CAPÍTULO IV

RESULTADOS: PETROGRAFÍA, GEOQUÍMICA E ISOTOPÍA DE Sr Y Nd

4.1 Petrografía y Análisis modal

Se determinaron las características de las unidades volcánicas del CVST-SCT mediante la descripción bajo el microscopio petrográfico de 40 láminas delgadas. Estas descripciones consistieron en realizar conteo modal de minerales, la obtención de tamaños de los cristales, el reconocimiento de texturas y la clasificación petrográfica para cada una de las muestras. Esta información permitió agrupar los resultados y efectuar comparaciones entre las unidades. La clasificación petrográfica se efectuó mediante el uso de los diagramas triangulares de Streickeisen (1976), se consideraron los porcentajes modales de los minerales obtenidos del conteo de puntos, que se muestran en la Tabla 4.1. Enseguida se presenta, de una manera resumida, las características petrográficas para cada unidad.

4.1.1 Unidad Volcánica Inferior

Ignimbrita Tetlapayac

Al ser esta roca la más antigua de nuestra secuencia se puede observar dentro de su matriz una serie de contrastes en su apariencia, la cual ha adquirido gracias al intemperismo al que ha estado expuesta. Presenta una textura porfídica-esferulítica con fenocristales de plagioclasa, cuarzo y sanidino, dentro de una matriz de vidrio, que en su mayoría está alterada a esferulitas de color pardo. Esta característica impide conocer la textura original de la roca o rasgos particulares de su depósito. Petrográficamente se clasificó como Ignimbrita-Riolítica esferulítica (muestras TTC-06 y TTC-25).

• Plagioclasa

Se presenta en fenocristales de forma subedral-anedral de 1.4 mm de longitud (Figura 4.1.1). La mayoría de estos cristales presentan maclado polisintético, ligero zoneamiento, y bordes de reacción, lo cual indica procesos de desequilibrio al momento de su cristalización. También presentan crucero y fracturas rellenas por vidrio de la

matriz. Fueron clasificados de acuerdo al método de Michel-Lévy como oligoclasaandesina (Kerr, 1977).

• Feldespato Potásico

Este mineral se encuentra en pequeños fenocristales con tamaños que varían de 0.4 a 0.6 mm, se encuentran de manera escasa y aislada, tienen una forma subedral a anedral y se encuentra fracturados. Se clasificaron como sanidino.

Cuarzo

Dentro de esta roca se presenta un 9% modal (Tabla 4.1) de fenocristales de cuarzo de formas subedrales, con tamaños que van de 1.44 a 1.70 mm y presentan bordes engolfados. Los cristales se presentan rotos y fracturados. Este mineral también se encuentra como polimorfos de SiO₂ recristalizado en esferulitas.

Matriz

Es posible observar aun vidrio isotrópico transparente, con minerales arcillosos; sin embargo, gran parte de la matriz está alterada a esferulitas radiales y elipsoidales por producto de la desvitrificación, de color pardo (Figura 4.1.1). Cabe mencionar que las esferulitas parecen seguir un patrón en bandas a través de la roca.

Observaciones

Dentro de la lámina se puede observar que la matriz está alterada a esferulitas en casi un 50% (Tabla 4.1). Existen fragmentos de pómez muy alterados y algunos líticos accidentales.

Ignimbrita Las Pailas

Las rocas félsicas de este depósito exhiben diferentes texturas debido a la naturaleza de su emplazamiento y a procesos de desvitrificación e intemperismo. Así, se tienen: vitroporfídicas, (TTC-17, TTC-18, TTC-28, TTC-30 y TTC-36), porfídicas en una matriz microlítica (TTC-38 y TTC-31), porfídicas en una matriz vítrea y microlítica (TTC-27 y TTC-29), microlíticas (TTC-20), y esferulíticas (TTC-10). De igual modo, se puede observar una gran variedad en los porcentajes modales (Tabla 4.1) de los

fenocristales de plagioclasa, cuarzo, feldespato potásico y micas. Todas las muestras se clasificaron como ignimbritas riolíticas.

• Cuarzo

Existen dos familias de fenocristales, los primeros son macro-fenocristales con una longitud que va de 1.2 a 1.7 mm y la otra familia se compone de micro-fenocristales con un tamaño promedio de 0.48 mm. Estos cristales se encuentran en forma anedral y subedral y presentan contornos engolfados o redondeados que indican equilibrio entre el cristal y la matriz. Existen cristales aislados agrupados junto con plagioclasa y también se encuentra en forma de esquirlas diseminadas dentro de la matriz esto indica que posiblemente fueron rotos al momento del depósito.

Plagioclasa

Se presenta en raros macro-fenocristales de 3.24 mm de longitud (TTC-28), pero la mayoría tiene un rango de tamaños que va de 1.25 a 1.60 mm, con una geometría alargada y formas euedrales y subedrales. Es posible observar en muchos de los cristales la clásica macla polisintética (Figura 4.1.3), pero también se presentan cristales con extinción ondulante asociada con zoneamiento. Algunos cristales presentan estructura de tamiz y bordes de reacción (Figura 4.1.4), que indican la existencia de procesos de desequilibrio al momento de la cristalización. Estas plagioclasas fueron clasificadas por el método de Michel-Lévy como oligoclasa-andesina (Kerr, 1977).

• Feldespato Potásico

Se presenta en fenocristales escasos y asociados, con un tamaño promedio de 0.5 mm, y una abundancia menor al 5% (Tabla 4.1). Presentan formas subedrales a anedrales con fracturas dentro de los cristales. Estos feldespatos potásicos se clasificaron como sanidino.

Hornblenda

Este mineral se encuentra comúnmente como fenocristales de 0.72 mm de longitud, pero en la muestra TTC-28 se identificaron macro-fenocristales de hasta 6.28 mm de longitud. Sin embargo, también se puede observar pequeños cristales de este mineral diseminados en la matriz de forma caótica, siguiendo la orientación de la matriz. Tienen

geometría tabular alargada en su mayoría, así como formas subedrales a anedrales. Poseen un pleocroísmo de color verde oscuro a pardo y presenta una abundancia modal del 1 al 7%. Este anfibol se identificó como hornblenda.

Mica

Se encuentran en trazas, posee formas subedrales a anedrales y los tamaños de estos cristales va de 0.1 a 0.4 mm. Algunos de los cristales se encuentran rotos, fracturados, oxidados y hasta deformados. En la Figura 4.1.3, se puede observar un cristal deformado debido al depósito. Presentan pleocroísmo que va de verde a pardo rojizo y por sus características ópticas se clasificó como biotita.

Matriz

La matriz de las diferentes laminas descritas está compuesta principalmente por vidrio en proceso de alteración, así como por microlitos de cuarzo y plagioclasa, los cuales se encuentran orientados como siguiendo una dirección de flujo.

Observaciones

Algunas de las muestras (TTC-31, TTC-38) contienen líticos de composición andesítica dentro de la matriz. Estos fragmentos no tienen bordes de reacción o coronas de oxidación al contacto con la matriz, por lo que se pueden considerar como fragmentos accidentales. También, es posible observar fantasmas o seudomorfos de anfíboles y posibles piroxenos que se encuentran formados por cristales diminutos de óxidos de Fe-Ti.

Domos e ignimbritas dacítico-riolíticas

Esta serie de rocas presentan una textura porfídica a microcristalina con matrices vítreas en proceso de desvitrificación y microlíticas compuestas de cuarzo y feldespato. Además, contienen fenocristales de cuarzo, plagioclasa, feldespato potásico y anfíboles. Las muestras TTC-34 y TTC-21 se han clasificado como riolitas de hornblenda y la laminas TTC-07 y TTC-19 como dacitas de piroxeno.

• Cuarzo

Se presentan en dos familias de acuerdo a su tamaño: en macro-fenocristales con longitudes de 3.36 mm y distribuidos de forma aislada, y los de menor tamaño, con un promedio de 0.57 mm, siendo los mas comunes. Estos cristales presentan formas subedrales a anedrales irregulares o redondeados, se encuentran ligeramente fracturados y la mayoría presenta contornos engolfados (Figura 4.2.8). Su abundancia modal en estas rocas varía de 3 al 15%.

Plagioclasa

Se tienen dos familias de fenocristales, la de mayor tamaño contiene fenocristales de 3.84 mm que presentan textura de tamiz (Figura 4.2.7) y bordes de reacción y/o redondeamiento en sus caras (Figura 4.1.6), lo que indica que hubo procesos de desequilibrio al momento de su cristalización. La otra familia de cristales más pequeños tienen longitudes de 0.6 a 1.68 mm y presentan fracturas en su estructura. Estos cristales se encuentran en formas subedrales a anedrales, todos presentan maclado polisintético. Estas plagioclasas fueron clasificadas como oligoclasa-andesina.

• Feldespato Potásico

Se presenta en fenocristales escasos (< a 1% modal) y aislados con un tamaño promedio de 0.8 mm. Tienen formas subedrales a anedrales y es posible observar fracturas dentro de los cristales. Estos feldespatos potásicos se clasificaron como sanidino.

• Hornblenda

Este mineral se presenta en pequeños fenocristales (muestra TTC-34) pleocroicos de color pardo a verde (Figura 4.1.5), con dimensiones promedio de 0.4 mm. Aunque también existen pequeños cristales, diseminados en la matriz y posibles fantasmas o seudomorfos compuestos por óxidos de Fe-Ti. En general, este mineral tiene formas subedrales a anedrales con una abundancia de 1% modal (Tabla 4.1).

• Piroxeno

Este mineral se encuentra principalmente en las muestras TTC-07 y TTC-19, que como ya se mencionó fueron clasificadas como dacitas. Su contenido es escaso (>1% modal)

y se encuentra en dos formas: una de ellas se encuentra diseminada en la matriz en pequeños microcristales aislados y la otra se compone de fenocristales de forma anedral a subedral de 1.68 mm de longitud. Sus características ópticas permiten identificar a éste como un ortopiroxeno del tipo hiperstena.

Matriz

Está compuesta principalmente por vidrio de color gris en proceso de desvitrificación y por microlitos de plagioclasa que tienen un patrón de orientación de acuerdo a una dirección de flujo con respecto a los distintos fenocristales que hay en la matriz. En algunas partes de la matriz se presenta una ligera alteración a minerales arcillosos y óxidos de hierro debida a intemperismo. Estas características se ven en las rocas de composición dacítica. En el caso de las rocas riolíticas la matriz se compone principalmente de vidrio en proceso de desvitrificación y de microlitos de plagioclasa orientados con respecto a los fenocristales (TTC-31).

Observaciones

Como se mencionó en el Capítulo III, en la parte de estratigrafía del CVST-SCT en las lavas que forman los domos es posible observar la presencia de enclaves. Se realizó la descripción petrográfica de la lamina TTC-19E, que se clasificó como una andesita de textura afanítica, con escasos fenocristales de plagioclasa y ferromagnesianos, cabe mencionar que esta roca se encuentra sumamente alterada. Se hizo una comparación petrográfica con rocas estratigráficamente más viejas, para encontrar indicios que pudieran hablar de una correlación, pero no se encontró ningún parecido. Lo que sugiere que esta roca podría ser parte de un depósito de andesitas que no aflora en el área de estudio.

4.1.2. Unidad Volcánica Superior

Basaltos y andesitas-basálticas

Como se mencionó, la Unidad Volcánica Superior está compuesta por coladas de lavas, volcanes escudo y depósitos de conos de escoria, cuya composición varía de basalto a andesita-basáltica. En este caso, las rocas basálticas presentan dos tipos de texturas, microlítica-fluidal (muestras TTC-04A, TTC-04B, TTC-09, TTC-16 y TTC-22), y microlítica para las lavas de los puntos de muestreo siguientes, TTC-05, TTC-24, TTC-

26 y TTC-32. Todas ellas presentan fenocristales de plagioclasa, piroxeno y minerales opacos. Por su contenido mineralógico y su forma de emplazamiento se clasificó, como basalto de olivino y piroxeno a la muestra TTC-32. Las láminas TTC-04A, TTC-04B, TTC-05 y TTC-26 se les dio el nombre de escoria basáltica de olivino, con excepción de la TTC-33 que se clasificó como escoria basáltica de olivino y piroxeno. Por último, las lavas TTC-09, TTC-16, TTC-22 y TTC-24 se clasificaron como andesita-basáltica de olivino.

Plagioclasa

En las 10 láminas descritas bajo al microscopio petrográfico se pudo observar un comportamiento bimodal en cuanto a los tamaños de los cristales para este mineral. En primer lugar, en todas las laminas se presentan microcristales y microlitos finos con arreglo fluidal, que forman la matriz y que pueden alcanzar hasta un 40% del total de ésta. Su tamaño es demasiado pequeño como para poder clasificarlos, pero se observó que en general poseen un relieve alto y una baja birrefringencia, lo cual sugiere que se trata de andesina-labradorita. Los microcristales no presentan procesos de reabsorción o redondeamiento en sus caras. La matriz microcristalina de plagioclasa de la muestra TTC-04A presenta oxidación rojiza en comparación con la muestra TTC-04B a pesar de que son escorias que provienen del mismo aparato volcánico. Esto indicaría que las condiciones de fugacidad de oxígeno, presión y temperatura dentro de la cámara magmática que alimentó al cono San Antonio 1, cambiaron a lo largo de su historia eruptiva.

