

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA INGENIERÍA DE SISTEMAS – INVESTIGACIÓN DE OPERACIONES

ZONIFICACIÓN EMPLEANDO CENTROIDES POBLACIONALES PARA LA GENERACIÓN DE UN MODELO DE PARTICIÓN EN REDES. CASO: ESTADO DE HIDALGO.

TESISQUE PARA OPTAR POR EL GRADO DE: MAESTRO EN INGENIERÍA

PRESENTA: ING. EDGAR ALBERTO GERMÁN CASTELÁN

> TUTOR PRINCIPAL DRA. MAYRA ELIZONDO CORTÉS

MÉXICO, D. F. MARZO 2014

JURADO ASIGNADO

Presidente Dra. Idalia Flores de la Mota

Secretario Dr. Tomás Bautista Godínez

Vocal Dra. Mayra Elizondo Cortés

1er. suplente M.I. Héctor Daniel Reséndiz López

2do. suplente Dra. Patricia Balderas Cañas

Lugar o lugares donde se realizó la tesis:

Distrito Federal, México.

TUTOR DE TESIS

Dra. Mayra Elizondo Cortés

FIRMA

Agradecimientos

Al finalizar la presente investigación, y como cada mañana o cada noche, es posible hacer un recuento. En cualquier etapa existen personas que son o se vuelven importantes, incluso imprescindibles. Sea este espacio una pausa para agradecer a quienes han estado, y si puedo ser lo suficientemente afortunado, estarán.

A mis padres, porque a pesar de los años continúan siendo la referencia sobre mi manera de actuar y mis prioridades, y lo que quiero ser.

A mis hermanos, por su energía y su dedicación, su fantasía y su humor, y por toda la juanez reconcentrada que hay alrededor.

A los amigos del pueblo, a Happy Systems y los refugiados del provincia: Jozz, Vane, Frank y los Vecinos. A Lourdes, Apolonia y Uppsala.

A Rosalía, por mostrarme un nuevo camino a seguir.

Especialmente, a la doctora Mayra Elizondo y al doctor Tomás Bautista, por su apoyo en estas difíciles circunstancias. Y Marypaz, que siempre tuvo una sonrisa tras el ceño fruncido.

Al Consejo Nacional de Ciencia y Tecnología, por el apoyo económico otorgado para la realización de este proyecto.

Y por último, a la Universidad Nacional Autónoma de México por constituir, hoy como siempre, un segundo hogar donde crecer.

Índice

	Int	rod	ucción	1
I.	Pla	ante	eamiento del problema	3
	1.1	Z	onificación o particionamiento geográfico	4
	1.2		Aplicaciones de la zonificación	4
	1.3		Complejidad del Problema	5
	1	.3.1	Problemas NP (polinomial no determinístico)	5
	1	.3.2	El problema de diseño de zonas	5
	1.4		Alternativas de modelado y solución	7
	1.5		Justificación	8
	1.6		Hipótesis	9
	1.7		Objetivos de la Tesis	9
II.	. Ma	arco	o teórico	10
	2.1		Generalidades	11
	2.2		Características y elementos principales	12
	2.3		Campos de aplicación de la zonificación	14
	2.4		Alternativas de modelado del problema	16
	2	2.4.1	Modelos de programación matemática	17
	2	2.4.2	2 Modelos basados en técnicas de Geometría Computacional	17
	2	2.4.3	Modelos de partición de grafos	18
	2	2.4.4	4 Modelos de análisis "cluster"	20
	2.5		Métodos de solución	20
	2	2.5.1	Algoritmos pasivos	22
	2	2.5.2	2 Técnicas heurísticas y metaheurísticas	23
	2	2.5.3	Algoritmos exactos	26
II	I.	Z	onificación empleando centroides poblacionales para la generació	n de
uı	n mo	ode.	lo de partición en redes	31
	3.1		Propósito de la metodología	32
	3.2		Herramientas requeridas	32
	3.3		Georreferenciación de localidades en SIG	33
	3.4		Generación de centroides de población para cada UGB	33

3	3.5	Determinación de colindancias	34
3	3.6 Modelación de la red carretera del territorio bajo estudio		34
3.7 Generación de Matriz OD entre centroides		Generación de Matriz OD entre centroides	36
3	3.8	Generación de atributos de vértices (o nodos)	36
3	3.9	Atributos de aristas	36
3	3.10	Modelo de programación lineal	36
IV.	Aj	olicación en el estado de Hidalgo	39
4	4.1	Características del sistema bajo análisis	40
4	1.2	Generalidades del estado de Hidalgo	40
	4.2.1	Organización política y administración pública	40
	4.2.2	Dependencias del Gobierno del Estado de Hidalgo	41
	4.2.3	Características del territorio y población	42
4	1.3	Aplicación de la metodología	48
	4.3.1	Georreferenciación de localidades en SIG	49
	4.3.2	Generación de centroides de población para cada municipio	50
	4.3.3	Determinación de colindancias	52
	4.3.4	Modelación de la red carretera del territorio bajo estudio	53
	4.3.5	Matriz OD entre centroides	55
	4.3.6	Atributos de vértices (o nodos)	57
	4.3.7	Atributos de aristas	57
	4.3.8	Modelo de programación lineal	58
	4.3.9	Solución al modelo matemático	60
	4.3.1	O Análisis de la solución	62
V.	Concl	usiones	64
Bił	oliogra	fía	67
1	Anexo	I. Atributos de vértices (o nodos) en el grafo $G(V,A)$	71
I	Anexo	II. Atributos de aristas en el grafo $G(V,A)$	73
I	Anexo	III. Reporte de solución para el modelo matemático	77
I	Anexo	IV. Resumen de resultados (partición)	89

Índice de Tablas

Tabla 1. Terminología más usada en los problemas del diseño de zonas	12
Tabla 2. Criterios más utilizados en los problemas de diseño de zonas	. 13
Tabla 3. Campos de aplicación, características y autores relacionados	.14
Tabla 4. Campos de aplicación y criterios predominantes	.16
Tabla 5. Características de los métodos de solución	. 21
Tabla 6. Municipios y población del estado del Hidalgo	43
Tabla 7. Descripción de la red carretera	47
Tabla 8. Datos asociados a cada centroide	
Tabla 9. Atributos de aristas	56
Tabla 10. Clasificación de municipios por partición generada	60
Tabla 11. Atributos de las particiones generadas	62
Tabla 12. Análisis del cumplimiento de rangos de población	
Índice de Ilustraciones	
Ilustración 1. Principales campos de aplicación de la zonificación	4
Ilustración 2. Diagrama de Voronoi estándar	
Ilustración 3. Diagrama de Voronoi con Peso Multiplicativo (DVPM)	.18
Ilustración 4. Árbol de objetivos de la metodología	32
Ilustración 5. Herramientas requeridas para el desarrollo de la metodología.	32
Ilustración 6. Ejemplo de un caso de georreferenciación	.33
Ilustración 7. Ejemplo de grafo conexo	34
Ilustración 8. Ejemplo de modelación de red carretera	.35
Ilustración 9. Estado de Hidalgo, división política	
Ilustración 10. Participación relativa de los municipios según su población	45
Ilustración 11. Relieve del estado	
Ilustración 12. Red carretera del Estado de Hidalgo	
Ilustración 13. Visualización de localidades del estado de Hidalgo	
Ilustración 14. Centroide poblacional para el municipio Cuautepec	de
Hinojosa	
Ilustración 15. Centroides de población por municipio	.51
Ilustración 16. Colindancia entre municipios	
Ilustración 17. Red carretera del estado de Hidalgo	
Ilustración 18. Relieve (curvas de nivel) en el estado de Hidalgo	54
Ilustración 19. Representación como grafo de colindancias entre municipios	
Ilustración 20. Representación gráfica de la solución	.63

Introducción

Los problemas de optimización combinatoria en general, y de zonificación o particionamiento geográfico en particular, corresponden al ámbito de acción de la Investigación de Operaciones, para lo cual se han diseñado metodologías, algoritmos y modelos de muy variadas características. El elemento común de éstos se refiere a procurar la optimización en el uso de recursos o en la consecución de resultados basada en indicadores designados, a través del análisis matemático.

La diversidad de aplicaciones de la zonificación/partición da pie al desarrollo de alternativas que pueden seguir una o varias directrices con respecto a estudios ya realizados, como: mejorar la exactitud de los resultados, la orientación de los mismos a propósitos específicos, la dificultad o costo de la aplicación, o muy frecuentemente, relacionarlas con herramientas de diversas disciplinas para atender necesidades de sectores categorizados de mercado, a través de sistemas integrales de información.

En este sentido, la mayor parte de las investigaciones recientes se orientan a la subdivisión del espacio urbano, para propósitos de prestación de servicios públicos o privados, comercialización, planeación y control de usos de suelo y otros relacionados con la concentración de grandes poblaciones.

En este trabajo, se describe una aplicación que pretende adaptarse a condiciones de alta dispersión poblacional y una baja disponibilidad de vías de comunicación terrestre, condiciones que representan de forma simplificada la situación predominante en amplias regiones de nuestro país. A esto debemos sumar las dificultades impuestas al desplazamiento por las características naturales del terreno.

Estudios orientados a la subdivisión del entorno rural y semiurbano se han realizado en otros países desde hace varios años. Sin embargo, no debe perderse de vista la diferencia entre un territorio rural de Europa Occidental o de otros países desarrollados en relación con México y el conjunto de naciones en vías de desarrollo.

La mayor parte de las ocasiones, las extensiones de terreno analizado y la infraestructura vial disponible son notoriamente distintas de las existentes en México, hecho que puede cuantificarse mediante el concepto de densidad vial: longitud por unidad de área.

En las siguientes páginas, se describe el desarrollo de un proceso de particionamiento para el estado de Hidalgo, a partir de unidades geográficas básicas basadas en la división política existente, las cuales son consideradas comúnmente durante la planeación de proyectos de carácter público y privado orientados a la satisfacción de necesidades regionales¹. Con el propósito de validar los resultados de este particionamiento, se decide ajustar los requerimientos básicos del mismo a los considerados en la más reciente distritación determinada por el Instituto Federal

¹ Por ejemplo, las aportaciones federales para entidades federativas y municipios, o Ramo 33, que son el mecanismo presupuestario para transferir a zonas o regiones de interés recursos para fortalecer su capacidad de respuesta y atender demandas de gobierno en diversos rubros.

Electoral en 2004-2005, es decir, dividir el territorio del estado en siete regiones conexas, y equitativas poblacionalmente (tolerancia de 15% con respecto a la media).

No obstante, este trabajo no pretende sustituir a la metodología empleada por el IFE, ya que por extensión y alcance excede el objetivo de esta tesis. Adicionalmente, la metodología del IFE debe responder a todo tipo de entornos demográficos, mientras que el presente análisis busca ofrecer una alternativa de aplicación enfocada al entorno semiurbano y rural de nuestro país.

I. Planteamiento del problema

Contenido

Este capítulo está dedicado a describir los elementos básicos que motivan y justifican el presente trabajo.

- Zonificación o particionamiento geográfico.
- Aplicaciones de la zonificación.
- Complejidad del problema.
- Alternativas de modelado y solución.
- Justificación.
- Hipótesis.
- Objetivos de la tesis.

1.1 Zonificación o particionamiento geográfico

Los problemas de zonificación o particionamiento geográfico pueden expresarse en general de la siguiente forma:

"Un espacio estructurado en un conjunto de N unidades superficiales que, mediante la agrupación de dichas unidades, se divide en un número M menor de regiones o zonas que han de verificar unos criterios específicos." [Morenoll]

Esta clase de problemas se presentan en una amplia gama de aplicaciones. En todos los casos, el proceso de zonificación suele estar condicionado por:

- Criterios temáticos, dependientes del contexto (económico, demográfico, etc.), cuyo objetivo fundamental consiste en crear zonas preferentemente equilibradas respecto a uno o varios de estos criterios temáticos
- Criterios de carácter geográfico, que pueden considerarse restricciones espaciales, siendo los más comunes:
 - o Contigüidad.
 - o Conectividad.

1.2 Aplicaciones de la zonificación

La zonificación es un problema geográfico (aunque se ha extrapolado a entornos como la informática) que está presente en un amplio espectro de aplicaciones, desde la delimitación de distritos electorales a la de áreas específicas para la asignación de servicios socio-económicos, tales como servicios escolares, médicos, de ventas de productos, de recogida de basuras, etc.

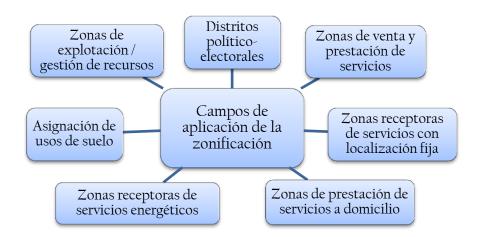


Ilustración 1. Principales campos de aplicación de la zonificación Fuente: Elaboración propia a partir de [Kalcsics05]

Los elementos característicos y las alternativas de solución de cada uno de estos campos de aplicación se describirán más adelante.

1.3 Complejidad del Problema

Muchos problemas requieren para su solución una serie de pasos, los cuales al agruparse, forman lo que se conoce como algoritmo. Los algoritmos se describen de manera conceptual y posteriormente se pueden llevar a su implementación en una computadora; normalmente los algoritmos se estudian para mejorar su eficiencia. Se entiende informalmente por eficiencia de un algoritmo si éste es más rápido y/o que ahorre memoria de manera considerable.

Una manera de estandarizar el análisis de la eficiencia de un algoritmo es comparando el número de ciclos de ejecución que éste representa; así los resultados dependerán del algoritmo de manera conceptual y no de la computadora en la que se implemente.

1.3.1 Problemas NP (polinomial no determinístico)

Un problema se encuentra dentro del conjunto NP si, y sólo si, puede resolverse mediante un algoritmo no determinístico en tiempo polinomial. El nombre NP proviene de "nondeterministic polynomial-bounded" (polinomialmente acotado no determinístico). Se les llama NP a la clase que contiene a los problemas tales que se resuelven a través de un algoritmo no determinista en un tiempo polinomial.

Un problema se dice polinomialmente transformable en otro, si existe una función f tal que en tiempo polinomial transforma los casos de un problema en el otro incluyendo las soluciones. Un problema se dice ser NP-completo si pertenece a la clase NP y todos los problemas de la clase NP son polinomialmente transformables a él. Un problema se dice que es NP-difícil si cumple con que todos los problemas de la clase NP son polinomialmente transformables a él pero él no necesariamente pertenece a la clase NP.

La clase de complejidad NP-completo es el subconjunto de los problemas de decisión en NP tal que todo problema en NP se puede reducir en cada uno de los problemas de NP-completo. Se puede decir que los problemas de NP-completo son los problemas más difíciles de NP y muy probablemente no formen parte de la clase de complejidad P. La razón es que de tenerse una solución polinómica para un problema de NP-completo, todos los problemas de NP tendrían también una solución en tiempo polinómico [Lara03].

1.3.2 El problema de diseño de zonas

El problema de diseño de zonas ocurre cuando n unidades geográficas deben agruparse en k zonas de tal forma que se optimice el valor de una función, normalmente asociada con el equilibrio entre zonas, sujeta a restricciones de la topografía del problema como es la conectividad.

Este tipo de problemas es especialmente difícil debido al tamaño del espacio solución. La dimensión de los problemas reales generalmente hace irrealizable cualquier tentativa de enumerar explícitamente todas las posibles soluciones. El número total de soluciones para dividir n unidades geográficas en k zonas está dado por el número de Stirling del segundo tipo [Altman97]:

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} \left[\frac{k!}{(k-1)!i!} \right] (k-i)^{n}$$

En casos especiales, se puede reducir el tamaño del espacio solución, por ejemplo si se generan zonas con exactamente r unidades geográficas, el número de soluciones es dado por:

$$S'(n,k,r) = \frac{n!}{k!(r!)^k}$$

A priori, como lo establece la literatura, incluso en casos muy especiales el espacio solución crece rápidamente. Aunado a lo anterior, se han demostrado los siguientes resultados en términos de complejidad computacional [Gilbert85]:

Propuesta l: Crear zonas ajenas con equilibrio poblacional es un problema NP-duro.

Propuesta 2: Crear una zona conexa que minimice el costo asociado a las unidades geográficas que la forman es un problema NP-duro.

Propuesta 3: Crear un plan de zonificación conexo y con equilibrio poblacional es un problema NP-duro.

Por lo tanto, diseñar zonas conexas con equilibrio poblacional, como ocurre con las zonas electorales, es un problema NP-duro, y tratar de resolverlo de manera exacta implicaría tiempos de búsqueda demasiado largos.

No obstante lo anterior, la alternativa exacta no queda del todo eliminada para esta clase de problemas, ya que dependiendo la formulación, es factible acotar los elementos que pueden generar la explosión combinatoria. Partiendo del principio de la continuidad en un conjunto de regiones, entonces cada unidad geográfica básica no interactúa directamente con el universo del resto de las unidades del mismo tipo, por lo que el conjunto de relaciones posibles se reduce de n(n-1) al definido por los límites geográficos efectivos, bastante más reducido.

1.4 Alternativas de modelado y solución

Como parte del campo de estudio de la Investigación de Operaciones, se han desarrollado diversas metodologías para aplicarlo a una situación determinada y obtener una solución factible, combinando los principales elementos de una estrategia de análisis del ramo, el modelado y la metodología de solución.

El modelado se refiere a la forma de representación matemática a través de la cual se trasladarán las condiciones del problema y del entorno a ecuaciones matemáticas, frecuentemente empleando analogías entre un problema y otro. Es un proceso que se sigue en numerosas ramas de la ingeniería.

Algunas formulaciones de modelo cuentan con amplias investigaciones que los soportan, además de la valoración sobre qué métodos de solución son los más adecuados para trabajarlos. Entre las principales opciones de modelación se encuentran las siguientes:

- Modelos de programación matemática
- Modelos basados en técnicas del Geometría Computacional
- Modelos de partición de grafos
- Modelos de análisis cluster
- Otros

Asimismo, en lo referente a las técnicas de solución, las más características son:

- Algoritmos pasivos
- Técnicas heurísticas y metaheurísticas
- Algoritmos exactos
- Mixtos o combinación de los anteriores

Las anteriores alternativas, tanto de modelado como de solución de modelos son expuestas en forma más amplia en el Marco de Referencia.

1.5 Justificación

Habiéndose descrito de forma breve el problema de zonificación/particionamiento, y de acuerdo con la investigación documental realizada respecto a este tema, se identifica que la mayoría de las investigaciones recientes se enfocan en la subdivisión de espacios urbanos, lo cual implica la generación de unidades geográficas básicas muy numerosas, además de condiciones de conectividad complejas para la prestación de servicios públicos o privados (planeación, construcción, comercialización, distribución y otras actividades relacionadas con la concentración de grandes poblaciones).

Dado lo anterior, se considera necesaria una revisión de alternativas de zonificación para entornos geográficos distintos, como los que suelen encontrarse en nuestro país a nivel regional. Es así que se pretende aplicar una metodología no enfocada a espacios urbanos o metropolitanos, más apegada a la dispersión geográfica de poblaciones que caracteriza a la mayor parte del territorio nacional.

No obstante de que existen estudios orientados a la zonificación de este tipo de territorio, los medios de análisis difieren debido al propósito del estudio o al contexto del mismo. Un ejemplo del primer caso es el interés creciente por la protección (o la explotación) racional de los recursos naturales con un enfoque de optimización [Sabatini03].

Por otra parte, y en referencia a las diferencias de contexto, no debe perderse de vista la diferencia entre un territorio rural en México y el correspondiente en países desarrollados [Eagleson01]. En la mayoría de las ocasiones, las extensiones de terreno analizado y la infraestructura vial disponible son notoriamente distintas de las existentes en la República Mexicana. Entre las diferencias se encuentran: territorios más reducidos y mayor disponibilidad y calidad de vías de comunicación. Sobre las metodologías de análisis para el problema de zonificación se incluye mayor información en el Marco Teórico de este documento.

Por las razones descritas, este trabajo presenta diferencias con la generalidad de los sistemas territoriales analizados en la literatura internacional sobre el tema. Por otra parte, los estudios que al respecto se han realizado en nuestro país se enfocan en el ámbito electoral, que responde a características muy específicas y constituyen un esfuerzo de carácter nacional, con grandes recursos técnicos para su elaboración.

En resumen, las actividades descritas en esta tesis buscan ofrecer una alternativa en materia de zonificación orientada a un espacio semiurbano o rural, haciendo uso de recursos técnicos accesibles (p. ej. conocimientos especializados, software) con el propósito de fomentar el uso de estas herramientas por parte de organizaciones de carácter local, orientadas a la prestación de servicios en áreas de baja concentración poblacional.

1.6 Hipótesis

La zonificación de un territorio rural mediante la modelación del mismo como un grafo conexo permite satisfacer simultáneamente criterios de equidad poblacional y conectividad entre las particiones creadas.

1.7 Objetivos de la Tesis

Objetivo General

 Proponer una metodología para aplicar el problema de zonificación en un entorno de alta dispersión geográfica de localidades y escasez de vías terrestres de comunicación², mediante la modelación del territorio como un grafo conexo, articulado por dichas vías de comunicación.

Objetivos Específicos

- Identificar antecedentes de zonificación.
- Seleccionar bases teóricas de investigación.
- Identificar criterios y requerimientos de la zonificación.
- Listar y georreferenciar Unidades Geográficas Básicas (UGBs).
- Crear grafo por agrupación de UBG's en centroides/municipios.
- Modelar red carretera del territorio.
- Obtener matriz de distancias entre centroides colindantes.
- Elaborar modelo de zonificación.
- Obtener zonificación factible del territorio.
- Selección de criterios de validación.
- Obtener una zonificación factible validada.

² Elementos característicos del entorno rural.

Marco teórico II.

Contenido

Este capítulo está dedicado a proporcionar las referencias teóricos que han sido importantes para abordar claramente el problema de zonificación o particionamiento geográfico óptimo, así como el estado del arte.

- Generalidades.
- Características y elementos principales.
- Campos de aplicación de la zonificación.
- Alternativas de modelado del problema.
- Métodos de solución.

2.1 Generalidades

Los problemas de zonificación o particionamiento geográfico pueden expresarse en general de la siguiente forma:

"Un espacio estructurado en un conjunto de N unidades superficiales que, mediante la agrupación de dichas unidades, se divide en un número M menor de regiones o zonas que han de verificar unos criterios específicos."

[Morenoll]

Esta clase de problemas se presentan en una amplia gama de aplicaciones. En todos los casos, el proceso de zonificación suele estar condicionado por:

- Criterios temáticos, dependientes del contexto (sociodemográficos, otros).
 - El objetivo fundamental consiste en crear zonas preferentemente equilibradas respecto a uno o varios de estos criterios temáticos
- Criterios de carácter geográfico, que pueden considerarse restricciones espaciales.

Existe un conjunto básico de condiciones, relativas a la creación de zonas contiguas y conexas (ver Tabla 2, página 16).

En la literatura correspondiente a esta clase de problemas, se les identifica con diferentes vocablos o expresiones, tales como:

- Regionalización Regionalisation [Assunção06]
- Diseño de Zonas Zone Design [Ochoa09]
- Zonificación Zoning [Guo00]
- Delimitación de Distritos Districting and Redistricting [MacMillan01]
- Diseño o Demarcación del Territorio Territory Design, Territory Alignment [Kalcsics05]
- Asignación De Unidades Espaciales Spatial Unit Allocation [Shirabe05a]
- Partición Partitioning [Tavares07]

Es frecuente encontrar en la literatura el uso indistinto de algunos de los términos anteriores. Por otra parte, se identifican conceptos de índole complementario o más específico como "Clustering Espacial o Geográfico", "Agregación Espacial, Territorial o Geográfica" y "Teselación Espacial (Spatial Tessellations)".

En el presente trabajo, continuaremos utilizando los términos 'zonificación' y 'particionamiento' de forma preferente, por considerarse los de significado más general y comprensible.

Al día de hoy, se pone de manifiesto la existencia de gran variedad de aplicaciones específicas y adaptadas a condiciones particulares del problema, dada la dificultad de diseñar herramientas de aplicación universal.

De este modo, a continuación se describe el panorama de los problemas de particionamiento y las opciones de solución más relevantes.

2.2 Características y elementos principales

Los procesos de partición espacial implican la división de un espacio geográfico en diferentes unidades o zonas según un conjunto específico de criterios. En ámbitos relacionados con las ciencias geoespaciales y la planificación territorial, la delimitación de estas zonas se realiza por agrupación de otras unidades básicas de área (códigos postales, secciones censales, distritos, barrios, etc.), representativas de una cierta estructura administrativa, jurisdiccional, política, etc., del espacio considerado.

Tabla 1. Terminología más usada en los problemas del diseño de zonas Fuente: [Morenol1]

Terminología	Descripción
Unidades básicas (o áreas básicas)	• Unidades básicas Sea X el conjunto de unidades básicas $X = \{x_1, x_2, \dots, x_n\}$, donde x_j es la unidad j -ésima.
Busicas	Estas unidades son objetos en el plano: puntos (direcciones geocodificadas), líneas (tramos de calle) o áreas geográficas (códigos postales, parcelas catastrales, unidades administrativas). El tipo de unidad básica más frecuente corresponde a un objeto de área.
	Cada una de estas unidades suele llevar asociado uno o varios atributos cuantitativos, denominados medidas de actividad "activity measure" (p.e. potencial de ventas, número de habitantes). En la mayoría de los casos se utiliza un único atributo que sirve para calcular el tamaño de las zonas.
Zonas o regiones	• Zonas (o regiones) Sea Z_i la zona o región i -ésima. Una zona es un subconjunto no vacío de unidades básicas $Z_i = \{x_{il}, x_{i2}, x_{ik}\}$
	Las regiones o zonas se construyen como agregados de las denominadas unidades básicas. El tamaño de una zona equivale al total del atributo de medida de las unidades básicas que contiene. Formalmente, sea $w(Z_i)$ el tamaño de la zona i , y w_j el valor del atributo de medida correspondiente a la unidad j , entonces: $w(Z_i) = \sum_{i \in \mathcal{I}_i} w_j$
	El número de zonas o regiones (m) suele ser un valor predeterminado, si
	bien, en algunos casos puede ser un parámetro del proceso. Si n es el número de unidades básicas, se ha de verificar $m < n$.
Centros (núcleos o semillas) de zonas	Generalmente se asocia un punto representativo a cada zona, que puede ser una localización específica o simplemente su centro geográfico. La mayoría de las veces este punto coincide con el centroide de una de las unidades básicas de la zona.
	Estos centros pueden ser puntos fijos, predeterminados de antemano, o bien

Terminología	Descripción	
	pueden establecerse aleatoriamente durante el proceso de zonificación. En este último caso, para elegir los centros se aplican métodos del tipo: P-mediana, P-centro, SPLP (Simple <i>Plant Location Problem</i>), etc.	
Plan o Zonificación	Plan o zonificación Sea p un determinado plan. Un plan es una división de X en un conjunto de zonas: $p=\{Z_1,Z_2,Z_m\}$	

Los anteriores conceptos serán retomados en capítulos posteriores aplicados al caso que justifica este trabajo.

Tabla 2. Criterios más utilizados en los problemas de diseño de zonas

Fuente: [Morenoll]			
Criterio	Descripción		
Objetivo de la zonificación	Puede describirse como la partición de un conjunto X de unidades básicas en un número ' k ' de zonas que satisfagan unos determinados criterios, espaciales y temáticos, tales como homogeneidad respecto al valor de uno o varios atributos y la conectividad.		
Integridad espacial (asignación	La condición de integridad se refiere a que cada unidad espacial básica sólo podrá estar contenida en una de las zonas.		
única de unidades básicas a zonas)	Las zonas definen un recubrimiento exhaustivo y exclusivo del territorio o espacio geográfico a dividir, es decir, las zonas definen una partición del conjunto X de unidades básicas.		
,	Sea X el conjunto de unidades básicas, $X = \{x_1, x_2, x_n\}$; ' m ' el número de zonas y Z_i el conjunto de todas las unidades básicas que pertenecen a la zona i . Se verifica que:		
	$Z_{i} \neq \emptyset, \forall i = 1,m, Z_{i} \cap Z_{j} = \emptyset, \forall i \neq j, \bigcup_{i=1}^{m} Z_{i} = X$		
Conectividad	Una zona o región tiene la propiedad de conectividad si es un recinto conexo. Un recinto es conexo si, entre dos cualesquiera de sus puntos, existe un camino totalmente incluido en él.		
	Una zona se construirá a partir de un conjunto de unidades espaciales geográficamente contiguas. Para generar zonas conexas se necesita información explícita sobre las relaciones de vecindad entre las unidades básicas.		
Homogeneidad (equilibrio o balance)	Todas las zonas deberían ser homogéneas, es decir, presentar tamaños similares respecto al atributo(s) considerado como medida de la actividad. Se dice que una zona Z_i es homogénea si su tamaño $w(Z_i)$ es igual al valor medio $\mu=w(X)/m$.		
	Ante la práctica imposibilidad de generar zonas totalmente homogéneas, se suele medir el porcentaje relativo de desviación de cada zona con respecto al tamaño medio. A mayor desviación, peor es el nivel de homogeneidad conseguido.		

Los criterios aquí listados se relacionan más adelante con los campos de aplicación más conocidos del problema de zonificación o partición.

Cabe mencionar la existencia de un criterio adicional que frecuentemente se considera deseable para la determinación de zonas o regiones, y que en términos generales se denomina compacidad. La concepción más sencilla del mismo se refiere a la minimización de la distancia total ponderada entre el centro de la zona y sus respectivas unidades básicas. Generalmente, el criterio de compacidad se introduce como un objetivo dentro de la función a optimizar y no como una restricción.

2.3 Campos de aplicación de la zonificación

La zonificación es un problema geográfico que está presente en un amplio espectro de aplicaciones, desde la delimitación de distritos electorales a la de áreas específicas para la asignación de servicios socio-económicos, tales como servicios escolares, médicos, de ventas de productos, de recogida de basuras, etc.

A continuación se citan los campos de aplicación más relevantes y los autores que han desarrollado sus investigaciones en ellos.

