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DR. VÍCTOR JAVIER GONZÁLEZ VILLELA, FACULTAD DE INGENIERÍA,
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CONTROL POR MODOS
DESLIZANTES CONTINUOS
DE ROBOT DIFERENCIAL

Frida Gail Rojas Contreras

Resumen
Seguimiento de trayectoria con rechazo de perturbaciones para un robot diferen-

cial con ruedas considerando dos modelos de grado relativo es analizado. El primer
modelo considera las velocidades de ruedas como entradas de control y, en conse-
cuencia, se utiliza un sistema cuyas salidas tienen grado relativo 1 con respecto a la
posición. En este caso, el algoritmo de Super Twisting es implementado. El segundo
modelo considera voltajes de ruedas como entradas de control y, en consecuencia, se
utiliza un sistema cuyas salidas tienen grado relativo 2 con respecto a la posición. En
este caso, el algoritmo de Continuous Twisting es implementado. La comparación
de ambas estrategias se realiza en simulaciones y con pruebas experimentales.

Palabras clave: Modos Deslizantes Continuos, Robot Diferencial,
Sistema No Holónomo



CONTINUOUS
SLIDING MODE CONTROL

OF DIFFERENTIAL DRIVE ROBOT

Frida Gail Rojas Contreras

Abstract

Keywords: Continuous Sliding Modes, Nonholonomic System, Differ-
ential Drive Robot

Trajectory tracking with disturbance rejection for a differential drive robot with
wheels considering two models of relative degree is analyzed. The first model con-
siders wheels velocities as control inputs and hence a system which has positions
as outputs with relative degree 1 is used. In this case “Super Twisting Algorithm”
is implemented. The second model considers motor voltages as control inputs and
hence a system which has outputs with relative degree 2 is used. In this case “Con-
tinuous Twisting Algorithm” is implemented. The comparison of the strategies is
done in simulation and experimentally.
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Chapter 1

Introduction

Mobile robots are ubiquitous nowadays in industrial and service applications. Their
design depend on the environment in which they will perform their tasks. In the case
of terrestrial robots, locomotion can be achieved by using robotic “legs” as the robot
shown in Figure 1.1 developed by the Mechatronics Research Group at UNAM.

Figure 1.1: Legged terrestrial mobile robot

Locomotion in terrestrial robots can also be achieved using wheels. Particularly,
wheeled robots are sought the most because of their versatibility and relatively low
cost in terms of maintenance and repairs. Depending on the type of wheels the
robot is equipped with, it acquires one of a few mobility configurations that have
been broadly studied in [de Wit et al., 2012]. Some examples of wheeled robots are
presented in [Carlisle, 2000; Rooks, 2001]. Particularly, the differential drive robot
(DDR) is one of the most common configurations of terrestrial robots with wheels.

A DDR consists of two independently actuated wheels, each one driven by a DC
motor. Commonly, it is also equipped with a wheel that is not actuaded but moves
freely; its only function is to provide support for the DDR’s chassis.

Depending on the direction and the magnitude of the speed of the wheels, the DDR
can move in three different ways. First, if the wheels rotate with the same speed in
the same direction then the robot can move forwards or backwards, as shown in Fig-
ure 1.2a. Second, if the wheels rotate with the same speed but in opposite direction
then the robot purely rotates around its own axis, as shown in Figure 1.2b. Third,
if the wheels rotate with different speed but in the same direction then the robot
performs a translation and a rotation at the same time, as illustrated in Figure 1.2c.

1



CHAPTER 1. INTRODUCTION

ωr = ωl

ωl

ωr

(a) Pure linear
displacement

ωr = −ωl

ωl

ωr

(b) Pure rotation

ωl

ωr

ωr < ωl

(c) Rotation and
translation

Figure 1.2: DDR’s motion

This seemingly simple robot has particular dynamics that have certain properties
that arise from having nonholonomic constraints (NHC). It is easier to understand
NHC once holonomic constraints are explained.

A holonomic constraint is a geometrical constraint, i.e., a constraint that can be
expressed by functions of positions. An example of this case are fully actuated serial
manipulators for which reaching a certain point in its configuration space is only
restricted by the length of its links as shown in Figure 1.3a.

Trajectory: q(x(t), y(t))

Geometric Locus: q(x, y)

l x(t) = cos(t)

y(t) = sin(t)

Parametrization

(a) Holonomic

ωl

ωr

(b) Nonholonomic

Figure 1.3: Types of constraints

Formally, the differential form of the holonomic constraint is exactly integrable and
the result can be expressed only in terms of positions. The latter is equivalent to
being able to generate a geometric locus which is a set of points whose location is
determined by constraints. So, what is actually occurring is that a geometric lo-
cus is generated according to the end effector’s geometry. If the geometric locus is
parametrized, for example by a temporal variable t, then this parametrization helps
to establish a trajectory q(x(t), y(t)) in the geometric locus q(x, y). Hence, a trajec-
tory generated by the end effector is a specific point that moves along the space of
the geometric locus.

However, these are not the type of constraints that a DDR has. Since a DDR is
equipped with fixed wheels lateral motion of the DDR is not possible as shown in
Figure 1.3b no matter what combination of velocities is given. This restriction of

2



CHAPTER 1. INTRODUCTION

motion can be represented with velocity constraints that are directly linked with
pure rolling contraints of the wheels.

Formally, the differential form of these velocity constraints is not integrable and,
therefore, these constraints cannot be expressed as constraints solely in terms of the
positions of the DDR. Since the constraint cannot be a function of the positions then
a geometric locus cannot be defined and therefore no trajectory can exist for lateral
motion.

However, the fact that the DDR cannot move in lateral motion does not mean the
robot cannot reach any position in its configuration space since it can maneuver its
way to the final posture. It only means there are velocity constraints that need to be
satisfied during motion. Velocity constraints are also called NHC. Systems that have
NHC are called nonholonomic systems and they represent a wide class of mechanical
systems.

Summarizing, nonholonomic mechanical systems are systems with constraints on
their velocities which cannot be obtained from position constraints. In order to de-
sign control laws to drive the DDR from a start state to a goal state in finite time it is
necessary to study the DDR as a mathematical model that represents the dynamics
of a nonholonomic system.

If the chosen output is the posture of the DDR, depending on where the point
of interest is located on the chassis, its dynamics will vary, and consequently, its
mathematical model. There is a lot of work in literature in two particular chosen
outputs. First, the middle point between the two actuated wheels, which is denoted

a =
[
xa, ya

]>
. Second, a point located at a distance h from point a in the body

symmetry axis, which is denoted as p =
[
x, y

]>
. These chosen outputs are illus-

trated in Figure 1.4. In both cases, the control inputs are the left and right wheel
velocities ωl and ωr, respectively.

YG

XG

Y R X
R

a

θ

xa

ya

y

x

θ

p

h

ωr

ωl

va

v

Figure 1.4: Choice of outputs
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CHAPTER 1. INTRODUCTION
1.1. MOTIVATION

1.1 Motivation

One way of designing a certain motion for the DDR to follow is by chosing one of these
two outputs and performing trajectory tracking. Either way, while in motion, the
DDR faces disturbances such as frictions as well as unmodelled dynamics and other
uncertainties which are always present in real life applications. These phenomena
need to be taken into account when control laws are designed for a DDR.

1.2 State of the art

There are a lot of papers in literature that implement controllers to accomplish tra-
jectory tracking on DDRs. For example, in [d’Andrea Novel et al., 1992] and [Oriolo
et al., 2002] the controller is based on dynamic feedback linearization laws which
guarantee exponential convergence to the reference trajectory for a model based on
the dynamics of point a.

As mentioned in a previous section, changing the choice of output to p changes the
dynamics of the chosen output as explained with detail in Section 3.1. This is done
in [Diaz and Kelly, 2016] and a linear control algorithm is implemented using a pro-
portional term to perform trajectory tracking on a nominal system which guarantees
exponential convergence to the reference trajectory.

However, in order for all these controllers to work properly in non ideal conditions,
perfect knowledge of the system and disturbances is required.

1.3 Methodology

Having perfect knowledge of the system and perturbations is perhaps an impossible
task. In fact it is common to think of a system as a “black box” where the only
information available is about the inputs and outputs of the system such as relative
degree and no knowledge of its internal dynamics. Particularly in this case, when a
controller is designed it is important to include uncertainties and disturbances phe-
nomena.

One technique to deal with uncertainties and disturbances for “black box” problems
are sliding mode algorithms. The idea that sliding mode control presents in order to
provide robustness and a high level of precision lies on a strategy that consists of a
fast response to face changes in the system’s behavior and enforce a given constraint
for the system.

4



CHAPTER 1. INTRODUCTION
1.3. METHODOLOGY

1.3.1 First generation: Standard sliding modes

First-order sliding modes (FOSM) define a variable of interest which is intended to
be driven to zero in finite time in spite of uncertainties and disturbances. In [Mu
et al., 2015] trajectory tracking control for a DDR, based on Equation (2.1) using a
FOSM technique is presented. In this paper, reference coordinates xad, yad, θad and
reference inputs vad, ωd are stated. Using a nonsingular transformation matrix the
error coordinates xa− xad, ya− yad and θa− θad form two sliding surfaces which are
considered in the FOSM controller.

The drawback of FOSM control laws is that they are discontinuous controllers that
inherently have chattering which means implementing a high frequency control signal
that in practical implementations could compromise the actuator’s integrity. More-
over, chattering inherently demands energy from the system which makes this type of
controllers an expensive solution. Some workarounds have been proposed to decrease
chattering phenomenon for FOSM ([Shtessel et al., 2014]), however, they imply loss
of accuracy and robustness. Another limitation for FOSM is that in order to assure
finite time convergence and disturbance rejection, it is required that the variable of
interest is an output of relative degree 1 w.r.t. to the system’s control input.

1.3.2 Second generation: Second order sliding modes

Second order sliding modes guarantee finite time convergence to zero for the variable
of interest and its derivative in spite of bounded disturbances. In the control design,
if the system has an output with relative degree 2 w.r.t. to its inputs there is no
need to design a sliding manifold. Their main drawback is that the resulting control
signal remains discontinuous and, consequently, chattering phenomenon is present
([Boiko et al., 2004]).

1.3.3 Third generation: Super-Twisting algorithm

Super-Twisting algorithm (STA) is a second order sliding mode that assures the con-
vergence of the variable of interest in finite time in spite of Lipschitz disturbances
generating a continuous control signal. For control design, if the system’s output has
relative degree 1 no sliding surface is required, however, if the the system’s output
have relative degree greater than one then a sliding surface is needed and finite time
convergence cannot longer be guaranteed.

In [Solea and Cernega, 2015] STA is implemented as a part of a control law to drive
tracking position and orientation errors derived from a reference model to zero.

