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Abstract. Steel frames with post-tensioned bolted connections are a viable option in high 

seismicity areas due to the fact that brittle failure is prevented and also because of their self-

centering connection capacity. The elements formed by steel angles have a dominant influence 

on the performance of the post-tensioned semi-rigid connections; therefore, it is necessary to 

know their capabilities in terms of stiffness, strength, ductility and energy dissipation. In this 

paper a set of 15 experiments with angles of 152x152x10 mm and different gage values were 

developed. For this aim, monotonic and cyclic tests with increasing ductility demands were 

performed. The results obtained are used to propose equations to calculate the initial and post-

yielding stiffness. An alternative definition of “ductility” is proposed, and fatigue curves and 

hysteretic energy (EH) capacity are estimated. Additionally, it is proposed a function that 

reproduces with good accuracy the hysteretic cycles obtained experimentally. The results were 

extended for the application to post-tensioned top and seat connections, and a continuous 

function which defines the Moment-Rotation hysteretic curve is suggested. The proposed 

equations fit well also with the experimental results found in the literature. It is concluded that 

1) the capacity EH decreases as the ductility demand increases; 2) the total hysteretic energy 

capacity in the steel angles is constant for different gages, and 3) the number of cycles of load to 

failure decreases as the ductility demand increases. 
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1. Introduction 
 

Due to the need of preventing brittle failure in welded connections of moment resisting frames 

(MRF), after the 1994 Northridge Earthquake, various researchers suggested replacing welded 

connections for semi-rigid connections (SRC) because they are more effective to prevent this 

type of damage. In fact, analyses of steel frames with semi-rigid connections (SRF) under 

earthquake ground motions have shown that the maximum values of the base shear and drifts 

are reduced compared with their counterparts with rigid connections; moreover, they dissipate 

more energy (Nader and Astaneh 1991, Leon and Shin 1995, Reyes-Salazar 2000). In order to 

increase the rigidity of the connections and to reduce the residual drift, Ricles et al. (2001) 

proposed post-tensioning the SRF with high strength strands symmetrically positioned parallel 

to the axis of the beams and anchored at the ends of the frames. It was observed that the 

performance of this new type of structure is superior compared with the traditional MRF (Ricles 

et al. 2002, Christopoulos and Filiatrault 2002b, Garlock et al.2009, Chou and Chen 2010a, 

2011, López-Barraza, et al. 2013). 

The post-tensioned steel frames (PTSF) are a viable alternative to replace frames with welded 

connections in high seismic areas. There are two types of common devices used to dissipate 

energy in PTSF which depends on the relative rotation of the beam-column joint (θr). The first 



 
 

consists of elements that dissipate energy by plastic deformation (hysteretic dissipators), which 

can be angles, plates o bars bolted to the connection (Ricles et al. 2001, Christopoulos et 

al.2002a, Garlock et al.2005, 2007, Chou and Chen 2010b). The other devices are usually plates 

placed on the flange or the web of the beam and connected to the column, which dissipate 

energy by friction (Rojas et al. 2005, Wolski et al. 2009, Guo et al.2011). There are numerous 

advantages of PTSF, such as: preventing brittle fracture of the connection, field welding is not 

required, the connection is made with conventional materials and skills, and the damage is 

concentrated in the dissipating elements, maintaining essentially elastic the beams and columns 

after the action of intense earthquakes. The connection has an initial stiffness similar to that of a 

typical welded connection, and it is self-centering without residual deformation. In some studies 

of this type of structural system it has been found that drifts and residual drifts are small, 

avoiding higher costs of repairing or permanent loss of functionality of the building after a 

strong earthquake (McCormick et al. 2008, López-Barraza et al. 2013). If required, it is 

economical and easy to replace the damaged angles, shortening the time of interference in the 

use of the building. 

The rigorous analysis of the PTSF is more complex than that of frames with rigid or pinned 

connections. It is difficult to capture the behavior of the bolted connections due to their large 

number of components that have a large influence on the performance. These components are: 

angles or bolted plates; the presence or absence of reinforcing plates; the size, strength, torque 

and position (gage) of the screws. Additionally, it is necessary to determine the influence and 

contribution of post-tensioned elements. 

PTSF connections are basically SRC with post-tensioned (PT) elements which can be 

idealized as two springs in parallel, one nonlinear and one linear, representing the SRC and the 

PT elements, respectively. 

