Filosofía de operación de un sistema de producción de crudo pesado en instalaciones costa afuera

TESIS
Que para obtener el título de Ingeniero Petrolero

PRESENTA
Omar Mancera Jiménez

DIRECTOR DE TESIS
M.I. Jaime Larios González

Ciudad Universitaria, Cd. Mx., 2018
Agradecimientos

Agradezco a mis padres Gabriela y Erik, a mis hermanos Ana y Erick, por haberme enseñado el significado de la vida, por guiarme con sus grandes consejos, enseñanzas, cariño y apoyo. Agradezco también a mis abuelos, a mis tíos y a mis primos por apoyarme en todo momento, lo más reconfortante es saber que siempre he contado con ustedes.

Agradezco a mis profesores por haberme brindado conocimientos invaluables, ya que más que ser maestros son un ejemplo a seguir. Un agradecimiento especial al Ing. Jaime Larios por brindarme la oportunidad de realizar este trabajo bajo su dirección, por compartir su tiempo y sus conocimientos. A mis sinodales, por su tiempo y sus valiosos comentarios.

A mis amigos Andrea, Simón y Jocabeth, por su gran apoyo y su valiosa amistad, sin duda es un placer haberlos conocido. Gracias a todos los que me acompañaron a lo largo de la facultad, porque sin ustedes la universidad no hubiese sido lo mismo.

A mis amigos Carlos, Iván y Roberto, porque las casualidades no existen y siempre habrá algo que nos una. A mis amigos Danae, Sabrina, Daniela, Pablo, Eduardo, Erick y Julio, porque son sin duda esa familia que elegimos.

Gracias a la Universidad Nacional Autónoma de México, a la Facultad de Ingeniería y al Colegio de Ciencias y Humanidades Sur por permitirme formarme en esta gran institución, porque es un honor y un privilegio ser UNAM.
Índice

Filosofía de operación de un sistema de producción de crudo pesado en instalaciones costa afuera.

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Índice</td>
<td>1</td>
</tr>
<tr>
<td>Resumen</td>
<td>4</td>
</tr>
<tr>
<td>Abstract</td>
<td>5</td>
</tr>
<tr>
<td>Lista de figuras</td>
<td>6</td>
</tr>
<tr>
<td>Lista de tablas</td>
<td>9</td>
</tr>
<tr>
<td>Introducción</td>
<td>10</td>
</tr>
<tr>
<td>Capítulo 1 Historia de instalaciones costa afuera</td>
<td>13</td>
</tr>
<tr>
<td>1.1. Comienzo de la explotación costa afuera</td>
<td>13</td>
</tr>
<tr>
<td>Capítulo 2 Tipos de instalaciones utilizadas costa afuera</td>
<td>24</td>
</tr>
<tr>
<td>2.1. Plataformas fijas</td>
<td>24</td>
</tr>
<tr>
<td>2.1.1. Superestructura</td>
<td>26</td>
</tr>
<tr>
<td>2.1.2. Subestructura</td>
<td>27</td>
</tr>
<tr>
<td>2.1.3. Cimentación</td>
<td>28</td>
</tr>
<tr>
<td>2.1.4. Sistema de flotación</td>
<td>28</td>
</tr>
<tr>
<td>2.1.5. Subniveles</td>
<td>30</td>
</tr>
<tr>
<td>2.2. Plataformas TLP</td>
<td>31</td>
</tr>
<tr>
<td>2.3. Plataformas Spar</td>
<td>34</td>
</tr>
<tr>
<td>2.4. Plataformas Semi-sumergibles</td>
<td>36</td>
</tr>
<tr>
<td>2.5. FPSO</td>
<td>38</td>
</tr>
<tr>
<td>Capítulo 3 Filosofía de operación de un centro de proceso costa afuera para explotación de crudo pesado</td>
<td>42</td>
</tr>
</tbody>
</table>
3.1. Desarrollo del contexto operacional del centro de proceso

3.2. Clasificación de equipos

3.3. Descripción del proceso

3.3.1. Procesos y operaciones en los pozos productores de las plataformas satélites del centro de proceso

3.3.1.1. Medio árbol de producción

3.3.1.2. Separador de primera etapa o separador remoto

3.3.1.3. Sistema para inyección de gas residual BN

3.3.2. Procesos y operaciones de la plataforma de producción del Centro de Proceso

3.3.2.1. Separación de segunda etapa

3.3.2.2. Separador de prueba o de medición individual

3.3.2.3. Sistema de bombeo de crudo

3.3.2.4. Sistema de medición de crudo

3.3.2.5. Sistema de recuperación de vapores

3.3.2.6. Sistema de compresión de gas de alta

3.3.2.7. Cuarto de Variadores de Frecuencia BEC

3.3.2.8. Elementos de limpieza interna

3.3.3. Sistema de acondicionamiento de gas combustible

3.3.4. Sistema de generación y distribución eléctrica

3.3.5. Sistema de gas de instrumentos
3.3.6. Drenajes ---------------------------------- 81
3.4. Sistemas auxiliares, seguridad y procesos ---------------------------------- 82
3.5. Ventanas operativas ---------------------------------- 84
3.6. Características de insumos y productos ---------------------------------- 88
3.7. Redundancias ---------------------------------- 89
3.8. Alarmas y dispositivos de protección---------------------------------- 90
 3.8.1. Sistema de paro por emergencia (SPPE) ---------------------------------- 91
 3.8.2. Sistema de desfogue ---------------------------------- 92
 3.8.3. Sistema de detección de gas y fuego---------------------------------- 94
 3.8.4. Sistema digital de monitoreo y control---------------------------------- 96
 3.8.5. Sistema de red contra incendio ---------------------------------- 96
Capítulo 4 Análisis técnico-económico ---------------------------------- 101
Capítulo 5 Conclusiones y recomendaciones ---------------------------------- 110
Conclusiones ---------------------------------- 110
Recomendaciones ---------------------------------- 111
Referencias ---------------------------------- 112
Resumen

Hoy en día la mayoría de los yacimientos de petróleo convencional se encuentran en su etapa de declinación y el 40% de las reservas mundiales de petróleo corresponde a crudos pesados y extrapesados. Por lo que la explotación, procesamiento y transporte de estos recursos implica numerosos desafíos de ingeniería, lo cual ha incentivado el surgimiento de nuevas tecnologías e innovaciones en los métodos originalmente desarrollados para la explotación de crudos convencionales.

Más de la mitad de la producción de crudo en México corresponde a la producción de crudo pesado y extrapesado, y gran parte de esta, se extrae de campos marinos, ubicados a grandes distancias de la costa. Por esta razón en México, a partir del año 2007 se ha tenido la necesidad de utilizar infraestructura adecuada para la explotación de estos campos, por esta razón es de suma importancia conocer y entender como están constituidas y cómo funcionan estas.

Las instalaciones costa afuera que se utilizan para la extracción, manejo y distribución de crudo pesado y extrapesado, están conformadas por diferentes sistemas, todos importantes e indispensables para su óptimo funcionamiento; estos se pueden dividir en 3 grupos: estructurales, de proceso y de seguridad. En este trabajo se describen en forma general estos sistemas, sin embargo, este se enfoca más al entendimiento del proceso que sigue el hidrocarburo desde el pozo hasta llegar el punto de almacenamiento y/o exportación, lo cual es también conocido como “filosofía de operación”.

Abstract

Nowadays most conventional oil fields are in their decline stage and 40% of the world's oil reserves correspond to heavy and extra heavy oil. Consequently, the exploitation, processing and transportation of these natural resources implies numerous challenges to engineering, which has encouraged the emergence of new technologies and innovations in the methods originally developed for the conventional crude exploitation.

More than half of Mexico's oil and natural gas production corresponds to heavy and extra heavy crude oil production and much of it is extracted from marine fields located far from the coast. That's why in Mexico, since 2007, it has been necessary to use infrastructure for the exploitation of these fields, because it is important to know and understand how they are constituted and how they work.

