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The PDP-11 has evolved quite differently from the other computers discussed
in this book and, as a result, provides an independent and interesting story. Like
the other computers, the factors that have created the various PDP-11 machines
_have been market and technology based, but they have generated a large number
of implementations (ten) over a relatively short (eight-year) lifetime. Because
there are mu.aple implementations spanning a performance range at the same
-time, the PDP-11 provides problems and insight which did not occur in the evolu-
tions of the traditional mini (PDP-8 Family), the optimal price/performance ma-
chines (18-bit), and the high performance timeshgging machines (the DECsystem
10). The PDP-1t designs cover a range of 300:1 in system price {3500 to $250,000)
and 500:1 in memory size {4 Kwords to 2 Mwords).

Rather than attlempt to summarize the goals of designers, sentiments of users,
" or the thoughts of researchers, the discussion of the PDP-11 is divided into chap-
ters which, in most cases, consist of papers writlen contemporaneously with vari-
ous important PDP-11 developments. The chapters dre arranged in five
categories: introduction to the PDP-11, conceptual basis for PDP-11 models, im-
plementations of the PDP-11, evaluation of the PDP-11, and the virtual address
extension of the PDP-11. ' '

"INTRODUCTION TO THE PDP-11

Chapter 9, first published when the PDP-11 was announced, introduces the
PDP-11 architecture, gives its goals, and predicts how it might evolve. The con-
cept of a family of machines is quite strong, but the actual development of that
family has differed a good deal from the projections in this chapter. The major
reasons (discussed in Chapter 16) for the disparity between the predicted and
‘actual evolution are:

1. The notion of designing with improved technology, especially for a family
of machines, was not understood in 1970. This understanding came later
and was presented in a paper in 1972 [Bell er al., 1972b].

The Unibus proved unacceptable for intercommunications at the very high
and low-end designs. Although Chapter 9 suggests a multiprocessor and
multiple Unibuses for high-end designs, such 4 structure did not evolve as
a standard.

3. The uddress space for both physical and virtual memory was too small.

23
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232 THE PDP-11 FAMILY

4. Several data-type extensions were not predicted.- Although Moating-point

arithmetic was envisioned, the character string and decimal operations

. were not envisioned. or 4t least were not described. These data-types
evolved in response to market needs that did not exist in 1970,

CONCEPTUAL BASIS FOR THE PDP-11 MODELS ,

Chapters 10 and 11 consist of two papers that form some of the conceptual
basis for the various PDP-11 models. Chapter 10 by Strecker is an exposition of
cache memory structure and its design parameters. The cache memory concept is

" the basis of three PDP-11 models, the PDP-11/34A, the PDP-11/60, and the
PDP-11/70, in addmon to the cache-8 (Chapter 7) and the KL10 processor for the
PDP-10 (Chapter 2}).

Strecker gives the performance evaluation in terms of cache miss ratios,
whereas the reader is probably interested in performance or speedup. These two

mcasures. shown in Fizure 1, are related [Lee, 1969) in the following way {(assum-
mg an infinitely fast processor):

p = Total number of memory accesses by the processor Pc
m = Number of memory accesses that are missed by the cache and
have 10 be referred Lo the primury memory Mp
e = Cvele tiing of cuche memary Mg
+tp = Cycle time of primary 1memory Mp
R = 1p/ic(ratio of memory speeds), where R is typically 310 10

The relative execution speeds are:

I(no cache} = pR
1{to cache) = p+ mR
speedup = pR/{p+ mR)= R/{l + (m/p)R)
a = miss ratio = m/p .

Therefore:
speedup = R/(1 + aR)=1/(a + 1/R)
Note that:
Ifa = 0(100% hit), the speedup is R
Ifa = 1(100% miss), the speedup is R/(} + R} i.e., the speedup is

less than 1 (i.e., time 10 reference both memories)

" Chapter 11 contains a unique discussion of buses - the communications link’
between 1wo or more computer system components, Although buses are a stand-
ard of inlerconnection, they are the least understood element of computer design
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1 p = TOTALNUMBER OF MEMOAY ACCESSES
By THE PROCESSOR Pe

m = NUMBER DF MEMORY ACCESSES THAT ARE
MISSED BY CACHE AND HAVE TO BE
REFEAREDTOMp

Figurg 1. The sl . tate of 70 Miatre,
and Mp of cached computer.

because their implementation is distributed in various components. Their behav-
tor is difficult to express in a state diagram or other conventional representation
(except a timing diagram) because the operation of buses is inherently pipehined:
hence, design principles and understanding are minimal.
In Chapter 11, Levy first characterizes the intercommunication problem into
the constituent dialogues that musi take piace between pairs of components. A fter
. giving a general model of interconnection, Levy provides examples of PDP-11
buses that characterize the general design space, Finaily, he discusses the various
intercommunications {model) aspects: arbitration (deciding which components
can intercommunicate), data transmission, and error control. :

IMPLEMENTATIONS OF THE PDP-11

Chapter 12 is a descriptive narrative about the design of the L.SI-11 at the chip,
board, and backplane levels. Since it was written from the viewpoeint of a knowl-
- edgeable user, it lacks some of the detail that the designers at Western Digital

{Roberts, Soha, Pohlman) or at DEC (Dickhut. Dickman, Olsen, Titelbaum)

might have provided, A detailed uccount of the chip-level design is available,
however {Soha and Pcohlman, 1974].

Two design levels are described: the three chip set micreprogrammed computer
used to interpret the PDP-11 instruction set, and the particular PMS-level com-
" ponents that are integrated into a backplane 1o form a hardware system. Chapter
12 also provides a discussion of the microprogramming tradeofT that ook place
between the chip and module levels. This tradeoff was necessary to carry out the
clock, console, refresh, and power-fail functions which are normally in hardware.

Since the time that the Sebern paper (Chapter 12) was written. packaging for
LSI-{1 systems has moved in two directions; toward the single board micro-
computer and toward modularity, The single board microcomputer concept is
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the highest pcrfurmuncc machine of the fumily, ard thus has (o have the righi
balance of features, price,.und performance against criteria thut ure usually vague.

- Four interesting aspects of compulcr engineering are shown in the PDP-1 /60
the cache to reduce Unibus traffic; trace-driven design of flouting-point arith-

metic processors; writable control slorc and SpCCldl I'eaturcs for n.hdblhty. avail-

ability, and maintainability.

The Unibus was found to'be inadequate for handling ali 1hc data lr.:tTc in hl&h
performance systems, but by using a cache, most:processor references do not use
the Unibus and so leave it free for 1/O traffic. In the PDP-11/60 work described
in this chapter, Mudge uses Strecker’s (Chupter 10) program traces and method-

ology. The cuche design process is implicit in the way in which the work is carried .-

out to determine the structure parameters. Sensitivity plots are used 10 determine
the effects of varying each parameter of the design. The time between changes of

context is an important parameter because all real-time and multiprogrammed

sy’s’.tcms have many conteat switches. The - wdy iwadm g oo ihe ;.j:uir::ir T
block siic s also given. : )

Microprogramming is used to provide both increased user- fe\'cl capability and’

increased reliability, availability, and mdimdlndbllll) The writable conlrol slore

option is described togclhcr with its novel use for data storuge. This optmn has
" been recently used for emulating the PDP-8 a1 the OS/8 operating sysiem fevel.

Chapter’'14 presents 4 comprehensive comparison of the eight proccsmr imple-

mentations used in the ten PDP-11 models. The work was carried out to invest:

igate various design styles for a given problem. numely, the interpretation of the
PDP-11 instruction set. The tables provide viuluable insight into processor imple-
mentations, and the data is particularly useful because it comes from Snow und
Siewiorek, non-DEC observers examining the PDP-11 machines. -

The tables include:

1. A setof instruction frequencies, by Strecker, for a set of ten different appli-
cations. (The frequencies do not reflect all uses, e.g., there are no floating-
point instructions, nor has operating system code been anslyzed.)

2.  Implementation cost (modules, integrated circuits, control store widths)
and performance (micro-'and macroinstruction times) for each model.

3. A canonical data path for all PDP-11 lmplemcntat:ons against whnch each
processor is compared.

With this background data, a mp-d‘o“n model is built which explains the per- °

formance (macroinstruction time) of the vanous implementations in terms of the
microinstruction execution and primary memory cycle time. Because these iwo
parameters do not fully explain (model) performance, a bottom-up approach is

- also used, including various design techniques and the degree of processor over-
Jup. This anulys’s of a-constrained problem should provide useful insight 1o both
computer and peneral digital systems designers,

4
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exemplified by the bounded system shown in Figire 2. This integrated system
contuins an LSI-11 chip set. 32 Kwords of memory, connectors for six commu-
nication line interfaces, and a controller for two lNoppy disk drives. It uses 175
circuits (to implement the same functionality using standard LSI-11 modules
would require 375 integrated circuits). The modularity direction is exemplified by
the LSI-11/2, for which typical option modules are shown in Figure 3.

Unlike the reports from an architect’s or reporter's viewpoint, Chapter 13 is a
direct account of. the design process {rom the project viewpoint. A mid-runge
machine is an inherently difficult design because it is neither the lowest cost nor
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Figure 2. A bounded L5H-11 based system.
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EVALUATION OF THE PDP-11

Chapter 15 cvaluates the PDP-1] as a machine for executing FORTRAN. Be-
cause FORTRAN is the most often executed lunguage for the PDP-11, it is im-
portant to observe the PDP-11 urchitecture as seen by the kinguage processor - ils
user. The first FORTEAN compiler and object (run) time system are described,
together with the evolutionury extensions 1o improve performance. The FOR-
TRAN IV-PLUS (optimizing) compiler is only briefly discussed beciuse its im-
provements, largely due to compiler optimization technology, are less relevant 1o
the PDP-11 architecture. .

The chapter title, “Turning Cousins into Sisters,”™ overstutes the compatibility
problem since the five variations of the PDP-11 instruction sel for floating-point
arithmetic are made compatible by essentially providing five separate object (run)
time systems and a single compiler. This trunsparency is provided quite easily by
“threaded code.™ a concept discusssd in i< chapizr

The first version of the FORTRAN muchine was u simple stuck machine. As
such, the execution times turned out to be quite iong. In the second version. the
recognition of the special high-lrequency-of-use cuses {(¢.g.. A «0, A~ A + 1) und
the improved conventions for three-address operations (1o and from the stach)
allowed speedup factors of 1.3 and 2.0 for Noating-point and integers.

It is inleresting to compare Brender’s idealized FORTRAN IV-PLUS muchine
with the Floating-Point Processors (on the PDP-11/34, 11/45, 11755, 11/60, and
11/70). If the FORTRAN machine described in the paper is implemented in mi-
crocode and made to operate at Floating-Point Processor speeds, the resulting
.maghines operate at roughly the same speed and programs occupy roughly the
Same program space. ' '

The basis for Chapter 16, *What Have We Learned From the PDP-117" [Bell
and Strecker, 1976] was written to critique the original expository paper on the
PDP-11 {Chapter ) and to compare the actual with the predicted evolution. Four
critical technological evolutions - bus bandwidth, PMS structure, address space,
and data-type - are examined, along with various human organizational aspects
_ of the design.

The first section of Chapter 16 compares the original goals of the PDP-il
(Chapter 9) with the goals of possible future models from the original design
documents. Next, the [SP and PMS evolutions, including the VAX extension,-are
described. The Unibus characteristics are especially interesting as the bus turns
out to be more cost-effective over a wider range than would be expected.

The section of the chapter which deals with multiprocessors and multi-
computers gives the rationale behind the slow evolution of these structures. Be-
cause a number of these computer structures have been built (especially at
Carnegie-Mellon University), they are described in detail.

The finul section of the chapter interrelates 1echnology with the various imple-
mentatiors {(including YAX-11/780) thut have occurred. Table 6 gives the per-
formance characteristics for the various models with the relevant technology,
contributions, and implementation techniques required to span the runge,
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VIRTUAL ADDRESS EXTENSION OF THE pPOR-11

The latest member of the PDP-11 family, the Virtual Address Extension 1 ar
VAX-11, is described in Chapter 17. This paper, by the architeet of VAX-11,
discusses the new architecture und its lirst implementation, the VAX-T1/780.

VAX-11 extends the PDP-11 1o provide a large, 32-bit virtual uddress for cuch K
-user process. The architecture includes u compatibility mode thal allows PDP-11
programs written for the RSX-11M program environment 1o 1un unchanged. In o
this way, PDP-11 programs can be moved among VAX and PDP-] I_compulcrs.

- depending on the user's address size und compulatienal and ggncrullly .l"lt:t:‘.dﬁ. ‘

Chapter |7 provides a clean, somewhat terse, yel comprehensive Ficscrlptlun ol
the VAX-11 architecture. Because the VAX purt of the architecture is so cun-\ph:tc
in terms of data-lypes, operators, addressing und memory management, 11 cun
also serve as 4 lextbook model and case study for architecture in generul. Gouls,
¢onstraints, and various design choices are given, although explunations of what
was traded away in the design choices ure not dcluilcd.‘ o o o

e

A New Architecture
for Minicomputers
Co - —The DEC PDP-11

C.GORDON BELL. ROGER CADY. HAROLD McFARLAND,
BRUCE A. DELAGI JAMES F. O'LOUGHLIN,
RONALD NOONAN. and WILLIAM A WULF

INTRODUCTION

The minicomputer* has a wide variety of
_uses: communications controller, instrument
" controller, larpe-system preprocessor, real-time
data acquisition systems, . . . desk calculator.
His orically, Digita!' Equipment Corporation’s
(DEC) PDP-8 family, with 6000 installations
has been the archetype of these minicomputers.

In some applications current minicomputers
have limitations. These limitations show up
when the scope of their initial 1ask is increased
{«.g., using a higher level language. or process-
iag more variables). Increasing the scope of the

task generally requires the use of more com-
prehensive executiVes and system conirdl pro-
prams, hence larger memories and more
processing. This larger svstem tends to be at the
limit of current minicomputer capability, ihus
the user receives diminishing returns with ve-
spectl 10 memory, speed efficiency, and program
development time. This limitation is not sur-
prising since the basic architectural concepts lor

" current minicomputers were formed in the early

1960s. First, the design was constrained by cast,’
resulting in rather simple processor logic and

*The PDP-11 desigr is predicaved on being a member of one {or more) of the micro. midi. mini. ... maxi [compuier-nine]
murkets. We will define these numes as belongping 1o compuiers of the third generstion {intezraied circuil 1o medium-wale

imeprated circuis technolopy). having 3 core memary with cvele lime of (5~ 2 u<, u clack rate of S~ 10 MH>

KRN |

provessor with interrupis and osually applied 10 doing o particular task fe.g., controlang b MeS vy OF S5OB wna e
lines. preprocessing for a larger system. process control). The specialized numes are defined as fotlows,

Naaimum
Addressahle Processor and Word Processor
< Primary Memors Memaory Cost Lengih State
“IWurds} L1970 Kilodollars) 18itsy t\W orda) 11aia [open
" Micro L3 ' ~5 B~12 2 Intepers watds, Boowsn vevtars
Mini 2K s~10 s th 11 “Aectarsine., indeungy
Midi AIK~128 K i0~20 1f~24 4-1h Duowble lenpth Noating point

ivceusionally)
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register configurations, Sccond, application ex-
perience was not available. For example, the
carly construints often created computing de-
signs with what we now consider weaknesses:
1. Limited addressing capability. particu-
larly of larger core sizes.
2.- Few registers, pencral registers, accu-
mulators, index registers, base registers.
No hardware stack facilities.

Pl

and thus slow context swilching among
~“multiple programs (1asks).
No' byte string handling.
No read only memory {ROM) Tacilities.
Very elementary 1/0 processing.
No larger model computer, once a user
outgrows a particular model.
9. High programming costs because users
program in machine language.

0o -3 O L

‘ ,
In developing a new computer. the archi-

tecture should at least solve the above prob- .

lems. Fortunately, in the late 1960s, integrated
circuit semiconductor technology became avail-
able so that newer computers could be designed
that solve these problems at low cost. Also, by
1970, application experience was available to
influence the design. The new architecture
should thus lower programming cost while
maintaining the low hardware cost of mini-
computers.

The DEC PDP-11 Mode! 20 is the first com-
puter of a computer family designed to span a
range of functions and performance. The
Model 20 is specifically discussed. although de-
sign guidelines are presented for ather members
of the family. The Model 20 would nominally
be classified as a third peneration (integrated
circuits), 16-bit word, one central processor
with eight 16-bit general registers, using two's
complement arithmetic and addressing up to 26
8-bit bytes of primary memory (core). Though
classified as a general register processor, the op-

Limited priority interrupt structures,

To

erund accessing mechanism allows iz
cqually well as a 0- (stack), 1+ (generul regisicrs.
und 2- (memory-to-memory) uddress computer.
The computer's components (processor. memo-
ries, controls, terminals) are connected via a
single switch, called the Unibus.

The muchine is described using the processor-
memory-switch (PMS) notation of Bell and
Newell {1971} at different levels. The following
descriptive sections correspond to the levels: ex-
ternal design constraints tevel: the PMS level -
the way components arc interconnected and al-
low information to flow: the program level - the
abstract machine that interprets programs: and
Cinally, the logical design level. (We omit a d.s-

woperior

. cussion of the circuit level, the PDP-11 being
.constructed from TTL integrated circuits.) .

DESIGN CONSTRAINTS

The principul design objective is yel w be
tested; namely, do-users like-the machine? This
will be tested both in the marketplace and by
the features thuat ure emulated in newer ma-
chines; it will be tested indirectly by the life span '
of the PDP-11 and any offspring.

Word Length

The most critica} constraint, word length (de-
fined by 1BM}, was chosen to be a multiple of #
bits. The memory word length for the Model- 20
15 16 bits, although there are 32-.and 48-bit.in-
structions and 8- and 16-bit data. Other mem-
bers of the family might have up to 80-bit
instructions with 8-, 16-, 32- and 48-bit daa.
The internal, and preferred external character
set, was chosen to be 8-bit ASCIL.

Range and Performance

Performance and function range -{exten-
dubility) were the main design constraints; in
fact, they were the main reasons to build u new
computer, DEC already has four computer
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families that span a range* but are in-
compatible. 1n addilion to the range, the initial
_machine was constrained 10 fall within the
small-camputer product line. which means to
have about the same performance as a PDP-8.
The initial machine outperforms the PDP-5,
LINC. and PDP-4 based families. Performance,
.of course, is both a function of the instruction

set and the technology. Here, we are fundamen-

tally only concerned with the instruction set
performance because faster hardware will al-
ways increase performance for any family. Un-
like the earlier DEC families. the PDP-11 had
to be designed so that new models with signifi-
cantly more perfoimance can be addeu to the
family,

A rather obvious goal is maximum perfor-
mance for a given model. Designs were pro-
grammed using benchmarks, and the results
were compared with both DEC and potentially
competitive machines. Although the selling
price wus constrained 1o lie in the $5,000 o
$10,000 range, it was realized that the decreas-
ing cost of logic would allow a more complex
organization than that of earlier DEC com-
puters. A design that could take advantage of
medium- and eventually large-scale integration
was an important consideration. First, it could
make the computer perform well; second, it
would exiend the computer family's life. For
these reasons, a general register orgamzallon
.was chosen.

intarrupt Response. Since the PDP-11 wil}
be used for real-time control applications, it is
imporiant that devices can ¢communicate with
one another quickly (i.e.. the respense time of a
‘tequest should be short). A multiple priority
fevel, nesied interrupt mechanism was selected;
additional priority levels are provided by the
physical position of a device on the Unibus.

*

*PDP-4 9 1R femily: PDP-S, B, 875, @
intlial PRP-1 did not achieve f.uml; sladus,

CLORAL family: LINC, PDP-8 LINC, PDP-12 fumily:
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Software polling js unnceessary because cuch
device interrupt corresponds to g unigue ad-
dress.

Software

The total system inctuding software is. of
course. the main objective of the design. Two
techniques were used to aid programmability.
First, benchmarks gave a continuous indication
as 1o how well the machine interpreted. pro-
grams; second, systems programmers contin-
ually evaluated the design., Their evaluation
considered: what code the compiler would pro-
duce; how vould the loader work; ease of pro-
gram relocatability: the use of a debugging
program; how the compiler, assembler, and edi-
tor would be coded - in effect, other bench-
marks: how real-time monitors would be
writlen to use the various facilities and presenta
clean interfuce 1o the users: finally, the ease of
coding a program.

Modularity

Structural flexibility (sometimes called mod-
ularity) for a particular model was desired. A
flexible and straightforward method for inter-
connecting components had to be used becuuse
of varyving user needs (aumong user classes and
over time). Users should have the ability Lo
configure an optimum system based on cost,
performance, and reliability, both by inter-
connection and, when necessary, constructing
new components, Since users build special
hiardwure, a computer should be interfaced cas-
ily. As u by-product of modularity, compuler
components can be produced. and stocked,
rather than tailor-made on order. The physicul
structure s almost identical to the PMS struc-
ture discussed in the following section; thus,

and PDP-a, 10 family. The
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reasonably large building blocks. are aviiluble
to the user. .

Microprogramming

A note on microprogramming is in order be-
cause of current interestin the “firmware™ con-

cept. We believe microprogramming, as we

understand it {Wilkes and Stringer, 1953]. can
_be a worthwhile technique as it applies to pro-
cessor design. For example, microprogramming
can probably be used in larger computers when
floating-point data operators are needed. The
IBM System 360 huas made use of the technique
for defining processors that interpret both the
Svstem 360 instruction set and earlier family in-
struction sets (e.g.. 140i. 1620, 7090). In the
PDP-11. the basic insiruction sel is quite
struightforward and does not necessitate micro-
progrummed interpretation. The processor-
memory connection is asvachronous: therefore,
memory of any speed cun be connected. The in-
struction set encourages the user Lo write reen-
rant programs. Thus, read-only memory can
be used as part-of primary memory Lo gain the
permanency und performance normally attri-
buted to microprogramming. In fact, the Model
10 computer,. which will not be further dis-
cussed. has a 1024-word read-only memory,
and a 128-word read-write memory.

Understandability

Understandability was perhaps the most fun-
dumental constraint {or goal) although it is now
somewhat less important to have a machine
that can be understood guickly by a novice
computer user than it was 4 few years ago.
DEC's eurly success has been predicuted on sell-
ing to un intelligent but inexperienced user. Un-
derstai.dability, though hard 10 measure, is an

14

important goal becuuse all (potentisl) users
must understund the computer \ straizhi-
forward design should simplify the s ey v
gramming task: in the case of a compaler. .-
should muke trunstation {particularly code gen-
eration) easier. '

PDP-11 STRUCTURE AT THE PMS
LEVEL® '

Intreduction = o

PDP-11 hus the sume orpanizational struc-
ture as nearty all present-day computers (Figure
). The primitive PMS components are: the
pririiar s memory Mp which holds the programs
while the central processor Pe interprets them;
[/O conmtrols Kio which manage data transfers
between terminals T or secondary memories Ms
1w primary memory Mp; the components out-
side the computer ut periphery X either humans
H or some external process (e.g., another com-
puter); the processor console (T.console) by
which humuns communicate with the computer
and observe its behavior and affect changes in
its state: and a switch § with its control K which
allows all the other components to commu-
nicute with one another. In the case of PDP-11,
the centrul lopical switch structure is imple-
mented using o bus or chained switch S called
the Unibus. as shown in Figure 2. Euch physical
compaonent has a swilch for placing messages
on the bus or taking messages off the bus, The
central control decides the next component Lo
use the bus for a message {call). The S {Unibus)
differs from most switches because any com- -
ponent can communicate with any other com-
ponent. :

The tvpes of messages in the PDP-11 are
along the lines of the hisrarchical structure
common to present-day computers. The single .

* A dueseripine (block-diagram) fevel [Bell and Newell, 1970} to desernibe the relitionship of the computer components:
Processets, memories, saitches, contrals, Hinks, werminads, und data operitors, PMS is deseribed in Appendiv 2,
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\“""“" bus makes conventiondl and other structures
possible. The message processes in the structure
! HUMAN
UEER

CEINTAAL
PROCLASOR

-that utilize § (Unibus) are:

LONSDLE

|

Il I. The central processor Pc requests that
g ANTERCONECTS \ duta be read or writien from or to
WB-COMH |k onERT: primury memory Mp for instructions

T } and data. The processor calls a particu-
lar memory module by concurrently

specifying the module’s address, and the
address within the modules. Depending
on whether the processor requests read-

_J. - ing or writing, data is trunsmitted either

Mk usin from the memory to the processor or
CTHEN PROLESS v viCe versid.

The central processor Pe controls the in-
itialization of secondary memory Ms
- K and erminal T activity, The processor
' sets stutus bits in the control associated
with u fariiculer Msor T, angé =< dev g
proveeds with the specified action (e 5.
reading u card or punching a character
nto puper tape). Since wome devices
transfer data vectors directly 1o prunae.
memory, the vector contrab izjurmal o,
(i.e.. the memory locition und length) ts
given as initialization information.
L.~ , . 3. Controls request the processor’s atten-
uon in the form of interrupis. An inter-
Eﬂ E’:] rupl request 1o the processer has the
' effect of changing the state of the proces-

(ol PMS diagram {see Appendix 2). S sor; thus, the processor begins executing
Figure 1. Conventionat block diagram and PMS a program associated with the inter-
diagram of PDP:11. rupting process. Note that the interrupt
process is only a signaling method. and
when the processor.interrupi occurs. the

CONIAQL LA N J CONTROL s e /

‘:f‘o:::‘" TERMINALS
(EG.DISKI € G.TELETYPEL /

t

{a) Conventional block diagram,

b e o —

COMPUTER

Jimmwny L ] —— 1 —— interrupter specifics a unique address
_ ) vulue 10 the processor. The address is a
: . . ses starting address for a program.
: : 4. The central processor can control the
[ ] s = Higm transmission of data between u control
o }:.':'JE:.:”.‘: (for T or Ms) and cither the processor or

a primary memory for program con-
rolled data transfers. The device signals
Figure 2 PDP-11 physical struciure PMS diagram’ for miiention using the interrupt dialogue

1 Hrubrus 5 ontrol packages with Fe
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and the central Protessor rcspunds by
managing the data transmission in a
fashion similar to trunsmitting in-
itialization information. ‘

5. Some device controls (for T or Ms)
transfer data direclly to/from primary
memory without central processar inter-
vention. In this mode the device behaves
similarly to 4 processor; u memory ad-
dress is specified, und the data is trans-
mitled between the device and primary
memory, ‘

6. The transfer of data between two con-
trols. e.g., a secondary memgcry (disk)
and say a terminal/T. display is not pre-

* cluded, provided the two use compatible
message formats.

As we show more detail in the structure there
are, of course, more messages (and more simul-
taneous activity). The above does not describe
the shared control and its associated switching
“which is typical of a magnetic tapé and mag-
netic disk secondary memory systems. A con-
trol for 4 DECuape memory (Figure 3) hasan S
("DECtape bus) for transmitting data between a
single ‘tape unit and the DECiape transport.
The existence of this kind of structure is based
on the relatively high cost of the control relative
to.the cost of the tape and the value of being
able to run concurrently vwith other tapes. There
is also a dialogue at the periphery between X-T

M0 Y. ‘DECrapal
DECtaps
by

]

% DECIep® bus.
cungurancy 1

]

X! DECrapar
5

A

Figure 3  DECtape control swi!chin'g PMS diagram.

16 |

and X-Ms thut does not use the Unibus. (IFor
example, the removal of a magnetic tape recl
from a tape unit or & human user H striking o
lypewriter key are typical dialogues.)

All of these diulogues Jead 1o the hierarchy of
present computers (Figure 4). In this hicrarchy
we cun See the paths by which the above mes-
suges are passed: Pe-Mp; Pe-K: K-Pe: Kio-T
and Kio-Ms: and Kio-Mp: and, at the per.
iphery, T-X and T-Ms; and T. vonsole-H.

Modet 20 Implementatian

Figure 5 shows ine detaded siracture .
uniprocessor Model 20 PDP-1E with its various
components (options). In Figure §, the Unibus
characteristics ar¢ suppressed. (The detailed
properties of the switch-ure described in the log-
icul design section.)

Extensions to Increase Performance

The reader should note (Figure 5) that the
important limitations of the bus are: a con-
currency of ane, namely, oniy one dialogue can
occur at a given time, and a maximum transfer
rate of one 16-bit word per 0.75 microsccond.
giving a transfer rate of 21.3 megabits/second.
While the bus is not a limit for a uniprocessor
structure, it is a limit for maltiprocessor struc-
tures, The bus also imposas an antificial km.an
the sysiem performance when high-speed de-
vices (e.g., TV cameras, disks) are transferring

PLUIFpLERY

Figure 4.

Conventional hierarchy computer strugiurg



m‘?w vE .

o l:.i"

data Ep multiple primary memories. On a larger
system with multiple mdcpcndcnl memories,
lhc‘”supply of memory’ cycles is 17 mega-
bits/second 1imes the number of modules. Since
there is such a large supply of memory cycles
per second and since the central processor can
absorb only approximately 16 mega-
bits/second. the simple one-Unibus siruciure
must be modified to raake the memory cycles
available. Two changes are necessary. First,
each of the memory modules has Lo be changed
g s¢ that multiple units can access each module

+ on an independent basis. Second, there must be

independent control accessing mechanisms.
Figure 6 shows how a single memory is modi-

|

-

e

T Teletypn Model 33, 38 AR, ‘e
e Il dupler, 10 char/sacond.
ehas sal ASCHL B bit/char

1 Pape LAPE: 10008 .
100 chas/second: B bir/char

T Papai 12p0; punzh, —_—

100 charfsecand. B i chat

M Secondary s: fined head dish:
16 mrpSweaed: 12708 words:

1 1iaew; BB alword,

1access: 0 ~ 34 m

'—'I K {80 cyche clock) - L (B0 cycle ling)- I

NOTES
1 Mp Lecrnclogy: core: S0UE wards: t cycle 12 us:
taccess 06 us; V8 bias/word)

2. Picaatrad ¢ Medel 30: ml..ulll CHCWE. QEni sl Teputen;
7 s2d A at capates piachk Mp,
S50 Sypan Dk by1es. worde, widl MERL byt SEHEY.
Booisan vaciory, f tuis/byiw. 1§ by /word. apaisnons:

L4, -. 7 1gptionall. X {ophonal). /1. X1, « insgets):
., = )

MiproLesaas state; ‘gensial regiuters. B+ 1 word:
wmregraied copwill

3 $1Umbuy. LAY 1,
1 we:d/0 6 wnd
Figi:re 5 PDP-11 structure and characteristics

PMS diagram
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fied 10 have more access ports (i.c., connect- 1o
four Unibuses),

Figure 7 shows a system with three independ-
ent memory modules that dre accessed by two
independent Unibuses. Note 1hat 1two of the
secondary memories and one of the transducers
are connected 10 both Unibuses. It should be
noted that devices that can polentially interfere
with Pc-Mp accesses are canstructed with twa
ports; lor simple systems, both ports are con-
nected to the same bus, but for systems with
more buses, the second connecuon is to an inde-
pendent bus.

Figure 8 shows a multiprocessor system with
iwo centrel poocessors and three Uniouses. Two
of the Unibus controis are included within the
two processors, and the third bus is controlled
by an independent control unit. The structure
also has a second switch to allow ¢ither of two
processors (Unibuses) 1o access common shared
devices. The interrupt mechanism allows cither

(@) 1-port.

L]

Ll

L]
O

1- gnd 4-port memorg modules FEIS

{b}  4-pont.

Figure 6.
diagram.

[N B cda e e ————
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Figure 7.
PMS diagram.
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2 K{'Unibyr multiple bus 1o single bus couplat,
from 2 Umbut. 10 1 Unibus)

3 Ki'Prgcessor 10 -proceisor cowplerl

4 Milduples]

Figure B,

processor Lo respond to an interrupt, and sim-
ilarly either processor may issue initialization
information on an anonymous basis. A control
unit is needed so that 1wo processors can com-
municate with one another: shared primary
memory is normally used to cuarry the body of
the message. A control connecied to two Pc's
(Figure 8) can be used for reliability: either pro-
cessor or Unibus could fail, and the shared Ms
would still be accessible.

DATA TAANLIERS

Oual Pc multiprocasswr syslerﬁ PMS diagrem.

Higher Performance Processors

increasing the bus widith huas the greaies:
effect on performance. A single bus limits duta
trunsmission to 21.4 megabits/second, and
though Model 20 memories are 16 mepa-
bits/second, faster (or wider) data path width
modules will be limited by 1he bus. The Model
20 15 not restricted, but for higher performance
processors operating on double-word (fixed-
point) or triple-word (floating- point) data, two
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or three accesses are reyuired for a single data-
type. The direct method to imprové the per-
- formance is to double or triple the primary
memary and “central processor data path
widths, Thus, the bus data rate is automatically

donbled or tripled.

. For 32 or 48-bit memories, a coupling con-
trol unit is needed so thut devices of either
width appear isomorphic to one another. The
coupler maps a data request of a given widlh
into a higher- or lower-width request for the bus
:_bcing coupled 10, as shown in Figure 9. (The
bus is limited to a fixed number of devices for

D

bam 44 bis
% bum

I "o ee ll'l'!i_]

a8 MT UNIBUS 16-BIT UNIBUS
Figure 9. Computer with 48-bit Pe. Mp with 18- bn
Ms, T.PMS diagram. ¢

clectrical reasons; thus, to extend the bus, a bus-
repeating unit is needed. The bus-repeating con-
trol unit is almost identical 10 the bus coupler.)

A computer with a 48-bil primary memory and -

processor and 16-bit secondary memoary and

terminals (transducers) is shown in Figure 9.
In summary, the design goal was to have 2

modular structure providing the final user with

9

-
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freedom und flexibility 10 match his needs. A
secondary goal of the Unibus is open-endedness
by providing multiple buses and defining wider
path buses. Finally, and most important, the
Unibus is straightforward,

THE INSTRUCTION SET PROCESSOR
(ISP} LEVEL-ARCHITECTURE*

Introduction, Background. and Design
Constraints '

The Instruction Set Processor (ISP)’is the
machne defined by the hardugau and/or soft-
ware that interprets programs, As such, un ISP
is independent of 1echnology and specific imphes
mentations.

The instruction set'is one of the least under-
stood aspects of computer design; currently, it
is un art, There is currently no theory of instruc-
tion sets, although there huve been attempis to
construct them [Maurer; 1966), and there has

also been an attempt o -have a compuler pro-

grum design an instruction set {Haney, 1968].
We have used the conventional approach in this
design, First, a basic ISP was adopied and then
incremental design modilications were mude
(based on the resulls of the benchmarks).t

Although the approach 10 the design was
conventional, the resulting machine is not, A
common classification of processors is us 0-, I-,
2. 3-, or Jplus-l-address machines. This
scheme has the form: :

op {1, 12,13, 14 !

' #The word “architecture™ has been operationudly defined [Amdahbl e ¢f.. 1964] us “the atiributes of u system us seen by o

programmes. i.c.. the conceptuil structure and functional behavior. as distinet from the nrg.mmumn of the data Mow and
conlrals. the fogical design. and the physical implementation.™ .
tA prcdm.nur mulun.ghter compuier wus proposed that used u similur desipn process. Benchmuark programs were cinded on
* each of wea “competitive”™ machines. und the gbject of the desgn was 1o get o maching that gave the best seore on the
benchmuarks. This upproach had severa! fallscies: The muchine hud no busic chuaraster of its own: the machine was difficult
10 program sace the multiple registers were assigned to specific functions and had inherem idiosynerasien 1o seorg well i
the henchmurks: the machine did not perform well for ptogeams ather than those used in the benchmuek test: and finathy.
vompilers that 100k advantage of the machine appeared w he diffivnll 1 wrize. Since all *comperitive muchings™ hid been
hund-coded from u common Newchart ruther than separate Towcharty for each maching. the upnurcm high performun
may have heen due 1o the flowchart organization,
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where /1 specifies the location (address) in
which 1o store the result of the binary operation
(op) of the contents of operand locations /2 and
13, and K specifies the location of the next in-
struction, - .

The action of the instruction is of the form:

NeRNopligocid

The other addressing schemes assume specific
values for one or more of these locations. Thus,
the one-address von Neumann [Burks er al.,
1962] machines assume /1 = 2 = the accu-
mulator and /4 is the location following that of
the current instruction. The two-address ma-
chine assumes /I = /2: /4 is the next address.

Historicaily, the trend in machine design has
been to move from a 1- or 2-word accumulator
structure as in the von Neumann machine to-
ward a machine with accumulator and index
register(s).* As the number of registers is in-
creased, the assignment of the registers to spe-
cific functions becomes more -undesirable and
inflexible; thus, the general register concept has
dcvelofned. The use of an array of general regis-
ters in the processor was apparently first used in
the first generation, vacuum-tube machine,
PEGASUS [Eliiott er al., 1956} and appears to
be an outgrowth of both 1- and 2-address struc-
tures. {Two alternative structures —-the early 2-
and 3-address-per-instruclion computers may
be disregarded, since they tend to always access
primary memory for results as well as tempo-
rary storage and thus are wasteful of time and
memory cycles and require a long instruction.)
The stack concept {0-address) provides the most
efficient access method for specifying al-
gorithms, since very little space, only the access

~addresses and the operators, needs to be given.
In this scheme the operands of an operator are
always assumed 10 be on the “top of the stack.”
. The stack has the additional advantage that

20

arithmetic expression evaluation and compiler
stiatement parsing have been developed o use a
stack effectively. The disadvantape of the stack
is due, in part, 10 the nature of currént memory
technology. That is. stack memarias have 1o be
simulated with random-acoess memones: mol-
tiple stacks are wsually required: and even
though small stack mémories exist, as the stack
overflows, the primary memory (core) has 10 be
used,

Even though the trend has been toward the
general register concept (which, of course, is
similar 1o a 2-address scheme in which one of
the addresses is limited to small values), itisim-
portant to recognize that any design is a com-
promise. There are situatians for which any of
these schemes can be shown to be “best.” The
IBM System 360 series uses a general register
structure, and their designers [Amduh! er al.,
1964] claim the following advgniages for the
scheme,

1. Registers can be assigned 10.various
functions: base addressing. address cal-
culation, lixed-peoint arithmetic, and in-
dexing. ‘ ‘

Availability of technology mukes the
general register structure attractive,

[

The System 360 designers also claim that a
stack organized machine such as the English
Electric KDF 9 [Allmark and Lucking, 1962] or
the Burroughs B3000 {Lonerpan and King,
1961] has the follpwing disadvantages.

i. Performance is derived from fast regis-
ters, not the way they are used.

Stack organization is too Jimiting and re-

quires many copy and swap operalions.

3. The overal] ~tarape of persts rep seni
and stack machines 3rg the seme, oo daae
ering point 2.

3

'-“Due,'in part, to needs, but mainly to technology that dictates how large the strudiure oo be,
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_4. The stuck has 3 bouom. and when

placed in slower memory, lhcre isa pcr-

~ formance loss.
- 5. Subroutine transparency is not cas:ly rc-
alized with one stack,

_ 6. Variuble length data is awkward with a:

’ slack

- We generally concur with pomts 1, 2, and 4
: ng; 5 is an erroncous conclusion, and point 6
is iryelevant (that is, general register machines
have the same problem). The general register
scheme also allows procéssor implementations
with a high degree of parallelism since ail in-

structions of a local block can operaie on sev- -
eral ‘registers concurrently. A set of truly

genceral purpose registers should also have addi-
tional uses. For example, in the DEC PDP-10,
general registers are used.for address integers,
indexing, floating point, Boolean vectors (bits),
or program flags and stack pointers. The gen-
cra] registers are also addressable as primary
.« memary, and thus, short program loops can re-

-~ side within them and be interpreted faster. It -

was observed in operation that PDP-10 stack-
operations were very powerful and often used

(accounting for as many as 20 percent of the

exccuted :nstructions in some programs, €.g.,
the compllcrs)

The basic dcsngn decision that sets the RDP-.
11 apart was based on the observation that by
using truly gencral registers and by suitable ad-
dressing mechanisms, it was possible to con-
+ sider the machine as a O-address (stack), I-
address (general register), or 2-address (mem-
ory-to-memory) computer. Thus, it is possible
to use whichever addressing scheme, or mlxturc
of schemes, is most appropriate.

- Another impartant design decision for the in-
struction set was to have only a few data-1ypes
in the basic machine, and to have a rather com-
plete set of operations for ecach -data-type. (Al-
ternative designs might have more data-types
with few operations, of few data-types with few
operations.) In part, this was diciated by the
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muchine size. The conversion between data-

1vpes must be accomplished easily either auto-

matically or with one or two instructions. The

data-types should also be sufficiently primitive

to allow other duta-types (o be defined by soft-
ware (and by hardware in more powerful ver-
sions of the machine). The basic data-type of
the machine is the 16-bit integer which uses the
two's complement convention for sign. This
data-type is also identical to an address.

_ PDP-11 Model 20 Instruction Set (Basic

Instruction Set)

A formal description of the basic instruction
set is given in the original paper [Bell ./ al.,
1970] us.ng the ISPL notation [Bell and Newell,
1970]. The remainder of this section will discuss
the machine in a conventional manner. ‘

" Primary Memory, The primary memory

. {core) is addressed as either 2'S bytes or 213

words using a 16-bit number. The lincar address
space is also used to access the input/output de-
vices. The device state, data and contro! regis-
ters are read or written like normul mcmory
locations.

General Register. The gcncral registers are
named: R[0:7)<15:0>; that is, there are eight
registers cach with 16 bits. The naming is done
stanting at the lkefi with b |5 (the siga bat) @
the least significant bit 0. There are synonyms
for R[6] and R{7]:

I, Stack Pointer\SP<15:0>
.= R[6]<@15:0> .
Used to access a special stack that is
used to store the state of interrupts,
traps, and subroutine calls.

2. Program Counter\PC<15:0>
= R{7)<@15:0> ‘
Points to the current instruction being
interpreled. It will be seen thuat 'the fact
that PC is one of the general registers is
crucial to the design,
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~Any general register, R{0:7). can be used us a
stack pointer. The special Stuck Pointer SP has
additional properties that force it to be used for
chinging processor state interrupts, traps, and
subrowtine calls. (It also can be used to control
dynamic temporury storage subroutines.)

In addition 1o the ubove rezisters there ure 8
bits used (from a possible 16) for processor stu-
- tus, called PS<15:0> register. Four bits are the
Condition Codes\CC associated with arith-
metic results; the T-bit controls tracing; and 3
bits control the priority of running programs
Priority <2:0>. Individual bits are mapped in
PS as shown in the appendix. '

Data-Types and Primitive Operations.
There are two data lengths in the basic machine:
bytes and words, which are 8 and 16 bits. re-
spectively. The nontrivial data-ypes are word-

. length integers (w.i.): byte-length integers (by.a):
word-length Boolean vectors (w.bv); i.e., 16 in-
dependent bits {Booleans) in a |-dimensional
array. and byle-length Booleun vectors (by.bv).
The operations on byte and word Boolean vec-
tors are identical. Since a common use of a byte
is to hold several flag bits (Booleans), the oper-
ations can be combined to form the complete
set of 16 operations. The logical operations are:
“clear,” “‘complement,” “inclusive or,” "and
“implication” (x 2 y or ™1x V y)

There is a complete set of arithmetic oper-
ations for the word integers in the basic instruc-
tion set. The arithmetic operations are: **add,”
“subtract,” “multiply” (optional), “divide"”
(optional), “compare,” *add one,” “subtruct
one,” “clear,” “negate,” and “multiply and di-
vide' by powers of two (shift). Since the address
integer size is 16 bits, these data-types are most
important. Byte-length integers are operated on
as words by moving them to the general regis-
ters where they take on the value of word in-
tegers. Word-length-integer operations  are

2-

o

carried out and the results are returned to mem-
ory (truncated),

The floating-point instructions defined by
software {not part-of the basic instruction set)
require the definivion of two additional datu-
types (of lenpth two and three). ie.. double -
wards (d.w.) and triple words (1.w.). Two addi-
tional datu-types, double integer (dui.) and iriple
flouting-paint (LI. or ) are provided lor urith-
metic. These duta-types imph certsin adde-
tionad operations and the conversion o the
more primitive ditd-1ypes.

Address {Onerand}, Calculation. The gen-
eral miethods provided for accessing operands
are the most interesting (perbups unique) part
of the muchine's structure. By cefining sceveral
access methods to a set of general repisters, to
memory, or to 3 stack (controlled by a general
register), the computer is able to be 2 0-, 1-, and
2-address muchine. The encoding of the instruc-
tion source (S) fields and destination {D} fields

are given in Figure 10 topether with a list of the

various aceess modes that are passible. (The up-
pendix gives a formal deseription of the cffec
tive address caleulation process.)

It should be noted from Figure 10 that all the
common access modes are- included (direct.
indirect. immediate, relative. indexed, and in-
dexed wnlizoct) ploy sewerad rectocly anoam
mon ones. Kelative (10 PO access s s Lo
simpltly program loading, while tmmadicie
mode speeds up erecution. The relativeiy un-
common accesst modes, sulo-altemen: and
auto-decrement, are used {ug 1w 2 parposc oo
cess to i stuck under controt of the regiaz®
and access 1o bytes or words organized as
strings or vectors. The indireet access mode al-
lows a stack 10 hold addresses of data (instead
of data). This mode is desirable when manipu-
lating longer and variable-length data-1vpes
{e.g.. strings, double (xed, -and triple Roating.

* Nute that, hy convention, a stuck builds toward register 0. and when the stuck crosses 3. stack overfiow occurs,
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Figure 10. Address calculanon formats.

point). The register auto-increment mode may
be used to access & byte string; thus, for ex-
ample, after each access, the register can be
made to point to the next data item. This is used
for moving data blocks, searching for particular

. elements of a vector, and byte-string operations
. (e.g.. movement, comparisons, editing).

This addressing structure provides flexibility
while retaining the same, or better, coding effi-

‘ciency than classical machines. As an example

of the Nexibility possible, consider the varia-
tions possible with the most trivial word in-
struction MOVE (Table !). The MOVE instruc-
tion is coded in conventional 2-address, 1-ad-

- dress (general register) and O-address (stack)
~compuiers. The 2-address format is particularly

nice for MOVE, because it provides an efficient
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encoding for the common operation: A ~ B
- (note that the stack and general registers are pot

involved). The vector moves A[l] — B(I) is also
efficiently encoded. For the gcneral register
(and J-address format), there are about 13

.MOVE operations that ar¢ commonly used, Six

moves can be encoded for the stuck (about the
same number found in stack machines).

Instrudtion Formats. There are. several in-
struction decoding formats depending on
whether zero, one, or two operands have to be
explicitly referenced. When two operands are
required, they are identified as source S and
destination D and the result is pluced at destina.
tion D. For single operand Instructions (unary
operators), the instruction action is D - u D;
and for (wo operand instructions (binary oper-
ators), the action s D~ D b S {(where u and b
are unary and-binary operalors, e.g., ™. - and
+, -, X, /, respectively, Instructions are speci-
fied by a 16-bit word. The mest commaon binary
operator format (that for oporations requineg
two addresses) uses bits 15:12 to specify ithe op-
eration code, bits 11:6 10 specify the destination
D, and bits 50 to specify the source S. The
other instruction formals are given i Figurs |1.

Instruction Interpratation Psocess. Ul
instruction interpretation process is given in-
Figure 12, and follows the common feich-
execute cycle. There are three major states: (1)
interrupting - the PC and PS are placed on the
stack accessed by the Stack Pointer/SP; andthe
new stale is ukcn from an address specified by -
the source requesting the trap or interrupt; (2)
trace (controlled by T-bit) - essenually one in-
struction al 4 lime is execuled as a Irace lrap
occurs afier each instruction, and (3) normal in-
struction interpretation. The five (lower) stales
in the diagram ure concerned with instruction
fetching. operund fetching. executing the oper-
ation specificd by the instruction und storing
the result. The nontrivial details for feiching
and storing the operands are not shown in the
diagram bhut can be constructed from the effec-
tive address calculation process (uppendiny. The
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CINARY ARITHMETIC AKD LOGICAL OPCRATIONS

m-n ISEL NOTE

LETE L SR R
ENAMPLE ADD | wpope 0010l = {CC.0 . Teg),

UNAAY AHITHMETIC AND LOGICAL DFERATION

FORM 0. uD.
EXAMPALER NEG. »wopzOODCI0N100). ICC D ~ - D} -NEGATE
ASL| BuopeDOA0BII0GIY- ICC.D oD = 7). SHIFT LE4Y

DRANCH ARELATIVEI OPERATORG:

FORM IF niup condition. Ihan {PC « PC + ollseil.
" EXAMPLE BEQ i = beop ® 0dyg)(2 «IPC - PC + oihvet)

AUMP ID too 200 om ] [+] ] 3

FOAM PC- D + Pc

JUMP 1D SUBRDUTINE

lo 000 100

o]

SAVER|L[ONSTACK ENTER SUBROVTINE AT D 4+ PC

WMISCELLANEQUE OPERATIONS
op cods
a
FORM 3Y-1
EXAMPLE oALT { = evstruchon ® O} - (RUN - 0O,
NOTE
Thase mstruchions sre 21l one word D and-or § may ssch

faquids ore ddoiLana ymmediate 48 o ddiest v'vmd.
Thus INBIFLELOAE CaN DY ONE w0, 04 thisd wards kanyg

Figure 11.  PDP-11 nstruction formarts (simplified).

state diagram, though simplified, is simifar to 2-
and 3-address computers, but is distinctly dif-
feremi than a l-address (}-uccumulator) com-
puier. :
The ISP description (appendix) gives the op-
“eration of each of the instructions, and the more
conventional diagram (Figure 11} shows the de-
coding of instruction clusses. The 1SP descrip-
tion is somewhat incomplete: for example, the
add instruction is defined as:

ADD (:=bop=0010:) = (CC.D-D + §)

Addition does not exactly describe the changes
to the Condition Codes CC (which means
whenever a binary opcode [bop] of 0010, occurs

LT LIV TP 1Y)
18EP NIGLIH)

UV
(LTSI LY
INTLAPALTATION

R
> oamen
wrars

I ICuTe
OFIRATION
NPACHER

(1]
WETRLCTION

Figure 12 PDP-11 instraction iderpretation process
state dizgram )

the ADD instruction is exceuted with the above
effect). In general, the CC are based on the re-
sult, that s, Z s set i the resubt is zero. Nf
negative, C il u carry oceurs, and Vif an over-
Mow was detecied as a resull of the operatiun,
Conditional branch instructions may thus fol-
fow the arishmetic instreetion te 28t the resylis
of the CC b,

Examples of Addressing Schemes

Useo as a Stack (Zeru Address) Machae
Table 2 hists typicad O-address machme a-c
tions together with the PDP-11 instructions that
perform the sume function. It should be noted
thai translation {compilation) from normul in-
fix expressions 1o reverse Polish is a com-
paratively trivial task, Thus, one of the primary
reasons for using stiucks is for the evaluation of
expressions in reverse Polish form.

Consider an ussignmend statement ol thg
form:

DA+ B/C
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Table 1. Coding for the MOVE Instruction To Compare with Conventional Machines

Assembler Format Effect Deécriﬁtion

2-Address Machine

Format .
.MOVE B, A* A—B Replace A with contents of B8 A
MOVE #N. A AN Replace A with numbaer B

MOVE 8(R2), A{R2) All| ~ B{1) Replace element of a connector

MOVE {R3})-+, {R4)+ Alt] — BHI: Replace element of a vecior, mouve to neal ele-1e-t
General-Ragister et 41

Machine Format

MOVE A, R} R1 ~ A Load register

MOVE R1, A A+~ R Store register

MOVE @A, R1 R1 ~ M]A} Load or siore indirect via glement A

MOVE R1. R3 R1 ~ R3 Register-1o-register transler

MOVYE R1, A(R1) Afl] - R1 Store indexed {load indexed) {or stora}

MOVE @ A{RO}. R At « MIA[I]] Load (or store) indexed indirect

MOVE (R1). R3 R1 — M{RZ| Load indirect via register

MOVE (R1)+. R3 R3 «M}i] Load (or store) element indirect via registor, move 10 nex| elarmegng
Stack Machina Format

MOVE #N,. -{RO} SeN Load stack with iveral

MOVE A, -|RO) S—A Load stack with contents of A

MOVE (@ {RO)+, —{RO} S~ M]S| Load stack with memory specified by top of stack
MOVE (RO)+, A AeS Store stack in A

MOVE (ROI+. W (RO)+ M|S;] —~ 5, Siore siack 1op in memory addressed by stack 1op -1
MOVE (RO}, -(RQO) S8 Duplicate top of stack

*Assembler Formal

{1 Denotes contents of memory addressed by .
- Decrement requster Tirst
+ lIncrement register afier

. Indirect
= Literal

which has the reverse Polish form:

DABC/ + «

and would normally be encoded on a stack ma-

.chine us follows:

Load stack address of D

Load stack A
Loud stack B
Load stack C
/ .

+

Store.

However, with the PDP-11, there is uan ad-

dress method for improving the program ¢ne

¥

coding and run time, while not losing the stack
concept. An encoding improvement is made by
doing an operation 1o the op of the stuck from
u direct-memory location {while loading), Thus,
the previous exumple could he coded us:

Load siack B
Divide sluck by C
Add A Lo stack
Store stack D

Use-as a 1-Address {General Register)
Machine. The PDP-1] is. a gereral repister
computer 2nd showid be uepsd notRat ~uee
Benchmarka have begn coded 10 compae o
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transactions gperuate independently of the bus
length and response time of the master and
slave. Since the bus is bidirectional and is used
by all devices, any device can communicale with
any other device. The controlling device is the
master, and the device 10 which the master is
communicating is the slave. For example, a
data trapsfer from processor (master) to mem-
ory {(always g slave) uses the Data Qut dialogue
facility for writing and a transfer from memory
to processor uses the Data In dialogue I'acilily
for reading.

Bus Controt. Most of the time the processor
is bus master feiching instructions and oper-
ands rom memory and storing results in mem-
orv. ‘Bus mastership is determined by the
current processor priority and the priority line
upon which a bus request is made and thephys-
ical placement of a requesting device on the
linked bus. The assignment of bus mastership is
done concurrent with normal communication
(dialogues).

Unibus Dialogues

Three types of diulogues use the Unibus. All
the dialogues have a common protocol that first
consists of obtaining the bus mastership (which
is done concurrent with a previous transaction)
followed by a duta exchange with the requested
device. The dialogues are: Interrupt; Data In
and Data In Pause: and Data Out and Data Out
Byte.

Interrupt. Interrupt can be lnmalcd by a
master immediately afier receiving bus master-
ship. An address is transmitted lrom the master
to the slave on Interrupt. Normally, subordi-

nate control devices use this method to transmit

an interrupt signal 1o the processor.
Data In and Data In Pausa. These two bus

“operations transmit slave's duta (whose address

is specified by the master) to the master, For the
Data In Pause operation, data is read into the
muster and the master responds with data
which is 10 be rewritten in the slave,

Data Out and Data Qut Byte. These two
operations trunsfer data from the master 1o the
slave at the address specilied by the muster. For
Data Out, a word ut the addresy specified by lhx.
address hines is transferred {rom masier taslane
Data Out Byte allows & s.mkh. Cals byic to be
trunsmitted.

Processor Logical Design

The Pc is designed using TTL logical design
components and occupies approximaiely eight
8 inch X 12 inch printed ¢ircuit boards. The Pe
is physicully connected to two other com-
ponents, the console and the Lnibus. The ¢on-
trol Tor the Unibus is housed in the P¢ and
occupies one of the printed circuit boards. The
most regular part of the Peis the arithmetic und
state secuion, The I6-word scrutchpad memory
and combinational logic data cperutors, D
{shift) and D (adder, logcal ops), ferm the most
regular part of the processor’s siructure. The
l6-word memary holds most of the $-word pro-
cessor state found in the ISP, and the 8 bits that
form the Status word are stored 1n an 8-hbii reg-
ister. The input to the adder-shft network has
two latches which are either memorics or gates.
The output of the adder-shift neiwork cun be
read to either the data or address purts of the
Unibus, or back 1o the scratchpad array.

The instruction decoding and arithietic con-
trol are less regular than the ahove data and
state und these are shown in the lower part of
the figure. There are two major sections: the in-
struction fetching and decoding control and the
instruction set interpreter (which, in eifect, Jde-
finies the ISPY The fater conlral secnion aperates
on, hence conlrols, the arithmetic and state
parts of the Peo A final controb s concerned
with the interfuce to the Unibus 1distinet from
the Unibus control thut s how~¢d - the Pey.

CONCLUSIONS l

in this puper we hiuve endeasvrvd to give a
complete desenption of the 'YV Maaes 20
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¢~ 7 .x2t 2t four descriptive levels. These pre-
s2=: :m .~zmbiguous specification at two levels
vime PAIE siructure and the {SP), and, in addi-
nom. ipelhy
T o, ind give the reader some idea of the
imoemeniilion at the bottom level logical de-
Csizm W2 have also presented guidelines for

for=ing ;_dmonal models that would bclong 10

he a2 _mll\

CAFPENDIX.

otiems arr @i ven

. Pri.-..ar,- .\iemory State
4N Memory [0:2' - 1]<7:0>
\-1“:: e ]1(15;0) f= M[OIZ“'- |]<7:0.>

Prizessir State (9. words) -

&, Reposters [0:7]<IS:O>'
SF<I5:0> = Ri6]<15:0>
PC<15:0> := R{1]<15:0>

PS<IE-i>

Prion WPL<R0> = PSCTS>

~-C C?ndition-Codes<3:0>':= PS{J:O)

C:my .Ci= CCO>

Perpztive Ni= CCL35>

Za=n 2= CCLI>

the constraints for the design at the
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DEC PDP-11 INSTRUCTION SET PROCESSOR DESCRIPTION (IN ISPL)

ns ol awiné 'dcscripuon gives a cursory description of the instructions in the ISPL, the initial
{ Bell and Newell [1971). Oniy the processor state and i briel description of the instruc-

Byte memory |
Word memory mapping

* Word general segisters
Stack pointer
Program counter

Processor slate register

Under program control: priority level of
the process -currently being interpreted: a
higher level process may interrupt or trap
this process.

A result condition code indicuting an arith-
melic carry from blt !5 of the last oper~ _
ation,

A result condition code indicating last re-
sult was ncsali\'e.

A rusull vondition code indwaling last i
sult was rero.
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Overflow\V := CC<I> A resull cuﬁdilinn cody indicating an arith-

metic overflow of 1he lust vperation,

Truce\T := ST<d> Denotes whether instruction trace Lrap isto

occur afier ¢uch mstructuwn is cuxculed.

_Undcﬁncd<7:0> = PS<I58> ' Unused

{
Run . - Denotes normal exccution.
Wait Denotes wailing for an Interrupt.

-lnst'ruction Set

The fallowing instru.tion set will be define ! brlcﬁ) and is mcomplue l' is intended 1o give the
“reader a simple understanding of the machine operation. -

MOV (:= bop = 0001) - (CC,D «~ S); ‘ Move word
" MOVB (:= bop = 1001} -+ (CC,Db + Sb); Move byte
Bmary Arithmetic: D ~ Db S; .
“ ADD (:= bop = 0110) ~ (CC.D ~ D+8); . Add
SUB (:= bop = 1110) = {CC,D ~ D = 8); ' Subtragt
CMP (:= bop = 0010) » (CC +~ D - 8); Word compare
CMPBRB (:= bop = 1010) = (CC «~ Db - Sb); " Byte compare

MUL (:= bop = 0111}~ (CC, D~ D X §) Multiply, if D is a register-then

' - a double length operator

DIV (= bop = 1111) = (CC, D ~ D/S) Divide, if D is a register, then a
: remainder is saved

Unary Arithmetic: D « uS;

. CLR (:= uop = 050,) » (CC,D « 0);

CLRB (:= uop = 10504) = (CC,Db ~ 0}, -
COM (:= uop = 0514) = (CC.D ~ D),
COMB (:= uop = 1051) - (CC,Db « MDb):
INC (:= uop = 0524) » (CC.D+~D + I}
INCB (:= uop = 1052} ~ {CC,Db «~ Db + 1},
DEC (:= uop = 053s) » (CC,D ~ D - 1)

DECB (:= uop = 10534) = (CC,Db ~ Db - 1); -

NEG (= uop = 054y) » (CC.D ~ - D).
‘NEGB (:= uop = 1054¢) (CC.Db « - Dby
ADC (:= uop = 055} - (CC.D~ D + C);

ADCB (:= uop = 1055y) = (CC.Db ~ Db + C);

SBC (:= uop = 0564) = (CC.D~ D -C});

Clear word

Clear byie
Complement word
Complement byte
Increment word
Increment byte
Decrement word
Decrement byte
Negate

Negate byte -
Add the carry
Add 10 byte the carry
Subtract the carry
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SBCB (:= uop = 1056.) ~ (CC.Db — Db - C;
TST (= uop = 057 — (CC - D): -
TST (:= uop = 1057,) - {CC ~ Db);

Shift Operations: D « D X 2",

ROR (:= sop = 060,) = (C O D « COD/2(rotatel);
RORB (:= sop = 1660\) = (C 0 Db « C O Db/2{rotute})
ROL (:=s0p = 061,) = (COD - COD X 2 jrotate;):
ROLB{.=sop = 1061,) - (CO Dt « CODb X 2 irotate|)
ASR (:= sop = 062,) - (CC.D+ D X 2);
‘ASRB (:= sop = 1062,) - (CC,Db «~ Db/2);
ASL (:= sop = 063y) + (CC,D D X 2);
ASLB (:= sop = 1063,) - (CC,Db + Db X 2);
ROT (:= sop = 064;) = (COD « D X 2%:
ROTB(:= sop = 1064;) - {C D 2b « D X 2%:
LSH (:= sop = 0634) -» (CC.D « D X.2%logical});
LSHB (:= sop = 1065;) ~ (CC.Db « Db X 25logical;):
ASH (:= sop = 0664) - (CC.D « D X 25);
ASHB (:= sop = 10664) = (CC.Db « Db X 2 5);
NOR (:= sop = 067, ~(CC,D — normalize (D));
{R[r'] - normalize__exponent (D));
I\_JORD (:= sop = 10674 - (Db —normalize (Dd});
' {R{r'] « normalize__exponent (D)),
SWAB (:= sop = 3) -~ (CC,D ~ DLT:0, 15:8>)

" Logical Operations

BIC (:= bop = 0100} = (CC,D - D « D A —1S);
BICB (:= bop = 1100y = (CC,Db ~ Db V —5b),
BIS (:="bop = 010]1) ~ (CC,D ~ D V §);

BISB (:= bop = 110] -~ (CC.Db ~ Db V Sb);
BIiT (:= bop = 0011) = (CC ~ D A §);

BITB (:= bop = 1011} - (CC «~ Db A Sh)

~ Branches and Subroulinés Calling: PC « f;

JMP (:= sop = 0001,) - (PC «~ D');

BR {:= brop = Of) - (PC « PC + offset),

BEQ (:= brop = 03)s) = (Z - {PC « PC + offset));

BNE (:= brop = 02,1} = (12 -« (PC « PC + offse)):

BLT {i= brop = 05} « (IN® V = (PC « PC + offsets
BGE {:= brop = 04.,) = (N = V =~ (PC « PC + offset)r:
BLE{:=brop=07)-+(ZV(IN®V)~(PC-PC + offe=ty,

o
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Subtract from byte the carry
Test ;
Test byte

Rotute right

Byte rotate right

Rolate left

Byte rotate left
Arithmetic ~hitt v 2ht
Byle arithmens skt nghs
Arithmetis shift let
Byte arithmutic shaft lefl
Rolate

Bytc rotate

Logical shif

Byie logical shift

- Arithmetic shift

Byte arithmetic shift
Normalize

Normalize double

Swap bytes

Bit clear

Byvte bit clear

thit saz

Hyte bit set

Bt {est under mask
Hite bit tes: under muask

Jump unconditional

Branch unconditionul

Equal to zero

Not equul to zerg

l.ess than {eero)

Cirguter than or cqual {22r0)
Less than or equal (zero)



3U

262 THE POP-11 FAMILY

BGT (:= brop = 061s) = (M(Z V (N @ V)) = (PC « PC +

offset));
BCS/BHIS (= brop = 87ys) ~ (C = (PC ~ PC + offset));

BCC/BLO (:= brop = 8614) » (MC = (PC « PC + offset));
BLOS (:= brop = 83;5) = (C A Z =~ (PC « PC + offset));
BHI (:= brop = 82y} = (mC V Z) - (PC «~ PC + offset));
BVS{:= brop = 851) = (V = {PC ~ PC + offset));
BVC (:= brop = B4,s) = {—V = (PC ~ PC + offset));
BMT (:= brop = 8114) » (N = (PC « PC + offset));
BPL (:= brop = 80y;) - (=1N - {(PC « PC + oflset));
ISR (:= sop = 0040s) -

(GP « SP - 2; next

MI[SP] « R[sr]:

Risr] ~ PC, PC ~ D),
RTS(: = i = 000200) = (PC « R[dr];

R{dr] — M{SP}; SP« SP + 2);

-+~ Misccllaneous Processor State Modification:

RTI(:=i=2) - (PC«~ M[SP]:
SP « SP + 2;next
PS ~ M[SP];
SP - SP+ 2):
0) — {(Run « 0).
1) - (Wait « 1);
3~ (SP « SP + 2: next
M[SP] ~ PS;
5P« SP + 2:next
M|[SP] +~ PC,
PC ~ M[34y);
PSS« M[12]);
EMT(: = brop - 82;s) = {SP « SP + 2: next
M[SP] - PS;
SP « SP + 2; next
MI[SP] ~ PC;
PC ~ M[30.];
PS « M{32.]);
IOT (: = i = 4) — (see TRAP)
- RESET(: = i = 5) - (not desuribed)
OPERATE(: = i<513> = 5) —
{i<d> = (CC+ CC V i<3:0>y)
i<4> - (CC ~ CC A Mi<EO>)):

HALT(
WAIT (:
TRAP(:

i .
i
i

u

end Instricliun wes exetulion

Less gpreater than (zero)
Curry set; higher or same (un-
signed)

Carry clear; lower {unsigned)
Lower or same (unsigned)
Higher than (ynsigned)
Overflow

No overflow

Minus

Plus

Jump to subroutine by putiing
Rlsr}. PC on siack and toading
Risr} with PC, und going 1o
subroutine at D)

Return from subroutine

Return from .nterrup!

Trap to M[344]) store status
and PC

Enter new process
Emulator trap

/O wrap to M[204]
Reset 1o eaternal devices
LIRRT L TVRET TR TRERS St
S=t codes

Clear codes

e
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 The Evolution of the PDP-11

A computer is not solely determined by its
architecture; it reflects the technological, eco-
.nomic, and organizational aspects of the envi.
ronment in which it was designed and built. In
the introductory chapters the nonarchitectural
design factors were discussed: ‘the availability -
" and price of the basic electronic technology, the -
various government and industry rules and
standards, the current and future market condi-
tions, and the manufacturing process.

in this chapter one can see the result of the
interaction of these various forces in the evolu-
tion of the PDP-1i.- Twelve distinct models
(LSI-1i, PDP-11/04, 11705, 11/20, 11/34,
11/34C, 11740, 11745, 11/55,11/60, 11/70, and
VAX-11/780) exist in 1978. '

The PDP-11 has been successful in the mar-
ketplace: over 50,000 were sold in the first eight
years that it was on_the market (1970-1977). i
is not clear how rigorous a test (aside from the
marketplace) the design has been given, since a

large and aggressive marketling organization, -

armed with sofiware to correct architectural in-
consistencies and omissions, can save almost
any design,

C. GORDON BELL and J. CRAIG MUDGE

\ I

Many ideas from the PDP-11 have migrated

“to other computers with newer designs. Al

though some of (he feawres of the PDP-11 are
patented, muchines hive been made wuh sami- -

‘ilar bus and instruction set processor structures.

Many computer designers have adopted 4 uni-
fied duta and address bus similur to the Unibus
as their fundamental architectural component.
Many microprocessor designs incorporate the
PDP-11 Unibus notion of mupping 1/0 and
control registers into the memory address
space, eliminating the need for 1,0 instructions
without complicuting the 1/0 control logic.

It is the nature of computer engincering to be
goal-oriemted, with. pressure to produce detiv-
erable products. 1t is therefore difficult 10 plaa
for an extensive lifclime, Newertheless, the
PDP-1]1 evolved rapidly over 2 much wider
range than expecied. An outline of a famils
plan was set forth in a3 memo on April 3. 1969,
by Roger Cady, head of the PDP-1! enginces-
ing group at the time (Table I). The actual evo-
lution is shown in tree form in Figure | and is
mapped onto a cost/performance representa-
tion in Figure 2. T
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Table 1. PDP-11 Family Projection as of April 3, 1969

Logic Arithimetic Speed Prico . Softwara
Model  Processor Power  Power {us) 3K) Configuration Paper Tape Disk
11/10 - 0.7 0.7 23 4 Technologically
_ cost reduced
11/20 with.-Mos !
17/20 KA1l 1 1 2.2 5.2 - Pe,1-Kbyta ROM, -
128 byte R/W
turnkey console
14430 KA1l ] h 2.2 9.3 Pc, 8-Kbyte core, Assembler, editor, BAike monitor
console, TTY math utility (systemn builder
) FOCAL, BASIC, w/ODT, DDT, 21k}
ASA BASIC %
FORTRAN}
13/40 KBil 2" wr-Z2 1.2 13 Adds *, /7, normal- Possible 16-Kbyte FORTRAN 1V
’ ize, etc. possible FORTRAN IV
. micraprogrammed improved
procestor, no EAE assembler
saves $1,000
11/45 KB11 2* 10-20 1.2 15 '1 1745 with memory - Super monitor**
' + protect/reiocate 65-Kbyte virtual
disk maximum core 262 memoty/user {or
Kbyte, maximum either smsil or
physical memorty large oisk
{using qisk222
. bry1es .
11/50 KC11 2* 50 100 1.2 2% Adds hardwate - -
fioating point .
32-bit processor, -
16.bit memaory
(1€ Kbyte}
11/5% KC11 2* BO- 106G 12 27 With ynemory .
+ protect/relocate
cish _
11/65 KD a 106 200 v 4y 32 separate
b el 22 4 . mornory bus, 32 ot .
disk P OCESSOT
NOTES: '

;H micreprogrammead, then 10gical powe ¢ owuid be teiorpid 10 user and go ta 20-50, 40100 for iy,

Business langusge systam undar consdee arinn,

Possible by-productof FOCAL,

*fSupgemonitor for T1/45, 11/0% 11705 o perimesyy a0 1 1 1IRD HABL TVl TIETe oL ~ -
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EVALUATION AGAINBT THE ORIGINAL
GOALS

In the originul 1970 PDP-1! paper (Chapser
9), u sct of dosign gouls und consirulnis were
given, beginning with a dlscuskion of the weak-
nesses (requently found in minicompulers. The
designers of the PDP.li laced each of these
known minicomputer weaknesses, snd their
goals included a solution to cuch one. This sec-
tion reviews the originul goals, commenting on
the success or failure of the PDP-11 in meeling
each of them,

The weaknesses of prior designs thal were
noted were limited addressability, a small num-
ber of registers, absence of hardware stack faci-
ities, limited inlerrupl siructures, absence of
byte string handling and read-only memory {2
cilities, elementary 1/0O processing, absence of
growth-path family -members, and high pwo-
gramming cosis. '

The first weakness of minicomputers was
their limited addressing capability, The biggest
{and most common) mistake that can. be made.
in a computer design is that of not providing
enough address bits for memory addressing and:
management. The PDP-I1 followed this hal--
lowed tradition of skimping onaddress bits, but
it was saved by the principle that a good design
can evolve through at least one major change.

For the PDP-11, the limited address problem
was solved for the short run, but not with
enough finesse to support a large family of
minicomputers. That was indeed a costly over-
sight, resulting in both redundant development
and lost sales. It is extremely embarassing that
the PDP-11 had to be redesigned with memory
management* only two years after writing the
paper that outlined the goal of providing in-
creased address space. All carlier DEC designs
suffered from the same problem. and oaly the:

*The memory management served two other functions besides expanding the 16-bit precessar-gencrated addrisics inw 14

bit Unibus addresses: program relocation and prolccnon
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PDP-10 evolved over a long period (15 years)
before a change occurred 1o increase its address
space. In retrospect, it is clear that another ad-
dress bil is réquired every two ar three years,
since memory prices decline about 30 percent
yearly. and usersiend to buy constant price suc-
CESSOr Syslems.

A sécond weakness of minicompulers was
their tendency to skimp on registers. This was
.corrected for the PDP-11 by providing eight 16-
bit registers. | Later, six 64-bit registers were
added as the accumulators for floating-point
arithmetic. This number seems to be adequate:
there ure enough registers to allocste two or
three registers (beyond those already dedicated
to program counter snd stack pointer) for pro-
gram global purposes and sull have registers for
local stalerment computation.® More registers
would increase the come.t switch tme and wor-
sen the register allocation problem for the user.

A third weakness of minicomputers was their
lack of hardware stack capability. [n the FDP-
I, this was solved with the autoincre-
ment/autodecrement addressing mechanism.
This solution is unique to the PDP-!1, has pro-
ved to be exceptionally useful, and has been
copied by other designers. The stack Limit
check, however, has not been widely used by
DEC operating sysiems.

A fourth weakness, imited interrupt capabil-
ity and slow context swilching, was essentially
solved by the Unibus interrupt vector design.
The bastc mechanism is very fast, requiring only
four memory cycles from the time an interrupt
request is issued until the first instruction of the
interrupl routine begins execution. Implemen-
tations could go further and save the general
registers, for example, in memory or in special
registers. This was not specified in the archi-
tecture and has not been done in any of the im-
-plementations to date. VAX-1! provides
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exphcit load-and save process context instruc-
tions. |

A fifth weuakness of earlier minicomputers,
inadequate character handling capability. was
met in the PDP-11 by providing direct byie ad-
dressing capability. String instructions were not
provided in the hardware, but the commeon
string operations {move, compare, concateniite)
could be progrummed with very short loops.
Eurly benchmarks showed that this mechanism
was adequate. However, as COBOL compilers
have improved and as more understanding of
vperating systems string handling has been ab-
tuined, a need for a string instruction set was.
felt, and in 1977 such a set was added.

A sixth weakness, the inability to use read-
only memories as primary memory. was
avoided in the PDP-11. Most code written for
the PDP-11 tends to be reentrant without spe-
cial effort by the programmer, allowing a read-
only memory (ROM) to be used directly. Reud-
only memories are used extensively for boot.
strap loaders, program debuggers, and for
simple functions, Because large read-only mems--
ories were not available at the time of the origi-
nal design, there are no architectural
components designed specifically with l.trgc'
ROMs in mind. ‘

A seventh weakness, one,common (o many
minicomputers, was primitive 1/0 capabilities.
The PDP-1! answers this to a certain extent
with its improved interrupt structure, but the-
completely general solution of 1/0 computers
has not yet been implemented. The 1 /O proces-
sor concept is used extensively in display pro-
cessors, in communication processors, and in
signal processing. Having a single machine im
struction that transmits a block of data at the
interrupt level would decrease the central pro-
cessor overhead per character by a factor of 3; it

* Since dedicated registers are used for each Commercial Instruction Set (C15) instruction. this wus no longer true when C18

was added.
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‘should hai\;e been added to the PDP-1 ] inslr.uc-

tion:set. for implementation on ali machines.
" Provision was madc in the 11/60 for invocation

~ of a micro-level interrupt service routine in

" ‘writable control store (WCS). but the family ar-

chitecture is yet to be extended in this direction.
Another common minicomputer weakness

~ was the lack of sysiem range. If a user had a

syslem running on a minicomputer and wanted
10 expand it or produce a cheaper turnkey ver-

- sion, he frequently had'no recourse, since there

were often no larger and smaliler models with
the same architecture. The PDP-11 has been

. very successful in meeting this goal.

. A ninth weakness of minicomputers was the
high cost of programming caused by program-
ming in lower level languages. Many users pro-
- grammed in assembly language, without the
comforiable environment of high-level lan-
guages. editors, file systems, and debuggers

~available on bigger systems. The PDP-11 does

not seem to have overcome this weakness, al-

. though it appeurs that more complex systems

are being successfully built with the PDP-11

- than with its predecessors, the PDP-8 and the

PDP-15. Some systems programming is done
using higher level languages; however, the opti-
mizing compiler for BLISS-11 at first ran only
on the PDP-10. The use of BLISS has been
slowly paining acceptance. It was {irst used in
implementing the FORTRAN-IV PLUS (opti.
mizing} compiler. lts use in PDP-10 and VAX.-
~11.systems programmmg has been more wide-
sprcad

. One design constraint that turned out to be
cxpensne but worth it in the long run, was the
necessity for the word Jength to be a multiple of
eight bits. Previous DEC designs were oriented

" " loward 6-bit characters, and DEC had a large

investment in 12-, 18-, and 36-bit systems, as de-
scribed in Parts Il and V.
Microprogrammability was not an explicit
design goal, partially because fast, large, and in-
expensive read-only memories were not avail-
able at the time of the first implementation. All
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subsequent machines have been micro-
programmed, but with some difficully becuuse
some parls of the instruction set processur, such
as condition code selting and instruction regis-
ter decoding, ure not ideatly matched 10 micro- -
programmed control.

The design goal of undersiandability seems to
have received little atiention. The PDP-11 was
initially a hard machine to understand and was
murketable only 1o those with extensive com-
puter experience. The first programmers” hand-
book was not very helpful, It is still unclear
whether a user without programming expe-
rience zan learn the muchine solely from the
handbook. Fortunalely, several computecr s
ence teatbouks 1Geir,” 1974; Echhowse, 1978,
Stone and Siewiorek, 1975] and other truining
books have been written based on the PDP-12.

Structural flexibility (modularity) fos hard-
ware configurativuns wus an impurianty goal
This succecded beyond ¢xpectations and is dis-
cussed extensively in the Unibus Cost and Pes.
formance section, :

EVOLUTION OF THE INSTRUCTION SET

 PROCESSOR

© Designing the instruclion set processaf les ol

of a machine - that collection of characteristics
such as the sct of data operntors, addressing .
modes, trap and nlerfupt SEQUENITE Tog T

ofganization, and other feptures visdic W a

programmer of the bare machine - is an ¢x-
tremely dilficult problem. One has to convider
the pcrformancc (and priee) ranges of the ma-
chine family as well us the intended appli-

~cations, and difficult tradeofls must be ‘made.

For exumple, a wide performance range arguzs
for differcnt encodings over the range: for small
systems a byte-oriented approach with small
addresses is optimal, whereas larger systems re-
quire more operation codes, more registers. and
farger addresses. Thus, for larger machines. in-
struction coding efficiency can be traded for.
performance.

.t —
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The PDP-11 was oriein.slly conceived as a
small machine, but over time its range was
gmduull\ extended so that there is now a factor
of 500 in price (8500 to $250,000) and memory
size {8 Kbytes to 4 Mbytes®) between the small-

- est and largest models. This range compares fa-

vorably with the range of the IBM System 360
family (16 Kbytes to 4 Mbytes). Needless to
say, a number of problems have arisen as the
basic design was exlended.

Chronology of the Extensions

A chronology of the extensions is given in
Table 2. Two major extensions, the memory
management and the floating point, occurred
with the 11/45. The most recent extension is the
. Commercial Instruction Set, which was defined
to enhance performance for the character string
and decimal arithmetic data-1ypes of the com-
mercial languages (e.g., COBOL). It introduced
. the foilowing to the PDP-11 architecture:’

l.. Data-types representing character- sets,
_character strings, packed decimal
strings, and zoned decimal strings.

2. Sirings of variable length up to 65 Kcha-
racters.

3. Instructions for processing character
strings in each data-type (move, add,
subtract, multiply, divide).

4. Instructions for converling among
binary integers, packed decimal strings,
and zoned decimal strings.

5. Instructions to move the descriptors for

"‘the variable Ienglh strings.

The initial design did not have enough oper-
ation code space to accommodate instrictions
for new data-types. Ideally, the complete set of
operation codes should have been specified at
initial design time so that extensions would fit,

*Although 22

36

With this approach, the uninterpreted oper-
ation codes could have been used to call the var-
ious operation functions, such as a floating-
point addition, This would have avoided the
proliferation of run-time support systems for

- the various hardwarc/sofiware fioating-point

arithmetic methods (Extended Arithmetic Ele-
ment, Extended Insiruction Ser. Flosting In-
struction Set, Floating-Point Processor). The
extracode technique was used in the Atlas and
Scientific Data Systems (SDS) designs, but
these techniques are overlooked by most com-
puter designers. Because the complete instruc-

tion set processor (or at least an extemsion

framework) was unspecified in the initia) de-
sign, completeness and orthogonality have been
sacrificed.

At the time the PDP-11/45 was designed, sev-

eral operation code extension schemes were ex- -

amined: an escape mode to add the floating-
point operations, bringing the PDP-11 back to
being a more conventional general register ma-
chine by reducing the number of addressing
modes, and finally, typing the data by adding a
global mode that could be switched to select
fMloating point insiead of byte operations for the
same. operation codes, 'The floating-point in-

struction set, introduced wah tae 11/4%, o a.

version of the sccond aliernative.

It also became necessary to do something
about the small pddress apace of the prosessor.
The Unibus limlis the physical memory to the
262.144 bytes addressable by 18-bits. In the
PDP-11/70, the physical address was extended
to 4 Mbytes by providing a Unibus map so that.
devices in a 256 Kbyie Unlbus space could
transfer into the 4-Mbyie spuce via mapping.
registers. While the physical address limita are
scceptuble for both the Unibus and larger sys-
tems, the uddress for a single program is sl
confined 10 an instantancous space of 16 bils.
the user virtual address. The main method of

bits are used, only 2 megubyles can be utilized in the 11130,

’
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Table 2..

Chronology of PDP-11 Instructlon

Set Processor (ISP) Evolution

Modelis)

Evolution

11 20

1120

11:45
{11'65,11/70,
11°60.11/34)
11.45
" {11/55,11/70)

11/45

(11/65.11/70)

11/40
(11/03)

11/40
(11./34,11/60)

11/70

11770
. (11/80)

11/03
{11:04.11/34)

11703
1160

VAX-11/780

11/03
13/70mP

Base ISP (16-bitvirtual address) and
PMS (16-bit processor physical
memory address) Unlbus with 18-bit
addressing

Extendead Aruthmetic Elemant {hard-
ware multiply/divida)

Fioating-point instruction set with &
additional registers (46 instructions)
In the Floating-Point Processor

-'-Memory management (KT11C), -3

modes of protection (Kernel, Super-
visor, User}: 18-bit processor phys-
ical addressing: 16-bit virtual
addressing in 8 segments for both
instruction and data spaces

Extonsions for second set of general
registers and program interrupt
request

Extended Instruction Set for multi- -

ply/divide; fioating-point instruction
set (4 instructions)

Memory Management (KT11D), 2
modes of protection {Kerel, User),
18-bit processor physical address-
ing: 16-bit virtual addrassing in 8
sagmants

22-bit processor physical address-

ing: Unibus map for perigheral con-
troiler 22-bit addressing

Error register accassibility for an-ling
diagnosis and retry {e.g.. cache pnmu
error}

Program access 1o processor status
register via expheit instruction {(vas.
sus Unibus address)

One level program interrupt

Extanded Functton Code for in-
vocation of usar-written microcotie

VAX architectural extensions for 32-
bit virtual addressing. VAX ISP~

Commercial Instruction Set (CIS)

interprocessor Interrupt and System
Timers for multiprocessor
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dealing with relatively small addresses is via
process-oriented operating systems that handle
many small tasks. This is a trend in operating
systems, especially for process control and
transaction processing. It does, however, en-
force a structuring discipline in (user) program
organization. The RSX-11 series ol operaling
systems for the PDP-11 are organized this way,
and the need for large addresses is lessened.

The initial memory management proposal 1o
extend the virtwal memory was predicated on
dynamic,” rather than static. assignment of
memory scgment registers. In the current mem-
ory management scheme, the address registers
are usually considered (o be static for a task (al-
though some operating systems provide func-
tions 1o get additional segments dynamically).

With dynamic assignment, a user can address
a number of segment names, via a table, and
directly load the appropriate segment registers.
The segment registers act to concatenate addi-
tional address bits in a base¢ address fashion.
There have been other schemes proposed that
extend the addresses by extending the length of
the general registers ~ of course, extended ad-
dresses propagate throughout the design and in-
clude double length address variables. In effect,
the extended part is loaded with a base address.

With larger machines and proccss-m'i:nwd
operating systems, the context switching time
becomes un important’ pcrlomuma {ezega. By
providing sdditional registers for more pro-
cesses, the time (overhead) to switch context
from one process (task) 10 another can be res
duced. This aption has not been used ia the op.
erating system mplementulions of the PDP-11s
1o date, although the 11/45 extensions included
a second set of general registers. Various alters
natives have been sugscstcd und to accomplish
this effectively requires uddulonal operalors 1o
handle the many aspects of procass scheduling.
This extension appears 10 by relavvely unim-
portant since the range of computers coupkd
with networks tends to alleviaie the nced by ia-
creasing the real parallelism (us opposed 10 the
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apparent parallelism) by having various inde-
pendent processors work on-the separate pro-
cesses in parallel. The extensions of the PDP-11]
for better control of 1/0 devices is clearly more
important in terms of improved performance.

Architecture Management

In retrospect, many of the problems associ-
ated with PDP-11 evolution were due to the
lack of an ongoing architecture management
function. As can be seen from Table 1, the no-
tion of planned evolution was very strong at the
beginning. However, a formal architecture con-
trol function was not set up until early in 1974,
In some sensc this was already too late = the
four PDP-i1 models designed by that date
(11/20, 11/05, 11/40, 11/45) had in-
compatibilities between them. The architecture
control function since then has ensured that no
further divergence (except in the LSI-11) 100k
place in subsequent models, and in fact resulted
in some convergence: At the time the Com-
mercial Instruction Set was added, an archi-
tecture extension framework was adopted.
Insufficient encodings existed to provide a large
number of additional instructions using the
same encoding style (in the same space) as the
basic PDP-11, i.e., the operation code and oper-
and specifier addressing mode specifiers within
a single 16-bit word. An instruction extension
framework was adopted which utilized a futl
word as the opcode, with operand addressing
mode specifiers in succeeding instruction
stream words along the lines of VAX-11. This
architectural extension permits 512 additional
opcodes, and instructions may have an unlim-
ited number of operand addressing mode speci-
fiers. The architecture control function also had
to deal with the Unibus address space problem.

With YA X-11, architecture management has
been in place since the beginning. A definition
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of the architecture was placed under formul
change control well before the VAX-11/740
was built, and both hardwure ard sofltware en-
gineering groups worked with the same docu-
ment. Another significant difference is thal an
extension framework was defined in the original
architecture,

An Evaluation

The criteria used to decide whether or not to
include a particular capability in an instruction
set are highly variable and border on the artis-
tic.* Critics ask that the machine appear ele-
gant, where clegance is a combined quality nf
instruction formats reluting to maemonic sig-
nificance, operator/data-1y pe completeness and
orthogonality, " and addressing conssstency.
Having completely general faciliues (e.g., regis-
ters) which are not context dependent assists in
minimizing the number of insiruction 1ypes and
in increasing understandabitity (and useful-
ness). The authors feel that the PDP-1L has pro-
vided this,

At the time the Unibus was designed, it was
felt that allowing 4 Kbytes of the address space
for 1/0 control registers was more than enough.
However, so many different devices have been
interfuced 1o the bus over the years that it 1s no
longer possible to assign unique addresses Lo
every device. The architectural group has thus
been saddied with the chore of device address
bookkeeping. Many solutions have been pro-
posed. but none was soon enough; as a resull.
they are all so costly that it is cheaper just to live
with the problem and the slizndant incoasen-
ience. '

Techniques for generating code by the human
and compiler vary widely and thus affect in-
struction sel processor design. The PDP-1| pro-
vides more wddressing modes than neuarly vny
other computer., The eight modes for source

*Today one would use the S, M. and R measures and methodology defined in Appendix 3.



and destination with dyadic operators provide
whal amounts to 64 possible ADD instructions.
By associating the Program Counier and Stack
Pointer registers with the modes, even more
data accessing methods are provided. For ex-
ample, 1B varieties of the MOVE instruction
" can be distinguished as the machine is used in
two-address, general register, and stack ma-
chine program forms. {There is a price for this
generality ~ namely, lewer bits could have been
used to encode the address modes that are ac-
tually used most of the time.) .

How tha PDP-11 Is Used

In general, the PDP-11 has been used mostly
" -as a general register (i.e., memory 1o regisiers)
machine. This can be seen by observing the use
frequency from Strecker’s data (Chapter [4). In
one case, it was observed that a user who pre-
viously used a one-=ccumulator computer (¢.3.,
PDP-8), continued to do so. A general register
machine provides the greatest performance, and
the cost (in terms of bits) is the same as when
used as a stack machine. Some compilers, par-
ticularly the early ones, are stack oriented since
the code production is easier. In principle, and
with much care, a fast stack machine could be
constructed. However, since mosl stack ma-
chines use primary memory for-the stack. there
is a loss of performance even if the top of the
“stack is cached. While a stack is the natural
(and necessary) structure to interpret the nested
block structure languuges, it dogs not neces-
sarily follow that the interpretation of all state-
" ments should occur in the context of the stack.
In particular, the predominance of register
transfer statements are of the simple 2- and 3-
address forms:

D5

] v

_.and

Di(index 1)« [(S2(index 2), S}(index 3)).
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These do not require the stuck organization.
In effect, appropriate assignment allows a gen-
erul register machine 1o be used as g stack mu-
chine for most cases of expression evaluation.
This has the advantage of providing tcmporary,
random access to common subexpressions, a
capuability that is usually hard to exploit in stack
architectures.

THE EVOLUTION OF THE PMS
(MODULAR) STRUCTURE

The end product of the PDP-11 design is the
computer itse'f, and in the evolution of the ar-
chitecture one can se¢ images of the evolution
of ideas. In this section the arckitecturel evoly-
tion is outlined, with o special emphuss on the
Unibus. - :

The Unibus is the architectural component
that conncels together all of the other major

~ components. 1t is the vohicle over which data

low between puirs of components takes place,
Its siructure is described in Chapter 11.

In general, the Unibus has met ull expectu-
tions. Several hundred types of memories und
peripherals have been interfuced 1o it; it has be-
come a stundurd architecturul component of
systems int the SIK 10 S100K price range (1975).
The Unibus does limit the performance of the
fastest machines and penalizes the lower per-
formance machines with a highes cost. Recentdy
it has become clear that the Undus is adequate
for ‘large, high performancs systems ohen a
cache structure is used because the cache re-
duces the traffic beiwsen primary memory and
the central processor since about onc-iznth of
the memory refetences are ourside the cachs.
For still lurger systems, supplementury buses
were added for central processor 1o pnmary
memory and primary memory to secondary
nemory traffic. For very small systems like the
LSI-11, 4 nurrower bus was designed.

The Unibus, as a standard, hlus provided an-
architectural component for easily configuring
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systems. Any company, not just DEC, can eas-
ily build components that inierface to the bus.
Good busés make good engineering neighbors,
since people can concentrate on structured de-
sign. Indeed, the Unibus has created a second-
ary industry providing alternative sources of
supply for memories and peripherals, With the
exception of the 1BM 360 Multiplexer/Selector
Bus, the Unibus is the most widely used com-
puter interconnection standard.

The Unibus has also turned out to be in-
valuable as an “umbilical cord" for factory di-
agnostic and checkout procedures. Although
such a capability was not part of the original
design, the Unibus is almost capable of con-
trolling the system components (e.g., processor
and memory) during factory checkout. Ideally,

~the scheme would let all registers be accessed

during full operation. This is possible for all de-
vices except the processor, By having all central
processor regisiers available for reading and

-writing in the same way that they are available
- from the console switches, a second system can

fully monitor the computer under test.

In most recent PDP-11 models, a serial com-
munications line, called the ASCII Console, is
connected to the console, so that a program
may remotely examine or change any informa-

“ tion that a human operator could examine or

change from the front panel, even when the: sys-
tem is not running. In thls way computers can
be diagnosed from a remote site.

: Difficulties with the Design

The Unibus design is not without problems.
Although 1wo of the bus bits were set aside in
the original design as parity bits, they have not

"been widely used as such. Memory parity was

implemented directly in the memory, this phe-
nomcnon is a pood example of the sorts of

" problems encountered in engineering optimiza-
“t tion. The trading of bus parity for memory par-

ity exchanged higher hardware cost and

* decreased perforroance for decreased service

cost and better data integrity, Because engineers
are usually judged on how well they achieve
production cosi goals, parity tradsmission is an .
obvious choice to pure from a design, since it
increases the cost and decreases the petform-
ance. As logic costs decrease and pressure to in-
clude warranty costs as part of the praduct
design cost increases, the decision o transmit
parity may be reconsidered.

Early attempts to build tightly coupled muli-
processor or mullicomputer structures (by map-
ping the address space of one Unibus onto the
memory of another), called Unibus windows.
were beset with a logic deadlack problem. The
Unibus design does nol allow more thun one
masler at 4 {ime. Successful multiprocessors re-
quired much more sophisticated sharing mecha-
nisms such as shured primary memory.

Unibus Cost and Performaace

Although performance is always a design
goal, so is low cost: the two goals conflict
directly. The Unibus hus turned out 10 be nearly
optimum over a wide range of producis. It -
served as an adequale memory-processor imer-
connect for six of the ten models. However. in-
the smallest system, DEC introduced the: LSI-
11 Bus, which uses about half the number of
conductors. For the largest systems. a scparate,
32-bit data path is used between processos and
memory, although the Unibus is still used far
communication with the majority of the 1/O
controllers (the slower ones). Figure | summa-
rizes the evolution of memory-processor rmer
connections in the LSl.11 Family. Levy
(Chapter 11) discusses Ihe evolution in mare dov
tail.

The bandwidik of lhc Unitays 13 appmn.
imately §.7 megabyles per second or ¥3C &
transfers/second, Oaly for the larpest can-
figurations, using many /O devices wizly very
high duta tales, is this cupncily excovded. For
most configurativns, the demand put onan 1O
bus is limited by the rotational delay and head



~ positioning of disks and the rate at which pro-

grams {user and system) issue 1/0 requesis.
An experiment to further the understanding

~ of Unibus capacity and the demand placed

against it was carried out. The experiment used

" a synthetic workload: like all synthetic work-

loads, it can be challenged as not being repre-
sentative. However, it was generally agreed that

. it was a heavy 1/0 load. The load simulated

transaction processing, swapping, and back-
ground computing in the configuration shown
in Figure 3. The load was run on five systems,

each placing a different demand on the Unibus,

Each run produced two numbers: (1) the time
to complete 2.000 transactions, and (2) the

- number of iterations of a program called

HANOI that were compieted.

Benchmark  Number of
Time HANOI
System {minutes)* ~ [terations
11/60 cache on 15 12
‘11/60cacheoff 15 - 2
11/40 15 3
11/70 MBCBUS 15 23
11/70 Unibus 26 38

2,000 trensactions pius swapping ptus HANOI,

The results were interpreted as follows:

1. 1/0 throughput, For this workioad ihe
Unibus bandwidth was adequate. For
systems 1 through 4 the 1/0O activity
took the same amount of time. '

2. 11/70 Unibus. The run on this system
{no use was made of the 32-bit wide pro-
cessor/memory bus) took longer be-
cause of the retries caused by data lates
(approximately 19,000} on the moving
head disk (RP04). The extra time taken
for the benchmark allowed more ilera-
tions of HANOI to occur. The PDP-
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Figure 3. Tha synthetic workload usad 10 Mmeaswra
Unibus cepacity. . :

11/70 Unibus had a bandwidth of about
| megabyte. It was lkss than the usua)
Unibus (about 1.7 megabyte) because of
the map delay (100 nanoseconds), the
cache cycle (240 nanoseconds), and the
main memory bus redriving and sym-
chronization.

3. 11760 Cache. Sysiems | aod 2 ciearly
show the effetiveness of a cache. Mon

. memory references for HANOI were 1o

the cache and did not involve the
Unibus, which was the PDP-11/60s 1/Q
Bua. Symems 2 und J were essemially
equivalent, ns expected. There are two
reasons for the 11/40 having slightly
more compitic bandwidth than an 11/60
with its cache off. First, the 11/40 mem-
ory is laster than the 11/60 backing
siare, und second, the || /40 proczssos
relinquishes the Unibus for a direcst -
memory access cycls; the 11/60 proces-
sor must request the Unibus for a pro-
cessor cycle, )
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" There are several attributes of a bus that af-
fect its cost and performance. One fuctor affect-
ing performance is simply the data rate of a
single conductor. There is a diréct tradeoff in-
performance, and reliability.
Shannon [1948] gives a relationship between the

" fundamental signal bandwidth of a link and the

-..error rate (signal-to-noise ratio) and data rate,

The performance and cost of a bus are also af-
fected by its length. Longer cables cost propor-
tionately more, since they require more
complex circuitry to drive the bus. _
-Since a single-conductor link has a fixed data

_rate, the number of conductors affects the net-

speed of a bus. However, the cost of a bus is

_ directly proportional to the aumber of con-

ductors. For a given number of wires, time do-
main multiplexing and data encoding can be
used to trade performance and logic com-
plexity. Since logic technology is advancing las-
ter than wiring techaology, it seems likely that
fewer conductors will be used in all future sys-
tems, except where the performance penaly of
timer domain multiplexing s unacccptably
greal.

If, during the original dcs:gn of lhe Umbus.
DEC designers could have foreseen the wide
range of applications to which it would be ap-
plied, its design would have been different. Indi-
vidual controllers might have been reduced in
complexity by more central control. For the
largest and smallest systems, it would have been
useful to have a bus that could be contracted or
expanded by multiplexing or expanding the
number of conductors.

The cost-effectiveness of the Unibus is due in
large part to the high correlation between mem-

- ory size, number of address bits, 1/0 traffic,

and processor speed. Gene Amdahl's rule of
thumb for IBM computers is that i byte of

“memory and | byte/sec of 1/0 are required for

", each instruction/sec. For traditional DEC ap-

. t}i‘ ;

plications, with cmphasis in the scientific and

- control applications, there is more computation

required per memory word. Further, the PDP-

- 11 instruction sets do not contain the extensive

/

v

commercial instructions (character strings) lyp-
ical of IBM computers, so a larger number of
instructions must be executed Lo accomplnh the
same task. Hence, for DEC compuiers. it & bet-
ter to assume | byte of memony for cuch 2 in-

. structions/scc, and that | byvie/sec of 1O

occurs for each instruction/sec.

In the PDP-11, an average instructon ac-
cesses 3-5 bytes of memory, so assuming 1 byte
of 1/0 for each instruction/sec. there are 4-6
bytes of memory accessed on the average for
each instruction/sec. Therefore. a bus that can

‘support 2 megubytes/sec of traffic permits in-

struction execution rates of 0.33-0.5 mega-in-
structions/sec  This implies memory sizes of
0.16-0.25 megabyies, which matches well with
the maximum allowable memory of 0.064-0.256
megabytes. By using n cuche memory on ihe
processor, the elfective memory processor rate
can be increased to balance the system further.
IT fast floating-point mstrucuons were added 10
the instruction s¢t. the balancs migkt upprasch |
thal used by [BM and thercby require more
memaory (an ¢ffect scen in the PDP-11/70).
The task of 1/0 is 1o provide for the transfer
of data from peripheral 10 primary memary
where it can be operated on by a program ia a.
processor. The peripherals pre generully slow,
inherently asynchronous, and inore érror-prane:
than the processors 10 which they ure utiached.
Historically, 1/O transfer mechanisms have
evolved through the following four stuges:

. Direct sequential 1/Q under centrad pro-
cessor controb. An instruction in the pso-
cessor causes a data iransfer to Lake
place with a device, The procoiser dose
not resume operition until the transfer is
complete. Typicully, the device conteal
may share the logic of the processer: The
first input /output transfer (JOT) instruac:
tion in the PDP-| is un exampie, the IOT
effects transfer between the Accumales
tor and a selecied device. Direct 170
snmphﬁcs progrummmg because every
aperation is sequential,



- 2. ' Fixed bufier, 1-instruction controllers, An

"instruction in the central processor
causes a data transfer (of a word or vec-
tor), but in this case, it is to a buffer of
the simple controller and thus at a speed
‘matching that ol the processor. After the
high speed transfer has occurred, the
processor continues while an asynchro-
nous, slower transfer occurs between the
buffer and the device, Communication
back to the processor is via the program
interrupt mechanism. A single instruc-
tion to a simple controller can also cause
a complete block (vector} of data to be
transmitted between memory and the pe-
ripheral. In this case, the transfer takes
place via the direct memory access
{DMA) link.

3. Separate 1/0 processors - the channel.
An independent 1/O processor with a
unique ISP controls the flow of data be-
tween primary memory and the periph-
eral. The structure is that of the
multiprocessor, and the 1/0O control pro-
gram for the device is held in primary
memory. The central processor informs
the 1/0O processor about the 1/O pro-
gram }ocation.

4. 1/0 computer. This mechanism is aiso
asynchronous with the central processor,
but 'the I/O computer has a private
memory which holds the I/O program,
Recently, DEC communications options
have -becn built with embedded control
programs. The first example of an [/O
computer was in the CDC 6600 (1964).

The authors believe that the single-instruc-
tion controller is superior to the 170 processor
as embodied in the 1BM Channel mainly be-
cause the latter concept has not gone far
enough. Channeis are costly to implement, suf-
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ficiently complex to require their own program-
ming environment, and yel notl quite powerful
enough Lo assume the processing, such as file'
management, that one would like to offload
from the processor. Although the 1/0 traffic
does require eoniral proctasor resources., the ag-
dition of a second, pencral purpose central pro-
cessor is more cost-effective than using a cenwal
processor-1/0 processor or cenirai processor-
multiple 1/O processor structure. Futwe 1/Q
systems will be message-oriented. and the vari-
ous 1/O control functions (including diugnos-

. tics and file management) will migrate 10 the

subsystem. When the /0 computer is an ¢xacl
duplicate of the ¢entral processor, not only is
there an economy from the reduced number of
part types but also the same progsamming onvi-
ronment can be used for 1/Q software devel-

.opment and main program development.

Notice that the /O computer must implement
precisely the same st of funcuons as the proczs-
sor doing direct 1/0.*

. MULTIPROCESSORS '

[t is not surprising 1hat multiprocessas are
used only in highly specialived applicatons
such as those requiring high reliability or high
availability. One way 1o extend the range of a
family and also provide more performance al-
ternatives with fewer basic components is 1o
build multiprocessors. In this section some fac-
tors affecting the design and implementation of
multiprocessors, and their effect on the PDP-
11, are examined.

It is the nature of engineering Lo be conserva-
tive. Given that there are already a number of

risks involved in_bringing a product to the mar-

ket. it is not clear why one should build 2 hgher
risk structure that may require a new way of
programming. What has resulted is a sort of
deadlock situation: people cannot learn how to
program multiprocessors and employ them in a

*The I/Q compuler is yet another example of the wheel of reincarnution of displuy processors (s Chagur T).
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single task until such machines exist, but manu-
facturers will not build the machine until they
are sure that there will be a demand for it, i.e.,
that the programs will be ready.

There is little or no market for multi-
processors even though there is a need for in-

creased reliability and availability of machines. -

IBM has not promoted multiprocessors in the
marketplace, and hence the market has lupged.

One reason that there is so little demand for
multiprocessors is the widespread acceptance of
the philosophy that a better single-processor
system can always be built. This approach
achieves performance at the considerable ex-
.pense of spare parts, training, reliability, »nd
Nexibility.

backup, and system tunability unreachable on a
conventional'system, the biggest and fastest ma-
_ chines are uniprocessors — except in the case of
thg Bell Laboratories Safeguard Computer [Bell
Laboratories, 1975]. :

.~ Multiprocessor systems have been built out
- of PDP-1is. Figure 4 summarizes the design
and performance of some of these machines.
The topmost structure was built using 11/05
processors, but because of inadequate .arbi-
tration techniques in the processor, the ex-
pected performance did not materialize, Table 3
shows the expected results for multiple 11/05
. processors sharing a single Unibus and com-
pares them with the PDP-11/40,

From the results of Table 3 one would expect
10 use as many as three 11/05 processors lo
achieve the performance of a model 11/40.
- More than three processors will increase the
-performance at the expense of the cost-effec-
tiveness. This basic structure has been applied
- on a production basis in the GT40 series of
_ graphics processors for the PDP-11. In this
" scheme, a second display processor is added to
* the Unibus for display picture maintenance. A
-similar structure is used for connecting special

Although a multiprocessor archi-
tecture provides a measure of reliability, -

51 5. . i

(8] Multi- Pe structuro using o mngle Wndus.
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{t}  Multiprocessor using multipent Rp. -

.

idl CmmpCMU multi-mrmm computer
structure.

