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ABSTRACT 

In probabilistic seismic hazard analysis, some of the parameters involved in the models for magnitude 

distribution and ground motion intensity are estimated based on data from historical observations through 

a statistical inference process. This process introduces uncertainties in the estimation of these parameters 

and, therefore, in the seismic hazard analysis results. The interest of this work focuses on evaluating the 

influence of parameter uncertainty in probabilistic seismic hazard analysis. A procedure is proposed to 

assess the mean and variance of the annual exceedance rate of peak ground acceleration. The procedure 

employs a point estimate method based on the Rosenblatt transformation. Its advantage is that the number 

of estimating points can be readily increased if necessary. Three cases are examined for which analytical 

solutions are known: (1) point source with deterministic median attenuation relation, (2) point source 

with probabilistic attenuation relation, and (3) a circular source with probabilistic attenuation relation. 

Parameters from the magnitude distribution and ground motion prediction models were considered 

uncertain. The accuracy of the method was assessed using Monte Carlo simulations. Results indicated 

that the effect of parameter uncertainty can be significant for return periods of engineering interest. 
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RESUMEN 

En el análisis probabilista de peligro sísmico, algunos parámetros que intervienen en los modelos de 

excedencia de magnitud y de movimiento del suelo se estiman mediante un proceso de inferencia 

estadística con base en datos de observaciones y registros históricos. Este proceso introduce 

incertidumbres en la estimación de dichos parámetros y, por ende, en los resultados del análisis de peligro 

sísmico. El interés de este trabajo se centra en evaluar la influencia de la incertidumbre paramétrica en 

el análisis probabilista de peligro sísmico. Se propone un procedimiento para estimar la media y la 

varianza de la tasa anual de excedencia de la aceleración máxima del suelo. El procedimiento emplea un 

método de estimación puntual basado en la transformación de Rosenblatt, la cual permite mapear 

variables físicas a un espacio de variables independientes normal estándar. Con este enfoque no se 

requiere utilizar momentos de orden superior de las variables aleatorias y los puntos de estimación están 

siempre contenidos en el dominio de las distribuciones de las variables. Se examinan tres casos de estudio 

con soluciones analíticas conocidas: (1) fuente puntual y relación de atenuación con mediana 

determinista, (2) fuente puntual y relación de atenuación probabilista, y (3) fuente extendida circular de 

sismicidad uniforme y relación de atenuación probabilista. Se consideraron inciertos parámetros que 

intervienen en los modelos de tasa de excedencia de magnitud y de intensidad de movimiento de suelo. 

La precisión del método se verifica mediante simulaciones de Monte Carlo. Los resultados indican que 

considerar la incertidumbre paramétrica tiene un efecto relevante en el cálculo de aceleraciones máximas 

del suelo para periodos de retorno de interés en el análisis y diseño estructural. 
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CHAPTER 1  

INTRODUCTION 

1.1 BACKGROUND 

 

Essentially, probabilistic seismic hazard analysis is an approach that aims at estimating the annual 

probability (or rate) of exceeding some level or intensity measure of earthquake ground shaking at a site. 

In this analysis, some of the parameters involved in the magnitude distribution and the ground motion 

intensity models are estimated based on data from historical observations through a statistical inference 

process which introduces uncertainties. For structural safety and optimal design decision making it would 

be desirable to have information on the level of uncertainty involved in the estimation of seismic hazard. 

This thesis focuses on the assessment of the influence of parameter uncertainty in probabilistic seismic 

hazard analysis. 

 

In the context of developing models for the solution of engineering problems it has been deemed 

convenient to classify the character of uncertainties as aleatory or epistemic. According to Der 

Kiureghian and Ditlevsen (2009), an aleatory uncertainty is that related to the intrinsic randomness of a 

phenomenon, whereas an epistemic uncertainty is the one caused by lack of knowledge or information. 

The Probabilistic Model Code of the Joint Committee on Structural Safety (2001) identifies uncertainties 

in regard to their type and origin; it differentiates between uncertainties due to inherent natural 

variability, model uncertainties, and statistical uncertainties. The first one is regarded as aleatory, while 

the latter two are considered to be epistemic uncertainties. It is understood that epistemic uncertainties 

can be reduced by acquiring more knowledge or information about a phenomenon, a process or a 

variable. 

 

An useful framework for identifying the sources and types of uncertainties has been formulated by Der 

Kiureghian and Ditlevsen (2009) discussing a general model for structural reliability analysis. It involves 

a set of input variables 𝒙 = (𝑥1, … , 𝑥𝑛)  that take values as outcomes of a corresponding set of  

basic random variables 𝑿 = (𝑋1, … , 𝑋𝑛), a parametrized probabilistic model 𝑓𝑥(𝒙, 𝚯𝑓) describing the 

distribution of the random vector 𝑿, and a set of parameterized physical models 𝑦𝑖 = 𝑔𝑖(𝒙, 𝚯𝑔), 𝑖 = 1,

2, … ,𝑚 , describing relations between input variables 𝒙  and 𝑚  derived quantities 𝒚 = (𝑦1, … , 𝑦𝑚) , 

which are employed in modeling the reliability problem under study. The basic variables are those that 

can be observed directly and, therefore, some statistics or historical data are available. The derived 

variables cannot be observed directly, but can be observed as a result of a laboratory experiments or field 

studies for model development purposes. It is now possible to identify the following sources of 

uncertainty: 

 

- Uncertainty inherent in the basic random variables 𝑿. 

- Uncertain model error resulting from selection of the form of the probabilistic model 𝑓𝑥(𝒙,𝚯𝑓), 

used to describe the basic variables. 

- Uncertain model errors resulting from selection of the physical models 𝑦𝑖 = 𝑔𝑖(𝒙, 𝚯𝑔), 𝑖 = 1,

2, … ,𝑚, used to describe the derived variables. 

- Statistical uncertainty in the estimation of parameters 𝚯𝑓 of the probabilistic model. 

- Statistical uncertainty in the estimation of parameters 𝚯𝑔 of the physical model. 

- Uncertain errors involved in measuring of observations, based on which parameters 𝚯𝑓 and 𝚯𝑔 

are estimated. 

- Uncertain errors resulting from computational errors, numerical approximations or truncations 

in modeling derived variables 𝒚. 
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Uncertainties associated to human activities and decisions could be added to the uncertainties listed 

above. Based on the previous framework, some of the parameters estimated from observed data, which 

are involved in the models for the characterization of seismic hazard, can be identified as basic random 

variables with probability density function  𝑓𝑥(𝒙,𝚯𝑓) , where parameters 𝚯𝑓  are obtained using an 

estimator 𝚯�̂� through a statistical inference process. Considering the basic variables 𝑿 to be random, the 

exceedance rate of a given ground motion intensity becomes a function of random variables and, 

therefore, becomes itself a random variable. The uncertainty associated with the statistical estimation of 

parameters 𝚯𝑓 is known as parameter uncertainty. 

 

 

1.2 OBJECTIVES AND SCOPE 

 

The main objectives of this thesis are: (1) to implement a method for assessing the uncertainty in 

probabilistic seismic hazard analysis due to parameter uncertainty; and (2) to evaluate the effect of 

parameter uncertainty on the mean and variance of the annual exceedance rate of peak ground 

acceleration. 

 

The research is developed with the following scope: 

 

i. Three case studies will be examined for which analytical solutions are available: (1) point source 

with deterministic median attenuation relation, (2) point source with probabilistic attenuation 

relation, and (3) a circular source with probabilistic attenuation relation. 

ii. The parameters to be considered uncertain are the slope related parameter 𝛽 of the magnitude 

distribution model and the standard deviation 𝜎 of the natural logarithm of the peak ground 

acceleration in the ground motion intensity model. 

iii. The effect of parameter uncertainty will be evaluated based on the first two statistical moments 

of the annual exceedance rate using a point estimate method. The accuracy of the method will 

be validated using Monte Carlo simulations.  

 

 

1.3 OUTLINE  

 

Chapter 2 describes the mathematical formulations for three closed-form solutions of the annual 

exceedance rate of peak ground acceleration and a review of existing literature for characterizing the 

uncertainty in parameters 𝛽 and 𝜎 from the magnitude distribution and ground motion intensity models. 

Chapter 3 describes the implementation of the point estimate method employed. Results for the case 

studies are then given in Chapter 4. A brief summary, the main findings, and final comments are 

presented in Chapter 5. 
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CHAPTER 2  

PROBABILISTIC SEISMIC HAZARD ANALYSIS  

2.1 INTRODUCTION 

 

The methodology used in most contemporary seismic hazard analysis was first proposed by Esteva 

(1967) and Cornell (1968). Unlike the deterministic approach, wherein the objective is to search for a 

worst-case ground motion intensity, the probabilistic analysis considers all possible earthquake events 

and resulting ground motions, along with their associated probabilities of occurrence, in order to find the 

level of ground motion intensity that can be exceeded with some acceptably low rate (Baker, 2013). 

Probabilistic seismic hazard analysis (PSHA) provides a sound basis for representing a fairly wide range 

of natural variability and allows treatment of uncertainties arising from incomplete knowledge (Sen, 

2009). The steps in PSHA can be summarized as follows (Baker, 2013): 

 

i. Identify all earthquake sources capable of producing damaging ground motions. 

ii. Characterize the distribution of earthquake magnitudes, i.e., the rates at which earthquakes of 

various magnitudes are expected to occur. 

iii. Characterize the distribution of source-to-site distances associated with potential earthquakes. 

iv. Predict the resulting distribution of ground motion intensity as a function of earthquake 

magnitude, distance, etc. 

v. Combine uncertainties in earthquake size, location and ground motion intensity, using a 

calculation tool known as the total probability problem. 

 

The end result of these calculations will be a full distribution of levels of ground motion intensity and 

their associated rates of exceedance. The key PSHA steps as outlined by Reiter (1990) are shown in 

Figure 2.1. 

 

 
Figure 2.1 Basic steps of probabilistic seismic hazard analysis (reproduced from Sen, 2009) 

 

 

2.2 ANALYTICAL SOLUTIONS FOR PSHA 

 

Ordaz (2004) presented closed-form solutions for three simple cases of PSHA: (1) point source with 

deterministic median attenuation relation; (2) point source with probabilistic attenuation relation; and (3) 

a circular source with probabilistic attenuation relation. They are useful for prompt examinations of the 

variables involved and to analyze limit cases without numerical constrains; furthermore, they can also 

be applied as canonical solutions for more complex cases of seismic hazard analysis. The solutions were 

obtained for commonly used models of magnitude exceedance rates and ground motion prediction 

models. The mathematical formulations are described next. 
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The seismic activity in a source is described in terms of the magnitude exceedance rate, 𝜆(𝑀), which is 

defined as the average annual number of earthquakes with magnitude equal or greater than 𝑀 that are 

generated in the source. The closed-form solutions employed the modified Gutenberg-Richter model 

proposed by Cornell and Vanmarcke (1969), which is based on the normal Gutenberg-Richter model 

(Gutenberg & Richter, 1954), and defined as  

 

𝜆(𝑀) = {𝜆0
𝑒(−𝛽𝑀) − 𝑒(−𝛽𝑀𝑈)

𝑒(−𝛽𝑀0) − 𝑒(−𝛽𝑀𝑈)
, 𝑀0 ≤ 𝑀 < 𝑀𝑢

0, 𝑀 ≥ 𝑀𝑈

 (2.1) 

 

where 𝜆0 is the magnitude exceedance rate for 𝑀 = 𝑀0, 𝛽 is defined as the asymptotic spectral slope at 

small moments, and the corresponding probability density function of magnitude takes the form 

 

𝑝(𝑀) = {
𝛽𝑒(−𝛽𝑀)

𝑒(−𝛽𝑀0) − 𝑒(−𝛽𝑀𝑈)
, 𝑀0 ≤ 𝑀 < 𝑀𝑢

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.2) 

 

In regard to the ground motion prediction model, Ordaz (2004) used the common assumption that the 

uncertain ground motion intensity, 𝑎, has a lognormal distribution with constant standard deviation of 

its natural logarithm equal to 𝜎, expected value of its natural logarithm expressed as   

 

𝐸(ln 𝑎) = 𝑎1 + 𝑎2𝑀+ 𝑎3 ln 𝑅 + 𝑎4𝑅 (2.3) 

 

and median value, 𝐴(𝑀, 𝑅), given by 

 

𝐴(𝑀, 𝑅) = 𝑒𝐸(ln𝑎) = 𝑒𝑎1𝑒𝑎2𝑀𝑅𝑎3𝑒𝑎4𝑅 (2.4) 

 

where 𝑅 is the source-to-site distance. The analytical solutions were developed for a single area source 

in terms of the intensity exceedance rate, 𝑣(𝑎), defined as the expected number of earthquakes, per unit 

of time, in which intensity 𝑎 will be exceeded. 

 

Case (1). Point source located at a distance 𝑅 from the site and deterministic median attenuation relation. 