1.3.4 Fourth generation: High-order sliding modes

The limitation that relative degree 1 is required and the presence of chattering phe-
nomenon from FOSM motivated the idea of high-order sliding modes (HOSM). This

5



CHAPTER 1. INTRODUCTION
1.4. CONTRIBUTION

strategy introduces sliding modes that act on a high order time derivative of the sys-
tem deviation from the given constraint instead of directly influencing only the first
deviation derivative as occurs in FOSM. This makes the high-frequency switching ap-
pear in a higher derivative of the variable of interest reducing chattering phenomenon
but the generated control signal is still discontinuous. A HOSM controller of k − th
order drives the variable of interest and its k − 1 time derivatives to zero.

In [Davila, 2013] exact tracking using HOSM is performed for a nonlinear system in
the presence of matched and unmatched disturbances.

1.3.5 Fifth generation: Continuous high order sliding modes

In [Bhat and Bernstein, 2000; Orlov et al., 2011; Sánchez and Moreno, 2014; Efimov
and Perruquetti, 2016; Ŕıos et al., 2016], algorithms based on homogeneity theory
guarantee finite time convergence of their proposed errors on nominal systems using
continuous control signals.

STA motivates the research of continuous control signals that include sliding mode
controllers strength to provide exact disturbance rejection for systems with output
of relative degree greater than 1 ([Torres-González et al., 2015; Moreno et al., 2016]).
Continuous high order sliding modes (CHOSM) can compensate exactly Lipschitz
disturbances using a continuous control signal and also guarantee finite time conver-
gence of the variable of interest to zero. These controllers only require information
of the variable of interest and its derivative.

1.4 Contribution

The contribution of this thesis is to solve robust trajectory tracking for DDR by
implementing continuous sliding modes algorithms that, on one hand, provide ex-
act disturbance rejection and, on the other hand, have less chattering effect than
discontinuous sliding mode controllers.

1.5 Objective

The goal of this thesis is to solve trajectory tracking problem using two models of
different relative degree of a DDR by implementing continuous sliding mode algo-
rithms.

1.6 Thesis structure

Chapter 2 analyzes the properties of the choice of a as the output of the DDR and
the workaround to implement continuous sliding modes in a DDR.

6



CHAPTER 1. INTRODUCTION
1.6. THESIS STRUCTURE

Chapter 3 discusses modelling and control design to solve trajectory tracking for a
DDR based on a system with wheel velocities as control inputs. Particularly, con-
tinuous sliding mode algorithm “Super Twisting algorithm” advantages are shown.
At the end of the chapter, simulations and experiments show the implemented con-
trollers performances.

Chapter 4 discusses modelling and control design to solve trajectory tracking for a
DDR based on a system with motor voltages as control inputs. Particularly, continu-
ous sliding mode algorithm “Continuous Twisting algorithm” advantages are shown.
At the end of the chapter, simulations and experiments show the implemented con-
trollers performances.

Chapter 5 presents the discussion of the simulation and experimental results, the
conclusions of this thesis and future work.

7



Chapter 2

Theoretical framework

If the chosen output is the posture of the robot, depending on where the point of
interest is located on the chasis, its dynamics will vary. The property of interest
for these dynamics is the relative degree of XY positions as outputs with respect to
wheel velocities as inputs.

2.1 Modelling for output a

Consider the nominal kinematic model for a differential drive robot (DDR), shown
in Figure 2.1, as ẋaẏa

θ̇

 =

cos(θ) 0
sin(θ) 0

0 1


︸ ︷︷ ︸

g(Xa)

[
va
ω

]
,

(2.1)

where the posture state vector is denoted by Xa =
[
xa, ya, θ

]>
. Vector a =[

xa, ya
]> ∈ R2 and θ denotes the orientation, both w.r.t. the global frame XGYG.

The control inputs for the DDR are va and ω which represent the linear and angular
velocity, respectively.

Notice that g(Xa) ∈ R3×2 is not a square matrix. In other words, System (2.1) has
2 control inputs and one would like to control 3 outputs. This is not possible using
only 2 control inputs and, therefore, one of the 3 outputs cannot be controlled.

8



CHAPTER 2. THEORETICAL FRAMEWORK
2.2. ANALYSIS OF RELATIVE DEGREE

YG

XG

Y R

X
R

ω

v a

a

θ

xa

ya

d r

ωr

ωl

Figure 2.1: DDR in point a

System (2.1) is expressed in terms of linear and angular velocity. However, the actual
control inputs of a DDR with wheels are its right and left wheel velocities, ωr and
ωl, respectively. Transformation M maps these 2 wheel velocities to the linear and
angular velocities as follows [

va
ω

]
=

[
+a1 +a1

+a2 −a2

]
︸ ︷︷ ︸

M

[
ωr
ωl

]
,

(2.2)

where a1 = r/2 > 0 and a2 = r/d > 0 with r the radius of the wheel and d the
distance between the wheels. Notice that det

(
M
)

= −2a1a2 6= 0 and, consequently,
M−1 exists.

Rewritting System (2.1) in terms of ωr and ωl using Equation (2.2) yieldsẋaẏa
θ̇

 =

+a1 cos(θ) +a1 cos(θ)
+a1 sin(θ) +a1 sin(θ)

+a2 −a2

[ωr
ωl

]
. (2.3)

For analysis purposes, Equation (2.3) can be rewritten in a more general form as

Ẋa =g1(Xa)u1 + g1(Xa)u2

Y =h(Xa)
(2.4)

where the state vector is Xa ∈ R3, the measured output is Y ∈ R3, the control
inputs are u1 = ωr and u2 = ωl and

g1(Xa) =

+a1 cos(θ)
+a1 sin(θ)

+a2

 , g2(Xa) =

+a1 cos(θ)
+a1 sin(θ)
−a2

 , h(Xa) =

h1(Xa)
h2(Xa)
h3(Xa)

 =

xaya
θa


2.2 Analysis of relative degree

Sliding mode controllers require the knowledge of the relative degree for the outputs
of Equation (2.4) which is a MIMO system.

9



CHAPTER 2. THEORETICAL FRAMEWORK
2.2. ANALYSIS OF RELATIVE DEGREE

Definition 2.1 (Relative degree for MIMO system) ([Sastry and Bodson, 2011,
p. 286]) For the multiple input multiple output (MIMO) case, consider the square
system of the form

ẋ =f(x) + g1(x)u1 + . . .+ gp(x)up

yi =hi(x), i = 1, . . . , p
(2.5)

where x ∈ Rn, u ∈ Rp, y ∈ Rp and f , gi, hj are assumed smooth. Let Lew =[
∂w(x)/∂x

]
e(x) denote the Lie derivative of w along e. Differentiating the j−th

output yj w.r.t. time yields

y
rj
j =Lfhj +

p∑
i=1

Lgi(L
rj−1
f hj)ui (2.6)

with at least one of the Lgi(L
rj−1
f hj) 6= 0 for some x. Define p× p matrix B(x) as

B(x) =

Lg1L
rj−1
f h1 . . . LgpL

rj−1
f h1

...
...

...

Lg1L
rj−1
f hp . . . LgpL

rj−1
f hp

 (2.7)

Then, Equation (2.6) may be written asy
(r1)
1
...

y
(rp)
p

 =

L
r1
f h1

...
L
rp
f hp

+B(x)

u1
...
up

 (2.8)

If B(x) ∈ Rp×p is bounded away from singularity, decoupling can be achieved by
linearization since B−1(x) exists ∀x and has bounded norm. The control law that
achieves the latter is referred to as a static feedback linearizing control law.

However, if B(x) is singular and the drift term f(x) in Equation (2.6) is not in the
range of B(x), linearization and decoupling may still be achieved using a dynamic
state feedback control law. To do so this technique requires adding dynamics to the
controller and its aimed to influence the relative degree of the outputs of the system.

In tis case, m = 2 and p = 3. To make m = p as Definition 2.1 requires for Equa-

tion (2.4), measured output Y is reduced to controlled output Ȳ =
[
Y1, Y2

]>Rp=2.
Notice that Equation (2.4) is a driftless system since f(x) from Equation (2.5) is 0.
Differentiating w.r.t. time output Ȳ yields

˙̄Y1 =
[
Lg1
(
L0
fh1(Xa)

)
, Lg2

(
L0
fh1(Xa)

)] [u1

u2

]
=
[
cos(θa), cos(θa)

] [u1

u2

]
,

˙̄Y2 =
[
Lg1
(
L0
fh2(Xa)

)
, Lg2

(
L0
fh2(Xa)

)] [u1

u2

]
=
[
sin(θa), sin(θa)

] [u1

u2

] (2.9)

Hence, one can form matrix B(Xa) from Equation (2.7) for System (2.4) as

B(Xa) =

[
cos(θa), cos(θa)
sin(θa), sin(θa)

]
. (2.10)

10



CHAPTER 2. THEORETICAL FRAMEWORK
2.2. ANALYSIS OF RELATIVE DEGREE

Matrix B(Xa) is singular since det
(
B(x)

)
= 0. This means a singularity is present

for System (2.4). Consequently, the decoupling matrix B(x) looses rank ([Isidori,
2013]) and this causes the outputs of System (2.4) to not have a well defined relative
degree ([Hirschorn, 2002]).

As mentioned in Definition 2.1, one way to overcome the singularity problem is using
dynamic feedback linearization. Another strategy to deal with the problem is to use
discontinuous controllers but they inherently have chattering effect. Alternatively,
since relative degree is not well defined for output a, then proposing another output,
denoted by p, that yields a well defined relative degree is possible as will be seen in
the next chapter.
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Chapter 3

Velocities as control inputs

3.1 Modelling

[Diaz and Kelly, 2016] propose a paremeter h that locates point p =
[
x, y

]> ∈ R2

w.r.t. the XGYG coordinate frame, as illustrated in Figure 3.1, is defined.

YG

XG

Y R X
R

ω
v a

a

θ

xa

ya

d

ωly

x

ω

θ

p

h

ωr
r

v

Figure 3.1: DDR in point p

Geometrically, point p is described as

x =xa + h cos(θ)

y =ya + h sin(θ)
(3.1)

Differentiating Equation (3.1) w.r.t. time yields,

ẋ =ẋa − hθ̇ sin(θ)

ẏ =ẏa + hθ̇ cos(θ)

θ̇ =ω

(3.2)

Substituting wheel mapping from Equation (2.2) and the known dynamics from point

12
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a from Equation (2.3) in Equation (3.2) results inẋẏ
θ̇

 =

+a1 cos(θ)− ha2 sin(θ) +a1 cos(θ) + ha2 sin(θ)
+a1 sin(θ) + ha2 cos(θ) +a1 sin(θ)− ha2 cos(θ)

+a2 −a2

[ωr
ωl

]
. (3.3)

Analogously to Equation (2.4), Equation (3.3) can be rewritten in a more general
form as

Ẋ =g1(X)u1 + g2(X)u2

Y =h(X)
(3.4)

where the state vector is X =
[
x, y, θ

]> ∈ R3, the measured output is Y =[
x, y, θ

]> ∈ R3, the control inputs are u1 = ωr and u2 = ωl and

g1(X) =

+a1 cos(θ)− ha2 sin(θ)
+a1 sin(θ) + ha2 cos(θ)

+a2

 , g2(X) =

+a1 cos(θ) + ha2 sin(θ)
+a1 sin(θ)− ha2 cos(θ)

−a2

 ,
h(X) =

h1(X)
h2(X)
h3(X)

 =

xy
θ

 .
Once again, to make the m = p = 2 for Equation (3.4), measured output Y is

reduced to controlled output Ȳ =
[
Y1, Y2

]> ∈ R2. Notice that Equation (3.4) is
also a driftless system, i.e., f(X) = 0. Differentiating w.r.t. time output Ȳ yields

Ẏ1 =
[
Lg1
(
L0
fh1(X)

)
, Lg1

(
L0
fh1(X)

)] [ωr
ωl

]
=
[
+a1 cos(θ)− ha2 sin(θ), +a1 cos(θ) + ha2 sin(θ)

] [ωr
ωl

]
,

Ẏ2 =
[
Lg1
(
L0
fh2(X)

)
, Lg2

(
L0
fh2(X)

)] [ωr
ωl

]
=
[
+a1 sin(θ) + ha2 cos(θ), +a1 sin(θ)− ha2 cos(θ)

] [ωr
ωl

]
.

