

Heuristic function in an

algorithm of First-Best search

for the problem of Tower of

Hanoi: optimal route for n disks

Que para obtener el título de

P R E S E N T A

Erick Berssaín García Ventura

ASESORA DE ARTÍCULO ACADÉMICO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

M. en I. Norma Elva Chávez Rodríguez

ARTÍCULO ACADÉMICO

Ingeniero en Computación

Ciudad Universitaria, Cd. Mx., 2018

Heuristic function in an algorithm of First-Best search for

the problem of Tower of Hanoi: optimal route for n disks.

Erick Berssaín García V., Norma Elva Chávez R.

School of Engineering, National Autonomous University of México, México City

Abstract - Along this paper we propose a new algorithm for

solving the Tower of Hanoi puzzle. We focus on computer

memory efficiency by applying the Artificial Intelligence’s

method “Best-First Search”. We develop the algorithm with

detailed explanations, taking in mind it may be coded in any

programming language. Furthermore, we set a heuristic

function and several mathematical definitions, diagrams, and

examples in order to make the reader understand fully.

Finally, we present the solution implemented in python,

adding proofs of its logical functioning as well as results

about execution time made for 16 cases (from using only 3

disks until 18).

Keywords: Tower of Hanoi, best-first search, heuristic,

function, python.

1 Introduction

 The Tower of Hanoi, mathematical puzzle, is an

example to apply programming techniques such as recursive

algorithms [1][2]. Recursive algorithms are relatively simple

to implement in most programming languages. These

algorithms aid to solve a wide variety of problems and have

been selected, by software companies such as Microsoft [8],

Oracle, and Facebook, and at robotics challenges [3], to test

the aspirants programming abilities. Mainly in the first stage

of the recruitment process. These companies change the

constraints of the puzzle to increase the complexity of the

algorithm. For example, changing the number of disks the

algorithm has to solve for.

 However, as the authors describe in [5], solving this

problem by a recursive algorithm takes up a lot of computing

resources. And, although many algorithms have been

developed, few times they are measured in efficiency and

memory spending.

 Thereby we put forward a method where we minimize

the use of memory.

 First we take as a base a 3D model from the original

Hanoi Tower. From there, we make a geometric projection to

a 2D model (new model). Then, we redefine the allowed

movements from 3D model, now for the 2D model. At the

end we abstract the new model like an array or a list for each

tower (depending on the programming langue which is

talking on).

 Having this abstraction, we proceed to establish an

evaluation function which is the main point of the algorithm.

 Solving this problem by different methods has a great

relevance. It is not only related with the puzzle/game, but also

with planning and expanding to other areas. Graphs Theory

[6], Ad Hoc Networks [7], and Collaborative/Educative [4]

issues have been proposed from this Tower of Hanoi

problem.

2 Considerations

 Before to start the algorithm explanation, next are some

concepts that are used to help the understanding of the whole

paper.

 Consideration 1: We refer to “n”, which means the total

number of disks selected to play, and whose definition is the

follows:

 * + (1)

 Consideration 2: Although most of the examples in this

paper are showed for 3 or 4 disks, the solution applies for n

number of disks.

 Consideration 3: The algorithm and solution proposed

has been tested for 3 pegs.

 Consideration 4: Since the puzzle may have n disks, we

refer to disks weights according to their size. The smallest

one has a weight of 1 and the largest one has n. As shown in

figure 1.

4
3
2
1

B CA

Figure 1
Weight assignments to each disk

 Consideration 5: The optimum number of movements

for solving the puzzle, with n disks is:

 - (2)

*This is a puzzle fact and it has already demonstrated and

taken as a true in other papers [1].

 Consideration 6: Figure 3 is the flat (2D)

representation of the 3D puzzle model (Figure 2).

Figure 2

3D Representation of Tower of Hanoi

Figure 3

2D Representation of Tower of Hanoi

 For the movements to the right, they are in the next

sequence:

Origin Tower →Destination Tower

A→C

C→B

B→A

 Meanwhile for the ones to the left, they are:

A→B

B→C

C→A

3 Premises

 With the aim of getting the problem solved with the

minimum of movements, it was firstly studied without the

programming perspective. Next we define some premises

which are the sustention of the algorithm.

3.1 Premise 1: Definition

 Premise 1 - Direction of movement.

 If the number of disks which are played is an even number,

then:

 The disks with even weight (2, 4, 6, etc.) have to be

moved to the left.

 The disks with odd weight (1, 3, 5, etc.) have to be

moved move to the right.