Tabla 3. Campos de aplicación, características y autores relacionados Resumen a partir de [Morenol1]

Aplicaciones	Aplicaciones Características	
Demarcación de distritos político- electorales	Consiste en la división de un área administrativa en subáreas cuya función consiste en elegir representantes políticos. Ha de satisfacer una serie de criterios que dependerán de cada país y jurisdicción. Objetivos Crear distritos con un tamaño poblacional similar y que constituyan recintos espaciales conexos.	Autores Benabdallah y Wright (1992) Horn (1995) Williams (1995) Hojati (1996) Mehrotra et al. (1998) Ricca y Simeone (2008)
Diseño de áreas de mercado o "territorios" de ventas y prestación de servicios.	Consiste subdividir su espacio de mercado en regiones o zonas de responsabilidad. Objetivos Crear regiones homogéneas en lo que respecta a uno o varios atributos (nivel medio de ventas, número de clientes potenciales) y que constituyan recintos espaciales conexos.	Hess y Samuels (1971) Segal y Weinberger (1977) Zoltners y Sinha (1983, 2001) Fleischmann y Paraschis (1988) Ríos-Mercado y Fernández (2009)
Zonas de uso de los servicios y equipamientos ubicados en una localización fija	Frecuentemente, los clientes tienen que acudir a un equipamiento para la prestación de un servicio (colegios, hospitales, etc.). Objetivos Crear regiones equilibradas en lo que concierne al reparto de recursos por habitante, y que dichas zonas sean conexas.	Armstrong et al. (1993) Stillwell y Langley (1999) Caro et al. (2004) Ahmadi (2006)

Aplicaciones	Características	Autores
Zonas para la prestación de servicios a domicilio	Servicios que se prestan de forma distribuida en un determinado ámbito geográfico (recolección de basura, limpieza de calles, asignación de ambulancias o de unidades de policía, bomberos, etc.). Objetivo Regiones lo más equilibradas posible respecto a la asignación de servicios, y que sean conexas.	Muyldermans et al. (2002) D'Amico et al. (2002) en la delimitación de distritos de policía.
Zonas receptoras de recursos energéticos	Consiste en la partición física de la red para generar zonas de distribución económicamente viables desde el punto de vista de las compañías eléctricas. Objetivo Generar un entorno de mercado que fomente la competitividad entre empresas, mediante zonas equilibradas respecto a su potencial económico de ganancias y no se superpongan espacialmente.	Bergey et al. (2003) Tiede y Strobl (2006)
Zonas para la asignación / adquisición de usos del suelo	Selección de conjuntos de parcelas u otras unidades del terreno de forma que se consiga un aprovechamiento sostenible y eficiente de los recursos y actividades productivas, se mejore la protección medioambiental y se facilite la igualdad social. Además, en algunas de estas aplicaciones, el objetivo principal es la adquisición de terrenos, de forma que las parcelas se agrupen en zonas de máxima superficie y mínimo coste. Objetivo Recintos conexos que permitan una explotación eficiente de sus recursos.	Gilbert et al. (1985) Tomlin y Johnston (1990) Diamond y Wright (1991) Benabdallah y Wright (1992) López-Blanco (1994) Crema (1996) Eastman et al. (1998) Cromley y Hanink (1999) Cova y Church (2000) Williams (2002) Aerts et al. (2002)
Otros campos de aplicación: Zonas para la	Pueden anadirse aplicaciones para el mejor planeamiento y la gestión de los recursos naturales. La necesidad de definir particiones espaciales	Reitsma et al. (2004) Reitsma y Trubin (2007) Particionamiento de
explotación o gestión de recursos	cuyos elementos tengan un tamaño predeterminado, ajustado a las características de cada problema, introduce una tipología específica en el diseño de zonas.	espacios de información

Cabe destacar dentro de los anteriores campos de aplicación, la extensión del enfoque de zonificación a entornos distintos del puramente geográfico (particionamiento de información), lo cual abre la puerta a investigaciones y al desarrollo de metodologías orientadas a las nuevas aplicaciones.

Tabla 4. Campos de aplicación y criterios predominantes Fte. Elaboración propia a partir del texto de [Kalcsics05]

C	Tipos de cri	terios		
Campos de aplicación	Espaciales	Temáticos		
(A) Distritos políticos o electorales	Integridad (exigido) Conectividad (exigido)	Zonas equilibradas en población		
(B) Zonas de venta y prestación de servicios	(exigido casi siempre)	Zonas equilibradas respecto a 1 o N atributos (media de ventas,)		
(C) Zonas receptoras de servicios situados en una posición fija	Conectividad (exigido casi siempre)	Zonas equilibradas en asignación de recursos		
(D) Zonas de prestación de servicios a domicilio		Zonas equilibradas en prestación de servicios		
9	Conectividad (recomendable)	Zonas equilibradas en consumo energético o en fuentes de energía		
(F) Zonas para la asignación de usos del suelo	Integridad (exigido) Conectividad (recomendable)	Zonas equilibradas y eficientes en la explotación de sus recursos		
Otros campos de aplicación				
(G) Zonas para la explotación/gestión de recursos existentes	Integridad (exigido) Conectividad (exigido)	Zonas de diferente tamaño en recursos, ajustadas a necesidades específicas		

Como se muestra en la Tabla 4, los criterios básicos de Integridad y Conectividad son relacionados con los campos de aplicación tradicionales. El nivel de requerimiento se establece como Exigido, Exigido Casi Siempre, Recomendable, Mínimamente Recomendables y lo que podríamos considerar No Deseado, aunque en realidad no se especifica.

2.4 Alternativas de modelado del problema

El problema del diseño de zonas puede formalizarse con diferentes modelos matemáticos, buscando la solución óptima o una zonificación satisfactoria de entre todas las soluciones posibles. De forma general, se plantea la búsqueda de las soluciones que minimicen o maximicen una determinada función objetivo (F(Z)) y cumplan algunas restricciones. Las restricciones determinan el conjunto de soluciones o alternativas factibles, y se usan para eliminar los candidatos cuyas características no verifican las condiciones impuestas.

El modelo de solución más simple consiste en considerar el problema como una partición de conjuntos [Mehrotra98]. Otras posibilidades son el análisis cluster, la partición de grafos y la programación matemática (lineal, entera o entera mixta). A continuación se describen sucintamente estos modelos, utilizados en problemas de diseño de zonas de carácter discreto.

2.4.1 Modelos de programación matemática

Para definir un modelo de programación matemática es preciso establecer la función objetivo a optimizar y las restricciones que se deben verificar, de tal manera que la solución del modelo permita obtener el valor óptimo del problema original. Cuando el modelo usa solamente funciones lineales, se le conoce por el nombre de modelo de programación lineal. Además, si todas las variables desconocidas han de ser enteros, el modelo se denomina de programación entera (IP) o programación lineal entera (ILP). Si sólo algunas de estas variables han de ser de tipo entero, se denomina modelo de programación entera mixta (MIP).

La mayor dificultad de este tipo de modelos en relación al problema de zonificación reside en formalizar explícitamente la condición de conectividad en términos algebraicos. En esta línea de investigación se han desarrollado varios modelos de programación entera mixta (MIP), en los que tanto las restricciones como la función objetivo son ecuaciones lineales, y sólo algunas de las variables de decisión son enteras (un caso se muestra en [Shirabe05a]).

2.4.2 Modelos basados en técnicas de Geometría Computacional

El Diagrama de Voronoi es uno de los métodos clásicos de regionalización del espacio alrededor de un conjunto predeterminado de puntos o generadores. Se basa en encontrar el generador más próximo a cada punto del espacio. Los conjuntos que se obtienen forman una teselación del plano, en el sentido de que son exhaustivos (todo punto del plano pertenece a alguno de ellos) y mutuamente excluyentes salvo en su frontera, como lo muestra la siguiente ilustración.

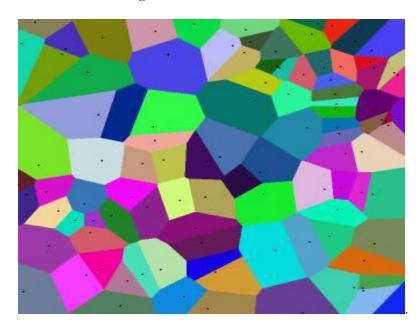


Ilustración 2. Diagrama de Voronoi estándar Fuente: [Morenol1]

A continuación se desarrollaron los Diagramas de Voronoi Generalizados, entre los que se encuentran los diagramas de Voronoi con peso.

Diagramas de Sea $P = \{p_1, ..., p_n\}$ un conjunto de puntos en el plano euclídeo y w_i el peso de p_i . Voronoi con Peso para todo i entre 1 y n. Se denota por $d_w(p, p_i)$ a la distancia entre p y p_i que, en el contexto de diagramas de Voronoi con peso, depende del valor w_i del punto p_i .

A continuación se muestra un ejemplo.

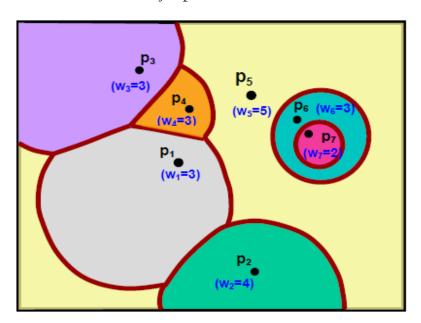


Ilustración 3. Diagrama de Voronoi con Peso Multiplicativo (DVPM)
Fuente: [Morenol1]

Los diagramas de Voronoi han sido utilizados en problemas de partición espacial y de zonificación. Ante la complejidad de los problemas a tratar, no sólo se han utilizado los diagramas de Voronoi estándar sino también los diagramas de Voronoi generalizados, ya sean de potencia, con peso aditivo o con peso multiplicativo.

2.4.3 Modelos de partición de grafos

El diseño de zonas también puede modelarse como un problema de partición de grafos (PPG), consistente en dividir un grafo en piezas que tengan aproximadamente el mismo tamaño y con el menor número de conexiones entre ellas.

Bajo este enfoque, la red se modela por un grafo, cuyos vértices y aristas representan las UGB y sus relaciones de adyacencia, respectivamente.

La representación del territorio mediante un grafo es muy sencilla, ya que cada unidad básica se corresponde con un vértice o nodo y cada una de sus relaciones de adyacencia con una arista. Para representar ciertas características, ya sea de las

unidades o de las relaciones entre cada par de ellas, se pueden asociar pesos a los nodos y aristas respectivamente.

Cuando se parte el grafo, se trata de minimizar el peso total de las aristas que unen vértices en diferentes particiones, a la vez que se distribuye el peso de los vértices equitativamente entre las particiones.

Un grafo es, de acuerdo con [Diestello], un par G = (V, A) de conjuntos tal que $A \subseteq [V]^2$, por lo que los elementos de A son subconjuntos de dos elementos de V. Para evitar ambigüedades de notación, siempre se deberá asumir tácitamente que $V \cap A = \emptyset$. Los elementos de V son los vértices (o nodos o puntos) del grafo G, los elementos de G son sus aristas (o líneas).

De acuerdo con la definición anterior, sea un grafo G(V, A), donde $V = \{1, 2, ..., i, ..., n\}$ es el conjunto de vértices y $A = \{a_1, ..., a_k, ..., a_m\}$ el conjunto de las aristas que determinan la conectividad entre dichos vértices, de forma que $a_k = \{i, j\}$ representa la adyacencia entre los vértices i y j.

El problema de partición de grafos consiste en dividir V en k partes (subconjuntos o subgrafos) V_I , V_2 ..., V_k , siendo k > I, de forma que las partes son disjuntas, $V_i \cap V_j = \emptyset$ $\forall i \neq j$, tienen el mismo tamaño y como ya se señaló, se minimiza el número de aristas que conectan vértices situados en diferentes subgrafos.

El problema de la zonificación puede formularse como la partición de los nodos de un grafo en varios subgrafos disjuntos. La condición de conectividad está representada intrínsecamente por la existencia de aristas. El resto de criterios que caracterizan el problema se pueden expresar como objetivos del proceso de partición, por ejemplo, que la suma de los pesos de los nodos de cada subgrafo sea la misma, y que se minimice o maximice la suma de los pesos de las aristas cuyos nodos finales pertenecen a varios subgrafos.

La forma más simple de resolver el problema de partición es la enumeración del espacio completo de soluciones, pero esta estrategia sólo es válida para grafos de tamaño trivial. Como alternativa, la mayoría de los métodos exactos tratan de reducir el espacio de soluciones enumerado de forma explícita.

"La estrategia más utilizada es la formulación del problema mediante un modelo de programación lineal entera (Integer Linear Programming, ILP) [Rao96], que se puede resolver con el algoritmo de ramificación y corte [Nemhauser 99]."

Respecto a esta alternativa se destacan los siguientes trabajos:

• [Guo00], diseñando un algoritmo que fue implementado en la aplicación conocida por el nombre de MOZART (Multi-Objective Zoning and AggRegation Tool).

_

³ En la definición anterior se sustituye la notación 'E' por 'A' significando la traducción 'edges' por 'aristas', en concordancia con otras fuentes revisadas.

- [D'Amico02], diseñando un modelo para la demarcación de zonas de atención policial que fue aplicado en el Departamento de Policía de la ciudad de Buffalo.
- [Assunção06], modelando el diseño de zonas socio-económicas con un algoritmo denominado SKATER (Spatial Kluster Analysis by Tree Edge Removal), implementado en software de código abierto y forma parte de la biblioteca SIG de TerraLib.
- [Tavares07], creando un método de diseño de zonas basado en múltiples criterios, que aplican a un problema de transporte en la región de París, para redefinir las zonas de precio fijo de los billetes.

Al respecto existen también numerosos algoritmos heurísticos para encontrar soluciones aproximadas de manera eficiente. El algoritmo de refinamiento local de Kernighan-Lin es uno de los más difundidos al respecto [Kernighan70].

2.4.4 Modelos de análisis "cluster"

El problema de diseño de zonas comparte una serie de elementos comunes con el análisis cluster. No obstante, existen algunas diferencias entre los objetivos y restricciones que caracterizan a uno y otro. El objetivo del análisis cluster consiste en agrupar elementos para generar conjuntos internamente homogéneos y diferentes entre sí. En la mayoría de las aplicaciones del diseño de zonas se presenta el caso contrario, la agregación tiene por objetivo generar conjuntos que sean similares y homogéneos entre sí. Además, la consideración de restricciones de carácter espacial (conectividad, compacidad...) son las que han establecido más diferencias entre ambos problemas.

2.5 Métodos de solución

En la literatura pueden encontrarse alternativas para distintas aplicaciones de este problema. A pesar de que genéricamente se realiza un mismo procedimiento, cada aplicación de las anteriores (y de otras que no se mencionen) tiene características especiales.

En el caso de las zonas de venta/servicio suele tomarse como un criterio fundamental los tiempos de recorrido al interior de las zonas. En la definición de zonas escolares, se maneja una estrecha relación entre la capacidad de servicio y una población específica. El caso de la geometría electoral es uno de los más estudiados, por su trascendencia en los procesos políticos de los Estados. Se tiende en este caso a obtener la igualdad entre zonas con respecto al número de habitantes, y en algunos casos, a priorizar la agrupación de ciertas minorías para que no vean menoscabada su influencia en un entorno poblacional de dimensiones mucho mayores (p. ej. etnias indígenas).

En la Tabla 5 se muestran las características de algunos de los métodos de solución más difundidos.

Tabla 5. Características de los métodos de solución. Elaboración propia a partir de [Morenol1]

Características y conjuntos de datos utilizados Nº máximo de unidades básicas 'n' en diferentes métodos de solución para problemas de diseño de zonas Nº máximo de zonas 'm' Preselección de semillas 'Pr' (SI/NO/SD)

problemas de diseño de zonas			Preselección de semillas 'Pr' (SI/NO/SD)			
n	M	Autores	Modelos y/o técnicas de solución	Objetivo/Aplicación Informática	Pr. (SI/ NO/SD)	
n <= 50	m <= 6	Garfinkel y Nemhauser (1970)	Partición de conjuntos/ Enumeración implícita (a)	Distritos políticos	SD	
		Mehrotra et al. (1998)	Idem (a)	Distritos políticos	SD	
n <= 100		Shanker et al. (1975)	Idem (a)	Distritos políticos	SD	
		Nygreen (1988)	Idem (a)	Distritos políticos	SD	
		Williams (2002)	MIP y spanning trees	Distritos políticos	SD	
	m <= 5	Solís et al. (2009)	Uso de MIP con técnicas de branch-and-bound	Zonas de atención comercial	SD	
	m <= 7	Bação et al. (2005)	Algoritmos genéticos	Distritos políticos	NO	
n <= 200	m = 1	Shirabe (2005)	MIP, técnicas de flujo de redes		SI / NO	
	m ε [15 86]	Eagleson (2003)	Agregación espacial- temática	Zonas de gestión administrativa/ Implem. en ArcView, con scripts de Avenue	SI	
n <= 500	m <= 10	Ríos-Mercado y Fernández (2009)	Modelo MIP. Algoritmo GRASP	Zonas de atención comercial	SD	
	m <= 5	D'Amico et al. (2002)	Partición de un grafo constreñido/simulated annealing	Distritos policiales	SD	
n <= 600	m ε [10 100]	Guo et al. (2000)	Partición de grafos multinivel con programación en paralelo	Aplicación MOZART integrada en el entorno de MapInfo	SD	
	m <= 5	Tiede y Strobl (2006)	Clustering jerárquico, agregativo y espacialmente constreñido	- Zonas de recursos energéticos/Extensión del entorno ArcGIS 9	SI	
n <= 1000	m <= 19	Bozkaya et al. (2003)	Tabu search	Distritos políticos	SD	
	m ε [200 530]	Martin (2000) Pruebas para The Tandem Consortium (Joint UNECE/	Algoritmo AZP estándar	- Zonas socioeconómicas - Programa AZM	SD	

Características y conjuntos de datos utilizados № máximo de unidades básicas 'n' en diferentes métodos de solución para № máximo de zonas 'm' problemas de diseño de zonas Preselección de semillas 'Pr' (SI/NO/SD)

	n	M	Autores	Modelos y/o técnicas de solución	Objetivo/Aplicación Informática	Pr. (SI/ NO/SD)
			EUROSTAT, 2001)			
n <= 200		m ε [2 300]	Assunção R. et al. (2006)	Algoritmo SKATER (Spatial 'K'luster Analysis by Tree Edge Removal)	-Zonas socioeconómicas/ Incluido en la biblioteca SIG de TerraLib	SD
		m ε [20 30]	Tavares-Pereira et al. (2007)	Algoritmo LSEA (Local Search Evolutionary Algorithm)	- Zonas condicionadas por múltiples criterios	NO
		m ε [8 28]	Ricca et al. (2008)	Partición de grafos con diagramas de Voronoi con peso	Distritos políticos	NO
n · 50		m ε [5]	Ochoa et al. (2009)	Clustering espacialmente constreñido/ Uso de técnicas de partición de grafos.	Zonas demográficas	NO
n 85	< 500	Με [10 100]	Kalcsics et al. (2009)	Partición geométrica denominada "dicotomías sucesivas". Algoritmo implementado en un grafo de contigüidad.	- Zonas genéricas para geomarketing: desarrollo programa Business-Manager, extensión de ArcGIS	NO

2.5.1 Algoritmos pasivos

Se les denomina de esta forma en contraposición con los métodos donde la intervención del usuario pasa por definir explícitamente la función objetivo, las restricciones consideradas y la secuencia de pasos a seguir para llegar a un plan final, y que por tales características pueden identificarse como 'algoritmos activos' [Escandón04]. Los algoritmos pasivos se refieren principalmente a los incluidos en paquetería de software principalmente orientada a Sistemas de Información Geográfica (SIG).

Una de las definiciones más extendidas sobre los Sistemas de Información Geográfica es la de Peter Burrough [Burrough86]:

"un conjunto de herramientas para recoger, almacenar, recuperar a voluntad, transformar y mostrar los datos espaciales del mundo real para un conjunto particular de propósitos"

Estos algoritmos relacionados con software, permiten el diseño de zonas al tiempo que muestran las desviaciones con respecto a los objetivos dados y dejan que el usuario modifique las zonas diseñadas mientras le muestran los cambios que esto produce en los objetivos. Asimismo, presentan mapas del diseño de zonas generado que permiten distinguir en la pantalla las zonas creadas y comprobar visualmente el cumplimiento de restricciones como ubicación y conectividad.

Sin embargo, las características del problema o requisitos del usuario pueden sobrepasar las capacidades o funciones de los algoritmos comerciales; por ejemplo, el software utilizado puede ser incapaz de trabajar con funciones multi-objetivo. Además, el usuario se encuentra limitado al uso de las medidas de equilibrio poblacional o compacidad incluidas en sus herramientas.

Las aplicaciones para el trazado automático de zonas se han desarrollado como programas independientes o bien han sido integradas en un entorno SIG, ya que estas plataformas, dotadas de funciones de gestión, almacenamiento, visualización y análisis espacial de datos geográficos, carecen con frecuencia de este tipo de herramientas.

2.5.2 Técnicas heurísticas y metaheurísticas

En general, los métodos más empleados para forzar la conectividad en problemas de partición espacial, abordan la búsqueda de soluciones con procedimientos de tipo heurístico. Una heurística es cualquier método que se considera útil en la resolución de un problema para el que no se puede garantizar una solución óptima (o aproximadamente óptima). Estas técnicas son capaces de encontrar buenas soluciones, pero no pueden garantizar matemáticamente la mejor solución ni determinar la desviación respecto a ésta.

Una de las definiciones más extendidas sobre estos métodos los describe como "procedimientos simples, a menudo basados en el sentido común, que se supone ofrecerán una buena solución (aunque no necesariamente óptima) a problemas difíciles, de un modo fácil y rápido" [Zanakis81].

No obstante, conforme se efectúan más investigaciones al respecto, surgen nuevos enfoques y conceptos que ayudan al desarrollo de dicha área. En fechas más recientes, Weise [Weise09] ha definido las técnicas heurísticas como "una parte de un algoritmo de optimización que utiliza la información recopilada actualmente por el algoritmo para ayudar a decidir qué solución candidata debe ser probada a continuación o cómo el individuo siguiente puede ser producido".

En términos generales, se dice que los algoritmos aproximados aportan soluciones cercanas a la óptima en problemas complejos (NP-duros) en un tiempo razonable.

Los algoritmos que utilizan estas técnicas sólo procesan los elementos del espacio de búsqueda (conjunto de elementos que pueden ser soluciones) que han sido previamente seleccionados por estas funciones. La aplicación de estos métodos al diseño de zonas permite reducir el conjunto de planes candidatos a analizar.

Heurísticas tales como recocido simulado (simulated annealing), búsqueda tabú (tabu search) o algoritmos genéticos se han utilizado en modelos de programación entera o mixta, modelos de partición de grafos o modelos de análisis cluster, que han sido implementados en diversas aplicaciones para el trazado automático de zonas. En general, estos algoritmos tratan el problema de partición espacial como uno de optimización combinatoria.

El uso de métodos heurísticos es adecuado cuando:

- El problema es de una naturaleza tal que no se conoce ningún método exacto para su resolución.
 - Aunque existe un método exacto para resolver el problema, su uso es computacionalmente muy costoso.
- El método heurístico es más flexible que un método exacto, permitiendo, por ejemplo, la incorporación de condiciones de difícil modelación.
- El método heurístico se utiliza como parte de un procedimiento global que garantiza el óptimo de un problema. Existen dos posibilidades:
 - o El método heurístico proporciona una buena solución inicial de partida.
 - o El método heurístico participa en un paso intermedio del procedimiento.

Metaheurísticas

En los últimos años han aparecido una serie de métodos bajo el nombre de metaheurísticos con el propósito de obtener mejores resultados que los alcanzados por los heurísticos tradicionales. Los procedimientos metaheurísticos se sitúan conceptualmente "por encima" de los heurísticos en el sentido que guían el diseño de éstos.

Una metaheurística es "un proceso maestro iterativo que guía y modifica las operaciones de heurísticas subordinadas para producir, de forma eficiente, soluciones de alta calidad. En cada iteración, puede manipular una solución (completa o incompleta) o un conjunto de soluciones. Las heurísticas subordinadas pueden ser procedimientos de alto o bajo nivel, o simplemente una búsqueda local o método constructivo" [Voss99].

Existen varias clasificaciones de las mismas Se dividen, por ejemplo, en algoritmos "bioinspirados" (algoritmos genéticos, colonia de hormigas, etc.) y "no bioinspirados". en función de la utilización o no de memoria, o dependiendo del uso de funciónes objetivo estáticas o dinámicas. Otra clasificación reciente surge al diferenciar los métodos que mantienen una única solución, frente a los que mantienen un conjunto de soluciones. [Pelta00]

De acuerdo con [Morenoll], las técnicas heurísticas y metaheurísticas que más se han utilizado en los problemas de diseño de zonas para la búsqueda de soluciones buenas o casi-óptimas, son las siguientes:

Búsqueda en escalada (hill climbing).

Consiste en generar una solución aleatoria inicial a la que se va aplicando, de forma iterativa, pequeños cambios que suponen una mejora progresiva. El algoritmo termina cuando no se consigue ningún tipo de mejora. El mayor problema de esta técnica es que puede converger rápidamente, quedando atrapada con facilidad en un óptimo local.

Recocido simulado (simulated annealing).

Tiende a encontrar, con un elevado nivel de confianza, una buena aproximación al óptimo global de una determinada función en un espacio solución de grandes dimensiones. Se suele usar cuando este espacio es discreto.

El nombre de este algoritmo proviene del proceso metalúrgico "annealing" (recocido), que implica el calentamiento y enfriamiento controlado de un material, con el objetivo de minimizar sus defectos. El calentamiento provoca que los átomos dejen sus posiciones iniciales (un mínimo local de la energía interna) y pasen aleatoriamente a través de estados de mayor energía. El enfriamiento lento proporciona a los átomos más oportunidades de encontrar configuraciones de menor energía interna que el estado inicial. Por analogía con este proceso, cada punto s del espacio de búsqueda corresponde a un estado de un cierto sistema físico y la función a minimizar, E(s), a la energía interna del sistema en dicho estado. El objetivo es que el sistema pase de un estado arbitrario inicial a otro con la mínima energía posible. En cada fase del algoritmo se reemplaza el estado actual s por otro aleatorio s ' muy próximo, que se acepta con una cierta probabilidad.

Búsqueda tabú (tabu search).

Es un procedimiento de búsqueda local basado en movimientos iterativos, de una solución x a otra x' situada en su vecindad $(N^*(x))$, hasta que se cumple algún criterio de parada.

Para explorar el espacio solución, este algoritmo modifica el conjunto vecindad de cada x según avanza el proceso. La nueva vecindad, es decir, el conjunto de soluciones admitidas para $N^*(x)$, se determinan mediante el uso de ciertas estructuras de memoria, como por ejemplo la lista tabú. En esta estructura se almacenan las n soluciones candidatas que se han visitado recientemente, en las últimas m iteraciones realizadas por el algoritmo (m <= n). El objetivo es conseguir que el proceso no vuelva a visitar dichas soluciones y se evite la aparición de ciclos.

GRASP (Greedy Randomized Adaptive Search Procedure).

Los métodos citados anteriormente son más sofisticados y mejores que las versiones básicas de este algoritmo, pero también es cierto que requieren unas

estructuras de datos más complejas y un mayor esfuerzo computacional. GRASP consiste básicamente en un proceso iterativo en el que cada iteración consta de dos fases: construcción y post-proceso.

En la primera fase se construye una solución s viable y, en la segunda, se le aplican reiteradas mejoras mediante un procedimiento de optimización local. Esta optimización tiene por finalidad mejorar el valor de la función objetivo y es el proceso que supone la mayor carga computacional.

La aplicación de este algoritmo en problemas de diseño de zonas no está tan extendida como las heurísticas anteriores.

Algoritmos genéticos (Genetic algorithms).

Son un tipo de algoritmos evolutivos inspirados en los procesos genéticos de los organismos naturales y en los principios de la evolución natural de poblaciones. Su idea básica es mantener una población de cromosomas, los cuales representan soluciones candidatas a un problema concreto, que evolucionan con el tiempo a través de un proceso de competición y variación controlada.

Un algoritmo genérico necesita definir dos elementos básicos: una representación genética del espacio solución (p. ej. un array de bits, una estructura de grafo, etc.), y una función de ajuste para evaluar dicho espacio. Una vez que se han definido estos elementos, el algoritmo genera aleatoriamente una población inicial de soluciones, que irá mejorando progresivamente mediante la aplicación reiterada de operadores de mutación, cruce, inversión y selección.

A lo largo del proceso se van creando sucesivas generaciones de soluciones, para lo que se utiliza la función de ajuste que prima, según sus criterios, a las soluciones "mejores" o más adecuadas, ya que éstas tienen más probabilidad de ser seleccionadas. El proceso generacional se repite hasta llegar al número máximo de generaciones o hasta que se cumple una condición de parada. Este tipo de algoritmos ha sido muy utilizado en procedimientos de búsqueda en problemas del tipo P-mediana, análisis cluster y partición de grafos.

2.5.3 Algoritmos exactos

Para completar la relación de las alternativas más utilizadas en los modelos de solución, se describen las características y variantes de la programación lineal entera y mixta, y se cita el método determinista "branch and bound" (ramificación y acotación), cuyo objetivo es encontrar soluciones óptimas mediante la enumeración implícita del universo de soluciones, así como el método "branch and cut" (ramificación y corte) derivado del anterior y del poco utilizado Planos de corte. Una aplicación de este algoritmo en un modelo de programación entera mixta, se encuentra en el trabajo de [Solís09].

Programación lineal entera

Con el término Programación lineal entera, (integer programming, IP), nos referiremos al siguiente tipo de problemas: problemas que formalmente son problemas de programación lineal, $max = min \ Z = Ax = b; \ x >= 0$ pero en los que algunas variables están restringidas a tomar valores enteros.

Por ejemplo, $x_1 >= 0$; $x_2 >= 0$ y entera, $X_3 \in \{0; 1\}$, x_1 una variable como las que hemos manejado hasta ahora, x_2 una variable entera no negativa y x_3 una variable binaria, que toma únicamente dos valores, $0 \circ 1$.

Los problemas de programación lineal entera nos van a permitir modelar muchas mas situaciones que la programación lineal, pero a cambio la resolución de los problemas será mucho más costosa, presentarán, en general, un costo computacional mucho mas elevado que el de la programación lineal.