(3.5)

Hence, matrix B(X) from Equation (2.7) becomes

B(X) =

[
+a1 cos(θ)− ha2 sin(θ), +a1 cos(θ) + ha2 sin(θ)
+a1 sin(θ) + ha2 cos(θ), +a1 sin(θ)− ha2 cos(θ)

]
, (3.6)

which is a nonsingular matrix since det
(
B(X)

)
= −2a1a2h 6= 0 if and only if h 6= 0.

In other words, the relative degree for outputs of Equation (3.4) is well defined.
Particularly, the relative degree of this system is

[
1, 1

]
for outputs XY positions

and zero dynamics is represented by the evolution of the orientation θ.
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3.2 Disturbed case

It is assumed that the disturbances are matched to the control inputs in order to
preserve the nonholonomic constraints (NHC) inherent to the kinematic model. The
disturbed version of System (2.1) can be written asẋaẏa

θ̇

 =

cos(θ) 0
sin(θ) 0

0 1

[va + ρa
ω + ρω

]
, (3.7)

where ρa = ρa(t) and ρω = ρω(t) are matched disturbances. It is assumed that
these disturbances are Lipschitz functions, i.e., the perturbation time derivatives are
globally bounded by

|ρ̇a| ≤ Lva , |ρ̇ω| ≤ Lω.

Assuming that for disturbance terms[
va
ω

]
+

[
ρa
ρω

]
= M

[
ωr
ωl

]
+M

[
ρr
ρl

]
, (3.8)

occurs with ρr = ρr(t, ωr), ρl = ρl(t, ωl) and

|ρ̇r| ≤ Lr, |ρ̇l| ≤ Ll.

Using Equation (3.8), System (3.7) can be rewritten in terms of wheel velocities as
follows ẋaẏa

θ̇

 =

+a1 cos(θ) +a1 cos(θ)
+a1 sin(θ) +a1 sin(θ)

+a2 −a2

[ωr + ρr
ωl + ρl

]
. (3.9)

Analogously to the nominal case for point p, differentiating Equation (3.1) w.r.t.
time yields,

ẋ =ẋa − hθ̇ sin(θ),

ẏ =ẏa + hθ̇ cos(θ),

θ̇ =ω + ρω.

(3.10)

Substituting wheel mapping from Equation (3.8) and the known disturbed dynamics
of point a from Equation (3.9) in Equation (3.10) results inẋẏ

θ̇

 =

+a1 cos(θ)− ha2 sin(θ) +a1 cos(θ) + ha2 sin(θ)
+a1 sin(θ) + ha2 cos(θ) +a1 sin(θ)− ha2 cos(θ)

+a2 −a2

[ωr + ρr
ωl + ρl

]
. (3.11)

3.3 Control Design

In order to avoid verbose notation, Equation (3.11) is rewritten in a compact form
as follows [

ṗ

θ̇

]
=

[
D(θ)

φ>

]
u+

[
D(θ)

φ>

] [
ρr
ρl

]
︸ ︷︷ ︸

ρ

=

[
D(θ)

φ>

]
u+ ρ,

(3.12)
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where ṗ =
[
ẋ, ẏ

]> ∈ R2, D(θ) = B(X), φ> =
[
+a2, −a2

]
, u =

[
ωr, ωl

]> ∈ R2

and ρ =
[
ρ1, ρ2, ρ3

]> ∈ R3 are disturbances for which |ρ̇i| ≤ Li, i = 1, 2, 3.

3.3.1 Control objective

Since a disturbed model is considered, sliding mode technique is implemented be-
cause of its robusteness in the sense of exact disturbance compensation properties.
Trajectory tracking for a DDR based on System (3.12) implementing a continuous
sliding mode algorithm is intended. In other words, control objective is to drive
position errors to zero in finite-time regardless of perturbations.

Suppose pd(t) =
[
xd(t), yd(t)

]> ∈ R2 is continuous and differentiable such that

ṗd(t) =
[
ẋd(t), ẏd(t)

]> ∈ R2 exists. Also, pd(t) and ṗd(t) are known. In the
following (t) is omitted to avoid verbose notation. Attempting to do trajectory
tracking for x and y position coordinates forces orientation dynamics to be the zero
dynamics of System (3.12) making θ a measured uncontrolled output.

3.3.2 Error dynamics

Define error variable e1 as

e1 =

[
x
y

]
−
[
xd
yd

]
= p− pd (3.13)

Differentiating Equation (3.13) once w.r.t. time, yields the following error dynamics

ė1 =ṗ− ṗd = D(θ)u+

[
ρ1

ρ2

]
− ṗd (3.14)

Let
u = D−1(θ)

{
ν + ṗd

}
. (3.15)

Then Equation (3.14) can be rewritten as

ė1 =ν +

[
ρ1

ρ2

]
(3.16)

System (3.16) has the form of two independently disturbed single integrators. In
this case, “Super Twisting Algorithm” (STA) (Levant [1998]; Moreno [2009]) can be
implemented as follows

ν =−K1 de1c1/2 + η

η̇ =−K2 de1c0
(3.17)

where Ki = diag(kix, kiy) with i = 1, 2 and

de1cγ =

[
|x− xd|γsign(x− xd)
|y − yd|γsign(y − yd)

]
∈ R2, and η =

[
ηx
ηy

]
∈ R2,
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Notice that Equation (3.17) is designed as a two independent control; the first chan-
nel affects the position tracking error on the x coordinate and the second channel
affects coordinate y.

The closed loop from Equation (3.16)-Equation (3.17) can be rewritten as

ė1 =−K1 de1c1/2 + η +

[
ρ1

ρ2

]
︸ ︷︷ ︸

e2

ė2 =−K2 de1c0 +

[
ρ1

ρ2

]
.

(3.18)

STA guarantees a second order sliding mode (Levant [1998]; Moreno [2009])

e1 =0, e2 = 0→ η = −
[
ρ1

ρ2

]
. (3.19)

The block diagram of the closed loop is shown in Figure 3.2.

pd

ṗd

e1 ν = −K1de1c1/2 + η u = D−1(θ){ν + ṗd} DDR Y

p

θ

θ

η̇ = −K2de1c0
ν

p

ρ

Figure 3.2: Relative degree 1: Block diagram

3.3.3 Zero dynamics

As mentioned earlier for Equation (3.1), controlling x and y tracking error forces to
leave θ uncontrolled. Therefore, zero dynamics ([Khalil, 2002, p. 516]) for System
(3.12) corresponds to θ dynamics and it is given by

θ̇ =φ>u+ φ>
[
ρr
ρl

]
=φ>

{
D−1(θ)

[
−K1 de1c1/2 + η

]
+ ṗd

}
+ φ>

[
ρr
ρl

]
, η̇ =−K2 de1c0

(3.20)

Equation (3.20) shows that state θ is affected by exogenous signals. During transient
response little can be said about θ dynamics, however, depending on the desired
trajectory some observations can be made about θ dynamics when the second order
sliding mode Equation (3.19) is reached. From Equation (3.19), control law ν in
Equation (3.16) becomes

ν =−
[
ρ1

ρ2

]
= −D(θ)

[
ρr
ρl

]
. (3.21)
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Using Equation (3.21) one can obtain u from Equation (3.15) as

u =D−1(θ)

{
−D(θ)

[
ρr
ρl

]
+ ṗd

}
= −

[
ρr
ρl

]
+D−1(θ)ṗd. (3.22)

and substitute Equation (3.22) in Equation (3.20). After doing some computations,
zero dynamics yields

θ̇ =φ>D−1(θ)ṗd =

[
−sin(θ)

h
, +

cos(θ)

h

]
ṗd. (3.23)

Rewritting Equation (3.23) yields

− sin(θ)ẋd + cos(θ)ẏd − hθ̇ = 0, (3.24)

which is in the form of a NHC. Phisically, point p dynamics is fixed w.r.t. to point
a dynamics by the introduced parameter h, hence, the NHC is present in a different
form for both dynamics. As mentioned in Introduction chapter, the general form of
this equation is not integrable. The following paragraphs study the evolution of θ
given specific trajectories, such as, lines and circles because a complex trajectory can
be designed by combining these two motions.

Regulation

The case where
xd(t) =bx

yd(t) =by
⇒

ẋd(t) =0

ẏd(t) =0
⇒

ẍd(t) =0

ÿd(t) =0
(3.25)

where bx, by ∈ R. This case represents the motion when only a goal point is defined
and the transition towards that point is not defined. The NHC from Equation (3.24)
becomes

hθ̇ =− sin(θ)���
0

ẋd + cos(θ)���
0

ẏd ⇒ θ̇ = 0 ⇒ θ(t) = c1,
(3.26)

where c1 ∈ R which states that when the goal point is reached, the DDR will stop
rotating.

Tracking

The case when the DDR tracks straight lines where

xd(t) =mxt+ bx

yd(t) =myt+ by
⇒

ẋd(t) =mx

ẏd(t) =my

⇒
ẍd(t) =0

ÿd(t) =0
(3.27)

where mx,my, bx, by ∈ R and t ∈ R+. The NHC from Equation (3.24) becomes

hθ̇ =− sin(θ)mx + cos(θ)my ⇒ θ(t) = 2atan

(
c2tanh

(
c2
2

( t
h

+ c3)
)
−mx

my

)
,

(3.28)
where c3 ∈ R and c2 =

√
m2
x +m2

y.
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General case

Rewritting NHC from Equation (3.24) as

hθ̇ = − sin(θ)ẋd + cos(θ)ẏd. (3.29)

If point p is point a, then, h = 0 and Equation (3.29) can be rewritten as

− sin(θd)ẋd + cos(θd)ẏd = 0, (3.30)

from which solving for θd yields

θd = atan

(
ẏd
ẋd

)
, (3.31)

which implies
sin (θd)

cos (θd)
=
ẏd
ẋd
, (3.32)

and, consequently,

ẋd =
cos (θd)

sin (θd)
ẏd, ẏd =

sin (θd)

cos (θd)
ẋd. (3.33)

Substituting Equation (3.33) in Equation (3.29) yields

hθ̇ = − sin(θ) cos (θd)

(
ẏd

sin (θd)

)
+ cos(θ) sin (θd)

(
ẋd

cos (θd)

)
. (3.34)

Additionaly, Equation (3.32) also implies

ẋd
cos (θd)

=
ẏd

sin (θd)
= fd(t). (3.35)

Substituting Equation (3.35) in Equation (3.34) yields

hθ̇ =− fd(t) sin(θ) cos (θd) + fd(t) sin (θd) cos(θ),

hθ̇ =− fd(t)
(
sin(θ − θd)

)
.

