

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

MODELACIÓN MATEMATICA DEL ACUÍFERO CIUDAD HIDALGO – TUXPAN, EDO. MICHOACÁN.

TESIS PROFESIONAL QUE PARA OBTENER EL TITULO DE: INGENIERA GEOLOGA

PRESENTA: PRISCILA MEDINA ORTEGA

DIRECTOR DE TESIS: ÓSCAR A. ESCOLERO TUENTES

México, D. F.

2010

La información utilizada para la realización de este trabajo se derivan del proyecto denominado DESARROLLO DE MODELOS DE MANEJO PARA LOS PRINCIPALES ACUÍFEROS DEL ESTADO DE MICHOACÁN, Clave 2005-01-052. Bajo la coordinación técnica del Dr. Óscar A. Escolero Fuentes del Instituto de Geología de la UNAM. Financiado por el Fideicomiso denominado "Fondo Mixto CONACYT-Gobierno del Estado de Michoacán".

Agradecimientos

"La misión del conocimiento no es iluminar a un alma que es oscura de por sí, ni hacer ver a un ciego. Su misión no es descubrir los ojos del hombre, sino guiarlo, gobernarlo y dirigir sus pasos a condición de que tenga piernas y pies para caminar" Montaigne

Guiero expresar mi más profundo agradecimiento

A Dies

Por permitirme llegar hasta este momento tan importante de mi vida y obtener este logro.

A mi mami

Por darme apoyo incondicional siempre

Ami famisia

A Karen, Denisse, Lulú y Pedro, que los quiero y los adoro, que son un gran apoyo en mi vida. Y a mi sobrinita Amaya que la adoro.

Al Dr. Escolero

Por la paciencia, preocupación y atención que tuvo durante la realización de este trabajo.

Amis amigos

A Felipe por sus buenos consejos y apoyo; Gaby por las buenas enseñanzas de la vida; Lilibeth e Ileana por sus consejos para continuar; Bere y Carlos por ser tan ñoños; J.L. por su apoyo en épocas de crisis; Juan, Gris y Diana por su paciencia y aliento; Said, Rodrigo, René Y a todos que me apoyaron y creyeron en mi e influyeron en la realización de esta tesis, solo les puedo decir

Muchas gracias!!! Priscila

Índice

1Generalidades	6
1.1 Introducción	6
1.2 Objetivo General	7
1.2.1 Objetivos particulares	7
1.3 Localización	8
1.4 Vías de localización	10
1.5 Estudios Previos	.11
1.6 Metodología	17
1.7 Fisiografía	18
1.8 Hidrología	20
1.9 Clima	22
1.10 Suelos	23
1.11.1 Geomorfología	27
1.12 Geología Regional	29
1.12.1 Estratigrafía Regional	29
1.13 Geología local	37
1.13. 1 Geología del subsuelo	37
2. Hidrogeología	42
2.1. Introducción	42
2.2. Definición del Sistema Acuífero Ciudad Hidalgo-Tuxpan, Michoacán	43
2.3. Revisión de estudios hidrogeológicos anteriores	48
2.4. Piezometría	50
2.4.1. Configuración del nivel estático para el año 2003	50
2.4.2. Configuración del nivel estático para el año 2007	51
2.5. Evolución del nivel estático en los años 2003 – 2007	55
2.6. Balance Hídrico	57
2.7.1. Entradas subterráneas (Es) y salidas subterráneas (Ss)	67
2.7.1.1. Entradas subterráneas (Es) y salidas subterráneas (Ss) para el año 2003.	67
2.7.1.2. Entradas subterráneas (Es) y salidas subterráneas (Ss) para el año 2007.	68

2.7.2. Recarga Natural (Inf)	71
2.7.3. Retorno por riego (Rr)	73
2.7.4. Bombeo (B)	74
2.7.5. Coeficiente de almacenamiento (Sy)	75
2.7.6. Manantiales (Man)	76
2.7.8. Variación de la carga hidráulica (Δh)	79
2.7.9. Evapotranspiración (ETR)	79
2.7.10. Resolución de balance de aguas subterráneas	82
3. Modelo de flujo del acuífero Ciudad Hidalgo – Tuxpan, Michoacán	84
3.1. Introducción	84
3.2. Ecuación de flujo de aguas subterráneas	85
3.3. Enfoque de la modelación computacional del flujo de aguas subterráneas	88
3.4. Modelación matemática con MODFLOW	90
3.5. Discretización espacial y temporal	91
3.6. Geometría del acuífero	93
3.10. Calibración en estado estacionario	100
3.11. Calibración en estado transitorio	102
3.12. Análisis de sensibilidad	106
3.13. Escenarios de explotación	108
3.13.1 Escenario 1	108
3.13.2 Escenario 2	110
3.13.3 Escenario 3	113
3.13.4 Escenario 4	115
4. Conclusiones y recomendaciones	118
4.1 Conclusiones	118
4.2 Recomendaciones	120
Referencias Bibliográficas	121
Anexos	125

1.-Generalidades

1.1 Introducción

En México existe una gran diversidad de unidades geológicas de origen sedimentario ígneo y metamórfico, que son unidades acuíferas explotables. En nuestro país, las más reconocidas son las rocas sedimentarias y volcánicas.

Los acuíferos de origen volcánico se encuentran localizados principalmente sobre la Faja Volcánica Transmexicana (FVTM), estos se caracterizan por tener una gran permeabilidad asociadas a la porosidad secundaria y a una alta transmisividad relacionadas con las fracturas presentes en la roca.

El acuífero de Ciudad Hidalgo –Tuxpan, es de origen volcánico y se encuentra sobre la FVTM que es una fuente de abastecimiento para el área y las zonas aledañas. Por ello, se pretende construir un modelo matemático como una herramienta que nos permita entender el comportamiento de los acuíferos y con ello establecer marcos de gestión responsable de los recursos hídricos nuestro país.

El zona de estudio abarca los municipios de Aporo, Angangueo, Hidalgo, Benito Juárez, Jungapeo, Ocampo, Tuxpan, Tuzantla y Zitácuaro dentro del estado de Michoacán (CNA, 2007) y tiene un área aproximada de 2,248.73 km².

1.2 Objetivo General

Con este trabajo se pretende simular el funcionamiento hidrogeológico con el apoyo de un modelo matemático del acuífero Ciudad Hidalgo-Tuxpan en el estado de Michoacán para comprender el comportamiento del agua subterránea a través del tiempo.

1.2.1 Objetivos particulares

Para poder realizar el modelo matemático se plantearon los siguientes objetivos particulares:

- Recopilación de información bibliográfica de la zona de estudio. (Comisión Federal de Electricidad, Comisión Nacional del Agua, Tesis de maestría, Tesis de licenciatura, mapas geológicos, edafológicos, etc.).
- Análisis de la información recabada para su interpretación o reinterpretación. (Pruebas de bombeo, secciones geológicas, cortes litológicos, secciones geoeléctricas, etc).
- Definir el marco geológico de la zona de estudio.
- Construir secciones geológicas representativas de la zona.
- Determinar las propiedades hidráulicas de los materiales presentes en la zona de estudio.
- Establecer las zonas de recarga, la dirección preferencial del flujo subterráneo.

- > Realizar un modelo conceptual de flujo del acuífero.
- > Calcular la disponibilidad del agua a través de un balance hidrogeológico.
- > Elaborar un modelo matemático del flujo del agua subterránea del acuífero.

1.3 Localización

La localización del Acuífero Ciudad Hidalgo-Tuxpan, se encuentra delimitado por 28 vértices comprendidas entre las coordenadas geográficas 19º 15` y 19º 49`26.4`` Latitud Norte y 100º 13`4.8`` y 100º 48`50.4`` Longitud Oeste que se muestran en la tabla I.1 y figura I.1.

Vértice	Longitud Oeste			Latitud Norte		
	Grad.	Min	Seg	Grad.	Min	Seg
1	100	37	37.2	19	49	26.4
2	100	23	9.6	19	42	0.0
3	100	17	16.8	19	40	19.2
4	100	16	12.0	19	40	30.0
5	100	15	18.0	19	39	50.4
6	100	15	7.2	19	36	21.6
7	100	14	34.8	19	34	15.6
8	100	13	4.8	19	32	56.4y
9	100	13	26.4	19	32	24.0
10	100	15	25.2	19	32	38.4
11	100	18	39.6	19	32	24.0
12	100	22	22.8	19	33	7.2

13	100	25	22.8	19	27	14.4
14	100	24	10.8	19	21	28.8
15	100	27	32.4	19	16	48.0
16	100	33	18.0	19	15	0.0
17	100	35	31.2	19	15	14.4
18	100	39	7.2	19	18	21.6
19	100	41	16.8	19	21	46.8
20	100	39	25.2	19	24	10.8
21	100	42	32.4	19	28	33.6
22	100	42	0.0	19	32	24.0
23	100	43	40.8	19	34	40.8
24	100	44	49.2	19	34	37.2
25	100	46	55.2	19	38	6.0
26	100	48	50.4	19	41	13.2
27	100	44	38.4	19	48	14.4
28	100	40	51.6	19	47	27.6
Table see les		- l l'	A .l.a.l. A		d III: dada.a	T (0

Tabla I.1. Tabla con los vértices del polígono del Acuífero Ciudad Hidalgo – Tuxpan (CNA, 2007)

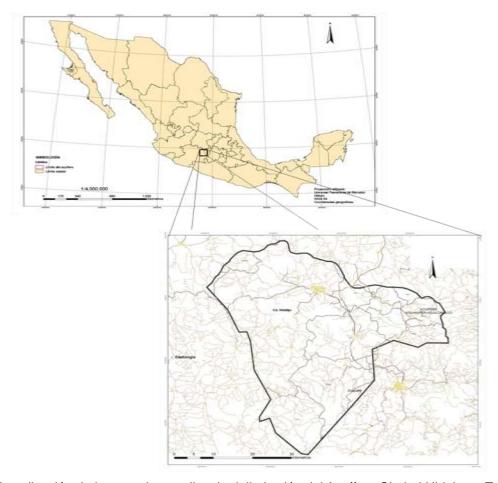


Figura I.1. Localización de la zona de estudio y la delimitación del Acuífero Ciudad Hidalgo – Tuxpan.

El acuífero en estudio se encuentra en la Región Hidrológica No 18 llamada Río Balsas, en la Cuenca del Río Cutzamala y Subcuencas del río Tuxpan y río Zitácuaro, mismo que tiene una superficie aproximada de 2,248.73 km² (CNA, 2007).

Los municipios que lo integran son: Angangueo, Aporo, Hidalgo, Benito Juárez, Jungapeo, Ocampo, Tuzantla y Zitácuaro (CNA, 2007).

1.4 Vías de localización

El acceso al área puede realizarse de dos maneras: a partir de la carretera federal No

15 que atraviesa Toluca, Estado de México y pasa por Zitácuaro, Tuxpan y Ciudad Hidalgo; la segunda opción es por la carretera federal No 126 que pasa por Irimbo hasta Ciudad Hidalgo (figura II.2).

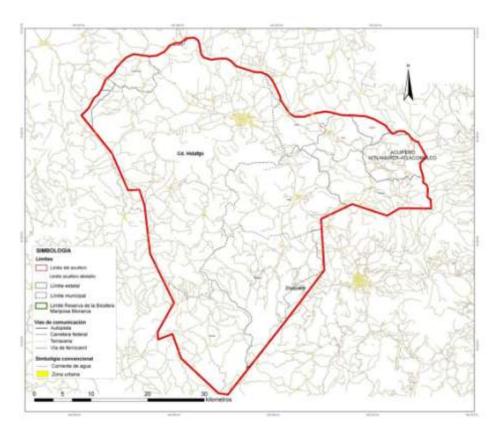


Figura II.2. Accesos a la zona de estudio a partir de las poblaciones de Zitácuaro, y Tuxpan utilizando como vía principal la Carretera Federal No. 15 y por la Carretera federal No 126 que pasa por Irimbo y Ciudad Hidalgo.

1.5 Estudios Previos

En el año 1989 se realizó una tesis de licenciatura de la Facultad de Ingeniería de la UNAM, denominada "ESTUDIO GEOLOGICO – HIDROGEOLÓGICO EN LA ZONA DE ZITÁCUARO-CIUDAD HIDALGO, MICHOACAN". Donde se realizaron 18 SEV's en cuatro perfiles geoeléctricos, obteniéndose los siguientes resultados de los mismos:

Perfil 1. Este perfil consiste en 3 sondeos eléctricos en una longitud de 3 km con una dirección sensiblemente E- W. Este perfil identifica cuatro unidades geoeléctricas UG1 (15 – 60 ohms-m) relacionados por materiales no consolidados con un espesor de 88 m. UG2 (103 – 230 ohms- m) asociados a basaltos parcialmente fracturados y/o brechas volcánicas basálticas con un espesor de 258 m. UG3 (4 ohm-s) se asocia a una secuencia andesítica y brechas volcánicas andesíticas en una profundidad mayor a los 262.80 m y su espesor es indeterminado. UG4 (517 ohms- m) se asocia por su alto valor a un basalto compacto con un espesor de 46 m.

Perfil 2. Este perfil tiene una longitud de 6.6 km, comienza a una distancia de 2 km al SE de Ciudad Hidalgo y termina a 1.5 km al oriente del poblado Irimbo. Este perfil consiste en cinco sondeos geoeléctricos e identificaron tres unidades geoeléctricas. UG1 (11 – 39 ohms- m) depósitos aluviales y suelos vegetales con un espesor de 5 m. UG2 (70 . 259 ohms- m) asociado a rocas basálticas y brechas volcánicas basálticas con un espesor indefinido. UG3

(625 y 5000 ohms- m) son rocas basálticas compactas o poco fracturadas y en forma de lentes con un espesor promedio de 30 m.

Perfil 3. Tiene una dirección NW–SE con una longitud de 9. 2 km, con siete sondeos geoeléctricos e inicia a 3 km de la ranchería Tierras coloradas y termina a 150 m antes del cruce del río Turundeo con la carretera que va hacia la ciudad de Tuxpan. Este perfil detecta a cuatro unidades geoeléctricas, UG1 (10 a 65 ohms-m) asociadas a materiales granulares con un espesor de 6 m. UG2 (100–265 ohms-m), se asocian a basaltos y brechas volcánicas basálticas con un espesor promedio de 50 m. UG3 (880–350 ohms.m) se asocian a basaltos compactos o poco fracturados con un espesor aproximado de 10 m. UG4 (3 a 60 ohms. m) se asocian con los depósitos lacustres con un espesor indeterminado.

Perfil 4. Tiene una orientación SW- NE con un longitud de 4.2 km y consiste de cuatro sondeos. Se identificaron cinco unidades geoeléctricas: UG1 (25 – 110 ohms -

m) se asocian a depósitos aluviales con un espesor de 24 m, UG2 (120–235 ohms – m) que son basaltos compactos o poco fracturados con un espesor de 40 m, UG3 (55 - 95 ohms- m) son rocas andesíticas y tobas andesíticas. UG4 (8–9 ohms-m) son lentes de 25 m de espesor de roca basáltica muy fracturada, UG5 (80– 120 ohms-m) se le asocia a rocas metamórficas con un espesor indeterminado.

En el año 2000, la CNA realizo un reporte técnico "ACTUALIZACIÓN DEL ESTUDIO GEOHIDROGEOLÓGICO DEL ACUÍFERO DE CIUDAD HIDALGO – TUXPAN, ESTADO DE MICHOACÁN" del cual se desprende lo siguiente:

Definen un tipo de acuífero que está constituido por una serie de rocas volcánicas que sobreyacen a un conjunto de sedimentos metamórficos y conjuntos de calizas plegadas en el sur de la zona de estudio.

El flujo del agua subterránea de la zona de ciudad Tuxpan al sur, existe un flujo lento hacia la cuenca del Balsas; por la parte central del área y pasa por secuencias volcánicas que debido a su fracturamiento es nulo o escaso. En la zona de Ciudad Hidalgo y San Lorenzo Queréndaro es un gran reservorio de aguas subterráneas.

En las zonas de Benito Juárez - Parícuaro se forman pequeños valles que rellenan las rocas basálticas ofreciendo buenas posibilidades de producción acuífera. Subyaciendo a los basaltos de la zona se encuentran andesitas intensamente fracturadas con buena permeabilidad y con espesor de 500 a 1500 m, los cuales generan manantiales en zonas donde existe el contacto con las unidades impermeables del Grupo Balsas.

Con lo que se concluye, que las aguas pluviales tienen una gran infiltración en las partes elevadas donde se encuentran las rocas volcánicas recientes de la zona. En menor proporción en las planicies aluviales en una cantidad considerable y en menor proporción en los flancos de los estratos—volcanes que tienen una red fluvial bien desarrollada que tiene una dirección al E al S.

Con respecto con la calidad del agua se considera en general como agua de excelente calidad cumpliendo con las normas vigentes.

Por otro lado realizaron un censo de aprovechamientos y balance de aguas subterráneas teniendo como resultado lo siguiente (tabla I.2):

TIPO DE USO	NO. ESTIMADO DE	%	VOLUMEN EXTRAIDO Mm³/AÑO
	POZOS		
AGRICOLA Y PECUARIO	12	15.2	1.218
PUBLICO URBANO	34	43	20.21
SERVICIOS Y OTROS	33	41.8	2.92
TOTAL	79	100	24.35

Tabla II.2. Censo de aprovechamientos tomado de CNA 2000.

La disponibilidad de aguas subterráneas para este acuífero se registra un volumen disponible de agua de 19.126 Mm³ /año.

En el año 2003 la CNA realizó un estudio por Gondwana Exploraciones S.C: . "REACTIVACIÓN DE REDES DE MONITOREO PIEZOMÉTRICO EN LOS ACUÍFEROS DE LOS VALLES DE ATLIXCO-IZÚCAR DE MATAMOROS PUEBLA, CIUDAD HIDALGO-TUXPAN Y HUÉTAMO MICHOACÁN", con los siguientes resultados:

Se realizó un modelo hidrogeológico conceptual de la zona de estudio para explicar objetivamente la trayectoria del agua subterránea. También definieron seis unidades hidrogeológicas definidas principalmente por su conductividad hidráulica asociadas a las rocas en la zona.

También llevaron un reconocimiento de 16 pozos y 2 norias para medir la profundidad

del nivel estático, de los cuales se encontraron en general de 1 m a 70 m de profundidad. Por lo que determinaron que la mayor parte de los aprovechamientos de aguas subterráneas son en Ciudad Hidalgo y la dirección de flujo subterráneo es de noroeste a sureste. Y en la localidad Epunguio el flujo tiene una dirección de este a oeste.

En el año 2007 la CNA encomendó a la empresa SANX INGENIERÍA INTEGRAL Y DESARROLLO S.A. DE C.V., el proyecto con nombre: "ESTUDIO DE ACTUALIZACIÓN HIDROGEOLÓGICA DEL ACUÍFERO DE CIUDAD HIDALGO-TUXPAN, EN EL ESTADO DE MICHOACÁN" con las siguientes aportaciones :

Se definió un marco geológico-hidrogeológico del acuífero de Ciudad Hidalgo-Tuxpan. Realizaron un censo de aprovechamientos hidráulicos, con ello se elaboración de pruebas de bombeo para obtener parámetros físicos e hidráulicos para entender el comportamiento del movimiento del agua en el subsuelo.

Para facilitar la comprensión del acuífero se efectuaron TEM`s, que lo atraviesan de ello se derivan los perfiles geoeléctricos con una profundidad aproximada de 700 m. Este trabajo elaboró un balance hidrometeorológico que obtuvo los siguientes resultados para el mismo :

Entradas subterráneas (Es): 24.476 Mm³; Salidas subterráneas (Ss): 49.531 Mm³; Retorno natural (Rn): 28.61 Mm³; Retorno por riego (Rr): 2.40 Mm³; Bombeo (B): 10.004 Mm³/año; Manantiales (M): 2.006 Mm³; Cambio de volumen (ΔV): 34.55 Mm³/año: Obteniéndose:

Recarga total media anual: Recarga natural (24.78 Mm^3) + Recarga inducida (34.40 Mm^3) = 54.38 Mm^3 .

Descarga natural comprometida: Descarga por manantiales (2.006 Mm³) + Salida subterránea horizontal (39.3443 Mm³) = 41.2443 Mm³.

Volumen anual de extracción: 3.233380 Mm³.

El acuífero tiene una disponibilidad de aguas subterráneas de 9.808341 Mm³/Año.

También se analizaron 41 muestras de agua para determinar su calidad; concluyendo que el agua del acuífero se considera de buena calidad característico de un acuífero de origen volcánico. Presentado subclases en diferentes áreas como: aguas bicarbonatadas magnésicas sódicas, cálcicas o mixtas en la zona de Huajúmbaro; en la zona de Los azufres son aguas sulfatadas y en la tercer área que comprende Ciudad Hidalgo, Tuxpan y Jungapeo son aguas bicabonatadas mixtas, bicabornatadas magnésicas y cálcicas y en menor proporción sódicas.

Otra propiedad medida es la temperatura, esta varía en un intervalo de 12.6° C a los 44.1°C; siendo tres familias predominantes de la zona. Ciudad Hidalgo, Tuxpan y Jungapeo, con temperaturas bajas, la segunda zona en Huajúmbaro y la tercera es la zona que presenta las temperaturas mayores en el área de Los Azufres.

De la misma manera, se analizaron los sólidos totales disueltos del agua (SDT); Dureza, Nitratos, Calcio, Magnesio, Sodio, Potasio, Cloruros, Sulfatos, Fierro y Magnesio, Coliformes Totales y Coliformes Fecales.

En el mismo año se realizó un proyecto terminal de licenciatura de Ingeniería Hidrogeológica que se imparte en la Universidad Autónoma Metropolitana (UAM) denominado "BALANCE HÍDRICO DEL ACUÍFERO CD. HIDALGO – TUXPAN, EDO DE MICHOACÁN." Donde se realizaron un balance del acuífero a partir de datos climatológicos e hidrométricos para un balance hídrico obteniendo que el volumen precipitación acumulada promedio es de 2,513.22 Mm³ como la única fuente de entradas y como salidas se consideran al Escurrimiento Virgen de 541.94 Mm³, Flujo base de 399.51 Mm³, Evapotranspiración Efectiva 1418.14 Mm³ y como recarga del

acuífero de 153.61 Mm³.

En este trabajo concluye que los datos que se utilizan son los más recientes y se puede aplicar para acuíferos con poca información; si solo se tienen datos de precipitación acumulada y la temperatura media de la zona de estudio.

1.6 Metodología

Para la realización de este trabajo de investigación se realizaron las siguientes actividades:

Recopilación bibliográfica

Se investigó toda la literatura bibliográfica de la zona en trabajos técnicos y proyectos cercanos a la zona de estudio principalmente de CNA, CFE, empresas privadas, etc; relacionados con la geología, balances hídricos, piezometría, censos del acuífero.

Análisis de la información

La información obtenida se estudió y se clasificó para configurar los perfiles geológicos, geofísicos—geológicos, reinterpretación de pruebas de bombeo para obtener parámetros hidráulicos de la zona.

Interpretación

En este proceso se obtuvieron los parámetros hidráulicos, modelo conceptual y todas las variables para que se pudiera realizar el modelo de flujo subterráneo del acuífero.

Resultados

En esta etapa se elaboraron los productos finales obtenidos de la interpretación de los datos recopilados en las etapas anteriores y concluyen con la elaboración de:

- Perfiles geofísicos- geológicos.
- Balance hídrico del acuífero.
- Balance hidrogeológico.
- Determinación de los parámetros hidráulicos de la zona.
- Modelo matemático del flujo subterráneo.

1.7 Fisiografía

El relieve de Michoacán está ligado a los aspectos litológicos, la tectónica de placas y aspectos climatológicos, los cuales configuran la morfología del estado (Garduño M., 2005).

De acuerdo a Raisz (1964) la zona de estudio se localiza en dos provincias fisiográficas del país (figura I.3):

- Sierra Madre del Sur
- Eje Neovolcánico

Sierra Madre del Sur

Esta zona es considerada una de las más complejas y poco estudiadas del país. Sus límites son al norte con el Eje Neovolcánico, al este la Llanura Costera del Golfo Sur, Sierras de Chiapas y Guatemala, y la Cordillera Centroamericana, al sur y al oeste el Océano Pacifico.

Esta provincia se caracteriza por estar constituida por rocas de gran complejidad desde rocas metamórficas y rocas ígneas intrusivas.

El acuífero de Ciudad Hidalgo- Tuxpan, queda comprendido dentro de la Subprovincia de la depresión del Balsas que es una de las cuatro subprovincias que tiene el estado de Michoacán que son La Cordillera Costera del Sur, Las Costas del Sur, Las Sierras de la Costa de Jalisco y Colima y la antes mencionada.

Subprovincia de la depresión del Balsas

Esta Subprovincia tiene una litología y estructuras muy variadas y complejas. Esta región se extiende en dirección Norte-Sur y colinda con la Subprovincia Mil Cumbres (Eje Neovolcánico) desde Morelia hasta Zitácuaro incluidas las márgenes del río Balsas. Está constituida por rocas ígneas, sedimentarias y metamórficas; por otro lado, las condiciones edafológicas son suelos recientes llamados regosoles que constituyen el 40% de la superficie de la Subprovincia.

Provincia del Eje Neovolcánico

Esta provincia se caracteriza por rocas volcánicas del Terciario al Reciente acumuladas en varias fases de episodios volcánicos sucesivos formando grandes sierras volcánicas y derrames. Las cuencas cerradas donde se encuentran emplazados lagos como el de Pátzcuaro, Cuitzeo, Totolcingo, etc. El acuífero Ciudad Hidalgo-Tuxpan se encuentra dentro de la Subprovincia Mil Cumbres.

Subprovincia Mil Cumbres

Se caracteriza por estar constituida por sierras volcánicas complicadas mesetas escalonadas y lomeríos de origen volcánico que dan origen a una gran diversidad de geoformas que dan a esta región accidentada y compleja. Los suelos dominantes son andosoles y residuales para litosol, regosol y suelos rojos arcillosos.

19

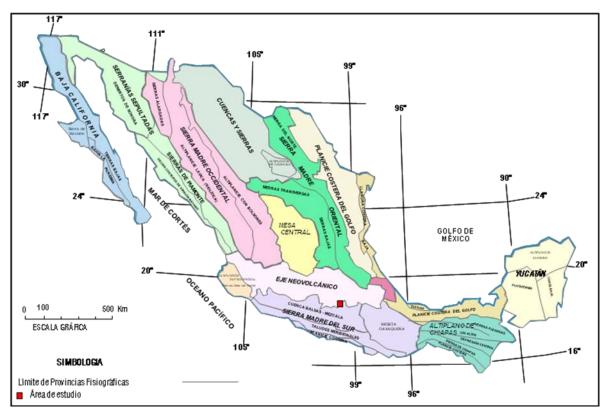


Figura I.3. Provincias fisiográficas (Raisz, 1964).

1.8 Hidrología

El estado de Michoacán se encuentra enmarcado en cuatro Regiones Hidrológicas (RH) que son: Lerma- Santiago, Armería Coahuayana, Costa de Michoacán y del Río Balsas. El acuífero Ciudad Hidalgo—Tuxpan, se encuentra en esta última que esta denominada como No 18, esta es una de las corrientes más importantes del país, cuya cobertura es de 34,293.79 km² y abarca a los estados de Guerrero, Jalisco, México, Michoacán, Morelos, Puebla, Tlaxcala y Oaxaca.

Esta RH está comprendida por las siguientes seis cuencas hidrológicas:

 Río Balsas- Zirándaro: Tiene una superficie de 1,323 km² y tiene como subcuencas intermedias: río Balsas – Zirándaro y río Huautla.

- Río Balsas –Infiernillo: Su cobertura es de 4,663 km² es una de las cuencas más importantes por la presencia de la presa El Infiernillo y tiene como subcuencas intermedias: río Balsas Aratichanguío, presa El Infiernillo, río Balsas La Garita y río Balsas La Villita.
- Río Cutzamala: Tiene una extensión de 7,417 km² es la corriente más importante de la Cuenca y también uno de los principales afluentes del río Balsas. Esta constituida por las subcuencas intermedias de río Cutzamala, río Zitácuaro, río Tuxpan, río Purungeo y río Tilostoc.
- Río Tacámbaro: Tiene una cobertura de 5,400 km², su principal corriente al río Tacámbaro y sus subcuencas intermedias al río Tacámbaro, río Quenchendío y río Carácuaro.
- Río Tepalcatepec –Infiernillo: tiene una superficie de 7,315 km² y sus subcuencas intermedias son: el río San Pedro, presa El Zapote, río La Parota, lago Zirahuén, Paracho – Nahuatzen, río Cupatitzio, río El Marqués y el arroyo Las Cruces.
- Río Tepalcatepec las subcuencas comprendidas son. Río Bajo Tepalcatepec, arroyo Tepalcatepec, río Apatzingán y río Quitupán. Su extensión que ocupa en el estado es de 7,375 km².

El acuífero Ciudad Hidalgo – Tuxpan se localiza en la Cuenca del Río Cutzamala y subcuencas del río Tuxpan y río Zitácuaro. (CNA, 2007).

El estado de Michoacán de acuerdo con el INEGI existen tres vertientes para la explotación que son las principales fuentes de agua en el desarrollo de las actividades económicas de la zona, la cual corresponde a la de Ciudad Hidalgo – Tuxpan.

1.9 Clima

Según la nomenclatura propuesta por Köppen modificada por E. García en 1964, y a la gran variedad de climas presentes de la República Mexicana y su distribución de los mismos la zona de estudio existe una variedad también; haciéndose notar seis clases principales en la región (CONABIO, 1998).

En la parte norte y noreste en Los Azufres y Angangueo, existe la predominancia de el clima C(w2)(w), que pertenece a un clima semifrío, subhúmedo con verano fresco largo, con temperaturas medias anuales entre 5°C a12°C, las mínimas temperaturas del mes más frío oscila entre -3°C y 18°C y la temperatura del mes más caliente alrededor de 22°C (figura I.4).

En la zona centro y noreste se caracteriza por un clima C(w2)(w) que es templado subhúmedo con temperaturas medias anuales de 12°C a 18°C, con temperaturas mínimas del mes más frío de -3°C y 18°C y temperatura del mes más caliente bajo 22°C. La precipitación en el mes más seco es inferior a los 40 mm; en los periodos de lluvias de verano con índice P/T mayor de 55 y porcentaje de lluvia invernal del 5 al 10.2% del total anual (figura I.4).

En los municipios de Ciudad Hidalgo, San Matías el Grande y San Pedro Jacuaro al norte y los municipios de Irimbo, Áporo, Epungio y campo en el noreste existe un clima C(w1)(w), con características de clima templado, subhúmedo con una temperatura media anual entre 12°C a 18°C, temperatura del mes más frío entre -3°C y 18°C y temperatura del mes más caliente bajo 22°C. Este clima presenta una precipitación 40 mm en secas, en verano con un índice P/T de 43.2 y 55 y un porcentaje de Iluvias en invierno de 5% a 10.2% del total anual (figura I.4).

Existe un clima (A)C(w1)(w) que es un clima semicálido, subhúmedo del grupo C, con temperatura media anual superior de 18°C, temperatura del mes más frío menor de

18°C, y temperatura del mes más caliente superior a los 22°C. Presenta una precipitación del mes más seco menor a los 40 mm; en lluvias de verano con índice P/T entre 43.2 y 55 y porcentaje de lluvia invernal del 5% al 10.2% anual. Esta franja va de San Lorenzo Queréndaro a Tuxpan (figura I.4).

El clima en la parte sur en especial El Olivo, existe un clima Aw0(w) que es cálido subhúmedo, con temperatura media anual mayor de 22°C y su temperatura del mes más frío mayor de 18°C (figura I.4).

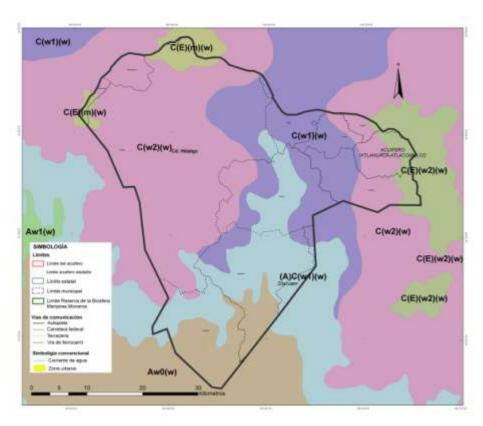


Figura I.4. Mapa de climas en el Acuífero Ciudad Hidalgo-Tuxpan (Conabio, 1998).

1.10 Suelos

En la zona de estudio los suelos presentes son derivados de un vulcanismo reciente cuyas litologías son basaltos, tobas, andesitas, riolitas, dacitas, sedimentos recientes.

Los factores para poder formar un suelo son la litología presente, la topografía, el clima y la vegetación que prevalece en la zona.

Los suelos predominantes en esta zona son andosoles, luvisoles, feozem, vertisoles, acrisoles, litosol, pedosol y regosoles; que a continuación se describen.

Unidad de suelos Andosol

Este tipo de suelos jóvenes derivados de las cenizas volcánicas producto de la actividad volcánica reciente en la zona. La coloración presenta una tonalidad predominantemente negra y se le atribuye una gran cantidad de nutrientes con una gran susceptibilidad a la erosión (figura I.5).

La vegetación que predomina en este suelo es de pinos, encinos, oyameles y abetos. La unidad de suelos andosol presenta dos variantes el andosol húmico y andosol ócrico.

Unidad de suelos Luvisol

Dentro de nuestra zona de estudio se presenta unas subvariantes de esta unidad que Luvisol crómico, luvisol órtico y luvisol férrico. Estas unidades están distribuidas en porciones reducidas al occidente, al oriente y al sur de la zona de estudio. Estos suelos son constituidos principalmente por acumulaciones de arcillas con una coloración roja a clara, acidez moderada asociados a climas templados lluviosos (figura I.5).

Unidad de suelos Feozem

Esta unidad se distribuye en porciones pequeñas y aisladas al occidente de Ciudad Hidalgo y al suroeste de Zitácuaro. Estos suelos se caracterizan por tener una capa superficial rica en materia orgánica y nutrientes con una tonalidad oscura. Existe una

24

subunidad háplica. La vegetación presente es diversa por su gran contenido orgánico.

Unidad de suelos Vertisol

Esta unidad está en la parte central de la zona de estudio ya que ocupan las partes planas. (Figura I.5) Los suelos Vertisol consisten en un horizonte muy arcilloso y en época de sequía que provocan grietas de desecación notorias. En estado natural presenta una dureza que resiste a la erosión. Las subunidades presentes son el vertisol pélico con tonalidades oscuros y el vertisol crómico que varía en la tonalidad.

Unidad de suelo Acrisol

Se distribuye en la porción sur de la zona de estudio con dos subunidades acrisol húmico y acrisol órtico (figura I.5). Los acrisoles son suelos que tienen un horizonte B argilitico y tienen una base de saturación menor que es menor al 50 % y .el acrisol húmico contiene una gran cantidad de materia orgánica en sus horizontes (FAO, 1974).

Unidad de suelo Litosol

Esta unidad se distribuye en la parte central hacia al sur en pequeñas concentraciones. Este tipo de suelo se caracteriza por tener espesores menores a 10 cm, por lo que se dificulta determinar sus características ya que se desarrolla en diferentes climas con diversos tipos de vegetación y sus variables dependen del material que lo conforma (figura 1.5).

25

Unidad de suelo Regosol

Se define como la capa de material suelto que cubre la roca en la cual puede sustentar cualquier tipo de vegetación dependiendo del clima. Su uso es principalmente forestal y ganadero. Y se distribuye en la porción sur del acuífero Ciudad Hidalgo-Tuxpan (figura I.5).

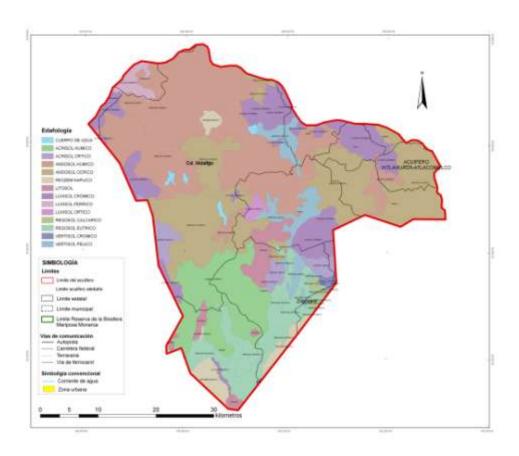


Figura I.5. Distribución de las unidades edafológicas en el Acuífero Ciudad Hidalgo-Tuxpan (Conabio,2008) .