The analytical solution is 

 

𝑣(𝑎) =

{
 
 

 
 

𝜆0

[
𝐴(𝑀0, 𝑅)

𝑎 ]

𝛽
𝑎2
− 𝑒(−𝛽∆)

1 − 𝑒(−𝛽∆)
, 𝑎 < 𝐴(𝑀𝑈, 𝑅) 

0, 𝑎 ≥ 𝐴(𝑀𝑈, 𝑅)

 (2.5) 

 

where 

 

∆= 𝑀𝑈−𝑀0 (2.6) 

 

𝐴(𝑀0, 𝑅) and 𝐴(𝑀𝑈 , 𝑅) are given by equation (2.4). 
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Case (2). Point source located at a distance 𝑅 from the site and probabilistic attenuation relation. The 

analytical solution is  

 

𝑣(𝑎) =
𝜆0

1 − 𝑒−𝛽∆

{
 

 
𝑒
𝜂2

2 [
𝐴(𝑀0, 𝑅)

𝑎
]

𝛽
𝑎2
[Φ(𝑍(𝑀𝑈, 𝑅) + 𝜂) − Φ(𝑍(𝑀0, 𝑅) + 𝜂)]

+Φ(𝑍(𝑀0, 𝑅)) − 𝑒
−𝛽∆Φ(𝑍(𝑀𝑈, 𝑅)) }

 

 
 (2.7) 

 

where 

 

𝑍(𝑀, 𝑅) =
1

𝜎
ln
𝐴(𝑀, 𝑅)

𝑎
    (2.8) 

 

𝜂 =
𝛽𝜎

𝑎2
 (2.9) 

 

In equation (2.7), Φ(∙) represents the standard normal probability distribution, defined as 

 

Φ(𝑢) =
1

√2𝜋
∫ 𝑒

(−
𝑥2

2
)
𝑑𝑥

𝑢

−∞

 (2.10) 

 

Case (3). Disk source with uniform seismicity and probabilistic attenuation relation. This case is based 

on the geometry given in Figure 2.2, where the site of interest is located at the star, 𝑅 = (𝐻2 + 𝑟2)
1

2
 
 

and 𝑅0 = (𝐻
2 + 𝑅max

2 )
1

2
 
. The analytical solution is 

 

𝑣(𝑎) =
𝜆0

1 − 𝑒−𝛽Δ
(𝐾1𝑇1 + 𝐾2𝑇2 + 𝑇3) (2.11) 

 

where 

 

𝑇1 = (
𝐴(𝑀0, 𝑅max)

𝑎
)

−
2
𝑎3
{

Φ(𝑍(𝑀0, 𝑅0) + 𝛾) − Φ(𝑍(𝑀0, 𝐻) + 𝛾)

−𝑒−𝛽
′∆[Φ(𝑍(𝑀𝑈, 𝑅0) + 𝛾) − Φ(𝑍(𝑀𝑈, 𝐻) + 𝛾)]

} 

 

𝑇2 = (
𝐴(𝑀0, 𝑅max)

𝑎
)

𝛽
𝑎2
{

𝜅2+𝛼[Φ(𝑍(𝑀0, 𝐻) + 𝜂) − Φ(𝑍(𝑀𝑈, 𝐻) + 𝜂)]

−(1 + 𝜅2)
2+𝛼
2
 [Φ(𝑍(𝑀0, 𝑅0) + 𝜂) − Φ(𝑍(𝑀𝑈, 𝑅0) + 𝜂)]

} 

 

𝑇3 = (1 + 𝜅
2)Φ(𝑍(𝑀0, 𝑅0)) − 𝜅

2Φ(𝑍(𝑀0, 𝐻))

− 𝑒−𝛽
′∆[(1 + 𝜅2)Φ(𝑍(𝑀𝑈, 𝑅0)) − 𝜅

2Φ(𝑍(𝑀𝑈 , 𝐻))] 

(2.12a,b,c) 

 

𝐾1 = −
𝛼

2 + 𝛼
𝑒
2𝜎2

𝑎3
2
;           𝐾2 =

2

2 + 𝛼
𝑒
𝜂2

2  (2.13a,b) 

 

𝛽′ = 𝛽 +
2𝑎2
𝑎3

;           𝛼 =
𝛽𝑎3
𝑎2

;           𝜅 =
𝐻

𝑅max
;           𝛾 = −

2𝜎

𝑎3
 (2.14a,b,c,d) 
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The analytical solution given in equation (2.11) is restricted to the case in which parameter 𝑎4 = 0 (see 

equations (2.3) and (2.4)), i.e. a case with no anelastic attenuation. 

 

  
Figure 2.2 Geometry of the uniform seismicity disk source (from Ordaz, 2004) 

 

 

2.3 UNCERTAIN PARAMETERS 

 

As stated previously, some of the model parameters involved in PSHA are estimated from historical data 

using a statistical inference process which introduces uncertainty. According to the literature, parameters 

𝛽 and 𝜎 from the magnitude distribution and the ground motion intensity models, respectively, have a 

greater impact on the assessment of the exceedance rate of ground motion intensity. In this section, 

results from estimation analyses available in the literature are reviewed for the purpose of a realistic 

characterization of the uncertainty in these two parameters.  

 

2.3.1 Magnitude distribution model: Parameter 𝜷 

 

Gutenberg and Richter (1954) first described the general underlying pattern of earthquake magnitudes 

and occurrences. The data (distributed over a given period of time) was organized in a manner that 

reflected the number of earthquakes which exceeded a certain magnitude. They noted that the mean 

annual rate 𝜆𝑀 of earthquakes with magnitudes greater than 𝑀 followed the relation: 

 

log10 𝜆𝑀 = 𝑎 − 𝑏𝑀 (2.15) 

 

where parameters 𝑎 and 𝑏 are constants for a given region. Equation (2.15) is widely known as the 

Gutenberg-Richter law. Parameter 𝑎 represents the overall rate of earthquakes in a region, and 𝑏 can be 

thought of as the relative likelihood of small and large magnitudes. A decrease in the value of  𝑏 

represents an increase in the likelihood of larger earthquakes; values of 𝑏 are in the range from 0.5 to 1.5 

(Dowrick, 1987). 

 

Parameter 𝛽 arises when equation (2.15) is expressed exponentially, as shown next:  

 

𝜆𝑀 = 10
𝑎−𝑏𝑀 = exp(𝛼 − 𝛽𝑀) (2.16) 

 

where  𝛼 = 𝑎 ln(10) , and  𝛽 = 𝑏 ln(10) . Parameter  𝑏  can be estimated by means of least-squares 

regression. Estimates of 𝑏 are very sensitive to the number of very large magnitude data in a given 

sample. For this reason, the maximum likelihood method has been suggested as a better procedure since 

it yields more robust estimates of 𝑏 when the number of infrequent large magnitude earthquakes changes 

from sample to sample (Shi & Bolt, 1982). 
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The spatial and temporal variations of 𝑏  have been studied and considered in several of the early 

seismicity studies. One of the pioneering works was conducted by Mogi (1962), who studied 

experimentally the microfracturing of rocks subjected to bending. He showed that the statistical behavior 

of microfracturing activity observed in laboratory experiments is similar to that observed in actual 

earthquakes. Modeling microfracturing as a stochastic process, he was able to describe some of the 

properties of the phenomenon and to relate them to the degree of heterogeneity of the material. He found 

that parameter 𝑏 increases with the degree of heterogeneity of the rock samples and can vary widely 

depending on the mechanical structure of the medium and the applied stress states; for example, 

specimens of granite, andesite, diabase and coal, gave results equivalent to 𝑏 values between 0.5 and 1.0, 

implying a range of 𝛽 from 1.15 to 2.30. 

 

Isacks and Oliver (1964) presented a summary of detailed regional investigations which had been carried 

out in southeastern California, Japan, and Central Asia, as well as less detailed investigations carried out 

in other regions of the world. The main result of those investigations is that the observed number of 

earthquakes, which occur in a given region during a certain period of time, generally fits the empirical 

form of equation (2.15). Parameter 𝑎  exhibits a significant variation among different studies, but 

comparatively, 𝑏 varies remarkably very little in the range from about 0.5 to 1.5, with most values 

between 0.7 and 1.0. Values of 𝑏 from Isacks and Oliver (1964) are listed in Table 2.1. The authors noted 

that the apparent independence of 𝑏 with respect to the region is also observed with respect to time; this 

can be seen in Table 2.1, where similar values of 𝑏 were found for different time intervals within the 

same region. For relatively seismic inactive regions such as Socorro (New Mexico), the Canadian 

Archipelago, Fennoscandia, and the Western Rift Valley of Africa, Table 2.1 shows that 𝑏 estimates are 

equal to 1.0, 0.83, 0.84, and 0.6, respectively. Based on the results reported by Isacks and Oliver (1964), 

Cornell (1968) considered that values of the parameter 𝛽 may vary from 1.5 to 2.3. 

 

Assuming that magnitude data are random samples from a population following the Gutenberg-Richter 

relation, it has been shown that both the method of moments (Utsu, 1965) and the method of maximum 

likelihood (Aki, 1965) yield the following estimator of parameter 𝑏: 

 

�̂� =
log10 𝑒

�̅� − 𝑀𝑚𝑖𝑛
 (2.17) 

 

where 𝑀𝑚𝑖𝑛  is a threshold magnitude above which the data is complete, �̅�  is the sample mean of 

earthquake magnitude 𝑀 ≥ 𝑀𝑚𝑖𝑛, and log10 𝑒 = 0.434294. The standard deviation of the maximum 

likelihood estimator of 𝑏  is approximately equal to 𝑏/√𝑁  for large 𝑁  (the number of earthquakes 

of 𝑀 ≥ 𝑀𝑚𝑖𝑛 ). The estimator of 𝑏 follows the 𝜒2  distribution and the statistical significance of the 

difference in the 𝑏 value, for two different earthquake groups, can be tested by the 𝐹-distribution (Utsu, 

1966). Since equation (2.17) is defined for a continuous exponential distribution of magnitude 𝑀, care 

must be taken when using discrete (rounded) magnitude values. In a later work, Utsu (2002) reported 

that numerous studies indicate that the Gutenberg-Richter relation is approximately valid in most cases 

and the value of 𝑏 falls in the range of 0.6 to 1.1, i.e. 𝛽 varies from about 1.38 to 2.53. 

 

Shi and Bolt (1982) studied the uncertainties in the estimates of 𝑏. For large samples and slow temporal 

variations of 𝑏, they expressed the standard deviation of �̂� as 

 

𝜎(�̂�) = 2.030𝑏2𝜎(�̅�) (2.18) 

 

where �̅� is the sample mean magnitude, 𝜎2(�̅�) = ∑ (𝑀𝑖 − �̅� )
2/(𝑛(𝑛 − 1))𝑛

𝑖=1  is the sample variance 

of magnitudes 𝑀𝑖, and 𝑛 is the number of sample data. The authors presented convenient tables for the 

standard error that allowed performing statistical tests of both temporal and spatial variations of 𝑏. The 
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seismicity of central California was analyzed in their work utilizing a catalog from 1952 to 1978.  

It was reported that, over the entire time interval, the sample average of  𝑏  and 90% confidence  

limits are equal to 0.95 ( −0.30,+0.94). Within the 90% confidence limits, 𝑏 varies from a low value 

of 0.60 (−0.09,+0.11) in 1955 to a high value of 1.39 (−0.21,+0.25) in 1967. 

 

 

Table 2.1 Values of 𝒃 for various regions (from Isacks and Oliver, 1964) 

 

Reference Region and Time Interval 
No. of 
Eqs. 

Magnitude 
Range 

Magnitude 
Measure 1 

Observed 
Slope 

+b (2) 

Richter, 1958 
(Gutenberg and 
Richter, 1954) 

Entire world 1918-1955, 
M  > 7; 
1935-1938, M = 6 - 7 

1190 
 
 
 

6 – 8 ½ 
 
 
 

Ms 

 
 

 

 1.00 
 
 
 

Gutenberg and Richter, 
1954 

Alaska 
Mexico, Central America 
South America 
Kermadec & Tonga 
Solomon Islands 
Sunda 
Pamir, E. Asia 
Atlantic Ocean 
Indian Ocean 
 

58 
52 
34 
22 
54 
36 
27 
27 
19 

6 – 8 
6 – 8 
6 – 8 
6 – 8 
6 – 8 
6 – 8 
6 – 8 
6 – 8 
6 – 8 

Ms 

Ms 

Ms 

Ms 
Ms 

Ms 

Ms 
Ms 

Ms 

 1.10 
0.90 
0.45 
1.20 
1.00 
0.90 
0.60 
1.40 
1.30 

Richter, 1958 Southern California: 
Jan 1934 – May 1943 
Jan 1953 – June 1956 
 

 
462 
530 

 
4 – 7 
3 – 6 

 

ML, n 
ML, n 

  
0.85 
0.90 

Richter, 1958 New Zealand 
Oct 1940 – Jan 1944 

232 4 – 8 ML, n  0.90 

Bune et al., 1960 Garm Region, Tadzhik SSR,  
1955 – 1956 

Chusal Section of Garm Region, 
72 hrs. observation 

2500 
 

326 
 
 

1 – 5 
 

-1 -+ 2 
 
 

log10 E, n 

 

log10 E, o 
 

 

0.43 
 

0.47 
 

 

(0.80) 3 

 
(0.80) 3 

Bune, 1961 Staliband Region of Tadzhik SSR: 
Jan 1955 – June 1957 
July 1957 – Dec 1959 
1955 – 1959 
1929 – 1959 

 

 
(250) 
(250) 
(500) 
(3000) 

 

 
2 – 3 ½ 
2 – 3 ½ 
2 – 3 ½ 
2 – 4 ½ 

 

 
log10 E, n 

log10 E, n 

log10 E, n 
log10 E, ? 

 

 
0.47 
0.43 
0.45 
0.45 

 

 
(0.80) 
(0.80) 
(0.80) 
(0.80) 

 
Kawasumi, 1952a Japan, 1904 – 1943 383 5 – 7 Mk, n 0.54 (1.10) 4 

Tsuboi, 1957 Japan, 1931 – 1955 382 6 – 8 ML, n  0.70 
(0.90) 5 

Gutenberg and Richter, 
1954 

Japan, 
1904 – 1945, M  7 ¾ 
1922 – 1945, M = 7 - 7.7 
1932 – 1935, M = 6 – 7 

 

 
101 

 
 
 

 
6 – 8 

 
 

 
Ms 

 

 

  
0.90 

 
 

Ishimoto and Iida, 1939 Kwanto Region, Japan,  
1935 – 1938 

1635  A, n 1.74 0.70 

Kawasumi, 1952b Kwanto Region, Japan, 
1911 – 1940 

1847 3 ½ - 6.0 Mk, n 0.56 (1.10) 4 

Suzuki, 1959 Kwanto Region, 
1932 – 1941 

519 3.5 – 5.5 A, n 1.51 0.50 

Asada, 1957 
 
 

Kwanto Region: 48 hrs. 
observation at Mt. Tsukuba 

 

276 -1 -+ 0.5 A, o 1.88 0.90 

Asada, Suyehiro, and 
Aakamatu, 1958 
 

Matsushiro, Japan: 45 hrs. 
observation 

 

132 -1 – 0.0 A, o 1.80 0.80 

 



9 

 

Table 2.1 – Continued 

 

Reference Region and Time Interval 
No. of 
Eqs. 

Magnitude 
Range 

Magnitude 
Measure 1 

Observed 
Slope 

+b (2) 

Suzuki, 1959 Aftershocks of Japanese Eq.: 
1927 Tango Eq. 
1945 Nankai Eq. 
1948 Fukui Eq. 
1948 Fukui Eq. 15 hrs 
1949 Imaichi Eq. 
1949 Imaichi, 18 hrs. 

 

 
1161 
261 
541 
262 
148 
623 

 

 
2 – 4.5 
2 – 4.5 
2 – 4.5 

-1 -+ 0.5 
2 – 4.5 

-1 -+ 0.5 
 

 

A, n 

A, n 
A, n 

A, o 

A, n 
A, o 

 

 
1.95 
1.82 
1.86 
1.87 
1.79 
1.70 

 

 
0.95 
0.80 
0.90 
0.90 
0.80 
0.70 

 
Richter, 1958 Aftershocks of 1952 Kern Co. Eq. 427 3 – 6 ML, n  0.90 

Båth and Beinoff, 1958 Aftershocks of 1952 Kanchatka 
Eq. 

