DISEÑO E IMPLEMENTACIÓN DE CABLEADO ESTRUCTURADO PARA INTEGRAR SERVICIOS DE TELECOMUNICACIONES

INFORME DE ACTIVIDADES PROFESIONALES

Que para obtener el título de

INGENIERO EN COMPUTACIÓN

P R E S E N T A

GABRIEL ÁNGEL LUNA PÉREZ

ASESORA DE INFORME

ME. GABRIELA CAMACHO VILLASEÑOR

Ciudad Universitaria, Cd. Mx., 2017
A mis padres Javier Luna y Gabriela Pérez

A mi hermana Lorena

A mi esposa Cristina, mi motivación y razón para continuar
AGRADECIMIENTOS

A la Me. Gabriela Camacho Villaseñor por guiarme y apoyarme para finalizar la etapa final de mi carrera universitaria

Al Ing. Arturo Rodriguez Jacob

Al Lic. Adán Monroy Olguín

A todo el equipo de ICR
“Don't look back in anger… I heard you say…”

Noel Gallagher
CONTENIDO

Objetivo .. 11
 Objetivos particulares ... 11
Introducción .. 12
Capítulo 1 ... 15
 Marco teórico .. 15
 1.1 Definición de redes .. 16
 1.2 Objetivos de las redes ... 16
 1.3 Tipos de redes .. 17
 1.3.1 LAN - Red de Área local ... 17
 1.3.2 MAN - Red de Área Metropolitana .. 18
 1.3.3 WAN - Red de Área Extensa ... 18
 1.4 Topologías de red ... 19
 1.4.1 Topología de bus .. 19
 1.4.2 Topología de estrella .. 20
 1.4.3 Topología en anillo .. 20
 1.5 VLAN - Red de Área Local Virtual .. 22
 1.6 Cableado estructurado ... 23
 1.6.1 Cable UTP y patch cords .. 26
 1.7 Servidores ... 30
 1.7.1 Servidor web y de correo electrónico ... 32
 1.8 Seguridad informática ... 34
Capítulo 2 ... 37
 Infinite Clinical Research (ICR) .. 37
 2.1 Misión ... 38
 2.2 Visión ... 38
 2.3 Experiencia ... 38
 2.4 Beneficios y compromisos ... 39
CAPÍTULO 3 .. 41
 Ingreso al ambiente laboral ... 41
 3.1 Trabajo 1: Secure IT México (SIT México) ... 42
 3.2 Trabajo 2: Procesos y Servicios de Mercadeo (PSM) 42
3.3 Ingreso a ICR y descripción del puesto de trabajo

Capítulo 4

Situación actual de la empresa

4.1 Distribución de las oficinas

4.2 Estado del cableado y servicios

4.3 Ubicación inicial del SITE

4.4 Termómetros

4.5 Servidor de web wosting

Capítulo 5

Implementación del nuevo cableado, reubicación de áreas e integración de servicios

5.1 Nuevos proveedores: servicios de telefonía e internet

5.2 Unificación del SITE

5.3 Modificación de termómetros

5.4 Cambio de alarmas ADT

5.5 Portabilidad del número telefónico

5.6 Primer enlace: voz y datos

5.6.1 Configuración de los DVR

5.7 Integración del segundo enlace de internet

5.8 Configuración de los servidores y estación de trabajo

5.9 Configuración del punto de acceso, impresora y escáner

5.10 Plano final de oficinas y mapa de red

Capítulo 6

Medidas seguridad

6.1 Protección eléctrica

6.2 Sistema de enfriamiento

6.3 Seguridad Informática

6.3.1 Configuración del modem Arris del segundo enlace

6.3.2 Configuración del firewall Fortigate

6.3.3 Interfaces de red

6.3.4 Políticas y objetos

6.3.5 Filtrado web

6.3.6 Control de aplicaciones

Capítulo 7
Migración de la página web y cuentas de correo electrónico .. 104
 7.1 Rackspace como proveedor de cloud server ... 105
 7.2 Configuración del servidor en la nube ... 106
 7.3 Configuración de las cuentas de correo ... 112
Capítulo 8 .. 117
Resultados y aportaciones ... 117
 8.1 Resultados .. 118
 8.2 Integración de nuevos procedimientos de TI ... 119
CONCLUSIONES ... 121
GLOSARIO ... 126
REFERENCIAS ELECTRÓNICAS ... 135
ÍNDICE DE IMÁGENES

CAPÍTULO I
FIG. 1.1 - Topología bus... 19
FIG. 1.2 - Topología estrella.. 20
FIG. 1.3 - Topología Anillo... 21
FIG. 1.4 - Unidad de Acceso Multiestación..................................... 21
FIG. 1.5 - Diagrama lógico de una troncal entre el router y un switch para la distribución de las VLAN... 23
FIG. 1.6 - Cableado estructurado.. 25
FIG. 1.7 - Rack de comunicaciones.. 25
FIG. 1.8 - Patch Cords de cable UTP Cat5e.. 27
FIG. 1.9 – Diferencias de estructura de los cables CAT5e y CAT6 28
FIG. 1.10 – Cable UTP Cat6... 29
FIG. 1.11 – Patch panel de 48 puertos Cat6.. 29
FIG. 1.12 - Topología del funcionamiento de un servidor......................... 30
FIG. 1.13 - Representación lógica de un servidor virtual......................... 31
FIG. 1.14 - Apache es un servidor web HTTP de código abierto, para plataformas Unix (BSD, GNU/Linux), Microsoft Windows y Macintosh.......................... 33
FIG. 1.15 - Diagrama del funcionamiento de un servidor de correos........... 33
FIG. 1.16 - Elementos a considerar para una seguridad eficaz.................... 35

CAPÍTULO IV
FIG. 4.1 – Mapa de las oficinas del piso 6... 48
FIG. 4.2 - ANSEL 4253.. 50
FIG. 4.3 - LINKSYS SR2024... 50
FIG. 4.4 - FORTINET FORTIGATE 60D.. 50
FIG. 4.5 - PANASONIC KX-TDA100DBX... 50
FIG. 4.6 - TRENDNET TC-P48C5E.. 50
FIG. 4.7 – Configuración inicial del rack en piso 6................................. 51
FIG. 4.8 - Mapa del almacén del piso 7.. 52
FIG. 4.9 - Configuración inicial del rack en piso 7................................... 53
FIG. 4.10 - Termómetro IP COMET modelo P8510............................... 55
FIG. 4.11 - Eliminador regulado STEREN modelo ELI-1200..................... 55

CAPÍTULO V
FIG. 5.1 - CISCO UC-540.. 60
FIG. 5.2 - Teléfono IP CISCO PoE con puerto ethernet para PC modelo SPA502G...... 60
FIG. 5.3 - Bobina de 300 m de cable UTP CAT5e.................................. 62
FIG. 5.4 - Pares trenzados.. 62
FIG. 5.5 - Diagrama final del rack ubicado en el piso 7. .. 63
FIG. 5.6 - Información web del termómetro. .. 64
FIG. 5.7 - Nombre del termómetro. ... 65
FIG. 5.8 - Configuración de la red. .. 65
FIG. 5.9 - Configuración del servidor SMTP para el envío de correos. 66
FIG. 5.10 - Configuración de los correos electrónicos. .. 66
FIG. 5.11 - Página que muestra las temperaturas en tiempo real.. 68
FIG. 5.12 - Comunicador IP HONEYWELL modelo 7847I. .. 69
FIG. 5.13 - Panel de control de la alarma en el piso 7... 70
FIG. 5.14 - Terminal remota para alarma.. 70
FIG. 5.15 - Monitor de DVRs. ... 72
FIG. 5.16 - Configuración de los DVR .. 72
FIG. 5.17 - Configuración de la red con un firewall SIP/ALG ... 74
FIG. 5.18 - Configuración de la red con el firewall Fortigate 60D.. 75
FIG. 5.19 - Servidor HP PROLIANT ML350 ... 77
FIG. 5.20 - Servidor HP PROLIANT ML10 ... 77
FIG. 5.21 - Estación de trabajo para los termómetros.. 78
FIG. 5.22 - Configuración del punto de acceso... 78
FIG. 5.23 - Libreta de direcciones de los usuarios con su respectiva IP.............................. 79
FIG. 5.24 - Configuración de un perfil.. 79
FIG. 5.25 - Ubicación de la carpeta destino .. 80
FIG. 5.26 - Configuración del escáner .. 80
FIG. 5.27 - Mapa final de las instalaciones del piso 6 indicando el nuevo cableado 81
FIG. 5.28 - Mapa final de las instalaciones del piso 7 indicando el nuevo cableado 83
FIG. 5.29 - Diagrama de todo el sistema de red en ICR... 84

CAPÍTULO VI

FIG. 6.1 - UPS APC Modelo SUA750.. 87
FIG. 6.2 - UPS SOLA BASIC Modelo Micro SR INET 800... 88
FIG. 6.3 - Mini-Split YORK Modelo YSCA de 2 Toneladas ... 89
FIG. 6.4 - Diagrama de componentes: Unidad interna y externa... 90
FIG. 6.5 - Firewall Fortigate 60D ... 91
FIG. 6.6 - Diagrama de red con la integración del firewall ... 93
FIG. 6.7 - Cuadro de ingreso del Fortigate ... 95
FIG. 6.8 - Interfaz de usuario para la administración del sistema del firewall...................... 95
FIG. 6.9 - Wan2 corresponde al servicio de Internet y Wan1 a la red de área local........... 96
FIG. 6.10 - Configuración de la Wan2 (Enlace IZII).. 96
FIG. 6.11 - Configuración de la Wan1 (LAN ICR)... 97
FIG. 6.12 - Políticas y Objetos creadas para las Interfaces Wan1 a Wan2 98
FIG. 6.13 - Perfiles de seguridad del firewall ... 98
FIG. 6.14 - Configuración del anti virus .. 99
FIG. 6.15 - Categorías del filtrado web. .. 100
FIG. 6.16 - Filtrado del contenido adulto. ... 101
FIG. 6.17 - Consumidores de ancho de banda críticos.......................... 101
FIG. 6.18 - Categorías de aplicaciones.. 102
FIG. 6.19 - Facebook: una de las redes sociales más bloqueadas en las empresas..... 102

CAPÍTULO VII

FIG. 7.1 - Cotización del servidor en la nube.. 106
FIG. 7.2 - Ventana de ingreso al panel de control.................................... 107
FIG. 7.3 - Panel de control del servidor.. 108
FIG. 7.4 - Resumen de servidores en línea... 108
FIG. 7.5 - Información de detallada del servidor..................................... 109
FIG. 7.6 - IPs públicas... 110
FIG. 7.7 - Página de Inicio de ICR.. 110
FIG. 7.8 - Estudios de Farmacovigilancia... 111
FIG. 7.9 - Escritorio remoto para el servidor.. 111
FIG. 7.10 - Administrador del servidor... 112
FIG. 7.11 - Ventana para ingresar panel de control............................... 112
FIG. 7.12 - Panel de control del servidor de cuentas de correo.................. 113
FIG. 7.13 - Configuración de los dominios... 114
FIG. 7.14 - Lista de dominios... 114
FIG. 7.15 - Integración de los MX Records para el servicio de correos.......... 114
FIG. 7.16 - Resumen de cuentas activas.. 115
FIG. 7.17 - Configuración de una nueva cuenta de correo.......................... 115
FIG. 7.18 - Información detallada del usuario.. 116
ÍNDICE DE TABLAS

TABLA 5.1 - Cuadro comparativo de proveedores ... 59
TABLA 5.2 - Características del Cable UTP instalado .. 62
TABLA 5.3 - Datos de los termómetros ... 67
TABLA 5.4 - Dispositivos correspondientes al primer enlace .. 72
TABLA 5.5 - Asignación de teléfonos IP ... 76
Objetivo

Implementar una nueva infraestructura de servicios para telefonía e Internet que involucre el cambio total del cableado estructurado para poder integrar sistemas de comunicaciones de voz y datos digitales para ofrecer mayor confiabilidad, desempeño y calidad en la transmisión de los servicios.

Objetivos particulares

- Implementar seguridad a nivel hardware (protección eléctrica y sistema de enfriamiento) y software (integración del firewall con filtrado de contenido, protección con anti-virus, control de aplicaciones).
- Migración de los servicios de web hosting (alojamiento de la página web de ICR) para tener una alta disponibilidad en la consulta de su contenido y modificación de la misma.
- Mover las cuentas de correo electrónico a un nuevo servidor más estable que tenga las menores fallas posibles.
- Disminuir el costo de renta de los nuevos servicios tales como telefonía, internet y web hosting.
En el presente documento describo los diferentes proyectos que implementé en Infinite Clinical Research SA de CV (ICR) así como las actividades que realizo cotidianamente que me han ayudado a conseguir la experiencia, conocimientos y herramientas que fueron clave para la culminación de cada uno de los proyectos.

Conocer el lugar de trabajo y sus actividades es fundamental para planear y diseñar cada uno de los proyectos que fui desarrollando, debido a que dependía de los tiempos de operación de cada uno de los usuarios internos y externos de ICR que no podían quedarse sin los servicios por un periodo prolongado. A pesar de ser una empresa pequeña con un aproximado de treinta colaboradores, se encuentran en constante movimiento y con flujo de información que debe ser entregada en fechas específicas, así como la realización de teleconferencias, exposiciones, juntas y trabajos en equipo que dependen de los servicios de telecomunicaciones.

Para poder comprender los requerimientos y necesidades del proyecto fue necesario recurrir a la teoría con respecto a los elementos que se utilizaron para diseñar e implementar una solución a la medida, tales como las partes que constituyen el cableado estructurado así como paneles de conexiones, área de telecomunicaciones y por supuesto el tipo de cable a instalar. Del mismo modo hablo sobre el tipo de redes y equipo de cómputo como switches, routers,
servidores, etc. que se usaron para crear el sistema de comunicaciones para la telefonía y servicio de Internet, además de la localización de cada uno de estos dispositivos.

Con ayuda de la parte teórica fue más fácil hacer el levantamiento de información para conocer la situación en la que se encontraba la empresa; identificar los problemas, verificar el estado de las instalaciones, qué tipo de equipo de cómputo usaban y cómo se encontraba distribuido para de este modo aprovechar al máximo los recursos y evitar hacer gastos innecesarios.

Cuando recolecté toda esta información comencé a buscar opciones de proveedores de servicios de telefonía que ofrecieran una mejor solución en costo beneficio en comparación a la que se tenía. Finalmente determiné que la mejor opción fue CABLEVISION (ahora IZZI) por que su propuesta cumplió con los requerimientos principales tales como costo, la implementación en el menor tiempo posible y calidad en los servicios. Ya con la compañía elegida comencé por implementar el nuevo cableado estructurado para finalmente integrar los servicios de telefonía e Internet bajo la tecnología de Voz sobre IP (VoIP) que ofrece IZZI.

Una vez que estos servicios estaban listos y funcionando de manera correcta comencé con la migración de nuestro sitio web (icri.mx) y de las cuentas de correo electrónico que se encontraban alojadas en un servidor con el que constantemente se perdía comunicación. Tomando las características del antiguo servidor en la nube fue que busqué una solución con diferentes proveedores donde RACKSPACE fue la mejor opción que nos brindó alta disponibilidad y un soporte técnico de calidad, y eliminando es su totalidad los problemas que se tenían con el antiguo proveedor de Web Hosting.

Como parte final fue fundamental proteger todo lo que se implementó abarcando dos partes fundamentales que fueron la protección eléctrica y el sistema de enfriamiento para el centro de comunicaciones (SITE), esto considerando la parte física (hardware) que abarca servidores, switches, routers, etc. Y el otro aspecto importante fue la seguridad de la información (software) que son archivos tales como documentos de texto, PDFs, fotografías, escaneos, correos, registros y
lecturas de los termómetros, etc. Esto lo hice reconfigurando y activando la licencia del firewall que la empresa tenía pero no usaba debido a que no lo tenían correctamente integrado. Esto benefició al control y acceso a los servicios de Internet, programas de computadoras, detección y prevención de virus, intrusos y cualquier anomalía presentada en la red.

Es notable destacar que las aportaciones que hice a la empresa están plasmadas en los resultados finales debido a que actualmente los servicios se encuentran funcionando de manera óptima, con los menores problemas posibles, y los usuarios están conformes con los resultados. Además de que hubo una disminución en los costos de los servicios y con grandes beneficios.
Capítulo 1
Marco teórico

Para poder planear, diseñar e implementar un proyecto es necesario conocer las herramientas y conceptos con los cuales se va a resolver la problemática, dar una solución según los requerimientos que se necesiten, debido a esto veremos las definiciones, objetivos y tipos de redes que existen, así como los principios básicos del cableado estructurado y sus características que involucran qué tipo de equipo y dispositivos se utilizan.
1.1 Definición de redes

Una red informática es un conjunto de dispositivos interconectados entre sí a través de un medio alámbrico o inalámbrico por el cual se intercambian información y comparten recursos. Básicamente, la comunicación dentro de una red informática es un proceso en el que existen dos roles bien definidos para los dispositivos conectados: el emisor y receptor, que se van asumiendo y alternando en distintos instantes de tiempo.

