UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

PLATAFORMA INTERACTIVA MULTIUSUARIO
DE GESTIÓN Y ANÁLISIS DEL PROYECTO
CIEMPIESS-UNAM

TESIS

QUE PARA OBTENER EL
TÍTULO DE:
INGENIERO EN COMPUTACIÓN
PRESENTA:
FREDERICK VALENTÍN ÁLVAREZ FLORES
DIRECTOR DE TESIS:
ING. ALBERTO TEMPLOS CARBAJAL.

CIUDAD UNIVERSITARIA, MÉXICO D. F. 2015
“Cuando te enfrentes a la ambigüedad no caigas en la tentación de adivinar”

Guido Van Rossum.

“Hay dos maneras de diseñar software: una es hacerlo tan simple que sea obvia su falta de deficiencias, y la otra es hacerlo tan complejo que no haya deficiencias obvias”

C.A.R. Hoare.
Dedicatorias.

“A mis padres por su amor, trabajo y sacrificios en todos estos años, gracias a ustedes he logrado llegar hasta aquí y convertirme en lo que soy”
Contenido

1 Entorno del problema. ... 1
1.1 Introducción. ... 1
1.2 Objetivos generales y particulares. .. 2
1.3 Situación actual del laboratorio de procesamiento de voz ... 2
1.4 Planteamiento del problema. .. 3
1.5 Ventajas del uso de sistemas de autogestión. .. 4

2 Marco teórico.. 5
2.1 Definición de servicio web. ... 5
2.2 Historia del servicio web. .. 5
2.3 Ventajas y desventajas del servicio web ... 7
2.4 Arquitectura cliente servidor ... 9
2.5 Programación en la nube. ... 10
2.5.1 Tipos de nube. .. 11
2.6 Análisis y diseño de un sistema web.. 12
2.7 Tecnologías de desarrollo web.. 12
2.7.1 Lenguaje de marcado de hipertexto HTML ... 12
2.7.2 Lenguaje de hojas de estilo CSS. ... 13
2.7.3 Lenguaje de programación interpretado JavaScript. .. 13
2.7.4 Biblioteca de JavaScript jQuery. .. 13
2.7.5 Tecnología AJAX. .. 14
2.8 Sistema de gestión de bases de datos. ... 14
2.8.1 Lenguaje de consulta estructurado SQL ... 14
2.8.2 Procedimientos almacenados. ... 15
2.9 Tecnología LAMP. .. 16
2.9.1 Sistema operativo Linux. ... 17
2.9.2 Servidor HTTP Apache. ... 19
2.9.3 Características, ventajas y desventajas de MySQL .. 20
2.9.4 Lenguaje de pre-procesamiento de hipertexto PHP. .. 21
2.10 Patrón de arquitectura de software MVC. ... 22
2.10.1 Framework CodeIgniter ... 24
2.10.2 Características, ventajas y desventajas de CodeIgniter. ... 24
2.11 Seguridad informática. ... 25
 2.11.1 Definición de seguridad... 25
 2.11.2 Mecanismos de seguridad... 26
 2.11.3 Seguridad en la aplicación web.. 27
2.12 Software de generación de estadísticas web... 32
 2.12.1 Ventajas de estadísticas web. .. 34
 2.12.2 Google Analytics... 34
2.13 Sistema de nombres de dominio DNS.. 35
 2.13.1 Dominio... 36
 2.13.2 Subdominio. ... 36
2.14 WordPress.. 36
 2.14.1 Estructura... 37
2.15 MyBB.. 38
2.16 Facebook API... 39
 2.16.1 Comments. ... 39
2.17 Modelado mediante UML... 40
2.18 Implementación del sistema.. 42
3 Metodología ... 43
 3.1 Recopilación y análisis de la información... 45
 3.2 Requerimientos.. 47
 3.3 Análisis del problema y posibles soluciones. ... 47
 3.3.1 Análisis de objetivos.. 48
 3.3.2 Análisis de soluciones... 49
 3.4 Planteamiento de la solución.. 50
 3.4.1 Alcance y limitaciones... 55
 3.5 Hardware y software.. 57
 3.5.1 Requerimientos de hardware del sistema... 57
 3.5.2 Configuración del equipo de desarrollo.. 58
4 Desarrollo.. 64
 4.1 Modelado del sistema.. 65
 4.2 Diagrama conceptual y de casos de uso ... 66
4.3 Diagrama de secuencias ... 72
 4.3.1 Diseño del diagrama de navegación. ... 79
 4.3.2 Configuración del DNS ... 81
 4.3.3 Configuración de CodeIgniter. .. 82
 4.3.4 Seguridad con CodeIgniter ... 83
4.4 Construcción de las vistas. ... 84
 4.4.1 Diseño de la estructura de contenidos. .. 84
 4.4.2 Consideraciones de diseño .. 93
4.5 Construcción del modelo. ... 93
 4.5.1 Diseño conceptual .. 93
 4.5.2 Diseño lógico .. 94
 4.5.3 Diseño físico .. 95
4.6 Construcción de los controladores ... 98
 4.6.1 Estructura de los controladores con CodeIgniter. .. 98
 4.6.2 Configuración general de un controlador .. 100
4.7 Optimización de la aplicación web. ... 100
 4.7.1 Compresión del contenido .. 100
 4.7.2 Control del caché ... 102
 4.7.3 Creación del blog .. 103
 4.7.4 Creación del foro ... 106
4.8 Pruebas y resultados. ... 109
 4.8.1 Pruebas de caja blanca .. 110
 4.8.2 Pruebas unitarias .. 111
 4.8.3 Pruebas funcionales .. 111
 4.8.4 Pruebas de caja negra .. 114
 4.8.5 Pruebas del sistema .. 126
4.9 Conclusiones .. 129
4.10 Anexos .. 131
 4.10.1 Apéndice .. 131
 4.10.2 Diccionario de datos ... 133
 4.10.3 Manual de usuario del sistema ... 143
5 Referencias .. 149
5.1 Bibliografía .. 149
5.2 Tabla de Ilustraciones... 151
1 Entorno del problema.

1.1 Introducción.
Hoy en día las instituciones de educación superior generan una gran cantidad de información, puesto que muchas de ellas hacen contribuciones al conocimiento global por medio de desarrollo de investigaciones; sin embargo, esto crea una serie de problemas, como lo son: ¿Cómo almacenar dicha información?, ¿Cómo tener un control sobre ella?, ¿Cómo difundirla? Entre otros.

Actualmente, el laboratorio de procesamiento de voz de la Facultad de Ingeniería se encuentra trabajando en distintos proyectos, uno de éstos es el proyecto CIEMPIESS-UNAM (Corpus de Investigación en Español de México del Posgrado de Ingeniería Eléctrica y Servicio Social) el cual es una colección de grabaciones de voz con sus transcripciones de voz en español, puesto que es el primero de su clase en cuanto a tamaño (17 horas) y disponibilidad (gratuito y de código abierto), en Latinoamérica este ayudará a posicionar a la UNAM como la pionera en esta área a nivel Latinoamérica.

Además de ello, éste debe llevar un control sobre las personas que ahí laboran y un control sobre muchos otros tipos de datos que son importantes para el laboratorio.

Debido a la magnitud del proyecto éste ha involucrado un gran número de personas, desde directivos, hasta participantes del servicio social que colaboran con los distintos tipos de análisis, que son requeridos o desarrollando software para el mismo.

Con el avance tecnológico que existe actualmente y con el software adecuado, es posible el desarrollo de un sistema de que permita una gestión inteligente de dicho contenido, así como delegarle responsabilidades al mismo para optimizar la carga de trabajo y hacer que las tareas rutinarias sean más prácticas, eficientes y sencillas de realizar.

El presente proyecto buscará ofrecer una solución eficiente a los problemas mencionados anteriormente, mediante la creación de una plataforma de administración y gestión de contenido que permita administrar un portal que preste los servicios requeridos por el laboratorio, esto gracias a la combinación de diferentes tecnologías y la incorporación de distintos CMS que ayuden a optimizar estas tareas a la vez que sean escalables y robustos.

El objetivo es la integración de los servicios y las necesidades administrativas que el laboratorio requiera dentro de un único sistema conformado por la integración de distintos módulos, el cual automatice y facilite la gestión de todas ellas, con el fin de que se haga un mejor uso de los recursos con los que se cuenta dentro del proyecto CIEMPIESS-UNAM; además, de maximizar la difusión del mismo.
1.2 Objetivos generales y particulares.
Desarrollar un sistema que optimice y automatice las tareas de gestión de publicaciones y actualización del contenido del sitio, así como la implementación de herramientas gratuitas y de código abierto para el procesamiento digital de información en línea, de modo que las herramientas posibiliten su uso independiente de la plataforma usada; asimismo, el sistema brindará mayor control sobre la administración del personal y la información generada por el proyecto a través diversas fuentes digitales usadas.

La integración de herramientas de generación y análisis estadísticos, a partir de los datos generados por las visitas de los usuarios para conocer mejor el público que hará uso de la plataforma y atender de forma más eficiente a la comunidad, no sólo, a partir, de la adición de herramientas y contenido que sea más buscado por los usuarios, sino también al mejorar la experiencia de los usuarios, a partir del rediseño constante del portal permitiendo un acceso más directo a las secciones más importantes del sistema.

Aumentar el alcance e impacto del proyecto desarrollado por el laboratorio de procesamiento de voz de la facultad de ingeniería y el proyecto CIEMPIESS-UNAM, masificando su uso alrededor del mundo.

1.3 Situación actual del laboratorio de procesamiento de voz.
Debido al desarrollo de investigación y el uso de personal dentro del Laboratorio de procesamiento de voz de la Facultad de Ingeniería, éste requiere mecanismos de difusión apropiados para que otras instituciones conozcan su trabajo.

Para el laboratorio, el realizar una búsqueda en su historial de colaboradores, publicar un tutorial o inclusive editar una nota resulta una tarea complicada y lenta, ya que se debe hacer una búsqueda en bitácoras y hacer los cambios de forma manual, esto es, adecuar la página con la que cuenta el laboratorio, añadir las dependencias necesarias para que el cambio funcione y, necesariamente, modificar el código fuente, siendo este proceso largo, propenso a errores y tedioso.

Al no contar con el diseño adecuado a la página actual del laboratorio, le es imposible cubrir todas necesidades de difusión del laboratorio.

Uno de los principales beneficios de automatizar los procesos de publicación de contenido del laboratorio será la disminución de la dificultad de la manipulación de la información usada dentro del laboratorio.
1.4 Planteamiento del problema.

Las problemáticas que presenta una página estática en cuanto a la manipulación de su contenido son variadas; a continuación, se describen los principales impedimentos encontrados al analizar la página del laboratorio.

Una de las principales consideraciones fue que, actualmente, el registro de los involucrados dentro del laboratorio y el proyecto CIEMPIESS-UNAM es realizado mediante el uso de distintos medios, tanto físicos como digitales, como lo son archivos de texto, hojas de cálculo y documentos físicos, lo que dificulta la manipulación de la información, a causa de ello, el disponer de dicha información es complejo, puesto que el tipo de medio de almacenamiento se presta para errores de distintos tipos; por ejemplo, redundancia de datos, poca integridad de la información colectada, difícil administración y actualización etc.

Así mismo la página con la que cuenta el laboratorio no se encuentra en condiciones para permitir la difusión del proyecto, dar a conocer los acontecimientos más relevantes de la investigación y la administración del contenido es complicada dado que se requiere modificar el código fuente para agregar cambios menores, ello, representa una inversión considerable de tiempo y se traduce como un consumo poco eficiente de los recursos del laboratorio, igualmente, ofrecer el soporte multilingüe para el contenido de algunas secciones es complejo.

Algunas de las herramientas de software para análisis, que son desarrolladas, requieren ejecutarse en entornos bajo condiciones específicas, como un sistema operativo especial o tener cierto software previamente instalado y configurado, lo que representa una limitante para aquellas personas que quieren hacer uso de estas herramientas y no poseen los conocimientos necesarios de informática, para solventar dicho problema se requiere de un sistema multiplataforma que permita el fácil uso de dichas herramientas, para que el usuario no tenga problemas; asimismo, se requiere que el sistema sea fácil de actualizar y que sea fácil de difundir por esa razón se optará por un sistema en línea desde el cual el laboratorio ofrecerá servicios de análisis, fáciles de usar y sin la necesidad de configurar el equipo donde se quiera usar la herramienta, esto mejorará la difusión del trabajo desarrollado.

Por otro lado, se desea que además de los servicios de gestión de contenido, se tenga un foro para discutir temas relacionados a las herramientas y a los análisis que se efectuarán desde él, el foro también ayudará a la creación de una comunidad para apoyar el desarrollo y la mejora continua del software.

Dentro de las secciones que se desean que estén en la plataforma, destaca la sección de tutoriales, la cual servirá para mostrar formas de utilizar, más eficientemente, los software y/o demás contenido, los cuales deben ser fáciles de integrar al portal y que, además, deben contar con integración de comentarios dinámicos en cada herramienta, para que los usuarios puedan dar a conocer sus opiniones o ayudar con una retroalimentación.
Entre algunos otros problemas que se tienen son la falta de un sistema que permita llevar un registro estable de los colaboradores que, además, permita asociar información relevante de esta como su carrera, periodo y alguna fotografía para mejorar su reconocimiento, tener una forma simple de publicar el contenido actualizado del proyecto como audios y demás archivos y llevar un registro de las publicaciones del proyecto, todo ello debe tener la posibilidad de estar en varios idiomas para permitir a personas interesadas con el proyecto que no hablen español integrarse a la comunidad; además de lo ya mencionado también se debe de contar con un blog y la posibilidad de enviar correos a los encargados de la página.

1.5 Ventajas del uso de sistemas de autogestión.

Un sistema de gestión de contenidos permite la creación y administración de contenidos, principalmente en ambientes web, consiste en una interfaz que controla una o varias bases de datos donde se aloja el contenido del sitio.

El sistema permite manejar de manera independiente el contenido y el diseño. Así, es posible manejar el contenido y darle en cualquier momento un diseño distinto al sitio sin tener que darle formato al contenido de nuevo; además, de permitir la fácil y controlada publicación en el sitio a varios editores.

Dentro de algunas de las ventajas que ofrece el usar un sistema de autogestión encontramos:

- Autogestión visual, sin necesidad de meterse en código para cambiar algo.
- Automatización de la página web.
- Mucho menor costo, trabajo y tiempo, ya que el sistema administra la información.

En el mercado existe una gran variedad de sistemas de autogestión, también llamados CMS por sus siglas en inglés, Content Management System; sin embargo, el hacer uso de uno de estos sistemas puede comprometer la seguridad del sitio, ya que se depende de un tercero que da soporte a las vulnerabilidades del sistema, por ello se optará por construir un sistema CMS hecho a medida, el cual, además de las ventajas de un CMS comercial, tendrá propiedades únicas, ya que será hecho específicamente para cumplir los requerimientos de la plataforma y adicionalmente se podrá usar paralelamente junto a otros subsistemas del portal, lo cual dotará de independencia entre módulos y permitirá la administración del contenido del sitio.
2 Marco teórico.

2.1 Definición de servicio web.
Un servicio Web se define como un sistema de software diseñado para permitir la interoperabilidad máquina a máquina en una red. En general, un servicio Web es un conjunto de Interfaces de Programación de Aplicaciones (API’s) Web, las cuales pueden ser accedidas en una red, siendo éstas ejecutadas en un sistema de hosting remoto.

El servicio más popular de Internet es conocido como World Wide Web (WWW), o simplemente Web. Este servicio consiste básicamente en el uso del protocolo HTTP para que desde un cliente (navegador o browser), se solicite un documento dentro de la red, y un servidor Web le sirva una página en formato HTML, abarcando múltiples y diferentes sistemas; es decir, llevan una comunicación entre diferentes máquinas, con diferentes plataformas y entre programas distintos; enfocándonos hacia lo que es un cliente y un servidor comunicándose por medio de mensajes entre sí, usando el estándar SOAP (Simple Object Access Control Protocol, o bien Protocolo Simple de Acceso a Objetos).

En general, podemos decir que un servicio Web, nos permite el acceso a la información por medio de documentos de hipertexto (páginas Web), que incluyen datos en cualquier tipo de formato (texto, fotos, video, audio, etcétera) referenciados entre sí.

El servicio Web sigue el modelo cliente-servidor; donde los servidores Web se encuentran conectados a Internet, contienen las páginas Web (hosting) y esperan permanentemente las peticiones de los clientes. Los clientes Web, que son los navegadores, se encargan de llevar a cabo estas peticiones. (E., 2003)

2.2 Historia del servicio web.
A mediados de los años 50 Ted Nelson realizó la primera referencia a un sistema de hipertexto, donde la información es enlazada de forma libre.

En los años 80 comenzó a popularizarse el Internet, dentro de los servicios más utilizados se encontraban, el correo electrónico y la transferencia de archivos a través de un Protocolo de transferencia de archivos (FTP); así como el servicio Gopher\(^1\), que permitía el acceso a diversos recursos de Internet a través de un menú de texto.

Sin embargo, no fue hasta los años 90 cuando apareció la World Wide Web, mejor conocida como WWW o, simplemente, el servicio Web, lo cual marco un antes y un después en el desarrollo de la sociedad de la información. Su implementación hizo posible acceder a una gran cantidad de información desde cualquier lugar del mundo por medio de una aplicación que nos permite conectarnos a un servidor Web para descargar y visualizar las páginas almacenadas en éste.

\(^1\) Gopher: Es un programa informático creado a finales de 1991 en la Universidad de Minnesota cuyo objetivo era facilitar el acceso a equipos dentro de una red.
En marzo de 1989, Tim Berners-Lee, miembro de la división de investigación del CERN\(^2\), redactó la propuesta que hacía referencia a ENQUIRE y describió un sistema de gestión de información más elaborado. Sin embargo, el 12 de noviembre de 1990, Berners-Lee publicó una propuesta más formal para la *World Wide Web*, en coautoria con Robert Cailliau; en ese mismo año, ambos investigadores del Laboratorio de Física de Altas Energías del CERN, en Ginebra, Suiza, desarrollaron el primer navegador Web, mismo que publicaron en 1992. Desde entonces, Berners-Lee ha jugado un papel activo guiando el desarrollo de estándares Web, este navegador era capaz de visualizar páginas que tuvieran distintos tipos y estilos de letras; sin embargo, aún no era capaz de visualizar imágenes, además su uso era bastante complicado y estaba restringido a un pequeño número de usuarios, entre los cuales se encontraban académicos e investigadores del mundo y empresas en EEUU.

El primer servidor Web aparece en mayo de 1991 en el centro de Aceleración Lineal de Stanford, a principios de 1992 ya existían 26 servidores Web, y siguieron creciendo durante los siguientes años.

En febrero de 1993 la Web experimentó un notable avance gracias a la aparición del navegador gráfico *Mosaic* para sistemas Unix, el cual fue desarrollado por Marc Anderssen y Eric Bina del Centro Nacional de Aplicaciones para Supercomputadoras (NCSA), de la Universidad de Illinois.

Entre las principales características de este navegador estaban; por una parte, la distribución libre y gratuita para entorno UNIX, y su facilidad de uso; por otra parte, a diferencia de los navegadores de la época, éste permitía agregar texto con formato incorporando imágenes; así como, agregar enlaces de hipertexto, para acceder a otras páginas con un sólo “ clic” ; incluso, se podían integrar pequeños archivos multimedia con sonido e imágenes en movimiento.

En el transcurso de ese año el uso de la WWW fue creciendo de una manera exponencial, no sólo en el número de clientes, sino también en el número de servidores. Este crecimiento aumentó conforme se fueron viendo las ventajas que podía ofrecer el servicio Web a las organizaciones e instituciones que estuviesen conectadas a Internet, ya que con sus propios servidores, éstas podrían intercambiar información (documentos de trabajo, artículos, proyectos, software, imágenes, etc.) teniéndola siempre disponible al resto de los usuarios.

Dado el éxito que tuvo el navegador *Mosaic*, el NCSA vendió la licencia a una empresa denominada *Spyglass* y meses después a Microsoft. El 30 de abril de 1993, el CERN anunció que la Web sería gratuita para todos, sin ningún tipo de honorarios.

\(^2\) CERN: *Conseil Européen pour la Recherche Nucléaire*, es decir, Consejo Europeo para la Investigación Nuclear es el mayor laboratorio de investigación en física de partículas en el ámbito mundial.
Para 1994, Jim Clark desarrolla Netscape, un nuevo navegador Web mucho más potente, ya que éste incorpora el protocolo Secure Socket Layer (SSL); o bien, capa de conexión segura, lo cual permitió realizar transacciones seguras a través de Internet, pues se basaba en un mecanismo de encriptación de clave pública. Posteriormente, se desarrollan versiones de este navegador para UNIX y Microsoft para Windows, teniendo un éxito rotundo.

Con la creación de éste nuevo navegador, la tecnología Web alcanzó un alto grado de madurez, permitiendo que se abriera el paso a la creación de los comercios electrónicos, lo cual era una forma más de ofrecer servicios, no sólo de información, sino también de comercio para las empresas, dando pie a un campo de competencia entre las mismas. (S., 2003)

2.3 Ventajas y desventajas del servicio web.

Dentro de los distintos servicios que ofrece la internet, el servicio web es el más usado actualmente, puesto que la gran mayoría de los sitios en internet lo usan, este servicio permite la fácil transferencia de información e ideas entre distintas comunidades alrededor del mundo, cada uno de los usuarios hace sus propias aportaciones al gran universo de información.

Una de las principales ventajas de hacer uso del servicio es la posibilidad a acceder a una gran cantidad de información que se encuentra alojada en una gran cantidad de servidores.

Sin embargo, la misma facilidad de agregar información y generar contenido en la web puede significar una desventaja, ya que esto hace imposible asegurar que toda la información que se encuentra en internet es verídica o que el contenido al que se accede es seguro y no representa un riesgo para el equipo del cliente, debido a ello se deben tener en cuenta aspectos como, quién publicó la información, la fecha de la información y si viene de una fuente confiable. (Rajan & Jairath, 2011)

Por mencionar de forma más precisa alguna de las ventajas que nos ofrece la web tenemos las siguientes:

a) Interoperabilidad: La operatividad independiente de la plataforma nos permite que la interacción entre el proveedor y el solicitante del servicio sea independiente de la plataforma y del lenguaje que utilice, esto es posible gracias al uso de protocolos y estándares abiertos, garantizándonos la plena interoperabilidad entre las aplicaciones.

b) Accesibilidad: Esto se refiere a la capacidad de acceder al contenido Web de forma universal, independientemente del tipo de hardware, software, infraestructura de red, idioma, cultura, localización geográfica, así como de las capacidades diferentes de cada uno de los usuarios; además, con la tecnología de dispositivos móviles podemos acceder a la Web no sólo desde computadoras de escritorio, también podemos acceder a éste por medio de laptops, PDAS, teléfonos móviles; e incluso, desde juegos de video como PS.
c) **Facilidad de uso:** Debido al desarrollo y mejora de interfaces la interacción con los sistemas web es, es muy fácil, además de obtener una respuesta rápida y eficiente a nuestras dudas; podemos obtener tanto información documental como de medios audiovisuales (televisión y videos), para complementar la información solicitada.

d) **Difusión y colaboración de contenidos:** A partir del servicio Web podemos difundir información y al mismo tiempo colaborar y aportar diferentes puntos de vista a la misma, un ejemplo de esto son los blogs y los foros.

e) **Oportunidades de negocio:** Abre nuevas oportunidades de negocio, ahora podemos efectuar compras online, transacciones bancarias, pagos de impuestos y más, todo ello sin salir de nuestros hogares o de trasladarnos de un lugar a otro, además de ellos, con el desarrollo de redes sociales, se ofrece la oportunidad de socializar con personas de diferentes partes del mundo y de la propia localidad o lugar de trabajo de sin necesidad de salir de sus hogares.

f) **Centralización de Información:** Para las empresas es de gran ayuda, puesto que pueden consultar los contenidos de la misma desde cualquier lugar del mundo y actualizarlos en tiempo real, siempre y cuando cuenten con los privilegios necesarios para tener acceso a ella, así como para poder modificarla.

Como todo medio de comunicación, la Web posee desventajas, algunas de las más relevantes se listas a continuación:

a) **Seguridad:** Éste es uno de los puntos más significativos, debido a que el servicio web está basado en el protocolo de transferencia de hipertexto sobre TCP, lo que le da algunas vulnerabilidades, por ejemplo:

- La realización de las transacciones no es muy confiable, puesto que depende del desarrollador de la aplicación.
- Al apoyarse en HTTP, se pueden esquivar medidas de seguridad basadas en firewall, cuyas reglas tratan de bloquear o auditar la comunicación entre programas en ambos lados de la barrera.
- Robo de información, pero de igual manera dependerá del responsable que suba su información al sistema Web, colocando los derechos reservados de la misma; o bien, los permisos adecuados para que puedan hacer uso de ella.

Es responsabilidad del usuario de las redes sociales subir información sensible que pueda ser utilizada para lucrar con su persona, como por ejemplo: direcciones, teléfonos personales, posición socioeconómica, fotografías personales y familiares, etc. Puesto que hoy en día secuestradores y asaltantes hacen uso de esta información para seleccionar a sus víctimas.
b) **Rendimiento**: Su rendimiento es muchísimo menor en comparación con otros sistemas de computación distribuida, ya que depende del diseño de la aplicación y la eficiencia del procesamiento de la potencia de cómputo del servidor.

2.4 Arquitectura cliente servidor

La arquitectura cliente servidor es un modelo de aplicación distribuida en el que las tareas se reparten entre los proveedores de recursos o servicios, llamados servidores y los demandantes, llamados clientes. Un cliente realiza peticiones a otro programa, el servidor, quien le da respuesta. Esta idea también se aplica a programas que se ejecutan sobre una misma computadora, aunque es más ventajosa en un sistema operativo multiusuario distribuido a través de una red de computadoras.

En esta arquitectura la capacidad de proceso está repartida entre los clientes y los servidores, aunque son más importantes las ventajas de tipo organizativo debidas a la centralización de la gestión de información y la separación de responsabilidades lo que facilita el diseño de un sistema.

La separación entre cliente y servidor es una separación de tipo lógico, donde el servidor no se ejecuta, necesariamente, sobre una sola máquina ni es necesariamente un solo programa.

En la arquitectura cliente servidor el remitente de una petición es conocido como cliente y sus características son:

- Es quien inicia solicitudes o peticiones, tiene por tanto un papel activo en la comunicación.
- Espera y recibe las respuestas del servidor.
- Generalmente puede conectarse a varios servidores a la vez.
- Normalmente interactúa, directamente, con los usuarios finales mediante una interfaz de usuario gráfica.

Al software que recibe las solicitudes, enviadas por el usuario, se le llama servidor y aquí están algunas de sus características más importantes:

- No es frecuente que interactúe directamente con los usuarios finales.
- Por lo general pueden responder a un gran número de clientes simultáneamente.
- Tras recibir una solicitud, ésta es procesada y posteriormente la respuesta se envía al cliente.
- Estos están a la espera de solicitudes del cliente para comenzar a funcionar.

Una red en la que todos los clientes están conectados a un servidor; es decir, en la que se centralizan los diversos recursos y aplicaciones con que se cuenta se le denomina red cliente-servidor. Esto significa que todas las gestiones que se realizan se concentran en el servidor, de manera que en él se disponen los archivos y/o servicios solicitados por los clientes por ejemplo, los archivos que son de uso público o archivos de sólo lectura. (S., 2003)
2.5 Programación en la nube.

Internet es un conjunto descentralizado de redes de comunicación interconectadas que utilizan la familia de protocolos TCP/IP, garantizando que las redes físicas que la componen funcionen como una red lógica única de alcance mundial. Actualmente, las personas tienen una alta dependencia de internet, debido a que puede ser usado para realizar una gran cantidad de tareas; por ejemplo, compartir recursos, enviar y recibir correos electrónicos, platicar, realizar conferencias en línea, buscar información y realizar trámites electrónicos.

En los primeros años de la internet ésta contaba con servicios limitados a funciones básicas, pero con el paso del tiempo, debido al avance de las tecnologías y a la gran aceptación de los usuarios éstos fueron aumentando, al día de hoy existe un gran número de desarrolladores de TI, los cuales se están enfocando en explotar la versatilidad que la internet provee para prestar todo tipo de servicios, usando como medio, la red.