409 6 – 7.5 Mb 1.5 (0.90) 6 

Utsu, 1962 Aftershocks of 
1957 Aleutian Eq. 
1958 C. Alaskan Eq. 
1958 SE Alaskan Eq. 

 

 
650 
900 
300 

 

 
4 ¾ - 7 ¼ 

 
 
 

 

Mb, o 

Mb, o 
A, o 

 

  
0.70 
0.90 
0.90 

 
Mei, 1960 China, 50 years 311 5.5 – 8.5 I  0.60 

Karnik, 1961 Europe, 1901 – 1955 3396 5 – 7 I 0.47 0.70 

Sutton and Berg, 1958 Western Rift Valley, Africa:  
May 1953 – April 1956 

234 
 

3 – 6.5 
 

ML, n 
 

 0.60 
 

Sykes, 1963 7 Canadian Archipelago: 
Nov 1957 – Dec 1962 

264 
 

1 – 4 
 

ML, o 

 
 0.83 

 

Miyamura, 1962a and 
Båth, 1953, 1956 

Fennoscandia 1891 – 1950 
 

1043 
 

2.5 – 6 
 

I 
 

 0.54 
 

Sanford and Holmes 
1962 

Socorro, New Mexico area: 
Jan 1955 – Aug 1953 

 
173 

 
-2 – 0 

 

log10 E, o 
  

(1.0) 8 

Notes on table: 
1 The following abbreviations are used in the “Magnitude Measure” column: Ms — Gutenberg and Richter surface wave 

magnitude scale; ML — Richter local magnitude scale; log10 E — logarithm of calculated energy, used in Russian 

Tadzhikistan expedition; Mk — intensity scaled used by Kawasumi; A — maximum trace amplitude on seismogram; Mb 

— Gutenberg body wave magnitude scale; I — intensity data; n — magnitude measure based on data from more than one 

station in region; o — data from only one station used. 
2 Numbers in paretheses are calculated by Isacks and Oliver from data in reference. 
3 Bune (1960) gives 𝑑(log10 𝐸)/𝑑(𝑀𝐿) = 1.8. 
4 Kawasumi (1956) gives 𝑑(𝑀𝑘)/𝑑(𝑀𝑠) = 2.0. 
5 Tsuboi appears to have given undue weight to data points representing low earthquake counts; a replot of his data gives a better 

fit for 𝑏 = 0.9. 
6 Richter (1958) gives 𝑑(𝑀𝑏)/𝑑(𝑀𝑠) = 0.63. 
7 Personal communication from L. R. Sykes; data from Bulletins (Seismological Series) of the Dominion Observatories, Ottawa, 

Canada. 
8 𝑏 value listed corresponds to — 𝑑(log10 𝑁)/𝑑(log10 𝑆𝑉max) where 𝑆𝑉max is the computed amplitude at 1 km from the focus. 

 

 

Bender (1983) compared estimates of 𝑏 applying fitting techniques such as interval and cumulative least 

squares formulas, minimum 𝜒2 formula, and maximum likelihood formulas for continuous and interval 

magnitude data, to sets of 𝑁 simulated magnitudes generated using random numbers for two populations 

with 𝑏 values equal to 0.6 and 1.0. She concluded that considerably different estimates can be obtained 

from the same data sample because of: (1) different assumptions regarding maximum magnitude and the 

techniques for dealing with magnitude interval size; (2) zero observations in any magnitude interval; and 

(3) influence of large magnitude earthquakes. The maximum likelihood formula for grouped data can 

properly account for maximum magnitude, interval size, and intervals with zero observations, whereas 
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the maximum likelihood formulas for continuous data give 𝑏 estimates which are almost identical to 

those obtained using the grouped data formula if the magnitude interval is small (∆𝑀 = 0.1). Bender 

pointed out that estimates of 𝑏 should never be trusted unless 𝑁 is large enough, and that at least 25 

earthquakes are required to obtain an estimate of 𝑏 with a standard deviation as low as 𝜎𝑏 <≈ 0.25𝑏. 

For 𝑁 = 100 the standard deviation of the estimate is ≈ 0.1𝑏 and becomes significantly higher as the 

sample size decreases. 

 

In the last two decades, there have been numerous regional studies on estimation of 𝑏 around the world 

with results published in several scientific papers. Stirling et al. (2000) carried out a seismic hazard study 

of New Zealand, for which the country was divided into 14 shallow and 23 deep seismicity zones, across 

which 𝑏 values for the distributed seismicity were found to vary from 0.82 to 1.34, with an average of 

about 1.1, i.e., an average 𝛽 about 2.53.  

 

Grünthal and Wahlström (2001) investigated the sensitivity of different parameters used in a probabilistic 

seismic hazard calculation by different logic tree runs with alternative magnitude sets, source zone 

models and attenuation relations, with different sets of values of seismicity parameters. They reported 

that typical 𝛽 values are in the range from 2 to 2.5 and concluded that for greater values of  𝛽 (smaller 

fraction of large events) seismic hazard is lower, with such effect being virtually stable over a wide range 

of hazard levels. 

 

Kagan (2002) discussed various theoretical statistical distributions of seismic moment data and applied 

them to estimate distribution parameters of magnitude. In this work, the moment magnitude, 𝑚, is 

defined as 

 

𝑚 = (2/3)(log10𝑀 − 6) (2.19) 

 

where 𝑀 is the scalar seismic moment (in newton meter) and the original Gutenberg-Richter law (see 

equation (2.15)) is transformed into the Pareto distribution for the scalar seismic moment, as 

 

𝑓(𝑀) = 𝛽K𝑀𝑡
𝛽K𝑀−1−𝛽K ,       𝑀𝑡 ≤ 𝑀 (2.20) 

 

where 𝑀𝑡 is a magnitude distribution threshold from the left, and 𝛽K =
2

3
𝑏 is the index parameter of the 

distribution. Since the distribution density tail has a decline stronger than 𝑀−1−𝛽K with 𝛽K>1, the author 

modified the Pareto distribution in equation (2.20) at the large size end of the moment scale introducing 

into the distribution an additional parameter called the maximum or corner moment. In this manner, in 

addition to the Pareto distribution, the next four distributions were considered in order to approximate 

the seismic moment data: (a) the characteristic distribution; (b) the truncated Pareto or Gutenberg and 

Richter distribution; (c) the tapered Pareto (Gutenberg and Richter) distribution (TGR); and (d) the 

gamma distribution. The maximum likelihood method was employed to estimate the seismic moment 

distribution parameters (such as the maximum or corner moment and 𝛽K) from catalogue data, for one-

parameter and two-parameter estimation. To evaluate the accuracy of the procedures, the author 

employed a simulation technique to estimate some statistics; only the results for TGR distribution were 

presented, for which synthetic values of the seismic moment were generated and applied to the one-

parameter and two-parameter estimation. The uncertainties of the relevant parameters were evaluated in 

terms of standard errors. Results for statistics of 𝛽K for one-parameter and two-parameter estimation 

based on simulated catalogues are shown in Table 2.2 and Table 2.3, respectively. Comparing Table 2.2 

and Table 2.3 shows that 𝛽K estimates in the one-parameter estimation have a slightly greater standard 

error. The author indicated that the 𝛽K estimates and their standard errors for the two-parameter case are 

smaller than those obtained using the maximum likelihood method, due that the large events have been 

removed in the former case. Using the Harvard catalogue data, the author compared the moment 
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distribution parameters for various periods, for different tectonic provinces and depth ranges, and for 

earthquakes with various focal mechanisms, concluding from the statistical analysis that 𝛽K = 0.63 can 

be considered universal for moderate earthquakes (𝛽K = 0.60 − 0.65 ), i.e., converting the index 

parameter distribution used in this work, 𝛽K =
2

3
𝑏 = 0.63, to 𝛽 = 𝑏 ln 10 we obtain that 𝛽 = 2.18. 

 

 

Table 2.2 𝜷𝐊-values and their errors in simulated catalogues; one-parameter estimation (from 

Kagan, 2002) 

 

No. 𝒏 �̂�𝒄 ± 𝝈𝒔 �̂�𝒔 �̌�𝐊 ± 𝝈𝜷𝐊 �̂� ± 𝝈𝜼 × 𝟎. 𝟎𝟎𝟏 
G-R 

Prob 

1 5000 1.996 ± 0.053 0.053 0.661 ± 0.012 1.030 ± 0.191 1.00 

2 2500 1.993 ± 0.076 0.075 0.661 ± 0.018 1.061 ± 0.283 1.00 

3 1000 1.982 ± 0.119 0.118 0.661 ± 0.028 1.158 ± 0.498 1.00 

4 750 1.976 ± 0.136 0.135 0.662 ± 0.032 1.214 ± 0.607 0.98 

5 500 1.964 ± 0.165 0.162 0.662 ± 0.039 1.335 ± 0.833 0.78 

6 250 1.928 ± 0.225 0.219 0.663 ± 0.055 1.736 ± 1.575 0.29 

7 100 1.832 ± 0.321 0.301 0.666 ± 0.089 3.291 ± 4.561 0.09 

8 50 1.708 ± 0.398 0.358 0.671 ± 0.127 6.726 ± 11.38 0.07 

𝑛, the number of events, �̂�𝑐 ± 𝜎𝑠, simulated average reduced corner magnitude and its standard deviation, using eq. (31) (Kagan, 

2002); �̂�𝑠, average standard deviation, using eq. (34) (Kagan, 2002); �̌�K±𝜎𝛽K, 𝛽K-value and its confidence limits, using eq. 

(24) (Kagan,2002), 𝛽K is measured between 𝑠 = 0 and 𝑠𝑢 = 1.5; �̂� ± 𝜎𝜂, reciprocal of the reduced corner moment and its 

standard deviation; ‘G-R Prob’, the probability of the G-R law to be rejected at the 95 per cent confidence level. 

 

 

Table 2.3 𝜷𝐊-values and their errors in simulated catalogues; two-parameter estimation (from 

Kagan, 2002) 

 

No. 𝒏 𝑺𝐜 �̌�𝒄 ± 𝝈𝒔 �̌�𝐊 ± 𝝈𝜷𝐊 �̂�𝒔 �̂�𝜷𝐊 𝝆 𝝂c 

1 5000 1000.00 1.966 ± 0.055 0.667 ± 0.010 0.055 0.010 0.24 18.41 

2 2500 1000.00 1.992 ± 0.078 0.666 ± 0.014 0.078 0.014 0.24 9.21 

3 1000 1000.00 1.981 ± 0.122 0.666 ± 0.022 0.122 0.022 0.25 3.68 

4 500 1000.00 1.962 ± 0.170 0.665 ± 0.031 0.169 0.032 0.25 1.84 

5 250 1000.00 1.925 ± 0.230 0.662 ± 0.044 0.228 0.045 0.26 0.92 

6 100 1000.00 1.823 ± 0.326 0.655 ± 0.071 0.322 0.072 0.29 0.37 

7 1000 3162.28 2.293 ± 0.174 0.666 ± 0.022 0.171 0.022 0.18 1.71 

8 1000 1000.00 1.981 ± 0.122 0.666 ± 0.022 0.122 0.022 0.25 3.68 

9 1000 316.23 1.658 ± 0.086 0.666 ± 0.024 0.086 0.023 0.34 7.95 

10 1000 100.00 1.329 ± 0.062 0.666 ± 0.026 0.062 0.026 0.45 17.25 

11 1000 31.62 0.998 ± 0.047 0.665 ± 0.031 0.047 0.031 0.59 37.97 

𝑛, the number of events; 𝑆c, the input corner moment used in simulations; �̌�𝑐 ± 𝜎𝑠, simulated average reduced corner magnitude 

and its standard deviation; �̌�K±𝜎𝛽𝐾, the same as for 𝛽K-value; �̂�𝑠, �̂�𝛽K, and 𝜌 are the average values of a correlation matrix 

components (see the Appendix (Kagan, 2002)); 𝜈c, the number of events larger than 𝑠c, eq. (47) (Kagan, 2002). 

 

 

Bird and Kagan (2004) used a new plate model to analyze the mean seismicity of seven types of plate 

boundaries. As part of the process, shallow earthquakes were classified into eight sub-catalogues, which 

correspond to seven types of plate boundaries and plate interiors. Each sub-catalogue was analyzed by 
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maximum likelihood methods to determine the parameters of a tapered Gutenberg and Richter relation 

(Kagan, 2002). In this work the conversion 𝑚 = (2/3)(log10𝑀 − 9.05) of Hanks and Kanamori (1979) 

was used, where 𝑀 is the scalar moment, 𝑚 is the moment magnitude, and 𝛽K =
2

3
𝑏 is defined as the 

asymptotic spectral slope at small moments. They found variations in the maximum likelihood 

estimations of 𝛽K from 0.53 to 0.92, but all 95% confidence intervals were consistent with a common 

range from 0.61 to 0.66, i.e., 𝛽 ranges from 2.11 to 2.28. Table 2.4 shows the results of the maximum 

likelihood analysis. In addition, results were reported for five alternative sets of Monte Carlo sub-

catalogues that allowed to test the sensitivity of all the results to residual uncertainties in classification 

(due to the algorithms performed for the shallow earthquakes classification), see Table 2.5. 

 

 

Table 2.4 Tapered Gutenberg-Richter frequency-magnitude parameters of the maximum-

probability sub-catalogues (from Bird and Kagan, 2004) 

 

Class 

Catalogs 

CRB 
Continental 

Rift 
Boundary 

CTF 
Continental 
Transform 

Fault 

CCB 
Continental 
Convergent 
Boundary 

OSR 
Oceanic 

Spreading Ridge 

OTF 
Oceanic Transform Fault, 
by Plate Velocity, (mm/a) 

OCB 
Oceanic 

Convergent 
Boundary 

SUB 
SUB-

duction 
Zone 

Normal Other 3 – 39  
40 – 
68  

69 – 
263  

Harvard CTM Catalog (01/01/77 – 09/30/02) 

Threshold, 
𝑀𝑡, N·m 
 

1.13 × 1017 3.5 × 1017 3.5 × 1017 1.13 × 1017 2 × 1017 3.5 × 1017 

All 
earthquakes* 
 

353* 272* 357* 458* 77* 428.0* 447.0* 416.0* 119* 2723* 

Excluding 
orogens 
 

286 198 274 422 64 400 413 385 105 2049 

Slope, 𝛽K 0.65 
± 0.11 

 

0.65 
± 0.12 

 

0.62 
± 0.10 

 

0.93 
0.61 – 

1 
 

0.82 
0.58 – 

1 

0.64 
± 0.08 

0.65 
± 0.11 

0.71 
± 0.11 

0.51 
0.39 – 0.66 

0.64 
± 0.04 

Corner 
magnitude, 
𝑚c 

7.30 
6.90 - ? 

