## DISEÑO CINEMATICO DE MAQUINARIA 1984

.

•

| echa     | Temario                                    | Horario        | Profesor                  |
|----------|--------------------------------------------|----------------|---------------------------|
| unio 25  | Definiciones y Conceptos Básicos           | 9 a 13:30 h    | . Dr.Jorge Angeles Alvaře |
|          | Clasificación de Mecanismos                | 15 a 17:30 h.  |                           |
| unio 26  | Análisis de Mecanismos de Pares inferiores | 9 a 13:30 h    | Dr. Jorge Angeles Alvar   |
| <i>v</i> | Introducción a la Robótica                 | 15 a 17:30 h   |                           |
| unio 27  | Síntesis de Mecanísmos de Pares Inferiores | 9 al3:30 h     | Dr. Jorge Angeles Alvar   |
|          | Optimación de Mecanismos                   | 15 a 17:30 h   | Dr. Jorge Angeles Alvare  |
| unio 28  | Mecanismos de levas                        | 9 a 13:30 h    | Dr. Carlos López Cajún    |
|          |                                            | 15 a 17:30 h   |                           |
| unio 29  | Mecanismos de engranes                     | 9 a 13:30 h    | M. en I. Angel A. Rojas   |
|          | Ejemplos de aplicación                     | 15 a 17:30 h 🏅 | 5a1gado                   |
|          |                                            |                |                           |

.

٠

.

.

EVALUACION DEL PERSONAL DOCENTE

MANTENIMIENTO DEL INTERES. (COMUNICACION CON EL USO DE LOS ASISTENTES, AMENIDAD, FACILIDAD DE EXPRESION). AUDIO VISUALES DOMINIO DEL TEMA PUNTUALIDAD EFICIENCIA EN CURSO DISENO CINEMATICO DE MAQUINARIA AYUDAS FECHA: Del 25 al 29 de junio de 1984. CONFERENCISTA Ļ, þr. Jorge Angeles Alvarez 2 br. Carlos López Cajún 3. . Salgado Rojas 4 6 6 7 8 9 ESCALA DE EVALUACION : 1 a 10

 $(\mathbf{I})$ 

| SU EVALUACION SINCERA NOS<br>AYUDARA A MEJORAR LOS<br>PROGRAMAS POSTERIORES QUE<br>DISENAREMOS PARA USTED. | ORGANIZACION Y DESARROLLO<br>DEL TEMA | GRADO DE PROFUNDIDAD<br>Logrado en el tema | GRADO DE ACTUALIZACION<br>Lograd <b>o en el tema</b> | UTILIDAD PRACTICA DEL<br>Tema |  |
|------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------|------------------------------------------------------|-------------------------------|--|
| Definiciones y conceptos básicos                                                                           |                                       | :                                          | · · · · · · · · · · · · · · · · · · ·                |                               |  |
| Clasificación de mecanismos                                                                                |                                       | · · ·                                      |                                                      |                               |  |
| Análisis de mecanismos de pares inf                                                                        |                                       |                                            | <br>_                                                |                               |  |
| Introducción a la robótica                                                                                 |                                       |                                            | ·                                                    |                               |  |
| Sintesis de mecanismos de pares int                                                                        |                                       | · ·                                        |                                                      |                               |  |
| Optimización de mecanismos                                                                                 |                                       |                                            |                                                      |                               |  |
| Mecnismos de levas                                                                                         |                                       |                                            |                                                      |                               |  |
| Elemplos de aplicación                                                                                     |                                       | -                                          |                                                      |                               |  |
|                                                                                                            |                                       |                                            |                                                      |                               |  |
|                                                                                                            |                                       |                                            |                                                      |                               |  |
|                                                                                                            |                                       |                                            |                                                      |                               |  |

. ....

\*\*\*\*\*

# EVALUACION DEL CURSO

.

|    | CONCEPTO                                        | EVALUACION |
|----|-------------------------------------------------|------------|
| 1. | APLICACION INMEDIATA DE LOS CONCEPTOS EXPUESTOS |            |
| 2. | CLARIDAD CON QUE SE EXPUSIERON LOS TEMAS        |            |
| з. | GRADO DE ACTUALIZACION LOGRADO CON EL CURSO     |            |
| 4. | CUMPLIMIENTO DE LOS OBJETIVOS DEL CURSO         |            |
| 5  | CONTINUIDAD EN LOS TEMAS DEL CURSO              |            |
| 6, | CALIDAD DE LAS NOTAS DEL CURSO                  |            |
| 7. | GRADO DE MOTIVACION LOGRADO CON ELCURSO         |            |

.

## ESCALA DE EVALUACION DE I A Ю

3

1. ¿Qué le pareció el ambiente en la División de Educación Continua?

| MUY AGRADABLE | AGRADABLE | DESAGRADABLE |
|---------------|-----------|--------------|
|               |           |              |

2. Medio de comunicación por el que se enteró del curso:

| PERIODICO EXCELSIOR<br>AMUNCIO TITULADO DI<br>VISION DE EDUCACION<br>CONTINUA | PERIODICO NOVEDADES<br>ANUNCIO TITULADO DI<br>VISION DE EDUCACION<br>CONTINUA | FOLLETO DEL CURSO |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------|
|                                                                               |                                                                               |                   |

| CARTEL MENSUAL | RADIO UNIVERSIDAD | COMUNICACION CARTA,<br>TELEFONO, VERBAL,<br>ETC. |
|----------------|-------------------|--------------------------------------------------|
|                |                   |                                                  |

| REVISTAS TECNICAS | FOLLETO ANUAL | CARTELERA UNAM "LOS<br>UNIVERSITARIOS HOY" | GACETA<br>UNAM |
|-------------------|---------------|--------------------------------------------|----------------|
|                   |               |                                            |                |

3. Medio de transporte utilizado para venir al Palacio de Minería:

| AUTOMOVIL<br>PARTICULAR | METRO | OTRO MEDIO |
|-------------------------|-------|------------|
|                         |       |            |

- 4. ¿Qué cambios harfa usted en el programa para tratar de perfeccionar el curso?
- 5. ¿Recomendaría el curso a otras personas?



- 6. ¿Qué cursos le gustaría que ofreciera la División de Educación Continua?
- 7. La coordinación académica fue:

| EXCELENTE | BUENA | REGULAR | MALA |
|-----------|-------|---------|------|
|           |       |         |      |

 Si está interesado en tomar algún curso <u>intensivo</u> ¿Cuál es el horario más conveniente para usted?

| LUNES A VIERNES<br>PE 9 A 13 H. Y<br>DE 14 A 18 H.<br>(CON COMIDAS) | LUNES A<br>VIERNES DE<br>17 A 21 H. | LUNES, MIEROOLES<br>Y VIERNES DE<br>18 A 21 H. | MARTES Y JUEVES<br>DE 18 A 21 H. |  |
|---------------------------------------------------------------------|-------------------------------------|------------------------------------------------|----------------------------------|--|
|                                                                     |                                     |                                                |                                  |  |

| VIERNES DE 17 A 21 H.<br>SABADOS DE 9 A 14 H. | VIERNES DE 17 A 21 H.<br>SABADOS DE '9 A 13 Y<br>DE 14 a 18 H. | OTRO |
|-----------------------------------------------|----------------------------------------------------------------|------|
|                                               |                                                                |      |

9. ¿Qué servicios adicionales desearía que tuviese la División de Educación Continua, para los asistentes?

\_\_\_\_\_

÷.,

10. Otras sugerencias:



.

## DIVISION DE EDUCACION CONTINUA FACULTAD DE INGENIERIA U.N.A.M.

DISERO CINEMATICO DE MAQUINARIA

SOFTWARE PARA EL ANALISIS DIGITAL DE SISTEMAS MECANICOS

> JORGE ANGELES ALVAREZ MANUEL CALLEJAS CASTRO



.UNIO, 1984

#### "SOFTWARE PARA EL ANALISIS DIGITAL DE SISTEMAS MECANICOS"

Jorge Angeles Alvarez Profesor División de Estudios de Posgrado Facultad de Ingeniería Apartado Postal 70-256 México 20, D.F. MEXICO

Manuel Callejdo Castro Ayudante de Profesor Departamento de Ingeniería Mecánica Facultad de Ingeniería, UNAM.

#### Abatract

Subprograms for digital computer are presented that allow, by their coupling within a main program, the analysis of multiple-loop linkages. Each subprograms analyzes kinematically a single-loop-single-degree-of-freedom linkage. The subprogram developed thus far analyze plans ERRR, RPRR and KRRP linkages. As an example, the analysis of the driving linkage of a machanical shovel is included.

#### Resumen

Se presentan subprogramas de computadora digital que permiten, mediante su acoplamiento en un programa principal, el análisis de mecanimmos de relabones rígidos de malla múltiple. Cada subprograma analiza cinemáticamente un mecanismo plano du grado de libertad simple y de una solo malla. Los subprogramas hasta ahora desarrollados apalizan mecanismos RRRR, RPRR y RRP. Como ejemplo, se incluye el análisia del mecanimmo accionador de una pala mecánica.

#### Introducción

El análisis cinemático de sistemas mecánicos mediante computadore digital cobra importan cia en el proceso de diseño o de rediseño de tales sistemas, pues a través de este gnálisis es posible evaluar su operación sin necesidad de construirlo, En efecto, mediante este análipie puedo deperminarse la evolución de variables tales como máxima aceleración (lineal o angular) de portes críticas, la ventaja mecánica de la transmission, o bien detectorse situsciones adversas tales como interforoncias. Adicionalmente, cabe señalar que el enflísis mediante computadora digital permite examinat la operación de sistemas mecánicos con todo el detalle deses do y con tanta precisión como sea nuceario, sin tener que construir costosos prototipos. con el ahorro consecuente en economía y en cuan to a tiempo.

Los sixtemas mecánicos a los que es aplica ble el "software" aquí presentado consisten de acoplamientos de mecanismos planos de grado de libertad simple y de une sola malla.

Existen programas tales como el KAPKA o el IMP(I) que sirven para analizar cinemática y dinámicamente sistemas mecánicos de mallas miltiples y de múltiple grado de libertad. Inclusive, en (2) se consigna ampliamente el software disponible para el propósito mencionado

El objeto que se persigue al desarrollar el softwars aquí presentado es múltiple. Por un lado, orientarlo hacia la aplicación de técnicas interactivas de graficación. Por otro lado, desarrollarlo en forma modular, lo que permiti rá su utilización en forma más eficiente, pues así el diseñador puede conter con una programo reca de la que puede seleccionar solu los subprogramas que él requiera, sin tener que utili zar memoria de computadora que tendría ociusa, en caso de recurrir a un programa de propósito general. Finalmente, el desarrollo de un soltware propio es desemble, pues esto contribuye a la creación de una tennología propia.

#### Descripción del soltware

Los subprogramas que se describen a contipuación, RESCII (RESpuesta Cinemática), RESCI2 y RESCI3, sirven para el snálisis de mecanismos de los tipos RRRR, RPRR y RRRP, respectivamente. Estos mecanismos se muestran en las Figs. I-3. Cada uno de esos subprogramas se describa a continuación.

#### RESCII. Algoritmo de cálculo

Se mupone que se conoce perfectimente los valores  $a_1, \ldots, a_5$  y a de la Fig 1, esí como la excitación del mecanismo,  $\Psi = \phi(t)$ ; así, se cono cen también  $\psi(t)$ ,  $\psi(t)$  y derivadas de orden superior de esta función. El análisis comprende la obtención de la tespucata cónomítica del mecanismo, que incluye  $\psi(t)$ ,  $\psi$ 

El ángulo ; se obtiene de la ecusción de Freudenstein (3):

 $k_1 - k_2 \cos \phi + k_2 \cos \phi + \cos (\phi - \psi) = 0 \tag{1}$ 

donde

$$k_{1} = \frac{a_{3}^{2} - a_{1}^{2} - a_{2}^{2} - a_{4}^{2}}{2a_{2}a_{4}^{2}}, \quad k_{2} = \frac{a_{1}}{a_{2}}, \quad k_{3} = \frac{a_{1}}{a_{4}}$$
(2)

#### Escribiendo 1a ec. (1) en la forma

y Sustituyendo las siguientes identidades trigo • nométricas:

$$\operatorname{sen}_{\varphi} = \frac{2t \tan(\varphi/2)}{1 + \tan^2(\varphi/2)}, \quad \operatorname{cus}_{\varphi} = \frac{1 - \tan^2(\varphi/2)}{1 + \tan^2(\varphi/2)}$$
(3)

1e ec. (1') se transforms en

donde

$$A=k_1+k_2-(1-k_3)\cos\psi \qquad (5a)$$

Așî la ec. (4) es cuadrătica en tan(¢/2), y su selución es, sencillamențe,

$$ran(\phi_{1,2}/2) = \frac{-B^{\pm}\sqrt{B^{2}-4AC}}{2A}$$
 (6a)

de dande

$$s_{3,2} = 2 \tan^{-1} \left( \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \right)$$
 (6b)

Le solución (ba) e la cuadrática (4) es contrecta desde el punto de vista algebraico. Sin embargo, numéritamente puede causar dificultades catastróficas, como se apunte en  $\{4\}$ . En efecto, si  $B^2 >> 4AC$ , la primera raíz (tomando el signo positivo en la solución (ba)) se anula a causa del error de redondeo. Para evitar esta situación, se calcula en este caso la primera raíz como

$$\tan(\phi_1/2) = \frac{B + (B^2 - 4AC \operatorname{sgn}(B))}{2\lambda}$$
(7a)

y la segunda, como

$$\tan(\phi_2/2) = \frac{C}{A \tan(\phi_1/2)}$$
 (7b)

Las due raices anteriores corresponden a las posiciones conjugadas del mecanismo. En un punto muerto del colabón de entrada, claramente las dos posiciones conjugadas se reducen a una sola, lo cual succede cuando se anula el radical. Si este radical no se anula para ningún valor de \$, al aslabón de entrada no tiene ninguna posición de punto muerto, esto es, constituye una manivela. En estas condiciones, conviene en pri mer lugar determinar ei este eslabón es del tipo balancín o del Lipo manivala. Esto se puede determinar del criterio de Grasholf (5); pero como en este cuso interesa conocor, siempre que se trate de un balancin, sus configuraciones extreman, se procede de la siguiente forma: Ya que el mocanismo su encuentra en una configu ración extrama al anularse el redical, se debe determinar para qué valores de 9 surede esto, es decir, es recesario despejar \$ de la ecuación

$$\tau(\psi) = B^2 - 4AC = 0 \tag{8}$$

Al sustituit los valores (5a-t) en la ec. (8) ae tiene

$$\cos^2\psi + 2b\cos\psi + c = 0$$
 (9)  
double

$$b = \frac{k_2^{+k_1k_2}}{k_3^2}$$
(10a)

$$c = \frac{k_1^2 - k_2^2 - 1}{k_1^2}$$
(10b)

Las raíces de la uc. (9) son, entoures,

$$\cos \psi_{1,2} = b \pm \sqrt{b^2 - c}$$
 (11)

Haciendo la sustitución de b y c en la ecuación (11) en términos de  $k_1, k_2$  y  $k_1$  y en seguida sustituyendo éstas por  $a_1, a_2, a_3$  y  $a_4$ se tiene 2 a 2

$$\cos \psi_{1,2} = \frac{a_1^2 + a_2^2 - (a_1 + a_2)^2}{2a_1 a_2}$$
(12)

que, como se ve, da lugar a rafcas reales. Se tiene, entonces, las siguientes situaciones posibles

- i) El valur absoluto de ambas ruíces es menor que l.
- Sólo una raíz tiene valor absoluto senor que 1.
- iii) Ambas raices rienen velor absoluto mayor que 1.

En el caso i) el estabón de entrada es del tipo balancín, estando dadas sus 2 configuraciones extremas por las raíces (12). En el caso i)) este estabón también es balancín y, supaniendo que la primera raíz tenga valor absoluto menor que i, las configuraciones extremas están dadas por esta raíz y son simétricas, esto es,  $\frac{4}{7} = -\frac{4}{1}$ . En el caso iii), el estabón ve del tipo manivela. Una vez determinadas las configuraciones extremas, se definen  $\frac{1}{7}$  máx

(para emlabones del tipo bulancin) de acuerdo etn los valores que adquiera :"( $\phi$ ) en esas con figuraciones, según el criterio conocido de la segunda derivada, esto es,  $\phi$  es minima donde  $\psi'(\phi)$  se anula y  $\psi''(\phi) > 0$ ;  $\psi$  es máxim, donde  $\psi'(\phi)$  se anula y  $\psi''(\phi) < 0$ .

Los variables 9(t) y 3(t) se obtienen de las fórmulas

$$\dot{\phi}(z) = \frac{d\phi}{d\psi} \dot{\phi} \qquad (13)$$

 $\ddot{\bullet}(\mathbf{t}) = \frac{d^2 \mathbf{e}^{+2}}{d \psi^2} + \frac{d z}{d \psi} \ddot{\psi} \qquad (14)$ 

donde las derivadas con respecto a y se calculan de la ecuación de Freudenstrin (1) que define, bajo lus condiciones de existencia del caso (6), a e como función implícita de t. En

(Sb)

$$f(\phi,\phi) = 0$$
 (15)

de donde

$$\frac{d\phi}{d\psi} = -\frac{\partial f/\partial \psi}{\partial f/\partial \phi} = -\frac{N}{D}$$
(16)

$$\frac{d^2\phi}{d\phi^2} = -\frac{1}{D} \left( \frac{\partial N}{\partial \phi} + \frac{d\phi}{\partial \phi} - \frac{\partial D}{\partial \phi} \right) \frac{d\phi}{d\phi} - \frac{\partial}{\partial \phi} \frac{\partial}{\partial \phi} = \frac{\partial}{\partial \phi} \frac{\partial}{\partial \phi}$$
(17)

Las variables  $\theta(t)$ ,  $\dot{\theta}(t) \neq \theta(t)$  so calculan de una ecuación semejante a la de Freudenstein  $(\eta)$ :

$$L_1 + L_2 \cos \theta + L_3 \cos \theta - \cos (\theta - \theta) = 0$$
 (18)

El ángulo 8(#) se calcula en forma análoga a como se calculó e(#) de las ecs. (7a y b), obteniëndose asī dos posiciones conjugadas. Las variables 0(t) y 0(t) se obtienen, análoga mente, como

$$\hat{\theta} = \frac{d\Phi}{d\psi} \hat{\psi}$$
(19)

y

Y

$$\ddot{\theta} = \frac{d^2\theta}{d\psi^2} \dot{\psi}^2 + \frac{d\theta}{d\psi} \ddot{\psi}.$$
 (20)

donde las derivadas parcisles con respecto a # se obtienen de la ec. (12) que define anâlogamente a 8 como función implícite de #. En efec to, escribiendo la ec. (18) como

se obtuene

$$\frac{d\theta}{d\psi} = -\frac{\partial h/\partial \psi}{\partial h/\partial \theta} = -\frac{N}{D}$$
(22)

$$\frac{d^2\theta}{d\phi^2} = \frac{1}{D} \left( \frac{\partial N^4}{\partial \phi} + \frac{d\theta}{d\phi} \frac{\partial D^4}{\partial \theta} \right) = \frac{1}{\partial \phi} \frac{N^4}{D^4}$$
(23)

Las variables x(t), y(t) as calculan de le geometrís de la Fig 1, sencillaments como

calculándose sus derivadas por derivación directa de estas ecuaciones, Las fórmulas corres pondientes son fácilmente obtenibles y por la falta de espacio no se incluyen. Finalmente, el ángulo de transmisión se calcula sencilleecote de -

#### RESCI2. Algoritmo de câlculo

Se supone que un conocan perfectamente los valores  $a_1 \neq a_2$ , as como la excitación  $a(t) \neq sus derivadas. Se desea determinar <math>\theta(t)$ ,  $\dot{\theta}(t)$ ,  $\theta(t)$ ,  $\phi(t)$ ,  $\dot{\phi}(t)$  y  $\ddot{\phi}(t)$ . De la Pig 2 se obtim-0 e  $a^2 = a_1^2 + a_2^2 + 2a_1a_2come$ (26)

de donde

В

$$\frac{de \ donde}{\phi} = \cos^{-1} \left[ \frac{a^2 - a_1^2 - a_2^2}{2a_1 a_2} \right]$$
adicionalmente.
(27)

$$\theta = \tan^{-1} \left( \frac{a_2 \sin \phi}{a_2 \cos \phi + a_1} \right)$$
(28)

Las derivadas se calculan derivando directamente las relaciones:

As1, we obtione  

$$\dot{\phi} = \frac{2\dot{a}}{a_2 \operatorname{men}(\phi - \theta)}$$
(30)

$$\partial = \frac{-\dot{\theta}}{g \tan(\phi - \theta)}$$
(31)

$$= \frac{-(s-e_2\cos(\phi-\theta))}{e^2 \sigma \tan(\phi-\theta) \sin^2(\phi-\theta)} = \frac{1}{e^2 \sin(\phi-\theta)} = (32)$$

$$\tilde{\theta} = \frac{a_2 \cos(\phi-\theta) \left(1 + \cos^2(\phi-\theta)\right) - a_2}{a_2 - \frac{2}{a + \sin^2(\phi-\theta)}} = \frac{B}{a \tan(\phi-\theta)}$$
(33)

#### RESCIJ. Algoritmo de câlculo

Se supone que se conocen perfectamente las dimensiones a1, a2, a3 y a4, así como el ingulo a del mecanismo RRRP de la Fig 3, además de la excitación e(t) y sus derivadas. Se deses calcular s(t), s(t), T(t), \$(t), \$(t), \$(t),  $x(t), \dot{x}(t), \dot{x}(t), \dot{y}(t), \dot{y}(t), \dot{y}(t)$ . De la geometrís de la Fig 3,

De la ec. (34b),

$$= 4 \times n^{-1} \left[ \frac{-4 \cdot 2^{4} \times n + 1}{3 \cdot 3} \right]$$
 (35)

Si  $a_1 + a_2 \ge a_3$ , la monivela oscila de  $\psi_1$  a ♦.. donde

$$e_1 = \sin^{-1}\left(\frac{a_3 - a_1}{a_2}\right)$$
 (364)

7

$$\psi_2 = -(\psi_1 + 160^*)$$
 (36b)

Derivando (34b) con respecto al tiempo,

Durivando (34a) con respecto al ticapo y susrituyendo (37a) en la expresión así obtenid∎ . ....

$$a = - (a \pm en\psi + a \pm en\phi) \frac{a_2 \cos \phi}{a_3 \cos \phi}$$
(37b)

Derivando las expresiones (374) y (376) con respecto al tiempo se obtiene

$$\frac{a_{2}^{2} \cos^{4}\psi \exp(-a_{2}a_{3}^{2} \sin\psi \cos^{4}\phi)}{a_{3}\cos^{4}\phi} \frac{1}{\psi^{2}} \frac{a_{2}\cos\psi}{a_{3}\cos\phi} \frac{1}{\psi} (38a)$$

$$\frac{a_{2}^{2} \sin\psi \exp(a_{3}^{2}\cos^{2}\phi) - a_{2}^{2}a_{3}(\cos^{2}\psi) - a_{2}^{2}a_{3}(\cos^{2}\psi)$$

Las variables x(t), y(t) se calculan de la geometría de la Fig 3, sencillamente como

$$y = *_{x} sen(y + a_{x} sen(y + a))$$
(395)

Calculándose sus derivadas por derivación directa de estas acuaciones. Las fórmulas cofrespondientes son facilmente obtenibles y por falta de espacio no se incluyen.

• Ejumplo:

<sup>2</sup> Determine  $\phi(t)$ ,  $\dot{\phi}(t)$ ,  $\ddot{\phi}(t)$  y  $\mu(t)$  del macaniumo accionador de la pala macanica de la Fig 4. El modelo cinemático y la definición de las variables anteriores se indican en la Fig 5. La entrada del macanismo es a(t)=3+0.5 uen<sup>2</sup> st. Se acoplaron las subrutines RESCI1 y RESC12 <sup>27</sup> en un programa principal y se obtuviron las cur vas de la Fig 6.









Fig 5, Modelo cinemático del \_\_\_\_\_\_ mistema macánico de la Fig 4.

#### Referenciae

- Sheth P.N. y Bicker, Jr. J.A., "IMP (Integrated ted Mechanisms Program): a computer-mided damign analysis system for Dechanisms and linkages, <u>Trans. ASME</u>, 94, Seris B, <u>J. Eng.</u> <u>Ind.</u>, 1972, pp. 454-464
- Paul B., "Analytical dynamics of mechanisms-A computer oriented overview", <u>Mech. Mach.</u> Theory, Vol. 10, 1975, pp. 481-507.
- Densvit J. y Hartenberg K.S., <u>Kinematic</u> <u>Synthesis of Linkares</u>, HcGrav-Hill Book Co., N. York, 1964, p. 297.
- Forsythe G.E., Kalcolm H.A. y Holer C.B., <u>Computer Method for Mathematical Computa-</u> <u>tions</u>, Prentice-Mall, Englewood Cliffs, N.J., 1977, pp. 20-22.
- Shigley J.E. y Dicker, Jr. J.J., <u>Theory of</u> <u>Machines and Mechanisma</u>, HCGraw-Hill Book Co., N. York, 1980, pp. 18-18.
- Brand L., <u>Advanced Calculus</u>, John Wiley & Song, Inc., N. York, 1955, pp. 165-169.
- Angeles J., <u>Análisis y Síntesis Cinemáticos</u> <u>de Sistemas Mecánicos</u>, Limusa, S.A., C. de México, 1978, pp. 53-60.



Fig 6. Respuesta cinemática del elstema mecánico de la Fig 4.



.

## DIVISION DE EDUCACION CONTINUA FACULTAD DE INGENIERIA U.N.A.M.

DISEND CINEMATICO DE MAQUINARIA

AN ALGEBRAIC FORMULATION OF GRASHOF'S MOBILITY CRITERIA WITH APPLICATION TO LINKAGE OPTIMIZATION USING GRADIENT-DEPENDENT METHODS

> JORGE ANGELES MANUEL CALLEJAS

JUNIO, 1984

## AN ALGEBRAIC FORMULATION OF GRASHOF'S MOBILITY CRITERIA WITH APPLICATION TO LINKAGE OPTIMIZATION USING GRADIENT-DEPENDENT METHODS

Jorge Angeles, Professor<sup>1</sup> (ASME Member 79) Manuel Callejas, Research Assistant<sup>1</sup>

### Abstract

Sets of constraints on analytic functions of linkage parameters, equivalent to those of Grashof's mobility criteria are derived. These inequalities represent necessary and sufficient mobility conditions for the input and the output links of planar 4R linkages, as well as for its coupler link. The application of the foregoing constraint relations to linkage optimization using gradient -dependent methods is shown with an example that is fully solved resorting to Newton-Raphson's method and an interior penalty function.

Universidad Nacional Autónoma de México Apdo, Postal 70-256 C. Universitaria 04510 México, D.F. MEXICO.

## Introduction

Grashof's mobility criteria for RRRR plane linkages establish the conditions on the relative magnitudes of the links for the existence of double-crank, crank-rocker and double-rocker linkages. The proof of such criteria can be seen in either [1] or [2]. A recent reassessment of such criteria was given by Paul [3], who proved necessity and sufficiency of those. Paul also showed that two types of double-crank linkages should be distinguished, namely those with fully-revolving couplers and those with oscillating ones. The mobility of the coupler link is also analyzed in the present paper. Indeed, necessary and sufficient conditions for a fully-revolving and for an oscillating coupler are derived. Litvin [4] has established general conditions in algebraic form for the existence of cranks in closed kinematic chains of any type. He does not provide, however, specific formulae for specific types of linkages.

Grashof's conditions for the existence of the aforementioned types of linkages take the form of inequalities in which the lengths of the different links appear linearly. In synthesizing RRRR plane linkages for function generation, however, a system of linear equations not on the linkage lengths, but on a different set of parameters, arising from Freudenstein's equations, is to be solved. Given the RRRR plane linkage of Fig 1, let

$$k_1 = \frac{a_1^2 + a_2^2 - a_3^2 + a_4^2}{2a_2a_4}, \quad k_2 = \frac{a_1}{a_2}, \quad k_3 = \frac{a_1}{a_4}$$
(1)

The problem of linkage synthesis for function generation consists of finding a set of values  $\{a_1, a_2, a_3, a_4\}$  for the link lengths that produce a prescribed set of input-output pairs  $\{(\psi_i, \phi_i)\}_{i=1}^{n}$ , where  $\psi$  and  $\phi$  are the

input and the output angles, respectively.

Freudenstein's equation [5;6, p 297] allows one to compute the set  $\{k_1, k_2, k_3\}$  for the prescribed input-putput values. This equation is the following:

$$k_1 + k_2 \cos \phi_i - k_3 \cos \phi_i = \cos(\phi_i - \phi_i), i = 1,..., n$$
 (2)

Since the problem contains three unknowns, three input-output values can be prescribed, eq (2) thus leading to a linear algebraic system of the form

$$Ak = b \tag{3}$$

where A is a 3x3 matrix, k and b being the 3-dimensional vectors given next:

$$A = \begin{cases} 1 & \cos\phi_{1} & -\cos\psi_{1} \\ 1 & \cos\phi_{2} & -\cos\psi_{2} \\ 1 & \cos\phi_{3} & -\cos\psi_{3} \end{cases}, \quad k = \begin{cases} k_{1} \\ k_{2} \\ k_{3} \end{cases}, \quad b = \begin{cases} \cos(\psi_{1} - \phi_{1}) \\ \cos(\psi_{2} - \phi_{2}) \\ \cos(\psi_{3} - \phi_{3}) \end{cases}$$
(4)

By inverting the system of equations (3) one can obtain the unique set of values  $\{k_1, k_2, k_3\}$  that solve the proposed problem. Given the simple structure of matrix A and the low number of equations, matrix A can be inverted<sup>2</sup> explicitly. In fact, formulae are available in the literature [36, p 298] for the computation of k from (3). Once the value of k has been computed, the lengths  $a_i$  can be computed by inversion of eqs (1) as:

ļ

<sup>&</sup>quot;Here it is assumed that the synthesis problem leading to eqs (1) is well posed, i e cases rendering either matrix A singular or vector b zero are discarded.

$$a_1 = 1, a_2 = \frac{1}{k_2}, a_3 = \frac{1}{k_2}, a_3 = \frac{1}{k_2} + \frac{\left[k_2^2 + k_3^2 + k_2^2 + k_3^2 - 2k_1k_2k_3\right]}{k_2k_3}, a_4 = \frac{1}{k_3}$$
 (5)

.

In the above discussion nothing prevents  $k_2$  and  $k_3$  from resulting negative, thus producing negative values for either  $a_2$  or  $a_4$ , which situation is next dealt with; a<sub>1</sub> is arbitrarily chosen unity, for a scaling of all lengths by the same factor does not alter the input-output relationship, whereas a<sub>3</sub> can always be made positive by a proper choice of the sign of the square root. Negative values of either  $a_2$  or  $a_4$  indicate that the angle  $\phi$  or, correspondingly,  $\phi$  , should be measured to an extension of eitherthe input or the output link as shown in Fig 2.1f it is necessary to verify Grashof's conditions within the synthesis process, then  ${
m a_2}^-$  and  ${
m a_4}^-$  should be computed using the absolute values of  $k_2$  and  $k_3$ . Introducing such absolute values, however, removes the smoothness of one side of Grashof's inequalities, which might be undesirable if the foregoing computations are to be performed within an optimization procedure requiring the computation of the gradient of that side of the inequalities. An alternative approach [7] consists of determining lower and upper bounds for the length of the coupler link if either the input or the output link, or both, is to be a crank. For RRRR plane linkages, however, this approach leads to Grashof's unsmooth inequalities. Waldron [8] and Waldron and Stevensen [9] have proposed alternate approaches based on graphical methods, whereas Gupta has proposed sufficient algebraic smooth inequalities [10, 11] guaranteeing the existence of an input link of the crank type. Necessary and sufficient algebraic smooth inequalities have been proposed for the existence of an input crank [12].

In what follows, a set of smooth inequalities is obtained, that is necessary and sufficient to produce an input, an output or a coupler link of either type, crank or rocker. This set of inequalities is meant to be adjoined to optimization programs to produce linkages whose links be of a given type, while meeting prescribed functional requirements for the classical problems of linkage synthesis, namely rigid-body guidance, path generation and function generation. By incorporating further requirements on the transmission angle, additionally, as discussed in [13], the aforementioned problems of linkage synthesis can be treated as nonlinear programming problems, which can be readily solved using standard optimization packages, normally available in any program library.

### Derivation of mobility conditions

First a set of mobility conditions for the input link is derived. To do this, indices are dropped from Freudenstein's equation for simplicity. Next, the following identities are introduced:

$$\cos\phi = \frac{1 - \tan^2(\phi/2)}{1 + \tan^2(\phi/2)}, \sin\phi = \frac{2 \tan(\phi/2)}{1 + \tan^2(\phi/2)}$$
 (6)

Freudenstein's equation is thus transformed into

A 
$$\tan^2(\phi/2) = 2B \tan(\phi/2) + C = 0$$
 (7)

where

$$A = k_1 - k_2 + (1 - k_3) \cos \psi$$
 (8a)

$$C = k_1 + k_2 - (1+k_3) \cos \psi$$
 (8c)

Eq (7), then, defines a quadratic equation in  $tan(\phi/2)$  for a given value of  $\psi$ . If none of its coefficients vanishes, this equation produces two values of  $\phi$ , given by

$$\phi_{1,2} = 2 \tan^{-1} \left[ \frac{B \pm (B^2 - AC)^{1/2}}{A} \right]$$
 (9a)

The two values of  $\phi(\psi)$  given above can be: i) both complex, in which case the input link is of the rocker type, the corresponding value of  $\psi$ lying outside of the mobility range of this link, ii) both real and distinct, thus corresponding to the two conjugate configurations of the linkage, or iii) both real and identical to each other, in which case  $\psi$  attains an extremum value, i.e. the output link attains a dead-point position.

Now, if  $A(\psi)=0$  and  $B(\psi)\neq0$ , the set  $\{k_1,k_2,k_3\}$  must observe the following relationship:

 $|k_1 - k_2| \le |1 - k_3|$ 

In this case, the left-hand side of eq (7) degenerates into a line. Viewed this line as a particular case of the general quadratic function, its *two intersections* with the tan  $(\phi/2)$  - axis can be thought of lying at tan  $(\phi/2) = C/2B$  and at infinity-which thus produces the two following values for corresponding conjugate configurations:

 $\phi_1 = \tan^{-1} (C/2B), \phi_2 = \pi$  (9b) The two values of  $\phi$  appearing in (9b) can also be derived formally by taking the limit, as  $A \rightarrow 0$ , of both values appearing in (9a).

. .

Should both A and B vanish simultaneously, then C would necessarily vanish, as well, in which case, for this particular value of  $\psi$ , eq (7) would hold identically, for any value of  $\phi$ . The zeroing of B implies, from eq (8b),  $\psi = 0$  or  $\pi$ , which then yields  $k_1 = k_3$  and  $k_2 = 1$ , or  $k_1 = -k_3$  and  $k_2 = -1$ , respectively, in view of eqs (8a & c). In either case  $a_2^2 = a_1^2$  and  $a_4^2 = a_3^2$ , i.e.the linkage is of the change-point type and either at  $\psi = 0$  or  $\psi = \pi$ , the input and the fixed links are coincident, as well as the coupler and the output links. The linkage thus degenerates into a two-link open chain, for which  $\phi$  can attain any real value, as predicted by eq (7).

Furthermore, if the discriminant of eq (7), i.e. the radical of expression (9a) is negative for all real values of  $\psi$ , then the four lengths  $a_1$ ,  $a_2$ ,  $a_3 \& a_4$  do not define a closed quadrilateron.

In establishing Grashof's mobility criteria, it is always assumed that the linkage lengths define a quadrilateron, that is to say, each length is smaller than the sum of the remaining ones. Such closure condition is next derived in terms of the set  $\{k_1, k_2, k_3\}$ . This is more easily done if the non-closing condition is established, instead. The set  $\{k_1, k_2, k_3\}$ will define a set of link lengths that does not constitute a quadrilateron if the radical of eq (9a) is negative for all real values of  $\psi$ , as already remarked. A rigorous analysis of this situation, that is not presented here due to space limitations, leads to the following set of inequalities:

$$(k_{2} - k_{1}k_{3})^{2} \ge k_{3}^{4} , (k_{1}^{2} - k_{2}^{2} + k_{3}^{2} - 1)^{2} \ge 4(k_{2} - k_{1}k_{3})^{2} , k_{1}^{2} - k_{2}^{2} - 1 \ge k_{3}^{2}$$
(10a)  
$$(k_{2} - k_{1}k_{3})^{2} \le k_{3}^{4} , (k_{2} - k_{1}k_{3})^{2} \le k_{3}^{2}(k_{1}^{2} - k_{2}^{2} - 1)$$
(10b)

The following has then been proved: If the set  $\{k_1, k_2, k_3\}$ , as given by eqs (1), verifies either set of inequalities, (10a) or (10b), then the link lengths  $a_i(i = 1, ..., 4)$  do not define a linkage.

It can be readily verified that if the second relation (10b) holds, then  $a_3$ , as given by eq (5), turns to be imaginary. The non-existence of a linkage can thus be due to either of two possibilities: i) One of its links turns to have an imaginary length (if all three k's in (5) are real, only  $a_3$  can have an imaginary value); ii) Even though all four lengths are real, they do not meet the closure condition.

Now, if the k's are obtained as the solution of eqs (2) with n = 3, then the said k's will yield a closing real quadrilateron, i.e.neither of relations (10) will hold. Although this is not formally proved here, this fact can be realized from the continuity of both sides of Freudenstein's equation, the real-valuedness of  $\{(\psi_i, \psi_i)\}_1^3$  and the (assumed) nonsingularity of matrix A appearing in (4).

The application of formulae(9) to obtain the real values  $\phi_1$ ,  $\phi_2$  corresponding to one single value of  $\psi$  should be made taking into account possible cancellations due to round-off errors. This can be taken care of if formula (9) is rewritten in a form that is more suitable for numerical stability, as indicated in [14]. This topic, however, is not further discussed here for it falls without the scope of the paper.

The two real values obtained from eq (9) are distinct, except at deadpoint positions of the input link. Those distinct values correspond to the two conjugate configurations of the linkage. Next, conditions for the full rotatability of the input link are obtained. To this end, the discriminant of eq (9a) is expanded and then zeroed. This leads to

$$\cos^2\psi + 2b\,\cos\psi + c = 0 \tag{11a}$$

with

$$b = \frac{k_2 - k_1 k_3}{k_3^2}, c = \frac{k_1^2 - k_2^2 - 1}{k_3^2}$$
(11b)

The real roots  $\cos \psi_1$ ,  $\cos \psi_2$ , of eq (11a) then yield the two extremal values of  $\psi$ . These two roots are always real if  $a_3$  is, but nothing prevents them from having absolute values larger than unity. The roots of eq (11a) are, in fact,

$$\cdots \quad \cos\psi_{1,2} = b \pm (b^2 - c)^{1/2}$$
 (12a)

which, in terms of the link lengths, produce

$$\cos\psi_{1,2} = \frac{a_1^2 + a_2^2 - (a_3 + a_4)^2}{2a_1^2a_2}$$
(12b)

from which it is clear that both roots are real if  $a_3$  is. Now, if the input link is to be of the crank type, then these two roots should yield complex values of  $\phi_1$  and  $\phi_2$ , which is only possible if both roots (12a) have absolute values larger than unity. This is exactly the necessary and sufficient condition for an input link to be of the crank type, provided the k's were obtained from a well-posed synthesis problem. This condition is, then

$$|-b \pm (b^2 - c)|^{1/2} |> 1$$
 (13)

which, if squared, still holds, for both sides of (13) are positive. Thus, it is equivalent to the following two inequalities:

$$2b^2 - c - 1 > 2b (b^2 - c)^{1/2}, 2b^2 - c - 1 > -2b (b^2 - c)^{1/2}$$
 (14)

which are in turn equivalent to the single one given next:

$$2b^2 - c - 1 > 2|b|(b^2 - c)^{1/2}$$
 (15)

which requires that its left-hand side be positive, i e

$$2b^2 - c - 1 > 0$$
 (16)

Now, given inequality (16), relation (15) still holds if its both sides are squared. This leads to

$$(c+1)^2 - 4b^2 > 0$$
 (17)

If definitions (11b) are recalled and substituted into relations (16) and (17), the next two inequalities are obtained, in the space of  $k_1$ ,  $k_2$ ,  $k_3$ :

$$2 (k_2 - k_1 k_3)^2 - k_3^2 (k_1^2 - k_2^2 + k_3^2 - 1) > 0$$
 (18 a)

$$[(k_1 - k_3)^2 - (k_2 - 1)^2] [(k_1 + k_3)^2 - (k_2 + 1)^2] > 0$$
 (18 b)

Summarizing, then, one has proved that: The necessary and sufficient conditions for the synthesis problem leading to cqs (2) to produce an input crank is that both inequalities (18 a and b) hold.

The full rotatability conditions for the output crank can be obtained analogously. It is far simpler, however, in view of the symmetry of definitions (11b) with respect to  $a_2$  and  $a_4$  in Freudenstein's equation, to exchange the roles of variables  $k_2$  and  $-k_3$  in inequalities (18 a and b). This yields

$$2(-k_3 + k_1k_2)^2 - k_2^2(k_1^2 + k_2^2 - k_3^2 - 1) > 0$$
 (19 a)

$$[(k_1 + k_2)^2 - (-k_3 - 1)^2] [(k_1 - k_2)^2 - (-k_3 + 1)^2] > 0$$
 (19 b)

One then has: The necessary and sufficient conditions for the synthesis problem leading to eqs (2) to produce an output erank is that both inequalities (19 a and b) hold.

Conditions for the existence of rockers are next derived. One possible way of establishing them is saying that "an input link is of the rocker type if inequalities 18 a and b) do not hold simultaneously, whereas an output link is of the rocker type of inequalities (19 a and b) do not hold simultaneously". Since the violation of the said inequalities presents various alternatives, it does not guarantee the existence of a rocker link. An alternative approach, specifying the extremal values of the variable of interest, either  $\psi$  or  $\phi$ , is presented next.

If an input rocker is required to have mobility only within the range  $\psi_1 \leq \psi \leq \psi_2$ , then the discriminant of eq (9a) is zeroed at these values, i.e.

$$\cos^2 \psi_i + 2 b \cos \psi_i + c = 0, \quad i = 1.2$$
 (20)

The two given roots of eq (20) satisfy

$$b = -\frac{1}{2} (\cos \psi_1 + \cos \psi_2), c = \cos \psi_1 \cos \psi_2$$
 (21)

In terms of  $k_1^{}$ ,  $k_2^{}$  and  $k_3^{}$ , eqs (21) lead to

$$2(k_2 - k_1 k_3) + k_3^2 (\cos \psi_1 + \cos \psi_2) = 0$$
 (22a)

and

$$k_1^2 - k_2^2 - 1 - k_3^2 \cos \psi_1 \cos \psi_2 = 0$$
 (22b)

Eqs (22) constitute a nonlinear algebraic system in two equations and three unknowns, i.e. it is underdetermined. These are subject to the second

order constraints guaranteeing that  $\psi_1$  be a minimum and  $\psi_2$  be a maximum, which are

$$\psi''(\phi_1) \ge 0, \ \psi''(\phi_2) \le 0$$
 (23)

where,  $\phi_i$ , defined as  $\phi(\psi_i)$  can be obtained by substitution in eq (7). At a stationary value of  $\psi$ ,  $\psi'$  vanishes,  $\psi''(\phi)$  reducing to

$$\psi''(\phi) = \frac{(A^2 + B^2)^2 A}{2 G^2}$$
(24a)

with A and B given as in definitions (8), and

$$G = [B^{2} (1 - k_{3}) - A^{2} (1 + k_{3})] \sin \psi + 2 AB \cos \psi \qquad (24b)$$

Relations (23) then can be expressed as

$$A(\psi_1) \ge 0, A(\psi_2) \le 0$$
 (25a)

or, from definition (8a), in terms of  $k_1$ ,  $k_2$  and  $k_3$ , as

$$k_1 - k_2 + (1 - k_3) \cos \psi_1 \ge 0$$
 (25b)

and

$$k_1 - k_2 + (1 - k_3) \cos \psi_2 \le 0$$
 (25c)

Relations (22a and b) and (25b & c) alone do not allow the computation of k. These should be incorporated into an optimization problem, e.g. one minimizing a norm of the structural error or maximizing a norm of the mechanical advantage within the range of motion.

Now, if an output rocker is required, whose motion be defined in the interval  $\phi_1 \leq \phi' \leq \phi_2$ , this can be accomplished paralleling the foregoing procedure. It is far simpler, however, to derive the corresponding

relations by exchanging the roles of  $k_2$  and  $-k_3$  in relations (23a & b) and (25b & c). This produces

$$2(k_1k_2 - k_3) + k_2^2 (\cos\phi_1 + \cos\phi_2) = 0$$
 (26a)

$$k_1^2 - k_3^2 - 1 - k_2^2 \cos\phi_1 \cos\phi_2 = 0$$
 (26b)

and

$$k_1 + k_3 + (1 + k_2) \cos \phi_1 \ge 0$$
 (27a)

$$k_1 + k_3 + (1 + k_2) \cos \phi_2 \le 0$$
 (27b)

Mobility conditions for the coupler are next derived. An analysis similar to the one leading to Freudenstein's equation yields

$$m_1 + m_2 \cos \theta + m_3 \cos \psi = \cos (\psi - \theta)$$
 (28)

with

• •

$$m_1 = \frac{a_4^2 - a_1^2 - a_2^2 - a_3^2}{2 a_2 a_3} , \quad m_2 = \frac{a_1}{a_2} , \quad m_3 = \frac{a_1}{a_3}$$
(29)

Substitution of identities (6) for angle  $\Psi$  in the latter equation yields

$$J \tan^2(\psi/2) - 2K \tan(\psi/2) + L = 0$$
 (30)

with

•

$$J = m_1 + m_2 \cos\theta - (m_3 - \cos\theta)$$
(31a)

K = sin0 (31b)

$$t = m_1 + m_2 \cos \theta + m_3 - \cos \theta$$
 (31c)

One then has, for a given value of 0, from eq (30),

$$\Psi_{1,2} = 2 \tan^{-1} \left[ \frac{K \pm (K^2 - JL)^{1/2}}{J} \right]$$
 (32)

Eq (32) thus yields two different values of  $\psi$ , corresponding to the conjugate configurations of the linkage, except at extremal positions of the coupler, where the radical vanishes. If the coupler is to have full rotatability, the radical should not vanish for real values of  $\theta$ . The conditions under which this happens are derived paralleling the procedure leading to relations (18a & b), which produces the following set of inequalities:

$$1 + m_1^2 - m_2^2 + m_3^2 > 0 \tag{32a}$$

$$(1 - m_1^2 - m_2^2 + m_3^2)^2 - 4m_1^2 > 0$$
 (32b)

One then has proved: The well-posed synthesis problem producing  $m_1$ ,  $m_2$  and  $m_3$  from eq (28) yields a coupler link possessing full rotatability if, and only if, relations (32a f b) hold.

Mobility conditions for the coupler, considering its motion with respect to the output link, are derived analogously. These are obtained from the equation

$$n_1 + n_2 \cos \theta - n_3 \cos \phi = \cos(\phi - \theta) \tag{33}$$

with

$$n_1 = \frac{a_1^2 - a_2^2 + a_3^2 + a_4^2}{2a_3a_4}, \qquad n_2 = \frac{a_1}{a_4}, \qquad n_3 = \frac{a_1}{a_3}$$
(34)

Eq (33) leads to  $M \tan^2(\psi/2) = 2N \tan(\psi/2) + P = 0$ (34)

where

where

. .

$$M = n_1 + n_2 \cos \theta + n_3 + \cos \theta$$
 (35a)

$$P = n_1 + n_2 \cos\theta - (n_3 + \cos\theta)$$
 (35c)

The roots of eq (34) are, thus,

$$\psi_{1,2} = 2\tan^{-1} \left\{ \frac{N \pm (N^2 \pm MP)^{1/2}}{M} \right\}$$
 (36)

The conditions sought are then derived from the zeroing of the radical of eq (36). This leads to the following set of inequalities:

$$1 + n_1^2 - n_2^2 + n_3^2 > 0$$
 (37a)

$$(1 - n_1^2 - n_2^2 + n_3^2)^2 - 4n_1^2 > 0$$
 (37b)

That is: The coupler link of a linkage whose lengths are derived from eq (33) has full rotatability with respect to the output link if, and only if, its lengths satisfy relations  $(37a \ 6 \ b)$ .

What is meant in the last paragraph under full rotatability of the coupler with respect to the output link is that  $0'(\phi)$  does not vanish, for any real value of  $\phi$ . This does not mean, however, that this is equivalent to full rotatability of the coupler link. In fact, if the output link does not possess full rotatability, then  $\phi'(\phi)$  vanishes for two distinct values of  $\psi$ . Hence, even if  $0'(\phi)$  does not vanish,  $0'(\psi) = 0'(\phi)\phi'(\psi)$  does, the coupler link thus lacking full rotatability.

On the other side, conditions for oscillating couplers can be obtained paralleling the procedure followed for the input and the output links. The obtention of such conditions is straightforward from the foregoing analysis, for which reason the subject is not further discussed here. Finally, changepoint mechanisms are characterized within this context as those for which the left-hand side of at least one of inequalities (18a) or (18b) (or, equivalently (19a) or (19b)) vanishes.

The inequalities derived in this paper are now used as constraints of an optimization problem of linkage synthesis. This is solved using Newton-Raphson's method, which requires not only first, but also second derivatives of both the objective function and the constraints. The procedure is illustrated with one fully solved example.

## Example

Synthesize a RRRR plane linkage, as the one shown in Fig 1, to produce the input-output relation appearing in Table 1. This linkage should approximate the synthesis equations with the least possible r.m.s. error, while its input link should be a crank.

This problem was solved in [15] without considereing the crank-type restriction. The least-square error linkage thus obtained turned to be of the rocker-rocker type.

The synthesis problem at hand is formulated as follows: The synthesis equations are of the type of eq (3), except that A is now a 5 x 3-matrix, whereas vector b is 5-dimensional. The i<sup>th</sup> row of matrix A and the i<sup>th</sup> component of vector b are, respectively.

$$A_{i} = [1, \cos\phi_{i}, -\cos\psi_{i}], b_{i} = \cos(\psi_{i} - \phi_{i})$$
 (38)

This problem thus leads to an overdetermined system of linear equations which, in general, has no exact solution. In this case, a vector k is sought that minimizes a norm of the error e, defined as

e = Ak - b (39)

which is clearly a 5-dimensional vector. If the Euclidean norm is to be minimized, without imposing any further constraint, then the minimizing value of k can be expressed explicitly in terms of the Noore-Penrose generalized inverse [16], which can be computed very efficiently using Householder reflections as already shown in [17, 18]. Should a further constraint be imposed on the synthesis problem, then the above-mentioned generalized inverse is not applicable any more. A possible way of solving this problem is via a penalty function [19], which is next introduced. The problem is now formulated as: "Minimize, under k, the objective function z given as

 $z = \frac{1}{2} (Ak - b)^{T} (Ak - b)$  (40)

i.e. half the square of the Euclidean norm of the error, subject to inequalities (18a & b), whose holding is necessary and sufficient for a crank-type input link".

Solution:

Let  $f_1$  and  $f_2$  represent the left-hand sides of inequalities (18a & b), respectively. Now assume a feasible linkage is given, i.e. one defined by a particular vector  $k^0$  that satisfies both given inequalities, which in general is not optimal. This linkage can be improved by minimizing the new objetive function

$$\psi(k; r_1 = z(k) + r_1(\frac{1}{f_1} + \frac{1}{f_2})$$
 (41)

subject to no further constraints.

The second term of the right-hand side of eq (41) is referred to as the penalty term. This is the product of the positive weighting factor  $r_1$  times the sum in parenthesis, referred to as the penalty function. Criteria for selecting a suitable value of  $r_1$  are given in [19, pp 156-196], but the simplest one is to choose it so as to render the penalty term a given fraction of  $z(k^0)$ . Next, the value of k minimizing  $\psi$ ,  $k^1$ , is used as a "guess" value of k to minimize a new objetive function with a new penalizing factor,  $r_2$ , a fraction of  $r_1$ . The procedure is repeated a few number of times, say p, which produces an equal number of pairs  $\{(k^i, r_i)\}_{1}^{p}$  with  $r_i > r_{i+1} > 0$ ; these can then be fitted to a suitable function, as shown next, the solution to the original constrained problem being obtained by extrapolation, with  $r \to 0$ .