(3.36)

Now, let
ε =θ − θd,
ε̇ =θ̇ − θ̇d.

(3.37)

Taking into account Equation (3.37), Equation (3.36) can be rewritten as

h(θ̇ − θ̇d) =− fd(t)
(
sin(θ − θd)

)
− hθ̇d. (3.38)

Then, substituting Equation (3.37) in Equation (3.38) yields

hε̇ =− fd(t) sin(ε)− hθ̇d. (3.39)
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Assume
ε =hε1 + h2ε2 + . . . ,

ε̇ =hε̇1 + h2ε̇2 + . . .
(3.40)

Substituting Equation (3.40) in Equation (3.39) and taking into account sin(ε) ≈ ε
for sufficiently small ε yields

h
(
hε̇1 + h2ε̇2

)
≈− fd(t)

(
hε1 + h2ε2

)
− hθ̇d + . . .

h2ε̇1 + h3ε̇2 ≈− hfd(t)ε1 − h2fd(t)ε2 − hθ̇d + . . .
(3.41)

It is reasonable to assume that distance h is a small quantity because h is usually
located on the robot chasis and that distance in meters makes h a small parameter.
If 0 < h < 1 then hk → 0 with k ≥ 3 and Equation (3.41) can be rewritten as

ε̇1h
2 ≈−

(
fd(t)ε1 + θ̇d

)
h− fd(t)ε2h

2. (3.42)

Now, in order for the left side to approximate the right side of Equation (3.42) the
following equations must be satisfied

0 =−
(
fd(t)ε1 + θ̇d

)
,

ε̇1 =− fd(t)ε2.
⇒

ε1 =− θ̇d
fd(t)

⇒ ε̇1 =
−fd(t)θ̈d + ḟd(t)θ̇d

f 2
d (t)

,

ε2 =− ε̇1

fd(t)
.

(3.43)

From Equation (3.43), ε1 and ε2 can be written in terms of known functions fd(t)
and θd and their respective derivatives as

ε1 =− θ̇d
fd(t)

, ε2 =
fd(t)θ̈d − ḟd(t)θ̇d

f 3
d (t)

. (3.44)

Finally, from Equation (3.37) and Equation (3.40), an approximation of θ can be
obtained as

θ =ε+ θd,

θ =h

(
− θ̇d
fd(t)

)
+ h2

(
fd(t)θ̈d − ḟd(t)θ̇d

f 3
d (t)

)
+ θd + . . .

(3.45)

Figure 3.3 shows the comparation between θd, the theoretical tangent function from
point a, the measured output θ and its approximation using the correction terms

θ1 ≈hε1 + θd,

θ2 ≈hε1 + h2ε2 + θd,
(3.46)

respectively, when tracking a circular trajectory of radius R. As h→ 0 signal θ and
its approximations θ1 and θ2 tend to be θd. However, as h tends to R signal θ deviates
from θd and only the first correction term θ1 represents a decent approximation of θ.
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θ

θ1 ≈ hε1 + θd

θ2 ≈ hε1 + h2ε2 + θd

76 78 80 82 84
t[s]

8.8

9

9.2

9.4

9.6

9.8

10

10.2

10.4
h/R = 0.1

76 78 80 82 84
t[s]

8.8

9

9.2

9.4

9.6

9.8

10

10.2

10.4
h/R = 0.4

Figure 3.3: Comparison of ε and correction terms

Given that the reference trajectory is a circle of radius R, another aspect to take
into account is the relation between R and h. There are three cases for that relation
which are illustrated in Figure 3.4.

R

Rh

h

h

αRαh

αRαh

αRαh

h > R

h < R

h = R

αh < αR

αh = αR

αh > αR

R

p

p

p

a

a

a

Figure 3.4: Relation h/R
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From sine law
h

αR
=
R

αh
⇒ αR =

(
h

R

)
αh. (3.47)

Then, the following cases need to be analyzed

• h > R ⇔ h/R > 1 ⇔ αR > αh: This ressembles the behavior of a rod fixed
from one end and the other end connected to a point in the circle with radius R
in the sense that the DDR has no liberty to maneuver. Tracking position can
be achieved but orientation evolution will be far from the tangent behavior.

• h = R ⇔ h/R = 1⇔ αh = αR: The only way this tracking could happen is if
h is small enough to allow the DDR to rotate without making a displacement
in the XY coordinates.

• h < R⇔ h/R < 1⇔ αR < αh: The DDR can maneuver along the trajectory.

In order to allow the DDR to maneuver across the trajectory space only the case
h < R is considered for the following simulations and experimental tests.

3.4 Simulations

The parameters of the robot are h = 0.1m, r = 0.05m and d = 0.272m. In order to
show STA strengths, this control law is compared with two other control algorithms.
First, a linear PID control law (LIN) which has the following structure

ν =−K1e1 −K2η −K3ė1

η̇ =e1

(3.48)

where K1 = diag(k1x, k1y), K2 = diag(k2x, k2y) and K3 = diag(k3x, k3y).

Second, a first order sliding mode algorithm (SGN) which has the following structure

ν =−K1 de1c0 (3.49)

where K1 = diag(k1x, k1y) and

de1c0 =

[
sign(x− xd)
sign(y − yd)

]
∈ R2.

The wheels position in the XY plane can be found from geometry by using an ho-
mogeneous transformation. Let R(xs, ys, φ) define a translation and rotation trans-
formation as

R(xs, ys, φ) =

+ cos(φ) − sin(φ) xs
+ sin(φ) + cos(φ) ys

0 0 1

 .
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W.r.t to the global frame XGYG, the position of the right wheel (RW) can be found
as xRWyRW

1

 = R(xa, ya, θ)

 0
+d

2

1

 .
Analougously, the position of the left wheel (LW) can be found asxLWyLW

1

 = R(xa, ya, θ)

 0
−d

2

1

 .
Regulation

The reference trajectory is a goal point described by Equation (3.25) with bx = +0.7
m and by = −0.35 m and initial conditions x0 = −0.7 m and y0 = +0.7 m and
θ0 = 3π/4. Figure 3.5 shows the DDR’s motion in the XY plane using the control
signals shown in Figure 3.8. Evolution in time of controlled position outputs is shown
in Figure 3.6 and the measured orientation output is shown in Figure 3.7.
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Figure 3.5: Simulation: Regulation. XY plane. Controlled output signals
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Figure 3.6: Simulation: Regulation. Controlled output signals
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Figure 3.7: Simulation: Regulation. Measured output signal
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Figure 3.8: Simulation: Regulation. Control signals

Generated error signals are shown in Figure 3.9. A close-up to these signals after
convergence is shown in Figure 3.10which shows that the linear algorithm cannot
compensate exactly the proposed disturbances and that both sliding mode controllers
do.
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Figure 3.9: Simulation: Regulation. Error signals
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Figure 3.10: Simulation: Regulation. Error signals (After convergence)

However, SGN only guarantees a first-order sliding mode and STA guarantees a
second-order sliding mode of the sliding variable. Since STA reaches a higher order
sliding mode than SGN, STA can guarantee a better error precision. In order to
show that the STA and SGN are actually reaching their respective sliding mode
(SM), ex and ey are analyzed performing the same simulation but for sampling step
τ = 10−3 and τ = 10−4. For STA, Figure 3.11a shows that the SM is present
because the precision of the algorithm is increased by decreasing the sampling step
(Levant [1998]; Moreno [2009]). The same result is obtained for SGN as shown in
Figure 3.11b. In both sampling step cases STA has the best error precision compared
to LIN and SGN performances.
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Figure 3.11: Simulation: Regulation. Comparison of precision.
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Straight line

The reference trajectory is a straight line described by Equation (3.25) with mx =
0.01, my = 0.01, bx = +0.7m and by = +0.7m and initial conditions x0 = −0.7m,
y0 = −0.7m and θ0 = 5π/4. Figure 3.12 shows the DDR’s motion in the XY
plane using the control signals shown in Figure 3.15. Evolution in time of controlled
position outputs is shown in Figure 3.13 and the remaining measured orientation
output is shown in Figure 3.14.
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Figure 3.12: Simulation: Straight line. XY plane. Controlled output
signals
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Figure 3.13: Simulation: Straight line. Controlled output signals
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Figure 3.14: Simulation: Straight line. Measured output signal
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Figure 3.15: Simulation: Straight line. Control signals

Generated error signals are shown in Figure 3.16. A close-up to these signals after
convergence is shown in Figure 3.17 which shows, as occurs in regulation too, that
the linear algorithm cannot compensate exactly the proposed disturbances and that
both sliding mode controllers do. Furthermore, the STA accomplishes the control
goal with a better precision than SGN, as shown in Figure 3.18.
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Figure 3.16: Simulation: Straight line. Error signals

28



CHAPTER 3. VELOCITIES AS CONTROL INPUTS
3.4. SIMULATIONS

-2

0

2
e
x
[m

]

×10-3

LIN
SGN
STA

30 31 32 33 34 35 36 37 38 39 40
t[s]

-2

0

2

e
y
[m

]

×10-3

LIN
SGN
STA

Figure 3.17: Simulation: Straight line. Error signals (After convergence)
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Figure 3.18: Simulation: Straight line. Comparison of precision.

Tracking

The reference trajectory is a circle with radius R = 0.7m and center (h, k) = (0, 0)m
described by the following[

xd
yd

]
=

[
R cos(ωt) + h
R sin(ωt) + k

]
m ,

[
ẋd
ẏd

]
=

[
−Rω sin(ωt)
+Rω cos(ωt)

]
m/s (3.50)

where ω = 2π/T with T = 60s. Initial conditions are set tox0

y0

θ0

 =

−0.7m
+0.7m
0rad
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Figure 3.19 shows the DDR’s motion in the XY plane using the control signals
shown in Figure 3.22. Evolution in time of controlled position outputs is shown in
Figure 3.20 and the measured orientation output is shown in Figure 3.21.

Generated error signals are shown in Figure 3.23. A close-up to these signals after
convergence is shown in Figure 3.24. For LIN, ex and ey are bounded because linear
algorithms cannot compensate exactly matched disturbances and cannot take the
state to zero in finite time; this is shown in Figure 3.24.

