

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA

Viabilidad de un sistema de trigeneración aplicado a una fábrica de colchas.

Tesis

QUE PARA OBTENER EL TITULO DE INGENIERO MECÁNICO

Presenta: Juan Carlos Gutiérrez Díaz.

Dirige: Ing. Leonardo Rodrigo De Bengoechea Olguín

2015

Índice páginas Introducción.-----3) 1) Antecedentes. 1.1) Historia de la cogeneración.-----4) 1.2) Historia del sistema de aire acondicionado por absorción.-----8) 1.3) Trigeneración en la actualidad.-----9) 1.4) Trigeneración en México. -------11) 2) Marco conceptual, objetivo y descripción de las condiciones energéticas. 2.1) Marco conceptual ------14) 2.1.1.1) Definición de aire acondicionado.-----14) 2.1.1.2) Cargas externas e internas.------15) 16) 2.1.1.3) Humedad atmosférica, absoluta y relativa.-----2.1.1.4) Sistema de aire acondicionado por compresión. ------16) 2.1.1.5) Sistema de aire acondicionado por absorción.-----17) 2.1.2.1) Sistema de trigeneración. ------20) 2.1.2.2) Definición de cogeneración y trigeneración. 20) 2.1.2.3) Sistema de cogeneración.----- **21**) 2.1.2.4) Clasificación de los sistemas de cogeneración.----- 21) 2.1.2.5) Ventajas y desventajas de los motores utilizados en los sistemas de cogeneración. 2.2) Justificación. ------ 25) 2.2.1) Aire acondicionado en la industria textil.------ 25) 2.2.2) Ejemplo de la influencia de la humedad en los procesos textiles.------ 27) 2.2.3) Factores del ambiente que influyen la comodidad humana.----- 27) 2.2.4) Proceso dentro de la fábrica.------ **28)** 2.2.5) Requerimientos de la empresa.------ 29) 2.3) Objetivo.----- 29) 2.4) Gastos energéticos actuales. ------ 30)

3)	Det	terminación del sistema de aire acondicionado.	
		3.1) Cálculo de cargas térmicas totales	- 33)
		3.1.1) Condiciones internas y externas del aire en el inmueble	33)
		3.1.2) Determinación de las cargas externas, debidas a los muros, techo y cristales	35)
		3.1.3) Determinación de las cargas internas, debidas a la iluminación, equipos misceláneos y pactividades realizadas por los ocupantes.	
		3.1.4) Determinación de la cargas térmica debida al aire suministrado	77)
		3.2) Capacidad del sistema de aire acondicionado	81)
		3.3) Determinación de la capacidad del extractor de aire y estimación de los ductos pasistema de aire acondicionado	
		3.4) Análisis de del consumo energético. Implementando sistemas de aire acondicion ciclo de compresión	
4)	Via	abilidad del sistema de Trigeneración.	
		4.1) Selección del sistema de Trigeneración	95)
		4.2) Descripción del sistema de cogeneración seleccionado	101)
		4.3) Descripción del equipo de aire acondicionado por absorción	106)
		4.4) Descripción del funcionamiento del sistema de Trigeneración	108)
		4.4.1) Implementos del sistema de Trigeneración	112)
		4.5) Aprovechamiento de la energía	- 122)
		4.6) Aportación del cogenerador a las calderas	125)
		4.7) Análisis de costos y recuperación de la inversión del proyecto	- 128)
		4.8) Análisis del proyecto sin implementar sistema de aire acondicionado por absorcio	ón.
			135)
		CONCLUCIONES	141)
		BIBLOGRAFÍA	- 143)

Referencia de figuras y tablas.----- 148)

Introducción

En el presente trabajo se toma el caso de estudio de la empresa "Blancos y Maquilas", la cual desea implementar en su fábrica un sistema de aire acondicionado a bajo precio. Se hace la sugerencia para aplicar la Trigeneración (cogeneración más un sistema de aire acondicionado por absorción) para disminuir costos.

El análisis que se realizo, esta enfocado a la factibilidad de aplicar este sistema en la fábrica de la empresa. La Trigeneración es un sistema actualmente utilizado como veremos en los antecedentes planteados en el primer capítulo.

Posteriormente el segundo capítulo en el cual se plasma el marco conceptual necesario para hacer el desarrollo de los cálculos que permiten hacer el análisis, en este mismo capítulo se plantea el objetivo del trabajo y da un panorama de lo que se efectúa dentro de la fábrica y sus consumos energéticos (electricidad y gas L.P).

En el tercer capítulo se realizan los cálculos necesarios para determinar en primera instancia la capacidad del equipo de aire acondicionado a utilizar en el inmueble. En el cuarto capítulo una vez teniendo la capacidad adecuada del aire acondicionado, se hace la selección del sistema de Trigeneración para cubrir las necesidades energéticas de la fábrica. Hacer el análisis de los consumos energéticos. Finalmente se calcula el tiempo de la recuperación de la inversión.

Capítulo 1

Antecedentes.

En este capitulo se dará un panorama general evolución a través de la historia de los sistemas de Trigeneración y cogeneración desde sus orígenes. La Trigeneración parte de la adaptación de un sistema de cogeneración con un ciclo de aire acondicionado por absorción. Los sistemas de cogeneración son utilizados para la optimización de la energía consumida (combustible), generando la producción de dos energías simultáneamente por ejemplo energía mecánica y térmica útil o energía eléctrica y energía térmica útil.

1.1) Historia de la cogeneración.

La más vieja forma de combinación de producción de calor y potencia es la smokejack (también conocida como la chimenea de Jack o la chimenea voladora), la cual fue originalmente desarrollada en el Tíbet para mover las ruedas de oraciones durante las ceremonias religiosas. Este dispositivo se introdujo a Europa con la captura de esclavos Tártaros a inicios del siglo XIV, y Leonardo de Vinci dibujó un bosquejo de uno alrededor de 1480. Los comentarios al respecto son variados, como Montaigne (1580), John Evelyn (1675) y Benjamín Franklin (1758), refiriéndose a las smokejacks básicamente como pequeños molinos de viento instalados dentro de una chimenea y movidos por la ascendencia de los gases calientes del fuego. El movimiento rotatorio de las aspas era usado para mover un asador o un torno. La cantidad de movimiento dependía de la velocidad y masa del flujo de aire caliente y el diseño de las aspas; en general, el uso de la smokejack entregaba aproximadamente 1 dog-power (un perro de potencia).

En 1832, Charles Busby usó la smokejack para mover una bomba para circular agua a través de tuberías para calentar y enfriar el aire en el interior de edificios. Hacia finales de siglo XIX, la smokejack se desarrolló en su forma moderna de turbinas de aire caliente. Aún hoy en día, las turbinas de gas son tecnológicamente descendientes de las turbinas de aire caliente; y el turbocompresor es un ejemplo de la aplicación moderna de la turbina de aire caliente [1].

Otros ejemplos de la evolución de la cogeneración fue la utilización de algunas maquinas de vapor para diversificar sus aplicaciones, las cuales fueron progresando casi paralelamente junto con la somkejack, e incluso uno de los dispositivos complementó la utilidad de la somkejack elevando su potencia.

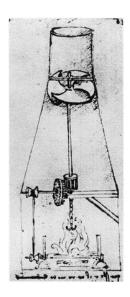


Figura 1: Diseño de Leonardo da Vinci (1452-1519) para describir la smokejack que trabaja con una varilla de asador.

Uno de los primeros ejemplos es el motor de vapor rotatorio de Herón, en la antigua Grecia, que tenia un gran potencial cuando se calentaba, ya que producía un gran chorro de vapor, al cual se le encontró un gran número de aplicaciones; al colocar abajo una somokejack, la fuerza adicionada del vapor incrementaba su capacidad de generación de potencia, y en 1629 El ingeniero Italiano Giovanni Branca mostró que el chorro de vapor podía mover engranajes. Estos dispositivos, fueron llamados steamjacks y fueron vendidos al terminar el siglo XVIII como un sustituto de las smokejacks. La potencia con vapor creció de estas aplicaciones de pequeña escala a grandes usos, a finales del siglo 1700, cuando los inventores ingleses Thomas Savery y Thomas Newcomen introdujeron grandes motores de vapor para bombear agua fuera de las minas. El motor de Savery operaba con vapor de baja presión (0.14 bar) y tenía una eficiencia térmica de aproximadamente un 1%.

El inventor e ingeniero británico James Watt duplicó la eficiencia del motor de vapor con la introducción de un condensador por separación en la década de 1760, pero evitó el uso de vapor a alta presión debido a la inherente peligrosidad. Uno de los vendedores de Watt en 1776 descubrió el mercado potencial del azúcar, ya que mediante un simple fuego hervía el azúcar y suministraba la potencia para el molino. Con lo cual tomó la ventaja en las fábricas que él construyó, ya que usaba una caldera simple para generar vapor para mover sus motores y, su vez, calentar las construcciones, aunque aún no usaba la cogeneración como actualmente la entendemos.

En 1784, un cervecero de Oxford, Sutton Thomas Wood, obtuvo una patente para el uso del desperdicio de vapor de un proceso industrial para accionar un motor de vapor y también para usar el vapor expulsado o agua caliente de un motor de vapor, para el calentamiento o manufactura, haciendo con esto la primera patente conocida de cogeneración [1].

En 1812, en una fábrica de hilados en Connecticut, propiedad del inventor e Ingeniero Estadounidense Oliver Evans, él mismo describe que el vapor generado estaba siendo empleado para mantener los cuartos cálidos en invierno, pero que, si esto hubiera sido un año antes, el elevado costo lo hubiera quebrado. Posteriormente, en una carta escrita a su hijo, describe que en una fábrica de hilados en Baltimore, estaban usando el sistema de calefacción de la fabrica como un condensador para el motor de vapor, agregando que era sorprendente, pues nunca antes se había visto, advirtiéndole que lo mantuviera en secreto, ya que tenía pensado patentar la idea; pero tiempo después murió y nunca hizo público su descubrimiento. Sin embargo sí publicó un diseño para enfriar las fábricas, usando un sistema de absorción con enfriadores, mediante el vapor expulsado de los motores.

La idea de la cogeneración no murió con él, y a mediados de 1820, en una comunidad religiosa utópica construida y dirigida por el Alemán George Rapp, en las afueras del Río Ohio en Pittsburg, el motor de vapor de Evans que daba potencia a su bote de vapor, fue reinstalado en una fabrica de hilados, y la salida de vapor del motor fue distribuida a través de las tuberías para calentar las instalaciones de la comunidad. [1].

Durante cerca de dos décadas, el vapor de salida fue extensamente usado en escenarios industriales en Bretaña, América y en los sanitarios públicos en Inglaterra. El británico Edwin Chadwick propuso que el calor de desperdicio de los motores de la fábrica (vapor) se utilizara en los sanitarios públicos y para calentar las casas más próximas de trabajadores. Empresas privadas construyeron varios baños parecidos, cobrando un penique por la entrada y con descuentos para usuarios frecuentes. Una empresa francesa de alimentos usaba la salida de vapor para secar piñas en la década de 1840, y los contratistas Americanos Walworth y Nason usaban el calor de desperdicio de los motores para mover las aspas de ventilación en varios edificios, incluyendo el Capitolio de los Estados Unidos de Norteamérica.

Charles E. Emery, entrenado como ingeniero naval durante la Guerra Civil de Estados Unidos, escribió un detallado análisis sobre las ventajas económicas de la generación combinada de potencia y calor. En 1870 trabajó como ingeniero para la compañía de vapor de Nueva York, la cual empleaba extensamente la generación combinada de potencia y calor [1].

El inventor Estadounidense Thomas Edison revolucionó los primeros hogares con la inauguración de las primeras estaciones eléctricas comerciales, primero en Londres, con la de Holborn Viaduct en enero de 1882 y después en Manhattan Nueva York, que se bautizó el 4 de septiembre como la Pearl Street Station, la primera de este tipo en EE.UU y que podía proveer de energía eléctrica a viviendas residenciales.

Edison lograba así poner en marcha la vida moderna, gracias a la aplicación de los estudios del Italiano Alessandro Volta que descubrió la corriente continua en 1774 e inventó la pila en 1800. Edison ideó motores de vapor que alimentaban varias dinamos capaces de producir una corriente continua que, conectada por cables, podía suministra energía desde una central emisora para los hogares [2].

Figura 2: Bosquejo de la parte exterior de la estación Pearl Street. Cortesía: Servicios fotográficos de la Consolidated Edison Company of New York, Inc.

A principios del siglo XX, el vapor fue la principal fuente de energía mecánica. Sin embargo, como la electricidad llegó a ser más controlable, muchas pequeñas "casas de energía" que producen vapor se dieron cuenta de que podrían producir y utilizar la energía eléctrica, y adaptaron sus sistemas para producir vapor y electricidad a la vez (cogenerar). Entonces 1940-1970, apareció el concepto desarrollado de una empresa eléctrica centralizada que suministra energía a la zona y los alrededores. Las grandes empresas de servicios públicos se convirtieron rápidamente en las fuentes de confianza, relativamente baratas de electricidad, por lo que las pequeñas casas de energía dejaron la cogeneración y compraron su electricidad a las empresas de servicios públicos.

Durante la década de 1960 y principios de 1970, la cogeneración comenzó a revivir, y para finales de 1970 la necesidad de conservar los recursos energéticos se hizo evidente. En los Estados Unidos, se aprobó una ley para fomentar el desarrollo de instalaciones de cogeneración. En concreto, los Servicios Públicos de la Ley Reguladora de las políticas (PURPA) de 1978 animan a esta tecnología, permitiendo a las plantas cogeneradoras a conectarse con la red de servicios públicos para comprar y vender electricidad. PURPA permitió a las plantas cogeneradoras comprar electricidad de las empresas de servicios a precios justos. Estas condiciones alentaron un rápido aumento de la capacidad de cogeneración en los Estados Unidos [3].

En Europa durante este mismo período hubo poco apoyo del gobierno, pues la cogeneración no era vista como una nueva tecnología, por lo que no estaba cubierto por "Thermie" (programa de energía de la Comunidad Europea). Bajo Thermie, el 40% del costo de los proyectos de capital estaba cubierto por el gobierno de la **CE** (Comunidad Europea). Sin embargo, algunos países europeos, como Dinamarca e

Italia, adoptaron políticas de energía independientes. En Dinamarca, el 27,5% de su electricidad era producida por cogeneración, y todos los proyectos de energía en el futuro deben incluir la cogeneración o alguna forma de energía alternativa. En Italia, se ofrecían préstamos a bajo interés para cubrir hasta el 30% del costo de la construcción de nuevas instalaciones de cogeneración [3].

1.2) Historia del sistema de aire acondicionado por absorción.

Paralelamente al desarrollo de la cogeneración, también fue evolucionando el sistema de aire acondicionado por absorción, como se menciono anteriormente al unir un sistema de cogeneración con sistema de aire acondicionado por absorción obtenemos un *sistema de trigeneración*.

El ciclo de absorción no es un descubrimiento reciente. Sus antecedentes pueden situarse en 1755, cuando el escocés William Cullen consiguió obtener una pequeña cantidad de hielo en una campana donde mantenía una presión reducida. Poco después, en 1777, otro escocés, Gerald Nairne, introducía ácido sulfúrico en la campana de Cullen, de manera que el vapor de agua fuera absorbido por este, dejando espacio para permitir una mayor evaporación de agua. En 1810, el físico escoces John Leslie coloca dentro de la campana bajo vacío un recipiente con el agua a evaporar y en el fondo otro recipiente con el ácido sulfúrico, logrando una producción de 3 kg de hielo por hora.

La primera maquina de refrigeración se patentó en 1834 por Jacob Perkins. Se trataba de una maquina de absorción que utilizaba éter. Así pues, esta sustancia tendría el privilegio de ser el primer refrigerante industrial. En 1850 Edmond Carré presento la primer maquina de absorción que funcionaba con agua como refrigerante y acido sulfúrico como absorbente. Su hermano Ferdinand, comercializó en 1859 una máquina de absorción, con amoniaco como refrigerante y agua como absorbente [5]. Esta máquina fue patentada en 1859 y obtuvo el premio de la Exposición Universal de Londres de 1862. En 1875 el buque Paraguay, equipado con máquinas de Carré, transportó por primera vez carne congelada desde Buenos Aires hasta el puerto de Le Havre en Francia [4].

En la década de los 70 el *sistema por absorción* se desarrollo particularmente en Japón, debido probablemente a la política energética seguida por éste país. Se desarrollaron versiones del sistema donde se aplica como fuente de calor la aplicación dela llama directa; en las que el calor es aportado por un quemador de combustible y otras por agua caliente, donde se utiliza la energía contenida en agua caliente de origen solar o procedente de equipos de cogeneración u otras fuentes de calor gratuito o residual.

El desarrollo de esta tecnología se ha derivado en dos grandes grupos en función del refrigerante y del tipo de absorbente utilizado. Uno de ellos utiliza una solución de amoniaco y agua siendo el amoniaco el

refrigerante y el agua el absorbente. El otro grupo emplea una solución de bromuro de litio (LiBr) con agua donde ésta actúa como refrigerante siendo las sales de LiBr el absorbente [4].

Desde finales del siglo XIX hasta el primer cuarto del siglo XX, los esfuerzos se concentraron por conseguir equipos de absorción y de compresión cada vez más fiables en cuanto su funcionamiento es limitado por el consumo energético asociado. Durante dicho periodo, ninguno de los ciclos se impuso claramente sobre el otro.

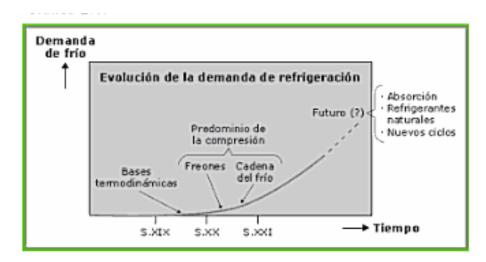


Figura 6: grafica de la evolución de la demanda de refrigeración

La aparición de los freones (refrigerantes están compuestos por clorofluorocarbonos (CFC)) como refrigerantes ideales para los ciclos de compresión, junto con cada vez mayor disponibilidad de energía eléctrica, hizo de los sistemas basados en el ciclo de absorción una tecnología obsoleta que empezó a recobrar protagonismo hasta los años sesenta y ochenta, con la progresiva absorción de la tecnología por parte de las empresas japonesas sobre las americanas (compra de patentes), así como el impulso a los sistemas de absorción como complemento de las instalaciones de cogeneración termoeléctrica[6].

1.3) Trigeneración en la actualidad

Actualmente a nivel mundial hay empresas que se dedican al desarrollo e investigación y sobre todo la aplicación de estos sistemas a diferentes tipos de edificaciones donde se requiere electricidad, calor y frio, estos son algunos ejemplos.

En el séptimo congreso internacional de bioenergía celebrado en Valladolid España en el 2012, se presento la exposición de tecnología de trigeneración aplicada a Hoteles por el Ingeniero industrial Miguel Ángel Pamplona de la empresa *Combustión y Secado Energía*. Se plantea la biomasa para una caldera, la cual calienta aceite térmico para mover una turbina de ciclo orgánico de Rankin acoplada a un generador para producir energía eléctrica. Los gases de salida se utilizan como energía térmica útil para producir agua caliente entre 90 y 100[°C] y mediante sistema de absorción producir agua fría entre 5 y 7[°C] utilizada para aire acondicionado.

Sistema de trigeneración con biomasas mediante ORC

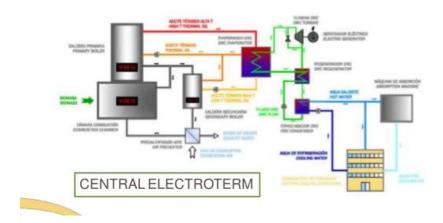


Figura 3: Esquema de planta de trigeneración tomado séptimo congreso internacional de bioenergía celebrado en Valladolid España en el 2012, se presento la exposición de tecnología de trigeneración aplicada a un hotel

Figura 4: Esquema de planta de trigeneración tomado séptimo congreso internacional de bioenergía celebrado en Valladolid España en el 2012, se presento la exposición de tecnología de trigeneración aplicada a un hotel.

En expo bioenergía celebrado en Valladolid España el mes de septiembre del 2013. Se presenta la exposición "Un sistema de trigeneración con biomasa logrará un ahorro de 3 millones de litros en un centro de gasoil en un centro hospitalario francés"

Se trata de una sistema pionero compuesto por una central térmica con caldera de aceite térmico, acoplada a una cámara de combustión con parrilla inclinada móvil modelo Movilterm, adecuada para combustionar diferentes tipos de biomasa, con alimentación y sistema automático de extracción de cenizas automáticos. Esta central alimenta un módulo turbogenerador para la producción de energía eléctrica y térmica. Por otro lado, los gases calientes a la salida de la caldera del aceite térmico se recuperarán en un intercambiador para la producción de agua caliente. La producción total prevista es de 625 [kW e] y 3.160[kW t] en forma de agua caliente para satisfacer las necesidades de calefacción y A.C.S. del hospital, así como para la climatización del edificio mediante grupos de generación de frío alimentados con agua caliente. Esta instalación, cuenta además con un sistema de reducción de emisiones de partículas compuesto por un multiciclón depurador de gases y un electro filtro. Los cálculos de ahorro previstos indican que la instalación de este sistema permitirá el ahorro de 3 millones de litros de diesel al año, y se evitará la emisión de más de 4.500 toneladas de CO₂ al año [7].

Cogent Energy, es una de las compañías trigeneración de líderes de Australia, se especializa en propiedades comerciales "construir, poseer, operar y mantener" (C.P.O.M) y dar soluciones de trigeneración en las infraestructuras tales como centros comerciales, hospitales, complejos de gobierno y la industria.

Fundada en septiembre de 2006, *Cogent Energy*, proporciona a los clientes energía rentable, eficiente, confiable y baja en carbono utilizando las últimas tecnologías de cogeneración y refrigeración por absorción. *Cogent* es una empresa de energía que construye, opera, posee y mantiene las plantas de cogeneración con el propietario del sitio [8].

1.4) Trigeneración en México.

En México también hay ejemplos de trigeneración. La siguiente nota del diario Reforma la cual es titulada, "Pone ejemplo en ahorro con Trigeneración" habla de uno de los primeros ejemplos de esta tecnología aplicada en nuestro país.

"Al ser la única tienda departamental en México que genera su propia energía eléctrica con gas natural mediante un sistema de trigeneración, la tienda del El Palacio de Hierro en Monterrey pone el ejemplo en ahorro de luz. De acuerdo con información pública de la Comisión Reguladora de Energía (CRE), El Palacio de Hierro invirtió un millón 80 mil dólares en la instalación de 20 turbinas de generación eléctrica, con una capacidad total de mil doscientos kilowatts y un consumo diario de gas natural de 5 mil 210 metros cúbicos.

Palacio de Hierro comenzó a operar el sistema de trigeneración en septiembre de 2006 logrando ahorros mensuales en la facturación de hasta el 30 por ciento. "El 40 por ciento de la energía de la tienda se generan con el sistema", afirmó Javier Lemus, superintendente de mantenimiento de El Palacio de Hierro en Monterrey. "Si llega a haber un corte de energía eléctrica la tienda puede operar con la iluminación y el aire acondicionado a un 40 por ciento", detalló. El sistema de trigeneración de El Palacio de Hierro fue instalado por la empresa con sede en Campeche, Industrias Energéticas, proveedora de las turbinas de la marca Capstone .

Estas turbinas utilizan el gas natural para generar energía eléctrica y calor, el cual sirve para calentar el gas refrigerante del sistema de aire acondicionado de la tienda con una capacidad de 400 toneladas de refrigeración. "Aparte de generar energía eléctrica, el sistema genera aire acondicionado para la tienda, ya sea calefacción o aire frío para el verano, entonces ahí hay otro ahorro", explicó Lemus. "En total, yo estoy tendiendo un ahorro en la facturación hasta del 30 por ciento", apuntó.

Así, además del ahorro en los recibos de luz, la tienda departamental cuenta ahora con un respaldo de energía eléctrica que funciona como una planta de emergencia en caso de interrupciones del servicio de luz. "El principal motivo por el cual instalamos este sistema era el ahorro", dijo Lemus, "pero a lo largo de la operación de la tienda que ya va para 6 años nos hemos dado cuenta que da una seguridad de operación, puede haber un corte de energía y nosotros podemos seguir operando al cliente con una confiabilidad muy alta". Según información de la CRE, otras tiendas departamentales y supermercados como Liverpool, Wal-Mart y HEB cuentan con un permiso de autoabastecimiento para la generación eléctrica, pero lo hacen con una planta tradicional a base de diesel" [9].

Actualmente en México hay empresas que aplican esta tecnología para el desarrollo de proyectos donde se requiere electricidad, frio y calor, utilizan combustibles como el biogás y gas natural. Tres de las principales empresas (*Grupo Guascor, Electriz, Nova energía*) desarrollan proyectos de **cogeneración y Trigeneración.**

Grupo Guascor es una corporación con presencia en más de 30 países del mundo y 45 años de experiencia, que ofrece una amplia gama de productos y servicios enfocados en el mundo de la energía con una óptica de eficiencia y de sustentabilidad. En México, Guascor ha implementado proyectos de eficiencia y cogeneración de energía para procesos industriales, de recolección y aprovechamiento de biogás en vertederos, plantas tratadoras de aguas y de desechos ganaderos y agrícolas, así como de generación de energía renovable.

Guascor de México "ofrece sistemas de Trigeneración, donde además de la energía eléctrica y el calor, se produce frío. Dado que no siempre se necesita el calor obtenido por el sistema de cogeneración, una solución alternativa y eficaz es utilizar máquinas de absorción que, alimentadas por el agua caliente de los módulos de cogeneración, proporcionan agua fría sin consumo de energía eléctrica. De esta manera se consigue uniformizar la curva de demanda de energía calorífica de las instalaciones receptoras de la cogeneración, al mismo tiempo que se disminuye la factura eléctrica. Este sistema se utiliza con éxito no sólo en aplicaciones de climatización destinadas al sector terciario, sino también en importantes aplicaciones industriales de los sectores alimentario, químico, etc. Los sistemas de cogeneración y trigeneración Guascor están instalados por todo el mundo en los siguientes sectores o aplicaciones: Aeronáutica, agrícola, alimentario, cementero, cerámico, centros comerciales, enseñanza, frigorífico, ganadero, hotelero, industrial, medio ambiente, minería, deportivos, papelero, químico, sanitario, textil, etc." [10].

Otra empresa mexicana la cual se dedica a proyectos de plantas de Trigeneración **es** *Electriz*, la cual brinda soluciones energéticas a partir de gas natural y biogás, ecológicamente benéficas y sustentables.

Con reconocimiento nacional e internacional. Una de las opciones que maneja la empresa es que partir de una sola fuente de energía primaria o combustible produce en forma simultánea dos diferentes tipos de energía útiles en el propio lugar de consumo, por lo general; energía eléctrica y energía térmica en forma de calor y/o frio.

Una alternativa que permite lograr ahorros significativos en los costos de electricidad y en el consumo de combustibles. Asegura el suministro de energía de buena calidad ininterrumpidamente y se pueden alcanzar eficiencias totales de 80% a 90% dependiendo de la capacidad de los equipos [11].



Figura 5 Esquema de la empresa Electriz de un sistema de cogeneración

Grupo Nova Energía es una empresa multinacional especializada en ofrecer soluciones de eficiencia energética mediante el aprovechamiento energético de residuos y energías residuales. Aprovechamiento de residuos agroalimentarios o forestales para la producción de energía (agua caliente, vapor, aceite térmico). Aprovechamiento de residuos térmicos para la producción de frío. Aprovechamiento del vapor de líneas de procesos industriales para la producción de electricidad [12].

Capítulo 2

Marco conceptual, objetivo y descripción de las condiciones energéticas.

Este capitulo tiene como **finalidad** conocer las definiciones y conceptos fundamentales referentes a la Trigeneración y aire acondicionado, los cuales se aplican a lo largo de este trabajo y plantear sus objetivos. Se describen las condiciones energéticas actuales de la fábrica.

2.1) Marco conceptual

Este trabajo de tesis se divide en dos partes, la primer parte consisten en los conceptos básicos para determinar la capacidad del sistema de aire acondicionado que se va emplear para el inmueble. La segunda parte es la definición de sistema Trigeneración y de cada una de partes que compone el sistema.

2.1.1.1) Definición de aire acondicionado.

El aire acondicionado o acondicionamiento de aire, es un proceso que consiste en el tratamiento del aire de un lugar cerrado para generar una atmósfera agradable para quienes se encuentran en dicho espacio. Incrementar o reducir la temperatura y el nivel de humedad del aire suelen ser los objetivos más habituales, aunque el proceso también puede implicar una renovación o filtración del aire.

Para poder determinar la capacidad de aire acondicionado que requiere la fabrica de colchas, es necesario emplear el concepto de carga térmica, por lo cual se define como la suma de las cargas de calor producidas por el ambiente al exterior de la edificación a acondicionar, más las suma de las cargas internas, producida por el calor que emiten las personas, los equipos misceláneos ext. [13].

2.1.1.2) Cargas externas e internas

a) cargas externas

Transmisión de calor a través muros y techos: La transmisión a través de los muros exteriores y techo de la edificación, es causada por la radiación solar, que es absorbida por las superficies.

Por otra parte, las variaciones cíclicas de la radiación y de las temperaturas del aire al exterior, así como la complejidad de los fenómenos que intervienen, han obligado a adoptar para el cálculo de la transmisión de calor las llamadas diferencias de temperaturas equivalentes , definidas como las diferencias de temperaturas existentes entre aire exterior y aire interior , que en ausencia de cualquier intercambio por radiación, produciría a través de la estructura del edificio el mismo flujo de calor originado simultáneamente por la radiación solar , los intercambios de radiación con el cielo y el ambiente exterior y los intercambios por convección en el aire exterior[14]. La diferencia de temperaturas equivalentes debe tener en cuenta los diversos tipos de construcción, las diversas exposiciones, la hora del día.

Otra carga externa común es la radiación solar a través de los vidrios, por lo que también se toma en cuenta para el cálculo de las cargas térmicas. El valor de la radiación solar unitaria atrevés del vidrio depende de la posición geográfica (Latitud), de la hora del día, periodo mensual y orientación del vidrio [14].

b) Cargas internas

Se denominan cargas internas a las cantidades de calor que se producen en el interior del inmueble a acondicionar, estás son emitidas por los ocupantes, el alumbrado y equipos misceláneos.

Carga de calor por iluminación: constituye una fuente de calor de 0.86 [kcal/h] por cada Watt de potencia que aporta un foco incandescente, mientras que las lámparas fluorescentes emiten 1.075 [kcal/h] por cada Watt. [14].

Carga de calor a través de equipos misceláneos: Para obtener la ganancia de calor debida al equipo que se tenga instalado en el espacio por acondicionar, se recurre a la tabla experimental (**Tabla 11**). Siempre se debe considerar esta parte de la ganancia total que en ocasiones se acostumbra a incrementar esta ganancia en un 10% por alguna contingencia imprevista que pudiera ocurrir.

La ganancia de calor producida por los ocupantes del espacio a enfriar está tabulada y depende de la propia actividad que las personas desarrollen dentro del espacio y de la temperatura de ese ambiente [15].

2.1.1.3) Humedad atmosférica, absoluta y relativa

a) Humedad atmosférica

La humedad atmosférica es la cantidad de vapor de agua contenida en el aire y varia según las condiciones climatológicas (temperatura y presión atmosférica).

Psicrometría: Es la ciencia que estudia las propiedades físicas del aire atmosférico. Este aire esta constituido por una mezcla de aire seco y vapor de agua. El aire seco es una mezcla de varios gases con la siguiente composición: Nitrógeno 79%, Oxigeno 20% Anhídrido carbónico y otros gases 1%.

El aire tiene la capacidad de retener una cantidad variable de vapor de agua en función de la temperatura del aire: a menor temperatura menos cantidad de vapor y a mayor temperatura, aumenta la cantidad de vapor de agua, a presión atmosférica constante [16].

b) Humedad absoluta

La humedad absoluta es la cantidad de vapor de vapor de agua presente en el aire, se expresa en gramos de agua por kilogramos de aire seco [gramo de agua /kg de aire seco], gramos de agua por unidad de volumen [gramo de agua / m³] o como presión de vapor [kPa o Pa o mm Hg] [16].

c) Humedad relativa

La humedad relativa es la humedad que contiene una masa de aire, en relación con la máxima humedad absoluta que podría admitir sin permitir condensación, conservando las mismas condiciones de temperatura y presión atmosférica. Se expresa en porcentaje y esta normalizada de forma que la humedad relativa máxima posible es de 100%.

Una humedad relativa del 100% significa que en el ambiente ya no cabe más agua. El cuerpo humano no puede transpirar y la sensación de calor puede llegar a ser asfixiante. Una humedad del 0% corresponde un ambiente seco en esta condición se traspira con facilidad [16].

2.1.1.4) Sistema de aire acondicionado por compresión.

En el ciclo de compresión el refrigerante en estado gaseoso ingresa al compresor siendo este comprimido, por lo tanto aumenta su presión y temperatura, en tales condiciones el refrigerante es enviado a un condensador, en el cual reduce su temperatura, el gas cambia de estado, se condensa, en esta condición se lo envía a través de la tubería hasta una válvula, llamada de expansión, en la cual se produce una brusca reducción de presión, al bajar la presión del refrigerante tiende a gasificarse, lo que consigue absorbiendo calor del intercambiador o evaporador, el que enfría el agua o aire que se utiliza en proceso de acondicionamiento. Finalmente el refrigerante nuevamente en estado gaseoso y a baja presión, es aspirado por el compresor reiniciando el ciclo. En este ciclo es preciso suministrar energía eléctrica para el accionamiento del compresor. [14].

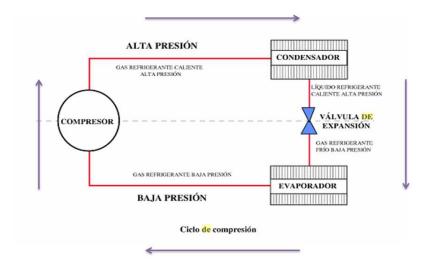


Figura. 7 sistemas de aire acondicionado por compresión

2.1.1.5) Sistema de aire acondicionado por absorción.

La compresión de vapor frecuentemente se lleva acabo mecánicamente mediante compresores, también puede realizar por vía química en los denominados proceso de absorción [17].

La idea básica de la absorción consiste en sustituir la compresión mecánica del vapor por una absorción de éste en una solución y la consiguiente compresión de la solución. El costo energético es mucho menor. Para liberar el vapor de la solución comprimida debe suministrarse calor. Así pues podría decirse que la energía primaria de una maquina de absorción es el calor [18].

Las maquinas de absorción además de fluido refrigerante requieren de un absorbente como fluido auxiliar, que cumple la función de transportar el fluido refrigerante en estado liquido desde una zona de baja presión hasta la de alta, lográndose el efecto de compresión una vez que este recupera el estado de vapor.

En las maquinas de gas y de vapor, el trabajo necesario para transportar el calor desde el foco frio al caliente se realiza mediante el aporte de energía mecánica por acción del compresor. En los sistemas termo eléctrico el trabajo necesario es de naturaleza eléctrica. Cuando se dispone de una fuente de energía térmica se puede llevar acabo la compresión del vapor por vía química mediante absorción obteniéndose un sistema accionado por calor. Desde el punto de vista termodinámico se puede considerar la maquina de absorción constituida por una maquina térmica que genera el trabajo necesario para accionar una frigorífica [17].

Las máquinas de absorción pueden funcionar a simple y doble efecto. Las de simple efecto constan de los elementos básicos, un generador, un absorbedor, el condensador y el evaporador. Las máquinas de

doble efecto hacen la separación del refrigerante en dos fases con un primer generador a alta temperatura y un segundo generado a baja temperatura [18].

Un sistema de mayor complejidad, mediante el empleo de un mayor número de intercambiadores de calor y un mayor número de niveles de presión, permite diseñar los sistemas denominados de doble efecto o doble etapa. La ventaja principal de estos esquemas de doble efecto es su mayor eficiencia energética y es gracias a dicha mejora por lo que han vuelto aparecer con fuerza en el mercado del acondicionamiento de aire a partir de finales de los ochenta y principio de los noventa. El accionamiento térmico de un sistema de doble efecto debe hacerse con un fluido a una temperatura mayor de 150[°C]. (Vapor saturado o gases de combustión) [19].

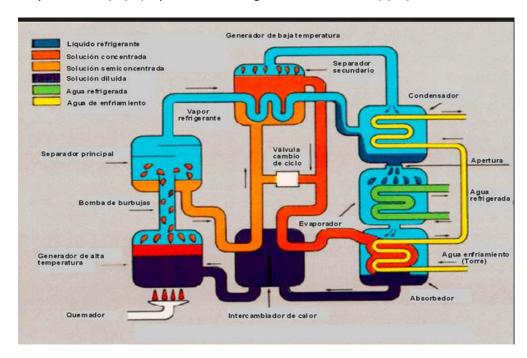


Figura 8. Sistema de aire acondicionado por absorción de doble efecto

Los sistemas de simple efecto se ajustan al ciclo de la figura 9. Utilizan vapor de agua de baja presión o agua caliente procedente de procesos industriales o plantas de cogeneración [17]. Su temperatura de activación debe ser como mínimo 85[°C]. [19].

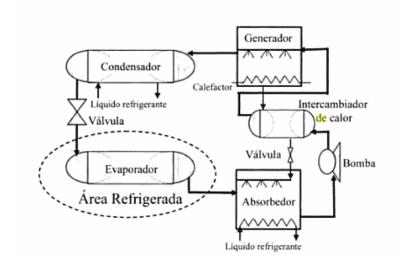


Figura 9. Sistema de aire acondicionado por absorción de simple efecto

Las máquinas de absorción utilizadas actualmente también se pueden clasificar en base al refrigerante y absorbente. El mercado utiliza las mezclas amoniaco- agua o agua- bromuro de litio.

En la mezcla amoniaco- agua, el amoniaco actúa como refrigerante y el agua como absorbente. Se utilizan en aplicaciones que requieren temperaturas por debajo de 0 [°C] (industria alimenticia, química y petroquímica). Pueden conseguirse temperaturas de evaporación de hasta -60[°C]. El COP (relación entre frio producido y energía consumida) de las maquinas que funcionan con esta mezcla es de 0.5.

$$COP = \frac{Energía\ consumida}{Energía\ suministrada}$$

Las mezclas agua-bromuro de litio han sido ampliamente utilizadas a partir de la segunda mitad del pasado siglo XX. El bromuro de litio actúa como absorbente y el agua actúa como refrigerante, las máquinas de absorción con esta mezcla son utilizadas en aplicaciones como la climatización donde la temperatura está por encima de 0[°C] (entre 4 y 12 [°C]). El COP tiene un rango entre 0.6 y 0.7 en máquinas de simple efecto, 1 y 1.2 en las máquinas de doble efecto y en los sistemas de compresión entre 3 y 5. [20].

2.1.2.1) Sistema de trigeneración.

El sistema de Trigeneración, es la unión de un sistema de cogeneración con un sistema de aire acondicionado por absorción. Para la finalidad de este trabajo se definen estos conceptos, sus tipos y características.

2.1.2.2) Definición de cogeneración y trigeneración

a) Definición de cogeneración

La cogeneración se define como la producción simultanea de energía mecánica (o eléctrica) y calor a partir de una fuente de energía primaria (combustible) [21].

La cogeneración se basa en la instalación de un equipo que, mediante combustión, obtiene energía mecánica capaz de accionar un generador eléctrico, y generar energía térmica utilizable en diversos procesos industriales [22].

b) Definición de trigeneración

Se denomina Trigeneración a la generación simultánea de electricidad, calor y frio. La Trigeneración es la ampliación de la cogeneración para incluir la refrigeración, la combinación de calefacción, refrigeración y generación de energía ofrece aún mayor flexibilidad para una planta de cogeneración. La clave para un enfriamiento eficaz es un dispositivo adicional, un enfriador de absorción puede proporcionar una refrigeración a muy bajo costo cuando se combinan con una fuente apropiada de los residuos de calor residual [23].

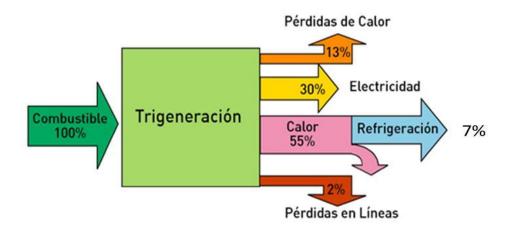


Figura 10: Imagen tomada de la empresa de gas natural Fenosa. Muestra el aprovechamiento energético de una planta de Trigeneración.

2.1.2.3) Sistema de cogeneración

Los sistemas de cogeneración se basan en la utilización de diversos tipos de maquinas con las que se obtiene energía mecánica (o eléctrica) y térmica a partir del uso de combustibles ya sea de forma directa o empleando fluidos intermedios.

2.1.2.4) Clasificación de los sistemas de cogeneración.

a) **Sistema directo:** El combustible se introduce en una maquina de cogeneración: motor alternativo o turbina de gas. Estas maquinas generan energía mecánica que se trasmite a un alternador que produce electricidad y los efluentes calientes se emplean para usos térmicos como generación de agua caliente, vapor, aire caliente etc. Estos sistemas reciben el nombre de cogeneración en cabeza [21].

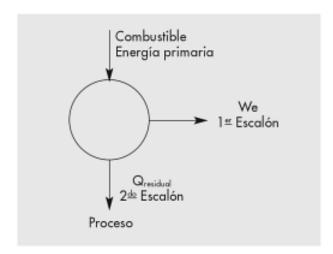


Figura 11: Cogeneración de cabeza

b) **Sistema indirecto**: Constituido básicamente por las turbinas de vapor .El núcleo originario es el hogar donde se genera calor. Este pasa a una caldera donde produce vapor de agua a alta presión, el cual es expandido en una turbina de vapor que lleva acoplado en un eje un alternador eléctrico. Estos sistemas reciben el nombre de cogeneración de cola puesto que la máquina generadora de energía eléctrica, a veces interesa simplemente la energía mecánica (como el caso de accionamiento de bombas) se halla situada al final del proceso [21].

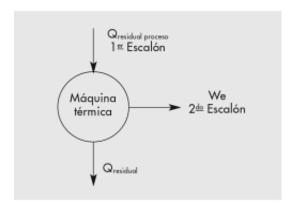


Figura 12: Cogeneración de cola

c) Sistemas combinados: También denominado ciclos combinados .El más usual es la combinación turbina de gas y turbina de vapor .En los últimos años se han experimentado un gran desarrollo debido a las altas eficiencia que consiguen .Este tipo de plantas combinan los ciclos termodinámicos de las turbinas de gas y las turbinas de vapor y tienen una eficiencia inherente superior a cada uno de los sistemas simples por separado.

En esencia el ciclo combinado estriba en una turbina de gas que genera electricidad. Los gases calientes efluentes producen vapor en una caldera que, a su vez, se envía a una turbina de vapor produciendo más electricidad [21].

No obstante la clasificación mas común seria en función del tipo de maquina térmica que se utiliza. En ese sentido designaremos.

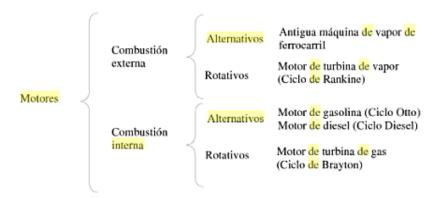


Tabla 1 Clasificación de motores de combustión externa e interna.