El segundo grupo de plagioclasas corresponde a escasos fenocristales que tienen longitudes que varían de 1 a 1.2 mm (muestras TTC-26 y TTC-16) y otros microfenocristales, que en promedio tienen dimensiones de 0.1 mm (TTC-32). Estos cristales presentan texturas de tamiz y un ligero zoneamiento y sus contornos son redondeados.

• Olivino

Este mineral se presenta en abundantes macro-fenocristales (de 12 a 21 % modal) de formas euedrales (Figura 4.2.9) que pueden alcanzar dimensiones de 1.92 a 2.16 mm (muestra TTC-16). Existen algunos fenocristales de formas euedrales a anedrales con longitudes máximas de 0.5 a 1.4 mm y microcristales que se encuentran rotos flotando

en la matriz. Algunos de estos cristales parecen estar reabsorbidos por la matriz (TTC-26 y TTC-16), así como también es posible observar bordes de oxidación (TTC-16).

Piroxeno

Todas las muestras, a excepción de la TTC-32 presentan cristales de clinopiroxeno, ya sea en forma de fenocristales con diámetros de 0.5 a 1.4 mm (Figura 4.2.10), así como pequeños microcristales diseminados en la matriz. Tienen formas anedrales-subedrales (Figura 4.2.9) y sus propiedades ópticas permitieron clasificarlos como augita-diópsida. En las muestras TTC-04A, TTC-04B, TTC-09, TTC-32 y TTC-03 existen fenocristales de ortopiroxeno con una longitud promedio de 0.4 mm. Tienen formas anedrales a subedrales (Figura 4.2.10) y algunos de ellos se pueden encontrar ligeramente fracturados o rotos debido al transporte dentro del magma y también se observan, microcristales flotando en la matriz. Sus propiedades petrográficas permiten clasificarlo como hiperstena.

Matriz

La matriz es relativamente homogénea en todas las muestras, ya que se encuentra principalmente compuesta por microlitos y microcristales de plagioclasa de alto relieve y de una cantidad menor de microcristales de piroxeno. En el espacio existente entre los microcristales se puede apreciar una pequeña cantidad de vidrio oscuro de composición básica, rico en Fe y Mg. Además, los microlitos tienen un arreglo fluidal con respecto a los escasos fenocristales (Figura 4.2.9). En las muestras TTC-05, TTC-26 y TTC-09 se puede observar que el vidrio se encuentra predominante dentro de la matriz y alcanza hasta el 60% de ésta.

• Observaciones

Dentro de estas láminas existen algunos minerales opacos formados por óxidos de Fe y Ti que llegan alcanzar el 1% de la composición modal de las muestras (Tabla 4.1). Asimismo, como ya se mencionó, las lavas y productos de escoria presentan abundantes vesículas vacías. Cabe remarcar que las muestras TTC-04A y TTC-04B que son fragmentos de escoria provenientes del mismo cono cinerítico presentan un porcentaje de vesículas diferente, siendo la muestra TTC-04A la que tiene mayor porcentaje.

Traquiandesita-Basáltica

Estas lavas ligeramente mas diferenciadas provienen de los volcanes tipo escudo Coronilla y Coyote (muestras TTC-01, TTC-12, TTC-14 y TTC-35) y de los conos cineríticos Cono Cantera 1, La Puerta y Balconcillo (TTC-02, TTC-13 y TTC-23). Todas las lavas y escorias tienen características mineralógicas similares (Tabla 4.1) y texturas que varían de microlíticas (TTC-02 y TTC-35), microlíticas-fluidales (TTC-12 y TTC-14) a vítreas-microlíticas (TTC-01, TTC-13 y TTC-23). Presentan en su mayoría fenocristales de plagioclasa, piroxeno y ferromagnesianos. Las láminas delgadas se clasificaron petrográficamente de la siguiente manera: andesita-basáltica de piroxeno (TTC-01, TTC-02, TTC-12, TTC-14 y TTC-35) y escoria andesitico basáltica de piroxeno y olivino (TTC-13 y TTC-23); aunque cabe mencionar que se agruparon de acuerdo a su clasificación química utilizando el diagrama de TAS (Total alcali vs. Sílica wt%) de Le Bas et al. (1986) (Figura 4.3).

Plagioclasa

Los escasos fenocristales presentan formas subedrales y tienen tamaños que varían de 0.7 a 1.4 mm de longitud, los cuales presentan bordes de reacción, contornos engolfados y textura de tamiz. Estos fenocristales se observan principalmente en las muestras del Cerro Coronillas. Aunque su principal presentación, en todas las láminas es en microcristales tabulares de alto relieve (Figura 4.2.11). También, es posible ver fenocristales fracturados o rotos debido al movimiento de las lavas. Estos minerales se clasificaron ópticamente como andesina.

• <u>Piroxeno</u>

En todas las muestras descritas, se encontraron clinopiroxenos clasificados como augitadiópsida y solo en muestras del Cerro Coronilla se encontró ortopiroxeno clasificados como hiperstena. Estos mismos se encuentran como micro-fenocristales de 0.24 a 1.92 mm (Figura 4.2.11), con clivaje o crucero en una o dos direcciones, con extinción recta en los ortopiroxenos y oblicua en los clinopiroxenos. La mayoría de estos cristales se encuentran fracturados o ligeramente rotos por efectos del movimiento del magma y presentan delgados bordes de oxidación rojiza.

Olivino

En todas las láminas existen fenocristales diseminados de este mineral y con base en sus tamaños se asociaron grupos: se identificó un grupo de pequeños cristales con dimensiones promedio de 0.72 mm, de forma anedral y otro grupo que poseen menor tamaño (de 0.1 a 0.24 mm), que se encuentran en forma subedral. Tienen extinción recta y colores de birrefringencia de segundo orden (Rosa, azul y verde claro), en la lámina TTC-35 se observan cristales de olivino con bordes de oxidación conformados por iddingsita. Algunos cristales presentan inclusiones de minerales opacos que podrían ser óxidos de Fe y Ti.

Matriz

La matriz para las escorias es completamente vítrea de color rojizo-pardo para la muestra TTC-13 y vítrea con escasos microlitos (hialopilítica) (<5%) para la muestra TTC-23. Las demás muestras tienen una matriz compuesta por microlitos de plagioclasa, piroxeno y vidrio.

Observaciones

Los microlitos de plagioclasa se encuentran orientados en los bordes de los fenocristales, en las rocas que presentan textura microlítica. En la lámina TTC-01 es posible observar aglomerados aislados de fenocristales de plagioclasa, los que no parecen tener bordes de reacción con la matriz. Las lavas del volcán Coronilla presentan un bajo grado de vesicularidad, junto con los productos de escoria.

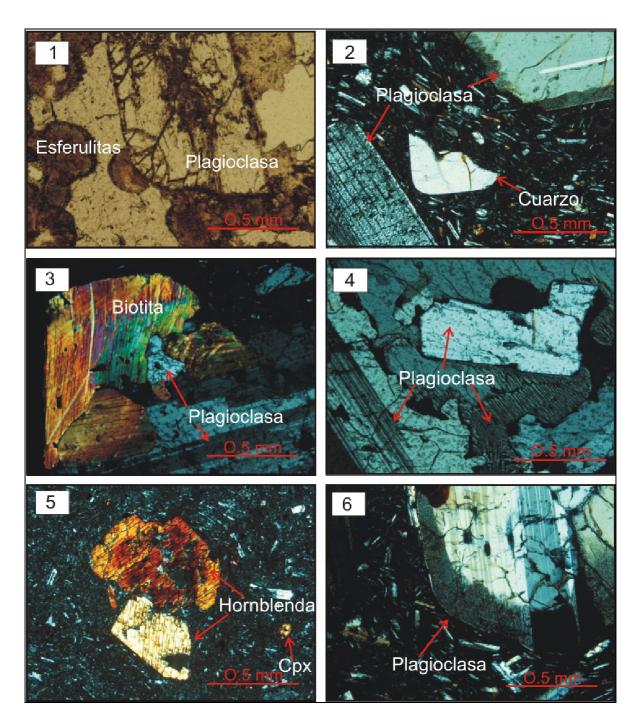


Figura 4.1. 1) Fotomicrografía en LN de la Ignimbrita Tetlapayac (TTC-25), donde se observan esferulitas color pardo y un fenocristal de plagioclasa fracturado. Las fotografías en LP 2, 3 y 4 forman parte de la Ignimbrita Las Pailas; 2) micro-fenocristal de cuarzo con bordes engolfados, macro-fenocristales de plagioclasa con bordes de reacción, dentro de una matriz vítrea con un pequeño porcentaje de microlitos; 3) macro-fenocristal de biotita en LP donde se observa un plegamiento de esta mica debido a la mecánica de emplazamiento de la roca. Junto a ella se observan macro-fenocristales de plagioclasa maclados; 4) aglomerado de macro-fenocristales de plagioclasa. Fotografías 5 y 6 constituyen los Domos e Ignimbritas dacítico-rioliticas; 5) la lamina TTC-34 muestra dos fenocristales de hornblenda con una matriz porfidica-microcristalina; 6) macro-fenocristal de plagioclasa con borde de reacción y maclas, dentro de una matriz vítrea. * LN=Luz Natural; LP=Luz Polarizada.

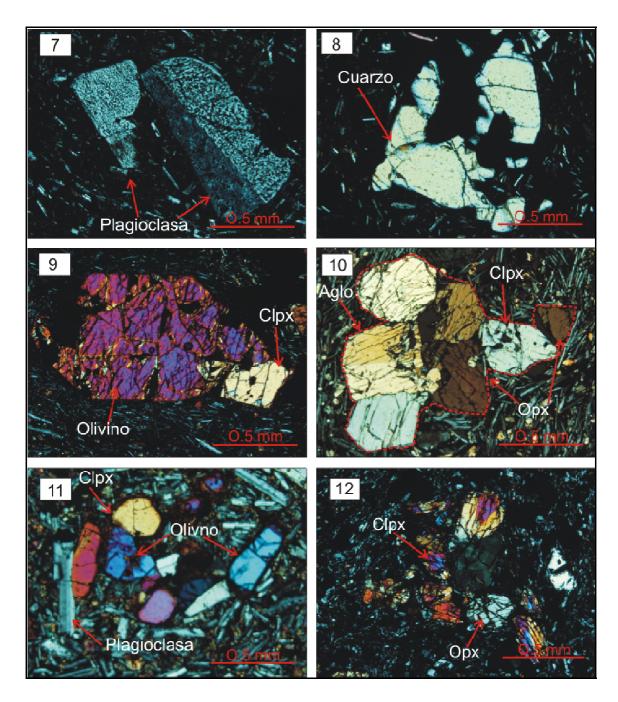


Figura 4.2. Fotomicrografías 7 y 8 corresponden a los Domos e Ignimbritas dacítico-rioliticas; 7) fenocristales de plagioclasa en LP, con textura de tamiz y maclado, en una matriz hialopilítica; 8) macro-fenocristal de cuarzo con bordes engolfados. Fotomicrografías 9 y 10 correspondiente a los basaltos; 9) Textura porfídica-afanítica con un fenocristal de olivino y un fenocristal de clinopiroxeno; 10) aglomerado de fenocristales de piroxeno en una matriz microlítica; 11) Traquiandesítica-basáltica, fotografía tomada en LP, se observa una matriz microlítica de plagioclasa y ferromagnesianos con fenocristales de olivino y clinopiroxeno; 12) enclave encontrado en el Cerro Blanco, matriz microlítica con fenocristales de piroxeno tomada en LP. *LP=Luz Polarizada.

Tabla 4.1. Abundancia modal de la mineralogía de las rocas del CVST-SCT. Los porcentajes fueron determinados con base en un conteo de entre 800 y 900 puntos por lámina delgada.

a) Domos e Ignimbritas dacítico-riolíticas.