However, SGN only guarantees a first-order sliding mode and STA guarantees a
second-order sliding mode of the sliding variable. This reflects on the precision that
the algorithm can achieve. In order to show that the STA and SGN are actually
reaching the sliding mode (SM), ex and ey are analyzed performing the same simula-
tion but for sampling step τ = 10−3 and τ = 10−4. For STA, Figure 3.25a shows that
the SM is present because the precision of the algorithm is increased by decreasing
the sampling step (Levant [1998]; Moreno [2009]). The same result is obtained for
SGN as shown in Figure 3.25b. Summarizing in Table 3.1, in both sampling step
cases STA has the best error precision compared to LIN and SGN performances.
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Figure 3.19: Simulation: Tracking. XY plane. Controlled output signals
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Figure 3.20: Simulation: Tracking. Controlled output signals
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Figure 3.21: Simulation: Tracking. Measured output signal
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Figure 3.22: Simulation: Tracking. Control signals
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Figure 3.23: Simulation: Tracking. Error signals
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Figure 3.24: Simulation: Tracking. Error signals (After convergence)
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Figure 3.25: Simulation: Tracking. Comparison of precision.

Table 3.1: Simulation: Tracking. Precision Table

τ = 1× 10−3 τ = 1× 10−4

STA τ 2 = 1× 10−6 τ 2 = 1× 10−8

SGN τ 1 = 1× 10−3 τ 1 = 1× 10−4

3.5 Experimental Tests

The position and orientation signals araw and θraw received to perform the experi-
mental tests have quantization and discretization phenomena. Computing p with
araw and θraw inherits these phenomena for coordinate x signal, for simplicity, as
shown in Figure 3.26. Particularly, these phenomena can cause unexpected behavior
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in the controller. For this reason there is a need to filter araw and θraw in order to
obtain smoother signals a and θ and, consequently, p signal.
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Figure 3.26: Quantization and discretization phenomena

Filtering

Filtering can be done with many methods. In this thesis, two method’s performance
are compared: a discrete Kalman Filter (KF) and second order Sliding Mode Differ-
entiator (SMD) [Levant, 2003, p. 38],

ż0 =v0; v0 = −2L1/3 dz0 − f(t)c2/3 + z1,

ż1 =v1; v1 = −1.5L1/2 dz1 − v0c1/2 + z2,

ż2 =v2; v2 = −1.1L dz2 − v1c0 .

(3.51)

which is in recursive form and L gain is the differentiator gain to tune.

Consider continuous KF as a pure double integrator for which dynamics are

ψ̇(t) =

[
0 1
0 0

]
ψ(t) +

[
0
1

]
w(t),

z(t) =
[
1 0

]
ψ(t) + v(t).

(3.52)

Discrete KF [Grewal, 2011] is derived from continuous KF as follows. From [Reid,
2001], for a sample step ∆t, integrating Equation (3.52) over one sample step and
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then shifting forward in time to match initial conditions yields

ψk+1 =

[
1 ∆t
0 1

]
ψk +

∆t∫
0

[
∆t− τ

1

]
w
(
tk + τ

)
dτ

︸ ︷︷ ︸
wk

,

zk =
[
1 0

]
ψk + vk.

(3.53)

After some mathematical manipulations, computing process noise covariance as Qk =
E
[
wkw

>
k

]
with E

[
·
]

the mean of the process yields

Qk = a

[
(1/3)∆t3 (1/2)∆t2

(1/2)∆t2 ∆t

]
, (3.54)

where a > 0 is the tunning parameter. Notice that Qk is a semi-definite positive
matrix as required.

An open loop sinusoidal motion in the x−coordinate is selected to tune the gains L
and a for the SMD from Equation (3.51) and the discrete KF from Equation (3.53)
- Equation (3.54), respectively, with ω0 = 2π/T the following open loop command
for both wheels

ωr =

(
60

2π

)(
Rω0

r
sign

(
cos(ω0t)

)
cos(ω0t)

)
= ωl.

In the next chapter voltages will be the control inputs w.r.t. positions as outputs
and estimations of velocity will be needed in order to implement CTA algorithm.
Therefore, it is advantegeous to analyze the performance of velocity estimations in
this chapter.

Figure 3.27 - Figure 3.29 show that position and orientation filtering for both meth-
ods are very similar. Notice that since Figure 3.27 - Figure 3.29 are open loop
experiments pure x−coordinate motion is not achieved since y-coordinate and θ ori-
entation do not remain constant. Nevertheless, this fact will be helpful to tune the
observer gains. After an exhaustive tunning procedure, SMD has a better estimation
of velocity signals based on the critical points of these velocity signals but the result-
ing estimation is always a noisy signal; especially, when there are sudden changes
in the signals as shown in Figure 3.28 and Figure 3.29. In contrast, eventhough KF
estimated velocity signals are slightly delayed, they are considerably less noisy. It is
preferrable that the DDR does not have abrupt behavior, therefore, KF is the veloc-
ity estimator selected for the following experimental tests; the same KF is applied
to each signal during the experiments.
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Figure 3.27: Filtering x signal
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Figure 3.28: Filtering y signal
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Figure 3.29: Filtering θ signal

Experimental tests

The reference trajectory is the one stated in Equation (3.50). An XY graph is
presented to show the form of the trajectory in Figure 3.30. Trajectory tracking per-
formance is shown in Figure 3.31 implementing control signals shown in Figure 3.33
and obtaining error signals shown in Figure 3.34.

For LIN, ex and ey are bounded between approximately |0.08| because linear algo-
rithms cannot compensate exactly matched disturbances and cannot take the state
to zero in finite time; this is shown in Figure 3.24. From Figure 3.24 it would seem
like SGN has smaller errors than LIN, especially on the y coordinate graph; however
STA definitely has smaller errors on both coordinates compared to LIN and SGN.

As seen in Figure 3.36, for SGN algorithm the sign function looses its properties after
transforming the control signal ν to actuations for the wheels.
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Figure 3.30: Experimental test: Tracking. XY plane. Controlled output
signals
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Figure 3.31: Experimental test: Tracking. Controlled output signals
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Figure 3.32: Experimental test: Tracking. Measured output signal
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Figure 3.33: Experimental test: Tracking. Control signals
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Figure 3.34: Experimental test: Tracking. Error signals
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Figure 3.35: Experimental test: Tracking. Error signals (After
convergence)
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Figure 3.36: Experimental test: Tracking. Control signals. Wheels

Since STA showed the best error precision results in comparison with SGN and LIN
algorithms, an experiment with another time-varying was performed using STA. The
reference trajectory for this time-varying curve is given by the following equations

xd(t) = R cos(ωt) + hc

yd(t) = 0.5R sin(2ωt) + kc
,

ẋd(t) = −Rω sin(ωt)

ẏd(t) = +Rω cos(2ωt)
(3.55)

Figure 3.37 and Figure 3.38 show trajectory tracking performance on the XY plane
and posture signals w.r.t. to time, respectively. The latter is accomplished with
control signals shown in Figure 3.40 which yield the error signals shown in Figure 3.41.
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Figure 3.37: Experimental test: Tracking. Lemniscate. XY plane.
Controlled output signals
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Figure 3.38: Experimental test: Tracking. Lemniscate. Controlled
output signals
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Figure 3.39: Experimental test: Tracking. Lemniscate. Measured output
signal
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Figure 3.40: Experimental test: Tracking. Lemniscate. Control signals.

43



CHAPTER 3. VELOCITIES AS CONTROL INPUTS
3.5. EXPERIMENTAL TESTS

Figure 3.41 and Figure 3.42 show the error signals are, for most of the experiment’s
time, bounded between |0.06|m.

0  

e
x
[m

]

0 20 40 60 80 100 120
t[s]

0  

e
y
[m

]

Figure 3.41: Experimental test: Tracking. Lemniscate. Error signals

-0.1

-0.05

0

0.05

e
x
[m

]

60 70 80 90 100 110 120
t[s]

-0.1

-0.05

0

e
y
[m

]

Figure 3.42: Experimental test: Tracking. Lemniscate. Error signals
(After convergence)
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Chapter 4

Voltages as control inputs

In this chapter the control objective is to solve trajectory tracking to drive posture
errors and, also, velocity errors to zero in finite-time regardless of perturbations.
For this, it is required to obtain a model of relative degree 2 (r = 2) w.r.t. the
position as output and voltages as the control inputs. After obtaining this model,
the control goal can be achieved using the “Continuous Twisting Algorithm” (CTA)
[Torres-González et al., 2015; Kamal et al., 2016; Moreno et al., 2016].

4.1 Modelling

Differentiating Equation (3.11) once w.r.t. to time yields[
p̈

θ̈

]
=

[
Ḋ(θ, θ̇)

0>

] [
ωr
ωl

]
+

[
D(θ)

φ>

] [
ω̇r
ω̇l

]
+

[
Ḋ(θ, θ̇)

0>

] [
ρr
ρl

]
+

[
D(θ)

φ>

] [
ρ̇r
ρ̇l

]
︸ ︷︷ ︸

ρ

.
(4.1)

Model Equation (4.1) has three terms that need to be reformulated.

The first term in Equation (4.1) can be rewritten as a function of the states of the
system as follows[

ωr
ωl

]
=M−1

[
va
ω

]
=M−1

[√
ẋ2
a + ẏ2

a

θ̇

]
=M−1

[√{
ẋ+ hθ̇ sin(θ)

}2
+
{
ẏ − hθ̇ cos(θ)

}2

θ̇

]
=F (ṗ, θ, θ̇) ∈ R2.

(4.2)

And,

Ḋ(θ, θ̇) = θ̇

[
−a1 sin(θ)− ha2 cos(θ) −a1 sin(θ) + ha2 cos(θ)
+a1 cos(θ)− ha2 sin(θ) +a1 cos(θ) + ha2 sin(θ)

]
∈ R2×2.
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Note that Ḋ(θ, 0) = 02×2 and F (0, θ, 0) = 0.

The second term in Equation (4.1) has ur = ω̇r and ul = ω̇l accelerations as control
inputs but the interest of this work is to consider the actuator dynamics and express
these two control inputs in terms of motor voltages instead of accelerations.

Jmω̇ =KmI

Lmİ =−RmI − φm(t, ω) + V,
(4.3)

where Jm [N ms2/rad], Km = km [N m/A], Lm [H] and Rm, [Ω]. Disturbances
φm(t, ω) are assumed Lipschitz, i.e.,

|φm(t, ω)| ≤φmmax, |φ̇m(t, ω)| ≤ Lm. (4.4)

Using singular perturbation theory (Lm = 0) ([Khalil, 2002]) and after some mathe-
matical manipulations, Equation (4.3) yields

ω̇ =dmV − bmφm(t, ω)︸ ︷︷ ︸
∆m

,
(4.5)

where dm = Km
JmRm

> 0 and bm = Kmkm
JmRm

≥ 0.

The latter analysis is made for each motor therefore it can be stated that[
ur
ul

]
=

[
dr 0
0 dl

]
︸ ︷︷ ︸

Dm

[
Vr
Vl

]
−
[
∆r

∆l

]
.

