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Abstract

In this study, an efficient three dimensional two phase flow model
for simulation of a plunging breaking wave is presented. The method is
based in the solution of Navier-Stokes equation for quasi-incompressible
flows. The equations in generalized coordinates are solved by extension
of the fully explicit MacCormack scheme, second order in time and
fourth order in space. The free surface is implicitly captured by the
zero level set of a smooth function and by the Ghost Fluid Method to
capture accurately shape discontinuities for properties in the vicinity of
the interface. Finally, the volume of fluid method is used to ensure mass
conservation. Turbulence is described by large eddy simulation, where
only the large-scale eddies are solved, while the small scales are modeled
by using the selective structure function subgrid-scale model. Boundary
shapes are represented through the immersed boundary method on the
Cartesian grid. The accuracy of this numerical model is validated by
some free surface problems in terms of free surface elevations. Finally a
a further study of turbulent structures characteristics during a single
plunging dam-breaking wave is performed. Numerical predictions by all
cases are in good agreement with experimental data.
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Preface

Wave breaking in the surf zone represents one of the most spectacular and extremely
complex phenomena we can find in nature. Knowledge of this physical process highly
turbulent is essential as it has implications in fundamental fluid mechanics, coastal
engineering, oceanography and naval hydrodynamics.

Although considerable progress in theoretical, experimental, and numerical aspects
has been made in recent years, some important characteristics of breaking waves have
not been investigated in detail. Among them are the complex phenomena of two-phase
flows and the turbulence structure especially for three-dimensional flows with complex
geometries, which represent a challenges to further computational studies and the need
of sophisticated numerical techniques.

The objective of this study is to develop a flexible Large Eddy Simulation numerical
model with the potential to adapt over the time with few modifications for carrying out
simulations of real-life turbulent free surface flow problems with complex configurations
such as breaking wave phenomena. The capabilities of the developed model is verified in
terms of efficiency, accuracy and flexibility for exploiting a parallel architecture.

This thesis is organized as follows. A brief introduction describing the wave breaking
problem and the state of art of both laboratory and numerical contributions for free
surface flows are presented in Chapter 1. A general description of the governing equations,
numerical method, solution procedure an the free surface model is presented in Chapter
2. Two test cases to demonstrate the performance and effectiveness of the presented
method are presented in Chapter 3. A further study of a single plunging dam-breaking
wave dynamics and turbulent characteristics is presented in Chapter 4. Conclusions are
discussed in Chapter 5.
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Chapter 1.

Introduction

1.1. Problem description

As an ocean wave propagates into shallow water depth, a complex highly nonlinear
phenomenon begins. During this process; celerity reduces; its wavelength decreases; and
its height increase until this reach a critical level and becomes asymmetric, unstable, and
finally it breaks. Depending on the characteristics of the incoming wave and beach profile,
waves break in a different way [1]. Among the different types of breaking waves, plunging
breakers represents one of the most dominant and violent breaking types. Plunging waves
are characterized for the formation of a jet at the crest that projects out from the front
face and impacts the free surface with a splash below the mean water level. The impact
traps air pockets and leads to the generation of turbulence; the plunging jet forms an
inner air core or tube, where the trapped air is quickly compressed by the moving wall
beneath the crest and sometimes vents through the surface in a sudden spout. The roller
interacts with the fluid below it in a complicated way, exchanging energy and momentum
in the process. The roller will eventually dissipate and be completely absorbed by the
wave.

The characteristics of the complex flow induced by plunging breaking waves and the
presence of a two-phase turbulent flow beneath the surface just after the breaking event
has meaning a challenge and a topic of mayor interest for many researchers in recent
years [2], [3], [4]. Because the irregular nature of a breaking wave event, it is difficult
to conduct experiments in the field, so most of studies dedicated to understand the
physical processes involve in breaking wave events are based in laboratory experiments
and numerical simulations. Though experimental research has played an important role

1



Introduction 2

improving the understanding of breaking waves hydrodynamics and generating significant
physical insights and reliable results useful for calibrating and validation of computational
fluid dynamics models. These studies has focused in the analysis of the hydrodynamic
of general flow patterns like the evolution of the free surface deformation and wave
kinematics. In most studies, especially for plunging wave breaking, detailed description of
processes, such as jet overturning, splash-up, air entrainment, instabilities and turbulence
characteristics are not included in the analysis.

On the other hand, with improved computer capabilities the use of numerical models
based in the solution of the fundamental equations of fluid mechanics to study breaking
waves phenomena is a common practice in modern environmental engineering. This
approach complements experimental and theoretical studies by providing an alternative
cost effective means of simulating real flows situations. In coastal engineering field it
methodology allows a detailed description of the complex three-dimensional flow patterns
generated by breaking waves under conditions sometimes unavailable experimentally.
Most of existing numerical models for breaking waves are based on Direct numerical
Simulation (DNS), Large Eddy Simulation (LES) and RANS-based models. With DNS
every fluctuating motion in the flow is solved without any modeling simplification
or assumptions, but considering the computational requirements particularly in three
dimensions problems DNS is not a practical alternative and results prohibitive at high
spatial resolutions. RANS models represents the most widely used approach and an
attractive alternative in terms of computational cost, however they have considerable
limitations in modeling turbulent characteristics and vortical patters on aerated regions
since all turbulent length scales are modeled [5], [6], [7]. With LES the larger turbulent
features are simulated by solving the flow equations, and the small scale turbulence that
is not resolved by the flow model is represented by a sub-grid model. This technique
lies between DNS and RANS in term of computational demands while offers a detailed
description of turbulent characteristics such as coherent vortical structures and motions
of intermittent nature. LES methodology have showed very promising results, for three-
dimensional breaking wave simulations, focussing on air entrainment phenomenon and
a correct description of the free surface [8]; [9]; [10]. However, a few studies focused the
attention to discuss the turbulent flow structure subsequent to wave breaking.
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1.2. Experimental and numerical contributions review

The wave-breaking-induced turbulence characteristics have been a subject of considerable
research in recent years. Both experimental and numerical studies, have significantly
improved the understanding and knowledge of the complex physical processes during
wave breaking, such as free surface evolution, air entrainment, and turbulence especially
for three dimensional flows.

Pioneering laboratory studies revealed that the flow under breaking waves is char-
acterized by large-scale, organized flow structures. [11] studied the structure of the
turbulence flow field under periodic spilling breaking waves. In their work, in addition to
two-dimensional structures around the wave crest, three-dimensional large-scale vortex
structures behind the wave crest, which stretches obliquely downwards were identify.
This structures called "obliquely descending eddies" penetrate into the water column
interacting with the bed. An extensive study on turbulence under spilling and plung-
ing breakers is given by [12], [13] founding that the turbulence dynamics are strongly
influenced by the breaker type. Their results showed that the mean flow transports
the turbulent kinetic energy seaward under a spilling breaker and landward under a
plunging breaker with a dissipation rate slower in the former and large-scale motions
in the later. Recently, laboratory observations have revealed the existence of some
interesting features of organized flow structures called called downburst under a solitary
wave [14]. A downburst is a vortex with axis of rotation in the vertical direction formed
when the water spilling down the front face of the breaking wave produces a turbulent,
aerated water mass. The collapse of the subsequent splash-up in reverse breaking causes
this aerated water mass to descend toward the bottom producing even more sediment
transport than obliquely descending vortices.

More recently, motivated by an increasing computational development, several studies
have demonstrated that turbulent structures under breaking waves can be accurately
captured and described by a large eddy simulation approach since provide a sufficient
amount of high-resolution information for an adequate description of the turbulence
and allows to capture coherent vortices structures under breaking waves. Most of the
numerical works have been dedicated to reproducing the three dimensional coherent
vortices founded experimentally [15]; [16]; [17]. These studies have provided a detailed
and accurately description for both the free surface and the generation and evolution of
the turbulent structures. However, only a few studies have focussed on the instantaneous
small-scale structures and other importante features during for a plunging breaker such
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the scars and instabilities on the plunging jet surface just before the impact and the
aerated filaments around the air tube trapped during the splash up process.

The above studies have included both periodic and solitary waves. The wave generation
method have been based on inflow boundary condition, applying a velocity profile obtained
from an analytical solution and through a internal wave generation method in which a
mass source function computed according to a prescribed free surface profile is introduced
in a certain region inside the computational domain such that it produces the same
physical effect of the desired wave. An alternative novel method for reproducing a wave is
to generate a large-scale bore through dam-break on a wet bed. In this wave generation
method proposed by [18]: [19]; [20], a deep reservoir of liquid is separated from a shallow
body of water by a gate that can be removed at high speed. The sudden opening of the
gate produces a bore that subsequent collapse in a plunger breaking wave form. The
surface, vorticity and turbulence are completely controlled by relative collapse height
with respective to water depth.

The main advantage behind studying a single breaking wave is that the wave breaking
process and the generation and evolution of the associated three-dimensional vortex
structures can be investigated separately from the effect of returning undertow flow and
the residual turbulence induced from previously broken waves in the case of periodic
waves. Further, a single breaking wave results less computationally time comparing to
periodic wave conditions and hence it allows us to use higher numerical resolution.

