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Jorge ANGELES 

ABSTRACT 

If the coordinates of the points of a given curve are approxirnated 

by spline functions, then the local gecmetric properties (slope, 

curvature, etc.) of the curve can be regarded as functions of a 

finite set of independent variables, the coordinates of the support

ing points. Forrnulae are derived far the cornputation of the der

ivatives of these functions with respect to the aforementioned 

coordinates. An exarnple is included to show how these formulae 

can be applied to synthesize aplane closed curve with a prescribed 

curvature distribution. 

INTRODUCTION 

In the design of structural elernents with notches or borigns, 

henceforth generallyrreferred to as ''openings", stress concentra

tions [1J 2at these op:enings frequently occur,which could be avoided by a 

proper determinati1on of the shape of the opening. In this res pe et, 

such shapes have been found by application of optimization techni~ues 

in connection with the finite-element rnethod (FEM) C2, 3]. Schnack :4] 

has solved similar optirnization problerns by introducing the monotony 

relationship between the magnitude of the stress at the opening ata 

given point ~nd the curvature of the opening at this point; this 

relation was first established by Neuber [1~ .. In [4J. it was shown how 

a proper correction of the curvature of the contour, namely diminishing 

of the curvature at points with high stress and vice versa, can lead to 

optirnal shapes. This way the original mechanical problem can be handled 

as a purely geometrical one, i.e. given a profile with a known stress 

distribution, determine a new profile with a "better" stress distributio 

by correcting the curvature of the profile according to the known stress 

distribution. What is meant by a "better" stress distribution is one 

with a lower difference between the highest and the lowest stress 
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magnitudes at the profile. In [4] the curvature was approximated 

by a finite-difference formula at the FCM network nades lying at 

the profile. Furthermore, the curvature was assumed to have a 

linear distribution between the nodes with the highest and the 

lowest stress magnitude, anda FEM conputation was performed 

at each iteration of the optimization procedure. The curvature 

corrections were specified as "small" changes, which led. to 

"snall" changes in the coordinates of the involved nodes. 

In this paper it is shown how,by introducing spline-functions (SF), 

the curvature and its derivatives, for a given curve, can be comput

ed accurately at arbitrary points of the curve. Furtherrnore, know

ledge of the derivatives of the curvature with respect to the 

coordinates of the supporting points (SP) allows the use of Newton

Raphson's method to determine the coordinates of the supporting 

points of a curve to meet specifications on its curvature distrib

ution. This way, "relatively large" curvature corrections can be 

carried out. 

DERIVATION OF THE SLOPE AND CURVATURE DERIVATIVES 

Let the (x, y) cart1esian coordina tes of an arbitrary point P of a 

curve r be approximated by spline functions after the introduc

tion of a paraneter t, i. e. [s] 

3 2 
x(t)=axk(t-tk) +bxk(t-tk) +cxk(t-tk)+dxk 

3 2 
y(t)=ayk(t-tk) +byk(t-tk) +cyk(t-tk)+dyk,tk2t 2tk+ 1 

where the set tk, for k=1, ... ,n, is defined as 

t
1
=0, t =t +t.t , k=1, ... ,n'(=n-1) 

k+1 k k 

k= 1 , ... , n ' 

the set xk,yk:'. for k=1, ... ,n beinrr the cartesian coordina tes of 

the given supporting points _Pk. This paper is concerned 

only wiLh closerl curves, for which renson the sr 

( 1 ) 

( 2) 

( 3) 

( 4) 
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are periodic. The coefficients ªxk'bxk'ººº'cyk'dyk'k=1, ••• ,n' 

are then defined as [s] 

ªxk= (xk+1-xk) /.6.!\tk 

bxk=xk/2 

cxk=xk/l\tk-l\tk(xk+1+ 2xk)/G=;k 

ªxk=xk 

(5a) 

( Sb) 

(Se) 

(Sd) 

with similar expressions for the y-coeffic~ents. In therf0r~g9i~g 

formulae xk, yk, xk and yk represent first and second derivatives 

of the cartesian coordinates with respect to t, computed at tk. 