Figure 4. PDP-!1 multiprocossor PMB structuros.

signal-processing computers Lo the Unibus sk
though these structures are technically coupled
computers rather than multiprocessors,

As an independent check on the validity of.

this approach, u multiprocessor systein has
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Table 3. Multiple PDP-11/05 Processors Sharing a Single Unlhus

Number and  Processor
Procassor Paerformance Processor Gystom
Mode! {Relative) Prica Price*/Performanco Pilceo Prigo?/Porforsnpesa
1-11/06- 1.00 1.00 1.00 3.00 1.00
2-11/05 1.85 1.23 0.66 3.23 0.58
3-11/05 24 1.47 0.61 3.47 0.48 .
1.35 . 0.60 3.35 0.49

1-11/40 2.25

" ®Processor cost only.

tTo1al system cost assuming one-third of system is pracessor cost.

been built, based on the Lockheed SUE {Orns-
tein et al., 1972}. This machine, used as a high
speed communications processor; is a hybrid
design: it has seven dual-processor computers
" with each pair sharing a common bus as out-
lined above., The seven pairs share (wo multi-
port memories,
The second type of structure given in Figure 4
i6 a conventional, tightly coupled multi-
processor using multiple-port memories. A
aumber of these systems have been installed,
and they operate quite effectively. However,
they have only been used for specialized appii-
cations because there has been no operating sys-
tem support for the structure.

PDP-11 Based Multiprocessor: Carnegie-
Mellon University Research Computers

The PDP-11 architecture has been employed
to pioneer new ideas in the area of muiti-
processors. The three multiprocessors built at
Carnegie-Mellon University (CMU) are dis-
" cussed: C.mmp [Wulf and Bell, 1972}, a 16-pro-
cessor multiprocessor; C.vinp [Siewiorek e! af.,
1976). a triplicated, voting multiprocessor com-
puter for high relisbility; and Cm* (Chapler
20), a set of computer modules based on LSI-
1. .

The three CM U multiprocessors are good ex-
amples of multiprocessor development direc-

tions because it is quite likely that techeclogy
will force the evolution of computing structures
to converge into three styles of multiprocessor
computers: {1) C.mmp style, for high perform-
ance, incremental performance, and availability
{maintainability); (2) C.vmp style for very high

availability motivated by increasing mainte-

nance costs, and (3) loosely coupled computers
like Cm#* to handle specialized processing. c.g..
front end, file, snd signal processing. This argur
ment is based an history, present 1echoology.
and resulling pnce extrapolations:

1. MOS technology appears to be increas-
ing in both speed and density {aster than
the technology (such as ECL) from
which high performance machines arc
usuzlly built, ‘

2. Standards in the semiconductor industry
tend to form more quickly for high vol-
ume products, For example, in the 8-bat
microcomputer market, one type sup-
plies about 50 percent of the market and
three types supply ov:r 90 percent.

3. The price per chip of the single MOS
chip processors decreases at & sub-
stantially greater rate than [or the low
volume, high performance special de-
signs. Chips in hoth designs have high
design cests, bul the mngle-MOSulin
processors have a much higher volume.
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4. Several 16-bit processor-on-a-chip pro-
cessors, with an-uddress space mutching
uand appropriste dula-types matching the
pecformance, exist in 1978. Such a com-
modity can form the basis lor nearly all
future compuler designs.

5.  The performance (instructions per sec-
ond) per chip, which is already greater

for MOS processor chips than for any -

other kind, is improving more rapidly

than for large scale computers. This will

pull usage more rupidly into large arrays

of processors because of the essentially

“free cost™ of processors (especially rela-

tive 1o large, low volume custom-built
" machines).

Therefore, most subsequent compulters will
be based on standard. high volume parts. For
high performance machines, since processing
power is available at essentially zero cost from
processor-on-s-chip-bused processors, lurge
scale computing will come from arrays of pro-
cessors, just as memory subsystems are built
from arrays of 64 Kbit integrated circuits.

The multiprocessor research projects at
CMU have emphasized synthesis and measure-
ment. Operating systems have been built for
them, and the executions of user programs have

been carelully analyced. All the multiprocessor.

interferences, overheads, and synchronization
problems have been fuced for several appli-
cations; the resultant performance helps 10 put
their actual costs in perspective, Figure 5 shows
the HARPY specech recognition program and
compares the performance of C.mmp and Cm#*
with three DEC uniprocessors (PDP-10 with
KA 10 processor, PDP-10 with KL 10 processor,
and PDP-11/40). ’

C.mmp

C.mmp (Figure 6) a 16 processor (11/40s und
11/20s) system has 2.5 million words of shared
primary memory. It was built to investigate the
programming (and resulling performunce)
questions associated with having 4 large num-
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Fgure § A perlormance comparson of 1wo mutn.
processors. C.mmp and Cme, with thrae uniprocessors a1
Carnegie-Mellon University.. The applcaton used.
HARPY. a8 speech recognition progtam This graph s
based on waork done by Petar Olainick {1978} and Peter
Ferler at CMU

ber of procussors, Since the time that 1he first
paper [(Wull und Bell,, 1973] was wrinien,
C.mmp has been |he object of some inicesung
studies. the results of which are summarisced te-
low.

C.mmp war motivated by the reed for moee
computing power 10 solve speech revogmiion
and signal processing problems and to undere
stand the multiprocessor sofliware problem,
Until C.mmp, only one large, tighuy coupled
multiprocessor hud been built = the Bell Labo-
ratories Safeguard Computer [Bell Luboru.
tories. 1973).

The originu} paper [Wull nnd Bell. 1972] dis
scribes the cconomic und technical facwors i
fluencing multiprocessor feasibility and argues
for.thetimeliness of the reseurch. Various prob-
lems to be researched pnd 3 discussion of pae-
ticular design uspects ure given. For cxample.
since C.mmp is predicatsd on a commuad opss-
ating systems, there are two sources of degroda.
tion: memory ¢ontention and lock contcoima
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The  machine's theoretical performance as a
function of memory-processor interference is
based -on Strecker's [1970] work. In practice,
- because the memory was not built with low-or.
der address interleaving. memory interference

was greater than expected. This problem was

.. solved by hawng several copies of the program
--s¢gments. ..

As the number of memory modules and pro-
cessars becomes very large, the theoretical per-
formance (as measured by the number of
accesses to the memory by the processors) ap-
_ proaches half the memory bandwidth (i.e., the
number of memory modules memory cycle
time) [Bo.kett and Smith, 1976). Thus, with in-
finite processors, there is no maximum limit on
performance, provided all processors are not
contending for the same memory.

Although there is a discussion in the original
paper outlining the design direction of the oper-
ating system, HYDRA, [ater descriptions
should be read {Wulf er al., 1975, Since the

-smat! address of the PDP-11 necessitated fre-
" quent map changes, PDP-11/40s with writable
control stores were used 1o implement the oper-
ating systems calls which change the segment
base registers.

There are three basic approaches to the effec-
tive application of multiprocessors: .

. - System level workload decomposition. If
a workload contains a lot of inherently
independent activities, e.g., compilation,
editing, file processing, and numerical
computation, it will nalura]ly decom-
pose.

2. Program decomposition by a program-
mer. Intimate knowledge of the appli-

. cation is required for this umc-
consuming approach,

3. Program decomposition by the com-

" piler. This is the ideal approach. How-
ever, results 1o date have not been
especially noteworthy.

C.mmp was predicated on the [irst two ap-
proaches. ALGOL 68, a language with facilities

48

for expressing parallelism {n programs. has
since been implemanied. N has assoted greutis
with program decomposition and looks like a
promising general approach. It is imperative.
however, 10 exiend the stundard languages to
handle vectors und arrays.

The contentian for shured resources in 4 mul-
tiprocessor system occurs al several fevels. Al
the lowest level, processori contend &t the
cross-point swilch level for memory. On u
higher level there is conlention for shared datu
in the operating system kernel. processes con-
tend for 1 /O devices und lor software processes,
e.g., for memory manugement. At the user bescl
shared data implics further contention. Talue 4
points to models on experimental data al thexe
different levels,

Marathe’s data show that the ﬂurcd data of
HYDRA is orgunized into enough separgte ob-

_jects so that & very small degradation (less than

I percent) results from cantention for these ob-
jects. He also buill 4 queucing modd which
projected that the contention tevel would be
about 5 percent in a 48 processor system.
Oleinick {1978] has used C.mmp 10 conduci
an experimental, as opposed to theoretical,
study of the implementation of parallel al-
gorithms on a muliprocessor. He studied the
operation of Rootfinder, a program Lhat is an

Tebled. Referances for Experimental Dataon

- Contention at Each ¢f Thioe Lovels in the

C.mmp System

Contention
Level Roafssence
User-program Olginick {1978]

- Fuller and Qleinick [1978]

HYDRA kernel Marathe and Fuller [1977]
objects
Cross-pomnt Basietnt ang Samth 18786]
" switch Fuller |3876]
Strocker | 1870}

Wulf end Bedl |1872]




extension of the bisection method lor finding
the roots of an equation,

A natural decomposition of the binary search
for a root into n parallel processes is 1o evaluate
_ the function simultaneously at n poinis. Under
ideal conditions, all processes would finish the
function evaluation (required at each siep) at
the same time, and then some brief book-
keeping would take place to determine the next
- subinterval for the n processes to work on.
~ However, because the time to evaluate the func-

_tion is data dependent, some processes are com-
pleted - before others. Moreover, if the
bookkeeping tas" is time consuming relative to
the time to evaluate the function, the speedup
ratio will suffer. Oleinick systematically studied
each source of fluctuation in performance and
found the dominant one to be the mechanism
used for process synchronization.

Four different locks for process synchro-
nization, called: (1) spin lock, (2) kernel sema-
phore, (3) PMO, and (4) PMI, are available 10
the C.mmp user. The spin ock, the mosl rudi-

mentary, does not cause an entry to the -

HYDRA operating system. [t is a short se-
- quence of instructions which continually test a
semaphore until it can be set success{ully. The

~ process of testing for the availability of a re-

source, and seizing the resource if availahle,
could be called TEST-AND-LOCK. When the
_resource is no longer needed, it is released by an
UNLOCK process. These two -processes ure
called the P operation and the V aperation re-
spectively, as originally named by Edgar Dij-
kstra. The P and V operations in the C.mmp

spin lock are in fact the following PDP-11 code

seguences:

P: CMP SEMAPHORE, .
Al SEMAPHORE=1?
BNE P Jloop uniil it is )

DEC SEMAPHORE :Decrement SEMAPHORE
BNE P . Jdfnotequul Ogoto P

V: MOV 41, SEMAPHORE :Reset SEMAPHORE 1o |

Although this repeating polliﬁg is extremely
fast, it has two major drawbacks: first, the pro-

|
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iy,

cessor is not free 10 do useful work; second, the
polling process consunmes memory cycles af the
memory bank thut contains the semaphore.

The kernel scmaphore, implemented in
HYDRA, is the low level synchronizavon
mechanism inlendsd 10 be used by system pro-
cesses. When a process blocks or wakes up. a
state change for that process is made inside the
kernel of HY DRA. If a process blocks (fails 1o
obtain a necded resource) while trying 1o P (1est
and lock) a semaphore, the kernel swaps the
process from the processor, and the pages be-
fonging to that process are kepl in primary
memory. The other semaphore mechanisms
(PMO and PMI) take propomonatet) more
time (>| millisecond).

C.vmp

C.vmp, is a triplicaled, voting multiprocessor
designed 10 understand the difficulty (or cnis)
of using standard, off-the-shelf LS3-1 13 o pro-
vide greatly increased reliability. There s con-
cern for increased reliability because sysicms
are becoming more complex, are used for mare
critical applicutions, and because mainienance
costs for all systems are ingreasing. Becaouse the
designers themselves carry out and analyze (he
work, this section provides first-hand insight
into high relinbility designs and the design pro-
cess - especinlly its evaluation,

Several design gouls were sot and the woek
has been carricd out. The C.vmp system has op-
erated since late 1977, when (he first phase of
work was completed.

The goal of sofiware and hardwarc trans-
parency turned out to be casier o allain than
expecied. because of un idiosynsrasy of the

floppy disk controller. Because the contrelicr

effects a word-ut-g-time bus lrassfer fom &
one-sector buffer, vosing can be carned oul az a
very low level, J1 is unclear how the system

would have been designed withosa this type of

controller; 4l & minimum, some part of the soft-
ware transparency goal would not have been
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" mel, and a significant controller modification
would have been necessary. -
A number of models are given by which the
design is evaluated. From the discussion of
component reliabilities the reader should get
some insight into the factors contributing to re-
« liability. It should be noted that a custom-de-
signed LSI voter is needed 1o get a sufficiently
low cost for a marketable C.vmp. While the in-
- tent of C.vmp development was not a product,
" it does provide much of the insight for such a

product,

Cm?*

. Cm*is describéd in Chapter 20; however, be-
. cause it is one of the three CMU machines
- pointing to future technology-driven trends in
_ multiprocessor use of LSI-11 architecture, it is
given some mention here. The Cm* work,
. sponsored by the National Science Foundation
{NSF) and the Advanced Research Projects
- Agency (ARPA), is an extension of earlier

.- . NSF-sponsored research [Bell er af., 1973] on

register transfer level modules. As large-scale
integration and very large-scale integration en-
able construction of the processor-on-a-chip, it
is apparent that low level register transfer mod-
ules are obsolete for the construction of 2li but
low volume computers. Although the research
is predicated on structures employing a hun-
dred or so processors, Chapter 20 describes the
“culmination of the first (10-processor) phase.

In Chapter 20 the authors base their work on
diseconomy-of-scale arguments. To provide ad-
ditional context for their resecarch, computer

modules (Cm*), multiprocessors {C.mmp), and.

" computer networks are described in terms of
performance and problem suitability, They give
" a description of the modules structure, together
with itz associated limitations and potential re-
search problems.

The grouping of processor and memory into

modules and the hierarchy of bus struciures -
~LSI-11 Bus, Map Bus, and Intercluster bus,
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radical departures from conventional computer
systems - is given. The finul, most imporiant
part of the chapier evaluaies the performance of
Cm* (or five difféerent problems.

Since the time that Chapler 20 was writlen,
construction of 8 S0 compuler moduics Cm®
has begun and will be operational by the end of
1978 for evajualion in 1979. The extension of
Cm* is known as Cm*/50 and is shown in Fig-
ure 7. It will be used 1o 1est purallel processing
methods, fault wolerance, modularity, and the
extensibility of the Cm* structure.

The PDP-11/70mP Experimentel
Multiprocessor Cemputor

The PDP-11/70mP 2ims to extend the relia-
bility, availability, mainmainabdity and per-
formance range of the PDP-11 Family. It uses
11/70 processor hardware and the RSX-11M .
software as basic building blocks.

The systems can have up to four processars
which have access to common central memoriss
as shown in Figure 8. Each MOS primary mem-
ory contains 256 Kbyte to | Mbyte and a pont
(switch) by which up Lo four processors may ac-
cess il. A failed memory may be isolated for re-
pair. Usually two processors share (have access
10) each of the 1/O devices through a Unibus
switch or dual ported disk memories.

Failure of a high speed mass storage bus con-
troller, a processor, or onc port of a device will
not preclude use of that device through the
other port, These devices can also be isolatcd
from their respective budes so hat failume of o
device will nol preclude access to other devices.

Each of the processor units has a write-
through cache memory. Through normal sys-
tem operation, data within thesz locsl cavhey
may become Inconsistent with duta elscw hete in
the system. To eliminute this problem, the opery
ating system and the hurdware componeni:
have been modified. The REX-1IM system ci-
ther ctears the guche of Inconsistenl data o7
avoids using the cache for specific situativan.
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Figure B. Four-processor multiprocessor based on PDP-11/70 procostive

The software to manipulate the cache is con-
-tained .in the executive and is transparent to
- USEr programs.

An Interprocessor Interrupt and Sanity
Timer (IIST) provides the executive software
with a mechanism to interrupt processors for
rcschcdulihg. The 11ST includes a timer for each
processor which is periodically refreshed by
software after execution of diagnostic check
routines. If the refresh commands do not occur
within a prescribed interval, the 11ST will issue
an interprocessor interrupt to inform the other

- processors of faulty operation. The HST also
contains 2 mechanism for injtially loading the
multiprocessor system.

The system design results in an extension to
the PDP-11 that is transparent to user programs
and yields increases in performance over a
single processor 11/70 system. This perform-
ance increase is due to the symmetry, such that
nearly any resource can be accessed by any pro-

cess with miniimnum overhead. Also, unfiike mub
tiple computer systems that communicaie wa
high speed links, the large primaty memory can
be combined and used by & single process,
Moreover, dynamic assignment of processes 10 -

. specific computer systems (Figure 9) can bg

made.

The system has been designed to increase the:
availability by reducing the impact of failures
on system performance through the use of mul-
tiple redundunt components. In this way, lailed
elements can be isolated for repair. The design
is such that the system may be easily reconé.
gured so that system operation can be resumed
and the failed component repaired ofl-line:

Extensions to the diagnostic software and
hardware error detection mechanisms fucililate
quick location of faults. User-mode diagnosiics.
are run concurrently with the application sofl-
ware: this permits maintenance of the disk and.
tape units to be dons on-ine.



tration mechanism. Interfucing between these
independent mechianisms is by meuns of queues.

There are some operations that require more
than one access o the same resource in the

pipeline. These operations are effectively han-

dled ns two trunsactions. Examples of such op-
eralions are memory writes and internal 1/0
page (memory-management regisier) accesses.
A memory wrile may need a second access 10

the cache for update, while the Internal 1/O°

Page may need another access to the map array.

There are other operations in which the tim.
ing does not permit the use of a particular re-
source in the specific interval that is ullocated to
that transaction., This happens, for instance,
" when a read operation results in a cache miss.
The data is not available in time. in this case 2
second transaction takes place, initiated when
backing store data becomes availabile.

Cost projections indicate that a mulj-
processor will have an increase in parts count
over each possible equivalemt performance
uniprocessor in the range. This will range from
" a 20 percent increase for a two-processor, multi-

processor system to O percent at the top of the- -

-range. The 20 percent premium cuan be reduced
il no provision is.made for expansibility over
the entire range. Clearly, a separate single pro-
cessor structure can be cost-effective (since this
is the LSI-11). The premium is based on parts
count only and exciudes considerations of cost
benefits due 1o production learning, common

spares and manuals, lower engineering coss,

- ete.

A number of computer systems have been
built based on multiple processors in sysiems
ranging from independent computers (with no
interconnection) through tightly ¢oupled com-
puter networks which communicate by passing
messages, 1o multiprocessor computers -with
shared memory. Table 5 gives a comparison of
the various computers. Although n independent
computers is a highly reliuble structure, it is
hurd to give an example where there is no inter-
connection among the computers, The standard
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computer network interconnecied via standard
communications links is nol given,

It is interesting (o compare the multi-
processor and the tightly coupied mult-
computer configurations (Figure 8 and 9) where
the configurations are drawn in exualy thy

- sume way und with the samw peripherals. la the

way. columns 2 and 6 of Tuble 5 can be mure
casily compared. The tradeoff between the twa

. structures is belween lower cost and potenually .

higher performance for the multiprocessor (un-
less tasks can be statically ussigned o the vari-
ous computers in the neiwork) versus somew hat
higher reliability, avuilability, and maintaina.

-bility for the network computer (becuuse there

is more independence among software and
hardware). Varying the degree of coupling in
the processors through the amount of shared
memory determines which structure wiii result.
The cost und the resultamt reliability differen-

_ tials for the two.systems are determined by the -

size and the reliability of the sofiware.

TECHNOLOGY: COMPONENTS OF THE
DESIGN ¥

In Chapter 2. it was noted that compulers are
strongly influenced by the basic electronic tech-
nology of theit components. The PDP-11 Fam-
ily provides un extensive example of designing
with improved lechnologies, Becuuse design re-
saurces huve begen available to do concurrent-
implementations spanning a cost/performance
range, PDP-11s offer a rich aource of exampies
of the three dilTerent design slyles: constant cost
with increasing functionpality, constant func.
tionality with decreasing ¢vst, and growth path

Memory technology has hud o much greste
impact on PDP.11 evolution than logik iech-
nology. Except for the LSK- 1L, the one logw
fumily (7400 s¢ries TTL) has dominazed PDP-

- 11 implementiatioas singe ths beginning. Excapt

for 4 small increase afier the PDP 11 /20. gae

_density has not improved markedly, Speed im-
~ provement has. taken place in the Schotiby



Table 5, Characteristics of Various PDP-11 Based Multiprécessor and Multicomputers
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Single
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TTL, and a speed/power improvement has oc-
curred in the low power Schottky (LS) series,
Departures from medium-scale integraied tran-
sistor-transisior Jogic, in terms of gate densily,

have been few, bul effective. Examples are the

bit-slice in the PDP-11/34 Floating-Point Pro-
cessor, the use of programmabie logic arrays in
. the PDP-11/04 and PDP-11/34 control units,
and the use of emitter- coup!ed loglc in some
clock circuitry.

Mcmory densities and costs have improved
rapidly since 1969 and have thus had the most
impact. Read-write memory chips have gone
from 16 bits to 4.096 bits in density and read-
only memories from 16 bits to the 8 or 16 Kbits
widely available in 1978. Various semij-
.conductor memory size availabilities arz given
in Chapter 2 using the mode! of semiconductor
density doubling each year since 1962.

The memory technology of 1969 imposed
several constraints. First, core memory was
cost-effective for the primary (program) mem-
ory. but a clear rend 1oward semiconductor
primary memory was visible. Second, since the
largest high speed read-write memories avail-
able were just 16 words, the number of proces-
sor registers had to be kept small. Third, there
. were no large high speed read-only memories
that wouid have permitted a microprogrammed
-approach to the processor design.

These constraints established four design am-

tudes toward the PDP-11's architecture. First, it

should be asynchroncus, and thereby capable
of accepting different configurations of memory
that operate at different speeds. Second, it
should be expandable to take eventual advan-
tage of a larger number of registers, both user
registers for new data-lypes and internal regis-
ters for improved context swilching, memory
mapping, and protecied multiprogramming,

Third, it could be relatively complex, so that a -

microcode dpproach could eventually be used
to advantage: new data-types could be added to
the, instruction set 1o increase performance,
even though they might add complexity.
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Fourth, the Unibus width should be relatively
targe, to get as much performance as pussibic,
since the amoum of computation possible per
memory cycle was relutively small.

As semiconductor memory of varying -price
and performance became availuble. it was used
to trade cost for performunce across a rewson-
ably wide range of PDP-11 models, Differem
techniques were used on different models 10
provide the range. These techniques include:
microprogramming for all models except the
11/20 to lower cost and enhance performance
with more data-types ([or example, faster float-
ing. point); use of faster program memonics for
brute-force speed improvements (e.g., 11/43
with MOS primary memory, 11/55 with bipolar
primary memory, and the 11/60 with a large
writable control store); use of caches (11,70,
11/60, and 11/34C): and expanded use of fast

. registers inside the processor (the 11/45 and

above). The use of semiconductors versus cores
. for primary memory is a purely ecoaomic con-
“sideration, as discussed in Chapter 2.

Tuble 6 shows charuacteristics of each of the
PDP-11 models ulong with the lechniques used
to span a cost and performance range. Snow

- and Siewiorek (Chapter 14) pive a detailed com-

parison of the processors,

VAX-11

Eniarging the virtual address space of an ar-
chitecture hus far more implicabons thas en-
targing the physical address space. The simple
device of relocating program-gencraied ad-
dresses can solve the latter problem. The phys-
ical address space, the amoum of pnyucad
memory that can be nddressed. has been
creased in two seps in the PDP-11 Famaly
(Table 2).

The virtual address space, or name space, is a
much more fupdamental part of an arch-
tecture: Such addresses are programmer geoss-
ated: to name data objects, their aggregates
(whether they be veclors, matrices, lists, or
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Tab!n 6. Characteristics of PDP-11 Modets with Techniquaes Used to Span Cost and Performance Range
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shared duly scgments) and Instructions (sub-
routine addresses, for exumple). Numes seen by
on individual program are part-of a lurger nume
space ~ that managed by an operating sysiem
and its associated language trunslators and ob-
ject-time systems. An operating system provides
program sharing and protection among pro-
grams using the nume space of the architecture.

~As the PDP-11/70 design progressed, it was
reilized that for some large applications there
would soon be a bad mismatch between the 64-
. Kbyte name space and 4-Mbyte memory space.
Two trends could be clearly seen: (1} mini-
computer users would be processing large ar-
rays of data, particularly in FORTRAN
programs {only 8,096 double precision floating-
point numbers are needed L0 fill a 16-bit name
space), and (2) applications programs were
growing rapidly in size, particularly large CO-
BOL programs. Moreover, anticipated memory
price declines made the problem worse. The
need for a 32-bit integer data-type was fel1, but
. this was fur less important than the need for 32-
" 'bit addressing of a name space.
. Thus, in 1974, architectural work began on

" . extending the virtual address space of the PDP- -

.11. Several proposals were made. The principal
goal was compatibility with the PDP-11. In the
final proposed architecture each of the eight

-general registers was extended to 32 bits. The
addressing modes (hence, address arithmetic) -

inherent in the PDP-11 allowed this to be a nat-
-ural, easy extension. .
- The design of the structure Lo be placed on a
32-bit virtua} address presented the most diffi-
culty. The most PDP-11 compatible structure
would view a 32-bit address as 2'* 16-bit PDP-
Il segments, each having the substructure of
the memory management architecture presently
being used. This segmented address space, al-
. » though PDP-11 compatible, was ill-suited to
- FORTRAN and most other [anguages, which

* - expect a linear address space.

A severe design constraint was that existing
PDP-11 subroutines must be callable [rom pro-
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grums which run in the Extended Address
mode. The muin problem urcis were in estab-
lishing u protacol for communicating uddresses
{between programs between the operating sys-
tems and programs on the occurrence of inter-
rupts). Saving state {the progrum counter and
its extension) on the stack was straightforwazd.
However, the accessing of linkuge addresses on
the stack after a subroutine call instruction or
interrupt event was not straightforward. Com-
plicuated sequences were necessary 10 ensure that
the correct number of byles (representing a 32-
bit or 16-bit address) were popped from the
stack.

The solution was hampcrcd by the fact that
DEC customers programmed the PDP-11 at all
levels - \licre was no clear user level, below
which DEC had compkte control. as is the case

" with the IBM System 360 or the PDP-10 using

the TOPS-10 or TOPS-20 monitors.

The proposed architecture was the result of
work by engineers, architects, operating system
designers and compiler designers. Morcover. u
wits subjected 10 close scrutiny by a wider group
of engineers and programmers. Much was
learned about the consequences of strict PDP-
11 compatibility, the notions of degree of com-
patibility, and the software costs which would
be incurred by an extended PDP-11 archis
tecture.

Fortunately, the project was discontinued.
There were many reservations- about its via-
bility. It was felt that the PDP-11 compatibility
constraint caused 100 much compromise. Any
new architecture would require a large software
investment: a quantum jump over the PDP-1]
was needed to justify the e'ffon.

In April 1978, work on a J2-bit architecture

| was slarted on VAX-11, with the goal of build-

ing a machine which was culiurally compatible
with PDP.}1. The initial group, calied VAXA,
consisted of Gordon Beli, Petgr Conklin, Dave
Cutler, Bill Dimmer, Tom Hustings, Richy
Lary:; Dave Rodgers, Steve Rothman, and Bill

_ Strecker as the principal architect, As a result of
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the experience with the extended PDP-1] de-
signs, it was decided to drop the constraint of
the PDP-11 instruction format in dcs;gmng the
extended virtual address space, or Native mode,
of the VAX-11 architecture. However, in order
1o run existing PDP-11 programs; VAX-11 in-
ctudes PDP-11 Compatibility mode. This mode
pravides the basic PDP-11 instruction set with-
out privileged instructions (as defined by the
RSX-11M operating sysiem) and floating-point
instructions. Nor is the former memory man-
apement architecture (KT-11) preserved in this
mode.
' Preserving the existing PDP-11 mst[ucuon
formats with VAX-11 would have required too
- high a price in dynamic bit efficiency. Whereas
the PDP-11 has a high level of efficiency in this
‘area, adding the new operation codes for the
apticipated data-lypes, access modes, and dif-
ferent length addresses would have lowered the
_instruction stream bit efficiency. An operation
code extension field would have been required.
It was also felt that data stream bit efficiency
could be improved. For example, measure-

ments showed that 98 percent of all literals were .

6 bits or less in length.

Besides the desire to add the data-types for
string, 32- and &4-bit integers, and decimal
arithmetic, there were many other extensions
proposed. These included a common procedure
CALL instruction, demand paging, irue in-
dexing, contexi-sensitive indexing, and more
1/O addressing.

Along the way, some major perturbations to

the PDP-11 style were considered and rejected,

often because they viclated the notion of com-
. patibility with PDP-11. Typed data and descrip-
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tor addressing were rejected an the grounds of
dynamic bit efficiency. Although system sofi-
ware costs may be lower with such archi-
1ectures, i was not possible to quantify the gain
convincingly. Also, such an architecture de-
stroyed any compatibility, cultural or other-
wise, with PDP-11.

The experience with PDP-11 {(floating point,
in particular) led the VAX designers to reject &
soft-muchine archltecture, | £, 083 with un in-
struction set (and highly microprogrammed m-
plementations) for gencral purpose emulation.
Their PDP-11 expericnce showed that embedd-
ing a data-type (once it is understood) in ihe
urchitecture gives u higher performance gain
than embedding the higher level lunguage con-
trol conalructs. There was also 4 general objec-
tion to soft ‘muchines: the problem of
controlling a proliferation of instruction sets in-
vented by many smull soflware groups wis felt
to be unmanageuble. Morcover, higker level 1n-
struction sets jeapardire the ubility to commu-
micste between programs thut are writien n
different languages. This compatibility is a ma-
jos goal of VAX.

A capabilitics-bascd architesiure was rejecied
becuuse it was not fully undersiood and because
there was no performance or reliability data
available from the few expsrimental machunss
which had been. bullt,

I
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SYSTEMS PROGRAMMING

JOHN ], DONOVAN
o

background . o

This book has twe major objectives: to teach procedures for the design of soft-
ware systems and to provide a basis for judgement in the design of software. To
facilitate our task, we have taken speciﬁc examples from systems programs, We
discuss the design and implementation of the major system components

What is systems programming? You may visualize a computer as some sort of
beast that obeys all commands. It has been said that computers are basically
. people made out of metal or, conversely, people are compulers made cut of

flesh and blood. However, once we get close to computers, we sce that {hey are

basically machines that follow very specific and primitive instructions. :

In the early days of computers, people communicated with them by on and
off switches denoling primitive instructions. Soen people wanted to give more
complex instruclions. For example, they wanted to be able tosay X =30« Y;

given that Y = 10, what is X? Present day computers cdnnot understand such
language without the aid of systems programs. Systéms programs (e.g., com-
pilers, loaders, macro processors, operaling syslems) were developed to make
computers beiter adapled to the needs of their users, Further, people wanted
more assistance in the mechanics of preparing their programs.

Compilers are systems programs that accept people-like languages and translate
them into machine language. Loaders are systems programs that prepare machine
language programs for execution. Macro processors allow programmers 1o use

~ abbreviations. Operdting systems and file systems allow flexible storing and
retrieval of information (Fig, 1.1). .

There are over 100,000 computers in use now in virtually every application.
The productivity of each computer is heavily dependent upon the effectiveness,
efficiency, and sophistication of the systems programs.

In this chapter we introduce some terminology and outline machine structure
and the basic !.asks of-an operating system.
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FIGURE 1.1 Foundations of systems programming

1.1 MACHINE STRUCTURE
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FIGURE 12 General hardware organization of a computer system
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The contents of a word may be interpreted asdata {values to be operated on)
or instructions (operations to be performed). A processor is a device that per-
forms a sequence of operations specified by instructions in memory. A program
(or procedure) is a sequence of instructions. p

Memory may be thought of as mailboxes containing groups of ones and zeros.
Below we depict a series of memory locations whose addresses are 10,000

through 10,002. . (
¢
Address Contents l
10,000 0000 G000 00000001 .
10,001 0011 0000 0000 0000 3 o
16,002 0000 0000 0000 0100 ' oo

An I1BM 1130 processor treating location 10,001 as an instruction would inter-
pret its contents as a “halt” instfuction. Treating the same location as numerical
data, the processor would interpret its contents as the binary number 0011 0000
0000 0000 (decimal 12,288). Thus instructions and data share the same storage
medium,

Information in memory is coded into groups of bits that may be interpreted
as characters, instructions, or numbers. A code is a set of rules for interpreting
groups of bits, e.g., codes for representation of decimal digits (BCD), for char-
acters (EBCDIC, or ASCIT), or for instructions {specific processor operation
codes). We have depicted two types of processors: Input/Qurput (1/Q) processors
and Central Processing Unirs (CPUs). The 1/O processors are concerned with the
transfer of data between memory and peripheral devices such as disks, drums,
printers, and typewriters. The CPUs are concerned with manipulations of data
stored in memory. The IO processors execute 1fO instructjons that are stored in
memory; they are generally activated by & command from the CPU. Typically,
this consists of an “execute 1/0™ instruction whose argument is the address of
the start of the 1/O program, The CPU interprets this instruction and passes the
argument to the 1O processor (commonty called 1/O channels).

The 1O instruction set may be entirely different from that of the CPU and
may be executed esynchronously (simultaneously) with CPU operation. Asyn-
chronous operation of 1/0 channels and CPUs was one of _t_h_g earliest forms of
multiprocessing. Multiprocessing means having more than one processor oper-
ating on the same memory simultaneously,

Since instructions, like data, are stored in memory and can be treated as data,
by changing the bit configuration of an instruction — adding a number to it — we
may change it to 2 different instruction. Procedutes that modify themselves are
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1.2 EVOLUTION OF THE COMPONENTS OF A PH(.)GRAMM!'NG SYéTEM
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However, this would waste corel by leaving the-assembler in memory while the
user's program was being executed. Also the programmer would have to retrans: |
late his program with each execution, thus wasting translation time. To overcome
“the problems of wasted translation time-and wasted.r’rie'mory‘. systems program-
mers developed another component, caled the loader.
A loader is a program that places programs into memory and prepares them for
-execution. In a simple loading scheme, the assembler outputs the machine
language translation of a program on a secondary storage device and a loader is
placed in core. The loader places into memory the machine fanguage version of
the user’s program and transfers control to it. Since the loader program is much
smaller than the assémbler, this makes more core available to the user’s program.
The realization that many usets were writing virtually the same program's led
1o the development of “ready-made” programs (packages). These packages were
written by the computer manufacturers or the users. As the programmer became
more sophist‘;é‘a‘tled. he.wanted to mix and combine ready-made programs with
his own. In response to this demand, a facility was 'pr'ovided whercby the user
could write a main program that used several other programs of subroutines. A
subroutine is a body of compuler instructions designed to'be used by other
routines to accomplish a task. There are two types of subroutines: closed and
open subroutines. An open subrouting ot macro definition is one whose code is
inserted into. the main program (flow continues). Thus if the same open sub-,
routine were called four times, it would appear in four different places in the
‘calling program. A closed subroutine can be stored outside the main foutine,

. and control transfers to the subroutine. Associated with the closed subroutine

. are two tasks the main program must perform: transfer of control and transfer
of data. : .
Initially, closed subroutines-had 1o be loaded into memory at a specific ad-
dress. For example, if a user wished to employ a square root subroutine, he
‘would have to writé his main program so that it would transfer to the location
assigned 1o’ the square root routine (SQRT). His brogram‘ and the subroutine
would be assembled together. If a second user wished to use the same subroutine,
he also would assemble it along with his own program, and the complete machine
language translation would be loaded into memory. An ‘example of core alloca:
tion under this inflexible loading scheme is depicted in Figure 1.3, where core is
_ depicted as a linear array of locations with the program areas shaded.

. . (‘

' " IMain memory is typically implemented as magnetic cores; hence memory and gore are used

synonymously. ; e el Rt

S w
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each other, symbolical-

. 1.2.5 Formal Systems

BACKGROUND ’

_operating systems provide. a macro processing facility, which permils the pro-
grammer to define ari abbreviation for a part of his program and 10 use the ab-

breviation in:his-program. The maco.processor treats the identical parts-ofthe

-.prograin defined by the abbreviation 2s a macro definition and saves thc.deﬁni-
_tionr. The macro processol substitutes the def. inition-for -all-occurrences of the

abbreviation (macro call) in the program.
In addition to helping programmers abbreviate their programs, macro facilities

" have been used as general text handlers and for specializing operating systems to
. individual . computer installations. In ‘specializing operating systems {systems
© generation), the entire operating system is written as a serics of macro defini-

tions. To specialize the operating system, a“series of macro calls are written.

These are processed by the macro processor-by s_ubstitut'mg the appropriate
definitions, thereby producing all the programs for an operating system. '

1.2.4 Compilers

As the user’s problems became more cateporized into areas such as scientific,
business, and statistical probiems, specialized languages (high level languages)
were developed that-allowed the user to express certain problems concisely and
easily. These high level languages — examples are FORTRAN, COBOL, ALGOL,
and PLfI — are processed by compilers and interpreiers. A compiler is a program
that accepts a program written in 2 high level language and produces an object
program, An interprefer is a program that appears to cxecuic a sOurce progiam
as if it were machine language. The same name (FORTRAN, COBOL, etc.) is
often used to designate both 2 compiler and its associated language.

Modern compilers must be able to provide the complex facilities that pro-
grammers are new demanding. The compiler rmust furnish complex accessing -
methods for pointer variables and data structures used in languages like:PLfI,
COBOL, and ALGOL 68. Modern compilers must interact closely with the oper-
ating system to handle statements concerning the hardware interrupts of 2 com
puter {e.g. conditional statements in PL{1).

A formal system is an uninterpreted calculus. 1t consists of analphabet, 3 séi of
words-called axioms,and 3 finite set of relations called rules-of inference. Ex-
amples of formal systems are: set theory, boolean algebra; Post systems, and
Backus Normal Form, Formal systems are 'bccoming- i‘mportam‘in the design,
implementation, and study of programming“languag’es.’ Specifically, they can be
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single program. Thus, if a program did not need the entire memory, a portion of
that resource vqas' wasted, Multiprogramming operating systems with partitioned

. core memory were developed to circumvent this problem. Multiprogramming al-

Tows multiple programs to reside in scparate areas of core at the same time. Pro-
grams were given a fixed portion of core (Multiprogramming with Fixed Tasks -
(MFT)) or a varying-size pbrtion of core (Multiprogramming with Variable_‘Tésk:
(MVT)). S S
Often in such partitioned memory systems some portion could not be used
since it was too small fo contain a program. The problem of “holes” or unused
portioné of core is called fragmenration, Fragmentation has been minimized by
the technigue of relocatable partitions (Burroughs 6500) and by paging (XDS
940, HIS 645). Relocatable partitioned core aliows the unused portions to be
condensed into one conlinuous part of core. "
Paging is a methiod of memory allocation by which the program is subdivided
" into equal portions or pages, and core is subdivided into equal portions or blocks.
The pages are loaded into blocks, - ' -
- There are two paging techniques: simple and demand. In simple paginé all the
pages of a program must be in core for execution, In demand paging a program
can be executed without all pages being in core, i.e,, pages are fetched into core
as they are needed (demanded). : ' -
The reader will recall from section 1.1 that a system with several processorsis -
termed a multiprocessing system. The traffic controller coordinates the pr'i)ce‘s-:
sors and the processes. The resource of processor time is allocated by a progfaih
known as the scheduler. The processor concerned with 1/Q is referred to as the =
1/0 processor, and programming this processor is called //0 programming.”
The resource of files of information is allocated by the file system. A segment

* is a group of information that a user wishes to tieat as an entity. Files are seg

ments. There are two types of files: (1) directories and (2) data or programs.
Directories contain the locations of other files. In 2 hierarchical file system,’
directories may point to other directories, which in turn may point to directories
or files, '

Time-sharing is one method of allocating processor time. It is typically char- -
acterized by interactive processing and time-slicing of the CPU's tirhe to allow -
quick response to each user, : : - '

A virtual memory (name space, address space) consists of those addresses that
may be generated by, a-processor during execution of-a computation. The mem- -
ory space consists of the set of addresses that correspond to physical memory
locations, The technique of segmentation provides a large name space and a good

LY
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BACKGROUND "
programming course is given at MI.T., we find thal'du; to the large number of
students participating it is very difficult to personally grade every program run
on the machine problems. So for the very simple problems — certainly the first
problem which may be to count the number of A's in a register and leave
the answer in another fegister - we have written a grading program that is in-
cluded as part of the operating system, The grading program calls the student’s
program and transfers control to it. In this simple problem the student’s program
processes the contents of the register, l=aves his bnswer in another register, and
returns to the grading program, The latter checks to find out if the cormect
number has been left in the answer register. Afterwards, the grading program
prints out a listing of all the students in the class and their grades. For examiple:

CORRECT

VITA KOHN —

RACHEL BUXBAUM  -— CORRECT
JOE LEVIN —  INCORRECT
LOFTI ZADEH —  CORRECT.

On last year's run, the computer listing began as follows:

JAMES ARCHER — CORRECT
‘ED MCCARTHY — CORRECT
ELLEN NANGLE —  INCORRECT
JOHN SCHWARTZ —  MAYBE

(We are not sure how John Schwartz did this; we gave him an A in the course.)
" Secondary storage management is a task performed by an operating system in
conjunction with the use of disks, tapes, and other secondary storage for a user’s
programs and data. , _
An operating system must respond to errors. For example, if the programmer
.-shouyld overflow a register, it is not economical for the computer to simply stop
and wait for an operator to intervene, When an error Occurs, the operating system

must take appropriate action. -

1.5 OPERATING SYSTEM USER VIEWPOINT: ‘
BATCH CONTROL LANGUAGE S

Many users view an operating system only through.the‘?ﬁitz:h system control
cards by which they must preface their programs. In this section we will discuss

a simple monitor system and the contro} cards associated with it. Other more
¢ .

- complex monitors are discussed in Chapter 9. ’ _
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“» . Moniror is a term that refers to the control programs of an operating system:
Typicatlly, in a batch system the jobs are stacked in a card reader, and the
.monitor system sequentially processes each job. A job may consist of several

wseparateprograms. to be:executed sequentially;-each:individual .program.being
called a job step. In a batch monitor system the user communicates with the
) system by way of a control language. In a simple batch monitor system we have

two ‘classes of control cards: execution cards and definition cards. For example,
- an execution card may be in the following format:

‘I step name EXEC name of program to be executed, Argumant 1, Argument2

The jcﬁ control card, a definition card, may take on the following format:

{/ jobh name JOB {User name, identification, expected time use, lines to

" be printed out, expected number of cards to be printed
out. ' *

.‘Usil’nlly there is an end-of-file card, whose format might consist of /*, signifying

the termination of a collection of data. Let us'take the following example of a
-FORTRAN job. - '

"_HEXAMPLE JOB

- - DONOVAN,  T168,1,1000

. - [STEPY., _ EXEC: FORTRAN, NOPUNCH -

s: . . .. --READSIOON.

s DOWOle=1N .
R F L U S ‘
N F Y LA

- 100 PRINT9100,1,12,13 -
" ‘9100 FORMAT (3110). -

o 3t TEND - -
V ’. - . :' : - - »
HSTEP2 | EXECLOAD
rooT
. HSTEP3 " EXEC OBJECT
1) BRI
v .

The first control card is an'example of a definition card; We have defined the
user to be Donovan. The system must set up an accounting file for the user,
noting that he expects to_use one minute of time, to output a hundred lines of

_oulput, and to punch no cards. The next control card, EXEC FORTRAN,
NOPUNCH, is an example of an execution card; that is, the system is.to execute
. -the :program FORTRAN,;given. one;argument = NOPUNCH. This argument.al-
lows the monitor systern-to perform more efficiently; since no-cards are to'be
punched, it nced not utilize the punch routines. The data to the compiler is the
FORTRAN program shown, terminsted by an end-of-file card /*. . o
The next control card is another example of an execution card and in'this

13
' BACKGROUND

. -

i o rogram. This job s16p 7+ -
the loader will “bind” the subroutines to the main program. This} p
- upon

. y " . L S
tion ol a ba O OfF tem [he mon tOI {4 IIIUST. € 11] t

. _ ; the user’'s. . .
sumably 2 job card. In procéésins a job card, the monjtor Saves . 1
pre !

Y » p ] p i t.
Ch hm ‘-' l‘ld

name aCCOutll ll\llllbﬂ a“o‘ted ume, Cald ufn it, & l"e ‘“ll h"ll li

the nexl CO""O‘ Cald ha ens 1o be an exec 1 car

luaﬂ lhB CCIIcsFond“lg ngla’" [ID"l SE; Ollda.') slulage a"d P‘chss lh ,:b Slgp
x -

b trans T (4] execu e ' l h‘f‘ an Crror dun“g et
fe nn :0“"01 t lhl’. X

step.

Read first job card

Process job card

}

Process control cards

Error .| Process

' ‘ Proqess. ]E;‘.J'"S.WD Error
No errofl
-gnd of job? J
: JYE‘ : . . . .b. . . . .‘
' HGURE 3.4, Mainloop of & simpie fatch monitor system -~
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16 OPERATING SYSTEM USER VIEWPOINT: FACILITIES

Far the applications-oriented user, the function of the operating system sto

provide facilities to help solve problems. The questions of scheduling or protec-
tion are of no interest to him; what he is concerned with is the available software.
The following facilities are typically prowded by modem operat.mg systems:

1. Assemblers .
2. Compilers, such as FORTRAN, COBOL, and PL/I
- 3. Subroutine libraries, such as SINE, COSINE, SQUARE ROOT
4. Linkage editors and program loaders that bind subroutmes togethet and
prepare programs for execution
5. Utdity routines, such as SORT/MERGE and TAPE COPY
6. Application packages, such as circuit analysis or simulation
7. Debugging facilities; such as program tracing and “com dump:
8, -Data management and file processing
9. Management of system hardware

Although this "faciiitiés" aépect of an operating system may be of great
interest to the user, we feel that the answer to the question, “How many com-
pilers does that operating system have?” may tell more sbout the orientation of

the manufacturer’s marketing force than- it docs about the stmcture and ef-
fectmness of the operatmg system. .

A : -
BT S J.

17 SUMMARY ;

~ The xhajor components of a p_i:ggran}nﬁng system are:

PR

1. Assembler

4

!nput to an assembler is an assanbly Iangunge progmm Output iran object pro-
gran plus information ‘that enables the loader to prepare the abject program for
exccutiou. o o

2. Macro Ptocessor -

A macro call is:an abbreviation (or name) for some code. A macro definition isa -

sequence of code that has-a name (macro call). A macro processor is a prog:am
that substitutes:and spec:ahzes macrd deﬁnmons for macto calls. -

At Ll

3.";&?(!6’1'-:-: ' :n,u.:' -3 N - ‘e v oLt .
A loader is a routine that loads an object program and prepases it for execution.

" a. Compilers ' e

15
BACKGROUND

There are various loadmg schemes: absolute, refocating, and direct- Jinking. In
general, the loader must load, relocate, and link the object program.

g iy t e nt‘-
- . -a,-n-—
TR

. e - . - en
A compiler is a program that accepts a source program “in a ipgh level languag

~ and produces & corresponding object prog)ram. :

6. Operating Systems

the aliocation of resources and services,
and information. The pperating system

nage these (esOUICes, such as a rraffic
and a file

An operating sysiem is concerned with
such as memory, Processors, devices,
. to ma
correspondingly includes programs s 8
controller, a scheduler, memory management module, 1/0 progra

system.
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~in any digital system i is necessary to have a link of comimunication belween man
and machine. This communication fink is often called the “man-machine inter-
face” and it presents-a aumber of problems. Digial sysiems are capable of
operatng on infurmanan at speeds much greater than iman’s, and. this is one of ticir
most impaornant attributes. For exanple, a large- scale duygital computer is ¢, ll)dl)lt' af
performm;, more than 500,000 additions per r secondl.

Tht!pruhlem here 15 10 provide data 1nput 10 the sysem al the highest possible
rate. Al the same time; there s the probiem of accepting daty owiput rom the
system at 1he highest possible rate. The problem s further magnified since most
digital systums do not speak English, or any other language for that matter, and
some system of symbols must therefore be used for communication tthere is at
present a considerable amount of réscarch in this area, and some systems have
been developed which will accept spoken commands and pive oral responses on a
hmited basis).

Since digital systems operate in a binary mode, a number of code systems which
are binary representations have heen develapued and are beng used as the Tanguage
of commumication between man and machioe, In s chapier we discuss 0 number
of these codies and, a the same time, consider the neccssnry input-cutput equip-
ment, : .

The primary objective of this chapler is 1o ‘acquire |he ability to

1.. Explain how Hollerith code and ASCH coce are used in input/outpul media,

2. Duscuss techniques for magnehic recnrdmg of digital information, including RZ,
RZI, and NRZI,

3. Describe the limitations of a number oi different digital mpul/oulput units,

4. Draw the logic diagrams for a Srmplc tree decoder nncl a balanced mulnphcn-
live decoder,

2640
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10-1 PUNCHED CARDS

One of the most widely used media for entering data into a machine, or for 05-
wining output data from a machine, is the punched card. Some commaon exar'ripies
of these cards are college registration cards, government checks, monthly oil com-
pany statements, and bank statements. 1tis quite simple 1o use this medium 10 rep-
fesent binary information, since only two conditions are required, Typically, a hole
in the card represents a 1 and the absence of a hole represents 2 Q. Thus, the card
provides the means of presenting information in binary form, and it is only neces-
sary 10 develop the code. )

The typical punched card used in larpe-seale data-processing systems is 7% in
long, 3V« in-wide, and 0.007 in thick. Each card has 80 vertical columns, and
there are 12 horizontal rows, as shown in Fig. 10-1. The columns are numbered 1
through 80 atong the bottom edge~qf the card. Beginning at the top of 1he card, the
rows are designated 12, 11,0, 1, 2, 3, 4,5, 6, 7, 8, and 9. The bottom edge of the
card is the ¢ edge, and the top edpe is the 12 edpe. Holes in the 12, 11, and O rows
are called zone punches, and holes in the 0 through 9 rows are called digit
punches. Notice that row 0 is both a zone-and a digit-punch row. Any number, any
tetier in the alphabet, or any of several special characters can be represented on the
card by punching one or more holes in any one column. Thus, the card has the
capacity of 80 numbers, letters, or combinations. :

Probably the most widely used system for recording information on a punched

card is the Hollerith code. In this code the numbers 0 through 9 are represented by
a single punch in a vertical column. For example, a hole punched in the fifth row
of column 12 represents a 5 in that column, The leners of the alphabet are
represented by two punches in any one column. The letters A through | are
represented by a zone punch in row 12 and a punch in rows 1 through 9. The
letters | through R are represented by a zone punch in row 11 and a punch in rows
1 through 9. The letiers S through Z are represented by a zone punch in row 0 and
3 punch in rows 2 through 9. Thus, any of the 10 decima! digits and any of the 26
letters of the alphabet can be represented in a binary fashion by punching the
proper holes in the card. In addition, a number of special characters can be
represented by punching combinations of holes in a column which are not used for
the numbers or letters of the alphabet. These characters are shown with the proper
punches in Fig. 10-1. - - '
" An easy device for remembering the alphabetic characters is the phrase “JR. is
11.7 Notice that the letters | through R have an 11 punch, those before have a 12
punch, and those after have a Q punch. It is also necessary to remember that §
begins on a 2 and not a 1.

Example 10-1
Decode the information punched in the card in Fig. 10-2.
Solution

(_‘nh_mm lhasarz punch in row 8 and a punch in row 3. It is therefore the letter
1. (_ulu_mn 2 ha zone punch in row 12 and another punch in row B. It is
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Fig. 10-1. Standard punched card using Hollerith code.

therefore the letter H. Continuing in this fashion, you should ‘see that the complete
message reads, "THE QUICK BROWN FOX JUMPED OVER'THE LAZY DOGS SACK."

With this card code, any alphanumeric talphabetic and numeric) information can
he used as input 10 a digital system, On the other hand, the system is capable of
delivering alphanumeric cutput information 1o the user_ In scientific disciphines, the
information might be missile ilight number, location, or guidance information such
-as pitch rate, roll rate, and yaw rate. In business disciplines, the information coutd
be account numbers, names, addresses, monthly statements, etc. In any case, the
information is punched on the card with one character per column, and the card is
then capable of comtaining a maximum of 80 characlers, =+ '
Each card is considered as one block or unit of information. Since the machine
‘operates on one card at a time, the punched card s oflen referred 1o as a “unit -
record.” Moreover, the' digital equipment used to punch cards, read cards into a
system, sort cards, elc.; is referred to as "‘unit-recorc equipment.”’’ :
Qccasionally, the information used with a digital system is entirely numeric; that
*is, no alphabetic or special characters are required: In this case, it is possible 10
input the information 10 the system by punching the cards in.a straight binary -*
fashion, In this system, the absence of a punch'is a'binary 0, and a punch is a

Fig. 10-2. - ‘Example 10-1,
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binary 1. h is lhen. i

possible to _ . .
one card. . punch 80 X 12 = 960 bits of binary information on
g systems use binary information in blocks of 35

(‘_'d a “W'Ofd YOU W[” reg a” h")l" Ihe plevl()l]s

) . N .

C |ap191 "lal a IEglle Capable 0" StOr ”Ig a 36°b|| WOId must COn(ain 36 ﬂlp*”op
S.

There is nothi i i
is nothing magical about the 36.hit word, and there are in fact other syqy
ystems
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Mally Dy punching across the card from left 1o righs

bits. Each block of 3¢ bits is call

formation on the card

on. Thus a-tatal of twenty-
binary form. it is then possible o store 864 bits of |
ra!;fhe Is:’.*c::md method involves punching the
e e

punc;‘;dair:‘ r;::)\::vss. 1,32 n?;\mé; ' row 12 of column 1, the first 12 bits of the word ar

= LU 009, The next 12 bigs ; i '
punch ws . 0. : Hs are punch

€ femaining 12 bits are punched in column 3. Thys Z 36 I:E:::: :,:ocglumn bzl
; . - rd can be

punched in every three columns i
o o in € - The card is then capable of conlaining lwenty-six

used. .

The basic met ’ i -
e Sjgnalsr:leszcc;d for. cha.ngmg the punched information into the necessary ol
e granas s O\::autn F:g 10‘;3. The cards are stacked in the read hoper aicc;
: a time. Each card pass :
rporewn f ‘ - Passes under the read he i
v Wh::‘s};e;o!r photocells. There Is'one read head for each cofumid;‘n‘r:'Ch W
_nole appears under the read head an electrical signal is ge'anzfe:S'

Fig. 10-3. Card-readiﬁg operation.
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Thus, each signal from the read heads represents a binary 1, and. this information
can be used to set flip-flops which form the input storage register. The Cards then
pass over other rollers and are placed in the stacker. There is quite Gften a’second

read head which reads the data. a second time to provide a valiqé‘i‘jﬁ/ check an the
) : sy

reading process. .
-l

Example 10-2
Suppose a deck of cards has binary data punched in them. Each card has twenty-
four 36-bit words. If the cards are read at a rate of 600 cards per minute, what is the
rate at which data are entering the system?

Solution 7

Since each card contains 24 words, the data rate is 24 x 600 = 14,400 words per
minute. This is equivalent to 36 X 14,400 = 518,400 bits per minute, or
518,400/60 = B,640 bits per second. -

Punched cards-can also be used as a medium for accepling data output from a
digita! system. In this case, a stack of blank cards thaving no holes punched in
them) are held in a hopper in a card punch which is controlled by the digital
system. The blank cards are drawn from the hopper one at a time and punched
with the proper information, They are then passed under read heads, which check
the validity of the punching operation, and stacked in an outpu! hopper. Card .
punches are capable of operating at 100 to 250 cards per minute, depending on the
system used, _

Punched cards present a number of important advantages, the first of which is
the iact that the cards represent a means of storing information permanently. Since
the information is in machine code, and since this information can be printed on‘.:
the top edge of the card, this is a very convenient means of communication
between man and machine, and between.machine and machine. There is also. a
wide variety of peripheral equipment which can be used 1o process information
stored on cards. The most common are sorters, collators, calculating punches,
reproducing punches, and accounting machines, Moreover, it is very-casy to cor-
rect or change the information stored, since it-is only necessary ‘to remove the
desired card(s) and replace it {them) with the correcled ones}. Finally, these cards
are quite inexpensive, ‘ ‘ : Co S

10-2 PAPER TAPE ~~  ~ o e iITEL

Another widely used input-output medium is punched papgiitapel. ls used in
much the same way as punched cards. Paper tape was devéloped initially for the
purpose of transmitting telegraph messages over wires. Itis”Aow used exténsively
for storing information and for transmitting information from machine to machine,

" Paper tape diifers from cards in, that it is a continuous roll of paper; thus, any
amount of information can be punched into a roll. It is possible o recard -any
alphabetic or numeric character, as well as a2 number of special characters] on

" paper tape by punching holes in the tape in the proper places,
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Fig. 10-4. Puncl;ed paper tape. (a) Eight-hole code. (b} Example 10-3.

. There are a number of cades for punching data in paper tape, bu on: of the
. most widely used is the eight-hole code in Fig. 10-da. Holes, represen: =g tita, are
punched in eight parallel channels which run the length of the tape. (7~ cannely

are labeled 1,.2, 4, 8, parity, 0, X, and end of line) Each character — nimeric,
B alphabetic, or special, — occupies one column of eight positions across e width of
- the tape. , :

- Numbers are; represented by punches in one or more channels lazeled 0, 1,

-2, 4, and B, and each number is the sum of the punch positions. For examzie, 0 is

represented by a single punch in the 0 channel; 1 is represented by a sngi punch

. inthe 1 channel;-2 is a single punch in channel 2; 3 i a punch in charse! ! and a
-punch.in channel 2, elc. Alphabetic characters are represented by a cor binution of
punches in channels X, 0, 1, 2, 4, and B, Channels X and 0 are used ~uc® as the
zone punches in punched cards. For example, the letter A is designatec 3y runches
in channels X, 0, and 1. The special characters are represented by comzina.ons of
punches in a!l channels which are not used 1o designate either numbes o: leters,
A-punch in the end-of-line channel signifies the end of a block of infirmaon, or

- the end of record. This is the only time a punch appears in this channe.

As a means of chécking the validity of the information punched on :-e tine, the
parity channel is used to ensure that each characler is represented 3y in odd
.number of koles, For example, the letter C is represented by punches in thatnels X,
0, 1,-and*2. Since an odd number.ofiholes is required for each characyr, t'e code

for the letter C also has a punch in the parity channel, and thus a 112’ of five
punches is used for this letter,

0

Exampie 10-3
What information is held in the perforated tape in Fig. 10-4b?

oy vk b

e te o meei s amen b

-y

PRI T B

e b

L0/
Anput-Output Devices.. .

o ity : letter T. . The

The first character has-punches in channels 0,.1. a.nd 2, an.d lh: :nt:cs o T
eond character is the letter H, since there are punches in cma;,; uncs:\ui and ®

‘E_’ec():nlinuing you should see that the message is the same as, _p ‘

wcard-in.Example 10-1,

. H - 0
‘ of smaller hotes between channels-4 -and :.B«are gglde i:‘o:lt‘?;.t?s:*dc ; °
gu.ir:i‘: arr?:drive the tape under the read posilk‘)nsé.Th(: (;n;ur;‘\::?:":jneli(,d {or‘,‘:é(”"g
ig. 10-. ;
!)e sensgd bT bei:ZS ::)Zi‘z:gze;:‘:daisn:):cl’\i\:\l li': inlt(‘) the digi‘l_a\ system ?s very sinj|i.
information ((;r"; r re?ading punched cards. Depending on the type of wa.dcr. US(F.;
lar 10 lh‘?‘ use obe read into the system at a rate of 150 0 1 ,0(_)0. chefr.a[c'lus an
inform(;msguc?:m notice that this is only slightly faster than reading in Qrmalnu
second. |
o e Gafg:- sed as 2.means of accepting information output from.a dig:\tat
B s ca tlhe system drives a tape punch which enters the data (fn I\L'
S lh!:x'cm‘lﬁhe roper holes. Typical tape punches are cap;iﬂe of ‘Optfﬂ-illflﬂ“
e B e "l:g leprs per second, and the data are punche‘d .wm}' 10 «.hamc.u r.\‘
el o Th arar(\:ﬁber of characters per inch is referred to as the dn}a (‘chnsn‘y, f
. ‘h? mc'h- e ?:e density is 10 characters per inch. Recor-dmg de?r.\s:ly p;o.m“(‘)e
ﬂ‘ﬂd ‘m'[:z‘rja(r:\?sfeeatures of magnetic-lape recording which will be discussed in
the 1m

next session.

Paper tape €an a 3 _
lar to an electric typewriter, and indee O ey an
special punching units attached are used..The A
are again a function of the machine operator. One a ‘

v h. This unit is very sinvi-

ed by a manual tape punch. I A ‘
e e Y d in some Cases -electric typewrilers with
d spéed of this method
f this method is that

fig. 10-5. Paper-tape drive and reading mechanism.

Eight read brushes
or photo cells
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the typcwnler prov:des a written copy of what,) is punchcd lnlo lhe Iape Thas copy I

can beé used fOr vermcauon of the punched mlormahon

;o
b

10-3 MAGNETIC TAPE

Magnetic tape has become one of the most imporiant methods for storing large
quantities of information. Magnelic - tape offers a number of advantages over
punched cards and punched paper tape. One of the most imporlant is the fact that
magnehc lape can be erased and used over and over. Reading ‘and recording are
much fasler than with either cards or paper tape. However, they require Lhe use of
a tape-drive unit which is much more expensive than the equipment used with
cards and paper tape. On the other hand, it s possitie to store up to 20 million
characters on one 2,400-t reel of magnetic tape, and if a high volume of data is
one of the systemn requirements, the use of magnetic tape is well justified. Most
commonly, magnetic tape is supplied on 2,400-ft reels. The tape itself is a Va-in-
wide strip of plastic with a magnetic oxide coating on one side.

Data are recoided on the tape in seven parallel chanrels along the length of the
tape. The channels are labeled 1, 2, 4, 8, A, B, and C as shown in Fig. 10-6. Since
the information recorded on the tape must be digital in form, that is, there must be
two states, it is recorded by magnetizing spots on the tape in one of two directions.

A simplified presentation of the write and read operations is shown in Fig. 10-7.
The magnelic spots are recorded on the tape as it passes over the write head as
shown in Fig. 10-74. f a positive pulse of current is appited to the write-head coil,
as shown in the figure, a magnetic flux is set up in a clockwise direction around the
write head. As this flux passes through the record gap, it spreads slightly and passes
through the oxide coating on the magnetic tape. This causes a small area on the
1ape to be magnetized with the polarity shown in the ligure, If a current pulse of the
opposite polarity is applied, the flux is set up in the opposite direction, and a spot
magnetized in the opposite direction is recorded on the tape. Thus, it is possible 10
record data on the'tape in a digital fashion. The spots shown in the figure are

greatly exaggerated in size to show the direction of magnetization clearly,

in the read operation shown in Fig. 10-7b, a magnetized spol on the tape sels up

a flux in the read head as the lape passes over the read gap. This flux induces a
small voltage in the read-head coil which can be amplified and used to sel or reset
a lip-flop. Spots of opposite polarities on the tape induce voltages of opposite

Fig. 10-6. Magnetic-tape code.
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represented by spots in channels 1, A, and B. Since this s oniy three spots, an addi-
tibnal spot is vecorded in channel C to mainlain even panity for-this character,

The second system is the horizontal parity-check bit. This s sometimes referred
1o as the longitudinal parity bit, and it is written, when needed, at the end of a
btock of information or record. The total number of bits recorded in each channel
is monitored, and at the end of a record, a parity bit is written if necessary to keep
Tthe total number of bits an even number. These two systems form an even-parity
system. They could, of course, just as easily be implemented 10 form an odd-parity
system. irformation can also be recorded on the tape in straight binary form. In this
case, a 36-bit word is wrilten across the width of the tape in groups of six bits, Thus
it requrres six columns fo record one 36-bit word.

Tiwe vertical spacing between the recorded spots on the tape is fixed by the posi-
tions of the read/write heads. The horizontal spacing is a funciion of the tape speed-
and the recording speed. Tape speeds vary from 50 to 200 in/s, bul 75 and 112.5
infs are quite common, T ;

The maximum number of characters recorded in 1 in of tape is calied the
“recording density,” and it is a {unction of the tape speed and the rate al which
data are suppiied lo the write head. Typical recording densities are 200, 556, and
800 bits per inch. Thus it can be seen that a total of BOO x 2,400 X 12 =
23.02 x 10" characters can be stored on one 2,400-ft reel of tape. This would
mean that the data would have to be stored with no gaps between characters or
groups of characters.

For purposes of locating information on 1ape, it is most common to record infor-
mation an groups or blocks called “records.” In between records there is a blank
space of tape calied lhe “interrecord gap.” This gap is typicaiiy a 0.75-in space of
blank tape, and it is positioned over the readfwrite heads when the tape sops. The
interrecord gap provides the space necessary for the tape 1o come up to the proper
speed before recording ar reading of information can take place. The total number
of characters recorded on a tape is then also a function of the record length (or the
total number of interrecord gaps, since they represent blank space on the tape).

The data as recorded on the tape, inciuding records (actual data) and interrecord
faps,-can be represented as shown in Fig. 10-9. If there were no interrecord gaps,
ihe total number of characters recorded could be found by multiplying the length of
the tape in inches by the recording density tn characters per inch. If the record,

“were exactly the same length as the interrecord gap, the lotal sterage would be cut
.n hall. Thus, it is desirable to keep the records as long as possible in order to use*
ihe tape most efficienty.

Fig. 10-9. Recording data on magnetic tape.
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g gty 1
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which could be stored in
characters actually record
factor F and is given by

R_ . (10-1)
F=R%CD

or shows that if the total number:;
ber of characters which could be slore(i
(actor reduces to 0.5. This utilization factor can b;: -usv._W
_ i i i ensl
i tic tape if the recording
age capacity of a magne
kiown Thus the total number of characters stored on a

n of the tape-utilization: fact

ninatio _
" equal to the num

characters in the record Is
in the gap. the utilization
1o determine the total stor
and the record length are
tape CHAR is given by

CHAR = LDF {16-2)

here | = length of tape, in ‘
" D = recording density, characters per inch,

i la in EqQ.
For a standard 2,400-ft reel of tape having a 0.75-in record gap, the formula

(10-2) reduces to

2,400 x 12 X DR \ (10-3)
CHAR =——210.75D

Example 10-4 '

what is the lotal storage capaci
recorded at a density of 556 ¢
characterst

ty of a 2,400-1t reel of magnetic tape if da.ta are
haraclers per inch and the record length is 100

Solution
The total number of charac

r

\ers can be found using £Q. {10-3%,

2,400x‘:2x556><100=3'.10xm, —_
CHAR =706 + (0.75 X 556} =

Th'§ result can be checked by calculating the tape-utilization faclgr.
1% "
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100

. 1
e e e
100 +-{0.75 X 556) 5.17

= (.19,

The maximum number of characters that can be stored on the tape is 2,400 X 12 x
556 =16.0128 x 10" Multiplying this by the utilization factor gives

CHAR = 106.0128 x 10° xa-ll-;= 3.0 x 10

10-4 DIGITAL RECORDING METHODS

There are a number of methods for recording data on a magnetic surface. The
methods fall into two general categories, called “return-to-zerg” and “‘non-return-
to-zero,” and they apply to magnetic-lape recording as well as recording on mag-
netic disk and drum surfaces {magnetic-disk and magnetic-drum storage will be dis-
cussed-in a later chapter), '

in the previous section, it was stated that digital information could be recorded
On magnetic lape by magnelizing spots on the tape with opposite polarities. This
type of recording is kng)wn as return-o-zero, of RZ for short, recording. The tech-
nique for recording data on tape using this methad is to apply a series of current
pulses 1o the write-head winding as shown in Fig. 10-10. The current pulses sel up
correspanding fluxes in the write head, as shown in the figure. The spots magne-
Lezexd 99,}}1_9 tape have polaritics corresponding 1o the direction of the (lux wave-
furm, and'it is only necessary to change the Cirection of the input current to write
s or 0%, Nalice that the input current and the flux waveform return 1o a zero refer-
ence level between individual bits. Thus the term “return to zero.”

When it is desired 1o read the recorded information from the lape, the tape is
passed over the read heads and the magnetized spots induce voltages in the read-
coil winding as shown in the figure. Notice that there is somewhat of a problem
here, since all the puises have hoth positive and negative partions. One method of
detecting these levels properly is to strobe the output waveform. That is, the output- -

Record . : ’
current pulses -

Record fiux W/_
Read . -
winding outpul - . S

4 £

Strobe pulses _ﬂ___Jl__[L__ﬂ___ﬂ__ﬂ__jL__ﬂ__ ’ : . e

1 0 T 1 00 1 0

Read gate el . ﬂ fl. ’ il Fig. 10-10. Retdrn-to-zero o

oulput recording and reading,

M 5 B - I ) . -
LI . ERIIR T
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 Record +/ "—] | ‘ I i
_ current pulses  _ ¢

i 0 0 Y v o
0

-Record flux
T 0 0

i G
’ Read .
' . winding output R

Fig. 10-" Biased return-10-zero recording and reading.

valtag: +sveform is applied to one input of an AND gate (after being ampiiiied), and
2 cloc. = strobe pulse is applied to the other input o the gale, The sirobe pulse
must & .ery carelully timed 1o ensure that it samples the output waveiorm al the
proper i—e. This is one of the major difficulties of this type of recording, and it is
thereizr= feldom used ekcept on magnetic drums. On a magnetic drum, the strobe
waveizr— can be recorded on one track of the drum, and thus the proper timing is
achievac, ‘ ' - '

A semd difficulty with this type of recording is the fact that between bits there is
no rec:r curren!, and thus between the spots on the tape the magnetic surfice is
rando—i- oriented. This means that if a new recording is to be made over old data,
the nev zata have 1o be recorded precisely on top of the old data. if they are not,
the 017 ci:a will not be erased, and the tape will contain a conglomeration of infor-

malic-. “ve tape cou Id be erased by installing another set of erase heads, but this is

“Costh i~: unnecessary.

A —e-nd for curing-these prohlems is to bias the record head witv a current
whic- + i: saturate the tape in either one direction or the cther. In this system. a
curren suise of positive polarity is applied only when it is desired to write a 1 on
the ta:« 35 shown in Fig. 10-11. At all other times the flux in the write heads is suf-

ficier 1o magnetize the entire track in the O direction. Now, recording data over. -
old citz is not a problem since the tape is efiectively erased as it passes‘over the. -
recor: reads. Moreover, the timing is not so critical since it is not necessary to record .. -

exaciv :ver the previous data. When data are recorded in this fashion and then
plave: sack, a pulse appears at the autput of the read winding only when a 1 has.

beer, =corded on the tape. This makes reading the information from the tape much .

simpusr. - : N .
Tre -on-return-to-zero, or NRZ, recording technigue is a variation of the RZ
tech-.c.e where the write current pulses do not return to some referénce level

betwse- bits. The NRZ recording technique can be best explainéd by examining .

the =c-rd-current wavelorm shown in Fig. 10-12. Notice that the current is at +{

whuz 2zording 1s and at —f while recording 0s. Since the current leveis are always’

at eire +1 or —}, the recording problems of the first RZ system do not exist here;

Aot = that the voltage at the read-winding output has a pulse orly when the’
‘reco— = datai change: fromi a, 1, to a.0.0r.vice versa. Therefore, some means of

sensrz lhe recorded dala is necessary for the fead operation. If the read-winding
voizzzsis amplified and used to set or feset a flip-flop as shown in the figure, the A
side &7 the flip-flop 7s high during each time that a 1 is being read. It is low during

nT
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Fig. 10-12. NRZ recording and reading,

any time when ine data being read is a 0. Thus il the A output of the fii-ficg is
used as a control signal at one input of an AND gate, while the other irout is a
clock, the output of the AND gate is an exact repiica of the digital data beisg read
Notice thai the ciock must be carefully synchronized with the data train o Iht;
read-head winc.ng. Notice also that the maximum rate of flux changes occurs
when reco:ding -or reading) alternate 1s and 0s.

In comparing this with the RZ recording melhods,.you can see that ~e \RZ
method offers the distinct advantage that the maximum rate of flux change: is anly
one-half that for RZ recording. Thus the readfwrite heads and associated e.ettreaics
can have reduced requirements for operation at the same rales, of they are carable
of operatinz at i~ice the rate for the same specifications.

A vanat.on - this basic form of NRZ recording 'is shown in fig. 1¢--3

. . This -
technique s qu 2 often called “non-return-to-zero-inverted,” NRZI, since 5o 15
and Os are "ecoiaed at both the high and low saturation-current levels. Tz key to

this methos of -ecording is that a 1 is sensed whenever there is a flux chznge
whether it te positive or negative. 1f the read-winding output voltage is a-npéu.‘ieci
and preseried to the or gate as s?nown in the figure, the output of the gate wii be
the desired data train. The upper Schmit trigger is sensiiive only to positivz pL'ses
while the lower one is sensitive only to negative pulses. Both outputs of the Scl'mit'l
triggers are inw entil a pulse arrives. At this time the ou{pul goes positive for a ixed
duration and gererates the desired output pulse.

Fig. 10-13. NRZi recording and reading.
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10-5 OTHER PERIPHERAL EQUIPMENT

A wide variety of peripheral equipment has been developed for use wilth digital
systems. Only a cursory description of some of the various equipment ' will be given
here, and the reader is encouraged to study equipment of particular interest by con-
sulting the data manuals of the various manufacturers.

One of the simplest means of inputting information into a digital system is by the
use of switches. These switches could be push-button, toggle, etc., but the impor-
tant thing is the fact that they are capable of representing binary information. A row
of 10 swilches could, for example, be switched to represent the 10 binary bits in a
10-bit word.

Sirnilarly, one of the simplest means of reading data out of a digital system is to
put lights on the outputs of the flip-flops in a storage register. Admittedly, this is a
rather slow means of communication, since the operator must convert the dis-
played binary data into something more meaningful. Nevertheless, this represents
an inexpensive and practical means of communication between man and machine.

A much more sophisticated method for reading data out of a digital system is by
means of a cathode-ray tube. One type of cathode-ray tube used is very similar to
the tube used in oscilloscopes, and the operation of the tube is nearly the same.
The unit is generally used 10 display curves representing information which has
been processed by the system, and a camera can be attached to some units to pho-
tograph the display for a permanent record. The information displayed might be the
transient response of an electncal nelwork or a guided-missile trajectory.

A second type of cathode-ray tube for display is called a “'charactron.” it has
the ability to display alphanumeric characters on the face of the screen, This ube

_operates by shooting an electron beam through a matrix (mask) which has each of

the characters cut in it. As the beam passes through the matrix it is shaped in the
form of the character through which it passes, and this shaped beam is then
focused on the face of the screen. Since the operation of the electron beam is very
fast, it is possible to write information on the face of the wwbe, and the operator can
then read the display. : :

Some ubes of this type which are used in large radar sysiems have matrices wilh
the proper characlers to dispiay map coordinates, friendly aircraft, uniriendly
aircraft, etc. The operator thus sees a display of the surrounding area complete with
all aircraft, properly designated, in the vicinity. These systems usually have an addi-
lional accessory called a “light pen” which enables the operator to input informa-
lion into the digital system by placing the light pen on the surface of the tube and
activating it. The operator can do such things as expand an area of interest, request
information on an unidentified flying object, and designate certain aircraft as
targets. . -

A somewhat more common piece of equipment, but nevertheless useful when
large quantities of dala are being handled, is the printer. Printers are availabie
which will print the output data in sraight binary form, octal form, or all the
alphanumeric characters. The typical printer has the ability to print information an
3 120-space line at sates from a few hundred lfines up 10 over 1,200 lines per
minute. The simplest printers are converled, or spectaily made, elg ?;:‘c Yypewiilers

-
.
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known as “character-at-a-time printers.” They are relatively slow and operate at
speeds of 10 10 30 characters per sécond.

"~ A more sophisticated printer is known as the “line-at-a-time printer’ since an en-
tire line of 120 characters is printed in one operation. This type of printer is capabie
of operation at rates of around 230 lines per minute.

Somewhalt faster operation is possibie with machines which use a print wheel.
The print-wheel printer is composed of 120 wheels, one for each position on the
ling to he printed. These wheels rotate continuously, and when the proper character
is under the prinl position a hammer sirikes an inked ribbon-against the paper,
which contacts the raised characier on the print wheel. Wheel printers are capable
ol operation at the rate of 1,250 lines per minute and have a maximum capacily of
160 characters per line. C

One other very importanl piece of peripheral equipment is the digital plotter.
These unils are being used more and more in a wide variety of tasks, including au-
lomatic dralling, numerical control, production artwork masters (used to manufac-
ture integrated circuits), charts and graphs for management information, maps and
conlours, biomedical information, and traffic analysis, as well as a host of other
applications. A somewhat hybrid form of digital plotting is used when the digital
output of a sysiem is converled to analog form (digilal-to-analog conversion is the
subiject of the next chapter) to drive servomotors which posilion a cursor or pen, A
prece of graph paper is positioned on a flat plotting surlace, and the pen is caused
to mave across the paper in response 1o numbers received from. the digital system,

Another dignal piotting system, which is more truly a digital plotter, makes use of
hidirectional stepping motors o position the pen and thus plot the information on

- uraph paper. tn this system, which 1s known as a “digital incremental plotter,” the
necessily for digital-to-analog conversion is eliminated, and these systems are

_usually less expensive and smaller in size. Digital incremental plotters are capable
of plotting increments as small as 0.0025 in and offer much greater accuracies than
the hybrid model. Furthermare, these plotters are capable of plotling at the rate of
44 in}s and providing a complete system of annotation and labeling.

10-6  TELETYPEWRITER. TERM INALS

The tetetypwriter (TTY) is presentiy one of the most popular inputfoutput units, A
TTY is an imporlant ang versatile link between man and computer, whether the
compuler is of the small-scale general-purpose type, or a large-scale mode! used on
a lime-share basis. it is common practice 1o use a TTY as a remote terminal con-
nected to a large-scale general-purpose computer via telephone lines, The two
binary logic fevels {1 and 0) used in the TTY and the computer can be represented
as two distinct audio frequencics which are then transmitted over telephone lines,
An acoustic tone coupler is used in conjunction with the TTY. to translate data from
audio irequencies to logic levals, and vice versa. The central compuler can be
placed in a convenient site, and access to the computer via a TTY lerntinal is
fimited only by the requirement for a telephone line. ' C

“ A TTY console consias of a basic keyboard for typing in information, and a printt’
ing mechanism inr priating information output from the.compiuter, Marny TTYs are

[T 2?:-
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also equipped with a paper-tape punch, and thus either input data or output data
can he recorded on punched paper tape. 3 N

Most modern TTYS use an eight-hole punched paper tapc. There has been an .:‘x
templ to standardize on an alphanumeric code, and the American Slnndaril Cn::‘
ior information Interchange (ASCID is widely used. An eighi-hole code has I2 h=i2.l:
combinations, sufficient to provide for both uppercase and lowercase alphabets,

the 10 numerals, and a number of special characters and control signals. The

ASCIl code is shown in Table 10-1.

10-7 ENCODING AND DECODING MATRICES

. tncoding and decoding matrices are often used 1o alter the form of the data being

“entered inlo or taken out of a sysiem. A decodin.g mfm‘ix is used 1oidccodi1:)r;er
binary information in a digital system by changm'g it into som([e ot 1c:.<rl1:r et
system. For example, in a previous chapter the binary output © adregl_ ‘ wa_g
decoded into decimal form by means of AND gates, ..'md the decoded outpu an(-j
used to drive nixie lubes. Encoding informali(.)n is ]lusl the .reverseb.proces:s 2nd
"could, for example, involve changing decimal signals into equivalent binary sig |
i igital system.
fo{Tir:.rr:AZ:tha?gEtlorw\;rd way of decoding information is sin.wpty. 10 ;gnfstrl:.clr:hii
necessary AND gates, as was done for the nixie tubes. Decoding in this fashio

quite simple and is mast easily accomplished by using the truth tahle or wavelorms -

for the signals involved. The decoding of a four-flip-llop C0unle.r lWnuld, fodre;ee::
ample, require 16 four-input AND gates, since lh?re a‘re 16 po~~s:be Slal::‘s ael
mined by the four flip-flops. This type of _decodmg then requires n x 2" diodes,
where n is the number of {lip-flops, for the complele decoding network.

Example 10-5 _

Draw the 16 gates necessary to decode a four-flip-flop counter. .

Solution

The necessary gates can best be implemented by using a truth table to determine
the necessary gate connections. The gales are shown in Fig. 10-14.

" There is a second method of decoding which can be used to realize a savings in

diodes. This method is referred 10 as “lree decoding,” and it results in a redt.-]c(ll'(:‘n
of the number of required diodes by grouping the sla'(gs to be decoded. De:;: lac%
of the four-{lip-flop counier discussed in the previous example can oo 2
complished by separating. the caunts into four groups. Thgse groups arre ;’ . 1 ;
4,5,6,7; 8,9,10,11; and 12,13.14,15. Not_i_cg that the first gro?p can })e‘;:(;
tinguished by an AND gale whase outpul is DC. the second group by DC,_(:}:}en o

. group by DT, and the last group by DC. Each of these four group{s c:ln e o
divided in half by using B ar B. These cight subgroups can then be urth erh ] ded
into the 16 counts by using A and A. The complete decoding network is shown 1
Fig. 10-15. : .

JT
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Table 101 et e e
THE AMERICAN STANDARD CODE FOR !NFORMATION EXCHANGE‘
l[L 000 o0n | o010 . ouv {100 |- vl ine: fang:
QOOO NULL ® oc, l b 0 @ P
0001 50M DCy | H et A Q
o010 EOA DC, " -2 8 R
0011 | EOM DCy # 3 ¢ s
0100 Eor DC, 4, D T
{$10p) "
ot WRU T ERR [ [
0110 | RU SYNC Fj. v.
o BELL LEM G W
1000 FE, 5, H X Unassigned |
1
1001 H 7 5y { , Y. *
1010 LF 3, Ji 4 |
1011 | Vi 5, LK / |
1100 | FF S, L \ ACK |
(1101 | cR [ s, M l @
1310 | S0 .5, N } ESC
Qo Si LS, / i ? i o —— DEL .
Ewample [ 100 | 0001 | = A
SR, b
) i \
The abbreviations used in the figure mean:
NULL  Nuliidte CR Carriage return
| SOM Start of message 50 Shift out
T EOA End of address 5 Shift in
EOM End of message DCy Device contral ()
- _ Reserved for data
Link escape
FOT End of transmission DCy = DG Device control
WRU “Who arc you?™ ERR Error
RgU “Are you ... " SYNC Synchronous idle
| BLLL Audible signal - LEM Logical end of media
' FE Format effector 50, .50, Separator {information)
HT Horizontal tabulation Waord separator (blank,
! - normally non-printing)
i 5K Skip {punched card) ACK Acknowledge
Line feed @ Unassigned control
VITAB Vertical tabulation, ESC Escape
FF Form feed " DEL Delete idle

1§ et s 14 ekl 8

lnput-Outptit Devices . 279

A
3] .
Fgu'
D —
A —
, i —
{ c 1
\ ' b —
plcliBl Al Coum 3 :
olof{o|o 0 8 2
oloiol 5 c g’
00 )10 2 D _
001 | 3 _ :
0 f1{a]o 4 »3
gJ1 {0 | 5 — 3
oc|1vIitvilo & c
EERERER 7 D
1 {ojo o0 g
v fo o |1 9 g
ri1olvlo 10 c 4
10 (1t 1 5
11 dotog 12
vl o 13 A
1 1 1 0 14 E-—-J
A EEEE 15 ¢ 5
o{o(01lo0 0 b~
i
8 6
D
A
g ;
D

_Fig. 10:14. Four-flip-flop counter decoding.

A saving of 8 diodes has been achieved, since the previous decoding scheme GO

required 64 diodes and this method only requires 56. The saving in diodes here is
not very spectacular, but the construction of a matrix in this manner to decode five
flip-flops would result in a saving of 40 diodes. As the number ol flip-flops to be
decoded increases, the saving in diodes increases very rapidly.

This type of decoding matrix does have the disadvantage that the decoded
signals must pass through more than one level of gates (in the previous method the
signal passes through only one gatc). The output signai level may,therefore suffer
considerable reduction in amplitude. Furthermore, there may be aspeed limitation
due 1o the number of gales through which the decaded signals must pass.

A third type of decoding network is known as a “‘baianced mulnphca!we
decoder.” This always resulls in the minimum number of diodes required for the
decoding process. The idea is much the same as a tree decoder, since the counts to
be decoded are divided into groups. However, in this system the {lip-flops to be
decoded are divided into groups of lwo, and (he resulls are then combined to give
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ol8A
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. 1015, Tree decoding matrix.

Fig. 10-16. Balanced multiplicative decoder.

o7T

DCBA

J'—_i___}océ;h 12

)

DCBA =13

DCBA=10"

DCBA =14

U

DCBA=H)_ED~DCBA =15

DE3A =3 DCcBs =1
3 .

Input-Output Devices 281

the desired output signals. To decode the four flip-flops discussed previousiy, four
groups are formed by combining flip-flops C and D just as before. In addition, flip-

flops B and A are combined in a similar arrangement. The outputs of these eight .. .

gates are then combiried in 16 AND gales to form the 16 output signals. The results
are shown in Fig. 10-16, It can be seen that a tolal of 48 diodes are required; a
saving of 16 dindes is then realized over the first method, while a saving of 8
diodes is realized over the tree melhod. This schemé again has the same disadvan-
tages of signal-level degradation and speed limitation as the tree decoder.
Encoding a number is just the reverse of decoding, One of the simplest examples
of encoding would be the use of a thumb-wheel switch (a 10-posilion switch)
which is used to enter data into a digital sysiem, The operator can set the switch to
any one of 10 positions which represent decimal numbers. The output of the swilch
is then transformed ‘by a proper encoding matrix which changes the decimal
number to an equivalent binary number. :
An encoding matrix which changes a decimal number to an equivalent binary
number and stores it in a register is shown in Fig. 10-17, Setling the switch o a

Fig. 10-17. Decimal encoding matrix, ‘ X
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_ Fig.10-18. Ancther decimal encoding matrix.

nosition places a positive voltage on the line connected to that position. Notice that
the R and S input to each fiip-flop is essentially the output of an o gate.

For example, of the switch is set 10 position 1, the diodes connected lo that line
save a positive voltage on their piales {they are therefore forward-biased). Thus the
set inp 1o fiip-flop A goes high while the reset inputs to (lip-fiops B, C, and D go
aign. This sets the binary number 0GO01 in the flip-flops, where A is the ieast signifi-
cart bit. Notice thal this encoding matrix requires 40 diodes. As might be expected,
1t is possible 1o reduce the number of diodes required by combining the input func-
tions as was done with decoding matrices. One method of doing this is shown in

Fig. 10-18; it represents a saving of 7 diodes, since this scheme requires only 33
diodes.

— e . —
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_ Any encoder or decoder can be constructed from basic gates as shown in this
sectlion, and when only one of two functions are needoed this may provide the-hest
technigue. However, as shown in Chap. 3, many of the more common decoding,
functions are available as MS! ICs. Examples are the 7441 (or 74141} BCD-to-
decimal decoder driver, the 7443 excess-3-lo-decimal decoder, the 7446 BCD-to-
seven-segment decoder driver, and the 74145 1.0{-10 decoder driver, There are
numerous others, and you are urged to consult manufaciurers’ daia sheets for spe-
cific_information,

There are also a-few encoders available as MSIH ICs—for example, the Fairchild

9318 eight-input priority encoder. This unit accepts eight inputs and produces a

hinary weighted code of the highest-order aulput. Again, you should consult spe-
cific manufacturers' data sheels for detailed information on encoders.

STUDY AIDS
Summary

Punched cards provide one of the most uselul and widely used -media for storing
binary informalion. Each card is considered as a black or unit of information and is
therefore referred 10 as a “'unil record.” Furhermore, punched-card equipment
{punches, sorters, readers. etc.} is commonly called “*unit-record equipment.”

Alphanumeric informatan, as well as special characters, can be punched into
cards by means of a core. The most common code in use is the Hollerith code.

A similar medium for iriormation slorage is punched paper tape. Alphanumeric
and special characlers are recorded by perlorating the tape according to a code,
There are a number of codes, but the one most commonly used is the eight-hole
code. A perforated role o paper tape is a continugus record and is thus distinct
from the unit record (punched card). .

For handling large quantities of inlormation, magnetic tape is a most convenient
recarding medium. Magretic tape offers the advantages of much higher processing
rate and much greater recording densities. Moreover, magnetic tape can be erased
and used over and over,

The three most common methods for recording on magnelic tape are the return-
to-zero (RZ), the non-return-to-zero {(NRZ), and the non-return-to-zero-inverted
{NRZ1). The NRZ and NRZI methods effectively erase or clean the tape automa-
ticaily during the recor¢ operalion and thus eliminate one of the problems of RZ
recording. These two mehods also lend themselves to higher recording rates.

Encoding and deconirg matrices form an important part of input-output equip-
ment. These matrices are generally used 1o change ininrmation_from one form to
another, for example. b -ary to octal, or binary to decimal, or decimal 1o binary.

There is a wide variev of digital peripheral equipment including unit-record
equipment, printers, catade-ray-lube displays, and plotters, The choice of periph-
eral equipment to be uted with any sysiem is a major enginecring decision. The
decision invoives esiatishing the system requircments, studying the available
equipment, meeling wih the equipment manufacturers, and then making the
decision based on operational characieristics, delivery time, and cost,
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Glossary

alphanumeric information -information ‘composed of the letters of the alphabet,
the numbers, and special characters,

hit  One binary digit. -

character A number, letier, or symbol represenied by a combination ¢f bits.

decading matrix A matrix used to alter the format of information taken from the
output of a system. .

encoding matrix A matrix used to aller the format’of information being entered
into a system,

Hollerith cade  The system for representing information by punching holes in a
prescribed manner in a punched card.

imerrecord gap A blank piece of tape between recorded information.

NRZ Non-return-to-zero recording. - : ‘

NRZ! Non-relurn-to-zero inveried recording.

sarity The method of using an additional punched hole {or magnetic spo! for

magnetic recording) 1o ensure that the total number of holes (or spots) for each
" character is even or odd, .

‘ecording density  The number of characters recorded per inch of tape.
ape-utilization lactor  The ratio of the number of characters actually recorded to
the maximum number of characters that could be recorded.

tnit record A punched card represents a unit record since each card contains a
untt or block of information,

teview Questions

1. Describe some of the problems of the man-machine interface.

2, Describe a typical punched card (size, nur.nber.or’ columns, number of rows).
3. Which rows are the zone punches on a punched card? :

4. Which rows are the.digit punches on a punched cardi-

5. What is the Hollerith code? What does “JR. is 11" signify?

6. How is binary information represented on a card; i.e., whal does a hole rep-
resent, and what does the absence of a hole represeni?

7. What is the meaning of unit record? ‘ -

8. Name three pieces of unil-record peripheral equipment, and give a brief
_description of how they are used.

9. Describe the eight-hole code used to punch information into paper lape‘.

0. Describe how 1s and Os are recorded on magnetic 1ape by means of a mag-
netic record head. .

1. How is alphanumeric information recorded on magnetic tapet
2. How is binary inflormation recorded on magnetic tape?

3. Explain the dual-parity system used in magnetic-tape recording.,

e
e
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14. What is the purpose of an interrecord gap on magnetic tapel

15. How can the tape-utilization factor be used to delermine the total number of
characters stored on a magnetic tape?

16. Describe the operation of the RZ recording method. What are some of the dii-
ficulties with this system? .

17. Describe the operation of the NRZ recording method, What advantages does
this method offer over RZ recording? .

18. Describe the NRZI recording technique.
19. Why is a digital incremental plotter a true digital plotling system?

20. What is the difference between an encoding and’a decoding matrix?

Problems

10-1. Make a sketch of a punched card and code vour name, address, and social
security number using the Hollerith code. Use a dark spol to represent a hole.

10-2. Change your social security number to the equivalent binary number. Make
a sketch of a punched card, and record this number on the card in the horizonial
binary fashion.

10-3. Repeat Prob. 10-2, but record the number on the card in the vertical
fashion, : . .

10-4. Assume that alphanumeric information is being punched into cards al the
rate of 250 cards per minute. H the cards have an average of 65 characters each, at
what rate in characters per second is the information being processed!

10-5. Make a sketch of a length of paper tape. Using the eight-hole code, record
your name, address, and social security number on the tape. Use a dark spot to rep-
-resent a hole.

10-6. What length of paper tape is required for'the storage of 60,000 characters of
alphanumeric information using the eight-hole code? Assume no record gaps.

10-7. What length of magnetic tape would be required to store the information in
Prob. 10-6 if the recording density is 500 bits per inch? Assume no record gaps.

10-8. Assume that data are recorded on magnelic tape ata density_of 200_ bits per
inch. If the record length is 200 characters, and the interrecord gap is 0.75 in, what
is the tape-utilization factor? Using this scheme, how many characters can be

. stored in 1,000 ft of tapef

10-9. Verify the solution to Prob: 10-8 above by using Eq: {10-3). Notice. that the
2,400 in the equation must be replaced by 1,000, since this is the tape length.

10-10. Repeat Probs. 10-8 and 10-9 for a density of 800 bits per inch.

10-11. What length of magnetic tape is required lo store 10* characters reco_rded
at a density of 800 bits per inch with a tecord length of 500 characlers?
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11-3. Verify the volizge-output levels for the network of Fig. 11-5 using Miliman’s
theorem. Draw the ecuivaient circuits.

11-4. Assume the dn:der in Prob. 11-2 has +10 V full-scale output, and find the”

following: : . - .
{a) The change in oulpul voltage due to a change in the LSB.
(b) The output valtage for an input of 110110.

11-5. A 10-bit resisive divider is construcled such that the qurrent.lhrough the
LSB resistor is 100 pA. Determine the maximum current that will flow through the
M5B resistor,

11-6. What is the fu -scale output voltage of a six-bit binary ladder if 0 == 0 V and
1= +10 VI What is « for an eight-bit ladder?

11-7. Find the output voitage of a six-bit binary ladder with the following inputs:
(a) 101007,
by 111011,
{c} 110001.

11-8. Check the rewlts of Prob, 11-7 by adding the individual bit contributions.

11-9. What is the resolution of a 12-bit D/A converter which uses a binary
ladger? If the full-scaie output is +10 ¥, what is the resolution in voltsi

11-10. How many bits are required in a binary ladder to achieve a resclution of
7 mV if full scale is +5 V?

11-11. How many comparalors are required to build a five-bit simultaneous AID
converter{ .

11-12. Redesign the encoding matrix and read gates of Fig. 11-20 using NAND
gates.

11-13. Find the foiiowing for a 12-bit counter-type A/D converter using a 1-MHz
clock: ) ]

{a) Maximurh conversion time.

{b) Average conversion time.

(€} Maximum conversion rate.

11-14. What clock frequency must be used with a 10-bit counter-type AfD con-
verter if it must be capable of making at least 7,000 conversions per second!

11-15. What is the conversion lime of a 12-bit successive-approximation-type
AJD converter using a 1-MHz clock?

11-16. What is the conversion time of a 12-bit seclion-counter-type A/D con-
verter using a 1-MHz clock! The counter is divided into three equal sections.

11-17. What overall accuracy could you reasonably expecl {from a 12-bit A/D
converter?

11-18. What degree of resolution can be oblained using a 12-bit optical encoder?
11-19. Redesign the Gray-to-binary encoder in Fig. 11-32 using NAND gates,

13-20. Redesign the Gray-to-binary encoder in’ Fig. '11-32 using exclusive-OR
gales, .

.s
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121 MAGNETIC CORES o

Magnetic Devices
and -Memories

There is a large class of devices and systems which are useful as digital elements
because of their magnetic behavior, A ferromagnetic material can be magnetized in
a particular direction by the application of a suitable magnetizing force (a magnetic
flux resulting from a current flow). The material remains magnetized in that direc-
tion alter the removal of the excitation. Appiication of a magnetizing force of the
opposite polarily will switch the material, and it will remain magnetized in the op-
posite direction after removal of the excitation. Thus the ability 1o slore information
in two different states is available, and a large class of binary elements has been
devised using these principles. In this chapler we investigale a number of these
devices and systems that make use of them.
Afer studying this chapter you should be able to

1. [Hustrate how magnetic cores are used to store binary information.
2. Explain the fundamental principles of a coincident-current memory,

3. Describe the pperation of a semiconductor memory using either bipolar or
MOS devices.

4

o

One of the most widely used magnetic elements is the magnetic core, The typical
core is toroidal (doughnut-shaped), as shown in Fig. 12-1, and is usually constructed
in one of two ways. The metal-ribbon core is constructed by winding a very thin
metailic ribbon on a ceramic-core farm. A popular ribbon is Ve-mil-thick 4-79
molybdenum-permaloy (known as ultrathin ribbon), and a typical core might con-
sist of 20-turns of this ribbon wound on a 0.2-in-diameter ceramic form.

Ferrite cores are construcled from a finely powdered mixture of magnetite,
various bivalent metals such as magnesium or maganese, and a binder material.
The powder is pressed into the desired shape and fired. During firing, the powder is
fused into a solid, homogeneous, polycrystalline form. Ferrite cores such as this are
commonly construcled with 50 mil outside diameters and 30 mil inside diameters.

327
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Fig. 12-1. Magnetic core.

Ferrite cores can be constructed in smaller dimensions than metal-ribbon cores
and wvsually have better uniformity and lower cost. Furthermore, ferrite cores
typically have resistivities greater than 10* f1-cm, which means eddy-current losses
are negligible and thus core heating is reduced. For these reasons, they are widely

_used as the principal memory or storage elements in large-scale digital computers.

Metal-ribbon cores, on the other hand, have very good magnetic characteristics
and generally require a smaller driving current for switching. They are somewhat
better for the construction of logic circuits and shift registers.

The binary characteristics of a core can be most easily seen by examining the

hysteresis curve tor a typical core. Hysteresis comes from the Greek word hysterein,

which means to lag behind, A magnetic core exhibits a lag-behind characteristic in
tive hysteresis curve shown in Fig. 12-2a. In this figure, the magnetic flux densfty B
is piotied as a function of the magnetic force H. However, since ?he flux der!suy B
is direcliy proportional to the fiux ¢, and since the magnetic field H is directly
propottional to the current | producing it, a piot of ¢ versus I is a curve of the same

v

Fig. 12-2 Ferrite-core hysteresis curves. (a) Magnetic flux density B versus magnetic
field H. (b) Magnetic (lux ¢ versus current 1

x
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general shape, A plot of fiux in the core & versus dnving current {15 shown in Fig.
12-2b. We shall base our discussion on this curve since it is generaily easier 10 talk
in terms of these quantities. :

Now, suppose that a currenl source .is.attached to the windings on the core
shown in Fig. 12-1, and a positive currenl:is applied {current fiows into the upper
terminal of the winding). This creates a flux in the core in the clockwise direction
shown in the figure {remember the right-hand rule). If the deive current is just
slightly grealer than I, shown in Fig. 12-2, the operating point of the core is come-
where hetween points b and ¢ on the ¢/ curve. The magnilude of the fiux ¢an then
be read from the ¢ axis in this figure.

if the drive current is now removed, the opurating point moves alang the ¢
curve through point b to point d. The core is now storing energy with no inpul
signal, since there is a remaining or remanent [iux in the core at this pomnt: This
property is known as remanence, and this point is known as a remanen! point.

The repeated applicalion of positive current pulses simply causes the opdérating
point 1o move between points d and ¢ on the ¢f curve. Notice that the operating
point always comes 10 rest at point d when all drive current is removed.

If a negative drive curren! somewhal greater than -/, is now applied 1o the
winding (in a direclion opposile to that shown in Fig. 12.1}, the operating point
moves {rom d down through e and stops at a point somewhere between fand g on
the ¢! curve. At this point the flux has switched in the core and is now directed in a
counterciockwise direction in Fig. 12-1. i the drive current is now removed, the
operating point comes to rest at point h on Lhe ¢/ curve of Fig. 12-2. Nolice thal the
flux has approximately the same magnitude but is the negalive of what il was
previously. This indicates that the core has been magnelized in the opposite direc-
tion.

Repeated application of negative drive currents will simply cause the operaling
point to move between points g and h on the ¢/ curve, but the final resting place
with no applied current will be point h. Point h then represents a second remanent
point on the ¢/ curve.

By way of summary, a core has two remanent states: point d after the application
of one or more positive current pulses, point h after the application of one or more
negative current pulses. For the core in Fig. 12-1, point d corresponds to the core
magnetized with flux in a clockwise direction, and point h corresponds to magne-
tization with flux in the counterclockwise direction.

Example 12-1

Cores can be magnetized by utilizing the magnetc field surrounding a current-car-
rying wire by simply threading the cores on the wire. For the two possible current
directions in the wire shown in Fig. 12-3, what are the corresponding directions of
magnetization for the core? L

Solution

According to the right-hand rule, a current of +/ magnetizes the ‘core with the flux

flux in a counterclockwise direction around the core.

in a clockwise direction around the core. A current of —I magnetizes the core with’
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Fig. 12-3,

It is now quite easy to see how a magnetic core is used as a binary storage device
in a digital system, The core has two stales, and we can simply define one of the
states as a 1 and the other state as a 0. 1t is periecily arbitrary which is which, but

for discussion purposes let us define point d as a 1 and point h as a 0. This means -

that a positive current will record a 1.and result in clockwise flux in the core in Fig.
12-1. A negalive:current will record a0.and resuglt in a counterclockwise flux in the
core. ¢ - B DT ‘ ' '

V\_!e now have the means for recording or v&ri:ing a 1 ora0 in the core but we do
not as yel have any means of detecting the information stored ini the core, A very -
simple tec hnique for accomplishing this is o apply a current to the core which will
switch it 10 a known stale and detect whether or not a large flux change occurs,
Consider the core shown in Fig. 12-4. AprIication of a drive current of —! will
switch the core to the O state. If the core has a 0 stored in it, the operating point will
move between. points g and h on the ¢f curve {Fig. 12-2), and a very small fux
cnange will occur. This small change in fiux will induce a very small voltage across
the sense-winding terminals. On the other hand, if the core has a 1 stored in it, the
operating point will move from point d 10 point h on the &I curve, resulting in a
much larger flux change in the core. This change in fiux will induce a much larger
voltage in the ‘sense winding, and we can thus detect the presence of a 1.

To summarize, we can detect the contents of a core by applying a read pulse
which resets the core to the 0 state. The ouipul voltage at the sense winding is

Fig. 12-4. Sensing the contents of a core.’

<
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Fig. 12-5. Magnetic-core swilching time
characteristics. '

Magnetic field H(oersteds)

much greater when the core contains a 1 than when it contains a 0. We can
therefore detect a 1 by distinguishing between the two output-voliage signals. No-
tice that we could set the core by applying a read current of 4/ and detect the
larger output voltage at the sense winding as a 0. .