The presence of the SRC has been studied mainly in two ways; the first considers the 

connection as a single piece, and describes its behavior using the moment- rotation curve (M-θr) 

(Richard and Abbott 1975, Yang and Jeon 2009). The parameters of the corresponding 

equations are usually obtained from experimental results. In the second option, the parts of the 

connection are modeled with finite elements using fiber elements, assigning to each fiber a 

force-displacement relationship (Shen and Astaneh 2000, Ricles et al. 2001). The first option 

has the advantage that when implemented it in a frame analysis program the number of elements 

required is small. However, the disadvantage is that no information is provided about the 

performance of the parts of the connection.  

With the purpose of determining the performance and evaluating the influence of the elements 

that compose the semi-rigid post-tensioned connection, experiments have been developed 

finding that the behavior is nonlinear beginning at the start of the deformation (Ricles et al. 

2001, 2002, Garlock et al. 2005, Chou and Chen 2010b). The typical M-θr curve is as a shaped 

flag, which characterizes the self-centering capacity as well as the energy dissipation. In the 

studies mentioned above the proposed hysteretic models have been fitted with straight segments 

(bi-linear or multi-linear). It is noticed that in the case of connections with bolted angles, it is 

very important to know the performance of the angles due to its influence on the behavior of the 

connection. With the aim of determining their initial and post-yielding stiffness, strength, 

ductility, low cycle fatigue and hysteretic energy dissipation capacity, experiments have been 

conducted with isolated angles of 8, 10, 13, 16 and 19 mm thick (Shen and Astaneh 1999, 

Garlock et al. 2003) by changing the gage, size and strength of screws and the type of load. It 

has been found that the ultimate strength is 3 times the yield strength, that the hysteresis loops 

are stable, that degradation of strength and stiffness do not occur, and that the ductility capacity 

ranges between 8 and 10. 

The present study aims to improve the understanding of the performance of connections with 

bolted top and seat angles, post-tensioned with high strength strands. In order to observe the 

performance of the angles used in the connections, the authors performed a series of 15 

experiments with angles of 152x152x10 mm for different gage values, subjected to cyclic 

loading, increasing the ductility demands. From the results, equations to calculate initial and 

post-yield stiffness are proposed. A new definition of “ductility” is suggested, fatigue and 

hysteretic energy capacity curves are built as function of ductility demand. Additionally, it is 



 
 

proposed a continuous function that accurately reproduces the hysteretic cycles obtained 

experimentally. The results obtained for isolated angles, were extended for the application to the 

post-tensioned top and seat connection and a continuous function which defines the M-θr curve 

of the hysteretic cycles is proposed. The proposed equation satisfactorily fits the experimental 

results found in the literature. 

 

 

2. Experimental program 
 

2.1 Test specimen and instrumentation 
 

The general configuration of the test specimens is shown in Fig. 1(a); to achieve symmetry each 

specimen consists of two angles placed back to back. An A490 steel screw with diameter of 

25.4 mm is used to attach the angles to the loading machine. The mechanical properties, 

obtained from the average of two coupons, are: yield stress (Fy) = 382 MPa, ultimate strength 

(Fu) = 552 MPa, modulus of elasticity (E) = 213 GPa and yield strain (ξy) = 0.002. A load of 

magnitude 2V is applied with an actuator as shown in Fig. 1 a, by symmetry each angle support 

a load of magnitude V. The displacement of the heel angle with respect to the column flange (Δ) 

is measured using a LVDT of 25 mm (see Fig. 1(c)). To measure displacements at various 

points of interest, a camera KRYPTON K600 was used, Fig. 1(a) shows the location of ten LED 

sensors. Based on their relative displacements the following can be measured: 

• L3 and L6 measure Δ (check the LVDT displacements) 

• L4 and L7 measure axial strain of the bolts. 

• L1 and L3, L3 and L5 measure the axial deformation of the angle wings. 

• L1 and L2, L5 and L6, measure the relative angle sliding with respect to the beam and 

column flanges respectively. 

• L6 and L8 measure the deformation of the simulated column. 

• L8 and L9 measure the axial strain of the bolt. 

• L9 and L10 measure the displacement of the actuator piston (check the displacements of 

the internal meter of the MTS machine). 