Cogeneración con turbinas de vapor: El ciclo de trabajo funciona con vapor de agua que se expande en las turbinas y permite la obtención de calor útil.

Cogeneración con turbinas de gas: Los gases de la combustión que se utilizan en el ciclo para obtener energía mecánica en la turbina y calor de proceso en una caldera de recuperación.

Cogeneración con un motor alternativo: de combustión interna **MACI.** El calor se obtiene a partir de los gases de escape, mediante una caldera de recuperación [24].

2.1.2.5) Ventajas y desventajas de los motores utilizados en los sistemas de cogeneración.

Cada sistema anterior tiene propiedades distintas y en consecuencia su campo de aplicación será distinto [20]. La turbina de vapor produce poca cantidad de electricidad en relación al calor útil pero el calor es aprovechable directamente.

Los **MACI** son los mejores convirtiendo la energía térmica del combustible en energía mecánica, pero el calor útil ha de obtenerse a partir de los gases de escape o de la refrigeración de las camisas del motor, por lo que es energía de baja calidad y a veces no aprovechable en su totalidad, dada su procedencia [24].

Los motores térmicos, ciclo Otto o ciclo Diesel están en torno al 40% del rendimiento mecánico, las turbinas de gas en trono al 28% y las de vapor difícilmente superan el 20% del rendimiento.

Los rendimientos mecánicos son mayores en los ciclos termodinámicos Otto y Diesel, por lo que la mayor parte de la energía aportada por el combustible se convertirá en energía mecánica, por lo tanto menos energía térmica sobrante se tiene a disposición [25]. Por otra parte los rendimientos mecánicos de la turbina de gas y de vapor son menores a los de los ciclos Otto Y Diesel, por lo que se dispone de más energía térmica para el proceso de cogeneración.

En la siguiente tabla se describe comparativamente las características de los tipos de motores utilizados en el sistema de cogeneración.

CRITERIO	TURBINA DE GAS	TURBINA DE VAPOR	MACI		
Tamaño (potencia eléctrica)	100kW-200MW	500kW-1000MW	10kW-50MW		
Combustible	Líquidos <mark>y</mark> gases Limpios y caros	Todo tipo de com- bustibles	Líquidos y gases Combustibles líquidos pesados		
Mantenimiento	Cada 4000 h	Cada 4000 h	Cada 800 h		
Rendimiento eléctrico ηe = We/F	0.2-0.4 Mejor en un ciclo combinado	0.1-0.2	0.3-0.4		
Rendimiento térmico η _{Qu} = Qu/F	0.4-0.7 Menor con ciclo combinado	0.5-0.8	0.4-0.5		
Relación We/Qu	0.4-1.0 Mayor en un ciclo combinado	< 0.3	0.5-2.0		
Indice ahorro energía primaria	0.2-0.4	0.10-0.25	0.15-0.30		
Calidad del calor	Gases de 400-600°C Calor sensible	Vapor 100-300°C Calor latente	Gases de 300-500°C Calor sensible		
Carga parcial	Baja eficiencia	Buen comporta- miento	Buen comportamiento		
Vida útil	15-20 años	25-35 años	15-25 años		

Tabla 2 Comparación de características de las distintas tecnologías.

Con el fin de proporcionar una idea sobre el orden de magnitud de los costos involucrados, se da a continuación una estimación de costos y rendimientos basada en distintos tipos de instalaciones y diferenciando los casos de cogeneración con motores alternativos y con turbinas [19]. El costo por kW instalado imputable al grupo es distinto según su elemento motor, sea una turbina de gas, una turbina de vapor o bien un motor alternativo.

En líneas generales el costo por kW desciende en el caso de las turbinas de gas y de las turbinas de vapor a medida que aumenta su potencia, estando por debajo el de las turbinas de vapor con relación a las turbinas de gas. Los motores diesel y motores a gas tienen un costo por kW inferior al de las turbinas de gas de potencia equivalente, siendo además menor su oscilación a medida que aumenta la potencia. A título orientativo los costos unitarios para los diferentes motores están comprendidos entre los valores de la tabla [26].

MOTOR PRIMARIO	COSTO/kW (DÓLARES)					
TURBINA DE GAS	645 175					
TURBINA DE VAPOR	450-115					
MOTOR DIESEL O GAS	650-300					

Tabla 3. Precio para los diferentes tipos de sistemas.

El costo de mantenimiento de los equipos basados en motores alternativos de gas, incluyendo todos los consumibles, puede evaluarse en 0.007(dólares/kW h) eléctrico generado. Este costo no tiene en cuenta el mantenimiento mayor requerido por el motor alternativo que, en el caso de un motor de gas, se suele producir después de un mínimo de 60,000 horas de funcionamiento.

El mantenimiento de las turbinas de gas es mucho más imprevisible, ya que su mantenimiento habitual es más económico (0.004 a 0.006 dólares/kW h), pero la frecuencia de las intervenciones mayores dependen de factores tales como el número de arranques o la limpieza de los filtros de aire [26].

2.2) Justificación.

2.2.1) Aire acondicionado en la industria textil

La fábrica textil y muy particularmente la que manufactura el algodón, figura entre las primeras industrias que han sabido aprovecharse de las ventajas que proporciona el acondicionamiento.

Son estas propiedades las que determinan el comportamiento de la fibra durante el proceso de elaboración y también la **calidad del producto final**. En el siguiente diagrama pueden ver las variaciones de la resistencia en porcentaje, según Meredith, en función de la humedad relativa para las más diversas fibras, basándonos en la resistencia existente a 65 % de humedad relativa. Como se observa dicha característica se logra aumentando la humedad relativa, aumenta considerablemente la resistencia en el algodón, disminuye en lana y se mantiene invariable en fibra poliéster [27].

Una de las características aún más importantes que la resistencia, es la elasticidad de la fibra, la cual, asimismo, depende, en gran escala, de la humedad relativa del ambiente. El Instituto norteamericano de Tecnología Textil, ha comprobado que un incremento de la humedad relativa del 60 al 70 yo puede aumentar en ciertas fibras, su elasticidad hasta un 15 %.

El grave problema de la carga electroestática de las fibras, es otro factor importante que ha de considerarse durante el proceso de la elaboración del hilo. Este fenómeno juega un papel cada vez más importante, sobre todo en fibras sintéticas y en lana. Contrariamente al algodón, las fibras de lana tienen su mayor resistencia en un ambiente relativamente seco. El rozamiento en este estado seco, no obstante, les hace adquirir fuertes cargas electroestáticas lo que hace difícil su posterior manejo en el proceso.

Estos fenómenos aparecen cada vez en mayor grado, cuando más baja es la humedad relativa del ambiente. Durante mucho tiempo se han elaborado diferentes métodos para eliminar estas cargas electroestáticas, según las fibras elaboradas y las máquinas usadas en el proceso. No obstante, el método más sencillo, más barato y más seguro para evitar estas cargas electroestáticas, consiste en mantener un ambiente con una humedad relativa adecuada, normalmente entre 50 y 75 % HR, según proceso y fibra elaborada [27].

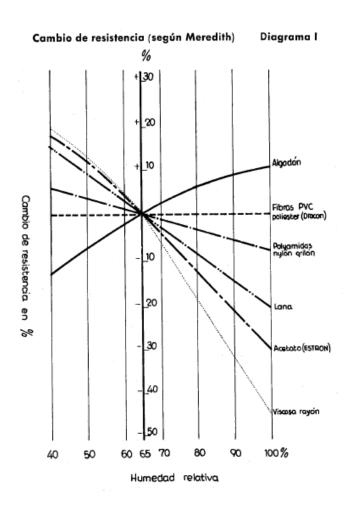


Figura 13 Diagrama de Meredith. Resistencia de los tipos de tela respecto a la humedad relativa

2.2.2) Ejemplo de la influencia de la humedad en los procesos textiles

- 1) El aire seco ocasiona que los materiales tengan baja absorción de humedad, afectando la calidad de la productividad.
- 2) Cuando la humedad atmosférica es baja se forman cargas electrostáticas en los procesos de fricción de las máquinas, provocando fenómenos de descarga que perjudican la producción en las fibras convencionales como lana, lino, yute, algodón y seda.
- 3) Los materiales que tienen un correcto nivel de humedad tienen menos probabilidad de quebrarse, calentarse o producir fricción. Se manejan mejor, tiene menos imperfecciones son más uniformes y se sienten mejor al tacto [16].

2.2.3) Factores del ambiente que influyen la comodidad humana

La temperatura elevada debido a las cargas de calor generado por las máquinas que operan dentro del inmueble, las luminarias y las personas trabajando, hacen del ambiente, uno de los factores que mas condicionan la comodidad humana en un recinto.

La sensación de calor, del acaloramiento, no solo depende de la temperatura si no la capacidad del cuerpo humano para transpirar. Esencialmente el proceso de transpiración es la evaporación del agua a través de la piel humana. Al evaporarse el agua, él cuerpo humano necesita suministrarle cierta cantidad de calor (llamada calor latente) y esa pérdida nos hace sentir cierto frescor [16].

Para la comodidad personal la humedad relativa es un factor importante por que cuando es baja o menor al 50% causa un exceso de perdidas de calor de cuerpo por evaporación del agua, provocando resequedad en la piel y de membranas mucosas. Cuando la humedad es alta (mayor de 50%), el sudor no se evapora con facilidad y el cuerpo no puede enfriarse adecuadamente.

Cuando se enfría al aire húmedo en ausencia de superficies sólidas sobre las cuales pueda producirse la condensación, la presión parcial del agua puede ser superior a la presión de vapor de agua a esa temperatura, por lo que se dice que el aire esta sobre saturado de vapor de agua.

En condiciones de baja humedad en el aire aumenta el polvo, la pelusa en el ambiente generando un ambiente incomodo de trabajo [16].

2.2.4) Proceso dentro de la fábrica

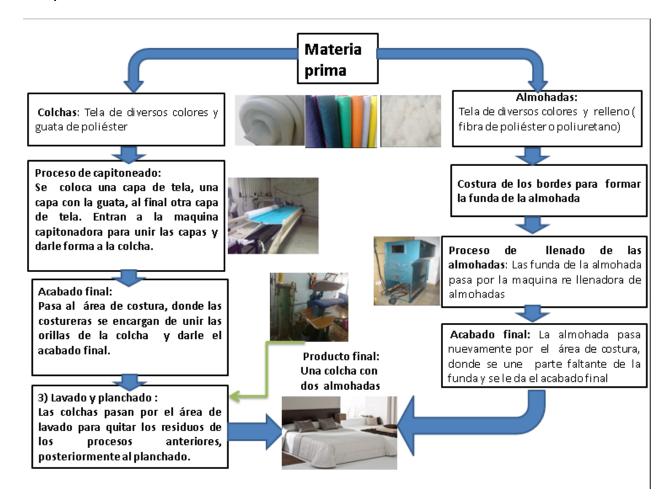


Figura 14; Descripción del proceso que se realiza dentro de la fabrica

Para realizar los procesos, la fábrica cuenta con dos máquinas capitonadoras y nueve máquinas de coser con sus operadores y una maquina rellenadora de almohadas, cuatro planchas de vapor con su respectiva caldera.

Al día se fabrican 70 juegos de colchas, cada juego está armado con una colcha y dos almohadas. Por cada juego el consumo eléctrico es de 0.34 kilowatts y 1.33 kilowatts de gas L.P (consumo térmico).

2.2.5) Requerimientos de la empresa.

Actualmente la empresa maquiladora de colchas "blancos y maquilas" requiere colocar un sistema de aire acondicionado para mejorar la calidad del sus productos y proporcionar a los empleados mejores condiciones de trabajo. Al implementar el sistema, la empresa pretende ahorrar dinero en sus gastos energéticos (consumo eléctrico y consumo de gas).

2.3) Objetivo

Este trabajo de investigación tiene como primer objetivo, determinar la capacidad del sistema de aire acondicionado adecuado para la fábrica de colchas.

Posteriormente demostrar la viabilidad del sistema de Trigeneración aplicado a la fábrica. Realizando el análisis comparativo del los gastos energéticos empleando el sistema de Trigeneración (consumo de gas Natural empleado para generar electricidad calor y aire acondicionado) y sin utilizar el sistema (consumo eléctrico cotidiano de la fabrica más el consumo eléctrico del equipo de aire acondicionado junto con el consumo de gas licuado petróleo empleado en el uso de la generación de vapor para las planchas de la fabrica).

2.4) gastos energéticos actuales

Actualmente la fábrica de colchas tiene un consumo eléctrico de \$14,440.00 pesos y de \$22,272.00 pesos de gas L.P. al bimestre por la utilización de planchas de vapor. En total la fábrica tiene un consumo energético de \$36,672.00 pesos registrado por bimestre. Al año el consumo es de \$220,032.00 pesos.

En la siguiente gráfica se muestran los valores de potencia eléctrica y gas L.P suministrados durante una jornada semanal de lunes a viernes.

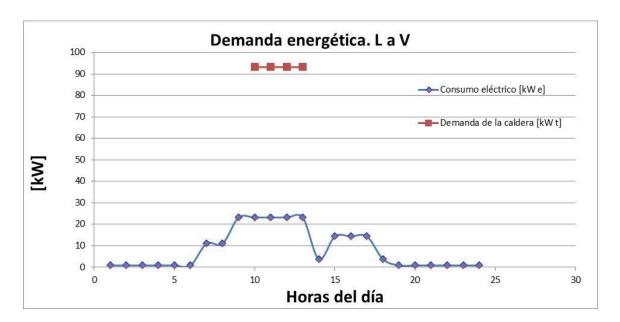


Figura 15 Consumo de energía a lo largo del día, dentro de un periodo semanal de lunes a viernes

El pico máximo de potencia eléctrica suministrada durante el día es de $22.98850 \, [kW_e]$. El pico máximo de potencia aportada por el del gas L.P., es de $93.53 \, [kW_t]$ en total por las cuatro planchas de vapor con su respectiva caldera. Por cada una de las planchas la energía por unidad de tiempo que se suministra es de $23.28 \, [kW_t]$. Esta potencia se determina multiplicando el gasto másico del gas por su poder calorífico superior.

En primera instancia se obtienen los litros utilizados durante el periodo, al consumo de gas L.P bimestral se le resta el 16% de IVA y posteriormente se divide entre el precio por litro = (22272-(22272*(16/116)))[\$]/7.27 [\$/ lt]= 2640.99 litros al bimestre.

Para conseguir los litros por hora de gas L.P., el consumo bimestral se divide entre 192, que representa la multiplicación de los siguientes periodos dentro del bimestre, el periodo mensual(2 meses), el periodo semanal(4 semanas por un mes), los seis días en que labora la fábrica y las horas en que operan las calderas. 2640.99/192=13.75 [lt/h].

Se multiplica por la densidad del gas L.P que es 530[Kg/m³] y el poder calorífico superior 46000[kJ/kg]

$$13.75 \left[\frac{lt}{h} \right] * \left(\frac{1h}{3600s} \right) * \left(\frac{1m^3}{1000lt} \right) * 530 \left[\frac{kg}{m^3} \right] * 46000 \left[\frac{kJ}{kg} \right] = 93.53 [kW_t]$$

En la siguiente grafica se muestran los valores de potencia eléctrica y Gas L.P. suministrados durante los periodos de sábado y domingo.

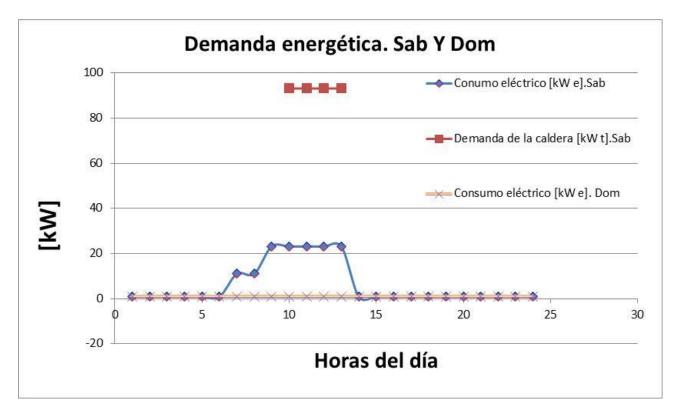


Figura 16 Consumo de energía a lo largo del día, dentro de un periodo semanal entre el sábado y domingo

El pico máximo de potencia eléctrica suministrada durante el día Sábado es de 22.98850 [kW $_{\rm e}$] y durante el día Domingo es de 0.85 [KW e].El pico máximo de potencia aportada por el del gas L.P durante los días sábados., es de 93.53 [kW $_{\rm t}$] en total por las cuatro planchas de vapor con su respectiva caldera. Por cada una de las planchas la energía por unidad de tiempo que se suministra es de 23.28 [kW $_{\rm t}$].

Capítulo 3.

Determinación del sistema de aire acondicionado.

En el presente capitulo se realizan los cálculos necesarios para determinar la capacidad del sistema de aire acondicionado adecuado para la fábrica. Al saber la capacidad del sistema se puede determinar como influye utilizar estos aparatos en el consumo eléctrico, sin la utilización de la Trigeneración.

3.1) Cálculo de las cargas térmicas totales.

La carga térmica total es igual a la suma de las cargas externas (paredes, techo y vidrios) y de las cargas internas (iluminación, aparatos y personas trabajando dentro del inmueble). Para poder determinar estas cargas térmicas es necesario conocer las condiciones internas y externas del aire en el inmueble.

q total = q sensible + q latente "o"

q total= q de muros + q techo+ q vidrios + q vitro block + q de infiltraciones de aire + q de iluminación + q de aparatos + q de personas + q por aire suministrado.

Donde generalmente las cargas a través de los muros, techos y vidrios son de calor sensible, las demás cargas pueden ser sensibles y latentes o solamente sensibles dependiendo del caso.

3.1.1) Condiciones internas y externas del aire en el inmueble.

a) Condiciones internas del aire en el inmueble.

Al interior del inmueble, en las áreas donde se encuentran trabajando las maquinas capitonadoras, el área donde se encuentran las costureras y la maquina rellenadora de almohadas se presenta una temperatura 32[°C] con humedad relativa del 28%, también se aprecia visualmente una alta concentración de polvo. En el área donde se encuentran las oficinas se registran 32 [°C] y una humedad relativa del 29%.

b) Condiciones externas del aire en el inmueble.

En la siguiente tabla de especificaciones para temperaturas del cálculo de sistemas de aire acondicionado del año 2014. Se determina las temperaturas de bulbo seco y bulbo húmedo que en este caso son 30[°C] y 17[°C] respectivamente. Para una ubicación geográfica próxima a la fábrica. Distrito Federal en la zona de Tacubaya.

	UBICACIÓN GEOGRÁFICA				DAT	OS DE	VERANO		DATOS DE INVIERNO			
LUGAR DE LA REPÚBLICA	Latitud N	Longitud O	A.S.N.M	Presión Barométrica , mm		Temperatura Prom. Máx.	Tempera de Cálcu	lculo °C	Grados día Anuales	Temperatura Prom. Mín.	Temperatura de Cálculo °C	Grados día Anuales
	. "			mb	Hg	Ext. °C	BS	BH	°C	Ext. °C	de Calculo C	°C
CHIHUAHUA		-										
Chihuahua	28° 38'	106° 04'	1423	860	645	38.5	35	23	651	-11.5	-6	793
Ciudad Juárez	31° 44'	106° 29'	1137	889	667	43	39	24	695	-10	-5	1269
Ojinaga	29° 34'	104° 25'	841	925	694	50.0	45	24	883	-12.0	-6	680
Hidalgo del Parral	26° 58'	103° 39'	1652	838	628	42	38	21	490	-14.0	-8	
DISTRITO FEDERAL											•	
Cd. México, Chapultepec	19° 25'	99° 10'	2240	780	585	33.8	30	17	78	-4.8	0	847
Cd. México,	19° 24'	99° 12'	2309	776	582	32.8	30	17	87	-6.5	-1	860
Tacubaya											_	
DURANGO												
Durango	24° 01'	104° 40'	1898	814	610	35.6	33	17	100	-5.0	0	550
Ciudad Lerdo	25° 30'	103° 32'	1140	889	667	39.0	36	21	1082	-4.2	1	227
Santiago Papasquiaro	25° 02'	105° 26'	1740	829	622	42.0	38	21	425	-14.0	-8	156
GUANAJUATO						•			-	•	•	
Celava	20° 32'	100° 49'	1754	828	610	41.5	38	20	657	-4.5	0	136
Guanajuato	21° 01'	101° 15'	2037	801	601	33.8	32	18	49	0.1	5	245
León	21° 07'	101° 41'	1809	822	617	36.5	34	20	192	-2.5	2	176
Salvatierra	20° 13'	100° 53'	1761	827	620	38.0	35	19	367	-2.0	3	40
Irapuato	20° 40'	101° 21'	1724	831	626	38.2	35	19	573	-2.6	2	
GUERRERO												
Acapulco	16° 50'	99° 56'	3	1013	760	35.8	33	27	2613	15.8	19	
Chilpancingo	17° 33'	99° 30'	1250	878	658	35.2	33	23	434	5.0	9	
Taxco	18° 33'	99° 36'	1755	828	621	36.5	34	20	518	8.0	12	
Ixtapa Zihuatanejo	17° 58'	101° 48'	38	1009	757	36.6	34	28	2168	11.5	14	
HIDALGO												
Actopan	20° 08'	98° 45'	2445	764	573	31.4	29	18		-5.8	-1	1007
Tulancingo	20° 05'	98° 22'	2181	787	590	34.7	32	19	12	-5.8	-1	849
Pachuca	20° 29'	98° 45'	2444	764	574	31.5	30	18	149	-8.0	-1	
Ixmiquilpan	20° 29'	99° 13'	1745	829	622	41.0	37	19	57	-9.0	-7	

Tabla 4: Especificaciones para temperaturas de cálculo en los sistemas de acondicionamiento de aire y datos geográficos más temperaturas extremas de los diferentes lugares de la republica Mexicana.

Una vez obtenidas las temperaturas por medio de la siguiente carta psicrométrica para la región del distrito federal, se puede conocer la humedad relativa, temperatura de roció, humedad absoluta, entalpia y volumen especifico.

En la siguiente carta psicrométrica, se localiza la temperatura de bulbo húmedo (TBH) en el eje de las abscisas, a partir de la temperatura se traza una línea vertical hasta encontrarse con la curva de 100% de saturación (la última curva de la carta), se baja diagonalmente con una línea hasta encontrar la línea perpendicular hacia la temperatura de bulbo seco (TBS) (está temperatura también está ubicada el eje de las abscisas), donde se cruzan esas dos líneas (la línea diagonal y de bulbo seco) se encuentra la curva de humedad relativa (HR) correspondiente a las dos temperaturas (la parte encerrada en círculo de la carta de la figura 18). Se extiende la línea diagonal hacia el lado izquierdo para leer el valor de entalpia (h) y de volumen especifico (Ve).

Se traza una línea horizontal hacia el lado izquierdo hasta encontrar nuevamente con la curva de 100% de saturación y se baja con una línea vertical para obtener la temperatura de roció(TR). Finalmente sobre el punto encerrado en un círculo, donde se encuentran las líneas se traza una línea hacia el lado derecho de las ordenadas para obtener el valor de humedad absoluta (HA).

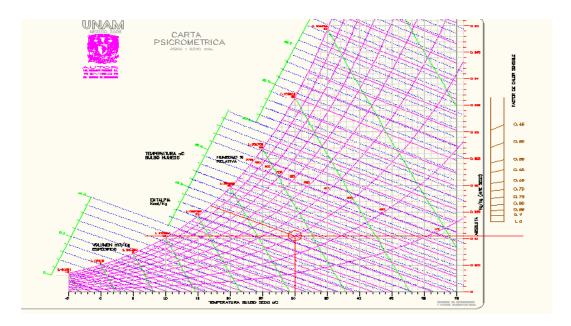


Figura 17; Carta psicrométrica para el distrito federal

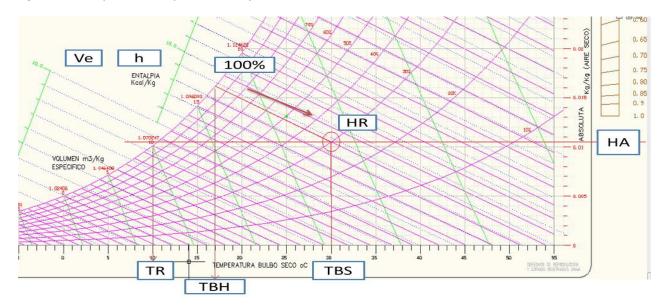


Figura 18; Carta psicrométrica para el distrito federal.

Humedad relativa 30%, humedad absoluta 0.0105 [kg/kg de aire seco].temperatura de roció 10[°C], entalpia 14 [kcal/kg].volumen específico 1.07 [m³/kg].

Para el cálculo del aire acondicionado, en el área de lavandería y planchado (El tercer nivel de la edificación o segundo piso considerando planta baja). Se va utilizar un extractor de aire para la erradicación de calor, por lo tanto esta zona no está contemplada para el cálculo del aire acondicionado. Más adelante se realizara el cálculo necesario para el extractor.

3.1.2) Determinación de las cargas externas, debidas a los muros, techo y cristales.

Con la adopción de las diferencias de temperaturas equivalentes, la trasmisión de calor a través de una estructura puede calcularse recurriendo a la ecuación fundamental de la trasmisión de calor [14].

$$q = UA\Delta teq *$$

q; Carga externa de calor [kcal/h].

A; Área de la superficie del calor trasmitido [m²].

 $\Delta \text{teq*}$; Diferencia de temperatura equivalente. [°C] y se define como la temperatura de superficie menos la temperatura en el ambiente (ts-t ∞).

 Δt_{final} ; Diferencia de temperaturas en el ambiente o t ∞ , al exterior e interior del inmueble a acondicionar.

$$t_{final} = t_{interna} - t_{externa}$$

 Δ teq _{tablas}; Temperatura equivalente para muros o superficies, está dada por las siguientes tablas. [°C].

$$\Delta teq *= \Delta teq_{Tablas} + (\Delta t_{final} - 8.3)$$

Las tablas están basadas en una diferencia de temperatura de diseño de 8.3 [°C], por lo cual si hay otra diferencia de temperaturas, se debe agrega el factor de corrección.

TABLA DE TEMPERATURA EQUIVALENTE PARA MUROS EN GRADOS CENTIGRADOS

Lat.								TIE	MP	O S	OLA	۱R							1.	ıt. Sur
Norte	e -		8	1	10	.M.		12		2	-	4	1 6	-	.M. 8	1	0 1	12	- Le	ıı. Sui
	. +					2105			D.4		19		-	-		1				ared
Pare Haci	1000	CC	DLOF	4 E)	KIE	RIOF	I DE	LA	PA	HEL	10	= (JBS	CUI	TA,	U = 1	CLA	HA)	Ha el:	acia
el:	4	0	C	0	C	0	C	0	С	0	С	0	C	0	C	0	CO	C	-	
	1		-				_	-		rticio	_				1		1 0			T 0 =
NE E	12	_		13	7	. 18	6	7	6	8	8	8	-	3 6	-		-	1	1	SE
SE	17	-		14	9	16	10	13	9	9	8	8	-	3 6	-	-	_	1	1	NE
S	-2	-	_	2	0	12	7	17	11	14	11	9	-	3 6	-	_	_	1	1	N
so	-2	_		0	-1	3	2	14	14	22	16	23		-		_	_	1	1	NO
0	-2	-		0	. 0	3	3	11	7	22	16	27	_	_	_	_	-	1	1	0
NO	-2		_	0	-1	3	2	7	6	13	11	22	_					1	1	SO
N	-2			-1	-1	2	42	6	* 6	8	.8	7			_	0 2	2	0	0	S
		- (-	(4		1 1			6		0		- //		127	
		9				2.4	Tab	ique	de	4 pl	g. o	pie	edra	1	11				I	
NE	-1	-2	13	7	111	6	6	3				8	8	7	7	6	6	3	. 2	SE
E	1	0	-17	8	17	9	· 8	8	1 7	7	7	8	- 8	7	. 7	+6	4	r3	3	E
SE	1	-1	11	6	16	9	14	9	10) (3	8	8	7	7	6	4	3	3	NE
S	-2	-2	s-1	-1	J 7	3	13	9	_		_	1	9	7	- 7	14	4	_2	2	N
SO	0	-1	0	-1	1	1	7	4	-	_	-	0	14	19	13	6	4	3	3	NO
0	0	-1	- 0	0	2	1	- 6	4	_			2	16	23	16	7	8	3	3	0
NO	-2	-2	-1	-1	1	1	4	3	_	_	_	7	12	19 7	13	-4	6	3	2	SO
N	-2	-2	-1	-1	* 0	0	- 3	3	1 6		5	7	- 7		- /	1 4	1 4	02		13
					10		La	drille	o hu	eco	de	8 p	la.	2		4				
NE T	0	0	0	0	111	6	9	6	_		-	7	6	8	7	7	6	4	4	SE
E	2	1	7	2	13	7	14	8	11	1	7	7	6	8	7	8	6	6	4	E
SE	1	0	1	0	9	4	11	7	11	1 8	3	8	7	8	7	7	6	4	3	NE
S	0	0	0	0	1	0	7	3	_	_	_	4	9	11	8	7	6	4	3	N
so	1	0	1	0	1	0	3	2	_	_	-	4	10	17	11	14	10	4	3	NO
0	2	1	2	- 1	2	1	3	2			_	0	8	17	12	18	12	10	8	0
NO	0	0	. 0	0	1	0	2	1			_	7	6	12	10	17	12	6	4	so
N	-1	-1	-1	-1	-1	-1	0	0	3	3 3	3	6	6	6	6	6	6	3	3	S
	0	C	0	C	Cabi	que o	10 R	nla	-1	adri	llo h	III A	CO (de 1	2 pla	1			-	
NE I	11	1	1	1	6	1	9	4				6	3	6	4	6	6	6	4	SE
E	4	3	4	3	8	4	10	6	10	_		8	4	8	6	8	6	7	6	E
SE	4	2	3	2	3	2	8	6	10	_	_	9	7	7	6	7	6	7	6	NE
S	2	1	2	1	2	1	2	1	1	_	3	9	6	9	7	7	6	6	4	N
so	4	2	3	2	3	2	4	2	6	3	3	7	4	11	7	13	9	11	8	NO
0	4	2	3	2	3	3	4	3	6	3		8	4	11	6	13	9	13	9	0
			-	1	1	1	2	- 1	3	3 2		4	3	6	4	9	8	10	8	SO
NO	1	1	1	1	1	1 1			1	_		3	3	4	4	4	4	3	3	S

Tabla 5; Temperatura equivalente en grados centígrados

TABLA DE TEMPERATURA EQUIVALENTE PARA MUROS **EN GRADOS CENTRIGRADOS**

Lot Mosts			TIEMP	0 SO	LAR	/ "				
Lat. Norte	1	A.M.					P.M.			Lat.
Pared	8	10-	12	2	4	6	8	10	12	1_'
Hacia el:	COLOF	EXTERIOR	DE LA PAI	RED (0 = C	BSC	URA, (C = CLA	ARA)	Pare Haci
	0 0 0	CO	COC	C	TO	CO	C	0 0	OC	1

	abil	que !	uc i	- PIE	j.							
4	2	6	2	7	3	7	3	6	3	6	4	SE
6	3	7	4	8	6	8	6	8	4	8	4	E
6	3	6	3	7	4	8	6	8	6	7	4	NE
3	2	3	2	4	2	6	3	7	4	- 7	4	N
6	3	6	3	6	4	6	4	7	4	8	6	NO

SE	6	3	6	3	6	3	6	3	6	3	7	4	8	6	8	6	7	4	NE
S	4	3	4	3	3	2	3	2	3	2	4	2	6	3	7	4	- 7	4	N
SO	6	3	6	3	6	3	6	3	6	3	6	4	6	4	7	4	8	6	NO
0	7	4	7	4	7	4	6	.3	6	3	6	3	6	3	7	4	9	6	0
NO	4	3	4	3	4	2	4	2	4	2	4	2	4	2	6	3	6	3	SO
N	2	2	1	/1	1	1	1	1	1	1	.1	1	1	1	2	2	3	3	S

Concreto o piedra de 8 plg. o bien, bloque de concreto de 6 u 8 plg. 4 8 1 12 0 8 9 e4 7 06 6 4 3 SE -13 7 -13 9 6 7 6 E NE 0 1 . 7 6.4 N NO 4 8 +10

 SO

2 S

)					
						(Concr	eto	o pie	edra	de 1	2 pl	g.						
NE	- 3	2	3	1	3	1	8	4	8	4	6	4	6	4	7	6	6	4	SE
E	6	3	4	3	- 6	3	10	6	10	7	9	6	7	6	8	6	8	6	E
SE	4	2	4	2	3	2	8	4	9	6	9	6	8	6	7	6	7	6	NE
S	3	2	2	1	2	1	2	1	6	3	8	6	9	7	8	6	6	4	N
SO	4	2	4	2	3	2	3	2	4	3	6	4	10	8	11	8	10	7	NO
0	6	3	4	3	4	3	6	3	6	3	7	4	9	6	13	8	12	8	0
NO	3	2	3	1	3	1	3	2	3	2	4	3	6	4	10	7	11	8	SO
AL I	0	0	0	^	0	0	0	^	4	4	0	2	2	2	1	1	2	2	0

Tabla 6; Temperatura equivalente en grados centígrados.

NE

SE

NO

-1

Coeficiente combinado de transmisión de calor.

Se define como el flujo de calor por hora a través de 1[m²] de barrera, cuando la diferencia de temperaturas entre el aire interior y exterior es 1 [°C]. También puede decirse que el recíproco del coeficiente de transmisión de calor, es la resistencia al flujo de calor que opone por un lado los diferentes materiales de que esta compuesta la barrera y por otro lado, las películas de aire interior y exterior que tiende a adherirse a las superficies. El flujo de calor que se trasmite por los materiales que forman la barrera se lleva acabo por conducción y la transmisión en las películas de aire es por convección entre la superficie y el aire [15 A].

$$U = \frac{1}{\frac{1}{h_{ext}} + \frac{Xa}{Ra} + \frac{Xb}{Rb} + \frac{Xc}{Rc} + \frac{1}{h_{int}}}$$

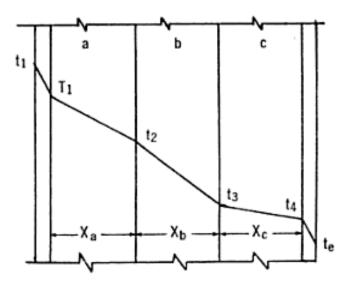


Figura 19; Transmisión de calor a través de una barrera.

Coeficiente de convección térmica o de película.

La cantidad de calor trasmitida por convección entre una superficie y un fluido puede obtenerse usando la siguiente expresión [15 A].

$$q = hA(t_s - t_\infty)$$

La resistencia térmica será:

$$R = \frac{1}{hA}$$

El valor del coeficiente **h** se incrementa al aumentar la rugosidad de las paredes y crece también con la velocidad del viento cuando se trata de aire acondicionado. Por costumbre y en virtud de que las variaciones tanto de rugosidad como de velocidad del viento, se supone que no pasan de cierto límite y para cálculos de ingeniería en el aire acondicionado se puede suponer los siguientes valores[15].

h ext= 6 (BTU/h-ft 2 - $^\circ$ F) =29.3 (Kcal/h-m 2 - $^\circ$ C).

h int=1.65 (BTU/h-ft 2 - $^\circ$ F) =8(Kcal/h-m 2 - $^\circ$ C).

La carga en los muros se determina de la siguiente manera.

$$q_{m} = U_{m}A_{m}\Delta teq *$$

$$\Delta teq *= \Delta teq_{tablas} + (\Delta t_{final} - 8.3)$$

$$\Delta t_{final} = t_{externa} - t_{interna}$$

$$1$$

$$U_{m} = \frac{1}{\frac{1}{h_{ext}} + \frac{Xm1}{Rm1} + \frac{Xm2}{Rm2} + \frac{Xm3}{Rm3} + \frac{1}{h_{int}}}$$

gm.; Carga externa de calor a través de los muros

Um.; Coeficiente combinado de trasmisión de calor [kcal/h (m²) °C].

Am.; Área del muro [m²]

Xm.; espesor del muro [m] (Xa, Xb, Xc).

Rm.; conductividad térmica del muro , obtenida de la siguiente tabla [kcal-m/hm2°C] (Ra, Rb, Rc).

MATERIALES. Materiales de construcción.	Kg/m ³	Kcal-m/h m² °C
Muro de ladrillo al exterior.	Ng/III	0.75
Muro de ladrillo al exterior con recubrimiento		0.66
impermeable por fuera.		
Muro de ladrillo interiores.		0.60
Muro de ladrillo comprimido vidriado para		1.10
acabado aparente, exterior.		
Muro de tabique ligero con recubrimiento	1,600	0.60
impermeable por fuera.	1,400	0.50
	1,200	0.45
	1,500	0.35
Muro de tabique ligero al exterior.	1,600	0.70
Placas de asbesto cemento.	1,800	0.50 0.18
Siporex al exterior con recubrimiento	660 510	0.18
impermeable por fuera.	410	0.12
Siporex al interior en espacio seco.	660	0.16
Siporex at litterior en espacio seco.	510	0.13
	410	0.11
Concreto armado.	2,300	1.50
Concreto pobre al exterior.	2,200 /	1.10
Concreto ligero al interior.	1,250	0.60
Muro de tepetate o arenisca calcárea al exterior.		0.90
Muro de tepetate o arenisca calcárea al interior.		0.80
Muro de adobes al exterior.		0.80
Muro de adobes al interior.		0.50
Muro de embarro (con paja y carrizo).	0.700	0.40
Granito, basalto.	2,700	3.00
Piedra de cal, mármol	2,600 2,400	2.10 2.00
Piedras porosas como arenisca y la caliza blanda o areneros.	2,400	2.00
Rellenos y aislamientos		
Tezontle como relleno o terrado seco.		0.16
relleno de tierra, arena o grava expuestos a la lluvia		2.0
Rellenos de terrado, secos, en azoteas.		0.50
Arena, seca, limpia.	1,700	0.35
Ceniza de carbón, seco.	700	0.20
Siporex despedazado, seco.	400	0.13
Escoria, seco.	150	0.08
Aserrín relleno suelto, seco.	120	0.10
Aserrín relleno empacado, seco.	200	0.07
Bolas de plástico celular, empacado, seco.	10-20	0.05
Virutas como relleno, seco.	400	0.07
Masa de magnesia, seco.	190	0.05

Tabla 7; Coeficiente de conductividad térmica para diversos materiales

a) Transmisión de calor a través de los muros.

En el edificio a acondicionar hay distintos tipos de superficies con diversos materiales y colindancias con las paredes de los vecinos. Para calcular la carga externa a través de los muros, se hace la sumatoria de todos los tipos de paredes externas que hay en la edificación.

q muros= qm1+qm2+qm3+qm4+qm5

qm1.; Carga externa de calor a través de la fachada principal. El muro está compuesto por aplanado al exterior, tabique, aplanado interior de la edificación. Orientación Oeste.

qm2.; Carga externa de calor a través de los muros de tabique con aplanado interior. Orientaciones; Norte, sur, norte.

qm3.; Carga externa de calor a través de las trabes con aplanado al interior. Orientaciones Este, Norte, Sur, Oeste.

qm4; Carga externa a través de los muros colindantes. Paredes externas de los vecinos adyacentes a sus patios. La partición está compuesta por: Aplanado y tabique de los muros del vecino, espacio de aire, tabique del muro de la edificación, aplanado interno de la edificación. Orientaciones Este, Norte, Sur, Oeste.

qm5.; Carga externa a través del muro colindante. Pared interna del vecino adyacente al interior de su casa. La partición está compuesta por: El acabado de la pared interna del vecino (yeso), tabique del muro del vecino, espacio de aire, tabique del muro de la edificación, aplanado interno de la edificación. Orientación Norte.

Carga externa qm1.

$$\begin{split} q_{m1} &= U_{m1}A_{m1}\Delta teq * \\ \Delta teq * &= \Delta teq_{Tablas} + (\Delta t_{final} - 8.3) \\ \Delta t_{final} &= t_{externa} - t_{interna} \\ \\ U_{m1} &= \frac{1}{\frac{1}{h_{ext}} + \frac{Xm11}{Rm11} + \frac{Xm12}{Rm12} + \frac{Xm13}{Rm13} + \frac{1}{h_{int}}} \end{split}$$

$$\Delta teq final [°C] = t_{externa} - t_{interna deseada}$$

$$\Delta teq final [°C] = 30[°C]-24[°C]=6[°C]$$

h exterior = $29.3[\text{kcal/h}(\text{m}^2)^{\circ}\text{C}]$

h interior= $8[kcal/h(m^2)^{\circ}C]$

Resistencias térmicas (Rm) y espesores de los materiales (Xm).

Aplanado externo Tabique

 $Rm11 = 0.75 \text{ [kcal-m/hm}^2 * {}^{\circ}\text{C]}$ $Rm12 = 0.75 \text{ [kcal-m/hm}^2 * {}^{\circ}\text{C]}$

Xm11=4 [cm] Xm12=10 [cm]

Aplanado interno

Rm13=0.6 [kcal-m/hm²*°C]

Xm13=4 [cm]

Ejemplo del cálculo de la carga externa qm1 para las 13 horas.

$$U_{m1} = \frac{1}{\frac{1}{h_{ext}} + \frac{Xm11}{Rm11} + \frac{Xm12}{Rm12} + \frac{Xm13}{Rm13} + \frac{1}{h_{int}}}$$

$$U_{m1} = \frac{1}{\frac{1}{29.3} + \frac{0.04}{0.75} + \frac{0.1}{0.75} + \frac{0.04}{0.6} + \frac{1}{8}} = 2.424459 \left[\frac{kcal}{h * m^2 * {}^{\circ}\text{C}} \right]$$

$$q_{m1} = U_{m1}A_{m1}\Delta teq *$$

De la **tabla 5** se determina la temperatura equivalente en la superficie, tomando en cuenta los siguientes factores, el material (el cual es tabique de cuatro pulgadas) la hora del día, el tipo de techo si es claro u oscuro, para el caso en particular es claro y finalmente la orientación del muro(oeste) . Por lo tanto la temperatura equivalente es de centígrados es de 14 [°C].

$$\Delta teq *= 14[°C] + (6 - 8.3)[°C] = 11.7 [°C]$$

El área del muro es de 88.1188 [m²]

La carga térmica qm1 en el horario de la una de la tarde es igual a

$$q_{m1} = 2.424459 \left[\frac{kcal}{h*m^2*^{\circ} \text{C}} \right] * 88.1188 [m^2]*11.7 [^{\circ} \text{C}] = 2405.98526 \left[\frac{kcal}{h} \right]$$

De la misma manera se calcula la carga térmica qm1 para las diferentes horas del día. Las demás cargas térmicas a través de los muros (qm1, qm2qm3, qm4, qm5) y del techo se calculan de igual forma. El valor tomado como ejemplo está iluminado en verde en la **tabla A.**

La carga **qm1** se muestra en la **tabla A** de resultados.

Am1= (Longitud total*altura)-A trabe-A puertas- A ventanas

El Área Am1 se muestra en la tabla A1 de resultados.