The offshore facilities that are used for the extraction, handling, and distribution of heavy and extra heavy oil are made up of different systems, all of which are important and indispensable for their optimal functioning. These can be divided in three groups: structural, process, and security. In this work, these systems are described in a general way, however, it will focus more on the understanding of the process followed by hydrocarbon from the well until the point of storage and/or exportation, which is also known as “operation philosophy”.
Lista de figuras

Figura 1.1 Campo Summerland en el condado de Santa Bárbara, California (Otis, 1920) 14
Figura 1.2 Campo Goose Creek en la ciudad de Baytown, Texas (Myers, 2010) 15
Figura 1.3 Pozos produciendo en el Lago Maracaibo, Venezuela (Frenchilla, 2005) 16
Figura 1.4 Plataforma costa a fuera de madera en McFaddin Texas (Graff, 1981) 17
Figura 1.5 Plataforma Grand Isle en Louisiana (CorEnergy XXI, 2018) 18
Figura 1.6 Plataforma en el Golfo de México con una habitacional (Graff, 1981) 19
Figura 1.7 Avance tecnológico de las plataformas costa a fuera en el estado de Louisiana (Department of Natural Resources, 2006) ... 19
Figura 1.8 Plataforma Hutton (Mercier, 1982) ... 21
Figura 1.9 Plataforma adaptada a un buque (Leffler, Pattarozi & Sterling, 2011) 22
Figura 1.10 Plataforma Rig54 (Leffler et al., 2011) ... 23
Figura 2.1 Plataforma marina fija ... 25
Figura 2.2 Superestructura de una plataforma marina fija (Gil, 2010) .. 26
Figura 2.3 Subestructura de una plataforma marina fija (Caballero, 2014) 27
Figura 2.4 Lanzamiento de una plataforma marina fija después de ser transportada (Leffler et al., 2011) ... 29
Figura 2.5 Procedimiento para colocar una plataforma en el lecho marino (Leffler et al., 2011) .. 30
Figura 2.6 Plataforma marina con mezanine (Green Peace, 2010) .. 31
Figura 2.7 Plataforma TLP (Leffler et al., 2011) ... 32
Figura 2.8 Diagrama de una plataforma TLP (Leffler et al., 2011) ... 33
Figura 2.9 Plataforma spar remolcada (Leffler et al., 2011) ... 35
Figura 2.10 Diagrama de plataforma spar (Leffler et al., 2011) .. 36
Figura 2.11 Diagrama de plataforma semisumergible (Leffler et al., 2011) 38
Figura 2.12 Diagrama de un FPSO (Leffler et al., 2011) .. 39
Figura 2.13 Sistemas que integran un FPSO (Pemex Exploración y Producción, 2014) 40
Figura 2.14 Recorrido del hidrocarburo en un FPSO (Pemex Exploración y Producción, 2014) . 41
Figura 3.1 Diagrama de un sistema de producción de crudo pesado costa a fuera 43
Figura 3.2 Esquema de distribución de aceite en un sistema de producción de crudo pesado costa a fuera .. 44
Figura 3.3 Esquema de distribución de gas en un sistema de producción de crudo pesado en costa a fuera ... 46
Figura 3.4 Imagen representativa de una plataforma de perforación o satélite (Pemex Exploración y producción, 2013) .. 51
Figura 3.5 Diagrama de medio árbol de producción de válvulas (Pemex Exploración y Producción, 2014) ... 53
Figura 3.6 Imagen representativa de un separador remoto y equipos en una plataforma satélite (Pemex Exploración y Producción, 2014) ... 55
Figura 3.7 Diagrama esquemático de un separador bifásico (Pemex Exploración y Producción, 2014) .. 56
Figura 3.8 Imagen representativa donde se observa el peine de BN a pozos (Pemex Exploración y Producción, 2014) .. 57
Figura 3.9 Diagrama de flujo de producción una plataforma satélite (Pemex Exploración y Producción, 2014) .. 58
Figura 3.10 Centro de Proceso, donde a la izquierda se encuentra la plataforma de perforación, en el centro la de producción y en el fondo la de generación eléctrica (Pemex Exploración y Producción, 2013) .. 60
Figura 3.11 Diagrama de un separador de segunda etapa en un centro de producción (Pemex Exploración y Producción, 2014). .. 61
Figura 3.12 Diagrama de un paquete de inyección de químicos (Pemex Exploración y Producción, 2014) .. 62
Figura 3.13 Imagen representativa de un medidor de flujo de un separador de prueba (Pemex Exploración y Producción, 2014) .. 63
Figura 3.14 Imagen representativa de una electrobomba instalada en una plataforma de producción (Pemex Exploración y Producción, 2014) .. 64
Figura 3.15 Imagen representativa de una bomba tipo tornillo (Pemex Exploración y Producción, 2014) .. 65
Figura 3.16 Diagrama de bombeo en una plataforma de producción (Pemex Exploración y Producción, 2014) .. 66
Figura 3.17 Medidor ultrasónico (Pemex Exploración y Producción, 2014) .. 67
Figura 3.18 Computador de flujo (Pemex Exploración y Producción, 2014) .. 68
Figura 3.19 Imagen representativa de una recuperadora de vapores (Pemex Exploración y producción, 2014) .. 69
Figura 3.20 Diagrama de un recuperador de vapor (Pemex Exploración y Producción, 2014) .. 70
Figura 3.21 Diagrama del sistema de compresores de alta (Pemex Exploración y Producción, 2014) .. 72
Figura 3.22 Elemento de Limpieza Interna(ELI) (Hotta, H., Suyama, K., Yonemura, Y., Mashiko, T., 2005) .. 73
Figura 3.23 Trampa receptora de los ELI (Pigtek Ltd., 2018) .. 74
Figura 3.24 Diagrama de una trampa lanzadora de los ELI (Western Filter Co., 2018) .. 74
Figura 3.25 Diagrama de proceso de acondicionamiento de gas combustible (Pemex Exploración y Producción, 2014) .. 76
Figura 3.26 Componentes en una plataforma de generación eléctrica (Pemex Exploración y Producción, 2013) .. 77
Figura 3.27 Turbogenerador (Pemex Exploración y Producción, 2014) ... 78
Figura 3.28 Tablero de media tensión (Pemex Exploración y Producción, 2014) 79
Figura 3.29 Esquema de distribución eléctrica entre plataformas (Pemex Exploración y Producción, 2014) ... 80
Figura 3.30 Diagrama de drenaje de un sistema de producción (Pemex Exploración y Extracción, 2014) .. 82
Figura 3.31 Diagrama de sistemas auxiliares (Pemex Exploración y Producción, 2014) 83
Figura 3.32 Diagrama del sistema de desfogue en una plataforma de producción (Pemex Exploración y Producción, 2014) .. 93
Figura 3.33 Quemador instalado en un sistema (Pemex Exploración y Producción, 2013) 94
Figura 3.34 Sistema Digital de Monitoreo y Control de una plataforma de producción (Pemex Exploración y Producción, 2014) ... 96
Figura 4.1 Diagrama de sensibilidad de la evaluación económica... 108
Lista de tablas

Tabla 3.1 Interacción de los sistemas auxiliares y de seguridad (Pemex Exploración y producción, 2014) ... 84

Tabla 3.2 Rangos en colores y características de las ventanas operativas (Pemex Exploración y Producción, 2014) ... 85

Tabla 3.3 Ejemplos de las variables operativas de diferentes equipos. .. 87

Tabla 4.1 Tarifas de transporte por ductos (Pemex Logística, 2018) .. 101

Tabla 4.2 Cálculo de mínimos cuadrados para los costos de operación de ductos 102

Tabla 4.3 Histórico de producción anual de crudo pesado en costa afuera (Sistema de Información Energética, 2018) .. 103

Tabla 4.4 Histórico de ventas del crudo maya (Sistema de Información Energética, 2018) 104

Tabla 4.5 Evaluación económica con flujo de efectivo. ... 105

Tabla 4.6 Cálculo del VPN y VPI .. 106

Tabla 4.7 Resultados de la evaluación económica ... 107

Tabla 4.8 Escenarios de las variables que influyen en la evaluación económica. 107

Tabla 4.9 Flujos de efectivo bajo, base y alto. .. 108
Introducción

Los hidrocarburos son un recurso muy demandado mundialmente, sin embargo, las reservas de crudo convencional han disminuido notablemente, razón por la cual las reservas de crudo pesado han jugado un papel muy importante en la restitución de estas. Además, los yacimientos ubicados en tierra firme están en etapa de declinación, por lo que la exploración y extracción de crudo y gas en costa afuera va en aumento.

