yields

$$\phi = [N'_i, N'_i, N'_m] \{\phi\}^e.$$
(4.38)

Thus,

$$X = -\frac{\partial \phi}{\partial x} = -[b_i, b_j, b_m] \{\phi\}^{\epsilon}/2\Delta$$

and

$$Y = -\frac{\partial \phi}{\partial y} = -[c_i, c_j, c_m] \{\phi\}^e / 2\Delta.$$
(4.39)

The vector of nodal forces due to the body force potential will now replace Eq. (4.35) by

$$\{F\}_{p}^{e} = \frac{1}{6} \begin{bmatrix} b_{i} & b_{j} & b_{m} \\ c_{i} & c_{j} & c_{m} \\ b_{i} & b_{j} & b_{m} \\ c_{i} & c_{j} & c_{m} \\ b_{i} & b_{j} & b_{m} \\ c_{i} & c_{i} & c_{m} \end{bmatrix} \{\phi^{e}\}$$
(4.40)

4.2.9 *Evaluation of stresses.* The formulae derived enable the full stiffness matrix of the structure to be assembled, and a solution for displacements to be obtained.

The stress matrix given in general terms in Eq. (2.15) is obtained by the appropriate substitutions for each element.

The stresses are, by the basic assumption, constant within the element. It is usual to assign these to the centroid of the element, and in most of the examples in this chapter this procedure is followed. An alternative consists of obtaining stress values at the nodes by averaging the values in the adjacent elements. Some 'weighting' procedures have been used in this context on an empirical basis but their advantage appears small.

It is usual to arrange for the computer to calculate the principal stresses and their directions of every element.

4.3 Examples—An Assessment of Accuracy

There is no doubt that the solution to plane elasticity problems as formulated in Section 4.2 is, in the limit of subdivision, an exact solution. Indeed at any stage of a finite subdivision it is an approximate solution as, say, a Fourier series solution with a limited number of terms.

As already explained in Chapter 2 the total strain energy obtained during any stage of approximation will be below the true strain energy of the exact solution. In practice it will mean that the displacements, and hence also the stresses, will be underestimated by the approximation in its *general picture*. However, it must be emphasized that this is not necessarily true at every point of the continuum individually; hence the value of such a bound in practice is not great.

What is important for the engineer to know is the order of accuracy achievable in typical problems with a certain fineness of element subdivision. In any particular case the error can be assessed by comparison with known, exact, solutions or by a study of the convergence, using two or more stages of subdivision.

With the development of experience the engineer can assess *a priori* the order of approximation that will be involved in a specific problem tackled with a given element subdivision. Some of this experience will perhaps be conveyed by the examples considered in this book.

In the first place attention will be focused on some simple problems for which exact solutions are available.

Uniform stress field. If the exact solution is in fact that of a uniform stress field then, whatever the element subdivision, the finite element solution will coincide exactly with the exact one. This is an obvious corollary of the formulation, nevertheless it is useful as a first check of written computer programs.

Linearly varying stress field. Here, obviously, the basic assumption of constancy of stress within elements means that solution will be approximate only. In Fig. 4.4 a simple example of a beam subject to constant

bending moment is shown with a fairly coarse subdivision. It is readily seen that the axial (σ_y) stress given by the element 'straddles' the exact values and, in fact, if the constant stress values are associated with centroids of the elements and plotted, the best 'fit' line represents the exact stresses.

The horizontal and shear stress components differ again from the exact values (which are simply zero). Again, however, it will be noted that they oscillate by equal, small amounts around the exact values.

PLANE STRESS AND PLANE STRAIN

At internal nodes, if the average of stresses of surrounding elements is taken it will be found that the exact stresses are very closely represented. The average at external faces is not, however, so good. The overall improvement in representing the stresses by nodal averages, as shown on Fig. 4.4, is often used in practice for improvement of the approximation.

A weighting of averages near the faces of the structure can further be used for refinement. Without being dogmatic on this point, it seems preferable, when accuracy demands this, simply to use a finer mesh subdivision.

Stress concentration. A more realistic test problem is shown in Figs. 4.5 and 4.6. Here the flow of stress around a circular hole in an isotropic and in an anisotropic stratified material is considered when the stress conditions are uniform.⁶ A graded division into elements is used to allow a more detailed study in the region where high stress gradients are expected. The high degree of accuracy achievable can be assessed from Fig. 4.6 where some of the results are compared against exact solutions.^{3,7}

Fig. 4.5 A circular hole in a uniform stress field. (a) isotropic material; (b) stratified (orthotropic) material; $E_x = E_1 = 1$, $E_y = E_2 = 3$, $v_1 = 0.1$, $v_2 = 0$, $G_{xy} = 0.42$

4.4 Some Practical Applications

1

Obviously, the practical applications of the method are limitless, and indeed at this moment of time the use of the finite element method is superseding experimental technique for plane problems because of its high accuracy, low cost, and versatility. The ease of treatment of material anisotropy, thermal stresses, or body force problems add to its advantages.

A few examples of actual applications to complex problems of engineering practice will now be given.

Stress flow around a reinforced opening (Fig. 4.7). In steel pressure vessels or aircraft structures, openings have to be introduced in the stressed skin. The penetrating duct itself provides some reinforcement round the edge and, in addition, the skin itself is increased in thickness to reduce the stresses due to the concentration effects.

Analysis of such problems treated as cases of plane stress presents no difficulties. The elements are so chosen as to follow the thickness variation, and appropriate values of this are assigned.

The narrow band of thick material near the edge can be represented either by special beam-type elements, or more easily in a standard programme by very thin triangular elements of the usual type, to which appropriate thickness is assigned. The latter procedure was used in the problem shown in Fig. 4.7 which gives some of the resulting stresses near the opening itself. The fairly large extent of the region introduced in the analysis and the grading of the mesh should be noted.

An anisotropic valley subject to tectonic stress⁶ (Fig. 4.8). A symmetrical valley subject to a uniform horizontal stress is considered. The material is stratified, hence is 'transversely isotropic', and the direction of strata varies from point to point.

Restrained in y direction from movement.

Fig. 4.7 A reinforced opening in a plate. Uniform stress field at a distance from opening $\sigma_x = 100$, $\sigma_y = 50$. Thickness of plate regions A, B, and C is in the ratio of 1:3:23

The stress plot shows the tensile region that develops. This phenomenon is of considerable interest to geologists and engineers concerned with rock mechanics.

A dam subject to external and internal water pressures^{8,9} (Fig. 4.9). A buttress dam on a somewhat complex rock foundation is here analysed. The heterogeneous foundation region is subject to plane strain conditions while the dam itself is considered as a plate (plane stress) of variable thickness.

With external and gravity loading no special problems of analysis arise, though perhaps it should be mentioned that it was found worth while to 'automatize' the computation of gravity nodal loads.

When pore pressures are considered, the situation, however, requires perhaps some explanation.

It is well known that in a porous material the water pressure is trans-

mitted to the structure as a body force of magnitude

$$X = -\frac{\partial p}{\partial x}, \qquad Y = -\frac{\partial p}{\partial y}$$

and that now the external pressure need not be considered.

. 1

Fig. 4.9 Stress analysis of a buttress dam. Plane stress condition assumed in dam and plane strain in foundation. (a) The buttress section analysed. (b) Extent of foundation considered and division into finite elements

PLANE STRESS AND PLANE STRAIN

The pore pressure p is, in fact, now a body force potential, as defined in Eq. (4.36). Figure 4.9 shows the element subdivision of the region and the outline of the dam. Figure 4.10(*a*) and (*b*) show the stresses resulting from gravity (applied to the dam only) and due to water pressure assumed to be acting as an external load or, alternatively as an internal pore pressure. Both solutions indicate large tensile regions, but the increase of stresses due to the second assumption is important.

Cracking. The tensile stresses in the previous example will doubtless cause the rock to crack. If a stable situation can develop when such a crack spreads then the dam can be considered safe.

Cracks can be introduced very simply into the analysis by assigning zero elasticity values to chosen elements. An analysis with a wide cracked wedge is shown in Fig. 4.11, where it can be seen that with the extent of the crack assumed no tension within the dam body develops.

A more elaborate procedure for following crack propagation and resulting stress redistribution can be developed and will be discussed later (see Chapter 18).

Fig. 4.11 Stresses in a buttress dam. An introduction of a 'crack' modifies stress distribution (same loading as Fig. 4.10(b))

Thermal stresses. As an example of thermal stress computation the same dam is shown under simple temperature distribution assumptions. Results of this analysis are given in Fig. 4.12.

Fig. 4.12 Stress analysis of a buttress dam. Thermal stresses due to cooling of shaded area by 15°F ($E = 3 \times 10^6$ lb/in², $\alpha = 6 \times 10^{-6}$ /deg F)

Grovity dams. A buttress dam is a natural example for the application of finite element methods. Other types, such as gravity dams with or without piers and so on, can also be simply treated. Figure 4.13 shows an analysis of a large dam with piers and crest gates.

In this case an approximation of assuming a two-dimensional treatment in the vicinity of the abrupt change of section, i.e., where the piers join the main body of the dam, is clearly involved, but this leads to localized errors only.

It is important to note here how, in a single solution, the grading of element size is used to study concentration of stress at the cable anchorages, the general stress flow in the dam, and the foundation behaviour. The linear ratio of size of largest to smallest elements is of the order of 30 to 1 (the largest elements occurring in the foundation are not shown in the figure).

Underground power station. This last example illustrated in Figs. 4.14 and 4.15 shows an interesting large-scale application. Here principal stresses are plotted automatically. In this analysis very many different components of $\{\sigma_c\}$, the initial stress, were used due to uncertainty of knowledge about geological conditions. The rapid solution and plot of many results enabled the limits within which stresses vary to be found and an engineering decision arrived at.

Fig. 4.13 A large barrage with piers and prestressing cables

4.5 Special Treatment of Plane Strain with an Incompressible Material

It will have been noted that the relationship Eq. (4.20) defining the elasticity [D] matrix for an isotropic material breaks down when the Poisson's ratio reaches a value of 0.5 as the factor in the parentheses becomes infinite. A simple way of side stepping the difficulty presented is to use values of Poisson's ratio approximate to 0.5 but not equal to it. Experience shows, however, that if this is done the approximation of solution deteriorates. An alternative procedure has been suggested by Herrman.¹⁰ This involves the use of a new variational formulation, and readers are referred to his work for details.

Fig. 4.14 An underground power station. Mesh used in analysis.

Fig. 4.15 An underground power station. Plot of principal stresses.