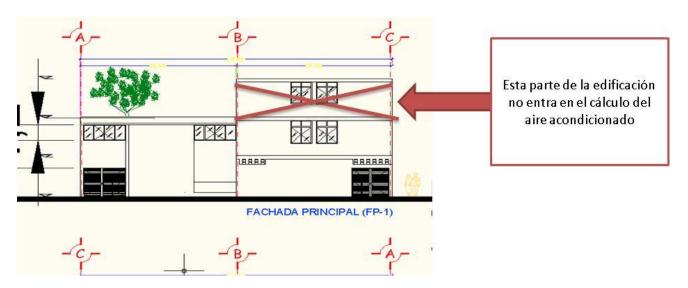


Figura 20: Pared exterior principal de la fabrica de colchas.

		TABLA A 1			
Longitud		Este	Oeste	Total	
[m]	Parte 1 L [m]	0	11.2		
[]	Parte 1 Altura [m]	0	6		
	Área 1 [m^2]	0	67.2		
Altura	parte 2 L [m]	0	10		
[m]	parte 2 Altura [m]	0			
	Área 2[m^2]	0	60		
	Área total [m^2]	0			
	Área trabe [m2]	0			
	Área ventana[m2]	0	16.002		
	Área puerta [m2]	0	10.2032		
	Am1 [m^2] TOTAL	0		88.1188	
Cálculo de U					
	1				
$U_{m1} = \frac{1}{1}$	$\frac{Xm11}{Rm11} + \frac{Xm12}{Rm12} + \frac{Xm}{Rm}$	13 _ 1	Um1=	2.424459737	[kcal/h(m^2)°C]
h_{ext}	Rm11 ' Rm12 ' Rm	13 h _{int}			. , , , .
		TABLA A			
Tabique 10c	m aproximadamen		ro		
Hora	Δteq muro Tablas	-	Δteq *(ºC)	q m1	
	Oeste	Total	• •	[kcal/h]	
1	0	0		-472.9714613	
2	0	0		-472.9714613	
3		0		-472.9714613	
4		0		-472.9714613	
5	0	0		-472.9714613	
6	0	0		-472.9714613	
7		0		-472.9714613	
8	0	0	-2.3	-472.9714613	
9	0	0	-2.3	-472.9714613	
10	2	2	-0.3	-61.69192974	
11	6	6	3.7	760.8671334	
12		14		2405.98526	
13	14	14	11.7	2405.98526	
14	10	10	7.7	1583.426197	
15	10	10	7.7	1583.426197	
16	16	16	13.7	2817.264791	
17	16	16	13.7	2817.264791	
18	16	16	13.7	2817.264791	
19	16	16	13.7	2817.264791	
20	16	16	13.7	2817.264791	
21	16	16	13.7	2817.264791	
22	9	9	6.7	1377.786431	
23		3	0.7	143.9478361	

Carga externa qm2.

$$q_{m2} = U_{m2}A_{m2}\Delta teq *$$

$$\Delta teq *= \Delta teq_{tablas} + (\Delta t_{final} - 8.3)$$

$$\Delta t_{final} = t_{externa} - t_{interna}$$

$$U_{m2} = \frac{1}{\frac{1}{h_{ext}} + \frac{Xm21}{Rm21} + \frac{Xm22}{Rm22} + \frac{1}{h_{int}}}$$

 $\Delta teq final [°C] = t externa - t interna deseada$

 $\Delta teq final [°C] = 30[°C]-24[°C]=6[°C]$

h exterior = $29.3[\text{kcal/h}(\text{m}^2)^{\circ}\text{C}]$

h interior= $8[kcal/h(m^2)^{\circ}C]$

Resistencias térmicas (Rm) y espesores de los materiales (Xm).

Tabique Aplanado interno $Rm21=0.75 \ [kcal-m/hm^2°*C] \qquad \qquad Rm22=0.6 \ [kcal-m/hm^2*°C] \\ Xm21=10 \ [cm] \qquad \qquad Xm22=4 \ [cm]$

La carga qm2 se muestra en la tabla B de resultados.

Am2 = (longitud total*altura)-A trabe-A puertas- A ventanas -A pared vecino

El Área Am2 se muestra en la tabla B1 de resultados.

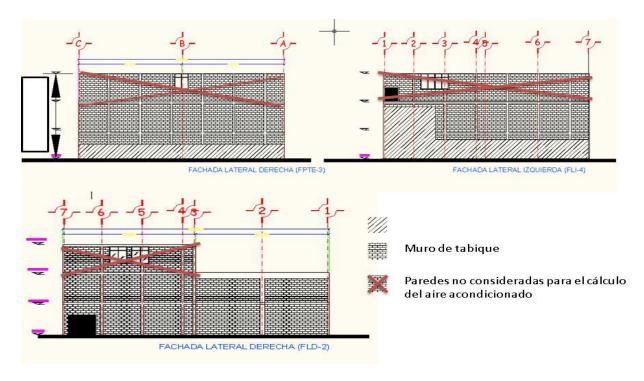


Figura 21: Paredes exteriores de la fabrica de colchas.

	Este		Norte	Sur
Parte 1 L [m]	10	Longitud		
Parte 1 Alt [m]	3.05	[m]	20	20
A1[m^2]	30.5			
parte 2 L [m]	10	Altura		
parte 2 Alt [m]	3.05	[m]	6	6
A2[m^2]	30.5			
Área [m^2]	61	Área [m^2]	120	120
Área trabe [m2]	12.791	Área trabe [m2]	10.994	13.67
		A pared vecino [m]	57.6553	30
A Total [m^2]	48.209		51.3507	76.33
	1			
$U_{m2} = \frac{1}{1 + Xm^2}$		1 Um2=	2.784509385	[kcal/h(m^2)°C]
h _{ext} Rm2	$1 + \overline{Rm22} +$	h _{int}		

-22.899 - 12.6915432	-22.899	-15.40521	33.7463	-0.3	-0.3	0.7	2	2	ω	24
1101.079911	129.761	87.29619	178.3733	1.7	1.7	3.7	4	4	6	23
1101.079911	129.761	87.29619	178.3733	1.7	1.7	3.7	4	4	6	22
2301.902646	358.751	241.34829	226.5823	4.7	4.7	4.7	7	7	7	21
358.751 2301.902646	358.751	241.34829	226.5823	4.7	4.7	4.7	7	7	7	20
2861.224261	511.411	241.34829	274.7913	6.7	4.7	5.7	9	7	∞	19
2861.224261	511.411	241.34829	274.7913	6.7	4.7	5.7	9	7	8	18
587.741 2796.540944	587.741	189.99759	226.5823	7.7	3.7	4.7	10	6	7	17
2796.540944	587.741	189.99759	226.5823	7.7	3.7	4.7	10	6	7	16
587.741 2796.540944	587.741	189.99759	226.5823	7.7	3.7	4.7	10	6	7	15
587.741 2796.540944	587.741	189.99759	226.5823	7.7	3.7	4.7	10	6	7	14
3646.707349	893.061	189.99759	226.5823	11.7	3.7	4.7	14	6	7	13
3646.707349	893.061	189.99759	226.5823	11.7	3.7	4.7	14	6	7	12
3139.444643	816.731	35.94549	274.7913	10.7	0.7	5.7	13	3	8	11
358.751 2643.381233	358.751	-118.10661	708.6723	4.7	-2.3	14.7	7	0	17	10
-251.889 800.0619157	-251.889	-169.45731	708.6723	-3.3	-3.3	14.7	-1	-1	17	9
-251.889 800.0619157	-251.889	-169.45731	708.6723	-3.3	-3.3	14.7	-1	-1	17	8
-1126.463	-175.559	-118.10661	-110.8807	-2.3	-2.3	-2.3	0	0	0	7
-1126.463	-175.559	-118.10661	-110.8807	-2.3	-2.3	-2.3	0	0	0	6
-1126.463	-175.559	-118.10661	-110.8807	-2.3	-2.3	-2.3	0	0	0	5
-1126.463	-175.559	-118.10661	-110.8807	-2.3	-2.3	-2.3	0	0	0	4
-1126.463	-175.559	-118.10661	-110.8807	-2.3	-2.3	-2.3	0	0	0	3
-1126.463	-175.559	-118.10661	-110.8807	-2.3	-2.3	-2.3	0	0	0	2
-1126.463	-175.559	-118.10661	-110.8807	-2.3	-2.3	-2.3	0	0	0	1
[kcal/h]	Sur [Norte	Este	Sur	Norte	Este	Sur	Norte	Este	
q m2		A[m^2]*Δteq *(°C)	A[m		Δteq *(°C)		Tablas (°C)	Δteq muro T		Hora
							e 4 pulgadas. Claro	「abique 10cm aproximadamente 4 pulgadas. Clarc	Tabique 10cr	
					TABLA B					

Carga externa qm3.

$$q_{m3} = U_{m3}A_{m3}\Delta teq *$$

$$\Delta teq *= \Delta teq_{Tablas} + (\Delta t_{final} - 8.3)$$

$$\Delta t_{final} = t_{externa} - t_{interna}$$

$$U_{m3} = \frac{1}{\frac{1}{h_{ext}} + \frac{Xm31}{Rm31} + \frac{Xm32}{Rm32} + \frac{1}{h_{int}}}$$

 Δ teq final [°C] = t externa- t interna deseada

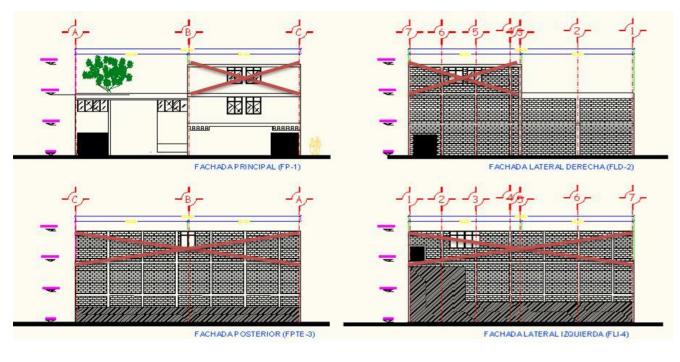
 $\Delta teq final [°C] = 30[°C]-24[°C]=6[°C]$

h exterior = $29.3[kcal/h(m^2)^{\circ}C]$

h interior= $8[kcal/h(m^2)^{\circ}C]$

Resistencias térmicas (Rm) y espesores de los materiales (Xm).

Trabe de concreto armado Aplanado interno


 $Rm31 = 1.50 [kcal-m/hm^2*°C]$ $Rm32 = 0.6 [kcal-m/hm^2*°C]$

Xm31=15 [cm] Xm32=4 [cm]

La carga qm3 se muestra en la tabla C de resultados.

Am3=longitud de trabe *altura de la trabe (De todas las trabes del edificio).

El Área **Am3** se muestra en la **tabla C1** de resultados.

Colindancia con la pared del vecino

Muro de tabique

Paredes no consideradas para el cálculo del aire acondicionado

Figura 22: Paredes exteriores de la fabrica de colchas.

			TABLA C1			
			IADLA CI			
	Trabes, ubica	ción oeste		Trabes, ubica	acíon este	
	altura[m]	longitud[m]	Área [m^2]	altura[m]	longitud[m]	Área [m^2]
1	0.6	10	6			
2			0	0.2	10	2
3	0.3	10	3	0.2	10	2
4	0.3	10	3	0.6	10	6
5	0.4	1.69	0.676	0.38	2.45	0.931
6	0.4	2.5	1	0.2	3	0.6
7	0	0	0	0.21	3	0.63
8	0	0	0	0.21	3	0.63
			13.676			12.791
	Área total de	vitroblock	0.8			
			12.876			
	Trabes, ubica	ción norte		Trabes, ubica	ación Sur	
	altura[m]	longitud[m]	Área [m^2]	altura[m]	longitud[m]	Área [m^2]
1	0.2	4	0.8	0.21	4.5	0.945
2	0.2	4	0.8	0.21	4.5	0.945
3	0.2	4	0.8	0.21	4.5	0.945
4	0.2	4	0.8	0.21	4.5	0.945
5			0	0.21	4.5	0.945
6	0.2	4	0.8	0.21	4.5	0.945
7	0.2	20	4	0.2	20	4
8	0.2	14.97	2.994	0.2	20	4
			10.994			13.67
Cálculo de U	Jm3					
		1				
	$U_{m3} = \frac{1}{1}$	<i>Ym</i> 31	Xm32	1		
	$\frac{1}{h_{ea}}$	$- + \frac{Rm31}{Rm31} +$	$\frac{Xm32}{Rm32} + \frac{1}{2}$			
	Г*ва	t -11,100 ±	11,1100	rint		
	0.000.000.00					
Um3=	3.069402008	[kcal/h(m^2)°C]				

Trabe de 15 cm o bloque de correcto de 6 pulgades Claro Litera Victoria Litera	73.3932 431.744235		23.239	-3.2982	47.3267	5.7	1.7	-0.3	3.7	8	4	2	6	24	
Trable de 15 cm o bloque de conoretio de 6 pulgadas Cilaro Este Norte Sur Deste Este Norte Sur Deste Este Norte Sur Deste Sur			23.239	7.6958	47.3267	7.7	1.7	0.7	3.7	10	4	3		23	
Trabe et 15 m o bloque de concreto de 5 pulgadas Claro Ateq muro Tablas (°C) Ateq muro Ateq muro Tablas (°C) Ateq muro Tablas (°C) Ateq muro Tablas (°C) Ateq muro Tablas (°C) Ateq muro Ateq muro Tablas (°C) Ateq muro	1.1452 544.532482		23.239	7.6958	47.3267	7.7	1.7	0.7	3.7	10	4	3		22	
Trable de 15 m o bloque de concreto de 6 pulgadas Claro Trable de 15 m o bloque de concreto de 6 pulgadas Claro Ateq muro Ateq muro Tablas (°C) Ateq *(°C) A			64.249	18.6898	47.3267	7.7	4.7	1.7	3.7	10	7	4	6	21	
Table de 15cm o bloque de concreto de 6 pulgades Claro Ateq muro Tables (°C) Ateq muro			64.249	18.6898	47.3267	7.7	4.7	1.7	3.7	10	7	4		20	
Trabe de 15.cm o bloque de concreto de 6 pulgadas Claro Ateq muro Tablas (°C) Ateq *(°C)	3932 591.365417		64.249	7.6958	47.3267	5.7	4.7	0.7	3.7	8	7	3		19	
Table de 15 cm o bioque de concreto de 6 pulgadas Claro Ateq muro Tablas (°C) Ateq muro			64.249	7.6958	47.3267	5.7	4.7	0.7	3.7	8	7	3		18	
Trabe de 15 cm o bloque de concreto de 6 pulgadas Claro Lateq muro Tablas (°C)	3932 591.365417		64.249	7.6958	47.3267	5.7	4.7	0.7	3.7	8	7	3	6	17	
Trable de 15 cm o bloque de con\tentre to de 6 pulgadas Claro Ateq πiro Tablas (°C) Ate			64.249	-3.2982	47.3267	1.7	4.7	-0.3	3.7	4	7	2		16	
Trabe de 15 cm o bloque de concreto de 6 pulgadas Claro Ateq muro Tablas (°C) Ateq muro Tablas (°C) Ateq *(°C) Ateg *(°C)	.8892 399.533931		64.249	-3.2982	47.3267	1.7	4.7	-0.3	3.7	4	7	2		15	
Table de 15 cm o bloque de concreto de 6 pulgadas Ciaro Ateq π/°C) Δteq π/°	.8892 399.533931		64.249	-3.2982	47.3267	1.7	4.7	-0.3	3.7	4	7	2		14	
Trable de 15 cm o bioque de concreto de 6 pulgadas Claro				-14.2922	60.1177	0.7	0.7	-1.3	4.7	3	3	1		13	
Trable de 15 cm o bloque de concreto de 6 pulgadas Claro Ateq muro Tablas (°C) Ateq *(°C) Ateq *(°C	1.0132 197.693124			-14.2922	60.1177	0.7	0.7	-1.3	4.7	3	3	1		12	
Trabe de 15 cm o bloque de concreto de 6 pulgadas Ciaro Trabe de 15 cm o bloque de concreto de 6 pulgadas Ciaro Δteq π'(c) Δte	.8892 640.613973		64.249	-14.2922	136.8637	1.7	4.7	-1.3	10.7	4	7	1		11	
Trabe de 15 cm o bloque de concreto de 6 pulgadas Claro TABLAC Ateq muro Tablas (°C) Ateq *(°C) Ateq *(°C) Ateq *(°C) Alm^2]*Ateq *(°C) Gum Z] Ateq *(°C)				-25.2862	136.8637	0.7	-0.3	-2.3	10.7	₃	2	0		10	
Trabe de 15 cm o bloque de concreto de 6 pulgadas Claro Δteq muro Tablas (°C) Δteq *(°C) Δteq *(°C	1.0132 119.291388			-25.2862	72.9087	0.7	-1.3	-2.3	5.7	3	1	0		ر.	
Trabe de 15 cm o bloque de concreto de 6 pulgadas Claro	1.0132 119.291388			-25.2862	72.9087	0.7	-1.3	-2.3	5.7	3	1	0		8	
Trabe de 15 cm o bloque de concreto de 6 pulgadas Claro Trabe de 15 cm o bloque de concreto de 6 pulgadas Claro Δteq *(°C) Δte	1.6148 -355.317967			-25.2862	-29.4193	-2.3	-2.3	-2.3	-2.3	0	0	0		7	
Trabe de 15 cm o bloque de concreto de 6 pulgadas Claro Ateq muro Tablas (°C) Este Norte Sur Oeste Este Norte Sur Oeste Sur Oeste Sur Oeste Sur Oeste Oe	1.6148 -355.317967			-25.2862	-29.4193	-2.3	-2.3	-2.3	-2.3	0	0	0		6	
TabLA C Trabe de 15 cm o bloque de concreto de 6 pulgadas Claro Ateq muro Tablas (°C) Este Norte Sur Oeste Este Norte 1 0 0 0 0 0 -2.3 -2.3 -2.3 -2.3 -2.9.4193 -25.2862 -31.441 3 0 0 0 0 0 -2.3 -2.3 -2.3 -2.3 -2.3 -2.3 -2.4193 -25.2862 -31.441 4 0 0 0 0 0 0 -2.3 -2.3 -2.3 -2.3 -2.3 -2.3 -2.4193 -25.2862 -31.441	.6148 -355.317967		-31.44	-25.2862	-29.4193	-2.3		-2.3	-2.3	0	0	0		СЛ	
Table de 15 cm o bloque de concreto de 6 pulgadas Claro Δteq *(°C) Δteq *(°C) Δteq *(°C) Δteq *(°C) Δteq *(°C) A[m^2]*Δteq *(°C) Δteq *(°C) </th <th>1.6148 -355.317967</th> <th></th> <th>-31.44</th> <th>-25.2862</th> <th>-29.4193</th> <th>-2.3</th> <th>-2.3</th> <th>-2.3</th> <th>-2.3</th> <th>0</th> <th>0</th> <th>0</th> <th></th> <th>4</th>	1.6148 -355.317967		-31.44	-25.2862	-29.4193	-2.3	-2.3	-2.3	-2.3	0	0	0		4	
TABLA C Table de 15 cm o bloque de concreto de 6 pulgadas Claro Δteq muro Tablas (°C) Δteq *(°C) Δteq *(°C) <th cols<="" th=""><th>1.6148 -355.317967</th><th></th><th></th><th>-25.2862</th><th>-29.4193</th><th>-2.3</th><th>-2.3</th><th>-2.3</th><th>-2.3</th><th>0</th><th>0</th><th>0</th><th></th><th>W</th></th>	<th>1.6148 -355.317967</th> <th></th> <th></th> <th>-25.2862</th> <th>-29.4193</th> <th>-2.3</th> <th>-2.3</th> <th>-2.3</th> <th>-2.3</th> <th>0</th> <th>0</th> <th>0</th> <th></th> <th>W</th>	1.6148 -355.317967			-25.2862	-29.4193	-2.3	-2.3	-2.3	-2.3	0	0	0		W
TABLA C Table de 15 cm o bloque de concreto de 6 pulgadas Claro Δteq *(°C) Δteq *(°C) Δteq *(°C) Δteq *(°C) A[m^2]*Δteq *(°C) Este Norte Sur Oeste Sur Oeste Sur Oeste Sur -2.3 -2.3 -2.3 -29.4193 -25.2862 -31.441	1.6148 -355.317967		-31.44	-25.2862	-29.4193	-2.3	-2.3	-2.3	-2.3	0	0	0		2	
Table de 15 cm o bloque de concreto de 6 pulgadas Claro Δteq muro Tablas (°C) Este Norte Sur Oeste Este Norte Sur Oeste Este Norte Sur Oeste	1.6148 -355.317967		-31.44	-25.2862	-29.4193	-2.3	-2.3	-2.3	-2.3	0	0	0	0	1	
TABLA C Trabe de 15 cm o bloque de concreto de 6 pulgadas Claro Δteq muro Tablas (°C) Δteq *(°C) Δteq *(°C) Δteq *(°C) Δteq *(°C)		0est	Sur	Norte	Este	0este	Sur	Norte	Este	0este	Sur	Norte	Este		
	q m3	C	2]*∆teq *(°(A[m^		Δteq *(°C)		teq *(°C)	Δ			Δteq mu		Hora	
TABLA C										adas Claro	creto de 6 pulg	bloque de con	e de 15 cm o	Trab	
							TABLA C								

Carga externa qm4.

$$q_{m4} = U_{m4}A_{m4}\Delta teq *$$

$$\Delta teq *= \Delta teq_{Tablas} + (\Delta t_{final} - 8.3)$$

$$\Delta t_{final} = t_{externa} - t_{interna}$$

$$U_{m4} = \frac{1}{\frac{1}{h_{ext}} + \frac{Xm41}{Rm41} + \frac{Xm42}{Rm42} + \frac{Xm43}{Rm43} + \frac{Xm44}{Rm44} + \frac{Xm45}{Rm45} + \frac{1}{h_{int}}}$$

 $\Delta teq final [°C] = t externa - t interna deseada$

 $\Delta \text{teq final } [^{\circ}C] = 30[^{\circ}C] - 24[^{\circ}C] = 6[^{\circ}C]$

h exterior = $29.3[\text{kcal/h}(\text{m}^2)^{\circ}\text{C}]$

h interior= 8[kcal/h(m²)°C]

Resistencias térmicas (Rm) y espesores de los materiales (Xm).

Aplanado externo de la pared del vecino.

Tabique del muro de lado del vecino.

 $Rm41 = 0.75 [kcal-m/hm^2*{}^{\circ}C]$

Rm42=0.75 [kcal-m/hm²*°C]

Xm41=4 [cm]

Xm42=10 [cm]

Tabique

Aplanado Interno

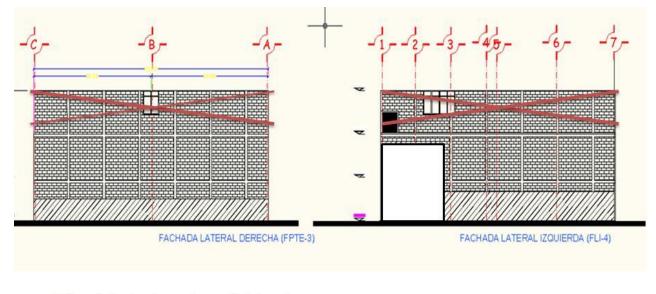
Rm44=0.75 [kcal-m/hm²*°C]

Rm45=0.6 [kcal-m/hm $^2*^\circ$ C]

Xm44=10 [cm]

Xm45=4 [cm]

Aire.


Rm43=1.2 [kcal-m/hm²*°C]

Xm43=10[cm]

La carga $\ qm4$ se muestra en la $\ tabla \ D$ de resultados.

Am4=longitud de pared *altura de pared

El Área Am4 se muestra en la tabla D1 de resultados.

Colindancia con la pared del vecino

Muro de tabique

Paredes no consideradas para el cálculo del aire acondicionado

Figura 23: Paredes exteriores de la fabrica de colchas.

		TABLA D1			
	Área pared v	ecino (Este)		Área pared v	ecino(Norte)
	altura [m]	Longitud [m]	Área [m^2]	altura [m]	Longitud [m]
1	1.5	10	15	2	14.97
2	3.15	10	31.5		
			46.5		
		Área pared ve	cino Sur		
	Área[m^2]	altura [m]	Longitud [m]	Área[m^2]	
	29.94	1.5	20	30	
	29.94			30	
	Cálculo de U	l m4 1			
$U_{m4} = \frac{1}{h_{\theta}}$	$\frac{1}{2} + \frac{Xm41}{Rm41} + \frac{1}{2}$	$\frac{Xm42}{Rm42} + \frac{Xm4}{Rm4}$	$\frac{13}{13} + \frac{Xm44}{Rm44}$	$+\frac{Xm45}{Rm45}+\frac{3}{h_i}$	nt
Um4=	1.58949738	[kcal/h(m^2)	°C]		

-267.531483	-39	-68.862	-60.45	-1.3	-2.3	-1.3	1	0	1	24
23.15579783	-9	-8.982	32.55	-0.3	-0.3	0.7	2	2	3	23
23.15579783	-9	-8.982	32.55	-0.3	-0.3	0.7	2	2	သ	22
530.8094711	111	50.898	172.05	3.7	1.7	3.7	6	4	6	21
111 530.8094711	111	50.898	172.05	3.7	1.7	3.7	6	4	6	20
111 530.8094711	111	50.898	172.05	3.7	1.7	3.7	6	4	6	19
171 916.7712249	171	140.718	265.05	5.7	4.7	5.7	8	7	8	18
171 916.7712249	171	140.718	265.05	5.7	4.7	5.7	8	7	8	17
261 1107.415541	261	170.658	265.05	8.7	5.7	5.7	11	8	8	16
261 1107.415541	261	170.658	265.05	8.7	5.7	5.7	11	8	8	15
261 1107.415541	261	170.658	265.05	8.7	5.7	5.7	11	8	8	14
261 938.3248093	261	110.778	218.55	8.7	3.7	4.7	11	6	7	13
261 938.3248093	261	110.778	218.55	8.7	3.7	4.7	11	6	7	12
141 705.0501739	141	-8.982	311.55	4.7	-0.3	6.7	7	2	9	11
-69 302.3986976	-69	-98.802	358.05	-2.3	-3.3	7.7	0	-1	10	10
129 11.61604685	-129	-128.742	265.05	-4.3	-4.3	5.7	-2	-2	8	9
-129 11.61604685	-129	-128.742	265.05	-4.3	-4.3	5.7	-2	-2	8	8
-69 -389.128033	-69	-68.862	-106.95	-2.3	-2.3	-2.3	0	0	0	7
-389.128033	-69	-68.862	-106.95	-2.3	-2.3	-2.3	0	0	0	6
-389.128033	-69	-68.862	-106.95	-2.3	-2.3	-2.3	0	0	0	5
-389.128033	-69	-68.862	-106.95	-2.3	-2.3	-2.3	0	0	0	4
-389.128033	-69	-68.862	-106.95	-2.3	-2.3	-2.3	0	0	0	3
-389.128033	-69	-68.862	-106.95	-2.3	-2.3	-2.3	0	0	0	2
-389.128033	-69	-68.862	-106.95	-2.3	-2.3	-2.3	0	0	0	1
[kcal/h]	Sur	Norte	Este	Sur	Norte	Este	Sur	Norte	Este	
q m4		A[m^2]*Δteq *(°C)	A[ı		Δteq *(°C)	Δ	Tablas (°C)	∆teq muro Tab	Δt	Hora
							uro claro	Partición, muro claro		
					TABLA D					

Carga externa qm5

$$\begin{split} q_{m5} &= U_{m5} A_{m5} \Delta t e q * \\ \Delta T e q *= \Delta T e q_{Tablas} + (\Delta t_{final} - 8.3) \\ \Delta t_{final} &= t_{externa} - t_{interna} \\ U_{m5} &= \frac{1}{\frac{1}{h_{int \ vec}} + \frac{Xm51}{Rm51} + \frac{Xm52}{Rm52} + \frac{1}{h_{ext}} + \frac{Xm53}{Rm53} + \frac{Xm54}{Rm54} + \frac{Xm55}{Rm55} + \frac{1}{h_{int}}} \end{split}$$

 $\Delta teq final (^{\circ}C) = t externa - t interna deseada$

 Δ teq final (°C) = 30[°C]-24[°C]=6[°C]

h exterior = $29.3[\text{kcal/h}(\text{m}^2)^{\circ}\text{C}]$

h interior= $8[kcal/h(m^2)^{\circ}C]$

Resistencias térmicas (Rm) y espesores de los materiales (Xm).

Yeso de la pared interna del vecino

 $Rm51 = 0.14 [kcal-m/hm^2*°C]$

Xm51=2 [cm]

Tabique del muro del vecino

Rm52=0.75 [kcal-m/hm²*°C]

Xm52=10 [cm]

Tabique

Rm54=0.75 [kcal-m/hm²*°C]

Xm54=10 [cm]

Aplanado Interno

Rm55=0.6 [kcal-m/hm²*°C]

Xm55=4 [cm]

Aire

 $Rm53=1.2 [kcal-m/hm^2*°C]$

Xm53=10[cm]

La carga $\ qm5$ se muestra en la $\ tabla \ E$ de resultados.

Am5=longitud de pared *altura de pared.

El Área Am5 se muestra en la tabla E1 de resultados.

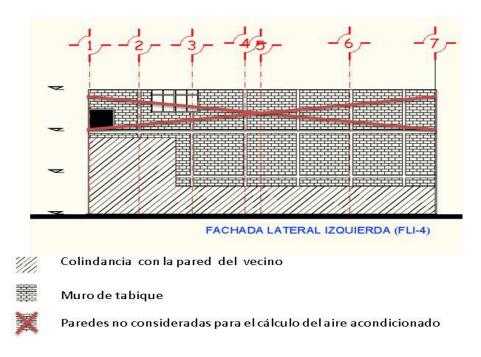


Figura 24: Paredes exteriores de la fabrica de colchas.

	TABLA E1				
Área de I	a pared del ve	cino (Norte)			
altura [m	Longitud [m]	Área[m^2]			
5.51	5.03	27.7153			
Am5	[m2] TOTAL	27.7153			
Cálculo d	le Um5		1		
$U_{m5} = -\frac{1}{h}$	$\frac{1}{intvec} + \frac{Xm51}{Rm51}$	$+\frac{Xm52}{Rm52}+\frac{1}{h_{\theta}}$	$\frac{1}{4t} + \frac{Xm53}{Rm53} +$	$\frac{Xm54}{Rm54} + \frac{Xm}{Rm}$	$\frac{55}{55} + \frac{1}{h_{int}}$
Um5=	1.185320747	[kcal/h(m^2]	°C]		
∆teq fina	al(°C) =(Texterr	na-Tinterna ve	ecino)+(T int	erna- T exteri	na)
∆teq fina	al(°C) = T intern	a - T interna v	vecino .		
∆teq fina	al(°C) = 32[°C]-2	25[°C]=7[°C]			

	TABLA E			
F	Partición, muro	claro		
Hora	Δteq muro Ta	blas (°C)	Δteq *(°C)	q m5
	Norte	Total		[kcal/h]
1	0	0	-2.3	-75.5584964
2	0	0	-2.3	-75.5584964
3	0	0	-2.3	-75.5584964
4	0	0	-2.3	-75.5584964
5	0	0	-2.3	-75.5584964
6	0	0	-2.3	-75.5584964
7	0	0	-2.3	-75.5584964
8	-2	-2	-4.3	-141.261537
9	-2	-2	-4.3	-141.261537
10	-1	-1	-3.3	-108.410017
11	2	2	-0.3	-9.85545605
12	6	6	3.7	121.550625
13	6	6	3.7	121.550625
14	8	8	5.7	187.253665
15	8	8	5.7	187.253665
16	8	8	5.7	187.253665
17	7	7	4.7	154.402145
18	7	7	4.7	154.402145
19	4	4	1.7	55.8475843
20	4	4	1.7	55.8475843
21	4	4	1.7	55.8475843
22	2	2	-0.3	-9.85545605
23	2	2	-0.3	-9.85545605
24	0	0	-2.3	-75.5584964

La carga total (q m) en muros es igual a la suma de todas las cargas. Él resultado se muestra en la **tabla F** de resultados.

			TABLA F			
q muros Tota	al = qm1+qm2	+qm3+qm4+c	ղm5.			
Hora	q m1	q m2	q m3	q m4	q m5	q muroTotal
	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]
1	-472.971461	-1126.463	-355.317967	-389.128033	-75.5584964	-2419.43895
2	-472.971461	-1126.463	-355.317967	-389.128033	-75.5584964	-2419.43895
3	-472.971461	-1126.463	-355.317967	-389.128033	-75.5584964	-2419.43895
4	-472.971461	-1126.463	-355.317967	-389.128033	-75.5584964	-2419.43895
5	-472.971461	-1126.463	-355.317967	-389.128033	-75.5584964	-2419.43895
6	-472.971461	-1126.463	-355.317967	-389.128033	-75.5584964	-2419.43895
7	-472.971461	-1126.463	-355.317967	-389.128033	-75.5584964	-2419.43895
8	-472.971461	800.061916	119.291388	11.6160469	-141.261537	316.736353
9	-61.6919297	800.061916	119.291388	11.6160469	-141.261537	728.015884
10	760.867133	2643.38123	357.553719	302.398698	-108.410017	3955.79077
11	2405.98526	3139.44464	640.613973	705.050174	-9.85545605	6881.23859
12	2405.98526	3646.70735	197.693124	938.324809	121.550625	7310.26117
13	1583.4262	3646.70735	197.693124	938.324809	121.550625	6487.7021
14	1583.4262	2796.54094	399.533931	1107.41554	187.253665	6074.17028
15	2817.26479	2796.54094	399.533931	1107.41554	187.253665	7308.00887
16	2817.26479	2796.54094	399.533931	1107.41554	187.253665	7308.00887
17	2817.26479	2796.54094	591.365417	916.771225	154.402145	7276.34452
18	2817.26479	2861.22426	591.365417	916.771225	154.402145	7341.02784
19	2817.26479	2861.22426	591.365417	530.809471	55.8475843	6856.51153
20	2817.26479	2301.90265	704.153664	530.809471	55.8475843	6409.97816
21	1377.78643	2301.90265	704.153664	530.809471	55.8475843	4970.4998
22	143.947836	1101.07991	544.532482	23.1557978	-9.85545605	1802.86057
23	143.947836	1101.07991	544.532482	23.1557978	-9.85545605	1802.86057
24	0	-12.6915432	431.744235	-267.531483	-75.5584964	75.9627127

b) Transmisión de calor a través del techo

La carga externa en el techo se determina con la ecuación fundamental de la transmisión de calor. Se muestran los resultados de la carga de calor a través del techo en la **tabla G.** La mitad del área a acondicionar tiene techo expuesto al sol sin sombra, por la orientación de la edificación de este a oeste.

$$q_{Techo} = U_{Techo}A_{Techo}\Delta teq *$$

$$\Delta teq *= \Delta teq_{Tablas} + (\Delta t_{final} - 8.3)$$

$$\Delta t_{final} = t_{externa} - t_{interna}$$

$$U_{Techo} = \frac{1}{\frac{1}{h_{ext}} + \frac{XT1}{RT1} + \frac{XT2}{RT2} + \frac{1}{h_{int}}}$$

Techo oscuro

 \acute{A} rea $Techo = 200[m^2]$

ΔTeq. Temperatura equivalente para techo, obtenida de la siguiente tabla. [°C]

Carga externa atreves del techo

 Δ teq final [°C] = t externa- t interna deseada

 $\Delta teq final [°C] = 30[°C]-24[°C]=6[°C]$

Par el cálculo de "U"

h exterior = $29.3 \text{ [kcal/h (m}^2)^{\circ}\text{C]}$

h interior= $8[kcal/h (m^2)^{\circ}C]$

Concreto armado Aplanado Interno

 $RT1=1.50 [kcal-m/hm^2*^{\circ}C]$ $RT2=0.6 [kcal-m/hm^2*^{\circ}C]$

XT1=15[cm] XT2=4[cm]

 $U = 3.069402008 \text{ [kcal/h (m}^2) °C)]$

TABLA. TEMPERATURA EQUIVALENTE PARA TECHOS Tiempo Solar DESCRIPCION DE LOS MATERIALES DEL TECHO A.M. P.M. 8 10 12 2 4 6 8 10 12 Techos expuestos al sol. Construcción ligera. Madera de 1 plg 21 30 34 28 14 6 2 0 Madera de 1 plg y aislante Techos expuestos al sol. Construcción media. Concreto de 2 plg. Concreto de 2 plg. y aislante 8 3 17 27 32 28 18 1 Madera de 2 plg. Concreto 4 plg. 7 29 12 3 21 28 22 11 Concreto de 4 plg. y aislante Techos expuestos al sol. Construcción pesada. 26 24 18 10 2 3 13 21 Concreto de 6 plg. 8 3 3 11 19 | 23 | 24 19 Concreto de 6 plg. y aislante Techos en la sombra. -2 3 0 Construcción ligera -2 4 7 7 6 3 1 -1 1 4 2 2 4 6 6 -1 -1 0 Construcción media Construcción pesada 1.- TECHO CLARO = TECHO A LA SOMBRA + 55 % DE LA DIFERENCIA NOTAS: DE TECHO A LA SOMBRA Y TECHO AL SOL soscies -1. 2.- COLOR MEDIO = TECHO A L SOMBRA + 80% DE LA DIFERENCIA HED10 → 0.83 DE TECHO A LA SOMBRA Y TECHO AL SOL cuses - 0.6 68

Tabla 8: Temperatura equivalente en grados centígrados, para techo.

	TABLA G				
Concreto de	e 6" aproximad	amente 15 cm	ı, oscuro expu	iesto al sol y a	aislante
Tabla tech	no oscuro				
Hora	Δteq(°C)	Δteq (°C)*	q Techo		
			[kcal/h]		
,	1 0	-2.3	-1411.92492		
	2 0	-2.3	-1411.92492		
;	3 0	-2.3	-1411.92492		
	4 0	-2.3	-1411.92492		
ļ	5 0	-2.3	-1411.92492		
	6 0	-2.3	-1411.92492		
	7 0	-2.3	-1411.92492		
;	8 3	0.7	429.716281		
(9 3	0.7	429.716281		
10	0 3	0.7	429.716281		
1:	1 7	4.7	2885.23789		
12	2 11	8.7	5340.75949		
13	3 15	12.7	7796.2811		
14	4 19	16.7	10251.8027		
1!	5 21	18.7	11479.5635		
10	6 23	20.7	12707.3243		
1	7 23	20.7	12707.3243		
18	8 24	21.7	13321.2047		
19	9 21	18.7	11479.5635		
20	0 19	16.7	10251.8027		
2:	1 15	12.7	7796.2811		
22	2 11	8.7	5340.75949		
23	3 9	6.7	4112.99869		
24	4 8	5.7	3499.11829		

C) Determinación de las cargas externas a través de los cristales.

El calor que se gana en un espacio a través de cristales depende de lo siguiente.

- a) Latitud del lugar.
- b) Orientación de los cristales.
- c) Claridad de la atmósfera.
- d) Tipo de cristal usado.

Existen tablas experimentales que según la latitud, tiempo del año y orientación de la ventana proporciona la energía solar que entra en el espacio considerado. Se supone que la energía radiante transmitida por una ventana no afecta la diferencia de temperatura que hay a los lados de dicha ventana [15].

$$q = A * FF* FG$$

q; es la carga externa de calor a través del vidrio por mes. En las tablas de resultados H, I, J, K, L, M, N. Se muestran las cargas para cada uno de los períodos mensuales.

A; Área total de las ventanas. Calculada en la tabla de resultados O.

FF; Factor de forma del vidrio, tiene un valor de 1, para placa vidrio regular transparente.

FG; Factor de ganancia solar del vidrio, en la siguiente tabla. 20° latitud norte.

Ejemplo de cálculo

El valor del factor de ganancia solar es obtenido de la **tabla 9** es igual a 111[kcal/m2], este depende de los siguientes factores, el período del año (21 junio), el horario (13 horas). Coordenadas (Latitud 20° norte, México DF), orientación de los vidrios (oeste). El área de la ventana es igual a 11.277[m²], el factor de forma es igual a 1. En la **Tabla H** está iluminado en color verde el resultado del ejemplo.

Para el cálculo de cargas a través del vitro block se considera la misma formula y la tabla N° 9.

qv.; es la carga externa de calor a través del vitro block por mes. En las tablas de resultados H1, I1, J1, K1, L1, M1, N1. Se muestran las cargas para cada uno de los periodos mensuales.

$$Av.= 0.8 [m^2]$$

FF.; Factor de forma del los vitro blocks, tiene un valor de 0.6, transparente.

FGv.; Factor de ganancia solar de vitro block tomado de la tabla anterior. 20° latitud norte.

20° Latin	tud Norte						Н	ora So	lar					
Epoca	Orientación	6	7	8	9	10	11	12	13	14	15	16	17	18
	N	76	111	90	68	51	46	40	46	51	67	90	111	75
	NE	219	417	390	330	225	103	40	38	38	38	32	24	8
	E	219	401	434	387	260	111	38	38	38	38	32	24	8
- ×	SE	75	168	198	179	119	57	38	38	38	38	32	24	8
21 Junio	S	8	24	32	38	38	38	38	38	38	38	32	24	- 8
	so	8	24	32	38	38	38	38	57	119	179	198	168	75
	0	8	24	32	38	38	38	38	111	260	387	434	401	220
	NO	8	24	32	38	38	38	40	103	225	330	390	417	220
	Horizontal	30	162	328	477	585	629	678	629	585	477	328	162	30
9	N	54	75	62	46	40	38	38	38	40	46	62	75	54
	NE	192	358	374	301	198	84	38	38	38	35	32	21	8
00 1	E	203	401	442	393	268	124	38	38	38 38	35 35	32 32	21	8
22 Julio	SE	84	189	230	214	154	78	38	38	38	35	1000000	21	8
у	S	8	21	32	35 35	38	38 38	38	78	154	214	32 230	21 189	84
21 Mayo	so	8	21	32 32	35	38	38	38	124	268	393	442	401	203
	NO	8	21	32	35	38	38	38	84	198	301	374	358	192
		8	149	320	474	585	650	680	650	585	474	320	149	8
	Horizontal N	16	27	29	35	38	38	38	38	38	35	29	27	16
	N NE	122	301	320	241	135	48	38	38	38	35	29	19	5
-	E	143	385	447	404	287	138	38	38	38	35	29	19	5
24 Agosto	SE	78	241	306	292	265	149	54	38	38	35	29	19	5
v	S	5	19	29	38	54	65	70	65	54	38	29	19	5
20 Abril	so	5	19	29	35	38	38	54	149	265	292	306	241	78
20 ADIII	0	5	19	29	35	38	38	38	138	287	404	447	385	143
11	NO	5	19	29	35	38	38	38	48	135	241	320	301	122
	Horizontal	13	130	290	452	569	637	669	637	569	452	290	130	13
4 -	N	0	10	6	29	35	38	38	38	38	35	29	16	0
	NE	0	225	235	160	59	38	38	38	38	35	29	16	0
22	E	0	352	442	404	282	122	38	38	38	35	29	16	0
Septiembr	SE	0	268	368	379	325	227	111	40	38	35	29	16	0
e y	S	0	21	59	103	141	170	176	172	141	103	59	21	0
22 Marzo	so	0	16	29	35	38	40	111	227	325	379	368	268	0
ZZ Marzo	0	0	16	29	35	38	38	38	122	282	404	442	352	0
	NO	0	16	29	35	38	38	38	38	59	160	235 252	225	0
	Horizontal	0	81	252	414	537	610	631	610	537 35	414 32	24	81 10	0
	N	0	10	24	32 78	35 35	38 38	38 38	38 38	35	32	24	10	0
	NE	0	119	141 398	382	271	132	38	38	35	32	24	10	0
22 Octubre	E SE	0	268 246	396	433	404	322	200	73	35	32	24	10	0
	S	0	57	135	206	252	287	301	287	252	206	135	57	ő
y 20 Febrero	so	0	10	24	32	35	73	200	322	404	433	396	246	0
20 Febrero	o	Ö	10	24	32	35	38	38	132	271	382	398	268	0
w 8	NO	0	10	24	32	35	38	38	38	35	78	141	119	0
	Horizontal	0	48	184	344	463	531	564	531	463	344	184	48	0
	N	ō	8	21	29	35	35	35	35	35	29	21	8	0
	NE	0	65	70	38	35	35	35	35	35	29	21	8	0
21	E	0	192	347	344	246	116	35	35	35	29	21	8	0
Noviembre	SE	0	198	390	444	428	366	246	124	43	29	21	8	0
	S	0	75	187	271	333	368	382	368	333	271	187	75	0
у	so	0	8	21	29	43	124	246	366	428	444	390	198	0
21 Enero	. 0	0	8	21	29	32	35	35	116	246	344	347	192	0
	NO	0	8	21	29	32	35	35	35	35	38	70	65	0
	Horizontal	0	13	130	273	396	466	488	466	396	278	130	13	0
	N	0	5	19	29	32	35	35	35	32	29	19	5	0
100	NE	0	38	48	32	32	35	35	35	32	29	19	5	0
4	E	0	151	320	328	230	92	35	35	32	29	19	5	0
22	SE	0	160	377	452	431	363	263	162	54	29	19	5	0
Diciembre	S	0	67	200	301	358	396	404	396	358	301	200	67	0
Diolollible	so	0	5	19	29	54	162	263	363	431	452	377	160	0
	0	0	5	19	29	32	35	35	92	230	328	320	151 38	0
	NO	0	5	19	29	32 366	35 436	35	35 436	32 366	32 249	48 97	10	0
	Horizontal	0	10	97	249	300	430	461	430	300	249	91	10	0

Tabla 9: Factor de ganancia solar a través del vidrio. 20° latitud Norte. En Kilocalorías sobre metro cuadrado.