1.11 Marco Geológico

1.11.1 Geomorfología

La zona de estudio está constituida por tres zonas distintivas (CNA, 2007) de grandes cambios en la litología, en un relieve abrupto. Las tres zonas se describen a continuación:

Zona con sierras muy elevadas que se encuentra en la porción occidental y sur que presentan una gran distribución en la zona de estudio. Estas sierras tienen una elevación máxima de 3000 metros sobre el nivel medio del mar, con desniveles aproximados a los 800 m con las cotas mínimas de la región. El relieve es producto de una alineación de edificios volcánicos y el drenaje asociado a esta zona es de tipo dendrítico, subparalelo y radial.

La zona de sierras de elevaciones menores y lomeríos se presenta al noriente de la zona de estudio. Las cotas más altas no rebasan los 2500 msnm y son una serie de lomeríos de estructuras de material riolítico de la región. El tipo de drenaje preferencial que se presenta es dendrítico.

La zona de valle intermontano es la región que abarca el valle que se genera entre las zonas de sierras y se extiende de Ciudad Hidalgo a Tuxpan.

En la figura I.6 se puede apreciar las principales zonas geomorfológicas que tiene el acuífero Ciudad Hidalgo-Tuxpan.

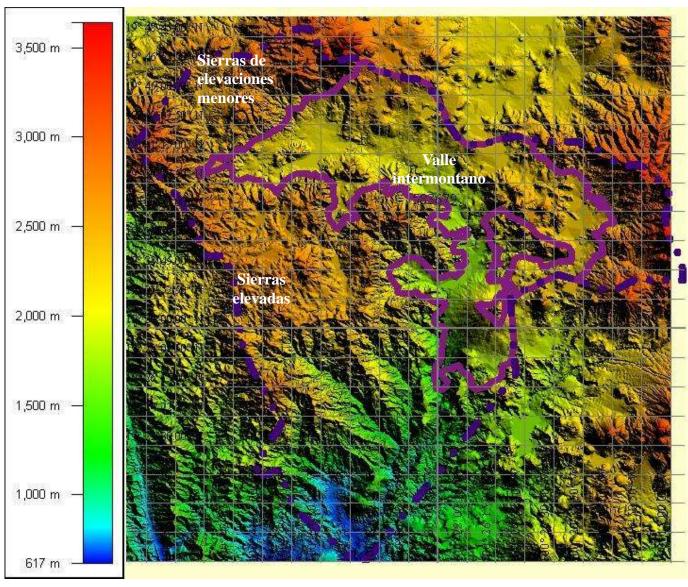


Figura I. 6 . Modelo digital de elevación en donde se denota la distribuición del relieve en la región de estudio (INEGI).

1.12 Geología Regional

1.12.1 Estratigrafía Regional

El acuífero Ciudad Hidalgo-Tuxpan, está comprendido principalmente en la Faja Volcánica Transmexicana que tratan primariamente de roca volcánicas recientes. A continuación se esboza la estratigrafía regional de la zona de estudio (figuras I.7 y I.8).

Formación Villa Ayala Js-Ki (Ms)

Esta formación en una secuencia de rocas basálticas y andesítitas de forma masiva y almohadillada con lentes de arenas volcánicas, pero también contienen en la cima material piroclástico, radiolaritas y en ocasiones calizas de bioclastos interestratificados en el paquete sedimentario; las cuales presentan un metamorfismo de bajo grado y de facies de esquistos verdes y/o una alternancia de andesita, arenisca, lutitas, tobas, brechas, sedimentos volcanodetríticos (Bustamente, 2007) originando metaandesitas, pizarras y metaareniscas.

Este paquete litológico se asocia a un arco volcánico de edad cretácica inferior y/o probablemente Jurásico Superior (González, P. 2001) Esta secuencia la correlacionan con la Roca Verde Taxco Viejo (Fries, 1960) y Campa en 1974 la denominado como secuencia vulcanosedimentaria de Ixtapan de la Sal.

En nuestra zona de estudio se encuentran afloramientos de esta formación en ubicaciones cercanas a los poblados de Ocampo, Aporo y Zitacuáro.

Formación Arcelia Js-Ki (Mv)

Este paquete litológico consiste en derrames volcánicos en forma de almohadillados con materiales arenosos, piroclásticos, radiolaritas intercalados. En la parte superior de la misma contiene areniscas volcánicas, bloques de rocas básicas, brechas magmáticas con ventanas

de calizas (González, 2001). Esta formación se asocia a la Formación San Lucas de la Cuenca de Huétamo (Salinas, 1994). Esta formación se encuentra presente al sur y al S70°W del Municipio de Zitacuáro.

Formación Mal Paso Ki(Cz)

Son rocas calcáreas que se habían designado anteriormente como Formación Morelos que descansan sobre la Formación San Lucas concordantemente.

En 1998, Buitrón estudio determinando dos miembros el Inferior y el Superior. El miembro Inferior es un prisma sedimentario constituido por paquetes clásticos de espesor delgados a medianos de areniscas líticas (grauvacas) y cuarzo feldespáticos. Esta unidad presenta conglomerado polimícticos masivos con clastos ígneos, sedimentarios y metamórficos. En la cima se presentan estructuras fósiles (biostromas) con intercalaciones de lutitas, areniscas y limonitas.

En el miembro superior tiene un espesor aproximada de 750 m y son producto de ambientes arrecifales y lagunares. Esta secuencia son intercalaciones de calizas arcillosas con limonitas y lutitas, con gradación hacia la cima a una secuencia de calizas biógenas con bancos de lutitas y areniscas. Los lugares donde afloran esta formación es al S70ªW del municipio de Zitácuaro.

Diorita T(D)

El Consejo de Recursos Minerales en 1998 dio a conocer que en las cercanías de la presa El Bosque, al sur de Zitácuaro existe un cuerpo plutónico de composición diorítico. De una edad establecida de 127 Ma (CNA, 2003).

Depósitos continentales del Cenozoico Paleo-Neo (Dc)

Son secuencias de areniscas, conglomerados, limolitas y conglomerados del Cenozoico y

se encuentran presentes en la porción sur de la zona de estudio y en dirección al S50ºW del municipio de Zitácuaro.

Granitos

Son cuerpos intrusivos que afectan a toda la secuencia estratigráfica de composición granítica a diorítica asociados a la actividad magmática del terciario, los cuales han sido fechados en 30 Ma (CRM, 1998).Pero en nuestra zona de estudio no se encuentran afloramientos presentes.

Andesitas Mil Cumbres Ts(A)

Esta unidad es la que contiene el yacimiento Geotérmico Los Azufres localizado a 30 km al NW de Ciudad Hidalgo. Esta unidad es el basamento local del campo Geotérmico antes mencionado, son rocas afanáticas, compactas y color gris oscuro. Las andesitas son un apilamiento de derrames con un espesor superior a los 3000 m (Arellano, 2004) con la siguiente secuencia 600 m de basaltos seguidos de 1700 m de andesitas y de 700 m dacitas en la parte superior. Esta andesita presenta dos tipos de fracturamiento en forma de bloques y fracturamiento horizontal, que principalmente están presentes con planos de falla con direcciones preferenciales E-W y NE –SW. (CFE, 1983) La edad de esta unidad se encuentra 18.1 Ma. a 5.9 Ma.

Rocas Volcánicas

Son derrames de composición basáltica a riolitica, Fries en 1960 denomino Andesita Buenavista, a los materiales de composición andesítica; con una estructura general masiva en ocasiones se intercalan horizontes de flujos piroclásticos y brechas volcánicas. Estas rocas se mencionan por el marco geológico cercano pero no afloran en la zona de estudio.

Riolita Agua Fría Ts(R), Ts(R-Ta) y Ts (Ta)

Es un cuerpo silícico más antiguo del Campo Geotérmico Los Azufres, representado por domos de lava y flujos fragmentados de riolita, de una tonalidad gris-azul, con bandas de flujo y esférulitas bien desarrolladas siendo la más afectada hidrotermalmente provocando grandes zonas de caolinización y silicificación. Se consideran como la capa sello superior del yacimiento y se ven afectadas principalmente por fallas E-W. Perforaciones realizadas por Dobson y Mahood en 1985 reportan espesores de hasta 800 m para esta unidad. Son producto de un ciclo volcánico de 1.05 a 0.84 Ma (González P. 2000).

Esta unidad se presenta en mayor distribución en la porción NW de Ciudad Hidalgo, Michoacán, creando una morfología caracteriza por las altas sierras generadas de este episodio volcánico.

Las siguientes unidades se describen para tener un mejor entendimiento de la geología de la zona; ya que no hay afloramientos presentes en el área de estudio:

Dacita Tejamaniles

Es un domo de composición dacítica, formando el Cerro Las Humaredas (1.08+-0.93Ma). Esta unidad es discordante sobre las Riolitas Agua Fría, presentan una textura porfídica con fenocristales de plagioclasa y cuarzo, con una alteración hidrotermal y son afectadas por fallas del sistema E-W y NE-SW.

Dacita Cerro el Mozo

Esta unidad es un emplazamiento de un domo Dacítico conocido como Cerro el Mozo, en forma discordante alas Riolitas Agua Fría. Esta estructura se encuentra alineada hacia el NW con otros domos contemporáneos a este y tiene una edad de 0.45+-0.42Ma.

Dacita San Andrés

La Dacita San Andrés (González P. 2000), representa una fase volcánica de edad de 0.33

Ma que consiste en una serie de domos Dacíticos, el principal de estos llamado Cerro San Andrés, que constituye la estructura más grande del lugar con 3500 msnm. Los derrames lávicos sobreyacen en discordancia litológica a las Riolitas Agua Fría. Presentan un color gris oscuro hasta azul grisáceo, presentan bandas o estructuras de flujo, fenocristales de plagioclasas, hornblenda, clino y ortopiroxenos, así como biotita y cuarzo e inclusiones afaníticas. (Arellano, 2004).

Riolita La Yerbabuena

Las inyecciones Riolíticas son de 0.14 Ma y 0.30 ma. (González P. 2000 y Dobson y Mahood, 1985), está secuencia está representada por riolitas con alto contenido en sílice hasta Riodacitas con presencia de material de caída libre, con una matriz pumicitica. Estas rocas sobreyacen discordantemente a las Andesitas Mil Cumbres, al W del campo geotérmico Los Azufres. La etapa final que dio lugar a esta formación fue una fase explosiva que dejó como evidencia una serie de depósitos piroclásticos de flujo y de caída libre con una amplia distribución en la zona. Esta unidad aflora en la parte occidental en forma de domos con espesores superiores a 300 m.

Tobas Pumicíticas

Es la última unidad ácida y está constituida por material piroclástico de espesor 1 a 10 m agrupado en las siguientes unidades:

- Material Tobáceo-Conglomerático; constituido por fragmentos de riolita fluidal, pómez y obsidiana; resaltado, los tamaños más grandes pero en menor presencia los fragmentos de andesita cementados por una matriz pumicítica.
- Tobas-Arenosas; se presentan en la parte centro-occidente, de Los Azufres, son de origen explosivo, están constituidas por cristales de cuarzo, fragmentos de cuarzo, fragmentos de pómez y plagioclasas. No consolidados.

Modelación matemática del acuífero Ciudad Hidalgo - Tuxpan, Edo. Michoacán.

Ambos depósitos fueron provocados por la última fase explosiva de los domos riolíticos

Basaltos

Estos basaltos están representados por conos cinériticos que se encuentran a lo largo de alineamientos estructurales con dirección E-W, probablemente tienen relación con el fallamiento. Representan un episodio volcánico y tectónico más reciente de la zona, están constituidos por coladas de lava de composición basáltica y pequeños depósitos piroclásticos los cuales van del tamaño de cenizas hasta bloques con presencia de bombas piroclásticas.

Complejos de Domos Tuxpan

Al oeste y noroeste de Tuxpan se elevan abruptamente domos y conos con lavas intermedias y ácidas y tobas pumiciticas. Se estima que este complejo está sobrepuesto a los basaltos de la Loma de Chupio, probablemente presentan los derrames de una sola cámara magmática local de composición intermedia a ácida.

Suelos y Aluviones Q(al), Q(re),Q(la), Q(cg)

Es material que constituye esta unidad presenta espesores muy delgados y en las zonas bajas pueden llegar a los 15 m, revelan su génesis como producto de la descomposición de rocas preexistentes debido al intemperismo físico, químico, biológico, o bien por erosión.

34

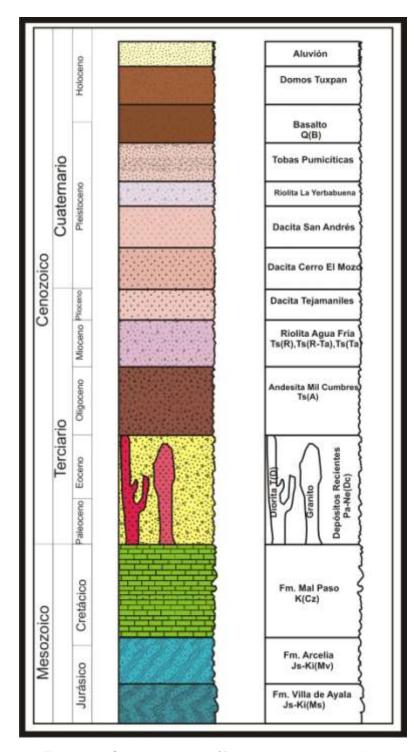


Figura I. 7. Columna estratigráfica de la zona de estudio..

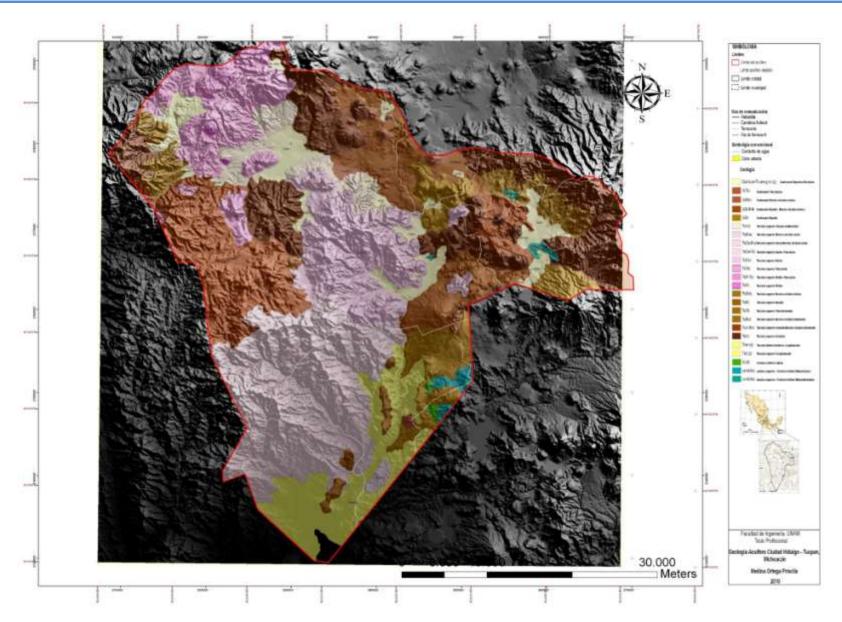


Figura I. 8. Geología en el acuífero Ciudad Hidalgo – Tuxpan, Michoacán.

1.13 Geología local

1.13. 1 Geología del subsuelo

En la figura I.8 se logra observar la geología superficial en la zona que esta presente rocas de diferentes tipos

- a) Volcánico: Las rocas volcánicas son de composición andesítico a dacítico, que cubre el 95 % del acuífero.
- b) Sedimentario: Las rocas sedimentarias son aluvión en las partes planas del acuífero, conglomerados que están presentes en de los municipios de Ocampo y Tuzantla, y rocas calcáreas que afloran cercanas a Zitácuaro; en total representan en superficie el 4% del acuífero.
- c) Metamórfico: Las rocas son metavolcánico y metasedimentario que afloran cercanos a los municipios de Tuzantla, Ocampo y Zitácuaro.

Para cumplir con el objetivo de elaborar secciones geológicas y poder definir con mayor certeza se interpretaron 8 secciones geoeléctricas de estudios anteriores y poder establecer la geometría del subsuelo (figura I.9).

En este apartado se describirán a detalle dos secciones geofísicas y las interpretaciones de las demás secciones se localizaran en el Anexo de secciones geológico—geofísicas y tres secciones geológicas que nos ayudaran a entender mejor la geometría del subsuelo de la zona.

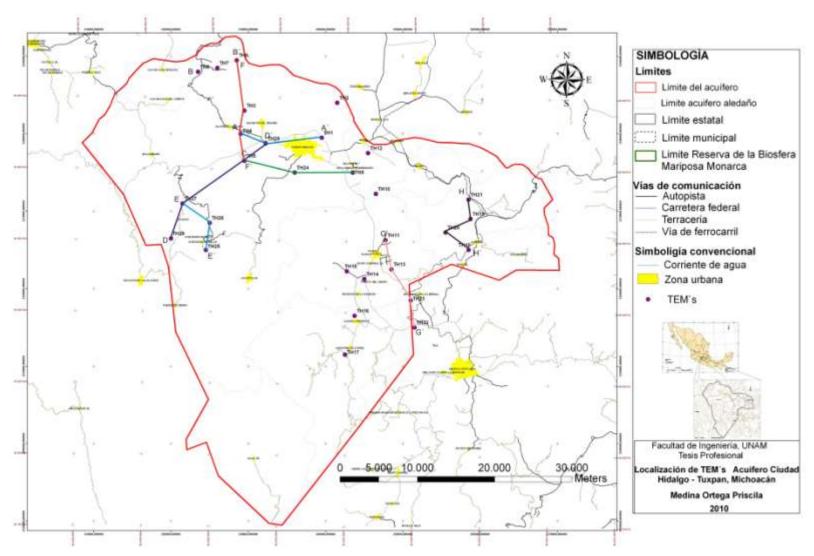


Figura I.9. Localización de TEM`s realizados por la empresa SAINX Ingeniería integral en el acuífero Ciudad Hidalgo – Tuxpan.

Sección A -A'

Este tendido se encuentra localizado en el poblado de San Pedro y pasa al norte de Ciudad Hidalgo, tiene una longitud de de 12,500 m. En esta sección se presentan 3 unidades geoeléctricas U1a, U2a, U2b predominantes que presentan resistividades de 3 a 30 ohm * m (figura I.10).

En la figura I. 11 es la interpretación geológica de la sección A – A' basándose en las resistividades, la litología presente en superficies y la literatura. La litología que se definió para cada sondeo fue el siguiente en el tendido TH4 y TH29, se definió una capa de aluvión de un espesor de 100 m sobreyaciendo en forma de cuña depósitos vulcanoclásticos con espesores de 150 m en el sondeo TH4 y desaparece en el sondeo TH29, subyaciendo a este se encuentra una capa potente de andesitas. En el sondeo TH1 se identifica a Brechas volcánicas y basaltos con espesores de 0 m a 300 m en las partes más profundas (figura I.11).

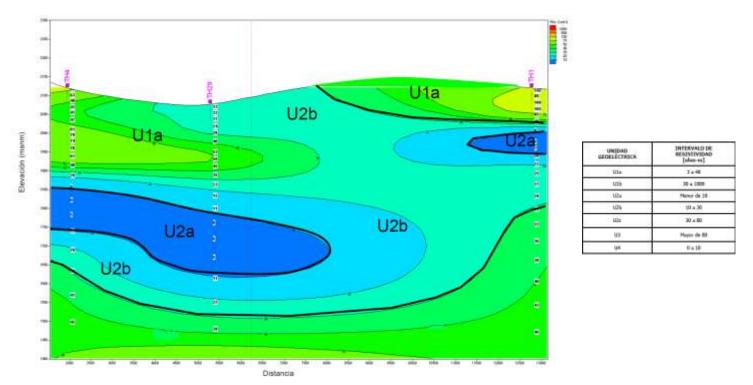


Figura I.10. Sección geofísica A –A' con las unidades geoeléctricas definidas (Tomado de SAINX Ingeniería Integral).

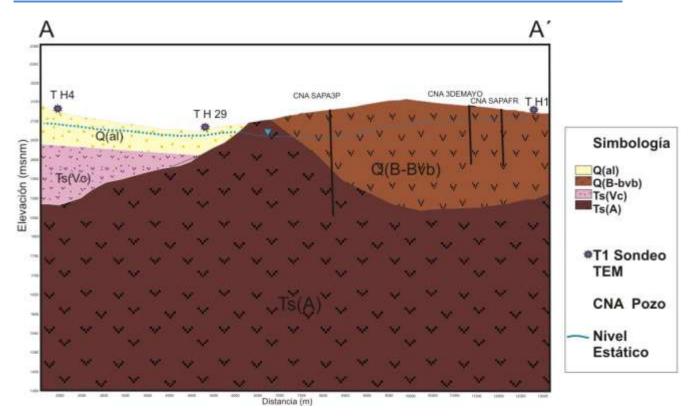
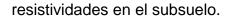



Figura I.11. Interpretación geológica de la sección geofísica A -A'.

Sección D -D'

Este tendido se encuentra localizado al oeste del poblado José María Morelos en la porción SW del acuífero y se extiende 20 km hasta al oeste de Ciudad Hidalgo. En esta sección se presentan 5 unidades geoeléctricas distinguibles U1a, U1b, U2a, U2b y U3 predominantes que presentan resistividades de 3 a >40 ohm * m (figura I.12).

En la figura I. 13 presenta la interpretación geológica de la sección D –D'. La litología que se definió para cada sondeo fue el siguiente en el tendido TH27 y TH28, se identifico una capa de andesitas con brechas volcánicas de aproximadamente de 300 m. El sondeo TH27 se identifico una capa muy pequeña de toba acida de la misma edad, en la transición del sondeo TH27 y TH 28 se marcaron fallas normales a partir de la topografía y la geología superficial aunque en las resistividades no muestren un cambio notable de resisitvidades. En el sondeo TH5 y TH29 se identificaron como la litología que correspondía a esa resistividad a un vulcanoclástico humedecido. En la figura I. 13 se logran identificar una serie de fallas normales presentes en la zona que son reflejadas en los rasgos superficiales y

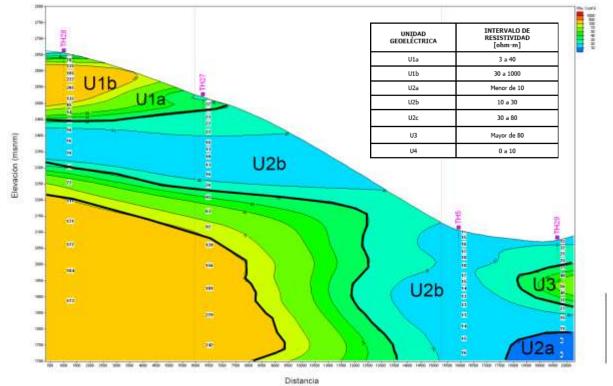


Figura I.12. Sección geofísica D –D' con las unidades geoeléctricas definidas. (Tomado de SAINX Ingeniería Integral).

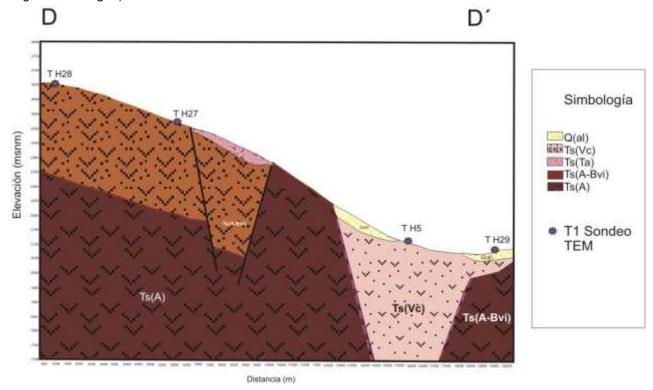


Figura I.13. Interpretación geológica de la sección geofísica D –D'.

2. Hidrogeología

2.1. Introducción

En el presente capítulo se explicará el modelo conceptual del acuífero Ciudad Hidalgo-Tuxpan, del mismo modo se presentaran las metodologías y resultados de los balances hídricos e hidrogeológicos de la zona.

Se elaboró un balance hídrico en una subcuenca piloto delimitada por una estación hidrométrica previamente localizada, así conocer los valores de Infiltración, evapotranspiración y escurrimiento de la zona. Con estos datos se realizó un balance hídrico del acuífero.

Posteriormente, se elaboró un balance hidrogeológico donde se calcularon los parámetros hidráulicos de la zona con pruebas de bombeo anteriores (CNA, 2007), entradas y salidas subterráneas, retornos por riego, bombeo, manantiales (CNA, 2007). Con el objetivo de poder encontrar un valor para cada término en el balance hidrogeológico del periodo 2003 a 2007 y así poder resolver la ecuación de balance para este acuífero.

2.2. Definición del Sistema Acuífero Ciudad Hidalgo-Tuxpan, Michoacán

El acuífero Ciudad Hidalgo— Tuxpan, está constituido por tres tipos de rocas: rocas ígneas básicas hasta ácidas, rocas sedimentarias que van de aluvión, conglomerado y rocas calcáreas, y rocas metamórficas. Las rocas que predominan más por su distribución y espesor son las rocas ígneas básicas e intermedias que abarcan el 60% del área siguiéndole con un 40% las rocas ígneas ácidas y el resto de rocas sedimentarias y metamórficas en menor proporción.

La amplia distribución de las rocas basálticas cuaternarias en el valle del acuífero se estima que es el principal reservorio de aguas subterráneas en el centro del mismo, mientras que en el sur el agua subterránea es principalmente en las rocas volcánicas y con rocas calcáreas

Con la información recabada se establece y coincide con estudios anteriores que, el modelo sugerido para la dinámica del agua subterránea para el acuífero Ciudad Hidalgo-Tuxpan presenta un sistema de acuífero libre heterogéneo y que pasa por dos medios físicos: granular y fracturado.

Los medios que predominan en este acuífero es el medio fracturado y está asociado a rocas ígneas (basaltos cuaternarios), rocas sedimentarias (calizas cretácicas) y rocas metamórficas fracturadas.

El medio granulares se presentan en una pequeña porción del área de estudio, ya que su distribución está asociada a rocas de origen clástico que tienen una alta conductividad hidráulica y porosidad.

Por lo tanto, un conjunto de rocas que tienen propiedades hidráulicas similares que está presentan en el acuífero define una unidad hidroestratigráfica.:Cada unidad hidroestratigráfica definida tiene diferentes característica que constituyen a nuestro sistema acuífero.

Las propiedades de nuestras diferentes unidades van a depender del grado de fracturamiento que presentan las rocas ó el grado de consolidación de las mismas.

Las cinco unidades hidroestratigráficas que se definen son las siguientes (tabla II.1) y se describen a continuación:

UNIDAD GEOHIDROLÓGICA	UNIDAD GEOLÓGICA	CONDUCTIVIDAD HIDRÁULICA
I	Depósitos Recientes Aluvión, conglomerados piroclásticos y sedimentos fluviales.	ALTA
II	Secuencia volcánicas básicas e intermedias Basaltos y andesitas del Cuaternario y Terciario.	ALTA
III	Rocas calcáreas Calizas del Cretácico	ALTA
IV	Rocas ácidas Ignimbritas y riolitas	BAJA
V	Rocas metamórficas Metavolcánico y metasedimentario	MEDIA

Tabla II.1 .Unidades geohidrológicas del Acuífero Ciudad Hidalgo – Tuxpan con sus unidades geológicas y su conductividad hidráulica.(Modificada de Gondwana, 2003)

Unidad I. Depósitos Recientes

Esta unidad se han clasificado a las rocas de formación reciente como son: aluvión, conglomerado, piroclastos y sedimentos fluviales de granulometría gruesa (Gondwana, 2003). Estos materiales presentan una conductividad hidráulica alta y por lo tanto; son un importante reservorio de agua que llega a formar acuíferos libres, cuando el espesor del mismo es considerable siendo el único ejemplo de esto, el conglomerado localizado en el municipio de Ocampo, Michoacán; ya que en la zona de estudio solo se distribuyen pocos afloramientos a lo largo del acuífero (figura II.1).

Unidad II. Secuencias volcánicas básicas e intermedias

Esta unidad está constituida por rocas basálticas del cuaternario y andesitas del terciario que están presentes y tienen una amplia distribución en el acuífero. Estas rocas presentan una conductividad hidráulica alta debido al fracturamiento de la roca asociado a zonas de falla y a la abundancia de vesículas en las escorias de estos paquetes de rocas que causan que tengan una permeabilidad alta.

Estas rocas tienen una conductividad hidráulica variable, teniendo en la parte central y sur del acuífero conductividades mayores que las que se presentan en las porciones norte, oriente y poniente de la zona. Por lo que se concluye que la conductividad hidráulica está relacionada con el fracturamiento de las rocas a nivel intergranular y macroscópico (figura II.1).

Unidad II. Rocas Calcáreas

Esta unidad se encuentra distribuida en el sector sur y son calizas cretácicas que descansan sobre el basamento de rocas metamórficas que actúan como rocas confinantes de las calizas. Las calizas presentan una conductividad hidráulica alta que depende principalmente por el fracturamiento y la disolución que tenga.

Por lo que, se establece que, en la porción sur las calizas son el principal medio por el cual el flujo de aguas subterráneas está presente en esta zona (figura II.1).

Unidad IV. Rocas ácidas

Esta unidad se encuentra ampliamente distribuida en la porción poniente del acuífero y presenta una conductividad baja que le confiere a esta unidad confinante o de barrera al flujo subterráneo.

Estas rocas se encuentran sujetas a la variabilidad de su conductividad hidráulica debido al fracturamiento, el cual le permite desarrollar porosidad y permeabilidad aptas para el flujo de agua, aunque en esta zona no se presentan muchos casos (figura II.1).

Unidad V. Rocas metamórficas

Esta unidad comprende rocas del mesozoico que tienen un grado de metamorfismo de origen volcánico y sedimentario convirtiéndolas en metasedimentario y

metavolcánico. Estas rocas tienen una conductividad hidráulica media que puede variar de ser nula a media debido al fracturamiento y al contenido de arcillas presentes en las fracturas (figura II.1).

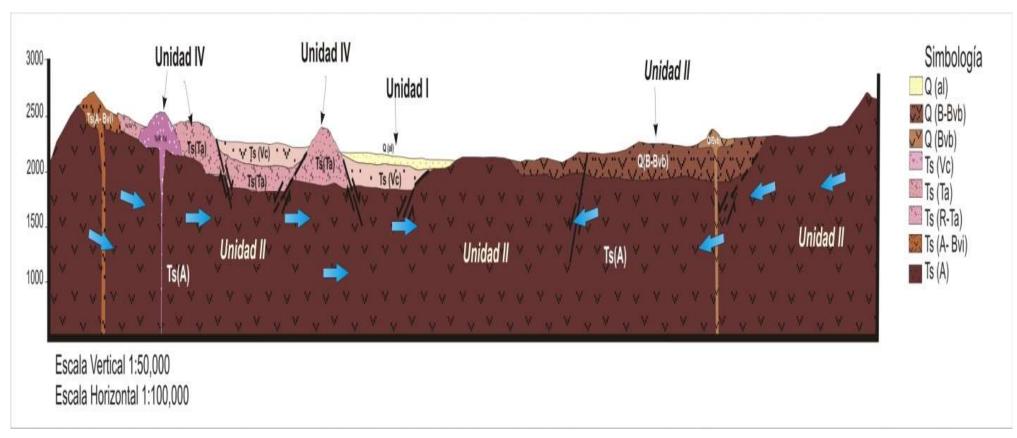


Figura II.1. Modelo conceptual del Acuífero Ciudad Hidalgo – Tuxpan, Michoacán.

2.3. Revisión de estudios hidrogeológicos anteriores

La revisión de estudios anteriores nos permitió la información a detalle de la zona y así poner recopilar y analizar la misma. Los estudios más sobresalientes por el contenido de información en relación a la toma de datos en campo, evaluación de la calidad del agua subterránea en la zona y sus alrededores son: Actualización del estudio geohidrológico del acuífero de Ciudad Hidalgo— Tuxpan, estado de Michoacán (2000), Reactivación de redes de monitoreo piezométrico en los acuíferos de los valles de Atlixco—Izúcar de Matamoros Puebla, Ciudad Hidalgo—Tuxpan y Huétamo, Michoacán (2003) y Estudio de actualización hidrogeológica del acuífero de Ciudad Hidalgo—Tuxpan, en el estado de Michoacán (2007).

Reporte técnico denominado: "ACTUALIZACIÓN DEL ESTUDIO GEOHIDROLÓGICO DEL ACUÍFERO DE CIUDAD HIDALGO-TUXPAN, ESTADO DE MICHOACÁN" en el año 2000 con este trabajo obtiene lo siguiente:

- Definición del acuífero establecido en una secuencia de rocas volcánicas que sobreyacen a un conjunto de sedimentos metamórficos y calizas deformadas en la porción sur.
- Los porcentajes de extracción de agua en esta zona es la siguiente: Público urbano el 43%, Servicios y otros el 41.8% y el 15.2 % para el uso agrícola y pecuario.
- La disponibilidad de aguas subterráneas se estima en un volumen disponible de agua de 19.126 Mm³ /año.

Estudio denominado "REACTIVACIÓN DE REDES DE MONITOREO PIEZOMÉTRICO EN LOS ACUÍFEROS DE LOS VALLES DE ATLIXCO – IZÚCAR DE MATAMOROS PUEBLA, CIUDAD HIDALGO – TUXPAN Y HUÉTAMO MICHOACÁN" en el año 2003, elaborado por Gondwana Exploraciones S.C., del que se establece:

• El reconocimiento de la dirección del agua subterránea a partir de un modelo conceptual del acuífero. Las unidades presentes en la zona se clasificaron en seis unidades hidrológicas, limitadas esencialmente por la conductividad hidráulica

presente en las rocas de la zona.

 Elaboración de un censo de 16 pozos y 2 norias de la zona; cuya profundidad varía en 1 m a 70 m.

 La identificación de la dirección de flujo subterráneo es de NE – SE en la zona de ciudad Hidalgo y en la zona de Epunguio es de E a W.

El último estudio se realizó en el 2007 por Sanx Ingeniería Integral y Desarrollo S.A. DE C.V., el proyecto con nombre "ESTUDIO DE ACTUALIZACIÓN HIDROGEOLÓGICA DEL ACUÍFERO DE CIUDAD HIDALGO – TUXPAN, EN EL ESTADO DE MICHOACÁN" destacando los siguientes datos:

- Definieron el marco geológico –hidrogeológico del acuífero Ciudad Hidalgo- Tuxpan.
- La obtención de datos de profundidad del nivel estático, elevaciones, gasto de pozos, norias y manantiales.
- Realización de pruebas de bombeo en pozos del acuífero y con ello se obtuvieron propiedades hidráulicas de la zona.
- Efectuaron TEM's para construir perfiles geoeléctricos para definir el comportamiento de las rocas en el subsuelo con una profundidad máxima de 700 m.
- Obtención de una disponibilidad de agua a partir de balance hidrometeorológico con datos de estaciones climatológicas cercanas a la zona estimando lo siguiente:
 - Entradas subterráneas (Es): 24.476 Mm³; Salidas subterráneas (Ss): 49.531 Mm³; Retorno natural (Rn): 28.61 Mm³; Retorno por riego (Rr): 2.40 Mm³; Bombeo (B): 10.004 Mm³/año; Manantiales (M): 2.006 Mm³; Cambio de volumen (ΔV): 34.55 Mm³/año: Siendo:

0

 La recarga total media anual: Recarga natural (24.78 Mm³) + Recarga inducida (34.40 Mm³) = 54.38 Mm³.

•

La descarga natural comprometida: Descarga por manantiales (2.006)

Mm³) + Salida subterránea horizontal (39.3443 Mm³) = 41.2443 Mm³.

El volumen anual de extracción: 3.233380 Mm³.

_

El acuífero tiene una disponibilidad de agua subterránea de 9.808341
 Mm³/año.