Next, the following n'-dimensional vectors and n'x n' -matrices are 

defined: 

[ 7 T • [· • 7 T •• e•• •· 7T x= X 1 , .•. 'X ,..._ 'x= X 1 , ••• , X ,_ 'x= X 1 , ••• , X 1 -

(6) 
~ n ~ n ~ ~ n .. 
with similar definitions for the vectors y, y and y. 

l\t 1 n 

where n"=n'-1=n-2 

!=diag(L'it 1 ,tit 2 , ... ~l\tn,) 

-

I=diag(1,1, ... ,1)= the n'xn' identity m~trix -
- 1 1 

-1 1 

-1 
J= 

o 
1 -1 

Í'it 1 n 

l\t ,.,2 (l\t ,.+Í'it ,) 
n n n 

( 7) 

( 8) 

(9) 

( 1 O) 
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Thus, the second derivatives are computed from [sJ as, 

Ai=-6JTH- 1Jx,A;=-6JTH- 1Jy (11) 
~- M ~ ~~ ~~ ~ •- -~ 

Nri~t, "sma!l" 8hanges in i and Y for correspondingly "small" 

changes in~ and ! are computed. From the expressions so obtained, 

formulae for the derivative_s 3i/3x, ai/3y, 3}/3x and 3y/3y are 

derived. In fact, let 6 denote a "small" change of the variable 

it preceeds. Thus, 

" -1 T -1 -1 T -1 -1 T -1 
6x=-6(oA l J H Jx-6A J (6H )Jx-6A J H J6x (12) 

~ ~ ~- ~ ~ ~ ~ 

By equating 6(A- 1A) to zero the following expressions are obtained: 

oA- 1=-A-l (oA)A- 1 
~ .,. ( 1 3) 

-1 -1 -1 -2 
oH =-H (oH) H =-H OH ( 1 4) - - - -

where the latter equation holds dueto the diagonality of matrix H. 

This way, eq. (11) is trans formed in to 

1 

.. -1-L T-1 -1 ''] 0x=A 6J H (H oH.Jx-Jox)-6A.x - - - - - - -- - - - ( 1 5) 

where the point between two variables is rneant to indicate that 

the variation 1 does not involve the variables after the point. 

To obtain expressions for the variations of ~ and H, which 

depend only on the set Atk, the variation of this set is first 

derived. Frorn definitions (4), 

o/'J.t =ol!'J.x2+/'J.y2 = (/'J.x OÍ'J.Xk + /'J.yk o/'J.yk) //'J.tk 
k k k k 

where Axk and Ayk,for k=1, ... ,n', are defined sirnilarly to 

Atk. Let 

\ 

\ 

( 1 6) 

( 1 7) 



Thus: 

where A and A are diagonal matrices defined as 
~11 .... 12 

Similarly, 

where 

To compute ó~-~, only the 6tk terrns in Ax are varied, 

x ,a6t ,+2x
1
ac6t ,+6t

1
)+x

2
a6t 

-n n n 1 

Substituting (16} and (17) into the latter expression, 

oA.i=B. Jóx +B12Jói 
- - -11- - - - -

Similarly, 

where matrices B._., for i,j=1, 2 are defined as 
~1J 

5 

e 1 a> 

(20) 

i.e. 

(22) 

( 2 3a) 

(23b) 
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B .. = 
~ 1) 

-

f3 1 1 o o 
f3 l ' ,n 

B21 f32 2 
o o o 

o í332 S33 
o 

:~)-- . 
·-

o o o. - . f3 B , n• n•,n" n, 

i=1,j=1,&k,k-1=(xk-1+2xk)ck-1 

8k,k=( 2xk+xk+l)ck 

i=1,j=2, ~ k-1=(xk_l+2xk)sk-1 
I 

f3k,k=( 2xk+xk+1} 5 k 

i= 2 ,j= 1 ,Bk,k-1=(yk-1+ 2yk)ck-1 

f3k,k=( 2yk+yk+1)ck 

i= 2 ,j= 2 ,~k,k-1=(yk-1+ 2yk)sk-1 

f3k,k=( 2 yk+yk+1)sk 

where k-1=n' for k=l 

(24) 

.... 