 

2.2 Ductility definition 
 

Ductility (μ) is usually defined as the ratio of Δmax.to Δy. There are several alternatives to 

define the yield displacement at the angles. Δy may be regarded as the displacement when the 

first fiber yield, or that produced when the angle mechanism occurs. Such deformation states 

correspond to the beginning and the end of the transition zone respectively in the V-Δ graph, 

bounded by Points 1 and 2 shown in Fig. 2.  Shen and Astaneh (1999) assume that Δy 

corresponds to the plastic mechanism formation from which ductility values from 8 to 10 are 

reported. Since for the first load levels, the stresses in the angles are due to bending and shear; 

yielding of the material gradually occurs with different intensity in each section, therefore, it is 

not observed a sudden loss of rigidity, but it occurs in a wide range of displacements already 

defined as the transition zone. Considering that the capacity to dissipate EH of the angles is an 

important parameter, a value of Δy obtained from the intersection of two straight lines as shown 

in Fig. 2 is suggested in this study, in such a way that the enclosed areas by these lines and the 

V-Δ monotonic are the same. Table 2 shows the values of Δy obtained according to this 

definition. 

 

2.3 Test sequence 
 
Monotonic and cyclic tests for a total of 15 specimens were developed, with gage (g1) of 80, 

90, 100 and 108 mm. For each g1, a test was carried out monotonically from which the yield 

displacement (Δy), the yield strength (Vy), the maximum displacement (Δmax) and the maximum 

force (Vmax) were determined, as defined below. 



 
 

After obtaining Δy, cyclic tests were performed for each gage with maximum ductility 

demands of 3, 6, 12 and 18. Table 1 shows the pattern of cyclic loading controlled by 

displacements, which is similar to that proposed by SAC (Structural Engineers Association of 

California, Applied Technology Council, California Universities for Research in Earthquake 

Engineering) (SAC/BD 1997) The amplitudes in each cycle are modified in proportion to Δy, 

until the Δmax corresponding to the ductility demand imposed on each test is reached. For the 

ductility of 3, 6, 12 and 18 the loading and reloading process is maintained until failure occurs. 

The loading speed in all cases was 1.5 mm/s.  

Table 2 shows the results of some specimens tested. The parameter used in the specimen 

names are self-explaining, for example L152-10-g90-D6 means that a sided angle of 152 mm, 

10 mm thick, 90 mm gage and a ductility demand of 6, were considered. The letter M in the 

Table 2 corresponds to a monotonic load test. Fig. 1(b) shows the gage (g1) and the effective 

gage (g2), the first is defined as the distance from angle heel to the screw center, and the second 

as the distance from the fillet side angle to the screw head, which is precisely the point where 

plastic hinges are formed. g2 largely defines the stiffness and the ductility and depends on the 

thickness of the angle, the size of the screws, and g1.  

 
 

3. Experimental results 
 

3.1 Failure patterns 
 
Fatigue failure occurred in the angles in all cases. Because of the large size and strength of the 

bolts, they remained perfectly elastic. A mechanism with three plastic hinges was formed; the 

first, parallel to the face of the column screws, and the others, in the angle fillets (see Fig. 1(c)). 

Fractures occurred in the fillet angle on the side of the column, except for the Specimens 5 and 

10; in these cases the screws are loosened, losing clamping with the column, allowing greater 

freedom of rotation and the fracture at the fillet on the side of the beam. In the monotonic tests, 

Δ corresponding to the first flow, is almost unnoticeable. When the mechanism is formed, Δ 

values were observed to be 2.3, 3.3, 4.5 and 5.5 mm in the specimens, for gages of 80, 90, 100 

and 108 mm, respectively. From the displacements recorded by the LEDs, it is observed that the 

bolts remain elastic, axial strains in the wings of the angles are negligible compared to Δ. There 

was no sliding of the angles relative to the beam. In the Specimens 5 to 10 small displacements 

relative to the column flange were observed since, as already mentioned, due to the number of 

cycles the bolts lost some tightening. In spite of this, no significant influence was observed in 

the hysteresis loops. 

 

3.2 Stiffness 
 
The initial stiffness (Kei) corresponds to the elastic behavior, it was determined by averaging 

the rigidity obtained in the first cycles of loading in the range of very small deformations before 

the transition. All of these cycles start at 0.05 mm and finalize between 0.2 and 0.6 mm, 

according to the gage increment. The post-yielding stiffness (Kp) is calculated after the 

transition zone, this remains practically constant up to the maximum displacement of the cycle. 