(4.6)

The last term in Equation (4.1) is conformed by perturbations that affect the sys-
tem. All these terms can be gathered into one perturbation term denoted as ρ̄ =[
ρ̄1, ρ̄2, ρ̄3

]
∈ R3 and ρ is assumed Lipschitz, i.e.,

|ρ̄i(t)| ≤ρimax, | ˙̄ρi(t)| ≤ Li, i = 1, 2, 3 (4.7)

Hence, Equation (4.1) is rewritten as[
p̈

θ̈

]
=

[
Ḋ
0>

]
F (ṗ, θ, θ̇) +

[
D

φ>

]
Dm

[
Vr
Vl

]
−
[
D

φ>

] [
∆r

∆l

]
+

[
Ḋ
0>

] [
ρr
ρl

]
+

[
D

φ>

] [
ρ̇r
ρ̇l

]
︸ ︷︷ ︸

ρ̄

(4.8)
where Ḋ = Ḋ(θ, θ̇) and D = D(θ) to avoid verbose notation.

Transforming Equation (4.8) to a state space representation using

x =


x1

x2

x3

x4

x5

x6

 =


x
ẋ
y
ẏ
θ

θ̇

 (4.9)
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results in [
ẋ1

ẋ3

]
=

[
x2

x4

]
= D

(
F (x) +

[
ρ1

ρ2

])
[
ẋ2

ẋ4

]
=f(x) + ū+

[
ρ̄1

ρ̄2

]
ẋ5 =x6

ẋ6 =φ>D−1ū+ ρ̄3

(4.10)

where f(x) = ḊF (x) ∈ R2 is a term of known dynamics,

ū =

[
ux
uy

]
= DDm

[
Vr
Vl

]
, (4.11)

and [
ρ̄1

ρ̄2

]
=−D

[
∆r

∆l

]
+ Ḋ

[
ρr
ρl

]
+D

[
ρ̇r
ρ̇l

]
, (4.12)

ρ̄3 =− φ>
[
∆r

∆l

]
+ φ>

[
ρ̇r
ρ̇l

]
. (4.13)

Remark 1 When x2 = x4 = x6 = 0, then vector function f(x = 0) = 0.

4.2 Control design

Trajectory tracking for a DDR based on System (4.10) implementing a continu-
ous sliding mode algorithm is intended. In other words, control objective is to drive
position and velocity tracking errors to zero in finite-time regardless of perturbations.

Suppose pd(t) =
[
xd(t), yd(t)

]> ∈ R2 is continuous and twice differentiable such

that ṗd(t) =
[
ẋd(t), ẏd(t)

]> ∈ R2 and p̈d(t) =
[
ẍd(t), ÿd(t)

]> ∈ R2 exist. Also,
pd(t), ṗd(t) and p̈d(t) are known. In the following (t) is omitted to avoid verbose
notation. Attempting to do trajectory tracking for x and y coordinates forces ori-
entation dynamics to be the zero dynamics of System (4.10) making θ a measured
uncontrolled output.

Let error variables be defined as

e1 =

[
x1

x3

]
− pd, ė1 =

[
x2

x4

]
− ṗd︸ ︷︷ ︸
e2

.
(4.14)

Using Equation (4.11) and differentiating Equation (4.14) w.r.t. time, the error
dynamics yields

ė1 =e2

ė2 =

[
ẋ2

ẋ4

]
− p̈d = f +DDm

[
Vr
Vl

]
+

[
ρ̄1

ρ̄2

]
− p̈d,

(4.15)
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where [
Vr
Vl

]
=D−1

m D−1u ∈ R2 (4.16)

and
u = −f + ν + p̈d ∈ R2 (4.17)

with ν =
[
νx, νy

]>
is a new control input. Hence, Equation (4.15) can be rewritten

as

ė1 =e2, ė2 = ν +

[
ρ̄1

ρ̄2

]
(4.18)

System Equation (4.18) has the form of two independently disturbed double inte-
grators. Then the control goal can be achieved using the “Continuous Twisting
Algorithm” (CTA) ([Torres-González et al., 2015; Moreno et al., 2016]) which has
the following structure

ν =−K1 de1c1/3 −K2 de2c1/2 + η,

η̇ =−K3 de1c0 −K4 de2c0 ,
(4.19)

where

de1cγ =

[
|x− xd|γsign(x− xd)
|y − yd|γsign(y − yd)

]
∈ R2, de2cγ =

[
|ẋ− ẋd|γsign(ẋ− ẋd)
|ẏ − ẏd|γsign(ẏ − ẏd)

]
∈ R2,

η =

[
ηx
ηy

]
∈ R2,

and Ki = diag
([
kix, kiy

])
with i = 1, 2, 3, 4 such that finite-time convergence is

achieved. Notice that Equation (4.19) is also a two-independent control law but
CTA takes into account position and, also, velocity tracking errors.

The closed loop Equation (4.18)-Equation (4.19) can be rewritten as

ė1 =e2

ė2 =−K1 de1c1/3 −K2 de2c1/2 + e3

ė3 =−K3 de1c0 −K4 de2c0 +

[
˙̄ρ1

˙̄ρ2

] (4.20)

CTA guarantees (Torres-González et al. [2015]) a third order sliding mode for closed
loop dynamics Equation (4.20) where

e1 =0, e2 = 0, and e3 =0→ η = −
[
ρ̄1

ρ̄2

]
(4.21)

The block diagram of the closed loop is shown in Figure 4.1.
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pd

p̈d

e1
ν = −K1de1c1/3 −K2de2c1/2 + η [

Vr
Vl

]
= D−1

m D−1(θ){−f + ν + p̈d} DDR Y

p

θ, θ̇

θ

η̇ = −K3de1c0 −K4de2c0

ν

p

ṗ

e2

ṗd

p

ṗ

θ

θ̇

Velocity

Estimator

ρ̄

Figure 4.1: Relative degree 2: Block Diagram

Control gains must be tunned homogeneously according to paremeters  L1 and L2

which are the Lipschitz bounds of the disturbances for channel x and y respectively.
The next procedure can be done for each channel analogously making L = L1 or L =
L2 and transforming with their corresponding error variables. Using the following
change of variables

z1 =Le1, z2 = Le2, z3 =Le3 ⇒ e1 =
z1

L
, e2 =

z2

L
, e3 =

z3

L

yields the closed loop

ż1 =z2

ż2 =− k̄1 dz1c1/3 − k̄2 dz2c1/2 + z3

ż3 =− k̄3 dz1c0 − k̄4 dz2c0

which has the same structure as Equation (4.20). The only difference is that control
gains are now given by k̄1 = k1L

2/3, k̄2 = k2L
1/2, k̄3 = k3L and k̄4 = k4L.

Zero Dynamics

States x5 and x6 represent the zero dynamics of the system and are given by

ẋ5 =x6

ẋ6 =φ>D−1ū+ ρ̄3

(4.22)

In closed loop, during transient response states x5 and x6 are given by

ẋ5 =x6

ẋ6 =φ>D−1ū+ ρ̄3

=φ>D−1
(
−f −K1 de1c1/3 −K2 de2c1/2 + η + q̈d

)
+ ρ̄3

η̇ =−K3 de1c0 −K4 de2c0 .

(4.23)

Subsystem Equation (4.23) shows that the dynamics for states x5 and x6 are affected
by exogenous signals. During transient response little can be said about x5 dynam-
ics, however, depending on the desired trajectory some observations can be made
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about x5 dynamics when the sliding mode is reached. From Equation (4.10), when
Equation (4.21) occurs, it implies

e1 =0⇔
[
x1

x3

]
= pd,

e2 =0⇔
[
x2

x4

]
= D

(
F (x) +

[
ρr
ρl

])
= ṗd ⇔

(
F (x) +

[
ρr
ρl

])
= D−1ṗd,

(4.24)

and recalling Equation (4.12) the following also occurs

ν =−
[
ρ̄1

ρ2

]
= D

[
∆r

∆l

]
− Ḋ

[
ρr
ρl

]
−D

[
ρ̇r
ρ̇l

]
. (4.25)

Transforming Equation (4.25) using Equation (4.17) yields

u =− f +D

[
∆r

∆l

]
− Ḋ

[
ρr
ρl

]
−D

[
ρ̇r
ρ̇l

]
+ p̈d. (4.26)

Performing two transformations, first, using Equation (4.17), and, second, using
Equation (4.16) yields

ū =− f +D

[
∆r

∆l

]
− Ḋ

[
ρr
ρl

]
−D

[
ρ̇r
ρ̇l

]
+ p̈d. (4.27)

Substituting Equation (4.27) and Equation (4.13) in Equation (4.22) yields

ẋ5 =x6

ẋ6 =− φ>D−1f +
�
�
�
�
�

φ>
[
∆r

∆l

]
− φ>D−1Ḋ

[
ρr
ρl

]
−

�
�

�
��

φ>
[
ρ̇r
ρ̇l

]
+ φ>D−1p̈d

��
����

−φ>
[
∆r

∆l

]
���

���
+φ>

[
ρ̇r
ρ̇l

]
.

(4.28)

After rewritting f from Equation (4.28) and substituting Equation (4.24) in it yields

ẋ5 =x6

ẋ6 =− φ>D−1Ḋ

(
F +

[
ρr
ρl

])
+ φ>D−1p̈d

=− φ>D−1ḊD−1ṗd + φ>D−1p̈d

(4.29)

Now, computing the matrix operations of Equation (4.29) yields

ẋ5 =x6

ẋ6 =−
[
x6

cos(x5)

h
, x6

sin(x5)

h

]
ṗd +

[
− sin(x5)

h
,

cos(x5)

h

]
p̈d

(4.30)

Remark 2 Differentiating Equation (3.29) w.r.t. time yields Equation (4.31) which
shows Equation (4.31) is only a dynamic extension of Equation (3.29). Therefore,

x6 =

[
− sin(x5)

h
,

cos(x5)

h

]
ṗd. (4.31)
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4.3 Simulations

The parameters of the robot are h = 0.1m, r = 0.05m and d = 0.272m. To show
CTA strengths, this control law is compared with two other control algorithms. First,
a homogeneous control law without sliding modes (BER) which has the following
structure

ν =−K1 de1c1/3 −K2 de2c1/2 (4.32)

where K1 = diag(k1x, k1y) and K2 = diag(k2x, k2y).

Second, the Twisting algorithm (TWA) which has the following structure

ν =−K1 de1c0 −K2 de2c0 (4.33)

where K1 = diag(k1x, k1y) and K2 = diag(k2x, k2y). The reference trajectory is a
circle with radius R = 0.7m and center (h, k) = (0, 0)m described by the following[

xd
yd

]
=

[
R cos(ωt) + h
R sin(ωt) + k

]
m,

[
ẋd
ẏd

]
=

[
−Rω sin(ωt)
+Rω cos(ωt)

]
m

s
,

[
ẍd
ÿd

]
=

[
−Rω2 cos(ωt)
−Rω2 sin(ωt)

]
m

s2

(4.34)

where ω = 2π/T with T = 60s. Initial conditions are set tox0

y0

θ0

 =

−0.7m
+0.7m
0rad


Figure 4.2 shows the DDR’s motion in the XY plane using the control signals shown
in Figure 4.5. Evolution in time of controlled position outputs is shown in Figure 4.3
and the measured orientation output is shown in Figure 4.4. Figure 4.6 shows the
result of the estimation using the SMD from Equation (3.51).