Muestra	Textura	Matriz %	FK %	Plag %	Qz %	Clpx %	Mica %	Horn %	Opacos %	Total %	Tipo de Roca
TTC-07	Porfidica- microlítica	55		34	6	2		1		100	Dacita de Piroxeno
TTC-34	Porfídica microcristalina	64	2	14	10	4		5	1	100	Riolita de Hornblenda
TTC-10	Porfidica-vítrea esferulítica	72.5	0.5	23	3			1		100	Ignimbrita Riolítica
TTC-17	Porfidica vítrea	70	5	13	9		3			100	Ignimbrita Riolítica
TTC-20	Porfidica- microlítica vítrea	76.5		13	7		0.5		5	100	Ignimbrita Riolítica
TTC-28	Porfidica- microlítica	47		36	5	1		7	1	100	Ignimbrita Riolítica de Hornblenda
TTC-31	Porfidica- microlítica	60	3	16	13	3		4	1	100	Ignimbrita Riolítica
TTC-36	Vitroporfidica	49		30	15		3		3	100	Ignimbrita Riolítica de Biotita
TTC-38	Porfidica- microlítica	60	2	21	12				5	100	Ignimbrita Riolítica

b) Basalto y Traquiandesita-basáltica

Muestra	Textura	Matriz %	Plag %	Opx.	Clpx.	Ol. %	Opacos %	Total	Tipo de Roca
TTC-09	Microlítica fluidal	80.5	0	3.45	6	8.5	1.5	100	Andesita-Basáltica de Olivino
TTC-16	Micoliítica-fluidal	62.5	2.6		12.3	22	0.6	100	Andesita-Basáltica de Olivino
TTC-22	Microlítica-fluidal	69.2	5	0.7	10	12	2.8	100	Andesita-Basáltica de Olivino
TTC-26	Microlítica	66.1	12.1		9.2	12.2	0.4	100	Escoria Basáltica de Olivino
TTC-02	Microlítica	80	29		4	6.3	1.3	100	Basalto de Olivino y Augita
TTC-13	Vítrea-microlítica	76.3	12.2		7.7	3.8		100	Escoria Basáltica de Augita y Olivino
TTC-14	Microlítica-fluidal	67.3		6.6	13.7	12.4		100	Andesita-Basáltica de piroxeno
TTC-23	Vítrea-microlítica	82	8		4	6		100	Andesita-Basaltica de Olivino
TTC-32	Microlítica	70	8.6		14.1	6.8	0.5	100	Basalto de Olivino y Piroxeno
TTC-35	Microlítica	74.8	12.4	3.8	4.6	3.2	1.2	100	Andesita-Basáltica de Piroxeno y Olivino

c) Ignimbrita Tetlapayac

Muestras	Textura	Matriz %	Qz %	Plag.	Esferulitas %	Total %	Tipo de roca
TTC-25	Porfidica-esferulítica	40	9	16	35	100	Ignimbrita Riolítica

Abreviaciones: Plag = plagioclasa, FK = sanidino, Opx = hiperstena Clpx = augita-diópsida, Ol=olivino, Qz = cuarzo.

4.2 Geoquímica de elementos mayores y traza

4.2.1 Elementos mayores

Los elementos mayores son aquellos que se presentan en una roca en concentraciones mayores al 1% en peso (10 000 ppm) y son los principales componentes químicos de los minerales formadores de rocas. Las concentraciones de estos elementos pueden ser usadas para clasificar una roca y para entender la composición mineralógica que ésta presenta y sus variaciones posteriores, debidas a procesos de cristalización fraccionada, mezcla de magmas y/o asimilación cortical (Rollinson, 1993). Los elementos mayores son: SiO₂, Al₂O₃, Fe₂O₃, MgO, CaO, K₂O, Na₂O. Así mismo, se incluyen en un análisis químico a los elementos menores como TiO₂, MnO y P₂O₅, cuyas concentraciones varían de 0.1% a 1% en peso (de 1 000 a 10 000 ppm). La Tabla 4.2 presenta las concentraciones de elementos mayores obtenidas de 30 muestras de roca del área de estudio. Para esta tesis se utilizaron los principales diagramas de variación de elementos mayores como Álcalis total vs. Sílice (Total alkali vs. silica = TAS) y los diagramas Harker, con el fin de identificar sus patrones de variación.

Diagrama de TAS

En la figura 4.3 se presenta el diagrama de clasificación de TAS (Le Bas et al., 1986)) para los datos químicos calculados en una base anhidra, es decir los datos reportados por el laboratorio son recalculados al 100%, sin considerar la perdida por calcinación (PXC). Las pérdidas por calcinación representan el contenido de agua y otros volátiles presentes en la muestra, y que no forman parte de ella.

En la Figura 4.3 se observa que las rocas del área varían de basalto a riolita con más de 75% en peso de SiO₂. Se puede observar la existencia de un "gap" cuya concentración de SiO₂ se encuentra entre 57 y 66% en peso, salvo una muestra de un enclave (muestra

TTC-19A) que tiene una composición de andesita baja en sílice. Con base en las descripciones de campo y estratigráficas de las rocas muestreadas, se puede asegurar que no existen afloramientos que presenten una composición de andesita a dacita. La mayoría de las rocas caen en el campo de la Serie Subalcalina propuesta por Irvine y Baragan (1971) con excepción de la muestra TTC-08 que esta en el borde de la Serie Alcalina (Figura 4.3).

Las rocas que pertenecen a la Unidad Volcánica Superior tienen un contenido de sílice que varía de 50 a 55 % en peso y de 4 a 6 % en peso de álcalis y se clasifican en el campo de basalto, traquiandesita-basáltica y andesita-basáltica. Las variaciones químicas para la Unidad Volcánica Inferior son relativamente más importantes, ya que se tiene lo siguiente: Las muestras de la Ignimbrita Las Pailas presentan un amplio rango de variaciones en sílice, de 68 a 73% en peso (TTC-36, TTC-37, TTC-20, TTC-28, TTC-30A, TTC-31 y TTC-38), lo que da como resultado una composición dacítica – riolítica. Las muestras de los Domos e Ignimbritas muestran concentraciones de sílice relativamente similares (67 a 71% en peso), caen de igual forma en los campos de dacita y riolita (muestras TTC-18, TTC-19 y TTC-34). Por último, la roca más antigua correspondiente a la ignimbrita Tetlapayac (TTC-25), presenta un contenido de sílice de 76% en peso, la cual sería la roca más evolucionada del área de estudio. Una sola muestra cayó dentro del campo de las andesitas que correspondería al enclave encontrado dentro del conjunto dómico Cerro Blanco (TTC-19A).

Diagramas SiO₂ vs. K₂O y triangular AFM

En la Figura 4.4a se muestra la clasificación de las rocas analizadas dentro del campo subalcalino de Peccerillo y Taylor (1976). Se observa que las rocas basálticas, traquiandesita-basálticas y andesita-basálticas, así como el enclave caen dentro de la Serie Calcoalcalina. Mientras que las rocas dacíticas y riolíticas caen dentro de la Serie Calcoalcalina y la serie Calcoalcalina rica en K. Estas series magmáticas se asocian comúnmente con ambientes tectónicos de subducción. Además, se puede observar que todos los datos químicos para las dos unidades volcánicas presentan una correlación positiva para estos dos óxidos, lo cual puede hablar del incremento de este elemento con el avance de los procesos de fraccionamiento.

La Figura 4.4b muestra el diagrama triangular AFM: A = álcalis (Na₂O + K₂O); F= (FeO) y MgO (porcentaje en peso) de Irvine y Baragar (1971) que distingue entre las series toleítica y calcoalcalina (dentro de la serie subalcalina). Las rocas analizadas del CVST-SCT presentan una tendencia típica dentro de la serie calcoalcalina. Las rocas más enriquecidas en álcalis son las rocas de la unidad Volcánica Inferior; la Ignimbrita Tetlapayac es la más enriquecida de todas.

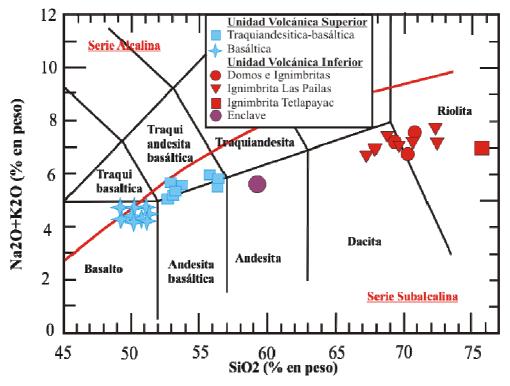


Figura 4.3. Diagrama de TAS (Le Bas et al., 1986) utilizado en la clasificación de las rocas volcánicas del CVST-SCT. La curva roja separa los campos de las series alcalina de la subalcalina (Irvine y Baragar, 1971).

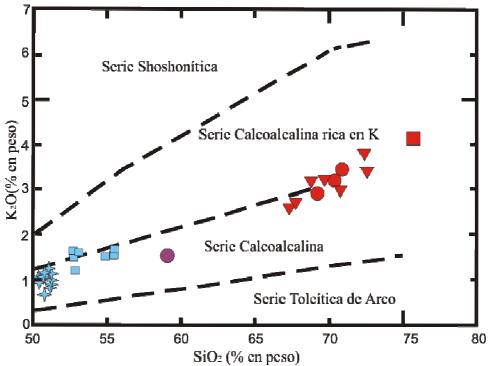


Figura 4.4. División de las rocas subalcalinas, utilizando el diagrama K₂O vs sílice de Peccerillo y Taylor (1976). La simbología es la misma que la utilizada en la Figura 4.3.

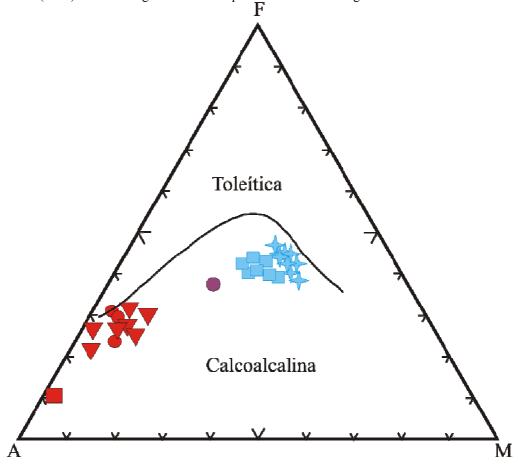


Figura 4.5. Diagrama AFM: A= álcalis (Na₂O + K₂O): F= (FeO total) y MgO (% en peso) de Irvine y Baragar (1971) en el que se observa que todas las muestras siguen un comportamiento Calcoalcalino. La simbología es la misma que la utilizada en la Figura 4.3.

Tabla 4.2. Concentraciones de elementos mayores (% en peso) para las rocas del CVST-SCT, agrupadas por sub-unidad.

a) Basaltos

Muestra	TTC-03	TTC-04	TTC-08	TTC-09	TTC-11	TTC-16	TTC-22	TTC-24	TTC-26	TTC-32
Tipo de	Basalto									
roca										
%										
SiO_2	49.97	50.62	49.37	50.06	50.75	50.49	50.55	51.30	50.97	50.21
TiO_2	1.68	1.66	1.78	1.56	1.61	1.61	1.57	1.67	1.61	1.611
Al_2O_3	16.48	15.74	16.85	15.69	16.29	17.09	17.49	16.27	16.17	16.22
Fe_2O_3t	9.41	10.07	10.52	9.64	9.98	9.05	8.97	10.02	9.84	10.01
MnO	0.15	0.15	0.15	0.14	0.15	0.13	0.16	0.17	0.16	0.16
MgO	8.28	7.67	6.17	7.94	6.90	6.07	6.26	7.57	7.60	7.92
CaO	8.86	8.21	8.494	8.28	8.44	9.08	8.94	7.87	8.18	8.34
Na_2O	3.84	3.70	3.761	3.71	3.53	3.56	3.65	3.59	3.59	3.58
K_2O	0.91	1.12	0.969	1.02	0.86	0.95	0.79	1.21	1.16	0.86
P_2O_5	0.38	0.60	0.656	0.55	1.55	0.37	0.36	0.69	0.61	0.56
PXC	-0.13	0.13	1.02	1.30	0.63	1.55	1.53	-0.33	0.04	0.34
Total	99.83	99.67	99.738	99.88	99.70	99.95	100.28	100.06	99.94	99.90

Tabla 4.2. Concentraciones de elementos mayores (% en peso) para las rocas del CVST-SCT, agrupadas por sub-unidad (continuación).

b) Traquiandesitica basáltica, andesita-basáltica y enclave.

