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Abstract - Along this paper we propose a new algorithm for 

solving the Tower of Hanoi puzzle. We focus on computer 

memory efficiency by applying the Artificial Intelligence’s 

method “Best-First Search”. We develop the algorithm with 

detailed explanations, taking in mind it may be coded in any 

programming language. Furthermore, we set a heuristic 

function and several mathematical definitions, diagrams, and 

examples in order to make the reader understand fully. 

Finally, we present the solution implemented in python, 

adding proofs of its logical functioning as well as results 

about execution time made for 16 cases (from using only 3 

disks until 18). 

 

Keywords: Tower of Hanoi, best-first search, heuristic, 

function, python. 

 

1 Introduction 

  The Tower of Hanoi, mathematical puzzle, is an 

example to apply programming techniques such as recursive 

algorithms [1][2]. Recursive algorithms are relatively simple 

to implement in most programming languages. These 

algorithms aid to solve a wide variety of problems and have 

been selected, by software companies such as Microsoft [8], 

Oracle, and Facebook, and at robotics challenges [3], to test 

the aspirants programming abilities. Mainly in the first stage 

of the recruitment process. These companies change the 

constraints of the puzzle to increase the complexity of the 

algorithm. For example, changing the number of disks the 

algorithm has to solve for. 

 However, as the authors describe in [5], solving this 

problem by a recursive algorithm takes up a lot of computing 

resources. And, although many algorithms have been 

developed, few times they are measured in efficiency and 

memory spending. 

 Thereby we put forward a method where we minimize 

the use of memory.  

 First we take as a base a 3D model from the original 

Hanoi Tower. From there, we make a geometric projection to 

a 2D model (new model). Then, we redefine the allowed 

movements from 3D model, now for the 2D model. At the 

end we abstract the new model like an array or a list for each 

tower (depending on the programming langue which is 

talking on). 

 Having this abstraction, we proceed to establish an 

evaluation function which is the main point of the algorithm.  

 Solving this problem by different methods has a great 

relevance. It is not only related with the puzzle/game, but also 

with planning and expanding to other areas. Graphs Theory 

[6], Ad Hoc Networks [7], and Collaborative/Educative [4] 

issues have been proposed from this Tower of Hanoi 

problem. 

 

2 Considerations 

 Before to start the algorithm explanation, next are some 

concepts that are used to help the understanding of the whole 

paper. 

 

 Consideration 1: We refer to “n”, which means the total 

number of disks selected to play, and whose definition is the 

follows:   

    *          + (1) 

 Consideration 2: Although most of the examples in this 

paper are showed for 3 or 4 disks, the solution applies for n 

number of disks.     

 Consideration 3: The algorithm and solution proposed 

has been tested for 3 pegs. 

 Consideration 4: Since the puzzle may have n disks, we 

refer to disks weights according to their size. The smallest 

one has a weight of 1 and the largest one has n. As shown in 

figure 1.  
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Figure 1  
Weight assignments to each disk 

 

 Consideration 5: The optimum number of movements 

for solving the puzzle, with n disks is:   

     
 -  (2) 

 

*This is a puzzle fact and it has already demonstrated and 

taken as a true in other papers [1]. 

 Consideration 6:  Figure 3 is the flat (2D) 

representation of the 3D puzzle model (Figure 2). 

 

 
Figure 2   

3D Representation of Tower of Hanoi 

 
Figure 3   

2D Representation of Tower of Hanoi 

 For the movements to the right, they are in the next 

sequence:  

Origin Tower →Destination Tower 

A→C 

C→B 

B→A 

 Meanwhile for the ones to the left, they are:  

A→B 

B→C 

C→A 

3 Premises 

 With the aim of getting the problem solved with the 

minimum of movements, it was firstly studied without the 

programming perspective. Next we define some premises 

which are the sustention of the algorithm.   

3.1 Premise 1: Definition 

    Premise 1 - Direction of movement.  

 

    If the number of disks which are played is an even number, 

then: 

 The disks with even weight (2, 4, 6, etc.) have to be 

moved to the left. 

 The disks with odd weight (1, 3, 5, etc.) have to be 

moved move to the right. 

 

    Otherwise, if the number of played disks is an odd number 

the directions are exchanged. 

 Thus:  

 Even weight disks to the right.  
 Odd weight disks to the left. 

 

3.2 Premise 1: Examples 

 For both of next examples, disks filled with dots move 

to the right and disks filled with lines to the left. 