70

PLANE STRESS AND PLANE STRAIN

References

- 1. M. J. TURNER, R. W. CLOUGH, H. C. MARTIN, and L. J. TOPP, 'Stiffness and deflection analysis of complex structures', J. Aero. Sci., 23, 805-23, 1956.
- 2. R. W. CLOUGH, 'The finite element in plane stress analysis', Proc. 2nd A.S.C.E. Conf. on Electronic Computation, Pittsburgh, Pa., Sept. 1960.
- 3. S. TIMOSHENKO and J. N. GOODIER, Theory of elasticity, 2nd ed., McGraw-Hill, 1951.
- 4. S. G. LEKHNITSKII, Theory of Elasticity of an Anisotropic Elastic Body, Translation from Russian by P. Fern, Holden Day, San Francisco, 1963.
- 5. R. F. S. HEARMON, An Introduction to Applied Anisotropic Elasticity, Oxford Univ. Press, 1961.
- 6. O. C. ZIENKIEWICZ, Y. K. CHEUNG, and K. G. STAGG, 'Stresses in Anisotropic Media with particular reference to problems of rock mechanics', J. Strain Analysis, 1, 172-82, 1966.
- 7. G. N. SAVIN, Stress Concentration Around Holes, Pergamon Press, 1961. (Translation from Russian.)
- 8. O. C. ZIENKIEWICZ and Y. K. CHEUNG, 'Buttress Dams on Complex rock foundations', Water Power, 16, 193, 1964.
- 9. O. C. ZIENKIEWICZ and Y. K. CHEUNG, 'Stresses in Buttress Dams', Water Power, 17, 69, 1965.
- 10. L. R. HERRMANN, 'Elasticity equations for incompressible, or nearly incompressible materials by a variational theorem', J.A.I.A.A., 3, 1896, 1965.

Centro de educación continua división de estudios superiores facultad de ingeniería, unam

IV CURSO INTERNACIONAL DE INGENIERIA SISMICA

. . .

DINAMICA ESTRUCTURAL

TRABAJO VIRTUAL

DR. PORFIRIO BALLESTEROS B.

JULIO, 1978.

Palacio de Minería

Calle de Tacuba 5,

primer piso.

México 1, D. F.

GENERALIZATION OF THE FINITE ELEMENT CONCEPTS 47

46 FINITE ELEMENT METHOD IN ENGINEERING SCIENCE

In the above the surface integral is only taken on external boundaries where $\partial u/\partial n$ or $\partial v/\partial n$ is specified. If u and v are given there the equations are not formed in boundary points.

Although a standard form of a finite element relationship has been established the element matrix is not symmetric. Such non-symmetric matrices often arise in flow problems¹⁴ but the reader will observe that here a simple change of sign of Eq. (3.36) re-establishes symmetry after integration by parts. Galerkin process is thus not unique.

An alternative approach to the above problem could be pursued by introducing a stream function concept. If we define

$$u = -\frac{\partial \theta}{\partial x}, \quad v = \frac{\partial \theta}{\partial x}$$
(3.46)

then Eq. (3.36) is identically satisfied and we are left with two governing equations:

$$\begin{aligned} X - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \left(-\frac{\partial \theta}{\partial y} \right) &= 0, \\ Y - \frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \left(\frac{\partial \theta}{\partial x} \right) &= 0. \end{aligned}$$
(3.47)

Differentiating the first with respect to y and second with respect to x and subtracting, p is eliminated and only one equation is left.

$$u\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\left(\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2}\right) + \frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y} = 0.$$
(3.48)

A similar process of approximate formulation as before can be adopted and the reader can perform this as an exercise. He will find that now symmetric element matrices arise and indeed the formulation will be very similar to the, discussed in the chapter on plate bending. The shape function new, however, will have to satisfy continuity of first derivatives between elements as second order differentials occur in the various integrals. Such problems have been dealt with in an axi-symmetric context by Atkinson *et al.*¹⁴ from the basis of a variational form given in Chapter 15, p. 317.

These examples have been introduced to illustrate the general applicability of the method. The particular problem discussed here, however, is of some considerable engineering interest and much work in the solution of the Navier-Stokes equation is currently in progress. In the illustration, to linearize the equations, the dynamic terms

$$u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}, u\frac{\partial v}{\partial x}+v\frac{\partial v}{\partial y}$$

Loss been omitted from the two Eqs. (3.35) respectively. Their retention is obviously possible but then it will be sound that the resulting equations of the general form (3.53) are non-linear, [K] being dependent itself on the velocities. The derivation is too complex to be discussed in detail here but the reader could consider extension of the non-linear techniques of Chapter 18 to be applicable here.

3.7 Concluding Remarks

In addition to generalizing the finite element concept to that of approximately solving a variational problem, the alternative of proceeding directly by approximating to the differential expression was presented. Both procedures open up many, as yet unexplored, fields of application. Some general ideas in similar context are given by Oden.¹⁵ Other uses of finite element process, such as minimization of the root mean square value of errors, can easily be envisaged.

References

1.1

- 1. S. H. CRANDALL, Engineering Analysis, McGraw-Hill, 1956.
- 2. K. WASHIZU, Variational methods in elasticity and plasticity, Pergamon Press, 1968.
- 3. R. WEINSTOCK, Calculus of variations, McGraw-Hill, 1952.
- 4. P. N. BERG, 'Calculus of variations', in Handbook of Engineering Mechanics Chapter 16, ed. W. Flügge, McGraw-Hill, 1962.
- 5. R. V. SOUTHWELL, Relaxation methods in theoretical physics, Oxford Univ. Press, 1946.
- 6. G. E. FORSYTHE and W. R. WASOW, Finite difference methods for partial differential equations, J. Wiley & Sons, 1960.
- 7. T. H. H. PIAN and P. TONG, 'Basis of finite element methods for solid continua', Int. J. Num. Meth. in Eng., 1, 3-28, 1969.
- 8. R. J. MELOSH, 'Basis for derivation of matrices for the direct stiffness method', J.A.I.A.A., 1, 1631-7, 1963.
- 9. T. H. H. PIAN, 'Derivation of Element Stiffness Matrices', J.A.I.A.A., 2, 576-7, 1964.
- 10. I. STAKGOLD, Boundary value problems in Mathematics and Physics, Macmillan, N.Y., 1966.
- 11. B. A. SZABO and G. C. LEE, 'Derivation of stiffness matrices for problems in plane elasticity by Galerkin method', Int. J. Num. Meth. Eng., 1, 301-10, 1969.
- 12. P. A. LAGERSTROM and I. D. CHANG, 'Flow at low Reynolds numbers', Chapter 81, Handbook of *I.-9. Mech.*, ed. W. Flügge, McGraw-Hill, 1962.
- 13. L. J. DOCTORS, 'An Application of the finite element technique for boundary' value problems of potential flow', Int. J. Num. Meth. Eng., 2, 243-52, 1970?
- B. ATKINSON, M. P. BROCKLEBANK, C. C. M. CARD, and J. M. SMITH, 'LOW Reyublds number developing flows', A.I. Ch. Eng. J., 5, 548-53 1969.
- J. T. ODEA, 'A general theory of finite elements': I "'opological considerations' pp. 205-21; II 'Applications' pp. 247-60; Int. J. Num. Meth. Eng., 1, 1965.
The displacements of a node have two components

$$\{\delta_i\} = \begin{cases} u_i \\ v_i \end{cases} \tag{4.1}$$

4. Plane Stress and Plane Strain

4.1 Introduction

Two-dimensional elastic problems were the first successful examples of the application of the finite element method.^{1,2} Indeed, we have already used this situation to illustrate the basis of the finite element formulation in Chapter 2 where the general relationships were derived. These basic relationships are given in Eqs. (2.1), (2.2), (2.3), (2.9), (2.10), and (2.16) and for quick reference are summarized in Appendix II.

In this chapter the particular relationships for the problem in hand will be derived in more detail, and illustrated by suitable practical examples, a procedure that will be followed throughout the remainder of the book.

Only the simplest, triangular, element will be discussed in detail but the basic approach is general. More elaborate elements to be discussed in later chapters would be introduced to the same problem in an identical manner.

The reader not familiar with the applicable basic definitions of elasticity is referred to elementary texts on the subject, in particular to the text by Timoshenko and Goodulr,³ whose notation will be widely used here.

In both problems of plane stress and plane strain the displacement field is uniquely given by the u and v displacements in directions of the cartesian, orthogonal x and y axes.

Again, in both, the only strains and stresses that have to be considered are the three components in the x-y plane. In the case of *plane stress*, by definition, all other components of stress are zero and therefore give no contribution to internal work. In *plane strain* the stress in a direction perpendicular to the x-y plane is not zero. However, by definition, the strain in that direction is zero, and therefore no contribution to internal work is made by this stress, which can in fact be explicitly evaluated from the three main stress components, if desired, at the end of all computation.

4.2 Element Characteristics

4.2.1 Displacement functions. Figure 4.1 shows the typical triangular element considered, with nodes i, j, m numbered in an anti-clockwise order.

48

and the six components of element displacements are listed as a vector

Fig. 4.1 An element of a continuum in plane stress or plane strain

The displacements within an element have to be uniquely defined by these six values. The simplest representation is clearly given by two linear polynomials

$$u = \alpha_1 + \alpha_2 x + \alpha_3 y,$$

$$v = \alpha_4 + \alpha_5 x + \alpha_6 y,$$
(4.3)

The six constants α can be evaluated easily by solving the two sets of three simultaneous equations which will arise if the nodal co-ordinates are inserted and the displacements equated to the appropriate nodal displacements. Writing, for example,

$$u_i = \alpha_1 + \alpha_2 x_i + \alpha_3 y_i$$

$$u_j = \alpha_1 + \alpha_2 x_j + \alpha_3 y_j$$

$$u_m = \alpha_1 + \alpha_2 x_m + \alpha_3 y_m$$
(4.4)

we can easily solve for α_1 , α_2 , and α_3 in terms of the nodal displacements u_i , u_j , u_m and obtain finally

$$u = \frac{1}{2\Delta} \left\{ (a_i + b_i x + c_i y) u_i + (a_j + b_j x + c_j y) u_j + (a_m + b_m x + c_m y) u_m \right\}$$
(4.5a)

in which

$$a_{i} = x_{j}y_{m} - x_{m}y_{j}$$

$$b_{i} = y_{j} - y_{m} = y_{jm}$$

$$c_{i} = x_{m} - x_{j} = x_{mj}$$

(4.5b)

with the other coefficients obtained by a cyclic permutation of subscripts in the order, i, j, m, and where

$$2\Delta = \det \begin{vmatrix} 1 & x_i & y_i \\ 1 & x_j & y_j \\ 1 & x_m & y_m \end{vmatrix} = 2 \text{ (area of triangle ijm).} (4.5c)$$

As the equations for the vertical displacement v are similar we also have

$$v = \frac{1}{2\Delta} \{ (a_i + b_i x + c_i v) v_i + (a_i + b_r x + c_j v) v_j + (a_m + b_m x + c_m v) v_m \}.$$
 (4.6)

Though not strictly necessary at this stage we can represent the above relations Eqs. (4.5a) and (4.6) in the standard form of Eq. (2.1)

$$\{\mathbf{f}\} = \begin{cases} u \\ v \end{cases} = [N] \{\delta\}^c = [IN'_i, IN'_j, IN'_m] \{\delta\}^c$$
(4.7)

with I a two by two identity matrix, and

$$N'_{i} = (a_{i} + b_{i}x + c_{i}y)/2\Delta$$
 etc. (4.8)

Note: if co-ordinates are taken from the centroid of the element then $x_i + x_m + x_j = y_i + y_j + y_m = 0$ and $a_i = 2\Delta/3 = a_j = a_m$.