Cálculo del área de las ventanas.

TABLA O					
Áreas ventar	nas Oeste		Áreas ventar	nas Este	
altura[m]	Longitud[m]	Área[m^2]	altura[m]	Longitud[m]	Área[m^2]
1.2	2.73	3.276	1.65	1.35	2.2275
1.2	2.73	3.276	1.65	1.35	2.2275
1.75	1.35	2.3625	0	0	0
1.75	1.35	2.3625	0	0	0
		0	0	0	0
		0	0	0	0
		11.277			4.455
Áreas ventar	nas Norte		Áreas ventar	nas Sur	
altura[m]	Longitud[m]	Área[m^2]	altura[m]	Longitud[m]	Área[m^2]
1.65	1.35	2.2275	1.65	1.35	2.2275
1.65	1.35	2.2275	0	0	
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
		4.455			2.2275

	0	0	0	0	24		0	0	0	0	24
	0	0	0	0	23		0	0	0	0	23
	0	0	0	0	22		0	0	0	0	22
	0	0	0	0	21		0	0	0	0	21
	0	0	0	0	20		0	0	0	0	20
	0	0	0	0	19		0	0	0	0	19
	2289.231	2289.231	2289.231	203	18		2480.94	2480.94	2480.94	220	18
	4522.077	4522.077	4522.077	401	17		4522.077	4522.077	4522.077	401	17
	4984.434	4984.434	4984.434	442	16		4894.218	4894.218	4894.218	434	16
	4431.861	4431.861	4431.861	393	15		4364.199	4364.199	4364.199	387	15
	3022.236	3022.236	3022.236	268	14		2932.02	2932.02	2932.02	260	14
	1398.348	1398.348		124	13		1251.747	1251.747	1251.747	111	13
	428.526	428.526	428.526	38	12		428.526	428.526	428.526	38	12
	428.526	428.526	428.526	38	11		428.526	428.526	428.526	38	11
	428.526	428.526	428.526	38	10		428.526	428.526	428.526	38	10
	394.695	394.695	394.695	35	9		428.526	428.526	428.526	38	9
	360.864	360.864	360.864	32	8		360.864	360.864	360.864	32	8
	236.817	236.817	236.817	21	7		270.648	270.648	270.648	24	7
	90.216	90.216	90.216	8	6		90.216	90.216	90.216	8	6
	0	0	0	0	5		0	0	0	0	5
	0	0	0	0	4		0	0	0	0	4
	0	0	0	0	3		0	0	0	0	3
	0	0	0	0	2		0	0	0	0	2
	0	0	0	0	1		0	0	0	0	1
	[kcal/h]	Total	Oeste	0este			[kcal/h]		Oeste 1	Oeste	
	qvidro	FGC [kcal/m^2]* A[m^2] q vidro	FGC [kcal/m	FGC [kcal/m^2]	Hora		q vidro		FGC [kcal/m^;	$FGC \left[kcal/m^2 \right] \left FGC \left[kcal/m^2 \right] * A[m^2] \right $	Hora
				∓=1	Vidrio claro FF=1					F=1	Vidrio claro FF=1
					México DF						México DF
s del vidrio, período del 22 julio y 21 mayo. Latitud 20'Norte.	julio y 21 ma	eríodo del 22	s del vidrio, p	Carga externa de calor a travé	Carga extern	ud 20 'Norte.	1 junio. Latitu	eríodo del 2	s del vidrio, p	Carga externa de calor a través del vidrio, período del 21 junio. Latitud 20 'Norte	Carga exterr
					Tabla I						Tabla H

Tabla J						TABLA K					
Carga externa	de calor a travé	s del vidrio, p	eríodo del 2	4 agosto y 20	Carga externa de calor a través del vidrio, período del 24 agosto y 20 abril. Latitud 20'.	Carga exten	Carga externa de calor a través	és del vidrio, p	eríodo del 22	del vidrio, período del 22 Septiembre y 22 de marzo	y 22 de marzo.
Norte.México DF	무					Latitud 20'N	Latitud 20'Norte. México DF.	-			
Vidrio claro FF=1	<u>I</u>					Vidrio claro FF=1	FE1				
Hora F	FGC [kcal/m^2]	FGC [kcal/m^2]* A[m^2]	^2]* A[m^2]	q vidro		Hora	FGC [kcal/m^2]	FGC [kcal/m	GC [kcal/m^2]* A[m^2]	q vidro	
0	Oeste	Oeste	Total	[kcal/h]			Oeste	Oeste	Total	[kcal/h]	
1	0	0	0	0		1		0 0	0	0	
2	0	0	0	0		2		0 0	0	0	
3	0	0	0	0		3		0 0	0	0	
4	0	0	0	0		4		0 0	0	0	
5	0	0	0	0		5		0 0	0	0	
6	5	56.385	56.385	56.385		6		0 0	0	0	
7	19	214.263	214.263	214.263		7	16	5 256.032	256.032	256.032	
8	29	327.033	327.033	327.033		8		9 464.058		464.058	
9	35	394.695	394.695	394.695		9		560.07	560.07	560.07	
10	38	428.526	428.526	428.526		10		8 608.076	608.076	608.076	
11	38	428.526	428.526	428.526		11			608.076	608.076	
12	38	428.526	428.526	428.526		12	38	8 608.076	608.076	608.076	
13	138	1556.226	1556.226	1556.226		13		l		1952.244	
14	287	3236.499	3236.499	3236.499		14	282	2 4512.564	4512.564	4512.564	
15	404	4555.908	4555.908	4555.908		15	404	4 6464.808	6464.808	6464.808	
16	447	5040.819	5040.819	5040.819		16	447	7152.894	7152.894	7152.894	
17	385	4341.645	4341.645	4341.645		17	352	2 5632.704	5632.704	5632.704	
18	143	1612.611	1612.611	1612.611		18		0 0	0	0	
19	0	0	0	0		19		0 0	0	0	
20	0	0	0	0		20		0 0	0	0	
21	0	0	0	0		21		0 0	0	0	
22	0	0	0	0		22		0	0	0	
23	0	0	0	0		23		0	0	0	
24	0	0	0	0		24		0 0	0	0	

TABLA L						TABLA M					
Carga exter	na de calor a trav	és del vidrio,	Carga externa de calor a través del vidrio, período del 22 de Octubre y 20 de Febrero	Octubre y 20 d	e Febrero.	Carga extern	Carga externa de calor a través		eríodo del 2:	1 de Noviembr	del vidrio, período del 21 de Noviembre y 21 de Enero.
latitud 20'	latitud 20' Norte.México DF					latitud 20' N	latitud 20' Norte. México DF				
Vidrio daro FF=1	FF=1					Vidrio claro FF=1	护				
Hora	FGC [kcal/m^2]		FGC [kcal/m^2]* A[m^2]	q vidro		Hora	FGC [kcal/m^2] FGC [kcal/m^2]* A[m^2]	FGC [kcal/m [/]	^2]* A[m^2] q	q vidro	
	0este	0este	Total	[kcal/h]			0este	Oeste .	Total [kcal/h]	
	1 0	0		0		1	0	0	0	0	
	2 0	0	0	0		2	0	0	0	0	
	3 0	0		0		3	0	0	0	0	
	4 0	0	0	0		4	0	0	0	0	
	5 0	0	0	0		5	0	0	0	0	
	6 0	0	0	0		6	0	0	0	0	
	7 10	112.77	112.77	112.77		7	8	90.216	90.216	90.216	
	8 24	270.648	270.648	270.648		8	21	236.817	236.817	236.817	
	9 32		360.864			9	29	327.033	327.033	327.033	
10	0 35		394.695	394.695		10	32	360.864	360.864	360.864	
11						11	35	394.695	394.695	394.695	
12	2 38	428.526	428.526	428.526		12	35	394.695	394.695	394.695	
13	3 132	1488.564	1488.564	1 1488.564		13	116	1308.132	1308.132	1308.132	
14	4 271	3056.067	3056.067	3056.067		14	246	2774.142	2774.142	2774.142	
15	5 382	4307.814	4307.814	4307.814		15	344	3879.288	3879.288	3879.288	
16	6 389	4386.753	4386.753	4386.753		16	347	3913.119	3913.119	3913.119	
17	7 268	3022.236	3022.236	3022.236		17	192	2165.184	2165.184	2165.184	
18	0	0	0	0		18	0	0	0	0	
19	9 0	0	0	0		19	0	0	0	0	
20	0	0		0 0		20	0	0	0	0	
21	0	0	0	0		21	0	0	0	0	
22	2 0	0	0	0		22	0	0	0	0	
23	0	0		0		23	0	0	0	0	
24	0	0		0		24	0	0	0	0	

TABLA N						
Carga extern	na de calor a trave	és del vidrio, p	eríodo del 22	de Diciembre	e. latitud 20'	Norte.
México DF						
Vidrio claro	FF=1					
Hora	FGC [kcal/m^2]	FGC [kcal/m/	^2]* A[m^2]	q vidro		
	Oeste	Oeste	Total	[kcal/h]		
1	0	0	0	0		
2	0	0	0	0		
3	0	0	0	0		
4	0	0	0	0		
5	0	0	0	0		
6	0	0	0	0		
7	5	56.385	56.385	56.385		
8	19	214.263	214.263	214.263		
9	29	327.033	327.033	327.033		
10	32	360.864	360.864	360.864		
11	35	394.695	394.695	394.695		
12	35	394.695	394.695	394.695		
13	92	1037.484	1037.484	1037.484		
14	230	2593.71	2593.71	2593.71		
15	328	3698.856	3698.856	3698.856		
16	320	3608.64	3608.64	3608.64		
17	151	1702.827	1702.827	1702.827		
18	0	0	0	0		
19	0	0	0	0		
20	0	0	0	0		
21	0	0	0	0		
22	0	0	0	0		
23	0	0	0	0		
24	0	0	0	0		

Tabla H1			Tabla I1				Tabla J1				
Carga exterr	Carga externa de calor a través de	s de.									
vitroblock			Carga exterr	na de calor a t	Carga externa de calor a través del vitro block	lock.	Carga extern vi	tro block.	Período del 24 agosto al 20 abril.	зgosto al 20 abril.	
Período del 21 junio	21 junio.		Período del	22 julio y 21	Período del 22 julio y 21 mayo. Latitud 20'Norte	0'Norte.	latitud 20'.No	rte. México	o DF		
Latitud 20'N	Latitud 20 'Norte. México DF		México DF								
FF=0.6				FF=0.6				FF=0.6			
Hora	FGC [kcal/m^2] q vitro block	q vitro block		Hora	FGC [kcal/m^2]	q vidro		Hora	FGC [kcal/m^2] q vidro	q vidro	
	Oeste	[kcal/h]			Oeste	[kcal/h]			Oeste	[kcal/h]	
1	0	0				0		1	0	0	
2	0	0		2		0		2	0	0	
3	0	0		3		0 0		3	0	0	
4	0	0		4		0 0		4	. 0	0	
5	0	0		5		0 0		5	0	0	
6	8	3.84		6		8 3.84		9	5	2.4	
7	24	11.52		7	7 21	1 10.08		7	19	9.12	
8	32	15.36		8		2 15.36		8	29	13.92	
9	38	18.24		9) 35	5 16.8		9		16.8	
10	38	18.24		10		8 18.24		10	38	18.24	
11	38	18.24		11	38	8 18.24		11	38	18.24	
12	38	18.24		12	38	8 18.24		12		18.24	
13	111	53.28		13	3 124	4 59.52		13	138	66.24	
14	260	124.8		14	1 268	8 128.64		14	287	137.76	
15	387	185.76		15	393	3 188.64		15	404	193.92	
16	434	208.32		16	5 442	212.16		16	447	214.56	
17	401	192.48		17	401	1 192.48		17	385	184.8	
18	220	105.6		18	3 203	3 97.44		18	143	68.64	
19	0	0		19		0 0		19	0	0	
20	0	0		20		0 0		20	0	0	
21	0	0		21		0 0		21	0	0	
22	0	0		22		0 0		22	0	0	
23	0	0		23		0		23	0	0	
24	0	0		24		0		24	0	0	

TABLA K1		S dol witto block			2	TABLA M1		del vitro block
Carga extern	Carga externa de calor a través del vitro block.	és del vitro block		Carga externa de calor a través del	s del	Carga exterr	Carga externa de calor a través del vitro block	del vitro block.
Período del	22 Septiembre al 22 de marzo	al 22 de marzo.	vitro block.			Período de	Período del 21 de Noviembre y 21 de Enero.	y 21 de Enero.
			Período de	Período del 22 de Octubre al 20 de Febrero	20 de Febrero.	latitud 20' N	latitud 20' Norte. México DF .	
latitud 20'N	latitud 20'Norte. México DF.	•	latitud 20'	latitud 20' Norte.México DF.				
	FF=0.6		FF=0.6			FF=0.6		
Hora	FGC [kcal/m^2] q vidro	q vidro	Hora	FGC [kcal/m^2] q vidro	q vidro	Hora	FGC [kcal/m^2]	q vidro
	Oeste	[kcal/h]		Oeste	[kcal/h]		Oeste [[kcal/h]
1				0	0	1	0	0
2	0	0		2 0	0	2	0	0
3	0	0		3 0	0	3	0	0
4	0	0		4 0	0	4	. 0	0
5	0	0		5 0	0	5	0	0
6	0	0		6 0	0	6	0	0
7	16	7.68		7 10	4.8	7	8	3.84
8		13.92		8 24	11.52	8	21	10.08
9	35	16.8		9 32	15.36	9		13.92
10		18.24	1	10 35	16.8	10	32	15.36
11	38	18.24	1	11 38	18.24	11	35	16.8
12	38	18.24	1	12 38	18.24	12	35	16.8
13	122		1	13 132	63.36	13	116	55.68
14	282	135.36	1	14 271	130.08	14	246	118.08
15	404	193.92	1	15 382	183.36	15	344	165.12
16	447	214.56	1	16 389	186.72	16	347	166.56
17	352	168.96	1	17 268	128.64	17	192	92.16
18	. 0	0	1	18 0	0	18	0	0
19	0	0	1	19 0	0	19	0	0
20	0	0	2	20 0	0	20	0	0
21	0	0	21	1 0	0	21	0	0
22	0	0	22	2 0	0	22	0	0
23	0	0	2	23 0	0	23	0	0
24	0	0	2	24 0	0	24	0	0

TABLA N1							
	ia de calor a travé:	s del vitro blo	ock.				
Período del 22 de Diciembre. latitud 20' Norte.México DF.							
FF=0.6							
Hora	FGC [kcal/m^2]	q vidro					
	Oeste	[kcal/h]					
1	0	0					
2	0	0					
3	0	0					
4	0	0					
5	0	0					
6	0	0					
7	5	2.4					
8		9.12					
9	29	13.92					
10	32	15.36					
11	35	16.8					
12	35	16.8					
13	92	44.16					
14	230						
15	328	157.44					
16		153.6					
17		72.48					
18	0	0					
19	0	0					
20	0	0					
21	0	0					
22	0	0					
23	0	0					
24	0	0					

3.1.3) Determinación de las cargas internas, debidas a la iluminación, equipos misceláneos y por las actividades realizadas por los ocupantes.

a) Trasmisión de calor por iluminación.

La iluminación constituye una fuente de calor de 0.86 [kcal/h] por cada watt de potencia. Las lámparas fluorescentes emiten un 25% más que las lámparas de calor incandescentes [14].

TIPO	GANANCIAS SENSIBLES	GANANCIAS SENSIBLES
	kcal/h	W
Fluorescente	Potencia útil W x 1,25 x 0,86	Potencia útil W x 1,25
Incandescente	Potencia útil W x 0,86	Potencia útil W

Tabla 10: carga de calor por iluminación

$$q_{lampara\ fluorescente} = 1.25 * W * 0.86$$

$$q_{foco} = w * 0.86$$

27 lámparas de 2 por 75 [W]

q lámpara=1.25*75*0.86 =80.625[kcal/h]. Por lo tanto 27 lámparas=2176.875[kcal/h]

5 focos de 65[W]

q de foco=65*0.86 [kcal/h]= 55.9 [kcal/h]. Por lo tanto 5 focos=279.5 [kcal/h]

Total 2456.375 [kcal/h].

b) Transmisión de calor a través de equipos misceláneos.

Para obtener la ganancia de calor debida al equipo que se tenga instalado en el espacio por acondicionar, se recurre a la tabla experimental. Siempre se debe considerar esta parte de la guanacia total que con ocasiones, puede ser muy importante; a veces se acostumbra a incrementar esta ganancia en un 10% por alguna contingentica imprevista que pudiera ocurrir [15].

Dispositivo —	Calor disipad el funcion (Btu)	amiento
Dispositivo	Calor sensible	Calor latente
Luz eléctrica y aparatos eléctricos, por kw ins- talado	3,413	
to, por HP * De ½ — ½ HP De ½ — 3 HP	4,250 3,700	
De 3-20 HP	2,950 2,200	1,500
Cafetera eléctrica (5 galones) Estufa de gas	3,400 3,100	2,300 1,700
Calentador de agua	3,150 8,100	3,850 4,000
Cafetera de gas (3 galones)	2,500 3,900	2,500 3,900
Equipo calentado por vapor, por pie cuadrado ** Superficies calentadas por vapor:		
Pulida Sin pulir	130 330	
Superficie aislada	80	
Tipo soplador	2,300 1,870	400 330
Restaurantes, por comida servida	30 (Btu)	

Tabla 11: Trasmisión de calor a través de equipos misceláneos.

c) Transmisión de calor emitida por los ocupantes.

La ganancia de calor producida por los ocupantes del espacio a enfriar está tabulada y depende de la propia actividad que las personas desarrollen dentro del espacio y de la temperatura de ese ambiente [15].

		boli	de	persone	45	e ie bolici		,	Temp	cratur	as del	cuart	o (°F,		Million accuration in	
Grado	Aplicación	metá		compos el grupo		edio de la metabólica	82	?°F	80	F	78°	F	75°	F	70	F
de actividad	: tîpica	ón 1 hom	u	et grupe		Promedio lación met	Bt	u/h	Bti	u/h	Bti	u/h	Bti	ı/h	Bt	u/h
		Relación metáboli de un hombre adul	Hombre	Mujer	Niño	Prome home		Lat.	Sens.	Lat.	Sens.	Lat.	Sens.	Lat.	Sens.	Lat.
Sentado	Teatro	390	45	45 :	10	350	175	175	195	155	210	140	230	120	260	90
Sentado; trabajo ligero	Escuela	450	50	50	0	400	180	220	195	205	215	185	240	160	275	125
Trabajo de ofici- na, actividad moderada	Oficinas, hoteles, departamentos	475	50	50	0	450	200	270	'200	250	215	235	245	205	285	165
Parados; cami- nando despacio	Tienda de ropa, almacenes	550	10		20	450	200	270	200	250	215	280	245	205	285	165
Caminando; sen- tado, de pie;	Cafeterías, Bancos	550 530	20 40	70 · 60 ·	10	500	180	320	200	300	220	280	255	245	290	210
caminando des- pacio																
Trabajo sedenta-	Restaurantes	500	50	50	0	550	190	360		330	240	310	280	270	320	230
Trabajo lig ro	Fábrica, trabajo ligero	800	60	40	0	750	190	560	220	530	245	505	295	455	365	285
Baile moderado	Salas de baile	900	50	50 :	0	850	220	630	245	605	275	575	325	525	400	450
Caminando, 3 mph	Fábricas, trabajo algo pesado	1,000	100	0	0	1,000	270	730	300	700	330	670	380	620	460	540
Jugando	Boliche	1,500	75	25	0	1,450	450	1,000	465	985	485	965	525	925	605	845

Tabla 12: Trasmisión de calor a través de ocupantes.

En la **tabla P** se muestran las cargas de calor internas generadas por la ocupación de cada uno de los equipos de la fábrica, iluminación y las personas que trabajan dentro del inmueble. De igual manera en la **tabla Q** donde se muestran las cargas internas por horas del día.

Tabla P Cargas internas			Calor	Calor	Calor	Total	
		Cantidad	Sensible	Latente	Total	Calor	
[A] Máquina rellenadora de almohadas			[BTU/h]	[BTU/h]	[BTU/h]	[kcal/h]	
1 motor de 3 caballos [hp]		1	2950	0	2950	743.884983	
1 motor de 3 caballos [Hp]		1	2950	0	2950	743.884983	
1 motores de 2 caballos [hp]		1	3700	0	3700	933.008284	
2 motores de 1/2 Caballo[hp]		2	8500	0	8500	2143.39741	Total
2 operadores.** Fabrica trabajo algo pesado**		2	540	1460	2000	504.328802	5068.50446
[B] 9 máqunas de coser de 1/4 de caballo[hp]		9	38250	0	38250	9645.28834	Total
9 costureras**Fábrica, trabajo ligero**		9	1710	5040	6750	1702.10971	11347.39805
[C] 2 máquinas capitonadoras							
2 motores de 1 csballo [hp]		2	7400	0	7400	1866.01657	
2 motores de 1/2 caballo [hp]		2	8500	0	8500	2143.39741	Total
4 operadores ** Fabrica trabajo algo pesado**		4	1080	2920	4000	1008.6576	5018.07158
[D] Tapizado de sillas							
2 compresores de 2 caballos [hp]		2	7400	0	7400	1866.01657	
							Total
2 trabajadores en tapicería** Fábrica, trabajo algo	pesado**	2	540	1460	2000	504.328802	2370.345369
[E]							
4 Trabajadores, área de corte y costura							
Parados o caminanado despacio		4	720	1280	2000	504.328802	
							Total
							504.328802
[F] oficina							
5 impresoras		5	1296.9	0	1296.9	327.032012	
5 computadoras		5	2000	0	2000	504.328802	
Cafetera electrica 3 galones		1	2500	2200	4700	1185.17268	Total
5 oficinistas **Trabajo de oficina**		5	1000	1350	2350	592.586342	2609.119841
[G] Iluminación							
27 lamparas de 2*75[Wattas]		27	8632.76097	0	8632.760974	2176.875	Total
5 focos de 65 [watts]		5	1108.40388	0	1108.403878	279.5	2456.375
[H] 2 Supervisores **parados caminando**		2	400	540	940	237.034537	237.0345369
[I] 7 Tebajadores de carga **Fábrica, trabajo algo	pesado**	7	1890	5110	7000	1765.15081	1765.150807
		Total [BTU/h]	103068.065	21360		0	
		Total [Kcal/h]	25990.0968	5386.23161			

1[BTU]=0.252164 [Kcal]

0	0	0	0	0	0	0	0	0	0	24
0	0	0	0	0	0	0	0	0	0	23
0	0	0	0	0	0	0	0	0	0	22
0	0	0	0	0	0	0	0	0	0	21
0	0	0	0	0	0	0	0	0	0	20
0	0	0	0	0	0	0	0	0	0	19
5806.85818	0	237.0345369	2456.375	2609.11984	504.328802	0	0	0	0	18
22222.76068	0	237.0345369	2456.375	2609.11984	504.328802	0	0	11347.398	5068.50446	17
22222.76068	0	237.0345369	2456.375	2609.11984	504.328802	0	0	11347.398	5068.50446	16
22222.76068	0	237.0345369	2456.375	2609.11984	504.328802	0	0	11347.398	5068.50446	15
0	0	0	0	0	0	0	0	0	0	14
29611.17763	0	237.0345369	2456.375	2609.11984	504.328802	2370.34537	5018.07158	11347.398	5068.50446	13
29611.17763	0	237.0345369	2456.375	2609.11984	504.328802	2370.34537	5018.07158	11347.398	5068.50446	12
29611.17763	0	237.0345369	2456.375	2609.11984	504.328802	2370.34537	5018.07158	11347.398	5068.50446	11
31376.32844	1765.150807	237.0345369	2456.375	2609.11984	504.328802	2370.34537	5018.07158	11347.398	5068.50446	10
31376.32844	1765.150807	237.0345369	2456.375	2609.11984	504.328802	2370.34537	5018.07158	11347.398	5068.50446	9
23937.47861	1765.150807	237.0345369	2456.375	2609.11984	504.328802	0	5018.07158	11347.398	0	8
23937.47861	1765.150807	237.0345369	2456.375	2609.11984	504.328802	0	5018.07158	11347.398	0	7
0	0	0	0	0	0	0	0	0	0	6
0	0	0	0	0	0	0	0	0	0	5
0	0	0	0	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0	0	0	4
0	0	0	0	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	0	0	1
[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]	Horario
Total	ı	н	G	F	Е	D	С	В	Α	
				bla Q	Cargas internas. Tabla Q	Carga				

3.1.4) Determinación de la carga térmica debida al aire suministrado.

Cuando se requiere enfriar un espacio, el aire de suministro debe tener una temperatura menor que la del espacio por acondicionar, de tal modo que la ganancia de calor del aire es igual a la ganancia de calor a través del espacio por acondicionar, la cual se debe por ejemplo al calor conducido a través de pisos o paredes, calor debido a personas ext. [15].

En primera instancia se debe determinar la masa del aire suministrado a través de la siguiente expresión

$$Qs = M * Cp * (ti - tiny)$$

Donde

Qs; carga total de calor sensible.

M; masa del aire suministrado

ti; Temperatura requerida del espacio 24[°C]

tiny; temperatura de suministro, se encuentra en la carta psicométrica a partir del factor de calor sensible.

Cp; Calor especifico del aire 0.24 [BTU/LB °F] = 0.24 [kcal/Kg °C]

Factor de calor sensible

La carga total de refrigeración está representada por la suma de la carga de calor sensible más la latente. El factor de calor sensible relaciona estas cargas [15].

$$FCS = \frac{Qs}{Qs + Q_L}$$

En la **tabla R** se muestra la carga externa de calor sensible, posteriormente al valor máximo de la tabla se le suma el valor de la carga interna de calor sensible para obtener el valor del **Qs.**

ıbla R. Carg	ga externa de	calor sensibl	e				
	Horario de tr	abajo					
Hora	21-jun	22-jul	24-ago	22-sep	22-oct	21-nov	22-dic
		21-may	20-abr	22-mar	20-feb	21-ene	
	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]
1	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388
2	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388
3	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388
4	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388
5	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388
6	-3737.30788	-3737.30788	-3772.57888	-3831.36388	-3831.36388	-3831.36388	-3831.36388
7	-3549.19588	-3584.46688	-3607.98088	-3567.65188	-3713.79388	-3737.30788	-3772.57888
8	1122.67663	1122.67663	1087.40563	1224.43063	1028.62063	993.349634	969.835634
9	1604.49817	1569.22717	1569.22717	1734.60217	1533.95617	1498.68517	1498.68517
10	4832.27305	4832.27305	4832.27305	5011.82305	4797.00205	4761.73105	4761.73105
11	10213.2425	10213.2425	10213.2425	10392.7925	10213.2425	10177.9715	10177.9715
12	13097.7867	13097.7867	13097.7867	13277.3367	13097.7867	13062.5157	13062.5157
13	15589.0102	15741.8512	15906.4492	16294.7872	15835.9072	15647.7952	15365.6272
14	19382.793	19476.849	19700.232	20973.897	19512.12	19218.195	19030.083
15	23337.5314	23408.0734	23537.4004	25446.3004	23278.7464	22831.9804	22643.8684
16	25117.8712	25211.9272	25270.7122	27382.7872	24588.8062	24095.0122	23777.5732
17	24698.2258	24698.2258	24510.1138	25785.3328	23134.5448	22241.0128	21758.9758
18	23248.7726	23048.9036	22343.4836	20662.2326	20662.2326	20662.2326	20662.2326
19	18336.075	18336.075	18336.075	18336.075	18336.075	18336.075	18336.075
20	16661.7809	16661.7809	16661.7809	16661.7809	16661.7809	16661.7809	16661.7809
21	12766.7809	12766.7809	12766.7809	12766.7809	12766.7809	12766.7809	12766.7809
22	7143.62006	7143.62006	7143.62006	7143.62006	7143.62006	7143.62006	7143.62006
23	5915.85926	5915.85926	5915.85926	5915.85926	5915.85926	5915.85926	5915.85926
24	3575.081	3575.081	3575.081	3575.081	3575.081	3575.081	3575.081
			27382.7872	[kcal/h]	Carga extern	a de calor ser	nsible
			9.05515449	Tonelada de	refrigeración	[TRF]	

La carga interna de calor sensible es igual a **25990.0968** [kcal/h]. Por lo tanto el calor sensible total es igual a la carga externa (el valor máximo de la **tabla R**) más la carga interna de calor sensible; **27382.7872** [kcal/h]+ **25990.0968** [kcal/h]= **53372.884**[kcal/h]

El calor latente total es igual a **5386.23161 [kcal/h].** Por lo tanto el **FCS =0.9.** Las condiciones iniciales deseadas para el interior de la fábrica son Temperatura de bulbo seco Ti=24[°C] y una humedad relativa del 50% y una entalpia de 13[kcal/kg]. Con la siguiente carta psicométrica encontramos los valores h iny que es igual a 10[Kcal/kg] y la temperatura de inyección T iny= 12[°C]

Figura 23; Carta psicrométrica para el distrito federal.

Por lo tanto el peso del aire suministrado se encuentra con la siguiente expresión y es igual a 18532.2514 [kg/h]

$$M = \frac{Qs}{Cp(ti - tiny)}$$

Para determinar la carga térmica para el equipo de aire se utiliza la siguiente formula

$$q = M_p(h_{mez} - h_{inv})$$

Donde

Mp; La masa del aire por cantidad de personas. Se determina con la siguiente tabla

 h_{Mez} ; entalpía de la mezcla se determina con la siguiente fórmula

h ext; entalpía externa es igual a 14 [kcal/kg]

M; masa del aire suministrado 18532.2514 [kg/h]

$$h_{mez} = \frac{Mph_{ext} + Mh_{int}}{M}$$

	IIde	ft³/min.po	r persona	ft [‡] /min. minimos
APLICACIÓN	Humo de cigarros	Recomen- dado	Minimo	de aire por ft* de techo
Denostrantos (normales	Poco	20	15	
Departamentos de lujo	Poco	30	25	0.33
Bancos	Ocasional	10	7.5	_
Peluquerías	Considerable	15	10	_
Salones de belleza	Ocasional	10	7.5	_
Bares	Mucho	30	25	_
Corredores	_	_	-	0.25
Sala de juntas	Excesivo	50	30	-
Departamentos de tiendas	Nada	7.5	5	0.05
Garajes	_		_	1.0
Fábricas	Nada	10	7.5	0.10
Funerarias (salones)	Nada	10	7.5	_
Cafetería	Considerable	10	7.5	_
fguirófanos	Nada		_	2.0
Hospitales cuartos privado		30	25	0.33
salas de espera		20	15	_
Habitaciones de hotel	Mucho	30	25	0.33
(restaurantes	-	_	_	4.0
Cocinas residencias	_	_	_	2.0
Laboratorios	Poco	20	15	_
Salones de reunión	Mucho	50	30	1.25
(generales	Poco	15	10	_
Oficinas {privadas	Nada	25	15	0.25
privadas	Considerable	30	25	0.25
Postourantes (cafetería	Considerable	12	10	
Restaurantes (comedor	Considerable	15	12	_
Salones de clase	_	_		_
Teatros	Nada	7.5	5	-
Teatros	Poco	15	10	_
Tocadores	-	_	_	2.0

Tabla 13: Ventilación recomendada para diferentes lugares.

Dentro de la fábrica operan 35 personas en el espacio a acondicionar, de las cuales son 30 obreros y 5 oficinistas por lo tanto de la tabla podemos determinar Mp (masa de aire por persona)

$$Mp1 = 30 * 10 \frac{ft^3}{min} * \rho_{aire} * 1.7 \frac{m^3}{h}$$
 $Mp2 = 5 * 30 \frac{ft^3}{min} * \rho_{aire} * 1.7 \frac{m^3}{h}$
 $Mp = Mp1 + Mp2$

Donde la ρ es la densidad del aire a 20[°C] es de 0.92 [kg/m³] y 1.7 es el factor de conversión de ft³/min a m³/h. Por lo tanto Mp1 = 469.2 [kg/h] y Mp2=234.6 [kg/h] por lo tanto Mp =703.8 [kg/h] y la entalpía de la mezcla es igual a h_{mez} = 13.53167 [kcal/kg].

$$q = M_p(h_{mez} - h_{iny})$$

La carga de calor es igual a 2485.59 [kcal/h]

3.2) Capacidad del sistema de aire acondicionado

En las **tablas S, T, W.** Se muestra el resultado de las suma de las cargas totales en periodos bimestrales a lo largo del día. El valor máximo obtenido en las tres tablas se ubica en el periodo del 22 de Septiembre y 22 de marzo a las 16 horas, en la **tabla S** es de **52091.1379** [kcal/h], equivalente en la **tabla T** al valor de **17.226** [TRF] y finalmente en la **Tabla W** 60.6119 [kW t] (Kilowatts térmicos de refrigeración).En la grafica se puede apreciar como varia el comportamiento de la carga térmica con respecto las de las horas del día. Por lo tanto el equipo de aire acondicionado debe tener una capacidad aproximada de 18 o 19 [TRF] (Toneladas de refrigeración) para satisfacer la demanda.

Tabla S							
	Horario de tr	abajo					
Hora	21-jun	22-jul	24-ago	22-sep	22-oct	21-nov	22-dic
		21-may	20-abr	22-mar	20-feb	21-ene	
	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]	[kcal/h]
1	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388
2	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388
3	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388
4	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388
5	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388	-3831.36388
6	-3737.30788	-3737.30788	-3772.57888	-3831.36388	-3831.36388	-3831.36388	-3831.36388
7	22873.8727	22838.6017	22815.0877	22855.4167	22709.27473	22685.7607	22650.4897
8	27545.7452	27545.7452	27510.4742	27647.4992	27451.68925	27416.4182	27392.9042
9	35466.4166	35431.1456	35431.1456	35596.5206	35395.87461	35360.6036	35360.6036
10	38694.1915	38694.1915	38694.1915	38873.7415	38658.92049	38623.6495	38623.6495
11	42310.0101	42310.0101	42310.0101	42489.5601	42310.01011	42274.7391	42274.7391
12	45194.5543	45194.5543	45194.5543	45374.1043	45194.55429	45159.2833	45159.2833
13	47685.7778	47838.6188	48003.2168	48391.5548	47932.67484	47744.5628	47462.3948
14	21868.383	21962.439	22185.822	23459.487	21997.70998	21703.785	21515.673
15	48045.8821	48116.4241	48245.7511	50154.6511	47987.09707	47540.3311	47352.2191
16	49826.2219	49920.2779	49979.0629	52091.1379	49297.15687	48803.3629	48485.9239
17	49406.5765	49406.5765	49218.4645	50493.6835	47842.89552	46949.3635	46467.3265
18	31541.2207	31341.3517	30635.9317	28954.6807	28954.68073	28954.6807	28954.6807
19	18336.075	18336.075	18336.075	18336.075	18336.07504	18336.075	18336.075
20	16661.7809	16661.7809	16661.7809	16661.7809	16661.78086	16661.7809	16661.7809
21	12766.7809	12766.7809	12766.7809	12766.7809	12766.7809	12766.7809	12766.7809
22	7143.62006	7143.62006	7143.62006	7143.62006	7143.620064	7143.62006	7143.62006
23	5915.85926	5915.85926	5915.85926	5915.85926	5915.859261	5915.85926	5915.85926
24	3575.081	3575.081	3575.081	3575.081	3575.081002	3575.081	3575.081
			52091.1379	[Kcal/h]	es igual a		
			17.2259054	[Tonelada de	refrigeraciór	1]	

$$1\left[\frac{kcal}{h}\right] = \left(\frac{4.184 \ kJ}{1kcal}\right) \left(\frac{1 \ h}{3600 s}\right) = 1.1622 * 10^{-3} \left(\frac{kJ}{s}\right) = 1.1622 * 10^{-3} [kW]$$

$$1[kW] = 0.282345[TRF]$$

2,	23	22	21	21	19	18	17	16	15	14	13	12	11	10		00										Hora		Tabla T
24 1.18223578 1.18223578 1.18223578 1.18223578 1.18223578 1.18223578 1.18223578	1.95630267	2.36230822	4.22181908	20 5.50984817 5.50984817	6.06351688	10.4302979	16.3381536		15.8881885	7.23160813	15.7691064	14.9452891	13.9914055		11.7283124	9.10904274	7.56411135	-1.23588223	-1.26698541	-1.26698541	-1.26698541	-1.26698541	-1.26698541	[TRF]		21-jun	Horario de Trabajo	
1.18223578	1.95630267	2.36230822 2.36230822	4.22181908	5.50984817	6.06351688	10.3642036	16.3381536	16.5080284	15.9115159		15.8196491	14.9452891	13.9914055	12.7956982 12.7956982	11.7166487	9.10904274	7.55244766	-1.23588223	-1.26698541	-1.26698541	-1.26698541	-1.26698541	-1.26698541	[TRF]	21-may	22-jul	rabajo	
1.18223578	1.95630267 1.95630267	2.36230822 2.36230822 2.36230822	4.22181908 4.22181908	5.50984817 5.50984817 5.50984817 5.50984817	6.06351688 6.06351688	10.1309298 9.57496056 9.57496056 9.57496056	16.2759473 16.6976467	16.4769252 16.5080284 16.5274679 17.2259054 16.3019699	15.9542828 16.5855328	7.2627113 7.33658134 7.75776686 7.27437499	15.8740796 16.0024983	14.9452891 14.9452891 14.9452891 15.0046641 14.9452891 14.9336254 14.9336254	13.9914055 14.0507805	12.7956982 12.8550732 12.7840346 12.7723709	11.7166487	9.10904274 9.10904274 9.09737905 9.14269155 9.07793957	7.54467187 7.55800818	$-1.23588223 \left -1.23588223 \right -1.24754593 \left -1.26698541 \right -1.26698541 \right -1.26698541$	$-1.26698541 \\ -1.26698541 \\ -1.26698541 \\ -1.26698541 \\ -1.26698541 \\ -1.26698541$	-1.26698541 -1.26698541 -1.26698541 -1.26698541 -1.26698541 -1.26698542	$-1.26698541 \\ -1.26698541 \\ -1.26698541 \\ -1.26698541 \\ -1.26698541 \\ -1.26698541$	-1.26698541 -1.26698541 -1.26698541 -1.26698541 -1.26698541 -1.26698542	-1.26698541 -1.26698541 -1.26698541 -1.26698541 -1.26698541 -1.26698541 -1.26698541	[TRF]	20-abr	24-ago		
1.18223578	1.95630267	2.36230822		5.50984817	6.06351688	9.57496056		17.2259054	16.5855328	7.75776686	16.0024983	15.0046641	14.0507805	12.8550732	11.7713362	9.14269155	7.55800818	-1.26698541	-1.26698541	-1.26698541	-1.26698541	-1.26698541	-1.26698541	<u></u> 쿭	22-mar	22-sep		
1.18223578	1.95630267	2.36230822	4.22181908	5.50984817	6.06351688	9.57496056	15.8210633	16.3019699	15.868749	7.27437499	15.8507523	14.9452891	13.9914055	12.7840346	11.704985	9.07793957	7.5096808	-1.26698541	-1.26698541	-1.26698541	-1.26698541	-1.26698541	-1.26698541	麗	20-feb	22-oct		
1.18223578	1.95630267	2.36230822	4.22181908	5.50984817	6.06351688		15.5255832	16.1386782	15.721009	7.17717757	15.7885459	14.9336254	13.9797418		11.6933213	9.06627587 9.05850008	7.501905	-1.26698541	-1.26698541	-1.26698541	-1.26698541	-1.26698541	-1.26698541	쿭	21-ene	21-nov		
1.18223578	1.95630267	2.36230822	4.22181908	5.50984817	6.06351688	9.57496056	15.3661794	16.033705	15.6588026	7.11497122	15.6952364	14.9336254	13.9797418	12.7723709	11.6933213	9.05850008	7.49024131	-1.26698541	-1.26698541	-1.26698541	-1.26698541	-1.26698541	-1.26698541	쿭		22-dic		
24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	w	2	1			Hora		Tabla W
4.15987393	6.88354437	8.31213583 8.31213583	14.8551037	19.3872273	21.3353937	36.7005676	57.4882442	16 57.9765329 58.0859741	55.9049745	25.4454979	55.4859663	52.5872416	49.2308588	45.0235836	41.2678263	32.0515332	26.6154604	-4.34863703	-4.45807821	-4.45807821	-4.45807821	-4.45807821	-4.45807821	[kWt]		21-jun	Horario de Trabajo	
24 4.15987393 4.15987393	6.88354437	8.31213583	14.8551037	19.3872273 19.3872273	21.3353937	36.7005676 36.4680051 35.6471962	57.4882442	58.0859741	55.9870554	25.4454979 25.5549391	55.6638083	52.5872416	49.2308588	45.0235836	41.2267859	32.0515332	26.57442	-4.34863703	-4.45807821 -4.45807821	-4.45807821	-4.45807821	-4.45807821	-4.45807821 -4.45807821	[kWt]	21-may	22-jul	abajo	
4.15987393	6.88354437	8.31213583	14.8551037		21.3353937	35.6471962	57.2693618	58.1543749	56.137537	25.8148619	55.8553303	52.5872416	49.2308588	45.0235836	41.2267859	32.0104928	26.5470597	-4.38967747	-4.45807821	-4.45807821	-4.45807821	-4.45807821	-4.45807821	[kWt]	20-abr	24-ago		
4.15987393	6.88354437	8.31213583 8.31213583	14.8551037	19.3872273	21.3353937	33.690935	58.7531744	60.611932	58.3586848	27.2968664 25.5959796 25.2539759	56.3071906	52.7961614	49.4397787	45.0235836 45.0235836 45.0235836 45.2325035 44.9825432 44.9415027	41.419212	32.1699316	26.5939855	-4.45807821	-4.45807821	-4.45807821	-4.45807821	-4.45807821	-4.45807821	[kWt]	22-mar	22-sep		
4.15987393	6.88354437		14.8551037	19.3872273	21.3353937	33.690935	55.6687845	60.611932 57.3609263	55.8365738	25.5959796	55.7732494	52.5872416	49.2308588	44.9825432	41.1857454	31.9420921	26.4239383	-4.45807821	-4.45807821	-4.45807821	-4.45807821	-4.45807821	-4.45807821	[kWt]	20-feb	22-oct		
4.15987393 4.15987393 4.15987393 4.15987393 4.15987393	6.88354437	8.31213583	14.8551037	19.3872273 19.3872273 19.3872273 19.3872273 19.3872273	21.3353937	33.690935	54.6290932	56.78636	55.3167281	25.2539759	55.5543671	52.5872416 52.5872416 52.5872416 52.7961614 52.5872416 52.5462011 52.5462011	49.1898184	44.9415027	41.144705	32.0515332 32.0515332 32.0104928 32.1699316 31.9420921 31.9010516 31.8736913	26.396578	$-4.34863703 \\ \boxed{-4.34863703} \\ -4.38967747 \\ \boxed{-4.45807821} \\ -4.45807821 \\ -4.4580$	-4.45807821 -4.45807821 -4.45807821 -4.45807821 -4.45807821	-4.45807821 -4.45807821 -4.45807821 -4.45807821 -4.45807821 -4.45807821 -4.45807821	$-4.45807821 \\ $	$-4.45807821 \\ $	-4.45807821 -4.45807821 -4.45807821 -4.45807821 -4.45807821	[kW t]	21-ene	21-nov		
4.15987393	6.88354437	8.31213583	14.8551037	19.3872273	21.3353937	33.690935	54.0682072	56.416996	55.0978458	25.0350935	55.2260435	52.5462011	49.1898184	44.9415027	41.144705	31.8736913	26.3555376	-4.45807821	-4.45807821	-4.45807821	-4.45807821	-4.45807821	-4.45807821	[kW t]		22-dic		

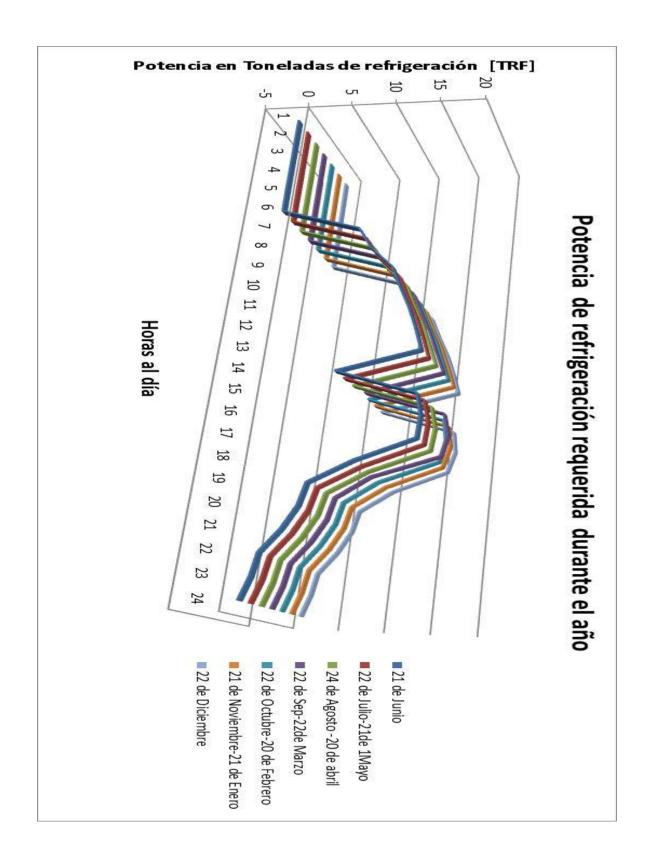


Figura 24; Grafica del comportamiento de la carga total.