 Otherwise, if the number of played disks is an odd number

the directions are exchanged.

 Thus:

 Even weight disks to the right.
 Odd weight disks to the left.

3.2 Premise 1: Examples

 For both of next examples, disks filled with dots move

to the right and disks filled with lines to the left.

Figure 4

When the number of disk played is odd.

Figure 4

When the number of disk played is even.

3.3 Premise 2: Definition

 Premise 2 - Number of movement.

 For all disks in puzzle, disk number “k” whose weight is

represented with and where , is only allowed to

be moved every times. Counting from the first time it

was moved, which is the time.

3.4 Premise 2: Examples

Disk 1

First movement at

Move every times.

Expected to move at time: 1, 3, 5…

Disk 2

First movement at

Move every times.

Expected to move at time: 2, 6, 10 …

Disk 3

First movement at

Move every times.

Expected to move at: 4, 12, 20 …

And so on for all disks.

4 Heuristic function

 As in the title is set, the method we developed to find

the best route is through a First-Best Search. There we

evaluate the 2 parameters raised in the premises from Section

3 on this paper.

 Thereby, it is possible to make a heuristic evaluation

function called h(k), which in turn is made up of two other

functions, d(k) and t(k).

 *Note: Here, we take k as it was used in section 3.3.

 Where () evaluates Premise 1, and it is defined as:

 () {

“d” of Direction

 (3)

 And t(k) evaluates Premise 2, and it is defined as:

 () {

“t” of Time

 (4)

 By adding both of above functions, we have the main

function:

 () () ()

“h” of Heuristic

 (5)

 So, there may be 3 results: 2, 4, and 6. Thus, the

algorithm provides us certainty that there is only one possible

disk to move for each step. This one will be chosen by taking

as criterion the smallest value of heuristics.

 () () ()

 (6)

 With the criterion of smallest value of heuristics, joined

with definitions of d(k) and t(k).

 ()

and
 ()

 This means the algorithm will always choose the

movement whose () () .

5 Design of solution

 The algorithm developed has been designed to be coded

by a functional structure. It has 7 functions. 6 of them are for

auxiliary procedures by the main thread. The other one is an

additional function which is used to verify the correct

functioning of the program and to observe what happens at

each step.

 The general purpose of each function is described

below.

5.1 Make times

 Arguments: Number of disks for playing.

 First it creates the initial state for each tower. Always

tower A is the initial tower (the one which has all disks). And

also creates our goal state, always tower C is the target

destination.

 For instance, for 3 disks our initial state would be:

 , -
 , -
 , -

 and the goal state:

 , -
 , -
 , -

 Then, also it makes as many lists as number of disks.

Each list is assigned to a particular disk. There we save the

expected times for moving that disk, premise 2.

 Taking the examples from premise 2, we have for each

disk the next lists:

 , -
 , -
 , -

 Knowing the algorithm executes just the needed

number of steps, we restrict the amount of elements per list.

We let the lists grow up while their elements are smaller than

 (from consideration 4, minimum number of needed

steps).

 This way, lists are defined as:

 ()

 , -

 (7)

 And so, we avoid a memory unnecessary expense.

 Here, we have a relation between the weight of the disk

and the amount of elements in its list. The smallest disk will

be the one which has more elements, while the biggest one

will ever have just a single element.

5.2 Last disk value

 Arguments: A tower.

 It returns the weight of its last disk.

5.3 Expected direction

 Arguments: The weight of a single disk.

 According to the number of played disks and the disk’s

weight received, it evaluates Premise 2. Returns the

corresponding direction to move the disk.

5.4 Check movement

 Arguments: Two towers (origin and target).

 It checks if it is possible to move the origin’s last disk

to target tower. It considers the puzzle rule: “A disk cannot

be over other disk whose weight is less”.

 Here may be 4 possible scenarios to face:

1. Since we receive just the towers, we do not know if

the origin tower really has disks in it. If the origin

tower is empty, the function returns that the

movement is not possible (because it does not have

a disk to move).

2. If the target tower is empty, any disk can be moved

there. So, the function returns that the movement is

possible.

3. If the last disk of the target tower has a less weight

than the last disk from origin tower. The function

returns that the movement is possible.

4. The opposite case of the previous one. When the last

disk of the target tower has a greater weight than the

last disk from origin tower. The function returns that

the movement is not possible

5.5 Move dish

 Arguments: Two towers, origin and target.

 It moves origin’s last disk to target tower.

5.6 Simulate move dish
*Additional function

 Arguments: Two towers (origin and target), a heuristic

value.