Table 2 shows the values of Kei and Kp. The reason of Kp to Kei (rp) varies from 0.09 to 0.15. Fig. 

3 shows the results of Specimens 9 and 12, which correspond to a monotonic and a cyclic test 

with the same gage, respectively, and the same ductility demand. It can be observed that: 

 The monotonic test curve is the envelope of the hysteretic cycles. 

 The origin of the reloading curve changes when increasing the cycle amplitude, 

however, it always cross the end point of the previous cycle. It indicates a hysteretic cycle 

shift which is produced by the Bauschinger effect.  

 There is no appreciable loss of initial stiffness. 

 There is an increment of Kp for the cycles with large displacements due to strain and 

geometry hardening (also found by Shen and Astaneh 1999, and Garlock et al. 2003). 

 



 
 

3.3 Number of load cycles 
 
Some zones of the world are exposed to strong earthquakes of large duration, as those 

occurred in Mexico City in 1985, in Chile in 2010 and in Japan in 2011. This implies that the 

structures are subjected to a large number of loading and unloading cycles and changes in the 

direction of the stresses in structural elements and connections. Table 2 shows the number of 

cycles to failure of the tested angles; it is clear that the capacity of number of cycles decreases 

rapidly as μ increases. Fig. 4 shows the number of cycles (CN) obtained from the experiments 

for each μ. The distribution of the results become asymptotic to the axes, that is, the number of 

cycles tends to zero as the ductility demand tends to infinity. By using regression analysis of the 

experimental results Eq. (1) is obtained. With this equation the maximum number of cycles that 

the angle supports can be calculated for a specified ductility demand. Eq. (1), known as the 

fatigue curve, is plotted in Fig. 4. 

 
63.13149  CN                                                           (1) 

 

3.4 Hysteretic energy 
 

In the case of PTSF with top and seat connection, the angles are the main elements that 

dissipate the energy. It is important to know the significant variables that affect its energy 

dissipation capacity, EH, which is defined as the sum of the areas enclosed in the hysteresis 

cycles up to failure. It is known to be a direct function of the volume of material that yields, 

then, EH increases when the size of the angle increases, and grows faster with increasing the 

angle thickness (Shen and Astaneh 1999, Garlock et al. 2003). Fig. 5 shows graphs of EH vs. μ 

for each gage obtained from Table 2. It can be observed that: 

 For a given μ, EH does not vary with g2. 

 For a given g2, EH decreases as μ increases. 

 In all cases, when μ decreases EH increases. The reason for this behavior, is that, 

although the cycle amplitudes are small, the number of cycles to failure increases. 

 There is a linear variation between EH and μ. 

By regression analysis of the experimental results Eq. (2), to calculate the EH as a function of 

μ, is obtained. It is noticed that Eq. 2 is only valid for steel G50 angles of 152x152x10 mm and 

152 mm length. 

 

849.184.51 HE  kN.m     (2) 

 

The hysteretic energy dissipated per unit length of the angles (EHb) can be calculated as 

follows: 

 

b

E
E H

Hb         (3) 

 

where b is the length of the angle. By taking b=152 mm and applying Eq. (3) to the results of 

this study, Eq. (4) is obtained, which is valid to calculate the hysteretic energy capacity per unit 

length, for angles of 10 mm thickness and any gage amplitude.  

 

012.0341.0 HbE  kN m/mm    (4) 

 

 

4. Analytical model for initial stiffness 
 

In order to estimate the initial stiffness, the angle is idealized as a structure frame and then the 

displacement method (Weaver and Gere 1980) is used to find the relationship between force and 



 
 

displacement in the elastic range. Fig. 6 shows the model used; without considering axial 

deformation it has two degrees of freedom in the node B: a linear displacement in y direction (δ) 

and the angular displacement (θ). The node A is fixed and represents the action of the column 

screw, the node C is restricted in x direction and to rotation; but it is free in the y direction. 