3.3) Determinación de la capacidad del extractor de aire y estimación de los ductos para el sistema de aire acondicionado.

a) Capacidad del extractor de aire.

En el segundo piso de la edificación (señalado con rojo en los siguientes plano) tenemos el área de lavado y planchado de colchas, el cual no se consideró en el cálculo de las cargas térmicas para dimensionar el equipo de aire acondicionado. El vapor del área de trabajo más las cargas térmicas harían que se tenga que elegir un equipo de aire acondicionado más grande y en esta zona la humedad relativa en el aire es alta 65% por el uso de las planchas de vapor por lo tanto no es necesario controlarla, el cual es uno de los atributos del aire acondicionado.

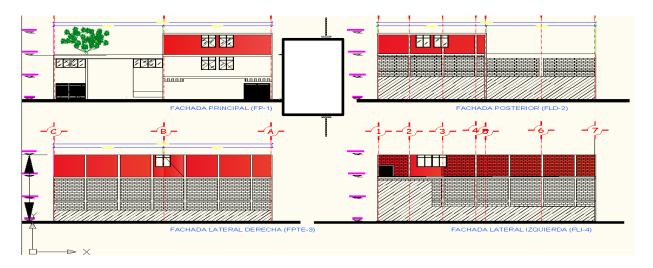


Figura 25: Paredes exteriores de la fabrica de colchas.

Lo adecuado es poner un extractor de aire para sacar todo el calor acumulado, por el vapor de las planchas, secadoras y lavadoras.

Ventilar es renovar o extraer el aire interior del recinto y sustituirlo por aire nuevo del exterior con el fin de evitar el enrarecimiento del recinto, eliminado el calor, el polvo, el vapor, los olores y cuanto elemento perjudicial o impurezas que contenga el aire ambiente acondicionar encerrado dentro del local. De no llevarse acabo esta renovación de aire interior, la respiración de los seres vivos que ocupan el local seria dificultosa y molesta, siendo un obstáculo para desarrollar sus actividades [29]. El aire de ventilación suele expresarse con el concepto de número de renovaciones, este se relaciona con el volumen y el caudal mediante la siguiente expresión [28].

Qv= NV

V; es el volumen de la parte vacía del local.

Qv; es el caudal de aire a extraer.

N; es el número de renovaciones del aire por hora.

Se puede definir el número de renovaciones del aire de un local como la cantidad de aire necesaria para renovar por completo el aire que ocupa el volumen de dicho local; El número de renovaciones de aire por hora dada la siguiente tabla.

Número de renovaciones por hora (nr/h) en locales industriales

Locales industriales	nr/h
Ambientes nocivos	30 a 60
Depósito de mercancías	3 a 6
Fundición	20 a 30
Lavandería industrial	15 a 30
Sala de máquinas	20 a 30
Talleres en general	8 a 10
Talleres con hornos	30 a 60
Talleres de mecanización	5 a 10
Talleres de pintura	30 a 60
Taller de soldadura	15 a 30
Tintorerías	20 a 30

7.5. Metros cúbicos por persona y hora (m³/h)

En función de la actividad	m³/h por persona
En caso de actividad normal	20 a 25
En local con furnadores	30 a 35
En trabajo físico ligero	45
En talleres y otros locales	60

Tabla 14; Numero de renovaciones del aire.

Se tiene un volumen del espacio interno de 543.3 [m³] para el área de planchado y secado de ropa (se utiliza el valor para tintorería), de acuerdo con el valor de la tabla. Él flujo de aire que se debe mover es de **10866[m³/h**]. Se proponen los siguientes extractores de aire.

TAD-16, con un flujo de aire de 7136 [m³/h], potencia eléctrica 0.4143 [k W e], precio \$ 5,748.00

WAD-16 con un flujo de aire de 3840 [m³/h], potencia eléctrica 0.138 [k W e], precio \$ 3,719.00

Figura 26; extractores de aire.

En combinación los extractores de aire tienen la capacidad de mover **10976**[m³/h], suficiente para extraer la cantidad de aire requerida. Los extractores tienen la capacidad de actuar como inyectores, por lo tanto se considera poner dos extractores más con las mismas características, teniendo como propósito introducir el aire para renovar el extraído.

b) Estimación de los ductos para el sistema de aire acondicionado.

En cualquier sistema de convección forzada, sea de calefacción, refrigeración o ventilación, los ventiladores deben tener una capacidad adecuada para enviar la cantidad necesaria de aire a una presión mayor o igual que la resistencia ofrecida por los ductos. Las dimensiones de los ductos de aire dependen de la máxima velocidad del aire que se puede usar sin causar ruidos, vibraciones o excesivas pérdidas por fricción [15 B]. En la siguiente tabla se muestran las velocidades recomendadas.

Uso	Velocidad recomendada pies/min
Tomas de aire exterior	700 — 1,000
Filtros	250 - 350
Serpentín de calefacción	450 — 650
Lavadoras de aire	500
Conexiones de succión	700 - 1,000
Salida de ventilador	1,000 - 2,000
Ductos principales	700 — 1,500
Ramales	600 — 800

Tabla 15; Velocidades recomendadas para ductos de aire acondicionado.

El volumen de aire que fluye el ducto se determina con la siguiente formula. Con la velocidad del aire recomendada y el caudal del aire (dato del fabricante), se calcula el área interna del ducto.

$$\dot{Q} = A * v$$

Q; es el caudal del aire en [ft³/min].

A; área del ducto en [ft²].

V; velocidad del aire en [ft/min].

Para dimensionar los ductos se debe tomar en cuenta la pérdida de presión, las cuales sumadas deben ser similar a la presión disponible en el ventilador. Se diseña los ductos para que esa presión disponible se consuma en las perdidas. Por lo cual las pérdidas no deben superar a la presión disponible del ventilador, para determinar estas pérdidas se utiliza el siguiente método.

Método de la caída de presión constante.

En este método los ductos se dimensionan de tal manera que la perdida de fracción en la tubería sea constante. Cuando se usa este método, con la **tabla 15** se supone la velocidad del aire a la salida del ventilador. La pérdida de presión permanece constante en todo el sistema [15 B]. Utilizando la siguiente grafica se calcula la perdida por fricción por cada 100[ft]. En morado el equipo de 10 toneladas, en azul el equipo de 6.5 toneladas y en rojo el equipo 46 toneladas.

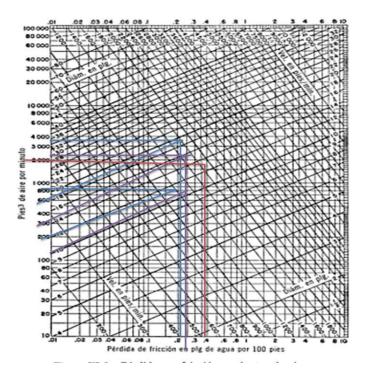


Figura 27; Perdida de fricción en ductos de aire.

Las 20 toneladas de refrigeración se distribuyen uniformemente en los dos pisos. El equipo de 10 toneladas distribuye el aire en la planta baja, por lo que se estima la tubería en base a este equipo. En el siguiente diagrama se muestra los ductos de distribución del aire, en azul se muestran los ductos de inyección del aire y en rojo los ductos de retorno del aire.

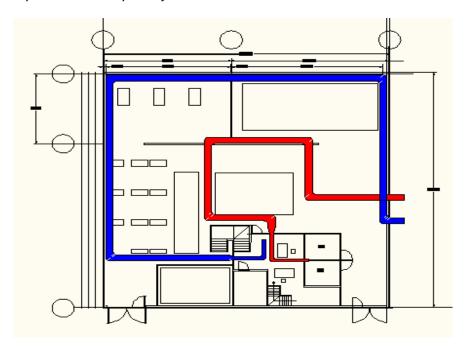


Figura 28; Ductos de distribución del aire acondicionado en la planta baja.

Aire acondicionado York ZR -120 de para 10 Toneladas Ductos de airyeccion de aire Caudal Velocidad Área 1 Área 1 Diametro1 Diametro1 [ft^3/min] [ft/min] [ft^2] [m^2] [m] [in] [m] [m	Tabla X Plant	ta baja				
Ductos de ainyeccion de aire Caudal Velocidad Área 1 Área 1 Diametro1 Diametro1 [ftv3/min] [ft/min] [ftv2] [m^2] [m] [in] [in] 4000 2000 2 0.18580608 0.48638986 19.1492071 Redondeado 0.5 20 Decidid						
Caudal Velocidad Área 1 Área 1 Diametro1 Diametro1		<u> </u>				
[ft^3/min] [ft/min] [ft^2] [m^2] [m] [in]					Diametro1	
A000 2000 2 0.18580608 0.48638986 19.1492071						
Longitud Longitud ΔP tabla AP tabla total Precio Prec						
Longitud Longitud ΔP tabla ΔP tabla total Precio Precio [in agua] 63.5 208.333334 0.2 0.4166666667 \$ 1,012.58 526,351.98 Caudal Velocidad Área 1 Área 1 Diametro1 Diametro1 [ft^3/min] [ft/min] [ft^2] [m^2] [m] Tabla[in] Roo 1318.70885 0.606654 0.056360001 0.26787985 10.5464508 Caudal Longitud ΔP tabla ΔP tabla total Precio	4000	2000				
[m] [ft] [in agua] [in agua] Por 2.44[m] Total 63.5 208.33334 0.2 0.416666667 \$ 1,012.58 \$26,351.98 Caudal Velocidad Área 1 Área 1 Diametro1 Diametro1 [ft^ns/min] [ft/min] [ft/min] [ft/min] [ft/min] [ft/min] [ft] [in agua] Por 2.44[m] Total 2 6.5616798 0.2 0.01312336 \$ 402.05 \$ 329.55 Aire acondicionado York ZR -120 de para 10 Toneladas Ductos de retorno de aire Caudal Velocidad Área 1 Área 1 Diametro1 Diametro1 [ft^ns/min] [ft/min] [ft/ns] [ft/min] [ft/min	Longitud	Longitud	A P tabla			_
G3.5 208.333334 0.2 0.416666667 \$ 1,012.58 \$26,351.98 Caudal Velocidad Área 1 Área 1 Diametro1 Ift/3/min Ift/min Ift/2 Im² Im Tabla[in] 800 1318.70885 0.606654 0.056360001 0.26787985 10.5464508 Longitud Longitud ΔP tabla ΔP tabla total Precio Precio Im Ift Iin agua Iin agua Por 2.44[m] Total Caudal Velocidad Área 1 Área 1 Diametro1 Ift/3/min Ift/min Ift/2 Im² Im Im Im 4000 2000 2 0.18580608 0.48638986 19.1492071 Redondeado 0.5 20 Longitud Longitud ΔP tabla ΔP tabla total Precio Precio Redondeado 0.5 20 Longitud Longitud ΔP tabla ΔP tabla total Precio Precio Im Ift Iin agua Iin agua Por 2.44[m] Total A01 13.233596 0.2 0.262467192 1.012.58 516,599.67 Caudal Velocidad Área 1 Área 1 Diametro1 Diametro1 Ift/3/min Ift/min Ift/2 Im² Im² Im Im Im Im Im						
Caudal Velocidad Área 1 Área 1 Diametro1 [ft^n/min] [ft/min] [ft/2] [m/2] [m] Tabla[in] R00 1318.70885 0.606654 0.056360001 0.26787985 10.5464508 Redondeado 0.3 10 Longitud Longitud ΔP tabla ΔP tabla total Precio Precio Precio Precio Caudal Velocidad Área 1 Área 1 Diametro1 Diametro1 Diametro1 [ft^n/min] [ft/2] [m/2] [m] [in]						
[ft^3/min] [ft/min] [ft^2] [m^2] [m] Tabla[in] 800 1318.70885 0.606654 0.056360001 0.26787985 10.5464508 Longitud Longitud ΔP tabla ΔP tabla total Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 2 6.5616798 0.2 0.01312336 402.05 \$329.55 Aire acondicionado York ZR -120 de para 10 Toneladas Dutos de retorno de aire Caudal Velocidad Área 1 Área 1 Diametro 1 Diametro 1 [ft/3/min] [ft/min] [ft^2] [m^2] [m] [in] 4000 2000 2 0.18580608 0.48638986 19.1492071 Redondeado 0.5 20 Longitud Longitud ΔP tabla					, ,	
800 1318.70885 0.606654 0.056360001 0.26787985 10.5464508						
Longitud Longitud ΔP tabla (In agua) (In ag						
Longitud Longitud [In agua] [In agua] [In agua] Por 2.44[m] Total	800	1318.70883	0.000034			
[m] [ft] [in agua] [in agua] Por 2.44[m] Total 2 6.5616798 0.2 0.01312336 \$ 402.05 \$ 329.55 Aire acondicionado York ZR -120 de para 10 Toneladas Ductos de retorno de aire Caudal Velocidad Área 1 Área 1 Diametro1 Diametro1 [ft^3/min] [ft/min] [ft^2] [m^2] [m] [in] 4000 2000 2 0.18580608 0.48638986 19.1492071 Redondeado 0.5 20 Longitud Longitud ΔP tabla ΔP tabla total Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 40 131.233596 0.2 0.262467192 \$ 1,012.58 \$16,599.67 Caudal Velocidad Área 1 Área 1 Diametro1 Diametro1 [ft^3/min] [ft/min] [ft^2] [m^2] [m] Tabla[in] 800 1318.70885 0.606654 0.056360001 0.26787985 10.5464508 Redondeado 0.3 10 Longitud Longitud ΔP tabla ΔP tabla total Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 4.7 15.4199475 0.2 0.030839895 \$ 402.05 \$ 774.44 Perdidas de presión por accesorios Perdida de Presiòn de Datos faricante accesorios unidad Cantidad [in agua] [in agua] [in agua] [in agua] [in agua] 2 Filtros 0.2 0.4 2.610597114 2.66 10 rejillas de salida 0.06 0.6 0.6 9 curvas de 90° Φ= 20" 0.0275 0.2475 8 rejillas de retorno 0.06 0.48 2 curvas de 90° Φ= 20" 0.08 0.16	Longitud	Longitud	A D tabla			
2 6.5616798						
Aire acondicionado York ZR -120 de para 10 Toneladas Ductos de retorno de aire Caudal Velocidad Área 1 Área 1 Diametro1 [ft'3/min] [ft/min] [ft^2] [m^2] [m] [in] 4000 2000 2 0.18580608 0.48638986 19.1492071 Redondeado 0.5 20 Longitud Longitud ΔP tabla ΔP tabla total Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 40 131.233596 0.2 0.262467192 \$ 1,012.58 \$16,599.67 Caudal Velocidad Área 1 Área 1 Diametro1 Diametro1 [ft'3/min] [ft/min] [ft^2] [m^2] [m] Tabla[in] 800 1318.70885 0.606654 0.056360001 0.26787985 10.5464508 Redondeado 0.3 10 Longitud Longitud ΔP tabla ΔP tabla total Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 4.7 15.4199475 0.2 0.030839895 \$ 402.05 \$ 774.44 Perdidas de presión por accesorios Perdida de Presiòn de Datos faricante presión ventilador accesorios unidad Cantidad [in agua] [in agua] [in agua] [in agua] [in agua] 2 Filtros 0.2 0.4 2.610597114 2.66 9 curvas de 90 Φ= 20" 0.0275 0.2475 8 rejillas de retorno 0.06 0.48 2 curvas de 90° Φ= 20" 0.08 0.16						
Ductos de retorno de aire Caudal Velocidad Área 1 Área 1 Diametro 1 Diametro 1 [ft^3/min] [ft/min] [ft^2] [m^2] [m] [in] [in]			_		\$ 402.05	\$ 329.55
Caudal [ft^3/min] Velocidad [ft/min] Área 1 [m^2] Diametro1 [m] Diametro1 [m] 4000 2000 2 0.18580608 0.48638986 19.1492071 Redondeado 0.5 20 Longitud ΔP tabla ΔP tabla total Precio Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 40 131.233596 0.2 0.262467192 \$ 1,012.58 \$ 16,599.67 Caudal Velocidad Área 1 Área 1 Diametro1 Diametro1 [ft/3/min] [ft/min] [ft/2] [m^2] [m] Tabla[in] Tabla[in] Tabla[in] 800 1318.70885 0.606654 0.056360001 0.26787985 10.5464508 Redondeado 0.3 10 Longitud Longitud ΔP tabla ΔP tabla total Precio Precio Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 4.7 15.4199475 0.2 0.30839895 \$ 402.05 \$ 774.44 Perdidas de presión por accesorios Perdida de Presión de Presión de Datos faricante presión ventilador accesorios unidad [in agua] [in agua] [in agua] [in agua] [in agua] [in agua] [in agua] [in agua] 2 Filtros 0.2 0.4 2.610597114 2.66 10 rejillas 0.06 0.6 9 curvas de 90° Φ= 20" 0.0275 0.2475 8 rejillas			-120 de par	a 10 Toneiadas		
[ft/s/min] [ft/min] [ft/2] [m/2] [m] [in] 4000 2000 2 0.18580608 0.48638986 19.1492071 Redondeado 0.5 20 Longitud Longitud ΔP tabla Precio Precio [m] [ft] [in agua] [in agua] Precio 40 131.233596 0.2 0.262467192 \$ 1,012.58 \$16,599.67 Caudal Velocidad Área 1 Área 1 Diametro1 Diametro1 [ft/3/min] [ft/min] [ft/2] [m/2] [m] Tabla[in] 800 1318.70885 0.606654 0.056360001 0.26787985 10.5464508 Redondeado 0.3 10 Longitud ΔP tabla ΔP tabla total Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 4.7 15.4199475 0.2 0.030839895 \$ 402.05 \$ 774.44 Perdida de presión por acce			6	6	D'1	D'
4000 2000 2 0.18580608 0.48638986 19.1492071 Redondeado 0.5 20 Longitud Longitud ΔP tabla total Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 40 131.233596 0.2 0.262467192 \$ 1,012.58 \$16,599.67 Caudal Velocidad Área 1 Área 1 Diametro1 Diametro1 [ft^3/min] [ft/min] [ft^2] [m^2] [m] Tabla[in] 800 1318.70885 0.606654 0.056360001 0.26787985 10.5464508 Redondeado 0.3 10 Longitud Longitud ΔP tabla ΔP tabla total Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 4.7 15.4199475 0.2 0.030839895 402.05 774.44 Perdidas de presión por accesorios Perdida de Presiòn de Datos faricante Precio Precio Presión Cantidad [in agua] [in agua] [in agua] 2 Filtros 0.2 0.4 2.610597114 2.66 10 rejillas de salida 0.06 0.6 9 curvas de 90° Φ= 20" 0.0275 0.2475 8 rejillas de de retorno 0.06 0.48 2 curvas de 90° Φ=10" 0.08 0.16						
Longitud Longitud ΔP tabla ΔP tabla total Precio Precio						
Longitud Longitud ΔP tabla ΔP tabla total Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 40 131.233596 0.2 0.262467192 \$ 1,012.58 \$16,599.67 Caudal Velocidad Área 1 Área 1 Diametro1 Diametro1 [ft^3/min] [ft/min] [ft^2] [m^2] [m] Tabla[in] 800 1318.70885 0.606654 0.056360001 0.26787985 10.5464508 Redondeado 0.3 10 Longitud Longitud ΔP tabla ΔP tabla total Precio Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 4.7 15.4199475 0.2 0.030839895 \$ 402.05 \$ 774.44 Perdidas de presión por accesorios Perdida de Presión de Ventidador accesorios unidad Cantidad Cantidad [in agua] [in agua] [in agua] [in agua] 2 Filtros 0.2 0.4 2.610597114 2.66 10 rejillas de salida 0.06 0.6 9 curvas de 90° Φ = 20" 0.0275 0.2475 8 rejillas de retorno 0.06 0.48 2 curvas de 90° Φ = 10" 0.08 0.16 0.	4000	2000				
[m] [ft] [in agua] [in agua] Por 2.44[m] Total 40 131.233596 0.2 0.262467192 \$ 1,012.58 \$16,599.67 Caudal Velocidad Área 1 Área 1 Diametro1 Diametro1 [ft^3/min] [ft/min] [ft^2] [m^2] [m] Tabla[in] 800 1318.70885 0.606654 0.056360001 0.26787985 10.5464508 Redondeado 0.3 10 Longitud Longitud ΔP tabla ΔP tabla total Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 4.7 15.4199475 0.2 0.030839895 \$ 402.05 \$ 774.44 Perdidas de presión por accesorios Perdida de Presiòn de Datos faricante presión unidad Cantidad ΔP Total disponible [in agua] [in agua] [in agua] [in agua] 2 Filtros 0.2 0.4 2.610597114 2.66 10 rejillas de salida 0.06 0.6 9 curvas de 90° Φ = 20" 0.0275 0.2475 8 rejillas de retorno 0.06 0.48 2 curvas de 90° Φ = 10" 0.08 0.16						_
40 131.233596						
Caudal [ft/s]/min] Velocidad [ft/min] Área 1 [m^2] Diametro1 [m] Diametro1 Tabla[in] 800 1318.70885 0.606654 0.056360001 0.26787985 10.5464508 Redondeado 0.3 10 Longitud Longitud AP tabla AP tabla total [in agua] Precio Precio Precio Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 4.7 15.4199475 0.2 0.030839895 \$ 402.05 \$ 774.44 Perdidas de presión por accesorios Datos faricante presión ventilador AP Total disponible [in agua] [in agua] [in agua] [in agua] 2 Filtros 0.2 0.4 2.610597114 2.66 10 rejillas 0.06 0.6 0.2 0.2475<						
[ft/3/min] [ft/min] [ft/2] [m/2] [m] Tabla[in] 800 1318.70885 0.606654 0.056360001 0.26787985 10.5464508 Redondeado 0.3 10 Longitud ΔP tabla ΔP tabla total Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 4.7 15.4199475 0.2 0.030839895 \$ 402.05 \$ 774.44 Perdida de presión por accesorios Perdida de Presiòn de Presiòn de Presiòn de Presiòn de Presiòn de Presiòn de Presión de Presiòn d			-	_	· · · · · ·	, ,
800 1318.70885 0.606654 0.056360001 0.26787985 10.5464508 Redondeado 0.3 10 Longitud Longitud ΔP tabla ΔP tabla total Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 4.7 15.4199475 0.2 0.030839895 \$ 402.05 \$ 774.44 Perdidas de presión por accesorios Perdida de Presión de Presi						
Redondeado O.3 10						
Longitud ΔP tabla ΔP tabla total Precio Precio [m] [ft] [in agua] [in agua] Por 2.44[m] Total 4.7 15.4199475 0.2 0.030839895 \$ 402.05 \$ 774.44 Perdidas de presión por accesorios Datos faricante presión ventilador accesorios unidad Cantidad ΔP Total disponible [in agua] [in agua] [in agua] [in agua] 2 Filtros 0.2 0.4 2.610597114 2.66 10 rejillas 0.06 0.6 0.2475	800	1318.70885	0.606654			
[m] [ft] [in agua] [in agua] Por 2.44[m] Total 4.7 15.4199475 0.2 0.030839895 \$ 402.05 \$ 774.44 Perdidas de presión por accesorios Datos faricante presión ventilador ΔP Total disponible [in agua] [in agua] [in agua] [in agua] 2 Filtros 0.2 0.4 2.610597114 2.66 10 rejillas 0.06 0.6 0.6 0.2475 0.2475 0.2475 0.2475 0.2475 0.0275 0.2475 0.0275						
4.7 15.4199475 0.2 0.030839895 \$ 402.05 \$ 774.44 Perdidas de presión por accesorios Perdida de presión de presión ventilador ΔP Total disponible [in agua] [in agua] [in agua] [in agua] [in agua] 2 Filtros 0.2 0.4 2.610597114 2.66 10 rejillas	Longitud	Longitud	ΔP tabla	ΔP tabla total		Precio
Perdidas de presión por accesorios Perdida de Presión de Presión de Presión de Presión ventilador ventilador AP Total disponible [in agua] [in agua] [in agua] [in agua] 2 Filtros 0.2 0.4 2.610597114 2.66 10 rejillas 0.06 0.6 0.6 0.24 0.05			[in agua]	[in agua]		
Datos faricante presión ventilador accesorios unidad Cantidad ΔP Total disponible [in agua] [in agua] [in agua] [in agua] 2 Filtros 0.2 0.4 2.610597114 2.66 10 rejillas 0.06 0.6 0.6 0.00	4.7	15.4199475	0.2	0.030839895	\$ 402.05	\$ 774.44
Datos faricante presión ventilador accesorios unidad Cantidad ΔP Total disponible [in agua] [in agua] [in agua] [in agua] 2 Filtros 0.2 0.4 2.610597114 2.66 10 rejillas 0.06 0.6 0.6 0.00						
accesorios unidad Cantidad ΔP Total disponible [in agua] [in agua] [in agua] [in agua] 2 Filtros 0.2 0.4 2.610597114 2.66 10 rejillas 0.06 0.6 0.6 0.00	Perdidas de presión por acce		esorios		Perdida de	Presiòn de
[in agua] [in agua] [in agua] [in agua] 2 Filtros 0.2 0.4 2.610597114 2.66 10 rejillas de salida 0.06 0.6 9 curvas de 90° Φ= 20" 0.0275 0.2475 8 rejillas de retorno 0.06 0.48 2 curvas de 90° Φ=10" 0.08 0.16	Datos faricant	Datos faricante			presión	
2 Filtros 0.2 0.4 2.610597114 2.66 10 rejillas de salida 0.06 0.6 9 curvas de 90° Φ= 20" 0.0275 0.2475 8 rejillas de retorno 0.06 0.48 2 curvas de 90° Φ=10" 0.08 0.16	accesorios	unidad	Cantidad		ΔP Total	disponible
10 rejillas de salida 0.06 0.6 9 curvas de 90° Φ= 20" 0.0275 0.2475 8 rejillas de retorno 0.06 0.48 2 curvas de 90° Φ=10" 0.08 0.16		[in agua]	[in agua]			[in agua]
de salida 0.06 0.6 9 curvas de 90° Φ= 20" 0.0275 0.2475 8 rejillas de retorno 0.06 0.48 2 curvas de 90° Φ=10" 0.08 0.16	2 Filtros	0.2	0.4		2.610597114	2.66
9 curvas de 90° Φ= 20" 0.0275 0.2475 8 rejillas de retorno 0.06 0.48 2 curvas de 90° Φ=10" 0.08 0.16	10 rejillas					
90° Φ= 20" 0.0275 0.2475 8 rejillas de retorno 0.06 0.48 2 curvas de 90° Φ=10" 0.08 0.16	de salida	0.06	0.6			
8 rejillas de retorno 0.06 0.48 2 curvas de 90° Φ=10" 0.08 0.16	9 curvas de					
de retorno 0.06 0.48 2 curvas de 90° Φ=10" 0.08 0.16	90° Ф= 20"	0.0275	0.2475			
2 curvas de 90° Φ=10" 0.08 0.16	8 rejillas					
90° Φ=10" 0.08 0.16	de retorno	0.06	0.48			
****	2 curvas de					
	90° Ф=10"	0.08	0.16			
		Total	1.8875			

En la **tabla X**, se muestran los valores de velocidad del viento caudal y se determina las dimensiones de las tuberías y el precio por cada 2.44 metros con aislamiento térmico y mano de obra. De acuerdo a la presión disponible en el ventilador y la caída de presión. Los ductos adecuados tanto para inyección y retorno del aire. Ducto de forma circular de **20 [in] o 0.5 [m] de diámetro con una longitud de 103.5 [m]**, para todas las áreas menos las oficinas. Dentro de las oficinas se determina que el ducto adecuado

para inyección y retorno del aire es el de **10[in] o 0.254 [m] de diámetro y de longitud 6.7 [m]**. En total el costo por las tuberías es de **\$44,055.64**

Los equipos a utilizar para el acondicionamiento del aire en el primer piso son; equipo de aire condicionado por absorción de 4.6 toneladas y equipo de aire acondicionado por compresión de 5.6 toneladas, cada equipo con sus respectivos ductos de inyección y retorno. En el siguiente diagrama se muestra las tuberías del sistema de 6.5 toneladas, en azul las tuberías de inyección y en rojo las de retorno.

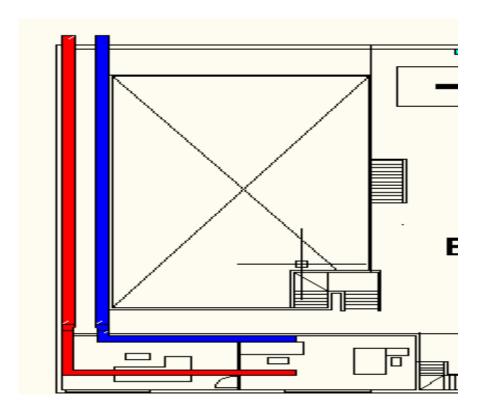


Figura 29; Ductos de distribución del aire acondicionado, primer piso.

Tabla Y Pis	so 2				
		7R -078 de n	ara 6.5 Tonelad	ac	
Ductos de air					
Caudal	Velocidad	Área 1	Área 1	Diametro1	Diametro1
[ft^3/min]	[ft/min]	[ft^2]	[m^2]	[m]	[in]
2600	2000	1.3	0.120773952	0.39214004	15.4385843
2000	2000	1.3	Redondeado	0.39214004	15.4383845
Longitud	Longitud	ΔP tabla	ΔP tabla total	Precio	Precio
[m]	[ft]	[in agua]	[in agua]	Por 2.44[m]	Total
20	65.616798	0.25	0.164041995	\$ 645.27	\$ 5,289.10
Caudal	Velocidad	Área 1	Área 1	Diametro1	Diametro1
[ft^3/min]	[ft/min]	[ft^2]	[m^2]	[m]	Tabla[in]
800	1330.51707	0.60127	0.055859811	0.2666885	10.4995471
800	1330.31707	0.00127	Redondeado	0.2000883	10.4995471
Longitud	Longitud	ΔP tabla	ΔP tabla total	Precio	Precio
[m]	[ft]	[in agua]	[in agua]	Por 2.44[m]	Total
13	42.6509187	0.25		\$ 402.05	\$ 2,142.07
			para 6.5 Tonela	•	\$ 2,142.07
	torno de aire	0/0 de p	Jana 0.5 Tonela	443	
Caudal	Velocidad	Área 1	Área 1	Diametro1	Diametro1
[ft^3/min]	[ft/min]	[ft^2]	[m^2]	[m]	[in]
2600	2000	1.3	0.120773952	0.39214004	15.4385843
2000	2000	1.3	Redondeado	0.33214004	16
Longitud	Longitud	ΔP tabla	ΔP tabla total	Precio	Precio
[m]	[ft]	[in agua]	[in agua]	Por 2.44[m]	Total
20	65.616798				
. 20	05.010/98	0.25	0.164041995	5 645.27	S 5.289.10
		0.25 Área 1	0.164041995 Área 1	\$ 645.27 Diametro1	\$ 5,289.10 Diametro1
Caudal	Velocidad	Área 1	Área 1	Diametro1	Diametro1
Caudal [ft^3/min]	Velocidad [ft/min]	Área 1 [ft^2]	Área 1 [m^2] 0.056360001	Diametro1 [m]	Diametro1 Tabla[in]
Caudal [ft^3/min] 800	Velocidad [ft/min] 1318.70885	Área 1 [ft^2]	Área 1 [m^2]	Diametro1 [m] 0.26787985	Diametro1 Tabla[in] 10.5464508
Caudal [ft^3/min]	Velocidad [ft/min]	Área 1 [ft^2] 0.606654 ΔP tabla	Área 1 [m^2] 0.056360001 Redondeado	Diametro1 [m] 0.26787985 0.3	Diametro1 Tabla[in] 10.5464508 10
Caudal [ft^3/min] 800 Longitud	Velocidad [ft/min] 1318.70885 Longitud	Área 1 [ft^2] 0.606654	Área 1 [m^2] 0.056360001 Redondeado ΔP tabla total	Diametro1 [m] 0.26787985 0.3 Precio	Diametro1 Tabla[in] 10.5464508 10 Precio
Caudal [ft^3/min] 800 Longitud [m]	Velocidad [ft/min] 1318.70885 Longitud [ft]	Área 1 [ft^2] 0.606654 ΔP tabla [in agua]	Área 1 [m^2] 0.056360001 Redondeado ΔP tabla total [in agua]	Diametro1 [m] 0.26787985 0.3 Precio Por 2.44[m]	Diametro1 Tabla[in] 10.5464508 10 Precio Total
Caudal [ft^3/min] 800 Longitud [m] 10.1	Velocidad [ft/min] 1318.70885 Longitud [ft]	Área 1 [ft^2] 0.606654 ΔP tabla [in agua] 0.25	Área 1 [m^2] 0.056360001 Redondeado ΔP tabla total [in agua]	Diametro1 [m] 0.26787985 0.3 Precio Por 2.44[m]	Diametro1 Tabla[in] 10.5464508 10 Precio Total
Caudal [ft^3/min] 800 Longitud [m] 10.1	Velocidad [ft/min] 1318.70885 Longitud [ft] 33.136483 presión por a	Área 1 [ft^2] 0.606654 ΔP tabla [in agua] 0.25	Área 1 [m^2] 0.056360001 Redondeado ΔP tabla total [in agua]	Diametro1 [m] 0.26787985 0.3 Precio Por 2.44[m] \$ 402.05	Diametro1 Tabla[in] 10.5464508 10 Precio Total \$ 1,664.22
Caudal [ft^3/min] 800 Longitud [m] 10.1 Perdidas de	Velocidad [ft/min] 1318.70885 Longitud [ft] 33.136483 presión por a	Área 1 [ft^2] 0.606654 ΔP tabla [in agua] 0.25	Área 1 [m^2] 0.056360001 Redondeado ΔP tabla total [in agua]	Diametro1 [m] 0.26787985 0.3 Precio Por 2.44[m] \$ 402.05 Perdida de	Diametro1 Tabla[in] 10.5464508 10 Precio Total \$ 1,664.22 Presiòn de
Caudal [ft^3/min] 800 Longitud [m] 10.1 Perdidas de Datos farica	Velocidad [ft/min] 1318.70885 Longitud [ft] 33.136483 presión por a	Área 1 [ft^2] 0.606654 ΔP tabla [in agua] 0.25	Área 1 [m^2] 0.056360001 Redondeado ΔP tabla total [in agua]	Diametro1 [m] 0.26787985 0.3 Precio Por 2.44[m] \$ 402.05 Perdida de presión	Diametro1 Tabla[in] 10.5464508 10 Precio Total \$ 1,664.22 Presiòn de ventilador
Caudal [ft^3/min] 800 Longitud [m] 10.1 Perdidas de Datos farica	Velocidad [ft/min] 1318.70885 Longitud [ft] 33.136483 presión por a nte unidad	Área 1 [ft^2] 0.606654 ΔP tabla [in agua] 0.25 cccesorios	Área 1 [m^2] 0.056360001 Redondeado ΔP tabla total [in agua]	Diametro1 [m] 0.26787985 0.3 Precio Por 2.44[m] \$ 402.05 Perdida de presión ΔP Total	Diametro1 Tabla[in] 10.5464508 10 Precio Total \$ 1,664.22 Presiòn de ventilador disponible
Caudal [ft^3/min] 800 Longitud [m] 10.1 Perdidas de Datos farica accesorios	Velocidad [ft/min] 1318.70885 Longitud [ft] 33.136483 presión por a nte unidad [in agua]	Área 1 [ft^2] 0.606654 ΔP tabla [in agua] 0.25 ccesorios Cantidad [in agua]	Área 1 [m^2] 0.056360001 Redondeado ΔP tabla total [in agua]	Diametro1 [m] 0.26787985 0.3 Precio Por 2.44[m] \$ 402.05 Perdida de presión ΔP Total [in agua]	Diametro1 Tabla[in] 10.5464508 10 Precio Total \$ 1,664.22 Presiòn de ventilador disponible [in agua]
Caudal [ft^3/min] 800 Longitud [m] 10.1 Perdidas de Datos farica accesorios 2 Filtros	Velocidad [ft/min] 1318.70885 Longitud [ft] 33.136483 presión por a nte unidad [in agua]	Área 1 [ft^2] 0.606654 ΔP tabla [in agua] 0.25 ccesorios Cantidad [in agua]	Área 1 [m^2] 0.056360001 Redondeado ΔP tabla total [in agua]	Diametro1 [m] 0.26787985 0.3 Precio Por 2.44[m] \$ 402.05 Perdida de presión ΔP Total [in agua]	Diametro1 Tabla[in] 10.5464508 10 Precio Total \$ 1,664.22 Presiòn de ventilador disponible [in agua]
Caudal [ft^3/min] 800 Longitud [m] 10.1 Perdidas de Datos farica accesorios 2 Filtros 7 rejillas de salida 2 curvas de	Velocidad [ft/min] 1318.70885 Longitud [ft] 33.136483 presión por a nte unidad [in agua] 0.2	Área 1 [ft^2] 0.606654 ΔP tabla [in agua] 0.25 ccesorios Cantidad [in agua] 0.4	Área 1 [m^2] 0.056360001 Redondeado ΔP tabla total [in agua]	Diametro1 [m] 0.26787985 0.3 Precio Por 2.44[m] \$ 402.05 Perdida de presión ΔP Total [in agua]	Diametro1 Tabla[in] 10.5464508 10 Precio Total \$ 1,664.22 Presiòn de ventilador disponible [in agua]
Caudal [ft^3/min] 800 Longitud [m] 10.1 Perdidas de Datos farica accesorios 2 Filtros 7 rejillas de salida	Velocidad [ft/min] 1318.70885 Longitud [ft] 33.136483 presión por a nte unidad [in agua] 0.2	Área 1 [ft^2] 0.606654 ΔP tabla [in agua] 0.25 ccesorios Cantidad [in agua] 0.4	Área 1 [m^2] 0.056360001 Redondeado ΔP tabla total [in agua]	Diametro1 [m] 0.26787985 0.3 Precio Por 2.44[m] \$ 402.05 Perdida de presión ΔP Total [in agua]	Diametro1 Tabla[in] 10.5464508 10 Precio Total \$ 1,664.22 Presiòn de ventilador disponible [in agua]
Caudal [ft^3/min] 800 Longitud [m] 10.1 Perdidas de Datos farica accesorios 2 Filtros 7 rejillas de salida 2 curvas de	Velocidad [ft/min] 1318.70885 Longitud [ft] 33.136483 presión por a nte unidad [in agua] 0.2	Área 1 [ft^2] 0.606654 ΔP tabla [in agua] 0.25 ccesorios Cantidad [in agua] 0.4	Área 1 [m^2] 0.056360001 Redondeado ΔP tabla total [in agua]	Diametro1 [m] 0.26787985 0.3 Precio Por 2.44[m] \$ 402.05 Perdida de presión ΔP Total [in agua]	Diametro1 Tabla[in] 10.5464508 10 Precio Total \$ 1,664.22 Presiòn de ventilador disponible [in agua]
Caudal [ft^3/min] 800 Longitud [m] 10.1 Perdidas de Datos farica accesorios 2 Filtros 7 rejillas de salida 2 curvas de 90° Ф= 20"	Velocidad [ft/min] 1318.70885 Longitud [ft] 33.136483 presión por a nte unidad [in agua] 0.2	Área 1 [ft^2] 0.606654 ΔP tabla [in agua] 0.25 ccesorios Cantidad [in agua] 0.4	Área 1 [m^2] 0.056360001 Redondeado ΔP tabla total [in agua]	Diametro1 [m] 0.26787985 0.3 Precio Por 2.44[m] \$ 402.05 Perdida de presión ΔP Total [in agua]	Diametro1 Tabla[in] 10.5464508 10 Precio Total \$ 1,664.22 Presiòn de ventilador disponible [in agua]
Caudal [ft^3/min] 800 Longitud [m] 10.1 Perdidas de Datos farica accesorios 2 Filtros 7 rejillas de salida 2 curvas de 90° Ф= 20" 7 rejillas	Velocidad [ft/min] 1318.70885 Longitud [ft] 33.136483 presión por ante unidad [in agua] 0.2 0.06	Área 1 [ft^2] 0.606654 ΔP tabla [in agua] 0.25 ccesorios Cantidad [in agua] 0.4 0.42	Área 1 [m^2] 0.056360001 Redondeado ΔP tabla total [in agua]	Diametro1 [m] 0.26787985 0.3 Precio Por 2.44[m] \$ 402.05 Perdida de presión ΔP Total [in agua]	Diametro1 Tabla[in] 10.5464508 10 Precio Total \$ 1,664.22 Presiòn de ventilador disponible [in agua]
Caudal [ft^3/min] 800 Longitud [m] 10.1 Perdidas de Datos farica accesorios 2 Filtros 7 rejillas de salida 2 curvas de 90° Ф= 20" 7 rejillas de retorno	Velocidad [ft/min] 1318.70885 Longitud [ft] 33.136483 presión por ante unidad [in agua] 0.2 0.06	Área 1 [ft^2] 0.606654 ΔP tabla [in agua] 0.25 ccesorios Cantidad [in agua] 0.4 0.42	Área 1 [m^2] 0.056360001 Redondeado ΔP tabla total [in agua]	Diametro1 [m] 0.26787985 0.3 Precio Por 2.44[m] \$ 402.05 Perdida de presión ΔP Total [in agua]	Diametro1 Tabla[in] 10.5464508 10 Precio Total \$ 1,664.22 Presiòn de ventilador disponible [in agua]

En la gráfica de la figura 27 se determina la caída de presión y las dimensiones para los ductos de inyección y retorno del aire, El primer ducto de dimensiones 16 [in] o 0.4[m] y longitud de 40 [m] para todas las áreas menos las oficinas y ducto 23.1 [in] o 0.586[m] de diámetro y 6.7 [m] de longitud, para utilizar dentro de las oficinas. En total el costo por las tuberías es de \$ 9,095.40.