 
Figure 4   

When the number of disk played is odd. 



 
Figure 4   

When the number of disk played is even. 

 

3.3 Premise 2: Definition 

    Premise 2 - Number of movement. 

  

    For all disks in puzzle, disk number “k” whose weight is 

represented with     and where       , is only allowed to 

be moved every     times. Counting from the first time it 

was moved, which is the       time. 

 

3.4 Premise 2: Examples 

Disk 1  

       

First movement at         

Move every       times.  

Expected to move at time: 1, 3, 5… 

   

Disk 2  

       

First movement at         

Move every       times. 

Expected to move at time: 2, 6, 10 … 

 

Disk 3  

       

First movement at         

Move every       times.  

Expected to move at: 4, 12, 20 … 

 

And so on for all disks.  

 

4 Heuristic function 

 As in the title is set, the method we developed to find 

the best route is through a First-Best Search. There we 

evaluate the 2 parameters raised in the premises from Section 

3 on this paper. 

 Thereby, it is possible to make a heuristic evaluation 

function called h(k), which in turn is made up of two other 

functions, d(k) and t(k).  

 *Note: Here, we take k as it was used in section 3.3. 

 

 Where  ( ) evaluates Premise 1, and it is defined as: 

 

  

 

 ( )  {
                                                 

  

                                                     
 

“d” of Direction 

 (3) 

 

 

 And t(k) evaluates Premise 2, and it is defined as: 

 

 

 ( )  {
                          

  
                              

 

 

“t” of Time 

 (4) 

 

 By adding both of above functions, we have the main 

function: 

 

 ( )    ( )    ( ) 
 

“h” of Heuristic 

 

 (5) 

 

 

 So, there may be 3 results: 2, 4, and 6. Thus, the 

algorithm provides us certainty that there is only one possible 

disk to move for each step. This one will be chosen by taking 

as criterion the smallest value of heuristics. 

 

 

 

     ( )       ( )        ( ) 
 

 

 (6) 

 

 

 With the criterion of smallest value of heuristics, joined 

with definitions of d(k) and t(k). 

 
     ( )    

and 
     ( )    

 

 This means the algorithm will always choose the 

movement whose  ( )        ( )    . 

 

 



5 Design of solution 

 

 The algorithm developed has been designed to be coded 

by a functional structure. It has 7 functions. 6 of them are for 

auxiliary procedures by the main thread. The other one is an 

additional function which is used to verify the correct 

functioning of the program and to observe what happens at 

each step.  

 The general purpose of each function is described 

below. 

 

5.1 Make times 

 Arguments: Number of disks for playing.  

 

 First it creates the initial state for each tower. Always 

tower A is the initial tower (the one which has all disks). And 

also creates our goal state, always tower C is the target 

destination.  

 

 For instance, for 3 disks our initial state would be: 

 

    ,     - 
   , - 
   , - 

 and the goal state:  

    , - 
   , - 
   ,     - 

 

 Then, also it makes as many lists as number of disks. 

Each list is assigned to a particular disk. There we save the 

expected times for moving that disk, premise 2.  

 Taking the examples from premise 2, we have for each 

disk the next lists: 

 
       ,        - 
       ,          - 
       ,           - 

 

 Knowing the algorithm executes just the needed 

number of steps, we restrict the amount of elements per list. 

We let the lists grow up while their elements are smaller than 

     (from consideration 4,  minimum number of needed 

steps). 

 

 This way, lists are defined as:  

 

 
                     

           (                  )       
 

                        
 

   ,                  -                 
      

      
  

  
 

 (7) 

 

 

 And so, we avoid a memory unnecessary expense. 

 

 Here, we have a relation between the weight of the disk 

and the amount of elements in its list. The smallest disk will 

be the one which has more elements, while the biggest one 

will ever have just a single element. 

 

5.2 Last disk value 

 Arguments: A tower. 

 

 It returns the weight of its last disk.   

 

5.3 Expected direction 

 Arguments: The weight of a single disk. 

 

 According to the number of played disks and the disk’s 

weight received, it evaluates Premise 2. Returns the 

corresponding direction to move the disk. 

 

5.4 Check movement 

 Arguments: Two towers (origin and target). 

 

 It checks if it is possible to move the origin’s last disk 

to target tower. It considers the puzzle rule: “A disk cannot 

be over other disk whose weight is less”.   

 

 Here may be 4 possible scenarios to face: 

 

1. Since we receive just the towers, we do not know if 

the origin tower really has disks in it. If the origin 

tower is empty, the function returns that the 

movement is not possible (because it does not have 

a disk to move).  