The output voltage appearing at the sense winding for a typical core is also
shown in Fig. 12-4. Notice that there is a difference of about 3 to 1 in output-vol-

tage amplitude between a 1 and a 0 output. Thus a 1 can be detecled by using-

simple ampliwde discrimination in an amplifier, In large systems where many cores
are used on common windings (such as the large memory systems in digital com-
puters) the 0 output voltage may become considerably larger because of additive
effects. In this case, amplitude discrimination is guile often used in combination
with a strobing technique. Even though the amplitude of the 0 output voltage may
increase because of additive effects, the width of the outpul will not increase
appreciably. This means that the 0 output-voltage signal will have decayed and will
be very small before the 1 outpul voltage has decayed. Thus if we sirobe the read
amplifiers some time afler the application. of the read pulse (for example, between
0.5 and 1.0 us in Fig. 12-4), this should improve our detection ability.,

The switching time of the core is commonly defined as the lime required for the
output voltage to go from 10 percent wp through its maximum value and back
down to 10 percent again (see Fig, 12-4). The swiltching time for any one core is-a
function of the drive current as shown in Fig. 12-5. Il is evident from this curve that
an increased drive current results in a decrcased swilching time. In peneral, the
switching time for a core depends on the physical size of the core, the type of core,
and the materials used in its construction, as well as the manner in which it is used,
1t will be sufficient for our purposes to know that cores are availabie with switching
times from around 0.1us up to milliseconds, with drive currents of 100 mA 1o 1 A,

-

12-2  MAGNETIC-CORE LOGIC e
.- R rla
Since a magnetic core is a basic binary element, it can be used in a number of
ways to implement logical functions. Because of its inherent ruggedness, the core is
a particularly useful logical element in applications where environmental extremes
are experienced, for example, the temperature extremes and radiation exposure ex-
perienced by space vehicles.
Since the core is essentially a storage device and its content is

ling the core to the O stale, any logic sysfem using cores mus.  _essarily be a

~ted by reset-

k2074
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. Fig.‘ 12-7. Magnetic-core logic element, {a} Core windings. (b} Logic symbol.
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dynamic system. The basis for using the core as a logical element is shown in Fig. }
12-6. A 1 input to the core is represented by a current of -/ at the input winding; =
this sets a 1 in the care (magnetizes it in a clackwise direction). An advance pulse !
occurs sometime after the input -pulse has disappeared. Logical operations are
carried out during the time the advance pulse appears at the advance (reset)

; ’ X =1, a current appear: at the X input during the set time, and the effects of the X
“ input current and the 1 input current cancel one another. The core then remains in
the reset state (recall that the core is reset during the advance pulse), In this case no
pulse appears at the output during the advance pulse since the core previously con-
tained a 0. Thus the output represents X =.0.

winding. At this time the core is forced into the 0 state and a pulse appears at the ’ The anD function can be implemented using a core as shown in Fig. 12-8¢. The
output winding only if the core previously stored a 1. The current in the output two inputs to the core are X and ¥, and there are four possible combinations of
winding can then be used as the tnput for cther cores or other logical elements, ; these two inputs. Let's examine these input combinations in detail.

There is some energy loss in the core during switching. For this reason, the

output winding normally has more turns than either the input or advance windings, :

so that the output will be capable of driving one or more cores. J . Fig.12-8. Basic core logic functions. (a) 0r. {b) Complement. (c} anD. {d) Exclusive-OR,
Notice that a Q can be set in the core by application of a current of —/ at the input

winding. Alternatively, a 0 could be stored by a current of +{ into the undotted side

of the input winding. The important thing to natice is that either a 1 or a 0 can be

stored in the core by application of a current to the proper terminal of the input .

winding.. - _ o x+y 0 4 Xy
To stmplify our discussion and the logic diagrams, we shall adopt the symbols for ’ (

the core and its windings shown in Fig. 12-7. A pulse at the 1 input sets a 1 in the

core; a pulse at the 0 input sets a 0 in the core; during the advance pulse, a pulse (a) (b} (c)

appears at the-putput only i the core previously held a 1. Let us now consider . -

some of the basic logic functions using the symbol shown in Fig. 12-7b. ) cn
A method for implementing the or function is shown in Fig. 12-8a. A current . x

pulse at either the X or Y-inputs sets a 1 in the core. Sometime after the input ' '

pulsels) have been terminated, an advance p.ise occurs, If the core has been set to

the 1 state, a pulse appears at the output winding., Notice that this is truly an oOr . y

functlion since a pulse at either the X or Y-input or both sets a 1 in the core,

. The method shown in Fig. 12-8D provides the means for obtaining the comple-

ment of a variable, The set input winding to the core has a 1 input. This means that

during the input pulse time this winding always has a set input current. If there is

nu current at the X input (signifying X = 0}, the core is set. Then, when the advance

pulse occurs, a 1 appears at the oulput, sign¥ying that X =1, On the other hand, if

xP + Xy

(d)
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1. ¥=0,Y=0. Since X =0, the.core cannot he set; Since Y=0. 7 = 1 and the
core will then be reset. Thus this input combination resets the co= and it stores
2 0.

2. ¥=0 ¥Y=1, Since X=0, the core stil! cannot bhe set. ﬁ—‘ and therefore
T = 0. In this input combination, there is no input currenr n =rher winding
2nd the core.cannot change siate. Thus the core remains in ¢ T itate because
of the previous advance pulse.

3. xX=1,Y=0.The current in the X winding will atlEmpt 10 = 2 ~ in the core,

rigwever, Y = 1 and this current will attempt 10 resel the corz. “ese two cur- -

rents offset one another, and the core does not change stares. it ~mains in the
¢ state because of the previous advance pulse,
4. \=1,Y=1 The current in the X winding will seta 1 in thecozsince Y =0
énd there is no current in the Y winding. Thus this combirutos stores a 1 in
t1e core, - .
In summary, the input X AND Y is the only combination which ~=c'z in a 1 being
starec in the core. Thus this is truly an anD function.
An exclusive-0r function can be implemented as shown in Fz. 12-8d by oring
the outputs of two AND-function cores. .

Example 12-2
Make a truth table for the exclusive-0OR function shown in Fig, *2-8c

Solution P
X Y | Xy | Xy | XY+ XY
¢c o]0 0 0
0 1 0 1 i
1 0 1 0 1
o 0 0 0

One of the major prohiems of core logic becomes apparent tH; operation of
the exclusive-Or shown in Fig. 12-8d. This is the problem of th: 'm= required for
the information to shift down the line from one core 1o the raxt. for the exclu-
sive-OR, the inputs X and Y appear at time t,, and the AND cores are set or reset at
this time. At time 1, an advance pulse is applied to the AND cores anc their outputs
are used to set the OR core. Then at time 1y an advance pulse & ap;ied to the or
core and the final output appears. It should be obvious from =is ¢ scussion that
the aperation time for more cumphcaled logic functions may hecome excessively
fong.

A econd difficulty with this type of togic is the fact that the iAzut tulses must be
of ezaclly the same width, This is p.\mcuiarly true for funcion: such as the
comesiment and the aND, since the input signals are at times “egued 1o cancel

one another. It is apparent that.if one of the input signals is wiler tan the other, -

the corg may contain erroneous data afler the inpul pulses -ave disappeared.

= ————— ————

- be A T P ———— R WY R
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You will recall that in order to switch a core from one state to another a certain
minimum current [, is required, This is sometimes referred 1o as the select current.
The core arrangement shown in Fig. 12-Ba can be used to implement an anD func-.
tion if the X and Y inputs are each limited to one-half the select current Yal,,. In this
way, the only time the core can be set is when both X and Y are present, since this
is the only time the care receives a full select current 1. Core logic functions can
be constructed using the half-select current idea. This idea is quite important; it
forms the basis of one type of large-scale memory system which we discuss later in
this chapter. .

12-3 MAGNETIC-CORE SHIFT REGISTER

A review of the previous section will reveal that 2 magnetic core exhibits at least
two of the major characteristics of a flip-flop: first, it is a binary tlevice capable of
storing binary infermation; second, it is capable of being set or reset. Thus 11 would
seem reasonable to expect that the core could be used to construct a shift register
of a ring counter. Cores are indeed frequently used for these purposes, and in this
section we consider some of the necessary precautions and technigues.

The main idea involves connecting the output of each core to the input of the
next core. When a core is reset {or set), the signal appearing at the oulput of thar
core is used 1o set {or reset) the next core. Such a conneclion between two cores,
called a "'single-diode transfer loop,” is shown in Fig. 12-9.

There are three major problems to overcome when using the single-diode
transfer loop. The first prablem is the gain through the core, This is similar to the
problem discussed previously, and the solution is the same. That is, the losses in
signal through the core can be overcome by constructing the output winding with
more turns than the input winding. This ensures that the output signal will have suf-
ficient amplitude to switch the next core.

The second problem concerns the polarity of the output signal. A signal appears
at the output when the core is set or when the core is reset. These two signals have -
opposite polarities, and either is capable of switching the next core, In general, it is

-desirable that only one of the two output signals be effective, and this can be

achieved by the use of the diode shown in Fig. 12-9, In this figure, the current
produced in the output winding will go through the diode in the forward direction
{and thus set the next core) when the core is reset from the 1 state 1o the 0 state. On

‘

xh,

Jxr'\»v‘v-

Fig. 1_2}9. Single-dicde transfer loop. {2} Circuit. (b) Symbohc represenlahon

Advance or réset winding

{v)
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Fig. 12-10. Four-core shift register. {a) Symbolic circuit.'(b) wWaveforms,

{he other hand, when the core is being set to the 1 state, the Fliodedwgl p_revf:;tctuhr;
rent flow in the output and thus the next core cannot' be swnghe . Notice
opposite situation could be realized by simply reversing the dn'odde.ce\j  current in

The third problem arises from the fact thfal res.ennng core Zc;ndt.l 2 e
winding N, which will pass through the dicde in the ,fc!rwar .lrec.uothe d s
1end to set a 1 in core 1. This constitutes the transfer of mforrnanol: |?° he reve
direction and is highly :undesirable. Fortunately, the solution to l_e i cepN em
(that of gain} results insa_solution for 1his probiem as well. That_ is, since é
fow indings than N,, this reverse signal will not have suficient amplitude to
i?,:r\i’fcrh‘:ore 1. Wilh this understanding of lhe.basic.single-diode transfer loop, let us
irfvesl!':gbte the operation of a sim.ple c.'qre shift r'egnster.. N 1210, Two

A basic magnetic-core shift register i symbc.)h_c fo'rm i5s (?Wncli g.the “ne. i
sets of advance windings are necessary for .sh|fl1ng. |nformat_|on ownmd ! co.[es ;

~ advance pulses oCCur alternately as shown in the figure. A, is connec

" and 3 and would be connected to all odd-numbered cores for a larger register. Ay 15
an

octed to cores 2 and 4 and wou'd be connected ta all even-numbered c}c:res.hlf
conn - ur

we assume that all cores are reset wits the exception of core 1, it 1s (:.ie.ar.t ;t_fl ;
advance pulses will shift this 1 down tne register from core o core until it is shitte

cout the end’’ when core 4 is resel. The operation is as follows: the first A, pulse
J'out the end " whef

resats core 1 and thus sels’core: 2. This is followed by an A, pulse whlgh ;es:t:actl)]:z

2 and thus sets core 3. The next A, pulse resets core 3 and sets c:re' . e “
following Ay putse shifts the 1 “out helend” ‘b_y resetting core 4'0] c:gc:m at the
two phases of advance pulses are required, since it 15 not possible a

while an advance {or reset) pulse is present.

The output of each core winding can be used as an input 1o an.amphﬁer to

e R e X A i

U .. Core
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produce the waveforms shown in Fig, 12-10b. Notice that after four advance pulses
e 1 has been shifted completely through the register, and the cutput lines all
remain low after this time, '

The need for a two-phase clock or advance pulse system could -be eliminaied if
scme delay were introduced between the output of each core and the input of the
r=xt core. Suppose that a delay greater than the width of the advance pulses were
---oduced between each pair of cores. In this case, it would be possible to drive
e.2ry core with the same advance pulse since the output of any core could not ar-
- .= a! the input to the next core until after the advance pulse had disappeared.

Dne method for introducing a delay between caores is shown in Fig. 12-11. The
z-.ance-pulse amplitude is several times the minimum required to switch the cores
z-4 will reset all cores to the 0 state. If a core previously contained a 0, no
switching occurs and thus no signal appears at the output winding. On the other
hznd, if a core previously contained a 1, current flows in the oitpul winding and
charges the capacitor. Some current flows through the set winding of the next core,
bt it is small because of the presence of the resistor; furthermore, it is overridden
b. the magnitude of the advance pulse, However, at the cessation of the advance
pufse, € remains charged. Thus C discharges through the
a~d sets core 2 to the 1 state,

'n this system, the amplitude of the advance pulses is not too critical, but the
w Zth must be matched to the RC time constant of the loop. H the advance pulses
2-2 too long, or alternatively if the RC time constant is 100 short, the capacitor will
¢ schasge too much during the advance pulse time and will be incapable of setting
:-2 core at the cessation of the advance pulse, The RC time constant may limit the
vzoer frequency of operation; it should be noted, however, that resetting a core in-
c_ces a current in its input winding in a direction which tends 1o discharge the
czpacitor. :

The arrangements we have discussed here are”called one-core-per-bit- registers.
There are numerous other methods (too many to discuss here) for implementing

input winding and R,

‘-

Fig. 12-11.  Core shift register using a capacitor for delay between cores,

.._I Advance
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registers and counters, and the reader is referred 10 the references 1 —ore ad-
vanced lechniques, Some of the other methods include two-care-pe-:: systems,
modified-advance-pulse sysiems, modified-winding-core systems, siii-~inding-
core systems, and current-routing-transfer systems.

Example 12-3

Using core symbals and the capacilor-delay technigue, draw lhe tag:m for a
iour-stage ring counter. Show the expected wavelorms.

Solution

A ring counter can be formed from a simple shift register by using the uiz.at of the
‘st core as the input for the first core. Such a system, along with —e expecied
waveiorms, is shown in Fig. 12-12.

12-4 COINCIDENT-CURRENT MEMORY

The core <hift register-discussed in the previous section suggests the ns&bility of
rusiny an array of magnetic cores for staring words of binary inform: :on For ex-
ampie, a 10-bit core shift register could be used 10 store a 10-bit wo: 772 opera-
lion would be serial in form, much like the 10-bit flip-flop shift regizer ¢ scussed
earhier. 1l would, however, be subject to the same speed limitations orsenvad in the
serial fiip-fiop regisier. That is, since each bit must travel down the -2g.v 21 fram
core lo core, 1t requires n clock periocs to shifl an n-bit word into or ol o the Teg-
ister. This shift time may hecome excessively long in some cases. :ac a faster
meihod must then be deveioped, Much faster operalion can be achic.ed ' the in-
formation is wrillen 1alo and read oul of the cores in a parallel man-<r. 3ince all
~ ine bus are processed simultaneously an entire word can be transferre: in only one

Fig. 12-12. Four-stape ring counter for Example 12-3.
Advance ' -
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lines

Sense oulpul wire

Fig. 12-13. Magnetic-core coincident-current memory.

clock period. A straight parallel system would, however, require one inpul wire and
one output wire for each core. For a large number of cores the tolal number of
wires makes this arrangement impraclical, and some other form of core selection
must be developed. '

The most popular method for storing binary information .in parallel form using
magnetic cores is the coincident-current drive system. Such memory systems are
widely used in all types of digital systems from small-scale special-purpose ma-
chines up to large-scale digital computers. The basic idea involves arranging cores

in a matrix and'using two half-select currents; the method is shown in Fig. 12-13.

The matrix consists of two sets of drive wires: the X drive wires {vertical) and the
Y drive wires (horizontal). Notice that each core in the matrix is threaded by one X
wire and one Y wire. Suppose one half-select current Yal,, is applied to line X, and
one half-select current 1l is applied o line Y,. Then the core which is threaded
by both fines X, and ¥, will have a total of Yal, + Yal, = I, passing through it, and
it will switch states. The remaining cores which are threaded by X, or ¥, will each
receive only Vi, and they will therelore not swilch states. Thus we have suc-
ceeded in swilching one of the 16 cores by selecting two of the inpiitlines {one of
the X lines and one of the Y lines). We designate the core that swnched in this case
as core X,Y,, since il was switched by selecting lines X, and Y, "The designation
X,Y, is called the address of the core since it specifies its location. We can then
switch any core X,Y, located at address X, Y, by applying Yal, lo lines X, and Y.
For example, the core located in the lower right-hand corner of the matrix is at the
address XY, and can be switched by applying Val. 10 lines X, ans’

Ly
a
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In order 1hat the selected core will switch, the direci 5=t ot the half-seiect cur-
rents through the X line and the Y line must be additive in v core. In Fig. 12-13,
the X select currents must flow through the X lines from ine 1p toward the bottom,
while the Y select currents flow through the Y lines from left to right. Appiication of
the right-hand rule will demonstrate that currents in this dirzction switch the core
such that the core fiux is in a clockwise direction {lookizg frzm the top). \We define
imis as switching the core to the 1 state, 1t is obvious, then, i-at reversing the direc-
tions of both the X and Y line currents will switch the Core 1o :ne 0 state. Notice that
ii the X and Y linc currents are in a subtraciive directior the selected core receives
Vala — Yal,, = 0 and the core does not change state.

with this system we now have the ability 1o switc- a~. one of 16 cores by
seiecling any two of eighl wires. This is a saving of 50 perceri over a direct parallel
seieclion system. This saving in input wirtes becomes e.en more impressive if we
enlarge the existing matrix o 100 cores (a square maix with 10 cores on each
sige}. In this case, we are able to switch any one of 160 cores by selecting any two
of only 20 wires. This represents a‘reduction of 5 to 1 over a straighi paraliel selec-
tion syslem.

At this point we need lo develop a method of sensing :he tantents of a core. This
can be very easily accomplished by threading one sense wirs thraugh every core in
the malrix. Since anly one core is selected {switched) a- a ine. any oulput on the
sense wire will be due 1o the changing of siate of the «welemed core, and we will
know which core it is since the core address is prerequis e 17 selection. Notice that
ine sense wire passes through hall the cores in one direcior and through the other
hai in the apposite direction. Thus the output signal mzv bz either a posilive or a
regative pulse, For this reason, the output from the sense w -e is ysually amplified

Jand rectified 10 produce an output pulse which alwzrs zapears with the same
polarity,

Example 12-4

fram the standpoint.of construction, the core matrix 15 Fiz. 12-14 is more con-
venient, Explain the necessary directions of half-select curreits in the X and Y lines
ior proper operation of _the matrix.

s -

Solution

Core X,Y, is exactiy similar to the prewouqu discussed matrix in Fig. 12-13. Thus a
current passing down through X, and to the right througs Y, will set core X, Y, to the
1 slate, To set core X,Y, to the 1 state, current must pas: down through line X,, but
current must pass from the right to the left through lir2 Y, «check with the right-

nand ruley. Procecding in this iashion, we see thal care Yy is similar 10 X,Y,.
Therefare, current nsust pass through line Y, from left lo -t~ Simiiarly, core X,Y, is
wimitar to core X,¥; and current must therelore pass t--ou:n line Y, from right to
iefl. In generai, current must pass from left to right it -3ug- the odd-numbered ¥
hnes, and from right to left through even-numbered ¥ [ -es.

Now, since curienl must pass from left to right thro_zh .ne ¥, it is easily seen
that cufrent musi pass upward through line X; in orcer 12 set core X,Y,. By an
argument similar 1o that given {or the Y lines, current st ;ass downward lhrough
the odd-numbered X lines and upward through the ever-numbered X lines.

a4 e ——
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Fig. 12-14. Coincident-cutrent memory matrix (one plane).

The matrix shown in Fig. 12-14 has one extra winding which we have not vet
discussed. This is the inhibit wire. In order to understand its operalion and function,
let us examine the methods for writing information into the matrix and reading in-
formation from the matrix

Towrite a } in any core (that is, to set the core to the 1 state}, it is only necessary
to apply V1l 1o the X and Y lines selecling that core address. If we desired 10 write
a 0in any core (that is, set the core 1o the O slale), we could simply apply a current
of —2lm 10 the X and ¥ lines selecting that core address. We can also write 3 0 in
any core by.making use of the inhibit wire shown in Fig. 12-14. (We assume that .
all cores are initially in the O staie.} Notice that the application of Yal,, to (his wire
in the direction shown on the figure results in a compiete cancellation of the Y line
select current (it also tends to cancel an X line current), Thus 1o write a 0 in any
core, it is only necessary o select the core in the same manner as if writing a 1, and
at the same lime apply an inhibit current 1o the inhibit wire. The major reason for
writing a 0 in this fashion wili become clear when we use these matrix planes to
form a complele memory. '

To summarize, we write a 1 in any core X,Y, by applying 2/, to the select lines .
X, and Y, A O can be written in the same fashion by simply applying Yaln, to the
inhibit line a1 the same time (if all cores are initially reset).

To read the information stored in any core, we simply apply — "2l 1o lhe proper X
and Y lines and detect the oulput on the sense wire. The select currents of =Yz,
reset the core, and i the core-previously -held a.1, an-output. pulse accurs. If the
core previously held a 0, it does not switch, and no output pulse appears.

This, then, is the complete coincident-current selection system for one plane.
Notice that readmg the :nformanon out of the mernory results in a complete loss.of-
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Fig. 12-15. Complele coincident-current memory system.

information from the memary, since all cores are reset during the read operat.on,
This is referred to as a destructive readout or DRO system. This matrix plane is used
to store one bit in a word, and il is necessary to use n of these planes to store an
n-hit word, ‘

A complete parailer coincident-current memory system can be constructec by
siacking the basic memory plancs in the manner shown in Fig. 12-15. All 17e X
drive lines are connected in series from plane to plane as are all the Y drive ines.
Thus the application of Ya/, to lines X, and Y, resulls in a selection of core X,Y; in
every plane. In this fashion we can simultaneously switch n cores, where n is the
number of planes. These n cores represent one word of a bits. For example, the top
piane might be the LSB, the next o the top plane would then be the second LSB,
and so on; the boltom plane would then hoid the MSB..

To read information from the memory, we simply apply —Val, to the proper
address and sense Lhe outputs on the n sense lines. Remember that readout results
in resctting all cores to the 0 state, and thus that word position in the memory is
Cieared to all Os. )

To wrile informaltion into the memory, we simply apply Y2, to'the proper X and
¥ seicct lines. This wili, however, write a 1 in every core. So for the cores in which
we desire a 0, we simullancously apply Yal,, 1o the inhibit line. For exampie. to
write 1001 in the upper four planes in Fig. 12-15, we apply Val,, to the proper X
and Y lines and al the same time apply Y2l,, to the inhibit lines of the second and
third planes. )

This method of writing assumes that ali cores were previously in the 0 state. For
this reason it is comman to deline a memory cycle. One memory cycle is dei.aed

.as 3 readt pperation (oilowed by a write operation. This serves two purposes: fisst it
ensures that all the cores are in the O state during the write operation; second, it
] provides the basis for designing a nondestructive readout INDRO) system.
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Il is quite inconvenient to lose the data stored in the memory every Lime they are
read out. For this reason, the NDRO has been developed. One method lor ac-
complishing this function is to read the information out of the memory inlo a tem-
porary storage register (flip-flops perhaps). The outputs of the flip-flops are then
used 1o drive the inhibit lines during the write operation which foliows (inhibit to
wrile a 0 and do nol inhibit torwrite a 1). Thus the basic memory cycle allows us to
form an NDRO memory {rom a DRO memory.

Example 12-5

Describe how a coincident-current memory might be constructed if it must be
c.apabie of storing 1,024 twenty-bit words,

Solution .

~ Since there are 20 bits in each word, there must be 20 planes in the memory (there

is one plane lor each bit). in order to store 1,024 words, we could make the planes
square. In this case, each plane would contain 1,024 cores; it would be con-
structed with 32 rows and 32 columns since (1024)'? = (2! = 2% = 32. This
memory is then capable of storing 1,024 X 20 = 20,480 bits of information. Typi-
cally, a memory of this size might be constructed in a 3-in cube. Notice that in this
memory:we have the ability to switch any one of 20,480 cores by controiling the
current levels on only B4 wires (32 X lines, 32 Y lines, and 20 inhibit lines), This is
indeed a modest number of control lines.

Example 12-6

Devise a means for making the memory system in the previous example a NDRO
system.

Solution
One method for accomplishing this is shown in Fig. 12-16. The basic core array

“ consists of twenty 32-by-32 core planes. For convenience, only the three 1LSB

planes and the MSB core plane are shown in the diagram. The wiring and opera-
tion for the other planes are the same. For clarity, the X and Y select lines have also
been omitted. The output sense line of each plane is fed into a bipolar amplifier
which rectifies and amplifies the output so that a posilive pulse appears any time a
set core is reset to the O state. A complete memory cycle consists of a clear pulse
followed by a read pulse followed by a wrile pulse. The proper waveforms are
shown in Fig. 12-17. The clear pulse first sets all flip-flops to the 0 state ithis clear
pulse can be generated from the trailing edge of the write puise). When the read
line goes high, ali the AnD gales driven by the bipolar amplifiers are enabled. -
Shortly after the rise of the read pulse, —Yal,, is applied to the Xrand Y lines desig-
nating the address of the word 1o be read out. This resets all cores in the selecled
word to the 0 state, and any core which containeda 1 will switch. Any core which
switches generates a pulse on the sense line which is amplified and appears as a”
positive pulse at the output of one of the bipolar amplifiers.” Since the read aAND
gates are enabled, a positive pulse al the output of any ampiifier passes through the
AND gate and sets the flip-flop. Shortly thereafter the half-select currents disappear,
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NDRO system for Example 12-6.

Fig. 12-16.

lhe read line goes low, and the flip-flops now contain the data which were
previously in the selected cores. Shorlly after the read line goes low, the write line
goes high, and ihis enables the write AND gzies {connected to the inhibit line
drivers). The O side of any flip-flop which ha: a 0 stored in it is high, and this
enables the write AND gate 1o which it is connezted. In this manner an inhibit cur-
renl is applied 10 any core which previously held a 0. Shortly after the rise of the
write puise, positive hall-select currents are azplied to the same X and Y lines.
Taese select currents set a 1 in any core whic does not have an inhibit current.
Thus the information stored in the flip-flops is written directly back into the cores
from which it camse. The hali-select currents are :nen reduced to zero, and the write
line goes low. The fall of the write line is used i resel the flip- flops and the system
is now ready for anolher readiwme cycle.

The NDRO memory sysiem discussed in th: preceding example provides the
means for reading information from the syster; without losing- the individual bits ©
stored in the cores. To have a complete menory system, we mwust have the
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Fig. 12-17. NDRO waveforms for Fig. 12-16 (read from memory}.

capébility 1o write information .into the cores from some exlernal source {e.g., inpul
data). The write operation can be realized by making use of the exact same NDRQ
waveforms shown in Fig. 12-17. We must, however, add some additional gales to
the system such that during the read pulse Lhe data set into the (lip-flops will be the
external data we wish stored in the cores. This could easily be accompiished by add-
ing a second set of AND gates which can be used to set the flip-flops. The iogic

- diagram for the complete memory system is shown in Fig. 12-18. For simplicity,

only the LSB is shown since the logic for every bit is identical.

For the complete memaory system we recognize Lhat there are two distinct opera-
tions. They are write into memory (i.e,, starc external data in the cores) and read
from memory (1.e., extract data from the cores 1o be used elsewhere). For these two
operations we must’necessarily generale two distincl sets of control wavelforms. The
waveforms lor read from memory are exactly those shown in Fig. 12-17, and the
events are summarized as foilows:

1. The clear pulse resets all flip-llops.

2. During the read pulse, all cores at the selected address are reset to 0, and the
data storéd in them are transferred to the (lip-flops by means of the read anD
gales.

3. During the write pu]se, the data held in the flip-Nops are stored hack in the'

tores by applying positive haif-sclect currents {the inhibit currenis are con-
trolled by the 0 sides of the flip-llaps and provide the means of storing Os in the
cores).

The write into memory waveforms are exactly the same as shown in Fig. 12-17
with one exception: that is. the read puise is replaced wilh the enter data pulse.
The evenls for write into memory are shown in Fig. 12-19, and are summarized as
follows:

1. The ciear pulse resets all {lip-flops. -

12. During the enter data pulse, the negative hall-select currents resét all cores at
the selecled address. The core outputs are nol used, however, since the read
AND pates are nol .enabled, Instead, external data are set inio the flip-flops
lhroug'l the enter AND gates. '

e
-
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Fig. 12-18. Complele NDRG memory system (LSB plane only),

3. During the write pulse, data held in the flip-f.ops are stored in the cores exactly
as before.

in conclusion, we see that 'write into memory :~d read from memory are exactly
the same operations with the exception of the zata stored in the flip-flops. The
waveforms are exactly the same when the rea: and enter data pulses are used
appropniately, and the same total cycle time is resuired for either operation.

it should be pointed out that a number of gii: zulties are encountered with this
type of system. Firsl of all, since the sense wire ir each plane threads every core in
that plane, a numbher of undesired signals will ze on the sense wire. These un-
desired signals are a result of the fact that many ¢! the cores in the plane receive a
half-select current and thus exhibit a slight flux crange.

The geometrical pattern of core arrangement and wiring shown in Fig. 12-13 rep-
resents an attempt o minimize the sense-line noze by cancellation. For example,
the signals induced in the sense line by the X anc ¥ drive currents would hopefully

Fig. 12-19. NDRO wavelorms for Fig. 12-18 (write islo memory).

e 1 memory cycle————d |
Ciear _n . n
Enter dala_r_"“——“"__l .

Write
2 =

[
1X OL/J_\_—
Half “fpf2 ___ .
sclect Hof2 T '
currents |y oﬁ
l “Imf2 —

Per merme v v e

. . {a) S fb)

Magnetic Devices and Memories 347

be canceled oul since the sense line crosses these lines in the opposite direciion the
same number of times. Furthermore, the sense line is always at a 45" angle to the X °
and Y select lines. Similarly, the noise signals induced in the sense line by the par-
tial switching of cores receiving haif-select currents should caricel one another,
This, however, assumes that all cores are identical, which is hardly ever truel

Another method for eliminating noise due to cores receiving half-select currents
would be 1o have a core which exhibits an absolutely rectangular BH curve as
shown in Fig. 12-20a. In this case, a half-select current would move the operating
point of the core perhaps from point a 1o point b on the curve. However, since the
1op of the curve is horizontal, no flux change would-occur, and therelore no un-
desired signal could be induced in the sense wire. This is an ideal curve, however,
and cannot be realized in actual practice. A measure of core qualily is given by the
squareness ratio, which is defined as

. B,
Squareness ratio = —
B,

This is the ratio of the flux density at the remanent point B, to the flux density al the
switching point B, and is shown graphically in Fig. 12-20b. The ideal value is, of
course, 1.0, but values between 0.9 and 1.0 are the best obtaina‘ble.

12-5 MEMORY ADDRESSING

In this section we investigate the means for activating the X and Y sciection lines
which supply the half-select currents for switching the cares in the memory, First of
all, since it typically requires 100 to 500 mA in each seiect line (that is, /. is
typically between 100 and 500 mA), each select line must be driven by a current
amplifier. A special-class of transistors has been developed for this purpose; they
are referred 1o as core drivers in data sheets, What is then needed is the means ior
activating the proper core-driver amplifier,

Up to this point, we have designated the X lines as X,, X, X3, . . . ,X,, and the ¥

Fig. 12-20. - Hysleresis curves. (a) 1deal. (D) Practical {realizable).
8 . . 8




348 ' Digital Principles and Applications .

ines as Y, ¥, Yy .. &, Y. For a sguare matrix. n s the number of cores in each
row or columan, and there are then n? cores in a piane. When the planes are ar-
ranged in a stack of M planes, where M is the numbcer of bits in a word, we have a
memuory capable of storing n?, M-bit words. Any two select lines can then be used
10 read or wrile a word in memory, and the address of that word is X, Y, where a
and b ¢an be uny number from 1 to n. For exampie, X,Y, represents the column of
cores atie intersecton of the X, and ¥, select lines, and we can then say that the

aeairess of thic woid is 23. Notice that the first digit in the address is the X line and

the second dagi s the Y line, This 1 arbitrary and could be reversed.

This method of address designation entails bul one problem: in a digital system
we can use anly the numbers 1 and 0. The probiem is easily resolved, however,
since the address 23, {or example, can be represented by 010 011 in binary form. If
we use throe bils (dr the X Hine position and three bits for the Y line position, we can
then desigrate the address of any word in a memary having a capacity of 64 words
or {ess. This is easy 10 see, since with three bits we can represent eight decimal
nunmibers, which means we can defline an 8 X B = 64 word memory. H we chose an
cignl-bit address, four bits for the X line and four bits for the Y line, we could define
a memory having 24 X 24'= 16 X 16 = 256 words. !n general, an address ol 8 bits
can be used (o define a square memory of 2% words, where there are Bf2 bits for
the X lines and 8/2 bits for the Y lines. From this discussion it is easy to see why
arge-scale coincident-current memory systems usually have a capacity which is an
oven power of 2,

cxample 12-7

What wouti be the structure of the binary address for a memory system having a
capacity of 1,024 wordsi /
Solution

Since 2'" = 1,024, there would have to he 10 bits in the address word. The first five
'~ could be used lo designate one of the required 32 X lines, and Lhe second five
i» could be used 10 designate one of the 32 Y lines,

Example 12-8

For the memory system described in the previous example, what is the decimal
address for the foliowing binary addresses?
~ 10110 00100
11001 01010
W) 11130 600

Soiution -

ial The firel five bits are the X line and correspond to the decimal number 22.
The second five bils represent the Y line and correspond to the decimal number 5.

Yus the address is X,,Y,.

Wby 11001, = 25,, and 01010, = 10,,. Therefore, the address is Xz5Y,e.

(c) The address is X, Y,

e B bits of the address in a typical digital systém are stored in a series of {hp-
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fig. 12-21. Coincident-current memory addressing.

flops called the “address register.”” The address in binary form must then be
decoded into decimal form in order to drive one of the X line drivers and une of the
Y line driver amplifiers as shown in Fig. 12-21. The X and Y decoding maltrices
shown in the figure can be identical and are esseniially binary-tu-decimat
decoders. Binary-lo-decimal decoding and appropriate matrices were discussed in
Chap. 10.

12-6  SEMICONDUCTOR MEMORIES —BIPOLAR

Reduced cost and size, improved reliability and speed of operation, and increased
packing densily are among the technological advances which have made semicon-
ductor memories a reality in modern digital systems. A bipolar memory is con-
structed using the familiar bipolar transisior, while the MOS memory maxes use of
the MOQSEET. In this section we consider the characteristics of bipolar semicon-
ductor memories; MOS memories are considered in the next section, ’

A “memory cell” is a unit capable of storing binary information; the bhasic memory
unit in a bipolar semiconductor memory is the {lip-flop Gatch) shown in Fig. 12-22,
The cell is sefected by raising the X sefect line and the Y select line; the sense lines
are both returned through low-resistance sense amplifiers 1o ground. if the cell con-
tains a 1, current is present in the 1 sense line. On the other hand, if the cell con-
tains a 0, current is present in the O sense line.

To wrile information into the cell, the X and Y select lines are held high; holding
the 0 sense line high (+V,.) while the 1 sense line is grounded writes a 1 into the -
cell. Aliernatively, holding the 1 sense line high {(+V,.J} and the 0 sense line at
ground during a select writes a 0 into the cell. The basic bipolar memory cell in
Fig. 12-22 can be used to store one binary digit (bnl}, and thus many suck cells are
required to form a memary,

Sixteen of the RS flip-flop celis in F|g 12-22 have bepn arranged in a 4-by-4 ma-
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! Y select

X selecd

fig. 12-22.  Bipolar memory cell circuit,

inx o form a 16-word by one-bit memery in Fig. 12-23. It is referred 1o as a
random. access memory (RAM) since each bit is individually addressable hy se-
.cting one X line and one Y line, 1t is aiso a nondestructable readout since the read
aperation dous not ailer the state of the selected flip-flop. This memory comes on a
wnpic semiconductor chip (in a single package) as shown in Fig. 12-24a. To con-
stiuct a 16-worg memaory with more than one bit per word requires stacking these
basic units, For example, six of these chips can be used to construct a 16-word by
six-bil memory as shown in Fig. 12-24b, The X and Y address lines are all con-
nected in paraliel. The units shown in Figs. 12-23 and 12-24 are essentially
equivalent 1o the Texas Insyuments 9033 and Fairchild 93407 (5033 or 9033).

Example 12-9

Using a 903'& explain how lo construct a 16-word by 12-bit memory. What
address would select the 12-bit word formed by the bits in column i and row 1 of
each planet

Solutien

Connect twelve 16-word by one-bit memory planes in parallel. The address
2K KX, Yo¥, Ve Ys = 10001000 selects the bit in the first column and the first row of
each plane (a 12- bit word represented by the vertical column of 12 bits).

For larger memories, the appropriate address decoding, driver amplifiers, and
readhwrite logic are all constructed in a single package. Such a unit, for example, is
the Fairchild 93415 —this is a 1,024-word by one-bit read/write RAM. The logic
diagram is shown in Fig. 12-25. An address of 10 bits is required
{AA A AAAAA ALAL) L0 Obtain 1,024 words. That is, x bits provide 2* word

o g, = = et g = ey
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Fig. 12:23. 16-word 1-bil‘memory.

locations. In this case, the 10-bit address is divided into two groups of five hils
each. The first five (A, A, Ag Ay, A select a unique group of 32 lines from the
32-by-32 array. The second five (A, As Ap A Ag) select exactly one of the 32
presetecied lines for reading or writing. Thése basic units are then stacked in paral-
lel as shown previously; n units provide a memory having 1,024 words by n bits.

Anolher interesting and uselul type of semiconduclor memaory is g;howh in Fig.
12-26. This is a bipolar TTL read-oniy memory (ROM). The information stored in a
ROM can be read out, but new information cannot be writien into it. Thus, the in-
formation stored is permanent in nalure. ROMs can be used 10 store mathematical
tables, code translations, and other fixed data. The logic required for a ROM is
generally simpler than that required for a readfwrite memary, and the unil shown in
Fig. 12-26 (equivalent to a T1 9034 or Fairchild 93434) provides an eight-hit cutput
word for each five-bit inpul address, There-are, of course, 32 words. since an
address of five bits provides 32 words (2% = .
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Fig. 12-24. (a) Logic diagram. {b) Six chips
(&) stacked to get a 16-word X 6-bit memory.

Fig. 12-25. 1024-word X 1-bit RAM.

. o

Ac_ —_—

A, ]

I Address Word | 32 x 32

Ay —  decoder drivers array

Ay

A L ' -

. = Data out
Sense ampl  tw— Write enable
dlrc;;iecrs la—— Chip select
le— Data in
° . Address

decoder

Ay A Ay Ag Ay T

eammer ot —————— e =R L

o s 4

Magnetic Devices and Memories - ' 353

Example 12-10

How many address bits are required for a 123-word by four-bit ROM constructed

similarly to the unit in Fig. 12.267 How many memory cells are there in such a
unit!

Solution

it requires seven address bits, since 27 = 128. There would be 128 X 4 =512
memory cells.

12-7 SEMICONDUCTOR MEMORIES -MOS

The hasic device used in the canstruction of an MOS semiconductor memory is the
MOSFET. Both p-channel and n-channel devices are availabie. The n-channel
memaories have simpler power requirements, usually only +V,,, and are quite com-
patible with TTL since they are.usually referenced to ground and have positive
signal fevels up to +V,.. The p-channel devices generally require lwo power-supply
voltages and may require signal inversion in order {0 be compatible with TTL. MOS
devices are somewhat simpler than bipolar devices: as a result, MOS memorics can
be constructed with more bits on a chip, and they are generally less expensive than
bipoiar memories. The intrinsic capacitance associated with an MOS device gen-

erally means that MOS memories are slower than bipolar units, but this capaci- .-

tance can be used to good advantage, as we shali see,

Fig. 12-26. 256-bit (32-word X 8-bit) ROM.
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Data in ’
: Bit
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o |
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| R
O'l I 4 i to;
~ +Vee
1
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!

Word i J
iine - ! Fig. 12-27,

An RS fiip-flop consirected using MOSFETs is shown in Fig. 12-27. It is a st
darFi bistable circuit, wra Q, and Q, as the two active devices ané Q an; 3(';'
acling as active pull-up: iessentially resistances). Q, and Q, co'upie thea fi -flo':
outputs 1o the two bit li-es, This cell is constructed using n-channel devicef anr"
selection is accompiishes by holding bath the word line and the bit sefect line'hi -
H-}/@. The pouttive vo.; 2e on the word line turns on Q, and @, and the osit'ﬁle
voitage in the bt select ~e turns on Q; and Q. Under this condﬁiflion the gip-(llo
qu[qus are coupicn diresty to the bit output amplifier {one input sidc;_is high anz
ine other must be wow!, Gn the other hand, data can be stored in the cell wser'w iis
seiected by applying | ¢ 0 (+V.. or 0 V dc) at the data input terminai. The basic
memory celi in Fig. 12-27 is used 1o construct a 1,024-bit RAM having a logic
chagram similar 1o Fig. 12-25. This particular unit is a 2602 as manufactured b SE'; -
netics Corp. voe

A memory cell using p-channel MOSFETSs is shown in Fig. 12-28. Q, and Q, are
the two active devices “urming the {lip-flop, while Q; and Q, ac; a:;1 active ‘load
resisl;)rs.]The ceil is s?.fclcd by a low logic level at the bit select input. This
:lf).:’z;; [(;f ;,C,:)(?t::;:“ of e fiip-flop out to appropriate amplifiers (as in Fig. 12-27)

A s.ialic memory w cGmposed of cells capabie of storing binary information in-
definitely, For exampie, 1« bipolar or MOSFET fup-liop remains set or reset as long

[ — R Rt e Bt B

e h vt Em—————— e g———r 4 "
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Fig. 12-28. Bit setect

as power is applied to the circuit. Also, a magnetic core remains sel or reset, even if
power is removed. These basic memaory ce:is are used to form a static memory. On
the other hand. a dynamic memory is composed of memaory cells whose contents
tend to decay over a period of time {perhaps milliseconds or seconds}; thus, their

© contents must be ‘restored (refreshed) pesiodically, The leaky capacitance as-
. sociated with a MOSFET can be used 1o store charge, and this is then the basic unit

used to form a dynamic memory. (There are n;o dynamic bipolar memories because
there is no suitable intrinsic capacitance for charge storage.) The need for extra

Fig. 12-29. Basic dynamic memory cell.
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Fig. 12-30. 1103 Dynamic RAM logic diagram.

timing signals and logic to periodically refresh the dynamic memory is a disadvan-
lane, but the higher speeds and lower power dissipation, and therefore the in-
_r';ca.scci cell density, outweighs the disagvantages, Note that a dynamic memory
fskinates energy only when reading, writing, or refreshing celis. A typical dynamic
memary cell is saown in Fig. 12-29. l

The dynamic memory cell in Fig. 12-29 ic constructed fram p-channel MOSFETs

The pate capacitance (shown as a dotiec capacitor) is used as the basic 510rage.
element. To wrile into the cell requires ho.ding the write bus at a low logic level:
ther a low level at the write data input charges the gale capacitance (stores a 1 ir;
the cell). With the write lus held low, and a high logic level (+V..) at the write data
input, the gate capacilance is discharged (s 0 is stored in the cell). ‘

‘ To read from the ceil requires holiding tre read bus input at a low logic level. if
Ine gate capacitance is charged (céll conta:ns a 1), the read data tine goes 10 +V,,;
it the cell conlains a 0, the read dataline remains low. "

The memory cell in Fig. 12-29 is used by a number of manufacturers 1o construct
the widely used 1103 1,024-bit dynamic RAM. The fogic diagram is shown in Fig

12-30. Refer to manufacturers’ data sheets ior more detarled operating infOrmation:

12-8 MACNETIC-DRUM STORAGE

Nj._n;.;nmic cores ana semiconductor devices arranged in three-dimensional form
oiler great advantages as memory systems, By far the mosl important advantage is
tne speed with which data can be written inlo or read from the memory system
This is called the access time, and for core memory systems it is simply the time ot-'
one read/wrile cycie. Thus the access time is directly related 10 the clock, and typi-
cai values are from less than T 1oa few microsecends. These types of memory

[T
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systems are said to be random-access since any word in the memory can be
selected at random. The primary disadvantage of this type of memory system is the
cost of construction for the amount of storage available. As an example, recail that
a magnetic lape is capable:of storing large quantities of data at.a relatively low cost
per bit of storage. A typical tape might be capable of-storing up to 20 million
characters, which corresponds to 120 million bits (Chap. 10). To construcl such a
memory with magnetic cores requires about 3 million cores per plane, assuming
we use a stack of 36 planes corresponding to a 36-bit word, It is quite easy 1o un-
derstand the impracticality of constructing such a system. What is needed, then, is
a system capable of storing information with less cost per bit but having a greater
capacity.

Such a system is the magnetic-drum storage system. The basis of a magnetic
drum is a cylindrical-shaped drum, the surface of which has been coated with a
magnelic malterial, The drum is rotated on its axis as shown in Fig. 12-31. and the
read/write heads are used 1o record information on the drum or read information
from the drum. Since the surface of the drum is magnetic, it exhibits a rectangutar-
hysteresis-loop property and can thus be magnetized. The process of recording on
the drum is much the same as for recording on magnetic tape, as discussed in
Chap. 10, and the same methods for recording are commonly used (i.e., RZ, NRZ,
and NRZI). The data are recorded in tracks around the circumference of the drum,
and there is one read/write head for each track. There are three major methods for
storing information on the drum surface; they are bil-serial, bit-parallel, and bit-
serial-parallel. .

In bit-serial recording, ail the bits in one word are slored seguentially, side by
side, in one track of the drum. Bit-serial storage is shown in Fig. 12-32a. Storage
densities of 200 to 1,000 bits per in are typical for magnetic drums. A typical drum
might be B in in diameter and thus have the capacity 1o slore # X 8 tn % 200 bits
per in = 5,024 bits in each track. Drums have been construcled with anywhere
from 15 to 400 tracks, and a spacing of 20 tracks to the inch is typical. If we as-
sume this particular drum is 8 in wide and has a total of 100 tracks, we see im-
mediately that it has a storage capacity of 5,024 bits per track X 100 tracks =

Fig. 12-31. Magnetic-drum slorage,



354 igi i
Digital Principles and Applications

i word of 36 bits
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big. 12:32. Magnetic-drum or

1 A anizalion. (a) Bit-seri i
1 Bi-serak-paraiet srna. 2 (a) Bit-serial storage. (b) Bit-parallel storage,

-

502.400 bits of information. Compare this capacity w

remory, which is 64 cores on a side (quite a large
« planes. This core memory has a capacity of 29 x 26

described above is actually considered small, and
- consiructed and are now in use. '

Example 12-11

A certain magnelic drum is 12 in in dia.meler

. €apacity of the drum if there are 200 tracks a
500 bits per in?

ith thal of a coincident core
Core system} with 64 core
X 2% = 262,144 bits. The drum
much larger drums have been

~

and 12 in long. Whal is the storage
nd data are recorded at a density of

Solution

Each track has a capacityof = X 12 in x 500 bits per in

= 18,840 bits. Since
are 200 tracks, the drum has 2 1otai capacity of 18,84 8,000 mon

0 X 200 = 3,768,000 bits.

In the preceding example, each track has the ab
"We use & 36-bit word, we can store about 523 w
+ are stored sequentially around the

i!ity to store about 18,840 bits. if
Qrds tn each track. Since the wards
drum, and since there js only one readfwrite

-

L]
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head for the track, it is easy 10 see that we may have to wadt to read any one worg
That is, the drum is rotating, and the word we wanl to read may not be under the
read head at the time we choose o read it. It may in fact have just passed under the
head, and we will have to wait until the drum completes nearly a full revoiution

. before it is under the head again. This points out one of the major disadvantages of

the drum compared with the core storage. That is the prablem of access lime. On
the average, we can assume thal we will have 10 wait the time required for the
drum to complete one-half a revolution. A drum is thus said to have restricted
access. -

Example 12-12

If the drum in Example 12-11 rotates at a speed of 3,000 rpm, what is the average
access ime for the drum?

Solution

3,000 rpm = 50 rps. Thus the time for one revolution is 1/{50 rps} = 20 ms. Thus,
the average access {ime is one-half the time of one revolution, which is 10 ms,
Contrast this with a coincident-current core memory which has a direct access tlime
of a few microseconds, '

Notice in. the previous example that it requires a short period of time to read the
36 bits of the word, since they appear under the read head one bit at a time in a
serial fashion. The actual time required is small compared with the access time and
is found to be (20 ms/r)/(523 words per track) = 40 us. This read time can be
reduced by storing the data on the drum in a parallel manner, as shown in Fig.
12-32b.

The average access lime for bit-paraliel storage is the same as for bit-serial
starage, but it is possible to read and record information at a much faster rate with
the bit-parallel system. Let us use the drum in Example 12-11 once more. Since
there are 523 words around each track, and since the drum rotates at 50 rps, we
can read (or write) 523 words per revolution*x 50 rps = 26,150 words per second.
if the data were slored in parallel fashion, we could read {or write) at 36 times this
rate, or at a rate of 18,840 words per revolution X 50 rps = 942,000 words per sec-
ond. We would, of course, arrange 10 have the number of tracks ori the. drum an
even multiple of the number of bits in a word. For example, with a 36-bil word we
might use a drum having 36 or 72 or 108 tracks.

A third method for recording data on a drum is called "bil-serial-parallel.” The
method is shown in Fig. 12-32¢ and is commonly used for storing BCD informa-
tion. The access and read (or wrile} times are a combination of the serial and paral-
lel umes. One BCD character occupies one bil in each of fouf adjacent tracks.
Thus, every four tracks might be calied a “band,” and each BCD character oc-
cupies one space in the band. If there are 36 BCD characters in a word, we can
store 523 .words on the drum of Example 12-11. o .

‘Quite often the access time is speeded up by the addition of extra read/write
heads around the drum. For example, we might use two sets of heads placed on
opposite sides of the drum, This wouid obviously cut the access time in hali. Alter- -
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: Q
natively, we might use three sets of heads arranged around the drum at 120° angles.

i ' : ime by one-third.

This would reduce the access time ‘

Since writing on and. reading from the drum must be very c_arefu”y tlmeq, ont;
track in the drum is usually reserved as a timing track. On :hrs'tract\,‘ a sg:res :d
timing pulses is permanently recorded and is used to synchronize the wri eda _n
ead operations. For the drum discussed in Example 12-11, there are 523 wor. S f
;ac'h track around the circumference of the drum. We might the? r;.:cor.d .? ser{nesci

: imi ‘ I the circumference of the timing track.

atly spaced timing marks arounc 3
22(:3?!?[:5&' ‘\(N()Fl)ﬂd then designate 1the read or wate position for a word on the drum.
a u
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. H. Can also refer 10 the plot of magne

memory cycle In a coincident-current me

by a write operation.

NDRO  Nondestructive readout,
RAM Random-access memory,
ROM Read-only memory.

sefect current |,
single-diode transf

squareness ratio A me

tic flux ¢ versus magnetizing

The minimum current required 1o switch a magnet
er loop A method of coupling the output of one mag

10 the input of the next magnetic core.

ratio B,/B,,.
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current f{,

mory system, a read operation followed

ic device.
netic core

asure of core quality. From the hysteresis curve, it is (he

static memory A memary capable of storing binary information indefinitely,

.Review Questions

1.

10,

11,

12,

13,

14,

Name one advantage of a ferrite Care over a metal-ribbon core.

Name one advantage of a metal-ribbon core over a ferrite core,

Describe the method for detecting a stored 1 in a corg,

Why is a strohin
core?

How is core switching 1ime t, afiected by the switching current?

Explain why more complicated logic functions using cores can lead

sive operating times,

What is the pumpose of the diode in the single-dioce transfer loop?

Why is a delay in signal transfer between cores desired?

Explain how the R and C in Fig. 12-11 inlr(;duce a de

between cores.

Explain the operation of the sense wire in a magnetic-Core
is it passible to thread every core in the plane with

Explain how it is possible to
using the inhibit line.

Why is a basic_ coincident.
system?

In the basic memory cycle for a coincident-current core m
must the read operation come before the write operation?

What is the difference between

lay in signa

matrix pla
the same wire?

the write into memory and the re

. memory cycles for a coincident-current core memory system?

15, .
16,
17

Explain the meaning of the title

“64-word by eight-bit static RAM.

Why are there no dynamic bipolar memories?

What does it mean 1o “refresh’’

a dynamic memory?

8 technique often used o detect the output of a switched

{0 exces-

[ transfer

ne. Why

store a 0 in a coincident-current memaory core

current core memory inherently a DRO-type

ad from

.

emory system, wh VQ‘

f
b
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18.  Describe i- e chifference beiween random-access and restricled-acces: nem-
ories.

19, Descitbe tre advantages of using a magnelic-drum storage system.
Problems

12-1.
pomnts,

Draw a ivpical hysleresis curve for a core, and show the two remanernt

12-2. Show graunically 6n a &/ curve the path of the operating point as the zore
1s switched from ¢ 1 to a 0. Repeat for switching from a O to a 1.

12-3. Draw the sumbol for a magnetic-core logic element, and explain the nc-
ton of each wind ag.

‘12-9. Draw a = of wavelorms showing how the exclusive-orR circuit ¢ Fig.

L3-8 must operare (notice it requires only two clocks which are spaced 18.7 out
O phase). . -

12-5.  Draw a sirgle-diode transfer loop between two cores, and explain its orera-
tion (use wavelorms if needed).

12-6. [raw a schematic and the waveforms for a core ring counter whict pro-
vides seven oulpu: puises, '

12-7. Draw a skeich and _explain how a core can be swiiched by the coinCiient-

current method. «

“12-8. Make a saeich simitar to Fig. 12-15 showing a three-dimensigna. zore
memory capable of storing 100 ten-bit words. Show all input and output res
clearly.

12-9. Descnbe ine geometry .of a coincident-current core memory capatz ¢
saoing 4,096 thiny-six-bhit words (i.e., how many planes, how many cores pe-
piane, etc.). ’

12-10. How mary bils can be stored in the memory in Prob. 12-92

12-11. How.many control lines are required for the memory in Prob. 32-97

12-12. Show graphically the meaning of squareness ratio for a magnetic core. anc
explain its importance for magnelic-core memories. -

12-13. Describe 3 structure for the address which could be used for the me~ory
of Prob. 12-9.

12-34. Il 3 certain tore memory is composed of square matrices, what is the wird
capacity if the adaress is 12 binary digits?

12-15. How mar~ bits are required in the address of a 256-word by onsb.
readfwrite bipolar RAM?

12-16. Draw the polarity of the stored charge on the gatp capacitance show~ in
the basic dynamic memory cell in Fig. 12-29,

rw— -
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12-17. What is li\e bit-storage capacily of a m_ngnclic drum 10 w in diameter o
data are stored with a density of 200 bits per in in 20 tracks?

i i hie of storing 3.140

-18. What would be the diameter of a magnelic drum capab _ ‘

:hzir:yfiqix-bit words il there are 10 tracks and dala are stored bit-serial at 300 bits
per in{ .
12-19. What is the average access lime forthe d
36,000 rpm? What could be done to reduce th
12-20 Flor the drum in Prob. 12-18, at what bit rate must data be moved (u_e._,
read or write) if the drum rotates at 36,000 rpmi

rum in Proby, 12-18 if itrolates at
is access time by a factor of 21

0p



Introduction to
Digital Computers

The digita! principles discussed in the previous chaplers have been utilized tn
devise a great many different digital systems. The applicalions are many and varied.
They include simple syslems such as counters and digita! clocks, and more com-
plex applications such as digitai voltmeters, A/D converters, frequency counlers,
and time-period measuring systems. Among the most sophisticated digital systems
dewsed are digital computers, includirg special-purpose machines, small general-
purpose computers {such as the Digital Equipment Corp. PDP-8/E), and large
generai-purpose compulers (such as the IBM 360 and 370 sysiems). in this chapter
we consider some of the basic principles common to digitai computer systems,
After studying this chapter you should be able to

vt

1. State the difference between a specual purpose and a genecal purpose digital
" computer.

2, Discuss the 4 main blocks in a general purpose computer.

3. Write a simple computer progrant using innemonic code.

.14-1 BASIC CLOCKS

The operation or control of a digital system can be classified in two genesal cat-
‘egories —synchronous and asynchronous. In a synchronous system the fip-flops
are controfled by the system clock and can therefore change states only when the
clock changes state, Therefore, all the flip-flops and logic gales change levels in
time (or in synchronism} with the ¢lock. An example of such a synchronous system
is the parallel counter constructed using the master/siave clocked flip-flops. In this
counter, the fiip-flops can change state only when the clock goes low and at ne
other time (notice that a system could be consiructed such that the flip-tlops wonld
change state when the clock goes high). On the other hand, in an asvnchroneus
system the flip-flops are cantrolled by events which accur at random limes, Thus

Wl d

M
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- ._{ I—_ Clack cycle time _.._; === C.0¢k cycle time
UL JULnn,

fu) by
Fig. 14-1.  Basic system clock.

the fiip-flops may change states at random and are not in synchronism with any
unung signal such as a clock. An exampie of such a system mighi be the operation
of a push hutton by a human operato-. Depression of the push button would cause
& Fiip-flop 1o change siate. Since the operator can depress the button at any time he
or she desires, 1he fiip-flop would crange states at some random time, and this Is
hercfore an asynchronous operalion. Most large-scale digital systems operate in
the synchronous maode; il you give a little thought to the checkout and mainte-
nance of such a system, it is easy 1o see why,

since all logic operations in a synchronous machine occur in synchronism with a
cinck, the system clock becomes the basic timing unit. The system clock must
provide a periodic waveform which can be used as a synchronizing signal. The
*quare wave shown in Fig, 14-1a is a typical clock waveform used in a digital
system. It should be noted thal the clock need not be a perfecily symmetrical
sGuare wave as shown. It could simpiy be a series of positive pulses (or negative
Puises) as shown in Fig. 14-16. This waveform could, of course, be considered as
4 asymmelnical square wave, The main requirement is simply that the clock be
pericctiy periodic. Notice that the ciock defines a basic timing interval during
winich logic operations must be performed. This basic timing intervai is defined as'a
ok eyele lime and is equal to one period of the clock waveform. Thus all logic
ciements, Hip-fiops, counters, gates, elc., must compiete their transitions in less
ihan one cloek cycle time.

Example 14-1

What is the clock cycie time for a system which uses a 500-kHz clock? A 2-MHz
. clock? o

Solution =~ = -

A clock cycle time s equal to one period of the ciock. Therefore, the clock cycle

bme for a 500-kHz clock is 1/(500.¢ 10% = 2 ps. For a 2-MHz clock, the clock
cycie ime is 1/(2 X 10% = 0.5 ps. : ’

Example 14-2

The total propagation delay through a master/sfave clocked flip-flop is given as 100
ns. What is the maximum clock frequency that can be used with this flip-flop?
Solution

An alternative way of expressing the question is, how fast can the flip-flop operate?
The tip-flop mu mpleie ils transition in less than one clock eycle time. Tnere-
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i i ok
fare, the minimum ciock cycle time must be 100 ns. So, 1he maximum clo
e,
frequency must be 1/(100 X 107" = 10 MHz.

i i ] ment.
In many digital systems the clock is used as the hasic smdnuardc;or m;a§uu n|1~:1 )
: igi i i s relate
) [ the digital clock discussed in Chap. 9 i
for example, the accuracy o : ‘ ! - ‘ v
directly to the frequency of the ciock used to drve the counter. 1f the clock d:ar_\l;,:ﬂ
i i ason, il is necessary 10 ensure L
f uracy is reduced. For this reason, ‘
oauency, (he ace i » In many digital systems
intai and prediclable frequency, ;
the clock maintains a stable _ ol sy
ility 1 ired of the clock. This would i the cas as
only short-term stability is reguire i ) o 1 suslom
thre the clock could be monitored and adjusted penodicany. For 5ur.‘h a ]\ 'l-m,'
i by 5 SHNE-
the basic clock might be derived from a {ree-running mullwm.a.mr or a -I{Tp e e
ave (l)scilhlor as shown in Fig. 14-2a and b. For the lree-running multivibrato
W «
clock frequency f is given by

1 {14-1})
2RC In {1 + Vo iVp)

f=

Fig. 14-2. Basic clock circuits. (a) Free-running multivibrator. (b) Wien-bridge os-
g, -

cillator,

High gain amplifier

>
w0 oo
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Fig. 14-3. Crystal oscillator,

Il() 1 E(i. "id- ar Se 1 'I r s . ) e
il [ i.“4 i) H be see ” at t e baSlC ClOCk fequency iS coeCe h' li
l‘" ')\;q‘ ."'I RS as "\'e“ as ”le \'a.lU(.’S 0[ ﬁ e J'ESi‘.tO 5 R a d CapaCiIO i h
v i : o5 ‘ = b T TR, L23n SO, ‘1
hle w0 co .5[ UCH o IU“IVI*”a‘OrS SUCI' as i is Whi(.'h haVE Sfabl[l' - k the lh’ﬂl‘l
138 D

i) I’L’\\' prar It in 1 OZI b4 =
) * per da . ”! e i i
CIHaIOJ iS Fi\,ven b & f que |CY 0[ OSCI“a“O“ f Or the v" ‘D‘ -:dge 05

f=—!_
27 RC - t14-2)

Apain it e - i
Dhan i m:m difficuly 1o construct these oscillators with siabilities bet:2r th:v a i
per day. il grealer clock accuracy is desired, a cryst et o on

aliat s i - |
WIOF sucs as thats shown 1n Fig. 14-3 might be used, Thi
Quite ofiea ~oused in an enclosure cont ing clomonn.

ihe crystai 41 a constant temperat
than a jew parts in 10* per day

Ai-Ct¢. ed os-
m \ e ¢ asco.ator s
aining a heating element wh.-h miintams
ure. Such oscillators can have accL-acies betier

Example 14-3

The multivibr in Fi i i
roquenc, Or._ ]g%r,::' F'|gf" 14-2a is being used as a system clock and coeraid al a
] M2 1Ms accuracy is better thap + i v
the - y Fhan 22 parls in 107 per cay
aXimum and minimum frequencies of the multivibraior? b i e

- Solution

One partin "0% can he thought af as 1 ¢y
be thought of g« 2 cycles in 1,000 cyoles
Wa parts in 703 u equivalent lo ZO(j cy
be 100 Ltz - 200 cveles = 1002 kHz
Kb — Mo fos = DGR kkz - ’

clf: in 1,000 cycles. Two Pasisin Pcan
5. Since the multivibrator runs 3 100 kHz,
cles. Thus the maximum frequency would
and the minimym frequency wouia =2 100

Digital Principles ar: 2: - .canans
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Cxcill o Schautt el
Fig. 144, Oscillator tHator wigger [ Clock

and output ampdifier.

None of the oscillators shown in Figs. 14-2 and 14-3 has a squarc-wave outpul
waveform, and it is therefore necessary to convert the basic {requency into a square
wave before use in the system, The simplest way of accomplishing this is 1o use a
Schmitt trigger on the output of the basic oscitlator as shown in Fig. 14-4. This

provides two advantages:

1. It provides a square wave of the basic clock frequency as desired.

2. It ensures that the clock-output amplifier {the Schmitt trigger in this case) has
enough power to drive all the necessary circuits without {gading the basic os-
cillator and thus changing the oscillating frequency. '

14-2 CLOCK SYSTEMS

Quite often it is desirable to have clocks of more than one frequency in a system.
Alternatively, it might be desirable 10 have the ability 1o operale a system at dif-
ferent clock frequencies. We might then hegin with a basic clock which is the
highest frequency desired and develop other basic clocks by simple {requency
division using counters. As an example of this, suppose we desire a system which
will provide basic clock frequencies of 3, 1.5, and 1"MHz. This could e ac-
complished by using the clock system shown in Fig. 14-5, We begin with a 3-MHz
oscillator followed by a Schmitt trigger to provide the 3-MHz clock. The 3-MHz
signat is then fed through one flip-flop which divides the signal by 2 to provide the
1.5-MHz clock. The 3 MHz signal is also fed through a divide-by-3 counter, which
provides the 1-MHz clock. Systems having multiple clock frequencies can be
provided by using this basic method. o

+3 ’
oumed— JUU
1 MH7
T ’ Q
3 mH; Schmitt T J:U;I_r
ascillator trigger 5 1.5 MH:

‘

JUI

Fig. 14-5. Basic clock syﬁtem. ' 3 My
P
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—
a4 | !
. IMHy L~ = " Schmitt 5
osctllator ¢ rigger "5
: counter
| —

Fig. 14-6. Clock system,

Example 14-4

Show a clock system which will provide clock f i ;
€
kHZ, and 100 kHZ, v requencies of 2 MHZ' 1 MHZ, 500

Solution

.nlc d.(?_SII'P:d system is shown in Fig, 14-6. Beginning\wilh a 2-MHz oscillator and

__Scnn?{n [ru;_zger. the 2-MHz clock appears at the-output of the Schmitt tri er Tha'
tirst flip-flop divides the 2 MHz signal by 2 to provide the 1 MHz clock 8'Ig"he‘ y
ond {lip-fiop divides the 1-MHz clock by 2 to provide the 500-kHz clock. D|'vids'ec—
the 500-kHz clock by 5 provides the 100-kHz clock. . e

It is sometimes desirable to have a two-phase clock in a digital system, A tw
pha.se clock simply means we have two clock signals of the same !requenc. wh"of;
are’ 180° out of phase with one another, This can be accomptlished \:ith :E
outputs of a fiip-flop. The Q output is one phase of the clock and the Q output s
l.‘l'..(" other phasg. These two signals are clearly 180° out of phase with one angtl:w iy
since one is the complement of the other, A system for developing a two- h:f-
clock of 1 MHz is shown in Fig. 14-7. For distinction, the two clocks are sorne‘:im::e
referred to as phase A’and phase B. You will recall that one use for a two- has:
clock system is to drive the magnetic-core shift register discussed in Chap 12p(F'
J2-10). ltis interesting to note that the two-phase clock system can be used. lo ow_:r&
come the race problem encountered with the basic parallel counter discussed i|:|
'C.hap. 8 {Fig. 8-5). The race problem is soived by driving the odd ﬂip-fiops {i.e
lip-flops A, C. E, etc.) with phase A of the clock, and the even flip-flops (i.e ﬂ-i y
flops B. D, F, etc.) with phase B of the clock (see Prob. 14-132) o

The race problem as initially discussed in Chap. 8 can oc ‘

! . Cur any time two
more signals at the inputs of a gate are undergoing changes a . .

t the same time. The

Fig. 14-7. 1-MHz :WO—phasé clock.

) 2 MH; _
L 20z | O gm0 | Ob——— T 1 MHz, Phase &
}oscﬂlalo nigger . s

QO LI LI 1 MHz, Phase 8

% s
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{a) D 1 ; 1
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Fig. 14-B. The use of a sirobe pulse. {(a} Three-input anp interrogaled by a strobe
pulse, (b) Waveforms for the anD gate.

problem is therefore not unique in counlers and can occur anywhere in a digital
system. For this reason, a strobe pulse is quite often developed using the basic
clock, This strobe pulse is used to interrogaie the condition of a gate at a lime when
the input levels to the gate are nol changing. If lhe gate levels render the gate ina
true condition, a pulse appears al the output of the gate when the sirobe pulse
is applied. |f the gate is false, no pulse appears, In Fig. 14-8, a strobe pulse is used
to interrogate the simple three-input aND gate. The waveforms clearly show that
outputs appear only when the three input ievels to the gate are true: It is also quite
. clear that no racing can possibly occur since the strobe pulses are placed exactly
midway between the input-level transitions. The sirobe signal can be developed in
a number of ways. One way is lo diflerentiate the complement of the clock, clock,
and use only the positive puises, A second method would be to differentiate the
clock and feed it into an ofi" transistor as shown in Fig. 14-9,

-

14-3 MPG COMPUTE

Up to this point we have covered quite a wide variety of the topics generally en-
couniered in the study of digital systems. Some of the tapics have been discussed in
Fig. 14-9. Developing a strobe pulse.‘.

‘ W,

47K v
y clock ¢ LML
[ .
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¢ J LI e sware Y
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{1 MHz) Strobe
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preat detail, whiie others have been treated in a more peneral way. in any case you
should now have the necessary background to study any digital system with good
comprehension and a minimuem of effort. Even so, you may be somewhat unsure
about the overail organization of a digital system, In an elfort to overcome this
{feeling and (o attiempt to tie logether many of the topics discussed in the previous
chapters, we shali al this lime consider the implementation of a small special-pur-
pose digital compurer.

The ‘special-puspose computer we shall consider will be used to calcuizie the
miips per gallon of a motor vehicle, thus the name MPC-computer. It is a szecial-
purpose compuie: since this is the only use for which it is intended. A gene:zi-pur-
‘pose computer would be a more complicated machine which might be usec for a
number of difieren: applications. '

The first slop ir she design of the MPG computer must necessarily be the deter-
mination of the sysiem performance requirements. The first requirement might be
that the system be capable of operaling from a supply voltage of =6 or £12 V d¢
since the machine will .be operaled in a molor vehicle, The second requirement
mipht be that the readout of the computer be in decima! form. Nixie tubes right be
nood for the readout, but they require an additional power supply of around +100
V io operate the lubes, Digital modules are commercialiy available which provide
decimal readout, and they operate on +6 or +12 V dc. These modules do not
reuire the +100 V, and might be a better choice in this case. The final decision
wiil be one of economics. The third requirement is that the computer caleuizie the
miies per gallon used by the vehicle to an accuracy of =1 mile per gallon. The
fourth requiremen: we shall impose is that the computer pecform a calculation at
icast ence every 13 s when the vehicle is traveling at a speed greater than ¢ mph.
s other words, we would like to sample the mileage performance of the ver:cie at
ivast once every 13 s tlaster sampling rates are acceptable}, The fifth requirerent is
that the computer oe capable of operating in vehicles using fuel al rates between

10 and 40 miles per galion. We can now summarize the five basic requirements of
the MPG computer as follows:

1. Power-supply voltage is either =6 or 212 V dc.
2. The computer must provide a decimal readout in miles per gallon,
3. The computer must provide the readout to an accuracy of =1 miie per gaiion,
- 4. The computer must provide a readoul of miles per gallon at least once every
" i5 s when the vehicle is traveling at a speed greater than 10 mph.
5.

The computer must be capable of calculating mites per galion betweer the
limits of 10 anc 40 miles per galion. - ’

it shouid be noted (hat the system requirements for the computer under siudy here
are quite simple and somewhat less stringent than in the usual case: The regaire-
-ments here areinteriionally made simple in order ta simplify the discussion, Nev-
ertheless the princip.es are the same regardiess of the severity of the system specifi-
cations, and the stucy is therefore instructive.

We assume thal we have available two transducers which are to be used as an
integral part of the MPG computer, The first iransducer is used to measure the vol-

. 4
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Pulses from
flow transducer

X -
' i H er
Fig. 14-10. Transducer pulses for the MPG computer when the rate is 10 mies p
gallon.

Puises from
distance transducer

- . . . al
ume of fuel flowing inta the engine. This flow tranducer provides an eld':-ctrarciS
ulse each time Vieoo of a gatlon of fue. passes thrgugh il. The secondd :qaer:zru;::hle
Ec.ed 10 measure the distance travelec and is driven by the‘speelh(; Véhicte ha;
Tlhis distance transducer provides an electrical pulse each time :
: i v of a mile. .
raveled a distance of Yioeo . .
Now in order to implement the necessary logic for lh(;compbuler, ie;qﬁ:rs‘ge;?al |WP
i 2 55U
tance transducers. Let us begin by a !
the outputs of the flow and dis ‘ , ot e
have a?iow rransducer which gives an output pulse each time 1 ;,ali.on lil:les g, and
we have a distance transducer which gives an oulpull pulse e'nch hn{;eu e e
has traveled 1 mile. If our vehicle is obtaining a mileage slfghll.y 104 e]() ;\Imice
miles per gatlon, the transducer wavelorms appear as shown in Fig. | q 55. oy
that the number of distance pulses appearing between llw? [flolxi:r prt:“?ees o
i e the R
i llon we desire. Thus we can calcuia
equal to the miles per ga e T P e flow
i i ber of cistance pulses occurring vo i
by simply counting the number . | e 30 miles
! ~k this by noting t=at, if the vehicle were ope .
pulses, M r e i - flow pulses. Notice that
stance pulses between iwo S .
per gailon, there would be 20 dis ) Notice Bt
!:)fthi flow transducer supplied 10 pu ses per gall}c:n,b:mfl at ::’;:;rnr;ei: b eto
i lses per mile, the basic w .
tance transducer provided 10 pu . | P
i is me number of distance pulses appre
would remain unchanged. That Is, ize c B e lon.
{d stilt be equal 1o the number o
tween two flow pulses wou o
From this it should be ciéar that we can choose any numbe; of ﬂ‘u;sieee;;: tion
e choose the same number of puise:s
from the flow transducer so long as v.e . ATV
i sducets we are going to use: :
from the distance transducer. The trars 7 PG com-
puter provide 1,000 pulses per gaton of {low and 1,000 pplses per.m:lie Zoum_
tance. Therefore, the number of miles per gallon can:be obtained by simply
ing the number of distance pulses berween consecb:hve flo;;f puls;eni.ining e time
i transjucers can seen by ex
The reason for using these- exa er
between flow pulses. Let us first cors:der the flow lmnsduce.r ha\fflnhg oneh%i::i:re
gallon and the distance transducer raving one pulse per mile. If the Vf I-,(I) e
obtaining a rate of 10 miles per gallos, one flow pulse wouid occur edeyoccu[ i .a.
if the vehicle were traveling at a spees of 10 mph, {hehﬂow pl\fls:sr;:':uon g
5 ly ot a fast enough samptin .
rate of one per hour. This is clear e O s
i ifi the flow pulses occur at a ra .
hand, with the specified transducers, 11000 puoe
' ol hour.under the same congitions.
llon and at.the rate of 1,000 p.ises pef - _ me ¢ T
319" fgka)wo;ulses occur every 1 he/1000 = 3.6 5. This sampling time Is i:eariy ‘f""h::
. i i mu
the specified rate. The worst case oIcurs when the }\:E};Idfl obta:nlsels ch;aj:ueved
 p ( i 3 d 10 mph the flow puls
i r pallon. At 40 miles per gzlion an ph lses: \
?2832814'4 s. We have therefore met the minimum-sampling-ime require
© mnents; 7



412

Digital Principles and Applications

The logic diagram for the MPG computer can now be

14-11 along with the complete waveforms. The flow pu

tioning amplifier and then into a one-shot to develop th

The distance pulses are also fed into a conditioning a
count the number of distance pulses occuring betwe
distance pulses as one input 1o the count AND gate. If
10 thi; AND gate, it is enabled between flow pulses, a
at its outpul. We use the pulses appearing at th
drive a counter, Since we desire to display the

fFig. 1417,  Complete MPG computer,
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drawn; it is shown in Fig.
Ises are fed into a condi-
e waveform O$, and O3,
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O5, is used as the other input -
nd the distance pulses appear
e oulput of the count anp gate to
miles per gallon between the limits
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of 10 and 40, we use a five-flip-flap shift counter for the units digits, and a three-
flip-flop shift counter for the tens digits of miles per gallon. ..

One conversion lime is the time between two flow pulses, an_gf:we want to shift
the accumulated count into the display flip-flops at the end of each conversion

cycle. Notice first of-all that, when 3, is low, the count AnD ga.'?g'_ is disabled and . -

therefore the units and tens counters cannot change states, It is duf'-i“ng this time that
we must shift the contents of these counters into the display flip-“ups. We use the
leading edge of OS5, to trigger the shift one-shot and develop 15e shift waveform
03;. The falling edge of OS5, is applied to the shift gates, and at 11is time the count
stored in the units and teps counters is shifted into the display {lin~flops. The falling
edge of OS5, is then used to reset all flip-fiops in the units and 12ns counters, The
contents of the display flip-flops are then decoded and used to illuminate the in-
dicator lights. in this system, the distance pulses can be considerzd to he the basic
system clock. The flow pulses form a variable control gate by means of the control
one-shot which determines the period of time that the count axo gate is enabled
and therefore the number of distance pulses counted. The outpy! of the shift one-
shot O5, can be considered as a strobe pulse which shifts data from the counters
into the display flip-flops in such a way that racing is avoided. The system clearly
has an accuracy of = one count, which corresponds to =1 mile per gallon.

- 14-4 GENERAL-PURPOSE COMPUTER

The MPG computer discussed in the previous section is consicered a special-pur-
pose computer since it is designed and construcied to perform z single function; o
alter it so that it could perform another function'would require 3 major change in
design. On the other hand, a general-purpose computer is dec'gned so that it can
perform a number of fundamental operations—addition, subraction, multplica-
tion, division, comparison, etc. The computer ‘can then be used in any number of
different applications by simply instructing it to perform the apzropriate operations
in an orderly fashion. The functions to be performed, listed ir the order in which
they are 10 be accomplished, is known as a program (instructicn set). This list of in-
structions, or program, is normally stored in the computer merrary; when the com.
puter is started, it simply performs these instructions in the order slored. Herein
lies the difference between an electronic calculator and a gereral-purpose digital
computer — the calculator performs a function (add, subtract, etc.) each time an
operator depresses a button, but the stored-program compute- performs the com:
plete list of stored instructions without human intervention. Furthermore, the com:
puter is capable of completing the instruction set in a very short period of time
{addition in perhaps a few microseconds), and the operation i virtually error freg

The simplified block diagram in Fig. 14-12 shows the basic units to be found i
any general-purpose computer system. The inputfoutput block represents the inter
face between man and machine. It could-simply be a teletype unit, where input in
formation is typed in on the keyboard and output information is printed on paper, 1
could also represent any of the other input/output media previously discussed, sudl
as punched paper tape, punched unit-record carg!s, and magnetic tape. In any cast
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(—-*- Control
T

i 0

1 ! 1
tnput "
cmor Arithmelic ; . :
Output Y Fig. 14-12. Basic computer

unit block diagram.

input data are taken into the system and stored in the memory according to the
appropriate signals as generaied by the control block. Similarly, the contro! unit gen-
erates the appropriale signals 1o read data from the memory and move it to the
output block.

The arithmetic unit consists of the registers, counlers, and togic required for the
basic operations, including addition, sublraction, complementation, shifiing right or
left, comparison, etc. Since the manipulation of data is accomplished in this.unit, it
is sometimes referred to as the central processing unit (CPU), The topics previously
covered (number systems, digital arithmetic, etc.) provide an insight into the logic
circuits and configurations required in a CPU. Again, the contro! unit provides the
necessary signals to move data from the memory unit to the arithmetic unit, per-
form the desired data manipulation, and move the resulting data back into memory.

The memory block represents the area used to store the two types of information
present in the computer; namely, the list of instructions (program) and the data to
be operated on as well as the resulting output data. The memory itself could be

“constructed using any of the devices previously discussed — magnetic cores, mag-
netic drums or disks, semiconductor memory units, magnetic tapes, and so on.
Reading data from or writing data into the memory is again under the guidance of
the contro! umnit. i '

The contral unit generally contains the counlers, registert, and logic necessary to
develop the control signa's required for moving data into and out of the memory,
and for performing the necessary data manipulations in the arithmetic unit. The
system clock is a part of the control unit, and it is usually the starting point for
generating the proper conlro! signals as discussed in the first part of this chapter.

It is interesting to consider an actual general-purpose digital computer in light of
the above discussion. For this purpose, a block diagram of the Digital Equipment
Corp. PDP-8/E is shown in Fig. 14-13." Note how the system diagram can be
broken into the four basic blocks previously discussed —inputfoutput, arithmetic,

- memory, and control. A table-model PDP-B/E is shown in Fig. 14-14, .and the

- féllowing: excerpt gives.a general . description of the system.?

The PDP-8/E is specially designed as-a:general perpose computer, It is fast,
compac!, inexpensive, and easy to interface. The PDP-8/E is designed to meet

' “Small Computer Handbook," chap. 1, Digital Equipment Carporation, Maynard, Mass.,
1971,

3 ihid.
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Fig. 14-14., POP-8/E programmed data processor,

ine needs of the dverage user and is capable of madular.expansion to ac-
comodale miost individual requirements for a user’s specific applications .
The ?DP-BIE basic processor is a single-address, fixed word length par.:allel-
{ransfer Computer using 12-hit, 2's complement arithmetic. The cyclfe time of
the 40?6-w0rdmndnm address magnetic core memaory is 1.2 microseconds
for fetch and defer cycles without autoindex: and 1.4 microseconds for all
o:lwer.cycle; Standard features inciude indiret addressing and faci!ilie.s for in-
ZZ:ZI;:?f;:klp and 'prograin interrupt as a funclion of lh(‘e input[omput .device
Five 12-bit- registers are used to control computer operations, address
nemary, operale on data and slore data. A Programmer’s console provides
s‘v.'xtches to aflow addressing and loading memory and indicators to observe
ine results, The PDP-8/E may also be programmed using the console Teletype
with a reader/punch facility. Thus, programs can he loaded {nlo mem)c(f:
LSINg the swilches on the Programmer's console, the Teletype keyboard o‘r{
Ihe paper tape reader. Processor operalion~.in_cludes..addressing mern(')ry, '

storing data, retrieving data, receivin ransmitti t
ta, . % and transmitting data and mathemal;
computalions. 5 matical
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The 1.2/1.4 microsecond cycle time of the machine provides a computa-
tion ratc of 385,000 additions per second. Each addiion reguires 2.6 nucrose.
conds iwith ane number in the accumulatort and sublraction requires 5.0
microseconds (with the sublrahend in the accumulaton. Muitiplicauon s per-
formed in 256.5 microseconds or less by a subroutine that operates.on two
signed 12-bit numbers 1o produce a 24-bit product, leaving the 12-most sigmif-
icant bits in the accumulator. Division of two signed 12-bit numbers is per-
formed in 342.4 microseconds or less by a subroutine that produces a 12-i
quotient in the accumulator and a 12-bit remainder in core memory. Similar
signed multiplication and division operations a1e perlormed in approximately
40 microseconds, utilizing the optional Extended Arithmetic Element.

The flexible, high-capacity inputfoutput capabilities of the computer allow
it to operale. a large variety of peripheral machines, Beades the standard
-keyboard and paper-tape punch and rcader equipment, these compulers are
capable of aperating in conjunction with a number of aptional devices lsuch
as high-speed perforaled-tape punch and reader equipment, card reader .
equipment, line printers, analog-to-digital converters, cathade ray tube (CRT)
displays, magnetic 1ape equipment, a 32,764-word random-access disk iile, a
262,112-word random-access disk file, etc.).

14-5 COMPUTER ORGANIZATION
AND CONTROL

In this short chapter devoted to digital computers, we cannot possibly give an
exhaustive trealment of all machines; however, we can discuss in general lerms
those aspects of computer organization and operation which are common to many
diflerent types of digital computers. :

The information stored in the compuler memory is of two types—either data
words (numeric - information) or instruction words. In Sec, 13-1, we considered in
some delail the various formats available {or storing numbers, inciuding both fixed-
point and floating-point numbers. We must now consider an appropriate format for
a computer instruction word. A

In general, a computer instruction word will have two distinct seclions, as shown
in Fig. 14-15. In this case the word length is 12 bits; however, the number of bits in
a word varies from machine to machine (e.g., 36 in the IBM 7090/7094, 32 in lhe
IBM 360, 36 in the GE 635, and 12 in the PDP-8/E). The firet section (the three bits
on the lelt in this case) are used for the operation code {op-code) of the instruction
to be performed. The op-codes are defined by the compuier designer when the
machine is initially designed. For example, the op-code for addition might be
defined as 001,. In this case, there are only three bils reserved for or—)-codes, and a
computer using this format would therefore be limited to 22 = 8 op-codes.

The remaining bits in the instruction word shown in Fig. 14-15 are used to spec-
ify the address in memory to which the instruction applies. In this case, the nine

hits can-be-used to specify any one: of 12® = 512 locations in memory. As an ex- . .,

ample, the instruction word 001 000001100 means add (001) the contents of the

IR
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Op code

R

Address

als

Fig. 14-15. Instruction word format.

memory located al address 12,, (000001100} to the contents of the accumulator
register in the arithmetic unit. '

Frequenily the memory is broken up into sections called “pages” in order 10
provide for more efficient addressing. For example, the PDP-8/E has a basic
memory of 4,096 tweive-bit words. The memory is broken up into 32 .pages of 128
words on each page. Thus any word on a page can be addressed by means of only
scven bits (27 = 128), The instruction word for the PDP-8/E is then arranged as
shown in Fig. 14-106. If the address mode bit (bit 3) i5.0, the op-code simply reflers
to one of the 128 page addresses given by the last seven bits in the word. However,

if the address mode bit is 1, indirect addressing is indicated. This means the control -

unit will go either to page.0 or remain on the current page (depending on whether
bit 4 is 1 or 0), take the contents of the given address, and treat it as another
address. The first five bits of this new address specify which of the 32 pages
{2% = 32}, and the remaining seven bits give the address on that page (27 = 128)
containing the data 10 which the op-code applies. '

in this way, the instruction word format need only have seven bils devoted to an
atidress, and anly an occasional 12-bit address word is needed to reference data on
any one of the other 31 available pages. Clearly this word format is more efficient
than simply carrying 12 (2'* = 4,096) bits for address locations in memory.

As an exampie of indirect addressing, suppose the data being operated on are
stored on page 15 of the memory —in order to get lo anather page, one mus! use in-
direct addressing. The instruction word 001 10 0001110 means add (001} the con-
tents of the data located in address 14, (0001110} on page O to the contents of the

accumulator register in the arithmetic unit. Note that the 1 in the fourth bit position -

specifies indirect addressing, and the 0 in the fifth bit position refers to page 0.
Now, if the contents of memory location 14,, on page O is 00107 0001111, the

data to be added to the accumulator will be found on page 5,, (00101) in location
15,0 (B0011171). - .

Fig. 14-16. PDP-8/E instruction word format.

_Op code Page address

Bu !
position 0O i 2 3 4 s 6 7 8 9 10

l
1 a0 S

—

I
Address Mode —} e Page
0: Direct 0: Page @
1: indirect

1: Current page
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address reg. bufler reg. '
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Arithmetic |
13
——
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Fig. 1417, Basic computer operating cycles. (a) Fetch. (b} Execute.

The instructions to be executed by the compuler are nor.'f':ally stored. in ::Z
memory in the order in which they are to be‘ performed. To begnfz an ope::tlson, he
address in the memory of the first instruction to be exegutgd is epterc{: into e
machine by an operator. The control unit then fetches this ms_trucuorT ror? ::d ™
ory, executes the proper operation, and procee‘ds o lhe_ next .IﬂSl'ructlon.S o d in
the memory. This basic two-cycle process continues unll-l ali tfne instructions ve
been completed and the machine stops. Thus the operation o} a comptufle_r can oe
explained in terms of two fundamental cycies—fetch and execute. Let's exam

- these two cycles and determine the tasks to be accomplished by the control unit

during each cycie. o
Tht;8 computer units involved during a fetch cycle are shown in Fig. 14-17a.

During a fetch cycle, the following operations are performed: 4

1. The address in memory of the first instruction to be executed is placed in the
. instruction counter. This address is read into the memory address register
' itecyéle is initiated in the memory.
(MAR) and a read/write:cycle is initia . Y- '
2.- The.instruction stored -at:the given address in:memory :is.fead. inio the memory
buffer register {(MBR). - _ ‘ .
3. The op-code portion of the instruction in the MBR is tht?n swred in the op c.ode
. register, and the address portion is placed in the MAIT (in place of the previous
i i 1 ecule cycle.
address}) in preparation for the following ex . .
4. The instruction counter is increased by one in order to be ready for the next
fetch cycle.

48 ¥
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Tre computer units active during an execute cyéle are shows in Fig. 14-17b, and
e Jollowing operations are performed: ' T

[

The adriress \n memory containing data 1o be read out. ¢ where data is 1o be
stored. 15 contained in the MAR as a result of the previouys fetch cycle. Simi-
larly, the ap-code is contained in the op-code register,

The conlents o! the op-code regisler are decoded and the control unit provides
the necessary control signals 1o perform the operation cslled for—e.g. read
data from an input TTY, into the MBR and store it at the acsress in memory ac-
curding to the contents of the MAR; or, read data from the address in memory
s given-by the MAR, and move it to the arithmetic unit vz the MBR; or, read
data from the memaory via the MBR and print the data or. 2 TTY: or, read data
from the arithmetic unit via the MBR and store it in the memory at the address
specified by the MAR.

At the completion of the execute cycle, return to the next itch cycle.

The fetch/execute method of operation is quite common to most general-purpose
Gigitai computers, even though the two states might be refesred 1o by different
names, When an aperalion is begun, the conteol unit first places the computer in
mefetch mode, and thereafler alternates execute and fétch modes until the desired
cperdlion is complele, A series of clock pulses {perhaps four o five, or even ten)
-uting each feich cycie is used to time the various operations. A similar sequence
24 ciock pulses is uidized during the execule cycle.

©4-6  COMPUTER INSTRUCTIONS

Zverv general-purpose computer must have an instruction set. T1ere may be only a -

‘ew (10 or s0) for a small computer, while a large compuler mzy have hundreds of
nsituctions, The sel of instructions used with any particular computer is of course
devised during the initial design phases, and anyone who uses :hal computer must
aecome intimately familiar with its instruction set. Incidenty, an individual who
specializes’in efficiently arranging computer instructions for the purpose of solving
2roblems is known as a compuler programmer. ] . .
inside the computer, every msiruction must be represented z: a group of binary
wumbers (e.g., 001 for addition), hut to'ease the burden of the a-ogrammer, the op-
‘udes are frequently assigned mneronic titles, For example, t~2 op-code for addi-
.un might be 001, but we couid code it as ADD. The prograrmer could then use
+J0 in arranging his list of instructions, and when the alphazumeric input ADD
ippeared at the coniputer inpul, it would simply be encoded as the instruction 001,
in general, there are four different types of instructions —arit-metic, data manip-
dlation, transfer, and input/outpul. Let's list a ficticious set of irstructions and then
-2¢ how they might be arranged as a program to solve a probiem. Even though this
sstruction set is ficticious, it is quile similar to those found .n actuai computer
wawems, Each instruction is given in mnemonic form, with its bisary code in paren
‘nwsts, and a descrisvion of the operation it requires. .

.
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HLT (ooc0)  Halis computer operalion. Operalor may resiar by depressing the

start button,

1 . ’ h
ADDX (0007 The conlent of memory location X is added ta the content of the

accumutator regisler in the arithme!

SUBX (0010)  The content of memaory loca

tic unit,

of the accunmulator register in the arithmelic unil.

MPYX (0017) The content of memory
the MQ register in the atithmetic unt

ter.

DCAX (0707} The content of the

DIVX i0100) The cantent of memory Iocal‘ion X is diwclg
the MQ register, ac.s the quotient is stored in the MQ register.

location X is multip
t, and the product is

i ) "
tion X is subtracted frg_:rl_‘lﬁtﬁhe conten

lied by the content of
stored in the MQ regis-

¢ into the content of

accumulator is stored in memaory location X,

and the accumuiator is cleared to all zeros.

DCQX (0770 The content of the MQ regisier is slore

and the MQ register is cleared to all zeros.

IMPX (0T11) The next instruction is taken frlc}m m‘crnnry
LDQX (1000) The content of memory location X is entere

ter.

REDX (1001) One word of data is reéad

memory at address X.

d in memory location X,

location X. .
d into the MQ regis-

at the input device and stored in

PRTX (1070) One word of data is read from memory at address X and printed

of the output devce.

This list of instructions i$ of course

operation. but it allovs us 10 ithustrat

tice that there are foir bits in cach

structions are used ir a small genera

not complete enough to allow every possnble
anguUage programming. No-
op-code; this is necessary since we want to

i ose i -
iz} ctions. ther, SUppO. o |
i ICIU{Je more lhdll eiong bUl fewel ‘.han 16 instru n | uf ll r s ll <

¢ basic machine-|

1-

purpose computer having onl

Table 14-1 - _
Memory ‘ Insiruction as
i focation | stored in memory
-Operaon instruction ocal Wi
1001 0110010
Read R and store at memory address 50. RED 50 ? 1001 0110011
Read A and store at remory address 51, | . RED 51 2 1001 0110100
Read ¥ and slore at memory address 52, RDECDQ51227 ) oio 11
MO register - 11
Gl nccomtator ocatz |4 oo
A MG LOQ 51 ; 0011 6110100
PmlA llr-l AbyY MPY 52 5 110 g11nol
’;:u “pny‘;’ in SY3 DCQ 53 ; goo: oromo
ore 3
Put R in accumulator igg Zg 9 0001 G100}
Add AY to R in accumulator OCA 54 i0 0101 mmng
store Z in 54 PRT 54 1" ! T URUALIY '
Print oul Z L HLT ‘ 12 i 0000 OURAARE
Hall i |
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locations so that an instruction word is composed of 11, bits—ftur bits of op-code
and seven hits for memory address, . :

Now, let’s utitize the instructions for our fictitious computer to solve the problem
Z'= R4 AY. The program. will read the values of R -A,-and Y, reriorm the neces-
sary calculations, and print out the value of Z. The complete prozrare, as written in
machine language (mnemaonic code) and as stored in memory, wou's appear as in
Table 14-1, .

To initiate the programy, the operator sets the instruction ciu-ter at 0 and
depresses the start button. The computer initiates a ferch cycle a-c cotains the first
instruction {(RED 50) from memory address 0. This is foltowed b, an execute cycle.
The next fetch cycle obtains the instruction in memory address =, 2+d s0 on. The
program ends after the computed value for Z is printed out and e £°T instruction
is obtained in memory address 12,

STUDY AIDS

Summary

There are basically two types of digital computers — special pu=zace and general
purpose, Special-purpose computers are designed for a single p.—as only, while
general-purpose machines can be used in any number of differest asolications. A
general-purpose machine is designed with 3 basic set of instruc.ors, and a pro-
grammer can use such a compuler 10 sulve specific problems, Th: computer solves
problems by executing a set of instructions which have been ordesd z2nd placed in
the computer memory by a programmer. Most computers opera:: in' 2 basic 1wo-
cycle fetchiexecute mode, and the appropriate contro! signals are generated in the
control unit in synchranism with the system clock.

Glossary

asyachronous system A system in which logic operations and lew! changes ot‘:cur
at random times.

clock cycle time  One clock period; the reciprocal of clock freoc_ency.

computer program A list of specific instructions which a com:uter executes to

soive a given problem.

fetchjexecute  The two alternating modes of operation in a gene=a!-purpose com-
puter, . '

general-purpose computer A computer designed to accomplish z number-of tasks.
For example, .ali-the arithmetic .operations, as well as decizon making (i.e.,
equal 1o, greater than, tess than, go, no gol.

instruction word A computer werd “having-twa sections, the op-zode section and
the address section. o ) ’

mnemonic’ Intended to assist the memory. ’ ' o

op-Code-Operation code, The code which defines, a specific corputer operation.

asciflator stability  The stability of the frequency of oscillation; tsua'ly expressed

in pans per thousand or parts per mitlion. for a period of tims,

134
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secondary clock A clock of frequency lower than the basic system clock which i
derived from.the basic system clock. .
special-pumpose computer A computer designed to accomplish only one sk, {or

- example, .the MPG computer in this.chapter. .

strobe pulse A pulse developed o interrogate gates or to shift data at a time such
that racing is avoided. -

synchronous system A system in which logic operations and level changes occur
in synchronism with a system clock. .

two-phase clock The use of two clock waveforms of the same frequency which
are 180° out of phase with one another, for example, the 1 and O outputs ol a
flip-flop.

Review Questions

1. Explain why a clock must be perfectly periodic.

2. How can the clock cycle time be found from the clock frequency?

3. Why must flip-flops have a delay time less than one clock cycle time?

4. What lactors affect the oscillating frequency of the multivibrator in Fig. 14-21
5. What is the purpose of the Schmitt trigger in Fig. 14-4?

6. Explain one method for obtaining a two-phase clock.

7. What is the main purpose for developing a strobe putse? -
8. Why is it advantageous to develop the strobeé pulse in Fig. 14-9 by turning the

transistor on rather than off?
9. Explain the difference between special- and general-purpose coniputers.
10. What is a computer program?

11. Explain what is meant by feich and execute in terms of computer operation.

Problems

14-1. Beginning with a symmetrical square wave, show a method for developing
a clock consisting of a series of positive pulses. A series of negative pulses.

14-2. 'What is the clock cycle time for a system using a 1-MHz clock? A 250-kHz -

- clock?
14-3. What is the maximum delay time for a'flip-flop if it isto be used in a system
having an 8-MHz clock? _
14-4. At what frequency will the multivibrator in Fig. 14-2a oscillate if R= 100
k0, C=100.pF, V, =20 v dc, and Vy =10 v de?

14-5. What will be the frequency of the multivibrator in Prob. 14-4 if V, is
changed 10 20 V dc? -
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14-6. Wrat i of C s required _fur the ﬁ\ﬁiliviiirat(;r in Fig. .Id-za. if
Vo= Vo Re= 47 <4y and the desirea ircquency is 100 kiHz?

147, Whaiis:iie nscill.-uing frequency of the Wien-bridge oscillator in Fig. 14.2b
s R =47 ki, ani-C= 100 pF? a ' .

C14-B. ilthecrvaiy

oscillalor in Fig. 14.3 has a stability of =3 parts in 107
Wil are the mgy

mum and minimum frequencies of the oscitlator?

v4-9, Show the wguic necessa
P Mg, ang i aHz,

per day,
v to (iévelop clock frequencies of 5 MHz, 2.5 MHz,

. 14-,‘:(}.‘ Tiwe 5-AHz ascillator in Prob.

14-9-has a stability of =1 part in 10° per
duy. What wili ne the m

aximum and minimum frequency of the 1-MHz clock?

14-11. What wauii de the maximum and minimum frequency of the 200-xkHz
clock in Prov. (s-ip¢
14-12. Diaw ire waveiormis for a parallel binary counter being driven by a two-

Paase clock: Show tiat this wilt resuft in a solution to the race problem, Remember
it each flip-flop has a finite delay time., : '

C¥4-13. How couid the MPG computer be modified to give a solution 1o the
. hearest 1/10 miie per gallon? _ . . :
14-14. "Draw a-diock diagram showing the four major blocks in a general-purpose
L Compuler system, - : o : '
71415, How many op-code bits would

be required in a machine having 15 in-
"Ndchions?

a0,

How many address bits wouid be fequired 1o handle 1,000 words of
memory?

< 84217, FHow. masy page address bit
meniory having 64 words per page?

14-18.

s would be }equired to form a 16-page

Write a machine-language program to solve the problem Z = 3R/iA + 8).

D DU

Appendix A

States and Resolutio
for Binary Numbers

n

i

‘ .
Word length Max number of | Resolution of a
in bits combinalions | binary ladder
n 2" l ppm. !
1 2 500 000. |
2 4 250 000.
3 8 1 125000 |
4. 16| 62 500.
5 2 ! 31 250.
6 64 I 15 625.
7 128 i 7 8125
' 8 56 ! 3 906.25
9 512 . ! 195313
10 1024 976.5h
1 1048 480.20 |
12 4 (96 | 244,14
13 B192 | 122,07
. 14 T 16388 li 61.04
15 i " 32 764 1 30.52
6 : 65 536 ‘ 15.26
7o 131 072 7.63
B, | 62144 | 381,
19 | 524208 | toiL
i 20 1 . 1048 576 20.957
N 1 2097152 0.48
- 27 { 4194 304~ | 0.24
! 2 ' 8388608 0.2
i 24 6777 216 | 0.06
I B " L. i .

Ao A a)
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21 UNIBUS

Most computer system components and peripherals connect to and com-
municate with each other on a single high-speed bus known as the
UNIBUS— a key to the PDP-11's many strengths. Addresses, data, and
control information are sent along the 56 lines of the bus. <

‘T T

CORE
<y MEMORY 50 1o 140 1o |

Figure 2-1 PDP-11 System Simplified Block Diagram

The form of communication is the same for every device on the UNIBUS.
The processor uses the same set of signals to communicate with mem-
ory as with peripheral devices. Peripheral devices also use this set of
signals when communicating with the processor, memory or other pe-
ripheral -devices. Fach device, including: memory locations, processor
registers, and peripheral device registers, 1s assigned an address on the
UNIBUS. Thus, peripheral device registers may be manipulated as flex-

ibly as core memory by the central processor. All the instructions that -

can be applied to data in core memory can be applied equally well to

data in peripheral device registers. This is an especially powerfui feature,’

considering the special capability of PDP-11 instructions to process data
in any memeory location as thourh it were an accumulator,

2.1.1 Bidirectional Lines

With bidirectional and asynchronous commumcatlons on the UNIBUS,
devices can send, receive, ahd exchange data independently without
processor intervention. For example, a cathode ray tube (CRT) display
can refresh itself from a disk file while the central processor unit (CPU)
attends to other tasks. Because-it-is asynchronous, the UNIBUS is com-
patible with devices operating over a wide range of speeds.

[3

.2.1.2 Master-Slave Relation’
. Communication between two devices ¢n_ the:bus is In:the.form of a

master-slave relationship.-At -any:point-in time,:there is one device that
has control of the bus, This controlling device is termed the "“bus mas-
ter.” The master device controls the bus when communicating with
another device on the bus, termed the *‘slavel™ A typical example of
this relationship is the processor, as master, fetching an instruction from

memory (whlch Is a!ways a slave) Another example is the disk, as
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master, transferring data to meméry. as slave. Master-slave relation-
ships are dynamic. The processor, for example, may pass bus control
to a disk. The disk, as master, could then communicate with a stave
memory bank. .

Since the UNIBUS is used by the. processor and aii 1/0O deviceS, there is
a priority structure to determine which. device gets control of the bus.
Every device on the UNIBUS which is capabie of becoming bus master
is assigned a priority, When two devices, which are capable of becoming
a bus master, request use of the bus simuitaneously, the device with
the higher priority will receive control.’

2.1.3 Interlocked Communication

Communication on the UNIBUS is lnterlocked so that for each control
signal issued by the master device, there must be a response from the
slave in order to complete the transfer. Therefore, communication is
independent of the physicai bus length (as far as timing i$ concerned)
and the timing of each transfer is dependent only upon the response
. time of the master and siave devices. The asynchronous operation pre-
cludes the need for synchronizing with, and waiting for, clock impulses,
Thus, each system is allowed to operate at its maximum possible speed.

input/output devices transferring directly to or from memory are given
highest priority and may request bus mastership and steal bus and mem-
ory cycles during instruction operations. The processor resumes opera-
tion immediately after the memory transfer. Multiple devices can operate
simultaneously at maximum direct memory access (DMA) rates by
"stealing’’ bus cycles,

Full 16-bit words or B-bit bytes of information can be transferred on the
bus between a master and a slave, The infermation can be instructions,
addresses, or data. This'type of operation occurs when the' processor, as
master, is fetching instructions, operands, and data from memory, and
storing the results into memory after execution of instructions. Direct
data transfers occur between a periphera! device control and memory.

2.2 CENTRAL PROCESSOR ’ ’

The central processor, connected to the UNIBUS as a subsystem con-
"trols the time allocation of the UNIBUS for peripherals and .performs
arithmetic and logic operations and instruction decoding. It contains
muitipie high-speed general-purpose registers which can be used as accu-
mulators, address pointers, index registers. and other specialized func-
tions. The processor can perform data transfers directly between 1JO
devices and memory without disturbing the processor registers; does

both single- and double-operand addressing and handles both 16-bit °

word and B-bit byte data.

2.2.1 General Registers
The tentral processor contains 8 general registers which can be used
for a variety of purposes.(The PDP-11/55,11/45 contains 16 general
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registers.) Thda.registers can be used as accumulators, index registers,
autoincrement registers, autodecrement registers, or as stack pointers
for temporary storage of data. Chapter 3 on Addressing describes these
uses of the general registers in more detail. Arithmetic operations can
be from one general register to another, from one memory or device
register to another, or bgtween rne_rnory or a-device register and a gen-
eral regfster Refer to Fugure 2 2 L
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Fgure 2.2 The General Registers

R7 is used as the machine's program counter (PC} and contains the
address of the next instruction to be_ executed. It is a general register
normally used only for addressing purposes and not as an accumulator
for arithmetic operations.

.The RE register is normally used as the Stack Pointer indicating the last

entry in the appropriate stack (8 cormmon temporary storage area with

_ "Last-in First-Qut" charactenstucs)

2,2.2 Instructnon Set
The instruction compiement uses the flexibility of the general-purpose
registers to provide over 400 powerful. hard-wired instructions—the most .

- . comprehensive and 'powerful instruction repertoire of any computer in
-the 16-bit *class. Uniike conventional 16-bit computers, which usually
- have three classes of instructions (memory reference instructions, oper-

ate or AC control instructions and /O instructions) all operations in the

" PDP-11 are accomplished with one set of instructions. Since peripheral

device registers can be manipulated as flexibly as core memory by the
central processor, instructions that are used to manipulate data in core
memory may be used equally well for data in peripheral device registers.

- For exampile, data in an external device register can be tested or modified

directly by the CPU, without bringing it into memory or disturbing the
general registers. One can add data directly to a peripheral device reg-
ister, or compare logically or arithmetically Thus all PDP-11 instructions
can be used to treate & new dimension in the treatment of computer
1/O and the need for a special class of 1/O mstructwns is eliminated.