The rigidity EI is constant for the portions AB and BC of the idealized angle. The lengths gc 

and gv are parallel to the column and beam axis, respectively. The force V is applied to the end 

C of the member BC. The details of the analysis procedure are shown in (López-Barraza 2013), 

where is found that  the displacements δ and θ can be calculated as 
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where, E is the elasticity modulus and I is the moment of inertia of the longitudinal section of 

the angle. The moments at the ends of the bars are considered positive anticlockwise and are 

given by Eqs. (7), (8) and (9). It must be noted that the moment MAB has the largest magnitude 

followed by MBA, so that first plastic hinge will be formed at point A, and then, two plastic 

hinges will be simultaneously developed at point B, one at each side of the angle heel, as 

observed in the experiments. 
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Eq. (5) can be expressed as V=Kiδ which relates the force and displacement of the angle, 

where the initial stiffness iK  is given by:  

 



 
 



























v

c

v

c

c

i

g

g

g

g

g

EI
K

1

4
1

3
3

      (10)
 

 

To calculate Ki from Eq. (10), gc and gv lengths are measured from the face of the screw to the 

outside of the angle, it leads to the best approximation of the experimentally measured stiffness 

(Kexp). Kexp is calculated as the average of Kei values for each group with the same gage by using 

the experimental results shown in Table 2. In general Eq. (10) overestimates the initial stiffness 

by about 8.5%. In Fig. 7 the ratio (CK) of Kexp and Ki is plotted against gc/t. By a regression 

analysis the Eq. (11) is obtained, from which one can calculate the correction factor CK. 

Multiplying Ki per CK the corrected initial stiffness (Ki*) is obtained, which is closer to the 

experimental values, and the average error is reduced to 2%. Table 3 shows the values of CK 

calculated with Eq. (11) together with Ki and Ki*, the last column shows the error of Ki* with 

respect to Kexp. Eq. (10) and Eq. (11) constitute a simple option to calculate the initial stiffness 

of such angles. There is a linear variation of the initial stiffness with respect to gc/t, which is 

shown in Fig. 8 where the values of Kexp vs. gc/t are plotted. 

 

036.2)(882.0)(063.0 2 
t

g

t

g
CK cc

    

(11) 

 

 

5. Analytical model for the hysteretic cycles  
 

The dynamic analyses that reflect the actual behavior of steel frames with top and seat 

connections is very important in order to establish a mathematical model to properly reproduce 

the hysteretic behavior of the connection angles. Based on experimental results, some models 

have been proposed to represent the hysteretic cycles; Shen and Astaneh (2000) proposed a 

multi-linear model to capture the changes that occur when inelastic displacements are increased, 

Garlock (2003) proposed an envelope bi-linear model of the hysteretic cycles, Chou Chen 

(2011) proposed a bi-linear model too using plates instead of angles. From the experimental 

results it was observed that the hysteresis loops are stable and remain constant for a constant 

ductility demand, and that there is a wide transition zone between the first yield and the 

formation of the mechanism (curved portion of the graph V-Δ ), which makes it difficult to 

approximate by means of linear functions. To avoid this problem, in this paper an exponential 

equation is proposed based on the Richard model (Richard and Abbott 1975). With this 

continuous function, the loading and unloading cycles of the angles are modeled. This model is 

given by Eq. (12). 
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Where, V = force, Δ =displacement, rp = ratio of the initial stiffness and rigidity of post-

yielding, Vy = yield force, N = parameter that defines the curvature of the transition zone, φ = 

path of the unloading and reloading cycles, Va and Δa are the force and displacement where the 

cycle starts loading or unloading, and k represents the stiffness at initial loading, which can be 

kei or ki. 

For additional explanation some hysteretic cycles with different ductility demands, were 

separated from Fig. 3, which are shown with continuous line in Fig. 9; the plot of Eq. (12) is 



 
 

shown with dashed line. The values of the parameters used in the equation are: k = 35.9 kN/mm 

(calculated using Eq. (10) and (11)), rp=0.09, Vy = kDy=61.0 kN, N=1.5 and φ=2.0. Fig. 9 shows 

good approximation between the hysteretic cycles obtained experimentally and those obtained 

from Eq. (12). 

As earlier mentioned, for identical specimens, monotonic curves constitute the envelope of the 

hysteretic cycles. The monotonic curve can be adjusted with Eq. (12) by slightly changing the 

values of the parameters: for the first loading (virgin curve) φ=1.0, Δa=0 and Va=0. For 

unloading, φ =2.5, Δa and Va are the maximum values achieved in the loading cycle. k, rp, N and 

Vy are unchanged. Fig. 10 shows with continuous line the monotonic curve obtained 

experimentally for the Specimen 9 (part of Fig. 3); the dashed line is the plot of Eq. (12). 