Las reservas probadas de hidrocarburos en el Golfo de México suman más del 50% de las reservas probadas totales, y estas reservas en su mayoría son de crudo pesado, por lo que la producción de este corresponde a más del 50% de la producción diaria en México (Sistema de Información Energética, 2018).

La explotación de los yacimientos costa afuera implica un esfuerzo tecnológico mayor en comparación con la explotación en campos terrestres, lo que ha llevado a mejorar la tecnología. Este avance tecnológico incluye las diferentes estructuras que se han desarrollado en los últimos años para dar soporte a los equipos de perforación y producción. Junto con el reto de la explotación costa afuera, el producir crudo pesado supone un reto aún mayor.

Por otra parte, para garantizar una transferencia de custodia más eficiente y productiva, es necesaria una correcta operación de todos los equipos que se usan para darle un tratamiento al crudo y estabilizarlo, todas las actividades se deben realizar sin dejar de lado la seguridad. A partir del año 2007 se ha implementado en México la explotación de campos costa afuera de crudo pesado, siendo este proyecto eficiente y rentable.

Finalmente, en este trabajo se presentan las instalaciones costa afuera, las cuales se clasifican en tres sistemas:

- Estructurales.
- Proceso.

- Seguridad.

Objetivo

El siguiente trabajo tiene por objetivo describir las operaciones que se llevan a cabo en un centro de producción de crudo pesado en un campo costa afuera para entender cómo están constituidas las instalaciones y cómo es que funcionan, lo que comúnmente se conoce como “Filosofía De Operación De Una Instalación”.

Alcances

Los alcances de esta investigación son: mencionar los dispositivos y principios de operación, así mismo, mencionar los sistemas auxiliares que se requieren para realizar los procedimientos de manera segura. Finalmente, describir el proceso que implica la trayectoria del hidrocarburo desde que sale de la boca del pozo hasta el punto de almacenamiento y/o exportación.

Contenido

En el primer capítulo se menciona brevemente la historia de las instalaciones de producción costa afuera, se dan a conocer las problemáticas a las que se enfrentaron al adentrarse en aguas más profundas con el paso del tiempo y la forma en la que dichos problemas se solucionaron, incluso se menciona que los materiales jugaron un papel muy importante en el avance tecnológico. Por último, se muestran los primeros prototipos de las instalaciones que se usan actualmente para los equipos de perforación y/o producción.
En el **segundo capítulo** se explican las principales características de las instalaciones utilizadas costa afuera, como: plataformas fijas, plataformas TLP, plataformas Spar, plataformas Semi-sumergibles y FPSO.

En este capítulo las características de las plataformas fijas se describirán más a detalle, ya que actualmente son las más utilizadas y las más comunes en México.

En el **tercer capítulo** se describen todas las operaciones que se llevan a cabo dentro del centro de proceso. En este capítulo se incluye el manejo del aceite y del gas, las operaciones en las plataformas auxiliares y plataformas satélites, los diferentes sistemas que conforman el proceso, incluyendo los sistemas auxiliares, de seguridad y procesos. También se mencionan los accesorios con los cuales es posible realizar las operaciones de manera óptima, así como una breve explicación de su funcionamiento.

En el **cuarto capítulo** se realiza un análisis donde se considera la producción de hidrocarburos actual en México, costos e inversiones de operación del centro de procesos, costos de transporte de hidrocarburos por ductos (considerando el precio de venta del crudo Maya). Con el conjunto de estos datos se realiza un análisis económico para determinar la rentabilidad de tratar el crudo pesado producido costa afuera. Posteriormente, se realizó un análisis de sensibilidad considerando dos escenarios (alto y bajo) en cada una de las variables que influyen en el flujo de efectivo con el objetivo de determinar cuál es el parámetro que más influye y así tener la oportunidad de mitigar riesgos.

Para finalizar se presentan las conclusiones y recomendaciones producto de este trabajo de investigación.
Capítulo 1 Historia de instalaciones costa afuera

La exploración de hidrocarburos costa afuera pasó por un largo proceso, gracias al cual hoy en día podemos tener acceso a grandes volúmenes de hidrocarburos que se encuentran en el mar.

Muchos lugares tuvieron parte en el avance tecnológico de la explotación de hidrocarburos costa afuera, pero sin duda la solución de problemas que se presentaron particularmente, ya sean tecnológicos, ambientales e incluso de acceso, contribuyeron para adentrarse en aguas cada vez más profundas.

En este capítulo se hace una breve referencia a la historia de la exploración de hidrocarburos costa afuera, mencionando los principales lugares y pozos representativos del avance tecnológico, siendo el Golfo de México uno de los principales lugares en donde comenzó la exploración de hidrocarburos en instalaciones costa afuera.

1.1. Comienzo de la explotación costa afuera

El inicio de la explotación de los pozos petroleros costa afuera se remontan al año 1896 en el condado de Santa Bárbara, donde se perforaron y pusieron a producir 3 pozos cerca de la costa de manera exitosa, por lo que decidieron construir muelles adentrándose al mar encontrando el campo Summerland el cual se puede apreciar en la Figura 1.1. Posteriormente se construyeron 11 muelles a 150 metros alejados de la costa, estos funcionaban como base para la estructura superficial por la cual hacían producir los pozos. Estos pozos producían en promedio 75 barriles por día (Otis, 1920).
Posteriormente, en 1908 se descubrió el campo de aceite Goose Creek (Figura 1.2) a una profundidad aproximada de 480 metros en la Bahía de Galveston en Texas (Myers, 2010).

Por otra parte, el desarrollo de las plataformas de perforación costa afuera en Venezuela es un importante testimonio de actividades pioneras en el desarrollo tecnológico en la industria petrolera a nivel mundial. Los intentos por perforar en aguas someras comenzaron en 1921, siendo un completo fracaso debido a la rápida erosión biológica en los pilotes de madera, razón por la cual los pilotes de madera comenzaron a forrarse con láminas de plomo o cobre, e incluso con silicatos, asfalto, hollín, petróleo, entre otros, de igual manera comenzaron a usarse distintos tipos de madera, como pilotes tratados; pero los costos resultaron muy elevados debido al transporte y el costo de la materia prima por sí misma (Frenchilla & Texera, 2005).

Figura 1.1 Campo Summerland en el condado de Santa Bárbara, California (Otis, 1920)
En 1927, en el lago Maracaibo incluyeron pilotes de cemento, en un inicio comenzaron a ser de 40 centímetros de diámetro y 27 metros de largo, pero en este caso resultaron ser muy costosos e incluso frágiles en los procesos de hincado. Posteriormente, el material con que los pilotes de cemento se fabricaban mejoró, con el propósito de hacerlos menos costosos y con refuerzos en los extremos para soportar el proceso de hincado. Al aumentar el tirante de agua, se requerían de pilotes más largos, siendo estos desde 35 metros a 55 metros de longitud y hasta 60 centímetros de diámetro, pero dejó de ser viable cuando el tirante de agua requería pilotes de 70 metros. La solución inmediata fue hacer tubos de cemento huecos, esto solucionó el problema de la viabilidad técnica pero no económica, por lo que recurrieron a construir pilotes de 80 metros de largo y 1.20 metros de diámetro, esto hacía que se utilizaran menos pilotes por plataforma, ya que de comenzar usando hasta 100 pilotes terminaron usando únicamente 1 pilote dando lugar a las plataformas que conocemos hoy en día como plataformas monopilote. En el año 1930 se encontraba ya un gran agrupamiento de plataformas de perforación y producción tal como se observa en la Figura 1.3, y se instalaron líneas de transmisión por debajo del agua para recibir el crudo en las
costas del lago; líneas que hoy conocemos como oleoductos. El desarrollo de la tecnología logró que actualmente se tenga una infraestructura aproximada de 6,000 plataformas (Frenchilla & Texera, 2005).

En 1934, en el Golfo de México se construyó una plataforma de madera a 915 metros de la línea de costa y una profundidad de 3.5 metros de tirante de agua en áreas pantanosas de Louisiana, siendo este el primer intento por explotar fuera de la costa. En un principio el acceso a estas áreas era complicado, posteriormente con el desarrollo de carreteras se permitió al personal ingresar los equipos necesarios para la exploración de este lugar, lo que ayudó a descubrir la acumulación de hidrocarburos en las costas del Golfo. De esta manera en 1937, se construyó una plataforma a 1.6 kilómetros del litoral a una profundidad de 4.5 metros de profundidad; la cual se consideró como la primera plataforma en un área remota de la orilla del Golfo de México (Graff, 1981).