The basit order code of the PDP-11 uses both single and double operand

" address instructions for words or bytes. The PDP-11 therefore performs



very efficiently in one step, such operations as adding or subtracting two
operands, or moving an operand from one location to another_. :

© 1 «PDP-11:Approach

:add ‘contents of location A to loca-

"ADD A,B ‘ :
tion B, store: results at iocation B~

. -Conventional Approach

LDAA . load contents of memory location A

’ into AC

ADDB ;add contents of memory iocation B to
" AC ,

STAB ;stare result at location B

Addressing

Much of the power of the PDP-11 is derived from its wide range of ad-
dressing capabilities. PDP-11 addressing modes include sequential
addressing forwards or backwards, addressing indexing, indirect address-
ing, 16-bit word addressing, 8-bit byte addressing, and stack addressing.
Variabie length instruction formating ailows a minimum number of bits
to be used for each addressing mode. This results in efficient use of
program storage space. .- .-

2.2.3 Processor Status_ Word

v

1S 13 12 ) L) 4 3 7 1
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CURRENT MODE * J .
PREVIOUS MODE® = . .
ORIy

CONDIMON CODES

USED ONLY ON PDP-11/55, & 11745 WITH
MEMORY MANAGEMENT !

« MODE }

Figure 2-3 Processor Status Word

The Processor Status word (PS), at location 777776, contains infor-
mation on the current status of the PDP-11. This information includes
the current processor priority: current and previous operational modes;
the condition codes describing the results of the last instruction: and
an indicator for detecting the execution of an instruction to be trapped
during program:debugging.

Processor Priority .

The Central Processor operates at any one of eight levels of priarity, 0-7.
When the CPU is operating at.level 7 an external device cannot intern_.:pt
it with a request for service. The Central' Processor must be operating
at a iower priority than the external device's request in order fpr the
interruption to take effect. The current priority is maintained in the

24
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processor status word (hits 5-7). The 8 processor levels provide an
effective - interrupt mask.

. < Condition Codes : '
"“The condition .codes. contain information on the -result of the last CPU

operation. .
The bits are set as foliows: ' .

Z = 1, if the result was zero

N = 1, if the result was negative

C = 1, if the operation resulted in a carry from the MSB
V = 1, if the operation resulted in an arithmetic overfiow

Trap :

The trap bit (T) can be set or cleared under program control. When set,
a processor trap will occur through location 14 on compietion of instruc-
tion execution and a new Processor Status Word will be loaded. This bit

is especially useful for debugging programs as it provides an efficient
method of instailing breakpoints. :

2.24 Stacks o

In the PDP-11, a stack is a temporary data storage area which aliows a
program to make efficient use of frequently accessed data, A program
can add or delete words or bytes within the stack. The stack uses the
“last-in, first-out” concept; that is, various items may be added to a
stack in sequential order and retrieved or delsted from the stack in
reverse order. Gn the PDP-11, a stack starts at the highest location re-
served for'it and expands linearly downward to the lowest address as
items are added. The stack is used automatically by program interrupts,
subroutine calls, and trap instructions. When .the. processor is inter-.
rupted, the central processor status word and the program counter are
saved {pushed) onto the stack area, while the processor services the
interrupting device. A new status word is then automatically acquired
from an area in core memory which is reserved for interrupt instruc-
tions (vector area). A return from the interrupt instruction restores the
original processor status end returns to the interrupted program without
“software intervention. B

-



2.3 MEMORY

Memory Organization ‘ - - 7
A memory can be viewed as a series of locations, with a number (ad-
dress) assigneg to each location. Thus an 8,192-word PDP-11 memory
could be shown as in Figure 2-4. : : .

.

-

. : LOCATIONS

-

.

OCTAL .
WESSFS* .
.

’ »

.

037774
037773

037778

- | 037777

Figure 2-4 Memory Addresses

Because PDP-11 memories are designed to accommodate both 16-bit -

words and 8-bit bytes, the total number of addresses does not. corre-
spond to the number of words. An BK-word memory can contain 16K
bytes and consist of 037777 octal locations. Words always start at even-
numbered locations. g . :

A PDP-11 word is divided into a high byte and a low byte as shown in
Figure 2-5. , ) .

s 8.7 : -
MIGH BYTE v l LOW BYTE J
1 i A 1 " i 1 | M i 1 - A

Figure 2-5 High & Low Byte

Low bytes are stored at even-numbered memary Iocation; and hligh
bytes at odd-numbered memory locations. Thus it is convenient to view
the PDP-11 memory as shown in Figure 2-6.

- ' 2-6 ’
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Figf.lre 2-6 Word and Byte Addresses

Certain memory locations have been reserved by the system for inter-

‘rupt and trap handling, processor stacks, general registers, and periph-

eral device registers. Addresses from G to 370, are always reserved and

those to"777, are reserved on large system configurations for traps ‘and
interrupt handling.

A_16-bit word used for byte addressing can address a maximum of 32K
words. However, the top 4,096 word locations are reserved far peripheral
and register addresses and the user therefore has 28K of core to pro-
gram. With the PDP-11/55 and 11/45, the user can expand above
28K with the Memory Management. This device provides an 18-bit

effective memory address which permits addressing up to 124K words
of actual memory.

If the Memory Management option is not used, an octal address be-
tween 160 00D and 177 777 is interpreted as 760 000 to 777 777. That
is, if bit 15, 14 and 13 are 1’s, then bits 17 and 16 (the extended ad-
dress bits) are considered to be 1's, which relocates the last 4K words
(BK bytes) to become the highest locations accessed by the UNIBUS.

2.4 AUTOMATIC PRIORITY INTERRUPTS

The multi-level automatic priority interrupt system permits the processor
to respond automatically to conditions outside the system. Any number
of separate devices can be attached to each level. - '

e
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Figure 2-7 UNIBUS Priority

Each peripheral device in the PDP-11 system has a pointer to its own
pair of memory words (one points to the devices's service routine, and
the ‘other contains the new processor status information). This unique
identification eliminates the need for polling of devices to identify an
interrupt, since the interrupt service hardware selects and begins ex-
ecuting the appropriate service routine after having automaticaily saved
the status of the interrupted program segment.

The devices’ interrupt priority and service routine priority are indepen-
dent. This allows adjustment of system behavior in response to real-time
conditions, by dynamically changing the priority ievel of the service
routine. '

The interrupt system allows the processor to continually compare ils
own programmable priority with the priority of any interrupting devices
and to acknowledge the device with the highest level above the proces-
sor's pricrity level. The servicing of an interrupt for a device can be in-
terrupted in order to service an interrupt of a higher priority. Service to
the lower priority device is resumed automatically upon completion of
the higher level servicing. Such a process, called nested interrupt ser-
vicing, can be carried out to any level without requiring the software to
.save and restore processor status at each level.

When a device {(other than the central processor) is capaj:ie of becom-
ing bus master and requests use of the bus, it is generally for one of
two purposes; .

1. To make 3 non-processor transfer of data directly to or from
memory : .

28
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2. To interrupt a program execution and force the processor to
go to a specific address where an interrupt service routine
is located,

o
Direct Memory ‘Access
AR PDP-11's provide for direct access to memaory. Any number of DMA

devices may be attached to the UNIBUS. Maximum priority is given to
DMA devices, thus allowing memory data storage or retrieval at memory

cycle speeds. Response-time is minimized by the organization and -jogic———

of the UNIBUS, which samples requests and priorities in parallel with
data transfers.

Direct memory or direct data transfers can be accomplished between
any two peripherals without processor supervision, These non-processor
request transfers, called NPR level data transfers, are usuaily made for
Direct Memory Access {memory to/from mass storage) or direct device
transfers (disk refreshing a CRT display),

Bus Requests
Bus requests from external devices can be made on one of five request
lines. Highest priority is assigned to non-processor request (NPR). These

are direct memory access type transfers, and are honored by the pro-
cessor between bus cycles of an instruction execution, .

The processor's priority can be set under program control to one of eight
levels using bits 7, 6, and 5 in the processor status register. These bits
set a priority level that inhibits granting of bus requests on lower levels
or on the same level. When the processor's priority is set to a level, for
example PS6, all bus requests on BR6 and below are ignared.

When more than one device is connected to the same bus request (BR)
line, a device nearer the.central processer has a higher priority than a
device farther away. Any number of devices can be connected to a given
BR or NPR line. -

Thus the priority system is two-dimensional and provides each device

‘with a unique priority. Each device may be dynamically, selectively

enabled or disabled under program control.

‘Once a device other than the processor has control of the bus, it may
do one of two types of operations: data transfers or interrupt operations.
NPR Data Transfers :

NPR data transfers can be made between any two peripheral devices
without the supervision of the processor. Normally, NPR transfers are

between a mass storage device, such as a disk, and core memory. The ~

structure of ‘the -bus .aiso permits .device-to-device transfers, allowing

- customer-designed ‘peripheral controilers to access other devices. such

as disks, directiy. .

An NPR device has very fast access to the bus and can transfer at high
data rates once it has control. The processor state is not affected by
the transfer; therefore the processor can relinquish control while an in-
struction is in progress. This can occur at the end of any- bus cycles’

29"
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except in between a read-modify-write sequence. An NFR devic-e in con-
trot of the bus may transfer 16-bit words from memory at memory speed.

BR Transfers )

Devices that gain bus control with one of the Bus Request lines (BR 7-
BR4) can take full advantage of the Central Processor by requesting an
interrupt. In this way, the entire-instruction set is available for manipu-
lating data and status registers, . _

When a service routine is to be run, the cufrent task being performed
by the central processor is interrupted, and the device service routine
is initiated, Once the request has been satisfied, the Processor returns
to its former task. ’ - ‘

Interrupt Procedure . .
Interrupt handiing is autormatic in the PDP-11. No device polling is re-
quired to determine which service routine to execute.” The operations
required to service an interrupt are as follows:

1. Processor relinquishes control of the bus, priorities permitting. .

2. When a master gains control, it sends the processor an interrupt
command and an unique memory address which contains the ad-
dress of the device's service routine, calied the interrupt vector
‘address. immediately following this pointer address is.a word (lo-
cated at vector address +2) which is %o be used as a new Processor
Status Word. o

3. The processor stores the current Processor Status (PS) and the cur-’

rent Program Counter (PC) into CPLU temporary registers.

4, ‘The new PC and PS (interrupt vector) are taken from the specified-

address. The old PS and PC are then pushed onto the current stack.
The service routine is then i‘nitiated. : -

- 5, The device service routine can cause the processor to resume the '

interrupted process by executing the Return from Interrupt instruc-
tion, described in Chapter 4,-which pops the two top words from

- the current processor stack and.uses them to load the PC and PS -

‘registers. - oot

A device routine can be interrupted by a higher priority bus reqdest any

time after the new PC and PS have been loaded. If such an interrupt

occurs, the PC and PS of the service routine are automatically stored

in the temporary registers and then pushed onto the new .current stack,

and the new device routine is initiated.

Interrupt Servicing . .
Every hardware device capable of interrupting the processor has a unique
set of locations {2 words) reserved. for its interrupt vector. The first word

contains the location of the device's service routine, and the second, the -
Processor,Status Word that is fo be used by the service routine. Through .

2-10
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pEoper use of the PS, the programmer can switch the operaticnal mode
of the procesbor, and modify the Processor's Priority tevel to mask out
lower level interrupts. v ) ‘

Reentrant Code . : . ;

Both the interrupt handling hardware and the subroutine call hardware
facilitate writing reentrant code for the PDP-11, This type-of code allows
a single copy of a given subroutine or program to be shared. by more
than one process or task. This reduces the amount of core’needed for

multi-task applications such as the concurrent servicing of ‘many periph-
eral devices. : B . ST

Power Fail and Restait - ST .

Whenever AC power drops below 95 volts for 110v power (190 voits for
220v) or outside a limit of 47 to 63 Hz, as measured by DC power, the
-power fail sequence Is initiated. The Central Processor automatically
traps to location 24 and the power fall program has 2 msec. to save all-

volatile information (data in registers), and to condition peripherals for
power fail, v . / .

JWhen powér is restored the processor traps to focation 24 and execules

the power up routine to restore the machine to its state prior to power
failure. -

~
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CHAPTER 8

PDP-11/34 MEMORY MANAGEMENT

8.1 GENERAL

8.1.1 Memory Management

This chapter describes the Memory Management unit of the 11/34
Central Processor. The PDP-11/34 provides the hardware facilities neces-
sary for complete memory management and protection, it is designed to
" be a meniary managemont facility for systems where the memory size is
greater than 28K words and for muilti-user, multi-programming systems
where protection and relocation facilities are necessary.

8.1.2 Programming

The Memory Management hardware has been optimized towards a multi-
programming environment and. the processor can operate in lwo modes,
Kernel and User. ‘When in Kernel mode, the program has complete
control and can execute all instructions. Monitors and supervisory pro-
grams would be executed in this mode,

When in User Mode, the program is prevented from executmg certam
instructions that could:

a) cause the modification of the Kernel program,
b} hait the computer.
¢) use memory space assigned to the Kernel or other users.

‘In a multi-programming environment several user programs would be
resident in memary at any given time, The task of the supervisory pro-
gram would be: control the execution of the various user programs,
manage the allocation of memory and peripheral device resources, and
safeguard the integrity of the system as a whole by careful control of
each user program.
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In a multi-programming system, the Management Unit provides the
.means for assigning pages (relocatable memory segments) to a user
program and preventing that user from making any unauthorized access
to those pages outside “his assigned area. Thus, a user can effectively
be prevented from accidental or willful destruction of any other user
program\or the system executwe pmgram

Hardware implemented features epab|e the operating system to dy-
namically allocate memory upon demand while a program is being run.
These features are particularly useful when running higher-ievel language
programs, where, for example, arrays are constructed at execution time.
No fixed space is reserved for them by the compiler. Lacking dynamic
memory allocation capability, the program would have to calculate and
allow sufficient memory space to accommodate the worst case. Memory
Management eliminates this time-consuming and wastefu! procedure.

8.1.3 Basic Addressing
The addresses generated by all PDP-11 Family Central Processor Units
(CPUs) are 18-bit direct byte addresses. Although the PDP-11 Family word

iength is 16 bits, the UNIBUS and CPU addressing logic actually is 18 -

bits. Thus, while the PDP-11 word can only contain address references
up to 32K words (64K bytes) the CPU and UNIBUS can reference ad-
dresses up to 128K words (256K bytes). These extra two bits of address-
ing logic provide the basi¢c framework for expanding memory references.

-

. In addition to the word length constraint on basic memory addressing
space, the uppermost 4K words of address space is aiways reserved for
UNIBUS /O device registers. In a basic PDP-11 memory configuration
(without Management) all address references to the uppermost 4K words
of 16-bit address space (160000-177777) are converted so full 18-bit
references with bits 17 and 16 always set to 1. Thus, a 16-bit reference
to the 1/O device register at address 173224 is automatically internally
converted to a full 18-bit reference to the register at address 773224,
Accordingly, the basic PDP-11 configuration can directly address up to
28K words of true memory, and 4K words. of UNIBUS 1/O device registers.

8.1.4 Active Page Registers

The Memory Management Unit uses two sets of eight 32-bit Active Page
Registers. An APR is actually a pair of 16-bit registers: a Page Address
Register (PAR) and a Page Descriptor Register (PDR). These registers
are always used as a pair and contain ail the information needed to
describe and reipcate the currently active memory pages.

Cne set of APR's is ﬁsed in Kernel mode, and the other in User mode.
The cheice of which set to be used is determined by the current CPU
mode contained in the Processor Status word.
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Figure 8-1 Active Page Registers

8.1.5 Capabilities Provided by Memory Management

Memory Size (words): 124K, max (plus 4K for I/O & registers)
Address Space: Virtuat (16 bits)
Physical (18 bits}
Modes of Operation: Kernel & User
Stack Pointers: 2 {one {or each mode)
Memory Relocation:
Number of Pages: 16 (8 for each mode)
Page Length: 32 to 4,086 words
Memory Protection: ) no access
: ’ read only
read/write

8.2 RELOCATION

8.2.1 Virtual Addressing

When the Memory Management Unit is operating, the normal. 16-bit
direct byte address is no longer interpreted as a direct Physital Address
(PA) but as a Virtual Address (VA) containing information to be used in
constructing 2 new 18-bit physical address, The information contained
in the Virtuat Address (VA} is combined with relocation and description
information contained in the Active Page Register (APR) to yueld an
18-bit Physical Address (PA).

Because addresses are automatically relocated, the computer may be
considered to be operating in virtual address space. This means that no
matter where a program is loaded into physicali memory, it will not have

8.3



to be “‘re-linked™; it always appears to be at the same virtual iocation in
memory.

The virtual address space is divided into eight 4K-word pages. Each page
is relocated separately. This is a useful feature in multi-programmed
timesharing systems. It permits a new targe program to be loaded into
discontinuous blocks of physical memory.

A page may be as small as 32 words, so that short procedures or data
areas need occupy only as much  memory as required, This is a useful
feature in reak-time control systems that contain many separate smali
tasks, It is also a usefui feature for stack and buffer control.

A basic function is to perform memory relocation and provide extended
memory addressing capability for systems with more than 28K of phys-
scal memory, Two sets of page address registers are used to relocate
virtual addresses to physical addresses in memory: These sets are used
as hardware relocation registers that permit several user's programs,
each starting at virtual address 0, to reside simultaneously in physical
memory.

8.2.2 Program Relocation

The page address registers are used to determine the starting address
of each relocated program in physical memory. Figure 82 shows a sim-
plified example of the relocation concept.

Program A starting address O is relocated by a constant to provide
physical address 6400,.

) RELOCATION

VIRTUAL LONSTANT

ADDRESS A n6dDO

(VA} O =

8 = 100000

PHYSICAL ADDRESS PROGRAM &
' 008400

ooao00 .

Figure 82 Simplified Memory Relocation Concept -
84 -

if the next process'or virtual address is 2, the relocation constant wiil then

.cause physical address 6402, which.is the second item.of Program A, to
‘be;accessed. When Program B is running, the relocation .constant is

changed:to- 100000,. Then, Program B virtual addresses starting at Q, are
relocated to access physical addresses starting at 100000,. Using the ac-
tive page address registers to provide relocation eliminates the need to "re-
link™ a program each time it is loaded into a different physical memory
location. The program always appears to start at the same address.

A program is relocated in pages consisting of from 1 to 128 blocks.
Each block is 32 words in jength. Thus, the maximum length of a page
is 4096 (128 x 32) words. Using all of the eight_available active page
registers in a set, a maximum program length of 32,768 words can be
accommodated. Each of the eight pages can be relocated anywhere in
the physicai memory, as iong as each relocated page begins on a
boundary that is a multiple of 32 words. However, for pages that are
smaller then 4K words, only the memory actually aliocated to the page
may be accessed. .

The relocation example shown.in Flgure 8-3 liiustrates several points
about memeory -relocation. . -

a) Although the program appears:to be in contiguous address space to
the processor, the 32K-word physical address space is actually scat-
tered through several separate areas of physical memory. As long
as the total available physical memaory space is adequate, a program
can be loaded. The physical memory space need not be contiguous. -

b) Pages may be relocated to higher or lower physical addresses, with
respect to their virtual address ranges. in the example Figure 8-3,
page.l is relocated to a higher range of physical addresses, page 4
is relocated to alower range, ‘and page 3 is not relocated at all
(even though its relocation constant is non-zero),

c) All of the pages shown In the example start on 32-word bdundariles.

d) Each page is relocated independently. There is no reason why two or
more pages could not be relocated to the same physical memory
space. Using more than one page address register.in the set to
access the same space would be one way of providing different
memory access-tights to the same data, depending upon which part..

of a'program was referencing that data. ) /

.o - _ )
Memory- Units - o
Biock: | 32 words . v
Page: ) 1 to 128 blocks (32 to 4,096 words) - »
No. of pages: 8 per mode , &
Size of reiocatable .. 27,768 words, max (8 x 4,096)
memory: C
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VIRTUAL ADDRESS 7 lrage] . rELOCATION PHYSICAL MEMOKY
RAMNGES NO DONSTANT SPACE
160000- 177778 o -1-r b iso000 340000- 357776
140000~ 7774 ' 5 - 000000 "330000- 347778
120000- 07778 ) s 100000 | 210000- 127778
i 100000- 117778 1 020000 . 270000- 2377

00000~ 077726

w

060000 \ 140000~ 157778
D4D000- 057776 ’ 2 250000 % 120000~ 137778

020000- 037778 l 320000 / 040000~ 057776
000000- 017778 ¢ | 00000

Fagure 8-3 Relocation of a 32K Word Program into
124K Word Physical Memory -~

8.3 PROTECTION

A timesharing system performs multiprogramming; it allows several
programs to reside in memory simultaneously, and to operate sequen-
tialiy. Access to these programs, and the memory space they occupy,
must be strictly defined and controlled, Several types of memory pro-
tection rmust be afforded a timesharing system, For example:

a) User programs must not be allowed 1o expand beyond allocated
space, unless authorized by the system.

b) Users must be prevented from mod:fymg common subroutines and
algorithms that are resident for all users.

.

'c) Users must be prevented from gaining control of or modifying the
operating system software,

The Memory Management option provides the hardware facmtnes to im-
plement ali of the above types of memory protection.

8.3.1 lnaccess:bl_e Memory '

tach page has a 2-bit access control key associated with it. The key is
assigned under program control. When the key is set to 0, the page is
defined as non-resident, Any attempt by a user program to access a
non-resident page is prevented by an immediate ahort. Using this fea-
ture to provide memory protection, only those pages asociated with the
current program are set to legal access keys. The access control keys

of all other program pages are set to 0, which prevents illegal memory
references.

8.3.2 Read-Only Memory

The access control key for a .page can be set to 2, which allows read
(fetch) memory references to the page, but immediately aborts any at-
tempt tc_; write into that page. This read-only type of memory protection
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can be afforded to pages that contain common data, subroutines, or
shared algorithms. This type of memory protection aliows the access
rights to a given information module to be user-dependent. That is, the

access right to a given information module may be varied for different

users by altering the access control key.

'A page address register in ‘each of the sets (Kernel and User modes)

may be set up to reference the Same physical page in memory and
each may be keyed for different access rights. For example,-the User
access control key might be 2 (read~only access), and the Kernel ‘access
control key might be 6 (allowing complete read/write access), f'

8.3.3 Multiple Address Space

There are two compiete separate PAR/PDR sets provided: one set for
Kernel mode and one set for User mode. This affords the timesharing
system with another type of memory protection capability, The mode of
operation is specified by the Processor Status Word current mode fieid,
or previous mode field, as determined by the current instruction.

Assuming the curreni mode PS bits are valid, the active page register
sets are enabled as follows:

£S(bits15,-14) PAR/PDR Set Enabled
00 Kernel mode

(1)5 T } lllegal (all references aborted on access)
11 User mode

Thus, a User mode program is relocated by its own PAR{PDR set, as are
Kernel programs. This makes it impossible for a program runaing in
one mode Lo accidentally reference space allocated to another mode
when the active page registers are set correctly. For exampile, a user can-
not transfer to Kernel space. The Kernel mode address space may be re-
served for resident system monitor functions, such as the basic input/
Output Control routines, memory management trap handlers, and time-
sharing scheduling modules. By dividing the types of timesharing system
programs functionally between the Kernel and User modes, a minimum
amount of. space control housekeeping is required as the timeshared
operating system sequences fram one user program to the next. For
example, only the User PAR/PDR set needs to be updated as each new
user program is serviced. The two PAR/PDR sets implemented in the
Memory Management Unit are shown in Figure 8-1..

8.4 ACTIVE PAGE REGISTERS

The Memory Management Unit provides two sets of éight Active Page
Registers (APR). Each APR consists of a Page Address Register {PAR)
and a Page Descriptor Register (PDR), These' registers are always used
as a pair and contain all the information required to locate and describe
the current active pages for each mode of operation. One PAR/PDR set
is used in Kernel mode and the other is used in User mode.-The cur-
rent mode bits (or in some cases, the previous mode bits) of thé:Proces-
sor Status Word determine which set will ;
memory access. A prograrm operating in one mode cannot use~thé-PAR/
PDR sets of the other mode to access memory, Thus, the two sets are

8-7
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a key feature in providing a fully protected environment .for a time-
shared multi-programming system. .

A specific processor {/O address is assigned to each PAR and PDR_of )

each set. Table 7-1 is a complete list of address assignment.

.- - :NOTE:
UNIBUS devices cannot access PARs or PDRs

In 2 fully-protected mutti-programming envircnment, the implication is
" that only a program. operating in the Kernel mode would be allowed to
write into the PAR and PDR locations for the purpose of mapping user's
programs. However, there are no restraints imposed by the logic that
will prevent User mode programs from -writing into these registers. The
option of implementing such a feature in the operating syster_n. and_ thus
explicitly protecting these locations from user's programs, is available
to the system software designer.

Table 8-1 PAR/PDR Address Assignments

Kernel Active Page Registers User Active Page Registers

No. PAR FDR . No. PAR PDR

0 772340 . 772300 0 777640 777600
1 772342 772302 1 777642 777602
2 772344 772304 2 777644 777604
3 772346 772306 3 777646 777606
4 772350 772310 4 777650 777610
5 772352 772312 5 777652 777612
& -~ 772354 772314 6 777654 777614
7 772356 - 772316 . 7 777656 777616

8.4.1 Page Address Registers (PAR) ’ B

The Page Address Register (PAR), shown in Figure 8-4, contains the
" 12-bit Page Address Field (PAF) that specifies the base address of the

page. o .

Figure B-4 Page Address Register .

Bits 15-12 are unused and reserved for possible future use.

The ‘Page Address Register may be alternatively thought of as a !'e[o-
cation constant, or as a base register containing a base address. El_ther
interpretation indicates the basic function of the Page Address Register
(PAR) in the relocation scheme.

" B.A.2 Page Descriptor Registers (PDR) ) - o
The Page Descriptar Register (PDR), shown in Figure 8-5, contains in-
formation relative to page expansion, page length, and access control.

. 8.8

15 . ' ] 7 [] 3 !_ 3 2 J 0
2 v VA < [

Figure 85 'Page. Descriptor. Register

Access Control Field (ACF)} .

This 2-bit fieid, bits 2-and 1, of the PDR describes the access rights to
this particular page. The access codes or '“keys" specify the manner
in which a page may be accessed and whether or not a given access
should result in an abort of the current operation. A memory reference
that causes an abort is not completed and is terminated immediately.

Aborts are caused by attempts to access non-resident pages, page
length errors, or access violations, such as attempting to write into a

read-onty page. Traps are used as an aid in gathering memory manage-
ment information.

In the context of access control, the term *'write” is used to indicate
the action of any instruction which modifies the contents of any ad-
dressable word. A “write' is synonymous with what is usually called a
“store" or “modify"” in many computer systems. Table 8-2 lists the ACF
keys and their functions, The ACF is written into the POR under program
control. ¢

Table 8-2 Access Control Field Keys

AFC Key Description Function
00 4] Non-resident Abort any attempt to access this
‘ non-resident page
01 2 Resident read-only Abort any attempt to write into
) this page. ‘
10 4 (unused) Abort all Accesses,
il 6 Resident read/.write Read or Write allowed. .-No trap

or abort occurs.

" Expansion Direction (ED)

The ED bit located in PDR bit position 3 indicates the authorized direc-
tion in which the page can expand. A logic O in this bit (ED = 0) indi-
cates the page can expand upward from relative zero. A togic 1 in this
bit (ED = 1) indicates the page can expand downward toward relative
zero. The ED bit is written into the PDR under program control. When
the -expansion direction is upward (ED = 0), the page lengtthis increased
by adding blocks with higher relative eddresses. Upward expansion is
usually. specified for program or data .pages to add more program or

. table space. An example of page expansion upward is shown in Figure 8-6.

When the expansion direction is downward (ED = 1), the page length is
increased by adding blocks with lower refative addresses. Downward
expansion is specified for stach pages so that more stack space can be
added. An. example of page expansion downward is shown in Figure 8-7.

8-9
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PAR - SO POR
‘ [ooo 001 11 BoOO [o ‘pT101001 0060 0 '||;1

-

oo ——— ¥ T T

PLE 151y sdlig s NUMBER OF BLOCKS — 1
€D+ 0 1UPWARD EXPANSION 4
ACF v 67 READ FWRITE -

NOTE: ' :

To specify a block length of 42 for an upward expandable page, write
highest authorized block no. directly into high byte of PDR. Bit 15 5
‘not used because the highest allowable block number is 177,.

77 7] ) -
/BLOCK 77y _/,// N .
. ‘
" oci ANY BLOCK NUMBER
1 .o TER TH )
ADDRESS RANGE BOCK b - .. | | GREATER THuN 4igisly)
OF POTENDIAL PAGE e a {vA<12:06> $1y)
EXPANSION BY M Witk CAUSE A PAGE
OHANGING THE PLF W LENGTH ABORE.
’aLocx .52 //
Z_/ / P,
o176
BLOCK 514 _
024100
AUTHORIZE PAGE 017276
LENGTH 1435 BLOCKS .| MOCK 2
Of O THRU Slg+ 017200
324 BOCKS _
017174
BLOCK 1 * :
017100
01707
BHOLK O
017000 .
e B ASE ADDRESS OF PAGE

Figure 8-6 Exampie of an Upward Expandable Page

Written Into (W),
The W bit located in PDR bit position & mdncates whether the page has .
been written into since it was loaded into memory. W =1 is affirma-
tive. The W bit is automatically cleared when the PAR or PDR of that
page is written into. It can only be set by the control IOBlC )

In disk swapping and memory overlay applications, the W blt (blt )'can
be used to determine which pages in memory have been modlfl' 2
user. Those that have been written into must be saved in their:
form. Those that have not been written into (W = 0), need not bé'saved
and can be overlayed with new pages, if necessary,

Page Length Field {PLF}
The 7-bit PLF located in PDR (bits 14-8) specnfres the authorized length
of the page, in 32-word blocks. The PLF holds block numbers from O to

177,. thus allowing any ‘page length from 1 to 128, blocks. The PLF
is written in the PDR under program controi.

PLF for an Upward Expandable Page
When the page expands upward, the PLF must be set to one less than
the intended number of. blocks authorized for that page. For exampie,
if 52, (42,,) blocks are authorized, the PLF is set to 51, (41,,) (Figure
8-6). The hardware compares the virtual address block number, VA (bits
12-6) with the PLF to determine if the virtual address is within the au-
thorized page length,

When the virtual address block number is less than or equal to the PLF,
the virtsal address is within the authorized page length. If the virtual ad-
dress is greater than the PLF, a page length fauit (address too high)
is detected by the hardware and an abort occurs. In this case, the vir-
tual address space legal to the program is non-contiguous because the

three most sugmflcant bits of the virtual address are used to select the
PAR/PDR set.

PLF for a Downward Expandable Page

The capability of providing downward expansion for a page is intended
specifically for those pages that are to be used as stacks, in the PDP-11,
a stack starts at the highest location reserved for it and expands down-
ward toward the lowest address as items are added to the stack.

when the page is to be downward expandable, the PLF must be set to
authorize a page length, in hlocks, that starts at the highest address of
the page. That is always Block 177,. Refer to Figure 8-7, which show_s
an example of a8 downward expandable page. A page length of 42,
blocks is arbitrarily chosen so that the example can be compared w:th
the upward expandable example shown in Figure 8-6.

-

NOTE T

. ' ' The same PAF is used in both examples. Thisis - |==t
N done to emphasize that the PAF, as the base St A
address, always determnines the lowest address

) . of the page, whether it is upward or downward
8-10 . : . expandable,
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I-.—————.—mnvt PAGE REGISTER CONTENTS —mr—aom—————r]
_ PAR T T e pOR

"looo 06T viv.oog@

jer1e1e110 0000 1 110

——————— - LS
PAF £ D170 .___..____._..._} ) - j
MF 128y 580y
ED+ 1+ DOWNWARD EXPANSION

To specify page length for @ downward expanda'ble page, write comple-
ment of blocks required into high byte of PDR.

In this example, a 42-block page is required.
FLF is derived as follows:

42 .= 52,; two's complement = 126,.

03677
BLOCK 177y
038700

03sa7s
BLOCK 176y
036600

AUTHORIZED PAGE 01e57s
LENGTH 42y BLOCKS BLOCK 1754~
36500

0311878

. BLOCK 1264
01100

G ///7

moc
. //// v

'7/'/_' : ./

7. uocu m.

A BLOCK MUMBER
' L - REFERENCE LESS
ADDRESS RANGE - -’.- - :.', T Td L THAN 128
OF POIENTIAL PAGE . ot ; {IVACIZ:06> LESS THAN 12¢6g)

EXPANSION BY e
# iy - witt CAUSE A PAGE
CHANGING THE mLF : % LENGTH ABORT,

/////0!?!?6

’// //

'////// s
. /////,'//mrguo J

BASE ADORESS OF PAGE

‘Figure 8-7 “Example of’a Downward Expandable Page .

B8.12

The calculations for complementing the number of blocks required to
obtain the PLF is as fotlows: .

MAXIMUM. BLOCK NO. MINUS REQUIRED LENGTH EQUALS PLF
177, _ — 52, = 125,
,1-27I° - . 4210 - 85,0

8.5 VIRTUAL & PHYSICAL ADDRESSES

The Memory Management Unit is located between the Centrat Processor
Unit and the UNIBUS address lines. When Memory Management is
enabled, the Processor ceases to supply address information to the Uni.
bus. Instead, addresses are sent to the Memory Management Unit where
they are relocated by wvarious constants computed within the Memory
Management Unit,

8.5.1 Construction of a Physical Address

The basic information needed for the construction of a Physical Address
{PA) comes from the Virtual Address (VA), which is itlustrated in Fugure
8-8, and the appropriate APR set,

13 13 12 ]

[ Aré [ of
A, — - i

MINE PaGE HELD D3 ACEMENT FIELD

Figure 88 Interpretation of aA Virtual Address

The Virtual Address (VA) consists of:

1. The Active Page Field (APF}. This 3-bit field determines which of
eight Active Page Registers (APRO-APR7) will be used to form the
Physical Address (PA).

2. The Displacement Field (DF), This 13-bit field contains an address
relative to the beginning of a page. This permits page lengths up to
4K words (2'3 — BK bytes). The DF is further subdivided into two
fields as shown in Figure 8-9,

i s s 0

L=, | e |

. BOCK rmaER DM ACEMENT N BLOCKS

Figure 89 Displacement Field of Virtual Address

The Displacement Field (DF) consists of:

1. The Block Number (BN). This 7-bit fietd is interpreted as the block
number within the current page.

- 2. The- Displacement in Biock {DIB). This 6-bit field contains the dis-

placement within the block referred to by the Block Number,”

8-13
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The remainder of the information needed to construct the Physical Ad-

dress comes from the 12-bit Page Address Field (PAF) (part of the Active .

Page Register) and specifies the starting address of the memory wh.ich
that APR describes. The PAF is actually a block number in the physical
memory, e.g. PAF = 3 indicates a starting address of 96, (3 X 32 = 96)
words in physical memory. - ., - .0 o0 - - .

The formation’ of the Physical Address is illustrated in Figure §-10.

Li 3 o 1 L ] 3 ]

. [ AR i HOCL MO ] [ lm,
I . P

ACTAR PAGH
[ I mCa atveris Mo l Primth
" . . "

. . J ,
v ‘ 3 o
———aaa bry heddal
r ‘ mNCAL KOCE WO oSS
- o

TR Ak 54 LOCEE |

Figure 8-10 Construction of 2 Physical Address

The logical sequence invoived in constructing a Physical Address is as
follows:

1. Select a set of AEtiQe Page Registers depending on current mode, °

.2‘ The Active Page Field of the Virtual Address is used to select an
Active Page Register {(APRO-APRY). )

3. The Page Address Field of the selected Active Page Rggister eon-
tains the starting address of the currently active page as a block
‘number in physical memory.

4. The Biock Number -from the Virtual Address is added-to the block
number from the Page Address Field to yield the number of the
biock in physical memory which will contain the Physical Address
being constructed.

%. The Displacement in Block from the Displacement Fi_e!d of the Virtua_:l
- Address is joined to the Physicat Block Number to yield a true 18-bit
Physical Address. -

8.5.2 Determining the Program Physical Address

A 16-bit virtual address can specify up to 32K words, in the range from
0 to 177776, (word boundaries are even octal numbers). The three
mast significant virtual address bits designate the PAR/PDR set to be
referenced during page address relocation. Table 8-3 lists the virtual
address ranges that specify each of the PAR/PDR sets,

B-14
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Tabie, 83 Relating Virtual Address to PAR/PDR Set

virtuai Address Range - PAR/PDR Set

000000-17776
020000-37776 .
040000-57776
060000-77776
100000-117776
120000-137776
140000-157776
160000-177776

NoOnbhwN— o

NOTE
Any use of page lengths less than 4K words
causes holes to be teft in the virtual address
space. *
8.6 STATUS REGISTERS

Aborts generated by the protection hardware are vectored through Kernel
virtual location 250. Status Registers #0 and #2 are used to determine
why the abort occurred. Note that an abort to a location which is itsell
an invalid address will cause .another abort. Thus the Kernel program
must insure that Kernel Virtual Address 250 is mapped into a valid ad-
dress, otherwise a loop. will occur which wili require console intervention,

8.6.1 Status Register 0 (SR0O)

SRO contains abort error flags, memory management enable, plus other
essential information required by an operating system to recover from
an abort or service a memory management trap. The SRO format is
shown in Figure 8-11. Its address is 777 572,

135 M 1R ¢ 87 & 3 4 2 "o
R Bl /j !
. \ - ” . ;
ABORT- NON- RESIDENT 4 r :
ABORL-PAGE LENGIH ERROR - J i
ABORT-READ ONLY |
- ACCESS VIOLATION )
MANTENANCE MODE |
MODE [
PAGE NUMBER

ENABLE MANAGEMENT

~ Figure 8-11 Format of Status Register #0 (SR0)

Bits 15-13 are the abort flags. They may be considered to be in a
“priority queuve’” in that “flags to the right” are less significant and
should be ignored. For exampie, a ‘‘non-resident™ abort service routine
would ignore page length and access control flags. A “‘page length”
abort service routine would ignore an access control fault,
NOTE .
Bit 15, 14, or 13, when set {abort conditions)
cause the logic to freeze the contents of ‘SRO
. bits 1 to & and status register SR2. This is done
.to facilitate recovery from the abort.

. 815°
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Protection is enabled when an address is being relocated. This implies

that either SRO, bit 0 is equal to 1 (Memory Management enabled) or.

that SRO, bit 8, is equal to 1 and the memory reference is the final one
_of a destination calculation (maintenanqq/d‘estination mode).

Note that SRO bits O and .8 can be set under program control to pro-
vide meaningful memory management control information. However,
information written into all other bits is not meaningful. Only that in-
formation which™ is automatically written into these remaining bits as a
result of -hardware actions is useful as a monitor of the status of the
memory management unit. Setting bits 15-13 under- program control
will not cause traps to occur, These bits, however, must be reset to 0
after an abort or trap has occurred in order to resume monitoring
memory management.

Abort-Nonresident :

Bit 15 is the "Abort-Nonresident” bit. It is set by attempting to access
a page with an access controi field {ACF) key equal to O or 4 or by en-
abling reiocation with an illegal mode in the PS.

. Abort-——Page Length
Bit 14 is the “Abort-Page Length” bit. it is set by attempting to access
a location in a2 page with a block number (virtual address bits 12-6) that
is outside the area authorized by the Page Length Fieid (PFL) of the
PDR for that page.

. '
Abort-Read Only o :
Bit 13 is the Abort-Read Only™ bit. It is set by attempting to write in a
*"Read-Only’" page having an access key of 2. :

NOTE
There are no restrictions that any abort bits
could not be set simulianeously by the same
access attempt.

Maintenance/Destination Mode

Bit 8 specifies maintenance use of the Memory Management Unit. It is
used for diagnostic purposes. For the instructions used-in the initial
diagnostic program, bit 8 is set so that only the final destination refer-
ence is relocated, it is useful to prove the capability of reiocating
addresses.

Mode of Operation ‘ :
Bits 5 and 6 indicate the CPU mode (User or Kernel) associated with
the page tausing the abort. (Kernel =00, User = 11).

4

Page Number . ‘

Bits 3-1 contain the page number of reference, Pages, like blocks, are
numbered from 0 upwards. The page number bit is used by the error
recovery routine to identify the page being accessed if an abort occurs.

Enable Relocation and Protection
Bit O is the "Enable” bit. When it is set to 1, all addresses are relocated

816

and protected by the memory management unit. When bit O is set to 0

the memory management unit is disabied and addresses are neither re:
located nor protected. :

8.6.2 Status Register 2 (SR2)

SR2 is loaded with the 16-bit Virtual Address (VA) at the béginning of
each instruction fetch but is not updated if the instruction fetch fails
SR2 is read only; a write attempt will not modify its contents. SR2 is'
tflie Virtual Address Program Counter, Upon an abort, the result of SRO
bits 15, 14, or 13 being set, wil freeze SR2 until the SRO abort flags ain
.cleared. The address of SR2 is 777 576. S

16-BIF VIRTUAL ADDRESS ADORESS
TIISI

Figure 8-12 Format of Status.Register 2 {SR2))

8.7 INSTRUCTIONS

Memory Management provides the ability to communicate between two

spaces, as determined by the current and previous modes of the Pro-
cessor Status word (PS). - .

Mnemonic instruction Op Code
MFPI move trom previous instruction space G065SS
MTPI move to previous instruction space ~ 00660D

. MFPD move from previous data space 106558%
MTPD move_to previous dala space 10660D

These instructions are directly compatible with the larger 11 computers.

The PDP-_IIMS Memory Management unit, the KT11-C, impilemenis a
' separate iostruction and data address space. in the PDP-11/34, there

is no differentiation between instruction or data space, The 2 instructions
MEPD and MTPD (Move to and from previous data space) execute iden-
tically to MFPJ and MTPL.

(U



MFPD- o S .

MFPL -
move from previous data space 106555
move from previous instruction space 006555
3 3 9
e oo oo fr e v 0]
6peration: {temp) «(src)

+ (SP) «(temp)

Condition Codes:  N: set if the source <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared
C: unaffected

Description: This instruction pushes a word onto the current stack ~

from an address in_previous space, Processor Status
(bits 13, 12). The source address is computed using
the current registers and memofy map.

R2 = 1000 ,

Example: . MFPI @ (R2) 1000 = 37526

The execution of this instruction causes the- contents of (relative)
37526 of the previous address space to be pushed onto the current
stack as determined by the PS (bits 15, 14).

.

. 818

'MTPD

MTPI . -
move to previous data space ' 1066DD
move to previous instruction space 0066DD
|1 5 2]
[o s [+] OAL o \ 1 i [+] R ] ¥ N [+] d . 4_‘_1 1_‘ d :l
Operation: (temp) «(SP) 1
(dst) «(temp)

Condition Codes: N: set if the sourse <0: otherwise cleared
: 2 setif the source —0Q; otherwise cleared
V: cleared
C: unaffected

Description; This instruction pops a word off the current stack
determined by PS (bits 15, 14) and stores that word
into an address in previous space PS (bits 13, 12).
The destination address is computed using the cur-
. rent registers and memory map. An example 5 as
' follows;

) RZ =
Example: . MTPI @ (R2) 1300 ,1-:03?526

The execution of this instruction causes the top word of the current
stack to get stored into the (relative) 37526 of the previous address
space. N

91
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MTPI AND MFPI, MODE D, REGISTER 6 ARE UNIQUE IN THAT THESE
INSTRUCTIONS ENABLE COMMUNICATIONS TO AND FROM THE PRE-
VIOUS USER STACK. '

. MFPi, MODE 0, NOT REGISTER 6

MOV  #KM4+PUM, PSW
MOV  #.-], —2(6)

H KMODE, PREV USER
: MOVE —1 on kerne! stack —2

CLR %0
INC @ #SR0O ; ENABLE MEM MGT -
MFP1 %0 ; —(KSP) «RO CONTENTS

The —1 in the kernel stack is now replaced by the contents of RO which

-is 0, .
: MFPI, MODE 0, REGISTER 6

MOV  #UM4PUM, PSW
CLR %6 : SET R16=0
MOV  #KM4-PUM, PSW : K MODE, PREV USER
MOV #-—1, —2 (6)
INC @ #SRO
MFPI %6
The —1 in the kerne! stack is now replaced by the contents of R16
(user stack pointer which is 0).

; ENABLE MEM MGT .
; —(KSP)«R16 CONTENTS

To obtain info from the user stack if the status is set to kernel mode,
prev user, two steps are needed.

MFPl 9,6 R ; get contents of R16=user pointer
MFPlI @(6)+ ; get user pointer fram kernel stack
: use address obtained to get data
; from user mode using the prev
1 mode ’

The desired data.from the user stack is now in the kernel stack and has
replaced the user stack address.

8-20
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; MTPI, MOCDE O, NOT REGISTER 6

MOV  #KM+PUM, PSW
MOV #TAGX, (6)

; KERNEL MODE, PREV USES
; PUT NEW PC ON STACK

INC  @#SR0 : ENABLE KT
MTPL %7 - - P %7+~ (6)+
HLT - : ERROR

TAGX:CLR @ #5SRO : DISABLE MEM MGT

The -new PC is popped off the current stack and since this i
h s is mode Q and
not register 6 the destination is register 7. °

: MTPI, MODE O, REGISTER &

MOV #UM+PUM, PSW
CLR %6

MOV  # KM4-PUM, PSW
MOV  #—1, —(6)

INC @ #SRO

MTPI 946

; user mode, Prev User

; set user SP=0 (R16)

; Kernel mode, prev user

; MOVE —1 into K stack (R&)
; Enable MEM MGT

i %16 «(6)+

TthekO in R16 is now replaced with —1 from the contents of the kernel
stack.

To place info on the user stack if the status is set to kernel mode, prev
user mode, 3 separate steps are needed.

~

MFPl 946 ; Get content of R16=user poi

H = pointer
MOV # DATA, —(6) ; put data on current stack
MTPl @(6)+ ; @(6)+ [final address relocated] «

- (R6)+

The data_ desirgd is obtained from the kerne! stack then the destinat.on
ac_ldress is obtained from the kerne! stack and reiocated through the pre-
vious mode.

LT
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Mode Description

in Kernel'imode the operating program has unrestricted- use of the
machine. The program can map users’ programs anywhere in core and
thus explicitly protect key areas (including the device registers and the
Processor Status word) from the User operating environment,

fin User mode a program s inhibited from executing a HALT instruction
and the processor will trap through location 10 if an attempt is made
to execyute this instruction. A RESET instruction results in execution of -
a NOP (no-operation) instruction. -

There are two stacks cailed the Kernel Stack and the User Stack, used
by the central processor when operating in either the Kernel or User
meode, respectively.

Stack Limit violations are disabled in User mode. Stack protection is
provided by memory protect features,

Interrupt Conditions

The Memory Management Unit relocates all addresses, Thus when Man-
agement is enabled, all trap, abort, and interrupt vectors are considered
to be in Kernel mode Virtual Address Space. When a vectored transfer
occurs, control is transferred according to a new Program Counter (PC)
and Processor Status Word (PS) contained in a two-word vector relocated
through the Kernel Active Page Register Set,

‘When a trap, abort, or interrupt occurs the “push” of thé old PC, old PS

is to the User/Kernel R6 stack specified by CPU mode bits 15, 14 of the
naw PS in the vector (00 = Kernel, 11 = User). The CPU mode bits .
also determine the new APR set. in this manner it is possible for a
Kernel mode program to have complete control over service assighments
for all interrupt conditions, since the interrupt vector is located in Kernel
space. The Kernel program may assign the service of some of these con-
ditions to a User mode program by simiply selting the CPU nmiode bits
ol the new PS in the vector to return control to the appropriate mode.

User Procéssor Statu§ (PS) operates as follows: :

User Traps, Explicit
PS Bits- User RTI, RTT Interrupts | PS Access
Cond, Codes (3-0) - . loaded from - loaded from .
; - stack vector .
Trap (4) loaded from loaded from cannot be
: stack vector changed
Priority (7-5) cannot be lvaded from : »
' .changed vector
Previous (13-12) cannot be copied from .
changed PS (15, 14) -
Current (15-14) cannoct be © loaded from .
changed . vector

' Explicit operations can be made if the Prqcéssor Status is mapped in

User space,

. BRI
822 (8¢
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MIN._OMPUTERS FOR ENGINEERS

INTEn.UPT SYSTEMS
AND SCIENTISTS.

5-9. Simple Interrupt-system Operations. In an interrupt system,- a
device-flag level (INTERRUPT REQUEST) interrupts the computer
. program on combletion of the current instruction. Processor hardware then
G. A. KORN. . : - causes a subroutine jump (Sec. 4-12):

Lo 1. Contents of the incremented program counter and of other sclected
' processor registers (il any} are automatically saved in specific memory
locations or in spare registers.
. ) . : 2. The program counter is reset 1o start a ncw instruction sequence
: L (interrupt-service subroutine) from a spccific memory location (*“trap
L location™) associated with the interrupt. The interrupt thus acted
upon is disahled so that it cannot interrupt ils own service routine.

i Minicomputer interrupt-service routines musl usually first save the con-

tents of processor registers (such as accumulators) which are needed by the

! main program, but which are not saved automatically by the hardware. We
might also have to save {and later restore) some peripheral-device control
registers. Only then can the actual interrupt service proceed: the service
routine can transfer data after an ADC-conversion-completed interrupt,
implement emergency-shutdown procedures after a power-supply failure,
etc. Either the service routine or the interrupt-system hardware must then
clear the interrupt-causing flug to prepare it for new interrupts. The service
routine ends by restoring registers and program counter to return to the original
program, like any subroutine (Sec. 4-12).  As the service routine completes
its job, it must also reenable the interrupt.

EXAMPLE: Consider a simple minicomputer which stores only the
program counter automatically after an interrupt. The interrupt-service
routine is to read an ADC after its conversion-complete interzupt.

Location Label Instruction or Word Data . Comments
(main program)

1

1713 current instruction { Interrupt occurs here
0000 1714 / Incremented program

/ - -counter (1714) will be
[ stored here by hard-
| ware
/
{
/

PP U RSP ARERIIP S A

. 000 JUMP TO SRVICE Trap location, contains
Jjump to relocatable
3600 SRVICE STORE ACCUMULATOR IN SAVAC service routine

v‘- ) _ ° : -H
: e



600
1607

3602
3603
3604
1605

1714
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SAVAC | Save accumulator
/ Read ADC into

accumaulator and
_ clear ADC flag

[ Store ADC reading

STORE ACCUMULATOR 1N
READ ADC

SRVICE

~

STORE ACCUMULATOR IN X

f
—

LOAD ACCUMULATOR SAVAC [ Restore accqmu!ator
INTERRUPT ON . { Turn interrupt back on
JUMP INDIRECT VIA 0000 / Return jump

|/ Interrupted program
| continues

{main progfam)

NOTE: Interrupts do not work when the computer is HALTed, so we
cannol test interrupls when stepping a program manually.

5-10. Multiple Interrupts. Interrupt-system operation would be simple if
there ‘were only one possible source of interrupts, but this is practically
never true. Even a stand-alone digital computer usually has several
interrupts corresponding to peripheral malfunctions {tape unit out of tape,
printer out of paper), and flight simulators, space-vehicle controllers, and
process-control systems may have hundreds of different interrupts.

A practical multiple-interrupt system will have to:

1. “Trap” the program to different memory locations corresponding to-
specific individual interrupts ‘

2. Assign priorities to simultaneous or successive interrupts

3. Store lower-priority interrupt requests to be serviced after higher-

" priority routines are completed

4. Permit higher-priority interrupts to interrupt lower-priority service
routines -as soon as the return address and any automatically saved
registers are safely stored :

Note that programs and/or hardware must carcfully save successive
levels of program-counter and register contents, which will have to be
recovered as nceded. Interrupt-system programming will be further
discussed in Sec. 5-16.

More sophisticated systems will be able to reassign new priorities through
programmed insiructions as the needs of a process or program change (see
also Secs. 5-12, 5-14, and 5-16).

511, Skip-chain Identification of Interrupts. The most primitive multiple-
interrupt systems simply OR all interrupt flags onto a single interrupt line.
The interrupi-service routine then employs sensefskip insiructions {Sec, 5-8)
10 test successive device flags in order of descending priority.
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Suppose that the simple interrupt system discussed in Sec. 5-9 wuas

connected not only to the ADC requesting service but also to “emergency™
interrupts from a fire alarm and from the computer power supply {Sec. 2-15).

. A skip-chain service routine with appropriate branches for fire alarm,

emergency shutdown, and ADC might look like this (only the ADC service
routine 1s actually shown): !

W o

Ay
[y

SRVICE SKiP IF FIRE-ALARM FLAG LOW / Fire alarm?
JUMP TO FIRE / Yes, go to service
/ routine
SKIP I\F POWER FLAG LOW / No; power-supply
) /  trouble?
JUMP TO LOWPWR / Yes, go to service
/ routine
SKIP IF ADC DONE FLAG LOW / No; ADC service
/  reguest?
JUMP TO ADC / Yes, service it
JUMP TO ERROR / No; spurious
/  interrupt- -print
/ error message
ADC STORE ACCUMULATOR IN SAVAC

/ ADC service routine,
READ ADC :

STORE ACCUMULATOR IN X

LOAD ACCUMULATOR SAVAC / Restore accumulator
INTERRUPT ON -/ Turn interrupts backO\?

/ on <
JUMP INDIRECT VIA 0000 / Return jump

The skip-chain system requires only simple electronics and disposes of
the priority problem, but the flag-sensing program is time-consuming,
(n devices may require log, n successive decisions even if the flag sensing
is done by successive binary decisions). A somewhat faster method is to
employ a flag status word (Sec. 5-8), which can be tested bit by bit or used
for indirect addressing of different service routines (Sec. 4-11a).

Note also that our pnmitive ORed-interrupt system must automatically
disable alf interrupts as soon and as long as any interrupt is, recognized. |
We cannot interrupt even low-priority interrupt-service routines.

5-12. Program-controlled Interrupt Masking, It is ofteruséful to cnable
(arm) or disable (disarm) individual interrupts under progfam control to
meet special conditions. Improved multiple-interrupt systems gate indi-
vidual interrupt-request lines with mask flip-flops which can be set and reset |
by programmed instructions. The ordered set of mask flip-flops is usually
treated as a control register (interrupt mask register) which is loaded. with
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appropriate 0s and s from an accumulator through a programmed 1/O
‘nstruction. Groups of interrupts quite often have a common mask flip-
flop (sec also Sce. 5-14). :

A very important application of programmed masking instructions is to
give sclected portions of main programs (as well as interrupt-service routines)
greater or lesser protection from interrupts. “- R

Note that we will have to restore the mask register on returning from any
interrupt-service routinc which has changed the mask, so program or
hardware must keep track of mask changes. We must also still provide
programmed instructions to enable and disable the entire interrupt system

without changing the mask.

EXAMPLE: A skip-chain system with mask flip-flops. Addition of mask-
flip-Nops to our simple skip-chain interrupt system (Fig. 5-9) makes it
practical to interrupl lower-priority service routines. Each such routine
must now have its own memory location to save the program counter, and the
mask must be restored before the interrupt is dismissed. The ADC service
routine of Sec. 5-11 is modified as follows {all interrupts are initially disabled):

ADC STORE ACCUMULATOR IN SAVAC

LOAD ACCUMULATOR 0000 | Save program

STORE ACCUMULATOR IN  SAVPC [/ counter

LOAD ACCUMULATOR MASK | Save

STORE ACCUMULATOR IN SVMSK | current mask

LOAD ACCUMULATOR MASK 1 | Arm higher-

LOAD MASK REGISTER | priority interrupts
JINTERRUPT ON ‘ | Enable interrupt system
READ ADC '

STORE ACCUMULATOR IN X
INTERAUPT OFF

LOAD ACCUMULATOR _SVMSK { Restore

LOAD MASK REGISTER | previous

STORE ACCUMULATOR MASK /| mask, and

LOAD ACCUMULATOR SAVAC | restore accumulator
INTERRUPT ON

JUMP INDIRECT VIA SVPC } Return jump

Since most minicomputer mask registers cannot be read by the program,

{he mask setting is duplicated in the memory location MASK., Some

" minicomputers (e.g.. PDP-9, PDP-15, Raytheon 706) allow orily a restricted
set of masks and provide special instructions which simplify mask saving and
restoring (sec also Sec. 5-15). Machines having two or more accumulators
can rescrve one of them to store the mask and thus save memory references.
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ORed interrupts MASK

EVICE-F
to processor fup - fipps DEVICE ~FLAG

lip-ftops -

{to sense gote b

—— or dotg hine}
o7 L
AN \
\--.__\ Q
*RESET
1
H -

+RESET

Fig, 5-9. Inlcrrupt masking. The mask Nip-flops arc treated as a control register (mask regisrer).

which can be cleared and loaded by /O instructions.

. 5-13. Priority-interrupt Systems: Request/Grant Logic. We couid replace

‘the skip-chain system of Sec. 5-11 with hardware for polling successive
!ntefrupl lines in order of descending priority, but this is stili relatively slow
if there are many interrupts.  We prefer the priority-request logic of Figs
5-10 or 5-11, which can be Jocated in the processor, on special interiace cards.
and/or on individual device-controller cards, ‘
Reler to Fig. 5-10a. If the interruplt is not disabled by the mask flip-
or by the PRIORITY IN line, a service request (dcvicé-ﬂz};g levc]?:il?g:ztﬂlzz
REQUEST flip-flop, which is clocked by periodic processor pulses (1/O
SYNC) to fit the processor cycle and to time the priority decision. The
resulting timed PRIORITY REQUEST step has rhiree jobs:

1. IF prt?cnabies the “ACTIVE” flip-flop belonging to the same interrupt
circuit.

2. Tt blocks lower-priority interrupts.
3. Itinforms the processor that an interrupt is wanted.

If the interrupt system is on {(and il there are no direct-memory-access
requests pending, Sec. 5-17), the processor answers with an INTERRUPT
A(;KNOWLEDCE pulse just before the current instruction is completed
(Fig. 5-13). This sets the preenabled “"ACTIVE™ flip-flop, which now gates
the correct trap address onto a sct of bus lines—the interrupt is active.
INTERRUPT ACKNOWLEDGE also resets alf REQUEST flip-flops to
ready them for repeated or new priorily requests. .

Each interrupt has three siates: inactive, waiting (device-flag fiip-flop set)
and active. Waiting interrupts will be serviced as soon as possible. Unless‘
reset by program or hardware, the device flag maintains the “waiting™ state

T7
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- Processor (O T o L —

ARM interrupt

MASK thip-tiop [+]
* {loaded by - . : . R
[/0 instructign} : M .

{Otner timed
prianity requests)

* REQUEST ftip-1flop

EMASTEB oLEAR

- Timed
wority request - |—
ety e LI -
. 170 syn
G Resel
{masTerR

: CLEAR L—r\
ACKNOWLEDGE 1
PRIORITY GRANT) pulse _U

[common 16 all
intecrupts on
chain)

ACTIVE thp-fiop

Dato Q

10 3 reset putse from
processar, or 1/0 sync

Controt

}

MASTER CLEAR

-~

Memory ( l:‘

" qddress - L———otSe! address bits)
to Oj
processor e o

{common to all
interrupts}

Fip. 5-102. Priority-chain timing/yueuing logic for one device (see also the timing diagram of
Fig. 5-12). The ACKNOWLEDGE line is common 1o all tnterrupts on the chain.
the flip-flops ure timed by the processor-supplied 1/O SYNC pulses.
issued hy the processor whenever power is turned on, and thiough a console pushbutton, to
reset flip-flops initislly.  Many differeat moditications of this circuit exi

Address :
gates

Similar logic is used for direct-memory-access requests.,

Service request
from device flag

.Chain prierity in

{1 1f no higher-
priority device on
chain is waiting)

Chain priority out
[to lower -prionty
devices )

Reset flag
Lif desired)

st fsee also Fig. 5-11).

Note how
MASTER CLEAR is

while higher-priority service routines run and even while its interrupt is
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€hain Cnain
priority in priority put
From SN ) B rov
MASTER MASK nierrupt . Interrupt n Interrupt
flig—1iop ! ’ 2 4
{usuatly in ' R
processor) - S
[Highest {Lowes!
priofity} - b - SrTEJ‘r'nty) .
In Out [ B
From bt -t t—a—t - v—o—’ —_—
MASTER MASK
flip - fiop 1 F4 3 4 5 )
- H
{c}

Fip. §-Iﬂb “’?‘? ¢. Wired-chain priority-propagation circuits. Since exch suhsystem tand s
assoqazc'd \wr!ng) dcllays the propagated REQUEST flip-Nop steps (Fig. 5-104) h)- Hito M) osec
the simple cpum of Fig. 5-10h should rot have more than four to six binks; 1he circuir of F{g. 5-;(!"-
bypasses prierity-inhibiting steps for fuster propagaiion (based-on Ref, 10).

(Pre-enable
1 of 3 other ACTIVE
thip- fiops)
———h—
Winning b4y Timed oo
PRIORITY i yod priority frequests oo
REQUEST J ! E from 4 interrupts

1

REC_=5T
fhrz-*.zn

c

|

s

Priority - arbitration
gates
ACTIVE

disarmed or while the entire interrupt system is turned off.

5-14, Priority Propagation and Priority Changes. There are two basic
mcthods for suppressing lower-priority interrupts.

The first 1s the wired-

Ju

(Pre-enables ACTIVE tup-tigp)

ACKNOWLEDGE
(PRIORITY GRANT) puise
{common to all interrupts)

E

"

thp-top
Derz
Das

SR a e

Corors

priority-chain method illustrated in Fig. 5-10.  Referring to Fig. 5-10a, the
PRIORITY IN terminal of the lowest-priority device is wired to the
PRIORITY OUT terminal of the device with the next-higher priority, and

so on. Thus the timed requests from higher-priority devices block lower-’

priority renuests. The PRIORITY IN terminal of the highest-priority

10 3 reset pulse, or ...
/0 sync

+ -

Fig. 5—'!1'. This modified version of the prioritysinterrupt légic in Fig. 510 Ry priority-
Propdgation gates at the output rather than at the input of the REQUEST Mir"ap. Asain
many similar circuits exist, : ’ ' F T
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.. device (usualty a power-failure, parity-error, or rea]-timc'-cloc'k interrupt
in the processor itself) connects to a processor flip-flop (“master-mask”
flip-fiop), which can thus arm or disarm the entire chain {Fig. 5-10b and ¢).

*The computer program can.load mask-register fip-flops (Fig. 5-10a) to
disarm sclected interrupts in such a wired.chain; but the relative priorities
of all armed interrupts are determined by their positions in the chain. Itis
possible, though, to assign iwo or more different priorities to a given device
fiag: we connect it Lo two or more’separate priority circuits in the chain and
"arm one of them under br:ogrum or device control.

Figure S-11 illustrates the second lype of priority-propagation logic,
which permits every armed interrupt to set its REQUEST flip-fop. The
timed PRIORITY REQUEST steps from different interrupts are combined
in a “priority-arbitration™ gate circuit, which lets only the highest-priority
REQUEST step pass to precnable its “ACTIVE" flip-fiop.. Some larger
digital computers implement dynamic priority reallocation by modifying
their priority-arbitration logic under program contro}, but most mini-
computers are content with programmed masking.

The two priority-propagation schemes can be combined. Several mini-
computer systems (e.g., PDP-9, PDP-15) employ four separate wired-
priority chains, each armed or disurmed by a common “‘master-mask”
flip-flop in the processor. [Interrupts from the four chains are combined
through a priority-arbilration network which, together with the program-
controlled “‘master-mask™ flip-flops, establishes the relative priorities of the
four chains. ‘

'5.15. Complete Priority-interrupt Systems. (2) Program-controlled Ad-

dress Transfer. The “ACTIVE" flip-flop in Fig. 5-10a or 5-11 places the
starting address of the correct interrupt-service routine on a set of address
lines common to all interrupts. Automatic or “hardware"” priority-
interrupt systems will then immediately trap to the desired address (Sec.
5-15h). But in many small computers (e.g., PDP-8 series, SUPERNOVA),
the priority logic is only an add-on card for a basic single-level (ORed)
interrupt system. Such systems cannot access different trap addresses
directly. With the interrupt system on, every PRIORITY REQUEST
disables further interrupts and cuauses the program to trap to the same
memory location, say 0000, 2nd to store the program counter, just as in Sec.
5.9. The trap-location contains a jump to the service routine

SRVICE  STORE ACCUMULATOR IN  * SAVAC / Unless we have
/  aspare
/  accumulator
READ INTERRUPT ADDRESS- '
STORE ACCUMULATOR IN PTR
JUMP INDIRECT VIA PTR
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READ.INTERHUPT ADDRESS is an ordinary [/O instruct:on, which employs
a device selector to read the interrupt-address lines into the accumulator
(Sec. 5-9). The 102 pulse from the .device selector ican serve as the
-_A.CKNOWLEDGE' pulse in Fig, 5-10a or 3-11 {in fact, the “ACTIVE"
flip-fiop can be omitted in this simple system). The program then translers
t.he address word to a pointer location PTR in mcmo.:y. and an indirect
jump lands us where we want to be, :

Unfortunately, the service routine for each individua! device, say’ for

an ADC, must save and restore program counter, mask., and accumui.ior
(see also Sec. 5-12):

ADC LOAD ACCUMULATOR 0000
STORE ACCUMULATOR IN SAVPC
LOAD ACCUMULATOR SAVAC
STORE ACCUMULATOR IN SAVAC2
LOAD ACCUMULATOR MASK
STORE ACCUMULATOR IN SVMSK
LOAD ACCUMULATOR MASK 1
STORE ACCUMULATOR MASK

LOAD MASK REGISTER
INTERRUPT ON

READ ADC ’ 7 Usclul work
STORE ACCUMULATOR IN X / done only here!
INTERRUPT OFF

LOAD ACCUMULATOR SVMSK

STORE ACCUMULATOR MASK S A
LOAD MASK REGISTER W
LOAD ACCUMULATOR SAVAC 2

INTERRUPT ON

JUMP INDIRECT VIA SAVPC

Note that mosl_of the time and memory used up by this routine is overhead.
devoted to storing and saving registers.

(b) A Fully Automatic-(*"Hardware”) Priority-interrupt System. In-an
automatic or “hardware” priority-interrupt system, the “ACTIVE" flip-flop

- in Fig. 5-10a ot 5-11 gates the trap address of the active mnterrupt into the

processor memory -address register as-soon .as the current instruction is

‘completed (Fig. 5-12). This requires special address lines in the input/

output bus and a little extra processor logic. - This hardwere buys improved
response time and simplifies programming: *

.1‘ The program traps immediately to a different ‘trap Jocation for each
interrupt; there is'o'need for the program to identi’y the interrupt. <

2. There is no need to save program counter and registers twice as in
Secs. 5-11, 5-12, and 5-15a. o
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1 memory cycle

osme JLIL_____JUTUIUTLTL

. — o mm e ————— — — — —{Reset by hordware or program)
SERVICE [ ] a0 o
REQUEST e | : . ST ) -l :

IDEVICE FLAGY - L 1

|

|

!

. . - '

ReouesT 4 S
FLIP-FLOP - ey |
ACKNOWLEDGE . | ' ’
E:Iail'é SFSR(?RM . : N Ead of current instruction.

. - R’.;s:tiy [O pulse from
?E:F’IVELOF’ - "_—'r processor or by [/0 sync

NOTE : Worst case is shown. ACKNOWLEDGE puise could end
1 cycie eortier,

Fig. 5-12. Timing diagram for the priority-interrupt logic of Figs. S-IO_ and‘ S-ll_. The
ACKNOWLEDGE pulsc remains ON until the trap uddress is transferred (either immediately
over speciul address lines or by a programmed instruction).

Tn a typical system, each hardware-designated trap location is !oaded with
a modificd JUMP AND SAVE instruction (Sec. 2-11). Its effective address,
say SRVICE., will store the interrupt return address (plus some status bits);
this is followed by the interrupt-service routine, which cuan be relocatable:

SRVICE XXXX 7 Incremented program-
' / - counter reading
/ (return address)
. /  saved here
STORE ACCUMULATOR IN SAVAC / Save accumulator

LOAD ACCUMULATOR MAsK  / Save current
STORE ACCUMULATOR IN SvMSK [/ mask
LOAD ACCUMULATOR mask 1/ Get
STORE ACCUMULATOR IN MASK /- new
LOAD MASK REGISTER / mask
INTERRUPT ON :
- - READ ADC / Actual work begins here

Saving {and later restoring) the interrupt mask in this program is the same
as in Secs. S-12 and 5-15a and is seen to be quite a cumbersome operation.
A little extra processor hardware can simplify this job:

|. We can combine the LOAD MASK REGISTER and INTERRUPTION
instructions into a single 1/O instruction.
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2. We can use only masks disarming «// interrupts with priorities hefow
level 1,2,3,.... Such simple masks arc easier to store auto-
matically.

In the more sophisticated interrupt systems, the interrupt return-jump
instruction is repluced by a special instruction {(RETURN FROM INTERRUPT),
which automatically restores the program-counter reading and all auto-
matically saved repisters. Be sure 1o consult the interface manual for your
own minicomputer to determine which hardware features and software
techniques are available. '

5-16. Discussion of Interrupt-system Features and Applications. Interrupts
are the basic mechamsm for sharing a digital computer between different,
often time-critical, tasks, The practical effectiveness of a minicomputer
interrupt system will depend on:

1. The time needed to service possibly critical situations

2. The total time and program overhead imposed by saving, restoring, and
masking operations associated with interrupts

3. The number of priority levels needed versus the number which can be
readily implemented

4, Programming flexibility and convenience

The minimum time needed to obtain service will include: :;\:

1. The “raw" latency time, i.e., the time needed to complete the longest
possible processor instruction (including any indirect addressing);
most minicomputers are also designed so that the processor will
always execute the instruction following any 110 READ or SENSE/
SKIP instruction. We are sure you will be able to tell why! Check
your interface manual.

2. The time needed for any necessary saving and/or masking operation.

A look at the interrupt-service programs of Secs. 5-11, 5-12; 5-15«, and
5-15b will illustrate how successively more sophisticated priority-interrupt
systemns provide faster service with less overhead. You should, however,
take 2 hard-nosed attitude to establish whether you really need the more
advanced features in your specific application, :
" It is useful at this point to list the principal applications of interrupts.
Many interrupts are associated with [/O routines for refutivély slow devices
such as teletypewriters and tape reader/punches, and thousinds of mini-
computers service these happily with simple skip-chain®systéms. Things
become more critical in instrumentation and control systems, which must
not miss real-time-clock interrupts intended to log time, to read instruments,
or to perform control operations. Time-critical jobs requirg fass responses.
If there are many time-critical operations or any time-sharing computations,
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the computing time wasied in overhead operations becomes interesting.
Some real-time systems may have periods of peak loads when it becomes
.actually impossible to service al/f interrupt requests. At this point, the
designer must decide whether tobuy-aniimproved-system or which interrupt
rcqu_esls are al least temporarily expendable. Tt is'in the latter connection
" that dvnamic priority allocarion becomes useful: it may, for instance, be
cxpedié-nt"ro mask certuin interrupts during peak-loud periods. In other
situations we -might, instead, lower the relative priority of the main compuier
program by unmasking additional interrupis during peak real-time loads,

If two or more interrupl-service routines employ the same library sub-
routine, we are faced, as in Sec. 4-16, with the problem of reentrant
programming. Temporary-storage locations used by the common sub-
routine may be wiped out unless we either duplicate the subroutine program
in memory for each interrupt or unless we provide true reentrant subroutines.
This is not usually the case for FORTRAN-compiler-supplied library
routines. Only a few minicomputer manufacturers and software houses
provide reentrant FORTRAN (somctimes called “real-time” FORTRAN).
The best way to store saved registers and temporary intermediate results 1s
in a stack (Sec. 4-16); a stack pointer is advinced whenever a new interrupt is
recoenized and retracted when an interrupt is dismissed. The best mini-
com;:mvr interrupt svstems have hardware for automatically advancing and
refracting such a stack pointer (Scc. 6-10),

If very fast interrupt service is not a paramount consideration, we can get

around reentrant coding by programming interrupt masks which simply
prevent interrupiion of critical service routines. . :
In conclusion, remember that the chief purpose of interrupt systems is to
initiate computer operations more complicated than simple data transfers.
The best method for time-critical reading and writing as such is not through
interrupt-service routines with their awkward programming overhead but
with a direct-memory-access system, which has no such problems at all. ‘

DIRECT MEMORY ACCESS AND
AUTOMATIC BLOCK TRANSFERS

5-17. Cycle Stealing. Step-by-step program-controlled data transfers-

" Jimit.data-transmission rates and usc valuable processor time for alternate
instruction fetches and execution; programming is also tedious. It is often
preferable to use additional hardware for interfacing a parallel data bus
directly with the digital-computer memory data register and to-request and
grant 1-cycle pauses in processor operation for direct transfer of data to

or from memory (interlace or cycle-stealing operation). In larger digital

machines, and optionally in a few minicomputers (PDP-15), a data bus can
cven access one memory bank without stopping processor interaction with
other memory banks at all, .

153 ©DMA INTERFACE LOGIC S-18

]
Note that cycle stealing in no way disturbs the program sequence. Even
though smaller digital computers must stop computation during memory
transfers, the program simply skips a cycle at the end of the current memory.

-cycle (no need to complete the current instrucrion) and later resumes just

where it left off. One does not have to save register conients or other
information, as with program interrupts.

L

Dhgirtai computer ) *
PR DMA data bus . |
. d_ |
Nemory . R *-i e
bata READ or WRITE : '
Memgosy .
Joddress ﬁ‘ . Tlo
rremor P and
l caress E adoress C.__. memory trom
| register gates azoress SELECT AND fewice
i I TRANSFER
A ENABLE
' crae L e
DMA kDT
e—{BEQUEST control FLAG)
Processor PRIORITY GRANT | 370 TIVING
VNG logic cERR
tor pne Vi -
cevice FLAG | o
o

Fig. §13. A direct-memory-access {DMA) interfuce.

5-18. DMA Interface Logic. To make direct memory access (DMA) -
practical, the interface must be able to:

kS

1. Address desired locations in memory

2. Synchronize cycle stealing with processor operation

3. Initiate transfers by device requests (this includes clock-timed transfers)
or by the computer program '

4. Deal with priarities and queuing of service requests if two or more -
devices request data transfers

DMA priority/queuing logic is essentially the same as the priority-interrupt
logic of Figs. 5-10 and 5-11; indeed, identical logic cards ofien serve both

-purposes. : DMA service requests are always given priority over concurrent

interrupt requesis.

Just as in Fig. 5-11,a DMA service request (caused by a device-flag level)
produces a cycle-steal request unless it is inhibited by a higher-priority

" request; the processor answers with an acknowledge (priorify-grant) pulsc.
. This signal then sets a processor-clocked “ACTIVE" flip-flop, which

strobes a suitable memory address into the processor memory address
register and then causes memory and device logic to transfer data from.or .
to the DMA data bus (Fig. 5-13). -
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“1n some computer systems (e.g., Digital Equipment Corporation PDP-15),
the DMA data lines are identical with the programmed-transfer data lines.
This simplifies interconnections at the expense-of processor hardware.. In
other systems, the DMA .data lines are also used to. transmit the DMA
address to the processor before data are transferréd. - This further reduces
the nuinber. of bus lines, but complicates hardware and.timing. . K

_. Datal v ¢ . IS
-] P } . 4 OMA dota bus Doto

A\

< —)

L4
Memor ) .
_ Y - READ OR WRITE TRANSFER
’ ‘ " - o Y - .
- . "SERVICE REQUEST {RESET
CYCLE-STEAL REQUEST DMA " (DEVICE FLAG). . |- t —
|Memory|_ PRIORITY GRANT ! C?Q;_[rgl c !
ddress i : TRANSFER DATA AND . [
Timing I l RESET DEVICE FLAG
§ EnasLE INCREMENT - §DECREMENT
* Address | Current- Wosd ——1—> Multiplexer of
- address ter, == A sequence
gotes | counter RETSOE‘T COUDTRN Lis —11 Control-(if any)
Address INTIAL

ADDRESS

- PRESETY
INTERRUPT AFTER LAST WwWORD
wORD {TRANSFER COUNT
COMPLETED) ' N
: A Device . ’ . .
Digitol /| selector I Typn DEVICE. | Device
computer Programmed 1/ bus . L ON AND OFF f.ien channel
{Do 1o, 0ddress, and -
control tines) .
. . i
Fig. 5-14. A simple data channel for automatic block transfers, .

519, Automatic Block Transfers. -As-we-described it; the DMA data
transfer is device-initiated. A program-dependent decision to transfer data,
even directly from or to memory, still requires a programmed instruction to
cause a DMA service request. This is hardly worth the trouble for a

’ siugle-hrard transfer. Most DMA transfers, whether device or program
initiated, involve not single words but blocks of tens, hundreds, or even
thousands of data words.

Figure 5-14 shows how the 51mp1e DMA system ‘of Fig..5-13 may be
expanded into.an automatic data channel-for block transfers.. Data for a
block can arrive or depart asynchronously, and the DMA controller will
steal cycles as needed and permit the program-to go on between cycles. A
block of words to be transferred will, in general, occupy a corresponding
block of adjacent memory registers.. Successive memory addresses can be

-and handles 540 eight-bit bytes of discrete control mformat)on.

. .. i
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gated into the memory address registered by a counter, the current-address
counter. Before any data transfer takes place, a programmed instruction
sets the current- address counter to the desired initial dddress the desired
number ofwords {block Iength) is set into a second counter, the word counter,
wh1ch will count down with each data transfer until 0 is re‘xchud after the
d<:51red number of transfers. As service requests .m-wg from say, un
analog-to-digital converter or data lmk the DMA conlrof 10;__1c implements
successive cyclc -steal requests and gates successive currem “addresses into
the memory address register as the current-address counter counts up {sce
also Fig. 5-5a).

The word-counteris similarly decremented once per data word. When o
block transfer is completed, the word counter can stop the devige from
requesting further data transfers. The word-counter carry pulse can also
cause an jnterrupt so that a new block of data can be processed. The word
counter may, il desired, also serve for sequencing device functions (c.p.,
for selecting successive ADC multiplexer addresses).

Some computers replace the word counter with a program-loaded final-
address regpister, whose contents are compared with the currchi-address
counter to determine the end of the block,

A DMA system often involves several data channels, each with a4 DMA
control, address gates, a current-address counter, and a.word counter, with
different priorities assigned to different channels. :For efficient handling of
randomly timed requests from multiple devices (and to prevent loss of data
words), data-channe! systems may incorporate bufler registers in the mtcrf 1ce
or in devices such as ADCs or DACs.

5-20. Advantages of DMA Systems (see Ref, 6). Direct- -memory-access
systems can transfer data b]ocks at'very high rates (10 words/sec is readily

- possible) without elaborate 1/O programming. The proccssor.essenua]!y

deals 'miainly with -buffer areas in its own memory, and only a lew [JO
instructions are needed to initialize.or reinitialize transfers, -
Automatic data channels are especially suitable for servicing peripherals
with high data rates, such as disks, drums, and fast ADCs and DACs.
But fast data transfer with minimal program overhead is extremely valuabie
in many other applications, especially if there are many devices to be
serviced. To indicate the remarkable efficiency of cycle-stealing direct
memory access with multiple block-transfer data channels, consider the
operation of a trammg type digital flight simulator, whith solves aircraft
and engine equalions and services an elaborate cockp:b?n’ac& -up with many
controls and mstrument displays. During each 160-msec time increment.
the interface not only performs 174 analog-to d:gnal COmfiversions requiring
atotal conversion time of 7.7 tsec but also 430 digital- -to-analog conversions,
The actua!

S

.
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Event count
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Fig. 5-15a. Memory-increment technique of measuring amplitude distributions (based on Ref. 6).

time required to transfer all this information in and out of the data channels
is 143 msec per time increment, but because of the fast direct memory
transfers, cycle-stealing subtracts onty 3.2 msec for each 160 msec of processor
time (Ref. 2).

5.21. Memory-increment Technique for Amplitude-distribution Measure-
ments. In many minicomputers, a special pulse input will increment the
contents of a memory location addressed by the DMA address lines; an
interrupt can be generated when one of the memory cellsis full.  'When ADC
outputs representing successive samples of a random voltage are applied
to the DMA address lines, the memory-increment feature will effectively
gencrate 2 model of the input-voltage amplitude distribution in the computer

s

Fig. 8-15b. An amplilude-disfrihu(ion display obtained by the method of Fig. 5-15a. (Digital
Equipment Corparation.)
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memory: Each memory address corresponds to a voltage class interval,
and the contents of the memory register represent the number of samples
falling into that class interval.  Data taking is terminated after o preset

“number of samples or when the first memory register overlouads (Fig. 5-154).

The empirical amplitude distribution thus created in memory may be dis-
played or plotted by a display routine (Fig. 5-155), and statistics such as

X=yvx, ®m=iyx .. .

n'= nes -~

are readily computed after the distribution is complete. This technique

has been extensively applied to the analysis of pulse-energy spectra from

nuclear-physics experiments.

Joint distributions of iwo rundom variobles X, Y can be similarly compiled.

It is only necessary t0 apply, say, a 12-bit word X, Ycomposed of two 6-bit

bytes corresponding to two ADC outputs X and Y1to the memory address

register. Now each addressed memory location will correspond to the
region X; € X < Xy, Yy € Y < Y., in X¥space,

5.22. Add-to-memory Technique of Signal Averaging. Another command-

pulse input to some DMA interfaces will add a data word on the 1/O-bus -
data lines to the memory location addressed by the DMA address lines
without ever bothering the digital-computer arithmetic unit or the program,
This “add-to-memory” feature permits useful] linear operations on data
obtained from various instruments; the only application well known at this

- time is in data averaging.

Figure 5-16a and b illustrates an especially interesting application of data
averaging, which has been very fruitful in biological-data reduction {e.g.,
electroencephalogram analysis). Periodically applied stimuli produce the
same system response after each stimulus so that one obtains an analog
waveform periodic with the period T of the applied stimuli. To pull the
desired function X(r) out of additive zero-mean random noise, cne adds
X, X(r + T), X{r + 27, ... during successive periods to enhance the
signal, while the noise will tend to average out. Figure 5-16¢ shows the
extraction of a signal'from additive noise in successive data-averaging runs.

5-23. Implementing Current-address and Word Counters in the Processor
Memory. Some minicomiputers (in particular, PDP-9, PDP-15, and the
PDP-8 series) have, in addition to their regular DMA facilities, a set of fixed
core-memory locations to be used as data-channe! address and word
counters. Ordinary processor instructions (not /O instructions) load
these locations, respectively, with the block starting address .and with
minus the block count. The data-channel interface card (Fig. 5-17) supplies
the address of one of the four to eight address-counter locations available’in
the processor; the word counter is the location following the address counter.
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IlL. - MODOS DE DIRECCIONAMIENTO R

1.- ESQUEMAS DE DIRECCION AMIENTO.

i

La unidad central de proceso (CPU) en las computadoras debe
realizar las siguientes funciones:

- Obtener y traer de memoria primaria al CPU la siguiente
instruccidn a ejecutar, :

- Entender los bperandos, esto es, definir la localizaci6n de
los operandos necesarios para ejecutar la instruccién y
‘traerlos al CPU. :

.= Ejecutar la instruccion,

".qua_ llevar a cabo las funciones anteriores el CPU debe con-
©'tar con la siguiente informacién:
. 9
.- El codigo de operacién de la instruccién a ejecutar.

~- Las difecc_iones_ de los operandos y la del resultado.

= La direccién de la siguiente instruccién a ejecutar,

| - Existen diferentes soluciones que sati.sfacen ios requerimientos
'_!.-'._anferiores, los cuales determinan la arquitectura de los proce |
"r"sa.dé')r.es que las utilizan,
Se éqpondran opefaciones aritméticag en las que sé tienen dos
"- ' opig;réndos y un resultadc ya que son las que proporcionan el
' .c';g._é.o"rpas gén’eral.
a) I\'/I'aquinas‘_ de "3+1" direcciones
| _- El formato. dé instruccibn en este esquema de direcciona--
L ’ ' .

* “miento contiene todos los elementos necesitados por el CPU



S 9.

para realizar sus funciones. .
-3

v s . S .
** Un posible formato de instruccién se muestra en la figura .

1L 1
ODIGO DIRECCION | DIRECCION | DIRECCION | DIRECCION DE]| ‘- Palabra
DE PRIMER SEGUNDO | RESULTADO| LA SIGUIENTE n de
DPERAC.| OPERANDQO { OPERANDO INSTRUCCION | memoria
FIG, III. 1 | . '

En este casé se.t.ienen cincd campos en él formato de instruccibn: Uﬁo
para el _ch_igo de operacién que sirve para indical; el tipo de opera---
cién a realizar (suma, resta, multiplicacién, etc.), tres campos para‘
| las. c.li,r'ecciones de los operandos y resultado de las operaciones, un

campo para indicar la direccién de la siguiente instruccitn a ejecutar.

La s instrucciones para ésta miquina podrian ser escritas en forma'
simbdlica en la siguiente forma: ADD A, B,C,D donde ADD representa
el ‘codigo de operacién suma y A,B,C y D son nombres simb6licos

asignados a localidades de memoria.

A1

Suéoni'e_n)c.io que existen las instrucciones suma (ADD), substraccién---
(SU:B.) y multiplicacién (MUL), entonces una posible trad_uclciOn de la
e‘xp.‘res-i':(ml A=(B*C)-(D*E) en FORTRAN a lenguaje simbélico en la m4-
quina :de'..'-‘ 3+l direcciones serfa:
PR Ll: MUL B,C,TLL3

L3: MUL | D,E, T2,L7

L7: SUB T2,TL,A,LS

et L8  Siguiente instrucci6n
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donde Tl y T2 representan localidades temporales usadas para guardar . :

resultados aritméticos intermedios.

Las conclusiones mis importantes en este esquema son:

Los programas no necesitan estar almacenados en memoria en forma
secuencial ya que el campo de direccién de la siguiente instruccién per
mite conocer donde fueron-almacenados,

Debido a que cada instrucci6n contiene en forma explicita tres direc--

to

ciones, no es necesario tener en el CPU hardware para guardar los re
. N . | - "

sultados de las operaciones.

b) Méguinas de "3" dir eccion.'es
Coﬁéi’déraudo qu.el;,:los programas se escriben secuencialmente y que
ﬁor consiguiente es muy légico almacenarlos eh 'este mismo orden,
.se llega a un nuevo esquema de direccionamiento en el cual se sus
_tituyen todos los campos de direccitn de la sigu1ente mstrucmén
por un solo registro dentro del procesador que lleva en forma se-
.guer'l_cial y automAticamente la direccion de la siguiente instruccién

'a’ ejecutar. Un posible formato de instruccién se muestra en la -

g L2 .
: neglstro Codigo |[Direccibn |Direccién |Direccidn 'Palabfé,
en el de primer segundo |resultado . n de
- procesador [operac. |operando joperando | - memoria

FIG. TII. 2
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4

Utllizando este esquema de direccionamiento la expresién A=(B*C)- (D*E)

en FORTRAN,quedarfa expresada como:

. MUL B,C, Tl
MUL D, E, T2

. ' SUB T2, TL A

Siguiente instruccién

w"h_

DA
3

Donde se ha suprimido la direcci6n de la s1gu1ente instrucciébn ya que

esta es llevada en forma secuencial y autométlca por un registro del |

.pxjoce;sa_d_o_r conocido como contador del programa (PC).

Con él esquema de 3 direcciones se logra aprovechar la memoria en

forma mas eficiente y reducir la longitud de palabra lo que redunda .

d1rectarnente en los'costos de la misma.

c)’ Maquinas de "2" direcciones,

>

En las operaciones aritméticas no siempre es necesario guardar

el resultado en una localidad de memoria y preservar los operan-

dos, por lo que se puede pensar en utilizar uno de ellos para----

;guardar el resultado una vez que la operacidn se ha efectuado., Las

.con51derac1ones anteriores llevan a presentar un posible formato de

mstruccnfm en esta maquina, mostrado en la figura 1IL.3

IR, DELA |.REG. . COD. | DIR. | DIR. SEG.
IG. INST. A| EN EL P. OP,
JECUTAR - | PROC.  |OP. | OP.

FIG. III.3 .

Palabra -
n de
memeoria
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En este esquema se usard la direccién del segundo operando comp la

direccitn del resultado una vez que la operacidn se haya efectuado,

por lo que el segundo operando serd destrufdo., Asf pues la expresidn

A=(B*C)-(D*E) en FORTRAN, quedarfa:

MUL B,C
MUL D,E
SUB E,C-
ADD A,C

M

La eliminacion del campo de direccidn del resultado permite reducir la
longitud de la palabra de memoria y los costos de la misma, lo que

permite usar este esquema en méiquinas medianas y chicas,

d) Méquinas de "1" direccibn
‘Este esquema de direccionamiento perfnite eliminér de todas las ins
tﬁéciones el campo de direcci6n de uno de los operandé y sustitu-=-
irlo por un registro dentro del procesador, el cual contendrd a uno
de-'_ los operandos. . A este registro se le conoce como acumulador, -
Eéi:"::formgto de instruccién para la méqunina de 1 dir_é’ccibn se mues-

tra en la figura III, 4

ir. de 1a|’ : Reg. en el COD. DIR.
sig. inst, 3|  .procesador : B I
ei. - | OP, OPERANDO
Segundo .- Reg. en el
PDperando | procesador

. _ FIG. I11.4
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Lo anterior implica la creacién de instrucciones que permitan cargar

! - lept ‘ i .
el acumulador con el segundo operando (LAC) y depositar el contenido
del acumulador en memoria (DAC).

Es importante hacer notar que todas las ‘operaciones se llevan a cabo
implicitamente contra el acumulador y que é&ste contendri él resultado
de la operacion efectuada, La expresién A=(B*C)-(D*E) en FORTRAN,

peodria. traducirse a:

LAC D
i
DAC TI
f. . LAC B
MUL C » '
SUB  TI
DAC A

Este esquema de direccionamiento ha sido ampliamente implementado en
una gran mayoria de las minicomputadoras, como por ejemplo: PDP-8, --

PDP-15, 1BM-1130, IBM-7090 y CDC 3600.

é) Maqumas de "0" direcciones
._E'-;sfte 'é_‘:squema de direccionamiento solo utiliza el campo de cbdigo
de o;)‘éal.'-ac;idn, por lo que es necesarjo contar c'on"algfm mecanismo
que ifn'p'lfcitamen'te permita conocer los operandos.

El mecanismo anterior se implementa usando una pila 6 stack, el

cual, s,e' puede pensar como un conjunto de localidades contiguas de
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.memoria accesadas usando una disciplina UEPS (Gltimas entradas, pri- .

meras selidas), De lo anterior se concluye que en cada momento se

tendra disponible el elemento que se encuentre en el tope del stack.

El formato de instruccién para este esquema de direccionamiento se

encuentra, en la figura III,5

Dir. de 1a Reg. en él : - T "

sig. inst, CPU
' CODIGO| Palabra de
. DE OP memoria
Apuntador al | Reg. en el
rope del stac CPU

FIG. L5

Es necesario contar con instrucciones que permitan meter elementos

de memona al stack (PUSH) y sacar elementos del stack a memoria-

(POP)

La expre516n A=(B*C)-(D*E) en FORTRAN, podria expresarse como:

L1G. 11,6
=T - (Apuntador al tope
PUSH D - LD del stack).
PUSHE | | T
~ E fo—- ———T
R D - [BC
MUL D*
‘. ' .. ' . ’
PUSH B IT .
, . D*E . _
PUSH c - | | | /'r
MUL .. | T .
o rt _ B : "|B*C-D*E
SUB D*
L : T
POP A . . T
: ¥ T J ’
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En la fig. III.6 se ilustra el estado del stack después de cada una de
. i .

las inst: ‘anteriores,

Se puede concluir que el conjunto de instrucciones de la miquina no

. '.‘ .

estd formado solamente por instrucciones de cero direcciones ya que

también se requieren instrucciones de una direccién para meter y sa-

‘car elementos al stack.

Se requiere un registro en el procesador que apunte al tope del stack
y se elimine el acumulador ya que el resultado de las operaciones --

también quedari en el stack.
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2.- METODOS DE DIRECCIONAMIENTO.

™~

En lgs maquinas de una sola direccibn el formato Ide las instruccio-.
nes Aque hace rgferencia a memoria consta de dos campos: el campo
d; cédigo de gperacibh y el campo de direccion del dperando. Si su
ponemos que el campo d_le direcci6n consta de n bits; entbnces la
maxima capacidad de me;néria direccionable serd 27 localidades.Lo
anterior puede resultar ‘bastante drastico én e1 'éaéo de las minicom-
putadoras ya que por lo general tienen palaﬁras de 152 6 16 bits y si
se asignan cuatro de ellos al campo de cbdigo de operacién solo se
pueden direccionar 28= 256 localidades de memoria en el caso de pa -

b2 4096 localidades éle memoria en el caso de

labras de 12 bits 6 2
. , '. >.-- '. ' ' .
palabras de 16 bits, lo cual resulta insuficiente para la gran mayo--

rfa de las aplicaciones,

Lo anterior ha ocasionado diferentes modos de direccionamiento, en
los cuales el campo de direccibn sirve para calcular la direccitn
efectiva del operando, logrando una mayor capacidad de memoria di-

reccionable.

a) . Inmediato
. En éste caso el operando puede estar contenido directamente en

.ellcampo' de direccién 6 en la localidad de memoria siguiente a

" la instruccién,
" Ser4 necesario dedicar un bit de la palabra para saber como se

" debd interpretar la instruccién.



b) Directo ‘ \

Existe direccionamiento directo cuando el campo de direccién de S

- 10 -

iny

“

la instruccidon contiene la direcci6én del operando 6 cuando é&ste

“ campo combinado con algin registro 6 palabra de memoria gene

ran la direccion del ,6pexando.

b,1) Usando pédgina cero

Uno de los esquemas mis comunes de organizacién de me

moria, divide &sta en n paginas de longitud fija, donde n

- dependerd del tamafio .de la me moria y del tamafio de las

péginas.

. Las mdiquinas que usan estos esquemas generalmente usan

la pAgina cero con propbsitos especiales, como son: mane-
jo de interrupciones, traps, localidades autoincrementables,

etc.

4

La forma de indicar si el contenido del campo de direcci6n

~ se refiere a la pigina cero, .es usando un bit para este pro

- pbsito, p.. ej. si este bit es cero el campo de direccion

. apunta a una localidad en la pagina cero.

b2) --Usando pédgina actual

‘_; S1 el bit de pigina estd en uno, se asume que el campo de

.
L

L

direccién apunta a una localidad en la pigina en la que se

encuentra la instruccién. A esta pigina se le conoce como



Indirecto .

- 11- '
.11
pégina actual.

La direccibn del operando se determina sumando los bits

de orden superior del PC al campo de direccion de la ins

truccion.
b.3) Relativo al PC

En este modo de direccionamiento el contenido del campo
de direccion de la instruccién, interpretado como un ente-

ro con signo, se suma al PC para obtener, la direccidon del

operando,

b.4) ~Relativo a un registro fndice
» S
El contenido del campo de direccién de la instruccibén, in-

terpretado como un entero con signo, se suma al conteni-
do de un registro indice para obtener la direccién del ope
rando. En caso de existir mas de un registro indice es

- preciso asignar los bits necesarios para su identificacion,
' 1 . .

v
. -
i

a

"En ‘el direccionamiento indirecto el campo de direccién de la ins-

truqci@n' contiene un apuntador a la direccidon del operando § este
campo cembinado con algin registro 6 palabra de memoria genera

un apuntador a la direccién del operando.

‘Mediante un bit en la instruccién se puede saber si el direcciona-

- e

miento usado es directo 6 indirecto.
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c.l) Usando pagina cero

c.2)

c.3)

c.4)

¥

LD catupo de direccton de la lnutraceion apunta o una Joea =

lidad en la pagina cero. A su vez ésta locailidad contiene

la direccidn del operando.

Usando pdgina actual
El campo de direccién de la instruccidn apunta a una loca--

lidad en la pagina actual. Esta localidad contiene la direc--

T

cibn del operando.

Relativo al PC

El contenido del campo de direccién de la instruccidn, inter
pretado 'como un entero con signo, se suma al PC para ob-

tener la direccitn del apuntador al operando.

El contenido del campo de direccién de la instruccién, . inter-

pretado como un enteroc con signo, se suma al contenido de

‘un registro indice para obtener la direccidén del apuntador al

operando.

La combinacién de todos los métodos de direccionamiento anteriores

con. re,gi_sr.fos' de propbsito general, permiten lograr modos de direccio-

namiento bastante poderosos., Cuando se usan los registros de propodsito

general, el campo de direcciébn de la instruccidn especifica que registro

se usa y como se interpreta la informacién que contiene.
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3.- DIRECCIONAMIENTO EN PDP-11 i ,

~a) Con dos operandos
La computadora PDP-11 es una maiquina de dos direcciones por .
lo que su formato de instruccién tiene campos para cbddigo de

operacidn y operandos. Lo anterior se observa en la fig. IIL.7

15 1211 98 65 32 0

| [ Modo |Registro [Modo |Registro |

Coédigo bp. dir. fuente dir. destino
FIG. IIL.7

Los bits 12-15 contienen el ctdigo de operacion
j_,gé ,bits- 6-11 coritienen la dir. fuente

Los bits 0- 5 contienen la dir, destino

Las direcciones fuente y destino serédn utilizadas para el célcu-
lo de la direcci6n efectiva de los operandos, interpretando el

modo y el registro usados.

La direccién fuente contiene dos subcampos de 3 bits cada uno,
_de esta forma es posible indicar.cual de los ocho registros de
prop6sito general serd usado, asi como la interpretacién que se

le .'da'r& de acuerdo a los ocho modos de direccionamiento.

* El.modo y registro en la dir destino se entienden en la misma
forma que en la dir fuente. La dir destino también serd usada

para almacenar el resultado de la operacion una vez que esta

.se haya efectuado." *
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b) Lin esla mdguina existen lnstrucclones gue solu reyguleren un

Y

operando en cuyo caso se utiliza un formato de instruccidn con

&

Eémpos de coédigo de operacibn y direccion destino, segin se -

muestra en la fig, II1. 8

15 65 0

[ MODO ¢ REGISTRO |

Codigo op. Dir. destino
FIG. .8

La interprelaciéu dada a la direccidn fuente es la misma que en el

caso de dos operandos.
- Para poder ejemplificar los modos de diveceiommtenio e wned el

sigulenme conjunto de instrucciones; asi mismo se asumird que todos
i

los nimeros estidn en octal:

Mnemonico | Coédigo Octal Descripcibn

CLR - 0050DD Limpia (pone a ceros el des
‘ 1050DD tino). ' -
INC 0052DD Incremento (suma uno al con
INCB 1052DD v tenido del destino)
.COM 0051DD Compleri’aenta 16gicamente el
COMB 1051DD destino

- ADD 0685DD Suma

¢) Direccianamiento directo \
Existen cuatro modos usados en direccionamiento directo, los cua

les se explican a continuacidn:
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Registro
Forma general: OPR Rn

Descripcidn: El registro especificado contiene el opérando

requerido por la instrucci6n.

‘OPR representa un coédigo de operacién en forma general,

"‘Modo: 0

Ejemplos: 1

c.2)

Autoincremento

‘Forma general: OPR (Rn)+

Descripcidn: El contenido del registro es incrementado des-

pués de ser usado como apuntador al operando. Si la instruccién

es de palabra se.autoincremente en dos y si es de byte en uno.

- Modo: 2

" Ejemplos: 2 |

1

" Autodecremento ,

"Forma general: OPR-(Rn)

“'Descripcibn: El contenido del registro es decrementado antes

de ser usado como apuntador al operando. Si la instruccion es

‘de palabra se autodecrementa en dos y si es de byte en uno.

Modo: 4

Ej emi)los: 3



c.4) Indice

d)

' Forma general: OPR X(Rn) P
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Descripcibn: La suma de X y el contenido del registro se

utiliza como la direccién del operando.

Modo: 6

Ejemplos: 4

Direccionamiento indirecto
Existen 4 modos de direccionar en forma indirecta, los cuales

utilizan los modos basicos (direccionamiento directo) en forma

‘dferida.

d.1) Registro diferido | o

d. 2)

Forma general: OPR €Rn |

Descripcibn: El registro contiene la direccién del operando.

Modo: 1

‘Ejemplos: § ]

: Agtoinbremento .diferido
.--Eorrha_ general: OPR @Rn)+
. De sc'lji'pc i6n: El contenido del registro es incrementado des-

'p,ué's. de ser usado como apuntador a la direccién del operando, -

- El autoincremento serd en dos, tanto para instrugciones de byte

‘como de palabra.

[ -l‘
-
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Mudu: 3

Ejemplos: 6

Autodecremento diferido
Forma general: OPR (@-(Rn)

Descripcién: El contenido del registro es decrementado antes

-de ser usado como apuntador a la direccion del operando, El

autodecremento serd en dos, tanto para instrucciones de byte

como de palabra;

Modo: S

"Ejemplos: 7 -

Indice diferido

Forma general: OPR @X(Rn) . |

.:De scripcion: La suma de X y el contenido del registro se uti
1liza como apuntador a la direccion del operando, La palabra de
_f._ndlice X estd almacenada en la localidad de memoria sigu@ente a
-.Ia‘a instruccién.

',E,l vaior de Rn- y X no se modifica.

Modo'; ‘7-_

| Ejefnfjlos: 8

Uso del PC en direccionamiento

"El registro siete, tiene el propbsito especifico de servir como con

tador de programa (PC), por lo cual cada vez que el procesador



e.l)

- 18 -

usa el R7 para traer una palabra de memoria el R7 se incremen .
ta-automaticamente en dos de tal forma que siempre apunta;a’la
KR N 3

'siguiente instruccibn a ejecutar § a la siguiente palabra de la ins .

. truccidén que actualmente se estid ejecutando,

Lo anterior permite usar el PC con propdsitos de direccionamien-.

to, permitiendo lograr ventajas cuando se utiliza con alguno de

* los modos 2,3,6 6 7.

Inmediato

~Forma general: OPR#n, DD

Descripci6bn: El operando estd en la localidad de memoria si

guiente a la instruccidn.
B

Modo: 2 usando R7

Ejémplos: 9

e.2)

Absoluto

' Forma general: OPR @#A.

" De scripcién: La localidad de memoria siguiente a la instruc

cién contiene la direccién absoluta del operando.

Mo;cli_o:' 3 usando R7

. Ejemplos: 10

e. ,3)‘ Relativo

“Forma general: OPR A
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Descripci6bn: La localidad de memoria siguiente a la ins-- -

truccién, sumada al PC proﬁorcionan la direcci6n del operan-=-

‘do,

Modo: 6 usando R7

! -

Ejemplos: 11

Relativo diferido

Forma general: OPR @A

Descripcidén: La localidad de memoria sigiiente a la ins--
truccion sumada al PC proporciona el apuntador a la direccién

del operando.

Modo: 7 usando R7 »

Ejemplos: 12

LLUIS CORDERO BORBOA
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i |
£.4
3
1, |
005200. . INC RO
‘ ;
;SUMA UND AL CONTENILO DIE RO.
;
Antes Des}éues
001202/005200 001202/005200
_$0/000000 _$0/000001
_$7/001202 _$7/001204
_$5/000000 ~$8/170020
1.2
105102 COME 2
3 .
; COMFLEMENTO LOGICO DEL EBYTE EAJD(RITS 0-7) EN R2,
;LAS INSTRUCCIONES IE BYTE USADAS SOBRE L0OS :
, FREGISTROS GENERAYES SOLO OFERAN EN LOS BITS 0-7.
Antes -Despues |
0012046/105102 001206/105102
_$2/103252 ~$2/103125
_$7/001206 _$7/001210
_$5/170020 _$8/170021
1.3
060103 - ADD R1sR3

SUMA EL CONTENIDO DE R1 AL CONTENIDO DE R3.