Since both function z and the penalty term are infinitely many times differentiable, each unconstrained optimization problem meant to minimize  $\psi_i = \psi(k; r_i)$ , for i = 1, ..., p can be solved using a gradient method or even the Newton-Raphson method [20, pp 249-251]. In any instance, the roots of the gradient of  $\psi_i$  with respect to k, are to be computed. The said gradient is given as

$$\nabla \psi_i = A^T (Ak - b) - r_i \left( \frac{\nabla f_1}{f_1^2} + \frac{\nabla f_2}{f_2^2} \right); \quad i = 1, ..., p$$
 (42)

with

ζ,

$$\nabla f_{1} = 2 \begin{bmatrix} (k_{1}k_{3} - 2k_{2})k_{3} \\ 2(k_{2} - k_{1}k_{3}) + k_{2}k_{3}^{2} \\ (k_{1}^{2} + k_{2}^{2} - 2k_{3}^{2} + 1)k_{3} - 2k_{1}k_{2} \end{bmatrix}$$
(43).

$$\nabla f_{2} = 2 \left( \begin{bmatrix} k_{1} - k_{3} \\ 1 - k_{2} \\ k_{3} - k_{1} \end{bmatrix} \begin{bmatrix} (k_{1} + k_{3})^{2} - (k_{2} + 1)^{2} \end{bmatrix} + \begin{bmatrix} k_{1} + k_{3} \\ -k_{2} - k_{1} \end{bmatrix} \left[ (k_{1} - k_{3})^{2} - (k_{2} - 1)^{2} \end{bmatrix} \right)$$

$$+ \begin{bmatrix} k_{1} + k_{3} \\ -k_{2} - 1 \\ k_{1} + k_{3} \end{bmatrix} \left[ (k_{1} - k_{3})^{2} - (k_{2} - 1)^{2} \end{bmatrix} \right)$$

$$(44)$$

The application of Newton-Raphson's method to the computation of the roots of  $\nabla \psi_i$  requires computing the Jacobian matrix J of  $\nabla \psi_i$ , i.e.  $\nabla^2 \psi_i$ , with respect to k. This is readily computed as

$$\nabla^{2} \psi_{i} = A^{T}A - r_{i} \left[ \frac{f_{1}^{2} \nabla^{2} f_{1} - 2f_{1} \nabla f_{1} (\nabla f_{1})^{T}}{f_{1}^{4}} + \frac{f_{2}^{2} \nabla^{2} f_{2} - 2f_{2} \nabla f_{2} (\nabla f_{2})^{T}}{f_{2}^{4}} \right] = A^{T}A - r_{i} \left[ \frac{\nabla^{2} f_{1}}{f_{1}^{2}} + \frac{\nabla^{2} f_{2}}{f_{2}^{2}} - 2(\frac{\nabla f_{1} (\nabla f_{1})^{T}}{f_{1}^{3}} + \frac{\nabla f_{2} (\nabla f_{2})^{T}}{f_{2}^{3}}) \right]$$
(45)

with

$$\nabla^{2} f_{1} = 2 \begin{bmatrix} k_{3}^{2} & -2 k_{3} & 2 (k_{1}k_{3} - k_{2}) \\ 2 + k_{3}^{2} & 2 (k_{2}k_{3} - k_{1}) \\ sym & (k_{1}^{2} + k_{2}^{2} - 6 k_{3}^{2} + 1) \end{bmatrix}$$
(46)

19.

$$\nabla^{2} f_{2} = 4 \begin{bmatrix} 3k_{1}^{2} - k_{2}^{2} - k_{3}^{2} - 1 & 2(k_{3} - k_{1}k_{2}) & 2(k_{2} - k_{1}k_{3}) \\ & -k_{1}^{2} + 3k_{2}^{2} - k_{3}^{2} - 1 & 2(k_{1} - k_{2}k_{3}) \\ sym & -k_{1}^{2} - k_{2}^{2} + k_{3}^{2} - 1 \end{bmatrix}$$
(47)

The Newton-Raphson method with damping, implemented with subroutine NRDAMP [18, pp 39-50] was used to solve the foregoing problem. The results obtained are shown in Table 2, where  $k^0$  was chosen randomly so as to produce a linkage of the input-crank type. The successive values of  $r_i$  (i=1,2,3) employed were 0.1, 0.01 and 0.001.

| -        |     | •    |          |   |
|----------|-----|------|----------|---|
| <b>T</b> | 3 P | . 1. | <u>a</u> | т |
|          | αь  |      | C .      | - |

|   | ψ <b></b> = |       | 140° | 130° | :<br>. 110° | 100° | 90° |
|---|-------------|-------|------|------|-------------|------|-----|
| • | ¢ •         | · · · | 80°  | 74°  | 64°.        | 58°  | 50° |

|                  | 0.205592 |  | k <sup>2</sup> = | 0.206277 | 1 | i                | 0.195852 |
|------------------|----------|--|------------------|----------|---|------------------|----------|
| k <sup>1</sup> = | 0.577607 |  |                  | 0.793621 | • | k <sup>3</sup> - | 0.843946 |
|                  | 0.195602 |  |                  | 0.220257 |   |                  | 0.208259 |

The values of Table 2 were interpolated to the curve

$$k(r) = \alpha + \beta r^{1/2} + \gamma r$$

which produced the following:

٠

 $\alpha = \begin{bmatrix} 0, 189301 \\ 0, 918406 \\ 0, 199494 \end{bmatrix}, \qquad \beta = \begin{bmatrix} 0, 224439 \\ -2, 496524 \\ 0, 309335 \end{bmatrix}, \qquad \gamma = \begin{bmatrix} -0, 546832 \\ 4, 486709 \\ -1, 017054 \end{bmatrix}$ 

Thus the optimizing value k\* was obtained as

 $k^* = k(0) = \alpha$ 

1

which produced the linkage

 $a_1 = 1$ ,  $a_2 = 1.088843$ ,  $a_3 = 5.024554$ ,  $a_4 = 5.012682$ for which the least-square error is  $e = [0.001602, 0.011487, -0.034524, -0.032521, 0.013597]^T$ ; ||e|| = 0.050685

### Conclusions

Mobility conditions for RRRR planar linkages have been derived, that are equivalent to Grashof's mobility criteria. The conditions presented here differ from the usual ones in that they are established as relations on analytic functions of variables that are nonlinear combinations of the link lengths, rather than on unsmooth (because of the absolute-value function appearing there) functions of the link lengths. The incorporation of the conditions derived here as inequality constraints of optimization problems allows their solution via gradient-dependent methods, as shown with an example of constrained least-square approximate synthesis. This problem was solved using the Newton-Raphson method, for both the approximation error and the constraints are readily differentiable infinitely many times. Hence the computation of second partial derivatives, as required by the Newton-Raphson method, is quickly executed. Finally, the quadratic-convergence property of the said method, close to a solution, was made apparent by the quick convergence of each of the three nonlinear systems of equations that were solved in the example. In fact, each solution was obtained after at most three iterations.

## Acknowledgements

The research work reported here was totally supported by the Graduate Division of the Faculty of Engineering (DEPFI)-UNAM and was performed at the CAO Laboratory of DEPFI-UNAM. Professor J M Hervé of the Ecole Centrale des Arts et Manufactures, Paris (France), brought the proof of Grashof's mobility criteria, given by Briccard, to the attention of the first author, for which he is gratefully acknowledged.






## References

۰.

- 1. Briccard R, Leçons de Cinématique, Gauthier-Villars, Paris, 1927, pp 151-155
- 2. Nieto J, Sintesis de Mecanismos, Editorial AC, Madrid, 1978, pp 29-31
- Paul B, "A reassessment of Grashof's criterion", <u>Journal of Mechanical Design</u>, Trans ASME, Vol. 101, July 1979, pp 515-518
- 4. Litvin F L. "Application of theorem of implicit function existence for analysis and synthesis of linkages", <u>Mechanism and Machine Theory</u>, Vol. 15, 1980, pp 115-125
- Freudenstein F, "Approximate synthesis of four-bar linkages", Trans. ASME, Vol. 77, August 1955
- 6. Hartenberg R S and Denavit J, <u>Kinematic Synthesis of Linkages</u>, McGraw-Hill Book Co., New York, 1964
- 7. Gupta V K and Radcliffe C W, "Mobility analysis of plane and spatial mechanisms", <u>Journal of Engineering for Industry</u>, Trans ASME, Vol. 93, 1971, pp 125-130
- Waldron K J, "Location of Burmester synthesis solution with fully rotatable cranks", <u>Mechanism and Machine Theory</u>, Vol. 13, 1978, pp 125-137
- 9. Waldron K J and Stevensen, Jr E N, "Elimination of branch, Grashof and order defects in path-angle and function generation synthesis", <u>Journal of Mechanical</u> <u>Design</u>, Trans ASME, Vol. 101, 1979, pp 428-437
- 10. Gupta K C, "A general theory for synthesizing crank-type four-bar function generators with transmission angle control", Trans ASME <u>Journal of Applied</u> <u>Mechanics</u>, Vol. 45, No 2, 1978, pp 415-421.
- 11. Gupta K C, "Synthesis of position, path and function generating 4-bar mechanisms with completely rotatable driving links", <u>Mechanism and Machine</u> <u>Theory</u>, Vol. 15, 1980, pp 93-101

- 12. Kazerounian S M K and Gupta K C, "Synthesis of position generating crank-rocker or drag-link mechanisms", Mechanism and Machine Theory.
- 13. Angeles J and Rojas A, "An optimisation approach to the branching problem of plane-linkage synthesis", Proc VI\_IFToHM Congress on Theory of <u>Machines and Machinisms</u>, pp 120-123 , Dec 15-20, New Delhi, India
- 14. Forsythe G E, Malcolm M A and Moler C B, <u>Computer Nethods for Hathematical</u> <u>Computations</u>, Prentice-Hall, Inc, Englewood Cliffs, N.J. 1977, pp 20-23
- 15. Wilde D J, "Error linearization in the least-squares design of function generating mechanisms", J Mech Des, Trans ASME, Vol. 104, 1982, pp 881-884
- 16. Soderstrom T and Stewart G W, "On the numerical properties of an iterative method for computing the Moore-Penrose generalized inverse", <u>SIAM J Num</u> <u>Anal</u>, Vol. II, No 1, 1974.
- 17. Angeles J, "Optimal synthesis of linkages using Householder reflections". Proc V World Congress on TNM, Montreal, July 8-13, 1979, pp 111-114
- 18. Angeles J, <u>Spatial Kinematic Chains</u>. <u>Analysis</u>, <u>Synthesis and Optimization</u>, Springer-Verlag, Berlin, 1982, pp 300-304
- 19. Fiacco A V and McCormick, <u>Nonlinear Programming</u>, <u>Sequential Unconstrained</u> <u>Minimization Techniques</u>, John Wiley and Sons, Inc., New York, 1968.
- 20. Dahlquist G and Björck A , <u>Numerical Methods</u>. Prentice-Hall, Inc., Englewood Cliffs, N J, 1974

25



I.

# DIVISION DE EDUCACION CONTINUA FACULTAD DE INGENIERIA U.N.A.M.

...

DISEÑO CINEMATICO DE MAQUINARIA

OPTIMAL SYNTHESIS OF LINKAGES USING HOUSEHOLDER REFLECTIONS

JORGE ANGELES

JUNIO 1984

Fraceadings of the Fifth World Congress on Theory of Machines and Mechanisms - 1979 Published by The American Society of Mochanical Engineers

OPTIMAL SYNTHESIS OF LINKAGES USING HOUSEHOLDER REFLECTIONS

J. Angeles, Protessor

National University of Maxico (UNAM) Maxico, D. F. Maxico

### ABSTRACT

The uncostrained overdetermined problem of Minematic linkage synthesis is solved in an efficleat way using Householder reflections. The problem formulation leads to a system of either linear or conlinear equations in more equations then unknowns. The linear problem is solved directly by application of a finite number of successive reflections to the space of unknowns with the purpose of taking the system of equations into upper triangular form, which allows for the computation of the unknowns by back substitution. The nonlinear problem is solved via the Newton-Raphson method which computes, at each iteration, the correction to the vector of unknowns as the least-square solution to an overdotermined linear system in exactly the same way as described before for linear problems. Introduction of the said method produces accurate results in relatively short processing times, as shown in the examples presented.

### ZUSAMMENTASSUNG

Das uneingeschränkte und überbestimmte Problem der kinematischen Getrichesynthese wird effisient gelost wit Hilfe der Householder-Spiegelungen. Die Problemstellung laitet zu einem Systam Von entweder linearen oder nichtlinearen Gleichungen mit mehr Gleichungen als Unbekannten, Das lineare Problem wird direkt golöst mittels Anvendung einer finiten Zahl aufeinanderfolgenden Spiegelungen zum Raum der Unbekannten mit dem Ziel des Übertragens des Cleichungssystems zu einer höheren dreiczkigen Form, welche die Rechaung der Unbekannten durch Rückersetsung erlaubt. Des nicht-lineare Problem wird mitteles der Newton-Raphson-Methode gelöst, die zu jeder lteration die Besserungen der Unbekannton sus der wenigeren Quadraten-Lösung zu einem Überbestimmten linearan Gleichungssystem arrochnet, auf der gleichen Weise wie bei der Methode für lineare Systeme schon beschrieben wurde. Die Einführung dieser Methode führt zu deutlichen Erfolgen in relativ hurzen Prozessierzeiten, wie mittels der eingeschloßenen Brispielen gezeigt wird.

### NOMENCLACURE

A; upper-case underlined character, an exe matrix. <u>-</u>1, Ŷ the inverse of A, when A is square and nonsin-

- 1.11ar
- Lie. Cranspose of A
- lower-case underlined latin character, an m-(incusional vector
- 4 1 the absolute value of a, when a is real; the

modulus of a, when a is complex.

- all:the Eucliean norm of vector a, i.e. the square root of the sum of the squares of its components
- detA: the determinant of the square matrix A f(x): an m-dimensional vector function of the m-dimen-
- sional vector argument X

f'(x):the Jacobian man matrix of f with respect to x

### PROBLEM FORMULATION

The equations srising in the reals of kinematic synthesis of linkages constitute either linear or nonlinear algebraic<sup>1</sup> systems (1,2), whose unknowns are the geometric parameters (langths and angles) of the linkage. If these paramenters are arranged within the n-dimensional vector x, the said equations are of the form

1.25

where A and b are a known man matrix and an m-dimensional known vector, respectively, when the system is linear. If it is nonlinear, then the synthesis equations are of the form f(x)=0 (2)

f being an m-dimensional vector containing a set of m scalar functions f. (x) whose arguments are the unknown parameters of the linkage. When the number of specifiad conditions to be net by the linkage matches that of the unknowns, matrix A in (1) is square and vector f is of dimension n. In most technical problems, however ar, the number of prescribed conditions surpasses that of geometric paramenters available, the linkage synthesis problem thus leading to an overdetermined system of equations. This class of systems in general does not admit an exact solution, but it is possible to find a vector x that randers the quadratic error a minimum. Thus, the least-squares problem can be stated

"Pind the value of x that minimizes the Euclidean norm of either Ax-b, or that of f(x), depending on whether the system Is linear of nonlinear".

The linear overdetermined system (1) admits a unique solution x that renders | [Ax-b] & minimum, provided A is of full rank, i.e., if rankA-n. This value is given is (3) . . . .

$$\underline{\mathbf{x}}_{1} = (\underline{\mathbf{A}}^{\mathrm{T}} \underline{\mathbf{A}})^{-1} \underline{\mathbf{A}}^{\mathrm{T}} \underline{\mathbf{b}}$$
(3)

where (A A) A is called a "Moore-Penrose Jeneralized

Zsea the nomenclature for the definition of this term,

algebraic as opposed to differential or integral equations.

inverse of A". An extensive treatment of the linear least-squral problem is found in  $(\underline{4})$ .

The nonlinear problem may admit multiple local minima; these can be found by application of the Newton-Raphson method (5), which at each iteration, computes the currection vector  $\Delta x_i$  as the least-square solution to the overdetermined linear system

$$f^{1}(x_{1})\Delta x_{1} = -f(x_{2})$$
 (4)

This is a system like that appearing in eq.(1). Thus, its least-square solution is

$$\Delta \mathbf{x}_{\mathbf{k}}^{*} - \left[ \mathbf{f}^{*}_{\mathbf{k}} (\mathbf{x}_{\mathbf{k}})^{T} \mathbf{f}^{*}_{\mathbf{k}} (\mathbf{x}_{\mathbf{k}}) \right]^{-1} \mathbf{f}^{*}_{\mathbf{k}} (\mathbf{x}_{\mathbf{k}})^{T} \mathbf{f}^{*}_{\mathbf{k}} (\mathbf{x}_{\mathbf{k}})$$
(5)

The new value of the unknown vector is then

$$\sum_{k+1} \sum_{k} \frac{4\Delta x}{\Delta k}$$

The procedure is stopped when the fuclidean norm of the correction vector is sufficiently small within the imposed accuracy, i.e. when

 $\varepsilon$  boing a "amall" real positive number. The problem thut, whether linear or nonlinear, reduces to compute the minimizing value x given by eq. (3). An efficiert way of computing this value, outlined next, doe, not require to invert any matrix. The computation is upper by application of Householder reflections.

### HOUS EHOLDER REFLECTIONS

An extensive account of this topic can be found in the specialized literature  $(\underline{4},\underline{6})$ . For this teason, this theory is not treated here. A Householder telfection is a linear, improper orthogonal and symmetric transformation, i.e., if R is its max matrix representation, then

| 220-2  | ())  |
|--------|------|
| Qx, =d | (10) |

where U is an upper triangular nummatrix and Q is the (m-n)un zero matrix, r and d being n-and (m-n)dimensional vectors, with  $d \neq 0$ . Thus, eq. (9) is determined and can readily be solved by back substitiation, its solution x being the least-square solution to the overdetermined system. Eq. (10) is inconsistent and ||d|| represents the Euclidean norm of the error in the approximation. Since the original system (1) is transformed into (9),(10) via a succession of orthogonal transformations, the error in the transformed coordinates, d, has the same Euclidean norm as that in the original coordinates. Hence, ||d||is the error associated with the original system.

### APPLICATIONS TO KINEMATIC LINKAGE SYNTHESIS

Although in many practical applications the problems of linkage synthesis involve inequality constraints, still a considerably large class of synthesis problems are unconstrained. Moreover, afficient optimization techniques exist that handle inequality constraints by introducing suitable penalty functions (2), thus turning the problem an unconstrained one, for these reasons, the study of unconstrained optimig ation problems is of substantial technical interest. Applications to linkage synthesis problems are next illustrated with two examples.

### Example 1. Synthesis of an RSSR function generator

The layout of an RSSR linkage, shown in Fig 1, indicates the different geometric parameters of this linkaget  $a_1, a_2, a_3$ , are the lengths of the output-, coupler-and input links, respectively;  $a_4$  is the distance between the axes of the input and the output links;  $a_4$  is the angle between the aforementioned axes, positive about ED;  $a_4$  and  $a_5$  are distances of points C and O along the axes of the cutput-and the input links, respectively. All over, the sign convention of Denavit and Hartenberg (1,pp. 344-345) is observed. The input angle is  $\psi$  and the output angle is  $\phi$ . For matching six pairs of input-output values  $(\psi_1, \phi_2)$  with this linkage, Denavit and Hartenberg (1,pp. 335-362) established the following relation

$$k_{1}\cos\phi_{j}+k_{2}\sin\phi_{j}+k_{3}\cos\phi_{j}+k_{4}\sin\phi_{j}+k_{5}(\sin\phi_{j}\cos\phi_{j}-\cos\phi_{4}\sin\phi_{j}\cos\phi_{j})+k_{6}=$$

$$=\cos\phi_{1}\cos\phi_{2}\cos\phi_{1}+\cos\phi_{2}\sin\phi_{3}\sin\phi_{3}$$
(11)

where

$$k_{1} = \frac{a_{4} + a_{4} \pi i n \alpha_{4} \pi i n \alpha_{4}}{a_{3}} + k_{2} = \frac{a_{4} \pi i n \alpha_{4} - a_{4} \pi i n \alpha_{4}}{a_{3}}$$

$$k_{3} = \frac{a_{4}}{a_{1} \cos \phi_{0}} + k_{4} = \frac{a_{1} \pi i n \alpha_{4}}{a_{1} \cos \phi_{0}} + k_{5} = t \operatorname{an} \phi_{0}$$

$$k_{4} = \frac{a_{1}^{2} - a_{2}^{2} + a_{3}^{2} + a_{4}^{2} + a_{4}^{2} + 2a_{1}^{2} + 2a_{1}^{$$

### o, being assigned.

In the latter definitions,  $\phi_0$  measures the location of the zero of the output dial from the dotted line passing through C, parallel to line ED, as shown in Fig 1.



### Fig 1 An RSSR linkage

For six precision-point synthesis, eqs. (11) yield a system of six linear equations in six unknowns which, when nonsingular, produces unique values  $k_1, k_2, \dots, k_n$ . With these values known, the linkage parameters are computed from eqs. (12) for a given value of  $a_1$ . If more than six precision points are required, however, the system becomes overdetermined, in which case in efficient method to obtain its leastsquare solution is via Howseholder reflections.

In (6), Sub and Mecklenburg molve the overdetermined uncomprained problem of this linkage with 19 prescribed input-output values. For comparison purposes, the solution developed in this example makes use of the same prescribed values. These are shown in Table 1

The method employed in (8) is that of Powell's (9), which does not require the computation of derivatives and teads quickly to convergence for quadratic functions of the independent variables. At this point, two remarks are in order: First, the defivatives of the synthesis equations are easily computed from either Devanit and Hartenberg's formulation, eqs. (11), or from 5uh and Redcliffe's formulation (2), the first one being advantageous because of producing a linear system of equations. Second: The objective function of Suh and Hecklenburg's (8) is quadratic in the synthesis which, in turn, are quadratic in the independent variables; thus, their objective function is quartic in the independent variables, for which reason the quick convergence properties of Powell's method are not fully utilized. Furthermore, squaring the synthesis functions may introduce spurious local mining, as is apparent form the fact that three optimal eplutions are reported in (8).

TABLE 1. Specified input-output pairs for the synthemis of the RSSR function generating linkage.

|    | ¢(degraces) | ¢(degraek) |
|----|-------------|------------|
| 1  | 0.0         | 0.0        |
| 2  | 5.0         | 2,4        |
| 3  | 10.0        | 5,1        |
| 4  | 15.0        | 8.2        |
| 5  | 20.0        | 11.5       |
| 6  | 25.0        | 15.2       |
| 7  | 30.0        | 19.1       |
| 8  | 35.0        | 23,3       |
| 9  | 40.0        | 27.7       |
| 10 | 45.0        | 32.3       |
| 1  | 50.0        | 37.2       |
| 12 | 55.0        | 42.3       |
| 13 | 60.0        | 47.5       |
| 4  | 65.0        | \$3.0      |
| 15 | 70.0        | 58.7       |
| 6  | 75.0        | 64.6       |
| 7  | 80,0        | 70,9       |
| 8  | 65.0        | 78.0       |
| .9 | 90.0        | 90.0       |
|    |             |            |

One advantage of using Householder reflections is that no explicit equating is required, and the unique solution is obtained <u>directly</u> by the application of n(=6) reflections. Another advantage is that, since less computations are required, as compared to Powell's method, the round-off error is lowered. The approximation error obtained using each method is shown in Table 2.

The root mean square errors were exampledly the same: thet obtained by Powell's method was 0.00185269; whereas the one obtained by Householder teflections, 0.00182254; However, the differences in the resulting linkage parameters were more notorious. These are

| Solution by     | Solution by          |  |  |
|-----------------|----------------------|--|--|
| Fowell's method | Howseholder's method |  |  |
| n - 1.253803    | 4 = 0.911269 .       |  |  |
| 7.759566        | 4 = 2.620568         |  |  |
| 7.435003        | 4 = 0.603577         |  |  |

| 2.262110   | ■,=-1,L86240            |
|------------|-------------------------|
| •41.375270 | e <sup>1</sup> 2.417556 |

In this problem,  $\mathbf{a}_{\underline{A}}$  was set equal to L, whereas  $\mathbf{a}_{\underline{A}}$ , equal to 90?

TABLE 2. Approximation error in overdetermined RSSR linkage synthesis

AFROXIMATION EXERCE USING APROXIMATION FRADE USING POWELL'S METHOD HOUSEHOLDER'S METHOD

|    | (degrees)  | (degrees)  |
|----|------------|------------|
| 1  | 0.00000000 | 0.01420369 |
| 2  | 00120000   | 0.00100785 |
| 3  | 03060000   | 03515343   |
| 4  | 0.02330000 | 0.0159082/ |
| 5  | -,02680000 | 03451603   |
| 6  | 0.03260000 | 0.02596072 |
| 7  | 0.01600000 | 0.01079286 |
| 8  | 0.03830000 | 0.03440434 |
| 9  | 0.01520000 | 0.01196148 |
| 10 | 03790000   | 04106664   |
| 11 | 00640000   | 00968497   |
| 2  | 0.02270000 | 0.01930349 |
| 13 | ~.04220000 | 04497542   |
| 4  | 00020000   | 00153544   |
| 15 | 0.03350000 | 0.03434200 |
| t6 | 0.01600000 | 0.01324614 |
| 17 | 0.00020000 | 0.00139267 |
| 8  | 01250000   | 01970407   |
| 19 | 0.02980000 | 0.00412793 |
|    |            |            |

Example 2. Synchesis of the RR plane dyad for tigidbody guidance

A rigid body (shaded rectangle) appears in Fig 2, in "reference" configuration  $C_0$  and in a different configuration C. Each configuration is defined by the position of a point, R, and angle, 0. In that figure, 0 represents the origin of the complex plane, and the Prove represent complex numbers associated with the location of the labelled points. The purpose of this class of synthesis problem is to locate point A whose reference and successive positions, A, A, (j=1, ...,n) lie on a circumference centered at B, lor which reason, A, and B are called, respectively, "circular" and "centfel" points, within the Burmester Theory (10). Thus, AB, can constitute a rigid link to guide the rigid body. This is an SR plane dyad.



Fig 2 An RR plane dyad to guide a rigid body through a successive configurations

. The constancy of the length of line BA throughout its a configurations leads to

$$|\mathbf{e}^{10}_{\mathbf{j}}(\mathbf{s}_{0}-\mathbf{r}_{0})+\mathbf{r}_{1}-\mathbf{b}|^{2}-|\mathbf{s}_{0}-\mathbf{b}|^{2},\mathbf{j}-\mathbf{1},\ldots,\mathbf{n}$$
(13)

where  $\theta^* \Xi \theta_1 - \theta_2$ . Eqs. (13) constitute the synthesis equations for this problem,  $z_1$  and b being the unknowns. It is well known (2, p. 146) that this problem allows to conduct a rigid body through five specified configurations. Some technical problems, however, may require to guide the body through more than tive configurations, as shown in Table 3. Different synthese's were obtained for these, starting from the first 6 coofigurations, then adding the pext ones, one at each time, until the 16 configurations were included

| TABLE . | э. | Success | va | ¢anf | Égurat: | ions | of | a. | rigid | body |
|---------|----|---------|----|------|---------|------|----|----|-------|------|
|---------|----|---------|----|------|---------|------|----|----|-------|------|

| j. | x, (ca) | y <sub>j</sub> (cm) | θ <sub>i</sub> (degrees) |
|----|---------|---------------------|--------------------------|
| ¢  | 7.880   | -0.260              | 313.720                  |
| 1  | 8.490   | -7.290              | 332.330                  |
| 2  | 7.680   | 2.820               | 349.930                  |
| 3  | 6.300   | 4.210               | 353.180                  |
| 4  | 4.58G   | 4.950               | 359.870                  |
| 5  | 2.740   | 5.010               | 355.840                  |
| 6  | 1.010   | 4.410               | 356.300                  |
| 1  | 0.259   | 3.880               | 3.900                    |
| 6  | -0.400  | -3.090              | 3.670                    |
| 9  | G. 250  | -3.760              | 3.690                    |
| 10 | 1.000   | -4.290              | 4.150                    |
| 11 | 2.730   | -4.890              | 5.120                    |
| 12 | 4.360   | -4.830              | 6.810                    |
| 13 | 6.280   | -4.090              | 10.000                   |
| 14 | 7.660   | -2.700              | 13.000                   |
| 15 | 8.440   | -0.610              | 18.000                   |
| 16 | 7.790   | -2.690              | 46.270                   |

The procedure converged for all given inital guesses, produced by means of a random number generating subprogram, in less than 50 iterations (usually around 20)Kontrary to the determined case (5 prescribed configurations), for which two different mean ingful solutions exist, for the cases tried here the procedure converged always to the same single solution, except for 6 and 17 configurations, which produced two different solutions. The error in the approx imation was normalized, to yield a dimensionisse number, in the following way: Let

$$f_{j} = |\mathbf{a}^{10}_{j}(\mathbf{a}_{0} - \mathbf{v}_{0}) + \mathbf{r}_{j} - |\mathbf{a}_{0} - \mathbf{b}|^{2}, \mathbf{j} = 1, \dots, \mathbf{a}$$
(14)

If the synthesis were exact, then all f, would be negligibly small. In approximate synthesed, however, these functions attain finite values. The kinematic meaning of these values is that they represent the difference between the length of the RR dyad in its initial configuration, and that in its jth fonfiguration, i.e. A, B-A, B, if the synthesized linkage were to satisfy the prescribed conditions exactly. The dimensionless error in the approximation, a., associated with the jth configuration, is then  $e_j = |f_j|/|a_0 - b|^2, j = 1, \dots, m$  (15)

where a, and b are those obtained from the leastsquare solution to the nonlinear system of equations. Notice that the errors thus defined are quadratic. To obtain a representative value of the overall error, the everage of the square roots of the m errors defined in (14) should be taken, i.e.

Some of the results obtained are shown next,

TABLE 4. Overdetermined synthesis of the LR dyad for rigid-body guidance. For 6 configurations.

| First solution:        | Second solution:                   |   |   |
|------------------------|------------------------------------|---|---|
| -0.961467-12.826960    | <pre>#_=7.690390+12.700030</pre>   |   |   |
| 1,643590-17.997190     | b <sup>v</sup> =0.748466-i0.609952 |   |   |
| Error = 17.02%         | Error - 13.49%                     | • |   |
| For 17 configurations, | •                                  |   |   |
| First solution;        | Second solution:                   |   | 1 |
| -5.123750+i2.254620    | #_=1.443950-16.704520              |   | • |
| -0.549476-17.03377     | b <sup>0</sup> =6.370810-19.315060 |   |   |
| Error = 38.74%         | Error = 60.77%                     |   |   |
|                        |                                    |   |   |

### CONCLUSIONS

Householder reflections appear to be far more efficient in solving linear problems arising within the field of unconstrained optimal synthesis of linkages. As to poplinear problems, the extension is straightforward. Regarding constrained problems, these could be handled using this method by introducing suitable slack variables and penalty functions. As to processor times, the first example consummed 11.8 sac, whereas the time reported (8) using Powell's method is 2.2 min, the method introduced here thus appearing to be more economical. With regard to the synthesis for rigid-body guidance, it is necessary to investigate whether for overdetermined problems, in general two different solutions can be expected, thus enabling the designer to syntabsize RRER plane linkages for overdetermined rigid-body guidance problems.

### ACKNOWLEDGEMENTS

This research project was sponsored by the School of Enginnering at the National Autonomous University of Mexico. The computer programming was performed by Mr. Mario Siller. Householder's method was implemented via subroutines HECOMP and HOLVE, due to Moler (11) REFERENCES

### CELEVENCES

- Denavit J. and Rattenberg R.S. <u>Kinematic Synthesis</u> of <u>Linkages</u>, Mc Graw-Hill, N. York, 1964
- Sub C.H., and Radeliffe C.W., <u>Kinematics and Mechanisms Dealgn</u>, Wiley, N. York, 1978
- Ben-Israel A. and Greville T.N.E., <u>Generalized</u> <u>Inverses: Theory and Applications</u>, Wiley, N.York, 1974, pp.103+104
- Stewart G.W., <u>Introduction to Matrix Computations</u>, Academic Press, N. York, 1973, pp.208-249
- Björk Å. and Dahlquisz G., <u>Humerical Machods</u>, Prentice-Hall, Englewood Cliffs, 1974, pp.4433-444.
- Buninger P. and Golub G.H., "Linear Least Squaree Solutions by Householder Transformations", in Wilkinson J.H. and Reinach C., eds., <u>Handbook for</u> <u>Automatic Computation</u>, Vol II, Springer-Verlag, N. York, 1971, pp. 111-118
- Pox R.L and Gupta K.C., "Optimization Technology as Applied to Machanima Design". <u>Journal of Engineering for Industry</u> Trans. ASME, Series B.Vol. 93, May 1973, pp. 657-663
- Sub C.H. and Hacklenburg A.W., "Optimal Design of Machanisms with the Use of Hatrices and Lesst Squares", <u>Mechanism and Machine Theory</u>, Vol.5, pp. 479-495
- Fowell H.J.D., "An Efficient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives", <u>Computer Journal</u>, vol.7. No.4, 1964, pp. 303-307
- Burmester R., Lehrbuch der Kingmatic, Vol.1, "Oie abane Bewebung", Verlag von Arthur Falix, 1886
- Moler C.B., <u>Hatrix Eigenvalue and Least-Square</u> <u>Computations</u>, Computer Science Department, Stanford University, March 1973



DISERO CINEMATICO DE MAQUINARIA

· UNA GENERALIZACION DEL TEORENA: DE ARONHOLD - KENNEDY

\_ DR. JORGE ANGELES

į

JUNIO, 1984.

# Una generalización del teorema de Aronhold-Kennedy

Jorge Angeles Alvarez\*

## INTRODUCCION

En el presente trabajo se hace una generalización del teorema de Aronhold-Kennedy, comúnmente conocido en los textos elementales de mecanismos como teorema de los tres centros.

Este teorema establece que cuando tres cuerpos están en movimiento, tienen tres centros instantáneos de movimiento relativo, los cuales se encuentran alineados. Carece de precisión, pues en el caso más general de movimiento de un cuerpo rígido no es posible hablar de centros instantáneos de movimiento relativo, quedando reducido este término al caso particular de movimiento plano, que no es el único que se presenta en problemas de ingeniería; baste citar el caso del movimiento de una junta universal o el de un tren de engranes cónicos, hipoidales o corona sinfín.

Surge entonces la necesidad de hacer una generalización de este teorema que comprenda al movimiento tridimensional, por lo que en este trabajo se establece la condición necesaria y suficiente para que exista movimiento de rotación pura entre los elementos de un mecanismo, y al lievar el teorama a tres dimensiones, se habla, en términos más generales, de ejes instantáneos de rotación.

Como en general, al diseñar un mecanismo, se requiere que este sea lo más eficiente posible (hay casos en que no importa tanto la eficiencia como la ventaja mecánica), es necesario evitar el deslizamiento de las superficies de contacto, el que es nulo cuando hay movimiento de rotación pura.

Existe otra generalización del teorema, que garantiza la existencia de ejes de deslizamiento mínimo y que es útil en el diseño de mecanismos en los cuales es imposible evitar el deslizamiento, como sucede en los acoplamientos hipoldales y en los corona sintín. Esta generalización se puede consultar en libros avanzados de mecanismos (raf 1),

En su forma més general, el teorema de Aronhold Kennedy establece que existen ejes de velocidad relativa mínima (llamados ejes de tornillo instantáneo) y que dichos ejes, para tres cuerpos régidos en movimiento, son tres y tienen la propiedad de ser normales a un eje común.

La originalidad del presente trabajo estriba en que se llege a la forma general del teorema utilizando vectores carteslanos, en lugar de métodos matriciales.

## TEOREMA

Un cuerpo C, que gira con respecto a un cuerpo B, que a su vez está animado de un movimiento de rotación con respecto a un tercer cuerpo A, tiene un eje instantáneo de rotación con respecto a A si, y solo si, los ejes instantáneos de C con respecto a B, y de B con respecto a A son concurrentes; entonces, el eje instantáneo de C con respecto a A, también es concurrente con los dos anteriores.

Para su demostración, se dividirá el teorema en dos partes: en la primera se supondrá que existen los tres ejes, y se demostrará que son concurrentes; en la segunda, se consideraránque los dos primeros ejes son concurrentes, y, como consecuencia de ello, se demostrará que existe el tercer eje, y que es concurrente con los dos anteriores.

Obsérvese que como lo que interese es el movimiento relativo de los tres cuerpos, puede considerarse que uno de ellos tiene una velocidad arbitraria. Si por ejemplo, la velocidad angular det cuerpo A con respecto a un sistema de ejes inercial o nevitoniano es nuta, la velocidad angular de cualquier cuerpo referida a A es absoluta.

Según lo anterior, los ejes instantáneos de 8 y de C con respecto a A son conjuntos de puntos de velocidad absoluta nuía.

Sean: x-y-z, un marco newtoniano al que está tijo A;  $\overline{w}_{B/A}$  $\overline{w}_{C/B}$  y  $\overline{w}_{C/A}$  las velocidades angulares de B con respecto a A, C con respecto a B, y C con respecto a A, respectivamente. En la fig 1, se muestran los tres ejes instantáneos.

El punto Q está alojado sobre el eje instantáneo de C con respecto a A; por lo tanto, puede considerarse como punto de C o de A indistintamente, y tiene, en consecuencia, velocidad absoluta nula. El punto P está alojado sobre el eje instantáneo de C con respecto a B, por lo que puede considerarse alojado en B o en C indistintamente.

Los vectores de posición de P y de Q son, respectivamente,  $\vec{r_p}$  y  $\vec{r_q}$ 

Llamando  $\overline{r}_{12}$  al vector de posición de la intersección de los ejes 8 con respecto a A y C con respecto a A,  $\overline{r}_{13}$  al vector de posición de la intersección de los ejes 8 con respecto a A y C con respecto, a B, y  $\overline{r}_{23}$  a la intersección de los ajes C con respecto a A y C con respecto a B, la primera parte del teorema quedará demostrada al cumplirse las siguientes igualdades:



En efecto:

$$\overline{v}_q = \overline{v}_p + \overline{v}_{q/p}$$

Pero:

$$\overline{v}_{p} = \overline{w}_{B/A} \overline{r}_{p}$$

Y:

$$\overline{v}_{q/p} = \overline{w}_{C/B} \left( \overline{r}_{q} - \overline{r}_{p} \right)$$
(1)

Per lo tanto

$$\overline{v}_q = \overline{w}_{B/A} \overline{r}_p + \overline{w}_{C/B} \overline{r}_q - \overline{w}_{C/B} \overline{r}_p$$

Pero como Q es un punto de A, su velocidad absoluta es nula, por lo que

¥.

 $\overline{w}_{B/A} \overline{r}_{a} + \overline{w}_{C/B} \overline{r}_{a} - \overline{w}_{C/B} \overline{r}_{a} = 0$ 

$$\widetilde{\mathbf{w}}_{\mathbf{C}/\mathbf{B}}\,\widetilde{\mathbf{r}}_{\mathbf{p}} = \widetilde{\mathbf{w}}_{\mathbf{B}/\mathbf{A}}\,\widetilde{\mathbf{r}}_{\mathbf{p}} + \,\widetilde{\mathbf{w}}_{\mathbf{C}/\mathbf{B}}\,\widetilde{\mathbf{r}}_{\mathbf{q}}$$

Multiplicando ambos miembros por  $\overline{w}_{B/A}$  , se tiene

$$\overline{w}_{B/A} \ \overline{w}_{C/B} \ \overline{r}_p = \overline{w}_{B/A} \ \overline{w}_{B/A} \ \overline{r}_p + \overline{w}_{B/A} \ \overline{w}_{C/B} \ \overline{r}_q$$
(2)

El segundo término del miembro a la derecha de la última expresión es nulo, por lo que

$$\overline{w}_{B/A} \ \overline{w}_{C/B} \ \overline{r}_{p} = \overline{w}_{B/A} \ \overline{w}_{C/A} \ \overline{r}_{q}, \tag{3}$$

Pero, de la ec 1: 
$$\overline{v}_{q/p} = \overline{w}_{C/B} \overline{r}_{q/p}$$
  
por lo que  $\overline{v}_q = \overline{w}_{B/A} \overline{r}_p + \overline{w}_{C/B} \overline{r}_{q/p} = 0$   
Es decir  $\overline{w}_{B/A} \overline{r}_p = -\overline{w}_{C/B} \overline{r}_{q/p}$ 

Multiplicando la expresión anterior por  $\overline{w}_{C/A}$ , y tomando en cuenta que  $\overline{w}_{C/A} = \overline{w}_{C/B} + \overline{w}_{B/A}$ :

$$(\vec{w}_{C/B} + \vec{w}_{B/A}) \vec{w}_{B/A} \vec{r}_p = - \vec{w}_{C/A} \vec{w}_{C/B} \vec{r}_{q/p}$$

Deserrollando el primer término, y eliminando el término que se anula

$$\overline{v}_{C/B} \overline{w}_{B/A} \overline{r}_{\rho} = -\overline{w}_{C/A} \overline{w}_{C/B} \overline{r}_{g/\rho}$$

Electuando una rotación no cíclica con los factores del segundo miembro de esta expresión para eliminar el signo negativo, se tiene

$$\overline{w}_{C/B} \ \overline{w}_{B/A} \ \overline{r}_{p} = \overline{w}_{C/D} \ \overline{w}_{C/A} \ \overline{r}_{q/p}$$
(4)

Pero

$$\overline{w}_{C/H} \, \overline{w}_{C/A} \, \overline{\tau}_{q/p} = \overline{w}_{C/B} \, \overline{w}_{C/A} \, \overline{\tau}_{q} - \overline{w}_{C/B} \, \overline{w}_{C/A} \, \overline{\tau}_{p}$$

Sustituyendo  $\overline{w}_{CFB}$  por su valor en función de las otras velocidades angulares, en el primer tármino del miembro a la derecha de la última expresión, se tiena

$$\widetilde{w}_{C/B} \, \widetilde{w}_{C/A} \, \widetilde{\tau}_{q/p} = (\widetilde{w}_{C/A} - \widetilde{w}_{B/A}) \, \widetilde{w}_{C/A} \, \widetilde{\tau}_{q} - \frac{1}{2} \widetilde{w}_{C/B} \, \widetilde{w}_{B/A} \, \widetilde{\tau}_{p}$$

Desarrollando el paréntesis, y eliminando el término que se anula, se tiene

$$\overline{w}_{C/B} \ \overline{w}_{C/A} \ \overline{r}_{q/p} = - \ \overline{w}_{B/A} \ \overline{w}_{C/A} \ \overline{r}_{q} - \overline{w}_{C/B} \ \overline{w}_{B/A} \ \overline{r}_{p}$$
(5)

Efectuando una rotación no cíctica con los factores del segundo término del miembro a la darecha de la ac 5, a fin de cambiar su signo,

Según la ec 3 el miembro de la derecha de esta última expresión es cero, por lo que

$$\overline{w}_{C/B} \ \overline{w}_{C/A} \ \overline{\tau}_{g/P} = 0 \tag{6}$$

De la ec 4 resulta

$$\overline{w}_{C/B} \ \overline{w}_{B/A} \ \overline{r}_p = 0 \tag{7}$$

De la ec 2,

$$\overline{w}_{B/A}/\overline{w}_{C/B}/\overline{r}_q=0$$

Sustituyendo en esta última expresión  $\overline{w}_{C/B}$  por su valor  $\overline{w}_{C/A} = \overline{w}_{B/A}$ , se tiene

$$\overline{w}_{B/A} \ \overline{w}_{C/A} \ \overline{r}_q = \overline{w}_{B/A} \ \overline{w}_{B/A} \ \overline{r}_q = 0$$

Pero el segundo término de esta expresión se anula, por lo que

$$\overline{w}_{B/A} \, \overline{w}_{C/A} \, \overline{\gamma}_{A} = 0 \tag{8}$$

De las ecs 6, 7 y 8, se deduce que los ejes se intersecan dos a dos. Falta ahora demostrar que se intersecan en un punto común. Para esto, basta verificar que el vector de posición es el mismo para las tres intersecciones; es decir,  $\vec{r}_{12} = \vec{r}_{13} = \vec{r}_{23}$ .

En la notación anterior, se sigue la misma nomenclatura que se expuso al enunciar el teorema,

Previamente se determinará la expresión que define a cada uno de los vectores de posición anteriores, para lo cual debe recurrírse a la fig 2.

Apàrecen dos ejes que se intersecan en el punto I. Estos ejes están determinados por los puntos :L y M, dados a su vez por sus vectores de posición  $\overline{r}_L$  y  $\overline{r}_M$  respectivamente, y por los vectores unitarios que dan su dirección/ $\overline{L}$  y  $\overline{m}$ . El problema es daterminar el vector  $\overline{r}_L$ .

$$\overline{r}_{L} = \overline{r}_{L} - \overline{r}_{L}$$
  
 $\overline{r}_{L}$  es dato;  $\overline{r}_{L1} = -$ 

El segmento L1 se determina por el teorema de los senos, a partir de la fig

$$\frac{LI}{\text{sen B}} = \frac{LM}{\text{sen A}} ; \text{ de donde LI} = \frac{\text{sen B}}{\text{sen A}} LM$$

LIĨ

La longitud del segmento LM es dato, pues está dada por los vectores de posición de L y de M, que también son datos; los senos de A y de 8 se determinan de la siguiente manera:

$$sen B = \frac{\left|\vec{r}_{L,M} \ \vec{m}\right|}{\left|\vec{r}_{L,M}\right|}; sen A = \left|\vec{T} \ \vec{m}\right|$$

$$Por lo tanto LI = \left|\vec{r}_{L,M}\right| \frac{\left|\vec{r}_{L,M} \ \vec{m}\right|}{\left|\vec{r}_{L,M}\right| \left|\vec{T} \ \vec{m}\right|} = \frac{\left|\vec{r}_{L,M} \ \vec{m}\right|}{\left|\vec{T} \ \vec{m}\right|}$$

$$\vec{r}_{LI} = -\frac{\left|\vec{T}_{L,M} \ \vec{m}\right|}{\left|\vec{T} \ \vec{m}\right|} T$$

$$De donde \vec{r}_{I} = \vec{r}_{L} + \frac{\left|\vec{T}_{L,M} \ \vec{m}\right|}{\left|\vec{T} \ \vec{m}\right|} T$$

Esta expresión servirá para determinar el vector de posición de cada intersección.

En la fig 3 aparece nuevamente la disposición de los tres ejes instantáneos a que se hace mención, mostrándose las intersecciones de cada par de ejes y los vectores de posición de cada una de estas.

Los vectores unitarios  $\overline{T}_1,\overline{T}_2,\gamma\overline{T}_3$  están dados por

$$\frac{\overline{w}_{B/A}}{\left|\overline{w}_{B/A}\right|} = \frac{\overline{w}_{C/A}}{\left|\overline{w}_{C/A}\right|} = y - \frac{\overline{w}_{C/B}}{\left|\overline{w}_{C/B}\right|} = respectivamente.$$

De la expresión que da r<sub>1</sub>, se tiene:

$$\overline{r}_{12} = -\frac{\left|\overline{r}_{q} \overline{r}_{2}\right|}{\left|\overline{1}_{l} \overline{r}_{2}\right|} T_{1} = -\frac{\left|\overline{r}_{q} \overline{w}_{C/A}\right|}{\left|\overline{w}_{C/A}\right| \left|\frac{\overline{w}_{B/A} \overline{w}_{C/A}\right|}{\left|\overline{w}_{B/A} \overline{w}_{C/A}\right|} \frac{\overline{w}_{B/A}}{\left|\overline{w}_{B/A} \overline{w}_{C/A}\right|}$$





$$\overline{r}_{12} = -\frac{\left|\overline{r}_{q} - \frac{\overline{w}c/A}{\left|\overline{w}_{B/A} - \overline{w}c/A\right|}\right|}{\left|\overline{w}_{B/A} - \overline{w}c/A\right|} \quad \overline{w}_{B/A}$$
(9)

$$\widehat{\mathbf{r}}_{1,3} = -\frac{\left|\overline{\mathbf{r}}_{\mathbf{p}} | \mathbf{T}_{3}\right|}{\left|\widehat{\mathbf{t}}_{1} | -\overline{\mathbf{T}}_{3}\right|} | \overline{\mathbf{t}}_{1} = -\frac{\left|\overline{\mathbf{r}}_{\mathbf{p}} | \overline{\mathbf{w}}_{C/B}\right|}{\left|\overline{\mathbf{w}}_{B/A} | \overline{\mathbf{w}}_{C/B}|} \frac{\overline{\mathbf{w}}_{B/A}}{\left|\overline{\mathbf{w}}_{B/A}\right|}$$

Simplificando

$$\overline{\tau}_{12} = -\frac{\left|\overline{\tau}_{p} - \overline{w}_{C/B}\right|}{\left|\overline{w}_{B/A} - \overline{w}_{C/B}\right|} \qquad (10)$$

$$\overline{\tau}_{2,3} = \overline{\tau}_q - \frac{\left|\overline{\tau}_{qp} T_{3}\right|}{\left|\overline{T_2} - \overline{\tau}_{3}\right|} T_2 = \overline{\tau}_q - \frac{\left|\overline{\tau}_{qp} \overline{w}_{C/B}\right|}{\left|\overline{w}_{C/B}\right| \left|\frac{\left|\overline{w}_{C/A} - \overline{w}_{C/B}\right|}{\left|\overline{w}_{C/A} - \overline{w}_{C/B}\right|} - \frac{\overline{w}_{C/A}}{\left|\overline{w}_{C/A}\right|}$$

de donde

$$\overline{r}_{23} = \overline{r}_{q} - \frac{\left|\overline{r}_{qD} \ \overline{w}_{C/B}\right|}{\left|\overline{w}_{C/A} \ \overline{w}_{C/B}\right|} \quad \overline{w}_{C/A}$$
(11)

Primero se demostrará que  $\overline{r}_{12} = \overline{r}_{13}$ 

En efecto 
$$\overline{r}_q \ \overline{w}_{C/A} = \overline{w}_{C/A} \ \overline{r}_q \ , \ \gamma$$
  
 $\overline{r_p} \ \overline{w}_{C/B} = \overline{w}_{C/B} \ \overline{r}_p$ 

En estas expresiones, por comodidad se ha invertido el sentido de los factores de los productos vectoriales, inversión que resulta de un cambio de signo al producto; pero como se manejan módulos, el cambio de signo no afecta a éstos y la manipulación es justificaga.

Entonces

$$\begin{split} \overline{w}_{C/B} \, \overline{r}_p &= (\overline{w}_{C/A} - \overline{w}_{B/A}) \ (\overline{r}_q + \overline{r}_{qp}) = \\ &= \overline{w}_{C/A} \, \overline{r}_q + \overline{w}_{C/A} \, \overline{r}_{qp} - \overline{w}_{D/A} \, \overline{s}_q - \overline{w}_{B/A} \, \overline{r}_{qp} = \\ &= \overline{w}_{C/A} \, \overline{r}_q + \overline{v}_p - \overline{v}_q - \overline{w}_{B/A} \, \overline{r}_{qp} \end{split}$$

Pero  $\overline{v}_{ij} = 0$ , como ya se vio en un principio. De donde

$$\vec{w}_{C/D} \, \vec{r}_p = \vec{w}_{C/A} \, \vec{r}_q - \vec{v}_p - \vec{w}_{B/A} \, (\vec{r}_p - \vec{r}_q)$$
$$= \vec{w}_{C/A} \, \vec{r}_q - \vec{v}_p - \vec{v}_q$$

Observese que  $\overline{w}_{B/A}$   $\overline{r}_{p} = \overline{v}_{p}$ , y que  $\overline{w}_{B/A}$   $\overline{r}_{q} = \overline{v}_{q} = 0$ 

### Simplificando, se obtiene

 $\overline{W}_{C/B} \overline{T}_{p} = \overline{W}_{C/A} \overline{T}_{q}$ , y al tomar módulos

$$\overline{w}_{C/B} \overline{r}_{p} = \overline{w}_{C/A} \overline{r}_{q}$$
(12)

Por otra parte  $\overline{w}_{B/A}$   $\overline{w}_{C/B} = \overline{w}_{B/A}$   $(\overline{w}_{C/A} - \overline{w}_{B/A})$ 

de donde 
$$\overline{w}_{B/A} \ \overline{w}_{C/B} = \overline{w}_{B/A} \ \overline{w}_{C/A}$$
 (13)

Dividiendo (12) entre (13), resulta

$$\frac{\overline{r}_{q}}{\overline{w}_{B/A}} \frac{\overline{w}_{C/A}}{\overline{w}_{C/A}} = \frac{\overline{r}_{p}}{\overline{w}_{B/A}} \frac{\overline{w}_{C/B}}{\overline{w}_{C/B}} \text{ con lo que se demuestra que}$$

Llamando I a esta intersección común, se tiene que i está en los ejes 1 y 2, al mismo tiempo que en los ejes 1 y 3, por lo que, i está en los ejes 2 y 3; por lo tanto

$$\overline{r}_{23}=\overline{r}_{13}=\overline{r}_{13}$$

De lo anterior se concluye que si existan los tres ejes, estos concurren en un punto común, con lo cuel se ha demostrado la primera parte del teorema.

Faita demostrar la segunda parte, en la que se supone que dos de los ejes se intersecan en un punto, y que como consecuencia de elto existe el tercer eje, damostrándose además, que este es concurrente con los dos anteriores.

Supóngase que los ejes de 8 con respecto a A, y de C con respecto a B, se intersecan en un punto que, por comodidad, se considerará como el origen de coordenadas. Sea x-y-2 un marco newtoniano, con origen en la intersección de los dos ejes. Debe demostrarse que exíste un conjunto de puntos con velocidad absoluta nuta que están en el cuerpo C y que en consecuencia, constituyen el eje instantáneo de C con respecto a A.

Sea P un punto cualquiera de C. Su velocidad absolute con respecto a la velocidad de un punto de B, como Q por ejemplo, será

$$\overline{\mathbf{v}}_{p} = \overline{\mathbf{v}}_{q} + \overline{\mathbf{v}}_{p/q}$$
$$\overline{\mathbf{v}}_{q} = \overline{\mathbf{w}}_{B/A} \cdot \overline{\mathbf{r}}_{q}, \mathbf{Y}$$
$$\overline{\mathbf{v}}_{p/q} = \overline{\mathbf{w}}_{C/B} \cdot \overline{\mathbf{r}}_{qp}$$

Entonces  $\overline{v}_{p} = \overline{w}_{B/A} \overline{\tau}_{q} - \overline{w}_{C/B} \overline{\tau}_{qp}$ 

$$\begin{split} \overline{v}_{p} &= \overline{w}_{B/A} \, \overline{r}_{q} + \overline{w}_{C/B} \, \overline{r}_{qp} = \overline{w}_{B/A} \, \overline{r}_{q} + \overline{w}_{C/B} \, (\overline{r}_{p} - \overline{r}_{q}) \\ \\ \overline{v}_{p} &= \overline{w}_{B/A} \, \overline{r}_{q} + \overline{w}_{C/B} \, \overline{r}_{p} - \overline{w}_{C/B} \, \overline{r}_{q} \end{split}$$

Pero de la fig 4,  $T_q = m \overline{w}_{C/B}$ , en que m es un escelar cualquiera que hace que el módulo de  $T_q$  sea m veces el de  $\overline{w}_{C/B}$ .



Entonces  $\overline{w}_{C/B}$   $\overline{r}_q = \overline{w}_{C/B}$  m  $\overline{w}_{C/B}$ , que es evidentemente cerro. Por tanto

$$\overline{v}_{p} = \overline{w}_{B/A} \overline{r}_{q} + \overline{w}_{C/B} \overline{r}_{p}$$

Para que  $\overline{v}_p$  sea cero como condición para que sea eje instantáneo de rotación de C con respecto a A, se requiere que

 $\overline{w}_{\rm B/A} \, \overline{r}_{\rm a} + \overline{w}_{\rm C/B} \, \overline{r}_{\rm b} = 0$ 

Es decir, se requiere que

$$\overline{w}_{a/A} = \overline{w}_{C/B} + \overline{w}_{C/B} \overline{\tau}_{a} = 0$$

Esta última expresión puede ponerse en la forma

$$\overline{W}_{C/B} \overline{T}_p - m \overline{W}_{C/B} \overline{W}_{B/A} = 0$$

Sacando como factor común a W<sub>C/B</sub>:

$$\overline{w}_{C/B} \left( \overline{r}_{p} - m \, \overline{w}_{B/A} \right) = 0$$

igualdad que se cumple si  $\overline{r}_p - m \overline{w}_{B/A} = 0$ , o sea, si  $\overline{r}_p = m \overline{w}_{B/A}$ , lo cual quiere decir que P, punto de C, está alojado sobre el eje instantáneo de rotación de B con respecto a A. Esto sería un caso trivial, pues entonces C y A serían el mismo cuerpo. También se cumple la igualdad anterior si  $\overline{r}_p - m w_{B/A} = n w_{C/B}$ , en que n es un escalar. Se tendría entonces que

$$\overline{T}_{\mathbf{r}} = \mathbf{m} \, \overline{\mathbf{w}}_{\mathbf{U}/\mathbf{A}} + \mathbf{n} \, \overline{\mathbf{w}}_{\mathbf{C}/\mathbf{B}}.$$

De esta manera, todos los puntos como P, en que sus vectores de posición  $\overline{r}_p$  son línealmente dependientes con  $\overline{w}_{B/A} = \gamma - \overline{w}_{C/B}$ , cumplen con la condición de tener velocidad absoluta nula. Es decir, constituyen el eje instantáneo de rotación de C con respecto a A. Además se observa que cuando m y n son simultáneamente nulas, el lugar geométrico pasa por la intersección de los dos primeros ejes, que es lo que se quería demostrar.

COROLARIO. Los tres ejes son coplanares y guardan la relación:  $\overline{w}_{C/A} = \overline{w}_{C/B} + \overline{w}_{B/A}$ , y como se demostró que los, ejes concurren en un mismo punto, se desprende que son coplanares.

# REFERENCIAS

 J. S. Beggs "Advanced Mechanisms", The Macmitlan Co., Nueva York.



I.

. .

DISEÑO CINEMATICO DE MAQUINARIA

AUTOMATIC COMPUTATION OF THE SREW PARAMETERS OF RIGID-BODY HOTIONS PART. I: FINITELY - SEPARATED POSITIONS

**~**.

JORGE ANGELES

JUNIO, 1984

# AUTOMATIC COMPUTATION OF THE SCREW PARAMETERS OF RIGID-BODY MOTIONS.

PART. I: FINITELY - SEPARATED POSITIONS

Jorge Angeles<sup>1</sup>

### Abstract

A novel approach, based on invariants, is introduced, that leads to efficient algorithms for computing the screw parameters of rigidbody motions. Both finitely and infinitesimally-separated positions are treated. The computer implementation of the algorithm allows the real-time computation of the parameters defining the position and orientation of a rigid body.

<sup>1</sup> Professor, (ASME Member), DEPFI-UNAM (Universidad Nacional Autónoma de México. Apdo. Postal 70-256. C. Universitaria. 04510 México, D.F. MEXICO.