2.4. Piezometría

En el presente estudio se tomaron datos de piezometría de la zona de los trabajos realizados por Gondwana Exploraciones S.C. en el año 2003 (Reactivación de redes de monitoreo piezométrico en los acuíferos de los valles de Atlixco–Izúcar de Matamoros Puebla, Ciudad Hidalgo–Tuxpan y Huétamo, Michoacán) y por Sanx Ingeniería Integral y Desarrollo S.A. DE C.V., en el año 2007 (Estudio de actualización hidrogeológica del acuífero de Ciudad Hidalgo–Tuxpan, en el estado de Michoacán).

Con los datos obtenidos de estos trabajos se pudieron elaborar mapas de elevación del nivel estático para los años 2003 y 2007. Al mismo tiempo se pudo establecer la dirección de flujo del agua subterránea para el acuífero.

Con la variación de las profundidades en el período 2003 a 2007 se analizó la evolución del nivel estático en la zona (tabla II.2).

2.4.1. Configuración del nivel estático para el año 2003

La distribución espacial del nivel estático para el año 2003 se muestra en la figura II. 2 y se observa lo siguiente:

Las elevaciones del nivel estático varían de 2874.460 m la máxima en el norte y la mínima 1283.907 m al sur (tabla II.2). .

Las mayores elevaciones del nivel estático se presentan a los límites noroeste y

noreste del acuífero y disminuyen hacia Tuxpan, el centro de la parte sur de la zona

de estudio.

La dirección de flujo del agua subterránea presenta cuatro direcciones del noreste al suroeste, norte al sur, noroeste al soreste y del suroeste al sureste. Esto producido por la topografía abrupta de la zona que hace coincidir las direcciones del flujo en la porción sur.

2.4.2. Configuración del nivel estático para el año 2007

La configuración del nivel estático para el año 2007 se observa en la figura II.3 y se concluye lo siguiente:

Las elevaciones del nivel estático varían entre 2874.460 m y 1283.907 m (tabla II.2) que coincide con los valores del 2003. Las valores más altos del nivel estático se localizan en la porción noroeste y noreste del acuífero y disminuyen hacia Tuxpan.

La dirección de flujo del agua subterránea tiene cinco direcciones noroeste al sureste, noreste al suroeste, suroeste al sureste y la última sureste al suroeste. La variación se deriva a la cantidad de datos recolectados en el 2007 es mayor en la zona sur, pudiéndose observar mejor la nueva dirección del flujo subterráneo en esa zona.

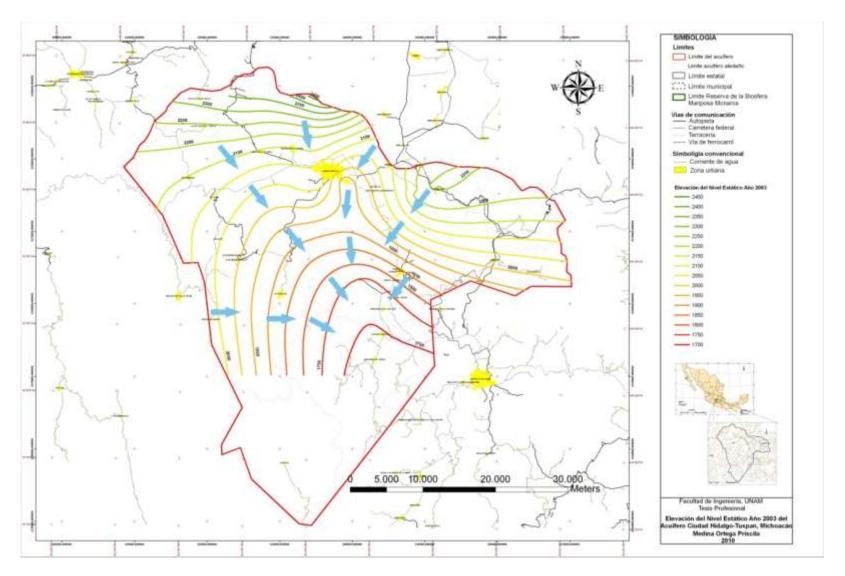


Figura II.2. Configuración de la Elevación del Nivel Estático y dirección de flujo de agua subterránea en el acuífero Ciudad Hidalgo – Tuxpan para el año 2003.(Datos tomados de Gondwana, 2003)

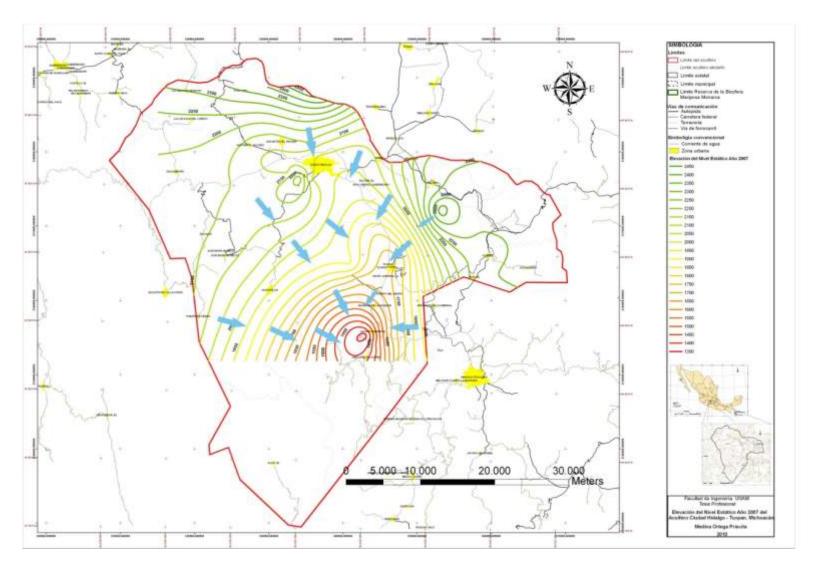


Figura II.3. Configuración de la Elevación del Nivel Estático y dirección de flujo de agua subterránea en el acuífero Ciudad Hidalgo – Tuxpan para el año 2007 (Datos tomados de SAINX Ingeniería Integral, 2007)

Medina Ortega Priscila Modelación matemática del acuífero Ciudad Hidalgo – Tuxpan, Edo. Michoacán.

CLAVE	Х	Υ	ELEVACIONES	PNE 2003 (m)	PNE 2007 (m)	Δ h (m)	E N E 2003	E N E 2007
CNA SAPA3P	335106.00	2181050.00	2267.000	126.270	125.000	1.800	2140.730	2142.530
CNA SAPATAC	336903.00	2188730.00	2610.167	75.260	75.150	0.260	2534.907	2535.167
CNA SAPAPFR	338197.00	2178952.00	2068.805	35.020	37.400	-2.180	2033.785	2031.605
CNA PFRONT	346750.00	2185023.00	2137.000	47.700	48.073	-0.770	2089.300	2088.530
CNA PCALICA	348966.00	2176416.00	2219.155	33.240	46.000	-11.985	2185.915	2173.930
CNA OOAPAS1	342256.00	2177908.00	2032.389	21.580	22.900	-0.850	2010.809	2009.959
CNA CSMIGUEL	348522.00	2175945.00	2222.083	59.100	63.590	-4.780	2162.983	2158.203
CNA LMARZOS	348785.00	2182134.00	2154.000	8.740	12.910	-4.130	2145.260	2141.130
CNASAPA-CC	341982.00	2162675.00	1745.000	24.410	24.870	-0.600	1720.590	1719.990
CNA-OLC	359668.00	2165454.00	2286.220	3.760	3.530	-0.200	2282.460	2282.260
CNA-PCM	346348.00	2155258.00	1772.093	72.350	73.550	-1.150	1699.743	1698.593
CNA-OES	359599.00	2167450.00	2312.621	43.000	43.150	-0.070	2269.621	2269.551
CNA-OEZ	359895.00	2166106.00	2305.000	25.000	27.973	-2.920	2280.000	2277.080
CNA-CHRT	332448.00	2177253.00	2119.651	22.600	22.880	-0.200	2097.051	2096.851
CNA-APJN	360346.00	2169740.00	2321.000	7.000	7.160	-0.750	2314.000	2313.250
CNA-ISM	350565.00	2176540.00	2240.000	1.150	5.050	-3.945	2238.850	2234.905
CNA-SAPAUD	335575.00	2176374.00	2099.000	47.500	45.000	2.200	2051.500	2053.700
CNA-3DEMAYO	336795.00	2179084.00	2095.000	54.800	55.250	-0.500	2040.200	2039.700
CNA-ITAR	350313.00	2177794.00	2240.000	10.160	12.560	-2.640	2229.840	2227.200
CNA CDRDN	333965.00	2176392.00	2229.000	0.900	1.050	-0.100	2228.100	2228.000
CNA SAPACHZ	330414.00	2179069.00	2092.000	2.690	2.920	-0.210	2089.310	2089.100
CNA CHLO	321456.00	2164250.00	2643.416	0.000	0.000	0.000	2643.416	2643.416
CNA CHAM2	329101.00	2162741.00	2583.629	0.000	0.000	0.000	2583.629	2583.629
CNA SBC	332941.00	2167799.00	2338.952	0.000	0.000	0.000	2338.952	2338.952
CNA ELROSAL	321882.00	2185199.00	2518.478	0.000	0.000	0.000	2518.478	2518.478
CNA LOS AZU	324642.00	2188460.00	2788.239	0.000	0.000	0.000	2788.239	2788.239
CNA AGUAF	326732.00	2189465.00	2874.460	0.000	0.000	0.000	2874.460	2874.460
CNA LAGUNAL	323839.00	2190312.00	2794.606	0.000	0.000	0.000	2794.606	2794.606
CNA ZOAB	320417.00	2188041.00	2568.904	0.000	0.000	0.000	2568.904	2568.904
CNA CHAB	318122.00	2179514.00	2317.892	0.000	0.000	0.000	2317.892	2317.892
CNA CHPP	322124.00	2171171.00	2521.666	0.000	0.000	0.000	2521.666	2521.666
CNA EL PASO	344664.00	2141833.00	1283.907	0.000	0.000	0.000	1283.907	1283.907
CNA EB	337080.00	2150348.00	1878.622	0.000	0.000	0.000	1878.622	1878.622
CNA EC	337476.00	2145727.00	1466.569	0.000	0.000	0.000	1466.569	1466.569
CNA			1338.090	0.000	0.000	0.000	1338.090	1338.090
AGUABLANCA	342982.00	2155177.00						
CNASAPA EH	347019.00	2166461.00	1760.187	0.000	0.000	0.000	1760.187	1760.187
CNA LPO1	344579.00	2169238.00	1808.198	0.000	0.000	0.000	1808.198	1808.198
CNA LC	345014.00	2161949.00	1718.930	0.000	0.000	0.000	1718.930	1718.930
CNA OOM	358385.00	2163031.00	2283.513	0.000	0.000	0.000	2283.513	2283.513
CNA ACAR	365749.00	2168667.00	2721.123	0.000	0.000	0.000	2721.123	2721.123
CNA MCNGA	350538.00	2176241.00	2235.727	0.000	0.000	0.000	2235.727	2235.727
CNA MARITARO	324810.00	2192545.00	2820.000	0.000	0.000	0.000	2820.000	2820.000

Tabla II.2. Profundidad del nivel estático, Elevación del nivel estático y Evolución del nivel estático de pozos y manantiales del Acuífero de Ciudad Hidalgo – Tuxpan, Michoacán en el período 2003-2007.(.(Datos tomados de Gondwana, 2003 y SAINX Ingeniería Integral, 2007)

2.5. Evolución del nivel estático en los años 2003 - 2007

Con las mediciones de los niveles estáticos hechas por las empresas SAINX Ingeniería Integral y Desarrollo S.A. DE C.V. en 2007 y Gondwana Exploraciones C. V., se pudo realizar la analizar la evolución del nivel estático de la zona para los años 2003 al 2007 (tabla II.2 y figura II.4).

En la figura II.4 se observa que se presentan abatimientos de hasta 11.98 m y en ciertas zonas hay recuperación de 1.5 m en este periodo.

La pequeña franja de recuperación se localiza en la zona de Ciudad Hidalgo. La zona de que no existe variación del nivel estático se detecta a las faldas de las sierras de la zona que es un 70% de la extensión del acuífero.

En los municipios de Ocampo, Angangueo, Agostitlán y Jungapeo presentan un abatimiento promedio de 0 a 1.5 m.

Y los municipios que presentan el mayor abatimiento de 1.5 m a 10.5 m son Aporo, Ocampo, Tuxpan, Zitácuaro e Irimbo. Siendo este, último el que presenta en su 50% de extensión un abatimiento del 4.5 m a 10.5 m.

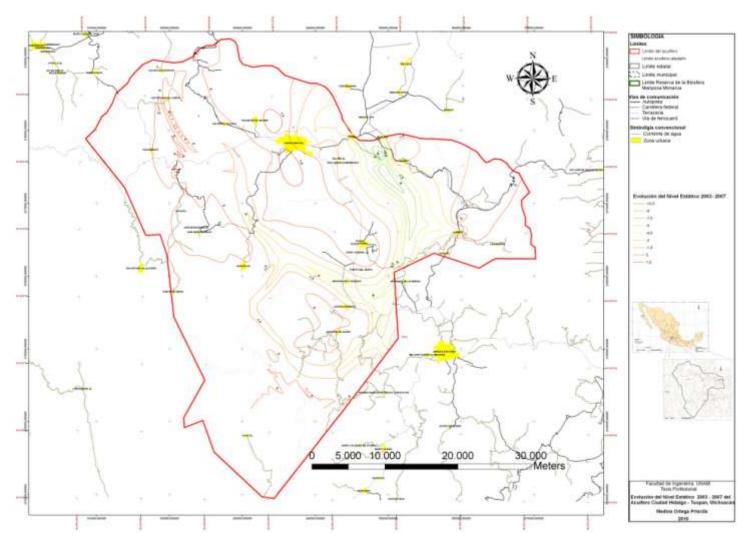


Figura II.4. Configuración de la Evolución de la elevación del Nivel Estático en el acuífero Ciudad Hidalgo – Tuxpan para el periodo 2003 - 2007. Elaborado a partir de datos .tomados de Gondwana, 2003 y SAINX Ingeniería Integral, 2007)

2.6. Balance Hídrico

El balance hídrico es la cuantificación del agua en una zona en un periodo de tiempo establecido de un año.

La elaboración del balance se utilizo la siguiente metodología:

- Establecer una subcuenca piloto dentro de la zona de estudio para obtener el valor real de la Infiltración (Inf) y Evapotranspiración real (ETR).
- Realización del balance hídrico del acuífero con los datos obtenidos del balance hídrico de la subcuenca piloto.

Para la realización de este balance se consultaron dos diferentes bases de datos el Extractor Rápido de Información Climatológica (ERIC III) del que se obtuvieron los valores de precipitación y temperatura de las estaciones climatológicas cercanas a la zona de estudio y el Banco Nacional de Datos de Aguas Superficiales (BANDAS) para obtener el gasto de las escorrentías medidas de la zona.

Con el balance hídrico se pretendió encontrar los valores reales de Evapotranspiración Real (ETR), Infiltración (Inf) y Flujo base (Fb) del acuífero que son factores en la ecuación del balance hidrogeológico.

2.6.1. Balance hídrico de una subcuenca piloto

El establecimiento de la subcuenca piloto se basó con la localización de la hidrométrica 18460 Río Chiquito y su delimitación se apoyó en los afluentes tributarios que en ella se captaban. El área de cobertura de la subcuenca piloto es de 343.494188 Km². Para tener certeza de los valore obtenidos de este balance se tomo como valores verdaderos a los datos de precipitación y escorrentía verdaderos.

En la siguiente figura II.5 se puede observar la localización de la estación 18460 Río Chiquito en la porción noreste de nuestra zona de estudio; por lo que los datos obtenidos serán muy característicos del acuífero.

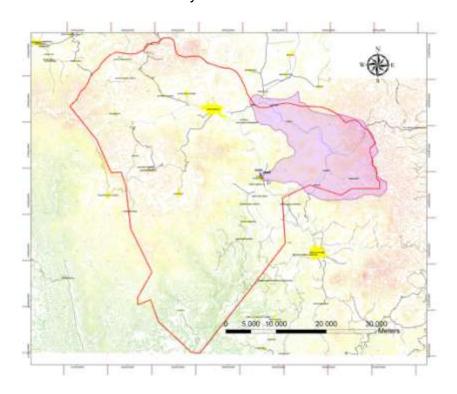


Figura II-5 . Localización de la estación hidrométrica 18460 Río Chiquito en la porción noreste de la zona de estudio.

La ecuación del balance hídrico es:

$$P - ETP - Inf - Esc = 0$$

Donde:

P = Precipitación [Mm³/ año]

Inf = Infiltración [Mm³/ año]

Esc = Escurrimiento [Mm³/ año]

ETP = Evapotranspiración Potencial [Mm³/ año]

Precipitación [P]

Precipitación incluye la lluvia, la nieve y otros procesos mediante los cuales el agua cae a la superficie terrestre (Chow, 1994). La precipitación se obtuvo de las mediciones de las estaciones climatológicas del ESRI III, sacando un

promedio ponderado mensual de cada una de las estaciones e interpolar en el software ArcGis 9.2 para el cálculo del volumen por el método de las isoyetas dando como resultado el siguiente valor **353.83 [Mm³/ año].**

Escurrimiento [Esc]

El escurrimiento es la parte de la precipitación que aparece en las corrientes fluviales superficiales, perennes, intermitentes o efímeras, y que regresa al mar o a los cuerpos de agua interiores (Chow, 1994). Este se calculo a partir de la base de datos de la estación hidrométrica 18460 Río Chiquito con promedios ponderados de los gastos diarios reportados de los años 1986-1994 como se observa en la siguiente figura II.5. Obteniendo un valor de escorrentía de **86.82** [Mm³/ año].

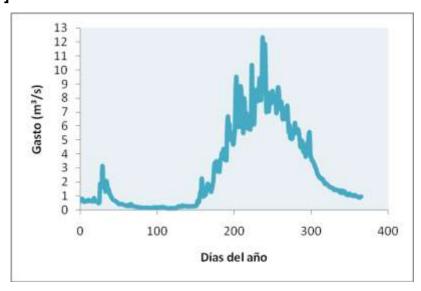


Figura II.5. Histograma de la estación hidrométrica 18460 Río Chiquito en la Cuenca Río Tuxpan.

Evapotranspiración Potencial [ETP]

La evapotranspiración es la combinación de evaporación desde la superficie del suelo y la transpiración de la vegetación (Chow, 1994). La evapotranspiración potencial es la que se produce cuando la humedad del suelo y cobertura vegetal estuvieran en las condiciones óptimas. El método utilizado para el valorar es el de Método de Thornthwaite que solo nos pide el

valor de la temperatura promedio mensual, precipitación promedio mensual y latitud de la zona y el valor resultante es de **52.2 [Mm³/ año]** (tabla II.3).

Infiltración [Inf] y Evapotranspiración Real [ETR]

La infiltración es el movimiento del agua, a través de la superficie del suelo y hacia del mismo, producido por la acción de las fuerzas gravitacionales y capilares (Aparicio, 1992) y la evapotranspiración real es la que se produce realmente en las condiciones existentes en cada caso. Estos términos se obtuvieron del balance hídrico de las siete estaciones cercanas a la subcuenca piloto. En la siguiente tabla se observan la forma de obtener la infiltración y la evapotranspiración real (tabla II.4).

La forma de obtener los valores de infiltración, evapotranspiración potencial dependía de cada estación y de la precipitación que se registro para ese mes. El balance hídrico se comenzó en el mes con la mayor precipitación para poder sacar P> ETP, la ETP se convierte en ETR, y el excedente tiene dos caminos ser una lámina de infiltración y escurrimiento; pero para que exista escurrimiento el excedente debe ser mayor que la lámina de infiltración y ser escurrimiento. Así se hace cada mes hasta obtener todo el año.

Obteniéndose el balance hídrico de la subcuenca se cotejó con el valor que tomamos como verdadero de escurrimiento del BANDAS y así se obtuvieron los siguientes valores (tablas II.5 y II.6) con un error de 4.70%.

Valores obtenidos	V[Mm³]	Porcentaje %	
Escurrimiento calculado	87.237	24.65	
Infiltración	67.287	19.02	
Evapotranspiración Real	216.016	61.05	
Total	370.541	104.72	

Tabla II.5. Valores obtenidos de escurrimiento, Infiltración y Evapotranspiración Real.

Valores Teóricos	V[Mm³]	Porcentaje %
Escurrimiento	86.821	24.53
Precipitación	353.83	100.00

Tabla II.6. Error obtenido del escurrimiento teórico (BANDAS) y Precipitación (ERIC III).

CLAVE	NOMBRE DE ESTACION							TEMPI	RATUR	A ºc					ETP(mm)	Área (Km²)	VETP(m³)
		ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	ANUAL			
16134	TUXPAN, TUXPAN	16.5	17.2	19.2	21.2	22.3	21.6	20.4	20.5	20.5	20.3	18.3	17.1	19.6	884.282	168.308	148831495.971
16213	IRIMBO	6.1	7.4	9.9	12.0	13.8	14.7	14.1	13.5	13.0	11.9	9.5	7.8	11.1	612.515	105.353	64530609.331
16121	SENGUIO	6.6	7.9	10.2	12.7	14.6	14.7	13.8	13.3	12.8	10.8	8.8	7.5	11.1	612.366	72.686	44510617.645
16061	LAGUNA DEL FRESNO	12.9	13.5	15.9	18.3	19.7	19.1	17.7	17.5	17.3	16.1	14.2	13.4	16.3	746.480	24.240	18094738.556
15197	CUESTA DEL CARMEN	8.7	9.6	10.8	11.9	13.0	13.1	13.0	12.6	12.0	11.1	10.1	9.2	11.3	617.371	0.832	513558.525
15334	PALO SECO	7.5	7.2	10.3	13.6	14.8	14.0	12.9	12.3	12.6	12.4	11.6	10.3	11.6	624.312	7.085	4423196.086
15230	PALO AMARILLO	4.7	5.1	7.3	9.9	10.4	10.1	9.0	9.3	9.2	8.1	7.2	6.5	8.1	557.294	93.711	52224427.937
																Total	333128644.050

Tabla II.3. Valores de Temperatura, Evapotranspiración potencial y Volumen de evapotranspiración potencial de la subcuenca piloto.

CLAVE	NOMBRE DE LA ESTACION	ETR(mm)	I(mm)	Esc(mm)	P(mm)	Área(m²)	VETR(m³)	VInf(m³)	VEsc(m³)	VP(m³)
16124		604 250	182.431	549.667	1416.355	97408608.000	66652599.232	17770317.243	53542252.509	137965168.984
16134	TUXPAN, TUXPAN	684.258	182.431	549.007	1410.333	97408608.000	00052599.232	1///031/.243	53542252.509	13/905108.984
16213	IRIMBO	630.858	182.120	59.429	751.140	40474247.000	25533489.255	7371176.683	2405331.087	30401814.649
16121	SENGUIO	631.321	211.757	152.448	884.703	74441696.000	46996617.210	15763544.655	11348465.436	65858796.449
16061	LAG.DEL FRESNO	697.225	210.313	37.601	773.901	9088107.000	6336458.179	1911351.465	341723.350	7033292.266
15197	CUE. CARMEN, V A.	631.105	210.919	173.298	910.234	5795960.000	3657859.352	1222478.954	1004427.496	5275681.922
15334	PALO SECO	597.671	148.379	70.578	735.954	17218897.000	10291233.471	2554919.305	1215281.876	12672312.160
15230	PALO AMARILLO	570.814	208.887	175.437	955.138	99066673.000	56548653.623	20693706.390	17379934.370	94622294.383
						343494188.00	216016910.32	67287494.70	87237416.12	353829360.81
						V[Mm³]	216.02	67.29	87.24	353.83

Tabla II.4. Balance Hídrico de la subcuenca piloto para obtener el valor de Evapotranspiración real, Infiltración, Escurrimiento y Precipitación.

2.6.2. Balance hídrico del Acuífero Ciudad Hidalgo - Tuxpan, Michoacán

La metodología para el cálculo del balance hídrico es la misma utilizada en la subcuenca piloto es el mismo obteniéndose los siguiente tablall.7 de resultados. Para ver todos los cálculos realizados para el balance del acuífero favor de ver en Anexos Balance Hídrico del Acuífero (tablas II.7, A.1, A.2, A.3, A.4,y A.5).

Con esos resultados se realizaron interpolaciones para obtener los valores con mayor precisión los valores de precipitación, escurrimiento, infiltración y evapotranspiración real.

Precipitación [P]

El intervalo de la lámina de precipitación es de 850 - 1550 (mm) y el volumen total que precipita en el acuífero es de 2099.03336 [Mm³] (tabla II.8).

Intervalo hp	hp (mm)	Área (m²)	Área * hp (m³)
850	850	216129264	183709874.4
850-900	875	399506736	349568394.3
900-950	925	115545683	106879757.2
950-1000	975	107588856	104899135.1
1000-1050	1025	118034008	120984858.7
1050-1100	1075	118034008	126886559.1
1100-1150	1125	94495487.2	106307423.1
1150-1200	1175	87832470.3	103203152.6
1200-1250	1225	76128085.5	93256904.78
1250-1300	1275	78303627.5	99837125.08
1300-1350	1325	106317533	140870730.9
1350-1400	1375	161329181	221827624.2
1400-1450	1425	149062629	212414246
1450-1500	1475	72742304.8	107294899.5
1500-1550	1525	13831262.9	21092675.95
	Total	1914881138	2099033361

Tabla II.8. Valores del volumen de precipitación del Acuífero Ciudad Hidalgo – Tuxpan, Michoacán.

CLAVE	ETR(mm)	Inf(mm)	P(mm)	Esc(mm)	Área (m²)	VETR(m³)	Vinf(m³)	VP(m³)	VEsc(m³)
16071	622.074	208.555	1424.482	593.854	135903348.469	84541872.089	28343316.931	193591932.198	80706743.177
16152	744.055	193.668	815.543	31.156	76309035.738	56778131.827	14778613.652	62233261.778	2377470.738
16020	685.300	193.941	822.443	0.000	85904663.247	58870426.588	16660399.843	70651720.084	0.000
16097	686.447	207.020	1328.514	435.047	77528354.930	53219076.754	16049929.746	102997522.215	33728515.714
16098	684.258	208.432	1416.355	523.665	98991766.354	67735887.675	20633075.645	140207483.234	51838519.915
16092	694.777	207.473	1355.614	453.363	93015279.124	64624894.846	19298185.887	126092773.565	42169692.833
16134	684.258	219.893	1416.355	512.204	168307809.117	115165930.188	37009781.072	238383606.982	86207895.721
16099	768.765	198.214	768.765	105.793	84581240.888	65023121.365	16765185.131	65023121.365	8948093.018
16058	776.407	193.584	813.444	0.000	241115919.116	187204092.120	46676248.422	196134331.267	0.000
16061	699.047	212.135	773.901	35.780	24240095.313	16944954.084	5142165.176	18759426.455	867309.434
15197	631.105	197.101	910.234	82.029	831847.413	524983.064	163957.651	757176.094	68235.379
15230	570.814	198.524	955.138	185.800	93710726.071	53491403.606	18603801.086	89506628.623	17411423.931
15334	639.228	201.363	735.954	17.594	7084916.602	4528874.012	1426640.711	5214171.082	124652.669
16002	579.469	207.501	1357.283	570.313	208118639.961	120598280.434	43184757.943	282475874.513	118692836.136
16107	710.694	204.356	1186.969	194.055	42693153.195	30341776.210	8724588.042	50675449.298	8284825.125
16121	631.321	213.613	884.703	150.592	72686337.622	45888422.338	15526732.228	64305825.516	10945968.221
16135	830.418	205.606	1249.880	324.093	75785347.084	62933553.330	15581937.699	94722601.758	24561463.059
16142	627.429	196.236	884.685	173.039	24996119.815	15683295.310	4905139.330	22113684.241	4325312.183
16192	666.195	194.235	830.019	87.128	2954882.140	1968528.795	573942.984	2452609.764	257451.606
16206	611.690	184.722	632.994	0.000	62964496.794	38514769.068	11630902.706	39856125.787	0.000
16213	630.858	192.461	751.140	49.088	105353432.552	66463021.240	20276461.275	79135148.062	5171539.079
16235	528.950	202.386	1098.571	367.235	131803726.641	69717637.225	26675283.072	144795808.267	48402887.971
					Total	1280762932.169	388631046.232	2090086282.149	545090835.909

Tabla II.7. Resultados del balance hídrico del Acuífero Ciudad Hidalgo-Tuxpan, Michoacán.

Escurrimiento [Esc]

Los intervalos en los que se encuentra el escurrimiento esta zona de 0 a 525 mm predominando el escurrimiento el intervalo de 375 - 450 mm. El volumen estimado es de 490.15 Mm³ (tabla II.9).

Intervalo Esc (mm)	Esc(mm)	Esc(m)	Área (m²)	VEsc(m³)	VEsc(Mm³)
-	-	-	30,640,957.3367	-	-
75	75.0000	0.0750	73,109,387.9721	5,483,204.0979	5.4832
0-75	37.5000	0.0375	130,446,450.2787	4,891,741.8855	4.8917
75-150	112.5000	0.1125	193,519,768.9285	21,770,974.0045	21.7710
150-225	187.5	0.1875	479704832.5000	89,944,656.1014	89.9447
225	225.0000	0.2250	20,210,174.8162	4,547,289.3336	4.5473
225-300	262.5000	0.2625	346069799.6000	90,843,322.3894	90.8433
300-375	337.5000	0.3375	161,142,147.7152	54,385,474.8539	54.3855
375-450	412.5000	0.4125	238,947,665.3088	98,565,911.9399	98.5659
450	450.0000	0.4500	16,221,747.2062	7,299,786.2428	7.2998
450-525	487.5000	0.4875	150,130,424.0482	73,188,581.7235	73.1886
525	525.0000	0.5250	74,737,782.4588	39,237,335.7909	39.2373
		Total	1,914,881,138.1890	490,158,278.3632	490.1583

Tabla II.9. Valores del volumen de escurrimiento del Acuífero Ciudad Hidalgo – Tuxpan, Michoacán.

Infiltración [Inf]

En esta zona la infiltración varía en un rango de 185 mm a 220 mm predominando el intervalo de 195 mm a 205 mm. El valor del 18 % del volumen precipitado (tabla II.10).

Intervalo Inf (mm)	Inf(mm)	Area (m²)	VInf(m³)	VInf(Mm³)
185	185.0000	990,633.9208	183,267.2753	0.1833
185-190	187.5000	26,891,764.9019	5,042,205.9191	5.0422
190-195	192.5000	113,236,472.5360	21,798,020.9632	21.7980
195	195.0000	72,991,866.8516	14,233,414.0361	14.2334
195-200	197.5000	323,996,935.6901	63,989,394.7988	63.9894
200	200.0000	36,175,038.0555	7,235,007.6111	7.2350
200-205	202.5000	702583547.8	142,273,168.4227	142.2732
205	205.0000	335,325,334.3899	68,741,693.5499	68.7417
205-210	207.5000	174,630,329.0568	36,235,793.2793	36.2358
210	210.0000	7,739,049.3306	1,625,200.3594	1.6252
210-215	212.5000	79,817,038.2484	16,961,120.6278	16.9611
215-220	217.5000	40,315,473.5763	8,768,615.5028	8.7686
220	220.0000	187,653.8648	41,283.8503	0.0413

Total	1,914,881,138.1890	387,128,186.1958	387.128
-------	--------------------	------------------	---------

Tabla II.10. Valores del volumen de infiltración del Acuífero Ciudad Hidalgo – Tuxpan, Michoacán.

Evapotranspiración real [ETR]

El volumen total de agua que se evapotranspira en este acuífero es de 1279.82 [Mm³] y el rango varía de 550 mm a 800 mm (tabla II.11).

Intervalo ETR (mm)	ETR (mm)	ETR(m)	Área (m²)	VETR(m³)	VETR(Mm³)
550	550	0.55	73767655.3	40572210.4	40.5722104
550-600	575	0.575	109902268	63193804.3	63.1938043
600	600	0.6	20673602.8	12404161.7	12.4041617
600-650	625	0.625	459646445	287279028	287.279028
650	650	0.65	18301944.2	11896263.7	11.8962637
650-700	675	0.675	648501839	437738741	437.738741
700	700	0.7	247694754	173386328	173.386328
700-750	725	0.725	144309689	104624524	104.624524
750	750	0.75	6824704.31	5118528.24	5.11852824
750-800	775	0.775	183644102	142324179	142.324179
800	800	0.8	1614135.1	1291308.08	1.29130808
		Total	1914881138	1279829077	1279.82908

Tabla II.11. Valores del volumen de ETR del Acuífero Ciudad Hidalgo – Tuxpan, Michoacán.

En resumen, los valores que se tomaron como verdaderos son los de precipitación [P] y por lo tanto el error que se tiene en el balance hídrico del acuífero Ciudad Hidalgo-Tuxpan, es del 2.76 %. Por lo tanto, los valores obtenidos no superan un error del 5% considerándolos aceptables y verdaderos (tabla II.12).

Valores Obtenidos	V[Mm³]	Porcentaje %
Infiltración	387.12	18.44
ETR	1279.82	60.97
Escurriemiento	490.15	23.35
	Total	102.76

Valor teórico	V[Mm³]	Porcentaje %
Precipitación	2099.03336	100

Tabla II.12. Resumen de los valores obtenidos en el balance hídrico del Acuífero Ciudad Hidalgo –Tuxpan, Michoacán.

2.7. Balance hidrogeológico

En este acuífero se realizó un balance hidrogeológico para investigar cómo se comporta el sistema acuífero si existe una recuperación o un abatimiento en la zona.

Este balance es el siguiente:

$$\Sigma E - \Sigma S = \Delta V \dots (1)$$

Siendo:

$$\Sigma E = Rr + Inf + Es \dots (2)$$

$$\Sigma S = Ss + B + Man + ETR + FB \dots (3)$$

$$\Delta V = Sy * Área * \Delta h ... (4)$$

Donde:

Rr: Retorno por riego

Inf: Infiltración

Es: Entradas subterráneas

Ss: Salidas subterráneas

B: Bombeo

Man: Manantiales

ETR: Evapotranspiración

FB: Flujo base

Sustituyendo en (1) las ecuaciones (2), (3), (4) se obtiene la ecuación (5):

$$Rr + Inf + Es - Ss - Man - ETR - FB = Sy * Área * \Delta h ...(5)$$

Estos factores de la ecuación se explican a continuación:

2.7.1. Entradas subterráneas (Es) y salidas subterráneas (Ss)

2.7.1.1. Entradas subterráneas (Es) y salidas subterráneas (Ss) para el año 2003

Las entradas y salidas subterráneas se determinan con la ayuda de configuraciones del nivel estático de los años 2003 y 2007 (figura II.6), con esto se midió la longitud de los canales de flujo y el gradiente hidráulico, además se utilizaron valores de transmisividad para estimar un volumen total de Es 76.254 Mm³/año y Ss 73.383 Mm³/año (tablas II.13 y tabla II.14).

Las entradas subterráneas se identificaron tres zonas NW, NE y SW. Las salidas subterráneas se configuraron 6 celdas en la porción sur de la zona (tablas II.13 y II.14 y figura II.6).

No Celda	L(m)	i	B(m)	K(m/día)	T(m²/día)	Q(m³/día)	Q(Mm³/día)
SW1	1875.000	0.027	5156.250	1.367	273.333	37583.333	0.038
SW2	2187.500	0.023	5312.500	0.833	166.667	20238.095	0.020
NW1	781.250	0.064	3906.250	1.500	300.000	75000.000	0.075
NW2	1093.750	0.046	3906.250	0.833	166.667	29761.905	0.030
NE1	2343.750	0.021	2812.500	0.833	166.667	10000.000	0.010
NE2	2343.750	0.021	3281.250	1.167	233.333	16333.333	0.016
NE3	1875.000	0.027	2500.000	1.500	300.000	20000.000	0.020
					Total	0.209	Mm³/día
						76.254	Mm³/año

Tabla II.13. Entradas subterráneas en el acuífero Ciudad Hidalgo – Tuxpan, Michoacán del año 2003.

No Celdas	L(m)	i	B(m)	K(m/día)	T(m²/día)	Q(m³/día)	Q(Mm³/día)
S1	3281.250	0.015	4062.500	4.1	820	50761.90	0.051
S2	4375.000	0.011	3593.750	4.1	820	33678.57	0.034
S3	5000.000	0.010	5000.000	3.5	700	35000.00	0.035
S4	4531.250	0.011	4531.250	4.3	860	43000.00	0.043
S5	3593.750	0.014	3750.000	3.7	740	38608.70	0.039
					Total	0.201	Mm³/día
						73.383	Mm³/año

Tabla II.14. Salidas subterráneas en el acuífero Ciudad Hidalgo – Tuxpan, Michoacán del año 2003.

