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Abstract

Teleoperation means operating at a distance. In the context of robotics, teleoperation is

commonly carried out by means of robotic arms and a human–machine interface. To exploit

to the maximum the capabilities of a teleoperation system, the control engineering discipline

analyzes, through the development of mathematical models, the system dynamics to design

algorithms in order to improve the performance or to induce some predefined behavior. In the

present work, a robotic teleoperation system is studied, which is composed of two manipulators

called master and slave, a human operator that moves the master, a remote environment over

which the slave operates, and a communication channel between the controllers of each robot.

The main objective of this work is to design a control algorithm for a master–slave teleop-

eration system that operates over rigid surfaces with unknown geometry. Additionally, it is

desired that the designed algorithm does not require velocity nor force sensors at the slave

side, i.e., using only joint position measurements for the slave robot. To achieve this objective,

a dynamic extension and a high–gain observer were employed, which jointly are known in the

literature as Generalized Proportional Integral (GPI) observers. For the movement control and

force tracking, a hybrid position/force controller based on an orthogonal decomposition of

the task space was employed. The GPI observer allows, besides simultaneous estimation of

slave robot joint velocity and the contact force over the remote environment, to reconstruct the

geometry of the remote surface by means of an on line estimator. In other words, the proposed

algorithm achieves movement of the slave robot over the surface and simultaneous application

of a force desired by the human operator, while at the same time it performs an estimation of

the velocity and force signals, and the gradient of the unknown surface.

A mathematical analysis was carried out, which guarantees locally uniform ultimate bound-

edness of all signals. Furthermore, it was formally proven that the final bound of the tracking

and estimation errors can be made arbitrarily small, which means approximate but arbitrarily

close position and force tracking and also arbitrarily close estimation of slave joint velocities,

contact force, and the gradient of the surface.
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The proposed scheme was validated both through numerical simulations and experiments,

with satisfactory results. The simulations show that the proposed method has an excellent

performance under ideal conditions. On the other hand, the experimental results supports the

pertinence of the assumptions made for the design and analysis of the system, also obtaining a

good performance, given the simplicity of the proposed method. Among some other advan-

tages, the designed scheme is easy to tune and to implement, which makes it very attractive for

the practitioners over other existing solutions available in the literature.



Resumen

Teleoperación significa literalmente operar a distancia. En el contexto de la robótica, la

teleoperación se realiza comúnmente a través de brazos manipuladores mediante una interfaz

humano–máquina. Para aprovechar al máximo las capacidades de un sistema de teleoperación,

la ingeniería de control se encarga, mediante el uso de modelos matemáticos, de analizar la

dinámica del sistema y diseñar algoritmos para obtener mejoras o inducir un comportamiento

específico de acuerdo con un objetivo preestablecido. En este trabajo se estudia un sistema

de teleoperación robótica compuesto por dos manipuladores llamados maestro y esclavo, un

operador humano que mueve al maestro, un ambiente remoto sobre el que opera el esclavo y

un canal de comunicación entre los sistemas que controlan a cada uno de los robots.

El objetivo de este trabajo consistió en diseñar un algoritmo de control para un sistema de

teleoperación maestro–esclavo sobre superficies rígidas con geometría desconocida. Se desea

además que el algoritmo no emplee sensores de velocidad ni de fuerza, es decir, utilizando

sólo mediciones de posición en caso del robot esclavo. Para lograr este objetivo se utilizó

una extensión dinámica del estado y un observador de alta ganancia, que en conjunto son

conocidos como observadores Proporcionales Integrales Generalizados (GPI, por sus siglas en

inglés). Para lograr el control de movimiento y de la fuerza de contacto se utilizó un controlador

híbrido de posición/fuerza basado en la descomposición ortogonal del espacio de trabajo. El

observador GPI permite, además de estimar simultáneamente la velocidad articular del robot

esclavo y la fuerza de contacto sobre la superficie remota, reconstruir la geometría de dicha

superficie mediante la introducción de un estimador en línea. En otras palabras, el algoritmo

logra que el robot esclavo se mueva sobre la superficie, de acuerdo con la trayectoria deseada

por el operador humano, ejerciendo al mismo tiempo una fuerza también comandada por el

operador sobre ésta, mientras estima las señales de velocidad y de fuerza y la geometría de la

superficie.

Se llevó a cabo un análisis matemático que garantiza localmente el acotamiento uniforme

de todas las señales. Adicionalmente, se demostró que la cota final de los errores de estimación
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y de seguimiento de posición y de fuerza puede hacerse arbitrariamente pequeña, lo que

significa que se obtiene un seguimiento aproximado pero arbitrariamente cercano de las

trayectorias deseadas así como una estimación de la velocidad articular, la fuerza de contacto

y el gradiente de la superficie.

El esquema propuesto fue validado tanto en simulación numérica como experimental-

mente con resultados satisfactorios. Las simulaciones muestran que el método propuesto

presenta un excelente desempeño en condiciones ideales. Por otro lado, los resultados exper-

imentales apoyan la validez de las suposiciones realizadas, obteniendo asimismo un buen

desempeño tomando en cuenta la simplicidad del algoritmo propuesto. Entre las principales

ventajas del método propuesto destaca su facilidad de sintonización e implementación, lo que

lo hace atractivo para la práctica en contraste con otras soluciones existentes en la literatura.
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Chapter 1

Introduction

In the context of robotics, a teleoperation system consists of one or many robotic manipulators

operated by a human and one or many manipulators in a remote place. A common configura-

tion is composed by the human operator, a local manipulator which is called master, a remote

manipulator, called slave, a communication channel between the input and output signals of

the two robots, and a remote environment over which the slave robot operates (see Figure 1.1).

Comunication

channel

Master

Slave

Remote

environment

Figure 1.1: Master–slave teleoperation system.

In this scenario, the slave is intended to mimic the movements of the master robot, so

that the whole configuration is known as a master–slave teleoperation system. If in addition
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the contact force that the slave robot exerts over the environment is reflected to the human

operator through the master manipulator then the teleoperation is called bilateral 1.

The sensation for the human operator of being directly manipulating the remote environ-

ment is known as telepresence. If he/she cannot feel neither the dynamic effects of the involved

manipulators nor any other force than the one exerted over the remote surface, then the system

is said to be transparent. In this sense, transparency acts as a measure of telepresence.

From the control systems point of view there are two main challenges for a master–slave

bilateral teleoperator, namely the stability and the transparency of system. One vastly studied

problem is the effect of the delays in the communication channel on the stability of the system.

In this regard, most control algorithms are designed to guarantee stability in spite of the

destabilizing effects of both constant and variable time delays. It turns out that robust stability

and transparency are two contradictory goals even in the non–delayed scenario [Lawrence,

1993], then it depends on the particular application which of these two goals is pursued.

1.1 State of the Art

The master–slave bilateral teleoperation problem has been extensively studied since the 1950s

with the seminal work of Goertz [Goertz and Thompson, 1954; Goertz, 1954]. This first approach

consisted of two mechanically coupled manipulators for toxic waste handling, and it was later

improved to reflect the environment force by using electrical signals. In these first years, it was

found that the delays in the communication channel could easily destabilize the system and

thereupon a lot of software solutions proliferated in the literature. The most popular among this

solutions was the so–called supervisory control [Ferrell and Sheridan, 1967]. The philosophy

behind this solution was to divide a highly complex teleoperation task into a number of simple

autonomous tasks, arbitrated by a supervisory high–level software.

It was not until 1986 that the robotic teleoperation problem was studied from the Lyapunov

theory point of view in Miyazaki et al. [1986], where asymptotic stability of position tracking

error is guaranteed for the delay–free case. Three years later, in Hannaford and Kim [1989]

the shared compliance control was introduced to cope with the oscillations originated by the

contact of the slave robot with a rigid surface. A low–pass filter was included in the control

loop to obtain a stable behavior even in presence of delays in the communication.

1In general, the term bilateral means that some information (position, velocity and/or force) is transmitted in
both directions of the communication channel.
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In Anderson and Spong [1989] stability in presence of delays was formally guaranteed by

introducing the scattering variables in the teleoperation architecture, a concept that was well

known by the epoch in transmission lines theory. Independently, in Niemeyer and Slotine

[1991] a closely related concept, the wave variables, was proposed to guarantee stability for

the delayed case. In that work it was also introduced another concept from the transmission

lines theory, the impedance matching, to minimize wave reflection, which is one of the main

destabilizing effects in a delayed teleoperation system. Since then, the robotic teleoperation

problem has been a very prolific research area (see Hokayem and Spong [2006] for a historical

survey up to 2006). Most of the results that guarantee stability in spite of communication

delays are based on the Passivity Based Control [Niemeyer and Slotine, 1998; Chopra et al.,

2006, 2008; Nuño et al., 2009, 2011].

On the other hand, in Lawrence [1993] and Yokokohji and Yoshikawa [1994] it is established

that a four channel architecture (position and force transmitted in both directions) is required

for obtaining ideal transparency. The effect in improving transparency by using a local force

control in one or both master and slave manipulators and the reliability of obtaining ideal

transparency with a three channel architecture is studied in Hashtrudi-Zaad and Salcudean

[2002].

The results of Hashtrudi-Zaad and Salcudean [2002] imply that if positions of both sides

are transmitted through the communication channel, then the force of at least one side of

the teleoperator must be included in the control algorithm to obtain the best transparency.

Furthermore, most of the existing controllers require full–state measurements. Thus another

important research direction is removing the necessity of sensors by employing state observers

rather than directly measuring all the required signals.

In this context, contact force estimation is another important area in robotics research

regardless if the estimation is utilized for teleoperation or for a single robot in an autonomous

control scheme. One of the first works on force estimation was published in Huang and Tseng

[1988, 1991], where a nonlinear transformation is employed to estimate the velocity and force

of a constrained manipulator in an open–loop framework, without using the estimated signals

for control. Later, in Ohishi et al. [1992] an acceleration H ∞ based controller is used to esti-

mate the contact force in a closed loop system, but it still requires velocity and acceleration

measurements and the closed loop stability is only experimentally tested. In Hacksel and Sal-

cudean [1994] it is shown that velocity and force measurements can be eliminated altogether

by applying the Nicosia–Tomei observer [Nicosia and Tomei, 1990] to the force/velocity esti-

mation problem. The same idea is further improved in Alcocera et al. [2004]. A nonlinear state
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transformation is proposed in de Queiroz et al. [1996] to track position and force trajectories

with only joint position measurements. A velocity observer and a open loop force control is

proposed in Martínez-Rosas et al. [2006] to deal with the hybrid position/force control for

cooperative manipulation. An improvement of this method including a force observer in a

controller–observer algorithm is presented in Martınez-Rosas and Arteaga [2008]. Finally,

in Arteaga-Pérez et al. [2013] a nonlinear PID observer–based controller is employed to solve

the output feedback hybrid position/force problem. In all the aforementioned approaches, the

required signals are reconstructed using only joint position measurements and torque inputs,

but force and velocity can also be reconstructed by directly measuring joint torques [Phong

et al., 2012] or motor currents [Aksman et al., 2007]. For teleoperation, Hashtrudi-Zaad and

Salcudean [1996] introduced an adaptive controller that does not require force but relies in

position, velocity and acceleration measurements. On the other hand, in Daly and Wang [2014]

a force and velocity observer for non–stiff remote environments is proposed, based on the

second order sliding–mode velocity observer reported in Davila et al. [2005].

For a force/position controller to function properly, a geometric description of the envi-

ronment is necessary. For compliant (non–stiff) environments the controller can be designed

to be robust against uncertainties in this description, while for rigid surfaces it has been

proved that slight uncertainties in the geometric description can easily lead to instability of

the closed loop system [Wang and McClamroch, 1994]. One of the first works related to this

problem [Yoshikawa and Sudou, 1993] made use of the information from position and force

sensors to on line estimate the unknown constraint shape. Some other solutions include visual

identification of the surface [Dean-León et al., 2006; Lippiello et al., 2007; Leite et al., 2009;

Cheah et al., 2010] robustness against kinematic and/or dynamic uncertainties [Wang et al.,

1998], and adaptive control [Chiu et al., 2004; Namvar and Aghili, 2005; Karayiannidis and

Doulgeri, 2009, 2010; Pliego-Jiménez and Arteaga-Pérez, 2015]. Some adaptive schemes have

been adopted for bilateral teleoperation when there are uncertainties in the kinematics or even

in the dynamic model of the surface [Lee and Chung, 1998; Liu et al., 2010, 2014].