# Introduction

Robotics applications, calling for efficient algorithms for the determination of the position and orientation of a rigid body from a reduced set of measurements, have motivated current research on this topic [1-4] . Although this subject is well known from a theore<u>t</u> ical standpoint [5,pp 1-25, 6, 7 & 8, pp 35-62], the need of means for the efficient real-time computation of the parameters defining a rigid-body motion, commonly referred to as the screw parameters, has called for a revisitation of the underlying theoretical basis. In fact, as pointed out in [2, pp85-118]generally acepted formulae can fail to apply under special, though rather frequent, circumstances.

Presented in [2] are algorithms that take into account all possible particular cases. These algorithms, however, are rather lengtby, and lack symmetry, in the sense of considering one particular point as a body-fixed reference. The latter item is disadvantageous in applications, as pointed out in [3]. The approach introduced in [3] solves the problem of lack of symmetry, but introduces spurious singularities; it is, additionally, limited to the infinitesimally-separated-positions case. Introduced in the present paper is an algorithm based upon invariant concepts that allow a fast and reliable computation of the accrew parameters, for finitely-separated positions. Infinitesimally-separated positions are discussed in an accompanying paper. Given the reduced number of operations involved, this algorithm can be applied to the real-time computation of the said parameters, as required in robotics applications. The procedure, however, is based upon an exact

knowledge of the coordinates of three noncollinear points in two distinct configurations of the rigid body which they belog to. In practice, such coordinates are known only up to random measurement errors. Thus, filtering off of these errors requires either taking measurements of over three points of the rigid body or perform redundant computations, as outlined in the paper. The principles presented here, nevertheless, can be applied even if the computations are based upon measurements of over three points. This subject, however, is not discussed here, but only proposed for further research.

# Description of the algorithm

The motion associated with two finitely-separated positions of a rigid body is fully described by the following [2,pp 85-119] : a) the axis of the screw, given by the three coordinates of one of its points (preferably the one lying closest to the origin) and three direction cosines, b) the sliding of the screw along its axis, and c) the angle of rotation about the axis of the screw, supplied with sign, given a positive direction defined on the axis. The set of scalar screw parameters of the rigid-body motion is, thus, the following: the three components of a vector  $\mathbf{r}_0$ , locating point  $\mathbf{R}_0$  of the screw axis *l*, that lies the closest to the origin; the three components of a unit vector  $\mathbf{e}$ , paralel to *l* and defining the positive direction along *l*; two scalars, u and  $\theta$ , representing the sliding along and the rotation about *l*. This gives 8 scalar components, which are subject to the following two scalar constraints:

$$e^{T}e = 1$$
 (1a)  
 $r_{g}^{T}e = 0$  (1b)

. į -

the superscript  $\binom{T}{}$  standing for transposition. Thus, the number of independent screw parameters is six. The computation is based upon that of the orthogonal matrix defining the rotation involved. The latter is based, in turn, upon the computation of the principal directions of the second-moment tensor of the three points, about their centroid. This is equivalent to the moment of inertia of a rigid system composed of three unit-mass particles. Let  $p_i$  be the position vector of the  $\pounds^{th}$  point, and c, that of their centroid. Hence, c is given by

$$c = \frac{1}{3} + \frac{3}{1} p_{i}$$
 (2)

whereas its second-moment tensor with respect to its centroid, by (9,pp 393-397) 3 2

$$= \sum_{j} \left( \rho_{ij}^{2} - \rho_{ij} \rho_{ij}^{T} \right)$$
 (3a)

with

$$p_{\mathcal{L}} \equiv p_{\mathcal{L}} - c_{\mathcal{L}}$$
 (3b)

The second-rank tensor I is invariant, symmetric and positive definite. The last two properties are obvious from definition (3a). Invariance, on its behalf, means that, under a change of coordinates the three proper values of I do not change, its proper vectors both in the original configuration,  $\{e_1, e_2, e_3\}$ , and those in the new one,  $\{f_1, f_2, f_3\}$ , being related by

$$f_{i} = Q e_{i}$$
 (4)

where Q is the matrix associated with the rotation involved. The foregoing is illustrated in Fig. 1. Horeover, if A denotes the 3 x 3 matrix containing the components of I in the original configuration, whereas



ම

Fig 1 Proper vectors of the second-moment tensor of a three-poin rigid system

B, those in the new one, then

# $B = Q A Q^T$

Clearly, all matrices appearing in (5) should be expressed in the same coordinate frame. Now, if the three given points are noncollinear, it is a simple matter to verify that tensor I, and hence either matrix A or B, is nonsingular. The aforementioned matrix Q is, of course, prop er orthogonal.

The algorithm described next requires the computation of the three proper values and vectors of tensor I. Although this computation leads, in general, to the solution of a nonlinear problem which has to be solved iteratively, for the problem at hand a direct solution is possible, as shown next. Furthermore, once the foregoing eigenvalue problem has been solved, tensor I is expressed with respect to its proper vectors, indentified in what follow with the two orthonormal triplets  $\{e_1, e_2, e_3\}$ and  $\{f_1, f_2, f_3\}$ , of eq (4). Given these two triplets, the computation of Q is a simple matter. The procedure to compute the three proper values and vectors of Q directly(as opposed to iteratively) is, thus, fundamental to this algorithm, for which reason the said procedure is described first.

Let all coordinates be given with respect to a hegerence frame, hence forth referred to as X, Y, Z. Moreover, let A and B be the matrices representing I with respect to the reference frame in the original and the new configuration of the rigid body, respectively. Since tensor I is associated with a plane body, the one defined by the three given points, two of its proper vectors lie in the plane of the body, the remaining one being perpendicular to this plane, as shown in elementary mathematics and mechanics texts. Furthermore, the proper value associated with the third vector,  $I_3$ , equals the sum of the proper values,  $I_1$  and  $I_2$ , asso cjated with the first two proper vectors. Thus,

(6)

6)

(5)

Next the first two invariants of I, tr (I) and tr ( $I^2$ ), also called the two first moments of I [20, p 67] are expressed both in terms of the proper values of I, and in terms of matrix A, and then equated, which leads to the following system of equations for I<sub>1</sub> and I<sub>2</sub>:

$$2(1_1 + 1_2) = tr A$$
 (7a)

$$I_1^2 + I_2^2 + (I_1 + I_2)^2 = \operatorname{tr} A^2$$
 (7b)

with a similar set of equations for matrix B which, if no roundoff nor measurement errors were present, would be identical. If these are present, then both sets can be used to filter the said errors. Since (7a & b) represent a system of two independent equations for two unknowns,  $I_1$  and  $I_2$ , they suffice to compute these:

Elimination of  $I_2$  between eqs (7a & b) produces the following quadratic equation for  $I_1$ :

$$4I_{1}^{2} - 2(trA)I_{1} + (tr^{2}A - 2trA^{2}) = 0$$
 (8)

whence

$$I_{1} = \frac{\text{trA} + \sqrt{\partial \text{tr} A^{2} - 3 \text{tr}^{2} A}}{4}$$

Assuming that the three proper values of I are ordered such that

$$\mathbf{I}_{1} \leq \mathbf{I}_{2} \leq \mathbf{I}_{3} \tag{9}$$

then

$$I_{1} = \frac{trA - \sqrt{8} tr A^{2} - 3 tr^{2} A}{4}$$
(10a)

From eq (7a) it is readily realized that the second root of eq (8) equals  $I_{\eta}$ , i.e.

 $(\overline{\mathbf{r}})$ 

$$I_2 = \frac{\text{tr } A + 8 \text{ tr } A^2 - 3 \text{ tr}^2 A}{4}$$
 (10b)

and hence

$$I_{3} = \frac{1}{2} tr A$$
 (10c)

In order to compute the proper vectors of I, two possibilities are considered, namely either  $I_1 < I_2$  or

I1- I2 (noturally, to machine precision).

In the first case, the null space of  $A - I_{i}$ , for i = 1, 2, 3, 1 equals the 3 x 3 identity matrix, is of dimension 1. Thus, any vector f the said space can be normalized to produce  $e_{i}$ , the problem thus reducing to the determination of this space. This is most efficiently done with the aid of Householder reflections [11, pp 111 - 118], which reduce matrix A to a row echelon form. That is to say, if H is the product of the three involved reflections, then

$$H (A - I_{i} I) = \begin{bmatrix} a I \\ . I \\ .$$

with

$$a_{1} = [a_{11}, a_{12}, a_{13}]^{T}$$
 (11b)  
 $a_{2} = [0, a_{21}, a_{22}]^{T^{-1}}$  (11c)

$$a_3 = [0, 0, 0]^T$$
 (11d)

Hence,

$$\mathcal{L} = \frac{a_1 \times a_2}{\left| \left| a_1 \times a_2 \right| \right|}$$
(11e)

In practice the foregoing computations need be executed only for two proper vectors, the remaining one being computed simply as the cross product of the two previously computed ones.

Now, if  $I_1 = I_2$ , this means that the three-particle rigid system has a cylindrically symmetric inertia tensor. Since each particle has been assumed of unit mass, this can only happen if the three particles are located at the vertices of an equilateral triangle. Hence, any vector lying in the plane defined by the three points is a proper vector of I. This means that  $e_1$  and  $e_2$  can be chosen arbitrarily within that plane, though mutually orthogonal. In order to uniquely define these vectors,  $e_1$  can be chosen, for instance, as

 $e_{j} \frac{p_{j} - c}{|| p_{j} - c||}$  (12a)

Since  $e_3$  is uniquely defined perpendicular to the plane of the given points,  $e_7$  can be readily computed as

 $\mathbf{e}_{2} = \mathbf{e}_{3} \times \mathbf{e}_{1} \tag{12b}$ 

Notice that symmetry is not destroyed by the fact of defining arbitrarily vector  $e_1$  as appearing in eq (12a), for the inertia tensor itself is cylindrically symmetric, as said previously.

The set  $\{f_{\lambda}\}_{1}^{3}$  should be computed correspondingly, i.e. for the case  $\lambda_{1} < \lambda_{2} < \lambda_{3}$ ,  $f_{\lambda}$  should correspond to  $\lambda_{\lambda}$ ; for the second case,  $\lambda_{1} = \lambda_{2}$ , if  $e_{1}$ , and  $e_{2}$  are computed as given by eqs. (12 a &b), then

$$f_{j} = \frac{p_{j}^{2} - c'}{\{j p_{j}^{2} - c'\}}$$
(13a)

Ø

and

fg= fg x fj

 $p_{\lambda}^{+}$  (i= 1,2,3) and c' being the position vectors of the given points and their centroid, respectively, in the new configuration.

The entries of matrix Q,  $q_{ij}$  (*i*, *j* = 1,2,3), representing the rotation in the  $\{e_j\}_{j=1}^{2}$ basis, are now computed by simply recalling the definition of the matrix representation of a linear transformation [12, p 65]. Thus, if both  $\{e_{i}\}_{i=1}^{3}$  and  $\{f_{i}\}_{i=1}^{3}$  are given in referenceframe coordinates, then

$$q_{ij} = e_{i}^{T} f_{j} \qquad (14a)$$

The rotation expressed in reference-frame coordinates, referred to as matrix Q<sub>R</sub>, is obtained as

$$Q_{\rm R} = EQE^{\rm T}$$
 (14b)

with

 $\mathbf{E} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix}$ (14c)

Parameters e, in reference-frame coordinates, and 0 can now be obtained as

 $e \sin \theta = vect (Q_R), \cos \theta = \frac{1}{2} tr (Q) -1$ (15a)

Now, denoting by  $q_{i}$  the *i*-th component of vect (Q), the foregoing invariants are given by

> $q_{j} = \frac{1}{2} \epsilon_{ijk} q_{kj} tr (Q) = q_{jj}$ (15b)

and so

$$e \sin \theta = E c$$
 (15c)

The index convention has been used in eq (15b),  $\epsilon_{ijk}$  being the alternating tensor commonly used in tensor analysis. The remaining screw parameters are now computed: Line L is defined here by the position vector  $\mathbf{r}_0$  of one of its points,  $R_0$ , whose distance to the origin (of the reference frame previously introduced) is a minimum, and by vector  $\mathbf{e}$ , giving its direction [2, pp 85-119]. Vector  $\mathbf{r}_0$  can be computed, in turn, using either a closed-form expression or the minimum-norm solution to an underdétermined linear algebraic system. In the first case, the formula is [2,p 91] :

$$r_0 = \frac{1}{2} \cot \frac{\theta}{2} \exp (p_1^* - p_1^*) - \frac{1}{2} \exp (p_1^* + p_1^*)$$
 (16)

with similar expressions for vectors  $P_2$ ,  $P_2'$ ,  $P_3$  and  $P_3'$ . The three resulting formulae are, of course, redundant and, if no measurement nor roundoff errors were present, all three would yield one and the same vector  $r_0$ . Since such errors are always present, the said three formulae do in fact produce slightly different results. The involved error can be filtered by taking the mean of the three computed values. Alternatively, vector  $r_0$  can be computed as the solution of a linear algebraic system. Indeed, any point R, of position vector r, lying on L satisfies the following equation (2, p 89):

 $(Q - 1)^{T} (Q - 1) r = (Q - 1)^{T} (Qp_{i} - p_{i})$  (17) which is valid for i = 1, 2, 3. None of the three equations (17) can be solved for r, however, for matrix Q - 1, and hence  $(Q-1)^{T}(Q - 1)$ , is singular. In fact, were this matrix nonsingular, then eq(17) would define not a set of points R of L, but one single point. Eq (17) can now be

Ø

expressed in a more compact form as

 $A \equiv (Q-1)^T (Q-1), b = (Q-1)^T (Q p_{\chi} - p_{\chi})$  (18b)

The point of L whose distance to the origin is a minimum is now ...selved via the following minimization problem

$$\mathbf{A}^{t}\mathbf{r} = \mathbf{b}^{1} \tag{20}$$

with A' being a full-rank 2 x 3 matrix. Matrix A' can be readily obtained from (18a) if it is taken into a row echelon form, as discussed before, via Householder reflections. This would imply a corresponding transformation of vector b of eq (18a), for which reason, the righthand side of eq (20) is changed to b'.

(20). The solution to this problem, r<sub>o</sub>, is given in closed form by the matrix A', namely as

$$T_{0} = (A^{\dagger})^{\dagger} b^{\dagger}$$
 (21a)

. with

 $(A^{\prime})^{\dagger}$   $(A^{\prime})^{T} [A^{\prime} (A^{\prime})^{T}]^{-1}$  (21b) Computing  $(A^{\prime})^{\dagger}$  explicitly, as given by eq (21b), however, is not recommended, for the matrix in brackets is usually ill-conditioned;

(12)

in fact, its condition number is the square of that of matrix A', which is a number larger than 1 [13, p 223]. A safe means of computing  $r_0$ from eq (20) is now outlined, as recommended by Lawson and Hanson [14, pp 74-76]. Let H be the product of the two Householder reflections reducing (A')<sup>T</sup> to row echelon form. Since matrix H is orthogonal, H<sup>T</sup>H = 1, and hence, eq (20) can be rewritten as

Let

 $H(A')^{T} = T, Hr = y$ 

(23a)

(22)

with T defined as

$$\mathbf{T} = \begin{bmatrix} \mathbf{U} \\ -\frac{\mathbf{U}}{\mathbf{0}} \end{bmatrix}_{\frac{1}{2}}^{+}, \quad \mathbf{y} = \begin{bmatrix} \mathbf{y} \\ -\frac{\mathbf{J}}{\mathbf{y}} \end{bmatrix}_{\frac{1}{2}}^{+}$$
(23b)

the 2 x 2 matrix U being upper triangular. Eq (22) can thus be expressed  $\frac{1}{100}$  as

$$\begin{bmatrix} \mathbf{u}^{\mathrm{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{1} \\ -\mathbf{1} \\ \mathbf{y}_{2} \end{bmatrix} = \mathbf{b}^{\mathrm{T}}$$
(24a)

or, alternatively, as

$$u^{T}y_{1} + 0y_{2} = b^{1}$$
 (24b)

Eq (24b) can be readily solved for  $y_j$  by forward substitution, for  $U^T$  is lower triangular,  $y_2$  being left undefined so far. However, since  $y_2$  is being multiplied times a zero matrix, it can be given any real value. Since the minimum norm solution to eq (22) is being sought, then

the proper choice of y, is

$$y_{j} = 0$$
 (25)

Thus, the minimum-norm solution to eq (24b), yo, is given as

$$\mathbf{y}_{0} = \begin{bmatrix} \mathbf{U}^{-T} - \mathbf{b}_{1}^{T} \\ \mathbf{0} \end{bmatrix}$$
(26)

Vector r, is now computed simply as

$$\mathbf{r}_{o} = \mathbf{H}^{\mathrm{T}} \mathbf{y}_{q} \tag{27}$$

Again, each value of Z produces one corresponding system of equations (17), or, alternatively (18a). All three systems can be solved for  $r_0$ , which would produce three slightly different values for this unknown, out of which the mean value would be the one containing the minimum error.

It is pointed out here that the foregoing computations, simple as they are, are sought to be executed with the highest efficiency, for they are aimed at applications demanding real-time computations, while keeping the roundoff error low enough. Finally, the single parameter that is to be computed is u, the sliding of the arew. This is readily computed as the projection on L of the displacement undergone by any of the three given points, i. e. as

$$u = e^{T} \left( p_{\vec{\lambda}}^{1} - p_{\vec{\lambda}} \right)$$
 28)

which is valid, again, for all three points. Hence, the likeliest u can be taken as the mean value of those three, thereby completing the computation of the parameters sought.

In the foregoing discussion the only source of singularities is tensor I. In fact, if the three given points are collinear, then the

(H)

orientation of the body about the line defined by the three points is undefined. Practical applications, rather frequent, call for the determination of the position and orientation of a line of a body, and not of the body itself. Such applications arise, for instance, in the positioning of axially-symmetric workpieces or tools. The problem of the determination of the screw parameters for such a situation and others, referred to as incompletely-specified motions, has been studied in [15], whereas the motion of a rigid line in two infinitesimally-separated pom itions only, has been treated in [16].

Apart from the singular cases mentioned, ill- conditioned problems should be considered, as well. These arise whenever the ratio  $I_2/I_1$ becomes very large, as compared to unity. Such a ratio becomes large when the legs of the triangle defined by the three different points have very different lengths. Hence, the more such a triangle "approaches" an equilateral one, the better conditioned is the problem. Ill- conditioned problems may lead to cancellations in the computation of  $I_1$ , as given by eq (10a), for which reason the computation of  $I_1$  and  $I_2$  should be executed in the following order, according to [17,pp20-23]:  $I_2$  is first computed with eq (10b); next I, is computed as

$$I_{1} = \frac{tr^{2}A - 2tr A^{2}}{I_{0}} \qquad (29)$$

An example is next included, that illustrates the foregoing proce dure. (5

### Example

Determine the screw parameters of the motion of a rigid body whose original and final configurations, referred to as C and C', respectively, are given by the coordinates of three of, its points,  $P_1$ ,  $P_2$  and  $P_3$  in C, and  $P_1$ ,  $P_2$  and  $P_3$  in C<sup>1</sup>. The position vectors of these points are given as:  $p_{f} = [1, 0, 0]^{T}, \qquad p_{f}^{T} = [2, 0, -1]^{T}$  $P_2^{T}$  [1, 1, 0] T,  $P_2^{T}$  = [2, 0, 0] T  $p'_3 = [3, -1, 0]^T$  $p_{3} = [2, 1, -1]^{T}$ Hence.  $c = \frac{1}{3} [4, 2, 1]^{T}, c' = \frac{1}{3} [7, -1, -1]^{T}$ c and c' being the position vectors of the centroids in and '', respectively. Vectors  $p_i$ ,  $p'_i$ , defined as  $p_i = p_i - c$ , and  $p'_i = p'_i - c'_i$ . ∠ = 1, 2, 3, are thus  $p_{1} = \frac{1}{3} [-1, -2, 1^{T}] p_{1}' = \frac{1}{2} [-1, 1, 2]^{T}$  $p_{g} = \frac{1}{3} [-1, 1, 1, T] p_{g} = \frac{1}{3} [-1, 1, 1]$  $P_3 = \frac{1}{3} [2, 1, -2^T] P_3' = \frac{1}{3} [2, -2, 1]^T$ Matrices A and B are thus computed as  $A = \frac{1}{3} \begin{bmatrix} 4 & -1 & 2 \\ -1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix} , B = \frac{1}{3} \begin{bmatrix} 4 & 2 & -1 \\ 2 & 4 & 1 \\ -1 & 1 & 4 \end{bmatrix}$ · Hence, trA = 4,  $tr A^2 = 20/3$ 

0

Eqs (10a - c) thus yield

$$I_1 = 1 - \frac{\sqrt{3}}{3}, \quad I_2 = 1 + \frac{\sqrt{3}}{3}, \quad I_3 = 2$$

Now e<sub>3</sub>, the unit vector spanning the null space of A- I<sub>3</sub>1, is determined. This matrix is  $A-I_3 = \frac{1}{3} \begin{bmatrix} -2 & -1 & 2 \\ -1 & -2 & 1 \\ 2 & 1 & -2 \end{bmatrix}$ 

which can be taken to the following row echelon form via Householder reflections:  $\begin{bmatrix} 3 & 2 & -3 \end{bmatrix}$ 

$$H (A - I_3 I) = \frac{1}{3} \begin{bmatrix} 0 \sqrt{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus, letting

$$a_1 = [3, 2, -3^T] a_2 = [0, \sqrt{2}, 0]^T$$

in eq (11c), one readily obtains

$$e_2 = [0.7071, 0, 0.7071]^T$$

Similarly,

and

$$e_1 = e_2 \times e_3 = [-0.6280, -0.4597, 0.6280]^T$$

Similar results are obtained for matrix B as follows:  $f_1 = \begin{bmatrix} -0.6280, 0.6280, -0.4597 \end{bmatrix}^T$ 

Hence, the rotation matrix Q is obtained from formula (14) as

$$Q = \begin{bmatrix} -0.1833 & -0.6124 & 0.7691 \\ -0.6124 & 0.6833 & 0.3980 \\ -0.3980 & 0.5000 \end{bmatrix}$$
  
and  
$$\begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
  
Thus,  
$$e \sin \theta = \frac{1}{2} [1, -1, -1]^{T}, \cos \theta = -\frac{1}{2}$$
  
i.e.  
$$e = \frac{\sqrt{3}}{3} [-1, 1, 1]^{T}, \theta = 4\pi/3$$
  
...Eq. (17) is now written for  $i = 1$ , which yields eq (18a) with  
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}, b = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 1 \end{bmatrix}$$
  
Bouncholder reflections applied to A and b yield  
$$A^{T} = \begin{bmatrix} -\sqrt{6} & -\sqrt{6}/2 & -\sqrt{6}/2 \\ 0 & -3\sqrt{2}/2 & 3\sqrt{2}/2 \end{bmatrix}, b^{T} = \begin{bmatrix} -3\sqrt{5}/2 \\ -\sqrt{2}/2 \\ -\sqrt{2}/2 \\ \end{bmatrix}$$
  
Hence, the minimum-norm solution of eq (24a) is  
$$y_{0} = (-\frac{\sqrt{6}}{2}, -\frac{\sqrt{2}}{6}, 0)$$
  
trank on,  
$$y_{0} = [1, \frac{2}{3}, \frac{1}{3}]^{T}$$
  
Finally,

ı

•

B

÷

$$u = e^{T} (p_{1}^{1} - p_{1}) = \frac{\sqrt{3}}{3} [-1, 1, 1] \begin{pmatrix} 1 \\ 0 \\ 1 \\ \vdots \end{pmatrix} = -\frac{2\sqrt{3}}{3}$$

thereby completing the solution

# Conclusions

An algorithm was presented, that allows the efficient computation of the screw parameters of the motion undergone by a rigid body between two finitely-separated positions. The efficiency of the algorithm refers to its low number of operations, as well as to its avoidance of large roundoff errors and of spurious singularities. Means of avoiding ill conditioning were discussed. Ways of filtering roundoff and/or meas-"Tement errors were outlined, but not treated in detail, since this fall outside the scope of the paper. The computation of the screw parameters for two infinitesimally-separated positions is discussed in an accompanying paper [18].

# Acknowledgements

The research work reported here was totally supported by the Graduate Division of the Faculty of Engineering - National Autonomous University of Mexico (DEPFI-UNAM) and was completed at the CAD Laboratory of this Division.

- Chen N-Y and Birk J.R, "Estimating workpiece pose using the feature points method", <u>IEEE Trans Automatic Control</u>, Vol AC-25, No. 6, Dec 1980, pp 1027-1041
- Angeles J, <u>Spatial Kinematic Chains</u>. Analysis, Synthesis,
   Optimization, Springer-Verlag, Berlin, 1982
- 3. Lamb A J and Shiflett G R, "A linear algebra approach to the analysis of rigid body velocity from position and velocity data", <u>Trans ASME J Dynamic Systems, Measurement, and Control</u>, Vol 105, June 1983, pp 92-95
- Foral R D and Seireg A A, "Fast tracking and handling of moving objects: A new method", CIME, Sept 1983, pp 32-38
- 5. Whittaker E T, A Treatise on the Analytical Dynamics of Particles
- .. and Rigid Bodies, Cambridge University Press, Cambridge, (Great Britain), 1961.
- 6. Rodrigues 0, "Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace, et de la variation des coordo nnées provenant de ces déplacements considérés independamment des causes qui peuvent les produire", <u>Journal des Mathématiques</u>
  - Pures\_et Appliquées, Vol 5, 1st Series, 1840, pp 380-440
- Meyer P, "Zur Geometric «ffin-veränderlicher räumlicher Systeme", Mechanism and Machine Theory, Vol 10, 1975, pp 217-232
- 8. Bottema O and Roth B, <u>Theoretical Kinematics</u>, North-Holland Publishing Company, Amsterdam-New York-Oxford, 1979

- 9. Fox E A, Mechanics, Harper and Row, New York, 1967
- Leigh D C, <u>Nonlinear Continuum Mechanics</u>, Mc Graw-Hill Book Co, New York, 1968
- 11. Businger P and Golub G H, "Linear least square solution by Householder transformations", in Wilkinson J H and Reinsch C (editors), <u>Handbook for Automatic Computation. Vol II: Linear</u> <u>Algebra</u>, Springer - Verlag, Berlin-Heidelberg - New York, 1971
- Halmos P R, <u>Finite-Dimensional Vector Spaces</u>, Springer-Verlag, New York, 1970
- Stewart G W, <u>Introduction to Matrix Computations</u>, Academic Press, Inc, London, 1973
- Lawson C L and Hanson R J, <u>Solving Least Squares Problems</u>, Prentice-Hall, Inc, Englewood Cliff, N J, 1974
- 15. Tsai L-W and Roth B, "Incompletely specified displacements: Geometry and spatial linkage synthesis"; <u>ASME Paper No</u> 72-Mech-13
- 16. Henderson J M and Meriam J L, "On the space rotation of a two-point link", Mechanism and Machine Theory, Vol 10, 1975, pp 347-354
- 17. Forsythe G E, Malcolm M A and Moler C B, <u>Computer Methods for</u> <u>Mathematical Computations</u>, Prentice-Hall, Inc., Englewood Cliff, N J, 1977.
- 18. Angeles J, "Automatic computation of the screw parameters of rigidbody motions. Part II: Infinitesimally-separated positions", submitted for publication to <u>Trans ASME J Dynamic Systems</u> Measurements, and Control

Ð


DISENO CINEMATICO DE NAQUINARIA

AUTOMATIC COMPUTATION OF THE SCREW PARAMETER OF RIGID-BODY MOTIONS

PART. 11: INFINITESIMALLY - SEPARATED POSITIONS

DR. JORGE ANGELES ALVAREZ

JUNIO, 1984.

AUTOMATIC COMPUTATION OF THE SCREW PARAMETERS OF RIGID-BODY MOTIONS. PART II: INFINITESIMALLY-SEPARATED POSITIONS. Jorge Angeles<sup>1</sup>

### Abstract

The approach introduced in an accompanying paper, simed at the computation of the screw parameters of a rigid-body motion defined by two finitelyseparated positions, is now applied to that defined by two infinitesimallyseparated positions. Given the economy of computation of this algorithm, it should allow the real-time computation of the screw parameters under study. The algorithm assumes perfect knowledge of the position and the velocity of three noncollinear points of the body.

Professor, (ASME Member), DEPFI-UNAM (Universidad Nacional Autónoma de México. Apdo. Postal 70-256. C. Universitaria. 04510 México, DF., MEXICO).

### Introduction

A novel approach, simed at the computation of the screw parameters of a rigid-body motion defined by two finitely-separated positions, is introduced in an accompanying paper [1]. Many an application, either in robotics or in mechanism design, however, require the computation of the said parameters when the motion is defined by two not finitely-, but infinitesimallyseparated positions. Moreover, since infinitesimally-separated positions give rise to linear problems, whereas finitely-separated positions, to nonlinear ones, the latter are solved frequently by first solving the former, and then performing a time integration,

The algorithm introduced here is based upon that presented in [2], but modifies it in the sense of eliminating the spurious singularity contained therein. Moreover, the computations are simplified and the procedure extended to the computation of all the independent parameters of the screw motion under study.

2'

÷Ł

The motion defined by two infinitesimally-separated positions of a rigid body is fully described by the following [3, pp 119-148]: a) the axis of the instantaneous screw, given by the position vector of one of its points (preferably the one lying the closest to the origin) and three direction cosines, b) the sliding of the screw along its axis, and c) the rate of rotation about the axis, supplied with sign, given a positive direction defined on the axis. The set of scalar screw parameters of the rigid body motion is thus, the following: the three components of a vector  $r_0$ , locating point  $R_0$  of the screw axis 1, whose distance to the origin is a minimum: the three components of a vector e, parallel to 1 and defining the positive direction along L; two scalars, u and 0, representing the sliding along and the rate of rotation about L. This gives 8 scalar components, which are subject to:

 $e^{T}e = 1$  $r_{e}^{T}e = 0$ 

3

......

To describe the present algorithm, let  $p_{i}$  (i = 1, 2, 3) be the position vectors of three noncollinear pints  $P_{i}$  (i = 1, 2, 3) of a rigid body, their velocities being denoted by  $p_{i}$  (i = 1, 2, 3). Now the angular velocity  $\omega$  is computed as follows:

Let c be the centroid of the three points, v being its velocity. These two vectors are clearly given by

$$c = \frac{1}{3} \frac{3}{1} p_{i}, \quad v = \frac{1}{3} \frac{3}{1} \frac{p_{i}}{p_{i}}$$
 (1)

The velocity of any point of the body can be expressed in terms of that of one point A, a, whose position vector is represented by a, and the angular velocity  $\omega$  of the body. If the angular velocity matrix  $\Omega$  is used instead of vector  $\omega$ , then the foregoing relation, written for each point P and C, is

 $\dot{p} = \dot{a} + \Omega(p_i - a), \ \dot{\iota} = 1, 2, 3$  (2a)  $v = \ddot{a} + \Omega(c - a)$  (2b)

The relation between  $\omega$  and  $\Omega$  is

 $\omega = \text{vect}(\Omega)$ 

οτ

 $\omega_{i} = \frac{1}{2} \varepsilon_{ijk} \Omega_{kj}$ (3b)

where the standard index notation is being used,  $\epsilon_{ijk}$  being the alternating tensor. Subtraction of eq (2b) from eq (2a) yields

$$\dot{\mathbf{p}}_{i} = \mathbf{v} = \Omega(\mathbf{p}_{i} = \mathbf{c}), \ i = 1, 2, 3$$
 (4)

4

•••/•••

(3a)

Following the approach introduced in [2], matrices P and P are next defined as

$$\mathbf{P} = \left[ \mathbf{p}_{1} - \mathbf{v} \right] \quad \mathbf{p}_{2} - \mathbf{v} \left[ \mathbf{p}_{3} - \mathbf{v} \right] \quad \mathbf{p}_{3} - \mathbf{c} \quad \mathbf{p}_{3} -$$

All three relations (4) can thus be expressed as

F = ΩP (6)

which is an equation not depending upon the location of the origin. Thus, the algorithm is not affected if two of the three given points turn to be collinear with the origin The algorithm, moreover, does not depend upon the regularity of matrix P; indeed, this matrix, as given by definitions (5), is identically singular, but this is no drawback, as shown next.

Taking the vector of both sides of eq (6) produces  $\begin{bmatrix} 4 \\ \end{bmatrix}$ :

$$\frac{1}{2} (1 \operatorname{tr} P - P) \omega = \operatorname{vect}(P)$$
(7)

which can be solved for w provided matrix M = 1 tr P - P is invertible. If this is the case, then

 $\omega = 2 (1 \text{ tr } P - P)^{-1} \text{ vect } (\dot{P})$  (8)

matrix in becoming singular only if P becomes a rank-one matrix which, in turn, implies that the three given points are collinear. This fact is supported by

Theorem 1. The trace of matrix P, as defined in eq (5), is identically differ-

Proof :

With no loss of generality, axes X-Y-Z are assumed to be orientated so that Z is perpendicular to the plane defined by the three given points. Furthermore,

5

.../...

the origin is placed at C, whereas X is orientated parallel to line  $P_3P_1$ , so that  $x_1 > 0$ . Hence,  $y_1 = y_3 < 0$ ,  $y_2 = -2y_1 > 0$ , the corresponding layout appearing in Fig 1





Matrix P is this given by

$$P = \begin{bmatrix} x_1 & x_2 & -(x_1 + x_2) \\ y_1 & -2y_1 & y_1 \\ 0 & 0 & 0 \end{bmatrix}$$

Henc:,

$$tr P = x_1 - 2y_1$$

which, under the foregoing assumptions, is the sum of two positive real numbers, and mence, never vanishes, q. e. d.

Theorem 2. Matrix 1 trP - P, with P defined as in eq(5), is singular if, and only if the three given points  $P_i$  (i = 1, 2, 3) are collinear. Proof:

Only necessity will be proved, for sufficiency can be proved by inverting the nicessity proof given. To this end, let  $\pi_i$  and  $\mu_i$  be the proper values of P

and M = 1 tr P = P, respectively. Given the definition of M, these values  $\dots$  are related by

$$\mu_{i} = tr P - \pi_{i}, i = 1, 2, 3$$

However, the three columns of matrix P represent the components of three coplanar vectors, hence P is singular. Thus, at least one proper value of P vanishes. Let  $\pi_3 = 0$ . Hence,

$$tr P = \pi_1 + \pi_2$$

and

$$\mu_{j} = \operatorname{tr} P - \pi_{j}, \ \mu_{2} = \operatorname{tr} P - \pi_{2}, \ \mu_{3} = \operatorname{tr} P$$
(10b)

Therefore, the determinant of M, det(M), is given by

 $det(M) = \mu_1 \, \mu_2 \, \mu_3 = \pi_1 \, \pi_2 \, tr \, P \, . \tag{11}$ 

where relations (10a & b) have been taken into account. From eq(11) and Theorem 1, it is clear that det(M) vanishes only if at least one of  $\mathbf{v}_1$  and  $\mathbf{v}_2$  does. However, both of them cannot vanish simultaneously, for this would imply  $P_1 = P_2 = P_3$ . The vanishing of, say:  $\mathbf{v}_1$ , implies that matrix P has two vanishing proper values, i. e. that it is a rank-one matrix. This implies, in turn, that the three column vectors of P are parallel to one single vector, i. e that the three points are collinear, thereby completing the proof.

Now, if the three points are given along the edges of a right-angled tribedron, so that their distances to the spex are identical, and vector c is defined now not as the centroid, but as the position vector of the spex, then a proper normalization renders matrix P orthogonal. In this case, matrix 1 tr P - P can be inverted explicitly as [4]:

(9)

(10a)

$$(1 \text{ tr } P - P)^{-1} = \frac{1}{\text{tr}^2} (P \text{ tr } P + P^T)$$
(12)

In this case, matrix 1 tr P - P turns to be singular if, and only if, P represents a rotation of the tribedron, with respect to the given reference frame, of an angle of rotation  $\theta = \pi/2$ ,  $\pi$  or  $3\pi/2$ . This singularity can be readily removed by introducing a redefinition of the Cartesian axes attached to the reference frame, as discussed in [4].

In general, however, and particularly if c is defined as in eq (1), matrix P is not orthogonal. The computation of  $\omega$  can be executed safely if matrix 1 tr P - P is not only nonsingular, but also well conditioned. Ill conditioning of this matrix arises only when the three given points, though not collinear, are close to it. A measure of the closeness to collinearity can be given, thus, by the inverse of the condition number [5] of this matrix. Most linear-equation solvers supply the user with a good estimate of the said number.

The remaining parameters are now computed. Given  $\omega$ , it is a simple matter to construct  $\Omega$ . Symbolically they are related by

 $\Omega = 1 \times \omega \tag{13}$ 

where x denotes the standard cross product, in dyadic notation.

Now, vector  $r_0$  defining the position of point  $R_0$  on the instantaneous screw axis, whose distance to the origin is a minimum, can be computed in two alternate ways, one resorting to an explicit formula, the second one, via a minimization problem. Both approaches are now discussed.

The formula giving  $r_o$  is [3, p 129]:

$$\mathbf{r}_{o} = \mathbf{p}_{i} + \frac{1}{\omega^{2}} \quad \omega \ge \mathbf{p}_{i} - (\omega + \mathbf{p}_{i})\omega \qquad (14)$$

which is valid for i = 1, 2, 3. If no roundoff nor measurement errors were present, formula (14), as applied to all three points, would yield one and the same value for  $r_0$ . In practice, this is not the case; thus the said errors can be filtered if the formula is applied to the three given points, then defining  $r_0$  as the mean value of the three distinct values thus obtained.

Alternatively,  $r_0$  can be computed via the following optimization problem [3, pp 126-129]:

$$\operatorname{Min} \quad \frac{1}{2} r^{\mathrm{T}} r \qquad (15a)$$

subject to

А́Г = Ъ.

 $\Omega[p_{i} + \Omega(r - p_{j})] = 0$  (15b)

Matrix  $\Omega$  being 3 x 3 and skew-symmetric, is singular; hence r cannot be solved for from eq (15b). In fact, if r could be solved for from that equation, then the said equation would produce one single value of r, not a set, that defining the screw axis. Eq (15b) contains exactly 2 linearly independent equations, for rank ( $\Omega$ ) = 2. These can be readily extracted from eq (15b) if Householder reflections are applied to both sides of eq (15b), as discussed in [1]. This would yield:

(16a)

.../...

with  

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & 0 \end{bmatrix} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ 0 \end{bmatrix}$$

Eq (16a) represents then an underdetermined linear algebraic system possessing infinitely many solutions, its minimum- (Euclidean) norm solution being given by the generalized inverse of the upper  $\ell \ge 3$ submatrix of A, referred to as A<sub>u</sub>. Analogously, let b<sub>u</sub> be the upper  $\ell$ -dimensional subvector of b. Thus,

$$\mathbf{r}_{o} = \mathbf{A}_{u}^{+} \mathbf{b}_{u}$$
(17a)  
with  
$$\mathbf{A}_{u}^{-} \equiv \mathbf{A}_{u}^{+} (\mathbf{A}_{u}^{-} \mathbf{A}_{u}^{T})^{-1}$$
(17b)

Given the frequent ill conditioning of matrix  $A_{\mathcal{U}}^{\mathbf{T}}$ , it is not recommended to invert this matrix explicitly. In fact,  $r_0$  can be more efficiently computed resorting again to Householder reflections, as discussed in [1]. This would produce  $r_0$  as follows: let H be the product of Householder reflections rendering  $A_{\mathcal{U}}^{\mathbf{T}}$  upper triangular. Then

$$H A_{\mu}^{T} = T = \begin{bmatrix} U \\ --- \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
(18a)

U being upper triangular. Vector yo is computed from

$$\mathbf{y}_{0} = \begin{bmatrix} -\frac{\mathbf{y}_{\mu}}{2} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix}^{2} \mathbf{y}_{\mu}^{T} \mathbf{y}_{\mu} = \mathbf{b}_{\mu}$$
(18b)

from which the 2-dimensional vector  $y_u$  can be readily computed, since  $u^T$  is lower triangular. Then

$$\mathbf{r}_{o} = \mathbf{H}^{\mathrm{T}} \mathbf{y}_{o}$$
 (18c)

Clearly, each value of  $p_{i}$  and  $p_{i}$  (i = 1, 2, 3) would produce one pair (A, b), to form then three different minimization problems (15a & b). Again, if no roundoff nor measurement errors were present, then all three problems would produce one and the same value  $r_0$ . Since such errors are always present, the likeliest value of  $r_0$  can be chosen as the mean value of the three values thus obtained.

Having determined  $\omega_{i}$ , e and  $\theta$  can be readily computed from

 $\mu = e \theta$  (19) with e defined as a unit vector. Thus, only parameter u need be computed. This is done simply by projecting any of  $\dot{p}_{i}$  (i = 1, 2, 3) on e, thus obtaining

 $u = e^{T}p_{i}$  (20) which would again produce three slightly different values, out of which the likeliest would be their mean value.

### Example

Given the three position vectors  $\mathbf{p}_{\hat{\mathcal{L}}}$  of points  $\mathbf{P}_{\hat{\mathcal{L}}}$ , as well as their corresponding velocities,  $\mathbf{p}_{\hat{\mathcal{L}}}$ , for  $\hat{\mathcal{L}} = 1, 2, 3$ , all vectors referred to the same coordinate frame X-Y-Z, and shown pext, determine the parameters defining the instantaneous screw of the corresponding motion.

$$\mathbf{p}_{1} = \begin{bmatrix} 1 & 1 & 7 \end{bmatrix}^{T}, \quad \dot{\mathbf{p}}_{1} = \begin{bmatrix} 7 & -5 & 1 \end{bmatrix}^{T}$$
$$\mathbf{p}_{2} = \begin{bmatrix} 4 & 7 & 1 \end{bmatrix}^{T}, \quad \dot{\mathbf{p}}_{2} = \begin{bmatrix} -5 & 4 & 4 \end{bmatrix}^{T}$$
$$\mathbf{p}_{3} = \begin{bmatrix} 7 & 10 & 10 \end{bmatrix}^{T}, \quad \dot{\mathbf{p}}_{3} = \begin{bmatrix} 1 & -2 & 4 \end{bmatrix}^{T}$$

The vectors given above are taken from Example 1 of [2] for comparison purposes. They define in fact the positions and the velocities of three points of a rigid body. Indeed, the following compatibility condition holds for the said vectors:

$$(\dot{p}_{j} - \dot{p}_{j})^{T}(p_{j} - p_{j}) = 0, i = 1, 2, 3; j = 1, 2, 3; j \neq i$$
  
Now c and v are computed as given in eq (1):  
 $c = [4, 6, 6]^{T}, v = [1, -1, 3]^{T}$ 

Matrices P and P, defined in eq (5), are given next:

| •   | - 3 | 0   | 3 |   |     | 6   | - 6        | 0   | Ì |
|-----|-----|-----|---|---|-----|-----|------------|-----|---|
| P - | - 5 | 1   | 4 | , | P - | - 4 | 5          | - 1 |   |
|     | 1   | - 5 | 4 |   |     | - 2 | : <b>1</b> | 1   |   |

.../...

Substitution of the foregoing matrices and vectors in eq (8) produces  $\omega = \begin{bmatrix} 1, & 1, & 1 \end{bmatrix}^{T}$ 

thus obtaining the same value of  $\omega$  as that reported in [2]. The remaining parameters are now obtained, To this end, matrix  $\Omega$  is now computed. From eq (13),

Now eq (15b) is expressed, for 4 = 1, as

|   | - 2 | 11  | ī   | [×]  | $\begin{bmatrix} 0 \end{bmatrix}$ |
|---|-----|-----|-----|------|-----------------------------------|
| 1 | 1   | - 2 | 1   | y  - | 0                                 |
|   | L 1 | 1   | - 2 | z .  | [0 ]                              |

x, y and z being the components of vector r of that equation, as yet to be determined. This is done as the solution to problem (15a & b), which is readily obtained by application of Householder reflections to both sides of the last equation, to render it into row echelon form. Letting H and A be the product of the two reflections required for the aforementioned transformation, and the matrix of the system involved, one has

HA = 
$$\begin{bmatrix} 2 \alpha & -\alpha & -\alpha \\ 0 & \beta & -\beta \\ 0 & 0 & 0 \end{bmatrix}$$
,  $\alpha \equiv \frac{\sqrt{6}}{2}$ ,  $\beta = \frac{3\sqrt{2}}{2}$ 

Hence, eq (15b) represents the null space of matrix HA given above. Any

13.

vector r of that space has clearly the following components:

 $r = ||r|| [1, 1, 1]^T$ 

|| r || representing its magnitude. Hence the minimum-norm vector  $r_0$ , solving problem (15a & b) is simply

 $r_{o} = [0, 0, 0]^{T}$ 

for the axis of the instantaneous screw, given by vector r, as found above, passes through the origin.

Parameters  $\theta$  and e are readily obtained from vector  $\omega$ , as  $\dot{\theta} = || \omega || = \sqrt{3}$ ,  $e = \frac{\omega}{\dot{\theta}} = \frac{\sqrt{3}}{3} [1, 1, 1]^{T}$ 

Finally, parameter u is found simply as the projection of any of p on e. For instance, for i = 1,

 $\mathbf{u} = \mathbf{e}^{\mathrm{T}}\mathbf{p}_{j} = 0$ 

and hence the motion is a pure rotation about the origin. The following remarks are now in order:

a) This problem turned to be very simple to solve, given that it reduced, in the last stage of computing  $r_0$ , to finding the null space of a rank-2 2 x 3 matrix. In the general case, it would have given rise to an underdecermined linear system of 2 equations in 3 unknowns, whose minimum-norm solution would have been determined as outlined in [1].

b) The solution reported in [2] did not make evident that the motion of this example is a pure rotation about the origin.

A method was presented that allows the automatic computation of the screw parameters of a motion defined by two infinitesimally-separated positions. This method is simpler than previously reported ones, making use of a smaller number of operations. The latter feature can allow the real-time computation of the said parameters, which is essentially necessary in robotics applications. The method does not depend on the location of the origin of the coordinate reference frame; but its orientation can produce a "spurious singularity, that can be readily removed. Furthermore, it gives no preference to any of the three given points. It fails only if the three given points are collinear, but in this case no method can provide the parameters sought, for they are undetermined. A possible source of numerical instability is contained only in matrix 1 tr P - P, this matrix becoming ill conditioned as the three given points approach collinearity. Hence, this matrix is better conditioned, the more triangle  $P_1P_2P_3$  approaches an equilateral triangle.

# Acknowledgements

The research work reported here was totally supported by the Graduate Division of the Faculty of Engineering - National Autonomous University of Mexico (DEPFI-UNAM) and was completed at the CAD Laboratory of this Division.

#### References

1. Angeles J, "Automatic computation of the screw parameters of rigid-body t motions. Part I: Finitely-separated positions", submitted for publication

to: Trans ASME J of Dynamic Systems, Measurement, and Control.

15

- Liub A J and Shiflett G R, "A linear algebra approach to the analysis of rigid body velocity from position and velocity data", <u>Trans ASME J of</u> Dynamic Systems, Measurements, and Control, Vol 105, June 1983, pp 92-95.
- Angeles J, <u>Spatial Kinematic Chains. Analysis</u>, <u>Synthesis</u>, <u>Optimization</u>, Springer-Verlag, Berlin, 1982.
- 4. Angeles J, "Software for the analysis of seven-link revolute-coupled kinematic chains", <u>Internal Report</u>, DEPFI-UNAM, Mexico City, 1984.
- 5. Forsythe G E and Moler C B, <u>Computer Solution of Linear Algebraic Systems</u>, Prentice-Hall, Inc, Englewood Cliffs, NJ, 1967, pp 20-26.

- ...



# DISENO CINEMATICO DE MAQUINARIA

# SUBPROGRAMAS PARA EL ANALISIS DE CADENAS CINEMATICAS CON 7 ESLABONES ACOPLADOS MEDIANTE PARES DE ROTACION

DR. JORGE ANGELES ALVAREZ

JUNIO, 1984.

#### SUBPRICIANAS PARA PL THALIEIS DE CARENAS CURINATICAS CON 7 ECLAPONES ACOPLAS : ENDERRIE ESTES DE FORACION

J. Angeles A. A. A. Dejas S. Divisionen de Estudio: de Pongrado y de Ingeniería Mecántea y Riéducica Facoltas de Ingeniería, URAN Apdo. Ividial 70-256 04510 rexiCo, D.F.

### Abstract

Computer subgrograms for the analysis of powered ink revolute-coupled kinematic chains, both enough and open are presented. The subgrograms are based upon an algorithm that beings the displacement kinematic equalions that were obtained from invariance concepts. Newton-Supheon's method was used to solve the displacement constructs. These subgrograms can be used in real time, thus allowing the control of rebst manipulators.

.' .**.** 

#### Lenneor

Se presentan subprogramas para el mélisis de cadenas cinculticas abiertas o corretas, compacentes par 7 estabates acoplados mediante pares de retación. Los unbragamas están bata dos en un algoritmo que resuelve ins eruaciones titemáticas que se obtavieros utilizados concep tos de invortencia. Se emples el actodo de deston-legimon para obtener na coloción de las eccaciones consultante enaminas. Estos nub programas porten foncionar un timpo real para el control de manipuladore.

#### introducción

El problema del calculo de los 6 ángeios dosconocídos en una cadena cinemático computata por 7 estabones acoplados mediante pure de ratación se conoce como problem cinemilico inver so y ha atroleko la atención de muchos inventiga dores, sobre todo en los últimos 10 años [1-4] pri su aplicabilidad en rebots manipuladores, En lus trabajos existentes se sigue Lúsicamente la misma tendencia, esto es', reducir las ecuaciones cinemánicos involucradas a un polinemio en una incógnita, cato ha dado lugar a que, pa ra obtener solucionan, se tengan que ballar raí ces de determinantes de matrices equ clementos polinómicos. Pur ejemplo, en 💈 se trabaja con una matriz de 12x12, cuyos elementos son de 4ª grado en la tangente de la mitad del ángelo de entrada, en Casto que en [4] se establace una matriz de 16x16 con elementos de 2ª grado en el miumo promento, Hosturiomento, Albua [5] obtiene una mutriz de 16x16 con elementos du 2º grado en la tangente de la mitae del ángu le de salida, lo cual consume demasiaria ticajo para obtiner una coloción aceptable, para esta fonaulación produce un excesivo ocror de redon dee. The Angulo's intermedica, 07, ..., 06, se colcalam ballando las raíces de polingaios de grado b\* o memori. Sin embargo, na el proceso de eliminación de los ángulos internation de in troduten taleas aspurlas, por la qua debe veri ficarse cada solución ballada [6].

El algoritmo que agai de emplea se obticue aplicando concepcos de invariancia cost permitenun cálcolo auy oficiento de las occivadas norm lugradas, lo cual, hasta la fecto, no ba abús ajdizado jou ningún tuvest igador. - Oto da lu gar a und inghabita suferde jubu mit jerterfer fig portigada [7] r con esto ne puest le nor, con un número may limitado de operaciones (ny ite ración y con un error de reslondes terrelacite bajo, el análisis de cañenas electórico, alter Las a corrados, composition de contre existences articulado, medicate porte de returión, de ca dona abierto, los datos del prelivat son les Vo rishies can definen of sovimizato del fugado terminal (07) on table que, en codena corrada, son las que definer el servizionte del calabér wotor o "do entrada".

#### pescripción del almonitas

Las couteignes part el málicis de desplaça miento de una cadenta citerática ao resto grado de Histori pictor da morte de las condiciones de cerradula de dasplavanicato y de estación que se dissection de sensible. De laberda con el mátedo y la notación da benavit y malechery. [5, 8], los n' estalones de vici calita chi di Lica se mejeran ordenno-bette, de la n y al i\* estaván so fija el sistema coordenado Si, Yi, Zi. Asī, [Qi, 143] i tertemeta uta matriz ortogonal, refering a low even Aj, Y., 71 que gita éstos a una posición concidente. con los correspondientes  $X_{i+1}, Y_{i+1}, B_{i+1}$ por su parte,  $\begin{bmatrix} a_i & i+1 \\ a_i & i+1 \end{bmatrix}_1$  es el vertes que une los origenes  $\begin{bmatrix} a_i & i+1 \\ a_i & i+1 \end{bmatrix}_1$  do los entre unte riores, dirigido del granero al regenció y rete rido a ojes fijos al ut erlatšu. Joi, Lou condiciones de corradura son (ver Fig.1):

$$\begin{bmatrix} \mathbf{g}_{1,2} \end{bmatrix}_{1} \begin{bmatrix} \mathbf{g}_{2,3} \end{bmatrix}_{2} \cdots \begin{bmatrix} \mathbf{g}_{n,2} \end{bmatrix}_{0} = \begin{bmatrix} \mathbf{j} \\ \mathbf{j} \end{bmatrix}_{1}$$
(1)

para rotación y

$$\begin{bmatrix} a_{1,2} \\ a_{2,3} \end{bmatrix}_{1} + \begin{bmatrix} a_{2,3} \\ a_{2,3} \end{bmatrix}_{1} + \cdots + \begin{bmatrix} a_{2,7} \\ a_{3,7} \end{bmatrix}_{1} + \begin{bmatrix} a_{1,1} \\ a_{2,3} \end{bmatrix}_{1} + \cdots + \begin{bmatrix} a_{2,7} \\ a_{3,7} \end{bmatrix}_{1} + \begin{bmatrix} a_{1,1} \\ a_{2,7} \end{bmatrix}_{1} + \begin{bmatrix} a_{2,3} \\ a_{3,7} \end{bmatrix}_{1} + \cdots + \begin{bmatrix} a_{2,7} \\ a_{3,7} \end{bmatrix}_{1} + \begin{bmatrix} a_{2,7} \\ a_{3$$

Las consciones (1) y (2) constituyen on sintens de 12 constitues electrons, de las curles pôlo 6 seu independentes. So superes recursej des  $[\widetilde{O}]_1$ , que represente la retación (ella gi tar los ejes X<sub>1</sub>, Y<sub>1</sub>, Z<sub>1</sub> a cua avienterión idéntica a la de los ejes X<sub>2</sub>, Y<sub>2</sub>, X<sub>3</sub>, así co mo  $[\mathbf{z}]_1$ , que es el vector de proteción del parto p del GC (origen del 7ª sustera condena del. Aplicando in invariancia del vector aci. [9] as obtienes vect (Q) = 0 set  $\phi$ 

- (H

Signdo c of vector característico real asocia de con el valor característico real +1 y  $\phi$ , el ámplio de retación, "Combinado (1) y (3) su tiene:

vect 
$$([g_1, 2], [g_2, 3]_2, \dots, [g_6, 7]_3)^{m} \in \text{nen } (4)$$

Las consciones (2) y (4) constituyes on sigtoma algebraico no lineal de sexto orden de la format

$$f(\overline{0}) = \begin{bmatrix} \overline{1}_1(\overline{0}) \\ f_2(\overline{0}) \end{bmatrix} = \overline{0}$$
 (5a)

donates

 $\underbrace{f_{2}(0)}_{1} = \begin{bmatrix} a_{1,2} \\ a_{1,2} \end{bmatrix}_{1}^{+} \begin{bmatrix} a_{2,3} \\ a_{2,3} \end{bmatrix}_{1}^{+} \cdots + \begin{bmatrix} a_{6,7} \\ a_{6,7} \end{bmatrix}_{1}^{-} \begin{bmatrix} x \\ x \end{bmatrix}_{1}^{+0} \qquad (5c)$ 

La ecuación (5b) aparece multiplicada par 2 con el fin de rvitar divisiones posteriores en tre 2 que pueden incrementar el número de obra ciones necesarias:

Su puede obtener la solución do (Sa) aplican do el mítodo de Newton-Japhion que, con un valor inicial próximo a una solución, converge cuadrá ticamento, requiricado así pero ticapo para obte ner una solución [10].