 In order to get evidence about the procedure was

followed correctly, we print on a file the all possible states

for each step.

5.7 Main

 Below we show the program logic and flow, by using

previously described functions.

 START

 Ask the number of disks for playing.

 Execute Make Times.

 While we do not achieve our goal state:

o For each Tower, checks if its last disk can be

moved to one or both of the other two towers

with Check Movement.

 If the movement can be executed:

 Saves a row from the

movement with next values:

origin tower and direction of

displacement. Besides we add

an empty field for heuristic

value initialized with zero.

o For each saved row in previous cycle:

 Checks if the saved direction on the

row is the one expected, according to

the lists created by MakeTimes

(premise 1).

 If it is: Add 1 to the heuristic

value.

 If not: Add 3 to the heuristic

value.

 Checks if it is time to move last disk

for tower in row (premise 2).

 If it is: Add 1 to the heuristic

value.

 If not: Add 3 to the heuristic

value.

o Select the row with smallest heuristic value.

o Execute the corresponding movement in the

marked direction.

o Free from memory and all rows saved.

o Increments in one the number of executed steps.

 FINISH

6 Results

 Next we present some results gotten from

implementation made in python. Whole evaluation was made

under next computer conditions:

 Processor: 2.7 GHz Intel Core i5

 Memory: 8 GB 1867 MHz DDR3

 Storage type: SSD

 OS: macOS Sierra

o Version 10.12.3

o Python 2.7

6.1 Procedure

 In Figure 6 we show a random part from the file we

used for examine the procedure. It is the mentioned on the

function Simulate move dish, from previous section.

 In this case we played 16 disks. As we can see, we

have:

 The sum of executed movements until the moment.

 Current state for the three towers.

 Possible movements that can be made.

 Heuristic values for all those movements.

Figure 6

Evaluation example

 In state from step 30690, we can observe the movement

with the minimum heuristic is the third one. For this

movement, disk 2 is moved from tower C (TC) to tower B

(TB). We can verify the movement was correctly chosen on

step 30691, where we observe the movement completed and

the new possible movements for that new state.

6.2 Time

 About execution time, we tested the program with only

processes interns from computer executing. This means no

apps such as office suite software or internet browsers were

open.

 In addition, it is necessary to mention we modified a

little the program for this evaluation. We let only essential

functions by removing comments and printing files functions.

All these with the aim of measure effective time of the

algorithm.

 In next table we have data about execution time.

Column called Time shows the truncated mean at 20%. Since

we took 10 events per disk, that percentage eliminates the 2

biggest and the 2 smallest values. At the end, those times (in

seconds) represents the mean of 6 measurements.

 We did this because we wanted to have a representative

value of the samples. So we eliminated the 4 most scattered

values of the mean.

 Another thing to mention is we started evaluations with

3 disks because it is the most basic example at finding the

puzzle. From 3 to 16 disk, we took 10 measurements which

in total were 140. In addition, because of the increase of the

lapse of time starting from 17 disks, we took isolated data for

those cases.

Table (1)

Number of disks | Time [seconds]

3 0.00031364 11 0.08890906

4 0.000542223 12 0.27752012

5 0.001012713 13 0.988660783

6 0.001990587 14 3.697941035

7 0.00352335 15 14.26059395

8 0.005911112 16 56.51282227

9 0.012826025 17
Single value

 263.5115719

10 0.030550957 18
Single value

 1285.241847

 In Figure 7, we see an exponential behavior. It

continues with the same growing tendency by incrementing

the number of disks. In order to have a better visualization,

were only graphed the first 8 data.

Figure 7

Time tendency

7 Discussion

 In [1] authors have already discussed the importance of

understanding and manage some concepts we also use in this

paper: size of disks, direction of movement (they called

cycles), and time to move each disk. Although they justify

most of their algorithm's structures, their quantity of

propositions, theorems, and properties is kind of large.

 Their work is so relevant because sets principles we

use. Nevertheless, total of restrictions they have, we

summarize in two premises which in turn forms a single

heuristic function to evaluate. As well we propose

mathematical expressions for some of their propositions.

 Besides, we provided an explicit explanation of the

logic of functioning. We structured the solution in such way

the reader can apply the algorithm in their chosen

programming language. By implementing simple functions

with generic (not advanced) programming knowledge.