- s e

Antes Depues
001204/060103 001204/060103
-%1/000005 ~-$1/000005
-$3/000007 ~-$3/000014
~$7/001204 ~-$7/001206
~-$8/170020

. =%5/170020
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005024 CLK (K4y+
s |
y .
jUSA EL CONTENIDO DE R4 COMO LA DIRECCION DEL
jOFERANDO. FONE A CEROS EL OFERANDO(FALAERA) E
s INCREMENTA EL CONTENIDO DE R4 EN DOS,
f -
Antes Despues
001210/005024 001210/00502
_$4/0600010" 84760001904
-000010/174216 ~000010/000000
-$7/001210 _$7/0012172
-$5/7170021 - ~$5/170024
2.2
105024 CLRE (R4)+
. ;
jUSA EL CONTENIDO DE R4 COMO LA DIRECCION DEL
;OFERANLO. FONE A CEROS EL OFERANDO(EYTE) E.
FINCREMENTA EL CONTENINO DE R4 EN UNO..
- K]
Antes Despues
001212/105024 001212/105024
_$4/000006 -$4/7000007 .
_000006/173215 _000006/173000
_$7/001212 ~$7/001214
_$5/170024 ~$5/170024
o
¢ 2.3
060022 ADD ROy (R2)+
: ;
FEL CONTENIDO DE RO SERA SUMADDO AL OFERANDO
}CUYA DIRECCION £STA CONTENIDA EN R2, DESFUES
i SE INCREMENTA R2 EN LOS.
;
Antes'- Despues
2 60022 001214/060022
_267500005°° _$0/000007
_$2/000024 -$2/000026
~000024/000007 _000024/000016
_$7/001214 -$7/001216
_$5/170024 _$57170020
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3.1
00524‘5 _3-'L;‘ INC ~(R5)
; .
sEL CONTENIDO DE RS SE DECREMENTA EN LOS Y .
sDESFUES SE USA COMO LA DIRECCION [EL OFERANIO.
iEL OPERANDO(FALAERA) SE INCREMENTA EN UNO.
;
Antes : ' Despues
001216/005245 216/0052
_$5/7800020°°"" 9912164005245
-000016/002222 _000016/002223
_$7/001216 _$7/001220
-$5/170020 _$5/170020
|
3,2
105245 I _ INCE ~ (RS
;
iEL CONTENIDO DE RS SE DECREMENTA EN UNO Y
jLESFUES SE USA COMO LA DIRECCION DEL OFERANDO.
{EL OFERANDO(EYTE) SE INCREMENTA EN UNO.
»
. P 3
Antes _ ~ Despues -
001220/105245 001220/105245
_$5/660%47° " 9835584595249
_000346/043721 _000344 /043722
_$7/001220 _$7/001222
_$5/170020 _$5/170030
3.3
064401 AL —(R4) K1

-

’ :
fEL CONTENIDO DE R4 SE DECREMENTA EN NOS Y
) sDESFUES SE UTILIZA COMO LA DIRECCION DEL
b FOFERANDO QUE SERA SUMADRO AL CONTENIDO DE R1.

1

. ' Antes Despues.
001222/064401 001222/064401

_$1/000017 _$1/000064

_$4/000032 _$4/000030
_000030/000045 _000030/000045

. _$7/0012022 ~$7/001224

.$5/170000 -$5/170020

-



4.3
005063 000100

CLR™ - 100(R3)

'
F6E PONE A CFROG LA L.OCALTDADCEAL ATY
FOIRECCIONADA FOR LA SUMA DE 100 Y EL
FOE R3. LL CONTLENILO DE RI NO SLE ALTEI

4,2
105144 000200

4.3 .

066360 ' 000010 000020

001230/105164
0012327000200

Antes: Despues
001224/005063 001224/005063
_001226/000100 -001226/000100

~$3/000004 ~$3/000004

_000104/177333 ~000104/000000

~-$7/001224 - _$7/001230

_$5/170020 ~$5/170024

COME 200 (R4)
; = . ~ R e
JCOMPLEMENTA LOGICAMENTE EL CONTENIDO DE LA
}LOCALIDAD(EYTE) DIRECCIONADA FOR' LA SUMA DE
200 Y R4. EL CONTENIDO DE R4 NO SE ALTERA. !
H ‘.- . o ' k
Antes: Despues

0012307105164
_001232/000200

_$4/000002 ~$4/000002°
~000202/174562 _000202/174615
_$7/001230 ~$7/001234
_$S/170000 ~$5/170031

»

!

ADD

10(R3)y20(RO)

" $SUMA EL CONTENIDO DE LA LOCALIDAD DIRECCIONADA
tFOR LA SUMA DE 10 Y R3r AL CONTENIDO DE LA

' .

iILOCALIDAD DIRECCIONADO.FOR LA SUMA LE 20 Y RO.

Antes Despues
001234/066360 001.234/0656360
-0012346/000010 ~001236/000010
-001240/000020 ~001240/000020
_%0/000030 ~-$0/000030
~-$3/000050 -$3/000050
-000030/000037 -000050/000134
_0000460/000073 -000060/000075
~$7/001234 _$7/001242/
-$5/7170020

~-$5/170031



-

r

. l
q}%&. .
Qw,
(.
% Ates.
1747 /00%5

/1/006094 011
00044/035240

~$7/7001242
-$5/7170020

eR1

fEL CONTENIDO I'E R1 AFUNTA AL UFERﬁNéD GUE
' SERA FUESTO A CEROS.

Despues

QOIIA /000011
~$1/000094

_000044/000000
-$7/001244

~-£8/7170Q024

INCE  @R2

FL CONTENIDO DE R2 AFUNTA AL OFERANIO QUE
SERA INCREMENTALO EN UNO, ‘

“EP Er gy EE

Antes Despues
001244/105212 c
_$27000070 001za4/10521%
_000070/000000 T 000070/000001
-$7/001244 _$7/001246
357170024 _$5/170020
6 .
005234 B(RAY+
' ;EL CONTENIDD DE R4 AFUNTA-A LA DIRECCION
s DEL OFERANDO QUE SERA INCREMENTADQ EN UNG,
;IESPUES DE LO CUAL R4 SE INCREMENTA EN DOS.
!
Antes Despues
. 001244/005234 0012446/005234
* _$4/000034 _$4/000040
_0000346/000054 _000034/000054
_000054/000007 _000054/000010
_$7/001246 _$7/001250
_$5/170020

=$5/170020
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(@)
h
s
4]
()]

coM —-(R3)
H
+EL CONTENIDO DE RS SE LECREMENTA EN LOSr
FOEGPULS DE L0 CUNL AFUNTA A LA DIRECCION
+REL OFERANDO QUE SERA COMPLEMENTALO

jLOGICAMENTE.
' [
Antes ‘Despues
001250/005159 001250/005155
_$5/000040 _$5/000036
-0000346/000020"" _000036/000020
_000020/000000 _000020/177777
_$7/001250 _$7/001252
_$5/170020 _$5/170031
»
8 _
067300 000200 ALD @200 (R3) RO

;LA SUMA DE. 200 Y R3 DETERMINA EL AFUNTADOR A
;LA DNIRECCION DE LA LOCALIDAD QUE SERA SUMATIA A RO,

Antes Despnes
001252/067300 001252/067300
4001254/900200 L001254/000200
_$0/000015 _$0/000033
_%$3/000010 ~$3/000010
. ~000210/000012 _000210/000C122
_000012/000016 _Q00012/0000146
_$7/001252 _$7/0012546
_%$S/170031 _-$S/170020



'
/010 MOV +10:R4

¥

"FMUEVE A R4 EL NUMERO 10

-

4
FSUMA EL CONTENYIDO DE LA LOCALIDAL 100 A R1,

r

An_fes. Despues
. ) : i
0012546/012704 001754/012704
_001240/000010 _001360/0000190
_%$4/000000 : _$4/000010
_$7/001256 _$7/001242
~$5/170000 _$5/170020
JqQ . ‘
063701 - 000100 AL R$100,R1

4

, Antes Despues
0012667063701 001264/063701
_001270/000100 _0013707000100
-$1/000033 _$1/000124
T _000100/000073 - ~000100/000073
' _$7/001266 ‘ _$7/001272

. -$5/170000 : _$5/170020
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005267 000044 : CINC z . o

; .
F INCREMENTA EL CONTENIDO DE LA LOCALIDAD

fSIMEOLICA Z EN UNO., EL CONTENILO DE LA FALABRA
FSIGUIENTE A LA INSTRUCCION SE SUMA AL FC FARA

Antes ‘ Despues

001272/005267 0012727005247

_0013747000044 _0013747000044 "

_001342/000000 _001342/000001

_$7/001272 j _$7/001276

_$5/170020 : " _$5/170020

- sl - -
12 = . ' . _- |

005077 000040  CLR @z

¥

LA LOCALIDAD SIMEBOLICA Z APUNTA A LA

fDIRECCION DEL OFERANDO QUE SERA FUESTO A CEROS.
FEL CONTENIDO DE LA FALAEBRA SIGUIENTE A LA

* INSTRUCCION SE SUMA AL FC PARA ORTENER LA
JDIRECCION DE Z.

r.

Antes Despues-
0012746/005077 001276/005077
-001300/000040 . : -001300/000040
. =001342/000100 - -001342/000100
—000100/000073 -000100/000000
. —$7/7001274 -$7/001302
. 2%$S/170020 -$5/170024

-

LUIS CORDERO BORBOA
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PDDP - 11
04/34/45/55 |
. PROCESSOR -
HANDBOOK

Y CHAPTER 4

INSTRUCTION SET

‘4.1 INTRODUCTION

The specification for each instruction includes the mnemonic, octal code,
‘binary code, a diagram showing the faormat of the instruction, a symbaolic
notation describing its :execution and the effect on the condition codes,
. @ .description, special comments, and examples.

MNEMONIC: This is indicated at the top corner of each page. When the
word instruction-has a byte equivalent, the byte mnemonic is also shown,

INSTRUCTION FORMAT: A diagram accompanying each instruction
shows the octal op code, the binary op code, :and bit assignments. (Note
that in byte instructions the most significant bit (bit 15) is always a 1.)

SYMBOLS: .
() = contents of )
S8 or src == source agdress
DD or dst = destination address
lo¢ = location
4 = becomes -
1t = “is popped from stack"”
"} ="is pushed onto stack” C
A = boolean AND
v = boolean OR
= exclusive OR
~ = boolean not

Reg or R = register

‘B = Byte
. {0 for word . -
2=

1 for byte
T - 41



4.2 |

. The major instruction formats are:

NSTRUCTION FORMATS

Single Operand Group

OF Code . dat .
l S o 1 i 1 I i ] l J 1
15 ’
Double Operand Group
0P Code Sre ) dst
l 1 L L ] 1 i | - 1
15 2?2 n
Register-Source or Destination
OP Code Treg Sre/dst
i 1 1 | 1 1 : n 1 ] 1
15 9
) .
Branch
Bass  Code oftsel
1 1 1 1 1 I 1 i | | 1
15 T
4-2

o e e ——

Byte Instructions .

The PDP-11 ptocessor includes a full complement of instructions tat
manipulate byte operands. Since all PDP-11. addressing is byte-orientec,
byte manipulation addressing is straightforward, Byte instructions wth
autoincrement, or autodecrement direct addressing cause .the specifed
register to be modified by one to point to the next byte of data. Bste
operations in register mode access the low-order byte of the specifmd
register. These provisions enable the PDP-11 to periorm as either a werd

or byte. processor. The numbering scheme for word and byte addresses
in core memory is:

"HIGH BYTE

WORD OR BYTE
ADDRESS ADDRESS
002001 | BYTE 1 BYTE 0 [ 002000

-+ 002003-| BYTE 3 BYTE 2 | 002002

The most significant bit (B}t 15) of the instructior{ word is set to indicate
a_byte instruction. ’

Exampie: - .

Symbolic

‘CLR
CLRB

Octal

0050DD
1050DD

NOTE

Clear Word
Clear Byle

.
[t

-The term PC (Program Counter) in the Opera-
- " tion explanation of the instructions refers to the

updated PC.

43
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4.3 LIST OF INSTRUCTIONS

Instructions are shown in the following sequence. Other Instructmns are

. _found in Chapters 9, 11, and 12.

.A-—The SXT, "XOR,” MARK 'S08; ard RTTxmstructnons are |mplemented

in the PDP- 11/34 11745 and 11/55

—The SPL instruction is implemented only in the PDP 11/45 and PDP
11/55. The MFPS and MTPS instructions are implemented only in the

PDP-11/34.
SINGLE OPERAND

. Mnemonic Instructiop
General ) .
~ CLR(B} clear destination ...
© COM{B) complement dst
- INC(B) incrémentdst......
DEC(B) decrement dst ...
- NEG(B) negate dst .........
TST(B) test dst ...t
Shlft & Rotate . .
ASR(B) arithmetic shift right ... ... . ...
ASL(B) arithmetic shift left
ROR(B) rotate right .................
ROL{B} rotate left ..._..............
SWAB - swap byles ... s
Muitiple Precision
ADC(B) add Cary . oooeeriecieecciiiiiiire e s eaee
SBC(B) subtract carry
A SXT sign extend .
MFPS move byte from processor siat;:, ,,,,,,,,
"MTPS

move byte to processor status _ ...

‘DQUBLE OPERAND -

General o
-MOV(B) move source to destination ...,
CMP(B) compare src to dst ...
ADD add src to dst ... RRSSNUOUOTN
SUB - subtractsrc fromdst ... ...
Logical -
BIT{(B} bit test ...
BIC(B)  bit clear .
BiS{B)  bhit set ... .
A XOR exclusive OR ..ocoivriiiecee e,
‘ 4-4

Op Code

&05S00D
»0510D
05200
50530D
a054DD
@0570D

®062DD
2063DD
aQ60DD
s061DD
00030D

a055DD
r0560D
0067DD
wl0670D
sl0645S

s155DD
w2S5DD
065SDD
165SDD

a3SsDD
u4SSDD
u555DD

074RDD

Page

£6
4-7

4-9
4-10
4-11

4-13
4-14
4-15
4-16
4-17

4-19
4-21

4-22
4-23

4.25

l".
(]

PROGRAM. CONTROL

45

_ )
-. .Mnemonie .. .Instruction . . Op .Code
. . - or
' Base Code Page
Branch .
BR branch (UI‘ICOI‘IdIhOI‘laI) ........................ 000400 4-35
BNE branch if not equal (to zero} .... 0601000  4-36
BEQ:- - branch if equat (to zero) ......... 001400 4-37
BPL . branch #f plus ....oooooooeveevrrere o 160000 4-38
BMI branch it minus .........ccoovvnn 100400 4-39
- BVC branch if overfiow is clear.,.................. 102000 4-40
s BVS . branch if overfiow is set .................. 102400- 4-41
BCC - branch if carry is clear . 103000 442
BCS branch if carry is set .........cooveve oL, 103400 443
Signed Conditional Branch
BGE branch if greater than or equal
(10 ZEro) .o 002000 4-45
- BLT "~ branch if less than (zero) .................... 002400 4.46
BGT branch if greater than (zero) ................ 003000 447
BLE branch ifless than or equal (to zero) ... 003400 4-48
Unsigned Conditicnal Branch.
BHI branch if higher ... 101000 4.50
BLOS branch if lower or same ... . 101400 4.51
BHIS branch it higher or same ............-.. . 103000 4-52
BLO _ branchiflower ............ ... 103400 4.53
Jump & Subroutine
JMP JUMD e 00010D 4.54
JSR jump to subroutine ... 004RDD 4-56
RTS teturn from subroutine 00020R - 4.58
AMARK ™ mark ..., 006400 4-59
A S0B subtratt one and branch (lf = 0) ........ Q77R00  4-61
* SPL set priority level ., - veeeneneeee O0023N 4-62
Trap & Interrupt .
EMT emulator trap ...............ccoceeee. 104000—104377 4.63
TRAP trap e, v 104400—104777  4.64
BPT breakpoint trap ........oooeceveiierie 000003 4-65
107 input/output trap ..o 000004 4.65
RTiH return from interrupt ... . 0. 000002 467
ARTT return from interrupt ... 000006 4-68
MISCELLANEQUS
HALT hait s gt 000000 4-72
WAIT  wait for interrupt ... . 4 000001 4.73
RESET  reset external bus 000005 4-74
.Conditien Code Operation o S
CLC, CLY, CLZ, CLN, CCC clear 000240 4.75
SEC, SEV, SEZ, SEN, SCC  set 000260 - 4-75



4.4 SINGLE OPERAND INSTRUCTIbNS

CLR L

CLRB R

clear destination . l 05000
[::yocJOco‘o'ooauuuu'a"]‘
1 4 ¢ 1 'O SR i PRV T
o .o 5 5 0
- Operation: (dst)«C _
Condion Codes:  N: cleared
Z: set
¥: cleared
C: cleared - \
Description: ‘Word: Contents of specilied destination are replaced with ze-
roes.
Byte: Same -
Example: : CLR R1
- Before l Ater
(R1) = 177777 (R1) = 000000
NZIVC NZVC
1111 ) 0100

26

com .
coMB

complement dst ) " “a051DD

15
Operation:
Conditioh Codes:

Description:

Example:

" Joiv e 0o 6 1 0 v 0To t]d e @ 6 @ o
,LJ_x__.__J-n‘l,;r..J-,lj

(dstye~(dst)

N: set if most significant bit of result is set; cleared otherwise
Z: set if result is O; cleared otherwise

V: tleared ’

C: set

Replaces the contents of the destination address by their log-

ical cornplement (each bit equat to O is set and each bit equal
to 1 is cleared)

Byte: Same
. "COM RO
) Before . After

(RO) = 013333 (RO} = 164444

NZVC NZVC

0110 : 1001

C
(a3
\

4.7



- 0000

A -
TINCL : '
' -iricrement dst o, . .' ' . ) ‘=052D0 |
©. 6 0 1. 0 1 .01 Oold o -d d 4 @
F‘] i i 1 =5 | i l ol ‘.—l T | l
— .15 ’ 6.9 - . :o
'bpe'f'p'_tion:--_ C .(ds'lk(ast)*l . R _' v
. Condition Codest | . N: 32t if result 14 20; clearéd otherwise. .. _
T . 70 st if resuit is 0;-cleared otherwisé’ .
.v setif (asy) heid: 07?777 (word) ar 177 (b}ﬂe)
. cleared o’hermse s .
C .not aﬂec:ed . "«
" Descriptioﬁ:" - ‘Word: Add one {o.ccrnlmtsoldestmatmn P
. ! ;Byte “Same . L s .
e Example: 'ING'RIE .
. " Belore - Atter
- _(R2) ~-000333 ) {R2) = 600334
' NZVC .. . " ‘NZVC
- - ..0000

Lot

'i. i
]
' ' DEC
DECB
decrement dst "253DD
en 0 e ot 0 _ 1 o'}y |Ic d ¢ d ¢ d
i 1 'l l 1 A 1 e 1 A 1 l - .
15 & 5 7]
Olpealion: (dst)-q»(dst) 1

Condition Codes:

Description: K

Enrnplc'::

N set if result is <O; cleared otherwise
Z: set il result is O; cleared otherwise

V. set if (dst) was 1060000 (word) or 200 (byte;

cleared otherwise
C: not affected

Word: Subtract 1 from the contents of the dessration

Byte: Same
DEC R5
Before Atter
(R5) = 000001 (R5) = 000000
NZVC NZYC
1000 QlccC

*9



'NEG -
NEGB - = -

negate dst . ' - s054DD
0/t 0 O 6 1 o0 1 170 0] & 4 & o 3
r i I 1 1 i L 1 i1 J 1 [ T g ]
15 6 .5 . o]
Operation: (dstye —(dst)

Condition Codes:  N: set if the result is <0: cleared otherwise -
' Z: set if result is O; cleared otherwise
V. set if the result is 100000 {(word) or 200 (byte)
cleared otherwise
C: cleared if the result is O; set otherwise

Description: ' Word: Replaces the contents of the destination address by its
two's complement. Note that 100000 is replaced by itself -(in
two's compliement notation the most negative number has
no positive counterpart).

Byte: Same
Example: . NEGRO
. Before After
(RO) = 000010 (RD)y=177770 - -
NZVC .- NZVC
0000 . 1001
- -

4-10

TST
“TSTB

test dst - nQ57DD

o/f 0 0 o t ©0 ' 1'% 1|6 d ¢ 4 ¢ 4@

l | 1 1 1 i { A1 ] P 1 L ]

15 ’ 6 5 [+]
Operation:

Condition Codes:

Description:

Example: .

| (dst)<(dst)

N: set if the result is < 0: cleared otherwise
Z: set if result is O; cleared otherwise

V: cleared )

C: cleared

Word: Sets the condition codes N and Z according to the con.
tents of the destination address

Byte: Same
TST Rl
. . Before . After
(R1)=012340 (R1) = 012340
NZVC NZVC
0011 c000



Shifts o o .'
Scaling data by factors of two is accomplished by the shift instructions: ",
ASR . Arithmetic shift right

ASL - Arithmetic shift left

The sign bit (bit 15) of the operand is rephcated in shifts to the right. The low

order bit is lilied with O in shifts to the left. Bits shifted out of the C bit, as shown
in the following examples, are lost.

Rotates : _ .
The rotate instructions operate on the destination word and the C bit as though
they formed a 17-bit “‘circutar bufler”. These instructions facilitate sequential bit
“testing and detaited bit manipulation.

412

- -y l} - "-r , ' : : ,
s 0 SR g * ASR
- St P N ASRB
. arithimetic. shift right e ) - 806200
on o0 © O " ‘o, o old ,a. ¢ a ¢ &
=y | L g 1 1 1 Y s 1 N N
T . ) O - o
10 . ..
- - Operation:-

-

-y Fl“‘jlc';n.:'

Condition Codes: - --N: set’if the high-o

. " -cleafed otherwise

_: Ziset if the resuit. -~ 0; cleared otherwise

. V:loaded-from the Exclusive OR of the N-bit and C-bit (as set
- 7 'by the completion of the shift operation)

© %! loaded from low-order bit of the déstihation

. ASR performs-signed di
Word:

)

(dst)«(dst) * shifted .one place 1o the.right.

.'Ei_?["i_.' L1 o OJ-*E]-

'B'y'i_eg

l_l_ 1 I i

fanm

“(D0 ADORESS . .

BEEE

’...-1,,1—‘{3

| '.l_‘m d? sl

EVEN ADDRLSS

[}

~3

.

" “Waord: Shifts 3l bits.of the destination right one plate. 8it 15
++ “~is replicated. The Cibit is loaded from bit O of the destination,
) vision of the-des}ination by two.

rdet bit of-the résult is sét (result < O):

-



" ASL .
ASLB R .

arithmetic_shift left " . =D63DD
o/t .6 © O 1. 1t 0 O 1[4 4 6 4 @ 3
[ J_ ] L J I - l L | [ L L J
s - € 5
Opention' {dst)«{dst) shilted one place to-the jeft

conditmn Codes:  N: set if high-order bit of the result i is set (result < Q); cleared
" otherwise

Z: set if the result =0; cleared otherwise

V: loaded with the exclusive OR of the N-bit and C-bit (as set
by the completion of the shift operation)

C: loaded with the high-crder bit of the destination
Description: Word: Shifts all bits of the destination Ieﬂ one place. Bit Ois
loaded with an 0. The C-bit of the status word is loaded from
the most significant bit of the destination. ASL performs a
signed multiplication of the destination by 2 with overflow in-
dication.

Word:

EP[!.l_L n | IS | A P A 1 x—ih'o

[+] .
. %
Byte: -
- LJ_.__._J_._._J__J‘ B“I ]‘“°
QDO ADDRESS 7 (Vl’.u ADmiSS

4-14 -

rotate right -

. ROR .
SR ' RORB

s060DD

[P/ll o

13

L]
L] 1
1°4°l'l 10_101°l°Idl"dldLLdL"_]
E]

Copdition Codes: " N: sel if the high-order bit of the resufl is set(result < O);

Description:

Example:

cleared otherwise

2: set if a1l bits of result = Q; cleared otherwise

V: loaded with the Exclusive OR of the N-bit and C-bit (as set
by the completicn of the rotate operation)

C: loaded with the iow-order bit o! the destination

, Rotates all bits of the destination right one place. Bit 0 is
loaded into the C-bit and the prenous contents of the C-bit
are loaded into bit 15 of the destmation.

Byte: Same

Word:

@-‘[_ 14.L J;l - 141 S S— | l 1 1 l L j
: 13 I

- L ]

- 415



-

JROL . - .
ROLB :

rotate left ¢ . : 806100
. o .. * 1 0 ©6'0 t]e 4 o ¢ @& 4
O"I OJ q 4 _l L - J B ) ] —t e L l_. - - |
5 6 ' 5 0

. ) i . ) ) . . . et .
ition es: N setif the high-order bit of the destinationis s ‘

Cond Cost (result < Q). cleared otherwise .

Z: set it all bits of the destination - clgared othgrwnse

V: ioaded with the Exclusive OR of the N-bit and C-bit (as set
by the completion of the rotate operation) o

C: Ioaded with the high-order bit of the destination

Word: Rotate all bits of the destination left one place. Bi.t 15 -
is loaded into the C-bit of the status word and the previous
contents of the C-bit are loaded into Bit 0 of the destination.
Byte: Same | .

Description:

Exampie:
Word:
dat

EFD i1 LLALT!L)L[JJ—‘l
T ey

-Byfe_s; E _ .
['l 1 Lo?ol i L'] l:_g 1 foNl 1

Lt L@

|

416

-

swap bjrtes

SWAB

000300

. ) . hY

[010 0
— i
12

Operation: - -

Condition Codes: ~

Description:

Example:

. —
[+] [+] i |Id ! dq dﬁl
bl R T TS
6 ] .

Byte 1/Byte O «Byte 0/Byte 1

N: set if high-order bit of low-order byte (bit 7) of result is set;
cleared otherwise

Z: set il.low-order byte of resull =0; cleared otherwise

V: cleared

C: cleared

Exchanges high-order byte and low-order byte of the destina-
tion word (destination must be a word address),

SWAB R1
Betore After
(R1)=077777 (R1)= 177577
NZVC NZVC
1111 0000
w

4-17



Multiple Procision

It is sometimes necessary to do arithmetic on operands considered as muitiple
words or bytes. The PDP-11 makes special provision for such operations with the
instructions ADC (Add Carry) and SBC (Subtract Carry} and their byle equiva-
lents. B - . . :

For exarmple two 16-bit words may be combined into a 32-bit double precision
word and added or subtracted as shown below: -

i IR JE‘ CR— :
u-:mnr[m a“/ _i‘l [_6 i OJ
RESAT [ . ‘] 71: : o!

Example

The addtion of -1 and -1 could be performed as follows:
-1 = 37777777777

®l) = 177777 (R2) = 177777 (R3)} = 177777 (R4} = 177777

ADD R1R2 ) : .
ADC B3
ADD R4R3

1. After (R1) and (R2) are added, 1 is loaded into the C bit
2. ADC mstruction adds C bit to (R3); (R3) = 0

3. (R3) and (R4) are added

4. Resut is 377777777176 or =2

add carry

ADC
- ADCB.

e055DD

WiOOOIp-li'OtdadduaJ
lln‘l1lll'l'1-|j.t'l

15

Operation:

Description:

Example

-Condition Codes:

8 -] o
(dst)e{dst) +(C)

N: set if result <0; cleared otherwise
set if result =0; cleared otherwise

and (C) was 1; cleared otherwise
set it (dst) was 177777 (word) or 377 (byte):
and (C) was 1, cleared otherwise . - -

&
V: set if (dst) was077777 (word) or 200 (byte)
C

Adds the contents of the C-bit into the destination. This per-
mits the carry from the addition of the low-order words to be
carried into the high-order resuit,

Byte: Same

Double precision addition may be done with the foliowing in-
struction sequence:

ADD -A0,BO ; add low-order parts
ADC Bl . add carry into high-order
"ADD - Al.Bl : add high order parts

Ny



-SBC o
sBCB™ . .

- . Lt :

subtract cérry ) - - . oo 105600
lﬁ 5 o o 1 o0 v 1 Tiv o]e ¢ 4 ¢ 9 o J
J e L I ‘l 1 l . A 1 L l 1 1
.15 . 6 5 . 0
Operation: (dst)e(dst)~(C)

Condition Codes:  N: set if result  O: cleared otherwise

Z: set if resuit &; cleared otherwise

v: set if {dst) was 100000 (word) or 200 (byte)
cleared otherwise .
‘set if (dsty was O and C was' 1; cleared cthitwise”

¢

Description: Word: Sublracts the contents of the C-bit from the destina-

tion. This permits the carry from the subtraction of two low-

order words to be subtracted from the high order part of the

result.
Byte: Same
Example: - ' Double precision subtraction is done by:
SUB "ADBO
-SBC Bl
SuB AlBl

4-20

SXT

.. Used in.the PDP-11/34, 11/45 and 11/55

‘sign extend ' 0067DD
¢ 0 0 0 1 1 o2+
] i 1 | o, 1 ]_ 'y i 1 i 1 ¢ 1 ¢ l d' 1 ¢ 1L ¢
I o6 0
Operation: (dst) « O if N bit is clear

{dst) <t=-1 N bit is set

Condition Codes: . . unaffected

: set if N bit clear
) cleared
"C: unaffected -

Nz

Dgu;n_-iption: - If the condition code bit N is set then a -1 is placed in the
* destination operand: if N bit is dear, then a 0is placed in the
_ destination operand. This insteuction is particularly useful in
multiple precision arithmetic because it permits the sign to

be extended through multiple words.

11

421, S



.
>

Used in the PDP-11/34 "MFPS’ MTPS Used in the PDP-11/34

move byte from processor status word ' . 10670D- - - mave byte to processor status word-- - ' " 1064sS

_‘ll.n"o’D.I1II‘O|FJIllldldldJl‘d‘dl»‘___. - [, e o 0 1 3 o ile o . . :
- i . b i T N 4 . .ll'.’_..

Operation: dst) « PS <07 . : : ion: R

g (dst I)ower__B éts z . Operation: PS <0:7> + (SRO) - oo
_ ! A . .. . . Candition Codes: Set according to effective SRC operand bits 0-3.

Condition Code :

Bits: ’ — set if PS bit 7 = I; cieared otherwise

— setif PS <0:7> = 0; cleared otherwise —- .
V = cleared ! . . .
: arec . Description: The 8 bits of the effective operand replaces the cur-

C = not affected
‘ Jent contents of the PS < 0:7>. The source operand

address Is treated as a byte address.

Description: “The'8 bit conténts of the' PS are'mbved to the effec. _ '  Note that-the: T-bit+{PS:bi . .
, tive destimation,'If destination"is mode O, PS bit 7 is instruction. .. The. séc',._.;,bp";,:f,;a inot be set with this.
“sign’ extended ‘through-thie .upper:byte of the register. - This instruction can be used to change the rioritygbitr;
The destination operand address is treated as a byte (PS5 «<5:7>) in the PS P
address. B : )
Example: MFPS RO
before o after
RO (0] . RO [000014]
PS [000014) PS {000014]
£ -
I
oo
4.22
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L ' | MoV
L . : N TS R ' | - MOVB

move source to destination 815SDD
Fnoo1J|‘sfr.s[dcca¢aJ
L1 i L . | i N Al i 1 1
. 3 21 € 5 - 0
) . ) v . . . . Operation; {dst)(src)
y o= B . . - ) ’
. Condition Codes: N: set if (sre) <0 clezred :
. d " © I set if (src) = 0; cieared
4.5 DOUBLE OPERAND INSTRUCTIONS _ : ) g ?\l:?raegected
Double operand instructions provide an instruction '(and time) saving facility . . T AR
since they eliminate the need for “ioad“and “‘save™ sequences such as those Description: Word: Moves the source operand te the destination location.
used in accumutator-oriented machines. The previous contents of the dest=ation are lost, The con-
tents of the source address are nc: affected. -
Byte: Same as MOV. The MOVB to a register (Lnigue among
byte instructions) extends the mos: sigraficant bit of the low
order byte (sign extension). Othe~mse MOVE operates on
bytes exactly as MOV operates on words.
] Exampie: ) . MOV XXXR1 : toazs Register 1 with the con-
N .- _ tents of memory location; XXX recresents a programmer-de-
- > fined mnemonic used to represer: a memory location
, MOV #20.RO i lozds the number 20 into
Register O; " # “indicates that the value 20 is the operand
MOV @ # 20,-(R6) I pushes the operand con-
tained in location 20 onto the stashk
MOV (R6) +,@ # 177566 : pops the operand off the stack
and moves it into memory location 177566 (termina) print
‘ . butfer) '

MOV R1,R3 : performs an inter
register transfer

Movs @#177562,@# 177565 : moves a character
from terminal keyboard butter to terminal printer butfer

[
4.24 4.25 [




-

CMP .
'CMPB

compare sr¢c to dst-

Oi|ls PR T ildld.dt‘ldl"J'

1 1 [l ) -

. 'IBI‘ 4] 1
| ST
15

Operation:

Condition Codes:

A

Description:

TRT - 6 5 e

(src)-(dst)

N: set if ~esuit «<0: cleared otherwise

7: set if result =0; cleared othermise

V- set if there was arithmetic overtiow; that is. operands were
of opposite signs. and the sign of the deshna_tjon Was thq
same as the sign of the result; cleared otherwise _

C: cleared if there was a carry from the most signiticant bit of
the result; set otherwise ‘

'

Compares the source and destination operands and sets the
condition codes, which may then be used for arithmetic and
logical conditional branches. Both operands are unaffected.

. The only action is to set the condition-codes. The compare is
customarily followed by a conditional branch instruction.
Note that unlike the subtract instruction the order of oper-
ation is {sre)-(dst), not (dst)-(src). -

4-26

add src to dst

ADD

) 06SSDD

[o 1 1_01! D nlt da & o ¢ dJ
1 1 A N | 1 - N L. "
15 e

Operation:
Condition Codes:

Description:

' Examples:

12

H 0

{dst)e{src) + {dst‘)

N set if resull <0; cleared oterwise

Z: set if result = O; cleared oinerwise

V: set if there was arithmetic overflow as a result of the oper-
ation: that is both operands were of the same sign and the
result was of the opposite sign; cieared otherwise

C: set it there was a carry irom the most significant bit of the

_ result; cleared otherwise

Adds the source operand lo the destination operand and
stores the resuit at the destina:on address. The ariginal con-
tents of the destination are lost The contents of the source
are not affected. Two's compisment addition is performed.

Add to register: ADD 20.RO
Add to memaory: ADD RLXXX
Add register to register: ADD RIR2

Add memory to memory:  ADD@ # 17750,XXX

XXX is a programmer-defined mnemonic for a memory loca- -~
tion.

PT

4-27



suB | N SN

_ subtract src from dst . ) 165SDD
.‘ - — -
; ' . 6 ¢ o 6 d ﬂ'
‘V‘L'1|_1°Fn‘l‘|'.'+‘l'l L J .
= Tz on & 5 o .
Operation: (dst)}«{dst)-(src)
Condition Codes:  N: set if result <(: cleared otherwise o L J ) . . .
Z: set if result =0 cleared otherwise . v , . .
V: set it there was arithmetic overflow as a result of the oper. - R '
ation, that is if operands were of opposite signs and the sign :
of the source was the same as the 51gn of lhe result: cleared ) s
otherwise ’
- C: cleared if there was a carry from the most significant bit of v .
the result. set otherwise .o Logical
: - These instructions h '
Description: Subtracts the source operand from the destination operand ave the same format as the double operand arithmetic group.

om. They permit rations on
and leaves the result at the destination address. The orignial 4 ope on data at the bit level.

contents of the destination are lost. The contents of the
source are not affected. In double-precision arithmetic the C.
bit. when set, mdncates a “borrow’’,

Example: o SUBRLR2 —

Befare Atter

{(R1)=011111 : (R1)=011111

(R2}=012345 (R2) = (001234 i
NZVC NZVC

1111 0000 ) h

|

428 o _ Y]




bt test RS 03SSDD .
Fn. o 1 1T1 s v v s s I d d d d- 48 dJ .
" 1 L1 L 1 i 1 1 —t 1 1 A
15 [EE 6 9 [
" Operation: - (src) A (dst)
Condition Codes: N: set if high-order bit of result sel: cleared otherwise
Z: set if result = 0; cleared otherwise
V. cleared
C: not affected
. °
Description: *  Performs Iogical ™ and“comparison of the source and desti~
nation operands and modifies condition codes accordingly.
Neither the source nor destination operands are affected.
The BIT instruction may be used to test whether any of the
- . correspanding bits that are set in the destination are also set
in the source or whether all correspondding bits set in the des-
i tination are clear in ihe source.
-~
Example: " BIT #30R3 i test bits Jand 4 of R3 to see

. it both are off

(30),=0 000 000 000 011 00O

- 4-30

BIC

BICB
bit clear B4S5DD
[on 1 [« o ] s s » LN ] d d4 4 d d d
| — | Y :
< 1"2 - ] ’5 ] - ! | _L?J
Operation: {dst)e~(src)Aldst)

Condition Codes:

’

Description:

Example:

N: set if high order bit of result set; cleared otherwise
Z: set il result mQ: cleared otherwise

V: cleared

C: not affected

.Clears each bit in the destination that corresponds to a set

bit in the source. The originz! contents of the destination are
lost. The contents of the source are unaffected.

BIC R3.R4
Before After
(R3) = 001234 (R3)=001234 -
(R4)=001111 7 (R4) = 000101
NZIVC NzZVC .
1111 0001
Before: (R3)=0 000 001 010 €11 100
{R4)=0 000 00! DO1 001 001
After: _ (R4)=0 000 000 001 00O Q01
(1
P iy

(o)
431



BIS

BISB - - " -
* bit set .5550’?
AR O R
15 1z un & 5 o
© Operation: {dst){src) ¥ {dst)

N: set if high-order bit of result set, cleared otherwise
Z: set if result =0: cleared otherwise

V: cleared )

C: not affected

Condition Codes:

Performs “incrusive OR operation between the soufée arid
destination cperands and leaves the result at the destination
address; that 15, corresponding bits set in the source are set

Description:

in the destmaton The contents of the destination are lost.. -

Example: - BiS RO.R1
After
{(RO)=001234, ,
(R1)=001335

Selore
{RQ) = 001234
(R1)=001111

NZVC

' NZIVC
' 0000

0000

(RO)=0 000 001 010 011 100
(R1)=0 000 001 001 001 001

Befare:

After: (R1)=0 000 001 011 011 101

4-32 .

z

Used in-the:PDP-11/34, 11/45-and '11/55
exclusive OR 074RDD
o 1 1y !
LJ L lilo'olr lr‘r[ .d.d Idld|d-l
) ] a 6 [+
Operation; (dst)<Re(dst) -
Condition Codes: N: set if the result <O cleared otherwise
Z: set if result =0: cleared otherwise
V: cleared
C: unatiected
Description: The equ_usiu:g_OR of the register and destination gperand is
. - stored in the destination address. Conlents of register are
unaffected. Assembler format is: XOR R.D
: Example: XOR RO.R2
Before - ) After: .
(RO)=001234 - . (RO) = 001234 .
(R2) = 000325

(R2)=001111 l

Before; (RO)=0 Q0O 001 010 011 100
(R2)=0 000 001 001 001 001
After: (R2)=0 000 000 011 010 101

i
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4.6 PROGRAM CONTROL INSTRUCTIONS
"Branches

The instruction causes a.branch to a location defined by the sum of the oftset
{multiplied by 2) and lhe current contents of the Program Counter if: ‘

a) the branch mstruchon is uncondltuonal

b} it is conditional and the conditions are met alter testlng the aond:tlon -

codes (status word}.

The ofiset is the number of words Irom the current contents of the PC. Note that
the current contents of the PC point to the word following the branch instruction.

Although the PC expresses a byte address, the offset is expressed in words. The
offset is automatically multiplied by two to express bytes before it is added to the
PC. Bit 7 is the sign of the offset. Il it is set, the offset is negative and the branch
is done in the backward direction. Simbarly if it is not set, the oﬂset is positive
and the branch is done in the forward direction.

The B-bit offset allows branching in the backward direction by 200, words (400,
bytes) from the current PC, and in the forward d:reclu:n by 177. words (376.
byles) from the current PC.

The PDP-11 asserbler handles address arithmetic for the user and computes and
assembles the proper offset field for branch instructions in the form:

Bxx loc

Where "“Bxx'" is the branch instruction and “loc" is the address to which the
branch is to be made. The assemnbler gives an error indication in the instruction if
the permissable branch range is exceeded. Branch instructions have no etfect on
condition codes.
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BR

branch {unconditional) 000400 Plus offset

1.00000001 (e -
Jl_l.lill] IESET 11

5. 8 7 [+]
Operation: PC « PC + (2 x offset)
Description: " Provides a way of transferring program contro1 within a

range of =128 to + 127 words with a one word instruction.

New PC address = updated PC + (2 X offset) .’ '
Updated PC = address of branch instruction 52

Example: With the Branch instruction at location 500, the following off-

sets apply.

New PC Address . Offset Code Offset (decimal)
474 . 375 —3
476 ’ 376 —~2
500 377 Ve -1
502 . {000 ' ]
504 001 +1
506 . 002 +-2

™
; peb
. 09
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BNE . - .

~ branch if not equaf (to zero)
90 00 0 0 1t o .
[0 1 L 1 1 n n 1 F L 1 OF‘FSET | L 1 l
15 B T . o

~ Operation: PC «PC + (2xoffset) if Z = O

Condition Codes:  Unaffected X
Description: Tests the state of the Z-bit and causes a branch if the Z-bit is
: ;lear:_'BNE is the complemeniary operation to BEQ. It is used

td test inequality foliowing a CMP, to test that some bits set

in the testnation were also in the sburce, lollowing 3 BIT, -

and generally, to test that the result of the previous oper-
ation was not zero.

Example: CMP AB :compare A and B
BNE ¢ : branch if they are not equa!

will branch to Cif A -,"-' B

and the sequence

ADD AB . raddAtoB .
BNE C . ' : Branch iLthe result is not

equalto O

will branch to Cif A + B # 0

4-36

001000 Plus offset -

BEQ

branch if equal (to zero) 601400 Plus ottset

¢ ¢ 0 o0 o o0 v FF
i | i 1 1 1 1 i L 01 SEJ.T 4 J
15 -] T . )
. Operation: © PCePC + (2x offset} if I =1

‘Condition Codes:  Unaffected -
Description: Tests the state of the 2-bit and causes a branchif Zis set. As

. an example, it is used to test equality following a CMP oﬁer-
ation, to test that no bits et in the destination were also set
in the source following a 81T operation, and Bererally, to test
_ ‘2t the result of the previous operation was zerp. '

Example; CMP -AB

. compare A 2
BEQ C wbitoty

; branch if they ars equal

willbranchto CifA = B A-B =
and the sequence ( 8-0

ADD AB ' ‘addAtoB
BEQ C s branch if the res.it w0

_ will branch to Cif A + B = 0.

T
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BPL

. branch if plus

100000 Plus offset

OFFSET

Opecation:

Description; -

~

BVC

branch if overflow is clear .

L‘_x i

"PC «PC + (2 xofise; il N=OQ

Tests the state of the N-bit and causes a branch if N is-"
clear, (positive resuit). .

1062000 Pius offset

1,0 0 0,0-1 O 0 FSET
{ 1 s l . i 1 | ?F 5.E |
[ ] . 0
Operation: PC «PC + (2 xolsettif V=0
Description:

Tests the state of the V bit and causes a branch if the V bit is
clear. BVC is complerentary operation to BYS.

1 l-_LJ- - .
0

BRI
o BMI
branch if minus | _ . o 1060400 Plus offset
1 0 o :
l -1 e, l_o _Lo'_a 0 L ° JJ l a1 OfFSEI ) I " j
15 e 1 o

Operation;

Condition Codes; -

" Description:

branch if overflow is set

PC «PC + (2 x offset) if N=1
Unaffected

Tests the state of the N-bit and causes a branch if N is
set. It is used to test the sign (most significant bit) of
the result of the previous operation), branching if neg. &

ative. o

{1

BVS

102400 Pius offset

i 0 ¢ 0 0 1 Lot l OFFSET J
| 1 L | L —l | 1
15 8 7 3}
Operation: ‘PC4PC + (2xolfsét)if Vm1l
Description: Tests the state of ¥ bit (overflow) and causes a branch if the

V bt is_sel. BVS is used to detect arithmetic overflow in the
previous operation.



branch if -carry is clear 103000 Plus offset-

branch if carry is set 103400 Plus offset
- : "[t,0 0 0 0 1 1 1 OFFSET N
f\lo'oloj°’71111°l N 1°fFET , N —1 Ll 1 L 1 AT I | ] a1 " E1 | L 1 —I
15 ) s 7 o : L . . 8. T . . o
. Operation: PC « PC- + (2 x offset) if G =0 S Operation: - PC<PC + @xoffse) it Cm1
Description: Tests the slate of the C-bit and causes a branch if C is clear. senption: Tests the state of the C-bit 8nd causes a branch if C is set. it —
° BCC is the complementary operation to BCS . ‘asti::‘eq to test for a carry in the result of a previous oper-

&o
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- - . -

Signed Conditional Branches

Particular combinations of the condition code bits are tested with the signed con-” -

‘ditional branches. These instructions are used to test the results of instructions in.

which the operands were considered as signed (two’s complement) vatues.

Note that the se‘nse of signed comparisons difters from that of unsigned com-

. parisons i that in signed 16-bit, two's complement arithmetic the sequence of

values is as follows:

largest 077777
- : 017776 .
positive .
000001
1777171 - N
177776 .
négative
100001
smaliest 100000

whereas in unsigned 16-bit arithmetic the sequence is considered to be

highest 177777
. ~‘_'
00002 )
000001 . T,

lowest - 000000 S

4-44

branch if greater than or egual

(to zero)

BGE

. . 002000 Plus otfset

loJolo

15

Operation:

Description:

e, 0 ' ¢c,o0 . OFFSET
: !alr . L ‘JTI.

PC s PC +Zrofise) it NvwV = 0

Causes 2 branth if N and V are either both clear or both set.

BGE is t~e complementary
always cause a branch w
caused acgitor of two

2 branch

on 3 2e1Q result,

445

operation 10 BLT. Thus BGE will
hen it foliows an operation that

positive numbers. BGE will also cause

o



‘002400 Pius offset

1 FFSET

[oj0, 9,950, v o) L OFFSET | |
15 8 T - : °

Operation: ., PCePC + (2xoftsey if NwV = 1

.i; Causes a branch it the “Exciusive Or'of the N and V bils are
- 1. Thus BLT will always branch iollowing an operation that -

added two negative numbers, even if overflow occurred, -
In particular, BLT will always cause a branch it it follows a
CMP instruction operating on a negative source and a posi.
tive destination (even if overfiow occurred). Further, BLT wily
never cause a branch when it follows a CMP instruction oper.
ating on a positive source and negative destination. BLT will
not cause a branch if the result of the previous operation was

' zero (without overfiow). : .

Description:.

BLE

branch it iess than or equal (to zero). 003400 Plus oifsgt
OFFSET
LOIOIO(OIOI1L‘-L‘J_L .l b S L ) S Y lo

Ity e 7T ©

Cperation: PCaPC 4+ (2xoffset)if Zw(Nw Vi=l '

Operation is similar to BLT but in addition will cause a

Drescription: : ;
branch if the result of the previous operation was zero.

,

B

branch if greater than (zerg)

{BGT

003000 Plus offset

.0 0 o,K6 0
L I i 1 l o | ! L ! I ° " l (TFSEIT l 1 ‘}
T 8 T : o
Operation: PCPC + (2x oifset) it Z w(N v V) =0 ’
Operation of BGT is simitss to BGE, except BGT will not-cause

Description:

f

Unsigned. Conditional Braniches

The Unsigned Conditional Branche

tomparison operations in which the

* & branch on'a zero resuit

s provide a means for testing the'l:esuil of
operands are considered as unsigned values.

AY

*a
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BHI -~ =~ . -

' lbra'r:|ch if high-e'r' 101000 Plus offset-

]

]

{100 040 0 tjo| | OFFsET |
.8 7

- . PCwPC + {(2xotiset)if C=0Q0andZ=0

Causes a branch if the previous operation causec} neither a2
carry nor a zero resuit. This will happen in comparison {CMP)

- ) operations as long as the source has a higher unsigned valueh

than the destination. ’

BHIS

branch if higher or same 103000 Pius offset

FESET
s | S L i ' | 0. - 1 1 ]
15 - T )
Operation: PC«PC + (2xoffsel) if C = 0O
Description:

BHIS is the same instruction as BCC. This mnemaonic is in- -
cluded only for convenience.

branch if jower or same

" et . N
101400 Plus oifset

I AP L ofFsEeY o
15 e 7 0
Operation: . PCePC + (2xoftse) i1 CvZ = 1
. Description:

Causes a branch if the previous operalion caused either a
-€arry or a zero result. BLOS is the complementary operation
to BHL. The branch will occur in comparison operations as

long as the source is equal 10, or has'a lower unsigned value
than the destination,

BLO

branch-if lower 103400 Plus oifset

1,8 0 0 o0 1 1 1 * OFFSET A -
.| i i i I ] i H L i i 1 L - i
15 6 7 0
Opefalion:_ PC « PC -+ (2 x offset) if C-_!
Description:

BLO is same instruction as BCS. This mpemonic is included
only for convenience,

S
{51

BLOS

9%
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jump
o 0 o0 0o~gQg"' 0 O © "0 1 {d ¢ a4 ¢ o 4
.l 3 - l L L l A ke, L A l i L
15 6 -5 4]
Operation: PC«(dst)

* Condition Codes:

Description:

not affected

JMP provides more flexible program branching than provided '
with the branch instructions. Control may be transferred to

any location in memory (no range limitation) and can be ac-

complished with the fuli flexibility of the addressing modes,

with the exception of register mode O. Execution of a jump

with mode D will cause an “illegal instruction”condition.

{Program control cannot be transierred to a register.) Regis-

ter deferred mode is legal and will cause program control to

be transferred to the address held in the specified register.

Note that.instructions are word data and must therefore be

tetched from an even-numbered address. A ‘boundary er-

ror”trap condition will result when the processor attempts to

fetch an instruction from an odd address.

Deferred index mode JMP instructions permit transfer of

control to the address contained in 2 selectable element of 3
table of dispatch vectors. :

4-54 .

'S

Subroutine Instructions - .

I;enf:lazrg;:t::‘ed c::ilitri\ pilhe P:'.)P-l_l provsides fOE automatic nesting of subroutines.
' , e entry points. Subroufines may call other subrouti 7
tsr:deed themselves) to any leve! of nesting without making speciaf prg:its';e: ggr
int::rage or return addresses at each level of subroutine call. The subroutine call-
regrl‘?echamsrq does not modify any fixed tocation in memory, thus providing for

rancy. This aliows one copy of a subroutine to be shared among several in-

terrupting processes. F i e .
coe Chap%e': by or more detailed description of subroutine programming
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JSR - .

jump to .subréutine

004RDD

-]

Operation:

Description:

- R
o \
r_ 1910L0J110'0‘[LL1 r_L‘_:_d_j_d_ld_.d.d—J
9 & 5

. ¥(SP)ereg

reg«<PC

In execution of the JSR. t=¢ old contents of the specitied reg-
Cister (the “LINKAGE POINTER™) are automatically pushed
‘onto the processor stacs ana new linkage information placed

" interrupt sérvige routine. Execution of the initial subroutine

[+]

{push reg contents onto processor stéck)

(PC helos location foliowing JSR; this address
. NOw. puln reg) . ..
PC=(dst) (PC now points to subrou;ine destina(ioni.

in the register. Thus s.orou nes nested within subroutines
to any depth may ail be zaied wath the sarme linkage register.
There is no need either = pian the maximum depth at which
any particular subroutr2 wii be called or to include instruc-
tions in each routine to save 2nd restore the linkage pointer.
Further, since all linkagas are saved in a reentrant manner
on the processor stack sxecution of a subroutine may be in-
terrupted, the same susroutine reentered and executed by an

can then be resumed wren piner requests are satislied. This
process (called nesting’ can proceed to any levei.

-A subroutine called wit a JSR reg.dst instruction can access

the arguments followi-z tre call with either autoincrement
addressing, (reg) +, (i arguments are accessed sequentialiy)
or by indexed addressi=g. X(reg), (if accessed in random or-
der}. These addressi—g modes may also be deferred.
@l reg) + and @X(rex! # the parameters are operand ad:
dresses rather than the operands th_emselves.

" 456

Examﬁle:

Before:

After;

JSR PC. dst is a special case of the PDP-11 subroutine call .

suitable for subroutine calls that .tr ]

e, . ~transmit pa
thrgugh the general registers. The SP and the PC ;er::;e c::?
registers that may be moditied by this call. T Y

Another special c;se of th ] io

: 5 e JSR instruction is JSR PC
@':_)(SF)-&- which exchanges the top element of the prccessor.
stack and the contents of the program counter, Use of this

Reulnrn from a subroutine is done by the RTS instruction. RTS
rTg oads the contents of reg irlo the PC and pops lhé to
element of the Processor stack inlo the specified register. °

‘ JSR RS, SBR
®C) Ry Stack
;
R
' ] #1
R5 PC4+2
L'—‘_'—-——

457
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RTS

.return from subroutine

00020R <

Y - . -
E—— o 0o ofr r r]
b1°;°‘°1°.°.°|°,‘,°| 2 L
3

o . MARK

‘-

zUSed:in-the;RDP:11734; 11/45-and'11/55

" mark ’ ) N B '00:64 Nh
6.1 1 0,1 0 B
L°1°.°. ] 1 .°,".“."1","1“;
15 8 T ) o]
Operation: - SP« PC 4+ 2nn nn = number of parameters
PC%R5
R5«(SP) 4
Condition Codes: unaffected
Description:” Used as part of the standard PDOP-11 subroutine return con.
vention. MARK facilitates the stack clean up procedures in.
volved in subroutme exit. Assembler format is: MARK h
Example: - MOV R5,-(SP) . :place old RS on stack
MOV  PL1,-(SP) :place N parameters

;on the stack to be

MOV P2.-(5P)
= ‘ ;used there by the

15 2 0
. Operation:. . PCareg
: reg- (SP)4
Description: Loads contents of reg into PC and pops the top element of
the processor stack into the specified register.
Return from a non-reentrant subroutine is typically made
through the same register that was used in its call. Thus, 2
subroutine called with a JSR PC, dst exits with a RTS PC and
a subroutine called with a JSR RS, dst, may pick up para-
meters with addressing modes (R5)+, X(R5), or @X(R5)
and finally exits with an RTS RS
Exsmple: RTS RS
Before; {(PC) R7 ' Stack
(SP) R6 [Il\ DATA O
o ]
R6 n+2 — | DATA O

458

. :subroutine
MOV  PN.~(SP) ) ) .
MOV  #MARKN,-(5P) places the instruction
:MARK N on the stack
MOV SP RS ;set up address at Mark h in.

. JSR PC.SUB

-~

At this point the stack is as follows:

- QLD RS

P

PN

-MARK N

oLp PC

4-59

struction '
jump to subroutine



And the program is ai the address SUB which is the beginning

tine. o
g'U‘Bh-e subeou -execution of the subroutine it

self

RTSRS | - :the return begins: this causes .
: PC which then results
the conténts of RS to be placeq in the PC w Y
in the execution of the instruction MARK N. The contents 6f
old PC are placed in R5 : |
MARK N causes: {1} the stack pointer to be adjusted to point
to the oid RS value; (2) the vatue now in R5 (the old PCYto be

ptaced in the PC: and (3) contents of the the old RS t_o be
popped Into RS thus compieting the return from subroutine.

4-60

subtract one and branch (if 3 0)

. . 'SOB
“Used in the PDP-11/34, 11745 and 11/55 -

077200 Piis’offset

. )
r . OFFSEY
0 L‘ 1 ' i ! ] ! 1_‘ 1 ! I a4 ! L ' l 1 i 1 L
15 9 @ 6 S 0
Operation: - R« R -1 il this resuit « 0 then PC « BC {2 x offset)

Condition Codes: unaffected

- Deseription:

The register is decremented. If it is not equai to 0. twice the
offset is subtracted from the PC (now ponting to the follow-
ing word). The offset is interpreted as a sixhit positive num-
ber. This instruction provides a fast, eHident method of loop
control. Assembler syntax is:. '

508 R.A

Where A is the address 1o which transfes -5 to be made if the
decremented R is not equal to 0. Note tat the SOB instruc.
tion can not be used to transfer control = the forward direc:
tion.

'4-61



sPL .

- -Used in-the PDP-11/45 and 11/55
Set Priority Level ’ . ’ - 00023N
o 0 . .0 0 0 + 0 0 1 1 ’
L.Jo‘iOJQIOJ i 1 1 i 1 1 4 lnlnjn]
15 : : ] 3y 2 [
Operation: . PS (bits 7-5)«Priority (priority = nnn)
Condition Codes: not affected ,
" Description The least significant three bits of the 'instrucliclp”
' are loaded into the Program Status Word (PS) bits
. 7-5 thus causing a changed priority. The old priority
-7 is lost. ‘ .

Assembler syntax is: SPL N

Note: This instruction is a no op in User and
- Supervisor modes.

Traps
Trap instructions provide for calls to emulators, /0 monitors, debugging pack-
ages, and user-defined interpreters. A trap is effectively an interrupt generated by
software. When a trap occurs the contents of the current Program Counter (PC)
and Program Status Word (PS) are pushed onto the processor stack and re-
placed by the contents of a two-word trap vector containing a new PC and new
PS. The return sequence from a trap involves executing an RT1 or RTT instruc.
tion which restores the old PC and oid PS by popping them from the stack. Trap
vectors are focated at permanently assigned fixed addresses.
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EMT

- 104000—104377

| P T ~ N + TR | I
l L Fl l L o A 0 l 0 1 I 1 Iy I 1
15 8 7 o
Operation: ¥ (SP)ePS
¥ (SPY«PC
PC-+(30)
" PS«(32)
Condition Codes:  N: loaded from trap vector
’ Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector
Description: All pperation codes from- 104000 to 104377 are EMT instruc.
tions and may be used to transmit information to the emulat
ing routine {e.g., function to be performed). The trap vector
for EMT is at address 30. The new PC 1s taken from the word
at address 30; the new central processor status (PS) is taken
from the word at address 32.
Caution: EMT ts used frequently by DEC systern saftware and
is therefore not recommended for general use.
R7, PC DATA 1
- R6, sP
After: PS (32) ‘
I .
pc (30) - I TparAa 1
PS 1

L



" TRAP

trap- .

- . . 104400—104777 -

A5

Operation:

Condition Codes:

Description:

10T

input/output trap

[‘1-9.".1°1".°.°1‘1 el ;1 ]

B 7 c

¥ (SP)=PS

Y (SPle PC
PCa(34)
PS(36; . - “

N: loaded from trap vector

Z: Inaded from trap vector

V: loades from trap vector

C: loadec fron: trap vector

Operation codes from 104400 to 104777 are THAP instruc.’

tions. TRAPs and EMTs are identical in operation, "except
that the irap vector ior TRAP is at address 34.

MNote: Sirce DEC toftware makes frequent use of EMT, the
TRAP insiruction ir recommended for general use.

000004 -
. ’ 0 .0
[ 0 l 0 - 0 1 0 Lo L o e 0 ] o L 0 i o l o L o "l o l 1 A I.J
15 _ 0
. Operation: . ¥ (SP)«PS
¢ ¥(SP}PC
© PC«(20)
PS«(22)

Condition Codes:

Description:

N:loaded from trap vector

Z:loaded from trap vector

V:loaded from trap vector . .
C:loaded from trap vector .

Performs a trap sequence with a trap veclor address of 20,
Used to call the /0 Executive routine 10X in the paper tape
software system, and for error reporting in the Disk Oper- -
ating System, ' -

{no information is transmitted in the fow byte)

| BPT

Description:

return from interrupt

. . breakpoint trap - 000003
— i
[010.01010. 0.010.04010'4_040104'4 ‘I
. 15 0
Operation: ¥ (5P)ePS
¥ {SP)e PC
PG - (14) .
PS = {16} *

Condition Cogles: N: loaded from trap vector

Z. ioaded from trap vector
V: loaded from trap vector

. C: loaded from trap vector

O
W

Performs a trap sequence with a trap vector address of 14
Used to call debugging aids. The user is cautioned against
employing code 000003 in programs run under these de-
bugging aids.

‘(no information is transmitted in the low byte.)

RTI

Description:

Condition Codes:

-7 Used to exit from an interry

000002
¢ 0 0 o !
1 1 i l 0 - e . 0 1 o N ° R o l 0 } ] [s] i 4] 1 [s]
15 - 5 e
¢ o
Operation: " PC#(SPA ~
PS «(SP)a

* N: loaded from processor stack
Z: loaded from processor Stack
-V: loaded from processor stack

C: loaded from processor stack

ot or TRAP service routine. The

PCand PS are restored {popped) lrom the précessor stack.

s
TR e

W
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SRTT X 4_Use.d;ihgmé_-l;pp:le/34,.111145—'éﬁd;‘1'175_5' -

return from interrupt

000006

Operation:

Condition Codes:

Description: |

PC(SPY 4
PS«(5P)a
N: lpaded from processor stack
Z: Inaded from processor stack
V: loaded from processor stack

C: loaded from processor stack

-* This is the same as the RTI instruction except that it inhitits

a trace trap. while RTI permits a trace trap. it a trace trap s

- pending, the first instruction after the RTT will be executed

prior to the next “Ttrap. in the case of the RT{ instruction

" the “T' trap will occur immediately aftef the RTI.
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Reserved Instrustion Traps - These are caused by-attempls to execute instruction

codes reserved 1or future processor expansion (reserved instructions) or rnstruc-

. tions with illegal addressing modes (illegal instructions). Order codes not torre

. sponding to 2ny of the instructions. described are considered to.be.reserved in’

2 rstructions. ZIMPiandSSRawith:register mode:destinations:are-iflegal instructions.

1+ FReserveg :and ‘iHegal:instruttion traps-occur :as described :under:EMT.2but trap
through vectors at addresses 10 and 4 respectively,

Stack Qverflow Trap -

Bus Error Traps - Bus Error-Traps are:
1. »B.ol.indary Errors - attempts to reference instructions or word
uperands at odd addresses.

2. Time-Out Errors - attempts to.reference addresses on the bus
that made no response within a certain length of time. In general,

= these are caused by attempts to reference non-existent memory,
and. attempts to reference non-existent peripheral devices.

Bus erfor traps cause processor traps througn the trap vector address 4.

Trace Trap - Trace Trap enables bit 4 of the PS and causes processor traps at
the end of instruction executions. The instruction that is executed after the in-
struction that set the T-bit will proceed to completion and then cause a processor
trap through the trap vector at address 14. Note that the trace trap is a system
debugging aid and is transparent to the general programmer.

The following are special cases and_are detailed in subsequent paragraphs,
1. The traced instruction cleared the T-bit.
2. ;I'he tracIed instruction set the T-bit.
3. The traced instruction causec 2n instruction trap.
4. The traced instruction caused a bus error trap.
5. The-traced instruction caused a .stack overflow-trap.

6. The process was interruptoti between the time the T-bit was set and the
fetching of the instruction thal was to be traced.

7. "The traced instruction wos & WAIT,
_ B. The traced instruction was & HALT.

9, The traced instruction was a Return from Trap

V%

- Nete:The traced instruction:is the instruction after the -onethat sets the 1-bit.

© & g eAn instruction that cleared.the T-bit - Upon-felching'the tracedsinstruction an in-

ternal llag, the trace lag, was set. The trap will still occur at the end of execution
of this insirection. The siacked status word, however, will have a clear T.bit.

An instruction that ‘sei the T-bit - Since the T-bit was aiready sel, setting it again
has no effect. The trap will oacur. : T
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An instruction that caused an Instruction TTrap. The instruction trap is
sprung and the entire routine for the servvice trap is executed. H the
service routine exits with an RTI or in any otiner way restores the stacked.
status word, the T-bit is set again, the insttruction following the traced .
instruction is executed and, unless it is onee of the special cases fhoted
above, a trace trap occurs. - .

An instruction that caused a Bus-Error Trayp. This is.trealéd as an ln-
struction Triap. The only difference is that the error service is not as
likely to exit with an RTI, so that the trace tirap may not occur,

An instruction that.caused a stack overflow.. The instruction completes
execution as usual—the Stack Overflow dioes not cause a trap. The
Trace Trap Vectdr is loaded into the PC and: PS, and the old PC and PS
are pushed onto the stack. Stack Overflow Wwecurs again, and this time
the trap is made.

An interrupt between setting of the T-bit amd fetch of the traced intruq-
tion. The entire interrupt service routine is ‘executed and then the T-b!t
is set again by the exiting RTI. The traced! instruction is executed (if
there have been no other interrupts) and, unless it is a special case
noted above, causes a trace trap.

Note that interrupts may be acknowiedged irmmediately after the loading
of the new PC and PS5 at the trap vector lowcation. To iock out all inter-
.rupts, the PS at the trap vector should raise the processor priority to
level 7,

A WAIT. The trap occurs immediately.

A HALT., The processor halts. When the comtinue key on the console is
pressed, the instruction following the HALT is fetched and executed.
Unless it is one of the exceptions noted ab\ove, the trap occurs imme-
diately following execution. -

A Return from Trap. The return from trap instruction either clears or sets ™

the T-bit. it inhibits the trace trap. If the 7.bit was set and RTT is the

traced 'mstruct:on the trap is delayed until. completion of the next in-
structlon - .

Power Fauhire Trap. is a standard PDP-11 femture. Trap occurs wheneygr
the ACipower drops betow 95 volts or outsitie 47 to 63 Hertz. Two milli-
seconds are then allowed for power down ‘precessing. Trap vector for
power fallure is at locations 24 and 26.

y - 470 - s w0

NP WN e

Trap priorities, in case multiple processor trap conditions occur simul-
*taneously the feliowing order of priorities is observed (from high to low)

11/04. . ce Co .
. Odd Address ) o
. Timeout - - _.M .
Trap Instructions o ) . e EN
. Trace Trap . . o nogwy -
. Power Failure : : -
. - . . .‘im\ o
11/34 .
Odd Address :
Memory Management Vnolanon
Timeout -
Parity Error
. Trap Instruction
Trace Trap .
Stack Overflow
. Power Fail
‘Interrupt -
HALT From Console

COENA!A WL

.

Pt

11/45, 11/55
. Odd Address

Fatai Stack Violation
Segment Violation

Timeout

Parity Error

Console Flag

Segment Management Trap
Warning Stack Violation
., Power Failure ’

WEONONBWN -

The details on the trace trap process have been described in the trace
trap operational description which includes cases in which an instruc-

tion bemg traced causes a bus error, instruction trap, or a stack over-
flow trap.

if a bus error is caused by the trap process handling instruction traps,
trace traps, stack overflow traps, or a previous bus error, the processor
is halted.

If a stack overfiow is caused by the trap process in handling bus errors,

instruction traps, or trace traps, the process Is completed and then the
stack overflow trap is sprung




4.7 MISCELLANEOUS o

HALT

Y - ’ - ’
hait _ _ _ . - . 000000
6.6 0 00 00 00 o
1 el - 3 t o o o o
13 l e WG T .q
o

Condition Codes: not affected
Widn:

contents of RO; the console address lights display the ad-
dres§ after the hall instructicn. Transfers on the UNIBUS are
lgrmunated immediately. The PC paints to the next instruc-
tion to be executed. Pressing the continue key on the consople

causes processor operation to resume. Mo INIT signal-is
given. o :

Note: A halt issued in .a trap

4-72

Cguses the - processor operstion to cease. The console is” °
given control of the bus. The console data lights display the .

Condition COdes.:

Description:

not affected

Provides a way [for the processor to relinquish use of
the bus while it waits for an external interrupt.
Having been given a WAIT command, the processor
will not compete for bus use by fetching instructions
or operands from memory. This permits higher trans-
fer rates between a device and memory, since no
processor-induced latencies will be encountered by
bus requests from the device. In WAIT, as in all in-
structions, the PC points to the next instruction fol-

* lowing the WAIT operation. Thus when an interrupt

causes the PC and PS to be pushed onto the pro-
cessor stack, the address of the next instruction
following the WAIT is saved. The exit from the in-
terrupt routine (i.e, execution of an RTI instruction)
will cause resumption of the interrupted process at
the instruction following the WAIT.

Y
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RESET

reset external bus

‘Condition Codes:

Description:

not affected

Sends INIT on the UNIBUS. All devices on the UNi-

BUS are reset to their state at power up.

.
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C.mdrtion Ccfle' Operstors | C LN
' CLZ

CLV

CLC

CCC

SEN
SEZ
SEV
SEC
SCC

condition code operators 0002XX
L] D
] ¢ 90 0 ¢ o 1 A
[ °a0 000t oyt erfu ey ic]
" 5 4 3 2 1 o
Description: Set and clear condition code bits. Setectable combinatiohs of

these bits may be cleared or set together. Condition code bits
corresponding to bits in the condition code operator (Bits O-
3) are modilied according to the sense of bit 4, te set/ciear
bit of the operator. i.e. sef the bit specified by bit 0, 1, 2 or 3,
it bit 4is a 1. Clear correspondmg bits if bit 4 = 0,

Mnemonic
Operation OP Code
CLC ClearC 000241
CLV Clear V 000242
‘CLZ Ciear 2 000244
CLN * ClearN - ¢ 000250
SEC  SetC 000261
SEV  Sety 000262
SEZ SetZ 000264
SEN.  SetN 000270 &'
sCC Set all CC's 000277
CCC  Clear al-l. cC's 000257
Clear V and C 000243
NOP  No Operation 000240

Combinations of the above set or clear operations may be ORed together to form
combined instructions. .
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¥

f) Se compila el rrodrama.

g4) Se lidga el srodramsa.

Se requiere de aldunas bibliotecas v pgrecificaciones
esreciales. Con el obdeto de facilitar la lida wtilizamos un
comando indirecto. '

h) Se invoca al mane.dador de la base.

TOTAL

TOT o i om m o omt t m c om jae da el nombre de la base.

10T/ sterminag la llamada w el maneJador ests listo,

i) Se corre el eprograma de arlicacion.

RUN w==m—mm o e——— snombre del Frodrama.

J) Fara desactivar el manedador,

ENDTOT

ENTER~DNATA-BASE-NAME?!  —~=———m=—————- /FW inombre w
rascword de la base.



Led

VI.- Oreracidn.

“ )
I§ ‘a) Con el editor de texto se construse el esauema de
acuerdo 3 las instrucciones del lenduaJe de manirulacién de
datosi - El : archive se recomiends que tendga como extension

.Vodbﬁ.o. I . L.

EQIT ==—ew—— +IBG (RET).

b) Con el srodrama DBG se comrila el escuema. Este
rrodrama verifica el escuema 9 deda como salida dos archivos

uno en lengdua.Je ensamblador cusga extensidn es MAC v otro
resultado de la compilacién l1lamsdo LSTFIL.DEG el '‘cuasl
contiene un listado del . esguema fuente v los rosibles

errores.

e e
AN

c) Se ensambla el modulo MAC w deJa un BPChIVD obJeto” en' 
lensuade de maeuina con extensidn 0RJ. : i- -t
. | N

¥

{- ' : .
‘d) -Con el programa F?T se crean los archivos de la base.
' ) s o i '

LI

- f oo s ’
‘
i o . i i AL} .

. FMTJ(RET). Ay
FHT} DB DI;:;?:fT‘-- rnambre del arch1v0 aue contiene el
esauens. s‘ ; ; o | !

ﬁMT> FILES=AtE1“'3cr%é todos }Ps.archivqsrdel'esmﬁema.

fﬁT} LOGﬁ}LESf?Qreaklos archivos de loddin:

FMT> CTRL/Z- itermina FMT. |

que oreran sobre las

FORTRAN s5e
Estos

@) Se escriben los Frodramas

estructuras definidas. Fara hacerlos en
introducen los erogramas con editor con extensidn FTN.

rrodramas deben contemner llamadas a DATBAS.



Cle )

S R TS P P S R S RIS T

B .‘l.

X

Blank
Deleted Record

oo s

Original
4th Reocrd

FIGURE 2-14: DELETE A VARIABLE

A delete function is used to delete the third variable record in
the .chain.  The third record must be rétrieved by the execution
of the Read function before a deletion can occur. After deletion .

the original fourth record becomes the third. The deleted record . ..

will be blanked and is available for immediate reuse.
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A master record is chained to a group of variable records Wlth Te-
spect to control key K.

‘.\3:\-

First

Master X Variabie
Record Record
Last
L -|
¢ "~ FIGURE 2-12: A SINGULAR RECORD CHAIN

*
’

An Add-Continue function will add. a variable record to the bottom
of the chain.

Original Last
Record in Chain

Added Record

AddTCont1nue. - (Becomes Last in Chain)

FIGURE 2-13 ADD CONTINUE.
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Escrito rara el curso de Introduccion & la PHOP-=11»

Educacion Comtirmuwe de 1 F. e TI. UNAM, Jorde I Fuan
ﬂvila. : . PRI e )] e R
H E"‘l'! l.%-*._‘- ~ N ' .,' o | . . o
AFLICACIONES

I.- Arauitectura de las Bases de Datos.
- I'- La

Los sistema de bases de datosr evoluciohasron en  una
Frimera etara u]z) simeles maneJadores de archivos &
mareJadores que rermitieran lidar archivos w roder terner
acceso &8 la informacidn desde oltras aslicaciones. FEn estas
rrimera etara el disefio de una base de datos fue considerado
como la esrecificacion de los redistros w su ordanizacion en
los disrositivos de almacenamiento secundario., Con el obdeto
de meJorar la inderendencia de los datos v estructurar el
rroceso de disefo de uma base da datos en 1971 CODASYL/7OBTE
#roryso una areuitecturs de dos niveles (Esauema-Subescuema)y
la cual fue seduida en 1975 por una arauitecturs de tres
niveles " {Externo~Conhcertusl-Interno’ rroruesto PO
ANSI /X3/5FARC . :

I.1- CODASYL/NBTG.~ La srordeats de este drupro  fue un
Frimer intento ror estandarizer el disefMo de las bases de
datos w de agrurar los asrectos relacionados con el wsuario
en wvarios ‘"subesauemas®r ~mientras aue la vistas total v los

asrectos relacionados con el glmacenamiento fueron
esrecificados en el "espuema®. La seraracion sin embarsgo no
fue comrletas como Fuede ser evidente en alagunas -

instrucciones del lensuade de manirulacion de datos w del
lendguade de definicidn de datos. Esla estructura sBuncue es
la base de sistemas comerciasles rresents ciertos problemas?

a) El disefo de la base no es transrarente al usuarioc ua
aue tiene aue estar enterado de los mecanismos de acceso.

' - i
b)) Cambios en las estratesias de almacenamiento afectan
8l usuario.

¢) Los sistemas estan restringidos al modelo de red.

d) Su oreracion resulta muw eficiente a exrensas de senr
flexible en el diseMo lédico de la base.

I.2~ ANSTI/X3/SPARG . Este HrURQy formuld ura
arauitecturs aue rermitiers una inderendencias comrleta de los
datos. Esto seria lodrade usando tres eseuemas 1 un  eseuUema
externo aue epresentariz al usuario una vista rarcial de los

datos similar al subesauems de codasuly uUn esauema concertual
aue es global el cual rrorarcions una vista imrarcial de todo

el sistemz 9 que es inderendiente de las wvistas de los

usuariosr asi .como del alamcenamiento fisicor ¥ un esauema
interno el cual es un rlan detallado de 1la estructuras de
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TRSDOS kept in memory is unusually small, thus in-
creasing the amount of disk /0. Tv compensate, TRS-
DOS uses a hashing algorithm to speed up searches of
its file directory. In effect, the hashing algorithm breaks
the file directory up into neighborhoods and tells the
opemtmg system in which neighborhood information on
4 Nle is to be found. This speeds up the disk 1/0 some-
what, by cutting the time needed to find the parts of
a file on the disk. But because so much of TRSDOS is
- on the disk, the disk containing the operaiting system
must be kept in the first drive all the time: This is
noticeably less convenient than MS-DOS systems with
large memories that allow the disk to be removed.

Perhaps the biggest disadvantage of TRSDOS is that
it is confined to a single make of machine (plus a couple
of elones). Given the smaller number of machines out
there, there is less softwire available for TRSDOS ma-
chines than therc is for generic CP/M- or MS-DOS-based
computers

This is not to say that TRS-80 users suffer a software
drought; the TRS-80 software market has always been

a lively one. A lot of yrood programs are availuble for
the TRS-80, and most of the popular CP/M applicutions
software is eventually brought over to TRSDOS,

. But we may be seeing the beginning of the end of
TRSDOS. Lust year, Radio Shack replaced the Model
11 with the CP/M-compatible Model 4. (However, little
CP/M software is available on the Mode! 4 formatted

disks.} Although a new proprietary operating system,.

TRSDOS 6.0, comes with the Model 4, it is one that
Radio Shack did not develop. TRSDOS 6.0 is in fact only

a new implementation of Logical Systems' LDOS. Many
industry watchers see this move as 4 strategically -

planned phasing out of TRSDOS,

For now, the future of TRSDOS is somewhat c!oudy.:_ |

1t is unlikely that TRSDOS is going to go away any time
soon; a large number of TRS-80 Model Is and 111s re-

main in use, and good applications software for TRS.. .
DOS is abundant. Supporters argue that TRSDOS is =
superior to CP/M; however, the availability of CP/Mon’
the Model 4 removes a major incentive for companies -

to translate their CP/M programs into TRSDOS

% he Macintosh and Lisa operating systems have
% j little in common with any other microcomputer
XX operating systema They are large, quite complex,
anit work the computer's microprocessor hard. But the

reason for all that complexity is to make life easy for

the user. Ther¢ are no long lists of commands to memo-
rize or elaborate syntactical requirements to follow. In-
stead, the user manipulates the operiting system by
using a mouse to point at icons

Apple-a advanced operating systems are buiit on work
done in the 1970s at Xerox Corp’s Palo Alto Research
Center (PARC). During that period, the teams at Xerox
PARC were developing and refining & vadically different
approach to computers In essence, they were trying to
adapt a computer o the user instead of forcing the user
to adupt to the machine.

Apple applied the PARC approach in designing its
new compuaters that use anew generation of micropro-
cessor, the Motmroli 6RO, The first result wis the Lisa,
4 310,000 business computer Apple introducaed early in
I9%E. Lisa drew rwve reviews from the technical peo-
ple, mixed revicws fron the financial and business press,

and a lukewarm response from consumers. Although

most agreed the Lisa was neat, it was also very expen

sive for a single-user computer. What's more, Lisa was .

slow. *
Apple went back to the drawing board and applied
the lessons learned to the Macintosh. When the Mac

came out carly this year the technical people raved, the:
business and financial press was enthusiastic, and con- -
sumers began ordering Macs like Saturday mght atthe -

Golden Arches.

The most striking feature of the operating systems ‘

on the new Apple computers is their user interface—
the way you make them do things. The interface is non.
procedural and vbject-oriented —in other w ords, the user

concentrates un the job, not how to doit, and gives com-

mands by manipulating objects on the screen. 'Tb open

a file, for instance, you “pull down” a menu and select

options and icuns, such as a file folder, using a mouse-
dirceted pointer and a single button on top of the mouse.

This strategy makes the Muc and Lisa very easy to

learn. With a minimum of instruction, nearly anyone can
start doing useful work on these machines in a matter
of minutes, Some Mac owners even brag that they have
never unwrapped their instruction manuals That may
be a poor way to get the best out of your computer, but
it is a powerful testimony to the system's case of use.
Applications programs for the machines are expucte”
to use the operating systam’s usoer-interfuce routines |
communicate with the user If the seftware compinies
writing the applications go along, it will make applica-
tinns a lob easier for users to learn. So fir, most of the

compiinies that have announced software for the Mue
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SPECIAL REPORT: OPERATING SYSTEMS

the p-System provides utilities called native code
generators which can be used to insert small portions
of machine language into a p-System program,

. ,More interesting is the reason the p-System cannot
oﬁer total software portability. This problem stems from
" 'differences among computers it can't paper over.

r example, most computers produce a display of at
least 24 lines of 80 characters per line. However, the
_ Apple IT has fewer lines and only 40 characters per line.
" As a result, there tend to be two kinds of p-System pro-
_grams: the ones for the Apple Il and the ones for other

_ computers.

The plethora of disk formats used on microcomputers

_.also hinders portability. There are about four dozen of

lhem and they are all incompatible. Softech has tried

d# RSDOS (for Tandy Radio Shack Disk Operating
7 System) i is dec1dedly plain vanilla. It is a blmple,

for home and small business users. It may not be elegant
but it is functional.

TRSDOS was spawned by the TRS 80-Model- I the
first of the allin-one computers to make a major: 1mpact
" The Model I was released in.1977 as.a cassette system
with its operating system in read-only memory (ROM).
'Radio Shack soon offered an optional floppy-disk.drive
for the Model 1, and in 1979, the company .released. its

first full: featured disk operating system, TRSDOS 2 0.
Radio Shack decided to.write its.own operating sys-.
- tem partly out of necessity and partly as a matter of,

policy. Although the Model I was based on the Z80 mi-
croprocessor, it could not use CP/M. CP/M demands that
the first 256 bytes of memory be random-access memory
and available to CP/M, while the Model I used the first
12K bytes of memory for ROM (containing the cassette
operating system and BASIC). Besides, Radio Shack's
policy was to produce as much as possible in-house,
But TRSDOS 2.0 was rather limited -and definitely
slow; to make matters worse, early versions had a num-

~ ber of bups. Radio Shack deluyed hringing out improved
" versions, so other developers leaped into the breach,

causing a proliferation of operuting system variations
like nothing the microcomputer idustry has scen, before
or since. The most: notable offerings were NEWDOS,

b Adgusy, 1954 |'..'p|'_|i.nr‘f;‘..nn|._u1iqu
' . R

to deal with this situation by defining a.disk format
called the Universal Medium for p-System programs.
There are translation programs to convert the Univer-
sal Medium into the native disk format for computers

.that can't handle the Universal Medium directly. .

Applications software may not be totally portable
under the p-System, but it probably comes closer to the
ideal than any other microcomputer operating system,
with the possible exception of Pick. :

Certainly, the idea of total program portability is at-
tractive, particularly to a user who has just had to lay
out a bundle to replace his or her entire software library.
As users become accustomed to having more than one
operating system for their machines, the p-System may
become lncreasmgly popular.

DOSPLUS, and LDOS. Some of the new operating sys-
tems were merely patched-up versions of TRSDOS, -
Others were complete rewrites, e

One thing they all had in common was the ability to
read and write to TRSDOS disks. Most of them could
also run programs written for the others although they
were not all mutually compatible. As it turned out, this

proliferation of TRSDOS variations had a couple of
beneﬁc:al effects. One was that developers competed to
build the most features and utilities into their operating
systems. DOSPLUS, for eumplo has 30 commands, 15
utility programs, two BASIC interpreters, a program
editor, and a machine-language sort routine you can call
from BASIC Generally speakmg the TRS-80 operating
systems tend to be richer in commands and utilities than
CP/M or other, similar operating systems F'urthermore,
the commands are generally easier to learn.

The excellent documentation on most of these oper-
ating systems is another benefit. Radio Sh.lck learned
long ago that a good instruction manuai is lmpoz tant.
(Some say that the documentation for TRSDOS is bet-
ter than the system.) _

One of TRSDOS’s 1d1u~\yncr.t~nes is that only a small -
part resides in RAM all the time. Like most operating
systems, TRSDOS is overlaid—part is in RAM and the
crest swapped in and out as needed. But because the
TRSK0 doesn’t have a lot of RAM (a fully expanded
Model 1 or II[ h is only 48K bytu) the dmuunt of

‘o .‘.'.t:' Lo;w



As it stands now, Pick is full of rigidities For instance,
the only available progrumming language is Pick BASIC.
It may be light-years ahead of microcomputer BASICs
but if programmers want, Pascdl or C'to dévélop: applica-
tions software, they're out of luck. Another example is
the lack of floating-point drithmetic. Pick Systems says
{t will remedy most of these problems with a new ver-
slon called Pick Open Architecture, which the company
hopes to have in a year or so.

Of all the operating systems we have looked at, Pick's
future is probably the hardest to predict. 1t has enor-

mous advantages in business and data management, But -
it is relatively unknown and it is coming to the market
at a time when AT&T is spending milijons of dollarb te .
promote ‘Unix.

But Pick has an mtang‘lble advantage. The people who
use it generally like it. They like it so much they tend
to become fanaties It is an article of faith with Pick.
users that to experience Pick is to learn to love it. This
kind of grassroots enthusiasm—the same kind of enthu-
siasm that Unix inspired in users during its early days—
may make Pick a tremendous success

creating and compiling
large programs. The p-
System helps program-
mers write software in -

“units”) which can be
. stored in system libraries
and linked together at run
time.
One of the nice features

that the section declaring
. the services provided by

tmes, huwevcr, dre not part of the p-machine emulator.
They are in anvther section of machine cude called the
BIOS, for basic input-output system. (A new BIOS must
be written for every kind of computer runmng the p-
System.)

P-system programs are usually distributed in p-code,
which communicate only w1th Lhe p-machine emulator
as if it were a real computer .The BIOS and the func-
tioning of the p-machine emulator are normally mvxsl
ble to apphcahom programs. st
. From.a user's standpomt ‘the 'p- Syqtem i3 menu
onented Users give the system commands by selecting
from menus The menus are tree structured with multi-
ple levels of submenus to let the uscr bpt -éify details of !
commands. Because everythmg is doné withe menus, .
- commands are ulled with smg\e key'-.tmkv& In’ addition, |

the menus serve a8 remmders of uh.xt wmmands' are .
av .ulab!e A user cilh qu:ckly le.u'n to manvuvor through
the’ menu tree to do the netewry ]Oh‘-‘.. ICRLIELU

In the P: Syﬂtem files and T/O devices aré handled as !

“volumea” A volume is anythmg that'can output; mput '
or store infurmation. A printer-is a volume and so is a
foppy disk. However a disk drive is not. Rather than

having the “A-drive” “B-drive” convention of most
operuting systems, the p-System makes each disk a
separate volume, The user calls for the volume by name
and the system checks the drives to find it, eliminating
the need to abways redes sigmate a primary dlsk drive to
use anather disk.

Not, ~.urpr|-lngl Y, th p Systvm mdu:lvs a Pascal com-
piler amengz ils utilitien 16 also includes both a line-

ariented and a sereen-oriented editor and facilities for

L]

the rest of the unit. This
lets the programmer make changes to the “implemen-
tation” section of the unit without creating unwanted
side effects in the programs that use the unit.

On' balance, the p-System has a lot of advantages
It is concurrent—meaning a user can do several things’
at once. In addition, Softech Microsystems, which mar-
kets the p-System, offers facilities for communication:.
over a local network. It is easy to learn, functional, 'and_
has' aigood reputation among programmers. There:is .

{ alsora fair amount -of-software available for it, and de- "

vélopers have installed.it, on compiters, ranging from -
Apples to multiuser systems like the Sage.

The p-System's biggest disadvantages are that it is
slow and that apphcatlons are not totally portable. The -
speed problem is a direct result of the way the p-System -
works. Although programs are compiled into p-code, the ™
p-code is interpreted, like most BASIC programs By -
their nature interpreted progrums are slower than those
fully compiled or written in native machine code. Al-
though p-System programs aren't as slow as interpreted

'BASIC; because p-code is more efficient than BACSIC

there is still a speed penalty.

Those who support the p-Systein claim that for most
programs this speed penalty is negligible. In most cases,
they say, a microcomputer’s speed is affected more by
[/0 speed than its processing speed. That is, a computer
spends most of its time reading and writing to disk or
waliting for input from the keyboard. Since p-System 1/0
is fust, the user on a typical application isn't likely to
notice the speed difference, they claim. In fact, they say,
i peSystem program will in some cases actually run
fuster than a machine-Janguage program. In addition,

Avcuet Dt 1Pupadare F‘fg:ip|l5,':|”!: 15

stand-alone modules (called - -

about p-System units is -

the unit is separate from . :
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(like “please™, or even translating to a foreign language.

Access is supported by a very sophisticated job con-
trol language called Proc. Access commands can be put
together, called, and executed by name. The job control
language also contains commands for a number of
specialized functions, sueh as creating menus In prae-
Liee, Access, Proc, the terminal control language, and
Pick BASIC all tend to blend together. You can mix com-
mands from all of them to do the jobs you need dune.

The Pick file structure is specifically designed for in-
formation mapagement. The files are organized hierar-
chically, similar to the method used in Unix, Informa-
tion is stored in data files, but it is defined and format-
Led by items (recurds) in the data dictionary files that
point to those data files

Information in a Pick data file is stored as strings of
ASCI characters sepiruted by special characters éalled
delimiters. The fields between the delimiters automati-
cally grow and shrink as needed to accommodate the
data entered into them. In fact, you do not specify the
size of a field at all. Pick has some elaborate commands
for checking the size and format of data as it is entered
or caleulated, but they do not control the size of a field
in the data file. This built-in flexibility avoids a number

.ul subtle and extremely annoying problems which can
plague other database systems, sich as changing to
9-digit zip codes when the system is only set up‘for
§-digit zip codes

"There are no commas, dollar signs, or anything else
in the data field. That information is supplied by the
associated entry in the duta dictionary. With the ap-
propriate dictionary entry, 10 can be displayed as $10,
10.00, $10.00 or any of a number of vther formats That
seems like 2 minor matter until you consider that other-
wise several software routines are needed to properly
format numerical data, ~ '~ -~ .

The part of Pick that most. computer.users will find
familiar is Pick BASIC. Even here, though, there,are
considerable differences compared to Microsoft BASIC,
which is used on most micros. Pick BASIC is a compiled
language and contains the commands needed for struc-
tured programming to facilitate program-development.
It also has a COMMON statement and other features
that encourage programmers:to write their programs
in modules and link them together.

Overall, Pick's features make it a very powerful uper
ating ; system for a business enviranment, especially one
in which’a lot of peaple who have little computer ex-
perience need to get information; Since Pick has been
around for more than a decade; it is well developed and
has an ever-growing enthusiastic group of supporters.

A number of .m.ilysts predict thut Pick will be a strong
number two in operiting systems for muitiuser micro-
computers. One or two during analysts have even
predlicted it will surpass Unix in business use.

While Pick is goad at what it was desigmed for, infor.
malion management, it is emphatically not o do-overy-

“thing system. Other operating systems are much better
for scientific and engineering work or jubs mvulvmg

realtime upt.mtlg:n& : ;
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Like other minicomputer vperating systems, Pick

‘assumes a considerable gap in knowledge between the

user and the person who keeps the system running.
While beginners can use Pick comfortaoly, Pick is not
a beg‘mners system to maintain,

This is also true of Unix, but a would-be Unix user
can at least consult someone with Unix experience or
buy a book on Unix. People with Pick experience, on
the other hand, are relatively rare, and there are few
if any books that wil help a beginner understand the
system,

LM he p-System aims to achieve the highest level of
g [} program portability among other operating sys-

waan tems. Its designers intended that any p-System
program would run as-is on any p-System machine. In

theory, you just take the disk containing a p-System ap-

plications program out of, say, a computer based onthe ..
Intel 8086 microprocessor, insert it in one based on the S

Motorola 68000, and run the program. :
Generally speaking, when someone refers to software
portability on most operating systems, they mean source
code portability. The high-levél language version of the
program is the same, but it must be compiled into native

| machine code for each computer This is a big help to-

the software houses, but it means little to the computer
owner since software companies almost never provide
the source code. For the user, trading computers means
making all his or her software obsolete. .

Nicklaus Wirth acknowledged this problem when he
invented the Pascal computer language. Wirth did not
want Lo be tied to any one computer, so he specifi¢d that
Pascal would compile programs tg an intermediate code
cafled pseudu code, or “p-code” which would bé the same
for any computer running Pascal. Then a muchine-
specific part of the Pascal compiler ‘would turn the
p-code into machine-language instructions the computer
could execute.

Bused on this philosophy, the University of Cahfur
nia at San Diego (UCSD) developed the Paseal-based
operating system. To grot the p-System running un a new
microprocessor, 4 p-machine emulator is written for that
u,rrpuu-r [t can Lranslate p- -vode into the computer's
machine language for execation, The input-output roy-
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progriun. Such an automiitic connection is called a “pipe”
in Unix. Along Lhe ‘way, the file can be run thruugh other
programs or utilitiesicalled filters. All of this is easy to
specify with shell, cominands. In, fact, an experienced

Unix user can do a great ‘deal of pmgrammmg using just"

the shell commands.

Unix files are arranged hxerarchwally The topmost
file In the system is called the “root node” and all other
fWes branch off of it, either directly or through 4 series
of other files. Some of the files are directories, which
link to other collections of files. This structure makes
keeping track of even very large collections of informa-
tion easy, 8 necessity given the amount of information
a Unix system can handle,

Unix's strengths are outstanding, [t is widely taught
in schools and colleges, is preferred hy a large and grow-
ing band of programmers, and is available on many com-
puters. 1t also has AT&T plastering the world with full-
page atds proclaiming Unix as the new stundard,

Rut all 15 nol heaven with Unix. Jts most obvious
disadvantage is that there are many different versions—
none of which are completely compatible. In the decade
or so since Unix was first released, AT&T has had
several versions: Sixth Edition, Version 7, PWB/Unix
(which isn't always counted as a separate version), Unix
System 111, and Unix System V. To make matters worse,
muost of the licensed commercial versions are based on
System [I1, but AT&T s prumoting System V.

Most AT&T versions of Unix were designed primar-
ily as teaching and scientific systems. They are weak
in areas thut are important for business use, notably file
and record locking, ‘a feature businesses demand on
multiuser systems to keep users from interfering with
cach other’s files So the manufacturers and software
houses with commercial licenses for Unix have added
their own extensions to provide these, 1mportant fea-
tures for business use.

Although the Unix kernel, the heart of the Unix
operating system, is much the same on all versions of
Unix, the utilities and extensions can be considerably
different. Another problem is that Unix is not an easy
system to master. Like most minicomputer operating
systems, it is compli¢ated; it was developed with the
axsumption that a resident expert would be around to
maintain it. As a practical matter, this is less of a prob-
“lem than it might sound. Almost all Unix implementa-
tions on microcomputers run on expensive multiuser
systems, the kind that are typically bought with the aid
of u consultant or through a systems house.

Applications software for Unix is relatively scarce.

Fuckages are available for many scientific and engineer-
ingr applications, but otherwise choices are limited.
Oversidl, Unix hiis @ bright future. Recent surveys have
shown that the demand for Unix programmers exceeds
the supply, a trend that will probably hold for the near
future. Unix’s portability lets users tuke advantage of
the features of new generations of computers without
ny; akin;: their existing software ohsolete. Amd with
AT full weight hehind it, Unix will doubthess spawn
an explosion of .qlphu«ltmns software Huun

. ke
\
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| 4 he Pick operating system ix, in most ways, closer
% |4 to Unix than any of the others we have discussed.
2fl Like Unix, Pick is a big, complicated multiuser

operating system that is rich in utilities and features. ' .

However, where -Unix was designed as a softwure
development tool, Pick was designed as an information
management system. In fact, a relational database is an
integral part of Pick. Also included is an English-like
query language, a greatly extended version of BASIC,
a print spooler, text formatter, and many other utlhtles
for handling data.

Pick started in the 1960s as a government project to

develop a sophisticated information management sys-
tem. The programmers started out by designing the -
best information management tool they could conceive
of without worrying about the limits of existing hard-
ware. What they came up with was an imaginary com- -
puter, one that was carefully optimized for handling in-
formation. The next step in the project was to write a
program to emulate this computer on a real maehme—-
in the original case, an IBM mainframe. ’

Dick Pick was one of the programmers on the contract.. a
When the government lost interest and the project
became available, Pick bought the rights to-it and set
out to further develop the concept.

In 1973, Pick first appeared commercially on a mini-
computer. In 1979, Applied Digital Data Systems offered
Pick on a microcomputer. Since then, Pick has been
moved Lo a number of other micros, such as Pertee,
Altos, and General Automation. Pick Systems Inc. now
sells Pick to end users for the IBM PC XT. Like all Pick
implementations, PC Pick is the full Pick operating sys-
tem. Programs that conform to the Pick standards will
run on any computer with Pick.

In spite of its complexity and power, Pick is easy to |
-use. Access, the query language, is simple to learn and

lets even a casual user conduct elaborate searches and
produce reports easily.

Like other nonprocedural languages, Access enables
the user to concentrite on what he or she wants done,
leaving how it is done to the computer. The user tells
the computer what information is needed, and the com-
puter handles the business of opening files or searching
records It is easy to customize the command dictionary

| by giving things different namoes, defining Lhrowaways .-

4

t
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trate a number of people is its incompatibility with some
of the higher-capacity disk drives sold for the Apple by
third parties Generally speaking, lookalike drives or
drives that use the Apple controller card'can handle Pro-

DOS with no trouble, but the ones that require their

own controller cards or which offer extra storage may
not. Several of the manufacturers of high-capacity drives

. By they intend Lo offer software patches so ProDOS

will work with their systems

On the positive side, ProDOS has a command that
automatically checks the contents of the slots and tells
you what cards are in which slots ProDOS also supports

i nix is a large multiuser multitasking operating
F{ system developed by Bell Laboratories and pro-

Zd moted by AT&T. Unix is complex, loaded with
features, and-—arguably—the wave of the future for
business applications.

The Unix story starts at Bell Labs in the late 1960s.
Ken Thompson, a programmer there, wrote the first ver-
sion of Unix in assembly language for a PDP-7 minicom-
puter. In 1971, Thompson moved Unix to the popular
PDP-11 minicomputer. He also translated parts of it
from assembly language into a lJanguage called B, This
version caught the eye of Dennis Ritchie, another Bell
Labs programmer, who redid the B language and called
the result C. Then ail of Unix was rewritten in C.

By the early 1970s, Unix was commonly used inside
Bell Labs, and it was attracting 4 lot of attention out-
side as well. For legal reasons, AT&T could not market
computer products, so it decided to practicully give away
Unix to schools and colleges. For a small fee, a college
received a license and a reel of magnetic tape contain-
ing Unix. But AT&T did not support the product.

The results were twofold. First, neuarly every recent
computer science graduate has had at least some ex-
posure to Unix. Because it is so well suited to computer
science education, almost all those students like Unix.

The other result is less favorable. Until very recently,
there was no watchdog over Unix, and because it can
be easily extended, many versions of Unix have been
developed.

In 1978, the first coammercial implementation of Unix
appeared an a microcomputer, Others followed quickly.
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installable device drivers—short pmgramb that let }ou

hook peripherals to the operating system with a min}- -
mum of modification to the operating system. While Pro-

‘DOS is not the most advanced operating system around,

it is unquestionably modem.

Good thing, too, because Apple seems to be commit-
ted to perpetuating the Apple II family, as the recent
introduction of the Apple 1lc has demonstrated. Aslong -
as people keep buying and using Apple IIs—and accord-
ing to Apple’s latest quarterly report, the machine is
selling well—AppleDOS and ProDOS will have a place
in the operating-system mainstream.

With the breakup of the
Bell System this year,
AT&T has started market-
ing Unix Version V agres-
sively. Many analysts and .
manufacturers predict’
that Unix will be the stan-
dard operating system on
microcomputers (at least .
the larger ones) in the
years to come. ;
As a standird operating
system, Unix has several .
things going for it. Most
important, Unix is easy to
move to new computers. Unlike CP/M or MS-DOS, Unix
is written in a high-level language and not built around
a single family of microprocessors. Computers ranging
from micros to mainframes can run the system with
ease, and Unix can be implemented on a new computer

in only a matter of weeks Ina world where a new brand - ;

of computer appears every week, a new chip every
month, and a new family of superchlps every couple of -
years, that kind of portability is indeed-an-asset,

Unix offers many features, too. Because it is multitask-
ing, a user can do several jobs at one time from the same
terminal. And Unix is attractive to software developers
in that it contains more than 200 utility programs that
perform useful programming tasks. For instance, there
are eight utilities for comparing the contents of files
They tell the programmer where two files differ, what
needs to be done to make them identical,;and what lines
are common to both. This richness exténds to nearly
every conceivable job performed by the operating sys-
tem. If you need a programming utility, Unix can prob-
ably offer you several choices.

Although Unix isn't particularly easy to learn, the.
part of the system that communicates wWith the user is
designed to be customized. This part of Unix is called
the “shell,” and it can be modified to make the system
much more user-friendly.

Another source of Unix's power is itsifile structure.
In Unix, everything is a file and alt files are handled
much the same way. One result of this regularity in
structure is that the contents of a file or the output of
i program cin be sent automatically to another file or



tied Lo a specific hurdware family, Microsoft doesn’t see
this us a problem and assumes that the users of the big-
ger, more po(.urful machines will want a more power-
ful operatinig system, Such as Kénix (althoughithe fact
that thev are Lla1m|ng Xenix compatibility for MS-DOS

simple operating system with a mini-
mum of utilities. It is, however, easy
to learn and fairly easy to use In
some cases, BASIC commands take
the place of operating aystem utili-
ties. AppleDOS has its peculiarities,
some of which approach the status of bugq, but by and
large it serves nicely for what it was designed for—a
home or hobby system.

Although AppleDOS serves well enough on a machine
with one or two flgppies, it strains its limits when used
with a hard disk. To use AppleDOS 3.3 with a hard disk,
you have to partition the disk into “logical” floppy disks.
. The system then treats your 5-megabyte hard disk like
40 or 50 floppies This works, but it is unwieldy. Among
other things, it limits the size of files on the hard disk,
and it leaves wasted space scattered all over the disk.

A related problem occurs when your disk is nearly full.
AppleDOS provides only a single directory that can be
at the most two screens long. If your files tend to be
short, you can fill up the directory before the disk.

ProD0S avoids both of these problems ProDOS can
handle up to 32 megabytes of disk storage as a single
logical unit. It also allows hicrarchieal directories—
meaning you can have 2 master directory that refers to
subdirectories for each group of filex ProDOS also lets
you establish pathways that automatically take you
‘where you want to go in the directory hierarchy.

In addition, ProDOS cleans up some other features
of AppleDOS. For instance, it speeds up disk access by
about 8 times It also allows you to use Apple’s 64K-byte
80-column card as a virtual disk for even more speed.

PruDOS is not just an updated version of AppleDOS.
Most of the eommands are the same, but the file strue-
tures are different. Although it cannot fead AppleDOS
files direetly, ProDOS comes with a utility that lets you
convert AppleNOS files to ProDOS. However, the util-

ity works only on the newer, version 3.3 liles. The older |

3.0 indicates u competitive interest in that market).
MS-DOS is so firmly established, though, that even
the purveyors of so-called advanced operating systems
are either offering ways to run MS-DOS applications on
their systems or busy figuring out how to do it.

version 3.2 files have to be converted .
k8  to 3.3 with AppleDOS’s Muffin con-

71 version utility before they can be

converted to ProDOS

istics of AppleDOS and (to a lesser
extent) ProDOS is simplicity. AppleDOS is mmple-
enough that a bright eight-year- -old can master it.

Although ProDOS is more complex, it too, is easy to .. -
master. However, simplicity is a virtue that cuts both ~ -

ways. Compared to their contemporaries, such ag CP/M ™~
or MS-DOS, both AppleDOS and ProDOS are hm:ted
in what they can do, |
There are some quirks, especially in AppleDOS, that
can trip the unwary. For example, it is possible to give .

an already existing name to a new file. The system o

doesn't warn you, but when you write to your “new” -
file, you wipe out what was previously stored under that
name. :
One pet peeve is the way AppleDOS handles disk- .
drive numbering. In AppleDOS, your most recently used
drive is the disk accessed unless you specify otherwise. -
On a two-disk system this method can cause a great deal -
of unnecessary confusion. :
In the case of ProDOS, the biggest problem is likely
to be that it isn't fully compatible with AppleDOS. Some
programs are not going to work even after they have

been converted. Programs that call operating system ..

functions by their ROM address, or ones that do'clever
tricks with “unoccupied” bits of RAM are particular can-.
didates for trouble,

Since AppleDOS has been a stable product for some
time, 2 good many programs have been designed to ac-
commodate these operating-system peculiarities. That
means that users with a collection of such programs may
be forced to stick with AppteDOS whvthor they like it
or not,

One feature of ProDOS which w:ll umlnuhwdly frus- -

Amst L Popular Computing 137

‘One of the outstanding character- ",



SPECIAL REPORT: OPERATINL SYSTEMS

MS-DO)S also breaks disk files into larger chunks. Al-
though this means that some space inside its files is
wasted, it allows fuster disk access

The most recent version of MS-DOS, Version 2, also
features installable device drivers. Instead of having a

monolithic BIOS (basic input-out system) like CP/M, MS-

DOS 2.0 has separate modules inside the BIOS for each
thlce. This means that the individual device drivers can
¢ customized for-whatever disks or other hardware a

user wants to add to the system. Installable device

- drivers are a godsend to someone adding a hard disk
to a system or to a software house that wants to sell
a hard-disk version of a program.

MS-DOS 2.0 also includes several other features to
make life easy for hard-disk users. One of then is a
hierarchical file structure, a ]a Unix. Rather than hav-
ing files for 10 megabytes of programs and data in one
gigantic directory, MS-DOS 2.0 lets you create subdirec-
tories that can be called from the central directory. MS-
DOS 2.0 also ineludes the Unix concept of redirected
output, which lets you feed the contents of one file to
another automatieally, and batch commands, which let
you write “scripts” to apply several utility programs to
the contents of a file with a single command.

In writing MS-DOS 2.0, Microsoft’s avowed intention
was to provide an easy upward path to Xenix. In fact,
MS-DOS programs written using only MS-DOS 2.0 com-
mands and utilities are claimed to be Xenix compatible.
MS-DOS 3.0, the latest update, which is scheduled to

_be out this summer, is said to be even more closely com-

" patible with Xenix.