 

 

6. Hysteretic model for post-tensioned connection 
 

6.1 Structural model of the connection 
 
One common way of representing the hysteretic behavior of a connection is through the 

moment-rotation curve (M-θr). Figs. 11(a)-(b) show a typical assembly of a post-tensioned 

connection and how it is deformed by bending. θr is the relative rotation of the beam axis with 

respect to the column and M is the bending moment at the end of the beam. 

Forces and moments acting on the connection are presented in Fig. 11(c); Va is identified as 

the force in the angle and can be calculated using Eq. (12), Ma
T
 and Ma

C
 are the moments at the 

angles under tension and compression respectively, P is the resultant axial force on the beam 

(axial strength PT strands system is included), and C is the resultant of compression acting on 

the center of rotation. According to experimental studies (Garlock et al. 2007), the rotation 

center is located at half thickness of the reinforcement plate of compression flange. The 

distances d1 and d2 are the lever arms measured from the center of rotation to the line of action 

of the forces Va and P respectively. 

The resultant axial force at the beam is given by: 

 

P = Ts + F      (13) 

 

where Ts is the resultant of tendon force and F is the force induced by the interaction of the 

floor system with the beam. By making moment summation about the center of rotation, 

without considering F, it is obtained: 

 

M= Tsd2 +Vad1+Ma
T
+Ma

C
     (14) 

 

Eq. (14) shows that angles and tendons work as springs in parallel, the Tsd2 term represents 

the contribution of the post-tensioned tendon to the moment of the connection, the remaining 

terms are the contributions of angles. In summary, it can be stated that the flexural strength of 

the connection is the superposition of the contribution of the tendons and that of the angles. 

 

6.2 Contribution of post-tensioned tendons 
 

To obtain the M-θr curve of the post-tensioned tendons, it is necessary to transform the axial 

stiffness (ks) of the tendons into a rotational equivalent stiffness (ksθ), which can be done as 

follows: 

The tension in the tendons (Ts) is the sum of the initial tension imposed (T0) and the additional 

tension caused by the connection gap (TΔ). Thus, 

 

 TTTs 0       (15) 

 

By expressing TΔ in terms of the connection gap (tension elongation) 



 
 

 

sss kTT  0       (16) 

 

where Δs is the elongation of the tendons due to the gap. From Fig. 11(c), d2 is the level arm of 

the resultant axial force in the beam with respect to center of rotation. Then, the following 

relationship can be established: 

 

rs d 22       (17) 

 

The factor 2 in Eq. (17) is to consider the two connections which influence the deformation of 

the tendons in the interior of a bay. Substituting Eq. (17) into Eq. (16) it gives: 

 

rss dkTT 20 2      (18) 

 

Eq. (18) is the relationship between the strength of the tendons and the rotation of the 

connection. Multiplying both sides of Eq. (18) per d2, it is obtained: 

 

rss dkdTM 2220 2      (19) 

 

by considering 

 
2

22 dkk ss        (20) 

 

and 

20dTM d        (21)
 

 

Eq. (19) can be written as  

 

rsds kMM       (22) 

 

ksθ in Eq. (22) is the contribution of the tendons to the rotational stiffness of the connection 

and Md  is known as the decompression moment. The later is the result of the initial tension so it 

is a constant, moreover, it represents the value of the moment just when the connection starts 

opening.  

 

6.3 Contribution of the angles 
 
The contribution of the angles to the connection resistant moment can be calculated as 

follows: 

 

1dVM aV 
      (23) 

 

In the elastic range, Va=Ki Δ, where Ki is the initial stiffness and Δ of the gap in the 

connection. It can established that Δ=d1 θr, then Va=Ki d1 θr. Substituting Eq. (23) it is obtained: 

 

riV dKM 21
      (24) 

 

From Eq. (24) it is observed that the contribution of the angles to the rotational stiffness of the 

connection is: 

 



 
 

2

1dKk iV        (25) 

 

6.4 Combined model for tendons and angles 
 

Since only the angles exhibit nonlinear behavior, the shape of the hysteretic cycle of a post-

tensioned connection is similar to that previously defined in Eq. (12). Based on this equation, 

and adding the contribution of tendons, Eq. (26) can be written, which defines the M-θr curve, 

for the hysteretic cycles of the post-tensioned semi-rigid connection. 
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 Ma and θa are the moment and rotation at the beginning of each cycle of loading or unloading, 

respectively, for the initial loading cycle Ma=Md and θa =0.0, for the unloading phase Ma and θa 

takes the maximum preceding values, My=Vy d1. rp, N and φ have the same meaning as defined 

before. 