 Moreover, the time our algorithm performs is

significantly larger than in other papers [1][2]. This situation

is not due the malfunctioning or planning of the solution, but

the computing requirements. Whereas we save considerably

memory because we only keep the last state of towers, in

each iteration we have to calculate the heuristic value for the

movements. From the file we use to follow the procedure

(Figure 6), we noticed there is always 3 possible movements

to do in each step (there is an exception on first movement,

where there are just 2 possible movements). Thus, we may

know how many evaluations we will do:

 (
)

 (8)

 This is a peculiar issue in heuristic algorithms. Faced

with not informed searches, where does not really matter

optimization, and memory spending is high. Our particular

heuristic search takes care about memory and optimization of

routes.

8 Concluding and future work

 It was set from the very start our solution applies for 3

towers/pegs. Such as they do in [2] where they prove with 4

pegs, one very interesting improvement for our algorithm

would be trying to implement it for at least 1 extra tower. We

do not discard following looking for upgrades in our code

line in order to make performance more efficient.

 Finally, we share our code with the aim of challenge

readers to incorporate more features and get out a research

before of us.

9 Python code

-*- coding: utf-8 -*-

from time import time #import "time" function to test

Erick Berssain Garcia Ventura

#Developed at School of Engineering, UNAM

#Mexico, Mexico city

#berss4x@hotmail.com , berssain@hotmail.com

https://berssain.com

generatedStates = open('generatedStates.txt', 'w')

solutionRoute= open('solutionRoute.txt', 'w')

Ti=[[],[],[]] #List for initial state of each tower (3 towers)

Tg=[[],[],[]] #List for goal state of each tower (3 towers)

states=[[],[],[]] #states=[[towerOrigin],[last disk's value],[heuristic]]

times=[]

temp=[]

counterTime=1

#making a list to each disk to know when its movement shall execute

def makeTimes():

 for x in xrange(0,numberDisks):

 times.extend([[]])

 for x in reversed(xrange(0,numberDisks)):

 temp.append(x+1)

 for x in xrange(0,numberDisks):

 Ti[0].append(temp[x]) #sets the initial state according the number of disks EG: [[4,3,2,1],[],[]]

 Tg[2].append(temp[x]) #sets the goal state according the number of disks EG: [[],[],[4,3,2,1]]

 for x in xrange(1,pow(2,numberDisks)+1):

 for y in xrange(1,numberDisks+1):

 if pow(2,y)*(x)-pow(2,y-1)<pow(2,numberDisks):

 times[y-1].append(pow(2,y)*(x)-pow(2,y-1)) #sets the expected movements for each disk.

#Returns the last disk's value from 'tower' given

def lastDiskValue(tower):

 return Ti[tower][len(Ti[tower])-1]

#returns the expected direction movement of a given disk

def expectedDirection(disk):

 if disk%2==0 and numberDisks%2== 0: #even number and even number of disk

 return -1 #To LEFT

 elif disk%2!=0 and numberDisks%2== 0: #Odd number and even number of disk

 return -2 #To RIGHT

 elif disk%2==0 and numberDisks%2!= 0: #even number and Odd number of disk

 return -2 #To Right

 elif disk%2!=0 and numberDisks%2!= 0: #Odd number and Odd number of disk

 return -1 #To LEFT

 else:

 return -4 #Failure case

#To check if a movement from "towerOrigin" to "towerDest" may be executed

def checkMovement(towerOrigin,towerDest):

 lastDiskOrigin=len(Ti[towerOrigin]) #Origin tower last disk's index

 lastDiskDest=len(Ti[towerDest]) #Destiny tower last disk's index

 if lastDiskOrigin ==0: #Checking if origin tower is empty

 return False

 else:

 if lastDiskDest==0 : #checking if destiny tower is empty

 return True

 elif lastDiskValue(towerOrigin)<lastDiskValue(towerDest):#checking if origin tower's last disk is less than

the destiny's

 return True

 else:

 return False

def printTi(fileToWrite):

 fileToWrite.write("\nTA: "+ str(Ti[0]) + "\nTB: " + str(Ti[1]) + "\nTC: " + str(Ti[2])+ "\n")

#to show a possible disk's movement from 'originTower' to 'destTower'. (it doesn't affect Ti)

def simulateMoveDish(originTower,destTower,heuris):

 Ti[originTower+destTower].append(Ti[originTower].pop()) #make movement

 generatedStates.write("\n\t\t\tHeuristics value: : "+str(heuris))

 generatedStates.write("\n\tTA: "+ str(Ti[0]) + "\n\tTB: " + str(Ti[1]) + "\n\tTC: " + str(Ti[2])+ "\n")

 Ti[originTower].append(Ti[originTower+destTower].pop()) #returns movement

#to move a dish from 'originTower' to 'destTower'

def moveDish(originTower,destTower):