1.3. Free surface modeling methods review

In view of the complexities of moving and deforming surfaces, nonlinear effects, large range
of length scales and time scales, high turbulence, among other causes, accurate description
of physical processes involving a free surface represents still a challenge, even for the most
sophisticated models. Free surface represents a dynamic boundary, whose position and
shape change in response to the interaction between the phases present; therefore, use of
special techniques is needed to define the location and movement of the interface. Owing
to the complexity of free surface flows, a large number of modeling methods for interface
simulations have been developed. These approaches can be divided into two great classes:
moving-grid methods (Lagrangian approach) and fixed-grid methods (Eulerian approach).
In addition to these methods, there are special cases, such as particle methods, in which
grids are not needed.
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In Lagrangian description, coordinate system follows the movement of the fluid
particles. The interface is a boundary between two subdomains of the grid, so the free
surface is sharply defined. Although it seems the most natural way to simulate free
surface flows, this method is restricted to well-defined simple surface topologies, because
the grid has to be re-meshed or refined when the interface undergoes large deformations
and topology changes. Meanwhile, in Eulerian, the mesh is fixed in the space. This
method introduces a new variable in the model to track the presence or not of one of the
two phases in the whole domain. Eulerian methods are the most used ones, since they
permit to take into account large topology changes and discontinuities. Methods that
fall into this category include the volume-of-fluid (VOF) method introduced by [21] and
the level-set (LS) method introduced by [22]. In the former, a steep function, transported
by the fluid flow, is defined in the whole computational domain. This function, which
represents the fraction of the volume, is set to unity everywhere in one phase and zero in
the other phase. In those regions where both phases are presented, free surface is captured
through a interface reconstruction procedure. The mayor advantage of this method is
the mass conserving properties. Nonetheless, the interface reconstruction is a laborious
computational task. In addition, modeling errors stem from the difficulties to control
the interface thickness, due to numerical diffusion. In the LS approach, the interface
is simulated by the evolution of the zero level of a time-dependent smooth function
transported by the fluid flow. This approach allows the simulation of complex surface
evolution including topological merging and breaking; moreover, the computation of
geometrical quantities like the normal and curvature of the interface are easily performed.
The LS approach provides an exact representation of the interface, but it is by definition
a not mass conserving method.

In the context of the LS method, several approaches have been developed in pursuance
of maintaining the interface sharp and to improve mass conservation properties. [23] ,
[24] , [25] and [26] improve conservation properties by replacing the usual signed distance
function of the original LS approach by a hyperbolic tangent function. This proposed
function is transported and reinitialized using conservative equations reducing mass
conservation errors while retaining the simplicity of the classic method even for complex
problems. Another strategy is to implement the adaptive mesh refinement (AMR)
technique. This technique was introduced by [27] and later extended for the two-phase
incompressible flow by [28]. In this approach, multiple component grids of different
resolutions are used. In a region of the flow when more detail is required, a refined grid
is placed. This approach has been used in combination with LS method by [29] and
[30] not only to improve mass conservation, but also to preserve interfacial topologies.
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Also [31] used this technique in combination with LS method to simulate moving solid
boundaries. Finally, methods that combine two different methods and takes advantages of
the strengths of each of the two approaches have received considerable attention in recent
years. It can be found that LS and VOF methods have the complementary advantages and
disadvantages, so it is a natural trend to develop a method combining these approaches.
The basic idea behind combining VOF method and LS method is to get the best from
both VOF method (mass conservation properties) and LS method (easy computation of
geometric properties of the interface and interface sharpness). Examples of these methods
are the Coupled Level Set Volume Of Fluid (CLSVOF) method of [32], the Coupled
Volume of Fluid and level Set (VOSET) method of [33], the hybrid Level set/Volume of
Fluid (LS/VOF) method of [34], and the Mass Conserving Level Set (MCLS) method of
[35]. These methods have been extensively tested and validated. Results presented in
[36], [37], [38], [39], [40], [41] have shown interfacial geometric properties more accurately
and mass conservation improvement compared to standard LS and VOF methods.

The level set function � is defined as a signed distance function. However, after the
advection procedure this initial condition is not preserved and a reinitialization treatment
is always necessary in order to overcome some numerical instabilities and maintain a
numerically well-defined interface and maintain an stable interface evolution. The two
most popular approaches among them are the Fast Marching Method (FMM) [42] and
the Partial Difference Equation (PDE) based Method [43]. The FMM represents the most
efficient reinitialization method. However, the algorithm is inherently sequential due
to causal relationship between grid points and hence not straightforward to parallelize.
PDE-based method represents a simple and yet efficient alternative. In this method,
the values in all grid points are updated simultaneously, therefore, the algorithm is well
suited to parallel computing environments. Additionally, this method offer the advantage
of flexibility to use a wide range of well documented numerical techniques as well the
use higher-order schemes for time and space discretization. In this work, the PDE-based
method approach [44] is adopted

In this work, the approach proposed by [35] is adopted. The MCLS method is a
hybrid method, based in an explicit relation between the LS function and the VOF
function to find a mass conserving correction to the LS function. The locally linearized
LS function and the VOF function are linked through an algebraic relation, based on a
parameterized geometric construction of the interface. The method takes full advantage
of all additional information provided by the Level Set function, rather than coupling
LS method with VOF method. The VOF function is used as an auxiliary variable to
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conserve mass, without applying the difficult interface reconstruction which makes the
VOF method so elaborate and computationally expensive. However, the classic implicit
representation of the LS method used in [35] tracks all the LS functions throughout
the entire computational domain, even though interest is really confined only to the
zero LS itself corresponding to the interface. This consideration results computationally
expensive. [45] introduced the idea of the narrow band approach, also called Local LS
method to limits labor to a thin region around the zero LS. The savings of the use of
local LS methods has been reported by [44], therefore this modified approach of the LS
method is adopted in this work.

On the other hand, in order to improve the accuracy and handling large gradients and
material discontinuities associated with two-phase flows, the Ghost Fluid Method (GFM)
of [46] is adopted. This technique based in the approach introduced by [47] provides
a way of dealing problems involving large density ratio i.e. when one fluid is too stiff
compared with the other, such as, air/water interface. The GFM consists in creating
an artificial fluid also call ghost fluid which implicitly induces the proper conditions at
the interface. In the ghost fluid regions, discontinuous variables across a fluid interface
are given using a one-sided extrapolation and continuous variables are copied from the
real fluid on a node-by-node basis. Finally, high-order schemes such as the Weighted
Essentially non Oscillatory (WENO) scheme of [48] for space discretization and the third
order TVD-RK of [49] for time discretization are used. These schemes are capable of
handling large gradients and discontinuities very accurately.

1.4. Scope

In this thesis, an efficient level-set two-phase flow model for the simulation of problems
with a large density ratio and complicated interface interactions applied to highly turbulent
water-air problems is introduced. Two sets of the flow equations are solved simultaneously,
one for each fluid. Both the liquid and gas phases are assumed to be governed by Navier-
Stokes equations and approximated to incompressible state through an artificial state
equation. The VOF function is computed, so that mass conservation issues of the LS
method can be overcome. LS function is only solved in a narrow band across the interface.
This approach reduces considerably the computational time, making the method more
efficient. Finally, to assure a sharp and correct evolution of the interface, higher order
schemes are used for both spacial and temporal discretization. The capability, accuracy
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and performance of the presented numerical model is evaluated and validated by carrying
out some benchmark numerical simulations. The code has been parallelized using message
passing directives (OpenMP). The main advantages of OpenMP. The parallel code which
was written in FORTRAN-90 has been successfully tested. The CPU time quantities
show that the parallel code achieves reasonably good computational efficiency for fine
grid sizes that are relevant for the detail study of relatively high Reynolds number flows,
reducing the runtime by a factor of 2.5 with respect to the serial code.



Chapter 2.

Numerical model

In this work, a complex physical phenomena involving large sizes of numerical domains,
with both small scales of turbulence and free surface deformations such as breaking
waves, is described by the Navier-Stokes equations coupled with mathematical treatments
for the free surface and turbulence descriptions. The governing equations are based
in a quasi-incompressible formulation. The numerical model is able for the simulation
of problems with a highly dynamic interface between air and water, with complicated
interface interactions including: wave propagation, wave shoaling and wave breaking.
In the numerical method, two sets of the flow equations are solved simultaneously, one
for each fluid. The consideration of include the effects of air movement means that the
simulations are closer to the realistic situation and this leads to an improve in accuracy
compared with one-phase models. The free surface model is based on the level set
formulation in which the interface between two immiscible fluids, e.g., air and water, is
represented by the zero level set.

The full details of the numerical model may be founded in Appendix A. Here, only a
partial description and necessary concepts of the model is presented.