Las aplicaciones comerciales tradicionales han sido siempre altamente complicadas lo que provoca que sean caras, esto aunado a que la cantidad y variedad necesaria de hardware y software para ejecutarlas es abrumador. Se requiere de personal altamente capacitado para realizar una configuración, instalación y actualización correcta. Sistemas completos construidos hasta la fecha poseen limitaciones relacionas a su capacidad de almacenamiento, memoria y procesamiento, Estas limitaciones en conjunto con el desarrollo de las tecnologías web ha dado como resultado el desarrollo de una nueva forma de desarrollar tecnología haciendo uso de las capacidades de los sistemas distribuidos multiusuarios, la llamada, computación en la nube. Actualmente, la computación en la nube reduce la cantidad de software y hardware utilizado solventando las limitaciones mencionadas.

La computación en la nube (Cloud Computing) puede verse como una extensión de: redes de computadoras (grid computing), computación distribuida (distributed computing) y computación en paralelo (parallel computing). En la computación, en la nube, todo recurso puede ser proporcionado como un servicio.

La computación en red provee de recursos a los usuarios, solamente, cuando son requeridos, la computación en paralelo ejecuta instrucciones en paralelo para una rápida respuesta al realizar una tarea que el usuario solicitó; finalmente, en la computación distribuida, la información o datos se encuentran distribuidos en diversos servidores, inclusive en distintas área geográficas.

La computación en la Nube involucra las ventajas de cada uno de estos paradigmas para formar una fuente de recursos a cualquier nivel, en donde todo puede ser proporcionado como un servicio: almacenamiento, capacidad de procesamiento y memoria.
La programación web en la nube es uno de los servicios que se van perfeccionando continuamente y, actualmente, se tienen aplicaciones, plataformas y sistemas trabajando en su totalidad o parcialmente en internet, esto quiere decir que no es necesario que estén instaladas físicamente en la computadora del usuario para su uso, basta con una cuenta asociada y una conexión a internet para disponer de los recursos de esta tecnología por medio de diferentes dispositivos, a esto se le conoce como computación en la nube, lo que es básicamente proporcionar servicios de cómputo a través de internet. (Gómez, 2010)

La computación en la nube aún requiere de solventar algunos problemas asociados a su seguridad, confiabilidad, interoperabilidad y disponibilidad; sin embargo, posee más ventajas que desventajas por ejemplo:

- **Rapidez**: Los servicios más básicos en la nube funcionan por sí solos, para servicios de software y bases de datos más complejos, la computación en nube permite saltarse la fase adquisición de hardware y el consiguiente gasto; por lo cual, es perfecta para almacenamiento.

- **Movilidad**: El sistema en la nube está diseñado para ser utilizado a distancia, así que el personal de la empresa tendrá acceso a la mayoría de los sistemas en cualquier lugar donde se encuentre.

- **Adaptativa**: Se adapta rápidamente a negocios en crecimiento, esto incrementa la agilidad de respuesta, disminuye los riesgos y los costos de operaciones porque solo se escala lo que crece y se paga sólo lo que se usa.

2.5.1 **Tipos de nube.**

Una nube pública es una nube computacional mantenida y gestionada por terceras personas no vinculadas con la organización. En este tipo de nubes tanto los datos como los procesos de varios clientes se mezclan en los servidores, sistemas de almacenamiento y otras infraestructuras de la nube. Los usuarios finales de la nube no conocen que trabajos de otros clientes pueden estar corriendo en el mismo servidor, red, sistemas de almacenamiento, etc.

Aplicaciones, almacenamiento y otros recursos están disponibles al público a través del proveedor de servicios que es propietario de toda la infraestructura en sus centros de datos; el acceso a los servicios solo se ofrece de manera remota, normalmente a través de internet.

Las nubes privadas son una buena opción para las compañías que necesitas alta protección de datos y ediciones a nivel de servicio. Las nubes privadas están en una infraestructura bajo demanda gestionada para un solo cliente que controla que aplicaciones deben ejecutarse y dónde. Son propietarios del servidor, red y disco y pueden decir qué usuarios están autorizados a utilizar la infraestructura.
Las nubes híbridas combinan los modelos de nubes públicas y privadas. Usted es propietario de unas partes y comparte otras, aunque de una manera controlada. Las nubes híbridas ofrecen la promesa del escalado aprobación externamente, en demanda, pero añaden la complejidad de determinar cómo distribuir las aplicaciones a través de los ambientes diferentes.

2.6 Análisis y diseño de un sistema web.
Al momento de comenzar con el desarrollo de un proyecto de desarrollo web y debido a la gran variedad de tecnologías disponibles al igual que los numerosos escenarios que pueden llegar a presentarse, es importante definir desde un principio los alcances del sistema al igual que los distintos modos en los que éste podrá interactuar con los usuarios finales, esto incrementa la usabilidad del sistema debido a que las funciones que existen están pensadas para el usuario.

Para hacer un análisis correcto de un sistema existen algunos factores a tomar en cuenta como la navegabilidad, interactividad, usabilidad, arquitectura de la información y la interacción de medios como audio, video, texto, imagen, enlaces y particularmente la base de datos debido a que esta última se diseñará a partir de las necesidades del sistema.

En este sistema en particular, la interfaz web servirá como medio de comunicación entre los usuarios y sus funciones, desde ésta misma se accederá a los servicios de procesamiento en línea y a su vez, desde la interfaz web de administración del sitio, el administrador podrá hacer modificaciones sobre el contenido existente y/o agregar nuevo contenido, es importante mencionar que dentro del diseño del manejarán niveles de usuarios para dar mayor seguridad al y poder definir bien a qué servicios y/o funciones tendrán acceso, la separación de usuarios comenzará a nivel de la base de datos y mediante permisos.

2.7 Tecnologías de desarrollo web.

2.7.1 Lenguaje de marcado de hipertexto HTML.
Un lenguaje de marcado o lenguaje de marcas es una forma de codificar un documento que, junto con el texto, incorpora etiquetas o marcas que contienen información adicional acerca de la estructura del texto o su presentación.

El lenguaje de marcas más extendido es el HTML (Hypert Text Markup Language) fundamento del World Wide Web, los lenguajes de marcado de hipertexto suelen confundirse con lenguajes de programación, pero no son lo mismo ya que el lenguaje de marcado no tiene funciones aritméticas o variables, como sí poseen los lenguajes de programación.

Históricamente, el marcado se usaba y se usa en la industria editorial y de la comunicación, así como entre autores, editores e impresores, mediante el uso de éste se van dictando las características del texto a escribir.
2.7.2 **Lenguaje de hojas de estilo CSS.**
Hojas de Estilo en Cascada (*Cascading Style Sheets*) es el lenguaje de hojas de estilo utilizado para describir el aspecto y el formato de un documento escrito en un lenguaje de marcas, esto incluye varios lenguajes basados en XML como son XHTML o SVG.

La información de estilo puede ser adjuntada como un documento separado o en el mismo documento HTML. En este último caso podrían definirse estilos generales en la cabecera del documento o en cada etiqueta particular mediante el atributo "<style>". (Bos)

2.7.3 **Lenguaje de programación interpretado JavaScript.**
Es un lenguaje de programación interpretado, dialecto del estándar ECMAScript. Se define como orientado a objetos, basado en prototipos, imperativo, débilmente tipado y dinámico.

Se utiliza principalmente en su forma del lado del cliente (*client-side*), implementado como parte de un navegador web permitiendo mejorar en la interfaz de usuario y páginas web dinámicas.

JavaScript se diseñó con una sintaxis similar al C, aunque adopta nombres y convenciones del lenguaje de programación Java. Sin embargo Java y JavaScript no están relacionados y tienen semánticas y propósitos diferentes.

Todos los navegadores modernos interpretan el código JavaScript integrado en las páginas web. Para interactuar con una página web se provee al lenguaje JavaScript de una implementación del *Document Object Model* (DOM).

Tradicionalmente se venía utilizando en páginas web HTML para realizar operaciones y únicamente en el marco de la aplicación cliente, sin acceso a funciones del servidor. JavaScript se interpreta en el agente de usuario, al mismo tiempo que las sentencias van descargándose junto con el código HTML.

2.7.4 **Biblioteca de JavaScript jQuery.**
Es una biblioteca de JavaScript, creada inicialmente por John Resig, que permite simplificar la manera de interactuar con los documentos HTML, manipular el árbol DOM, manejar eventos, desarrollar animaciones y agregar interacción con la técnica AJAX a páginas web. Fue presentada el 14 de enero de 2006 en el BarCamp NYC. JQuery es la biblioteca de JavaScript más utilizada.

JQuery es software libre y de código abierto, posee un doble licenciamiento bajo la Licencia MIT y la Licencia Pública General de GNU v2, permitiendo su uso en proyectos libres y privados. jQuery, al igual que otras bibliotecas, ofrece una serie de funcionalidades basadas en JavaScript que de otra manera requerirían de mucho más código, es decir, con las funciones propias de esta biblioteca se logran grandes resultados en menos tiempo y espacio. (http://jquery.com/)
2.7.5 Tecnología AJAX.
AJAX, acrónimo de Asynchronous JavaScript And XML (JavaScript asíncrono y XML), es una técnica de desarrollo web para crear aplicaciones interactivas. Estas aplicaciones se ejecutan en el cliente, es decir, en el navegador de los usuarios mientras se mantiene la comunicación asíncrona con el servidor en segundo plano. De esta forma es posible realizar cambios sobre las páginas sin necesidad de recargarlas, mejorando la interactividad, velocidad y usabilidad en las aplicaciones.

Ajax es una tecnología asíncrona, en el sentido de que los datos adicionales se solicitan al servidor y se cargan en segundo plano sin interferir con la visualización ni el comportamiento de la página. JavaScript es el lenguaje interpretado en el que normalmente se efectúan las funciones de llamada de Ajax mientras que el acceso a los datos se realiza mediante XMLHttpRequest, objeto disponible en los navegadores actuales. En cualquier caso, no es necesario que el contenido asíncrono esté formateado en XML.

Ajax es una técnica válida para múltiples plataformas y utilizable en muchos sistemas operativos y navegadores, dado que está basado en estándares abiertos como JavaScript y Document Object Model (DOM). (Wikipedia)

2.8 Sistema de gestión de bases de datos.

2.8.1 Lenguaje de consulta estructurado SQL.
El lenguaje de consulta estructurado o SQL (Structured Query Language) es un lenguaje declarativo de acceso a bases de datos relacionales que permite especificar diversos tipos de operaciones en ellas. Una de sus características es el manejo del álgebra y el cálculo relacional que permiten efectuar consultas con el fin de recuperar de forma sencilla información de interés de bases de datos, así como hacer cambios sobre ellas. (Microsoft)

SQL es el estándar de la inmensa mayoría de los sistemas gestores de bases de datos (SGBD) comerciales. Es un lenguaje declarativo de “alto nivel” o “de no procedimiento” que gracias a su fuerte base teórica y su orientación al manejo de conjuntos de registros y no a registros individuales, permite una alta productividad en codificación y la orientación a objetos. De esta forma una sola sentencia puede equivaler a uno o más programas que se utilizarían en un lenguaje de bajo nivel orientado a registros.

El que sea un lenguaje declarativo quiere decir que especifica qué es lo que se quiere y no como conseguirlo, por lo que una sentencia no establece explícitamente un orden de ejecución.

El orden de ejecución interno de una sentencia puede afectar gravemente a la eficiencia del SGBD, por lo que es necesario que éste lleve a cabo una optimización antes de su ejecución. Muchas veces el uso de índices acelera una instrucción de consulta, pero ralentiza la actualización de los datos. Dependiendo del uso de la aplicación, se priorizará el acceso indexado o una rápida actualización de la información. La optimización difiere sensiblemente en cada motor de base de datos y depende de muchos factores.
2.8.2 Procedimientos almacenados.

Un procedimiento almacenado (Stored Procedure) es un programa almacenado físicamente en una base de datos. Su implementación varía de un gestor de bases de datos a otro. La ventaja de un procedimiento almacenado es que al ser ejecutado, en respuesta a una petición de usuario, es ejecutado directamente en el motor de bases de datos, el cual usualmente corre en un servidor separado. Como tal, posee acceso directo a los datos que necesita manipular y sólo necesita enviar sus resultados de regreso al usuario, deshaciéndose de la sobrecarga resultante de comunicar grandes cantidades de datos salientes y entrantes.

Usos típicos para procedimientos almacenados incluyen la validación de datos siendo integrados a la estructura de base de datos (los procedimientos almacenados utilizados para este propósito a menudo son llamados disparadores; triggers en inglés), o encapsular un proceso grande y complejo. El último ejemplo generalmente se ejecutará más rápido como un procedimiento almacenado que de haber sido implementado como, un programa corriendo en el sistema cliente y comunicándose con la base de datos mediante el envío de consultas SQL y recibiendo sus resultados.

Los procedimientos pueden ser ventajosos: Cuando una base de datos es manipulada desde muchos programas externos. Al incluir la lógica de la aplicación en la base de datos utilizando procedimientos almacenados, la necesidad de embeber la misma lógica en todos los programas que acceden a los datos es reducida. Esto puede simplificar la creación y, particularmente, el mantenimiento de los programas involucrados.

Podemos ver un claro ejemplo de estos procedimientos cuando requerimos realizar una misma operación en un servidor dentro de algunas o todas las bases de datos y a la vez dentro de todas o algunas de las tablas de las bases de datos del mismo. Para ello podemos utilizar a los Procedimientos almacenados auto-creables que es una forma de generar ciclos redundantes a través de los procedimientos almacenados. (Wikipedia)
2.9 Tecnología LAMP.

LAMP es el acrónimo usado para describir un sistema de infraestructura de internet que usa las siguientes herramientas:

- **Linux**, el sistema operativo; En algunos casos también se refiere a LDAP.
- **Apache**, el servidor web;
- **MySQL/MariaDB**, el gestor de bases de datos;
- **Perl, PHP, o Python**, los lenguajes de programación.

La combinación de estas tecnologías es usada principalmente para definir la infraestructura de un servidor web, utilizando un paradigma de programación para el desarrollo. (Quinstreet Enterprise.)

A pesar de que el origen de estos programas de código abierto, no han sido específicamente diseñados para trabajar entre sí, la combinación se popularizó debido a su bajo costo de adquisición y ubicuidad de sus componentes. Cuando son combinados, representan un conjunto de soluciones que soportan servidores de aplicaciones.
2.9.1 **Sistema operativo Linux.**

Una distribución Linux es conjunto de paquetes de software basadas en un núcleo del S.O. Linux, generalmente estas distribuciones incluyen las bibliotecas y herramientas del proyecto GNU/Linux.

Existe una gran cantidad de distribuciones Linux, a continuación se nombran algunas:

- Debian, una distribución mantenida por una red de desarrolladores voluntarios con un gran compromiso por los principios del software libre.
- Fedora, una distribución lanzada por Red Hat para la comunidad.
- Gentoo, una distribución orientada a usuarios avanzados, conocida por la similitud en su sistema de paquetes con el FreeBSD Ports, un sistema que automatiza la compilación de aplicaciones desde su código fuente.
- gOS, una distribución basada en Ubuntu para netbooks.
- Knoppix, la primera distribución live en correr completamente desde un medio extraíble. Está basada en Debian.
- Kubuntu, la versión en KDE de Ubuntu.
- Red Hat Enterprise Linux es la base de una estrategia de TI a largo plazo, compatible con las principales arquitecturas de hardware, incluyendo soporte y actualización de siete años (con opción para extenderlo a diez años). Una arquitectura modular, flexible, firme y las herramientas de administración ofrecen un control y escalabilidad mayores, y una gama de opciones de extensiones aumentan la disponibilidad de infraestructura y aplicaciones.
Fedora

Fedora es una distribución Linux para propósitos generales basada en RPM, que se caracteriza por ser un sistema estable, la cual es mantenida gracias a una comunidad internacional de ingenieros, diseñadores gráficos y usuarios que informan de fallos y prueban nuevas tecnologías. Cuenta con el respaldo y la promoción de Red Hat. (Fedora)

El Proyecto Fedora fue creado a finales del 2003 cuando Red Hat Linux fue descontinuado. Red Hat Enterprise Linux (RHEL) continuaría siendo la distribución Linux oficialmente soportada por Red Hat, mientras que Fedora sería un proyecto comunitario. La rama de liberaciones de RHEL deriva de las versiones de Fedora.

Éste será el sistema operativo del servidor en el que se ejecutarán las funciones de análisis mediante el uso de python en conjunto con php.

CentOS

CentOS es una distribución de Linux que a diferencia de Fedora es de clase empresarial y orientada para servidores, basada en las fuentes libres y disponibles de Red-Hat Enterprise Linux. (RHEL) (CentOS), es un clon a nivel binario del mismo. Red-Hat libera de manera gratuita el código fuente de su producto debido a que la mayoría de su código es GPL, por tal motivo los desarrolladores de CentOS usan este código, el cual es compilado y empaquetado, quitándole todas las marcas de Red-Hat creando un producto muy similar a RHEL, pero con la diferencia que éste es libre para ser usado por el público. Una de sus principales características es que cuenta con un ciclo de vida de 7 años y soporta casi todas las plataformas que soporta RHEL, es mucho más estable que Fedora ya que éste está diseñado para un entorno de escritorio a diferencia de CentOS que está más orientado a servicios de Red, Por lo anterior mencionado se buscó un servidor que contara esta distribución como sistema operativo para almacenar el portal.
Linux Mint

Es una distribución del sistema operativo GNU/Linux, basada en la distribución Ubuntu (que a su vez está basada en Debian).

Linux Mint mantiene un inventario actualizado, un sistema operativo estable para el usuario medio, con un fuerte énfasis en la usabilidad y facilidad de instalación, por ello esta distribución será utilizada para efectuar pruebas de carga sobre el sistema con ayuda de otras herramientas.

![Logo Linux Mint](image)

Ilustración 5 Logo Linux Mint

2.9.2 Servidor HTTP Apache.

Un Servidor Web es un programa que está diseñado atender y responder a las diferentes peticiones de los navegadores Web, proporcionando los recursos solicitados mediante la implementación un protocolo, normalmente HTTP, perteneciente a la capa de aplicación del modelo OSI. (wikispaces)

Esquema de funcionamiento básico de un servicio web de arquitectura Cliente-Servidor:

- Cliente: Demanda servicios al servidor.
- El servidor atiende las peticiones y proporciona el servicio correspondiente (Ej. www).
- Para el entendimiento entre un cliente y un servidor para un determinado servicio, se requiere un protocolo. En el caso del servicio web, el protocolo es el HTTP.
- Los servicios proporcionados son independientes del hardware de los clientes.
- El Cliente normalmente utiliza software específico para utilizar un servicio determinado (ej. Outlook, Firefox, Explores, IRC, Putty, WinSCP, ...)
- El servicio Web es ofrecido por un Servidor Web, el cual atiende solicitudes HTTP.

Apache es el servidor http más común y utilizado en todo el mundo, es gratuito y de código abierto (configurable) y multiplataforma, entre sus principales ventajas se encuentra que es altamente configurable, es modular, lo cual ayuda a que la plataforma Apache sea competitiva incluso frente a rivales de alto precio, debido a que contiene código abierto permite a cualquier programador crear una solución personalizada basada en el programa núcleo de Apache, o ampliar las funciones del software, es capaz de ejecutarse en todas las versiones del sistema operativo UNIX. (Apache) Linux es compatible, así como los sistemas operativos Windows NT y MacOS y Cuenta con un gran soporte. Apache ha incorporado en su soporte a una amplia gama de lenguajes de programación web, como Perl, PHP y Python, JSP, Servlets.
Por esta razón se decidió utilizar como servidor web.

Ilustración 6 Logo Apache Server

2.9.3 Características, ventajas y desventajas de MySQL.

MySQL es un sistema de gestión de bases de datos relacional, fue creada por la empresa sueca MySQL AB, la cual tiene el copyright del código fuente del servidor SQL, así como también de la marca.

MySQL es un software de código abierto, licenciado bajo la GPL de la GNU, aunque MySQL AB distribuye una versión comercial, en lo único que se diferencia de la versión libre, es en el soporte técnico que se ofrece, y la posibilidad de integrar este gestor en un software propietario, ya que de otra manera, se vulneraría la licencia GPL. (MySQL)

Características principales.

Inicialmente, MySQL carecía de algunos elementos esenciales en las bases de datos relacionales, tales como integridad referencial y transacciones. A pesar de esto, atrajo a los desarrolladores de páginas web con contenido dinámico, debido a su simplicidad, de tal manera que los elementos faltantes fueron complementados por la vía de las aplicaciones que la utilizan. Poco a poco estos elementos faltantes, están siendo incorporados tanto por desarrolladores internos, como por desarrolladores de software libre.

En las últimas versiones se pueden destacar las siguientes características principales:

- El principal objetivo de MySQL es velocidad y robustez.
- Soporta gran cantidad de tipos de datos para las columnas.
- Gran portabilidad entre sistemas, puede trabajar en distintas plataformas y sistemas operativos.
- Cada base de datos cuenta con 3 archivos: Uno de estructura, uno de datos y uno de índice y soporta hasta 32 índices por tabla.
- Aprovecha la potencia de sistemas multiproceso, gracias a su implementación multihilo.
- Flexible sistema de contraseñas (passwords) y gestión de usuarios, con un muy buen nivel de seguridad en los datos.
- El servidor soporta mensajes de error en distintas lenguas.
Ventajas.

- Velocidad al realizar las operaciones, lo que le hace uno de los gestores con mejor rendimiento.
- Bajo costo en requerimientos para la elaboración de bases de datos, ya que debido a su bajo consumo puede ser ejecutado en una máquina con escasos recursos sin ningún problema.
- Facilidad de configuración e instalación.
- Soporta gran variedad de Sistemas Operativos
- Baja probabilidad de corromper datos, incluso si los errores no se producen en el propio gestor, sino en el sistema en el que está.
- Conectividad y seguridad
- Acceso a bases de datos de forma simultánea por varios usuarios y/o aplicaciones.
- Seguridad en forma de permisos y privilegios, determinados usuarios tendrán permiso para consulta o modificación de determinadas tablas.
- Escalabilidad, es posible manipular bases de datos enormes del orden de seis mil tablas y alrededor de cincuenta millones de registros.

Desventajas.

- Sin soporte para la integridad referencial por sí solo.
- No tiene todas las capacidades como otros gestores profesionales.
- No es muy intuitivo.
- Los privilegios sobre una tabla no se eliminan automáticamente cuando se borra una tabla.
- Un gran porcentaje de utilidades de MySQL no están documentadas.

2.9.4 Lenguaje de pre-procesamiento de hipertexto PHP.

PHP (acrónimo recursivo de PHP: Hypertext Preprocessor) es un lenguaje de código abierto muy popular especialmente adecuado para el desarrollo web y que puede ser incrustado en HTML, y ejecutado en el servidor. El PHP inicio como una modificación a Perl escrita por Rasmus Lerdorf a finales de 1994. (PHP) (Santos)

Con PHP se puede hacer cualquier cosa que podemos realizar con un script CGI, como el procesamiento de información en formularios, foros de discusión, manipulación de cookies y páginas dinámicas. Un sitio con páginas dinámicas es el que permite interactuar con el visitante, de modo que cada usuario que visita la página vea la información modificada para requisitos articulares. Las aplicaciones dinámicas para el Web son frecuentes en los sitios comerciales donde el contenido visualizado se genera de la información alcanzada en una base de datos u otra fuente externa.
Una de sus características más potentes es su soporte para gran cantidad de bases de datos. Entre su soporte pueden mencionarse InterBase, mSQL, MySQL, Oracle, Informix, PostreSQL, entre otras. PHP también ofrece la integración con las varias bibliotecas externas, que permiten que el desarrollador haga casi cualquier cosa desde generar documentos en pdf hasta analizar código XML.

Este lenguaje será el encargado de construir la lógica del sitio así como ayudar a que las funcionalidades del mismo funcionen de forma sencilla y rápida para mejorar la experiencia de usuario.

2.10 Patrón de arquitectura de software MVC.

El patrón de arquitectura MVC (Modelo Vista Controlador) es un patrón que define la organización independiente del Modelo (Objetos de Negocio), la Vista (interfaz con el usuario u otro sistema) y el Controlador (controlador del workflow de la aplicación).

De esta forma, dividimos el sistema en tres capas donde, como explicaremos más adelante, tenemos la encapsulación de los datos, la interfaz o vista por otro y por último la lógica interna o controlador.

El patrón de arquitectura "modelo vista controlador", es una filosofía de diseño de aplicaciones, compuesta por:

Modelo
- Contiene el núcleo de la funcionalidad (dominio) de la aplicación.
- Encapsula el estado de la aplicación.
- No sabe nada / independiente del Controlador y la Vista.

Vista
- Es la presentación del Modelo.
- Puede acceder al Modelo pero nunca cambiar su estado.
- Puede ser notificada cuando hay un cambio de estado en el Modelo.

Controlador
- Reacciona a la petición del Cliente, ejecutando la acción adecuada y creando el modelo pertinente.
Muchos de los sistemas informáticos utilizan un Sistema de Gestión de Base de Datos (SGBD) para gestionar los datos: en líneas generales del MVC corresponde al modelo. La unión entre capa de presentación y capa de negocio conocido en el paradigma de la Programación por capas representaría la integración entre Vista y su correspondiente Controlador de eventos y acceso a datos, MVC no pretende discriminar entre capa de negocio y capa de presentación pero sí pretende separar la capa visual gráfica de su correspondiente programación y acceso a datos, algo que mejora el desarrollo y mantenimiento de la Vista y el Controlador en paralelo, ya que ambos cumplen ciclos de vida muy distintos entre sí. (uc3m)

Ilustración 8 Arquitectura del Modelo Vista Controlador (MVC)
2.10.1 Framework CodeIgniter.

CodeIgniter es un framework para el desarrollo de aplicaciones escritas en php que utiliza el MVC, permite a los desarrolladores Web mejorar la forma de trabajar y también agregar mayor velocidad a la hora de crear una página Web. CodeIgniter no es el único framework del mercado, también están zend, cakephp, symphony, entre otros. Pero CI (CodeIgniter) se diferencia al resto por lo rápido, lo extensible, lo sencillo de aprender y lo poderoso que puede llegar a ser si lo sabemos usar bien. CodeIgniter fue desarrollado por EllisLab y hasta la versión 1.7.3 soportaba php 4, ya para la versión 2.0 solo soporta php 5.

Su objetivo es permitir que los desarrolladores puedan realizar proyectos mucho más rápido que creando toda la estructura desde cero, brindando un conjunto de bibliotecas para tareas comunes, así como una interfaz simple y una estructura lógica para acceder esas bibliotecas.

Ilustración 9 Logo CodeIgniter

2.10.2 Características, ventajas y desventajas de CodeIgniter.

Algunos de los puntos más interesantes de este marco, especialmente en comparación con otros productos similares, son los siguientes:

Ventajas

- Versatilidad: la principal característica de CodeIgniter, en comparación con otros frameworks PHP es que CI es capaz de trabajar la mayoría de los ambientes o los servidores, incluidos los sistemas de alojamiento compartido, donde sólo tienen acceso a través de FTP para cargar archivos en el servidor y en la que no tienen acceso a la configuración.
- Facilidad de instalación: No es necesaria más de una cuenta FTP para subir CodeIgniter al servidor y su configuración se realiza con sólo editar un archivo en el que se escribe cosas como el acceso a la base de datos. Durante la instalación no tendrá acceso a herramientas como la línea de comandos, que a menudo no están disponibles en todos los alojamientos.
- Flexibilidad: CodeIgniter es mucho menos rígido que otros frameworks. Define una forma específica de trabajo, pero en muchos casos, podemos emplear o no, y sus reglas de codificación a menudo se pueden saltar de la manera que nos convenga. Algunos módulos, como el uso de diseños son completamente opcionales. Esto a menudo ayuda, también, que la curva de aprendizaje es simple en principio.
- **Ligereza:** El núcleo de CodeIgniter es muy ligero, lo que permite que la sobrecarga del servidor no está jugando o corriendo grandes porciones de código.
- **Documentación amigable:** La documentación de CodeIgniter es fácil de seguir y asimilar, porque está escrito en el modo de tutorial.

Desventajas

- En algunas situaciones y debido a la simpleza de CodeIgniter es necesario recurrir a plugins externos para completar tareas.
- En algunos casos es complejo incluir las vistas dentro de plantillas.
- La compatibilidad con tantas versiones de PHP hace que no podamos hablar de un framework completamente Orientado a Objetos.
- Debido a que pretende ser el núcleo de nuestra aplicación y no la aplicación en sí no vienen integrado con ningún framework de JavaScript.

2.11 Seguridad informática.

Debido a que el uso de Internet se encuentra en aumento, cada vez más compañías permiten a sus socios y proveedores acceder a sus sistemas de información. Por lo tanto, es fundamental saber qué recursos de la compañía necesitan protección para así controlar el acceso al sistema y los derechos de los usuarios del sistema de información. Los mismos procedimientos se aplican cuando se permite el acceso a la compañía a través de Internet.