 Ti[originTower+destTower].append(Ti[originTower].pop())

 printTi(solutionRoute)

 solutionRoute.write("___________________\n")

M A I N

numberDisks= int(input("Please, enter the number of disks:"))#ask for the number of disks to play

makeTimes()

print "Initial State: ",Ti

solutionRoute.write("\t\t\t Tower of Hanoi\n\n")

solutionRoute.write("\t\t Heuristics: Best First\n")

solutionRoute.write("\t\t File: Solution Route\n\n")

solutionRoute.write("Initial State\n")

printTi(solutionRoute)

solutionRoute.write("___________________\n")

generatedStates.write("\t\t\t Tower of Hanoi\n\n")

generatedStates.write("\t\t Heuristics: Best First\n")

generatedStates.write("\t\t File: Generated States\n\n")

time_i = time()

while Ti!=Tg:

 for tower in range(0,len(Ti)):

 for displ in range(1,3): #check if may displace -1 or -2 position in array, which means -1 ->1 to left ; -2 -

> 1 to right

 if checkMovement(tower,tower-displ) == True:

 states[0].append(tower) #add field 'towerOrigin'

 states[1].append(-displ) #add field 'last disk's value' with the displacement

 states[2].append(0) #add field 'heruistic' with initial value of 0

 for x in xrange(0,len(states[0])):

 if counterTime in times[lastDiskValue(states[0][x])-1]: #check if it's time to move disk x

 states[2][x]=states[2][x] + 1 #if yes, we add the minimum heuristic value possible +1

 else:

 states[2][x]=states[2][x] + 3 #if not, we add the maxium heuristic value possible +3

 if states[1][x] == expectedDirection(lastDiskValue(states[0][x])):

 states[2][x]=states[2][x] + 1

 else:

 states[2][x]=states[2][x] + 3

 generatedStates.write("\nMovement number: "+ str(counterTime))

 generatedStates.write("\nCurrent state of Towers:")

 printTi(generatedStates)

 generatedStates.write("\nPossible Movements:")

 for x in xrange(0,len(states[0])):

 simulateMoveDish(states[0][x],states[1][x],states[2][x])

 indexSelected=states[2].index(min(states[2]))

 moveDish(states[0][indexSelected],states[1][indexSelected])

 states=[[],[],[]]

 counterTime=counterTime+1

time_f = time()

time_ex = time_f - time_i

print "Final State",Ti

print 'Execution time:',time_ex,'seconds'

10 References

[1] Fuwan Ren, Qifan Yang, Jiexin Zheng, and Hui Yan.

“Non-recursive Algorithm of Tower of Hanoi Problem”. 10th

IEEE International Conference on Computer and Information

Technology, pp. 2134 – 2137, 2010.

[2] Jun Wang1,2, Hong-fa Wang1, Guo-ying Yue1, and

Nan Xie1. “Proving of the Non-recursive Algorithm for 4-Peg

Hanoi Tower”. International Conference on Electronic

Computer Technology, pp. 406-409, 2009.

[3] Giray Havur, Kadir Haspalamutgil, Can Palaz, Esra

Erdem, and Volkan Patoglu. “A Case Study on the Tower of

Hanoi Challenge: Representation, Reasoning and Execution”.

IEEE International Conference on Robotics and Automation,

pp. 4552- 4559, 2013.

[4] Steven L. Tanimoto. “Solving Problems by Drawing

Solution Paths”. 2015 IEEE Symposium on Visual Languages

and Human-Centric Computing (VLlHCC), 2015.

[5] Huazhen Xu, Zhen You, and Jinyun Xue. “Automatic

Verification of Non-recursive Algorithm of Hanoi Tower by

Using Isabelle Theorem Prover*”. IEEE SNPD 2016, May

30-June 12016.

[6] Nadav Voloch, Elazar Birnbaum, and Amir Sapir.

“Generating Error-Correcting Codes based on Tower of

Hanoi Configuration Graphs”. IEEE 28-th Convention of

Electrical and Electronics Engineers in Israel. 2014

[7] Rafiqul Islam, Shakib, Azizur Rahaman, Obaidur

Rahman , and Al-Sakib Khan Pathan. “A Neighbour

Discovery Approach for Cognitive Radio Network Using

Tower of Hanoi (ToH) Sequence Based Channel

Rendezvous”.

[8] https://gallery.technet.microsoft.com/scriptcenter/Tower

s-of-Hanoi-Recursive-8efcd412#content