Muestra	TTC-33	TTC-01	TTC-02	TTC-12	TTC-14	TTC-23	TTC-13	TTC-35	TTC-19A
Tipo de	Basalto	Andesita	Traqui-	Andesita	Traqui-	Traqui-	Traqui-	Traqui-	Andesita
roca		basáltica	andesita	basáltica	andesita	andesita	andesita	andesita	
			basáltica		basáltica	basáltica	basáltica	basáltica	
%									
SiO_2	51.26	52.44	54.67	52.69	53.69	54.92	55.25	52.47	58.45
TiO_2	1.64	1.49	1.58	1.40	1.43	1.42	1.49	1.40	0.78
Al_2O_3	15.40	16.87	16.71	15.45	15.83	16.84	16.63	16.94	18.28
Fe_2O_3t	10.02	8.62	8.24	8.58	8.71	7.87	7.95	8.91	5.66
MnO	0.143	0.13	0.12	0.12	0.13	0.13	0.11	0.13	0.08
MgO	7.95	5.11	4.78	6.26	6.56	4.96	5.07	5.66	2.92
CaO	8.24	8.79	7.14	8.98	8.96	6.91	7.05	8.28	6.85
Na_2O	3.50	3.83	4.19	3.71	3.57	3.73	4.00	3.92	4.03
K_2O	1.10	1.59	1.47	1.56	1.48	1.62	1.56	1.15	1.44
P_2O_5	0.60	0.52	0.51	0.49	0.49	0.52	0.45	0.43	0.18
PXC	-0.09	0.31	0.37	0.68	0.1	0.77	0.45	0.43	1.12
Total	99.76	99.71	99.78	99.94	99.95	99.69	100.02	99.71	99.77

Tabla 4.2. Concentraciones de elementos mayores (% en peso) para las rocas del CVST-SCT, agrupadas por sub-unidad (continuación).

c) Ignimbrita Las Pailas, Domos e ignimbrita dacítico-riolítico e ignimbrita Tetlapayac

Muestra	TTC-18	TTC-19	TTC-34	TTC-20	TTC-28	TTC-30	TTC-31	TTC-36	TTC-37	TTC-38	TTC-25
Tipo de	Riolita	Dacita	Riolita	Dacita	Dacita	Riolita	Riolita	Riolita	Dacita	Dacita	Riolita
roca											
%											
SiO_2	68.13	68.71	69.93	68.20	68.36	71	70.09	71.50	66.62	66.45	70.97
TiO_2	0.462	0.44	0.39	0.46	0.45	0.38	0.41	0.32	0.49	0.49	0.23
Al_2O_3	16.47	15.13	14.83	15.56	14.79	15.11	14.68	15.06	16.07	16.69	14.42
Fe_2O_3t	3.51	3.21	2.89	3.38	3.13	2.93	3.13	2.47	3.80	3.79	0.96
MnO	0.04	0.06	0.07	0.07	0.04	0.05	0.04	0.04	0.07	0.08	0.03
MgO	0.42	1.11	0.90	0.98	1.14	0.27	0.91	0.47	1.43	0.82	0.00
CaO	1.33	3.32	2.30	3.03	3.23	1.17	2.58	1.33	3.86	2.97	0.64
Na ₂ O	3.48	4.20	4.05	4.26	3.76	3.69	4.19	3.87	4.10	4.06	2.59
K_2O	3.10	2.93	3.37	3.11	3.15	3.32	2.96	3.76	2.55	2.69	3.85
P_2O_5	0.03	0.10	0.09	0.10	0.07	0.05	0.10	0.02	0.10	0.09	0.07
PXC	2.73	0.70	0.99	0.87	1.53	2.03	0.82	1.38	0.67	1.27	5.91
Total	99.89	99.92	99.78	100.02	99.66	99.99	99.91	100.24	99.77	99.42	99.66

Nota: Estos análisis fueron realizados por medio de Fluorescencia de rayos X en el laboratorio de FRX del Instituto de Geología de la UNAM; PXC: Pérdida por calcinación

Cálculo de la norma CIPW

Se realizó el cálculo de la norma CIPW para determinar la mineralogía teórica de todos los análisis de elementos mayores de las rocas del Campo Volcánico Tetlapayac-Santa Cruz-El Tepozán. Para esto se utilizó el programa IGPET y los resultados se muestran en la Tabla 4.3. Para la Unidad Volcánica Inferior, la Ignimbrita riolítica Tetlapayac tiene una mineralogía normativa compuesta por *cuarzo* (47%), *ortoclasa* (24%), *albita* (23%), *anortita* (2.85%), *corindón* (5%) y *hematita* (1%). Para el caso de la Ignimbrita riolítica Las Pailas se tiene la siguiente mineralogía: *cuarzo* (34-24%), *ortoclasa* (22-19%), *albita* (32-35%), *anortita* (6-18%), *corindón* (2-5%), *hiperstena* (1-3%), *ilmenita* (3-3.8%) y *titanita* (1%). Los Domos e Ignimbritas Dacítico-Riolíticas presentan una mineralogía normativa compuesta por *cuarzo* (25%), *ortoclasa* (17%), *albita* (36%), *anortita* (14%), *hiperstena* (3%), *hematita* (3%) y *titanita* (1%).

En el caso de la Unidad Volcánica Superior se tiene la siguiente mineralogía normativa: Lavas de traquiandesita-basáltica y andesita-basáltica se calculó: *cuarzo* (3-7%), *ortoclasa* (9%), *albita* (33-36%), *anortita* (21-24%), *hiperstena* (9-11%), *apatito* (1%) y

titanita (3.1-3.6%). Para las rocas basálticas se puede reportar lo siguientes: cuarzo (0-2%), ortoclasa (4-6%), albita (31%), anortita (23-29%), olivino (1%), hiperstena (12-15%), hematita (9%), apatito (1.27%) y titanita (3.46%). Esta mineralogía calculada es muy similar a la que se ha calculado para rocas de otros centros volcánicos de la FVTM, como para el caso del estratovolcan Telapón (García-Tovar, 2009).

Diagramas de Harker

Los diagramas tipo Harker, son diagramas bidimensionales X-Y que utilizan como índice de diferenciación la concentración de SiO₂ en el eje de las abscisas (x), contra otros óxidos mayores en el eje de las ordenadas (y). Estos diagramas se han usado como parámetro indicador del fraccionamiento mineral y permiten obtener información sobre las fases minerales involucradas en el proceso de diferenciación de un grupo de rocas relacionadas genéticamente (Rollinson, 1993). Las tendencias químicas observadas en los diagramas de variación pueden ser el resultado de los procesos que sufre el magma para producir los diferentes tipos de roca. En el caso de las rocas ígneas, los patrones observados pueden representar procesos típicos de cristalización fraccionada, pero también pueden ser producidos por procesos de mezcla de magmas o asimilación cortical.

En la Figura 4.5 se presentan diversos diagramas de tipo Harker para las rocas del CVST-SCT. Si se toma en cuenta todas las muestras analizadas del área de estudio, se pueden observar patrones de correlación negativa del SiO₂ con respecto a las concentraciones de Fe₂O₃, MnO, CaO, MgO, TiO₂ y P₂O₅. Mientras que el SiO₂ respecto del K₂O presenta una correlación positiva. Por otro lado, el diagrama de Al₂O₃ parece presentar una correlación casi horizontal con respecto al SiO₂ para todas las rocas. En el caso del SiO₂ respecto del Na₂O presenta un comportamiento particular, ya que no se observa un patrón homogéneo. Las rocas de la Unidad Volcánica Superior presentan un comportamiento positivo, mientras que las de la Unidad Inferior es negativo. Es importante remarcar que las tendencias de correlación, marcadas por líneas en la Figura 4.6, no son continuas entre las dos diferentes unidades. Se puede observar que las tendencias tienen el mismo signo de correlación, pero con pendientes diferentes. Así, las correlaciones negativas mostradas por las rocas de la Unidad Volcánica Superior presentan una mayor pendiente en comparación con las rocas de la Unidad Volcánica Inferior. Este comportamiento se debe a que las rocas de las dos unidades

fueron emplazadas en diferentes periodos de tiempo y por lo tanto, los procesos de cristalización fueron distintos. Sin embargo, aunque los patrones de correlación son ligeramente diferentes para las rocas de los dos tipos de unidades, de manera general éstos se pueden explicar como producidos por procesos de cristalización fraccionada de plagioclasa, óxido de hierro y titanio, piroxeno y apatito, ocurridos en los magmas de alta temperatura y que empobrecieron al fundido residual.

En la Figura 4.6 se puede remarcar también que las muestras de basaltos, andesitas-basálticas y traquiandesitas-basálticas presentan una cierta dispersión en sus concentraciones (ejemplo SiO₂ vs. MgO, CaO y Fe₂O₃). Esto, puede deberse a que no existe una relación genética directa entre ellas o a que sufrieron procesos petrogenéticos diferentes. Con el tratamiento e interpretación de los datos de elementos traza de las mismas rocas, que se efectuarán más adelante, se contarán con mayores evidencias sobre los procesos petrogenéticos ocurridos a estas rocas.

En lo que respecta a las rocas de la Unidad Volcánica Inferior, se puede observar que éstas presentan bajas concentraciones en TiO₂, Fe₂O₃, MnO, MgO, CaO y P₂O₅, lo cual se explica por la casi ausencia de minerales como magnetita, ilmenita, plagioclasa, apatito y ferromagnesianos, como se describió en la sección de petrografía. Por lo tanto, tienen un comportamiento diferente en comparación con la Unidad Volcánica Superior.

Tabla 4.3 Resultados del cálculo de la norma CIPW para las rocas del Campo Volcánico Santiago Tetlapayac-Santa Cruz-El Tepozán.

muestra	cuarzo	ortoclasa	albita	anortita	corindón	olivino	diópsida	hiperstena	Ilmenita	hematita	apatito	Titanita	rutilo	total
TTC-01	2.65	9.40	32.32	24.19			8.69	8.70	0.28	8.62	1.18	3.29		99.32
TTC-02	5.78	8.69	35.45	22.42			3.61	10.23	0.26	8.24	1.18	3.55		99.40
TTC-03		5.38	32.49	25.04		5.98	8.69	8.05	0.32	9.41	0.88	3.71	1.93	99.96
TTC-04B	0.46	6.62	31.31	23.03			6.68	16.00	0.32	10.07	1.37	3.66		99.54
TTC-08	0.71	5.73	31.82	26.23			4.64	13.29	0.32	10.51	1.53	3.95		98.74
TTC-09		6.03	31.31	23.16		0.73	7.35	13.35	0.30	9.64	1.27	3.44		
TTC-11	4.16	5.08	29.87	26.06			0.52	16.95	0.32	9.98	3.59	3.54		100.06
TTC-12	2.37	9.22	31.39	20.87			12.51	9.79	0.26	8.58	1.14	3.10		99.23
TTC-13	6.66	9.22	33.76	22.86			3.44	11.03	0.24	7.95	1.04	3.35		99.55
TTC-14	3.95	8.75	30.21	22.80			10.91	11.28	0.28	8.71	1.14	3.13		101.14
TTC-16	1.89	5.61	30.12	27.85			7.54	11.60	0.28	9.05	0.86	3.59		98.39
TTC-18B	32.63	18.32	29.45	6.40	5.05			1.05	0.09	3.51	0.07		0.53	97.08
TTC-19	25.02	17.31	35.54	13.78			0.44	2.56	0.13	3.21	0.23	1.04		99.26
TTC-19E	12.11	8.51	34.10	27.54			2.23	6.24	0.17	5.66	0.42	1.69		98.67
TTC-20	23.88	18.38	36.05	12.23				2.44	0.15	3.38	0.23	0.10	0.43	99.27
TTC-22	7.99	4.67	30.89	20.64	3.07			15.59	0.34	8.97	8.41		1.82	102.39
TTC-23	7.69	9.57	31.56	24.42			1.50	11.62	0.28	7.87	1.20	3.13		98.92
TTC-24	1.64	7.15	30.29	24.59			3.65	17.14	0.36	9.99	1.60	3.60		100.01
TTC-25	42.67	24.29	23.35	2.845	5.35				0.06	1.03	0.19		0.28	100.06
TTC-26	2.02	6.80	29.70	24.56			5.72	15.98	0.32	9.93	1.41	3.59		100.02
TTC-28	26.26	18.61	31.90	14.13			0.02	2.83	0.09	3.13	0.16	0.99		98.13
TTC-30	34.39	19.09	31.22	5.48	3.54			0.70	0.11	2.93	0.12		0.41	97.98
TTC-31	27.58	17.49	35.45	12.51				2.27	0.09	3.13	0.02	0.16	0.38	99.08
TTC-33	2.17	5.97	29.62	23.33			6.59	16.74	0.30	10.02	1.39	3.64		99.76
TTC-35	3.12	6.80	33.17	25.23			6.75	10.97	0.28	8.91	1.00	3.08		99.29
TTC-36	31.40	22.51	33.17	6.57	2.25			1.20	0.09	2.50			0.35	100.08
TTC-37	23.18	15.25	35.03	18.05				3.61	0.15	3.83	0.23	0.45	0.29	100.07
TTC-38	25.17	15.96	34.35	14.15	1.90			2.04	0.17	3.79	0.21		0.51	98.25

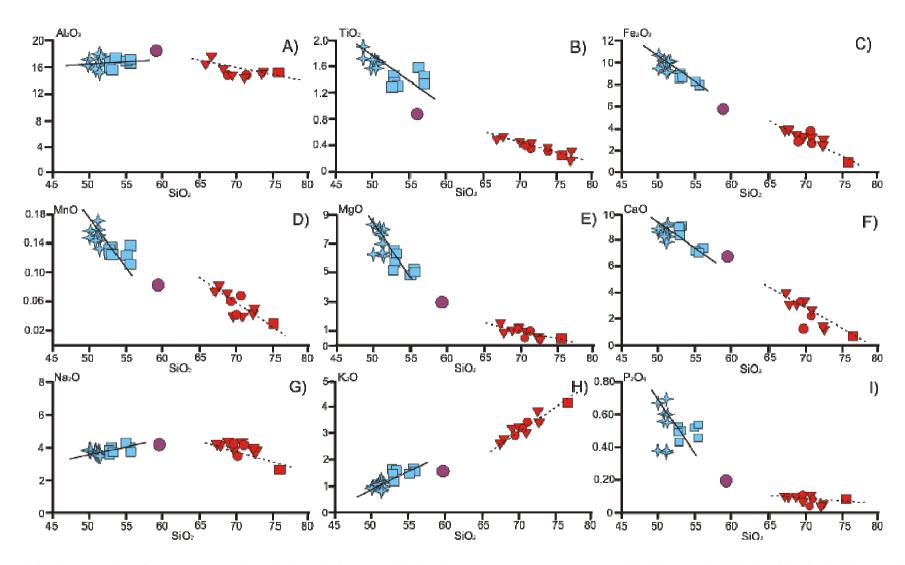


Figura 4.6. Diagramas de Harker que muestran las variaciones de los contenidos de elementos mayores con respecto a sílice (% en peso) del CVST-SCT (la simbología es la misma que la Figura 4.3.)