2.0.1. Compressible Navier-Stokes equations

In a Cartesian frame of reference, the two-phase Navier-Stokes equations can be written
in the so-called fast conservation form of [50]:

@U

@t
+

@F
i

@x
i

= SF (2.1)
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where U is the four component vector defined by:

U = (⇢
�

, ⇢
�

u1, ⇢�u2, ⇢�u3) (2.2)

Here u = (u1, u2, u3) is the velocity vector and ⇢ is the density. Equation (A.1)
represents the evolution of density (continuity equation) and momentum equation.
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Finally, the term SF corresponds to the source terms, than represent gravity effect.
The subscripts � in Equation (A.3) denote two different material properties, the liquid
and the gas phase, respectively, �

ij

is the Kronecker delta and S
ij

is the deviatonic part
of deformation tensor, written as:

S
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=
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3
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ij

◆
(2.4)

2.0.2. Quasi incompressibility approximation

In various numerical schemes for incompressible flow, the pressure is often obtained
by solving a Poisson equation. This is frequently the most costly step, which requires
additional computations at each time step. A technique to overcome this difficulty is the
artificial compressibility (AC) method proposed by [51]. The AC method considers that
every theoretically incompressible fluid is actually compressible. The main idea of [51]
concept is to add a time derivative of pressure into the continuity equation. This provides
a direct coupling between pressure and flow velocity, thus avoiding the need to solve the
elliptic Poisson equation. The AC has recently been used along with the LS method in
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studying moving interface problems. [52] have extended the AC method for the simulation
of incompressible multiphase flows coupling the pseudo-compressibility method and the
LS method. The approximation adopted in this work is, in concept, very similar to the
artificial compressibility (AC) method of [51] and the pseudo-compressibility method of
[52]. The fully compressible continuity and momentum equations are used, but with an
isothermal equation of state. This choice allows us to bypass the Poisson equation.

Incompressible flow is approximated by replacing the pressure in the compressible
Navier-Stokes equation according with the equation of state p = c2⇢ for an artificial
incompressible fluid proposed by[53] and[54] where c is the speed of sound in the medium.
As long as the flows are limited to low Mach number, and the conditions are almost
isothermal, the solution to this set of equations should approximate the incompressible
limit. The sound speed must be chosen carefully to ensure an efficient an accurate
solution of a given problem. The value of c must be large enough that the behavior of
the corresponding quasi-incompressible fluid is sufficiently close to that of the real fluid,
but it should not be so large to make the time step prohibitively small. According to [55]
the Mach number, obtained by the reference velocity and the sound speed, should be 0.1

or less.

2.0.3. Equations in generalized coordinates

Although a Cartesian grid is preferred due to the simplicity and efficiency, in Large Eddy
Simulation (LES) methodology the generation of a high-quality resolution in the normal
near-wall region is a requirement. In this sense, the use of Cartesian grids can result in a
high computational inefficiency as the refinement is extended to regions of the flow in
which it is not needed, or even to solid regions. The present model has been developed
for use in a generalized curvilinear system allowing a wide range of complex geometries
to be modeled efficiently on structured grids.

The system in generalized coordinates was solved by means of an extension of the
fully explicit McCormack scheme, being second order in time and fourth order in space,
as devised by [56]. The explicit MacCormack scheme is essentially a predictor-corrector
scheme.
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2.0.4. Large eddy simulation

The selection between the large and small scales, is the basic idea of LES. The contribution
of the large, energy-carrying structures is computed exactly (completely solved), and the
effect of the smallest scales of turbulence is modeled. The justification of such a filtering
technique is based in the assumption that large scales contain most of the energy varying
from flow to flow, while small eddies are believed to be more universal and less dependent
of the main flow.

The separation between the resolved and the modeled scales is mathematically for-
malized by applying a convolution filter to the Navier-Stokes equations, which introduces
the notion of cut-off length. LES should then be an efficient method to overcome the
limitations of both DNS and RANS methods.

The two scales categories are subjected to the determination of a reference length,
the cut-off length. The large scales, or resolved scales are greater than the cut-off length.
The small scales, or sub-grid scales, are taken into account through a subgrid-scale model.
In this study, the Selective Structure Function (SSF) model reported by [57] is used. This
model allows good results to be obtained for various incompressible and compressible
turbulent flows. [58]

2.0.5. Boundary immersed method

Among other things, this work is motivated by the need to develop a method for solving
the Navier-Stokes equations that facilitates the implementation of boundary conditions
in flows with complex and moving immersed boundaries. The use of immersed boundary
method on a Curvilinear grid can improve efficiency by generating grid lines almost
parallel to the solid surfaces. This ensures an adequate resolution of the boundary layers.
This advantage is particularly beneficial in simulations of turbulent flows with complex
geometries [50], [59]

2.0.6. Level-Set methodology

The Level set (LS) method is a simple and versatile method for modeling the evolution
of a dynamic interface.This method introduced by [22] is based on the use of a smooth
function to describe the interface between two phases. The idea is to represent the
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interface implicitly by the zero level set of a level set function, with the corresponding
motion of the interface governed by a corresponding PDE.

To implicitly represent the discontinuity, a level set function � is introduced. The
level set function at any given point is taken as the signed normal distance from the
interface with positive on the liquid phase (i.e. � > 0), and negative on the gas phase
(i.e. � < 0). Therefore, the interface is implicitly defined as the zero level set of the level
set function.

2.0.7. Reinitialization

The level set function � is defined as a signed distance function. However, as the flow
field evolves, high velocity gradients can produce wide spreading and/or stretching of the
LS function, so this initial condition is not preserved and a reinitialization treatment is
always necessary in order to avoid some numerical instabilities and maintain a numerically
well-defined interface and a stable interface evolution.

In this work the PDE-based reinitialization approach of [44] is adopted. PDE-based
method represents a simple and yet efficient alternative. In this method, the values in all
grid points are updated simultaneously, therefore, the algorithm is well suited to parallel
computing environments as OpenMP. Additionally, this method offer the advantage of
flexibility to use a wide range of well documented numerical techniques as well the use
higher-order schemes for time and space discretization.

The reinitialization consists in replace the �(t, x) by another function d(x) (Distance
function that just is function of the space) that has the same zero level, but | rd(x) |= 1.
As well as to the LS equation, Eq. A.22 is discretized using the fifth order WENO scheme
in space and third order TVD-RK in time. It is important to use higher-order numerical
schemes to minimize numerical errors. It is not necessary to perform reinitialization at
every time step. In this work we performed it every 10 to 20 time steps.

2.0.8. Ghost Fluid Method

An accurate treatment of material discontinuities across the interface can be obtained
via the Ghost Fluid Method (GFM). The GFM offers a way to capture fluid interfaces,
avoiding large unphysical oscillations and reducing the numerical smearing of discon-
tinuous variables. The idea of the GFM is to introduce two sets of variables, for each
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separate phase modeled. The governing equation for each field are solved independently
and zero level set separates real and ghost zones. Consequently, the task is implementing
the GFM method for populating the field variables in the ghost zones of each fluid during
each time step.

For smooth well-behaved problems, the method proposed in[47] is the most appropriate.
In this approach, in the ghost fluid regions, discontinuous variables across a fluid interface
are given using a one-sided extrapolation, and continuous variables are copied from
the real fluid on a node by node basis. In this paper the modified GFM for large
density differences across an interface developed by [46] is used. In the modified GFM
for air-water interaction, the velocity in the ghost-fluid region for the water and the
pressure in the ghost-fluid region for the air are extrapolated from their real fluid regions,
respectively, while the pressure in the ghost-fluid region for the water and the velocity in
the ghost-fluid region for the air are copied from their real fluid regions, respectively.This
same approach has been used successfully by [60] and [52] for simulations of multiphase
flows with large density ratio.

2.0.9. Local LS method

In order to improve computational efficiency, both level set advection and the reinitial-
ization are implemented on a narrow band tube in the neighborhood of the interface [44].
This reduces the run-time computation costs, and makes it viable to employ high-order
schemes since only a small fraction of the LS function is considered and updated in every
time step. When the interface moves out of the narrow band, the calculation is stopped
and a new band is built with the interface at the center of the band. The computational
cost is reduced because a significant smaller amount of values have to be updated at
every time step. In this work, the approximation of [44] is adopted.

Narrow bands of different size are constructed and updated following the moving
interface. The size of the bands is fixed and their values �

i

’s are multiple of grid sizes. In
general, only two bands are required, but if the motion of the interface involves sensitive
quantities such as derivatives of curvature is necessary to used a third narrower band.
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2.0.10. Mass Conserving Method

The volume of fluid method was introduced by [21] and, since its conception has been
widely used in several works. In VOF method, the computational domain is divided into
small cells. Each cell is assigned a discontinuous concentration function � representing
the volume fraction of one of the fluids within the cell. From these cell fractions, the
position of the interface can be determined using an interface reconstruction procedure
within each cell that is intersected by the interface.

Because the function is a conservative variable, the method conserve mass exactly.
However, despite the accurately mass - conserving properties of the method, the interface
reconstruction and the approximations on geometric properties of the interface are
computationally expensive, especially in three dimensional simulations.

The volume of fluid method was introduced by [21] and, since its conception has been
widely used in several works. In VOF method, the computational domain is divided into
small cells. Each cell is assigned a discontinuous concentration function � representing
the volume fraction of one of the fluids within the cell. From these cell fractions, the
position of the interface can be determined using an interface reconstruction procedure
within each cell that is intersected by the interface.

Because the function is a conservative variable, the method conserve mass exactly.
However, despite the accurately mass - conserving properties of the method, the interface
reconstruction and the approximations on geometric properties of the interface are
computationally expensive, especially in three dimensional simulations.