2. If the target tower is empty, any disk can be moved 

there. So, the function returns that the movement is 

possible. 

3. If the last disk of the target tower has a less weight 

than the last disk from origin tower. The function 

returns that the movement is possible. 

4. The opposite case of the previous one. When the last 

disk of the target tower has a greater weight than the 

last disk from origin tower. The function returns that 

the movement is not possible 

 

 

5.5 Move dish 

 Arguments: Two towers, origin and target. 

 

 It moves origin’s last disk to target tower.  

 

5.6 Simulate move dish
*Additional function

 

 Arguments: Two towers (origin and target), a heuristic 

value.  



 In order to get evidence about the procedure was 

followed correctly, we print on a file the all possible states 

for each step.  

 

5.7 Main  

 Below we show the program logic and flow, by using 

previously described functions.   

 

 START 

 Ask the number of disks for playing. 

 Execute Make Times. 

 While we do not achieve our goal state: 

o For each Tower, checks if its last disk can be 

moved to one or both of the other two towers 

with Check Movement. 

 If the movement can be executed:  

 Saves a row from the 

movement with next values: 

origin tower and direction of 

displacement. Besides we add 

an empty field for heuristic 

value initialized with zero.   

o For each saved row in previous cycle: 

 Checks if the saved direction on the 

row is the one expected, according to 

the lists created by MakeTimes 

(premise 1). 

 If it is: Add 1 to the heuristic 

value. 

 If not: Add 3 to the heuristic 

value. 

 Checks if it is time to move last disk 

for tower in row (premise 2).   

 If it is: Add 1 to the heuristic 

value. 

 If not: Add 3 to the heuristic 

value. 

o Select the row with smallest heuristic value. 

o Execute the corresponding movement in the 

marked direction.  

o Free from memory and all rows saved. 

o Increments in one the number of executed steps.  

 FINISH 

 

 

 

6 Results 

 Next we present some results gotten from 

implementation made in python. Whole evaluation was made 

under next computer conditions:  

 Processor: 2.7 GHz Intel Core i5 

 Memory: 8 GB 1867 MHz DDR3 

 Storage type: SSD 

 OS: macOS Sierra  

o Version 10.12.3 

o Python 2.7 

 

6.1 Procedure 

 In Figure 6 we show a random part from the file we 

used for examine the procedure. It is the mentioned on the 

function Simulate move dish, from previous section. 

 

 In this case we played 16 disks. As we can see, we 

have:  

 The sum of executed movements until the moment.  

 Current state for the three towers.  

 Possible movements that can be made. 

 Heuristic values for all those movements.   

 

 

 
Figure 6   

Evaluation example 
 

 In state from step 30690, we can observe the movement 

with the minimum heuristic is the third one. For this 

movement, disk 2 is moved from tower C (TC) to tower B 

(TB). We can verify the movement was correctly chosen on 

step 30691, where we observe the movement completed and 

the new possible movements for that new state. 

 

6.2 Time 

 About execution time, we tested the program with only 

processes interns from computer executing. This means no 

apps such as office suite software or internet browsers were 

open. 

 In addition, it is necessary to mention we modified a 

little the program for this evaluation. We let only essential 



functions by removing comments and printing files functions. 

All these with the aim of measure effective time of the 

algorithm.  

 In next table we have data about execution time. 

Column called Time shows the truncated mean at 20%. Since 

we took 10 events per disk, that percentage eliminates the 2 

biggest and the 2 smallest values. At the end, those times (in 

seconds) represents the mean of 6 measurements. 

 We did this because we wanted to have a representative 

value of the samples. So we eliminated the 4 most scattered 

values of the mean. 

 Another thing to mention is we started evaluations with 

3 disks because it is the most basic example at finding the 

puzzle. From 3 to 16 disk, we took 10 measurements which 

in total were 140. In addition, because of the increase of the 

lapse of time starting from 17 disks, we took isolated data for 

those cases.  

Table (1) 

Number of disks  |  Time [seconds] 

3 0.00031364 11 0.08890906 

4 0.000542223 12 0.27752012 

5 0.001012713 13 0.988660783 

6 0.001990587 14 3.697941035 

7 0.00352335 15 14.26059395 

8 0.005911112 16 56.51282227 

9 0.012826025 17 
Single value

 263.5115719 

10 0.030550957 18
Single value

 1285.241847 

 

 In Figure 7, we see an exponential behavior. It 

continues with the same growing tendency by incrementing 

the number of disks. In order to have a better visualization, 

were only graphed the first 8 data. 