The chosen displacement function automatically guarantees continuity of displacements with adjacent elements because the displacements vary linearly along any side of the triangle and, with identical displacement imposed at the nodes, the same displacement will clearly exist all along an interface.

4.2.2 Strain (total). The total strain at any point within the element can be defined by its three components which contribute to internal work.

PLANE STRESS AND PLANE STRAIN

$$\{\varepsilon\} = \begin{cases} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{cases} = \begin{cases} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} \\ \frac{\partial u}{\partial x} \end{cases}.$$
 (4.9)

Using Eqs. (4.7) or (4.5a) and (4.6) we have

$$\{r\} = \begin{bmatrix} \frac{\partial N'_{i}}{\partial x} & 0 & \frac{\partial N'_{j}}{\partial x} & 0 & \frac{\partial N'_{i}}{\partial x} & 0 \\ 0 & \frac{\partial N'_{i}}{\partial y} & 0 & \frac{\partial N'_{j}}{\partial y} & 0 & \frac{\partial N'_{m}}{\partial y} \\ \frac{\partial N'_{i}}{\partial y} & \frac{\partial N'_{i}}{\partial x} & \frac{\partial N'_{j}}{\partial y} & \frac{\partial N'_{j}}{\partial x} & \frac{\partial N'_{m}}{\partial y} & \frac{\partial N'_{m}}{\partial x} \end{bmatrix} \begin{bmatrix} u_{i} \\ u_{j} \\ u_{j} \\ u_{m} \end{bmatrix}$$
$$= \frac{1}{2\Delta} \begin{bmatrix} b_{i} & 0 & b_{j} & 0 & b_{m} & 0 \\ 0 & c_{i} & 0 & c_{j} & 0 & c_{m} \\ c_{i} & b_{i} & c_{j} & b_{j} & c_{m} & b_{m} \end{bmatrix} \{\delta\}^{c}$$
(4.10)

which defines the matrix [B] of Eq. (2.2) explicitly.

It will be noted that in this case the [B] matrix is independent of the position within the element, and hence the strains are constant throughout it. Obviously, the criterion of constant strain mentioned in Chapter 2 is satisfied by the shape functions.

4.2.3 Initial strain (thermal strain). 'Initial' strains, that is strains which are independent of stress, may be due to many causes. Shrinkage, crystal growth or, most frequently, temperature changes will, in general, result in an initial strain vector.

$$\{\varepsilon_0\} = \begin{cases} \varepsilon_{x0} \\ \varepsilon_{y0} \\ \gamma_{xy0} \end{cases}$$
 (4.11)

Although this initial strain may, in general, depend on the position within the element, it will usually be defined by everage constant, values. This is consistent with the constant strain conditions imposed by the prescribed displacement function.

Thus, for the case of *plane stress* in an isotropic material in an element subject to a temperature rise θ^e with a coefficient of thermal expansion α ,

51

we will have, for instance,

$$\{\varepsilon_0\} = \begin{cases} \alpha \theta^e \\ \alpha \theta^e \\ 0 \end{cases}$$
(4.12)

as no shear strains are caused by a thermal dilatation.

In *plane strain* the situation is more complex. The presumption of plane strain implies that stresses perpendicular to the x-y plane will develop due to thermal expansion even without the three main stress components, and hence the initial strain will be affected by the elastic constants.

It will be shown that in such a case

$$\epsilon_0\} = (1+\nu) \begin{cases} \alpha \theta^e \\ \alpha \theta^e \\ 0 \end{cases}$$
(4.13)

where v is the Poisson's ratio.

Anisotropic materials present special problems, since the coefficients of thermal expansion may vary with direction. Let x' and y' in Fig. 4.2 show the principal directions of the material. The initial strain due to thermal expansion becomes, with reference to these co-ordinates for plane stress

$$\{\varepsilon_0\}' = \begin{cases} r_{x'0} \\ \varepsilon_{y'0} \\ \gamma_{x'y'0} \end{cases} = \begin{cases} \alpha_1 \theta^c \\ \alpha_2 \theta^c \\ 0 \end{cases}$$
(4.14)

PLANE STRESS AND PLANE STRAIN

where α_1 and α_2 are the expansion coefficients referred to the x' and y' axes respectively.

To obtain the strain components in the x, y system it is necessary to use an appropriate strain transformation matrix [T] giving

$$\{\boldsymbol{\varepsilon}_{0'}\} = [T]^{\mathsf{T}}\{\boldsymbol{\varepsilon}_{0}\}. \tag{4.15}$$

With the β as defined in Fig. 4.2 it is easily verified that

$$[T] = \begin{bmatrix} \cos^2 \beta & \sin^2 \beta & -2\sin\beta\cos\beta \\ \sin^2 \beta & \cos^2 \beta & 2\sin\beta\cos\beta \\ \sin\beta\cos\beta & -\sin\beta\cos\beta & \cos^2 \beta & -\sin^2 \beta \end{bmatrix}$$

Thus, $\{\varepsilon_0\}$ can be simply evaluated. It will be noted that no longer is the shear component of strain equal to zero in the x-y co-ordinates.

4.2.4 Elasticity matrix. The matrix [D] of the relation Eq. (2.3)

$$\{\sigma\} = \begin{cases} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{cases} = [D] \left(\begin{cases} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{cases} - \{\varepsilon_0\} \right)$$
(4.16)

can be explicitly stated for any material (excluding here $\{\sigma_0\}$ which is simply additive).

Plane stress—isotropic material. For plane stress in an isotropic material we have, by definition,

$$\varepsilon_{\mathbf{x}} = \sigma_{\mathbf{x}}/E - v\sigma_{\mathbf{y}}/E + \varepsilon_{\mathbf{x}0}$$

$$\varepsilon_{\mathbf{y}} = -v\sigma_{\mathbf{x}}/E + \sigma_{\mathbf{y}}/E + \varepsilon_{\mathbf{y}0}$$

$$\gamma_{\mathbf{x}\mathbf{y}} = 2(1 + v)\tau_{\mathbf{x}\mathbf{y}}/E + \varepsilon_{\mathbf{x}y0}.$$
(4.17)

Solving the above for the stresses, we obtain matrix [D] as

$$[D] = \frac{E}{1-v^2} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & (1-v)/2 \end{bmatrix}$$
(4.18)

in which E is the elastic modulus and v is the Poisson's ratio.

Plane strain—isotropic material. In this case a normal stress σ_z exists in addition to the three other stress components. For the special case of isotropic thermal expansion we have

$$\varepsilon_{x} = \sigma_{x}/E - v\sigma_{y}/E - v\sigma_{z}/E + \alpha \theta^{\prime}$$

$$\varepsilon_{y} = -v\sigma_{x}/E + \sigma_{y}/E - v\sigma_{z}/E + \alpha \theta^{\prime}$$

$$\gamma_{xy} = 2(1+v)\tau_{xy}/E.$$
(4.19)

but in addition

$$\varepsilon_z = 0 = -v\sigma_x/E - v\sigma_y/E + \sigma_z/E + \alpha \theta^c.$$

On eliminating σ_z and solving for the three remaining stresses we obtain the previously quoted expression for the initial strain Eq. (4.13), and by comparison with Eq. (4.16), the matrix [D]

$$[D] = \frac{E(1-v)}{(1+v)(1-2v)} \begin{bmatrix} 1 & v/(1-v) & 0 \\ v/(1-v) & 1 & 0 \\ 0 & 0 & (1-2v)/2(1-v) \end{bmatrix}.$$
 (4.20)

Anisotropic materials. For a completely anisotropic material, 21 independent elastic constants are necessary to define completely the threedimensional stress-strain relationship.^{4,5}

If two-dimensional analysis is to be applicable a symmetry of properties must exist, implying at most six independent constants in the [D] matrix. Thus, it is always possible to write

$$\begin{bmatrix} D \end{bmatrix} = \begin{bmatrix} d_{11} & d_{12} & d_{13} \\ & d_{22} & d_{23} \\ (\text{sym}) & & d_{33} \end{bmatrix}$$
(4.21)

to describe the most general two-dimensional behaviour. (The necessary symmetry of the [D] matrix follows from the general equivalent of the Maxwell-Betti reciprocal theorem and is a consequence of invariant energy irrespective of the path taken to reach a given strain state.)

2

PLANE STRESS AND PLANE STRAIN

A case of particular interest in practice is that of a 'stratified' or transversely-isotropic material in which a rotational symmetry of properties exists within the plane of the strata. Such a material possesses only five independent elastic constants.

The general stress-strain relations give in this case, following the notation of Lekhnitskii,⁴ and taking now the y axis as perpendicular to the strata (neglecting initial strain), Fig. 4.3.

$$\varepsilon_{x} = \sigma_{x}/E_{1} - v_{2}\sigma_{y}/E_{2} - v_{1}\sigma_{z}/E_{1}$$

$$\varepsilon_{y} = -v_{2}\sigma_{x}/E_{2} + \sigma_{y}/E_{2} - v_{2}\sigma_{z}/E_{2}$$

$$c_{z} = -v_{1}\sigma_{x}/E_{1} - v_{2}\sigma_{y}/E_{2} + \sigma_{z}/E_{1}$$

$$\gamma_{xz} = \{2(1 + v_{1})/E_{1}\}\tau_{xz}$$

$$\gamma_{xy} = \frac{1}{G_{2}}\tau_{xy}$$

$$\gamma_{yz} = \frac{1}{G_{2}}\tau_{yz}$$
(4.22)

in which the constants E_1 , v_1 (G_1 is dependent) are associated with the behaviour in plane of the strata and E_2 , G_2 , v_2 with a direction normal to these.

The [D] matrix in two-dimensions becomes now, taking

$$\frac{E_1}{E_2} = n \quad \text{and} \quad \frac{G_2}{E_2} = m$$

$$[D] = \frac{E_2}{(1 - nv_2^2)} \begin{bmatrix} \cdot & nv_2 & 0 \\ nv_2 & 1 & 0 \\ 0 & 0 & m(! - nv_2^2) \end{bmatrix}$$
(4.23)

for plane stress, or

$$D = \frac{E_2}{(1+v_1)(1-v_1-2nv_2^2)} \begin{bmatrix} n(1-nv_2^2) & nv_2(1+v_1) & 0 \\ nv_2(1+v_1) & (1-v_1^2) & 0 \\ 0 & 0 & m(1+v_1)(1-v_1-2nv_2^2) \end{bmatrix}$$
(4.24)

for plane strain.