The MCLS method developed by [35] is based on the idea of mass conservation
improving through the use of a explicit function f that directly relates the VOF function
to the LS function. To conserve mass, corrections are applied to the LS function � using
the VOF function  . This is achieve by application of three steps:

• Calculation of VOF function from LS function

• Advection of VOF function

• Correction of function with the advected VOF function
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2.0.11. Discretization of the VOF and LS equations

In order to treat correctly the evolution of the LS function, numerical schemes should
have enough accuracy. In the present work, like the LS equation, reinitialization equation,
and VOF function is advanced by using a using the fifth order WENO scheme in space
[44] and third order TVD-RK in time [49].

WENO schemes are high-order finite difference schemes designed for nonlinear hyper-
bolic conservation laws with piecewise smooth solutions containing sharp discontinuities
as interfaces. On the other hand, third order TVD method is generally recommended,
since it has the greatest accuracy and largest time step stability region of the TVD
schemes. By cause of its large stability region for a sufficiently small time step, it is
guaranteed to be linearly stable for a variety of problems.

2.0.12. Surface tension

Free surface flows are most commonly phenomenon driven by the inertia and gravity
forces. However, for some fluid flow problems, interfacial motion induced by surface
tension may play a significant role, affecting the dynamics of the interface. Surface
tension is the result of attractive forces between fluid molecules acting in the liquid-air
interface. In the slow flow problem such as the liquid drop or the bubble motion, the
surface tension effect is important. However, in most natural fluid flows the surface
tension can be neglected because of its rapid motion character.

In a more general way surface tension may become important if there is an interface
between two fluids and the surface tension force on a fluid particle is significant in
comparison to the inertial force being applied to the particle. This relationship of forces
is evaluated by the Weber number. The Weber number defined by the liquid density ⇢,
a reference velocity V , a reference length L, and liquid surface tension �, We =

⇢V

2
L

�

.
The influence of surface tension force diminishes as the value of the We number increase.
The relative large value of the We number suggests that for the dam-break problems
under consideration in the present work the surface tension effects can be neglected in
the analysis of flow motion.
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2.0.13. Vortex identification

During breaking, the organized and mainly irrotational motion of the waves is transformed
into vorticity, turbulence, and irregular patterns. Broken waves involve motions of
different types and scales, including large-scale structures, also called "coherent vortical
structures" and small-scale turbulence with random motion that appears once these
coherent structures have vanished.

Identification of vortices is necessary for understanding the complex flow beneath
of breaking waves. The Q-criterion proposed by [61] is one of the most common vortex
identification techniques to investigate the generation, evolution and fate of turbulent
coherent structures. This criterion is based on a balance between shear strain rate and
vorticity magnitude, defining vortices as areas where the vorticity magnitude is greater
than the magnitude of rate-of-strain. In this work the Q-criterion is adopted to identify
and educe the vortex motions and their evolutions in space and time during a plunging
breaking wave.



Chapter 3.

Validation

Validation is a fundamental step in assuring that the numerical code not only works
properly, but even more importantly, in assessing the accuracy dependence with varying
grid density and with parameters of the numerical scheme and its implementation. For
instance, validating turbulence models, two-phase models, empirical data related to real
gas effects, temperature dependence of viscosity, etc, can only be achieved by comparing
with experimental data.

One of the most popular suitable test cases to prove the capabilities and the perfor-
mance of a free surface model is the dam break problem. This problem refers to the
gravity-driven flow of a fixed volume of fluid suddenly released. For this particular free
surface case, a rectangular water column is initially supported by a gate that suddenly
is removed. The column subsequently collapses due to gravitational acceleration force
and eventually comes to rest and occupies the bottom of the tank. In this work, a three
dimensional model is considered in order to reproduce the experiments developed by [62],
[63] and test the ability of the numerical code to deal with strong free surface deformation
patterns, such as splashing, sloshing, etc. These validation tests cases produced a variety
of data so that many aspects of the model can be assessed.

The water column has the properties; ⇢
w

= 998.0 kg

m

3 and µ
w

= 1.137103Pa · s, while
the surrounding air phase has ⇢

a

= 1.2 kg

m

3 and µ
a

= 1.78105Pa · s. The surface tension
coefficient is � = 0.0728N

m

. The height of the initial water column L is taken as
characteristic length and the celerity V =

p
gL as the reference velocity.

The simulation parameters used for the test cases are summarized in Table 3.1

18



Validation 19

Test Case DB1 DB2

Reference Lenght (L) [m] 0.3 0.55

y+
50 75

Total grid number 3,900,000 9,477,000

(52015050) (58518090)

Re =

⇢Lv
µ 5.14105 1.27106

Fr =

q
V
gL 2.0 2.0

We =

⇢V
2
L

� 1.2104 4.11104

Simulated Time [s] 2.0 5.0

CPU Time [hrs] 20 85

Table 3.1.: Numerical parameters for validation tests case simulated

In order to characterized the possible impact of the surface tension an order of
magnitude analysis of the We number has been carried out. The We number, is large
enough to considerer that for the dam-break problems under consideration in the present
work the surface tension effects can be neglected in the analysis.

For gravity current flows over a horizontal bed that initiated from rest, such as dam-
break the Froude number Fr is technically equal to one regardless of the initial water
depth in the dam reservoir. However, in this study the Fr is based on an approximation
of the maximum velocity of the fluid wave estimated as V

max

= 2.0
p

gL [64], therefore
Fr is set equal to 2.0.

3.0.1. Dam breaking (DB1)

The first test based on the classical dam-break flow over a dry horizontal has been taken
from the recently experiments performed by [62]. This study provides detailed data in
terms of water heights and pressure measurements. The water height has been measured
in the positions H1-H4 at different locations along the tank and some pressure sensors
are placed in the positions P1-P4, on the solid vertical wall opposite to the initial column
of water. The test case configuration and measurement points are shown in Fig. (3.1).

Although measurements of the exact interface shape are no available, Fig. (3.2) shows
a sequence of snapshots of numerical and experimental free surface profile evolution at
different times.

The temporal evolution of the free surface deformation keeps good agreement with
the experiment images and some important flow features are accurately identified: Initial
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Figure 3.1.: Schematic view of dam-breaking flow testing case.

water column (a), as the time progress, the collapsed water moves to the right (b-d),
and at the time (e-h) the flow impacts the vertical right side wall forming an upward
water jet that falls down due to gravity effects and forms a plunging wave. Finally a high
turbulent wave continues moving to the left (i-k). However, because of the insufficient
grid resolution, some fine details such droplets and bubbles are not well captured by the
simulation.

Figure 3.3 compare the time evolution of water level at locations H1-H4. A general
good agreement is found between measurements and simulations, especially at early
times, after that, differences between the two solutions occur. The plunging jet resulting
from the impact against the right wall, splash-up and induce the formation of vortical
structures creating a complex flow with a large free surface deformation. The major
discrepancies are presented at locations H3 and H4, that is, the nearest locations to the
splash-up region. At this locations, the water level is underestimated. This situation can
be understood because the maximum experimental height considers the fragmented fluid
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(g) t=1.023

(h) t=1.166

(i) t=1.320

(j) t=1.473

(k) t=1.626
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x

Figure 3.2.: Snapshots of numerical and experimental dam-break flow. Experimental snapshots
taken from [62]. Time in seconds.
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Figure 3.3.: Predicted and measured free surface elevations time histories at H1-H4. Black
circle (experimental); Red square (numerical).

particles detached during the jet impact and that are not captured in the simulation.
The discrepancies in the elevation of the secondary wave arise from the complex flow
structures that are created as the secondary wave propagates through the tank.

Figure 3.4 compares the time histories of pressure at locations P1-P8. The pressure, P ,
is non-dimensionalized considering the hydrostatic pressure at the bottom of the reservoir
as the reference pressure. The agreement between the simulation and the experiments is
very good capturing correctly the first and second pressure peaks that are observed in
the experiment. However, numerical results presents some fluctuations and the predicted
maximum is overestimated, especially at sensor P1 and P2, while major discrepancies
are presented at location P4, that is, the sensor located at the highest position. At this
sensor location, the predicted maximum is underestimated. This is linked to the fact
that the flow in the jet formation is more complex.
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Figure 3.4.: Predicted and measured pressure time histories at P1-P4. Black circle (experi-
mental); Red square (numerical).

3.0.2. Dam breaking over an obstacle (DB2)

The second benchmark test developed by [63] is performed to demonstrate the ability of
the numerical model to capture 3D deformations after the violent interaction between the
free surface and a rigid body. The experiment consisting in the collapse of a column of the
water that impacts a stationary obstacle at the bottom of the tank is a benchmark test
case, since plenty experimental data are available in terms of water heights and pressures
at different locations of the tank and obstacle. Fig.(3.5) shows a schematic view of the
domain setup and the locations of the height sensors H1-H4 and the pressure sensors
P1-P8 for the present simulation. The dimensions, geometry and initial conditions of
the problem correspond to those used in the experiment. No-slip boundary conditions
have been applied to the bottom and sides of the tank; slip boundary conditions have
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been applied to the front and back face of the tank. The obstacle have been numerically
modeled by the immersed boundary method according to [59]. Because of lack of
information of gate opening speed, water is released immediately when the simulation is
started.
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Figure 3.5.: Schematic view of dam-breaking flow testing case.