En la **figura 30,** se muestran los ductos de aire para el sistema de 4.6 toneladas, en azul claro los ductos de inyección y en rosa los ductos de retorno.

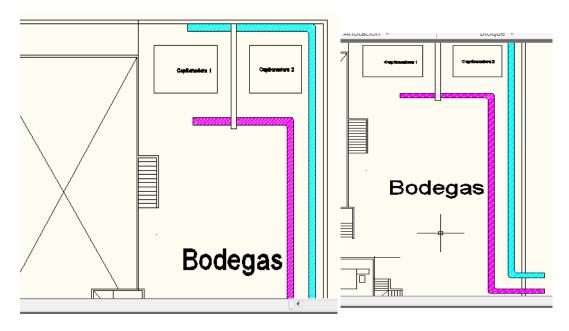


Figura 30; Ductos de distribución del aire acondicionado, primer piso.

Tabla Y2 P	iso 2				
Aire acondic	ionado Yazak	i WFC-SC5 de	e para 4.6 Tone	eladas	
Ductos de ainyeccion de aire					
Caudal	Velocidad	Área 1	Área 1	Diametro1	Diametro1
[ft^3/min]	[ft/min]	[ft^2]	[m^2]	[m]	[in]
2000	2000	1	0.09290304	0.34392957	13.5405342
			Redondeado	0.35	14
Longitud	Longitud	ΔP tabla	ΔP tabla total	Precio	Precio
[m]	[ft]	[in agua]	[in agua]	Por 2.44[m]	Total
30	98.425197	0.35	0.34448819	\$ 565.85	\$ 6,957.17
Aire acondic	ionado Yazak	i WFC-SC5 de	e para 4.6 Tone	eladas	
Ductos de re	torno de aire				
Caudal	Velocidad	Área 1	Área 1	Diametro1	Diametro1
[ft^3/min]	[ft/min]	[ft^2]	[m^2]	[m]	[in]
2000	2000	1	0.09290304	0.34392957	13.5405342
			Redondeado	0.35	14
Longitud	Longitud	ΔP tabla	ΔP tabla total	Precio	Precio
[m]	[ft]	[in agua]	[in agua]	Por 2.44[m]	Total
[m] 26.4		[in agua] 0.35	[in agua] 0.303149607	Por 2.44[m] \$ 565.85	Total \$ 6,122.31
26.4		0.35			
26.4	86.6141734 presión por a	0.35		\$ 565.85	\$ 6,122.31
26.4 Perdidas de	86.6141734 presión por a	0.35		\$ 565.85 Perdida de	\$ 6,122.31 Presiòn de
26.4 Perdidas de Datos farica	86.6141734 presión por a	0.35		\$ 565.85 Perdida de presión	\$ 6,122.31 Presiòn de ventilador
26.4 Perdidas de Datos farica	86.6141734 presión por a inte unidad	0.35 ccesorios Cantidad		\$ 565.85 Perdida de presión AP Total	\$ 6,122.31 Presiòn de ventilador disponible
26.4 Perdidas de Datos farica accesorios	86.6141734 presión por a nte unidad [in agua]	0.35 ccesorios Cantidad [in agua]		\$ 565.85 Perdida de presión ΔP Total [in agua]	\$ 6,122.31 Presiòn de ventilador disponible [in agua]
26.4 Perdidas de Datos farica accesorios 2 Filtros	86.6141734 presión por a nte unidad [in agua]	0.35 ccesorios Cantidad [in agua]		\$ 565.85 Perdida de presión ΔP Total [in agua]	\$ 6,122.31 Presiòn de ventilador disponible [in agua]
26.4 Perdidas de Datos farica accesorios 2 Filtros 6 rejillas	86.6141734 presión por a inte unidad [in agua] 0.2	0.35 ccesorios Cantidad [in agua] 0.4		\$ 565.85 Perdida de presión ΔP Total [in agua]	\$ 6,122.31 Presiòn de ventilador disponible [in agua]
26.4 Perdidas de Datos farica accesorios 2 Filtros 6 rejillas de salida	86.6141734 presión por a inte unidad [in agua] 0.2	0.35 ccesorios Cantidad [in agua] 0.4		\$ 565.85 Perdida de presión ΔP Total [in agua]	\$ 6,122.31 Presiòn de ventilador disponible [in agua]
26.4 Perdidas de Datos farica accesorios 2 Filtros 6 rejillas de salida 2 curvas de	86.6141734 presión por a inte unidad [in agua] 0.2 0.06	0.35 ccesorios Cantidad [in agua] 0.4 0.36		\$ 565.85 Perdida de presión ΔP Total [in agua]	\$ 6,122.31 Presiòn de ventilador disponible [in agua]
26.4 Perdidas de Datos farica accesorios 2 Filtros 6 rejillas de salida 2 curvas de 90° Ф= 20"	86.6141734 presión por a inte unidad [in agua] 0.2 0.06	0.35 ccesorios Cantidad [in agua] 0.4 0.36		\$ 565.85 Perdida de presión ΔP Total [in agua]	\$ 6,122.31 Presiòn de ventilador disponible [in agua]
26.4 Perdidas de Datos farica accesorios 2 Filtros 6 rejillas de salida 2 curvas de 90° Ф= 20" 6 rejillas	86.6141734 presión por a nte	0.35 ccesorios Cantidad [in agua] 0.4 0.36		\$ 565.85 Perdida de presión ΔP Total [in agua]	\$ 6,122.31 Presiòn de ventilador disponible [in agua]
Perdidas de Datos farica accesorios 2 Filtros 6 rejillas de salida 2 curvas de 90° Ф= 20" 6 rejillas de retorno	86.6141734 presión por a nte	0.35 ccesorios Cantidad [in agua] 0.4 0.36		\$ 565.85 Perdida de presión ΔP Total [in agua]	\$ 6,122.31 Presiòn de ventilador disponible [in agua]

El ducto requerido para el equipo de aire acondicionado por absorción, considerando la caída presión y la presión disponible en el ventilador, es el ducto circular de 14 [in] o 0.35 [m] de diámetro, con una longitud de 54.6 [m], lo que genera un costo de 13,079.48\$.

3.4) Análisis de del consumo energético. Implementando sistemas de aire acondicionado por ciclo de compresión.

Para cubrir las necesidades en aire acondicionado de la fábrica sin utilizar sistema de cogeneración. Se opta por los siguientes dos sistemas iguales de aire acondicionado por compresión.

- 1) Sistema de aire acondicionado, modelo York ZR -120 de para 10 Toneladas potencia eléctrica 10.71 [KW e]
- 2) Sistema de aire acondicionado, modelo York ZR -120 para 10 Toneladas.potencia eléctrica 10.71 [KW e]

En total estos dos sistemas cubren una demanda de **20** [TRF], el pico máximo de demanda es de **17.226** [TRF], el factor de seguridad es de **13.87%.** En la siguiente grafica se aprecia el comportamiento de la demanda de aire acondicionado con respecto al aire suministrado por los dos sistemas de compresión en unidades de toneladas de refrigeración.

Potencia de los sisitemas de aire acondicionado por compresión

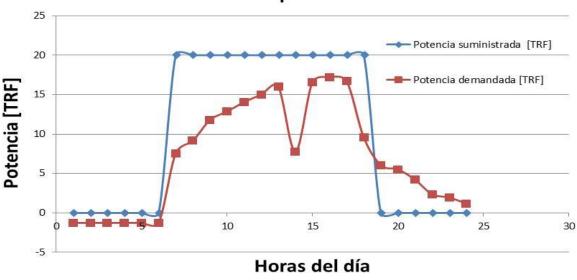


Figura 31; potencia del sistema de aire acondicionado por compresión con respecto a la demanda de aire acondicionado.

La grafica demuestra que los sistemas de aire acondicionado por compresión son los adecuados para acondicionar el inmueble, sin embargo al implementar estos equipos y los extractores de aire de la zona de planchado, el consumo eléctrico de la fabrica aumenta de 23.124197 [kW e] a 45.65 [kW e]

Consumo eléctrico de los sistemas de aire acondicionado por compresión y extractores de aire.

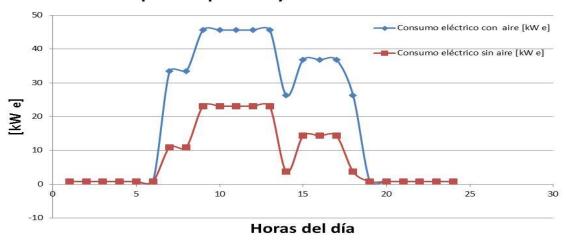


Figura 32; comparación del consumo eléctrico del aire acondicionado, con respecto al consumo actual.

Los kilowatts eléctricos adicionales, implica que hay un incremento en el consumo energético, sobretodo en la parte eléctrica. Conociendo la potencia eléctrica de estos sistemas más el consumo eléctrico habitual con su respectiva tarifa de CFE (Tarifa 3), se puede determinar el incremento del recibo de luz.

El recibo de luz se calcula de la siguiente manera: La demanda máxima de electricidad multiplicada por su respectivo cargo mensual. El cargo por energía se estima la cantidad de kilowatts hora por día multiplicado por su respectivo cargo. Se suman los dos cargos y se le agrega el IVA del 16%.

Potencia eléctrica	[kW]			
Equipos de compresión	21.42			
Extractores de aire	1.1046			
Total	22.5246			
Recibo de CFE más aire a	condicionado			
Recibo de CFE illas alle ac		nanda máxima		Costo
	cargo por der	[kW]	[\$/kW]	[\$]
250/	Julio	16.49963301	238.53	3935.657462
		46.49879667	230.33	11113.67739
	Agosto			
68%	Septiembre	31.49921484	239.75	7551.936758
	1. 1.		D max [\$]	22601.27161
	Julio	Agosto	Septiembre	Total
	11 días	31 días	21 días	[kw/h]
[kW h]* días	189.4747616	478.7845029	352.8041866	1021.063451
[\$/kW h]	1.772	1.806	1.779	
Precio [\$]	335.7492775	864.6848123	627.638648	
		consumo	1828.072738	Pesos
		Sub total	24429.34435	\$
		IVA 16%	3908.695096	\$
		Total	28338.03945	\$
		! D		
Consumo eléctrico más el	consumo de g		tre	
P		pesos		
Gas Ip más IVA	22272	•		
recibo CFE	28338.03945	\$		
Total	50610.03945	\$		
Por mes	25305.01972	\$		

La utilización de los *aparatos de aire acondicionado por compresión y el extractor de aire,* tendría una elevación en el recibo de luz de \$14,440.00 pesos a \$28,338.04 pesos, sumando el consumo habitual de gas L.P de \$22,272.00 pesos. El consumo energético total sería de \$50,610.04 pesos al bimestre. Actualmente el consumo energético por bimestre es de \$36,672.00 pesos.

Capítulo 4

Viabilidad del sistema de Trigeneración.

Este capitulo tiene como propósito, hacer la selección del sistema de Trigeneración a utilizar en la empresa, verificando que este se pueda implementar en la fábrica. Describir las características del sistema posteriormente realizar los cálculos adecuados para demostrar viabilidad del sistema en el ahorro del consumo energético.

4.1) Selección del sistema de Trigeneración.

El sistema de Trigeneración tiene los siguientes elementos; Cogenerador, sistema de aire acondicionado por absorción. Estos se eligen dependiendo de las demandas requeridas de electricidad, agua caliente y aire acondicionado.

a) Selección del cogenerador.

La demanda de eléctrica actual como se mencionó anteriormente es de 22.98 [kW _e]. El cogenerador debe ser capaz de cubrir está demanda eléctrica junto con la requerida por el aire acondicionado. Se debe de tomar en cuenta las siguientes consideraciones del contrato de interconexión con CFE antes hacer la elección del cogenerador.

"QUINTA. Entrega de energía por el Generador. El Generador se compromete a poner a disposición del Suministrador la energía producida por la Fuente de Energía Renovable o por el Sistema de Cogeneración en mediana escala, y el Suministrador se compromete a recibirla

NOVENA. Facturación. Para fines de facturación, el consumo de energía normal del suministro que cuenta con Fuente de Energía Renovable o Sistema de Cogeneración en mediana escala se determinará con las siguientes ecuaciones:

EFn = Consumo de energía normal del Suministro en el mes de facturación n;

EESn = Energía entregada por el Suministrador en el mes de facturación n;

ERGn = Energía recibida del Generador en el mes de facturación n; p = energía en punta, energía intermedia, energía base.

Las unidades de EFn y EFnp se expresan en kWh.

- a) Cuando la diferencia, EESn ERGn sea negativa, se considerará como un crédito a favor del Generador y se conservará como Energía Acumulada de Meses Anteriores en Favor del Generador, clasificándose en el periodo horario y mes en que el crédito fue generado. Dicho crédito será compensado automáticamente en los siguientes periodos de facturación, siempre y cuando exista energía a cargo del Generador que permita efectuar la compensación.
- b) Cuando la diferencia, EESn ERGn, sea positiva, y exista Energía Acumulada de Meses Anteriores en Favor del Generador, se realizarán las compensaciones que sean posibles, desde el mes más antiguo hasta el más reciente.

Lo anterior se realizará hasta agotar la energía acumulada o hasta que la facturación normal del suministro del mes sea de cero kilowatt horas.

Si la facturación normal del suministro del mes llega a cero kilowatt horas antes que se agote la Energía Acumulada de Meses Anteriores en Favor del Generador, el remanente de esta última se conservará, clasificado en el periodo horario y mes en que se generó, para utilizarse en futuras compensaciones.

Dicha energía deberá compensarse en un período máximo de 12 meses siguientes al mes en que se originó cada una de sus partes. De no efectuarse la compensación en ese periodo, el crédito será cancelado y el Generador renuncia a cualquier pago o bonificación por este concepto.

c) Las compensaciones se efectuarán automáticamente, restando de la energía entregada por el Suministrador en el mes de facturación, la Energía Acumulada de Meses Anteriores en Favor del Generador, según se trate de un contrato de suministro."[30].

Rango establecido por CFE

Cogeneración a pequeña escala; de 0 a 30[kW].

Cogeneración a mediana escala; de 30 a 500[kW].

Cogeneración a gran escala; mayor de 500[kW].

El sistema de aire acondicionado requerido es de 17.226 toneladas. La máquina de aire acondicionado por absorción más adecuada para cubrir la demanda es de 20 toneladas requiere una potencia térmica de 513 [kW t]. Se requiere mucha energía para elevar la temperatura de 20 [º C] a 85[º C] un caudal de agua 120 litros por minuto. Actualmente los sistemas de cogeneración que aportan la suficiente potencia térmica, tiene una capacidad generación de energía eléctrica de 375[kW e], la demanda actual de electricidad es de 23.12[kW e], incluyendo los equipos de aire por compresión y el extractor de aire lo máxima demanda es de 45.65 [kW e] .Se sobredimensionan los requerimientos de potencia eléctrica, mientras que la máquina de aire acondicionado por absorción de 4.6 toneladas requiere 202.97 [kW t]. Utilizando un cogenerador con una potencia eléctrica de 43 [kW e] y una potencia térmica 62 [kW t]. El cogenerador tiene la capacidad de aportar la energía térmica suficiente para hacer funcionar el equipo de 4.6 siempre y cuando inicie el proceso con él se precaliente el agua.

De acuerdo a estas cláusulas de CFE no es conviene elegir un cogenerador que sobredimensione la potencia eléctrica, debido a que no se tienen compensaciones económicas, no se puede vender (clausula quinta) y la energía eléctrica sobrante debe ser utilizada en el periodo que establece el contrato.

Los dos tipos de sistema de cogeneración que hay actualmente en el mercado (turbina y el motor alternativo de combustión interna) sus rendimientos eléctricos y térmicos son similares, al elegir alguno de los dos sistemas, siempre existe el problema del sobredimensionamiento de la capacidad de la energía eléctrica, para poder satisfacer la energía térmica, esto sucede porque es mayor la energía térmica requerida para que el sistema de absorción funcione que la energía eléctrica que requiere la fábrica, como muestra la siguiente gráfica.

	Rendimiento térmico	Rendimiento eléctrico	
Turbina	0.4 a 0.7	0.2 a 0.4	
Motor alternativo	0.4 a 0.5	0.3 a 0.4	

Tabla 16; Rendimiento térmico y eléctrico (tomados los datos tomadas de la tabla 2).

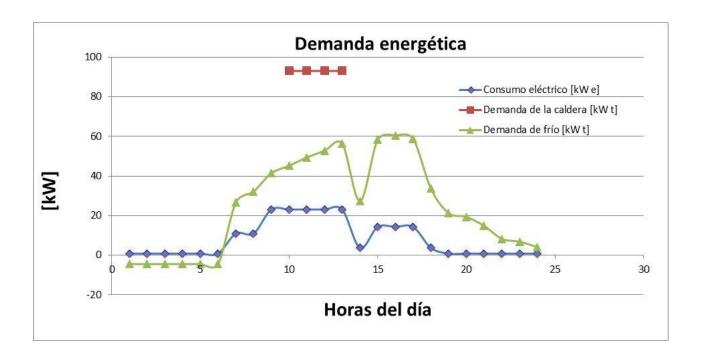


Figura 33; Demanda de energía de la fábrica.

Se opta por un sistema de cogeneración de motor alternativo de combustión interna, en primera instancia por que el cogenerador más pequeño de turbina de gas proporciona un potencia eléctrica de $100[kW_e]$, lo que sobredimensiona la demanda de electricidad que es de $23.12~[kW_e]$. Como se menciona en el capítulo 2~ entre más grande sea la demanda de electricidad más económico es utilizar un turbina de gas, pero como en este caso la demanda es muy pequeña es más económico invertir en el motor de combustión interna alternativo.

Se propone el siguiente sistema de cogeneración "OEKO 43 de la empresa nova energía". Aporta una potencia eléctrica de 43 [k W $_{\rm e}$] y una potencia térmica de 62 [kW $_{\rm t}$] suficientes para que la máquina de absorción modelo Yazaki WFC-SC5, genere 4.6 toneladas de refrigeración. Este sistema está sobredimensionado con respecto a la demanda eléctrica como se muestra en las siguiente gráfica, sin embargo, solamente una parte de la demanda total de aire acondicionado es cubierta.

Figura 34; Cogenerador OEKO 43 de la empresa nova energía

Figura 35; Potencia aportada por el cogenerador vs el consumo eléctrico, sin incluir los sistemas de aire acondicionad por compresión.

b) Selección del sistema de aire acondicionado

Para cubrir la demanda de aire acondicionado requerida, utilizando el sistema de cogeneración, se proponen 3 equipos, dos de sistema de compresión, los cuales utilizan electricidad. Uno por ciclo de absorción de simple efecto aprovechando los remanentes de calor del cogenerador para calentar el agua hasta 85 [°C].

1) Sistema de aire acondicionado por compresión, modelo York ZR -120 para 10 Toneladas de refrigeración.

2) Sistema de aire acondicionado por compresión, modelo York ZR -078 para 6.5 Toneladas.

3) El equipo de aire acondicionado por absorción de simple efecto, modelo Yazaki WFC-SC5, el cual proporciona 4.6 Toneladas.

En la siguiente grafica se observa el porcentaje y las toneladas de refrigeración que aportan cada equipo de aire acondicionado respecto a la demanda total de aire. En la gráfica de la figura 33 se aprecia la potencia que aportan los tres sistemas de aire acondicionado respecto a la demanda.

Potencia aportada por cada sisitema de aire acondicionado[kW t]

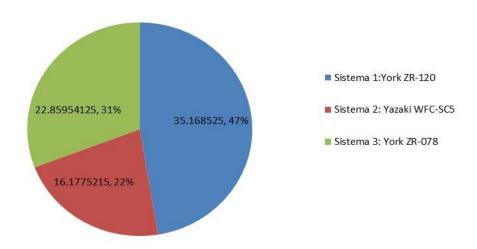


Figura 36; Porcentaje de aportación de aire acondicionado de cada uno de los equipos.

Potencia de los sisitemas de aire acondicionado

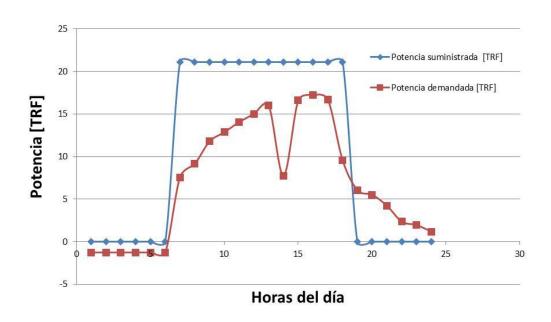


Figura 37; potencia aportada por los sistemas de aire acondicionado respecto a la demanda total, en unidades de toneladas de refrigeración.

Al emplear los dos sistemas de aire acondicionado por compresión con los extractores de aire para el área de planchado de la fábrica, más los implementos del circuito para el funcionamiento del sistema de trigeneración (Torres de enfriamiento y bombas de agua), la demanda eléctrica sube a $46.5 [\, kW_e]$ y el sobredimensionamiento del consumo eléctrico mostrado en la gráfica de la figura $31\,$ disminuye , por lo tanto la aportación eléctrica del cogenerador es adecuada para cubrir la demanda eléctrica total como se muestra en las siguiente gráfica.

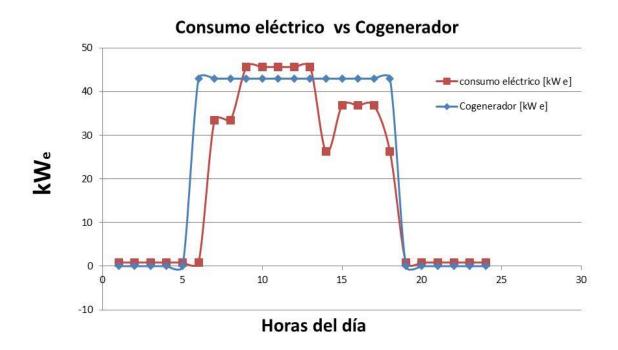


Figura 37 A; Potencia aportada por el cogenerador vs el consumo eléctrico, sin incluyendo los sistemas de aire acondicionado por compresión, torres de enfriamiento, bombas de agua y extractor de aire.

4.2) Descripción del sistema de cogeneración seleccionado.

El sistema de cogeneración está compuesto por un motor (M) primario de combustión interna de ciclo Otto, un generador eléctrico (G) de corriente alterna, que es accionado directamente por el motor a través de una flecha acoplada del rotor del generador y un circuito primario para la recuperación de calor (CP).

a) Características del motor primario, ciclo Otto.

El ciclo Otto es el ciclo ideal que asocia al motor de encendido por chispa, aunque difiere netamente del ciclo real, pero sirve para explicar el proceso bajo hipótesis sencillas. Los procesos termodinámicos que se producen están representados en la siguiente figura y son los siguientes [31].

- A) 1—2 .Compresión adiabática: Compresión del fluido de trabajo, el pistón tiene que realizar el trabajo de compresión (W1).
- B) 2—3 .Aportación de calor a volumen constante; introducción instantánea de calor aportado por la chispa eléctrica (Q1).
- C) 3—4. Expansión adiabática: Expansión correspondiente al trabajo (W2). Realizado por el fluido de trabajo.
- D) 4—1 Extracción de calor a volumen constante; extracción instantánea de calor (Q2) [31].

En realidad, en los motores de 4 tiempos la extracción de calor se produce en la fase de escape, desde la apertura de las válvulas de escape (4-1-0), y además el fluido se introduce en el motor en la carrea de admisión (0-1). Este hecho queda representado gráficamente en el diagrama P /V de la figura 35 por una línea horizontal discontinua. Estos dos procesos (0-1 y 1-0) se anulan teóricamente entre ellos, dando una pérdida o ganancia de calor nulos. Así pues, en el diagrama P/V del ciclo Otto ideal solo se considera el ciclo cerrado [31].

La aportación de calor dentro del motor, (Q1), se realiza a volumen constante, y por lo tanto el trabajo en esta fase es nulo $W_{2-3} = 0$

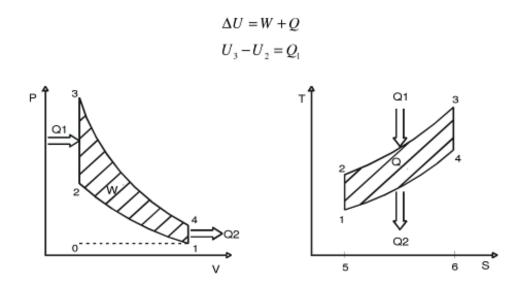


Figura 38; Ciclo Otto ben coordenadas Presión volumen y temperatura entropía.

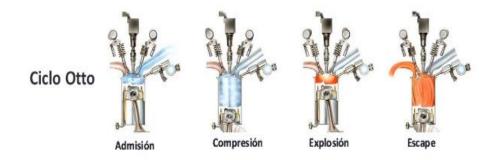


Figura 39. Funcionamiento del ciclo Otto.

b) Características del circuito primario para la recuperación d calor.

Se recupera el calor de refrigeración del motor de combustión interna, que normalmente sería expulsado al exterior, y el calor residual contenido en los gases de escape mediante intercambiadores de calor. El circuito primario está formado por cuatro intercambiadores de calor.

- 11) Intercambiador de calor que extrae calor del circuito de aceite y del agua de refrigeración y lo entrega a la demanda. Son dos intercambiadores de calor, uno para el aceite y otro para el agua de refrigeración.
- 12) Intercambiador de calor situado en la corriente de los gases de escape, que extrae el calor de los mismos para satisfacer la carga térmica.
- 13) Intercambiador de calor destinado a satisfacer la demanda térmica.
- 14) Intercambiado de calor auxiliar de seguridad, destinado a eliminar el calor excedente y asegurar que la temperatura de trabajo del motor sea la deseada [32].

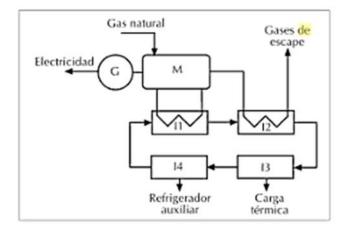


Figura 40: Esquema de cogeneración de calor y de electricidad con motor de combustión.

c) Generador eléctrico.

Los generadores eléctricos convierten la energía mecánica en energía eléctrica, en tanto que los motores convierten la energía eléctrica en energía mecánica; los generadores y motores eléctricos son muy parecidos, de hecho están construidos en la misma forma general y , ambos dependen de los mismos principios electromagnéticos de operación.

La operación básica de un generador de corriente alterna consiste en una espira de alambre que se encuentra libre para girar en un campo magnético, a la espira de alambre se le llama armadura y al campo magnético se le llama el campo, la armadura se gira por un elemento que se denomina primo motor, que dependiendo de la fuente primaria de energía, aplicación y uso puede estar accionado por agua, vapor, turbinas de viento, motores a gasolina o diesel.

La espira de la armadura se conecta a anillos rozantes, que a través de las escobillas se conectan por conductores al exterior, en la medida que la armadura gira en el campo, se genera un voltaje que se conecta al exterior para alimentar un circuito al cual se le conectan las cargas. Los generadores de corriente alterna también se le conocen como alternadores [33].

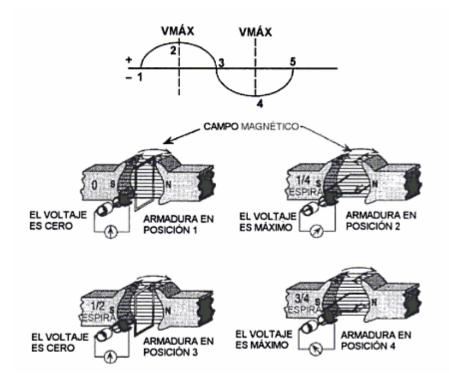


Figura 41. Descripción de la rotación de un generador del voltaje alterno.

Cuando la armadura de un generador de corriente alterna hace una rotación completa a través del campo magnético sucede lo siguiente.

- 1) Cuando la armadura está en la posición 2, la espira (armadura) se mueve en forma perpendicular al campo magnético, por lo tanto, corta el máximo número de líneas por segundo.
- 2) Cuando gira la armadura y pasa a la posición 2, el voltaje cae cuando ya no está perpendicular.
- 3) Al alcanzar la armadura la posición 3, su movimiento es otra vez paralelo al campo y el voltaje de salida vuelve a ser cero.
- 4) Cuando la armadura gira de la posición 3 a la 4 el voltaje vuelve alanzar su máximo valor
- 5) Cuando la armadura completa su rotación pasa a la posición 4, el voltaje cae a cero otra vez [33].

El voltaje generado se aplica a la carga externa alimentada a través de un transformador o tableros, como se muestra en la figura [33].

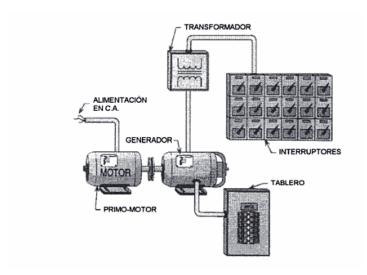
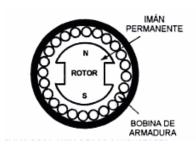



Figura 42. Generador alimentando a la carga a través de un transformador o un tablero.

En los generadores, la bobina de armadura está pegada a la pared del motor e imán en el rotor generalmente de neodimio o una bobina de campo la cual es alimentada por corriente directa para generar un campo magnético, este es el caso de los generadores trifásicos.

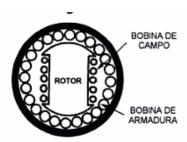


Figura 43. Tipos de armaduras.

Para un generador trifásico se deben de tener tres bobinas de armadura que están desplazadas entre si 120°, a cada una de la bobinas o grupos de bobinas se les denomina FASE, de manera que se designas tres fases como FASE A, FASE B Y FASE C.

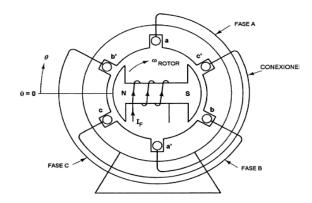


Figura 44. Esquema del generador eléctrico trifásico.

Potencia mecánica

Suponiendo que el primo motor se acopla al rotor de un generador, si la fuerza de giro no es suficientemente grande, no gira el rotor, es decir, aun cuando se aplica un par y no hay potencia mecánica, para obtenerla se debe tener movimiento. La potencia es la capacidad de usar energía, es decir, que la potencia mecánica depende de la velocidad y el par [33].

4.3) Descripción del equipo de aire acondicionado por absorción.

En los sistemas de refrigeración por absorción se sustituye la compresión mecánica del refrigerante por la absorción de éste en una solución y su posterior liberación, siendo necesario calor para liberar vapor. La absorción del refrigerante tiene lugar en el absorbedor (figura 45). La solución concentrada o fuerte (desde el punto de vista del refrigerante) se bombea hacia el generador, en el cual se hace un aporte de calor para liberar el refrigerante, que pasa en el estado de vapor hacia el condensador. La solución resultante (diluida) se envía de nuevo al absorbedor [20]. El sistema de absorción Yazaki WFC-SC5 utiliza la mezcla agua bromuro de litio, el bromuro de litio actúa como absorbente y el agua como refrigerante. En la absorción se realiza una compresión térmica del fluido refrigerante.

La presión en el evaporador es muy baja del orden de unos pocos milímetros de columna de mercurio. En su interior hay un intercambiador de calor. El agua procedente del condensador cae en forma de gotas sobre los tubos de dicho intercambiador. Suponiendo que la presión absoluta en el evaporador sea de 6.5mmde Hg el agua evapora a 5°C, tomando el calor necesario para evaporarse del agua que circula por dentro de los tubos del intercambiador , la cual debido a ello se enfriará. En el absorbedor, una solución concentrada de bromuro de litio absorbe el vapor de agua que procede del evaporador. La solución diluida de bromuro de litio es bombeada hacia el generador, donde se aporta calor.

El agua de la solución se evapora gracias al calor aportado. La solución concentrada de bromuro litio circula de nuevo hacia el absorbedor, donde será usada de nuevo como absorbente. El vapor de agua llega al condensador donde pasa a la fase liquida para posteriormente ser introducido en el evaporador repitiéndose el ciclo [20].

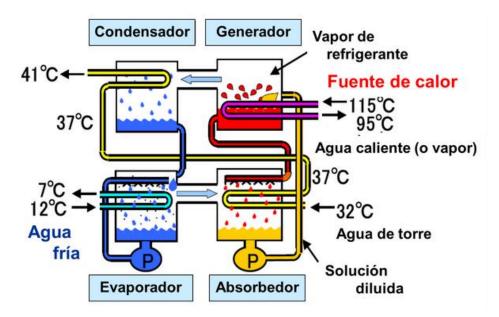


Figura 45: Sistema de aire acondicionado por absorción.

Dadas las especificaciones del comportamiento del equipo de aire acondicionado por absorción Yazaki WFC-SC5, Indica que al suministrar un caudal de agua de una temperatura 85[°C] procedente del cogenerador y un caudal de agua procedente de la torre de enfriamiento a 31[°C], el equipo tendrá una capacidad de suministrar una potencia 16.17 [kW $_{\rm t}$] o 4.6 Toneladas de refrigeración. El agua procedente de la torre es utilizada en primer lugar para enfriar el absorbente y se mezcle de manera adecuada con el agua (refrigerante) en el absorbedor, en segundo lugar ayuda a condensar el vapor en el condensador.

En la siguiente gráfica se muestra la capacidad del equipo de absorción en función de la temperatura suministrada del cogenerador (eje X). Cada curva representa el comportamiento del equipo a una determinada temperatura del agua suministrada de la torre de enfriamiento.

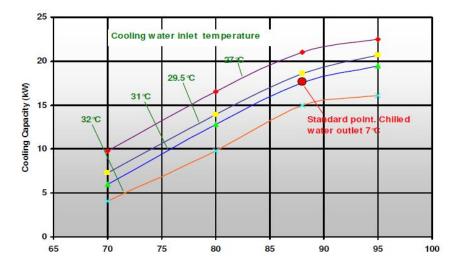


Figura 45 A; Curva característica del equipo de absorción Yazaki. Datos tomados de las especificaciones técnicas del equipo.

4.4) Descripción del funcionamiento del sistema de Trigeneración.

El funcionamiento del sistema de trigeneración consiste en cuatro circuitos, los cuales cumplen las siguientes funciones: a); precalentado para el proceso. b); El llenado de las calderas para las planchas de vapor con agua caliente. c) El proceso de cogeneración y absorción (circuito principal). d); Sistema de enfriado de la máquina de absorción. En los siguientes diagramas se muestra todo el sistema, y los equipos de aire acondicionado por compresión.

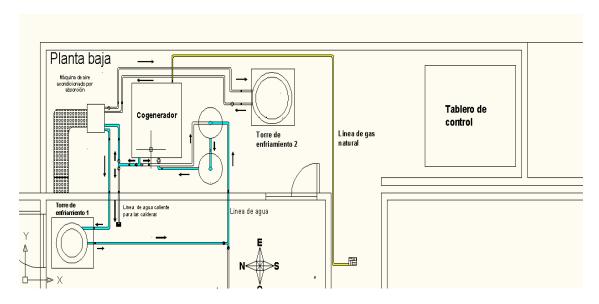


Figura 46; circuito del sistema de trigeneración.

a) Circuito de precalentado.

Con el fin de que el sistema de aire acondicionado por absorción funcione en condiciones aceptables y se tenga agua precalentada a las calderas, se necesita agua a 85[°C]. Para que el cogenerador aporte el agua a esa temperatura se necesita previamente precalentar el agua hasta 70[°C].

La solución es un circuito formado por el cogenerador y dos tanques con aislamiento térmico, usados de tal manera que el agua circule cíclicamente por el cogenerador hasta que 870[l t] de agua lleguen a la temperatura óptima para el funcionamiento del sistema de absorción y las calderas.

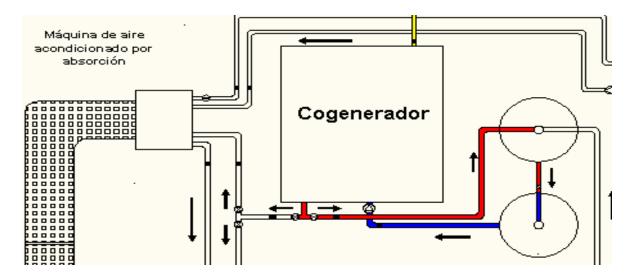


Figura 47; circuito de precalentado.

b) Circuito de llenado de las calderas.

En el siguiente circuito es utilizado para llenar las caladeras del proceso de planchado. De los 870[l t] calentados a 85[°C] por el cogenerador en el proceso de precalentado, 320[l t] litros son utilizados para el llenado y funcionamiento de las calderas, una vez cargadas las calderas con el volumen mencionado el circuito se cierra para que funcione el circuito del cogenerador y la máquina de absorción (circuito principal).

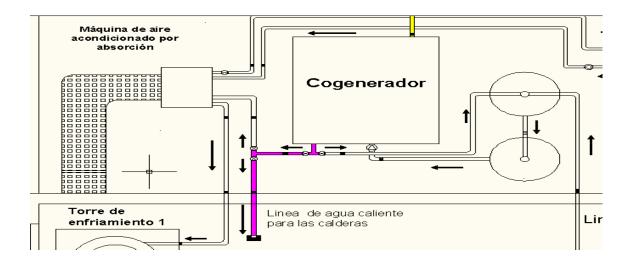


Figura 48; circuito de llenado de las calderas.

c) Circuito principal.

Este circuito inicia cuando del tanque de almacenamiento de agua caliente con aislante térmico, sale el agua a una temperatura de 70[°C], después pasa al cogenerador donde el agua eleva su temperatura a hasta 85[°C], posteriormente el agua pasa a la máquina de absorción, donde el agua sale a 79 [°C], finalmente pasa a la torre de enfriamiento N#1 donde el agua baja su temperatura nuevamente a 70 [°C], para regresar a los tanques de almacenamiento con aislante térmico. En el siguiente diagrama se observa el circuito en color magenta.

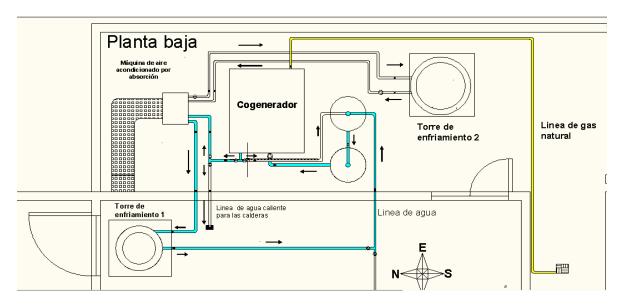


Figura 49; Circuito hidráulico principal del sistema de trigeneración.

d) Circuito de enfriamiento de la máquina de absorción.

Este circuito comprende de la máquina de absorción a la torre de enfriamiento número dos, es un requerimiento de la máquina. Está iluminado con color verde en el siguiente diagrama.

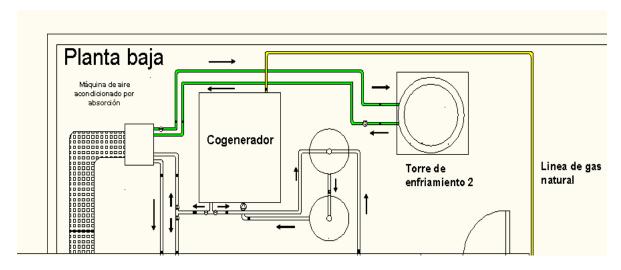


Figura 50; Circuito de enfriamiento de la máquina de absorción.

e) Ubicación de los sistemas.

En planta baja, en la orientación Este de la edificación, como se muestra en el siguiente diagrama, existe un patio trasero, donde hay el espacio suficiente para instalar la mayoría del sistema de cogeneración y la máquina de absorción. Los tanques de almacenamiento de agua y los equipos de aire acondicionado por compresión estarán en el tercer piso.

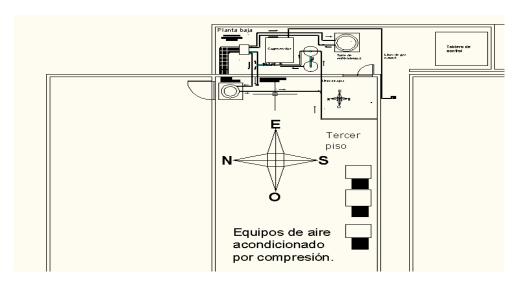


Figura 51; Diagrama del sistema de trigeneración

f) Dimensiones de los equipos

Equipo	Largo [m]	Ancho[m]	Altura [m]	Diámetro[m]
Cogenerador	2	1.7	1.2	
Máquina de aire por absorción.	0.744	0.594	1.816	
Torre de enfriamiento 1 ST10			1.3716	1.0668
Torre de enfriamiento 2 ST20			1.6	1.3716
Máquina de aire por compresión 12.5 [TRF]	3.033	1.4986	1.28905	
Máquina de aire por compresión 6.5 [TRF]	2.26	1.4986	1.0668	
Tanques de agua con aislamiento térmico			1.505	0.718

Tabla 17; Dimensiones de los equipos.