The basic idea behind the mentioned schemes, when no exact description of the constraint

geometry is available, is to reconstruct the surface by means of position, velocity, visual and/or

force measurements. In the case that only joint positions are measured the problem of un-

certain surfaces, to the best of the author’s knowledge, has been solved only for compliant

environments. The existing solutions include an open loop force control with adaptive identifi-

cation of the surface [Doulgeri and Karayiannidis, 2008] and extended active observers [Chan

et al., 2013], among others.
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1.2 Motivation and Problem Statement

As stated in the last section, the problem of contact force estimation is an active research area

on its own. Removing the force sensor has a lot of advantages, such as reducing costs, weight,

size, operation in noisy environments, etc. Another interesting problem is the force control over

an unknown rigid surface, even in the case when position and force are measured. However,

to the best of the author’s knowledge, there are no results in the literature that combine both

problems, i.e., the force/position control problem over an unknown rigid environment with

only joint position measurements. One motivation of this work is to solve this problem for a

single robot manipulator under autonomous operation.

On the other hand, there are few works in the literature addressing the teleoperation

problem combined with direct force control (the majority of teleoperation schemes use indirect

force control or no force control at all), and those few works that employ this kind of control

require at least position and contact force measurements. There are some advantages in using

direct force control such as improved transparency, decoupling of the position/force tasks,

better exactitude in position and force tracking, etc. In addition, the reported teleoperation

schemes that employ this approach demand the exact knowledge of the constraint surface

geometry, which is very restrictive for many applications.

Accordingly, the main objective of this thesis is to solve the non–delayed master–slave tele-

operation problem using direct force control over an unknown rigid remote surface, with only

joint position measurements on the slave side and to obtain the best achievable transparency.

For the master manipulator, joint positions, velocities and accelerations are considered to be

available. Nevertheless, these signals can also be obtained from position measurements by

means of an state observer similar to the employed at the slave side.

Many applications for robotic teleoperation require that the control strategy takes into

account the communication delays, such as telesurgery or remote control of underwater ve-

hicles. However, there are a lot of applications for the non–delayed bilateral teleoperation

studied in this work. For example, in space missions the astronauts are required to perform

some tasks in outer space such as assembly, repair and maintenance, which can be performed

remotely using lightweight robotic manipulators and therefore reducing the risk in the as-

tronauts’ safety [Hirzinger et al., 1993]. Handling hazardous materials is another important

application when delays in communication can be neglected, for example in handling ra-

dioactive substances [Clement et al., 1985]. The proposed method can also be applied in

microsurgery, where the additional advantage of removing the velocity and force sensors of the
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scheme proposed in this work, makes it more suitable for this application than the existing

algorithms in literature. Finally, the proposed approach can be applied to the control of robotic

exoskeletons, which are intended not only for military purposes but to help elderly and disabled

people walk, climb stairs, and carry things around [Guizzo and Goldstein, 2005].

1.3 Methodology

Before approaching the main objective of the thesis some less–complicated intermediate

problems are addressed. First, the force and velocity estimation issue is taken into account

for a single robot in autonomous operation. As mentioned in the state of the art, this problem

has been solved in the past with different techniques. However, in this work an extended–

state high–gain observer is proposed to carry out the velocity and force estimation. This

philosophy is the core of the so–called GPI Observers [Sira-Ramírez et al., 2010], which have

been proved to be an excellent solution to the robust control problem not only for robotic

manipulation [Arteaga-Perez and Gutierrez-Giles, 2014; Ramírez-Neria et al., 2015; Gutierrez-

Giles et al., 2016] but for non–holonomic [Ramirez-Neria et al., 2013; Sira-Ramírez et al., 2014],

underactuated [Ramírez-Neria et al., 2014, 2016] and haptic mechanical systems [Rodriguez-

Angeles and Garcia-Antonio, 2014], electronic power converters [Luviano-Juarez et al., 2010;

Juárez-Abad et al., 2014], and electric machines [Sira-Ramirez et al., 2014; De La Guerra et al.,

2016], among others.

A GPI observer was designed in Arteaga-Pérez et al. [2015] for the estimation of the velocity

and one chamber’s pressure of a differential pneumatic piston. Given the good results obtained

for the pneumatic system, the same idea was employed to the force/velocity estimation for

a robotic manipulator subject to holonomic constraints [Gutierrez-Giles et al., 2013]. The

algorithm was further improved to deal with the noise amplification issue and a formal stability

analysis was performed as reported in Gutiérrez-Giles and Arteaga-Pérez [2014].

Next, the problem of the remote surface unknown geometry was addressed. The basic idea

of local approximation the surface by a plane was taken from Pliego-Jiménez and Arteaga-

Pérez [2015]. However, in that work the surface reconstruction is carried out by means of force

measurements, and thus some modifications were made to include the force estimated by the

GPI Observer. A formal stability proof and some numerical simulations were performed with

good results [Gutiérrez-Giles and Arteaga-Pérez, 2016b].

Finally, the transparent teleoperation problem was considered. For addressing this issue,

the virtual surfaces approach reported in Rodríguez-Angeles et al. [2015] was taken as a starting
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point. The advantages of using this approach are twofold: it is suitable for hybrid position/force

control and it is centered in the transparency of the system. Some adaptations of the algorithm

to include the GPI Observer and the surface estimator were carried out and the former stabil-

ity proof was also extended to the master–slave teleoperation problem [Gutiérrez-Giles and

Arteaga-Pérez, 2016a].

1.4 Contributions

The contributions of this work are summarized in the following:

• A force and velocity observer was designed to solve the problem of contact force estima-

tion when only joint position measurements are available. The designed observer has

some advantages over the previously reported such as easy implementation/tunning

and simultaneous estimation of velocity and force.

• The force observer was successfully applied to estimate the velocity and one chamber

pressure of a differential pneumatic piston. The proposed approach had better perfor-

mance than the existing ones in an experimental comparison as reported in Arteaga-

Pérez et al. [2015].

• The GPI observer methodology was adapted to the robust hybrid force/position control

of robot manipulators with good results as reported in Gutierrez-Giles et al. [2016].

• It was shown that the GPI observer can be improved for the robust control of mechanical

systems by exploiting the well–known passivity properties of these systems. A formal

proof of this claim as well as a set of experimental results were reported in Arteaga-Pérez

and Gutiérrez-Giles [2014].

• It was solved for the first time, to the best of the author’s knowledge, the problem of

direct force control over a rigid surface without force nor velocity measurements and

unknown geometry of the constraint surface.

• The open problem of master–slave teleoperation for the delay–free scenario without

force/velocity measurements and under geometric uncertainty of the rigid remote sur-

face was also solved. A formal proof that guarantees ultimate boundedness of all signals

and approximate, but arbitrarily close, estimation of velocity and force as well as posi-

tion/force tracking was developed.
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1.5 Thesis Structure

The document is organized as follows. In Chapter 2 a mathematical model of the teleoperation

system is presented as well as some of its properties. There are also included some useful

facts regarding the kinematic constraints and the decomposition of the task space. The main

result of this work is exposed in Chapter 3, i.e., the design of observer and controller algorithms

and the corresponding analysis of the closed loop dynamics. Later in the same chapter, two

theorems are stated and formally proven, that guarantee local ultimate boundedness of the

closed loop system state. In Chapter 4, both simulation and experimental results are presented

to validate the approach. Finally, some conclusions and directions for future work are given in

Chapter 5.



Chapter 2

Dynamic Modeling and Properties

In this chapter, the mathematical model of a master–slave teleoperation system is first in-

troduced in which the slave is constrained to be in contact with a rigid surface. This model

will be thereafter employed in the design of a controller for both master and slave robots,

and in the design of an observer to estimate the contact force and the joint velocities of the

slave manipulator. Later, some useful properties of the model are introduced as well as the

orthogonal decomposition of the task space, which will be utilized for the dynamical analysis

of the teleoperation system in closed loop with the proposed controller and the observer.

2.1 Modelling

Consider a master–slave teleoperation system and let the sub–indexes m and s denote the

master and slave manipulators, respectively. For i = m,s, let q i ∈Rn be the vector of generalized

coordinates. Suppose that there are not delays in the communication channel and that the slave

robot is constrained to be in contact with a rigid surface defined as a mappingϕs :Rn →Rm ,

which satisfies

ϕs(q s) = 0 . (2.1)

Then the teleoperation system dynamics is given by [Rodríguez-Angeles et al., 2015]

H m(q m)q̈ m +C m(q m, q̇ m)q̇ m +Dmq̇ m +g m(q m) =τm −τh (2.2)

H s(q s)q̈ s +C s(q s, q̇ s)q̇ s +Dsq̇ s +g s(q s) =τs + J T
ϕs(q s)λs , (2.3)
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where, for i = m,s, H i (q i ) ∈Rn×n is the inertia matrix, C i (q i , q̇ i )q̇ i ∈Rn is the vector of Coriolis

and centripetal forces, D i ∈Rn×n is a diagonal matrix of viscous friction coefficients, g i (q i ) ∈Rn

is the vector of gravitational torques, τi ∈Rn is the vector of generalized inputs, τh ∈Rn is the

torque applied by the human operator over the master robot, λs ∈Rm is a vector of Lagrange

multipliers that physically represents the contact force over the rigid surface, and

Jϕs(q s) =∇ϕs(q s) ∈Rm×n , (2.4)

is the gradient of the remote surface described by (2.1). This constraint can also be expressed

in the slave manipulator Cartesian coordinates as

ϕs(xs) = 0 , (2.5)

where xs ∈Rn is the vector of end–effector coordinates.

It is always possible to carry out a suitable normalization for the gradient of this last

constraint,

Jϕxs(xs) =∇ϕs(xs) ∈Rm×n , (2.6)

to be an unitary vector. In this work it is assumed that it is the case. These two gradients are

related by

Jϕs(q s) = Jϕxs(xs)J s(q s) , (2.7)

where J s(q s) is the geometric Jacobian of the slave manipulator.

2.2 Some Useful Properties

First, the following assumption is introduced, which must be taken into account at the trajec-

tory planning stage.

Assumption 2.1. None of the manipulators reach any singularity, so that J i (q i ), i = m,s are

always invertible . �

An orthogonal decomposition [Arimoto et al., 1993] of the task space will be carried out as

follows. Let J+ϕs , J T
ϕs

(
Jϕs J T

ϕs

)−1
, P s(q s) = J+ϕs Jϕs, and Qs(q s) = I n×n−P s(q s). Notice that since

Jϕxs is full–rank everywhere and after Assumption 2.1,
(

Jϕs J T
ϕs

)−1
always exists. Furthermore,

P s and Qs are projection matrices, i.e., QsP s = O, Qs J T
ϕs = O, and JϕsQs = O. Moreover,
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QsQs =Qs and P sP s = P s. Then, the following property can be stated [Martínez-Rosas et al.,

2006].

Property 2.1. The joint velocity vector q̇ s satisfies

q̇ s =Qs(q s)q̇ s +P s(q s)q̇ s =Qs(q s)q̇ s . (2.8)

�

For simplicity, consider that the manipulators have only revolute joints. Thereupon, each

one satisfies the following standard properties [Arteaga, 1998].

Property 2.2. The inertia matrix H i (q i ) is symmetric positive definite and ∀q i , y ∈Rn it holds

λhi∥y∥2 ≤ y TH i (q i )y ≤λHi∥y∥2, with 0 <λhi ≤λHi <∞. �

Property 2.3. With a proper definition of C i (q i , q̇ i ), the matrix Ḣ i (q i )−2C i (q i , q̇ i ) is skew

symmetric. �

Property 2.4. The vector C i (q i , x i )y i satisfies C i (q i , x)y =C i (q i , y)x ,∀x , y ∈Rn . �

Finally, it is enunciated the following useful fact taken from Rivera-Dueñas and Arteaga-

Pérez [2013].