 

 
Figure 7   

Time tendency 

7 Discussion 

 In [1] authors have already discussed the importance of 

understanding and manage some concepts we also use in this 

paper: size of disks, direction of movement (they called 

cycles), and time to move each disk. Although they justify 

most of their algorithm's structures, their quantity of 

propositions, theorems, and properties is kind of large.  

 Their work is so relevant because sets principles we 

use. Nevertheless, total of restrictions they have, we 

summarize in two premises which in turn forms a single 

heuristic function to evaluate. As well we propose 

mathematical expressions for some of their propositions. 

 Besides, we provided an explicit explanation of the 

logic of functioning. We structured the solution in such way 

the reader can apply the algorithm in their chosen 

programming language. By implementing simple functions 

with generic (not advanced) programming knowledge.  

 

 Moreover, the time our algorithm performs is 

significantly larger than in other papers [1][2]. This situation 

is not due the malfunctioning or planning of the solution, but 

the computing requirements. Whereas we save considerably 

memory because we only keep the last state of towers, in 

each iteration we have to calculate the heuristic value for the 

movements. From the file we use to follow the procedure 

(Figure 6), we noticed there is always 3 possible movements 

to do in each step (there is an exception on first movement, 

where there are just 2 possible movements). Thus, we may 

know how many evaluations we will do: 

 
 

                                           
 

      ( 
   )      

 (8) 

 

 This is a peculiar issue in heuristic algorithms. Faced 

with not informed searches, where does not really matter 

optimization, and memory spending is high. Our particular 

heuristic search takes care about memory and optimization of 

routes.  

 

8 Concluding and future work 

 It was set from the very start our solution applies for 3 

towers/pegs. Such as they do in [2] where they prove with 4 

pegs, one very interesting improvement for our algorithm 

would be trying to implement it for at least 1 extra tower. We 

do not discard following looking for upgrades in our code 

line in order to make performance more efficient.  

 Finally, we share our code with the aim of challenge 

readers to incorporate more features and get out a research 

before of us.   

 

9 Python code 

 
# -*- coding: utf-8 -*- 

from time import time #import "time" function to test 

# Erick Berssain Garcia Ventura 

#Developed at School of Engineering, UNAM  

#Mexico, Mexico city 

#berss4x@hotmail.com   ,  berssain@hotmail.com  

# https://berssain.com 

 

generatedStates = open('generatedStates.txt', 'w') 

solutionRoute= open('solutionRoute.txt', 'w') 

Ti=[[],[],[]]   #List for initial state of each tower (3 towers) 

Tg=[[],[],[]]   #List for goal state of each tower (3 towers) 

states=[[],[],[]] #states=[[towerOrigin],[last disk's value],[heuristic]] 

times=[] 

temp=[] 

counterTime=1 

 

 



#making a list to each disk to know  when its movement shall execute 

def makeTimes(): 

    for x in xrange(0,numberDisks): 

        times.extend([[]]) 

    for x in reversed(xrange(0,numberDisks)): 

        temp.append(x+1) 

    for x in xrange(0,numberDisks): 

        Ti[0].append(temp[x]) #sets the initial state according the number of disks EG: [[4,3,2,1],[],[]] 

        Tg[2].append(temp[x]) #sets the goal state according the number of disks EG: [[],[],[4,3,2,1]] 

    for x in xrange(1,pow(2,numberDisks)+1): 

        for y in xrange(1,numberDisks+1): 

            if pow(2,y)*(x)-pow(2,y-1)<pow(2,numberDisks): 

                times[y-1].append(pow(2,y)*(x)-pow(2,y-1)) #sets the expected movements for each disk. 