El esquena iterativo de Newton-Raphana es el signicitar

$$\underbrace{\underline{\theta}^{k+1}}_{i=k} \mapsto \underbrace{\underline{\theta}^{k}}_{i=k} \wedge \underbrace{\underline{\theta}^{k}}_{i=k} \qquad (6n)$$

donde &0 . us la selución de

 $\tilde{\mathfrak{I}}(\tilde{\mathfrak{h}}_{\mathbf{k}}) ? \tilde{\mathfrak{h}}_{\mathbf{k}} = - \tilde{\mathfrak{I}}(\tilde{\mathfrak{h}}_{\mathbf{k}})$ 

y  $J(\theta^{2})$  on la matriz Jacobiana, evaluada en  $\theta = f^{4}$ , del sistema (5a), que se calcula combi

$$\tilde{\Sigma}(\tilde{\theta}) = \begin{bmatrix} \tilde{\sigma} \tilde{\Gamma}^{2}(\tilde{\theta}) \sqrt{2\tilde{\theta}} \\ \tilde{\sigma} \tilde{\Gamma}^{1}(\tilde{\theta}) \sqrt{2\tilde{\theta}} \end{bmatrix}$$
(3)

donde

$$\frac{\partial f_1(\underline{\theta})}{\partial \theta_1} = 2 \text{ vect } \left( \begin{bmatrix} \underline{\theta}_1, \underline{2} \end{bmatrix}_1 \begin{bmatrix} \underline{\theta}_2, \underline{3} \end{bmatrix}_2 \cdots \begin{bmatrix} \frac{\partial \underline{\theta}_{1, i+1}}{\partial \theta_1} \end{bmatrix}_i \\ \begin{bmatrix} \underline{\theta}_{i+1, i+2} \end{bmatrix}_{i+1} \cdots \begin{bmatrix} \underline{\theta}_{6, 7} \end{bmatrix}_6 \right)$$
(8a)

Pura ol cilculo de  $\partial f_2 / \partial 0$ , definase  $x_1(0) = \begin{bmatrix} a_1, 2 \\ b_1, 2 \end{bmatrix} ; \begin{bmatrix} a_2, 1 \\ b_2, 1 \end{bmatrix} ; 2^{a_2} ... ; \begin{bmatrix} a_2, 1 \\ c_1, 2 \end{bmatrix} ; \begin{bmatrix} a_2, 1 \\ c_2, 1 \end{bmatrix} ; 2^{a_2} ... ; \begin{bmatrix} a_2, 1 \\ c_2, 1 \end{bmatrix} ; 2^{a_2} ... ; \begin{bmatrix} a_2, 1 \\ c_3, 2 \end{bmatrix} ; 2^{a_3} ... ; \begin{bmatrix} a_3, 2 \\ c_3, 2 \end{bmatrix} ; 2^{a_3} ... ; \begin{bmatrix} a_3, 2 \\ c_3, 2 \end{bmatrix} ; 2^{a_3} ... ; 2^{a_3} .$ 

que puede calcularse mediante el algoritmo de Normer para evaluación da polimentos [10] come:

$$\underline{\mathbf{x}}_{\mathbf{k}} = \begin{bmatrix} \mathbf{e}_{\mathbf{k}_{1},\mathbf{k}+1} \end{bmatrix}_{k}^{k} \begin{bmatrix} \mathbf{e}_{\mathbf{k}_{1},\mathbf{k}+1} \end{bmatrix}_{k}^{k} \begin{bmatrix} \mathbf{e}_{\mathbf{k}_{2},\mathbf{k}+1} \end{bmatrix}_{k}^{k} \end{bmatrix}_{k}^{k} \begin{bmatrix} \mathbf{e}_{\mathbf{k}_{2},\mathbf{k}+1} \end{bmatrix}_{k}^{k} \begin{bmatrix} \mathbf{e}_{\mathbf{k}_{2},\mathbf{k}+$$

45.1

$$\frac{2n^2}{2n^2} = \frac{2n^2}{2n^2}$$
(9.1)

La equación (8.) puede sumplificarse 🕖 en la forma

$$\frac{\partial v_1}{\partial t_1} = (1 \text{tr} \ \mathbf{p} - \mathbf{p}) \left[ \mathbf{p}_1, \mathbf{z} \right]_1 \cdots \left[ \mathbf{p}_{n-1}, \mathbf{1} \right]_{n-1} = (2)$$

siendo e, el vector anitario paralelo al eje de recaelon del 1º par einentícico de rocación, y

$$= \left[ \underline{\rho}_{1,2} \right]_1 \left[ \underline{\rho}_{2,3} \right]_2 \cdots \left[ \underline{\rho}_{2,3} \right]_0 \tag{10}$$

La velocidad se calcula a partir de la suguien te relación:

$$\operatorname{Voct}\left(\underline{p}, \underline{p}^{T}\right) = \omega \tag{11}$$

dondo y os la velocidad anjular especticula del OT, referida al pistona l, en tamio que

$$\frac{\partial z_1(\underline{\theta})}{\partial \theta} \stackrel{\text{d}}{=} \underbrace{\nabla} \tag{12}$$

siendo y la velocidad del punto p del Ofreferida al sistema L. Las acuationes (LL) y (L2), después de elganas súmplitionetores [i], quedan como:

$$J(\theta) = d \tag{13.4}$$

donde 
$$d = \begin{bmatrix} \psi \\ y \\ y \end{bmatrix} y \psi = (1 \text{ tr } P - P) \psi$$
 (13b)

La acolezación se calcula a partir de las ecua ciones (11) y (12) como  $[\underline{U}]$ :

### 3(9) 0 - 9

**9**=

$$\begin{bmatrix} (1 \text{ tr } p-p) (\dot{\omega} - \frac{1}{2} \dot{\omega}^{T} - \frac{\eta^{2} \dot{\omega}}{-\eta} \dot{\psi}) \\ \underline{a} - \frac{1}{2} \dot{\psi}^{T} - \frac{\eta^{2} \dot{\omega}}{\eta} \dot{\psi} \end{bmatrix}$$
(14b)

en las cuales  $\hat{w}$  es la aceleración angular del OF y a es la aceleración del ponto p del OT, ambas prescritas y referido, al sistema considenado 1.

De acuerdo con el algoritmo exposito, los sub lorgianais realizan la solución numérica de las ceuaciones (5A) (13a) y (14a), y producen los valores de 0, 6 y 0 correspondientes a los pres critos de 0 lo equivalentemente, de c y 0, r, y,  $\omega$ , a y  $\omega$ . A continuación se describen las variables que intervienen en el cólculo, así como las sobratibas y sus argumentos. Según la Fly 1, y la notación de Lemavit y Hartenberg, Se tiene, con c ()  $\equiv$  cos () y s ()  $\equiv$  sen ():

$$\begin{bmatrix} \mathbf{a}_{1,i+1} \end{bmatrix}_{i} = \begin{bmatrix} \mathbf{a}_{i} \mathbf{c} \mathbf{0}_{i}, & \mathbf{a}_{i} \mathbf{s} \mathbf{0}_{i}, & \mathbf{b}_{i} \end{bmatrix}^{T}$$
(15)

donde  $\mathbf{x}_1$  of la distancia entre los ejes  $\mathbf{z}_1$  y  $\mathbf{z}_{1+1}$ , luego siempre positivo, y b<sub>1</sub> es la coordenada de la intersección de  $\mathbf{x}_{1+1}$  con  $\mathbf{z}_1$  en el sistema  $\mathbf{x}_1$ , Y<sub>1</sub>, Z<sub>1</sub>. Así, la matriz  $\begin{bmatrix} \mathbf{Q}_{1,1+1} \end{bmatrix}_1$  se puede expresar como

$$\begin{bmatrix} \alpha_{i,i+1} \end{bmatrix}_{i} = \begin{bmatrix} c\alpha_{i} & -a\theta_{i} & c\alpha_{i} & a\theta_{i} & a\alpha_{i} \\ c\theta_{i} & c\theta_{i} & c\alpha_{i} & -c\theta_{i} & a\alpha_{i} \\ 0 & a\alpha_{i} & c\alpha_{i} \end{bmatrix},$$
(16)

donde  $\alpha_1$  es el Jugalo entre  $\pi_1$  y  $\pi_{1+1}$ , medi éx en la dirección positiva de  $\pi_{1+1}$ .

Con lo anterior se pueden definir los arreglos THETA y P. Los primeros 32 elementos de P son dutos y deben almacenarse como se indica a continuación:

```
1+1,...,6
```

| THETA(1) : | contiene los ángulos asocia               |
|------------|-------------------------------------------|
|            | dos a cada par de la cadena               |
|            | cinemática, oca (15) y (16)               |
| P(J):      | almacena a, de la ec (15)                 |
| P(1+6);    | almacena $b_1^2$ de la ec (15)            |
| · P(2+12); | almacena Gi y posturiormente,             |
|            | $\cos \omega_1$ de la uc (15)             |
| P(1,13):   | almacena sea u <sub>i</sub> do la oc (15) |
| P(25);     | almacena 🖗 de la uc (3)                   |
|            |                                           |

```
3=1,2,3
```

P(J+25): almacona g de la ec (3) P(J+20): almacena las coordenadas del OT reforidas al sistema l (lado derocho de la ec (2)) P(J2): almacena 27

D: P(33) hasta P(32) so definen en la t<u>a</u> bla 1.

En la Pig 2 se muestra el diagrama jerárquí co del programa.

Las subrutinas que se emplean son;

#### NRDAMP(THETA, P, UF, 1P, P, TOLX, TOLF, DAMP, N, ITER, MAX, MAX)

Obtiene las raíces de un sistema algebraico no linuil da orden N, aplicando el método de Newton-Raphson con amortiguamiento (04DADD\*1) 8. El amortiguamiento tiene por objeto acele rar la convergencia. En esta subrutina, P re presenta el miembro izquierdo de la se (5a), que es de dimensión 6 y se calcula en FRN: DF es la matriz Jacobiana de la ec (7) y de dimen sión 6x6 y se calcula en DSPX. La solución de (6b) se obtiene por medio de las subrutinas DECAMP y SOLVE que se describen posteriormente. TOLX en la tolerancia impuesta en la aproxima ción a la solución, en tanto que TOLF es la to lorancia que se acepta en la función l'EMAX es el número múximo de iteraciones permitidos, ITER en el número de la itoración ojocutada y KMAX, ul número máximo de amortiguamientos que

se permiten per iteración: la es un arregto en tero de dimensión 6, se obtiene en DEXONE y es el indico pivotal en la descumposición LO.

FURITHERA, F. P.N)

Forma las equaciones de desplazamiento y de rotación que, al anularse, proporcionan el v<sub>d</sub> lor de los ángolos 6, para una posición dada, ec (5a). Para este tran se requieren las subr<u>u</u> timas PROD y VECX. Estas requieren a sa vez el arregio TeS, definido como:

I#1,...,6

$$TCS(I) = THETA(I)$$
$$TCS(I+G) = COS(THETA(I))$$
$$TCS(I+I2) = SIS(THETA(I))$$

con lo cual se conservan los valores de Thura, un cada (teración.

PROD(TCS, P)  
Efectual los productos :  

$$\begin{bmatrix} 0 \\ 1, 2 \end{bmatrix} 1$$
  
 $\begin{bmatrix} 0 \\ 1, 2 \end{bmatrix} 1$   
 $\begin{bmatrix} 0 \\ 2, 3 \end{bmatrix} 2$   
 $\begin{bmatrix} 0 \\ 1, 2 \end{bmatrix} 1$   
 $\begin{bmatrix} 0 \\ 2, 3 \end{bmatrix} 2$   
 $\begin{bmatrix} 0 \\$ 

y los almacena de acuerdo al arresto costinita en la Tabla 1. Para lograrlo evalúa (10) con los valores de  $0_i \neq u_1$  para i(1=2,...,6) y ejecuta el producto matricial con el último arregio almacenado. El receltado es quardado en memoria con la ubicación mostrada en la tabla 1.

VECX(TCS, P)

Calculu el vector  $x_1$ , ecs (6b y 5c), así como su derivada con respecto a 0, ec (8d) y los alunc<u>e</u> na en el arreglo P, como se nuestra en la Tubla 1. Esto se debe a que existen conjuntos de el<u>e</u> racionos comunes para el câlculo de  $x_1$  y su d<u>u</u> rivadu.

DEDX(THETA, DF, P, N)

Calcula la matriz Jacobiana definida en la ec. (7) y la almacena en (7)(6,6).

DECOMP (N, N, DE, COND, IP, WORK)

Ecompone una matriz real (DF) en el producto DJ y estima su condición (CXD) [11], con lo que se conoce la amplificación del error de rodendeo. Para efectuar esta estimación se emplea el arregio WORK. IP en el vector pivote, que almacena información molere los intercambios de rempiones necesarios para evitar un exercivo error de redondeo.

#### SOLVE (R, N, DF, P, IP)

Resulve el sistema <u>d</u>(p+f) expleando la matriz DF factorizada en DFCOMP por sustitución  $t \leq \frac{1}{2}$ greniva, considerando los intercampins de re<u>n</u> glones efectuados en DECAMP.

#### VISLAC(N, DP, 1P, P, V, A)

CAlcula  $D \neq Q$  cuando se tiena convergencia en NRDAP, intorna al programa principal y llega a Ceto cua la matriz Jacobiana doscompleta en al producto LD. En caso de que casualmente, o a propósito, se de a NRDAMP valoren solución a las oca (Sa), esta subrutina no utiliza DECOMP, por lo que no se tiene la matrix Jacobiana dog compuesta: en esta caso, llama a DFDX y a LEOSU para entrar a VELAC. A osta subrutina se le su ministran los valores de May y en el arreglo V,  $\tilde{w}$  y n en el arreglo A y regrona los resultados de  $\tilde{y}$  y  $\tilde{y}$  en V y A respectivamente, o sea, obtie no la colución de las ecuaciones (13a) y (14a).

### Ejemplo

Los subprogramas se aplicaron para obtener el análisis de una malla cerrada de 7 estabones que se muestra en la Pig 3, cuyos parámetros Gon:

 $a_1 = 1$  (u de long)
 i = 1, ..., 6 

  $a_7 = 3$  (u de long)
 i = 1, ..., 7 

  $b_1 = 0,$  i = 1, ..., 7 

  $a_1 = a_3 = a_4 = a_5 = a_7 = 0^*$   $a_2 = a_5 = a_7 = 0^*$ 

Los resultados se muestran en la fig 4 en la que se graficó sólo  $\theta_2$  ve  $\theta_1$ , ya que por las simultías de este mocanismo,  $\theta_2 \cdot \theta_5 \cdot \theta_3 \cdot \theta_6$  y  $\theta_4 \cdot 2\theta_1$  [7]. El error que só obtuvo al comparar  $\theta_2$  con la solución analítica obtenida en [7] se muestra en la Fig 5: on las Figs 6 y 7 se moestra los errores de  $\theta_2$  y  $\theta_2$ , cospectivamente, compara dos con la solución analítica.

#### Conclusiones y extensiones

ios resultados hasta abora obtenidos demues tran la potencialidad del algoritmo. En la so lución del ejemplo se requirieron aproximadamen te 17 segundos, para la rama superior o sea, pa ra  $120^{-4} \partial_1^{-5} 240^{\circ}$  y  $0^{-5} \partial_2^{-5} 120^{\circ}$ . Este timpo pue de disminuirse al empluar un lenguaje de máquina.

La subrutina VELAC no calcula <u>0</u> ni <u>0</u> cuando la matriz Jucobiana es singular, lo cual sucedo cuando su (ienen configuraciones or remas de las cadenas cinemíticas, por lo que se continúa la investigación en este sentido.

#### Referencias

- Duffy J. and Darby S., "Displacement endysis of a spatial 7R mochanism - a generalized lobster's arm", Journal of Mechanical Ensure Trans. ASME, Vol 101, april 1979, pp 224-231.
- Albala H. and Augelus J. "Numerical solution to the input-output displacement equation of the general 7R Spatial mechanism", Proc. V World Congress on Theory of Machines and Mechanisms", Montreal, Canada, july 8-12, 1979. pp. 1008-1011.
- Benati M, Morasko P. and Tagliasco V., "The inverse kinematic problem for antropomorphic manipulator arms" dournal of Dynamic Systems Measurement and Control. Trans, ASME, Vol. 104, march 1992, pp 110-113.

- Duffy J and Crane C. "A displacement analysis of the general system: 7-link, 7R mechanics" <u>Mechanism</u> and Cachine Theory, Vol. 15, 1980, pp. 153-159.
- Albala H. "Displacement Analysis of the general n-bar, single-loop, spatial linkage" <u>Journal of Mechanical Design</u>, Thurs. ASNE Vol. 104, april 1962, pp. 501-525.
- Angeles J. y Jojas A.A. "Programs para and lizar digitalmente el desplazaziones del mecanismo espacial /k general", <u>Digerta</u> <u>del IV Congreso de la Academia hactanici de</u> Ingeniería, A.C., Marida, Yuc. 1970 (p. 90-9).
- Angeles J. Analysis of General-Seconduck Revolute Coupled Freematic Course, Interacted Interno (ECP1, USBM, 1984.
- Angoles J. <u>Spatial Einematic Chains</u>. <u>Analysis</u>, <u>Synthesis and Optimization</u>, <u>Springer-Vorlag</u>, Berlin 1982.
- Wrede R.C. <u>Introduction to Vector and</u> <u>Tensor Analysis</u>, Lover Fublications, Inc. New York, 1972, pp. 158-159.
- Ralmton A, Introducción al Amiliais Nasirico, Linusa, México 1978, pp 369-382, pp 309.
- Foraythe G.E., Malcom M.A. y Holer C.R. Computer Nerbods for Mithematical Computer <u>tions</u>, Prentice Hall Inc. Englewood Cliris N.J. 1977, cap. 1.



Fig 1 Parámetros que dufinen la arquitectura de una cadena cuemática



Fig 2 Diagrama jerárquico del programa



Plg 3 Cadena cinemática corrada 7R

- Eje que apunta hacia afuera e i plano de la fogura.
- X Eje que apunta bacia adentro del plano de la figura



Fig 5 Error on el cálculo de  $\theta_2 \, \cos \theta_2 \ge 0$ 







Pig 4 Respecto cinenálica del necalismo 74 de la Pig J.

Tabla 1

| P        | P_10_           | <sup>1</sup> '39 | ¥.,2    | P.45     | <sup>2</sup> 48  | P_51               | Г <sub>54</sub> | T 57    |
|----------|-----------------|------------------|---------|----------|------------------|--------------------|-----------------|---------|
| 34       | <sup>9</sup> 37 | 10               | ذه ''   | P46      | P<br>44          | ۴ <sub>57</sub>    | F               | Г<br>18 |
| P15      | °38             | P41              | ۲<br>44 | 1°<br>47 | 1° <sub>50</sub> | 1 <sup>17</sup> 51 | P-6             | 1       |
| <u> </u> |                 |                  | £122    |          |                  | P1P2P3             |                 |         |

| <sup>р</sup> 60 | р<br>63                                                 | P<br>66          | Р <sub>6</sub> э               | P72       | 175             | Т.                                                  | <sup>2</sup> е1 | i'H4            |
|-----------------|---------------------------------------------------------|------------------|--------------------------------|-----------|-----------------|-----------------------------------------------------|-----------------|-----------------|
| P <sub>61</sub> | F<br>64                                                 | 67               | ۶<br>70                        | P<br>73   | 1'76            | 774                                                 | P <sub>87</sub> | P <sub>HS</sub> |
| P<br>62         | P<br>65                                                 | ά <sup>τ</sup> . | ۲,                             | 1.<br>74  | ۳ <sub>77</sub> | 1' 80                                               | 103             | 1.              |
| <u> </u>        | <sup>Q</sup> <sub>2</sub> Q <sub>3</sub> Q <sub>4</sub> |                  | $\overline{v_1}\overline{v_2}$ | 1. P. 185 | ·               | $\left[\frac{c_1c_2c_3c_4c_5c_5}{c_1c_5c_5}\right]$ |                 |                 |

| P <sub>87</sub> | P.90              | P. 13           | F<br>90 | <sup>1</sup> '93 | 10   |
|-----------------|-------------------|-----------------|---------|------------------|------|
| P<br>UR         | <sup>7</sup> 91   | <sup>£</sup> 94 | 97      | 100 B            |      |
| Р.<br>Н2        | 1 <sup>.</sup> 92 | P.95            | ETEI    | 101              | 10-1 |
| ×1              | ×2                | X.I             | 3.      | X                | x    |

| P<br>105        | P<br>108         | 1<br>111         | 114              | P1.7             | 1:0    |
|-----------------|------------------|------------------|------------------|------------------|--------|
| P106            | "109             | P<br>112         | 115              | P <sub>110</sub> | 1.1    |
| P<br>107        | <sup>1</sup> 110 | <sup>2</sup> 11) | 110              | °119             | 122    |
| <sup>36</sup> 2 | 1 <sup>1</sup> 2 | $\frac{1}{2}$    | ' <sup>〔</sup> 2 | f                | P' 2   |
| 90<br>1         | 32.              | -10<br>          | СТ.              |                  | ມ_<br> |

 $(Q_i, Q_{i+1})_i$  so indications  $Q_i$ 



DISENO CINEMATICO DE MAQUINARIA

MODELIZACION DE CADENAS CINEMATICAS CON PARES DE ROTACION Y PRISHATICOS

A.A. ROJAS S. DR. JORGE ANGELES ALVAREZ

JUNIO, 1984.

### MODELIZACION DE CADENAS CINEMATICAS CON PARES DE ROTACION Y PRISMATICOS

A.A. ROJAS S.

J. ANGELES A,

Facultad de Ingeniería, UNAM.

México,D.F.

### Abst<u>ract</u>

A model of kinematic chains with prismatic and revolute pairs is presented. The model is based upon an algorithm using invariance concepts and solves the arising kinematic equations via the method of Newton-Raphson. The aplication is illustrated with a fully solved example, namely the analysis of a spatial RSRC linkage

### Resumen

Se presenta un modelo de cadenas cinemáticas con pares de rotación y prismáticos. El modelo está basado en un algoritmo que emplea conceptos de invariancia y resuelve las ecuaciones cinemáticas resultantes mediante el método de Newton-Raphson. La aplicación se ilustra con un ejemplo que consiste en el análisis de un mecanismo espacia) RSRC.

## Introducción

El problema cinemático inverso consiste en determinar los ángulos o los desplazamientos en una cadena cinemática compuesta por n eslabones acoplados

mediante pares inferiores, suponiendo conocidas las historias de posición. velocidad y aceleración de uno de los eslabones. Esta cadena puede ser abier ta (manipuladores) o cerrada (mecanismos). Dada la importancia que tienen actualmente los manipuladores industriales y la complejidad del problema inverso, numerosos investigadores han propuesto diferentes soluciones, principalmente en forma cerrada, para casos particulares simples, empleando matrices de 4x4 que contienen rotación y desplazamiento simultáneamente [1,2,3], o bien reduciendo las ecuaciones cinemáticas involucradas a un polinomio en una incógnita. Este aparece expresado como un determinante de una matriz de 12x12 con elementos de 4º grado en la tangente de la mitad del ángulo de entrada [4], o bien de una de 16x16 con elementos de 2º grado en el mismo argumento [5,6]. Alizade y Duffy [7] proponen la relación entre los datos y las incógnitas a través de un conjunto de 30 ecuaciones, algunas de ellas dependientes de la topología, las cuales no son de fácil aplicación para el cálculo de velocidad y aceleración. Whitney [8] orienta su trabajo hacia la solución del problema inverso aplicando cambios diferenciales en la posición, con lo que se obtiene el jacobiano que relaciona los cambios en posición y orientación dados, como variables dependientes, con las variables de los pares considerados independientes, calculándose fácilmente sólo la velocidad. Un mét<u>o</u> do para calcular la aceleración en cada par.conocidas la posición y la velocidad en cada uno de éstos, así como el momento o la fuerza de entrada, ha sido pro puesto por Walker y Orin [9]. En este trabajo se presenta un modelo general aplicable en tiempo real a manipuladores con 7 eslabones con arquitectura arbitraria, conociendo las historias de posición, velocidad y aceleración del órgano terminal (OT) del manipulador. El modelo es una generalización del expuesto con anterioridad [10,11], el cual no tiene la flexibilidad de sustituir un par prismático por uno de rotación. El presente modelo es aplicable

a cadenas con seis pares de rotación o bien a una combinación de cinco pares de rotación y un prismático, el cual puede estar ubicado en una posición arbitraria con respecto a los de rotación. Esta última topología se encue<u>n</u> tra en una gran cantidad de manipuladores, tales como el brazo stanford (USA) [1], el VWR30 (RFA), el ACMA Cribier H-80 (Francia) y el Komatsu RCA70 (Japón) [12].

## Descripción del algoritmo generalizado

De acuerdo con el método y la notación de Denavit y Hartenberg [13], que se resume en la Fig l, los n eslabones de una cadena cinemática se numeran ordenadamente de l a n y al i<sup>2</sup> eslabón se fija el sistema coordenado  $X_i$ ,  $Y_j$ ,  $Z_i$  como sigue:

Z se dirige a lo largo del eje del par i , que une los eslabones i e i+1, si es de rotación, o alineado con la traslación del par i cuando éste es prismático.

X<sub>i</sub> se define sobre la perpendicular común a Z<sub>i-1</sub> y Z<sub>i</sub>, dirigida de Z<sub>i-1</sub> a Z<sub>i</sub>. Y<sub>i</sub> completa el sistema coordenado dextrógiro del iº eslabón. La posición relativa de dos eslabones adyacentes está completamente definida por los siguientes parámetros:

a<sub>i</sub>, distancia entre los ejes Z<sub>i</sub> y Z<sub>i+1</sub>  $\alpha_i$ , ángulo entre Z<sub>i</sub> y Z<sub>i+1</sub>, medido en la dirección positiva de X<sub>i+1</sub>.

 $b_i$ , coordenada entre los ejes  $X_i \neq X_{i+1}$ , constante cuando el par es de rotación.  $\theta_i$ , ángulo entre los ejes  $X_i \in X_{i+1}$  medido en la dirección positiva de  $Z_i$ , constante cuando el par es prismático.

Sean

$$\begin{bmatrix} 0_{i,i+1} \end{bmatrix}_{i}^{i} = \begin{bmatrix} c\theta_{i} - s\theta_{i}ca_{i} & s\theta_{i}sa_{i} \\ s\theta_{i} & c\theta_{i}ca_{i} & c\theta_{i}sa_{i} \\ 0 & sa_{i} & ca_{i} \end{bmatrix}$$
(1)

$$\begin{bmatrix}a_{i,i+1}\end{bmatrix}_{i} = \begin{bmatrix}a_{i}c\theta_{i}, a_{i}s\theta_{i}, b_{i}\end{bmatrix}^{T}$$
(2)

donda c()  $\equiv \cos()$  y s()  $\equiv sen()$   $[Q_{i,i+1}]_i$  y  $[a_{i,i+1}]_i$ , abreviadas como  $Q_i$  y  $a_i$ , respectivamente, representan una matriz ortogonal referida a los ejes  $X_i$ ,  $Y_i$ ,  $Z_i$ , que gira éstos a una posición coincidente con los correspondientes  $X_{i+1}$ ,  $Y_{i+1}$ ,  $Z_{i+1}$ , y un vector que une los orígenes  $O_i$  y  $O_{i+1}$ , dirigido del primero al segundo y referido a los ejes del iº eslabón, respectivamente.

Las condiciones de cerradura en orientación y desplazamiento son:

$$Q_1 Q_2 \cdots Q_5 Q_6 = Q \tag{3}$$

$$[a_1]_1 + [a_2]_1 + \dots + [a_6]_1 = r$$
(4)

que constituyen un sistema de 12 ecuaciones escalares en 6 incógnitas, siendo independientes sólo 6 de ellas. Las cantidades conocidas son Q y r, que representan el giro necesario para sobreponer los ejes  $X_1$ ,  $Y_1$ ,  $Z_1$  con  $X_7$ ,  $Y_7$ ,  $Z_7$  y el vector que une el origen del sistema inercial con un punto R del OT. Al obtener el vector axial [14] de Q se tiene:

vect 
$$(Q) = e \operatorname{sen} \phi$$
 (5)

donde e es el vector característico real de Q asociado con el valor característico +1 y  $\phi$ , el ángulo de rotación. Al combinar (3) y (5) se tiene:

$$\operatorname{vect} (Q_1 \ Q_2 \dots \ Q_6) = e \, \operatorname{sen} \phi \tag{6}$$

Las ecuaciones (4) y (6) constituyen un sistema algebraico no lineal de sexto orden de la forma:

$$f(\theta) = \begin{bmatrix} f_r(\theta) \\ f_t(\theta) \end{bmatrix} = 0$$
(7)

donde  $\theta = [\theta_1; \theta_2, \dots, \theta_6]^T$  representa cinco valores diferentes asociados con pares de rotación y uno que puede estar asociado con un par prismático, o bien, con otro par de rotación; además:

$$f_{r}(\theta) = 2 \operatorname{vect}([Q_{1,2}]_{1} [Q_{2,3}]_{2} \cdots [Q_{6,7}]_{6}) - 2 \operatorname{sen} \phi = 0$$
(8a)

$$f_{t}(\theta) = [a_{1,2}]_{1} + [a_{2,3}]_{1} + \dots + [a_{6,7}]_{1} - [r]_{1} = 0$$
(8b)

La solución de (7) se obtiene aplicando el método de Newton-Raphson, que converge cuadráticamente con valores próximos a la solución (15]. El esquema iterativo de Newton-Raphson es el siguiente:

$$\theta^{k+1} = \theta^k + \Delta \theta^k \tag{9a}$$

donde ∆0<sup>k</sup> es la solución del sistema

t

$$J(e^{k}) \Delta e^{\tilde{k}} = -f(e^{k})$$
(9b)

y  $J(\theta^k)$  es la matriz jacobiana evaluada en  $\theta = \theta^k$  del sistema (9b), que se

calcula a partir de:

$$J(\theta) = \begin{bmatrix} \partial f_r(\theta) / \partial \theta \\ \partial f_t(\theta) / \partial \theta \end{bmatrix}$$
(10)

Cuando  $\theta_1$  está asociado a un par de rotación se tiene:

$$\frac{\partial f_r(\theta)}{\partial \theta_i} = (I \text{ tr } P-P) Q_1 Q_2 \dots Q_{i-1} e_i$$
(11a)

siendo

. •

$$P = [Q_{1,2}]_1 [Q_{2,3}]_2 \dots [Q_{6,7}]_6$$

$$\vdots$$

$$e_i: 'vector unitario paralelo al eje z_i$$
(11b)

I : matriz identidad 🕚

$$\frac{\partial f_{\pm}(\theta)}{\partial \theta_{i}} = \frac{\partial x_{1}}{\partial \theta_{i}} = \frac{\partial x_{1}}{\partial \theta_{i}} = Q_{1}Q_{2} \dots Q_{i-1}(e_{i} \times x_{i})$$
(11c)

 $x_i$  se calcula aplicando el algoritmo de Horner [15] para evaluación de polinomios, esto es, como:

$$x_{6} = [a_{6,7}]_{6}$$
(11d)
$$x_{k} = [a_{k,k+1}]_{k} + [Q_{k,k+1}]_{k} x_{k+1} = 5,4,3,2,1$$

Cuando el par es prismático,  $b_j$  es una traslación (ver Fig 1) y se emplea:

$$\frac{\partial f_r(\theta)}{\partial \theta_i} = 0 \tag{12a}$$

δ.

$$\frac{\partial f_t(\theta)}{\partial \theta_i} = \theta_1 \theta_2 \dots \theta_{i-1} e_i$$
 (12b)

7.

La velocidad se calcula a partir a las siguientes expresiones:

$$\frac{\partial x_{1}}{\partial \theta} \dot{\theta} = v \tag{13a}$$

$$vect(PP_{i}^{T}) = \omega$$
 (13b)

siendo v la velocidad lineal del punto P del OT en el sistema 1 y  $\omega$ , la velocidad angular vectorial del OT. Después de algunas manipulaciones, las ecuaciones (13) quedan como [11]:

$$J(\theta) \dot{\theta} = \dot{r}^{\prime} \tag{14}$$

donde

$$\mathbf{r} = \begin{bmatrix} \boldsymbol{\omega} \\ \mathbf{v} \end{bmatrix} \mathbf{y} \quad \boldsymbol{\omega}' = (\mathbf{I} \ \mathbf{tr} \mathbf{P} - \mathbf{P}) \boldsymbol{\omega}$$
(15)

válida sin modificaciones para pares de rotación o prismáticos.

La aceleración se obtiene a partir de:

ŧ

$$\dot{\omega} = \frac{d}{dt} \operatorname{vect} (\dot{P}P^{T}) = \frac{\partial \omega}{\partial \dot{\theta}} \ddot{\theta} + \frac{1}{2} \dot{\theta}^{T} \frac{\partial^{2} \dot{\omega}}{\partial \dot{\theta}} \dot{\theta}$$
 (16a)

$$\ddot{v} = \frac{\partial x}{\partial \theta} \ddot{\theta} + \dot{\theta}^{T} \frac{\partial^{2} x_{1}}{\partial \theta^{2}} \dot{\theta}$$
(16b)

Se requieren ahora las siguientes expresiones cuando se tiene un par de rotación

$$\frac{\partial^2 \dot{\omega}}{\partial \theta_i \partial \theta_j} = [e_i]_1 \times [e_j]_1 \quad i = 1, \dots, 6 \quad (17a)$$

$$\frac{\partial^2 x_1}{\partial \theta_j \partial \theta_j} = \left[ e_{,i} \right]_1 \times \frac{\partial x_1}{\partial \theta_j}$$
(17b)

Cuando se tiene un par prismático en la iª posición se tiene

$$\frac{\partial^2 \hat{\omega}}{\partial \theta_j \partial \theta_j} = 0$$
(18a)

$$\frac{\partial^{2} \times_{1}}{\partial \theta_{i} \partial \theta_{j}} \neq [e_{i}]_{1} \times [e_{j}]_{1} \quad i < j$$
(18b)

Despues de algunas simplificaciones [11], se tiene:

2.

$$J(\theta) \ddot{\theta} = \ddot{r}$$
 (19)

donde

$$\overset{"}{r} = \left[ \begin{pmatrix} I \ tr \ P-P \end{pmatrix} \begin{bmatrix} \dot{\omega} - \frac{1}{2} \ \dot{\theta}^{T} \ \frac{\partial^{2} \dot{\omega}}{\partial \dot{\theta}^{2}} \ \dot{\theta} \end{bmatrix} \right] (20)$$

$$\overset{"}{r} = \left[ \dot{v} - \dot{\theta}^{T} \ \frac{\partial^{2} x_{1}}{\partial \theta^{2}} \ \dot{\theta} \end{bmatrix}$$

El modelo cinemático aquí propuesto está formado por las ecs (8a y b), (14) y (19), que proporcionan los valores de las variables asociadas con los pares cinemáticos de la cadena, así como sus dos primeras derivadas. Las ecuaciones dichas se realizaron en un programa de computadora que es aplicable indistintamente a cadenas cinemáticas provistas de seis pares de rotación o bien de 5 pares de rotación y uno prismático.

# Ejemplo

Se desea simular el mecanismo mostrado en la Fig 2, que es del tipo RSRC. El punto  $O_7$  permanece fijo, cambiando de orientación a razón constante de 1 rad/s. En la Fig 3 se muestran los sistemas coordenados involucrados, así como la sustitución del par esférico por tres pares de rotación con los ejes concurrentes en el centro del esférico, en tanto que el par cilindrico.

por un par de rotación y otro prismático. Para este mecanismo particular se obtiene fácilmente una expresión que relaciona el giro 4 con el despl<u>a</u> zamiento \$ [16] mediante:

$$s(t) = a \, sen \phi + \sqrt{b^2 - c^2 - a^2 \cos^2 \phi}$$
 (21)

no siendo así para las demás variables

El error obtenido al comparar el valor calculado de s con el dado por la ec (21), se muestra en la Fig 4. Se emplearon los siguientes valores que aparecen en la Fig 2: a = 1.0, b = 3.0 y c = 2.0 en unidades de longitud.

# Conclusiones

Los resultados se obtuvieron en una microcomputadora Apple IIe, siendo 580 el número total de operaciones requeridas para el cálculo de  $\theta$ ,  $\dot{\theta}$  y  $\ddot{\theta}$ por posición, en base a una iteración en el método de Newton-Raphson, cuando todos los pares son de rotación, reduciéndose este número a 556 el introducir un par prismático. El algoritmo presentado se puede aplicar por lo tanto al control de manipuladores como el brazo stanford [1] o al análisis de mecani<u>s</u> mos de las más variadas topologías, como se mostró con el ejemplo.

9

# 'jom.

t

# <u>Bibliografía</u>

- R.P. Paul, <u>Robot Manipulators: Mathematics, Programming and Control</u>, MIT Press, Cambridge, Massachusetts, 1981. pp. 56-63.
- 2. R.P. Paul, B. Shimano, G.E. Mayer, "Kinematic control equations for simple manipulators", <u>IEEE Trans on Systems, Man and</u> Cybernetics, Vol. SMC-11 (6), junio 1981, pp 449-460.
- 3. J.Y.S. Luch, M.W. Walher, R.P. Paul, "Resolved-acceleration control of mechanical manipulators", <u>IEEE Trans on Automatic Control</u>, Vol. AC-25 (3) junio 1980, pp 468-494
- 4. J. Angeles y A.A. Rojas, "Programa para analizar digitalmente el desplazamiento del mecanismo espacial 7R general", <u>Memoria del IV</u> <u>Congreso de la Academia Nacional de Ingeniería, A.C</u>., Mérida Yuc. 1978 pp 88-91
- J. Duffy y C. Crane, "A displacement analysis of the general spatial 7-link, 7R mechanism", <u>Mechanism and Machine Theory</u>, Vol. 15, 1980 pp. 153-159.
- 6. H. Albala, "Displacement analysis of the general n-bar, single loop, spatial linkage", <u>Journal of Mechanical Design</u>, Trans. ASME Vol. 104, April 1982, pp. 504-525.
- 7. R.I. Alizade y J. Duffy, "Mathematical models for analysis and synthesis of spatial mechanisms-IV", <u>Mechanism and Machine Theory</u>, Vol. 18, No. 5, 1983, pp 323-328

 D.E. Whitney, "The mathematics of coordinated control of prosthetic arms and manipulators", <u>Journal of Dynamic systems Measurement</u> <u>and Control</u>, diciembre 1972, pp. 303-309.

,

- M.W. Walker y D.E. Onin, "Efficient dynamic computer simulation of robotic mechanisms", <u>Journal of Dynamic systems</u>, <u>Measurement and</u> <u>Control</u>, septiembre 1982, Vol. 104, pp. 205-211.
- 10. J. Angeles y A.A. Rojas, "Subprogramas para el análisis de cadenas cinemá ticas con 7 eslabones acoplados mediante pares de rotación", <u>Memoria del IX Congreso de la Academia Nacional de Ingeniería,</u> <u>A.C., León, Gto. 1983 pp. 102-106.</u>
- 11. J. Angeles y A.A. Rojas, "Software for the analysis of general seven link, revolute-coupled kinematic chains", Informe interno, DEPFI-UNAM. 1983.

12. "Industrial Robots of the world", <u>Industrial Robot</u>, marzo 1983, pp. 64-67

- 13. J. Denavit y R.S. Hartenberg, "A kinematic notation for lower pair mechanisms based on 4x4 matrices", J. Appl. Mech. pp. 215-221, junio 1955.
- 14. D.C. Leigh, <u>Non-linear Continuum Mechanics</u>, McGraw-Hill, New York, 1968 pp. 42-43.

15. N.S. Bakhvalov, Numerical Methods, Mir, Moscu 1977 pp. 426-431 y 248.

 J. Angeles, <u>Spatial Kinematic Chains. Analysis</u>, <u>Synthesis and Optimization</u>, Springer Verlag, Berlin 1982.

.






|             |             |          |             | 17-                                   |              | li:           | I.,           |               |       |              |             | ÷   | :FF     |                | H             |     |          | Ŧ          | : E  |                  |     |     | - 65        |            |    |         | -            | -            | Til        | HI       |                  | elen   | ÷     |                                        | Ē            | <b>5</b> - E      |     | in i               | :::              |            |          | <b>1</b> 77    |                | E                     |                  | a.          | <b>THEE</b>                                |
|-------------|-------------|----------|-------------|---------------------------------------|--------------|---------------|---------------|---------------|-------|--------------|-------------|-----|---------|----------------|---------------|-----|----------|------------|------|------------------|-----|-----|-------------|------------|----|---------|--------------|--------------|------------|----------|------------------|--------|-------|----------------------------------------|--------------|-------------------|-----|--------------------|------------------|------------|----------|----------------|----------------|-----------------------|------------------|-------------|--------------------------------------------|
|             |             |          |             |                                       |              |               |               |               |       |              | -           |     |         |                |               |     |          |            |      |                  |     |     |             | <b>1</b> . |    |         | H            |              | 11         |          |                  | 1      |       |                                        |              | í                 |     | 齳                  |                  |            |          | ΠE             |                |                       |                  | 1           |                                            |
|             |             |          |             |                                       |              |               |               | ::::<br>::::: |       |              |             |     |         |                |               |     |          |            | ,    | n li             |     |     |             |            | 3  |         |              | -            |            |          |                  |        |       |                                        |              | -                 |     | -                  |                  |            |          |                |                |                       |                  |             |                                            |
|             |             |          |             |                                       |              |               |               |               | 1     |              | 1           |     |         |                |               |     |          |            |      |                  |     |     |             |            | 5, |         | III.         |              | 1H         |          |                  |        |       |                                        |              |                   |     |                    |                  | 500        |          |                |                |                       |                  |             |                                            |
|             |             |          |             |                                       |              |               |               |               |       | 1            |             |     |         |                |               |     |          |            |      |                  |     |     | 1           |            |    |         |              |              |            |          |                  |        |       | Ш                                      |              |                   |     |                    | 1                |            |          |                |                |                       |                  | ΞΞ          | -                                          |
|             |             |          |             |                                       | 1            |               | , I           |               |       |              |             |     | 11      |                | η.            |     |          | ÷ H        |      | , f              | T   | 1   |             | <u>.</u>   |    | Ι÷.     | Ē            |              |            |          |                  |        |       | Ħ                                      |              |                   |     |                    |                  |            |          | Ē              |                |                       |                  |             |                                            |
|             |             |          | _           |                                       |              |               | 1.1           |               | i, ii | Ë,           | ж÷-         | 4   | <u></u> | ₩¥             | -             | īd, |          |            |      | Z.               | Z   |     | <b>'</b> L- |            |    | 13      | , A          |              | 21         | 11       |                  |        | Ţ     |                                        |              |                   |     |                    | 擅                |            | Ē        |                |                |                       |                  |             | 1                                          |
|             | -           |          |             | <u> </u>                              |              |               |               |               |       |              |             | 111 |         |                |               | : I |          |            |      |                  |     | ľ   | 4           | 1          |    | l. i    |              |              |            | ii I     |                  | Illi   |       | 詛                                      | ÷,           |                   |     |                    | 1                | 1 <b>1</b> |          | <u>الله</u>    |                | 50                    | 150              |             |                                            |
|             |             |          | 4-          |                                       |              |               |               |               |       |              |             | -   |         |                |               |     |          |            |      | 3 <del>   </del> | i L |     |             |            | 1  | Ë       |              | <u>1: []</u> |            |          | 11               | с III  | ι.    | <u></u>                                |              | <u> </u>          |     |                    |                  |            |          | i i i          |                |                       |                  | ii ii       |                                            |
| <u> </u>    | 1           |          | <u> </u>    |                                       |              |               |               | 1             | 111   | - ! ! !      |             |     |         |                |               |     |          |            |      |                  |     | H   | 101         |            | 1  | Hi      | 10           | Hi I         | 11         |          |                  |        | fiii  |                                        | <b>;;</b> ;  |                   |     |                    | i ii             |            |          |                | #              | 111                   |                  | 11          |                                            |
|             |             | -        |             |                                       |              |               |               |               |       | ļ[           | !!!!        |     | Щ       |                |               |     |          |            |      | i ii             |     |     | ļļļ         |            |    |         |              | Щ            |            |          | Ш                |        |       | H.                                     |              |                   |     |                    | 1                |            |          | UII.           |                |                       |                  |             |                                            |
| _           | <b>.</b>    | Ъs       | 4           |                                       |              |               |               |               |       | <u>!</u>     |             |     |         |                | - <del></del> | 24  | -        | ЩЦ         |      |                  |     | 1,1 |             |            | Ľ  |         |              | Ш            | <u>tii</u> |          |                  |        |       |                                        | <u></u>      | ųμ                |     |                    |                  |            |          | Ш              | iH.            |                       |                  |             | <u>        </u>                            |
|             | Þ           | -        | <u>.</u>    |                                       |              |               |               | <u> </u>      |       |              | 1           |     |         |                |               |     | 1        |            |      |                  | I   |     |             |            | Ľ  |         |              |              |            |          |                  |        |       |                                        |              | 비보                | - ! |                    |                  |            |          | Ш              | Ξ÷.            |                       |                  |             |                                            |
|             |             | ų -      | 4           |                                       |              |               |               |               |       |              |             |     |         |                |               |     | ÷ .      | 1111       |      |                  | 1   |     | 4           |            |    |         |              |              |            |          |                  |        |       |                                        |              | 1                 |     | H                  | L.               | 111        | Ш        | Ш              | <u>::</u> ::   | <u>141</u>            | 45.6             |             |                                            |
|             | <u>د</u> ן: | -        | -           |                                       |              |               |               |               |       |              |             |     |         |                |               |     | _        | 1          |      |                  | -   |     |             |            |    |         |              | <u> </u>     | H          | <u> </u> |                  |        | 11    |                                        | 1            |                   |     |                    |                  | 킠빌         |          |                | <u>191</u>     |                       |                  |             | 1                                          |
| ļ.          | ÷           | g.,      | 7           | -                                     |              | · · · · ·     |               |               |       |              | -           |     |         |                |               |     |          |            | +    |                  |     |     | 1 11        |            |    |         |              |              |            |          |                  |        | 121   |                                        |              |                   |     |                    |                  |            |          |                |                |                       |                  | -           |                                            |
|             | İχ          |          | -           | -                                     |              |               |               |               |       |              | -           |     |         |                |               |     | <u>.</u> |            | : .: |                  |     |     |             |            |    |         | -            |              |            |          | ::: !!<br>!:: :: |        | 1111  |                                        |              |                   | ł   |                    |                  |            | H        |                | 17 H           | 394 <u>8</u><br>17731 | 1111 =<br>1111 = | 1           | 17 (21)<br>22 (11)                         |
|             | Ť           |          |             |                                       |              |               |               |               |       |              |             | 1.1 |         |                |               |     |          |            |      |                  | +   |     |             |            |    |         | :;;E<br>:1;; |              |            |          |                  |        |       | 55                                     |              |                   |     |                    | 詽                |            |          |                | <u></u>        |                       |                  |             |                                            |
| 1           |             | 1        | 1           |                                       |              |               |               |               |       |              | -           |     |         |                |               | 1   |          |            | -    |                  | ╢   | 1   |             | 1          |    | H       | <u></u>      |              | Υ.         |          |                  | -      |       | -                                      | 6            | 1                 | Ŧ   | :: u:              | 쁥                |            | H        | 1111<br>1111   | <br>()         |                       |                  |             | 1: ::::<br>::::::::::::::::::::::::::::::: |
| <u> </u>    | 1           | Ì        | 1.          | 1.1                                   |              | · ·           | :: <u>:</u> : |               | ••••  | Ņ            | Ň           | -1  | 1       | 5              | 4             |     | Ŧ        | +          | Ή    | M                | t i |     |             | n -        | 1  | f¥      | ΞĤ           |              | <u>v</u> y |          |                  |        |       |                                        |              |                   |     |                    | <u>7 : 1</u><br> |            | 厝        | 2547.<br>11111 | 7 <b># * :</b> | ****                  |                  |             |                                            |
|             |             | ]-;      | 1           | <br>                                  | <u></u>      | <br>.'!!      |               | $\mathbf{V}$  | 11    | -#           | !           |     |         |                |               |     |          |            |      |                  |     |     | ŧŀł         |            | ۲- |         |              |              |            |          |                  |        |       |                                        |              |                   |     |                    |                  |            |          |                |                |                       |                  |             |                                            |
|             | Ţ           | 1        |             |                                       | 111          |               | :1            | ::::          | ł     |              | i           |     |         |                | 1.1           |     |          | _          |      |                  |     | 1   | TĦ          |            |    | li i ti |              |              |            |          |                  |        |       |                                        |              |                   |     |                    |                  |            |          | 4              |                |                       |                  |             |                                            |
|             |             | 1-       |             |                                       |              |               |               |               |       |              |             |     | Ť       |                |               |     |          |            |      |                  |     | -   | 詂           |            |    |         |              | H            | T.         |          |                  |        |       | 111                                    |              |                   |     | 1                  |                  |            |          |                |                |                       |                  |             |                                            |
|             | 1           | ]:::     | 1           |                                       | Ē,           |               |               |               |       |              |             |     | 11      |                |               |     |          |            |      | 1                |     |     | ╢           |            |    |         |              |              |            |          |                  |        |       | II.                                    |              |                   |     | 1                  |                  |            | hii      |                | ÷              |                       |                  |             |                                            |
|             |             |          | 1           |                                       |              | 1             |               |               | ::::: | 1            |             |     |         |                |               |     |          |            |      |                  |     |     | ĮI.         |            |    |         |              |              |            |          | H:L-             | . 1    |       |                                        |              |                   |     |                    |                  | -          | till I   |                |                |                       |                  |             |                                            |
| <u></u>     | Į.          |          | <u>1</u>    | ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; |              | ÷             | Ē             | 1             |       |              |             |     |         |                |               |     | .1 1     |            |      |                  |     |     |             |            |    |         | Ξ <u>Ξ</u>   |              |            |          |                  |        |       |                                        |              |                   |     | 1                  |                  |            |          |                |                |                       |                  |             |                                            |
|             |             | Ļ        |             | <u> </u>                              | <br>         |               |               |               |       | ti           |             | ,   |         |                |               |     |          |            |      |                  | 1   | 1   |             |            |    |         |              |              | u          |          |                  |        | in.   | 51                                     | а <b>н</b> . |                   |     |                    |                  |            | <b>E</b> |                |                |                       |                  |             |                                            |
|             | Ŀ           | .   .    | •           |                                       |              |               |               | 1             |       | •:           | <u>.</u>    |     |         | ' <u>'</u> ''' | :::           |     |          |            |      |                  | 1   |     | 1           |            |    |         |              |              |            |          | 1                | H iti  |       |                                        |              |                   |     | . U                |                  |            | i.       |                | 11             |                       |                  | i di        |                                            |
| Ļ           | Ļ           | Ļ        | <u>è</u>    | 1                                     |              |               |               | <u>.</u> .    |       |              |             | : I |         |                | <b>;;;</b> ;  |     |          | 1          |      |                  | 1   |     |             |            |    |         |              |              |            |          | # <b> </b> =     | i, jif |       |                                        |              |                   |     | 1. 11              | 1                | 3 (U)      |          |                |                | 11                    |                  | Г           |                                            |
| <b> _</b> . | ļ           | .        | <u>ال</u> ة |                                       |              | [             |               |               |       |              | . <u>.</u>  |     |         | : <u></u>      | 1             |     |          | ( <u>)</u> |      |                  |     |     |             | 11         |    |         | 10           |              |            |          |                  |        |       | ÷.;"                                   | <u></u>      |                   |     |                    |                  |            | hii      | ļi.            |                |                       |                  |             |                                            |
| <b> </b>    |             |          | : <b> </b>  | ļ                                     |              | <b>þ.</b>     |               | 2.            |       | 2            | _4          |     |         | 2              | -4            |     | 10       |            | 12   |                  | φØ  |     | 44          |            | 2  |         |              |              | 4          | _        | <u>.</u>         | 10     |       | 62                                     | . ,          | o l               | 4   |                    | 40               |            |          | $\mathscr{D}$  | $\overline{L}$ | na                    | 6.               | <u>h ii</u> | 5 H B                                      |
|             | ļ           |          | 1-          | <u> </u>                              |              |               |               |               |       | <u>.</u>     |             |     |         |                |               |     |          |            |      |                  |     |     |             | Ŀ          |    |         |              |              |            |          |                  | 1      |       |                                        |              |                   |     |                    |                  |            |          |                |                |                       |                  | <u> -</u>   |                                            |
| <u> </u>    |             | <u>.</u> |             |                                       |              |               |               | <u>.</u>      |       |              |             |     |         |                |               |     | <u>,</u> |            |      |                  |     |     |             |            |    |         | 4            |              |            |          |                  |        |       |                                        |              |                   |     |                    |                  |            |          | ЦЩ             |                |                       |                  | -           |                                            |
|             |             |          | -           |                                       |              |               |               |               | Ξ.    | - <u>-</u> - |             |     |         |                |               |     |          | -          | -    | -                |     |     | -           |            |    |         | -            | 1            | 4          | -        |                  |        |       |                                        |              |                   |     |                    |                  |            |          |                |                |                       |                  |             |                                            |
|             | 1.4         | -        |             | <u></u>                               | 111<br>1.4 - | -             | 1 S. F.       |               |       | -            | . !<br>;    |     |         |                | .!i<br>       |     |          |            | -    |                  | +   |     |             |            |    |         | 11.5         |              |            |          |                  |        | 156   | :::::::::::::::::::::::::::::::::::::: | 15 E T       | 11: 21<br>11: 11: |     | 5. (f.             |                  |            | hiii     |                |                |                       |                  |             | <u>.</u>                                   |
| H           |             |          |             |                                       | <u> </u>     |               |               | , <u></u> .   |       |              | <del></del> |     |         |                |               |     |          |            | -    |                  |     |     |             |            |    | H       |              | -            |            |          |                  |        |       |                                        | 1111<br>1111 |                   |     |                    |                  |            |          |                |                |                       |                  |             |                                            |
| H.          | -           | -        | - H-        |                                       | ÷÷           | - <b></b><br> | ن.<br>ا       | ·             | • •   |              | ii          |     |         |                |               |     |          |            |      |                  |     | 1   |             |            |    |         | -            |              |            |          |                  |        |       |                                        |              |                   |     | 122   114<br>  114 |                  |            |          |                |                | +++                   |                  | 11          | -                                          |
|             |             | 17       | <b>٠</b>    | ·]····                                |              |               |               |               |       |              | Ħ           | 1   |         |                |               |     |          |            |      |                  | +   |     |             |            |    |         | -+           |              |            |          |                  |        |       |                                        |              |                   |     |                    |                  |            |          |                |                |                       |                  | =           |                                            |
| المشارك الم |             |          |             |                                       |              |               | 1.2.2         |               |       |              | -           |     |         |                |               |     |          |            |      |                  |     | 1.1 |             | 1          |    |         |              | - 1          |            |          |                  |        | 1::** |                                        |              | 111               |     |                    | 4444             | +- 12223   | 14441    | (* 11) I       |                | 1711                  | 111111           | 21.27       | unte: .                                    |