Fact 2.1. Assume that q sd(t) satisfies ϕ(q sd) = 0. Whenever the manipulator is restricted to

fulfill (2.1) and the tracking error is small enough, the following approximation can be made

es =Qs(q s)es , (2.9)

because the error tends to be contained in the tangent space at the point q s, projected by

Qs(q s). Furthermore, from Property 2.1 it follows

q̇ sd ≈Qs(q s)q̇ sd =⇒ ės =Qs(q s)
(
q̇ s − q̇ sd

)≈Qs(q s)ės . (2.10)

�

An illustration of Fact 2.1 in Cartesian coordinates is shown in Figure 2.1.
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Figure 2.1: a) Position error is not contained in the plane projected by Qx, b) Position error is
contained in the plane projected by Qx.



Chapter 3

Transparent Teleoperation

This work considers the case of one–dimensional constraints (ϕs :Rn →R), so thatλs =λs ∈R
in (2.3) represents the contact force of the slave manipulator over the remote surface. To

achieve trajectory tracking of both position and force and transparency of the teleoperator, it

will be followed the virtual surfaces approach introduced in Rodríguez-Angeles et al. [2015]. A

diagram of the proposed scheme is shown in Figure 3.1.

3.1 Controller and Observer Design

First, consider a state–space representation of the slave manipulator model (2.3)

q̇ s = q 2s (3.1)

q̇ 2s = H−1
s (q s)

(
τs −N s(q s, q 2s)

)+ z 1 , (3.2)

where N s(q s, q 2s) =C s(q s, q 2s)q 2s +Dsq 2s +g s(q s) and

z 1 = H−1
s (q s)J T

ϕs(q s)λs . (3.3)

The goal is to design an observer to estimate in an approximate way the force λs and the

state q̇ s = q 2s. For this purpose, a generic time–polynomial vector is proposed as an internal

representation for z 1, which is considered an unknown signal to be estimated via a linear

observer of the Luenberger type. This will be possible as long as the following assumptions

hold [Sira-Ramírez et al., 2010].
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Figure 3.1: Block diagram of the proposed scheme.

Assumption 3.1. The vector z 1(t ) can be written as:

z 1(t ) =
p−1∑
i=0

ai t i + r (t ) , (3.4)

where each ai is a n–vector of constant coefficients and r (t ) represents a residual term. �

Assumption 3.2. At least the first p time derivatives of z 1(t ) exist. �

Under these assumptions z 1 can be described by the dynamic internal model

ż 1 = z 2 (3.5)

...

ż p−1 = z p (3.6)

ż p = r (p)(t ) . (3.7)
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3.1.1 State observer and estimation

Since the information about the contact force and the direction of the gradient of the con-

straint (2.1) is contained in the z 1 variable, the state space model (3.1)–(3.2), along with the

dynamic extension (3.5)–(3.7) will be used as a basis for the observer design.

Force and velocity observer

The following extended–state high–gain linear observer is proposed to reconstruct the velocity

and force at the remote side of the teleoperation system

˙̂q s = q̂ 2s +λp+1q̃ s (3.8)

˙̂q 2s = H−1
s (q s)

(
τs −N s(q s, q̂ 2s)

)+ ẑ 1 +λp q̃ s (3.9)

˙̂z 1 = ẑ 2 +λp−1q̃ s (3.10)

...

˙̂z p−1 = ẑ p +λ1q̃ s (3.11)

˙̂z p =λ0q̃ s , (3.12)

where q̃ s , q s−q̂ s and N s(q s, q̂ 2s),C s(q s, q̂ 2s)q̂ 2s+Dsq̂ 2s+g s(q s) andλ0,λ1, . . . ,λp+1 ∈Rn×n ,

are constant matrices of gains chosen in such a way that the non–zero components of the n×n

complex–valued diagonal matrix

ρ(s) = sp+2I + sp+1λp+1 +·· ·+ sλ1 +λ0 , (3.13)

are Hurwitz polynomials of degree p +2.

An estimation of the joint velocity is obtained directly by q̂ 2s. As for the contact force,

consider that after (2.7) and (3.3) it can be obtained

J T
ϕx(xs)λ̂s = J−T

s (q s)H s(q s)ẑ 1 . (3.14)

Since Jϕx is an unitary vector, by taking the norm on both sides of (3.14), the contact force

can be estimated by

λ̂s = ∥J−T
s (q s)H s(q s)ẑ 1∥ . (3.15)

Note that neither the state observer (3.8)–(3.12) nor the force estimator (3.15) depend on

other signals than the input torques vector τs and the joint positions q s.
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Estimation of the surface gradient

Recall that it is supposed that there is no available information about the geometry of the

surface. Nevertheless, the following assumption is made in order to design an estimator and to

carry out the corresponding stability analysis.

Assumption 3.3. The remote surface described by (2.5) is smooth, i.e., its partial derivatives of

any order with respect to its arguments exist and are continuous [Isidori, 1995, p. 471]. �

Accordingly, an online estimator of the remote surface gradient in end–effector coordinates

is proposed as
˙̂J T
ϕxs =

(
γ

λ̂s +ϵ

)
Q̂xs J−T

s (q s)H s(q s)ẑ 1 , (3.16)

where γ> 0 is the estimation gain, ϵ> 0 is an arbitrary small positive constant to avoid division

by zero, and Q̂xs , I n×n − P̂ xs, with P̂ xs , Ĵ
+
ϕxs Ĵϕxs, and Ĵ

+
ϕxs = Ĵ

T
ϕxs( Ĵϕxs Ĵ

T
ϕxs)−1.

By proposing the surface gradient estimator as in (3.16) it is guaranteed that the norm of the

estimated vector will remain constant, i.e., ∥ Ĵϕxs(t )∥ = ∥ Ĵϕxs(t0))∥,∀t ≥ t0. To see this, compute

d

dt
∥ Ĵϕxs∥2 = 2 Ĵϕxs

˙̂J T
ϕxs = 2

(
γ

λ̂s +ϵ

)
ĴϕxsQ̂xs J−T

s (q s)H s(q s)ẑ 1 = 0, (3.17)

since ĴϕxsQ̂xs = 0. Therefore, it is appropriate to set the initial condition of the estimator to

satisfy ∥ Ĵϕxs(t0))∥ = 1.

Note that (3.17) is valid regardless how accurate the surface reconstruction could be. The

matrices P̂ s and Q̂s, and the vector Ĵ
+
ϕs can be expressed in joint coordinates by defining

Ĵϕs , Ĵϕxs J s , (3.18)

with P̂ s, Q̂s, and Ĵ
+
ϕs determined analogously to P̂ xs, Q̂xs, and Ĵ

+
ϕxs.

3.1.2 Master and slave controllers

In this section, the estimated variables of the previous section are utilized in a controller design

for the teleoperation system. The design is intended to obtain the best possible degree of

transparency while guaranteeing stability of the closed loop system.
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Assume that a desired force λsd > 0 is commanded by the human operator. Define the

position tracking error in joint coordinates at the slave side as

es , q s −q sd , (3.19)

where q sd ∈Rn is obtained by solving the inverse kinematics of the slave robot with the pose of

the master manipulator as the desired one. Taking this into account, the control law proposed

for the slave manipulator is

τs =−K pses −K vs(q̂ s2 − q̇ sd)−Q̂sK is

∫ t

t0

es dϑ− Ĵ
T
ϕsλsd + Ĵ

+
ϕskFis∆F̄ s , (3.20)

where K ps,K vs,K is ∈Rn×n are diagonal positive definite matrices of constant gains, kFis > 0 is

the integral force control gain and

∆λ̄s , λ̂s −λsd (3.21)

∆F̄ s ,
∫ t

t0

∆λ̄s dϑ . (3.22)

Since the geometry of the remote environment is unknown, a virtual surface cannot be

created directly as in Rodríguez-Angeles et al. [2015], but the information of the estimator (3.16)

must be employed. To overcome this situation, a local approximation of constraint (2.5) is

considered as described in Pliego-Jiménez and Arteaga-Pérez [2015], as follows.

It is assumed that the human operator is responsible for the desired trajectory by moving

the master manipulator. Then, the desired trajectory in task space coordinates for the slave

manipulator is given by xsd = xm (with a possible scale factor), and the approximation for the

virtual surface constraint is thus proposed as

ϕ̂v = Ĵϕxs(xsd −xsa) , (3.23)

where xsa is the output of the first order filter

ẋsa =−ηxsa +ηx̂s(q̂ s) , (3.24)

where η> 0 and x̂s(q̂ s) is the slave robot direct kinematics with q̂ s as argument instead q s.

Remark 3.1. The justification behind the introduction of the filter (3.24) is the following. The

remote surface is locally approximated by a plane and then the difference between the desired
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position at time t and the measured position an instant before, i.e., at t−∆t , must be orthogonal

to Ĵϕxs. In this context, the unitary–gain filter (3.24) acts as a continuous approximation of the

required time–delay (see Figure 3.2).

Figure 3.2: Local surface estimation.

Since the estimated surface is locally approximated by a plane, its first and second time

derivatives can be in turn approximated by

ˆ̇ϕv = Ĵϕxs(ẋsd − ẋsa) (3.25)

ˆ̈ϕv = Ĵϕxs(ẍsd − ẍsa) . (3.26)

To reflect the contact force to the operator, a Lagrange multiplier can be iteratively com-

puted as in Bayo and Avello [1994]. This algorithm is intended for simulation purposes and the

authors have found that it converges in less than four iterations. However, for real time imple-

mentation no more than one iteration can be done in a sampling period, which corresponds to

the Generic Penalty Method introduced in Bayo et al. [1988]. Therefore, the Lagrange multiplier

accounting for the virtual force can be estimated by

λv =αv
(

ˆ̈ϕv +2ξωn ˆ̇ϕv +ω2
nϕ̂v

)
, (3.27)

where αv,ξ,ω> 0.
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To achieve the desired transparency of the teleoperation system, an online cancellation of

the master manipulator dynamics is carried out. On the other hand, the contact force must be

reflected to the human operator through the master manipulator. Consequently, the control

law for the master robot is proposed as

τm = H(q m)q̈ m +C m(q m, q̇ m)q̇ m +Dmq̇ m +g m(q m)− Ĵ
T
ϕv (kFv∆λvs +kFiv∆Fvs) , (3.28)

where kFv,kFiv > 0 are constant gains, Ĵϕv , Ĵϕs (with a possible scale factor), and

∆λvs ,λv − λ̂s (3.29)

∆Fvs ,
∫ t

t0

∆λvs dϑ . (3.30)

Remark 3.2. For the master manipulator it is assumed, for simplicity’s sake, that joint velocities

and accelerations are available from measurements. Nevertheless, it can also be employed an

observer similar to (3.8)–(3.12) to obtain the required signals with the corresponding complica-

tion of the stability analysis. �

3.1.3 Human behavior

Now, an assumption related to the human operator behavior is introduced both to carry out

the stability analysis and for simulation purposes. Let q d(t ) ∈Rn be the desired trajectory for

the master manipulator in joint coordinates as wished by the human and em , q m −q d the

corresponding tracking error.

Assumption 3.4. The human operator imposes the torque τh over the master manipulator

according with the following dynamic behavior

τh = Q̂v

{
K phem +K vhėm +K ih

∫ t

t0

em dϑ

}
+ Ĵ

T
ϕv {kFh∆λvd +kFih∆Fvd} , (3.31)

where Q̂v , I n×n − Ĵ
+
ϕv Ĵϕv, with Ĵ

+
ϕv = Ĵ

T
ϕv( Ĵϕv Ĵ

T
ϕv)−1, K ph,K vh,K ih ∈Rn×n are symmetric posi-

tive definite matrices, kFh,kFih > 0, and

∆λvd ,λv −λsd (3.32)

∆Fvd ,
∫ t

t0

∆λvd dϑ . (3.33)
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�

Remark 3.3. To accurately model the human behavior, time delays arising from the arm reflexes

latency should be taken into account [Kurtzer et al., 2008]. In contrast, in Tee et al. [2004] a

simple PD plus a feed–forward term was proposed, based on previously reported physiological

findings. By adding the integral action and omitting the feed–forward term, which depends

on the specific task learning, one obtains the position PID and force PI model given in (3.31).