Fig. (3.6) shows a sequence of snapshots of water evolution in the present simulation
together with experimental images at different times. In general, a good agreement
between the numerical simulation and experiment was obtained. Numerical predictions
shows an unsteady behavior of the free-surface flow with interface ruptures and coalescence
after the impact with the obstacle. The flows become chaotic and complicated due to
the effect of the obstacle and the tridimensionality of the phenomenon. Because the grid
mesh size the numerical model is not able to capture the drops that emerge after impact.

The time histories of free surfaces elevations at the locations H1� H4 are depicted
in Fig. (3.7). A general good agreement is found between measurements and simulations.
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Figure 3.6.: Snapshots of numerical and experimental dam-break flow. Experimental snapshots
taken from [63]. Time in seconds.
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At probe point H1 at early times the water surfaces elevation is almost exactly the same in
simulation and experiment, though there is some differences in the maximum water height.
At probe points H2 and H3, numerical result is delayed about one non-dimensional time,
while predicted water surface elevation by numerical model appears to be higher than
that by the experiment. On the other hand, at probe point H4 predicted water surface
elevation by numerical model appears to be lower than the experiment. The reason is
that, at the vicinity of the obstacle the flow structure is more complex, and the predicted
free surface elevation by numerical model presents strong fluctuations especially after
water impact the obstacle.
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Figure 3.7.: Predicted and measured free surface elevations time histories at H1-H4. Black
circle (experimental); Red square (numerical)

For the purpose of analyzing the ability of the numerical model to predict the loads
exerted by the fluid on solid surfaces, pressure at different positions of the block is
obtained. The time histories of pressure at locations P1-P8 are depicted in Fig. (3.8).
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Figure 3.8.: Predicted and measured pressure time histories at P1-P8. Black circle (experi-
mental); Red square (numerical).

Pressure predictions provide a general good agreement with the experimental data.
The maximum numerical and experimental values of pressure, which correspond to
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Figure 3.9.: Predicted and measured pressure time histories at P1-P8. (continued)

first water impact on the obstacle, coincide in magnitude and time with respect to the
experimental one. The only important difference is observed at probe point P1 where
pressure predictions from the numerical model is slightly higher than the experimental
results. For P1 and P2, pressure predictions from numerical model shows over-predicted
pressure with strong fluctuations after water impact the obstacle. Although the tendency
is almost the same.

The agreement between the numerical and experiment results is satisfactory, which
shows that the numerical approach is capable of accurately and robustly handling with
large-deformation free surface flows with and the violent interactions between free surface
and stationary rigid body in three dimensions. Besides, the numerical model is suitable
for the applications in ocean engineering problems, e.g. breaking waves dynamics.



Chapter 4.

Breaking wave simulation

The study of dam-break flow has been a topic of significant research for both practical
and academic interests due to its relevance to environmental and structural damages
caused by the wave impacts. In the context of numerical studies of dam-break flows have
become an attractive and cost-effective way to evaluate the performance of the interfacial
simulation codes. These studies have been focused on the accurately description of the
free surface evolution and water front displacement over a dry bed, where the wave front
moves quickly with not appreciable turbulence and free of any breaking process. However,
If there is initially a fluid layer in the channel, the behavior of the flow becomes much
more complex, even in the presence of a thin layer. The static layer at the bottom resists
to a quick replacement of the wave front producing a propagating bore that evolves until
a single plunging wave breaker event occurs.

[18], [19] and [20] have conducted dam-break experiments with a wet-bed condition
downstream of the initial water column. [18] focus on turbulence characteristics on the
early stage of the dam break flow; [19] studied turbulence drag reduction due to the
addition of polymer in their experiments. [20] used a dam-break mechanism for studying
the bore collapse and the evolution of bed shear stress during the swash motion over an
impermeable slope. The dam-break study presented by [20] have shown that dam-break
experiments can be successfully used for modeling fluid dynamics of a single plunging
breaking wave and for the study of coastal hydrodynamics processes in general.

Considering the distinctive features of a dam-break flow reported in the a-foregoing
studies, in this work, the generation and evolution of turbulent coherent structures under
a single plunging breaking wave generated by a dam-break event with a wet-bed condition
downstream is numerically investigated. The main advantages behind studying a single
breaking event is that the breaking wave process and the generation and evolution of

30
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the associated turbulent structures can be investigated separately from the effect of
returning undertow flow and the residual turbulence induced from previously broken
waves in the case of periodic waves and a single breaking wave results less computationally
time comparing to periodic wave conditions and hence it allows for the use of a higher
numerical resolution on critical regions.

4.1. Dam breaking with a wet-bed downstream

condition

The validity of the present numerical model has been examined previously [65]. However,
this work attempts to represent in the most approximate way the whole experimental
wave-breaking process, therefore, a further validation is performed and unlike previous
works, some important initial features, such as, gate motion and gravity effects are
considered in the analysis.

The numerical study is based on the experiments of [19]. Figure 4.1 shows a schematic
view of the domain setup for the present simulation where the dimensions, geometry
and initial conditions of the problem correspond to those used in the experiment. The
simulation was conducted for one initial depth ratio condition only: d

d0
= 0.1, with a

water depth in the reservoir (d0 = 0.15m). Gate movement is implemented within the
immersed boundary method.

4.1.1. Gate effect

For a dam-break problem the movement of the gate represents an important initial
condition influencing the collapses dynamics, however, considering the complexity of
the experiment, in most of the numerical simulation a sudden gate opening is assumed,
i.e, the water column collapse immediately as soon as the computations begins. In this
work, the effect of a moving gate is numerically included and considerable attention is
paid to the difference in water front toe evolution, free surface profile and breaking onset
between dam-break simulation for gate/no-gate cases.

According with experimental data from [19] the gate moves vertically with an uniform
velocity of 1.5m

s

. Taking the initial water depth in the reservoir (d0) as the characteristic
length and

p
gd0 as the characteristic velocity, Fr = 1 and Re = 185800.
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Figure 4.1.: Schematic view of dam-breaking flow over a wet-bed testing case.

Figure 4.2 shows experimental snapshots and numerical predictions for no-gate case
at different instants of the dam-break evolution.

Figure 4.3 shows experimental snapshots and numerical predictions for gate case at
different instants of the dam-break evolution.

Analyzing the different instants: after the water column initially placed behind the
gate pushes the shallow water layer, a propagating bore develops; the resistance of
the shallow water layer generate a unstable configuration, reported by [18] and [19] as
"mushroom-like" water jet where a wave breaking in both (forward and reverse) directions
occur; the more prominent forward breaking breaks about 0.06s after the backward
breaking in form of a plunging jet with enough energy to generate a second breaking
event with a similar size.

Simulations show the main features observed in the experimental snapshots. The
numerical model reproduces from the wave propagation to the formation of the mushroom-
like water jet and the subsequent wave breaking phenomena with reasonable accuracy.
However, the overall agreement is not satisfactory. Looking at the shape of the water
surface front, the experimental and gate numerical results show a similar shape, while the
difference in the front free surface shape is found to be more distinct when gate movement
is not considered, especially at the initial stages. For the latter stages all surface shape
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Figure 4.2.: Experimental snapshots and numerical predictions for no-gate case at different
instants of the dam-break evolution
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Figure 4.3.: Experimental snapshots and numerical predictions for gate cases at different
instants of the dam-break evolution
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representations become close, however the displacement of the experimental wave front
runs always ahead of the numerical predictions, in addition gate simulation shows an
evident time delay with respect to the experimental results. According to experimental
data the first plunging jet impact presents at t = 0.327s, however the gate simulation
the impact happens about 0.07s latter.

4.1.2. Gravity effect

In general, simulations shows similar patterns observed in the experiment. However,
both gate and no-gate show evident differences with respect to the experimental results.
Despite the fact that the differences could be explained as the result of experimental
factors than cant be exactly reproduced on the numerical model such as the gate removal
technique or physical properties of gate and tank floor. It is important to point out that
in the above simulations the Froude number (Fr) a characteristic parameter in gravity
driven flows, is equal to one regardless of the initial water depth in the dam reservoir.
However, unlike the dam-break flow over a dry bed where the forward momentum
generated for the initial water column dominates the fluid movement, dam-break over a
wet bed is characterized by a strong interaction between upstream (d0) and downstream
(d) columns, therefore, the physical characteristics of the propagating bore over a layer
of constant depth d, with a speed U

m

must be considered.

For a dam-break problem over a wet bed the theoretical Fr, the water depth below
the wave front d

m

and the propagation celerity U
m

are related by the theoretical hydraulic
jump formula.

Fr =

U

gd0
=

1

2

d
m

h0

✓
d
m

d0
+ 1

◆
(4.1)

where d
m

is determined from the initial condition using the dam-break solution as
given by [66]

p
d =

p
d
m

+ (d
m

� d0)

s
d
m

+ d0

8d
m

d0
(4.2)
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The Fr corrected value based in the above analysis for the dam-break depth ratio
condition: r =

d

d0
= 0.1 considered in this study is Fr = 3.1. Figure 4.4 shows

experimental snapshots and numerical predictions at different instants of the dam-break
evolution considering gate movement and Fr correction.