También existen mensajes los cuales dependiendo del rol que tengan en la red es como se intercambian. La estructura y el modo de funcionamiento de las redes informáticas actuales están definidos en varios estándares, siendo el más extendido de todo el modelo TCP/IP, basado en el modelo de referencia o teórico OSI.

1.2 Objetivos de las redes

Existen demasiadas empresas que cuentan con un número considerable de equipos computacionales así como servidores en operación, y con frecuencia alejados unos de otros. Por lo que el objetivo básico es compartir recursos, esto se refiere a hacer que todos los programas, datos y equipos estén disponibles para cualquiera que esté trabajando en la red lo pueda solicitar, sin importar la localización del recurso y del usuario.

Un segundo objetivo es proporcionar una alta fiabilidad y disponibilidad, al contar con fuentes alternatives de suministro, refiriéndose a la gran cantidad de servidores y unidades de almacenamiento conectadas por medios físicos como switches, puntos de acceso, routers, etc.

Todos los archivos podrían ser duplicados o moverse de sitio y ser trabajados en diferentes equipos de cómputo, de tal manera que si existen archivos que no se
encuentran disponibles, podrían ser utilizados por medio de copias, o si el equipo donde está el archivo está ocupado puede usarse otra terminal que se encuentre bajo la misma red, ya sea física o lógica. La presencia de múltiples CPU significa que si una de ellas deja de funcionar, las otras pueden ser capaces de encargarse de su trabajo, aunque se tenga un rendimiento global menor.

1.3 Tipos de redes

Se distinguen diferentes tipos de redes según su tamaño (en cuanto a la cantidad de equipos), su velocidad de transferencia de datos y su alcance. Las redes privadas pertenecen a una misma organización que es determinada por su área geográfica. Generalmente se dice que existen tres categorías de redes:

- LAN (Red de área local)
- MAN (Red de área metropolitana)
- WAN (Red de área extensa)

1.3.1 LAN - Red de Área local

Red de Área local (Local Area Network o LAN): es un conjunto de equipos que pertenecen a la misma organización y están conectados dentro de un área geográfica pequeña mediante una red, generalmente con la misma tecnología (la más utilizada es ethernet), aunque también existen redes híbridas que están compuestas por cable ethernet, coaxial y fibra óptica y que dependiendo de las necesidades y requerimientos son implementadas.

Una red de área local es una red en su versión más simple y la velocidad de transferencia de datos puede alcanzar hasta 10 mbps (por ejemplo, en una red
ethernet) y 1 gbps (por ejemplo gigabit ethernet). Una red de área local puede contener 100, o incluso 1000, usuarios.

Al extender la definición de una LAN con los servicios que proporciona, se pueden definir dos modos operativos diferentes:

- En una red "de igual a igual" donde la comunicación se lleva a cabo de un equipo a otro sin un equipo central y cada equipo tiene la misma función.
- En un entorno "cliente/servidor" donde un equipo central brinda servicios de red para los usuarios.

1.3.2 MAN - Red de Área Metropolitana

Red de Área Metropolitana (Metropolitan Area Network o MAN) conecta diversas LAN cercanas geográficamente (en un área de alrededor de cincuenta kilómetros) entre sí a alta velocidad. Por lo tanto, una MAN permite que dos nodos remotos se comuniquen como si fueran parte de la misma red de área local.

Una MAN está compuesta por conmutadores o routers conectados entre sí mediante conexiones de alta velocidad (generalmente cables de fibra óptica).

1.3.3 WAN - Red de Área Extensa

Una Red de Área Extensa (Wide Area Network o WAN) conecta múltiples LAN entre sí a través de grandes distancias geográficas. La velocidad disponible en una WAN varía según el costo de las conexiones (que aumenta con la distancia) y puede ser baja.

Las WAN funcionan con routers, que pueden "elegir" la ruta más apropiada para que los datos lleguen a un nodo de la red. La WAN más conocida es Internet que es una red de redes mundial.
1.4 Topologías de red

Una red de comunicaciones está compuesta por equipos de cómputo que están conectados entre sí mediante líneas de comunicación (cables de red) y elementos de hardware (adaptadores de red, routers, switches, hubs, etc.). La configuración física, es decir la configuración espacial de la red, se denomina topología física de las cuales podemos nombrar:

- Topología de bus
- Topología de estrella
- Topología en anillo

1.4.1 Topología de bus

La topología de bus es la manera más simple en la que se puede organizar una red. En la topología de bus, todos los equipos están conectados a la misma línea de transmisión mediante un cable, generalmente coaxial (véase FIG. 1.1). La palabra "bus" hace referencia a la línea física que une todos los equipos de la red.

![FIG. 1.1 - Topología bus.](image)

La ventaja de esta topología es su facilidad de implementación y funcionamiento. Sin embargo, esta topología es altamente vulnerable, ya que si una de las conexiones es defectuosa, esto afecta a toda la red.
1.4.2 Topología de estrella

En la topología de estrella, los equipos de la red están conectados a un hardware denominado concentrador. Es una caja que contiene un cierto número de sockets a los cuales se pueden conectar los cables de los equipos (véase FIG. 1.2). Su función es garantizar la comunicación entre esos sockets.

![FIG. 1.2 - Topología estrella.](image)

A diferencia de las redes construidas con la topología de bus, las redes que usan la topología de estrella son mucho menos vulnerables, ya que se puede eliminar una de las conexiones fácilmente desconectándola del concentrador sin paralizar el resto de la red. El punto crítico en esta red es el concentrador, ya que la ausencia del mismo imposibilita la comunicación entre los equipos de la red.

Sin embargo, una red con topología de estrella es más cara que una red con topología de bus, dado que se necesita hardware adicional (el concentrador).

1.4.3 Topología en anillo

En una red con topología en anillo, los equipos se comunican por turnos y se crea un bucle de equipos en el cual cada uno "tiene su turno para hablar" después del otro (véase FIG. 1.3).
En realidad, las redes con topología en anillo no están conectadas en bucles. Están conectadas a un distribuidor denominado Unidad de acceso multiestación (MAU) que administra la comunicación entre los equipos conectados a él (véase FIG. 1.4), lo que le da tiempo a cada uno para "hablar".

Las dos topologías lógicas principales que usan esta topología física son la red en anillo y la interfaz de datos distribuidos por fibra (FDDI).
1.5 VLAN - Red de Área Local Virtual

Una Red de Área Local Virtual (VLAN) es una subred IP separada de manera lógica las cuales permiten que redes IP y subredes múltiples existan en la misma red conmutada, son útiles para reducir el tamaño de la difusión o broadcast (que es una forma de transmisión de información donde un nodo emisor envía información a una multitud de nodos receptores de manera simultánea, sin necesidad de reproducir la misma transmisión nodo por nodo) y de esta forma ayudan en la administración de la red separando segmentos lógicos de una red de área local (como departamentos para una empresa, oficina, universidades, etc.) que no deberían intercambiar datos usando la red local.

Cada computadora de una VLAN debe tener una dirección IP y una máscara de subred correspondiente a dicha subred.

No es obligatorio el uso de VLAN en las redes conmutadas, pero existen ventajas reales para utilizarlas como seguridad, reducción de costo, mejor rendimiento, reducción de los tamaños de broadcast y mejora la administración de la red.

El acceso a las VLAN está dividido en un rango normal o un rango extendido, las VLAN de rango normal se utilizan en redes de pequeñas y medianas empresas, se identifican por un ID de VLAN entre el 1 y 1005 y las de rango extendido posibilita a los proveedores de servicios que amplíen sus infraestructuras a una cantidad de clientes mayor y se identifican mediante un ID de VLAN entre 1006 y 4094 (véase FIG. 1.5).
1.6 Cableado estructurado

Antes de comenzar a implementar los servicios de telefonía fue importante determinar el estado del cableado estructurado el cual se define como un sistema de cables en específico que cumplen ciertas normas y requerimientos para interconectar equipos activos, de diferentes o igual tecnología permitiendo la integración de los diferentes servicios que dependen del tendido de cables tales como datos, telefonía, control, solo por mencionar algunos. Y que tienen como objetivo fundamental cubrir las necesidades de los usuarios durante la vida útil del edificio sin necesidad de realizar más tendido de cables, debido a esto fue importante tomar en consideración lo que pudo ser útil para ahorrar dinero y desear lo que no se necesite para generar espacios y mantener un orden.

Los medios de comunicación que pueden ser alámbricos o inalámbricos tienen relación con la capa física que controla la ubicación y transmisión de los datos.
Los protocolos de la capa superior del modelo Open System Interconnection (OSI) preparan los datos para su trasmisión desde la interfaz red humana hacia el destino requerido.

La función de la capa física es codificar en señales los dígitos binarios que representan las tramas de la capa de enlace de datos, además de transmitir y recibir estas señales a través de los medios físicos (cable UTP, fibra óptica o medios inalámbricos, entre otros) que conectan los dispositivos de la red.

Tomando en cuenta que el medio físico por el cual se transmió la información (voz y datos) partiendo desde la base central de donde se entrega el servicio para ser recibido por las entradas del inmueble que pueden ser medios subterráneos, a través postes con tendidos de cables o por medios inalámbricos como antenas, posteriormente se distribuye por el cableado vertical (backbone) del edificio hasta llegar al cuarto de equipos que continua su camino hacia los armarios de telecomunicaciones correspondiente a cada piso, y a partir de este punto comenzar el cableado horizontal que se extiende a lo largo del área de trabajo donde se encuentran las terminales de trabajo de los usuarios. En la FIG. 1.6 podemos observar todo lo anterior de forma detallada.
Una de las utilidades del cableado estructurado es aprovechar otros elementos como paneles de terminación, módulos, conectores, cable UTP, instalados y configurados para proporcionar conectividad de voz, datos y vídeo desde los repartidores designados hasta las rosetas de las distintas mesas, estaciones de trabajo y otros emplazamientos. Como elemento base se tiene la ubicación del SITE y del rack principal donde se centraliza todo el sistema de comunicaciones (véase FIG. 1.7).
1.6.1 Cable UTP y patch cords

Está formado por cable flexible de 4 pares trenzados que se clasifican en diferentes categorías como son cat5e, cat6, cat7 y cat7a se usan dependiendo de las necesidades y requerimientos de los sistemas de comunicaciones así como del capital para el proyecto ya que dependiendo de la categoría los costos aumentan. Como recomendación por parte de las normas ANSI/EIA/TIA-568-A es conveniente que para una instalación nueva se utilice a partir de la CAT6 en adelante. El acabado del cable puede quedar en ambos extremos con conector modular de 8 contactos (RJ45). El patch cord (cable parchado) es la parte más crítica del sistema de cableado estructurado. Por una parte es el elemento más difícil de fabricar y por tanto del que peor rendimiento se obtiene. Sin embargo es el elemento más vulnerable desde el punto de vista del uso al que se destina y del contacto directo.
con el usuario. Por tanto, es el elemento que hay que tratar con más cuidado y enfatizar mucho más en su diseño y fabricación.

La terminación perfecta del patch cord deberá mantener la integridad física de los pares hasta su conexión con el conector (plug), y deberán separarse en la medida de lo posible los pares dentro del conector para evitar diafonías y el sistema de crimpado o sujeción no debe alterar la geometría del cable de tal manera que no varíe la impedancia a lo largo del patch cord (véase FIG. 1.8). Además el proceso de diseño y fabricación de los cables necesita ajustar y reducir las tolerancias a valores muy pequeños.

Las diferencias que existen entre cat5e y cat6 por dar un ejemplo, es en el contexto de la UTP (par trenzado sin blindaje) como lo muestra FIG. 1.9) que es un tipo de cable de 100 ohmios utilizados para la configuración ethernet con “catx” la cual es una abreviatura para el número de categoría que define el comportamiento de la construcción de cableado de telecomunicaciones como se indica por la normas de la Asociación de Industrias Electrónicas (EIA).
El cableado UTP se ha convertido en la construcción de la mayoría de las compañías de cable pues es más fácil de instalar y menos costoso. UTP cat3 y cat4 se utilizaron durante un tiempo muy limitado, ya que la aparición de las redes 100 base-TX dio lugar a un cambio rápido a CAT5. El incremento actual de uso de Gigabit (1000 base-TX) ethernet LAN creó la necesidad de otra especificación que son cat5e y cat6.

Con respecto al cable de categoría 6 el cual maneja un estándar para gigabit ethernet y otros protocolos de red que es compatible con otras categorías anteriores como la cat5e. La categoría 6 cuenta con especificaciones más estrictas para crosstalk (diafonía) y ruido del sistema (véase FIG. 1.10). El estándar de cable proporciona un rendimiento de hasta 250 MHz y es adecuado para 10 base-T/100 base-TX y 1000 base-T/1000 base-TX (gigabit ethernet).
Para realizar las conexiones se tienen los conectores hembra o jacks son módulos que encajan perfectamente en las rosetas estándar de los principales fabricantes, cajas de montaje superficial y paneles modulares.

Los paneles modulares están disponibles en versiones de 1U y 2U. Para diferentes circunstancias y necesidades, diferentes soluciones. Estos hacen posible la manipulación posterior del cable, facilitando en gran medida la instalación respecto a los actuales métodos de terminación y agrupación de cables, ya que reducen el tiempo y los pasos de terminación y maceado de la parte posterior del panel (véase FIG. 1.11).

El patch panel donde se ubican los puertos de una red, normalmente localizados en un bastidor o rack de telecomunicaciones. Todas las líneas de entrada y salida de los equipos (ordenadores, servidores, impresoras, entre otros) tendrán su conexión a uno de estos paneles.

En una red LAN, el patch panel conecta entre sí a los ordenadores de una red, y a su vez, a líneas salientes que habilitan la LAN para conectarse a Internet o a otra red WAN. Las conexiones se realizan con patch cords o cables de parcheo, que son los que entrelazan en el panel los diferentes equipos.
1.7 Servidores

Un servidor puede ser un equipo de cómputo o dispositivo informático que está al “servicio” de computadoras u otros dispositivos electrónicos como móviles (smartphones, tablets), impresoras, consolas de videojuegos, entre otros dispositivos (véase FIG. 1.12). Incluyendo la comunicación a clientes o usuarios, a los cuales se les suministra todo tipo de información o servicios.

FIG. 1.12 - Topología del funcionamiento de un servidor.
También existen los Servidores Virtuales Privados (Virtual Private Server o VPS) es un método de particionar un servidor físico en varios servidores de tal forma que todo funcione como si se estuviese ejecutando en una única máquina. Cada servidor virtual es capaz de funcionar bajo su propio sistema operativo y además cada servidor puede ser reiniciado de forma independiente (véase FIG. 1.13). Es un tipo de hosting virtual (hospedaje o lugar de almacenamiento) compartido independiente con características de un hosting dedicado físico. Esto hace que un servidor VPS sea mucho más potente y flexible que un hosting compartido pero sin tener que pagar el alto precio de todo un servidor dedicado.

FIG. 1.13 - Representación lógica de un servidor virtual.

Las ventajas de un servidor VPS respecto a un servidor compartido es que cada instalación es independiente. En un hosting compartido todos los usuarios comparten los recursos del servidor y si hay algún problema todos los usuarios pueden ver afectado el rendimiento.

En un servidor VPS esto no es así. Los recursos asignados a un VPS los utiliza sólo el propio VPS y es independiente del resto de instalaciones que existan en el mismo servidor.
Con esto se gana en estabilidad y rendimiento sin la necesidad de adquirir un servidor dedicado, los cuales tienen un precio mucho más elevado.

Dependiendo de la compañía que preste el servicio tendrás acceso a la potencia, privacidad y seguridad que te otorga un servidor dedicado propio pero con el precio de un hosting compartido (más económico al compartir equipo con otras cuentas).

1.7.1 Servidor web y de correo electrónico

Un servidor web o servidor Hypertext Transfer Protocol (HTTP) es un software que procesa una aplicación del lado del servidor, realizando conexiones bidireccionales y/o unidireccionales y síncronas o asíncronas con el cliente y generando o cediendo una respuesta en cualquier lenguaje o aplicación del lado del cliente.