Además, debido a la tendencia creciente hacia un estilo de vida nómadal de hoy en día, el cual permite a los empleados o usuarios conectarse a los sistemas de información prácticamente desde cualquier lugar, se pide a los usuarios que lleven consigo parte del sistema de información fuera de la infraestructura segura de la compañía o institución.

2.11.1 Definición de seguridad.

La seguridad informática consiste en asegurar en que los recursos del sistema de información de una organización se utilicen de la manera que se decidió y que el acceso a la información allí contenida así como su modificación solo sea posible a las personas que se encuentren acreditadas y dentro de los límites de su autorización.

Generalmente, los sistemas de información incluyen todos los datos de una compañía y también en el material y los recursos de software que permiten a una compañía almacenar y hacer circular estos datos. Los sistemas de información son fundamentales para las compañías y deben ser protegidos. (Cappuccio)
La seguridad informática se resume, por lo general, en cinco objetivos principales:

- **Integridad**: garantizar que los datos sean los que se supone que son
- **Confidencialidad**: asegurar que sólo los individuos autorizados tengan acceso a los recursos que se intercambian
- **Disponibilidad**: garantizar el correcto funcionamiento de los sistemas de información
- **Evitar el rechazo**: garantizar de que no pueda negar una operación realizada.
- **Autenticación**: asegurar que sólo los individuos autorizados tengan acceso a los recursos

2.11.2 Mecanismos de seguridad.

Generalmente, la seguridad de los sistemas informáticos se concentra en garantizar el derecho a acceder a datos y recursos del sistema configurando los mecanismos de autentificación y control que aseguran que los usuarios de estos recursos sólo posean los derechos que se les han otorgado.

Los mecanismos de seguridad pueden sin embargo, causar inconvenientes a los usuarios. Con frecuencia, las instrucciones y las reglas se vuelven cada vez más complicadas a medida que la infraestructura crece. Por consiguiente, la seguridad informática debe estudiarse de modo que no evite que los usuarios desarrollen sus actividades y puedan utilizar los sistemas de información en forma segura.

Por esta razón, uno de los primeros pasos que debe dar es definir una política de seguridad que pueda implementar en función a las siguientes cuatro etapas:

- Identificar las necesidades de seguridad y los riesgos informáticos que enfrenta la institución así como sus posibles consecuencias.
- Proporcionar una perspectiva general de las reglas y los procedimientos que deben implementarse para afrontar los riesgos identificados en los diferentes departamentos de la organización.
- Controlar y detectar las vulnerabilidades del sistema de información, y mantenerse informado acerca de los errores en las aplicaciones y en los componentes que se usan.
- Definir las acciones a realizar y las personas a contactar en caso de detectar una amenaza.

La política de seguridad comprende todas las reglas de seguridad que sigue una organización, por lo tanto, la administración de la organización en cuestión debe encargarse de definirla, ya que afecta a todos los usuarios del sistema.

La seguridad informática de una organización depende de que los usuarios aprendan las reglas a través de sesiones de capacitación y de concientización. Sin embargo, la seguridad debe ir más allá del conocimiento de los usuarios y se deben de cubrir las siguientes áreas:

- Un mecanismo de seguridad física y lógica que se adapte a las necesidades de la organización y al uso de los empleados.
- Un procedimiento para administrar las actualizaciones.
• Una estrategia de realización de copias de seguridad (backup) planificada adecuadamente.
• Un plan de recuperación luego de un incidente.
• Un sistema documentado actualizado.

2.11.3 Seguridad en la aplicación web.
Un efecto secundario del crecimiento exponencial que ha tenido el Internet es la privacidad de información tanto personal como profesional. En Internet encontramos funcionando a tiendas en línea, negocios que mueven grandes cantidades de dinero, redes de los servicios que habilitan el comercio a nivel internacional así como sitios de redes sociales que contienen información muy delicada de la vida privada de sus miembros.

Mientras más se conecta el mundo, la necesidad de seguridad en los procedimientos usados para compartir la información se vuelve más importante. Desde muchos puntos de vista, podemos creer sin dudar que el punto más crítico de la seguridad del Internet, lo tienen las piezas que intervienen de forma directa con las masas de usuarios, los servidores web.

Respecto a los servidores web, es común escuchar sobre fallas en los sistemas de protección de los servidores más frecuentemente utilizados (Apache, IIS, etc.), o en los lenguajes de programación en los que son escritas las aplicaciones que son ejecutadas por estos servidores. Pero es un hecho, que la mayoría de los problemas detectados en servicios web no son provocados por fallas intrínsecas de ninguna de estas partes, ya que una gran cantidad de los problemas se generan por malos usos por parte de los programadores.

Problemas principales en la Programación de Sistemas Web

Una gran parte de los problemas de seguridad en las aplicaciones web son causados por la falta de seguimiento por parte del programador en los siguientes aspectos:

• Entradas al sistema
• Salidas del sistema

Otro aspecto importante además de los procesos de verificación que se deben de tener para con las entradas y salidas del sistema lo representa la fuga de información útil para un posible ataque sobre nuestro sistema. En este punto, los mensajes de error enviados por el servidor, que suelen ser de gran utilidad durante el proceso de desarrollo de la aplicación, se vuelven contra nosotros cuando siguen apareciendo en una aplicación que se encuentra en la etapa de producción, por lo que es necesario deshabitar todos estos mensajes y editar algunos otros (como los que se envían cuando el servidor no encuentra algún archivo en particular) que también pueden ser utilizados por los atacantes para obtener información sobre nuestro sistema.
Practicas básicas de seguridad web.

Balancear riesgo y usabilidad

Si bien la usabilidad y la seguridad en una aplicación web no son necesariamente mutuamente excluyentes, algunas medidas tomadas para incrementar la seguridad con frecuencia afectan la usabilidad. Al igual que debemos pensar en las maneras en que usuarios ilegítimos nos pueden atacar, también debemos considerar la facilidad de uso para los usuarios legítimos.

Rastrear el paso de los datos.

Uno de los puntos más importantes para el desarrollo web seguro es mantener conocimiento de los pasos que ha recorrido la información en todo momento. Conocer de dónde vinieron los datos y hacia dónde van. En muchas ocasiones lograr esto puede ser complicado, especialmente sin un conocimiento profundo de cómo funcionan los sistemas Web.

En las aplicaciones web, existen maneras de distinguir los orígenes de los datos y poder así reconocer cuando los datos pueden ser dignos de confianza y cuando no. Ante todo, debemos recordar que la desesperación y la paranoia con mucha frecuencia nos dirigen a complicaciones y errores.

Particularmente para PHP existen arreglos superglobales como $GET, $POST y $COOKIE entre otros que sirven para identificar de forma clara las entradas enviadas por el usuario. Si esto lo combinamos con una convención estricta para el nombrado de las variables podemos así tener un control sobre el origen de los datos usados en el código.

Además de entender los orígenes de la información, tiene también igual importancia entender cuáles son las salidas que tiene ésta de la aplicación.

Filtrar entradas.

El filtrado es una de las piedras angulares de la seguridad en aplicaciones web. Es el proceso por el cual se prueba la validez de los datos. Si nos aseguramos que los datos son filtrados apropiadamente al entrar, podemos eliminar el riesgo de que datos contaminados y que reciben confianza indebida sean usados para provocar funcionamientos no deseados en la aplicación.

El proceso de filtrado debe estar conformado por los siguientes pasos:

- Identificar la entrada.
- Filtrado de la entrada.
- Distinguir entre datos que ya han pasado por el filtro y los que no.
Por lo general, se considera más seguro tratar a los datos provenientes de bases de datos como entradas, aunque supuestamente sean bases seguras y en las que debiéramos tener confianza, esto se debe a que es mejor tener redundancia para evitar problemas en el caso de que la base de datos fuera vulnerada.

Otro aspecto a considerar en el proceso de filtrado es el uso de listas blancas, listas negras o una combinación de ambas.

Al usar listas blancas asumimos que los datos son inválidos a menos que prueben ser válidos al encontrarse patrones coincidentes en la lista blanca. Una limitante de usar este punto de vista es considerar inválidos datos que debieron considerarse válidos pero que no fueron tomados en cuenta patrones similares al construir la lista blanca. Dentro de todo, cometer un error de este tipo es preferible que considerar válidos datos que no debieron considerarse así.

Una vez concluido el paso del filtrado solo resta usar convenciones apropiadas en el nombramiento de las variables para poder distinguir las que ya han sido filtradas.

Escapar salidas.

Otra piedra angular de la seguridad en aplicaciones web es el proceso de escapado y su contraparte para codificar o decodificar caracteres especiales de tal forma que su significado original sea preservado.

El proceso de escapado debe estar compuesto a su vez por los siguientes pasos:

Identificar las salidas. Escapar las salidas. Distinguir entre datos escapados y no escapados.

Para escapar las salidas, primero debemos identificarlas. En PHP una forma de identificar salidas hacia el cliente es buscar por líneas como:

- `echo`
- `print`
- `printf`
- `<?=`

Además debemos considerar otro tipo de salidas como los datos que son enviados a otros sistemas como bases de datos, etc. El proceso de escapado debe adecuarse al tipo de salida de que se trate (si es al cliente, a la base de datos, etc.). Para la mayoría de los destinatarios, existen funciones nativas en PHP para esta finalidad.

Otro destinatario común son las bases de datos, sin embargo cada tipo de manejador (MySQL, PostgreSQL, etc.) puede presentar sus detalles, por lo que es necesario una función de escapado apropiada para cada caso. Para los usuarios de MySQL, la función recomendada es `mysql_real_escape_string()`.
Ataques de Cross-Site Scripting.

XSS es un tipo de vulnerabilidad de seguridad informática típicamente encontrada en aplicaciones web que permiten la inyección de código por usuarios maliciosos en páginas web vistas por otros usuarios.

Los atacantes típicamente se valen de código HTML y de scripts ejecutados en el cliente.

Una vulnerabilidad de este tipo puede ser usada por los atacantes para burlar los controles de acceso comunes, como la muy conocida Same Origin Policy. Recientemente este tipo de ataques han sido explotados para crear poderosos ataques de phishing y de abusos en el navegador.

Desde la liberación del lenguaje JavaScript, se previeron los riesgos de permitir a un servidor Web enviar código ejecutable al navegador. Un problema se presenta cuando los usuarios tienen abiertos varias ventanas de navegador, en algunos casos un script de una página podría acceder datos en otra página u objeto, observando el peligro de que un sitio malicioso intentara acceder datos sensibles de esta forma. Por ello se introdujo la política same-origin. Esencialmente esta política permite la interacción entre objetos y páginas, mientras estos objetos provengan del mismo dominio y en el mismo protocolo. Evitando así que un sitio malicioso tenga acceso a datos sensibles en otra ventana del navegador vía JavaScript.

A partir de entonces se han introducido otros mecanismos y políticas de control en los navegadores y en los lenguajes en el lado del cliente, para proteger a los usuarios de sitios maliciosos.

Las vulnerabilidades XSS pueden ser vistas como técnicas de evasión de las políticas de protección. Encontrando formas ingeniosas de inyectar códigos maliciosos en las páginas servidas por otros dominios, un atacante puede ganar privilegios a datos sensibles, cookies de sesión y otros objetos.

Páginas privadas y los sistemas de autenticación.

La autenticación es el proceso por el cual la identidad de un usuario en el sistema es validada. Comúnmente el procedimiento involucra un nombre de usuario y una contraseña a revisar. Una vez autenticado el usuario es registrado (logueado) como un usuario que se ha autenticado. Muchas aplicaciones tienen recursos que son accesibles sólo para los usuarios autenticados, recursos que son accesibles únicamente para los administradores y recursos totalmente públicos.

El control de acceso debe encontrarse totalmente integrado al diseño original. No debe ser algo improvisado sobre una aplicación ya existente.
Ataques de fuerza bruta.

Un ataque de este tipo agota todas las posibilidades sin preocuparse por cuales opciones son las que tienen mayor probabilidad de funcionar.

En los términos del control de acceso, generalmente encontramos al atacante intentando registrarse mediante un gran número de pruebas. En algunos casos el atacante puede conocer nombres de usuario válidos y la contraseña es la única parte que se trata de adivinar.

Límitar el número de intentos que se le permite al usuario tratar de adivinar es una medida efectiva en contra de estos ataques, pero tiene por desventaja de poder afectar el uso del sistema a usuarios legítimos. Una propuesta un poco más considerada con el usuario sería intentar encontrar patrones en las peticiones enviadas por el atacante y únicamente bloquear el uso de la cuenta para peticiones que cumplan con dicho patrón, de esta forma se interfiere menos el uso al usuario legítimo.

Otra opción sería imponer un intervalo de tiempo pequeño (ejemplo 15 segundos) que se debe esperar para poder intentar registrarse en el sistema de nuevo después de una falta en la autenticación. De esta manera, se niega el acceso sin importar si se presentaron las credenciales fue correcta, por supuesto que no se le dice al atacante la razón por la que se le negó el acceso para evitar lo intente de nuevo cuando haya terminado el plazo de espera. Trabajando de esta forma, se busca reducir el tiempo útil que tiene el atacante para intentar adivinar las credenciales de acceso.

Registros persistentes.

Cuando un usuario permanece en el estado de registrado después de un tiempo no razonable (cuando la sesión expiró por ejemplo), tenemos un problema de registros persistentes.

Este tipo de problemas disminuyen la seguridad de nuestro mecanismo de autenticación. Generalmente estos problemas son causados por una cookie persistente, o un ticket enviado al usuario para hacer referencia a la sesión de registro establecida que no se considera como expirado jamás o que no cambia en cada nuevo registro establecido por el usuario.

Si el ticket de acceso permanece constante para cualquier sesión establecida tenemos un problema serio, la manera más sencilla de evitarlo es haciéndolo dependiente de una variable aleatoria.

Otra medida recomendable es requerir la contraseña del usuario cuando vaya a realizar alguna tarea administrativa importante en el sistema. Con este esquema se permite el acceso únicamente a los recursos que no son tan sensibles.

Otro paso indispensable es efectivamente eliminar la cookie de acceso cuando un usuario solicita salir del sistema. (Terán, 2011)
2.12 Software de generación de estadísticas web.

Todo sitio web tiene un objetivo de utilidad para un sector predefinido de usuarios, y es exitoso en la medida en que sirve para transmitir la información requerida por los usuarios.

Las estadísticas web permiten conocer el grado de éxito del sitio web, y el comportamiento de los usuarios en el mismo, así como sus necesidades de información; además de que brindan datos acerca de las áreas de mejora del sitio. Asimismo, proporcionan una guía para redirigir contenidos y elementos a fin de darles mayor o menor importancia. Elementos que sirven para planear el crecimiento del sitio web y del ancho de banda necesario para que éste responda con la rapidez que demanda el usuario.

Estas estadísticas web generales, también permiten tener un punto de comparación con relación a otros sitios web que pertenezcan a la misma temática del nuestro.

Por otra parte, las estadísticas del web por sí solas, dicen muy poco sobre qué tanto alcanzan las metas de un sitio. Las estadísticas deben determinar verdaderos indicadores a partir de los objetivos del sitio web y de la organización a la que sirven. Estos indicadores resultarán de la combinación o de una selección de las estadísticas web generales, las cuales se pueden definir aplicando técnicas como el Balanced Scorecard (BSC o tablero de mando integral), que es un modelo de gestión que traduce la estrategia de objetivos interrelacionados medibles a través de indicadores.

Aunque lo mejor es contar con indicadores a partir de las metas y objetivos del sitio web y de la organización, las estadísticas web generales aportan importantes beneficios al interpretar y aprovechar la información que proporcionan.

Para obtener las estadísticas web generales, existen varios tipos de herramientas.

a) Software para procesar la bitácora del servidor web

La bitácora es un archivo que produce el servidor web para registrar todas las solicitudes hechas a este servidor. Estas solicitudes pueden realizarlas los usuarios a través del sitio web o bien, por los robots de buscadores que indexan el contenido de dicho sitio.

Este archivo suele tener un gran volumen de datos, además de que su formato no es muy amigable, por lo cual es necesario procesarlo para obtener los conteos de números de visitas, bytes transferidos y otras medidas o indicadores importantes.

Además, el software que procesa la bitácora del servidor web debe eliminar registros que inflen el conteo de los indicadores. De igual forma, es necesario omitir los accesos a las imágenes, archivos de JavaScript, archivos de estilos, etcétera, con la finalidad de tener indicadores que reflejen de mejor manera la realidad de accesos al sitio web. Como ejemplo de este tipo de software, podemos mencionar webalizer.
b) Servicios de estadísticas en línea

Otra forma de obtener estadísticas de uso de un sitio web es a través de un servicio en línea. En este caso, por lo regular se solicita que el dueño del sitio incluya en las páginas, donde desea hacer el seguimiento, unas líneas de código para que después puedan verse en una interfaz web, las estadísticas de uso.

Este tipo de servicios son muy útiles, especialmente para conocer los sitios que más nos han enviado tráfico (referers, referidos o remitentes). Las estadísticas son visibles únicamente para el dueño del sitio web. Ejemplos de este tipo de servicios son: Google Analytics, o las estadísticas de http://www.developers4web.com/

c) Rankings

Alexa – El servicio de alexa proporciona estadísticas de diversos sitios web en forma pública; además funciona a través de una gran base instalada en millones de navegadores web de un elemento llamado Alexa Toolbar, el cual envía continuamente al servidor de alexa, la información sobre los sitios que consultan los usuarios.

Las estadísticas las podemos observar en el sitio de alexa (http://www.alexa.com/), y no es necesario instalar el toolbar de alexa.

Es importante conocer y saber interpretar las estadísticas web para mejorar un sitio, y alcanzar un buen posicionamiento en buscadores y con los usuarios.

- Comparando la cantidad de visitantes con el total de visitas, conocemos si los visitantes están regresando a la web en algún otro momento, lo cual nos habla de cierta fidelidad hacia nuestro sitio.

- Hacer una comparación de los indicadores por fechas, nos puede servir como alerta, respecto al momento en que cae el indicador, para detectar la causa.

Además de que es útil conocer los días y horas de mayor demanda, para lograr mayor cobertura e impacto en los anuncios o en el lanzamiento de nuevos servicios.

- Conocer qué ligas en otros sitios nos han dado más usuarios, lo cual nos permite continuar con los convenios o pagos para que nuestro sitio siga apareciendo en los portales que nos envían más tráfico.

- Saber las zonas geográficas a las que pertenecen los usuarios que más nos consultan, para así ubicar nuestro sitio web en los directorios regionales donde necesitemos mayor presencia.

- Contar con un listado de las páginas que dieron lugar a un “error 404, página no encontrada”, a fin de corregir las referencias en el sitio web y no perder las visitas de los usuarios, así como para mejorar el sitio continuamente. Igualmente, cuando la dirección de una página va a cambiar, es necesario redireccionar hacia la página nueva para que los buscadores empiecen a registrar la
nueva dirección de la página en cuestión y dejen de enviar a los usuarios a la dirección antigua y caduca. Además, este redireccionamiento traspasará el valor del PageRank de Google de la página anterior a la nueva versión.

El análisis de estadísticas web debe ser un proceso sistemático y repetitivo, ya que forma parte de la etapa de control de la administración del sitio web, y ayuda a retener el interés de los usuarios, evitando que éste caiga en la obsolescencia. (Romero, 2008)

2.12.1 Ventajas de estadísticas web.
El conocer las estadísticas de nuestro sitio web puede aportarnos muchos datos, algunos de ellos realmente útiles.

Podemos saber cómo llegan a nuestro sitio los visitantes (motores de búsqueda, sitios web de referencia o tráfico directo), qué buscan en los motores de búsqueda para encontrarnos (si es que lo hacen) y qué contenidos visitan más.

De esta forma podemos reorganizar nuestro sitio web adaptándolo a lo que más éxito tiene realmente, garantizando más usuarios fieles y subiendo el tráfico del sitio.

O por otro lado, si estamos pensando en un rediseño de nuestro sitio web, gracias a las estadísticas podemos ver con qué navegador nos visitan más, qué resolución de pantalla utilizan los visitantes, o si tienen o no compatibilidad con flash, JavaScript y demás; pudiendo adaptar nuestro futuro diseño a estas características que las estadísticas web nos indican.

2.12.2 Google Analytics.
Google Analytics es un servicio gratuito de estadísticas de sitios web por parte del buscador Google. Ofrece información agrupada según los intereses de tres tipos distintos de personas involucradas en el funcionamiento de una página: ejecutivos, técnicos de marketing y webmasters.

Se pueden obtener informes como el seguimiento de usuarios exclusivos, el rendimiento del segmento de usuarios, los resultados de la campaña de marketing, el marketing de motores de búsqueda, las pruebas de versión de anuncios, el rendimiento del contenido, el análisis de navegación, los objetivos y proceso de redireccionamiento o los parámetros de diseño web. Este producto se desarrolló basándose en la compra de Urchin (hasta entonces la mayor compañía de análisis estadístico de páginas web) por parte de Google. (Google)
2.13 Sistema de nombres de dominio DNS.

DNS son las iniciales de Domain Name System (sistema de nombres de dominio), es una tecnología basada en una base de datos que sirve para resolver nombres en las redes, es decir, para conocer la dirección IP de la máquina donde está alojado el dominio al que queremos acceder.

Cuando un ordenador está conectado a una red (ya sea Internet o una red casera) tiene asignada una dirección IP. Si estamos en una red con pocos ordenadores, es fácil tener memorizadas las direcciones IP de cada uno de los ordenadores y así acceder a ellos pero ¿qué ocurre si hay miles de millones de dispositivos y cada uno tiene una IP diferente? Pues que se haría imposible, por eso existen los dominios y las DNS para traducirlos. (Quiroga)

Por lo tanto, el DNS es un sistema que sirve para traducir los nombres en la red, y está compuesto por tres partes con funciones bien definidas.

Cliente DNS: está instalado en el cliente (es decir, nosotros) y realiza peticiones de resolución de nombres a los servidores DNS.

Servidor DNS: son los que contestan las peticiones y resuelven los nombres mediante un sistema estructurado en árbol. Las direcciones DNS que ponemos en la configuración de la conexión, son las direcciones de los Servidores DNS.

Zonas de autoridad: son servidores o grupos de ellos que tienen asignados resolver un conjunto de dominios determinado (como los .es o los .org).
2.13.1 Dominio.
Un dominio de Internet es una red de identificación asociada a un grupo de dispositivos o equipos conectados a la red Internet.

El propósito principal de los nombres de dominio en Internet y del sistema de nombres de dominio (DNS), es traducir las direcciones IP de cada nodo activo en la red, a términos memorizables y fáciles de encontrar. Esta abstracción hace posible que cualquier servicio (de red) pueda moverse de un lugar geográfico a otro en la red Internet, aun cuando el cambio implique que tendrá una dirección IP diferente.

Sin la ayuda del sistema de nombres de dominio, los usuarios de Internet tendrían que acceder a cada servicio web utilizando la dirección IP del nodo además, reduciría el número de webs posibles, ya que actualmente es habitual que una misma dirección IP sea compartida por varios dominios.

2.13.2 Subdominio.
Un subdominio es un subgrupo o subclaseificación del nombre de dominio el cual es definido con fines administrativos u organizativos, que podría considerarse como un dominio de segundo nivel. Normalmente es una serie de caracteres o palabra que se escriben antes del dominio.

En Internet se podría decir que el subdominio se utiliza para referirse a una dirección web que trabaja como un anexo (o sitio relacionado) de un dominio principal. Por ejemplo un subdominio puede representarse de la siguiente forma:

- http://aramara.ciempies.org
- http://forum.ciempies.org
- http://blog.ciempies.org

En el caso de las empresas que prestan servicios de hospedaje de páginas web puede que permitan registrar subdominios, algunas lo proporcionan con distintas restricciones, ya sea por número de subdominios permitidos o por el servicio que prestan. Por ejemplo existen empresas que regalan un subdominio al momento de registrar un blog con ellos o algunas otras que prestan servicios de hospedaje gratuito.

2.14 WordPress.
WordPress es un sistema de gestión de contenido o CMS (por sus siglas en inglés, Content Management System) enfocado a la creación de blogs (sitios web periódicamente actualizados). Ha sido desarrollado en PHP para entornos que ejecuten MySQL y Apache, bajo licencia GPL y código modificable, y su fundador es Matt Mullenweg. (WordPress)

Facilita la administración de páginas fuera del orden cronológico del weblog y ha sido el primer paso para transformarse de un software básico de administración de blogs a un completo sistema de administración de contenidos.

Otra funcionalidad es la del sistema de creación de plantillas o temas, que permiten al usuario activar o desactivar una u otra según deseen para sus sitios. WordPress también cuenta de forma predeterminada con una nueva plantilla, además de la tradicional e inicial.

2.14.1 Estructura.

- WordPress, en principio, es un sistema de publicación web basado en entradas ordenadas por fecha; las entradas corresponden a una o más categorías o taxonomías. Además, cuenta con un administrador de páginas estáticas no cronológicas.
- La estructura y diseño visual del sitio depende de un sistema de plantillas independiente del contenido, que pueden tener varias opciones de personalización dependiendo de su autor.
- Bloques con funciones específicas por medio de complementos cuya publicación se realiza por medio de widgets.
- La filosofía de WordPress apuesta decididamente por la elegancia, la sencillez y las recomendaciones del W3C pero depende siempre de la plantilla a usar.
- Separa el contenido y el diseño en XHTML y CSS; aunque, como se ha dicho, depende de la plantilla que se esté usando. No obstante, el código que se intenta generar en las entradas apuesta por esta característica forzando (si así se elige) un marcado correcto.
- La gestión y ejecución corre a cargo del sistema de administración con los complementos y widgets que usan las plantillas.
2.15 MyBB.

MyBB (abreviatura de MyBulletinBoard) es un sistema de gestión foros gratuito y de código abierto. Está programado en el lenguaje PHP y soporta bases de datos MySQL, PostgreSQL y SQLite. Permite configurar replicación maestro/esclavo y tolerancia a fallos en la base de datos. (MyBB)

Lo mejor de los foros MyBB es su gran funcionalidad frente a otros gestores de foros como phpBB o SMF. Proporciona multitud de funcionalidades manteniendo un carácter gratuito.

Características generales

- Cantidad ilimitada de foros y subforos, usuarios registrados, temas visuales y mensajes almacenados.
- Panel de control de usuario y administrador.
- Posibilidad de modificar las plantillas (HTML para anidar el contenido del foro) y los temas visuales, y de exportarlos e instalar nuevos.
- Posibilidad de tener varios idiomas, temas visuales y plantillas activos al mismo tiempo en el foro, para que los usuarios puedan elegir entre ellos.

Características para usuarios

- Suscripciones a foros y temas, notificaciones por email, lista de temas favoritos y lista de amigos.
- Perfiles personalizables y mensajería privada.
- Posibilidad de personalizar el avatar, firma, suscripciones y demás datos, junto a otros que el administrador haya podido incluir en los perfiles.

Características para moderadores

- Permite la moderación masiva de temas: los moderadores pueden marcar varios temas y aplicarles la misma acción a todos.
- Los moderadores pueden abrir y cerrar temas, aprobarlos o desaprobarlos, cerrar, mover y copiar hilos del foro, así como unir o fusionar dos temas distintos en uno sólo.
- Panel de moderación.

Características para administradores

- Se pueden crear campos nuevos para los perfiles de usuarios. De este modo, se pueden introducir muchos más datos en los perfiles de los usuarios (como identificación en otros foros, números de teléfono, IDs en servicios online y mucho más).
- Posibilidad de ocultar foros, haciéndolos invisibles a invitados, o bien haciendo que sea necesario el registro para visualizarlos.
- La plantilla puede ser editada directamente con HTML, lo que permite la introducción de scripts de publicidad, contadores de estadísticas y demás de manera sencilla.
• Herramienta de backup de la base de datos integrada, así como herramientas para optimizarla y corregir errores en el conteo de estadísticas, de modo automático.

MyBB

Ilustración 12 Logo MyBB

2.16 Facebook API.
Una cosa que distingue a Facebook, aparte de su competencia en el campo de las redes sociales es su amplio uso de la construcción de la plataforma del sitio, características y aplicaciones con software de código abierto. Tomando la filosofía de código abierto para el corazón, Facebook comparte un conjunto de interfaces de programación de aplicaciones (API por sus iniciales Application Programming Interfaces) que los desarrolladores pueden usar para aprovechar la red social y extender las aplicaciones y sitios web del desarrollador. Las principales interfaces de programación de aplicaciones que ofrece Facebook incluyen la Ads API, Credits API, Chat API y Graph API.