When, as in Fig. 4.2, the direction of strata is inclined to the x-axis then to obtain the [D] matrices in the universal co-ordinates a transformation

is necessary. Taking [D'] as relating the stresses and strains in the inclined co-ordinate system (x', y') it is easy to show that

$$[D] = [T][D'][T]^{\mathsf{T}}$$
(4.25)

where [T] is the same as given in Eq. (4.15)

If the stress systems $\{\sigma'\}$ and $\{\sigma\}$ correspond to $\{\epsilon'\}$ and $\{\epsilon\}$ respectively then by equality of work $\{\sigma'\}^{T}\{\epsilon'\} = \{\sigma\}^{T}\{\epsilon\}$

or

$$\{\sigma\}^{\mathsf{T}}\{\varepsilon\} = \{\sigma\}^{\mathsf{T}}\{\varepsilon\}$$

$$\{\varepsilon'\}^{\mathsf{T}}[D']\{\varepsilon'\} = \{\varepsilon\}^{\mathsf{T}}[D]\{\varepsilon\}$$

from which Eq. (4.25) follows on substitution of Eq. (4.15). (See also Chapter 1.)

4.2.5 The stiffness matrix. The stiffness matrix of the element ijm is defined from the general relationship Eq. (2.10) as

$$[k] = \int [B]^{\mathsf{T}}[D][B]t \, \mathrm{d}x \, \mathrm{d}y \qquad (4.26)$$

where t is the thickness of the element and the integration is taken over the area of the triangle. If the thickness of the element is assumed to be constant, an assumption convergent to the truth as size of elements decreases, then, as neither of the matrices contains x or y we have, simply

$$[k] = [B]^{\mathsf{T}}[D][B]t\Delta \qquad (4.27)$$

where Δ is the area of the triangle (defined already by Eq. (3.5)). This form is now sufficiently explicit for computation with the actual matrix operations being left to the computer.

 \bigcirc The matrix [B] defined by Eq. (4.10) can be written as

$$[B] = [B_i, B_j, B_m] \quad \text{with} \quad [B_i] = \begin{cases} b_i & 0\\ 0 & c_i\\ c_i & b_i \end{cases} / 2\Delta, c^*$$
(4.28)

Now the stiffness matrix can be written in a partitioned form as

$$[k] = \begin{vmatrix} k_{il} & k_{ij} & k_{im} \\ k_{ji} & k_{jj} & k_{jm} \\ k_{mi} & k_{mj} & k_{mm} \end{vmatrix}$$
(4.29)

in which the 2 by 2 submatrices are built up as

$$[k_{rs}] = [B_r]^{\mathsf{T}}[D][B_s]t\Delta.$$

$$(4.30)$$

This form is often convenient for computation.

4.2.6 Nodal forces due to initial strain. These are given directly by the expression Eq. (2.12) which, on performing the integration, becomes

$$\{F\}_{\varepsilon_0}^{\varepsilon} = -[B]^{\mathsf{T}}[\mathcal{D}][\varepsilon_0];\Delta, \text{ ctc.}$$
(4.31)

Partitioning, one can write alternatively

$${\{i_i\}}_{c0}^e = -[B_{ij}^T[D][c_0]t\Delta, \text{ctc.}$$
 (4.32)

These 'initial strain' forces are contributed to the nodes of an element in an unequal manner and require precise evaluation. Similar expressions are derived for initial stress forces.

4.2.7 Distributed body forces. In the general case of plane stress or strain each element of unit area in the x-y plane is subject to forces

$$\{p\} = \begin{cases} X \\ \vdots' \end{cases}$$

in the direction of the appropriate axes.

Again, by Eq. (2.11), the contribution of such forces to these at each node is given by

$$\{F\}_p^e = -\int [N]^{\mathsf{T}} \begin{cases} \chi \\ \gamma \end{cases} \, \mathrm{d}x \, \mathrm{d}y,$$

or by Eq. (4.7)

$$\{F_i\}_p = -\begin{cases} X \\ Y \end{cases} \int N_i \, \mathrm{d}x \, \mathrm{d}y, \, \mathrm{etc.}$$

$$(4.33)$$

if the body forces X and Y are constant. As N_i is no longer constant the integration has to be carried out explicitly. Some general integration formulae for a triangle are given in Appendix III.

In this special case the calculation will be simplified if the origin of co-ordinates is taken at the centroid of the element. Now

$$\int x \, \mathrm{d}x \, \mathrm{d}y = \int y \, \mathrm{d}x \, \mathrm{d}y = 0$$

and on using Eq. (3.8)

$$\{F_i\}_p = -\begin{cases} X \\ Y \end{cases} \int a_i \, \mathrm{d}x \, \mathrm{d}y/2\Delta = -\begin{cases} X \\ Y \end{cases} a_i'^2$$

 $\{F_i\}_p = -\begin{cases} X \\ Y \end{cases} \Delta/3 = \{F_j\}_p = \{F_m\}_p$

or

(4.34)

57

by relations noted on p. 50.

Explicitly, for the whole element

$$\{F\}_{p}^{e} = - \begin{cases} X \\ Y \\ X \\ Y \\ Y \\ X \\ X \\ Y \end{cases} \Delta/3$$
(4.35)

which means simply that the total forces acting in x and y direction due to the body forces are distributed to the node π in three equal parts. This fact corresponds with physical intuition, and was often assumed implicitly.

4.2.8 Body force potential. In many cases the body forces are defined in terms of a body force potential ϕ as

J

$$X = -\frac{\partial \phi}{\partial x}, \qquad Y = -\frac{\partial \phi}{\partial y} \qquad (4.36)$$

and this potential, rather than the values of X and Y, is known throughout the region and is specified at nodal points. If $\{\phi\}^e$ lists the three values of the potential associated with the nodes of the element, i.e.,

$$\{\phi\}^{c} = \begin{cases} \phi_{i} \\ \phi_{j} \\ \phi_{m} \end{cases}$$
(4.37)

and has to correspond with constant values of X and Y, ϕ must vary linearly within the element. The 'shape function' of its variation will obviously be given by a procedure identical to that used in deriving Eqs. (4.4) to (4.6), and yields

$$\phi = [N'_i, N'_j, N'_m] \{\phi\}^c.$$
(4.38)

Thus,

$$X = -\frac{\partial \phi}{\partial x} = -[b_i, b_j, b_m] \{\phi^{*e}/2\Delta$$

and

$$Y = -\frac{\hat{c} \cdot \hat{c}}{\partial v} = -[c_i, c_j, c_m] \{\phi\}^e / 2\Delta.$$
(4.39)

The vector of nodal forces due to the body force potential will now replace Eq. (4.35) by

$$\{F\}_{p}^{e} = \frac{1}{6} \begin{bmatrix} b_{i} & b_{j} & b_{m} \\ c_{i} & c_{j} & c_{m} \\ b_{i} & b_{j} & b_{m} \\ c_{i} & c_{j} & c_{m} \\ b_{i} & b_{j} & b_{m} \\ c_{i} & c_{j} & c_{m} \end{bmatrix} \{\phi_{i}^{e}\}$$
(4.40)

4.2.9 *Evaluation of stresses.* The formulae derived enable the full stiffness matrix of the structure to be assembled, and a solution for displacements to be obtained.

The stress matrix given in general terms in Eq. (1.5) is obtained by the appropriate substitutions for each element.

The stresses are, by the basic assumption, constant vithin the element. It is usual to assign these to the centroid of the element, and in most of the examples in this chapter this procedure is followed. An alternative consists of obtaining stress values at the nodes by averaging the values in the adjacent elements. Some 'weighting' procedures have been used in this context on an empirical basis but their advantage appears small.

It is usual to arrange for the computer to calculate the principal stresses and their directions of every element.

4.3 Examples—An Assessment of Accuracy

There is no doubt that the solution to plane elasticity problems as formulated in Section 4.2 is, in the limit of subdivision, an exact solution. Indeed at any stage of a finite subdivision it is an approximate solution as, say, a Fourier series solution with a limited number of terms.

As already explained in Chapter 2 the total strain energy obtained during any stage of approximation will be below the true strain energy of the exact solution. In practice it will mean that the displacements, and hence also the stresses, will be underestimated by the approximation in its general picture. However, it must be emphasized that this is not necessarily true at every point of the continuum individually; hence the value of such a bound in practice is not great.

What is important for the engineer to know is the order of accuracy achievable in typical problems with a certain fineness of element subdivision. In any particular case the error can be assessed by comparison with known, exact, solutions or by a study of the convergence, using two or more stages of subdivision.

With the development of experience the engineer can assess *a priori* the order of approximation that will be involved in a specific problem tackled with a given element subdivision. Some of this experience will perhaps be conveyed by the examples considered in this bock.

In the first place attention will be focused on some simple problems for which exact solutions are available.

Uniform stress field. If the exact solution is in fact that of a uniform stress field then, whatever the element subdivision, the finite element solution will, coincide exactly, with the exact one. This is an obvious corollary of the formulation, nevertheless it is useful as a first check of written computer programs.

Linearly carying stress field. Here, obviously, the basic assumption of constancy of stress within elements means that solution will be approximate only. In Fig. 4.4 a simple example of ε beam subject to constant

bending moment is shown with a fairly coarse subdivision. It is readily seen that the axial (σ_y) stress given by the element 'stradeles' the exact values and, in fact, if the constant stress values are associated with centroids of the elements and plotted, the best 'fit' line represents the exact stresses.

The horizontal and shear stress components differ again from the exact values (which are simply zero). Again, however, it will be noted that they escillate by equal, small amounts around the exact values.

PLANE STRESS AND PLANE STRAIN

At internal nodes, if the average of stresses of surrounding elements is taken it will be found that the exact stresses are very closely represented. The average at external faces is not, however, so good. The overall improvement in representing the stresses by nodul averages, as shown on Fig. 4.4, is often used in practice for improvement of the approximation.

A weighting of averages near the faces of the structure can further be used for refinement. Without being dogmatic on this point, it seems preferable, when accuracy demands this, simply to use a finer mesh subdivision.

Stress concentration. A more realistic test problem is shown in Figs. 4.5 and 4.6. Here the flow of stress crowed a circulationale in an isotropic and in an anisotropic stratified material is considered when the stress conditions are uniform.⁶ A graded division into elements is used to allow a more detailed study in the region where high stress gradients are expected. The high degree of accuracy achievable can be assessed from Fig. 4.6 where some of the results are compared against exact solutions.^{3,7}

Fig. 4.5 A circular hole in a uniform stress field. (a) isotropic material; (b) stratified (orthotropic) material; $E_x = E_1 = 1$, $E_y = E_2 = 3$, $v_1 = 0.1$, $v_2 = 0$, $G_{xy} = 0.42$

4.4 Some Practical Applications

Obviously, the practical applications of the method are limitless, and indeed at this moment of time the use of the finite element method is superseding experimental technique for plane problems because of its high accuracy, low cost, and versatility. The ease of treatment of material anisotropy, thermal stresses, or body force problems add to us advantages.