El código recibido por el cliente suele ser compilado y ejecutado por un navegador web. Para la transmisión de todos estos datos suele utilizarse algún protocolo. Generalmente se usa el protocolo HTTP para estas comunicaciones, perteneciente a la capa de aplicación del modelo OSI. Básicamente se componen de páginas web donde los usuarios pueden acceder a informaciones con texto, vídeos, imágenes, etc. y navegan a través de enlaces o hipervínculos a otras webs, como ejemplo se puede ver en la FIG. 1.14.
Un servidor de correos es el que almacena, envía, recibe y realiza todas las operaciones relacionadas con los correos electrónicos de sus clientes. Para el funcionamiento de un servidor especializado en correos electrónicos se utilizan los protocolos POP3 y SMTP para recibir los correos de nuestro servidor en nuestro cliente, o para enviar desde nuestro cliente un correo al servidor de otro cliente (véase FIG. 1.15). Aunque hay diversos tipos de protocolos estos son los más utilizados. Un protocolo no es otra cosa que “una forma de hacer algo” una serie de procesos y procedimientos para cumplir una tarea bajo ciertas normas específicas.
1.8 Seguridad informática

Consiste en asegurar que los recursos del sistema de información de una organización se utilizan de la manera que se decidió y que el acceso a la información allí contenida así como su modificación solo sea posible a las personas que se encuentren acreditadas y dentro de los límites de su autorización.

Es cierto que todos los componentes de un sistema informático están expuestos a un ataque, son los datos y la información los sujetos principales de protección de las técnicas de seguridad. La seguridad informática se dedica principalmente a proteger la confidencialidad, la integridad y la disponibilidad de la información (véase FIG. 1.16), por tanto, actualmente se considera que la seguridad de los datos y la información comprenden estos tres aspectos fundamentales:

- **Confidencialidad:** se trata de la cualidad que debe poseer un documento o archivo para que éste solo se entienda de manera comprensible o sea leído por la persona o sistema que esté autorizado.

- **Integridad:** es la cualidad que posee un documento o archivo que no ha sido alterado y que además permite comprobar que no se ha producido manipulación alguna en el documento original.

- **Disponibilidad:** se trata de la capacidad de acceso a un servicio o de un sistema por parte de los usuarios o procesos autorizados cuando lo requieran. También se refiere a la capacidad de que la información pueda ser recuperada en el momento que se necesite. Son sistemas que deben estar disponibles las 24 horas al día, 7 días a la semana, 365 días al año.
Hay que tener en cuenta que tanto las amenazas como los mecanismos para contrarrestarlas suelen afectar estos aspectos de forma conjunta, por lo que un fallo en el sistema que provoque que la información no sea accesible puede llevar consigo una pérdida de integridad y que no se garantice la seguridad. Dependiendo del entorno en el que trabaje un sistema, los responsables deberán dar prioridad a un cierto elemento de la seguridad.

Además de los aspectos anteriormente mencionados también se incluye la autenticación y el no repudio:

- **Autenticación**: es la situación en la cual se puede verificar que un documento ha sido elaborado o pertenece a quien el documento dice. La autenticación de los sistemas informático se realizan habitualmente mediante nombre y contraseña.

- **No repudio**: el no repudio o no renunciar es un servicio de seguridad estrechamente relacionado con la autenticación y que permite probar la participación de las partes en una comunicación. Puede tener dos posibilidades, No repudio en origen donde el emisor no puede negar el envío porque el destinatario tiene pruebas del mismo el receptor recibe una prueba
infalsificable del envío. No repudio de destino donde el receptor no puede negar que recibió el mensaje porque el emisor tiene pruebas de la recepción.

En conjunto dan como resultado CIDAN, las cuales son las siglas que corresponden a las iniciales de cada concepto.
Capítulo 2

Infinite Clinical Research (ICR)

Infinite Clinical Research es una empresa de Investigación Clínica por Contrato (CRO) y es una institución mexicana que cuenta con más de 13 años de experiencia generando negocios alrededor del mundo, principalmente en México y Latinoamérica.

ICR brinda sus servicios de manera integral conforme a las necesidades de cada uno sus clientes, permitiéndoles cubrir todas sus necesidades y requerimientos de investigación clínica. Los servicios que ICR ofrece son:

- Monitoreo de estudio clínico de fase II a fase IV.
- Registro de los medicamentos en canasta institucional básica de medicamentos.
- Diseño de protocolo.
- Consultoría.
- Capacitación de personal.
- Farmacovigilancia.
- Farmacoeconomía.
- Gestión de proyectos.
- Manejo de comités de ética y almacén de material clínico.
Cada uno de sus servicios puede ser agregado como módulo a su contrato para adaptarse a sus necesidades de investigación clínica.

Las oficinas de ICR se encuentran en la Ciudad de México, su experiencia junto con la calidad de operaciones los ha llevado a ser una empresa de referencia para aquellos que buscan realizar sus operaciones clínicas en México y América Latina. Sus estándares de calidad y amplia cartera de servicios, así como una flexibilidad única en el mercado, les permite ofrecerle servicios profesionales y personalizados, que aseguran cumplir con todas las expectativas.

2.1 Misión

Colaborar en el desarrollo, creación e investigación de nuevos fármacos en pro de mejorar la salud y calidad de vida humana.

2.2 Visión

Ser la empresa líder en servicios de outsourcing para la industria farmacéutica dentro de la región de México y América Latina.

2.3 Experiencia

Contamos con más de 12 años de experiencia laboral manejando estudios clínicos internacionales de multi-sitio de fase II a fase IV en las mayores áreas terapéuticas, tales como:

- Oncología.
- Enfermedades infecciosas.
- Cardiología.
- Enfermedades metabólicas.
- Sistema nervioso central.
- Terapia celular.
- Tecnología médica.
- Productos dentales.
- Dermatología.
- Gastroenterología.
- Neumonía.
- Psiquiatría.
- Endocrinología.
- Ginecología.
- Reumatología.
- Evaluativa.
- Oftalmología.

2.4 Beneficios y compromisos

ICR se esfuerza en tener un alto rendimiento en sus operaciones con base en las necesidades de sus clientes, manteniendo siempre un perfil ético en todos sus procesos con el fin de fomentar una actitud de trabajo en equipo; la integridad corporativa; el respeto entre las instituciones y la entrega de resultados de alta calidad. Para ello basan sus operaciones en los siguientes valores empresariales:

- Calidad y servicio al cliente. Su primer compromiso es satisfacer y superar las expectativas de sus clientes; lo hacen con calidad, cortesía, oportunidad y profesionalismo.

- Compromiso. Hacen propios los objetivos de la empresa; actúan con plena disposición y entregan lo mejor de ellos para alcanzar los más altos niveles de desempeño y resultados.
- Honestidad. Actúan siempre con principios éticos, consecuentes con los objetivos, principios y normas de la empresa; obran con sentido de justicia y respetamos la verdad.

- Respeto. Invariablemente tratan a las personas con dignidad y respeto; se apegan a las normas establecidas; se esfuerzan por comprender y valorar los puntos de vista y circunstancias de los demás.

- Co-responsabilidad. Son corresponsables, solamente ofrecen lo que pueden cumplir; responden por lo que hacen o dejan de hacer; dan la cara por sus actos, no eluden compromisos y se esfuerzan por cumplir en tiempo y forma. Reconocen sus errores y buscan corregirlos.

- Trabajo en Equipo. Operan con armonía promoviendo la comunicación, cooperación y solidaridad entre los equipos de trabajo; en la empresa integran talentos y esfuerzos para generar resultados sobresalientes constantes.
CAPÍTULO 3

Ingreso al ambiente laboral

Una vez terminada la carrera y antes de titularme decidí buscar trabajo para aplicar mis concomimientos y obtener experiencia laboral, conocer el ambiente en el que se desvuelven los empresarios, ejecutivos, equipos de trabajo y las diferentes áreas que integran una empresa, en este capítulo explico cada una de las habilidades obtenidas en los trabajos previos a ICR.
3.1 Trabajo 1: Secure IT México (SIT México)

En Julio del 2013 ingresé a una consultoría que ofrece soluciones de Tecnologías de la Información (TI) donde desempeñé el cargo de Ingeniero de Implementación como parte de un equipo de cinco personas, el cual tenía la tarea de realizar el levantamiento de información, detectar el dolor o necesidad del cliente para de este modo ofrecer una solución a la medida tales como servidores, sistemas de almacenamientos, equipos de cómputo, software, virtualización en plataforma VMware.

De este modo se les vendía la solución, se hacía la implementación de los equipos y servicios para posteriormente darle seguimiento al proyecto con soporte y monitoreo. También estuve involucrado en cotizaciones, manejo de precios, contacto directo con proveedores y fabricantes quienes también me capacitaron en sus diferentes equipos como firewalls, blades, servidores, switches, routers, etc. Finalizando mi actividad laboral en Junio del 2014.

3.2 Trabajo 2: Procesos y Servicios de Mercadeo (PSM)

Una vez terminado mi periodo laboral en SIT México, me integré inmediatamente ese mismo mes a una empresa dedicada a la administración por categoría la cual es una metodología de trabajo que trata a cada una de las líneas de productos, como unidades de negocios y centros de beneficios individuales. Estas acciones implican un cambio de cultura organizacional por parte de fabricantes y detallistas en áreas de mutuo interés, tales como: manejo de inventarios, mejoramiento de la rentabilidad de los productos, incremento de la rotación y el servicio al cliente.

Mi cargo fue ser ejecutivo de TI y trabajar en conjunto un superior del área para realizar actividades tales como administrar el acceso de los usuarios a los servidores, creando políticas de seguridad que garantizaron la integridad de la
información contenida en los mismos, también estaba a cargo de la administración de las redes y telefonía, lo que incluía manejo y monitoreo de routers, switches, puntos de acceso, conmutador, etc. Ofrecer soporte técnico, acciones preventivas y correctivas a los equipos de cómputo así como la compra de insumos de TI realizando cotizaciones y contacto con proveedores. Realicé cambios en la infraestructura del cableado a diferentes oficinas adaptándolas a las nuevas necesidades de los usuarios. Mejoré las condiciones del SITE aprovechando los recursos que la empresa me brindó.

3.3 Ingreso a ICR y descripción del puesto de trabajo

Tras concluir mi estancia en PSM en Junio del 2015, pasó solo un mes para ingresar en Agosto de ese mismo año a ICR, una empresa de investigación por contrato que se dedica a la investigación clínica, monitoreo y operaciones médicas.

El anterior encargado del área de sistemas se había retirado hace tres meses aproximadamente, por lo que a mi llegada quede como el administrador de sistemas y el único miembro del área. Tuve la ventaja de tomar por completo los cargos del puesto para ir detectando las anomalías que impedían realizar de manera óptima las operaciones de la empresa tales como equipos en mal estado físico o lógico, interrupciones en los servicios de telefonía e internet, mala administración de los accesos a servidores, problemas con la página web y servidor de correos.

No existía un inventario de equipo ni registros de usuarios, los procedimientos establecidos por la empresa y realizados por el anterior administrador de sistemas no se utilizaban por lo que también se modificaron junto con ayuda del área de calidad para que se adaptaran a las nuevas necesidades y cambios que estaba teniendo la empresa.

El cargo que desempeño en ICR es el de Administrador de Sistemas y mis responsabilidades en la misma son las siguientes:
• Controlar, proteger y garantizar la seguridad de la información de los servidores.

• Mantener la alta disponibilidad de los servicios de telecomunicaciones (telefonía e Internet).

• Implementar acciones preventivas y correctivas para los equipos de cómputo.

• Ofrecer e implementar soluciones a nuevos proyectos.

• Documentación de procedimientos para el área de sistemas.

• Monitoreo del almacén mediante cámaras de seguridad IP.

• Cuidar y mantener los termómetros del área de medicamentos.

• Administrar las cuentas de correo y página web.
Capítulo 4

Situación actual de la empresa

Aquí se describe las problemáticas que se tenían antes, las condiciones en que se encontraba la empresa con respecto a su cableado, el equipo que manejaban para sus servicios de telefonía e Internet, la distribución de las oficinas, la previa ubicación del rack de comunicaciones, los termómetros montados en el almacén, así como de su servidor de correos y página web.

Además de mis funciones cotidianas como administrador de sistemas propuse los siguientes proyectos:

- Cambio del cableado estructurado de todas las oficinas y almacén, quitando cable obsoleto y dañado, así mismo se cambió la ubicación del SITE.

- Implementación de los nuevos servicios de Internet y telefonía a través de VoIP, con una mejor velocidad, alta disponibilidad, servicios digitales y nuevos equipos de telefonía. Todos los servicios a través de una Red de Área Local Virtual (VLAN) proporcionada por el proveedor.

- Migración del sitio web y servidor de correos que ofreció un panel de administración más seguro y configurable lo que aseguró la estabilidad de los servicios.
4.1 Distribución de las oficinas

La empresa se encuentra dividida en dos pisos, el piso 6 tiene toda la parte administrativa, básicamente son las puras oficinas y un piso siete que se adaptó como un almacén de medicamento.

En el piso 6, están la parte administrativa, operaciones, contabilidad y dirección. Distribuidas en pequeños cubículos que contaban con su roseta telefónica y jack RJ45 para la red además de estar conectados de manera inalámbrica por un punto de acceso (UBNT Rocket M2) ubicado en la parte central de las oficinas.

Dos pequeñas salas de teleconferencia que contaban con las mismas conexiones, además de la sala principal de juntas con doble conexión de telefonía e internet vía Ethernet solamente.

En el piso 7, se encuentra el almacén que ocupa la mayor parte del piso donde resguardan los medicamentos y se monitorean para hacer pruebas, está completamente aislado debido a que están midiendo las variaciones de temperatura por medio de unos termómetros IP conectados en red para entregar la información a una estación de trabajo que tiene instalado un administrador de base de datos específico llamada COMET DATABASE VIEWER que recibe las lecturas de los termómetros y los clasifica entregando gráficas periódicas describiendo el comportamiento de la temperatura. Esta aplicación trabaja en conjunto con el manejador de base de datos en MySQL (Structured Query Language).

Es importante que la temperatura no rebase los 25 °C para evitar que los medicamentos sufran alguna alteración que provoque algún problema en pruebas médicas.
4.2 Estado del cableado y servicios

Debido a la antigüedad del inmueble, el cableado estructurado se encontró demasiado dañado, las tuberías y canaletas estaban saturadas con cables sin uso, mezclados con cables de energía eléctrica que produjeron interferencia y mal funcionamiento de la red, además de no contar con identificación y orden del cableado.

Consideré que los servicios de telefonía e Internet no funcionaban de manera adecuada no solo por la situación del cableado, también se perdía la comunicación telefónica, el Internet era demasiado lento y constantemente se perdía el enlace. La mesa de ayuda (soporte técnico) demoraba mucho en dar solución, los usuarios se quejaban y todo esto se reflejó sus operaciones.

Anteriormente se contaba con líneas analógicas las cuales engloban una Red de Telefonía Conmutada (RTC) y básicamente estaban pensadas primordialmente para transmisión de voz, aunque también se transportaban datos como era el caso conexión a Internet con una velocidad de transferencia de 6 Mbps. Esto era mediante un módem el cual proporcionaba los servicios de manera separada por medio de cable telefónico y cable de red Ethernet.

En comparación con los servicios digitales brindados por otras empresas que pueden ofrecer telefonía IP (VoIP) y datos (Internet) a través de un mismo medio de comunicación. El servicio de Internet se entrega a través de una VLAN la cual no depende de las limitaciones de la arquitectura física, tiene mayor flexibilidad en la administración y en los cambios de la red, ya que la arquitectura puede cambiarse usando los parámetros de los conmutadores, por lo que la seguridad de la información se encapsula en un nivel adicional se analiza para verificar errores, además de que hay una disminución en la transmisión de tráfico en la red.

El antiguo proveedor no podía actualizar sus servicios de manera inmediata para ofrecernos un mayor ancho de banda, tardaría más de un año en integrar el
cableado necesario en las inmediaciones del inmueble, por lo que opté por buscar otros proveedores que nos pudieran ofrecer los servicios lo antes posible.

4.3 Ubicación inicial del SITE

Inicialmente el centro de cómputo (SITE o Data Center) donde se encuentra todo el equipo físico tal como servidores, unidades del almacenamiento (NAS, SAN), switches, routers, entre otros más dispositivos, se encontraba dividido en dos partes ubicadas en los dos pisos que componen a la empresa.

En la FIG. 4.1 se muestra la ubicación que tenía el primer rack en el piso 6:

![FIG. 4.1 – Mapa de las oficinas del piso 6.](image-url)
Mueble de madera que contiene papel para impresión y copiado.

Primer rack que contenía switches, conmutador, firewall y patch panel.

Centro de impresión y copiado.

El cual contenía estos dispositivos:

- 1 switch ANSEL 4253 (24-PORT GB).
- 1 switch LINKSYS SR2024 (24-PORT 10/100/1000 GB).
- 1 firewall FORTINET FORTIGATE 60D (FG-60D).
- 1 conmutador PANASONIC KX-TDA100DBX.
- 1 patch panel TRENDNET TC-P48C5E.
Como se ilustra en las siguientes imágenes (véase FIG. 4.2, 4.3, 4.4, 4.5, 4.6).

FIG. 4.2 - ANSEL 4253.

FIG. 4.3 - LINKSYS SR2024.

FIG. 4.4 - FORTINET FORTIGATE 60D.