4.2.2 Elementos Traza

Los elementos traza son aquellos que se presentan en una roca en concentraciones menores a 0.1% en peso (<1 000 ppm) y aunque no forman minerales por si solos, son capaces de sustituir a los elementos mayores y menores en los minerales formadores de rocas. La presencia de estos elementos, puede ser usada como indicador de procesos petrogenéticos y, en ciertos casos, puede servir para discriminar ambientes tectónicos (Rollinson, 1993). Los elementos traza se dividen en elementos compatibles, los cuales tienden a incorporarse en las fases cristalinas, y elementos incompatibles, los cuales se quedan en el magma. Una de las formas de determinar si un elemento traza es compatible o incompatible en una roca, es la de utilizar el concepto de Coeficiente de Partición. Este consiste en evaluar la concentración de un elemento traza presente en un mineral dado, dividido por la concentración de ese mismo elemento en el magma o fundido residual (K= (Concentración de un elemento en un mineral/Concentración de ese elemento en el magma)). El valor de K está en función de la composición del magma, la temperatura y presión del mismo. Los elementos traza con coeficiente de partición >1 (p. ej. Ni, Cr), son denominados compatibles. Estos son preferentemente retenidos en los primeros minerales formados por procesos de cristalización fraccionada o bien, ser retenidos por los sólidos residuales durante procesos de fusión parcial. Los elementos que tiene un coeficiente de partición <1 se llaman incompatibles. Estos últimos se encuentran concentrados en la fase liquida durante procesos de fusión y cristalización.

El grado de compatibilidad de los elementos traza puede identificarse en relación a su carga/radio, pero también con respecto al potencial de ionización (relación valencia/radio iónico). Así, los elementos que son incompatibles con respecto a los minerales normales del manto, como olivino, piroxeno, espinela y granate se pueden dividir según su carga y potencial de ionización en dos grupos:

- LILE, por sus siglas en inglés (*large ion lithophile elements*): son elementos de carga iónica baja y de radio iónico grande, con potenciales iónicos <2, entre los que se incluyen elementos como Cs, Sr, Rb, K y Ba, así mismo Eu divalente y Pb divalente.
- HFSE, por sus siglas en inglés (high field strength elements): son elementos de carga iónica alta y radio iónico pequeño, con potenciales iónicos >2, entre los

que se incluyen elementos como Sc, Y, Th, U, Zr, Hf, Ti, Nb y Ta, así como los elementos de Tierras Raras (REE por sus siglas en inglés).

Algunos elementos traza pueden ser movilizados por hidrotermalismo, metamorfismo o cambios mineralógicos que ocurren durante la alteración y recristalización de las rocas. Así se tiene que los elementos LILE son relativamente más móviles que los HFSE (Rollinson, 1993).

Los elementos traza, como se mencionó previamente, permiten discriminar diferentes procesos petrológicos que no se pueden apreciar con el estudio de los elementos mayores; ya que los elementos traza, no afectan significativamente las propiedades físicas y químicas de las rocas. Por lo que un enriquecimiento o empobrecimiento permite diferenciar dichos procesos.

Diagramas de multielementos en rocas ígneas

La representación gráfica de los resultados químicos de elementos traza, en los denominados "diagramas de araña" requiere de la realización de una normalización de los datos con respecto a valores ya establecidos. Esta normalización se efectúa con el fin de evitar patrones de "zig-zag" de los datos, debidos a las abundancias de los elementos en la naturaleza (Ley de Oddo-Harkins) y para establecer comparaciones con otras rocas y aportar interpretaciones sencillas (Rollinson, 1993).

Existen varias maneras de normalizar los elementos traza. La primera es utilizar como patrones las concentraciones de elementos traza de un modelo de la Tierra primitiva no diferenciada, la segunda es considerar un manto de composición tipo MORB (Middle Ocean Ridge Basalt) o diferenciado, la tercera es considerar un manto primitivo no diferenciado y la última es normalizar los elementos traza con respecto a los presentes en un cuerpo condrítico (meteorito) promedio. Para este trabajo se utilizó la normalización con respecto a un manto primitivo. Existen varias composiciones de elementos traza propuestas para el manto primitivo, las cuales no varían sustancialmente (ejemplo Wood et al., 1979; Sun y McDonough, 1989). La razón de utilizar esta normalización se debe al hecho de suponer que las rocas volcánicas del área de estudio fueron producidas por procesos de fusión parcial a partir de un manto no modificado. Para esto se utilizaron los datos de Sun y McDonough (1989). Los resultados de los

análisis obtenidos en el presente trabajo se presentarán en diagramas semi-logarítmicos tipo Masuda-Coryell.

Resultados de elementos traza

En la Figura 4.7 se muestran patrones de elementos traza para las rocas félsicas de la Unidad Volcánica Inferior. Se observa un alto enriquecimiento (anomalías positivas) de los elementos LILE, del K y Pb con respecto a los elementos HFSE (se manifiesta como anomalías negativas). Se puede observar también que los patrones son muy similares para todas las rocas silícicas, lo que podría indicar que sufrieron procesos petrogenéticos similares. El enriquecimiento de los elementos de radio iónico grande (LILE) con respecto a los elementos de alto potencial de ionización (HFSE) podrían indicar la existencia de una fuente magmática situada en un manto empobrecido, la cual es modificada por fluidos derivados de los procesos de subducción, en una zona tectónica convergente.

En lo que concierne a los patrones de elementos traza que presentan las rocas de la Unidad Volcánica Superior (traquiandesita-basáltica, andesita-basáltica y basalto), se tiene lo siguiente (Figura 4.8). Estas rocas representan, de una manera general, ligeras anomalías positivas de elementos LILE, además del K y Pb con respecto a los elementos HFSE y Ti, que presentan anomalías negativas. No obstante dichas anomalías son menos pronunciadas que las observadas para las rocas félsicas del área de estudio. De manera detallada, se ve en la Figura 4.8 que los basaltos presentan un comportamiento homogéneo, con ligeras anomalías positivas de Ba, K, Th y Pb, y moderadas anomalías negativas de Cs, Rb y Ti, pero no se observan anomalías negativas de elementos típicos de alto potencial de ionización (Nb y Ta). En cuanto a los patrones de elementos traza de las andesitas-basálticas y traquiandesitas-basálticas, se pueden observar que son similares (Figura 4.8), aunque con ligera dispersión en los valores de los elementos como el Cs, Nb, Ta y Sr. Sin embargo, se puede constatar que existe enriquecimiento de elementos de radio iónico grande con respecto a los elementos de alto potencial de ionización, lo cual, como ya se mencionó, se ha asociado con magmatismo producido por procesos de subducción.

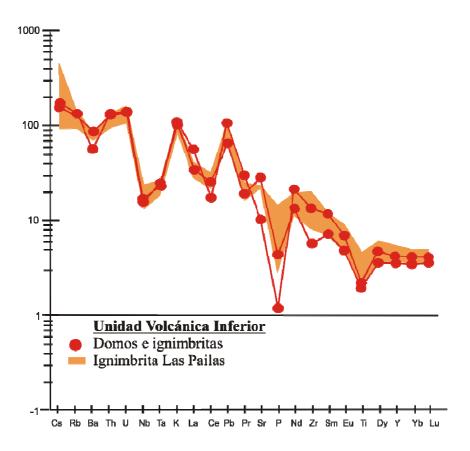


Figura 4.7. Patrones de elementos traza para los domos e ignimbritas de composición dacita-riolita y la Ignimbrita Las Pailas normalizados con respecto al manto primitivo (Sun & McDonough, 1989), note las anomalías negativas de Nb, Ta, P y Ti, y positivas de Rb, Ba, K y Pb.

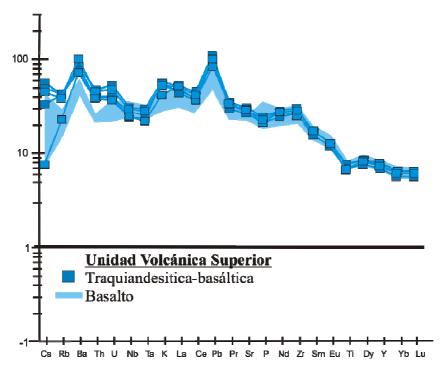


Figura 4.8. Patrones de elementos traza para las rocas basálticas, andesita-basálticas y traquiandesita-basálticas normalizados con respecto al manto primitivo (Sun y McDonough, 1989). Puede observarse que los basaltos no presentan anomalías negativas de Nb y Ta con respecto a los elementos LILE.

Tabla 4.4. Concentración en ppm (partes por millón) de elementos traza de las rocas del área de estudio.

Muestra	TTC-01	TTC-02	TTC-13	TTC-14	TTC-35	TTC-04	TTC-09	TTC-11	TTC-22
Tipo de	Andesita	Traqui-	Traqui-	Traqui-	Traqui-	Basalto	Basalto	Basalto	Basalto
roca	basáltica	andesita	andesita	andesita	andesita				
		basáltica	basáltica	basáltica	basáltica				
ppm	12,867	8,864	11,898	11,188	10,140	10,340	10,957	7,279	7,247
Li	1,894	1,835	1,750	1,708	1,595	1,639	1,583	1,579	1,379
Be	3,469	4,084	4,716	3,902	1,722	3,384	3,140	3,159	1,366
В	0,510	0,498	0,437	0,479	0,429	0,596	0,553	0,543	0,377
P		19,354	,		22,078		ŕ	23,866	
Sc	18,195	ŕ	18,295	20,128	,	23,170	23,335	ŕ	24,119
Ti	1,477	1,571	1,475	1,390	1,414	1,649	1,559	1,589	1,618
V	147,129	130,840	132,033	143,338	158,181	172,971	169,882	167,728	171,819
Cr	183,763	190,530	268,417	324,484	185,736	424,969	420,568	450,413	216,288
Со	25,474	25,386	25,292	29,724	30,378	36,024	36,047	37,440	32,219
Ni	68,917	69,253	68,312	124,804	68,195	151,641	167,334	166,679	53,170
Cu	78,235	30,267	32,325	32,147	34,356	44,660	46,795	15,224	28,278
Zn	112,344	85,260	80,614	85,610	91,446	91,510	89,125	85,151	79,036
Mo	2,194	1,427	2,309	2,382	1,158	2,200	1,730	2,210	1,274
Sn	1,398	1,254	1,325	1,297	1,135	1,254	1,145	1,254	1,083
Sb	0,098	0,053	0,070	0,073	0,047	0,056	0,045	0,068	0,033
Hf	6,498	6,210	5,878	6,051	5,576	5,627	5,431	5,447	4,624
\mathbf{W}	0,243	0,208	0,226	0,226	0,170	0,188	0,149	0,167	0,152
Cs	0.421	0.247	0.371	0.341	0.057	0.311	0.249	0.297	0.058
Rb	25.053	24.527	24.915	22.920	13.631	16.670	13.487	14.068	8.999
Ba	569.415	540.810	498.136	656.380	465.344	342.252	339.283	339.262	283.386
Th	3.874	3.169	3.212	3.530	3.090	1.869	1.712	1.760	1.723
U	1.051	0.766	0.807	0.938	0.730	0.624	0.558	0.580	0.430
Ta	1.119	0.984	0.904	1.063	0.859	1.064	0.980	1.007	0.872
K	1.602	1.476	1.564	1.483	1.156	1.125	1.034	0.872	0.801
Pb	7.302	6.474	6.335	6.618	5.563	4.511	4.272	4.488	3.227
Sr	616.222	545.947	534.891	580.210	580.747	471.085	474.196	470.594	565.467
P	0.510	0.498	0.437	0.479	0.429	0.596	0.553	0.543	0.377
Zr	317.688	291.978	279.338	297.538	260.319	281.034	272.120	288.972	217.113
Ti	1.477	1.571	1.475	1.390	1.414	1.649	1.559	1.589	1.618
Y	32.805	32.068	29.950	32.150	34.486	32.884	31.627	32.566	28.377
1	52.003	32.000	47.730	J2.1JU	JT.+0U	32.004	31.027	52.500	20.311

Nota: Estos análisis fueron realizados por medio ICP-MS en laboratorios de Juriquilla, Querétaro