61

A few examples of actual applications to complex problems of engineering practice will now be given.

Stress flow around a reinforced opening (Fig. 4.7). In steel pressure vessels or aircraft structures, openings have to be introduced in the stressed skin. The penetrating duct itself provides some reinforcement round the edge and, in addition, the skin itself is increased in thickness to reduce the stresses due to the concentration effects.

Analysis of such problems treated as cases of plane stress presents no difficulties. The elements are so chosen as to follow the thickness variation, and appropriate values of this are assigned.

The narrow band of thick material near the edge can be represented either by special beam-type elements, or more easily in a star dard programme by very this triangular elements of the asual type, to which appropriate thickness is assigned. The latter procedure was used in the problem shown in Fig. 4.7 which gives some of the resulting stresses near the opening itself. The fairly large extent of the region introduced in the analysis and the grading of the mesh should be noted.

An anisotropic valley subject to tectonic stress⁶ (Fig. 4.8). A symmetrical valley subject to a uniform horizontal stress is considered. The material is stratified, hence is 'transversely isotropic', and the direction of strata varies from point to point.

PLANE STRESS AND PLANE STRAIN

Restrained in y direction from movement.

Fig. 4.7 A reinforced opening in a plate. Uniform stress field at a distance from opening $\sigma_x = 100$, $\sigma_y = 50$. Thickness of plate regions A. B. and C is in the ratio of 1:3:23

The stress plot shows the tensile region that develops. This phenomenon is of considerable interest to geologists and engineers concerned with rock mechanics.

A dam subject to external and internal water pressures^{8,9} (Fig. 4.9). A buttress dam on a contendation proceeded foundation is more analysed. The heterogeneous foundation region is subject to plane strain conditions while the dam itself is considered as a plate (plane stress) of variable thickness.

With external and gravity loading no special problems of analysis arise, though perhaps it should be mentioned that it was found worth while to "automatize" the computation of gravity nodel buds.

When pore pressures are considered, the situation, however, requires perhaps some explanation.

It is well known that in a porous material the water pressure is trans-

mitted to the structure as a *body force* of magnitude

$$X = -\frac{\partial p}{\partial x}, \qquad Y = -\frac{\partial p}{\partial y}$$

and that now the external pressure need not be considered.

Fig. 4.9 Stress analysis of a buttress dam. Plane stress condition assumed in dam and plane strain in foundation. (a) The buttress section analysed. (b) Extent of foundation considered and division into finite elements

PLANE STRESS AND PLANE STRAIN

The pore pressure p is, in fact, now a body force potential, as defined in Eq. (4.36). Figure 4.9 shows the element subdivision of the region and the outline of the dam. Figure 4.16(a) and (b) show the stresses resulting from gravity (applied to the dam only) and due to water pressure assumed to be acting as an external load or, alternatively as an internal pore pressure. Both solutions indicate large tensile regions, but the increase of stresses due to the second assumption is important.

Cracking. The tensile stresses in the previous example will doubtless cause the rock to crack. If a stable situation can develop when such a crack spreads then the dam can be considered safe

Cracks can be introduced very simply into the analysis by assigning zero elasticity values to chosen elements. An analysis with a wide cracked wedge is shown in Fig. 4.11, where it can be seen that with the extent of the crack assumed no tension within the dam body develops.

A more elaborate procedure for following crack propagation and resulting stress redistribution can be developed and will be discussed later (see Chapter 18).

Thermal stresses. As an example of thermal stress computation the same dam is shown under simple temperature distribution assumptions. Results of this analysis are given in Fig. 4.12

Gravity dams. A buttress cam is a natural example for the application of finite element methods. Other types, such as gravity dams with or without piers and so on, can also be simply treated. Figure 4.13 shows an analysis of a large dam with piers and crest gates.

In this case an approximation of assuming a two-dimensional treatment in the vicinity of the abrupt change of section, i.e., where the piers join the main body of the dam, is clearly involved, but this leads to localized errors only.

It is important to note here how, in a single solution, the grading of element size is used to study concentration of stress at the cable anchorages, the general stress flow in the dam, and the foundation behaviour. The linear ratio of size of largest to smallest elements is of the order of 30 to 1 (the largest elements occurring in the foundation are not shown in the figure).

Underground power station. This last example illustrated in Figs. 4.14 and 4.15 shows an interesting large-scale application. Here principal stresses are plotted automatically. In this analysis very many different components of $\{\sigma_0\}$, the initial stress, were used due to uncertainty of knowledge about geological conditions. The rapid solution and plot of many results enabled the limits within which stresses vary to be found and an engineering decision arrived at.

Fig. 4.13 A large barrage with piers and prestressing cables

4.5 Special Treatment of Plane Strain with an Incompressible Material

It will have been noted that the relationship Eq. (4.20) defining the elasticity [D] matrix for an isotropic material breaks down when the Poisson's ratio reaches a value of 0.5 as the factor in the parentheses becomes infinite. A simple way of side-stepping the difficulty presented is to use values of Poisson's ratio approximate to 0.5 but not equal to it. Experience shows, however, that if this is done the approximation of solution deteriorates. An alternative procedure has been suggested by Herrman.¹⁰ This involves the use of a new variational formulation, and readers are referred to his work for details.

Fig. 4.14 An underground power station. Mesh used in analysis.

Fig. 4.15 An underground power station. Plot of principal stresses:

20

PLANE STRESS AND PLANE STRAIN

21

Centro de educación continua división de estudios superiores facultad de ingeniería, unam

IV CURSO INTERNACIONAL DE INGENIERIA SISMICA

. . . .

DINAMICA ESTRUCTURAL

ELEMENTOS FINITOS

DR. PORFIRIO BALLESTEROS B.

JULIO, 1978.

Palacio de Minería

Calle de Tacuba 5,

primer plso.

México 1, D. F.

P. Ballestores

TRABAJO VIRTUAL

Principio del trabajo virtual: Sí una particula se en cuentra en equilibrio, el trabajo total efectuado por todas las tiongas actuando sobre la particula, bajo cual quier des pla gamiento virtual es cero. Sean Su, Su, Su: Componentes del desplazamiento virtual en las direcciones X, y, g. ZFx, ZFr, ZFg: Sumas de fuergas en las direcciones X, y, g que actuan sobre la partícula o cuerpo rigido. $S_{\mu} = S_{\mu} + S_{V} + S_{V}$ Fi Sw SH

P. Ballestero 2 El principio del des plazamiento virtual esta blece que Su Z Fri = 0 (1) Sv Z Fri = 0 Sw = Fzi = 0 Si el sistema esta en equilibrio y permanece en equilibrio después del des plagamiento virtual se satisface D. Un cuerpo elástico en réposo constituye in conjunto de particulas sobre las que en cada elemento actua un subconjunto de fuergas en equilibrio. En cualquier desplagamiento virtual, el tabajo virtual sobre cada particula is cero, por lo tanto el Trabajo virtual total también debe ser cero. Es conveniente que Sui sean consistentes con las condiciones Lo. apoyo.

P. Ballestern 3 Segn: LUTWI componentes de los desplagamientos debido a las cargas en Xi. LSU Su Su Componentes del des plagamiento virtual en Zz. (funciones arbitarios de Zi) Lara deformaciones lineales pequeñas, los desplagamientos virtuales correspondientes a las seis componentes de deformación son $\partial e_x = \partial_x (\delta u)$, $\delta \partial_{xy} = \partial_x (\delta v) + \partial_y (\delta u)$ $S \in r = \frac{2}{2} (Sr), S = \frac{2}{2} (Sw) + \frac{2}{2} (Sr) (2)$ $S \varepsilon_{g} = \widetilde{\delta g}(\delta w), S V_{ZX} = \widetilde{\delta g}(\delta u) + \widetilde{\delta \chi}(\delta w)$ y el trabajo virtual en un elemento sudydg es (3) $SU_{o}dV = [T_{x}(SE_{x}) + T_{y}(SE_{y}) + T_{g}(SE_{z}) +$ + [xy (SUxr) + [yz (SUyz) + [zx (SUzz) dV

Sean:

P. Ballestern (1)

XdA, YdA, ZdA, Fuergas de superficie en el elemento dV=dxdydg. XAV, Ydv, Idv, Fuergas de cuerpo en el elemento dv=dxdydz. La afirmación de que el Trabajo virtual es cero $\int (\bar{x}Su + \bar{y}Sv + \bar{z}Sw)dA + \int (xSu + \bar{y}Sv + \bar{z}Sw)dV + \int (xSu + \bar{y}Sv + \bar{z}Sw)dV = 0$ $V = \int SU_0 dV = 0$ Puesto que las fuergas de superficie LXI, las de cuerpo LXI y los estuergos {J}, no varian durante un des plazamiento virtual pequeño, el simbolo variacional 8

se puede sacar fuera del signo integral quedando

(a)

$$S\left[\int U dV - \int (Xu + Yv + Zw) dV - \int (\overline{X}u + \overline{Y}v + \overline{Z}w) dA\right] = 0$$
(b)

$$S\left[\int LT J \{ \epsilon \} - \int [X] \{ \mu \} dV - \int [\overline{X}] \{ \mu \} dA \right] = 0$$
(c)
(c)

$$S\left[\int LT J \{ \epsilon \} - \int [X] \{ \mu \} dV - \int [\overline{X}] \{ \mu \} dA \right] = 0$$
(c)
(d)

$$E \text{ Everyal potencial de de for ma evon
(b)
$$E \text{ " " " fuergas de cuerpo
(c)
$$LT = [Tx Ty Tz Txy Tyz Tzx] \\ [\epsilon]^T = \{ \epsilon_x \epsilon_y \epsilon_z \delta_{xy} \delta_{yz} \delta_{zx} \}^T \\ [K] = [X Y Z] \\ [LX]^T = [U T W] \\ [X] = [X T \overline{Z}]$$$$$$

.

-

Ş

л 1

P. Ballesteros D

(i) Establece que los des plaga mientos LUVWI bajo ciertas fuerzas de superficie y de cuerpo dadas, son tal que la variación de primer orden de la energia potencial total ES CERO para cualquier desplagamiento virtual, o brevenente La energia potencial total es esta cionaria. El termino desplazamiento o trabajo virtual implican multiplicadores arbitrarios LSUSVSWI con las ecuaciones de equilibrio, es conveniente reteriso : alles como variaciones de MATIN.

· · ·

IV CURSO INTERNACIONAL DE INGENIERIA SISMICA

DINAMICA ESTRUCTURAL

. .

, , , , , , , ,

Dr. Octavio A. Rascón Ch.