2.7.1.2. Entradas subterráneas (Es) y salidas subterráneas (Ss) para el año 2007

Las entradas subterráneas de este años están localizadas en las porciones NW, NE, SE y SW del acuífero. Se estimaron 12 celdas con un volumen de 100.143 Mm³/año y 7 celdas de salidas subterráneas con un valor de Ss 293.784 Mm³/año (tablas II.15 y II.16, figura II.7).

Las entradas subterráneas se identificaron tres zonas NW, NE y SW. Las salidas subterráneas se configuraron 6 celdas en la porción sur de la zona (tablas II.13 y II.14 y figura II.6).

No Celda	L(m)	T.	B(m)	K(m/día)	T(m²/día)	Q(m³/día)	Q(Mm³/día)
SW1	1718.75	0.029	3125.000	1.339	267.799	24345.348	0.024
SW2	2031.25	0.025	3906.250	0.816	163.292	15701.151	0.016
SW3	2343.75	0.021	2968.750	0.816	163.292	10341.825	0.010
NW1	781.250	0.064	2031.250	1.470	293.926	38210.320	0.038
NW2	781.250	0.064	1406.250	1.470	293.926	26453.298	0.026
NW3	781.250	0.064	1875.000	0.816	163.292	19595.036	0.020
NW4	937.500	0.053	1875.000	0.816	163.292	16329.197	0.016
NE1	625.000	0.080	1328.125	0.816	163.291	17349.7714	0.017
NE2	468.750	0.107	1875.000	0.816	163.291	32658.3932	0.033
NE3	625.000	0.080	1250.000	0.816	163.291	16329.1966	0.016
SE1	1250.000	0.040	3906.250	1.143	114.304	17860.059	0.018
SE2	937.500	0.053	5000.000	1.470	146.963	39190.072	0.039
					Total	0.274	Mm³/día
						100.143	Mm³/año

Tabla II.15. Entradas subterráneas en el acuífero Ciudad Hidalgo-Tuxpan, Michoacán del año 2007.

No Celda	L(m)	ı	B(m)	K(m/día)	T(m²/día)	Q(m³/día)	Q(Mm³/día)
S1	781.250	0.064	1562.500	6.6	1320	132000.00	0.132
S2	468.750	0.107	1562.500	6.6	1320	220000.00	0.220
S3	468.750	0.107	1093.750	6.6	1320	154000.00	0.154
S4	625.000	0.080	1562.500	4.12	824	103000.00	0.103
S5	781.250	0.064	1718.750	4.12	824	90640.00	0.091
S6	1718.750	0.029	2500.000	4.12	824	59927.27	0.060
S7	1562.500	0.032	1718.750	4.12	824	45320.00	0.045
					Total	0.805	Mm³/día
						293.784	Mm³/año

Tabla II.16. Salidas subterráneas en el Acuífero Ciudad Hidalgo – Tuxpan, Michoacán del año 2007.

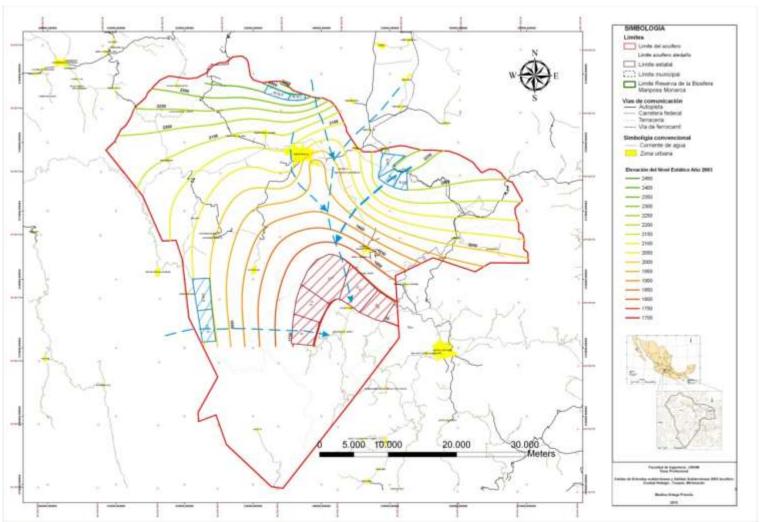


Figura II. 6. Configuración del nivel estático para el año 2003 y las celdas de entrada (en color azul) y salidas subterráneas (en color rojo) del acuífero Ciudad Hidalgo – Tuxpan, Michoacán.

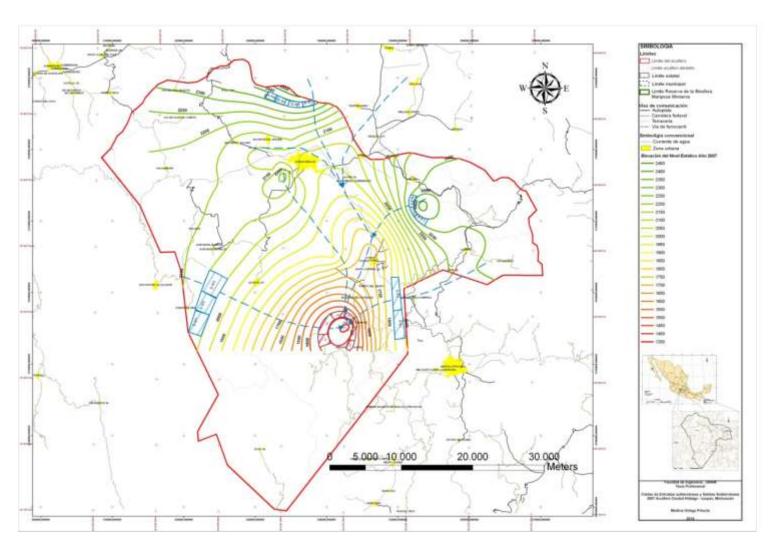


Figura II. 7. Configuración del nivel estático para el año 2007 y las celdas de entrada (en color azul) y salidas subterráneas (en color rojo) del acuífero Ciudad Hidalgo – Tuxpan, Michoacán.

2.7.2. Recarga Natural (Inf)

La recarga natural fue calculada a partir de los valores obtenidos en el balance hídrico del acuífero (tabla anexo A.5) con ello, se elaboró una configuración de la infiltración del valle del acuífero y obtener un valor de 117.314 Mm³/año (figura II.8 y tabla II.17).

Intervalo(mm)	Área (m²)	Vinf(Mm³)
185	1415915,98	0,261
185-190	21278684,9	3,989
195	73669612,00	14,365
190-195	24066373,6	4,632
195-200	134493278,0	26,562
200-205	154580269,0	31,302
205	6574247,1	1,347
205-210	86698312,8	17,989
210-215	62134301,3	13,203
215	10698956,7	2,300
215-220	7456645,9	1,621
220	612935,9	0,134
Total	583679534,0	117,713

Tabla II.17. Intervalos de infiltración presentes en la zona de estudio.

Los valores que se presentan varia de 185 mm a 220 mm predominando el intervalo de 200 mm a 205 mm en la zona del valle del acuífero (figura II.8).

Los valores más altos de infiltración se localizan noreste del acuífero que son los municipios de Aporo, Senguio, Angangueo, Ocampo; el valor mínimo está presente en porción sur en Jungapeo y Zitácuaro (figura II.8).

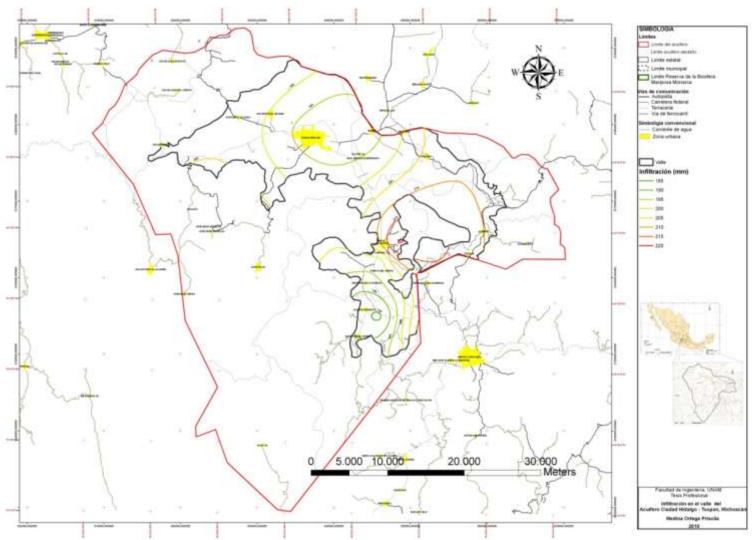


Figura II. 8. Infiltración en el valle del acuífero Ciudad Hidalgo – Tuxpan, Michoacán.

2.7.3. Retorno por riego (Rr)

Para estimar el valor de retorno por riego se consultó una base de datos para obtener los valores del volumen del agua que se utiliza para el riego en el distrito de riego Tuxpan 045 (tabla II.18) utilizando el porcentaje del 15% infiltración obtenido en el balance hídrico del acuífero el valor de infiltración producto de los cultivos es de 14.09 Mm³/año.

Año	Mm³	Infiltración
1990	114,17	17,12
1991	116,90	17,53
1992	81,33	12,20
1993	79,74	11,96
1994	90,58	13,58
1995	91,96	13,79
1996	94,55	14,18
1997	101,15	15,17
1998	90,24	13,53
1999	105,45	15,81
2000	98,28	14,74
2001	99,57	14,93
2002	96,04	14,40
2003	92,71	13,90
2004	109,54	16,43
2005	105,09	15,76
Promedio	97,96	14,69

Tabla II.18. Valores promedio del volumen utilizado para el distrito de riego Tuxpan 045.

Adicionalmente se obtuvieron los volúmenes de agua que se pierde en la conducción a través de los canales y son por lo tanto, incorporados al volumen del agua que ingresa al acuífero por retorno por riego (tabla II.19). Estimándose un promedio al año de 71,853 Mm³/año adicional.

Obteniéndose un valor por retorno por riego de **86,548** Mm³/año.

Perdidas por conducción(Mm³)	Mm³
1990	89,446
1991	71,000
1992	55,200
1993	60,019
1994	57,660
1995	67,028
1996	84,897
1997	75,262
1998	69,617
1999	82,665
2000	72,942
2001	74,451
2002	71,720
2003	69,222
2004	71,078
2005	77,447
Promedio	71,853

Tabla II.19. Valores promedio del volumen de pérdidas por conducción para el distrito de riego Tuxpan 045.

2.7.4. Bombeo (B)

El acuífero presenta de 26 aprovechamientos que se distribuyen en porción central principalmente y cuyo volumen del bombeo es 13.16 Mm³ /año (tabla II.20). Las profundidades varían de 60 m a 250 m dependiendo de la zona del acuífero.

CLAVE	Х	Υ	Gasto (Mm³/año)
CNA LMARZOS	348749.00	2182204.00	1,135
GROW GROUP	347447.00	2165507.00	0,902
CNA-CHRT	332287.00	2177370.00	1,419
CNA-MAAJ	358515.00	2166944.00	0,867
CNA SAPA3P	335071.00	2181121.00	0,218
CNA SAPATAC	336824.00	2188771.00	0,032
CNA SAPAPFR	338045.00	2179076.00	1,577
CNA PFRONT	346715.00	2185094.00	0,192
CNA PCALICA	348969.00	2176417.00	0,126
CNA OOAPAS1	342182.00	2177955.00	0,252

CNA CSMIGUEL	348367.00	2176070.00	1,135
CNA SNVICENTE	346880.00	2187253.00	0,126
CNASAPA-CC	341947.00	2162747.00	0,986
CNA-PCM	346276.00	2155302.00	0,378
CNA-OLC	359593.00	2165503.00	0,315
CNA-OES	359525.00	2167496.00	0,315
CNA-OEZ	359861.00	2166177.00	0,315
CNA-ISM	350530.00	2176611.00	0,158
CNA-SAPAUD	335540.00	2176445.00	0,221
CNA-3DEMAYO	336759.00	2179155.00	0,930
CNA-BJN1	348588.00	2135445.00	0,066
CNA-LV2	355025.00	2161296.00	0,129
CNA ELOLIVO	355025.00	2161296.00	0,063
CNA-CDRDN	333930.00	2176463.00	0,035
CNA NTARACATIO	333370.00	2132659.00	0,237
CNA-BJE	349051.00	2135635.00	0,032
CNA-SAPACHZ	330378.00	2179141.00	0,993
		Total	13,16

Tabla II.20. Localización de los aprovechamientos por bombeo en la zona de estudio.

2.7.5. Coeficiente de almacenamiento (Sy)

El coeficiente de almacenamiento fue calculado a partir de 10 pruebas de bombeo tomadas de Sainx Ingeniería Integral S.A. de C.V. en su estudio realizado en el año 2007 (Anexo Pruebas de Bombeo). Estas pruebas fueron interpretadas con ayuda del programa Visual Two Zone Model basadas en el código numérico denominado Modelo de Flujo Radial de Dos Capas con Flujo Vertical y Leakage desarrollado por K. T. Rushton y K.S. Rathod de la Universidad de Birmingham, U. K. (Hernández, L., N.; 2008).Los resultados se muestran en la tabla II. 21 que varían del 0.050 al 0.15 que indica que el acuífero es libre.

Nombre del pozo	Sy
CNA SAPA3P	0,070
CNA SAPAFR	0,075
CNA OOAPAS 1	0,150
CNA CS MIGUEL	0,040
CNA SAN VICENTE	0,099
CNA SAPACC	0,150
CNA OEZ	0,050
CNA SAPAUD	0,075

CNA 3 DE MAYO	0,050
CNA CHRT	0,100
Promedio	0,0859

Tabla II.21. Valor de Sy interpretado para cada pozo en el acuífero.

2.7.6. Manantiales (Man)

Las descargas por manantiales presentes en la zona se concentran principalmente a las orillas de las sierras circundantes (figura II.9). Existen 34 aprovechamientos que tienen un volumen anual de 6,133752 Mm³/año (tabla II.22), siendo una de las fuentes de abastecimientos importantes de la región.

Nombre	Х	Υ	Tipo	Gasto (m³/día)
CNA-JAS	- 1	2151941,00	Manantial	6307,2
CNA-PA	344082,00	2153522,00	Manantial	946080
CNA-LG	344295,00	2154209,00	Manantial	129297,6
CNA-LC	344709,00	2162000,00	Manantial	249134,4
CNA-OOM	358315,00	2163071,00	Manantial	129297,6
CNA-JLC	354429,00	2163265,00	Manantial	69379,2
LOS FRESNOS	340892,00	2164832,00	Manantial	97761,6
CNASAPA-MC	348057,00	2164914,00	Manantial	214444,8
CNASAPA-AA	346537,00	2166105,00	Manantial	208137,6
CNASAPA-EH	346946,00	2166525,00	Manantial	100915,2
CNA-OM1	358109,00	2167891,00	Manantial	154526,4
CNASAPA-LP01	344513,00	2169283,00	Manantial	227059,2
CNA-ORP	357477,00	2171678,00	Manantial	66225,6
CNA-AOA	351010,00	2171721,00	Manantial	163987,2
CNA-AJP	354206,00	2172036,00	Manantial	66225,6
CNA-AZE	353501,00	2172079,00	Manantial	91454,4
CNA-ALS	357304,00	2172571,00	Manantial	63072
CNA-AAT	353796,00	2174690,00	Manantial	69379,2
CNA-ADM	352088,00	2174830,00	Manantial	157680
CNA-CHLV	321002,00	2174933,00	Manantial	28382,4
CNA-CHRM	325126,00	2175446,00	Manantial	25228,8
CNA BELCAR	341933,00	2175683,00	Manantial	94608
CNA-RD	334784,00	2176197,00	Manantial	154526,4
CNA MCNGA	350466,00	2176286,00	Manantial	163987,2
CNA OJITOFV	339012,00	2176615,00	Manantial	315360
CNA-ISAT	351354,00	2177345,00	Manantial	119836,8
CNA MAPUERCA	342367,00	2177402,00	Manantial	157680

CNA-CHLLT	332125,00	2178113,00	Manantial	28382,4
CNA SAPASNF	335643,00	2178181,00	Manantial	179755,2
CNA-GE	352954,00	2178476,00	Manantial	63072
CNA SAPAC	334416,00	2178566,00	Manantial	214444,8
CNA-SAPALP	333347,00	2178941,00	Manantial	977616
CNA SNMATI	331500,00	2181171,00	Manantial	182908,8
CNA ELESTAN	330704,00	2181411,00	Manantial	217598,4
			Total	6133752
			Total	6,133752
			(Mm³/año)	

Tabla II.22. Valores de las descargas de los manantiales en el valle del acuífero.(censo Sanx Ingeniería Integral, 2007).

2.7.7. Flujo Base (FB)

El flujo base que se estima es el calculado a partir del BANDAS de las estaciones cercanas al acuífero. Se tienen tres estaciones hidrométricas la 18460 (Río Chiquito), 18459 (Río Grande) y 18574 (Río Tuxpan), que tienen un volumen de agua registrado al año de 0.19208 Mm³/año (tabla II.23).

Estaciones	X	Υ	Mm³/año
18460	346588,00	2164981,00	0.00286
18459	346446,00	2165444,00	0.06302
18574	333548,00	2125585,00	0.12614
Total			0.19208

Tabla II.23. Valor del flujo base en las estaciones hidrométricas 18460, 18459 y 18574.

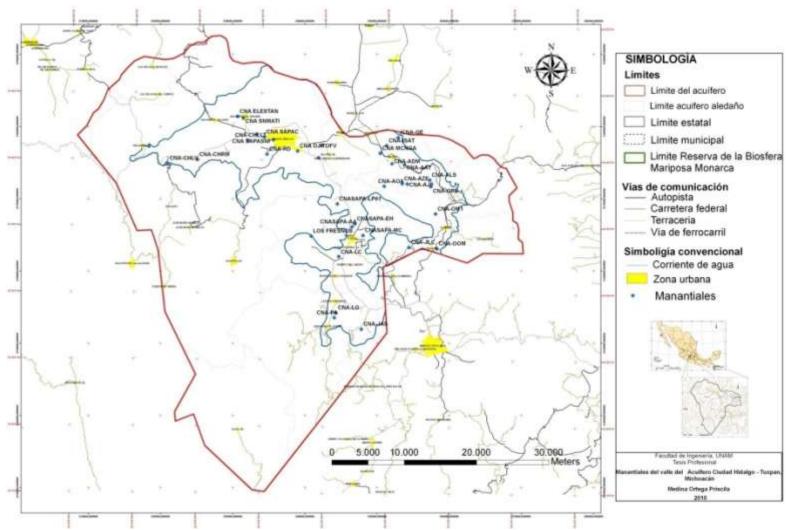


Figura II.9. Localización de los manantiales en el valle del acuífero Ciudad Hidalgo – Tuxpan, Michoacán.

2.7.8. Variación de la carga hidráulica (Δh)

Los datos que se reportan en trabajos anteriores son censos del año 2003 y 2007 que permiten evaluar la variación de la carga hidráulica en 21 pozos, 2 norias y 19 manantiales (tabla II.24).

En los manantiales no presenta variación, las norias presentan una disminución de la carga hidráulica en 10 a 20 cm. Los pozos son los que exhiben un cambio tanto positiva en algunas partes de 2.20 m y negativa de 11.985 m producto del excesivo bombeo.

En la figura II.4 y tabla II.23 se pueden observan que en los municipios de Ocampo, Angangeo, Agostitlán y Jungapeo un abatimiento moderado de 1.5 m el máximo al mínimo de 0 m; en cambio en los municipios de Aporo, Ocampo, Tuxpan, Irimbo y Zitácuaro presentan un abatimiento superior al 1.5 m hasta los 11.98 m. En Ciudad Hidalgo registra una recuperación de 2 m en este periodo.

2.7.9. Evapotranspiración (ETR)

La evapotranspiración se calculó a partir del hídrico del acuífero (tabla anexo A.5) se realizó una configuración de curvas de igual valor para la evapotranspiración real con las profundidades del nivel estático; se estimó una profundidad de extinción de 10 m. El valor por año de 18. 26 Mm³ (tabla II.25 y figura II.10).

ETR	Mm³
0	5.1485784
0 a 2	4.543578653
2 a 4	3.584523093
4 a 6	2.554021163
6 a 8	1.80667824
8 a 10	0.626255423
Total	18.26363497

Tabla II.25. Volumen de agua evapotranspira en el valle del acuífero.

CLAVE	Х	Y ELE	VACIONES	TIPO DE APROV.	PNE 2003 (m)	PNE 2007 (m)	Δh(m)
CNA SAPA3P	335106.00000	2181050.00000	2267.000	POZO	126.270	124.470	1.800
CNA SAPATAC	336903.00000	2188730.00000	2610.167	POZO	75.260	75.000	0.260
CNA SAPAPFR	338197.00000	2178952.00000	2068.805	POZO	35.020	37.200	-2.180
CNA PFRONT	346750.00000	2185023.00000	2137.000	POZO	47.700	48.470	-0.770
CNA PCALICA	348966.00000	2176416.00000	2219.155	POZO	33.240	45.225	-11.985
CNA OOAPAS1	342256.00000	2177908.00000	2032.389	POZO	21.580	22.430	-0.850
CNA CSMIGUEL	348522.00000	2175945.00000	2222.083	POZO	59.100	63.880	-4.780
CNA LMARZOS	348785.00000	2182134.00000	2154.000	POZO	8.740	12.870	-4.130
CNASAPA-CC	341982.00000	2162675.00000	1745.000	POZO	24.410	25.010	-0.600
CNA-OLC	359668.00000	2165454.00000	2286.220	POZO	3.760	3.960	-0.200
CNA-PCM	346348.00000	2155258.00000	1772.093	POZO	72.350	73.500	-1.150
CNA-OES	359599.00000	2167450.00000	2312.621	POZO	43.000	43.070	-0.070
CNA-OEZ	359895.00000	2166106.00000	2305.000	POZO	25.000	27.920	-2.920
CNA-CHRT	332448.00000	2177253.00000	2119.651	POZO	22.600	22.800	-0.200
CNA-APJN	360346.00000	2169740.00000	2321.000	POZO	7.000	7.750	-0.750
CNA-ISM	350565.00000	2176540.00000	2240.000	POZO	1.150	5.095	-3.945
CNA-SAPAUD	335575.00000	2176374.00000	2099.000	POZO	47.500	45.300	2.200
CNA-3DEMAYO	336795.00000	2179084.00000	2095.000	POZO	54.800	55.300	-0.500
CNA-ITAR	350313.00000	2177794.00000	2240.000	POZO	10.160	12.800	-2.640
CNA CDRDN	333965.00000	2176392.00000	2229.000	NORIA	0.900	1.000	-0.100
CNA SAPACHZ	330414.00000	2179069.00000	2092.000	NORIA	2.690	2.900	-0.210
CNA CHLO	321456.00000	2164250.00000	2643.416	MANANTIAL	0.000	0.000	0.000
CNA CHAM2	329101.00000	2162741.00000	2583.629	MANANTIAL	0.000	0.000	0.000
CNA SBC	332941.00000	2167799.00000	2338.952	MANANTIAL	0.000	0.000	0.000
CNA ELROSAL	321882.00000	2185199.00000	2518.478	MANANTIAL	0.000	0.000	0.000
CNA LOS AZU	324642.00000	2188460.00000	2788.239	MANANTIAL	0.000	0.000	0.000
CNA AGUAF	326732.00000	2189465.00000	2874.460	MANANTIAL	0.000	0.000	0.000
CNA LAGUNAL	323839.00000	2190312.00000	2794.606	MANANTIAL	0.000	0.000	0.000
CNA ZOAB	320417.00000	2188041.00000	2568.904	MANANTIAL	0.000	0.000	0.000
CNA CHAB	318122.00000	2179514.00000	2317.892	MANANTIAL	0.000	0.000	0.000
CNA CHPP	322124.00000	2171171.00000	2521.666	MANANTIAL	0.000	0.000	0.000
CNA EL PASO	344664.00000	2141833.00000	1283.907	MANANTIAL	0.000	0.000	0.000
CNA EB	337080.00000	2150348.00000	1878.622	MANANTIAL	0.000	0.000	0.000
CNA EC	337476.00000	2145727.00000	1466.569	MANANTIAL	0.000	0.000	0.000
CNA	342982.00000	2155177.00000	1338.090	MANANTIAL	0.000	0.000	0.000
AGUABLANCA CNASAPA EH	347019.00000	2166461.00000	1760.187	MANANTIAL	0.000	0.000	0.000
CNA LPO1	344579.00000	2169238.00000	1808.198	MANANTIAL	0.000	0.000	0.000
CNA LC	345014.00000	2161949.00000	1718.930	MANANTIAL	0.000	0.000	0.000
CNA OOM	358385.00000	2163031.00000	2283.513	MANANTIAL	0.000	0.000	0.000
CNA ACAR	365749.00000	2168667.00000	2721.123	MANANTIAL	0.000	0.000	0.000
CNA MCNGA	350538.00000	2176241.00000	2235.727	MANANTIAL	0.000	0.000	0.000
CNA MARITARO	324810.00000	2192545.00000	2820.000	MANANTIAL	0.000	0.000	0.000
					Δh		-0.717
					Δh(i	m/año)	-0.179

Tabla II. 24. Variación de la carga hidráulica en la zona en un periodo del 2003 al 2007.

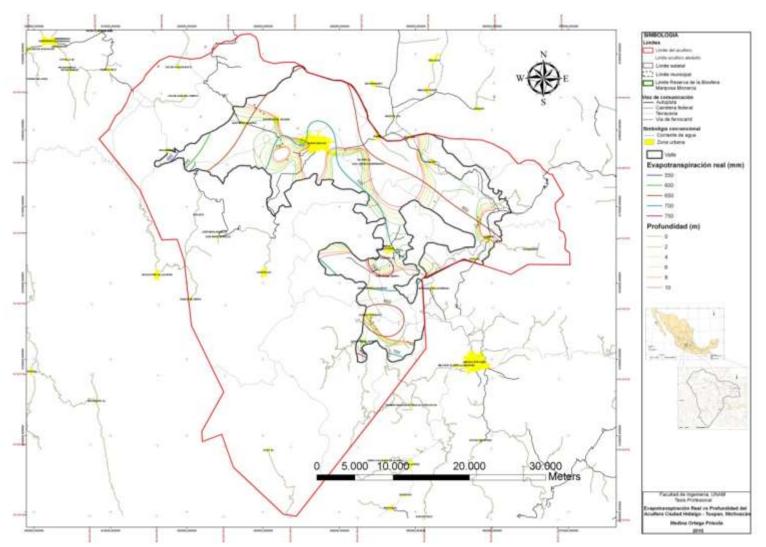


Figura II.10. Evapotranspiración real vs profundidad del nivel estático en el valle del acuífero

2.7.10. Resolución de balance de aguas subterráneas

Tomando la ecuación (5) los valores ya expuestos la ecuación se resuelve de la siguiente manera:

 $Rr + Inf + Es - Ss - Man - B - ETR - FB = Sy * Área * \Delta h ...(5)$

Rr: Retorno por riego

Inf: Infiltración

Es: Entradas subterráneas Ss: Salidas subterráneas

B: Bombeo

Man: Manantiales

ETR: Evapotranspiración

FB: Flujo base

Entradas	(Mm³/año)	2003 – 2007 (Mm³)
Inf	117.314605	469.2584201
Es	100.142738	400.5709519
Rr	86.54784813	346.1913925
	Total	1216.020765

Salidas	(Mm³/año)	2003 – 2007 (Mm³)
Ss	293.7838545	1175.135418
В	13.16	52.6209696
Man	6.13	24.535008
ETR	18.26363497	73.05453988
FB	0.192085776	0.768343104
	Total	1326.114279

ΔV		
	(m/año)	2003 – 2007 (m)
Δh(m)	-0.167789877	-0.671159509
pon		
Sy	0.0859	
	(m²)	
Área	1.914.881.138.1890	

Por lo tanto;

$$\Delta V = 1216.020765 - 1326.114279 (Mm3)$$

 $\Delta V = -110.3979 (Mm3)$

En el acuífero Ciudad Hidalgo-Tuxpan presenta un cambio de volumen de agua -110.3979 (Mm³). Una de estas causas es el bombeo en la zona; por esta razón el acuífero se encuentra en estado de sobreexplotación.

3. Modelo de flujo del acuífero Ciudad Hidalgo – Tuxpan, Michoacán.

3.1. Introducción

Uno de los principales objetivos de un modelo matemático es simular lo mejor posible el comportamiento del agua subterránea. En este trabajo se elaboró un modelo matemático del acuífero de Ciudad Hidalgo –Tuxpan con datos del año 2003 al 2007, con esto, nos ayuda a entender el funcionamiento del acuífero en años anteriores y por consiguiente en años futuros y bajo escenarios de explotación diversos. Para realizar esto se utilizó el software denominado MODFLOW-2005 de la USGS. El procedimiento para realizar el modelo lleva un orden predeterminado para su construcción que se describe en este capítulo.

3.2. Ecuación de flujo de aguas subterráneas

La ecuación de flujo de aguas subterráneas se deriva matemáticamente de la combinación de la ecuación de balance de aguas con la Ley de Darcy. La derivación es tradicionalmente referida a un cubo de material poroso lo suficientemente grande para ser representativo de las propiedades del medio poroso y sin embargo, es lo suficientemente pequeño de manera que el cambio de la carga hidráulica dentro del volumen relativamente pequeño. Este cubo de material poroso es conocido como *representative elementary volumen* (REV). Este volumen es igual a **dxdydz** (figura III.1) (Anderson, 1992).

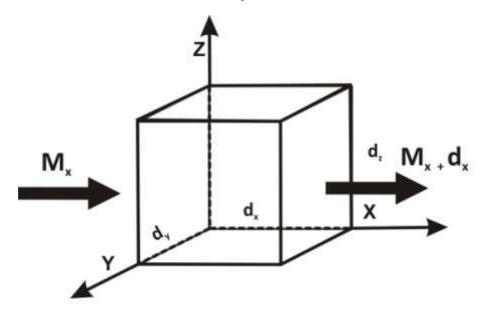


Figura III.1. El REV usado para la derivación de la ecuación de flujo subterráneo

La masa de agua que entrara en el acuífero en el instante Δt , según la dirección del eje X, el volumen de agua en ese instante en la sección por la velocidad y tiempo por la densidad del agua se expresa:

$$M_x = d_z d_v V_x \rho \Delta t$$

Donde:

d₂d_v es la sección perpendicular al flujo.

V_x es la velocidad de flujo en la dirección del eje X.

ρ es la densidad del agua.

Δt es el intervalo de tiempo considerado.

En la cara opuesta en el mismo instante sale el volumen de agua:

$$M_x = d_z d_y V_{x+dx} \rho \Delta t$$

La diferencia entre la masa que entra por una cara del REV y la que sale por la opuesta ha de ser igual, para que cumpla con el principio de conservación de la masa, a la variación en el almacenamiento en esa dirección. Aplicando la formula de Taylor despreciando los términos superiores a la primera derivada se obtiene:

$$\Delta Mx = \Delta Vx \ \rho = \frac{1}{1!} * \frac{\partial Vx}{\partial x} * dx * dy * dz * \rho * dt = \frac{\partial Vx}{\partial x} * dx * dy * dz * \rho$$

Y se considera un volumen unitario dx * dy * dz = 1, en un tiempo unitario dt = 1, y se elimina ρ de ambos miembros de la ecuación se obtiene:

$$\Delta V_{\mathbf{X}} = \frac{\partial V_{\mathbf{X}}}{\partial x}$$

Y La ley de Darcy considera

$$Vx = K \frac{\partial h}{\partial x}$$

Y considerando un medio homogéneo e isotrópico se obtiene:

$$\Delta \mathbf{V} \mathbf{x} = \frac{\partial (\mathbf{K} \frac{\partial h}{\partial x})}{\partial x} = K \frac{\partial^2 h}{\partial x^2}$$

Y resolviendo con un razonamiento similar para las otras direcciones se obtiene:

$$\Delta \mathbf{V} \mathbf{y} = K \frac{\partial^2 \mathbf{h}}{\partial \mathbf{y}^2}$$

$$\Delta \mathbf{V}\mathbf{z} = K \frac{\partial^2 \mathbf{h}}{\partial z^2}$$

Sumando los tres términos queda:

$$\left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial z^2}\right) * K = \Delta V$$

Esta ecuación representa un balance de flujos de agua en la unidad de tiempo en el elemento unitario del acuífero. El término ΔV representa la variación del volumen almacenado:

$$\Delta V = S * \frac{\partial h}{\partial t}$$

Siendo S el coeficiente de almacenamiento especifico, se obtiene entonces:

$$\left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial z^2}\right) * K = S * \frac{\partial h}{\partial t}$$

Esta es la ecuación general del flujo en régimen transitorio en medio homogéneo e isotrópico.

Si el medio es heterogéneo y anisotrópico la ecuación del flujo en régimen transitorio es:

$$\left(Kx * \frac{\partial^2 h}{\partial x^2} + Ky * \frac{\partial^2 h}{\partial y^2} + Kz * \frac{\partial^2 h}{\partial z^2}\right) = S * \frac{\partial h}{\partial t}$$

Si el régimen es permanente o estacionario, h es constante a lo largo del tiempo. Por lo que se anula su derivada con respecto al tiempo, quedando la ecuación de flujo siguiente:

$$\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial z^2} = 0$$

3.3. Enfoque de la modelación computacional del flujo de aguas subterráneas

Los modelos matemáticos del flujo de agua subterránea se enfocan principalmente a predecir las consecuencias de una acción (Anderson, 1992).

Los modelos matemáticos pueden ser de tres tipos:

- a) Predictivos: El cual requiere una calibración y sirve para una predicción futura.
- b) Interpretativos: Este es usado como un marco para el estudio de la dinámica del sistema.
- c) Genéricos: Es usado para analizar el flujo en un sistema hipotético.

Para la elaboración de un modelo matemático se recomienda seguir un protocolo de modelación que incluye 12 pasos (figura III.2) que nos ayudan a realizar un buen trabajo y se describen a continuación:

- 1) Propósito. En esta parte del protocolo se establecer que ecuación fundamental se va a resolver y que código elegir.
- 2) Desarrollo del modelo conceptual. Definición de las unidades hidroestratigráficas y condiciones de frontera son identificadas. El balance de hidrogeológico, los valores de los parámetros del acuífero y el periodo de stress son definidos.
- 3) Selección de la ecuación fundamental y el código computacional. El código es el programa que contiene un algoritmo para resolver el modelo matemático.
- 4) Diseño del modelo. El modelo conceptual se pone en forma adecuada para el modelado. Incluye el diseño del grid, selección de los periodos de tiempo, características de frontera y condiciones iniciales.
- 5) Calibración: El propósito de este paso es establecer que el modelo reproduce las cargas medidas en campo y balance de masa. Está hecha con un ajuste de prueba y error.
- 6) Análisis de sensibilidad: La calibración del modelo es debida a la incertidumbre de la incapacidad de definir el espacio (y temporal) exacto de los valores de los parámetros y temporal.
- 7) Verificación del modelo: El objetivo es establecer una mayor confianza en el modelo para ser usado para reproducir un segundo conjunto de datos de campo.

- 8) Predicción: Es la cuantificación de la respuesta del sistema a un evento futuro.
- 9) Análisis de sensibilidad de la predicción: Se hace para cuantificar el efecto de la incertidumbre en los valores de los parámetros dentro de la predicción. Los rangos estimados futuros de stress son simulados para examinar el impacto del modelo de predicción.
- 10) Presentación del diseño del modelado y resultados. Una presentación clara del diseño del modelo y resultados es esencial para todo trabajo.
- 11) Verificación posterior: Una verificación posterior es llevada a cabo muchos años después de que el estudio de modelación haya concluido y nuevos datos serán colectados para determinar si la predicción fue correcta.
- 12) Rediseño del modelo: Después de la verificación posterior dará nuevos conocimientos del comportamiento del sistema que puede acarrear cambios en el modelo conceptual o cambios en los parámetros del modelo.