Las estructuras de madera se reemplazaron rápidamente por estructuras de acero. Esta tecnología surgió en 1948 para extraer hidrocarburo del yacimiento Grand Isle (Figura 1.5) a 30 metros de tirante de agua, ubicado en el Golfo de México en el estado de Louisiana donde se construyó una plataforma a 8 kilómetros de la costa, en este sitio se instalaron 338 pilotes de acero, dichos
pilotes soportaban los equipos para la exploración. Desafortunadamente este pozo denominado Magnolia resultó no productor, pero el avance tecnológico se aprovechó para dejar a un lado la madera y a partir de ese momento comenzar a usar el acero. Un claro ejemplo de este avance tecnológico es la plataforma se muestra en la Figura 1.4 ubicada en McFaddin Texas (Graff, 1981).

![Plataforma costa afuera de madera en McFaddin Texas](image)

Figura 1.4 Plataforma costa afuera de madera en McFaddin Texas
(Graff, 1981)

Este gran avance permitió que las plataformas fueran puestas en aguas más profundas con requerimientos funcionales y configuraciones estructurales más complejos, aún con todo esto, la tecnología del acero dio lugar a una mejora en la viabilidad económica, ya que su instalación resultó ser más sencilla y la resistencia tanto a las condiciones climatológicas y la erosión biológica era notablemente mayor.
Como era de esperarse la viabilidad económica jugó un papel muy importante, ya que era cada vez más necesario explotar hidrocarburos de aguas más y más profundas, razón por lo cual las plataformas antes construidas se rediseñaban conforme al tirante de agua y los costos económicos. Para este punto se reconocía la importancia de reducir costos con el transporte de equipos y personal, por lo que las plataformas incluían soportes para diversos equipos, así como habitacionales para el personal como se muestra en la Figura 1.6. Anteriormente, las instalaciones eran construidas en sitio, pero la nueva tendencia se inclinaba por fabricar las estructuras en las costas para posteriormente transportarlas por barcos e instalarlas en los campos con ayuda de grúas.
El boom del acero logró que las plataformas pudieran fijarse en aguas cada vez más profundas, e incluso la viabilidad incrementó de manera significativa. Louisiana es el claro ejemplo de esta afirmación, ya que como se muestra en la Figura 1.7 el avance tecnológico de las plataformas marinas fijas en ese estado permitió llevar a la exploración de hidrocarburos a aguas más profundas.

Figura 1.6 Plataforma en el Golfo de México con una habitacional (Graff, 1981)

Figura 1.7 Avance tecnológico de las plataformas costa afuera en el estado de Louisiana (Department of Natural Resources, 2006)
Hoy en día el término plataforma se utiliza con bastante frecuencia, lo que nace del hecho de que las piernas de la subestructura guían a los pilotes tubulares; método que permite el posicionamiento de la estructura de forma más eficaz comparándolo con el método de construir la estructura en sitio. Este diseño incluso permitió reforzar la estructura por debajo del agua, ya que antiguamente solo se reforzaba por arriba del agua, lo que proporcionó una resistencia al oleaje en aguas más profundas. Este avance tecnológico logró la exploración en tirantes de agua más profundos, como en el caso de la plataforma Cognac lográndose instalar a una profundidad de más de 300 metros en el año 1978 (Coleman, 2006).

En el año 1966 ya era muy común para todas las plataformas diseñarse bajo ciertos principios básicos (Caballero, 2014), los cuales eran:

- Resistir todas las cargas esperadas durante la fabricación, transporte (en caso de ser necesario) e instalación.

- Resistir las cargas resultado de tormentas severas y terremotos.

- Funcionamiento seguro combinado de las operaciones de perforación, producción y facilidades para habitarlas.

De igual forma se consideraban criterios específicos para el diseño de cada plataforma en función del tirante de agua, de las operaciones a realizar, condiciones climatológicas, movimientos específicos del subsuelo, oleaje, entre otros.

La necesidad por llegar a explotar aguas más profundas, y el hecho de no ser posible instalar una plataforma fija debido a su inestabilidad a grandes tirantes de agua, la tecnología dio lugar a una novedosa técnica en la cual las plataformas flotan. Tal es el caso de la plataforma Hutton, ubicada en un campo en el Reino Unido. En 1984 se instaló esta plataforma en el campo Hutton a 147 metros de profundidad de tirante de agua (Mercier, 1982).
Como se observa en la figura 1.8, la estructura no va del fondo marino a la superficie, si no que utiliza anclas en el fondo para mantener la estructura flotante en un lugar, esto sucede debido a que la flotabilidad de la plataforma excede su peso y las anclas mantienen los cables tensionados evitando movimientos verticales.

Este tipo de plataformas se diseñaron generalmente para la producción, perforación, intervención a pozos e instalación de medios árboles de válvulas superficiales. Desafortunadamente estas plataformas no tienen la capacidad para permitir el almacenamiento de hidrocarburo.

Figura 1.8 Plataforma Hutton (Mercier, 1982)
Las plataformas flotantes resultaron ser un gran avance tecnológico que permitió explotar hidrocarburos en aguas cada vez más profundas, idea que se tomó de varios intentos por perforar costa afuera, como el caso de una plataforma que se adaptó a un buque de desembarco de tanques (Figura 1.9), con la ayuda de botes de guerra y rescate (Leffler, Pattarozzi & Sterling, 2011). Este nuevo método de exploración permitió reducir riesgos de exploración en pozos secos al poder mover la infraestructura a otro sitio, pero para estos tiempos aún era muy costoso intentar explorar aguas muy profundas con esta tecnología.

Figura 1.9 Plataforma adaptada a un buque (Leffler, Pattarozzi & Sterling, 2011)
Con el tiempo este tipo de plataformas evolucionaron con el objetivo de explorar aguas más profundas con una mayor viabilidad económica, por ejemplo, la plataforma Rig 54 (Figura 1.10) siendo la más grande de su tipo, en el año 1963 incluyó una mejoría en la estabilidad con tanques cilíndricos puestos en cada vértice, con una capacidad de instalarse en profundidades de hasta 175 pies de tirante de agua (Leffler et al., 2011).

Figura 1.10 Plataforma Rig54 (Leffler et al., 2011)
Capítulo 2 Tipos de instalaciones utilizadas costa afuera

Las instalaciones costa afuera brindan soporte a los diferentes equipos, herramientas y personal para poder realizar las operaciones que permiten la explotación de hidrocarburos.

Existen plataformas fijas y flotantes, desafortunadamente las operaciones en grandes tirantes de agua no pueden ser operadas con plataformas fijas, es por esto que se tomaron conceptos y tecnología de la ingeniería de perforación donde se cubren las necesidades de exploración con estructuras semi-sumergibles y buques de perforación, gracias a esto los sistemas de producción flotantes ahora brindan opciones viables en aguas profundas. Incluso, para la explotación de aguas ultra-profundas se desarrolló una estructura que permita procesar hidrocarburo a bordo de un buque.

En este capítulo se indican los principales tipos de instalaciones utilizados costa afuera y se da una breve descripción acerca de ellos.

2.1. Plataformas fijas

Las plataformas fijas de explotación son estructuras metálicas soportadas por pilotes, cuya función original es la extracción de hidrocarburo de los yacimientos en el mar.

En ocasiones se instalan estructuras secundarias destinadas al soporte de servicios adicionales como quemadores, puentes, telecomunicaciones, entre otros.

La estructura de una plataforma marina fija se constituye principalmente de acero con marcos, vigas, columnas, elementos diagonales, entre otras estructuras
La característica principal de una plataforma fija es que su estructura se asienta en el lecho marino y se eleva hasta por encima de la superficie marina, estas plataformas suelen tener dos cubiertas, lo que forma un piso que tiene la función de soportar equipos, herramientas y soportar personal, en un medio tal que debe resistir el movimiento del mar, el viento y los sismos. La estructura se divide en tres componentes principales: superestructura, subestructura y pilotes de cementación (Caballero, 2014); como se muestra en la Figura 2.1:

Figura 2.1 Plataforma marina fija
2.1.1. Superestructura

La superestructura (Figura 2.2) es la parte que sobresale de la superficie marina en donde se colocan los equipos para las operaciones a realizar. Esta estructura se compone de marcos rígidos hechos con tubos circulares apoyados sobre los pilotes de la subestructura. Se conectan mediante trabes y placas de acero que se adecuan según las operaciones y equipos necesarios (Dunn, 1982). La superestructura se encuentra por encima del nivel medio del mar. Generalmente consta de una cubierta superior y una inferior, la altura de la instalación de la cubierta inferior dependerá de la altura de las olas, mientras que la separación entre la cubierta superior e inferior dependerá de las operaciones de los equipos y módulos que se alojarán en la plataforma (Gil, 2010).