2.16.1 Comments.
La caja de comentarios es una herramienta que forma parte del API de Facebook, esta permite a las personas comentar contenido dentro de una página web usando su perfil de Facebook y muestre esta actividad a sus amigos en los new Feeds, esta también contiene herramientas de moderación y medidores de relevancia social.
2.17 Modelado mediante UML.
UML es el lenguaje unificado de modelado, es un lenguaje gráfico para visualizar, especificar y documentar cada una de las partes que comprenden el desarrollo de software. UML permite modelar objetos de una manera conceptual, que puede ir de un proceso de negocio, hasta funciones y componentes de un sistema o bases de datos, además de que permite obtener pseudocódigo para el desarrollo de clases en algunos lenguajes. (Cornejo)

Su funcionalidad se tiene para representar visualmente las reglas de creación, estructura y comportamiento de un grupo relacionado de objetos y procesos. Para visualizar de forma eficiente la complejidad de un sistema u organización en un reducido número de diagramas y para mantener mucho más amigables especificaciones ante los cambios y nuevas actualizaciones de la arquitectura.

UML surge como un lenguaje no solo para comunicar ideas a otros desarrolladores sino también para servir de apoyo en los procesos de análisis de un problema, de tal forma que se ha convertido en estándar para representar y modelar la información con la que se trabaja en las fases de análisis y especialmente de diseño.

El lenguaje tiene una notación gráfica muy expresiva que permite representar en mayor medida todas las fases de un proyecto informático, desde el análisis con los casos de uso, el diseño con los diagramas de clases, objetos, hasta la implementación y configuración con los diagramas de despliegue.

Tal como lo indica su nombre, UML es un lenguaje de modelado, un modelo es una simplificación de la realidad. El objetivo del modelo de un sistema es capturar las partes esenciales del sistema para facilitar este modelado, se realiza una abstracción y se plasma en una notación gráfica. Esto se conoce como modelado visual.

El modelo visual permite manejar la complejidad de los sistemas a analizar o diseñar, UML sirve para el modelado completo de sistemas complejos, tanto en el diseño de los sistemas de software como para arquitectura de hardware donde se ejecuten.
Otro objetivo de este modelado visual es que sea independiente del lenguaje de implementación, de tal forma que los diseños realizados UML se pueden implementar en cualquier lenguaje que soporte las posibilidades de este.

UML es ante todo un lenguaje que proporciona un vocabulario y unas reglas para permitir la comunicación, nos indica cómo crear y leer modelos pero no dice cómo crearlos, Esto último es el objetivo de las metodologías de desarrollo.

Los objetivos de UML son variados sin embargo se pueden sintetizar con sus funciones en principales:

- **Visualizar**: UML permite expresar de una forma gráfica un sistema de forma que otro lo puede entender.
- **Especificar**: UML permite especificar cuáles son las características de un sistema antes de su construcción.
- **Construir**: A partir de los modelos especificados se pueden construir los sistemas diseñados.
- **Documentar**: Los propios elementos gráficos sirven como documentación del sistema desarrollado, lo cual puede servir para futuras revisiones.

Aunque UML está pensado para modelar sistemas complejos con gran cantidad de software, el lenguaje es lo suficientemente expresivo como para modelar sistemas que no son informáticos, como flujos de trabajo en una empresa, diseño de la estructura de una organización y por supuesto en el diseño de hardware.

Un modelo UML está compuesto por tres clases de bloques de construcción:

- **Elementos**: los elementos son abstracciones de cosas reales o ficticias (Objetos, acciones, etc.)
- **Relaciones**: relacionan los elementos entre sí.
- **Diagramas**: Son colecciones de elementos con sus relaciones.

Ilustración 15 Componentes básicos del UML
Existe un gran número de distintos diagramas que pueden ser empleados para la modelación de un sistema pero en los desarrollos usualmente se toman los que permiten ayudan a representar el problema y enfocarse en los puntos más significativos. Entre los modelos más empleados se encuentran el diagrama de casos de uso, el diagrama de secuencia, el diagrama entidad relación y diccionario de datos, mismos que será usados para el desarrollo del proyecto.

2.18 Implementación del sistema.
Mediante el uso de las herramientas anteriormente descritas y el uso de la información extraída de la toma de requerimientos inicial se logrará un sistema de planeación que ayudará a facilitar, agilizar y optimizar el procesamiento administrativo y comunicativo del proyecto CIEMPIESS-UNAM.
A continuación se muestra un diagrama a general de cómo será la integración del sistema y de las distintas herramientas unificando todo los servicios dentro de una misma plataforma para aprovechar la capacidad de los CMS que estarán involucrados y darán soporte y robustez a las funciones del sistema.

![Ilustración 16 Estructura general del sistema](image-url)
3 Metodología

A lo largo de la formación académica y profesional se ha adquirido conocimiento y manejo de importantes y útiles herramientas de cómputo, tanto de programación orientada a objetos, desarrollo de páginas web, redes y seguridad de datos y bases de datos, mismas que al combinarse darán paso a la implementación de un sistema de cómputo para la gestión de un portal operable desde cualquier plataforma y desde cualquier lugar.

Existe un marco de trabajo usado para estructurar, planificar y controlar el proceso de desarrollo de sistemas de información, éste marco es conocido como ingeniería de software, con ayuda de sus metodologías es posible estructurar las actividades que se llevaran a cabo en el desarrollo del sistema, para tal efecto existen varios modelos preestablecidos con etapas definidas que facilitan las tareas.

Todas las metodologías contienen etapas en común, ellas se muestran a continuación:

- Análisis: Estudio de requerimientos para determinar su viabilidad.
- Diseño: Abstracción del sistema y elaboración de la interfaz de usuario.
- Codificación: La elaboración del sistema como tal.
- Pruebas: Verificación del correcto funcionamiento del sistema.
- Mantenimiento: Correcciones y/o modificaciones al sistema.

Para el desarrollo del presente proyecto y dadas las características del mismo se ha seleccionado el modelo de prototipos debido a que las características de dicho modelo se adaptan a las necesidades presentadas por el laboratorio de procesamiento de voz.

Modelo de prototipos.

Éste modelo es especialmente útil cuando el cliente no puede dar los requerimientos del proyecto de forma clara debido a que no los conozca por completo o simplemente no estén totalmente establecidos lo que resultará en una gran cantidad de modificaciones y/o interacciones, por esa razón es parte de los modelos de desarrollo evolutivo.

El prototipo ofrece un mejor medio para comunicarse con el usuario ya que puede ir conociendo el proyecto en cada una de sus etapas y de esta manera identificar fácilmente los requerimientos. Gracias a la retroalimentación se afinan detalles para empezar con el desarrollo formal del proyecto.

Cada proyecto es distinto por lo que es vital elegir un modelo que vaya de acuerdo a la naturaleza del proyecto, de la aplicación, métodos, herramientas y tiempos de entrega.

Para el primer prototipo se tomarán en cuenta solo una parte de los datos, suficiente para comenzar con la primera etapa del sistema y probar la funcionalidad de esta, se tomarán los requerimientos y necesidades basándose en el primer prototipo y a partir de este se comenzará el desarrollo de las siguientes fases del proyecto, esto se aplicará a cada una de las fases.
Inicialmente el proyecto será desarrollado en un servidor local el cual será una computadora portátil con un sistema operativo Windows 7 la cual contará con distintos software debidamente configurados para que tengan un correcto funcionamiento, estos serán instalados en el siguiente orden:

- Servidor de bases de datos MySQL.
- Servidor web Apache.
- Soporte para PHP.

Es importante mencionar que una vez terminada la fase de pruebas el sistema será trasladado a dos servidores desde los cuales podrán efectuar sus distintas funciones, el primero de ellos un servidor Unix en el que se alojará parte del sistema de gestión de contenido y partes del Portal y la donde se encuentra el manejador de la base de datos, el otro servidor se encontrara bajo Fedora, ahí se alojarán archivos auxiliares con los cuales se efectuarán los procesamientos de texto, se dispondrán de esta manera por cuestiones de rendimiento y seguridad.

Una vez instalado y configurado el software se procederá al diseño de la base de datos de acuerdo a las necesidades y las especificaciones dadas, una vez terminada comenzará el desarrollo de la interfaz de usuario, tanto la interfaz que permitirá interactuar al usuario con el sistema de gestión del contenido del portal como la interfaz de usuario publica, la cual será la encargada de mostrar los contenidos al usuario final y la instalación y configuración los sub módulos adicionales como el foro, el blog y sus respectivas bases de datos.

Ya que el proyecto se desarrollara haciendo uso del patrón de desarrollo MVC se utilizará el framework de desarrollo CodeIgniter para dotar de mayor seguridad, robustez y darle una vida más larga al proyecto, de este modo será más sencillo hacer el mantenimiento al sistema en un futuro y añadir otros componentes de ser requerido, una vez que el modelo y las vistas estén concluidos se procederá a conectarlas mediante los respectivos controladores.

Las vistas se desarrollarán a partir de lenguaje HTML5, JavaScript, jQuery y CSS3 haciendo uso del entorno de desarrollo integrado de código abierto NetBeans.

En la última parte del desarrollo se hará la debida interconexión entre las vistas utilizando el lenguaje PHP haciendo uso del framework, en este punto se diseñarán una serie de algoritmos que dotarán de autonomía a algunas secciones del portal para evitar que tengan que ser actualizados manualmente así como se harán las vinculaciones entre servidores necesarias para que los servicios funcionen correctamente y el sistema quede completamente operativo.
3.1 Recopilación y análisis de la información

Para comenzar a planear el diseño y las posibles funcionalidades que tendrá el sistema es necesario conocer todo aquello que usan los usuarios para apoyarse en la construcción de expedientes como los formatos, catálogos y las bitácoras donde llevan sus registros, además de ello, se deben hacer las entrevistas necesarias a los usuarios implicados dentro del sistema para que no existan dudas o ambigüedades dentro de los requisitos, en la toma de requerimientos los usuarios deben proporcionar una lista detallada de qué funcionalidades desean en el sistema para comenzar a diseñar la estructura e identificar los posibles elementos de los que estará compuesto.

Como se mencionó anteriormente, dado que el usuario no conoce todos los requerimientos, se trabajará mediante la entrega de un prototipo general el cual se irá modificando hasta que se adapte a las necesidades del cliente, es importante mencionar que con base en la primera toma de requerimientos se identificarán todos los módulos y la estructura general del sistema, éste punto es la base para agregar las funcionalidades subsecuentes, el sistema se diseñará para tener la máxima escalabilidad posible, esto significa, que dentro de los módulos creados será posible agregar nuevas funcionalidades.

Gracias a la recopilación de las distintas fuentes, se identificaron los elementos globales del sistema y se procederá a trabajar en los siguientes elementos:

- Diseño de la base de datos
- Diseño de las funcionalidades generales
- Diseño de las funcionalidades particulares
- Diseño de la interfaz gráfica
- Identificación de los módulos que será necesario desarrollar

Uno de los puntos clave de cualquier sistema es la base de datos ya que el rendimiento general del sistema depende en gran medida de ella, un diseño errado de ésta repercutirá en la eficiencia general del sistema y afectará a todos los módulos del mismo, además de ello podría generar problemas futuros si se desea escalar.

Para hacer un diseño correcto de la base de datos se deben tomar en cuenta todos los posibles escenarios en los que será usada y qué respuesta se espera, eso incluye, considerar todas las reglas del negocio, conocer a fondo de qué entidades estará formada así como qué atributos tendrá cada uno, si estos elementos pueden cambiar en un futuro, la frecuencia de actualización de la información y el tipo de relaciones existentes entre cada entidad del sistema con las otras.

Dentro de la toma de requerimientos es posible encontrarse con funcionalidades similares, no obstante, es importante identificar posibles requisiciones contradictorias desde un principio dado que algunas ocasiones los usuarios pueden llegar a solicitar funciones que entran en conflicto con otras. El analizar y agrupar los requerimientos ayudará a identificar los componentes clave del sistema, permitirá la optimización del código y su reutilización entre módulos además de evitar el desarrollo de funciones conflictivas lo cual agilizará el desarrollo.
Una vez conociendo de forma general cada módulo y las funciones de éste, se procederá con el análisis particular de cada componente, de modo que se optimizarán algunas tareas disminuyendo los errores y agilizando procesos.

Otro punto no determinante del sistema pero sí muy importante es la interfaz gráfica de usuario, la interfaz desempeña un papel fundamental en la calidad de experiencia del usuario, ésta estará diseñada a partir de los requisitos de los usuarios, tomando en cuenta estándares y normas internacionales para obtener una interfaz simple y sencilla de usar con una curva de aprendizaje alta, debido a que se trabajará mediante la arquitectura MVC la interfaz podrá alterarse fácilmente sin que exista una dependencia con las funcionalidades del sistema.

Una vez que se cuente con una aproximación a las funcionalidades requeridas y las interfaces de usuarios, se podrá conocer el número de módulos y que funciones tendrá cada uno además de su organización.

Dentro de los elementos identificados en las entrevistas se encontraron los siguientes componentes:

Ilustración 17 Atributos obtenidos a partir de documentos semi estructurados

Documentos en distintos formatos en donde se guardaban una serie de datos con una estructura similar, éstos se usaban para guardar información de los colaboradores.

Ilustración 18 Distintos formatos de documentos con información que los relaciona

Diferentes tipos de documentos en los que se llevaban registros de distintos tipos, como publicaciones de revistas, congresos, tesis, ligas de recursos importantes para la comunidad como direcciones url y notas importantes.
Al observar esto, se procederá con la organización, ordenamiento y clasificación de la información para después esquematizarlo y hacer un mapeo, el cual se comparará con los requerimientos hechos por los colaboradores entrevistados para después ser reflejados dentro del modelo relacional de la base de datos, este proceso permitirá tener un mejor entendimiento del sistema y la visión de los implicados.

3.2 Requerimientos

Una vez terminadas las entrevistas iniciales se analizaron los documentos y formatos con los cuales se identificaron una serie de procesos y los casos de uso del sistema.

El administrador del sistema requiere de un sistema fácil de usar el cual le permita efectuar cambios sobre el contenido de la página principal sin la necesidad de tener que reescribir el código fuente, además de ello, se requieren secciones específicas, como lo son: página de inicio, página de descargas, página de herramientas, página de inicio, tutoriales, página de colaboradores, página de publicaciones, página de recursos, página de contacto, página de noticias, un blog y un foro.

De acuerdo a las especificaciones, es sumamente importante que el sitio cuente con soporte multimedia y que se pueda conocer las estadísticas de uso para poder saber la cuota de usuarios que se tienen.

Se busca evitar que para añadir alguna contenido nuevo, como un artículo, alguna noticia, un colaborador etc. Sea necesario modificar el código fuente del sitio, para llevar un mejor control sobre los colaboradores se requiere que estos se almacenen en algún lugar y de ese modo tener un historial de los mismos, del mismo modo se requiere almacenar los artículos, notas de revistas, periódicos, memorias de congreso, tesis etc. Y posteriormente poder editar el contenido de ser necesario.

3.3 Análisis del problema y posibles soluciones.

Como se aprecia en la información recabada, el problema comienza cuando se desea manipular el contenido del sitio, dado que este proceso resulta problemático y muy lento al ser necesario descargar el documento HTML del servidor hacer los cambios manualmente sobre el código fuente y posteriormente subir el documento al servidor.

No existe un antecedente de una base de datos general de usuarios y/o artículos lo que dificulta las búsquedas de información, con la implementación de sistema independiente de la plataforma que permita acceder y manipular la información de los colaboradores así como de las publicaciones y noticias través de una interfaz sencilla se beneficiará al programa en distintos aspectos, por ejemplo, a nivel organizativa y en aprovechamiento de recursos.
Actualmente no se cuenta con una plataforma que permita distribuir su software, esto representa una amenaza porque evita que otras universidades tengan acceso al software desarrollado y demás componentes del proyecto lo que impide el desarrollo de una comunidad.

Uno de los puntos más importantes es la necesidad de brindar un servicio de análisis en línea haciendo uso de las herramientas desarrolladas dentro del proyecto, trabajar con otras universidades alrededor del mundo y mejorar el alcance del proyecto simplificando el uso de las herramientas de análisis para que puedan ser usadas desde cualquier plataforma por toda clase de usuarios alrededor del mundo usando con o sin conocimientos técnicos.

Igualmente debe haber un espacio donde tanto los usuarios más experimentados y los menos experimentados puedan exponer sus puntos de vista y/o dudas.

También se requiere de un espacio para la publicación de tutoriales con el cual se pueda explicar a los usuarios cómo emplear las herramientas y en el que también los usuarios puedan dejar sus comentarios, este último punto es importante ya que se hizo énfasis en que se desea la continua retroalimentación por parte de los usuarios.

3.3.1 Análisis de objetivos.

Después de efectuar un análisis sobre los requerimientos y con el fin de tener un control sobre todos los módulos que se programarán se definió cada objetivo como un punto.

- El sistema debe contar con una interfaz web amigable y sencilla desde la cual los usuarios puedan acceder a las distintas secciones de la página.
- La página web debe tener las siguientes secciones: una página de inicio, sección de noticias, sección de descargas, herramientas, tutoriales, colaboradores, publicaciones, recursos, y sección de contacto.
- En la página inicial se debe mostrar información de los 2 responsables principales del proyecto, así como su fotografía y debe mostrar las últimas noticias publicadas.
- En la sección de descargas deben de mostrarse las descargas de software, nombre de la descarga, descripción y una imagen asociada a la descarga.
- En la sección de herramientas deben de mostrarse la lista de herramientas publicadas al igual que una breve descripción y una imagen.
- En la sección de tutoriales debe mostrarse una lista con los tutoriales así como una imagen de cada uno para que al hacer clic se despliegue todo el tutorial, el cual debe de permitir hacer comentarios usando el usuario de Facebook del usuario.
- En la sección de colaboradores deben de estar listados todos los colaboradores del proyecto, estos deben de estar ordenados de acuerdo a un parámetro que el administrador definirá y deben contener nombre, carrera, función, periodo así como una fotografía.
- La sección de publicaciones debe mostrar las publicaciones agrupadas por el tipo de publicación.
La sección de recursos de mostrar una lista de los recursos definidos por los administradores.

Debe existir una sección para enviar un correo electrónico desde la página para así estar más en contacto con el público.

El contenido debe estar disponible en inglés y en español.

El sistema debe contar con un blog que sea sencillo de usar.

El sistema debe de contar con un foro que facilite la comunicación entre la comunidad.

Se debe tener la posibilidad de enviar correos mediante usando el dominio @ciempiess.org

Se requieren conocer los indicadores y estadísticas de uso del sitio.

El sistema debe permitir a los usuarios utilizar el software para análisis léxico creado en el laboratorio, este software será creado a partir de las librerías de Python 2.7 y pueden recibir distintos tipos de parámetros, desde cadenas de texto hasta archivos, esto último dependerá de la herramienta.

Se requiere de una interfaz web para la administración del contenido de la página principal.

El contenido de las secciones de la página deberán ser editables a través de una interfaz optimizada para dicha función.

La sección de noticias debe mostrar las noticias relacionadas a la noticia que se esté viendo.

3.3.2 Análisis de soluciones.

Tomando en cuenta los requerimientos generales de la aplicación y con base en experiencia propia en el uso de distintas tecnologías para el desarrollo de sistemas, se decidió atender a los problemas de la siguiente manera:

- Las interfaces del sistema serán hechas con html5, css3, JavaScript, JQuery y Ajax para maximizar su portabilidad y hacerlas más flexibles a cambios.
- Las secciones se construirán de forma independiente entre ellas para evitar dependencias entre módulos a fin de darle mayor escalabilidad a cada una.
- La consistencia e integridad del contenido del sitio se basará en una base de datos relacional construida sobre MySQL.
- Para dotar de mayor robustez al sistema se optó por el uso de framework que trabaje bajo un patrón de desarrollo MVC.
- Con fines organizativos, se trabajará bajo dominios y subdominios
- Se utilizara un software de generación de estadísticas web para tener un panorama completo sobre los usuarios que acceden al contenido, esto será utilizando Google Analytics.
• Debido a que se requiere de un servidor y un usuario sobre el cual se tengan permisos especiales, se trabajará parte del sistema en un servidor que se encuentra en la Facultad de Ingeniería y otra parte en un servidor en Dallas, esto de entre varias ventajas, nos dará una disponibilidad del 99%.
• Para dotar de mayor seguridad, se trabajara mediante esquemas de usuarios y privilegios, de este modo se tendrá mayor control sobre qué operaciones puede efectuar cada uno dentro del sistema y/o dentro de la base de datos.
• Para mayor independencia entre los módulos del sistema se trabajara con 3 bases de datos distintas.

3.4 Planteamiento de la solución.
Como solución a los problemas planteados en los capítulos anteriores se contempla la implementación de una plataforma web conformada por tres módulos, alojados en dos servidores y usando tres bases de datos, cada módulo es será independiente de los demás.

Ésta plataforma estará formada a partir de la integración de distintas herramientas y tecnologías ofreciendo al personal todas las funcionalidades necesarias para la gestión del contenido tanto de la página principal así como de los usuarios, la modificación del código fuente será transparente el usuarios.

Se hará uso de componentes desarrollados por otras comunidades a fin de que cada componente del sistema tenga la calidad, robustez requerida y el soporte adecuado, ello en el caso del foro y el blog.

A continuación se muestran diagramas generales de la aplicación y de los posibles módulos y sub módulos que la compondrán:

3 Alta disponibilidad.
Es un protocolo de diseño del sistema y su implementación asociada que asegura un cierto grado absoluto de continuidad operacional durante un periodo de medición dado.
4 Transparencia.
La transparencia desde el punto de vista de los sistemas significa diseñar la interfaz de llamadas al sistema de modo que no sea visible el uso de una variedad de servidores que pueden estar ubicados en áreas geográficas distintas.
Esquema general del sistema:

Usuarios conectados concurrentemente

Clientes desde distintas plataformas

INTERNET

Acceso a través internet

ACCESO ADMINISTRACIÓN DE PÁGINA PRINCIPAL
aramara.ciempieiss.org

ACCESO PÁGINA PRINCIPAL
www.ciempieiss.org

ACCESO AL FORO DE LA PLATAFORMA
forum.ciempieiss.org

ACCESO AL BLOG DE LA PLATAFORMA
blog.ciempieiss.org

Distintos módulos dentro del servidor

Ilustración 19 Esquema que muestra los distintos módulos del sistema así como su ubicación

Para una mejor organización, cada módulo estará contenido dentro de un subdominio.

Módulos CMS principal [aramara.ciempieiss]

AUTENTICACIÓN

CPANEL

MÓDEMOS DEL CMS

COLABORADOR

AGREGAR COLABORADOR

EDITAR COLABORADOR

ELIMINAR COLABORADOR

NOTICIA

AGREGAR NOTICIA

EDITAR NOTICIA

ELIMINAR NOTICIA

DESCARGAS

TUTORIALES

PUBLICACIONES

RECURSOS

HERRAMIENTAS

PORTADA

AGREGAR PUBLICACIÓN

EDITAR PUBLICACIÓN

ELIMINAR PUBLICACIÓN

AGREGAR RECURSO

EDITAR RECURSO

ELIMINAR RECURSO

AGREGAR HERRAMIENTA

EDITAR HERRAMIENTA

ELIMINAR HERRAMIENTA

FUNCIONES PARA EL CONTENIDO DE CADA SECCIÓN

Ilustración 20 Diagrama del CMS principal y sus módulos y sub módulos
El CMS principal estará conformado por ocho submódulos los cuales contarán con una serie de funciones que permitirán la manipulación del contenido del sitio principal (www.ciempiess.org), los módulos serán los siguientes:

- **Colaborador**: Este submódulo será el encargado manejar el contenido de los colaboradores haciendo uso de funciones CRUD\(^5\) y validando los datos de lado del servidor para mayor seguridad, las búsquedas para la edición se efectuarán con tecnología AJAX para mayor eficiencia, además de ello, para optimizar el espacio del servidor se procesarán las imágenes enviadas por los usuarios para disminuir su tamaño.

- **Noticia**: Este submódulo manejará el contenido de la sección de publicación de noticias, se efectuarán validaciones de lado del servidor, soportará el envío de una gran cantidad de imágenes, las cuales serán optimizadas en cuanto a tamaño y dimensiones para el sitio.

- **Descargas**: Desde este submódulo podrán publicarse los archivos que se deseen sean descargados por el público, se hará uso del hosting de terceros para ahorrar la cuota de transferencia del sitio.

- **Tutoriales**: Este submódulo prestara las funciones necesarias para la administración del contenido y la publicación de tutoriales, permitiendo el uso de recursos eternos como videos, imágenes y audios.

- **Publicaciones**: Las publicaciones del sitio serán administradas desde este submódulo, dotando de funcionalidades CRUD y un sistema de clasificación basado en etiquetas el cual hará más sencillo su uso.

- **Recursos**: El contenido de la sección de recursos será controlado desde éste submódulo, el cual ofrecerá funcionalidades CRUD y tecnología AJAX para agilizar las búsquedas.

- **Herramientas**: el submódulo de herramientas ofrecerá las funcionalidades para que el administrador del sitio publique las herramientas web basadas en Python, las cuales estarán alojadas en un servidor distinto.

La construcción modular del sistema permitirá la adición de futuros módulos sin que los anteriores sean afectados lo cual maximiza su escalabilidad.

Para hacer más eficientes las búsquedas y mejorar la experiencia de usuario, todos los submódulos usarán tecnología AJAX en las búsquedas.

\(^5\) **CRUD**

Para estructurar adecuadamente el contenido del sitio principal, se usará el bosquejo mostrado en la Ilustración 21, en la cual se aprecia cómo será el esquema de navegación dentro de la página, este esquema está diseñado para dar prioridad a las secciones de la página que más lo requieran así como para ofrecer una mejor usabilidad, se trabajará con una menos de 3 dimensiones\(^6\) en pro de la visibilidad de los componentes gráficos y priorizando la limpieza de toda la página para resaltar el área de contenido.

La selección de idioma se hará al acceder al sitio aunque será posible cambiar el idioma desde cualquier parte de la página, el esquema multi idioma además de permitir mostrar contenidos en distintos idiomas también permitirá alterar la estructura del sitio en función del idioma, lo que da mayores capacidades de personalizar el sitio para el público.

\(^6\) Una dimensión de una página web, también llamado nivel es el número de niveles que existen dentro de los menús o páginas que ésta contiene.
Para el foro de la plataforma se utilizará un complemento llamado MyBB, el cual auxilia al desarrollo y posterior mantenimiento de un sitio orientado a las funciones que presta un foro, éste contará con su base de datos independiente para facilitar tareas de mantenimiento preventivo futuras.

Este complemento será debidamente montado y configurado para funcionar con php y MySQL de manera que se adapte a la arquitectura general de la plataforma.

Dentro de las funciones más importantes que ofrece se encuentra que permitirá la interacción entre los usuarios, ofrecerá distintas funciones para la comunicación entre los usuarios y brindará distintas funciones de administración y moderación para el o los administrador del foro.

![Diagrama del foro](forum.ciempiess)

Ilustración 22 Estructura del foro ciempiess CMS secundarios [forum.ciempiess]
Para el blog se utilizará un complemento llamado WordPress el cual facilitará la publicación de contenido dentro de un blog, dado que éste complemento está construido en su mayoría sobre php, se integrará sin problema al resto de la plataforma, para mayor seguridad e independencia entre los módulos, éste módulo también contará con su base de datos propia a fin de evitar posibles problemas futuros al realizar cambios sobre el blog.

La plataforma de WordPress ofrece funcionalidades muy interesantes para la administración del contenido de un blog, por ellos se considera la herramienta perfecta para esta sección de la plataforma.

3.4.1 Alcance y limitaciones.

El proyecto tendrá como resultado la implementación del sistema propuesto así como de todos los módulos y sub módulos, cada uno de los módulos se encargará de cumplir los objetivos y funciones requeridas por el usuario. El sistema estará fundamentado en una fuerte base teórica, siguiendo estándares de diseño, programación y seguridad logrando que éste sea robusto, amigable al usuario, estable y escalable.

El sistema será una aplicación basada en la nube pública que será accesible desde cualquier plataforma, el sistema interactuará con 3 bases de datos y estará distribuida en 2 servidores lo que le dará una alta disponibilidad y la posibilidad de ser utilizada desde cualquier parte.
El alcance aplicativo estará compuesto por las siguientes soluciones:

- Recolección de información de colaboradores, noticias, tutoriales, recursos y herramientas.
- Funciones de edición y mantenimiento del contenido almacenado.
- Herramientas de publicación para un blog.
- Un foro que permita la comunicación entre miembros registrados al igual que herramientas de moderación.
- Funciones de correo electrónico propio.