(25a) 

(25b) 

(25c) 

( 2 Sd) 

Substituting then eqs. (18), (20) and (23) into eq. (12) one 

obtains 

(26a) 

( 2 6b) 

from which the formulae 



(27b) 

(27c) 

( 2 7d) 

follow immediately. 

are deri ved. From eq. CSc) , vector x can be wr i tten as 

• -1 .. 
x=H Jx-HKx/6 (28) 

A "srnall" variation ói, for given "srnall" variations of x and 

y is obtained frorn the latter equation as 
~ 

ó~=H-lJÓx-H-lÓH.H-lJx-HKÓx/6-ÓH.Kx/6 (29) - - - - - -- -- - -
Making use of the diagonality of H and of eqs. (18) and (26a), 

eq. (29) is transforrned into 

1 
• -1 -2 -2 •• 

Óx=H JÓx-H A JÓx-H A JÓy-HK(3x/~x)óx/6 
~ ~ ~ ~ ~ ~11~ ~ ~ ~12~ ~ ~ ~ 

-HK(3x/3y)Óy/6-ÓH.Kx/6 - - - - --
An expression for ÓH.Kx can be obtained by varying only the 

4tk terms in~~~- Thus, 

oH.Kx= 

c2x
1
+x

2
> o4t 1 

c2x
2

+x
3

>ó4t
2 

(2x ,+x1)o4t 1 n n 

=C Jox+C JÓy 
~ 11 ~ ~ ~ 1 2~ ~ 

1 
= 

{ 2 x 
1 

+ x 
2 

) ( e 
1 

ó 4x 
1 

+ s 1 ó 4 y 1 ) 

c2x
2

+x
3

> cc 2 ó4x 2+s 2óAy 2> 

(2x ,+x1) (e ,ó4x ,+s ,óóy , n n n n n 

( 30) 

= 

{31a) 

7 
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Similarly 

where 

with the dk elements defined as 

i=1 and j=1,dk=(.2xk+x )e k+1 k 

i=1 and j=2,dk=(2ik+ik+l)sk 

i=2 and j=1,dk=(2yk+Yk+1)ck 

i=2 and j= 2 , d k=( 2yk+yk+1)sk 

where k+1=1 for k=n' 

(31 b) 

(32) 

(33a) 

(33b) 

(33c) 

(33d) 

Substituting eqs. (27a,b), and (31a) into eq. (30) one obtains 

Similarly 

º ~ = - { t~ -, e~ - 1 ~, , - ~ l + ~ , , / 6] ~ + ~ ~ ( a g;;): > ; 6 } º: 

- Ce~ - 2 ~, 2 + ~ 1 2; 6 > ~ + ~ ~ e a~; ar> J º r 

ot=- [e~ -2 ~2, +~2, /6 l ~+~~ ( ªf ;a:1 /6] º: 

-r ~ -1 ( ~ - 1 ~ 2 2 - : ) +: 2 2] ~ + ~ ~ ( a ~ / a: ) / 6 } ó r 

from which the sought formulae 

. -2 .. 
ªtiª:=-(~ ~2,+:21/6)~-~~<at;a~)/6 

a~/ ar:= - -~ - 1 ( ~ - 1 ~ 2 2 -! ) + ~ 2 2 / 6] ~ - ~ ~ ( ar/ a¿') / 6 

follow directly. 

\ 

\ 

( 34 a) 

(34b) 

(35a) 

(35b) 

(35c) 

( 35d) 



Formulae (351 expresa the ~epsitiyity of the slope or, correspond

ingly, of the unit tangential and normal vectors of the curve to 

changes in the coordinates of the supporting points, thus allowing 

the synthesis of curves having a prescribed slope. These formulae, 

however, require the evaluation of the derivatives of formulae 

(27), for which reason these were derived first. The said eight 

formulae can now beapplied to compute the derivatives of thc 

curvature at the SP. Let Kk be the curvature at point Pk, i.e. 

(36) 

and then define 

K= tK
1 

,K 
2
,. • • , K ,] T ... . n 

( 3 7) 

Applying the" chain rule" the following formulae are obtained: 

a~ aK a~ a~ a; ~~ ai aK ar 

·ax=ax a°i + ~ 3x + ax° ax + ay ax 
_, 

a K ay a K ax 

where aK/ i, ... ,aK/3y are diagonal matrices defined as 

with 

aK/ax=diag(D , ... ,D 1 ) 

~ -· 1 n 

aK/ai=fiag(E
1

, ... ,E ,) 
~ ~ n 

aK/3i=diag(F
1

, ... ,F ,) 
~ ~ n 

aK/3y=diag(G
1

, .•. ,G ,) 
~ ~ n 

t •2 ·2 ..•• ··7; .2 .2 5/2 
Dk= (yk-2xk)yk+3xkykx~ (xk+yk) 

¡;-.2 .2) .. . ... 7 .2 .2 5/2 
Ek,,.-~xk-2yk xk+3xkykyk' /(xk+yk) 