FIG. 4.5 - PANASONIC KX-TDA100DBX.

FIG. 4.6 - TRENDNET TC-P48C5E.
Distribuidos de la siguiente manera:

![Diagrama del rack en piso 6](image)

FIG. 4.7 – Configuración inicial del rack en piso 6.

Todo este equipo estaba en un cuarto de 1.5 m^2, además de compartir el espacio con un centro de impresión y un mueble de madera que contenía papel para fotocopiado. Es un lugar muy reducido para contener el rack, lo que generaba mucho calor, no contaba con ningún sistema de enfriamiento y era propenso a provocar que algún usuario por descuido pudiera desconectar algún cable o dispositivo. Por ser un área común para el centro de impresión no contaba con puerta o algún otro tipo de seguridad de acceso.

La ubicación del segundo rack se muestra en la FIG. 4.8 que es un mapa del almacén:
Segundo rack que contenía una estación de trabajo (CPU), dos servidores y un monitor.

La descripción de los equipos instalados en este rack:

- 1 servidor HP PROLIANT ML10 (File Server).
- 1 servidor HP PROLIANT ML350 (Active Directory y DNS server).
- 1 estación de trabajo QBEX SUMI PRECISION (Aplicación para la lectura de termómetros).

Distribuidos de la siguiente manera:
El segundo rack que se encontraba en el almacén tenía mejor ubicación para poder garantizar su seguridad. Un cuarto aislado y más grande que el del piso 6 con dimensiones de 4 m de largo por 3 m de ancho, con una ligera reducción de 1 m por 1.5 m en la parte inferior correspondiente a la entrada. En el cuarto tuve la posibilidad de instalar aire acondicionado (mini split) para mantener el aire frío y evitar un sobrecalentamiento.

En la pared estaba un pequeño estante que contenía dos DVR CPCAM 4CH H.264 para el monitoreo y vigilancia de las instalaciones. Otro beneficio fue que contaba con puerta y seguro evitando que sea manipulado por gente ajena al área de sistemas.
4.4 Termómetros

Existen seis termómetros IP (véase FIG. 4.10) distribuidos a lo largo del almacén (Piso 7) en puntos específicos que estaban conectados directamente al switch ANSEL 4253 (24-PORT GB) piso inferior. Uno más ubicado en el archivero del piso 6 que también tenía su conexión al mismo switch.

La estación de trabajo tiene instalado un programa para visualizar el comportamiento de las temperaturas en el almacén y de este modo enviar el monitoreo obtenido en gráficas a los clientes.

Programas instalados en la estación de trabajo:

- COMET Datalogger Database Viewer (Program Version: 2.1.2.0 y DB API Version: 7.2.7.1).
- MySQL Express Edition 5.0.
- TSensor 3.2.5.0.
- ToAnalizer 1.3.
- TemperaturePublisher (aplicación hecha en Java para entregar las lecturas a la página web).

Cada seis meses se mandan calibrar los termómetros por lo que se cuenta con un paquete más de termómetros para intercambiarlos y que no se interrumpa por mucho tiempo el monitoreo de lecturas.
No incluían adaptadores de corriente y tampoco son Power Over Ethernet (PoE) así que se compraron convertidores regulados para su funcionamiento (véase FIG. 4.11).
4.5 Servidor de web hosting

El primer servidor que alojaba la página web y las cuentas de correos pertenecía a un proveedor de web hosting llamado M6.net y constantemente sufría de fallas, se quedaron días sin el servicio de correos, la página web de la empresa no se actualizaba y tuvo problemas con los formularios de contactos.

Configuración del servidor:

- Procesador Intel Xeon CPU E5-2650 2.00 GHz (2 procesadores).
- Memoria RAM 2 GB.
- Disco duro de 250 GB.
- Windows server 2012 standard x64 bits.

La configuración del servidor no era el problema, cumplía con los requerimientos y funciones para la página web, lo malo era que cuando se levantaba un ticket para ser atendido por la mesa de ayuda respondían demasiado tarde. Por ejemplo, si la falla se presentaba un lunes por la mañana la respuesta la recibía hasta tres días después y la solución tardada una semana aproximadamente, o en el peor de los casos definitivamente no recibía respuesta. Tenía que subir muchos tickets para ser tomado en cuenta. Hasta que casi tres semanas después se resolvía la situación pero nunca explicaban a detalle las fallas, y los problemas eran recurrentes. Tampoco había un contacto directo por teléfono o correo electrónico para informar de la situación.
Capítulo 5

Implementación del nuevo cableado, reubicación de áreas e integración de servicios

En esta sección describo cuáles fueron los proveedores que evalué para elegir el definitivo, así como el equipo que ofreció, el cambio de cableado estructurado, las nuevas configuraciones para los equipos de cómputo y demás dispositivos conectados a la red.

Para poder implementar estos equipos evalué las condiciones del inmueble y el cableado estructurado por lo que decidí cambiarlo en su totalidad para que cumpliera con los requisitos necesarios y de este modo hacer la contratación de los nuevos servicios.

Propuse un levantamiento de información para analizar el estado de la infraestructura y aprovechar los recursos que se tenían para adaptarlos a los cambios sin afectar mucho la integridad de las oficinas y del edificio. Con lo anterior revisado hice la recomendación de realizar todo el cableado en un fin de semana para no afectar operaciones, empezando por quitar el cableado telefónico que ya no se usó junto con el de red para comenzar a colocar el nuevo.

Como primera instancia se retiró todo el cable dañado y que no tuvo uso alguno para mejorar el servicio, se aprovecharon las canaletas y el sistema de tuberías del inmueble para evitar gastos innecesarios. También se utilizó como guía el antiguo cableado para meter el nuevo cable, con el objetivo de evitar la creación de orificios o abrir paredes ya que no se contaba con el permiso para hacer este tipo de modificaciones en el inmueble.
5.1 Nuevos proveedores: servicios de telefonía e internet

El problema era muy recurrente, necesité hacer un cambio de inmediato para evitar que afectara las labores de los usuarios, así que con base en mi experiencia, en contacto con proveedores de servicios de TI comencé a cotizar los servicios de telecomunicaciones con diferentes empresas que me ofrecieron buenos paquetes, equipos telefónicos adecuados para nuestras necesidades y con costos accesibles al presupuesto de la empresa.

La primera que revisé fue TELMEX, misma que estuvo contratada por muchos años pero no contó con la infraestructura en la zona donde está ubicado el edificio, les llevaría demasiado tiempo para comenzar las obras públicas, para luego ingresar su cableado al edificio y así llegar a las oficinas.

Mismo caso para la empresa AXTEL que ofrecía un paquete atractivo y conveniente pero con un costo más elevado, sin embargo el problema de la infraestructura en la zona continuo siendo el problema ya que les llevaría meses en obras públicas que involucraría cableado subterráneo y posteriormente en la vertical del edificio.

Ambas se tardarían más de un año en ofrecer sus servicios por lo que continué buscando más opciones y finalmente hubo una que cubrió con todas nuestras necesidades.

CABLEVISIÓN que ahora es IZZI fue la que consideré la mejor opción porque la propuesta tuvo un mejor costo-beneficio en comparación con el anterior proveedor, además de que los tiempos de implementación fueron más cortos en comparación con otras empresas que tardarían más de un año en comenzar a implementar su cableado subterráneo en las calles. Finalizando el proyecto en aproximadamente cuatro meses, esto fue debido a que IZZI ya había comenzado con el cableado en la zona.

En la siguiente tabla comparativa podemos ver de manera general las propuestas de cada uno de los proveedores:
Para comenzar revisé y analicé el tipo de servicio que ofrecieron, que clase de conmutador y equipo telefónico (véase FIG. 5.1 y FIG 5.2) estuvo incluido en el paquete, estos son los datos:

- **UC-540.** El Cisco Unified Communications 540 cuenta con 30 licencias de usuario.

- **4 puertos FXO y 4 puertos FXS** los cuales son los nombres de los puertos usados por las líneas telefónicas analógicas (también denominados POTS – Servicio Telefónico Básico y Antiguo) actualizable a un máximo de 38 usuarios utilizando estos puertos extra.

- **8 puertos Power Over Ethernet (PoE) 10/100** que es la capacidad que posee la infraestructura switching de las LAN para proporcionar energía a través de un cable Ethernet de cobre a un punto final o a un dispositivo alimentado.

Incluye una infraestructura de acceso Internet e IP PBX (Private Branch Exchange) la cual es una red de telefonía privada que es utilizada dentro de una empresa. Los usuarios de la central telefónica PBX comparten un número definido
de líneas telefónicas para poder realizar llamadas externas de manera rápida y eficaz.

Elimina costos por mantenimiento de un conmutador y reduce la inversión de un conmutador nuevo, no se requiere hardware adicional. También reduce los costos de actualizaciones y crecimientos de un PBX tradicional.

Permite administrar una sola red de voz y datos, eliminando un puerto de cableado estructurado. Incluidas las funcionalidades avanzadas en el IP PBX.

FIG. 5.1 - CISCO UC-540.

FIG. 5.2 - Teléfono IP CISCO PoE con puerto ethernet para PC modelo SPA502G.
Características para el control de llamadas:

- Línea Compartida.
- Desvío de llamadas (todas, ocupado, sin respuesta).
- Transferencia de llamadas: asistida / no asistida.
- Call Pickup - selectiva y grupal.
- Intercom y voceo.
- No molestar.
- Conferencia tripartita.
- Estacionamiento de llamadas.
- Monitoreo de status de extensión.
- Grupos de Salto (aleatorio, secuencial, todas).
- DID (número directo).

El tipo de cable también fue importante para que los nuevos servicios y dispositivos se aprovecharán al máximo por lo que se optó por usar cable Unshielded Twisted Pair (UTP) categoría 5e para estandarizar todo el sistema de cableado que anteriormente estaba dividido en dos secciones, uno para el servicio de telefonía (cable de cuatro hilos) y el servicio de Internet (cable UTP) que inicialmente se encontraba con diferentes tipos y categorías lo que produjo un mal funcionamiento, interferencias y mal funcionamiento de los servicios. Con la integración del nuevo cable categoría 5e (véase FIG. 5.3 y FIG 5.4) se logró una mejor administración e identificación del mismo, fue de un solo color, calibre y velocidad (100 Mbps, 1000 Mbps).

Propuse usar cable categoría 6 debido a que se trataba de una nueva instalación exponiéndole las ventajas y las normas que se deben cumplir para un caso como este, sin embargo a pesar de la explicación que le di al director general justificando la posibilidad de usar este cable la razón para descartarlo fue su costo.
elevado, además que por su calibre más grueso pudo saturar los pequeños sistemas de tuberías y canaletas. El cable que se instaló cumplió con los requisitos para que el PBX, switches y teléfonos IP pudieran funcionar de manera óptima.

Especificaciones del cable UTP:

TABLA 5.2 - Características del cable UTP instalado.

<table>
<thead>
<tr>
<th>Marca</th>
<th>Tipo</th>
<th>Categoría</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDUMEX</td>
<td>CMG/CMR</td>
<td>CAT5e</td>
<td>4 bobinas de 300 m</td>
</tr>
</tbody>
</table>

FIG. 5.3 - Bobina de 300 m de cable UTP CAT5e.

FIG. 5.4 - Pares trenzados.

5.2 Unificación del SITE

Como parte de la implementación del cableado aproveché para migrar en un solo sitio el rack de los servidores y switches que estuvo separado en dos partes (piso 6 y 7), y lo ubicué en lo que ahora es el nuevo SITE en el piso 7, debido a que las condiciones de seguridad, espacio y acceso anteriormente mencionadas, favorecieron la instalación y configuración de los equipos.
Integrando el nuevo PBX (CISCO), los nuevos switches PoE (CISCO), firewall, servidores y el sistema Closed Circuit Television (CCTV) que es una tecnología de video-vigilancia diseñada para supervisar una diversidad de ambientes y actividades. Finalmente quedó unificado en un solo sistema de comunicaciones montado en un rack, apoyado de Uninterruptible Power Supply (UPS) siendo una fuente de suministro eléctrico que posee una batería con el fin de seguir dando energía a un dispositivo en el caso de interrupción eléctrica, los cuales están conectados a un contacto polarizado para alimentación 110 VACs dedicado para los dispositivos (véase FIG. 5.5).

Como beneficio para el nuevo SITE el almacén ya cuenta con mini splits que mantienen la temperatura lo suficientemente baja para evitar el sobrecalentamiento de los equipos. Ahora se encuentran aislados para evitar accidentes o problemas que afecten las operaciones de la empresa.

FIG. 5.5 - Diagrama final del rack ubicado en el piso 7.
5.3 Modificación de termómetros

Los termómetros IP conservaron su configuración actual para monitorear la temperatura y humedad del ambiente, con respecto al cableado lo cambié para que fuera compatible con los nuevos sistemas de comunicaciones. Reubiqué el switch Linksys y lo dejé oculto en el plafón, organicé el cableado que llega al SITE el cual provee el servicio de internet para que los termómetros se comuniquen con la página web de la empresa y puedan obtenerse las lecturas, así como revisar la base de datos junto con las gráficas que entrega la aplicación instalada en la estación de trabajo.

Los termómetros cuentan con el siguiente panel de administración vía web introduciendo la dirección IP del mismo (véase FIG. 5.6).

![FIG. 5.6 - Información web del termómetro.](image-url)
En la parte de Settings podemos hacer los cambios necesarios para personalizar el termómetro tales como nombre, configuraciones de red y de correo (véase FIG. 5.7).

![FIG. 5.7 - Nombre del termómetro.](image1)

En esta parte realicé un cambio en la configuración de red de cada termómetro para que trabajaran bajo el nuevo segmento y en conjunto con el nuevo servidor de correos (véase FIG. 5.8).

![FIG. 5.8 - Configuración de la red.](image2)

Aquí se encuentra la configuración del correo que se encarga de enviar avisos del comportamiento del termómetro vía correo electrónico, su configuración
incluye la dirección IP del servidor SMTP, el puerto ocupado y las credenciales de acceso de dicho correo (véase FIG. 5.9).

![Email configuration](image)

FIG. 5.9 - Configuración del servidor SMTP para el envío de correos.

En la parte inferior se muestra el correo que envía las alarmas y las personas que reciben dichas notificaciones, así como el intervalo de envío (véase FIG. 5.10).

![Email configuration](image)

FIG. 5.10 - Configuración de los correos electrónicos.
También es posible reiniciar el dispositivo para aplicar los cambios y regresarlo a valores de fábrica, sin embargo estos termómetros son enviados cada seis meses con el proveedor para ser calibrados y actualizar el firmware si es necesario.

Después de hacer los cambios internos en la red, mandé calibrar y actualizar el firmware para que comenzaran a trabajar de manera óptima con las nuevas configuraciones.

A continuación muestro una lista detallada de los termómetros:

TABLA 5.3 - Datos de los termómetros.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Marca</th>
<th>Modelo</th>
<th>N/S</th>
<th>MAC Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICR-AM-T 02</td>
<td>COMET</td>
<td>P8510</td>
<td>11941296</td>
<td>00:20:4A:DE:BF:10</td>
</tr>
<tr>
<td>ICR-AM-T 03</td>
<td>COMET</td>
<td>P8510</td>
<td>11941295</td>
<td>00:20:4A:DE:BE:F6</td>
</tr>
<tr>
<td>ICR-AM-T 04</td>
<td>COMET</td>
<td>P8510</td>
<td>10941216</td>
<td>00:20:4A:CC:C7:88</td>
</tr>
<tr>
<td>ICR-AM-T 005</td>
<td>COMET</td>
<td>P8511</td>
<td>12940293</td>
<td>00:20:4A:CB:D0:2A</td>
</tr>
<tr>
<td>ICR-AM-TH 001</td>
<td>COMET</td>
<td>H3530</td>
<td>11980278</td>
<td>00:20:4A:DE:B9:48</td>
</tr>
<tr>
<td>ICR-AM-T 01</td>
<td>COMET</td>
<td>P8510</td>
<td>11941294</td>
<td>00:20:4A:DE:D3:50</td>
</tr>
<tr>
<td>ICR-AM-T 01 A</td>
<td>COMET</td>
<td>P8510</td>
<td>12941949</td>
<td>00:20:4A:EA:4C:AF</td>
</tr>
</tbody>
</table>

Apartado del monitoreo en la página web (véase FIG. 5.11).
FIG. 5.11 - Página que muestra las temperaturas en tiempo real.

5.4 Cambio de alarmas ADT

ADT es la empresa líder en México en sistemas de monitoreo de alarma brindando servicio 24/7, los 365 días del año.

Originalmente las alarmas que ofrece ADT dependen de una la línea telefónica para poder comunicar alguna alarma o aviso, y cuando cancelé el servicio con Telmex las alarmas ya no funcionaron de la misma manera ya que no se contaba con líneas independientes debido a que todos los números están integrados en la misma VLAN que ofrece el servicio todo a través de VoIP por lo que integré comunicadores IP que están diseñados para transmitir información sobre el sistema de alarma contra incendios o robo a las estaciones de monitoreo de ADT a través de la red IP estándar.