Tabla 4.4. (Continuación) Concentración en ppm (partes por millon) de elementos traza de las rocas del área de estudio

ppm 11,579 Be 1,889 B 4,132 P 0,718 Sc 22,503 Ti 1,675 V 168,209 Cr 352,531 Co 35,435 Ni 160,481 Cu 42,296 Zn 100,067 Mo 1,765 Sn 1,274 Sb 0,053 Hf 6,523 W 0,170 Cs 0,317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1,226 K 1,209 Pb 5,147 Sr 492.363 P 0,718	TTC-26 Basalto	TTC-33 Basalto	TTC-18 Riolita	TTC-19 Riolita	TTC-31 Riolita	TTC-37 Dacita	TTC-28 Dacita	TTC-25 Riolita
Be 1,889 B 4,132 P 0,718 Sc 22,503 Ti 1,675 V 168,209 Cr 352,531 Co 35,435 Ni 160,481 Cu 42,296 Zn 100,067 Mo 1,765 Sn 1,274 Sb 0,053 Hf 6,523 W 0,170 Cs 0,317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1,226 K 1,209 Pb 5,147 Sr 492.363 P 0,718								
B 4,132 P 0,718 Sc 22,503 Ti 1,675 V 168,209 Cr 352,531 Co 35,435 Ni 160,481 Cu 42,296 Zn 100,067 Mo 1,765 Sn 1,274 Sb 0,053 Hf 6,523 W 0,170 Cs 0.317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	9,573	9,445	13,613	19,122	16,375	16,689	17,072	13,062
P 0,718 Sc 22,503 Ti 1,675 V 168,209 Cr 352,531 Co 35,435 Ni 160,481 Cu 42,296 Zn 100,067 Mo 1,765 Sn 1,274 Sb 0,053 Hf 6,523 W 0,170 Cs 0.317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23,498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	1,671	1,645	1,615	1,744	1,785	1,523	1,747	1,703
Sc 22,503 Ti 1,675 V 168,209 Cr 352,531 Co 35,435 Ni 160,481 Cu 42,296 Zn 100,067 Mo 1,765 Sn 0,053 Hf 6,523 W 0,170 Cs 0,317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	3,861	3,501	10,798	15,947	9,133	8,249	16,601	14,459
Ti 1,675 V 168,209 Cr 352,531 Co 35,435 Ni 160,481 Cu 42,296 Zn 100,067 Mo 1,765 Sn 1,274 Sb 0,053 Hf 6,523 W 0,170 Cs 0.317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	0,611	0,601	0,016	0,091	0,295	0,087	0,058	0,059
Ti V 168,209 Cr 352,531 Co 35,435 Ni 160,481 Cu 42,296 Zn 100,067 Mo 1,765 Sn 1,274 Sb 0,053 Hf 6,523 W 0,170 Cs 0,317 Rb 16,889 Ba 398,610 Th 2.037 U 0.693 Nb 23,498 Ta 1,226 K 1,209 Pb 5,147 Sr 492,363 P 0,718	22,854	22,681	7,457	6,727	12,687	9,060	6,575	3,137
Cr 352,531 Co 35,435 Ni 160,481 Cu 42,296 Zn 100,067 Mo 1,765 Sn 1,274 Sb 0,053 Hf 6,523 W 0,170 Cs 0,317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23,498 Ta 1,226 K 1,209 Pb 5,147 Sr 492,363 P 0,718	1,617	1,598	0,440	0,405	0,936	0,449	0,416	0,232
Cr 352,531 Co 35,435 Ni 160,481 Cu 42,296 Zn 100,067 Mo 1,765 Sn 0,053 Hf 6,523 W 0,170 Cs 0,317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	172,987	167,786	27,856	41,992	97,877	59,229	50,758	14,275
Co 35,435 Ni 160,481 Cu 42,296 Zn 100,067 Mo 1,765 Sn 1,274 Sb 0,053 Hf 6,523 W 0,170 Cs 0,317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	372,567	423,050	70,852	134,073	168,679	90,371	136,796	113,580
Ni 160,481 Cu 42,296 Zn 100,067 Mo 1,765 Sn 1,274 Sb 0,053 Hf 6,523 W 0,170 Cs 0,317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	35,067	35,641	6,793	8,402	16,454	9,855	6,180	0,832
Cu 42,296 Zn 100,067 Mo 1,765 Sn 1,274 Sb 0,053 Hf 6,523 W 0,170 Cs 0.317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	141,820	168,767	8,558	15,000	40,852	16,264	10,422	2,354
Zn 100,067 Mo 1,765 Sn 1,274 Sb 0,053 Hf 6,523 W 0,170 Cs 0.317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	36,258	42,546	21,207	18,751	60,466	26,278	12,769	8,058
Mo 1,765 Sn 1,274 Sb 0,053 Hf 6,523 W 0,170 Cs 0.317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	93,282	92,674	35,123	31,321	79,787	40,987	39,320	20,716
Sn 1,274 Sb 0,053 Hf 6,523 W 0,170 Cs 0.317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	2,007	1,979	1,381	1,662	2,182	2,014	2,899	4,442
Sb 0,053 Hf 6,523 W 0,170 Cs 0.317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	1,243	1,243	1,023	0,654	1,218	0,908	0,805	0,916
Hf 6,523 W 0,170 Cs 0.317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	0,055	0,055	0,244	0,259	0,154	0,174	0,378	0,320
W 0,170 Cs 0.317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	5,848	5,768	3,747	1,928	4,876	2,796	2,532	2,840
Cs 0.317 Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	0,160	0,161	0,538	0,395	0,319	0,391	0,635	0,822
Rb 16.889 Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	0.305	0.311	1.227	1.351	0.708	0.730	3.671	3.067
Ba 398.610 Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	15.923	16.210	78.376	82.395	49.359	57.674	89.873	95.365
Th 2.037 U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	382.830	354.531	582.267	386.053	551.581	470.915	370.672	707.502
U 0.693 Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	1.878	1.807	10.498	10.881	6.948	7.958	11.392	12.603
Nb 23.498 Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	0.629	0.604	2.861	2.863	1.937	2.212	3.297	0.059
Ta 1.226 K 1.209 Pb 5.147 Sr 492.363 P 0.718	20.240	20.176	11.367	10.469	15.929	8.894	11.433	26.645
K 1.209 Pb 5.147 Sr 492.363 P 0.718	1.073	1.070	0.932	0.974	1.012	0.726	0.997	9.074
Pb 5.147 Sr 492.363 P 0.718	1.163	1.103	3.193	2.952	2.983	2.575	3.213	4.107
Sr 492.363 P 0.718	4.740	4.697	7.297	4.509	7.459	5.714	5.377	3.403
P 0.718	479.492	474.502	206.645	577.486	471.222	455.256	448.085	13.693
	0.611	0.601	0.016	0.091	0.295	0.087	0.058	0.232
Zr 337.021	299.655	287.928	144.544	59.950	218.162	99.798	86.492	10.761
Ti 1.675	1.617	1.598	0.440	0.405	0.936	0.449	0.416	185.081
Y 36.157	33.863	32.932	17.855	15.161	23.620	16.983	15.381	100.383

Nota: Estos análisis fueron realizados por medio ICP-MS en laboratorios de Juriquilla, Querétaro

Tierras Raras

Los elementos de las Tierras Raras (REE, Rare Earth Elements) se encuentran entre los elementos traza más útiles para los estudios petrogenéticos de rocas ígneas, sedimentarias y metamórficas. Los elementos que constituyen los REE son: La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. El Y tiene un comportamiento análogo, por lo que se considera junto con las Tierras Raras. Los REE se dividen según su número atómico en:

- LREE (light Rare Earth Elements): elementos de las tierras raras ligeras, aquellos elementos con número atómico bajo (La, Ce, Pr, Nd, Pm).
- MREE (Middle Rare Earth Elements): elementos de tierras raras medias, aquellos con número atómico intermedio (Sm, Eu, Gd, Tb, Dy).
- HREE (Heavy Rare Earth Elements): elementos de tierras raras pesadas, aquellos elementos con número atómico alto (Ho, Er, Tm, Yb, Lu)

Las REE tienen entre sí propiedades químicas y físicas similares. Esto viene del hecho de que ellas forman iones estables con carga 3+, con radio iónico de tamaño similar. Las pequeñas pero significativas diferencias existentes en el comportamiento geoquímico de estos elementos, son debidas a la disminución constante de radio iónico a medida que aumenta el número atómico. Esto permite identificar algunos de los procesos petrogenéticos que le han ocurrido a las rocas ígneas, mediante el fraccionamiento de REE. Esto último, es el fenómeno usado en geoquímica para estudiar la génesis de fuentes de rocas (magmas) y descifrar los procesos petrológicos (Rollinson, 1993).

El comportamiento de las REE es presentado en diagramas de concentración vs. Número atómico, donde la concentración es normalizada con respecto a un estándar en una escala semi-logarítmica de base 10. Al unir los puntos de las concentraciones normalizadas mediante líneas rectas, se obtiene el patrón de REE para una muestra. En este trabajo se utilizó la normalización de la condrita de Nakamura (1974). Este tipo de normalización ha sido posible al seleccionar meteoritos que se piensan no han sufrido procesos de fraccionamiento desde la formación del sistema solar y entonces permite comparar con respecto a un manto que no ha tenido procesos de fusión parcial y fraccionamiento. La normalización evita, como en el caso de la normalización para los

demás elementos traza, el efecto de zig-zag, pero permite además identificar la fuente del magma y los procesos petrogenéticos que hayan ocurrido al magma.

Resultado de REE para las unidades volcánicas del área de estudio

Las concentraciones de Tierras Raras, determinadas por medio de ICP-MS en los laboratorios del Centro de Geociencias de la UNAM, se presentan en la Tabla 4.5. Asimismo, en las Figuras 4.9 y 4.10 se presenta el comportamiento de los elementos de tierras raras para las rocas de la Unidad Volcánica Inferior y Unidad Volcánica Superior, respectivamente, normalizadas con respecto a los datos de condrita de Nakamura (1974).

Se puede observar para los domos e ignimbritas dacítico- riolíticas (Figura 4.9) un fuerte enriquecimiento de las Tierras Raras ligeras con respecto a las pesadas, así como un comportamiento casi horizontal para estas últimas, cuyos valores de la relación La_n/Yb_n varia de 9 a 13 y la ΣREE va de 101 a 120 ppm; además de presentar pequeñas anomalías negativas de Eu y Ce. La Ignimbrita Las Pailas muestra, de igual manera que las rocas anteriores, un alto enriquecimiento en Tierras Raras ligeras con respecto a las pesadas y pequeñas anomalías de Eu y Ce, así como un comportamiento horizontal en las tierras raras pesadas. La relación de La_n/Yb_n se encuentra entre 7 y 8 y la ΣREE varia de 88 a 133 ppm. Así mismo, la ignimbrita Tetlapayac muestra el mismo comportamiento que las rocas félsicas antes descritas, solo que con una marcada anomalía negativa de Ce. Su relación La_n/Yb_n es de 12 y su concentración total de tierras raras en ppm es de 102.

Las ligeras anomalías negativas de europio pueden deberse a que las condiciones de fugacidad de oxígeno dentro de la cámara magmática eran bajas, lo cual permitió que el Eu³⁺ se redujera a una valencia de 2+. Bajo estas condiciones en la cámara magmática, el Eu²⁺ pudo formar parte de la red cristalina de las plagioclasas al sustituir al Ca²⁺. Si al mismo tiempo ocurrieron fenómenos de cristalización fraccionada de plagioclasa, el magma residual se empobrecería en este elemento, observándose dicha anomalía negativa.

Las rocas de la Unidad Volcánica Superior muestran patrones muy parecidos entre ellos (Figura 4.10): ligero enriquecimiento de Tierras Raras ligeras con respecto a las pesadas, mostrando las últimas una relación casi horizontal. Las relaciones Lan/Ybn para

los basaltos va de 7 a 8, mientras que en las andesitas-basálticas y traquiandesitas-basálticas varían de 5 a 6 y su concentración de REE en ppm son de 138 a 175 y de 122 a 182, respectivamente. Como se puede constatar, las muestras de basaltos se encuentran ligeramente más enriquecidas en Tierras Raras que las andesitas-basálticas y traquiandesitas-basálticas, lo que sugiere la existencia de fuentes magmáticas ligeramente distintas.

Comúnmente, las rocas más evolucionadas (riolitas-dacitas), producidas por procesos de cristalización fraccionada a partir de un magma derivado de una misma fuente, deben presentar fuertes concentraciones de Tierras Raras. Sin embargo, como se puede observar de los datos anteriores, las rocas silícicas de la zona de estudio presentan menores concentraciones totales de tierras raras que las rocas máficas. Por lo tanto, los patrones observados de tierras raras para las rocas de las dos unidades volcánicas no pueden ser explicados por procesos de cristalización fraccionada común. Más bien, estas diferencias sugieren, que las rocas silíceas se originaron a partir de una fuente magmática diferente a la que produjo los basaltos, andesitas-basálticas y traquiandesitas-basálticas.

En todos los casos, el enriquecimiento de las Tierras Raras ligeras con respecto a las pesadas, éstas últimas mostrando patrones casi horizontales (Figuras 4.9 y 4.10), se ha asociado con magmas relacionados con procesos de subducción. La mayoría de las rocas volcánicas existentes en la Faja Volcánica Trans-Mexicana presentan patrones similares (Gómez-Tuena et al., 2005).