El piso se suelda con elementos tubulares horizontales y diagonales para evitar el movimiento lateral y soportar el peso en superficie.

Figura 2.2 Superestructura de una plataforma marina fija (Gil, 2010)
2.1.2. Subestructura

La subestructura (Figura 2.3) se encuentra sumergida, la carga en la superestructura es soportada por la subestructura, también da apoyo lateral a los pilotes desde el fondo marino y hasta la conexión con la superestructura. Está compuesta por tubos circulares formando pirámides truncadas para dar un soporte óptimo a la superestructura (Dunn, 1982). Esta estructura la observamos generalmente inclinada, esto se debe a que en comparación con una estructura totalmente vertical, esta proporciona una mejora en la rigidez y soporte a las cargas axiales en los apoyos, la relación horizontal-vertical para la inclinación está dada por 1:8 (horizontal:vertical), relación que se ha hecho estándar. Dentro de las piernas de la subestructura se colocan placas espaciadoras para limitar la holgura en todas las elevaciones a lo largo de las piernas. Todas las conexiones se sueldan de acuerdo con normas nacionales e internacionales.

Figura 2.3 Subestructura de una plataforma marina fija
(Caballero, 2014)
2.1.3. Cimentación

Los pilotes son elementos tubulares circulares que se hincan en el suelo marino para crear la cimentación de la plataforma.

Los pilotes se dividen en dos partes; una parte de los tubulares se conectan con la subestructura y se prolongan hasta la superestructura para recibir las cargas. La otra parte se encuentra en el lecho marino hincados por percusión, donde la profundidad a la que se encuentran penetrados se da a partir de las condiciones del suelo marino y de las cargas de la estructura y los equipos que albergará (Dunn, 1982).

2.1.4. Sistema de flotación

Como se vio en el capítulo anterior, las plataformas se construyen en las costas y posteriormente se transportan tal como se muestra en la Figura 2.4, para lo cual se necesita un sistema que le dé flotabilidad a la plataforma. Este sistema consiste en unas tapas colocadas en las piernas, las cuales son válvulas que permiten el flujo de agua o aire, en ocasiones estas piernas se apoyan por tanques de flotación (Leffler et al., 2011).

Las tapas se encuentran en la parte superior e inferior de las piernas. La tapa superior proporciona hermeticidad en todo momento, mientras que la tapa inferior se diseña de tal forma que proporciona hermeticidad momentánea, pero permite su rompimiento al ser golpeada.
Los tanques de flotación se ponen en caso de que la flotabilidad proporcionada por el aire dentro de las piernas no sea suficiente para transportar la estructura de forma óptima. Estos tanques son secciones tubulares sellados herméticamente.

Con el objetivo de estabilizar las cargas y facilitar las operaciones de instalación de la estructura, se coloca un sistema de válvulas que permiten el paso del agua o aire lo que causa un balance de las cargas e incluso facilita el izaje para la instalación en sitio.

Este procedimiento se muestra en la Figura 2.5.

Figura 2.4 Lanzamiento de una plataforma marina fija después de ser transportada (Leffler et al., 2011)
2.1.5. Subniveles

Las plataformas cuentan en su mayoría con uno o más subniveles, los cuales también se conocen como mezzanine como en el ejemplo de la Figura 2.6, estas estructuras adicionales están conformadas por tubulares, y tienen el objetivo de soportar equipos o tuberías por debajo de la superestructura. En la parte superior de la estructura se encuentra una rejilla, al igual que en la parte superior del piso de la superestructura, este elemento soporta al personal y a algunos equipos pequeños sobre las cubiertas, esta rejilla se encarga de distribuir las cargas a otra pequeña estructura que se encarga de transmitir la carga hacia las vigas de la superestructura.
2.2. Plataformas TLP

Este tipo de plataformas se fijan en el fondo marino por medio de anclas cimentadas al fondo del mar y mediante cables tensionados soportados a las columnas flotantes, lo que mantiene a los cables en constante tensión (Leffler et al., 2011). La estabilidad que provee esta plataforma es óptima para condiciones climatológicas severas, por lo cual generalmente se usa cuando se requiere de un árbol de producción alojado en superficie. Un ejemplo de las plataformas TLP puede se observa en la Figura 2.6.

El soporte que brindan las piernas de las plataformas por medio de cables tensionados, que se encargan de eliminar los movimientos horizontales, de levantamiento y balanceo el cual se produce por la actividad del mar. Tal es la estabilidad proporcionada por estas plataformas que incluso se utiliza en la

Figura 2.6 Plataforma marina con mezanine (Green Peace, 2010)
perforación con elementos de prevención y actividades de terminación en superficie. Se debe tener en consideración que la capacidad de cargas está limitada en las plataformas TLP, pero en caso de que las cargas aplicadas en la plataforma sean muy altas, la tensión se verá modificada con el objetivo de compensar el movimiento para evitar la ruptura de los tubos que conectan el yacimiento con la plataforma.

![Figura 2.7 Plataforma TLP (Leffler et al., 2011)](image)

Las partes principales de una plataforma TLP (Leffler et al., 2011) son las siguientes:

- **Pilotes.** Cilindros de acero anclados por medio de succión o perforación en el fondo marino usados en el sistema de amarre de la plataforma TLP.
- Cables. Con el objetivo de mantener la plataforma en un solo lugar y de forma estable, se utilizan cables de acero, los cuales unen los pilotes con la plataforma.

- Risers. Es la tubería que conecta la cabeza de pozo submarino con el medio árbol de producción en superficie, funciona como la línea para el transporte de fluidos hasta superficie.

- Pontones. Los pontones son estructuras rectangulares que unen la parte inferior de las columnas para formar el casco, este elemento provee la flotabilidad necesaria para soportar las cargas verticales.

- Columnas. Estos elementos se encargan de soportar la cubierta superior y de unirla con los pontones.

- Cubierta. Es la estructura ubicada en la parte superior, la cual proporciona el soporte para todos los equipos y personal en la plataforma.

Las partes de una plataforma TLP se observan en la Figura 2.8.

Figura 2.8 Diagrama de una plataforma TLP (Leffler et al., 2011)
2.3. Plataformas Spar

Las plataformas spar (Figura 2.9) ofrecen ventajas muy similares a las plataformas TLP. El diseño corresponde a una estructura larga y delgada, la cual se extiende aproximadamente 200 metros debajo del mar, contiene un lastre en el fondo y una flotabilidad cerca de la superficie, lo cual proporciona una buena estabilidad con pocos movimientos verticales (Barranco, 2012).

La estabilidad en estas plataformas se debe principalmente a la posición del centro de masa, esto se logra colocando un gran peso muy por debajo del centro de flotación añadiendo un material muy pesado al lastre como la magnetita. Los cables tensionados se usan para evitar el movimiento lateral que ocasiona la actividad marina. Este diseño en particular evita que la estructura se volteee incluso cuando las condiciones meteorológicas son muy severas.

La desventaja de estas plataformas es que son vulnerables a los vórtices creados bajo la superficie a lo largo de la estructura, debido a esto se adiciona al diseño unas aletas puestas en espiral por la estructura, las cuales evitan que se creen los vórtices y existan movimientos no deseados en la plataforma.

Al igual que las plataformas TLP, las plataformas spar permiten una perforación con elementos de prevención y actividades de terminación en superficie, y una producción con árbol de válvulas en superficie.
Las principales partes de una plataforma spar (Leffler et al., 2011) son las siguientes:

- Pilotes. Cilindros de acero anclados por medio de succión o perforación en el fondo marino usados en el sistema de amarre de la plataforma spar.