• ·2 ·2 3/2 
Fk=-yk/(xk+yk) 

• ·2 ·2 3/2 
Gk=:kk/ ( xk +y k) 

(38a) 

(38b) 

( 39a) 

(39b) 

( 4 Oa) 

( 40b) 

( 4 1 a) 

( 41 b) 

( 4 2 a) 

( 4 2b) 

9 
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So far, the cartesian coordinates of the SP were regarded ~sin

dependent variables. In roany applications, however, the sought 

curves contain syrnrnetries, thus turning a set of such coordinates 

to depend upen the rernaining enes. Moreover, by selecting a point 

encl~sed by theicurve as the origin of polar coordinates, p,~, 

~nd by fixing the angles ~k' the only independéht variables are 

pk, for k=1, ... ,m, where, dueto possible symmetries, m~n•, and 

rn=n' only if the curve possesses no symmetries. Storing the 

independent variables in the m-.dimensional vector z, then,' the 

dependence af the cartesian coordinates af the SP upan the in

dependent variables z, can be written as 

X= Vz + a, y= Wz + b ( 4 3) 
-.- - -

where V and W are constant n 1 xm matrices, whereas a and b are 
~ ~ 

canstant n-dirnensional vectors, accounting for thase coordinates 

which rernain fixed thraughaut a particular problem. The farmulae 

far the total derivatives with respect to z 

a~ a~ ax ªt a¿ a Y 
~ ~ az = ax V + ay w, = V + ay w 

~ ~ az ax ~ ~ 
(44) 

~ 

ax .. ag a2 ay a~ ax 
az = ax V + ªx 

w, az = V + ay w 
~ ~ ax ~ ~ 

(4 5) 

- - V + W az - ax~ ay ( 4 6) 

fallow directly. 

ERROR IN THE APPROXIMATION OF THE CURVATURE AND ITS DERIVATIVES 

A series of subroutines were written, which compute the foregoing 

derivatives and the curvature[6]. These subroutines were used to 

establish~he dependence of the error in the approxirnatian upan 

the nurnber of SP. Tests were carried an a circle af radius =1. 

1 



The double symmetry of the curve was c~pioited And so, thc results 

comprise only the first quadrant. The error in the approximation 

was recorded for 2,3,S,7 and 10 SP defined on the first quadrant. 

The corresponding approximating curves and their error distrib-
• 

1 1 

ution in the approximation of thc curvature are shown in Figs í - 5. 

Defining as the error in the approximation tho greatest absoluto 

value of the error over the whole quadrant, this is recorded vs. 

the number of SP in Table 1. 

The forego ing .computations contain not only an error of approxima tion, 

but also a round-off error; this was, however, disregardod because 

the only critical computation in the formulae derived above is the 

inversion of matrix ~, as defined in eq. t7). This matrix, 

nevertheles~, is very well conditioned, for it is positivo definite, 

tridiagonal and diagonally dominant [7}_. Furthermore, the matrix 

was not expl ic i tly inverted, but LU-decomposed [a] once and for all 

and l~ter on its factors, L and U, were used repeatedly in the back-

substitution stage of Gauss' algorithm [a] to compute successively 

the different columns of the matrices appearing in eqs. (27). For 

this purpose, the subroutines DECOMP and SOLVE, dueto Moler [9], 
were applied. 

An example is next included, which can be computed with zero round

off error, to illustrate the procedure. 

EXAMPLE 1. COMPUTATION OF THE CURVATURE OF A CIRCLE AND OF ITS 

DERIVATIVE WITH RESPECT TO THE RADIUS, USING TWO INDEPENDENT VAR

IABLES 

A circle is approximated with spline functions using the following 

5SP:P
1 

(1,0) ,P
2

(0,1) ,P
3

(-1,0) ,P
4

(0,-1) ,P
5

(1,0)=P
1

. The involved 

vectors and matrices are 

\ 

1 
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4 1 o 1 7 -2 1 -2 

1 4 1 o -2 7 -2 1 

A=f2 o 1 4 1 
-1 n 

A =- 1 -2 7 -2 
48 

1 o 1 4 -2 1 -2 7 

H = ./2 diag (1,1,1,1), I=diag(1,1,1,1) 

--1 1 o o 2 1 o o 

o -1 1 o o 2 1 o 
J= o o -1 1 

K= o o 2 1 ~ 
1 o o -1 1 o o 2 

Si?lving far X and Y 
~ 

in eqs. ( 11 ) . 