8.02 
7.52 - ? 

7.48 
7.18 - ? 

5.87 
5.7 – 
6.04 

7.40 
6.68 - 

? 

7.98 
7.42 - 

? 

6.57 
6.4 – 
6.84 

6.63 
6.46 – 
7.01 

7.77 
7.42 - ? 

8.20 
7.96 – 
9.10 

 
Pacheco and Sykes [1992] catalog (1900-1975) and Ekström and Nettles [1997] catalog (1976): Ms ≥ 7 

Threshold, 
𝑀𝑡, N·m 
 

5.1 × 1019 

All 
earthquakes* 
 

10* 42* 32* 1* 7* 1* 3* 21* 275* 

Excluding 
orogens 

9 30 19 1 7 1 3 18 218 

 
Three catalogs merged (1900 – 2002): Ms ≥ 7 

Threshold, 
𝑀𝑡, N·m 
 

5.1 × 1019 

All 
earthquakes* 
 

11* 51* 45* 11* 28* 389* 

Slope, 𝛽K 0.65† 0.65† 0.62† 0.64† 0.51† 0.64† 

Corner 
magnitude, 
𝑚c 

7.60* 
7.34 – 8.42 

8.03* 
7.81 – 8.50 

8.43* 
8.03 - ? 

8.12* 
7.73 - ? 

8.03* 
7.82 – 8.51 

9.58* 
9.12 - ? 

*Including earthquakes in the 13 orogens. 

†From CMT results 

All ranges are 95% confidence limits 
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Table 2.5 Tapered Gutenberg-Richter frequency-magnitude parameters from mean of five sets 

of Monte Carlo sub-catalogues (from Bird and Kagan, 2004) 

 

Class 

Catalogs 

CRB 
Continental 

Rift 
Boundary 

CTF 
Continental 
Transform 

Fault 

CCB 
Continental 
Convergent 
Boundary 

OSR 
Oceanic 

Spreading Ridge 

OTF 
Oceanic Transform Fault, 
by Plate Velocity, (mm/a) 

OCB 
Oceanic 

Convergent 
Boundary 

SUB 
SUB-

duction 
Zone 

Normal Other 3 – 39  
40 – 
68  

69 – 
263  

Harvard CTM Catalog (01/01/77 – 09/30/02) 

Threshold, 

𝑀𝑡, N·m 
 

1.13 × 1017 3.5 × 1017 3.5 × 1017 1.13 × 1017 2 × 1017 3.5 × 1017 

All 
earthquakes* 
 

347.2* 280.6* 320.4* 463.8* 104.6* 421.6* 431.8* 398.2* 148.0* 2733.4* 

Excluding 
orogens 
 

285.8 199.0 244.8 426.6 88.2 396.0 400.8 368.2 130.4 2056.6 

Slope, 𝛽K 0.64 
± 0.10 

 

0.64 
± 0.12 

 

0.61 
± 0.10 

 

0.91 
0.59–1 

 

0.82 
0.61 – 

1 

0.63 
± 0.08 

0.64 
± 0.11 

0.76 
± 0.11 

0.54 
± 0.13 

0.64 
± 0.04 

Corner 
magnitude, 

𝑚c 

7.44 
7.02 - ? 

8.01 
7.50 - ? 

7.48 
7.18 - ? 

5.85 
5.7 – 
6.05 

7.38 
6.71 - 

? 

7.38 
7.42 - 

? 

6.53 
6.37 – 
6.79 

7.14 
6.76 –

? 

7.77 
7.41 - ? 

8.21 
7.97 – 
9.10 

 
Pacheco and Sykes [1992] catalog (1900-1975) and Ekström and Nettles [1997] catalog (1976): Ms ≥ 7 

Threshold, 
𝑀𝑡, N·m 
 

5.1 × 1019 

All 
earthquakes* 
 

12.8* 39.6* 31.4* 1.6* 5.2* 3.4* 4.4* 21.8* 272.0* 

Excluding 
orogens 

10.0 30.6 19.2 1.6 5.2 3.4 4.2 19.2 214.2 

 

Three catalogs merged (1900 – 2002): Ms ≥ 7 
Threshold, 
𝑀𝑡, N·m 
 

5.1 × 1019 

All 
earthquakes* 
 

14.2* 49.6* 44.2* 7.8* 29.6* 384.0* 

Slope, 𝛽K 0.64† 0.64† 0.61† 0.63† 0.54† 0.64† 

Corner 
magnitude, 

𝑚c 

7.68* 
7.43 – 8.40 

7.99* 
7.78 – 8.46 

8.50* 
8.12 - ? 

8.16* 
7.72 - ? 

8.06* 
7.82 – 8.62 

9.58* 
9.13 - ? 

*Including earthquakes in the 13 orogens. 

†From CMT results 

All ranges are 95% confidence limits 

 

 

González de Vallejo et al. (2006) conducted the first probabilistic seismic hazard analysis of The Canary 

Islands. The Cornell (1968) approach was used considering three seismogenic sources. The analysis 

assumes that earthquake occurrence follows a Poisson process and it is uniformly distributed within the 

source zones. In each zone, earthquake magnitudes fit an exponential distribution and the magnitude 

distribution follows the expression proposed by Cornell and Vanmarcke (1969) given in equation (2.1). 

The estimates of parameter 𝑏 for each zone using regression analysis are shown in Table 2.6, with 

indication of the standard error. From Table 2.6 one can observe that 𝑏 ranges from 0.95 to 1.12, meaning 

that 𝛽 is about 2.18 to 2.56. 
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 Table 2.6 Seismic parameters of the seismogenic zones (from González de Vallejo et al., 2006) 

 

Sources 𝒃 𝒂 𝒎𝟎 𝝀𝒎𝟎
 𝒎𝟏 MRP (years) 

Zone 1 1.12 (± 0.01) 3.72 (± 0.05) 4.0 0.1676 6.0 1050 ± 120 

Zone 2 0.95 (± 0.08) 2.75 (± 0.23) 4.0 0.0909 6.0 870 ± 160 

Zone 3 1.12 (± 0.01) 3.72 (± 0.05) 6.0 0.00095 6.8 8350 ± 950 

𝑎 and 𝑏, Gutenberg-Richter parameters with indication of the standard error; 𝑚0 and 𝑚1, lower and upper bounds of magnitude 

(𝑀w) distribution; 𝜆𝑚0
, mean annual cumulative rate of magnitude ≥ 𝑚0; MRP, mean recurrence period of 𝑚1 in each of 

the zones. See text for discussion (González de Vallejo, et al., 2006). 

 

 

Focusing on a preliminary review of the seismic hazard in Chile, Leyton et al. (2009) used a probabilistic 

approach considering two main seismogenic sources: interplate thrust earthquakes and intraplate 

intermediate depth earthquakes. Combining the information from three seismic catalogues they defined 

linear relations between surface magnitude, 𝑀𝑆, and different earthquake magnitudes used in Chile in 

order to get a homogenous data catalogue and be able to estimate the Gutenberg and Richter model 

parameters using the maximum likelihood method. The results are shown in Table 2.7 for all the 

seismogenic sources considered. One can observe from the reported results that estimates of 𝑏 are in the 

range from 0.63 to 1.08, and thus, 𝛽 is about 1.45 to 2.49. 

 

 

Table 2.7 Estimated parameters of the Gutenberg and Richter relation (from Leyton et al., 2009) 

 

 Zone 

Parameter Z1 Z2 Z3 Z4 Z5 Z6 Z7 

𝑎 4.89 5.65 4.62 6.43 5.2 5.37 5.94 

𝑏 0.63 0.75 0.7 1.08 0.68 0.82 0.94 

 

 

2.3.2 Ground motion prediction model: Parameter 𝝈 

 

The ground motion prediction models, also known as attenuation relations, characterize the probability 

distribution of ground motion intensity as a function of earthquake magnitude, distance, faulting 

mechanism, near-surface site conditions, directivity effects, etc. These models are generally developed 

using statistical regression on observations from ideally large catalogues of observed ground motion 

intensities, and take the following general form: 

 

ln 𝐼𝑀 = ln 𝐼𝑀̅̅ ̅̅ ̅̅ ̅ (𝑀, 𝑅, 𝜃) + 𝜎(𝑀, 𝑅, 𝜃) ∙ 𝜀 (2.21) 

 

where ln 𝐼𝑀 is the natural logarithm of the ground motion intensity measure of interest, e.g. peak ground 

acceleration or spectral acceleration at a given period, which is modeled as a random variable. In the 

right hand side of equation (2.21), ln 𝐼𝑀̅̅ ̅̅ ̅̅ ̅ (𝑀, 𝑅, 𝜃) and 𝜎(𝑀, 𝑅, 𝜃) are the predicted mean and standard 

deviation of ln 𝐼𝑀, respectively. These are functions of earthquake magnitude 𝑀, source-to-site distance 

𝑅 , and other parameters  𝜃 . 𝜀  is the standard normal random variable that represents the observed 

variability in ln 𝐼𝑀  (Baker, 2013). Sen (2009) reported that the variation of the ground motion 

parameters with 𝑀 and 𝑅 are lognormally distributed.  

 

Both the ground motion prediction models and their associated 𝜎 values are of great importance for the 

study of seismic hazard. Over decades of development, the prediction models have become more 
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complex and many authors have reported considerable scatter in the data. A certain amount of scatter is 

inevitable as not enough is known about the source, travel path and local site conditions (Sen, 2009). 

Strasser et al. (2009) refer to the scatter associated with ground motion prediction equations as an aleatory 

uncertainty of ground motion. After a detailed literature review, Wang (2010) summarizes, in his words, 

that “the standard deviation 𝜎 is a key parameter that influences hazard calculation, and becomes a 

critical parameter at low probabilities of exceedance in particular” and that “𝜎 becomes so important in 

PSHA that much effort has been dedicated to the study of 𝜎, including how to split into aleatory and 

epistemic uncertainty, or how to quantify uncertainty of uncertainty”. 

 

An early attempt of an attenuation relationship, relating magnitude and distance, was suggested by 

McGuire (1974), as follows: 

 

log10 𝑦 = 𝑏1 + 𝑏2𝑀− 𝑏3 log10(𝑅 + 25) (2.22) 

 

The coefficients of equation (2.22) for peak ground displacement, velocity and acceleration are shown 

in Table 2.8. 

 

 

Table 2.8 Coefficients for McGuire's Attenuation Relationship (1974) 

 

 𝒃𝟏 𝒃𝟐 𝒃𝟑 Coeff. of var. of 𝒚 

𝑎 (cm sec2⁄ ) 2.649 0.278 1.301 0.548 

𝜈 (cm sec⁄ )  0.714 0.401 1.202 0.696 

𝑑 (cm) -0.460 0.434 0.885 0.883 

 

 

Cornell et al. (1979) proposed the following predictive model for lognormally distributed peak ground 

acceleration (in units g) with mean given by  

 

ln𝑃𝐺𝐴̅̅ ̅̅ ̅̅ ̅̅ = −0.152 + 0.859𝑀 − 1.803ln (𝑅 + 25) (2.23) 

 

and constant standard deviation of ln 𝑃𝐺𝐴 equal to 0.57 for all magnitudes and distances.  

 

Ordaz et al. (1989) assessed the seismic risk in the state of Guerrero, Mexico. The elastic response 

spectrum pseudo-accelerations, for 5% critical damping, were chosen as the ground motion intensity for 

deriving attenuation laws in terms of magnitude and seismic focal position. Two different attenuation 

laws were developed, one for shallow earthquakes (𝐻 ≤ 50 km) and one for deep focus earthquakes 

(𝐻 > 50 km). In the case of shallow earthquakes, a regression analysis was performed from the available 

data of far-field accelerations. The following expressions were reported: 

 

𝐸(log10 𝑎max |𝑀, 𝑅0) = min(𝐴𝑐 , 1.76 + 0.3𝑀 − log10 𝑅0 − 0.0021𝑅0) (2.24) 

 

𝜎(log10 𝑎max |𝑀, 𝑅0) = 0.25 (2.25) 

 

where 𝐸(∙)  and 𝜎(∙)  are the expected value and the standard deviation, respectively; and 𝐴𝑐  is the 

maximum acceleration calculated with the model proposed by Singh (1989) for the corresponding 

magnitude and a distance 𝑅0 equal to 16 km. 
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The relationship presented by Boore et al. (1997), commonly used to develop engineering estimates of 

strong ground motion in western North America, has the following functional form: 

 

ln 𝑌 = 𝑏1 + 𝑏2(𝑀 − 6) + 𝑏3(𝑀 − 6)2 + 𝑏5 ln 𝑟 + 𝑏𝑣 ln
𝑉𝑆
𝑉𝐴
  (2.26) 

 

where 

 

𝑟 = (𝑑2 + ℎ2)1/2 (2.27) 

 

and 𝑌 is the ground motion parameter (peak ground acceleration or pseudo acceleration response in g), 

𝑀 is the moment magnitude and 𝑑 is the closest horizontal distance from the station to a point on the 

surface of the earth that lies directly above the rupture (in kilometers). Site conditions are represented by 

a continuous function of shear-wave velocity at the site, averaged to a depth of 30 m (𝑉𝑆 in meter/second). 

The coefficients 𝑏1 to 𝑏5, 𝑏𝑣 and 𝑉𝐴 were determined using a weighted two-stage regression procedure. 

The mean plus one sigma value of the natural logarithm of the ground motion value from equation (2.26) 

is ln 𝑌 + 𝜎ln𝑌, where 𝜎ln𝑌 is the square root of the overall variance of the regression, given by  

 

𝜎ln𝑌
2 = 𝜎𝑟

2 + 𝜎𝑒
2 (2.28) 

 

where 𝜎𝑒
2 represents the earthquake-to-earthquake component of the variability and is determined in the 

second stage of the regression, and  𝜎𝑟
2 represents all other components of variability. The 𝜎ln𝑌 value for 

the peak ground acceleration at 5% damping derived by the authors is equal to 0.520. They found that 

for peak ground acceleration 𝜎ln𝑌  decreases with increasing magnitude and that most of the effect 

appears below magnitude 6.0. They also found that 𝜎ln𝑌 decreases with increasing peak acceleration. 