La causa de este incremento de costo computacional se debe a que se pierde la deseable propiedad existente en los problemas de programación lineal de que al menos una solución óptima del problema se encuentra en un punto extremo. En estos problemas los conjuntos ya no tienen que ser conexos (pueden estar definidos por partes) y mucho menos convexos con lo que la idea de punto extremo tal y como la hemos definido desaparece.

De todos modos, para su resolución aún pueden utilizarse técnicas basadas en el simplex.

Las variables binarias $x_j \in \{0, 1\}$ pueden utilizarse para modelar situaciones en las que se decide si una acción se realiza, $x_i = 1$, o si no se realiza, $x_i = 0$.

Alternativas de solución

En el caso particular de los problemas que involucran exclusivamente variables binarias, la naturaleza finita del número de variables y de los valores de las mismas (0,1) conduce a que el número de soluciones factibles sea por definición finito, no obstante lo cual, la enumeración de las mismas tiende a volverse computacionalmente compleja al aumentar la cantidad de las variables a considerar.

Por ejemplo, si en un problema se tiene x_1 , x_2 que toman valores 0/1 entonces se probarán las soluciones $(x_1, x_2) = (0, 0)$, $(x_1, x_2) = (0, 1)$, $(x_1, x_2) = (0, 1)$ y $(x_1, x_2) = (1, 0)$. Obviamente, cuando el número de variables es grande dicha comprobación/enumeración de las soluciones se complica, por ejemplo, si se tienen 10 variables x_j que toman valores 0/1 el número de posibles soluciones es $2^{10} = 1024$, y si se consideran 100 variables puede alcanzarse el número de $2^{100} = 1.267 \times 10^{30}$, etc.

De acuerdo con lo anterior, el número de posibles soluciones aumenta de acuerdo a la razón 2^n para problemas binarios, siendo n el número de variables a considerar. No obstante, algoritmos como *Branch and Bound* y *Branch and Cut*

permiten la examinación de muchas soluciones de golpe y de mecanismos para descartar conjuntos de soluciones sin necesidad de comprobarlas una a una. Dicho proceso se denominaría enumeración implícita de soluciones, ya que se consideran pero no se llegan a tomar explícitamente.

En el caso específico de los problemas lineales binarios, Mateo y Lahoz describen un método enumerativo que aborda dichas características [Mateo09].

Método de Ramificación y Acotamiento

El método de ramificación y acotamiento (o *Branch and Bound*) comienza con una relajación del problema, dejando de lado las restricciones de integralidad. Se construye así un árbol con soluciones enteras particionando el conjunto de soluciones factibles y descartando soluciones fraccionarias. Realiza de este modo una enumeración implícita de las soluciones enteras factibles. De manera general, el problema a resolver se expresa de la siguiente forma:

(P)
$$min \ z = c^T \cdot x$$

 $s.a: A \cdot x \le b$
 $x \in IN$

Se inicia luego el algoritmo con un problema relajado en que no se consideran las restricciones de integralidad:

$$(P_0) \min z = c^T \cdot x$$

$$s.a: A \cdot x \le b$$

$$x \in IR +$$

Además definiremos \overline{z} como mejor solución entera, que inicialmente tomaremos como $\overline{z} = \infty$. Si el problema fuera binario, no se consideran las restricciones de $x_i \in \{0, 1\}$, pero deben agregarse las $de \ 0 \le x_i \le 1$.

Ramificación

Suponiendo que en algún nodo del árbol se tiene un problema (P_k) con un conjunto de restricciones R_k . y solución óptima tal que $X_i^* = f$, con f un número fraccionario. Entonces, se ramifica este problema en otros 2 subproblemas en que se agrega a cada uno una restricción que impida a X_i tomar el valor f:

$$(\boldsymbol{P}_{k}^{-}) \min z = c^{T} \cdot x$$
 $(\boldsymbol{P}_{k}^{+}) \min z = c^{T} \cdot x$
 $s.a$ $s.a$ $s.a$ $x \in R_{k}$ $x_{i} \leq |f|$ $x_{i} \geq |f| + 1$

Acotamiento

A través del proceso de ramificación se obtienen todas las soluciones factibles enteras del problema original. Sin embargo, un nodo del árbol puede no requerir mas ramificaciones para continuar la búsqueda de la solución, en cuyo caso se dice que se sondea (o poda) esa rama. Dicho de otro modo, se omite la verificación de grupos de soluciones que se sabe no contienen soluciones factibles. Esto puede ocurrir por las siguientes razones [Goic04]:

- 1. El problema en el nodo es infactible por lo que todos los subproblemas generados a partir de él serán infactibles también.
- 2. El problema en el nodo tiene un valor óptimo Z^* peor que la mejor solución entera encontrada $Z^* \ge \overline{z}$, por lo que todos los subproblemas generados a partir de él serán peores.
- El problema en el nodo tiene una solución entera. Si el valor óptimo Z* es mejor que la mejor solución encontrada hasta el momento Z* ≤ z̄, se actualiza la mejor solución presente como z̄ = Z*.

Método de Ramificación y Corte

Cuando el número de restricciones lineales de *IP* es grande o cuando al problema relajado se añaden familias de desigualdades válidas para el problema entero, se requiere un algoritmo que pueda identificar estas desigualdades dinámicamente, es decir, identificar cuales están violadas para así sólo introducir éstas en el problema lineal.

El método de ramificación y corte (o *branch and cut*) es una variación del método de ramificación y acotamiento para resolver problemas de programación matemática lineales con variables enteras incluyendo un nuevo componente, una técnica de hiperplanos de corte para resolver los distintos problemas que se van generando.

Para $h \geq 0$, sea LP(h) la relajación lineal de IP que contiene un subconjunto razonable de restricciones de $LP(\infty)$. Cuando se soluciona LP(h), se obtiene una solución óptima $X^*_{LP(h)}$. Si esta solución es factible para IP, es su solución óptima; en otro caso, supondremos que tenemos un algoritmo que nos da al menos una restricción de $LP(\infty)$ violada por $X^*_{LP(h)}$ si alguna existe, o si no, nos dice que todas se satisfacen. Si hay algunas violadas, son añadidas a LP(h), de forma que se obtiene una nueva relajación LP(h+1). Se observa que si $Z_{LP(h)}$ es el valor óptimo de LP(h), entonces:

$$Z_{LP(h)} \subseteq Z_{LP(h+1)} \subseteq Z_{LP(\infty)} \subseteq Z_{IP}$$
 (si la función objetivo es a minimizar).

Dicho algoritmo se denomina algoritmo de separación. Por lo tanto, debería acabarse con una solución óptima de $LP(\infty)$, que si es entera, será la solución

óptima de IP, sin necesidad de que todas las restricciones sean incorporadas al programa informático encargado de resolver el problema lineal. En la práctica, puede tenerse un algoritmo de separación que no sea exacto, es decir, puede ser que no devuelva una restricción violada cuando haya alguna. A pesar de todo, es cierto que el valor de la relajación lineal es una cota inferior de $Z_{\rm IP}$.

Si no se ha alcanzado la solución óptima de *IP*, comienza el proceso de ramificación propio de los algoritmos de ramificación y acotación. Se descompone el problema en dos nuevos problemas; por ejemplo, añadiendo una cota superior y otra inferior a una variable que toma un valor fraccionario en el problema relajado actual, y se procede a resolver cada nuevo problema por el mismo método.

En el algoritmo de ramificación y corte, la enumeración de problemas y la inserción de cortes produce beneficios; por un lado, la cota producida en cada nodo del árbol de ramificación es, en general, mejor que en un algoritmo de ramificación y acotación, porque nuevas desigualdades son añadidas a la relajación del problema LP; por otro lado, el algoritmo de ramificación y corte obtiene ventaja del proceso de separación ya que produce una perturbación sobre la solución fraccionaria, de tal forma que puede que haya nuevos cortes válidos para el problema, que no lo son para $LP(\infty)$. La combinación de estas dos técnicas es el componente base del algoritmo de ramificación y corte.

III. Zonificación empleando centroides poblacionales para la generación de un modelo de partición en redes.

Contenido

El presente capítulo establece las principales características de la metodología que se propone de acuerdo con los objetivos de la presente Tesis.

- Propósito de la metodología
- Herramientas requeridas
- Georreferenciación de localidades en SIG
- Generación de centroides de población para cada UGB
- Determinación de colindancias
- Modelación de la red carretera del territorio bajo estudio
- Generación de Matriz OD entre centroides (red carretera/distancia euclidiana)
- Generación de atributos de vértices (o nodos)
- Atributos de aristas
- Modelo de programación lineal

3.1 Propósito de la metodología

Como se establece en la justificación y objetivos de este proyecto, la presente metodología pretende aportar una herramienta de análisis geográfico a nivel regional, considerando características presentes en amplias porciones del territorio mexicano, a saber, alta dispersión poblacional y niveles aceptables de conectividad terrestre entre localidades. A continuación se muestra el árbol de objetivos de la metodología.

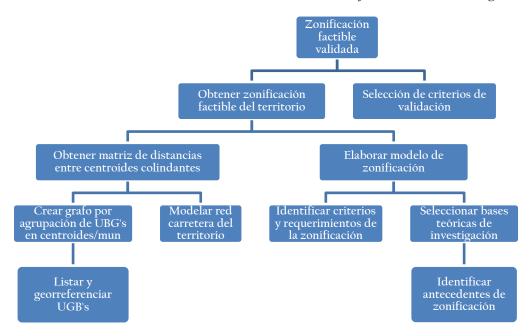


Ilustración 4. Árbol de objetivos de la metodología Elaboración propia.

3.2 Herramientas requeridas

Para el desarrollo de esta metodología, se consideran las siguientes herramientas:

Ilustración 5. Herramientas requeridas para el desarrollo de la metodología Fuente: Elaboración propia

3.3 Georreferenciación de localidades en SIG

En los últimos años se ha extendido el uso de herramientas computacionales para el tratamiento de los problemas de análisis geográfico. Como se ha mencionado, del conjunto de localidades pertenecientes a una unidad geográfica básica (UGB) se obtendrá una posición geográfica única que represente de mejor manera la distribución de las masas de población en esa unidad geográfica. La inclusión del universo de localidades en un Sistema de Información Geográfica se hace tanto con intenciones de visualización como de análisis.

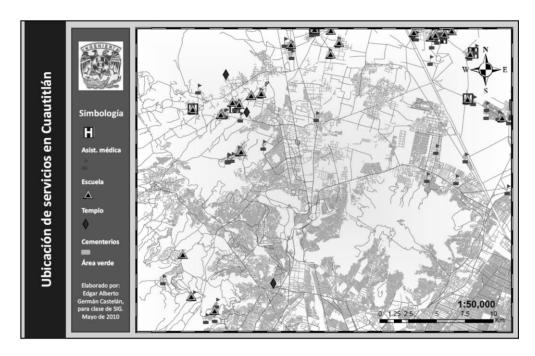


Ilustración 6. Ejemplo de un caso de georreferenciación Fuente: Elaboración propia

3.4 Generación de centroides de población para cada UGB

Para cada UGB se determinará la posición de su centroide poblacional mediante las siguientes expresiones:

$$Latitud \ m = \sum \frac{H_{im}}{H_m} \times Latitud \ i$$

$$Longitud \ m = \sum \frac{H_{im}}{H_m} \times Longitud \ i$$

donde:

 H_{im} = Número de habitantes de la localidad i de la UGB m.

 H_m = Número de habitantes de la UGB m.

Con el proceso anterior se ha convertido el problema de partición del territorio en un problema de redes sobre un grafo con tantos nodos como UGB's.

En las secciones siguientes se determinarán las características de las aristas asociadas a este grafo, lo que más adelante nos permitirá la modelación como un problema lineal.

3.5 Determinación de colindancias

Sea por inspección visual o mediante revisión de la información oficial respecto a límites, se determina la colindancia entre las UGB, estableciendo las aristas del grafo a modelar.

La definición de estas colindancias debe considerar las características del sistema bajo análisis y los objetivos del proyecto. En el presente trabajo, dicha colindancia no está basada directamente en la contiguidad simple de las UGB's, en su forma de límites o fronteras, sino que se establece a partir de la existencia de vías de comunicación terrestre que entre una UGB y otra.

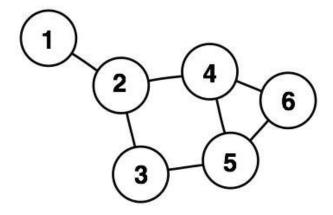


Ilustración 7. Ejemplo de grafo conexo Fuente: Elaboración propia

3.6 Modelación de la red carretera del territorio bajo estudio

La disposición de información con respecto a las vialidades nos permite establecer el grado de comunicación de un punto con respecto a otro. Naturalmente, existe un gran número de vialidades que no pueden no ser incluidas en el modelo utilizado, principalmente porque se utilizan exclusivamente para desplazamientos locales, al interior de una misma UGB. El criterio de inclusión parte de los objetivos del presente estudio, que están orientados a la interacción entre de una UGB con otras colindantes, no así a los desplazamientos al interior de la misma. Sin embargo, se estimará un parámetro acerca de estas vialidades secundarias y su influencia respecto a la comunicación con otras UGB's.

La estructura de una red de transporte responde a la distribución de las poblaciones y se ve fuertemente acotada por los accidentes geográficos del entorno.

En esta metodología se consideran las consecuencias de una orografía compleja exclusivamente a través de la configuración de la red carretera existente. No obstante, un análisis más completo podría incluir atributos adicionales en dicha red. Información sobre pendientes y curvas de nivel permitirían una estimación más exacta y fundamentada sobre los tiempos de desplazamiento sobre dichas vialidades.

La ilustración 9 representa la modelación de la red carretera del estado de Chihuahua y su incidencia en los desplazamientos a través de distintas unidades geográficas.

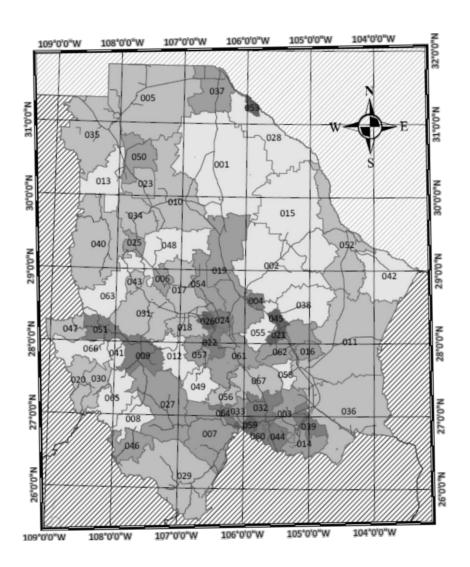


Ilustración 8. Ejemplo de modelación de red carretera Fuente: Elaboración propia

3.7 Generación de Matriz OD entre centroides

Mediante el Sistema de Información Geográfica, se efectúa un análisis de distancias entre centroides o nodos adyacentes, considerando desplazamientos sobre la red carretera. Por otra parte, se determinará el conjunto de distancias euclidianas, sin considerar vialidades ni accidentes geográficos, como una medida de comparación entre vialidades trans-regionales e inter-regionales.

3.8 Generación de atributos de vértices (o nodos)

Para la generación de un modelo matemático, es necesario relacionar atributos entre los componentes del grafo. Siendo el grafo G(V,A), tendrán los vértices (o nodos) asociado un atributo de población. Para fines de planeación, debería estimarse una proyección sobre la dinámica poblacional en cada uno de las UGB's, para que eligiendo un horizonte de planeación apropiado para el proyecto que motiva la zonificación, pueda a su vez elegirse una población de referencia que pueda relacionarse con el modelo matemático.

3.9 Atributos de aristas

En cuanto a las aristas, que definen la colindancia entre UGB's, se les asignará un atributo costo *Cij* obtenido mediante la siguiente expresión:

$$C_{ij} = \frac{H_i \times H_j}{d^2}$$

donde:

Hi = número de habitantes de la UGB i

Hj = número de habitantes de la UGB j

d = distancia de referencia entre las poblaciones i y j.

3.10 Modelo de programación lineal

Se propone el siguiente modelo de programación lineal.

Variables de decisión

Sea
$$P_k X_i$$
, \bullet con valor de 1 si la UGB i existe en la partición k , y \bullet 0 eoc.

Sea $P_k X_i i j$, \bullet con valor 1 si el arco X_{ij} existe en la partición P_k , $k = 1,2,3,4,5,6,7$; y, cero eoc.

- Sea C_{ij} el costo asociado a la existencia del arco (o arista) que va de la UGB i a la UGB j
- Sea H_i , el número de habitantes de la UGB i.

Max =

$$\sum_{i=1}^{i}\sum_{j=1}^{j}\sum_{k=1}^{k}C_{ij}\times P_{k}X_{ij}$$
 (función objetivo)

Maximiza la agrupación de grandes poblaciones relativamente cercanas en una misma zona

s.a:

$$\sum_{i=1}^{i} H_i \times P_k X_{ij} \ge L_i$$
 (restricción l, de población)

Limita la población de cada una de las zonas *k* por encima del límite inferior antes mencionado.

$$\sum_{i=1}^{i} H_i \times P_k X_{ij} \leq L_s$$
 (restricción 2, de población)

Limita la población de cada una de las zonas k por debajo del límite superior antes mencionado.

$$\sum_{i=1}^{i} P_{k} X_{i} = P_{k} X_{ij} + 1$$
 (restricción 3, de agrupamiento)

Establece el número de arcos indispensables para definir una partición, que debe ser inferior en 1 al número de UGB's existentes en la zona.

$$\sum_{i=1}^{i} \sum_{k=1}^{k} P_k X_{ij} \ge 1$$
 (restricción 4, de conectividad)

Establece que cada UGB *i* que exista en una partición *k* debe estar conectado al menos a un arco.

$$\sum_{i=1}^{k} P_{i} X_{i} = 1$$
(restricción 5, de existencia de nodos)

Establece que cada UGB i debe existir forzosa y exclusivamente en una sola partición.

$$P_k X_i + P_k X_j \ge (2 \times P_k X_{ij})$$
......(restricción 6, de existencia de arcos)
Establece que para que exista un arco ij en la partición k , deben de existir las UGB's ij en la misma partición.

Resultado

La solución del modelo de programación lineal entera descrito da como resultado la asignación de valores (0,1) a cada uno de los arcos $P_k X_{ii}$ modelados, siendo aquellos

que obtienen el valor "l" los que definen la existencia de la colindancia X_{ij} en la partición P_k . A partir de este conjunto de arcos "activos", y de conformidad con las restricciones (3), (4), (5) y (6), se establece el conjunto de nodos o UGB's que se encuentran contenidas en cada partición k, lo que determina de acuerdo con el propósito del estudio, la zonificación del sistema.

El modelo de programación lineal resultante se resuelve mediante el uso del software especializado como Lingo o IBM Cplex.

IV. Aplicación en el estado de Hidalgo

Contenido

Este capítulo documenta la aplicación de la metodología descrita anteriormente en un caso de estudio basado en las características territoriales del estado de Hidalgo.

- Características del caso-ejemplo
- Generalidades del estado de Hidalgo
- Aplicación de la metodología
 - o Georreferenciación de localidades en SIG
 - Generación de centroides de población para cada municipio
 - o Determinación de colindancias
 - Modelación de la red carretera del territorio bajo estudio
 - o Matriz OD entre centroides
 - o Atributos de vértices (o nodos)
 - o Atributos de aristas
 - Modelo de programación lineal
 - o Representación gráfica de la solución

4.1 Características del sistema bajo análisis

La administración de los programas gubernamentales de apoyo, fomento y dirección dependientes de los gobiernos nacionales, estatales y de otras instancias requiere con frecuencia la división del territorio sobre el que se debe operar para facilitar la coordinación de sus actividades, o por otra parte, garantizar el eficiente uso de los recursos escasos con los que se cuenta para realizar un proyecto. Ejemplos de esta situación pueden encontrarse en materia de salud, fomento a la agricultura, turismo, entre otras.

La mayor parte de esta clase de proyectos tiene como fundamento de operación maximizar el alcance o influencia que deben alcanzar con respecto a un grupo de población, por lo que esta variable constituye un primer factor de decisión. El siguiente factor, de manera general, es la ubicación geográfica de dichas poblaciones, para lo cual suele procurarse la minimización de distancias al interior de las poblaciones.

Las condiciones arriba mencionadas con respecto a población y distancias, constituyen un problema de optimización combinatoria multicriterio, en el cual debe de agruparse un conjunto finito de elementos considerando dos criterios independientes.

4.2 Generalidades del estado de Hidalgo

A continuación se describen las características principales del territorio bajo estudio, con el propósito de desarrollar una zonificación que facilite la provisión de servicios públicos a través de la administración estatal. Éste es un caso hipotético para fines de ejemplificación. Tomando en cuenta diversas opciones para la validación de esta metodología, las condiciones bajo las que se efectúa este desarrollo son similares a las que rigen la distritación electoral vigente aprobada por el Instituto Federal Electoral. Se escoge el anterior elemento de comparación dada la confiabilidad exigida a un producto tan proclive a la controversia como la definición de zonas electorales.

4.2.1 Organización política y administración pública

De acuerdo al artículo 40 de la Constitución Política de los Estados Unidos Mexicanos, la República queda constituida por Estados libres y soberanos en todo lo concerniente a su régimen interior, pero unidos en una federación establecida según los principios de la misma ley (la Constitución).

Los fines que persigue la administración pública son todos los propósitos que el Estado pretende alcanzar, que de forma genérica pueden englobarse en el concepto "bienestar social". Esta clase de administración comprende el conjunto de organizaciones públicas que realizan la función administrativa y de gestión del Estado y de otros entes públicos con personalidad jurídica, ya sean de ámbito

regional o local. Sus elementos fundamentales son la organización, coordinación, finalidad, objetivos, métodos operativos, planeación, control y evaluación.

La administración pública de un territorio y población requiere frecuentemente la fragmentación de las actividades del Estado en unidades administrativas menores, por lo que la adecuada definición de estas zonas permite aprovechar de mejor manera los recursos escasos de los que se dispone.

4.2.2 Dependencias del Gobierno del Estado de Hidalgo

Los principales organismos derivados del Poder Ejecutivo a nivel estatal, y que tienen jurisdicción sobre el territorio susceptible de ser fragmentado para su mejor administración son los siguientes:

- Secretaría de Gobierno:
- Secretaría de Finanzas;
- Secretaría de Administración:
- Secretaría de Desarrollo Social;
- Secretaría de Planeación y Desarrollo Regional;
- Secretaría de Obras Públicas, Comunicaciones y Transporte;
- Secretaría de Desarrollo Económico;
- Secretaría de Agricultura y Desarrollo Rural;
- Secretaría de Turismo;
- Secretaría de Contraloría;
- Secretaría de Educación Pública;
- Secretaría de Seguridad Pública;
- Procuraduría General de Justicia;
- Secretaría de Salud;
- Secretaría del Trabajo y Previsión Social;
- Secretaría de Medio Ambiente y Ordenamiento Territorial;

Intuitivamente, pueden identificarse numerosas aplicaciones del problema de partición de acuerdo a las actividades particulares de cada organismo, para la provisión de servicios de justicia, salud, educación, obras públicas, por mencionar las más evidentes.

4.2.3 Características del territorio y población

Población

El Estado de Hidalgo es una de las partes integrantes de la Federación, según se estipula en el artículo 43 constitucional. Cuenta con 84 municipios, siendo Pachuca de Soto su capital y zona metropolitana más importante. Tiene una extensión de 20,846 kilómetros cuadrados (1.1 % de la superficie del país), ocupando por ello el lugar 26 a nivel nacional entre las entidades federativas.

Cuenta, de acuerdo con los datos del Censo de Población y Vivienda 2010 (la fuente de información estadística más reciente al respecto), con 2,664,969 habitantes, poco más de 2.3% nacional. El 52% de dicha población reside en zonas urbanas, mientras que a nivel nacional el dato se estima en 76%. De acuerdo con el Censo de Población y Vivienda, en promedio viven en el estado de Hidalgo 127.8 personas por kilómetro cuadrado, observándose a nivel nacional un promedio de 57.18.

División geoestadística de Hidalgo San Luis Potos 018 028 Querétaro 062 026 011 073 031 042 034 5014 Veracruz de Ignacio 033 079 068 de la Llave 084 020 081 015 037 058 036 059 053 030 006 055 029 012 060 003 054 035 024 009 038 023 064 052 048 Puebla 051 022 076 082 057 066 083 061 008 México Simbologia Tlaxcala Limite estatal

Ilustración 9. Estado de Hidalgo, división política. Fuente: INEGI (2013)

En la siguiente tabla de muestra la información demográfica de interés para el desarrollo de este trabajo.

Tabla 6. Municipios y población del estado del Hidalgo Fuente: INEGI (2013)

	rucite. INEGI (2013)						
	Municipio	Población Total	Población relativa	Población por km²			
Hida	Igo	2 664 969	100.0	128.0			
001	Acatlán	20 078	0.8	83.1			
002	Acaxochitlán	40 583	1.5	169.9			
	Actopan	54 300	2.0	199.7			
	Agua Blanca de Iturbide	8 994	0.3	74.9			
	Ajacuba	17 088	0.6	67.5			
	Alfajayucan	18 880	0.7	43.6			
007	Almoloya	11 294	0.4	41.5			
800	Apan	42 562	1.6	132.1			
009	El Arenal	17 375	0.7	126.3			
010	Atitalaquia	26 941	1.0	424.7			
011	Atlapexco	19 453	0.7	136.4			
012	Atotonilco el Grande	26 910	1.0	58.9			
013	Atotonilco de Tula	31 083	1.2	256.2			
014	Calnali	16 962	0.6	80.4			
015	Cardonal	18 427	0.7	31.0			
016	Cuautepec de Hinojosa	54 500	2.1	139.2			
017	Chapantongo	12 271	0.5	44.1			
018	Chapulhuacán	22 406	0.8	96.5			
019	Chilcuautla	17 436	0.7	78.3			
020	Eloxochitlán	2 802	0.1	11.7			
021	Emiliano Zapata	13 357	0.5	108.6			
022	Epazoyucan	13 723	0.5	98.3			
023	Francisco I. Madero	33 925	1.3	323.1			
024	Huasca de Ocampo	17 182	0.6	56.8			
025	Huautla	22 621	0.9	77.4			
026	Huazalingo	12 779	0.5	118.9			
027	Huehuetla	23 592	0.9	109.8			
028	Huejutla de Reyes	122 912	4.6	311.9			
029	Huichapan	44 257	1.7	67.0			
030	Ixmiquilpan	86 363	3.2	177.5			
031	Jacala de Ledezma	12 804	0.5	29.0			
032	Jaltocán	10 933	0.4	284.8			
033	Juárez Hidalgo	3 193	0.1	28.8			
034	Lolotla	9 843	0.4	55.6			
035	Metepec	11 429	0.4	78.1			
036	San Agustín Metzquititlán	9 364	0.4	38.1			
037	Metztitlán	21 623	0.8	27.1			
038	Mineral del Chico	8 010	0.3	41.3			
039	Mineral del Monte	13 864	0.5	259.5			
040	La Misión	10 452	0.4	44.9			
041	Mixquiahuala de Juárez	42 795	1.6	372.8			
042	Molango de Escamilla	11 206	0.4	56.5			

Continúa Tabla 5. Municipios y población del estado del Hidalgo Fuente: INEGI (2013)

Hidalgo 2 664 969 100.0 128 043 Nicolás Flores 6 614 0.2 26 044 Nopala de Villagrán 15 663 0.6 45 045 Omitlán de Juárez 8 963 0.3 112 046 San Felipe Orizatlán 39 181 1.5 124 047 Pacula 5 052 0.2 13 048 Pachuca de Soto 267 856 10.1 1 738
044 Nopala de Villagrán 15 663 0.6 45 045 Omitlán de Juárez 8 963 0.3 112 046 San Felipe Orizatlán 39 181 1.5 12 047 Pacula 5 052 0.2 13
045 Omitlán de Juárez 8 963 0.3 112 046 San Felipe Orizatlán 39 181 1.5 12 047 Pacula 5 052 0.2 13
046 San Felipe Orizatlán 39 181 1.5 12 047 Pacula 5 052 0.2 13
047 Pacula 5 052 0.2 13
048 Pachuca de Soto 267 856 10.1 1 738
049 Pisaflores 18 177 0.7 100
050 Progreso de Obregón 22 217 0.8 244
051 Mineral de la Reforma 127 509 4.8 1 106
052 San Agustín Tlaxiaca 32 051 1.2 107
053 San Bartolo Tutotepec 18 137 0.7 50
054 San Salvador 32 771 1.2 159
055 Santiago de Anaya 16 014 0.6 62
056 Santiago Tulantepec de Lugo Guerrero 33 493 1.3 52
057 Singuilucan 14 856 0.6 35
058 Tasquillo 16 865 0.6 70
059 Tecozautla 35 069 1.3 66
060 Tenango de Doria 17 206 0.6 97
061 Tepeapulco 51 647 1.9 212
062 Tepehuacán de Guerrero 29 126 1.1 83
063 Tepeji del Río de Ocampo 80 607 3.0 226
064 Tepetitlán 9 940 0.4 67
065 Tetepango 11 109 0.4 247
066 Villa de Tezontepec 11 651 0.4 128
067 Tezontepec de Aldama 48 025 1.8 294
068 Tianguistengo 14 038 0.5 55
069 Tizayuca 97 461 3.7 1 268
070 Tlahuelilpan 17 153 0.6 608
071 Tlahuiltepa 9 770 0.4 18
072 Tlanalapa 10 241 0.4 123
073 Tlanchinol 36 381 1.4 92
074 Tlaxcoapan 26 758 1.0 632
075 Tolcayuca 13 225 0.5 112
076 Tula de Allende 103 913 3.9 309
077 Tulancingo de Bravo 151 582 5.7 697
078 Xochiatipan 19 069 0.7 140
079 Xochicoatlán 7 320 0.3 39
080 Yahualica 23 609 0.9 153
081 Zacualtipán de Ángeles 32 383 1.2 118
082 Zapotlán de Juárez 18 037 0.7 154
083 Zempoala 39 140 1.5 122
084 Zimapán 38 518 1.4 44

En la Ilustración ll se muestra la participación relativa de los principales municipios del estado de Hidalgo, de acuerdo con su población.