|          |          |             |             |            | •            |          |               | ::::         |          |            |          |          |                  |         |                  |             |               |                    |                |          |              |          |           |          |      | ريد ويا<br>ريد وي | <u> </u> |     |    |              |              |         |                       |                  |      |          |       |       |            |         |                  |            |            | : <b> </b> ; |                 | +    |       |   |      | ļ  |
|----------|----------|-------------|-------------|------------|--------------|----------|---------------|--------------|----------|------------|----------|----------|------------------|---------|------------------|-------------|---------------|--------------------|----------------|----------|--------------|----------|-----------|----------|------|-------------------|----------|-----|----|--------------|--------------|---------|-----------------------|------------------|------|----------|-------|-------|------------|---------|------------------|------------|------------|--------------|-----------------|------|-------|---|------|----|
|          |          |             |             |            | <b>.</b>     | r.       |               |              |          |            |          |          |                  | 1       | F.               |             |               | 101                |                |          |              |          |           | 11       |      |                   |          | 1   |    |              |              |         | İ.                    |                  | Πų.  |          |       |       | diii       | 1       |                  |            |            |              | Ì               |      | 1     |   |      |    |
|          |          |             |             |            |              |          |               |              |          |            |          |          |                  |         |                  |             |               |                    |                |          |              |          |           |          |      |                   |          |     |    |              |              |         |                       |                  |      |          |       |       |            |         |                  | н          | <u>.</u> 1 |              |                 |      |       |   |      |    |
|          |          |             |             |            |              |          |               |              |          |            | Т        | 1        |                  |         | ĒĿ               | 1.1         |               |                    |                |          |              |          |           |          |      |                   |          |     |    |              | -            |         |                       |                  |      |          |       | -     |            |         | -                |            |            |              | 10              |      |       |   |      |    |
|          |          |             |             |            |              |          |               | 51 I I       |          |            |          |          |                  |         |                  |             |               |                    |                | 111      | 1            |          |           |          |      |                   |          |     |    |              |              |         | :iii                  |                  | -    |          |       |       |            |         |                  |            |            |              |                 |      | i iii | - |      |    |
| iii      |          |             |             |            |              |          |               |              |          |            | ι,Ϊ      |          |                  |         |                  |             |               |                    |                |          |              |          |           |          |      |                   |          |     |    | 1            |              |         |                       |                  |      |          |       | 1     |            | 1       |                  | :#£        |            |              |                 |      | -     |   |      |    |
| 1        |          |             |             |            |              |          |               |              |          |            |          |          |                  | Z       |                  | 3           | H.            | 2                  |                | Z        | 1            | L        |           |          |      | Z                 |          | Ŀ   | 1  | t ,          | /            | 2       | 9                     | $\boldsymbol{Z}$ |      |          | 82    | 1     | 1          | 2       |                  | i i i      |            | -            |                 |      | 1     |   |      |    |
|          | ĪĪ       |             |             |            |              |          |               |              |          |            |          |          |                  |         |                  |             |               |                    |                |          |              | Ľ        |           | 1        |      | Γ.                |          | T.  | ſ. | ſ            |              |         |                       |                  | 7    |          |       | Ĩ     | T          |         |                  |            |            |              |                 |      |       |   |      |    |
|          |          |             | 1,11        |            |              |          |               |              |          | . I        |          |          |                  |         |                  |             |               |                    |                |          |              |          |           |          |      |                   |          |     |    | 5            |              |         |                       |                  |      |          | 1     | 1     |            |         |                  | ц.         | 111        |              |                 |      |       |   |      | ł  |
|          |          | Шł,         |             | 5          |              | 11:<br>2 |               | :11          |          | T          |          |          | ti i             | ffi     |                  |             |               | lr:                |                |          | ΞŤ           |          |           | Π        | ίĦ   |                   | I.       |     | πŀ | HE           | ١ <u>.</u> ] | H       | ĦП                    | hII              | Пİ   | F I      |       | l iti |            |         | 1                |            | iii i      | <u>,</u>     |                 | - F  |       |   |      |    |
|          |          | 1           |             | 5          | : 1:<br>; 1: |          |               |              |          |            | III      |          | н                | iiii    |                  | LU I        | lin.          | цЩ                 |                | цij      | ai.          |          |           |          |      |                   | I        |     |    |              |              |         |                       | 1111<br>1111     | ШH   | 11 9     | 4 U   | ŧ     | 1          | H.      |                  |            | 54         | 빏            |                 | i t  |       | - |      | Ĺ  |
|          |          |             | 199         | $[\delta]$ | i.i          | , H      |               |              |          | i.         | 1#       |          |                  | ii:     | 1                | Цį.         | 1.            |                    | 1              | lif;     |              |          | ) III     |          |      |                   |          | Fi. |    |              |              | τ.      |                       | <u>11  </u>      | 1    |          |       | 1     |            | Ξ       | 南                | 詽          | цн I       | £i £i        | r n             |      |       |   |      |    |
|          |          |             |             |            |              |          |               |              |          |            |          |          |                  | i,ii    |                  | <u>;</u> [[ |               |                    |                |          |              |          |           |          |      |                   | 쁐        |     |    |              | 1            |         |                       |                  | !!!i |          |       | 1     | 1112       |         |                  |            | H          | <u> 1 1</u>  |                 | i ii |       |   |      |    |
| Ŀ        | <u>.</u> |             |             |            | ::::.        | 2        |               | !<br>:;      |          |            |          |          |                  |         | 4                | <u>.</u>    |               | -                  |                |          |              | H        |           |          |      | j.E               |          |     |    | <b>1</b> .,i |              | :44     |                       | u i              | Щ    |          |       |       |            | <u></u> |                  | 111        |            |              |                 |      |       |   | 111  | İ. |
|          |          |             |             | LÈ I       |              |          | ::: I         |              |          |            | <u></u>  |          |                  |         | 111              |             | <u>.</u>      |                    |                |          |              |          |           |          | j.   |                   |          |     |    |              |              | ila.    |                       |                  |      |          |       | 1     |            |         |                  |            |            | t E          | 1               |      |       |   |      |    |
|          |          |             |             | 2          | · · · ·      |          | ii:           |              |          |            | :::<br>[ |          |                  |         | 15               | <u>[]]</u>  | !!!           |                    |                |          |              | ii;      |           |          |      |                   |          |     |    |              |              | 55      | 1.1                   | ::! <b>!</b>     |      | 161      | -     |       |            |         |                  |            | 1          |              |                 |      |       |   | 7    |    |
| L        |          |             |             | 2          |              |          |               |              |          |            | <u>.</u> |          |                  |         |                  | <u>i i</u>  |               |                    |                |          |              | -        | 1         |          |      |                   |          |     |    |              |              |         |                       | r t              |      |          |       |       |            | i.      |                  |            | 1          |              |                 |      |       |   |      |    |
|          | 1        |             | :: <u>.</u> |            | <u> </u>     | 5        | 1111          | 11           |          | ::E        |          | 4        |                  | <u></u> |                  |             | 4             |                    |                |          | [:::         |          |           |          |      |                   |          |     |    |              |              |         |                       |                  |      |          |       |       | -          |         |                  |            |            |              |                 |      |       |   |      |    |
| _        | 44       |             |             | <u> </u>   |              | <u></u>  |               |              | <u> </u> |            | 111      | <u> </u> |                  |         | 111.             |             |               |                    |                | <u> </u> | -            | <u>.</u> |           | -        | 1    |                   |          |     |    |              |              |         | <u></u>               |                  | Г    |          | ii ii |       | Ļ          |         |                  | Щ          |            |              |                 | 1    |       | - |      |    |
|          |          |             |             | ÷          |              |          |               | 4            | $\sim$   |            | ĽŹ       |          | -                |         | 1111             |             |               | 1                  | ::: <b>:</b> : |          |              |          | <u>  </u> |          |      |                   |          |     |    |              |              |         | · · · ·               |                  |      |          |       | بسل   |            | -       | 2                | $\gamma$   |            |              |                 |      |       |   |      | ł  |
|          |          |             |             | -          |              |          |               | <u> </u>     |          |            |          | <u> </u> |                  |         |                  |             |               |                    |                | ╞        |              | +        |           |          | 1    |                   |          |     |    |              |              |         | 1                     | <u>.</u>         |      |          |       |       | i<br>I     |         | _                |            | - 11 -     | 110          |                 |      |       |   |      |    |
|          |          |             |             |            |              | 2        |               | <u>.: ri</u> |          | 123 :<br>1 | 111      |          |                  |         |                  | 1111        |               |                    | ]#]]           |          | 111          | 111      |           | Ц        |      | -                 |          | Y   |    |              |              |         |                       |                  |      |          |       |       |            |         |                  | 11         |            |              |                 |      |       |   |      |    |
|          | <u> </u> |             |             | -3         | 1.1          |          |               |              |          |            |          | -        |                  |         |                  |             |               | <u></u>            |                |          | : † <u>.</u> | +        |           | Ņ        |      |                   | -        | -   | ., |              |              | <u></u> | 1                     |                  |      |          |       |       |            |         | :.ti:            |            |            |              |                 |      |       |   |      | l  |
| -        |          |             | -           |            |              | #        |               |              |          |            |          | -        |                  |         |                  | ::::::<br>: |               |                    | 1              | 1        |              | -        | -         | 14       | Lran |                   | H        | -   |    |              |              | -       |                       | ****             | ш    |          |       |       | 1.1        |         |                  |            |            | +            | 21 L)<br>22 - 2 |      |       |   |      | ł  |
|          |          | ÷           | ÷           | - 5        | - <u>-</u> - |          | _             | <u>.</u>     | 11       | 11-<br>11- |          |          |                  |         | <u>:1</u><br>::: | :*†!<br>:*  |               | -                  |                |          |              |          |           |          |      |                   | H        |     |    | -            | <u>***</u>   |         | , <u>45</u> :<br>1:11 |                  |      |          |       |       | 1          |         | 1                | 111<br>111 |            |              | -               |      |       |   |      | ł  |
|          | [:<br>   |             | · · · ·     |            |              | *        | :: <u>.</u> . |              |          |            |          |          |                  | •       |                  |             |               |                    |                |          |              |          |           | H        |      |                   |          |     |    |              | 11.1         |         |                       |                  | -    |          |       |       | 2.11)<br>; |         | 44. ()<br>12. () |            |            |              | 1               |      |       | - |      |    |
|          |          |             |             | 1          |              |          |               |              |          |            |          | -        |                  |         |                  | са с<br>    |               |                    |                | -        |              | H.       |           |          |      | ::::<br>;:::      |          |     |    |              | 1111.        | <u></u> |                       |                  |      |          |       | -     |            |         |                  |            |            |              |                 |      |       |   |      | l  |
|          | -        |             |             |            | <u> </u>     | 4        |               |              |          |            |          |          |                  |         |                  |             |               |                    |                |          |              |          |           |          |      |                   | ; г :    |     |    |              |              |         |                       |                  |      |          |       |       | -          |         |                  | 111        |            |              | •               |      |       |   |      |    |
|          |          |             | :**!        |            | -            |          | - n           | -            |          |            | •        |          |                  |         |                  |             |               | 1                  |                |          |              | -        | 1         |          |      |                   |          |     |    | -            |              |         |                       |                  |      |          |       |       |            | -       |                  | TTT I      |            | -11-         |                 |      |       | + |      |    |
| <u> </u> | 1        | ÷.,         | ••          |            |              |          |               |              | 11 .     | <u></u>    |          |          |                  |         |                  |             |               | · · · ·            |                | 1.       |              |          | 1         | <u> </u> | 1    |                   |          | -   |    |              |              |         |                       | 24               |      |          |       | 1     |            |         | :1H              | el el      |            |              |                 |      |       |   |      |    |
|          |          |             |             |            |              |          |               |              |          |            |          |          |                  |         |                  |             |               | <b>.</b>           |                |          |              |          |           | 16.<br>  |      | n                 |          | qν  |    | Г <b>Ш</b> . | i f          |         | 1112<br>1111          | 02<br>           | Ηđ   | <b>2</b> |       |       | 320        | 1       | -                |            |            |              | T               |      |       |   |      |    |
|          |          |             | 1           |            | i            |          |               | 1.1          |          |            | 1        |          |                  |         |                  |             | 111           |                    |                |          |              |          |           |          | 1    |                   |          |     |    |              |              |         | 111                   |                  | 11:  |          |       |       |            | 1       |                  |            |            |              |                 |      |       |   |      |    |
|          | 1        | 4           |             |            |              |          | 1             |              | 1.1      |            |          |          |                  |         |                  |             | 11            |                    |                |          |              |          |           |          | l.   |                   |          |     |    |              |              |         |                       |                  |      |          |       | 11    |            |         |                  |            |            |              |                 |      |       |   |      |    |
| ÷        |          |             |             | ΠĻ         |              |          |               |              | 111      |            |          | ;;;;;;   |                  |         | H.               |             |               |                    |                |          |              |          |           |          |      |                   |          | 1   |    |              | 11.          |         |                       |                  |      |          |       |       |            |         | <u>.</u>         |            |            | Π            |                 |      |       |   |      |    |
|          |          |             |             | 1.         |              |          |               |              | 111      |            |          |          |                  |         |                  | -           |               | . 2 <sup>1</sup> : |                |          |              |          |           | 1.2      |      |                   |          |     |    |              | 1            |         | 1.1                   |                  |      |          |       |       | :          |         |                  |            |            |              |                 |      |       |   | 1.11 |    |
|          | [        | <b>,</b> '. | ÷.          | <u></u>    |              | j. i     |               | 1            |          | wi.        |          |          |                  |         |                  |             |               |                    |                | 1.17.    | 1            | T        |           |          |      |                   |          |     |    | 1            |              |         |                       |                  |      | ir. li   |       |       |            | l.      |                  | 齓          |            |              |                 |      |       |   |      | }Ø |
|          |          |             |             |            |              |          |               | T,           |          |            |          |          | :•• <sup>•</sup> |         |                  | :.          |               |                    |                | <u>.</u> |              | 1        |           |          |      |                   | l r      |     |    |              |              | 1       |                       |                  |      |          |       |       |            |         |                  |            |            |              |                 |      | :     |   |      | σ  |
| -        | ł.       |             |             |            |              |          |               |              |          |            |          |          | ÷.               |         |                  |             | $\frac{1}{2}$ |                    |                |          | 1            |          |           |          |      | ; <u>-</u>        | 1        |     |    |              |              | ŀ       |                       |                  |      |          |       |       |            |         |                  |            |            |              |                 |      |       |   |      |    |
|          |          |             |             |            |              | ·'       |               |              |          |            | :::      |          |                  |         | : i              |             |               |                    |                |          | 1            | [""      |           | <b>.</b> |      |                   | E        |     |    | 1.           |              |         |                       |                  | ·    |          |       |       |            | ļ.,     |                  |            |            |              |                 |      |       |   |      |    |



DISENO CINEMATICO DE MAQUINARIA

ANALISIS CINEMATICO DE MANIPULADORES CON ARTICULACIONES REDUNDANTES HACIENDO USO DE MINIMIZACION CUADRATICA

.....

1.1

JUNIO, 1984.

" AMALISIS CINERATICO DE HANIPULADORES CON ARTICULACIONES REDULEANTES HACIENDE USO DE MINIMIZACION CÚADRATICA "

#### Resumen

Se desarrolla un programa de computadora para la solución de sistemus de ecuaciones no lineales subdeterminados, haciendo uso de minimización cuadrítica. Como aplicaciones particulares se presentá el problema del análisis cinemático de manipuladores con articulaciones redundantes.

El programa que se presenta puede resolver, esimismo, un problema donde la función objetivo, a minimizar, no sea de norma cuadrática.

## Introducción

Debido a que en vi estudio de manipuladores se puede presentar el caso de articultaciones redundantes, es decir, que se tengan grados de libertad extra, obteniendose un sistema de ecuaciones subdeterminado es necesario recolver el problema tratando de extremizar alguna función de los parame- v tras del mecanismo, en este cuso, se toma la norma cuadrática de sus ángulos. El programa desarrollado puede aplicarse a cualquier otro tipo de problemas de sistemas de ecuaciones no lineales subdeterminados, extremizando funciones cuadráticas o no cuadráticas.

# Desarrollo

El problema consiste en hallar una solución particular de un sistema algobraico no líneal, de la forma:

. (1)

$$f(\underline{x}) = 0$$

donde f, x y 0 son vectores de dimensión m, n y m, respectivamente, con m < n. Dado que el problema es subdeterminado, se dispone, en general, de multiples soluciones, por lo que es necesario proponer una función objetivo z = z(x) a extremizar, siendo z un número real. Por lo tanto, podemos plantear el problema como:

 $\min z = z(x)^{2}$ 

f(x) = Q

sujeta a

Y

Para establecer un método que resuelva este problema, se recurren a argumentos geométricos. Cada función  $f_i(x)$  representa una superficie en un especio R<sup>n</sup>, al que pertenece x. El conjunto de ecuaciones representado por (1), es decir:

 $f_{1}(x_{1}, x_{2}, \dots, x_{n}) = 0$   $f_{2}(x_{1}, x_{2}, \dots, x_{n}) = 0$   $\dots$   $f_{m}(x_{1}, x_{2}, \dots, x_{n}) = 0$ 

define un subconjunto de puntos de R<sup>n</sup> que satisfacen simultaneamente l**as** m ecuaciones no lineales. Así, pues, esas ecuaciones definen una curva Cen R<sup>n</sup>, de grado de libertad n-m, que representa la intersección de esas m superficies.

Supóngase que se conoce un punto  $P_0$  de  $\Gamma$  en  $R^n$ , con vector de posición  $\underline{x}^0$ , que satisface el sistema (1). Se desea ahora determinar un nuevo punto  $P^1$  de  $\Gamma$  para el cual la función objetivo tenga un valor menor que para  $\underline{x}^0$ , esto es, se desea determinar un vector  $\underline{x}^1$  tal que:

 $f(\underline{x}^{1}) = 0$   $z(\underline{x}^{1}) < z(\underline{x}^{0})$ 

si tel punto no existe, x<sup>o</sup> es un mínimo local del problema.

Debido a que  $\Gamma$  es una curva en R<sup>n</sup>, no es posible, en general, definir un punto P<sup>1</sup> de  $\Gamma$  que esté muy lejado de P<sup>0</sup>. Se buscará, entonces, un punt: cercano e P<sup>0</sup>, linealizando el problema y buscando un punto u<sup>1</sup>, de vector de posición x<sup>1</sup> que este contenido en la tangente de  $\Gamma$  en P<sup>0</sup>, orien-

tado en l. dirección opuesta a  $\sqrt{2}$ . Como G<sup>1</sup> puede estar tan alejado de P<sup>1</sup> como sea, es necesario imponer una condición adicional, es decir, que en G<sup>1</sup>, z alcance su valor mínimo a lo lorgo de la tangente. Para esto definimos:

$$\overline{x}_1 = x_1 + \Delta \overline{x}_1$$
 (2)  
$$\Delta \overline{x}_1 = -\Delta \underline{g}$$
 (3)

siendo  $\xi$  un vector (no necesariamente unitario) contenido en la tangente de P, siendo perpendicular a'los m vectores  $\{\varphi f_i\}$ , i = 1, 2, ..., m. Tal vector satisface, entonces, el siguiente sistema de ecuaciones:

$$\begin{bmatrix} (\nabla f_1)^T \\ (\nabla f_2)^T \\ \cdots \\ (\nabla f_m)^T \end{bmatrix} = \begin{bmatrix} 0 & J \\ \\ \end{bmatrix} = 0$$
 (4)

La ecuación (4) establece que  $\xi$  se encuentra en el espacio de J y define un plano perpendicular a la tangente a  $\Gamma$ , como se muestra en la fig. 1. Si  $J^T \lambda$  es el vector del plano más próximo a  $\forall z$ , entonces

$$\underline{\mathbf{\xi}} = \nabla \mathbf{z} - \mathbf{J}^{\mathrm{T}} \underline{\mathbf{\lambda}}$$
 (5)

así,  $\lambda$  se obtiene como la solución de mínimos cuadrados de

$$\mathbf{J}^{\mathrm{T}} \mathbf{\lambda} = \mathbf{\nabla} \mathbf{Z}$$
 (6)

que es 🕤

donde

 $\lambda = (JJ^{T})^{-1}J \forall z$ 

por lo que, sustituyendo (7) en (5)

$$= [1-J^{\mathrm{T}}(JJ^{\mathrm{T}})^{-1}J] \nabla z \qquad (8)$$

(7)

y de (3)

$$\Delta \bar{x}_{1}^{\mu} \propto \left[ J (J J^{T})^{-1} J = 1 \right] \forall z$$
(9)

donde  $\prec$  se escoge como el valor que minimiza  $z(x^{\circ} + b\bar{x}_{1})$ , entonces,  $\prec$  se determina como la solución al problema:

$$\min_{\mathbf{x}} \mathbf{z}(\mathbf{x}^{O} - \mathbf{A}\mathbf{S}) \tag{10}$$

donde tanto xº como § se conocen.

Э

Para el caso mas general, en el que z sea una función arbitraria de x, « se puede determinar resolviendo un problema no lineal de minimización en una dirección. Una forma eficaz de resolver tal.problema es mediante la subrutina FETN [1].

Si en perticular, la función objetivo es cuadrática, es decir, para algún  $\overline{x}$  fijo se tiene:

 $z = \frac{1}{2} \left( x = \overline{x} \right)^{T} W(x - \overline{x})$ (11)

siendo W positiva definida, se tiene que z tendra un mínimo a lo largo de la tangente en un punto donde se anule dz/d4 , es decir, el problema se reduce a la búcqueda del mínimo en una dirección; pero

|                  | $\frac{dz}{dx} = \left(\frac{\partial z}{\partial x^{1}}\right)^{T} \frac{\partial x^{2}}{\partial x} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12)                          |            |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------|
| siendo           | <u>x<sup>1</sup> - x - <del>x</del> - x<sup>0</sup> - x<u>5</u> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> - <del>x</del> </u> | (13)                         |            |
| por lo que       | $\frac{\partial z}{\partial x} = W(x - \bar{x}) = W(x^{\circ} - \bar{x} - 4\xi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (14)                         |            |
| y .              | $\frac{\partial x^1}{\partial x} = \frac{\partial}{\partial x} (x^0 - x\xi) = -\xi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (15)                         |            |
| por lo tanto     | $\frac{dz}{dA} = -\xi^T w(x^0 - \bar{x} - A\xi) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (16)                         |            |
| ÷                | $\mathbf{x} \mathbf{\underline{S}}^{\mathrm{T}} \mathbf{W} \mathbf{\underline{S}} = \mathbf{\underline{S}}^{\mathrm{T}} \mathbf{W} (\mathbf{\underline{X}}^{\mathrm{O}} - \mathbf{\underline{X}})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (17)                         | ٠          |
| pero             | $W(\underline{x}^{\circ} = \overline{\underline{x}}) = \overline{\nabla} z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (18)                         |            |
| por lo tanto     | $\mathbf{K} = \frac{\mathbf{\xi}^{T_{W}} \mathbf{v} \mathbf{z}}{\mathbf{\xi}^{T_{W}} \mathbf{\xi}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (19)                         |            |
|                  | $\begin{bmatrix} \mathbf{T} \mathbf{W} \mathbf{q} \mathbf{z} = (\mathbf{Y} \mathbf{z})^{\mathbf{T}} \begin{bmatrix} 1 = \mathbf{J}^{\mathbf{T}} (\mathbf{J} \mathbf{J}^{\mathbf{T}})^{-1} \mathbf{J} \end{bmatrix} \mathbf{W} \mathbf{\nabla} \mathbf{z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (20)                         |            |
|                  | $\boldsymbol{\zeta}^{\mathrm{T}} \mathbb{W}  \boldsymbol{\underline{\zeta}} = (\boldsymbol{\nabla}  \boldsymbol{z})^{\mathrm{T}} [\boldsymbol{1} - \boldsymbol{J}^{\mathrm{T}} (\boldsymbol{J} \boldsymbol{J}^{\mathrm{T}})^{-1} \boldsymbol{J} ] \mathbb{W} (\boldsymbol{\nabla}  \boldsymbol{z})^{\mathrm{T}} [\boldsymbol{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $- J^{T}(JJ^{T})^{-1}J$ (21) | ، <b>د</b> |
| Si además, V = 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |            |
| · · · ·          | $ \sum_{k=1}^{T} \left[ \sum_{n=1}^{T} \left( \nabla_{z} \right)^{T} \left[ 1 - J^{T} \left( JJ^{T} \right)^{-1} J \right]^{2} \nabla_{z} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |            |
|                  | $= (\nabla z)^{T} [1 - J^{T} (JJ^{T})^{-1} J] \nabla z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (22)                         |            |

por lo tanto de 1

Una vez determinada  $\kappa$ , se tiene  $\Delta \chi^1$  calculando <u>y</u> de la ecuación (6)

por medio de las subrutinas Hecomp y Holve [2]. Sin embargo se tendrá la configuración de la fig. 2, de donde se observa que, aunque  $z(\bar{x}_1) < z(\bar{x}^\circ)$ ,  $\bar{P}_1$ , cuyo vector de posición es  $\bar{x}_1$ , esta fuera de  $\Gamma$ , esto es,

o sea,  $\bar{x}_1$  no satisface el sistema (1). Es necesario determinar ahora una corrección  $\delta \bar{x}_1 = \bar{x}_1$  tal que

$$\underline{x}_1 = \overline{x}_1 + \underline{A} \overline{x}_1$$
 (24)

(23)

si satisfaga a (1). Para resolver este problema existen varias alternativas que son:

Caso 1.- Como  $\Delta \bar{x}_1$  está en el complemento del plano normal a  $\Gamma$ , si  $\bar{P}_1$  no esta muy alejado de P<sub>o</sub>, se puede pensar que, si se pasa un plano por  $\bar{P}_1$ . paralelo a la normal a  $\Gamma$ , ese plano cortará a  $\Gamma$ , como se muestra en la fig. 3. La simplificación estriba en que  $\Delta \bar{x}_1$  se habrá obtenido mediante la solución del sistema

> $f(\vec{x}_{1} + \delta \vec{x}_{1}) = 0$ (25)  $\vec{x}_{1} = J^{T} \mu$ (26)

donde

Como se conocen  $\tilde{x}_1$  y J, la incógnita es A, de dimensión m. Así la ecuación (25) se reduce a

토(신) = 일 · (27)

que es un sistema algebraico no lineal de m ecuaciones en m incógnitas, , que se puede resolver por el método de Newton - Raphson para sistemas determinados, esto se hace mediante la subrutina NRDAPP [3] que a su vez requiere de 165 subrutines DECOMP y SOLVE para la solución de sistemas de ecuaciones determinados en base a la descomposicion LU de matrices[4]. Caso 2.- Otra alternativa es seleccionar P<sub>1</sub> como el punto de  $\Gamma$  más próximo a  $\overline{P}_1^c$ , esto es, como el punto de tangencia de una esfera centrada en  $\overline{P}_1$ con  $\overline{\Gamma}$ . En este caso,  $\Delta \overline{x}_1$  se puede obtener como la solución al problema (fig. 2):

$$\frac{1}{2} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^$$

sujeta a  $f(\bar{x}_1 + \Delta \bar{x}_1) = 0$  (29)

Incorporando la ecuación (29) a la función objetivo, mediante multiplicadores de Lagrange . Así, se define:

$$\Psi(\Delta \bar{x}_{1}) = \frac{1}{2} \Delta \bar{x}_{1}^{T} \Delta \bar{x}_{1} + \sqrt{f} f(\bar{x}_{1} + \Delta \bar{x}_{1})$$
 (30)

que tiene un extremo cuando

$$\frac{d\Psi}{d\lambda\bar{x}_{1}} = \lambda\bar{x}_{1} + \left(\frac{\partial f}{\partial\bar{x}_{1}}\right)^{T} \dot{Y} = 0$$
(31)

donde

As1

por

$$\mathbf{x} = \bar{\mathbf{x}}_1 + \mathbf{b} \bar{\mathbf{x}}_1 \tag{32}$$

$$\frac{\partial f}{\partial k_{1}^{2}} = \frac{\partial f}{\partial x} = \frac{\partial x}{\partial k_{1}^{2}} = J \cdot 1 = J$$
(33)

Sustituyendo (33) en (31) y despejando, se tiene

$$\Delta \bar{\bar{x}}_1 = J^T \bar{Y}$$
 (34)

lo tanto: 
$$f(\ddot{x}_1 + J^T \chi) = f(\chi) = 0$$
 (35)

que es un sistema no lineal de ecuaciones en m incógnitas como en el caso enterior, por lo que también puede resolverse mediante la subrutina NRDANP. Caso 3.- Por último, se puede usar

$$J \Delta x = -f$$
(35)

o bien 
$$\Delta x = -J^{T}(JJ^{T})^{-1}f.$$
 (37)

actualizando J. En cualquier caso, se alcanzará un mínimo cuando se satisfagan los criterios de primerio y de segundo orden, obteniendose a continuación. Adjuntando la restricción (1) a la función objetivo z = z(x), obteniéndose

$$\frac{\partial}{\partial t} \left( \frac{x}{2} \right) = 2(\frac{x}{2}) + \frac{1}{2} \frac{T}{f}(\frac{x}{2})$$
(38)

se tiene un punto estacionario de Ψ cuando se anul<u>ă</u> su gradiente, escogiendo <u>X</u> de manera que produzca una <u>X</u> que satisfaga (1). As**i**,

$$\frac{\partial \Psi}{\partial x} = \Psi x + J^{T} \chi = 0$$
(39)

o bien,  $J^{T} \lambda = - \forall z$  (40) que son las ecuaciones de normalidad, o sea la condición necesaria de primer orden para la existencia de un mínimo. La interpretación geométricade la ecuación (40) es que, en un punto estacionario,  $\forall z$  se encuentra en el plano normal a  $\Box$ . La interpretación algebraica de esta ecuación es que, en un punto estacionario,  $\forall z$  está en el codominio de  $J^{T}$ , un subespacio de  $R^{n}$ , de dimensión m < n.

La colución de la ecuación (36) puede obtenerse mediante la subrutina SUBDEL que resuelve un sistema algebraico dáneal subdeterminado, auxiliado por la subrutina HECOMP.

## Descripción del programa

El programa desarrollado, SANLSU, puede resolver el problema según los casos 2 y 3 descritos anteriormente. En la fig. 4 se muestra el diagrama de flujo del programa. Los listados del programa y las subrutinas para cada ejemplo resuelto se muestran en el apéndice A.

Una vez obtenidos los resultados del problema, se almacenan en un archivo de datos que es leído por el programa GRAMAN que dibuja el mecanismo en pantalla con opción de graficar en papel empleando la subrutina SCRPRT. El listado del programa GRAMAN también se encuentra en el apéndice A.

La computadora empleada en la solución de estos problemas ès una APPLE IIe de 64K de memoria, con lo que se demuestra que no es necesaria gran cantidad de memoria para resolver este tipo de problemas.

#### Ejemplos

Ejemplo 1: Considere el siguiente problema en el que m=1, n=2 y f y zestan dadas, respectivamente por:

$$f(x_1, x_2) = x_1^2 + 4x_2^2 - 1 = 0$$
  
$$z(x_1, x_2) = 1/2(x_1^2 + x_2^2)$$

Determinar los puntos de coordenadas  $(x_1, x_2)$  que, satisfaciendo  $f(x_1, x_2) = 0$ , minimicen z.

Solucion:

La interpretación geométrica del problema se ilustra en la fig. 5, donde le elipse esta representada por la función P y Z representa la mitad del cuadrado de la distancia de un punto al origen. Como se puede observar de la figuro, en los puntos A, B, C y D z alcanza valores estacionarios que representan la solución del problema.

· La matriz jacobiana de f y el gradiente de z son, respectivamente:

$$\mathbf{J} = \begin{bmatrix} 2x_1 & 8x_2 \end{bmatrix} \qquad \forall \mathbf{z} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

En los puntos A y C, J y - z toman los siguientes valores:

$$\mathbf{z} = \begin{bmatrix} 2 & 0 \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

y en B y D:

 $J = \begin{bmatrix} 0 \\ 4 \end{bmatrix} \qquad \qquad z = \begin{bmatrix} 0 \\ 0.5 \end{bmatrix}$ 

De estos resultados se verifica la ecuación (6), es decir, la estacionaridad de los puntos A, B, C, y D. Los resultados del problema se muestran : en el apóndice B<sup>17</sup> 57 55

Ejemplo 2: Se requiere posicionar un punto en un plono mediante una cadena cinemática abierta (menipulador articulado) de triple grado de libertod, con cuatro eslabones articulados, mostrada en la figura 6. La longitud de

sus eslabones noviles  $a_2$ ,  $a_3$ ,  $a_4$  son unitarias. Determinar los ángulos  $\theta_1$ ,  $\theta_2$  y  $\theta_3$  entre sus eslabones para que el punto P tenĝa las coordenadas del punto Q(0,1). Más aún, se requiere que el punto P genere una trayectoria prescrita.

## Solución:

Debido a que en el problema existen infinidad de soluciones que posicionan el punto P en G, se debe seleccionar la mejor de estas según algún criterio que permita escoger una función z a extremizar.

De la fig. 6 se puede ver que la ecuacion f(x) = 0 es :

$$f_{1}^{(\theta_{1},\theta_{2},\theta_{3})} = a_{1}c(\theta_{1}) + a_{2}c(\theta_{1}+\theta_{2}) + a_{3}c(\theta_{1}+\theta_{2}+\theta_{3}) - x = 0$$

$$f_{2}^{(\theta_{1},\theta_{2},\theta_{3})} = a_{1}s(\theta_{1}) + a_{2}s(\theta_{1}+\theta_{2}) + a_{3}s(\theta_{1}+\theta_{2}+\theta_{3}) - y = 0$$

se puede elegir 2 como :

 $z = 1/2(\theta_1^2 + \theta_2^2 + \theta_3^2)$  donde: c() = cos() y s() = sen()

que púede representar una función de costo, donde se desea minimizar las rotaciones de los eslabones. En base a lo anterior, podemos formar el jacobiano de f y el gradiente de z que son, entonces:

 $J = \begin{bmatrix} -5(0_1) - 5(0_1 + 0_1) - 5(0_1 + 0_1) + 5(0_1 + 0_2 + 0_3) - 5(0_1 + 0_1) - 5(0_1 + 0_2) + 5(0_1 + 0_2) - 5(0_1 + 0_1) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2) - 5(0_1 + 0_2)$ 

|     | - | [ө, ]  |
|-----|---|--------|
| 5V  | 3 | 0,     |
| . ' |   | [ 0, ] |
|     | - |        |

Los resultados numéricos, así como las gráficas de los manipuladores se mustran en el apéndice B. En primer lugar se resolvió el problema según el cado 2 antes descrito (fig. 7), la s figuras 8 y 9 representan al manipulador siguiendo una trayectoria recta, habiéndose resuelto el problema, según el caso 3, en la figura 9 sólo se muestran algunas de las configuraciónes que se siguieron para llegar al punto máximo.

Otro problema que se resolvió fue el de generar una trayectoria alea-

toria. En la figura 10 se méloran los resultados según el coso 3 y en la figura 11 se mélora la configuración original y el primer punto de la trayectoria, ya que el caso 2 no conværgió debido a la gran separación entre los puntos de la trayectoria.

Ejemplo 3: Obtener la posición óptima de un manipulador de 6 eslabones articulados, a partir de una posición dada. Solución:

La configuración general del mecanismo se muestra en la fig. 12. Las ecuaciones para el anilisis de desplazamiento de una cadena cinemática pueden obtenerse mediante las condiciones de cerradura de desplazamiento y de rotación. De acuerdo con el método y la notación de Denavit y Hartenberg [5] los n eslabones de una cadena cinemática se numeran ordenadamente, 1 a n y a i<sup>0</sup> eslabón se fija el sistema coordenado  $X_1$ ,  $Y_1$ ,  $Z_1$ . Así  $[Q_{1,1+1}]_i$  representa una matriz ortogonal, referida a los ejes  $X_i$ ,  $Y_i$ ,  $Z_i$  que gira éstos a una posición coincidente con los correspondientes  $X_{i+1}$ ,  $Y_{i+1}$ ,  $Z_{i+1}$ ; por su parte  $[a_{1,i+1}]_i$  es el vector que une los origenes  $O_i$  y  $O_{i+1}$  de los ejes anteriores dirigidos del primero al segundo y referido a ejes fijos al i<sup>0</sup> eslabón. Así, las condiciones de cerradura son:

 $[a_{1,2}]_1 [a_{2,3}]_2 \dots [a_{5,6}]_1 = [a]_1$ 

para rotación y

 $[a_{1,2}]_1 + [a_{2,3}]_1 + \dots + [a_{5,6}]_1 = [\underline{r}]_1$ 

para desplazamiento, donde  $[r]_1$  es el vector de posición del punto P del organo terminal. '

Debido a que en nuestro caso no importa la orientación del organo terminal, podemos considerar unicamente las condiciones de cerradura para desplazamiento y, haciendo coincidir el punto B con el A, tendremos un sistema de 3 ecuaciones con cinco incognitas, es decir:

 $f(\theta, \theta, \theta, \theta, \theta) = [a_{1,2}]_1 + \dots + [a_{5,6}]_1 - [r]_1 = 0$ 

Para el cálculo de 81/86 definamos:

$$\mathfrak{L}_1(\Theta) = \mathfrak{L}_1 + \mathfrak{L}_1\mathfrak{L}_2 + \mathfrak{L}_1\mathfrak{L}_2\mathfrak{L}_3 + \mathfrak{L}_1\mathfrak{L}_2\mathfrak{L}_3\mathfrak{L}_4 + \mathfrak{L}_1\mathfrak{L}_2\mathfrak{L}_3\mathfrak{L}_4\mathfrak{L}_5$$

donde :  $a_i = \begin{bmatrix} a_{i,i+1} \end{bmatrix}_i$ 

 $\underline{\mathbf{q}}_{\mathbf{i}} \cdot [\underline{\mathbf{q}}_{\mathbf{i},\mathbf{i}+1}]_{\mathbf{i}}$ 

que puede calcularse mediante el algoritmo de Horner para evaluación de polinomios [6] como:

$$\begin{array}{rcl} x_5 &= \frac{a_5}{2} & & \\ & \frac{x_5}{k} &= \frac{a_k}{k} + \frac{Q_k}{k} x_{k+1} & & k = 4, 3, \dots, 1 \\ \end{array}$$
As1:  $\begin{array}{rcl} \partial f &= \frac{\partial x_1}{\partial \varphi_1} & & \\ & \partial \varphi_1 & & \partial \varphi_1 \end{array}$ 

según la fig,13 y la notación de Denavit y Martenberg se tiene

$$\begin{split} \mathbf{\hat{n}}_{i} &= \begin{bmatrix} \mathbf{\hat{a}}_{i} \mathbf{c}(\mathbf{\hat{\theta}}_{i}) \\ \mathbf{a}_{i} \mathbf{s}(\mathbf{\hat{\theta}}_{i}) \\ \mathbf{\hat{b}}_{i} \end{bmatrix} \\ \\ \mathbf{\hat{Q}}_{i} &= \begin{bmatrix} \mathbf{c}(\mathbf{\hat{\theta}}_{i}) & -\mathbf{s}(\mathbf{\hat{\theta}}_{i}) \mathbf{c}(\mathbf{x}_{i}) & \mathbf{s}(\mathbf{\hat{\theta}}_{i}) \mathbf{s}(\mathbf{x}_{i}) \\ \mathbf{s}(\mathbf{\hat{\theta}}_{i}) & \mathbf{c}(\mathbf{\hat{0}}_{i}) \mathbf{c}(\mathbf{x}_{i}) & -\mathbf{c}(\mathbf{\hat{\theta}}_{i}) \mathbf{s}(\mathbf{x}_{i}) \\ \mathbf{0} & \mathbf{s}(\mathbf{x}_{i}) & \mathbf{c}(\mathbf{x}_{i}) \end{bmatrix} \end{split}$$

donde a<sub>i</sub> es la distancia entre los ejes  $Z_i \neq Z_{i+1}$ , b<sub>i</sub> es la coordenada de la intersección de  $X_{i+1}$  con  $Z_i$  en el sistema  $X_i$ ,  $Y_i$ ,  $Z_i$ ,  $\alpha_i$  es el ángulo entre  $Z_i \neq Z_{i+1}$ , medido en la dirección positiva de  $X_{i+1}$ .

Para la solución de este problema se utilizaron, además, las subrutinos VECX y PRODQ [7].

Los resultados se muestran en el apéndice B, así como las configuraciones del manipulador en las figuras 14 y 15.

## Conclusiones

Como se puede observar, el método más eficiente fué el implementado para el cauo 3, yu que no es necesario que los puntos de la trayectoria esten muy cercanos, como se requiere para el caso 2, además, el tiempo de proceso para el caso 2 fue mayor que para el tercer caso.

Hay que hacer notar que este programa puede ser implementado en cualquier computador ya que no requiere de gran capacidad de memoria.

El programa puede modificarse ficilmente para resolver cualquier problema do este tipo, es decir, solución de sitemas no lineales de ecuaciones subdoterminados.







Fχ

G



FIGURA 3

5

22

2

ς,









FIGURA 6



PTCHO: 17

F 5

EJENELO 1

PROSPAM SAIKSU

С

000

C

С

С

00000000

ċ

PEDGRAM SAMISU

ESTE FROGRAMA CALCULA LA SOLUCION DE UN SISTEMA ALGEBRAICO NO LINEAL SUDDETERMINACO DU LA FORMA ;

.E (X) ≈0

DOMDE F, X Y O SDI VECTORES DE DIMENSION M, N Y M RESPECTIVAMENTE COM MEN. DEBIOG A ESTO ES NHOMMARIO PROPOMER UNA FUNCTOR DAJETIVO Z=Z(X) A EXTREMIZAR, SIENMO Z UN NUMERO FEAL. EN RESUMEN, TEMEMOS EL SIGUIENTE PROBLEMA DE FROGRAMACION NATEMA-TICA: S

11

MIN Z=7(X) X

SUJETA AL F (X) #0 DIMENSION 07(2), DELTX(2), X1(2), DELTX1(2), XFIN(2), U(2) REAL MO(1), JAC (1,2), JACT (2,1), J1L (2) COMMON AU (D) J1, N CONHON CSI (2) WRITE(\*, \*(At) \*) \* SI DESEA IMPRESORA, TWOLEE : READ(\*, (11) \*) \* 1F (1.EP.1) THEN OPEN(6,FILE# 'FPINTER: ') FUSE DECNIG.FILE= (CONSOLE: 1) **ETIDIE** 18111576,50 WRITE(+,'(AD)')' 1 SI EL PROBLEMA ES DE NORMA QUADEATICA ' READ(\*,'(II)') II IF (11.EC.1) ALFA-1.0 WRITE(6.100) FE4D (\*.200) H.H WRITE(5,200) M.N. W3ITE(6,300) READ(\*.400) (XO(I),1-1,1) WRITE(6,400) (XO(J), In1, N WRITE (6,350) TEL.XH0.0000001 TOLF-0.000001 DOMPHO. 3 NAX+200 FTIAX-109 WRITE(C.COO) TOLY, TOLF, DAME, MAX, KMAX MU(1)=0.2 IONT=FORT+1 CALL JACOBI (JAC) CALL GRAD(02) PO 5 141,N -4.3 JTL (1) =67 (1) CO 5 J⇒1,N JACT (I, J) = JAC (J, I) CALL HECOMP (N, H, M, JACT, U) CALL HOLVE (N.N.K.JACT, U. JTL) DG 3 (#1.4 DO 3 J#1.M JACT((,J)=JAC(J,() CALL HULVED (N.H. JACT, JTL, JTL) DO 4 141.N CSI(I)+67(I)+670(I)

11 ALEC-RUIN(-1.5.1.5.1.00-8)

## Ę

11

5

72

LELTX ( Diserved FABCET ( F) X1(1)=X0(1)(D41 T7(1) 6 CALL NEDALF (MILLA), JOCT, TOUX, TOUF, DAKE, ITER, MAX, KMAX) CALL MULVEC (N. P. JAST, MU. DELTXI) 20 7 1~1.8 XFIN(I)=))(J)+DELTX1(E) 9 DO 14 141.00 (F(ABS(XFIN(1)-20(1)).6T.(.0E-6) GD TD 12 CONTINUE 14 60 TO 10 12 DO 13 I-1,N . 13 X0(1)=7F10((1) 60 TO IL WRITE (6, 1/A#) 1) I LA SOLUCIÓN FINAL DEL PROPLEMA ES: 1 10 HRITE 16, 500% ALEA WRITE(6,001) (DEI(1),T=1,N) WRITE(6,505) (MU(T), T+1,M) WRITE(6,T07) OFDUCE),101,4D \$T0P FORNAT(3X, ' PROOFAMA PARA ) A SOLUCION DE BISTEMAS DE ECUACIÓ 'NEB'7157.' NO LINEALES SHODETERMINATÚS'7) FORMAT(3Y, ' OAME LAS DIMENSICHES DE F(X) Y X (M Y N)') 50 t. 100 150 FORMAT(11) 200 FORMAT (212) FORMAT(3), NO BE LEEGA A LA BOLUCION DERFUES DE SO VECEET). FORMAT(37, 1448E X01) 200 200 FORMATIC: TOLK, TELF, DAMP, MAX Y KMAX () 350 400 FERMAT (SPICES) 300 EDEMOTIVEX, TALEATVEX, E10.4) FORMAR(37, 101737, 1910, 4) FORMAR(3), 100737, 910, 4) 501 505 507 FOPHAT(32, 1XF(1)/32, 2F10.4) FERMAT (VC/5.5,F5.3,2150) 600 700 FORMAT (2F10.5, f 5.0, 213) END C C SUGROUTINE JACOBI (JAC) C C SUBRUTING FOR CALCULA EL JACOBIANO DE LA FUNCION F(X) ENFLEADA Ç EN EL PROGRAMA BACLOU. C C ENTRADOP: лÇ, C H - DIMENSION LE X Ċ хò VALOR INICIAL Ç SALIDA9: С - JACOBIANO DE F(X) - JVC 1 . . . C REAL JAC(1.2) COMMON XO(2), N.N. PO 1 1\*1,M DO 1 3=1,N JAC([,J)≠0.0 1 JAC(1.1)-7.0+YO(1) JAC(1,2/#3.0#X0(2) RETURN END

- 1

Ċ С SUSFOUT ME CRAD (57) c ç - EUBRUTINA DUE CALCULA EL OSADIENTE DE LA FUNCION  $\mathcal{I}(\hat{\mathbf{X}})$  EMPLEADA EN EL PROGRAMA SAPLEU. ENTRADAS: N DIMENSION DE Z(X) XO FUNDO INICIAL BALIDASI c GZ - GRADIENTE DE ZIXX c DIMENSION 07(2) COMMON XO(2) .M.N DO 1 (#1.0) 6Z(()=0.0 1 00 2 1+1,14 2 GZ (7) +X0(1) ACTORN -£240 SUBROUTING FUNCE, JACT (P) COMMON X0(2), N, O DIMENSION Y(0),P(2),F(1),X(1) REAL JACT (2,1) DO I INI,H 60 1 U.M. N Y(J)=P(J)+JACT(J,I)=X(I) L F(1) + Y(1) + + 7++ + . ) = Y(2) + + 2-1.0 RETURN EMD С ۲C SURROUTINE DEDX (X, DF, JACT, F) CON54CH X0(2).8.01 D1MEN9104 X(1).P(2).DF(1,1) REG. JACT (2,1) DF(1,1)+2.0F(F(1)+JAGT(1,1)+\*(1))+JACT(1,1)+ 9.0+(P(2)+JACT(2,1)+X(1))+JACT(2,1) L PETURI END REAL FUNCTION F (ALFA) REAL ALFA COMMON (X0.(2) (1) N COMMON, C51 (2) CALL FUNZ (ALFA, 2) F=Z RETURN END Sé С С SUPPOUTINE FUNZ (ALFA, Z) С C CALCULA LA FUNCION Z (XG-ALFANDSI) C COMMON REPORTS COMMON CEL (2) Z=0.0 DO 1 1-1.N 2=2+(X0(1)-ALF4:C31(1))++2 t Z#0.5×Z RETURN END

EJENVLO 2

MAGES HARDON, IN MARSHOPPIN, CASH SUSED UNBLIN IN ADEPATH. CODE PROGRAM (CARCISE) C  $\sim 10$ . Ç PRODRAM SANUSO С 1.6 8 ĉ ESTE PROGRAMA CALCURA LA COLUCION DE UN SISTEMA ALGEORATOS NO LINERA, DREDETERMINADO DE LA FORMA I Ç F(X)+0 ¢ DONNER F, X Y O GUN WH YORKER BE DIMERSIBILIS, N Y P REFECCI (WHOLDE C CON HON. - MEDICO A ESTIMAS PROCESSARIO PROPERCY UNA TURCIAN OCULTION ¢ Z=Z(X) A CATREMIZOR, GIENDU Z UM NUMERO ACOU. Ę, EN RESUMENT, TENEROS EL SIGUIENTE PRODUCHA DE PROGRAMMATEMA-С LIC-II ē a (61)1 Z= 2 (31) х C. CUJETA A £ (X) #0 C D31EN3304 02131,01337(3),011(3),E814X1(3),X718(3),U(3), (Y(2) DEDENGED CERD (2) , XYO (2) , MEX (3) , P (2) REAL FORD, 340 (2,3) (4601 (3,2) (470 (5) DOMMON YOLD , H. H. COMPONE (20113) COMPANI N TABLE OPENIS, FROM DE MORDEL DATA1, STATIOS= INSUID PROTECT, CAPTOR DI DECEMI PRODUCTION, TECLES I REORD, 1011 10-1 LE CLEWARD TREE UPERIG FILL- (ERIMITIC) D E1.5;6, OPEN (FL) TO EFICONDOUCH TO ER01F (PR111), (47,56) WRITE (5.450) READ (\*, 150) 10050 MAITECS, 1200 NOV60 IF TREASE, OT. 5. ON NOTION LET 10 GO TO A WRITE (6,750) READ (1, 100) NOTINA WRITEG, 1500 BORBA IF (PRICEMULTER, 1), ALF4.=1.0 984(6(6,10)) REODES, 2000 IN, N WRITE (6, 200) H.N. 10LX+1.0E+S T01.F=0.0001 PARP+C. P 1197,+200 KHAX+100 WRITE(6, 350) WRITESS, SOOD TOLY, FOUR, DAIT, MOX, KMAX HRCTE (4,360) REGD:\*,4005 (20(1),1\*1,14) WRITE(6,400) (SQ(2), I=1,N) WRITE(3,510) (00(1), 5+1,10 hilling (mar. 19 60321-0.10 0000011#0.0 CEL0121=6\_0. 1.2 WRTTE(6,450) READCH, WOUL CAY (11, 1-1, 11) REPARTS AND LEFTER LALM

M

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                       | ·. ·                  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------|-----------------------|
|            | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · .                               | e 1.                                  | <b>-</b> · - <b>-</b> |
| ి.         | KOUR-READER C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NO 10 15                          |                                       |                       |
|            | MRITERS, CAPPED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                       | . AS                  |
|            | COLL DEPUT OFFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                                 |                                       | , ,,                  |
|            | COLL CLOB (57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                 |                                       |                       |
|            | DO 4 (et.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.H                               | •                                     |                       |
| 4          | JACT 1, ULMIACU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , I                               | •                                     |                       |
|            | CALL DECURPAN, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,n,anui (u)                       |                                       | 1                     |
| •          | CALL HOLVELN,N,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K, JACT, U, SUXO                  | ۰.                                    |                       |
|            | . n, i≖i, i og<br>ist ⊁ tai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.31                              | •                                     |                       |
| 3          | JACT (1, J) - TAC (J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - , ,<br>, ž)                     |                                       |                       |
| -          | CALL HULVEGINIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAUL, FAIR, DYLE                  |                                       | :                     |
|            | 00 5 Jet,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | . •                                   |                       |
|            | 1 E (NOEKA, D.B. 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μετή<br>ΑΕβα-ΕΜΙΝ(-1.5.1.9        | (.1.DE-6)                             |                       |
|            | DO 7 141,N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                       | •                     |
|            | DEL FRIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) ALFA*CBI (1)                    | .•                                    |                       |
| 7          | Xi(I)=x0(i)+DEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12(1)                             |                                       |                       |
| •          | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | 80 36 7<br>81.77.3007.7857.10     | E. DATEL TREE MOX.                    | 196 <b>8</b> %)       |
|            | DE B Lat.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | ····· faster a fast transfer tered    |                       |
| ព          | MUCD HAMDO CHU CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,842351841                       |                                       |                       |
|            | RALL NULVEC IN H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,JACC, MULIDELIXIA                |                                       | · .                   |
| 0          | CALL FUELDER AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×*•                               |                                       | _                     |
| ,          | BO 15 JHL. 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • •                               | · ·                                   |                       |
| 17         | r(D**-(CD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                       |                       |
|            | and clear to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n,n,/,rçitxi,ux                   |                                       |                       |
| 10         | NET 197 TO 1994 (1993)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 TEL (1)                         |                                       | •                     |
|            | CALL FUNCTAYO, X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | THLEEPE                           | •                                     |                       |
|            | 00 13 1*1,01 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                 |                                       |                       |
|            | IF ONG C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Y(1)=270(1)).01.1                | .0E-3) 00 TH 13                       |                       |
| . 4 12     | COLUMN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                 |                                       | · ·                   |
| 1.3        | bu 14 141.44 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                 |                                       |                       |
| 14         | (1)MITA*(1)O(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                 |                                       | •                     |
|            | 50 (C 3 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                       | •                     |
| 15         | 190 78 191,0<br>1910 (116,190)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (H(1).L. 203184)                  |                                       | , ī                   |
| . 16       | XO(1) =>[ (4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                       |                       |
|            | MELTE CARON RU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NT ·                              |                                       | •                     |
| , <i>•</i> | WRITE (2, 250) (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y(I),(=(,M)                       |                                       |                       |
| •          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | en<br>Bith imfith                 |                                       | · · ·                 |
|            | KRITE(6,510) (X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FIN(1), I#1:N)                    |                                       |                       |
|            | WRITE(5,513) (X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIN(I), I=1,N)                    |                                       |                       |
|            | . MULIC(P'020) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                       |                       |
|            | €EAD(+,*(11)*) →<br>MOTIE(# ((11)*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1î<br>77 .                        | •                                     |                       |
|            | . IF (11. F2. 1) 00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TC 2                              |                                       |                       |
| •          | CL08F(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                       |                       |
|            | MR (12 (6, 1 (64) 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | " age FIN DEL PR                  | CORLENA *****                         |                       |
|            | 53 FGP<br>1997 - 1978 - 1978 - 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THE OF LLEGAL                     | - SOLVETON DESELS                     | 74 · ·                |
|            | GG76(5,164) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DE 20 VUCAC                       |                                       |                       |
| -          | 0.057(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1. In .                           |                                       | · .                   |
| •          | 510P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.<br>                            |                                       | 36 command            |
|            | ●1969年11574 - 196 <b>0</b><br>また1958年7月1日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JORES FRAGLES SOLU<br>NO LINGACES | RIGHPEE SIRTEMAS<br>E SENDÉTERMINADUR | and Michaeland (      |
| 100        | ) toddhafeta, same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CLAS DIMENSIONES                  | 65 (* (X) * X 66 *                    | 10 (S. 6)             |
|            | 11 COMMATANYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                 |                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                       | -                     |
| •          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                       | •                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                       | •.                    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L (                               | -                                     |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                       |                       |

1. \*\*\*\*; 1.01.41.1 FURNAL CALLENGIA, LEE, LEGANNE, LENNERRY, MORAL CLUB, CO. 2.56 FORMATICS, " CARE LOS ANOULOS BRICIALES DE LOS ESLADONES ") 300 FORMATED FOLK, DOLE, DAMES DAK Y KMESTE :00 ŧŤ, FORMATER OFFI ÷ 0 FORMATE DEAL LAS COORDENADAS DEL PUBLO DEL OSCARIO ICEMINAL 1.00 EDDMAT GIX, TALEAR 175X, PLO. 22 EDDMAS GIA, TALE 172X, GELO. 37773 EDDMAT GIX, THETE (12, 15X, 5010-37 500 54.5 440 FD:0467 (5)/15, 81 :5221 FORMAL VZ / DEPLHE 1 SI DEPEA DAR OTRU PUNTO DE LA TRAVECTORIAM 16.6 2.47 FORMAT (2215, 5, F5, 3, 215) 1.00 FORMETTY INDIAUE IS NUMERO DECOGO'S .40 51.0 Flamb1 447 15, 5, 53, 3, 2157 FORMATIC TES MA PROBLEMA DE NURMA CUADMATICA (1 SI) 2 NU 7'1 1.30 FORMAL (777 BOLUCIER DEL PRUDLEMA DESPUSS DE 1, 13, 1-VELED') figure ( £5eD ÷. ١. SUGRAUTINE JACODI (JAC) 17 EDDATION AND CALCULA BE JACOLUAND DE LA FUNCTOR F (X) ENFLEADA 10 THE EL PROFEMENT DATE SHE ENTRADADE + SIMENSION DE F(X) - H - DIMENSION OC'X 14 . . . . \* VILOR INFOIAL SELIDASE . 2 JACODIAND DC F(X) Jac 1.1 REAL GADIES, 35 COMMON NO CO MUN DU 1 1-L H 101 1 0#1,N JAC CL, DIGCO L JAC(1, 2) #JAC(1, 3) -- GIN(XO(1) #XO(2)) 36012, 314000 (X3(1) (X6(1) +X6(3)) and (2, 2) yara: (2,3) (009 (x0 (1) + x0 (2) ) JAC (2, 1) \* JAC (2, 2) \* CBS (30 (1) ) RETURN etin. Ο. SUBDOUTION CRADICZI. C ú UMERULINA OUE GALGULO EL GRADIENTE DE LA FUNCIOU Z (X) CHÉLENDA 0 ON EL PEDORAMA CAMLSU. · . • æ ¢ ZNITADA-11 U, i1 PIMENGIUM DE Z(X) C **XO** - PUNTO INICIAL c CHL FPACE DEADIEDDELICX) 4 61 DIMENSIUS; 62(3) COMMENT OF (C) , MI, N DOUBLOH NORMA TO 1 1-1-1.17 GZ (1) · 0.0 10 7 I-1, R 40 GREADS FD. 20 GZ (1) -(1.0 52(1)=35(1)

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •• ····    |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| c.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| <u>1</u> | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|          | COMPOSITINE FORM (F, 10, x 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>A</b> 7 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|          | 2 1 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|          | 1_71174060.7<br>VI.+V2+V1174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|          | 11112 #CC3(V12)(000765)/2(100.50) Ye (X732)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|          | # (2) +C)N(7) +GI(K(2) (5) K((2) - 37(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|          | RE TUAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|          | END .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| •        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|          | a construction and the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the con |            |
|          | CODERING FINE CONFIDENCE (45,14,50,50,77,14)<br>TENTIONES MARK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|          | DINERSIGN AVERAGED SCHELDER AUCH AND CONTRACT CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| :<br>:   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|          | la io (=1,t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|          | 00 S 3+1,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·          |
|          | AT(1,3:=4(3,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| _        | CM((),()+A)((), ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,          |
| 1        | CANTERSON CHERRENCES IN CONTRACTOR OF MERCIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|          | Lena La Constanting Constant (Constant)<br>1 DA TO La La M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|          | 20 20 15 J=1.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| •        | 111 4 . 40 - 401 (41 . 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| 1        | 10 CONTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| :        | 0 00.47 U/0E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| (        | : OUSTITUEION HACTA CLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| L        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| ,        | DD 25 3*1.1 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|          | GG=4(C), J / V ( (J) + (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| :        | 5 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|          | ¥(1)=9(1)-CC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|          | (1,1)+X(1)X+(1)X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|          | so contraise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|          | an an an an an an an an an an an an an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| · · · ·  | - D (11) +X (1) 760 (1) 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1          |
|          | DD 40 1-0 1.1-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|          | COWO T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
|          | 04 CS 3=111,H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| •        | CC+AT (L, J) 40 (35 (CC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|          | Sea Court 110 No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|          | 10月11日2月1日) (1))<br>11月11日 - 11月1日) (1))<br>11月11日 - 11月1日) (1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| •        | rang ga sana sa sa sa sa sa sa sa sa sa sa sa sa sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| •        | nar Ayayan Tanaka<br>Ani tutu tantat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|          | 3x11m0xx1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| · ·      | DO 45 J-1, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|          | Kit) (metjaratar) sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|          | 45 CINT 1(89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |

· ·

.