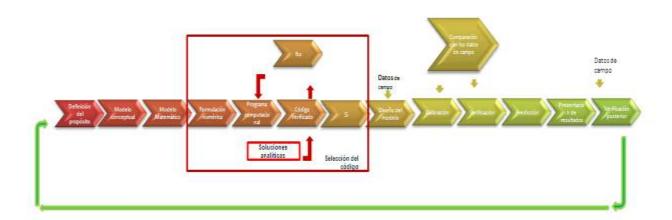


Figura III.2 Pasos del protocolo para la aplicación de un modelo matemático (Anderson, 1992)

3.4. Modelación matemática con MODFLOW

El software utilizado para la elaboración del modelo matemático del acuífero Ciudad Hidalgo- Tuxpan, fue el MODFLOW 2005 (Modular three-dimensional finite- difference groundwater model). Este programa simula el flujo estable y no estable de un sistema de flujo irregular formado en el cual las capas acuíferas pueden ser confinadas, no confinadas o una combinación de confinado y no confinado.

El software denominado MODFLOW fue originalmente concebido solamente como un modelo de flujo de agua subterránea y los autores vieron la solución de ecuaciones relacionadas adicionales como algo que se hace en programas separados.

El programa MODFLOW 2005 resuelve una forma tridimensional de la ecuación de flujo de agua subterránea:

$$\frac{\partial}{\partial \mathbf{x}} \left[\mathbf{K}_{\mathbf{x}\mathbf{x}} \frac{\partial \mathbf{h}}{\partial \mathbf{x}} \right] + \frac{\partial}{\partial \mathbf{v}} \left[\mathbf{K}_{\mathbf{y}\mathbf{y}} \frac{\partial \mathbf{h}}{\partial \mathbf{v}} \right] + \frac{\partial}{\partial \mathbf{z}} \left[\mathbf{K}_{\mathbf{x}\mathbf{x}} \frac{\partial \mathbf{h}}{\partial \mathbf{z}} \right] + W = S_{s} \frac{\partial \mathbf{h}}{\partial \mathbf{t}}$$

Donde:

 K_{xx} , K_{yy} , K_{zz} : Son los valores de la conductividad hidráulica a lo largo de los ejes coordenados x,y,z, que son paralelos a los ejes mayores de la conductividad hidráulica.

h: Carga hidráulica.

W: es un flujo volumétrico por unidad de volumen representativo de las fuentes o sumideros de agua.

Ss: Coeficiente de almacenamiento especifico de los acuíferos.

t: tiempo.

Para facilitar la incorporación de ecuaciones relacionadas dentro del MODFLOW, una expansión del diseño modular fue diseñada, el resultado se denomino MODFLOW-2000 (Harbaugh y otros, 2000). El MODFLOW 2005 es

similar en el diseño al MODFLOW-2000. El cambio primario en el MODFLOW – 2005 es la incorporación de un enfoque diferente para concepto ampliado del manejo interno de los datos (Harbaugh, 2000).

El método de diferencias finitas calcula un valor de la carga en el nodo que también es el promedio de las cargas que rodea al nodo. La forma general de la expresión de diferencias finitas es la siguiente:

$$\mathsf{B} h_{i\text{-}1,j,k} + \mathsf{C} h_{i,j+1,k} + \mathsf{D} h_{i+1,j,k} + \mathsf{E} h_{i,j-1,k} + \mathsf{F} h_{i,j,k+1} + \mathsf{G} h_{i,j,k-1} + \mathsf{H} h_{i,j,k} = \mathsf{RHS}_{i,j,k}$$

La ecuación para la carga en el nodo i,j,k (h_{i,j,k}) implica la carga en el nodo en sí, así como las cargas en los seis nodos del alrededor. Cada carga es multiplicada por un coeficiente (B, C, D, E, F, G ó H) que es una función de la conductividad hidráulica entre los nodos, el coeficiente H es también función del término de almacenamiento y el término RHS_{i,j,k} incluye términos de almacenamiento y recarga en el lado derecho de la ecuación (Anderson, 1992).

3.5. Discretización espacial y temporal

La selección de los periodos del tiempo (Δt) y la construcción del mallado son pasos críticos en el diseño del modelo porque los valores de la discretización del tiempo y el espacio tiene una fuerte influencia sobre los resultados numéricos (Anderson, 1992).

Discretización espacial

El acuífero de Ciudad Hidalgo-Tuxpan tiene una extensión de 1914.88 km²; por lo que se consideró pertinente generar una malla de 95 columnas y 81 renglones, para poder abarcar la zona a modelar; teniéndose un total de 7885 celdas. Cada una de las celdas tiene una dimensión de 500 m tanto en la dirección **X** como en la **Y**.

En la figura III.3 se muestra en color azul las celdas activas y en color rojo las celdas inactivas y son aproximadamente 2507 y 5378 respectivamente en cada capa.

Con respecto a la definición de las capas a modelar se propusieron cuatro capas. Estas capas fueron propuestas a partir de la interpretación de secciones geofísicas elaboradas por la empresa SAINX Integral en el 2007. Con la información geológica interpretada, los censos de pozos para elaborar los mapas de nivel estático de la zona y la topografía se opto por establecer una secuencia de 4 capas de un espesor constante de 100 m de profundidad en las primeras tres, esto por la variabilidad de las litologías presentes en la zona y la cuarta de 150 m caracterizada por una sola litología.

Discretización del tiempo

El tiempo de simulación está basado en los periodos con los que se cuenta información de las cargas hidráulicas de la zona; estos años son 2003 y 2007.

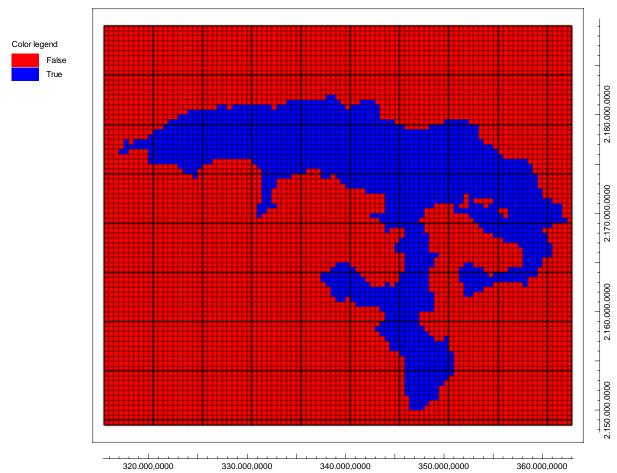
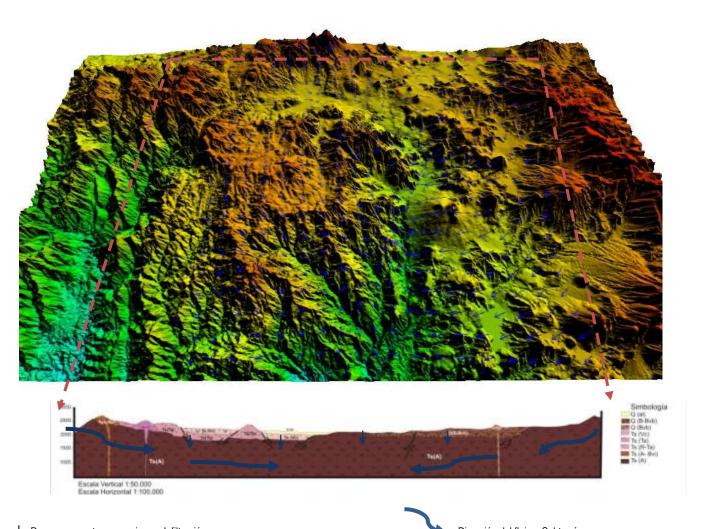



Figura III. 3. Discretización del acuífero Ciudad Hidalgo –Tuxpan, Edo. Michoacán.

Por lo tanto, el periodo a simular es 4 años en el intervalo ya mencionado, y se simularon 1461 días. Para llevar a cabo esto, se tomo como condición inicial la configuración de la elevación del nivel estático del año 2003.

3.6. Geometría del acuífero

El acuífero Ciudad Hidalgo-Tuxpan, está constituido en su mayoría tanto en superficie como en el subsuelo por rocas ígneas que van de rocas básicas a ácidas. Los espesores presentes en la zona son muy variables que van de 300 m a 3000 m (CFE, 2004). Por esto, la variabilidad de las litologías en la profundidad justifica las cuatro capas propuestas para el modelo matemático. En la figura III.4 se muestra una sección geológica exponiendo la geometría del

Recarga por retorno por riego e Infiltración

Dirección del flujo Subterráneo

Figura III.4. Sección geológica mostrando la geometría del acuífero en la porción central del mismo y la dirección del flujo subterráneo.

3.7. Condiciones iniciales y de frontera

Los modelos matemáticos consisten en la ecuación de flujo, condiciones de frontera y condiciones iniciales. Las condiciones de frontera son argumentos matemáticos donde se especifica el valor de la variable dependiente (carga hidráulica) o la derivada de esta variable (flujo) dentro del modelo de simulación (Anderson, 1922)

El establecimiento de la condición de frontera en la zona de estudio se basó en la delimitación de la cuenca con respecto a los edificios volcánicos presentes en la superficie (figura III.5). Esta frontera se define porque las rocas presentes en las porciones que delimitan el acuífero NE, NW, SW y SE, tienen porosidad en superficie que decrece con la profundidad. En las figura III.5 se observan las áreas de recarga subterránea al acuífero con un volumen de agua de 100.143 Mm³/año.

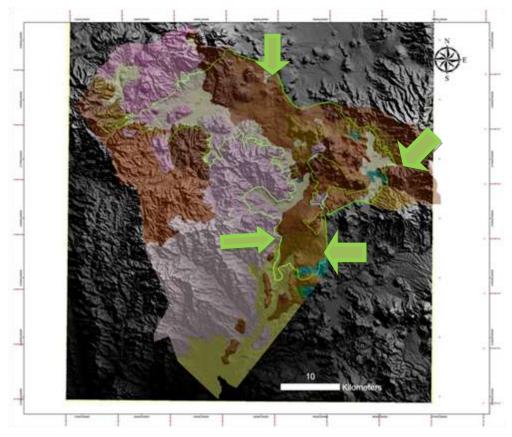


Figura III. 5. Delimitación de las fronteras en el acuífero Ciudad Hidalgo – Tuxpan, Michoacán. La línea en color verde es la frontera que delimita la zona a modelar.

Las condiciones iniciales se refieren a la distribución de las cargas hidráulicas en el sistema al inicio de la simulación y por lo tanto son condiciones de frontera en el tiempo.

En el estado estacionario las cargas hidráulicas se consideraron como la topografía y para el periodo transitorio las cargas obtenidas del censo de CNA del año 2003. Para poder simular las entradas y salidas subterráneas se utilizo el concepto denominado carga remota variable y así obtener los volúmenes estimados en el balance hidrogeológico de las entradas y salidas de 117.31 Mm³/año y respectivamente 293.78 Mm³/año.

3.8. Parámetros hidrogeológicos

Los parámetros hidrogeológicos utilizados para la implementación del modelo son los siguientes:

- 1. Las conductividades hidráulicas (Kx, Ky y Kz). En las figuras III.6, III.7 y III.8 los valores de estos parámetros fueron obtenidas con ayuda de 10 pruebas de bombeo (Anexo de pruebas de bombeo) localizadas en las diferentes litologías distribuidas en el área a modelar.
- Evapotranspiración. El valor de este fue calculada para la zona de estudio de 18.26 Mm³/año y una lámina general asignada para las celdas del mallado de 0.00085 m/año. Este volumen de agua se considera como una salida del sistema.
- 3. Recarga. Este parámetro tiene una fuerte influencia con la actividad agrícola de la zona, ya que el retorno por riego (Rr) es del 42 % del total de la recarga. El volumen por año es de 203.86 Mm³/año y se asigno como una lamina general en las celdas de 0.0084 m/año.
- 4. Coeficiente de almacenamiento especifico (Ss) y rendimiento especifico (Sy): Los valores de estos parámetros se encuentran en un intervalo de 0.0007 0.00049 para el Ss y la Sy de 0.0019 a 0.01, estos valores fueron asignados dependiendo a la litología de cada capa.

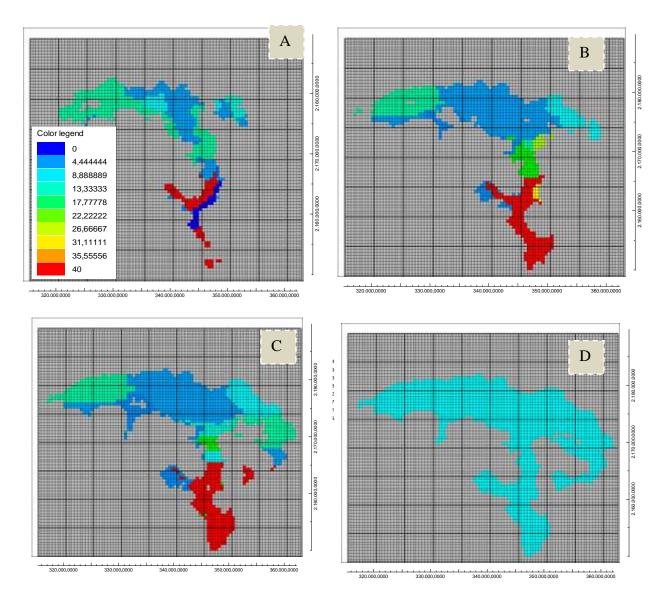


Figura III.6. La variación de las conductividades hidráulicas a largo del eje coordenado X (Kx) en las diferentes capas, A primer capa con una profundidad de 100 m, B segunda capa con una profundidad de 200 m, C tercer capa con una profundidad de 300 m y D la cuarta capa con una profundidad de 450 m.

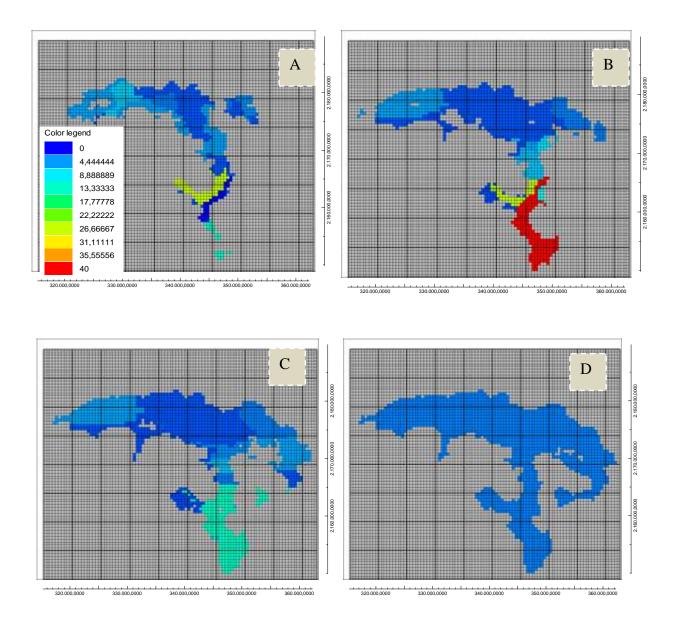


Figura III.7. La variación de las conductividades hidráulicas a largo del eje coordenado Y (Ky) en las diferentes capas, A primer capa con una profundidad de 100 m, B segunda capa con una profundidad de 200 m, C tercer capa con una profundidad de 300 m y D la cuarta capa con una profundidad de 450 m.

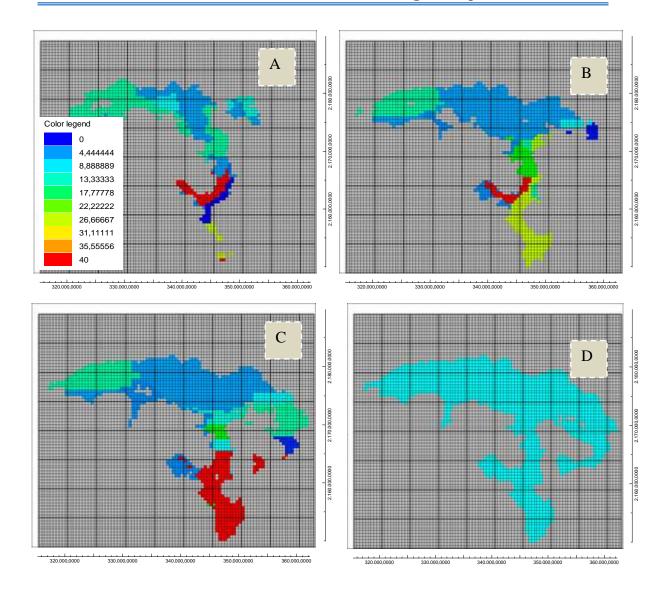


Figura III.8. La variación de las conductividades hidráulicas a largo del eje coordenado Z (Kz) en las diferentes capas, A primer capa con una profundidad de 100 m, B segunda capa con una profundidad de 200 m, C tercer capa con una profundidad de 300 m y D la cuarta capa con una profundidad de 450 m.

3.9 Pozos de extracción

Los pozos de extracción que fueron considerados para el modelo son los recabados en los censos de los años 2003 y 2007. De estos estudios se lograron contabilizar 23 pozos que solo se lograron modelar 15 por la falta de información y de que se encontraron fuera del área a modelar (tabla III.1 y figura III.9). El valor del volumen de extracción es de 36,041.76 m³/día.

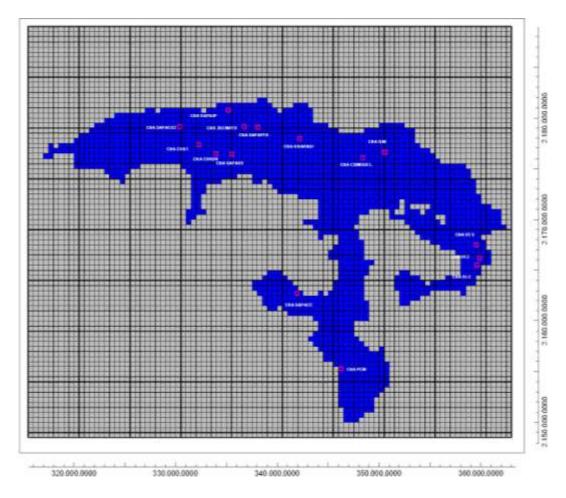


Figura III.9. Localización de los pozos de extracción utilizados en la implementación del modelo.

	Clave	Х	Υ	Línea	Columna	Elevación
1	CNA SAPA3P	335105.9559	2181049.652	16	40	2267.0000
2	CNA SAPAPFR	338197.1734	2178952.349	20	46	2068.8050
3	CNA OOAPAS1	342255.697	2177907.515	23	54	2032.3890
4	CNA CSMIGUEL	348522.2664	2175944.824	26	66	2222.0830
5	CNASAPA-CC	341981.7494	2162675.153	53	53	1745.0000
6	CNA-OLC	359668.3867	2165453.62	47	89	2286.2200
7	CNA-PCM	346347.6215	2155257.533	68	62	1772.0930
8	CNA-OES	359599.0501	2167449.819	44	89	2312.6210
9	CNA-OEZ	359894.8436	2166105.998	46	89	2305.0000
10	CNA-CDRDN	333964.9767	2176392.095	26	37	2229.0000
11	CNA-CHRT	332448.4281	2177253.128	24	34	2119.6510
12	CNA-ISM	350564.5356	2176539.716	25	71	2240.0000
13	CNA-SAPACHZ	330413.7144	2179069.039	20	30	2092.0000
14	CNA-SAPAUD	335575.4194	2176373.853	26	41	2099.0000
15	CNA-3DEMAYO	336794.5553	2179083.593	20	43	2095.0000

Tabla III.1. Localización de los pozos en la zona de estudio que fueron empleados para la modelación.

3.10. Calibración en estado estacionario

El proceso de calibración de un modelo según Anderson (1992) se refiere a demostrar de que el modelo sea capaz de producir las cargas hidráulicas y el flujo mediados en campo. Para la elaboración de la calibración en estado estacionario se empleo la técnica de prueba y error *(trial and error)* (Anderson, 1992).

Por la falta de información relacionada a las configuraciones del nivel estático en estado inicial, se configuró como cargas hidráulicas iniciales a la topografía y poder calibrar el balance de agua calculado en el capítulo 2. Los parámetros que fueron calibrados fueron entradas y salidas subterráneas (GBH), recarga (RCH), manantiales (DRN), este estado se caracteriza por no presentar volúmenes de extracción producto del bombeo (WEL). A partir de una serie de corridas del modelo se logro calibrar el modelo en modo estacionario con un error promedio de 1.909% y el porcentaje de discrepancia calculada por el modelo fue del 0.0%. En la tabla III.2 y en las figuras III.10 y III.11 se logran

observar los valores teóricos obtenidos en el balance hidrogeológico y los calculados en el modelo.

Figura III.10. Valores de los parámetros resultantes de la calibración en estado estacionario.

Parámetro)	Valor teórica	Valor calculada	% Error
GBH	Es	274363.666	275033.393	-0.244
	Ss	804887.273	775013.500	3.712
ı	RCH	558527.269	565571.786	-1.261
	ORN	16804.800	15579.815	7.289
ETV		50037.356	50011.830	0.051
			Promedio	1.909

Tabla III.2. Porcentaje de error de los valores de los parámetros resultantes de la calibración en estado estacionario.

Figura III.11. Valores de las cargas hidráulicas en estado estacionario.

3.11. Calibración en estado transitorio

Para poder llevar a cabo la calibración en estado transitorio fue en ajustar los valores de cargas hidráulicas medidas en campo y las cargas hidráulicas calculada por el programa para el mismo periodo; por ello se adicionaron nuevas variables al modelo y que cumplen las siguientes características:

- 1. El estado transitorio que se simulara será de 4 años del año 2003 al 2007.
- 2. La variable del tiempo que se declaro es de un intervalo de 1461 días que es el intervalo de tiempo del cual se tiene información de la zona.
- 3. Los 15 pozos (WEL) que se encuentran en la zona extraerán un volumen de agua del acuífero 36,041.76 Mm³/año.
- 4. Con el modelo en estado estacionario ya calibrado se tomo como base para llevar a cabo la calibración en estado transitorio.
- 5. Los valores de Ss y Sy fueron asignados dependiendo de la litología y son

- 0.0007 0.00049 y de 0.0019 a 0.01, respectivamente.
- 6. Esta calibración fue elaborada con la técnica de prueba y error, modificando parámetros hidráulicos hasta obtener un error relativamente bajo.
- 7. Las cargas iniciales para el estado transitorio son las cargas hidráulicas medidas en el año 2003.

Para tener una mejor idea del error obtenido de las cargas hidráulicas calculadas por el programa se tomaron como puntos control a los 15 pozos de extracción, porque en esos puntos se sabe con certeza la carga hidráulica.

En la tabla III.3 se observan los 15 puntos de control tomados para la calibración del modelo en estado transitorio, se observa que el promedio es de 3.484 %, pero existen ciertos puntos en donde el error sobrepasa por mucho el 5% establecido como aceptable; estos pozos son CNA-PCM con un error del 10.91% y CNA- SAPACC con un 12.11% estos errores pueden ser producto de que los datos de campo reportados de estos dos puntos estén mal observadas o que las conductividades de la zona sean diferentes a las calculadas en las pruebas de bombeo, por lo que se toman en consideración para futuras visitas de verificación. Por tener un error superior a los demás los pozos CNA SAPACC y CNA PCM serán excluidos en los análisis de los escenarios de explotación, ya que no reproducen adecuadamente el comportamiento del acuífero en esa zona.

En las figuras III.12 se observa la grafica la concordancia de los valores calculados y observados de las cargas para el año 2007 de los quince pozos de control y en la figura III.13 se muestra un mapa con las cargas hidráulicas calculadas para el año 2007.

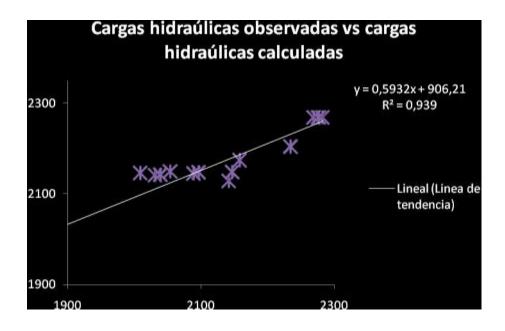


Figura III.12. Cargas hidráulicas observadas vs cargas hidráulicas calculadas del año 2007.

CLAVE	LÍNEA	COLUMNA	ENE 2003	ENE 2007	ENE CALCULADA 2007	% Error
CNA SAPA3P	16	40	2140.730	2142.000	2127.590	0.672
CNA SAPAPFR	20	46	2033.785	2031.405	2140.120	-5.351
CNA OOAPAS1	23	54	2010.809	2009.489	2144.760	-6.732
CNA CSMIGUEL	26	66	2162.983	2158.493	2172.530	-0.650
CNASAPA-CC	53	53	1720.760	1720.130	1928.460	-12.111
CNA-OLC	47	89	2282.460	2282.690	2267.710	0.656
CNA-PCM	68	62	1699.743	1698.543	1883.940	-10.915
CNA-OES	44	89	2269.621	2269.471	2267.720	0.077
CNA-OEZ	46	89	2280.000	2277.027	2267.720	0.408
CNA-CDRDN	26	37	2147.000	2147.385	2147.300	0.003
CNA-CHRT	24	34	2097.051	2096.771	2146.450	-2.369
CNA-ISM	25	71	2238.850	2234.950	2202.990	1.430
CNA-SAPACHZ	20	30	2089.310	2089.080	2143.850	-2.621
CNA-SAPAUD	26	41	2051.500	2054.000	2148.320	-4.592
CNA-3DEMAYO	20	43	2040.200	2039.750	2141.210	-4.974
					Error promedio	3.484

Tabla III.3. Error promedio de los puntos de control para el estado transitorio.

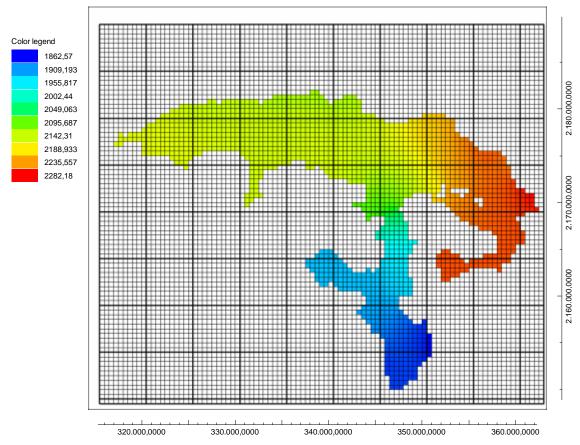


Figura III.13. Valores de las cargas hidráulicas en estado transitorio en el intervalo de tiempo 2003 -2007.

Con respecto en la calibración del balance de agua se obtuvo un error promedio de 6.58 % dado que existe una variabilidad en las entradas con respecto al tiempo de simulación en la tabla III.4 se logra observar los valores calculados por el programa y error que se obtuvo en cada parámetro.

Parámetro	Valor Teórico	Valor Calculado	% Error
Entradas subterráneas (Es)	274363.67	333890.41	21.69
Salidas subterráneas (Ss)	804887.27	791637.60	1.65
Evapotranspiración (EVT)	50037.36	52965.59	5.85
Recarga (RCH)	558527.27	548096.35	1.87
Manantiales (DRN)	16804.80	17786.50	5.84
Bombeo (WEL)	36041.76	35104.80	2.60

Tabla III.4. Comparación entre los balances de agua subterránea calculado y simulado en régimen transitorio.

3.12. Análisis de sensibilidad

El propósito del análisis sensibilidad es cuantificar la incertidumbre en el modelo calibrado causado por la incertidumbre de los parámetros estimados, periodos de tiempo, y las condiciones de frontera. Durante el análisis de sensibilidad los valores calibrados de la conductividad hidráulica, Ss, Sy, recarga y condiciones de frontera son sistemáticamente cambiados en un rango preestablecido (Anderson, 1992).

Los parámetros que se variaron para realizar el análisis de sensibilidad fueron la recarga (RCH), la evapotranspiración (EVT), las conductividades hidráulicas (Kx, Ky, Kz), Ss, Sy y el bombeo (B), el rango de variación establecido fue de +50%, +30%, +10%, -10%, -30%,-50% de los valores calibrados (Tabla III.5).

Variación del parámetro	+50%	+30%	+10%	0%	-10%	-30%	-50%
RCH	4.614	3.217	1.306	0.000	1.251	3.170	3.286
EVT	0.275	0.228	0.179	0.000	0.035	0.111	0.054
Kx, Ky, Kz	2.898	2.893	1.115	0.000	0.746	1.908	
Ss	0.028	0.027	0.026	0.000	0.024	0.021	0.019
Sy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
В	0.137	0.024	0.216	0.000	0.096	0.014	0.042

Tabla III.5. Análisis de sensibilidad del modelo con respecto a la variación de los parámetros hidráulicos.

En la figura III.14 es la gráfica de sensibilidad del modelo en ella se logra observar que el modelo es altamente sensible a la recarga y a las conductividades hidráulicas y con respecto con los otros parámetros es casi insensible a su variación en las cargas hidráulicas.

El parámetro del bombeo tiene una variación del 0.0 % al 0.137"% con respecto en el intervalo de -50% a +50%, por lo que se considera que el rango de variación no representa ni el 1% en el rango establecido de variación. De igual manera, la evapotranspiración, la Ss y el Sy no sobrepasan el 1% de variación en las cargas hidráulicas, por lo que se considera que estos parámetros son insensibles al modelo.

Por otra parte, la recarga presenta una variación en la carga hidráulica del 4.6% a 1.21%, por lo que la variación en el intervalo mencionado generará cambios importantes en la zona de estudio. Otro factor del modelo es muy sensible a la variación de las conductividades hidráulicas presentes en las cuatro capas; pero a existe un intervalo inferior que permite al modelo resolver de -30% al +50% y a partir de +30%, la variación en las cargas es casi constante esto se explica de que el modelo tiende a ser insensible a conductividades mayores al 30% de los valores calibrados.

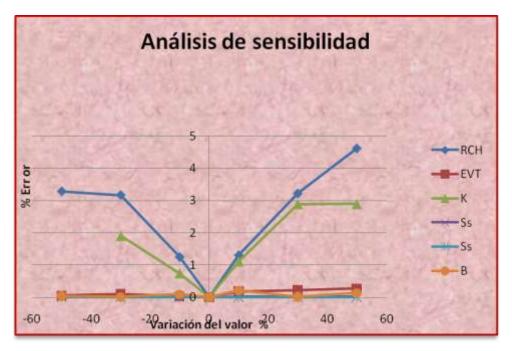


Figura III.14. Gráfica del análisis de sensibilidad para los parámetros B, Ss, Sy, K(Kx, Ky ,Kz), EVT y RCH.

3.13. Escenarios de explotación

Para el mejor manejo del acuífero el modelo matemático calibrado en estado transitorio es una buena herramienta para prever las futuras condiciones provocadas por el hombre y la naturaleza.

Por ello se generaron cuatro escenarios de explotación para poder identificar los factores y las zonas en donde el acuífero es vulnerable a diferentes cambios en un periodo de 4 años.

3.13.1 Escenario 1

El escenario 1 se plantea con una simulación de cuatro años a partir del año 2007 al 2011 con las mismas condiciones actuales de explotación, los mismos parámetros hidráulicos presentes en la zona. Los volúmenes de entrada y de salida son los mismos descritos en el capítulo 2.

Los resultados obtenidos en este periodo son los siguientes:

- 1. La variación en la carga hidráulica de los puntos de control establecidos existe una disminución de 0.0 m a 0.47 m (Zona A), es decir, la tendencia actual en los pozos que presentan mayor abatimiento son los cercanos a Ciudad Hidalgo en la porción central del acuífero, por otra parte los pozos que su variación es casi cero se localizan al noreste de la zona de estudio (Zona B) (figura III.16).
- 2. Las diferencias de las variaciones son producto de la litología en donde se encuentran los pozos; localizados en la porción central están situados sobre rocas basálticas y al noreste están sobre rocas andesíticas y conglomerados.
- 3. De seguir la tendencia actual el cambio de la carga hidráulica será mínimo en la porción noreste del acuífero.

En la tabla III.6 y figuras III.15 y III.16 se logra observar estas variaciones de la

carga hidráulica.

			Δh (m)
CLAVE	Χ	Υ	(2007-2011)
CNA-3DEMAYO	336794,5553	2179083,593	-0,47
CNA SAPAPFR	338197,1734	2178952,349	-0,45
CNA SAPA3P	335105,9559	2181049,652	-0,45
CNA-SAPAUD	335575,4194	2176373,853	-0,45
CNA-CDRDN	333964,9767	2176392,095	-0,42
CNA-CHRT	332448,4281	2177253,128	-0,39
CNA-SAPACHZ	330413,7144	2179069,039	-0,34
CNA OOAPAS1	342255,697	2177907,515	-0,33
CNA-OLC	359668,3867	2165453,62	-0,16
CNA-OEZ	359894,8436	2166105,998	-0,14
CNA CSMIGUEL	348522,2664	2175944,824	-0,12
CNA-OES	359599,0501	2167449,819	-0,11
CNA-ISM	350564,5356	2176539,716	0,00

Tabla III.5. Variaciones de la carga hidráulica en el escenario en estado inercial

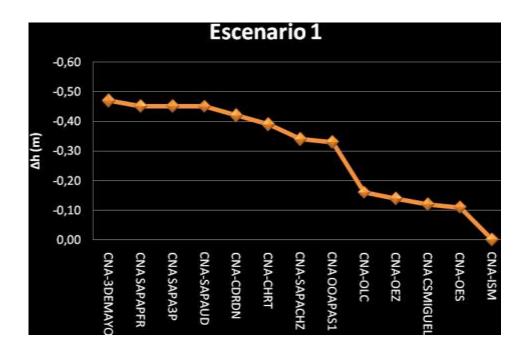


Figura III.15. Gráfica de las variaciones de la carga hidráulica en el escenario inercial con respecto a los pozos de control.

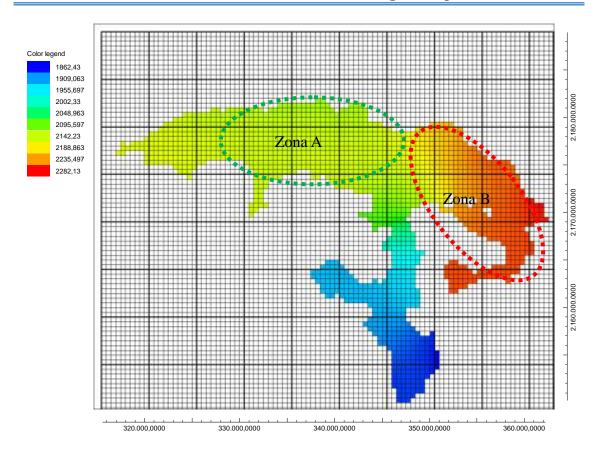


Figura III.16. Mapa de cargas hidráulicas en el acuífero en el escenario inercial.

3.13.2 Escenario 2

El escenario 2 se diseña con base a la información de censos poblacionales de la zona. Los datos obtenidos se observa una clara disminución de la población en un periodo del 2000 al 2005 (figura III.17), y por ello se propone un aumento en el bombeo del 20% para uso agrícola por ser una zona claramente de cultivos, obteniéndose los siguientes resultados:

- El cambio de las cargas hidráulicas de la zona B se encuentran entre 0.830 m a 0.80 m y en la zona A de 2.6 m a 6.45 m; la zona A; nuevamente la zona A presenta una variación notable que la zona B.
- 2. El volumen extraído diariamente del acuífero es de 43,250.112 m³ de seguir la tendencia el cambio de la carga hidráulica será mínimo en la porción noreste del acuífero y muy notorio en la parte central.

En la tabla III.6 y figuras III.18 se muestran los cambios en los puntos de

control para este estudio y sus cambios en las cargas hidráulicas respectivamente. En la figura III.19 se logra observar estas variaciones de la carga hidráulica en el acuífero.

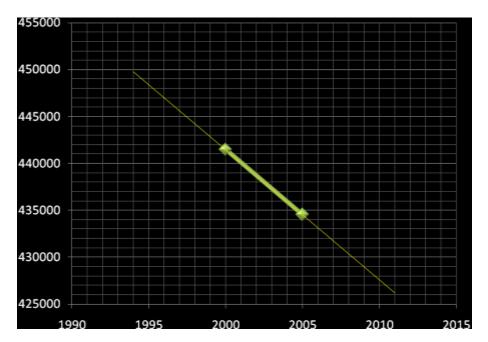


Figura III.17. Disminución de la densidad poblacional en el acuífero Ciudad Hidalgo-Tuxpan.