 

Grünthal and Wahlström (2001) carried out a study to assess the influence of several parameters and 

their uncertainties in probabilistic seismic hazard analysis. Three attenuation relations were used in their 

study: 

 

ln 𝑎 = −2.143 + 0.751𝑀𝑤 − 0.815 ln 𝑟 − 1.04 × 10
−3𝑟;           𝜎 = 0.576 (2.29) 

 

ln 𝑎 = −3.254 + 1.045𝑀𝑤 − ln 𝑟 ;           𝜎 = 0.437 (2.30) 

 

ln 𝑎 = −0.522 + 0.527𝑀𝑤 − 0.945;           𝜎 = 0.542 (2.31) 

 

where 𝑎  is the horizontal peak ground acceleration, in meter per second square; 𝑀𝑤  the moment 

magnitude; 𝑟 the distance in kilometers; and 𝜎 is the standard deviation of the natural logarithm of 𝑎. 

Equation (2.29) was proposed by Ambraseys et al. (1996) based on extensive data compiled from 

earthquakes in Europe and Southwest Asia; equation (2.30), proposed by Sabetta and Pugliese (1996), 

is based on Italian data and used frequently in engineering applications; and equation (2.31), proposed 

by Spudich et al. (1997), is applicable to normal faulting regimes. Table 2.9 gives the domains where 

these equations are applicable. The authors took into account different logic tree runs with alternative 

magnitude sets, source models, and the main base of European earthquakes compiled in the framework 

of the Global Seismicity Hazard Assessment Program at the GeoForschungsZentrum Potsdam and an 

alternative set from the Middle Rhine area. They concluded that the three selected attenuation relations 

gave similar seismic hazard values, but, recommended though that efforts be made to obtain specific 

attenuation relations based on local regional data. They found that the increase in hazard with greater 𝜎 

is small; however such effect gets slightly larger for longer mean return periods. 
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Table 2.9 Attenuation relations for peak ground acceleration with valid distance and magnitude 

ranges (reproduced from Grünthal and Wahlström, 2001) 

 

Reference  
area/event type 

Distance 
(km) 

Magnitude, original 
Magnitude,  

𝑴𝒘 

Ambraseys et al. (1996) 
      Europe and adjacent areas 
 

up to 200 𝑀𝑆 = 4.0 − 7.5 4.4 – 7.2 

Sabetta and Pugliese (1996) 
      Italy 
 

up to 100 
𝑀𝐿 = 4.6 − 5.5* 
𝑀𝑆 = 5.5 − 6.8 

5.6 – 6.7 

Spudich et al. (1997) 
      Extensional regime earthquakes 

up to 105 𝑀𝑤 = 5.0 − 5 – 

* Not used. 

𝑀𝑤  is obtained from 𝑀𝑆  using the relation 𝑀𝑤 = (𝑀𝑆 + 1.542)/1.25, which implicity includes the Hanks and Kanamori 

(19679) definition. 

𝑀𝑤 is obtained from 𝑀𝐿 using the relation 𝑀𝑤 = (𝑀𝐿 + 0.7222)
2 ∗ 0.09 + 1.65. 

This conversion formulae have been established at the GeoForschungsZentrum Potsdam. 

 

 

Strasser et al. (2009) presented a summary of the values of 𝜎 for peak ground acceleration and peak 

ground velocity that have been reported in the last 40 years, and concluded that the values of 𝜎 have 

remained stable, despite an increase in the number of available records and the inclusion of additional 

variables in the ground motion intensity models. The values of 𝜎 tend to lie between 0.15 and 0.35 in 

log10 units (0.35 to 0.80 in ln units) but in some particular cases may range as high as 0.55 in log10 units 

(1.26 in ln units). 

 

A large number of attenuation relationships have been reported in the literature during the last five 

decades. Douglas (2017) has summarized most of the empirical ground motion prediction equations 

published between 1964 and 2016. In total, the characteristics and criteria of 442 empirical ground 

motion prediction equations for peak ground acceleration, and 269 for elastic response spectral ordinates 

are listed in his work. In addition, ground motion prediction equations derived from simulations are also 

listed, although its details are not given (since the work is on the empirical models). In this 

comprehensive report we can observe that, as new ground motion prediction models are developed (for 

wider ranges of magnitude, distance, site conditions, etc., than in earlier models), several new 

components are incorporated into them. For instance, additional predictor variables such as style of 

faulting, depth to the top of fault rupture, ratios of sedimentary basin amplification versus depth to 

basement rock, etc., and other effects on ground motion such as moderate to large magnitude scaling at 

close distances, rupture directivity, style of faulting (strike-slip, reverse, normal), depth to faulting 

(buried versus surface rupture), static stress drop (or rupture area), etc., become included. The author 

noted that median ground motion prediction equations show greater dispersion, demonstrating the large 

epistemic uncertainties involved in estimation of earthquake shaking, and recommended that this 

uncertainty be accounted for within seismic hazard assessments.  
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CHAPTER 3  

POINT ESTIMATES METHODOLOGY 

3.1 INTRODUCTION 

 

It is often desirable to compute the mean and the first few statistical moments of a function of random 

variables, which are expressed as 

 

𝜇𝑔 = ∫𝐺(𝑿)𝑓(𝑿)𝑑𝑿 (3.1) 

 

𝑀𝑘𝑔 = ∫(𝐺(𝑿) − 𝜇𝑔)
𝑘𝑓(𝑿)𝑑𝑿       𝑓𝑜𝑟 𝑘 ≥ 2 (3.2) 

 

where 𝐺(𝑿) is a function of the random variables 𝑿; 𝑓(𝑿) is the joint probability density function of 𝑿; 

𝜇𝑔 is the mean value of 𝐺(𝑿); and 𝑀𝑘𝑔 is the 𝑘th central moment of 𝐺(𝑿). Considering that 𝐺(𝑿) can 

be a complicated or implicit function, and that equations (3.1) and (3.2) involve in general multiple 

integrals, finding a solution by direct integration is almost impossible. The usual approximation is by the 

Taylor expansion method, which imposes excessive restrictions on the existence and continuity of the 

first few derivatives of the function, and requires their computation, which, in general, could be difficult 

to obtain. In order to overcome this problem, Rosenblueth (1975) proposed a method that uses a weighted 

sum of the function evaluated at a finite number of points. Considering a function of a single variable 𝑋, 

the estimating points 𝑥𝑗 are chosen to satisfy the equation 

 

∑𝑃𝑗(𝑥𝑗 − 𝜇𝑥)
𝑘

𝑚

𝑗=1

= 𝑀𝑘𝑥 (3.3) 

 

where 𝑃𝑗 are the corresponding weights and 𝑀𝑘𝑥 is the 𝑘th central moment of 𝑋. Expressions for two-

point estimate were given by Rosenblueth (1975) and Gorman (1980) derived expressions for three-point 

estimate as follows: 

 

𝑥1 = 𝜇𝑥 −
𝜎𝑥
2
(𝜃 − 𝛼3𝑥);          𝑃1 =

1

2
(
1 +

𝛼3𝑥
𝜃

𝛼4𝑥 − 𝛼3𝑥
2 ) (3.4a,b) 

 

𝑥2 = 𝜇𝑥;           𝑃2 = 1 −
1

𝛼4𝑥 − 𝛼3𝑥
2  (3.5a,b) 

 

𝑥3 = 𝜇𝑥 +
𝜎𝑥
2
(𝜃 + 𝛼3𝑥);          𝑃3 =

1

2
(
1 −

𝛼3𝑥
𝜃

𝛼4𝑥 − 𝛼3𝑥
2 ) (3.6a,b) 

 

where 𝛼3𝑥  and 𝛼4𝑥  are the skewness and kurtosis of 𝑋, respectively, and 𝜃 = (4𝛼4𝑥 − 3𝛼3𝑥
2 )

1

2 . The 

mean and 𝑘th central moment of a function 𝑌 = 𝑌(𝑋), are then calculated by 

 

𝜇𝑦 = 𝑃1𝑦(𝑥1) + 𝑃2𝑦(𝑥2) + 𝑃3𝑦(𝑥3) (3.7) 



19 

 

 

𝑀𝑘𝑦 = 𝑃1(𝑦(𝑥1) − 𝜇𝑦)
𝑘 + 𝑃2(𝑦(𝑥2) − 𝜇𝑦)

𝑘 + 𝑃3(𝑦(𝑥3) − 𝜇𝑦)
𝑘 (3.8) 

 

This method has been applied to system reliability analysis and response uncertainty evaluation; it has 

been found to have the following weaknesses (Zhao & Ono, 2000): 

 

- The accuracy in general is low especially when parameter uncertainties are large, limit state 

functions are highly nonlinear, or high-order moments are calculated. 

 

- For some random variables, such as those having lognormal or exponential distributions, if the 

standard deviation is relatively large, estimating point 𝑥1 in equation (3.4a,b) may lie outside of 

the domain of support of the probability distribution, thus making the computation impossible. 

 

 

3.2 NEW POINT ESTIMATES BASED ON THE ROSENBLATT TRANSFORMATION 

 

To overcome the limitations of the point estimate approach, Zhao and Ono (2000) developed a 

formulation based on the Rosenblatt transformation. A set of random variables 𝑿 can be transformed 

into a set of independent standard normal random variables 𝑼 by means of the Rosenblatt transformation 

as follows: 

 

𝑢1 = Φ
−1[𝐹𝑋1(𝑥1)]                              

𝑢2 = Φ
−1[𝐹𝑋2(𝑥2|𝑥1)]                        

⋮                       
𝑢𝑛 = Φ

−1[𝐹𝑋𝑛(𝑥𝑛|𝑥1, 𝑥2,⋯ , 𝑥𝑛−1)] 

 (3.9) 

 

where 𝑛 is the number of input variables; 𝐹𝑋𝑖(𝑥𝑖|𝑥1, 𝑥2, ⋯ , 𝑥𝑖−1) is the cumulative distribution function 

of 𝑋𝑖 conditional on 𝑋1 = 𝑥1, 𝑋2 = 𝑥2,⋯ , 𝑋𝑖−1 = 𝑥𝑖−1; and Φ(∙) is the standard normal distribution 

function. 

 

Thereby, using the Rosenblatt transformation, equations (3.1) and (3.2) take the form 

 

𝜇𝑔 = ∫𝐺[𝑇
−1(𝑼)]ϕ(𝑼)𝑑𝑼 (3.10) 

 

𝑀𝑘𝑔 = ∫(𝐺[𝑇
−1(𝑼)] − 𝜇𝑔)

𝑘ϕ(𝑼)𝑑𝑼      𝑓𝑜𝑟 𝑘 ≥ 2 (3.11) 

 

where 𝑇−1(𝑼) = 𝑿 is the inverse Rosenblatt transformation and ϕ(∙) is the standard normal probability 

density function. Consider the case of a function of a single random variable 𝑋. According to Rosenblatt 

transformation, 𝑢 = Φ−1[𝐹𝑋(𝑥)]; the moments or the standard normal variable 𝑈, can be expressed as 

 

∫𝑢𝑘exp (−
1

2
𝑢2) 𝑑𝑢 = √2𝜋∑𝑃𝑗𝑢𝑗

𝑘

𝑚

𝑗=1

 (3.12) 

 

given that the left hand side is a Hermite integration with weight function 𝜙(𝑢) = exp (−
𝑢2

2
). Therefore, 

the estimating points 𝑢𝑗 and weights  𝑃𝑗 are readily defined in the right hand side of (3.12) for given 𝑚. 

Table 3.1 gives the estimating points and weights for 𝑚=5 and 7. 



20 

 

 

 

Table 3.1 Estimating points 𝒖𝒋 and weights 𝑷𝒋 for 𝒎=5 and 7 

 

𝒎 𝒖𝟎 
𝒖𝟏+

= −𝒖𝟏− 
𝒖𝟐+

= −𝒖𝟐− 
𝒖𝟑+

= −𝒖𝟑− 
𝑷𝟎 𝑷𝟏 𝑷𝟐 𝑷𝟑 

5-point 
estimate 

0 1.3556262 2.8569700 - 8/15 0.2220759 0.0112574 - 

7-point 
estimate 

0 1.1544054 2.3667594 3.7504397 16/35 0.2401233 0.0307571 0.000548269 

 

 

Now let, 𝑥𝑗 = 𝑇
−1(𝑢𝑗) = 𝐹𝑋

−1[Φ(𝑢𝑗)], 𝑗 = 1,… ,𝑚; the mean and variance of function 𝑌(𝑋) can be 

calculated as 

 

𝜇𝑌 =∑𝑃𝑗𝑌(𝑥𝑗)

𝑚

𝑗=1

 (3.13) 

 

𝜎𝑌
2 =∑𝑃𝑗(𝑌(𝑥𝑗) − 𝜇𝑌)

2
𝑚

𝑗=1

 (3.14) 

 

Note that the general expression for the function 𝑌(𝑥) = 𝑌[𝑇−1(𝑢)] is not necessary in equations (3.13) 

and (3.14): the Rosenblatt transformation is only required at the estimating points 𝑥𝑗. This method has 

several advantages over the classical point estimate methods: (1) the number of estimating points can be 

increased easily, if necessary, since they are independent of the random variables in the original space; 

(2) the use of high-order moments of the random variables is not required; (3) estimating points do not 

fall outside the domain of the random variables; and (4) accurate estimates of the first two statistical 

moments can be obtained using few (e.g. five or seven) estimation points. 

 

This procedure can be extended straightforwardly to functions 𝐺(𝑿)  of a random vector  
𝑿 = (𝑋1, 𝑋2, . . . , 𝑋𝑛). In this case, the multivariate probability density is concentrated at 𝑚𝑛 points in 

the hyperspace defined by the 𝑛 random variables. However, if 𝑛 is a very large number computations 

may become intensive. Thus, Zhao and Ono (2000, 2001) proposed to use the following approximation 

for function 𝐺(𝑿): 
 

𝐺′(𝑿) =∑(𝐺𝑖 − 𝐺𝜇) + 𝐺𝜇

𝑛

𝑖=1

 (3.15) 

 

where 

 

𝐺𝜇 = 𝐺(𝝁) (3.16) 

 

𝐺𝑖 = 𝐺[𝑇
−1(𝑼𝒊)] (3.17) 

 

In equations (3.16) and (3.17), 𝝁 is the mean vector of 𝑿; 𝑼𝑖 means only 𝑈𝑖 is treated as random variable, 

with all of the other variables set equal to their mean values transformed into standard normal space, and 

𝐺𝑖 is a function of only 𝑈𝑖. Since 𝑼 = 𝑇(𝑿) are mutually independent and 𝐺𝑖, 𝑖 = 1, 2, … , 𝑛, are also 

statistically independent, then from equation (3.15), 
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𝜇𝐺 =∑(𝜇𝑖 − 𝐺𝜇) + 𝐺𝜇

𝑛

𝑖=1

 (3.18) 

 

𝜎𝐺
2 =∑𝜎𝑖

2

𝑛

𝑖=1

 (3.19) 

 

where 𝜇𝑖  and 𝜎𝑖
2  are the first two moments of 𝐺𝑖 , which can be obtained using the point estimate 

formulation for functions of a single variable. 