- Cables. Evitan que la plataforma realice movimientos horizontales producto de la actividad del mar, estos cables de acero se unen a los pilotes que se encuentran anclados en el fondo marino.

- Risers. Es la tubería que conecta la cabeza de pozo submarino con el medio árbol de producción en superficie, funciona como la línea para el transporte de fluidos hasta superficie y pasa por en medio del cilindro de la plataforma spar.

- Casco. Es la estructura que proporciona la flotabilidad para soportar la cubierta, es esencialmente una columna de acero puesta en la parte central y tiene forma de cilindro.
- Cubierta. Es la estructura ubicada en la parte superior, la cual proporciona el soporte para todos los equipos y personal en la plataforma.

Las partes de una plataforma spar se observan en la Figura 2.10.

![Figura 2.10 Diagrama de plataforma spar (Leffler et al., 2011)](image)

2.4. Plataformas Semi-sumbergibles

Las plataformas semi-sumbergibles son estructuras flotantes muy parecidas a una plataforma TLP con pontones y columnas que proporcionan flotabilidad y con sistemas de amarre al lecho marino.

Estas plataformas se usan principalmente para servicios de producción y perforación, la diferencia es que estas unidades se usan exclusivamente para árboles de producción submarino y elementos de prevención de brotes colocados en el lecho marino (Gerwick, 2007).
Si bien el árbol de producción se encuentra en el fondo marino, es necesario comunicar el medio árbol con la superficie por medio de cables hidráulicos y eléctricos.

Las principales partes de una plataforma semi-sumergibles (Leffler et al., 2011) son las siguientes:

- Pilotes. Cilindros de acero anclados por medio de succión o perforación en el fondo marino usados en el sistema de amarre de la plataforma semi-sumergible.

- Cables. Evitan que la plataforma realice movimientos horizontales producto de la actividad del mar, estos cables de acero se unen a los pilotes que se encuentran anclados en el fondo marino.

- Risers. Es la tubería que conecta la superficie con el árbol de producción submarino en la cabeza de pozo, o los elementos de prevención de brotes en el caso de la perforación. Funciona como la línea para el transporte de fluidos hasta superficie.

- Pontones. Estructuras rectangulares que unen la parte inferior de las columnas para formar el casco, este elemento provee la flotabilidad necesaria para soportar las cargas verticales.

- Columnas. Estos elementos se encargan de soportar la cubierta superior y de unirla con los pontones.

- Cubierta. Es la estructura ubicada en la parte superior, la cual proporciona el soporte para todos los equipos y personal en la plataforma.
Las partes de una plataforma semisumergible pueden observarse en la Figura 2.11.

Figura 2.11 Diagrama de plataforma semisumergible (Leffler et al., 2011)

2.5. FPSO

Floating Proccess System Offshore, por sus siglas en inglés Sistema Flotante de Proceso Costa Afuera (FPSO), es un barco de proceso, almacenamiento y exportación que se utiliza en la explotación de hidrocarburos (Brannon, Loftin & Whitfield, 1974).

Los FPSO se usan generalmente en entornos muy remotos donde no existe infraestructura de tuberías y el ambiente es hostil. Si el ambiente es muy agresivo es necesario anclar de forma correcta el buque para evitar que las corrientes de aire muevan la estructura y enreden los cables y tuberías que conectan el buque con el fondo (Ramakrishnan, 2008).
El uso de los FPSO permite optimizar la explotación y comercialización de crudo, con esto maximizando el valor económico de las reservas de hidrocarburos, dando mayor flexibilidad operativa a las instalaciones de producción y hacer posible la explotación de yacimientos en aguas más profundas.

Los FPSO tienen la ventaja de poder usar árboles de producción en superficie e intervenir los pozos de manera frecuente. Estos buques contienen compartimentos de almacenamiento los cuales pueden legar a almacenar una gran cantidad de hidrocarburo líquido previamente procesado.

Como método de protección contra derrames de hidrocarburo en caso de que un accidente perfure el buque, se considera en el diseño un doble casco, el almacenamiento se encuentra en el casco interno separado por un espacio de aire del casco exterior (Vilain, 1972).

Al igual que las estructuras anteriores, los FPSO se apoyan de ciertos componentes (Figura 2.12) para llevar a cabo sus operaciones como cables, risers y en algunos casos de un sistema de posicionamiento dinámico que consta de turbinas que estabilizan los movimientos causados por la actividad marina.

Figura 2.12 Diagrama de un FPSO (Leffler et al., 2011)
En la parte superficial los sistemas que componen estos buques se muestran en la Figura 2.13.

Figura 2.13 Sistemas que integran un FPSO (Pemex Exploración y Producción, 2014)
A continuación, en la **Figura 2.14** se presenta el recorrido del crudo al ingresar a esta estructura.

Figura 2.14 Recorrido del hidrocarburo en un FPSO (Pemex Exploración y Producción, 2014)
Capítulo 3 Filosofía de operación de un centro de proceso costa afuera para explotación de crudo pesado

3.1. Desarrollo del contexto operacional del centro de proceso

La función principal de un sistema de producción superficial, es procesar la mezcla de hidrocarburos y no hidrocarburos provenientes de plataformas de perforación (comúnmente llamadas plataformas satélites), mediante una serie de ductos de transporte, batería de separación (separadores, rectificadores, acondicionadores de flujo, etc.), sistema de bombeo y sistema de compresión para llevarlos hasta un punto de venta o proceso de los mismos, a todos estos sistemas y equipos en su conjunto se les llama Centros de Proceso, por lo general el diseño de estos se realiza para la separación a condiciones de baja presión del aceite crudo, con la finalidad de obtener la mayor recuperación de los mismos.

El crudo pesado, se estabiliza y se envía hacia el punto de almacenamiento y/o exportación por medio de oleoductos. La compresión de gas amargo se envía a través de gasoductos. Cabe mencionar que debido al incremento de gas Nitrógeno en la corriente de gas se adecúan las instalaciones para segregarlo hacia el quemador.

En algunos casos los Centros de Proceso incluyen plataformas habitacionales las cuales proveen servicios de alojamiento para el personal que opera y da mantenimiento a las instalaciones petroleras.

En la Figura 3.1 se ilustra el proceso de un sistema de producción de crudo pesado.
Figura 3.1 Diagrama de un sistema de producción de crudo pesado costa afuera
Un proceso típico para manejo de crudo pesado en instalaciones costa afuera se observa en la Figura 3.2.

Figura 3.2 Esquema de distribución de aceite en un sistema de producción de crudo pesado costa afuera
Como se observa en las Figuras 3.1 y 3.2 la mezcla de hidrocarburos que sale de los pozos productores (que se ubican en las plataformas satélites) se transporta a través de oleogasoductos hasta otra plataforma donde se ubique el separador de primera etapa, el aceite que se obtiene de este proceso de separación pasa a una segunda etapa de separación (también llamado en campo como tanque de balance), este aceite obtenido se conoce como crudo estabilizado, el cual posteriormente se bombea para su envío al punto de almacenamiento y/o exportación a través de oleoductos. En forma resumida este es el proceso y manejo que recibe el aceite, cabe mencionar que en este trabajo no se considera la producción y manejo de agua congénita.
Un proceso típico para manejo de gas amargo en instalaciones costa afuera se observa en la siguiente Figura 3.3.

Figura 3.3 Esquema de distribución de gas en un sistema de producción de crudo pesado en costa afuera
Como se muestra en la Figura 3.3 el gas amargo que se obtiene en el separador de primera etapa (denominado gas de alta), se envía a través de un gasoducto a un recipiente llamado Slug Catcher, ahí se realiza otro proceso de separación para eliminar la mayor cantidad posible de líquido que se encuentre en la corriente de gas, ya que este posteriormente se enviará al sistema de compresión para su exportación o procesamiento.

El gas que se obtiene del separador de segunda etapa (denominado gas de baja) se comprime e incorpora a la succión del sistema de compresión de gas de alta.

3.2. Clasificación de equipos

Un Centro de Proceso está constituido por instalaciones y equipos, que cumplen una función determinada y contribuyen de una u otra manera al procesamiento del aceite y gas proveniente de los yacimientos. Por lo general los Centros de Proceso cumplen con el mismo objetivo, sin embargo, tienen diferente distribución o configuración, en este trabajo se presentará un ejemplo típico que se utiliza para la explotación de campos costa afuera de yacimientos de crudo pesado que se ubican en el Golfo de México.