Clave	Х	Y	Δh (m) (2007-2011)
CNA SAPAPFR	338197,1734	2178952,349	-6,450
CNA-3DEMAYO	336794,5553	2179083,593	-6,310
CNA-SAPAUD	335575,4194	2176373,853	-6,180
CNA-CDRDN	333964,9767	2176392,095	-5,660
CNA SAPA3P	335105,9559	2181049,652	-5,640
CNA OOAPAS1	342255,697	2177907,515	-5,530
CNA-CHRT	332448,4281	2177253,128	-5,270
CNA-SAPACHZ	330413,7144	2179069,039	-4,660
CNA CSMIGUEL	348522,2664	2175944,824	-3,120
CNA-ISM	350564,5356	2176539,716	-2,060
CNA-OEZ	359894,8436	2166105,998	-0,880
CNA-OLC	359668,3867	2165453,62	-0,880
CNA-OES	359599,0501	2167449,819	-0,830

Tabla III.6. Variaciones de la carga hidráulica con un bombeo del 120%.

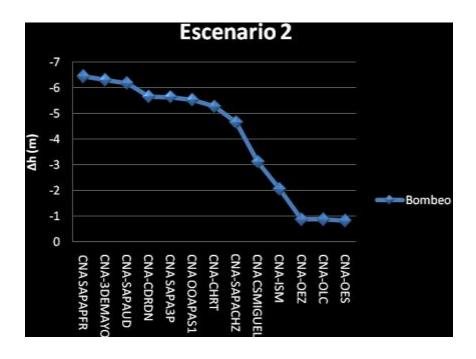
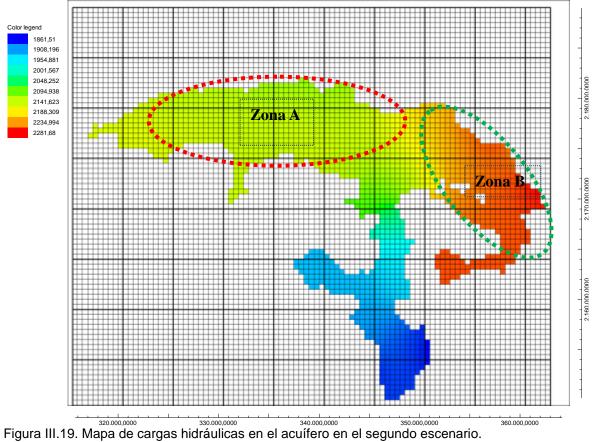



Figura III.18. Gráfica de los cambios de las cargas hidráulicas en el acuífero con un efecto de bombeo al 120%.

3.13.3 Escenario 3

Con el objetivo de establecer la importancia del retorno por riego en la zona, ya que actúa como una recarga vertical se establece el tercer escenario que estipula la reducción del retorno por riego a la mitad producto del abandono de la actividad agrícola.

El volumen de retorno por riego empleado para la simulación fue de 441,236.54 m³/día lo que sufrió una reducción del 21% con respecto el valor obtenido en el balance hidrogeológico (capitulo 2).

Como se había planteado anteriormente en el análisis de sensibilidad el acuífero Ciudad Hidalgo-Tuxpan, presenta una gran vulnerabilidad con respecto a la recarga porque los cambios producto de este escenario sobrepasan los 100 m en la parte central y en las partes menos afectadas el cambio de cargas no sobrepasa los 6 m en la porción noreste.

En la tabla III. 7 y figuras III. 20 y III. 21 se observan las variaciones de la carga hidráulica que van 6.10 m a -110 m.

.

Clave	Х	Υ	Δh (m) (2007-2011)
CNA-SAPACHZ	330413,7144	2179069,039	-111,200
CNA-CHRT	332448,4281	2177253,128	-108,190
CNA-CDRDN	333964,9767	2176392,095	-102,980
CNA-SAPAUD	335575,4194	2176373,853	-96,720
CNA-3DEMAYO	336794,5553	2179083,593	-92,810
CNA SAPA3P	335105,9559	2181049,652	-88,980
CNA SAPAPFR	338197,1734	2178952,349	-87,360
CNA OOAPAS1	342255,697	2177907,515	-69,840
CNA CSMIGUEL	348522,2664	2175944,824	-37,930
CNA-ISM	350564,5356	2176539,716	-26,960
CNA-OES	359599,0501	2167449,819	-6,280
CNA-OLC	359668,3867	2165453,62	-6,200
CNA-OEZ	359894,8436	2166105,998	-6,110

Tabla III.7. Cambios de la carga hidráulica en 13 pozos distribuidos en el acuífero.

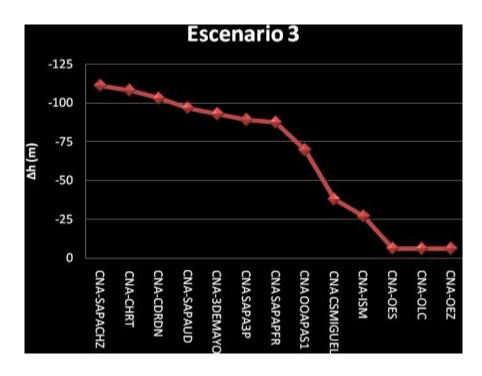


Figura III.20. Grafica de los cambios producidos por la reducción de la recarga superficial en un 21% de total.

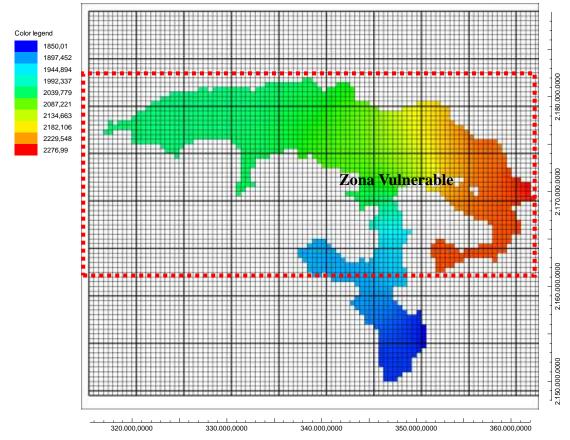


Figura III.21.Mapa de las cargas hidráulicas producto de la reducción de la recarga superficial al 79% en línea punteada se marca la zona vulnerable si se reduce la recarga producto del retorno por riego.

3.13.4 Escenario 4

El cambio climático se define como todos cambios que provocan aumentos en la temperatura y alteraciones del ciclo hidrológico por factores naturales y humanos. El cambio climático global es un amplio tema estudiado por más de 100 años y se asocia principalmente a la actividad producto de los procesos industriales recientes (Conde, 2006 y SEMARNAT.2010).

De acuerdo con SEMARNAT actualmente el estado de Michoacán tiene una precipitación anual de 800 a 1200 mm y una temperatura promedio 8º a 24ºC y se tienen proyecciones para el 2030 de que la temperatura oscile entre 0.8º y 1.2ºC y la precipitación varié entre -%5 y +5%.

Por lo que se plantea que un posible escenario de explotación sea la variación de la evapotranspiración aumente en un 10 % y 20 % para observar los cambios que producen en la zona.

Clave	Х	Υ	Δh (m) (2007-2011)	Δh (m) (2007-2011)
			EVT -10%	EVT -20%
CNA-3DEMAYO	336794,5553	2179083,593	-7,120	-9,810
CNA-SAPAUD	335575,4194	2176373,853	-6,970	-9,840
CNA SAPAPFR	338197,1734	2178952,349	-6,940	-10,030
CNA SAPA3P	335105,9559	2181049,652	-6,760	-8,870
CNA-CDRDN	333964,9767	2176392,095	-6,660	-9,430
CNA-CHRT	332448,4281	2177253,128	-6,310	-9,100
CNA-SAPACHZ	330413,7144	2179069,039	-5,700	-8,620
CNA OOAPAS1	342255,697	2177907,515	-5,570	-9,360
CNA CSMIGUEL	348522,2664	2175944,824	-2,890	-5,090
CNA-ISM	350564,5356	2176539,716	-1,970	-3,540
CNA-OLC	359668,3867	2165453,62	-0,590	-0,950
CNA-OEZ	359894,8436	2166105,998	-0,560	-0,920
CNA-OES	359599,0501	2167449,819	-0,550	-0,920

Tabla III. 8. Variaciones de la carga hidráulica con respecto a un aumento en la evapotranspiración en la zona.

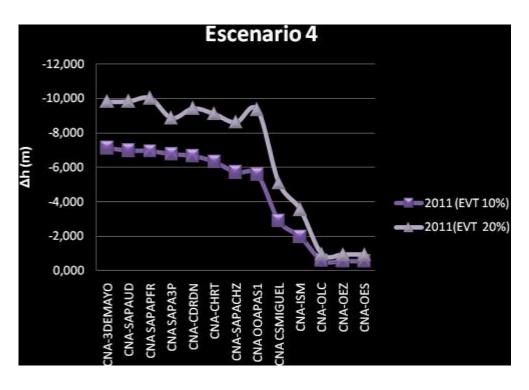


Figura III.21. Cambios en las cargas hidráulicas para un aumento en la evapotranspiración en un 10% y 20%.

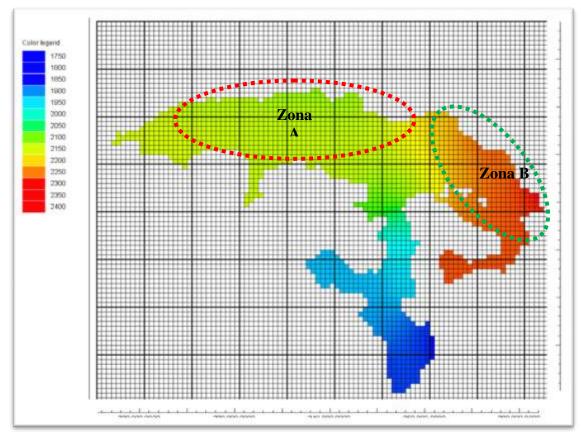


Figura III.22. Identificación de las zonas más vulnerables a las variaciones de la evapotranspiración en un 10 % y 20%.

Los resultados que ofrece el modelo para este escenario no varían de los escenarios anteriores, de acuerdo de que zona es más vulnerable sigue siendo la parte central del mismo (figuras III.21 y III.22). Las variaciones en la zona B son de 0.5 a 1.9 m en promedio para el aumento de la evapotranspiración de +10% y +20% respectivamente; en contra parte la zona A las variaciones son 2 m a 8 m para una evapotranspiración de +10% y para una evapotranspiración del +20% varían entre 3 m a 10 m aproximadamente.

4. Conclusiones y recomendaciones

4.1 Conclusiones

Después de realizar este de trabajo de tesis se obtuvieron las siguientes conclusiones de los resultados:

- Se interpretaron ocho secciones geológicas—geofísicas; con esto se pudo definir que el acuífero Ciudad Hidalgo—Tuxpan está constituido en la superficie y en el subsuelo en su mayoría por rocas volcánicas de composición básica y ácida.
- La porción noreste, central y sureste del acuífero presentan derrames volcánicos de composición andesítica los más antiguos y los más recientes de composición basáltica; siendo estas unidades importantes por ser grandes reservorios de agua de la zona.
- Con la geología del subsuelo definida se procedió a establecer el modelo conceptual del acuífero. El cual, está constituido por cinco unidades hidroestratigráficas y se clasificaron de acuerdo a su porosidad (obtenido de literatura) primaria o secundaria que presentaban y el espesor de las mismas; con esto se pudo proponer un espesor del acuífero variable de 200 m a 450 m dependiendo de la zona.
- La profundidad de los niveles estáticos de la zona es variable dependiendo de la ubicación y presenta dos líneas de tendencia: los manantiales mantienen su nivel estático sobre el nivel de la topografía, mientras que los pozos localizados en los municipios de Ciudad Hidalgo, Ocampo, Irimbo, Aporo, y Tuxpan, presentan profundidades del nivel estático de 2 m hasta 126 m producto de la explotación de este recurso
- ➤ La dirección del flujo subterráneo de la zona por ser una cuenca con salida a Tuzantla, al sur de la ; se definió la dirección de flujo en muchas orientaciones; en Ciudad Hidalgo tiene una dirección N S a NW –SE , en el área de Angangueo, Aporo, Irimbo la trayectoria es NE –SW, en Zitácuaro el flujo va E–W y en la porción sur del municipio Hidalgo y Tuzantla el flujo es de W E,: Todas estas orientaciones convergen en punto la salida subterráneas del acuífero.
- ➤ La evolución del acuífero en el periodo 2003 -2007, existen variaciones del nivel estático que se localizan en áreas especificas, como Ocampo,

- Angangueo, Agostitlán y Jungapeo existe una variación en promedio de 0 a 1.5 m; en contra parte Aporo, Ocampo, Tuxpan, Zitácuaro e Irimbo existe un abatimiento de 1.5 m a 10.5 m.
- Con la realización de un balance hidrogeológico de la zona se determino la variación del volumen de agua en el acuífero que existente en un lapso de 4 años es un cambio negativo de -441.5916 (Mm³).
- La recarga total de la zona es de 86.547 Mm³/año, el cual .el 42% representa la infiltración por retorno por riego.
- ➤ La evapotranspiración es una de las salidas del sistema que se localiza principalmente en las zonas de Hidalgo, Jungapeo, Tuxpan, Angangueo e Irimbo con un volumen anual de 18. 26 Mm³.
- ➤ Para el año 2007 tiene un volumen de agua en el acuífero tiene un déficit de 110.3979 Mm³/año; producto de que las salidas son mayores que las entradas al sistema en ese período.
- ➤ La tasa de abatimiento promedio de la zona es de 0.719 m ó 71.9 cm por año; producido por el bombeo excesivo en las zonas urbanas.
- La obtención de los parámetros hidráulicos de la zona se basó en la reinterpretación de 10 pruebas de bombeo recopiladas de trabajos anteriores, estimando conductividades hidráulicas, Ss y Sy que se utilizaron como valores iniciales de los materiales geológicos para el modelo matemático del acuífero.
- Se logro realizar un modelo matemático que es capaz de reproducir el comportamiento hidráulico del acuífero y se obtuvo un error inferior al 5% con respecto de las cargas hidráulicas medidas contra las cargas hidráulicas simuladas.
- ➤ El análisis de sensibilidad hecho al modelo muestra que es altamente sensible a dos factores importantes: las conductividades hidráulicas de los materiales y a la recarga.
- Existieron dos puntos en donde el error excede en 5%; estos pozos son CNA-PCM con un error del 10.91% y CNA-SAPACC con un 12.11%:
- ➤ De los escenarios propuestos se concluye que las zonas más vulnerables son los municipios: Hidalgo, Aporo, Irimbo y una parte de Tuxpan ya que presentan de −1 a -10 m de variación con la excepción de que si la recarga por retorno por riego pudiera cambiar en una proporción del 50% menos, los valores aumentan a -110 m. En contra parte; los municipios de Angangueo, Ocampo,

Senguio y Aporo presentan fluctuaciones de 0 m a -6 m en promedio por lo que esta parte del acuífero presenta una respuesta favorable a cualquier cambio.

4.2 Recomendaciones

Con el objetivo de mejorar el modelo matemático del acuífero Ciudad Hidalgo – Tuxpan, se plantean las siguientes actividades:

- Realizar y actualizar los censos de aprovechamientos en la zona.
- Medir las profundidades y las elevaciones los niveles estáticos de los municipios de Tuxpan, Jungapeo y Zitácuaro.
- Efectuar la mayor cantidad de pruebas de bombeo para definir con mayor precisión las propiedades hidráulicas de cada tipo de material en la misma zona.
- ➤ Hacer estudios detallados de los volúmenes de agua que se infiltra, evapotranspira, escurre, etc. En los municipios de Hidalgo, Angangueo, Ocampo, Irimbo, Aporo Tuxpan y Zitácuaro.
- Instalar una red estaciones hidrométricas y climatológicas que cuenten con datos actuales, confiables y continuos; alrededor del acuífero Ciudad Hidalgo – Tuxpan.

Con la información que se pudiera recabar con estas actividades será de gran ayudar para mejorar de sobremanera el modelo del acuífero de Ciudad Hidalgo— Tuxpan en el estado de Michoacán y poder preservar nuestras fuentes de abastecimiento y el medio ambiente.

Referencias Bibliográficas

- 2000. Manuales de difusión y divulgación sobre temas selectos de agua subterránea" conceptos básicos de hidrología" parte 2. Comisión Nacional del Agua. Subdirección General Técnica. pp.45
- 2. 2005, Diagnóstico energético e hidráulico del estado de Michoacán. Instituto de Ingeniería. Universidad Nacional Autónoma de México. pp. 236.
- 3. 2010. Modeling Ground-Water Flow with MODFLOW 2005. United States Geological Survey.
- 4. Anderson, P. M., Woessner, W. W. 1992. Applied Groundwater Modeling. Academic Press, Inc. San Diego California, U.S.A.
- 5. Antaramián H. E., 2005. Descripción física y biótica. Clima. La biodiversidad en Michoacán estudio de estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Gobierno del Estado de Michoacán. Secretaria de Urbanismo y Medio Ambiente. Universidad Michoacana de San Nicolás de Hidalgo. pp. 268.
- 6. Aparicio, M. 1992. Fundamentos de Hidrología de superficie. Editorial Limusa, México D.F. pp. 303.
- 7. Arellano, V. M., Torres, R., Barragán R. R., Sandoval M. F., 2004. Respuesta a la explotación (1982-2003) del yacimiento Geotérmico de Los Azufres, Mich. (México). Parte I. Zona Norte. Geotermia. Vol 17 No. 1 pp. 10-20.
- Armas V. F. J., 2010. Modelación y simulación hidrodinámica del sistema acuífero Zamora, en Michoacán México. UNAM. Tesis de maestría en Ciencias de la Tierra. pp. 114.
- 9. Buitrón-Sánchez, B.E., Pantoja-Alór, J., 1998, Albian gastropods of the rudist-bearing Mal Paso Formation, Chumbítaro region, Guerrero, Mexico. Revista Mexicana de Ciencias Geológicas, v. 15, no. 1, pp. 14–20.
- 10. C. W. Thornthwaite. An Approach toward a Rational Classification of Climate. Geographical Review, Vol. 38, No. 1. (Jan., 1948), pp. 55-94.
- 11. Campa, M.F., Campos, M., Flores, R., Oviedo, R., 1974, La secuencia mesozoica volcánica-sedimentaria metamorfizada de Ixtapan de la Sal, México-Teloloapan, Guerrero. Sociedad Geológica Mexicana Boletín 35, pp. 7-28.
- 12. Canto, V., J. A., 1989. Estudio Geológico Hidrogeológico en la zona de Zitácuaro Ciudad Hidalgo, Michoacán. Facultad de Ingeniería. Universidad Nacional Autónoma de México. Tesis de Licenciatura. pp.187.
- 13. Cervantes, J. M., Mercado, R. J., 1978. Geología Superficial del Distrito Minero de Angangueo, Mechoacán. Facultad de Ingeniería. Universidad Nacional Autónoma de México. Tesis de Licenciatura. pp.80.

- 14. Chow, V. T; Maidment, D; Mays,L. 1994. Hidrología aplicada. McGraw-Hill. Colombia. pp.584
- 15. CNA 2007. Estudio de actualización hidrogeológica del acuífero Ciudad Hidalgo Tuxpan, , en el estado de Michoacán
- **16.** CNA, 2000. Actualización del estudio geohidrológico del acuífero Ciudad Hidalgo Tuxpan, Estado de Michoacán.
- **17.** CNA, 2003. Reactivación de redes de monitoreo piezométrico en los acuíferos de los Valles de Atlixco Izúcar de Matamoros Puebla, Ciudad Hidalgo Tuxpan y Huetámo, Michoacán.
- 18. Conde, C. 2006. México y el cambio climático global. Dirección General de Divulgación de la Ciencia, UNAM. pp. 28 web: http://www.atmosfera.unam.mx/editorial/libros/mexico_cambio_climatico/Mexico_y_el_cambio_climatico_global.pdf
- De la Cruz, M. V., Aguilar S. J., Ortega G. D., Sandoval S. J., 1983. Estudio Geológico – Estructural a detalle del campo Geotérmico Los Azufres, Micho. Informe 9-82. Informe interno. pp. 62.
- 20. Dias, N. J. J.2001. Simulación numérica del flujo subterráneo en el acuífero del Soconusco, Chiapas. UNAM. Tesis de maestría Facultad de Ingeniera División de posgrado. pp.96
- 21. Dobson, P.F., Mahood, G.A., 1985. Volcanic stratigraphy of the Los Azufres geothermal area, Mexico. J. Volcanol. Geotherm. Rcs., Vol 25. pp. 273-287
- 22. Fetter, C. W.,2001. Applied hydrogeology. University of Wisconsin Oshkosh. Prentice Hall. New Jersey. pp. 681.
- 23. Figueroa, P. M., Cruz, R. A. R., Estudio Geológico Minero del área Tuxpan-Ocampo, Michoacán. Facultad de Ingeniería. Universidad Nacional Autónoma de México. Tesis de Licenciatura. pp. 117.
- 24. Fries, Carl, Jr., 1960. Geología del Estado de Morelos y de partes adyacentes de México y Guerrero, región central meridonal de México. Universidad Nacional Autónoma de México. Instituto de Geología. No 60. pp.236.
- 25. Garduño M. V., 2005. Descripción física y biótica. El relieve. La biodiversidad en Michoacán estudio de estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Gobierno del Estado de Michoacán. Secretaria de Urbanismo y Medio Ambiente. Universidad Michoacana de San Nicolás de Hidalgo. pp. 268.
- 26. Gobierno del estado de Michoacán. Hidrografía de Michoacán. Secretaria de Planeación y desarrollo Estatal. Dirección de Estadística. Web:http://201.120.157.242/sig/documentos/hidrografia.pdf

- 27. Gómez Tuena, A., Orozco Esquivel, M. T., Ferrari, L., 2005. Petrogénesis ígnea de la Faja Volcánica Transmexicana. Boletín de la Sociedad Geológica Mexicana, Tomo LVII, No. 3, pp. 228-232.
- 28. González P. E. 2000. Evidencias de evolución de un flujo básico a ácido a partir del análisis de la alteración hidrotermal del campo Geotérmico de Los Azufres, Michoacán. Revista Mexicana de Ciencias Geológicas. Año/Vol. 17 No. 001. Universidad Nacional Autónoma de México. pp. 76-82.
- Harbaugh, A. W., McDonald, M.G. 1988. A modular three-dimensional finitedifference groundwater flow model U.S. Geological Survey. Techniques of Water Resources Investigations.
- 30. Hurtado, O. M., 1988. Estudios de petrografía, mineragrafía, inclusiones fluidas en Tejamaniles, Zona Sur del Campo Geotérmico de Los Azufres, Michoacán. Facultad de Ingeniería. Universidad Nacional Autónoma de México. Tesis de Licenciatura. pp.187.
- 31. IMTA, 2003. Banco Nacional de Datos de Aguas Superficiales (BANDAS). Instituto Mexicano de Tecnología del Agua, Jiutepec Morelos, México.
- 32. IMTA, 2005. Extractor rápido de información Climatológica (ERIC III). Instituto Mexicano de Tecnología del Agua, Jiutepec Morelos, México
- 33. INEGI, 2010. Continúo de Elevaciones Mexicano (CEM), Escala 1:50,0000, instituto Nacional de Estadística y Geografía.
- 34. Legend of the Soil Map of the World, 1974, Food and Agriculture Organization of the United Nations (FAO), UNESCO, Paris.
- 35. Leyva, S. E. 2010. Acuíferos semiconfinados y su modelación: Aplicaciones al acuífero de la zona metropolitana de la ciudad de México. UNAM. Tesis de maestría en Ciencias de la Tierra. pp. 231.
- 36. Martínez, A. P.E., Martínez S. P., Castaño, C. S. 2005. Fundamentos de hidrogeología. Grupo Mundi-prensa. Barcelona, España. pp.287.
- 37. Miranda, G. M. A., 1977. Reconocimiento Geológico Geoquímico del Área de Tzitzio Cd. Altamirano, Edos. De Michoacán y Guerrero. Facultad de Ingeniería. Universidad Nacional Autónoma de México. Tesis de Licenciatura. pp. 72.
- 38. Raisz, E., 1964, Landforms of Mexico: Cambridge, Mass., Mapa con texto, escala: 3'000,000 segunda ed.
- 39. Ruvalcaba, G. A. 2009. Modelación matemática del comportamiento hidrogeológico de la zona lacustre de Xochimilco, México. UNAM. Tesis de maestría en Ciencias de la Tierra. pp107.
- 40. Salas M., A., 2009. Análisis para opciones de manejo de la subcuenca del río Turbio en el estado de Guanajuato. UNAM. Tesis de maestría en Ciencias de la Tierra. pp241.

- 41. Salas, R. O. M. 2007. Balance hídrico del acuífero Cd. Hidalgo Tuxpan, Estado de Michoacán. Universidad Autónoma Metropolitana. Tesis de licenciatura. pp.76.
- 42. Salinas-Prieto, J. C., 1994, Etude structurale du sud-ouest Mexicain (Guerrero)—analyse microtectonique des déformations ductiles du Tertiaire inférieur: Orleans, France, Université de Orléans. Tesis doctoral, Mémoire, N. 16,pp. 228
- 43. Servicio Geológico Mexicano. 2008. Léxico estratigráfico de México. Grupo Balsas. Web:http://portal.sgm.gob.mx/lexico/GrupoBalsas.pdf.
- 44. Torres, A. I. S., 1988. Estudios de petrografía, mineragrafía, inclusiones fluidas en Maritaro, Zona Norte del Campo Geotérmico de Los Azufres, Michoacán. Facultad de Ingeniería. Universidad Nacional Autónoma de México. Tesis de Licenciatura. pp.83.
- 45. Villanueva, P. R.A., 2009. Estudio Sedimentológico del Vaso Poniente del Lago de Cuitzeo. Posgrado en Ciencias del Mar y Limnología. Universidad Nacional Autónoma de México. Tesis de maestría. pp. 133.

Anexos

Modelación matemática del acuífero Ciudad Hidalgo	- Tuxpan, Edo. Michoacán.
ANEXO SECCIONES GEOLÓGICO-	CECEÍCICAC
ANEXU SECCIONES GEOLOGICO-	GEOFISICAS

Medina Ortega Priscila

Para la interpretación de los TEM's, los cuales se obtuvieron de estudios previos que realizo la empresa SAINX Ingeniería Integral en el 2007 realizó una serie de 29 TEM's en el área del acuífero.

La siguiente tabla 1 muestra la ubicación de los TEM's (figura 1) para que nos ayudaran determinar las diferentes litologías que se presentan en el acuífero de Ciudad Hidalgo – Tuxpan, a través de su resistividades al igual del marco geológico del entorno.

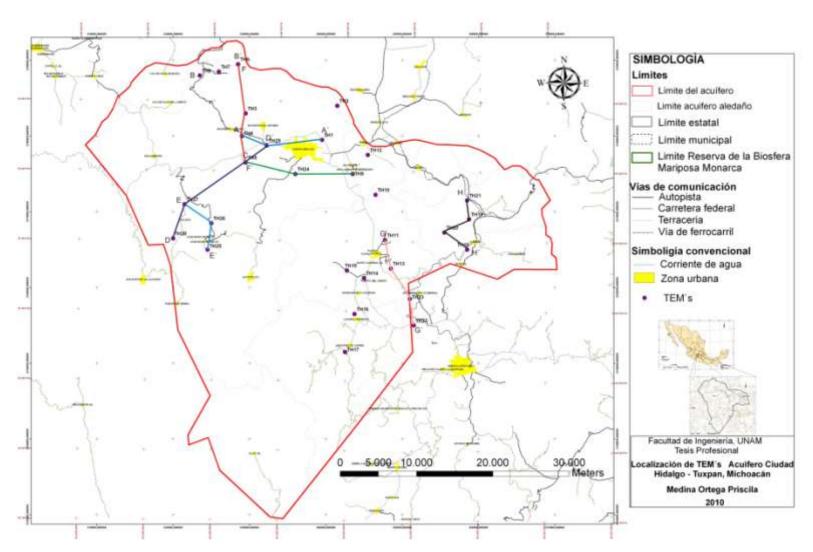
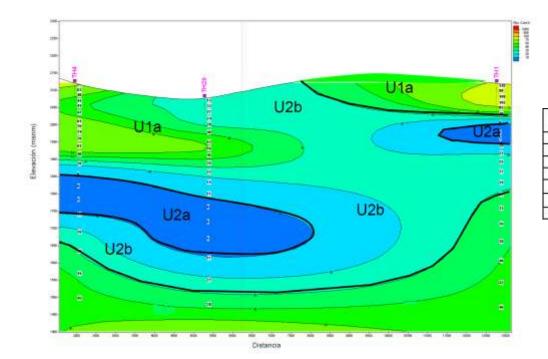
Clave	Х	Υ
TH1	339500	2179500
TH2	341500	2184000
TH3	329500	2183000
TH4	329000	2180000
TH5	329500	2176500
TH6	323500	2188000
TH7	326000	2188500
TH8	328500	2189500
TH9	343500	2175000
TH10	346500	2172250
TH11	347750	2166250
TH12	345500	2177500
TH13	348500	2162500
TH14	345000	2161250
TH15	342750	2162250

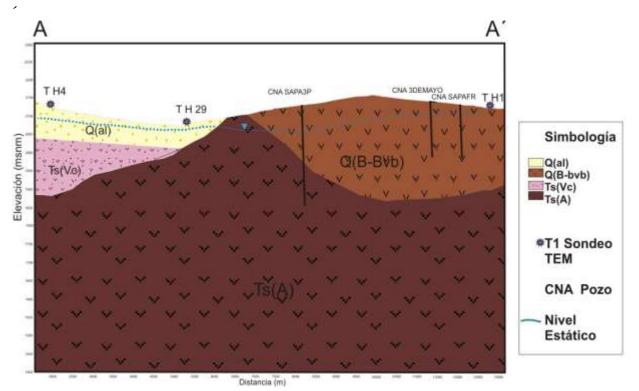
Clave	Х	Υ
TH16	343750	2156500
TH17	342500	2151500
TH18	358500	2165000
TH19	358750	2169000
TH20	355500	2167250
TH21	358500	2171500
TH22	351500	2155000
TH23	351000	2158500
TH24	336000	2175000
TH25	324500	2165000
TH26	325000	2168500
TH27	321500	2171000
TH28	320000	2166500
TH29	332250	2178750

Tabla 1. Claves y coordenadas UTM de los TEM's en el Acuífero Ciudad Hidalgo – Tuxpan (CNA, 2007).

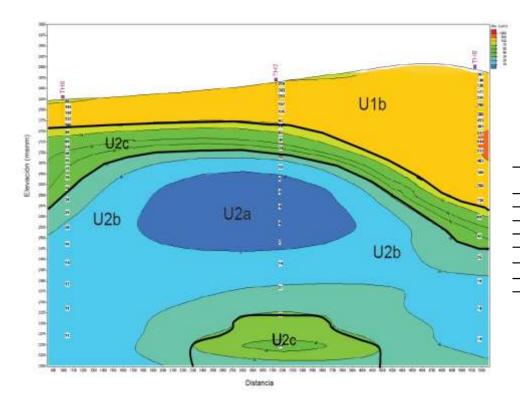
Con los datos recopilados de los TEM's se reinterpretaron 8 secciones geológico- geofísicas que se muestran que se localizan en la porción noroestecentral, noreste y sur del acuífero.

A continuación se muestran las 8 secciones geológico - geofísicas interpretadas.

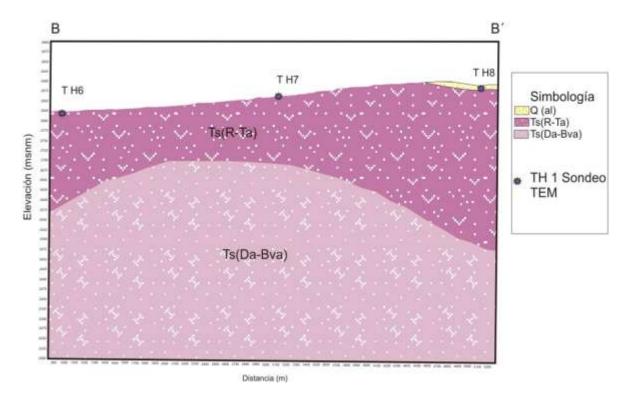

Figura 1. Localización de TEM`s realizados por la empresa SAINX Ingeniería integral en el acuífero Ciudad Hidalgo – Tuxpan.

