ÍNDICE

ANÁLISIS DE ANISOTROPÍA SÍSMICA EN EL CAMPO GEOTERMICO LOS HUMEROS, PUEBLA, MÉXICO.

RESUMEN	1
CAPITULO 1.	2
1.1 Introducción	2
1.2 Antecedentes	2
1.3 Planteamiento del Problema	3
1.4 Hipótesis	3
1.5 Alcances	3
1.6 Metodología	4
1.7 Objetivos	4
1.8 Organización	5
CAPITULO 2. CAMPO GEOTÉRMICO LOS HUMEROS, PUEBLA	6
2.1 Área de estudio	6
2.2 Marco geológico	7
2.3 Estructuras y pozos geotérmicos	10
2.4 Sismicidad del campo Los Humeros	12
2.4.1 Estudios previos	12
2.5 Adquisición de datos y equipo	12
2.5.1 Red Sísmica Telemétrica Permanente	13
2.5.2 Red Sísmica Temporal	13
2.6 Procesamiento y localización de los eventos sísmicos	15
2.6.1 Localización de los sismos	15
2.6.2 Programa de localización	15
2.6.3 Ecuación para el cálculo de Magnitud de duración	16
2.6.4 Modelo de velocidades 2.7 Distribución de la sismicidad	16 16
2.8 Distribución de esfuerzos	
2.8.1 Mecanismos focales simples	21 21
CAPITULO 3. ANÁLISIS DE ANISOTROPÍA SÍSMICA DEL CAMPO	21
3.1 Medios anisótropos	23
3.2 Sistemas de simetría	24
3.3 Birrefringencia	25
3.4 Tratamiento matemático	26
3.5 Causas de la anisotropía	27
3.5.1 Causas de anisotropía. Alineación de granos o cristales	28
3.5.2 Capas repetidas	28
3.5.3 Esfuerzos	29
3.5.4 Fallas y fracturas	29
3.6 Parámetros de anisotropía sísmica	30

3.6.1 Parámetro de polarización	30
3.6.2 Parámetro de retraso de tiempo	30
3.6.3 Rotación de coordenadas	30
3.7 Condiciones para visualizar la anisotropía en los registros sísmicos y hodogramas	31
3.8 Metodología para obtener los parámetros de anisotropía	33
3.8.1 Método de polarización	33
3.8.2 Método de retraso de ondas qS1-qS2	35
CAPITULO 4. DISCUSION Y RESULTADOS	37
4.1 Resultados del análisis de parámetros	37
4.2 Parámetro de polarización de la onda de corte qS1	38
4.3 Tiempos de retardo de las ondas qS1 y qS2	43
4.4 Graficas de S-P	45
4.5 Esfuerzos tectónicos del CVTM	48
CAPITULO 5. CONCLUSIONES	49
REFERENCIAS	50
Anexos	56

Relación de Figuras

CAPITULO 2

- Figura 2.1. Localización del campo geotérmico Los Humeros.
- Figura. 2.2 Geología del campo Los Humeros.
- Figura 2.2.1 Evolución volcánica de la caldera Los Humeros.
- Figura 2.3 El mapa de la geología y estructuras superficiales en Los Humeros.
- Figura 2.3.1 Mapa de elevación del campo geotérmico Los Humeros con las principales fallas.
- Figura 2.4 Fotografías de las estaciones sísmicas.
- Figura 2.5 Mapa de la distribución de las redes sísmicas.
- Figura 2.6 Sismograma de un evento sísmico.
- Figura 2.6.1 Mapa que muestran elipses de error
- Figura 1.7 Sismicidad dentro del campo Los Humeros.
- Figura 2.7.1 Perfiles N-S, E-W del campo.
- Figura 2.7.2 Sismos al centro del campo.
- Figura 2.8. Mecanismos focales en Los Humeros.
- Figura 2.8.1 Esfuerzo horizontal máximo compresivo del Cinturón Volcánico Mexicano y en el campo geotérmico Los Humeros.

CAPITULO 3

- Figura 3.1. Modelo de anisotropía elementa.
- Figura 3.2 Esquema de los sistemas cristalinos.
- Figura 3.3 La incidencia de una onda S en un medio anisótropo.
- Figura 3.4 Dirección de propagación en un medio de isotropía transversal o anisotropía elemental.
- Figura 3.5 Síntesis de los patrones y fuentes anisótropos típicamente reportados en ambientes tectónicos.
- Figura 3.6 Componentes Radial y Transversal.
- Figura 3.7 Arribos de de un evento sísmico en sus tres componentes Z, N y E con hodogramas.

- Figura 3.7.1 Arribos de de un evento sísmico en sus tres componentes rotadas Z, R y T con hodogramas.
- Figura 3.7.2 Arribos Registro sísmico de la estación HU5 muestra diferentes arribos de tiempo en las componentes horizontales Radial y Transversal.
- Figura 3.8. Metodología para obtener retraso de ondas S.

CAPITULO 4

- Figura 4.1 Diagramas de polarización de la zona centro, periodo 1997-2002.
- Figura 4.2 Diagramas de polarización de la zona centro, periodo 2004-2008.
- Figura 4.3 Mapas de altitud donde se muestran los diagramas de polarización: arriba de 1997-2002, debajo de 2002-2008.
- Figura 4.3.1 Mapa de elevación que muestra la zonificación de fallas, las áreas del mismo color son una propuesta de las direcciones predominantes de las fallas y fracturas.
- Figura 4.3.2 Graficas de tiempo de retardo (qS2-qS1) contra tiempo (mes-año) del las estaciones de la zona Centro del periodo 1997-2002.
- Figura 4.3.2 Graficas de tiempo de retardo (qS2-qS1) contra tiempo (mes-año) de las estaciones de la zona Centro del segundo periodo (2004-2008).
- Figura 4.4 Gráfica de polarización de dispersión de datos y roseta de la estación S01.
- Figura 4.4.1 Las gráficas de polarización qS1 (θ) contra S-P de las estaciones del periodo 1997-2002 muestran valores más agrupados en el eje S-P que el de polaridad (θ).
- Figura 4.4.1Gráficas de polarización qS1 (θ) contra S-P del periodo 2004-2008 muestran valores más agrupados en la S-P que la polaridad (θ).
- Figura 4.4 Cinturón Volcánico Transmexicano donde se muestra fracturamiento preferencial NE-SW y NE-SW en gran parte del CVTM.