. For now, MS-DOS is clearly the standard for 16-bit
operating systema There are over 100 computers using
it, and the number of applications grows daily. In power
and ease of use it represents a considerable improve-
ment over the 8-bit versions of CP/M. The commands
are somewhat more logical and straightforward, and the
error handling is usually better. The quality of the
documentation varies with each implementation, but like
CP/M, there are a lot of books on the market to explain
it better

All these advantages are relative, however. Although
MS.DOS is easier to use, it is still not a particularly easy
system for a novice. [t takes a goodly amount of famil-
iarity with the system befute you can realize the full
power of MS-DOS.

Like CP/M, MS-DOS is not an “invisible” operating
system, and most users have to deal with the command
level of the operating system to instruct it for many
necessary tasks. Also like CP/M, it is oriented toward
the needs of the computer and not the needs of the com-
puter user; the user must know the communds and how
to apply them. This is in contrast te the approach of the
Mucintosh/Lisa systems, where the system accommo-
dates itself to the user, or Pick or Unix, where the casual

¢ user cun be protected froin the command level of the

-operating system hy using menus.

MS-DOS 13 also hardware dependent. Tt is designed
Lo run on the 16-hit KOSZ/BU36 family of microprocessors

. and is not well adapted for machines based on other
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microprocessors. This is one reason thal M3 DOS’

dominance husn't extended to the compuiers based on
the Motorola 68000 or other advanced microprucessor
families Those computers tend to offer Unix, Pick, the
p-System, or some other operating system that is not

¥ ppleDOS 3.3 is the standard disk operating sys-
i tem for the Apple IT and its family. ProDOS is

Apple's hard disk. Neither is spectacular in the way the
Macintosh's operating system is, but both do their job
in a straightforward manner.

AppleDOS originated when Apple introduced floppy
disks for its computer. Since the Apple was bullt around
the 6502 microprocessor, CP/M (based on the Intel 8080
or Zilog Z80 chip) was out. So the company brought out
AppleDOS in 1978 as a simple, rudlmentary disk oper-
ating system.

Although AppleDOS wasn't fancy, hundreds of thou-
sands of Apple owners used it happily for years. How-
ever when hard disks became available for Apples,
AppleDOS showed signs of strain. It had been designed
for single-sided, single-density floppy disks, and Apple-
DOS really wasn't capable of organizing theé volume of
information stored on a hard disk. _

Apple's answer to the problem was ProDOS, an oper-
ating system featuring a better directory structure,
faster disk input.and output, and a host of other features
not available on AppleDOS. Apple says that ProDOS is
not a replacement for AppleDOS and that the company
plans to support both operating systems.

AppleDOS is a “basic” operating systém in hoth
senses of the word. Apple chose tp tightly integrate its
operating system with its version of the BASIC com-
puter language The result is that AppleDOS works with
Apple BASIC (both Integer and Applesoft) very closely.
To initialize (format) a disk under AppleDOS, for in-
stance, you must have a BASIC program in memory.
The BASIC also controls devices connected to the ex- .
pansion slots with the commands IN# and PR#. These
are normally jobs that would be handled by the oper
ating system.

Like Radio Shack's TRSDOS, AppleDOS was de-
signed for hobbyists, not computer scientists It is u very

M an updated expanded version that works with *°



grams written for MS-DOS and the 8-bit version of
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ever Microsoft, the-company that m.xrkets MS- DOS. his !
~hegun adding Unix-like. features, tmthe systcm wﬂ.h the

'board for S-160icomputers; and; ,needed jan; operatlng«

* of CP/M, but the project was delayed,;So.in Apni :1980,-

" patibility: with ‘CP/M-as possible: 3
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successful: CP/M-86 is ruinihg a distant Second to MS-
DOS lqthe 16:bit. swcbpatakes and.ds dzmﬁu“. has fewer
apph&Fdns pt;%grﬁmeﬂwr]tten forit: Rocently, however
Digital' Réesear¢h dnnounced a pruduc.t that may tarn’
the game around., Concurrent DOS is an advanced
operating system thal offers windows, the ability to run
geveral programs at once, and the ability to run pro-

CP/M as well as CP/M-86. Reportedly, Digital Research
is WDrklng on aiverbmn of«Concurrent, DOQ whxch will

l"One of thé basit paradoxes'ofiope ratin %Lema is that
rio ohe‘but the moiticrized ¢ rsoftware; pker wants
them WAL the rt—:strof us! wantiare appluatmnq pro-
g'rams. andf'we put up: thh the. Opur‘at.m;, systémtoget
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S-DO8S is to 16-bit microcomputers what CP/M-80
| is for the:8-bit microcomputers—a de facto stan-
[ dard operating, system. More 16-bit computers
offer MS:DOSas théiroperating:systerm than any other
system, and the amotnt:of, software; for MS-DOS ;ma- !
chmes is beginning to.rival what is avaxlab]e foquPfM

" MS-DOS was an outgrowth:of . CPIM,‘and; conceptu
ally at least, the systéms-have.many, similarities:, How-!

;
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avowed intention of making ] later, versions compauble
with Xenix,-Microsoft's 1mplementa.tlon;o[ Umx ra! 3
Although MS-DOS. stiands for MlC!"ObOﬂ. DQS,IL esys-'
tem actuallyigot its-start-from a:small h.x.rdWare com-’
pany.called Seattle Cnmputer,ProducL& In Novemhcr
1979, Seuttle Computer. developed an: 8086 proeessor‘

gystem for it. Diyrital Rescarch was pmmmng a.version;

Seattlé:Computer. decided tosdeyelopr dqstopgap‘,oper ‘
ating system.-Since;it-way; assumed; that,most, uaers
‘woulil want to:convert to CPIM 86 whcn it hvume av‘nl f

able, the.company..was icareful-torkeepiss, much u)m
: Y
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“The new Oper: iting: syqtemumokull nf.twngnmnthu; of |
programming Lime Lo develop and-was dubbe il QDO%,
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the applications A “one-size-fits-all” operutingsystem
‘would be a blessing for users because they wou!d have
much more freedom of choice in buying appliéations soft-
ware. It would also. nullify’the advantage that goes to -
“the ‘company with the most popular operating system.
Although Concurrent DOS is exciting, there is a fun-
damental limit facing the CP/M family, The systems are
highly procvessor-dependent. Originally, CP/M worked
only on 8bit 8080/8085 or Z80 microprocessors; like-
wise, CP/M-86 and Concurrent DOS are limited to the
16-bit 8088/8086 family of processors. There is a version
forsthe Motorola 68000, but it hasp't proven very popular. -
New microprocessors appearing from other companies
could diminish the CP/M family’s popularity. But no mat- -
teri what new rivals it may encounter, CP/M in its vari-
“ous-guises is likely to be with us for a long time.
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were packaged and shipped in August 1980, ,
At the end of the year, Seattld Computer provided a,

refined version of the system to Microsoft, a company

_previously better known for its BASIC than its oper-

.ating system. In July 1981, Microsoft bought the system .

.outright, Microsoft did.some work on it, renamed it MS- -
DOS and licensed it to, among" ot.hers, IBM 1BM offered -
MS-DOS{christeiied PC-DOS) as the standard oper-
‘ating system on its Personal Computer, and when sales
of the PC took off, so did MS-DOS. o
_The close relationship between MS-DOS and CP/M is - -
?obvnuu:,. Fven the command prompt. (A>)is the same
-0n both systems. The commands are much'the same, and -
the bystems have the same generil “feel” Anyone who
le ﬁ%mlhar wnth CPIM has little trouble learnm-g MS.
0 ok
;However MS DOS is not a carbon copy of .CP/M.
Where thcy could, the system’s developers | improved on
t.he CPIM method of doing things, Smce CPM was
ttght!y con%tramed by a small amount of memory when
Jtwas, wntten ‘there was a lot of room for i lmpmve.ment
For one thmg. the filé hdndlmg in MS- DOS is different,

sssss

18 chmc whcre l.o find the (ll‘ak su_turq containing a f'le_)
Thl'- mc ns t.h.zt the (‘umpuu r c.m find 1nf0rm.1tlon
stored on sk quickly. !
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the system for new machines or e
hardware vptions. A company that
decided to offer double-sided Ruppy

disk drives, for example, could simply
change one section of the BIOS in-
stead of having to scout through the
entire operating system looking for
pieces of code that would be affected
by the change.

Conceptually, CP/M is more a col-
lection of utility programs than an
integrated operating system. In ad-
dition to the BIOS—the hardware in-
terface, it consists of a user interface

A P/M was the first popular nonproprictary
“Jopoerating system, and many of its concepts and
T3 features are often copied, Even today, despite the
spread of 16-bit computers, CP/M s still the most widely
used operating system in the micro world.

Although CP/M dutes back to the dawn of microcom-
puter history, it has been continually upgraded and new
versions issued. The most recent, Concurrent DOS
{formerly Coneurrent CP/M), even lets the user run pro-
grams written for other operating systems and provides
a number of advanced features

CP/M was a hy-produet of the first attempt to offer
a high-leve! language on it microprocessor. In 1973, Intel,
which hud developed the first microprocessor, wanted
to implement a version of PL/1 (a language that com-
bines some of the features of Fortran and COBOL)
called PLIM on its new microprocessor chip, the 8080.
The job of writing P1./M went to Gary Kildall.

By modern standards, Kildall’s development system
was pretty crude. He had a very limited amount of
random-uccess memory (RAM) and only one of the first
8-inch floppies produced for microcomputers. Before he
could get PL/M running, Kildall found he had to write
an operating system to tie his machine together.

Memory was so tight that Kildall wrote an operating
system that used only about 4K bytes of RAM. Because
he was trying to support a software development proj-
" ect, the system contained the routines that are pur-
ticulurly needed by a progmammer. And, beciuse he was
a computer scientist, Kildalls operating system was
naturally oviented toward the expert user.

When Kildall finished the projeet, he offered his
operating system, which he called CP/M (Control Pro-
gram for Microprocessors, also called CP/M-80}, to In-
tel. Intel lonked at the product, decided there was no
market for it, and refused. By this time Kildall was get-
ting requests from other microcomputer hobbyists for
copies In 1975, he set up company called Digital Re-
search to sell his brainchild.

The market for CPIM boumed, in part because of one
of Kildall's innovations. He had separated all the mae
chine-spogifie parts of the system and lumped them in
one module, enlled the BIOS (hasie input-output system).
The rest of the system wias the same no matter what
computer it wirs running on, This made iU easy to mdify

LI T PYTT YOS vonad Potaddar Cannatnne

called the Console Command Pro-
cessor (CCP), and the Basic Disk Operating System
(BDOS), which supervises applications program execu-
tion and input and output, .

Yet one of the most striking things about CPM is how
little it actually does. In version 2.2, for instance, the
BDOS performs only 40 functions and 27 of them are
related to disk operations. To conserve space, the CCP
has only six resident commands: ERA, DIR, REN,
SAVE, TYPE, and USER. There are about a dozen
other CCP commands stored as utility programs on the -
disk, and they must be loaded when they are called.
Compared to Unix with its more than 200 utility pro-
grams, CP/M scems small indeed.

But because those commands and utilitles were
chosen carefully, CP/M is quite powerful. Although it
requires that the programmer know 2 guod dea! about
what is going on, and both the programmer and the user
have to work a little 1o memorize command -vmav&
CP/M offers an amazmg performance.

CP/M hus existed in three major versions: 1.4, 2.2 and
3.0 (or CP/M +). In addition there is a multiuser version
called MP/M, a 16-bit version called CP/M-86, and Con-
current DOS, which is an advanced 16-bit version.

Computerists have had a lové-hate relationship with
CP/M since its beginning. They like the standardization
it offers and they appreciate its power, but almost no
one claims it is easy for 1 novice to use. Part of the prob-
lem is CP/M's size. An operating systein that occupies
less than 8K byteés of memory doesn't have réom for fail-
safe checking routines and elaborate error messages
Furthermore, there isn't & lot of consideration given the
poor soul w hn Just wants to get an appllc.mom progisin
runpting. Finally, D:gml Rescarch's (Iocumbnt.ttlun i
nuturlnu'ﬂy bad. Some in fact claim that it isi 't written,
it is encrypted.

All of these things have improved with suc ccedmg ver- -
sions of CP/M. Version 2.2 was easier and friendlier than
1.4; and 3.0, which takes up about 16K bytes of memory,
is better yet. The quality of the documentition has also
improved and the market for books written about CPIM
is thriving. In fact, there are probably 100 books avail-
able explaining CP/M and about 15,000 CP/M applica:
tions programs that testifly to CP/IM's sucdess,

The 16-hit version of CP/M, CP/M-S6, hasn't been as
CUNTNURD DF: w2l H



hop on the CP/M hand-
wagon. :

But not:weryono “ont
to CP/IM. Some computérs”
" couldn't use it,-and, some
companies .\lready "had
Nrmly entrenched pro-
prmt.ary operating  sys-
tems that were supported
“with a large number of ap-
plications programs, Ap-
ple, for instance, hail built
its computers around the
65502 microprocessor, and a
stock Apple eouldn't han- -
dle CP/M. Although the |
compiuy atfered an adapter
card that gave the ma-
chine CP/M capability,
most Apple software was
written in AppleDOS, or

fers from most other uper-
“ating systems, where the

brings out a slightly dif-
ferent version for each
micriprocessur. This prac-
tice means a person buy-
ing a new computer wili
also have to buy new ver-

The new 1G-bit micro:

but also brought about a
whole new class of oper-
ating systems for the mi-
crocomputer

power of a minicomputer
- Some minicomnputer oper-

later, ProDOS. (DOS, by
the way, stands for disk
uperating system.) Radio Shack’s popular Mudel [ and
Mude! 111 computers eouldn't run CP/M beciuse of hard-
wure incompatibility, Both the Model I and the Model
{1 had ROM in the inemory locations that CP/M needed
for rundom-access memory (RAM). Su Radio Shack
stayed with its TRSDOS, which, like AppleDOS, hal
a broud software base by the time CP/M gained wide
aceeplance.
i " ENTER 16-BIT COMPUTERS

<\ LT CP/M hud a particulur drawback—its hard-
;&”"‘i, ware requirements’ The new, more powerful

808R/K086 fumily couldn't use the old version of CP/M.
Instead, new operating systems had to be developed for
them.

Naturally, Digital Research developed a 16-bit version
of CP/M, culled CP/M-86. However, when IBM went
shopping for an operating system for its Personil Com-
puter, it chose to go with a system from Micrusoft, a
company that had heen best known for its version of
the BASIC language. IBM called the opersiting system
PC-DOS, Microsoft called it MS-DOS, and when the
IBM PC became a runaway best-seller, PC-DOSIMS-
DOS becume established as the mnst populin operating
system for 16-bit microcomputers

Hinvpver, just as there had been other operating sys-
tems that competed with the original CP/IM, MS. DOS
hitd it bumber of compuetitors. CPIM-RG is alive and well,
five istaiiots, S0 I atether opeititing system from Digital
Hesiieeh enllail Concurrent CPM of Cancurient DOS,
whith difiie siveiad insuns ti Ffih it ofee.

Bl it et n]u-l“lt Hf sisitei thit has ghined mich
alttentiin Is lhl‘ p-System fin Softech Microsystems
Tl p Spatem's major selling point is program partabil:
ity l_u-d abwut sy p-System pougasan-will-rag aseis on
phy p-System paching, The p-Systegds portabiliey Jif-

16-bit micmprucess'o:‘é"kui:h as' the Intel

The two best-known.examples are Unix and Pick.

manufacturer typically.

sions of all his.programs.

processors not only neces-
sitated adaptations of ex-
isting operating systems,

ating systems are now run-
ning on microcomputers. .

world. Be- -
cause these chips pack the

Both are big, multiuser oper: ating systems that have '

been around for some time on minicomputers. They are
more complicated and more powerful than the other op-
erating systems we have discussed. Unix was ongmally

developed on minicomputers at Bell Laborutories. It is

used wndely in colleges and universities, and most com-

puter science graduates have had at least some exposure

Lo Unix.

Pick is less well known. It grew out of a government".

information-management project in the 1960s and has
been used on minicomputers for about & decade;

Fm.ally. not everyone decided Lo use the power of the .
new micruprocessors for minicomputer-like functions, .
Apple chose instead to use the more powerful Motorola -
‘68000 microprocessor to develop operating systems that -

are much easier to use. These user-friendly operating
systems are used on the Lisa and Macintosh comput-
ers They employ numerous icons, pull-down menus, and

a pointing device culled 2 mouse. Although the operating -
systems used on the Macintosh and Lisa are very com-

plex, they let a beginner learn to use the computer ef- -

fectively in just a couple of hours,

LOOKING AT OPERATING SVSTEMS
N THE articies that follow, we examine eight

idl systems: the CP/M family, MS-DOS, AppleDON/
I’l'uDOS, Unix, Pick, the p- Syst.em TRSDOS, and the
Macintosh/Lisa vperating system. Since theie i ubout
100 micrvcumputer operating systems in use today, we
hitel to be sumewhat selective, Wee stivted by eliminating
the operting systemns that are primurlly nonedisk.
hased. Ultimately, we
upersting systems designed for rencral yse whivh i

popmlaror mnst Jikely b el th futun: of micrion-

prting. >

H t :
" Awmy i&!g?! Popalar $Famput pge §17

restricted oursdelves to disk-bas)

operating systems or families of operating --.



SPECIAL REPORY: OPERATING SYSTEMS

Fundamentally, in operating system is a collection of
programs that handles a wide variety of tasks. Spectt'
cally,:an oper wting system supervises the processing of
apphcdlmm programs. .mtl all.input. And output&WIth
vut an oper atmg”éaystem any éomputer is ‘only*a coﬂec-’;
tion of. high -tech gaclgetry that does nothing.

Conisller what happens when you press a key on the
lié"bd.:if"d By itsélf, a computer isn't capable of recogniz-
mg that & key has been pr‘v‘ssed much less deciding what

it mennr\. But'the op(.mung system instrucls the com-

puter: to,periodically checkto see if a key has been | F

pressed-and tells the computer what to do about. it. The
operating system routine will instruct the machine on
how to decucio the sigmal produced by the keypress and,
mostiof the time, tell the computer to display the .1p
pmprmte character.op, the video screen. -
S

B . PIONEER DAYS C
g HLR}L WAS a time, hack at the dawn of micro-
Jeomputing (nearly 10 years ago), when all com-
; puters came without opemtmg systems. These
early computers.were housed in boxes that had rows of
switches—huilt on the same principle as common tog-
le switches used to turn on and off electrie lights and
e . APPliances—and

| emitting diodes oni thein,

g-,,,,a.f,r t- )

. _:.'_'f.lf uﬁ]

¢ to enter the data and pro-

" grams in binary form, a
byte at a time.

This design was short-
lived, for obvious reasons
Keyboards and monitors
were added to the basie’
4 boxes with the blinking
' H,hghtq, and mass storage
was, vastly imiproved dur-,
. mg thlb penod of explu-,lve]
i - mlcmcumputer develop ,
S, -.mént. chrucompylcr pro !
m-ammcrh qu:ckly le‘trned how to-put quple npumtmg»
systems in read-only memory (ROM) 'I‘hnw ROM sy
tems enabled the cumputm to read'in &' more (,ntn])le\.
operating system from a punthed,pdper tape or'an.
audiocassette, During I.hnw (‘dlly 11.1ys pmgl dymmur\]
made two impuortiing dxa(.uwl ies, Plrst whllu it may, hc
challenging to w1 ite a kby Boditl dechding Muting onc,
writing one for every applications program becomes-a-
pain in the neck. Tb wrile,such a'routine'ohce and make
it part of the operauting system is much easier. Second,
if many people used the same operating system, pro-
rammers could write applications software that would
run on i lot of machines without madification. Thus
(mure or less) the softwire industry was horn,

This idea of portability has evolved, or at least ve-
veived ils widest expression, on microcomputers [n the
wor Inl of minieomputers and mainflrames everyone

assuned Ih.xl t.lu' operating system, Wnultl In- mslum

s
et e g e e

|l|.k 1 u-h ] I'u- 4 mu wrifer ]t.n{ll in Phiwe m.l vz
' 'i

.

BT R '
e :\',",I, q | 1hpnilor Conppsating
T i B

light-

Those switches were used

ized for a particular make and mode! of computer. The
idea of running the same operating system-‘on a main-
frame or minicomputer from IBM and one from Digital
-Equipment Corporation (DEC), or even on two different
models from the same company, was, to s iy the least,
considered farfetched. Yet it happens frequently in the
micro world. In fact, we often expect a great deal of com-
patibility and are mightily disappointed if, say, a DEC
Rainbow won't run programs written for an [BM PC,

: PROPRIETARY CLAIMS ‘
". PE RATING-SYSTEMS portability is only a re-
cent development in the history of microcomput-

204 ing, und it is far from universal today, Original-

ly, just about eyery computer company had its own
operating system; when you bought your michine, you
were locked into the nperdtmg system that came with it.

This wasn't so bad on the inexpensive home: computers

that had the uperating system complete]y in ROM.
These computers typlca]lv had limited memory capae-
ity, and having a proprietary opevating system for each
model meant that it could make the best possible use
of that machine’s features in the memory available. Since
it takes several minutes to load an operatmg system
from tape, and since it would consume as much as half °
Jof the computers memory space, switching ‘operating
systems isn't at all popular on those computers. Under-
standably, then, almost all of these inexpensive ma-
chines still use their own special operating systems.

On larger machines, however, this proliferation of pre-
prietary operating systems proved costly. First, of
vourse, is the expense of writing the operating system.
A computer company has to invest a lot of programming
man-hours inte developing a competitive operating sys- -
tem. Moving apphcat:onb programs over to the pro- a
pnetary operating systems requires even more expen-

-give programmer time. And because most applications..
progmma were wrltten,by companies other than the
computer manufacturer, it might be a long time, if ever,
before 2 popular program hecame available for a par-
ticular machine:- Yet "this situation could be easily
erodlcd on these larger machines—if most of their
uperatmg system was stored on a floppy disk. (There
i usually unly enough ROM to instruct the computer

i Lo load in the operating system.)

Cie.lrly. the answer wils a portable operating system,
The pionéer in this area was Digital Research with its
CP/M (Control Progriam for Ml(.ruptoceqsurs) CPMis
written'to make existing applications programs easy to
move to new computers—provided that the new ma.
chines conform to certain hardware standars including
using the Intel 8080°cr 8085 or Zilog ZB0 8-bit micro-
processor.

Manufacturers Lould license CP/M. from Digital
Rescarch for less than they could write their own oper-
atingr systems, and a lot of them did. Consequently
CIYM's wulu-.p: il use enconraged programmens to
wrile upplic ations programs for it. The agailability of
airitty of softwire'imade CIYM systems pnpul.n with
buyers, which encouraged even more manufacturess to

.
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by Rick Cook

Whenever you Use a computer
_you are using a program called an
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R {HETHER you know it or not, the operating system is the first program
LY W ] executed when you turn your computer on and the last program shut down
siad When you turn your computer off. Computer books and magazines tend
to wax metaphorical when they describe operating systems and what they do.
Operating systems have been called “traffic cops,” “majordomos,” “virtualized in-
terfaces” or even the “personality” of your computer. They give it a “soul” or
handle the “housekeeping.” The reason behind these metaphorical outbursts is
that an operating system does too many jobs for one simple explanation; it is,

in fact, easx]y the most important software a computer has.




TECHNICAL

NOTES

Since the RN's and NP's would each be assigned a permanent
exam room, the original planned staff size was really a reflec-
tion of present maximum exam room count. When simulation
forced an increase in these providers, the present facilities were
instantly rendered inadequate for combining the current pa-
tient load {not to mention any future volume increase).

The size of the waiting room was not even considered until
the simulations provided a maximum gueue length for that area.
When this maximum was taken from a model with one pro-
vider absent and enlarged 40% for persons accompanying the
patient, neither facility had the required waiting space.

Despite the disappointment at being unable to combine clinics
immediately, two posilive consequences resulted.

(1) An extraordinarily detailed space requirement was
generated, backed by a level of documented justifications
not normally seen for this size of request. The forecasted
volume increases related directly to incremental space cost
as well as staff cost.

{2} The wait to get the new space {approximately one year)
would allow time for more detailed simulations and the
small-scale actual testing of many of the major operational
changes. The GYN scheduling methodology has already
been modified with documented improvements in patient
early/late arrival. Addition of Nurse Practitioners to the pres-
ent (split) clinics is planned for fiscal year 1985. Observa-
tion and logging have bagun again in GYN clinic in prepara-
tion for a known increase in near-future patient volume.

SUMMARY

The most important result of the simulation process was the
education of the department personnel. Even if ng simulation
runs had occurred, the knowledge gained from gathering the

.information required to build the models provided a quantum
increase in management understanding and cooperation. The
non-threatening, tnanimate information requirement of the
mode! allowed freer communication for the diverse study group
{Physicians, Head Nurse, Administrator, Financial Coordlnator,
Engineer, Assistant Professor).

The model used here is relatively trivial and is not presented
with the intent of demonstrating simulation prowess. Rather,
the focus is on the application of simulation {o real-time, highly
deadlined, management decision making. Though numerous
assumptions in the model could be improved, no degre of fur-
ther sophistication could have preserved the original plan un-
changed. Now, not only is more time available, but also the
goal has widened from providing a specific gofno-go decision
to locating the optimum configuration for clinic operation.
Many of the assumptions presented here will not be adeguate
for this more rigorous effort.

Other results include:

{1) Original planned staff size was increased by three providers.

(2) The new provider type (Nurse Practitioner} was shown to
have a markedly lower unit cost as well as higher volume

e

capacity (compared to MD's) due to their assured presence
when the clinic starts.

(3) Both current clinic facilities were shown to be inadequate -

for a combined operation. A detailed space requirement
was documented based upon the simulations.

(4) Front-loading of each OB session with at least five new
history/physical exam patients minimizes disruption of
return visits and optimizes use of providers.

(5) The modeled staff utilizations were maximized against pre-
determined upper limits for direct patient care tasks.

(6) The effect of the MD's delayed arfivals was documented
showing the negative resuits on clinic stop time, pataem
visit stay, unit cost, and RN utilization. :

{7) When the average patient stay time dropped below ane
hour, unacceptable staff non-utilization occurred.

8

The modeled direct labor unit costs for each patienit type
were found to be most sensitive to provider team ratio and
MD arrival time. This data may also Support latér changes
in clinic charging mechanisms.

The simulation technique proved its value and is now under-

way in several other clinics. The development of an *in-house”

programming capability and the use of a rapid turnaround com-

puter, supported by acceptance at middle- and senior- -
management levels, assures that simulation will become a stan-

dard tool for grappling with rapid change in the health care

system.
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TECHNICAL NOTES

-

} L o Exil time of
.MD arrival, Physician {am) Average patient last patient RN
altemalwes A B C time in ¢linic (P.m.} ulilization
Worst recent
aclval times 9:50 10:30 11:00 2 h 52 min 2:06 59%
Best recent
actual Limes 9:45 10:00 10:15 2 h 33 min 1:46 63%
tdeal times 8:30 8:30 B:30 1'h 12 min 12:20 82%

Simulation parameters

Staff size: MD's =3 7
| RN's = 5

Morning clinic, starting at 8:00 am. {first PL. arrives)
Patient load tfor morning clinic) = 35 OB regular return visits
Average physician exam time = 11 min

Figure 6. Simulated ellect of physician arrival times,

[
i
]
1

the sessions ran seven hours! This was unwelcome news since
combining the clinics had been premised upon a considerable -

reduction in current stafl. The mode! validity was certainly ques-

i

tioried, but no one could designate an assumption or parameter’,

which realistically could 'betin error enough to ignore.the
results. Though this simulation result was accepted grudgingly,
refief that it was discovered now (and nol al actual clinic slart-
up) was evident.

New planned staff size

Afier additional simulations, the total planned staff was in-
creased by three: one MD, one RN, and one NP, This process
was nicely structured by the mode! result categories in the
foliowmg pnomy

1)) Sesslon ‘must’ slop WIlhln 4%Lh0urs"f' s,
oL ..,} dinthf m Juth

(2) Pauent stay time should average approx1ma1e];' one hour,
Fe tarsatds,
(3) Utilizations should not exceed 65% for MD's and 80% for
, RN's {0 allow time for unmodeled duties.

The modeled unit costs showed 3he MDIRN pauenls to cosl

more than the NP/NA patients. The plan envisioned the'MO/RN'

patients generally to be those at higher risk or with complica-
tions, Whl|E the NP/NA' ‘patients’would: be*rou:mem flaue

T s At Liling Y ,”, o1
e Bomra) ogi s e

it Orlg:nal patlent.volume/mlx,jplan —

el ‘-“lli.!.rt nJ::j ds gl
The orlgmal planned pauent volumel/mix was tested using the

'new.staff.size. Since this plan was based Iuosely on 3 subjéc-
tive requtrement 10 see 40 new patients per week it was not
surprising that it overwhelmed even the largér planned staff
size. The steady-state patient visil load is rigidly connecled to
the new patient intake rate (a fact not fully appreciated until
it was 1o be modeled). After realistic adjus!ment the patient
mix*per session became’a concern. ‘Apparently valid.feelings
about how to split the load between MD and NP proved to
need adjustment when modeled. The subjective equivalency |
of visits by different patient types also received adjustment.

100 SIMULATION AUGUST 1984

Final patient volume

The final patient volumes were in fact average session loads.
- To see-what wauld occur when an individual session load was
“higher than average, the past four months of session loads by

! patient type were compiled. Though the causes of load varia-
tion among sessions was not fully known, there were no plans
which might influence this fluctuation so it was assumed to con-
tinue. It was felt that a staffing plan should routinely com-
prehend patient loads up to one standard deviation above the -
average load. The resulting models showed the worst cases to
be the OB MD/RN and GYN NP/NA sessions running an hour
longer at "Avg + X* patient load. These two session types are

candidates for morning clinics so that their overruns wont oc- -

cur at close-of-business. Plans have already been defined

designating Specmc personnel who will prowde tunch breaks

for an overrunning clinic.

Schedulmg new patients

A new OB patient's frst visit is very Iong compared to all others .
Since they take such a'large segment of resources, the first in- -
clination was 10 spread them out evenly during a session to

minimize their dominance of MD time. The Head Nurse sug- . .

gested scheduling them first in a session (front load) and delay
scheduling the first return patient for 75 minutes. Both methods
were simulated with the latter method proving clearly the bet-
+ ter {reduced patient stay and earlier ¢linic stop time). Not only
* was better use made of the non-MD resources but the reported
tendency. of the long (new-patient} exam lo get out of

. chronology was effectively blocked !
ey e },j'" '

e it b o Chmc space requirement

. Throughout the study, the quickness of actually combmlng the

clinics was'based upon the assumption that one of the two

" facililies would handle the combined patient load. The simula.
tions proved this to be unworkable for two reasons:

(1) The required number of exam rooms needed exceeded
those available at either location,

(2) The requared waiting room capacuy exceeded that available
at either location, .

&
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AL NOTES

IDEAL PHYSICIAN ARREVAL 8:30:8:30:8:30;
IMD . 2MD 1MD
<> PT.AVG.- = Ohr 40min PT.AVG. = Oht 41lmin FT.AVG. = lhr l2min v
RN = 60X RN = 59% RN = 463
SRN MD = 442 MD = 63% Mh = 96X
pLuC = $18.22 DLUC = 516.79 DLUC = $18.38
STOP = ll1:27a.m., STOP = 1l1:27a.m. STOP = 12:07p.m.
* PT.AVG. = Ohr 43min PT.AVG. = Ohr 43min BT.AVG. = lhr 2lmin
<> RN = 77X BN = 74% RN = 57%
4RN MD = 44 MD = 67X <> MD = 963
DLUC = §15.63 <> DLUC = $514.31 DLUC = §16.68
<> STOP = 1l:26a.m, STOP = 11:27a8.m, STOP = 12:27p.m.
BEST RECENT ACTUAL PHYSICLAN ARRIVAL 9:45;10:00;10:15
3D uD : | 14D
PT.AVG. = 1lhr 48min <> PT.AVG. = lhr &48min PT.AVG. = 2hr 29min
RN = 49X RN = 4BX RN = 367 ’
SRN MD = 592 Mt = 781 MD = 94X
pLuC = $19.77 DLUC = §19.46 DLUC = 524,69
<> STQP = 12:08p.m. STOP = 12:15p.m. STOP = 1:3%9p.m.
PT.AVG. = 2hr Olmin PT.AYG. = 2hr Didmin PT.AVG. = 2hr Imin
<> RN = 61X RN = 55% RN = 45%
48N MD = 47% Mp = 73X <> HD = 36X
DLUC = §19.86 <> BLUC = §18.25 DLUC = $20.90
STOP = 12:46p.m, STOP = 12:41p.m, STOP = 1l:43p.m.
WORST RECENT ACTUAL PHYSICTAN ARRIVAL 9:50;10:30;11:00
3Mp ' 2HD 1M4p .
<> PT.AVG. = 2hr O3min PT.AVG. = 2hr Q4min PT.AVG. = 2hr 28min
RN = 442 RN = 46 RN = 35%
5RN HD = 59X MD = B3X <> Mp = 97X
DLUC = $21.43 DLEC = 520.78 DLUC = $24.00
<> STOP = 12:33p.m. STOP = 12:34p.m, STGP = 1:30p.m,
PT.AVG. = 2hr 12ain FPT.AVG. = 2hr 12min PT.AVG. = Zhr 37min
<> RN = 521 RN = 49 RN = 44X
4RN HD = 48% MD = 69X MD = 95X
DLUC = $20.18 <> DLUC = §19.43 DLUC = $21.18
STOP = 12:58p.m. S‘I‘p? = 1:02p.m. STOP = 1l:48p.m,
ASSUMFT IONS DEFINITIONS
MORNING CLINIC, PIRST PATIENT ARRIVES 8:00am PT.AVG. ~ Avg time patlent fs iIn clinlc
PATIENT LOAD = 20 OB REGULAR RETURN VISITS RN = XXX-Avg RN utilization for exam enly,
AVERAGE REGISTRATION = 3+1 min. MD = XXX-Avg MD utilizatfon for exam only,
AVERAGE WELGHT/RM PREP » 6+1 min. DLUC = Direct Labor Unit Cost (per patient)
AVERAGE RN PRE-RXAM = 5+2 min, STOP = Time last pt. leaves morning secssion
AVERAGE MD EXAM = llmin. Poisaon <> = Optimum value for each arrival. '
AVERAGE RN EXIT = 8min. Polsson alternative. '
AVERAGE NEW APPOINTMENT = 1+l min.
PATEENT ARRIVAL INTERVAL = 9+0 min.

Figure 5. Computer simulation of proposed Oﬁ physician clinic with 20 patients.

Eighty-two models {out of the several hundred possible) were
actually run with the non-selected models being either “boxed
out” of feasibility range by previous model results or having
unrealistic parameter combinations, Each model was run three
separate times identically except for the portion of random
number tables used. This was necessary because of the small
volume of transactions and the non-steady state character of
the four-hour clinic session. The three results were averaged;
more than three runs would have been desirable, but cost and
deadline overruled. -

Effect of MD arrivals

The first simulations dealt solely with MD arrival effects. Using
a fixed patient volume, a single patient type, and a fixed stafl

size, three arrival patterns were tested. The most dramatic ef-
fects were on RN utilization and patient stay time (see Fig:
ure 6). This was the first time that such effects had been
documented to support the long-held feelings ofthe clinic staff,
The data in Figure 6 was immediately passed o the Depart-
ment Managers since addressing this issue was:considered a
long lead-time process. The issue of physician leadership and
control is now being examined mare widely in the light of this
data. '

Original planned staff size

The staff size planned for the combined clinic was tested with
average current patient volumes. The results clearly showed
the staff was inadequate for even current patient volumes —
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.

empirically derived distribution of event durations. Nine
of the sixteen duration types had sufficient data to be ap-
proximated in this manner. The other seven were for pa-
tient types so rarely seen that a Poisson distribution assump-
tion {even if grossly non-representative) would have little
impact on the outcome. .

(2) Palient pre-exams were estimated by the Head Nurse since
par of this procedure did not yet exist. As this procedure
would be highly structured it would evidence less varia-
tion around the mean so a uniform distribution was
selecled.

~(3) The Nurse Practitioner procedure durations were assumed
10 be identical to the corresponding Physician procedures,
(Since NP’s were not yet present, some guidance was pro-
vided from previously obtained midwife procedure times,)

(4) Since no direct change in clinical practice was envisioned,
all process durations {or the future combmed clinic were
modeled upon present practice.

{5) Patient arrival was assumed to be similar to the present OB
experience: uniform hourly patient arrivals during the first
three hours of a session. tn a combined setting, the GYN
schedulng method would be identicai 10 OB.

{6} Forany one model, the interval between all patient arrivals
would be constant. Most of the plans to be tested did not
involve changes Lo patient arrival patterns. Keeping arrivals
uniform and consistent would clarify cause and effect of
other changes. Later models could test more nearly realistic
arrival patterns.

(71 Onlydirect patient contact tasks would be modeled. At this
point, these were the only measured tasks. Indirect labor
tasks were estimated and would require adequate (and ap-
parently non-utilized) time in the modeled results.

(8) Each clinical session lasts four hours (8:00 A.M.-12:00 noon
or 12:30 P.M.-4:30 P.M.). No personal breaks or lunches
are simulated; registrars, RN's, and NP's are present at start
of session, MD's arrive at various times after session starl;
first patient arrives at session start; model will run each ses-
sion until last patient leaves; mode! will simulate only one
session during a run.

T TECHNICAL-NOTES J

{9} AllMD exams are already chaperoned by the correspond-
ing RN. The NP exams would be modeled at 40%, 60%,
and 80% chaperoned (by NA's).

Model parameters

The planned volumes for each type of patient were provided
by the department managers. The planned stafi sizes for each
personnel type were provided by the Head Nurse. MD arrival
times were drawn from logged, ideal,-and practical best. Pro-
cedure duration times are shown in Table 1.

RESULTS

A typical 18-model output summary is shown in Figure 5.
Table 2 lists all the parameter values tested in specific models.

|
Table 1. Procedure times lor combined OB/GYN model (in minutes).
All registrations = 3 £ 1 minutes,
All weigh station/room preparation = 6 % 1 minutes.

All new appointments = 3 &+ 1 minutes.

Pre-exam
MD patients {minutes) Exam* Exit® .
OB . '
New 30 + 10 ap 12P
Righ risk 52 13P 12P.
Endo 5% 2 23P 9
Post partum 7x2 g9p 109 .
Regular 52 1P 8P
G¥N TN
Regular 4% 1 21P 8P .-
Endo 4 1 259 §3p
STD 4 21 17P 8P .
NP patienis
OB
Post partum 7%x2 4gpP 10P ..
Regular 52 11P ar . .
CYN ’
Regular 421 21P ge .
STD - 4%t 17P CLI

*12P = Poisson distribulion with average value of 12 minutes.

Table 2. Parameter values modeled.

Physician exam flow

GYN palient mix

20 regular
15 endo

Nurse practitioner exam fllow

MD statft RN staff )
size size OB patient mix
3 5 20 regular
2 4 35 regular
1 5 new ! 20 regular
7 new ! 24 regular
5 new {15 high risk
5 new / 10 regular / 10 posiparium
© NPuall  NA saff OB patient mix
e e {all arrivals uniform}
4 2 20 regular
3} 1 25 regular
2 30 regular

, 15 regular f 10 postparium
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CYN patient mix
(all arrivals uniform)

20 regular
25 regular
0510,

MD
arrival

Worgt actual -

Besl actual
Ideal
Pracuical best

Patient
arrival schedule

Uniform .
Froni-toad new patients:
a) First regular m 915
b) First regular a1 9:45

.

" % of exams
chaperoned

40'%

0%
80'%
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e )
08_cLINIC  wonrgnify
., \?‘51““?': /47 i . URINE : o
T
SYMDTOMS : )
PO S GEFES 1L
oe/Las4 ]
i
TYPE NF_¥ISIT: TYPE OF PATIENT:, cLick Tiues: /0 pate:Mf ,! b
—_HURSE HISTORY e e SCHEDULED ABPOLNTHENT 3 e
jﬂ“ PHYSICAL HIGH NISK REGISTER AT DESK YR
— —r—————
ETURN ViSTT ENDO —_— R B A
___GTHER CARDIAC ——— TS
] Y
LEAVE EXAM ROCM veeant [0 .
_ WALK-IN PATLENT AADINDANT HAK ]030
(NOT SOHEDULED) 75
moy wiies__. /0
EXIT QLINIC L) 52
Figure 2. Typical patient flow log sheet.
HNote;
Average = 7.5 minutes
459 samples
EXIT INTERVIEW DURATION
OBSTETRICS CLINIC
REGULAR PATIENT
RETURN VISIT
- POISSON: MEAN = 7.8 MINUTES
S .
e
\ -
7 4 6 B W0 12 14 16 18
Minutes duration
Figure 3. Exit interview durations,
|
Morning patient leave time MD Arrival/Departure
Date Earliest  Latest Total  MD-hgurs
(Am.) (rm) | B1A  #1D #2A #20 #3A #30 #4A #40 | pat. per pat.
4/6 Wed. 10:00 1:02 | 9:30 11:05 9:35 11:40 11:00 11:45 11:30 1145 26 . 0.1’5
417 Thurs. 9:44 2:07 | 9:25 1.0 9:30 12:30 1115 12:40  11:30  12:40 42 017
418 Fri. 10:12 1:40 | 9:20 12:10 10:20 12;70 w0:20 12015 37 0.18
411 Mon. 9:55 2:10 | 9:20 12:50 10:00 1:00 " 44 0.15'
4/12 Tues. 9:35 1:52 | 9:15 11:1%  10:00 12:00 11:30 12:00 11:45 12:10 28 0.18
413 Wed. 10:31 1:40 | 9:30 11:35 9:45 1135 50 12:30 11:10 12:30 30 0.26
4114 Thurs, 9:40 1:35 | 9:25 12:30 9:35  12:35 41 0.15
4/15 Fri. 10:48 2:10 | 9:45 1:00 10:50 1:00 37 0.15
Averages 10:03 1:47 36 0.17

Figure 4. Actual MD arrivalsidepartures (Q8).
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NURSE **
PRACTITIONER
FLOW

REGISTER PT
BY NP RG

PHYSICIAN
FLOW

‘EXAM BY MD°

S e

Note:

NEW APPOINT
BY MD RG

MD - Physician

NP
NA
RG
4]

— Murse Praciitioner
— Nursing Assistant
—~ Registrar '
- Patient

figure 1. Combined OB/GYN clinic.
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The first four items were collected on a form (Figure 2) issued
as each patient registered and which then accompanied the
patient’s charl. The physician's presence in the clinics was
logged by clinic staff. Extensive interviews with individual clinic
employees and a patient survey questionnaire provided unex-
pected but important modeling data (the chronology of cer-
tain types of patients is consistently disrupted; patients are
accompanied 40% of all visits). Since physician recording of
individual patient exam start/stop times was scant, direct exam
timing was done by three nurses Registration and weigh sta-
tion duration came from obtervations during a previous study..

DATA ANALYSIS

The histograms of exam and exit interview procedure durations
= :generally resembled the example shown in Figure 3. The OB
patient arrival intervals, early/late distribution, and uniform
scheduling of patients all demonstrated an on-time and uniform
arrival pattern for the first three hours of all sessions. GYN
showed a disorganized patient arrival pattern with a polar .
distribution of early/late and front-end scheduling of patients.
The physician arrive/depart log (Figure 4) documented the varia-
tion in MD availability and also gave an MD-hour per patient
similar to the observed exam times (0.17h versus 0.8th).

MODEL STRUCTURE

The simulation system, GESIM (General Simulation} is a yer-
sion of GPSS offered by General Electric information Services
Company. The resulting flow chart of statement blocks’is
understandable to non-programmer participants wha can then
assist with evaluating the realism of the model.

Assumptions

The model of the combined clinics would have features which
did not currently exist. Also, some features were simplified to
reduce confusion about cause and effect between different "

*. models. The following assumptions were used throughout thlS
study:

(1) Patient exam and exit interview durations are modeled as
Paisson shaped distributions with means resulting from-log
sheet values. Figure 3 shows a Poisson with equivalent.
mean superimposed on the logged data. Though the
_goodness-of-fit is poor, the Poisson shape was selected.
nonetheless for the following reasons:

» Entering the actual distribution was time consuming and
error prone while working against a tight deadline (the
program had a built-in Poisson function).

* Modeling was started while data was still being collected
and analyzed in order to expedite the process. As more
data was gained the mean was'expected to change while
the shape was not, Frequent changes to custom distfibu-
tions was not an attractive process.

+ Using a modeled mean identical to the logged mean was
expected to minimize dynamic distortion while preserv-
ing the overall labor content.

This use of the Poisson distribution is not the conventional
one. While the Poisson is usuaily used for variables con-
cerning the number of events happening during an inter-
val, we are borrowing .ils shape to approximate an
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ABSTRACT

Management’s plan to combine two clinics is analyzed by com-
puter simulation based upon present patient flow data and
specific planned operational changes. The specific areas ex-

-amined or tested are provider staff size/ratio, effect of new pro-
wider type, facility size/composition requirement, patient sched-
uling methodology, personnel utilization, staff arrival/departure
effects, patient waiting time, and direct labor unit costs. Pro-
cedure duration and patient arrival time are gathered using log
sheets for 2,000 patients; direct observation supplements jogged
data loss. The simulation system is GPSS. Model results con-
tribute substantially to all eight target areas. The planned com-
bining of the two clinics is postpaned until adequate space is
available,

INTRODUCTION

The Johns Hopkins Hospital (a 1,000 bed, acute-care, non-
profit, teaching hospital) has 75 clinics with 300,000 visits per
year. Hospital charges are now controlled by a state rate com-
mission. The outpatient clinics’ revenue falls short of their cost,
yet they provide a valuable source of inpatient business, Con-
siderable pressure was placed on clinics (to improve their fiscal
and management effectiveness) by decentralizing their respon-
sibility back to the corresponding inpatient service.

In February 1983, an OB/GYN Clinic study group was formed
with a primary goal of evaluating the departments plan to
physically (and organizationally) combine the OB and GYN oul-
patient clinics. The commitiee was composed of the following
individuals:

* MD — Office of Medical Practice
* MD — OB Inpatient

* RN — Nursing Director, OB/GYN

* RN — Head Nurse, OB/GYN Clinics

* Administrator — OB/GYN ‘

*» Financial Coordinator — OB/GYN

* Management Engineer — Central Staff

* Agsistant Professor — Health Services Admmnstranon

This group could bring to bear a wide variety of backgrounds
and insights on management analysis.

Computer simulation was proposed as the centra! device for
the analysis process, because the implementation of several
policies which individually may make sense (statistically. ra-
tional) may lead to less than optimum performance (dynami-
cally irrational}. Since the target date for combining the clinics
was July 1, 1983, thorough and detailed simulations would not
be possible. Since data collection and analysis .would not be
completed until May, little (if any) model validation or verifica--
tion would be available before an initial golno-go decision on
combining the clinics would occur. An estimate of feasibility
will be considered sufficient at this point. Despite the inherent
risks of such a process, computer simulation was felt o be the
best mechanism with which to pretest the new policies and
plans.

DATA COLLECTION

Using direct observation and staff interviews, :a flow chart of
the planned combined clinic is given in Figufe 1. As can be
seen, the planned clinic is really two samullaneous but indepen-
dent flows: Physician patients and Nurse Practmoner patients,
This, in turn, dlreclly specified the data needed for modeling:

(1 Panent and visit type
(2) Dateftime of patient arrival
(3} Patient appéintmient time
(4) Procedure duratieri tifes
(5} Provider arrival/departure times,
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o 80 I=1,1022

ICONT=1 '

CALL ADCINMy ICONT»INFER(I)»ISE)
ICONT=0

CALL ADCINMy ICONT»IVOLT(1023~I)sISK)

Retraso de tiemro rars adecusr el tiemro de respuesta
de el graficador con el de la macuina.

OO0

Lo 80 L=1-10
L0 80 M=1.10
80 CONTINUE
ICONT=1
CALL AD(INMsICONTyIGENQ»ISE)
RETURN

*FDR CIRCULO=CIRCULOD
*TKR <crx *
TRE>CIRCULO=CIRCULO
TRE:/

ENTER OFTIONS!
.TNB}CDHHON=UDCOH3RN
TNB})/

*RUN CIRCULO
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" .CALL ADCINM,ICONT»IGENOyISE)

VOLTS=0.
ICONT=0 , .

Se desrlaza el canal 0 a el radio esrecificado
CALL AOQCINM»ICONTSIDESF»ISR)

Calecula los runtos de la circuferencia

Do 60 I=1,511 Co
. Y=SQART(RADIOXX2-VOLTS%%X2) ’

Puntos sureriores

IDATA(S12-1)=YX1023./10.+IREST
IDATA(S114+I)=IDATA(SL2~1)

Funtos inferiores

INFER(512-1)=IREST-~-Y%1023./10.,
INFER(S11+I)=INFER(512-1)

Desrlazamiento horizontsl

IVOLT(I)=VOLTS%1023,/10.+IDESF

o IVOLT(S511+I)= IUOLT(I)+IREST IDESP

VOLTS=VOLTS+CREMEN

Los runtos calculados son Puestos en los convertidores /A
mediante la subrutina CALL AOCINMyICONTsIDATAYISR) en dondel "
INM - # de canales aue tendrasn salids simultanea de.
agouerdo a el dato de entrads.
ICONT - Son los canales a los aue se hace referencias.
IDATA ~ Es el dato de entrada .
ISE - Es un campo aue indica si hubo error © no én

lz oreracion efectuada.
! ) |

no 70 I=1,1022

ICONT=1

CALL ADCINM,ICONT»IDATAC(I)»ISH)
ICONT=0

CALL AD(CINM) ICDNT!IUOLT(I)!IQH)

Retraso de tiemro raras adecuar el tiemro de resruests
de el draficador con el de la maguina.

00 70 L=1,10
[0 70 M=1,10
CONTINUE



~ERT CIRCULO.FTN

O

OooOaaooooan

[y
<

o2
<

40

a0

93

OO0

CAaLL EXIT

PROGRAMA QUE EJERCITA LOS8 CONVERTIDORES D/A -
L P

‘Este elabors uns serie de circunferencias de radio variasble

mediante l1la wtilizacion de los convertidores /A 9 un sraf1—.
cador mecanico.

TYFE 10
FORMAT(‘  CUAL ES EL NUMERO DE CIRCULOS A GRAFICAR ‘)
ACCEPT 20y NUMVE

FORMAT(I1)

DO 30 I=1,NUMVE

CALL EJER
CONTINUE

ENDI
SUBRUTINA EJERCITADORA REL yypxﬂpﬂﬁpEﬁTIDDRES n/7Aa)
SUBROUTINE EJER

DIMENSION IVOLT(1022),I8B(2)»IDATACLIOZ22)» INFER(L1022)
TYFE 40

FORMAT (55X ‘ ¥¥XPRUEBA IE 1.05 CONVERTIDORES A VOLTAJEXXX’s////)

TYFE %» /ESPECIFICA EL RADIO EN UN RANGQ DE’
TYPE *v’ 0.05 «= RADID <= 5,0 ’
ANACCERT, 55y RADIO

(- EORMAT (F5, 2)
. TEARADIORLT 10,,05)60 TO 50

IF(RADIO GT.J.O) GO rotse Lt

15 Ly [ g,

s -
S R P L T YL ¥

Calculo de todos los Puntos aue seran’ graficados

Ut @ s 00Rlos convertldnreq‘

3?.! _l.i5

Niveles de referencia.

OI0F o0 '
INM=1 ST
IGENO=1023 . %5. /10,
IREST=1023 . XRAIII0/10
IDESP=1GENO~IREST
IREST=IRESTHIDESF '
CREMEN=2 ., XRATNION/1022,
ICONT=1

lesrlazs el canal 1 a2 un rnivel 3V de referericia
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FROGRAMA ¥ 8

*E0I CONVDA.MAC

AEE UF W MR MF W SRR EF A NS S R G A

>

S Wy Wy T mr

ETIC MOV #37777,04171004

1

Prodrama en ensamblador MACRO-~11 rara 13 utilizacion de los
cornvertidores /A del susbsistema UDCLl1,
Fste rrodgramz mueve una ealabra de control a8 la direccion

efectiva del modulo AGII(N/A),
Como enmtrade se tierne un dato diditaly cue es cardado atraves

de lz ralabra de controly o como salida se tendra un voltade
analodico eauivalente al dato.

FORMATO DE LA PALABRA DE .CONTROL -

i e bt bma S bl A Ve Y L e W i e I Sl et P Gl S PR e et ST s T S L B R s e e A Jaie G et v i S A e A Jaeu P M Lk L SRR e ik A gy s AW B i

Wi A A bl A S i A S s e 204 Mt WS WM Ei0 K NMLN WA ined 2000 ME4 M MBI FOAS LeM PO M Nemd SOV SR g el SR MR NN SO Pee EOF 000 DM Sok IO I S0 M08 S JMoe Baii B Basu b BEaE Mg Mees BUTD HORL Baey BOIE $OON sepe heme

s g, A v pasr o

-—Iﬁ.n-wﬂ‘ﬂ“‘lﬂ—nﬂ

selector de caral datos 10 bits rno usadqéf‘

+MCALL EXIT$S
de biblioteca EXIT.

al momento de la edecucion

(contiene. los canales Oylsy2 w 3,

EXIT$S
‘termine la edecucion de la tarea

- b W aF Wp P P S EF Wy S

+END ETI

*MAC CONVDA=CONVIA

*TKB CONVDA/AC=CONVIDA

. »RUN CONVDA

directiva eue nos Permlte usar la func1on de )

$8 indica cue se crea dinamicamente en el stack

37777 es el contenido de la palabra de contrc
by 171004 es la direccion del Frimer modulo 9633

la imstruccion rone 10 volts al canal 0.._. :
directiva #ara cue el sistema operatlvo Lo
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“EDI. LECTM.MAC

' Este rrodrama en MACRO
de tardetas CR-11y rara
Este rrodrama sera lisa

CUENTA! WORD O f

LEE:? '

CRS=1771460

CRE=177142

MOV #0yCUENTA

MOV 2(R5)rR4

MOV #CRSyR1

MOV #CREyR2

. MDYV $80.yR3

ETI1¢ BIT GR1+%#1400
ENE ETI1

ETI2: MOV #1+BR1
3¢ BIT BR1,#140000

BGT ETIZ2

EEQ ETI4
BR ETIS
ETI4: CMFP CUENTAsR3
BEQ ETIS
TSTE GR1
BFL ETI3
MOV @R2y(R4)+
INC CUENTA
BER ETIA4
ETIS: RTS FC
+END

“EF S R SEF WP SER R AP IR S S WP a3 MR MR GR MERE MER SER Y SER OB SC% B S

*FOR LECTF=LECTF
»MAC LECTM=LECTM
}TKB:LECTF/AC=LECTFvLECTM
El switch Z7AC hace a l1la t

*RUN LECTF

=11 muestrs un metodo de rrodramar a la lectora

efectuar la lectura de tardetas rerforadas
do a8 LECTF.FTN
CUENTA=0

redistro de status de la lectors de tardetas

buffer de datos (12bits)

CUENTA <-—— 0

musve el aruntador a8 la direccion del elemento H{1l)
R1i contieme 13 direccion de CRS

R2 contiene la direccion de CRER

R3 <~= 80, » numero de columnas a leer

checa si la lectora esta emn linesa

en caso de no estar se va &8 ETI1 v repite este c1c10
hasta eue se encuentre en linea

lee una tardeta

checas si hav condicion esrecial o 51 esta encendlda
el bhit "card done®

condicion esrecial aradgadar rero "card done® esta
encendido :
ambas condiciones estan sradadas
en caso contrario ve a fin

i cuwenta=80.

ve a ETIS '

checa la siduiente columna

51 no esta listas se va a8 ETI3

se duards 13 informacion leida :
se@ imcrements cuentar contador de columnas leldas
ve a ETI4 :
regresa al rrodrama en FORTRAN

area rrivilediads
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PROGRAMA # 7

»ERI LECTF.FTN

OO0

oo

[ B

COoOoOwWmon0n

15
c

C

OO0 0 WK
[e-Ra)

G OGO O

Programa en FURTRAN rara realizar la oPerac1on de escritura del
Prosrama LECTM MACs €1 cual reslizara upa lectura de tarJetas
Perforadas aobre la lectora CR-11., Posteriormente escribira el
contenido de estas en 1la terminal.,

INTEGER R(é4)rC(64)rH(80)!B(80)

INTEGER CONTA

cornJunto de caracteres

DATA C/7 "o/ 1 y /Dy 87 43/57,047, l7f,181',:91,101’ .
t:n:l'f@l'f:r,f'}i,f'pl IAI,IBI 'C'I'D'!'E’!'F'!'G"'HIU'I‘!
TRy Y gt (gt gty [y IJJ,IK!,}LJ,IMI’INI'IOI'
TPy 'Q Ty Ry~ I$l ,:*1,1)1 Pyt l+l"l/f’lsf,l'rl'fu}'
rul,lul,lxl,lY},tZ)'l\l, r ¥y I—I tlf,fll/ '

RO B

codido hollerith de los caracteres

DATA R/0G»256912896493291698r492v195129469349130452 v518!2304!2176!
2112y208052064,2056,2052,2050,204992048+2114,115422066y -
2082,2054,2178,1536912805115291088v105621040,1032,1028,-
1026y1025,10245,1090,1058+1042,1034,103022058+76B+640

5761544y528,5209516+514r513,642+578r5469100601154/

B LI =

CALL LEEC(H) I 1lamads 8 la subrutinzg en MACRO-11

checa si 1a tardeta leida contiene 5 unos

no 15 I=1,9
IF (H(I).NE.1) GOTO 1S5

CONTA=CONTA+1
CONTINUE

ge almacens la informacion leids em el vector B

no 30 I=1,+80
Do 20 J=i,64
IF (H(I).NE.RCJ))Y GOTO 20
B(I)=C()

J=64
CONTINUE
CONTINUE

se escribe la informacion de la tar.eta leids

TYFE 35+ (B(I)»I=1+80)
FORMAT (B80AL)

si la tardeta leids contierne 5 unos, se toma como sensl de aue wo
no haw mas tardetas rara leer w termina el rrogramar en CH80 B
contrario -rrosigue la lectura. LT L

IF (CONTA.NE.S5) GOTO 5
CALL EXIT

END

"@0



2, Redistros de datos.

Cada Periferico tieng’drolodnassredistros de control o de estado
(C8R)»y abd BOATisRaTtHds~ aTifRfermEcion: necesaria raras la comunlea—-
cion con este disrositivo. Muchos. disrositivos recuieren menos
de 16 bits de estado.Otros disrgsitivos recueririan mas de 16 hits @
ror lo tanto necesitaran redistros adicionales de estado w control. °
Ca da dirositivo tierme 2l menos un redistro buffery sdemas de los
redistros CSRy rara el almacenamiento temroral de datos gue han de
ser transferidos desde o hacias el computador. ,

OBJETIVO?

v

El alumno zrrendera a maneuar disrogitivos perifericos tales como

lectora de tardetas CR-11 W UDCI1 «convertidores [/A)s atraves de
Frogramas escritos en lenduade FORTRAN w ensamblador MACRO-11,

IESARROLLOS

Realizar los siduientes rrodramas!

Frosrama ¥ 7 - Programacion de la lectors de tardetas CR-11.
Frograms # 8 ~ Frogrsmacion en enuamblador MACRO~-13 de los vonvartldnres

Didital/Anzlodico. |
Frograma ¥ 9 - Frodramacion''en’ FORTRAN de los convert1dure5 /A Para

1z utilizacion de un graficador mecanico. .
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FRACTICA % 3

FROGRAMACTION DE ENTRADA/SALIDA
INTRODUCCION?

La caracidad de rrogramar un comrutadar eara hacer calculos seria
de roco uso si no existiera la forma de meter los 'datos a la macuina

o consedguir los resultados de calculos realizados ror ella. For -

consiguienter un erodgramador debe estar provisto de los medios rara

transferir informacion  entre el comrutador w los disrositivos

rerifericos aue suministran la entrada o aue sirven como medio de
salida. A

Con el fin de realizar ung funcion de E/Sy el erodramador debe
pgrecificar cuales son los datosr 2 donde deben ir o de donde vienen
g4 como debe ser controlado €1 disrositivo de E/S. Derendiende del
tiro de comrutador cue se utilicer 1a funcion de E/S ruede reaueriy
aue el CPU esrere hastae aue la oreracion de E/S se hawe comrletado

o la funcion de E/S ruede rermitir aue el CFU continue rrocessndo
otras funciones mientras la oreracion esta siendo realizads. Cuando

la funcion E/S retiene el CFU decimos aue 18 oreracion de E/S esta

entrecruzada con el CFRL. Cuando ambhas rueden ser realizadas

simultaneamentey decimos aue la E/7S es concurrente con el sroceso
de comrutacion. '

£rn otra formar 13 furncion de E/S orera directamente entre.ia'

‘memoria v la unidad de E/S. Este modo de oreracion requiere un

camino serarado [ llamedo camino de acceso de memoria directo(IMA)]
entre la memoria 9 la unidad de E/8. E1L DIMA rermilte cue se reslice

la funcion de E/S con un minimo de derendencia. del CPU.

La Frodramacion de E/S derende de la macuina. La comPIéJfﬂad dei

sistema de E/S determina la comrledidad de 1a rrodramacion de E/8. -
En el PIPy 1a #rodramacion de los disrositivos de E/8 es
extremadamente simrle w no se recuieren instrucciores nuevas de E/S
FPara maneJar las oreraciones de E/S.

La clave de 1la simelicidad rara 1a srodramacion de E/8 es el
UNIBUS., El {4NIBUS rermite wuna estructura de direccionasmiento
unificada en la cual el controly el estado w los redistros de datos

rara los disrositivos rerifericos son directamente direccionados .

comd rosiciornes de memovia. For consigulentertodas las oreraciones
err los redistross como la transferencis de informacion hacia o fuers
de ellos o la wmanirulacion de datos con ellosy son realizados ror
instrucciones normales de referencia 3 la memoria. '

Todos los disraositivos rerifericos estan esrecificados ror un
druro de registros aque son direccionados como  la memoria o
la manirulados con lexibilidad de un scumuledor.Con cade disrositivo
estan asociados dous tiros de redistros:

l. Redistros de control 4 estado. a
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>ERI RUSCAM.MAC

Frograma ern MACRO-11 cue busca la rosicion de um dato en un vector

por el metodo de buseueda binmaria.
Este prodgrama sera lidgado a BUSCAF.FTN

— w3 wv W+ .3

: +WORD © Y fw= 0
H +HWORTE O N <=~= 0
Lit fWORD O [ e ()
BUSCATL rnombre de la subrutina en MACRO-11
MOV R2(RS)Y N N <~- NELE» e cargs el numero de elementos

o <~~~ DATOr se cardgs el dato a8 buscar
R2 contierne la direccion del elemento A(L)

MOV @4(RT) I
ETI1: MOV 12(R5),R2

M CR F Y P P M M NP SR Wr MR ER W S

MOV £2sR1 Ri <~ 1
MOV YsRO RO =—-= Y !
ALD NyRO RO «~= RO+N
CAalLL sDIV subruting rara efectuar divisiones enteras
MOV ROyR3 R3 «== RO » indice sctual del vector
cLC se limpiz banderas de carry _
ROL RO realiza una rotacion a la izauierdal(multirlicacion X 2)
SUR £2+R0 RO «<-- RO-2 o
AL ROyR2 § R2 == R2+RO y direccion del elemento con indice R3
CMP (R2)sD i si (R2)<:DATO
BNE ETI3 _ # ve 3 ETI3
ETI2: CMP (R2)+D i si (R2)Y=DATO .
BEQ ETIS vy ve a3 ETIS '
CHMF NyR3 i osi N=R3
BEQ ETIS i ve 3 ETIS
BR ETI1 v en caso contrario ve & ETI1
ETIZ: BMI ETIA4 i sl (R2)YDATO ve a ETI3I
MOY R3/R4 t R4 <~-— R3I » salvamos indice asctual
SUB #1sR3 i RZ == R3 -1
MOV R3sN f N <-— R3
MOV R4sR3 i R3 <-- R4 » restauramos indice sctusl
BK ETIZ2 i ve 3 ETIZ2
ETI4: MOV R3:R4 § R4 <~— R3 » salvamos indice actusl
ADD #1,R3 sy R3 «<~— R3+1
MOV R3sY $ Y w-~- R3
MOV R4yR3 $} R3 <~ R4 » restsuramos indice actusl
BR ETIZ2 i ve a ETI2
ETIS: CMP (R2)sD F sl (R2Y<HDATO
ENE ETIé i ve 3 ETIé

MOV R3»R&(RT)
MOV #1,@10(R3)
ER ETIV
ETI&: MOV #0,810(RG)
ETI7: RTS FC
+END

POSICION <-- R3 » rosicion del dato
BANDERA <~~ 1 .

ve 3 ETI?V

BRANDERA <-— O :

redresa 3l srograma en FORTRAN

“y EF e gy W

>FOR BUSCAF=BUSCAF
»MAC EUSCAM=RUSCAM
>TKR BUSCAF=RUSCAF » BUSCANM

>RUN BUSCAF |
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FROGRAMA # 6

YEDT BUSCAF . FTN

c
C
C
C
C

i0

15
20

[
29

Programs en FORTRAN rara realizar las oreraciones de lectura w escriturs
del rrodrama EBUSCAM.MAC

Este rrograma encuentrs la rosicion de un dato dentro de un vector con
un maximo de 10 elementos.

INTEGER AC10)»DATO»POSICION,BANDERA

TYFE %, /DAME EL NUMERO DE DATOS DEL VECTORy MAXIMO 107
ACCEFT XrNELE :

TYFE %»'DAME L0OS ELEMENTOS ORIENADOS DE MENOR A MAYOR'
TYPE % UNO FOR RENGLON» CON FORMATO ENTEROQ’

ACCEFT X» (A(T)sI=1,NELE)

TYFPE %» DAME EL NUMERD A BUSCAR: CON FORMATO ENTERO
ACCEFPT XsIATO

CALL RUSCA(NELE»IATOyFOSICIONsBANDERAYA) |  subrutina eén MACRO-11
IF (BANDERAL.EQR,0) GOTO 15 :
TYPE 1C»DATO»FOSICION

FORMAT (1Xy “EL NUMERQ’»I&6s’ OCUFA LA FPOSICION’»I3)

GOTO 25

TYFE 20.DATO

FORMAT(1Xy “EL NUMERQ’»Ié6y’ NO SE ENCUENTRA EN EL VECTOR’)
CALL EXIT

END
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»EDI ORHhNAM MaC

Este rrodgrama sera

f_ w ek wr ern

: JWORD 0
I3 JMORD 0
ORDENASS
MOV B2(RS)sR1
ETI1$ MOV 4(RS)sR2
MOV $0y .
MOV #i,1
ETI2: CMF. Risl
REQ ETI4
CMP (R2) y2(R2)
EMI ETIZ
MOV (R2)R3
MOV 2(R2)s (R2)
MOV R3s2(R2)
INC J
ETI3$ INC I
ADD #2,R2
BR ETIZ2
ETI4: TST J
ENE ETIY
RTS PC
+END

*FOR ORDENAF=0RIDENAF

>MAC ORDENAM=ORDENAM

Frograma en MACRO-11 rue realizs el ordenamiento de letras o nUmeros ‘{
en orden ascendente por el metodo de la burbuda.

lidado a8 ORDENAF.FTN

EF WP R R P EF g MEF M3 SR W M CF WP NP gy EF W er gr WP

J A0 \

I <-- 0

nombre de la subrutine en MACRD-11

Rl <~= N » numero de elementos a ordenar
R2 contiene l3 direccion del elemento A(L)
J == 0

I <—— 1

mientras N<»I sidgue

en caso contrario ve 3 ETIA
si A(I)ZA(TI+1)

ve a8 ETI3 .

ern caso contrario AUX=A(I)
ACTY=A(I+1)

ACI+1) =AUX
Jog== 41
I <-- I+1

se mueve el aPuntador 3l siduiente elemento

ve 3 ETIZ2

gi JLRO

ve 3 ETIl .
en caso contrario redresa al prodgrama en FORTRAN
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*TKR ORDENAF=0RDENAF » ORIENAM

+*RUN ORDENAF



PROGRAMA # 5
*EDNI ORDENAF .FTN

+

i

Programa ern FORTRAN rara realizar las oreraciones de lecturs w escrltura
del erograma ORDENAM.MAC - ‘

C Este prodgrama ordens letras o mumeros en orden ascendente.
C ( splo es permitido wun maximo de 10 elementos )

INTEGER A(10)yDPT+RES
1 TYFE ¥, /TECLEA OFCION DE ORDENAMIENTOC
TYPE X LETRAS ~--> 1 NUMERDS ——3» 227
ACCEFT %»OPT
IF (OFT.LT,1.0R.0PT.GT.2) GOTO 5%
GOTD(S:,20)0FT
TYPE %y 'DAME EL NUHERU LE LETRAS A ORUENARy MAXIMO 107
ACCEPT %sN
TYFE %, ’IAME LAS LETRASy SIN ELANCOS INTERMEDIOS‘
ACCEPT 10, (A(I)¢I=1sN)
i FORMAT(10A1)
TYFE %, ESTE ES EL VECTOR DESORDENADOD
TYPE 152{(A(I2»I=1sN)

o

1% FORMAT(1X,10(A1,2X))
' GOTO 30
20 TYFE %, 'DAME EL NUMERQ DE DATOS A ORDENARy MAXIMOD 107
ACCEFT %sN

TYPE Xy 'IIAME LOS DATOSy UNO FPOR RENGLON CON FORMATO ENTERO‘
TYFE %,’Y UN MAXIMO DE 4 DIGITOS’
ACCEFT Xy (ALT) »I=1+ND ‘
TYPE %, 'ESTE ES EL VECTOR DESORDENAINQ’
TYFE 25y (A(L)»1=1+N)
29 FORMATC(1X»10C(I5,2X))
30 CALL ORDENA(N-AC1)) I subrutins en MACRO-11
TYPE %
TYFE %»“ESTE ES EL VECTOR ORDENALRO’
GOTO(35,40) »0OFT
35 TYFE 152 (A(I)sI=1sN)
GOTO 45
40 TYFPE 252 (A(I)»I=1sN)
45 TYFE X
TYFPE %, DESEAS HACER OTRO ORDENAMIENTO LCY/N1 #7
ACCEFT 50,RES
50 FORMAT (A1)
IF (RES,EQ.“Y’) GOTO 1
GOTO 40 :
59 TYFE %y /ERROR EN LA OFCION’
GOTO 1
60 CALL EXIT
END



FROGRAMA # 4

»EDI MULTF.FTN

aoaaon

10

i5

~E

X as v wr e

u

ET
ET

ET

Prodgramas en FORTRAN rara realizar las oreraciones de lectura ¢ escritura

del rFrodrama MULTM,MQC
Simulacion de wna multirlicacion roOr sumas sucesivas.

INTEGER AsBE»C ’

TYFE %*»/DAME LDS FACTORES A Y By CON FORMATO ENTERO”
ACCEFT %sArB

CALL HULTC(AYBL) I llamada 8 la subrutinag en MACRO-11
TYFPE 10sAsEB»C

FORMAT(1XyI4y' X “vI4y’ = “316)

TYPE X DESEAS REALIZAR OTRA MULTIFLICACION LCY/N) 7
ACCEPT 13s1IR

FORMAT(AL)

IF (IR.EQ.‘Y’) .GOTO 1

CALL EXIT

END

DI MULTM.MAC

FPrograms en MACRO-11 aue simula uns multirlicacion de 2 factoress
realizando el menor numero de sumas rosibler los factores se en~—
cuentran en los redistros RO 9 K1 9w el resultado en R3.

Este rrodrama sera lidgado 3 MULTF.FTN

SOR R2yETI1 R2 €-- R2~1 » si R2<30 ve a ETIL

LT3 - # nombre de la subruting en MACRO-11
MOV @2{(RE)}yRC § RO <~- A
MOV @4(R5)sR1 3 R1 «<-- R
MOV %#0+R3 $# RE <= 0
TS8T RO ¥ s5i RO=0
BEQ ETI3 i ve a8 ETI3
TST R1 i si R1=0
BEQ ETI3 i ve' s ETI3
CMF ROsR1 ¢ si RO<R1
BMI ETIZ2 sy ve a8 ETIZ2
MOV R1sR2 $# R2 contiene el # de sumas 3 edecutarr» ROXRI1
MOV ROrR4 $ R4 contiene el # a sumar R2 veces
I1t ADD R4+R3 # R3 <~— R3+R4 se efectuan las sumas scesivas
¥

EBR ETI3 # en caso contrario ve a8 ETI3
I2¢ MOV ROsR2 t R2 contiene el & de sumnss a edecutary RO<LRI

MOV R1sR4 ¢ R4 contierne el # 3 sumar R2 veces

BR ETI1 s+ ve 3 ETI1
137 MOV RIrROH(RSY) §# C <—-= R3 »y contiene el resultado

RTS FC i redresa al rrodrama en FORTRAN

*FOR MULTF=MULTF

M

>T

>R

AC MULTM=MULTHM
KRB MULTF=MULTFyMULTHM

UN MULTF
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~FOR VECTF=VECTF

~MAC VECTM=VECTM

>TKB VECTF=VECTFsVECTM

*RUN VECTF



>EDT UECT
C Prodra
C PPOSra
¢ En este
C el pro
C  ello 1l
C MACRD-
C '
coM
po
Ia¢
IRC
IC(
5 CON
CaL
C
C
TYF
10 FOR
Cal
END
*EOT VECT
# Frogram
i IC(I)=1I
§ Este pr
y
F5
V
i AREA -
i RUW -
s D -
# GBRL -
# REL. -
i OVR -
i
§
IAd +BL
IE: «BL
Ici +RL
SUMAL!
MOV
MOV
MOV
MOV
ETIL: HOV
ALDD
MoV
SOR
RTS
+EN

PROGRAMA # 3

F+FTN

[
ma en FORTRAN rara realizar la orerascion de escrituras del
ma VECTM.MAC

e rrograma se comrartira un bloaue comun de datos entre
grama de FORTRAN w la subrutind de MACRO-11, se usara rars
a declaracion COMMON de FORTRAN < la directiva .FSECT de
11,

ﬁUN/AREA/IA(iO)rIB(iO)yIC(io)

5 I=1+10

I)=T

I)=10C

I)=0

TINUE

L SUMA ! llamads & la subrutins de MACRO-11
I vesse aue la llamada mo contieme argumentos
I va que se hara uso de varisbles dlobales

E 10+IC '

MAT(10(2Xy14))

L EXIT

M.MaC

a8 en MACRO-11 rars reaslizer lz sumza de dos vectores
A(I)+IB(I)y haciendo uso de variashles dlobales.
vdgrams sera ligado 8 VECTF.FTN

ECT AREAsRW,DsGELREL yOVR

nompre sara identificar el blocue comun

se tiene acceso rara leer/escribir

indica la clase de informacion a8 maneJar ( D=datos)

como el blocue contiene datosr se define al blogue como slobal
se establece rue el blocue es relocalizable’

define los reauirimientos de memoris asidnads al blocue.

las secciones de datos son "overlaiadas®

KW 12 + se reservan 10 ralasbras rara el vector IA
KW 12 i se reservan 10 ralabras rara el vector IR
KW 12 $ se reservan 10 ralabras erars el vector IC
# nombre de la subrutineg en MACRO-11

F12»RO $ RO <~~ 10, se iniciazliza un contador
FlAsR4 i R4 contiene la direccion de IA(L)

$IB,R3 i R2 contiene la direccion de IR(1)

#ICsR2 ¢ R2 contiene la direccion de IC(1)
(R3)+eR1 4 RL == (R3) :

(R4)+sR1 § R1 <-- R1+(R4)

Ris(R2)+ § (R2) <~- Rl y se almacenan.las sumas
ROYETI1 §# RO <~- RO-1 » si RO<>0 ve 3 ETI1

FC i en caso contrario redresa al erodrama en FORTRAN
L
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FROGRAMA 4 2
*ERIT SUMAF.FAS

. Programa en lenguade FASCAL cue realiza las oreraciones dé lectura o
escriturar rara obtener la suma de dos rumeros enterosr realizando
esta en ensamblador MACRO-11 %)

{ Para crear liness en lenduaJe ensamblador dentro de um prodrams en PASCAL )
{ se hace uso del concerto rara un comentario > (X este es uf comentario X)
(x Fara insertar lineas en ensamblador deberemos colocar la oscion $C desrues
de los caracteres " (¥ ' que indican inicio de wun comentario.
El comrilador examinag el macro fuente =ara encontrar las réferencias a va-
riables en el rrodrama en PASCAL. Fara accessar una variable a8 nivel dHlobal
llamada VAR1ly se usa VARL(XS)» 9 rara accesar una variable loecasl o un ardu-
mento de un srocedure llamada VARZy usamos VARZ(XE) X))

FROGRAM SUMACINFUT»OUTFUT)

VAR
1A 1By ICt INTEGERS
RES!CHARS
BEGIN
RESO-—.J I;
WHILE RES<:’N’/ [0
BEGIN |
WRITELN(/DAME LOS DATOS A Y By CON FORMATO ENTERO’)}
READLN(IAsIR)}
(k$C
MOV IACZS)/RO 5 RO <~- IA
ALD IB(%S)sRO 3 RO <-- IA+IE
MOV RO»IC(%S) § IC <-- RO
X) : |
WRITELN(IA!S,’ + /»IE1S,’ = /,ICI6)5 -
WRITELN(/DESEAS REALIZAR OTRA SUMA [Y/NI 77)3
READLN(RES)
END
END,

>FAS SUMAP=SUMAF
>MAC SUMAF=SUMAF
»TKE SUMAF=SUMAF L1y 1IPASLIB/LE:

»RUN SUMAF
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*EDI SUMAF .

NOTA?
En este

formato

gOooaocononn

FTN

Progdramar

FROGRAMA # 1

como en los demas se hara uso de las instrucciones
ACCEFT % 9 TYPE X rara las oreraciones de lecturs w escritura .con

librey resrectivamente.

ACCEPT %»IArIR :
CALL. SUM(IA-IB»IC) ! llamada 2 la subrutina en MACRO-11
TYFE 10+IAyIB»IC

10 FORMAT(1X, 15y
TYFE Xy DESEAS REALIZAR OTRA SUMA LY/N1 77
ACCEPT 1Gs1IR

15 FORMAT(AL)
IF (IR.EQ.’Y’) GOTO S

CALL
END

EXIT

+*EDNI SUMAM.MAC

) ws =mr ‘wmr

UMt
MOV
MOV
ADD
MOV
RTS

@2(R5) RO
@4(R5)»R1
ROyR1
R1yRB&(R3)
FC

JEND

*FOR SUMAF=
>MAC SUMAM=

SUMAF
SUMAM

+ ISy = ‘416)

Frodgrama en MACRO-11 rara realizer 1a sume de dos numeros enteros -
Fete programa sera lidgado a SUMAF.FTN '

nombre de la subrutina en MACRUfil

H

3 RO <-- IA

$ R1 <-- IB ‘

3 Ri #== R14RO ,
; IC <-- R1

;

redresa 31 rrodrams en FORTRAN

*TKE SUMAF=SUMAF y SUMAM

>RUN SUMAF

Programa ern FORTRAN rara realizsr las oreraciones de lectura Q pscriturs
del rrodrama SUMAM.MAC ' ‘
Suma de dos numeros enteros.

TYFE %» ‘DAME LOS DATOS A Y E, CON FORMATO ENTERO’ _ .

67



LIGADO DE PROGRAMAS ESCRITOS EN FORTRAN CON PROGRAMAS EN MACRO=11,
FPASANDO FARAMETROS.,

Como el lenguade ensamblador mo tiene instrucciones exelicitas
de lectura o escritura de datos del o al exteriorr es necesario usar un
rrodgrama en FORTRAN aue realize estas oreraciones. ' N

-Nuestro rrodrama en ensamblador va a ser mane.Jdado como una sub--
rutina 'en el eprodrama FORTRAN v los rarametros en la llamada seran los
de entrada v salida a3l errodrama ensamblador.

i el compilador FORTRAN encuentra una rrorogicion como la sidguientel
CALL RUTINACALsAZ1AZs .. rAN)

crea un blocue con las siguientes caracteristicas?

RS ~—m—=— > | No. de ardumentos |

_____________________
_____________________
uuuuuuuuuuuuuuuuuuuuuuuu
—————————————————————

et e - o Lt RSk S i dat ARY et matd $i43 T e B

colocando un aruntador a dicho bloaue en el registno RS, o
81 wna subrutina er MACRO-11 desea obtener el numero de ardumentosy lo
ruiede hacer mediante la instruccion: - ' B

MOV (RS)+ RO

4 ahora RO contendra dicho numero. Y RS estars aruntando a la direpbionﬁ

del primer ardumento.

e Bre S A TS Tt P Y P e et TRYY T - T ——
L e bt S gy e B oy 4B T o ok S0 e i A gt P

Fara obtener el resireso al rrograma escrito en FORTRAN se utilizan sub-

la subrutina de MACRO-11 las imstruccionest

RTS FC
+END
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FRACTICA & 2

USO LEL LENGUAJE FORTRAN FARA EL FAS0O LE PARAMETROS A SUBRUTINAS EN MACRO-11
Y FROGRAMACION EN ENSAMELADOR MACRO-11.

o i e e s ARt G Am raman mm e s s e e f e A A 4 gy R i A AEAEE n o e g e e ¢ e

PRACTICA & 2

Usn DEL LENGUAJE FORTRAN PaRA EL FAS0O DE PARAMETROS A SUBRUFINAq EN MACRO 11
A Y PROGRAMACION EN ENSAMBLALNOR MACRO-11. k4

DBJETIVG!

El alumno arrenders la tecnics emrlesada rars reaslizar Frodrames en MACRO-11

utilizando. gl lenguade FORTRAN raras edecutar las oreraciones de lectura w

escritura. Ademas reafirmara los conocimientes del ensamblador MACRD -11

‘obtenidos en 1la clase de teoria. : S

DESARROLLOS

Para legrar nuestro obdetivo realizsremos diferentes erodramas.

-~ Suma de dos numeros enteros.,

Frograma & 1

Frodramas ¥ 2 - Suma de dos numeros enteros. (PASCAL) !

Frodrama & 3 - Suma de dos vectores.

Programa £ 4 - Simulacion de uma multislicacion ror sumas sucesivas.
Frograma $# 5 -~ Ordenamiento de letras ¢ rumeros.

Frograme ¥ & ~ Ruseueda de un dsto dentro de un vector.
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»EDI EJEMFLOWLFTN

[00018 LINES READ INJ

[PAGE 11

¥SC/FORNAT/FORMAT -

20 FORMAT(1Xy ‘ESTE £S5 EL PROMEDIO‘ »2X»I5)
XED

CEXIT]

»FOR EJEMPLO=EJEMFLOD
+MAIN,
“

$ Como wa no tenemos errores rodemos raser sl lidado

*TKER EJEMPLO=EJEMFLO

$.La fase del lidado ro tuvo errores ror tantor ra3samos a8 la edecucion .

>RUN EJEMFLO
DAME S DATOS ENTEROS» UNO FOR RENGLON

M DL =

STE ES EL PROMEDIO 3

.

W

2™



>FOR

rTII=EJEMPLO/LIZL

FORTRAN IV Vo2,04 TUE 09-0CT-84 10:011!13
CORE=14Ky UIC=[206r111 - yTII=EJEMPLO/ZLT L

C PROGRAMA FARA CALCULAR EL PROMEDIO DE 5 DATOS

C ESTE EJEMPLO SOLO NDS NUESTRA ALGUNOS COMANDOSs

C RECOMENDAMOS AL ALUMNO LA PRACTICA Y USO DE TODOS
€ L0S COMANDOS QUE SE MUESTRAN EN EL SUMARIO.

0001 DIMENSION I(3)

0002 TYFE 10

0003 ACCEFT X» (ICJ)yd=123)

0004 I8UMA=0

0005 00 15 J=1+5

0006 ISUMA=ISUMA+I(J)

0007 15 CONTINUE

0008 IFROM=1GUMA/S

0009 TYFE 20y IFROM :

0010 10 FORMAT(1X, ‘DAME S DATOS ENTEROS» UND POR RENGLONY)
001l 20 FORNAT(1Xy 'ESTE ES EL FROMEDIO’ »2X»I15) '
*kkkk U

0012 CALL EXIT

2013 END '

+MAIN,

FORTRAN IV DIAGNOSTICS FOR FROGRAM UNIT .MAIN.

IN LINE 0009y ERROR? INVALIDN FORMAT SPECIFIER
IN LINE 0011, ERROR: [SEE SOURCE LISTINGI

FOR --— L,MAIN.,] ERRORS: 2r WARNINGS: 0O

-

Fara corredir el error debemos entrar nuevamente al editor

FAGE 001
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Egemrlo de la edecucion de un grodrama

»EDT EJEMFLO.FTN
00018 LINES READ IN]
[PAGE 11

XL1 '

C FPROGRAMA PARA CALCULAR EL FROMEDIO DE 5 DATOS
C ESTE EJEMFLO SOLO NOS NUESTRA ALGUNOS COMANDOS
C RECOMENDAMOS AL ALUMNO LA FRACTICA Y US0 DE TODOS
C LDOS COMANIOS QUE SE MUESTRAN'EN EL SUMARIO. |
DIMENSION I(5)
TYFE 10
ACCEPT % {(I(J)rd=1,5)
. ¥ ISUMA=0
IO 15 J=1:5
ISUMA=TSUMALTI (J)
15 CONTINUE
IFROM=ISUMA/S
. TYPE 20sIFROM
10 = FORMAT(1iXs LAWME 5 naros ENTEROS: UNDO FOR RENGLON’)

20 FORNAT(1Xy 'ESTE ES EL FROMEDIO’ y2XsI13)
CALL EXIT
END

¥ED
LEXIT]

“FOR EJEMFLO=EJEMFLO
JHAIN.

FORTRAN TV DIAGNOSTICS FOR FROGRAM UNIT ,MAIN.

.IN LINE 0009y ERROR:Y . INVALIDN FORMAT SFECIFIER
IN LINE 0011y ERROR? [SEE SOURCE LISTING]

FOR <= [,MAIN.] ERRORS! 2, WARNINGS: 0
w0
s - 'i ) . |

o

Para saber donde ests esrecificamente el error vamos 8 comerilar
fruevo con otra orcion

Al



s
) >TKB SALIRA=ENTRADA1,ENTRADAZ,etc 58

Con este comando se crea una tares eJecutable liamada

SALIDA.TSKr aue ests comruesta de los modulos ob.Jetos de 105
archivos ENTRADALy ENTRADAZr etc.
R : CoN

Tambien es valido el siduiente comando!

d) >TKE SALIDAsTI!=ENTRADA

B
Con este comando creamos una tarea edecutables u. ademas
se desrlieda informacion sobre estadisticas del eprodrama.

4) EJecucion de la tarea.
En esta fase estamos listos rare edecutar el rrodrama.

EJemrlos?

a) »RUN SALIDA4
b) >RUN Sal.IDla
¢) eto.

Es muw usual eue todos los archivos tendgan el mismo

nombre rara facilitar el manedo de los mismos( en el rurdador
borrados etc), Por e.Jemrlo la sidguiente setuencis es validal

-

JEDI CORRE.FTN

*>FOR CORRE=CORRE
>TRKB CORRE=CORRE

>RUN CORRE

NOTA! Los comados ENI» FORy TKEy RUN rueden ser
utilizados en dos formast: modo inmediato ¥ modo rpromet (en

forma anzlodgs como se explico el S08» solo aque rara redgresar
el control 3 MCR se deben orrimir simultaneamente las teclas

CTRL/Z).
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c) »FOR SALIDA2.0BJySALIDAL.LST=ENTRADA.FTN

Comando similar 3l eJemrlo 8)» solo gue shors se crears

un archive masy SALIDAL.LSTr el cual contendra informacion
adicionaly usada rara un analisis del mismo. :

d) >FOR SALIDAZySALINAL=ENTRADA
Comando identico al anterior.
e) »FOR »TI!{=ENTRADA

Este comando rroduce el archivo del listado (.LST)' FOT
la eantalls del usuarior v ademas no serz creado un archivo

con codido obdeto. Este caso es muw usado cuando se tiene un

Programs con erroresr Ya cue ror medio de este comando los
errores arareceran en la lines donde ocurranr asi como el

tiro de error. Si se usara ror edemrlo el comando del inciso
b)y al final de la comprilacion solo se mostrariz el numero de
linea donde ocurric el error ¥ unad descrircion del mismo.

Existen otras orciones rara la comepilaciony rara magor
informacion consultar el manuall

FORTRAN IV USER‘s GUIDE

3} Construccion de una tares edecutable,

En esta fase el Task Huilder (TKE) es el encargado de
froducir una tares edecutable.

Los sigduientes tiros de archivos son los acertados u

froducidos por el TKE. |

ARCHIVO DE EXTENSION

mara MAP L

bibliotecs : OLB H o

archivo.ob, aB.J »=- ggtos dos archivos son

taresa imaden THR €==w=} rroducidos ror el TRB

tabla de simbolos STR :
EJemrlos?

a8) >TKB SﬁLiDﬁ4.TSK;SALIDA3.HAF=SALIDA2’DBJ

En este comando se da como archivo de entrads el
programa va compilador es decirr el codigo obdeto. La salids

consiste de dos archivos! SALIDA4.TSK en donde se encuentra
la +tarez imadgern cue va a3 ser edJecutada ¢ SALIDAI.MAF aue es '

el mara de lg tareaz imaden. Con TKE estamos llamando al Task
Builder,

b) >TKB SALIDA4sSALIDA3=SALIDAZ

Comando eauivalente 3l anterior.
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FASGS FARA LA EJECUCION DE UN FPROGRAMA

LS W S WL b= TIYT MAr VT S rare v R e MY S e S Mk bk il ki H e, . e S S i Sk i e e YeTE R S vy e e

1) Edicion del archivo fuente.

Este wa3so se losra haciendo un uso eficiente del editor
¥ sudetandose 3 las redglas cue maraue cada lenguader rara la
estructuracion del erodgrama. :

EJemrlos?

a) »EDNYI EJ1.FTN 7 archivo rara el comrilador fortran

) HEDI EJ2.PAS § archivo rars el comeilador pascal

c) »EDTI EJ3.MAC ¥ archivo rara &l ensamblador macreo-11

d} >ERI EJ4.C 3 archivo rara el comrilador c

e) PEDI EJS5.TXT § archivo que contiene solo textor no es
rrocesable

f) »EDII EJo6.IAT + srchivo de dstos

g) Etce

2) Comrilacion del archivo fuente.

En esta fase se lleva a8 cabo la traduccion de rrodramas
escritos en lendguade Tfuente (lenduade de alto' nivel o
lenguade ensamblador) a sus eeuivalentes en lenguae macuina

{ sistema octal rara nuestro caso FIOF11/401).,

Daremos alsunos edemplos usando 1 compilador fortrans
sin embarsor el resultasdo es anzlosio rara los otros
comriladores,

a3) >FOR SALIDA.OQOBJ=ENTRADA.FTN

Iado él arehivo fuente ENTRADALFTN el comeilador

rroducira un archivo de salida llamado SALIDA.OBJ conteniendo
el codigo obJdeto denerado ror el comepiladors Con FOR estamos

llgmando al comrilador fortran.
b) >FOR SALIDA=ENTRADA

Tiene el mismo efecto gue el edemrlo anteriory wa aue si
no se escriben los tiros de los archivos el compilador FOR
asume ror default cue el archivo 8 la derecha del sisno igusl
tiene una extension FTN v el archivo de salida (a8 1s
izauierda del sidno igual) se le asidgnara la extension ORJ.
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* SECUENCIA A SEGUIR PARA LA EJECUCION DE UN FROGRAMA * 54

———— —— e e ————— e mam e m @ o e e A —

-

Diadrama de fludo rara la edecucion de un rrodrama. 55

PROGRAMA
FUENTE | EJEMPLO . FTN

> FOR < LISTADO -
|
" COMPILADOR —ot EJEMPLO . LST
' 4
MODULO
OBJETO
EJEMPLO. OBJ
>TKB )
CONSTRUCTOR LIBRERIAS
DE DEL SISTEMA
TAREAS
1
i
TAREA MP
\MAGEN EJE LO..MAP
EJEMPLO. T3K
’ DEFINICION DE SIMBOLOS
> RUN 1
EJEMPLO. 578
TAREA

EJECUTABLE




PIP %, 0BJ3%/LI 5 lista todas las versiones de todos log archivos del tiro

. ORY
DIRECTORY DIIMOIL206,111 ‘
?-0CT-84 09151

EJEMFLO.OBJ# 3 3. 14-SEF-84 14157
EJEMPLO.ORBJS 4 3 09-0CT-84 09:43 !

TDTﬁL OF 4./78. BLOCKS IN 2. FILES
L]
*PIP EJEMFLO.Xi%/LI 5 lista todos los tiros w versiones del archivo EJEMFLD

DIRECTORY DMOIL206s112
9-0CT-84 09152

EJEMPLOWFTN3 2 14-SEF-84 13121

EJEMFLO.OBJF 3 K 14-8EF-84 143157
EJEMPLO.OBJG 4 3 0?2-0CT-84 09143

TOTAL OF 8.,/10. BLOCKS IN 3. FILES

*PIF ¥.%/PU ¢ deJds las ultimas versiones de todoé los archivos
*FIF /LI 3 checamos el comsndo anterior ‘

UIRECTORY IMOIL206,111
?-0CT-B4 09:54

EJEMPLO.FTN} 3 2, 14-GEP-84 13121
EJEMPLO.OEBJ? 4 3. 07-0CT-84 09143
DATOS . TXT#1 Q. 14-85EF-84 13:22

TDTQL OF S./7. BLOCKS IN 3. FILES

PIP TII=EJEMPLO.FTN 3§ listsmos ror ls terminal el archivo EJEMFLOLFTN
C PROGRAMA FARA CALCULAR EL PROMEDNIO DE 5 DATOH
C ESTE EJEMFLD SOLO NOS NUESTRA ALGUNOS COMANROS
C RECOMENDAMOS AL ALUMND LA FRACTICA Y USO DE TONDOS
C LOS COMANDOS QUE SE MUESTRAN EN EL SUMARIO.
DIMENSION I(5)
TYFE 10
ACCEPT %9 (I(J)yJ=1+5)
ISUMA=0
DO 15 J=145
ISUMA=TISUMA+TI (J)
15 CONTINUE
IFROM=ISUMA/S
TYFE 20 IFROM
10 FORMAT(1Xy‘DAME 5 DATOS ENTEROSs UND FPOR RENGLONY)
20 FORNAT{(1Xy "ESTE ES EL PROMEDIO »2XrI5)
caLl EXIT N ,
ENI



Edemrlos usgndo el eprosrama FPIP

»PIF /LT 4 nos muestrs el di

DIRECTORY DMO:C206s11]
9-0CT-84 09244

EJEMFLO,FTN;} 3 2.
EJEMPLO,. OB 3 3.
EJEMPLO, 0BJ; 4 3.
DATOS. TXT31 : 0.

TOTAL OF 8.,/10. RBLOCKS IN 4,

»*FIP /FU  § nos muestra el di

DIRECTORY DMOIL206¢111
9-0CT-84 09147 '

EJEMFLO.FTN#3 (2474+71)
Lé&rll CRWED  RWEDy RWED SR ]
EJEMPLO,ORJ:3 (3434+56)
CL2069110 CRWEDyRWEDyRWEDSRD
EJEMFLO.OBJG 4 (34463563)
L206¢113 [RWED,RWEDsRWEDYR]
DATOS.TXT# 1 (3263+74)

L206911] CRWEDYRWED»RWED»R

TOTAL OF 8./10. EBLOCKS IN 4.

- R*PIP /JBR F nos muestra el di

DIRECTORY DMOIL2069117

EJEMPLO.FTN33
EJEMFLO.ORJG3
EJEMFLO,0OBJ3 4
DATOS.TXTi1

rectorio

14-8SEF-84 13121
14-SEF-84 14157
0e-0CT-84 09143
14-5EFP-84 13122

FILES

rectorio en unad forms mas complela

2/ 3

04-0CT-84 02112(3,)
3./3.

04-00CT-84 09:112(4,)
378

092-0CT-84 09:43(2.)
0.+70.

04-0CT-84 09112(3F.) .

FILES

rectorio en forma breve

*»PIPF /FR § nmos indica la cantidad de memoris libre

14-SEF-84 133121
14~SEF-84 14357
09-0CT-B4 09143 &

14-8EF-84 13:22

IM0: HAS 3524, BLOCKS FREE» 50266. BLOCKS USED OUT OF 53790,

>

rm



Nata! Como el listado se efectus en forma muw rariday es

necesario detener 1la transmisiory esto se lodrs oprimiendo
simultaneanente las teclss de CTRL w 8% rara restaurar 1la
transmision se orrime CTRL 9 Q.

»PIF TThni= esrecificacion del archivo

Desrliega el contenido del archivo esrecificado ror la

terminal "n°.

Ver edemslos anedos.

RESUMEN DE LOS SWITCHES IMFORTANTES DE FPIF

SWITCH FUNCION

/ar Adresga archivos al final de un archivo 4a ea1stentet

/RBR Lista el dlrectorlo en forma breve.

/G0 Esrecifica aque el archivo de salida debe Ser
contiguo,

/IE Eorra uno o mas archivos.

JOF Cambia la cuenta o disrositivo de dafault.

JEN Erntraz un sinonimo rara un archivo del directorio.

/FX Accesa un archive ror su numero de identificacion.

/FR lesrlieds el total de esracio libre sobre un volumen
esrecifico.

/U Liste el directorio emn un formato mas comeleto.

/1D Identificas la version cue ha sido usads.

LT lLista el directorio.

/FR Cambia las rrotecciones de un archivo. ‘

FASY Borra todes las versionesy deJando solo 1a ultima.

/RE Cambia el mombre de un archivo.

/TR Frororcionz el tamano del directorios dando el total

de lineas en el. i
/UN Abre un archivo.



FURGE SWITCH /PU

o e i A L e e L e e i Saae P T -

Borra un randgo esrecifico de archivosr» cuuas versiones
vz resultan obsoletas. Edemelos?

»PIP ¥.FTN/FU

Borra todas las versionesr excerto la ultima de todos
los archivos cuuo tiro es FTN

2PIFP Xo%k/PU

Nos deda solo las wltimas versiones de todos los -

archivos con cualauier tiro. :

RENAME SWITCH /RE

Cambiz el nombre de un archivo. Edemrlo?
#PIF DESPUES,FAS=ANTES.FAS/RE

El archivo ANTES.FAS5 es renombrado como DESPUES.PAS

LIST SWITCH /LI

e b AL ————— ki Lkt L oy

Lists el contenide del directorio del diserositivo

cuenta de default. Edemrlo?

»PIF /L1

Si ademas de la informacion prororcionada ror la orcion

/L1 se desea conocer la rroteccion de cada archivor la fecha '

w la hora de la ultima asctuaslizacion» asi como el numero de .

revisianesv g utiliza el switch /FU (full). Edemplo?

>PIF /FU

Le orcion /BR(brief)r es unsg forma breve (w mas rarida)
de *LI", Eldemrlo!

PIF /BR

NOTA! Existen otros switchesy epara su consulta ver el.

manual?l |

El erodrama PIF tambien rermite listar el contenido de
un archivos esto se lodra mediante lus siguientes comandos?

>PIP TI!= esrecificacion del archivo

Decsrlieda el contenido del archivo esrecificado ror el
usuario en 13 rantalla de su terminal.

50



FROTECTION SWITCH /PR

Lk e e L R —

SUBSWITCHES /8Y /0W /GR /W0
Proteccion de archivos u privilegios

Codo warchivo tiene ssociade una ralabra de 16 bits cuvo
formato es el sisuiente!

15 12 11 8 7. 4 3 0
world
grous
owner |
sustem

Es 8 traves de estas ralabra aue se asidgnan priviledgios v
Frrotecciones sobre un archivo.

Los bits al estar prendidos significen cue no haw acceso
rermitidor en cada camro hay 4 bits aue sidgnifican?

D E W R
delete
- extend
write
resd
donde ¢

Sustem | druros ¥ miembros <= 10 (base B)

Owner @ el de l1la cuenta
Grour ! los del mismo gruro

World : todos los demas
EQemPlost

>PIF PRUEBA.FTN?B/PR/UN!RNE/GR!RUE/MO:

!

Bo asidgran rpriviledios a1 owner ¥ a3l druro rara realizar
escriturar lecturs v extensiones (no rueden borrar)r el world

no tieme rriviledios w los del sistema rermanecen sin
cambios.- '

*PIP PRUEBAFTNI3/FRI3

fe asignan ins priviledios quitados al archivo

PRUEBA.FTN#3

AS



v eEdemplol |

‘F* ny

APFEND SWITCH /AP

W i et S iy P v M m——— r—y o—

Fara adgredar archivos & un archivo ua existente.

¥

SPIP DK1:DIA1.FTN$1=DIA2.FTNS1+DIASFTNI1/AP

Al arechivo existente DIAL.FTN en el disco DK1 le aSresa

los archivos DIA2.FTN/1l v DIAZ.FTN#L

tiro

FIBO

DELETE SWITCH /DE

et v $AS A e e S — . = o S B

Para borrar archivos de disco., Edemrlos!
FPIP>DATOS.FTN¢Nn/DE

Aaui borra la version n-esima del archivo DATOS.FTN

PIP>DATOS.FTN}~1/DE

Borra 1la ultima version del archivo DATOS.FTN

SPIP %.0BJI%/DE

Borra todas las versiones de todos los archivos de un
determinado(0B4) S

>FPIFP FIRO.X3X%/DE

Borra todas las versiones de todos los tiros del archivo
. ! - o 5\

PIF %.%i%/DE

Borra todas las  versiones de +todas los archivos de

cualauier tiro de la cuenta actual

BEFAULT SWITCH /DF

Cambia el disrositivo o el UFD de default. EJemelos?
>PIP [100+1001/0F

Cambisa el UFD de default 3 la cuentsa [100+,1001]

>PIF DK1L/DF
‘ ! :
Cambia el disrositivo de default a3l disrositivo DK1



CONVENCIONES DEL USO DEL ASTERISCO

CASO(eJdemrla)l . SIGNIFICADO

KeXiX todas las verslones de todos los asrchivos
' de cuslauier tiro.

X .TXTFX todas las versiones de todos los archivos

- _ de tiro TXT. ‘

FIBD.XixX todas las versiones w todos los tiros de

- archivor cuso nombre sea FIRO.
FIROQ.PASHxX todas las versiones del archivo FIRO.PAS .

X% las mas recientes versiones de todos los
archivos,

X.FTN las mas recientes versiones de los archivos
cudgo tiro es FTN. '

FACT. X las mas recientes wversiones de todos los
tiros de archivos cuwo nombre es FACT.

FACT .MAC las mas recientes versiones de FACT.MAC

COMANDOS MAS UTILIZADOS DE FIP

FPara coriar un archivo basta con invocar a PIP u

especificar los archivos de entrada ¥ | de salida

resprectivamente.
"En denerall
#FIF archivo de salida = archive de entrada
EJemrlo?
*PIF DKI:PRUEBAQ.FTN=DNO:PRUEBAI.FTN

‘Copia la wultima version del archive FRUEBAL.FTN del
disco DKO 21 disco IIK1 con el riombre PRUEBA2.FTN

#PIF DRI$CksX1=011,%]

Coria todos los archivos de todos los miembros del druro
11 del disrositivo de default a DR1 epreservando el uic

MERGE SWITCH /ME

S e e S M ot e e St e Mate S e S

Fara efectusr la concatenacion de cdos o mas archivos.
EJemrlo?

*PIFP TRES.DAT=UNO.DATDOS,DATF 3/ME

Crea un archivo llamado TRES.DAT aue contiene 1ls
concatenacion de UNO.DAT w DOS.DAT -
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Edemrlol

UIC=C30,23 o

el nombre del aréhivo UFD seria - 030002,DIR’1

Estos UFD‘s se encuentran en ia cuents [000,000]1 del
sistema. '

Nombres comunes de disrositivosi

Cinta de rarel DT
Cinta madnetica MMni

Disco DBn
| ‘ KR e
DMn?
Den
DXn¢
Disrositivo del
sitema SY:. !
ImFresora LPnt
Lectora de
TarJdetas CR?
Fseudo terminal TI? .
Terminal TTn? ‘ o

Cuando se omite alduna rarte de la esrecificacion del .
archivor PIF ssume lo siduiente!? o

¥ devi - la unidad en donde el sistema es montado o .la
unidad esrecificada ror el switch /DF (default)y
. © la ultima especificacion hecha. (Para nuestro
caso el default es DMO3I) S

¥ Luicl -~ la cuenta donde el usuario inicio su sesion o
13 cuenta de la ultima esrecificacion hechsa.