METODO & DE NEWMARK

SISTEMAS ELASTICOS LINEALES DE VARIOS GRADOS DE LIBERTAD

PARA CALCULAR LA RESPUESTA DE UN SISTEMA DE N GRADOS DE LIBERTAD Y COMPORTAMIENTO ELASTICO LINEAL SE EMPLEAN LAS MISMAS ECUACIONES QUE PARA UN SISTEMA DE UN GRADO DE LIBERTAD.

 $\dot{x}_{j}(t_{i+1}) = \dot{x}_{j}(t_{i}) + [\ddot{x}_{j}(t_{i}) + \ddot{x}_{j}(t_{i+1})] \frac{\Delta t}{2}$

 $x_{j}(t_{i+1}) = x_{j}(t_{i}) + x_{j}(t_{i}) \Delta t + [(1/2 - \beta)x_{j}(t_{i}) + \beta x_{j}(t_{i+1})](\Delta t)^{2}$

EN DONDE j = 1, 2, ..., N.

EN ESTE CASO SE RECOMIENDA TAMBIEN UN VALOR DE β COMPRENDIDO ENTRE 1/4 Y 1/6, Y QUE $\Delta t = 0.1 T_N$, EN DONDE T_N ES EL -PERIODO NATURAL DE VIBRA-CION MAS PEQUEÑO.

EJEMPLO

SEA UN SISTEMA DE DOS GRADOS DE LIBERTAD CON AMORTIGUAMIENTO NULO, CUYAS MATRICES DE MASAS Y RIGIDECES SON:

$$\underline{K} = \begin{bmatrix} 1 & 1 \\ 1 & 5 \end{bmatrix} , \underline{M} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

USANDO EL METODO β DE NEWMARK CON $\Delta t=0.2 \text{ seg Y} \beta=1/6$ CALCULE LA RESPUESTA DINAMICA ANTE UNA EXCITACION DADA POR LOS DESPLAZAMIENTOS DEL SUELO:

 $x_{0} = 1.2 t^{-1}$ SI $0 \le t \le 2 \text{ seg}^{-1}$ (x_{0} EN CENTIMETROS) $x_{0} = 4.8 - 1 - 2 t^{-1}$ SI $2 - \le t \le 4 \text{ seg}^{-1}$ $x_{0} = 0$ SI $t - \le 0$ $0 - t - > 4 \text{ seg}^{-1}$

PUESTO QUE ESTA EXCITACION IMPLICA QUE x_o(t) = 0 PARA TODO t, SE TIENE QUE LA ECUACION MATRICIAL DE EQUILIBRIO RESULTA SER

$$\underline{MY} + \underline{-} \underline{KY} = \underline{MY} + \underline{Q} = \underline{0}$$

POR LO QUE

$$m_1 y_1 + Q_1 = 0 \rightarrow y_1 = Q_1/m_1$$

$$m_2 y_2 + Q_2 = 0 \rightarrow y_2 = Q_2/m_2$$

EN DONDE $y_1 = x_1 - x_0$ Y $y_2 = x_2 - x_0$

 $CON - \Delta t = -0.2 - seg Y - \beta = 1/6$, LAS_ECUACIONES_DEL_METODO β _DE NEWMARK _ QUEDAN = NA FORMA

$$\dot{x}_{j}(t_{i+1}) = \dot{x}_{j}(t_{i}) + 0.1[\dot{x}_{j}(t_{i}) + \ddot{x}_{j}(t_{i+1})]$$

$$x_{j}(t_{i+1}) = x_{j}(t_{i}) + 0.1 \dot{x}_{j}(t_{i}) + 0.04[\dot{x}_{j}(t_{i})/3 + \ddot{x}_{j}(t_{i+1})/6]$$

EN t = 0,
$$y_i = x_i = 0$$
, $y_i = x_i = 0$, $y_i = x_i = 0$.
EN t = 0.2, $x_0 = 1.2 \times 0.2 = 0.24$ cm; SUPONGAMOS $x_1 = y_1 = 1.35$
 $y_1 = x_2 = y_2 = 1.50$ cm/seg:

PRIMER CICLO

PARA LA MASA 1: $x_{1} = 0 + 0.1 (0 + 1.35) = 0.135 \text{ cm/seg}$ $x_{1} = 0 + 0 + 0.04(0 + 1.35/6) = 0.009 \text{ cm}$ $y_{1} = 0.009 - 0.24 = -0.231 \text{ cm}$ PARA LA MASA 2: $x_{2} = 0 + 0.1(0 + 1.50) = 0.15$ $x_{2} = 0 + 0 + 0.04(0 + 1.50/6) = 0.01$ $y_{2} = 0.01 - 0.24 = -0.23 \text{ cm}$ $Q = \begin{bmatrix} Q_{1} \\ Q_{2} \end{bmatrix} = \begin{bmatrix} 10 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} -0.231 \\ 0.230 \end{bmatrix} = \begin{bmatrix} -2.540 \\ -1.381 \end{bmatrix}$ POR LO QUE $y_{1} = x_{1} = 2.54/2 = 1.27 \neq 1.35$ $y_{2} = x_{2} = 1.381/1 = 1.381 \neq 1.50$

SEGUNDO CICLO

 $\begin{array}{c} x_1 = 0.1 \ x \ 1.27 = 0.127 \\ x_1 = 0.04 \ x \ 1.27/6 = 0.0085 \\ y_1 = 0.0085 \ - 0.24 = -0.2315 \end{array} \\ \begin{array}{c} x_2 = 0.1 \ x \ 1.381 = 0.138 \\ x_2 = 0.04 \ x \ 1.381/6 = 0.0092 \\ y_2 = 0.0092 \ - 0.24 = -0.2308 \end{array}$

З

$$Q = \begin{bmatrix} 10 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} -0.2315 \\ -0.2308 \end{bmatrix} = \begin{bmatrix} -2.546 \\ -1.386 \end{bmatrix}$$

DE DONDE
$$x_1 = y_1 = 2.546/2 = 1.273 = 1.27$$

 $x_2 = y_2 = 1.386/1 = 1.386 = 1.381$

EN t = 0.2 + 0.2 = 0.4 seg SE TIENEN x₀ = $1.2 \times 0.4 = 0.48$,

$x_1(t_i)$	=	0.0085		· ·	-	$x_2(t_i)$	=	0.0092
$x_1(t_i)$	=	0.127		•		$x_2(t_i)$	=	0.138
 x ₁ (t _i)	=	1.273	•	•	:	$\frac{1}{x_2(t_i)}$	=	1.386

PRIMER CICLO

SUPONIENDO
$$\dot{x}_{1}(t_{i+1}) = 2.3$$
 Y $\dot{x}_{2}(t_{i+1}) = 2.1$ SE OBTIENEN:
 $\dot{x}_{1} = -0.127 \pm 0.1(1.273 \pm 2.3) = -0.484$
 $x_{1} = 0.0085 \pm 0.2$ x $0.127 \pm 0.04(1.273/3 \pm 2.3/6) = 0.0662$
 $\dot{y}_{1} = -0.0662 = 0.48 = -0.4138$
 $\dot{x}_{2} = -0.138 \pm 0.4(1.386 \pm 2.4) = -0.486$
 $x_{2} = 0.0092 \pm 0.2$ x $0.138 \pm -0.04(1.386/3 \pm 2.1/6) = 0.0693$
 $y_{2} = 0.0693 = -0.48 = -0.4107$
 $Q = \begin{bmatrix} 10 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} -0.4138 \\ -.4107 \end{bmatrix} = \begin{bmatrix} -4.548 \\ -2.468 \end{bmatrix}$
DE DONDE $\ddot{x}_{1} = \ddot{y}_{1} = 4.548/2 = 2.274 \neq 2.3$
 $\ddot{x}_{2} = \ddot{y}_{2} = 2.468 \neq 2.1$

ETCETERA--- LOS RESULTADOS DEL PROBLEMA SE PRESENTAN-EN-LA TABLA 1.

4.

SISTEMAS LINEALES CON VARIOS GRADOS DE LIBERTAD

Γ				TABLA	2.1.	Ejempla	0 2.7				
<u>t</u> seg	Q_ 100	¥ cm∕seg‡	<u>±</u> cm/seg	Ъ сm	$\frac{\mathbf{x}_1 - \mathbf{x}_0}{\mathbf{cm}}$	Q, ton	<u>¥</u> cm∕seg²	<u>±</u> cm/seg	x, cm	x, - x, cm	т. сщ
0	0	0	0	0	0	o	o	0	0	0	0
0.Z	2 540	1.350	0,135	0.0090	-0.2310	f.380	1.500	0.150	0.0100	- 0.2300	0.24
0.2	2.546	1.270	0 127	00085	-0.2315	1,386	1,380	0.138	0.0092	- 0,2 308	0.24
0.Z	2.546	1.273	0.127	0.0085	-0.2315	1.386	1.386	0.138	0.0092	- 0.2308	0.24
0.4	4.548	+2.300	0 4 8 4	+0.0662	-0.4138	Z.468	z.100	0.486	+0 0693	-0.4107	0.4B
0.4	4.54B	2.274	0,481	0.0660	-0.4140	2.455	2.468	C.523	0.0718	-0.4062	0.48
0.4	4.548	2.274	0 4 8 1	0.0660	-0.4140	2.455	° 2.455	0.522	0 0717	-0.4083	0.48
0.4	4.548	2.274	0,481	0.0660	-0.4140	2.455	2,455	0.522	0.0717	-0 4083	0,48
0.6	5.585	2.700	0.978	0.2105	-0.5095	2.960	3.200	1.088	0.2301	-0 4839	0.72
0.6	5.581	2.793	0.987	0.2111	-0.5089	. 2.967	2,960	1.064	0.2285	-0.4915	0.72
0.6	5.580	2.790	0.987	0.2111	-0.5089	2,966	2.967	1.065	0.2286	-0 4914	0.72
0.6	5,580	2.790	0987	0.2111	-0.5089	2.966	Z.966	1.065	0 2 2 8 6	-0.4914	0.72
0.8	5 4 0 9	2.900	1.556	0.4650	-0.4950	z.790	2.980	1,660	0,5010	-0.4590	0.96
0.8	5.423	2.704	1,536	0.4637	-0.4963	2.798	2.790	1,641	0.4997	-0 4603	0.96
8 0	5.422	2.711	1.537	0.4638	-0.4962	2.797	2.798	1.642	0.4998	-0.4602	0.96
08	5,422	2.711	1.537	0.4638	-0.4962	2.797	2,797	1.6 4 Z	0.4998	-0,4602	0.96
۱.٥	4104	2.150	2.023	0 8 2 1 6	-0.3784	1.977	2.200	2.142	0 8802	-0.3198	1.20
1.0	4,111	2.052	2.013	08210	- 0.3790	1.985	Ļ977	2.120	0.8787	-0.3213	1.20
1.0	4,111	2.055	2.014	0.8210	-0.3790	1.985	1,985	2.121	0.8787	-0.3213	1.20
1.0	4,111	2 0 5 5	2.014	0.8210	-0.3790	1.985	1,985	2.121	0.8787	-0.3213	1.20
1.2	1.931	0.950	2.315	1.2575	-0.1825	0.7-12-	. 0.700	2.390	-1.3341	-0.1059	1.4 4
1.2	1.930	0 965	2.316	1.2576	-0.1 824	0.712	0.712	2,391	1.3341	-0,1059	1.44
1.2	1.930	0.965	2.316	1.2576	-0.1824	0.712	0.712	2.391	1.3341	-0.1059	1,44
1.4	- 0.653	-0.320	2.381	1,7316	0.0516	-0.735	-0 800	2.382	1,8165	0.1365	1.68
1.4	- 0.652	-0.326	2.380	1.7315	0.0515	- 0.735	-0.735	2.388	1.8169	0.1369	1.68
1.4	- 0.652	-0.326	2,380	1.7315	0.0515	- 0.735	-0.735	2.388	1.8169	0.1369	1.68
1.6	- 3 083	-1.500	2.197	2.1932	0.2732	- 2.026	-2.100	2.104	2.2707	0.3507	1.92
1.6	- 3.080	-1.541	2.193	21929	0 27 2 9	- 2.029	-2.026	2,111	2.2712	0 351 2	1.92
1.6	- 3 080	-1.540	2,193	2.1929	0 27 2 9	- 2.029	-2.029	2,111	2.2712	0.3512	1.92
1.8	- 4.830	-2.500	1.789	2.5943	0.4343	- 2,869	-2.900	1.618	2,6471	0.4871	2.16
1.8	- 4.836	-2.415	1.797	2.5949	0 4349	-2871	-2.869	1.621	2.6473	0 4873	2.16
1.8	- 4.836	-2.418	1,797	2 5949	0.4349	- 2.871	-2.871	1.621	2.6473	0.4873	2.16
2.0	- 5.547	- 2 800	1. 275	2.9034	0.5034	- 3.069	- 3.000	1.034	2.9132	0.5132	2 40
20	- 5.549	- 2.773	1.278	2.9036	0.5036	- 3.068	- 3.069	1.027	2.9127	0,5127	2 40
2.0	- 5 5 4 9	- 2.77 4	1.278	2.9036	0.5036	- 3.068	- 3.068	1.027	2,9127	0.5127	2.40