Generated error signals are shown in Figure 4.7. A close-up to these signals after
convergence is shown in Figure 4.8. For BER, ex and ey are bounded because linear
algorithms cannot compensate exactly matched disturbances and cannot take the
state to zero in finite time; this is shown in Figure 4.8.

However, TWA only guarantees a second-order sliding mode and CTA guarantees
a third-order sliding mode. Since, CTA achieves a higher order sliding mode than
TWA, CTA guarantees better error precision. In order to show that the CTA and
TWA are actually reaching the sliding mode (SM), ex and ey are analyzed perform-
ing the same simulation but for sampling step τ = 10−3 and τ = 10−4. For CTA,
Figure 4.9a and Figure 4.10a show that the SM is present because the precision of
the algorithm is increased by decreasing the sampling step (Levant [1998]; Moreno
[2009]). The same result is obtained for TWA as shown in Figure 4.9b and Fig-
ure 4.10b and as expected control signal is discontinuous. Summarizing in Table 4.1,
in both sampling step cases CTA has the best error precision compared to BER and
TWA performances.
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Figure 4.2: Simulation: Tracking. XY plane. Controlled output signals
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Figure 4.3: Simulation: Tracking. Controlled output signals
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Figure 4.4: Simulation: Tracking. Measured output signal
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Figure 4.5: Simulation: Tracking. Control signals
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Figure 4.6: Simulation: Tracking. Estimated velocities signals

-2

-1

0

1

e
x
[m

]

BER
TWA
CTA

0 20 40 60 80 100 120
t[s]

-0.5

0

0.5

1

e
y
[m

]

BER
TWA
CTA

Figure 4.7: Simulation: Tracking. Error signals
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Figure 4.8: Simulation: Tracking. Error signals (After convergence)
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Figure 4.9: Simulation: Tracking. Comparison of precision. Position
errors.
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ė y
[m

/
s]

×10-4

60 80 100 120
t[s]

-2

0

2
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Figure 4.10: Simulation: Tracking. Comparison of precision. Velocity
errors.

Table 4.1: Simulation: Tracking. Precision Table

τ = 1× 10−3 τ = 1× 10−4

CTA e1 τ 3 = 1× 10−9 τ 3 = 1× 10−12

e2 τ 2 = 1× 10−6 τ 2 = 1× 10−8

TWA e1 τ 2 = 1× 10−6 τ 2 = 1× 10−8

e2 τ 1 = 1× 10−3 τ 1 = 1× 10−4

4.4 Experiments

The reference trajectory is the one stated in Equation (4.34). An XY graph is
presented to show the form of the trajectory in Figure 4.11. Trajectory tracking per-
formance is shown in Figure 4.12 implementing control signals shown in Figure 4.17
and obtaining error signals shown in Figure 4.15. Figure 4.14 shows the result of the
estimation using the discrete Kalman Filter from Equation (3.53).

For BER, ex and ey are bounded between approximately |8|cm because homogeneous
algorithms without sliding modes cannot compensate exactly matched disturbances
and cannot take the state to zero in finite time; this is shown in Figure 4.8. From
Figure 4.8, CTA tends to have smaller errors on both coordinates compared to BER
and TWA.
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Figure 4.11: Experimental test. Tracking. XY plane. Controlled output
signals
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Figure 4.12: Experimental test. Tracking. Controlled output signals
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Figure 4.13: Experimental test. Tracking. Measured output signal
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Figure 4.14: Experimental test. Tracking. Estimated velocity signals
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Figure 4.15: Experimental test. Tracking. Error signals
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Figure 4.16: Experimental test. Tracking. Error signals (After
convergence)
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Figure 4.17: Experimental test. Tracking. Control signals
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Figure 4.18: Experimental test. Tracking. Wheel control signals

60



Chapter 5

Conclusions and future work

5.1 Discussion

About the simulation and theoretical results there are some points to discuss.

First, simulations yield what is obtained from theory, as the sampling step decreases
the precision of the sliding mode controller with respect to the error variables in-
creases for both cases: relative degree 1 and 2.

Second, simulations yield that STA has the best performance because it has the
smaller error measurements thanks to its capability of achieving a second-order slid-
ing mode when using velocities as control inputs. Simulations yield that CTA has
the best performance because it has the smaller error measurements thanks to its ca-
pability of achieving a third-order sliding mode when using voltages as control inputs.

Third, the discussion that arises is the comparison of STA and CTA. Simulations
Figure 3.25a, Figure 4.9a and Figure 4.10a yield that extending the relative degree
of Figure 3.11 does help improve the precision of the error measurements, as can be
seen from comparing Table 3.1 with Table 4.1. Consequently, in simulations, CTA
algorithm yields the best results of all the implemented algorithms in this thesis.

Fourth, comparison of simulation and experimental results yield interesting results.
For relative degree 1, simulations from Figure 3.20 - Figure 3.25b compared to ex-
perimental tests from Figure 3.30 - Figure 3.36 yield very similar results with the
exception of the bounds of the error measurements; for the experiments the bounds
are bigger than the simulations. This is expected because in reality the dynamics
of point p are far from a pure disturbed single integrator and, also, implemented
control gains had to be scaled and adjusted for the experiments. However, control
objective in practical terms is achieved satisfactorily. Similarly, for relative degree
2, simulations from Figure 4.3 - Figure 4.10 compared to experimental tests from
Figure 4.11 - Figure 4.18 yield similar results with the exception of the bounds of the
error measurements; for the experiments the bounds are bigger than the simulations.
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A similar argument is made here because in reality the dynamics of point p are far
from a pure disturbed double integrator and, also, implemented control gains had to
be scaled and adjusted for the experiments. Moreover, velocity estimations are not
as smooth as computed in the simulations and this fact affects directly the computed
errors. However, control objective in practical terms is achieved satisfactorily.

Fifth, the last question that arises is the comparison of STA and CTA in the ex-
perimental tests. Comparing STA performances from Figure 3.34 and Figure 3.35
and CTA performances from Figure 4.15 and Figure 4.16 the error measurements are
bigger for the CTA than for the STA. The veredict is that, in experiments, STA has
a better performance than CTA in terms of error precision. This is directly related
with the sampling rate used for the experiments. In order to match the simulation
results it is required to adjust the sensor’s sampling rate.

About the practical implementation there are some points to discuss.

First, about quantization and discretization phenomena that emerge from the track-
ing and detection process of the patterns that deliver posture information. After
filtering Continuous Sliding Mode algorithms are able to achieve the control objec-
tive. When convergence is reached the error from the position measurements keep
the robot from reaching a theoretical zero in the position errors. However, this be-
havior is within a tolerance for all the implemented algorithms and can be considered
as a practical zero for sliding mode controllers.

Second, about the process to estimate velocity measurements from the position mea-
surements in the controllers for relative degree 2. Thanks to the presence of the error
position measurements, the velocity observer inherits this erroneous information and
feeds the control algorithm with non accurate velocity information. Two velocity
observers were considered: a Kalman Filter and a second order Sliding Mode dif-
ferentiator. The best result of control design when the case of voltages as control
inputs is considered was obtained using a Kalman Filter. In other words, the best
velocity estimation resulted from using a Kalman Filter. This because eventhough
an intensive tunning process was performed for the second-order SMD, the computed
velocity signals were always considerably noisy w.r.t. the estimations of the position.

The last remark is about the sensor used, in this case the camera. Control decisions
are based on the readings of the computer vision software, if the readings are not
accurate control decisions cannot be accurate. This thesis shows that the methodol-
ogy implemented works for real applications; however, it also shows that improving
the readings precision will yield better performance results for the controllers.
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5.2 Conclusions

Two models were considered to implement continuous Sliding Mode algorithms.
First, a system with velocities as control inputs is considered. Hence, a system
with position as outputs that has relative degree 1 is used. For this approach, Su-
per Twisting Algorithm was implented and compared with a linear algorithm and a
first-order sliding mode controller. Second, a system with voltages as control inputs
is considered. Hence, a system with position as outputs that has relative degree 2
is used. For this approach, Continuous Twisting Algorithm was implemented and
compared with an homogeneous algorithm without sliding modes and a Twisting
controller. Simulations and experimental tests were shown to analyze the controllers
performances.

5.3 Future Work

The main drawback from controlling x and y coordinates for a differential drive
robot, in either of the two approaches, is that it is difficult to determine what hap-
pens with the transitory response of the zero dynamics of the system. Depending
on the trajectory, when convergence of the continuous Sliding Mode algorithm is
reached some observations can be done for that specific trajectory. This fact gener-
ates the question of whether x and y coordinates are the best choice of variables to
be controlled in this system. Perhaps the choice of one of the XY plane coordinates
and the orientation can overcome this drawback.

Nevertheless, controlling XY plane coordinates make possible to implement consen-
sus and formation continuous Sliding Mode algorithms directly to differential drive
robots. This because most of the consensus and formation problems in literature are
designed for holonomic masses that are described only by x and y coordinates.

Another important assumption made in this thesis was that the area in which the
robot moves is an obstacle-free environment and, therefore, one can establish pre-
defined reference trajectories. This in general is not true, especially when humans
could potentially interact with the robot. In industrial applications, the safety of the
people present should always have priority over the integrity of the robot and this
case is not addressed using the presented methodology. Adding reactive behaviors
to the robot can solve this problem and still guarantee the fullfillment of its task.
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Appendix A

Experimental setup

A.1 Overview

The experimental setup consists of a DDR, shown in Figure A.1a, a Microsoft Life-
cam Studio camera, shown in Figure A.1b, and a computer with MATLAB/Simulink.

(a) Differential Drive Robot (b) Camera

Figure A.1: Hardware elements

Reactvision is an application that performs detection and tracking of patterns called
Fiducials. It is used to obtain point a and θ of the DDR. This information is
recovered using Reactivision libraries in an auxiliary C++ program and then sent to
MATLAB/Simulink using UDP protocol.

Reactivision

C++

UDP:127.0.0.1 UDP:127.0.0.1

MATLAB/Simulink

Packet Input

14 bytes

14*‘int8’

Port: 3333 Port: 666

Figure A.2: Data transmission

Once the control algorithm is computed in MATLAB/Simulink, the two wheel actions
are sent to the DDR using UDP protocol.
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A.2 Hardware

The DDR’s parameters are shown in Table A.1 and its hardware components are
shown in Figure A.3.

Table A.1: DDR parameters

r d h
5cm 27.5cm 10cm

(a) Actuators (b) Battery (c) Processor

Figure A.3: Hardware in the DDR

A.2.1 Actuators and power stage

The microcontroller communicates via I2C with a motor drive called MD25 which
can drive two EMG30 motors independently. Each EMG30 motor is coupled to a 5
cm radius wheel with the help of a wheel-hub, as shown in Figure A.3a.
The MD25 has three turn modes that allow the user to define the format values of
the wheel commands. In this thesis, the default configuration is used which is mode
0. In this mode only allows commands with format of unsigned 8-bit integers, i.e.,
only values in the range of 0 to 255; half of the spectrum is one turn direction and
the other is the counter direction. This mode is illustrated in Figure A.4.