Se conectan a los puertos telefónicos estándares del panel de control de alarma contra incendios sin la necesidad de realizar cambios en la configuración existente del panel. Estos comunicadores ofrecen capacidades exclusivas de
carga/descarga, codificación de 512 bits para seguridad adicional y una conexión confiable con una instalación de monitoreo de la estación central en ubicación externa.

Cada piso cuenta con un sistema de alarma el cual tuve que actualizar para que fuera compatible con los nuevos servicios, por lo que implementé comunicadores IP usando el siguiente modelo recomendado por ADT.

El Honeywell serie 7847i (véase FIG. 5.12) ofrece una comunicación por Internet confiable y muy segura para datos de alarmas, mientras que el 7847i-E es adecuado para las aplicaciones de red privada empresarial que usan conexiones locales punto a punto o de red de área local (LAN). Este equipo está conectado a un panel de control principal (véase FIG. 5.13), además cuenta con un teclado inalámbrico que puede ser instalado en otra parte del inmueble como acceso directo para armar o desarmar la alarma (véase FIG. 5.14).

![FIG. 5.12 - Comunicador IP HONEYWELL modelo 7847I.](image_url)
5.5 Portabilidad del número telefónico

Se solicitó la portabilidad de nueve números los cuales fueron agrupados en la Troncal SIP (Session Initiation Protocol), y se definió uno de ellos como número guía o cabeza de serie que viene siendo el número principal de la empresa ya que sin importar cuál de los otros números se marque entra directamente al principal. Solo se contemplan los Direct Inward Dialing (DID) que es un servicio ofrecido por
las compañías teléfonicas para ser usado con los sistemas de una central telefónica de los clientes, en donde la compañía telefónica asigna un rango de números asociados (extensiones) con una o varias líneas telefónicas incluidos en el servicio solicitado.

 En cuanto se terminó la instalación del conmutador con los switches, teléfonos IP. Se comenzó a utilizar el servicio con el número provisional que nos dio Cablevisión. Solo pasó un día y la portabilidad se completó.

5.6 Primer enlace: voz y datos

 Por medio de este enlace se obtiene el servicio de telefonía IP además de contar con un Internet de 30 MB del cual se ocupan un aproximado de 4 a 6 MB para la telefonía dejando el resto para ser utilizado por otros dispositivos como los DVR que administran las cámaras de seguridad, el lector biométrico para el registro de accesos, un pequeño access point en la sala de juntas que tiene como objetivo brindar Internet a las visitas sin que puedan acceder a los servidores internos de la empresa y así evitar problemas de intrusos, esto debido a que se encuentra en otro segmento de red.

 También están integrados los comunicadores IP de las alarmas del piso 6 y 7 que solo necesitan estar conectadas a la red para poder comunicar alguna señal de alarma. Debido a que estos dispositivos no requieren de un alto consumo de Internet no generan ningún problema en la telefonía.
TABLA 5.4 - Dispositivos correspondientes al primer enlace.

<table>
<thead>
<tr>
<th>Dispositivo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modem Motorola</td>
<td>Primer Enlace de Internet (30 MB)</td>
</tr>
<tr>
<td>DVR (4CH H.264)</td>
<td>Cámaras Piso 6</td>
</tr>
<tr>
<td>DVR (4CH H.264)</td>
<td>Cámaras Piso 7</td>
</tr>
<tr>
<td>Access Point TP-LINK</td>
<td>Provee de Internet a la sala de juntas</td>
</tr>
<tr>
<td>Lector Biométrico</td>
<td>Control de acceso de usuarios</td>
</tr>
<tr>
<td>Comunicador IP 1</td>
<td>Envía las señales de alarma del piso 6</td>
</tr>
<tr>
<td>Comunicador IP 2</td>
<td>Envía las señales de alarma del piso 7</td>
</tr>
</tbody>
</table>

5.6.1 Configuración de los DVR

En el panel de control de los DVR configuré los siguientes parámetros (véase FIG. 5.15 y FIG. 5.16).

FIG. 5.15 - Monitor de DVRs.

FIG. 5.16 - Configuración de los DVR.
5.7 Integración del segundo enlace de internet

Con lo anterior instalado se integró un acceso compartido mediante cable módem para la solución SIP e Internet, con una clase de servicio 30 Mbps de downstream / 4Mbps de upstream que es un ancho de banda compartido para el servicio de voz y datos. Este es un servicio que ofrece IZZI el cual no pude ser modificado, solo escalado dependiendo del paquete negocios que se contrate, por esta razón no se puede decidir qué tipo de tecnología se desea usar ya que está ligada al servicio de la empresa de telecomunicaciones.

Para evitar que los servicios se saturaran propuse integrar un nuevo enlace dedicado para el uso de internet y dejar por separado la telefonía. Todo esto corriendo por el mismo cableado sin embargo tuve la necesidad de crear diferentes segmentos de red para poder identificar los servicios. Inicialmente se tuvo un enlace de Internet divididos en dos VLANs: la primera VLAN1 192.168.XX.XX (Datos) con un ancho de banda de 30 Mbps. Compartido con la segunda VLAN100 10.1.XX.XX (Voz) que tiene un consumo aproximado de 4 a 6 Mbps.

El nuevo enlace de internet de 50 Mbps lo dediqué únicamente para las actividades tales como consultas a páginas web, descargas, streaming, envío y recepción de correos, etcétera. Esto con el objetivo de evitar el asentamiento de la red y que las operaciones se vieran afectadas, además de implementar un firewall que inicialmente no era compatible con la infraestructura que se instaló debido a que el modelo de FORTINET FORTIGATE 60D (FG-60D) no cuenta con ALG (Application Layer Gateway) que es un componente de software que gestiona protocolos de aplicación específicos, tales como SIP (Session Initiation Protocol) y FTP (File Transfer Protocol). Un ALG actúa de intermediario entre Internet y un servidor de aplicaciones que puede entender el protocolo de aplicación. Por lo que el firewall no puede controlar el QoS (Quality of Service) de los servicios voz de manera independiente.

Se tenía que implementar un firewall con SIP-ALG y quedaría de la siguiente manera:
A pesar de que existan modelos que manejen el SIP son muy costosos y se desaprovecharía el que actualmente tenemos, mi solución fue contratar el segundo enlace para usar el firewall que ya tenía la empresa, aprovechar el máximo ancho de banda y poder manejar segmentos de red independientes que no afectaran la parte de la telefonía debido a que trabaja sobre una VLAN independiente. El enlace tuvo un costo menor que el de adquirir un nuevo firewall además de ser de 50 Mbps quedando como se muestra en la FIG. 5.18.
Como parte complementaria de los servicios el segundo enlace que tiene como objetivo proveer de Internet únicamente para los usuarios quienes lo usan en diferentes actividades tales como envíos masivos de correos, teleconferencias, consulta de páginas web y video-tutoriales, acceso a servidores foráneos mediante VPNs, transferencia de archivos vía FTP, etc. Todo esto fue posible gracias al ancho de banda de 50 Mbps que ofrece el enlace.

Aunque los dos enlaces están conectados al PBX el cual administra la misma LAN, se pueden separar y trabajar de manera independiente debido a las VLANs y LAN del segundo enlace de Internet:

- **VLAN 1.** La primera se identifica como VLAN 1 y está dedicada únicamente a datos, es por donde se transmite el servicio de Internet con sus respectivos segmento 192.168.XX.XX (30 Mbps). Este solo se usa para cuestiones auxiliares o dedicadas.
- VLAN2. El segundo enlace (50 Mbps) que está integrado con el firewall y tiene el filtrado web está bajo el segmento 192.168.YY.YY que se transmite a través de otra VLAN con un módem aparte. Como se integró el Firewall en esta VLAN quedando como enlace preferencial el de 50 Mbps, se tuvo que apagar el servicio DHCP del PBX para que el firewall quedara como el nuevo servidor DHCP, en dado caso que se quiera usar el servicio del otro enlace, basta con fijar una dirección IP con el segmento 192.168.1.1 y asignar el Gateway 192.168.1.254.

- VLAN 100. Para los teléfonos IP se tiene contemplada una red identificada como VLAN 100 la cual solo ofrece el servicio de Voz utilizando el Internet del primer enlace y trabaja en el segmento 10.1.XX.XX. Cada equipo telefónico está identificado con una dirección IP y MAC única, además de estar personalizado para cada usuario con su nombre, buzón de voz, etc. Este cuenta con un puerto Ethernet para la conexión en red con otros dispositivos como laptops y desktops, dicho puerto entrega una dirección IP del segundo enlace por parte del Firewall que ahora es el encargado del servidor DHCP, esto sin interferir con el servicio de telefonía, un ejemplo de esto es:

TABLA 5.5 - Asignación de teléfonos IP.

<table>
<thead>
<tr>
<th>Usuario</th>
<th>Teléfono IP (MAC Address)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adán Monroy</td>
<td>SPA502G (84:80:2D:41:03:85)</td>
</tr>
<tr>
<td>Martha Verónica</td>
<td>SPA502G (C4:72:95:68:3C:84)</td>
</tr>
<tr>
<td>Giovanni Steffani</td>
<td>SPA502G (C4:72:95:68:3C:5F)</td>
</tr>
<tr>
<td>Arturo Rodríguez</td>
<td>SPA504G (84:80:2D:41:B2:FC)</td>
</tr>
<tr>
<td>Alejandra Sandoval</td>
<td>SPA509G (84:80:2D:40:6D:34)</td>
</tr>
</tbody>
</table>
5.8 Configuración de los servidores y estación de trabajo

Tuve que cambiar la dirección IP de los servidores, computadoras de escritorio, laptops, impresoras, escáner, así como la de los termómetros que dejé bajo el nuevo segmento y de este modo todo queda unificado para que puedan trabajar y acceder a ellos.

Servidor HP PROLIANT ML350

WINDOWS SERVER 2003 STANDARD

Tiene implementado el Directorio Activo

![Fig. 5.19 - Servidor HP PROLIANT ML350.](image)

Servidor HP PROLIANT ML10

WINDOWS SERVER 2012 STANDARD

Sirve como File Server para intercambio y almacenamiento de información de la empresa.

![Fig. 5.20 - Servidor HP PROLIANT ML10.](image)
Estación de Trabajo SUMI PRECISION

WINDOWS 7 PRO

Tiene instalado la aplicación DATABASE VIEWER y trabaja en conjunto con MySQL como manejador de base de datos. Su función es obtener las lecturas y gráficas del comportamiento de los termómetros del almacén.

5.9 Configuración del punto de acceso, impresora y escáner

Además, el piso 6 cuenta con un punto de acceso que distribuye internet por medio de una red inalámbrica que también cuenta con el mismo segmento de red (véase FIG. 5.22), esto con el objetivo de acceder a los servidores e impresoras sin la necesidad de estar conectado vía alámbrica. También ayuda para conectar dispositivos móviles como smartphones o tablets.
Sin embargo el único dispositivo que sí necesita forzosamente de la conexión por cable es el scanner debido a que la aplicación que se usa para administrar los archivos enviados está ligada a la dirección IP de cada equipo el cual cuenta con un usuario registrado en una libreta de direcciones como se ve en la FIG. 5.23.

![FIG. 5.23 - Libreta de direcciones de los usuarios con su respectiva IP.](image)

La configuración del escáner la hice por medio del programa Network Scanner Tool, donde creé un perfil para cada usuario, que funciona con la dirección IP asociada al equipo de cómputo, sea su conexión alámbrica o inalámbrica (véase FIG. 5.24).

![FIG. 5.24 - Configuración de un perfil.](image)
En la parte de del perfil (véase FIG. 5.25) configuré la localización de almacenamiento y el comportamiento del programa, lo que permite enviar los escaneos a una carpeta definida en el escritorio (o cualquier otra ubicación deseada).

FIG. 5.25 - Ubicación de la carpeta destino.

Del mismo modo que cambié la IP para las impresoras, servidores y puntos de acceso, hice lo mismo para el escáner:

FIG. 5.26 - Configuración del escáner.
5.10 Plano final de oficinas y mapa de red

En el siguiente plano muestro la distribución final de los nodos instalados en los diferentes cubículos y salas del piso 6.

FIG. 5.27 - Mapa final de las instalaciones del piso 6 indicando el nuevo cableado.

Jack Rj45 conector hembra Cat5e. Cada uno provee de red y energía a los teléfonos IP debido a que están conectados a un switch PoE. Cada teléfono IP tiene un puerto Ethernet libre para conectar equipo de cómputo. En este piso se tienen 31 conectores.

Puntos de acceso. Este piso cuenta con dos puntos de acceso para cubrir con una red inalámbrica a los usuarios.
El primero está ubicado en la parte central de las oficinas (segmento 192.168.XX.XX / 24). Inicialmente este punto de acceso ya estaba instalado y cubre perfectamente el área de trabajo sin perdidas de conexión.

El segundo AP lo instalé en la sala de juntas con el segmento 192.168.YY.YY / 24 para cubrir la sala de juntas, dirección y contabilidad. A pesar de su ubicación cubre el área requerida debido a las pruebas de conexión que hice, además de que los equipos en esa área de trabajo usan conexión alámbrica.

Termómetro IP. En este piso solo se encuentra un termómetro IP para medir la temperatura del archivo, misma que se monitorea en la página web de la empresa.

Nuevo cableado de red. Las líneas azules identifican el camino que siguió el nuevo cableado por las tuberías y canaletas que tienen las oficinas a las cuales solo se les dio mantenimiento.

Tubería de entrada de cables. Por este conducto pasan los cables que provienen del piso 7 donde está ubicado el rack con el patch panel.

En el siguiente plano están contenidas las ubicaciones de los termómetros, SITE y de los demás jacks RJ45 que modifiqué y otros más que agregué a una de las oficinas del almacén.
Jack Rj45 conector hembra Cat5e. Del mismo modo que en el piso 6, éstos se cambiaron y otros más fueron agregados en una pequeña oficina para futuros usuarios.

Termómetros IP. En el almacén se encuentran los demás termómetros ubicados estratégicamente para medir la temperatura y ser monitoreados por el área de Regulatorio quien visualiza las temperaturas en la página web de la empresa. Aquí están instalados los modelos P8510, P8511 y H3530.

Nuevo cableado de red. Las líneas azules identifican el camino que siguió el nuevo cableado por las tuberías y canaletas que tienen las oficinas a las cuales solo se les dio mantenimiento.

Tubería de entrada de cables. Por este conducto pasan los cables que se dirigen al piso 6 y terminan en cada uno de las rosetas con
los jack RJ45. Además de conectar los dispositivos montados en el rack.

Una vez que terminé de instalar todos los equipos, el mapa de red queda ilustrado en la FIG. 5.29.

FIG. 5.29 - Diagrama de todo el sistema de red en ICR.
Una vez implementada toda la parte física y que se realizaron las configuraciones necesarias para que los sistemas comiencen a trabajar, como parte complementaria fue como definí la protección de los sistemas informáticos, por lo que en este apartado describo las medidas de seguridad que considere apropiadas para resguardar la integridad de la información y de los sistemas computacionales.

El lugar donde está colocado el servidor es sumamente importante para su estabilidad. El servidor necesita estar protegido contra distintos factores externos que pueden alterar el funcionamiento de la red.

Estos factores externos son: el calor, los altibajos de tensión y los cortes de corriente, ataques informáticos, robo o destrucción.

Ahora, una vez que implementé el nuevo cableado, de que reubicué los servidores y ahora todo se encuentra unificado en un solo lugar es importante tomar en cuenta todos los factores antes mencionados para poder garantizar la alta disponibilidad y desempeño óptimos de los equipos de cómputo y de los servicios. La seguridad física (mediante hardware) y de la seguridad de la información (mediante software) las consideré con los siguientes aspectos: protección eléctrica, sistema de enfriamiento y seguridad informática.
6.1 Protección eléctrica

Los ruidos eléctricos son causados por las inconsistencias del suministro de la corriente de los equipos de cómputo. Para que se protegieran los servidores contra los ruidos eléctricos, se aprovechó la instalación de una línea dedicada de suministro eléctrico que trabaja de manera independiente y es el lugar actual donde está el SITE.

Recomendé no conectar otros dispositivos a este suministro de corriente, porque pueden generar ruidos que anulen las ventajas de la protección ofrecida por la fuente de corriente dedicada. La conexión a la fuente de energía se había instalado previamente cuando solo estaban unos cuantos equipos de cómputo y un servidor, lo hicieron con cable estándar de tres hilos y con un hilo de masa conectado a tierra.

Para estar prevenido contra los altibajos de tensión y contra el corte de la corriente propuse completar la instalación con un Sistema de Alimentación Ininterrumpida (SAI) o Uninterruptible Power Supply (UPS) (véase FIG. 6.1). El UPS permite a los servidores, equipos como switches, routers y otras estaciones de trabajo continuar activos durante cierto tiempo ante un eventual corte de la corriente.