4.4.1) Implementos del sistema de Trigeneración.

A) Bombas de agua.

Uno de los implementos importantes para el funcionamiento del sistema de trigeneración es la bomba para la circulación del agua caliente. Se realiza el cálculo de una sola bomba de agua para los siguientes circuitos; circuito de llenado de la caldera y circuito principal del sistema (Tablas; Z1, Z2).

Esta bomba en especial trabaja con agua a una temperatura de 85[°C] se debe tomar en cuenta el factor NPSH. Cuando el líquido entra dentro del cuerpo de la bomba, a través de la boca de aspiración, sufre una perdida por carga por rozamiento y un cambio de velocidad, con lo cual habrá una caída de presión en la entrada de la bomba y el rodete, si la presión absoluta en el rodete es menor que la presión de vapor del líquido, se produce una evaporación súbita y la densidad del fluido disminuye bruscamente, cuando esta burbuja de vapor avanza a lo largo del canal del rodete, llega a zonas de mayor presión y colapsa bruscamente.

Este fenómeno es conocido como cavitación y debe evitarse a toda costa puesto que acelera considerablemente el desgaste de los álabes y genera vibraciones que acortan la vida de la maquina (deterioro de ejes y cojinetes). Cada bomba, en función de su velocidad, caudal y características requiere una presión absoluta mínima en la brida de aspiración para evitar la aparición de este fenómeno. Habitualmente esa presión se conoce como NPSH, que es la presión absoluta requerida a la entrada de la boca de aspiración [32 A].

Para que la bomba funcione correctamente, es necesario es necesario que la presión en la boca de aspiración sea, una vez descontada de la presión de vapor del líquido a la temperatura de trabajo, sea superior o NSPH requerida, Esta presión se conoce como NSPH disponible [32 A]. Actualmente el proveedor solamente requiere los datos de temperatura del fluido de trabajo, el caudal y la presión para hacer la elección de la bomba de agua adecuada.

Una segunda bomba de para el circuito de la máquina de absorción **(Tabla AA).** Esto se logra calculando las perdidas en las tuberías y utilizando el principio de Torricelli para obtener la presión de salida del agua en el tanque de almacenamiento.

Principio de Torricelli: La velocidad de salida de un líquido por un orificio de un depósito abierto a la atmosfera libre y siendo despreciable el área del orificio frente a la de la superficie libre del líquido se deduce aplicando el teorema de Bernoulli [34].

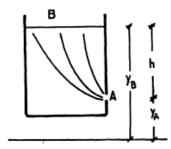


Figura 52; Salida de un líquido por un orificio

Las velocidades del líquido al interior en el interior del depósito nunca son demasiado grandes y como el descenso del nivel es imperceptible, podemos considerar estacionario el movimiento.

$$p_A + \rho g y_A + \frac{1}{2} \rho v_A^2 = p_B + \rho g y_B + \frac{1}{2} \rho v_B^2$$

Debido a la presión atmosférica PA=PB; $V_B = 0$, pues es imperceptible el descenso en el nivel de la superficie libre, y como $h = y_B - y_A$, La ecuación queda de la siguiente forma [34].

$$\frac{1}{2} \rho v_A^2 = \rho g h$$
 de donde $v_A = \sqrt{2 g h}$

Perdidas en tuberías: La mayoría de los sistemas de flujo en tubería involucran pérdidas de energía por fricción y pérdidas menores. Si el sistema es arreglado de tal forma que el fluido fluye a través de una línea sin ramificaciones, este se le conoce con el nombre de sistema en serie. Por otro lado, si el flujo se ramifica en dos o más líneas, se le conoce como sistema en paralelo. Para determinar las perdidas es necesario utilizar la ecuación de la energía [35].

$$\frac{p_1}{\gamma} + z_1 + \frac{v_1^2}{2g} + h_A - h_L = \frac{p_2}{\gamma} + z_2 + \frac{v_2^2}{2g}$$

Los primeros términos de del lado izquierdo de esta ecuación representan la energía que posee el fluido en el punto 1, en forma de presión, elevación y velocidad. De manera similar los términos de lado derecho de la ecuación representan la energía del fluido en el punto 2. Los dos términos h_a y h_L indican la energía agregada al fluido y la energía perdida en el sistema en cualquier lugar entre los punto de referencia 1 y 2 respectivamente. Donde h_L es la suma de las pérdidas de energía [35].

Perdidas menores: Frecuentemente se requiere que el flujo en una tubería pase a través de una serie de acoplamientos, codos o cambios de abruptos de área. Como resultado de la separación o desprendimiento del flujo en estos accesorios se tienen pérdidas adicionales d carga. (La energía finalmente se disipa debido al mezclado violento en las zonas separadas). Si el sistema de tuberías bajo análisis incluye tramos largos son área constante en la sección transversal, estas pérdidas relativamente pequeñas y se expresa como [36].

$$h_{lm} = K \frac{V^2}{2}$$

- a) h_{lm}; Es la perdida
- b) K es el coeficiente de carga
- c) V; la velocidad

En esta forma se puede determinar la perdida de tubería debido al cambio de sección, con la siguiente gráfica.

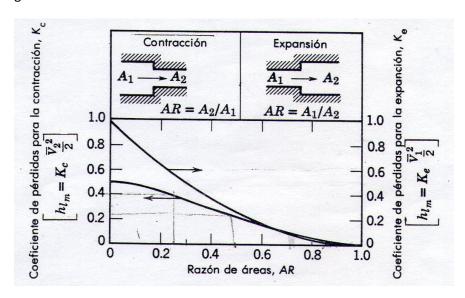


Figura 53; Coeficientes de perdida para el flujo a través de cambios de área en tuberías.

La pérdida menor por carga también se puede expresar como.

$$h_{ml} = f \frac{L_e}{D} * \frac{V^2}{2}$$

- a) Le es la longitud equivalente de la tubería
- b) D diámetro interno de la tubería
- c) f; es el factor de rozamiento, se obtiene mediante el diagrama de Moody conociendo el número de Reynolds y la rugosidad relativa

Las pérdidas correspondientes a válvulas y accesorios se pueden expresar de manera conveniente en términos de longitudes equivalentes de tubería. En la siguiente tabla se dan los valores representativos a estos casos [36]. Utilizando estos conceptos se determinan las capacidades de las bombas de agua requeridas para el sistema de Trigeneración.

Tipo de accesorio	Descripción	Longitud equival L _e /D*	ent
Válvula de globo	Completamente abierta	350	
Válvula de compuerta	Completamente abierta	13	
	3/4 abierta	35	
	½ abierta	160	
	1/4 abierta	900	
Válvula de retención		50-100	
Codo estándar de 90°		30	
Codo estándar de 45°		16	
Codo de 90°	Radio largo	20	
Codo de servicio de 90°		50	
Codo de servicio a 45°		26	
Unión en "T"	Flujo en línea	20	
	Flujo en ramal	60	
Codo a 180°	Patrón estrecho	50	

Tabla 18; Longitudes equivalentes adimensionales representativas (L_e/D) para válvulas y accesorios.

Tabla Z1						
Bomba 1						
ley de Torricelli						
h altura del tanque	Diámetro 2	Área 2	Diametro 1	radio 1	Área 1	Velocidad
[m]	[m]	[m^2]	[mm]	[m]	[m^2]	[m/s]
1.708	0.819	0.526814457	14.85	0.007425	0.000173198	5.780957286
Caudal	Caudal	Caudal des	dif caudal	Presión man	Presión abs(+)	
[m^3/s]	[lt/min]	[lt/min]	[lt/min]	[MPa]	[MPa]	
0.00100125	60.07500277	60	0.075002774	0.016171859	0.094165459	
Bomba 1						
caso 1	circuito principa					
	V	Re	Rr	f	Le/D	hc
15 Codos a 90°	[m/s]	[1]	[1]	[1]	[1]	[m^2/S^2]
	0.500866129	6825.180902	0.00302267	0.0345	30	1.947354146
(2) válvulas de						hv
compuertas Ab	0.500866129	6825.180902	0.00302267	0.0345	13	0.112513795
Longitud						hl
L=19.39m	0.500866129	6825.180902	0.00302267	0.0345	384.5772427	1.664240196
D tubería	D	Α	ΔZ +	ΔZ -	ΔZ	Cambio de
[mm]	[lt/min]	[m^2]	[m]	[M]	[Pa]	sección
50.419	60	0.001996541	0	11.5	108885.4686	D14.85/D50.419
Ar	Ke	hs1	Cambio de	Ar	Ke	hs2
[1]	[1]	[m^2/S^2]	sección	[1]	[1]	[m^2/S^2]
0.294531823	0.5	8.354866785	D38.227/D50.419	0.758186398	0.1	0.012543344
hs=hs1+hs2	hc+hv+hs+hl	P(-) de Tubería	P(-) Cog	P(-) M abs	Σ de P	P bomba
[m^2/S^2]	[m^2/S^2]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
8.367410129	12.09151827	0.120591618	0.012	0.077	0.115426159	0.115426159
h bomba	W bomba	W bomba	W bomba	Temperatura		
[m]	[Watt]	[kW]	[hp]	[ºC]		
12.19079869	115.426159	0.115426159	0.154789029	85		

Ejemplo de cálculo de la bomba de agua

Principio de Torricelli

$$v = \sqrt{\frac{2 * g * h}{1 - \left(\frac{A1}{A2}\right)}} \qquad Q = vA1$$

$$v = \sqrt{\frac{2 * 9.78 \left[\frac{m}{s^2}\right] * 1.708 [m]}{1 - \left(\frac{0.0001731 [m^2]}{0.5268 [m^2]}\right)}} = 5.78 \left[\frac{m}{s}\right] \qquad Q = 5.78 \left[\frac{m}{s}\right] * 0.5268 [m^2] = 0.0010 \left[\frac{m^3}{s}\right]$$

Para obtener la velocidad se divide el caudal entre el área del diámetro de la tubería, con la velocidad se obtiene el número de Reynolds y se recurre al diagrama de Moody para obtener la rugosidad relativa y el coeficiente de fricción f, el cual se multiplica por la longitud equivalente dado en **tabla 18** para calcular la perdida en la tubería.

$$v = \frac{Q}{A} = \frac{0.0010 \left[\frac{m^3}{s} \right]}{0.001996 [m^2]} = 0.5 \left[\frac{m}{s} \right]$$

$$Re = \frac{vD}{\gamma} = \frac{0.5 \left[\frac{m}{s}\right] * 0.50419[m]}{3.7 * 10^{-6}} = 6825.18$$

$$Rugosidad\ relativa = \frac{Rugosidad\ absoluta\ del\ acero\ galvanizado}{di\'ametro\ de\ tuber\'ia} = \frac{0.1524\ mm}{50.419mm}$$

$$f = 0.0345$$

$$h_{c=} \ perdida \ en \ codos = f \frac{Le}{D} * \frac{v^2}{2}, para \ 15 \ codos \ de \ 90^\circ = 0.0345 * 30 * 15 * \frac{0.5^2}{2} = 1.9473 \left[\frac{m^2}{s^2}\right]$$

 $\begin{aligned} h_{v=} & perdida \ en \ valvulas = f \frac{Le}{D} * \frac{v^2}{2}, para \ 2 \ valvulas \ de \ compuerta = 0.0345 * 13 * 2 * \frac{0.5^2}{2} \\ & = 0.1125 \left[\frac{m^2}{s^2} \right] \end{aligned}$

$$\begin{split} h_{l=} \ perdida \ por \ longitud &= f \frac{Le}{D} * \frac{v^2}{2} = L = 19.39[m] = 0.0345 * \frac{19.39[m]}{0.050419[m]} * \frac{0.5^2}{2} \\ &= 1.9473 \left[\frac{m^2}{s^2} \right] \end{split}$$

Se determina la caída de presión y la altura para elegir la bomba adecuada para la aplicación. La diferencia de altura es 11.5 [m]

$$P = \rho * (h_c * h_v * h_l) * \rho * g * \Delta z$$

$$P = 968.129 \left[\frac{kg}{m^3} \right] * \left(1.9473 \left[\frac{m^2}{s^2} \right] * 0.1125 \left[\frac{m^2}{s^2} \right] * 1.9473 \left[\frac{m^2}{s^2} \right] \right) * 968.129 \left[\frac{kg}{m^3} \right] * 9.78 \left[\frac{m}{s^2} \right]$$

$$* 11.5[m] = 115.425[Pa] = 0.115426[Mpa]$$

Tabla Z2						
Bomba 1						
Caso 2	Circuito para	el llenado d	e las calderas	5		
	V	Re	Rr	f	Le/D	hc
8 Codos a 90°	[m/s]	[1]	[1]	[1]	[1]	[m^2/S^2]
	0.50086613	6825.1809	0.00302267	0.0345	30	1.038588878
(2) válvulas de						hv
compuertas Ab	0.50086613	6825.1809	0.00302267	0.0345	13	0.112513795
Longitud						hl
L=11.1	0.50086613	6825.1809	0.00302267	0.0345	220.1551	0.952710994
D tubería	Q	Α	ΔZ +	ΔZ -	ΔΖ	Cambio de
[mm]	[lt/min]	[m^2]	[m]	[M]	[Pa]	sección
50.419	60	0.00199654	0	10.6	100363.997	D14.85/D50.419
Ar	Ke	hs	hc+hv+hl+hs	P(-) de Tuberiá	P(-) Cog	Σ de P
[1]	[1]	[m^2/S^2]	[m^2/S^2]	[MPa]	[MPa]	[MPa]
0.294531823	0.5	0	2.10381367	0.10240076	0.012	0.11440076
P bomba	h bomba	W bomba	W bomba	W electrico	W bomba	Temperatura
[MPa]	[m]	[Watt]	[kW]	[kW]	[hp]	[ºC]
0.11440076	12.0825006	114.40076	0.11440076	0.13458913	0.15341395	85

Con los datos obtenidos de las perdidas en tuberías en el circuito de llenado de las calderas y circuito principal de cogeneración, junto con la siguiente grafica se elige el modelo de bomba de agua adecuada para la aplicación. La bomba seleccionada tiene una potencia eléctrica de 0. 932[kW $_{\rm e}$], la temperatura máxima del fluido trabajo con la que opera la bomba es de 102.7 [° C], trabaja con un caudal de 16 [gpm] o 60[lt/ min] y una presión de 40.3 [ft] o 12.3 [m] de columna de agua. El precio de la bomba es de \$ 2,528.00.

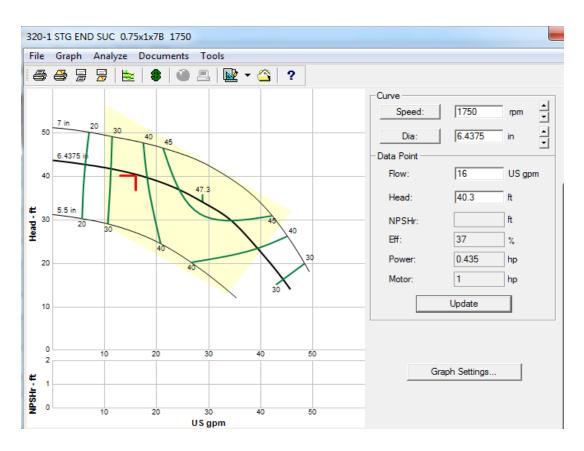


Figura 54; Grafica de las condiciones de operación de la bomba de agua del sistema de trigeneración.

Tabla AA						
Bomba 2	Circuito de enfria	amiento de la má	íquina de absorció	on.		
	V	Re	Rr	f	Le/D	hc
21 Codos a 90°	[m/s]	[1]	[1]	[1]	[1]	[m^2/S^2]
	2.221825086	22955.0561	0.003923928	0.032	30	37.91237156
válvula de						hv
compuerta Ab	2.221825086	22955.0561	0.003923928	0.032	13	1.026793396
Longitud						hl
L=14.83m	2.221825086	22955.0561	0.003923928	0.032	387.9456928	30.64154427
D tubería	Q	Α	ΔZ +	ΔZ -	ΔZ	hc+hv+hl
[mm]	[lt/min]	[m^2]	[m]	[m]	[Pa]	[m^2/S^2]
38.227	153	0.001147705	2.2	2.7	4734.15081	69.58070922
P(-) de Tuberiá	P(-) M abs	Σ de P	P bomba	h bomba	W bomba	W bomba
[MPa]	[MPa]	[MPa]	[MPa]	[m]	[Watt]	[kW]
0.072097253	0.077	0.149097253	0.149097253	15.74699025	380.1979958	0.380197996



Figura 55; Grafica de las condiciones de operación de la bomba de agua de la máquina de absorción.

La bomba más adecuada para el circuito de enfriamiento funcionamiento del sistema de absorción, tiene las siguientes características que se adecuan al requerimiento de los cálculos anteriores. Caudal de 156 [lt/min], una presión de 18 [m] de columna de agua, potencia eléctrica de $0.936[kW_e]$ y un precio de \$1,500.00.

B) Torres de enfriamiento

Otro de los implementos necesarios para el control de la temperatura del agua del sistema de trigeneración es la torre de enfriamiento. En este caso solamente se utilizan dos torres, una para el circuito de trigeneración principal y otra para el circuito de la máquina de absorción. Utilizando la expresión básica de calorimetría o cantidad de calor, se determinan las dimensiones de las torres de enfriamiento adecuadas, utilizando el cálculo de la perdida de calor por unidad de tiempo.

Ecuación de calorimetría: La cantidad de calor tomada (o cedida) por un cuerpo o liquido es directamente proporcional a su masa y al aumento (o disminución) de la temperatura que experimenta. La expresión matemática es la siguiente [37].

$$Q = \dot{m} * Cp * (T2 - T1)$$

Donde Q representa el calor absorbido o cedido, \dot{m} es el gasto másico, y T1 y T2 son las temperaturas inicial y final respectivamente. Q será positiva si T2 \geq T1 y representa una ganancia de calor. Si Q es negativa quiere decir que T1 \geq T2 por lo tanto hay una pérdida de calor [37].

Tabla BA. To	rre denfriamier	nto 1				
Qenf	Q enf	Caudal enf T	Caudal	T2	T1	
[TRF]	[kW t]	[gpm]	[lt/min]	[°C]	[°C]	
10.8	37.982007	20	60	79.36	70	
Q req	Q req	Caudal req	Torre 1			
[TRF]	[kW t]	[gpm]	Motor de la Torre hp		0.25	[hp]
10.9272296	38.42945468	15.852	Potencia elélo	ctrica	0.21932349	[kW e]

$$Q = 60 \left[\frac{lt}{min} \right] * 968.129 \left[\frac{kg}{m^3} \right] * \frac{1m^3}{1000lt} * \frac{1 min}{60 s} * 4.2 \left[\frac{kJ}{kg * {}^{\circ}C} \right] * (79.36 [{}^{\circ}C] - 70 [{}^{\circ}C] \right]$$
$$= 38.429 [kW_t]$$

La Torre de enfriamiento número uno ubicada en el circuito principal a la salida del sistema de absorción y a la entrada de los tanques de agua con aislamiento térmico, debe de tener las siguientes características: La temperatura del agua debe bajar de 79.36 [°C] a 70[°C], el caudal de agua debe ser de 15.82[gpm] y la energía de enfriamiento debe de ser de 38.42[kW_t] o 10.92[TRF].

La torre de enfriamiento seleccionada es la torre modelo **ST 10** de la empresa **COOLING SYSTEMS DE MÈXICO**. Con una capacidad máxima de 10.8 [TRF] o 37.92 [kW _t] y un gasto másico de 20 [gpm]. El precio de la torre es de **\$50,000.00** pesos.

Figura 56; Torre de enfriamiento de la empresa COOLING SYSTEMS DE MEXICO.

Tabla CA. Torre de enfriamiento 2						
Q enf	Q enf	Caudal	Caudal	T2	T1	
[TRF]	[kW t]	[gpm]	[lt/min]	[°C]	[°C]	
20	70.33705	40	153	35	31	
Q req	Q req	Caudal req	Torre 2			
[TRF]	[kW t]	[gpm]	Motor de la Torre hp		0.5	[hp]
11.7313417	41.25739821	40.4226	Potencia elélo	trica	0.43864698	[KW e]

La Torre de enfriamiento número dos ubicada en el circuito de enfriamiento de la máquina de absorción, debe de tener las siguientes características: La temperatura del agua debe bajar de 35 [°C] a 31[ºC], el caudal de agua debe ser de 40.4 [gpm] y la energía de enfriamiento debe de ser de 41.25 [kW t] o 12[TRF].

La torre de enfriamiento seleccionada es la torre modelo **ST 20** de la empresa **COOLING SYSTEMS DE MÈXICO**. Con una capacidad máxima de 18 [TRF] o 70.33 [kW _t] y un gasto másico de 40 [gpm]. El precio de la torre es de **\$68,500.00** pesos.

4.5) Aprovechamiento de la energía.

En los siguientes diagramas de bloques se aprecia la cantidad de energía aprovechada por el sistema de trigeneración y el porcentaje que lo representa. Partiendo de la energía aportada por el combustible la cual representa el 100% y pasa por el cogenerador.

Hay tres circuitos que se mencionaron en la descripción de sistema de trigeneración (circuito de precalentado, circuito de llenado de las calderas y circuito principal). Cada uno de los circuitos inicia su proceso cuando la energía sale del cogenerador como agua caliente o electricidad. Los procesos se dividen en dos etapas.

a) Etapa 1: Se abre el circuito de precalentado del agua para calentar el agua hasta 85[°C], posteriormente se cierra, para abrir el circuito de las calderas y mandar los 320 [lt] de agua caliente. A continuación se muestra la distribución de energía en esta etapa.

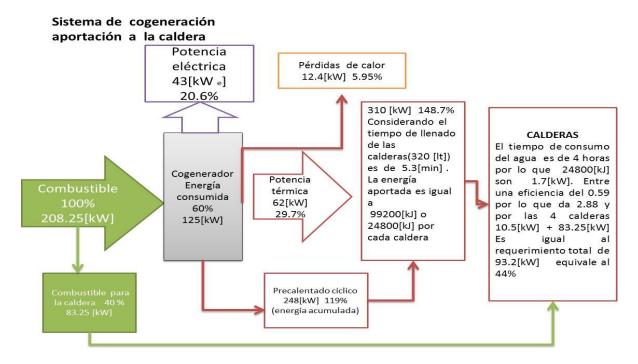


Figura 57; Diagrama de energía aprovechada por el sistema de cogeneración.

b) Etapa 2: Se cierra el circuito de las calderas y se pone en marcha el sistema de aire acondicionado por absorción.

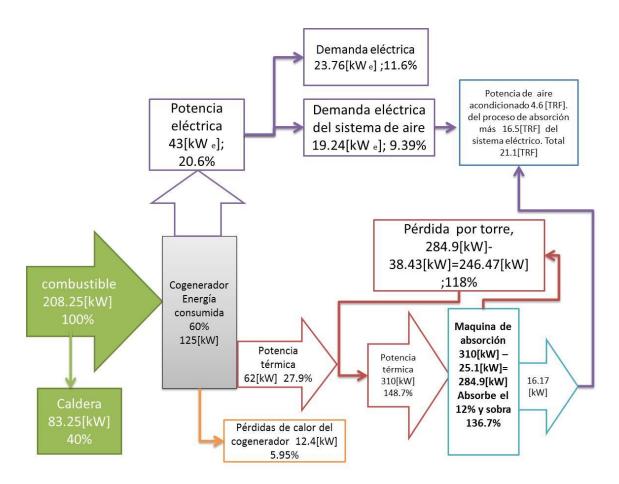


Figura 58; Diagrama de energía aprovechada por el sistema de Trigeneración.

En la siguiente grafica se observa la energía aprovechada por cada uno de los aparatos y el consumo eléctrico y el porcentaje que representa cada consumo. La energía aportada por el gas natural representa el 100%.

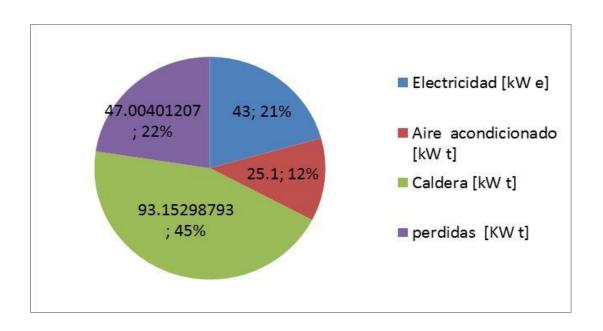


Figura 59; Aprovechamiento de la energía

4.6) Aportación del cogenerador a las calderas.

Para satisfacer la demanda de agua caliente requerida para disminuir el consumo de gas de las calderas. 320 litros de agua caliente a 85 [°C], son utilizados para la producción del vapor requerido en el planchado de las cobijas. El precalentado hecho por el cogenerador del agua para las calderas representa una disminución en los Kilowatts utilizados diariamente de 93.15 [kW t] a 83.258 [k W t].

El consumo actual gas L.P. de la fábrica es de \$22,272.00 pesos bimestrales, se tiene cuatro planchas de vapor, cada una con su caldera independiente, con un funcionamiento de 3 horas diarias. El precio del litro de gas L.P. es de \$7.27 pesos.

Tabla DA						
plancha 1	plancha 2	plancha 3	plancha 4			
2400	2400	2400	2400	[\$/mes]	precio del ga	as L.P. 7.27[\$/It]
330.123796	330.1237964	330.1237964	330.123796	[It/mes]		
0.3301238	0.330123796	0.330123796	0.3301238	[m^3/mes]	Densidad 530	0[kg/m^3]
174.965612	174.9656121	174.9656121	174.965612	[kg/mes]	del gas L.P.	
43.741403	43.74140303	43.74140303	43.741403	[kg/semana]		
7.29023384	7.290233838	7.290233838	7.29023384	[kg/dia]	6 días a la se	mana
1.82255846	1.822558459	1.822558459	1.82255846	[kg/h]	4 horas diarias	
0.00050627	0.000506266	0.000506266	0.00050627	[kg/s]		
7.29023384	[kg/h]	gasto másico	total de gas	L.P.		

Cada dos horas se vacían 40 [lt] de agua a cada una de las calderas, en una hora se consume 20 [lt], en 4 horas consume 80 [lt], por lo tanto se tiene un consumo de 80[lt] en una caldera. El caudal total por las cuatro calderas es igual a 320[lt].

Tabla EA					
ṁc gas	ṁc gas	PCS gas L.P.	Qent	Patm	T agua
[kg/h]	[kg/s]	[kJ/kg]	[kW]	[MPa]	[°C]
1.82255846	0.000506266	46000	23.288247	0.0779936	20
ho	Pman	Pman	Pabs	T caldera	T Caldera
[kJ/kg]	[kg/cm^2]	[MPa]	[MPa]	[°C]	[°k]
83.64	4	0.392266	0.4702596	120	393.15
h1	q	q	Q salida	η	%η
[kJ/kg]	[lt/h]	[Kg/s]	[kW]	[1]	[%]
2659.49	20	0.005378494	13.8541949	0.59490072	59.4900721
Por las 4 plar	nchas				
Q salida*4	Q entrada*4				
[kW]	[kW]	Consumo dia	rio de gas L.P	de las cuatro	planchas
55.4167797	93.15298793				

$$egin{aligned} Q_{salida} &= \dot{m}_{agua} * (h_2 - h_1) \ Q_{entrada} &= \dot{m}_{gas\,LP} * PCS_{gas\,LP} \ \% n &= rac{Q_{salida}}{Q_{entrada}} \end{aligned}$$

Consumo de combustible de la caldera utilizando el cogenerador para el precalentado del agua y cambiando de gas L.P a gas natural.

Tabla FA					
T1 agua	T caldera	Pman	Pman	Pabs	Patm
[°C]	[°C]	[kg/cm^2]	[MPa]	[MPa]	[MPa]
85	120	4	0.392266	0.4702596	0.0779936
ho	h1	q	q	Q salida	η
[kJ/kg]	[kJ/kg]	[lt/h]	[Kg/s]	[kW]	[1]
357.255	2659.49	20	0.00537849	12.3825582	0.59490072
Q entrada	Q entrada*4				
[kW]	[kW]				
20.8144951	83.25798053				
	Potencia	Energía *3hrs	Energía	Cambio del	consumo
	[kW]	[kJ]	[GJ]	de gas L.P a	gas
día 1	83.25798053	1198914.92	1.19891492	natural	
día 2	83.25798053	1198914.92	1.19891492		
día 3	83.25798053	1198914.92	1.19891492		
día 4	83.25798053	1198914.92	1.19891492		
día 5	83.25798053	1198914.92	1.19891492		
día 6	83.25798053	1198914.92	1.19891492		
		Por semana	7.19348952		
		Por mes	28.7739581		
		Por bimestre	57.5479161		

Al mes se tiene un consumo de gas natural de 57.54791 [GJ] lo que representa un gasto bimestral de \$ 4,948.16, con respecto al gasto actual de \$19,200.00, utilizando el gas L.P en vez de gas natural y sin utilizar la cogeneración para el precalentado del agua.

Tabla GA					
Calderas al mes	[A]	[B]	[C]	Total	Consumo imp
[GJ]	[\$/GJ]	[\$/GJ]	[\$/GJ]	[\$/GJ]	[\$]
28.77395807	12.68	12.68	25.35	50.71	1459.127414
Total al mes	[D]	Consumo	Seguro	Sub total	IVA 16%
[GJ]	[\$]	[\$]	[\$]	[\$]	[\$]
28.77395807	227.43	1686.557414	300	2132.827414	341.2523862
Total gas N	Total gas N	Total	Total		
[\$] al mes	[\$]Bimestre	[\$]Bimestre	[\$] mes		
2474.0798	4948.1596	\$ 4,948.16	\$ 2,474.08		

4.7) Análisis de costos y recuperación de la inversión del proyecto.

El precio del gas natural se estima sumando los siguientes cargos; cargo por uso, cargo por capacidad y cargo por distribución, se multiplica por los GJ consumidos en el mes, para obtener el consumo. Al resultado se le suma el cargo por servicio, el cargo por el seguro y el IVA del 16%.

Precio gas natural= cargo por uso +cargo por distribución x GJ consumidos al mes = consumo

Consumo de gas Natural = consumo + cargo por servicio + IVA.

Al mes se consumen 158.3 [GJ] por el uso cogenerador y las calderas, equivale a \$20,195.24. Consideran la tarifa del lugar y el tipo de distribución , en este caso el DF y la distribución establecida es para **mercado comercial y pequeña industria,** la cual tiene un rango de consumo de gas natural de 84 a 628 [GJ] al mes.

Tabla HA					
Gas natural Motor	Por día M	Por semana M	Por mes M	Por mes Motor	Calderas al mes
[kW]	[kJ]	[kJ]	[kJ]	[GJ]	[GJ]
125	32400000	32400000	129600000	129.6	28.77395807
[A]	[B]	[C]	Total	Consumo imp	Total al mes
[\$/GJ]	[\$/GJ]	[\$/GJ]	[\$/GJ]	[\$]	[GJ]
12.68	12.68	25.35	50.71	8031.143414	158.3739581
[D]	Consumo	Seguro	Sub total	IVA 16%	
[\$]	[\$]	[\$]	[\$]	[\$]	
227.43	8258.573414	300	8704.843414	1392.774946	
Total gas N	Total gas N	Total	Total		
[\$] al mes	[\$]Bimestre	[\$]Bimestre	[\$] mes		
10097.61836	20195.23672	\$ 20,195.24	\$ 10,097.62		
[A] Cargo por uso 12.68[\$/	(G1]				
[B] Cargo por capacidad 12.68[\$/GJ]					
[C] Distribución con comercialización 25		.35[\$/GJ]			
[D] Cargo por servicio 227.	43 [\$/mes]				

Tabla IA. Mai	Tabla IA. Mantenimiento mensual de los equipos					
		Periodo	costo		por mes	
cogenerador		cada 6 meses	\$	1,000.00	\$	166.67
		5 años	\$	12,800.00	\$	213.33
bombas de agi	ra	6 años	\$	4,082.00	\$	56.69
torres de enfri	amiento	6 años	\$	5,100.00	\$	188.89
máquina de ab	sorción	6 meses	\$	1,500.00	\$	250.00
		6 años	\$	15,000.00	\$	208.33
extractores de	aire	6 años	\$	18,934.00	\$	262.97
		Mensual	Total		\$	1,346.89
		Bimestre	Total		\$	2,693.78

Al aplicar el sistema de aire acondicionado en la fábrica, hay una diferencia de costos, sin utilizar el sistema de cogeneración el consumo energético (el recibo de luz más el consumo de gas L.P.) es de \$50,610.04 bimestrales. Utilizando cogeneración (usando gas natural para el cogenerador y las calderas de las planchas de vapor) el consumo es de \$20,195.24 bimestrales más \$2,639.78 del mantenimiento de los aparatos, el total es de \$22,481.36. Actualmente el consumo energético bimestral (recibo de luz más gas L.P.) de la fábrica es de \$36,672.00 no incluyendo sistemas de aire acondicionado.

Tabla JA

Consumo	energético	Consumo energético	Ahorro Bimestral
con cogeneración		sin cogeneración	
\$ 22,835.02	2	\$ 50,610.04	\$ 27,775.02
			Ahorro Mensual
			\$ 13,887.51

Recuperación de la inversión del proyecto

Para calcular los años de la recuperación de la inversión del proyecto se debe tomar en cuenta que los equipos de aire acondicionado entran como un gasto fijo, esto se debe a que independientemente de la implementación de la cogeneración, se va hacer el gasto en los sistemas de aire acondicionado con su debida instalación.

El tiempo de recuperación de inversión del proyecto se obtiene en primera instancia haciendo la diferencia entre el consumo energético mensual sin usar cogeneración (\$ 50,610.04 bimestralmente y \$25,305.02 mensualmente) y el consumo energético al mes, usando el sistema cogeneración e incluyendo su mantenimiento, obtenido en la **Tabla JA**. Al año se consideran solamente el trabajo que se realizó el cogenerador durante 10 meses. Debido en primera instancia hay un mes en el cual no se labora, esto se debe a la suma de todos los días festivos durante el año, estimando el consumo eléctrico sin cogeneración de ese mes es de \$ 295.45.

Por otro lado tomando en cuenta el contrato de energía renovable a mediana escala de CFE el cual dice "Cuando la diferencia, EESn - ERGn, sea positiva, y exista Energía Acumulada de Meses Anteriores en Favor del Generador, se realizarán las compensaciones que sean posibles, desde el mes más antiguo hasta el más reciente.

Lo anterior se realizará hasta agotar la energía acumulada o hasta que la facturación normal del suministro del mes sea de cero kilowatt horas

EESn = Energía entregada por el Suministrador en el mes de facturación;

ERGn = Energía recibida del Generador en el mes de facturación;"

Tomando esta consideración del contrato en cuenta se tiene un segundo mes en el cual no se utiliza el cogenerador y se aprovecha la energía suministrada a la red para poner el medidor de luz en cero kilowatts. En este mes solo hay consumo de gas natural para las calderas sin el precalentado que aporta la cogeneración, por lo tanto se consumen 60.80 [GJ], lo que equivale a un gasto de \$ 4,358.25. El ahorro energético en el respectivo mes es igual a \$ 23,769.02 -\$ 4,358.25 = \$ 19,410.77

Tabla KA					
Calderas al mes	[A]	[B]	[C]	Total	Consumo imp
[GJ]	[\$/GJ]	[\$/GJ]	[\$/GJ]	[\$/GJ]	[\$]
60.80479072	12.68	12.68	25.35	50.71	3083.410937
Total al mes	[D]	Consumo	Seguro	Sub total	IVA 16%
[GJ]	[\$]	[\$]	[\$]	[\$]	[\$]
60.80479072	227.43	3310.840937	300	3757.110937	601.13775
Total gas N	Total gas N	Total	Total		
[\$] al mes	[\$]Bimestre	[\$]Bimestre	[\$] mes		
4358.248687	8716.497375	\$ 8,716.50	\$ 4,358.25		

El ahorro energético anual se obtiene multiplicando el ahorro mensual por los diez meses donde opera el cogenerador, más el ahorro del mes en que no se labora y es igual al consumo eléctrico de ese mes sin cogenerador, más el ahorro del mes en que solo se usa el gas natural para las planchas de vapor. En la **tabla LA1**, se muestran los flujos anuales acumulados, y los años en que se recupera la inversión.

Ahorro anual= (\$13,887.51 *10) + \$ 295.45 + 19,410.77= \$ 158,581.32

Tabla LA Inversión inicial sin incluir sistemas de aire					
acondicionado por compresión					
Cogenerador +MO	635730	[\$] pesos			
Torres de enfriamiento	118500	[\$] pesos			
Tanques de agua con					
recubrimiento térmico	50416.1	[\$] pesos			
Red de tuberia de agua+ MO	6500	[\$] pesos			
Red de tuberia de GN+ MO	7000	[\$] pesos			
Bombas de agua de 1 HP	4082	[\$] pesos			
Máquina de absorción + MO	162625	[\$] pesos			
Total de la inversión	984853.1	[\$] pesos			
MO =Mano de obra					

Tabla LA1			
Años		Flujo anual	Flujo anual
			acumulado
	1	158,581.32	158581.32
	2	158,581.32	317162.64
	3	158,581.32	475743.96
	4	158,581.32	634325.28
	5	158,581.32	792906.6
	6	158,581.32	951487.92

En el sexto año la inversión casi es recuperada y al realizar la siguiente operación se encuentra el periodo donde se recupera la inversión, para este proyecto es de **seis años dos meses**, considerando el proyecto a valor presente la inversión se recupera en **seis años once meses**.

$$Pr = a + \left[\frac{b-c}{d}\right] = 6 + \left[\frac{(984,853.1 - 951,487.92)}{158,581.32}\right] = 6.2 \ [a\tilde{n}os]$$

6 años, (0.2*12)=2 meses.

a: Último año antes de recuperar la inversión (tabla LA1)

b: Inversión inicial (Tabla LA)

c: Flujo anual acumulado (tabla LA1)

d: Último flujo anual no acumulado, donde se satisface la inversión (tabla LA1)

Otros criterios utilizados para evaluar los proyectos son: el criterio de valor presente y el criterio de tasa interna de recuperación, los cuales se utilizarán para dar un mejor panorama de la viabilidad económica del proyecto.

a) **Criterio de valor presente neto**: Se determina el valor presente neto a partir de la sumatoria de los valores o flujos al presente menos la inversión inicial. Si el valor presente neto es mayor a cero el proyecto se acepta, si el valor presente neto es menor a cero el proyecto se rechaza.

$$VP = \frac{Flujo}{(1 + TREMA)^t}$$

$$VPN = Inversion - \sum_{t=1}^{n} \frac{Flujo}{(1 + TREMA)^{t}}$$

t: Periodos de recuperación

TREMA: Tasa mínima de recuperación de la inversión o tasa de interés mínima aceptable es la tasa que representa una medida de rentabilidad, la mínima que se le exigirá al proyecto de tal manera que permita cubrir:

- La totalidad de la inversión inicial.
- Los egresos de operación.
- Los intereses que deberán pagarse por aquella parte de la inversión financiada con capital ajeno a los inversionistas del proyecto.
- Los impuestos.
- La rentabilidad que el inversionista exige a su propio capital invertido.
- b) Criterio de tasa interna de rendimiento (TIR): a TIR es la tasa de descuento que hace el valor presente sea igual a cero. La TIR es igual a la suma de los valores futuros equivalentes de las ganancias,
 - Si TMAR ≥ TIR se acepta el proyecto.
 - Si TMAR ≤ TIR se rechaza el proyecto.

$$VPN = 0 = Inversión - \sum_{t=1}^{n} \frac{Flujo}{(1 + TIR)^{t}}$$
$$Inversión = \sum_{t=1}^{n} \frac{Flujo}{(1 + TIR)^{t}}$$

Tabla LA2		Flujos a valor presente			
Años	Flujo anual	Flujo anual	Flujo anual	Flujo anual	TREMA
		acumulado		acumulado	2.10%
0	-\$984,853.10	-\$ 984,853.10	-\$984,853.10		
1	\$158,581.32	-\$ 826,271.78	\$155,319.61	\$155,319.61	
2	\$158,581.32	-\$ 667,690.46	\$152,124.98	\$307,444.59	
3	\$158,581.32	-\$ 509,109.14	\$148,996.07	\$456,440.66	
4	\$158,581.32	-\$ 350,527.82	\$145,931.50	\$602,372.16	
5	\$158,581.32	-\$ 191,946.50	\$142,929.98	\$745,302.14	
6	\$158,581.32	-\$ 33,365.18	\$139,990.18	\$885,292.32	
7	\$118,935.99	-\$ 33,365.18	\$102,833.14		
		VPN	\$3,272.36		
		TIR	2%		

Ejemplo de cálculo.

a) Valor presente del periodo uno.

$$VP1 = \frac{\$158,581.32}{(1+0.021)^1} = \$155,319.61$$

b) Valor presente neto

$$VPN = -984,353.10 + 155,319.61 + 152,319.98 + 148,996.07 + 145,931.50 + 142,929.98 + 139,990.18 + 102,833.14$$

c) Tasa interna de rendimiento.

$$TIR = \sqrt[7]{\frac{(\$158,581.32*6) + \$118,935.99}{\$984,583.10}} + 1 = 2\%$$

El valor presente neto (VPN) es mayor a cero como se muestra en la **tabla LA2** y la TIR es menor que la TREMA (2% ≤2.1%), el proyecto es aceptable, la TREMA se estima a partir del valor presente neto, se hace la tabulación de la TREMA hasta que el valor presente neto sea positivo.

El periodo de recuperación de la inversión tomando en cuenta el valor presente es igual a

$$Pr = a + \left[\frac{b-c}{d}\right] = 6 + \left[\frac{(984,853.1 - 885,292.32)}{102,833.14}\right] = 6.97 \ [a\tilde{n}os]$$

6 años, (0.97*12)=11 meses.

Si se considera como parte de la inversión inicial a los equipos de aire acondicionado por compresión y la red de ductos de aire, esta aumenta \$ 1, 363,703.62 y la recuperación de la inversión se estima en **ocho años, nueve meses.**

Tabla MA Inversion Total		
Maquinas de aire por compresión		
Mo + Instalación	312620	[\$] pesos
Ductos de aire	66230.52	[\$] pesos
Total de la Tabla IA	984853.1	[\$] pesos
Total	1363703.62	[\$] pesos

Tabla MA1		
Años	Flujo anual	Flujo anual
		acumulado
1	158,581.32	158581.32
2	158,581.32	317162.64
3	158,581.32	475743.96
4	158,581.32	634325.28
5	158,581.32	792906.6
6	158,581.32	951487.92
7	158,581.32	1,110,069.24
8	158,581.32	1,268,650.56

$$Pr = a + \left[\frac{b - c}{d}\right] = 8 + \left[\frac{(1,363,703.62 - 1,268,650.56)}{158,581.32}\right] = 8.6 \ [a\tilde{n}os]$$

8años, (0.6*12)=7 meses.

a: es el último año antes de recuperar la inversión (tabla MA1)

b: inversión inicial (**Tabla MA**)

c: flujo anual acumulado (tabla MA1)

d: ultimo flujo anual no acumulado, donde se satisface la inversión (tabla MA1)

Si se toman en cuenta los criterios de valor presente neto y de tasa interna de rendimiento, el proyecto no es aceptable puesto que no hay una tasa mínima de recuperación de la inversión (TREMA) que satisfaga los dos criterios de evaluación (VPN y TIR) como se muestra en la **tabla MA2.**

Tabla MA2		Flujos a valor pre	sente	
Años	Flujo anual	Flujo anual	Flujo anual	TREMA
		acumulado		1.00%
0	-1363703.62	-\$ 1,363,703.62	-1363703.62	0.01
1	\$ 158,581.32	-\$ 1,205,122.30	\$157,011.21	
2	\$ 158,581.32	-\$ 1,046,540.98	\$155,456.64	
3	\$ 158,581.32	-\$ 887,959.66	\$153,917.47	
4	\$ 158,581.32	-\$ 729,378.34	\$152,393.53	
5	\$ 158,581.32	-\$ 570,797.02	\$150,884.68	
6	\$ 158,581.32	-\$ 412,215.70	\$149,390.78	
7	\$ 158,581.32	-\$ 253,634.38	\$147,911.66	
8	\$ 158,581.32	-\$ 95,053.06	\$146,447.19	
9	\$ 158,581.32	\$ 63,528.26	\$144,997.22	
		VPN	-\$ 5,293.25	
		TIR	0%	

4.8) Análisis del proyecto sin implementar sistema de aire acondicionado por absorción.