A través del sistema será posible almacenar la información de los distintos tipos de contenidos y cada uno con sus respectivos atributos, es importante destacar que los atributos de los elementos mencionados anteriormente se definieron en la toma de requerimientos inicial, debido a esto, si se desea hacer una modificación que requiera alterar el esquema de base de datos sobre el que se basó el desarrollo del modelo, requerirá hacer un nuevo análisis del modelo así como de sus reglas de negocio para verificar la validez y las implicaciones que pudieran llegar a generar los cambios solicitados, debido a que las funciones de actualización, edición y generación de contenido se basan en los atributos de los elementos del modelo de la base de datos, la escalabilidad del sistema radica en la posibilidad de añadir nuevas secciones a la página que no afecten la estructura lógica de las paginas previamente construidas.

Cada una de las secciones del CMS de aramara contaran con funciones de edición, borrado e inserción de nuevo contenido, para optimizar las búsquedas del respectivo contenido de cada sección se utilizará tecnología AJAX para efectuar búsquedas en tiempo real.

Para la publicación dentro de un blog se optará por utilizar un complemento basado en php y MySQL el cual deberá configurarse, definiéndole usuarios y contraseñas de una base de datos para que pueda efectuar las funciones propias de un blog.

En la parte del foro, se usará un complemento para facilitar el desarrollo del foro y optimizar los tiempos de desarrollo total del sitio, por su parte, este complemento cuenta con todas las funcionalidades necesarias para efectuar bien sus labores.

La estructura modular de cada módulo será independiente lógicamente de los otros para brindar mayor seguridad al sistema, defiendo de ese modo a un usuario administrador por cada módulo lo que prevería la necesidad del uso de usuario generadores de contenido, lo que evitaría la modificación del sistema.

Como limitaciones técnicas tenemos que al ser una aplicación web, para utilizar esta, se requeriría de una conexión a internet, el posterior desarrollo, modificación y adición de módulos requieren de un técnico especializado que tenga conocimientos de desarrollo utilizando CodeIgniter, por otra parte, debido a que el sistema está alojado en un servidor privado, se requerirá pagar las cuotas de alojamiento futuras.
3.5 Hardware y software.

Un sistema web se encuentra instalado en un servidor remoto accesible a través de cualquier equipo conectado a internet, operando las 24 horas, todos los días del año, para que responda adecuadamente a las peticiones de los clientes de todo el mundo este debe contar con una infraestructura robusta.

El tiempo en que tarda un servidor en atender a una solicitud depende de una gran cantidad de factores, está ligado con la calidad del hardware que utiliza, la conexión a la red que tiene el servidor y el diseño que del sistema entre otros. Por ello, debe seleccionarse cuidadosamente sobre que plataforma estará instalado el sistema.

3.5.1 Requerimientos de hardware del sistema.

En éste caso, para el sistema en producción se eligió un proveedor de hosting en el cuál se alojará el núcleo del sistema, dicho proveedor ofrece hardware con las siguientes características:

- Sistema operativo CentOS
- Memoria RAM DDR3 de 16GB
- CPU de 16 núcleos
- Tier 7 nivel 3+
- Subestación eléctrica protegida
- Reserva de agua de 80,000 galones
- SAS-70 Type II Certified
- SSAE-16 Certified

A su vez, las herramientas del sistema que ejecutarán procesos de análisis y que se auxiliarán del lenguaje Python se alojarán en una plataforma con las siguientes características:

- Sistema operativo Fedora
- Memoria RAM DDR3 de 8 GB
- CPU de 4 núcleos

Como se observa, el servidor secundario a pesar de no poseer hardware tan robusto es suficiente para efectuar los procesos requeridos por sus funciones y lo más importante, se tiene un usuario con los privilegios necesarios ejecutar los scripts y hacer algunas tareas administrativas que serán requeridas.

El entorno de desarrollo del sistema se efectuará en dos servidores virtuales montados sobre:

- Windows 7 & Linux Mint
- Memoria RAM DDR3 de 4GB
- CPU 4 núcleos

7 El concepto de Tier nos indica el nivel de fiabilidad de un centro de datos asociados a cuatro niveles de disponibilidad definidos. http://nubeblog.com/2010/10/11/que-son-los-tiers-en-un-centro-de-datos-el-ansi-tia-942/
Requerimientos de software del sistema.

Ambos servidores cuentan con un hardware robusto y las características necesarios para ofrecer un buen rendimiento cuando el sistema se encuentre producción, sin embargo para que el sistema funcione correctamente se deben contar con soporte para ciertos software. Dentro de las características del software encontramos:

- Ambos servidores de producción tienen un sistema operativo basado en Linux (CentOS y Fedora)
- Ambos tienen soporte para las versiones más recientes de PHP (5.3).
- El servidor primario cuenta con soporte módulos del servidor Apache.
- El servidor primario cuenta con MySQL server 5.1
- Las máquinas de desarrollo estarán configuradas para ofrecer los mismos servicios que ofrecerán los servidores reales, esto es, versión de PHP (5.3) y MySQL 5.1 al igual que los módulos de apache y Python para probar las herramientas de forma local.

3.5.2 Configuración del equipo de desarrollo.
Para adecuar un equipo de cómputo convencional para que sea usado para desarrollar el sistema, se realizarán los siguientes pasos:

Descargar el software necesario de sus respectivas páginas en internet:

- Servidor Apache de http://www.apache.org/dyn/closer.cgi
- Intérprete de PHP http://mx2.php.net/downloads.php
- Servidor de MySQL http://www.mysql.com/downloads/
- CodeIgniter https://ellislab.com/codeigniter

Una vez descargados se procede a la instalación y configuración de cada uno:

Para la instalación de apache en Windows 7

![Imagen de Instalación de Apache](Imágenes/instalación_de_apache.png)

Ilustración 24 Primera pantalla de la instalación de Apache
Se selecciona “Acepto los términos del contrato de licencia”, haz clic en siguiente y otra vez haz clic en siguiente y definimos el nombre del servidor.

Definimos algún email para el administrador y damos clic en siguiente para comenzar con la instalación.
Con esto comprobamos que ya tenemos un servidor http escuchando a través del puerto 80.

(Desarrollo web)

Descomprimimos el contenido del archivo descargado de la web de php, con ello, ambos servicios estarán disponibles, sin embargo, para que pueda reconocerse entre sí, es necesario añadir el path de php dentro del archivo de configuración de apache.
Buscamos la ruta de instalación de apache y en la carpeta conf, habrá un archivo llamado http.conf, se abre con un editor de texto y se busca la línea ‘loadmodule’ y añadimos el path de la librería php5apache2_2.dll de apache después de la última línea de la sección LoadModule:

```
LoadModule php5_module C:/Archivos de Programa/php/php5apache2_2.dll
```

Después de encontrar `<IfModule mime_module>`, se añaden las siguientes líneas:

- AddType application/x-httpd-php .php
- AddType application/x-httpd-php-source .phps

Antes de cerrar el enunciado `</IfModule>` para mime_module.
Se agrega la siguiente línea “PHPIniDir [path de instalación de php]” al final del archivo.

Con ello ya se tendrá listo el servidor apache con soporte para php, para la instalación de MySQL se procede con lo siguiente:

Una vez hecho esto, solo falta configurar apache para mejorar su rendimiento, para ello se va al archivo de http.conf de apache y se busca la línea DocumentRoot y se cambia por la ruta de una carpeta previamente creada, en este caso será “servidor” quedando de la siguiente manera:

DocumentRoot “C:/servidor”
Esto nos dará un mejor control sobre dónde tenemos los archivos que serán públicos, finalmente se deben de habilitar el módulo AllowOverride para dar mayor seguridad al sistema permitiendo el uso de archivo .htaccess para evitar el acceso a todos los directorios del sistema web. (WikiHow)

Para ello se debe quitar el carácter # de la línea que contiene AllowOverride para que quede así:

```
<Directory />  
  AllowOverride All
  Require all denied
</Directory>
```

Una vez listo estos cambios, reiniciamos el equipo de cómputo, se descomprime el contenido del archivo descargado de la web de CodeIgniter dentro de la carpeta definida previamente en DocumentRoot y la máquina estará lista para funcionar.

![Imagen de Bienvenida de CodeIgniter](image)

Ilustración 33 Pantalla de Bienvenida de CodeIgniter
4 Desarrollo.
En los siguientes capítulos se mostrarán las fases a través de las cuales se realizará el desarrollo del sistema, para un mejor entendimiento, éstas se listarán y agruparán con base en la etapa de la fase de desarrollo del software:

Fase de análisis:
- Identificación las funciones requeridas por cada sub módulo.
- Se deben de cubrir todas las necesidades dadas por el laboratorio así como de ser posible, optimizar los procesos.
- Hacer un análisis de los posibles casos de uso del sistema.
- Identificar cuáles son o podrían ser los flujos de información del sistema.
- Determinar posibles herramientas que pueden ser usadas.
- Identificar usuarios del sistema.

Fase de diseño:
- Seleccionar el software necesario
- Seleccionar el Hardware necesario
- Diseño de las vistas del sistema
- Diseñar diagrama de navegación del sitio.
- Diseño de controladores.
- Diseño del modelo.

Codificación:
- Configuración del Framework
- Creación del diagrama de flujo de los métodos de las clases.
- Implementación de la base de datos.
- Desarrollo de los controladores.
- Desarrollo de las vistas.
- Desarrollo del modelo.
- Configuración de los servidores.
- Implantación del software adicional.

Pruebas:
- Desarrollo de pruebas y resultados

Mantenimiento:
- Anexo de manual de usuario y sistema
4.1 Modelado del sistema.

Debido a la naturaleza intangible del software este no puede ser visualizado directamente por lo que resulta compleja su comprensión, por ello, para poder diseñar el sistema y comprender los módulos y funciones de los que está compuesto al igual que las relacionantes que existen entre éstos, el sistema se abstrae y se representa como un modelo.

El modelo permite reducir su complejidad, permitiéndonos centrarse en las características importantes que están detrás de un proceso, ignorando detalles de menor importancia que harían el análisis innecesariamente laborioso.

Existen diferentes modelos que pueden ser empleados para la representación del software los cuales dependen del propósito o público al que se dirige, el modelo más detallado de un software es su código fuente sin embargo este resulta difícil para comprender su funcionamiento general además que el sistema debe haber sido construido previamente, a través del modelado se trabajarán los siguientes puntos:

- Visualizar cuál será la estructura del sistema
- Especificar el comportamiento del sistema
- Obtener una guía que ayude en la etapa de construcción del sistema

Se utilizará el Lenguaje de Modelado Unificado (UML)\(^8\) a lo largo de éste capítulo y el capítulo 4.3 (Construcción del Modelo) para documentar el sistema, dentro de los diagramas UML que serán utilizados se encuentran:

- Diagrama conceptual y de casos de uso
- Diagrama de secuencias

\(^8\) El Lenguaje de Modelado Unificado fue descrito en el capítulo 2.17. Modelado mediante UML
4.2 Diagrama conceptual y de casos de uso

Éste diagrama ayuda a comprender de una manera global como será el sistema mostrando las relaciones que existirán entre los módulos, sus funciones, los diferentes usuarios y las bases de datos.

En el diagrama de la Ilustración 34 se muestran los diferentes sub sistemas de los que estará compuesta la plataforma ciempiess, al igual que los usuarios que existirán dentro del sistema y las distintas bases de datos que serán usadas por él.

A continuación se muestra el diagrama de casos de uso general, los personajes o entidades que participan en un caso de uso reciben el nombre actores. El diagrama servirá para ayudar a delimitar el alcance de las funciones del sistema y esbozar el proceso entre la interacción de los actores del sistema así como las funciones esperadas, el diagrama muestra todas las interacciones entre casos de uso del sistema, sus subsistemas y la relación entre los usuarios a través de estas funciones.
Ilustración 35 Diagrama de casos de uso general
En el diagrama anterior se observa la existencia de tres usuarios administradores, ellos serán los encargados de ejercer las distintas funciones administrativas que habrá dentro del portal, a su vez, se observa la interacción que existirá entre el contenido publicado a través de la interfaz de aramara dentro de sus distintas funciones y los usuarios a través de la interfaz de ciempiess. El diagrama muestra un bosquejo general del flujo de actividades posibles dentro del aplicativo.

A continuación se mostrarán los casos de uso particulares para las funcionalidades más representativas dentro del sistema para cada uno de los administradores. En la Ilustración 36 se observan las funciones del administrador del portal ciempiess, él será el responsable de mantener actualizada la información que se publica al igual que poner a disposición de los usuarios finales las herramientas de análisis en línea además de controlar y mantener actualizadas todas las secciones existentes del portal de ciempiess.

Ilustración 36 Funciones del administrador de ciempiess
Por otro lado tenemos los casos de uso del administrador del foro. En Ilustración 37 se muestran algunas de las funciones más representativas que poseerá ese administrador, debido a que MyBB es un proyecto open source⁹ éste cuenta con una gran comunidad de desarrolladores los cuales aportan al proyecto con la adición de nuevas funcionalidades y/o mejorando funcionalidades actuales, cabe destacar que las funciones listadas no son todas las funciones disponibles en MyBB sin embargo serán las más importantes para cumplir con las necesidades del foro del portal.

El administrador del foro será el encargado de monitorear que el foro cumpla con su función así como de verificar que exista una conducta apropiada, respetuosa y no discriminativa por parte de los usuarios además de ayudar a los usuarios con problemas que pudieran presentarse dentro el foro.

Ilustración 37 Casos de uso del administrador del foro

⁹ Open source: es la expresión con la que se conoce al software distribuido y desarrollado libremente. http://es.wikipedia.org/wiki/C%C3%B3digo_abierto
Finalmente se tiene al administrador del blog cuyas principales funciones se muestran a continuación. En la Ilustración 38 se muestran las funciones principales con las que contará el administrador del blog, el administrador del blog es la persona que hará publicaciones que sean de interés para el proyecto además de poder crear secciones para publicar nuevas entradas dentro del blog, del mismo modo que MyBB, el blog será construido con ayuda de plugins de complementos open source, para éste caso se empleará WordPress el cual también cuenta con más funciones además de las ya listadas, sin embargo para los fines del portal ciempiess, las funciones listadas son las más importantes.

Ilustración 38 Casos de uso del administrador del blog

El último actor involucrado en el sistema ciempiess es el usuario final del sistema. En la Ilustración 39 se muestran todas las acciones posibles para un usuario de la plataforma, en los diagramas anteriores, dentro del foro podrían añadirse nuevas funcionalidades haciendo uso de complementos sin embargo, para los fines que tendrá el foro dentro de la plataforma no se tomarán en cuenta esas posibilidades.

El usuario final será toda aquella persona que acceda a la plataforma desde algún dispositivo con acceso a internet, una vez dentro el usuario podrá seleccionar el idioma en el que quiere ver el contenido del sitio así como hacer uso de las herramientas en línea, acceder a las publicaciones o contenido descargable, ello sin requerir registrarse sin embargo, para hacer uso del foro requerirá abrir una cuenta de forma gratuita, después de ello tendrá acceso a todas las funcionalidades que ofrece el foro ciempiess basado en MyBB.
Ilustración 39 Casos de uso del usuario
4.3 Diagrama de secuencias

El diagrama de secuencia forma parte de la familia de diagramas denominada diagramas de interacción, algunas de las características más relevantes del diagrama de secuencias son las siguientes:

- Cada objeto se coloca arriba de una línea conocida como ‘línea de la vida’ la cual usualmente es cubierta por un rectángulo que representa que se encuentra activa.
- Los mensajes enviados se escriben en forma horizontal entre la línea de la vida del objeto que los envía y el que los recibe.
- Sin un objeto se auto envía un mensaje se dibuja una flecha que regresa al mismo objeto.
- El ordenamiento vertical representa el paso del tiempo.
- Un mensaje que cuenta con distintos mensajes anidados se representa con una línea punteada para facilitar su lectura.

Además de lo ya mencionado el diagrama de secuencia permite indicar condiciones iniciales, ciclos los cuales son representados mediante un marco que rodea la parte del diagrama que lo modela con la etiqueta loop.

Los diagramas de secuencia permiten representar el comportamiento de un algoritmo a lo largo del tiempo, es decir, permiten analizar un escenario de forma temporal.

A continuación se muestran los diagramas de secuencia de las funciones principales del sistema:

El diagrama de secuencia de aramara contiene las funciones y el orden en el que son llamadas cuando existe una activación, no aparecen los objetos derivados de las clases descarga, tutoriales, publicaciones y recursos ya que su modo de funcionamiento es similar al usado por los objetos y métodos derivados de la clase herramienta:
Ilustración 40 Diagrama de secuencias de aramara parte A
Ilustración 41 Diagrama de secuencias de aramara parte B
El siguiente diagrama es el diagrama de secuencia de sitio principal del portal en el que el usuario accederá al contenido publicado previamente en aramara y desde el que interactuará con la información publicada en las distintas secciones así como con las herramientas de análisis en línea y demás secciones.
Ilustración 43 Diagrama de secuencia de ciempiess parte a
Ilustración 44 Diagrama de secuencia de ciempiess parte b
En el diagrama anterior se muestra el funcionamiento de las principales secciones de ciempiess, se omitieron algunas secciones que poseen una estructura similar para simplificar el diagrama.

Los diagramas del funcionamiento del foro MyBB y del blog WordPress serán omitidos debido a que explicar la arquitectura de éstos queda fuera del alcance del presente trabajo de tesis, ambos complementos son referenciados debido a que forman parte del portal sin embargo cada uno fue desarrollado por su respectiva comunidad de desarrolladores y cada uno posee una documentación en el sitio web oficial del proyecto.
4.3.1 Diseño del diagrama de navegación.

Una vez conocidas las funciones a través de las cuales el usuario interactuará con el portal éstas deben ser esquematizadas para que pueda organizarse dentro de una interfaz gráfica y ser programadas, para ellos se utilizarán 2 diagramas de navegación correspondientes a la interfaz de aramara y la interfaz de ciempiess.

Para simplificar el diagrama de navegación del sitio se utiliza un esquema basado en colores donde cada color representa un nivel el cual es accesible desde su nodo inmediato anterior, de esta forma el diagrama es más claro y por consiguiente más fácil de leer.

Dado que ciempiess es un sitio de consulta, divulgación de información y como se ha venido explicando, este estará conformado por menos de 3 niveles, lo cual lo hará de fácil uso para todo tipo de usuario, el acceso a las secciones principales desde cualquier sección que se encuentre brinda una buena experiencia de usuario.

A continuación se muestra cómo podrán navegar los usuarios dentro de ciempiess.

Ilustración 46 Diagrama de navegación de ciempiess
Una vez conocida la forma en que los usuarios podrán acceder a la información publicada en ciempiess, se explicará cómo estará organizado el acceso a las funciones dentro del sistema de aramara el cual será el encargado de facilitar su manipulación del contenido de ciempiess.

Para tener acceso a las funciones el administrador deberá autenticarse, una vez autenticado tendrá acceso al panel principal, desde éste tendrá acceso a todas las funciones del sistema a menos de 3 clics, además de ello se tienen accesos directos estratégicos hacia las funciones más usadas.

Esta interfaz es especialmente importante debido a que su uso debe ser amigable y requerir el mínimo entrenamiento para utilizarse correctamente a pesar del gran número de funciones que contendrá, por ello es importante que las funciones se encuentren bien organizadas y desde cualquier parte se tenga acceso a las componentes importantes, ello disminuirá los recorridos entre funciones.

El siguiente, es el diagrama de navegación de aramara, desde donde se controla el contenido de ciempiess.

![Diagrama de navegación de aramara](Imagen)

Ilustración 47 Diagrama de navegación de aramara

Al ser estos 2 diagramas los más representativos del sistema serán los únicos que se mostrarán.
4.3.2 Configuración del DNS.

Para trabajar de forma ordenada, dentro del diseño se contemplará el uso de subdominios, ello con propósitos administrativos, de este modo se podrá encapsular cada módulo del sistema de forma independiente brindando mayor robustez, seguridad y permitiendo mantener un mayor orden, para que ello sea posible es necesario añadir los registros CNAME10 dentro del archivo de configuración del DNS del servidor.

El procedimiento para lo anterior puede ser realizado de distintas formas, en este caso se utilizará el editor de zona DNS avanzado, será necesario especificar un par de parámetros.

Ilustración 48 Advanced DNS Zone Editor

Nombre es el nombre del subdominio, el TTL es el tiempo de latencia, en otras palabras, el tiempo máximo de espera cuando se solicite un recurso del servidor, se dejará en su valor por defecto, el tipo será CNAME y el CNAME propio, la dirección ip al que serán re direccionadas las peticiones.

Una vez terminadas las tareas antes mencionadas al archivo de configuración del DNS tendrá los siguientes datos.

Ilustración 49 Registros en el archivo de zona

10 CNAME: Es una abreviatura de nombre canónico registro y es un tipo de registro de recursos en el sistema de nombres de dominio (DNS) que se utiliza para especificar que un nombre de dominio es un alias de otro dominio.
Además de ello se debe configurar la raíz de cada documento, esto define el directorio al cual se re direccionará la petición cuando se haga una solicitud a cierto subdominio. Es posible realizar esa tarea desde la interfaz de edición de subdominios. Una vez finalizado esta etapa las rutas quedarán de la siguiente manera.

Con ellos se tendrá lista la estructura de archivos dentro del servidor y será posible comenzar a agregar los documentos correspondientes a cada módulo del sistema dentro de su respectivo subdominio, de ese modo se podrá acceder a su contenido a través de una url más descriptiva.

4.3.3 Configuración de CodeIgniter.
CodeIgniter (CI) es un framework que ayuda a optimizar el desarrollo de proyectos permitiendo que los desarrolladores se concentren en los aspectos particulares del proyecto y automatizar los aspectos generales de él, sin embargo, para sacarle el máximo provecho al framework es necesario realizarle un par de cambios.

Es un hecho conocido que CI no emplea sesiones nativas de php y que implementa su propio tipo de sesión haciendo uso de cookies, esto por elección de los creadores de CI, sin embargo, por cuestiones de seguridad se optará por sobrescribir la clase de sesiones nativa de CI para hacer que utilice las sesiones nativas.

Por otro lado, debido a que se utilizarán procedimientos almacenados para ejecutar consultas complejas también será necesario agregar un método dentro del núcleo de CI, ello ayudará a liberar la memoria caché después de utilizar un procedimiento almacenado, esto es necesario debido a que cuando se utilizan más de un procedimiento almacenado de MySQL con php, MySQL mantiene en memoria caché los datos hasta que se le ordena eliminarlos expresamente, esto significa que al tratar de ejecutarse 2 procedimiento de forma continua sin vaciar la memoria MySQL arrojará un error diciendo que no se encuentra listo para ejecutar una consulta.

Por último y por motivos de compatibilidad y portabilidad, se implementará una función que ayudará a construir una url absoluta dinámica, esto significa que podrán definirse ruta a elementos como imágenes, funciones, hipervínculos etc. Y si el proyecto cambia de servidor o dominio el proyecto seguirá funcionando sin ningún problema.
El uso de rutas absolutas forma parte de las buenas costumbres dentro del desarrollo de aplicaciones web ya que facilita su posterior mantenimiento, los cambios antes mencionados dejan al framework listo comenzar la implementación de mecanismos de seguridad y comenzar a desarrollar el proyecto.

4.3.4 Seguridad con CodeIgniter.
Uno de los puntos más importantes del sistema es la seguridad, además de implementar distintos niveles de usuarios y permisos dentro de los usuarios que tienen acceso a la base de datos, también se deben de implementar mecanismos que se encarguen de evitar el acceso no autorizado a datos importantes o la manipulación no por personal no autorizado.

El haber implementado el uso de una clase modificada de sesiones evita muchos posibles ataques al sistema ya que es mucho más seguro almacenar los datos de autenticación en el servidor que en directorio temporal del cliente ya que como recordamos, CI almacena localmente por defecto las sesiones como cookies y las cookies se almacenan localmente, además de mantener las sesiones en el servidor, éstas se cifrarán lo que disminuye la probabilidad de que alguien pueda tener acceso a las funciones de edición y datos privados.

Para cifrar las variables de sesión basta con definir una contraseña en el archivo de configuración de CI.

Otro de los puntos más vulnerables de un sistema, especialmente de los sistemas web es la entrada de datos por parte del usuario, ya que por un campo de entrada de texto se puede realizar una gran variedad de ataques, por ejemplo, ataques DoS, phph injection, JavaScript injection etc. Estos también son denominados ataques XSS\(^\text{11}\) para combatir este tipo de ataques se implementara un filtrado general de XSS en todas las entradas de datos provenientes de fuentes externas además de guardar un registro de las direcciones IP que tengan acceso al panel de control con lo cual será posible saber si alguien no autorizado tuvo acceso.

\(^{11}\) XSS: del inglés Cross-Site scripting es un tipo de inseguridad informática o agujero de seguridad típico de las aplicaciones Web, que permite a una tercera parte inyectar en páginas web vistas por el usuario código JavaScript o en otro lenguaje script similar
4.4 Construcción de las vistas.

Las vistas del proyecto serán los conjuntos de códigos de tecnologías que componen la estructura con la que el usuario final interactuará, estarán compuestas principalmente por, html5, CSS3, JavaScript, AJAX, JQuery y PHP propiamente.

4.4.1 Diseño de la estructura de contenidos.

El primer paso para la creación de las vistas es el diseño de su estructura, esto es el cómo estará organizado gráficamente el contenido, dentro del proyecto existirán 4 interfaces pero únicamente se diseñarán 2 de ellas ya que las interfaces del foro y el blog se generan automáticamente por sus respectivos plugins.

La estructura de contenido está íntimamente relacionada con el diagrama de navegación puesto que éste último ayuda a decidir cómo deben organizarse gráficamente las secciones, dónde deben colocarse enlaces, qué elementos debe haber en cada página etc.

El primer diagrama que se revisará será el diagrama de ciempiess, éste será el sitio principal y el que más visitas tendrá, para éste sitio se decidió una interfaz clásica plana sin submenús para que de ese modo todo el contenido quede accesible a primera instancia.

Lo primero que el usuario verá será una ventana para que el usuario seleccione el idioma en el que desea ver el contenido.

Una vez seleccionado el idioma serán redireccionados a la portada del sitio, esta estará conformada de los siguientes elementos:
Una de las características y principales ventajas de utilizar el patrón MVC es que es posible reutilizar código, no sólo de los controladores, sino también de las vistas, ello se explica a continuación.

Dado que las páginas restantes contendrán una estructura similar (contendrán el menú, el footer, sección principal y sección secundaria) es posible utilizar una misma vista para todos, de esa forma la única parte de la página que se actualizará serán las secciones principal y secundaria.
La estructura anterior se usa en las secciones de descargas, herramientas, colaboradores, contacto, recursos y tutoriales. Al acceder a la página el área principal se sustituye por un listado sus datos correspondientes.

Para las secciones restantes se utiliza una versión simplificada del diseño anterior donde no se cuenta el área dinámica secundaria, ello aplica para el detalle del tutorial y el área de publicaciones.
La siguiente estructura que se es la correspondiente al CMS de aramara, dado que ésta interfaz contendrá una gran cantidad de funciones, se harán representaciones por secciones a fin de facilitar su comprensión.

Al igual que con ciempiess, aprovechando las ventajas de MVC se seccionará el contenido de las páginas a fin de que lo único optimizar la carga del sitio, en cada sección se cargará únicamente el contenido dinámico mientras que el estático se mantendrá lo que disminuirá el uso de CPU y tiempo de procesamiento.

La primera interfaz que se mostrará será la interfaz de autenticación.

A continuación se muestra un esquema de la estructura general que formará el panel principal, se observa que el diseño contiene una barra lateral con un menú que permite el acceso a sub funciones sin la necesidad de cambiar de página, además de ello se mantiene una gran área de la pantalla para manejar contenido dinámico.

El diseño estará orientado a provechar al máximo el ancho de los monitores permitiendo de ese modo dar mayor espacio al contenido importante como los formularios de alta de contenido o edición del mismo, el mismo diseño se aprovechará para darle propiedades responsivas al sitio.

Por otro lado, el resto del contenido del sitio se situará dentro de contenedores lo que facilitará la manipulación de las propiedades de posicionamiento dentro del espacio disponible.

12 Es una filosofía de diseño y desarrollo cuyo objetivo es adaptar la apariencia de las páginas web al dispositivo que se esté utilizando para visualizarla.
El resto de los diagramas que se mostrarán corresponderán únicamente al contenido que se desplegara dentro de la parte dinámica del sitio.
El diagrama anterior muestra cómo será el diseño de las interfaces de búsqueda en las que se podrán encontrar fácil y rápidamente los elementos que se deseen eliminar o modificar, esto aplicará para las opciones de búsqueda de candidatos, descargas, noticias, tutoriales, publicaciones, recursos y herramientas.

La siguiente ilustración muestra la estructura del panel de edición y alta de colaboradores.