Results considering the Fr correction show a satisfactory agreement with the exper-
imental results. Numerical height and location of the wave front match closely with
the the experimental snapshots. Mayor discrepancies lie in the amount of water at the
surface of the rebound jet after the first plunging jet impact. The experimental snapshot
suggests that the the rebound jet makes up approximately half of the first wave column,
whereas the numerical prediction underestimates the amount of mixing upstream of the
wave front. On the other hand, back wave bore elevation appears to be lower than the
one obtained by the experiment.

The numerical model has been shown to reproduce the experimental profiles accu-
rately, however is important to considerer that with the increasing depth ratio condition
the interaction between the two water layers exhibit different patterns. Depth ratio
condition determines the shape of the propagating wave front, the wave front behaves
and the subsequent wave breaking characteristics, therefore, in order to verify Fr correc-
tion validity, several different downstream depths, from a shallow to deep downstream
conditions are considered. Based on Eq. 4.1, a particular Fr value for each depth ratio
conditions r is determined.

Figure 4.5 presents the experimental snapshots and numerical predictions at an initial
time t = 0.3s for different downstream conditions cases.

Depending on the depth condition, different propagation regimes have been observed.
Because the large pressure gradients the water wave front breaks almost immediately
under a shallow downstream condition. While for a depth downstream condition the
displacement of the water wave and the fully develop of the bore is slower and the wave
fronts are still gaining their height at this instant. Only wave breaking is observed for
the r = 0.03 depth ratio condition. Consistent with previous results, good agreement
is found between the experimental snapshots and numerical predictions with just a few
discrepancies for the nearly dry-bed conditions.

The study shows that the predicted gate motion matches well with the experimental
results and emphasizes the influence of the gravity effects on wave propagation.
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Figure 4.4.: Experimental snapshots and numerical predictions at different instants of the
dam-break evolution with Fr correction.
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Figure 4.5.: Experimental snapshots and numerical predictions for different depth conditions
cases (t = 0.3s)
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4.2. Breaking wave turbulence

During a breaking wave the organized and mainly irrotational motion of the incoming
wave is transformed into a significant amount of turbulence characterized by irregular
patterns motions of different types and scales, including large-scale structures, also called
"coherent turbulent structures" and small-scale turbulence with random motion that
appears once these coherent structures have vanished.

Now that the numerical model has been shown to provide accurate results on dam
break propagation over a wet bed under different depth conditions r, it can be used
for simulating and analyzing the dynamics of the propagation wave and the process of
a single plunger breaking event. Special attention is paid on the identification of the
coherent vortical structures generated during and after the plunging jet impact.

Based in the previous sections analysis the best conditions for analyzing a single
plunging breaking wave event have been determined and some considerations have been
made in order to increase computational efficiency:

• Only a shallow depth condition is tested, since the development of the jet breaking
process is faster under these conditions. The breaking process is delayed when
increasing r.

• A shorter computational domain is adopted, since only the first forward impinging
jet is of interest for significant vortical flow motions and turbulence generation.

• The upstream water column base length is reduced to 0.15m, since base length has
a minor effect in wave propagation and the breaking process.

The simulations are performed for a single depth ratio condition r = 0.15. No slip
boundary conditions have been applied to the bottom, front and back face of the tank; slip
boundary conditions have been applied to the sides of the tank. The gate of the tank has
been included in the simulation so that the experimente could be reproduced accurately.
Gate is removed from above at constant velocity V = 1.5m/s which would take a time
0.1s. The water columns have the properties; ⇢

w

= 998.0 kg

m

3 and µ
w

= 1.137103Pa · s,
while the surrounding air phase has ⇢

a

= 1.2 kg

m

3 and µ
a

= 1.78105Pa · s. The surface
tension coefficient is � = 0.0728N

m

. The height of the initial water column L is taken as
characteristic length and the celerity V =

p
gL as the reference velocity. The simulation

parameters are summarized in Table 4.1
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Test Case DB1

Reference Lenght (L) [m] 0.15

Total grid number 16,800,000

(800140150)

Re =

⇢Lv
µ 1.81105

Fr =

q
V
gL 2.74

We =

⇢V
2
L

� 3.0103

Simulated Time [s] 0.6

CPU Time [hrs] 100

Table 4.1.: Numerical parameters for breaking wave simulation

Fig.(4.6) shows a representation of the various physical phenomena and flow patterns
distinctive of a breaking wave flow: the formation of a forward vertical crest front traveling
downstream; a first weak backward breaking due to the resisting effect of the still water;
the development of a forward breaking in the form of a overturning plunging jet and a
splash of water after jet impact.

The numerical model consistently reproduce the major features of the expected free
surface evolution observed in the experiment of [19]. However the attention is focus on
the complex vortical flow generated during the forward plunging wave breaking. The
Q-criterion proposed by [61] is one of the most common vortex identification techniques
to investigate the generation, evolution and fate of turbulent coherent structures. Based
on the Q-criterion some characteristic features and well-defined vortex structures have
beed identified.

Fig.(4.7) shows sequences of the computational free surface and the vortex structures
visualized by Q = 100. Two coherent turbulent structures have been identified. The first
turbulent coherent structure is what commonly known as a hairpin vortex or horseshoe
vortex usually presented under broken solitary wave [67]. This structure appears in the
impact zone and could be the result of the arrangement of scars or finger on the upper
surface of the jet. On the other hand, the plunging jet forms an inner non-circular shape
air tube where the trapped air is quickly compressed by water beneath the crest. The
water circulation around the tube induces the formation under the impact zone of some
aerated vortex filaments similar to the rib-like vortex structures identified by [15]. This
turbulent coherent structure with a short existence is connecting the main tube air with
the rebound splash-up and the secondary jet.
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Figure 4.6.: Breaking wave sequences. Air-water interface is identified by the zero level set
function
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Figure 4.7.: Vortex structures visualized by Q = 100 during plunging impact
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After the first rebound splash-up, a bore with a significant amount of turbulence
is generated. This constitutes a main mechanism of vorticity production, however no
distinctive turbulent structures have been identified.



Chapter 5.

Conclutions

An efficient two-phase LES method for simulation of incompressible free surface flows
has been presented. The method combines the strengths of both the LS and VOF
methods, for capturing a sharp interface accurately and improving mass conservation.
The numerical model proposed has been validated against three benchmark test problems:
classic dam break flow, dam break flow over an obstacle, and dam break flow over a wet
bed. The three benchmark test problems have been fully three-dimensional simulated.

Numerical method appears to be well-suited in dealing with two-phase flows with
large density ratio and large deformations of free surfaces with accuracy and efficiency.
Numerical results predict properly free surface evolution observed in the experiments.
Comparisons with experimental data show a good agreement. A contribution of this
work is the incorporation of air effect into the solution of the Navier-Stokes equations.

The study of the gate motion effect shows that the predicted gate motion matches
well with the experimental results. The water level height and the displacement of the
water wave are strongly affected by the gate motion. On the other hand, since free surface
flow are strongly influenced by gravity effects, the Froude number is also an important
parameter to consider in the simulation.

Numerical results provide an accurate description for both the free surface and the
turbulent flow structures. Results are very useful for further development of parametric
models for study of highly turbulent flows as breaking waves phenomena in coastal
engineering problems. Results represent a database for future analysis of air entrainment
during breaking event.

44



Appendix A.

Numerical model

A three-dimensional turbulent multiphase flow with strong deformations such as wave
breaking (e.g. plunging) can be described by the Navier-Stokes equations coupled with a
free surface model for capturing interface evolution. In this study, the governing equations
are based in a quasi-incompressible formulation, where the solution of both air and water
flows are considered in the model. LES methodology is adopted, since this approach
provide a sufficient amount of high-resolution information for an adequate description of
the generation and evolution of coherent structures. The free surface model is based on
a couple Level set- Volume of fluid concept. Surface tension at the interface is neglected.

The full details of the numerical model may be founded in Appendix A. Here, only a
partial description of the model is presented.

A.0.1. Compressible Navier-Stokes equations

In a Cartesian frame of reference, the two-phase Navier-Stokes equations can be written
in the so-called fast conservation form of [50]:

@U

@t
+

@F
i

@x
i

= SF (A.1)

where U is the four component vector defined by:
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U = (⇢
�

, ⇢
�

u1, ⇢�u2, ⇢�u3) (A.2)

Here u = (u1, u2, u3) is the velocity vector and ⇢ is the density. Equation (A.1)
represents the evolution of density (continuity equation) and momentum equation.

F
i

are the fluxes where 8
i

2 {1, 2, 3}, and for a Newtonian fluid are given by
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Finally, the term SF corresponds to the source terms, than represent gravity effect.
The subscripts � in Equation (A.3) denote two different material properties, the liquid
and the gas phase, respectively, �

ij

is the Kronecker delta and S
ij

is the deviatonic part
of deformation tensor, written as:

S
ij

=

1

2

✓
@u

i

@x
j

+

@u
j

@x
i

� 2

3

(r · u)�
ij

◆
(A.4)

A.0.2. Quasi incompressibility approximation

Incompressible flow is approximated by replacing the pressure in the compressible Navier-
Stokes equation according with the equation of state for an artificial incompressible fluid
proposed by [53] and [54].

p = c2⇢ (A.5)



Numerical model 47

where c is the speed of sound in the medium. As long as the flows are limited to
low Mach number, and the conditions are almost isothermal, the solution to this set of
equations should approximate the incompressible limit.