 

 

3.3 POINT ESTIMATES METHODOLOGY FOR PSHA 

 

The extensive literature review reported in Chapter 2 indicated that there is limited research concerning 

the assessment of the effect of parameter uncertainty on PSHA; nevertheless, previous studies have 

identified the parameters that have a greater impact on the magnitude distribution and the ground motion 

prediction models that are used in PSHA. Taking into account the statistical characteristics of the 

uncertain parameters found in the literature review, and the point estimate central-moment formulas 

based on the Rosenblatt transformation, the following formulation is developed here in order to apply 

point estimation for assessing the impact of parameter uncertainty on probabilistic seismic hazard 

analysis.  

 

3.3.1 Uncertainty in only one parameter  

 

When uncertainty in only one parameter is taken into account, the analytical solution, for any of the three 

cases of PSHA, is treated as a function of a single random variable. For this single-variable function, the 

mean value and the variance can be computed from equations (3.13) and (3.14), respectively. Consider, 

for instance, the case of uncertainty in parameter 𝛽. The intensity exceedance rate 𝑣(𝑎) is then expressed 

as 𝑣(𝛽|𝑎), for which the mean value and the variance are 

 

𝐸[𝑣(𝛽|𝑎)] = 𝜇𝑣 =∑𝑃𝑗𝑣[𝑇
−1(𝑢𝑗|𝑎)]

𝑚

𝑗=1

 (3.20) 

 

𝑉𝑎𝑟[𝑣(𝛽|𝑎)] = 𝜎𝑣
2 =∑𝑃𝑗(𝑣[𝑇

−1(𝑢𝑗|𝑎)] − 𝜇𝑣)
2

𝑚

𝑗=1

 (3.21) 

 

where 𝑢𝑗 and 𝑃𝑗  are the estimating points and corresponding weights. From the definition of the 

Rosenblatt transformation, we have 

 

𝑇−1(𝑢𝑗) = 𝐹𝛽
−1 (Φ(𝑢𝑗)) = 𝛽𝑗 (3.22) 

 

where 𝐹𝛽(∙) is the distribution function of 𝛽. Hence, rewriting equations (3.20) and (3.21), one obtains 

 

𝐸[𝑣(𝛽|𝑎)] = 𝜇𝑣(𝑎) =∑𝑃𝑗𝑣(𝛽𝑗|𝑎)

𝑚

𝑗=1

 (3.23) 
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𝑉𝑎𝑟[𝑣(𝛽|𝑎)] = 𝜎𝑣
2(𝑎) =∑𝑃𝑗(𝑣(𝛽𝑗|𝑎) − 𝜇𝑣(𝑎))

2
𝑚

𝑗=1

 (3.24) 

 

This procedure is employed likewise when uncertainty in parameter 𝜎 is considered only. 

 

3.3.2 Uncertainty in two parameters 

 

When both parameters are uncertain, the analytical solutions for cases (2) and (3) of PSHA become 

functions of two random variables. Let 𝐺(𝑋1, 𝑋2) be a function of two random variables. The point 

estimate first-moment formula based on the Rosenblatt transformation given in equation (3.10) can be 

expressed as 

 

𝜇𝐺 = ∫ ∫ 𝐺[𝑇−1(𝑢1, 𝑢2)]ϕ(𝑢1, 𝑢2) 𝑑𝑢1 𝑑𝑢2
𝑢1𝑢2

 (3.25) 

 

Given that 𝑈1and 𝑈2 are statistically independent, 

 

𝜇𝐺 = ∫ ∫ 𝐺[𝑇−1(𝑢1, 𝑢2)]ϕ(𝑢1)ϕ(𝑢2) 𝑑𝑢1 𝑑𝑢2
𝑢1𝑢2

 (3.26) 

 

and rearranging terms 

 

𝜇𝐺 = ∫ ϕ(𝑢2) ∫ 𝐺[𝑇−1(𝑢1, 𝑢2)]ϕ(𝑢1) 𝑑𝑢1 𝑑𝑢2
𝑢1

 

𝑢2

 (3.27) 

 

Let ℎ(𝑢2) be a function such that ℎ(𝑢2) = ∫ 𝐺[𝑇−1(𝑢1, 𝑢2)]ϕ(𝑢1) 𝑑𝑢1𝑢1
; substituting in equation (3.27) 

we have:  

 

𝜇𝐺 = ∫ ℎ(𝑢2)ϕ(𝑢2) 𝑑𝑢2
𝑢2

 (3.28) 

 

Equation (3.28) represents the case of a single random variable function, and thus from equation (3.13), 

 

𝜇𝐺 =∑𝑃𝑗ℎ (𝑢2𝑗)

𝑚

𝑗=1

 (3.29) 

 

Given that ℎ(𝑢2) can be treated as a function of only one random variable as well, then 

 

ℎ (𝑢2𝑗) = ∫ 𝐺 [𝑇−1 (𝑢1, 𝑢2𝑗)]ϕ(𝑢1) 𝑑𝑢1
𝑢1

=∑𝑃𝑘𝐺 [𝑇
−1 (𝑢1𝑘, 𝑢2𝑗)]

𝑚

𝑘=1

 (3.30) 
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Replacing equation (3.30) into equation (3.29) yields 

 

𝜇𝐺 =∑𝑃𝑗

𝑚

𝑗=1

∑𝑃𝑘𝐺 [𝑇
−1 (𝑢1𝑘, 𝑢2𝑗)]

𝑚

𝑘=1

 (3.31) 

 

The corresponding procedure for obtaining the variance of the function is similar to the one derived 

above, yielding the expression 

 

𝜎𝐺
2 =∑𝑃𝑗∑𝑃𝑘

𝑚

𝑘=1

(𝐺 [𝑇−1 (𝑢1𝑘, 𝑢2𝑗)] − 𝜇𝑔)
2

𝑚

𝑗=1

 (3.32) 

 

When both parameters 𝛽 and 𝜎 are considered uncertain in the PSHA, the intensity exceedance rate is 

expressed as 𝑣(𝑎) = 𝑣(𝛽, 𝜎|𝑎). From equations (3.31) and (3.32), the mean and variance of the intensity 

exceedance rate can be estimated as 

 

𝐸[𝑣(𝛽, 𝜎|𝑎)] = 𝜇𝑣(𝑎) =∑𝑃𝑗

𝑚

𝑗=1

∑𝑃𝑘𝑣(𝛽𝑗, 𝜎𝑘|𝑎)

𝑚

𝑘=1

 (3.33) 

 

𝑉𝑎𝑟[𝑣(𝛽, 𝜎|𝑎)] = 𝜎𝑣
2(𝑎) =∑𝑃𝑗∑𝑃𝑘

𝑚

𝑘=1

(𝑣(𝛽𝑗, 𝜎𝑘|𝑎) − 𝜇𝑣(𝑎))
2

𝑚

𝑗=1

 (3.34) 

 

where from the Rosenblatt transformation, 

 

𝛽𝑗 = 𝑇
−1 (𝑢1𝑗) = 𝐹𝛽

−1 (Φ(𝑢𝑗)) 

 

𝜎𝑘 = 𝑇
−1(𝑢2𝑘) = 𝐹𝜎|𝛽

−1 (Φ(𝑢𝑘|𝛽𝑗)) 

(3.35) 

 

and 𝐹𝜎|𝛽(∙) is the conditional distribution function of 𝜎 given 𝛽. If parameters 𝛽 and 𝜎 are statistically 

independent, then 

 

𝛽𝑗 = 𝑇
−1 (𝑢1𝑗) = 𝐹𝛽

−1 (Φ(𝑢𝑗)) 

 

𝜎𝑘 = 𝑇
−1(𝑢2𝑘) = 𝐹𝜎

−1(Φ(𝑢𝑘)) 

(3.36) 

 

where 𝐹𝜎(∙) is the distribution function of 𝜎. 
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CHAPTER 4  

CASE STUDIES 

4.1 INTRODUCTION 

 

Case studies were carried to assess the effect of uncertainty in parameters 𝛽 and 𝜎 on the analytical 

solutions for the PGA exceedance rates described in section 2.2 using the point estimate method proposed 

in section 3.3. The accuracy of the method was validated based on Monte Carlo simulations. Results 

when no parameter uncertainty is considered are presented as well; in this case all of the involved 

parameters are considered to be deterministic. The statistics for parameters 𝛽 and 𝜎 were selected based 

on the literature review in section 2.3. The set of seismicity and ground motion parameters shown in 

Table 4.1 and Table 4.2, as proposed by Ordaz (2004), are considered for the case studies. 

 

 

Table 4.1 Seismicity parameters 

 

 Parameter 

 𝝀𝟎 𝑴𝟎 𝑴𝑼 

Value 1/year 4 8 

 

 

Table 4.2 Attenuation parameters 

 

 Parameter 

 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 

Value 4.0530 0.6910 -1.0000 -0.0071 

 

 

4.2 CASE (1): POINT-SOURCE, DETERMINISTIC MEDIAN ATTENUATION RELATION 

 

This case study is the simplest since for a deterministic median attenuation relation 𝜎 = 0 and only 

uncertainty in 𝛽 is considered. The analytical solution given in equation (2.5) becomes a function of only 

one random variable, 𝑣(𝛽|𝑎), and the first two central moments were calculated from equations (3.23) 

and (3.24). Results for the intensity exceedance rates were computed for a point source located at a 

distance 𝑅 = 30 km  from the site and assuming that parameter 𝛽  follows a lognormal probability 

distribution. 

 

The mean annual exceedance rate was estimated considering a mean value of  𝛽  equal to 2.0 and 

coefficients of variation equal to 5%, 10% and 20%. Results are shown in Figure 4.1. The overall effect 

of including parameter uncertainty is to increase the mean exceedance rate for a given PGA. For this 

case study it is seen that there is little parameter uncertainty influence for coefficients of variation less 

than 10%. In fact, it is observed that for 5% coefficient of variation results are practically equal to the 

case where parameter uncertainty is not taken into account. The effect of parameter uncertainty becomes 

more significant for 20% coefficient of variation. The variation of the mean annual exceedance rate, 𝜇𝑣, 

and of the mean plus/minus one standard deviation, 𝜇𝑣 ± 𝜎𝑣, versus the PGA are shown in Figure 4.2. It 

is seen that the effect of parameter uncertainty increases greatly with PGA. For some return periods of 

interest, PGA values from Figure 4.2 are listed in Table 4.3, including the case where parameter 
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uncertainty is not taken into account. Take for instance a 500-year event: the PGA from seismic hazard 

analysis is equal to 200 Gal, however, when parameter uncertainty is considered, the mean exceedance 

rate yields a PGA equal to 235 Gal and from 𝜇𝑣 ± 𝜎𝑣 a value of 289 Gal is obtained. These represent 

increments of the PGA of about 15% and 45%, respectively, if parameter uncertainty is accounted for. 

 

 
Figure 4.1 Case (1): Influence of the uncertainty in parameter 𝜷 on the mean annual exceedance 

rate 

 

 
Figure 4.2 Case (1): Uncertainty in the annual exceedance rate due to uncertainty in parameter 𝜷; 

𝑬[𝜷]=2.0 and CV=0.20 
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Table 4.3 Case (1): Peak ground acceleration values from 𝝁𝒗 and 𝝁𝒗 ± 𝝈𝒗 for some return periods; 

𝑬[𝜷]=2.0 and CV=0.20 

 

Annual exceedance 
rate  

(1/year) 

Return period 
(year) 

Peak ground acceleration (Gal) 

Without 
parameter 
uncertainty 

Uncertainty in 𝜷 

𝝁𝒗 𝝁𝒗 − 𝝈𝒗 𝝁𝒗 + 𝝈𝒗 

0.020 50 95 104 75 131 

0.010 100 119 135 89 173 

0.002 500 200 235 127 289 

0.001 1000 242 282 142 327 

 

 

The accuracy of the point estimates was examined in comparison to Monte Carlo estimates using 

ensembles of 50,000 simulations. Results for estimates of the mean and variance of the exceedance rate 

are shown in Figure 4.3. It can be appreciated that mean estimates differ by less than 1.5% and variance 

estimates by 3%. These results indicate that the point estimate method was able to assess the mean and 

variance of the exceedance rate with great accuracy. 

 

 
 

a) Mean 

 
 

b) Variance 

 

Figure 4.3 Case (1): Comparison between the mean and variance point estimates of the annual 

exceedance rate with 50,000 Monte Carlo simulations estimates; CV=0.20 
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The effect of the parameter uncertainty on the exceedance rate was also analyzed for mean values of 𝛽 

equal to 1.5 and 2.5, i.e., the lowest and the highest values reported in the literature. It can be observed 

from Figure 4.4 that assigning a higher mean value to the uncertain parameter decreases the expected 

number of seismic events, per year, that will exceed a certain intensity 𝑎. In general, it is observed that 

the shape of the curves representing the mean, 𝜇𝑣, and the mean plus/minus one standard deviation,  

𝜇𝑣 ± 𝜎𝑣, is due to the cut-off limits imposed by the modified Gutenberg-Richter model, implying that 

when the PGA value is far from those limits the uncertainty in the annual exceedance rates is higher. 

 

  
a) 𝐸[𝛽] = 1.5 b) 𝐸[𝛽] = 2.5 

 

Figure 4.4 Case (1): Uncertainty in the annual exceedance rate due to uncertainty in parameter 𝜷; 

𝝈 = 𝟎. 𝟓 and CV=0.20 

 

 

4.3 CASE (2): POINT-SOURCE, PROBABILISTIC ATTENUATION RELATION 

 

The analysis is performed using the analytical solution given in equation (2.7) for the exceedance rate of 

PGA, assuming parameters 𝛽 and 𝜎 to follow a lognormal probability distribution, with mean values 

equal to 2.0 and 0.5, respectively. Values of coefficient of variation equal to 10%, 20% and 40% were 

considered for 𝛽 and 𝜎 to include various degrees of uncertainty in these parameters. When only one of 

these is considered uncertain, the mean and variance of the PGA exceedance rate were computed based 

on equations (3.23) and (3.24); when both parameters are uncertain, the mean and variance were 

calculated using equations (3.33), (3.34) and (3.36) assuming statistical independence. A point source 

located at a distance 𝑅 = 30 km from the site is considered. 