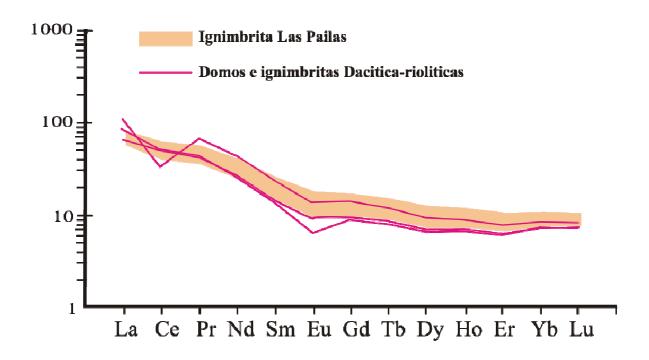


Figura 4.9. Patrones de elementos de Tierras Raras para la Unidad Volcánica Inferior del CVST-SCT. Concentraciones normalizadas con respecto a valores de condrita de Nakamura (1974).

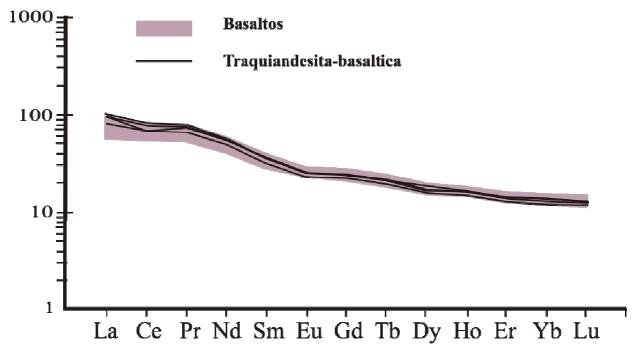


Figura 4.10. Patrones de elementos de Tierras Raras para la Unidad Volcánica Superior del CVST-SCT. Concentraciones normalizadas con respecto a valores de condrita de Nakamura (1974).

Tabla 4.5. Concentraciones (ppm) de Tierras Raras (REE) de las rocas volcánicas del el área de estudio.

Muestra	TTC-01	TTC-02	TTC-13	TTC-14	TTC-35	TTC-4b	TTC-09	TTC-11	TTC-22	TTC-24	TTC-26	TTC-33B	TTC-18b	TTC-19	TTC-28	TTC-31	TTC-37	TTC-25
Tipo de roca	Andesita	Traqui-	Traqui-	Traqui-	Traqui-	Basalto	Basalto	Basalto	Basalto	Basalto	Basalto	Basalto	Riolita	Dacita	Dacita	Riolita	Dacita	Riolita
	basáltica	andesita	andesita	andesita	andesita													
		basáltica	basáltica	basáltica	basáltica													
					Unio	dad Volc	án Supe	rior						Unid	ad Volcá	inica Inf	erior	
ppm																		
La	34.17	30.16	27.76	33.21	32.93	25.49	24.46	24.9	19.93	31.32	27.46	26.62	37.31	22.46	20.33	26.35	19.36	19.36
Ce	72.72	63.9	59.83	68.23	60.08	58.06	55.28	55.74	45.44	70.72	61.81	60.52	29.96	43.28	36.71	53.78	35.05	35.05
Pr	9.21	8.41	7.73	8.83	8.63	7.7	7.34	7.41	5.98	9.17	8.17	7.92	8.03	4.9	4.24	6.49	4.22	4.22
Nd	36.12	33.9	31.11	34.96	34.64	31.83	30.37	30.68	25.09	37.45	33.6	32.61	27.37	17.17	14.99	24.91	15.49	15.49
Sm	7.51	7.17	6.64	7.22	7.27	7.05	6.73	6.82	5.69	8.04	7.38	7.13	4.83	3.07	2.89	5.07	3.02	3.02
Eu	1.98	1.95	1.83	1.93	1.92	2.04	1.96	1.98	1.71	2.27	2.13	2.06	1.06	0.73	0.71	1.33	0.76	0.76
Gd	6.82	6.67	6.15	6.61	6.88	6.72	6.44	6.56	5.61	7.57	7.07	6.84	3.86	2.69	2.66	4.63	2.9	2.9
Tb	1.03	1	0.92	0.98	1.02	1.02	0.98	0.99	0.86	1.14	1.06	1.03	0.58	0.42	0.42	0.71	0.46	0.46
Dy	5.97	5.8	5.36	5.71	5.96	6.01	5.78	5.83	5.11	6.61	6.22	6.02	3.25	2.45	2.48	4.2	2.74	2.74
Но	1.17	1.14	1.05	1.13	1.19	1.19	1.14	1.15	1.02	1.3	1.23	1.19	0.64	0.51	0.51	0.84	0.57	0.57
Er	3.23	3.14	2.9	3.12	3.26	3.25	3.1	3.14	2.77	3.57	3.35	3.27	1.78	1.46	1.48	2.32	1.64	1.64
Yb	3	2.89	2.68	2.88	3.01	3	2.87	2.9	2.56	3.28	3.1	3.01	1.9	1.64	1.61	2.29	1.77	1.77
Lu	0.45	0.43	0.4	0.43	0.45	0.44	0.43	0.43	0.38	0.49	0.46	0.44	0.28	0.25	0.25	0.35	0.27	0.27
ΣREE La/Yb	138.38 8	166.56 7	154.38 7	175.23 8	167.25 7	153.81 6	146.88 6	148.55 6	122.1 5	182.93 6	163.03 6	158.64 6	120.84 13	101.03 9	89.29 8	133.27 8	88.24 7	102.52 12

Nota: Estos análisis fueron realizados por medio ICP-MS en laboratorios de Juriquilla, Querétaro

4.3 Isotopía de Sr y Nd

Los isótopos son átomos (núclidos) de un mismo elemento que presentan diferente número de neutrones y por tanto de la masa (suma de protones y neutrones). Los isótopos se dividen en estables y radioactivos dependiendo de la estabilidad de su núcleo. Los isótopos estables son aquellos cuya abundancia en la naturaleza no cambia a través del tiempo y no produce ningún isótopo nuevo. En los radioactivos, el átomo es inestable (debido a los enlaces entre protones y neutrones) y emite energía cuando cambian a una forma más estable (decaimiento radioactivo), produciendo un nuevo núclido.

A lo largo del tiempo, la abundancia de los isótopos inestables disminuye paulatinamente debido al decaimiento. La energía puede ser liberada por distintos mecanismos de decaimiento que se mencionan enseguida. Decaimiento beta negativo (B-) es la emisión de un electrón durante la transformación de un neutrón en protón. En este mecanismo, el número de masa no cambia, mientras que el número atómico se incrementa. En el **Decaimiento beta positivo** (β +) que es explicado como la emisión de un positrón durante la transformación de un protón en neutrón. El número de masa no cambia, mientras que el número atómico disminuye. En el Decaimiento alfa (a) ocurre la emisión de un núcleo de He (2 neutrones y 2 protones). El número de masa disminuye de 4, mientras que el número atómico disminuye de 2. En el decaimiento por Captura de electrones, un protón es capaz de capturar a uno de los electrones de las capas más cercanas al núcleo, por lo que un protón más un electrón formarán un neutrón y se emitirá un neutrino. El núclido resultante es un número atómico menor pero conserva el mismo número de masa. En el Decaimiento por Fisión, el núcleo de un átomo se divide en dos o más átomos de elementos distintos, algunos de los cuales pueden ser inestables y decaer a su vez (solo ocurre en los átomos más pesados).

El decaimiento radioactivo no es instantáneo, ocurre en un cierto tiempo, el cual depende de la estabilidad relativa de cada isótopo. Cada núclido radioactivo presenta una tasa de decaimiento específica.

Los isótopos radiogénicos (isótopos hijos) son aquellos producidos por el decaimiento a partir de isótopos inestables (isótopos padres) y su abundancia puede aumentar a través del tiempo. Estos han sido utilizados en geoquímica para dos objetivos principales: el

primer uso fue en la determinación de edades de rocas y minerales (geocronología); y el segundo más reciente, ha sido empleado en el campo de la petrogénesis para identificar procesos geológicos y origen de las rocas.

El uso de isótopos radiogénicos como trazadores de procesos petrogenéticos ha permitido a los geoquímicos caracterizar rocas de grandes profundidades de la Tierra, anteriormente solo del dominio geofísico. Estos estudios isotópicos han servido para identificar la fuente de procedencia de los magmas (naturaleza de la corteza continental, oceánica y el manto), así como para identificar procesos magmáticos como asimilación o contaminación cortical. Los resultados isotópicos combinados con las investigaciones geofísicas de dichos dominios, son de gran utilidad para proponer modelos físico-químicos de las profundidades de la Tierra.

El estroncio (Sr) tiene cuatro isótopos naturales (⁸⁸Sr, ⁸⁷Sr, ⁸⁶Sr, ⁸⁴Sr), tres de ellos estables y el ⁸⁷Sr es radiogénico, y se pueden encontrar de manera natural en casi cualquier tipo de roca. Las abundancias relativas son 82.59%, 6.991%, 9,861% y 0.557%, respectivamente (Faure, 1986). Estas abundancias son variables debido a la formación de ⁸⁷Sr radiogénico por el decaimiento natural de ⁸⁷Rb, debido a la emisión de una partícula Beta negativa:

$$^{87}_{37}Rb \rightarrow ^{87}_{37}Sr + \beta - + v - + Q$$

Por esta razón, la composición isotópica precisa de estroncio en una roca o mineral que contiene rubidio depende de la edad y de la relación de Rb/Sr de la roca o mineral. Esto es aprovechado en geología, ya que mediante el decaimiento de Rb a Sr se puede fechar rocas y minerales (Faure, 1986).

Durante la cristalización fraccionada de un magma, el estroncio tiende a concentrarse principalmente en la plagioclasa y en otros minerales que contengan calcio como el apatito. Mientras que el rubidio, cuyo radio iónico es más grande que el estroncio, se mantiene en la fase líquida (elemento incompatible), pero se concentrará en minerales que presenten potasio, ya que tiene un radio iónico similar, por lo que también participará en fenómenos de cristalización fraccionada. Consecuentemente, la relación Rb/Sr del magma residual (magmas en la corteza) se incrementará gradualmente en el

curso progresivo de la cristalización (Fig. 4.11a). Mientras que el manto tendrá bajas concentraciones de Rb (Faure, 1986).

El neodimio (Nd) pertenece al grupo de las tierras raras, tiene 7 isótopos naturales (142Nd, 143Nd, 144Nd, 145Nd, 146Nd, 148Nd, 150Nd y 142Nd). Debido a que el radio iónico para el Nd³+ es de 1.08 Å y para Sm³+ es de 1.04 Å, éstos elementos tienden a concentrarse en minerales como piroxenos, anfíboles y granates. En general, el Nd se encuentra relativamente más concentrado que el Sm en los minerales durante el curso de la cristalización fraccionada de un magma, y como consecuencia, las rocas de la corteza tienen una relación menor de Sm/Nd que las rocas derivadas del manto superior. (Figura. 4.11b)

El Sm decae a Nd como muestra la siguiente ecuación: ${}^{147}_{62}Sm \rightarrow {}^{143}_{60}Nd + \alpha + Q$

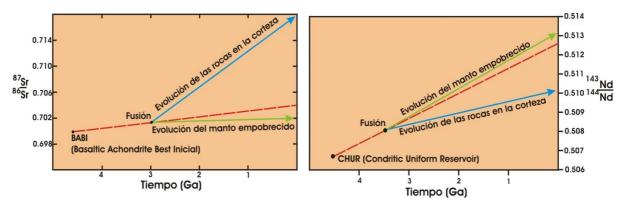


Figura 4.11. a) Diagramas de evolución de las relaciones isotópicas de Sr y b) diagrama de evolución del Nd con respecto al tiempo geológico (modificado de Faure, 1986).

CHUR y ENd

La evolución isotópica del sistema Sm/Nd en la Tierra se describe en términos del modelo llamado Reservorio Condrítico Uniforme (CHUR) propuesto por DePaolo y Wasserburg (1976). Este modelo asume que el Nd terrestre ha evolucionado en un reservorio uniforme cuya relación Sm/Nd es igual que las condritas (Figura 4.11b). El valor de la proporción ¹⁴³Nd/¹⁴⁴Nd para el CHUR actual es de 0.512638. La notación para representar estos datos isotópicos es εNd, en donde el parámetro ε es una medida de la diferencia entre la relación ¹⁴³Nd/¹⁴⁴Nd de una muestra o serie de muestras y un

valor de referencia, que en este caso es el valor de la relación ¹⁴³Nd/¹⁴⁴Nd de las condritas (CHUR = reservorio condrítico), multiplicado por 10⁴. Esto se define por las siguientes ecuaciones:

$$\epsilon \text{Nd}_{\text{hoy}} = \left(\frac{\frac{143}{\text{Nd}} / \frac{144}{\text{Nd}_{\text{MUESTRA}(\text{HOY})}}{143} - 1 \right) x \cdot 10^{4}$$

$$\epsilon \text{Nd}_{t^{*}} = \left(\frac{\frac{143}{\text{Nd}} / \frac{144}{\text{Nd}_{\text{MUESTRA}(t)}}}{\frac{143}{\text{Nd}} / \frac{144}{\text{Nd}_{\text{CHUR}(t)}}} - 1 \right) x \cdot 10^{4}$$

$$t^{*} = \text{tiempo en el pasado (Ma)}$$

Donde:

$$^{143}Nd/^{144}Nd_{MUESTRA\ (t)}=^{143}Nd/^{144}Nd_{MUESTRA\ (HOY)}-^{147}Sm/^{144}Nd_{MUESTRA\ (HOY)}*(e^{\lambda t}-1)$$

$$^{143}Nd/^{144}Nd_{CHUR\ (t)}=^{143}Nd/^{144}Nd_{CHUR\ (HOY)}-^{147}Sm/^{144}Nd_{CHUR\ (HOY)}*(e^{\lambda t}-1)$$
 En donde los valores para el CHUR son:
$$^{143}Nd/^{144}Nd_{CHUR\ (HOY)}=0.512638\ y$$

$$^{147}Sm/^{144}Nd_{CHUR\ (HOY)}=0.1967.$$

Es por esta razón que se puede conocer la cantidad de la proporción inicial de ¹⁴³Nd/¹⁴⁴Nd, si se conoce la edad de los diferentes conjuntos de rocas, con respecto del CHUR. Un valor positivo de εNd para las rocas ígneas indica que el magma que las formó provino de una fuente con una relación Sm/Nd más grande que el CHUR, por ejemplo el manto empobrecido, mientras que un valor negativo implica una fuente con una relación Sm/Nd más baja que el CHUR, por ejemplo el manto enriquecido o la corteza. Si el valor es cero, entonces la composición isotópica del Nd en las rocas es indistinguible con respecto del CHUR y se puede concluir que las rocas son generadas directamente de este reservorio condrítico (Faure, 1986).