Although this is a very restrictive model for the human behavior, its simplicity is advantageous

for simulation and stability analysis. Moreover, the validity of its inclusion in a teleoperation

scheme was experimentally tested in Rodríguez-Angeles et al. [2015]. The only difference in

this work with the model employed in Rodríguez-Angeles et al. [2015] is that the directions

of the constrained and unconstrained motions are in terms of the estimated virtual surface,

which in turn emerges from the remote surface estimation. Notice that even if the estimation

is not accurate, the master robot would generate a resistance to motion in the Ĵϕv direction. As

a result, the operator feels natural to plan the position trajectory over the plane projected by

Q̂v. In fact, the operator should be able to plan the trajectory over the virtual surface blindly,

only with the reflected force sensation. Nevertheless, visual feedback could be beneficial for

the trajectory planning task. �

3.2 Closed Loop Dynamics

Let the state estimation errors be

q̃ s2 , q s2 − q̂ s2 (3.34)

and

z̃ i , z i − ẑ i , i = 1, . . . , p . (3.35)
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The slave manipulator dynamics (3.1)–(3.2) and (3.5)–(3.7) in closed loop with the observer (3.8)–

(3.12) results in the estimation error dynamics

˙̃q s = q̃ s2 −λp+1q̃ s (3.36)

˙̃q s2 =−H−1
s (q s)

(
N s(q s, q s2)−N s(q s, q̂ s2)

)+ z̃ 1 −λp q̃ s (3.37)

˙̃z 1 = z̃ 2 −λp−1q̃ s (3.38)

...

˙̃z p−1 = z̃ p −λ1q̃ s (3.39)

˙̃z p = r (p)(t )−λ0q̃ s . (3.40)

By taking the time derivative of (3.36) and substituting (3.37) one obtains

¨̃q s +λp+1 ˙̃q s +λp q̃ s = z̃ 1 + f s(t ) , (3.41)

where

f s(t ) =−H−1
s (q s)

(
N s(q s, q s2)−N s(q s, q̂ s2)

)
=−H−1

s (q s)
(
C s(q s, q s2)q s2 −C s(q s, q̂ s2)q̂ s2 +Dsq̃ s2

)
. (3.42)

After (3.19), (3.36), and (3.37), and by recurrently applying Property 2.4 yields

C s(q s, q s2)q s2 −C s(q s, q̂ s2)q̂ s2 =C s(q s, ės + q̇ sd)
(
q̃ s2 + q̂ s2

)−C s(q s, q̂ s2)
(
q s2 − q̃ s2

)
=C s(q s, ės + q̇ sd)q̃ s2 +C s(q s, ės + q̇ sd)q̂ s2

−C s(q s, q̂ s2)q s2 +C s(q s, q̂ s2)q̃ s2

=C s(q s, ės + q̇ sd)q̃ s2 +C s(q s, ės + q̇ sd)q̂ s2

−C s(q s, ės + q̇ sd)q̂ s2 +C s(q s, q̃ s2)q̂ s2

=C s(q s, ės + q̇ sd)
(

˙̃q s +λp+1q̃ s

)+C s(q s, q̃ s2)
(
q s2 − q̃ s2

)
=C s(q s, ės + q̇ sd)

(
˙̃q s +λp+1q̃ s

)+C s(q s, ės + q̇ sd)q̃ s2

−C s(q s, q̃ s2)q̃ s2

= 2C s(q s, ės + q̇ sd)( ˙̃q s +λp+1q̃ s)

−C s(q s, ˙̃q s +λp+1q̃ s)( ˙̃q s +λp+1q̃ s) , (3.43)
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so that (3.42) can be written as

f s(t ) =−H−1
s (q s)

[
2C s(q s, ės + q̇ sd)( ˙̃q s +λp+1q̃ s)

−C s(q s, ˙̃q s +λp+1q̃ s)( ˙̃q s +λp+1q̃ s)+Ds( ˙̃q s +λp+1q̃ s)
]

. (3.44)

By taking p time derivatives of (3.41) and after (3.38)–(3.40) one has

q̃ (p+2)
s +λp+1q̃ (p+1)

s +·· ·+λ0q̃ s = r (p)(t )+ f (p)
s (t ) . (3.45)

This last equation can be rewritten in state space form as

ẋo = Axo +B r f , (3.46)

where r f = r (p)(t )+ f (p)
s (t ) and

xo ,
[

q̃ s · · · q̃ (p+1)
s

]T
(3.47)

A =


O I · · · O
...

...
. . .

...

O O · · · I

−λ0 −λ1 · · · −λp+1

 (3.48)

B =
[

O · · · O I
]T

. (3.49)

In order to obtain the closed loop dynamics for the slave manipulator, first the control

law (3.20) is rewritten as

τs =−K vsės −K pses −K isQs

∫ t

0
es dϑ− J T

ϕsλsd +kFis J+ϕs∆F̄s

+K vs( ˙̃q s +λp+1q̃ s)+K isQ̃s

∫ t

0
es dϑ+ J̃ T

ϕsλsd −kFis J̃+ϕs∆F̄s , (3.50)

where Q̃s ,Qs −Q̂s, J̃ϕs , Jϕs − Ĵϕs , and J̄+ϕs , J+ϕs − Ĵ
+
ϕs .

Define
d

dt
σ, ės +Λes , (3.51)
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whereΛ ∈Rn×n is a diagonal positive definite matrix. It is always possible to find K vs ∈Rn×n

and K̄ is ∈Rn×n such that

K ps = K vsΛ+ K̄ is (3.52)

K is = K̄ isΛ . (3.53)

Therefore, the control law (3.50) is equivalent to

τs =−K vs
d

dt
σ− K̄ isQsσ− J T

ϕsλsd +kFis J+ϕs∆F̄s +K vs( ˙̃q s +λp+1q̃ s)

+K isQ̃s

∫ t

0
es dϑ+ J̃ T

ϕsλsd −kFis J̃+ϕs∆F̄s , (3.54)

as long as QsΛ=ΛQs holds, what can always be achieved for instance by settingΛ= kλI .

Now, define

q̇ r , q̇ sd −Λes −K −1
vs K̄ isQsσ+ 1

2
K −1

vs J T
ϕs∆λs + 1

2
kFisK −1

vs J+ϕs∆F̄s (3.55)

s , q̇ s − q̇ r =
(

d

dt
σ+K −1

vs K̄ isQsσ

)
+

(
−1

2
K −1

vs J T
ϕs∆λs − 1

2
kFisK −1

vs J+ϕs∆F̄s

)
, sp + sF , (3.56)

where ∆λs =λs −λsd is the force tracking error.

Thus the closed loop dynamics of the slave manipulator is described by

H s ṡ +C ss +K Dvss = 1

2
J T
ϕs∆λs + 1

2
kFis J+ϕs∆F̄s + y a , (3.57)

where K Dvs = K vs +Ds, and

y a = K vs( ˙̃q s +λp+1q̃ s)+K isQ̃s

∫ t

0
es dϑ+ J̃ T

ϕsλsd −kFis J̃+ϕs∆F̄s

− (
H s(q s)q̈ r +C s(q s, q s2)q̇ r +Dsq̇ r +g (q s)

)
. (3.58)

To obtain the dynamics of the surface estimation error, let

J̃ϕxs , Jϕxs − Ĵϕxs . (3.59)
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By taking into account (3.16) leads to

˙̃J T
ϕxs = J̇ T

ϕxs − ˙̂J T
ϕxs = J̇ T

ϕxs −
(

γ

λ̂s +ϵ

)
Q̂xs J−T

s (q s)H s(q s)ẑ 1 . (3.60)

Finally, for the master robot, from (2.2), (3.28), and (3.31) one obtains

Ĵ
T
ϕv {kFv∆λvs +kFiv∆Fvs +kFh∆λvd +kFih∆Fvd}

+Q̂v

{
K phem +K vhėm +K ih

∫ t

0
em dϑ

}
= 0 . (3.61)

From (3.21)–(3.22), (3.29)–(3.30), and (3.32)–(3.33) it is easy to get

∆λvs =∆λvd −∆λ̄s (3.62)

∆Fvs =∆Fvd −∆F̄s , (3.63)

so that (3.61) can be rewritten as

Ĵ
T
ϕv {(kFv +kFh)∆λvd + (kFiv +kFih)∆Fvd}

+Q̂v

{
K phem +K vhėm +K ih

∫ t

0
em dϑ

}
= Ĵ

T
ϕv

{
kFv∆λ̄s +kFiv∆F̄s

}
. (3.64)

Notice that (3.64) describes two dynamics evolving in orthogonal subspaces. By taking advan-

tage of the fact that Ĵϕv is full rank, they can be analyzed separately as

(kFv +kFh)∆λvd + (kFiv +kFih)∆Fvd = kFv∆λ̄s +kFiv∆F̄s (3.65)

Q̂v

(
K vhėm +K phem +K ih

∫ t

0
em dϑ

)
= 0 . (3.66)

3.3 Stability Analysis

Before stating the main result on the master–slave teleoperation system, an auxiliary result is

presented, which only takes into account the slave manipulator in closed loop with the force

and velocity observer, and the surface estimator.

Theorem 3.1. Consider the slave manipulator in contact with a rigid surface described by (2.1)

and (2.3) in closed loop with the observer (3.8)–(3.12) and (3.15), the controller (3.20), and the
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surface estimator (3.16), whose complete closed loop dynamics is given by (3.21)–(3.22), (3.46),

(3.57), and (3.60). Suppose that the desired slave position q sd(t ) is smooth. Let

y s ,
[

xo s ∆F̄s J̃ϕxs

]T
, (3.67)

and define a region Ds , {y s ∈ R(p+2)n+4|∥y s∥ ≤ ymax} where ymax is a positive constant small

enough for Fact 2.1 to hold, i.e.,

es =Qses and ės =Qsės . (3.68)

Assume that the manipulator never losses contact with the environment. Then, a set of con-

troller gains K ps, K vs, K is and kFis in (3.20), γ in (3.16), and a set of observer gains λ0, . . . ,λp+1

in (3.48) can always be found to achieve uniform ultimate boundedness of y s provided the initial

condition y s(t0) is small enough such that y s does never leave Ds during the transient response.

Furthermore, the tracking errors es, ės, and ∆λs, and the estimation errors xo and J̃ϕxs can be

made arbitrarily small as well. �

The proof is developed in four steps. In step a) is shown that whenever the state y s is

inside the region Ds, all signals of interest remain bounded. Next, in part b) is proved that,

in particular, the norm of the observation error xo defined in (3.47) can be made arbitrarily

small independently of all other states by selecting the poles of A in (3.48) far away in the left

half of the complex plane. In the next step c), Lyapunov–like arguments are given to show that

the state y s can be forced to remain in Ds by an appropriate selection of the controller and

estimator gains. Finally, in step d) is shown that estimation of joint–velocities and contact

force are achieved in an approximate but arbitrarily close manner and that position and force

tracking is also achieved.

Proof. Theorem 3.1 states a local stability result, valid only in a region of interest Ds, where

Fact 2.1 holds. Therefore, it must be shown that any signal of interest is bounded whenever

y s ∈Ds and that, with a proper choice of gains, y s will stay in Ds for all time and will tend to an

arbitrary small region around the origin. Consider the next steps:

a) First, we show that whenever the state y s ∈ Ds, then every signal of interest is also

bounded. From (3.56) it is
d

dt
σ=−K −1

vs K̄ isQsσ+ sp , (3.69)
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where sp is bounded in Ds, because due to Fact 2.1 sp and sF are orthogonal. For the

sake of simplicity, consider K vs = kvsI and K̄ is = k̄isI . Then it can be shown that σ and
d
dtσ are bounded and ∥Qsσ∥ and ∥ d

dtσ∥ can be made arbitrarily small by setting k̄i large

enough. As a result, from (3.51) ės, es, and
∫ t

0 es dϑ are bounded. Since q̇ sd and q sd are

bounded by assumption, then q̇ s = q s2 and q s must be bounded. Furthermore, q̂ s, ˙̂q s,

and q̂ s2 are also bounded after (3.36) and because xo is bounded in Ds. From (3.59) it

follows that Ĵϕxs, Ĵϕs, Q̂xs, and Q̂s are bounded after Assumption 3.3 and because J̄ϕxs is

bounded in Ds. This implies after (3.20) that τs is bounded.