Estas son las características del UPS:

- **Marca:** APC.
- **Modelo:** SUA750.
- **Potencia de salida:** 500 W.
- **Capacidad de potencia de salida (VA):** 750 VA.
- **Índice de aumento de energía:** 340 J.
- **Aprobaciones regulatorias (certificaciones):** C-tick, CE, EN 50091-1, EN 50091-2, EN 55022, GOST, IEC 60950, VDE.
- **Tiempo típico de respaldo a media carga:** 30 min.
- **Tiempo típico de respaldo a carga completa:** 90 min.
Con una potencia (watts) verdaderamente alta, un generoso tiempo de autonomía, pantalla LED de 16 segmentos y gestión inteligente de las baterías, el Smart-UPS fue el idóneo para los sistemas del SITE.

Como apoyo a los demás equipos ubicados en el SITE también se encuentran los siguientes modelos:

- Marca SOLA BASIC (véase FIG. 6.2).
- Modelo: MICRO SR INET 800.
- Capacidad de potencia de salida (VA): 800 VA.
- Voltaje de entrada de operación (mín.): 95 V.
- Voltaje de entrada de operación (máx.): 140 V.
- Voltaje de operación de salida (mín.): 120 V.
- Voltaje de operación de salida (máx.): 120 V.
- Tiempo típico de respaldo a media carga: 20 min.
- Tiempo típico de respaldo a carga completa: 60 min.
6.2 Sistema de enfriamiento

Es notable mencionar que ya todo el sistema de comunicaciones está unificado y ubicado en un solo lugar, sin embargo un tema importante es el aumento de temperatura debido a la cantidad de dispositivos trabajando de manera constante y con un consumo de energía elevado el cual también fue un aspecto a considerar con la protección eléctrica.

Uno de los factores vitales en los centros de datos es el acondicionamiento ambiental, pues de acuerdo con un sistema de enfriamiento de los servidores se garantiza su buen funcionamiento y se previenen posibles pérdidas monetarias de consideración para el dueño del negocio o empresa. Esto implica que el sistema de climatización sea eficiente, cumpla con las exigencias actuales y se considere su desempeño a corto, mediano y largo plazos.

Los recintos donde se hospeda el equipo de cómputo, sobre todo cuando se trata de servicios de misión crítica, deben contar con características específicas que los conviertan en centros de datos seguros para que la información procesada sea
confiable y que en ningún momento se produzca una interrupción no planeada, ya que los servidores deben mantenerse siempre encendidos. Es por eso que implementé un sistema de enfriamiento aprovechando los recursos de la empresa, debido a que en el almacén ya se tenían instalados Mini Splits fue que decidí usar uno de éstos que no se aprovechaba de manera adecuada y reubicarlo en el SITE, estos son los detalles:

- **Modelo:** Mini-Split YSCA/YSHA07~24AADK (véase FIG. 6.3).
- **Marca:** YORK por Johnson Controls.

![FIG. 6.3 - Mini-Split YORK Modelo YSCA de 2 Toneladas.](image)

De este equipo que anteriormente estaba en la zona de mantenimiento donde no se usaba, solicité el permiso y se me dio autorización para reubicarlo en la zona del SITE, por lo que se tuvo que desmantelar, recuperar toda la parte de la tubería y realizar una nueva configuración que no tuviera costos muy elevados. A pesar de contar con algo de material para realizar el cambio, se tuvieron que adquirir los siguientes materiales:

- Tubería de cobre.
- Tubería de PVC.
- Tornillería.
- Taquetes.
- Base para unidad interior.
Soldaduras.
Gas refrigerante.

Todo esto para un correcto funcionamiento debido a su distancia no mayor a 20 metros lineales de la condensadora que se ubica en la parte exterior del edificio (véase FIG. 6.4).

De este modo pude implementar un sistema de enfriamiento adecuado para el área de cómputo sin la necesidad de costosos equipos, es notable mencionar la ventaja de que el centro de carga del mini Split ya estaba instalado y que se encuentra trabajando de manera independiente con respecto a las demás centrales eléctricas del SITE lo que evita problemas eléctricos que pudieran afectar los equipos de cómputo. También se aprovechó una tubería que se encontraba cancelada, era una especie de desagüe que funcionó perfectamente como salida del gas condensado y evitó más obras en el inmueble.
6.3 Seguridad Informática

Para asegurar que la información de los servidores y equipos de cómputo (desktops y laptops) no esté comprometida a ataques informáticos lo que provocaría pérdida de archivos o infiltración de personas ajenas a la información de ICR reinstalé y configuré un firewall físico con las siguientes características:

- Marca: FORTINET (véase FIG. 6.6).
- Modelo: FORTIGATE 60D (FG-60D).

FIG. 6.5 - Firewall Fortigate 60D.

El dispositivo funciona a nivel de red (capa 3 del modelo OSI, capa 2 del stack de protocolos TCP/IP) como filtro de paquetes IP. A este nivel se pueden realizar filtros según los distintos campos de los paquetes IP: dirección IP origen, dirección IP destino. A menudo en este tipo de cortafuegos se permiten filtrados según campos de nivel de transporte (capa 3 TCP/IP, capa 4 Modelo OSI), como el puerto origen y destino, o a nivel de enlace de datos (no existe en TCP/IP, capa 2 Modelo OSI) como la dirección MAC.
6.3.1 Configuración del modem Arris del segundo enlace

Para que el segundo enlace de internet de 50 Mbps pudiera tener filtrado de contenido por medio del firewall solicité a IZZI que pusieran el módem Arris en modo bridge (puente) del tal modo que entregara una dirección IP al firewall el cual se encargaría de la administración y filtrado web.

Lo que se hizo fue reiniciar el módem a sus valores de fábrica para evitar cualquier conflicto de configuración, esto se hace con la opción FACTORY DEFAULTS.

En el apartado de WAN (al exterior) se tienen los parámetros configuración donde el DHCP debe estar activo, después en la parte de LAN (red local) se hizo el paso más importante que fue desactivar todas las opciones tales como DHCP Server, DNS Override, DNSRelay, UPnP y en la opción NAT se deja en modo bridge.

Un puente o bridge añade un nivel de inteligencia a una conexión entre redes. Conecta dos segmentos de redes iguales o distintas. Se puede considerar al modo bridge como un clasificador de correo que mira las direcciones de los paquetes y los coloca en la red adecuada. En este modo, se crea una tarjeta de red virtual en el anfitrión que intercepta el tráfico de red y puede inyectar paquetes en la red, de manera que el huésped se configura como si estuviera conectado por un cable a la tarjeta de red virtual del anfitrión.

Para evitar algún otro tipo de conflictos se desactiva la opción del Wi-Fi y el firewall, una vez hecho esto se aplican cambios y se reinicia el módem para comenzar a utilizar el servicio.

De este modo quedó configurado el módem Arris para que se conecte directamente al puerto WAN2 del firewall FORTIGATE para que se encargue de la administración de la red local (LAN).
La integración del firewall en la LAN se muestra en la FIG. 6.6.

![Diagrama de red con la integración del firewall](image)

Esta configuración la realicé de este modo ya que al momento de integrar el firewall en la red quedó como el servidor DHCP y como administrador de todos los servicios creando un filtrado web, controlando los accesos, además de monitorear las actividades de los usuarios. Al momento de poner el módem en modo bridge este quedó solo como un puente entregando el servicio y toda la carga de trabajo al firewall. Finalmente el firewall entrega el servicio de internet a todos los dispositivos conectados en la red del nuevo cableado.
6.3.2 Configuración del firewall Fortigate

El dispositivo cuenta con protecciones en los siguientes rubros:

IPS y control de aplicaciones. Con este modo es posible bloquear o restringir el acceso a aplicaciones riesgosas que puedan comprometer la red o los dispositivos conectados a la misma. También nos da la visibilidad y control de las aplicaciones ya instaladas en los equipos de cómputo con ayuda de políticas basadas en categorías lo que permite tener un balance de carga de la red priorizando el consumo de la misma con aplicaciones que más la necesiten tales como correo electrónico o Web-Ex.

Anti virus. Remueve y analiza archivos sospechosos con ayuda de la herramienta FortiSandbox, además aplica una protección contra botnets hacia el tráfico de red.

Filtrado web. Permite aplicar un filtrado de categorías, un filtrado a través de URL y un filtrado de control de acceso a los recursos de la web a nivel de usuario.

Filtrado de correo. Detección y filtrado de spam es lo que esta aplicación realiza, con la posibilidad de bloquear direcciones de correo o dominios.
Para acceder al dispositivo se ingresa su dirección IP:

![Imagen del cuadro de ingreso del Fortigate.](image)

FIG. 6.7 - Cuadro de ingreso del Fortigate.

Ingresando las credenciales tenemos acceso al panel de control:

![Imagen de la interfaz de usuario para la administración del sistema del firewall.](image)

FIG. 6.8 - Interfaz de usuario para la administración del sistema del firewall.

En esta parte podemos conocer el status del dispositivo donde uno de los aspectos más importantes es el modo de operación NAT (Traducción de Direcciones de Red), el cual sirve para traducir las IPs privadas de la red en una IP pública para que la red pueda enviar paquetes al exterior; y traducir luego esa IP pública, de nuevo a la IP privada de la computadora que envió el paquete, para que pueda recibirlo una vez que llega la respuesta. Es el modo por defecto de la tarjeta de red virtual. Este modo permite al huésped navegar por Internet, descargar ficheros y leer el correo electrónico sin necesidad de configurar el sistema operativo huésped.
Entre otros aspectos importantes está la versión del firmware, un apartado para hacer un respaldo de la configuración o restaurar a valores de fábrica.

6.3.3 Interfaces de red

El firewall cuenta con siete interfaces internas, un DMZ y dos más para las redes WAN, como se ve en la FIG. 6.9.

FIG. 6.9 - Wan2 corresponde al servicio de Internet y Wan1 a la red de área local.

En la interfaz wan2 integré el segundo enlace de Internet que está en modo bridge con módem Arris el cual le entrega una IP pública ilustrada en la FIG. 6.10.

FIG. 6.10 - Configuración de la Wan2 (Enlace IZZI).
La IP 10.197.XX.XX es entregada directamente por el módem Arris, aunque el modo de direccionamiento del firewall está en DHCP, la IP no cambia debido a que el módem cuenta con una IP publica (homologada). Del mismo modo los DNS y el Gateway son brindados por el proveedor de Internet que es Cablevisión.

Los métodos de acceso administrativo son mediante HTTPS, SSH y con la posibilidad de dar un PING al dispositivo.

Para la interfaz wan1 (véase FIG. 6.11) tenemos la red de área local (LAN) la cual ya cuenta con una dirección IP fija que identifica al dispositivo dentro de la red misma que sirve para acceder a su configuración:

FIG. 6.11 - Configuración de la Wan1 (LAN ICR).

Los modos de acceso son los mismos que en la interfaz wan1: HTTPS, SSH y el PING.

6.3.4 Políticas y objetos

En este apartado se pueden crear políticas (véase FIG. 6.12) que se aplican a los diferentes objetos los cuales cuentan con ciertas características dependiendo del perfil del usuario.
Para el caso en particular de la red de ICR propuse la política que abarca de la interfaz wan1 (LAN) hacia la interfaz wan2 (Enlace de IZZI) que es por donde entra y sale al servicio de Internet:

La lista mostrada en la imagen son los diferentes objetos que contiene la política los cuales están determinados por direcciones (IPs o rangos de IP) que obedecen a ciertos perfiles de seguridad (véase FIG. 6.13).

El objeto Rango_DHCP contiene las de direcciones IP que se asignarán automáticamente y están contenidos los usuarios de la empresa que no cuentan con privilegios y a los cuales se les aplicarán los perfiles de seguridad siguientes:

En el primer apartado AntiVirus tenemos las siguientes características de protección:
DISEÑO E IMPLEMENTACIÓN DE CABLEADO ESTRUCTURADO PARA INTEGRAR SERVICIOS DE TELECOMUNICACIONES

CAPÍTULO 6 – MEDIDAS SEGURIDAD

Donde todos los que se sometan a este perfil de seguridad se estarán monitoreando los protocolos de uso para los servicios tales como consultas de páginas web, descarga de archivos, servicio de correo electrónico, transferencia de archivos vía FTP, etc.

6.3.5 Filtrado web

En la siguiente opción tenemos el filtrado web (véase FIG. 6.15) que contiene las diferentes categorías que se pueden aplicar a los objetos del rango de IPs:

FIG. 6.14 - Configuración del anti virus.
Fortinet es de los pocos fabricantes que ofrece un sistema antivírus de red con capacidad de inspección en modo proxy o en modo flujo, pudiendo optar por uno u otro método indistintamente, a nivel de cada política de seguridad.

Por lo tanto Fortinet proporciona la mejor solución para la protección de malware Zero Day. Antes que nada, conviene señalar las diferencias con el resto de tecnologías basadas en inspección en modo “flujo”. Este modo de inspección no re-emsambla el fichero completo y por lo tanto depende de firmas y checksums para analizar los paquetes, y no los ficheros completos. Debido a esto, se deben crear numerosas firmas y checksums cada vez que hay una nueva variante de un virus conocido. Un atacante puede tomar una porción de un malware conocido y re-empaquetarlo; aprovechando que las redes pueden generar cientos de variantes. Con un simple re-empaquetado del malware, el checksum cambia y también se reducen drásticamente las probabilidades de que una firma sea capaz de identificarlo.

Los filtrados web (véase FIG. 6.16) que se utilizan para el rango de IPs seleccionado son contenido adulto, los consumidores de ancho de banda tales como páginas de video (YouTube) o streaming (véase FIG. 6.17), las cuales trasmiten sus servicios en tiempo real como noticieros o estaciones de radio, además de las redes sociales y descarga de programas o aplicaciones no
autorizadas, ya que todas las herramientas extras o accesos que necesite el usuario deben ser solicitadas y aprobadas por los jefes de área y dirección según los procedimientos del área correspondiente.

![Filtrado del contenido adulto.](image1)

FIG. 6.16 - Filtrado del contenido adulto.

![Consumidores de ancho de banda críticos.](image2)

FIG. 6.17 - Consumidores de ancho de banda críticos.

También fue conveniente filtrar los sitios como blogs, foros, páginas con contenidos maliciosos que ofrecen servicios o descargas de aplicaciones que puedan dañar los equipos y filtrarse en la red local.

Es posible anexar otros filtros con el fin de proteger y evitar el alto consumo de ancho de banda pero esto depende de las restricciones que defina la empresa tales como el bloqueo de correos personales (@gmail, @hotmail, @yahoo, etc.).
6.3.6 Control de aplicaciones

Para un control más específico de los programas y aplicaciones (véase FIG. 6.18) se cuenta con esta función que monitorea todas y se puede personalizar por categorías o seleccionar de una lista de aplicaciones las que son potencialmente necesarias de bloquear como puede ser YouTube o Facebook (véase FIG. 6.19).

FIG. 6.18 - Categorías de aplicaciones.

FIG. 6.19 - Facebook: una de las redes sociales más bloqueadas en las empresas.
La seguridad de la información es un tema que no solo depende de los diferentes equipos y políticas que se impongan sino de la educación y capacitación que se les brinde a los usuarios de la red, los cuales son la parte más vulnerable de todo el sistema por lo que también sugerí juntas para explicarles más a detalle cómo se debe cuidar la información y equipos de cómputo de la empresa para de este modo trabajar de manera más segura y eficiente.
Capítulo 7

Migración de la página web y cuentas de correo electrónico

Además de la problemática surgida en las oficinas de ICR, otro elemento que solucioné fue el hospedaje los correos electrónicos y la página web. Para la parte final muestro los pasos que seguí para darle solución y como realicé las configuraciones requeridas para que este servicio tuviera un alta disponibilidad.
7.1 Rackspace como proveedor de cloud server

Una vez que terminé la implementación del cableado y los servicios de telefonía e Internet comencé a buscar proveedores de web hosting y la mejor opción en costo-beneficio fue Rackspace quien es uno de los más grandes proveedores de servicios administrados en la nube la cual tiene partners muy importantes y reconocidos como lo es Amazon Web Services y Microsoft Cloud quienes les proporcionan los espacios dedicados y el soporte técnico.

Por cuestiones de costo, espacio y tiempo opté por contratar a esta empresa para que alojara nuestro sitio web y nuestras cuentas de correo con los siguientes servicios:

Una solución de hospedaje web e infraestructura que ofrece experiencia y seguridad para plataformas definidas o escalables para facilitar el rápido crecimiento o mejorar la arquitectura de los sitios para asumir un tráfico masivo o requisitos estrictos de cumplimiento de normas

Este servicio facilita que los equipos accedan, se comuniquen y colaboren con las diferentes soluciones de productividad para el correo electrónico y garantiza el servicio con ayuda de soporte técnico especializado que ayuda a elegir, implementar y administrar la solución deseada para la empresa o negocio.
Los servicios que solicité fueron los siguientes:

![Cloud Server](image)

FIG. 7.1 - Cotización del servidor en la nube.