The sound speed must be chosen carefully to ensure an efficient an accurate solution
of a given problem. The value of c must be large enough that the behavior of the
corresponding quasi-incompressible fluid is sufficiently close to that of the real fluid, but
it should not be so large to make the time step prohibitively small. According to [55] the
Mach number, obtained by the reference velocity and the sound speed, should be 0.1 or
less.

A.0.3. Equations in generalized coordinates

Although a Cartesian grid is preferred due to the simplicity and efficiency, in Large Eddy
Simulation (LES) methodology the generation of a high-quality resolution in the normal
near-wall region is a requirement. In this sense, the use of Cartesian grids can result in a
high computational inefficiency as the refinement is extended to regions of the flow in
which it is not needed, or even to solid regions. The present model has been developed
for use in a generalized curvilinear system allowing a wide range of complex geometries
to be modeled efficiently on structured grids.

The coordinates are defined by the transformation x
i

= x
i

(⇠
i

), j = 1, 2, 3 through a
Jacobian matrix J , which transforms a complex geometry in the Cartesian coordinate
system x

i

(such as a non-uniform grid or a curvilinear geometry) in the physical space,
into a simple orthogonal geometry with uniform grid in the generalized coordinate system
(⇠

i

) in the computational space. After the transformation, the equations can be solved
more easily.

Every term in the inverse Jacobian matrix ([J�1]) is expressed as an analytical function
of the metrics @x

i

/@⇠
j

. In this case, the metrics were computed and calculated by the
first order internal scheme, and the matrix ([J ]) is directly computed from [J�1] (see [68]
for further details). In consequence, Eq. (A.1) may be rewritten as:
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@ ˆF
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ˆSF (A.6)
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ˆSF =

1

J
SF (A.9)

where J represents the determinant of the matrix [J ] and U is a function of the
Cartesian coordinates and time.

A.0.4. Numerical Scheme

The system in generalized coordinates was solved by means of an extension of the fully
explicit McCormack scheme, being second order in time and fourth order in space, as de-
vised by[56]. The explicit MacCormack scheme is essentially a predictor-corrector scheme.

The three-dimensional, generalized formulation is shown below:
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JP and JC are the determinants obtained from the Jacobian matrix, computed with
the forward and backward schemes, respectively. Moreover (Likewise), interior derivatives
in the fluxes as well as diffusive terms are obtained by a central scheme.

A.0.5. Sub-grid Scale Model

A detailed explanation of LES formalism and numerical schemes used in the present
work, and an extended validation of the computational code have been presented in [?]

Concerning with the simulations of turbulent flows, we use a Large Eddy Simulation
algorith, through the estimation of Subgrid Stress ⌧

ij

. In this study, the Selective
Structure Function (SSF) model reported by [57] is used. With this model, the Sub Grid
Stress is expressed as:

⌧
ij

= ⇢⌫
t

˜S
ij

(A.12)

Hence, equation (A.3) is replaced by
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where ⌫
t

is the viscosity coefficient for the SGS model. This is given by:

⌫
t

(~x,�, t) = C
sf

�

q
˜F2(~x,�, t) (A.14)

where C
sf

is a constant and it is related to Kolmogorov’s constant C
k

through
C

sf

= 0.105C3/2. In particular, C
sf

was taken as 0.104 for C
k

= 1.0 and ˜F2(~x,�, t)

represents the second-order velocity structure function, constructed with the filtered
instantaneous velocity field. Additionally, ˜F2(~x,�, t) depends on the average value from
the six adjacent points. � = (�x�y�z)1/3 is the filter with.

In the SSF model the eddy viscosity is switched off when the flow is not three-
dimensional enough. At a given time, the angle between the vorticity vector at a given
grid point and the arithmetic mean of vorticity vectors at the six closest neighboring
points is measured. If this angle exceeds 20

o, the eddy viscosity is turned on. Otherwise,
only the molecular viscosity is active. This model allows good results to be obtained for
various incompressible and compressible turbulent flows. [58]

A.0.6. Vortex identification

The Q criterion is based on a decomposition of the velocity gradient:

rv = Sij +⌦ij (A.15)
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vorticity tensor, which are the symmetric and antisymmetric components of rv. While
⌦ assesses vortical activity, the strain tensor S measures the amount of stretching and
folding which drives mixing to occur. The second invariant of this tensor:
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Q represents the local balance between shear strain rate and vorticity magnitude,
defining vortices as areas where the vorticity magnitude is greater than the magnitude of
rate-of-strain , i.e Q > 0.

A.1. Interface capturing method

A.1.1. Classical Level-Set methodology

The transport equation of the level set function can be described by the following equation:

This method introduced by [22] is based on the use of a smooth function to describe
the interface between two phases.

Let �(x, t) denote the LS function with positive value in phase 1 and negative value
in phase 2. Therefore, the interface �(t) is represented by the zero LS of �.

�(t) = {x | �(x, t) = 0} (A.17)

The initial value of � is defined as the signed distance between any point of the
domain and the interface �(t). That is,

�(x, 0) = ± d (A.18)
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The LS function is advected by the fluid velocity. Solving a convection equation
determines the evolution of the interface in a given velocity field u.

@�

@t
+ u ·r� = 0 (A.19)

Important geometric properties on the interface, such as the normal vector n and
curvature k, can be obtained easily from LS function through the use of derivative
operators.

n =

r�
| r� | (A.20)

k = r ·
✓

r�
| r� |

◆
(A.21)

Although the LS function is initialized as a distance function, as the flow field evolves,
high velocity gradients can produce wide spreading and/or stretching of the LS function,
and no longer remain as a distance function. Unfortunately this requirement is crucial in
order to maintain the thickness of the interface constant in time.

A.1.2. Reinitialization

With the intention of keeping � as the signed distance function throughout the time
evolution, a reinitialization procedure is performed, based on reinitialization approach
of [44]. We replace the �(t, x) by another function d(x) (Distance function that just is
function of the space) that has the same zero level, but | rd(x) |= 1. The distance
function is obtained by solving the following pseudo-transient Hamilton-Jacobi equation:

@�

@t
+ S(�0)(| r� | �1) = 0 (A.22)
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Eq. A.22 is solved to steady state in pseudo-time ⌧ , with initial condition

d(x, ⌧ = 0) = �0 (A.23)

where S(d) is the sign function defined as:

S =

dq
d2
+ | rd |2 �x2

(A.24)

In the present work, as well as to the LS equation, Eq. A.22 is discretized using the
fifth order WENO scheme in space and third order TVD-RK in time. It is important to
use higher-order numerical schemes to minimize numerical errors. It is not necessary to
perform reinitialitation at every time step. In this work we performed it every 10 to 20
time steps.

A.1.3. Ghost Fluid Method

The GFM offers a way to capture fluid interfaces, avoiding large unphysical oscillations
and reducing the numerical smearing of discontinuous variables. As indicate in Fig.(??)
The idea of the GFM is to introduce two sets of variables, for each separate phase
modeled. The governing equation for each field are solved independently and zero level
set separates real and ghost zones. Consequently, the task is implementing the GFM
method for populating the field variables in the ghost zones of each fluid during each
time step.

For smooth well-behaved problems, the method proposed in[47] is the most appropriate.
In this approach, in the ghost fluid regions, discontinuous variables across a fluid interface
are given using a one-sided extrapolation, and continuous variables are copied from the
real fluid on a node by node basis.On the contrary, for large density differences across an
interface, i.e., when when density ratio is about 1000:1, [46] suggested an alternative way
to constructing the ghost fluid states.

In the modified GFM for air-water interaction, the velocity in the ghost-fluid region
for the water and the pressure in the ghost-fluid region for the air are extrapolated from
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their real fluid regions, respectively, while the pressure in the ghost-fluid region for the
water and the velocity in the ghost-fluid region for the air are copied from their real fluid
regions, respectively.

In this paper the modified GFM developed by [46] is used. This same approach has
been used successfully by [60] and [52] for simulations of multiphase flows with large
density ratio.

A.1.4. Local LS method

The local LS method computations are restricted to a narrow band in the neighborhood
of the interface. Only a small fraction of the LS function is considered and updated
in every time step. When the interface moves out of the narrow band, the calculation
is stopped and a new band is built with the interface at the center of the band. The
computational cost is reduced because a significant smaller amount of values have to be
updated at every time step. In this work, the approximation of [44] is adopted.

Narrow bands of different size are constructed and updated following the moving
interface. The size of the bands is fixed and their values �

i

’s are multiple of grid sizes. In
general, only two bands are required, but if the motion of the interface involves sensitive
quantities such as derivatives of curvature is necessary to used a third narrower band. In
this computation three bands �1, �2 and �3, around the interface are considered, where
0 < �1 < �2 < �3.

The choice of the width �
i

’s depends of the stencils of the schemes used to spatial
discretization. The widest stencil used in this computation is the fifth-order WENO
scheme. So the values chosen are: �1 = 1.5�l, �2 = 3�l and �3 = 6�l, for instance,
where �l is the average space step size (�l =

p
�x2

+�y2
+�z2).