Además de poder determinar edades de diferentes eventos geológicos por medio de la utilización de los métodos isotópicos de Rb – Sr y Sm – Nd, las relaciones isotópicas de ⁸⁷Sr/⁸⁶Sr y ¹⁴³Nd/¹⁴⁴Nd pueden ser utilizadas como indicadores de procesos genéticos. Por ejemplo, las relaciones isotópicas de Sr y Nd de un magma son características de la región de la cual fue extraído el magma. Se ha demostrado que dichas relaciones isotópicas se mantienen sin cambios cuando el magma sufre fraccionamiento. Esto se debe a que la diferencia relativa de masas entre cada par de isótopos arriba mencionado

es tan baja que no pueden ser fraccionados por procesos controlados por el equilibrio entre líquido y cristal. Por lo tanto, durante la fusión parcial, un magma va a tener el mismo carácter isotópico que la región que lo generó. La utilidad de los isótopos en los estudios petrogenéticos de rocas ígneas es: a) detectar las diferentes regiones que puedan alimentar un magma y que pueden ser reconocidas por su firma isotópica característica, b) reconocer la mezcla de los magmas gracias a que su firma isotópica se sale de los parámetros establecidos, y c) inferir la contaminación de los magmas por asimilación de corteza continental (Faure, 1986).

Resultados isotópicos de las rocas del CVST-SCT

Se realizó el análisis isotópico de Sr y Nd para 11 muestras de rocas pertenecientes a las unidades volcánicas Inferior y Superior. Para estos análisis, se seleccionaron las muestras que presentaban menor efecto de alteración por intemperismo u otro fenómeno. Los resultados isotópicos medidos se presentan en la Tabla 4.6. Como se mencionó en el Capitulo II, los análisis se realizaron con un espectrómetro de masas, con fuente iónica térmica, marca FINNIGAN MAT 262 del LUGIS, Instituto de Geofísica, UNAM. En la Tabla 4.7 se presentan las relaciones isotópicas iníciales recalculadas para las mismas rocas. Las relaciones isotópicas de Sr y Nd iníciales fueron recalculadas considerando que la Unidad Volcánica Inferior presenta edades de ca.12 Ma, mientras que la Unidad volcánica Superior tiene edades de ~2 Ma. Estos cálculos se hicieron tomando como base las edades publicadas en trabajos de García-Palomo et al. (2002) y de López-Hernández (2009), en ausencia de datos geocronológicos nuevos.

Se eligieron dos muestras de la Unidad Volcánica Inferior que corresponden a la Ignimbrita Riolítica Las Pailas (TTC-18) y a los Domos e ignimbritas dacítico-riolítico (TTC-19). Estas rocas tienen relaciones isotópicas de ⁸⁷Sr/⁸⁶Sr de 0.703527 y 0.703342, respectivamente, las cuales son muy bajas para rocas de esta naturaleza petrográfica. Los valores de eNd para estas mismas rocas van de 3.85 y 4.29, respectivamente. Estas muestras caen dentro del arreglo del manto en la Figura 4.12, y de hecho se acercan a los valores de estroncio que presentan rocas tipo MORB.

Los valores isotópicos iníciales recalculados para las rocas de la Unidad Volcánica Superior caen en su totalidad dentro del arreglo del manto. Las traquiandesita basáltica-y andesita-basáltica caen muy cerca de la composición de la Tierra Total (Figura 4.12),

ya que sus relaciones isotópicas de ⁸⁷Sr/⁸⁶Sr varían de 0.704374 a 0.704843 y valores de εNd de 0.91 A 1.97, mostrando cierta similitud en comportamiento como las rocas del complejo volcánico Telapón (García-Tovar, 2009). Por su parte, los basaltos de la zona de estudio presentan valores de ⁸⁷Sr/⁸⁶Sr poco variables que varían de 0.704015 a 0.704233 y valores de εNd de 1.97 a 3.29, dejando ver que estas rocas son menos radiogénicas que las traquiandesitica-basáltica y andesita-basáltica, y mostrando valores que caen muy cercanos a los del estratovolcán Nevado de Toluca (Figura 4.12). Los valores antes mencionados, indican que los magmas que generaron a las rocas de la Unidad Volcánica Superior, tuvieron una contribución variable de componentes de la corteza continental durante su ascenso a la superfície, ya que a pesar de presentar una composición relativamente máfica, estas rocas tienen los valores más radiogénicos del área de estudio (caso de las andesitas-basálticas y traquiandesitas-basálticas). Las rocas basálticas son las menos afectadas.

Finalmente, se puede observar, que las relaciones isotópicas iniciales para todas las rocas analizadas del área de estudio presentan una variación moderada en ⁸⁷Sr/⁸⁶Sr y ɛNd (valores de 0.703342 a 0.704843 y de 0.91 a 4.29, respectivamente), lo que indicaría que las fuentes magmáticas son ligeramente distintas y que los magmas sufrieron diferentes grados de interacción con rocas de la corteza continental al ascender hacia la superficie (Tabla 4.7).

Tabla 4.6. Relaciones isotópicas de Sr y Nd de las rocas volcánicas del CVST-SCT. Datos medidos en el espectrómetro de masas Finnigan MAT-262.

Muestra	Roca	⁸⁷ Sr/ ⁸⁶ Sr	1 sd*	n	¹⁴³ Nd/ ¹⁴⁴ Nd	1 sd*	n	εNd	1s
TTC-01	Traquiandesita	0.704842	35	55	0.512709	19	52	1.38	0.37
TTC-02	Traquiandesita	0.704543	34	56	0.512684	19	55	0.90	0.37
TTC-04b	Basalto	0.704018	38	55	0.512802	22	56	3.20	0.43
TTC-08	Basalto	0.704234	37	51	0.512763	43	10	2.44	0.84
TTC-09	Basalto	0.704079	39	51	0.512799	35	15	3.14	0.68
TTC-11	Basalto	0.704105	38	53	0.512799	21	54	3.28	0.41
TTC-13	Traquiandesita	0.704378	36	53	0.512806	15	55	1.52	0.29
TTC-14	Traquiandesita	0.704673	37	52	0.512738	20	57	1.95	0.39
TTC-18	Riolita	0.703713	34	57	0.512828	20	34	3.71	0.39
TTC-19	Dacita	0.703413	38	59	0.512851	23	54	4.15	0.45
TTC-18	Riolita	0.703713	34	57	0.512828	20	34	3.71	

Se analizaron 60 relaciones isotópicas de Sr y Nd para cada muestra. *=error analítico de 1 desviación estándar (($\pm\sigma$) y se refiere a los dos últimos dígitos de cada relación isotópica. Valores del LUGIS para estándar NBS 987 de estroncio 87 Sr/ 86 Sr= 0.710240 \pm 25 ($\pm1~\sigma_{abs}$, n= 418), para el estándar La Jolla de neodimio: 143 Nd/ 144 Nd = 0.511867 \pm 27 (n=209). Las relaciones isotópicas de Sr y Nd se corrigieron por fraccionamiento de masas vía normalización a 7 Sr/ 86 Sr=0.1194 y 143 Nd/ 144 Nd = 0.7219, respectivamente. Los blancos analíticos durante los análisis de las muestras de este trabajo resultaron ser de = 0.08 ng para Sr y 0.19 ng para Nd (blancos totales).

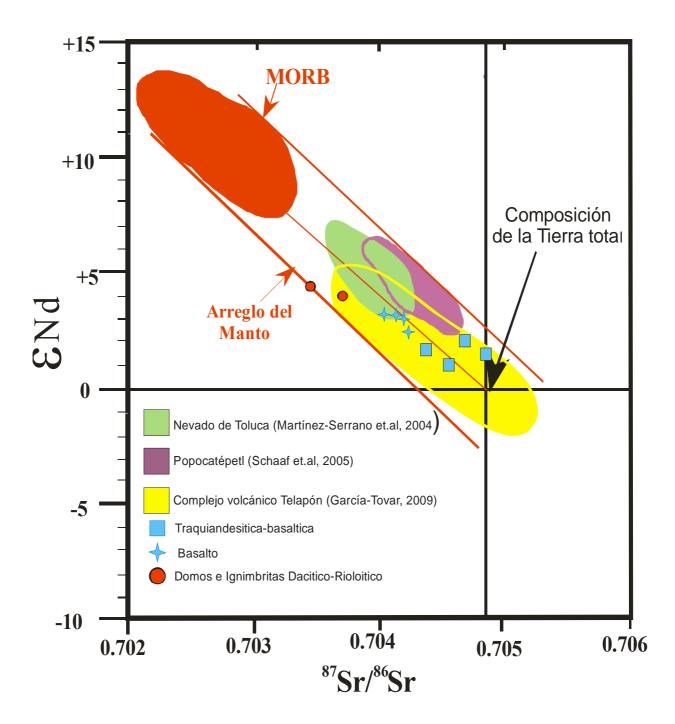


Figura 4.12. Diagrama de ⁸⁷Sr/⁸⁶Sr vs ɛNd iníciales de rocas de la corteza y el manto para las muestras del CVST-SCT, en el que se observa una afinidad general en todas las muestras con el arreglo del manto. Se puede ver que las rocas de la unidad Volcánica Superior (basaltos, andesitas-basálticas) son los más radiogénicos indicando una mayor influencia cortical, en comparación con las rocas félsicas de la Unidad Superior. Las muestras del CVST-SCT se comparan con datos del Nevado de Toluca (Martínez-Serrano. 2004), Popocatépetl (Schaaf et. Al., 2005) y del Complejo Volcánico Telapón (García-Tovar, 2009).

Tabla 4.7. Relaciones isotópicas iníciales de Sr y Nd de las rocas del Campo Volcánico Santiago-Tetlapayac-San Cruz-El Tepozán.

Muestras	Tipo de Roca	Conce	ntraci	ones (p	pm*)						
		Rb	Sr	Sm	Nd	87Sr/86Sr(m)	143 Nd/ 144 Nd(m)	εNd(m)	87Sr/86Sr(in)	¹⁴³ Nd/ ¹⁴⁴ Nd(in)	εNd (in)
						Unidad Volca	ánica Superior				
TTC-1	Andesita-basáltica	25.1	616	7.5	36.1	0.704846	0.512709	1.38	0.704843	0.512707	1.40
TTC-2	Traquiandesita basáltica	24.5	546	7.2	33.9	0.704543	0.512684	0.90	0.704539	0.512682	0.91
TTC-13	Traquiandesita basáltica	25.0	535	6.63	31.1	0.704378	0.512716	1.52	0.704374	0.512714	1.54
TTC-14	Traquiandesita basáltica	23.0	580	7.22	35.0	0.704673	0.512738	1.95	0.704670	0.512736	1.97
TTC-4	Basalto	17.0	471	7.05	31.8	0.704018	0.512802	3.20	0.704015	0.512800	3.22
TTC-8	Basalto	5.0	501			0.704234	0.512763	2.44	0.704233	0.512761	2.45
TTC-9	Basalto	13.4	474	6.73	30.7	0.704079	0.512799	3.14	0.704077	0.512797	3.16
TTC-11	Basalto	14.1	471	6.82	30.7	0.704105	0.512806	3.28	0.704103	0.512804	3.29
						Unidad Volc	ánica Inferior				
TTC-18	Riolita	78.0	207	4.80	27.4	0.703713	0.512828	3.71	0.703527	0.512820	3.85
TTC-19	Dacita	82.4	578	3.07	17.2	0.703413	0.512851	4.15	0.703342	0.512843	4.29

^{*}Las concentraciones de los elementos se obtuvieron por medio de ICP-MS. Los valores isotópicos (in) de Sr y Nd fueron calculados en 12 Ma para las rocas de la Unidad Volcánica Inferior y 2 Ma para las rocas de la Unidad Volcánica Superior, se consideraron las relaciones 143 Nd/144 Nd (CHUR) = 0.512638.