La interfaz de alta y edición de noticias estará conformada por cuatro contenedores, cada uno de ellos contendrá campos de un formulario que se utilizará para ingresar datos relacionados semánticamente para que su uso sea intuitivo, dicha interfaz se muestra en la Ilustración 58.
Otra de las interfaces más representativas del sistema consiste en la interfaz de edición y alta de descargas, ésta interfaz al igual que la anterior está organizada semánticamente y construida a partir de cajas que facilitan su comprensión, ésta interfaz es especialmente importante dado que además de ser una de las principales funciones del sistema, el resto de las vistas que componen las demás funciones tienen una estructura similar, por esa razón se omitirán las demás vistas.
Una vez estructurada la interfaz será codificada haciendo uso de las tecnologías de front end necesarias para que después se les agreguen los elementos que las harán dinámicas mediante el uso de los controladores y el modelo.

Las vistas serán cargas dentro del controlador haciendo uso del método load que ofrece el CI, a continuación se muestran una visión general de las vistas dentro del sistema, en la Ilustración 60 se observa una parte de la codificación de la página de bienvenida y en la Ilustración 61 se muestra un segmento de la vista del panel de autenticación del sistema.
Ilustración 60 Vista de página de bienvenida de ciempiess

Ilustración 61 Vista de página de autenticación de aramara
4.4.2 Consideraciones de diseño.
Debido a que el usuario tendrá acceso a las funciones a través de la interfaz y que una de las características del mismo será la portabilidad, es importante que el contenido pueda ser manejado a través de dispositivos con distintas resoluciones de pantalla, por esa razón se utilizará un diseño responsivo que asegure que aún con las resoluciones más bajas se tenga acceso completo al área priorizando el área dinámica que como se mostró en capítulos anteriores, es el área de trabajo, ahí estarán los formularios del sistema y el contenido de las búsquedas.

Para evitar posible errores por parte del usuario o del sistema se harán validaciones de ambos lados de la aplicación, es decir, se harán validaciones del lado del cliente y el servidor, de lado del cliente las validaciones se realizarán utilizando propiedades de html5 y con ayuda de scripts de JavaScript, además de ello, como medida precautoria se volverá a verificar en el servidor por medio de PHP.

4.5 Construcción del modelo.
Uno de los componentes clave del modelo vista controlador es el modelo, este es la representación específica de cómo operar la información con la cuenta el sistema (Bilbao).

Éste es fundamental ya que el modelo se encargará de dar soporte a las principales funcionalidades del sitio, el modelo le dará al sistema acceso a los datos de forma sencilla además de propiciar la autonomía de la operación de datos y la lógica del sistema permitiendo realizar cambios sin que estos se reflejen en la vista o el controlador.

El modelo dentro de un sistema puede estar formado por distintas fuentes de datos, para este proyecto se utilizará sólo una conexión entre la aplicación y una base de datos relacional cuyo manejador será el gestor de bases de datos MySQL.

4.5.1 Diseño conceptual.
La primera etapa para el diseño del modelo es obtener el modelo conceptual del mismo, para ello es necesario partir de las especificaciones del cliente (en este caso las obtenidas de las entrevistas al personal del laboratorio de procesamiento de voz) y las funcionalidades que el sistema requerirá.

El esquema conceptual permite hacer una representación teórica de los datos y de sus relaciones, durante el proceso de desarrollo de un modelo conceptual, el modelo se prueba y se valida de acuerdo a los requisitos de usuario, se deben contemplar todos atributos y a quien pertenecen, de modo que el modelo sea capaz de guardar toda la información pertinente además de considerar las posibles operaciones que se realizarán sobre las entidades para validar que el sistema soportará todas funciones requeridas.
La Ilustración 62 muestra el modelo conceptual obtenido después del análisis de los requerimientos.

4.5.2 Diseño lógico.
La siguiente etapa es obtener un modelo el cual permita conocer todas las entidades que se crearán y conocer la estructura que tendrá la base de datos, para ello se refina el modelo conceptual y se aterriza las relaciones además de normalizar las entidades necesarias de forma que al momento de implementarse físicamente no exista algún problema al efectuar transacciones en él.

El modelo lógico de los datos debe también examinarse para garantizar que soporta las transacciones especificadas por los usuarios. El modelo lógico de los datos es una fuente de información para la siguiente fase, la del diseño físico de la fase de datos, proporcionando al encargado de efectuar ese diseño físico una herramienta para alcanzar compromisos que tienen una gran importancia para el diseño eficiente de una base de datos. El modelo lógico también cumple un importante papel durante la etapa de mantenimiento operativo del sistema de base de datos, dentro del ciclo de vida del desarrollo. Si el modelo de datos se mantiene adecuadamente y se conserva actualizado, los futuros cambios que se efectúen en los programas de aplicación o en los datos podrán ser representados de forma precisa y eficiente mediante la base de datos.
4.5.3 Diseño físico.

El diseño físico de la base de datos es la tercera y última fase del proceso de diseño de datos, es la fase durante la cual se decidirá cómo se implementará la base de datos de forma específica dentro de un gestor de bases de datos, en este caso MySQL, esto implica que los atributos de las entidades deben ser ajustados a los tipos de datos que ofrece el gestor, un aspecto a considerar del uso de MySQL es que para que funcionen las reglas de integridad en la base de datos se deben de crear las tablas bajo el motor InnoDB\(^\text{13}\).

\(^{13}\) InnoDB es un mecanismo de almacenamiento de datos de código abierto para la base de datos MySQL incluidos como formato de tabla estándar en todas las distribuciones de MySQL AB a partir de las versiones 4.0. Su característica principal es que soporta transacciones de tipo ACID y bloqueo de registros e integridad referencial.
Terminando el diseño de la base de datos el modelo debe ser representado como una clase dentro de php, esta clase extenderá de la clase CI_Model, el modelo creado tendrá el nombre de ciempies_model, esto permitirá tener acceso a las funciones que brinda el framework, la función del modelo será bridar métodos que faciliten la manipulación de transacciones con la base de datos asimismo simplificará la reutilización de código para que las transacciones sobre la base de datos funcionen más rápida y correctamente, los parámetros de la misma deben insertarse en el archivo de configuración para bases de datos que ofrece CI, esto se hace dentro del archivo databases.php de la carpeta de configuración.
El modelo contendrá todas las funciones requeridas por el proyecto, dado que el sistema contendrá 2 módulos, se crearán 2 modelos usando una conexión distinta para cada uno para mejorar la seguridad, una de ellas tendrá los privilegios necesarios para efectuar las tareas de mantenimiento del sistema mientras que la segunda únicamente tendrá acceso a ejecutar procedimientos almacenados, de este modo se restringe a la conexión de ciempiess a una serie de tareas simples.

En la siguiente imagen se muestra un ejemplo del modelo utilizado para la interfaz de aramara.

![Ilustración 65 Fragmento del modelo ciempiess_model](image)

Como se observa en la figura anterior, para algunos métodos del modelo se emplean en su mayoría procedimientos almacenados para hacer más transparente su funcionamiento además de mejorar su rendimiento al no ser necesario recompilar el código SQL cada ocasión.
4.6 Construcción de los controladores.
El elemento encargado de interconectar el modelo con las vistas además de contener toda la lógica del sistema será el controlador. Entre varias actividades, los controladores ayudarán a brindar seguridad y asegurar el correcto funcionamiento de la misma.

4.6.1 Estructura de los controladores con CodeIgniter.
En capítulos anteriores se habló de la estructura de los controladores dentro del sistema, ya que se contará con 2 módulos, para mejorar la independencia de cada uno, los controladores se agruparán por módulo.

Los módulos dentro de CI deben ser clases que extiendan la clase CI_Controller, debido a las configuraciones hechas al framework para bloquear el acceso a los directorios donde se estará el código del sistema y para ocultar la extensión .php de la url será necesario crear un método llamado index en cada clase, esto debido a que una vez cargada la clase éste será el primer método que cargará por defecto.

Los controladores que tendrán ciempiess y aramara respectivamente serán los siguientes.

A continuación se muestran dos ejemplos de controladores, de aramara y ciempiess respectivamente.
Dado que los scripts que realizarán el procesamiento con el uso de Python no se encontrarán en el servidor principal, para medir su actividad con el fin de generar estadísticas que ayuden a mejorar el proyecto se utilizan scripts que al procesar los datos enviarán simultáneamente información estratégica mediante Ajax al servidor central hacia un socket14, de ese modo no se expondrán las credenciales de acceso a la base de datos en servidores externos.

14 Socket: designa un concepto abstracto por el cual dos programas (posiblemente situados en computadoras distintas) pueden intercambiar cualquier flujo de datos, generalmente de manera fiable y ordenada.
4.6.2 Configuración general de un controlador.
Existe una estructura que todos los controladores del sistema poseen, todos cuentan con un constructor15 el cual entre varias funciones ayuda con el proceso de autenticación y la carga de múltiples idiomas, de este modo se evita realizar y/o verificar variables como el idioma del usuario o si es un usuario legítimo cada vez que se ejecuta un método, esto reduce el tiempo utilizado para procesar un script de php y construir la página que se entregará al usuario.

El desarrollo de aplicaciones web utilizando CI define una estructura que aplica sobre todos los controladores, el usuario accede al contenido de la aplicación por medio del controlador, en palabras más sencillas, cada controlador será una “sección” del sitio y los métodos del mismo serán “página”, el usuario accederá a la url y tendrá acceso a una clase del sistema, una vez dentro podrá efectuar distintas acciones por medio de los métodos del mismo.

| URL | http://dominio/clase/metodo/parametro[,parametro] |

Ilustración 69 Acceso a controlador de CodeIgniter

4.7 Optimización de la aplicación web.
Una vez terminados los controladores y con el sistema en sus respectivos servidores, es necesario realizar un par de tareas post construcción, esto ayudará a que el sistema funcione más rápido, lo que se traduce como una mejor experiencia de usuario.

Las tareas de optimización del sitio ayudan a que sea más rápido, evitando el uso de recursos innecesarios como uso de memoria, CPU, número de consultas ejecutadas etc.

4.7.1 Compresión del contenido.
El uso de la compresión HTTP reduce el ancho de banda de la red que se utiliza para transferir cada archivo desde el servidor al cliente. Además, ayuda a reducir el tiempo de descarga y a mejorar el rendimiento de los usuarios finales. La compresión HTTP utiliza los algoritmos estándar GZIP y Deflate que están integrados en los navegadores modernos. Los algoritmos de compresión y descompresión comprimen y almacenan en caché archivos estáticos y opcionalmente realizan compresión a petición de las respuestas generadas de forma dinámica antes de enviarlas a través de la red. Estos mismos algoritmos se utilizan de nuevo para descomprimir los archivos estáticos y las respuestas dinámicas en un cliente compatible con HTTP 1.1.

15 En programación orientada a objetos (POO), un constructor es una subrutina cuya misión es inicializar un objeto de una clase.
Ventajas de comprimir con GZIP

La ventaja de comprimir con GZIP el sitio web es que será menos pesado en KB, lo que derivará a su vez en otras ventajas importantes:

- **Ahorro de ancho de banda / transferencia**: el sitio web enviará archivos comprimidos y por tanto, la transferencia que utilizará para enviar una misma página, será mucho mejor que si no estuviera comprimida.

- **Velocidad del sitio**: los archivos comprimidos tardarán menos en llegar a sus destinatarios, por tanto el sitio cargará con mayor rapidez. Si estamos optimizando el sitio en busca de mejorar el tiempo de carga, la compresión con GZIP será una de las más importantes opciones que tendremos a nuestra disposición y podremos configurarla en pocos minutos.

- **Soporte en todos los navegadores actuales**: hoy en día podemos estar tranquilos con la compatibilidad de la compresión con GZIP, puesto que todos los navegadores actuales la implementan.

En realidad, comprimir los archivos con GZIP siempre nos trae ventajas interesantes que harán que el sitio web funcione más fluidamente, por lo que resultará positivo en cualquier caso. El único marco que podría dar problemas es que el navegador que está utilizando el visitante no acepte compresión en las páginas, pero realmente en el panorama actual de navegadores eso es poco probable. (Álvarez)

Para ello se efectuarán las siguientes tareas, desde el panel de control del host se habilitará la compresión del contenido, ello hará que el archivo de configuración del servidor apache active la compresión.

Ilustración 70 Habilitación de compresión del contenido del sitio
También se debe habilitar la opción de compresión dentro de CI para que éste también comprima el resultado, para ello basta con cambiar el valor a verdadero en el archivo de configuración.

```php

*/

$config['compress_output'] = TRUE;

Ilustración 71 Habilitación de compresión en CodeIgniter

4.7.2 Control del caché.
Otro punto que ayudará a la carga de las páginas del sistema es el uso de caché, esto permite que una vez que la página es procesada en el servidor, la página queda almacenada temporalmente y las solicitudes siguientes reciben una copia de la página por lo que no es necesario que se vuelva a procesar, de ese modo es como se disminuye el tiempo.

El cache viene activado por defecto en CI por ello no es necesario hacer grandes cambios, pero para definir un cache explícito es necesario que en los métodos de clases donde se dese habilitar el cache se agregue

$this->output->cache(n);

Donde n es el tiempo en minutos de la frecuencia con la que se actualizará el cache, debido a que se utilizan diferentes idiomas para el contenido el cache solo se utilizará en algunas secciones para no interferir en la carga dinámica.
4.7.3 Creación del blog.
La creación del blog para la publicación de artículos ocasionales se realizará mediante el uso de WordPress (WP), esta poderosa herramienta ofrecerá capacidades suficientes para administrar eficientemente el contenido del blog ya que es un cms orientado a este ese tipo de tareas.

Para ello primero descargaremos el código de WP desde el sitio oficial.

![Ilustración 72 WordPress plugin](image1)

Con ello obtendremos la última versión estable del plugin, después crearemos una base de datos ciempies_wpdata en el servidor y el usuario ciempies_wpdata.

![Ilustración 73 Base de datos de WordPress](image2)

Una vez con el usuario y la base datos, se actualizará el archivo de configuración que se encuentra dentro del directorio de WordPress donde se deben llenar los siguientes datos.
Una vez hecho esto el contenido se subirá vía ftp a la carpeta de su respectivo dominio.

Para comenzar con la instalación y configurar el resto del plugin se ejecutará el instalador que prevé WP, esto debe ser hecho a través de un explorador web utilizando protocolo http.
Donde se mostrará el siguiente formulario y podrán definirse los demás valores del plugin.

Ilustración 77 Finalización de la instalación de WordPress

Una vez terminada la instalación la interfaz de administración del blog y su interfaz estarán listas para recibir publicaciones.

Ilustración 78 Blog ciempiess
4.7.4 Creación del foro.
La instalación del plugin que genera el foro es similar a la instalación de WordPress, lo primero que se requerirá es descargar la última versión del plugin desde la web oficial.

Ilustración 79 Descarga de plugin MyBB

Se creará la base de datos y el usuario de la misma.

Ilustración 80 Base de datos del foro

Para iniciar con la instalación se subirá por medio de ftp al directorio del foro el código del blog, una vez arriba a través de un explorador se accedera al directorio de instalación.

Ilustración 81 Instalación de MyBB
Al acceder al script de instalación vía web se tendrá acceso al asistente web de instalación que permite hacer la instalación a través de una interfaz gráfica web.

Después de que el asistente de instalación verifica que el servidor cuenta con las librerías y capacidad suficiente para que funcione correctamente el foro, se requerirá ingresar las credenciales de la base de datos previamente creadas.
Por último es necesario crear un usuario administrador que servirá para realizar tareas administrativas dentro del sitio además de poder moderar otros usuarios entre varias cosas más.
Una vez terminada la instalación es posible ingresar al foro, este estará totalmente operacional.

4.8 Pruebas y resultados.

Una de las últimas fases del ciclo de vida de un software es la verificación del producto para constatar que todas las funcionalidades que fueron requeridas por el sistema están presentes y funcionan de acuerdo a lo planeado.

Debido a la naturaleza del proyecto y que el desarrollo se basó en prototipos ya que no se tenía una idea clara de cuáles serían los requerimientos totales, durante cada etapa del proyecto se fueron verificando individualmente los componentes, sin embargo, una vez cambiado el estado del proyecto ha terminado, se efectuarán una serie de pruebas con el fin de garantizar el funcionamiento general del sistema.
4.8.1 Pruebas de caja blanca.
Las pruebas de caja blanca están fuertemente ligadas al código debido a que son pruebas estructurales que se encargan de validar los procedimientos del software, para ello se prueban los procedimientos con funciones con distintos valores de entrada para examinar cada uno de los posibles flujos de ejecución que puede tomar y verificar que el resultado que entrega es válido.

Para validar el sistema se crearán funciones que generarán los datos de entrada y mostraban si el sistema validaba correctamente todos los campos, los resultados obtenidos de las pruebas son los siguientes:

El sistema verifica que las entradas del sistema no sean nulas, solo ciertos campos son permitidos, en caso de falla, el mensaje evita que se siga al siguiente paso.

Ilustración 86 Comprobación de campos nulos

Las demás pruebas realizadas sobre el sistema no generaron mensajes de error o alertas, uno de los puntos más críticos del sistema es el manejo de archivos, sin embargo tampoco hubo problema, al ingresar datos que producirían errores las funciones contuvieron las excepciones generadas produciendo las siguientes salidas a pantalla.

Ilustración 87 Manejo de errores sobre archivos
4.8.2 Pruebas unitarias.
Las pruebas unitarias están enfocadas en la validación de cada componente del sistema, la validación se hará de forma individual, se harán validaciones de las clases y sus funciones, de modo que al concluirlas se sabrá si las clases cumplen su función dentro del sistema y dará un indicio de si el sistema funcionará correctamente una vez se encuentren integradas todas las clases bajo una misma interfaz.

Debido a que el desarrollo del proyecto se realizó mediante prototipos, durante cada etapa de desarrollo donde eran necesario aplicar cambios se hacían las pruebas unitarias requeridas para verificar que cada componente funcionaba de acuerdo a lo requerido.

Las datos de las pruebas eran los tipos de datos que iban a ser utilizados una vez el sistema estuviera listo, dentro de cada clase se hicieron pruebas con las funciones de verificación y post procesamiento de datos, a continuación se muestran algunas de las funciones verificadas.

Ilustración 88 Parte de elementos evaluados unitariamente

4.8.3 Pruebas funcionales.
Las pruebas funcionales permitirán obtener una retroalimentación de las funcionalidades previamente diseñadas del sistema, para esta tarea es necesario realizar ejecución de tareas que incurran en todos los posibles casos a los que el sistema estará sometido para encontrar posibles puntos donde pueden presentarse fallas, para ello se hace uso de modelos de prueba.

Existen distintos tipos de pruebas funcionales, para este caso se hará uso de una prueba de carga sobre el servidor, una prueba de carga se define como el proceso que se le impone a un sistema basado en una cantidad predefinida de peticiones o procedimientos con la finalidad de determinar el comportamiento para dicha situación bajo esas condiciones.

El concepto de pruebas de estrés se refiere al caso particular de determinar el comportamiento del sistema bajo un nivel de exigencia mayor al que es capaz de manejar. (WIESEL, 2014)
Para hacer la prueba se hará uso de la herramienta apache2-utils sobre Linux Mint, para instalar el siguiente paquete se ejecuta el siguiente comando en consola.

```
$ sudo apt-get install apache2-utils
```

Una vez instalada la herramienta se usará para que simule un determinado número de usuarios accediendo al servidor simultáneamente, los parámetros simulan lo siguiente:

- `ab` nos permite hacer uso de la herramienta.
- `-n` especificamos la cantidad de peticiones que deseamos enviar.
- `-c` especificamos la cantidad de conexiones concurrentes.
- `-g` podemos generar una gráfica de gnuplot para apreciar mejor los resultados.

Finalmente colocamos la dirección que deseamos probar.

```
ab -n 200 -c 70 -g grafica.data http://www.ciempiess.org/about
```

En los resultados siguientes se observa que el sistema es capaz de soportar hasta 100 conexiones consecutivas con una concurrencia de 50 usuarios sin degradar su tiempo de respuesta demasiado.

**Ilustración 89 Instalación de apache2-utils**

**Ilustración 90 Cadena generar carga en ciempiess**
El rumen de la prueba se ilustra en la gráfica siguiente, menos tiempo es mejor.
4.8.4 Pruebas de caja negra.
Las de caja negra se efectúan simulando ser el usuario final sin poseer ningún conocimiento de cómo funciona internamente el sistema, las pruebas se efectuarán sobre la interfaz de usuario, se evaluarán las funciones de ambas partes del sistema, las pruebas se basaran en la intuición y experiencia para tratar de producir errores que podrían ser generados por los usuarios del sistema.

Con éste método se probarán los siguientes puntos:

- Las entradas del sistema funcionan correctamente.
- Las salidas del sistema son correctas.
- La base de datos mantiene la integridad de los datos.
- La interfaz de usuario no contiene errores.
- No hay situaciones excepcionales dentro del sistema.
- El rendimiento del sistema es aceptable.

Una vez dentro del dominio http://www.ciempies.org estaremos dentro de la interfaz pública principal del sistema, debido al gran número de interfaces, el resultado de la evaluación se resumirá en una tabla y solo se pondrán algunas capturas representativas.

<table>
<thead>
<tr>
<th>clase</th>
<th>función</th>
<th>resultado</th>
<th>comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>welcome</td>
<td>index</td>
<td>aprobado</td>
<td>el cambio de idioma funciona y se registra la visita</td>
</tr>
<tr>
<td>about</td>
<td>index</td>
<td>aprobado</td>
<td>el cambio de idioma funciona y se registra la visita</td>
</tr>
<tr>
<td>downloads</td>
<td>index</td>
<td>aprobado</td>
<td>el cambio de idioma funciona y se registra la visita</td>
</tr>
<tr>
<td>tools</td>
<td>index</td>
<td>aprobado</td>
<td>el cambio de idioma funciona</td>
</tr>
<tr>
<td>tools</td>
<td>solve</td>
<td>aprobado</td>
<td>las herramientas cargan y funcionan además de que la visita se registra</td>
</tr>
<tr>
<td>doc</td>
<td>index</td>
<td>aprobado</td>
<td>el cambio de idioma funciona y se registra la visita</td>
</tr>
<tr>
<td>contributors</td>
<td>index</td>
<td>aprobado</td>
<td>la lista de colaboradores se carga bien</td>
</tr>
<tr>
<td>publications</td>
<td>index</td>
<td>aprobado</td>
<td>el cambio de idioma funciona y se registra la visita</td>
</tr>
<tr>
<td>resources</td>
<td>index</td>
<td>aprobado</td>
<td>el cambio de idioma funciona y se registra la visita</td>
</tr>
</tbody>
</table>

Ilustración 93 Pruebas de caja negra sobre ciempies

Con propósitos ilustrativos a continuación se muestran capturas del sistema en operación y probando distintas funcionalidades, en la Ilustración 94 se observa el resultado de ejecutar la función de cambio de idioma sobre la página principal.

En la Ilustración 95 se muestra el resultado de procesar una palabra con una herramienta de procesamiento en línea, se le realiza una fonetización con el estándar en T2216.

16 Para el proceso de transcripción fonética se utilizó el alfabeto Mexbet, que es un alfabeto fonético computacional especializado en el español de México. http://turing.imas.unam.mx/~luis/DIME/DIMEx100/manualdimex100/mexbet.html
Bienvenidos al portal del Proyecto Ciepiess-UNAM

El proyecto CIEPIESS-UNAM tiene como objetivo la creación e implementación de herramientas para el tratamiento de documentos en múltiples idiomas. Se realizan investigaciones sobre el desarrollo de lenguajes semánticos, el tratamiento de diferentes lenguajes y la creación de sistemas basados en lenguajes de programación.

Ultimas noticias

16 de Junio 2023

Cabra en un barrio que está en medio de una cañada (Fin de las noticia).

15 de Abril 2023

Oso de peluche que fue robado la semana pasada en el centro de la ciudad (Fin de las noticias).

Responsables

Coordinador del Proyecto

H.1. Carlos Alberto de la Riva

Responsable de Investigación en la Universidad Autónoma de México (UAM)

Correo electrónico: de_la_riva@ciemies.unam.mx

Contenido en múltiple idioma de ciempiess

Welcome to the CIEPIESS-UNAM Project

CIEPIESS-UNAM (Project) aims to develop and share free and open-source tools for speech processing in the Spanish language. This will contribute to the growth and development of language technologies for Mexico and Latin America.

The project was started in 2012, when a group of experts in the field of CIEPIESS-Corpus started working in Spanish to:

1. Create a database of audio recordings of native speakers of Spanish.
2. Make the database accessible to researchers worldwide.

But it was not until 2015 that we decided to make available a group of tools for automatic speech recognition.

The project was funded by the Speech Processing Laboratory at the Faculty of Engineering of the National Autonomous University of Mexico (UNAM), and it is currently led by its Director, Dr. Carlos Alberto de la Riva, and is supervised by Dr. Alejandro Ruiz, the head of the speech processing laboratory.

Responsables

Project Manager

H.1. Carlos Alberto de la Riva

Researcher at the Faculty of Engineering, UNAM

Correo electrónico: de_la_riva@ciemies.unam.mx

Ilustración 94 Contenido en múltiple idioma de ciempiess

Ilustración 95 Prueba sobre función del sistema
Una vez concluidas las pruebas sobre ciempiess, para evaluar a aramara se ingresará a su subdominio http://aramara.ciempiess.org.

Después de autenticarse correctamente el sistema muestra estadísticas generales del sitio además de cargar la interfaz correctamente.
Después de llenar el formulario para dar de alta un colaborador y ejecutar el botón de “listo”, el sistema muestra un aviso, además de ello el sistema evita que se pueda realizar el envío del formulario si el formulario contiene errores o campos vacíos.

La siguiente captura muestra las propiedades de búsqueda asíncrona de colaboradores mediante el campo de búsqueda y el uso de las opciones de edición y borrado, la búsqueda es correcta.
Para hacer uso de la opción de borrado se eliminará un colaborador de prueba que fue insertado previamente, después de confirmar, se muestra un aviso.

Por el contrario si se selecciona la opción de edición se cargan los datos del colaborador, los cambios realizados son descartados si no se salvan antes de salir de la sección o si existe algún error en el formulario.
La siguiente captura corresponde al formulario de alta de noticia, la interfaz es intuitiva y permite usarse sin tener previa instrucción, el uso de tags dentro de la noticia permite la búsqueda de noticias relacionadas.

El formulario funciona acorde a los requerimientos además de efectuar las verificaciones correspondientes con todos los campos del mismo evitando errores durante el proceso.

En caso de un error, el sistema mantiene en memoria los campos correctos y solo indica los campos que deben ser corregidos.
Después de guardar la noticia el sistema muestra una confirmación visual al usuario.

El buscador asíncrono de noticias funciona correctamente y ofrece las mismas funcionalidades que el buscador de colaboradores, permitiendo eliminar una noticia o modificarla rápidamente.
En la Ilustración 106 se muestra la función de edición sobre una noticia en acción, después de seleccionar una noticia esta se muestra en un formulario, los grupos de imágenes aparecen listadas en miniatura mientras que las tags de búsqueda y los contenidos aparecen agrupados por idioma, el procedimiento es el mismo para todas las actualizaciones, se selecciona de la lista búsqueda y después se manda a la interfaz de edición.
La sección de alta, edición, borrado y el buscador de descargas funcionan sin problema alguno, en la Ilustración 107 se observa el mensaje de confirmación una vez que se salvan los cambios después de haber realizado una modificación.
Ilustración 107 Formulario de edición de descargas

La imagen siguiente muestra cómo se ve la descarga publicada a través de la sección de descargas que se encuentra en cieipiess.

Ilustración 108 Resultado de publicación de descarga

La interfaz del formulario de alta de tutoriales valida todos los campos además de permitir el uso de etiquetas HTML para dar mayor libertad al crear los tutoriales como fue requerido por el laboratorio.
Una vez efectuado el envío de datos y si todos son correctos, el sistema automáticamente lo colocará en el sitio principal para pueda ser consultado, además ellos, permitirá la publicación de comentarios haciendo uso de la cuenta de Facebook de la persona que se encuentre viendo el contenido lo que ayudará a difundir los tutoriales.

Una vez publicado el tutorial este contará con el siguiente formato en la interfaz pública Ilustración 111.
La interfaz de comentarios de los tutoriales será la siguiente.

El buscador de los tutoriales es similar al resto de los mostrados previamente, además de ello y para simplificar el entendimiento y resultado de las pruebas efectuadas sobre el sistema, el resto de las funcionalidades se esquematizarán en una tabla similar a la usada para las funcionalidades de ciempiess Ilustración 113.
4.8.5 Pruebas del sistema.

Por último se realizarán pruebas de sistema, este conjunto de pruebas se encargarán de verificar que el sistema cumpla con todos los requisitos solicitados y que las soluciones implementadas resuelven el problema correctamente. Las pruebas consisten en utilizar el sistema conforme al uso que éste tendrá en producción e intentar incurrir en errores para asegurar que el sistema funcionará sin problema alguno para el usuario final.

Las pruebas en cuestión implican pruebas de seguridad, carga, desempeño, usabilidad etc., para realizar las cargas se utilizaran distintas herramientas, entre éstas, se utilizará siege, un software para realizar pruebas a sistemas web similar a apache2-utils, mientras se realiza la carga se utilizara la interfaz de aramara para comprobar el rendimiento del mismo.

<table>
<thead>
<tr>
<th>Obra</th>
<th>función</th>
<th>resultado</th>
<th>comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>login</td>
<td>index</td>
<td>aprobado</td>
<td>autenticación correcta</td>
</tr>
<tr>
<td>panel</td>
<td>index</td>
<td>aprobado</td>
<td>carga de estadísticas correcta, funcionan todas las opciones del menu</td>
</tr>
<tr>
<td>colaborador</td>
<td>menu</td>
<td>aprobado</td>
<td>comprobación con html5 y javascript funciona, alta, edición y borrado de colaborador</td>
</tr>
<tr>
<td>noticias</td>
<td>menu</td>
<td>aprobado</td>
<td>comprobación con html5 y javascript funciona, alta, edición y borrado de noticias funciona</td>
</tr>
<tr>
<td>descargas</td>
<td>menu</td>
<td>aprobado</td>
<td>comprobación con html5 y javascript funciona, alta, edición y borrado de descargas</td>
</tr>
<tr>
<td>tutoriales</td>
<td>menu</td>
<td>aprobado</td>
<td>comprobación con html5 y javascript funciona, alta, edición y borrado de tutoriales</td>
</tr>
<tr>
<td>publicaciones</td>
<td>menu</td>
<td>aprobado</td>
<td>comprobación con html5 y javascript funciona, alta, edición y borrado de publicaciones</td>
</tr>
<tr>
<td>recursos</td>
<td>menu</td>
<td>aprobado</td>
<td>comprobación con html5 y javascript funciona, alta, edición y borrado de recursos funciona</td>
</tr>
<tr>
<td>herramientas</td>
<td>menu</td>
<td>aprobado</td>
<td>comprobación con html5 y javascript funciona, alta, edición y borrado de herramientas</td>
</tr>
<tr>
<td>portada</td>
<td>menu</td>
<td>aprobado</td>
<td>comprobación con html5 y javascript funciona, edición de todos los componenetes de la</td>
</tr>
</tbody>
</table>

Ilustración 113 Pruebas de caja negra efectuadas sobre aramara

Ilustración 114 Instalación de siege en Linux mint
La prueba se hizo con las siguientes condiciones