CONTRACTORS PROLING OF A THE PAY DE STO ٢, ٨Ū すな)ない物物はおねっては、知られていても向くなっているが、かいていていたがくにいる ¢, 5 ERCONTAG: а. 10 LL L1 MUNCRO DY DERIGRARY TO A Y C. ENDERD OF RELEMENT DE LA Y DUNKLER DE DE P ÷ 1.2 网络特殊学校 结理 计常常可能自由化 化应应 \*\* · MORTHE FUE POCKLIPTE CA н Ċ. ľ, Gat.13067 11 G, A PRODUCTO DO A IONEO ; DIMENSION ACCULATED FREE COLD 00 1 1+( L) 000.00.0 ţ. 80 2 141211 - 56 Collection 124 C(1, 63C, K) #0(R)+C(1) DICT: ID. D. 21:0 10 ٠. G00R007108\_0600292040103233032430 INTELCO MOULAR.N. REAL A COULD AD JUDE DEAL OLFMA, DETA, DAMMA £ BEBUCLION OF HUDSENDED DE UNA (INTELZ RECTANDA AN A DU PORMA C TRIANSLEAR SUPERIOR. 11 11 12 mitteri A DA DESTRUCTION AND A DESTRUCTION OF A C: сt – HEAD OF PERMANENT DE H G 11 ACREATE CONTRACTOR OF A DATELY HE HER CLP. H NAVOA QUE N 13 ĥ. C ¢ CUIDEDADADA C: . MATRIE 0 REDUCTS -061.46634 45 MATRIZ RECTORING & INFORMATION OF LA RECORDING c IT & VOLADLY DE DIGINATION H. L. :3 ENTERAIN THE REPART ¢, C GALIER: LENGTHATION DE LA REDUCCION ų, 4 - TANALATRA OLELUXIOMIN GUT GARLAN ALLAR (TARAI, ....) 5 DO 6 K⊨1,N AL FILMAD. O DG 1 JAK, M 900 ea 0,30' ALC: MARKED CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT. CONTINUE. 2 ALL DOWNER FOR LADY TRADUCTION ADDRESS LEDGE the sense of the sets of FERMINE PERMIT And show watches se af le de tra de la de la dista al la cita de la com С 11 source all encourts in this contained attracted as in ı. RETAINED our all amhraí (al The 2 do the second

S.CIMASCAMMASU (1) #A(1,3) ź CONTINUE GAMMA- CALENA/ DETA DG 3 (+K,H) (J)=A(I,J)-OAMMA\*U(I) 211 CONTINU 3 4 CONTINUE CONTINUE 4 DETUR-N END С Ľ CUSPOULTNE HOLVE (ND MINING NUMBER) INTEOCR NOTH, M. H. REAL A (MDIN, N), U (M), B (M) REAL PETALGINALI' C C SOLUCION I C MINIMOS CUADRAPOR DE UN STOTEMA SURDEDETERMINADO ē CNAUGNTOR & THE CASE PENENDAR LA MORNE GARBE ¢ 000 MULMININ ALL SON LOS DESULTADOS DE HECUMP VECTOR DE DIMENSION M t) ¢ ENTRADAS: G LADD DERICHU DE LA FOUADION c ٠. 64L1058: 0000 PRIMERAD & COMPONINTES IGUAL A LA BULDORON ULTINAS MAN COMPOSENTICS ISDAL A LA TRANSF. RESIGNA DIVISION THIRE OF MALICA OUS NO EXISTS REAGO COMPLETE .C . . DI 3 1.+1 N тыласно DETGHOU(K) #A (E.F.) #00,Kr+0000 GANMARO. 0 CO 1 1\*K.M COMMANDAMENDED CL LICS REPORT 1 CONTINUE **BOMIANDALI IAZDETA** 00-2-1ek,H L(T)=B(T)=GAMMA+A(1,C)  $\mathbf{Z}$ CONTINUE A(K,K) = F 3 CONTINUE I, • G SUGTITUCION HECTA BIRAS C DO 5 K.BHAT, R K=N+1-KB B(K) = D(X) / O(K, K) TERKIEU, D. GO TO PM1=8+1 CO 4 201,601 10(1)=0(1)=6(1 .K) # E (K) CONTINUE 4 5 CONTRACT n en ruma ( ENG С Ц SUERGED THE FIRICE, F, DACT, P, XYE. CONDER AS COUNTINE DIRENDIAN V(3), P(3), F(2), X(2), XV(2)

|     |             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | • . •       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|     | ·           | CALL HOLMEG (R.M. JACI, X. JAMA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|     | ۲           | DO 1 IALN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|     | 5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|     |             | 1. (1) = 100 (1) (2) (1) = 40 (1) (2) (1) = 0 (1) (4) (4) (4) (1) = 14 (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|     | · · · ·     | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . •   |
|     | •           | ្រាយ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · •   |
|     | 5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| , i | 12          | ENAMOUNTING DENKAY, OF LAART, PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| •   |             | CONMON AD CALLS, MARKEN AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A CALLS AND A |       |
|     | 1           | D1MEPSYON X (2), P (3), OF (2, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|     | ٠.          | REAL - JANTA (J. 2) JULIU (J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|     |             | CRULE FOL YOU WASHING WASHING THEFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|     |             | A2+A1 (012) (0190 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ξ.    |
|     |             | A3+A2+P(3) (01MU(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •     |
|     | •           | A \$5,1607+1,13+3,607(2,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|     |             | 64+J601(0.1) /J401(0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|     | •           | A2+(6+36/3733,2) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :     |
|     |             | DF(1,1) COCT(1,1) COCT(1,1) COCT(1) COCT(1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1) COCT(1,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •     |
|     |             | THE FL AD PRODUCT TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TABLE TO THE TABLE TABLE TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|     |             | DF (0, 0) = INUT (2, 1) # COS (31) + 16 = COS (40) + 677 COS (63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|     |             | RETURN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1     |
|     | Ċ.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| • . |             | TUDSCRUTING EMOLYMENCE, D. XY, JACY, TOLK, TOLK, DARD, JTER, PAX, KEAK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|     |             | From Cost, 1935, average and Co, 25, Person of Cr, 20, 20, 200 TAGA, MORK (SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|     | 4           | $(\mathbf{R}(\mathbf{CCR},\mathbf{P}(2)))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|     |             | E CIENTIAN CERTINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| -   |             | ESTA CUERTINA TROOTRATA LAS RATCES DE UN SISTEMA AL BERRARO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|     | ٢,          | NO-LINEAL DE ORDEN N, FOR EL MARODO DE NEWLON COPHECH COP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|     | <u>1</u>    | AMORTS INTO A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1     |
|     | 12          | va (64 f. + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|     |             | ITEN=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •     |
| •   | :           | CALL HOMER, F, JACT, P, XY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|     | •           | FNOR1+#39(4)(4),(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|     |             | [F STRUCH, L.L. (US, 7) (23 - 10 - 4<br>Frant - Europeine Internet, 145 - 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|     | · ·         | CALL DECOMPTING DE CENDI (CLADAK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|     |             | K-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •     |
| •   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •     |
|     |             | CI LOTINIZIZ JAUGURUP ES DINGGLAR, LA QUENUTINA HEUROSA 44<br>PRADRAME PRINCIPAL - EN CAGO CHATPANIO - SIGNA AL PROCESSI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . '   |
|     | •           | CLRADP = CCC 4D F 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ÷., , |
|     |             | LF (CO) 57.51,CCNO) OC 10 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|     |             | C(a) = C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) + C(a) +   |       |
|     | 2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|     |             | DELNOR I MURH (DEL TA , NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|     | •           | 17(00L200(L1),10L3) 60 10 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|     |             | j 2014 de l'Alexandre<br>Alexandre de l'Alexandre de la companya de la companya de la companya de la companya de la companya de la compa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| · . | •           | CO TO A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|     | 4           | TRUNT CARL STORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •     |
|     | <b>▲</b> 1: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|     | <u>ە</u> ،  | - መስመመስት የአካናዎታው መስካቶ ታይነት እና ም<br>የደርጉ የሆኑ የተባለ ነ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|     |             | n San an an an an an an an an an an an an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|     | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|     |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| . ' |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,     |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|     |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |

· · · ·

|                                                                                                         | -<br>74 5 635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LATTON AND NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -           |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Ξ.                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| · · C                                                                                                   | PRUEEA D<br>EL AMORI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DE LA NURMA DE LA<br>NUELANDEARO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TUNCIAN, SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NU DECRECE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , SE INTROCUCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1:         |
| ć                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| -                                                                                                       | 1F 67(0)%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CLT. PRORID - 65-70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •         |
|                                                                                                         | 1F (K. 60.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KMAY) CG TO 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • .         |
|                                                                                                         | K-#1(+1<br>D() 6/ 1-s1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | м.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • . •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                         | 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ((.CE.2) 60 TO 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|                                                                                                         | DUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16(1) = (D6HF-1.) ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DELTA(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| _                                                                                                       | C()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TC -1 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|                                                                                                         | CGI<br>CONTERNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TATI) EDEREDELTA<br>Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| - ()                                                                                                    | DEL NORAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.01/051 76.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                         | IF (DOLHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R.LT.TOLX) GD TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|                                                                                                         | DO 🤈 1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Litt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| , 7                                                                                                     | X(1)=3()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DED DELTA ( D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| ·                                                                                                       | \$80 TO 50<br>10777/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OT MAXY OF TO 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|                                                                                                         | 11 (1700)<br>11 (1700)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1911 -<br>1911 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|                                                                                                         | 11061-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|                                                                                                         | 1 CON 111 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| 11                                                                                                      | REARIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| 12                                                                                                      | 1943 (LA LA<br>1952 - 1953 - 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *1,N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| 1->                                                                                                     | REYDON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| 14                                                                                                      | 4501 FC. 66 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (30) THER, RONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|                                                                                                         | 60 FO 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| 16                                                                                                      | 1 2012/01/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 16 - 1 - 60 B - 11 - 60 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                         | 60 TO 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | THEN THERE WANTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RUNI (COND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| 120                                                                                                     | ្រ ស្រុះស្រុក (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ж.1X(1,13,1) н.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,010.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| 130                                                                                                     | FUELINE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SA, ON GALITERACI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ĆN 2001 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TIRTAM A.L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IACOB (ANA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|                                                                                                         | - 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 CINCH, 44. 1757, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 「 ぬ」 屋口 いた 17 あに ただし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (11)A) (IM - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|                                                                                                         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THE HAR HAD AFTER LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SE Y CE. 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 131 · OECESTA .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • •         |
| 614                                                                                                     | '∽ 5€,<br>ю Граиаца                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , TEL VALUR AFA UAL<br>(1977-121 - FROMESH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DE X.ED. 17.<br>Divisios en la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1)ZRACION N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13, * VECES*A .<br>NUN. *.137104.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| 014<br>Li                                                                                               | іт 53,<br>Гранаті<br>Гранаті                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , 181 VALUR AFGUAL<br>(10%, 121 PROCES)<br>  DOMHA DE 1.4 PUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DE X 20 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1)ZRACION N<br>20.6/104, LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NUM, 1,137107,<br>NUM, 1,137107,<br>N FURDIDA: FUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| 614<br>11<br>2                                                                                          | іт 50,<br>ю Границії<br>- 12,<br>- 12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , TEL VALUR ARTUAL<br>(10%, 121 - FROCES)<br>FROMHA DE 1.4 FUN<br>VALUARA - 1 , 12 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NE X. 25. (A)<br>NULROS EN LA<br>CIDA EST (E)<br>VECES//IVX, (LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1)ERACION N<br>20.6/10X, LA<br>1 CONDICION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HEH. (137107)<br>NEH. (137107)<br>NE LA MARKET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | q           |
| 014<br>U<br>C<br>C                                                                                      | іт 50,<br>ю́ Граилії<br>- 12<br>- 12<br>- 12<br>- 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , 181 - VALUR ARTUAL<br>1107, 121 - FROCESH<br>1 - ROAMA DE 1.4 - FUR<br>17040000 - 1, 12 , 1<br>1511, E20167304, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DE X.005 ///<br>DIVERCE EN LA<br>CIDA EUT (EX<br>VECRES//IUX, (LA<br>L VALOR ACIUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TERACION<br>1TERACION<br>30.6/104, L4<br>1 CONDICION<br>20. 26 X E31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NUM, 1,137107,<br>NUM, 1,137107,<br>NEULA MARKET<br>DE LA MARKET<br>(2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| 014<br>U<br>C<br>C                                                                                      | ю Граница<br>10 Граница<br>11<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , TEL MALUR ARTUAL<br>(10%, TEL PROCES)<br>( 100000 DE 1.4 PUX<br>( 100000 DE 1.4 PUX<br>( 100000 T, 10, 1<br>( 100000 T, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10                                                                                                                                                                                                                                                                                   | DE X. 25 17.<br>DIVERCE EN LA<br>CIDA ED: 1,E2<br>VECES/710X,114<br>L VALOR ACTUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112RACION N<br>20.6/104, LA<br>1 CONDICION<br>20.6 x EG: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13,10000577<br>1041. 1137107.<br>1050104:FUC<br>1050104:FUC<br>1050104:FUC<br>10501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| 014<br>U<br>C<br>D<br>D<br>U<br>U                                                                       | ο 50<br>Ο ΓΡΟΒΗΛΙΙ<br>- 2<br>ΕΝΩ<br>ΕΝΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , TEL VALUR ARTUAL<br>(10%, "21 FROQES)<br>( 100040 DE 1.4 FUX<br>(VALUARA 1, 12,<br>1511, EQUIS/10%, C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NE X, 25<br>NURCE EN LA<br>CIDA EST (LE<br>VECES//IOX, (LA<br>L VALOR ACIDAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11ZRACION  <br>20.4/103, L4<br>1 CONDICIEN<br>20.4 X E3:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NUN, 13710X,<br>VEN, 13710X,<br>VEN:DIDA: HUE<br>DE LA MARKET<br>VIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 014<br>U<br>C<br>C<br>C<br>C<br>C<br>C                                                                  | т 53,<br>Ю ПЛЯИЦ ()<br>- ()<br>ЕМр<br>FLNC(1)(14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , TEL MALUR ARTOAL<br>(10%, "21 FROCES)<br>(10%44 DE 1.4 FUX<br>(VAUSADA 1, 12)<br>(5) ( ,E20, 67304) (<br>(1) (0) (F <sub>1</sub> N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NE X.05<br>NURGE EN LA<br>CIDA EST 1,ES<br>VECKS//IOX, 114<br>L VALOR ACTUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1)ZRACION N<br>20.6/103, L4<br>1 CONDICION<br>206 X E3: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HEN 13/10/<br>VEN 13/10/<br>VEN 13/10/<br>VEN 13/10/<br>VEN 13/10/<br>VEN 13/10/<br>VEN 13/10/<br>VEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 014<br>U<br>C<br>C<br>U<br>U<br>V                                                                       | т 53,<br>Ю Границ<br>1<br>2<br>ЕМр<br>6ЦЧЮ (1)<br>1,07,1 (1)<br>1,07,1 (1)<br>1,07,1 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , TEL MALUR ARTUAL<br>(10%, TEL PROCES)<br>(10%, TEL P                                                                                                                                                                                                | DE X.005<br>DIVERCE EN LA<br>CIDA EUT 1,EX<br>VECKS1/IUX,1LA<br>L VALOR ACTUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112RACION  <br>112RACION  <br>20.6/104, L4<br>1 CONDICION<br>206 % E31 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NUM, 13710X,<br>YEUNDIDA: FUE<br>DE LA MAINYET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| 014<br>U<br>C<br>C<br>U<br>V<br>V                                                                       | т 5 с,<br>ю Грвиян<br>Грвиян<br>ЕМр<br>FLRDCS I (ал<br>АС/ал У (М<br>I=1<br>Тр ( т)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , 161 - VALUR ARTUAL<br>(10%, 121 - FROQES)<br>(- ROGHA DE 1.4 - FUX<br>(- VALUARA - 1, 12 ,<br>-51 ( ,E20 - 57 30% - 5<br>-51 ( ,E20 - 57 30% - 5<br>-<br>- ROGH(F ,N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 25 X.225<br>- 21 X.225<br>- 21 X.225<br>- 21 X.225<br>- 21 X.225<br>- 21 X.25<br>- 21 X                                                                                                                                                                                                  | 11ZRACION  <br>11ZRACION  <br>20.4/103, L4<br>1 CONDICIEN<br>204 % E31 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NUM, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, 13710X,<br>VEN, |             |
| 014<br>U<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C      | т 51,<br>ю Гранан<br>11,<br>22,<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , YEL VALUR ARTUAL<br>(10%, YEL FROTES)<br>(10%, YEL FROTES)<br>(100000 01, 10<br>(10000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10: X.25<br>17: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1)ERACION N<br>20.4/103, L4<br>1 CONDICIEN<br>204 X E3: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NUN, 13710X,<br>VEN, 13710X,<br>VEN:DO: FUE<br>DE LA PATRIE<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| 010<br>12<br>13<br>10<br>10<br>12<br>14<br>14                                                           | т 5 С,<br>Ю Граил (1)<br>(1)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , TEL MALUR ARTOAL<br>(10%, TEL PROCES)<br>(10%, TEL PROCES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - ης Χ. 25<br>- ης Χ. 25<br>- ης Χ. 25<br>- ης Χ. 25<br>- ης Δ.<br>- ης Δ.                                                                                                                    | 1)ERACION  <br>20.6/104, L4<br>1 CONDICIEN<br>2 DE X ES: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HEN 13/10X.<br>YEN: . 13/10X.<br>YEN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •           |
| 014<br>U<br>C<br>C<br>U<br>U<br>V<br>L<br>L                                                             | - 50<br>Срвиан<br>- 11<br>- 25<br>- 50<br>- 5                                                                                                                                                                                                                                                                                                                                                     | , YEL VALUR ARTOAL<br>(10%, YEL FROCES)<br>(10%, YEL FROCES)<br>(10%, YEL), AT<br>(10%, YEL), AN<br>(10%, LT, AN<br>(10%, LT, AN<br>(10%, LT, AN<br>(10%, LT, AN<br>(10%, LT, AN<br>(10%, LT, AN<br>(10%, LT, AN<br>(10%, LT, AN<br>(10%, LT, AN<br>(10%, LT, AN<br>(10%, LT, AN<br>(10%, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, AN<br>(10%, LT, LT, LT, AN<br>(10%, LT, LT, LT, LT, AN<br>(10%, LT, LT, LT, LT, AN<br>(10%, LT, LT, LT, LT, LT, LT, LT, LT, LT, LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - ης Χ. 205<br>- ης Χ. 205<br>- ης Χ. 205<br>- ης Δ. 207<br>- ης                                                                                                                                                                                                                                                           | 112RACION  <br>112RACION  <br>20.6/104, L4<br>1 CONDICION<br>206 x E31 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HEN 13/104.<br>V FURCION: FUE<br>DE LA HARK: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| 014<br>U<br>C<br>C<br>U<br>V<br>V<br>L                                                                  | - 50,<br>Ю Грвиан<br>(1)<br>- (1)<br>- (1 | , TEL VALUR ARTUAL<br>(10%, TEL PROCES)<br>(10%, TEL PROCES)<br>(1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | → C X 20<br>→ C X 20<br>→ C C C X 20<br>→ C C C X 20<br>→ C C C X 20<br>→ C C C X 20<br>→ C C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20<br>→ C X 20                                                                                                                                                                                              | 112RACION  <br>30.6/104, L4<br>1 CONDICION<br>206 % E31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NUN IS710X<br>VEN IS710X<br>DE LA MARKIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| 014<br>U<br>C<br>C<br>C<br>U<br>V<br>I<br>C<br>C<br>C                                                   | т 5 С<br>Ю Грвиан<br>Гр<br>ЕМр<br>ЕМр<br>ЕМр<br>Гециоз I (ан<br>Асуаст F (N<br>Т=1<br>- DO 1 ан<br>ПР (Ара (I<br>F NORM=A)<br>БС залам<br>ЕМО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , YEL VALUR ARTUAL<br>(10%, YEL FRORES)<br>(10%, YEL FRORES)<br>(100000 F. 10<br>(1000000 (F. N)<br>(1000000 (F. N)<br>(1000000 (F. N)<br>(1000000 (F. N)<br>(1000000 (F. N)<br>(1000000 (F. N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1)ERACION  <br>20.6/103, L4<br>1 CONDICIEN<br>206 x E3: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NUN. 13710X.<br>V FUNCION: HUC<br>DE LA MAINIE<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| 014<br>6<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | т 5 с,<br>ю Грана (1)<br>- (2)<br>- (     | , ΤΕΕ - VALUR - ΛΕΤΟΑΕ<br>(10%, ΤΕΕ - ΡΠΟΦΕ SU<br>- ΠΟΛΗΑ - ΡΠΟΦΕ SU<br>- ΠΟΛΗΑ - ΡΠΟΦΕ SU<br>- ΠΟΛΗΑ - ΡΠΟΦΕ SU<br>- ΠΟΛΗΑ - ΓΙΤΟ<br>- ΠΑΟΛΗ (ΕΙΝ<br>- ΠΑΟΛΗ (ΕΙΝ<br>- ΠΕΕΟΡΗΓ (ΝΟΤΜΙΝ<br>- ΜΕ - ΡΕΕΟΡΗΓ (ΝΟΤΜΙΝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 75 X.225<br>- 71 VERGE EN LA<br>- 104 EU: 1,23<br>- 104 EU: 1,23<br>- 1,21<br>- 1,21                                                                | ITERACION  <br>SULATION, LA<br>CONDICION<br>DE X EST<br>CONKI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| 014<br>U<br>C<br>C<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U      | - 50<br>О Гранат<br>- 1<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , ΤΕΕ - VALUR - ΑΓΟΟΑΕ<br>1 57, ΤΕΕ - ΡΠΟΣΕ 50<br>- ΠΟΛΗΑ - ΡΠ - ΤΑ - ΡΟΧ<br>- ΠΟΛΗΑ - ΡΠ - ΤΑ - ΡΟΧ<br>- ΠΟΛΗΑ - ΓΙΤΑ<br>- ΤΑ<br>- ΤΑ                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NE     X     20     X     20     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1) ZRACION  <br>20. 6/104, 14<br>1 CONDICIEN<br>206 x E31 /<br>206 x E31 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HEN. ISTICK<br>VEN. ISTICK<br>VENETION FUE<br>DE LA HARKVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|                                                                                                         | - 50<br>О ГОВИАЦ<br>- 11<br>- 25<br>- 21<br>- 21<br>- 20<br>- 21<br>- 24<br>-                                                                                                                                                                                                                                                                                                                                                     | , ТЕС VALUR ARTOAL<br>1987, "EL PROCESU<br>1980: 1980: 1987, 1997,<br>1980: 1980: 1987, 1997, 1997,<br>1980: 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 19977, 1997, 1997, 1997, 1997, 1997, 1997, 19977, 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25 100 100 100 100 100<br>31 000 207 100<br>VECTOS //IOX, 10<br>1 000 100<br>1 000 100<br>1 000 100<br>1 000 100<br>1 000<br>1 000 100<br>1 000<br>1 000 | ITERACION I<br>SULATION, LA<br>CONDICION<br>DE X EST<br>JORKI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HEN ISTICK<br>VENION FUE<br>DE LA MAIRIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
|                                                                                                         | - 5 (<br>- 5 (<br>- 1)<br>- 1)<br>- 2)<br>- 2                                                                                                                                                                                                                                                                                                                                                     | TEL VALUR ARTUAL<br>TOX, "EL PROCESU<br>TOAHA DE LA PUR<br>VALUARA TITA<br>STITEQUISTON, ITA<br>TROAH(FIN)<br>AN<br>(TTILE, ADVIF(J)<br>ME DECOMP(NOTA, N<br>ATTAPS, LONU, MORE<br>TYT GO<br>ME DECOMP(NOTA, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     AC     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1) ZRACION  <br>30.6/104, L4<br>1 CONDICION<br>20.8/104, L4<br>2000K)<br>2000K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HUN. 13/10X.<br>VUN. 13/10X.<br>VEN. 13/10X.<br>DE LA MATRIE<br>VIN. METATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|                                                                                                         | - 5 С<br>Ю Грвиан<br>- 1<br>- 2<br>- 5<br>- 6<br>- 6<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEL VALUR ARTUAL<br>107, "EL PROCESU<br>1000HA DE LA PUR<br>VALUARA 117,<br>51, ESULAZIOA, C<br>1000H(FIN)<br>4, N<br>(111, LE, ADV(FG),<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>100F(11)<br>10                                                                                                                                   | AE       X.005       X.005         AUDRED:       Y.000       Y.000         VECKS//IOX, 'LA       Y.000       Y.000         Y. L=J       Y.000       Y.000         Y. L=Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ITERACION  <br>20.6/104, L4<br>1 CONDICIEN<br>20.6/104, L4<br>20.6/104 x E3:<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>20.6/104<br>2 | IS, OECEST<br>NEN, 13710X,<br>NEU-EIDA: HUC<br>DE LA HATASET<br>NEI LA HATASET<br>NEU-EIDA: HUC<br>NEU-EIDA: HUC<br>NEU-E                                 |             |
|                                                                                                         | - 5 с<br>ю Грана (1)<br>- (2)<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALL VALUR ARTUAL<br>107, 21 FROCESU<br>1004HA DE LA FUR<br>VALUARA 117,<br>51 FERULS/SOA, C<br>1040H(FIN)<br>4<br>1040H(FIN)<br>4<br>1040H(FIN)<br>4<br>1040H(FIN)<br>4<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H(FIN)<br>1040H                                                                                                                                                                                             | AL POR CLIMIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ITERACION N<br>20.6/10/, L/<br>1 CONDICION<br>20.6/10/, L/<br>2000K)<br>2000K)<br>2000K)<br>2000K)<br>2000K)<br>2000K)<br>2000K)<br>2000K)<br>2000K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ILA LA HATKAT<br>DE LA HATKAT<br>DE LA HATKAT<br>IANA Y ESTIDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
|                                                                                                         | - 50<br>- 50<br>- 10<br>- 10<br>- 10<br>- 10<br>- 50<br>- 50                                                                                                                                                                                                                                                                                                                                                      | ALL VALUR ARTOAL<br>107, 21 FROCESU<br>1004HA DE LA FUR<br>VALUADA 112<br>107, 2004H(FIN)<br>2, N<br>(122, 0.7, ADV(F(J))<br>2, 2, 0.7, ADV(F(J)))<br>(122, 0.                                                                                                                                                                                                                                                                           | AL POR CLIMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1) ZRACION  <br>1) ZRACION  <br>20. 6/10/, "L4<br>1 CONDICION<br>20. 6/10/, "L4<br>20. 6/10/<br>20. 7/10/<br>20.                                                                                                                                                                                                                                                                                                                     | IS, OEEES<br>NEN , ISTICK<br>DE LA HARRET<br>DE LA HARRET<br>NEN Y ESTIMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
|                                                                                                         | - 50<br>- 50<br>- 10<br>- 10                                                                                                                                                                                                                                                                                                                                                      | THE VALUE ACTURE<br>107, "EL PROCESH<br>1000HA DE LA PUR<br>VALUADA 1, D.,<br>ST ,E20, 5730A, C<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F,N)<br>4<br>1000H(F | AL POR ELIMINA<br>2 FARA CALCULA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ITERACION I<br>SULATION, LA<br>CONDICION<br>DE X EST<br>DE X EST<br>NORKI<br>MULIA SOLTO<br>NULA SOLTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IS, OECEST<br>NEN , ISTICK,<br>DE LA MARKET<br>DE LA MARKET<br>NEN Y ESTIMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|                                                                                                         | <ul> <li>5 С.</li> <li>6 Срвиата</li> <li>7 С.</li> /ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THE VALUE ACTORE<br>TOX, "EL PROCESH<br>TOAHA DE LA PUR<br>VALUADA TITA<br>STITEQUISTON, DA<br>STITEQUISTON, D<br>VALUADA TITA<br>STITEQUISTON, D<br>VALUAL BATALZ RE<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATEGO<br>STATE                                                                                             | AL POR EL (MIN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1) ZRACION  <br>1) ZRACION  <br>20. 6/104, L4<br>1) CONDICION<br>20. 6/104<br>20. 7/104<br>20. 7/104                                                                                                                                                                                                                                                                                                                    | IS, OTCLS<br>NUM, ISTICK,<br>FUNCION FUC<br>DE LA PARKET<br>DE LA PARKET<br>NAME Y ESTIMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Сап         |
|                                                                                                         | - 50<br>- 50<br>- 10<br>- 10<br>- 5<br>- 10<br>- 5<br>- 5<br>- 5<br>- 5<br>- 5<br>- 5<br>- 5<br>- 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TEL VALUR ARTUAL<br>TOX, "EL PROCESU<br>TOAHA DE LA PUR<br>VALUARA TITA<br>STITEQUISTON, DA<br>TTAUMA FINA<br>(TTTLE, ADVIESS)<br>(TTTLE,                                                                                                                                                                                                                                                                                                            | AL POR EL INING<br>CIDA EST 14<br>CIDA EST 14<br>VECRESTION, LA<br>VECRESTION, LA<br>VECRESTION, LA<br>VECRESTION, LA<br>AL POR EL INING<br>C POR EL INING<br>E FARA CALCULA<br>ICH SE RENGLES<br>VECRESE RENGLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ITERACION I<br>SULATION, LA<br>CONDICION<br>DE X EST<br>DE X EST<br>AUDIN DAUSSI<br>MILLA SOLTOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IS, OTCLS<br>NUM, ISTICK,<br>DE LA MARKET<br>DE LA MARKET<br>NE LA MARKET<br>ION DE DIETUMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | іли.        |
|                                                                                                         | - 50,<br>- 50,<br>- 50,<br>- 10,<br>- 20,<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TEL VALUR ARTOAL<br>TOX, 'EL PROCESU<br>TOAHA DE LA PUR<br>VALUARA TITA<br>ST TERUSATATITA<br>TTA<br>TEL VALUR ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1) T. LE ARTAL<br>(1                                                                                                                                                                                                                                                                                                 | AL POR CLIMINE<br>COM DET 161<br>COM DET 161<br>VECTOR //LOX, 164<br>COM DET 162, 164<br>COM DET 162, 164<br>COM DET 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM DE 164<br>COM                                                                                                                                                                                                                                     | ITERACION I<br>SULATION, LA<br>CONDICION<br>DE X EST<br>DE X EST<br>ACIÓN (CAUSES)<br>ACIÓN (CAUSES)<br>ACIÓN (CAUSES)<br>ACIÓN (CAUSES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IS, OTEES<br>NEN , IS/10X,<br>DE LA FARRET<br>DE LA FARRET<br>NE LA FARRET<br>ION DE SIETUMA<br>ION DE SIETUMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>г</b> ап |
|                                                                                                         | - 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50<br>- 50                                                                                                                                                                                                                                                                                                                                                      | TEL VALUR ACTORE<br>TOX, 'EL PROCESU<br>TOXADA DE LA PUR<br>VALUADA TELA<br>ST TERUSADA TELA<br>TOXADA TELA<br>TOXADA TELA<br>TOXADA DE LA PATRIZ RE<br>TOXA SE LA PATRIZ<br>A COERUSINA SPLUA<br>ST TOXA SE LA PATRIZ<br>A COERUSINA SPLUA<br>SE TOXA SE CAPATRIZ<br>A COERUSINA SPLUA<br>SE TOXADA SE CAPATRIZ<br>A COERUSINA SPLUA<br>SE TOXADA SE CAPATRIZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AL POR ELIMENT<br>CIDA EST (LA<br>CIDA EST (LA<br>VECRES//IOX, (LA<br>VECRES//IOX, (LA<br>VECRES//IOX, (LA<br>AL POR ELIMENT<br>COLA DALCOLA<br>(C) LA DALCOLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ITERACION I<br>SULATION, LA<br>CONDICION<br>DE X EST<br>DE X EST<br>MUCON (NAUSS)<br>MUCON (NAUSS)<br>MUCON (NAUSS)<br>MUCON (NAUSS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IS, OECEST<br>NEN , ISTICK<br>DE LA MARKET<br>DE LA MARKET<br>NAMA Y ESTIMA<br>ION DE DIETIMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Г. Я. П     |
|                                                                                                         | <ul> <li>Б. С. ПОВИАЦА</li> <li>К. С. С. С. С. С. С. С. С. С. С. С. С. С.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The value actors<br>102, 21 Frozes<br>102, 21 Frozes<br>102, 21 Frozes<br>102, 21 Frozes<br>102, 12, 12, 12, 12, 12, 12, 12, 12, 12, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AL POR ELIMINA<br>2 TARA CALCULA<br>2 TARA CALCULA<br>2 TARA CALCULA<br>2 TARA CALCULA<br>2 TARA CALCULA<br>2 TARA CALCULA<br>2 TARA CALCULA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ITERACION I<br>SULATION, LA<br>CONDICION<br>DE X EST<br>DE X EST<br>MULON DAUSES<br>MULON DAUSES<br>MULON DAUSES<br>MULON DAUSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IS, OECEST<br>NEN , ISTICK<br>DE LA MARKET<br>DE LA MARKET<br>NENN Y ESTIMA<br>ION DE DIETUNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>г</u> ан |

............. · . . CONTIENE URA MATRIX IRIANGULAR GUPERTON U Y URA VERSICI PORMUTADA DE UNA MATRIX IRIANGULAR INFE-31 ATOR 1.4. DELTAL MONLITA ODE (MATRIZ L'ERRUTADA) 4A \*L34 100212 UNNOTOTOM DE ALS PRES EU OISTENA L'ARCAL ANXHO, LOS CARRONS DE A Y DI PUEDEN OCHOIORAN CAMOIOSI ÷., CONDITION ST TOUAL & COND-1, A CO SINGLAR FARA LA PRACTICATOR DE TRADADE. COND-1.90.+32 SE EC DCē с С TECTA LA SINGULARIDAD. . ù **I**NVT VECTOR PIVOTES r, INVE (IC) - (NDICE DEL' RENDÍ (CA FIVOTE \* ¢ IPUT (N) + (-1) \*\* (MUH. DE (NTERCANDIDO) C WORK + ESPACIO DE TRAFADO, - LE VECTOR, DE TRADADO DEDE 1; TER DECLADADO E INCLUIDO EN EL LLAVIADO. Ċ ÷., 12 EL DETURION VITE DE LA CUIDE SER DATENICO EN LA SALIDA D I. DET (6) + 1PVT (6) YALL 13 YA (2 (2) + . . . \* A (N , N . C 125 T - 53 = 1 17 (N.EG. 17 60 TO 80 2 NH190-1 ų, r. CALCOLA 1- NORM DE A С ENDIGH-11.0 DQ 10 3+1,H 1+6.0 50 5 Int.N. INTHADS(A(1,0)) ÷ CONTINUE ALL OF ADDRESS OF DRIVES 10 CUMB INDE ¢ ĉ ELIMINATION UNUCCIANA CON PIVOTEO PAROFAL C DO 32 RAL, SM 1.21 (0.1) С ſ; ENCOLUMENTEL PIVOIE С Mel. DO 15 14KP1.N IF (ACRIALL, K)), UT, ABB (A (N, K))) CONTINUE . . 15 LEVE(K) HI C, 10 OF ANTIA OF CE PLACE ED CONO ¢ IF (N. NE. R) IFVE (N) == IFVE (N) T-A(H<sub>1</sub>K) AM, KIMBER, KI AUGIONE IF (1.60.0.0) GO 10 35 10 20 1 KR1,N ACC.PDX-ACL.EDZ ziz CONTRACT Ľ SPREASE V HEARCHARINE FOR COLIMINAS ۰., PU CO UNRIAN 144(M,J) ភព:,រាគា(Ka)) H (K, 2347 IP(r.50.0.0) 60 10:30

|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                 | s.,        |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|------------|
| 1.                                    | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | المتدرين بيتوراح التبني                 | • • • • •                       |            |
| 23                                    | 5000 CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | **************************************  |                                 |            |
| 30<br>, 33                            | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                 | A13 .      |
| C C                                   | 20ND-01-000200 DATE: A SACUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A DEPITMENTING OF AL                    | MODING PD ALLAN                 |            |
| Č,                                    | ECTIMACION COLANION POR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UN FORD DE TTERAC                       | TOTI THVERSA PA                 | ARA EL     |
| . C                                   | TENAN DE EQUACIDERS, AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>TRANEPUEDTA: *Y*E</li> </ul>   | SHLUCION EN HU<br>V Afzey dunce | 2 C3       |
| u<br>c                                | EL VECTOR DE +1 G -1 ES<br>ESTIMACIONALI-NORMA DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COUIDU FARA FROVOS<br>7)/(L-NORMA DE VI | AR CHECKIENIE                   | I EN Y.    |
| ů,                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                 |            |
| i.                                    | REDUCTIVE OF TRANSPORTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) • Y • (                               |                                 |            |
|                                       | 100 50.K−1.N<br>T=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • • • • • • •                           | the state                       |            |
|                                       | 1F (K. EQ. 1) 60 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 /1 /                                 |                                 | •          |
| •                                     | 50 40 701,KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·   | · .                             | •          |
| 1 40                                  | T=T+A (I , K) +<br>CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NULX (1)                                |                                 |            |
| 45 -                                  | CPALO<br>TELELO DE DE DE DESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • • •                                   | <b>`</b>                        | •          |
|                                       | LF (A (K, K) , EG, O, O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80 10 90                                |                                 |            |
| 50                                    | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (K,K)                                   |                                 |            |
|                                       | DO AO KOAT,NMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Let an a second                         |                                 |            |
| •                                     | T-D.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                       | • •                             |            |
|                                       | LO 55 JERPI, H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                 | •          |
| ,<br>33                               | TOTO(J,K) +<br>CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MORIK (K)                               |                                 | · •        |
| ,                                     | Pura: (K) - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | •                               | . • •      |
|                                       | IF (M.EO.IC) GO TO 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LO                                      |                                 |            |
| ·<br>·                                | T MATURIC (13)<br>Matric (13) - Matrick (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                 | 1          |
| 5.4°)                                 | NOIDC(K) +1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                 |            |
| 60                                    | The transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transform | · · ·                                   | -                               |            |
|                                       | 00 45 1=1,8<br>YNORD-YNORD14025 (M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0786 (11)                               | - · ·                           | •          |
| 6                                     | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                 |            |
| L.                                    | ARCUELVE OP20Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                 | •          |
| C ·                                   | GAUL SULVE OBLICH, ALWOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (JDV7) .                                |                                 | •          |
|                                       | ZHURCHOAR<br>DU JO 161-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                 |            |
| -                                     | INURISH THURIT ARE GR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SRR (11)                                |                                 |            |
| C,                                    | €/30X1 1 €/0E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                 |            |
| Ċ                                     | EGLINE FUICHADIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                 |            |
| _                                     | CORDARNORM&INURM/YRDG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · ·                                     |                                 |            |
| •                                     | RE (9/0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · ·                                   |                                 | · ·        |
| · · · · · · · · · · · · · · · · · · · | UNC DOR UND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                 |            |
| С<br>80                               | CD:(041.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                 | •          |
|                                       | IT (A(1,1) INELOUD) RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 (                                     |                                 |            |
|                                       | REMARK ANTONY PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | _                               |            |
| • •                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                       | -                               |            |
|                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | ·                               | a di sa di |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                       |                                 | •          |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                       |                                 | -          |

and the Fit . - 1. 4 RETURN END. ĉ SUDMOUTHIC COLVE ONDER, NUM INTEGALS HOLD, N. LEVT OD PEGL A NOIM, HO , HOU BOLUCION 25. CISTEMA LINCAL A+X+A NO GE UGE SI DE CEVECTA C'INSULANIDAD EN DECOMP CHISADAB: DIMENSION DE RENSIONCE DECLARADA DEL 10211 ARRECUO CIRCENT OF LA HATCEL н A٠ MATRIZ TRIANGULARIZADA OBTENIDA EN DECUMP в VECTOR DEC LADD DERECHD •.' 19VT VECTOR PIVOLE ODIENIDO DE DECOMP SALIDA7: Ð - VECTOR FOLUCION, X SUBJINACION HACIA ACCLANTE IT (N.CO.1) DO TO 50 NH1-N-1 DO 20 KA1,1811 ICE S OR F 1 1 M-7PV1 (84) נאז עייר D (M) #0 (0)) COD WT 1 LC 10 104 11.0 0(1)-0(1)+A(1,K)=T CONTINUE 10 20 C CONTINUE C **BUETITUCION HACLA ATRAE** C. 00 40 KUH1 (MI1) Kidt alte tid K=Kiti +1 自100=p(k)7A(k)(k) T=+B(IC) DO 30 1+1,KM1 D(D)=D(D)+A(L,K)+ 30 CONTINUE , CONTRACTOR 40 3-2 a(1)/0(1)/A(1.1) RETURN CHD REAL FURNTION FMIRIAR, DX, 70L Read and production. C SE DETERMINA LINE & AND ORTHOM AL PUNTU ¢, DONDE F TIENDE A UN c OR EL INTERNALG (AK, U)). С **UNTRACHED** Ľ 24

- LINITE LOODERED LEL INTERVALO INTERVALO INTERVALO INTERVALO

ЛX

|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | •                                     |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|
| • •<br>L       | ા માટ્ટ નાર્ગ વિજય કરતો.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | าระสมกิษ์ของ ก็เสษตร ได้ไปสะวัต                                                                                 |                                       |
| 0              | F. = SUCEROGI<br>QUIER (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WARA DUC SVALUA LA FURCT<br>64 EL INTERVALO (AX.BX)                                                             | DA F (X) PARA CUNL-                   |
| ā              | SPL IDASI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | A15                                   |
| 2              | FALM = APROVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOTON A LA ARECTSA DENDE                                                                                        | F TIENDE'A UN                         |
| 6<br>C         | 12.2 N L01140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |                                       |
|                | EL METORU USADO ES EMA CU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THE HEATER DEL METGOD DE                                                                                        | LAS SECCIONS DO-                      |
| Ĉ '            | RADAS Y LA INCERPOLACION I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DE SUCESTONES PHRABOLICA                                                                                        | 8 SISNOG LA CON-                      |
| · .            | VERGINGIA MAG TAPIDA DUS I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TN EL METODO DE FIBONALO                                                                                        | I. SI FAILNE                          |
|                | IN AT (1 AT) LA COMPACTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LAUA Y POSTITVA EN EL MI<br>LA LO ENDER: LAEAL - Y ARH                                                          | NINU CRACHARDEN<br>SCHENDERDEN DROEMN |
|                | DE 1.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the approximation of the second second second second second second second second second second second second se |                                       |
| : G            | LA FUNCTON F NUNCH SE EVAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UN EN DOS FURIOS SEPARA                                                                                         | DUS POR UNA DES-                      |
| • <b>c</b>     | TANCIA HEISIK & SPSTADS(FII)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INI+(TOL73.0), DONDE EPS                                                                                        | ES APROXIM/DA-                        |
| С <sup>.</sup> | THE NAME A DRAW & CONTRACT OF A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A FRECISIUM NULATIVA DE<br>V LON DALCATOR DEL SON                                                               | LA MAQUINA. 21 ·                      |
| / 2            | LES CONDUCTION CONDUMN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 CHARGO MONOC SPOXAGE CA                                                                                       | +(102/3.0)), LN~                      |
| , c            | BUNCES FOIN APROXIME LO AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RELIA DEL MINUSO GLODAL                                                                                         | OF F EN EL IN-                        |
| с.,            | TERVALU AS, SA CON UN ERROR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K HENUK QUE AFROXIMAK A                                                                                         | UN LOCAL, PLRO                        |
|                | <ul> <li>PEGEDYALDURETALINET, INFLEXIOUGALLE, I<br/>ESTER STUDIETALINETALINETALINET AND AND AND AND AND AND AND AND AND AND</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RENERTE PARA LA DISMA PAG                                                                                       |                                       |
|                | SC MOLLING LOCALMIN DAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U EN SILNARD DRENT, AUG                                                                                         | RITHMS FOR MINIMI-                    |
| C              | ZATION WITTED TRADUCTIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , PRENTICE-HALL, INC. (                                                                                         | \$9731.                               |
| C              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                       |
| • •.           | <ul> <li>ALE FOR AN AN ALE AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND</li></ul> | <pre>c, TRL1, TDC2, D, V, W &lt; A;<br/>v = 334</pre>                                                           |                                       |
| i c            | term contraction to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | 1                                     |
| ÷ 6            | C ES LA GALL LAVERED DE LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A BALZ DE LA RAZON DORAL                                                                                        | A                                     |
| C,             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                       |
| ' c            | C#0.5#10.6*00001 (5.5)7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | - 10-1<br>20                          |
| č              | EPO ES AMOINTANAMINE LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FAIZ CHARADA DE LA TRE                                                                                          | UIBION RELATIVA                       |
| ç              | DE LA DEGUINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |                                       |
| c              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                       |
| 10             | FPS-8472.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | т.<br>Т.                              |
|                | FUL 1W1. G (EPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | • • •                                 |
|                | TF (10L1.0(.1.0) CO 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | • •                                   |
| 6              | EPS-SUNTED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |                                       |
| · č            | INTELALIZACIÓN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                               |                                       |
| . 6            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                       |
|                | AHAX .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | •                                     |
|                | B*6x<br>Students (burn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •                                                                                                             |                                       |
|                | ₩≠₩ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                                       |
|                | X=V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |                                       |
|                | E-10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | ·. ·                                  |
| •              | F X # F (X)<br>€ Uat ( X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ••                                                                                                              | •                                     |
| •              | Fighter 7 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 | · · · ·                               |
| C              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | •                                     |
|                | LO ITEROCION FRENCIAL EM-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TETA AQUI                                                                                                       | · · ·                                 |
| 10             | Reference State (Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                       |
|                | 10L1+EPSXAF3(X)+TU./3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                                       |
|                | 100.2=2.9×(01.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                       |
| • Ľ            | Public a straight and an an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · ·                                                                                                           | · · ·                                 |
| . C            | Consum no. Georgenere pro 2600.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                       |
| · · · ·        | (FT0BB (X-X8) , LA. (T0B2-0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (8 A)) GU 10 50.                                                                                                |                                       |
| C              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | • • •                                 |
| C ·            | THE ALLOS STATES DAY ALLOCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DCB/JDA7                                                                                                        | •                                     |
| <b>·</b>       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •• •• ••                                                                                                        |                                       |
| •              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | 1                                     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                               |                                       |
|    | <b>1</b> 4      |                                                                                  |                                                                                                                | •      |                    | - ·     |
|----|-----------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------|--------------------|---------|
|    | ĉ               | ACUMA LA PORTALLA                                                                | 14<br>2 - 4                                                                                                    |        |                    |         |
| :  | · -             | 代生 につうけい かんさ くっぽうり                                                               |                                                                                                                | • • •  |                    | A16 ·   |
|    |                 | <ul> <li>M=(X+V) &gt; (p+(X+Q) = 0</li> <li>P=(X+V) &gt; (p+(X+Q) = 0</li> </ul> | ,                                                                                                              |        |                    |         |
|    |                 | U#2. 0> (11-R)                                                                   |                                                                                                                |        | •                  |         |
|    |                 | 1F(0,0Y,0,0) P+-P                                                                |                                                                                                                | · ·    | • •                |         |
|    |                 | 8-6                                                                              |                                                                                                                |        |                    |         |
| •  |                 | E⊴D                                                                              |                                                                                                                |        | •                  |         |
|    | 5<br>6          | VOB ACEPTAMLE LA PARADO                                                          | LA7                                                                                                            | • • •  |                    | · · .   |
|    | 30              | IF GER (P), DELAPS (0, 540*                                                      | (อว สกับขัสอ                                                                                                   |        |                    | •       |
| i  | • •             | 17 (P.DC.0+(D+X)) (0) (0)<br>17 (P.DC.0+(D+X)) (0) (0)                           | 40 1                                                                                                           |        |                    |         |
| _  | 5<br>5<br>7     | UN FASU HE INFEREDUCET                                                           | H PAR69011CA                                                                                                   |        |                    |         |
| -  | 14              | D=570                                                                            |                                                                                                                | ·      | •                  |         |
|    |                 | U=X+D ·                                                                          |                                                                                                                | •      | •• .               |         |
|    | ц<br>С          | I NO DEPE SER EVALUARA                                                           | COPCA DE AX DBX                                                                                                |        |                    |         |
| •  | 2               |                                                                                  |                                                                                                                |        |                    |         |
|    |                 | 10 ( (0 - 0) - (1 - 101.2) - D*016<br>10 ( (8 - 0) - (1 - 701.2) - D*016         | N (1011,XM-X)<br>N (1011,XM-X)                                                                                 |        | • +· <b>4</b><br>f | •       |
| •  |                 | eu miso                                                                          | 2 1                                                                                                            | •      | 1                  | :       |
| ι. | L<br>L          | ON PAGE DE SECOTOR DIALA                                                         | ba                                                                                                             |        |                    |         |
|    | C               |                                                                                  |                                                                                                                |        |                    |         |
|    | 40              | 10 CM - HETLERNE - AMARINE - MARINE<br>THE LAN I - C. Marka - Gamerian A         |                                                                                                                | · `    |                    |         |
|    | •               | D-Call                                                                           | ي تو قطع<br>ا                                                                                                  |        |                    |         |
|    |                 |                                                                                  | NUM FERGA INT Y                                                                                                | •      |                    | •       |
|    | č               |                                                                                  |                                                                                                                | 1      |                    |         |
|    | 30              | IF (ADS/L), OZ. TOL1) U-04<br>TR (ADS/L), DY TR (ADS/A                           |                                                                                                                |        |                    | • •     |
|    |                 | I Delt (199 (1) 10 11 10 11 10 11                                                | and second second second second second second second second second second second second second second second s |        |                    |         |
|    | C .             |                                                                                  |                                                                                                                | • • •  |                    | •       |
|    | .0              | HEREERI NULVIN Y X                                                               |                                                                                                                |        | 1                  |         |
|    |                 | the full of the building of the so                                               |                                                                                                                |        |                    |         |
|    |                 | IF (U.L).X) (0+2                                                                 |                                                                                                                |        |                    |         |
|    |                 | (***#                                                                            |                                                                                                                | •      |                    | •       |
|    |                 | (Jet)                                                                            |                                                                                                                |        |                    |         |
|    |                 | F Marit X                                                                        |                                                                                                                |        |                    |         |
|    |                 | 지금다<br>동 X 수업법                                                                   |                                                                                                                |        |                    |         |
|    |                 | <b>RU TU 20</b>                                                                  |                                                                                                                |        |                    | •       |
|    | <b>6</b> 0 ·    | 1F(11,1,F,X) A+U<br>1F(11,0E,X) A+U                                              |                                                                                                                |        |                    |         |
|    |                 | 1F (FU.L.). P(0) 60 TO 70                                                        | 1                                                                                                              |        | ,                  |         |
|    | • .             | IFRULED AN DU 10 70                                                              |                                                                                                                |        |                    |         |
|    | •               | 1F(V.1.0.X) (0 TO DU                                                             |                                                                                                                |        | · ·                | •       |
|    |                 | 17 (0,10,10) 25 (0, 60                                                           | · · ·                                                                                                          |        |                    |         |
|    | 20 <sup>N</sup> | Vew Strategy                                                                     | (1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,                                                               |        |                    |         |
|    | •               | EV-FIL                                                                           | · · ·                                                                                                          |        |                    |         |
|    |                 | f Noti D                                                                         |                                                                                                                | • •    |                    |         |
|    |                 | 60 TU 20                                                                         | a (1.1                                                                                                         | ·• • • | an rayan a         | •••••   |
|    |                 | • •                                                                              |                                                                                                                |        |                    | •       |
|    |                 |                                                                                  | •                                                                                                              |        |                    | . •     |
|    |                 |                                                                                  |                                                                                                                |        | •                  | • • • • |
|    |                 |                                                                                  | -                                                                                                              | -      |                    |         |

|      | Р <b>у</b> | γ≈0<br>(?v=)↓<br>β0.10.20                                                                       |     |
|------|------------|-------------------------------------------------------------------------------------------------|-----|
|      |            |                                                                                                 | A17 |
|      | .C.<br>()  | TERNINA LA IVERACIÓN PRINCIPAL                                                                  |     |
|      | <b>9</b> 0 | FMIN=X<br>Return                                                                                |     |
| •    | <i></i>    | , exp .                                                                                         |     |
|      | C          | REPEAU FINE FUNZ (AS FA. 7)                                                                     |     |
|      | C.         |                                                                                                 |     |
|      | č          |                                                                                                 |     |
| • •. |            | COMMAN 2001,74, N<br>COMMON CC1 (3)<br>CGN9001 MGR04<br>Z=0.0                                   |     |
|      |            | 1F (NORMALEU, 2) 60 TO 2<br>00 1 1+1,10<br>7-7-54-00-1 1-01-00-00-00-00-00-00-00-00-00-00-00-00 |     |
|      |            | 2427(70)::/#ACT FREDICT//##2<br>240:522<br>#CTHTM                                               |     |
|      | 2          | po 5 leiju                                                                                      |     |
|      | 3.         | Z#Z+ABG()9(I)-ALFA#C3I(I))<br>RETURN                                                            |     |
|      | C          |                                                                                                 |     |
|      | с, т       |                                                                                                 |     |
| ·    | •          | REAL FLACTION F COLFEE                                                                          |     |
|      |            | - COMMERT XO (73, M, N<br>- COMMERT CO.1 (3)                                                    |     |
|      |            | COMPRATE PORTA                                                                                  |     |
|      |            | F*7<br>RETURN                                                                                   | •   |
|      |            | END                                                                                             |     |
|      |            |                                                                                                 |     |
|      |            |                                                                                                 | -   |
| •    |            |                                                                                                 | •   |
|      |            | •                                                                                               |     |
|      | 10060-1    | UnitLEGRAFIIIDE                                                                                 | •   |
| •    |            | PROBREM BRANCH                                                                                  | •   |
|      | чи<br>• С  | PROSTUMA PARK GRAFTCACION AS UN MARTELEADOR                                                     |     |
|      | Ģ          | виманала (3) — · · ·                                                                            |     |
|      |            | TRATEMER (A C+<br>OPENAC, FTI EA WASHING (C, DATAC)                                             |     |
|      |            | CALL INTITIE                                                                                    |     |
| · .  | ι,         | 07 (R2.07.4) (R4)                                                                               |     |
|      |            | CALL (10/2000 (3))<br>CALL (20/2000 (30)<br>CALL (20/2000 (30)                                  |     |
|      |            | 2421 (04441130)<br>READ(3,100) (1(17,1=1,3)                                                     |     |
|      | •          | 61-50. 07 JINUT (1) /                                                                           |     |
|      |            |                                                                                                 |     |
|      |            |                                                                                                 |     |
|      |            |                                                                                                 |     |

| •      | A1-50.0804011.25            |
|--------|-----------------------------|
|        | 03-30.0#SIN(T(5))           |
|        | H11+1F1C(57,2750)1(11)      |
|        | MIGHTED (67, 2156) (101)    |
|        | HT591F17(57,25508) (59)     |
|        | 61000010019979518921        |
|        | AZ=2001T (A2%+2+02++1/)     |
|        | A0=5081 (63+12+03++2)       |
|        | MA1+(F(X(61)                |
|        | おわり、単手匠を見てらなり               |
|        | MA341E1X (A3)               |
| •.     | 60 TO (1,2,3,4,5,6),11      |
|        | CALL PENDULY1)              |
|        | 60 TO 7                     |
|        | CALL PENLIP (6)             |
|        | 60 TO 7                     |
|        | CGLI, ESHCOL(2)             |
|        | 00 70 2                     |
|        | CALL FENCIL (3)             |
| • •    | NO 10 7                     |
|        | CALLY FENCOL (10)           |
|        | CO (C 7                     |
|        | REFE GENCOP (11)            |
|        |                             |
| -      | CALL (KOVE (MAL)            |
|        | CALL TURN (MT2)             |
|        |                             |
|        |                             |
|        | CALL MEYER (MOS)            |
| •      | ISCADER (1997) 11           |
|        | 11 (N. (611) (10 (1) B      |
|        | ACTIVITY AT AN ADDA COMPANY |
| · ·    | TEARSTIC COLLEGE CONSTRA    |
| ,<br>, | CARDAR (2012)               |
|        | BARD I                      |
|        | CHU .                       |

÷ .