 

Figure 4.5a shows the variation of the mean exceedance rate of PGA with the coefficient of variation of 

𝛽 , 𝐶𝑉𝛽 . For return periods greater than 10 years, the mean exceedance rate is greater than the 

deterministic exceedance rate computed without accounting for parameter uncertainty. The effect of 

including parameter uncertainty is thus to obtain greater values of PGA associated with a given nominal 

exceedance rate or return period. It can be observed that for lower levels of uncertainty, such as 

𝐶𝑉𝛽=10%, the results are very similar to those where parameter uncertainty is not considered. For higher 

degrees of uncertainty, say 𝐶𝑉𝛽  values equal to 20% and 40%, the differences in the estimated 

exceedance rate become more noticeable. Similar trends are shown in Figure 4.5b for the mean 

exceedance rate of PGA when uncertainty in parameter 𝜎 is taken into account. However, in this case 

higher uncertainties in 𝜎 are required, say 𝐶𝑉𝜎=40%, for the effect of parameter uncertainty to become 

noticeable as compared to the deterministic case where it is not included. 
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a) Uncertainty in parameter 𝛽 

 
b) Uncertainty in parameter 𝜎 

 

Figure 4.5 Case (2): Influence of parameter uncertainty on the mean annual exceedance rate 
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The effect of considering uncertainty in both parameters 𝛽  and 𝜎  is shown in Figure 4.6 for 20% 

coefficients of variation. Results for the case without parameter uncertainty are also shown. It is observed 

that for a given mean annual exceedance rate, greater PGA values are obtained when uncertainty in both 

parameters is taken into account. Recalling results in Figure 4.5, it is clear in Figure 4.6 that uncertainty 

in parameter 𝛽 has a greater effect on the mean exceedance rate than that in 𝜎. Table 4.4 summarizes 

PGA values for some return periods. For instance, for a 500-year event, the PGA value computed without 

considering parameter uncertainty increases about 5% and 13% when uncertainty only in parameter 𝜎 or 

𝛽 is considered, respectively. When uncertainty about both parameters is taken into account, the PGA 

value increases about 18%. Such an effect becomes less or greater for shorter or longer return periods. 

 

 
Figure 4.6 Case (2): Effect of parameter uncertainty on the mean annual exceedance rate; 

𝑬[𝜷] = 𝟐. 𝟎, 𝑬[𝝈] = 𝟎. 𝟓 and CV=0.20 

 

 

Table 4.4 Case (2): Peak ground acceleration values from 𝝁𝒗 for some return periods; 𝑬[𝜷] = 𝟐. 𝟎, 

𝑬[𝝈] = 𝟎. 𝟓 and CV=0.20 

 

Mean annual 
exceedance rate 

(1/year) 

Return 
Period 
(year) 

Peak ground acceleration (Gal) 

Without 
parameter 
uncertainty  

Uncertainty in 𝜷 Uncertainty in 𝝈 Uncertainty in 𝜷 and 𝝈 

𝝁𝒗 𝝁𝒗 𝝁𝒗 

0.020 50 135 144 140 149 

0.010 100 171 186 179 193 

0.002 500 289 326 304 340 

0.001 1000 355 404 376 422 
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Results obtained for the mean exceedance rate, 𝜇𝑣, and the mean plus/minus one standard deviation, 

𝜇𝑣 ± 𝜎𝑣, are shown in Figure 4.7. As seen, parameter uncertainty has a greater effect on the uncertainty 

of the annual exceedance rates when both parameters are taken to be uncertain. When uncertainty in only 

one parameter is accounted for, that of parameter 𝛽 is more noticeable. Table 4.5 lists PGA values, for 

some return periods; e.g., for a 500-year seismic event, the traditional PSHA without including parameter 

uncertainty yields a PGA value equal to 289 Gal; the PGA values for 𝜇𝑣 + 𝜎𝑣, are equal to 364, 402 and 

436 Gals when uncertainty is considered in 𝜎  only, 𝛽  only, and in both of them, which represent 

increments of about 25%, 40% and 50%, respectively. In the case of a nominal 100-year return period, 

the corresponding effect of accounting for parameter uncertainty is about 22%, 35% and 43%, 

respectively. 

 

  
a) Uncertainty in parameter 𝛽 

 

Figure 4.7 Case (2): Uncertainty in the annual exceedance rate due to parameter uncertainty; 

𝑬[𝜷] = 𝟐. 𝟎, 𝑬[𝝈] = 𝟎. 𝟓 and CV=0.20 
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b) Uncertainty in parameter 𝜎 

 
c) Both parameters considered uncertain 

 

Figure 4.7 – Continued  
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Table 4.5 Case (2): Peak ground acceleration values from 𝝁𝒗 ± 𝝈𝒗  for some return periods;  

𝑬[𝜷] = 𝟐. 𝟎, 𝑬[𝝈] = 𝟎. 𝟓 and CV=0.20 

 

Annual 
exceedance rate 

(1/year) 

Return 
period 
(year) 

Peak ground acceleration (Gal) 

Without 
parameter 
uncertainty 

Uncertainty in 𝜷 Uncertainty in 𝝈 Uncertainty in 𝜷 and 𝝈 

𝝁𝒗 − 𝝈𝒗 𝝁𝒗 + 𝝈𝒗 𝝁𝒗 − 𝝈𝒗 𝝁𝒗 + 𝝈𝒗 𝝁𝒗 − 𝝈𝒗 𝝁𝒗 + 𝝈𝒗 

0.020 50 135 115 174 116 161 110 185 

0.010 100 171 139 229 144 208 134 244 

0.002 500 289 208 402 227 364 196 436 

0.001 1000 355 242 492 270 455 222 545 

 

 

The accuracy of the point estimate method using 𝑚 = 5 was assessed by means of comparisons to Monte 

Carlo estimates using 250,000 simulations. Results for the mean and variance of the exceedance rate are 

shown in Figure 4.8 and Figure 4.9, respectively, for the range of PGA values given in Table 4.4 and 

Table 4.5. Estimates of the mean differ by less than 0.4%, when parameter 𝛽  is considered to be 

uncertain, 0.5% when 𝜎, and 0.6% when both parameters are taken to be uncertain. In the case of the 

variance, estimates differ by less than 1.5%, 5% and 2.5% considering the uncertainty in 𝛽, in 𝜎, and in 

both parameters. Hence, the point estimate method yields pretty accurate results for both the mean and 

the variance of the exceedance rate. 
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a) Uncertainty in parameter 𝛽 

 
b) Uncertainty in parameter 𝜎 

 
c) Both parameters considered uncertain 

 

Figure 4.8 Case (2): Comparison between the mean point estimates of the annual exceedance rates 

with estimates from 250,000 Monte Carlo simulations; CV=0.20 
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a) Uncertainty in parameter 𝛽 

 
b) Uncertainty in parameter 𝜎 

 
c) Both parameters considered uncertain 

 

Figure 4.9 Case (2): Comparison between the variance point estimates of the annual exceedance 

rates with estimates from 250,000 Monte Carlo simulations; CV=0.20 
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In order to examine the effects of greater parameter uncertainty, results were obtained using coefficients 

of variation equal to 40% for 𝛽 and 𝜎. Results for the mean exceedance rate, 𝜇𝑣, and the mean plus/minus 

one standard deviation, 𝜇𝑣 ± 𝜎𝑣 , are shown in Figure 4.10. As for 20% coefficient of variation, the 

overall trend of a greater mean and a larger variance of the exceedance rate can be observed when 

uncertainty in both parameters is taken into account. PGA values for some return periods are listed in 

Table 4.6. As seen, the effect of parameter uncertainty is considerable. Compared to results without 

dealing with parameter uncertainty, PGA values increase by about 50% and 70% for nominal 100 and 

500-year return periods when uncertainty in both parameters is accounted for. Table 4.7 shows the range 

of PGA values for annual exceedance rates in the interval of one plus/minus standard deviation around 

the mean. It can be appreciated that for 40% coefficients of variation the effect on the PGA values is 

significant and clearly higher than for the previous case of 20%. As expected, there is also a greater effect 

when both parameters are taken to be uncertain. However, unlike the previous case, the effect of 

parameter 𝜎 on  𝜇𝑣 ± 𝜎𝑣 now becomes greater than that of 𝛽 for the longer return periods. For instance, 

for 500-year return period, PGA values for 𝜇𝑣 + 𝜎𝑣 increase by about 90% when parameter 𝛽 is the only 

one uncertain, 170% when the uncertain parameter is 𝜎, and 230% when both parameters are uncertain. 

In the case of a nominal 100-year return period, the corresponding effect of accounting for parameter 

uncertainty amounts an increase of about 90%, 85%, and 135%, respectively. 

 

 
a) Uncertainty in parameter 𝛽 

 

Figure 4.10 Case (2): Uncertainty in the annual exceedance rates due to parameter uncertainty; 

𝑬[𝜷] = 𝟐. 𝟎, 𝑬[𝝈] = 𝟎. 𝟓 and CV=0.40 
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b) Uncertainty in parameter 𝜎 

 
c) Both parameters considered uncertain 

 

Figure 4.10 – Continued 
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Table 4.6 Case (2): Peak ground acceleration values from 𝝁𝒗 for some return periods; 𝑬[𝜷] = 𝟐. 𝟎, 

𝑬[𝝈] = 𝟎. 𝟓 and CV=0.40 

 

Mean annual 
exceedance rate 

(1/year) 

Return 
period 
(year) 

Peak ground acceleration (Gal) 

Without 
parameter 
uncertainty  

Uncertainty in 𝜷 Uncertainty in 𝝈 Uncertainty in 𝜷 and 𝝈 

𝝁𝒗 𝝁𝒗 𝝁𝒗 

0.020 50 135 171 151 188 

0.010 100 171 230 200 257 

0.002 500 289 414 371 483 

0.001 1000 355 509 482 623 

 

 

Table 4.7 Case (2): Peak ground acceleration values from 𝝁𝒗 ± 𝝈𝒗  for some return periods;  

𝑬[𝜷] = 𝟐. 𝟎, 𝑬[𝝈] = 𝟎. 𝟓 and CV=0.40 

 

Annual 
exceedance rate 

(1/year) 

Return 
period 
(year) 

Peak acceleration (Gal) 

Without 
parameter 
uncertainty 

Uncertainty in 𝜷 Uncertainty in 𝝈 Uncertainty in 𝜷 and 𝝈 

𝝁𝒗 − 𝝈𝒗 𝝁𝒗 + 𝝈𝒗 𝝁𝒗 − 𝝈𝒗 𝝁𝒗 + 𝝈𝒗 𝝁𝒗 − 𝝈𝒗 𝝁𝒗 + 𝝈𝒗 

0.020 50 135 101 241 98 217 96 286 

0.010 100 171 116 321 113 314 111 405 

0.002 500 289 144 543 137 772 134 941 

0.001 1000 355 151 649 143 1123 138 1370 

 

 

A comparison between point estimates of the mean and variance of the annual exceedance rate and 

estimates from 250,000 Monte Carlo simulations is shown in Figure 4.11 and Figure 4.12, respectively, 

for the range of PGA values associated to the return periods in Table 4.6 and Table 4.7. Mean estimates 

differ by less than 3%. In the case of the variance estimates differ by less than 2.5%, 20% and 10% if 

uncertainty is considered in parameter 𝛽, in parameter 𝜎, and in both parameters, respectively. The 

largest difference in the variance estimates observed in Figure 4.12b is about 19% for a PGA equal to 

391 Gal. Because of the large uncertainty being considered in parameter 𝜎 and that a second-order 

moment is being estimated, it may be that the Monte Carlo estimate based on 250,000 simulations is not 

accurate enough to assess the performance of the point estimate method. To examine this argument, an 

analysis was performed where the variance estimate for PGA=391 Gal was computed varying the size 

of the simulated ensembles from 5×104 to 5×106. Monte Carlo estimates were computed for six different 

ensembles generated for each size. Figure 4.13 shows a comparison of the variance point estimates and 

those based on Monte Carlo simulations. The results show that as the size of the simulated ensembles 

increases the Monte Carlo estimate approaches a stable value. Considering that for such a large ensemble 

size as 5×106, the variance estimate from Monte Carlo is accurate enough, it is now seen that the error 

in the point estimate method is about 9%. In view of this analysis, we can expect that if the same 

procedure was performed for a different PGA value within the range covered in Figure 4.12b, point 

estimates and Monte Carlo estimates would differ by about 9% or even less. Compared to 20% 

coefficients of variation for 𝛽 and 𝜎, the point estimate method in this case is still pretty accurate for 

estimating the mean of the exceedance rate, but it is now less accurate for the estimation of the variance. 
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a) Uncertainty in parameter 𝛽 

 
b) Uncertainty in parameter 𝜎 

 
c) Both parameters considered uncertain 

 

Figure 4.11 Case (2): Comparison between the mean point estimates of the annual exceedance rates 

with estimates from 250,000 Monte Carlo simulations; CV=0.40 
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a) Uncertainty in parameter 𝛽 

 
b) Uncertainty in parameter 𝜎 

 
c) Both parameters considered uncertain 

 

Figure 4.12 Case (2): Comparison between the variance point estimates of the annual exceedance 

rates with estimates from 250,000 Monte Carlo simulations; CV=0.40 
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Figure 4.13 Case (2): Comparison of variance point estimates for varying sizes of Monte Carlo 

simulation ensembles; PGA=391 Gal 

 

 

Analyses considering other combinations of mean values for parameters 𝛽 and 𝜎 were also performed. 