To illustrate the use of Eq. (26), a connection was designed, similar angles to that of Specimen 

12, were considered. The beam section is a W18x46 with plates 25 mm thick placed in the 

flanges as reinforcement. Four tendons of 150 mm
2
, resistance of 279 kN and 8 m in length are 

used. The values of T0, d2, d1, Md, ksθ, kvθ, rp and My, are 433.8, kN, 242 mm, 519 mm, 105 kN-

m, 1757.8 kN-m/rad, 10235 kN-m/rad, 0.06, and 23.2 kN-m, respectively. Substituting these 

values in Eq. (25) with Ma=Md=105 kN.m, θa=0 and φ=1 for the loading cycle, and Ma=222 

kN.m, θa=0.033 rad and φ=2 for the unloading cycle the graph shown in Fig. 12 is obtained, 

which resembles the typical form of flag found in previous experimental studies (Ricles et al. 

2002, Garlock et al. 2005). 

 

6.5 Comparison with experimental results 
 

For the purpose of validating the accuracy of Eq. (26) it is plotted and compared with 

experimental results of post-tensioned beam-column assemblies (semi-rigid post-tensioned 

connection) developed by Garlock et al. (2005). The specimens considered are: Spec. 16s-45, 

Spec. 20s-18 and Spec. 36s-30, tested under cyclic loading for different levels of drift. The 

specimens correspond to an interior connection. 

The sections of the beam and the column are W36x150 and W14x398, respectively. Angles 

203x203x19 mm of 406 mm long, and plates of 25x356 mm with variable length are placed as 

reinforcement in the flanges, both of steel Fy=345 MPa. The tendons are of 140 mm
2
, steel A-

416 and their number is variable. In the specimens notation "16s-18", “16s” refers to sixteen 

strands and “18” to the initial tension of each strand in kips.  

Based on the geometry and material information reported, the required parameters in Eq. (26) 

are calculated. Fig. 13 reported by Garlock et al. (2005) shows the experimental results, the 

graphics obtained with Eq. (26) for specimens Spec. 16s-18, Spec. 20s-18 and Spec. 30s-36 are 

also presented in the Figure. This indicates a very good approximation between the equation 

plot and the experimental results that represent different combinations of relative contribution of 

angles and tendons, to the strength and stiffness of post-tensioned semi-rigid connections. The 

implementation of this model in a computer program for the dynamic analysis of post-tensioned 

frames with semi-rigid connections is simple and efficient since it is sufficient to consider the 

connection as an additional element of the structure while retaining the parameters that 

influence the strength, stiffness and energy dissipation capacity. An alternative very useful and 

powerful tool for calculating the parameters associated to the contribution of the angles in the 



 
 

proposed hysteretic model is the use PRCONN computer program developed by Richard and his 

collaborators (Richard ,1993). 

 

 

7. Conclusions 
 

To improve the knowledge of the performance of steel angles used in bolted connections 

under cyclic loading, a set of experiments with isolates steel angles with different gages (g2) was 

developed in order to know the rigidity, capacity to dissipate hysteretic energy (EH), and number 

of load cycles to failure for different ductility demands (μ). Mathematical models (Eq. 12) were 

built to represent the connections and the force-displacement hysteretic cycles (V-Δ). The results 

of the isolates angles were extended to post-tensioned semi-rigid connection and a continuous 

function (Eq. 26) that accurately models the moment-rotation (M-θr) hysteretic cycles was 

proposed. Some important observations are: 

 For a given μ, EH does not vary with g2. 

 For a given g2, EH decreases as μ increases. 

 In all cases, when μ decreases EH increases. 

 There is a linear variation between EH and μ. 

 There is a large variation while obtaining Ki in the experimental results, but its influence 

is small when compared with the large inelastic deformations, therefore, it does not 

significantly affect the final EH capacity. 

 The post-yielding stiffness in the angles varies from 0.09 to 0.15 of Ki. 

 Hysteretic cycles are stable and no significant degradation in strength and stiffness 

occurs. 