Sección A -A'

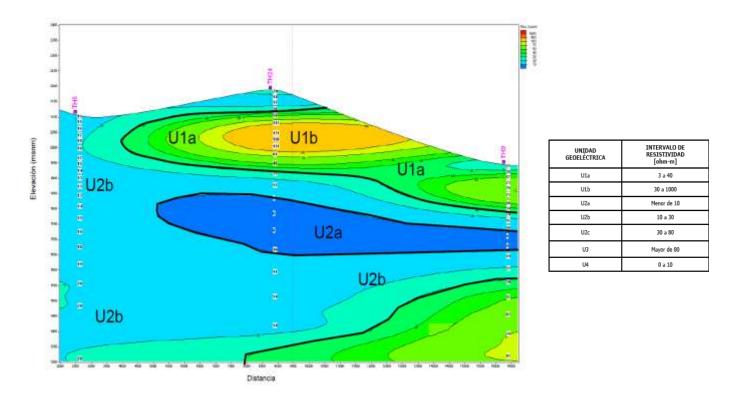


ONEDAD GEDELÉCTILICA	INTERVALO DE RESESTIVIDAD [abat-oc]
Wie	3 ± 40
100	30 ± 1000
1000	Planor de 18
1/26	18+30
60o	30 ± 00
UB:	Mayor do 00
UH	8 + 10

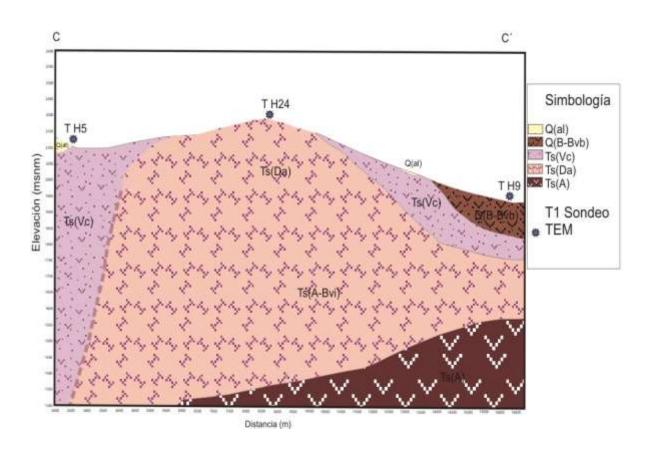
Sección A-A

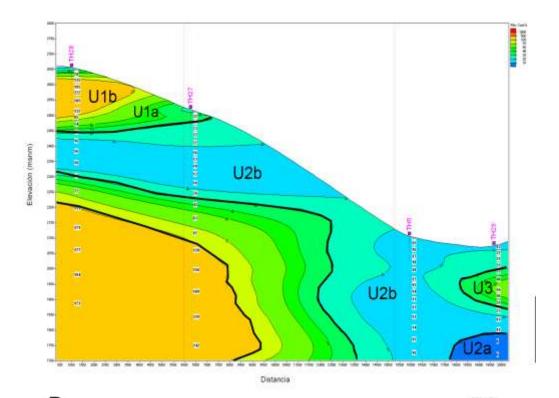


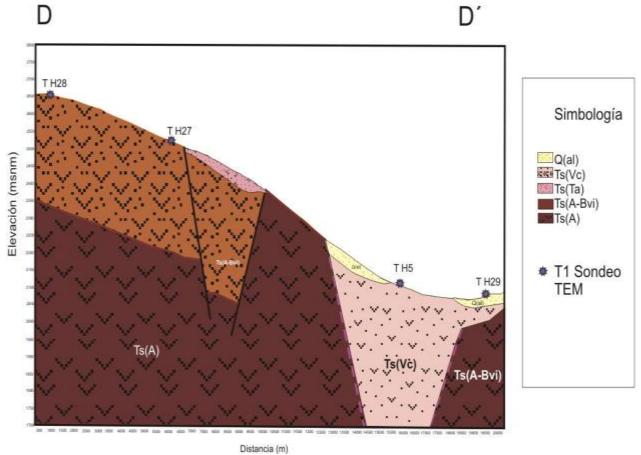
Sección B -B'

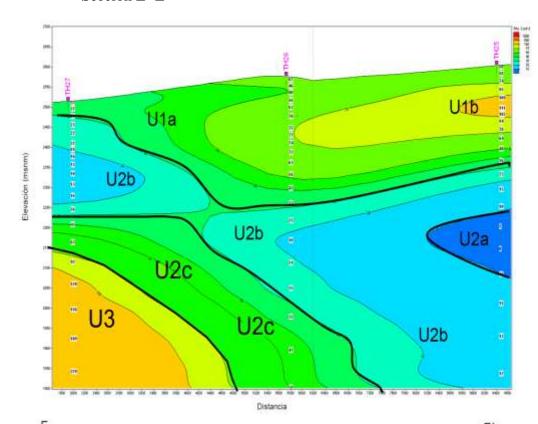


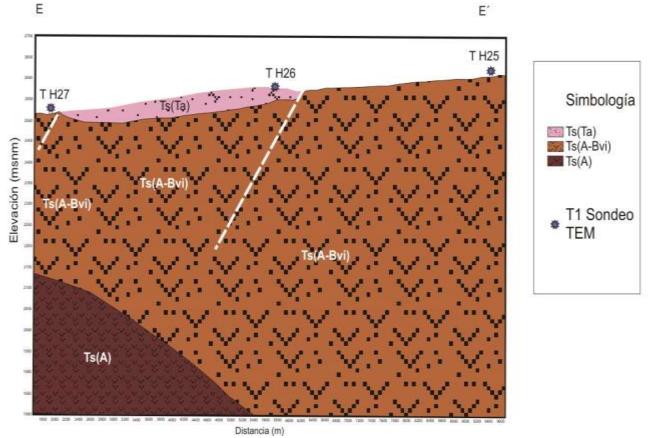
UNIDAD GEOELÉCTRICA	INTERVALO DE RESISTIVIDAD [ohm-m]
U1a	3 a 40
U1b	30 a 1000
U2a	Menor de 10
U2b	10 a 30
U2c	30 a 80
U3	Mayor de 80
U4	0 a 10

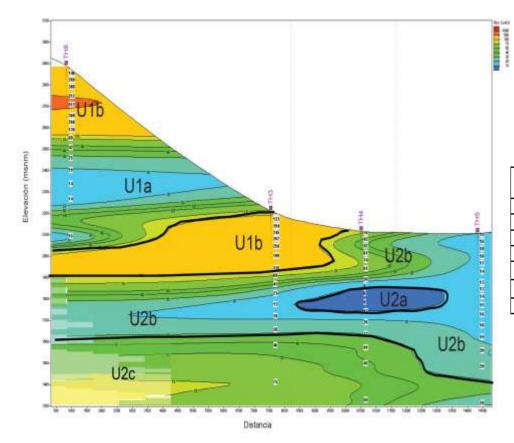

Sección B -B'

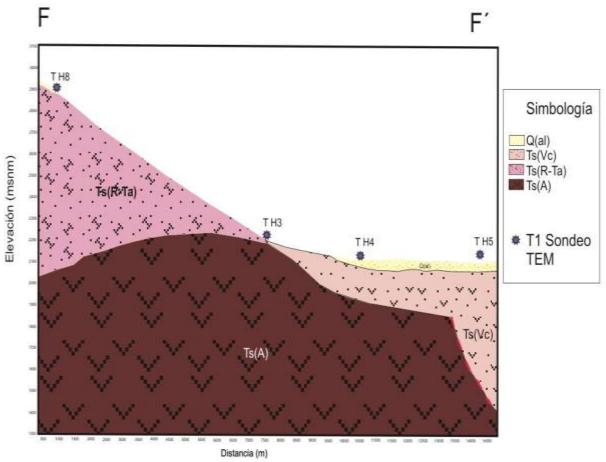

Sección C -C'

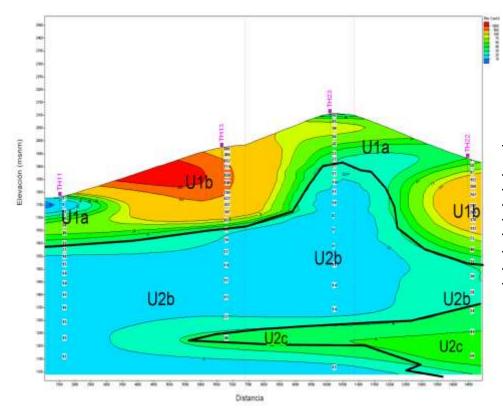

Sección C -C'

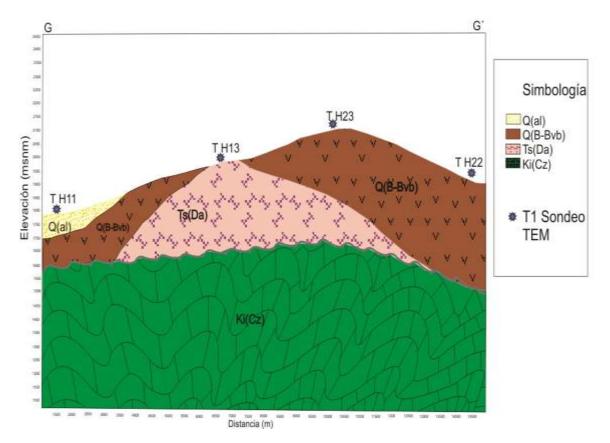

Sección D –D´

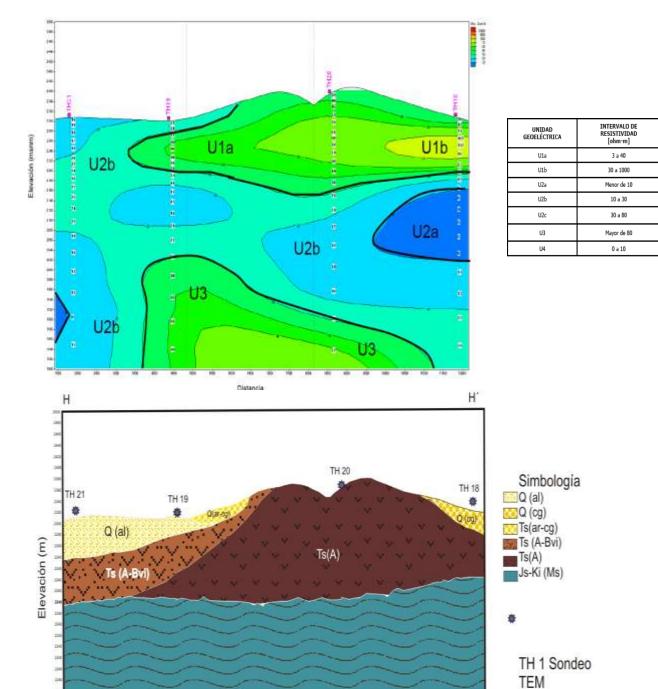

UNIDAD GEOELÉCTRICA	INTERVALO DE RESISTIVIDAD [ohm-m]
U1a	3 a 40
U1b	30 a 1000
U2a	Menor de 10
U2b	10 a 30
U2c	30 a 80
U3	Mayor de 80
U4	0 a 10


Sección E- E'


UNIDAD GEOELÉCTRICA	INTERVALO DE RESISTIVIDAD [ohm-m]
U1a	3 a 40
U1b	30 a 1000
U2a	Menor de 10
U2b	10 a 30
U2c	30 a 80
U3	Mayor de 80
U4	0 a 10


Sección F- F'


UNIDAD GEOELÉCTRICA	INTERVALO DE RESISTIVIDAD [ohm-m]
U1a	3 a 40
U1b	30 a 1000
U2a	Menor de 10
U2b	10 a 30
U2c	30 a 80
U3	Mayor de 80
U4	0 a 10



UNIDAD GEOELÉCTRICA	INTERVALO DE RESISTIVIDAD [ohm-m]
U1a	3 a 40
U1b	30 a 1000
U2a	Menor de 10
U2b	10 a 30
U2c	30 a 80
U3	Mayor de 80
U4	0 a 10

Sección H-H'

Js-Ki (Ms)

ANEXOS DE BALANCE HIDROGEOLÓGICO

Medina Ortega Priscila Modelación matemática del acuífero Ciudad Hidalgo – Tuxpan, Edo. Michoacán.

NUMERO	NOMBRE DE ESTACION	Х	Υ	ALTURA
16071	LOS AZUFRES, CD. HIDALGO	330616.36	2190186.76	2800.00
16152	CD. HIDALGO, CD. HIDALGO	336493.21	2179034.34	2020.00
16020	CIUDAD HIDALGO (DGE)	335752.85	2179068.36	2020.00
16097	PSA. PUCUATO, CD.HIDALGO	321699.97	2171786.15	2505.00
16098	PSA. SABANETA,CD.HIDALGO	325178.82	2169980.52	2513.00
16092	PSA. AGOSTITLAN, CD. H.	330353.34	2162513.75	2380.00
16134	TUXPAN, TUXPAN	347858.12	2164238.69	1800.00
16099	PRESA TUXPAN, TUXPAN	346093.33	2162371.96	1771.00
16058	JUNGAPEO, JUNGAPEO	342482.45	2149452.11	1430.00
16061	LAGUNA DEL FRESNO	351263.92	2153141.15	2070.00
16036	EL BOSQUE, ZITACUARO	354727.70	2143697.39	1750.00
15197	CUESTA DEL CARMEN, V. A.	374049.00	2152941.00	2823.00
15230	PALO AMARILLO,	372409.00	2173207.00	3080.00
15334	PALO SECO, SAN FELIPE	377563.00	2160221.00	2972.00
16002	AGOSTITLAN, CD. HIDALGO	330335.57	2160632.01	2380.00
16107	SAN CARLOS, TIQUICHEO	319566.00	2128889.00	
16121	SENGUIO	356790.00	2182549.00	
16135	TUZANTLA	333555.00	2125559.00	
16142	ZACAPU (DGE)	311980.00	2190932.00	
16192	LA ENCARNACI?N	353009.00	2147529.00	
16206	SAN JOSE PURUA, JUNGAPEO	346029.88	2154956.12	
16213	IRIMBO	344530.00	2178962.00	1600.00
16235	HUAJUMBARO	317424.00	2176913.00	

Tabla A.1. Coordenadas de las estaciones climatológicas cercanas al Acuífero Ciudad Hidalgo – Tuxpan, Michoacán.

Clave	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Hp(mm)
15197	17.630	9.605	5.885	13.970	58.889	149.790	206.628	207.680	124.826	82.474	18.915	13.942	910.234
15230	23.700	28.189	11.000	30.500	79.011	162.689	166.778	170.825	157.713	84.322	19.833	20.578	955.138
15334	16.800	16.133	6.513	7.722	58.414	138.229	152.575	129.825	113.200	61.814	26.129	8.600	735.954
16107	12.443	1.935	3.610	1.671	28.830	204.413	279.706	285.542	254.803	95.628	13.316	5.072	1186.969
16121	22.345	8.150	6.714	14.329	53.918	142.655	212.467	212.238	136.505	51.886	11.941	11.557	884.703
16135	5.321	3.862	3.714	4.150	80.213	206.044	238.915	303.246	217.643	173.193	11.436	2.143	1249.880
16142	16.548	6.306	5.944	12.132	39.177	141.981	207.061	196.050	158.809	73.900	13.185	13.591	884.685
16192	31.387	5.343	16.680	9.343	32.125	160.541	180.790	175.655	142.235	54.515	11.315	10.091	830.019
16206	27.927	7.909	4.864	1.791	30.700	111.964	147.370	135.790	108.255	40.050	8.055	8.320	632.994
16213	34.375	12.044	14.300	14.825	43.089	98.456	165.413	160.989	119.844	52.740	12.990	22.075	751.140
16235	15.029	9.143	15.914	11.086	42.986	179.043	283.557	255.671	189.400	65.700	12.800	18.243	1098.571
16002	28.296	11.369	8.900	27.826	83.747	227.225	292.978	279.908	239.594	109.032	34.282	14.126	1357.283
16020	21.485	9.700	10.269	19.326	59.338	143.169	165.595	165.635	130.814	68.467	18.466	10.179	822.443
16058	26.840	6.217	5.182	6.281	49.300	154.079	173.359	139.644	161.833	66.761	15.618	8.329	813.444
16061	19.168	7.304	4.679	15.215	48.184	126.428	178.698	171.810	119.160	60.794	13.757	8.704	773.901
16071	27.087	16.957	12.991	31.574	65.117	220.186	323.246	302.548	255.788	107.008	45.504	16.476	1424.482
16092	29.283	19.920	11.538	28.305	83.132	205.226	302.320	293.475	223.589	112.180	30.175	16.470	1355.614
16097	33.410	18.000	11.430	27.610	80.319	213.186	294.357	282.575	214.737	109.529	24.814	18.548	1328.514
16098	41.700	18.990	10.585	32.255	96.435	236.775	312.665	301.775	210.800	111.605	24.340	18.430	1416.355
16099	27.606	38.706	5.489	20.625	52.312	161.218	193.488	182.141	150.206	87.539	15.606	10.111	945.045
16134	24.647	10.153	8.606	15.861	56.267	162.453	181.429	172.775	149.676	82.724	18.650	7.147	890.387
160152	23.380	12.260	12.388	19.744	58.620	128.812	167.592	161.025	126.484	72.492	19.200	13.546	815.543
Promedio	23.928	12.645	8.963	16.643	58.187	167.025	219.409	213.037	168.451	82.925	19.106	12.558	1002.877

Tabla A.2. Promedios ponderados de la precipitación de las estaciones climatológicas cercanas al acuífero ciudad Hidalgo – Tuxpan, Michoacán.

Medina Ortega Priscila Modelación matemática del acuífero Ciudad Hidalgo – Tuxpan, Edo. Michoacán.

Clave							TEMP	ERATU	RA ºc					ETP(mm)	ETP(m)	Área (m²)	Área (Km²)	VETP(m³)
	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ANUAL					
16071	8.0	8.9	10.9	12.4	13.2	12.9	11.7	11.6	11.6	10.8	9.2	8.5	10.81	622.073503	0.6220735	135903348	135.903348	84541872.1
16152	13.6	14.4	16.4	18.4	19.7	19.6	18.6	18.6	18.5	17.5	15.7	14.4	17.12	793.77339	0.79377339	76309035.7	76.3090357	60572082
16020	13.6	14.5	16.4	18.3	19.7	19.6	18.6	18.6	18.5	17.5	15.6	14.2	17.09	792.95484	0.79295484	85904663.2	85.9046632	68118518.5
16097	10.5	11.0	12.8	14.4	15.6	15.8	15.2	15.2	15.3	14.4	12.7	11.3	13.68	686.446614	0.68644661	77528354.9	77.5283549	53219076.8
16098	10.5	11.0	13.0	14.8	15.9	15.7	14.8	14.9	14.9	14.1	12.4	11.1	13.59	684.257794	0.68425779	98991766.4	98.9917664	67735887.7
16092	10.9	11.2	13.1	14.9	16.3	16.2	15.4	15.3	15.3	14.6	13.2	11.7	14.01	694.777196	0.6947772	93015279.1	93.0152791	64624894.8
16134	16.5	17.2	19.2	21.2	22.3	21.6	20.4	20.5	20.5	20.3	18.3	17.1	19.59	905.038675	0.90503867	168307809	168.307809	152325077
16099	15.2	15.8	17.7	19.6	20.6	20.3	19.1	19.2	19.1	18.7	16.9	15.8	18.17	833.749379	0.83374938	84581240.9	84.5812409	70519557.1
16058	20.4	21.5	23.4	25.0	25.6	24.1	22.3	22.4	22.3	22.5	21.9	20.7	22.68	1125.44803	1.12544803	241115919	241.115919	271363435
16061	12.9	13.5	15.9	18.3	19.7	19.1	17.7	17.5	17.3	16.1	14.2	13.4	16.30	766.183275	0.76618328	24240095.3	24.2400953	18572355.6
16036	16.8	17.5	19.4	21.3	22.0	20.6	19.2	19.2	19.1	18.9	18.0	17.3	19.11	874.794399	0.8747944	0	0	0
15197	8.7	9.6	10.8	11.9	13	13.1	13	12.6	12	11.1	10.1	9.2	11.26	631.105003	0.631105	831847.413	0.83184741	524983.064
15230	4.7	5.1	7.3	9.9	10.4	10.1	9.0	9.3	9.2	8.1	7.2	6.5	8.07	570.814098	0.5708141	93710726.1	93.7107261	53491403.6
15334	7.5	7.2	10.3	13.6	14.8	14.0	12.9	12.3	12.6	12.4	11.6	10.3	11.63	639.227568	0.63922757	7084916.6	7.0849166	4528874.01
16002	4.8	5.5	6.6	8.2	10.2	11.7	11.4	11.3	11.4	9.6	7.5	5.8	8.67	579.468905	0.57946891	208118640	208.11864	120598280
16107	13.1	14.3	25.9	19.4	22	22.5	20.8	20.4	20.2	19.1	16.5	13.9	19.01	900.969764	0.90096976	42693153.2	42.6931532	38465240.2
16121	6.6	7.9	10.2	12.7	14.6	14.7	13.8	13.3	12.8	10.8	8.8	7.5	11.14	631.321151	0.63132115	72686337.6	72.6863376	45888422.3
16135	17.5	18.1	19.8	22.7	25.2	25	23.7	23	22.6	21.8	20	17.8	21.43	1044.76279	1.04476279	75785347.1	75.7853471	79177710.8
16142	4.6	5.6	9.1	12.6	15.2	16.5	15	14.3	13.4	11	8	5.8	10.93	627.429194	0.62742919	24996119.8	24.9961198	15683295.3
16192	10.4	10.8	12.2	14.6	17	17.6	16.5	16	15.7	14.9	13.3	11.5	14.21	703.11471	0.70311471	2954882.14	2.95488214	2077621.1
16206	15.5	16.2	16.4	17.6	18.8	17.6	17.6	18	18	17.4	16	15.1	17.02	781.251987	0.78125199	62964496.8	62.9644968	49191138.2
16213	6.1	7.4	9.9	12	13.8	14.7	14.1	13.5	13	11.9	9.5	7.8	11.14	630.857672	0.63085767	105353433	105.353433	66463021.2
16235	1.1	1.5	3.3	6.5	10	12.7	11.8	11.4	11	8.4	5.1	2.1	7.08	528.950425	0.52895043	131803727	131.803727	69717637.2
																Total	1914.88114	1457400384

Tabla A.3. Promedios ponderados de la temperatura y del volumen de evapotranspiración potencial de las estaciones climatológicas cercanas al Acuífero Ciudad Hidalgo – Tuxpan, Michoacán

Clave	ETR(mm)	Inf(mm)	P(mm)	Esc(mm)	Área (Km²)	VETR(m³)	Vinf(m³)	VP(m³)	VEsc(m³)
16071	622.073503	208.554957	1424.48	593.853971	135.903348	84541872.1	28343316.9	193591932	80706743.2
16152	744.05516	193.667939	815.54	31.155822	76.3090357	56778131.8	14778613.7	62233261.8	2377470.74
16020	685.299544	193.940576	822.44	0	85.9046632	58870426.6	16660399.8	70651720.1	0
16097	686.446614	207.020125	1328.51	435.047484	77.5283549	53219076.8	16049929.7	102997522	33728515.7
16098	684.257794	208.43224	1416.36	523.664966	98.9917664	67735887.7	20633075.6	140207483	51838519.9
16092	694.777196	207.473289	1355.61	453.363074	93.0152791	64624894.8	19298185.9	126092774	42169692.8
16134	684.257794	219.893428	1416.36	512.203778	168.307809	115165930	37009781.1	238383607	86207895.7
16099	768.76528	198.213989	768.76528	105.792879	84.5812409	65023121.4	16765185.1	65023121.4	8948093.02
16058	776.40702	193.584267	813.44	0	241.115919	187204092	46676248.4	196134331	0
16061	699.046512	212.134693	773.90	35.7799515	24.2400953	16944954.1	5142165.18	18759426.5	867309.434
16036	0	0	0	0	0	0	0	0	0
15197	631.105003	197.100633	910.23	82.0287212	0.83184741	524983.064	163957.651	757176.094	68235.3795
15230	570.814098	198.523711	955.14	185.799691	93.7107261	53491403.6	18603801.1	89506628.6	17411423.9
15334	639.227568	201.363092	735.95	17.5940913	7.0849166	4528874.01	1426640.71	5214171.08	124652.669
16002	579.468905	207.500673	1357.28	570.313337	208.11864	120598280	43184757.9	282475875	118692836
16107	710.694197	204.355673	1186.97	194.055124	42.6931532	30341776.2	8724588.04	50675449.3	8284825.13
16121	631.321151	213.612802	884.70	150.591825	72.6863376	45888422.3	15526732.2	64305825.5	10945968.2
16135	830.418488	205.606206	1249.88	324.092506	75.7853471	62933553.3	15581937.7	94722601.8	24561463.1
16142	627.429194	196.23603	884.68	173.039344	24.9961198	15683295.3	4905139.33	22113684.2	4325312.18
16192	666.195368	194.235491	830.02	87.1275379	2.95488214	1968528.8	573942.984	2452609.76	257451.606
16206	611.690254	184.721602	632.99	0	62.9644968	38514769.1	11630902.7	39856125.8	0
16213	630.857672	192.461325	751.14	49.0875233	105.353433	66463021.2	20276461.3	79135148.1	5171539.08
16235	528.950425	202.38641	1098.57	367.234593	131.803727	69717637.2	26675283.1	144795808	48402888
				Total	1914.88114	1280762932	388631046	2090086282	545090836

Tabla A.5. Láminas de precipitación, escurrimiento, infiltración y evapotranspiración real de las estaciones climatológicas cercanas al Acuífero Ciudad Hidalgo – Tuxpan, Michoacán.

ANEXO DE PRUEBAS DE BOMBEO

Anexo de Pruebas de bombeo

Para la interpretación de los parámetros hidráulicos de la zona se recopiló información de estudios previos que presentaban pruebas de bombeo. El estudio realizado por la empresa SANX Ingeniería Integral en el 2007 realizó una serie de 15 pruebas en la área de estudio.

La siguiente tabla 1 muestra la ubicación de los pozos (figura 1) para poder determinar las propiedades de las diferentes litologías que se presentan en el acuífero de Ciudad Hidalgo - Tuxpan.

CLAVE	Lat. N	Long. W	LATITUD	LONGITUD
CNA SAPA3P	19° 43.124′	100° 34.425′	19.718733	-100.573750
CNA SAPATAC	19° 47.279′	100° 33.462′	19.787983	-100.557700
CNA SAPAPFR	19° 42.030′	100° 32.712′	19.700500	-100.545200
CNA PCALICA	19° 40.641′	100° 26.447′	19.677350	-100.440783
CNA OOAPAS1	19° 41.443′	100° 30.339′	19.690717	-100.505650
CNA CSMIGUEL	19° 40.450′	100° 26.790′	19.674167	-100.446500
CNA SNVICENTE	19° 46.505′	100° 27.696′	19.775083	-100.461600
CNA LMARZOS	19° 43.777′	100° 26.601′	19.729617	-100.443350
CNASAPA-CC	19º 33′ 11.9′′	100° 30′ 23.8′′	19.553306	-100.506611
CNA-OLC	19º 34′ 46.3′′	100° 20′ 19.1′′	19.579528	-100.338639
CNA-OES	19º 35′ 51.1′′	100° 20′ 22.0′′	19.597528	-100.339444
CNA-OEZ	19° 35′ 08.3′′	100° 20′ 10.1′′	19.585639	-100.336139
CNA-SAPAUD	19° 40′ 35.5′′	100° 34′ 07.9′′	19.676528	-100.568861
CNA-3DEMAYO	19° 42′ 04.0′′	100° 33′ 26.9′′	19.701111	-100.557472
CNA-CHRT	19º 41′ 04.6′′	100° 35′ 59.9′′	19.684611	-100.599972

Tabla 1. Claves y coordenadas geográficas de los pozos que presentan pruebas de bombeo en el Acuífero Ciudad Hidalgo – Tuxpan (CNA, 2007).

Con los datos obtenidos de las pruebas de bombeo se reinterpretaron con ayuda del software denominado Visual Two Zone Model que se basa en el código numérico denominado Modelo de Flujo Radial de Dos Capas con Flujo Vertical y Leakage desarrollado por K. T. Rushton y K.S. Rathod de la Universidad de Birmingham, U. K. (Hernández, L., N.; 2008). Para poder interpretar la prueba de bombeo se requiere los siguientes datos:

- I. Profundidad del pozo de bombeo.
- II. Duración de las fases de abatimiento y de recuperación.
- III. Corte litológico.
- IV. Diámetro del pozo

- V. Mediciones del abatimiento.
- VI. Caudal utilizado en la etapa de abatimiento.
- VII. Profundidad del nivel estático.
- VIII. Modelo conceptual preeliminar del acuífero.

De la información recopilada se interpreto los siguientes pozos por tener más coherencia en los resultados y calidad de los datos (Tablas 1 y 2, figura 1).

CLAVE	Lat. N	Long. W	LATITUD	LONGITUD
CNA SAPA3P	19° 43.124′	100° 34.425′	19.718733	-100.573750
CNA SAPAPFR	19° 42.030′	100° 32.712′	19.700500	-100.545200
CNA OOAPAS1	19° 41.443′	100° 30.339′	19.690717	-100.505650
CNA CSMIGUEL	19° 40.450′	100° 26.790′	19.674167	-100.446500
CNA SNVICENTE	19° 46.505′	100° 27.696′	19.775083	-100.461600
CNASAPA-CC	19º 33′ 11.9′′	100° 30′ 23.8′′	19.553306	-100.506611
CNA-OEZ	19º 35′ 08.3′′	100° 20′ 10.1′′	19.585639	-100.336139
CNA-SAPAUD	19º 40′ 35.5′′	100° 34′ 07.9′′	19.676528	-100.568861
CNA-3DEMAYO	19º 42´ 04.0´´	100° 33′ 26.9′′	19.701111	-100.557472
CNA-CHRT	19º 41′ 04.6′′	100° 35′ 59.9′′	19.684611	-100.599972

Tabla 2. Clave y localización de pozos utilizados para el estudio.

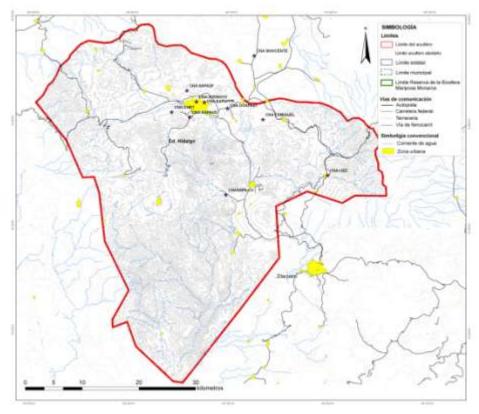


Figura 1. Localización de pozos que cuentan con pruebas de bombeo para su interpretación.

A continuación se describen las características físicas predominantes en los pozos seleccionados, su interpretación de los parámetros hidráulicos y sus modelos conceptuales que se eligieron para cada zona.

CNA SAPA3P

La prueba de bombeo realizada en el pozo denominado CNA SAPA3P localizado en una dirección de N 50° W de Ciudad Hidalgo (figura 1). Este pozo tiene un corte litológico en andesitas del Terciario superior Ts(A) con una profundidad de 290 m. La duración de la prueba en la etapa de abatimiento fue de 12 horas y en la etapa de recuperación de 12 horas. La interpretación de la misma consistió en dos capas; la primera capa es de aluvión de 10 m de espesor y la segunda capa de 611 m de andesitas.

Los resultados obtenidos a partir de un modelo conceptual de un acuífero libre se obtuvieron los parámetros hidráulicos: coeficiente de almacenamiento (S) es 0.07 ó 7%.

En cuanto a las conductividades Vertical y Horizontal por ser rocas ígneas fracturadas se consideró que la Kv y Kh son del mismo rango, debido a que el software utilizado era insensible a los cambios en las variables. Teniendo Kv y Kh un valor de 2.5 m/día (tablas 3y 4, figuras 3 y 4).



Figura 2. Localización del pozo CNA SAPA3P (Google Earth, 2010).

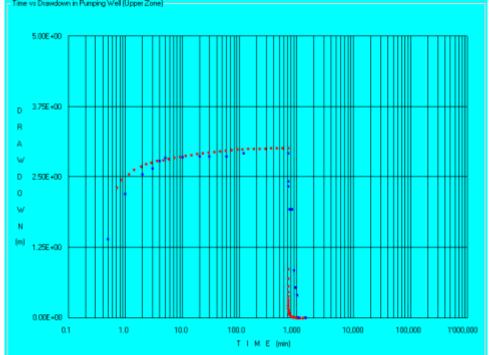


Figura 3. Gráfica tiempo contra el abatimiento en la prueba de bombeo del pozo CNA SAPA3P en donde se muestra el empalme de la curva teórica y de campo.

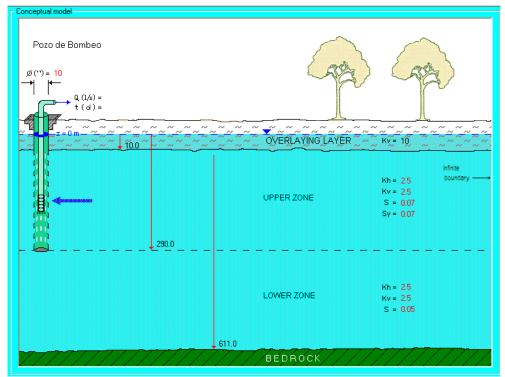


Figura 4. Modelo conceptual del acuífero en el pozo CNA SAPA3P. porción central del acuífero.

MATERIAL		Kv(m/día)	Kh(m/día)	S	Sy	Espesor (m)
ALUVIÓN		25				10
BASALTO BRECHA	CON	2.5	2.5	0.07	0.07	611

Tabla 3. Resultados de S, Sy, espesor, litología de las capas del modelo conceptual de la prueba de bombeo.

CNA SAPAFR

El pozo denominado CNA SAPAFR localizado en Ciudad Hidalgo, Michoacán(Figura) tiene una profundidad de 290 metros, el cual atraviesa una columna litológica de aluvión (Qal) de 10 metros y basalto con brecha volcánica básica Q (B-Bvb) de 280 metros. La duración de la prueba en la etapa de abatimiento fue de 2.5 horas y la etapa de recuperación fue 2.5 horas. El modelo conceptual consistió en representar un acuífero libre de rocas volcánicas y una capa de 10 metros de aluvión (figura 7).

Los datos obtenidos son que el coeficiente de almacenamiento (S) para esta parte del acuífero es de 0.075 ó 7.5 % y las conductividades obtenidas son para las rocas volcánicas es de 5.2 m/día en ambas direcciones Kv y Kh

(tabla 4).

Figura 5. Localización del pozo CNA SAPAPFR en Ciudad Hidalgo, Michoacán (Google Earth, 2010).

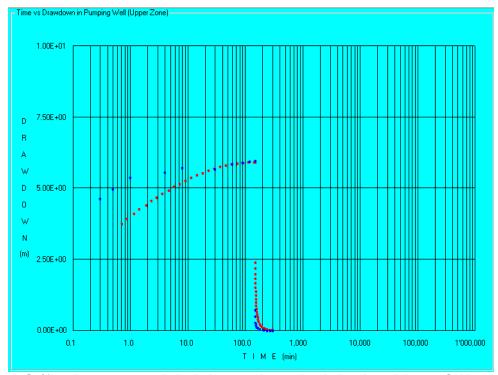


Figura 6. Gráfica tiempo contra el abatimiento en la prueba de bombeo del pozo CNA SAPAPFR en donde se muestra el empalme de la curva teórica y de campo.

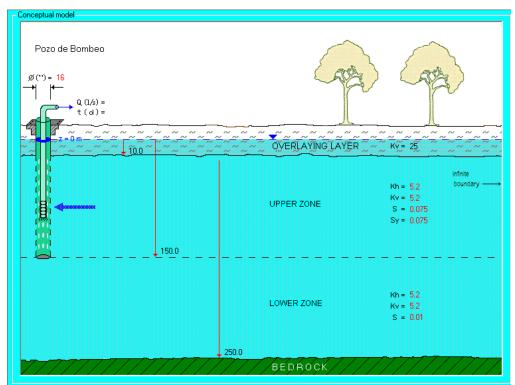


Figura 7. Modelo conceptual del acuífero en el pozo CNA SAPAPFR

MATERIAL	Kv(m/dla)	Kh(m/dla)	S	Sy	Espesor
					(m)
ALUVIÓN	25				10
BASALTO CON BRECHA	5.2	5.2	0.075	0.075	250

Tabla 4 . Resultados de S, Sy, espesor, litología de las capas del modelo conceptual del a prueba de bombeo

CNA OOAPAS 1

El pozo denominado OOAPAS 1 que se localiza aproximadamente 4 km al este de Ciudad Hidalgo, Michoacán (figura 1 y 8). Este pozo tiene una profundidad de 70 metros y corta a una capa de aluvión de 10 metros y basaltos – brechas volcánicas básicas Q(B-Bvb) en toda su longitud.

Figura 8. Ubicación del pozo CNA OOAPAS1 al este de Ciudad Hidalgo, Michoacán Google, Earth, 2010).

Los parámetros obtenidos son los siguientes Kv y Kh: 2.9 m/día y el coeficiente de almacenamiento se estimo en un 15% (figuras 9y 10 y tabla 5).

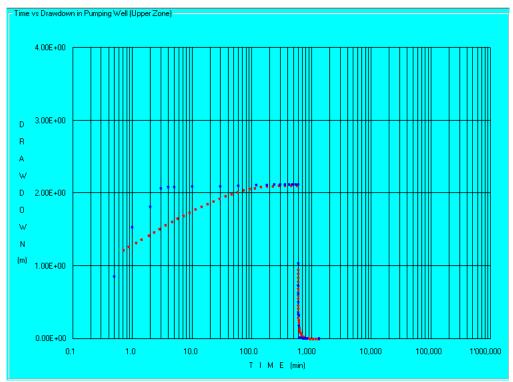


Figura 9. Gráfica de tiempo Vs el abatimiento en la prueba de bombeo del pozo CNA

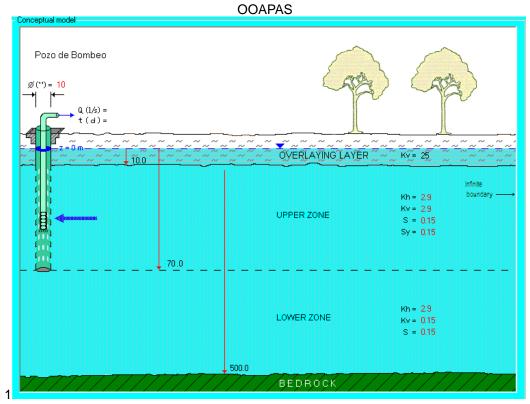


Figura 10. Modelo conceptual del acuífero en el pozo CNA OOAPAS 1 porción central

MATERIAL	Kv(m/dla)	Kh(m/dla)	S	Sy	Espesor (m)
ALUVIÓN	25				10
BASALTO	2.9	2.9	0.15	0.15	500

Tabla 5. Resultados de S, Sy, espesor, litología de las capas del modelo conceptual del a prueba de bombeo

CNA CS MIGUEL

Este pozo se localiza aproximadamente al este de Ciudad Hidalgo y al N80°W de la Cabecera Municipal de Aporo. Este pozo se encuentra perforado sobre rocas volcánicas basalto-brecha volcánica básica (B-Bvb) con una profundidad de 150 metros; por lo que se asume un modelo de acuífero libre para esta zona (figura 1 y 11).

Figura 11. Panorámica de la ubicación del pozo CNA CS MIGUEL (Google Earth, 2010).

El tiempo de duración de la prueba de bombeo fue de 11 horas para la etapa de abatimiento y 12 horas en la etapa de recuperación del mismo, mostrándose la grafica siguiente las curvas de campo y las curvas teóricas (figura 12 y 13)

.

Los resultados obtenidos se muestran en la tabla 6 teniendo para el basalto – brecha volcánica básica una conductividad de 2.5 m/día para la Kv y Kh. En cuanto al coeficiente de almacenamiento (S) del 4% (Tabla 6 y figura 12 y 13).