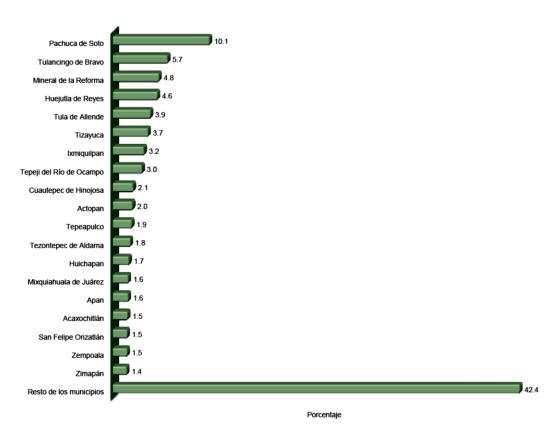


Ilustración 10. Participación relativa de los municipios según su población Fuente: INEGI (2013)

Relieve

La superficie estatal forma parte de las provincias: Sierra Madre Oriental y Eje Neovolcánico.

Se tienen dos zonas en la entidad: la norte y nororiental, en donde se encuentra cerro Ojo de Agua con 2,180 metros sobre el nivel mar (msnm) y cerro Tepeco con 1,840 msnm; existen valles en los que se encuentra la altura más baja (100 m). En la parte central del estado, de noroeste-sureste se encuentra el cañón Metztitlán.

Al centro y occidente se localiza Mineral del Monte, sierras de origen sedimentario (rocas que se forman en las playas, los ríos y océanos y en donde se acumulen la arena y barro) e ígneo extrusivo o volcánico (se forman cuando el magma o roca derretida sale de las profundidades hacia la superficie de la Tierra).

Hay amplias llanuras en donde se encuentran asentadas las localidades de Mixquiahuala de Juárez, Actopan y Santa Ana Hueytlalpan, en toda la zona también se distribuyen lomeríos.

En las cercanías de la localidad de Acaxochitlán se encuentra el cerro la Peñuela, la mayor elevación del estado con 3,350 msnm.

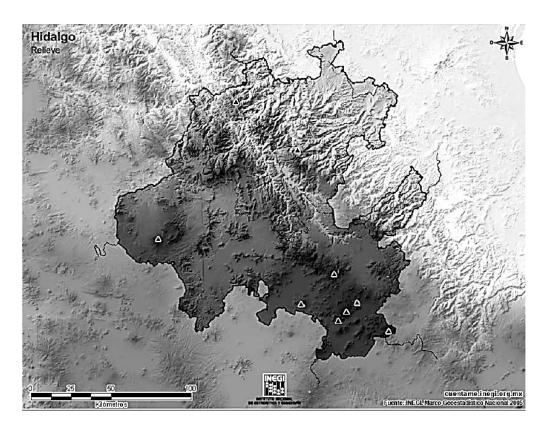


Ilustración 11. Relieve del estado. INEGI (2013)

Vías de transporte

Dado que un estudio de las características del que se está llevando acabo requiere la cuantificación de las distancias entre los distintos lugares geográficos, es imperativo conocer los elementos constituyentes de las redes de transporte disponibles. A pesar de no presentarse en el territorio bajo estudio, no se descarta la empleo de vías de comunicación no terrestre, como puede ser el caso de rutas acuáticas en regiones costeras o cercanas a los cuerpos de agua mayores, o la existencia de rutas aéreas en regiones de difícil acceso con infraestructura insuficiente.

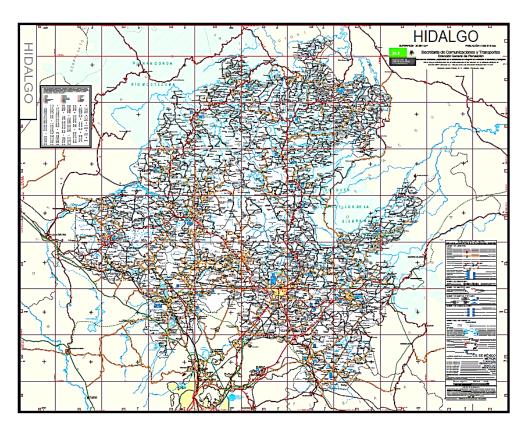


Ilustración 12. Red carretera del Estado de Hidalgo Fuente: SCT (2008)

Tabla 7. Descripción de la red carretera Fuente: INEGI 2008. Anuario Estadístico. Hidalgo. México.

Longitud de la red carretera, según tipo de camino (2008)

Tipo de camino		Kilómetros
Troncal federal	Pavimentada	869.7
(principal o primaria)		
Alimentadoras estatales	Pavimentada a/	1 986.7
(carreteras secundarias)	Revestida	190.8
Caminos rurales	Revestida	5 969.3
Brechas mejoradas		2 392.6
Total estatal		11 409.1

4.3 Aplicación de la metodología

Con base en la información pública generada por el INEGI a través de los Censos y Conteos de Población y Vivienda, se analizará la posibilidad de generar zonas con requerimientos específicos respecto a población en el territorio del estado de Hidalgo.

En el presente análisis de considerará como unidades geográficas básicas al conjunto de los 84 municipios que comprende el estado. A continuación, se determinará un centroide asociado a cada municipio, obtenido mediante la suma ponderada de las longitudes y latitudes de cada localidad. Determinados estos centroides, se trabajará sobre un grafo con n nodos (n = 84 municipios), cuyas aristas representarán las colindancias entre municipios.

Se modelará esta red mediante programación lineal y se buscará una instancia de solución factible de solución que minimice los costos de desplazamiento entre las poblaciones incluidas en una misma zona.

Para validar la efectividad de esta metodología, se desarrollará como una alternativa paralela al proceso de distritación efectuado por el Instituto Federal Electoral sobre ese mismo territorio en el periodo 2004 – 2005. Se selecciona este punto de comparación debido a que es producto de un análisis multidisciplinario en el cual estuvo involucrada la perspectiva de la Investigación de Operaciones, donde de hecho las soluciones finales se obtuvieron mediante un algoritmo heurístico del tipo recocido simulado.

La presente metodología no pretende sustituir a la establecida entonces con fines de representación electoral ni a las que de ese periodo a la fecha hayan sido desarrolladas con el mismo objetivo. Se busca valorar su eficiencia como una alternativa genérica y personalizable para su aplicación en proyectos u operaciones de administración pública.

Para fines de comparación, y a pesar de disponerse de fuentes estadísticas más actualizadas, se trabajará con la información relativa a población emanada del Censo de Población y Vivienda 2000. De lo contrario, la dinámica poblacional generada entre 2000 y 2010 impediría el tomar como referencia el trabajo efectuado por el IFE en 2005.

4.3.1 Georreferenciación de localidades en SIG

Del conjunto de localidades pertenecientes a un municipio se obtendrá una posición geográfica única que represente de mejor manera la distribución de las masas de población en esa unidad geográfica. A continuación la visualización del conjunto de todas las localidades del estado:

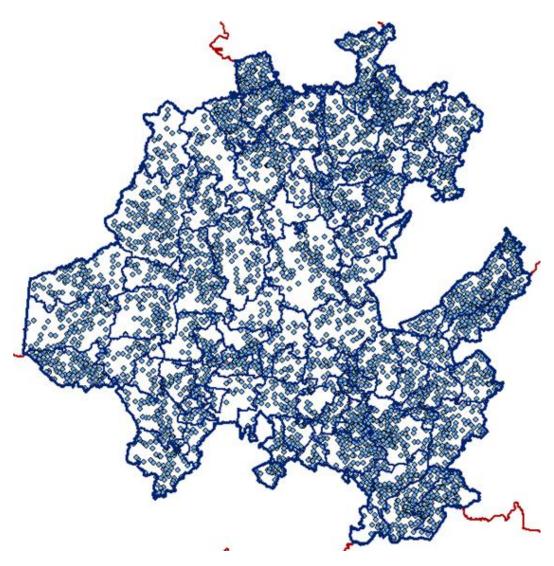


Ilustración 13. Visualización de localidades del estado de Hidalgo. Fuente: Elaboración propia mediante ArcGIS 10

4.3.2 Generación de centroides de población para cada municipio

Para cada municipio se determina la posición de su centroide poblacional mediante las siguientes expresiones:

Latitud m =

$$\sum \frac{H_{im}}{H_{m}} \times Latitud i$$

Longitud m =

$$\sum \frac{H_{im}}{H_{m}} \times Longitud i$$

donde:

 H_{im} = Número de habitantes de la localidad i del municipio m. H_m = Número de habitantes del municipio m.

De este modo, se obtienen los datos para la generación de centroides tal cual se muestran en la Tabla 8, los cuales son ingresados en el Sistema de Información Geográfica.

Los puntos que se muestran en la Ilustración 15 corresponden a las localidades del municipio 016 - Cuautepec de Hinojosa (perímetro resaltado) y algunas de los municipios aledaños. A su vez, las estrellas representan la posición de los centroides calculados mediante el ejercicio anterior. De acuerdo con la Tabla 8, la posición del centroide 016 responde a los parámetros:

Longitud: 98.29° Latitud: 20.02°

Tabla 8. Datos asociados a cada centroide Fuente: Elaboración propia. Datos INEGI, 2010.

CvMun	Nombre del municipio	Longitud	Latitud	Población
001	Acatlán	98.44	20.18	18619
002	Acaxochitlán	98.20	20.16	36978
003	Actopan	98.94	20.27	46010
004	Agua Blanca Iturbide	98.37	20.36	8515
005	Ajacuba	99.09	20.13	14507
006	Alfajayucan	99.37	20.42	17018
007	Almoloya	98.37	19.72	10290
008	Apan	98.46	19.70	39513
009	El Arenal	98.90	20.22	14223
010	Atitalaquia	99.23	20.05	21636
011	Atlapexco	98.37	21.01	18029
012	Atotonilco El Grande	98.68	20.32	25423
013	Atotonilco De Tula	99.23	19.99	24848
014	Calnali	98.54	20.91	16381
015	Cardonal	99.10	20.61	16943
016	Cuautepec De Hinojosa	98.29	20.02	45110

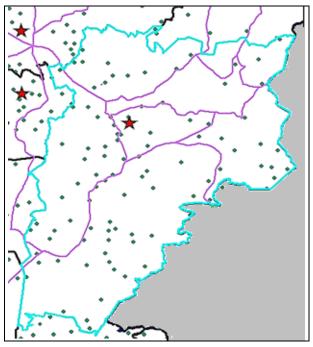


Ilustración 14. Centroide poblacional para el municipio Cuautepec de Hinojosa Fuente: Elaboración propia mediante ArcGIS 10

Dichos centroides no corresponden por definición a las cabeceras municipales, aunque en la mayoría de los casos se encontrarán casos de coincidencia aproximada, principalmente por el hecho de que dichas cabeceras suelen ser las poblaciones más importantes de cada municipio. El territorio sombreado de la **Ilustración 15** corresponde al estado de Puebla, que no forma parte del sistema bajo estudio.

Es mediante el proceso anterior que la partición de un territorio continuo comienza a formularse como un problema de redes, a partir de un grafo con tantos nodos como municipios.

En las secciones siguientes se determinarán las características de las aristas asociadas a este grafo, lo que más adelante nos permitirá su modelación como un problema lineal.

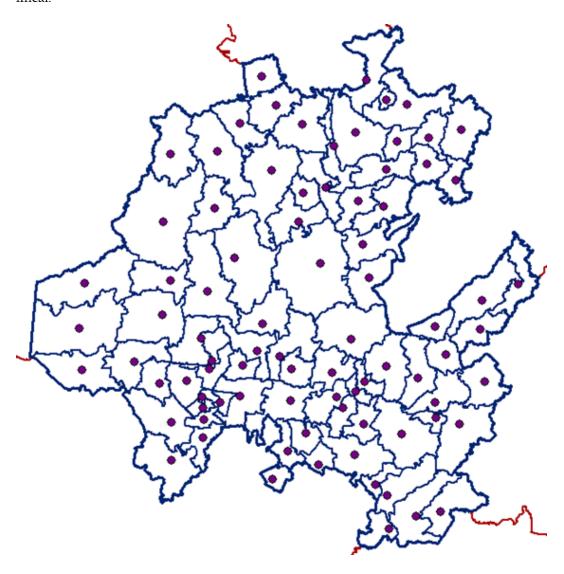


Ilustración 15. Centroides de población por municipio Elaboración propia mediante ArcGIS 10

4.3.3 Determinación de colindancias

Representando gráficamente las colindancias, obtenemos una red tipo malla que no es totalmente conexa, lo cual reduce notoriamente las alternativas de combinación en un problema de agrupamiento.

En otros trabajo se menciona la posibilidad de colindancias 'dudosas', por su reducida extensión o por la presencia de obstáculos de índole geográfico. En este trabajo no debe considerarse un elemento decisivo por sí mismo, debido a que el criterio de proximidad es influido principalmente por los tiempos de desplazamiento sobre la red carretera, no por la simple contigüidad territorial.

Ilustración 16. Colindancia entre municipios Elaboración propia mediante ArcGIS 10

4.3.4 Modelación de la red carretera del territorio bajo estudio

La disposición de información con respecto a las vialidades nos permite establecer el grado de comunicación de un punto con respecto a otro. Naturalmente, existe un gran número de vialidades que no se encuentran consideradas en el siguiente diagrama, pero en su mayoría se utilizan para desplazamientos exclusivamente al interior de los municipios. Sin embargo, se estimará un parámetro acerca de estas vialidades secundarias y su influencia respecto a la comunicación con otros municipios.

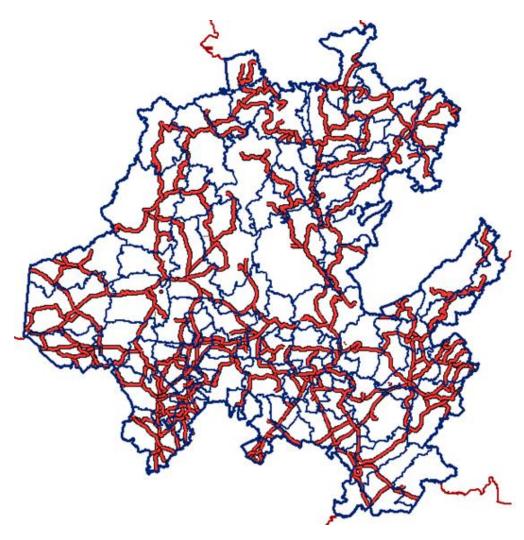


Ilustración 17. Red carretera del estado de Hidalgo Elaboración propia mediante ArcGIS 10

La estructura de una red de transporte responde a la distribución de las poblaciones y, por lo tanto, se ve fuertemente acotada por los accidentes geográficos del entorno. El territorio bajo estudio presenta importantes accidentes de este tipo, principalmente en su parte norte. Esto incide en la conectividad entre municipios. La siguiente figura lo demuestra.

En esta metodología se consideran las consecuencias de una orografía compleja exclusivamente a través de la configuración de la red carretera existente. No obstante, un análisis más completo podría incluir atributos adicionales en dicha red. Información sobre pendientes y curvas de nivel permitirían una estimación más exacta y fundamentada sobre los tiempos de desplazamiento sobre dichas vialidades.

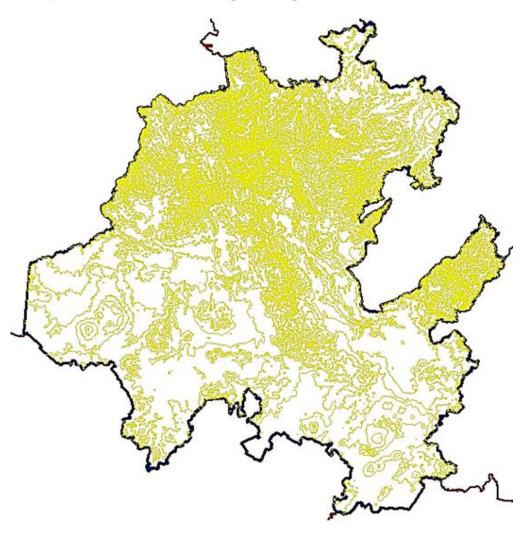


Ilustración 18. Relieve (curvas de nivel) en el estado de Hidalgo Elaboración propia mediante ArcGIS 10

4.3.5 Matriz OD entre centroides

Mediante el Sistema de Información Geográfica, se efectúa un análisis de distancias entre centroides o nodos adyacentes, considerando desplazamientos sobre la red carretera. Para el conjunto de los 84 nodos de nuestro grafo se consideran 202 colindancias (representadas gráficamente como aristas de la red).

Por otra parte, se determina también el conjunto de distancias euclidianas, sin considerar vialidades ni accidentes geográficos.

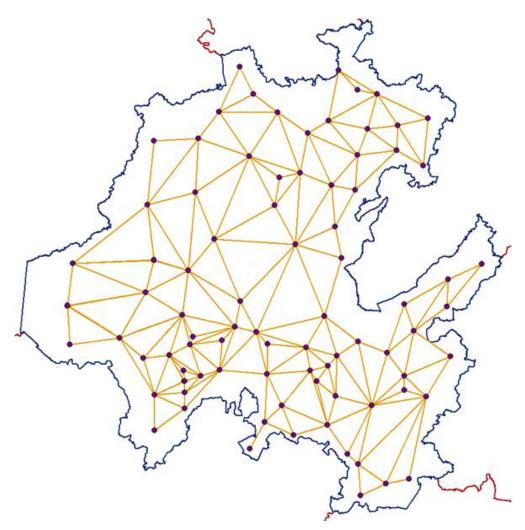


Ilustración 19. Representación como grafo de colindancias entre municipios Elaboración propia mediante ArcGIS 10

En la Tabla 9 se describen los atributos asociados a las aristas que determinan las colindancias entre nodos, que representan a cada una de las UGB's o municipios. Se

toma como ejemplo la primera arista identificada, que representa la colindancia y proximidad entre los municipios Acatlán (Clave 001) y Agua Blanca de Iturbide (Clave 004).

- *CvMun*. Clave asociada a un municipio. P. ej. (001).
- Nombre del municipio. P. ej. Acatlán.
- CvArist. Clave de la arista que representa la colindancia entre dos UGB's. Cada CvArist se conforma con la unión de las CvMun de sus municipios origen y destino, considerándose como origen el municipio con CvMun, menor.

$$[CvMun_1] + [CvMun_2] = [CvArist]$$

P.ej. $[001]$ y $[004] = [001004]$

- Dist. Carretera. Magnitud en metros entre los centroides de las dos UGB's a través de la red carretera modelada.
- Dist. Lineal. Distancia euclidiana o lineal en metros, entre los centroides de las dos UGB's.
- *d*: Distancia de referencia seleccionada para los cálculos matemáticos.
- C_{ij} : Costo asociado al 'uso' de dicha arista en el modelo matemático, como se describirá más adelante.

Tabla 9. Atributos de aristas Fuente: Elaboración propia

Cv Mun A	Nombre del municipio	CvMun B	Nombre del municipio	CvArist AB	Distancia Carretera [m]	Distancia Lineal [m]	d [m]	C_{ij}
001	Acatlan	004	Agua Blanca De Iturbide	001004	39485.03	20902.05	39485.03	0.10
001	Acatlan	024	Huasca De Ocampo	001024	16938.57	12606.95	16938.57	0.99
001	Acatlan	035	Metepec	001035	27502.05	14000.46	27502.05	0.25
001	Acatlan	057	Singuilucan	001057	33371.06	22055.78	33371.06	0.22
001	Acatlan	077	Tulancingo De Bravo	001077	13012.00	11488.60	13012.00	13.45
002	Acaxochitlan	016	Cuautepec De Hinojosa	002016	25098.05	18893.49	25098.05	2.65
002	Acaxochitlan	035	Metepec	002035	25568.72	18124.95	25568.72	0.58
002	Acaxochitlan	077	Tulancingo De Bravo	002077	25035.54	20157.37	25035.54	7.21
003	Actopan	005	Ajacuba	003005	28645.76	21391.68	28645.76	0.81
003	Actopan	009	Arenal, El	003009	6395.35	6527.88	6395.35	16.00

(ver tabla completa en ANEXO II)

4.3.6 Atributos de vértices (o nodos)

No obstante existir referencias estadísticas más recientes, como el ya citado Censo de Población y Vivienda 2010, se elige como referencia para la realización de este estudio una que pueda que pueda ser comparada para fines de validación, lo que nos remite a la referencia utilizada en el proceso de distritación de 2004-2005 llevado a cabo por el Instituto Federal Electoral, se debe trabajar con los mismos datos empleados en dicho proyecto, es decir, lo emanados del Censo de Población y Vivienda 2000.

Dicha información demográfica se encuentra ya resumida en el ANEXO I.

4.3.7 Atributos de aristas

En cuanto a las aristas, que definen la colindancia entre municipios, se les asignará un atributo costo *Cij* obtenido mediante la siguiente expresión:

$$C_{ij} = \frac{H_i \times H_j}{d^2}$$

donde:

 H_i = número de habitantes del municipio i (Censo de Población y Vivienda 2000)

 H_i = número de habitantes del municipio j (Censo de Población y Vivienda 2000)

d = el menor entre la distancia por estimado por carretera y el doble de la distancia sin considerar accidentes geográficos.

(ver ANEXO II)

4.3.8 Modelo de programación lineal

El planteamiento de nuestro problema exige la partición del territorio bajo las mismas condiciones que la solución comparativa, que de manera simplificada implica límites poblacionales para cada zona y la minimización de las distancias al interior de cada una de ellas.

Los citados límites poblacionales se establecen como una desviación de 15 % con respecto a la población ideal de las regiones.

Así, si el Censo de Población y Vivienda 2000 otorga al estado de Hidalgo una población de 2,235,591 habitantes y el número de zonas requeridas es siete, obtenemos los siguientes límites para cada zona:

Población ideal: 319,370.143
Límite superior: 367,275.664
Límite inferior: 271,464.621

Por otra parte si lo que se pretende es además de agrupar municipios, agrupar poblaciones cercanas, entonces debemos tener una función que penalice la dispersión de dichas poblaciones.

Por citar un ejemplo, debe implicar una penalización mayor el incluir en la misma zona dos poblaciones de 100,000 habitantes distantes 100 kilómetros, que agrupar dos poblaciones de 10000 habitantes a la misma distancia.

Naturalmente, depende del enfoque del proyecto, pero considerando un sistema multinivel con una sede central por región, es preferible tener las mayores concentraciones de población a la menor distancia, aunque eso aumente el tiempo de recorrido a las localidades menores.

Se propone el siguiente modelo de programación lineal.

Variables de decisión:

I, si el municipio i existe en la partición P_k, i = 1, 2, ..., 84; k = 1,2,3,4,5,6,7;
O, en otro caso.
I, si el arco X_{ij} existe en la partición P_k, ij = (ver columna CveArist en ANEXO II) k = 1,2,3,4,5,6,7;
O, en otro caso.

- Sea C_{ij} el costo asociado a la existencia del arco (o arista) que va del municipio i al municipio j.
- Sea H_i , el número de habitantes del municipio i.

Max =

$$\sum_{i=1}^{i}\sum_{j=1}^{j}\sum_{k=1}^{k}C_{ij}\times P_{k}X_{ij}$$
 (función objetivo)

Maximiza la agrupación de grandes poblaciones relativamente cercanas en una misma zona

s.a:

$$\sum_{i=1}^{i} H_{i} \times P_{k} X_{ij} \ge L_{i}$$
 (restricción l, de población)

Limita la población de cada una de las zonas k por encima del límite inferior antes mencionado.

$$\sum_{i=1}^{i} H_i \times P_k X_{ij} \leq L_s$$
 (restricción 2, de población)

Limita la población de cada una de las zonas k por debajo del límite superior antes mencionado.

$$\sum_{i=1}^{i} P_k X_i = P_k X_{ij} + 1$$
 (restricción 3, de agrupamiento)

Establece el número de arcos indispensables para definir una partición, que debe ser inferior en 1 al número de UGB's existentes en la zona.

$$\sum_{i=1}^{i} \sum_{k=1}^{k} P_k X_{ij} \ge 1$$
 (restricción 4, de conectividad)

Establece que cada UGB i que exista en una partición k debe estar conectado al menos a un arco.

$$\sum_{i=1}^{k} P_{k} X_{i} = 1$$
(restricción 5, de existencia de nodos)

Establece que cada UGB i debe existir forzosa y exclusivamente en una sola partición.

$$P_k X_i + P_k X_j \ge (2 \times P_k X_{ij})$$
......(restricción 6, de existencia de arcos)
Establece que para que exista un arco ij en la partición k , deben de existir las UGB's ij en la misma partición.

4.3.9 Solución al modelo matemático

Derivado de la solución del modelo matemático (ver ANEXO III), se identifican los valores de los arcos o aristas que existen en determinada partición, como se describió previamente.

A partir de lo anterior y de conformidad con la restricción 6, se identifican los nodos o UGB's que existen en determinada partición (ver ANEXO IV), obteniéndose la clasificación siguiente:

Tabla 10. Clasificación de municipios por partición generada Fuente: Elaboración propia

CveMun	Nombre	Partición	Población 2000
001	Acatlán	5	18619
002	Acaxochitlán	5	36978
003	Actopan	4	46010
004	Agua Blanca Iturbide	5	8515
005	Ajacuba	3	14507
006	Alfajayucan	6	17018
007	Almoloya	2	10290
008	Apan	2	39513
009	El Arenal	4	14223
010	Atitalaquia	3	21636
011	Atlapexco	7	18029
012	Atotonilco el Grande	4	25423
013	Atotonilco de Tula	3	24848
014	Calnali	7	16381
015	Cardonal	6	16943
016	Cuautepec de Hinojosa	5	45110
017	Chapantongo	6	11257
018	Chapulhuacán	6	20362
019	Chilcuautla	6	15069
020	Eloxochitlán	4	3044
021	Emiliano Zapata	2	12281
022	Epazoyucan	2	11054
023	Tepatepec	4	28492
024	Huasca de Ocampo	4	15308
025	Huautla	7	23339
026	Huazalingo	7	11130
027	Huehuetla	5	25098
028	Huejutla de Reyes	7	108239
029	Huichapan	6	38044
030	Ixmiquilpan	6	75833
031	Jacala	6	12895
032	Jaltocán	7	10100
033	Juárez	4	3207
034	Lolotla	7	9867
035	Metepec	5	10200
036	Mezquititlán	4	8803
037	Metztitlán	4	20599
038	Mineral del Chico	4	7013
039	Mineral del Monte	4	12885

CveMun	Nombre	Partición	Población 2000
040	La Misión	6	11051
041	Mixquiahuala	3	35065
042	Molango	4	10769
043	Nicolás Flores	6	6838
044	Nopala	6	14762
045	Omitlán de Juárez	4	8022
046	Orizatlán	7	37685
047	Pacula	6	5583
048	Pachuca de Soto	1	245208
049	Pisaflores	6	16530
050	Progreso	3	19041
051	Pachuquilla	1	42223
052	San Agustín Tlaxiaca	2	24248
053	San Bartolo Tutotepec	5	18650
054	San Salvador	4	28980
055	Santiago de Anaya	4	13582
056	Santiago Tulantepec	5	26254
057	Singuilucan	2	13269
058	Tasquillo	6	16648
059	Tecozautla	6	30970
060	Tenango de Doria	5	17175
061	Tepeapulco	2	49539
062	Tepehuacán de Guerrero	7	25880
063	Tepeji de Ocampo	3	67858
064	Tepetitlán	3	8498
065	Tetepango	3	8935
066	Tezontepec	2	8982
067	Tezontepec de Aldama	3	38718
068	Tianguistengo	7	13590
069	Tizayuca	2	46344
070	Tlahuelilpan	3	13936
071	Tlahuiltepa	4	10425
072	Tlanalapa	2	9839
073	Tlanchinol	7	32265
074	Tlaxcoapan	3	22641
075	Tolcayuca	2	11317
076	Tula de Allende	3	86840
077	Tulancingo	5	122274
078	Xochiatipan	7	16977
079	Xochicoatlán	7	7519
080	Yahualica	7	20727
081	Zacualtipán	4	24933
082	Zapotlán de Juárez	2	14888
083	Zempoala	2	24516
084	Zimapán	6	37435

Teniendo las particiones los siguientes atributos:

Tabla 11. Atributos de las particiones generadas Fuente: Elaboración propia

Partición	Número de Municipios	Población
1	2	287,431
2	13	276,080
3	12	362,523
4	17	281,718
5	10	328,873
6	16	347,238
7	14	351,728

De este modo, se alcanza el objetivo de este trabajo, generando y particiones territoriales a partir de la división política existente, satisfaciendo requerimientos de contiguidad y conectividad entre UGB's integrantes de la partición, y de equidad poblacional entre particiones generadas.

A continuación, la representación gráfica de la solución obtenida, así como la partición de referencia.

4.3.10 Análisis de la solución

En la siguiente Tabla 12 se muestra la desviación porcentual de la población de cada una de las zonas creadas con respecto a la población media teórica propuesta como referencia, retomando los criterios utilizados por el IFE en el ejercicio de redistristación 2004-2005.

Tabla 12. Análisis del cumplimiento de rangos de población Fuente: Elaboración propia

Partición	Número de Municipios	Población	Desviación respecto a la media teórica
1	2	287,431	10%
2	13	276,080	14%
3	12	362,523	14%
4	17	281,718	12%
5	10	328,873	3%
6	16	347,238	9%
7	14	351,728	10%

Como puede apreciarse, los rangos de desviación se mantienen dentro de la meta de un máximo de 15%, empleada por el IFE en 2004-2005.

Para el presente caso de estudio, dicha condicionante se incorporó durante la formulación del Modelo de programación lineal, en el apartado 4.3.8.

Asimismo, puede verificarse la continuidad geográfica de las zonas generadas en la siguiente Ilustración 20.

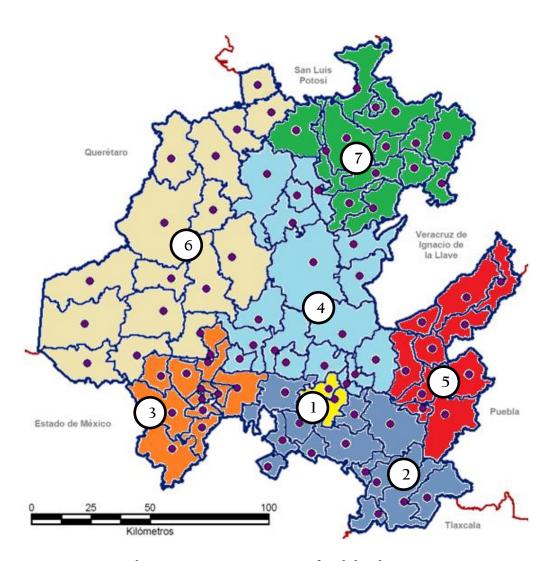


Ilustración 20. Representación gráfica de la solución. Elaboración propia.