Now, consider [Murray et al., 1994]

λs =
(

Jϕs(q s)H−1
s (q s)J T

ϕs(q s)
)−1 {

Jϕs(q s)H−1
s (q s)

(
τs −N s(q s, q s2)

)
+ Jϕs(q s, q s2)q s2

}
. (3.70)

Since H s(q s) is bounded and positive definite, thenλs is bounded, which in turn means

that z 1 in (3.3) is bounded too. By taking into account Assumptions 2.1 and 3.3, the partial

derivatives ∂ϕs(q s)/∂q s,∂2ϕs(q s)/∂q 2
s , . . . ,∂p+1ϕs(q s)/∂q p+1

s are bounded. Therefore,

J̇ϕs(q s) = (
∂Jϕs(q s)/∂q s

)
q̇ s must be bounded as well as f s(t) in (3.44) and q̇ r in (3.55).

From (3.41) one can conclude that z̃ 1 is bounded and, as a consequence, ẑ 1 and λ̂s

in (3.15), and ∆λ̄s in (3.21) must be bounded. After (3.16) and (3.60), ˙̂Jϕs and ˙̃Jϕs are

bounded as well.

Taking into account (3.70) and the slave manipulator model (3.1)–(3.3), one can write the

joint acceleration as a function of only (q s, q s2,τs), i.e.,

q̇ s2 = q̈ s = f q(q s, q̇ s,τs) , (3.71)

which clearly shows that q̇ s2 is bounded. Since q̈ sd is bounded and ¨̃q s is then bounded

from (3.41), ës, ¨̂q s, and ˙̂q s2 must be bounded after (3.36). Now, by similar arguments, τs

in (3.20) can be written as a function of bounded variables, i.e.,

τs = f τ

(
q̇ sd,

∫ t

0
es dϑ,es, q̃ s, ˙̃q s, Ĵϕs,λsd,∆F̄s

)
. (3.72)

Therefore, its time derivative must be a function of the form

τ̇s = ḟ τ

(
q̇ sd, q̈ sd,

∫ t

0
es dϑ,es, ės, q̃ s, ˙̃q s, ¨̃q s, Ĵϕs, ˙̂Jϕs,λsd, λ̇sd,∆F̄s,∆λ̄s

)
, (3.73)
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which is bounded since it depends on variables we have already proven to be bounded.

On the other hand, the time derivative of q̇ r in (3.55) is given by

q̈ r = q̈ sd −Λės −K −1
vs K̄ isQ̇sσ−K −1

vs K̄ isQs
d

dt
σ+ 1

2
K −1

vs J̇ T
ϕs∆λs

+ 1

2
K −1

vs J T
ϕs

d

dt
(∆λs)+ 1

2
kFisK −1

vs J̇+ϕs∆F̄s + 1

2
kFisK −1

vs J+ϕs∆λ̄s , (3.74)

which again turns out to be bounded since from (3.70), d
dt (∆λs) is a function only of

(q s, q̇ s, q̈ s,τs, τ̇s). Then, there must exist a positive constant ca such that y a in (3.58)

fulfills ∥y a∥ ≤ ca, whenever y s ∈Ds. As a direct consequence, ṡ in (3.57) is bounded.

By differentiating (3.56) one obtains

ṡ = σ̈+K −1
vs K̄ isQ̇sσ+K −1

vs K̄ isQs
d

dt
σ− 1

2
K −1

vs J̇ T
ϕs∆λs − 1

2
K −1

vs J T
ϕs

d

dt
(∆λs)

− 1

2
kFisK −1

vs J̇+ϕs∆F̄s − 1

2
kFisK −1

vs J+ϕs∆λ̄s , (3.75)

so that σ̈must be bounded.

At this point, an iterative argument is carried out. First, by computing the time derivative

of (3.71) it is

q (3)
s = ḟ q(q s, q̇ s, q̈ s,τs, τ̇s) , (3.76)

which shows that q (3)
s , e(3)

s and q̂ (3)
s are bounded. Combining (3.8) and (3.9), it can be

written

ẑ 1 = f ẑ1
(q s, ¨̂q s, q̃ s, ˙̃q s, q̂ s2,τs) . (3.77)

This implies that

˙̂z 1 = ḟ ẑ1

(
q s, q̇ s, ¨̂q s, q̂ (3)

s , q̃ s, ˙̃q s, ¨̃q s, q̂ s2, ˙̂q s2,τs, τ̇s
)

(3.78)

is bounded and so are ˙̂λs and d
dt (∆λ̄s) as a consequence. From (3.16) it follows

˙̂Jϕxs = ḟ Ĵϕxs
(q s, ẑ 1) , (3.79)
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where (3.15) has been taken into account. Then, after (3.18) it means

˙̂Jϕs = ḟ Ĵϕs
(q s, q̇ s, ẑ 1) (3.80)

¨̂Jϕs = f̈ Ĵϕs
(q s, q̇ s, q̈ s, ẑ 1, ˙̂z 1) , (3.81)

which implies that ¨̂Qs is bounded. On the other hand

J̈ϕs = f Jϕs
(q s, q̇ s, q̈ s) (3.82)

must be bounded from Assumption 3.3 and because q̇ s and q̇ s2 are bounded, which

along with (3.81) means that ¨̃Jϕs is bounded. Now, from (3.73) it is

τ̈s = f̈ τ

(
q̇ sd, . . . , q (3)

sd ,
∫ t

0
es dϑ,es, . . . , ës, q̃ s, . . . , q̃ (3)

s ,

Ĵϕs, . . . , ¨̂Jϕs,λsd, . . . , λ̈sd,∆F̄s,∆λ̄s,
d

dt
(∆λ̄s)

)
, (3.83)

which is bounded based on the same arguments as those in the previous discussion. By

the definition of f s in (3.44) it can be written

f s = f s(q s, q̇ s, q̇ sd, q̃ s, ˙̃q s) (3.84)

ḟ s = ḟ s(q s, q̇ s, q̈ s, q̇ sd, q̈ sd, q̃ s, ˙̃q s, ¨̃q s) . (3.85)

As a result, from (3.41) one can conclude that ˙̃z 1 is bounded, and so is ż 1. Following this

procedure iteratively, leads to

q (p+1)
s = f (p−1)

q

(
q s, . . . , q (p)

s ,τs, . . . ,τ(p−1)
s

)
, (3.86)

which means that q (p+1)
s and q̂ (p+1)

s (and all their previous derivatives) are bounded.

From (3.78) it follows

ẑ (p−1)
1 = f (p−1)

ẑ1

(
q s, . . . , q (p−1)

s , q̂ s, . . . , q̂ (p+1)
s , q̃ s, . . . , q̃ (p)

s ,

˙̂q s2, . . . q̂ (p−1)
s2 ,τs, . . . ,τ(p−1)

s

)
, (3.87)
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which must be bounded as well as all its previous time derivatives. It also implies that
¨̂λs, . . . , λ̂(p−1)

s and d2(∆λ̄s)/dt 2, . . . ,dp−1(∆λ̄s)/dt p−1 are bounded. In the same manner,

from (3.81) it follows

Ĵ
(p)
ϕs = f (p)

Ĵϕs

(
q s, . . . , q (p)

s , ẑ 1, . . . , ẑ (p−1)
1

)
. (3.88)

Also, from (3.83) it is obtained

τ
(p)
s = f (p)

τ

(
q̇ sd, . . . , q (p+1)

sd ,
∫ t

0
es dϑ,es, . . . ,e(p)

s , q̃ s, . . . , q̃ (p+1)
s ,

Ĵϕs, . . . , Ĵ
(p)
ϕs ,λsd, . . . ,λ(p)

sd ,∆F̄s,∆λ̄s, . . . ,d(p−1)(∆λ̄s)/dt (p−1)
)

,

that is bounded, since it is a function of bounded signals. On the other hand, from (3.85)

it can be written

f (p)
s = f (p)

s

(
q s, . . . , q (p+1)

s , q̇ sd, . . . , q (p+1)
sd , q̃ s, . . . , q̃ (p+1)

s

)
, (3.89)

which is bounded with all its previous derivatives bounded too. From (3.41) it is com-

puted

q̃ (p+1)
s +λp+1q̃ (p)

s +λp q̃ (p−1)
s = z̃ (p−1)

1 + f (p−1)
s , (3.90)

which implies that (z̃ 1, . . . , z̃ (p−1)
1 ) are bounded too. Also, from (3.3) and (3.70) it can be

seen that

z 1 = f z1
(q s, q̇ s,τs) , (3.91)

from where it can be stated that all its time derivatives up to

z (p)
1 = f (p)

z1

(
q s, . . . , q (p+1)

s ,τs, . . . ,τ(p)
s

)
(3.92)

must be bounded as well.

From (3.5)–(3.7) it can be concluded that (z 1, z 2, . . . , z p , ż 1, ż 2, . . . , ż p ) and r (p) must be

bounded, since z p = z (p)
1 . Furthermore, from (3.12), one can see that ˙̂z p is bounded

as well. Also, since (z 1, . . . , z (p−1)
1 ) are bounded, one can easily show that the estimated

variables (z 2, . . . , z p , ż 2, . . . , ż p−1) must be bounded. Moreover, all the related errors must

be bounded as well.
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b) Consider system (3.46), where the matrix A in (3.48) has been chosen to have all its

eigenvalues with real part negative. Since the system is time invariant it must hold [Khalil,

2002, p. 156]

∥e(t−t0)A∥ ≤ ke−δ(t−t0) , (3.93)

and the state is bounded by

∥xo(t )∥ ≤ ke−δ(t−t0)∥xo(t0)∥+ k∥B∥
δ

sup
t0≤ϑ≤t

∥r f(ϑ)∥ , (3.94)

where it has been shown that r f is bounded, meaning that sup
t0≤ϑ≤t

∥r f(ϑ)∥ can be replaced

by a constant value, say rmax. If k/δ can be set arbitrarily small, then the ultimate bound

for ∥xo(t )∥ given by

∥xo(t )∥ ≤ k

δ
∥B∥rmax (3.95)

can be made arbitrarily small as well. To show that this is possible, suppose for simplicity’s

sake that the eigenvalues of A are chosen all real and distinct, satisfying

λn(p+1) <λn(p+1)−1 < ·· · <λ1 < 0. (3.96)

Then, the right eigenvectors of A, e i , with i = 1, . . . ,n(p +1) satisfies

Ae i =λi e i , (3.97)

while for the corresponding left eigenvector ηi with i = 1, . . . ,n(p +1) it holds

ηT
i A =λiη

T
i . (3.98)

Note that it is assumed that ∥e i∥ = ∥ηi∥ = 1 ∀ i = 1, . . . ,n(p +1) and that it holds [Callier

and Desoer, 1991, p. 84]

ηT
i e j = δi j , (3.99)

for i , j = 1, . . . ,n(p +1), where δi j is the Kronecker symbol satisfying δi j = 0 if i ̸= j and

δi i = 1. Under these conditions, it can be shown that

e(t−t0)A =
n(p+1)∑

i=1
eλi (t−t0)e iη

T
i . (3.100)
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By taking norms one has

∥e(t−t0)A∥ ≤
n(p+1)∑

i=1
eλi (t−t0)∥e i∥∥ηi∥ =

n(p+1)∑
i=1

eλi (t−t0) , (3.101)

and from (3.96) it is

∥e(t−t0)A∥ ≤
n(p+1)∑

i=1
eλ1(t−t0)

= n(p +1)eλ1(t−t0) = n(p +1)e−δ(t−t0) , (3.102)

with

δ, |λ1| = |λmax A| . (3.103)

Setting

k = n(p +1) (3.104)

one gets (3.93). Since δ can be chosen arbitrarily large, then k/δ can be set arbitrarily

small.