X nombre - no hay default rara la eprimera especificacion .

los subsecuentes toman 13 esrecificacion
anterior ( ruede lledar a aparecer un

asterisco)
X extension - idual que rara "nombre"’

¥ version — ror defsult se tiene la version mas reciente
en cas0 de ser una copiz del archivor el
numero siguiente de laz ultima Versions si se

desea borrary si se requiere de una version
exrlicita(ruede aceriar un asterisco)



P 1 P ( Perirherical Interchande Frosgram )

v Pt $e) Tk ST S S 4000 S 4 et Sk T T e b vy Y T A 00 et S e Sty T b vt b ke —— 4004, S

( Prodgrama de intercambio periferico )

PIP es un programz de utileris ue rermite reaslizar
funciones comol

Coriar archivos de un disrositivo 2 otro.

Borrar archivos.,

Purdar archivos.
Renombrar archivos.
Listar los contenidos de las directorios.

Etc.

Existen dos maneras de invocar a8 PIF?

1)

En un solo comando!

EJ?
>PIP lines de comandorlinea de comandosete/switch<eors

Se

2)

EJd

Fa
indicar

edecuta el comando 9w el control de la terminsl
resresa al MCR. :

Comandos multirles:

t >PIF <cr>

PIF>lines de cnmando/sﬁiteh <or>
PIP>linea de comandol/switch <cr>

A

PIP>CTRL/Z

ra especificar comepletamente un archivo

las siduientes rartes!

deviluiclnombre.extensioniversion

E.Jemrlo}

DK1:EL23»11TAREA.FAS}E3

User File Directory ~-~ UFD
User Identification Code -- UIC

Un

directorior esta redistradsa en un archivo 'llamado UFD»
nombre esta formado rPor el UIC sesuido de .DIR « version 1,

se

deben

_ disco esta ordganizado en 1z PDF1l'bado directorioc u
la informacion (nombre de archiveo) contenida en

cada
CLYO



C ESTE EJEMPLO SOLO NOS MUESTRA ALGUNOS COMANDOS,
L RECOMENDAMOS AL ALUMNO LA PRACTICA Y USQO DE TODOS
C LOS COMANDOS QUE SE MUESTRAN EN EL RESUMEN.
DIMENSION I(3) i
TYFE 10 # TYPE es una instruccion para escribir
ACCEPT Xy (ICJ)rJ=1s5) 3 ACCEFPT es wuna instruccion rara leer
I5UMA=0 _ )
B0 15 J=1+5
ISUMA=ISUMA+TI (J)
13 CONTINUE
IPROM=TSUMA/S : n
TYFE 20y IFROM
10 FORMAT(1X»/DAME 5 DATOS ENTEROSs UNO FOR.RENGLON')
20 FORNAT(1Xy "ESTE ES EL FROMEDIO’»2XsI5)
CALL EXIT
END
¥ED # comando raras salvar el archivo w redresar el control a MCR 43
CEXIT1 '

>
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¥T 3 mandamos el aruntador 3l inicio del bloaue actual

¥ <orx
L PFROGRAMA FARA CALCULAR EL FPROMEDIQ DE 5 LATOS
< CR>
DIMENSION I(S)
¥ < CRx=
TYPE 10 % TYFE es una instruccion rara escribir
X <orr

ACCEPT Xs(I(J)vJ=1+5) 3 ACCEFT es una instruccion rara leer
¥ <escx 5 e orrime la tecla ESC rara redresar una rosiciorn el apuntador
TYFE 10 3 TYFE es una instruccion rars escribir
XF §# ahora damos este caomando sara corroborar cue esta es la linea actual
TYFE 10 i TYPE es una instruccion rara escribir
¥NF A ¥ aaui Fsrobamos un comando incorrecto
CILL CHMI]
AKNF 3 ¢ rosicionamos a3l aruntador 3 lineas despues de la actual
DO 15 J=1,5
*¥C/0/0 ¥ cambiamos el O(cero) ror la letrs 0
Ng 15 J=1s15 )
XRO # rosicionamos el arpuntador en la nltime linea del bloeue actusl
END
X <ers
EXEQRX] ‘ '
¥ ¥ End OFf Buffer nos indics cue wa mo hay mas liness en este blogue
CXEOR%] :
¥REN ¢ este comando trsera un rnuevo bloauer aue serd ahora el actusl
CxEQF%]
CPAGE 21

-

¥ estos avisos nos indican cue wa no hau mas lineas en el archivo

# EOF sidgnifica End 0Of File(fin de archivo)

i en seguida damos un comando rara temer el aruntador al inicio del archivo
XTOF § Tor OFf File .
CO0015 LINES READ INI
EPAGE il
X derr
C FROGRAMA FARA CALCULAR EL PROMEDIO DE S DATOS
¥I <CR» § entramos a modo inrutr rars insertar nuevas lineass
C ESTE EJEMPLO SOLO NOS MUESTRA ALGUNOS COMANDOSy <cor
C RECOMENDAMOS AL ALUMNO LA FPRACTICA Y USD DE TODOS ~<cr>
€ LOS COMANDOS QUE SE MUESTRAN EN EL RESUMEN. <ork

XT <cr> ,
XTY 4 <cr> i desrledamos las 4 Frimeras lirneas» sin mover el asuntador.

C FROGRAMA FARA CALCULAR EL FROMEDID DE 5 DATOS
C ESTE EJEMFLO SOLO NDS MUESTRA ALGUNOS COMANDOS,
C RECOMENDAMOS AL ALUMNO LA FARCTICA Y USQO RE TODOS

CXBOB%X] # nos ipdice el inicio de bloaue

X Terr _
C PROGRAMA FARA CALCULAR EL PROMENIQ DE 5 DATOS
¥T <er>

¥LI <ecrrilista las lineass del bloaue actusly dedando el aruntador-al inicio
T PROGRAMA FARA CALCULAR EL FROMEDIO DE S5 DATOS



Para eJemrlificar el uso del editor elazboraremos un programa ern FORTRAN.

SEDT . EJEMPLO,.FTN
CCREATING NEW FILEJ

INPUT . ;
C FPROGRAMA FARA CALCULAR EL PROMEDIO DE 5 DATOS '

DIMENSION I(3)

TYFE 10 # TYFE es uma instruccion rara escribir

ACCEFT X (10D vd=1y0) 3 ACCEFT es uma instruccion rara leer
DATO=1 ' :
ISUMA=0

DO 15 J=i+5

ISUMA=ISUMA+I (1)

15 - CONTINUE
IPROM=ISUMA/S

TYPE 20y IFROM
10 FORMAT (1Xy'DAME 5 DATOS ENTEROSs UNO FOR RENGLON?)

. 20 FORNAT(1Xy "ESTE ES EL PROMEDIQ’ »2X»15)

CATI EXIT
END

XED
LEXITI

Como se rpopdra arreciar en el rprodrama existen alfunos errores» rara -

corregirlos volveremos a editar el rrograma EJEMPLOLFTN
La informacion que viene desrues de un "3" son comentarios.

- »EDI EJEMPLO,FTN

CO0014 LINES READ INIJ

CPAGE 1]

¥ <cr» 3 el asterisco nos indica cue estameos en modo editor

C FPROGRAMA PARA CALCULAR EL FROMEDIO DE 5 DATOS

X <cr» § or = return (rara avanzar un rendglon) |
DIMENSION I(5)

X <CR> .
TYPE 10 3 TYPE esuna instruccion rara escribir
¥ <CR> . .
ACCERPT X2 {I¢J)»J=1+5) ¥ ACCEPT es una instruccion sara leer
% <CR>» | :
DATO=1
¥DFP § borramos esta linea ceue no tiene nmingunag funcion
ISUMA=0
%L CAII 5 localizamos la ralasbra CAII
CAII EXIT -
¥2C/11/7LL ¥ cambiamos las dos I ror dos L
CALL EXIT
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MACRO X
MACRO EXECUTE
NEXT

NEXT PRINT

OPEN SECUNDARY

OQUTPUT ON/OFF
OVERLAY

PAGE

FAGE FIND

PAGE L.OCATE
PASTE

FRINT

READ

RENEW

RETURN

RETYPE
SAVE

SELECT PRIMARY

SELECT SECONDARY

SEARCH ;

SIZE
TAB

TOF
TOP of FILE
TYPE

UNSAVE

VERIFY ON/OFF

WRITE

MACRO X
CnlIMX

N Cnl

N L-nl

NP Lnl

NP [~nl

OF archivo
ou ON

0 Cnl

FAGE L[nl
PAGE [C-nl

[n1FF cadena
fnlPL cadena
FA/cadensal/
cadenal

F Enl

REA Cnl

REN [nl

Sl e

RE cadensa

‘SACNJarchivo

SF

85

SC/cadenal/
cadena?
SIZE [nl

TA ON/OFF

TOF

UNS Carchivol

V ON/OFF

W

Define el macro »{(i+2+3)

Edecuta el macro X n veces

Establece una nrnueva linea actuasl "n
lineas desrues de la linea actusal

Idual aue NEXTy» s0lo cue ahorsa =
imFrime la linea actual

Abre un archivo secundario esrecifico
Continua o descontinua la transferen~
cia 8l archivo de salida

EBorra °"n" lineasy v entra en modo
editor ) .
Lee el n—esimo blocue del archivo de |
entradar el cuzsl sera shora el nuevo
blogue actusl | k
Busca en bloaues sucesivos la nfes1ma
acurrencis de cadena

Igual aue PAGE FIND -
Remelaze cadenal ror cadensl s rartir
de la lirnez actusl en el bloaue actusl
ImPprime "n® lineas w la ultima es
ahora la lines actualr g partir de la
linea actual R

Lee los siguientes "n* blocues dentro
del bloaue actual :
Escribe el blocue actusl al archivo de
salida ¥ lee el siduiente bloeue. Esta
orFeracion e rerite "n' vedes

i-priee la siguwle.te linear haciendo 3
esta la linea actual

Remrlaza la linea actual ror la cadena
Salva la linea sctual v las n-1 lineas.
siduientes en el archivo esrecificado
Restablece a8l archivo Frimario como
archivo de entrada

Selecciona al archivo secundsrio
ahierto como archivo de entrada i
lLocaliza la cadenal w la sustituve ror
la cadenal

Esrecifica el numero maximo de lineas
Frara ser leidas dentro del archivo de
bloaues

TAZ/ON habilita 8 esracios a3l rrinciric
de la linea de entradar el default es
TaA/OFF

Coloca el aruntador sl inicio del

blocue actual.

Coloca el aruntador &l inicio del
del archivo

Igusl 8 PRINTy rero el aruntador

no es modificado ' :
Ingerta todas las lineas del archlvo
esrecificado desrues de la linea
actual

Controla la imfresion de la limea
actual en los comsndos L v C

Escribe el hloeue actuzl al archivo
de salide 9 borrs el blogue actua1
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RESUMEN DE COMANDOS DE EDI

S — . ——— T b S T e by vt p——— o —— et ot $aoh S v T— . tan

e ey Y

ADD

ADD and PRINT
BLOCK ON/QFF

EOTTOM

CLOSE

CLOSE

CLOSE SECONDARY
CHANGE

CONCATENATION
CHARACTER
CTRL/Z

DELETE

DELETE and PRINT
‘EXIT -

EXIT DELETE

FILE

INSERT

KILL

LINE CHANGE

LIST ON TERMINAL

LOCATE

s ————

A cadensa
AF cadens
BL ON

BL OFF -
BO

CL Carchivol

Ch Carchivol

CLOSES

LmlC/cadensl/

cadenaZ?
CC Lletral

Z

D Cn]
D £~nl

DP . Cnl
P C~nl
EX
ED

FIL Larchivol

I cadena

KILL

CnlLC/cadenal/

cadenal
LI

L cadens

T eASE mae ey e e b v ———

Adredsa l1a cadena
actusl T

Idguyzl eue ADDy 4

Switch de modos
modo de blocue y
Muave el aruntad
bloaue actuazl

Transfiere el bl
archivo de entra
salidar cerrando

al flnal de la 11nea

ademas 1mPrime ‘
de ascceso de .textoss

modo de lineas
or al final del

oaue actual w el _
da al archivo de =
ambos archivos. E1

archivo de salids es renombrado con

el nombre "archi
Idual aue CLOSEY

archivo de entra
Cierra un archiv

vo"*
s0lo cue el

da es borrado
o secundario

Remrlaza la cadenal con la.cadehéQ

'n® veces en la
Cambia la concat

g un caracter es
Cierra los archi
sesion de edicio
es salvado

Borra la linez a
sidguientes si
las "n" anterior
si "n* es nedgati
Idual aque
imePrimirs
Igual que CTRL/Z
Idual que EXIT:»
borra el archivo
no crea otra ver
Transfiere linea

la lin

entrada a8l de sa

esrpecifico
Inserta la caden

lines desrues de
Entra en modo de
es omitids
Cierra los archi
salida. Y ademas
salida

Cambia la cadensa
rartir de la lin
lLista todas las
blpoaue actusl
Igual 3 FINDy 3F
actual

"n* es positiva."

linea actual . §
enacion de caracteres

recifico

vos 4 terming la
n. EI blocue 8ctua1

ctuasl 9 las n- 1
Borra

es 3 18 llnea actual
va

DELETE solo aue ahora ..

ea3 3actusl

folo aue ahora se.

de entradar eg decirs
sion o

g del archivo de

lidar ¢ al archlvo

a en la 519u1ente
1z linea sctual.,
texto si la cadena

vos de entrada o
borra el archivo de

1 ror 1la cadenal2 a
ea actusl "n" lineas
lineas restantes del

artir de la 11nea
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VERIFY ON/OFF

T — S - e ae a0 v

Controla el desrliegue de lineag rara los comandos de

LOCATE u CHANGEy si! _ . ‘
¥V ON <cr>

es tecleado LOCATE w CHANGE despliedsn la linea localizada

0 la linea cambiada resrectivamente.
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UNSAVE

b —— o e . P

Recureras todas las lineas sguardadas en el ‘archivo -

SAVE.TMF o© el oque se esrecificue w las coris desrues de .1
linea actuazl. Edemrlos? .

XUN <er> $ inserta desrues de la linea actual él;i‘

contenido de SAVE.THMP

KUN TEMPORAL.DAT <cr> § inserts despues de ls linea

actuzl el contenido del archivo TEMFORAL.DAT

- READ

Lee n bloaues al buffery si wa existe un bloue. en ‘el-

buffer le adreds los n esrecificados. EJdemrlo!

XREAD 2 <cr> § lee 2 bloaues al buffer

Escribe o desrlieds desde 1la linea actuazl hastas la linea
n-1» 1la wultima linea desrlesada se convierte en la linea_r

actusl. EJdemrlo!

-

PS5 <cr>

UFFER CASE ON/OFF

Y O et T SO 200 S i

Es.rosible con esta orcion escribir en el archivo.

editado con letras amayusculas o minusculas., EJdemplos?
XUC OFF <cr>

Los caracteres son acertados tal ¥ como son tecleadosr
minusculas o mavusculasy ¥ se escriben en el archivo de
salida. o \

¥UC ON <er>

Los caracteres gon acertadosy wa sSean mavusculas o
minusculasy rero son escritos en masusculas 21 archivo de

salida.
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TOP

Coloca el apuntador al inicio del bloaue. Cuando 88 Usa

TOP se pueden adredar lineas cue rrecedan a 1a Primera del

bloague. EJdemplol

" XT <er> # coloca el apuntador al inicio del bloaue

Busca en todo el bloaue a 'rartir de la linea actual lé_A

CADENALl 9 l1la remrlaza ror la CADENAZ2. EdJdemrlo!

i

¥PA/CADENAL1/CADENAZ <cr>

Este comando es wusado para defipir macrosy, existe
egspacio para definir 3 macrosy llomedas 1» 2 v 3y u pueden

contener. cualauier comando ledal del editor.

Definicion de un3 macro}

¥MACRO 1 FA/ABC/XYZ/RREN <cr2

Con esto estamos definiendo una macro aue cambie en todo

el blorue ABL raor XYZ u traids un nuevo bloaue.
Llamada 8 la macro?

¥2M1 <cr> § realize la funcion macro 1 en dos bloaues

SAVE

Con este comando se escriben @ un archivo n liness a’

rartir de la linea actuazal:s el arqhivo ¢ el numero de linesas
se eseecifican en el comando. qupplot '

XSAVE 3 TEMFORAL .DAT <cr>

Esceribe en el archive TEMPORAL+DAT 3 lineas a rartir de

la linea actugls rermaneciendo las lineas en el buffer,. Si
no se esrecifica el archivo se crea un archiveo llamado
SAUEOTMP * ! .
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NEXT

Este comando mueve el ‘apuntador hacid arriba’ o0 " hacia

sbaJo dentro del bloaue.( no se considera la linea actual).
EJemplost : :

*¥N-5 <cr> ¥ mueve el asrPuntador 9 lineas hacisa arriba

XNS <cr> §# mueve el aruntador 35 lineas hacia abaJdo

NEXT and PRINT

Mueve el arpuntador e imPrime 1la nueva lines actual ( si

considera la linea actual ).Edemrlo?

ANP3 <Lev> F imerime 1z tercera lines(desrues de la
actual) como actual

TYPE

Escribe.desde la linea actualy hasts la linea n-1y sin’

mover el apuntadory o sea aue la linea actual rPermanece
siendo la misma desrues de aue se han desrledado las n-1
lineas., Edemrlo?

Xty 5 <cr>

o

Este comando nos rermite escribir el bloaue actual al
archivo de salidas 8 leer un nuevo. bloaue del archivo de
entrada. EJemrlas!

XREN <cr» 3 salva el bloaue actusl w lee uno nuevo

¥REN 3 <cr> # salva el bloaue actual & lee 3 bloaues del

archivo de entradar dedando en el buffer el ultimo leido.

RETYPE

. Remplaza la linea actual por  una nueva linea.
E.Jemrlos! '

XR NUEVA LINEA <cr> # escribe lineéa nueva en 1s linea

actusl

¥R <cr> bqrra la linea actusal
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linea actual, ~

DELETE and FRINT

Realiza 1a misma funcion aue DELETE rero imerime la

* g .

¥DF-3 # borra las S lineas anteriores a8 1l1la actuals
' rermaneciendo esta.

¥DP3 § borre la linea actusl v las dos 315uxente5r
auedando la sidguiente como la actusal

*DP # borra 1la linea actual e imPrime la siguien£9r ésta '

es ahora la actual

EXIT

——

.....

“Este comando transflere todo el "resto de ‘lineas oque

existen en el buffer % el réesto de lineas del archivo de
entradar al archivo de salidaj cierrsa los archivosy ¥ nombra

8l

archivo de salida con una nueva version v termina la

sesion de edicion. EJdemrlos!

5T

i

*EXIT nombre <cr> i renombra al archivo de salidas este
- es el aue contiene las modificaciones hechas,

KEXIT <&r> 5 deds el mismo nombre con otra version

INSERT

et b

Con este comando se insertan lineas inmediatsmente .

desrues de la linea actual. La linea insertads se vuelve 1la

linea actual.3 Edemplos..,ﬁtk

2

Cers™

T

%I CADENA' DE CARACTERES <cry

¥ # inserts la linea v redresa 2 modo de edicion
XI <cr> i pone al editor en modo de entradsa

CADENA" 1" ™
CADENA 2. . . .. .
ETC. <erp [0 000 o

[T LN 1

LOCATE ‘ _ |

Localiza una cadena dentro del buffery empezando la

busaueda en 13 lines siguiente 8 13 actusl. El sruntador es
colocado en la linea cue contiene @ 13 cadena v la despliesa

g1 VERIFY ON esta activo. Eaemplo.

%L CADENA <cr>

34



CHANGE

Fotry hoa b ”‘?’ b SRS 7

Cambia ls CADENAL por la CADENA2 en unas linear:-si la =

CADENA1 ararece en 1a linea. Si 1a CADENA1l es nUlar la
CADENAZ2 es insertads al inicio de 1la linea. 851 la CADENAZ es

"nulaila-CADENAL es borrada de la linea. Para localizar la
CADENA1 se barre 1la linea desde el eprincirior hosta

encontrarla.

Logs caracteres Y'para delimitar lag cadenas son -

normalmente caracteres egrecisles aue no ararecen en Ia

linea., Es muy ugual acue se use una diadonal como

delimitador., E.Jemrlos!? ‘ o

X hola como estas ~k i’ e ) - |
" %C/hola/que <or> : T AT

aque como estas

b 4

" Es Posible realizar "n" cambios sobre una linea con!

*nC/CADENA1/CADENAZ
EJemrlo?
b 4
cuee rPasar auee te ocurre
X2C/quee/que
~RUe -Pas3r aue te ocurre
DELETE ' ' . .

Elimina lineas de texto de la siguiente manera!

a) Si damos Dny 12 linea actual v las siguientes n-1 son
borradas del texto» siendo 1la linea nuevar 13 siduiente de la
ultima borrada. :

b) 6i damos D-ny la linea asctusl no es borradas Pero si
las n lineas que le Preceden. L3 linea actual es la misma.

¢) Si n es nulo 1la linea actual es borrada v 1la 1linea
siguiente se vuelve 18 actual. . Edemplos!

N-5 7 borre las 5 lineas anteriores a8 la sctual
¥D2 § borra 1la linea actual ¥ la sidguiente .

XD i borra la linea actual
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Como incrementar 1z londitud del buffer ?

Basta con teclesr el comando siduienter desrues del
asterisco en modo de ediciont - ‘

':i .‘.«'”" _..!ﬂ-ff 10 ad st 1_“‘1,“3* . '.E e et I ,
whowE *BIZE YA I e sf 5T gty
e Y

donde,'n' es el numero de lineas aue se deses cqhtenéa.'
el buffer.

QOTROS COMANDOS DE EDITOR SON?

et THEe Mg Ry .
3 oo RN * AJ‘T L The LT - [IRY PR 1 . rj i

L Loy EEs [ NLIPERT tiend p'ii!“‘

‘:-‘:":.'.' = TV ’ I"'f"nf: ] .",u"

Este comando asgreda a8l final de la linea. una cadena de
caracteresy eJemprlol : :
HAL PR LS I
¥ linea de prueba
¥A del editor. {er)

- t 7 . ’ . - o
Ko nantr o gou e doe 200 iRt ok e slEL e L e

esta linea euedara como! linea :de,, Prueba:;del - editor
‘sero no sera desrledada’ T

.t _—
S L estalast

ADD and PRINT o]

B e L T Y s iy As - “ : s
- ; = P FONCTRR Cyp e

La funcion -es 1la miams aue 13 del ADD excerto aue la_-'_"
linea resultante si es desrledadsr» eJemplotl :

¥ linez de Pruebs
XAP del editor. <cr>
linea de prueba del editor.
¥
fnnengn wdnnivtla L) oh oadiad b weontlowedain

-

aime BOTTOMeniveie 26l v Isndae okl oF ol gfmnn LA
i -
e i

s?:.’
@l ROTRIRLR A $ L devawy sendl of obmals oent oo o0

!

- Mueve el aruntador 3l final del bloaue.
I oo gsbetdost ou an Ioudes ok a3l v soadine NS
cacKBO: Lerdiw Tewndad oonil sl sanbh@sacoo siomven o, g

geoi 394 s orcion.de; VERIFY, ON esta activar, se desplesara el
contenido de la ultxmahrinea del bloaue.

*Y aN.. (dr} R T T 27 s VN ST I.' co !
kBE <pry S | -
Ultimg lines. ¢~ - ... .
K
LS TR SO PR f -



2) Oprimir simultsnesmente las.teclas CTRL w Z
Funcions en forma igual a3 EXIT
#) EDX © bien ED -- EXIT DELETE

' Funciona en 13 misma forma aue EXIT w CTRL/Z solo aue la
" yversion anterior es borrads.

- Como recarrér les lingss de téxto rora locdliZar une eh

especial o hacer correcciones 7

. Caso 1) Bi se ésta editando un nuevo texto w se desea.

redresar una 0 mas lineas.

Primero pasar a modo de edicion{dar 2 <cr>)» desrues por
cada vez aque se oPrima 13 tecls <esc> ge retrocedera una
linea de texto v ror cadas vezZ ale se oPrima la tecls de <cro>
e avanzara una linea de texto. :

notat el comando END rosiciona el spuntador en la ultima
linea de textor aue se encuentra en el buffer.

. Caso 2) Teniendose un archivo us creado se desea
localizar unad lines esrecifica.

Primero verificar aque se este en modo de"edicinn.

Despues teclear el comando PL CARENA$} donde PL (PAGE LOCATE)
es el comando para localizar por radina o bloaguer w CADENA es

el condunto de caracteres aue se desea localizar. Desrues de
esto el apuntador se ha posicionsdo en el bloaue en donde se

encuentra la linegy sisnde sty la awtuuiu sl dome 81 bloaue
enh el buffer es el actusl.,

= Qué hacer cushdy o4 teeibe €1 mensaJde de aue sé ha
llenado el buffer EOB 7

- - Cuando este ocurre es necesario rasar el contenido del

buffer sl archivo de salidas prare aue oauede listo Fars
recibir mas taxtor rara lo cual basta con teclear el comando

siSUiente en modo de ediciont

XRENEW o bien REN

. . ‘ | ‘
notat cuasndo se trata de un archivo nuevo se recibe el
hénsaJje de aue no haw archivo de entrada abiertor wa aue el

¢8mandosr una vez limpio el buffer busca un archivo de entrads
PBfY LrBar Bl blooue sisuiente.

T



Los tiros comunmente usados son?

FTN - fortran
MAC - macro o ensamblador

DBG - rara definir esauemas a 13 baseJdemdatDSyﬁ 15
PAS - rascal o o '
TXT -~ archivo de texte:; - . Fodp . .

DAT - archivo de datos wt ‘ .

5in embardo rodemos tener cualeuier extension aue

conténda’de 1 3.3 caracteres slfanumericos. :

version - es un numero que le asigna el sistemar si se
crea Por vez frimera se le _asisna el numero 1
¥y luedo este se ira incrementando en forma
octalr si el archivo es editado.

1. . 1
Las Partes entre {} son 09c1onales.-, T

AT Tha, Y

Si el archlvo especxfzcado es un huevo archivo(es decxrr
el archivo no fue encontrado en el disrositivo especificadols
el editor asumirs aue se quiere c¢rear un archivo con ese
nombre w entonces EDI imeprimiral

CCREATING NEW FILE] Y
INPUT T

con lo cual estaremos en mpdo de entrada.

8i se esrpecifica un nombre .de archivo ua existenter

entonces EDI resronders de ra sidguiente:formal. ... -, s
RIS R A N A ' . .
. i

Hutsa Q00NN . LINES READ -INID

[FAGE Pl R
"

El asterisco indica.aueiestsmos en modo editorr en el
cueal se podran wusar los comandos de - EDL, Estas lineas
indican aue sutomaticamente EDI lexo un bloaue del archivo de

entrada colocandolo en el buffer.

Las ‘nn" nos indican el numero de lineas leidas w la “p"
el numero de ragina en que se encuentra, oo

‘!_' .
|

- Como salir del editor u salvar el Frodrama 7

Existen 3 formas de llevar a cabo estol-
. [

Estando en modo de edicion en seduida delnasférﬂsco
teclear:

1Y EXIT o bien EX

Con lo cual se cierran los archivos de entrads w salidav
salvando el bloaue actual; se termina 13 sesion de edicion u
se crea una nueva version con las modificaciones hechas.
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2) El1 editor tiene ﬂos modos de accesar textos» estos
son? -

8) Por lineas.

tAY

b b) Por bloaues. ‘ N
De estos dos metodos es mas conveniente trabadar con un
buffer aue almacens un cierto numero de lineas» sobre las

cuales se rueden hacer modificaciones w en caso de ser un
nueva archivor adredsar las lineas cue egte contendrar ror

default el buffer contiene 3B lineasr» 'rero ruede ser

modificada. Se entra automaticamente al modo ror bloaues al
editar cualau:er arehivos

3) El editor trabada con archlvos de entrada ¥ archivos
de salida.

El archivo de entréda es acuel acue toma el editor como
fuente de textor rasando un numero de lineas de este 2l
buffer.

£l archivo de salida es aauel acue usa el editor =ara

almacenar el contenido del buffer 4 este pueda ser utilizado
nuevamente al finalizar wuna sesion de edicion » este

archivo es el mismo cque el de entrada w contiene todas las

modificaciones hechss &8 estei es dHuardado como una nuevs
version» rPor lo cual es imrortante eliminarla con *KILL®* &1

finslizar 1la edicions o bienr derpurar scuellas versiones aue
va no sean utiles. | '

- Como llamar a3l editor ?

Existen dos formas delllamar 8l editor?

1) Modo rrompt.
2) Modo inmediato.

v

!

FPara editar un pProdrama deberemos hacerlo de 1a
sidguiente forma! ) ' :

>EDI {devtEuicJ}nombre.ex@ension{iversibn}

donde?!

dev: - es el disrositivo donde se encuentra el archivo.

Luicl - es el directorio del usuario.
nombre - es el nombre con el cusl llamaremos 3 nuestro

archivor 9 debera estar formado ror caracteres
alfanumericos( de 1 haste 9).,

extension - esta compuesta FPOT 3 caractereg
alfanumericos y represents el tiro de algun archivo.



EDITOR DE TEXTOS POR LINEA ( EDI )
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.El editor de textos es un rrograma del sistema orerativo
aue tiene ror obdeto la crescion ¥/0 modificacion de archivos

de caracteres alfanumericos.
Esto se lodra mediante comandos que el usuario introduce

desde su terminalsy. rermitiendo insertars borrar o corredir a8
dicho archivo,

Los comandos de EDI actuan sobre un aruntador cue .se

mueve Ppor lineas» derendiendo de los comandos aue se
introduzcan. -

Con el editor EDI se lee un blocue del archivo de
entrade en un buffer(area de almacenamiento temporal) w el
apuntador se mueve en las lineas de dicho bloaue.

Cuando se termina la sesion de edicion ¢ se lee otro

bloaue del archivoe de  entradar ae lleva a c¢abo -

automaticamente la escriturs al archivo de salida.

Un blocue contiene 38 linessr rara referirse a otro:
blocue se tiene acue leer este del archivo de entrada con

aldgun gomando del editor.

A la linea donde se encuentra el aruntador se le 1llams:
*linea actual®y analogamenter 3l blocue en el cual estamos.

trabadando se le llama "bloaue actusl®.

Caracteristicas rara el uso eficiente del editor!

1) El] editor trabada en.dos modos de oreracion!

a) Modo de entrada (in#ut mode). En este modo se ruede

escribir el texto aue debera contener el archivo. Este modo

se@ establece automaticamente al solicitar un archive eue no
existe.,

. b) Modo de edicion (edit mode). En este modo se rueden
dar comandos de control al editor w se identifica Por un

asterisco oaue ararece en la rantalla solicitando un comando.
Este modo se establece automaticamente a3l editar un archivo

aue 4Ya existe.

FPara rasar del modo de entrada al modo de edicion se
oprime dos veces la tecla <core>,

Fara rasar del modo de edicion al modo de entrada se
teclea en seduida del aster1sco una letra "I" (Prara insertar)
¥y 8@ da un <cr>, :
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Ejemrlos del sistemsa SO0S ' | . ac

»808; 7 .

508 - PIF oo

MCR Qro EnI

TOOLS T07T MaC -

NOT FASCAL FORTRAN

AYUDATOT cC

S0GF

>

>808 EDI 7
apn BOTTOM CHANGE NELETE
EXIT INSERT LOCATE NEXT
RENEW RETYPE TOF PASTE
MACRO SAVE UNSAVE SI1ZE
READ FRINT TYPE . UFPER
VERIFY = —=—we—- S mmemem— e

»B08 NOT

e S LAl A A S T e A . i A MEE S Y e T i i A i 00 S0 W W e e Mh g St M Maaa M e TEY ST S ek P el e e M M faay S M A e s e TR e Gmar e P s e et WSS e s Ay Aea 0TS et

La rersona aque hada uso del equiro 9 no. se anote enlla listay

cue rara tal efecto se ercuentra en el laboratorior le sera

susrendido el servicio. : ,
: ' ATTE. Lab. de Computacion...

o —— i word 4 AT iy M . S 4 S Y M e e Giuh SO S NN NN i e S S e v FUU S 500 SS MM L LI AL Uit Gt M WSS feS SMu WA G A M Mt See S S e MMM bl G AR SO TS Fei S e

~8508 MCR RUN

RUN - rermite la eJecucion de uns tares

N

* MANEJO DEL PROGRAMA EDITOR DE LINEAS EDI " %P



SISTEMA DE AYUDA EN LINEA "S0S*"

S0S es un sistems de awuda en linear aue permite al
usuario investidgar el funcionamientor usor sintaxis, etc. De
al€gunos comandos ¢ subsistemas del sistema orerativo RSX-11HM.

Existen dos modos de oreracion del S0S!

1) Modo Promet.

2) Modo Inmedisto.

. 1) El modo rrompt se establece cuando se rrororcions el
siguiente comando!

508 <or>

Donde <cr> sidgnifice orrimir la tecls de RETURN.
Inmediatamente el sistema resrondera con S0S»r en esrers de
~aldgun comando. Una ver edecutado el comandor resressa a redir
otro. 8Si wa no se desea consultar alguna otra informacion se
da un <cr> como comandor rPara redresar el control al MCR.

2) E1 modo inmediato se establece de la siduiente forma!l

S80S comando <cr>

S80S redresa el contreol a3l MCR cusando termina de edecutar
el comando. |

Un comando esta comruesto de!

e i ey e oy g b okl ok ey P g T TP TP WEFP W PO S S YR FP WP FED FE WS SR Rty S0 et Mt iy S S 008 S

Donde cualauierz de 1los dos rPuede sustituirse por un
signo de interrodacion. For edemrlo!

>808 7

En este casor se desrledara una lista de los toricos aue
rueden ser consultados.

>508 MCR T

En este casoy MCR es el torico w 1z interrogacion
rermite ver la lista de los subtoricos de MCR.

>80S MCR RUN

En este casor se desplieda la informacion del subtorico
RUN del comando MCR. Ver edemrlos anexos.



*TIM + desrlieds el diar la horar minutos w seﬂundbs a3
09115131 09-0CT-84 '
> .

»SET /UIC § nos indica en cue clave estamos
UIC=Lér11 o

-,
-

*SET /ZBUF=TTA:132, 1§ asigna un buffer de 132 caracteres a la terminélAfté

»L.0A CR? +# CARGA LA LECTORA DE TARJETAS
LOA -— SYNTAX ERROR
>

*L0A CRY § carda la lectors de tmrqeﬁaa

>INS [é6»81GREF/TASK=,.++.6RF i+ instala la tarea GREF en la cuenta Lordd con

el nomhre GRP(nombre de eJecucionl)r rara aque
todos los usuarios 1la utilicen.
> ,

>BYE $% comando rars salir de sesion

._} .

HAVE A GOOD MORNING ' ‘
09-0CT-84 09:22 TTii! LOGGED OFF '
> . ! .

* MANEJO DEL SISTEMA DE AYUDA EN LINEA 508 * 19
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>DEY + comando pars listar los disrositivos del sistéms
uno: ) :

CRO? UNLOADRED

DKO! MOUNTED

DKi¢ MOUNTED

DMO ¢ MOUNTED LOADELD

OXo: LODADED

pX1¢ LOARED

TTO: Cér1l - LOGGELDR ON

TT1 ,

TT2 Cérll - LOGGED ON

TT3? : .

TT4!

TTSS

TTé

TT?¢

TT10%

TT1i1} [és1] - LOGGED ON

NLO S ’

T10:

~C00¢ TTO!

CLO? TTO!

LBO? KO : ‘
SYO! nKo! , |

P

*PAR % comando rara listar las rarticiones de memoria en el sistema.
.OR 000000 000000 MAIN TASK )
DRVFPAR 100000 010000 MAIN SYS
100000 002700 SUR DRIVER -DM:
102700 001200 SUR DRIVER -DX?
FCFPAR 110000 030000 MAIN SYS8
. 110000 030000 SUB (F11ACP)
SYSPAR 140000 010000 MAIN TASK
TRTPAR 150000 010000 MAIN TASK
SHFPAR 1460000 010000 MAIN TASK
FCSRES 170000 020000 MAIN COM
PAR20K 210000 100000 MAIN TASK
SAVPAR 210000 040000 SUR TASK
PAR4AK 250000 020000 SUR TASK
PAR2ZK 270000 010000 SUB TASK
TOTCOM 310000 020000 MAIN S8YS
GEN 330000 310000 MAIN 8YS
330000 012000 SUER  (...8Y8)
UDCOM 771000 001000 MAIN DEV
% .



E.Jemrlos de comandos de MCR

SHELLO ;. .comando paras entrar en sesion
ACCOUNT OR NAME: &4/1 1+ esta es la clave
PASSWORD:

VRwailﬁ BL22 MULTI~USER SYSTEM

GOOD MORNING .
09-0CT-84 09:03 LOGGED ON TERMINAL TTi11:!

FACT ¢ comando sara listar las taress sctivas en 1la terminal
OOOMCR '
OQOSYS ’ i

u

>TAS  COMANDD FARA LISTAR LAS TAREAS ACTIVAS DEL SISTEMA
. LIR, LDR 248, 000000 LEO!-00000000 FIXED

TKTN 03,7  TKTPAR 248, 010000 LE0:-00003561

++.IMO 03,1  GEN 160, 040000 LBO:~00006334

+ o +MCR 02 SYSPAR 140, 010000 LRBRO!-00006537
+« e o MOU 03.02 GEN 160, 040000 LEOI-000060435
+++5YS 01 GEN 140, 012000 LEO!-00004561
F11ACP MO23% FCFPAR 1492, 030000 LEO!I-Q0006373
SHE+++ 03 SHFFAR 105, 010000 LEO!{~000046233
«s s INI 03 GEN 100, 040000 LEO:I~00006435
+++ INS 03 GEN 100, 040000 LEO!-00006472
o +UFD V0407 GEN 100, 040000 LEO!-00006073
“+esAT. 04,17 GEN 65, 040000 LBO! 00005751
T ee+EDT MIA GEN 63, 040000 LBO!-000044662
v+ e5AV 03,9 SAVPAR 44+ 040000 LEOI-00008734
e+ +ERF 01 SEN 641, 040000 LEO!-00007132
2 +ACS 01 GEN 50, 040000 LEO:-00006205
o« B00 03,2 GEN - 50, 040000 LEO:-00006310
++o+LOA 03 GEN 50, 040000 LBO!-Q0004&7467
+++UNL 02 GEN 0. 040000 LERO:~00007023
+++HEL 01,15 GEN 50, 040000 LBO:-00006111
+ ¢+ BRO V02.3 GEN 90, 040000 LBO!I-=-000064144
vooMAC M1110 GEN - 50, 070000 LEO:-00004330 ,
+o+ TKR M29 GEN 50, 070000 LEO!-00004437
+ooFPIP M1331 GEN S50, 040000 LEO!-00005174 ‘
+o+ FOR MO3 GEN a0, 070000 DMO:-00113771
+++8AT 0736 GEN S50, 126000 IMOI-00123478
ve e 85085 0734 GEN S50, 020400 DMOL~00064110
v TTY 0736 OEN 10y 014400 1HO1-00010064
oo o BYE 01,6 GEN 90, 040000 DKOL~00006102

([AE VHAF BEN 50y 21400 TRoj-000jades
Ehh U 01  8AURAR 40, 040000 LBO$-000071k56



REMOVE - borra del directorio de tareas el nombre de la
tarea para hacerla desconocida sl sistema.

RUN - rermite la eJecucion de una tarea.

SET - este comando rermite slterar aldunas condiciones

del sistema v ademas las caracteristicas locales
de una terminal.

TASK-LIST ~ desrlieda el nombre de todas las tareas
instalaqps en el sistema. :

UFD - Egte comsando crea un User File [lirectory en un
volumen de files-11 e introduce su nombre en el

directorio maestro de archivos.

UNLOAD - Descardgs el manedador de un disrositivo.

Todos 1los comandos descritosr 3 exercion de HELP rueden
ser invocados escribiendo selo sus 3 eprimeros caracteres.,

Ademas se tienen sldgunas teclas de controly estss son?
( rpara las teclas de control es necesario orrimir la tleca de

la letra 3l mismo tiemero aue ls tecla "CTRL®* ) -

CTRL/C

CTRL/O

CTRL/Q
CTRL/S

CTRL/R

[

CTRL/U

CTRL/Z

- 8¢ obtiene la atencion del MCRy el cusl es el -
encardado de interrretar los comandos 3l sistema
orerativor resronde 3l CTRL/C de la siduiente
manerat MCR>

|

-~ Descartaz las salidas aue se envian a8 la terminaly

el sistems descarts dichas salidas hasts que se de

~CTRL/0 por segunda vez.

- Cuando en la terminal se desesz detener 3lsun
listado(salida) momentaneamente se da CTRL/S., El
listado rroseduirs al dar CTRL/Q.

- EJdecuts el retorno de carro v reimprime la wltims

linea rara verificar si las correcciones hechas con
DELETE estuv;eron bien hechas.

- Borra la lines actual (donde se esta trabadande) u
se edecuta un <er>,

- Se usa en programas pars redgresarle el control a
MCR . .

Vease los eJemrlos anexos.
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INTERFASE MCR ¢ MONITOR CONTROL ROUTINE)

—— e . vaan sorr ey s deH A o rin ek Y A e ik mhet ik S S o i Y JI SE e v e T o Y00 Ay P e B0 0t Do SO

"L interfase MCR es la cue rermite la comunicacion con
el sistema orerativo RSX-11M» el wusuario a +traves de la
terminal introduce 1los comandos aue seran interpretados u
eJecutados ror el MCR, ’ ) .

Funciones cue rermite el HMCR!

- Inicializar el sistema.

ManeJo de disprasitivos perifericos.

- Control de eJecucion de taress

Obhtener informacion del sistemaz w de las tareas.

- Etc,

Algunos de los comandos mas usados ,de MCR son los
siguientes! '

ABORT - permite abortar una tarea & terminar con la
gJecucion de esta. : .

ACTIVE ~ desrliega los nombres de las tareags activas en
la terminal del usuario.

BROADCAST - ror medio de este comando rodemos enviar..
mensaJdes a una o mas terminales.

BOOT - rermite. cardar el gistema w transferirle el
control. '

BYE -~ termina la sesion con el usuario.

DEVICES - desrlieda los nombres simbolicos de todos losl
disrositivos reconocidos rpor el sistema.

HELLD - rermite iniciar una sesion con el usuario.

HELP. ~ desrlieda ' el contenido del archivo HELP.TXT.
Regularmente es una auuda rPara el usuario.

INSTALL - hace nue una tares sea conocida ror el sistema
v la PONE en estado "dormat" haste que el
eJecutivo recibz una reticion FPara edecutar
eutas. : :

LOAD = Bermite Gardar &l ménedador deé uf dispoditive no
residenta,

PARTITIONS -~ desrliedas en la terminélldel wauario uﬁa
deseripcion de eada und de lag Partigiones
de memgria en el sistems, .



Para salir v terminar una sesion se da el comando BYE. / #

»BYE "

g la comrutadora resronde!

HAVE A GOCD AFTERNOON
21-SEF-84 14148 TT3: LOGGBED OFF

NOTA! Existe un comando cue es acertado sin entrar en
sesiony este es» HELF» con el eue se rrorarciona informacion
rara aue el usuario rueds entrar en sesion.

* INTERFASE DE COMUNICACION MCR °
( MONITOR CONTROL ROUTINE )



;

° FORMAS DE ENTRAR Y SALIR DE SESION * (9

Fara entrar en sesion en 1a comrutadors FDP11/40 se
debera hacer lo siguiente!

1) Lar?

HELLD <ecr> 7 tambien se acertz la forma asbreviada HEL
1z comﬁutadora resronde ! :

ACCOUNT OR NAME! uxx <corr '3 contestamos pux ¥ <or»
ahora la computadors nos ride una contrasena

FASSWORD: wsw <cor>» 5 se contesta la contrasenalesta nn‘

ararece en la terminal) ¢ se da <ecr>

Por ultxmo la computadora responde con un  prompt ">,

1nd1candonos mue eata 119ta pars acertar cualeuier
“comando de MCR. Cog e

“€ur -  representa . la cuenta(clave)r 0 bien un nombre.
formas validas de xxx sont

8) [006+001] o Tés12 7 el wuso de los rarentesis es
orcional

D) 41 0 &/1
©) un nombre valido(como clave) de 1.& 9 caracteres

uwyy - rerresenta un rassword o contrasena(valida en 13
computadora) compuesta de 1 @ 6 caracteres.

Generalimente cada cuenta o clave tiene asociados urio o

dos nombres(ruede no tenerlos)y cue rermiten 1z misma
rosibilidad de sccesoy 4w una sola contrasena,

2) 0 bien en forma asreviada dar?
SHELLO x30/54 " ' |
o bien P

PHEL xxx/yyg Co

donde KKK ) YUYy aceptan las formas exrlicadas
anteriormente.

Lz diferencia entre las formas 6ér1 w &6/1 es la
sisuiente! con &4yl se entrz en sesion v se desrlieds en la
terminal del wsuario el archivoe LOGIN.TXTr aque contiene
normalmente alduna informacion util Para el usuario’ con &/1
s& entra en sesion v el archivo LOGIN.TXT no es desrledsdo.
Esta forma es uwlilizads rara abreviar el tiemro de entrads s

una sesion de comrutadora.,
H
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GRAFICADOR VT11

Instalaciones de este +tiro tiemnen oun dran rando de
arlicacionesy entre las cuasles se inclugen estudios de
simylacions diseno con awuda de comrutadoras ¢ sdauisicion de
datos en tiemro real.

Consiste de un procesador de desrledados. El procesador
ruede estar conectado a1 UNIBUS w fumcionar Como N

rrocesador autonomo rara manedar las instrucciones de

graficacion. Otra alternativa es usar este subsistems como:

una terminal inteligente en un sistema de dgraficacion con

multirrocesamiento. La primera forma es llamsdas Stand-Alone

¥ la sedgunds Host-Satellite.

Se rueden desrledgar diferentes +tiros de elementos:v

runtosy segmentos de lineasy caracteres w draficos, Estos
. 8elementos gstan normalmente definidos en posiciones de
coordenadas relativas @ la rosicion actusl del cursors sunaue

tambien rueden ser definidos en rosiciones absolutas. Los
sesmentos de linmeas o vectores rueden ser dibudzsdos en
cualauiera de los siduientes formatos?

- linea continusa
-~ lineéea lards discontinua

~ linea corta discontinua

linea discontinua con esunto

La capracidad del area princiral de desrledados es de 73
caracteres de tamano normal ror lines w 31 lineas rpor
rantalla.

Esta area princiral es de 9 1/4"x% 1/4* u direéccions
1024%x1024 runtos identificados cada uno ror sus resrectivas
coordenas {(Xr49). '

Se puede variar la brillantes de los dibudos o rarte de

estosy para lo cual existen B niveles de intensidad. Tambien
ruede especificarse aue un  despledado o rarte de este

flashee.

El conJdunto de caracteres disronibles son 94 caracteres
ASCII convencionales w ademas otros 31 caracteres aque
incluwen letras del alfabeto driedo w simbolos matematicos.
Estos rpueden desrledarse con el tiro normal o en tiro
italico.,

tbno de los . princirales sorortes del sistema de
graficacion es lza rluma electronicar 13 cusl rermite
interactuar con el eprocesador de desrledados rara seleccionar
orFcliones de un menu determinados identificar imagenes a ser
movidasr o manirpular despledados en la rantalla. Ademas de

estas caracteristicas existen otrss cue hacen muy rotente &l

draficador.
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SISTEMA DE ENTRADAS QNALGGICQS ADUO1
.o ( ‘convertidores snalodico/didital )
Espacificaciones funcionales

Resolucion 11 bits + signo ' . I

Canales se rueden seleccionar 8 canales

multirlexados

Ancho de banda 1.5 Hz

del cansal '

Fromedio de muestreo 4K muestras/s (maximo)
inclugendo conversion 20 mustras/s en el ‘mismo canal
A/D

Rechazo modo comun DOC a8 60 Hzs 100 dB minimo

Rechazo modo normal 50 dB a &0 Hﬁ

Exactitud totsl del FeOT cas0 <+-(0.11% de la escalz comrleta
sistema : + 15 v o
Randos de las senales senal de entrada ganancia rprodramada
de entrads znalodica +-=1 md o +-10 mV 1000

+-5 mA o +=-50 MV 200

+=10 mA o +-100 my 100

+-20 mA o +-200 mV ) 50

+~50 mA o +-500 mV . 20 ,

=462 mA o +-1.0 v i0 -,

+-42 mA o +-5.0v 2

+-462 mA o +~10v 1
Voltade maximo de senal +-10v + moda comun +-12v
entrada

Salida diditsal 0.0v= 0000

escala completa + = 77760
escals comrleta - = 100000

Interruprcion inmediatar diferiday o sin interruscion .

Recuerimientos de +5v con 1.75A
rotencia

13



CGNUERTIDDRES DIGITAL/ANALOGICO - A&33
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Esrpecificaciones funcionales

Resolucion

Entrads digital

Salidas analodica

Exactitud de la
ganancia '

Zero offset

Tiempro de
asentamiento

lLinealidad

Fotencia

1

Nuﬁero de DAC’s

1 parte en 1024 de la escala comrleta

000000=0 salidas )
020000=1/2 salida en escala comrleta
037760=gsa8lidas en escaslas completa (~LSR)

Ov a —10v con 3 -mA maximo

aJustable dentro de +-0.05X% de la escals comrleta
a 25 #rados centigrados ' '

aJdustasble a traves del cero

35 & maximo dentro de +-0,05% del valor final con
una cardgda de 150 pFs 850 s con el modulo de
acondicionamiento de senales

4-1/2 LSB(bit menos sidnificativo)

+5v +-0.25v con 450 mA maximo
+18v +-0.01v con 147 mA maximo
-18v +-0.,01v con 30 mA maximD
La rotencia es suministrada desde una fuente externa
H738A u arlicads a traves de los tornilles terminsles

Una fuente H738A suministrara la rotencis necesaria
Frara 4 TIAC's A633 W su modulo de acondicionamiento de
sgnales

cada modulo A633 contiene 4 DAC’s de 10 bits c/u



SISTEMA UDC

L s —————_— {3 -

INTRORUCCION

El uso de las computadoras diditales ha rermitido la

automatizacion de laos eprocesos industrizlesr» en mavor o menor
escalar derendiendo de las necesidades ¥ los recursos de cada

usuario.

lLa familia de comrputadoras PIOF11 eresenta un sistems
periferico aue se encards de interconectar los dispositivos

de 1las instslaciones con 13 computadoraé dste sistema
reriferico recibe el nombre de subsistems de control didital

universal de carturs de- -datos industrisles (UDC).,
' . . ‘s"“j, DA S I . . _
El UDBC tiene una construccion modular aue pPermite la
rarida reacomodacion o reconfisuracion de todo el sistemsa.
. 4

Basicamente el UDC es un control de trafico aue permite
1z utilizacion de srodramas de control o de monitoreor.

instalados en la memoria de la computadora.

El UDC tiene la caracidad de tener entradas combinadas

43 sean diditales o bien analodicasy debido a3 la construcecion
de los modulos aque constituwen el subsistemar presenta una
slte inmunidaed a3l ruidor las conexiones aue hacen falts se

basan princiralmente en conectores de dos terminalesr lo cual:

rpuede facilitar el cablesdo’ rosee ademas 13 carascteristica

de tener niveles de resrpuesta inmediatosy o bien diferidos.

Ademas rosee un sororte de software aue rermite la  rarida

Amelementacion—de—todos—los—rrodramss aUe se requiersan rFrara
lag asctividades a aue se tengan destinasdes las orPeraciones
del sistema. '

Otra de las ° caracteristicas a@ue .se consideran

importantes es la de suprecion de. circuitos esreciales de
tierra de  los arparatos de campo con la computadorar

estacaracteristica da mas flexibilidad a8 el eauiro instalado. .

Como en aldunas rracticas haremos uso de los

convertidores A/D w N/Ay 3 continuacion daremos aldunass de

sus caracteristicas. Sin embargo no ‘80N los ‘unicos
comronentes del sistema ULC. : : :

11
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CARACTERISTICAS DE LA TERMINAL HAZELTINE 1421

Tk Sy P SO ik e U VTS S ek S ik AP T e Vv MO YOS Gt Gl P . a WS Sy Mase V) - v My il B 0 YIS SN SU0e 4O M R UV PV

Tamano de la rantalla
diadonal de 30.5cmr es de fosforo

Caracidad .
80 caracteres/linea % 24 lineas (1920 caracteres)

Formato del caracter '
Matriz de runtos de 5xB en una ventana de runtos de 7x10

Condunto de caracteres
?9 caracteres ASCII despledables.

Los 128 carascteres ASCII Pueden ser tecleados u transmltldos.;

Disrlaw
Blanco sobre fondo nedror dos intensidades

Porcentade de refrescn
60 Hz

Standard TV
2460 lineas/marcor 240 lineas desrledadas

Memoria
Memoria de acceso aleatorio(RAM) de 2048x8

Intérfase
EIA RS-232C

Modos de tranomigion
half durlex ¢ full durlex

Temreratura de oreracion |
.de 10 a8 40 drados centidrados



CARACTERISTICAS DEL DECWRITER LA34

v v i b Y TS o e b b AN S RSP A A S kG SO0 Y Sy M e BRGSO e e B s e Mis P VTS S PR

Impresion
Se tienen sw;tches seleccxonables rara 10»15v0 30 caracteres/seﬁ

Longitud de 1a linea
132 caracteres maximo

Espaciamiento ‘
10 caracteres/ruldada (horizontasl)

é lineas/ruldgada (vertical)

Caracteres
96 caracteres ASCII < P : .

Matriz de puntos de 7x5 (0. 07x0‘10 )(1 77x2 54mm)
- ; i

Teclado
Standard ANSI

Interfase
EIA/CCITT

Modos de transmision
halfdurlex o full durlex

Porcentade de transmision ¥ recercion de caracteres

SWITCH ' . PORCENTAJE DE CARACTERES
110 10 (caracteres/sedundo)
300 ' ) 30 (caracteres/sedundo)

110 w 300 15 (caracteres/sedundo)

Temreratura ambiente
De 10 2 40 drsdos centidrados

: CARACTERISTICAS DE LA LECTORA DE TARJETAS CR-11

v i S48 gyt A P gy o G P A e e et b et Py A $6S 4 e ik AHD A P L phie WS SO B e M WAL 4056 SE P et e

Medio de entrada
Tardetss rerforadas de 80 columnas

Velocidad
289 tardetas/minuto

Caracidad del "hoprer®
950 tarJetas

Temreratura ambiente
15 & 32 drados centidrados



CARACTERISTICAS DEL FLOFPPY DISK RXO01

A " o0 0D GOTS TRGS N yr PO AFPY FUMS P S iy ey A Gl W0t WA SUAE il S P St 0 ol M Gt S 000 G S SO o

CARACTERISTICAS ESPECIFICACIONES
! -
Caracidad g~bit{(bute) 12-bits(ralasbra)
Por diskette 2546256 128128
Por rista 3328 1664
Por sector : 128 &4

FPromedio de transferencia de datos

De diskette a3 buffer del controlador 4 aps/data bit(250Kbes).
De buffer 2 interfasse del CPU 2 ys/bit (500Kbrs) j
Interfase del CPU a3l bus de 1/0 18}4s/bste(}50Kbutes/s)
Movimiento rista a rista ‘ 10ms/rista maxima
Tiempo de asentamiento de la cabeza 20ms maxkimo

. Velocidad rotacional . 360 remt-2.5%i166mE/rev NOm. .
Grabado de surerficies por disco ) O
Pistas ror disco 77 (0~76)
Sectores ror rista 26 (1-26)
Tecnica de drabado doble frecuencila
Densidad en bits 3200 bri !
Densidad en Pistas 4B8pistas/ruldada :
Tiemro Promedio de acceso ' 488 msrcalculado como siduet

buseueda asentamiento rotacion

(77ristas/2) % 10ms + 20ms + ( 166ms/2 )= 488ms
Temreraturas ambiente de 15 a 32 dgrados centidgrados

i



CQRACTERISTICAS DEL DISCO RKO?

——— vy S — e} o —— 4 ——

Cabezas masneticas

Caracidad de drabado

Frecuencia rotacional
Valor rromedio
Valor maximo

. Tiemro de busaueda

Valor eromedio
Valor maximo

Tempreratura ambieﬁte

S e e A o s ——— G0y oot DO o oo

—— it S (vt $00 G ey e i 4 S a0y PO Gat

3 de lectura/escrztura o una“
de servo.

Falabra de i8bits Palabra de lébits

{formateado)
Cilindros/Cartucho ' 815 815
Fistas/Cilindro 3 : 3
Pistas/Cartuchao = £4 . 2445 2445
Sectores/Fista R 20 22
Palabras/Sector 256 g ‘ - 236
Bits/Palabra i8 16
Bits/Sector 4608 : 4096
Bits/Surerficie 73.+.43M - 75.11HM
Bits/Pack 220.32M : 225.33M
Bits/Puldada 4040 ' 4040
Pistas/Fulgada 384.,4 384.4
- Promedio de transferencia de bits 4,30 M/s
Bit cell width 232:.5 ns

2400 rpmt-2.5% :
12+.Sms(rotacion media)+-2.5%
25.0ms

365 ms
71.0 ms

Ne 14 3 49 drados centidrados



CARACTERISTICAS DEL DISCO RKOS

- 2ot A S i g S S ey A Pt RS O 0

Cabezas madneticas

Bensidad de sirabado u formatéo

Densidad

Pistas

Cilindros

Sectores (redistros):

—— ————" Sy} oy — S 10 SN oy o At s e

2200 bpi meximo

406
203(de 2 pPistas c/u)

4872(¢(12 ror revolucion)/

6494(16 ror revolucion)
|

Caracidades en bits(no formateado) .

Por disco
Por puldgada
For cilindro
For rists
For sector

Tiempo de acceso

Rotecion del disco
Retardo Ppromedio
Posicionamiento de la cabeza

(incluvendo tiemro de asen—
tamiento)

Trangferencia de bits

Codido de transferencia
Promedio de transferencia

Temreratura ambiente

25 millones
2040

115200
57600
4800/3844

15004-30 repm
20ms(rotacion media) ‘
1Oms~para ristas adsacentes_

S0ms—-promedio
85ms—-rara el movimiento de . -

200 rigtas

doble frecuencia(codiSD NRZ)
1.44Mbits Por sedundo

De 10 a8 43 drados centidgrados



Procesador central

ekt it e A Ak A A S L e e Sa0 e W e brby e e HY

Mercado erinciral
Memoria

Transferencia redistro
a redistro

Tamano maximo de memoria
(ralabras)

Espacio maximo de
direccionamiento

Redistros de rrorosito
deneral

Frocesamiento de stack

Microrrodramado

Instrucciones

Aritmetica extendida .
(hardware)

Funto flotante

Direccionamiento limite

del stack

Administrador de memoria

Modos

Frioridad de interrurcion
automatica

Autorestauracion del .
sistema cusndo ocurre una
falla de alimentacion

FOP11/10

. —————— "

Usuario finsl
Ferritas

207AS-

28K .
N ELEY

51
si’

ConJdunto basiceo

Orcional (externé)
Uniéamente software
400 (fi.a)

No disronible
1

4-linesas
multi-nivel

standard

POF11/40

- ———— A ——— — 1

Usuario final = -
Ferritas

0.9}&5

81
si

ConJdunto basico +

.. .. XORsSOB»MARK» SXT-¢RTT

Orcional (inﬁéFﬁa)
MUL»DIVeASHyASHC

Orcionn de hardware
ralabras de 32'bit5

400 o Programébié”
(orcion)

Orcion MFPI» MTPI

i gtdy 2 ort

4~lineas
multi-nivel

m_ standard



LISTA DE DISPOSITIVOS

e TS AL S04 b S b e S g o e o bt WA G S T

DEC ~ Decuriter LAJZS

TTY - Terminal de video Hazeltine 1421

LT - Lectora de Tardetas CR-11 |

M - Memoria erincieal

vnc - Controlador Universal didital UDC11
D1s02 - Discos RKOS, unidad dual

o3 - Disco RKO?

FO1,FD2 - Floeey Disks unidad dual RXOL

co - Consola del oreradory decwriter LA3S

G ~ GBraficador de Fantalla UT11



PROCESADOR CENTRAL % ) {
: RO =R .
{ ]Pmonmn[ IN]z]vlcl R1 S . -
1 & R2 |+{=— REGISTROS DE _ -
REQISTRO DE ESTADO DEL PROCESADOF PROPOSITO : =
R3 GENERAL - “
. . RS S - K
‘ UNIDAD LOGICA |, | RE - N ' ST
' Y ARITMETICA - ' P ' x
- R? _":é' ':‘ ) . .
: . = = ‘lec o =
- b4
’ P ) %
<‘ CANAL _DE_DATOS — g >
4 & - & B & I -~
'; < 4 L 1 J [ L L 4 L : 1 b 1 r 1
DEC | I!IIEC pEc | [TTY[|TTY | bYTY | {TTY | |TTY LT M. uDc pt |'fo2]| |03 POP'0 | | FDI
1 » - - .
i - - 4
! b
s |

‘DIAGRAMA DE BLOQUES DEL SISTEMA -



PRACTICAZS#$1

INTRODUCCION A LA PDF11/40

OBJETIVO: H

El alumno conocera de manera sdeneral el diadrama de
bloaues basico de la confiduracion de la FDP11/40» asi como
aldunas caracteristicas del eauiro en forma individual.

Ademas el alumno conocera w arrendera s manedar aldunos

Frogramas imrortantes del sistemar» como sont el sistema de
ayuda en linea 505y el editor de lineas EDIy el Prodrama de

intercambio reriferico FIFy la interfase rara comunicacion
con el sistema orerativo MCRy 9 la secuencia a seduir rara l1la
eJecucion de wun_ Prodrama en la PDP11/40 ba.o el sistema

orerativo RSX- 11M(sistemd en tiemro real multiusuario).

DESARROLLO?

1) Ewxrlicacion del eauiro w aldunas de sus
caracteristicas. ’ '

2) Formas de entrar v salir de sesion.

3) Introduccion 38 la interfase de comunicacon MCR.

4) Exrlicascion w maneJdo del sistems de avuds en linea
s0s.

5 EhPllCBClon Y- manedJo del Prosrama "editor de lineas
EDI.:- , :

6) ' Explicacion u manedo :del rrogdrama de intercambio
reriferico PIF. ‘ : _

7) Explicacion de 1la secuencia & seduir pPara la

edecucion de un Prodrams.
8) E.Jecucion de un erodrama.

* EQUIFPO Y CARACTERISTICAS °* il
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32. Interrupts from the device at UNIBUS address 177546 (line #1%
will trap to-what low memory address? . -

o

33. Line 21 will
, A. enable clock interrupt, :
B. disable clock interrupt.
Co reset the line cloc'k to time 000000,
p. cause a line clock to occur. -
1f a clock interrupt request is granted by the CPU and an interrupt
seguencae is executed after the instruction at line 28, then what are
the contents of o

34. PC =

| X R L) o
25. §P = -4 A -
36. pSN = =00 8

37. ©=ist item on the stack”® [ LA

- (o)
38. W¥hen an interrupt sequence occurg, causing a vector to the
LKINT {line ¢42) interrcpt service routine (I.§.R.), a new
PSW will be supplied fram absolute memory location 102, What
level will the processor priority be raised to during the I.S5.R.?

5H

8

~3%. The clock interrupt (line §41) subroutine will output -which

character once each second? N
A. TPB

B. TICK

C. B' -
»3. BELL

.

d
c started from the beginning an
:ﬁnr“:z'bt;:nconsole keyboard, ipdicate which of

T«True, O F-False, .
tely at location 1076 (immediately

provided this pr
the operator tyP
the following are

The computer halts irmedia

49- w within 1 millisecond}.

) er second,
11. £ The c¢lock handler executeg once P

076, after 10 seconds.
42, y The computer halts at location 1 1 s

43 v/ The terminal beeps every second for 10 seconds.
V Tbe data lights (11/45-70] appear to o
every clock tick.

tate left after-
ad.

key is ;trnck on the
4S. [ The elapsed time is printed when any key

conscle: keyboard.

D-16

6E



2X.

22.

23,

24.

return from subroutine instru;tigq on line 57 will
trap thxough locaticon 4.

return to main program at line 15.
return to main program at line 16.

return to mgin progranm &t line 17.

Civen that line 63 has just been executed and nothing tas
been typed on the terminal, which line will be executef next?

A

vE.

<.

b.

63
64
65
66

During program initialization,-a decimal number io acce:ted

by the “INPUT® subroutine.

How many arguments are passad

wvhen the subroutine is called?

A,
B.
c.

1
A
.
c.
5.

none

one

tvo

fonr

the subroutine to input a decimal numbe;, GPR R} is wsed as
an accumulator (operand register). ’ B

& counter. - A

an index, ‘

a.pointer. _: o S L

D=7

25. 1In the subroutine to input a decimal number, R4 i3 used as

fA., an accumulator.

. "._;”!
B. a counter. *

C. an indqx.r

D. a pointer,

L

26. After the nuneral 1 has been typed on the conscle keybcard

and lines 71 through 73 have b
" contain? ‘ 9 e been executed, what will R2

fA. 000001,

B. 000061,
C. 000261
D. 177161

After the numeral 1 has been typed on the console keyboard and

lines €61-76 have been executed, what wil 3
following registers: ' ¥ill be the contenta of the

27. Rz / o
28, R3 =2 . o
29, -Ré ! : Yy

30, ‘If R4 = Oooobl-and the numeral g has Been
typed
be the contents of R4 after lines 63-76 havzpbe;nwz;:c:::é?

R4 ;7

option or CPU function?

o,r./es.r'c.’r L0, N ' e
v ’ ) -

31. LKCSR (line #13) is the 16 bit register for which devica,

Lo
Qo



“This . program

v

request the operitof to type a4 "Y" . on a "N". If "Y*, the

ir aiﬁ;} than "N” or "Y" the program yill respond "TRY AGAIN.

CHALLENGE PROGRAM #2,.

- SAMPLE RUN

PLEASE TYPE A “Y"

PLEASE TYPE A "Y"

‘PLEASE TYPE A “Y*

TRY AGAIN
PLEASE TYFE A "Y"

OR
OR

OR

OR

nyn

"N

"

uiltfrecognizeytwo ASC1Il characters within thé

‘context of simple operation interaction. The prograﬁ will

-pzdgraﬁ uiil print ="ES*, if "N, the program will print

(S

CHALLENGE PROGRAM {23
Five lines-of -text ‘are :to-be printed out on the console terminal.
i
Each line of text is a different length. The program should use
a subroutine to-doc the data transfers, If one line of text
exceeds 64 characters, the subroutine will insert a "CR" carriage

return and "LF" line feed.

~

Each line of text should be a sentence, two of thch exceed 64

characters to test the CF/LF specification. = - .

1€



The paper tape ocutput of the PAL-1l}A Assembler is in absolute

LOADING YOUR BINARY TAPE

binary format and is therefore loaded by the ABSOLUTI LOAZER.

Beference the handout entitled LOADING WITH THE ABSLUTE LOADER.

* RUNNING YOUR PROGRAM

After you have loaded your program ‘into memory using the

ABSOLUTE LOADER,
as follows:

1.
2.

3.
’.
5.

Hopefully, you will have no need to reference this section?
Bt occasionallx programs do not run as intended--halting without
giving esired result or failing to halt at all.

kappened tn you,
1.

2.

you are ready to run it. The.procedure is

.Set the ENABLE/HALT switch to HALT.

Set switch register to the startins addr-ess of
your program.

Press LOAD ADDRESS.
Set the ENABLE/HALT switch to ENABIZ.

Press START.

WHERE DID I GO WRONG?

take the -following remedial steps:

Repeat the above sequence {try LOALIRG YOUR BINARY
TAPE and RUNNING YOUR PROGRAM agair).

EXAMINE your program in memorys; ccompare it with
the assembly listing.

Check your program THOROUGHLY; detemmine vhether
or not the correct instructions have been used.

CALL FOR HELP from your instructor:lil!

If this has

Two tables of numerical data is created in memory.
.tasks are to be performed on this data.
be left in General Purpose Registers.

R} = the number of negative values (16 bit, nigned. twos
compliment) in both tables.

R4 = the number of corresponding matches between entries of

RS

CHALLENGE PROGRAM 01

both tables.

table.

TABLE A

035353
007436
165004
165005
071332
176332
000424
010001
100001
177753
1771776
035353

060076

lg4551

Note:

each tagk should be coded separately.

s the number of total matches between all entries of each

TAELE B

100001
007738
055561
100001
071332
060075
060076
060077
00001
177776
000424
635353
077776
164550

Three.um .o
The results arecto:



Character

form feed

line feed
carriage return
=

%

tab

space

- o R @

PAL-11A SPECIAL CHARACTERS

Function

ferminates a line of source code.
Terminates a line of source code.
Terminates the source statement.
Label terminater. .

Direct assignment indicator.
Register term.indicatoé.

Terminates an jitem or fleld.
Terminates an item or field,

Immediate expression 1ndica£or {mode
Deferred addressing indicator.
Initial register 1néicatcr-
Terminal tegi;ter indicator.
OP?;and field separator.

Comment field indicato:-.
Arithmetic addition operator. -
Arithmetic subtraction operator. .
Logical AND operator.

Logical INCLUSIVE OR operator.
Double ASCIX characte£ indicator.
Single ASCII charactor indicator.

Assembly current location coupter,

8-8

a}

PAL - 11a ERR CODES

The errcr codes printed beside the octal and symbolic code in the

_Error code

A

- assembly listing have the following meaningss

Meaning

Addressing error. An address within the. instruction:
is incerrect. _

Bounding error. Instructions or word data are being
assembled at an odd address in memory. The location
counter is updated by +1.

Deoubly-defined symbol referenced. Reference was made
to a symbol which is defined moxre than once.

Illegal character detected. Tllegal characters which
are also non-printing are replaced by a 7 on the list-
ing.

Eihe buffer overflow. Extra chacters on a line (mere
than 72;9) are ignored.

Multiple definition of a label. A labei was encoun-
tered which was eguivalent (in the first six charac-
ters) to a previously encountered label.

Humber containing 8 or 9 has no decimal point.

Phase error. A label’s definition or value vaties
from one pass to another.

Questionable syntax. There are missing arguments or
the imstruction scan was not completed or a carriage
return was not 1nmedxate1y followed by a line feed
or form feed. ~

Register-type error. An invalid use of or reference
to a register has been made,

-gymbcl table overflow. When the guantity of user-

efined symbols exceeds the allocated space available
in the user's symbol table, the assembler outputs the
current source line with the § error code, thcn returns
to the initial dialogue.

Truncation error. A number generateq more than 16
bits of significance or an expression generated more
than 8 bits of significance during the use of the
BYTE directive. .

Undefined symbol. - An undefined.fymbol was encountered
.Suring the: evaluation:of an expression. . Relative to
‘thevexpression, ithe wndefined isymbol is.: as:iqnad a -

value of :ero. -

is-o S B o DO
. T



USIMG THE TEXT EDITOR
The text editor s used to generate source tapes of the user's
The editor 15 Toaded using the ABSOLUTE LOADER snd i m_f-n.rﬂ?.%f”"

To input text, type:-

xxx ¢ TEXT LINE D

where: XXX = octal 1ire number
C/T = COXTROL TAB
& = RETURM

I:ngz:?ge 2 1ine of text, retype the 1ine correctly using the same, line

To delete a 11ne, type the line nucher, CONTROL TAS, then RETURN,
Cermands have the format:

S X 2

‘where: X=L,R orp

The R comand reads a tape fr R o
the oo pe from LR or HSR, It c'lears._the buffer before .

The P cormand punches the test 1n the ’
e choand our n the buffer to LSP or HSP, It does not

An L cormand 11sts the entire buffer on the TTY.
" To clear the buffer, type R with no tape in the reader.

Yo resequence a program, Punch the program, clear the buffar, and then Read

the program back into the toffer. .
Hever use tine feed or rubout,

»

B-6

USING TME ASSEMBLER (PAL-11A)

FAL-11A is used 'to assemble symbolic code into binaxy code--to create’
from the symbolic tape of your program a binary tape of your program which
can subsequently be loaded into core memory and executed.

This is normally accomplished in two passes, with an optional third
pass for a listing of your program (the latest version of tha 8F assembler
will give both binary tape and listing on the second pass).

‘After you have loaded the PAL~1lA program (using the ABSOLUTE LOADER],
it will start itself automatically and begin the INRITIAL DIALQGUE=---

PAL-1IA types you respond " Ehis indicates
. *8 © Hlor L Symbolic tape to be
: read from 3R or LSK
*B Ed or Lad Binary tape toc be
. ‘ ) output on BIP =r .I:SP
L i . T Listing to be output
' _ ) . on Teleprinter
o o T2 . user symbol Table to
. be output on Teleprinter
v ‘X’be certajin your sym-

bolic tape is in the
proper reader before
you resporgd B

ASSEMBLY DIALOGUE .,
Pass 1: ({(symbolic tape read in and symbol table cutput on teleprinter)
pass 1 over;: put sym-

bolic tape back in HSR
and type CP for pasg 2

END? 2

pags 2% {symbolic tape read 11_1 e2nd binary tape output on HSP)

pass 2 over; put sym-
boliec tape back in HSR
and type CR for pass 3

END? A

Pass 3: (symbolic tape read 'in and assembly listing output on teleprinterj

PAL-1}A realy for

ignore
another assembly

Os !

Push the feed button to generate some TRAILER for the binary tape of
your program, and remove it from the HSP.
Note: The response to EOF? is E\Z indicating & nigsing .END ltatum.;. .

8-7 “ o I:g



LOADING WETH THE ABSOLUTZ LOADER

LOADING WITH THE BOCTSTRAP LOADIR

The ABSOLUTT LOADER program is designed to load any tape in absolute
format -- the majority of the systew software {PAL~ 1lS, ED- 11, LINK- 11§,
00T~ 11, 10X, PAL~ 1A, etc.) and your user programs which have been assembled
and processed by PAl«~ 118 and LINK- 115 or assenbled by ths absolute assembler

The BOCTSTRAP LCADER program ie designed to load any tape in bootstrap
format diroctly bencath itself (see allocation diagras on €-12). Presently,

only the ABSOLUTE LOADER program and the core dump programe (LUMPTT/DUMPAB PAL- 11A. .
are provided in thic format--ag they are short enough to fit in the space
pllocted, :

In sogt cases, the load addrass io on the binary tape, Rzaliza,

Generally, absolute formatted core dump programs are used, and the howevar; that the program tay ba written in Positicn Independent Coda (PIC)

ole se o BOOTSTRAP LOADIR 15 to lcad the ARSOLUTE LOADER. y and that in this case the yser pay expross any dsoired losd addrese ot lood
pat ENABLE/HALT
to HALT ]
‘ Eet FHABLE/MALT to
HALY .
LOAD ADDRESS starting address of : d
744 BOOTSTRAP LOMIER - R
: LORD ADDRESS Starting oddress of
' L ASSOLUTE LOADER
—— Do
place tape in position tape . -3
high speed reader (using tape feed button) N
go that the "gpecial ' ; )
» leader® (35) code] i9 ’ Place tape in select Blank tape positioned
over the aensors reader over sensors
, h, 4 cvtd/n‘ #o .
get EMABLE/HALT adere 1* Q = ————
to ENKABLE .
van : Set SR to reflect t B+ B 2¢ 9 normal
of load SR = ggggdl = continucus
Es : : SR = N o load blas
{ press START | ABsoLuTE LoADER will be b .
read into memory beginning : )
at address XXXSPP. . Sat ENABLE/HALT to
ENABLE
N
. . Prosg START Pinary tope will be read
intn cora oenmory begianing
ets address on tapo (nom-PIC)
- ' -  address in SR (PIC)
a4 i




FT ISC IOV L

LT

S EAS A LA

HAL5I03W HIALLAS

A

3

T

.Iu"!‘ amw bk ,:?51' _°

SINJLINS TMLHOD

dvg

HRER

HNARE

]

Ll LT T

prlee ]
S Q

TNATYIA o ﬂO!NOb [}

W
1
5 — &
; mf
3 | |8
g o
E -
—
N
]
N
L
O

n

ﬁsno amng o)

TIOSH0D 1T-dad

LOARYNG AND VERIFYING THE BOCTSTRAP LoaDIR

{8X System---High Speed Fafer Tapes Roodier)
. Location ) Cortent
g37744 £1€781
. P377246 ELEgee
#3779 #2742
#37752 BEaIs2
#37754 BE5213
B31156 g5y
B377epg 1PP376
BITI62 116162
gg;;g; Pepap2
8374pp
ERabl ] BPS267
£37172 177756
B37774 BEZR16S
237176 177558

O

Load

[set sR to ﬁJTéAi—_]

v

[Press LCAD MDRE;]

Set SR to PFI67P1 l

[; Raise DIPCSTT l

S5et SR to next contenﬂ

¥ i
uaise UIPOSIT _]

oad

")
o

or Verify ™Sy Verify
W

hd

ﬂp-“ "

[445&1!& DEPCSTT _;]
N

COrrect content

Set SR to

L;____i

DAINE




IKPUT-OTPUT HAUDLER
PROVIDING INTERRUPT
DRIVEX ZATA XFERS AT
*“ READ~WITTE" LEVEL

G)_;IO

UTILITY PROGRAM PRO—-
VIDIKG "CYNAMIC ON-
LINE DEEUGGIMG™ Ch-
PABILITIES

CORE MCMORY DUMP
PROGRAMS ALLOWING
"SNAPSHOT" DUMPS OF
SELECTED ARERS OF
CORE ONTO PERIPHER-
AL DEVICES

10X
f ——
CXECUTE
PROGFRAM

RUN
CORRECTLY

YES

oDT-11

CORRECT
PROBLEM
7

DUMPTT
DUMPAR

A-E5

CONSOLE OPERATION

TO EXAMINE uzwonri

1. HALT the processor.

2. Set SR for the desired adéress.
3. Press the LOAD ADDRESS key.

4. Press the EXAMINE key.

TO DEPOSIT IN MEMCRY:

1. HALT the processor,
2.° Set SR for the desired address.
3. Press the LOAD ADDRESS key.

- 4. Set SR for the desired content.
5. Raise the DEPOSIT key.

- TO_RUN A PROGRAM:

1. HALT the processur.

2. Set SR for starting address of" pzogzam.

3. Press the LOAD ADDRESS key.

‘4. Set ENABLE/HALT switch to ENABLE.

5. Press the START key.

Bl

[+



- THIT:

ACl:

AC2:

ACI:

BACRG:

CR:»

BESRSRV:

EOM:

ESPSRV:

CLRIN:
STOP:

BUTFER:

;EXAMPLE OF INTERRUPT LEVEL I/0
;TAPE DUPLICATOR PROGRAM (HSR/HSP)
; POSITION INDEPENDENT CODE

PE=0 g
Ri=pl
R2=12
SP=46
PC=0T7 -
PP5»17755p
PPEaPRS+2
PPE=PRB+2

PPE=PIS5+2

TPE=177564
TPR=7P5+2
=10E

nov
TST
MOV
ADD
MoV
MoV
ADD
Fov
CLR
¥ov
ADD
HOV

CLR"

BIS

INC
BE

PC,SP.

-(se)

PC,R1
¢§BUFFER-AC1~2,R1
R),R2

PC,RA
JHSPSAV-AC2-2,RP
RE, €478

BE#72 .
PC,RE L. .
{HSPSRV-ACI-2,RP
RP.8174 :

erie

#151,84PRS .

‘RE
BACKG

T513 EHTPS

BPL

CK

HOVE 27,08TPB
BR EBACKG

TST

BMI

#3ERS
EOM

HOVE @4PRB, (RL)+

INC
RII
BIC
BIS
ET1

TST
BMI

A4PRS
1174, 84PRS
#190,Q4PFS

44pPPS
STOF

MOVB (R2}+,Q04FPB

ot 2
BEQ
RTI
BIC
RTI

R2,R1
CLRTN

$198,042P5

FALT

g

LEND -

;SET UP STACK FOR

- ;P1C PROGRAM
1CALCULATE BUFFER ADDRESS FIINTIR FOR

;PIC PROGRAM

;SA OF BUFFER TO Rl (INPUT;=—R2 (OUTPUT)

;CALCULATE SA OF
;HSR SERVICE ROUTINE
sLOAD IN VECTOR ADDRESS

3sNO NEED TO SPECIFY NEW PRITAITT LEVEL

sCALCULATE SA OF
sHSF SERVICE ROUTINE
;LOAD IN VECTOR ADDRESS

7NO NEED TO SPECIEY REW PRIDRITT LEVEL

;SET READER ERABLE, INTERRI?T EXABLE

JEXAMPLE BACKGROUND PROGRRY
sCONTINUQUSLY RING-TTYP BETL

;CHECK ERROR BIT (15)

;EOM MEANS INPUT DONE

i STORE CHARACTER

;SET READER EUARBLE BIT
;RETURN TO BACKGROUND PROGEAM

- § INPUT DONE~-~CLEAR HSR INTEIRUPY

;SET INTERRUPT ENABLE FOR ESP
$RETURN TO BACKGROUND PROGIAM

$CHECK ERROR BIT (15)

:PHYS ERROR--STOP. PROGRAM

; PUNCH CHARACTER

;DONE?

; YES-~CLEAR INTERRUPT AND ETURE

_¢NO——KEEF INTERRUPT AND RETURN

;ERROR CONDITION-~-HALT -

;REST OF CORE IS BUFFER ARIA

He83

POP-11 PAPER TAPE SOFTWARE OVLRVIEW

LISTING

e
SODED
. PIOSLEM
UTILITY PHOGRAM PRO- EDIT-11
VIDING ON-LINE SOURCE
EDITING AND UPDATING
SOURCE -
MODULE
SOURCE PROGRAM IS AS- PAL~11S
SEMBLED INTO OBJECT PSSEHELER
FORMAT {(MACHINE LAN-
GUAGE CODET
OBJECT
1% .
. MODUL ASSEMBLY
FLOATING-POINT METH
PACKAGE PROVIDING f
2/4 WORD ARITHHETIC FPMP-11
AND CONVERSION CA-
PABILITIES T
——-d
|
1
1
: L
SYSTEM PROGRAM
THAT ASSIGNS LINK-11S
*UNRESOLVED" LINKER
- ALDRESSES; AND
LINKS MAIN PRO-
GRAMS TO EXTERNAL
SUBROUTINES .
- wAD Lomf‘g
" MOD
A-44



;EXAMPLE QF INTERRUPT LEVEL 1/0
; TAPE DUPLICATCR PROGRAM (HSR/HSP)

np=v4
‘Rl=%1
R2I=%2
SP=46
PRS=177558
PRB=PRS+2
PPS=PPB+2
PPI=FP5+2
TPS=177554"
TPB=TPS+2

=1LED

IRIT:

MOV §.,5PF

MOV {BUEFER,R1
MOV R1,R2

MOV §ESRSRV, 8476
CLRE 3472

MOV $HSPSRV,e474
CLR 2176

BIS #1F1,@2PRS

BACKG:

me Rg

BNE BACKG

CK: TSTB QTPS
BPL CK
HOVE 17,84TPB
BR BACKG

BSRSRV: TST

E4PRS

BMI EOM
MOVB 3#FPRB, {R1)+

pailod
RTL
EOM: BIC
BIS
RTI

BSPSRV: TST
. BMI

&4PRS
11PF,84PRS
$148,84PPS

24PPS
STOP

MGVB (R2)+,24FPB

P
BEQ
RTI

R2,R1
CLRTR

CLRTN: BRIC £1P0,Q4PPS
RTZ

STOP:

_ BUFFERs §

HALT

.m

{SET UP STACK :

. tBUFFER ADDRESS POINTER TO Rl (INPUT}

;BUTFER ADDRESS POINTER TO R2 (OUTPUT)
i5A HSR SERVICE ROUTINE TO VECTOR
;NO NEEDR TO SPECIFY NEW PRIORITY LEVEL
$Sh HSP SERVICE ROUTINE TQ VECTOR
§¥0 NEED TO SPECIFY NEW PRIORITY LEVEL

3SEI READER ENAPLE, INTERRUPT EWABLE

;EXPMPLE BACKGROUND PROGRAM TO

I:CENTIH’UOUSLI RING TTYP BELL

pry

. $CEECK ERROR BIT {15)

{ECM MEANS INPUT DONE
STORE CHARACTER :

iSIT READER ENABLE BIT

FRETURN TO BACKGHOUND PROGRAM

i IFFUT DONE--CLEAR HSR INTERRUPT
SET INTERRUPT EWABLE FOR HSP
JZTTURN TO BACKGROUND PROGRAM

sCEECE ERROR BIT (15)

tF¥YS ERROR~-STOP PROGRAM

sPINCH CHARACTER

TDCNE?

$IIS-=CLEAR INTERRUPT AND RETURN
{R0—KEEP INTERRUPT AND RETURN

{EEROR CONDITION--HALT

$EZST QF CORE IS5 BUFFER ARER

A-&1

THNDLR

EAVPLE

TRAP HANDLER

BIC #FYPg1I7,2(sP) FCLEAR USER PS CC BITS
PCV R5,-(5F) iSAVE
POV $4,-(SF) sALL
rev ®3,-(S5F) $GPR
MOV R2,~(SF} ;08 .
MOV RY,-{SE) 1THZ
MOV RF,-(SF). ;STACK
MGV 14(5P) B3 $P1CK UP COPY CF MAIN FROGRAM PC
Hov ~{RE) ,R1 jUSE IT TO GET TRAP INSTRUCTION
f;c wi77755.n1 ;s EXTRACT USER CODE
LR ;TO BE ADDRESS VALUE——pa -
~-VARE IT
JHP FTTABLE(R1) 1GO TO INDICATED RCUTINE EVEN
RETURN: BIS #+F5,16{SF) ISET USER pS
cC BITS H
roy caryes el IT5 TO REFLECT ROUTINE
MOV {SP)s ,R) sALL
POV (SP)+,R2 IGPR
MOV {SP)+.R3 ;ERCHM
MOV (SP)e R4 }THE
MoV (SP)s RS :STACK
o RT1 #REFURN TO MAIN PROGRAM
TTABLE: TAsK# ;DISPATCH
TASK iTABLE
TASK: $CONTAINING :
. tALL v
. tROUTINE
TASE1? JADDRESSES
TASKZ: . OFR
JMP RETURR "
TASK1 OFR
JHF RETURN
- TASK2: CPR DO
JMP 2ETURN
. -
TASKTT:  CPR
IMP ZETURN
*
. .. A-42



:EXAMPLE OF INTERRUP? LEVEL 1/0 ) . ;EXAMPLE OF INTERRUPT LEVEL 1/0

1 BACKGROUND RINGS TTY BELL
; EACKXGROLND RINGS TTY BELL . o
s FOREGROUND ACCEPTS CHARACTERS FROM READER worlil
i FOREGROUND ACGEPTS.CEARACTERS UNTIL A LINE FEED {A LINE FEED THER PRINTS ENTIAE MESSAGE
- ;THEN PRINTS ENTIRE MESSAGE ' ‘ _ ‘
RE=%g
Rl=t1
R2=32 . .
R3=13 _ : .
RA=3§ - L
R5=3§ ' B
§P=16 .
PS=177776
. ] TES=177568
TPS=177564 - ' TKB=TKS+2
- : TPS=TKB+2
TPB=177566 TPBaDos2
TES=177569 . : ] ot .
. TR INIT: MOV {.,SP _; SET STACK POINTER -
. .WORD TIKSVC, 5,npsvc,g . :gg guigzn,lu ; 170 BUFFER ADDRESS
RIITR : ‘ . -
START: MOV §.,SP $SET STACK POINTER - ’ !égvn zfgsun,usﬂ i u? VECTORS
. MOV $NBUF,R1 $1I/0 BUFFER mnnsss ' ) B -
. . MOV ITPRSUB, 2164
MOV R1,R2 o 3 . , . CUR BIEE
CLR R : = : CLR RJ " 3 CHAPACTER COUNTER
CLR HLTFLG ) +FLAG TO TELL WHEN TO MALT ' : . Iy UT BN - E ESAELE
BIS 11§7,84TKS §SET IEADER ENABLE + INTERR. ENABLE " packmp: aE 11P1.84TxS #SET TTY INE ABLE, INTERRUPT .
- o 1 INC R3 + DELAY LOOP .
BACK: , INC RS sDELAT COLWTER BNE BALRGD .
. ngsagf;fps : ;’g’rpfﬂﬂ,’&g‘;" BELL YET . BIS 1345, e4Ps ; RAISE CP PRICRITY TO PREVENT INTERRUPT -
cks 1 o TER - WAIT: TSTB 241FS : TEST TTO REACY STATUS
BPL CK $NOT TET L .
MOVB 47,@#TPB sMOVE EELL CODE TO PRINT BUFFER o - ‘
: HOVB 17,@4TEB OUTPUT BELL
TST HLTFLG PTIME TQ RALT? BIC 434%,84PS ; LOWER CP PRICRITY TO ALLOW INTERRUPT )
BEQ BACK : iNOT IF ZERD . L ] BR BACKGD : _
FALE oHaRE o o ” CONTAIRS  NBR oF TKYSUB:-CMP $212,04TKB ISt roRLE Y
. i - BEQ EOM TES,
BR START . ¢TO PESTAKT . HOVB @4TKB, (R1)+ KO, PUT CHARACTER IN BUFFER
: . . : ™HC R ; COUNTER
TTRSVC:  INC RP + . ;BUMP CHAR COUNT . . . i
MOVB 23TKB, RI . iMOVE CHAR JUST TYPED TO 1\3 }n"g BITRS $SET TTY ENABLE .
BIC $207,R3 . ;CLEAR BIT £ ‘ . : :
. ‘ * EOM: BIC B1P0,@4TKS $CLEAR KYBD INTERRUPT ERABLE
KGVB RY, (RI)+ ;MOVE CEAR TO MY BUFFER . BIS 1194,64TPS # SET TT0 INTERRUPT ENABLE
CMFB R3, $f12 iWAS IT A LINE FEED TERMINATOR? BT ’
BNE TTESRT ' tNO ... CONTINUE . - - - -
BIC #10P,C#TKS {CLEA® KEYSCARD INTERRUPT ENABLE ' :
. BIS #1P6,E4TPS Esr:r TRINTER INTERRUPT ENABLE " IPRSUB: MOVE (R2)+,@4TPB :OUTPUT A CHARACTER
TIKSRT: RTI _ 3RETUMN . pavlly et A DoRE?
TIPSVC:  MOVB (R2)+,¢4TPB ;MOVE BYTE FROM BUFFER TO PRINTER BUFF BEQ FINISH ! no
CMP R2,R1 i SENT ALL YET? RTI D ¥es ' .
ENE TTPSRT . $NOT ¥=T : -
; 7ERROR HAL
. ‘BIC {16#,84TPS . sCLEAZ PRISTER INTERRUPT ENABLE NI ORRECT matr L
INC HLTFLG $SET EALT FLAG HOW . : !
. BUFFER: § . -
TTPSRT:  RTI ‘ : END INTT
HLTFLG: .WORD § ‘ .
NEUP2 L= 4168, iBUFFER FOR 16§ CHARACTERS
: .END START ‘
A-ap
A-35 '

A

-



e

; SUBROUTINE TO INPYT TEN YALUES l

" INPUT; ::00: :H{;F[:l.kb H gg U: SA-OF STORAGE BUFFER ' ,.}:xmpu: OF INTERRUPT LEVEL 1/0
o -18. . : UP COUNTER
e a8 eeTKS ¢ TEST KIGD READY STATUS | " FOREGROUND ACCEPTS CHARACTERS UNTIL A LINE FEED
wT: L;Eﬁoﬁ:_TPS + TEST TT0 READY STATUS —_ - iTHEN PRINTS ENTIRE MESSAGE
HGVB p#TKB,GHTPB ; ECHO CHARACTER . “R@=AP
HOVE.RITKB, (R )+ i STORE CHARACTER - ' oy
INC R1 . i INC COUNTER . - 2=12
BNE IN . :3;“
RTS PC ‘ : EXIT o Ri-14
; SUBROUTINE TO SORT TEN VALUES RS=%5
SORT: - HOV 4-1p. R4 5p=16
HEXT: MOV COUNT,R3 _ . BC=N7
~. - MOV JBUFFER+9, AP : S e
ORI, ~ omeng
.. . ‘ : =177562 :
L00P:  CMPB {Rp)+.R1 .TK-:EU
BGE GT =
LT: POV -(RP).R2 | . iogg TTRsvC.# TIPSHC,0 .
: g\‘,"kg‘ﬁ,‘“”’ - - ) . START: MOV §.,59 : 1SET STACK POINTER
&T: e 3" . : ’ L MOV #NBUF,R1 :I/0 BUFFER ADDRESS
BNE LOGP : ) 22‘; g-lﬂ-i’-z
HSERTs e;:gs a "o TERIA. (A1) : " CLR HLTFLG ;FLAG TO TELL WHEN TO HALT
INC COUNT ] BIS #197,84TKS - $SET READER ENABLE + INTERR. ENABLE
BIE KEXT BACK; INC RS sDELAY COUNTER
: BHE BACK NOT READY T0.SEND BELL YET
Py 429 LOUNT RESTDRE LOCATION COUNT CK: TSTB @4TPS :1S PRINTER READY
ExIr BPL CK }NOT YET
COUNT: .WORD -9 MOVB #7,@4TPR sMOVE BELL CODE TO PRINT BUFFER
1 ’ T TO H
LINETz .ASCI1 /1HPUT ANY TEM SINGLE DIGIT VALUES (p-9); I'LLS ";;23 E“;@i’“‘; :\;érME IF%,;Q?;’"
i LASCIT /SORT AND OUTPUT THEM HEM 1IN/ HALT ;STOP NOW ... RZ CONTAINS KBR OF
'éu g;z: -ASCIL /SHALLEST 70 LARGEST ORDER. / ) . : JCHARS TN NAME
UFFER: =410, : : ’ BR START :TO RESTART
-END IRITSP ; HNIS“EU!!: TIXSVC:  INC R@ ‘ . 1BUMP CHAR COUNT
) MOVB @4TKB,R} ;MOVE CHAR JUST TYPED TO R3
BIC #247,R3 JCLEAR BIT 8
MOVE R3, (R1)+ JMOVE CHAR TO MY BUFFER
CMPB R3,§f12 $WAS IT A LINE FEED TERMINATOR?
BNE TTESRT 8D ... CONTINUE
BIC 1¢#,R4TKS ;CLEAR KEYBOARD INTERRUPT ENARBLE
— BIS 3106, 84TPs. :SET PRINTER INTERRUPT ENAELE
:%SRT: RTI s+ RETURN
*PSVC:  MOVB (R2)+,@4TPB sMOVE BYTE FROM.BUFFER TO PRINTER BUFF
_ CMP RZ,R1 ISENT ALL ¥ET?
BNE TTPSRT 3NOT YET
BIC J1P#,84TFS fCLEAR PRINTER INTERRUPT EMABLE
INC .HLTFLG }SET BALT FLAG NOW

E;S_R'i-': RTE

LG: ,womrp g :

WE aalep. jBUFFER FOR 16§ CHAPACTERS
.END START -

A-3E
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3.

4.

Sunmary of Arqument Handling

Autoincrement

'ro access seguential arguments as operands.

MOV tn§)+,ny

JSR RS5,5uUB

164,
1p¢p

- 6pyd

Autoincrement Deferxed

TO acceag Seque;’

JSR
FLDY
FLD2

Indexed

To access argu:mnts randomly as cperandn.

3

MOV @ (RS)+,Rf

ial arguments ag effective addressesn.
RS, SUB

MOV 4 (RS),Rf

JSR RS,5UB

Indexed Deferred

4 ‘
To &ccess arduments randomly as effective addresses.

Mov 84 (RS),R¥

JSR ES,SUB

ELDA
FLDB

- PLOC-
PLDD

INITSP:

i SUERQUTIKE EXAMPLE

3 INPUT TER YALUES, SORT, AND
7 QUTFUT THEM IN SMALLEST TO LARGEST ORDER

RP=2p
R1=21
R2=%2
R3=23
Ré=%4
R5=15
5P=26
PLu2?
TRS=177568
TKE=TKS+2
TPS=T1xB+2

TPB=TPSHZ

369

HOY #.,5P
JSR PC,CRLF
JSR RS, OUTPUT
LINEY | _
69.

JSR PC,CRLF
JSR RS ,0UTPUT
LiNE2

26.

JSR PC,CALF
JSR PC,INFUT
JSR PE,S0%T
JSR PC,CRLF
JSR RS, QUTRUT
BUFFER

1D.

- J5R PC,CRLF
HALT

CRLF:

LNFDs

AGAIN:

LU DL T TR TR TR PRSP PR T I TR

INITIALIZE STACK POINTER
GO TO CRLF SUBRQUTIKE
GO TO QUTPUT SUBROUTIHE
SA OF LINE 1 BUFFER
NUMBER OF QUTPUTS .

GO TO CRLF SUBROUT INE
G0 T0 OUTPUT SUBROUTINE
SA OF LIRE 2 BUFFER
NUMBER OF OUTPUTS

GO TO CRLF SUBROUTINE
60 T IHPUT SUBROUTINE
GO 7O SORT SUBROUTINE
GO TO CRLF SUBROUTIRE
GO TO OUTPUT SUBROUTIHE
INPUT BUFFER AREA
HUMBZR OF OUTFOTS

; THE END22M?

; SUBROUTIWE TO GUTPUT A CR & LF

TSTB @§TPS

BPL CRLF

MOVE #15,8FTPB
TSTB @FTPS

BPL LNFD

Hove 12, GfTPB
RIS PC

-
.
-
.

TEST T70 READY STATUS

QUTPUT CARRIAGE RETURN
TEST TTO READY STATUS

QUTPUT LINE FEED
EXIT

s SUBROUTINE TO UUTPUT A VARIABLE LENGTH MESSAGE

: MOV (RS)+,RD

MOY (RS5)+ LRy

NEG R

TSTB B4TPS

BPL AGAIN

Kove (un)+ ef1PB
INC R

BAE Amm

RTS RS

'
.
r
.
v
-
L

PICK UP SA QF DATA BLOCK
PICK UP NUMBER OF OUTPUTS
HEGATE [T

TEST TTO READY STATUS

CUTPUT CHARACTER

; BUMP COUNTER



3 EasiveLE

JHRELIATE EieG; A
THE W %EU. QU
ECHO ERTIRE STRING Film I

. The STACK
—een - . ) '
357y ———— — : Pefinition
FEITIT L ' — R —
EIET ST s et eeeecemicios The STACK is an area of memory reserved by the programmer for
31720 R ’ ;,:;:-_:.‘} ’ subroutire/interrupt linkage or temporary storage, i
a33a1e ..==12") et mrenih eiecmeaemeans tt. It 1s a dynamic $nverted table uvsing the "laac tn, first cut"
11 TRESLTTSEd ‘ . : Ty :concept which advances downuard as items. are sdded and retrests
1 77Ess ThE=ThEes LA upward nw itemd are removed,
IPERTE FIETTENZ 5 = : :
Trees TresTFLeg . [
- LATIIES e Tt ) \ =~ Initialszatian
SRV ALY L SRR 2o 0. oo SURUPRON T T . General Purpose Reglster € gerves as the system STACK pointer)
snmae CTAIT: g il ofs - . it will automatically keep track of "where you are™ in the STACK,
2ieed :‘;'3: SifTy WEVTRTS ; . Henco, the firat instructlion in a program iE usually that which in-
PIPT . ] . .
il “e CHRYESD i S5 OF FUFFEF EEVOND (F SLF . itislires the STACK polnter.
921994 eagvse D MDY RIRVEeL RB ceeer i 57 OF BUFFRE_EEVOND, (] et Although ‘the programmer may begin the STACK at any address, it
f21120 e ; i [SRPACTER COUNT 1o customarily bequn at USER PROGRAM START ADDRESS-2 amd will advance
301310 @t270% AL KA SIA L SO fasarakic R R ! tovard addsess 45F (advahcln? below address 408 will .caune a STACK -
TGN EL . ) : overflov error trap to occur). K
IFIgIs Iet. sy IR: TIYE ¥iTeS ‘ }oUARR In BUFFERT . f _ nen-p1c PIC
: .e - _..--—-——--.‘-—._--n---—-—--..-:.-': ) . . ‘-
’Z?. i 1T 00T GRRUCH ERGCE AND WAIT b . . $P=X6 : SPeX6
: eceemennn Sl ERECK TELEFRINTER _RERRY _STATYA . PCoXT
"""""""""""""""""""" ) | SETSTK:1 MOV ¥, 6P g
) SETSTKi MOV PC,SP
NLYE 28TEE. deTFE . 3 ELHO l'.':‘"i.ﬁfFICTEE . i R . o TST —(SP)
Al L e e mm e eeccee———-
TRessmmTaTIRSRTTIAnaro s seseestes o B Usage
(FRts p STOEE CHARRCTER RUAY ... i ’
""""""""""""""""" - ! Any of the conrditions below will cause data to be automatically
JEL R ' -added {"pushed”) onto the STACK by the system;
EXc 1H i FIKTSRID JNFUTTINGYT |
*
i

Jump t2 SubRoutine instruction

device intarrupe

softwvare interrupt (any trap instruction) H
hardware interrupt (any error trap condition)

CTUNTES OF BUFFER INCLUDING CR

badazs - - i ' Either of the instructions below will cause data to be automati-
’ - . - - - - .the STACK b he
2219%T5 185737 OUT: 7516 extPE i SHECK TELEFRINIER RERDY. SIATNS | cally removed ("popped”} from.the Y the system
R -2 ! ReTurn from Subroutine instruction
321365 134:57% JEFL aQur T T T 0 U - ReTurn from Intarrupt instruction
B L E T LR % i 111+ S0y T- DY Y 1 314 3 5 BITFUT CHARACTER HE : .
177545 . 4 i i ‘The programmer may also use the STACK for storage and retrieval
=T T N CEC k1 : ) : - of data by simulating the automatic syatem operations above.
ﬁafaj.'gﬁ:g::r: ENE_ QUT . FINISHED OWTPUTYINGY : 3 * . '
—'.":;'-';'.*i"a'zi'a'zié'a'"""’"""i""i'?"""""'"""- . B To store, “PUSH" To retrieve, "pPOPp"
B P T T AR TR 17 SUe 41 S Ju e et MOV DST,-({sP) - MOV {SP)e,DST
331377 ie -
A rie s e "3 - - .
222983 R S R e aeen.
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TELETYPE AND CONTROL, DLOCK DIAGRAM

b
FPECEIVE

o __INPUT
] FAP.ALLED © a1l LRIALT TELETYPE
= DAT DATA LT33
= TLAHSMIT OUYPUT —
INPUT STATUS REGISTER
15 . 11 16 g
o N\ k:
& £ %
A AR
A
3 ° g
T -
<

INPUT BUFFER

7 6 5 4 3 2 1 #

EXAMPLE INPUT (TTY)

READ: INC @#TKS

LOOP: TSTB #MTKS
BPL LOOP
MOVE @#TKB,RP

DATA

;SET RDR ENB

" 3LOOK FOR DONE

JWAIT IF DONE = §°
sREAD CHARACTER

QUTPUT STATUS REGISTER

15

R \\011&@3

OQUTPUT BUFFER

7 6 £ 4 3 2 1 8

EXAMPLE OUTPUT (TTY)

UNCH: TSTB 84TPS
F BFL PUNCH

MOVE RB,2fTPB

DATA

;TEST FOR READY
:WAIT IF READY = §
:PUNCH CHARACTER -
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P SUETRACT CONTENTS OF LOCS 728-710
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Tl e ]
[T 5] FisX1
e S S S 3 2ttt
Im-!ii Pi=l}
- - 4‘ mEsrmerem. l"“‘ s wEsss e FESSestMtsctssEvSvmsscececcaaany
H TEAS
[ :J"Zu
g DL L N
: BrTd2 ’ 11
TRBANSE T aTad STRAYIWOV YR TTAUANTE SYARO PoTNTER T
T oEracag . -
dddo0d oo di Hov #7863, %)L .
[l 1]
TBRINLY ELITIYTTTTTTTTUTHAV .712,pé"""""'""""'"""-'--—----------------.-.---_.-_
FE TR ¥ .
SRR CEITIY T DR O L] T S
132239 : i
HNI5eC Toa 3F AUV #1p13, nie -
. El‘.!:?___"___"__"___"x ______________________________ .
689524 BaTERE CLR RQ
TTTAEITLE ThEqas T (200 1 S TN mEmmTTmmmmmmmmmmmem et mae
FOES.0 rie.25 SURL ADG  (F12+,. K3 ;STRET RALUING

CTREIWES &Gesy T

S {nP E1.F2

TTAWANILTEIILS EHE " SORL™"

i FINISHED RDDING?