Dado lo anterior, se consideran atendidos los criterios de: (1) continuidad territorial o conectividad, y (2) equidad poblacional u homogeneidad, dando satisfacción al objetivo general de esta tesis.

V. Conclusiones

En el presente trabajo se propone la zonificación del territorio correspondiente a una entidad federativa mediante la caracterización de Unidades Geográficas Básicas (UGB) en función de las poblaciones dispersas al interior de las mismas, para agruparlas posteriormente en 'zonas' que satisfagan rangos relativos al número de habitantes residentes. Se pretende asimismo la minimización de las distancias entre poblaciones agrupadas. Lo anterior con la finalidad de establecer un conjunto de zonas que posibiliten la prestación eficiente de servicios a la población residente en la entidad.

De acuerdo con el objetivo general establecido, esta tesis busca ofrecer una alternativa metodológica al problema de zonificación o partición del territorio, debido a que la mayor parte de las propuestas elaboradas con respecto a este tema fueron desarrolladas considerando características del territorio, población y vías de comunicación diferentes de las que pueden encontrarse en el territorio bajo estudio, y que se presentan frecuentemente en la geografía nacional.

Este objetivo se considera cumplido, en la medida en que se aborda una problemática que ha dado lugar a diversas investigaciones y tomándolas como referencia logra formular un escenario real bajo una modelación y herramientas accesibles, y con campo de aplicación definido, apto y relativamente cercano. Asimismo, mediante la satisfacción del objetivo comprobamos la validez de la hipótesis de investigación, lo que abre la posibilidad de realizar nuevos proyectos en ese rubro.

El escenario elegido para esta aplicación es el conjunto de los 84 municipios pertenecientes al estado de Hidalgo, donde de acuerdo con los últimos datos oficiales (INEGI, 2010), reside el 2.37% de la población nacional. Dicha selección fue motivada por las citadas características sociogeográficas, así como por la posibilidad de utilizar para fines de comparación los resultados del proceso de distritación electoral federal más reciente, llevado a cabo en 2005.

La característica principal de esta propuesta en relación al propósito específico de adaptarse a regiones con marcada dispersión de localidades, se presenta a través de la conceptualización del espacio como un grafo conexo, aprovechando las estructuras político-administrativas existentes para generar Unidades Geográficas Básicas con una ubicación puntual. Dada la dispersión geográfica, no se considera que las UGB's mantengan contigüidad en toda su frontera geográfica, sino que emplea únicamente la red carretera como vías principales de comunicación. De este modo, el espacio continuo se convierte para fines de análisis en un conjunto de vértices señalando UGB's y aristas representando las contigüidades y los costos asociados de desplazamiento.

Esta formulación marca una diferenciación con los estudios más recientes en materia de zonificación, ya que las motivaciones actuales suelen orientarlos a la gestión del espacio urbano. Respecto al particionamiento en un entorno urbano, hay investigaciones diversas, como se ha revisado en el marco teórico de este proyecto. A este respecto, se destaca la formulación del problema a través de la generación de

celdas cuadradas u otras unidades de mucho menor tamaño al manejado en este trabajo⁴.

La información básica para este procedimiento la constituyen el conjunto listado de localidades ubicadas en la región de estudio, su ubicación espacial y la población perteneciente a cada una de ellas. La fuente de esta información geoestadística es el Instituto Nacional de Estadística y Geografía (INEGI), a través de los productos emanados de los Censos y Conteos de Población y Vivienda. El otro componente indispensable es el conjunto de vialidades circunscritas en el territorio. Cabe la aclaración de que a pesar de contarse con datos más recientes que los empleados en la zonificación que sirve de comparación, se optó por trabajar con la misma información disponible por el Instituto Federal Electoral en ese tiempo.

A manera de resumen, el procedimiento descrito utiliza la división política existente, dado que se encuentra dirigido a la planeación y ejecución de políticas gubernamentales, que de manera lógica utilizan esta misma estructura. En caso de no contarse con una división preestablecida o que los objetivos del proyecto pretendan un grado distinto de detalle en la definición de secciones (en el territorio bajo estudio basta con una asignación a nivel municipal), puede adaptarse la presente propuesta o inclinarse por alguna que considere la transformación del espacio geográfico en unidades menores.

Para cada municipio se identificó un centroide poblacional, con lo cual el conjunto de localidades del territorio quedó representado en un grafo no dirigido con tantos nodos como municipios involucrados. Las aristas de dicho grafo representan las vecindades entre los municipios y cuentan con un atributo calculado a través de la distancia euclidiana entre dichos nodos, la distancia estimada sobre la red carretera y las poblaciones asignadas. Este costo se seleccionó con el objetivo de penalizar la agrupación de poblaciones distantes, y es el que se incorpora al modelo matemático.

El caso de los municipios-isla o sin continuidad geográfica, a pesar de no presentarse en el actual trabajo, puede abordarse mediante la generación de centroides para cada "isla" y asegurando su agrupación mediante preasignación en el modelo matemático, siempre y cuando no haya otras consideraciones que justifiquen su estudio independiente (población respecto al total bajo estudio, nivel de detalle requerido, etc.).

El modelo matemático desarrollado para el software Lingo 12.0 propone como función objetivo la sumatoria de los costos (aristas) considerados indispensables para la definición de las zonas deseadas. Las restricciones que lo acompañan están destinadas a obtener como resultado un conjunto de árboles de expansión mínima, que no comparten ningún nodo y que por tanto, determinan la configuración de nuestras particiones.

Los resultados obtenidos mediantes este trabajo son susceptibles de complementarse mediante, por ejemplo, la adición de nuevos datos como el estado físico de la red carretera y los límites de velocidad determinados para la misma, que en la práctica

⁴ Sucede de esta forma en [Rincón 2010], que toma como escenario el territorio de Baja California. En dicha entidad, la marcada concentración poblacional en unas pocas zonas metropolitanas, aunada al escaso número de sus municipios y la dispar extensión de los mismos, obliga a la fragmentación en unidades de estudio mucho más reducidas.

modifica las condiciones de desplazamiento y por tanto el costo asociado al mismo. Sin embargo, la mejora derivada de la inclusión de información de este tipo se considera marginal, sin perder de vista que un modelo será siempre una representación simplificada de la realidad. No obstante, la definición de objetivos distintos motivará en la mayoría de los casos un ajuste en el nivel de la información incluida.

Bibliografía

- [Ahuja 93] Ahuja R. K., Magnanti T., Orlin, J. B. Network Flows. Theory, Algorithms and Applications. Ed. Prentice Hall. New York, 1993.
- [Altman97] Altman, M. The Computational Complexity of Automated Redistricting: Is Automation the Answer? Rutgers Computer and Technology Law Journal, 23(1), 1997.
- [Assunção06] Assunção, R. M., Corrêa, M., Câmara, G., Costa, C. Efficient regionalisation techniques for socio-economic geographical units using minimum spanning trees. International Journal of Geographical Information Science, 20,
- [Bazaraa 99] Bazaraa M., Jarvis J., Sherali H., Programación Lineal y Flujo en Redes. Ed. Limusa, 2a edición, México, 1999.
- [Bergey03] Bergey P., Ragsdale C., Hoskote M. A decision support system for the electrical power districting problem. Decision Support Systems, Vol. 36, 2003.
- [Bernabé10] Bernabé Loranca. M. B. Diseño y desarrollo de un modelo para la zonificación óptima. Tesis para la obtención del grado de Doctor en Ingeniería, Facultad de Ingeniería, UNAM, 2010.
- [Blais 03] Blais M., Lapierre SD., and Laporte G. Solving a home-care districting problem in an urban setting. Journal of the Operational Research Society, Vol. 54, 2003.
- [Boyd07] Boyd S., Mattingley J. Branch and Bound Methods. Notes for EE364b, Stanford University, Winter 2006-07. (Consultable en http://www.stanford.edu/class/ee364b/notes/bb_notes.pdf)
- [Burrough86] Burrough, P.A. Principles of Geographical Information System for Land Resources Assesment. Oxford Science Publications, 1986.
- [Caire02] Caire Lomelí, J. Cartografía Básica. Universidad Nacional Autónoma de México, primera edición, 2002.
- [Caro04] Caro F., Shirabe T., Guignard M. and Weintraub A. School redistricting embedding GIS tools with integer programming. Journal of the Operational Research Society. Vol. 55, 2004.
- [Chakhar03] Chakhar S., Martel J.-M. Enhancing Geographical Information Systems Capabilities with Multi-Criteria Evaluation Functions. Journal of Geographic Information and Decision Analysis 2003, Vol. 7, No. 2, pp. 47-71
- [Chías10] Chías Becerril, L., Reséndiz López H. Análisis espacial de las redes de transporte, empleando Sistemas de Información Geográfica. Instituto de Geografía, UNAM, 2010.
- [Cova00] Cova J. T., Church R. L. Contiguity Constraints for Single-Region Site Search Problems. Geographical Analysis, Vol. 32, No. 4, 2000.
- [D'Amico02] D'Amico, S. J., Wang, S. J., Batta, R., Rump, C. M. A simulated annealing approach to police district design", Computers and Operations Research, 29, 6, pp.667-684, 2002.
- [Diestell0] Diestel R. Graph Theory. Springer-Verlag. Cuarta edición electrónica, 2010. (Consultable en http://diestel-graph-theory. com/basic.html)

- [Eagleson01] Eagleson, S., Escobar, F., Williamson, I. P. Developing a theoretical framework for the delineation of administrative boundaries within a rural context. Presentado en la 29° Conferencia Anual de AURISA, 2001. Consultado el 13 de marzo de 2013 en <u>dspace.uah.es/dspace/handle/10017/6809</u>
- [Escandón04] Escandón M. C., López L. L. Sistemas de información geográfica y redistritación electoral: su impacto en México. Geo Crítica / Scripta Nova. Revista electrónica de geografía y ciencias sociales. Barcelona: Universidad
- [Ferland90] Ferland J., Guenette G. Decision Support System for the School Districting Problem. Operations Research, Vol. 38, No. 1, 1990.
- [Gilbert 85] Gilbert K. C., Holmes D. D., Rosenthal R. E. A Multiobjective Discrete Optimization Model for Land Allocation. Management Science, Vol. 31, No. 12, 1985.
- [Goic04] Goic M., Fernández P. Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento. Departamento de Ingeniería Industrial Facultad de Ciencias Físicas y Matemáticas Universidad de Chile, 2004. Consultado el 24 de julio de 2012 en www.andrew.cmu.edu/user/mgoic/files/documents/optimization/branch.pdf
- [Guo00] Guo, J., Trinidad, G., Smith, N. MOZART: A multi-objective zoning and aggregation tool, en Proceedings o Philippine Computing School Congress (PCSC), 2000.
- [Kalcsics J., Nickel S., Schröder M. Towards a Unified Territory Design
 Approach Applications, Algorithms and GIS Integration. Fraunhofer
 Institut für Techno-und Wirtschaftsmathematik, Alemania, 2005.
- [Kernighan 70] Kernighan B.W., Lin S., An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal. Vol. 49, 1970.
- [Kirkpatrick83] Kirkpatrick, C. D., Gelatt, M. P., Vecchi. Optimization by Simulated Annealing. SCIENCIE 220: 4598, 1983.
- [Lara03] Lara López, Adriana. Un estudio de las Estrategias Evolutivas para problemas Multiobjetivo. Tesis de Maestría en Ciencias en la especialidad de Ingeniería Eléctrica Opción Computación. Cinvestav-Instituto Politécnico Nacional, 2003.
- [Latorre07] Latorre-Canteli J.M. Resolución distribuida de problemas de optimización estocástica: Aplicación al problema de coordinación hidrotérmica. Tesis para la obtención del grado de doctor. Universidad Pontificia Comillas de
- [López06] López L. L. Redistritación electoral en México: logros pasados y retos futuros. Investigaciones Geográficas, Boletín del Instituto de Geografía, UNAM. Núm. 61, 2006.
- [Lópezlo] López, Fabian. Multi-Objective Territory Design with Capacity & Geographic Constraints. International Journal of Combinatorial Optimization Problems and Informatics, Vol. 1, No. 1, Mayo 2010, pp. 3-12. ISSN 2007-1558.
- [MacMillan01] Macmillan W. Redistricting in a GIS environment: An optimisation algorithm using switching-points. Journal of geographical systems, Vol. 3, 2001.
- [Mateo 09] Mateo P. M., Lahoz D. Programación Lineal Entera. Open CourseWare,

- Universidad de Zaragoza, 2009. (Consultable en http://ocw.unizar.es/ocw/ensenanzas-tecnicas/modelos-de-investigacion-operativa/ficheros/OCWProgEntera.p
- [Maya2008] Maya, P. A. Generación de Columnas: Una revisión desde su aplicación al problema de asignación de cupos escolares. Rev. Fac. Ing. Univ. Antioquia N.º 46 pp. 145-157. Diciembre, 2008,
- [Mehrotra98] Mehrotra, A., Johnson, E. L., Nemhauser, G. L. An optimization based heuristic for political districting. Management Science, 44, pp. 1100-1114, 1998.
- [Menes06] Menes Llaguno, J. M. Historia mínima del Estado de Hidalgo. Ed. Porrúa, 2006.
- [Morenoll] Moreno Regidor, P. y García López de Lacalle, J. Estado del arte en procesos de zonificación. Universidad Politécnica de Madrid; Madrid, España. GeoFocus (Artículos), nº 11, p. 155-181, 2011. ISSN: 1578-5157
- [Nemhauser 99] Nemhauser G. and Wolsey L. Integer and Combinatorial Optimization. John Wiley & Sons, 1999.
- [Ochoa09] Ochoa, A., Bernabe, B., Ochoa, O. Towards a parallel system for demographic zonification based on complex networks. Journal of Applied Research and Technology, 7, 2, pp. 218-232.
- [Openshaw95] Openshaw, S. y Rao, L. Algorithms for reengineering 1991 census geography. Environment and Planning A, 27, pp. 425-446.
- [Oropeza López A. La evaluación de la función pública en México. Plaza y Valdés Editores, primera edición, 2005.
- [Ozsoy06] Ozsoy F. A. y Pinar M. C. An exact algorithm for the capacitated vertex pcenter problem. Computers & Operations Research, 33(5):1420–1436, 2006.
- [Pelta00] Pelta David, Alejandro. Algoritmos heurísticos en bioinformática. Tesis doctoral, Dirigida por José Verdegay y Armando Blanco. Depto. de ciencias de la computación e inteligencia artificial. Universidad de Granada, 200
- [Perlman 85] Perlman R. Hierarchical networks and the subnetwork partition problem. Computer Networks and ISDN Systems, Volume 9, Issue 4, April 1985.
- [Rao96] S.S.Rao, Engineering optimization: Theory and Practice. 3rd edition. John Wiley & Sons, 1996.
- [Rincón09] Rincón E. Gutiérrez M. Compacidad en celdas aplicada al diseño de zonas electorales. EconoQuantum (Univ. de Guadalajara) Vol. 5 Núm. 2. ler Semestre 2009.
- [Rincón10] Rincón García, E. A. Diseño de zonas geométricamente compactas utilizando celdas cuadradas. Tesis para la obtención del grado de Doctor en Ingeniería. Facultad de Ingeniería, UNAM, 2010.
- [Sabatini03] Sabatini M. C., Verdiell A., Rodríguez Iglesias R. M., Vidal M. C. Zonificación de áreas naturales protegidas: una propuesta cuantitativa. Aportes y Transferencias, año 7, vol. I. Universidad Nacional de Mar del Plata
- [Schoepfle91] Schoepfle B. Church R. New network representation of a classic school districting problem. Socio-Econ Plann Sci. Vol. 25, No. 3, 1991.

[Shirabe05a] Shirabe T. A Model of Contiguity for Spatial Unit Allocation. Geographical Analysis, Vol. 37, 2005. [Shirabe05b] Shirabe T. Classification of Spatial Properties for Spatial Allocation Modeling. GeoInformatica, Vol. 9, No. 3, 2005. Short N. K., Moore A., Coombes M., Wymer C. Defining regions for locality [Short05] health care planning: A multidimensional approach. Social Science & Medicine, Vol. 60, 2005. [Solis09] Solís, N., Ríos-Mercado, R. Z., Álvarez, A. M. Modelando sistemas territoriales con programación entera. Ingenierías, 12, 44, pp. 7-15. FIME – Universidad Autónoma de Nuevo León, 2009. [Tavares07] Tavares-Pereira, F., Figueira, J., Mousseau, V., Roy, B. Multiple criteria districting problems. The public transportation network pricing system of the Paris region, Annals of Operations Research, 154, pp. 69-92, 2007 [Voss99] Voss S., Martello S., Osman I.H., and C, editors. Meta-Heuristics. Advances and Trends in Local Search Paradigms for Optimization. Kluwer Academic Publishers, Boston, Mass. 1999. ISBN 0792383699. QA402.5 M47. [Wang08] Wang Zhuan, Zhang Qinghua, Yang bo, He Wenwen. 4/R/I/T distribution logistics network 0-1 programming model and application. Computers & Industrial Engineering 55, 2008. [Weise09] Weise, T. Global Optimization Algorithms - Theory and Application. 2a edición. Disponible en: http://www.it-weise.de/ [Williams03] Williams, J. C. Convex Land Acquisition with Zero-One Programming. Environment and Planning B: Planning and Design, volume 30, 2003. [Zanakis81] Zanakis S. H. y Evans J. R. Heuristic "optimization": Why, when, and how to use it. Interfaces, 11(5):84-91, 1981.

Anexo I. Atributos de vértices (o nodos) en el grafo G(V,A)

Datos	asociados	a cada	centroide
Datos	asociados	a caua	centitionae

	Datos asociados a cada	Longitu		
Cvmun	Nombre del Municipio	d	Latitud	Población
001	Acatlán	98.44	20.18	18619
002	Acaxochitlán	98.20	20.16	36978
003	Actopan	98.94	20.27	46010
004	Agua Blanca Iturbide	98.37	20.36	8515
005	Ajacuba	99.09	20.13	14507
006	Alfajayucan	99.37	20.42	17018
007	Almoloya	98.37	19.72	10290
008	Apan	98.46	19.70	39513
009	El Arenal	98.90	20.22	14223
010	Atitalaquia	99.23	20.05	21636
011	Atlapexco	98.37	21.01	18029
012	Atotonilco El Grande	98.68	20.32	25423
013	Atotonilco De Tula	99.23	19.99	24848
014	Calnali	98.54	20.91	16381
015	Cardonal	99.10	20.61	16943
016	Cuautepec De Hinojosa	98.29	20.02	45110
017	Chapantongo	99.47	20.26	11257
018	Chapulhuacán	98.94	21.14	20362
019	Chilcuautla	99.23	20.34	15069
020	Eloxochitlán	98.86	20.73	3044
021	Emiliano Zapata	98.56	19.66	12281
022	Epazoyucan	98.64	20.03	11054
023	Tepatepec	99.08	20.24	28492
024	Huasca De Ocampo	98.55	20.22	15308
025	Huautla	98.26	21.03	23339
026	Huazalingo	98.49	21.00	11130
027	Huehuetla	98.06	20.50	25098
028	Huejutla De Reyes	98.45	21.13	108239
029	Huichapan	99.67	20.38	38044
030	Ixmiquilpan	99.20	20.50	75833
031	Jacala	99.15	20.98	12895
032	Jaltocán	98.53	21.14	10100
033	Juárez	98.84	20.83	3207
034	Lolotla	98.73	21.00	9867
035	Metepec	98.33	20.26	10200
036	Mezquititlán	98.61	20.53	8803
037	Metztitlán	98.79	20.59	20599
038	Mineral Del Chico	98.75	20.21	7013
039	Mineral Del Monte	98.67	20.14	12885
040	La Misión	99.07	21.07	11051
041	Mixquiahuala	99.20	20.23	35065
042	Molango	98.76	20.85	10769
043	Nicolás Flores	99.17	20.78	6838
044	Nopala	99.67	20.23	14762
045	Omitlán De Juárez	98.63	20.17	8022
046	Orizatlán	98.60	21.21	37685
047	Pacula	99.33	20.97	5583
048	Pachuca De Soto	98.74	20.12	245208

Datos asociados a cada centroide

	Datos asociados a cada centrol	Longitu		
Cvmun	Nombre del Municipio	d	Latitud	Población
049	Pisaflores	98.99	21.24	16530
050	Progreso	99.19	20.26	19041
051	Mineral De La Reforma	98.71	20.08	42223
052	San Agustín Tlaxiaca	98.91	20.11	24248
053	San Bartolo Tutotepec	98.20	20.44	18650
054	San Salvador	99.03	20.29	28980
055	Santiago De Anaya	99.00	20.38	13582
056	Santiago Tulantepec De Lugo Guerrero	98.38	20.04	26254
057	Singuilucan	98.50	19.99	13269
058	Tasquillo	99.33	20.54	16648
059	Tecozautla	99.65	20.53	30970
060	Tenango De Doria	98.20	20.34	17175
061	Tepeapulco	98.56	19.78	49539
062	Tepehuacán De Guerrero	98.84	21.07	25880
063	Tepeji De Ocampo	99.35	19.92	67858
064	Tepetitlán	99.38	20.18	8498
065	Tetepango	99.16	20.11	8935
066	Villa De Tezontepec	98.81	19.89	8982
067	Tezontepec De Aldama	99.28	20.19	38718
068	Tianguistengo	98.55	20.78	13590
069	Tizayuca	98.98	19.84	46344
070	Tlahuelilpan	99.23	20.13	13936
071	Tlahuiltepa	98.96	20.91	10425
072	Tlanalapa	98.60	19.82	9839
073	Tlanchinol	98.65	21.03	32265
074	Tlaxcoapan	99.23	20.09	22641
075	Tolcayuca	98.92	19.94	11317
076	Tula De Allende	99.34	20.05	86840
077	Tulancingo	98.38	20.10	122274
078	Xochiatipan	98.28	20.86	16977
079	Xochicoatlán	98.64	20.80	7519
080	Yahualica	98.38	20.92	20727
081	Zacualtipán	98.63	20.65	24933
082	Zapotlán De Juárez	98.85	20.00	14888
083	Zempoala	98.68	19.92	24516
084	Zimapán	99.36	20.74	37435

Anexo II. Atributos de aristas en el grafo G(V,A)

CvMun		CvMun	Nombre del municipio	CvArist	Dist. Carret.	Dist. Lineal	d	C_{ij}
001	Acatlan	004	Agua Blanca De Iturbide	001004	39485.03	20902.05	39485.03	0.10
001	Acatlan	024	Huasca De Ocampo	001024	16938.57	12606.95	16938.57	0.99
001	Acatlan	035	Metepec	001035	27502.05	14000.46	27502.05	0.25
001	Acatlan	057	Singuilucan	001057	33371.06	22055.78	33371.06	0.22
001	Acatlan	077	Tulancingo De Bravo	001077	13012.00	11488.60	13012.00	13.45
002	Acaxochitlan	016	Cuautepec De Hinojosa	002016	25098.05	18893.49	25098.05	2.65
002	Acaxochitlan	035	Metepec	002035	25568.72	18124.95	25568.72	0.58
002	Acaxochitlan	077	Tulancingo De Bravo	002077	25035.54	20157.37	25035.54	7.21
003	Actopan	005	Ajacuba	003005	28645.76	21391.68	28645.76	0.81
003	Actopan	009	Arenal, El	003009	6395.35	6527.88	6395.35	16.00
003	Actopan	012	Atotonilco El Grande	003012	68062.75	28209.83	56419.66	0.37
003	Actopan	037	Metztitlan	003037	116662.21	38944.03	77888.06	0.16
003	Actopan	038	Mineral Del Chico	003038	50137.06	21004.25	42008.50	0.18
003	Actopan	052	San Agustin Tlaxiaca	003052	22349.40	17413.33	22349.40	2.23
003	Actopan	054	San Salvador	003054	9476.17	8914.88	9476.17	14.85
003	Actopan	055	Santiago De Anaya	003055	18986.36	14071.87	18986.36	1.73
004	Agua Blanca De Iturbide	035	Metepec	004035	17161.49	11356.83	17161.49	0.29
004	Agua Blanca De Iturbide	053	San Bartolo Tutotepec	004053	63384.04	20367.64	40735.29	0.10
005	Ajacuba	010	Atitalaquia	005010	22951.54	16674.20	22951.54	0.60
005	Ajacuba	013	Atotonilco De Tula	005013	31168.11	21087.16	31168.11	0.37
005	Ajacuba	023	Francisco I. Madero	005023	20066.58	11911.59	20066.58	1.03
005	Ajacuba	041	Mixquiahuala De Juarez	005041	31059.16	15712.07	31059.16	0.53
005	Ajacuba	052	San Agustin Tlaxiaca	005052	29055.85	19217.68	29055.85	0.42
005	Ajacuba	054	San Salvador	005054	29611.17	18535.15	29611.17	0.48
005	Ajacuba	065	Tetepango	005065	11809.44	7836.85	11809.44	0.93
006	Alfajayucan	017	Chapantongo	006017	37696.44	21115.72	37696.44	0.13
006	Alfajayucan	019	Chilcuautla	006019	46395.11	17361.54	34723.07	0.21
006	Alfajayucan	029	Huichapan	006029	38486.89	32133.84	38486.89	0.44
006	Alfajayucan	030	Ixmiquilpan	006030	24762.79	19355.95	24762.79	2.10
006	Alfajayucan	058	Tasquillo	006058	20115.85	13551.75	20115.85	0.70
006	Alfajayucan	059	Tecozautla	006059	42125.09	31826.38	42125.09	0.30
007	Almoloya	008	Apan	007008	7220.20	9498.40	7220.20	7.80
007	Almoloya	016	Cuautepec De Hinojosa	007016	63891.75	34131.22	63891.75	0.11
008	Apan	016	Cuautepec De Hinojosa	008016	58202.64	38811.89	58202.64	0.53
008	Apan	021	Emiliano Zapata	008021	14843.33	11225.25	14843.33	2.20
008	Apan	061	Tepeapulco	008061	16825.77	13720.31	16825.77	6.91
009	Arenal, El	038	Mineral Del Chico	009038	44065.55	15603.53	31207.06	0.10
009	Arenal, El	052	San Agustin Tlaxiaca	009052	16277.90	12187.00	16277.90	1.30
010	Atitalaquia	013	Atotonilco De Tula	010013	8216.56	6671.76	8216.56	7.96
010	Atitalaquia	065	Tetepango	010065	13159.17	9332.53	13159.17	1.12
010	Atitalaquia	074	Tlaxcoapan	010074	5334.33	4429.69	5334.33	17.22
010	Atitalaquia	076	Tula De Allende	010076	14182.71	12284.67	14182.71	9.34
011	Atlapexco	025	Huautla	011025	17393.92	12543.30	17393.92	1.39
011	Atlapexco	026	Huazalingo	011026	36295.09	12389.19	24778.39	0.33
011	Atlapexco	028	Huejutla De Reyes	011028	26392.60	15293.17	26392.60	2.80
011	Atlapexco	078	Xochiatipan	011078	27373.93	19284.32	27373.93	0.41
011	Atlapexco	080	Yahualica	011080	15628.55	10182.75	15628.55	1.53
012	Atotonilco El Grande	024	Huasca De Ocampo	012024	25580.69	17005.91	25580.69	0.59
012	Atotonilco El Grande	036	San Agustin Metzquititlan	012036	40098.51	24471.43	40098.51	0.14
012	Atotonilco El Grande	037	Metztitlan	012037	48599.46	31516.24	48599.46	0.22