```bash
 siege -t 30s -c 30 -q http://www.ciempiess.org/resources
```

Ilustración 115 Condiciones de siege

Donde

- `-t` especifica el tiempo que tomará la prueba.
- `-c` especifica la cantidad de conexiones concurrentes.
- `-q` elimina la salida resultante de cada petición que va mostrando el proceso durante la prueba.

Ilustración 116 Resultado de la prueba de sistema

Durante la simulación de la carga del sistema con una concurrencia de 30 solicitudes concurrentes durante un rango de 30 segundos se observó una degradación del tiempo de respuesta, el cual incremento en casi 1800% que aunque parece que el aumento es muy alto, se debe considerar que el tiempo de respuesta promedio es del orden de milisegundos, bajo la carga puesta el sistema trabajó sobre una escala en segundos que en términos prácticos el usuario final no notará dado que el tiempo de descarga de una página sencilla es del orden de segundos sin mencionar que las pruebas se efectuaron sobre condiciones superiores a las máximas esperadas lo cual nos asegura que el sistema funcionará correctamente aún bajo condiciones extraordinarias.

Ilustración 117 Tiempo de ejecución del sistema con carga

Las pruebas efectuadas sobre el sistema fueron satisfactorias, el servidor presenta un buen tiempo de respuesta, no se debe olvidar que se está trabajando sobre una nube híbrida y que contamos con un servidor compartido lo que implica que en algunos momentos el rendimiento del sistema podría disminuir un poco pero por lapsos despreciables para el propósito final del sistema.
EL tiempo de respuesta que el usuario ve es muy variado, depende de distintos factores como el número de solicitudes concurrentes, la carga del CPU, la carga del servidor de base de datos etc., pero esos tiempos son despreciables una vez que se toma en cuenta el retraso generado por la transferencia de la información a través de la red, que recordando la teoría de los sistemas distribuidos, es el factor más determinante, dado que el sistema está basado en la nube.

A continuación se muestran gráficas del tráfico del sitio donde se observa el patrón de conducta del usuario promedio junto con tiempos de procesamiento más usuales del sitio.

Ilustración 118 Gráfica de uso del sistema generada con Google Analytics

Ilustración 119 Tiempos de procesamiento del sistema

Lo anterior muestra que el número de usuarios diarios es menor a 200 además de que el acceso se da con intervalos de minutos por lo que las pruebas efectuadas sobre el sistema revelan que se cuenta con capacidad sobrada para procesar todas las solicitudes, por ello se concluye que el sistema aprueba satisfactoriamente todas las pruebas.

Ilustración 120 Rendimiento del servidor durante las pruebas
4.9 Conclusiones.

El objetivo general y los objetivos particulares, sobre los que el proyecto fue planteado, fueron cumplidos satisfactoriamente. Se creó una plataforma web que ofrecerá las herramientas necesarias para generar y administrar el contenido generado por el proyecto CIEMPIESS-UNAM, al igual que un robusto sistema que permitirá brindar los servicios de análisis textuales en línea, al contar con distintas herramientas, el sistema permitirá tener un mayor contacto con la comunidad lo que favorecerá a que la difusión del proyecto sea más eficiente.

El cambio en la forma de acceso y administración de la información de los colaboradores, así como, del contenido de divulgación y los servicios generados dentro del proyecto, facilitará el acceso, el control y seguimiento de los mismos, esto reducirá los tiempos en los procesos de publicación y actualización del contenido del portal, todo esto bajo una infraestructura robusta, confiable y escalable.

El desarrollo de este sistema permitirá al proyecto estar a la vanguardia y dar el primer paso hacia la automatización y optimización de procesos; así como, la modernización de los servicios de análisis en línea que se brindarán.

La arquitectura del sistema permitirá su uso a gran escala, siendo esto una puerta para que otras instituciones del mundo puedan utilizar las herramientas, contribuir al crecimiento y mejoramiento del proyecto, la Facultad de Ingeniería de la Universidad Nacional Autónoma de México es la única institución pública de américa latina que se encuentra realizando investigaciones en este campo; por lo que, el permitir el acceso a la investigación beneficiará al campo de investigación.

La implementación de diferentes tecnologías y el diseño del sistema dan al sistema diferentes capacidades, no sólo de fácil acceso a la información y la administración del contenido, permite obtener datos estratégicos que permitan conocer el comportamiento de los usuarios, lo que ayuda a conocer sus intereses; además, de permitir recuperar los patrones de la información procesada, contenido más usado y frecuencia de su uso, país de origen, idioma de consulta entre otros datos, que en un futuro podrán ser usados con ayuda de herramientas de minería de datos para mejorar los procesos de análisis, diseño y estructura de los analizadores de texto en línea.

El diseño modular del sistema le da una escalabilidad alta al proyecto que permitirá, que de ser necesario en un futuro efectuar cambios sobre él, no sea necesario reestructurarlo y únicamente se hagan cambios mínimos; a continuación, se muestra un plano donde se aprecian los países que han accedido a la página desde que se encuentra en operación, lo que demuestra que el alcance del proyecto ahora es global.
El uso de un foro dará a la comunidad un lugar donde puedan expresar sus dudas y éstas puedan ser respondidas por la comunidad o directamente por los desarrolladores del proyecto.

El diseño intuitivo y simple de las interfaces, de aramara, ciempiess, blog y el foro permitirá que cualquier usuario pueda hacer uso de las mismas sin recibir ningún tipo de capacitación, ello permitirá que los tutoriales del sistema se enfoquen en aspectos importantes del software sin darle mayor importancia al sistema web.

Debido a que el sistema estará en una nube privada sobre servidores profesionales, no será necesario darle ningún tipo de mantenimiento; por lo que, se asegura un funcionamiento con mínimos problemas de disponibilidad y cuando el proyecto madure y requiera mayor capacidad de procesamiento, memoria, espacio o ancho de banda sólo será necesario solicitarlo al proveedor lo que evitará aumentar los costos derivados a actualizaciones de hardware y/o software, así como del mantenimiento.
4.10 Anexos.

4.10.1 Apéndice.

API
Del inglés Application Programming Interface es el conjunto de funciones y procedimientos (o métodos, en la programación orientada a objetos) que ofrece cierta biblioteca para ser utilizado por otro software como una capa de abstracción.

CMS
Es un programa informático que permite crear una estructura de soporte para la creación y administración de contenidos, principalmente en páginas web, por parte de los administradores, editores, participantes y demás usuarios.

Cookie
Es un pequeño archivo que almacena información enviada por un sitio web y almacenado en el navegador del usuario, de manera que el sitio web puede consultar la actividad previa del usuario.

CPU
Es el hardware dentro de un computador u otros dispositivos programables, que interpreta las instrucciones de un programa de ordenador mediante la realización de las operaciones básicas aritméticas, lógicas y de entrada/salida del sistema.

Deflate
Es un algoritmo de compresión de datos sin pérdidas que usa una combinación del algoritmo LZ77 y la codificación Huffman. Fue originalmente definido por Phil Katz para la versión 2 de su herramienta de archivado PKZIP.

Dependencias
En informática, se conoce como dependencia de datos aquella situación en que las instrucciones de un programa se refieren a los resultados de otras anteriores que aún no han sido completadas. Si dichas dependencias no son resueltas provocarán riesgos de datos o incluso condiciones de carrera.

Framework
En el desarrollo de software, un framework o infraestructura digital, es una estructura conceptual y tecnológica de soporte definido, normalmente con artefactos o módulos de software concretos, que puede servir de base para la organización y desarrollo de software. Típicamente, puede incluir soporte de programas, bibliotecas, y un lenguaje interpretado, entre otras herramientas, para así ayudar a desarrollar y unir los diferentes componentes de un proyecto.

Ftp
Es un protocolo de red para la transferencia de archivos entre sistemas conectados a una red TCP (Transmission Control Protocol), basado en la arquitectura cliente-servidor. Desde un equipo cliente se puede conectar a un servidor para descargar archivos desde él o para enviarle archivos, independientemente del sistema operativo utilizado en cada equipo.

Gzip
Es un formato de archivo y una aplicación informática utilizada para la compresión y descompresión de archivos. El programa fue creado por Jean-Loup Gailly y Mark Adler como un reemplazo de software libre para el programa de compresión utilizado en los primeros sistemas Unix, y destinado a ser utilizado por el Proyecto GNU.

Hipertexto
Es una herramienta de software con estructura no secuencial que permite crear, agregar, enlazar y compartir información de diversas fuentes por medio de enlaces asociativos. La forma más habitual de hipertexto en informática es la de hipervínculos o referencias cruzadas automáticas que van a otros documentos.
Hosting
Es el servicio que provee a los usuarios de Internet un sistema para poder almacenar información, imágenes, video, o cualquier contenido accesible vía web. Es una analogía de "hospedaje o alojamiento en hoteles o habitaciones" donde uno ocupa un lugar específico, en este caso la analogía alojamiento web o alojamiento de páginas web, se refiere al lugar que ocupa una página web, sitio web, sistema, correo electrónico, archivos etc. en internet o más específicamente en un servidor que por lo general hospeda varias aplicaciones o páginas web.

http
Es un protocolo orientado a transacciones y sigue el esquema petición-respuesta entre un cliente y un servidor. Al cliente que efectúa la petición (un navegador web o un spider) se lo conoce como "user agent" (agente del usuario). A la información transmitida se la llama recurso y se la identifica mediante un localizador uniforme de recursos (URL). El resultado de la ejecución de un programa, una consulta a una base de datos, la traducción automática de un documento, etc.

Integridad de información
Se refiere a la corrección y complementación de los datos en una base de datos. Cuando los contenidos se modifican con sentencias INSERT, DELETE o UPDATE, la integridad de los datos almacenados puede perderse de muchas maneras diferentes. Pueden añadirse datos no válidos a la base de datos, tales como un pedido que especifica un producto no existente. Pueden modificarse datos existentes tomando un valor incorrecto, como por ejemplo si se re asigna un vendedor a una oficina no existente.

Multiplataforma
Es un atributo conferido a programas informáticos o métodos y conceptos de cómputo que son implementados e inter operan en múltiples plataformas informáticas. El software multiplataforma puede dividirse en dos tipos; uno requiere una compilación individual para cada plataforma que le da soporte, y el otro se puede ejecutar directamente en cualquier plataforma sin preparación especial, por ejemplo, el software escrito en un lenguaje interpretado o bytecode pre-compilado.

OSI
Es el modelo de red descriptivo, que fue creado por la Organización Internacional para la Estandarización (ISO) en el año 1980 Es un marco de referencia para la definición de arquitecturas en la interconexión de los sistemas de comunicaciones.

Página estática
Las páginas web estáticas son básicamente informativas y están enfocadas principalmente a mostrar una información permanente, donde el navegante se limita a obtener dicha información sin poder interactuar con la página visitada.

RAM
Se utiliza como memoria de trabajo para el sistema operativo, los programas y la mayor parte del software. Es allí donde se cargan todas las instrucciones que ejecutan el procesador y otras unidades de cómputo.

RHEL
Es una distribución comercial de Linux desarrollada por Red Hat.

Robots
Es un archivo de texto plano, para indicarle a los motores de búsqueda que no quieres que rastree ciertas páginas de tu sitio web. Por lo tanto el fichero robots.txt es un protocolo o estándar para la exclusión de robots o crawlers, para que no indexen información de nuestro sitio web. Los crawlers también son llamados indexadores, robots, bots o arañas.
SO
Es un programa o conjunto de programas de un sistema informático que gestiona los recursos de hardware y provee servicios a los programas de aplicación, ejecutándose en modo privilegiado respecto de los restantes.

Unix
Es un sistema operativo portable, multitarea y multiusuario; desarrollado, en principio, en 1969, por un grupo de empleados de los laboratorios Bell de AT&T, entre los que figuran Ken Thompson, Dennis Ritchie y Douglas McIlroy.

WWW
Son las iniciales que identifican a la expresión inglesa World Wide Web, el sistema de documentos de hipertexto que se encuentran enlazados entre sí y a los que se accede por medio de Internet. A través de un software conocido como navegador, los usuarios pueden visualizar diversos sitios web (los cuales contienen texto, imágenes, videos y otros contenidos multimedia) y navegar a través de ellos mediante los hipervínculos.

XML
Es un lenguaje de marcas desarrollado por el World Wide Web Consortium (W3C) utilizado para almacenar datos en forma legible.

4.10.2 Diccionario de datos.

Ilustración 122 Tablas de la base de datos
<table>
<thead>
<tr>
<th>NOMBRE DE LA TABLA</th>
<th>colaborador</th>
<th>descripción</th>
<th>campo</th>
<th>tipo</th>
<th>null</th>
<th>key</th>
<th>descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDCOLABORADOR</td>
<td>bigint(20)</td>
<td>NO</td>
<td>PRI</td>
<td>identificador del colaborador</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMBRE</td>
<td>varchar(50)</td>
<td>NO</td>
<td></td>
<td>nombres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APELLIDO</td>
<td>varchar(50)</td>
<td>NO</td>
<td></td>
<td>apellidos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARRERA</td>
<td>varchar(50)</td>
<td>NO</td>
<td></td>
<td>carrera que estudia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROL</td>
<td>varchar(50)</td>
<td>NO</td>
<td></td>
<td>función dentro del proyecto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FECHAINICIO</td>
<td>date</td>
<td>NO</td>
<td></td>
<td>fecha de ingreso al proyecto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FECHAFIN</td>
<td>date</td>
<td>NO</td>
<td></td>
<td>fecha de término del periodo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDRESPONSABLE</td>
<td>bigint(20)</td>
<td>NO</td>
<td>MUL</td>
<td>identificador del responsable que dio de alta al colaborador</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSICION</td>
<td>int(11)</td>
<td>YES</td>
<td></td>
<td>posición en que aparecerá, se ordenan de mayor a menor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>relaciones</td>
<td>imagen_colaborador, responsable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DE LA TABLA</th>
<th>herramienta</th>
<th>descripción</th>
<th>campo</th>
<th>tipo</th>
<th>null</th>
<th>key</th>
<th>descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDHERRAMIENTA</td>
<td>bigint(20)</td>
<td>NO</td>
<td>PRI</td>
<td>identificador de la herramienta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITULO_ES</td>
<td>varchar(80)</td>
<td>NO</td>
<td></td>
<td>título en español de la herramienta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITULO_EN</td>
<td>varchar(80)</td>
<td>NO</td>
<td></td>
<td>título en inglés de la herramienta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTRO_ES</td>
<td>varchar(1000)</td>
<td>NO</td>
<td></td>
<td>descripción breve de la herramienta en español</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTRO_EN</td>
<td>varchar(1000)</td>
<td>NO</td>
<td></td>
<td>descripción breve de la herramienta en inglés</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESC_ES</td>
<td>mediumtext</td>
<td>NO</td>
<td></td>
<td>descripción de la herramienta en español</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESC_EN</td>
<td>mediumtext</td>
<td>NO</td>
<td></td>
<td>descripción de la herramienta en inglés</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFRAME_URL</td>
<td>varchar(800)</td>
<td>NO</td>
<td></td>
<td>url de la herramienta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDRESPONSABLE</td>
<td>bigint(20)</td>
<td>NO</td>
<td>MUL</td>
<td>identificador del responsable que la publicó</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>relaciones</td>
<td>imagen_herramienta, responsable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DE LA TABLA</th>
<th>imagen_colaborador</th>
<th>descripción</th>
<th>campo</th>
<th>tipo</th>
<th>null</th>
<th>key</th>
<th>descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDCOLABORADOR</td>
<td>bigint(20)</td>
<td>NO</td>
<td>MUL</td>
<td>identificador del colaborador</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>varchar(80)</td>
<td>NO</td>
<td>UNI</td>
<td>nombre del archivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>relaciones</td>
<td>colaborador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DE LA TABLA</th>
<th>imagen_herramienta</th>
<th>descripción</th>
<th>campo</th>
<th>tipo</th>
<th>null</th>
<th>key</th>
<th>descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDHERRAMIENTA</td>
<td>bigint(20)</td>
<td>NO</td>
<td>MUL</td>
<td>identificador de la herramienta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>varchar(80)</td>
<td>NO</td>
<td>UNI</td>
<td>nombre del archivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>relaciones</td>
<td>herramienta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DE LA TABLA</th>
<th>imagen_noticia</th>
<th>descripción</th>
<th>campo</th>
<th>tipo</th>
<th>null</th>
<th>key</th>
<th>descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDNOTICIA</td>
<td>bigint(20)</td>
<td>NO</td>
<td>MUL</td>
<td>identificador de la noticia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>varchar(80)</td>
<td>NO</td>
<td>UNI</td>
<td>nombre del archivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>relaciones</td>
<td>noticia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DE LA TABLA</th>
<th>imagen_responsable</th>
<th>descripción</th>
<th>campo</th>
<th>tipo</th>
<th>null</th>
<th>key</th>
<th>descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDRESPONSABLE</td>
<td>bigint(20)</td>
<td>NO</td>
<td>MUL</td>
<td>identificador del responsable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>varchar(80)</td>
<td>NO</td>
<td>UNI</td>
<td>nombre del archivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>relaciones</td>
<td>responsable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMBRE DE LA TABLA</td>
<td>imagen_software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESCRIPCIÓN</td>
<td>almacena la información asociada a la imagen del colaborador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAMPO</td>
<td>TIPO</td>
<td>NULL</td>
<td>KEY</td>
<td>DESCRIPCIÓN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDSOFTWARE</td>
<td>bigint(20)</td>
<td>NO</td>
<td>PRI</td>
<td>identificador del software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>varchar(80)</td>
<td>NO</td>
<td>UNI</td>
<td>nombre del archivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELACIONES</td>
<td>software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DE LA TABLA</th>
<th>imagen_tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>almacena la información asociada a la imagen del colaborador</td>
</tr>
<tr>
<td>CAMPO</td>
<td>TIPO</td>
</tr>
<tr>
<td>IDTUTORIAL</td>
<td>bigint(20)</td>
</tr>
<tr>
<td>URL</td>
<td>varchar(80)</td>
</tr>
<tr>
<td>RELACIONES</td>
<td>tutorial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DE LA TABLA</th>
<th>noticia</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>almacena la información de la noticia</td>
</tr>
<tr>
<td>CAMPO</td>
<td>TIPO</td>
</tr>
<tr>
<td>IDNOTICIA</td>
<td>bigint(20)</td>
</tr>
<tr>
<td>CONTENIDO_ES</td>
<td>varchar(2000)</td>
</tr>
<tr>
<td>CONTENIDO_EN</td>
<td>varchar(2000)</td>
</tr>
<tr>
<td>TITULO_ES</td>
<td>varchar(80)</td>
</tr>
<tr>
<td>TITULO_EN</td>
<td>varchar(80)</td>
</tr>
<tr>
<td>FECHA</td>
<td>date</td>
</tr>
<tr>
<td>AUTOR</td>
<td>varchar(50)</td>
</tr>
<tr>
<td>KEYWORDS</td>
<td>varchar(300)</td>
</tr>
<tr>
<td>IDRESPONSABLE</td>
<td>bigint(20)</td>
</tr>
<tr>
<td>RELACIONES</td>
<td>responsable,imagen_noticia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DE LA TABLA</th>
<th>portada</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>almacena la información de la portada</td>
</tr>
<tr>
<td>CAMPO</td>
<td>TIPO</td>
</tr>
<tr>
<td>IDPORTADA</td>
<td>bigint(20)</td>
</tr>
<tr>
<td>IDRESPONSABLE</td>
<td>bigint(20)</td>
</tr>
<tr>
<td>INTRO_ES</td>
<td>mediumtext</td>
</tr>
<tr>
<td>INTRO_EN</td>
<td>mediumtext</td>
</tr>
<tr>
<td>RELACIONES</td>
<td>responsable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DE LA TABLA</th>
<th>publicacion</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>almacena la información de la publicacion</td>
</tr>
<tr>
<td>CAMPO</td>
<td>TIPO</td>
</tr>
<tr>
<td>IDPUBLICACION</td>
<td>bigint(20)</td>
</tr>
<tr>
<td>TITULO_ES</td>
<td>varchar(200)</td>
</tr>
<tr>
<td>CONTENIDO_ES</td>
<td>text</td>
</tr>
<tr>
<td>TITULO_EN</td>
<td>varchar(200)</td>
</tr>
<tr>
<td>CONTENIDO_EN</td>
<td>text</td>
</tr>
<tr>
<td>AUTOR</td>
<td>varchar(50)</td>
</tr>
<tr>
<td>TIPO</td>
<td>varchar(50)</td>
</tr>
<tr>
<td>IDRESPONSABLE</td>
<td>bigint(20)</td>
</tr>
<tr>
<td>RELACIONES</td>
<td>responsable,tipo_publicacion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DE LA TABLA</th>
<th>recurso</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>almacena la información recursos de ayuda</td>
</tr>
<tr>
<td>CAMPO</td>
<td>TIPO</td>
</tr>
<tr>
<td>IDRECURSO</td>
<td>bigint(20)</td>
</tr>
<tr>
<td>TITULO_ES</td>
<td>varchar(200)</td>
</tr>
<tr>
<td>CONTENIDO_ES</td>
<td>varchar(2000)</td>
</tr>
<tr>
<td>TITULO_EN</td>
<td>varchar(200)</td>
</tr>
<tr>
<td>CONTENIDO_EN</td>
<td>varchar(2000)</td>
</tr>
<tr>
<td>IDRESPONSABLE</td>
<td>bigint(20)</td>
</tr>
<tr>
<td>RELACIONES</td>
<td>responsable</td>
</tr>
<tr>
<td>NOMBRE DE LA TABLA</td>
<td>registro</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>DESCRIPCIÓN</td>
<td>almacena la información de los usuarios que acceden al sistema</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAMPO</th>
<th>TIPO</th>
<th>NULL</th>
<th>KEY</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_registro_id</td>
<td>bigint(20)</td>
<td>NO</td>
<td>PRI</td>
<td>identificador</td>
</tr>
<tr>
<td>r_ip</td>
<td>varchar(30)</td>
<td>YES</td>
<td></td>
<td>ip del visitante</td>
</tr>
<tr>
<td>r_date</td>
<td>datetime</td>
<td>YES</td>
<td></td>
<td>fecha y hora de la visita</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DE LA TABLA</th>
<th>responsable</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>almacena la información del responsable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAMPO</th>
<th>TIPO</th>
<th>NULL</th>
<th>KEY</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDRESPONSABLE</td>
<td>bigint(20)</td>
<td>NO</td>
<td>PRI</td>
<td>identificador del responsable</td>
</tr>
<tr>
<td>NOMBRE</td>
<td>varchar(50)</td>
<td>NO</td>
<td></td>
<td>nombre y apellidos</td>
</tr>
<tr>
<td>ALIAS</td>
<td>varchar(45)</td>
<td>NO</td>
<td>UNI</td>
<td>usuario dentro del sistema</td>
</tr>
<tr>
<td>PASSWORD</td>
<td>varchar(45)</td>
<td>NO</td>
<td></td>
<td>clave del usuario</td>
</tr>
<tr>
<td>CORREO</td>
<td>varchar(45)</td>
<td>NO</td>
<td>UNI</td>
<td>correo electrónico</td>
</tr>
<tr>
<td>BIO_ES</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>biografía en español</td>
</tr>
<tr>
<td>BIO_EN</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>biografía en inglés</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DE LA TABLA</th>
<th>software</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>almacena la información del software que se va a descargar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAMPO</th>
<th>TIPO</th>
<th>NULL</th>
<th>KEY</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDSOFTWARE</td>
<td>bigint(20)</td>
<td>NO</td>
<td>PRI</td>
<td>identificador del software</td>
</tr>
<tr>
<td>COMENTS_ES</td>
<td>varchar(2000)</td>
<td>NO</td>
<td></td>
<td>nombre y apellidos</td>
</tr>
<tr>
<td>COMENTS_EN</td>
<td>varchar(2000)</td>
<td>NO</td>
<td></td>
<td>usuario dentro del sistema</td>
</tr>
<tr>
<td>URL</td>
<td>varchar(500)</td>
<td>NO</td>
<td></td>
<td>clave del usuario</td>
</tr>
<tr>
<td>NOMBRE_V</td>
<td>varchar(50)</td>
<td>NO</td>
<td></td>
<td>correo electrónico</td>
</tr>
<tr>
<td>NOMBRE_LINK</td>
<td>varchar(50)</td>
<td>NO</td>
<td></td>
<td>biografía en español</td>
</tr>
<tr>
<td>IDRESPONSABLE</td>
<td>bigint(20)</td>
<td>NO</td>
<td>MUL</td>
<td>biografía en inglés</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DE LA TABLA</th>
<th>tipo_publicacion</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>guarda el tipo de la publicación que se utiliza para definir el tipo en la tabla publicación</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAMPO</th>
<th>TIPO</th>
<th>NULL</th>
<th>KEY</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIPO</td>
<td>varchar(50)</td>
<td>NO</td>
<td>PRI</td>
<td>tipo de la publicación</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DE LA TABLA</th>