Como la gran mayoría de las empresas al momento de ofrecer sus soluciones con respecto a los servidores en la nube lo hace por medio de plantillas las cuales pueden ser escalables dependiendo de las necesidades del cliente, esta fue la más adecuada a lo que requerí para que la página web funcionara de manera óptima, y que la aplicación de servicios farmacológicos pudiera trabajar sin problemas.

7.2 Configuración del servidor en la nube

Para poder manipular el servidor en la nube y todas sus características se hace con ayuda del panel de control de Rackspace en la dirección web correspondiente, introduciendo el usuario y contraseña de administrador en el cuadro de diálogo como se ve en la FIG. 7.2.
Una vez dentro podremos visualizar todas las características que contiene nuestro servicio (véase FIG. 7.3) en el cual podemos agregar y quitar componentes tales como discos duros, memoria RAM, agregar y quitar bases de datos, hacer respaldos, cambios en la configuración de los DNS, así como contar con plantillas listas para creación de sitios web.
Por este medio es posible levantar tickets para reportar algún problema, verificar el estatus de la cuenta, pagos, facturas, etcétera.

En el apartado de servers se encentra lo siguiente:

FIG. 7.4 - Resumen de servidores en línea.
Se muestra la cantidad de servidores virtuales que están activos, su ubicación, tipo y configuración:

![Cloud Server ICRI](image)

FIG. 7.5 - Información de detallada del servidor.

Esta es la información detallada de la configuración del servidor ICRI donde visualizamos el tipo de sistema operativo que usa, capacidad en memoria RAM, almacenamiento en disco duro, porcentaje de uso del procesador, ubicación así como cuando fue creado y su última actualización.

También es posible visualizar las configuraciones de red como se ve en la FIG. 7.6.
Aquí tenemos la dirección IP pública para acceder al servidor de manera remota y poder configurar otras opciones directamente dentro del servidor como fue el caso de la aplicación de Estudios de Farmacovigilancia y la página web (véase FIG. 7.7) la cual fue creada mucho tiempo atrás por un desarrollador quien se encarga de su mantenimiento, diseño y mejoras. Él instalo todo lo necesario para que el programa y la página web funcionara correctamente, además de mantenerla actualizada. La página está implementada en una instancia de Wordpress y con su base de datos montada en MySQL, y la aplicación de estudios de Farmacovigilancia corre bajo JAVA con un servidor Tomcat y su base de datos bajo el mismo manejador que el de la página web.
FIG. 7.8 - Estudios de farmacovigilancia.

Para hacer los cambios en las aplicaciones es necesario acceder al servidor vía remota con ayuda del remote desktop de Windows ilustrado en la FIG. 7.9.

FIG. 7.9 - Escritorio remoto para el servidor.

Una vez dentro (véase FIG. 5.10) podemos verificar el estatus del servidor como es el caso de sus programas y aplicaciones, su configuración de componentes y de red:
7.3 Configuración de las cuentas de correo

Para las cuentas administrar y configurar las cuentas de correo se procede a entrar al siguiente sitio como se muestra en la FIG. 7.11.

Una vez ingresado el usuario y contraseña entramos al panel de control (véase FIG. 7.12) donde configuré las cuentas de correo:
Pero antes de comenzar a crear las cuentas tuve que agregar los MX Records (Registro de Intercambio de Correo) que es un tipo especial de registro de recursos en el sistema de nombres de dominio que especifica un servidor de correo responsable para aceptar correos en nombre del dominio del destinatario y de un valor de preferencia y así priorizar la entrega de correo en caso de que estén disponibles varios servidores de correo. Cuando se registra su dominio, es asignado a varios registros DNS, que permiten que se encuentre en Internet. Estos incluyen los MX records, que dirigen el flujo de correo del dominio en cuestión. Para los usuarios, el enviar y recibir correo electrónico, los MX records del dominio deben apuntar a un servidor que puede procesar dicho e-mail. Con el fin de SPAMfighter filtrar el correo, se debe modificar la configuración del MX record, este es un proceso normal para todos los filtros spam en Hosted.

Esta configuración la hice de la siguiente manera:

Primero me dirigí al panel de control del servidor (Rackspace Cloud) y en el botón de Networking seleccioné Cloud DNS (véase FIG. 7.13).
Ya en este apartado me dirigí a los dominios que agregué y solo en el icri.mx introduje los MX Records como se ve en véase FIG. 7.14.

FIG. 7.13 - Configuración de los dominios.

FIG. 7.14 - Lista de dominios.

Quedando de la siguiente manera en la FIG. 7.15.

FIG. 7.15 - Integración de los MX Records para el servicio de correos.
Con esta configuración ya es posible enviar y recibir los correos de manera correcta y segura.

Ahora, del mismo modo que lo hice con el servidor para la página web, fue para las cuentas de correos (véase FIG. 7.16), aquí fue donde las hice y también se pueden hacer configuraciones futuras.

![Fig. 7.16 - Resumen de cuentas activas.](image)

Como ejemplo tenemos al usuario Adán Monroy (véase FIG. 7.17) donde su cuenta la configuré de este modo:

![Fig. 7.17 - Configuración de una nueva cuenta de correo.](image)
Además de personalizarla con nombre, contraseña también es posible detallar por completo al usuario mediante las demás opciones como Contact Info o dejar un mensaje de auto respuesta por si no va a estar disponible por mucho tiempo (véase FIG. 7.18).

FIG. 7.18 - Información detallada del usuario.
Capítulo 8

Resultados y aportaciones

Para poder ilustrar los cambios y beneficios obtenidos por mi trabajo, es en esta sección donde describo los resultados obtenidos, qué ventajas se tienen ahora, cómo afectó a las condiciones de trabajo y de qué manera se podrán hacer mejoras a futuro para continuar con el crecimiento de la empresa.
8.1 Resultados

En cuanto se comenzó a usar el servicio de telefonía e internet se notó el cambio. Los servicios de mensajería son más fluidos, es posible que todos los usuarios estén enviando y recibiendo mensajes sin esperar a que unos dejen de operar. Hacer consultas en páginas web, descargar archivos pesados y acceder a los portales más cotidianos es más rápido lo que evita pérdida de tiempo para hacer sus citas y trámites.

Las teleconferencias pueden ser más recurrentes, la transferencia es rápida y el vídeo de alta calidad. La telefonía digital junto con los equipos ayudó a administrar mejor las llamadas con servicios de espera, llamadas tripartitas, buzones de voz personalizados, transferencia de llamadas con forwarding de línea, además de contar con un menú inicial al momento de una llamada entrante que le permite al usuario elegir a donde quiere ser transferido. Estos elementos hacen más dinámicas las actividades dentro y fuera de las oficinas ya que permite a los usuarios estar comunicados todo el tiempo con sus colaboradores y contactos de la empresa.

Si se necesita hacer un cambio en los equipos telefónicos simplemente se accede al panel de control y se cambia el nombre, número de extensión y área a la que pertenece, de este modo se hace más personalizable el uso del teléfono.

Como ambos servicios se transfieren por la misma VLAN en momentos donde las oficinas se encuentran en múltiples operaciones u horas pico el servicio se comenzó a asentar por lo que propuse integrar un enlace de dedicado solo para el Internet de este modo el ancho de banda del primer enlace está siendo ocupado únicamente para la telefonía.

Un beneficio de esta situación fue que pude implementar el firewall que tiene la empresa y evitar comprar uno nuevo que fuera compatible con la nueva infraestructura y de este modo tener un control restringido a ciertas páginas de internet. Además de que ahorré dinero y tiempos de implementación, la configuración incluyó un antivirus con control de aplicaciones.
También hice nuevos manuales de configuración de equipos, como crear cuentas de correos electrónicos, administración del servicio en la nube, planos de las oficinas con ubicaciones exactas de los equipos de cómputo y red. Inventario de software y hardware, acomodo y reubicación de equipos.

8.2 Integración de nuevos procedimientos de TI

En cuanto se concluyó la implementación de los nuevos servicios decidí cambiar los procedimientos junto con el área de Calidad quien me estuvo asesorando para que cumpliera con los estándares necesarios de ejecución, con el objetivo de conocer de forma general los tecnicismos y conceptos plasmados en cada uno de los procedimientos correspondientes al área de Tecnología de la Información (TI) para que cualquier persona ajena al área pueda comprender los procedimientos y en determinado momento darles seguimiento. Los procedimientos y formatos fueron los siguientes:

PNO (Procedimientos Normalizados de Operación) del Área de Tecnologías de la Información:

- ICR-TI-PR-001v03 - Respaldo de Información y Restablecimiento del Sistema de Cómputo.
- ICR-TI-PR-002v03 - Uso de Internet y de Correo Electrónico.
- ICR-TI-PR-003v03 - Protección-Detección y Remoción de Virus Informáticos.
- ICR-TI-PR-004v03 - Programas, Aplicaciones y Equipo de Cómputo.
- ICR-TI-PR-005v03 - Acceso al Sistema de Cómputo, Aplicaciones e Información.

Como complemento a los procedimientos también modifiqué y agregué algunos formatos para ir registrando las actividades del área.
FR (Formatos de Registro):

- ICR-TI-FR-001 Registro de Actividades Semanales.
- ICR-TI-FR-002 Respaldo de Información.
- ICR-TI-FR-003 Inventario de Equipos de Cómputo.
- ICR-TI-FR-004 Check List de Programas y Aplicaciones.
- ICR-TI-FR-005 Carta Responsiva de Equipo de Cómputo.
CONCLUSIONES

A lo largo de mi estancia en la Facultad de Ingeniería (UNAM) obtuve los conocimientos necesarios que fui desarrollando con ayuda de investigaciones, tareas, trabajos en equipo, exposiciones, proyectos y un sin fin de actividades realizadas con ayuda de profesores, compañeros, gente que me apoyó para continuar con mi desarrollo académico, que generaron herramientas y habilidades para ofrecer soluciones a mi futura vida profesional que se vio reflejada en los avances y proyectos que tuve. Además lo complementan los cursos que tomé dentro y fuera de la facultad que ayudaron a reforzar todo lo que aprendí en la carrera durante casi seis años preparándome lo suficiente y más para afrontar el ambiente laboral.
Con base en la experiencia obtenida en mis primeros empleos donde una de las principales actividades fue el trato directo con el cliente para conocer sus necesidades y requerimientos, de este modo ofrecer soluciones que beneficiaran a la empresa y a sus clientes. Conocer a los proveedores, hacer propuestas técnicas, comparaciones de precios e implementar las soluciones vendidas me abrió un gran panorama para poder crear una solución a la medida que comenzó con el diseño de la infraestructura del cableado, pasando por la implementación de los servicios de telecomunicaciones y culminado con la migración de sus servicios en la nube aportando beneficios en costos, actualización de equipos, mejoras en la transmisión y administración de los servicios de Internet y telefonía, así como brindar un soporte más eficaz a los usuarios quienes mejoraron sus tiempos de operación sin interrupciones evitando problemas con sus colaboradores internos y externos.

Implementación de la nueva Infraestructura. El cambio total del cableado cumplió el objetivo general debido a que logré integrar nuevos sistemas de comunicaciones de mayor calidad, confiabilidad y desempeño aprovechando parte del equipo de cómputo, algunas tuberías y canaletas, sin la necesidad de que las oficinas se involucraran en obras para abrir o quitar paredes. Esto me ayudó a ajustarme al presupuesto y lograr los cambios que la empresa requirió en el tiempo estipulado, además de que cada paso del proyecto lo hice de manera progresiva lo que le dio continuidad a cada uno de los servicios que fui integrando para no parar operaciones.

Ahora existe un control en todos los servicios lo que me permite poder identificar cada uno los puntos que se mejoraron y de este modo poder brindar nuevas soluciones y optimizar las que actualmente se tienen en dado caso que sea necesario, ya que todo está documentado, diseñé planos con la topología de red y de cómo se encuentra distribuida. Se cuenta con paneles de administración, accesos directos, identificación de servicios y dispositivos que facilitan la solución a un siniestro.

Este resultado refleja que es posible resolver varios problemas integrándolo en uno solo para ofrecer una solución única que fui ligando según las necesidades
y requerimientos de la empresa. Y del mismo modo ir resolviendo otros problemas que fui descubriendo con el paso del tiempo y anexándolos a otros proyectos que continué desarrollando para poder darle a la empresa un valor agregado a sus operaciones.

Implementación de seguridad a nivel hardware y software. En la parte de seguridad el objetivo lo cumplí debido a que ya tengo un control sobre las aplicaciones de los usuarios, los mantengo en constante monitoreo de tal modo que puedo elegir quién puede tener el servicio internet, a qué páginas tiene acceso, y de este modo evitar las amenazas informáticas como virus, spyware, troyanos, etc. Debido a que el firewall cuenta con su propio sistema de protección que los aísla y elimina de los equipos conectados a la LAN, esto beneficia en el pago de licencias a cada equipo de cómputo, teniendo una central que administra todo. Ahora se está aprovechando un equipo y servicio que estaba activo que pudo provocar pérdida o robo de información.

La protección eléctrica y los sistemas de enfriamiento que implementé están funcionado correctamente de tal modo que el lugar ha trabajado sin pérdida de equipos por descargas eléctricas o por los altos niveles de temperatura, ahora se mantienen a un nivel que evita que se reinicien o que lleguen a quemarse. También se comprobó que en casos de apagones se puede trabajar con ayuda del respaldo de energía ofrecido por los UPS, dándoles un tiempo aproximado de 1 hora 20 minutos para terminar sus pendientes o guardar cambios para evitar la pérdida de información. El lugar es pequeño pero bien acondicionado, aislado de los usuarios y protegido por diferentes filtros de acceso como son puertas eléctricas, rejas con varias cerraduras y cámaras de seguridad que están monitoreando y grabando en todo momento.

Migración de los servicios de web hosting. Para el tema del hospedaje web el objetivo que involucraba tener alta disponibilidad y contacto directo con el proveedor lo lleve a cabo con grandes ventajas como servicios más actualizados con un costo menor de implementación y de arrendamiento en comparación con los que se tenían con el antiguo proveedor, las cuentas de correo se movieron sin
problemas y modificaciones mayores, también cuentan con paneles de controles, configuraciones más fáciles y amigables para el usuario. La página web fue migrada con éxito y ya no presenta las fallas para mostrar las lecturas de los termómetros, puede ser consultada en cualquier momento y su administrador puede hacer los cambios necesarios para mantenerla actualizada. Además de poder implementar nuevos servicios en nuestro servidor dedicado sin aumentar el costo, y bajo las mismas condiciones se ofrecen respaldos y snapshots periódicos para tener alta disponibilidad en la nube.

Ahorro en la renta de los nuevos servicios. Comprobé que el cambio es notable que sin la necesidad de invertir mucho presupuesto es posible obtener resultados satisfactorios ya que al concluir los proyectos hice pruebas y no se presentaron fallas tales como cortes en las llamadas, servicio de Internet lento o completamente nulo, no se perdió comunicación con el servidor dedicado, tampoco hubo problemas con las cuentas de correo, la página se puede consultar y revisar las temperaturas emitidas por los termómetros del almacén, así como la aplicación de Estudios de Farmacovigilancia está en línea. Esto se pudo lograr sin la necesidad de aumentar los costos por renta de los servicios, además de que ahora se está pagando una cuota menor que con los proveedores anteriores de Telefonía e Internet, de igual modo que con los del hospedaje web quienes por el mismo precio ofrecen una seguridad completa a nuestro servidor en la nube.

No se han presentado casos de infección de virus, pérdida de información o mal uso del servicio de Internet gracias al firewall y a que los usuarios fueron educados de tal modo que deben proteger su información fuera y dentro de las instalaciones de la empresa ya que es también su responsabilidad y está indicado en los procedimientos normalizados y sus hojas de asignación donde se comprometen a cuidar de los bienes que la empresa les brinda.

Es notable mencionar como haciendo mejoras en los servicios ayuda a que otros procesos y funciones dentro del área de sistemas sean mucho más fáciles de administrar y controlar debido al orden que ahora se tiene. Y que se puede ver reflejado en los Procedimientos Normalizados de Operación, en el apartado de
Tecnologías de la Información (TI) en los cuales tuve participación para mejorar las versiones anteriores para crear los nuevos procesos, normas y formatos de registros que ahora rigen el área de TI. Como parte complementaria realicé una serie de mapas de red, topologías y documentación general que ha ayudado a identificar los dispositivos computacionales como los termómetros, routers y puntos de acceso para poder realizar cambios de manera más fácil y rápida sin la necesidad de hacer una búsqueda a fondo. Además de que cualquier persona puede hacer uso de estos documentos con el mínimo conocimiento del tema de Tecnologías de la Información, siendo de manera intuitiva y guiando al usuario para resolver el problema en dado caso que el encargado del área no estuviera.