The main idea in the local LS method consists of two components. The first one is to
update the level set function only in the band of width �3 in the neighborhood of the
zero LS according with the following equation,

@�

@t
+ c(�)u ·r� = 0 (A.25)
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where c(�) is a cut-off function that modified the motion and is expressed by

c(�) =

8
>>><

>>>:

1 if | � | �2
(|�|��3)

2
(2|�|+�3�3�2)

(�3��2)
3 if �2 <| � | �3

0 if | � |> �3

(A.26)

The cutoff function is introduced to prevent numerical oscillations at the band
boundary and prevent discontinuities.

The second step in the local LS method requires to update the computational band
as the interfaces evolves in time. Since we have already regularized the evolution using
the reinitialization equation (A.22), the signed distance value of the LS function can be
used to determine the computational band at the next time step. So this step requires
no extra computational cost.

A.2. Volume of Fluid Method

The volume of fluid method was introduced by [21] and, since its conception has been
widely used in several works. In VOF method, the computational domain is divided into
small cells. Each cell is assigned a discontinuous concentration function � representing
the volume fraction of one of the fluids within the cell. From these cell fractions, the
position of the interface can be determined using an interface reconstruction procedure
within each cell that is intersected by the interface.

The characteristic function � with a value between zero and one is advected according
to:

@�

@t
+ u ·r� = 0 (A.27)

Because the function is a conservative variable, the method conserve mass exactly.
However, despite the accurately mass - conserving properties of the method, the interface
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reconstruction and the approximations on geometric properties of the interface are
computationally expensive, especially in three dimensional simulations.

A.2.1. Mass Conserving Method

The MCLS method was developed by [35]. This method is based on the idea of mass
conservation improving through the use of a explicit function f that directly relates the
VOF function to the LS function and its gradient as:

 = f(�,r�) (A.28)

To conserve mass, corrections are applied to the LS function � using the VOF function
 . This is achieve by application of three steps:

• Calculation of VOF function from LS function ( n

= f(�n,r�n))

• Advection of VOF function ( n+1)

• Correction of function �n+1 with the advected VOF function  n+1, such that
�n+1

= f(�n+1,r�n+1
)

The three steps are explained in detail below

Step 1

The VOF function  in a computational cell in terms of LS function � is defined as:

 (x
k

) =

1

vol(⌦
k

)

Z
H(�)d⌦ (A.29)

where ⌦

k

is a cell in the grid, x
k

correspond to the center node of ⌦
k

and H is a
Heaviside step function. LS function � is linearized around x

k

, which leads to:
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' = �
k

+r�
k

· (x � x
k

), (A.30)

Where r�
k

is approximated by central differences. The volume fraction  
k

cut from
cell ⌦

k

by the plane defined by ' = 0 is computed mapping onto a unit cube ⌦ with
coordinates (⇠, ⌘, ⇣)✏(�1, 1)3 (Fig. (??)). The Eq. (A.30) can be rewritten as:

' = �
k

+ D
⇠

⇠ + D
⌘

⌘ + D
⇣

⇣ (A.31)

where

⇠ = (x � x
k

)/�x

⌘ = (y � y
k

)/�y

⇣ = (z � z
k

)/�z

(A.32)

Conducive to numbering possible interface topologies in the cube the axes are chosen
such that:

D
⇠

� D
⌘

� D
⇣

� 0 (A.33)

where

D
⇠

= max(| D
x

|, | D
y

|, | D
z

|)

D
⇣

= min(| D
x

|, | D
y

|, | D
z

|)

D
⌘

=| D
x

| + | D
y

| + | D
z

| �D
⇠

� D
⇣

(A.34)
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and

D
x

= �x
@�

@x
|
k

D
y

= �y
@�

@y
|
k

D
z

= �z
@�

@z
|
k

(A.35)

The VOF function is derived geometrically by computing the relative volume enclosed
by the cut plane within ⌦

k

defined by the zero level set of the linearized LS function.

After some mathematical manipulations function f is computed geometrically from
the volume cut out from the cube. Function f is evaluated as:

f =

8
>><

>>:

A

6D
⇠

D
⌘

D
⇣

�  0

1� f(��,r�) � > 0

(A.36)

where

A = max (�

A

, 0)3 �max (�

B

, 0)3 �max (�

C

, 0)3

� max (�

D

, 0)3 +max (�

E

, 0)3 (A.37)

and
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�

A

= �

k

+

1

2

D
⇠

+

1

2

D
⌘

+

1

2

D
⇣

�

B

= �

k

+

1

2

D
⇠

+

1

2

D
⌘

� 1

2

D
⇣

�

C

= �

k

+

1

2

D
⇠

� 1

2

D
⌘

+

1

2

D
⇣

�

D

= �

k

� 1

2

D
⇠

+

1

2

D
⌘

+

1

2

D
⇣

�

E

= �

k

+

1

2

D
⇠

� 1

2

D
⌘

� 1

2

D
⇣

(A.38)

�

A

represents the value �(x
A

) at corner A, and similarly for the other corners.

Step 2

In the present work, like the LS equation and reinitialization equation, the VOF function
is advanced by using a using the fifth order WENO scheme in space and third order
TVD-RK in time.

Step 3

The LS function �n+1 is corrected with the VOF function  n+1, such as

| f(�n+1
k

,r�n+1
k

)�  n+1
k

|< ✏ (A.39)

where ✏ is some tolerance. A solution � is found trough an iteration method: method
leaves � unmodified in a grid point when the VOF constraint is satisfied and it makes
corrections locally when this constraint is not satisfied. This is achieved by using the
inverse function g of f as given in Eqn. (A.36) with respect to argument !

k

:

f(g( ,r�),r�) =  (A.40)
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This equation is solved by means of Secant method iterations. This procedure improve
mass conserving.

A.3. Discretization of the VOF and LS equations

So as to treat correctly the evolution of the LS function according to Eq. (A.19) numerical
schemes should have enough accuracy. In this work, the third-order Runge-Kutta TVD
scheme by [49] is employed for time discretization; whereas for space discretization, we
apply the fifth order WENO scheme proposed by [44].

A.3.1. Spacial Discretization

In this work, the fifth-order accurate WENO scheme [48] is adopted. This approximation
is based in the fact that Hamilton-Jacobi equations are closely related to conservations
laws. WENO scheme takes a convex combination of the three fluxes:

�1
x

=

a

3

� 7b

6

+

11c

6

(A.41)

�2
x

= � b

6

+

5c

6

+

d

3

(A.42)

�3
x

=

c

3

+

5d

6

� e

6

(A.43)

If any of the three approximations interpolates across a discontinuity, it takes a minimal
weight in the convex combination in order to minimize its contribution. Otherwise, in
smooth regions of the flow, all three approximations are allowed to make a significant
contribution in a way that improves the local accuracy from third order to fifth order.
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The physical fluxes are splitted through the local Lax-Friedrichs flux splitting method.
Designating ��

x

and �+
x

respectively, the numerical fluxes obtained from the positive and
negative splitting.

For ��
x

the stencil in equations (A.41 to A.43) are defined by: a =

�i�2��i�3

�x

, b =

�i�1��i�2

�x

, c =
�i��i�1

�x

, d =

�i+1��i

�x

and e =

�i+2��i+1

�x

.

The WENO ��
x

approximation is given by:

�
x

= !1�
1
x

+ !2�
2
x

+ !3�
3
x

(A.44)

The weights, !
k

, are defined as:

!1 =
↵1

↵1 + ↵2 + ↵3
(A.45)

!2 =
↵2

↵1 + ↵2 + ↵3
(A.46)

!3 =
↵3

↵1 + ↵2 + ↵3
(A.47)

where !1 + !2 + !3 = 1 and ↵
k

, are defined as:

↵1 =
1

(✏+ S1)
2 (A.48)

↵2 =
6

(✏+ S2)
2 (A.49)
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↵3 =
3

(✏+ S3)
2 (A.50)

and the smoothness of the stencils S
k

, are defined as:

S1 =
13

12

(a � 2b + c)2 +
1

4

(a � 4b + 3c)2 (A.51)

S2 =
13

12

(b � 2c + d)2 +
1

4

(b � d)2 (A.52)

S3 =
13

12

(c � 2d + e)2 +
1

4

(3c � 4d + e)2 (A.53)

where ✏ is a small number, around O(10

�6
).

The weights values for high order accuracy, the optimal fifth order, in smooth regions
are: !1 = 0.1, !2 = 0.6 and !3 = 0.3., respectively.

The function �+
x

is constructed with the stencils: a =

�i+3��i+2

�x

, b =

�i+2��i+1

�x

,
c =

�i+1��i

�x

, d =

�i��i�1

�x

and e =

�i�1��i�2

�x

and using equations (A.41), (A.42), (A.43) as
approximations to �+

x

. The weights are given by equations (A.45), (A.46) and (A.47).

A.3.2. Temporal Discretization

The third order TVD Runge-Kutta method is given by,
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8
>>>><

>>>>:

�1
= �n

+�tL(�n

)

�2
=

3

4

�n

+

1

4

(�1
+�tL(�1

))

�n+1
=

1

3

�n

+

2

3

(�2
+�tL(�2

))

(A.54)

The third order TVD method is generally recommended, since it has the greatest
accuracy and largest time step stability region of the TVD schemes. By cause of its large
stability region for a sufficiently small time step, it is guaranteed to be linearly stable for
a variety of problems.
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