Remark 3.4. The above result shows that the observation errors xo in (3.95) can be made

arbitrarily small independently of the rest of the state vector s and ∆F̄ and that the initial

condition xo(t0) could be arbitrarily large. The necessity of having a small enough initial

condition for xo as well lies simply in the fact that otherwise position tracking could not

be achieved, as it will be shown later. �

Now, consider the positive definite function

Va = xT
oP oxo , (3.105)

with xo defined in (3.47) and P o = P T
o >O given as the solution of

ATP o +P o A =−Qo , (3.106)

where Qo is a positive definite matrix and A is given by (3.48). As mentioned before,

whenever y s ∈Ds, r f in (3.46) is bounded by rmax.
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By taking the time derivative of (3.105) along (3.46) one obtains

V̇a = xT
oP o (Axo +B r f)+ (Axo +B r f)

T P oxo

= xT
o

(
P o A + ATP o

)
xo +xT

oP oB r f + (B r f)
T P oxo

=−xT
oQoxo +2xT

oP oB r f . (3.107)

Clearly it holds

V̇a ≤−λmin(Qo)∥xo∥2 +2λmax(P o)∥xo∥∥B∥rmax

=−∥xo∥
(
λmin(Qo)∥xo∥−2λmax(P o)∥B∥rmax

)
. (3.108)

Then, it follows

V̇a ≤ 0 if ∥xo(t )∥ ≥ 2λmax(P o)

λmin(Qo)
∥B∥rmax , (3.109)

where λmin(·) and λmax(·) denote the minimum and the maximum eigenvalue of their

arguments, respectively.

From the previous discussion, after (3.95), (3.103), and (3.104) the ultimate bound for xo

in (3.93) is given by

∥xo(t )∥ ≤ n(p +1)

|λmax(A)|∥B∥rmax, as t →∞ . (3.110)

Since n(p +1) is fixed and |λmax(A)| can be chosen arbitrarily large, the ultimate bound

of xo can be made arbitrarily small. Besides, it can be proved that this bound also

fulfills [Khalil, 2002]

∥xo(t )∥ ≤ 2λmax(P o)

λmin(Qo)

√
λmax(P o)

λmin(P o)
∥B∥rmax . (3.111)

Since λmax(P o)/λmin(P o) ≥ 1 and, after (3.110), the norm ∥xo(t )∥ can be made arbitrarily

small, then the term λmax(P o)/λmin(Qo) can also be made arbitrarily small. Notice that

the pair (P o,Qo) in not unique, but there must exist a combination that makes (3.110)–

(3.111) equivalent. We assume that this is the case.

c) Till now it has been shown that whenever y s ∈Ds, every signal of interest is bounded and

furthermore, that the observation errors can be made arbitrarily small independently

of the rest of the state error. The next step is to show that whenever y s(t0) is small
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enough, then it can be enforced for y s to remain in Ds and that actually ∥y s∥ can be made

arbitrarily small, i.e., y s is uniform ultimately bounded with ultimate bound arbitrarily

small as depicted in Figure 3.3.

Figure 3.3: Ultimate boundedness of the state y s.

Let

Vs = 1

2
sTH s(q)s + 1

4

kFis

kvs
(∆F̄s)2 (3.112)

be a positive function of s and ∆F̄s. Taking into account Properties 2.1–2.4, (3.51), (3.56),

and (3.67), the time derivative of (3.112) along (3.22) and (3.57) is given by

V̇s =− sTK Dvss + sT y a −
1

4
k−1

vs (∆λs)2 Jϕs J T
ϕs −

1

2

kFis

kvs
∆F̄s(J+ϕs)TH s(q s)z̃ 1

− 1

4

k2
Fis

kvs
(∆F̄s)2(Jϕs J T

ϕs)−1

≤−kvs∥s∥2 + ca∥s∥+ 1

2

kFisλHc+ϕ
kvs

|∆F̄s|∥z̃ 1∥− 1

4

k2
Fisc−ϕ
kvs

|∆F̄s|2 , (3.113)

where c+ϕ , ∥J+ϕs∥max and c−ϕ , infq s∈Rn

{
Jϕs(q s)J T

ϕs(q s)
}−1

. Note that, since Jϕs(q s) is

full rank for every q s ∈Rn and the Jacobian of the manipulator is non–singular and upper

bounded, it is 0 < c±ϕ <∞.
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Figure 3.4: Region S

For the surface estimation error dynamics define

Vϕxs = 1

2
J̃ϕxs J̃ T

ϕxs . (3.114)

Its time derivative is given by

V̇ϕxs = J̃ϕxs
˙̃J T
ϕxs =− J̃ϕxs

˙̂J T
ϕxs + J̃ϕxs J̇ T

ϕxs . (3.115)

After (3.3) and (3.16), and since z̃ 1 = z 1 − ẑ 1, one obtains

V̇ϕxs =− γ

λ̂s +ϵ
J̃ϕxsQ̂xs

(
J T
ϕxsλs − J−T

s (q s)H s(q s)z̃ 1

)
+ J̃ϕxs J̇ T

ϕxs . (3.116)

Hence, because Q̂xs Ĵ
T
ϕxs =O and Q̂xsQ̂xs = Q̂xs = Q̂

T
xs, it is

V̇ϕxs =− γ

λ̂s +ϵ
(

J̃ϕxsQ̂
T
xsQ̂xs J̃ T

ϕxsλs − J̃ϕxsQ̂xs J−T
s (q s)H s(q s)z̃ 1

)
+ J̃ϕxs J̇ T

ϕxs . (3.117)

Since q s and q̇ s are bounded in Ds and the surface is assumed to be smooth, there

must exist a positive constant, say vx, such that ∥ J̇ϕxs∥ ≤ vx <∞. Also, consider a closed

subset of the workspace of the manipulator centred at {xs ∈Rn | J̃ϕxs(xs) = 0} and defined

by S = {xs ∈ Rn |∥ J̃ϕxs(xs)∥ ≤ p
2}, i.e., the region of the workspace where the angle α

between the normal to the surface Jϕxs and its estimate Ĵϕxs is at most 90◦, or equivalently

0 ≤ α≤ π/2 (see Figure 3.4). Notice that this implies that the region S must be taken

into account at the definition of the region Ds. As can be seen in Figure 3.5, and recalling
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Figure 3.5: Projections

that ∥ Ĵϕxs∥ = ∥Jϕxs∥ = 1, from the cosine rule one has (for α≤π/2)

∥ J̃ϕxs∥2 = 2(1−cos(α)) ≤ 2
(
1−cos2(α)

)= 2∥Q̂xs J̃ T
ϕxs∥2 , (3.118)

since from the same figure it can be seen that ∥Q̂xs J̃ T
ϕxs∥ = cos(π/2−α) = sin(α). Hence

(3.118) implies

∥ J̃ϕxs∥ ≤
p

2∥Q̂xs J̃ T
ϕxs∥ . (3.119)

Moreover, given that the robot always exerts force over the surface, there must exist a

constant, say cλ, such that λs ≥ cλ > 0,∀t ≥ t0. Also, since it has been proven that λ̂s is

bounded in Ds, after (3.15) there must exist a constant, say cλ̂, such that 0 ≤ λ̂s ≤ cλ̂ <
∞,∀t ≥ t0. Therefore, (3.117) satisfies

V̇ϕxs ≤− γcλ

λ̂s +ϵ
∥Q̂xs J̃ T

ϕxs∥
(
∥Q̂xs J̃ T

ϕxs∥−
λH

cλ
∥J−T

s (q s)∥∥z̃ 1∥−
cλ̂+ϵ
γcλ

p
2vx

)
, (3.120)

where vx is a bound for J̇ϕxs.

In part b) it was stated that by choosing the eigenvalues of A in (3.48) far away on the left

in the complex plane, one guarantees that (q̃ s, . . . , q̃ (p+2)
s ) can be made arbitrarily small

independently of the values of kvs and kFis (see Remark 3.4). This implies after (3.44)
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that f s(t), and hence z̃ 1 in (3.41), can also be made arbitrarily small, which in turn

implies that (λH/cλ)∥J−T
s (q s)∥∥z̃ 1∥ can be made arbitrarily small as well, since after

Assumption 2.1 J−1
s (q s) always exists. Finally, the term (cλ̂+ ϵ)

p
2vx/γcλ can be made

arbitrarily small by setting γ sufficiently large. By defining

cQ ,
λH

cλ
∥J−T

s (q s)∥∥z̃ 1∥+
cλ̂+ϵ
γcλ

p
2vx , (3.121)

one has

∥Q̂xs J̃ T
ϕxs∥ ≥ cQ =⇒ V̇ϕxs ≤ 0. (3.122)

After (3.114), it can be stated

1

2
∥ J̃ϕxs∥2 ≤Vϕxs ≤ 1

2
∥ J̃ϕxs∥2 , (3.123)

which means that for V̇ϕxs ≤ 0

∥ J̃ϕxs(t )∥ ≤ ∥ J̃ϕxs(t0)∥, ∀t ≥ t0 . (3.124)

In the extreme case that ∥Q̂xs J̃ϕxs∥ ≡ cQ, after (3.119), the ultimate bound for ∥ J̃ϕxs∥ is

given by

∥ J̃ϕxs∥ ≤
p

2cQ . (3.125)

Furthermore, the smaller ∥Q̂xs J̃ T
ϕxs∥, the smaller ∥ J̃ϕxs∥.

By adding the functions defined in (3.105), (3.112) and (3.114) it is obtained the positive

definite function

V =Va +Vs +Vϕxs = xT
oP oxo + 1

2
sTH s(q)s + 1

4

kFis

kvs
(∆F̄s)2 + 1

2
J̃ϕxs J̃ T

ϕxs

= y T
s


P o O O O

O 1
2 H s(q s) O O

O O 1
4 kFis/kvs O

O O O 1
2 I

 y s = y T
s M s(q s)y s , (3.126)

where each O is a matrix or vector of zeros of appropriate dimensions. Given Property 2.2,

we can find two positive constants, λm and λM, such that

λm∥y s∥2 ≤V (y s) ≤λM∥y s∥2 . (3.127)
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After (3.108), (3.113) and (3.120), the time derivative of (3.126) along the trajectories of

the system fulfills

V̇ ≤−λmin(Qo)∥xo∥
(
∥xo∥− 2λmax(P o)∥B∥rmax

λmin(Qo)

)
−kvs∥s∥

(
∥s∥− ca

kvs

)
− 1

4

k2
Fisc−ϕ
kvs

|∆F̄s|
(
|∆F̄s|−

2λHc+ϕ
kFisc−ϕ

∥z̃ 1∥
)

− γcλ

λ̂s +ϵ
∥Q̂xs J̃ T

ϕxs∥
(
∥Q̂xs J̃ T

ϕxs∥−
λH

cλ
∥J−T

s (q s)∥∥z̃ 1∥−
cλ̂+ϵ
γcλ

p
2vx

)
. (3.128)

According to the previous discussion, the terms

2λmax(P o)∥B∥rmax

λmin(Qo)
,

ca

kvs
,

2λHc+ϕ
kFisc−ϕ

∥z̃ 1∥,
λH

cλ
∥J−T

s (q s)∥∥z̃ 1∥, and
cλ̂+ϵ
γcλ

p
2vx

can be made arbitrarily small in Ds by choosing the eigenvalues of A in (3.48) far away

on the left in the complex plane and the gains kvs, kFis, and γ large enough.

Overall, we can always find a positive arbitrarily small constant µ such that

V̇ ≤ 0 if ∥y s∥ ≥µ . (3.129)

Once ∥y s∥ =µ, from (3.127) the maximum value that ∥y s∥ can take is given by

λm∥y s∥2 ≤V (y s) ≤λMµ
2 =⇒ ∥y s∥ ≤

√
λM

λm
µ, b , (3.130)

where b is the ultimate bound of the state y s. Recall that it must be guaranteed that

∥y s∥ ≤ ymax, ∀t ≥ t0. This can be done by setting gains large enough to satisfy

µ<
√
λm

λM
ymax . (3.131)

Also, the initial condition must satisfy

∥y s(t0)∥ <
√
λm

λM
ymax (3.132)

to guarantee that y s never leaves the region Ds.
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d) Finally, since b can be made arbitrarily small, then ∥y s∥ can be made arbitrarily close to

zero. This implies the that observation errors q̃ s, . . . , q̃ (p+2)
s are made approximately zero.