.. 3r ;-,T •• 3r, ·7T x = 2-L-1,0,1,0~ ,y= - Lo -1 o :i 
~ 2 ' ' ' -

~ Similarly, from eq. (28) andan analogous one for y, which is not shown, one 

obtains 

X ::: 
T • 

[o , -1 , O , 1] , l = 
3/2 T 

2 
[-1,0,-1,0] 

2 

Moreover, 

~
11

=v'2!/2,~
12

=v'2 diag (-1, 1,-1, 1) /2,~21 =v'2 diag (-1-, 1,-1, 1) /2 A 2=v'2 I/2 
~2 ~ 

2 o o -2 -2 o o -2 

3v'2 1 -1 o o 
B _3v'2 

-1 -1 o o 
B =-- o 2 I o -2 o ~ 11 22 -2 o -12 2 -2 

2 
o o 1 -1 o o -1 -1 

L 4--

1 o o 1 -1 o o 1 

2 2 o o -2 2 o o 
B _3/2 o 1 1 o 3v'2 o 1 -1 o 
-21 22 ~22~ 

o o 2 2 2 o o -2 2 

Substitution of the above matrices in eqs. (27) yields 



¡' 

1 t,, 

~ 

... 

1 ~ 
4 -2 2 -2 2 o -4 

4 -7 4 -1 
•• 3 

O -1 o 
•• 31 a~/ª: 24 -2 2 -2 2 , ª~/ªr- 4 l·o -4 o 4 

2 
4 -1 4 -7 -1 O 1 o 

o 1 O -1 ·., y:...7 4 -1 4 

ay/ax- 31 4 o -4 

: j a .. a 3 I 2 -2 2 -2 
, '!/ r- 4 ~ ~ 24 o -1 o 2 

1

-1 4 -7 4 

,..-4 o 4 _ 2 -2 2 -2 

In order to compute the derivatives of formulae (35), the c .. 
~1] 

matrices of formulae (32) and (33) should be first computed. 

These are: 

C =312' diag(2,-1,2,-1)/2
2 ,c 12=31'2diag(-2,-1,-2,-1)/2

2 
~ 11 '." 

$
21

=31'2 diag(1,2, 1,2)/2
2

, s22 =31'2 ·diag(-1,2,-1,2)/2
2 

Thus, 
o 3 o -3 r-17 8 1 s· 

1 

• /2 -6 o 6 o • ✓2 -2 8 -2 -4 
ax/ax=- O -3 o 3 

, ax/ay=s, 1 8-17 8 ~ .., 25 ~ 2 
6 O -6 o -2 -4 -2 8 

-8 2 4 27 r,L: 6 O -6 

ª··;a 12" 
1

-8 17 -8 -1 o 3 o 
y x=- 4 2 -8 2 ay¡ay=--21 -6 o 6 ~ 25 ~ 5 O 

L-ª _, -8 
2 

1 7 1 3 O -3 o 

The partial derivatives of the curvature are: 

BK/ax=l2x2
4
diag(o 1 o-1)/3

2
,.:lK/3~~,:::::/2x24 diag(-1,0,1,0)/3

2 - - ,,, ,_,_ 

" '\º' 3 • 2 " "\º' 3 • 2 oK/ox=2 diag(-1,0,1,0)/3 ,oK/oy=2 diag(0,-1,0,1)/3 
~ - -

1 3 
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The partial deriva.tives of forn;,ul~e t38} are then 

1 1 -5 -1 -5 o - 1 2 o 1 2 

1 
-12 o 12 o 

1 
-5 1 1 ·-5 - 1 

a K/3x=-
1 5 - 1 1 5 

, i)K/é)y=- o -12 o 1 2 ,..; - 32 -;-,: -, 32 

-12 o 12 o 5 1 5 - 1 1 

Considering the abscissa of P and the ordinate of P
2 

as the 
.1 

independent variables and assum~ng that the supporting points 

are variable, but restricted to remain in the coordinate axes, 

matrices V and W appearing in formulae (43) are then obtained 

as 

1 

o 
V = -~ - l 

o 

o 

o 

o 
o 

W== 

o o 
O 1 

o o 
O -1 

[ 
-T 

Thus, the total deriva ti ve of ¡s= K
1 

,K 
2
J with respect to 

1 
4 [ 1 d K/3 z:-

~ - 3 -2 

z is 

If z
1 

and z
2 

are set equal to the radius of the circle, the 

number of independent variables reduces to 1 and so the 

derivative of the curvature with respect to the radius can be 

computed. The values found for the curvature and its derivative 

were 

K=4/3, o K/3r=-4/3 

which approxirnate the true values, 1 and -1 with an error of 33%. 