Si se opta por eliminar el sistema de aire acondicionado por absorción y solamente utilizar sistemas de compresión, los siguientes modelos de equipos de aire acondicionado son los adecuados para cubrir la demanda.

- 1) Sistema de aire acondicionado, modelo York ZR -120 de para 10 Toneladas potencia eléctrica 10.71 [kW e]
- 2) Sistema de aire acondicionado, modelo York ZR -120 de para 10 Toneladas potencia eléctrica $10.71 \ [kW_e]$

En la siguiente grafica se muestra la aportación de los equipos en toneladas de refrigeración respecto a la demanda.

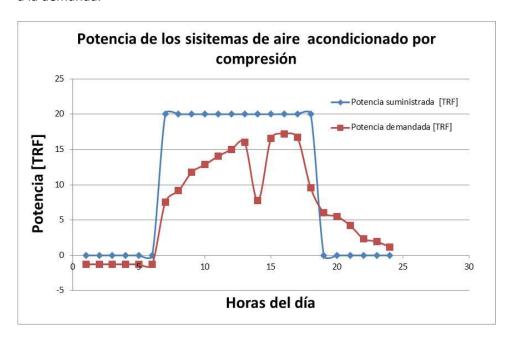


Figura 60; demanda de aire acondicionado y la aportación de los sistemas de aire acondicionado por compresión

La demanda eléctrica sube de 45.63 [kW $_{\rm e}$] a 46.93 [kW $_{\rm e}$] y el cogenerador entrega una potencia de 43[kW $_{\rm e}$]. En la gráfica de la figura 61, se muestra el comportamiento de la demanda con respecto al aporte del cogenerador.

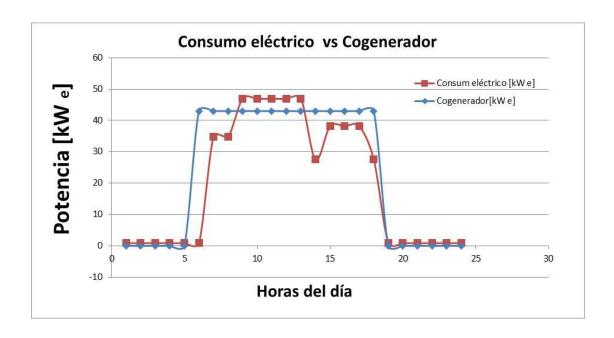


Figura 61; Potencia aportada por el cogenerador vs el consumo eléctrico, utilizando sistemas de aire acondicionado por compresión.

Al emplear los sistemas de compresión hay un consumo eléctrico sumado a la demanda total de gas natural, como se muestra en la **Tabla OA**. El consumo es de \$20,488.19 bimestrales más \$1,455.75 del mantenimiento de los aparatos (**Tabla PA**), el total es de \$ 21,943.94. El ahorro implementando el cogenerador es de \$ 28,666.10.

Tabla NA

Consumo	energético	Consumo energético	Ahorro Bimestral
con cogeneración		sin cogeneración	
\$ 21,943.94		\$ 50,610.04	\$ 28,666.10
Ahorro Mensual			\$14,333.05

Tabla OA					
Gas natural Motor	Por día M	Por semana M	Por mes M	Por mes Motor	Calderas al mes
[kW]	[kJ]	[kJ]	[kJ]	[GJ]	[GJ]
125	32400000	32400000	129600000	129.6	28.77395807
[A]	[B]	[C]	Total	Consumo imp	Total al mes
[\$/GJ]	[\$/GJ]	[\$/GJ]	[\$/GJ]	[\$]	[GJ]
12.68	12.68	25.35	50.71	8031.143414	158.3739581
[D]	Consumo	Seguro	Sub total	IVA 16%	
[\$]	[\$]	[\$]	[\$]	[\$]	
227.43	8258.573414	300	8704.843414	1392.774946	
Total gas N	Total gas N	Consumo Eléctrico	Total	Total	
[\$] al mes	[\$]Bimestre	[\$]Bimestre	[\$]Bimestre	[\$] mes	
10097.61836	20195.23672	292.9521626	\$ 20,488.19	\$ 10,244.09	
[A] Cargo por uso 12.68[\$/GJ]					
[B] Cargo por capacidad 12.68[\$/GJ]					
[C] Distribución con comercialización 25.35[\$/GJ]					
[D] Cargo por servicio	227.43 [\$/me	s]			

Tabla PA. Ma	Tabla PA. Mantenimiento mensual de los equipos					
		Periodo	costo		por mes	
cogenerador		cada 6 meses	\$	1,000.00	\$	166.67
		5 años	\$	12,800.00	\$	213.33
Bomba de agua	a	4 años	\$	2,582.00	\$	53.79
Torre de enfria	miento	6 años	\$	2,240.00	\$	31.11
Extractores de	aire	6 años	\$	18,934.00	\$	262.97
		Mensual	Total		\$	727.88
		Bimestre	Total		\$	1,455.75

El ahorro energético anual se obtiene de la siguiente forma, multiplicando el ahorro mensual por los diez meses donde opera el cogenerador, más el ahorro del mes en que no se labora (\$ 295.45), más el ahorro del mes en que solo se usa el gas natural para las planchas de vapor, no hay consumo de gas por parte del cogenerador y se tiene un consumo eléctrico de \$292.95 en total el ahorro es de \$19,410.77.

Ahorro anual= (\$ 14,333.05 *10) + \$ 295.45 + 19,117.82= \$ 162,743.77

Para el funcionamiento del equipo de cogeneración se hace la selección de una torre de enfriamiento que baje la temperatura del agua de 85[° C] a una temperatura entre 60 o 70 [° C] que es la máxima temperatura de agua caliente que permite el cogenerador. El precio de la torre de enfrento requerida según los datos de la tabla QA es de \$72,000.00. La torre tiene una capacidad de enfriamiento de 25 toneladas, y es la más adecuada para enfriar las 23.62 tonelada que se requieren para enfriar el caudal de agua a las temperaturas indicadas.

Tabla QA.	Torre de enfria	miento				
Q enf	Q enf	Caudal enf T	Caudal	T2	T1	
[TRF]	[kW t]	[gpm]	[lt/min]	[°C]	[°C]	
25	87.9213125	20	60	85	65	
Q req	Q req	Caudal req	Torre 1			
[TRF]	[kW t]	[gpm]	Motor de la 🗈	Torre hp	0.25	[hp]
23.2090928	81.62295599	15.852	Potencia elélo	trica	0.21932349	[kW e]

Tabla RA Inversión inicial sin incluir sistemas de aire						
acondicionado por compresión						
Cogenerador * MO	\$	635,730.00	[\$] pesos			
Torre de enfriamiento	\$	72,000.00	[\$] pesos			
Tanques de agua con						
recubrimiento térmico	\$	50,416.10	[\$] pesos			
Red de tuberia de agua+ MO	\$	6,500.00	[\$] pesos			
Red de tuberia de GN+ MO	\$	7,000.00	[\$] pesos			
Bomba de agua de 1 Hp	\$	1,500.00	[\$] pesos			
			[\$] pesos			
Total de la inversión	\$	773,146.10	[\$] pesos			
MO =Mano de obra						

Tabla RA1

Años	Flujo anual	Flujo anual
		acumulado
1	162,743.77	162743.77
2	162,743.77	325487.54
3	162,743.77	488231.31
4	162,743.77	650975.08

$$Pr = a + \left[\frac{b-c}{d}\right] = 4 + \left[\frac{(773,146.10 - 650,975.08)}{162,743.77}\right] = 4.75 \ [a\tilde{n}os]$$

4años, (0.75*12)=9 meses.

- a: Último año antes de recuperar la inversión (tabla RA1).
- b: Inversión inicial (Tabla RA).
- c: Flujo anual acumulado (tabla RA1).
- d: Último flujo anual no acumulado, donde se satisface la inversión (tabla RA1).

Tomando en cuenta los criterios de valor presente neto y de tasa interna de rendimiento se tienen los siguientes resultados. El valor presente neto es positivo o mayor a cero por lo que es aceptable el proyecto, sin embrago utilizando el criterio de TIR, se tiene que TIR≥ TREMA por lo que en este criterio el proyecto no es aceptable.

Tabla RA2			Flu	jos a valor pr	resente		
Años		Flujo anual	Flujo anual		Flujo anual	Flujo anual	TREMA
			асι	ımulado		acumulado	1.70%
	0	-\$773,146.10	-\$	773,146.10	-\$773,146.10		
	1	162,743.77	-\$	610,402.33	\$160,023.37	\$160,023.37	
	2	162,743.77	-\$	447,658.56	\$157,348.45	\$317,371.82	
	3	162,743.77	-\$	284,914.79	\$154,718.24	\$472,090.06	
	4	162,743.77	-\$	122,171.02	\$152,132.00	\$624,222.06	
	5	162,743.77	\$	40,572.75	\$149,588.98		
			VPN		\$664.94		
			TIR		2%		

$$Pr = a + \left[\frac{b-c}{d}\right] = 4 + \left[\frac{(773,146.10 - 624,222.06)}{149,588.98}\right] = 4.999 [años]$$

5 años

La recuperación de la inversión se realiza en un periodo de **cuatro años, nueve meses y en cinco años** tomando los flujos a valor presente. Si se considera como porte de la inversión inicial a los equipos de aire acondicionado por compresión, esta aumenta a \$ 1, 295,746.62 y la recuperación de la inversión se estima en un periodo de **siete años, once meses.**

Tabla SA Inversion Total		
Maquinas de aire por compresión		
Mo + Instalación	312620	[\$] pesos
Ductos de aire	66230.52	[\$] pesos
Total de la Tabla IA	916896.1	[\$] pesos
Total	1295746.62	[\$] pesos

Tabla SA1				
Años		Flujo anual	Flujo anual	
			acumulado	
	1	162,743.77	162743.77	
	2	162,743.77	325487.54	
	3	162,743.77	488231.31	
	4	162,743.77	650975.08	
	5	162,743.77	813,718.85	
	6	162,743.77	976,462.62	
	7	162,743.77	1,139,206.39	

$$Pr = a + \left[\frac{b-c}{d}\right] = 7 + \left[\frac{(1,295,746.62 - 1,139,206.39)}{162,743.77}\right] = 7.96 \ [a\tilde{n}os]$$

7años, (0.96*12)=11 meses.

a: Último año antes de recuperar la inversión (tabla SA1)

b: Inversión inicial (Tabla SA)

c: Flujo anual acumulado (tabla SA1)

d: Último flujo anual no acumulado, donde se satisface la inversión (tabla SA1)

Si se toman en cuenta los criterios de valor presente neto y de tasa interna de rendimiento, el proyecto no es aceptable puesto que no hay una tasa mínima de recuperación de la inversión (TREMA) que satisfaga los dos criterios de evaluación (VPN y TIR) como se muestra en la **tabla SA2.**

Tabla SA2		Flu	jos a valor pre		
Años	Flujo anual	Flujo anual		Flujo anual	TREMA
		acu	ımulado		1.00%
0	-1295746.62	-\$	1,295,746.62	-1295746.62	
1	162,743.77	-\$	1,133,002.85	\$160,023.37	
2	162,743.77	-\$	970,259.08	\$157,348.45	
3	162,743.77	-\$	807,515.31	\$154,718.24	
4	162,743.77	-\$	644,771.54	\$152,132.00	
5	162,743.77	-\$	482,027.77	\$149,588.98	
6	162,743.77	-\$	319,284.00	\$147,088.48	
7	162,743.77	-\$	156,540.23	\$144,629.77	
8	162,743.77	\$	6,203.54	\$142,212.17	
		VP	N	-\$88,005.17	
		TIR	1	0%	

Conclusiones.

En presente trabajo se comprueba la viabilidad aplicar la trigeneración en un caso real de una fábrica de colchas. La empresa "Blancos y maquilas" contempla implementar el sistema de aire acondicionado a su producción y buscar una manera a través de la Trigeneración disminuir costos.

En primera instancia se determinó la capacidad que debe de tener el sistema de aire acondicionado y junto con el requerimiento de electricidad de la fábrica. Se eligió un equipo de cogeneración que aporte la suficiente energía eléctrica para cubrir la demanda de electricidad total y hacer funcionar los equipos de aire acondicionado por compresión que representan el 78% de la capacidad requerida.

El equipo de cogeneración aporta la energía térmica para hacer funcionar el sistema de aire acondicionado por absorción que genera el 22% de la capacidad requerida, sin embargo para que el equipo de absorción funcione se necesita de algunos equipos extras como las torres de enfriamiento y lo tanques de agua con aislamiento térmico, estos implementos elevan costo de la inversión inicial de \$822,155.00 a \$984,853.10.

El sistema de cogeneración utiliza como fuente de energía el gas natural mientras que las calderas para las planchas de vapor utilizan gas L.P. Se opta por cambiar los quemadores de las calderas para que funcionen con gas natural y todo el sistema dependa de una sola fuente de energía. Sumado a que el cogenerador que aporta la suficiente energía térmica para precalentar el agua que va hacia las calderas a 85[°C], se obtiene un ahorro de dinero en el consumo de gas de las calderas de \$22,272.00 a \$4,948.16.

Al aplicar el sistema de aire acondicionado en la fábrica de colchas e implementar la cogeneración, en general se tiene un ahorro anual de \$ 158,581.32. Sin embargo el costo de todos los equipos necesarios para realizar el proyecto sin considerar equipos de aire acondicionado por compresión y los ductos de aire es de \$ 984,853.10, por lo que la recuperación de la inversión se realize en un periodo de seis años dos meses, tomando en cuenta los flujos a valor presente con una tasa mínima de recuperación de la inversión de 2.1%, el periodo de recuperación se realiza en seis años once meses en el mejor de los casos, si se considera los equipos de aire acondicionado por compresión y los ductos de aire el costo sería sería de \$ 1,363, 703.63 y por lo tanto la recuperación de la inversión sería en un periodo de ocho años siete meses sin una tasa mínima de recuperación de inversión que sustente el tiempo de recuperación de la inversión, en este sentido no es conveniente implementar la trigeneración como tal.

Una alternativa es usar el proceso de cogeneración sin implementar el equipo de aire acondicionado por absorción, el 100% de la demanda de aire acondicionado es cubierta por equipos de compresión, lo que genera que el ahorro anual sea de \$ 162,743.77. Al no utilizar el equipo de absorción junto con los implementos que requiere para el óptimo funcionamiento y poniendo como gasto fijo los equipos de aire por compresión, el costo de la inversión baja considerablemente a \$773,146.10 y por lo tanto el período de recuperación de la inversión es de cuatro años, nueve meses, tomando en cuenta los periodo a valor presente con una TREMA o tasa mínima de recuperación de la inversión de 1.7%, el periodo de recuperación se realiza en cinco años , lo que resulta ideal para realizar el proyecto. Si se considera los equipos de aire acondicionado por compresión y la instalación de la red de ductos de aire como parte de la inversión, el costo es de \$ 1,295, 746.62 por lo que los que la recuperación de la inversión se realizarían en un tiempo de siete años once meses.

El cogenerador calienta 870 litros de agua a 85[°C] de los cuales 320 litros son utilizados como agua precalentada para las calderas, y generar vapor requerido para el planchado de las colchas. Sin la máquina de absorción, los 550 litros restantes quedan disponibles para cualquier aplicación que requiera la fábrica como, implementar sistema de ducha para los empleados.

Actualmente los equipos de aire condicionado por absorción su rendimiento o COP es bajo entre 0.6 y 0.7 en máquinas de simple efecto y de 1 a 1.2 de doble efecto, requieren más energía para que funcionen a diferencia de los sistemas de compresión que tienen un rendimiento entre 3 y 5. En algunos casos compensa el que la energía proveniente de una fuente calorífica sea más económica, incluso residual o un subproducto destinado a desecharse. También hay que tener en cuenta que el sistema de compresión normalmente utiliza energía eléctrica.

En el caso de la fábrica el cogenerador no produce la suficiente energía térmica residual para hacer funcionar el sistema de absorción adecuado para cubrir 100% de la demanda total de aire acondicionado. Se debe a que la trigeneración aplicada en industrias donde la demanda eléctrica no supera los 100 [kW] no es muy común, y se tiene que mejorar el rendimiento en los sistemas de aire acondicionado por absorción para hacer estos proyectos más viables. Se espera que en un futuro este sistema sea utilizado mayormente, ya que contribuye a generar un mejor aprovechamiento de la energía.

Bibliografía.

[1] Carlos Eduardo Lang. 8 de marzo 2013. Resumen histórico de la cogeneración. Comisión nacional para el uso eficiente de la energía, Secretaria de energía, P. 1-3. Citado 30 de Agosto del 2014. Disponible en Internet.

http://conuee.gob.mx/wb/CONAE/historia de la cogeneracion 1

[2] Julio Martín Alarcón.4 de Septiembre 2012. Los 85 primeros hogares de EE.UU con luz eléctrica. Efemérides. Revista; La Aventura de la Historia. Citado 2 de Diciembre 2014. Disponible en Internet.

http://www.laaventuradelahistoria.es/tag/estacion-de-pearl-street

[3] Justin Smoker. 3 de Febrero 2011. Cogeneration. History of Cogeneration 1572. Citado 2 de Diciembre 2014. Disponible en Internet.

http://science.jrank.org/pages/1572/Cogeneration-History-cogeneration.html

[4] Fernando Hernández Vega. *Racionalización del costo energético en una fábrica de hielo de 25 toneladas por día de capacidad*. México DF: Febrero del 2012, Instituto Politécnico Nacional. Escuela Superior de Ingeniería Mecánica Y Eléctrica. Unidad Azcapotzalco, para la obtención de grado de Ingeniero Mecánico . Páginas: 9 - 10.

http://itzamna.bnct.ipn.mx/dspace/bitstream/123456789/10472/1/21.pdf

[5] Luis Jutglar. Ángel L. Miranda, "Termodinámica de la refrigeración", en *Técnicas de refrigeración, Volumen 2*. Barcelona (España) 2008. Ed. EDICIONES TECNICAS MARCOMBO, S.A. Pág. 28.

http://books.google.com.mx/books?id=KWrwEVxg=PT44&dq=refrigeracion+por+absorcion+historia&hl=es-419&sa=X&ei= 6gJUtHeNKbl4AOuYGADw&ved=0CDIQ6AEwAQ#v=onepage&q=refrigeracion%20por%20absorcion%20historia&f=false

[6] Daniel García Almiñana: Introducción histórica de la Termodinámica de absorción; Tecnología de refrigeración capítulo 2. En Daniel García Almiñana en colaboración Josep Ticó Ortet y Pere Esquerra

Pizá; *Instalaciones e refrigeración y Aire acondicionado*; Barcelona (España), Diciembre del 2007. Editorial UOC y EDICIONES TECNICAS MARCOMBO. Páginas. 56, 57, 58,59.

http://books.google.com.mx/books?id=sNV5m-ASR9IC&pg=PA60&dq=ciclo+de+absorcion&hl=es-419&sa=X&ei=EEPCUqHXIqWg2AWqr4GAAQ&redir_esc=y#v=onepage&q=ciclo%20de%20absorcion&f=false

[7] Miguel Ángel Pamplona, empresa Combustión y Secado Energía. Exposición: *Un sistema de trigeneración con biomasa logrará un ahorro de 3 millones de litros de gasoil en un centro hospitalario*. Expo bioenergía 2013 Valladolid España 24 de Octubre 2013.

http://www.expobioenergia.com/es/noticias/un-sistema-trigeneracion-con-biomasa-lograra-un-ahorro-3-millones-litros-gasoil-en-un-centr#sthash.bHC69TpH.dpuf

[8] Datos tomados de la empresa COGENT ENERGY.

http://cogentenergy.com.au/

[9] Alejandra Buendía. 21 marzo 2012. Pone ejemplo en ahorro con trigeneración. Diario Reforma. Citado 15 de Agosto 2014.

http://www.negociosreforma.com/aplicacioneslibre/preacceso/articulo/default.aspx?id=55286&urlredirect=http://www.negociosreforma.com/aplicaciones/articulo/default.aspx?id=5528

http://economia.terra.com.mx/noticias/noticia.aspx?idNoticia=201203201715 REF 1003097952

[10] Datos tomados de la empresa GUASCOR DE MEXICO.

http://www.guas-mex.com/nuestraempresa.html

[11] Datos tomados de la empresa ELECTRIZ.

http://www.electriz.com.mx/tec_quees.aspx

[12] Datos tomados de la empresa ELECTRIZ.

http://www.gruponovaenergia.com/quienes-somos.php

[13] Datos tomados de "Copyright © 2008-2015 - Definicion.de". Citado el 20 de Marzo 2015.

http://definicion.de/aire-acondicionado/#ixzz3XDITomqt

- [14] Ing. Díaz Victorio Santiago –Ing. Barreneche, Raúl Oscar, "Guanacia interior de calor, condiciones de diseño y estudio de cargas térmicas", en *Acondicionamiento térmico de edificios*. Buenos Aires (Argentina) 2005. Editorial NOBUKO. Páginas: 64 79.
- [15] Hernández Goribar Eduardo, "Carga de refrigeración", en *Fundamentos de aire acondicionado y refrigeración*. México DF 2009.Editorial LIMUSA. Páginas: 270- 298.
- [15A] Hernández Goribar Eduardo, "Calefacción", en *Fundamentos de aire acondicionado y refrigeración.* México DF 2009.Editorial LIMUSA. Páginas: 174-181.
- [15B] Hernández Goribar Eduardo, "Ventiladores y ductos", en *Fundamentos de aire acondicionado y refrigeración*. México DF 2009.Editorial LIMUSA. Páginas: 371-373.
- [16] Fidel Eduardo Lockuán Lavado, "Influencia de la humedad sobre los procesos textiles", en *La industria textil y su proceso de lavado. Volumen* 1. Cataluña (España) Diciembre 2012.Derecho de autor libre. Páginas: 65-70.
- [17] Antonio de Lucas Martínez, "descripción del ciclo de absorción del bromuro de litio. Cogeneración, bomba de calor y refrigeración por absorción", en *Termotecnia básica para Ingenieros Químicos. Procesos Termodinámicos y Máquinas.* Albacete (España) 2007.EDICIONES DE LA UNIVERSIDAD DE CASTILLA DE LA MANCHA. Pág. 222.
- [18] Ángel Luis Miranda Barreras, "Refrigerantes Conceptos fundamentales", en *Manual técnico de refrigerantes*. Barcelona (España) 2012. EDICIONES TECNICAS MARCOMBO. Páginas: 20-21.
- [19] Alberto Cornoas, "tecnologías de refrigeración activadas térmicamente", en *Sistemes Avançats* d'Energia Solar i les seves Aplicacions. Universitat de les Illes Balears, 2003.Pág. 203.
- [20] Pedro Rufes Martínez. Refrigeración por absorción, "refrigeración", en *Energía solar térmica. Técnicas para su aprovechamiento, Nuevas energías*. Barcelona (España) 2010. EDICIONES TECNICAS MARCOMBO. Páginas: 212-213.
- [21] Xavier Elías Castells," La cogeneración", en *La recuperación de la energía: Cogeneración intercambiadores y regeneradores de calor .Volumen 12*. Madrid (España) 2012. Ed. DIAZ DE SANTOS, S.A. Páginas: 810-818.

- [22] M. Penche García," Sistemas y aplicaciones de la cogeneración", en **Régimen Jurídico de las energías renovables y la cogeneración eléctrica**. España. Abril 2000.Ed Instituto nacional de administración pública .Pág. 47.
- [23] David Flin. Trigeneración, "Desarrollos futuros", en *A user's guide. Renewable Energy Series 11.* United Kingdom, London, 2010. E.D. THE INSTITUTION OF ENGINEERING AND TECHNOLOGY.Pag.105.
- [24] Salvador Montserrat, Yolanda Calventus, Pere Colome," MACI, turbinas de vapor, turbinas de gas. Comparación", en *Tecnología energética y medio ambiente. Volumen 2.* Univ. Politécnica de Catalunya Barcelona (España), 2006. Editorial UPC. Páginas: 157-159.
- [25] Mario villares Martin," Ciclos termodinámicos para la cogeneración", en *Cogeneración segunda edición*. Madrid (España) 2003.EDITORIAL FUNDACION CONFEDERAL. Páginas: 34 -38.
- [26] Berchin, R., Offman, R, "Elementos Esenciales de Viabilidad de un Proyecto de Cogeneración ", en *Metodología de cogeneración*. 25 de abril del 2010. Comisión nacional para el uso eficiente de la energía, Secretaria de energía, Pág. 6. Citado 4 de enero del 2014. Disponible en Internet.

http://www.conae.gob.mx/wb/CONAE/CONA 690 6 evaluacion econo?page=1

[27] D. Jurg Suter. Ingeniero Industrial. Escuela Politécnica Federal de Zúrich y empresa LUWA ESPAÑOLA S.A. Exposición. *Técnica del acondicionamiento del aire en la industria Textil*. Ciclo de conferencias sobre técnica y tecnología del aire acondicionado. Valladolid, España. 13 Mayo de 1970.

https://upcommons.upc.edu/revistes/bitstream/2099/5889/1/Article02.pdf

- [28] Ángel L Miranda y Luis Juglar, "carga térmica de calefacción", en *Técnicas de calefacción*. Barcelona (España) 2009. Editorial: EDICIONES TECNICAS MARCOMBO. Páginas: 49-50.
- [29] Francisco Rey Javier Martínez y Eloy Velazco Gómez, "Controles de la calidad del ambiente interior", en *Calidad de Ambientes Interiores*. Madrid (España) 2007. Editorial: THOMPSON. Página 101.
- [30] Contrato de interconexión con CFE para fuentes de energía renovable o sistema de cogeneración a mediana escala.

- [31] Monoica Álvarez, Francesc Batalla, Gabriela Benveniste, Óscar Bonet, Xavier Carrera, "Ciclos Termodinámicos", en *Motores Alternativos de combustión Interna*. Barcelona (España) 2005. Editorial UPC. Página 52.
- [32] Luis Jutglar, Ángel Luis Miranda, Miguel Villa rubia, "Cogeneración de calor y electricidad. Sistemas de ahorro energético", en *Manual de Calefacción*. Barcelona (España) Abril del 2011. EDICIONES TECNICAS MARCOMBO. pág.326.
- [32 A] Luis Jutglar, Ángel Luis Miranda, Miguel Villa rubia, "Bombas centrífugas", en *Manual de Calefacción*. Barcelona (España) Abril del 2011. EDICIONES TECNICAS MARCOMBO. pág.236.
- [33] Henríquez Harper. "El generador eléctrico", en *El libro practico de los generadores y transformadores y motores eléctricos*. México DF 2004.EDITORIAL LIMUSA .S.A de C.V. Grupo Noriega Editores. Páginas:1-11.
- [34] Julián Fernández Ferrer, "Dinámica de Fluidos", en *Introducción a la Física Tomo1*. Barcelona (España). Junio del 2006. EDITORIAL REVERTE, S.A. página 261.
- [35] Robert L Mott, "Sistemas de línea de tuberías en serie", en *Mecánica de fluidos aplicada cuarta edición.* Portland (Estados Unidos) 1996. Editorial; PRENTICE HALL. Páginas: 293-294.
- [36] Robert W Fox, "Flujo viscoso e incompresible", en *Introducción a la mecánica de fluidos*. Purdue University. Indiana (Estados Unidos) 2008. Editorial. Mc Graw Hill. Páginas: 367-376.
- [37] Dra. Marta Castillo, Lic. Daniel Meligeni, "Calorimetría", en *Introducción a la Química. Módulo de seminarios de problemas y Trabajos prácticos de laboratorio.* Mar del Plata (Argentina) Julio 2011. EDITORIAL UNIVERSIDAD DE FASTA. Página 71.

Referencia de figuras y Tablas

Figura1: Imagen del sitio web since y society, picture library. Consultada 16 de octubre 2013.

http://www.ssplprints.com/image/129787/leonardo-da-vinci-da-vinci-design-for-an-airscrew-operated-smoke-jack-1480-1482

Figura 2: Imagen del sitio web IEEE Global History Network. Consultada 17 de Octubre 2013.

http://www.ieeeghn.org/wiki/index.php/Pearl Street Station

Figuras 3 y 4: Esquema de planta de trigeneración tomado séptimo congreso internacional de bioenergía celebrado en Valladolid España en el 2012, se presentó la exposición de: *Tecnología de trigeneración aplicada a un hotel.* Consultado 6 de noviembre 2013.

http://www.slideshare.net/AVEBIOM/tecnologa-de-trigeneracin-aplicada-a-hoteles

Figura 5: Esquema de la empresa Electriz de un sistema de cogeneración. Consultado 7 de noviembre 2013.

http://www.electriz.com.mx/tec_quees.aspx

Figura 6: Imagen tomada Daniel García Almiñana: Introducción histórica de la Termodinámica de absorción; *Tecnología de refrigeración capítulo 2*. En Daniel García Almiñana en colaboración Josep Ticó Ortet y Pere Esquerra Pizá; Instalaciones e refrigeración y Aire acondicionado; Barcelona (España), Diciembre del 2007. Editorial UOC y EDICIONES TECNICAS MARCOMBO. Pág. 56.

http://books.google.com.mx/books?id=sNV5m-ASR9IC&pg=PA60&dq=ciclo+de+absorcion&hl=es-419&sa=X&ei=EEPCUqHXIqWg2AWqr4GAAQ&redir_esc=y#v=onepage&q=ciclo%20de%20absorcion&f=false

Figura 7; Ing. Díaz Victorio Santiago –Ing. Barreneche, Raúl Oscar. Ganancia de calor por radiación solar y trasmisión de calor a través de muros y techos. 4.7.4. Guanacia interior de calor Condiciones de diseño y estudio de cargas térmicas. Capítulo 4.En] Ing. Díaz Victorio Santiago –Ing. Barreneche. *Acondicionamiento térmico de edificios.* Buenos Aires (Argentina) 2005. Editorial NOBUKO. Páginas.64 66, 79,153.

http://books.google.com.mx/books?id=1seWJIPCfO4C&pg=PA47&dq=cargas+termicas&hl=es-419&sa=X&ei=PA7jUoLYJ7LNsASxm4HoBA&ved=0CDoQ6AEwAw#v=onepage&q=cargas%20termicas&f=false.

Figura 8: Imagen tomada de: Funcionamiento del ciclo de absorción de doble efecto con bromuro de litio y agua, a llama directa de gas (natural o GLP). Empresa ABSORSISTEM.

http://www.absorsistem.com/tecnologia/absorcion/funcionamiento-del-ciclo-de-absorcion-de-doble-efecto-con-bromuro-de-litio-y-agua-llama

Figura 9: Imagen tomada de: Antonio de Lucas Martínez. Descripción del ciclo de absorción del bromuro de litio. Cogeneración, bomba de calor y refrigeración por absorción. Tema 5. En Antonio de Lucas Martínez, José Villaseñor Camacho y Justo Lobato Bajo. *Termotecnia Básica para Ingenieros Químicos. Procesos Termodinámicos y Máquinas.* Albacete (España) 2007. Ediciones de la Universidad Castilla de la Mancha. Pág. 211.

 $\frac{\text{http://books.google.com.mx/books?id=Gmcu8FhSuMsC\&pg=PA222\&dq=ciclo+de+absorcion\&hl=es-de+absorcion&hl=$

Figura 10; Imagen tomada de la empresa, gas natural Fenosa.

http://www.empresaeficiente.com/es/catalogo-de-tecnologias/plantas-de-trigeneracion#ancla

Figuras 11 y 12; Imágenes tomadas de Xavier Elías Castells. Tecnologías de cogeneración. Capítulo 2 La cogeneración. En Xavier Elías Castells. *La recuperación de la energía: Cogeneración intercambiadores y regeneradores de calor .Volumen 12* de la serie Energía, medioambiente y tratamientos de residuos. Madrid (España) 2012. Ed. Díaz de Santos, S.A. Páginas 812,813.

http://books.google.com.mx/books?id=AVrkBTkPtYAC&printsec=frontcover&dq=xavier+elias+castells&hl=es&sa=X&ei=ZJTDUpObluWI2wWZxICwDg&redir_esc=y#v=onepage&q=xavier%20elias%20castells&f=false

Figura 13; Imagen tomada de D. Jurg Suter. Ingeniero Industrial. Escuela Politécnica Federal de Zúrich y empresa LUWA ESPAÑOLA S.A. Exposición. *Técnica del acondicionamiento del aire en la industria Textil*. Ciclo de conferencias sobre técnica y tecnología del aire acondicionado. Valladolid, España. 13 Mayo de 1970.

https://upcommons.upc.edu/revistes/bitstream/2099/5889/1/Article02.pdf

Figura 19; Hernández Goribar Eduardo .Coeficiente de trasmisión de calor U. Capítulo 8 Calefacción. En Hernández Goribar Eduardo. *Fundamentos de aire acondicionado y refrigeración*. México DF 2009.Editorial LIMUSA. Página 175.

Figura 27; Hernández Goribar Eduardo .Coeficiente de trasmisión de calor U. Capítulo 11 Ventiladores y ductos. En Hernández Goribar Eduardo. Fundamentos de aire acondicionado y refrigeración. México DF 2009.Editorial LIMUSA. Página 373.

http://books.google.com.mx/books?id=NeyHmp0a_vAC&printsec=frontcover&dq=hernandez+goribar&hl=es-419&sa=X&ei=Dy_kUvCcMImosQTB-

4HgAQ&ved=0CCoQ6AEwAA#v=onepage&q=hernandez%20goribar&f=fals

Figura 38; Monoica Álvarez, Francesc Batalla, Gabriela Benveniste, Óscar Bonet, Xavier Carrera, Juan Manuel Castro, Óscar Civit, Jordi Escutia, Irene Espalda, Xavier Flores, David Gonzales. Ciclo Otto. Capítulo 3; Ciclo Termodinámicos. *Motores Alternativos de combustión Inte*rna. Barcelona (España) 2005. Editorial UPC. Página 52.

https://books.google.com.mx/books?id=RLDuW6HWXA0C&printsec=frontcover#v=onepage&q&f=false

Figuras 39: Imagen Tomada de la empresa EIECTRIZ cogeneración. Ciclo Termodinámico Miller de alta. Eficiencia. Octubre del 2014.

Figura 40: Imagen tomada de: Luis Jutglar, Ángel Luis Miranda, Miguel Villa rubia. Cogeneración de calor y electricidad. Sistemas de ahorro energético. Capítulo 5.Apliaciones parte 3. En Luis Jutglar, Ángel Luis Miranda, Miguel Villa rubia. *Manual de Calefacción.* Barcelona (España) Abril del 2011. EDICIONES TECNICAS MARCOMBO. pág.326.

 $\frac{http://books.google.com.mx/books?id=XAbSSfaTX54C\&pg=PA330\&dq=cogeneracion+intercambiadores+de+calor\&hl=es-419\&sa=X\&ei=-$

 $\underline{IPMUoK9FtS2sASfyIH4DQ\&ved=0CFkQ6AEwAw#v=onepage\&q=cogeneracion\%20 intercambiadores\%20}\\ de \%20 calor\&f=false$

Figuras 41, 42,43 y 44: Imagen tomada de Henríquez Harper. El generador eléctrico capítulo 1 .En Henríquez Harper. *El libro practico de los generadores y transformadores y motores eléctricos*. México DF 2004.Editorial; LIMUSA.S.A de C.V. GRUPO NORIEGA EDITORES. Páginas.1 a la11.

http://books.google.com.mx/books?id=P62ebMavSIIC&pg=PA31&dq=generador&hl=es-419&sa=X&ei=baXZUtfeJ_SrsQSJ14GgDQ&ved=0CEkQ6AEwAQ#v=onepage&q=generador&f=false

Figura 45: Jonatán Díaz Ortiz identificación de barreras tecnológicas para operación de sistemas de aire acondicionado por absorción que utilicen LiBr-H₂O para instalaciones menores de 10 [KW]. Instituto tecnológico metropolitano, Institución Universitaria, Facultad de Ingeniería, Ingeniería Electromecánica. Medellín (Colombia) 2012, página 38.

http://www.academia.edu/7138679/Identificaci%C3%B3n_de_barreras_tecnol%C3%B3gicas_para_oper_aci%C3%B3n_de_sistemas_de_aire_acondicionado_por_absorci%C3%B3n_que_utilicen_LiBr-H2O para instalaciones menores de 10 kW

Figura 52; Julián Fernández Ferrer. Teorema de Torricelli. Capítulo 14 Dinámica de Fluidos. En Julián Fernández Ferrer y Marcos Pujal Carrera. *Introducción a la Física Tomo1*. Barcelona (España). Junio del 2006. EDITORIAL REVERTE, S.A. página 261.

https://books.google.com.mx/books?id=YITSNSPUvxwC&pg=PA261&dq=principio+de+torricelli&hl=es-419&sa=X&ved=0CDAQ6AEwBGoVChMIgryFwZiExwIVwgySCh1YgA9O#v=onepage&q=principio%20de% 20torricelli&f=false

Figura 53; Robert W Fox. Perdidas menores. Capítulo 8 Flujo viscoso incompresible. En Robert W. Fox, Alan T. McDonald, Philip J. Pritchard. *Introducción a la mecánica de fluidos.* Purdue University. Indiana (Estados Unidos) 2008. Editorial. Mc Graw Hill. Página 371.

Tabla 1; Cuadro tomado de Fernando Arranz Merino; Manual de termodinámica página 83 máquinas y motores. Madrid (España) 2009. Editorial Visión Net.

 $\underline{http://books.google.com.mx/books?id=dvFihZpqPbgC\&pg=PA83\&dq=motores+alternativos+de+combus}\\ \underline{tion+interna\&hl=es-}$

<u>419&sa=X&ei=3mW_UoGVCqfX2AXOy4DADA&redir_esc=y#v=onepage&q=motores%20alternativos%20</u> de%20combustion%20interna&f=false

Tabla 2: Cuadros tomados de Salvador Montserrat, Yolanda Calventus, Pere Colome. Tecnologías utilizadas: MACI, turbinas de vapor, turbinas de gas. Comparación. Módulo 5 Cogeneración. En: Salvador Montserrat, Yolanda Calventus, Pere Colome, Ramón Carreras, A Oliva, M. Costa, X Roca, M Quera. *Tecnología energética y medio ambiente. Volumen 2.* Univ. Politécnica de Catalunya Barcelona (España), 2006. Editorial UPC. Páginas 158 y 159.

http://books.google.com.mx/books?id=Vy0zRFWt42YC&pg=PA157&dq=comparacion+entre+motor+alternativo+y+turbina&hl=es-

 $\underline{419\&sa=X\&ei=a56qUrrpNsmS2AWQr4DYAQ\&ved=0CDIQ6AEwAQ\#v=onepage\&q=comparacion\%20entr}\\ \underline{e\%20motor\%20alternativo\%20y\%20turbina\&f=false}$

Tabla 3: Cuadro tomado de: Berchin, R., Offman, R. Elementos Esenciales de Viabilidad de un Proyecto de Cogeneración 88 IDAE 1988. Metodología de cogeneración. 25 de abril del 2010. Comisión nacional para el uso eficiente de la energía, Secretaria de energía, Pág. 6. Citado 4 de enero del 2014. Disponible en Internet.

http://www.conae.gob.mx/wb/CONAE/CONA 690 6 evaluacion econo?page=1

Tabla 4; *Normas y especificaciones para estudios, proyectos construcción e instalaciones*. Volumen 5 .Tomo 3 Instalaciones de aire acondicionado. 2014. Secretaria de Educación Pública.

Tabla 5, 6, 8, 11, 12, 13 y 15: Hernández Goribar Eduardo. Carga de refrigeración. Capítulo 7, 8, 9 Refrigeración. En Hernández Goribar Eduardo. *Fundamentos de aire acondicionado y refrigeración*. México DF 2009.Editorial LIMUSA. Páginas 165, 182, 283,284.285, 289.

http://books.google.com.mx/books?id=NeyHmp0a_vAC&printsec=frontcover&dq=hernandez+goribar&hl=es-419&sa=X&ei=Dy_kUvCcMImosQTB-

4HgAQ&ved=0CCoQ6AEwAA#v=onepage&q=hernandez%20goribar&f=fals

Tabla 7: Frank P. Increpara. David P. De WITT. *Fundamentos de transferencia de calor. Cuarta edición*. México 1999. Editorial Prentice Hall Apéndice A. Tabla A3. Propiedades Termo físicas de los materiales de construcción .páginas 833 y 834.

Tabla 9: Carrier Air Conditioning Company. *Manual de aire acondicionado:* Handbook of air conditioning system design. Capítulo 3 Almacenamiento de calor. Página 39; EDICIONES TECNICAS MARCOMBO. 1972.

Tabla 10: Ing. Díaz Victorio Santiago –Ing. Barreneche, Raúl Oscar. Ganancia de calor por radiación solar y trasmisión de calor a través de muros y techos. 4.7.4. Guanacia interior de calor Condiciones de diseño y estudio de cargas térmicas. Capítulo 4.En Ing. Díaz Victorio Santiago –Ing. Barreneche. *Acondicionamiento térmico de edificios.* Buenos Aires (Argentina) 2005. Editorial NOBUKO. Página 79.

http://books.google.com.mx/books?id=1seWJIPCfO4C&pg=PA47&dq=cargas+termicas&hl=es-419&sa=X&ei=PA7jUoLYJ7LNsASxm4HoBA&ved=0CDoQ6AEwAw#v=onepage&q=cargas%20termicas&f=false

Tabla 14; José Roldan Viloria. Manual del electromecánico de mantenimiento. Ventilación. Capítulo 20 conceptos generales. Madrid (España) 2003. Editorial Thomson. Página 417

 $\frac{https://books.google.com.mx/books?id=bJ9QAgAAQBAJ\&pg=PA417\&dq=numero+de+renovaciones+de+re$

QHb YjlAg&ved=0CCYQ6AEwAA#v=onepage&q=numero%20de%20renovaciones%20de%20aire%20tint oreria&f=false

Tabla 18; Robert W Fox. Perdidas menores. Capítulo 8 Flujo viscoso incompresible. En Robert W. Fox, Alan T. McDonald, Philip J. Pritchard. *Introducción a la mecánica de fluidos*. Purdue University. Indiana (Estados Unidos) 2008. Editorial. Mc Graw Hill. Página 376.