Therefore, after (3.36), q̃ s2 ≈ 0 =⇒ q s2 ≈ q̂ s2, i.e., q̂ s2 is an arbitrarily close estimation

of the vector of joint velocities q s2. Also, we have proved that z̃ 1 ≈ 0, which after (3.3)

and (3.15) means that λs − λ̂s ≈ 0 =⇒ λ̂s ≈ λs for λs > 0, which implies arbitrary close

estimation of the contact force. Since the ultimate bound of ∥y s∥, and therefore of ∥s∥
and ∥∆F̄s∥, can be made arbitrarily small, from (3.56) one can see that the ultimate bound

of ∆λs must be arbitrarily small as well, implying that force tracking is achieved.

Now, the main result of this work is presented, which is focused on the ultimate bounded-

ness of the state and the transparency of the teleoperation system.

Theorem 3.2. Let the master–slave teleoperation system described by (2.2)–(2.3) be in closed

loop with the force and velocity observers (3.8)–(3.12) and (3.15), the surface estimator (3.16),

and let the behavior of the human operator be described as in Assumption 3.4. Then, the system

error dynamics is completely characterized by (3.21)–(3.22), (3.32)–(3.33), (3.46), (3.57), (3.60),

and (3.64). Let

y ,
[

xo s ∆F̄s J̃ϕxs ∆Fvd

]T
, (3.133)

and define a region D , {y ∈ R(p+2)n+5|∥y∥ ≤ ymax} where ymax is a positive constant small

enough for Fact 2.1 to hold, i.e.,

es =Qses and ės =Qsės . (3.134)

Assume that the slave manipulator never losses contact with the environment. Furthermore,

assume that the desired position for the master manipulator q md(t ), planned by the operator, is

such that the approximations (analogous to Fact 2.1)

Q̂vem ≈ em (3.135)

Q̂vėm ≈ ėm (3.136)

hold. Then, a set of controller gains K ps, K vs, K is and kFis in (3.20), kFv and kFiv in (3.28), γ

in (3.16), and a set of observer gainsλ0, . . . ,λp+1 in (3.48) can be found to achieve: (i ) position

and velocity tracking at the master side, (i i ) ultimate boundedness of y , with arbitrary small

ultimate bound, and (i i i ) transparency of the teleoperation system. �
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Proof. (i ) For simplicity’s sake let K vh = kvhI n×n and K ih = kihI n×n . Define eIm ,
∫ t

t0
em dϑ and

let

Vm = 1

2
kvheT

mem + 1

2
kiheT

ImeIm . (3.137)

By taking into account (3.135)–(3.136), the time derivative of (3.137) along (3.66) is given by

V̇m =−eT
mK phem ≤ 0. (3.138)

From LaSalle’s theorem if V̇m ≡ 0 =⇒ em ≡ 0 =⇒ ėm ≡ 0 then the trajectories of (3.66) tend

asymptotically to the set (ėm,em,Q̂veIm) = (0,0,0)

Remark 3.5. It is important to point out that the dynamics described in (3.66) is actually

independent of the rest of the system, because whether the estimate of Q̂v is accurate or not,

the master controller will create that surface and reflect it to the operator. �

(i i ) Notice that all the premises of Theorem 3.1 are satisfied, since y s in (3.67) is a subset of

y in (3.133) and then it must be bounded in D. Nevertheless, some slight modifications must

be done to extend the proof of Theorem 3.1 for the state y defined in (3.133).

First, in part a) of the proof of Theorem 3.1 it is shown that all signals of interest are bounded

in D. Trivially ∆Fvd is bounded in D and, under the arguments of the original proof, ∆λ̄s and

∆F̄s are also bounded, so that after (3.65), ∆λvd must be bounded as well. Second, in part c) of

the proof of Theorem 3.1 it is proposed the positive definite function

V = xT
oP oxo + 1

2
sTH s(q)s + 1

4

kFis

kvs
(∆F̄s)2 + 1

2
J̃ϕxs J̃ T

ϕxs , (3.139)

with P o = P T
o >O the solution of

ATP o +P o A =−Qo , (3.140)

and where Qo is a positive definite matrix and A is given by (3.48). To include the state ∆Fvd, it

is proposed

VF = 1

2

kFv +kFh

kFiv +kFih
(∆Fvd)2 , (3.141)
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whose time derivative along (3.65) is given by

V̇F =− (∆Fvd)2 + (∆Fvd)
kFv∆λ̄s +kFiv∆F̄s

kFiv +kFih
(3.142)

≤−|∆Fvd|
(
|∆Fvd|−

|kFv∆λ̄s +kFiv∆F̄s|
kFiv +kFih

)
. (3.143)

By setting kFiv sufficiently large, the term (|kFv∆λ̄s +kFiv∆F̄s|)/(kFiv +kFih) in (3.143) can be

made arbitrarily small in D. On the other hand, by adding the functions (3.139) and (3.141)

one obtains

VT =V +VF = y T



P o O O O O

O 1
2 H s(q s) O O O

O O 1
4 kFis/kvs O O

O O O 1
2 I O

O O O O 1
2 kFT

 y = y TM(q s)y , (3.144)

where kFT = (kFv +kFh)/(kFiv +kFih). After Property 2.2, one can find two positive constants,

λmT and λMT, such that

λmT∥y∥2 ≤VT(y) ≤λMT∥y∥2 . (3.145)

Accordingly with the above discussion and from the proof of Theorem 3.1, an arbitrarily small

positive constant µT can always be found, such that

V̇T ≤ 0 if ∥y∥ ≥µT . (3.146)

Once ∥y∥ =µT, from (3.145) the maximum value that ∥y∥ can take is given by

λmT∥y∥2 ≤VT(y) ≤λMTµ
2
T =⇒ ∥y∥ ≤

√
λMT

λmT

µT , bT , (3.147)

where λmT ,λMT > 0 and bT is the ultimate bound of the state y , that can be made arbitrarily

small by an appropriate selection of the controller and observer gains. Recall that it must be

guaranteed that ∥y∥ ≤ ymax, ∀t ≥ t0. This can be done by setting gains large enough to satisfy

µT <
√
λmT

λMT

ymax . (3.148)
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Also, the initial condition must satisfy

∥y(t0)∥ <
√
λmT

λMT

ymax (3.149)

to guarantee that y never leaves the region D.

(i i i ) For simplicity’s sake assume that there is no escalation in the force reflected to the

operator. In this case, the transparency is achieved if λv = λs. Notice that after (3.32)–(3.33)

and the above discussion, (3.65) represents a stable filter with an arbitrarily small input. This

implies, after (3.62)–(3.63) that

(∆λ̄s,∆F̄s) ≈ (0,0) =⇒ (∆λvd,∆Fvd) ≈ 0 =⇒ λsd ≈λv ≈λs ≈ λ̂s, as t →∞ , (3.150)

which establishes the convergence of the observer, the force tracking, and the transparency of

the teleoperation system.



Chapter 4

Simulations and Experimental Results

In this chapter, a validation of the controller–observer scheme presented in Chapter 3 is carried

out through numerical simulations and experiments. The simulation results are presented

to illustrate basically two points in contrast with the experiments. The first point is the con-

vergence of the force estimation to the measured signal. Due to hardware limitations, it was

not possible to measure the real force in the experimental bed, so the validation of the conver-

gence of the observer is validated only in the simulations. The second point is to illustrate the

performance of the approach in an ideal scenario, in contrast with the experimental results

where disturbances, modeling uncertainties, and unmodeled dynamics are unavoidable.

4.1 Simulation Results

A numerical simulation consisting in two full–actuated revolute manipulators with two joints

in planar movement was carried out. The parameters for both robots are: mass of the links

m1 = 3.9473[Kg], m2 = 0.6232[Kg], length of the links l1 = l2 = 0.38[m], and viscous friction

coefficients d1 = d2 = 1.2[Kg ·m/sec]. The (assumed unknown) surface is a segment of a circle

described by

ϕs(xs) = (x −h)2 + (y −k)2 − r 2 = 0, (4.1)

where (x, y) stands for the slave task–space coordinates, i.e., xs =
[

x y
]T

, r = 0.1[m] is the

radius, and (h,k) = (0.4,0)[m] are the coordinates of the centre of the circle. At the beginning of

the task the tip of the slave manipulator is in contact with the surface and the Cartesian position

of both manipulators coincide, but the initial condition for the gradient estimator (3.16) is set

with an initial error (see Figure 4.8).
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The task consisted in following a trajectory from the point (x, y) = (0.32,0.06)[m] to the

point (x, y) = (0.48,0.06)[m] over the surface in a time tf = 10[sec], while simultaneously it is

desired to track a force signal given by

λsd(t ) =
20+40(cos(0.8πt/tf)sin(1.6πt/tf)) [N] if t ≤ tf

20+40(cos(0.8π)sin(1.6π)) [N] if t > tf .
(4.2)

The controller gains for the slave control law (3.20) are K ps = diag(2000,2000), K vs =
diag(10,10), K is = diag(1000,1000), and kFis = 0.5. For the master control law (3.28) the

gains are kFv = 0.1 and kFiv = 0.1. The proposed gains for the human behaviour given by

Assumption 3.4 are K ph = diag(100,100), K vh = diag(1,1), K ih = diag(0.1,0.1), kFh = 0.01, and

kFih = 0.1. For the observer (3.8)–(3.12) it was set p = 2, with observer gains λ0 = 2.56×106I ,

λ1 = 2.56×105I , λ2 = 9600I , and λ0 = 160I , i.e., the observer poles were located at po1 = po2 =
po3 = po4 =−40. For the surface estimator (3.16) there were chosen γ= 10 and ϵ= 0.0001. Also,

it was set η= 500 in (3.24). Finally, for the Lagrange multiplier computation in (3.27) there were

set αv = 1, ξ= 0.1, and ωn = 200.

Figure 4.1: Simulation, position tracking in Cartesian coordinates: desired (- - -), master (—),
slave (—).
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Figure 4.2: Simulation, position tracking error.

Figure 4.1 shows the position tracking in Cartesian coordinates, while in Figure 4.2 the

tracking error, xs −xm, is presented. In these figures the ultimate boundedness of the position

error, guaranteed by the proposed scheme, can be appreciated. In Figure 4.3 it is shown the

position tracking in the x y plane.

The force tracking of the signal (4.2) is presented in Figure 4.4, while the force tracking error

and the force estimation error are shown in Figures 4.5 and 4.6, respectively. In these figures, it

can be noticed the convergence of all force signals after the transient response.

Figure 4.7 shows the estimation of the components of the surface gradient vector, while a

zoom in the axis time of the first second is presented in Figure 4.8. Finally, the estimated joint

velocity and the real one are shown in Figure 4.9.

The simulation results clearly show that there is an ultimate bounded error for both position

and force tracking of the teleoperation scheme. The ultimate bound can be made arbitrarily

small by using high–gain. Nevertheless, the observer and controller gains are limited by

the bandwidth of the system and the measurement noise. In this particular case, the main

limitation is the sample period for the implemented control loop, which was considered to be

T = 2[msec]. Another inconvenience of using high–gain is the so called peaking phenomena,

which can be appreciated at the beginning of the transient response.



4.1 Simulation Results 54

Figure 4.3: Simulation, position tracking in the x y plane.

Figure 4.4: Simulation, force tracking and estimation: desired (- - -), real(—), estimated(—),
virtual(- - -).

On the other hand, in Figure 4.4 it can be seen that λs ≈ λv ≈ λsd, what shows the trans-

parency of the system. Furthermore, in Figures 4.7 and 4.8 it is shown that the gradient of the

surface can be online estimated without force nor velocity measurements at the slave side.
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Figure 4.5: Simulation, force tracking error.

Figure 4.6: Simulation, force estimation error.

Figure 4.7: Simulation, estimation of the surface gradient: Jϕxs (- - -), Ĵϕxs (—).
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Figure 4.8: Simulation, zoom of Figure 4.7: Jϕxs (- - -), Ĵϕxs (—).

Figure 4.9: Simulation, slave joint velocities estimation: q s2 (- - -), q̂ s2 (—).
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ai θi αi di

1 0 θ1 90◦ 0
2 0.135 θ2 0◦ 0
3 0.1739 θ3 90◦ 0

Table 4.1: Denavit–Hartenberg parameters for the Phantom Touchr manipulator.