<th>tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>guarda los tutoriales como un registro en la base</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAMPO</th>
<th>TIPO</th>
<th>NULL</th>
<th>KEY</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDTUTORIAL</td>
<td>bigint(20)</td>
<td>NO</td>
<td>PRI</td>
<td>identificador del tutorial</td>
</tr>
<tr>
<td>TITULO_ES</td>
<td>varchar(200)</td>
<td>NO</td>
<td></td>
<td>título en español</td>
</tr>
<tr>
<td>TITULO_EN</td>
<td>varchar(200)</td>
<td>NO</td>
<td></td>
<td>título en inglés</td>
</tr>
<tr>
<td>CONTENIDO_ES</td>
<td>mediumtext</td>
<td>NO</td>
<td></td>
<td>contenido en español</td>
</tr>
<tr>
<td>CONTENIDO_EN</td>
<td>mediumtext</td>
<td>NO</td>
<td></td>
<td>contenido en inglés</td>
</tr>
<tr>
<td>AUTOR</td>
<td>varchar(50)</td>
<td>NO</td>
<td></td>
<td>autor del tutorial</td>
</tr>
<tr>
<td>IDRESPONSABLE</td>
<td>bigint(20)</td>
<td>NO</td>
<td>MUL</td>
<td>identificador del responsable que publicó</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DE LA TABLA</th>
<th>uso_herramienta</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>registra la información procesada por las herramientas de procesamiento</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAMPO</th>
<th>TIPO</th>
<th>NULL</th>
<th>KEY</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>uh_uso_herramienta_id</td>
<td>bigint(20)</td>
<td>NO</td>
<td>PRI</td>
<td>identificador</td>
</tr>
<tr>
<td>uh_date</td>
<td>date</td>
<td>YES</td>
<td></td>
<td>fecha de uso</td>
</tr>
<tr>
<td>uh_time</td>
<td>time</td>
<td>YES</td>
<td></td>
<td>hora de uso</td>
</tr>
<tr>
<td>uh_palabra</td>
<td>varchar(2000)</td>
<td>YES</td>
<td></td>
<td>palabra procesada</td>
</tr>
</tbody>
</table>
Procedimientos almacenados

### NOMBRE DE LA TABLA
- **visita**
  - registra la visita de un usuario dentro de ciempiess

<table>
<thead>
<tr>
<th>CAMPO</th>
<th>TIPO</th>
<th>NULL</th>
<th>KEY</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_visita_id</td>
<td>NO</td>
<td>NO</td>
<td>PRI</td>
<td>identificador</td>
</tr>
<tr>
<td>v_sitio</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td>sitio visitado</td>
</tr>
<tr>
<td>v_date</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td>fecha de visita</td>
</tr>
<tr>
<td>v_ip</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td>ip del visitante</td>
</tr>
</tbody>
</table>

### RELACIONES
- sitio visitado
- fecha de visita
- ip del visitante

### NOMBRE DEL PROCEDIMIENTO
- **ACTUALIZAR_IMAGENES_NOTICIA**
  - retorna el nombre de la imagen y la borra de la base

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VID</td>
<td>bigint(20)</td>
<td>IN</td>
<td>identificador de una noticia</td>
</tr>
</tbody>
</table>

### RELACIONES AFECTADAS
- **IMAGEN_NOTICIA**

### NOMBRE DEL PROCEDIMIENTO
- **ALTA_COLABORADOR**
  - guarda en la base de datos el nuevo colaborador

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VROL</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>función del colaborador</td>
</tr>
<tr>
<td>VNOMBRE</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>nombres</td>
</tr>
<tr>
<td>VAPELLIDO</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>apellidos</td>
</tr>
<tr>
<td>VCARRERA</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>carrera que estudía</td>
</tr>
<tr>
<td>VFECHA_INICIO</td>
<td>DATE</td>
<td>IN</td>
<td>fecha de inicio</td>
</tr>
<tr>
<td>VFECHA_FIN</td>
<td>DATE</td>
<td>IN</td>
<td>fecha final</td>
</tr>
<tr>
<td>VURL</td>
<td>VARCHAR(500)</td>
<td>IN</td>
<td>nombre de la imagen</td>
</tr>
<tr>
<td>VIDRESPONSABLE</td>
<td>bigint(20)</td>
<td>IN</td>
<td>id del responsable</td>
</tr>
<tr>
<td>VPOSICION</td>
<td>int</td>
<td>IN</td>
<td>posición</td>
</tr>
</tbody>
</table>

### RELACIONES AFECTADAS
- **COLABORADOR,** **IMAGEN_COLABORADOR**

### NOMBRE DEL PROCEDIMIENTO
- **ALTA_NOTICIA**
  - guarda en la base de datos el nueva noticia

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCONTENIDO_ES</td>
<td>VARCHAR(2000)</td>
<td>IN</td>
<td>contenido en español</td>
</tr>
<tr>
<td>VCONTENIDO_EN</td>
<td>VARCHAR(2000)</td>
<td>IN</td>
<td>contenido en inglés</td>
</tr>
<tr>
<td>VTITULO_ES</td>
<td>VARCHAR(80)</td>
<td>IN</td>
<td>título en español</td>
</tr>
<tr>
<td>VTITULO_EN</td>
<td>VARCHAR(80)</td>
<td>IN</td>
<td>título en inglés</td>
</tr>
<tr>
<td>VFECHA</td>
<td>DATE</td>
<td>IN</td>
<td>fecha</td>
</tr>
<tr>
<td>VAUTOR</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>autor de la noticia</td>
</tr>
<tr>
<td>VKKEYWORDS</td>
<td>VARCHAR(300)</td>
<td>IN</td>
<td>palabras clave se paradas por ,</td>
</tr>
<tr>
<td>VIDRESPONSABLE</td>
<td>bigint(20)</td>
<td>IN</td>
<td>id del responsable</td>
</tr>
</tbody>
</table>

### RELACIONES AFECTADAS
- **NOTICIA**

### NOMBRE DEL PROCEDIMIENTO
- **ALTA_RESPONSABLE**
  - guarda en la base de datos el nuevo responsable

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNOMBRE</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>nombre completo del administrador</td>
</tr>
<tr>
<td>VALIAS</td>
<td>VARCHAR(45)</td>
<td>IN</td>
<td>nombre de usuario</td>
</tr>
<tr>
<td>VPASSWORD</td>
<td>VARCHAR(45)</td>
<td>IN</td>
<td>password del responsable</td>
</tr>
<tr>
<td>VCORREO</td>
<td>VARCHAR(45)</td>
<td>IN</td>
<td>correo electrónico del responsable</td>
</tr>
</tbody>
</table>

### RELACIONES AFECTADAS
- **RESPONSABLE**
<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>ALTASOFTWARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>guarda en la base de datos el nuevo software</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCOMENTS_ES</td>
<td>VARCHAR(800)</td>
<td>IN</td>
<td>descripción del software en español</td>
</tr>
<tr>
<td>VCOMENTS_EN</td>
<td>VARCHAR(800)</td>
<td>IN</td>
<td>descripción del software en inglés</td>
</tr>
<tr>
<td>VURL</td>
<td>VARCHAR(500)</td>
<td>IN</td>
<td>dirección del archivo a descargar</td>
</tr>
<tr>
<td>VNOMBRE_V</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>nombre del archivo</td>
</tr>
<tr>
<td>VNOMBRE_LINK</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>nombre del botón</td>
</tr>
<tr>
<td>VIDRESPONSABLE</td>
<td>bigint(20)</td>
<td>IN</td>
<td>id del responsable que publicó</td>
</tr>
</tbody>
</table>

RELACIONES AFECTADAS
SOFTWARE

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>AUTENTICAR_USUARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>verifica si existe un usuario en la base de datos con las credenciales dadas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALIAS</td>
<td>VARCHAR(45)</td>
<td>IN</td>
<td>nombre del usuario</td>
</tr>
<tr>
<td>VPASSWORD</td>
<td>VARCHAR(45)</td>
<td>IN</td>
<td>contraseña del usuario</td>
</tr>
</tbody>
</table>

RELACIONES AFECTADAS

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>BUSCAR_COLABORADOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>busca un colaborador con base en su nombre</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTAG</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>segmento del nombre del colaborador para buscar</td>
</tr>
</tbody>
</table>

RELACIONES AFECTADAS

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>BUSCAR_DESCARGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>busca una descarga con base en su título</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTAG</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>segmento del título de la descarga para buscar</td>
</tr>
</tbody>
</table>

RELACIONES AFECTADAS

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>BUSCAR_HERRAMIENTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>busca una herramienta con base en su título</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTAG</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>segmento del título de la herramienta para buscar</td>
</tr>
</tbody>
</table>

RELACIONES AFECTADAS

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>BUSCAR_NOTICIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>busca una noticia con base en su título</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTAG</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>segmento del título de la noticia para buscar</td>
</tr>
</tbody>
</table>

RELACIONES AFECTADAS

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>BUSCAR_TUTORIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>busca un tutorial con base en su título</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTAG</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>segmento del título del tutorial para buscar</td>
</tr>
</tbody>
</table>

RELACIONES AFECTADAS

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>DATOS_RESPONSABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>regresa los datos del responsable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALIAS</td>
<td>VARCHAR(45)</td>
<td>IN</td>
<td>nombre de usuario con el que se busca</td>
</tr>
</tbody>
</table>

RELACIONES AFECTADAS
<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>DESCARGAS_EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>regresa las descargas publicadas en inglés</td>
</tr>
<tr>
<td>ARGUMENTO</td>
<td>TIPO MODO DESCRIPCIÓN</td>
</tr>
<tr>
<td>RELACIONES AFECTADAS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>DESCARGAS_ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>regresa las descargas publicadas en español</td>
</tr>
<tr>
<td>ARGUMENTO</td>
<td>TIPO MODO DESCRIPCIÓN</td>
</tr>
<tr>
<td>RELACIONES AFECTADAS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>ELIMINAR_COLABORADOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>elimina los datos relacionados a un colaborador</td>
</tr>
<tr>
<td>ARGUMENTO</td>
<td>TIPO MODO DESCRIPCIÓN</td>
</tr>
<tr>
<td>VID</td>
<td>bigint(20) IN id del usuario</td>
</tr>
<tr>
<td>RELACIONES AFECTADAS</td>
<td>COLABORADOR,IMAGEN_COLABORADOR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>ELIMINAR_DESCARGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>elimina los datos relacionados a una descarga</td>
</tr>
<tr>
<td>ARGUMENTO</td>
<td>TIPO MODO DESCRIPCIÓN</td>
</tr>
<tr>
<td>VID</td>
<td>bigint(20) IN id de la descarga</td>
</tr>
<tr>
<td>RELACIONES AFECTADAS</td>
<td>SOFTWARE,IMAGEN_SOFTWARE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>ELIMINAR_NOTICIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>elimina los datos relacionados a una noticia</td>
</tr>
<tr>
<td>ARGUMENTO</td>
<td>TIPO MODO DESCRIPCIÓN</td>
</tr>
<tr>
<td>VID</td>
<td>bigint(20) IN id de la noticia</td>
</tr>
<tr>
<td>RELACIONES AFECTADAS</td>
<td>NOTICIA,IMAGEN_NOTICIA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>ELIMINAR_TUTORIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>elimina los datos relacionados a un tutorial</td>
</tr>
<tr>
<td>ARGUMENTO</td>
<td>TIPO MODO DESCRIPCIÓN</td>
</tr>
<tr>
<td>VID</td>
<td>bigint(20) IN id del tutorial</td>
</tr>
<tr>
<td>RELACIONES AFECTADAS</td>
<td>TUTORIAL,IMAGEN_TUTORIAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>FULL_HERRAMIENTA_EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>retorna la información a detalle de la herramienta especificada en inglés</td>
</tr>
<tr>
<td>ARGUMENTO</td>
<td>TIPO MODO DESCRIPCIÓN</td>
</tr>
<tr>
<td>VID</td>
<td>bigint(20) IN id de la herramienta</td>
</tr>
<tr>
<td>RELACIONES AFECTADAS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>FULL_HERRAMIENTA_ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>retorna la información a detalle de la herramienta especificada en español</td>
</tr>
<tr>
<td>ARGUMENTO</td>
<td>TIPO MODO DESCRIPCIÓN</td>
</tr>
<tr>
<td>VID</td>
<td>bigint(20) IN id de la herramienta</td>
</tr>
<tr>
<td>RELACIONES AFECTADAS</td>
<td></td>
</tr>
<tr>
<td>NOMBRE DEL PROCEDIMIENTO</td>
<td>GUARDAR_HERRAMIENTA</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>DESCRIPCIÓN</td>
<td>guarda una herramienta de procesamiento en línea</td>
</tr>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
</tr>
<tr>
<td>VTITULO_ES</td>
<td>VARCHAR(80)</td>
</tr>
<tr>
<td>VINTRO_ES</td>
<td>VARCHAR(1000)</td>
</tr>
<tr>
<td>VDESC_ES</td>
<td>MEDIUMTEXT</td>
</tr>
<tr>
<td>VTITULO_EN</td>
<td>VARCHAR(80)</td>
</tr>
<tr>
<td>VINTRO_EN</td>
<td>VARCHAR(1000)</td>
</tr>
<tr>
<td>VDESC_EN</td>
<td>MEDIUMTEXT</td>
</tr>
<tr>
<td>VIFRAME_URL</td>
<td>VARCHAR(800)</td>
</tr>
<tr>
<td>VFILE_NAME</td>
<td>VARCHAR(80)</td>
</tr>
<tr>
<td>VIDRESPONSABLE</td>
<td>bigint(20)</td>
</tr>
<tr>
<td>RELACIONES AFECTADAS</td>
<td>HERRAMIENTA,IMAGEN_HERRAMIENTA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>GUARDAR_PUBLICACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>guarda una publicación</td>
</tr>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
</tr>
<tr>
<td>VTITULO_ES</td>
<td>VARCHAR(200)</td>
</tr>
<tr>
<td>VCONTENIDO_ES</td>
<td>TEXT</td>
</tr>
<tr>
<td>VTITULO_EN</td>
<td>VARCHAR(200)</td>
</tr>
<tr>
<td>VCONTENIDO_EN</td>
<td>TEXT</td>
</tr>
<tr>
<td>VAUTOR</td>
<td>VARCHAR(50)</td>
</tr>
<tr>
<td>VTIPO</td>
<td>VARCHAR(50)</td>
</tr>
<tr>
<td>VIDRESPONSABLE</td>
<td>bigint(20)</td>
</tr>
<tr>
<td>RELACIONES AFECTADAS</td>
<td>PUBLICACION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>GUARDAR_RECURSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>guarda un recurso</td>
</tr>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
</tr>
<tr>
<td>VTITULO_ES</td>
<td>VARCHAR(200)</td>
</tr>
<tr>
<td>VCONTENIDO_ES</td>
<td>TEXT</td>
</tr>
<tr>
<td>VTITULO_EN</td>
<td>VARCHAR(200)</td>
</tr>
<tr>
<td>VCONTENIDO_EN</td>
<td>TEXT</td>
</tr>
<tr>
<td>VIDRESPONSABLE</td>
<td>bigint(20)</td>
</tr>
<tr>
<td>RELACIONES AFECTADAS</td>
<td>RECURSO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>GUARDAR_TUTORIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>guarda un tutorial</td>
</tr>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
</tr>
<tr>
<td>VTITULO_ES</td>
<td>VARCHAR(200)</td>
</tr>
<tr>
<td>VCONTENIDO_ES</td>
<td>TEXT</td>
</tr>
<tr>
<td>VTITULO_EN</td>
<td>VARCHAR(200)</td>
</tr>
<tr>
<td>VCONTENIDO_EN</td>
<td>TEXT</td>
</tr>
<tr>
<td>VURL</td>
<td>VARCHAR(80)</td>
</tr>
<tr>
<td>VAUTOR</td>
<td>VARCHAR(50)</td>
</tr>
<tr>
<td>VIDRESPONSABLE</td>
<td>bigint(20)</td>
</tr>
<tr>
<td>RELACIONES AFECTADAS</td>
<td>TUTORIAL,IMAGEN_TUTORIAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>IMAGENES_NOTICIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>trae todas las imágenes de una noticia</td>
</tr>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
</tr>
<tr>
<td>VIDNOTICIA</td>
<td>bigint(20)</td>
</tr>
<tr>
<td>RELACIONES AFECTADAS</td>
<td></td>
</tr>
<tr>
<td>NOMBRE DEL PROCEDIMIENTO</td>
<td>DESCRIPTIÓN</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
</tr>
<tr>
<td>VIDNOTICIA</td>
<td>bigint(20)</td>
</tr>
<tr>
<td>RELACIONES AFECTADAS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTITULO_ES</td>
<td>VARCHAR(200)</td>
<td>IN</td>
<td>título en español</td>
</tr>
<tr>
<td>VCONTENIDO_ES</td>
<td>TEXT</td>
<td>IN</td>
<td>título en español</td>
</tr>
<tr>
<td>VTITULO_EN</td>
<td>VARCHAR(200)</td>
<td>IN</td>
<td>título en inglés</td>
</tr>
<tr>
<td>VCONTENIDO_EN</td>
<td>TEXT</td>
<td>IN</td>
<td>descripción en inglés</td>
</tr>
<tr>
<td>VIMAGEN_URL</td>
<td>VARCHAR(80)</td>
<td>IN</td>
<td>nombre del archivo de imagen</td>
</tr>
<tr>
<td>VAUTOR</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>nombre del autor</td>
</tr>
<tr>
<td>VIDRESPONSABLE</td>
<td>bigint(20)</td>
<td>IN</td>
<td>id del responsable</td>
</tr>
<tr>
<td>RELACIONES AFECTADAS</td>
<td>SOFTWARE,IMAGEN_SOFTWARE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>DESCRIPTIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
</tr>
<tr>
<td>VIDNOTICIA</td>
<td>bigint(20)</td>
</tr>
<tr>
<td>RELACIONES AFECTADAS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTA_RELACIONADA_EN</td>
<td></td>
<td></td>
<td>traer noticias relacionadas en inglés</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTA_RELACIONADA_ES</td>
<td></td>
<td></td>
<td>traer noticias relacionadas en español</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTICIA_DETAIL_EN</td>
<td></td>
<td></td>
<td>traer la noticia completa en inglés</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARGUMENTO</th>
<th>TIPO</th>
<th>MODO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTICIA_DETAIL_ES</td>
<td></td>
<td></td>
<td>traer la noticia completa en español</td>
</tr>
<tr>
<td>NOMBRE DEL PROCEDIMIENTO</td>
<td>NOTICIAS_EN</td>
<td>DESCRIPCIÓN</td>
<td>obtiene un listado de las noticias con vista previa en inglés</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------------------------------------------------------------</td>
</tr>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
<td>MODO</td>
<td>DESCRIPCIÓN</td>
</tr>
<tr>
<td>VIDNOTICIA</td>
<td>bigint(20)</td>
<td>IN</td>
<td>id de la noticia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>NOTICIAS_ES</th>
<th>DESCRIPCIÓN</th>
<th>obtiene un listado de las noticias con vista previa en español</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
<td>MODO</td>
<td>DESCRIPCIÓN</td>
</tr>
<tr>
<td>VIDNOTICIA</td>
<td>bigint(20)</td>
<td>IN</td>
<td>id de la noticia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>PUBLICACIONES_EN</th>
<th>DESCRIPCIÓN</th>
<th>obtiene un listado de las publicaciones del tipo especificado en inglés</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
<td>MODO</td>
<td>DESCRIPCIÓN</td>
</tr>
<tr>
<td>VTIPO</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>id del tipo de la publicación</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>PUBLICACIONES_ES</th>
<th>DESCRIPCIÓN</th>
<th>obtiene un listado de las publicaciones del tipo especificado en español</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
<td>MODO</td>
<td>DESCRIPCIÓN</td>
</tr>
<tr>
<td>VTIPO</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>id del tipo de la publicación</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>RECURSOS_EN</th>
<th>DESCRIPCIÓN</th>
<th>obtiene un listado de los recursos en inglés</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
<td>MODO</td>
<td>DESCRIPCIÓN</td>
</tr>
<tr>
<td>VTIPO</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>id del tipo de la publicación</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>RECURSOS_ES</th>
<th>DESCRIPCIÓN</th>
<th>obtiene un listado de los recursos en español</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
<td>MODO</td>
<td>DESCRIPCIÓN</td>
</tr>
<tr>
<td>VTIPO</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>id del tipo de la publicación</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>RELACIONADOS</th>
<th>DESCRIPCIÓN</th>
<th>obtiene un listado de las noticias y su id, se usa en las búsquedas asíncronas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
<td>MODO</td>
<td>DESCRIPCIÓN</td>
</tr>
<tr>
<td>KEYM</td>
<td>VARCHAR(50)</td>
<td>IN</td>
<td>una palabra que este en el título</td>
</tr>
<tr>
<td>VIDNOTICIA</td>
<td>bigint(20)</td>
<td>IN</td>
<td>id de la noticia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>TRAER КолLABORADORES</th>
<th>DESCRIPCIÓN</th>
<th>obbtiene un listado de los colaboradores</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
<td>MODO</td>
<td>DESCRIPCIÓN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>TUTORIAL_EN</th>
<th>DESCRIPCIÓN</th>
<th>obtiene el tutorial especificado en inglés</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
<td>MODO</td>
<td>DESCRIPCIÓN</td>
</tr>
<tr>
<td>VID</td>
<td>bigint(20)</td>
<td>IN</td>
<td>id del tutorial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL PROCEDIMIENTO</th>
<th>TUTORIAL_ES</th>
<th>DESCRIPCIÓN</th>
<th>obtiene el tutorial especificado en español</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGUMENTO</td>
<td>TIPO</td>
<td>MODO</td>
<td>DESCRIPCIÓN</td>
</tr>
<tr>
<td>VID</td>
<td>bigint(20)</td>
<td>IN</td>
<td>id del tutorial</td>
</tr>
</tbody>
</table>
4.10.3 Manual de usuario del sistema.
Las funciones principales del sistema son:

- Crear contenido
- Editar contenido
- Eliminar contenido

Estas funciones pueden aplicarse a cada uno de los elementos creados con el CMS, los elementos pueden ser:

- Colaboradores
- Noticias
- Descargas
- Tutoriales
- Publicaciones
- Recursos
- Herramientas

Existe un caso especial, el caso de la portada es distinta ya que solo existe un elemento el cual solo puede actualizarse.

Para acceder a las funciones del sitio debe ingresar a la url: http://aramara.ciempieiss.org/ una vez ahí será necesario autenticarse con el usuario dado por el administrador del sistema.

![Imagen del sistema]

Ilustración 123 Acceso aramara

Una vez dentro podrá ver todas las funciones disponibles del sistema en la barra lateral y el menú central.
Búsqueda de elementos.

Las búsquedas de elementos funcionan de forma similar, sobre la barra de búsqueda se escribe el nombre o parte del nombre que se desea buscar.

Una vez que comience a escribir los elementos se filtrarán automáticamente, el filtrado no requiere que presione la tecla intro.
Una vez que los elementos aparezcan aparecerán sus opciones a lado, puede seleccionar la opción de edición del elemento o eliminarlo directamente, por seguridad el sistema pide conformar cuando se selecciona la opción de eliminar el elemento.

**Creación de contenido.**

Las opciones de creación de funcionan de forma similar, solo es necesario llenar correctamente los campos del formulario y presionar la tecla de confirmación para guardar el dato, en caso de presentarse algún problema el sistema evitará que se guarde la información y lo regresará al formulario para que corrija el error.
Los demás formularios contienen campos similares, una vez llenos los elementos, se presiona el botón de confirmación y el contenido será procesado.

**Edición de contenido.**

Para editar un elemento, después de buscarlo y seleccionar, éste se cargara en una interfaz similar a la interfaz de creación del mismo donde aparecerán todos sus datos, se cambian los deseados y se presiona el botón de actualizar, si el cambio se guarda con éxito aparecerá un mensaje de conformación.
En caso de error aparecerán mensajes de aviso y los cambios se descartarán.

En caso de encontrarse alguna falla relacionada con el archivo el sistema mantendrá los últimos archivos sin errores.
Ilustración 131 Error encontrado

Para acceder al panel de administración del foro es a través de esta url: http://forum.ciempiess.org/admin/index.php

Ilustración 132 Interfaz de administración del foro

Para administrar el blog es a través de la url: http://blog.ciempiess.org/wp-login.php

Ilustración 133 Blog login
5 Referencias

5.1 Bibliografía

Apache. (s.f.). *Apache*. Recuperado el 23 de Octubre de 2014, de www.apache.org/


CentOS. (s.f.). *CentOS*. Recuperado el 10 de Octubre de 2014, de https://www.centos.org/


*Desarrollo web*. (s.f.). Recuperado el 23 de Octubre de 2014, de Instalación y configuración de Apache: http://www.desarrolloweb.com/manuales/41/


Fedora. (s.f.). *fedoraproject*. Recuperado el 24 de Octubre de 2014, de http://fedoraproject.org/es/


MySQL. (s.f.). *MySQL*. Recuperado el 20 de Octubre de 2014, de http://dev.mysql.com/doc/


uc3m. (s.f.). Recuperado el 22 de Octubre de 2014, de lab: http://www.lab.inf.uc3m.es/~a0080802/RAI/mvc.html


WikiHow. (s.f.). Recuperado el 22 de Octubre de 2014, de http://es.wikihow.com/instalar-y-configurar-PHP-5.2.5-y-Apache-2.2.8-en-Windows-Vista

Wikipedia. (s.f.). Recuperado el 18 de Octubre de 2014, de http://es.wikipedia.org/wiki/AJAX
5.2 Tabla de Ilustraciones.

<table>
<thead>
<tr>
<th>Ilustración</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 COMPONENTES LAMP.</td>
<td>16</td>
</tr>
<tr>
<td>2 DISTRIBUCIONES LINUX.</td>
<td>17</td>
</tr>
<tr>
<td>3 LOGO FEDORA.</td>
<td>18</td>
</tr>
<tr>
<td>4 LOGO CENTOS.</td>
<td>18</td>
</tr>
<tr>
<td>5 LOGO LINUX MINT.</td>
<td>19</td>
</tr>
<tr>
<td>6 LOGO APACHE SERVER</td>
<td>20</td>
</tr>
<tr>
<td>7 LOGO PHP.</td>
<td>22</td>
</tr>
<tr>
<td>8 ARQUITECTURA DEL MODELO VISTA CONTROLADOR (MVC)</td>
<td>23</td>
</tr>
<tr>
<td>9 LOGO CODEIGNITER.</td>
<td>24</td>
</tr>
<tr>
<td>10 LOGO GOOGLE ANALYTICS.</td>
<td>34</td>
</tr>
<tr>
<td>11 LOGO WORDPRESS.</td>
<td>37</td>
</tr>
<tr>
<td>12 LOGO MyBB.</td>
<td>39</td>
</tr>
<tr>
<td>13 LOGO FACEBOOK DEVELOPERS.</td>
<td>39</td>
</tr>
<tr>
<td>14 LOGO UML.</td>
<td>40</td>
</tr>
<tr>
<td>15 COMPONENTES BÁSICOS DEL UML</td>
<td>41</td>
</tr>
<tr>
<td>16 ESTRUCTURA GENERAL DEL SISTEMA</td>
<td>42</td>
</tr>
<tr>
<td>17 ATRIBUTOS OBTENIDOS A PARIR DE DOCUMENTOS SEMIESTRUCTURADOS</td>
<td>46</td>
</tr>
<tr>
<td>18 DISTINTOS FORMATOS DE DOCUMENTOS CON INFORMACIÓN QUE LOS RELACIONA</td>
<td>46</td>
</tr>
<tr>
<td>19 ESQUEMA QUE MUESTRA LOS DISTINTOS MÓDULOS DEL SISTEMA ASÍ COMO SU UBICACIÓN</td>
<td>51</td>
</tr>
<tr>
<td>20 DIAGRAMA DEL CMS PRINCIPAL Y SUS MÓDULOS Y SUB MÓDULOS</td>
<td>51</td>
</tr>
<tr>
<td>21 SECCIONES DEL SITIO PRINCIPAL [<a href="http://WWW.CIEMPIESS.ORG">WWW.CIEMPIESS.ORG</a>.]</td>
<td>53</td>
</tr>
<tr>
<td>22 ESTRUCTURA DEL FORO CIEMPIESS CMS SECUNDARIOS [FORUM.CIEMPIESS].</td>
<td>54</td>
</tr>
<tr>
<td>23 ESTRUCTURA DEL BLOG CIEMPIESS CMS SECUNDARIOS [BLOG.CIEMPIESS]</td>
<td>55</td>
</tr>
<tr>
<td>24 PRIMERA PANTALLA DE LA INSTALACIÓN DE APACHE</td>
<td>58</td>
</tr>
<tr>
<td>25 INSTALACIÓN DE APACHE I.</td>
<td>59</td>
</tr>
<tr>
<td>26 INSTALACIÓN DE APACHE II.</td>
<td>59</td>
</tr>
<tr>
<td>27 INSTALACIÓN DE APACHE III.</td>
<td>60</td>
</tr>
<tr>
<td>28 Extracción de PHP 5.3.</td>
<td>60</td>
</tr>
<tr>
<td>29 Configuración de Apache y PHP.</td>
<td>61</td>
</tr>
<tr>
<td>30 Configuración de Apache y PHP II.</td>
<td>61</td>
</tr>
<tr>
<td>31 Configuración de Apache y PHP III.</td>
<td>62</td>
</tr>
<tr>
<td>32 Instalación y configuración de MySQL.</td>
<td>62</td>
</tr>
</tbody>
</table>