Control	~	27 1 11 11		37 1 11		D1 C	D/ T/ 1	-	~
Oi3					1				
Old Calnali									
Old Calnali									
Old Calnali									
Oi4 Calnali				C					
Ol4 Calnali					1				
Old Calnali									
O15									
O15					014079				0.12
O15									
O15	015	Cardonal	020	Eloxochitlan	015020	200257.72	27986.91	55973.82	0.02
O15	015	Cardonal	030	Ixmiquilpan	015030	21305.87	16731.85	21305.87	2.83
O15	015	Cardonal	037	Metztitlan	015037	177344.51	32700.81	65401.62	0.08
Ol5	015	Cardonal	043	Nicolas Flores	015043	36462.13	20453.93	36462.13	0.09
O15	015	Cardonal	055	Santiago De Anaya	015055	52799.41	27321.15	52799.41	0.08
Old	015	Cardonal	071	Tlahuiltepa	015071			72374.03	0.03
Old				Santiago Tulantepec De					
Ol6	016	Cuautepec De Hinojosa	056		016056	18286.19	9317.01	18286.19	3.54
Ol6	016		057		016057				
Oló Cuautepec De Hinojosa 077 Tulancingo De Bravo 016077 12879.55 12318.86 12879.55 33.25 017 Chapantongo 019 Chilcuautla 017019 50238.82 27030.48 50238.82 2007 017 Chapantongo 024 Huichapan 017029 30778.24 24814.06 30778.24 0.45 017 Chapantongo 044 Nopala De Villagran 017044 20121.17 20153.32 20121.17 0.41 017 Chapantongo 064 Tepetitlan 017064 15107.92 12565.00 15107.92 0.42 017 Chapantongo 076 Tula De Allende 017076 35021.19 227056.01 35021.19 0.80 018 Chapulhuacan 040 La Mision 018040 24916.01 15574.11 24916.01 0.36 018 Chapulhuacan 042 Pisaflores 018049 17852.45 12292.12 17852.45 1.06 018 Chapulhuacan								43797.09	
017 Chapantongo 019 Chilcuautla 017019 50238.82 27030.48 50238.82 0.07 017 Chapantongo 029 Huichapan 017029 30778.24 2481.06 30778.24 0.45 017 Chapantongo 044 Nopala De Villagran 017044 2012.17 0.01533.3 2012.17 0.41 017 Chapantongo 064 Tepetitlan 017046 15107.92 12565.00 15107.92 0.42 018 Chapulhuacan 040 La Mision 018040 24916.01 15574.11 24916.01 0.36 018 Chapulhuacan 040 Pisaflores 018049 17852.45 12292.12 17852.45 1.06 018 Chapulhuacan 062 Tepehuacan De Guerrero 018062 44940.57 12394.87 24789.74 0.86 019 Chilcuautla 030 Izmiquilpan 019000 26758.55 1797.65 26758.55 1.60 019 Chilcuautla 054									
017 Chapantongo 029 Huichapan 017029 30778.24 24814.06 30778.24 0.45 017 Chapantongo 044 Nopala De Villagran 017044 20121.17 20153.32 20121.17 0.41 017 Chapantongo 064 Tepetitlan 017064 35021.19 2056.01 35021.19 0.42 018 Chapulhuacan 040 La Mision 018040 24916.01 15574.11 24916.01 0.36 018 Chapulhuacan 049 Pisalfores 018049 17852.45 12292.12 17852.45 1.06 018 Chapulhuacan 062 Tepchuacan De Guerrero 018062 44940.57 12394.87 24789.74 0.86 019 Chilcuautla 030 Ixmiquilpan 019030 26788.55 17957.65 26788.55 1.60 019 Chilcuautla 050 Progreso De Obregon 019050 13766.98 9899.16 13766.98 151 019 Chilcuautla 054									
017 Chapantongo 044 Nopala De Villagran 017044 20121.17 20153.32 20121.17 0.41 017 Chapantongo 064 Tepetitlan 017064 15107.92 12565.00 15107.92 0.42 017 Chapantongo 076 Tual De Allende 017076 35021.19 27056.01 35021.19 0.80 018 Chapulhuacan 040 La Mision 018040 24916.01 15574.11 24916.01 0.36 018 Chapulhuacan 049 Pisaflores 018062 44940.57 12394.87 24789.74 0.86 019 Chilcuautla 030 Ixmiquilpan 019030 26758.55 17957.65 26788.55 1.60 019 Chilcuautla 041 Mixquiahuala De Juarez 019041 16362.16 12453.83 16362.16 1.97 019 Chilcuautla 054 San Salvador 019050 13766.98 9899.16 13766.98 1.51 019 Chilcuautla 064									
017 Chapantongo 064 Tepetitlan 017064 15107.92 12565.00 15107.92 0.42 017 Chapantongo 076 Tula De Allende 017076 35021.19 27056.01 35021.19 0.80 018 Chapulhuacan 040 La Mision 018040 24916.01 15574.11 24916.01 0.36 018 Chapulhuacan 049 Pisaflores 018049 17852.45 12292.12 17852.45 1.06 018 Chapulhuacan 062 Tepehuacan De Guerrero 018062 44940.57 12394.87 24789.74 0.86 019 Chilcuautla 030 Ixmiquilpan 019030 26788.55 17957.65 26788.55 1.60 019 Chilcuautla 050 Progreso De Obregon 019030 26788.55 17957.65 26788.55 1.60 019 Chilcuautla 054 San Salvador 019044 41815.55 21876.84 41815.55 025 019 Chilcuautla 064 <td></td> <td>ı</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		ı							
017 Chapantongo 076 Tula De Allende 017076 35021.19 27056.01 35021.19 0.80 018 Chapulhuacan 040 La Mision 018040 24916.01 15574.11 24916.01 0.36 018 Chapulhuacan 049 Pisaflores 018049 17852.45 12292.12 17852.45 1.06 018 Chapulhuacan 062 Tepehuacan De Guerrero 018062 44940.57 12394.87 24789.74 0.86 019 Chilcuautla 030 Ixmiquilpan 019030 26758.55 17957.65 26758.55 1.60 019 Chilcuautla 050 Progreso De Obregon 019041 16362.16 12453.83 16362.16 1.97 019 Chilcuautla 054 San Salvador 019054 41815.55 21876.84 41815.55 0.25 019 Chilcuautla 064 Tepetitlan 019064 3513.091 23538.27 35130.91 0.10 019 Chilcuautla 067 <td></td> <td>· U</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		· U							
018 Chapulhuacan 040 La Mision 018040 24916.01 15574.11 24916.01 0.36 018 Chapulhuacan 049 Pisaflores 018049 17852.45 12292.12 17852.45 1.06 018 Chapulhuacan 062 Tepehuacan De Guerrero 018062 44940.57 12394.87 24789.74 0.86 019 Chilcuautla 030 Ixmiquilpan 019030 26758.55 17957.65 26758.55 1.60 019 Chilcuautla 041 Mixquiahuala De Juarez 019041 16362.16 12453.83 16362.16 1.97 019 Chilcuautla 050 Progreso De Obregon 019050 13766.98 9899.16 13766.98 1.51 019 Chilcuautla 054 San Salvador 019054 41815.55 21876.44 41815.55 0.25 019 Chilcuautla 067 Tepenttepe De Aldama 019067 1971.83 1737.42 1971.83 1.50 020 Eloxochitlan									
018 Chapulhuacan 049 Pisaflores 018049 17852.45 12292.12 17852.45 1.06 018 Chapulhuacan 062 Tepehuacan De Guerrero 018062 44940.57 12394.87 24789.74 0.86 019 Chilcuautla 030 Ixmiquilpan 019030 26758.55 17957.65 26758.55 1.60 019 Chilcuautla 041 Mixquiahuala De Juarez 019041 16362.16 12453.83 16362.16 1.97 019 Chilcuautla 050 Progreso De Obregon 019050 13766.98 9899.16 13766.98 1.51 019 Chilcuautla 054 San Salvador 019054 41815.55 21876.84 41815.55 0.25 019 Chilcuautla 064 Tepetitlan 019067 19711.83 17137.42 19711.83 150.01 019 Chilcuautla 067 Tezontepec De Aldama 019067 19711.83 17137.42 19711.83 150.01 020 Eloxochitlan <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
018 Chapulhuacan 062 Tepehuacan De Guerrero 018062 44940.57 12394.87 24789.74 0.86 019 Chilcuautla 030 Ixmiquilpan 019030 26758.55 17957.65 26758.55 1.60 019 Chilcuautla 041 Mixquiahuala De Juarez 019041 16362.16 12453.83 16362.16 1.97 019 Chilcuautla 050 Progreso De Obregon 019050 13766.98 9899.16 13766.98 1.51 019 Chilcuautla 054 San Salvador 019054 41815.55 21876.84 41815.55 0.25 019 Chilcuautla 064 Tepetitlan 019064 35130.91 23538.27 35130.91 0.10 019 Chilcuautla 067 Tezontepec De Aldama 019067 19711.83 17137.42 19711.83 1.50 020 Eloxochitlan 033 Juarez Hidalgo 020033 32043.08 11367.89 22735.79 0.02 020 Eloxochitlan <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
019 Chilcuautla 030 Ixmiquilpan 019030 26758.55 17957.65 26758.55 1.60 019 Chilcuautla 041 Mixquiahuala De Juarez 019041 16362.16 12453.83 16362.16 1.97 019 Chilcuautla 050 Progreso De Obregon 019050 13766.98 9899.16 13766.98 1.51 019 Chilcuautla 054 San Salvador 019054 41815.55 21876.84 41815.55 0.25 019 Chilcuautla 064 Tepetitlan 019064 35130.91 23538.27 35130.91 0.10 019 Chilcuautla 067 Tezontepec De Aldama 019067 19711.83 17137.42 19711.83 1.50 020 Eloxochitlan 033 Juarez Hidalgo 020033 32043.08 11367.89 22735.79 0.02 020 Eloxochitlan 037 Metztitlan 020037 25052.16 1772.96 25052.16 0.10 020 Eloxochitlan <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
019 Chilcuautla 041 Mixquiahuala De Juarez 019041 16362.16 12453.83 16362.16 1.97 019 Chilcuautla 050 Progreso De Obregon 019050 13766.98 9899.16 13766.98 1.51 019 Chilcuautla 054 San Salvador 019054 41815.55 21876.84 41815.55 0.25 019 Chilcuautla 064 Tepetitlan 019064 35130.91 23538.27 35130.91 0.10 019 Chilcuautla 067 Tezontepec De Aldama 019067 19711.83 17137.42 19711.83 1.50 020 Eloxochitlan 033 Juarez Hidalgo 020033 32043.08 11367.89 22735.79 0.02 020 Eloxochitlan 037 Metztitlan 020037 25052.16 17729.96 25052.16 0.10 020 Eloxochitlan 042 Molango De Escamilla 020042 38369.77 16664.76 33329.52 0.03 021 Emiliano Zapata </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
019 Chilcuautla 050 Progreso De Obregon 019050 13766.98 9899.16 13766.98 1.51 019 Chilcuautla 054 San Salvador 019054 41815.55 21876.84 41815.55 0.25 019 Chilcuautla 064 Tepetitlan 019064 35130.91 23538.27 35130.91 0.10 019 Chilcuautla 067 Tezontepec De Aldama 019067 19711.83 17137.42 19711.83 1.50 020 Eloxochitlan 033 Juarez Hidalgo 020033 32043.08 11367.89 22735.79 0.02 020 Eloxochitlan 037 Metztitlan 020037 25052.16 1772.96 25052.16 0.10 020 Eloxochitlan 042 Molango De Escamilla 020042 38369.77 16664.76 33329.52 0.03 020 Eloxochitlan 071 Tlahuiltepa 020071 62024.13 22344.76 44689.52 0.02 021 Emiliano Zapata									
019 Chilcuautla 054 San Salvador 019054 41815.55 21876.84 41815.55 0.25 019 Chilcuautla 064 Tepetitlan 019064 35130.91 23538.27 35130.91 0.10 019 Chilcuautla 067 Tezontepec De Aldama 019067 19711.83 17137.42 19711.83 1.50 020 Eloxochitlan 033 Juarez Hidalgo 020033 32043.08 11367.89 22735.79 0.02 020 Eloxochitlan 042 Molango De Escamilla 020042 38369.77 16664.76 33329.52 0.03 020 Eloxochitlan 071 Tlahuiltepa 020071 62024.13 22344.76 44689.52 0.02 021 Emiliano Zapata 061 Tepeapulco 021061 15937.78 12789.07 15937.78 2.40 022 Epazoyucan 039 Mineral Del Monte 022039 23456.00 12761.38 23456.00 0.26 022 Epazoyucan <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
019 Chilcuautla 064 Tepetitlan 019064 35130.91 23538.27 35130.91 0.10 019 Chilcuautla 067 Tezontepec De Aldama 019067 19711.83 17137.42 19711.83 1.50 020 Eloxochitlan 033 Juarez Hidalgo 020033 32043.08 11367.89 22735.79 0.02 020 Eloxochitlan 037 Metztitlan 020037 25052.16 17729.96 25052.16 0.10 020 Eloxochitlan 042 Molango De Escamilla 020042 38369.77 16664.76 33329.52 0.03 020 Eloxochitlan 071 Tlahuiltepa 020071 62024.13 22344.76 44689.52 0.02 021 Emiliano Zapata 061 Tepeapulco 021061 15937.78 12789.07 15937.78 2.40 022 Epazoyucan 039 Mineral Del Monte 022039 23456.00 1276.18 23456.00 0.26 022 Epazoyucan									
019 Chilcuautla 067 Tezontepec De Aldama 019067 19711.83 17137.42 19711.83 1.50 020 Eloxochitlan 033 Juarez Hidalgo 020033 32043.08 11367.89 22735.79 0.02 020 Eloxochitlan 037 Metztitlan 020037 25052.16 17729.96 25052.16 0.10 020 Eloxochitlan 042 Molango De Escamilla 020042 38369.77 16664.76 33329.52 0.03 020 Eloxochitlan 071 Tlahuiltepa 020071 62024.13 22344.76 44689.52 0.02 021 Emiliano Zapata 061 Tepeapulco 021061 15937.78 12789.07 15937.78 2.40 022 Epazoyucan 039 Mineral Del Monte 022039 23456.00 12761.38 23456.00 0.26 022 Epazoyucan 045 Omitlan De Juarez 022045 34896.00 16381.83 32763.67 0.08 022 Epazoyucan									
020 Eloxochitlan 033 Juarez Hidalgo 020033 32043.08 11367.89 22735.79 0.02 020 Eloxochitlan 037 Metztitlan 020037 25052.16 17729.96 25052.16 0.10 020 Eloxochitlan 042 Molango De Escamilla 020042 38369.77 16664.76 33329.52 0.03 020 Eloxochitlan 071 Tlahuiltepa 020071 62024.13 22344.76 44689.52 0.02 021 Emiliano Zapata 061 Tepeapulco 021061 15937.78 12789.07 15937.78 2.40 022 Epazoyucan 039 Mineral Del Monte 022039 23456.00 12761.38 23456.00 0.26 022 Epazoyucan 045 Omitlan De Juarez 022045 34896.00 16381.83 32763.67 0.08 022 Epazoyucan 051 Mineral De La Reforma 022051 15115.08 9849.86 15115.08 2.04 022 Epazoyucan									
020 Eloxochitlan 037 Metztitlan 020037 25052.16 17729.96 25052.16 0.10 020 Eloxochitlan 042 Molango De Escamilla 020042 38369.77 16664.76 33329.52 0.03 020 Eloxochitlan 071 Tlahuiltepa 020071 62024.13 22344.76 44689.52 0.02 021 Emiliano Zapata 061 Tepeapulco 021061 15937.78 12789.07 15937.78 2.40 022 Epazoyucan 039 Mineral Del Monte 022039 23456.00 12761.38 23456.00 0.26 022 Epazoyucan 045 Omitlan De Juarez 022045 34896.00 16381.83 32763.67 0.08 022 Epazoyucan 051 Mineral De La Reforma 022051 15115.08 9849.86 15115.08 2.04 022 Epazoyucan 057 Singuilucan 022057 25318.25 14992.77 25318.25 0.23 022 Epazoyucan <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
020 Eloxochitlan 042 Molango De Escamilla 020042 38369.77 16664.76 33329.52 0.03 020 Eloxochitlan 071 Tlahuiltepa 020071 62024.13 22344.76 44689.52 0.02 021 Emiliano Zapata 061 Tepeapulco 021061 15937.78 12789.07 15937.78 2.40 022 Epazoyucan 039 Mineral Del Monte 022039 23456.00 12761.38 23456.00 0.26 022 Epazoyucan 045 Omitlan De Juarez 022045 34896.00 16381.83 32763.67 0.08 022 Epazoyucan 051 Mineral De La Reforma 022051 15115.08 9849.86 15115.08 2.04 022 Epazoyucan 057 Singuilucan 022057 25318.25 14992.77 25318.25 0.23 022 Epazoyucan 083 Zempoala 022083 21731.89 12198.17 21731.89 0.57 023 Francisco I. Madero	-			9	ł				
020 Eloxochitlan 071 Tlahuiltepa 020071 62024.13 22344.76 44689.52 0.02 021 Emiliano Zapata 061 Tepeapulco 021061 15937.78 12789.07 15937.78 2.40 022 Epazoyucan 039 Mineral Del Monte 022039 23456.00 12761.38 23456.00 0.26 022 Epazoyucan 045 Omitlan De Juarez 022045 34896.00 16381.83 32763.67 0.08 022 Epazoyucan 051 Mineral De La Reforma 022051 15115.08 9849.86 15115.08 2.04 022 Epazoyucan 057 Singuilucan 022057 25318.25 14992.77 25318.25 0.23 022 Epazoyucan 083 Zempoala 022083 21731.89 12198.17 21731.89 0.57 023 Francisco I. Madero 041 Mixquiahuala De Juarez 023041 13901.17 13015.90 13901.17 5.17 023 Francisco I. Madero <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>					1				
021 Emiliano Zapata 061 Tepeapulco 021061 15937.78 12789.07 15937.78 2.40 022 Epazoyucan 039 Mineral Del Monte 022039 23456.00 12761.38 23456.00 0.26 022 Epazoyucan 045 Omitlan De Juarez 022045 34896.00 16381.83 32763.67 0.08 022 Epazoyucan 051 Mineral De La Reforma 022051 15115.08 9849.86 15115.08 2.04 022 Epazoyucan 057 Singuilucan 022057 25318.25 14992.77 25318.25 0.23 022 Epazoyucan 083 Zempoala 022083 21731.89 12198.17 21731.89 0.57 023 Francisco I. Madero 041 Mixquiahuala De Juarez 023041 13901.17 13015.90 13901.17 5.17 023 Francisco I. Madero 054 San Salvador 023054 15430.63 7698.89 15397.78 3.48 024 Huasca De Ocamp									
022 Epazoyucan 039 Mineral Del Monte 022039 23456.00 12761.38 23456.00 0.26 022 Epazoyucan 045 Omitlan De Juarez 022045 34896.00 16381.83 32763.67 0.08 022 Epazoyucan 051 Mineral De La Reforma 022051 15115.08 9849.86 15115.08 2.04 022 Epazoyucan 057 Singuilucan 022057 25318.25 14992.77 25318.25 0.23 022 Epazoyucan 083 Zempoala 022083 21731.89 12198.17 21731.89 0.57 023 Francisco I. Madero 041 Mixquiahuala De Juarez 023041 13901.17 13015.90 13901.17 5.17 023 Francisco I. Madero 054 San Salvador 023054 15430.63 7698.89 15397.78 3.48 024 Huasca De Ocampo 045 Omitlan De Juarez 024045 12835.18 10320.47 12835.18 0.75 024 Huasca				L .	1				
022 Epazoyucan 045 Omitlan De Juarez 022045 34896.00 16381.83 32763.67 0.08 022 Epazoyucan 051 Mineral De La Reforma 022051 15115.08 9849.86 15115.08 2.04 022 Epazoyucan 057 Singuilucan 022057 25318.25 14992.77 25318.25 0.23 022 Epazoyucan 083 Zempoala 022083 21731.89 12198.17 21731.89 0.57 023 Francisco I. Madero 041 Mixquiahuala De Juarez 023041 13901.17 13015.90 13901.17 5.17 023 Francisco I. Madero 054 San Salvador 023054 15430.63 7698.89 15397.78 3.48 024 Huasca De Ocampo 045 Omitlan De Juarez 024045 12835.18 10320.47 12835.18 0.75 024 Huasca De Ocampo 057 Singuilucan 024057 50309.63 26387.19 50309.63 0.08 025 Huautla					1				
022 Epazoyucan 051 Mineral De La Reforma 022051 15115.08 9849.86 15115.08 2.04 022 Epazoyucan 057 Singuilucan 022057 25318.25 14992.77 25318.25 0.23 022 Epazoyucan 083 Zempoala 022083 21731.89 12198.17 21731.89 0.57 023 Francisco I. Madero 041 Mixquiahuala De Juarez 023041 13901.17 13015.90 13901.17 5.17 023 Francisco I. Madero 054 San Salvador 023054 15430.63 7698.89 15397.78 3.48 024 Huasca De Ocampo 045 Omitlan De Juarez 024045 12835.18 10320.47 12835.18 0.75 024 Huasca De Ocampo 057 Singuilucan 024057 50309.63 26387.19 50309.63 0.08 025 Huautla 028 Huejutla De Reyes 025028 36599.84 22822.42 36599.84 1.89 026 Huazalingo		1 /			1				
022 Epazoyucan 057 Singuilucan 022057 25318.25 14992.77 25318.25 0.23 022 Epazoyucan 083 Zempoala 022083 21731.89 12198.17 21731.89 0.57 023 Francisco I. Madero 041 Mixquiahuala De Juarez 023041 13901.17 13015.90 13901.17 5.17 023 Francisco I. Madero 054 San Salvador 023054 15430.63 7698.89 15397.78 3.48 024 Huasca De Ocampo 045 Omitlan De Juarez 024045 12835.18 10320.47 12835.18 0.75 024 Huasca De Ocampo 057 Singuilucan 024057 50309.63 26387.19 50309.63 0.08 025 Huautla 028 Huejutla De Reyes 025028 36599.84 22822.42 36599.84 1.89 026 Huazalingo 028 Huejutla De Reyes 026028 29162.66 14700.15 29162.66 1.42		· · ·							
022 Epazoyucan 083 Zempoala 022083 21731.89 12198.17 21731.89 0.57 023 Francisco I. Madero 041 Mixquiahuala De Juarez 023041 13901.17 13015.90 13901.17 5.17 023 Francisco I. Madero 054 San Salvador 023054 15430.63 7698.89 15397.78 3.48 024 Huasca De Ocampo 045 Omitlan De Juarez 024045 12835.18 10320.47 12835.18 0.75 024 Huasca De Ocampo 057 Singuilucan 024057 50309.63 26387.19 50309.63 0.08 025 Huautla 028 Huejutla De Reyes 025028 36599.84 22822.42 36599.84 1.89 025 Huautla 078 Xochiatipan 025078 33618.64 19498.22 33618.64 0.35 026 Huazalingo 028 Huejutla De Reyes 026028 29162.66 14700.15 29162.66 1.42		1 ,							
023 Francisco I. Madero 041 Mixquiahuala De Juarez 023041 13901.17 13015.90 13901.17 5.17 023 Francisco I. Madero 054 San Salvador 023054 15430.63 7698.89 15397.78 3.48 024 Huasca De Ocampo 045 Omitlan De Juarez 024045 12835.18 10320.47 12835.18 0.75 024 Huasca De Ocampo 057 Singuilucan 024057 50309.63 26387.19 50309.63 0.08 025 Huautla 028 Huejutla De Reyes 025028 36599.84 22822.42 36599.84 1.89 025 Huautla 078 Xochiatipan 025078 33618.64 19498.22 33618.64 0.35 026 Huazalingo 028 Huejutla De Reyes 026028 29162.66 14700.15 29162.66 1.42		* /		Ü					
023 Francisco I. Madero 054 San Salvador 023054 15430.63 7698.89 15397.78 3.48 024 Huasca De Ocampo 045 Omitlan De Juarez 024045 12835.18 10320.47 12835.18 0.75 024 Huasca De Ocampo 057 Singuilucan 024057 50309.63 26387.19 50309.63 0.08 025 Huautla 028 Huejutla De Reyes 025028 36599.84 22822.42 36599.84 1.89 026 Huazalingo 028 Huejutla De Reyes 026028 29162.66 14700.15 29162.66 1.42		i i ,		<u> </u>					
024 Huasca De Ocampo 045 Omitlan De Juarez 024045 12835.18 10320.47 12835.18 0.75 024 Huasca De Ocampo 057 Singuilucan 024057 50309.63 26387.19 50309.63 0.08 025 Huautla 028 Huejutla De Reyes 025028 36599.84 22822.42 36599.84 1.89 025 Huautla 078 Xochiatipan 025078 33618.64 19498.22 33618.64 0.35 026 Huazalingo 028 Huejutla De Reyes 026028 29162.66 14700.15 29162.66 1.42									
024 Huasca De Ocampo 057 Singuilucan 024057 50309.63 26387.19 50309.63 0.08 025 Huautla 028 Huejutla De Reyes 025028 36599.84 22822.42 36599.84 1.89 025 Huautla 078 Xochiatipan 025078 33618.64 19498.22 33618.64 0.35 026 Huazalingo 028 Huejutla De Reyes 026028 29162.66 14700.15 29162.66 1.42									
025 Huautla 028 Huejutla De Reyes 025028 36599.84 22822.42 36599.84 1.89 025 Huautla 078 Xochiatipan 025078 33618.64 19498.22 33618.64 0.35 026 Huazalingo 028 Huejutla De Reyes 026028 29162.66 14700.15 29162.66 1.42									
025 Huautla 078 Xochiatipan 025078 33618.64 19498.22 33618.64 0.35 026 Huazalingo 028 Huejutla De Reyes 026028 29162.66 14700.15 29162.66 1.42				C					
026 Huazalingo 028 Huejutla De Reyes 026028 29162.66 14700.15 29162.66 1.42				,	025028	36599.84	22822.42	36599.84	1.89
	025	Huautla			025078	33618.64	19498.22		0.35
026 Huazalingo 073 Tlanchinol 026073 28352.36 16380.29 28352.36 0.45	026	Huazalingo	028		026028	29162.66	14700.15	29162.66	1.42
	026	Huazalingo	073	Tlanchinol	026073	28352.36	16380.29	28352.36	0.45