0 255128

+100%−100%

ForwardReverse

0%

Stop

−50% +50% Power percentage

int8 value64

Motion

192

Figure A.4: MD25 turn wheel commands

For Section 3.5, the process to tranform from control inputs um to wheel commands
Wm is shown in Figure A.5. First, control inputs um in rad/s, with m referring to
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left or right motor, are converted to revolutions per minute Wm as follows

Wm =
[
um
] 60

2π
.

Then, if it is necessary Wm is saturated to
[
−WSAT,+WSAT

]
with WSAT = 100.

This means that for the experiments only half of the total capacity of the motors is
used. Finally, to convert wheel control actions Wm to wheel commands PWMm the
following is implemented

PWMm =

{
128− 128Wm

200
if 0 ≥ Wm ≤ +WmSAT,

128 + 127Wm

200
if −WmSAT ≥ Wm ≤ 0.

(A.1)

[rad/s]ur

ul

Wr

Wl

↓
[RPM ]

Saturation

Wmin

Wmax

Wm

↓
Uint8 D

D
R

Wr

Wl

Figure A.5: Conversion to actuators for STA

For Section 4.4, control inputs um are in V , hence, after a rescaling only Equa-
tion (A.1) is needed.

A.2.2 Energy

Energy is provided to the DDR by a sealed lead-acid battery that delivers 12 V DC
and has 4 Ah capacity, shown in Figure A.3b. The 12V battery energizes the MD25
and the latter energizes the microcontroller with its Vcc and GND pins.

A.2.3 Processor

ESPino, shown in Figure A.3c, is a 32-bit microcontroller based on ESP8266 chip.
As many other microcontrollers it has I/O digital and an analog input pin. It also
has SPI, serial and I2C communication pins. However, its main advantage is that
ESP8266 has WI-fI communication integrated which is a wireless communication
standard.

The ESPino connects to an specific WI-FI hotspot created by the computer with a
SSID and a password that are predefined in the microcontroller code. A nonreserved
port in the range of 0 to 216 is also predefined in the ESPino code which allows
bidirectional communication between a computer and the ESPino. In this thesis,
communication from the computer to the ESPino is the only direction needed and
the predifined port is 8888. Once the connection is made succesfully, a dynamic IP
is assigned to the microcontroller. The generated IP and the predefined port form
the address to which UDP packets will be sent from MATLAB/Simulink to make
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the DDR move its wheels.

The WI-FI hotspot to which the ESPino connects is created with the help of a
program that allows to create a virtual router with the computer. In this thesis,
the WI-FI hotstop SSID is “RoboticaMovil1” and password is “1234567890”. This
program also displays the assigned IP of the ESPino.

A.3 Software

A.3.1 Reactivision

Reactivision is an open source standalone application that performs detection and
tracking of fiducial markers like the one shown in Figure A.2. Attaching these mark-
ers to physical objects makes tracking of one or more objects possible. Reactivision
sends TUIO messages using UDP protocol to IP address 127.0.0.1 with port 3333.
These TUIO messages contain the detection and tracking information of the fiducial
markers seen by the camera.

Cameras distorsion is generated by its oval lense. For this reason, a calibration
process is needed before performing experiments. This process is done by adjusting
the width and height calibration grid from Reactivision. For Reactivision 1.5.1 win64
version, first, show the calibration grid by pressing ‘c’ key in the camera view from
Reactivision. Next, adjust the calibration grid to the work area by using a,d,w,x
keys to move within the grid and arrow keys to modify the grid’s width and height.

A.3.2 C++ Library

Reactivision provides libraries coded in C++, Java and other programming languages
to interact with the TUIO messages sent to port 3333. In this thesis, C++ library
is chosen to optimize the speed of the transmission process. In addition, the C++
demo program “TuioDemo” provided by Reactivision’s support webpage automati-
cally corrects the distorsion of the camera if the calibration process was performed
beforehand.

For this thesis the information needed is the position and orientation of the fiducial
marker which will be placed in point a, i.e., the middle point of axis formed by the
actuated wheels. A standard socket library is implemented to send via UDP protocol
these 3 variables to local IP adresss 127.0.0.1 with port 666. The packet’s format is
defined as follows
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Table A.2: Transmision frame format

Data 1 Data 2 Data 3 Data 4 Data 5
‘M’ XPOS YPOS THETA NUM

1 byte 4 bytes 4 bytes 4 bytes 1 byte

where ‘M’ is the identifier of the start of frame; XPOS, YPOS and THETA are float
variables each one converted to a 4 byte unsigned integer. The whole frame data
type is an array of unsigned 8-bit integers; NUM is an integer variable that stores
the number of fiducials detected by Reactivision and can be used to detect reading
errors whenever the camera fails to detect the fiducial marker. Therefore, the UDP
packages sent to MATLAB/Simulink will be nBYTES = 14 bytes long.

A.3.3 MATLAB/Simulink

Receiving data

The data accquisition process in MATLAB/Simulink starts with receiving the packet
sent from the socket in C++ to port 666 using Simulink’s Packet input block. Since
UDP protocol is used to transmit the data the content of the package may arrive
in disorder. An example of this is shown in Figure A.6. Therefore, a sort operation
needs to preprocess the incoming byte array using the start of frame identifier.

The start of frame identifier is chosen to be character ‘M’ according to Table A.2
which in ASCII code corresponds to 77DEC. First, the start of frame identifier index
AUX is found within the incoming byte array. Second, the following (nBYTES −
AUX) bytes of the incoming array are actually the first part of the new sorted array
and corresponds to Part I in Figure A.6. Third, the first AUX bytes of the incoming
array are the rest of the new sorted array are and they correspond to Part II in
Figure A.6.

After the ordering process, the 3 variables packed in 4 byte variables are converted
back to 32-bit single precision floating-point format. To be able to use these three
variables in Simulink, they have to be converted to double-precision floating-point
format. Here, reformatting process is completed and the three double-type variables
(arawnc and θrawpd) are ready to perform computations on them.
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Packet

Input
Sort

Bytes

Double

↓
Single

↓
Single

M

AUXPart II Part I

M

Incoming byte array

New sorted byte array

B1

B1 B13...

......B9 B13 B8

B4 B12B5 ... B8 ...B9

Reformatting data

arawnc

θrawpd

arawnc

θrawpd

Figure A.6: DAQ: Reformatting

Point arawnc needs to be centered using the following translation w.r.t. to the working
area

araw =arawnc −
[
ha
ka

]
,

where ha and ka will vary depending on the calibration grid. For this thesis, ha = 318
and ka = 225.

θrawpd signal has a range of 0 to 2π. Figure A.7 illustrates the behavior of θrawpd

when a sequence of rotations is performed staring from 0 radians. First, the DDR
rotates 2π radians counterclockwise. Second, rotation resets and the DDR rotates
in the same direction π radians more. Third, the DDR changes rotation direction
and turns −π radians. Fourth, orientation resets and the DDR keeps the previous
rotation direction turning −2π radians. Finally, orientation resets and the DDR
turns another −2π radians maintaining the previous direction. For this thesis, there
is a need to avoid the mentioned resets and keep track of the rotation direction
obtaining an orientation signal θraw without phase discontinuities. In other words,
θrawpd needs to expand its range to R. The solution is to keep track of the turning
direction and detect phase discontinuities larger than π radians. The latter operation
can be performed by applying Simulink’s Unwrap block with π tolerance to signal
θrawpd which results in the expected signal θraw which is shown in Figure A.7.
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0 5 10 15 20 25 30 35 40

t[s]

−2π

−π

0

π

2π

3π

[r
a
d
]

θrawpd

θraw

Figure A.7: Transforming θraw

Due to the use of UDP protocol and its inherent loss of information it is strongly
suggested that at least one error-correction method to signals araw and θraw is imple-
mented before computing control algorithms. When position and orientation of the
fiducial are lost, the values of the signals from the previous sample step differ greatly
from the values of the signals from the current sample step. This difference can be
detected by using a threshold variable for each signal. If the threshold condition is
broken then for some reason bad measurements are being received and, therefore,
the previous value of the signal should replace the current value of the signal. If good
measurements are received the threshold condition is not broken and they can be
used for the control algorithms computations. This method will fill the gap derived
from the loss of information and also remove outliers from the signals as long as the
DDR does not behave erraticly in the sense that constant signals are generated due to
this erratic behavior. Another failure phenomenon that could occur for this method
is the generation of constant signals due to bad measurements in many consecutive
sample steps. Error-correction pseudocode is shown in Figure A.8 and whith this
method data acquistion (DAQ) is finished.

arawnc

Error-correction

θrawpd

Centering

and

range

transformation

araw

θraw if (abs(signalik − signalipk) > thresholdi)

signalik = signalipk

end
end

for i = 1 to 3 araw

θraw

Figure A.8: DAQ: Error-Correction
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As mentioned in Section 3.5, araw and θraw has quantization and discretization phe-
nomena, hence, these signals need to go through a filtering process. For Section 3.5,
filtered signals a and θ are used to compute the information for point p. Finally, p
and θ are used to compute STA. This process is illustrated in Figure A.9.

Get p
p

θ

araw a

θraw θ
DAQ KF or

2OSMD

Figure A.9: DAQ and filtering for STA

For Section 4.4, filtered and velocity estimations signals, a, θ and ȧ, θ̇, respectively,
are used to compute point p and ṗ. Finally, p, θ and ṗ, θ̇ are used to compute CTA.
This process is illustrated in Figure A.10.

Get pKF
p, θa, θ

or
2OSMD ȧ, θ̇ Get ṗ ṗ, θ̇

araw

θraw

DAQ

Figure A.10: DAQ, filtering and velocity estimations for CTA

Sending data

After transforming the control wheel actions to the MD25 wheel commands, the
wheel commands are sent via Simulink’s Packet Output Block. The packet is formed
with the two wheel commands which are 2 8-bit unsigned integers. Hence, the packet
sent to the DDR’s IP, shown by the WI-FI hotspot program, and predefined port
8888 is 2 bytes long.
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tive continuous twisting algorithm. International Journal of Control, 89(9):1798–
1806.

Mu, J., Yan, X. G., Spurgeon, S. K., and Mao, Z. (2015). Trajectory tracking control
of a two-wheeled mobile robot using sliding mode techniques. In 2015 34th Chinese
Control Conference (CCC), pages 3307–3312.

Oriolo, G., Luca, A. D., and Vendittelli, M. (2002). Wmr control via dynamic
feedback linearization: design, implementation, and experimental validation. IEEE
Transactions on Control Systems Technology, 10(6):835–852.

Orlov, Y., Aoustin, Y., and Chevallereau, C. (2011). Finite time stabilization of
a perturbed double integrator – part i: Continuous sliding mode-based output
feedback synthesis. IEEE Transactions on Automatic Control, 56(3):614–618.

Reid, I. (2001). Estimation ii. www.robots.ox.ac.uk/~ian/Teaching/Estimation/
LectureNotes2.pdf.
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