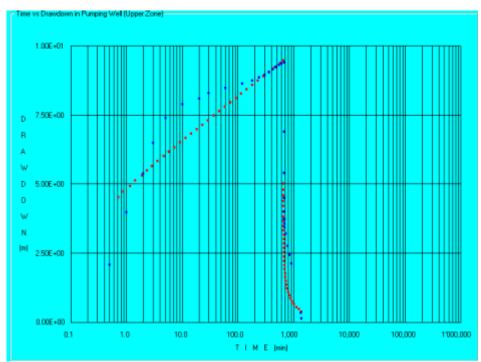


Figura 12 . Representación gráfica de abatimiento y recuperación del nivel de agua del pozo CNA CS MIGUEL.

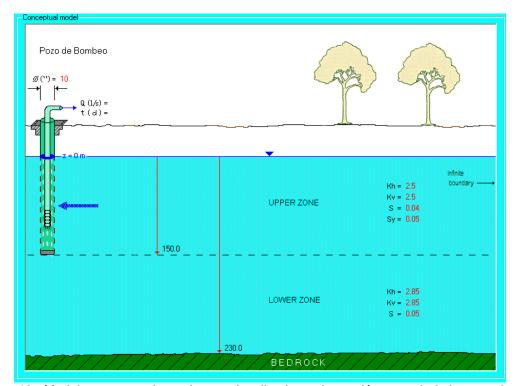


Figura 13 . Modelo conceptual para la zona localizada en la porción central de la zona de estudio.

MATERIAL	Kv(m/día)	Kh(m/día)	S	Sy	Espesor (m)
BASALTO CON	2.5	2.5	0.04	0.05	230
BRECHA					

Tabla 6 . Resultados de S, Sy, espesor, litología de las capas del modelo conceptual de la zona

CNA SAN VICENTE

Este pozo denominada CNA SAN VICENTE se encuentra en dirección N 60°E de Tzintzingareo, Michoacán (figura 14) y de Ciudad Hidalgo en una dirección N 40°E.

Figura 14 . Localización del pozo CNA SNVICENTE al noreste del poblado Tzintzingareo, Michoácan (Google Earth, 2010).

El modelo conceptual de esta parte de la zona de estudio es un acuífero libre (figura 15) y el pozo se encuentra sobre capas de sedimentos vulcanoclásticos del Terciario superior Ts(Vc) y basaltos – brechas volcánicas básicas Q(B-bvb) obteniéndose conductividades relativamente bajas en comparación de las rocas basálticas que se encuentran en la parte central del acuífero.

Las conductividades obtenidas en esta prueba son Kv y Kh: 1.1 m/día y un coeficiente de almacenamiento de 9% (tabla 7).

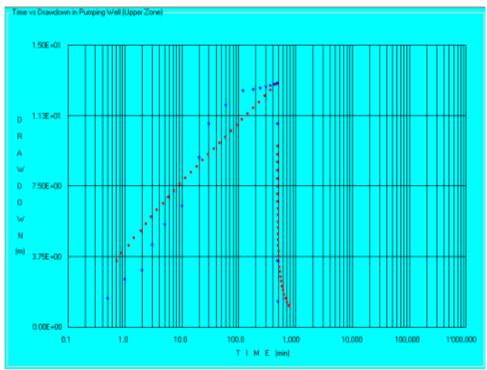


Figura 15. Gráfica que representa tiempo Vs abatimiento en una prueba de bombeo.

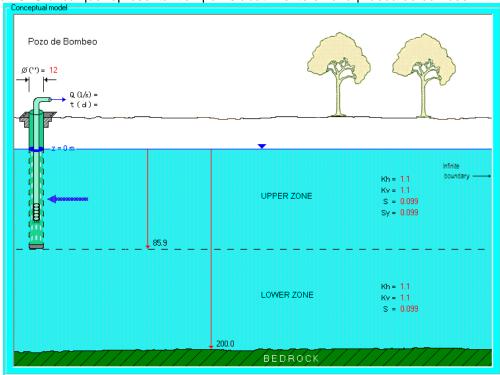


Figura 16. Modelo conceptual de la parte norte del acuífero en estudio.

MATERIAL	Kv(m/dla)	Kh(m/dÌa)	S	Sy	Espesor (m)
BRECHA BASICA CON	1.1	1.1	0.099	0.099	200
BASALTO					

Tabla 7. Valores obtenidos para la zona norte del acuífero Ciudad Hidalgo – Tuxpan.

El pozo CNA SAPACC se encuentra en la parte sur del acuífero en una dirección N70° W de Zirahuato (figura 17). Este pozo tiene una profundidad de 70 metros. La prueba de bombeo tuvo una duración de 8.16 horas en la etapa de abatimiento y en la fase de recuperación de 7.5 horas.

Figura 17. Ubicación del pozo denominado CNA SAPACC que se localiza sobre rocas volcánicas, nótese el edificio volcánico al margen derecho (Google Earth, 2010).

Los parámetros deducidos de la este ensayo fueron que las conductividades hidráulicas de la zona son relativamente bajas en comparación con las conductividades del área central del acuífero, debido principalmente a que el contendido de brecha volcánica básica está presente en mayor proporción y tiene la capacidad para disminuir la conductividad de la roca. (figura 19).

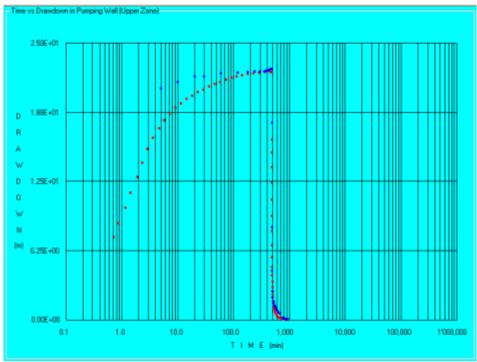


Figura 18. Representación gráfica del comportamiento del abatimiento en las fases de la prueba de bombeo.

El modelo conceptual para la interpretación de esta prueba de bombeo es similar a los modelos en la parte central del acuífero, la única variación es que en esta parte el contenido de material arcilloso existente es mayor; obteniéndose los siguientes valores Kv y Kh: 1.1 m/día y el coeficiente de almacenamiento del 10%. (Tabla 8).

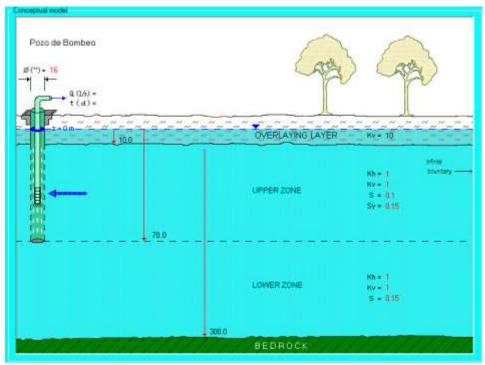


Figura 19. Modelo conceptual de la parte suroccidental del acuífero.

MATERIAL	Kv(m/dÌa)	Kh(m/dla)	S	Sy	Espesor (m)
ALUVIÓN	10				10
BRECHA CON	1	1	0.1	0.15	300
BASALTO					

Tabla 8. Resultados obtenidos de la prueba de bombeo del pozo CNA SAPACC.

CNA OEZ

El pozo designado CNA OEZ se encuentra localizado en el Municipio de Ocampo, Michoacán (figura 20) y tiene una profundidad de 70 metros.

Figura 20 . Sitio del pozo CNA OEZ en el Municipio de Ocampo, Michoacán al este de Ciudad Hidalgo (Google Earth, 2010).

El tiempo de duración de la prueba de bombeo fue en 2.66 horas en la fase de abatimiento y 11 horas en la etapa de recuperación con un gasto promedio de 10 lps en la primera fase (figura 21).

El modelo conceptual es de un acuífero libre de un relleno sedimentario compuesto por un conglomerado reciente de espesor estimado de 70 metros. (figura 21). Los valores que se lograron obtener en las conductividades

son los siguientes Kv:0.3 m/día y Kh: 3.1 m/día, mientras tanto que el coeficiente de almacenamiento de esta región es del 5% (.tabla 9).

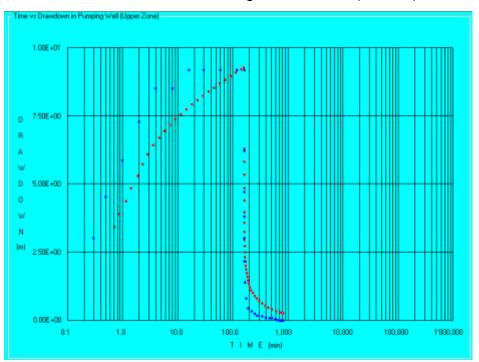


Figura 21 . Representación de la curva teórica y la curva obtenida en la prueba de bombeo.

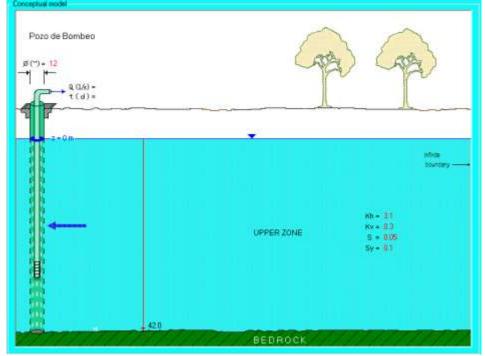


Figura 22 . Modelo conceptual de la parte centro-oriental de la zona de estudio.

MATERIAL	Kv(m/dla)	Kh(m/dla)	S	Sy	Espesor (m)
CONGLOMERADO	0.31	3.1	0.05	1	70

Tabla 9. Datos obtenidos de la prueba de bombeo.

CNA SAPAUD

El pozo llamado CNA SAPAUD está localizado en el Municipio de Ciudad Hidalgo, Michoacán (figura 22) y tiene una profundidad de 150 metros. Este pozo se encuentra perforado sobre rocas volcánicas predominantemente tobas volcánicas de composición básica.

El tiempo de duración de la prueba de bombeo fue en 2 horas en la fase de abatimiento y 8 horas en la etapa de recuperación con un gasto promedio de 21 lps en la primera fase (figura 23).

Figura 22 . Localización del pozo SAPAUD en la parte suroeste de Ciudad Hidalgo, Michoacán.

Esta zona se conceptualizo como un acuífero libre por las condiciones que tienen los pozos cercanos al mismo. Se caracterizo como una capa de 200 metros de brecha básica con intercalaciones de basalto.

Los valores obtenidos en las conductividades son los siguientes Kv y Ky: 0.3 m/día con coeficiente de almacenamiento de esta región es del 7.5% (.tabla

10).

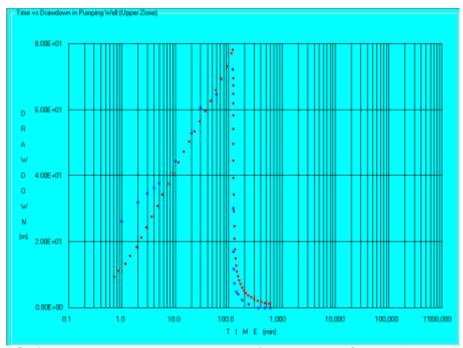


Figura 23. Grafica tiempo vs abatimiento en la porción suroeste de Ciudad Hidalgo, Michoacán.

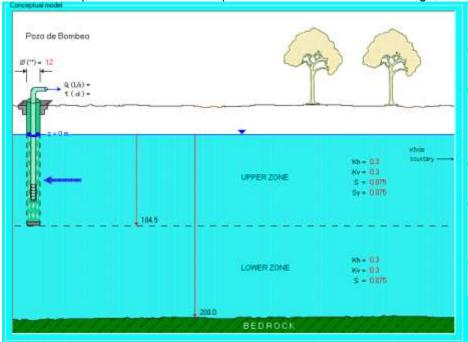


Figura 24 . Modelo Conceptual de la porción central del acuífero Ciudad Hidalgo, Michoacán.

MATERIAL	Kv(m/dla)	Kh(m/dla)	S	Sy	Espesor (m)
BRECHA BASICA CON	0.3	0.3	0.075	0.075	200
BASALTO					

Tabla 10 . Resultados obtenidos de la zona centro –oriental de la zona de estudio.

CNA 3 DE MAYO

El pozo 3DEMAYO está situado en la parte noroeste de Ciudad Hidalgo, Michoacán. Tiene una profundidad de 150 metros y corta a una secuencia de intercalaciones de basalto y brechas volcánicas básicas Q(B-Bvb) (figura 24).



Figura 24. Ubicación del pozo ·3DEMAYO al noroeste de Ciudad Hidalgo, Michoacán.(Google Earth, 2010).

El modelo conceptual para esta zona es similar al de los pozos CNA SAPAUD, CNA SAPAPFR; CNA CHRT, etc los que se encuentran en la zona central del acuífero (figura 26).

Los parámetros obtenidos son: Kv y Kh: 6.6 m/día y un coeficiente de almacenamiento del 5%. Estos valores de conductividad son los más altos de la zona de estudio (figuras 25 y 26 y tabla 11).

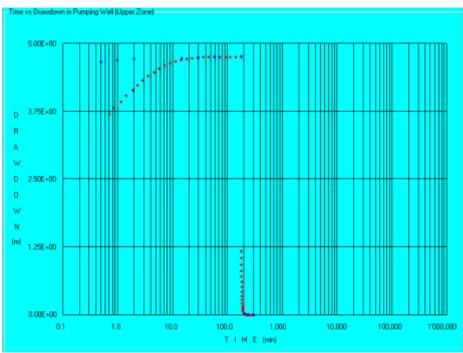


Figura 25. Representación del tiempo vs abatimiento en la porción de Ciudad Hidalgo, Michoacán.

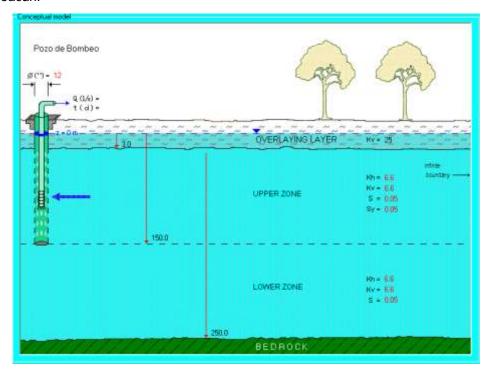


Figura 26 . Modelo conceptual de la zona central del acuífero.

MATERIAL	Kv(m/dla)	Kh(m/dla)	S	Sy	Espesor (m)
ALUVIÓN	25				10
BASALTO CON BRECHA	6.6	6.6	0.05	0.05	250

Tabla 11 . Parámetros obtenidos en la zona central de la zona de estudio.

CNA CHRT

El pozo denominado CNA CHRT está localizado en la parte centro-occidental de la zona de estudio. La profundidad del mismo es de 220 metros y corta 50 metros de vulcanoclásticos Ts(Vc) desde la superficie y dacitas en 100 metros a lo largo del pozo(figuras 27 y 28)..

Figura 27 . Ubicación del pozo CNA CHRT en la porción central y se localiza en rocas volcánicas como vulcanoclásticos y dacitas (Google Earth, 2010).

Los parámetros obtenidos son para las rocas vulcanoclásticas una Kv:0.001 m/día y para las dacitas una Kv y Kh : 4.1 m/día y un coeficiente de almacenamiento del 10 % (figuras 28 y 29 y tabla 12).

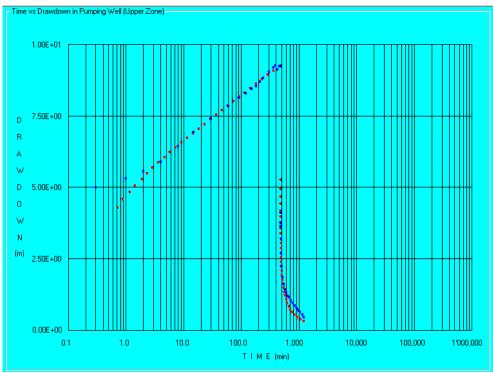


Figura 28 . Empalme de la curva teórica y la curva de campo para la interpretación de la prueba de bombeo.

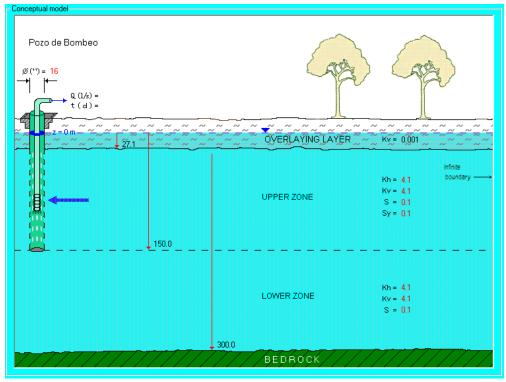


Figura 29. Modelo conceptual de la zona centro-occidental del área de estudio.

MATERIAL	Kv(m/día)	Kh(m/día)	S	Sy	Espesor (m)
BRECHA	0.001				27.1
VULCANOCLASTICA					
DACITA	4.1	4.1	0.1	0.1	300

Tabla 12. Resultados obtenidos para los parámetros hidráulicos de la zona.

Datos de las pruebas de bombeo

240

300

360

720

CNA SAPA3P

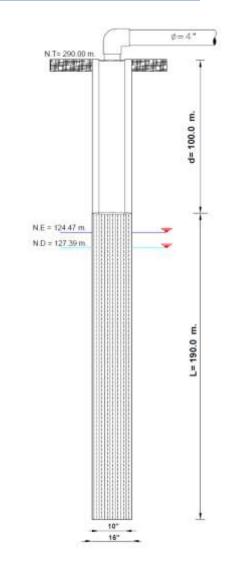
Etapa de abatimiento

Fecha de realización: 05/11/2007

Caudal: 7.5 lps Duración: 12 h N. E.: 124.47 m

Abatimiento total: 2.920 m

7 10 4111110	1110 total. 2.020 111	
Tiempo	Profundidad de	Abatimiento(m)
(min)	agua (m)	
0	124.470	0.000
0.5	125.870	1.400
1	126.670	2.200
2	127.015	2.545
3	127.126	2.656
4	127.255	2.785
5	127.310	2.840
10	127.320	2.850
20	127.335	2.865
30	127.335	2.865
60	127.335	2.865
120	127.390	2.920
720	127.390	2.920


Etapa de recuperación

Fecha de realización: 05/11/2007

Caudal: 0 lps Duración: 12 h

Nivel de recuperación: 124.480 m

Tiempo (min)	Profundidad de agua (m)	Nivel de recupera
(11111)	agaa (iii)	ción (m)
0	127.39	0.000
0.5	126.90	0.490
1	126.80	0.590
30	126.40	0.990
60	126.40	0.990
120	126.40	0.990
180	125.31	2.080

2.380

2.520

2.910

2.910

125.01

124.87

124.48

124.48

Esquema de características del pozo CNA SAPA3P

120	37.359	5.956
150	23.390	5.956

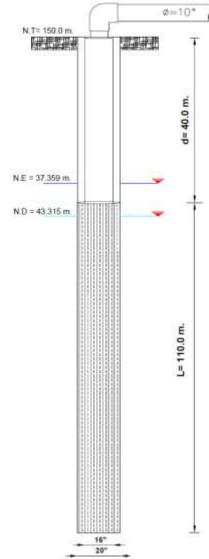
CNA SAPAPFR Etapa de abatimiento

Fecha de realización: 20/11/2007

Caudal: 55 lps Duración: 2.5 h N. E.: 37.359 m

Abatimiento total: 5.956 m

Tiempo	Profundidad de	Abatimien
(min)	agua (m)	to(m)
0	37.359	0.000
0.3	41.978	4.619
0.5	42.328	4.969
1	42.724	5.365
4	42.907	5.548
8	43.059	5.700
30	43.028	5.669
60	43.198	5.839
90	43.258	5.899
120	43.293	5.934
150	43.315	5.956


Etapa de recuperación

Fecha de realización: 20/11/2007

Caudal: 0 lps Duración: 2.5 h

Nivel de recuperación: 37.359 m

Tiempo (min)	Profundidad de agua (m)	Nivel de recupera ción (m)
0	43.315	0.000
0.3	38.065	5.250
0.5	37.845	5.470
1	37.614	5.701
2	37.586	5.729
4	37.523	5.792
8	37.477	5.838
16	37.433	5.882
30	37.406	5.909
60	37.379	5.956
90	37.359	5.956

Esquema de características del pozo CNA SAPAPFR

CNA OOAPAS1 Etapa de abatimiento

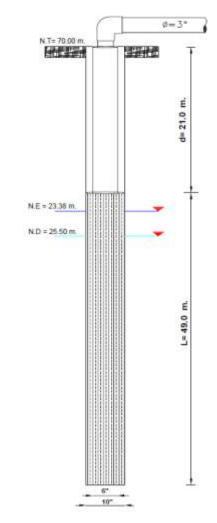
Fecha de realización: 07/11/2007

Caudal: 16 lps Duración: 10 h N. E.: 23.380 m

Abatimiento total: 2.120 m

Tiempo	Profundidad de	Abatimien
(min)	agua (m)	to(m)
0	23.38	0
0.5	24.24	0.86
1	24.91	1.53
2	25.19	1.81
3	25.45	2.07
4	25.465	2.085
5	25.465	2.085
10	25.47	2.09
30	25.47	2.09
60	25.48	2.1
120	25.49	2.11
180	25.49	2.11
240	25.5	2.12
300	25.5	2.12
360	25.5	2.12
420	25.5	2.12
480	25.5	2.12
540	25.5	2.12
600	25.5	2.12

Etapa de recuperación


Fecha de realización: 07/11/2007

Caudal: 0 lps Duración: 12 h

Nivel de recuperación: 23.39 m

Tiempo (min)	Profundidad de agua (m)	Nivel de recupera ción (m)
0	25.50	0.00
1	24.42	1.08
2	24.11	1.39
3	24.00	1.50
4	23.88	1.62
5	23.73	1.77

10	23.70	1.80
20	23.56	1.94
30	23.40	2.10
60	23.40	2.10
120	23.39	2.11
180	23.39	2.11
240	23.39	2.11
720	23.39	2.11

Esquema de características del pozo CNA OOAPAS1

CNA CS MIGUEL Etapa de abatimiento

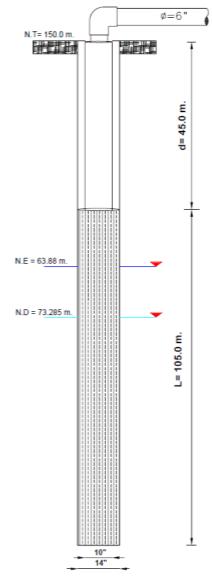
Fecha de realización: 10/11/2007

Caudal: 36 lps Duración: 11 h N. E.: 63.880 m

Abatimiento total: 9.405 m

Tiempo	Profundidad de	Abatimien
(min)	agua (m)	to(m)
0	63.880	0.000
0.5	65.980	2.100
1	67.880	4.000
2	69.280	5.400
3	70.380	6.500
5	71.280	7.400
10	71.780	7.900
20	71.980	8.100
30	72.175	8.295
60	72.360	8.480
120	72.535	8.655
180	72.640	8.760
240	72.740	8.860
300	72.840	8.960
360	72.940	9.060
420	73.040	9.160
480	73.125	9.245
540	73.200	9.320
600	73.245	9.365
660	73.285	9.405

Etapa de recuperación


Fecha de realización: 10/11/2007

Caudal: 0 lps Duración: 12 h

Nivel de recuperación: 64.025 m

Tiempo (min)	Profundidad de agua (m)	Nivel de recupera ción (m)
0	73.285	0.000
1	70.785	2.500
2	69.285	4.000
3	68.385	4.900
5	67.885	5.400
10	67.620	5.665
20	67.470	5.815

30	67.320	5.965
60	67.100	6.185
120	66.650	6.635
180	66.330	6.955
240	66.030	7.255
660	64.235	9.050
720	64.025	9.260

Esquema de características del pozo CNA CS MIGUEL

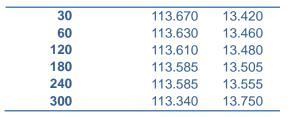
CNA SAN VICENTE Etapa de abatimiento

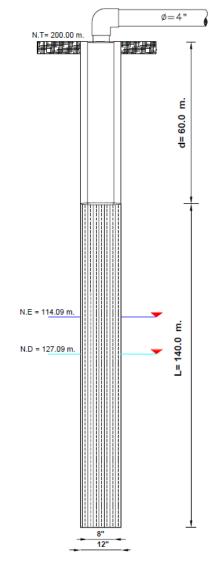
Fecha de realización: 4/11/2007

Caudal: 16 lps Duración: 8 h N. E.: 114.090 m

Abatimiento total: 13.00 m

Tiempo	Profundidad de	Abatimien
(min)	agua (m)	to(m)
0	114.09	0.000
0.5	115.65	1.555
1	116.65	2.560
2	117.14	3.050
3	118.50	4.410
5	119.58	5.490
10	120.56	6.470
20	123.13	9.040
30	124.93	10.840
60	125.92	11.830
120	126.67	12.580
180	126.75	12.660
240	126.83	12.740
300	126.89	12.800
360	126.96	12.870
420	127.02	12.930
480	127.09	13.000


Etapa de recuperación


Fecha de realización: 4/11/2007

Caudal: 0 lps Duración: 5 h

Nivel de recuperación: 113.34 m

Tiempo (min)	Profundidad de agua (m)	Nivel de recupera ción (m)
0	0.000	0.000
1	127.090	2.180
2	124.910	6.890
3	117.625	9.465
4	115.462	11.628
5	114.640	12.450
10	113.780	13.310
20	113.710	13.380

Esquema de características del pozo CNA SAN VICENTE

25.890

21.820

105

CNA S Etapa

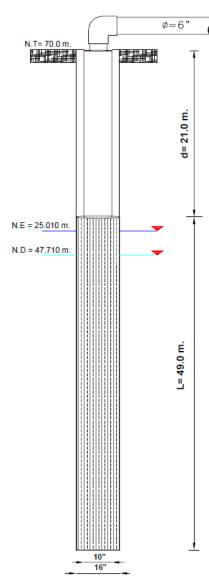
Fecha

Cauda Durac N. E.:

Abatir

SAPA-CC	120	25.835	21.875
a de abatimiento	150	25.720	21.990
a de realización: 2/11/2007	180	25.605	22.105
dal: 32.5 lps	270	25.230	22.480
ción: 8.16 h	330	25.140	22.570
.: 25.010 m	390	25.100	22.610
imiento total: 22.700 m	450	25.085	22.625
po Profundidad de Abatimien			
n) agua (m) to(m)			ø=6"

Tiempo	Profundidad de	Abatimien
(min)	agua (m)	to(m)
0	25.010	0.000
5	45.950	20.940
10	46.520	21.510
20	46.990	21.980
30	47.015	22.005
60	47.280	22.270
120	47.370	22.360
180	47.420	22.410
240	47.450	22.440
300	47.475	22.465
360	47.490	22.480
380	47.500	22.490
400	47.520	22.510
420	47.600	22.590
440	47.600	22.590
460	47.670	22.660
480	47.710	22.700


Etapa de recuperación

Fecha de realización: 2/11/2007

Caudal: 0 lps Duración: 7.5 h

Nivel de recuperación: 25.085 m

Tiempo	Profundidad de	Nivel de
(min)	agua (m)	recupera
		ción (m)
0	47.710	0.000
0.5	42.815	4.895
1	33.380	14.330
3	29.480	18.230
8	27.615	20.095
15	27.110	20.600
30	26.705	21.005
35	26.610	21.100
40	26.520	21.190
45	26.440	21.270
60	26.295	21.415
75	26.125	21.585
90	25.970	21.740

Esquema de características del pozo CNA SAPA-CC

420	28.010	9.141
480	27.987	9.164
540	27.977	9.174
600	27.977	9.174
660	27.977	9.174

CNA OEZ

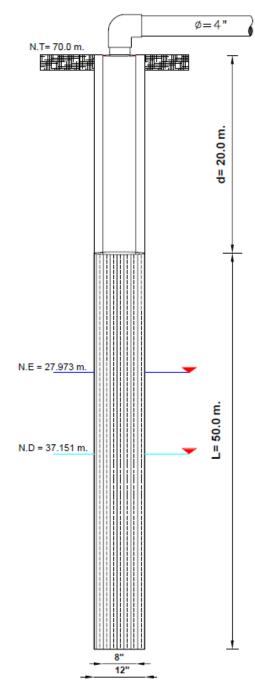
Etapa de abatimiento

Fecha de realización: 22/11/2007

Caudal: 10 lps Duración: 2.66 h N. E.: 27.973 m

Abatimiento total: 9.178 m

Abatimento total. 3.170 m		
Tiempo	Profundidad de	Abatimient
(min)	agua (m)	o(m)
0	27.973	0.000
0.3	30.984	3.011
0.5	32.516	4.543
1	33.836	5.863
2	35.271	7.298
4	36.491	8.518
8	36.491	8.518
16	37.151	9.178
30	37.151	9.178
60	37.151	9.178
120	37.151	9.178
160	37.151	9.178


Etapa de recuperación

Fecha de realización: 22/11/2007

Caudal: 0 lps Duración: 11 h

Nivel de recuperación: 27.977 m

Tiempo	Profundidad de	Nivel de
(min)	agua (m)	recupera
		ción (m)
0	37.151	0.000
0.3	34.195	2.956
0.5	32.695	4.456
1	31.785	5.366
2	30.995	6.156
4	30.135	7.016
8	29.365	7.786
16	28.775	8.376
30	28.425	8.726
60	28.299	8.852
90	28.219	8.932
120	28.150	9.001
180	28.127	9.024
240	28.090	9.061
300	28.061	9.090
360	28.051	9.100

Esquema de características del pozo CNA OEZ

240	45.330	72.170
360	45.330	72.170
480	45 330	72 170

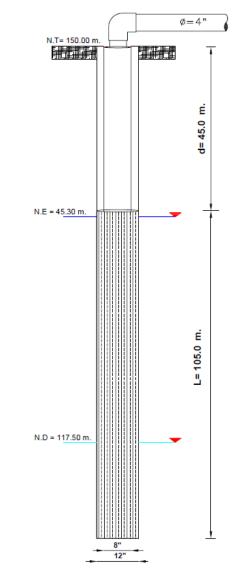
CNA SAPAUD Etapa de abatimiento

Fecha de realización: 3/11/2007

CAUDAL: 21 lps DURACIÓN: 2 h N. E.: 45.300 m

ABATIMIENTO TOTAL: 72.200 m

ADATIMILINIO TOTAL. 12.200 III		
Tiempo	Profundidad de	Abatimient
(min)	agua (m)	o(m)
0	45.300	0.000
1	71.400	26.100
2	77.170	31.870
3	80.000	34.700
4	81.620	36.320
5	83.050	37.750
10	89.770	44.470
20	98.100	52.800
30	105.710	60.410
60	110.000	64.700
120	117.500	72.200


Etapa de recuperación

Fecha de realización: 3/11/2007

Caudal: 0 lps Duración: 8 h

Nivel de recuperación: 45.330 m

Tiempo (min) Profundidad de agua (m) Nivel de recupera ción (m) 0 117.500 0.000 1 75.360 42.140 2 62.300 55.200 5 57.080 60.420 10 52.690 64.810 20 50.170 67.330 30 49.370 68.130 60 47.630 68.870 120 46.260 71.240			
ción (m) 0 117.500 0.000 1 75.360 42.140 2 62.300 55.200 5 57.080 60.420 10 52.690 64.810 20 50.170 67.330 30 49.370 68.130 60 47.630 68.870	Tiempo	Profundidad de	Nivel de
0 117.500 0.000 1 75.360 42.140 2 62.300 55.200 5 57.080 60.420 10 52.690 64.810 20 50.170 67.330 30 49.370 68.130 60 47.630 68.870	(min)	agua (m)	recupera
1 75.360 42.140 2 62.300 55.200 5 57.080 60.420 10 52.690 64.810 20 50.170 67.330 30 49.370 68.130 60 47.630 68.870			ción (m)
2 62.300 55.200 5 57.080 60.420 10 52.690 64.810 20 50.170 67.330 30 49.370 68.130 60 47.630 68.870	0	117.500	0.000
5 57.080 60.420 10 52.690 64.810 20 50.170 67.330 30 49.370 68.130 60 47.630 68.870	1	75.360	42.140
10 52.690 64.810 20 50.170 67.330 30 49.370 68.130 60 47.630 68.870	2	62.300	55.200
2050.17067.3303049.37068.1306047.63068.870	5	57.080	60.420
30 49.370 68.130 60 47.630 68.870	10	52.690	64.810
60 47.630 68.870	20	50.170	67.330
	30	49.370	68.130
120 46.260 71.240	60	47.630	68.870
	120	46.260	71.240

Esquema de características del pozo CNA SAPAUD

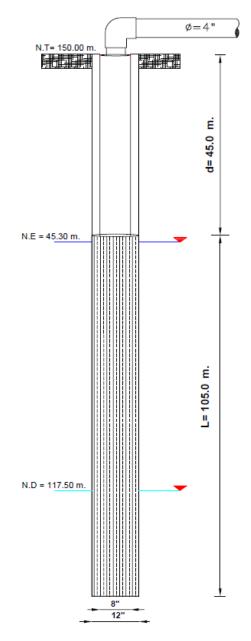
CNA 3DEMAYO Etapa de abatimiento

Fecha de realización: 14/11/2007

Caudal: 65 lps Duración: 3 h N. E.: 55.30 m

Abatimiento total: 4.762 m

Tiempo	Profundidad de	Abatimient
(min)	agua (m)	o(m)
0	55.300	0.000
0.5	59.965	4.665
1	60.000	4.700
2	60.016	4.716
15	60.023	4.723
30	60.043	4.743
60	60.062	4.762
180	60.062	4.762


Etapa de recuperación

Fecha de realización: 14/11/2007

Caudal: 0 lps Duración: 5 h

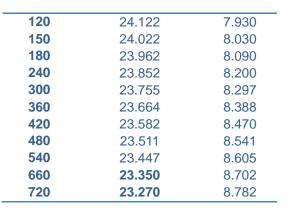
Nivel de recuperación: 55.30 m

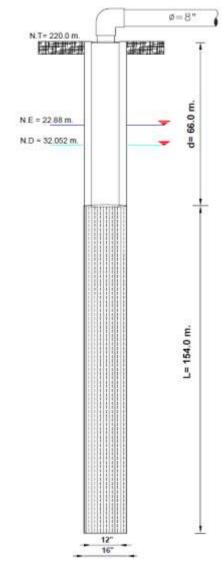
Tiempo	Profundidad de	Nivel de
(min)	agua (m)	recupera
		ción (m)
0	60.062	0.000
30	55.320	4.742
60	55.310	4.752
120	55.300	4.762
180	55.300	4.762
240	55.300	4.762
300	55.300	4.762

Esquema de características del pozo CNA 3DEMAYO

CNA CHR	RT	
Etapa de	abatimiento	
Fecha de	realización: 16/1	1/2007
Caudal: 5	0 lps	
Duración:	7 h	
N. E.: 22.8	80 m	
Abatimien	ito total: 9.172 m	
Tiempo	Profundidad de	Abatimient

Abatimiento total. 9.172 m			
Tiempo	Profundidad de	Abatimient	
(min)	agua (m)	o(m)	
0	22.800	0.000	
0.3	27.800	4.920	
1	28.120	5.240	
2	28.370	5.490	
4	28.722	5.842	
8	29.248	6.368	
15	29.748	6.868	
30	30.218	7.338	
60	30.658	7.778	
90	30.948	8.068	
120	31.113	8.233	
150	31.253	8.373	
180	31.363	8.483	
210	31.518	6.638	
240	31.648	8.768	
300	31.845	8.965	
360	32.002	9.122	
390	32.074	9.194	
420	31.952	9.072	
450	32.052	9.172	
480	32.052	9.172	


Etapa de recuperación


Fecha de realización: 16/11/2007

Caudal: 0 lps Duración: 12 h

Nivel de recuperación: 23.270 m

Tiempo	Profundidad de	Nivel de
(min)	agua (m)	recupera
		ción (m)
0	32.052	0.000
0.5	26.937	5.115
1	26.571	5.481
2	26.451	5.601
4	26.009	6.043
8	25.499	6.553
15	25.047	7.005
30	24.662	7.390
60	24.422	7.630
90	24.242	7.810

Esquema de características del pozo CNA CHRT