Tomado del libro de N. Newmark y E.Rosenblueth D.

71

			TABLA	2.1.	Ejcmple	2.7 ((Cont.)					
L	<u>Q</u> 1	<u>*</u>	<u>±</u>	<u>x</u> ,	<u>x, - x,</u>	Q, ton	<u><u><u>x</u></u> cm/sec?</u>	X CTD/BER	x,	x, - x,	T. cm	
58K	-10.156	- 5.200	0, 48 1	30875	0.9275	- 5.332	- 5.460	0. 174	3.0408	0.6808	2.16	
2.2	-10,165	- 5.078	0 493	30883	0.9283	- 5.337	- 5. 332	0. 187	3.0417	0 8817	2.16	
2. 2	-10, 165	- 5 083	0. 493	30883	0.9263	- 5.337	- 5.337	0.186	3.0417	0 8 17	2.16	
2.4	-12.578	-6900	-0,705	30731	1,1531	- 6.386	- 6.200	-0.968	2.9665	1.0465	1.92	
2.4	-12.617	- 6.289	-0.644	30772	1.1572	- 6.383	- 6.386	-0.987	2,9652	1.0452	1.92	
2.4	-12.615	- 6 309	-0.646	10770	1,1570	- 6.383	- 6 383	-0.986	2.9052	1.0452	1.32	
24	-12.615	- 6.308	-1 897	28725	1.1570	- 5.958	- 6.000	-2.224	2.6429	0 9629	1.52	
2.6	-12 388	- 6. 194-	- 1.896	2.8225	1.1425	- 5. 959	- 5.958	-2.220	2.6432	0.9632	1.68	
2.6	-12.388	- 6. 194	- 1. 896	2,8225	1.1425	- 5.959	- 5.959	-2,220	2.6432	0.9632	1 68	
2.8	- 9.573	- 4.300	-2.945	23320	0 8920	- 4.155	- 4.100	-3.206	+2.0925	0.6525	1.44	
2.8	- 9.540	- 4.7 67	- 2.994	23288	0.8888	- 4.150	- 4. 155	-3.212	2.0921	0 652 1	1.44	
2.8	- 9.541	- 4.770	- 2. 992	2.3289	08689	- 4.150	- 4.150	-3.211	2.0921	0 652 1	1.44	
2.8	- 9.541	- 4.770	-2.992	2 3 2 8 9	0 8889	- 4.150	-4.150	-3.2++-	2.0921	0.6521	1.44	-
3.0	- 4 6 87	- 2.500	-3.719	1.6502	0.4502	- 1.376	- 1.400	-3.766	1.3853	0.1853	1.20	
5.0	- 4.698	- 2.343	- 3. 703	1.6515	0.4515	- 1.378	- 1.37.6		1.3034	0,1004	1.20	
20	4:6-98-	-2:349	- 3,704-	-1.6513	0.4515	- 1.378	- 1.378	-3. 784	0.6255	0.1054	0.96	
3.2	1,090	0.800	-3.884	0.8845	-0.0755	1.748	1.748	-3.727	0.6255	-0.3341	0.96	
3.2	1,105	0.553	-3,883	0.8629	-0.0771	1.748	-1.748	3.727	0.6259	-0.3341	0.96	
3.2	1.105	0.553	-3.883	0.8629	-0.0771	1.748	1.748	-3.727	0.6259	-0:3341-	0:96	
3.4	6,608	3.600	- 3.468	0.1377	-05823	-4.506	- 4,700	-3.082	- 0.06 4 9	-07849	-0;72	
3.4	6,629	3.304	- 3, 438	0.1357	-0.5643	4.5 15	4.506	-3.101	- 0.0662	-0.7862	-0.72	
3,4	6.628	3.314	-3:439	0.1358	-0.5842	4.5 15	4.515	-3.100	• 0.0661	- 0.7861	0.72	
34	6.628	3.314	-3, 439	0.1358	-0.5842	4.515	4.515	-3.100	- 0,0661	-0.7861	0.72	
3.6	10.578	5.400	-2.568	-0.4718	-0.9518	6.251	6.900	-1.958	-0.5799	- 1.0599	0.48	
20 36	10.589	5.299	-2.577	-0.4725	-0.9525	6.277	6.277	-2.020	- 0.5841	- 1.0641	0.48	
36	10.589	5.299	-2.577	-0.4725	-0.9525	6.277	6.277	-2 020	-0.5841	-1.0641	0.4B	
3.6	12,259	6.200	-1.427	-0.8760	-1.1+60	6.612	6.800	-0.712	- 0.8591	- 1.0991	0 2 4	
3.8	12.264	6.130	- 1. 434	-0.8764	-1.1:64	6.618	6.612	-0.731	-0 8603	- 1.1003	0.24	
3.6	12.264	6. 132	-1.434	-0.8764	-1,1164	6.618	6.618	-0.730	- 0.8603	- 1.1003	0.24	
40	11.323	5.600	-0.260	-1.0441	-1.0441	5.454	5.400	0.472	-0.8821	-0.882 1	0	
4.0	11.319	5.661	-0.255	-1.0437	-1.0437	5.453	5.454	0.477	-0.8817	-0.5817		G
40	11.319	5.660	-0.255	- 1.0437	-1.0437	5.453	5.453	0.477	-0.8817	-08817		
4.2	10,7:05	-5.350-	-0.846	- 0.9836	-0.5836	5.330	5,300	-1549	-0.8691	-0.8691		
4.2	10.705	5.352	0.846	-0.9636	-0.9836	5.329	5.330	1.552	0.8689	-0.8689	0	

•

.

D. Octovio A. Bascon Ch.

DINAMICA ESTRUCTURAL

En vez de suponer X, y X2 21 inicio de cada ciclo, supondremos Q, y Q2 y calcularemos ambas aceleraciones con base en ellas mediante la ec. (1). Las ecuaciones para la velocidad y el desplazamiento son: $\dot{X}_{i+1} = \dot{X}_{i} + 0.05(\ddot{X}_{i} + \ddot{X}_{i+1})$ (2) $X_{i} = X_{i} + 0.1 \dot{X}_{i} + \frac{1}{600} (2 \dot{X}_{i} + \ddot{X}_{i+1})$ Q, 0.9279 X, -X0