4.2 Experimental Results

An experimental platform was set to test the validity of the algorithm proposed in Chapter 3.

The platform consisted of two Phantom Touchr manipulators of 3–degrees of freedom each,

as shown in Figure 4.10.

The kinematic model for both manipulators was obtained using the Denavit-Hartenberg

algorithm. The corresponding kinematic parameters are shown in Table 4.1

On the other hand, the dynamic model for each manipulator, necessary to implement the

proposed scheme, is given by

H i(q i)q̈ i +C i(q i, q̇ i)q̇ i +D iq̇ i +g i(q i) =τi , (4.3)

where i = m,s. This model can be expressed in terms of a set of constant parameters,Θ1, . . . ,Θ8,

as

H(q) =


c2

2Θ1 + c2c23Θ2 + s2
23Θ3 0 0

0 Θ1 +2c3Θ2 +Θ3 c3Θ2 +Θ3

0 c3Θ2 +Θ3 Θ3

 (4.4)

C (q , q̇) =


C11 C12 C13

C21 C22 C23

C31 C32 C33

 (4.5)
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D =


Θ4 0 0

0 Θ5 0

0 0 Θ6

 (4.6)

g (q) =


0

g c2Θ7 + g c23Θ8

g c23Θ8

 , (4.7)

where c1 = cos(q1), c12 = cos(q1 + q2), c23 = cos(q2 + q3) s1 = sin(q1), s12 = sin(q1 + q2), s23 =
sin(q2 +q3), and

C11 =−c2s2q̇2Θ1 − 1

2
(c2s23(q̇2 + q̇3)+ s2c23q̇2)Θ2 + c23(q̇2 + q̇3)Θ3

C12 =−c2s2q̇1Θ1 − 1

2
(s2c23 + c2s23)q̇1Θ2 + s23c23q̇1Θ3

C13 =−1

2
c2s23q̇1Θ2 + c23s23q̇1Θ3

C21 = c2s2q̇1Θ1 + 1

2
(s2c23 + c2s23)q̇1Θ2 − s23c23q̇1Θ3

C22 =−s3q̇3Θ2

C23 =−s3(q̇2 + q̇3)Θ2

C31 = 1

2
c2s23q̇1Θ2 − c23s23q̇1Θ3

C32 = s3q̇2Θ2

C33 = 0.

An off–line parameter identification based on the standard Least Squares method was

carried out to obtain an approximation for the parametersΘ1, . . . ,Θ8. The identified values for

these parameters are shown in Table 4.21.

For the experimental setup, both manipulators are connected to a PC via Ethernet. The

control loop for the whole teleoperation system, included the data acquisition for both robots

and all the required computations, is executed in the PC with a sample time T = 2[msec]. As

for the desired contact force, it is given by the operator through a load cell, which in turn is

connected to the PC via acquisition hardware.

1In this table mi is the mass of link i , ai is a Denavit–Hartenberg parameter given in Table 4.1, lci is the link
center of mass distance with respect to a frame fixed on the link i , and c fi is the viscous friction coefficient of
joint i .
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Parameter Physical meaning Value
Θ1 m2l 2

c2 + 1
12 m2a2

2 +m3a2
2 0.000012

Θ2 m3a2lc3 0.000003
Θ3 m3l 2

c3 + 1
12 m3a2

3 0.000015
Θ4 c f1 0.000005
Θ5 c f2 0.000006
Θ6 c f3 0.000006
Θ7 m2lc2 +m3a2 0.0085
Θ8 m3lc3 0.01

Table 4.2: Identified dynamic model parameters of the Phantom Touchr manipulator.

Figure 4.10: Experimental platform.

The controller gains for the master manipulator were kFv = 0.1 and kFiv = 0.1, while for

the slave were chosen K ps = diag(5,5,5), K vs = diag(0.02,0.02,0.02), K is = diag(0.25,0.25,0.25),

and kFis = 2. For the dynamic extension in (3.5)–(3.7) it was chosen p = 2, and the observer

gains in (3.8)–(3.12) were λ0 = 1×108I , λ1 = 4×106I , λ2 = 60000I , and λ0 = 400I , i.e., the

poles were located at po1 = po2 = po3 = po4 = −100. For the surface estimator γ = 0.02 and

ϵ = 0.00001 were chosen. It was also set η = 1/T = 500 in (3.24). Finally, there were chosen

αv = 0.02, ξ= 2, and ωn = 50 for the virtual surface construction given by (3.27).

The task consists for the human operator to impose a desired trajectory to the master,

which is then followed by the slave manipulator. At the same time, the slave robot exerts the
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desired force, commanded by the operator through the load cell, over the rigid metallic cube

shown in Figure 4.10.

Figure 4.11: Experiment, position tracking in joint coordinates: master (—), slave (—).

Figure 4.12: Experiment, position tracking error.

The position tracking in joint coordinates is shown in Figure 4.11, while the corresponding

tracking error is displayed in Figure 4.12. Notice that the tracking error is ultimately bounded

for all joints as guaranteed by the proposed algorithm.
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Figure 4.13: Experiment, force tracking and estimation: desired (· · · ), estimated (—), virtual (- -
-).

Figure 4.14: Experiment, estimation of the surface gradient Ĵϕxs.

In Figure 4.13 the desired, estimated and virtual forces are shown. While the desired and

estimated forces are practically identical signals, the virtual force is noisier. This noise is due

to the tuning and the number of iterations chosen for the Lagrange multiplier computation

in (3.27), so there is an application dependent trade-off between the quality of the force

reflected to the human and the speed of computation of this multiplier.

Finally, in Figure 4.14 the estimated components of the surface gradient in Cartesian

coordinates are shown. The initial condition for the components of this gradient was set to

Ĵϕxs(t0) =
[

1/
p

2 0 1/
p

2
]

, i.e., it was set with an approximate initial error of 45[◦], since the
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real surface gradient is Jϕxs(t) =
[

0 0 1
]

. The discrepancy between this gradient and the

estimated one is mainly due to the unmodeled contact friction.



Chapter 5

Conclusions and Future Perspectives

5.1 Concluding Remarks

In this work, the problem of master–slave bilateral teleoperation with velocity and force obser-

vation at the slave side and with estimation of the remote rigid surface geometry was studied.

The main results can be summarized as:

1. An extended–state high–gain observer was designed to solve the problem with only joint

position measurements. This observer has some advantages over the existing observers

in the literature, for example,

• Its tuning is easy, since the poles of (3.13) should be located as far in the left half of

the complex plane as the system bandwidth allows it.

• The implementation of the observer is straightforward, for it does not require a

coordinate transformation and the same observer accounts for velocity and force

estimation.

Some disadvantages of the force/velocity observer are the peaking phenomena, noise

amplification and the dependency on the slave manipulator model exact parameters.

The first two come from the high–gain nature of the proposed observer. With respect to

the peaking phenomena at the transient response beginning, a suitable clutch can be

employed as proposed in Sira-Ramírez et al. [2010]. On the other hand, a first order filter

could be used to eliminate the noise from the estimated signals. As for the dependency

on the model, it could be obtained by experimental identification. Care should be taken

at this point, since any error in the identification or any unexpected disturbance will
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affect the observation error. Nevertheless, to the best of the authors’ knowledge, there

does not exist a force observer that is exempt from this dependency when only joint

positions are measured.

2. An estimator of the remote surface gradient was proposed, taking the estimated signals

from the force/velocity observer as inputs. This estimator is also easy to implement and

its norm was proven to be invariant, which is convenient for the (unitary) gradient vector

estimation that emerges from a normalized surface, as the one proposed in this work.

3. The designed velocity and force observer and the surface estimator were included in a

teleoperation scheme, which is based in the virtual surfaces approach. The main advan-

tages of this approach are the improvement of the bandwidth, the high transparency

obtained, and the decoupling of the force and movement subspaces. This decoupling

permits an orthogonal decomposition of the task space, which is widely exploited at the

dynamical analysis fo the closed loop system. The proposed controllers for both master

and slave manipulators make use of the estimated signals and, in accordance with the

rest of the design philosophy, are easy to implement.

4. A formal stability analysis was carried out for the whole teleoperation system in closed

loop with the velocity/force observer, the surface estimator and the force/position con-

trol. The proof guarantees local ultimate boundedness of all the signals of interest. By

applying high gains, the ultimate bound for these signals can be made arbitrarily small,

which is translated into arbitrarily close tracking of position and force, and convergence

of all the estimated signals. Furthermore, high transparency of the teleoperator is also

guaranteed.

5. Both simulation and experimental results are utilized to validate the applicability of the

proposed scheme. The simulation results show that, under ideal conditions, position

and force tracking, velocity and force estimation, surface identification and transparency

are reached with an excellent performance. On the other hand, the experimental results

corroborated the pertinence of the assumptions made, although the performance is no

longer as good as in the simulations.



5.2 Future Directions 65

5.2 Future Directions

As pointed out above, one of the disadvantages of the proposed algorithm is its high depen-

dence on the manipulator model exactitude. Therefore, one natural future direction could be to

investigate if it is possible to avoid this model dependency or at least to reduce it. For example,

in Arteaga-Pérez and Gutiérrez-Giles [2014] the standard properties of the Lagrangian model

were exploited to avoid the estimation of workless forces for their further on line cancellation to

solve the robust position tracking problem. This idea could be adapted to the observer design

in order to evade the cancellation of some of the signals, and thus reducing the dependence on

the model.

Another natural direction for future work is to address the communication delays problem.

Due to destabilizing effect of these delays, most of the existing solutions to this problem rely

on the controller robustness. In contrast, the goal pursued in this work is to obtain the best

possible transparency of the teleoperation system. However, transparency and robust stability

are two contradictory goals, so that it is reasonably that some modifications must be done to

the algorithm when consider the delayed teleoperation problem.

Finally, the proposed observer is basically a dynamic extension with a high–gain linear

observer. The disadvantages of the observer are mainly due to its high–gain nature. Therefore,

the dynamic extension could be preserved and the high–gain observer could be substituted

with another kind of the state observers available in the literature.

5.3 Summary of journal papers

The following is a list of the journal papers which were written during the author’s doctorate

period. Some of them contain many results presented in this work, while others were rather

part of the learning process to acquire and develop the abilities, skills and know–hw of the

techniques which ultimately yield to the solution of the main problem solved in this thesis.

1. Arteaga-Pérez, M. A., Rivera-Dueñas, J. C., and Gutiérrez-Giles, A. (2013). Velocity and

force observers for the control of robot manipulators. Journal of Dynamic Systems,

Measurement, and Control, 135(6):064502

2. Gutiérrez-Giles, A. and Arteaga-Pérez, M. A. (2014). GPI based velocity/force observer

design for robot manipulators. ISA Transactions, 53(4):929–938
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3. Arteaga-Pérez, M. A. and Gutiérrez-Giles, A. (2014). On the GPI approach with unknown

inertia matrix in robot manipulators. International Journal of Control, 87(4):844–860

4. Arteaga-Pérez, M. A., Gutiérrez-Giles, A., and Weist, J. (2015). On the observability and

the observer design of differential pneumatic pistons. Journal of Dynamic Systems,

Measurement, and Control, 137(8):081006

5. Gutierrez-Giles, A., Arteaga-Perez, M. A., and Sira-Ramirez, H. (2016). Generalized pro-

portional integral observer-based force control in robot manipulators. Revista Iberoamer-

icana de Automatica e Informatica Industrial, 13(2):238–246

6. De La Guerra, A., Arteaga-Pérez, M. A., Gutiérrez-Giles, A., and Maya-Ortiz, P. (2016).

Speed-sensorless control of sr motors based on gpi observers. Control Engineering

Practice, 46:115–128

7. Gutiérrez-Giles, A. and Arteaga-Pérez, M. A. (2016b). Velocity/force observer design

in the position/force control for robotic manipulators interacting with unknown rigid

surfaces. Robotics and Autonomous Systems(submitted)

8. Gutiérrez-Giles, A. and Arteaga-Pérez, M. A. (2016a). Transparent bilateral teleopera-

tion interacting with unknown remote surfaces with a force/velocity observer design.

International Journal of Control(submitted)
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