O26	CaMara	Nambra dal municipia	C.M.	Nombre del municipio	Cultariat	Dist. Carret.	Dist. Lineal	d	C
OZ7 Huchuetla	CvMun	Nombre del municipio	CvMun	<u>.</u>	CvArist				C_{ij}
Huejuda De Reyes 0.32 Jaltocarn 0.28032 10012.51 8275.06 10012.51 9.18									
O28 Hughula De Reyes O46 San Felipe Orizatlan O28046 21621.35 18321.35 21621.35 8.73 O28 Hughula De Reyes O73 Tanchimol O28077 4342.11 1237.24 3147.35 O29 Huichapam O44 Nopala De Villagram O29044 21825.51 15853.48 21825.51 1.18 O29 Huichapam O43 Nopala De Villagram O29049 30474.34 1277.24 30474.34 1.27 O30 Emiquilpam O43 Nicolas Flores O30043 50747.37 31941.91 51745.73 0.19 O30 Emiquilpam O35 Santiago De Anaya O30054 46487.17 29382.79 46487.17 1.02 O30 Emiquilpam O35 Santiago De Anaya O30055 34924.72 24331.9 34924.72 0.84 O30 Emiquilpam O35 Esatiago De Anaya O30055 34924.72 24331.9 34924.72 0.84 O30 Emiquilpam O38 Tasquillo O30035 17971.24 14503.23 17971.24 3.91 O31 Izacala De Ledezma O40 La Mision O30040 17634.77 13737.68 1764.477 0.46 O31 Izacala De Ledezma O47 Pacula O31047 77398.58 81811.65 50225.27 0.05 O31 Izacala De Ledezma O47 Pacula O31047 77398.58 81811.65 50225.27 0.05 O31 Izacala De Ledezma O47 Pacula O31047 77398.58 81811.65 50225.27 0.05 O31 Izacala De Ledezma O47 Tahuhilepa O31071 191194.87 21900.06 43800.12 0.07 O31 Izacala De Ledezma O46 San Felipe Orizatlan O31044 5048.96 33978.5244.96 0.18 O32 Izacala De Ledezma O46 San Felipe Orizatlan O31044 5048.96 33978.5244.96 0.18 O33 Izacare Hidalgo O42 Molango De Escamilla O31042 4416.06 8887.17175.34 0.12 O34 Lolotla O47 Molango De Escamilla O34047 24731.88 17179.34 0.12 O35 Metepec O35 San Bartolo Futorepec O35057 46222.55 0.05 39423.77 0.05 O36 Metepec O35 San Bartolo Futorepec O35057 46222.55 0.05 0.36 O37 Metetullan O37 Metatullan O36047 25736.51 12880.93 35079.60 0.16 O38 Mineral Del Chico O49 Molango De Escamilla 037072 53965.74 15938.93 53967.96 0.06 O39 Mineral			1						
Hulchapan									
O39									
			1						
		, <u>, , , , , , , , , , , , , , , , , , </u>							
030 Ismiquilpan 084 Zimapan 030084 48978.36 31466.56 48978.36 118									
O31 Jacala De Ledezma O40 La Mision O31040 17634-77 13737,68 17634-77 O.46 O31 Jacala De Ledezma O47 Pacula O31047 77398-58 ISI1163 36223.27 O.05 O31 Jacala De Ledezma O47 Pacula O31047 77398-58 ISI1163 36223.27 O.05 O31 Jacala De Ledezma O47 Talhuiltepa O31071 191194-87 21900.06 43800.12 O.07 O31 Jacala De Ledezma O48 Zimapan O31084 52048-96 O318 O318									
O31 Jacala De Ledezma O43 Nicolas Flores O31043 50053.62 21865.93 43731.87 O.05 O31 Jacala De Ledezma O47 Pacula O11047 77398.58 I8111.63 5022.27 O.05 O31 Jacala De Ledezma O71 Tlahulitepa O31071 D1194.87 21900.06 43800.12 O.07 O31 Jacala De Ledezma O84 Zimapan O31084 52048.96 33975.88 52048.96 O.18 O32 Jatocan O46 San Felipe Orizatlan O32046 14480.30 10838.72 14480.30 1.82 O33 Juarez Hidalgo O42 Molango De Escamilla O33042 44116.60 8587.67 1775.34 O.12 O33 Juarez Hidalgo O71 Tlahulitepa O33071 29981.05 4975.99 2991.98 O.04 O34 Lolotla O42 Molango De Escamilla O34042 24718.81 777.99 2991.98 O.04 O34 Lolotla O62 Tepehuacan De Guerrero O34062 30147.42 14482.07 28964.14 O.30 O34 Lolotla O73 Tlahulitepa O34073 18231.36 2928.82 18231.36 0.96 O35 Metepec O33 San Bartolo Tutotepec O35033 46222.55 24976.21 46222.55 0.09 O35 Metepec O36 Tenango De Doria O35060 35695.49 61539.83 33079.66 O.16 O36 Metepoint O37 Metztitlan O38 Metapa O398 O36081 Japa.83 Japa.83 Japa.83 Japa.83 O37 Metztitlan O39 Metapa	030		084		030084		31466.56	48978.36	1.18
O31	031	Jacala De Ledezma	040		031040	17634.77	13737.68	17634.77	
O31 Jacala De Ledezma O71 Tahuiltepa O31071 191194.87 21900.06 43800.12 0.07 O31 Jacala De Ledezma O84 Zimapan O31084 52048.96 033957.88 52048.96 0.18 O32 Jalocan O46 San Felipe Orizatlan O32046 14480.30 10838.72 14480.30 182 O33 Juarez Hidalgo O42 Molango De Escamilla O33042 44116.60 8587.67 17175.34 O12 O33 Juarez Hidalgo O71 Tahuiltepa O33071 29981.05 14975.99 29951.98 O.04 O34 Lolotla O42 Molango De Escamilla O34042 24713.83 1717.93 24713.83 O.17 O34 Lolotla O62 Tepehuacan De Guerrero O34062 30147.42 14482.07 28964.14 O.30 O34 Lolotla O73 Tanchinol O34073 18253.16 9285.82 18251.36 O.96 O34 Lolotla O73 Tanchinol O34073 18253.16 9285.82 18251.36 O.96 O35 Metepec O53 San Bartolo Tutotepec O35033 46222.55 24976.21 46222.55 O.09 O35 Metepec O60 Tenango De Doria O35000 35695.49 16539.83 33079.66 O.16 O35 Metepec O67 Tulancingo De Bravo O35077 23513.30 18635.33 23513.30 2.26 O36 Metzquititlan O37 Metztitlan O36037 36529.52 19530.99 36529.52 O.14 O36 Metzquititlan O37 Metztitlan O42 Molango De Escamilla O37042 52726.51 28963.93 52726.51 O.08 O37 Metztitlan O42 Molango De Escamilla O37042 52726.51 28963.93 52726.51 O.08 O37 Metztitlan O41 Molango De Escamilla O37079 5696.71 27938.90 55877.79 O.05 O38 Mineral Del Chico O45 Santiago De Anaya O37059 153648.57 31183.93 63967.86 O.07 O38 Mineral Del Chico O48 Zacualtipan De Angeles O37081 30636.62 17647.94 30636.62 0.55 O38 Mineral Del Chico O48 Dachaca De Soto O38048 17884.94 9531.27 17884.94 538 O38 Mineral Del Chico O48 Dachaca De Soto O38048 17884.94 9531.27 17884.94 538 O38 Mineral Del Chico O48 Dachaca De Soto O38048 17884.94 9531.27 17884.94 538 O39 Mineral Del Monte O45 O34080 O	031	Jacala De Ledezma	043	Nicolas Flores	031043	50623.62	21865.93	43731.87	0.05
O31	031	Jacala De Ledezma	047	Pacula	031047	77398.58	18111.63	36223.27	0.05
O32 Jaltocan O46 San Felipe Orizatlan O32046 14480.30 10838.72 14480.30 1.82 O33 Juarez Hidalgo O42 Molango De Escamilla O33042 44116.60 8587.67 T1775.34 O34 Lolotla O42 Molango De Escamilla O34042 24713.83 17171.93 24713.83 O34 Lolotla O42 Molango De Escamilla O34042 24713.83 17171.93 24713.83 O.17 O34 Lolotla O62 Tepehuacan De Guerrero O34062 30147.42 14482.07 28964.14 O.30 O34 Lolotla O73 Tlanchinol O34073 18213.6 9285.82 182513.6 0.96 O34 Lolotla O79 Xochicoatlan O34079 39423.77 23920.56 39423.77 O.05 O35 Metepec O36 San Bartolo Tutotepec O35033 46222.55 24976.21 46222.55 O.09 O35 Metepec O36 Tenango De Doria O35060 35695.49 16538.33 3079.66 O.16 O35 Metepec O77 Tulancingo De Bravo O35077 23513.30 18635.33 23513.30 2.26 O36 Metzquititlan O37 Metztitlan O36037 36529.52 19530.99 36529.52 0.14 O37 Metztitlan O81 Zacualtipan De Angeles O3608 13928.53 13114.31 13928.53 1.13 O37 Metztitlan O55 Santiago De Anaya O37075 23513.30 36967.86 O.07 O37 Metztitlan O97 Xochicoatlan O37079 25726.51 28963.93 52726.51 O.08 O37 Metztitlan O98 Zacualtipan De Angeles O3608 13928.53 1314.31 13928.53 1.13 O38 Mineral Del Chico O39 Mineral Del Monte O38039 24574.66 11486.08 22972.16 O.17 O38 Mineral Del Chico O45 Omitlan De Juarez O38045 15238.12 1736.05 15238.12 O.24 O39 Mineral Del Chico O45 Omitlan De Juarez O39048 8361.76 7471.47 8361.76 451.90 O39 Mineral Del Monte O48 Pachuca De Soto O38048 17884.94 931.77 71852.04 2.99 O40 La Mision O49 Pisaflores O40049 41665.16 20006.78 40013.56 O.11 O40 La Mision O49 Pisaflores O40040 41665.16 20006.78 40013.56 O.11 O41 Mixquiahuala De Juarez O50 Tepehuacan De Guerrero O40062 54760.02 5460.25 5268.204 5216	031	Jacala De Ledezma	071	Tlahuiltepa	031071	191194.87	21900.06	43800.12	0.07
032	031	Jacala De Ledezma	084		031084	52048.96	33957.88	52048.96	0.18
033 Juarez Hidalgo	032	Jaltocan	046		032046	14480.30	10838.72	14480.30	1.82
033 Juarez Hidalgo 071 Tlahuiltepa 033071 29981.05 14975.99 29951.98 0.04 034 Lolotla 042 Molango De Escamilla 034022 24718.83 1771.93 24718.83 0.04 034 Lolotla 062 Tepchuacan De Guerrero 034062 30147.42 14482.07 28964.14 0.30 034 Lolotla 073 Tlanchinol 034073 18251.36 9285.82 18251.36 0.96 034 Lolotla 079 Xochicoatlan 034079 39423.77 23920.56 39423.77 0.05 035 Metepee 053 San Bartolo Tutotepee 035053 46222.55 24976.21 46222.55 0.09 035 Metepee 077 Tulancingo De Bravo 035077 23513.30 18635.33 23513.30 2.26 San Agustin 036 Metzquititlan 037 Metztitlan 036081 13928.53 1311.43 13928.53 1.13 037 Metztitlan <td>033</td> <td>Juarez Hidalgo</td> <td>042</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	033	Juarez Hidalgo	042						
O34		9							
034 Lolotla 062 Tepehuacan De Guerrero 034062 30147.42 14482.07 28964.14 0.30 034 Lolotla 073 Tlanchinol 034073 18251.36 928 s.82 18251.36 0.96 034 Lolotla 079 Xochicoatlan 034079 39423.77 0.05 035 Metepec 053 San Bartolo Tutotepec 035053 46222.55 24976.21 46222.55 0.09 035 Metepec 060 Tenango De Doria 035060 35695.49 16339.83 33079.66 0.16 035 Metepec 077 Tulancingo De Bravo 035077 23513.30 18635.33 23513.30 2.26 San Agustin 036 Metzquititlan 037 Metzitlan 042 Molango De Escamilla 036081 13928.53 1311.31 13928.53 1.13 037 Metztitlan 042 Molango De Escamilla 037042 52726.51 28963.93 52726.51 0.08 037 Metzt									
034 Lolotla 073 Tlanchinol 034073 18251.36 9285.82 18251.36 0.96 034 Lolotla 079 Xochicoatlan 034073 1923.77 23920.56 39423.77 0.05 035 Metepec 053 San Bartolo Tutotepec 035053 46222.55 24976.21 46222.55 0.09 035 Metepec 060 Tenango De Doria 035060 35695.49 16539.83 33079.66 0.16 035 Metepec 077 Tulancingo De Bravo 035077 23513.30 18635.33 23513.30 2.26 San Agustin 036 Metzquititlan 037 Metzuitlan 036037 36529.52 19530.99 36529.52 0.14 036 Metzquititlan 081 Zacualtipan De Angeles 036081 13928.53 1311.43 13928.53 1.13 037 Metztitlan 042 Molango De Escamilla 037042 5272.651 28963.93 52726.51 0.08 037 Metztit									
034 Lolotla 079 Xochicoatlan 034079 39423.77 23920.56 39423.77 0.05 035 Metepec 053 San Bartolo Tutotepec 035053 46222.55 24976.21 46222.55 0.09 035 Metepec 060 Tenango De Doria 035060 35695.49 16539.83 33079.66 0.16 035 Metepec 077 Tulancingo De Bravo 035077 23513.30 18635.33 23513.30 2.26 San Agustin 036 Metzquititlan 037 Metztitlan 036081 13928.53 13114.31 13928.53 1.13 037 Metztitlan 042 Molango De Escamilla 037042 52726.51 28963.93 52726.51 0.08 037 Metztitlan 055 Santiago De Anaya 037055 135648.57 31983.93 53967.86 0.07 037 Metztitlan 079 Xochicoatlan 037091 56967.17 27938.90 55877.79 0.05 037 Metzti									
035 Metepec 053 San Bartolo Tutotepec 035053 46222.55 24976.21 46222.55 0.09 035 Metepec 060 Tenango De Doria 035060 35695.49 16539.83 33079.66 0.16 035 Metepec 077 Tulancingo De Bravo 035077 23513.30 18635.33 23513.30 2.26			1						
035 Metepec 060 Tenango De Doria 035060 35695.49 16539.83 33079.66 0.16 035 Metepec 077 Tulancingo De Bravo 035077 23513.30 18635.33 23513.30 2.26 San Agustin 036 Metzquititlan 037 Metztitlan 036037 36529.52 19530.99 36529.52 0.14 San Agustin 036 Metzquititlan 081 Zacualtipan De Angeles 036081 13928.53 13114.31 13928.53 1.13 037 Metztitlan 042 Molango De Escamilla 037042 52726.51 28963.93 52726.51 0.08 037 Metztitlan 055 Santiago De Anaya 037055 135648.57 31983.93 63967.86 0.07 037 Metztitlan 079 Xochicoatlan 037079 56967.17 27938.90 55877.79 0.05 038 Mineral Del Chico 049 Mineral Del Monte 038039 24574.66 11486.08 22972.16 0.17 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
O35 Metepec O77 Tulancingo De Bravo O35077 23513.30 18635.33 23513.30 2.26									
San Agustin O36 Metzquititlan O37 Metztitlan O36037 36529.52 19530.99 36529.52 O.14			1						
036 Metzquititlan 037 Metztitlan 036037 36529.52 19530.99 36529.52 0.14 San Agustin 036 Metzquititlan 081 Zacualtipan De Angeles 036081 13928.53 13114.31 13928.53 1.13 037 Metztitlan 042 Molango De Escamilla 037042 52726.51 28963.93 52726.51 0.08 037 Metztitlan 055 Santiago De Anaya 037055 135648.57 31983.93 39967.86 0.07 037 Metztitlan 079 Xochicoatlan 037079 56967.17 27938.90 55877.79 0.05 037 Metztitlan 081 Zacualtipan De Angeles 037081 30636.62 17647.94 30636.62 0.55 038 Mineral Del Chico 039 Mineral Del Monte 038039 24574.66 11486.08 22972.16 0.17 038 Mineral Del Chico 048 Pachuca De Soto 038048 17884.94 9531.27 17884.94 538	033		011	T dianeingo De Bravo	033011	25515.50	10033.33	23313.30	2.20
San Agustin O81 Zacualtipan De Angeles O36081 13928.53 13114.31 13928.53 1.13	036		037	Metztitlan	036037	36520 52	10530 00	36520 52	0.14
036 Metzquititlan 081 Zacualtipan De Angeles 036081 13928.53 13114.31 13928.53 1.13 037 Metztitlan 042 Molango De Escamilla 037042 52726.51 28963.93 52726.51 0.08 037 Metztitlan 055 Santiago De Anaya 037055 135648.57 31983.93 63967.86 0.07 037 Metztitlan 079 Xochicoatlan 037079 56967.17 27938.90 5877.79 0.05 038 Mineral Del Chico 039 Mineral Del Monte 038039 24574.66 11486.08 22972.16 0.17 038 Mineral Del Chico 045 Omitlan De Juarez 038045 15238.12 12736.05 15238.12 0.24 038 Mineral Del Chico 048 Pachuca De Soto 038048 17884.94 9531.27 17884.94 5.38 038 Mineral Del Chico 052 San Agustin Tlaxiaca 038052 35312.19 19053.29 35312.19 0.14 039 </td <td>030</td> <td></td> <td>031</td> <td>Wictztitian</td> <td>030031</td> <td>30329.32</td> <td>19330.99</td> <td>30329.32</td> <td>0.17</td>	030		031	Wictztitian	030031	30329.32	19330.99	30329.32	0.17
037 Metztitlan 042 Molango De Escamilla 037042 52726.51 28963.93 52726.51 0.08 037 Metztitlan 055 Santiago De Anaya 037055 135648.57 31983.93 63967.86 0.07 037 Metztitlan 079 Xochicoatlan 037079 56967.17 27938.90 55877.79 0.05 037 Metztitlan 081 Zacualtipan De Angeles 037081 30636.62 17647.94 30636.62 0.55 038 Mineral Del Chico 049 Mineral Del Monte 03809 24574.66 11486.08 22972.16 0.17 038 Mineral Del Chico 045 Omitlan De Juarez 038045 15238.12 12736.05 15238.12 0.24 038 Mineral Del Chico 048 Pachuca De Soto 038048 17884.94 9531.27 17884.94 5.38 038 Mineral Del Monte 045 Omitlan De Juarez 039045 11440.00 5239.24 10478.49 0.94 039	036		081	Zacualtinan De Angeles	036081	13028 53	13114 31	13028 53	1 12
037 Metztitlan 055 Santiago De Anaya 037055 135648.57 31983.93 63967.86 0.07 037 Metztitlan 079 Xochicoatlan 037079 56967.17 27938.90 55877.79 0.05 037 Metztitlan 081 Zacualtipan De Angeles 037081 30636.62 17647.94 30636.62 0.55 038 Mineral Del Chico 039 Mineral Del Monte 038039 24574.66 11486.08 22972.16 0.17 038 Mineral Del Chico 045 Omitlan De Juarez 038045 15238.12 12736.05 15238.12 0.24 038 Mineral Del Chico 048 Pachuca De Soto 038048 17884.94 9531.27 17884.94 538 038 Mineral Del Chico 052 San Agustin Tlaxiaca 038052 35312.19 19053.29 35312.19 0.14 039 Mineral Del Monte 045 Omitlan De Juarez 039045 11440.00 5239.24 10478.49 0.94 039 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
037 Metztitlan 079 Xochicoatlan 037079 56967.17 27938.90 55877.79 0.05 037 Metztitlan 081 Zacualtipan De Angeles 037081 30636.62 17647.94 30636.62 0.55 038 Mineral Del Chico 039 Mineral Del Monte 038039 24574.66 11486.08 22972.16 0.17 038 Mineral Del Chico 045 Omitlan De Juarez 038045 15238.12 12736.05 15238.12 0.24 038 Mineral Del Chico 048 Pachuca De Soto 038048 17884.94 9531.27 17884.94 5.38 038 Mineral Del Chico 052 San Agustin Tlaxiaca 038052 35312.19 19053.29 35312.19 0.14 039 Mineral Del Monte 045 Omitlan De Juarez 039045 11440.00 5239.24 10478.49 0.94 039 Mineral Del Monte 048 Pachuca De Soto 039048 8361.76 7471.47 8361.76 451.9 04				U					
037 Metztitlan 081 Zacualtipan De Angeles 037081 30636.62 17647.94 30636.62 0.55 038 Mineral Del Chico 039 Mineral Del Monte 038039 24574.66 11486.08 22972.16 0.17 038 Mineral Del Chico 045 Omitlan De Juarez 038045 15238.12 12736.05 15238.12 0.24 038 Mineral Del Chico 048 Pachuca De Soto 038048 17884.94 9531.27 17884.94 5.38 038 Mineral Del Chico 052 San Agustin Tlaxiaca 038052 35312.19 19053.29 35312.19 0.14 039 Mineral Del Monte 045 Omitlan De Juarez 039045 11440.00 5239.24 10478.49 0.94 039 Mineral Del Monte 048 Pachuca De Soto 039048 8361.76 7471.47 8361.76 45.19 039 Mineral Del Monte 051 Mineral De La Reforma 039051 13528.04 7731.07 13528.04 2.97									
038 Mineral Del Chico 039 Mineral Del Monte 038039 24574.66 11486.08 22972.16 0.17 038 Mineral Del Chico 045 Omitlan De Juarez 038045 15238.12 12736.05 15238.12 0.24 038 Mineral Del Chico 048 Pachuca De Soto 038048 17884.94 9531.27 17884.94 5.38 038 Mineral Del Chico 052 San Agustin Tlaxiaca 038052 35312.19 19053.29 35312.19 0.14 039 Mineral Del Monte 045 Omitlan De Juarez 039045 11440.00 5239.24 10478.49 0.94 039 Mineral Del Monte 048 Pachuca De Soto 039048 8361.76 7471.47 8361.76 45.19 039 Mineral Del Monte 051 Mineral De La Reforma 039051 13528.04 7731.07 13528.04 2.97 040 La Mision 049 Pisaflores 040049 41665.16 20006.78 40013.56 0.11									
038 Mineral Del Chico 045 Omitlan De Juarez 038045 15238.12 12736.05 15238.12 0.24 038 Mineral Del Chico 048 Pachuca De Soto 038048 17884.94 9531.27 17884.94 5.38 038 Mineral Del Chico 052 San Agustin Tlaxiaca 038052 35312.19 19053.29 35312.19 0.14 039 Mineral Del Monte 045 Omitlan De Juarez 039045 11440.00 5239.24 10478.49 0.94 039 Mineral Del Monte 048 Pachuca De Soto 039048 8361.76 7471.47 8361.76 45.19 039 Mineral Del Monte 051 Mineral De La Reforma 039051 13528.04 7731.07 13528.04 2.97 040 La Mision 049 Pisaflores 040049 41665.16 20006.78 40013.56 0.11 040 La Mision 062 Tepehuacan De Guerrero 040062 54770.01 23807.30 47614.61 0.13 040				Zacualtipan De Angeles					
038 Mineral Del Chico 048 Pachuca De Soto 038048 17884.94 9531.27 17884.94 5.38 038 Mineral Del Chico 052 San Agustin Tlaxiaca 038052 35312.19 19053.29 35312.19 0.14 039 Mineral Del Monte 045 Omitlan De Juarez 039045 11440.00 5239.24 10478.49 0.94 039 Mineral Del Monte 048 Pachuca De Soto 039048 8361.76 7471.47 8361.76 45.19 039 Mineral Del Monte 051 Mineral De La Reforma 039051 13528.04 7731.07 13528.04 2.97 040 La Mision 049 Pisaflores 040049 41665.16 20006.78 40013.56 0.11 040 La Mision 062 Tepehuacan De Guerrero 040062 54770.01 23807.30 47614.61 0.13 040 La Mision 071 Tlahuiltepa 040071 173560.10 21860.96 43721.91 0.06 041									
038 Mineral Del Chico 052 San Agustin Tlaxiaca 038052 35312.19 19053.29 35312.19 0.14 039 Mineral Del Monte 045 Omitlan De Juarez 039045 11440.00 5239.24 10478.49 0.94 039 Mineral Del Monte 048 Pachuca De Soto 039048 8361.76 7471.47 8361.76 45.19 039 Mineral Del Monte 051 Mineral De La Reforma 039051 13528.04 7731.07 13528.04 2.97 040 La Mision 049 Pisaflores 040049 41665.16 20006.78 40013.56 0.11 040 La Mision 062 Tepehuacan De Guerrero 040062 54770.01 23807.30 47614.61 0.13 040 La Mision 071 Tlahuiltepa 040071 173560.10 21860.96 43721.91 0.06 041 Mixquiahuala De Juarez 050 Progreso De Obregon 041050 3225.24 3401.76 3225.24 64.19 041									
039 Mineral Del Monte 045 Omitlan De Juarez 039045 11440.00 5239.24 10478.49 0.94 039 Mineral Del Monte 048 Pachuca De Soto 039048 8361.76 7471.47 8361.76 45.19 039 Mineral Del Monte 051 Mineral De La Reforma 039051 13528.04 7731.07 13528.04 2.97 040 La Mision 049 Pisaflores 040049 41665.16 20006.78 40013.56 0.11 040 La Mision 062 Tepehuacan De Guerrero 040062 54770.01 23807.30 47614.61 0.13 040 La Mision 071 Tlahuiltepa 040071 173560.10 21860.96 43721.91 0.06 041 Mixquiahuala De Juarez 050 Progreso De Obregon 041050 3225.24 3401.76 3225.24 64.19 041 Mixquiahuala De Juarez 054 San Salvador 041054 29331.80 19610.74 29331.80 1.18 041			1						
039 Mineral Del Monte 048 Pachuca De Soto 039048 8361.76 7471.47 8361.76 45.19 039 Mineral Del Monte 051 Mineral De La Reforma 039051 13528.04 7731.07 13528.04 2.97 040 La Mision 049 Pisaflores 040049 41665.16 20006.78 40013.56 0.11 040 La Mision 062 Tepehuacan De Guerrero 040062 54770.01 23807.30 47614.61 0.13 040 La Mision 071 Tlahuiltepa 040071 173560.10 21860.96 43721.91 0.06 041 Mixquiahuala De Juarez 050 Progreso De Obregon 041050 3225.24 3401.76 3225.24 64.19 041 Mixquiahuala De Juarez 054 San Salvador 041054 29331.80 19610.74 29331.80 1.18 041 Mixquiahuala De Juarez 065 Tetepango 041065 20305.87 13418.34 20305.87 0.76 042				C					
039 Mineral Del Monte 051 Mineral De La Reforma 039051 13528.04 7731.07 13528.04 2.97 040 La Mision 049 Pisaflores 040049 41665.16 20006.78 40013.56 0.11 040 La Mision 062 Tepehuacan De Guerrero 040062 54770.01 23807.30 47614.61 0.13 040 La Mision 071 Tlahuiltepa 040071 173560.10 21860.96 43721.91 0.06 041 Mixquiahuala De Juarez 050 Progreso De Obregon 041050 3225.24 3401.76 3225.24 64.19 041 Mixquiahuala De Juarez 054 San Salvador 041054 29331.80 19610.74 29331.80 1.18 041 Mixquiahuala De Juarez 065 Tetepango 041065 20305.87 13418.34 20305.87 0.76 041 Mixquiahuala De Juarez 067 Tezontepec De Aldama 041067 13858.87 9340.48 13858.87 7.07 04				.,					
040 La Mision 049 Pisaflores 040049 41665.16 20006.78 40013.56 0.11 040 La Mision 062 Tepehuacan De Guerrero 040062 54770.01 23807.30 47614.61 0.13 040 La Mision 071 Tlahuiltepa 040071 173560.10 21860.96 43721.91 0.06 041 Mixquiahuala De Juarez 050 Progreso De Obregon 041050 3225.24 3401.76 3225.24 64.19 041 Mixquiahuala De Juarez 054 San Salvador 041054 29331.80 19610.74 29331.80 1.18 041 Mixquiahuala De Juarez 065 Tetepango 041065 20305.87 13418.34 20305.87 0.76 041 Mixquiahuala De Juarez 067 Tezontepec De Aldama 041067 13858.87 9340.48 13858.87 7.07 042 Molango De Escamilla 062 Tepehuacan De Guerrero 042062 54861.25 26082.04 52164.09 0.10 <									
040 La Mision 062 Tepehuacan De Guerrero 040062 54770.01 23807.30 47614.61 0.13 040 La Mision 071 Tlahuiltepa 040071 173560.10 21860.96 43721.91 0.06 041 Mixquiahuala De Juarez 050 Progreso De Obregon 041050 3225.24 3401.76 3225.24 64.19 041 Mixquiahuala De Juarez 054 San Salvador 041054 29331.80 19610.74 29331.80 1.18 041 Mixquiahuala De Juarez 065 Tetepango 041065 20305.87 13418.34 20305.87 0.76 041 Mixquiahuala De Juarez 067 Tezontepec De Aldama 041067 13858.87 9340.48 13858.87 7.07 042 Molango De Escamilla 062 Tepehuacan De Guerrero 042062 54861.25 26082.04 52164.09 0.10 042 Molango De Escamilla 071 Tlahuiltepa 042071 74097.65 21693.79 43387.58 0.06 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
040 La Mision 071 Tlahuiltepa 040071 173560.10 21860.96 43721.91 0.06 041 Mixquiahuala De Juarez 050 Progreso De Obregon 041050 3225.24 3401.76 3225.24 64.19 041 Mixquiahuala De Juarez 054 San Salvador 041054 29331.80 19610.74 29331.80 1.18 041 Mixquiahuala De Juarez 065 Tetepango 041065 20305.87 13418.34 20305.87 0.76 041 Mixquiahuala De Juarez 067 Tezontepec De Aldama 041067 13858.87 9340.48 13858.87 7.07 042 Molango De Escamilla 062 Tepehuacan De Guerrero 042062 54861.25 26082.04 52164.09 0.10 042 Molango De Escamilla 071 Tlahuiltepa 042071 74097.65 21693.79 43387.58 0.06									
041 Mixquiahuala De Juarez 050 Progreso De Obregon 041050 3225.24 3401.76 3225.24 64.19 041 Mixquiahuala De Juarez 054 San Salvador 041054 29331.80 19610.74 29331.80 1.18 041 Mixquiahuala De Juarez 065 Tetepango 041065 20305.87 13418.34 20305.87 0.76 041 Mixquiahuala De Juarez 067 Tezontepec De Aldama 041067 13858.87 9340.48 13858.87 7.07 042 Molango De Escamilla 062 Tepehuacan De Guerrero 042062 54861.25 26082.04 52164.09 0.10 042 Molango De Escamilla 071 Tlahuiltepa 042071 74097.65 21693.79 43387.58 0.06									
041 Mixquiahuala De Juarez 054 San Salvador 041054 29331.80 19610.74 29331.80 1.18 041 Mixquiahuala De Juarez 065 Tetepango 041065 20305.87 13418.34 20305.87 0.76 041 Mixquiahuala De Juarez 067 Tezontepec De Aldama 041067 13858.87 9340.48 13858.87 7.07 042 Molango De Escamilla 062 Tepehuacan De Guerrero 042062 54861.25 26082.04 52164.09 0.10 042 Molango De Escamilla 071 Tlahuiltepa 042071 74097.65 21693.79 43387.58 0.06									
041 Mixquiahuala De Juarez 065 Tetepango 041065 20305.87 13418.34 20305.87 0.76 041 Mixquiahuala De Juarez 067 Tezontepec De Aldama 041067 13858.87 9340.48 13858.87 7.07 042 Molango De Escamilla 062 Tepehuacan De Guerrero 042062 54861.25 26082.04 52164.09 0.10 042 Molango De Escamilla 071 Tlahuiltepa 042071 74097.65 21693.79 43387.58 0.06		,							
041 Mixquiahuala De Juarez 067 Tezontepec De Aldama 041067 13858.87 9340.48 13858.87 7.07 042 Molango De Escamilla 062 Tepehuacan De Guerrero 042062 54861.25 26082.04 52164.09 0.10 042 Molango De Escamilla 071 Tlahuiltepa 042071 74097.65 21693.79 43387.58 0.06		i J		San Salvador	041054	29331.80	19610.74	29331.80	1.18
042 Molango De Escamilla 062 Tepehuacan De Guerrero 042062 54861.25 26082.04 52164.09 0.10 042 Molango De Escamilla 071 Tlahuiltepa 042071 74097.65 21693.79 43387.58 0.06	041	Mixquiahuala De Juarez	065		041065	20305.87	13418.34	20305.87	0.76
042 Molango De Escamilla 071 Tlahuiltepa 042071 74097.65 21693.79 43387.58 0.06	041	Mixquiahuala De Juarez	067	Tezontepec De Aldama	041067	13858.87	9340.48	13858.87	7.07
042 Molango De Escamilla 071 Tlahuiltepa 042071 74097.65 21693.79 43387.58 0.06	042		062	Tepehuacan De Guerrero	042062				
	042		071	1					0.06
		Molango De Escamilla			042079				

CvMun	Nombre del municipio	CvMun	Nombre del municipio	CvArist	Dist. Carret.	Dist. Lineal	d	C_{ii}
043	Nicolas Flores	071	Tlahuiltepa	043071	241818.49	26102.61	52205.22	0.03
043	Nicolas Flores	084	Zimapan	043084	27897.89	20211.26	27897.89	0.33
045	Omitlan De Juarez	057	Singuilucan	045057	59184.66	24575.15	49150.30	0.04
046	San Felipe Örizatlan	073	Tlanchinol	046073	32271.97	20646.88	32271.97	1.17
047	Pacula	084	Zimapan	047084	40972.60	26037.93	40972.60	0.12
048	Pachuca De Soto	051	Mineral De La Reforma	048051	5166.29	4811.03	5166.29	387.91
048	Pachuca De Soto	052	San Agustin Tlaxiaca	048052	21791.25	17613.06	21791.25	12.52
048	Pachuca De Soto	082	Zapotlan De Juarez	048082	18325.37	18096.44	18325.37	10.87
048	Pachuca De Soto	083	Zempoala	048083	24240.84	23072.75	24240.84	10.23
050	Progreso De Obregon	054	San Salvador	050054	28048.57	17467.07	28048.57	0.70
051	Mineral De La Reforma	083	Zempoala	051083	24660.69	18455.94	24660.69	1.70
052	San Agustin Tlaxiaca	075	Tolcayuca	052075	39528.05	19566.98	39133.95	0.18
052	San Agustin Tlaxiaca	082	Zapotlan De Juarez	052082	28162.65	14026.77	28053.55	0.46
053	San Bartolo Tutotepec	060	Tenango De Doria	053060	10527.06	11013.96	10527.06	2.89
054	San Salvador	055	Santiago De Anaya	054055	22665.92	10609.10	21218.20	0.87
	Santiago Tulantepec De		,					
056	Lugo Guerrero	057	Singuilucan	056057	25765.70	14446.96	25765.70	0.52
	Santiago Tulantepec De							
056	Lugo Guerrero	077	Tulancingo De Bravo	056077	8562.85	5761.07	8562.85	43.78
057	Singuilucan	061	Tepeapulco	057061	28681.86	24343.36	28681.86	0.80
057	Singuilucan	072	Tlanalapa	057072	30835.42	21992.53	30835.42	0.14
057	Singuilucan	077	Tulancingo De Bravo	057077	20359.06	17688.31	20359.06	3.91
057	Singuilucan	083	Zempoala	057083	25233.90	19562.06	25233.90	0.51
058	Tasquillo	059	Tecozautla	058059	56841.39	32935.53	56841.39	0.16
058	Tasquillo	084	Zimapan	058084	31589.82	22593.44	31589.82	0.62
059	Tecozautla	084	Zimapan	059084	88054.75	38344.20	76688.39	0.20
061	Tepeapulco	072	Tlanalapa	061072	7011.76	5833.10	7011.76	9.91
062	Tepehuacan De Guerrero	071	Tlahuiltepa	062071	128958.90	21377.02	42754.05	0.15
	Tepeji Del Rio De							
063	Ocampo	076	Tula De Allende	063076	15710.47	14488.81	15710.47	23.87
064	Tepetitlan	067	Tezontepec De Aldama	064067	15472.82	10578.97	15472.82	1.37
064	Tepetitlan	076	Tula De Allende	064076	19913.28	15634.06	19913.28	1.86
065	Tetepango	067	Tezontepec De Aldama	065067	22370.54	15298.34	22370.54	0.69
065	Tetepango	070	Tlahuelilpan	065070	11732.07	7441.04	11732.07	0.90
065	Tetepango	074	Tlaxcoapan	065074	8941.33	7085.43	8941.33	2.53
066	Villa De Tezontepec	075	Tolcayuca	066075	13870.02	12717.83	13870.02	0.53
066	Villa De Tezontepec	082	Zapotlan De Juarez	066082	17458.37	12929.60	17458.37	0.44
066	Villa De Tezontepec	083	Zempoala	066083	57570.61	14297.87	28595.75	0.27
067	Tezontepec De Aldama	070	Tlahuelilpan	067070	10638.48	8404.43	10638.48	4.77
067	Tezontepec De Aldama	074	Tlaxcoapan	067074	15419.31	12258.69	15419.31	3.69
067	Tezontepec De Aldama	076	Tula De Allende	067076	22255.63	17206.57	22255.63	6.79
068	Tianguistengo	079	Xochicoatlan	068079	58727.72	9751.74	19503.48	0.27
068	Tianguistengo	080	Yahualica	068080	37782.47	23148.32	37782.47	0.20
068	Tianguistengo	081	Zacualtipan De Angeles	068081	27149.94	16829.28	27149.94	0.46
069	Tizayuca	075	Tolcayuca	069075	18442.71	12225.44	18442.71	1.54
070	Tlahuelilpan	074	Tlaxcoapan	070074	5474.70	4473.07	5474.70	10.53
072	Tlanalapa	083	Zempoala	072083	15289.50	14120.85	15289.50	1.03
074	Tlaxcoapan	076	Tula De Allende	074076	19517.04	13231.44	19517.04	5.16
075	Tolcayuca	082	Zapotlan De Juarez	075082	11365.41	9733.69	11365.41	1.30
078	Xochiatipan	080	Yahualica	078080	43002.47	12512.77	25025.55	0.56
079	Xochicoatlan	081	Zacualtipan De Angeles	079081	42720.59	16682.27	33364.54	0.17
082	Zapotlan De Juarez	083	Zempoala	082083	40112.24	20167.42	40112.24	0.23

Anexo III. Reporte de solución para el modelo matemático

Global optimal solution found.