As discussed in the literature review, 𝛽 may take values in the range of 1.5 to 2.5, depending on the 

environment or the conditions of the source, while for 𝜎, values in the range of 0.3 to 0.7 may represent 

the quality or degree of accuracy of ground motion prediction models. Results for various mean values 

of 𝛽 and 𝜎, and coefficients of variation equal to 20% and 40%, when each parameter is considered 

uncertain are shown in Figure 4.14 and Figure 4.15. A decrease in the annual exceedance rate curves for 

the range of small accelerations can be observed. This can be associated to the effect observed for smaller 

magnitude event ranges when plotting on logarithmic scale the Gutenberg-Richter relation, where at low 

magnitudes the plot becomes flatter, and this can be largely caused by the incompleteness of any data set 

due the inability to detect and characterize small events. Assigning a greater mean value to 𝛽 decreases 

the expected number of seismic events per year that will exceed a certain intensity 𝑎. This is reflected in 

the annual exceedance rate curves having a steeper slope. It can also be observed that as the mean value 

assigned to parameter 𝜎 increases, the annual probability of exceeding an earthquake of a given PGA 

also increases. This is reasonable to expect since 𝜎 measures the uncertainty with which the natural 

logarithm of the peak ground acceleration is calculated. As the mean value of 𝜎 takes higher values, the 

uncertainty in 𝜎 produces a more noticeable effect on the uncertainty of the annual exceedance rates than 

that when uncertainty in 𝛽  is considered. When high coefficients of variation are considered, the 

uncertainty in the annual exceedance rates is more sensitive to the uncertainty in parameter 𝜎 than it is 

to that in 𝛽. 
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a) 𝐸[𝛽] = 1.5, CV=0.20 

 

b) 𝐸[𝛽] = 1.5, CV=0.40 

  
c) 𝐸[𝛽] = 2.5, CV=0.20 d) 𝐸[𝛽] = 2.5, CV=0.40 

 

Figure 4.14 Case (2): Uncertainty in the annual exceedance rates due to uncertainty in parameter 

𝜷; 𝝈 = 𝟎. 𝟓 
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a) 𝐸[𝜎] = 0.3, CV=0.20 

 

b) 𝐸[𝜎] = 0.3, CV=0.40 

  
c) 𝐸[𝜎] = 0.7, CV=0.20 d) 𝐸[𝜎] = 0.7, CV=0.40 

 

Figure 4.15 Case (2): Uncertainty in the annual exceedance rates due to uncertainty in parameter 

𝝈; 𝜷 = 𝟐. 𝟎 

 

 

4.4 CASE (3): CIRCULAR SOURCE, PROBABILISTIC ATTENUATION RELATION 

 

The analysis was performed using the analytical solution given in equation (2.11) considering parameters 

𝛽 and 𝜎 to be lognormally distributed, with mean value equal to 2.0 and 0.5, respectively, coefficients 

of variation of 10%, 20% and 40%, maximum radius 𝑅max = 30 km and depth 𝐻 = 30 km. The variation 

of the mean exceedance rate, 𝜇𝑣, as a function of the coefficients of variation is shown in Figure 4.16. 

Results considering the uncertainty in 𝛽 and 10% coefficient of variation are very similar to the ones 

without parameter uncertainty, whereas for uncertainty in 𝜎 that is the case for coefficients of variation 

equal to 10% and 20%. 
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a) Uncertainty in parameter 𝛽 

 
b) Uncertainty in parameter 𝜎 

 

Figure 4.16 Case (3): Influence of parameter uncertainty on the mean annual exceedance rate 
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The effect of considering uncertainty in both parameters 𝛽  and 𝜎  is shown in Figure 4.17 for 20% 

coefficients of variation. Considering two sources of uncertainty adds up and increases the effect of 

parameter uncertainty compared to the previous cases in Figure 4.16. In this case the influence of 

parameter 𝛽 is greater than that of 𝜎. Table 4.8 summarizes PGA values for return periods of interest; 

e.g., for a 500-year event PGA values when uncertainty in 𝛽, in 𝜎, and in both parameters is considered 

increase by about 15%, 5% and 20%, respectively. In the case of a nominal 100-year return period, the 

effect of accounting for parameter uncertainty are corresponding increments of PGA values of the order 

of 10%, 5%, and 15%. 

 

 
 

Figure 4.17 Case (3): Effect of parameter uncertainty on the mean annual exceedance rate;  

𝑬[𝜷] = 𝟐. 𝟎, 𝑬[𝝈] = 𝟎. 𝟓 and CV=0.20 

 

 

Table 4.8 Case (3): Peak ground acceleration values from 𝝁𝒗 for some return periods; 𝑬[𝜷] = 𝟐. 𝟎, 

𝑬[𝝈] = 𝟎. 𝟓 and CV=0.20 

 

Mean annual 
exceedance rate 

(1/year) 

Return 
period 
(year) 

Peak ground acceleration (Gal) 

Without 
parameter 
uncertainty  

Uncertainty in 𝜷 Uncertainty in 𝝈 Uncertainty in 𝜷 and 𝝈 

𝝁𝒗 𝝁𝒗 𝝁𝒗 

0.020 50 140 149 144 154 

0.010 100 177 193 185 200 

0.002 500 299 337 315 352 

0.001 1000 368 418 389 437 

 

 



45 

 

Figure 4.18 shows the variation of the mean annual exceedance rate, 𝜇𝑣, and the mean plus/minus one 

standard deviation, 𝜇𝑣 ± 𝜎𝑣. Table 4.9 lists PGA values from Figure 4.18 for some return periods. As for 

the mean 𝜇𝑣, the effect of parameter uncertainty on 𝜎𝑣 is greater when uncertainty in both 𝛽 and 𝜎 is 

taken into account. For a 500-year return period, PGA=299 Gal without including parameter uncertainty; 

the PGA from 𝜇𝑣 + 𝜎𝑣 are 415, 376 and 451 Gal, which amount to increments of the order of 40%, 25% 

and 50%, for uncertainty in 𝛽, in 𝜎, and in both parameters, respectively. For a 100-year return period 

seismic event, the corresponding effect amounts to increments of about 35%, 20%, and 40%, 

respectively. 

 

 
a) Uncertainty in parameter 𝛽 

 

Figure 4.18 Case (3): Uncertainty in the annual exceedance rates due to parameter uncertainty; 

𝑬[𝜷] = 𝟐. 𝟎, 𝑬[𝝈] = 𝟎. 𝟓 and CV=0.20 
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b) Uncertainty in parameter 𝜎 

 
c) Both parameters considered uncertain 

 

Figure 4.18 – Continued 
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Table 4.9 Case (3): Peak ground acceleration values from 𝝁𝒗 ± 𝝈𝒗  for some return periods;  

𝑬[𝜷] = 𝟐. 𝟎, 𝑬[𝝈] = 𝟎. 𝟓 and CV=0.20 

 

Annual 
exceedance rate 

(1/year) 

Return 
period 
(year) 

Peak ground acceleration (Gal) 

Without 
parameter 
uncertainty 

Uncertainty in 𝜷 Uncertainty in 𝝈 Uncertainty in 𝜷 and 𝝈 

𝝁𝒗 − 𝝈𝒗 𝝁𝒗 + 𝝈𝒗 𝝁𝒗 − 𝝈𝒗 𝝁𝒗 + 𝝈𝒗 𝝁𝒗 − 𝝈𝒗 𝝁𝒗 + 𝝈𝒗 

0.020 50 140 119 179 120 166 114 190 

0.010 100 177 144 236 149 215 139 252 

0.002 500 299 216 415 235 376 203 451 

0.001 1000 368 252 509 280 471 232 564 

 

 

Comparisons between estimates of the mean and variance of the annual exceedance rate using the point 

estimates approach and 250,000 Monte Carlo simulations are shown in Figure 4.19 and Figure 4.20. The 

point estimate method performs well and yields results with very good accuracy. Mean estimates differ 

less than about 0.5%; estimates of the variance are within 2%, 5% and 2.5% when uncertainty is 

considered in 𝛽, 𝜎, and both parameters, respectively. 
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a) Uncertainty in parameter 𝛽 

 
b) Uncertainty in parameter 𝜎 

 
c) Both parameters considered uncertain 

 

Figure 4.19 Case (3): Comparison between the mean point estimates of the annual exceedance rate 

with estimates from 250,000 Monte Carlo simulations; CV=0.20 
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a) Uncertainty in parameter 𝛽 

 
b) Uncertainty in parameter 𝜎 

 
c) Uncertainty in both parameters 

 

Figure 4.20 Case (3): Comparison between the variance point estimates of the annual exceedance 

rate with estimates from 250,000 Monte Carlo simulations; CV=0.20 
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Results for 40% coefficients of variation in 𝛽 and 𝜎 are shown in Figure 4.21 and Table 4.10. The overall 

effect of parameter uncertainty is greater now. For 500-year return period, PGA values for the mean and 

the mean plus one standard deviation of the exceedance rate are about 65% and 220% greater than the 

case when parameter uncertainty is not considered; and 50% and 135% greater for 100-year return 

period.  

 

  
Figure 4.21 Case (3): Uncertainty in the annual exceedance rates due to parameter uncertainty; 

𝑬[𝜷] = 𝟐. 𝟎, 𝑬[𝝈] = 𝟎. 𝟓 and CV=0.40 

 

 

Table 4.10 Case (3): Peak ground acceleration values from 𝝁𝒗  and 𝝁𝒗 ± 𝝈𝒗  for some return 

periods; 𝑬[𝜷] = 𝟐. 𝟎, 𝑬[𝝈] = 𝟎. 𝟓 and CV=0.40 

 

Mean annual 
exceedance rate 

(1/year) 

Return 
period 
(year) 

Peak ground acceleration (Gal) 

Without 
parameter 
uncertainty  

Uncertainty in both parameters, 𝜷 and 𝝈 

𝝁𝒗 𝝁𝒗 − 𝝈𝒗 𝝁𝒗 + 𝝈𝒗 

0.020 50 140 194 100 294 

0.010 100 177 265 115 417 

0.002 500 299 499 139 968 

0.001 1000 368 644 144 1410 
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A comparison between the mean and variance estimates of the annual exceedance rate and estimates 

based on 2×106 Monte Carlo simulations are illustrated in Figure 4.22. Mean estimates differ by less 

than 1%. In the case of the variance estimates differ by less than 6%. The PGA value that produced the 

highest difference between the variance estimates was equal to 441 Gal, for which an analysis was 

performed to estimate the variance based on a greater number of Monte Carlo simulations. Five 

repetitions of 5×106 simulations were computed for such value reducing the intensive computing time 

demanded by the complexity of the analytical solution involved in this case. Again, the results verified 

that as the number of simulations increases the variance estimates computed by the Monte Carlo method 

tends to stabilize around a certain value. For 5×106 simulations the difference between variance estimates 

is 4% for the PGA value representing the highest error between the methods. 

 

 
a) Mean 

 
b) Variance 

 

Figure 4.22 Case (3): Comparison between the mean and variance point estimates of the annual 

exceedance rate with estimates from 2×106 Monte Carlo simulations; CV=0.40 

 

 

Finally, a series of combinations were examined taking into account the mean value of parameter 𝛽 equal 

to 1.5 and 2.5; the mean value of parameter 𝜎 equal to 0.3 and 0.7, and considering coefficients of 

variation equal to 20% and 40%. The results are shown in Figure 4.23 to Figure 4.24. Similar trends as 

before can be observed. 



52 

 

 

 

  
a) 𝐸[𝛽] = 1.5, CV=0.20 

 

b) 𝐸[𝛽] = 1.5, CV=0.40 

  
c) 𝐸[𝛽] = 2.5, CV=0.20 d) 𝐸[𝛽] = 2.5, CV=0.40 

 

Figure 4.23 Case (3): Uncertainty in the annual exceedance rates due to uncertainty in parameter 

𝜷; 𝝈 = 𝟎. 𝟓 
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a) 𝐸[𝜎] = 0.3, CV=0.20 

 

b) 𝐸[𝜎] = 0.3, CV=0.40 

  
c) 𝐸[𝜎] = 0.7, CV=0.20 d) 𝐸[𝜎] = 0.7, CV=0.40 

 

Figure 4.24 Case (3): Uncertainty in the annual exceedance rates due to uncertainty in parameter 

𝝈; 𝜷 = 𝟐. 𝟎 
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CHAPTER 5  

CONCLUSIONS 

A study has been presented to assess the uncertainty in probabilistic seismic hazard analysis (PHSA) due 

to the statistical uncertainty in some of the parameters involved in the magnitude distribution model and 

the ground motion intensity model. The uncertainty in the model parameters results from their statistical 

estimation using historical data. The work has focused on estimating the mean value and the variance of 

the annual exceedance rate of peak ground acceleration (PGA). An improved point estimate method 

based on the Rosenblatt transformation was used. Its main advantage over traditional approaches is that 

the estimating points and weights are readily defined and can be easily increased for accuracy if 

necessary. Monte Carlo simulations were used to assess the accuracy of point estimation. Three case 

studies were examined for which analytical solutions are available: (1) point source with deterministic 

median attenuation relation; (2) point source with probabilistic attenuation relation; and (3) circular 

source with probabilistic attenuation relation. Statistical uncertainty in two parameters has been 

considered: the slope related parameter 𝛽 in the Gutenberg-Richter magnitude distribution model and 

the standard deviation 𝜎 of the natural logarithm of PGA in the ground motion intensity model. The 

statistics used for the uncertain parameters in the case studies were supported by an extensive literature 

review of real case studies. Some of the main findings from the analyses are: 

 

- The effect of statistical uncertainty on the calculation of PGA values for return periods of interest 

may be significant. The effect was assessed in terms of the increase in PGA when comparing the 

mean annual exceedance rate, 𝜇𝑣, and the mean plus one standard deviation, 𝜇𝑣 + 𝜎𝑣, against 

results from PSHA without including parameter uncertainty. For instance, for case (2), 

considering 20% coefficients of variation, PGA values for 𝜇𝑣 and 𝜇𝑣 + 𝜎𝑣 represent an increase 

of about 13-18% and 43-50%, for return periods between 100 and 500 years, respectively. If 

coefficients of variation equal to 40% were considered, such percentages are about 50-70% and 

135-230%, respectively. 

- The point estimate method using 5 points yields estimates of the mean and the variance of the 

annual exceedance rate with very good accuracy for return periods of engineering interest. It 

becomes less accurate for estimating the variance when large parameter uncertainty is 

considered, say about 40% coefficients of variation. The number of estimating points can be 

readily increased in such cases for greater accuracy. 

- The complexity of the analytical solutions is an issue of relatively minor importance in terms of 

computing time; both the mean and the variance of the mean exceedance rate can be computed 

efficiently in short times using the point estimate method. 

 

Being able to characterize the effect of parameter uncertainties in PSHA should be useful to assess the 

benefit of reducing such uncertainties by means of gathering additional information. This benefit can 

then be compared against the cost of gathering more information for the purpose of optimal decision 

making. Provided the point estimates methodology presented here for the assessment of the effect of 

parameter uncertainty is relatively easy to implement, its application could also be extended to other 

topics in structural engineering and reliability in which the need to quantify the impact of poor or 

insufficient information about some of the parameters involved in the problems under study is not 

infrequent. Future studies may deal with the assessment of parameter uncertainty on other intensity 

measures such as spectral accelerations and its effect in the computation of uniform hazard spectra. The 

influence of uncertainties in parameters of more complex seismic source models could also be studied. 

The formulation presented in this work could be extended as well for the assessment of parameter 

uncertainty in formulations for joint hazard analysis of multiple intensity measures and ground motion 

parameters.  
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