4

100

.

1  $\mathbf{2}$ 

3

4

3

67 .

A16

dianda 3

NUSES USUSDAL IN REPORTL.CODE SUSES UPITH IN ASIFMIN.CODE PROGRAM SANLEY С. C PROSPAN CANLED ¢ ¢ EBTE FROGRAMA CALCULA LA SOLUCION DE UN SISTEMA ALGEBRAICO C NO LINEAL SUBDETERMINADU DE LA FORMA : C F(X)=0 DONDE F, X Y & SON VECTORES DE DIMENSION N. N Y M HERFERTIVANSNIC C C DEDIDO A ESTO ES NECEDARIO PROPRIER UNA FUNCION CONSTINO CON MCR. C Z=Z(X) A EXTREMIZOR, SIENUO Z UN NUMERO REAL.. C EN RESUMEN, TENENDE EU SIQUIENTE PROPLEMA DE PROGRAMACION NATENA-C TICAL C MIN 7+2(X) C x F())=0 C SUJETA A: C DINENSTON DZ (7), DELTY (2), XI (5), DELTY1 (2), XEIN (5), U(5), XY (3) DIMENSION DEED(3), XYO(3), AUX(5), F(3), F(20), D(36), X(30) REAL JAC(3, 5) JACT (5, 3) JTL (5) CORRON YOUST , H.H. COMPUN CG1 (G) COMMON NORMA OPENICS, FILES (45: MANPLE, DATA 1, STATUES (NEW 1) WRITE(), (AD) ) ' SI DUSEA IMPRESORA TELLER I FEAD(\*, 1(11) 1) I TE (L.EQ.1) THEN OPENIA EILSA PRINTER 15 ELSE OFER(6.FILE+'CONSOLE(') ENDIF WRITE(5,50) WRI 112 (4, 555) WRITE(6,750) READ (\*, 150) HOPNA WRITE/S.LSOD NORMA IF (HORHA, ED. 1) ALFA+1.0 HRT TE (5,100) READ(4,200) M.N. WRITE (6,200) 0.8 HRITE(0,350) READ(+,200) (2(1),1+1,15) WEITE(5,200) (P(1),141,15) PAD-3.141352A53385793/180.0 WRITE (6, 300) READ(\*,400) (XO(1),1\*1,N) WRITE(A.400) (X0(I), I=1,N) DO 21 1=1.N X0:[]#RAD+X9(]) P(1+10\*#RAD#P(1+10) P(1+15)=BIN(F(1+10)) э. P(I+10)=C09(P(I+10)) 21 CONTINUE MULTE(S,515) ((0(1),1+1,4)) CE60(1)=0.0 CEF0(21=0.0) CEPE(3)=0.0 Z MATTE(6,450) STAD(#.4001 (XY(I).I=1.N) WEITERS, BOOM OFFICES, INC. 24

AXA

|   | 3     | L'ENTERNE L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|---|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   |       | TF(KOWT.EQ.11) GO TO 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A10 |
|   |       | HEITE(+,')AP)')'.'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|   |       | CALL FUNE(F,Y),F,R,X,XY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •   |
|   |       | CALL (ARA)(02)<br>50 4 Jel N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|   |       | 00 d 3≠1.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|   | 4     | JACT(1,1) #JAC(J.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| - | •     | CALL HECOMP (N.H. JACT.U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|   |       | CALL HOLVE (N.N.M.JACT, N.AUY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|   |       | 00 5 3=1,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| • |       | 1 00 T 3-1.H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|   | 5     | JACT(I,J)+JAC(J,I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|   |       | CALL MULVEC(N,M,JACT,AUX,JTL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •   |
|   | ,     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|   | 3     | . LEY(1) (1) (1) (1) (1)<br>TE (NODALA CELEN, ALEA-ENTILIA, CHE CHELLA (CE.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|   |       | 17 (NY)(CR1, CO227 - MCC)(27 (11) (12, 2,22,2), 1, (22-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|   |       | CELTY(I) ALEA+CRI(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|   | 7     | $x_1(t) = x_0(t) + c_1 T (t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| • | ,     | CO 17 I=1.H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|   | . 19  | F(1)=~F(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|   |       | CALL SUBSEL (JAC, M, H, F, DELTX) (U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|   |       | DO 11 J=1,N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|   | 11    | XFTH(1)=X1(1)+N(1,TX1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|   |       | CALL FUNF(XYC, YF(N, P, D, X, CERQ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •   |
|   | :     | NU 1/2 141,9<br>10/10/2010/2011:10/2011:10/2011:10/2011:10/2011:10/2011:10/2011:10/2011:10/2011:10/2011:10/2011:10/2011:10/201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •   |
|   | . 17  | PRODUCTION IN THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE OF THE PROVIDENCE |     |
|   | ••,   | 60 TO 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|   | 1 13  | OC 14 T-1.H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|   | 14    | X6(1) # XFIN(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|   |       | 80 TO 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|   | 15    | DD 16 J=L,N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|   |       | XF(N(I)=AMOD(XF(N(I),6.203185307179586)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|   | 16    | YQ(1)=YFIN(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|   |       | WRITE(6,800) FONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·   |
|   |       | WRITE(4,200) (ATTI),IVI,AT<br>URITE(4,504) (450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|   |       | WRITE(3.515) (XFIN(1) I=(.50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|   |       | DO 22.1+t.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|   | 22    | XFIN(I)=XFIN(I)/RAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|   |       | HTITE(6,510) (XFIN(1),J=1,N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|   | •     | WRITE (6, 550)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|   |       | READ(+,'(1))) IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|   |       | WRITE(6, '(11)') IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;   |
|   |       | 16 (11,ED,1) (CD )U 2<br>C( DCC (C))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| • |       | URITE(6,'(6)') ' *** FIN ARI PRAFIENA ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -   |
|   |       | STOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|   | 17    | WRITE (6, 1 (4+) 1) 1 HD SE LLEGA A LA SOLUCION DESPUSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|   |       | WRITE(6,1(4))) ' DE 10 VECEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|   |       | CLOCE(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|   |       | 5106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|   | 50    | POPHATISX, PROGRAMA PARA LA SOLUCION DE SISTEMAS DE ECUALIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|   | 4.00  | WEET VEX, MOLLINEALRE SUBDETERNINADOST)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|   | 1.647 | e servere e variante de la construction de la construction de la construction de la construction de la constru<br>Altrictular de la construction de la construction de la construction de la construction de la construction de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -   |
|   |       | という(1111111)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _   |
|   | 150   | SUSTANT (Z. SUBTO DEL ODGADO TERNINAL/ZOX,5F15.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|   | 300   | FOPMAT(3X, " DAME LOG ANDULGS INICIALES DE LOS ESLABONES")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|   | 220   | FREMATIC TOLE, DAME, MARCY KMAX')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •   |
|   | 400   | - 何 7899年(5月10,187)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|   |       | • ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|   |       | · ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •   |

.

|    |             | and the second second second second second second second second second second second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •  | 500         | FORMAT (3Y, TALEAL COS), FLO, Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| •  | 5:0         | FORMAT(3), (THETA(I))//5%,5010,3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | 515 /       | FOPMAT (5F15.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | 550         | FUMAL/// FOLFE ( SI DESEA DAR OTED PUNTO DE LA TRAVECTORIAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | 600         | CONTRACTOR CONTRACTOR SHE SHE SHE FUNDER OF TRATEGORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | <b>3</b> 00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | 630         | 2 JANAT (77 - CARD 3.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | 700         | FURNAT (CF15, 3, F5, 3, 215)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | 750         | FORMATICA 705 VR PROBLEMA DE RORNA EUROPATICA (L 314 ± 00/21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | 300         | FORMAT(//// SOLUCION DEL PRODLEMA FESTUES DE 1.13.1 VECESI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | 550         | FROMAT'' DOME LOS CORDURISES DEL MECANIEND (A B ALEAS')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | 000         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •  | 100         | For the Constant of Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Secto |
| ,  | _           | £r(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | C           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | ¢           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |             | SUBPOUTINE JACOBI(X, LF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ł  | εí          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | c           | <u>ΕΙΜΛΗΤΙΝΑ ΡΗΕ ΓΑΙ ΟΝΑ ΕΙ ΙΔΕΟΒΙΚΑΙΟ ΝΕ ΙΔ.ΕυΝΟΙΟΝ ΕΙΧΑ ΠΙΔΕΙΘΑΛΑ</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| i  | -           | EN TO DEGRETATION CAN THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | 2           | EN EF FRUDRENNE DEREGU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | <u>.</u>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | - <u>-</u>  | ETTRADAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | <b>C</b> .  | M = DIMENSION DE F(X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | Ç           | N = DIHENSION DE X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | C           | YO • VALOR WITCHAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | č           | 541 10451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | · .         | $DE^{+}$ = $Jacort(HO)$ $DE^{-}$ (Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | č           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •  | C           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |             | DIMENSION X (20), W (3, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |             | COMPON X2 (C) (D) (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |             | .4.=12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | •           | DO 1 K=1.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |             | 1_0L • 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |             | DO 1 J=1.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| i  | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ť. | •           | AT SWEET TO BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| •  |             | I DE FORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |             | FND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | C           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | C           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |             | 502R007THR CRAD (97)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | C .         | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | è.          | EURCHTING OUS COLOURA ST GROUTEVIE TE LA EUNCTOU 7773 ENGLEADA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | ř           | SENER CORRECT CONTRACTOR SELECTION FOR EACH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | L .         | EN SE TRUGGERE SHRESD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | <u> </u>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | C           | ENTRADA5:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | Ç           | N .= DIMENSION DE Z(X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | C           | XO - PUNTO INICIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | C           | 904.10A31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | с.          | SZ SFADIENTE DE Z(X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | Ë i         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | -           | The second second second second second second second second second second second second second second second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |             | COMPANY 10/53 . R. N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |             | COMPONENCE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |             | DO 1 [#1,N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | 1           | GZ(1)=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |             | DO 2 (*1.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |             | IF (NDSNA, FO, S7 (D)+1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |             | END .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | C           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | C           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |             | SUPROUTINE MUNIF (F. META P. D. C. XV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |             | DIME(310) (3), XY(3), THETA(5), X(20), D(7A), F(20), TE3(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |             | 6767 6 677 4 77<br>Trick (11) - Thirt (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| •  |             | a a second a second a second a second a second a second a second a second a second a second a second a second a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

.

•

An

.

-

.

•

105(1+(+)+=01(105(1)) CONTINUE 1 CALL PRODUCTOS, F. OF CALL VECY (TCB, P; C, Y) DO 2 1-1.N  $F(1) = \chi(1) - \chi \chi(1)$ . 2 FETHEN END С C SUBFOUTINE PRODUCTES, 2,0) DIMENSION TES(15) , P (20) .0 (36) ¢ EN ESTA SUBRUTINA DE CALCULAN Y SE ALMACENSH LOS FRODUCTOS: C C Q1 EN Q(1-9) C 01+07 EN 0(10-18) C Q1+02+03 EN Q(19-27) С 01+02+03+04 EN 0(20-36) c 0(1)=TCE(6) Q(2)=TC9()1) 0(3)=0.0 Q(4)#=705(11)\*F(L1) 0 (\$1#TC07414P111) Q(4) #P(16) Q (7) #TCD (11) #F (16) Q(D) ==TC5(6) +P(16) G(9) +E(11) DO 1 1-2.4 (P=9+(1-1) 2CHTCS/I(10)+P(I+10) 59=103(1:5)\*8()\*165 CC+TCS/1+10)+P(1+15) CS47CS(7+5)+P(1+15) [ANJP-7 DO 1 J=1.7 G(IF+J)=G(IA+J) < TCG(I+5)+O(IA+J+3)+TCG(I+10) Q(1F+J+3) == Q(1A+J) \*5C+Q(1A+J+3) \*55+Q(1A+J+6) \*F(1+15) Q(1P+3+5)=Q(1A+3)+CC+Q(1A+3+3)+C5+Q((A+3+6)\*F()+10) CONTINUE 1 FETURI END C, : • c SUPPOUTINE VECKITCS, P.O. X) DIRENELOW TES (15) , F (20) , G(24) , X (30) ¢ ESTA SUBRUTTINA LALCULA EL VECTOR X1 Y SU PRIMERA DEFIVADA EDN С С RESPECTO A THETA. c X(13) #F (5) #TCB(10) X(14)=P(3)+1C5(15) X(15) #P(10) X(28)++R(26)+((14)+R(31)+X(13) X(27) a+0/29)+\*((4)+0(32)+\*(13) X(30) ==0(30) x((14) >0(53) \*X(13) **₽**∂ | (≂1,4 2=5-1 10 (34, 14/+1) FRE3 411 PY1=P(+))+X(+)PT+1) 各), 2 - Fr (H+ Fr) + X (는 시민경+ 2) - P (는, 2명) + X (H) 관경 (영) X (F)(-2) = TCS (F+\$7 +F+1 - TCS (F+10) +F \2 # (ER-1047063E-1033EX1+7003R+50#Fx15 X (ENC) A P (E+5) + P (E+12) + C (ENE)2+2) + E (E+10) +X (ELPD+3)

**411** 

|   |          | KU#29-741                               |                        |         |            |
|---|----------|-----------------------------------------|------------------------|---------|------------|
|   | ۰.       | 'IF(I.EQ.4) GO TO 2                     |                        |         |            |
|   |          | ))(KD+1)=+0(+0)+X(F)(+1)+               | Q (KQ+3) #X (KK-2)     | a an 19 | <b>P</b> • |
|   |          | X(R0+2)=-Q(R0)()=X(FR-1                 | ) +(0 (长0+4) +X (长约-2) |         |            |
|   |          | X (RD+3) =−₫ (RD+2) ≥X (RR−1<br>BD_T0_1 | ) +Q (KO+5) +X (KK-2)  | A 23    |            |
| 2 | ۰.,      | X (KD+1) =-X (kK-1)                     |                        | •       |            |
|   |          | Y (KD+3)=0.0                            |                        |         |            |
| 1 | CONTINUE | <u>.</u>                                |                        |         |            |
|   | RETURN   |                                         |                        |         |            |
|   | END      |                                         |                        |         |            |
|   |          | ,                                       |                        |         |            |

#### Referencias

- [1] Forsythe G.E., Malcon H.A. y Moler C.B. <u>Corruter Mathods for</u> <u>Mathematical Computations</u>, Prentice-Hall Inc. Englewood Cliffs N.J. 1977.
- [2] Moler C.B., <u>Fairiz Eigenvalue and Least Square Computations</u>, Computer Science Department, Stanford University, Stanford, California, 1973.
- [3] Moler C.B., <u>Matrix Computations With Fortrap and Paring</u>, Communications of the A.C.M., Volume 15, num. 4, April 1972.
- [4] Koler C.B., <u>Algorithm 423</u>, Linger Equition Solver, Communications of the A.C.E., Volume 15, num. 4, April 1973.
- [5] Angeles J., <u>Spitial Kinematic Chains</u>, <u>Analysia</u>, <u>Synthesis and Opti-</u> <u>minition</u>, Springer-Verlag, Berlin 1982.
- [6] Relaton A., Introducción al Anflisia Humbrico, Limusa, Héxico 1978.
- [7] Angeles J., Rojas A., <u>Subprogramas pers el Análisis de Caderes Cintañ-</u> tigus con 7 Estabones Acocledos Mediante Pares de Rotación.



# DIVISION DE EDUCACION CONTINUA FACULTAD DE INGENIERIA U.N.A.M.

### DISENO CINEMATICO DE MAQUINARIA

# GUIDANCE OF AXIALLY SYMMETRIC RIGD BODIES USING FIFTH-DEGREE OF FREEDOM REVOLUTE COUPLED MANIPULATORS

DR. JORGE ANGELES ALVAREZ

JUNIO, 1984.

GUIDANCE OF AXIALLY-SYMMETRIC RIGID BODIES USING FIFTH-DEGREE-OF-FREEDOM--REVOLUTE-COUPLED MANIPULATORS.

Jorge Angeles<sup>1</sup>

#### Abstract

A kinematic model is constructed that allows the computation of all joint angles associated with fifth-degree-of-freedom revolute -coupled kinematic chains guiding an axially-symmetric rigid body through a set of prescribed configurations. Noreover, if velocity and acceleration specifications are introduced, the model also provides the first two derivatives of the joint angles. Finally, the applicability of the algorithm presented here, to the analysis of single-degree-of-freedom single-loop-6R closed chains is shown with an example.

Professor, University of Nexico. DEPFI-UNAM, C. Universitaria. Apdo. Postal 70-256. 04510 México, D.F. MEXICO.

JAA'jom.

CONDUITE DE CORPS REGIDES AXIALEMENT SYIMETRIQUES AU MOYEN DE , MANIPULATEURS - À CINQ COUPLES ROTOÏDES

Jorge Angeles

#### Résumé

L'auteur presente un modèle cinématique permettant de calculer tous les angles associés aux cinq couples rotoïdes des chaînes cinématiques à cinq degrés de liberté, destinées à guider des corps rigides axialement symétriques au moyen d'un ensemble de configurations préétablies. En outre, si des specifications de vitesse et d'accélération y sont introduites, le modèle fournit aussi les deux premières dérivées des cinq angles. En fin, l'applicabilité de l'algorithme présenté ici à l'analyse des chaînes fermées à un degré de liberté comportant six couples rotoïdes est montré par moyen d'un exemple.

## Nomenclature

.

.

1

.

,

۰.

. . .

| х:                                                | n-dimensional vector over the real field                                                          |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------|
| X:                                                | mxn matrix over the real field                                                                    |
| $\mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{z}_{i};$ | Cartesian axes fixed to the ith link of the chain                                                 |
| [x] <sub>i</sub> , x <sub>i</sub> :               | 3x1 array containing the components of 3-dimensional vector                                       |
|                                                   | x referred to $X_i$ , $Y_i$ , $Z_i$                                                               |
| [X] <sub>i</sub> , X <sub>i</sub> :               | 3x3 array containing the components of 3x3 matrix X referred                                      |
|                                                   | to $X_i$ , $Y_i$ , $Z_i$ .                                                                        |
| tr (X):                                           | the scalar invariant of x matrix X, $X_{11} + \dots + X_{nn}$                                     |
| к.:                                               | the axis of the ith revolute pair of the chain, coincident                                        |
|                                                   | with Z <sub>i</sub> .                                                                             |
| e <sub>i</sub> :                                  | the angle of rotation of link $i+1$ with respect to link $i$ , its                                |
|                                                   | sign being defined by the positive direction of $Z_{i}$ .                                         |
| a:<br>i                                           | the angle between R _ and R $_{\ell^{+}I}$ , its sign being defined by the                        |
|                                                   | positive direction of axis $X_{\mathcal{L} \neq J}$ , which is directed in turn                   |
|                                                   | along the common perpendicular to $R_{\vec{k}}$ and $R_{\vec{k}+\vec{l}}$ , from $R_{\vec{k}}$ to |
|                                                   | R <sub>1+1</sub> .                                                                                |
| a.:<br>1                                          | The distance between axes ${\tt R}_{i}$ and ${\tt R}_{i+1}$ , hence always positive               |
| ٥.<br>•                                           | the coordinate of the intersection of axes $X_{\ell-1}$ and $Z_{\ell}$ in                         |
|                                                   | frame X <sub>i</sub> , Y <sub>i</sub> , Z <sub>i</sub>                                            |
| $[\mathbf{Q}_{i}, \mathbf{i}_{i+1}]_{i}$          | $Q_{j}$ : the matrix rotating axes $X_{j}^{}, Y_{j}^{}, Z_{j}^{}$ into an orientation             |
| ;                                                 | parallel pairwise to $X_{i+1}$ , $Y_{i+1}$ , $Z_{i+1}$ , respectively, referred                   |
|                                                   | to $X_i$ , $Y_i$ , $Z_i$ coordinates                                                              |
| [a_1,1]1. a                                       | $_{i}$ : the vector connecting the origins of X $_{i}$ , Y $_{i}$ , Z $_{i}$ and                  |
|                                                   | $X_{i+1}$ , $Y_{i+1}$ , $Z_{i+1}$ , directed from the former to the latter,                       |
| r <sub>A</sub> , r <sub>B</sub> : -               | in X, Y, Z, coordinates.<br>the position vector of points A and B, respectively, in the $-4$      |
|                                                   | specified configuration, measured from the origin of $X_1$ , $Y_1$ , $Z_1$ .                      |
| v <sub>A</sub> , v <sub>B</sub> :                 | the velocity of points A and B, respectively                                                      |
| <sup>а</sup> д, а <sub>в</sub> :                  | the acceleration of points A and B, respectively                                                  |

3

#### Introduction

Industrial robot manipulators in use are frequently required to perform tasks involving the guidance of rigid bodies with axial symmetry, e.g. turned workpieces, painting nozzles, are welding pistols, etc. Most of the time, however, these tasks are realized with sixth-degree-of--freedom manipulators. Since the guidance of axially-symmetric rigid bodies does not involve their orientation about the axis of symmetry, it seems natural to perform these tasks with a fifth-degree-of freedom manipulator. If, on the other hand, a sixth-or greater-degree-of--freedom manipulator is to be used anyway, the redundant degree of freedom can be used to optimize some given performance index. Hence the interest to establish a kinematic model allowing the computation of the joint angles and their time derivatives, associated with multiple-degree-of-freedom manipulators in the presence of incomplete specification of the hand motion.

Following the approach introduced in [1], the set of desired equations is derived regarding the problem as one involving the guidance of a segment of a rigid line, by specifying the displacement, velocity and acceleration of any two points of that segment. Of course, these specified variables should meet the compatibility condition guaranteeing that the distance between these points is preserved throughout any physically possible motion.

The kinematics of rigid segments has been considered in [2] regarding only the velocity and acceleration analyses. A complete account of the kinematics of rigid segments, lines and points is given in [3]. 6 Furthermore, an analysis of SR open kinematic chains to guide axially-symmetric rigid bodies appeared in [4]. The approach followed in this paper differs from these, being aimed at devising a real-time implementable algorithm oriented towards the computer-control of SR robot manipulators, applied to the guidance of axially symmetric rigid bodies.

5,

#### Displacement analysis

In this Section, reference is made to the fifth-degree-of-freedom kinematic chain depicted in Fig 1. Moreover, the notation and method of Denavit and Hartenberg [5, pp 343-355] is applied throughout. Thus, a set of Cartesian coordinate axes  $\{X_{\mathcal{L}}, Y_{\mathcal{L}}, Z_{\mathcal{L}}\}$  is attached to the i th link. According to Denavit and Hartenberg's notation, axis  $Z_{\chi}$  is placed along the axis of pair  $R_{\chi}$ , its positive direction denoting the direction in which angle  $\theta_{j}$  is measured. Axis  $X_{\hat{\mathcal{L}}}$  is defined as the common perpendicular to the axes of  $R_{i-1}$  and  $R_i$ , directed from the former to the latter. Notice that there is absolute freedom to chose  $X_j$  as any line in a plane per pendicular to Z. The orthogonal matrix rotating axes labelled  $\lambda$ into an orientation paralel to those labelled *i*+1, referred to axes i, is represented as  $[Q_{i, i+1}]_{i}$  or as  $Q_{i}$ , for compactness. Finally, the vector connecting the origins  $0_j$  and  $0_{j+1}$ , respectively, directed from the former to the latter, in *i*-coordinates, is represented  $[a_{i, i+1}]_{i}$ , or as  $a_{i}$ , for compactness. According to the as nomenclature, these are<sup>2</sup>

$$\begin{bmatrix} Q_{i, i+1} \end{bmatrix}_{i} = \begin{bmatrix} c\theta_{i} & -s\theta_{i}c\alpha_{i} & s\theta_{i}s\alpha_{i} \\ s\theta_{i} & c\theta_{i}c\alpha_{i} & -c\theta_{i}s\alpha_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} \end{bmatrix}$$
(1)

$$\begin{bmatrix} a_{i, i+1} \end{bmatrix}_{i} = \begin{bmatrix} a_{i} c \theta_{i}, a_{i} s \theta_{i}, b_{i} \end{bmatrix}^{\mathsf{T}}$$
(2)

Let line AB of Fig 1 be the axis of symmetry of the rigid body, not shown there, that is meant to be guided. Furthermore, let  $r_A$  and

7.

<sup>.</sup>Throughout, c( )  $\equiv \cos($  ), s( )  $\equiv \sin($  ).

 $r_{\rm B}$  be the prescribed values of the position vectors of A and B. respectively, letting  $x_j$  and  $y_j$  be the synthesized values of the same position vectors. Thus,  $r_{\rm A}$  and  $r_{\rm B}$  are known constants, whereas  $x_j = x_j$  (0),  $y_j = y_j$  (0), are functions of 0, where 0 denotes the 5-dimensional vector whose lith component is  $\theta_{i}$ . Vectors  $x_j$  and  $y_j$  can be computed recursively as follows:

$$x_4 = a_4$$
 (3a)

$$x_k = a_k + Q_k x_{k+1}, \quad k = 3, 2, 1$$
 (3b)

$$y_5 = a_5$$
 (4a)

$$y_k = a_k + Q_k y_{k+1}, k = 4, 3, 2, 1$$
 (4b)

\_ The displacement equations are, then,

$$x_1 = r_A, \quad y_1 = r_B \tag{5}$$

Now, the six-dimensional vector f is defined as

$$\mathbf{f} \equiv \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{bmatrix}$$

f  $f_1$  and  $f_2$  being the three-dimensional vectors defined in turn as

$$f_{ij} = x_1 - r_A, \quad f_2 = y_1 - r_B$$
 (6)

Thus, the displacement equations lead to the following sixth-order nonlinear algebraic system in five unknowns:

$$f(\theta) = 0 \tag{7}$$

This system can be solved using Newton-Raphson's method [ 6, pp 248-253]

as follows: Let  $\theta^{0}$  be an initial "guess" for the solution. Then generate the sequence  $0^{J}, \ldots, 0^{k}, \ldots$  which, if converges, will do so quadratically [6, pp 222-226]. This sequence is generated recursively from Newton-Raphson's iterative scheme:

$$e^{k+1} = e^k + \Delta e^k \tag{8}$$

where  $\Delta \theta^k$  is computed from the Taylor expansion of  $f(\theta)$  at  $\theta^{=}\theta^k$ , which leads to

$$J(\mathfrak{o}^k) \Delta \mathfrak{o}^k = -f(\mathfrak{o}^k) \tag{9}$$

Equation (9) is a sixth-order linear algebraic system in five unknowns, its Jacobian matrix J being 6x5. Thus J cannot be inverted properly speaking. However, from the nature of the problem, out of the six scalar equations appearing in (9), only five are independent. In fact, no matter what the value of  $\theta^k$  is,  $f(\theta^k)$ , and hence  $-f(\theta^k)$ , lies in the range of J, if the motion of points A and B is not to violate the rigidity condition. As a matter of example, consider the one-degree-of-freedom 6R linkage<sup>3</sup> depicted in Fig 2 for the particular values  $\theta_1 = -\theta_3 = \theta_5 = 120^\circ$ ,  $\theta_2 = \theta_4 = 0^\circ$ . The motion of this linkage can be analysed as one of an open 5R kinematic chain, as shown in Example 1. For that configuration,

 $J = \begin{bmatrix} 0 & 0 & \sqrt{3} & 0 & 0 \\ -2 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & \sqrt{3} & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 0 & -1/2 & 0 & -1/2 & 0 \end{bmatrix}$ 

ч.

<sup>&</sup>lt;sup>73</sup> A wire model of this is for sale commercially under the trade work HEXIFLEX<sup>TR</sup>.

Now assume that the link connecting  $0_6$  with  $0_1$  is removed, thus obtaining an open chain. Moreover, it is desired to compute the angle increments  $\Delta 0_2$  ( $\ell = 1, ..., 5$ ) for the following value of  $\Delta f$ :

$$\Delta f = \begin{bmatrix} \Delta x_j \\ \overline{\Delta} y_j \end{bmatrix}; \ \Delta x_j = \begin{bmatrix} 0 \\ 0 \\ \zeta \end{bmatrix}, \ \Delta y_j = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

 $\Delta x_j$  being specified parallel to the  $Z_j$  axis, otherwise arbitrarily.

This motion clearly complies with the rigid-body condition, for  $\Delta y_1 - \Delta x_1$ , the displacement increment of B with respect to A, is perpendicular to AB, as it should be if the distance between A, and B is to remain constant. Hence  $\Delta f$  lies in the range of J. Eq (9) thus yields, for the assumed values of  $\theta_j$ ,

$$\Delta \theta_1 = \Delta \theta_2 = \Delta \theta_5 = 0, \quad \Delta \theta_9 = -\Delta \theta_4 = 2.4$$

If, on the other hand,  $\Delta f$  is specified as

$$\Delta \mathbf{f} = \begin{bmatrix} \Delta \mathbf{x}_1 \\ \Delta \mathbf{y}_1 \end{bmatrix}; \quad \Delta \mathbf{x}_1 = \begin{bmatrix} \boldsymbol{\xi} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \quad \Delta \mathbf{y}_1 = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

which clearly violates the rigid-body condition, then eq (9) leads to an inconsistent equation system producing, from the first equation

$$\Delta \theta_3 = \frac{\sqrt{3}}{3} \xi$$

and, from the fourth equation,

$$\Delta 0_3 = 0$$

which contradicts the former one . This is due to the fact that  $\Delta f$  does not lie in the range of J because it does not comply with the rigid-body condition.

Thus, except for singular configurations, i.e. those leading to a rank -defficient Jacobian matrix - one for which rank (J)  $<5-, \Delta u^k$  can be solved for from eq (9). Since this equation contains, in general, 5 consistent linearly independent scalar equations, but one does not know which one is redundant, 'Gauss' algorithm or, equivalently, the LU decomposition [7, pp 27-33] cannot be applied to it directly. The solution proposed here is to regard eq (9) as a 6x5 overdetermined linear system and compute its "least-squere" solution. This will be, in fact, *its solution*, given the consistency of the involved system of equations. There are several ways of computing the least-square solution of eq (9), but the one preferred by the author is using Householder reflections [8], which produces implicitly the pseudo-inverse [9, pp 103-113] of J, J<sup>I</sup>. Thus

$$\Delta \sigma^{k} = -\sigma^{I} (\theta^{k}) f (\theta^{k})$$
 (10a)

with

$$J^{I}(\theta^{k}) = [J^{T}(\theta^{k}) J(\theta^{k})]^{-1} J^{T}(\theta^{k})$$
 (10b)

Pseudo-inverses have been already used in connection with the analysis of multiple-degree-of-freedom manipulators [10], though their use is not very popular.

11.

In this section, a system of six linearly-dependent consistent equations is derived that allows the computation of  $\dot{e}$ , given the velocities of A and B, henceforth denoted by the 3-dimensional vectors  $v_A$  and  $v_B$ , respectively. These are, clearly

$$\ddot{\mathbf{x}}_1 = \mathbf{v}_{\mathbf{A}}, \ \dot{\mathbf{y}}_1 = \ddot{\mathbf{v}}_{\mathbf{B}} \tag{11}$$

with

$$\dot{x}_{1} = \frac{\partial x_{1}}{\partial \theta} \dot{\theta}, \quad \dot{y}_{1} = \frac{\partial y_{1}}{\partial \theta} \dot{\theta}$$
(12)

which thus lead to

$$J(0) \hat{0} = v$$
 (13)

with the 6-dimensional vector v given by

$$v = \begin{bmatrix} v_A \\ -v_B \end{bmatrix}$$
 (14)

Recalling eq (10), 8 can then be obtained as

$$\dot{\theta} = J^{I} v$$
 (15)

 $J^{I}$  being given as in eq (10b). It is pointed out here that, since  $J^{I}$  was already computed in computing 0, it need not be recomputed. In fact, using subroutines HECOMP and HOLVE [11] to obtain the least-square solution (10), HECOMP is first applied to J in order to rendering it upper triangular. Next, HOLVE is applied to the transformed J and the right-hand side of eq (9) to produce solution (10). This means that HECOMP is applied only once, whereas HOLVE twice. Host of the operations involved in the aforementioned procedure 13 are performed in HECOMP; thus,  $\tilde{O}$  is obtained at virtually no additional cost.

### Acceleration analysis

Next the computation of  $\ddot{\theta}$  is outlined. This is clearly obtained by differentiating eqs (11) with respect to time:

$$X_{j} = a_{A}, \quad Y_{j} = a_{B} \tag{16}$$

where  $a_A$  and  $a_B$  denote the accelerations of A and B, respectively. Furthermore, from eqs (12),

$$\ddot{x}_{j} = \frac{\partial x_{j}}{\partial \theta} \ddot{\theta} + \left(\frac{\partial^{2} x_{j}}{\partial \theta^{2}} \ddot{\theta}\right) \dot{\theta}$$
(17)

with a similar one for  $\ddot{y}_{f}$ . Substituting eq (17) and its  $\ddot{y}_{f}$  counte<u>r</u> part in eqs (16), one obtains

$$J(\theta) \ddot{\theta} = a$$
 (18)

with

÷

.

Hence, 8 is obtained as

$$\ddot{\mathbf{B}} = \mathbf{J}^{\mathbf{I}} \left( \mathbf{0} \right) \mathbf{a}$$
 (20)

and, as said before in connection with  $\dot{\theta}_{*}$  at virtually no additional cost.

Example 1. Analysis of a 6R single-degree-of-freedom closed kinematic 15chain. The parameters defining the architecture of the chain are given below. Regarding links 6 and 5 as the fixed and the input link, respectively, determine the histories  $\theta_i(t)$ ,  $\theta_i(t)$ ,  $\theta_i(t)$ ,  $\theta_i(t)$ ,  $\theta_i(t)$ ,  $\theta_i(t)$ ,  $\theta_i(t) = 0$ ,  $\theta_i = 1$  rad/s and  $\theta_i = 0$ . The parameters are:

$$a_i = 1, b_i = 0, \alpha_i = 90^\circ, i = 1, \dots, 5, \alpha_6 = -90^\circ.$$

Fig 2 shows the kinematic chain described by the foregoing parameters, for the configuration

$$\theta_1 = -\theta_3 = \theta_5 = 120^\circ, \quad \theta_2 = \theta_4 = \theta_6 = 0^\circ$$

Solution:

Due to the symmetries of this linkage,

 $\theta_{1} = -\theta_{3} = \theta_{5}, \quad \theta_{2} = -\theta_{4} = \theta_{6}$ Vectors  $x_{l_{2}} \quad (l_{2} = 4, 3, 2, 1)$  are readily computed as  $x_{4} = a_{3} = [c_{4}, s_{4}, 0]^{T} = [c_{2}, -s_{2}, 0]^{T}$   $x_{3} = a_{3} + \theta_{3} \quad x_{4} = [c_{1}(1+c_{2}), -s_{1}(1+c_{2}), -s_{2}]^{T}$   $x_{2} = a_{2} + \theta_{2} \quad x_{3} = \begin{bmatrix} c_{2} \quad [1+c_{1}(1+c_{2})] - s_{2}^{2} \\ s_{2} \quad [1+c_{1}(1+c_{2})] + c_{2}s_{2} \\ -s_{1}(1+c_{2}) \end{bmatrix}$   $x_{1} = a_{1} + \theta_{1} \quad x_{2} = \begin{bmatrix} c_{1}\{1+c_{2}(1+c_{1}(1+c_{2})] - s_{2}^{2} \} - s_{1}^{2}(1+c_{2}) \\ s_{1}\{1+c_{2}(1+c_{1}(1+c_{2})] - s_{2}^{2}\} + c_{1}s_{1}(1+c_{2}) \\ s_{2}[1+c_{1}(1+c_{2})] + c_{2}s_{2} \end{bmatrix}$ 

Vectors  $y_k$  (k = 5, 4, 3, 2, 1) are similarly computed as

$$y_{5} = a_{5} = [c_{5}, s_{5}, 0]^{T} = [c_{1}, s_{1}, 0]^{T}$$

$$y_{4} = a_{4}^{'} + Q_{4} y_{5} = [c_{2} (1+c_{1}), -s_{2}(1+c_{1}), s_{1}]^{T}$$

$$y_{3} = a_{3} + Q_{3} y_{4} = \begin{bmatrix} c_{1} [1+c_{2} (1+c_{1})] - s_{1}^{2} \\ -s_{1} [1+c_{2}(1+c_{1})] - c_{1} s_{1} \\ -s_{2}(1+c_{1}) \end{bmatrix}$$

$$y_{2} = a_{2} + Q_{2}y_{3} = \begin{bmatrix} c_{1}c_{2}[c_{1}+1+c_{2}(1+c_{1})] - s_{2}^{2}(1+c_{1}) \\ c_{1}s_{2}[c_{1}+1+c_{2}(1+c_{1})] + c_{2}s_{2}(1+c_{1}) \\ - s_{1}[c_{1}+1+c_{2}(1+c_{1})] \end{bmatrix}$$

$$y_{1} = \begin{bmatrix} c_{1}\left\{1+c_{1}c_{2}[c_{1}+1+c_{2}(1+c_{1})] - s_{2}^{2}(1+c_{1})\right\} - s_{1}^{2}[c_{1}+1+c_{2}(1+c_{1})] \\ s_{1}\left\{1+c_{1}c_{2}[c_{1}+1+c_{2}(1+c_{1})] - s_{2}^{2}(1+c_{1})\right\} + c_{1}s_{1}[c_{1}+1+c_{2}(1+c_{1})] \\ s_{2}c_{1}[c_{1}+1+c_{2}(1+c_{1})] + c_{2}s_{2}(1+c_{1}) \end{bmatrix} \end{bmatrix}$$

The displacement equations are now obtained equating  $x_j$  with  $r_A$  and  $y_j$  with  $r_B$ ,  $r_A$  and  $r_B$  being the position vectors of points A and B, respectively, in  $X_j$ ,  $Y_j$ ,  $Z_j$  coordinates. Hence

$$c_1 \left\{ 1 + c_2 \left[ 1 + c_1 \left( 1 + c_2 \right) \right] - s_2^2 \right\} - s_1^2 \left( 1 + c_2 \right) = - (1 + c_2)$$
 (1)

$$s_1 \left\{ 1 + c_2 \left[ 1 + c_1 (1 + c_2) \right] - s_2^2 \right\} + c_1 s_1 (1 + c_2) = 0$$
 (ii)

$$s_2 [1+c_1(1+c_2)] + c_2 s_2 = s_2$$
 (iii)

$$c_{1}\left\{1+c_{1}c_{2}\left[c_{1}+1+c_{2}(1+c_{1})\right] - s_{2}^{2}(1+c_{1})\right\} - s_{1}^{2}\left[c_{1}+1+c_{2}(1+c_{1})\right] = -1 \quad (iv)$$

$$s_{1}\left\{1+c_{1}c_{2}\left[c_{1}+1+c_{2}(1+c_{1})\right] - s_{2}^{2}(1+c_{1})\right\} + c_{1}s_{1}\left[c_{1}+1+c_{2}(1+c_{1})\right] = 0 \quad (v)$$

$$c_{1}s_{2}\left[c_{1}+1+c_{2}(1+c_{1})\right] + c_{2}s_{2}(1+c_{1}) = 0 \quad (vi)$$

From eq (iii), with  $s_2 \neq 0$  and  $c_1 \neq -1$ .

$$(1+c_1)(1+c_2) = 1$$
 (1/0)

which is the input-output equation, valid for  $c_1 \neq -1$ . For  $c_1 = -1$ ,  $s_2 = 0$ .

Now, let { } and [ ], be the corresponding brackets appearing in eqs (1-1ii). { }, and [ ], are correspondingly defined for eqs (iv - vi). If (1/0) is substituted into these, one has

$$[] = \frac{1+2c_1}{1+c_1}, [] = 1$$
 (vii)

$$()_{j} = -\frac{c_{j}}{1+c_{j}}, \qquad = -c_{j} \qquad (viii)$$

Substitution of relations (vii is viii) into eqs (i - vi) renders both sides identical, thus verifying the validity of the input-output equation. From (I/O) it is clear that neither  $\theta_1$  nor  $\theta_2$  can attain the value  $\pi$ . In fact, a mobility analysis yields the following mobility ranges:

$$-120^{\circ} \leq \theta_{1} \leq 120^{\circ}, \lambda \neq 1, \dots, 6$$

The program implementing the algorithm presented in this paper was tested with this linkage, its input-output equation (I/O) being plotted in Fig 3a. The program output was compared with the foregoing closed-form solution and the displacement, velocity and acceleration errors were plotted as shown in Figs 3b, 3c and 3d, respectively.

As in the case of seven-link chains [1], the displacement, velocity and acceleration errors grow unbounded as the Jacobian matrix approaches a singularity which, in this case, manifests itself as a deficiency of its rank. This occurs at singular configurations of the linkage under study, i.e. at dead-point positions of its input link,  $\theta_A = \theta_7 = \pm 120^\circ$ .

#### Example 2. Synthesis of a spatial trajectory.

Given the SR manipulator whose parameters appear in Table 1, determine the histories  $\theta_{i}(t)$ ,  $\dot{\theta}_{i}(t)$ , for  $0 \le t \le T$ , i = 1, ..., 5, in order to guide line AB, as shown in Fig 4, through a given spatial trajectory. The location of point B, in fifth-link coordinates, is given by  $[r]_{5} = [a_{5}, 0, 0]^{T}$ , whereas the trajectory is chosen as the upper branch of the intersection of the sphere (S) with the cylinder (C) given below:

$$(x - a)^{2} + (y + b)^{2} + z^{2} = 15a^{a}$$
 (5)  
 $x^{2} + z^{2} = a^{2}$  (C)  
upper branch:  $y > b$  (B)

the said surfaces being given in fixed coordinates, i.e. in  $X_j$ ,  $Y_j$ ,  $Z_j$  coordinates. It is required, moreover, that

```
x = -\alpha \cos \beta
y = \alpha \sin \beta
```

with  $\beta$  being chosen as a smooth-enough function of time, i.e. one for which at least  $\dot{\beta}$  and  $\ddot{\beta}$  be continuous functions of time, in the interval [0,T]. Additionally, the following is imposed on  $\beta$ :

$$\beta(0) = 0, \beta(T) = 2\pi, \beta(0) = \beta(T) = 0, \beta(0) = \beta(T) = 0$$

Such a  $\beta$  function can be readily synthesized using spline functions, as shown in [12, 13]. The following parameter values were assumed:

 $\alpha = 300 \text{ mm}, b = 2 220 \text{ mm}, T = 60 \text{ s}$ 

The orientation of AB was specified as follows. Let unit vectors

 $e_{a}$ ,  $e_{n}$ ,  $e_{b}$  denote the tangent, normal and binormal vectors of the trajectory. Then AB is to be orientated so that:

 $r_{\rm B}$  -  $r_{\rm A}$  =  $a_5 e_n$ 

#### Table 1

(lengths in mm, angles in degrees)

| a <sub>1</sub> = 0   | 6 <sub>1</sub> = 0    | a <sub>j</sub> = 90   |
|----------------------|-----------------------|-----------------------|
| $a_{2} = 0$          | 6 <sub>2</sub> = 479  | ° <sub>7</sub> ≈ 90   |
| a <sub>3</sub> = 0   | 6 <sub>3</sub> = 0 ·  | α <sub>3</sub> = 90   |
| $a_4 = 35.3$         | b <sub>4</sub> = 1016 | α <sub>4</sub> ≈ -90  |
| a <sub>5</sub> = 146 | δ <sub>5</sub> = 0    | α <sub>5</sub> = -90, |

These values were taken from. The sixth-degree-of-freedom manipulator described in [14], from which the sixth revolute pair was removed.

Solution:

The reference configuration was chosen to be the following:

 $\theta_1 = 90^\circ, \ \theta_2 = 180^\circ, \ \theta_3 = 90^\circ, \ \theta_4 = \theta_5 = 0^\circ$ 

In order to guide line AB from its position in the reference configuration to the initial configuration along the prescribed trajectory, determined by B=0, continuation was used, as donde in [1]. To this end, point 8 was made to trace a straight path between its two positions, that in the reference one,  $B^{\theta}$ , and that in B=0,  $B^{T}$ . This path was divided into 10 segments in order to ensure that the initial "guess" for the Newton-Raphson procedure lie close enough to the solution sought, which guarantees and accelerates its convergence. In fact, four interations were needed, at most, in order to reach convergence, in this stage.

Along the prescribed trajectory, one whole kinematic analysis was performed every 0.5s, i.e. 120 points on the given trajectory where fully analyzed. At virtually all of these points, convergence was reached after 3 iterations, which was the largest number of iterations required, for a tolerance of  $10^{-6}$  imposed on  $\Delta \theta$ . At a few points about  $\beta=0$ , convergence was reached after only two iterations.

Computed values of  $\theta_{i}$ ,  $\dot{\theta}_{i}$  and  $\ddot{\theta}_{i}$  (*i*+1,...,5) are plotted in Figs 5-9. From these figures it becomes apparent that the smoothness of function  $\beta_{i}$  synthesized with the aid of a cubic periodic spline, is reflected in the smoothness of the  $\theta_{i}$  functions obtained.

21

#### Conclusions

The method presented here, aimed at the complete analysis of five-link revolute-coupled kinematic chains, differs basically from other methods intended to solve the same problem. Contrary to the usual practice of analyzing open kinematic chains (man ipulators) as closed ones by introducing a "fictitious" closing link, the approach followed here is oriented to the analysis of open chains, regarding closed ones (linkages), as particular cases of the former. It resorts to efficient numerical methods of solution of nonlinear overdetermined algebraic systems. The system obtained here is derived disregarding the orientation of the body meant to be quided, while intending to position two of its points, which is also an original approach. The results show quick convergence, which suggests the applicability of the algorithm, and the program implementing it, to the real-time kinematic control of robot manipulators of the topology assumed here, i.e. 5R, but of arbitrary architecture otherwise ...

### Acknowledgements

The research work reported here was mainly supported by the Graduate Division of the Faculty of Engineering - National Autonomous University of Mexico (UNAM). The programming assistance of Mr. Angel A. Rojas-Salgado, a graduate student of this Division under a fellowship of the UNAM Program for Faculty Support, is highly acknowledged.

: 22

#### References

- Angeles J, "Analysis of general seven-link revolute-coupled kinematic chains", <u>Internal Report</u>, DEPFI-University of Mexico, 1983 (Publication pending)
- Henderson J M and Meriam J L, "On the space rotation of a two-point link". Mechanism and Machine Theory, Vol 10, 1975, pp 347-354
- Tsai L-W and Roth B, "Incompletely specified displacements: Geometry and spatial linkage synthesis", <u>ASME paper No. 72-Mech-13</u>, presented 2 at the Mechanisms Conference, San Francisco, Calif., Oct. 8-12, 1972
- Sugimoto K and Duffy J, "Analysis of five degree of freedom robot arms", <u>J Mechanisms</u>, <u>Transmissions</u>, and <u>Automation in Design</u>, Trans ASME, Vol 105, 1983, pp 23-27
- Hartenberg R S and Denavit J, <u>Kinematic Synthesis of Linkages</u>, Mc Graw-Hill Book Co. New York, 1964
- Dahlquist G and Björck A.<u>Numerical Methods</u>, Prentice-Hall Inc,
   Englewood Cliffs (NJ), 1974.
- Forsythe G E and Moler C B, <u>Computer Solution of Linear Algebraic</u>
   <u>Systems</u>, Prentice-Hall Inc, Englewood Cliffs (NJ), 1967.
- 8. Businger P and Golub G H, "Linear Least square solutions by Housholder transformations" in Bauer F L et al (editors), <u>Handbook for Automatic Computation. Vol II: Linear Algebra</u> (edited by Wilkinson H G and Reinsch C), Springer-Verlag, Berlin, 1971, pp 111-118
- Ben-Israel A and Greville T N E, <u>Generalized Inverses: Theory and</u> Applications, John Wiley & Sons, Inc, New York, 1974
- Fournier A, <u>Génération des mouvements en robotique</u>. <u>Applications</u> <u>des inverses généralisées et des pseudo-inverses</u>. Thèse d'Etat (Doctor's Thesis), Montpellier (France), 1980

. R1

- 11. Moler C B, <u>Matrix Eigenvalue and Least Square Computations</u>, Computer Science Department, Stanford University, Stanford, Calif, 1973
- 12. Angeles J. "Synthesis of plane curves with prescribed local geometric properties using periodic splines", <u>Computer-Aided Design</u>, Vol 15, No 3, May 1983, pp 147-155
- 13. Angeles J, "Sintesis de curvas planas cerradas usando funciones "spline" paramétricas y periódicas", <u>Revista de la Academia Nacio-</u> nal de Ingeniería, A C, Mexico City, Vol II, No 1, 1983
- 14. Whitney D E, "The mathematics of coordinated control of prosthetic arms and manipulators", <u>Journal of Dynamic systems</u>, <u>Neasurement and</u> <u>control</u>, Vol 94, December 1972, pp 303-309



# Fig 1 Architecture of a general fifth-degree-of-freedom revolute-coupled manipulator

-



Fig 2 Layout of a 6R-single-degree-of-freedom linkage

F2

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · ·   |                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------|
| $\theta_1'(\theta_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | perior kiot it. |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 60 90 120    |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52(°)           |                                          |
| $= \left( \begin{array}{c} -1 \\ -1 \\ 0 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ 0 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{array} \right) \left( \begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $ |                 |                                          |
| - 30 - 40 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 60 00 00 00 00 00 00 00 00 00 00 00 00 0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | a of                                     |
| nimentaria de la construcción de la construcción de la construcción de la construcción de la construcción de la<br>Referencia de la construcción de la construcción de la construcción de la construcción de la construcción de la<br>Referencia de la construcción de la construcción de la construcción de la construcción de la construcción de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _ FIG 3b        | en en en en en en en en en en en en en e |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                          |





Fig 4 Fifth-degree-of-freedom manipulator.



. .



۲.
à, (5")+ ë, (5") de (rad) -2 FIG 9



# DIVISION DE EDUCACION CONTINUA FACULTAD DE INGENIERIA U.N.A.M.

DISENO CINEMATICO DE MAQUINARIA

OPTIMAL SYNTHESIS OF TRANSLATIONS - FOLLOWER CAN MECHANISM WITH PRESCRIBED FUNCTIONAL CONSTRAINTS

DR. JORGE ANGELES ALVAREZ

DR. CARLOS LOPEZ CAJUN

JUNI0,1984.

OPTIMAL SYNTHESIS OF TRANSLATING-FOLLOWER CAN DECHAPISHS WITH DEDSCRIDED PERCEIDENCE CONSTRAINTS

Jorga ANGELES and Carlos LOPEZ-CAJON Facultud de Ingeniería, Universidad Nacional Autónoma de México, Apdo. Postal 70-256 04510 México, D.F. MEXICO.

#### Abstract

A covel approach is presented, that allows the computer synthesiz of which mustize cat profiles, which are to produce a given rollower-displacement programs while exceting preactibed functional constraints. These can be imposed either on the previous angle or on the eccentricity of the contact point depending upon the type of follower that is being synthesised. The paper is limited to the synthesis of cum profiles for translating roller followers, but the mate approach has been raccessfully applied to flat-face followers, as reported proviously. The results obtained for the example included show the applicability of the procedure to the automatic decign of this type of can follower mechanisms.

Keywords; optimal synthesis, can mechanisms, optimum design, automatic design

### 1. INTRODUCTION

The synthesis of can bechanises to produce a given displacement programme of the follower is divided into two stages [1]. The first one is meant to produce an caty-to-handle smooth-enough function of the angle of rotation of the can disk, representing the displacement of the follower. The second one deals with the synthesis of the can profile. The synthesis of the displacement programme has been based traditionally on a limited set of functions giving rise to parabolic, harmonic, cycloidad, trapezoidal and polynomial notions. Based on the last type, Thompoulus and Knowles [2] proposed a novel method of displacement-programme synthesis using linear programming, but it is not until very recently that a totally new approach has been introduced using spline tonerions [3,4].