TVIF NOT ERANCH BRCE TN e

923826 2392 SURZ: KD (334,80 s STAKT REGING
agyses ilziad CRP RIVFE yFINTSHED ADDING?
@342 §1:273 ENE_Sum2 11F_NOT EFANCH_EBACK

082344 3397280 DIFE:

PICELE BiZ220

¥33720 . =708

(SUE F3.R@ . 3 SUBTRACT RESULYS

i THRT’ S RLL

Ve udd pa2ed]
JA273L BI9232

T T iy BT b T -_--...--.._; ..... -

QodTds 13234
TEFITLE e3AiY

SWOED 1. 2, 3. 4. 3

crafdd

o9 -336 5*5-\33"

_=i000

. WOFD 4.5,6. 7,3,

EC P T P Tr-r 21 It -

QE1384d DidddE

$01319 pu2le

#2309

Address

L7744
L7150
#1754
PLTT%E
pL7768
17762
FLT1ID

PLITIA
gLTTIE

The Tootstrap losder Program (Assuden leading inte » &K pyptes)

octal Assenbly
Code label Coda
feepel Ri=sl

- EERPA2 R2eA2 .

S PLIPR LOAD=L74PF
PLTTA4 =17744 i
pregl START: MoV pEVICE, R
PRPP26
‘gl21p2 LOOP MOV . -LOAD42,R2
peRAIS2
PpS211 FXABLE);  INC BR1
15711 WAITY TSTB €)1 .
1PpIT6 BPL WAIT
116162 HOV! 2(R1Y, ;nantn:’
gRRRR2
pr14pg
PPS267 INC LOOP42
177756
PABISS BRNCH: BR LOOP
PAPIRA pEvicEs P

Al
A-31

Comoent

IUSED FOR THE DIVICE ADDRESS
jUSED FOR THE LOAD MDDPESS DISPLACB%!TH‘I‘

- tTATA KAY BE u_mm KO LCWER

I TEAR THIS
1START ADDRESS OF. TRE noo'rsmr LOADER |
;PICK UF DEVICE MDDRESS,
;PLACE IN R1

JPICY. UP ADDRESS DISPLACENENT,
1PLACE IN R2

tENABLE T¥E PAFPER TAPE READER
;WAIT UNTIL FRAME

315 AVAILARLE .

:STORE FRAME READ

JFROM-TAPE IN MEMORY BYTE

) THCREMENT LOAD ADDRESS

1DISPLACEMENT .

JCO BACK AND READ MORE DATA

)ADORESS OF INPUT DEVICE STATUS' --
1REGISTER

W

LT
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PROTPAMMING EKJ\HPLES

"I. PROGRAM TO COUNT NEGATIVE WUMRERS m A TABLE

CHECK:

NEXT:

VALUES :

-.320. SIGHED WORDS

$BEGINNING -AT LOC VALLZS
;COUNT HOW HANY ARE H.L-ATIVB IN RP

RP=Af

Rl=tl

R2=32 -

SP=1%

PC=yT

~SgH

MOV §.,S5P ;ST UP STACK
MOV #VALUES,R) ;ST UP POINTER
MOV. §VALUES+4f., B2 ;SIT UP COUNTER
CLR RF

TST (R1)+ $TEIST NUMBER
BPL HEXT $PISITIVE?

INC RE $N2, INCREMENT cxnnwrsn
CHP R1,R2 $ 28, PIHISHED?
BHE CHECK M, GO BACK
BALT . 1¥=5, STOP

B

LEND START

II. PROGRAM TO COUNT ABOVE AVEIAGE QUIZ SCORES

;LIST OF 16. QUIZ SCOIZS
tBEGINNING AT LOC SCOEZIS

1 XNOWN AVERAGE IN LOC AVRAGE
JCOUNT IN RE SCORES ARIVE AVERAGE

- Rf=\g2

CHECK:
HO:

AVRAGE:

SCORES:

MOV §..,SP

Ri=3%1
R2=%2
R3=%3
EP=16
PC=t7

=508
15T UP K

ISET UP L JTER
;ST UP PQINTER

MOV §16..R1

MOV #SCORES,R2
MOV BAVRAGE, R}
CLR Rf .

CMP (R2}+, {R}) jCOMPARE SCORE AND AVRAGE .

BELE NO ;IESS THAN OR EQUAL 'TO AVRAGE?
INC RP ;¥0, COUNT

DEC RL +TES, DECREMENT COUNTER

BNE CHECK ;TINISHED? NO, CHECK

HALT : . iXES, STOP

£5.

25.,7¢.,109. 6. ,65.,87,,80.,44.
$%,,75.,199.,65.,96.,74.,65.,74.

JEND STARY

429

......... FE S b e eaeiwbeataiece o aiaan

CiFF dantdd FC aipbalay T
FiT T Enduoer TRy TTINGRGNES R34E4 4 TR {
ie $LICANIE  START 220502 #3257 ; :
LT ‘ !
!
< e e e e A RRSLE T T S T eee e
ISLIE'PﬁLT CONTENTE OF LOCS 73a-719 .
Trerarermirmoesss e sttt v Ron CONTENYS OF L0 TAGRSS AN T e
FI0IoF LTI L]
LELEL 38 Eis¥y 7
e g AN T AN aT T e e
ILELE R3I=XY ‘
R T 111 7 LIt T R
0G0d03 E3siS
CERTIT —SFElG
289087 i ﬁg-xg__ e ema e eneee e ananetom e vmena
930508 ’ .
TRUANGY INITEE Y?h’if"'ﬂb\f 6" - Rl TTHT Y TASE FOTRTER - --—-m====mmeoms
LELRL:)
doddud wis7ol WUy €rud.nd
enoved-
CRUITLY RLIVOT TRV Y Ey T e em s -
. eda712
""" TATL4 oL ET'"'"""'HDV wiega, /YT T - ha
fB1000 N
—'_WEW"ET??UT_“—"—-’TV $lUis . m4 .
tel . L L 1. . R
-,
000524 BpsSope ) .
""" gFavay” aa*ws"""""“cu"'ks“""“’”"""“"“"""-"'."'_'""""""""““"-"‘"""
PUd330 Bowido SURL: HLL (FL1)+. K% 4 STAKY HOOING
868532 0:0102 CHP R1,RZ s FINISKED RODING?
""" GUONICTREITIY T TTTUTTTERE T SONL T TV I NOT ERANCH BARCK . TTTTmeme e
008536 052308 SUMY: ADD (R3I)+, RO i STRART ADDEING
530540 WipIew T CAP R34 TTTTTYETRTSHED TRODYNGY
80542 891375 BNE SUR2 $: 1F HOT BEANCH EBRACK
..... 098344 160399 DIFF: SUB RS, R® _ ;SUETRACT ESULTS . -
....20054¢6 eenool HBLT - LTHATZ S BLL
agazee el
Yda D9 GuBeel WORD 1.4, 3.4,5 A
@eargz @pgeo2 -
B 31 oy T 1 (Y 13 e il T
0Q0YA5 2pVABL . _ Lo
B e (- S T - 2 - 1. 2
A1V 0N . %1960 R
331990 290024 LHORD 4,5, 6.7,8, - N
B T 5 2-F T T2 1 T - . T
o0Bl130d Ba0a06 )
B -1 B - TS 1 £ 1~ T
8913318 2004820 -
T T e e L A-3f
ceeeoBoeses o ENO 5'5‘.‘23..-.-..-..__:"' ..... e I




7 _ Prograa LIGHT3
Program LIGHT 2 A
I. This program starts with the two middle Vights 11t

1. This program moves one light (starting with bit §) (bits 7 and 8) and then moves these 1ights sut in opposit
from right to left up through bit 15 or to just directions to the extreme 1ights (b%tsgis and B) mdlﬂpthme
below a single bit set in the SR and then back . - Back again to tha center, so.on and S0 forth uatfl ..

again to bit §. The procedure continues {one can
change the upper limit on movement simply by
changing the single conscle switch set)

back and forth until,.. :

- 2. A mn-zero value 15 placed in the console switches.

PROGRAM MOYES CONSOLE LIGHTS FAOM CENTER

: - : OUT 0"
2. Program halts when a one is placed in . the 5R. ENOS, BACK YO CENTLR, OUT AGALY, ETC.

] N R : Rp=2p
RE=10 : ©o . - e . R=11
Rl=tl _ : o - T R2=12
PC=AT ] - . : SWR=17757p
. SRfHTSTH ) . ) Le2ppp
=2008 STARY : "ng ::gg,m + PLACE LIGHTS
. RZ i IRC
START: MOV #1.R8 $START WITH Rf=1 : ' ! ENTER .
HOV #1,RY . {WHER SR=1, HALT . JMOY2RE: :g; :;.gg + R BUILT FROM RY AKD R2
. i COULD USE XOR AND MOV
LPis P SR.RI _ _ . : by _ lNSan
s BEQ FIH . - . s - DISPLY: RESEY - 3 DISPLAY T
RESET - . . ' RESET :
RESET : ' . RESET
RESET : L - RESET
ReseT ' E R TO LEFT Y e ‘
ROL Rf i ROTAT ; BEQ LIMIT 8 | -
A, ROEe o COUAL LIMIT SET BY SR 4 : F NON-ZERD IN SWITCHES, HALT
BEQ LP2 tYES-—-START RIGHT ROTATES " )
BR LPL | | ;NO--CHECK FOR HALT OR DISPLAY . ‘ LMIT: TST R2 3 HAS RZ BEEN ROTATID ALL THE WAY LEFT?
- BMI AGAIH
. LP2s ROR RZ $ROTATE R¢ TC RIGHT B : . X
RESET - . ;DISPLAY Rf . .- ECTATE: ROR R1 3 NO, ROTATE R1 RIGHT AND RZ LEFT
RESET ROL RZ .
RESET _ B8R KOVZRY \
T ad Bl HAS R§ ROTATED BACK TO =, 17 SEATH: WOV | -
cxP RY . : =, . . H 1,R2 3 SET UP OUTSIDE. CONDITIONS
BEQ I.Pi L 3YEG§';—STM MOVEMENT TO LEFT - . - ) MOY MpReEE,RY *
1AGAIN . . J¥P MOV 3 DISPLAY. : )
BR LP2 INO-~CONTINUE RIGHT ROTATES it 5 DISPLAY.AND ROTATE
FIN: MALT _ SR " LEND START r
LEND START | -
_ -t

A-28 T
A2 .



5.

6.

LOCZING TECHNIQUES

PROGRAM VSEGH‘EHTS BELCW USED TO CLEAR A SE., WORD TABLE

AUTOINCREMENT (POINTER ADDRESS IN GPR)

LOOP:

RA=1§¢

MOV $TBL,F¥

CLR (R&)+

CHMP RE, FTEL+1gH.
BNE LOCP

ADTODECREMENT (POINTER AND LIMIT VALUES IN GPR)

LOOP

WOP:.

INDEX REGISTER MODIFICATION (INDEXED MODE; MODIFYING INDEX VAIUE}

LOOP:

TASTER -INDEX. REGISTER MODIFICATIOR (STORING VALUES - IN GPR)

LOOP:

ADDRESS MODIFICATION {INDEXED MODE; MODIFYING BASE ADDRESSY

‘Rg=\S

LOOPy

RE=AE
Rl=tl
MO! $TBL, VS

., MOV {TBL+1#f.,R1

CLR -(R1)

, CHP R1,RY
BNE LOOP

' CDU!!TER {DECREMENTING A GPR CONTAINING COUNT)

RE=tg

Rl=gl

#Oov §TBL,ES

MOV 35f.,R1 . .
CLR (RE)+ . o
PEC R1.

BNE LOOP

Rp=3S

CLR Rf#

CLR TBL{PJ)-
ADD §2,RE
cMP RP, #1584,
BNE LOOP

RE=%j

Rl=t1

R2=V2°

MOV §#2,R1 .
MOV $100.,R2
CLR Rf

CLR TBL(RS)
ADD RL,REZ
CMP RY,R2
BNE LOOP

MOV OTBL,RS

ADD 82,100P¢2
Ci4F LOOPv2 CLEF7,

LIGHT GROUP

There are four programs in this series.. They cach .
cause different patterns of lights to be moved. ..
through the console data lights (not s0 on the ™
11/95). Each ia based upon the fact that Rf 3
is displayed when a RESET instruction is executed"
The number of consecutive RESETs needed for the eya
to pick up the pattern depends upon the speed of*~

- PR

the machine (2-3 is comfortable for the 11/2f).

Program LIGHT1

1. This program moves a series of four lights through
the data lights from right to left.- )

2. At some points, only three lighta will show due to
the use of "he € bit in the ROL instruction. (Note
the use of he MOV SWR,R3I lhstruction ingtead

of TST SWR.)
. ; PROGRAM MOVES S

Rg=1@
Ri=t3

SWR-177578

~=4gpg
START: MOV #17,Rf
. ROVE: ROL RY
RESET
RESET

MOV SWR,R3

BEQ HO‘VB '
HALT

- END START

OF 4 LIGHTS THROUGH THE DATA
3 LIGHTS. MAKES ULSE OF THE RESET INSTRUCTION WHICH
3 CAUSES THE CONTENTS OF R§ 10 BE DISPLAYED IR THE
y DATA LIGHTS (NOT S0 ON THE 11/@5). .

A2

$INITIALIZE RP

sROTATE VALUE IN Rf

$TWO RESETS OXK FOR 11/28

fMORE NEFLDED FOR 11/48 AND 11/4
IWANT TO CONTINUE?

$sCHECK THE SWR !
1 USE MOV INSTRUCTION BECAUSE
:1T SETS ¥ BIT WHEREAS TS5T
:SETS THE 1 B1T BUT CLEARS

;THE C BIT--VALUE IN Rf wWOULD
sDISAPPEAR

1CONRTINUE 1F ZERQ

THALT IP NON-ZERO
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BRANCH INSTRUCTIONS
' o : 1 1]
13 2 11 . ¥ .9 b 7 5 4 3 Z
L “"'.] T -T T T T T T T
' : :sp A'A G N 1 T.U.D.E,
R o N 4 . y Y o 1 i 1
) - Sn
CFEE2ATICN CCDEXE . OFFSET

CrERAT.CT

TEST TUT COMD ¢ CCDE BITI(S)
v o BPANCH TC EFFSCTIVE ADDRESS DEFINED 5BY CFFSET

= CC.:DITIC\(S) ‘rET,

IF CLEDITICNIS) NCT MET, EXECUTE NEXT SIQUENTIAL INSTRUCTION

CFFSET

(+127 WORDS TC -128 WORDS)

T e oty do 2.

- [T o YING
515703 ( AC'S CCHFI EMENTY DISFLACEMENT WITHIN € BITS SPECIF
e TEE IUMAER f.?!"I kCRDS FRC! THE UFCATEID PC TC THE EFFECTIVE ADDRESS

P

CALCULATIST

-

THE 72

EXFRIS5IIG A 2YTE ADCRESS,
TEISEFGRE, PEFCRE 2EING ADDED TC THE
ALDPESS, THE CFFSE."‘ MUST ALSRC BE EXPRESSE IN BYTES«

BUT THE CFFSET IS EXPRESSED 1K WORDS

PC TO DETERMINE THE EFFECTIVE

THE EAPOWARE ACCCMPLISHES THIS BY SHIFTING THE OFFSET ONCE TO THE LEFT

b oLUnEER,
(:.L;:%E'g-s'??'rs)
227 ]
I ' 373 )
{ ".e 27 1}
] _‘; 37s |
= 37 ]
. | S 77,
N 77e 1
N S ¢d1 ]
N APY 7¢2 ]
= [T
S YY) 23e
s . Zp3 _]
{.un ) 3773

TIFLY EY 2} AID SIGH EXTENDING (BIT 7 TO BITS 8-15) TC FCEM A

EFFECTIVE ADDRESS »

(CFFSET ¢ 2) +(. + 2)

OFFSET =

EFFECTIVE ADDRESS .-(. -I-‘!)

2

HOTE:

A-23

+4+2-XS' THE: UPDATED PC

" BUMMARY OF BRANCH INSTRUCTIONS .

- UNCONDITIONAL BRANCH

BRANCH
EFFADR=-»PC

CORDITIONAL BRANCHES

LI LY LY::

[TBRANCH TP MINUS
“IF u=l,. EXFADR-¥ PC

BRANCH IF PLUS
IF N-§, EFFADR-YFC

BRANCE IF EQUAL ZERD
IF Z=1, XFFADR-}PC

BRANCH IF NOT EQUAL ZERD
IF I=f, ETFAYR-PC

BRANCH IF OVERFLOW SET
IF Val, ETFAGR-3PC

'BRANCH I¥ QVERFLOW CLEAR
IF V=g, EXTADRDPC

BRANCE IF CARRY SET
IF C=),. EFFADR-}PC

DRANCE IF CARRY CLEAR.
17 C=f, IFFADR- PC

L.
BRANCE IF LOWER
IF C=1, EFFADR}PC

BRARCH IF HICHER OR SAME
IF C=§, EXTADR-}PC

EAUKCE 7 LOWER OR S
- IF CyZ=)l, EFFADR~ PC

BRANCH IY HIGHER
ur C Z=0, IXTADRPC -

—
BRANCH IF LYSS THAN ZERD
IF NV=1, TFFADRS PC

TP N Yuf, EITADES BC

ey

BRANCH YF LESS oR EQUAL ZERD'
ir z, thl- v EEFADR=#PFC

BRANCE ncmmmuzuo

I Ly (R¥i=F. EXFACRIC

BPANCH IF GREATER OR EQUAL ZFRO

BR EFFADR BPEALRs xux
'rmsrzn CONTROL TO !:rrmn UHCCUDI TIONALLY

T BMICEFFALR  C1PRd Eau::

’ KWSTER CONTIOL 1O EFFADR ¥ N RIT IS sET?

BPL EFFADR 1ﬂﬂ!ﬂ!‘:::x -
TRANSFER CONTROL TO EFFADR IF N PIV ¥8 oLry

BEQ EFFTADR 991495*:::::
TRANSYER CONTROL TO EFFADR LP Z BIT IG-Sry

DNE EXFADR  EP1F70rxxe
TRANSFER CONTROL TO EFFADR IF Z BIT IS CL

BVS EFTADR  1024p%+xaxt
TPANSFER CONTROL TO EFPADR IF V BIT IS Stf

EVC ETFADR mzzsﬁm
TRMNSFER CONTFOL TO EYPADR IF V 51T If 0T

BC3S F¥FADR  1934ffHaxx :
TRANSFER CONTROL 'TO EFFADR IP C BIT xssr:r

BCC EFPADR 1932Eexxe
TRANSFER CONTREOL TO EFFADR IP C BIT is C'LE

BLO EFFADR  10)4fS+xxx
TRANSFER CONTROL TO EFFADR I¥ € BIT IS SEY

BRIS EFTADR 1§3f30+max ‘

_ YRANSFER CONTPOL T0 EFFADR IF C BIT IS Clc.

i

. BLCS EFFADR 1PM4ZFJ+xoex '

TAANSFER CONTFOL TO EFFADR IF TRE RESULT Q
€ BIT ICRed WITH I BIT EQUALS ONE

BHI EFFADR LILEE Moz
"TRANSFER CONTROL TO EYFADR IF THE RESTLY €
€ BIT IOR=d WITH Z BIT FQUALS IZZRO

BLT EYPADR  PP24Pgexrs i
TRANSFER CONTROL TO EYFADR IF THE RESGLY €
N BIT XORed WITH ¥ BIT EQUALS ONE -

BGL ITFADR  FP2PEfexxn
TRANSFER CONTPOL TO EFFADR IF THE MESULY €
uanxonadu:mvnnmuus ZERD 'y

BLE FFFADR  OA142Pexxx

-— .~ TRANSFER .CONTPOL TO EFFADR IF THE RESULT ¢

A-24

Ve

--& BIT.JORed WITH  (K.XORes WITa V) EQUULS

‘BCT EXTADR  gPIPSFexxx
TRANSFER CONTROL TO EFTADR J¥ THE RESULT ¢
T BIT ICRed WITE (B XORed WITH ¥} EQUALS.




+ PROGRAM SUM2 o ‘
3 VARIATION Oft AUTOINCREMENT ADDRESSING . ‘ o

. . , : PROGRAM StM4
RE= H ) . JTHIS VERSION USES PELATIVE HODE, INCREMENTING THE
:;_:; . i $OFFSET TO ACCESS THE TABLES OF DATA
"R3=3. _ - - - x ) Rl=%1
As1E22 . : : " A=1gp9
B-2P53 : v L ’ - ) B=2p§8
- C=3p2p . . {\ , s \ac e - ' C=3gp8
T [ AL
Leargp _ - =4pgg _
START: MOV 4-5,R3 + SET UP COUNTER ) _ START: MOV 1-5,R}
MOV 1A, 8D ; SET UP STARTING ADDRESSES AA: MOV A,C U CoUNTER
MoV 48°R1 ¥ OF TABLES ‘ ] $GET ENTRY FROM TABLE A
. oy 1r H BB: ‘:ch) :ic : ;ADD ENTRY FROM TABLE B
RORE: MOV (RB}.(RZ) 5 GET ENTRY FROM TABLE A . ' T FEIHISHED?
ADD {R1)(R2)  § ADD ENTRY FROM B, STORE IN € DD 12.RAte A oCESS NoXT ENTRISG in SRBCE
INC R3 . et :;‘QQI; . :ﬁcc.‘r:ss NEXT ENTRIES XN TABLE!
BEQ DONE . "3 FINISK ) i : 1A, B, AND C .
15 oye ; HD-= uEE JEMENT mtsrms : : . . hDp #2,BB44 T
"‘TH | - ' - . ooz HALT GO BACK
157 : . - ' . .
ER MORE : 60 BACK . - ‘ :
OONE:  KALT : YES, STOP E -END START
.END START
. . *
s PROGRAM SUMY S ' . : c
¢ THIS VERSIOH IMPLEMENTS INOEXED ADDRESSING ) _ : . v
RE=2D ]
. A=1EER . .
B-1212
Ce2i?p : . N
L4525 . S _ o - b
START: CLR RP 3 SET UP-RP : S )
MORE: MOV n c[np; 3 GET ENTRY FROM TABLE A :
ADD B RB . 3 ADD ENTRY FROM TABLE B A . -
CHP RD,PB-A-2 : FOR THIS FQRMULA TO WORK, TABLE B . i o : , .
3 MUST IMMEDIATELY FOLLOM TABLE A : A - :
 BEQ DONE . 3 FIRISHED? e
157 (Rg)+ 1 MO, INCREWENT RD BY 2
BR HORE 3 THEN GO BACK TO MORE NOT START
DONE:  HALT
B START I ' : s




INSTRUCTION TORMATS

SIWGLE OPERAND 15 65
B
I
MODET [ REG
- . 1
|
1
-
- Operstion Coda DST ADR Pigld
- 1s 1211 5 - e
POUDLE CPEFARD T - |
. i _ v
noDE : REG MODE : REG
| i
. L 1
y L
: NI 4 ~ ~~
Oparptics SRC ADR FIELD DET ADR PITLD
coda )
— 15 . - __ 01
: st ="
oparsation code offpat

2o ot 4il fermsts shown,

A-l9 -

SUK GROUP ~

There are four programs in this series.

They offer

solu-~

tiong {each using a different addressing made) to the same

problen:

Tables A, B, and C cach contain five one word entriea.
Add corresponding entries frem A and's and store the

result in .the co:tesponding entry of <
out modifying tableg A
Hote: The programs 4o not. 'lnaé uh

s A or

:  PROGRAM SM1

‘Do this with-
and si i.e., A(I) + Bi{I} = Clii-

"3 THIS VERSTON USES AUTOINCREMENT ADDRESSING

Rg=1Q
Ri=%1
R2=11
A=1g88
B=2p8f
C=3788

o .=agpg

START: MOV A,RJ -

Mov #B.R1Y

MoV #C,R2 —

-Kov {Rf) +, (RD)

ADD (R1)+, (R2)+

v, CMP RZ,$CHYZ
bCed2

:OF TAEBLES

MORE:

BEQ DONE jFINISHED?
BR MOURE N0, GO BACK
DONE 3 AALT . :tz;. 5107
BN STARY . .
'f_D: b,
ge = 3

A-2p

§5ET UP STARTING ADDRESSBS

.'GET ENTRY FROM TABLE A
sADD ENTRY FROM B, STORE I1IH ©

|4
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MODE -

REGISTER

REGISTER DEFERRED

AUTOINCREMENT

AUTOINCREMENT DEFERRED

AUTODECREMENT

AUTQDECREMENT DEFERRED

INDEXED : “

INDEIED DEFERRED

IMMENIATE

ADNSOLUTE

RELATIVE

RELATIVE DEFERRED

GENERAL REGISTER ADCPESSING

. OCTAL SYMBOLIC QPEBATION

p . R SPECIFIED REGISTER CONTAINS OPEPAND)
REGISTER ATDRESS 1S "HE EFFECTIVE ADDRESS

1 R} SPECIFIED PEGISTER CONTAINS EFFECTIVE ADDRESS

2 {R)+ SPECIFIED FFGISTER.CONTAINS EFFECTIVE ADDRESS
(POST-INCREMENT) .

3 _B(R)+ SPECIFIED REGISTER CONTAINS THE aucn}:sé OF THE

' EFFECTIVE ALDRESS {POST-INCREMENT)

4 -{R} SPECIFIED REGISTER CONTAINS EFFECTIVE ADDRESS
{PRE-DECREMENT)

5 e- (R} SPECIFIED REGISTER CONTAINS THE ADDRESS OF THE
EXFECTIVE ADDRESS (PRE-DECRIMENT)

6 X{R) SPECIFIED REGISTER CONTAINS INDEX VALUE:
SEQUENTIAL WORD LOCATICN CONTAINS BASE
ADDPESS: SUM IS EFFECTIVE ADDRESS

7 ex(r) SPECIFIED REGISTER COYTAINS INDEX VALUE;

SEQUENTIAL WORD LOCATION CONTAINS BASE
ADDRESS; SUM IS ADDRESS OF EFFECTIVE ADDRESS

EC_ REGISTER ADDRESSING
- - L

27 R SEQUENTIAL WORD LOCATION CONTAINS OPERAND (W)

7 efA SEQUENTIAL WORD LOCATION CONTAINS THE EFFECTIVE
ADDRESS--A )

67 A A IS EFFECTIVE ADDRESS; OFFSET VALUE (ENABLING
ACCESS OF A FROM PRESENT LOCATION}
CONTAINED IN SEQUENTIAL WORD LOCATION

L A -1 A IS ADDRESS OF THE ETFECTIVE ADDRESS; OFFSET

VALUE {(EKABLING ACCESS OF A FROM PRESENT
~ LOCATION) CONTAINED IN SEQUENTIAL WORD
LOCATION

© € wovg P
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N- bt

— ' - ~ .~
SUPPORT FEATURES : .
~— - HEMORY FAX PROCTAMMABLE ADDgBSS consors ! ; nus
: . ; MGT - EI1S5 PEP MEMORY SIZE STACK RANGES N..”.".'_ S "
TYPE OF: ‘];‘%I:F:YS.TEH " (HORDS) LIMIT ) S
: - . ROM :
; ! i 16 pit | LSI Bus
. . FIS 28K Emulator/or
uﬂl’: st HA orT OPT |MO5 sCore RO Key pag | (No Uaibue
! L
Brrulstor/or| B
\ 28K NO 16 bit Unibus
11/84 oem NA MOS &. CORE Keyng;d
wnd User OEM B R
L1718 & 11745 HA 20K HO 16 bit Yes Unibus.
i Core .
{0riginal Systenm) - : .
11/28 & 11/15 HA 28K NO 16 bit Yes . Unibus
. Core
[ topT) | 124K Either 18 bit Emul‘:‘::r/“ Unibus .
11/34 Yea Ye8'! 'yos {cors or MOS NO Xey Pad '
End User DEM FIS Unib .

42 & 11735 Yes Yo 124K OPT 18 bit Yes nibus
11748 L 1L/ orry | (opm [ONLY | “corg : _
End User OFEM ' . .

L1/45411/50+411/55 Yes Yesn Yoo 124K aPT 18 nit Yes Unibus
{opT)| Bipolar :
MOS8 . .o
N Core "
End User 22 pi ¥ © Massbus -
Yas Yes | 1P24K OPT bit o5
11(70 Yoo (OPT)| Core . L .
-~
OVERVIEW ‘
' ‘POP-11 FAMILY OF COMPUTERS '
3

11/85 11/18 111/15 11729 | 11/35 11/48 J11/45% 11/59°

‘T bit trap will not T bit trap will sequence Same ag 11/23. Same as 11/85

sequence out of WAIT. out of WAIT.

Eiplicit references to .Same 83 11/45 T bit can be set.or s&me as 11/45‘

the PSW can ret or clear clearad only implicitly

the T bit. {CLR PSW (PSW=177776)

{CLR PSW({PsSW=17776) will will pot affect T.)-

clear the T bit along

with the rest of the PEW.

I
RESET does not clear RUN RESET clears RUN light, Same as 11/2§8 Same as 11/f05
light. e.g. program loops that P
' make frequent use of RESET \

¥ may not appear to be
i~ . runnxng.
o
! Power fail immediately Power fail during RESET ig| Soame as 11/2¢ Same mg 11/5%

! ends RESLT and traps.

not recognized until after
inscruction is finished
{too latej.




2

. 11/15 ) 11/15 /29 | 11735 11744 ) 11745 11/54
3 inatr clear V. BWAR inetr does not Eame o8 11/05% ’ Gamg 4o 11/83
. affoul V, - '

Stack limit boundary
fixed at 4gP,. Viclationsg
serviced by BVFL trap.

Same an 11/85

Optional variable stack
limit boundary. Use of
red or Yellow zones on

either basic or variable
boundary. .

.Samg as 11/4§

Ho red zone on stack over-
flow.

d

-
"

Same as 1l/85

_Red zone trap ocours if
stack is » 16 words be-
low boundary.. This trap
saves PC+2 and PS on hew
stack at loca. § and 2.

Red zone trap occurs
if stack is 16 words
beyond limit.

same as 11/44.

Saves

Read reference to stack
will not cause over!low
trap.

-

Read reference to atack
can cause overflow trap.

Same as 11/85

‘Sama as 11/85

First instr in an inter-
9k routina will not be
cuted if another-
.cerrupt with higher

‘prxorxty occurs.

11/@85

11/18

Sana'ga'llfls

Firat inetr in an inter-
rupt vervice routine is
guaranteed to be executed.
11/15 11728 |11/735

Same as 11/§5 . ,

11/45

HPRE are not serviced in

HALT stace.

Same as 1l1/8%

11/44
Same as 11/#5 o

HPRa arc se:v;ced ln
HALT atate.

BUS REQUESTS are serviced
in single instr mode.

BUS REQUESTS arc not gser~

Same an 11/45
viced in single instr mode, )

Same anm 11724

If RTI sets T bit, T bit
trap is acknowledged after
instruction following RTI.
> ] :

]

[
-

If RTI sets T bit, T

bit trap is. acknowledged
immediately following RTI,
(Use RTT to accomplish
same as 1ll/24).

Same as 11/p5

Same as 1l1l/4§-

No RTT instruction.

1f RTT scta T bit, T bit .
trap occurs afterx Lnntruc-
tion following RTT., .

Same as 11/85

Same as 11/44

1f an interrupt occurs
during an instruction
that has the T bit sat,

T bit trap-is acknowledged
betore thg xnturrupt. I

Same. ag 11/85 Eama as 1)/8%

If an interrupt.occurs
during an inatruction
that has the T bit get
the intorrupt is ae-
knowladged baforo T bl
tEap.

11758

7



POP-11 DIFFERENCE LIST

11715 1172y

11/35 117458

11/45

Basic Instruction st

OEM End Uger

A ]

Basic Instruction set

OENX End User

Basic instruction net &
XOR, 508, MARK, SXT, RTT

OEM

#3 A sy

(3
Same as 11740 & HUL; iV,
ASN, ASuC, SPL e

i

JMP/IRS (H)+ uses (regis-
ter) after autoinecr.

Same as 11/§5.

JHP/ISR {R)+ uses {reg-
igter) before autoinecr,

Sama as 11/48

JHP(JSR ik traps to loc.
4 (illegal instruction).

o1~y

Same a; 11785

b
-

Same as 11/85

JMP/ISR AR traps té 1f -
(reserved instruction).

OPR AR, {R)+ or «(R} or
' " 8(R)I+ or B-{R)
uses R before autoinecr./

autodac.

OPR AR, (R}+ or ~-(R) or
€{R)+ or 8-(R} uses R
after autoiner./autodec,

Same as 11/28

Same ag 11/g5

HOV PC,1OC storas PC of
instruction + 2 in LOC.

11/85 11/19

11/15

HOV PC,LOC storxes PC of
instruction + 4 in LoC,

Soame as 11/2g

Same as 11/85
P

2

11/29

11/35 11749

T

ilf‘ﬁ 11/50

Upon prodram hALT; PC of
instruction just. past
HALT is displayed.

-

Upon Program HALT, PC of

the HALT instruction is
displayed. -

4

Sama a8 11/§95

Same as 11/p5

LOAD ANDR is not modified
during execcution. To start
program again, depress
START. LOAD ADDR is reg.
17 and can be addr by the
CPU as 177717, s0 a program
can set up a -new start
addr. v

LOAD ADDR value is modified
once START is pressed. To
start again, first LOAD
ADDR. T

Same hs lills except can~
not be addr by program.

Same as 1l1/28

Attempts to EXAM/DEP odd
addry {except GPRs) will
Cousa bit f of addr to be
disregarded {i.e. 1841
will result in Lpgf).

]
-
-

‘jhang the CPU.

Attempts to- EXAM/DEP odd
addre (except GPRs) will
To unhang,
depress START with HALT
switch enablad.

same us 11/85.

ADDR eXr light comes
on. To unhang, depress
START with IALT switch
enabled.

Oud addr or noncxistent
rcferences using the SP
cauge a UALT (i.e. double
Luw orror ocenring in trap
service of [irst error},

3

Same as 11/85

0dd addr. or nonaxist. re-
ferences using SP caunc a
fatal trap. On bus err in
trap porvico, a now stack
is craated ac locs. # and
. . ’

Qdd addr or nonexist.
references causo trap
to loe. 4. Bus cycle
aborted during bus
pousc of that instx,
and same ag 11/4§:

Lyte operaiions to odd b
of PS do not trap. Not
411 bita may exist.

.

vtq

Byts operationg to odd
byte of PS cause odd |
addr trapa,

Same as 1L/BS

Same ao ilfﬂﬁ




- : /85 nAsg| N/s 11720 {11735 11740 111745 11758 -

Eanoral Purpaso . e %

Azyistars 8 -8 1

-Namory H'enagemnt KO ‘ ‘NO optional ) optiona?
™ \‘ )
]
]

Stack :Overfloy 4gp (Fixed) apd {fixed) 4pp or progrommable

‘Datection . programmable o eay
' (option)

’ Co
ut::’:::‘::;’.f”“c “option {external) .option :{external) ;pj:ioal.#inkgamgm .stmdlrf! ‘Einglcrnﬂ)
Floating :Point sof tware .onl software onl ‘hardware option. ‘hardware option
Floating Fo “- Y Y 32 bit word 32.0r 64 bit word

14/85 LTAT B RAVAL /28 ) 11738 A1780 111745 - 11759

" Kax ioua -Memor ‘ !
Stz (words) 28K 28 120K 124
Maxi -Add i '
“space i ax 128K 128K




MAJOR STATES

) ‘l. Purpese: to cbtain.an irstruction frem memory.

2. CP will enter FTTCH upon conpletion of previocus Instrucsiem.

3. PC spezifies from wvhere instruction will cooe, and {s
fnctezented by two after use. .

4, Instruction (octal code} delivered to instruction recsscer.

S. Instruction decoded: its nature determines next sajor stata.

SOOCE {SRC)
1. Purpose; cbtaln source operand. .
2. CP will enter SRC if 'ths instruction is double operant
© .and spurce address mode ¢ §,
3. pddress calculated; cdata obtained and stored in SRC register.
4. CP enters DESTIKATICN or DXECUTE majcr stats,

PIFTHATION {DST)
1. Purposa: to obtain destination operand,
1, (P pay enter DST from either FETCH or SRC,
3. Mddress calculated; data obtained and brought to aritmetic
unit. N .
“. = enters EXECUTE major-.stats,

l. Purpose: execute the instruction n'nd-ltore the result.
2. CP may enter EXECUTE fros elther FETCH, SRC or DST,

v

PROCESSOR STATUS WORD

L AT r7 ¢ s 4321t ¢ gy 1
em PM N ﬂ’r'or“-: TINIZIV Clase-L
e

CRDITION CODES - . '
C bit {(bit @) set if carry from most significant bit.
¥ hbit tbic 1) sat 1f arithwetic overflow.
Z bit (bit 2) sat if result = §,

¥ blt (bit 3) ~ set if result is negative,
TICE THAF . -

T bit (bit &) - L{f set, causes processor trap (used by OCT:.
PEEORMITY

(oits 5, &, 7) Specify current priority level of processe.
FIEVIOUS MOOE ‘
(bits 12, 13) Mods prior to the last interrupt or trap.
Larnel = g, Gaer » 11,

CIRRENT MODE :
(bito 14, 13) Presenc sode. Kernel = P, Oser = 11,

A-§

117
168

XX7

xX7

pag
Bag

L)
()

2p8
pog

g -

776

pap

776

Sgg

@ -

376

pgeg
56

:L}:]

[ EL I

Fog

PDP-~11 MEMORY ALLOCATION

. l"I/O PAGE"

BOOTSTRAP LOADER

ABSOLUTE LOADER

PROCESSOR STACK

'DEVICE INTERRUPT VECTORS

SYSTEM SOFTWARE COMMUNICATICN

HARDWARE TRAP ADDRESSES

A7



POP-11 FUNDAMENTALS AUD INSTRUCTIONS

This course presents the organization-and features
of the PDP-11, It is applicable to 2ll processors in the
POP-11 family, znd iz designed to prepare the student -
for further training in ppOP-11 harévare or software at a
machire or assembly language level. .

Le ggh: S days

Prerequisites: The student should ke familiar with binary
and octal: nunbering systems, conversicn:, and arithmetic

and logic operations in these bases. Prior experience with .~
machine er assembly language: instructions is required. Ex= -
perience with "higher.level® languzses such as Fortran,

Basic, Cobol, etec. does not generally prepare the student

for this course, Attendance of the Introduction to Mini-
computers gourse is recommended for those not meeting the

above prerequisites.

Content: The following major topics are presented: Features
coraon to all PDP-1ls, memory crganization, registers, operand
vsddressing, instruction set, stack cperations, subroutines,
decision making, cpmmunication with peripherals, priority .
interrupt structure, traps. and paper tape loaders.
cén-

tral processor crganization and operation, onibus trang-
actions, standard seftware, and additional features of

targer PDP-1ls, A portion of the course will be devoted

to pupervised laboratory sesslons. .

The course also presents an overview of:

- —

N

R S

PDP 11 §YSTEM BLOCK DIAGRAM

Y Ty
fem IPM Vi rriornir Nfz [v[c] PS
GPR

NN
UN{BUS Ry ]

CONTROL 2L
' : . R
PRIORITY ARITHMETiC B -
ARBITRATION UNIT e (;g; KERVED
' TEMP.

j_SouvRCE
RE (§P)USER

CENTRAL PROCESSOR

CORE MEMORY

: . EMO :
OPTIONS: héliowr?uys MANAGEMENT

Trupen DHNSTRUCT O Se T

TELETYPE (keveomuotse) (TuerrinTeRAS?)

HiGH SPEED READER / PUNCH

L'iNE PRINTER

DisK

DEC._TAPE o | R

A-5

CUSTOMER PEVICES

YN

it

e — i
v e

— e .
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1:99 requisite [ 3 Program “Sum 4* Program Program
Material Handout| Address Modes pg. A-39
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% 3 v N c
“ L . H
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' Unibus Analysis of Sample| I/0 Processing _
1:5c 1 Intro-1l Program (p., A-32 thru 33) Reviaw
1 ch. 3.1 ] (and p.7,8,9)
. |+ Hemory - ce o= ITanalysis of Sample - - Final Exam
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. Ch. 3.8 Lab2 Introduction : .
.! console Oparatioq '
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PDP-11 FUNDAMENTALS & INSTRUCTIONS
COURSE QUTLINE

DAY 1

- 1.

IX.

vII.
vIII.

Ir=roduction

PIL?2-11 Family of Computers

F-P-11 Hardware Overview

Cmnsole Panels

" Adress ing Modes

" Prograsming Examples

pencnstration Lab (Cptional}

EBEmevork

L. peview Sheet #1
E. Feadang

1. Intro. to Programming — Chaps. 1, 2, and begin 3
2. FProcessor Bandbook - Chaps 1, 2, and Tegin-3

DAY 2

I.

Emework Review
Cmzlete Addressing Modes
FAL - 1}A Progratming Examples

Inplementing A Program
). Bootstrap Loader
E. Absolute Loader
C. PAL = llA Assembler

Iah

Fomework
1. Review Sheet §2

B. Reading - Intro. to Programming - complete chap. 3

A-1

CONTENTS
COURSE OUTLINE
HANDOUTS

£A5 WORKSHEETS
HOMEWORK PROBLEMS

QUIZZIES

HOTE
This handbook is for information

B

PuUrposes

and is subject to change without notice.
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Palacio de Mineria Calle de Tacuba 5 primer piso Deleg. Cuauhtemoc 06006 México, D.F. Tel.: 521-40-20 Apdo. Pastal M-2285



MACRDS G O0OSup

H
i MACR DO GO0SUB S : 1;1
i LLAMADA '
; GOSUBS  NOMBRE, <LISTAY
; EFECTO | a4 A RUTINA N
i . LA JA DMBRE CDN LOS PARAMETRO S
i EN EL STAuK CON FDRMATOD S DE LA LI TA
; VIEJO RS
i ARG. © i
; y i
. ARG. N '
; RS->SP-> # DE ARGS.
_ nscno gDSU?SP)NAME.LISTA i LLAMA A FORTRAN
60SUB1=0 '
LARP X C%éSTA>

cOSUB1sbDeUR1+1

_ENDM

MOV #GOSUB1, —(5P)

MOV 5P, RS ;

JSR PC. NAME :

ADD #24COSUB1+2, SP

MOV (SP)+, R5

ENDM

MACRO GOSUBR

LLAMADA

GOSUBR NOMBRE. AD, Al, A2, A3, A4, AS

EFECTO
SE CARGAN LDS ARGUMENTOS NO NULDOS AQ..... A9 EN._LOS REGS.
RO, ...,R5 ¥ SE HACE UN JSR PC, NOMBRE

NQ SE SALVAN PREVIAMENTE LOS REGISTROS
LOS REGS. NO USADOS ND SE MODIFICAN
AO, . ... AD DEBEN SER FRGUMENTOS VALIDOS PARA MOV

MACRD GOSUBR NAME, AO, Al, A2, A3, A4, AS i LLAMA CON LOS. REGS.
_MCALL GGOSUB ,
GGOSUE  <AO>, RO :

GCOSUD  <A1D, Ri e

GGOSUB <A2>,R2

GGOSUB  <A3>,R3

GGOSUB  <A3>. R4

GGOSUB  <AS>, RS

JSR FC. NAME

“ENDM

'MACRO GGOSUB A, R

C1IF NE. CA>, MOV A R

. ENDM

MACRDO G 0svuU B F

LLAMADA ‘
GOSUBF NOMBRE, <LISTA>

LLAMA A LA RUTINA NOMBRE . LOS PARAMETROS SE PASAN
EN EL FORMATO DE FORTRAN :

WM e W R mr R A e e s e e

W T M e e e e e oy ome w. e

NOTA .
FORTRAN ESPERA ARGUMENTOS CALL BY MAME. 1.E. HAY GUE PONER
# A LOS ARGS. .
. MACRO GOSUBF_ NAME, LISTA
.MCALL PUSH, POP
GOSUBI-O
, LLISTA>
GOSUB!EGDSUBI+1
ENDM
PUSH <RO, R1., R2, R3, R4, R3>
SUB #2%#COSUB1+2, SP
MoV SP, RS
MoV #GOSURL, (RS5)+
. IRP X <LISTA>
\ X, (RS)¥+ .
. ENDM
MOV SP, RS .
JSR PC, NAME
ADD #22GOSUB1+2, 5P
POP <RS: R4, R3, R2: R1, ROY>
ENDM )
.2345478901234564789 ## RSYX-11IM V3. § ## 24-JAN-80 20: 50: 44 DRO: L
+12345467890123456789 #%# RSX-11M V3.1 ##¢ 248-JAN=-B0 - 20:50: 46 PKO: €
0123456 X=11iM V3.1 b 24-=JAN-80 20: 50: 46 DKO: L

7890123456789 ## RS

Soopoons T uy 35355588 HH H= ot o vt o i gy

NOTA - _ . .

PUSHPOP. MAC

2,21
2, 2IPUSHPOP. MAC.
221

PUSHPOP. MAC

PPPPPPPP

[alalelal Y -T-7 ]



e el fmn dmr e ws s W e e ter

MACRO CASES

LLAMADA -
ASES X, <LISTAD>
DONDE
"7 X ES UN INDICE
EFECTDLISTA ES UNA LISTA DE SUBRUTINAS ,
"~ "SE HACE UN JSR:-PC,’A DONDE A ES LA X-AVA SUBRUTINA.DE
. LA LISTA : o
— .MACROD CASES X,LISTA
) _PSECT CASES
CASESi=.
.WORD ~LISTA
PSECT .
MOV X, —(SP)
ASL (SP) .
ADD #CASES1, (SP)
MOV @Q(SP), (SP)
JSR PC, @(SP)+

. . ENDM
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N&

3.1 AREA DE PARAMETROS EN LINEA (LA DIR BASE AHORA ES LA

DIRECCION DE REGRESO)

&
Y
p g

40. USO DEL STACK (MENOS MEMORIA)

LAﬁEL | CODE OPERAND COMMENTS
1. POINT - 46
2. RET S }-
3. o MV ARGZ,-(POINT) . Push down second param-
o S ; eter. S
4. - MOV | ARG1,—(PQINT) ; Push down first parameter.
5. ' JSR ' RET,Y ; Call Y with return address
.. | ; ;hl'c[ RET] . |
6. Y1 ' MOV LPOINI'J+',TEIVP ; Entry to Y. Save old value
| | | o : ?(hf‘G[ RET], now on top of
; stack, in TEMP. '
7. : MWV 0 (POINT) ,HOLD ; Load first parameter
8, | MV 2 (POINT) ,'HOLI»ﬁ ; Load second paramefér
9, - ADD - . - #4,POINT . To return, first pop paréug
: : ters from stack. '
. 10. | MV TEMP, - (POINT) . Place old value, of REGRET]
P ; on stack. ‘
.;|11. ' RTS RET ; Exit from Y.
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' 3g.- AREA DE PARAMETROS (LA DIR SE PASA EN ALGUN R)

15, EIGHTEEN:

LABEL CODE OPERAND COMMENTS
e o Al ‘ S
1. PARAM = 35
2. RET = 15 o
3. MV PNAME, PARAM . REGI PARAM] holds the .
¥ ; address of parameter
_ - ; area
-4, MOV ARG1, (PARAM)+ . ; Transmit first parameter
5. MOV ARG2, (PARAM)+ . Second parameter
6. MV ARGY, (PARAM)+ ; Last parameter
7. JSR RET,Y | ; Call Y with return
; address in REG[RETI.
8. PAREA:. = 418, : Parameter are follows
: - JSR‘
9. NEXT: MOV Z,T : First instruction execu-
ted :
. ; after return from Y.
. ]Gl Y;. LI W] l
11, MOV 4 (RET) , TEMP ; Load third parameter
| . into TEMP, REG[RET] -
+ contains the startin ad-
dress of the parameter
; area, and the third
; paramcter is four bytes
; beyond the base of the
: area,
12. - ADD EIGHTEEN, RET .3 Calculate actual return
. : address, nine words
; beyond address in
; REG[RET]. .
13, RTS RET ; Exit from Y.
14. PNAME: ' PAREA
° 18.



L0 QUE SE_CONOCE COMO PASAR PARAMETROS. =~ T

0N rr

ENVIAR OPERANDOS A LA SUBRUTINA ¥ RECIBIR LOS RESULTADOQS- ES

TR X

s e
]

Cuando transmitimos parimetros lo que pretendemos es minimizar

el tiempo de ejecucidn y los requerimientos de memoria.

Cuatro maneras bdsicas de pasar parémetros. .

~lo. AREA DE DATos COMUN (GLOBAL)

LABEL  CODE  OPERAND COMMENTS

4P, P, 'y SB TIENEN ACCESO A ELLA
+ LA DISTANCIA EN EL DIRECCIONAMIENTO (123 -127)

20. USAR LOS REGISTROS R ]
+ SON POCOS REGISTROS (R;)
# USAR MEMORIA PARA PRESERVAL LOS REGISTROS.

. 1. PARAM " $1
2. MV PNAME, PARAM. . REG[ PARAM] holds the ad-
B , ‘ ; dress of parameter area.
3, MOV ARG1, (PARAM)+ . ; Transmit first parameter.
4, MOV : ARGZ,(PARM-I% ‘ ; Second parameter. '
5. MOV ARGY, (PARAM) + .3 Last parameter.
é, JSR cee _; Enter subroutine
Teew “eor ten ad

7. PNAME; g PAREA
8. -PAR,EA:.. " = C W18, ‘ . :-Parameter area
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ELas.instrucciones‘etiquetadaSecon ‘B1 y;BZ_égsa control a la

1instrgcc%6nzetiqué;ada'con1“5UB“,.cuando.la,etiqueta‘"RETURN"

s :encontrada, €l .control regresa a Cl y C2 dependiendo de

«cuil fue la 1llamada.

‘ETIQUETA . CODIGO ‘OPERANDQS

LEL I . LR}
1,- B1 JER §5, 'SUB
2.~ C1: MoV X, AC
3.~ B2: JSR %5, .SUB
4.~ C2 MOV Y, AC
5, SUB: . INC AC
RETORNO.: ~ RTS 45

3

 LLAMADA A LA SUBRUTINA
REGRESO

LLAMADA A SUB
REGRESO

LI )

lera. INSTRUCCION DE SUB |

DE R[5} SE OBTIENE EL
REGRESO. o




MAR
MDR

REGISTROS DE

MAQUINA

RO

R{ 1)
R 2]
R 3)

04

- REGISTROS

 peal |
R[ 5]

R 6]
R7]

- 1000000




03
RETURN FROM SUBROUTINES (RTS) | .

| . .
RTS %5 el efecto de esta instruccidén es de reemplazar el PC~ .~

por el contenido de REG {5} y reemplazar REG [5] por el conte- -

nido que se encuentra en el TOP del stack.

' FECH DE RTS
oF f
pA 0
PC’ .‘......._. R [ 5] |
MAR «—— R [6] _ ‘
MDR «——  MEMORIA [Linf...MAR] '+ RESTAURA EL PC.
R [5] <— MDR ', RESTAURA R [5]

R[6] <—= RI[6] + 2 " RESTAURA EL SP
' i
.i



. '
".‘..

o

M,

En %PDP 11 la instruccibn que permite el manejo de subrutlsnas'es :

JSR Rl ' dat
128 byts
S 98 65
or | R dut
ALGORITMO

~1.» Preservar el valor de Registro involucrado
2,- Preservar el PC.en el Registro involucrado

3.~ Se carga el "PC" con la direccidn de la subrutina

FHCH (ALUGORLTMOY JSR

MAR <= PC

PC @ PC + 2

MDR «—— MEMORIA [Linf,..MAR] ;

TMP 'e—— MDR + PC

R [6]-2
MAR <~ R [ 6]

MEMORIA [Linf..MAR] €=——— R [ 5]

"R [5] .@=m— PC

PC «—ee— TMP

e

OFFSET

§ DE PALABRAS A SALTAR:

TOP + 2

APUNTA AL SP

SALVA EL R [5]
?

PC SALVADO

i

; DIRECCION
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CUANDo SE TIENE QUE PRACTICAR UN CONJUNTO m—: INSTRUCCIONES ;
SOBRE DIFERENTES VALORES.

? ACOMODAR UNA LISTA DE VALORES EN ORDEN CRECEINTE O DECRE-
CIENTE, (N: COMPARACIONES)= ..

Existen dos formas para solucionar esto:

)

Lopiar el cddigo tantas veces como se necesite

vy

Agrupar las instrucciones Yy usar algﬁn mecanismo para lie;
gar a este 1ugar: | |

+ Ejecutar las instrucciones y regresar.

El mecanismo uiiliiado para brincar el conjdnto de instrucciones
se le conoce como "1lamada" y al'cbnjuntb de instrhccioqé; se

le conoce como ''subrutina'.

El mecanismo para manejar subrutinas consiste de dos pasos:

lo. Preservar la direcccibn do TCETCS0
20. Cargar al PC con la direccién de la subrutina y se usan

dos té&cnicas en ayda de esto

- Liga o apuntador (una localidad) *

- Anidacidn (stack)
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SEC. 4.3 SUNILOUTINES 2 2’ ’ 107

When the calling program makes a call to a subroutine, it suspends itself{
and transfers control to the subroutine. The subroutine is entered at its
beginning, performs its function, and terminates by passing control back to
the calling program, which is thereupon resumed.

' In passing control from one coroutine to another, execution begins in
the newly activated routine where it last left o{f—not at the entrance to the
routine. The flow of contro! passes back and forth between coroutines, and
- each time a coroutine gains control, ils computational progress is advanced
unti it passes control on Lo another coroutine. _

The PDP-11, with its hardware stack féature, can be easily programmed
to implement a coroutine relationship betlween two inleracting routines,
Using a special case of the JSR instruction [i.e., JSR PC,@(RG)+], which
exchanges the top element of the register 6 processor slack and the contents
of the program counter (PC), the two routines may be permitted to swap
program control and resume operation where they stopped, when recalled.
This control swapping is illusirated in Fig. 4-11, :

Routine # 1 is operating, it then

exccutes:

JSRPC, " (R6) +

with the following resuits: s P2

{1} PC2is popped fram the slack T

and the SP attoincremented ' { e

(2) SPisautodecremented and the

old PC (i.e., PC1) is pushed .

. ] ) - s G

(3) contro! is transferred 1o the , .
_ location PC2 (i.e., routine # 2) . 8P

. " . . ]

Routine # 2 is operating, it then ) 1

execules: _ :

]SR PC.F"(R())*‘ S[l e —— Ia(“ ‘
- with the result that PC2 is exchanged - .

. for MCI on the stack and control is
transferred back to rowtine # 1.

Fig. 4-11 Coroutine interaction.

The power of a coroutine structure is to be found in modern opcrnt.in.g
systems, a topic beyond the scope of this book, Iowever, in Chnpter 6 it is
possible to demonstrate the use of coroutines for the double buflering of 1/0O
while overlapping computation. The exuuple presented in that chapter 'ih'

_elegant in its seeming simplicity, and yet it represents one of the most basic
I/O operations to be performed in most operating systems.
|
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a stack capable of maintaining both the current values of FACT and the
return pointers either to the function itself or its calling program. However,
the function may be coded in PDP-11 assembly language in a simple fashion
by taking advantage of its stack mechanism. Assuming that the value of N is
in RO and the value of N! is to be left in R1, the function FACT could be
coded recursively as shown in Fig. 4-10,

FACT: ST K& ;15 Roa=07

EEQ EXIT iYES !
MoV RO, -CSF) . JEHYE N :
LELC (€] P TRY N-1
JER FC.FACT JCOMPUTE (N-1)?
RET: MOy (SF)+,R1 JFETCH FROM STHCK
. JER FC, UL SMULTIPLY VALUES
EXIT: RTS FC . i RETURN

Fig. 4-10 Recursive coding of factorial function,

The program of Fig. 4-10 calls itself recursively by executing the JSR

" PC,FACT instruction. Each time it does so, it places both the current value
of N and the return address (label RET) in the stack. When N = 0, the RTS
instruction causes the return address to be popped off the stack, Nextan N
value is placed in R1, and a nonrecursive call is made to the MUL subroutine.
The subroutine multiply (MUL) uses the value of R1 to perform a multi-
plication of R1 by the value of an internal number (initially 1), held in MUL,

" which represents the partial product. This partial product is also left in R1.
Upon returning from the multiply subroutine, the program next en-
counters the RTS {astruction again. Either the stack contains the return
address of the calling program for FACT, or else another address-data pair of
words generaled by a recursive call on FACT, In the latler case, R1 is again
loaded with an N value that is to be multiplied by the partial product being
held locally in the MUL subroutine, and the above process is again repeated.
Otherwise, the return to the calling program is performed, with N! held in R1.

4..3.7. Coroutines

In some situatjons it happens that several program segments or routines

are highly interactive. Control is passed back and forth between the routines,

‘and each goes through a period of suspension before being resumed. Because

the routines rnaintain a symmetric relationship to each other, they are called
coroutines, - _ ' '

Basically, the coroutine idea is an extension of the subroutine concept.

" The difference between them is that a subroutine is subordinate to a larger

calling program while the coroutine is not. Consequently, passing control is
different for the two concepts. . '
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-3. Task B starts processing in the same copy of reentrant routine Q,

4. Task B relinquishes control of reentrant routine Q at some point in
its processing.

5. Task A regains control of reentrant routine Q and resumes processing
from where it stopped. .

The use of reentrant programming allows many tasks to share frequently
used routines such as device service routines and ASCII-Bin: ry conversion
routines. In fact, in a multiuser system it is possible, for instance, to con-
struct a reentrant FORTRAN compiler that can be used as a single copy by
many user programs,

4.3.6. Recursion

It is often meaningful for a program segment to call itself, The ability to
nest subroutine calls to the sume subroutine is called self-reentrancy or
recursion. The use of a stack organization permits easy unambiguous re-
" cursion. The technique of recursion is of great use {0 the mathematical
analyst, as it also permits the evaluation of some otherwise noncomputable
mathematical functions, This technique often permits very significant mem-
ory and speed economies in the linguistic operations of compilers and other
higher-level software programs, as we shall illustrate;

A classical example of the technique of recursion can be found in com-
puting N factorial {(N!). Although :

Ni=Nx W= 1)« (N = 2l

it is also true that

Nl = N=* (N - 1!
1'=1

Written in “pseudo-FORTRAN,” a function for calculating N! would look
like: )

INTEGER FUNCTION FACT(N)
IF (N NE. 1) GO TO 1
FRCT=1
RETURN

i FACT=N*FAC(N-1)
RETUEN
END

This code is pseudo-FORTRAN because it cannot actually be translated
by most FORTRAN compilers; the problem is that the recursive call requires
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Program'|
Program 2
Program 3

PROGRAMMING TECHNIQUES

Memary

Subroviting A '

Reentrant approach

Programs 1, 2 and 3 can

share subroutine A

Program |

Program 2

Program 3

Conventional approach

A stp;ira!c copy of subroutine A4
. .must be provided for cach program

Memory

77T T
I Subroutine A;
/J//J//f/f/l fdd

L
ubroutine A4
ITEI8 7487 TP LTI

tliid e

.'(throutmc Al

Vicrsrereorcesessl)

Fig. 4-8 Reentrant routines,

CHAP, 4

The chief programming distinction between a nonshareable routine and a
reentrant routine is that the reentrant routine is composed solely of pure
_.code; that is, it contains only instructions and constants. ,Thus a section of
program code is reentrant (shareable) if and only if it is non- self—modifjiing'.
that is, no information within it is subject to modification. The phxlosophy

behind pure code is actually not limited to reentrant routines.

Any non-

modifying program segment that has no temporary storage or data assoctated

with it will be

1. Simpler to debug, _
2. Read-only protectable (i.e., {4 can be kept in read on]y memory)

3. Interruptable and restartable, besides being reentrant.

Using reentrant routines, control of a gwen roufine may be shared s
illustrated in Fig. 4-9. : '

! Taxk A ]

I Task ]

Reentrant
foling e

¢

Fig. 4-9 Reentrant routine sharing.

1. Task A has requested processing by reentrant routine Q.

“x

’ - 2. Task A temporarily relinquishes control of reentrant routine Q (i. e.,
interrupted) before it finishes processing.
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restore all registers used. On the PDP-11 the save and restore routine is
greatly simplified by the use of a stack, as was illustrated in Fig, 4-6,

As pointed out previously, stacks grow downward in memory and are
traditionally defined to occupy the memory space immediately preceding’
the program(s) that use them. One of the first things that any program
which uses a stack (in particular one that executes a JSR) must do is Lo set
the stack pointer up. For example, if SP (i.e., RG)} is to be used, the program
should begin with '

JEEG IS THE FIRST
) : PINSTRUCTION OF THE FROGRAM..
BEG: Hay FC. <SP i SF=EROLR BEGHZ
T&T -(5F) i DECFEMENT SF EY 2
SR OFUSH ONTO THE STYACK WILL
i STORE THE CATA AT EBEG-I-

This initialization routine is written in PI1C form, and had it been assembled
beginning at location 0 (.=0), the program could be easily relocated, The

“routine uses a programming trick to decrement the state: It uses the test in-

struction in autodecrement mode and ignores the selting of the condition
codes. The alternative to using the TST instrucvtion would he to SUB L2,SD,
but this would require an extra instruction word.

"4.3.5. Reentrancy

Further advantages of stack organization become apparent in complex
situations which can arise in program systems that are engaged in the concur-
rent handling of several tasks. Such multilask program environments may
range from relatively simple single-user applications which must manage an
intermix of 1/O service and background computation to kurge complex multi-
programming systems that manage a very intricate mixture of exeautive and
multiuser programming situations. In all these applications there is a need
for flexibility and time/memory economy, The use of the stack provides
this economy and flexibility by providing a method for allowing many tasks
to use a single copy of the same routine and a simple, unambiguous method
for keeping track of complex program linkages.

The ability to share a single copy of a given program amony users or tasks
is called reentrancy. Reentrant program routines differ from orcdinary sub-
routines in that it is unnecessary for reentrant routines Lo finish processing
a given task before they can be used by another task, Multiple tasks can be
in various stages of completion in the same routine at any time. ‘Thus the
situation shown in Fig. 4-8 may oceur. ' '
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.

FROGRAN TRICKY SUBRQUTINE SUARF(X, ¥

=1, TEMF =X

E=2. =Y

FRINY, A-E y=TEMF

CALL SWRPCR.,2.) RETURN
A=l . END

E=Z.

FRINT, A-E

EHD

If the real constants are passed in by value, both print statements will print
out a —1. This occurs because subroutine SWAP interchanges the values that
1t has received, not the actual conlents of the arguments themselves.

. However, if the real constants are passed in by address, the two print
statements will produce —1: and 1., respectively. In this case the subroutine
SWAP references to real constants themselves, interchanging the actual argu-
ment values,

. Higher-level language, such as FORTRAN, can pass parameters both by
value and by address. Often the normal mode is by address, but when the
_argument is an expression, the address represents the location of the evaluated
expression. Therefore, if one wished to call SWAP by value, it could be
performed as :

CALL SWAPCL. wi, , 2, -8 )

causing the contents of the expressions, but not the constants themselves,
to be switched,

These techniques for passing parameters are easy to understand at the
assembly language level because the programmer can seé exacliy what meth-
od is being used. In higher-level languages, however, where the technique is

- not so transparent, interesting results can occur. Thus the knowledgeable
higher-level language programmer must be aware of the techniques used if he
is to avoid unusual or unexpected results,

4.3.4. Subroutine ReAgister Usage

. A subroutine, like any other program, will use the registers during its
execution. As a result, the contents of the repgisters at the time that the
subroutine is invoked may not be the same as when the subroutine returps.
The sharing of these common resources (e.g., the registers) therefore dictates
that on entry to the subroutine the registers be saved and, on exit, restored.

The responsibility for performing the save and restore function falls
either on the calling routine or the called routine. Although arguments exist
for making the calling program save the registers (since it need save only the
ones in current use), it is more common for the subroutine itself to save and
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Calling program:
nov WFOINTER, R i SET UF FOINTER
JER FC, SUER , CALL SUERGUTINE
Subroutine:
HOD (Rid+,(R1) . L ACD ITEM 81 TO ITEM &2
JFLACE RESULT IN !TEM #2. F1
JFPOINTS TO ITEM #2 NOW
or
#DD (R1), 2(RL) ;i SAME EFFECT AS AEOVE ENCEFT
s THAT L STILL FOINTS TO

s ITENM #1

Given these many ways to pass arguments to a subroutine, it is worth-
while to ask, why have so many been presented and what is the rationale
for presenting them all? The answer is that each method was presented as
being somewhat *better” than the last, in that

1. Few registers were used to transmit arpuments,
2. The number of parameters passed could be quite large. .

3. The linkage mechanism was simplified to the point where only the
- address of the subroutine was needed to transfer control and pass parameters,

Point 3 requires some additional explanation. Since subroutines, like
any other programs, may be written in position-independent code, it is pos-
sible to write and assemble them independently from the main program that
uses them, The problem is filling in the appropriate address [or the JSR
instruction, '

Filling in the address field in the JSR instruction is the job of the linking
loader, since it can not only relocate PIC programs but also fill in subroutine
addresses, i.e., link them together. The result is that a relocatable subroutine
may be loaded anywhere in memory and be linked with one or more calling
programs and/or subprograms, There will be only one copy of the routine,
but it may be used in a repetitive manner by other programs located any-
yhere else in memory. _

Another point not to be overlooked in recapping argurment passing is the
significant difference in the methods used. The first techniques presented
used the simple method of passing a value to the subroutine. The later tech-
niques passed the address of the value, The difference in these two tech-
niques, call by value and call by address, can be quite important, as itlus-
trated by the following FORTRAN-like program example:
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linkage register of the JSR instruction. ‘Since this register points to the first
word following the JSR instruction, it may be used as a pointer to the first
word of a vector of arguments or argument addresses.

Considering the first case where the arguments follow the JSR instrue-
tion, the subroutine linkage would be of the form:

JER K@, huL sCALL MULTIPLY
- WORD ZYALUE, YYALUE 7 RRGUMENTS

These arguments could be accessed using autoincrement mode:

MUL nov (RBY+, &1 JGET MULTIFLIER

MOV (RE>+, RZ ;GET MULTIPLICAND
RTS R ; RETURN

_ At the time of return, the value (address pointer) in RO will have been incre-

mented by 4 so that RO contains the address of the next executable instruc.
tion following the JSR.,

) In the second case, where the addresses of the arguments follow the

subroutine call, the linkage looks like '

J5SR RO, MUL " S CALL MULTIFLY
.WORD  XADDR. YFDDR i ARGLUMENTS

For this case, the values to be manipulated are fetched indirectly:.

MuL ; mov #(Ro)+, RL G FETCH MULTIFLIER

MOV - E(RE+, R2 S FETCH MULTIFLICAND
RTS Ko .~ JRETURN

) Another method of transmitting arguments is to transmit only the ad-
dress of the first item by placing this address in a general-purpose register.
It is not necessary to have the actual argument list in the same general area as
the subroutine call, Thus a subroutine can be called to work on data Jocated
anywhere in memory., In fact, in many cases, the operations performed by
the subroutine can be applied directly. to the data located on or pointed to
by a stack (Fig. 4-7) without ever actually needing to move these data into
the subroutine area.

hem #2

ltem# 1 | =—R] [Puints to item # )

Fig.ld-'l Transmitting stacké tE arguments,
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The second routine uses two fewer words.per register savefrestore and "
allows another routine to use the temporary stack storage at a latler point
rather than permanently tying some memory locations {TEMPS) to a partic-
ular routine, This ability to share temporury storage in the form of a stack is
a very economical way to save on memory usage, especially when the total
amount of memory is limited. '

The reader should note that the subroutine call JSR PC,SUBR is a legili-
mate form for a subroutine jump. The instruction does not utilize or stack
any registers but the PC. On the other hand, the instruction JSR SP,SUBR,
where SP = R6, is not normally considered a meaningful ¢combination.
Laler, however, utilizing register 6 will be considered (see Scction 4.3.7).

4.3.3, Argument Transmission

The JSR and RTS instructions handle the linkagé problem for transfer-
ring control. What remains is the problem of passing arguments hack and
forth to the subroutine during its invocation. As it turns out, this is a fairly
"+ - straightforward problem, and the real question becomes one of choosing one

solution from the large number of ways for passing values,

A very simple-minded approach for argument transmission would be to
agree ahead of time on the locations that might be used. For example, sup-
pose that there exists a subroutine MUL which multiplies two 16-bit words

. together, producing a 32-bit result. The subroutine expects the multiplier
.and multiplicand to be placed in symbolic locations ARG1 and ARG2 re-
Qpectively, and upon completion, the subroutine will leave the resultant in
the same locations,

The subroutine linkage needed to set up, call, and save the generated
results might look like: ' :

Hov ¥, ARGL iMULTIFLIER

MOy - Y. ARGZ FMULTIFLICAND
JSR FC. MUL s CALL NMULTIFLY
Moy ARGL, RELT i SAYE THE TWQ
MGy RRGZ, RELT+2 i HORD RESLLT

As an alternative to this linkage, one could use the registers for the subrou-
tine arguments and write:

MOV % Rd i MULTIFLIER
MOV ¥, R2 i MULTIFLICAND

. JER FC, MUL  CALL MULTIFPLY

This last method, although acceptable, is somewhat restricted in that a
maximum of six arguments could be transmitted, corresponding Lo the num-
ber of general registers available. As a result of this restriction, another al-
ternative is used which makes use of the memoryl‘ocntions pointed to by the
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In order Lo return from a subroutine, the RTS instruction is executed. It .
performs the inverse operation of the JSR, the unstacking and restoring of
the' saved register value, and the return of control to the instruction follow-
ing the JSR instruction. The equivalent of an RTS is a concurrent MOV
instruction pair: ’

RTS REG MOY REG., PC i RESTORE FC
MOV (SF)+,REG  ; RESTORE REGISTER

! . .
The use of a stack mechanism for subroutine calls and returns is particu-
larly advantageous for two reasons. First, many JSR instructions can be
execuled without the need to provide any saving procedure for the linkage
information, since all linkage information is automatically pushed into the
stack in sequential order.- Returns can simply be made by automatically
popping this information from the stack in opposite order.< Such linkage
address bookkeeping is called automatic nesting of subroutine calls, This
feature enables the programmer to construct fast, efficient linkages in an
"easy, flexible manner. It even permits a routine to be recalled or to call
.itself in those -cases where this is meaningful (Sections 4.3.5 and 4.3.6).
Other ramifications will appear after we examine the interrupt mechanism
for the PDP-11 (Section 6.4),
The second advantage of the stack mechanism is found in its ease of use
-for saving and restoring registers, This case arises when a subroutine wants
to use the general registers, but these registers were already in use by the
calling program and must therefore be returned to it with their contents
. intact, The called subroutine (JSRPC, SUBR) could be written, then, as

shown in Fig. 4-6. _

SUER: MOV k1. TEMPS JSAVE R1
. MOy k2, TEMFPE+2 ) i SHYE R2
MOV TEMPS+2, k2 s RESTORE R2
noy TEMFE, R1 ; RESTORE K1
KTE PC s RETURN

TEMPS: . WORD 6,0, 6,0,080 i SAVE AREA

or using the stack as

SUBR:  MOY R1, - (RE) SPUSH K1
MOV k2, - (K€D JPUSH K2
Hov (RE>+, k2 i POP R2 -
HOV (RE)+, K1 iFOP Ri
RTS PC JRETURNI

Fig. 4-6 Saving and restoring registers using the stack, )
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To remove an item {rom stack the autoincrement addressing mode with
the appropriate SP is employed. This is accomplished in the following
manner:

Hov {SP)+, DEST i MOVE DESTINATION WORD OFF STRCK

or

HUVE SEY+, DEST iMOVE DESTINATION EYTE QFF STRCK

Rerlnoving an item from a stack is called a pop, for *popping from the stack.”
After an item has been popped, its stack location is considered free and
available for other use. The stack poinler points to the last-used location,
implying that the next (lower) location is free. Thus a stack may rvp:'-esent

a pool of shareable temporary storage locations.

4.3.2, Subroutine Calls and Retumns

When a JSR is executed, the conients of the linkage register are saved on
the system RG stack as if a MOV reg,—(SP) has been performed. Then the
same register is loaded with the memory address {ollowing the JSR instruc-
‘tion (the contents of the current PC) and a jump-is made to the entry loca-
tion specified. The effect, then, of executing one JSR instruction is the
same as simultaneously executing two MOVs and a JMP; for example,

. MOy REG. -(SF) iFUSH REGISTER INTO THE STACK
JSR REG, SUER_ MOV PC,REG iFUT RETURN FC INTO REGISTER
JHP SUER SJUMP TO SUBROUTINE

Figure 4-5 gives the “before’ and after conditions when executing the sub-
routine instruction JSR R5,1064. '

Before Aller
(R5)=000132 (5 =001004
(R6)=001776 (RO = 001774
{PCy = (R7) = 001000 A{ICY= 1R T = 001004
00772 0017722

001774 001774 | QLOIRY |=—SP{ VOIT774
001776 mmim -~— 5P 001771\‘ 001770

002000 | nnnann . 002000

Fig. 4-5 JSR instruction,
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‘organized in full-word units only. Byte stacks (Fig. 4-4) require instructions
capable of operating on bytes rather than full words (byte handling is dis-
cussed in Section 4.6). ‘

Word stack |

007066

007070

007072 ltem#4 | ~— SP
007074 ltem # 3

007076 ltem # 2

007100 |  liem# |

o002

j— R -

Byte stack

007075 | hem#4 |~—SP | 007075
007076 | liem #3 '

007077 | them #2 : Nore: Bytes are
arranged in words
007100 Hem # 1 as following:

Byte 3] Byte 2

Byte ! | Byte 0

Fig. 4-4 Word and byte stacks,

Items are added to a stack using the autodecrement addressing mode with
the appropriate pointer register. {See Chapter 2 for a description of the
autoincrement/decrement modes,)

This operation is accomplished as follows:

noy ‘SOURCE, —~(SF) i MOYE SOURCE WORD ONTO THE STACK
or
MOVYB °  SOURCE, -(SP) i MOYE SOURCE EYTE ONTO THE STRCK

This is c-alle.d a “push” because data are *‘pushed onto the stack.”

tSee Section 4.5 for a discussion of byle instructions,
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"

Op code f Linkage puinter
" Both instructions make use of a “stack” mechanism simiar to the stack

mechanism described for zero-address machines in Section 1.2.8.6.
4.3.1. Stack

A stack is an area of memory set aside by the programmer for temporary
storage or subroutinefinlerrupt service linkage. The instructions that facili-
:tate stack handling {e.g., autoincrement and autodecrement) are useful fea-
tures that may be found in low-cost computers. They allow a program to
dynamically establish, modify, or delete a slack and items on it. The stack
uses the last-in, first-out or LIFO concept; that is, various items may be
added to a stack in sequential order and retrieved or deleled-from the stack
in reverse order (Fig. 4-3). On the PDP-11, a stack starts at the highestiloca-
tion reserved for it and expands linearly downward to the lowest address as
items are added to the stack.

Low addresses

High addresses
Fig. 4-3 Stack addresses,

The programmer does not need to keep track of the actual locations his
data are being stacked into. This is done aulomatically through a stack
pointer. To keep track of the last item added to the stack (or "where we
are’’ 'in the stack), a general register always contains the memory address
where the last item is stored in the stack. 1n the PDP-11 any register except
register 7 (the PC) may be used as a stack pointer under progriun control;
however, instructions associated with subroutine linkage and interrupt ser-
vice automatically use register 6 (R6) as a hardware stack pointer. For this
reason R6 is fréquently referred to as the system SP. .

Stacks in the PDP-11 may be maintained in vither.full-word or byte units.
This is true for a stack pointed to by any register except RG, which must be
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. 3. The value of index is doubled to take care of the fact that labels in
the table are stored in even addresses; i.e., full words;

4. The address for the JMP instruction is utilized both as indexed and .
indirect, such that it points to an address to be jumped to in the table.

Although the jump instruction transfers control to the cdrrect program
label, it does not specify any way to come back. In the next section, where
we shall consider subroutining, we shall see that a slight modification of the
jump instructions allows for an orderly transfer of control, and a return,
from one section of code to another. '

4.3. SUBROUTINES

A good programming practice to get into is to separate large programs
into smaller subprograms, which are easier to manage. These subprograms
- are activated either by a main program or by each other, allowing for the
sharing of routines among the different programs and subprograms.

The saving in memory space resulting from having only one copy of the
needed routine is a definite advantage. Equally important is the saving in
time for the programmer, who needs to code the routine only once. How-
ever, in order to share common subprograms, there must be a mechanism to

1. Allow the transfer of control from one routine to another,

2. Pass values among the various routines, .

The mechanism that accomplishes these requirements is called the subroutine
linkage and is, in general, a combination of hardware features and software
conventions,

, The hardware features on the PDP-11 which assist in performing the
subroutine linkage are the instructions JSR and RTS. These instructions are
in the subroutine call and return group and have the following assembler
form and instruction formatt: !

JSR register, destination

Rn Muuc‘:_cw in ]
NEREEEREENEEEEN
N . = 8 65432 0

B | S—— | —
Op code ——j { L
Destinution address

Linkuge pointer ~———————

*Depending an the mode of addressing, one or two words are used for the JSR
ir_\struction. :
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memory to another, a jump instruction must be a part of the instruction set
and must allow full-word addressing,

The jump instruction is indeed a part of the PDP-11 instruction set and
belongs to the single-operand group. As a result, jumps may be relative,
absolute, indirect, and indexed. This flexibility in determining the effective
jump address is quite useful in solving a particular class of problems that
cccur in programming, This class is best illustrated by example,

4.2,1, Jump Table Problem
A common type of problem is one in which the input data represent a
code for an action to be performed. For each code, the program is to take a

certain action by executing a specified block of code, Such a problem would
be coded in FORTRAN as

READ, INDEX .
GO TO (18, 160, 37, 1456,..., 7). INDEX

In other words' based on the value of index, the program will go to the

© statément labeled 10, 100, 37, and so on.

The “computed GO TO” in FORTRAN must eventually be translated into

machine language. One possibility in the language of the PDP-11 would be
| ~ b By ) B

t

RERD INDEX iA PSEUDO-INSTRUCTION
Moy INDEX, K1 iFLACE IT IN R1

DEC RL - i B(=INDESC=NAX-1

ACOD Ri, R4 iFORM 2« INDEX

JMF GTRELE(RL) . # INDIRECT JUMF -

TABLE: . WORD Lie. L1@a, L37, L1158, .. ,L7

The method used: is called the jump table method, since it uses a table of
addresses to _}ump to. The method works as. fo]]ow .

4

1. The value of INDEX i obtained.

2. Since therange of INDEX is 1 < INDEX < maximum value, 1 is sub-
tracted from the index so that its range is 0 € INDEX € max - 1.
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The pointer to the list, list L, may be calculated at execution time as follows:

v

AODD - (Re)+, R1

M: noy FC, Re i GET CURRENT FC
ARDD #L-M-2. kb i RDD OFFSET

Another variation is to gather all pointers’into a table, The relocation
factor may be calculated once and then applied to all pointers in the table m
a loop. The program in Fig. 4-2 is an example of this technique. The reader
should verify (Exercise 1 at the end of this chapter) that if this program is
relocated so that if it begins in location 10000, the values in the pomter

table, PTRTBL, w:ll be 10000, 10020, and 10030.

10&6999 Re=ne JDEFINE K@

apb6h ki=41 JDEFINE R

eppobz RZ2=n2 ;DEFINE RZ

popea? ¢ FC=%7 ; DEFINE FC :
a1a7e6 X: My . PC,Re s RELOCATE ALL ENTRIES IN FPTRTBL
1éz7en SUB ¥+ 2, R@ JCALCULATE RELCGCHTION FRCTOFR
bebobz

@1z7601 MOy $FTRTEL, K1 + GET AND RELOCARTE R FOINTER
a0 zo .

dsopel HDD Fa, k1 3 TO FTRTEL

plz7a2 MOy #TELLEN, R2 ;GET LEHGTH OF THELE

bOodbeX .

bepagl LOOF: RDD KRB, (R1)+ s RELOTATE AN ENTRY

an302 CeEC Re s COUNT DOWN

BOL3I?S ENE LOQP i BRANCH 1F NOT DOME

capbea HARLT ; STQOF WHEN DONE

Qoaaas. TELLEN=3 s LENGTH COF THELE

Qpuoee PTRTEL: . WORD . LO0P, PTRTEL

copezoe

eooazo b

poRGal . END

Fig. 4-2

Care must be exercised when restarting a program that relocates a table
of pointers. The restart procedure must not include the relocating qggm
(i.e., the table must be relocated exactly once after each load). v

’

" 4.2. JUMP INSTRUCTION

Although mentioned -earlier, the JMP instruction has been overlooked
somewhat up to now. The astute reader will, no doubt, recognize that the
necessity.-of a jump instruction is dictated by the fact-that the branch ‘in-

structions, although rélative, are incapable of branching more than 200 words

in either a positive or a negative direction. Thus to branch from-one end of
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BRROED Fo=xi ; DEFIMNE F@
BOHEE7 FC=xT i DEFINE FC :
BOOEEG ELAZOD S Moy FL, Re iRa = (ALLR OF S)e2
GOno0e PEITOA ADD #A-S-2, k@ i ABD IN OFFSET
‘ OBi7TE .
CODOGE 0LOOC? Moy FEL s T S MAVE FOINTER TO X
. GEi7ee .
0eGHL2 Q05877 CLE e s CLEAR YRALUE THOIRECTLY
aoprez -
GOGOLE ORGOHEE ‘ HALT s STOF
@B1660 .= +768 :
Ge1000 BEZEE0 X CHORD A sFOINTER TO R
i . +
@BZ060 L8, 4776
0ex0Be ehaese A: CDWORD @ . i VALUE T0 BE CLEAFED
(3 TCTCE . END '
Fig. 4-1

Now if this program is loaded into locations 4000 and higher, it should
be clear that none of the program values is changed. This point could be
shown pictorially by taking the Fig. 4-1 material, recopying it, but ¢hanging
only thie values in the leftmost column, the address column. Thus if one -
were to look in, say, location 4010, the contents would be 766 and the value
found in location 5000 would be 2000 (i.e., neither value is changed).

Given that the program data have not changed, the question is: 1low does
it work? The answer is that the offset A—S—2 is equivalent Lo A—(S+2) and
S+2 is the value of PC which is placed in RO by the statement MOV PC,RO.
At assembly time the offset value is A-PC,, where PC,=S8+2 and PC, is
the PC that was assumed for the program when assembled beginning at
location 0,

Later, after the program has been relocated, the move instruction will no
Yonger store PC, in RO, but a new value, PC_, which is the current value of
PC for the executing program. However, the add instruction still adds in the
immediate value A—~PC,, producing the final result in R0O:

PC,+(A—PCy) = A+(PC,—PCy)

which is the desired value, since it yields the new absolute location of A
fe.g., the assembled value of A plus the relocation factor (PC,-PC,)].

4.1.6. Relocéting_-Poin\ers

If pointers must be used, they may be relocated as we have just shown.
For example, assume that a list of data is to be accessed with the instruction
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5

41 A Writing Automatic PIC

Automatic PIC is code that requires no alteration of addresses or pointers.
Thus memory references are limited to relative modes unless the location
referenced is fixed. In addition to the above rules, the following must be

" . observed:

1. Start the program with .=0 to allow easy relocation using the absolute
loader (see Chapter T),

2. All location-setting siatements must be of the form .=.#X or .= func-
tion of symbols within the PIC. For example, .=A+10, where A is a local.
label. :

3. There must not be any absolute location-setting statements. This
means that a block of PIC cannot set up specified core areas at load time
with statements such as

. =248
. WORD TRAFH, 348 i FRE-LOAD 40, 42

The absolute loader, when it is relocating PIC, relocates all data by the lcad
bias (see Chapter 7). Thus the data for the absolute location would be
relocated to some other place. Such areas must be set at execution time:

Moy WTRAFH, (4340 i PUT ACDR IN AES LOC 48
moy N34, P42 i AND - AES LOCATION 42

4.1.4. Writing Nonawtomatic PIC
»

Often it is not possible or economical 1o write totally automated PIC,
In these cases some relocation may be easily performed at execution time,
Some of the required methods of solution are presented below. Basically,
the methods operate by examining the PC to determine where the PIC is
actually located. Then a relocation factor can be easily computed. In all
examples it is assumed that the code is assembled at zero and has been re-
located somewhere else by the absolute loader,

4!15. Setting Up Fixed Core Locations ’ ’

Consider first the previous example to clear the contents of A indirectly.
The pointer to A, contained in symbolic location X, must be changed if the
code is Lo be relocated. The program segment in Fig. 4-1 recomputes the
pointer value each time that it is executed. Thus the pointer value no longer
depends on the value of the location counter at the time the program was
assembled, but on the value of the PC.where it is loaded.
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mode, since it is the quantlty fetched that is being used rat.her than its form
of addressing.

4.1.2. Absolute Modes

.

Any time a memory location or register is used as a pointer to data, the
reference is absolute. If the referenced data remain always fixed in memory
.(e.g., an absolute memory location) independent of the position of the PIC,
the absolute modes must be used.t Alternatively, if the data are relative to
the position of the code, the absolute modes must not be used unless the
pointers involved are moedified. Restating this point in different words, .if
addressing is Jdireet and relative, it is position<independent; if it is indirect
and either relative or absolute, it is not posmon -independent. For example,
the instruction

Moy F4X, HERE I

“move the contents of the word pointed to (indirectly referenced by) the PC
(in this case absolute location X) to the word indexed relative to the PC
(symbolically called HERE)" contains one operand that is referenced indi-
rectly (X) and one operand that is referenced relatively (HERE). This in-
struction can be moved anywhere in memory as long as absolute location X
stays the same, that is, it does not move with the instruction or program;
otherwise it may not be, :
.The absolute modes are:

@X Location X is a pointer.

@#X The immediate word is a pointer,

(R) ) The register is a pointer.

(R)+ and {R) The register is a pointer,

@ R}+ and @—R) The register points to a pointer.

X(R}R¥6or 7T The hase, X, modified by (1@}, ik the nddress of the aporand,
@X(R) The Lase, modified by (RR), is n pointer.

The nondeferred index modes require a little clarification. As described
in Chapter 3, the form X(7)'T is the normal mode in which to reference
memory angd is a relative mode. Index mnode, using a register, is also a rela-
tive mode and may be used conveniently in PIC. Basically, the register

pointer points to a dynamic slorage area, and the index mode is used Lo -

access data relative to the pointer. Once the pointer is set up, all data are
referenced relative to the pointer,

+ . v
tWhen PIC is not being written, references to fixed locations may be performed with

either the absolute or relative forms,

ttRecall that X(7)i s equivalent 1o X{R7), which is eqmvnlent to X{PC) where PC R7.

A
T
I
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Line Symbuolic
Number Address Contents Label Instruction Comments
b 001000 005077 S: CLR @X {CLEAR LOCATION A.
000774 .
2. 002000 003000 X: WORD A "JPOINTERTO A
3. 003000 000000 A: :WORD 0

The contents of location X are used as the address of the operand, which is
symbolically labeled A. The value stored at location X is the absolute address
of the symbolic location A rather than the relative address or offset between
location X and A. Thus, if all the code is relocated after assembly, the con.
tents of location X must be altered Lo reflect the fact that location A now
stands for a new absolute address.t If A, however; was the name associated
with a fixed, -absolute location, statements S and X could be relocated beé-
cause now it is important for A to remain fixed. Thus the following code is
position-independent:

Line Symbolic
Number Address Contents Label Instruction Comments
1 ‘ 000036 A =36 FIXED ADDRESS OF 36
2 001000 003077 S: CLR @X ‘CLEAR LOCATION A
000774
3 002000 000036 X:  .WORDA :POINTER TO A

3. Immediate operands: the assembler addressing form #X specifies im-
mediate data; that is, the operand is in the instruction. Immediate data that
are not addresses are position-independent, since they are a part of the instrue-
tion and are moved with the instruction. Consequently,a SUB #2 HERE is
position-independent (since #2 is not an address), while MOV # A/ ADRPTR
is position-dependent if A is a symbolic address. This is so even though
the operand is fetched, in both cases, using the PC in the autoincrement

TTo verily this point the reader is encouraged to relocute the code, afler ussernbly,
into locations 4000, 5000, and 6000. By doing so he will discover that the conlents of
these localions are the same us for the original code &nd that the contlents of location
5000 do not point to location 6000,
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preferable. It generally is not economical to have a program relocate itself,
since hundreds or thousands of addresses may need adjustment. Writing
position-independent code is usually not possible because of the structure of
the addressing of the object machine. However, on the PDP.11, position-
- independent code (PIC) is possible,

PIC is achieved on the PDP-11 by using addressing modes which form an
effective memory address relative to the program counter (PC). Thus, if an
instruction and its object(s) are moved in such a way that the relative dis-
tance between them is not allered, the same offset relative to the PC can be
used in all positions in memory. Thus PIC usually references locations rela-
tive to the current location. PIC programs may make absolute references as
long as the locations referenced stay in the same place while the PIC program
is relocated. '

4.1.1. Position-Independent Modes

There are three position-independent modes or forms of instructions.
They are: ' :

1. Branches: the conditional branches, as well as the unconditional
branch, BR, are position-independent, since the branch address is computed
as an offset to the PC, '

2. .Relative memory references: any relative memory reference of the
form :

CLF ¥
1Oy o
Lk »

is position-independent because the assembler assembles il as an offset in-

dexed by the PC. The offset is the difference belween the referenced loca-

: tion and the PC. For example, assume that the instruetion CLR 200 is at
~ address 100:

Line ' Symbolic
Number Address Contents Instruction Comments
11 000100 005067 CLR 200 FIRST WORD OF INSTRUCTION

000074 {OFFSET=200-10.

The offset is added to the PC. The PC contains 104, which is the address of
the word following the offset (the second word of this two-word instruction).
Note that although the form CLR X is position-independent, the form CLR
@X is not.” We may see this when we consider the following: -



MINICOMPUTER SYSTEMS

R.H. ECKHOUSE, JR.

A
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Mastery of a basic instruction set is the first step in learning to program.
The next step is to learn to use the instruction set to obtain correct results
and to obtain them efficiently. This is best done by studying the following
programming techniques. Examples, which should further familiarize the
reader with the total instruction set and its use, are given to illustrate each
technique.

4.1. POSITION-INDEPENDENT PROGRAMMING

Most programs written to run on a computer are written so as to occupy
specified memory locations (e.g., the current location counter is used to
Refine the location of the first instruction). Such programs are said to be
absolute or position-dependent programs. However, it is sometimes desirable
to have a standard program which is available to many different users. Since
it will not be known a priori where the standard programs are to be loaded,
it is necessary to be able to load the program into different areas of core and
to run it there. There are several ways to do this:

1. Reassemble the program at the desired location.

2. Use a relocating loader which accepts specially coded. binary from a
relocatable assembler. ‘

3. Have the program relocate itself after it is loaded.

4, Write a program that is position-independent.

On small machines, reassembly is oflten performed. Whed the required
core is available, a relocating loader (usually called a linking loader) is

86 -
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La linea de datos de DMA funcionalmente consiste en
el Bus de datos Massbus, la memoria SILO y la l6gica de NPR del -

Unibus.

La figura 2 presenta un diagrama de bloques simplifi .

cado de la lfnea de DMA con un sblo Unibus.

Los 3 comando de transferencia de datos que pueden
ser llevados a cabo por el RH 11 son escritura, lectura y checado de

escritura.

1
Antes que cualquiera de estas operaciones 'ocurra, €l
’ ) .- * . ul. ’- ] .
programa especifica una direccidon en memoria (MA), una direccidn
.de cilindro (CA), una direccidn deseada de sector y pista (DA) v el
. Al
nimero de palabras. La direccidon de Memoria representa la locali-
dad de memoria donde se iniciara la lectura o escritura. La direc-
cibn de cilindro deseada es la posicidn en la que la cabeza deberd -

i
' posicionarse.

El sector y pista deseado representa la direccidn de
inicio en la superficie del disco donde los datos serdn escritos o -

lefdo;s.-

" El nmero de palabras a ser transferidas a o del dis

co.



un total de 4 registros en el RH 11, 15 registros en cada drive y 1
_registro compartido que es parcialmente compartido en el RH 11 y

en el Drive.seleccionado.

La lfnea de DMA funcionalmente consiste en una me-

moria FIFO de 66 palabras por 18 bits y su ldgica de control,

La funcidn primordial de esta memoria, que de aquf
en adelante llamaremos SILO es el de buffer de datos para compen

‘sar fluctuaciqnes de "retardo en el Unibus al solicitar el DMA,

. . . Cﬁando una instruccién en la PDP 11 direcciona el -

f RI;I 11 para leg;_ o escribir cualquier. registro en el RH 1l oen algﬁr'l
Drive, se inicia un ciclo de Unibus y los datos son dirigidos al o ‘de
el RfH 11, Siel registro a ser direccionado es local (se encuentra
én,el RH 11)‘, la l6gica de control de registros Permite elI acceso al
registro apropiado. Si el registro direcéionado es remoto (conteni
do en uno de los drives, la légica dé c':on_trol de los registros inicia
un ciclo de control de Massbus. El acceso a los registros en el -

‘Drive por medio de la logica de control del bus no interfiere con la
transferencia DMA la que puede llev.arse a cabo simultineamente.
Lo# riegistros locales del Rﬁ 11 especifican pardmetros tales como
dire:ccif;n del .P;us v coﬁtaciox_‘ de palabras, mientras qué los regis-
tros del Drive especifican parémeﬁros como direc;ién deseada en el

dico, informacidn de estado, etc.

¢



RIP@4

El RJP@4 es un subsistema de disco de cabeza mb-
vil el cual consiste en un controlador RH 11 y de uno a ocho drivers

de disco RP@4.

El Unibus provee la interfase entre el procesador la
memoria, y el controlader RH 11. Todas las transferencias efec-
tuz;das entlre la memoria y el RH 11 por medio de la facilidad de -
DMA del Unibus. .

El.RH 1l contiene dos puertos en el Unibus: uno de-
signado como un puerto de control y el segundo como un puerto de

datos.

Los datos pueden ser transferidos a Lravés-de ambos
registros. Para operacidn norrnal con memoria conectada a Unibusr'
.A como se muestra en la figura 1'-sélamehte es usado el puerto de -
control, el puerto de datos no se usa.

Ml

El RH 11 se encuentra _d'ividido en dos grupos funciona-

.les; linea de registroy control y linea de DMA.

. La lfnea de registro y control permite al programa.

leer y/o escribir en clualquier régisti-o contenido en el'RH 11. Hay
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i CR =11

-

La lectora de tarjetas CR-11, lee tarjetas perfora-

o

das de 80 columnas. La lectora estid disefiada para leer secuencial '

mente, los datos en 80 columnas empezando con la columna 1, Ca
da. columna tienellz zonas o renglones, una perforacidn es inter-
pi‘etada como un uno binario y la ausencia de perforacién como un -
cero. Los datos son, lefdos de la tarjeta una columna a la vez. Los
'<.iatos son presentados ex; dos format.os para er;trada a la computado
ra.

Mbdo Coﬁprimido.- Las 12 zonas de la tarjeta son
codificadas en un byte (Bbits), permitiendo un almacenamiento mas

eficiente de 1la informacibén.

Modo no comprimido.- Un bit es empleado para pre

r

sentar el estado de cada zona ep la tarjeta.

I.a Lectora CR 11 consta de 3 registros para .comuni
..cars‘e‘con la computadora. Estos son registro de estado y dos re-

gistros de datos. Uno de los cuales Presenta los datos no comprimi

dos.y la'otra comprimidos. La seleccibn de formatos se lleva a ca

bo seleccionando el registro apropiado'. Los datos en ambas formas

- se i i i
encuentran siempre presentes., A continuacién se presenta la es-

tructura de dichos registros.



El caracter completo es formado en el UART y es - A
tra:gsfez"ido al registro buffer de recepcion (f{BUF) en el momento en
que gl centro 3e1 primer bit es muestreado. En ese momento el bit
de .recepcié'n efectl’.m el registro de entrada y control es prendido si
el bit de Interrupt Enable se encontraba pre:ﬁdido se genera una sefial
de solicitud de interrupcién. Los bits no usados son llenados con ce o
ros y los bitg 12-15 contilénen informacién acerca del caracter inte-
grado por él UART. Notece que el progfama tiene un caracter com
p}léto de tiempo para retirar el caracter completo del buffer de da-
tos an‘teﬁs de que eAl nuevo caracter sea colocado en el registro de re

. !
_c:el'acié‘n por el UART. En el caso de que el programa falle en leer
este caracter anterior, se pierde y el bit de exceso y error son pren
éi_dos (bit 14-.15) en’el registro buffer de recepciébn. En el caso de
que no se presente normalmente el bit de paro el UART presenta lo

que supuestamente recibid, méis el bit error 13yl5 prendidos.

Programacidn

La intcrfase cntre cl programa corriendo cn ¢l proce
sador PDP-11 y el DL-11 se lleva a cabo mediante 4 registros. Es-
tos son rlegistroé de estado de recepcibn (RCSR); 2) registro buffer
de 5r-eceplclzién (RBUF); 3) registro buffer de estado de transmicibn
(XééR); y 4) Rt:agi;e.tro buffer de transmisibn (XBUF). YLa funcidn de

cada uno de estos bits se da a continuacidn.

v
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Descripcién DIL11 Telety'pe Control
Transmisidn
Cuando el CFUbus direcciona el Unibus, ia interfase DL 11

decodifica la direccibn para determ.inar si el teletipo es el dispositi-
vo externo seleccionado y si es el seleccionado qué funcidn debe desen__l__ :
peﬁar‘, entrada o salida. Si por ejemplo el te_letip; ha sido selecciona-..-,:
do para dceptar.informacién a imprimir, datos en paralelo provenien-
tes del unibus son cargadosg en el buffer de transmicidén del D 11. En
| este punto la bandera de XMIT RDY baja debido a que la légica del -
transmisor ha si}io activado (la bandera vuelve a estar baja una frac.—-
'qién-fle bit después si el transmisor no se encuentra activp en ese -
momento) La interfase genera el bit de arranque y transngite bit por
bit en serie al teletip.o, de nuevo pone la bandera XMIT RDY (tan -~
p;onto como el registro de buffer se encuentra vacfo afin c;uando el
registro de corrixﬁie‘nto se encuentre activo. Después_; transmite -

el nlmero requerido de bits de STOP.

Recepcidn
Lia seccidon de receptar la longitud del caracter es se
leccionable por medio de un selector. EIl caracter recibido aparece

jﬁstificddo a la derecho en el registro buifer recepcifm eliminando -

los bits de arranque y paro.



DL 11

. La interfase para linea asfncr_ona DL 11 es una 'L-nte___z.'
fase para comunicaciones designal,da para convertir datos de serie a
paralelo. La interfase cuenta con 2 unidades independientes, (recep
tor y transmisor}, capaces de establecer comunicacidn simultinea

en ambos senti_dos.

La interfase DL11 lleva a cabo bisicamente 2. 0pera;_
ciones: recepcidn y transmicién de datos asfncronos. Cuando reci-
‘.be datos, la interfase convierte un caracter serie asfncrono pr ov‘.e--
L nierit.:e de un diispositcha externo en un caract‘er en paralelo reqqerido.
pafa una traﬁs-ferencia al unibus. Este caracter puede ser mandado
por el bus a la memoria, o un regisi‘.ro en el procesador a algin otro
dispositivo. Cuuando sc tra;-xemit;cn datos en par;lelo desde el bus son
convertidos a serie para su transmisidn a un dispositivo externo. -
Debido a que las 2 unidades son independientes, es posible estable-
cer comunicacién de manera simultinea en ambos sentidos. El r_g‘ :
ceptor y el transmisor operan por medio de 2 registros: el regis-

L

tro de control y estado, para comando y monitoreo de funciones y -

el buffer de datos para guardar los datos antes de transferirlos al

bls o'a un dispositivo externo.



1. Slave (esclava) - Esta interfase no esta prevista;ﬁt‘
: SRR

Al

para ser Master. Ella sélamente puede transferir datos a o desde
e . . . _

el unibus por comando de un dispositivo Maestro,

2, Interrupt (interrupfor) - Esta interfase tiene la ha
bilidad de ganar el control del bus en el orden de dar al procesador
la direccidn de la subrutina, lo cual es usada para atender la soli-

- citud del periférico,

DMA. Esta interfase tiene la habilidad de ganar el
control del bus c_lé manera de transferir informacién entre ella y al

glin otro periférico.

Un sola interfase puede emplear los 3 tipos anterior-

res.,




manipulados con la flexibilidad de un acumulador. Para cada disPQ-
sitivo hay 2 tipos de registros. asociados:
1. Registros de control y estado

2. Registlros de Datos

Cada periférico puede constar de uno o mis registros
de control y estado (CSR) que contienen toda la informacidén necesa--

ria para comunicarse con dicho dispositivo.

El unibus es una via comQn que interconecta el pro-

cesador, memoria.y periféricos. Debido a la arquitectura de la mi

quina sHlo puede haber un dispositivo controlando el unibus en cual-

auior tictpo, A onto dipgpositive o To donoming Master. T.oa

digpositivos pueden solicitar ser Masters, ya sea haciendo una solici

tud de Bus o una solicitud de no procesador a la légica de arbitraje de

prioridadesdel procesador.

La solicitua es atendida si es la de mayor prioridad.
;

. El nuevo master asume el control del bus cuando el actual master -
lil.>er'a el .con.trol del bus. El nuevo maestro puede solicitar que el

py§césado’r atienda el periférico o puede inicia;- una transferencia -

de datos sin intervencidon del procesador.

Las interfases en la PDP-11 pueden clasificatse e.;-}

3 'tipos:



o

ricosi_.d,e manetra directa como localidades de memor.ia.. Por lo tan
to‘, las operaciones en dichos registros como es la transferencia -
de informacidn a o de ellos asf como la manipulacidn de datos den-
tro de ellos es llevada a cabo con instrucciones normales de refe-

rencia a memoria.

El uso de todas las instrucciones de referencia a me
moria en los registros de los periféricos incrementa gradualmente

‘1a flexibilidad de la programacidn de entrada salida. Todos los re-

gistros de periféricos pueden ser tratados como acumuladores.

v ' Actualmente en la PDP-ll.; las direcciones corres-
pondlentens 4 lus 4 k palabras superiores, egt;’m reservadas para -
los registros internos del pr.ocesa'.dor y para registros externos de
egtrada salida, por lo tanto, en caso de tratarse de una miquina chi
ca, la memoria se vers limitada a 28 k palabras de memoria fisica

y 4 k de localidades reservadas para los registros del procesador y

.

‘dispositivos de entrada salida. En caso de contar con '"Memory

.’

. Mapagement” lo que provee bits extra de direccionamiento 2 en el

caso de la PDP '1_1'/40 tendremos una capaci'dad total de 124 k pala-

1

bris de memoria fisica aparte de los 4 k del 4rea de registros an-

tes mencionada.

Todos los dispositivos periféricos son especificados
_ T
por un juego de'registros que scon direccionados como memoria y



Para efectuar una funcibn de entrada salida, el progra
mador debe especificar donde se encuentran los datos, de donde Vvie-
nen o van y como el dispositivo de entrada salida debe ser manejado.

!

A esto se le denomina programacibn de entrada salida.

‘Dependiendo de la funcibén de entrada salida se puede
requerir que el procesador espere hasta que la funcidn de I/O sea -
completada o por otro lado el procesador puede continuar ejecutan-

‘do tareas simultineamente con la ejecucidn de la funcidn de 1/0,

El poder programar una computadora para realizar cil

culos es de poca aplicacidn si.no hubiera manera de obtener resulta
~dos de la mAquina.’ De la misma manera se hace necesario proveer

a la computadora con informacibn a ser procesada. Por lo tanto, el

programador deberi contar ,con medios para transferir informacibn

ehlie la computadora y lus dinpunitivon porlféricon e permiten -

,c':ar‘g'ar datos de entrada y obtener los de salida. . |
I

Para la familia PDP 11, la programacidn de los peri-
féricos és extremadamente simple, ya que una instruccidén especial
para la entrada salida es innecesaria. La arquitectura de la maqui-

na permité direccionar los registros de estado y datos de los perifé

¢