Lo que en meses pasados eran problemas continuos ahora han desaparecido por completo. Solo se debe de monitorear, revisar y administrar los servicios para evitar fallas, y si llegara a haber alguna se cuentan con las medidas necesarias tales como contactos y herramientas que darán una solución inmediata o lo más rápido posible dependiendo del problema. Esto refleja que no solo aumente la calidad en los servicios de telecomunicaciones sino también en el trabajo y desempeño de la empresa en relación con sus proveedores y clientes los cuales tienen la confianza de trabajar con nosotros ya que contamos con las medidas de seguridad necesarias para la protección, la confidencialidad y manejo de su información, lo que ha provocado que más empresas comiencen a trabajar con ICR lo que provocará que se vuelva una empresa más internacional.
GLOSARIO

- *Active Directory (Directorio Activo).* Son los términos que utiliza Microsoft para referirse a su implementación de servicio de directorio en una red distribuida de computadoras. De forma sencilla se puede decir que es un servicio establecido en uno o varios servidores en donde se crean objetos tales como usuarios, equipos o grupos, con el objetivo de administrar los inicios de sesión en los equipos conectados a la red, así como también la administración de políticas en toda la red.

- *ALG (Application Layer Gateway).* Es un componente de software que gestiona protocolos de aplicación específicos, tales como SIP (Session Initiation Protocol) y FTP (File Transfer Protocol). Un ALG actúa de intermediario entre Internet y un servidor de aplicaciones que puede entender el protocolo de aplicación.

- *Amazon Web Services.* Es una colección de servicios de computación en la nube que en conjunto forman una plataforma de computación en la nube, ofrecidas a través de Internet por Amazon.com.

- *Bridge Mode (Modo Puente).* Es una configuración especial de un módem-router en la cual se anula quedando ahora el módem-router como si fuera un simple módem. En modo bridge el router simplemente hace de pasarela y transferencia de datos con Internet el cual es transmitido directamente por el equipo de cómputo. Es decir, la función router queda anulada y el aparato no hace NAT (Network Address Translation = traducción de direcciones de red).

- *Cableado Estructurado.* El cableado estructurado consiste en el tendido de cable de par trenzado UTP / STP en el interior de un edificio con el propósito de implantar una red de área local.
- **CCTV (Closed Circuit Television)**. Consiste en una o más cámaras de vigilancia conectadas a uno o más monitores de video o televisores que reproducen las imágenes transmitidas por las cámaras.

- **Cloud (Nube)**. Conocida también como servicios en la nube, informática en la nube, nube de cómputo o nube de conceptos (del inglés cloud computing), es un paradigma que permite ofrecer servicios de computación a través de una red, que usualmente es Internet, alojados en servidores físicos y virtuales.

- **CMG**. El cable de comunicaciones tipo CMG para uso general debe estar aprobado como adecuado para uso en comunicaciones de propósito general, excepto en ductos verticales, cámaras plenas (de aire), y también estar aprobado con las características adecuadas de resistencia al fuego y baja emisión de humos.

- **CMR**. El cable de comunicaciones tipo CMR instalados en secciones verticales debe estar listado como adecuado para instalación en un tramo vertical en un tiro en ductos y listado y además con características de resistencia al fuego capaz de evitar transmitir el paso del fuego de un piso a otro.

- **COMET DATABASE VIEWER**. Sistema que almacena los registros de temperaturas para los termómetros.

- **CRO (Contract Research Organization)**. Una Organización de Investigación por contrato, la cual se encarga de proveer servicios a las industrias farmacéutica y biotecnológica en actividades de Investigación Clínica tanto para medicamentos como para dispositivos médicos.
- **Data Center (Centro de Datos)**. Un centro de procesamiento de datos a aquella ubicación donde se concentran los recursos necesarios para el procesamiento de la información de una organización.

- **DID (Direct Inward Dialing)**. Número telefónico local que puede pertenecer a cualquier ciudad del mundo, desde el cual una persona puede llamarnos a solicitar nuestros productos o servicios, sin preocuparse por llamadas a celular, nacionales o internacionales; dando también la sensación a las personas de que están llamando a negocios locales, aunque realmente pueden estar dispersos en cualquier lugar del mundo.

- **DNS (Domain Name Server)**. Es un sistema de nomenclatura jerárquico descentralizado para dispositivos conectados a redes IP como Internet o una red privada. Este sistema asocia información variada con nombres de dominios asignado a cada uno de los participantes.

- **DVR (Digital Video Recorder)**. Es un equipo especializado diseñado para trabajar con cámaras de seguridad, su función es capturar lo que la cámara ve y enviarla al disco duro del DVR en formato digital, la compresión de los equipos DVR pueden ser muchas, pero hoy en día la más utilizada en H.264.

- **Fibra óptica**. Es un medio de transmisión, empleado habitualmente en redes de datos y telecomunicaciones, consiste en un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede provenir de un láser o un diodo led.

- **Firmware**. Conjunto de instrucciones de un programa informático que se encuentra registrado en una memoria ROM, flash o similar. Estas
instrucciones fijan la lógica primaria que ejerce el control de los circuitos de alguna clase de dispositivo electrónico.

- **Firewall.** Es un dispositivo de seguridad de la red que monitorea el tráfico de red -entrante y saliente- y decide si permite o bloquea tráfico específico en función de un conjunto definido de reglas de seguridad.

- **Forwarding.** Es la asignación o re-envío de puertos para transmitir información a través de una red. Esta técnica utiliza el protocolo TCP/IP, y se encarga de transmitir paquetes de información entre servidores externos a los servidores internos de una red particular.

- **FTP (File Transfer Protocol).** Es un protocolo de red para la transferencia de archivos entre sistemas conectados a una red TCP (Transmission Control Protocol), basado en la arquitectura cliente-servidor. Desde un equipo cliente se puede conectar a un servidor para descargar archivos desde él o para enviarle archivos, independientemente del sistema operativo utilizado en cada equipo.

- **FXO (Foreing Exchange Office).** Es un dispositivo de computador que permite conectar éste a la RTC, y mediante un software especial, realizar y recibir llamadas de teléfono. Sirve sobre todo para implementar centralitas telefónicas (PBX) con un ordenador.

- **FXS (Foreing Exchange Station).** Es el conector en una central telefónica o en la pared de nuestro hogar, que permite conectar un teléfono analógico estándar.

- **HTTPS (Hypertext Transfer Protocol Secure).** Es un protocolo de comunicación de Internet que protege la integridad y la confidencialidad de los datos de los usuarios entre sus equipos de cómputo y el sitio web con la
particularidad de utilizar un cifrado basado en la Secure Socket Layers más conocidas como SSL y así crear un canal de transferencia cifrado con el que obviamente aumenta la seguridad en el tráfico de información en comparación al protocolo HTTP común.

- **IP (Internet Protocol).** número que identifica un dispositivo en una red (un ordenador, una impresora, un router, entre otros). Estos dispositivos al formar parte de una red serán identificados mediante un número IP único en esa red.

- **IPS.** El control de aplicaciones permite a las compañías vigilar el acceso a miles de aplicaciones y provee una detección personalizada y control sobre aplicaciones propias. Equipa a los clientes con controles decisivos para mitigar amenazas y así reducir los ataques y forzar el uso de pólizas.

- **LAN (Local Area Network).** Esta red conecta equipos en un área geográfica limitada, tal como una oficina o edificio. De esta manera se logra una conexión rápida, sin inconvenientes, donde todos tienen acceso a la misma información y dispositivos de manera sencilla.

- **MAC Address.** Es un número único de 48 bits para identificar la totalidad de dispositivos de red como por ejemplo tarjetas de red Ethernet, tarjetas de red Wi-Fi o inalámbricas, Switch de red, Routers, impresoras, etc.

- **Microsoft Cloud (Azure).** Microsoft Azure es una colección cada vez mayor de servicios integrados en la nube (análisis, proceso, bases de datos, móviles, redes, almacenamiento y Web) para moverse con más rapidez, llegar más lejos y ahorrar dinero.

- **Mini Split.** Se traduce literalmente como mini-dividido, consta de 2 unidades: la unidad interior y la unidad exterior. Es un equipo de aire acondicionado con
mayor capacidad que uno de ventana, se compone básicamente de dos
partes una que es exterior y se llama condensadora y otra que es la interior
y que es la que distribuye el aire en la habitación, ambas cuentan con motor
para su funcionamiento, solo que en el caso de la condensadora, ahí se tiene
el compresor que mediante presión produce fuerza al paso del refrigerante
por un panel que a su vez recibe aire del exterior, enfiándolo y enviándolo
hacia la habitación a refrigerar.

- **MX Records (Mail eXchange Record).** Es un tipo de registro, un recurso DNS
que especifica cómo debe ser encaminado un correo electrónico en internet.

- **MySQL.** Es un sistema de administración de bases de datos (Database
Management System, DBMS) para bases de datos relacionales. Así, MySQL
no es más que una aplicación que permite gestionar archivos llamados de
bases de datos.

- **NAS (Network Attached Storage).** una tecnología de almacenamiento
dedicada a compartir la capacidad de almacenamiento de un computador
(servidor) con computadoras personales o servidores clientes a través de una
red (normalmente TCP/IP), haciendo uso de un sistema operativo optimizado
para dar acceso con los protocolos CIFS, NFS, FTP o TFTP.

- **NAT (Network Address Translation).** Es un mecanismo que permite que
múltiples dispositivos compartan una sola dirección IP pública de Internet,
ahorrando así millones de direcciones públicas.

- **OSI (Open System Interconnection).** El cual es usado para describir el uso
de datos entre la conexión física de la red y la aplicación del usuario final.
Este modelo es el mejor conocido y el más usado para describir los entornos
de red.
- **PBX (Private Branch Exchange)**. Es una red de telefonía privada que es utilizada dentro de una empresa. Los usuarios de la central telefónica PBX comparten un número definido de líneas telefónicas para poder realizar llamadas externas.

- **PING (Packet Internet Groper)**. Una utilidad que se usa para verificar que un paquete de datos se pueda distribuir a una dirección sin errores. La utilidad ping se usa generalmente para comprobar la existencia de errores de red.

- **PoE (Power Over Ethernet)**. Tecnología que incorpora alimentación eléctrica a una infraestructura LAN estándar. Permite que la alimentación eléctrica se suministre al dispositivo de red como, por ejemplo, un teléfono IP o una cámara de red, usando el mismo cable que se utiliza para una conexión de red.

- **Rackspace**. Es una compañía de gestión de computación en la nube, tiene dos líneas principales de negocio – Servidores Cloud y Servidores Dedicados. Rackspace ayuda a diseñar, crear y operar cargas de trabajo entre ambos entornos en función de las necesidades individuales del cliente.

- **SAN (Storage Area Network)**. es una red de almacenamiento integral. Se trata de una arquitectura completa que agrupa los siguientes elementos: Una red de alta velocidad de canal de fibra o iSCSI, un equipo de interconexión dedicado (conmutadores, puentes, etc.) y elementos de almacenamiento de red (discos duros).

- **SIP (Session Initiation Protocol)**. Es un protocolo Internet para comunicaciones en vivo utilizado en la configuración de llamadas de voz o vídeo.
• **SITE.** El cuarto de equipos es un espacio centralizado para los equipos de telecomunicaciones (PBX, Equipos de Cómputo, Switch), que sirven a los usuarios del edificio. Este cuarto, únicamente debe guardar equipos directamente relacionados con el sistema de telecomunicaciones y sus sistemas de soporte.

• **SSH (Secure Shell).** Es un protocolo que facilita las comunicaciones seguras entre dos sistemas usando una arquitectura cliente/servidor y que permite a los usuarios conectarse a un host remotamente. A diferencia de otros protocolos de comunicación remota tales como FTP o Telnet, SSH cifra la sesión de conexión, haciendo imposible que alguien pueda obtener contraseñas no cifradas.

• **TCP/IP.** Son las siglas de Protocolo de Control de Transmisión/Protocolo de Internet (en inglés Transmission Control Protocol/Internet Protocol), un sistema de protocolos que hacen posibles servicios Telnet, FTP, E-mail, y otros entre ordenadores que no pertenecen a la misma red.

• **TI (Tecnología de la Información).** Todo lo relacionado con computadoras y dispositivos electrónicos para el manejo y procesamiento de información, transformación, almacenamiento, protección, y recuperación de datos.

• **UPS (Uninterruptible Power Supply).** Es una fuente de suministro eléctrico que posee una batería con el fin de seguir dando energía a un dispositivo en el caso de interrupción eléctrica.

• **UTP (Unshielded Twisted Pair).** Es un tipo de conexión que tiene dos conductores eléctricos aislados y entrelazados para anular las interferencias de fuentes externas y diafonía de los cables adyacentes.
- **VLAN (Virtual Local Area Network)**. Es una red de área local que agrupa un conjunto de equipos de manera lógica y no física. Gracias a las redes virtuales (VLAN), es posible liberarse de las limitaciones de la arquitectura física (limitaciones geográficas, limitaciones de dirección, etc.), ya que se define una segmentación lógica basada en el agrupamiento de equipos según determinados criterios (direcciones MAC, números de puertos, protocolo, etc.).

- **VoIP (Voz sobre IP)**. Protocolo que se usa para identificar a la tecnología (nótese que no es un servicio) detrás de comunicaciones usando voz y vídeo a través de Internet.

- **WAN (Wide Area Network)**. El concepto se utiliza para nombrar a la red de computadoras que se extiende en una gran franja de territorio, ya sea a través de una ciudad, un país o, incluso, a nivel mundial.

- **Web Hosting**. Hospedaje en la red (alojamiento o también conocido como hospedaje web, alojamiento web, web site hosting) es un negocio que consiste en alojar, servir, y mantener archivos para uno o más sitios web. Más importante que el espacio de una estación de trabajo (servidor) que se proporciona para los archivos del sitio web es la conexión rápida a Internet.

- **WLAN (Wireless Local Area Network)**. Es un sistema de transmisión de información de forma inalámbrica, es decir, por medio de satélites, microondas, etc. Nace a partir de la creación y posterior desarrollo de los dispositivos móviles y los equipos portátiles, y significan una alternativa a la conexión de equipos a través de cableado.
REFERENCIAS ELECTRÓNICAS

3CX. (s.f.). 3CX. Obtenido de Central Telefónica PBX: http://www.3cx.es/voip-sip/central-telefonica-pbx/

3CX. (s.f.). 3CX. Obtenido de Direct Inward Dialing: http://www.3cx.es/voip-sip/did/

3CX. (s.f.). 3CX. Obtenido de FXS y FXO: http://www.3cx.es/voip-sip/fxs-fxo/

ACCESOR. (s.f.). ACCESOR. Obtenido de CCTV y Sistemas de Videovigilancia:

ACROM. (2015). ACROM. Obtenido de ¿Qué es una CRO?:

ADT. (s.f.). ADT. Obtenido de Corporativos: https://www.adt.com.mx/

CCM. (Julio de 2016). CCM. Obtenido de Tipos de redes: http://es.ccm.net/contents/257-tipos-de-redes

CISCO. (s.f.). CISCO. Obtenido de Ethernet (PoE)”: http://www.cisco.com/cisco/web/support/LA/10/106/106594_poe-requirement-faq.html

HOSTINET. (s.f.). *HOSTINET*. Obtenido de ¿Qué es un Servidor VPS?: https://www.hostinet.com/servidores-vps/que-es-un servidor-virtual-que-es-un-servidor-vps/

ITE. (s.f.). *Instituto de Tecnologías Educativas*. Obtenido de Red Telefónica Conmutada (RTC): http://www.ite.educacion.es/formacion/materiales/157/cd/m1_1_conceptos_basicos_de_internet/rtc.html

IZZI. (s.f.). *IZZI Negocios*. Obtenido de IZZI: https://www.izzinegocios.mx/home

OPEN UP. (26 de Septiembre de 2013). *OPEN UP*. Obtenido de Información de Cables CAT5, CAT5e, CAT6, CAT7 y CAT7a: http://www.openup.es/informacion-de-cables-cat5-cat5e-cat6-cat7-y-cat7a/

Seguridad Informática SMR. (2016). Seguridad Informática SMR. Obtenido de TEMA 1-
SEGURIDAD INFORMÁTICA:
https://seguridadinformaticasmr.wikispaces.com/TEMA1-
+SEGURIDAD+INFORMÁTICA

SPAMfighter. (2003-2016). SPAMfighter. Obtenido de MX Records:

UNITEL. (s.f.). UNITEL-TC. Obtenido de Componentes de un cableado estructurado:
http://unitel-tc.com/componentes-de-un-cableado-estructurado/

WIKIPEDIA. (22 de Agosto de 2016). WIKIPEDIA. Obtenido de Cable de Par Trenzado:
https://es.wikipedia.org/wiki/Cable_de_par_trenzado