Objective value: 639.5600 Extended solver steps: 11763 Total solver iterations: 2472445

Variable	Value	Reduced Cost
P1X001004	0.000000	-0.100000
P2X001004	0.000000	-0.100000
P3X001004	0.000000	-0.100000
P4X001004	0.000000	-0.100000
P1X001004	1.000000	-0.990000
P2X001024	0.000000	-0.990000
P3X001024	0.000000	-0.990000
P4X001024	0.000000	-0.990000
P1X001024	0.000000	-0.250000
P2X001035	0.000000	-0.250000
P3X001035	0.000000	-0.250000
P4X001035	0.000000	-0.250000
P1X001057	0.000000	-0.220000
P2X001057	0.000000	-0.220000
P3X001057	0.000000	-0.220000
P4X001057	0.000000	-0.220000
P1X001077	1.000000	-13.450000
P2X001077	0.000000	-13.450000
P3X001077	0.000000	-13.450000
P4X001077	0.000000	-13.450000
P1X002016	0.000000	-2.650000
P2X002016	0.000000	-2.650000
P3X002016	0.000000	-2.650000
P4X002016	0.000000	-2.650000
P1X002035	0.000000	-0.580000
P2X002035	0.000000	-0.580000
P3X002035	0.000000	-0.580000
P4X002035	0.000000	-0.580000
P1X002077	1.000000	-7.210000
P2X002077	0.000000	-7.210000
P3X002077	0.000000	-7.210000
P4X002077	0.000000	-7.210000
P1X004035	1.000000	-0.290000
P2X004035	0.000000	-0.290000
P3X004035	0.000000	-0.290000
P4X004035	0.000000	-0.290000
P1X004053	0.000000	-0.100000
P2X004053	0.000000	-0.100000
P3X004053	0.000000	-0.100000
P4X004053	0.000000	-0.100000
P1X007008	0.000000	-7.800000
P2X007008	1.000000	-7.800000
P3X007008	0.000000	-7.800000
P4X007008	0.000000	-7.800000
P1X007016	0.000000	-0.110000
P2X007016	0.000000	-0.110000

x7 · 11	x 7 1	D 1 16 .
Variable	Value	Reduced Cost
P3X007016 P4X007016	0.000000	-0.110000 -0.110000
P1X007010	0.000000	-0.530000
P2X008016	0.000000	-0.530000
P3X008016	0.000000	-0.530000
P4X008016	0.000000	-0.530000
P1X008021	0.000000	-2.200000
P2X008021	0.000000	-2.200000
P3X008021	0.000000	-2.200000
P4X008021	0.000000	-2.200000
P1X008061	0.000000	-6.910000
P2X008061	1.000000	-6.910000
P3X008061	0.000000	-6.910000
P4X008061	0.000000	-6.910000
P1X011025	0.000000	-1.390000
P2X011025	0.000000	-1.390000
P3X011025	0.000000	-1.390000
P4X011025	0.000000	-1.390000
P1X011026	0.000000	-0.330000
P2X011026	0.000000	-0.330000
P3X011026	0.000000	-0.330000
P4X011026	0.000000	-0.330000
P1X011028	0.000000	-2.800000
P2X011028	0.000000	-2.800000
P3X011028	0.000000	-2.800000
P4X011028	1.000000	-2.800000
P1X011078	0.000000	-0.410000
P2X011078	0.000000	-0.410000
P3X011078	0.000000	-0.410000
P4X011078	0.000000	-0.410000
P1X011080	0.000000	-1.530000
P2X011080	0.000000	-1.530000
P3X011080	0.000000	-1.530000
P4X011080	1.000000	-1.530000
P1X012024	0.000000	-0.590000
P2X012024	0.000000	-0.590000
P3X012024	0.000000	-0.590000
P4X012024	0.000000	-0.590000
P1X012037	0.000000	-0.220000
P2X012037	0.000000	-0.220000
P3X012037 P4X012037	0.000000	-0.220000 -0.220000
P4X012037 P1X012038	0.000000	-0.20000
P1X012038 P2X012038	0.000000	-0.200000
P3X012038	0.000000	-0.200000
P4X012038	0.000000	-0.200000
P1X012036	1.000000	-0.680000
P2X012045	0.000000	-0.680000
P3X012045	0.000000	-0.680000
P4X012045	0.000000	-0.680000
P1X012045	0.000000	-0.140000
P2X012036	0.000000	-0.140000
P3X012036	0.000000	-0.140000
P4X012036	0.000000	-0.140000
P1X014026	0.000000	-0.360000

Variable	Value	Reduced Cost
P2X014026	0.000000	-0.360000
P3X014026	0.000000	-0.360000
P4X014026	0.000000	-0.360000
P1X014034	0.000000	-0.080000
P2X014034	0.000000	-0.080000
P3X014034	0.000000	-0.080000
P4X014034	0.000000	-0.080000
P1X014068	0.000000	-0.280000
P2X014068	0.000000	-0.280000
P3X014068	0.000000	-0.280000
P4X014068	0.000000	-0.280000
P1X014073	0.000000	-0.390000
P2X014073	0.000000	-0.390000
P3X014073	0.000000	-0.390000
P4X014073	1.000000	-0.390000
P4X014073 P1X014079	0.000000	-0.120000
	0.000000	
P2X014079 P3X014079	0.000000	-0.120000 -0.120000
•	0.000000	-0.120000
P4X014079		
P1X014080	0.000000	-0.900000
P2X014080	0.000000	-0.900000
P3X014080	0.000000	-0.900000
P4X014080	1.000000	-0.900000
P1X016056	0.000000	-3.540000
P2X016056	0.000000	-3.540000
P3X016056	0.000000	-3.540000
P4X016056	0.000000	-3.540000
P1X016057	0.000000	-0.660000
P2X016057	0.000000	-0.660000
P3X016057	0.000000	-0.660000
P4X016057	0.000000	-0.660000
P1X016061	0.000000	-1.170000
P2X016061	0.000000	-1.170000
P3X016061	0.000000	-1.170000
P4X016061	0.000000	-1.170000
P1X016077	1.000000	-33.250000
P2X016077	0.000000	-33.250000
P3X016077	0.000000	-33.250000
P4X016077	0.000000	-33.250000
P1X020033	0.000000	-0.020000
P2X020033	1.000000	-0.020000
P3X020033	0.000000	-0.020000
P4X020033	0.000000	-0.020000
P1X020037	0.000000	-0.100000
P2X020037	1.000000	-0.100000
P3X020037	0.000000	-0.100000
P4X020037	0.000000	-0.100000
P1X020042	0.000000	-0.030000
P2X020042	0.000000	-0.030000
P3X020042	0.000000	-0.030000
P4X020042	0.000000	-0.030000
P1X021061	0.000000	-2.400000
P2X021061	1.000000	-2.400000
P3X021061	0.000000	-2.400000
P4X021061	0.000000	-2.400000

11	1	- 1 10
Variable	Value	Reduced Cost
P1X022039	0.000000	-0.260000
P2X022039	0.000000	-0.260000
P3X022039	0.000000	-0.260000
P4X022039	0.000000	-0.260000
P1X022051	0.000000	-2.040000
P2X022051	0.000000	-2.040000
P3X022051	0.000000	-2.040000
P4X022051	0.000000	-2.040000
P1X022045	0.000000	-0.080000
P2X022045	0.000000	-0.080000
P3X022045	0.000000	-0.080000
P4X022045	0.000000	-0.080000
P1X022057	1.000000	-0.230000
P2X022057	0.000000	-0.230000
P3X022057	0.000000	-0.230000
P4X022057	0.000000	-0.230000
P1X022083	0.000000	-0.570000
P2X022083	0.000000	-0.570000
P3X022083	0.000000	-0.570000
P4X022083	0.000000	-0.570000
P1X024045	1.000000	-0.750000
P2X024045	0.000000	-0.750000
P3X024045	0.000000	-0.750000
P4X024045	0.000000	-0.750000
P1X024057	0.000000	-0.080000
P2X024057	0.000000	-0.080000
P3X024057	0.000000	-0.080000
P4X024057	0.000000	-0.080000
P1X025028	0.000000	-1.890000
P2X025028	0.000000	-1.890000
P3X025028	0.000000	-1.890000
P4X025028	1.000000	-1.890000
P1X025078	0.000000	-0.350000
P2X025078	0.000000	-0.350000
P3X025078	0.000000	-0.350000
P4X025078	0.000000	-0.350000
P1X026028	0.000000	-1.420000
P2X026028	0.000000	-1.420000
P3X026028	0.000000	-1.420000
P4X026028	1.000000	-1.420000
P1X026073	0.000000	-0.450000
P2X026073	0.000000	-0.450000
P3X026073	0.000000	-0.450000
P4X026073	0.000000	-0.450000
P1X026080	0.000000	-0.270000
P2X026080	0.000000	-0.270000
	0.000000	•
P3X026080	0.000000	-0.270000
P4X026080		-0.270000
P1X027053	0.000000	-0.510000
P2X027053	0.000000	-0.510000
P3X027053	0.000000	-0.510000
P4X027053	1.000000	-0.510000
P1X027060	0.000000	-0.220000
P2X027060	0.000000	-0.220000
P3X027060	0.000000	-0.220000

Variable	Value	Reduced Cost
P4X027060	0.000000	-0.220000
P1X028032	0.000000	-9.180000
P2X028032	0.000000	-9.180000
P3X028032	0.000000	-9.180000
P4X028032	1.000000	-9.180000
P1X028046	0.000000	-8.730000
P2X028046	0.000000	-8.730000
P3X028046	0.000000	-8.730000
P4X028046	1.000000	-8.730000
P1X028073	0.000000	-1.850000
P2X028073	0.000000	-1.850000
P3X028073	0.000000	-1.850000
P4X028073	1.000000	-1.850000
P1X032046	0.000000	-1.820000
P2X032046	0.000000	-1.820000
P3X032046	0.000000	-1.820000
P4X032046	0.000000	-1.820000
P1X033042	0.000000	-0.120000
P2X033042	1.000000	-0.120000
P3X033042	0.000000	-0.120000
P4X033042	0.000000	-0.120000
P1X034042	0.000000	-0.170000
P2X034042	0.000000	
P3X034042	0.000000	-0.170000 -0.170000
P4X034042	0.000000	-0.170000
P1X034073	0.000000	-0.960000
P2X034073	0.000000	-0.960000
P3X034073	0.000000	-0.960000
P4X034073	1.000000	-0.960000
P1X034079	0.000000	-0.050000
P2X034079	0.000000	-0.050000
P3X034079	0.000000	-0.050000
P4X034079	0.000000	-0.050000
P1X035053		-0.090000
P2X035053	0.000000	-0.090000
P3X035053	0.000000	-0.090000
P4X035053 P1X035060	0.000000	-0.090000 -0.160000
P2X035060	0.000000	-0.160000
P3X035060 P4X035060	0.000000	-0.160000 -0.160000
	0.000000	-2.260000
P1X035077	1.000000	
P2X035077	0.000000	-2.260000
P3X035077		-2.260000
P4X035077	0.000000	-2.260000
P1X037042	0.000000	-0.080000
P2X037042	1.000000	-0.080000
P3X037042	0.000000	-0.080000
P4X037042	0.000000	-0.080000
P1X037079	0.000000	-0.050000
P2X037079	0.000000	-0.050000
P3X037079	0.000000	-0.050000
P4X037079	0.000000	-0.050000
P1X037081	0.000000	-0.550000
P2X037081	1.000000	-0.550000

** . 11	** 1	p. 1. 1.c
Variable	Value	Reduced Cost
P3X037081	0.000000	-0.550000
P4X037081	0.000000	-0.550000
P1X038039 P2X038039	0.000000	-0.170000
P2X038039 P3X038039	0.000000	-0.170000 -0.170000
P3X038039 P4X038039	0.000000	
P4X038039 P1X038045	1.000000	-0.170000 -0.240000
P2X038045	0.000000	-0.240000
P3X038045	0.000000	-0.240000
P4X038045	0.000000	-0.240000
P1X038048	0.000000	-5.380000
P2X038048	0.000000	-5.380000
P3X038048	0.000000	-5.380000
P4X038048	0.000000	-5.380000
P1X038052	0.000000	-0.140000
P2X038052	0.000000	-0.140000
P3X038052	0.000000	-0.140000
P4X038052	0.000000	-0.140000
P1X039051	0.000000	-2.970000
P2X039051	0.000000	-2.970000
P3X039051	0.000000	-2.970000
P4X039051	0.000000	-2.970000
P1X039045	0.000000	-0.940000
P2X039045	0.000000	-0.940000
P3X039045	0.000000	-0.940000
P4X039045	0.000000	-0.940000
P1X039048	0.000000	-45.190000
P2X039048	0.000000	-45.190000
P3X039048	1.000000	-45.190000
P4X039048	0.000000	-45.190000
P1X051083	0.000000	-1.700000
P2X051083	0.000000	-1.700000
P3X051083	0.000000	-1.700000
P4X051083	0.000000	-1.700000
P1X042079	0.000000	-0.370000
P2X042079	1.000000	-0.370000
P3X042079	0.000000	-0.370000
P4X042079	0.000000	-0.370000
P1X045057	0.000000	-0.040000
P2X045057	0.000000	-0.040000
P3X045057	0.000000	-0.040000
P4X045057	0.000000	-0.040000
P1X048051	0.000000	-387.910000
P2X048051	0.000000	-387.910000
P3X048051	1.000000	-387.910000
P4X048051	0.000000	-387.910000
P1X048052		-12.520000
P2X048052	0.000000 1.000000	-12.520000
P3X048052		-12.520000
P4X048052	0.000000	-12.520000
P1X048082 P2X048082	0.000000	-10.870000 -10.870000
P2X048082 P3X048082	1.000000	-10.870000
P3X048082 P4X048082	0.000000	-10.870000
P4X048082 P1X048083	0.000000	-10.230000
1 1/1070000	0.000000	10.430000

Variable	Value	Reduced Cost
P2X048083	0.000000	-10.230000
P3X048083	1.000000	-10.230000
P4X048083	0.000000	-10.230000
P1X036037	0.000000	-0.140000
P2X036037	0.000000	-0.140000
P3X036037	0.000000	-0.140000
P4X036037	0.000000	-0.140000
P1X036081	0.000000	-1.130000
P2X036081 P3X036081	1.000000	-1.130000 -1.130000
	0.000000	-1.130000 -1.130000
P4X036081	0.000000	
P1X052075	0.000000	-0.180000
P2X052075	0.000000	-0.180000
P3X052075	0.000000	-0.180000
P4X052075	0.000000	-0.180000
P1X052082	0.000000	-0.460000
P2X052082	0.000000	-0.460000
P3X052082	0.000000	-0.460000
P4X052082	0.000000	-0.460000
P1X053060	0.000000	-2.890000
P2X053060	0.000000	-2.890000
P3X053060	0.000000	-2.890000
P4X053060	1.000000	-2.890000
P1X046073	0.000000	-1.170000
P2X046073	0.000000	-1.170000
P3X046073	0.000000	-1.170000
P4X046073	0.000000	-1.170000
P1X056057	0.000000	-0.520000
P2X056057	0.000000	-0.520000
P3X056057	0.000000	-0.520000
P4X056057	0.000000	-0.520000
P1X056077	1.000000	-43.780000
P2X056077	0.000000	-43.780000
P3X056077	0.000000	-43.780000
P4X056077	0.000000	-43.780000
P1X057061	0.000000	-0.800000
P2X057061	0.000000	-0.800000
P3X057061	0.000000	-0.800000
P4X057061	0.000000	-0.800000
P1X057072	0.000000	-0.140000
P2X057072	0.000000	-0.140000
P3X057072	0.000000	-0.140000
P4X057072	0.000000	-0.140000
P1X057077	1.000000	-3.910000
P2X057077	0.000000	-3.910000
P3X057077	0.000000	-3.910000
P4X057077	0.000000	-3.910000
P1X057083	0.000000	-0.510000
P2X057083	0.000000	-0.510000
P3X057083	0.000000	-0.510000
P4X057083	0.000000	-0.510000
P1X061072	0.000000	-9.910000
P2X061072	1.000000	-9.910000
P3X061072	0.000000	-9.910000
P4X061072	0.000000	-9.910000
1 .110010[2	3.00000	2.210000

** • 11	v 7 1	D 1 10 .
Variable	Value	Reduced Cost
P1X068079	0.000000	-0.270000
P2X068079	1.000000	-0.270000
P3X068079	0.000000	-0.270000
P4X068079	0.000000	-0.270000
P1X068080	0.000000	-0.200000
P2X068080	0.000000	-0.200000
P3X068080	0.000000	-0.200000
P4X068080	0.000000	-0.200000
P1X068081	0.000000	-0.460000
P2X068081	1.000000	-0.460000
P3X068081	0.000000	-0.460000
P4X068081	0.000000	-0.460000
P1X069075	0.000000	-1.540000
P2X069075	1.000000	-1.540000
P3X069075	0.000000	-1.540000
P4X069075	0.000000	-1.540000
P1X072083	0.000000	-1.030000
P2X072083	0.000000	-1.030000
P3X072083	0.000000	-1.030000
P4X072083	0.000000	-1.030000
P1X075082	0.000000	-1.300000
P2X075082	0.000000	-1.300000
P3X075082	0.000000	-1.300000
P4X075082	0.000000	-1.300000
P1X066075	0.000000	-0.530000
P2X066075	1.000000	-0.530000
P3X066075	0.000000	-0.530000
P4X066075	0.000000	-0.530000
P1X066082	0.000000	-0.440000
P2X066082	0.000000	-0.440000
P3X066082	0.000000	-0.440000
P4X066082	0.000000	-0.440000
P1X066083	0.000000	-0.270000
P2X066083	0.000000	-0.270000
P3X066083		-0.270000
	0.000000	•
P4X066083	0.000000	-0.270000
P1X078080	0.000000	-0.560000
P2X078080	0.000000	-0.560000
P3X078080	0.000000	-0.560000
P4X078080	1.000000	-0.560000
P1X079081	0.000000	-0.170000
P2X079081	0.000000	-0.170000
P3X079081	0.000000	-0.170000
P4X079081	0.000000	-0.170000
P1X082083	0.000000	-0.230000
P2X082083	0.000000	-0.230000
P3X082083	0.000000	-0.230000
P4X082083	0.000000	-0.230000
P1X001	1.000000	0.000000
P1X002	1.000000	0.000000
P1X004	1.000000	0.000000
P1X007	0.000000	0.000000
P1X008	0.000000	0.000000
P1X011	0.000000	0.000000
P1X012	1.000000	0.000000

Variable	Value	Reduced Cost
P1X014	0.000000	0.000000
P1X016	1.000000	0.000000
P1X020	0.000000	0.000000
P1X021	0.000000	0.000000
P1X022	1.000000	0.000000
P1X024	1.000000	0.000000
P1X025	0.000000	0.000000
P1X026	0.000000	0.000000
P1X027	0.000000	0.000000
P1X028	0.000000	0.000000
P1X032	0.000000	0.000000
P1X033	0.000000	0.000000
P1X034	0.000000	0.000000
P1X035	1.000000	0.000000
P1X036	0.000000	0.000000
P1X037	0.000000	0.000000
P1X038	1.000000	0.000000
P1X039	0.000000	0.000000
P1X042	0.000000	0.000000
P1X045	1.000000	0.000000
P1X046	0.000000	0.000000
P1X048	0.000000	0.000000
P1X051	0.000000	0.000000
P1X052	0.000000	0.000000
P1X053	0.000000	0.000000
P1X056	1.000000	0.000000
P1X057	1.000000	0.000000
P1X060	0.000000	0.000000
P1X061	0.000000	0.000000
P1X066	0.000000	0.000000
P1X068	0.000000	0.000000
P1X069	0.000000	0.000000
P1X072	0.000000	0.000000
P1X073	0.000000	0.000000
P1X075	0.000000	0.000000
P1X077	1.000000	0.000000
P1X078	0.000000	0.000000
P1X079	0.000000	0.000000
P1X080	0.000000	0.000000
P1X081	0.000000	0.000000
P1X082	0.000000	0.000000
P1X083	0.000000	0.000000
P2X001	0.000000	0.000000
P2X002	0.000000	0.000000
P2X004	0.000000	0.000000
P2X007	1.000000	0.000000
P2X008	1.000000	0.000000
P2X011	0.000000	0.000000
P2X012	0.000000	0.000000
P2X014	0.000000	0.000000
P2X016	0.000000	0.000000
P2X020	1.000000	0.000000
P2X021	1.000000	0.000000
P2X022	0.000000	0.000000
P2X024	0.000000	0.000000

11	1	- 1 10
Variable	Value	Reduced Cost
P2X025	0.000000	0.000000
P2X026	0.000000	0.000000
P2X027	0.000000	0.000000
P2X028	0.000000	0.000000
P2X032	0.000000	0.000000
P2X033	1.000000	0.000000
P2X034	0.000000	0.000000
P2X035 P2X036	0.000000	
	1.000000	0.000000
P2X037 P2X038	1.000000 0.000000	0.000000
P2X036 P2X039	0.000000	0.000000
P2X039 P2X042	1.000000	0.000000
P2X042 P2X045	0.000000	0.000000
P2X045 P2X046	0.000000	0.000000
P2X040 P2X048	0.000000	0.000000
P2X051	0.000000	0.000000
P2X051	0.000000	0.000000
P2X053	0.000000	0.000000
P2X056	0.000000	0.000000
P2X057	0.000000	0.000000
P2X060	0.000000	0.000000
P2X061	1.000000	0.000000
P2X066	1.000000	0.000000
P2X068	1.000000	0.000000
P2X069	1.000000	0.000000
P2X072	1.000000	0.000000
P2X073	0.000000	0.000000
P2X075	1.000000	0.000000
P2X077	0.000000	0.000000
P2X078	0.000000	0.000000
P2X079	1.000000	0.000000
P2X080	0.000000	0.000000
P2X081	1.000000	0.000000
P2X082	0.000000	0.000000
P2X083	0.000000	0.000000
P3X001	0.000000	0.000000
P3X002	0.000000	0.000000
P3X004	0.000000	0.000000
P3X007	0.000000	0.000000
P3X008	0.000000	0.000000
P3X011	0.000000	0.000000
P3X012	0.000000	0.000000
P3X014	0.000000	0.000000
P3X016	0.000000	0.000000
P3X020	0.000000	0.000000
P3X021	0.000000	0.000000
P3X022	0.000000	0.000000
P3X024	0.000000	0.000000
P3X025	0.000000	0.000000
P3X026	0.000000	0.000000
P3X027	0.000000	0.000000
P3X028	0.000000	0.000000
P3X032	0.000000	0.000000
P3X033	0.000000	0.000000

Variable	Value	Reduced Cost
P3X034	0.000000	0.000000
P3X035	0.000000	0.000000
P3X036	0.000000	0.000000
P3X037	0.000000	0.000000
P3X038	0.000000	0.000000
P3X039	1.000000	0.000000
P3X042	0.000000	0.000000
P3X045	0.000000	0.000000
P3X046	0.000000	0.000000
P3X048	1.000000	0.000000
P3X051	1.000000	0.000000
P3X052	1.000000	0.000000
P3X053	0.000000	0.000000
P3X056	0.000000	0.000000
P3X057	0.000000	0.000000
P3X060	0.000000	0.000000
P3X061	0.000000	0.000000
P3X066	0.000000	0.000000
P3X068	0.000000	0.000000
P3X069	0.000000	0.000000
P3X072	0.000000	0.000000
P3X073	0.000000	0.000000
P3X075	0.000000	0.000000
P3X077	0.000000	0.000000
P3X078	0.000000	0.000000
P3X079	0.000000	0.000000
P3X080	0.000000	0.000000
P3X081	0.000000	0.000000
P3X082	1.000000	0.000000
P3X083	1.000000	0.000000
P4X001	0.000000	0.000000
P4X002	0.000000	0.000000
P4X004	0.000000	0.000000
P4X007	0.000000	0.000000
P4X008	0.000000	0.000000
P4X011	1.000000	0.000000
P4X012	0.000000	0.000000
P4X014	1.000000	0.000000
P4X016	0.000000	0.000000
P4X020	0.000000	0.000000
P4X021	0.000000	0.000000
P4X022	0.000000	0.000000
P4X024	0.000000	0.000000
P4X025	1.000000	0.000000
P4X026	1.000000	0.000000
P4X027	1.000000	0.000000
P4X028	1.000000	0.000000
P4X032	1.000000	0.000000
P4X033	0.000000	0.000000
P4X034	1.000000	0.000000
P4X035	0.000000	0.000000
P4X036	0.000000	0.000000
P4X037	0.000000	0.000000
P4X038	0.000000	0.000000
P4X039	0.000000	0.000000
	2.000000	2.300000

Variable	Value	Reduced Cost
P4X042	0.000000	0.000000
P4X045	0.000000	0.000000
P4X046	1.000000	0.000000
P4X048	0.000000	0.000000
P4X051	0.000000	0.000000
P4X052	0.000000	0.000000
P4X053	1.000000	0.000000
P4X056	0.000000	0.000000
P4X057	0.000000	0.000000
P4X060	1.000000	0.000000
P4X061	0.000000	0.000000
P4X066	0.000000	0.000000
P4X068	0.000000	0.000000
P4X069	0.000000	0.000000
P4X072	0.000000	0.000000
P4X073	1.000000	0.000000
P4X075	0.000000	0.000000
P4X077	0.000000	0.000000
P4X078	1.000000	0.000000
P4X079	0.000000	0.000000
P4X080	1.000000	0.000000
P4X081	0.000000	0.000000
P4X082	0.000000	0.000000
P4X083	0.000000	0.000000

Anexo IV. Resumen de resultados (partición)

Se lee:

• Sea $P_k X_i$, con valor de 1 si la UGB i existe en la partición k, y 0 (cero) en otro caso.

Ejemplo: Sea P5X001 con valor de 1 si la UGB "001" existe en la partición "5", y 0 (cero) en otro caso.

Por tanto, la Unidad Geográfica Básica "001" (Acatlán) existe en la partición "5".

Del mismo modo con los siguientes. Se presentan únicamente los resultados positivos.

Variable	Value
P5X001	1.000000
P5X002	1.000000
P4X003	1.000000
P5X004	1.000000
P3X005	1.000000
P6X006	1.000000
P2X007	1.000000
P2X008	1.000000
P4X009	1.000000
P3X010	1.000000
P7X011	1.000000
P4X012	1.000000
P3X013	1.000000
P7X014	1.000000
P6X015	1.000000
P5X016	1.000000
P6X017	1.000000
P6X018	1.000000
P6X019	1.000000
P4X020	1.000000
P2X021	1.000000
P2X022	1.000000
P4X023	1.000000
P4X024	1.000000
P7X025	1.000000
P7X026	1.000000
P5X027	1.000000
P7X028	1.000000
P6X029	1.000000
P6X030	1.000000
P6X031	1.000000
P7X032	1.000000
P4X033	1.000000
P7X034	1.000000
P5X035	1.000000
P4X036	1.000000
P4X037	1.000000
P4X038	1.000000
P4X039	1.000000

Variable	Value
P6X040	1.000000
P3X041	1.000000
P4X042	1.000000
P6X043	1.000000
P6X044	1.000000
P4X045	1.000000
P7X046	1.000000
P6X047	1.000000
P1X048	1.000000
P6X049	1.000000
P3X050	1.000000
P1X051	1.000000
P2X052	1.000000
P5X053	1.000000
P4X054	1.000000
P4X055	1.000000
P5X056	1.000000
P2X057	1.000000
P6X058	1.000000
P6X059	1.000000
P5X060	1.000000
P2X061	1.000000
P7X062	1.000000
P3X063	1.000000
P3X064	1.000000
P3X065	1.000000
P2X066	1.000000
P3X067	1.000000
P7X068	1.000000
P2X069	1.000000
P3X070	1.000000
P4X071	1.000000
P2X072	1.000000
P7X073	1.000000
P3X074	1.000000
P2X075	1.000000
P3X076	1.000000
P5X070	1.000000
P7X078	
P7X078 P7X079	1.000000
	1.000000
P7X080	1.000000
P4X081	1.000000
P2X082	1.000000
P2X083	1.000000
P6X084	1.000000