Para un control de los equipos instalados en un Centro de Proceso, es necesario tener una base de datos con el registro de los equipos, dicha base registra características de cada uno de los equipos, las cuales se indican a continuación:

- **Niveles**: los equipos se clasifican en cuatro niveles, 1, 2, 3 y 4, donde el nivel 1 es el de mayor importancia dentro del Centro de Proceso. La clasificación se basa en la importancia funcional del equipo dentro del proceso o si es parte o no de un equipo dentro de la instalación.

- **Equipo**: número único de identificación que se le asigna a cada uno de los equipos.
- **Tipo de Equipo:** indica si el equipo es eléctrico, de instrumentación, fijo, de soporte, de trabajo, virtual, analizadores, civil y/o ducto.

- **Denominación:** nombre del equipo donde se indica a nivel general su función.

- **Clase de Objeto:** codifica el equipo según su función.

- **Fabricante:** nombre del fabricante del equipo.

- **Indicador A, B, C:** grado de criticidad del equipo dentro del Centro de Proceso, donde “A” es altamente crítico, “B” criticidad moderada y “C” baja criticidad.

- **Número de identificación técnica:** TAG o siglas de identificación del equipo.

- **Ubicación Técnica:** zona o división dentro de Centro de Proceso a la que se le asigna un código, con la finalidad de facilitar la distribución de costos.

- **Campo de Clasificación:** es la función del equipo asociada al proceso en particular

Algunos ejemplos de los equipos censados son:

- Turbogeneradores
- Separadores
- Turbobombas
- Filtros
- Turbocompresores
- Tanques acumuladores
- Motogeneradores
- Calentadores
3.3. Descripción del proceso

Como se mencionó al inicio del capítulo 3 las plataformas donde se ubican los pozos productores se les denomina plataformas de perforación o plataformas satélites, en algunos casos ahí se ubica el separador de primera etapa (también llamado separador remoto) donde se realiza el primer proceso de separación de hidrocarburos, cabe mencionar que con la finalidad de mejorar el manejo y procesamiento de los hidrocarburos se inyectan a las corrientes productos químicos como mejoradores de flujo y reactivos antiespumantes. Es en estas plataformas donde se inicia el proceso de transporte y manejo de los hidrocarburos. La mezcla se transporta desde el yacimiento por medio del pozo productor hasta la superficie (boca del pozo), ahí el medio árbol de producción se une con una tubería la cual converge a un cabezal de producción general, este tramo de tubería se conoce como bajante o línea de escurrimiento, su diámetro dependerá del volumen que se maneje. Al cabezal de producción general convergen todas las bajantes de los pozos productores que se encuentren en dicha plataforma.

Si en la plataforma satélite existe un separador de primera etapa (separador remoto) el cabezal de producción general se interconectará a este, ya que es su fuente de alimentación, pues ahí se realizará la primera etapa de separación, por lo regular la salida de aceite se ubica en la parte inferior del separador y la salida de gas en la parte superior.

Posteriormente, las corrientes de aceite y gas se transportan de la plataforma satélite hasta otra plataforma comúnmente llamada plataforma de producción (también conocida como PB), el gas se recibe en el Slug Cátcher y el aceite ingresa...
al separador de segunda etapa. Posteriormente se utilizan bombas para transportar el aceite estabilizado y turbocompresores para el gas amargo.

Para el caso expuesto en este trabajo, se menciona un centro de proceso que cuenta con una plataforma de generación eléctrica, esta tiene turbogeneradores para la generación eléctrica, esta se envía a través de cables submarinos hacia las plataformas satélites, incluyendo al mismo Centro de Proceso al que pertenece. La energía eléctrica se utiliza principalmente para los equipos eléctricos de pozos con sistema artificial de bombeo electrocentrífugo (BEC) y para motores eléctricos de bombas multifásicas, así como a todos los componentes que hagan uso de energía eléctrica que se usan para servicios, instrumentación y sistemas de seguridad de las plataformas de todo el Centro de Proceso.

Este proceso se puede apreciar en la Figura 3.2, donde se muestra el recorrido del aceite y en la Figura 3.3 para el caso del recorrido del gas.

3.3.1. Procesos y operaciones en los pozos productores de las plataformas satélites del centro de proceso

La plataforma de perforación o plataforma satélite es una estructura de acero donde se ubican los pozos (productores, inyectores y letrina), su principal función es la producción, manejo y control de la mezcla del aceite crudo y gas del yacimiento, los pozos productores pueden producir por energía propia del yacimiento o se pueden operar con bombeo electrocentrífugo o bombeo neumático. Un ejemplo de una plataforma satélite se puede apreciar en la Figura 3.4.
Los equipos principales instalados para el manejo del aceite y gas en estas plataformas generalmente son:

- Helipuerto
- Medios arboles de producción (Pozos)
- Separador de medición individual de pozos, también llamado separador de prueba.
- Tablero hidroneumático de control de pozos de la plataforma
- Sistema de acondicionamiento de gas para instrumentos
- Sistema para inyección de gas residual BN, también llamado peine de BN
- Sistema de inyección de químicos (antiespumante, inhibidor de corrosión, mejorador de flujo).
- En algunos casos un separador de primera etapa o también llamado separador remoto.

Figura 3.4 Imagen representativa de una plataforma de perforación o satélite (Pemex Exploración y producción, 2013)
- Grúa de maniobras
- Cuarto de control, donde se ubican los equipos electrónicos de monitoreo, control y seguridad de la plataforma.
- Si en la plataforma hay pozos BEC, también habrá un cuarto de variadores para los equipos.

3.3.1.1. Medio árbol de producción

A continuación, se describe de forma general el conjunto de válvulas que conforman el medio árbol de producción de un pozo, mismo que se encuentran en cada una de las plataformas satélites o de perforación que conforman un Centro de Proceso.

Los pozos productores de las plataformas satélites permiten la extracción de la mezcla aceite-gas del yacimiento hasta la superficie a través de las tuberías de producción (TP) las cuales se localizan en el interior de la tubería de revestimiento (TR). En la superficie los pozos cuentan con un cabezal de TR con dos pares de válvulas laterales por donde se tiene instalada la línea de inyección de gas del bombeo neumático.

El medio árbol de producción (Figura 3.5) se conforma por un conjunto de conexiones, válvulas y otros accesorios, cuya función es controlar laproducción de un pozo y permitir un acceso práctico y seguro a la tubería de producción.
Por seguridad el pozo cuenta con dos válvulas automatizadas; una superficial denominada válvula maestra actuada (SSV) y la válvula subsuperficial (válvula de tormenta SSSV). Por normatividad se debe asegurar la hermeticidad de estas válvulas. Estas válvulas se operan para su apertura o cierre mediante módulos individuales instalados en el tablero hidroneumático de control de pozos que responde a eventos no deseados, como alta o baja presión en las líneas de proceso o fuego confirmado.

Figura 3.5 Diagrama de medio árbol de producción de válvulas (Pemex Exploración y Producción, 2014).
En la parte superior, las válvulas laterales del medio árbol de producción se interconectan por medio de una o dos líneas de escurrimiento (bajantes) hacia el cabezal general de producción o bien hacia el cabezal de prueba de medición individual de pozos.

A continuación, se hace una breve descripción de sus componentes principales:

- **Válvula maestra.** Es la válvula que controla todo el sistema y que además tiene la capacidad de soportar presiones máximas del pozo. Su apertura debe ser máxima, es decir, que su diámetro interior deberá ser igual o mayor al de la TP; debido a que debe permitir el acceso de diferentes herramientas como empacadores o pistolas para disparos de producción.

- **Válvulas laterales.** Estas pueden ser de apertura restringida, con un diámetro nominal menor al de la válvula maestra, sin que esto represente una caída de presión considerable.

- **Válvula de sondeo.** Se localiza en la parte superior del pozo y se emplea para censar la presión en la cabeza del pozo y para intervenciones como registros de presiones de pozo fluyendo, cerrado, disparos, limpieza, etc.