 Eq. (12) models with good accuracy the hysteretic cycles (V-Δ) of angles. 

 Eq. (26) reproduces with good accuracy the hysteretic cycles (M-θr) of post-tensioned 

semi-rigid connections, so it is a good option to implement it as a hysteretic model in 

computer programs of nonlinear dynamic analysis. 
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Fig. 1. Experimental model  

 

 

 
 

Fig. 2 Transition zone on the monotonic curve 

 

 

 
 

Fig. 3 Monotonic and cyclic tests (specimen 9 and 12) 
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Fig. 4 Fatigue curve 

 

 

 
 

Fig. 5 Hysteretic energy capacity of angles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Idealized angle 
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Fig. 7 Correction factor of Ki                          Fig. 8 Variation of initial stiffness 

 

 

 

 
 

Fig.9 Hysteretic cycles of specimen L152-10-g100-D11 

 

 

 
 

Fig. 10 Monotonic curve of specimen L152-10-g100-M 
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Fig. 11. Post-tensioned semi-rigid connection 

 

 

 

 

 
 

Fig. 12 Typical curve M-θr post-tensioned semi-rigid connection 
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Fig. 13 Experimental results Garlock (2005) and analytical model 

 

  

Eq. (26) 



 
 

Table 1 Loading History 

Load 

step 

No. Of 

cycles 

Cycle 

number 
Δ 

1 6 1 - 6 0.3Δy 

2 6 7-12 0.6Δy 

3 4 13-16 1.0Δy 

4 2 17-18 1.5Δy 

5 2 19-20 2.0Δy 

6 2
a
 

21-22 

(21→) 
3.0Δy 

7 2
a
 

23-24 

(23→) 
6.0Δy 

8 2 25-26 9.0Δy 

9 2
a
 

27-29 

(27→) 

12.0Δ

y 

10 …
a
 30→ 

18.0Δ

y 
a
Cycle was repeated until the specimen failed 

      

 

Table 2 Test specimens 
Specimen        . 

g2/t 
Δy Δm 

µ 
Vy  Vm Kei Kp 

Cycles 
EH 

No Name (mm) (mm) (kN) (kN) (kN/mm) (kN/mm) (kN.m) 

1 L152-10-g80-M 3.9 0.60 12.7 * 65.0 110.4 45.79 6.67 * * 

2 L152-10-g80-D12 3.9 * 7.2 12 * 95.2 68.15 * 118 33.05 

3 L152-10-g80-D18 3.9 * 11.0 18 * 103.7 140.40 * 61 23.60 

4 L152-10-g90-M 5.0 1.00 19.8 * 50.0 103.2 24.66 3.10 * * 

5 L152-10-g90-D3 5.0 * 3.0 3 * 57.0 57.56 * 1559 51.00 

6 L152-10-g90-D6 5.0 * 6.0 6 * 73.0 77.44 * 213 42.50 

7 L152-10-g90-D12 5.0 * 12.0 12 * 88.6 76.61 * 43 24.65 

8 L152-10-g90-D18 5.0 * 18.0 18 * 99.3 60.25 * 25 17.35 

9 L152-10-g100-M 6.0 1.70 18.0 * 47.5 87.7 26.40 2.32 * * 

10 L152-10-g100-D3 6.0 * 5.1 3 * 74.8 49.43 * 359 48.10 

11 L152-10-g100-D6 6.0 * 10.2 6 * 67.9 28.91 * 116 42.25 

12 L152-10-g100-D11 6.0 * 18.0 11 * 89.0 29.11 * 43 29.55 

13 L152-10-g108-M 6.9 1.75 22.0 * 40.0 78.1 14.41 2.00 * * 

14 L152-10-g108-D6 6.9 * 10.5 6 * 64.8 29.67 * 90 33.90 

15 L152-10-g108-D10 6.9 * 18.0 10 * 78.1 20.75 * 32 29.70 

 

 

Table 3 Initial Stiffness 

Specimens gc /t CK Kexp 

(kN/mm) 

Ki  

(kN/mm) 

Ki* 

(kN/mm) % Error 

1_3 6.25 1.016 84.78 85.51 86.86 2.4 

4_8 7.31 1.045 59.30 55.72 58.23 -1.8 

9_12 8.36 0.935 33.46 38.37 35.87 6.7 

13-15 9.20 0.746 21.61 29.37 21.91 1.4 

 

 

 