 

#Returns the last disk's value from 'tower' given 

def lastDiskValue(tower): 

    return Ti[tower][len(Ti[tower])-1] 

 

#returns the expected direction movement of a given disk 

def expectedDirection(disk): 

    if disk%2==0 and numberDisks%2== 0:     #even number and even number of disk 

        return -1                               #To LEFT 

    elif disk%2!=0 and numberDisks%2== 0:   #Odd number and even number of disk 

        return -2                               #To RIGHT 

    elif disk%2==0 and numberDisks%2!= 0:   #even number and Odd number of disk 

        return -2                               #To Right 

    elif disk%2!=0 and numberDisks%2!= 0:   #Odd number and Odd number of disk 

        return -1                               #To LEFT 

    else: 

        return -4                           #Failure case 

 

#To check if a movement from "towerOrigin" to "towerDest" may be executed 

def checkMovement(towerOrigin,towerDest): 

    lastDiskOrigin=len(Ti[towerOrigin]) #Origin tower last disk's index 

    lastDiskDest=len(Ti[towerDest])  #Destiny tower last disk's index 

 

    if lastDiskOrigin ==0: #Checking if origin tower is empty 

        return False 

    else: 

        if lastDiskDest==0 : #checking if destiny tower is empty 

            return True 

        elif lastDiskValue(towerOrigin)<lastDiskValue(towerDest):#checking if origin tower's last disk is less than 

the destiny's 

            return True 

        else: 

            return False 

 

def printTi(fileToWrite): 

    fileToWrite.write("\nTA: "+ str(Ti[0] ) + "\nTB: " + str(Ti[1] ) + "\nTC: " + str(Ti[2] )+ "\n") 

 

#to show a possible disk's movement from 'originTower'  to 'destTower'. (it doesn't affect Ti) 

def simulateMoveDish(originTower,destTower,heuris): 

    Ti[originTower+destTower].append(Ti[originTower].pop()) #make movement 

    generatedStates.write("\n\t\t\tHeuristics value: : "+str(heuris)) 

    generatedStates.write("\n\tTA: "+ str(Ti[0] ) + "\n\tTB: " + str(Ti[1] ) + "\n\tTC: " + str(Ti[2] )+ "\n") 

    Ti[originTower].append(Ti[originTower+destTower].pop()) #returns movement 

 

#to move a dish from 'originTower'  to 'destTower' 

def moveDish(originTower,destTower): 

    Ti[originTower+destTower].append(Ti[originTower].pop()) 

    printTi(solutionRoute) 

    solutionRoute.write("___________________\n") 

 

 

# M A I N  

numberDisks= int(input("Please, enter the number of disks:"))#ask for the number of disks to play 

makeTimes() 

print "Initial State: ",Ti 

 

solutionRoute.write("\t\t\t Tower of Hanoi\n\n") 

solutionRoute.write("\t\t Heuristics:  Best First\n") 

solutionRoute.write("\t\t File: Solution Route\n\n") 

solutionRoute.write("Initial State\n") 

printTi(solutionRoute) 

solutionRoute.write("___________________\n") 

 

generatedStates.write("\t\t\t Tower of Hanoi\n\n") 

generatedStates.write("\t\t Heuristics:  Best First\n") 

generatedStates.write("\t\t File: Generated States\n\n") 

 

time_i = time() 

 

while Ti!=Tg: 

 

    for tower in range(0,len(Ti)): 

        for displ in range(1,3):   #check if may displace -1 or -2 position in array, which means -1 ->1 to left    ; -2 -

> 1 to right 

            if checkMovement(tower,tower-displ) == True: 

                states[0].append(tower)    #add field 'towerOrigin' 

                states[1].append(-displ)    #add field 'last disk's value' with the displacement 

                states[2].append(0)           #add field 'heruistic' with initial value of 0 

 

 

 

    for x in xrange(0,len(states[0])): 

        if counterTime in times[lastDiskValue(states[0][x])-1]: #check if it's time to move disk x 

            states[2][x]=states[2][x] + 1 #if yes, we add the minimum heuristic value possible .... +1 

        else: 

            states[2][x]=states[2][x] + 3 #if not, we add the maxium heuristic value possible .... +3 

 

        if states[1][x] == expectedDirection(lastDiskValue(states[0][x])): 

            states[2][x]=states[2][x] + 1 

        else: 

            states[2][x]=states[2][x] + 3 

 

    generatedStates.write("\nMovement number: "+ str(counterTime)) 

    generatedStates.write("\nCurrent state of Towers:") 

    printTi(generatedStates) 

    generatedStates.write("\nPossible Movements:") 

 

    for x in xrange(0,len(states[0])): 

        simulateMoveDish(states[0][x],states[1][x],states[2][x]) 

 

    indexSelected=states[2].index(min(states[2])) 

 

    moveDish(states[0][indexSelected],states[1][indexSelected]) 

    states=[[],[],[]] 

    counterTime=counterTime+1 

time_f = time() 

 

time_ex = time_f - time_i 

 

print "Final State",Ti 

 

print 'Execution time:',time_ex,'seconds'  
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