The elements of the matrix oK/oz also contain an error of 33%. To 

compute the true values of these elements, the circle is regarded 

as a particular case of an ellipse of semiaxes a and b. The cur

vature at the point where the ellipse intersects the x-axis, ~, 

is 
2 

K
1
=a/b 



Regarding a and b as the indepcndent y~riAhles z 1 ~nd z 2 , ~nd 

setting z
1

=z
2
=1, one obtains 

2 2 
aK /óz ~l/b =1,oK /oz =-2a/b =-2 

1 1 1 2 

which are the true values of these components. 

The next example is included to illustrate how arbitrary values 

of the curvature of a curve can be synthesized by properly 

assigning the coordinates of the SP, which is done with the aid 

of Newton-Raphson's method. 

EXAMPLE 2. SYNTHESIS OF APLANE CLOSED CURVE TO MEET PRESCRIBED 

CONDITIONS IMPOSED ON ITS CURVATURE 

15 

From the foregoing analysis it follows that the curvature at every 

point of a curve approximated with spline functions is a function 

of the coordinates of the involved supporting points. If these co

ordinates are dependent upen a certain set of free pararneters z, 

like the enes introduced in eq. (4 3}, then 

where z is an m-dimensional vector, with m2n', n' having been 

previously defined as the number of SP minus 1. Nurnbering the SP 

in such a way that the first m are independent, then K is an 

ro-dimensional vector containing the curvature at the first rn SP. 

Assurning that it is intended to synthesize a double syrnmetrical 

curve, the m free SP are located in the first quadrant of the 

x-y plane. The curvature distribution is then assigned through 

vector c, where -

and c. is 
l. 

the prescribed curvature at the 

point with polar coordinates p=z.,~=~ .. 
l. l. 

\ 

\ 

.th 
1.- SP, i.e. at the 
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The unknown va~iables z. can now be co~puted as the solution of 
1 

the m-dimensional system of nonlineRX equatiops 

f ( z) = ~( z l -c=O 
~ ~ . -. ....... 

The best known -method to sol ve this_,system is that o;f; Newton.,. 

Raphf11 [10], which only requires the computation of the Jacobian 

matlix off with respect to:, which is 

as given by formula (46). In the above Jacobian,the derivative 

of = vanishes sincethis is a constant prescribed value. 

Fig 6 shows the successive curves which were obtained during the 

Newton-Raphson 1 s iterations to synthesize a curve with the follow

ing curvature distribution 

i.e. a circle. The 5 SP were equally distributed over the first 

quadrant, the initial ''guess" of : was assigned so as to represent 

an ellipse with semiaxes a =2, b=l. The number of iterations needed until 

convergence was reached was 7, and the procedure was stopped when ., 
the correction to the unknown vector attained a -maximal-norm 

-4 smaller than 10 

CONCLUSIONS 

The advantages of introducing splines in synthesis or optimization 

problems involving the determination of curves to meet prescribed 

geometrical condi tions ar e many-fold, sorne of which are: 

- The number of independent variables which have to be handled is 

relatively low. 

Derivatives with respect to the free parameters can be efficiently 

computed, which helps in iterative methodseit~er- to solve equa

tions orto optimize objective functions- since the introduction 



1 7 

of gradients,norm~lly accclerAtes the conyergence of the method. 

- The equations appearing Ln spline computations are linear and 

well conditioned, which allows computations with small round-off 

errors. 

- The analysis of errors -which was not the subject of this paper

can be performed systematically, far spline analyses have been 

extensively carried out [11,12]. 

Further research in this direction should involve the introduction 

of spline functions in the solution of classical problems of the 

calculus of variations D~, thus reducing such problems to the 

search of the solution overa finite-dimensional space, instead 

of overa Hilbert space. 
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TABLE l Cury~ture error depending upon thc number of 

supporting points in the first quadrant 

Number of SP Error .,_ 
·o 

2 33 

3 3.6 

5 1. 4 

7 0.58 

10 0.25 
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