As to the profile synthesis, the traditional approach, based on graphical methods, has been abandoned in favour of numerical methods, that have been called for given the extensive use of computers and NC-machine tools [5]. The literature on graphical methods of profile synthesis is rather broad, as can be seen in [6], that on computer-oriented methods becoming abounding, particularly since the 1970's [6-14]. The approach introduced in this paper, regarding the optimal synthesis of can profilem, is that of mathematical programming, but, as seen in the discussion, it does not require the application of sophisticated and time-consuming optimisation methods.

#### 2. THE TOLLOWER-DISPLACEMENT PROGRAMME

In this Section a method is described that allows to synthesise follower-displacement programmes, statting from an acceleration programme that is specified over a discrete set of values,  $\{\psi_j\}_{j=1}^{n}$  of the angle  $|\Psi|$  measuring the rotation of

ç

÷

the disk can involved. Let the displacement of the follower by given by c+i(1), where c is a constant representing the minimum value of that displacement, O(q) being a positive definite function whose minimum value is zero, its maximum val we being h, the rise of the follower. Contant 2 is computed from considerations concerning the profile synthesis, as will be shown later, the objective of this Section being the synthesis of O(9). This will be performed using a section of a basic function t(y) which is synthesised using spline functions as shown in [4]. 1(y) is evathesised by prescribing a set of deceleration values,  $\{1^{n}c, j\}_{j=1}^{n}$  so that  $1_{j=1}^{n}c_{j}^{n}$ , in order to obtain a periodic function  $\tau(j)$ . To this end, periodic splines are used. Thus, the set  $\{\tau_j\}_{j=1}^n$   $\{\tau_j(\phi_j)\}_{j=1}^n$  is computed by solving a linear system of equations.For instance, 1". 2-1,2,..., a can be specified as having an harachie distribution, van ishing at  $\psi_1$  and  $\psi_2$ , the extremes of the interval of interest, which can be specified in turn as [0.2m]. Horeover, t" is also specified to vanish at inner points of this futerval. in order to the sure that the displacement function will have a zera acceleration at its higher point, the comfor which the displacement attains the value off. Furthermore, in order to meet the condition that the velocity be a continuous function of Q. symmetrics are introduced that guarantee the sanishing of the velocity at the two dwell intervals of the follower. Thus the is specified such that  $\tau_1^{\alpha}=0$ , the visite function, shown in Fig. 1, being assumed to be periodic and symmetric with respect

A lf c+v(k) represente the displacement of the follower them its velocity and acceleration are given by 0'(.), and v(.); 'to"(.), respectively, k and  $\tilde{v}$  being the velocity and the acceletation of the can disk.

to line  $\psi_{0}\psi_{0}$  ==""", the midpoint of the interval [0,2\*]. If the function is further assumed to be odd with respect to lines  $\psi_{-}\psi_{-}\pi/2$  and  $\psi_{-}3m-2=3\pi/2$ , then "" will sho vanish at B and C. Horeover, this way, t" will sho vanish at A, B and C. The basic function to produces ( $\psi$ ) can be obtained, in turn, from the curve shown in Fig.1 by shifting the  $\psi_{-}$  axis to the line  $\tau_{-}\tau_{0}$ . A proper way to prescribe t" is as follows:

1"-ksiny, i-1,...,m

 $\psi_{i} = \frac{\pi}{2(n-1)}$  (i-1) (1b)

 $(1_{4})$ 

where constant k is chosen so as to normalize  $\tau_i$ i.e. such that  $\tau_0 \approx 1/2$ . Using a periodic spline, with  $m \approx 11$ , the curve appearing in Fig.1 was obtained with k=0.64191.

The displacement programme for the follower of a can nechanism is now assumed to have a lower dwell in the interval  $[0, \frac{1}{2}]$ , then a rise in the interval  $[\psi_1, \psi_2]$ , next a higher dwell in the interval  $[\psi_2, \psi_3]$  and, finally, a return in the interval  $[\psi_3, 2\pi]$ . Let

$$\Delta \psi_1 - \psi_1 + \Delta \psi_2 - \psi_2 - \psi_1 + \Delta \psi_3 - \psi_3 - \psi_2 + \Delta \psi_4 - 7 = -\psi_3 (2a)$$

The foregoing displacement programme can now be synthesized from the basic function t vs  $\psi$  of Fig.1 by properly scaling separately its intervals  $[0,\pi]$ . To this end, redefine  $\psi$  as

$$\psi := \frac{n\psi_2}{2}\psi , \quad 0 \le \psi \le x \qquad (2b)$$

$$\psi := \frac{n\psi_4}{\pi} (\psi - \eta), \ \pi \le \psi \le 2\pi \qquad (2c)$$

Now Cunction O(¢) is defined as

A subprogram was written that allows the aucommutic synthesis of follower-displacement programmes by inputting the following data:  $\psi_{+}$ ,  $\psi_{+}$ ,  $\psi_{+}$ , and h. Its output is  $\phi(\phi)$ ,  $\sigma'(\phi)$  and  $\sigma''(\psi)$ . the procedure introduced to compute the basic function  $\tau(\psi)$ , on the other hand, need not be changed if an acceleration distribution different from the one given in (188b) is chosen. In fact, only the set  $(T^{\mu}_{i})^{\mu}_{i}$  has to be changed as data input to the spline subroutines synthesising function  $\tau(\psi)$ . Moreover, if the follower is of the translating type, O(\$) and hence c and h will have units of length. They will be measured in radians if the follows, is of the oscillating Lype. The synthesis of the cam profile for trans lating followers of the roller type is next discussed. That of the cam profile for translating followers of the flat-face type is reported elsewhere [15].

#### 3. OFTIMAL SYNTHESIS OF CAM PROFILES FOR TRANSLATING MOLLER FOLLOWERS

and hence

In this Section 12 is assumed that the displacement programme is specified up to a constant t, i.e. function  $O(\psi)$  is known, whereas constant c is to be determined. Let the displacement of the follower be denoted by  $u(\psi)$ , i.e.

$$\mathbf{s}(\boldsymbol{\psi}) = \mathbf{c} + \sigma(\boldsymbol{\psi})$$
 (4)

$$=^{1}(\psi) - J^{*}(\zeta), = L^{*}(\zeta) - J^{*}(\zeta)$$
 (5)

Reference is note now to Fig.2, showing the layout of a case with a translating knite-cdge to lower. The interest of synthesising such a case profile lies in the fact that this is the pitch curve for a roller followers taking identical (b). In Fig.2, line P is the path of the fallower, lines T and N are the tangent and the nonmal to the case profile, given by its palat equation p=p(0), at the contact point Q. Horeaver, lines OF and OC are fixed to the trate and to the case disk, respectively, a being the eccentricity at the follower path. Angle u is the pressure angle. From the geometry of Fig. 2,

$$|\psi\rangle + \rho(\phi) + i\mu(0)\psi\rangle$$
 (6.4)

α=υ+⊈+;−π

$$\phi = \tan^{-1} \frac{\rho(0)}{\rho'(0)}$$
 (6d)

In order to keep the mechanical advantage of the mechanism within acceptable limits, a is usually bounded properly. Since a can be either pasitive or negative, its absolute value is bounded as

where  $D_{i}$  is normally chosen to lie "close" to 0°, for a "value of 90° would render the mechanical advantage zero. A value that is widely accepted is 30°. Finding the value of  $\psi$  at which |h|| attains its extrema is not so simple, for this function is not differentiable at the origin, where it attains its minimum. Hence a different even function of a that be smooth enough has to be extremised. A good candidate is cosh. Using relations (6c6d), this turns out to be

$$\frac{\cos \omega = \frac{s(\phi)}{\left\{ \left[ \frac{1}{2} \left( \phi \right) - c \right]^2 + s^2(\phi) \right]^{\frac{1}{2}}}$$
(8)

Now cose will be kept within bounds as

$$cosa 2 cosa - c (9)$$

1.\*.

where

The extrems of (8) are now found by receiving its derivative with respect to  $\zeta$ . This is readily obtained as\*

$$\frac{\mathrm{deoso}}{\mathrm{d}\psi} + \frac{(s^3 - e)[(s^3 - e)s^3 - ss^3]}{\{(s^3 - e)^2(s^3)\}^2} \tag{11}$$

which vanishes under either of the next two conditions:

(12a)  
(11) 
$$(s^{1}-e)s^{1}-ss^{n}$$
 or  $\frac{s^{1}-e}{s} = \frac{s^{n}}{s^{1}}$  (12b)

Condition i) leads to the maximum +), as can be readily verified from eq(8), whereas condition ii) leads to the minimum  $c_{H}$ . Let  $\tau_{0}$  be the value of  $\psi$ , not an yet determined, producing the minimum. From eq(8), then

\* Henceforth, a prime on a variable means its derivative with respect to ψ, i.e. s'ids/dφ. Siuj larly, s"=d<sup>2</sup>s/dφ.

7

۰.

with

ł

$$\frac{|v_{i}|^{-\alpha}}{v_{0}} = \tan_{H}$$
(13)

with  $s_{i+1}$ ,  $s_{i+1}^{+}$  and  $s_{i+1}^{+}$  defined as the values attained by  $s(\psi)$ ,  $s_{i+1}^{+}(\psi)$  and  $s_{i+1}^{+}(\psi)$  at  $\psi = \psi_{\sigma}$ . Relation (13) with already obtained by Chicurel (17). Since  $s_{i+1}^{+}(\psi) = s_{i+1}^{+}(\psi) = s_{i+1}^{+}(\psi)$ , eqs(12b) and (13) lead to  $s_{i+1}^{+}(\psi) = s_{i+1}^{+}(\psi) = s_{i+1}^{+}(\psi)$ .

$$\left|\frac{\partial}{\partial r} \frac{(2\pi)}{(2\pi)}\right| = \tan \frac{1}{2}$$
(14a)

$$\left[ \left[ \mathbf{o}^{n}(\varphi_{g}) \right] + t \operatorname{ang}_{H} \left[ \mathbf{o}^{*}(\varphi_{g}) \right] \right]$$
(14b)

Substitution of eqs(455), evaluated at  $\varphi \circ \psi_{P_1}$ , into eq(13) and the assumed positive definiteness of  $O(\psi)$  and c lead to

οr

$$[o_{0}^{*}-v] - \operatorname{cano}_{H}(c+J_{0})$$
 (15a)

On the other hand, during the rise phase the follower velocity is positive, as shown in Fig.3. From those plots it can also be seen that eq(14b) holds at two distinct values of  $\sigma^n$ , namely  $\sigma^n_i$  and  $\sigma^n_i$ . The positive value leads to  $\sigma^n\sigma^1$  whereas the negative one leads to  $\sigma^n\sigma^1$ . Substitution of these values into eq(15s). together with the condition

c > 0 (15b)

define the set of values along which condition (10) holds during the rise phase. This is plotted in Fig.4. In that figure, this set is formed by the two branches of lines 1 and 2 making an angle og with wither direction of the claxis, the dashed section being excluded, for it violates (15b).

Since cost also attains stationary values at the lowest follower position (i.e. during the dwell phase  $D_1$ ), the following must hold (or any set of values  $\{c,e\}$ :

Eq(16) is also plotted in Fig.4. From that figure, it is clear that points f and 0 satisfy eqs(15abb and 16) simultaneously. Taking the radius of the base circle, r, as a measure of the area, which is plousible because r is the lowest value of p(0), the distance OP leads to the mininum value of r.

To this end it was assumed that  $\Psi_0$  was known. In fact, from the foragoing discussion, such value of  $\Psi_0$  satisfying eq(14b), corresponds to the one which zeroes the function

$$f(\psi) = \sigma''(\psi) + t_{\text{ADD}_{\omega}}\sigma^*(\psi) \tag{17}$$

This function is plotted in Fig.5.

Values of  $\psi_0$  for different pressure angles were obtained and plotted in Fig.6. From that plot the designer can select the appropriate percentage for calculating  $\psi_0$  for the problem at hand.

Once the value of  $\psi_0$  has been determined one can proceed to determining the values of  $\sigma_0$ ,  $\sigma'_0$ and  $\sigma''_0$  and thence the values of  $c_0$  and  $c_0$  which in turn will determine the minimum radius of the base circle. From Fig.4,

$$c_{\sigma} = \frac{1}{2} \overline{OA}$$
,  $e_{\sigma} = \frac{1}{2} \overline{OB}$  (18a)

$$\overline{\mathbf{DA}} = \frac{\mathbf{O}}{\mathbf{CA}} - \mathbf{O}_{\mathbf{A}} - \mathbf{O}_{\mathbf{A}}$$
(16b)

and

$$\mathbf{0}\mathbf{B} = \mathbf{0}_{\mathbf{0}}^{*} - \mathbf{0}_{\mathbf{0}}^{*} \mathbf{u} \mathbf{u}_{\mathbf{N}}$$
(18c)

The can profile is new resultly obtained by combining eqs(Gasb) to yield

which produces a value of p for each siven value of  $\psi_1$  lies it produces the function  $z_{-1}(z)$ . In order to obtain the function  $z_{-1}(v)$ , eqs() thy are again combined to produce

$$\theta = \tan^{-1}\left[\frac{\pi(\xi)}{2}\right] + \psi \qquad (156)$$

which thus produces a function 6-2(d).

Regarding now  $\psi$  as a parapeter between functions  $\rho(\psi)$  and  $\psi(\psi)$ , the function  $\gamma \circ \rho(\tilde{\psi})$  is readily obtained. The foregoing procedure clearly produces a discrete set of a pairs  $\{(\phi_{i}, \phi_{i})\}$ , which then have to be interpolated in order to produce a continuous function  $\rho \circ \gamma(\psi)$ . that would allow both the plotting of the can profile and the punching of the tape guiding a SC-machine tool used for its automatic production. Out of the different procedures to interpolate the obtained not, the one that is proposed here is based upon periodic parametric mplines, which have proved [4,16,pp.27-28] to have the following advantates: i) they require a low number (spall) value of all

- of sample values  $\{(o_{1}^{-}, \theta_{2}^{-})\}_{j=1}^{m}$  to produce a given imposed accuracy
- ii) their parameters are readily computed by solving a system of linear equations that is symmetric, tridingonal and diagonally deminant

iii) as a consequence of if), the arising system of equations is well conditioned. . .

A subprogram cas written that, for given calues of  $\alpha_{\rm H}$ ,  $\sigma_0$  and  $\sigma_0^*$ , produces the optimising calues,  $e_0$  and  $c_0^*$  given by eqs( $|f_0\rangle$ ) and for a given value of  $\mathbf{n}_i$ , produces the set  $((e_1^*, q_1^*))_{I_i}^*$ , which is used next to interpolate the cam profile with periodic parametrice splines. The subprogram produces also the interpolated values of  $e_1^*, e_n^*$  and  $\mathbf{r}_i$  representing the unit tendent and normal vectors to the cam profile and its radius of curvature, respectively. Now, specifying a value a of the radius of the roller, the profile of the cogresponding cam can be obtained from

$$r_{\rm p} = r_{\rm h} = 4e_{\rm H}$$
(20)

where  $r_{\rm f}$  and  $r_{\rm h}$  are the position vectors of points on the cam profile for the coller and for the knife-edge followers, respectively. This way, knowing the cam profile for the knife-edge follower, as well as the radius d of the coller, eq(20) allows to obtain the ten profile for the toller follower. This would complete the optimal synthesis of the cam profile Soupht, if no e-ditional constraints were to be tepsed. There are, lowever, two more iteras that need be taken into account, namely 1) the maximum allowable value of the radius of the roller, 4, to avoid the phoneemon known as productions, and 11)the tink of allowable value of the radius of curvature of the tam profile for the roller follower, rer, which is necessary to specify in order to avoid too large values of the contact stress.

Let  $\kappa_k$  and  $\kappa_p$  be the curvature of the can profile for the knite-edge islawer and for the roller follower, respectively. Since the emit tangent vectors to both profiles are identical, one readily obtains  $\kappa_k$ 

$$\kappa_{\rm E} = \frac{\kappa_{\rm E}}{1 - a\kappa_{\rm K}^2} \tag{21}$$

If the denominator of the right-hand side of eq(21) vanishes, the curvature of the ruller-follawer comprofile,  $s_{\rm P}$ , will become infinity. This means that, at values of  $\phi$  where that denominator worthes, the sold comprofile has a cusp, which defect is known as analyzeathing. Horeover, both the petch curve and the roller-follower can profile should have, at corresponding points, ise, at the same value of  $\phi$ , curvatures with the same sign. This is thus attained if and only if.

Relation (22) holds, in turn, it

$$t < (r_{ck})$$
 (22b)

or, equivalently, if a is specified as a given function f of (rek) min. i.e.

The minimum value of  $r_{\rm ck}$  is now computed. To this end,  $r_{\rm ck}^{\prime}$  is zeroed and the values of  $r_{\rm ck}$ at stationary points are computed. It can be readily shown that  $r_{\rm ck}$  attains stationary values at the dwell phases. These, however, are not, in general, global extrema, for which reason the global minimum is sought both in the rise and in the return phases. Both  $r_{\rm ck}$  and  $r_{\rm ck}^{\prime}(\psi)$  are given by [19]

$$\mathbf{r}_{ck} = \frac{\mathbf{N}(\mathbf{r})}{\mathbf{D}(\mathbf{\psi})} \tag{23}$$

and

$$\mathbf{r}_{ck}' = \frac{1}{D(\psi)} \{ N^{*}(\psi) - \mathbf{r}_{ck} D^{*}(\psi) \}$$
(24)

with

2

$$\begin{split} &\mathsf{N}(\psi) = \left(\mathbf{s}^2 + (\mathbf{s}^1 - \mathbf{c})^2\right)^{\frac{1}{2}} & (25a) \\ &\mathsf{D}(\psi) = \mathbf{s}^2 + (\mathbf{s}^1 - \mathbf{c})(2\mathbf{s}^1 - \mathbf{c}) + \mathbf{s}^{-1} & (25b) \\ &\mathsf{N}^1(\psi) = 3\left[\mathbf{s}\mathbf{s}^1 + \mathbf{s}^{-1}(\mathbf{s}^1 - \mathbf{c})\right]\left[\mathbf{s}^2 + (\mathbf{s}^1 - \mathbf{c})^2\right]^{\frac{1}{2}} & (25c) \\ &\mathsf{D}^1(\psi) + \mathbf{s}(2\mathbf{s}^1 - \mathbf{s}^{-1})^2 + 3\mathbf{s}^{-1}(\mathbf{s}^1 - \mathbf{c}) & (25d) \end{split}$$

The zeros of  $r_{ck}^{c}$  can be readily computed with the aid of Subroutine ZEROIN [20] or any other efficient subprogram intended to find the zeros of a numlinear function of a real argument. The global minimum of  $r_{ck}$  is then substituted into eq(22c), thus producing the desired value of a, thereby completing the synthesis of the proposed mechanism. The suftware realising the described synthesis produces values of technical interest concerning the can profile, as well. These are: area, location of its centroid, principal moments of inertia. All these values are produced in order to ease the static and dynamic analysis of the overall mechanism.

At this point it is worth contioning the impossibility of lines 1 and 2, Fig.4. of passing

...

through the origin, which in turn, would lead to  $\tau=0$ . In fact, this would imply

However, from eq(15a) and taking intraccount the populative definitioners of G Juring the rise phase, one has

Nithout tops of ponerality, use can assure that  $f_{1}$  is a supporting point,  $f_{1}$ , but the spline curve. From the relationships littles the sets  $\{0,1\}^{n}_{1}, \{0,1\}^{n}_{1}$  and  $\{0,1\}^{n}_{1}$  for cubic splines  $\{18,1\}^{n}_{1}$ , 27-25,  $e_{1}(27)$  would loss to

which is impossible to happen, given the way the set  $\{\tau_{ij}^{ij}\}_{j=1}^{ij}$  can avecified in eqs(Lakb).

In the case of a case with a radial follower, e=0, and cause station stationary values either when s'=0 or size when s'=+us". The tirst condition leads to a minimum value of the pressure way give, whereas the second one leads to the maximum. Recalling that n=e+0,  $s'=0^{\circ}$  and  $s''=0^{\circ}$ , one has

$$a^{+2} = (a+e)a^{\mu}$$
 or  $\frac{a^{+}}{a^{+}e} = \frac{a^{\mu}}{a^{+}}$  (29)

Substitution of eq(14x) into  $c_0/(29)$  and the fact that 0/20 during the rise phase lead to  $p_0'=tand_H(p_0+c)$  (30a)

where  $\rho_0$ ,  $\sigma_0^{\dagger}$  and  $\sigma_0^{\dagger}$  are defined as before. From eq(30a) one obtains the radius of the base circle as  $\sigma^{\dagger}$ -0 taxa.

$$c_{\theta} = \frac{c_{\theta} c_{\theta} c_{\theta} c_{\theta} c_{\theta}}{c_{\theta} c_{\theta} c_{\theta}}$$
(30b)

4. EXAMPLE

Obtain the cam profile of the translating roller-follower cam rechamism producing the displacement programme given in Table 1. The maxicum pressure angle is limited to 30°, and f=0.50. The subprogram produced the cam profile appearing in Fig.7, with a value of a of 15.00.7.

|                         | Angle of    | Displacement |
|-------------------------|-------------|--------------|
| Phase                   | rotation(V) | (046)        |
| $0_{-}$ (d. (11)        |             | 0            |
| A <sup>4</sup> (rise)   | 72          | +50.0        |
| D_ (dw211))             | 144         | O D          |
| R <sup>2</sup> (return) | 103*        |              |

Table 1 Follower-displacement programme

The geometric properties of the cum profile produced by the subprogram are:

Area=19530.3Amm<sup>2</sup> Centroid=(-10.89,-19.53). E1 and E2 are the principal akes of inertia at the centroid, the corresponding moments of inertia being  $I_2=40192170.0mm^2$  and  $I_2=30070254.0mm^2$ .

#### 5. CONCLUSIONS

An automatic procedure, implemented with the aid of several computer subprograms, was developed. This procedure allows the digital and graphical production of the minimum-size cam profile that generates a given displacement programme for a ruller follower while observing bounds on the pressure angle. Radial and off set followers were rensidered, herein. The software presented here yields, additionaly, the radius of the roller as a fraction of the minimum value of the radius of curvature of the pitch curve, in order to avoid undercutting. Noncover, it produces relevant geometric properties of the profile, such as its area, its controld location, the orientation of its principal area and values of its principal comments of inettia. The software is user oriented and requires no deep knowledge of the algorithm described herein. It is a part of a wider program system intended for the synthesis of cam profiles of various types of followers, out of which the one corresponding to flatface followers was presented proviously.

#### 6. ACKNOW MAGEMENTS

This work was realterd at the CAD Laboratory of the Graduate Division of the Faculty of Engineering, WAN. The support of this Faculty is gratefully acknowledged.

### 2. REFERENCES

- [1] Kothbart, E.A: Cams. John Wiley, N.Y., 1956.
- [2] Thompoulus, N.T. and Knowles, T. Wittee of linear programming for can design, Int. J. Bach, Des. Tool & Rev. Vol. 15, pp. 257-265 (1975).
- [3] Garcie de Jalón,J. and Nó Sáncher.M:Application of B-spline functions to the motion specification of came. ASNE paper 80-DET-28 (1980).
- [4] Angeles, J:Synthesis of plane curves with prescribed local geometric properties using periodle oplines.Computer-Aided Design. Vol. 15, pp. 147-155(1983).
- [5] Crant, H. and Soni, A.H:A survey of cammanufacture methods.Trans.ASNE J.Mech.Des. Vol. 101, pp.455-464 (1979).
- [6] Chen,F.YtA survey of the stars of the art of cam system dynamics.Nechanism and Hachine Theory, Vol.12, pp.201-224(1977).
- [7] Mischke.C.:Optimal offset on translating follower plate cass.Trans.ASEE J.Engng.ind.Vol. 92,pp.172-176(1970).
- (8) Buchsbaum,F. and Freudenstein.F:On a class of cam-type angular-motion compensators. Trans. ASME J.Engng.Ind. Vol.95,pp.487-496 (1973).
- [9] Chen, F.Y:Kinemutic synthesis of cam profiles for prescribed acceleration by a finite integration method, Trans. ASME J. Engng, Ind. Vol. 95, pp. 519-524 (1973).
- (10) Chen, F.Y: Analysis and design of cam-driven mechanisms with non-linearities. Trans. ASME J.Engng, Ind. Vol.95, pp.685-694 (1973).
- [11] Fagel, P.A. and Reisw.J.J.The building block method of cam design.ASME paper 76-DET-36(1976).
- [12] Weber, Jr. T: The precision of manufacturing of cams. ASNE paper 76-DET-37(1976).
- [13] Angeles, J. and Artesga .0:Optimal synthesis of cam mechanisms via the methods of Newton-Raphson and Runge-Kutta.Proceedings of the Second IFTORM International Symposium on Linkages and Computar-Aided Design Methods. Buchareat, Vol.111-1,pp.1-12(1977).
- [14] GADLIEF,M.A. and Uicker,Jr.J.J.Design charts for disk cams with reciprocating roller followers.Trans.ASHZ J.Hech.Des. Vol.101. pp. 465-470(1979).
- [15] Angeles, J. and López-Cajún. C: Diseño automa-Lizado do mecanismos de leva de disco con se guido: traslacional de cara plana. Momoria del 1X Congreso de la ANIAC. Nóxico.pp.91-93(1983).

- [16] Habie, H.H. and Ocvirck, F.U.N.Chanism, and Dynamics of Electricity, John Verley, S.Y. 1975.
- [17] Chicurel.R:Can size Hidd Station by othsetting.ASSR paper 62-023-55-77(1962).
- [18] Späth, M.Spline-Algorithmen for Fouried view glatter Katvern and Flacton, K.Oldenburg, Humigh, 1976.
- [19] Terauchi, Y. and El-Shnkerviki, ArA computer aided method for optimum do ign of phate-sursize avoiding undercutting and separation phenomena-1.35 (horism and Nochthe chaory, Vol.18, pp. 157-160 (1985).
- [30] Borsythe, G.S., Sileolm H.A. and Boler.C.E. Computer Hethods for Hothematical Computations.Prentice-Rall, S.J., 1977.



Fig.1 Periodic function generating the followerdisplacement programme



Fig.2 Geometry of a can mechanism with a translating knife-edge follower



٠.





Fig.4 Plots of eqs(15a616)



Fig.6 1 of the rise phase vs. pressure angle









# DIVISION DE EDUCACION CONTINUA FACULTAD DE INGENIERIA U.N.A.M.

DISENO CINEMATICO DE MAQUINARIA

# OPTIMAL SYNTHESIS OF OSCILLATIONS ROLLER-FOLLOWER CAM MECHANISMS WITH PRESCRIBED FUNCTIONAL CONSTRAINTS

DR. JORGE ANGELES ALVAREZ DR. CARLOS LOPEZ CAJUN

JUNIO, 1984.

# OPTIMAL SYNTHESIS OF OSCILLATING ROLLER-FOLLOWER CAN MECHANISMS WITH PRESCRIBED FUNCTIONAL CONSTRAINTS

Jorge Angeles and Carlos López-Cajún Facultad de Ingeniería, Universidad Nacional Autónoma de Héxico Apdo, Postal 70-236 O4310 México, D.F. MEXICO,

#### ABS:RACT

The synthesis of the can profile producing a given displacement program of its oscillating roller follower, while enclosing a minimum area and having a prescribed maximum pressure angle, is presented. The displacement program of the follower is synthesized, in turn, using cubic periodic splines. While the mathematical programming approach is followed throughout, it is shown that the problem can be solved using a simple root-finding routine applied to a nonlinear equation in one unknown. The procedure is illustrated with a fully-solved example showing its applicability to the automatic demign of cam-follower mechanisms.

### INTRODUCTION

While the literature on can mechanisms has widespread since the 1970's, incorporating computer-oriented methods of analysis, synthesis and manufacture [1-17]. can mechanisms with oscillating followers have received very little attention, except for [2] and some other references not fully devoted to this type of mechanisms . This paper follows two provious ones [18.19] concerning the optimal synthesis of cum mechanisms with translating flat-face and coller followers. The approach introduced in those papers is now applied to the synthesis of disk cans with oscillating coller followers producing the desired angular motion of the follower, while enclosing a minimum area and having a prescribed maximum pressure angle. Departing from the usual practice of prescribing the follower motion via harmonic, cycloidal or polynomial functions, all of which contain a limited number of free parameturs whose values are chosen so as to match the different motion phases (lower dwell, rise, upper dwall and return), the authors use cubic periodic splines. To this end, the concept of function and curve synthesis introduced in [20,21] is resorted to. This way, a computer program interacting with the user enables the latter to obtain a smooth follower motion with

e desired phases. A complete turn of the cam plate is but divided into the four phases having angular lengths by, for 2+1,2,3,4. The user can supply these lengths wither in degrees or as percentages of the total turn. In order to offer the user a visual verification of the follower displacement program, the software graphical capabilities provide a display either on a CKT or on a plotter. Once the follower-displacement program is symthesized, the method presented here proceeds to determine the can disk position at which the pressure angle attains its maximum absolute value. This is done by finding the roots of a nonlinear equation in one single unknown, namely the variable defining the can disk ;osition. This value then provides the geometric parameters of the can mechanism. All in all, a visual verification of intermediate results is possible, but the software is so designed as to enable a totally automatic mode of operation.

#### SYNTHESIS OF THE FOLLOWER-DISPLACEMENT PROGRAM

The angular displacements of the cam plate and the follower are denoted by  $\psi$  and  $\psi$ , respectively. Moreover,  $\phi$  is assumed to be the sum of a constant c, as yet to be determined, and a positive definite function  $u(\psi)$ , showe minimum value is 0, its maximum value being A, the omplitude of the follower oscillation, i.e.

$$\Phi(\psi) = c + \sigma(\psi) \tag{1}$$

Function  $O(\psi)$  is synthesized using section PQ of the cubic periodic spline  $\tau(\psi)$  shown in Fig.1. This is



synthesized, in turn, by specifying a hermonic distribution of  $T^{*}(\psi)$  at a set of equally spaced H points in the incerval [0,2m]. (The relationship between  $T^{*}(\psi) = \tau_{1}^{*}$ nd t(W2)=t2; for 2-1,2,...,# is linear [22]. Hence, as unknown ordinates of the supporting points of the spline can be obtained as the solution to a linear aystem, of equations, as shown in [20621]. Horeover, in order to obtain a vanishing slope of the resulting epline, at both P and Q. 1(\$) is prescribed to be add with respect to U-W and even with respect to U=#/2, 3#/2. The introduction of the said symmetries results in a smaller number of independent ordinates T2, in fact, only (0+3)/4. The resulting system of equations is sp-sociated to a fixff matrix that is symmetric, positive definite and tridiagonal, all properties of which render it well conditioned and very simple to handle in obtaining the Joknown ordinates. A proper scaling of the section PQ of Fig 1, plus a rigid body translation permit the obtention of the rise phase,  $R_1$ , of function  $\sigma(\psi)$ , of Fig 2. Finally, the return phase,  $R_2$ , of  $\sigma(\psi)$  is synthemized by first reflecting section PQ of  $\tau(\psi)$  with .respect to  $\psi = \pi$ , then scaling it and shifting it exactly as in synthesizing  $R_{1^{-1}}$  Constant c of function  $\phi(\gamma)$  is next retermined so as to produce a prescribed maximum pressure angle by, while making the area of the cam disk a minisum. This procedure is outlined in next Section.



'Fig.2 Follower displacement program

#### SYNTHESIS OF THE CAM PROFILE

The layout of the mechanism that is being synthesized is shown in Fig 3. From that figure, the following relations are readily derived:



Fig 3 Can mechanism with oscillating roller-follower

In order to obtain a good torque transminsion, jube pressure angle 0, shown in Fig 3, 1s bounded as

However, determining the exact position at which |a| attains its maximum value is not straightforward, given the lack of smoothness of the absolute-value function at the origin. Hence, the extreme of an even function of a that be smooth enough are sought. As already done in [1819], the values  $\psi_0$  of  $\Psi$ , at which cosa sttains its minima are now found. From Fig 3, cosa is obtained from the inner product of the vector connecting  $\Psi$  with T and the unit tangent to the pirefacence shown dotted in that figure. This is, in turn, the trajectory traced by the center of the toller on the cam elsk. Thus,

$$\frac{c_{0+0} - \frac{s_{100}}{(1+\beta^2)^2 - 2\beta(1+\beta^2)\cos^2\beta^2}}{(5)}$$

(6)

with

At this moment it is pointed out that the radical of the right-hand side of eq(5) is positive definite. In fact it equals the squared length of a triangle having sides 1 and  $B(1+\phi')$ , both making an angle  $\phi$ .

Zeroing of decoso/do leads to

$$CB^2 + DB + E = 0 \tag{7a}$$

where

$$C = \phi^{\dagger} \{1 + \phi^{\dagger}\}^{2} \cos \phi - \phi^{\prime\prime} \{1 + \phi^{\dagger}\}^{2} \sin \phi$$
 (7b)

E-¢'cos¢ (7d)

Now,  $\{\alpha\}$  estains its maxima at values of  $\phi$  where cost attains its minima. Let

 $\psi_0$  being the particular value of  $\psi$  as which commu-

Fig. 4 shows a mechanism configuration at which the follower is at its lower dwell. Bence,

$$\cos c = \beta$$
 (9)  
 $\sin c = \frac{p_0}{a} = (1-\beta^2)^{\frac{1}{2}}$  (10)



Fig 4 Follower at its lower dual)

$$FB^{*} + 2CB^{*} + H^{2} = 0$$
 (11a)

$$\mathbf{x}_{1}^{*} = \mathbf{x}_{0}^{*} - \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}_{0}^{*} + \mathbf{x}$$

$$K_2 = (1+0^{\circ}) m^{\circ} = c_0$$
 (111)

 $v_{0} - \sigma(\phi_{0}), \sigma_{0}^{*} = \sigma_{0}^{*}(\phi_{0}), c_{0} = \cos \sigma_{0}, s_{0} = \sin \sigma_{0}$ 

From eq(11s) one obtains  $\beta$  as a function of  $\psi_0$ , which then is substituted into eq(7a) together with eqs(1,8,9510), thus producing a nonlinear equation,  $f(\psi_0)=0$ , in one single unknown,  $\psi_0$ .



## Fig. 5 Plot of function f(\$)

Fig 5 shows a plot of  $f(\psi)$  for the conditions given in the Example. The value of  $\psi$  at which  $f(\psi)$  vanishes,  $\psi_0$ , can be obtained either visually from that plot or iteratively, using a suitable algorithm. As previously done [18619], subrouting ZEROIM [23] is used within the program written for the synthesis of this type of follower. Once  $\psi_0$  is determined,  $\sigma_0$  and hence  $\sigma_0^*$  and  $\sigma_0^*$ can be readily determined from function  $\sigma(\phi)$ , of fig 2. With  $o_0$  and  $o_0$  already determined, parameter 8 is obtained from eq(11a). Constant c can thus be computed from eq(9). Function  $\phi(\psi)$  is therefore totally determined. Substituting these values into eqs( 261), for a discrete set of values of  $\psi_{i}$  ( $\psi_{i}$ ); a set of pairs  $\{\rho_{i}/a, 0_{i}\}_{i}^{n}$  can be readily computed. These determine in points of the pirch curve, which are now used as the supporting points of a cubic periodic parametric spline used to trace the normalized sold curve, i.e. for a-1. The actual size of this curve is then obtained once pa-Tameters a and r, shown in Fig 3, are defined. The radius of the coller for a unit length a, r/a, can be computed from the pitch curve for a unit length a, by prescribing r/s to be a given fraction q of the minimum radius of curvature of the sold pitch curve. In order to -void undercutting. The said fraction can be determined,

turn, from contact stress considerations, as pointed .4 in [2]. The radius of curvature of the pirch curve, rp, and the pressure angle, 0, are given by [2]

$$\frac{e \sin^2 \phi}{\left(1-\phi^1\right) \cos^2 \alpha \left(\frac{\sin \phi}{\cos \phi \phi} + \frac{w'}{1-\phi''} \sin \left(0+\phi\right) \frac{\phi^{(1-\phi'')}}{\left(1-\phi''\right)^2} \cos \left(0+\phi\right)}\right)}$$
(12)

$$= \tan \frac{-1}{\left[ \cot \phi - \frac{\beta(1-\phi^*)}{\sin 2} \right]}$$
(13)

The softwarm realizing the method presented here produces  $r_p(\psi)$  both numerically and graphically. Moreover, it yields the extrema of this function with the aid of subroatine MIN [2]]. Fig 6 shows a plot of  $r_p/a$ for the conditions given for the Example. Let  $r_m$  be the minimum value of  $r_p/a$ ,  $p_p$ ,  $p_c$  and n denoting the position vactors of corresponding points on the pitch curve and on the cam profile, as well as the unit normal vector of both curves at corresponding points, respectively. Thu cam profile is thus synthesized from the relation [19]:

$$\mathbf{p}_{\mathbf{p}} = \mathbf{p}_{\mathbf{p}} = \mathbf{rn} \tag{14}$$

The can profile obtained from eq(14) corresponds to a unit value of parameter a. This can be chosen, in turn, from considerations of space availability together with maximum allowable value of the contact stress. Used this parameter is determined, the actual cam profile is determined by scaling the foregoing normalized parameters, which is done by a simple multiplication.

#### DIAMPLE

a

Synthesize a can follower mechanism for an owcillating roller follower, which will produce the follower displacement program appearing in Table 1. The pressure angle is to attain a maximum absolute value of J0°, the amplitude of the follower oscillations being prencribed as 45°

| Phase                   | Angle of<br>rotation (ψ) | Displacement |
|-------------------------|--------------------------|--------------|
| D <sub>1</sub> (dwell)  | 36*                      | 0"           |
| X (rise)                | 72*                      | +45"         |
| D <sub>2</sub> (dwell)  | 144*                     | 0"           |
| R <sup>2</sup> (return) | 108*                     | -45"         |

Table 1 Prescribed angular-displacement program



/here

wîth

The synthesis was executed with the software developed for the implementation of the method presented here. The values obtained, for a unit value of a, were ψ = 82.61<sup>4</sup>

Prescribing q=0.75 the radius of the roller was thus set as

r/a = 0.285

Function f(0), and the radius of curvature of the pitch curve are plotted in Figs 3 and 6. respectively. The synthesized cam profile is shown in Fig 7. Finally, the software produced the following geometric parameters: Arus of the cam disk = 2.0963

Centroid coordinates: x = -0.1877, y = -0.0805 Principal moments of

inertia of the centroid:  $I_1 = 0.4544$ ,  $I_2 = 0.3596$ 

The principal axes of inertia, E1, E2, corresponding to I<sub>1</sub> and I<sub>2</sub>, are shown in Fig 7.



#### CONCLUSIONS

The method presented here implicitly produces a minimum-fize cam disk for an oscillating toller-follower. moving according to a prescribed angular-displacement program. In fact, by imposing the condition that the maximum absolute value of the pressure angle attains a given value a, the procedure produces the minimum-size can disk. The use of cubic periodic splines, for both the synthesis of the angular-displacement program of the follower and the synthesis of the pitch curve, and hence for that of the comprotile, allows a relatively simple computation of the geometrical parameters of the entire can mechanism. The software implementing the foregoing method gives the designer the freedom to choose the redius of the roller by allowing him/her to specify it as a fraction, q. freely chosen. Moreover, the designer

can determine freely the overall size of the mechanips by properly choosing parameter a. He/she can do this considering space availability and maximum contact stress. Since the paper is concerned with the pure geometric synthesis of the Mechanism, such considerations were left aside here. The noftware can be integrated. however, to a more general CAB program \* enabling the designer to couple it to a Fill package allowing him/her to consider such effects as contact stress, stress concontrations and failure criteria. Finally, the software implementing this method produces geometric paramyters such as area, controld location and principal coments of inertia, that are necessary for a gratic and dynamic analysis of the mechanism.

#### ACKNOWLEDGERENTS

The research work reported here was performed at the CAD Laboratory of the Graduare Division of the Faculty of Engineering-National Automonous University of Mexico, The authors gratefully acknowledge the full support of this Division (DEFFI-UNAM).

#### REFERENCES

1. Rischke, C., "Optimal Offset on Translating Fol-lower Flate Cans", <u>Journal of Foringering for Industry</u>, Vol. 92, No. 3 Feb. 1970, pp.172-176.

2. Sermon, C. F., and Lintecki, A., "Search for Optimum Solution of a Single Disk Can Mechanism with an Owcillating Roller Follower", ASHE Paper No. 72-MECH-61. 1972.

3. Buchabaum, F., and Freudenstein, F., "On a Class of Cam-Type Angular Notion Compensators", Journal of Envineering for Industry, Vol.95, No.2, May 1955, pp.41 - - ----

4. Teest, D., and Hatthew, C. K., The Dana- tes Synthesis, Analysis, and Design of Modeled Gar (1982) Lexington Books, Lexington, Mussachusets, 197

5 Chakraborty, J., and Disinde, S. C., Kine and willey, Geometry of Planar and Spatial Cam Mechanismy, -New York, 1977.

6. Hiroshi, T., Kinemation Desire of Com Fallower Sys-

tems, Dissertation, Columbia University, 1976. 7. Chen, F. Y., "A Survey of the State of the Art of Can Systems Dynamics", Mochanism and Machine Theory, Vol. 12, 1977, pp.201-224.

8, Angeles, J., and Arteasa, O., "Oprimal Synthesis of Cam Mechanisms via the Methods of Newton-Raphson and Runge-Kutta", Second IFTa", International Sympositic on Linkages and Computer-Alect Traten Methods, Bucharest, Romania, Vol. III, 1977, pp.1-12. 9, Grant, B., and Soni, A.H., "A Survey of Can Sun-ufacture Methods", Journal St Mechanical Decim, Vol. 101,

Jul. 1979, pp.455-504.

10. NS Sinchez, H., and Carefa de Jalón, J., "Application of B-Spline Functions to the Notion Specification

of Camp", ASHE Paper No. 80+757-78, 1980. 11. Bertok, N., "Optimization of Cam-Follower Systems With Kinematic and Dynamic Constraints", Journal of Suchanical Design, Vol. 104, Jun. 1987, pp.29-13.

12. Chen, F. Y., Mechanics and fasten of Can Mechonland, Pergamon Press, New Yors, 1962.

13. Di Benedetto, A., and Vinciguerra; A., "Etwematic Analysis of Place Can Profiles not Analytically Defined", Journal of Sectionical Design. Vol. 104, Jan. 1982, pp. 34-38,

14. Rao, S. S., and Cavane, S. S., "Analysis and Synthesis of Mechanical Error in Cam-Follower Systems", Journal of Mechanical Design, Vol. 104, Jan. 1942, pp. 32-62.

15. Ghosh, A., and Yadav, R.P., "Synthesis of Cas-Follower Systems with Rolling Contect", Fochantism and Machine Theory, Vol. 18, No. 1, 1983, pp.49-56.

16. Terauchi, Y., and El-Shakery, S. A., "A Computer -Aided Method for Optimum Design of Plate Cam Size Avoiding Undercutting and Separation Phenomena-I", <u>Mechanism</u> and <u>Machine Theory</u>, Vol. 18, No. 2, 1983, pp.157-163.

17. Terauchi, Y., and El-Shakery, S. A., "A Computer -Aided Method for Optimum Design of Plate Cam Size Avoiding Undercutting and Separation Phenomena-II", <u>Mechanism</u> and Machine Theory, Vol. 18, No. 2, 1983, pp.164-170.

18. Angeles, J., and López-Cajún, C., "Diseño Automa tizado de Mecanismos de Leva de Disco con Seguidor Tras lacional de Cara Plana", <u>Memoria del IX Congreso de la</u> ANIAC, León, Gto., México, Sep. 1983, pp.91-93.

19. Angeles, J., and López-Cajún, C., "Optimal Synthesis of Translating-Follower Cam Mechanisms With Prescribed Functional Constraints", <u>International Symposium</u> on Design and Synthesis, Tokyo, Japan, Jul. 1984.

20. Angeles, J., "Synthesis of Plane Curves With Prescribed Local Geometric Properties Using Periodic Splines", <u>Computer-Aided Design</u>, Vol. 15, May 1983, pp. 147-155.

21. Angeles, J., "Sintesis de Curvas Planas Cerradas Usando Funciones "Spline" Paramétricas y Periódicas", <u>Revista de la ANIAC</u>, México, Vol. 2, No. 1, Mar. 1983, pp.53-81.

22. Späth, H., <u>Spline-Algorithmen zur Konstruktion</u> glatter Kurven und Flächen, 2nd Ed. R. Oldenburg, Munich, FRG, 1978, pp.27-28.

23. Forsythe, G., Malcolm, M. A., and Moler, C. B., <u>Computer Methods for Mathematical Computations</u>, Prentice Hall, New Jersey, 1977.



ţ

ł

# DIVISION DE EDUCACION CONTINUA FACULTAD DE INGENIERIA U.N.A.M.

# DISENO CINEMATICO DE MAQUINARIA

# DISENO AUTOMATIZADO DE MECANISMOS DE LEVA DE DISCO CON SEGUIDOR TRASLACIONAL DE CARA PLANA

DR. JORGE ANGELES ALVAREZ DR. CARLOS S. LOPEZ CAJUN

JUNIO, 1984.

## OFFERD AUTOMATIZADO DE RECAMISHOS DE LEVA DE DISCO CON SECULIDOR TRASLACIONAL DE CARA PLANA

Jorge Angeles Alvarez Carlos S. López Legún División do Estudios de Posgrado de la Facultad de Inceniería, 1808 Apdo, Postal 70-256 04510 Máxico, D.F.

#### Resumen

Se presenta la sintetis automótica de meanismos de leva con seguidor traslacionol de cara plana. La curva de dettlazemiento del seguidor se sintetiza mediante curvas spline presidicas, las cuales satisfacen condiciones preseritas de aceleration. En base a lo anterior se determina el radio óptimo del circulo base para un descentratiento máximo dado. Finalmente, el perfil de la levi se obtiene codjante curvas spline paramétriras periódicis, que interpolan los puntos generados por las ecuaciones de sintesis.

#### Abstract

The computer-aided synthesis of disk can mechanisms with translational flat face follower is presented. The follower displacement program is synthesised by periodic spline curves, which satisfy prescribed esceleration conditions.Bused on the toregoind, the optimum radius of the base circle is determined for a given maximum contact point recentricity. Finally, the cam profile is obtained by fitting periodic parametric spline curves through the points generated by the synthesis equations.

### Introducción

Con el adventatento de las máguinas horramienta de contro) munărico, la manufactura de levas es mis confiable y practa [1]. For otra parte, durante las últimas décadas se hun realizado diversos estudios sobre el análisis y la sintesis de mecanismos de leve [2], muchos de los cuales involucran el uso de la computadora. En particular, sobre diseño óptimo de'levas, pueden citorse los tracajos de Chicurel [J], Hischke [4] y Angeles y Arteuga [5], entre otros. En usto trabajo so presenta un caso particular de síntesis de levas: pero, a diferencia de la práctica tradicional, que se base en el uso de un número limitado de funciones que contienen a su vez un número Finitedo de parámetros independientes, aquí se carestra el uso de curvas spline periódicas sintetizadas en terma tal que satisfacen condiciones de acoleración prescritat y que mirantizan continuidad on la volocidad del segundar [0,7]. La intro- ducción de functenes spline pomite conter con un número artitrario de parámitros independientes (lor coeficientes de la soline), que permiten satisticer un nimero igualmente arbitrario de condictimes soore al desplayamento del seculdor. las curvas spline han sido utilizadas por Kó Sánches y García de Jalón [6] para obtenir los programme del segundar. Sin enbando, un osto tryba-Jo. Vichas culvas se encuentran almae madas, en un banes de datos y, mediante escalusionica (y/o reflexión), pueden generarse los programas de desplazamiento de seguidar requeridos, de los evales se pueden obtener los puntos de velecidad máxica y por lo tanto, el radio óntimo del circulo base para un descentraciento táxico permitido. Por último, consciendo el radio del circulo base el perfil de la leva se obtieno al interpolar los puntos generados por las equeciones de sintenis, cadiante curvas spline pararitericas períodicas. Las funciones solino beriódices usadas atus para representan el desplazamiento del seguidor son de la forma

 $s(t) = a_k (n + n_k)^n + b_k (y + y_k)^2 + c_k (y + t_k) + d_k$ math  $y_k = y_{k-1} + 1$ donds  $a_k + b_k + c_k (1 + 1, ..., n)$  so obtions do las
condiciones de periodicidad  $s(0) = s(2^+) t^*(0) = s^*$ (2\*),  $s^*(0) = s^*(2^+)$  y de continuidad on + 1, (2, ..., en tanto en  $s(1^+)$  coro en  $s^*(1^+)$  y on  $s^*(1^+)$ , para
satisfacer valores presentos de  $t^*(0)$  on  $t_1$ ,  $y_2, ..., y_n$ . (Los dotalles pueden versen en  $(2^+)$ ).

#### Definición dol Problema

Dados los intervalos  $t_1, t_2, t_3 y t_4$ , est como la eltvación del seguidar, h, que definen el programa de exsplazaciento de éste, ver fig 1, estenar el perfil de la leva de área minimo, que genere est programa y que tença un descentramiento máximo dado del punto de contacto, PA, de la fig 2.

#### Sintesis del programa de desplazamiento del seguidor

Se requiere sinterizar la curva víblivs, e de la Fig. 1. comerciando las fasos de reposo Ry y Ro. de forma tal que E y B sman tangentos a P1 y H2 en +1, 12, 03. y re. Esto es para curantizar que la volcoidad del seguidar sea continua en los puntos de comerción, Adresis, dado que la ineleración del seguidor es una tunción lineal de s" (3) y con e) fin de unentizar la continuidad de diche accleración e pita, 15 924, s"(\*) debe anu-larsu en estos puntos. Las aún, se desea que la aceleration cambie successence entrony ply y en-tre %3 y t4. Lo anterior to puede lograr [7] rediante el uscalamiento adecuado del tramo PQ de la cuiva spline perticica de la Fig. 3, la cual se eleventra almacenada en un banco de datos. La statutis de la curva 2. definida catheris yba. se logia mediante la reflexión y esexiamiento del Sista Cramo PQ,

#### Sintesis del porfi) de la leva-

Considerando la Fin. 2, sean N y L times fijas al marco del mocanismo y a la leva, respectivacente. El finjulo le mide la rotación de la leva con respecto al marco, en tanto que s(c) puede considerarse como la suma de una constante 2, el radio del circulo base, más una función positiva definida a(+), cuyo valor mínimo es coro, siendo su valor máximo igual a h.

De la geometría de la Fig..2, se tiene:

Igualando las velocidadas en la dirección vertical del punto A, se tiene:

chadu  $v_{AL}$  es la componente vertical de la velocidad de A como punto de la leva y  $v_{AS}$  es la velocidad de A como punto del seguidor; por lo tento:

¢

De (1) y (3b) se tiene:

$$s^{2}(*) = s^{2}(*) + s^{*2}(*)$$
 (4)

Combinando (4) y (5) se obtiene el perfil de la leva dado por p = p(1),

## Determinación del radio óptimo del circulo base

On the geometria de la Fig. 2, se tiene:  

$$\pi X = a \cos(e + \phi)$$
 (6)

ustituyendo (6) cn (3a) y despejando 87:

 $BA = \frac{s}{2} = \frac{ds}{dy}$ (7)

conde.

sierdo Emár el máximo descentramiento (por unidad de longitud de radio del circulo base) permitido, se tiene:

$$\frac{\pi \pi}{y_{s}} = \frac{1}{2} \ln \pi x$$
 (9)

$$s^{*}(s) \leq c_{w\delta x} c^{*}$$
 (10)

de nonde puelle obtenerse el radio optimo del circuto base

$$c_{\text{det}} = \frac{H5 \times I_{\text{S}} + (\nu) I}{5 \mu \delta x}$$
(11)

Las velocidades máximus correspondenta los puntos de inflexión de las curvas Ely B, esta esta esta puntos donde la aceleración se anula y que por construcción de las curvas correspondenta los valores  $t = (s_1 + s_2)/2$  y  $s = (s_3 + s_4)/2$ 

### Descripción del algoritro

- Lee los intervalos t1,t2,t3,t4, la elevación h y el máximo descentraciento permitidatera
- Genera las curvas de elevación y descenso del seguidor cediante escalemiento adocuado. Grafica está curva
- 3. Obtione Copt

t

- 4. Obtiene θ(e) y ρ (\*)
- S. Genera p (\*). Lo grafica reciante curvas splina paramétricas periòdicas

#### Ejempio

Obténgase el carfil de la leva que produzca el movipiento del seguidor mostrado en la Tabla 1 para un descontramiento máxico de 50%, y una elevación h=5 unidades de locjitud. El perfil obtenido se muestra en la fig. 4.

#### <u>Conclusiones</u>

Se mostró un procedimiento para obtener, en forse automítica, tanto el programa de desclazamiento del seculdor como el pertit de la leva de área mínima con un descentramiento máxima prescrito del punto de contecto. El algoritmo utilizado se realizó en un programa de computatora, al cual tiene acceso al usuario en fuma conversacional y propursiona los resultados tento en forma numérica como gráfica, in el último caso, se pueden obtener éstos en partalla o en copia dura mediante el uso de un gráficador. Se utilizaron para este fin las instalaciones del Laboratorio de Cálculo Automáticado para el Olseno de la División de Estudios de Posgrado de la Facultad de Ingeniería, UNAM.

#### Referencias

- Grant B. y Soni A.H., "A survey of can manufacture methods", Journal of Mechanical Design, July 1079, Vol. 301, pp. 455-564.
- Chen F.Y., "A survey of the state of art of cam system dynamics", <u>Mechaniss and Machine</u> <u>Theory</u>, 1977, Vol. 12, pp 201-224.
- Chicurel R., "Cam size minimization by offsetting", ACME paper No. 52-01-22, 1967
- 4: Mischke C., "Optimal office: on translating follower plate cams", Journal of University for Industry, February 1970, 101, 90.
- Angoles J. y Anteana G., "Costmal syntresis of cwm mechanisms via the prolocy of Newton-Raphson and Runge-Kuttan, <u>Screph (Fight)</u> International Symposium on Since 2014 Computer Aided Lessign Strephs, Jackarest, Romania, June 10-21, 1977, vol. 117, pp 1-12.
- No Sanchez H. y García de Julén J., "Application or R-spline functions to the motion specification of cams", <u>ASP2 paper No. PQ-DET-</u> 28, 1900.

(8)

- Angeles J., "Synthesis of plane curves with prescribed local geometric properties using periodic splines", <u>Crogouter-Aided Design</u>, May 1983.
- 8. Angeles J., Anflisis y Sintesis Chamáticos de Sistemas Feránicos, Editorial Linusa, C. de Mexico, 1978.

|           | TABLA 1                                                                                             |                                                                                                                                                        |  |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Intervalo | Tipo de movimiento                                                                                  |                                                                                                                                                        |  |  |  |  |
| t, = 36*  | reposo (R <sub>1</sub>                                                                              | )                                                                                                                                                      |  |  |  |  |
| t, = 108* | elevación (E                                                                                        | )                                                                                                                                                      |  |  |  |  |
| t - 144*  | reposo (R <sub>2</sub>                                                                              | )                                                                                                                                                      |  |  |  |  |
| t. 72     | descenso (1)                                                                                        | 1.                                                                                                                                                     |  |  |  |  |
|           | Intervalo<br>$t_1 = 36^{\circ}$<br>$t_2 = 108^{\circ}$<br>$t_3 = 144^{\circ}$<br>$t_4 = 72^{\circ}$ | IntervaloTipo de movimie $t_1 = 36^{\circ}$ reposo(R_1) $t_2 = 108^{\circ}$ elevación(E $t_3 = 144^{\circ}$ reposa(R_2) $t_4 = 72^{\circ}$ descenso(B) |  |  |  |  |



Fig. 1 Programa de desplazamiento del seguidor











Nota final: El perfil de la leva se obtuvo con 37 puntos de apoyo distribuídos de la siguiente manera: 9 puntos de apoyo en cada período de reposo y 10 puntos de apoyo en los períodos de ascenso o descenso.

72