•

🜶

ð

θ

				••	* • ¹	•		• .					• •	
t	×o	2 ₁	۵ ₂	×1 ,	×2, 2	× 1	x 1	×2	×2	×1 ^{-x} 0	x 2 ^{-x} 1	x ₁ -x ₀	×2 ^{-x} 1	OBSERVA-
eg	cm	ton	ton	cm/seg ²	cm/seg ²	cm/seg	cm	cm/seg	cm	Cm	cm	cm/seg	cm/seg	CIUNES
0	2.0	-50.00	0.00	50.00	0.00	0,00	0.00	0.00	0.00	-2.00	0.00	0.00	0.00	
.1	2.0	-37.500	-6.25	37.5	6.250	4.375	0.229	0.3125	0.0104	-1.771	-0.2185	4.375	-4.063	
		-38.550	-5.463	32.3	5.463	4.115	0.2205	0.2731	0.0091	-1.7795	-0.2113	4.115	-3.842	
		-38.975	-5.283	33.5125	5.283	4.1756	0.2225	0.2641	0.0088	-1.7774	-0.2136	4.1756	-3.9114	
		-38.875	-5.34	33.593	5.340	4.1796	0.2226	0.2670	0.0089	-1.7773	-0.2137	4.1796	-3.9126	•
		-38.870	-5.343	33.530	5.3425	4.1765	0.2225	0.2671	0.0089	-1.7774	-0.2135	4.1765	-3.9093	
.2	0.2	-20.00	-10.00	10.00	10.00	6.353	0.7685	1.0342	0.070	-1.2314	-0.6984	6.353	-5.3188	
		-11.575	-17,46	1.575	17.46	5.9317	0.7545	1.4072	0.083	-1.2455	-0.6919	5.9317	-4.5244	
		-12.275	-16.7975	-5.185	16.7975	5.5937	0.7432	1.3741	0.0814		-0.6617			
		-12.84	-16.5446	-3.9575	16:5446	5.6551	0.7453	1.3614	0.0809		-0.6643			
		-12.735	-16.6076	-3.8096	16.6076	5.6625	0.7455	1.3646	0.0810		-0.6644			
		-12.7216	-16.6100	-3.886	16.6100	5.6587	0.7454	1.3647	0.0811	-1.2546	-0.6642	5.6587	-4.294	
.3	2.0	10,000	-25.00	-35.00	25.00	3.7144	1.2399	3.4452	0.3146		-0.9252			
	•.	11.995	-23.1324	-36.995	23.132	3.6146	1.2366	3.3518	0.3114		-0.9251	•		
		11.83	-23.1277	-34.963	23.127	3.7162	1.2400	3.3510	0.3114		-0.9285			
•		12.00	-23.2129	-35.13	23.213	3.7080	1.2397	3.3558	0.3116		-0.9280			
		11.9885	-23.2018	-35.202	23.202	3.7043	1.2396	3.3552	0.3116	-0.7604	-0.9279	3.7043	-0.3491	
.4	2.0	25.000	-15:00	±40.000	15.000	-0.1193	1.4219	5.3067	0.7520		-0.6698			
		21.095	-16.745	-36.095	16.7457	0.0563	1.4272	5.3853	0.7544		-0.6727	•		
		21.360	-16.8193	-38.1057	16.8193	-0.0341	1.4245	5.3886	0.7545		-0.6699			_
		21.225	-16.7493	-38.0443	16.7493	-0.0313	1.4245	5.3854	0.7544	-0.5755	-0.6700	-0.0313	5.4067	*
.5	2.0	15.00		۰.		1 • •	1				,			
		12.64	-10.00	-25.0	10.00	-3.1835	1.2528	6.7228	1.3654	•	0.1126			
		12.87	2.8159	-22.64	-2.8159	-3.0655	1.2568	6.0818	1.3440		0.0872	•		
		13.89	2.1819	-10.024	-2.1819	-2.4347	1,2778	6.1137	1.3451		0.0673			
		13.75	1.6833	-11.7081	-1.683	-2.5189	1.2750	6.1387	1.3459		0.0709			
		13.72	1.7853	-11.9459	-1.7853	-2.5308	1.2746	6.1336	1.3457	-0.7254	0.0741	-2.5308	8.6644	
.6	2.0	0.000	15.000	15.000	-15.000	-1.6915	1.0524	5.2943	1.8745	, .	0.8221			
		2.62	20.550	12.38	-20.55	-2.5090	1.0023	5.0168	1.9188		0.9165	•		
		0.115	22.9139	20.435	-22,9189	-2.1063	1.0157	4.8986	1.9149		0.8992			
		0.785	22.4804	22.1289	-22.4804	-1.9866	1.0185	4.9203	1.9156		0.8971			
		0.925	22.4285	21.5554	-22:4285	-2.050	1.0176	4.9229	1.9157		0.8987			
		0.88	22:4532	21.5485	-22.4532	-2.050	1.0176	4.9216	1.9156	-0.9824	0.8990	-2.050	6.9716	1
.61	5 2.00	-3.00	25.000	28.000	-25.000	-1.6905	0.9894	4.5657	1.9867		0.9973			•
		-0.53	24.9334	25.53	-24.9334	-1.6967	0.9894	4.5659	1.9867	-1.0106	0.9973	-1.6967	6.2626	**
x		SE HACE	CASI CER	CAMBIC	DE POSIT	IVO A NEO	GATIVO.X	máx = 1	.4245 cm					
	10						- 25	Ι.						
ſ	AMBIC		ez en el	20. PISO	$x_2 - x_1 = 1$	···· y ² 2	= 25							

t	×o	Q ₁	Q ₂	×1 2	*2 2	× ₁	× ₁	×2	×2	×1 ^{-x} 0	×2 ^{-x} 1	×1 ^{-x} 0	•••• *2 ^{-*} 1	OBSERVA- CIONES
seg cm	CM	ton	ton	cm/seg	cm/seg ⁻	cm/seg	CM	cm/seg	cm	cm	CM	cm/seg	cm/seg	
0.70	2.00	-10.000	25.000	35.000	-25.000	0.8696	0.9484	2.441	2.285		1.3366			
		-2.580	25.000	27.580	-25.000	0.5728	0.9405	2.441	2.285		1.3445			
		-2.975	25.000	27.975	-25.000	0.5886	0.9409	2.441	2.285		1.3441			
		-2.955	25.000	27.955	-25.000	0.5878	0.9409	2.441	2.285	-1.0591	1.3441	0.5878	1.8532	
0.735	2.00	-1.000	25.000	25.000	-25.000	1.5368	0.98065	1.565	2.3549					
		-0.9675	25.000	25.9675	-25.000	1.5367	0.98065	1.566	2.3549					
		-0.9671	25.000	25.9671	-25.000	1.5367	0.98065	1.566	2.3549	-1.1093	1.3742	1.5367	0.0293	
0.80	2.00	5.000	20.000	15.000	-20.000	2.8823	1.1282	0.09128	2.4068		1.2756			
		6.365	22.575	16.245	-22.595	2.9196	1.0449	0.01343	2.4053		1.3604			
		6.570	22.4619	18.085	-22.469	2.9748	1.1300	0.0173	2.4053		1.2753			
		6.435	22.5613	16.0948	-22.5613	2.9151	1.1288	0.0144	2.4053	-0.8712	1.2765	2.9151	-2.9007	**

1

Ļ

** x_2 SE HACE CASI CERO $|x_2|$ máx = 2.4053 cm RELACION DE ALUMNOS AL CURSO DINAMICA ESTRUCTURAL (IV CURSO IN TERNACIONAL DE INGENIERIA SISMICA JULIO, 1978).

- 1. GUSTAVO AGUIRRE P. UNIV. TEC. P. DE LOJA ECUADOR. P.O. BOX 71 S.A. TEL. 960375
- 2. ROBERTO ENRIQUE BRENES BRENES INST. COSTARRICENSE DE ELECTRICIDAD SABANA NORTE, SAN JOSE, COSTA RICA
- 3. JOSE BENJAMIN DUEÑAS GOMEZ DIR. GRAL. DE OBRAS MARITIMAS INSURGENTES SUR 465 MEXICO 11,D.F.
- 4. STANISLAW DOROSZ INST. DE INGENIERIA, UNAM MEXICO 20, D.F. TEL. 548.97.94
- 5. SERGIO OCTAVIO R. ESCOBAR MEDINA ESC. DE ING. UNIV. AUTONOMA DE ZACATECAS TEL. 2.08.27
- 6. JAIME E. FLORES CALDERON UNIVERSIDAD DE CAUCA DEPARTAMENTO DE FISICA
- 7. ELIAS GALINDO VALLARINO UNIVERSIDAD AUTONOMA DE QUERETARO CENTRO UNIVERSITARIO QUERETARO, QRO.
- 8. OSCAR JAIME GELBWASER EURO ESTUDIOS S.A. DE C.V. GAUSS 9-202 MEXICO 5, D.F. TEL. 250.70.00
- 9. TEOFILO LUNA SANCHEZ BUFETE INDUSTRIAL DISEÑOS Y PROYECTOS SA. Cuiculco 57-6 TOLSTOI 22 MEXICO, D. F.
 9. TEOFILO LUNA SANCHEZ BUFETE INDUSTRIAL DISEÑOS Y PROYECTOS SA. Cuiculco 57-6 México 13, D.F.
 13. D.F.
 14. Tel. 533.15.00 Ext. 275
- RAUL MENDOZA MONROY CIA. DE LUZ Y FUERZA DEL CENTRO S.A. MELCHOR OCAMPO 171 MEXICO 17, D.F. TEL. 592.37.18

Av. Col. del Valle 443 México 12, D.F. Tel. 523.99.90

Calle 18, AUS 4-6 Los Angeles, Cartago, Costa Rica

José Ma. Tornell 20-8 San Miguel Chalultepec México 18, D.F. Tel. 516.34.70

Juan de Tolosa 809 Zacatecas, Zac. Tel. 2.11.47

Germán Patiño 36-5 Col. Aragón Querétaro, Qro.

Sudermann 143-1 México 5, D.F. Tel. 545.55.99

Lago Victoria 52-2 Col. Anahuac México 17, D.F. Tel. 250.30.62

- 11. ING. RAMON MORALES ROSS UNIV. JUAREZ AUTO. DE TABASCO CIUDAD UNIVERSITARIA VILLAHERMOSA, TAB.
- 12. FLORENCIO MORENO LOPEZ ESC. DE ING. UNIVERSIDAD AUTONOMA DE QUERETARO QUERETARO, QRO. TEL. 251.89
- 13. ING. ROBERTO MORENO QUINTO CIA. DE LUZ Y FUERZA DEL CENTRO
- ANTONIO NIETO G.
 INDUSTRIAL MINERA MEXICO S.A.
 BAJA CALIFORNIA 200 12° Piso
 MEXICO, D.F.
 TEL. 564.70.66 EXT.288
- IS. JOSE ROLANDO PAREDES ESCORZA DIRECCION GENERAL DE OBRAS MARITIMAS
 S. C. T. INSURGENTES SUR 465 MEXICO 11, D.F. TEL. 564.77.58
- JESUS PORRAS MARISCAL
 INST. TEC. REGIONAL DE OAXACA
 CALZ. INST. TEC. S/N.
 OAXACA, CAX.
 TEL. 644.13
- 17. ALFONSO RUIZ VAZQUEZ ARUA CONSTRUCCIONES AV. VALLE DE BRAVO NO.19 MEXICO 22, D.F. TEL. 677.37.30
- ANTONIO SANCHEZ HERNANDEZ ESCUELA DE INGENIERIA UNIVESIDAD AUTONOMA DE QUERETARO QUERETARO, QRO. TEL. 251.89

Peztalozzi 526-5 Col. Narvarte México 12, D.F. Tel. 523.21.52

Primavera Ote. 35 Querétaro, Qro. Tel. 2.72.20

Irlanda 132-30 México 21, D.F. Tel. 549.68.73

Rosa Verde 157 Col. Molino de Rosas MEXICO 19, D.F. Tel. 651.06.67

Calz. Sta. Anita 115 Col. Moderna México, D.F. Tel. 690.17.68

San Luis Potosí, 19 Col. Hidalgo Querétaro, Qro. Tel. 270.08 19. RAUL SERRANO LIZAOLA ESC. DE ING. CIVIL CIUDAD UNIVERSITARIA PUEBLA, PUE.

Bonampak 4506 Col. Reforma Agua Azul Puebla, Pue. Tel.: 4392.96

20. FEDERICO TIRADO INDA ESC. DE ING. UNIVERSIDAD AUTONOMA DE GUERRERO CHILPANCINGO, GRO. TEL. 227.41

21. ANGEL J. VALLEJO GONZALEZ CIA. DE LUZ Y FUERZA DEL CENTRO S.A. TLALOC 90 COL. ANAHUAC México 17, D.F. Tel. 592.37.18 Juárez 57 Chilpancingo, Gro. Tel. 228.44

Valle de Oaxaca 24 Col. Vista del Valle Naucalpan, Edo. de Méx. Tel. 560.50.65