- **Estranguladores.** Controlan la presión de los pozos, regulando la producción de aceite y gas o para controlar la invasión de agua o gas. En ocasiones sirven para controlar la formación de parafinas, ya que reduce los cambios de temperatura; también ayudan a conservar la energía del yacimiento, asegurando una declinación más lenta de los pozos, aumentando la recuperación total de la vida fluyente.
3.3.1.2. Separador de primera etapa o separador remoto

Como se mencionó en el inicio del capítulo, en la plataforma satélite se puede separar la mezcla de crudo por medio de un separador bifásico de primera etapa el cual se denomina Separador Remoto, este operará por medio de un diseño tal que soporte la producción de la plataforma donde está instalada y de otras plataformas de perforación, en la Figura 3.6 se aprecia una imagen de un separador remoto.

![Imagen representaativa de un separador remoto y equipos en una plataforma satélite (Pemex Exploración y Producción, 2014)](image_url)

Figura 3.6 Imagen representativa de un separador remoto y equipos en una plataforma satélite (Pemex Exploración y Producción, 2014)

Alguno de los elementos de seguridad con los que se cuenta en la plataforma, es el siguiente: el Separador cuenta con dos interruptores de presión, uno por alta presión (HH) y otro por baja presión (LL), los cuales, al momento de censar una condición de muy alta presión o muy baja presión, enviarán la señal de cierre a la válvula SDV (Shut Down Valve) de entrada de mezcla al separador.
También cuenta con dos válvulas de seguridad PSV (Pressure Safe Valve), las cuales se instalan en el domo del separador para protección del recipiente en caso de ocurrir un evento que cause su represionamiento, una de las válvulas PSV desfoga a proceso hacia el ducto de salida de aceite y la otra válvula PSV desfoga hacia un quemador que está instalado en la plataforma. En caso de que en la plataforma se detecte una condición de represionamiento o fuga de gas o crudo se activará el sistema de paro por emergencia (SPPE), el cual enviara señales de cierre a todas las válvulas de seguridad de corte rápido (SDV’s) y si se presenta fuego, además de cerrarse todas las SDV’s, se abrirán las válvulas BDV (Blow Down Valve) instaladas en el separador remoto, las cuales desfogarán la presión hacia el quemador.

Figura 3.7 Diagrama esquemático de un separador bifásico (Pemex Exploración y Producción, 2014)

En la **Figura 3.7** se muestra la instrumentación con la que cuenta un separador de primera etapa o separador remoto. En la imagen se observan las líneas de entrada y de salida de aceite y gas, las cuales tienen instaladas válvulas de control neumáticas-automáticas, las cuales mantiene en condiciones normales de
operación el separador (presión y nivel en el separador). También el separador cuenta con medidores, que por lo general el elemento primario de medición es placa de orificio, estos se ubican en la salida de gas y de aceite, como elemento terciario de medición se utilizan computadores de flujo para cuantificar los volúmenes.

3.3.1.3. Sistema para inyección de gas residual BN

El gas residual utilizado como bombeo neumático (BN) para inyección a los pozos, llega a la plataforma de perforación o plataforma satélite a través de gasoductos (figura 3.8), este gas debe contar con ciertas características de calidad y presión, por lo regular tiene una presión mayor a 70 kg/cm², procedente de la descarga de turbocompresores de otra plataforma donde se mide y se regula para distribuirse por gasoductos. Ya en la plataforma satélite se cuenta con un cabezal de inyección de BN comúnmente llamado Peine de BN, en el cual se derivan a las tomas para inyección de gas de bombeo neumático para cada uno de los pozos productores. Para la medición y cuantificación de los volúmenes inyectados de gas de BN, se cuenta con un sistema de medición.

Figura 3.8 Imagen representativa donde se observa el peine de BN a pozos (Pemex Exploración y Producción, 2014)
En la figura 3.9 se observa el flujo de proceso de una plataforma satélite con un separador remoto o de primera etapa.

Figura 3.9 Diagrama de flujo de producción una plataforma satélite (Pemex Exploración y Producción, 2014)
3.3.2. Procesos y operaciones de la plataforma de producción del Centro de Proceso

Un Centro de Proceso es el conjunto de plataformas satélites, plataforma de producción y plataforma habitacional que se ocupan de explotar, manejar, procesar y transportar una cierta cantidad de hidrocarburos. Como se comentó anteriormente, las plataformas de perforación son donde se ubican los pozos para la extracción de hidrocarburos del yacimiento hasta la superficie. Mientras que las plataformas de producción o también llamadas plataformas de bombeo (PB) son donde se ubican los equipos estáticos (separadores, rectificadores y Slug Catcher) y dinámicos (bombas, compresores, generadores y turbinas) que se usan para procesamiento de los hidrocarburos para que se envíen hasta su punto de venta o almacenamiento, por lo general, en la plataforma PB se cuenta con un quemador elevado que se utiliza para desfogue, este va instalado en una estructura trípode.

La plataforma habitacional es donde habitan los trabajadores que se encargan de operar y dar mantenimiento a las instalaciones del Centro de Proceso, ahí se cuenta con los servicios de alimentación, hotelería, oficinas, telecomunicaciones, gimnasio y sala de entretenimiento.

La Figura 3.10 es una imagen representativa de las plataformas de perforación, de producción y de generación eléctrica unidas a través de puentes.
Como se vio anteriormente, la separación puede comenzar en las plataformas satélites con un separador remoto bifásico, con este equipo se separa la mezcla gas-aceite proveniente de los pozos productores a través del cabezal de producción.

El crudo procedente de estas plataformas fluye a un cabezal y alimenta al separador de producción de segunda etapa, el cual se ubica en la plataforma de producción o PB, en la Figura 3.11 se muestra una imagen de un separador de segunda etapa con las entradas y salidas de aceite y gas, así como la procedencia y destino de este.
En los separadores se lleva a cabo un proceso mecánico-físico mediante el cual se realiza la separación aceite-gas; la diferencia de densidad entre fluidos provoca que el líquido se deposite hacia la parte inferior del recipiente y la fase gaseosa suba hacia el domo del recipiente saliendo por la parte superior.

En un separador de segunda se controla la presión de separación y el nivel en el recipiente.

El nivel de líquido en el separador se controla de la siguiente manera:

- Si el nivel de líquido se incrementa, las válvulas de control a la salida del gas modulan a cierre y las válvulas a la salida del aceite modulan la apertura, presurizando el recipiente y obligando a que más flujo de líquido sea desalojado; de esta manera se protege al separador por un alto nivel de líquido.

Figura 3.11 Diagrama de un separador de segunda etapa en un centro de producción (Pemex Exploración y Producción, 2014).
- Si el nivel de líquido disminuye las válvulas de control a la salida de aceite modulan el cierre y las válvulas a la salida de gas modulan la apertura, depresionando el separador y permitiendo mayor flujo de entrada de líquido; de esta forma se protege al separador por un bajo nivel de líquido.

Cabe mencionar que actualmente todo el proceso de separación se efectúa en forma automatizada, a través de un sistema digital de monitoreo y control (SDMC) el cual se opera y monitorea desde un cuarto de control por personal especializado.

Como insumo para mejorar el proceso de separación, se inyecta a la entrada del separador un químico llamado antiespumante, el cual tiene como función reducir la generación de espuma que se origina con la turbulencia en el sistema. Para la inyección de este químico se utilizan paquetes de inyección, los cuales cuentan con bombas de desplazamiento En la Figura 3.12 se muestra el diagrama de un paquete de inyección de químicos.

Figura 3.12 Diagrama de un paquete de inyección de químicos (Pemex Exploración y Producción, 2014)
3.3.2.2. Separador de prueba o de medición individual

En el separador de prueba se realiza la separación del aceite y gas de la corriente individual de un pozo (aforo de un pozo), saliendo de manera independiente ambas fases para ser medidas por medidores de flujo. A través del separador de prueba se realiza la medición individual de cada pozo, y por lo general se realiza un programa de medición de pozos mensualmente. En caso de que un pozo presente alguna variación en sus parámetros de operación, este se medirá en el separador de prueba para determinar el volumen de aceite y gas que haya dejado de aportar. Este equipo es fundamental para llevar un control adecuado de la aportación de los pozos productores.

Estos equipos, al igual que los separadores de primera y segunda etapa, cuentan con instrumentación para su control y sistemas de seguridad.

En la Figura 3.13 se muestra un medidor de flujo instalado en un separador de prueba.

Figura 3.13 Imagen representativa de un medidor de flujo de un separador de prueba (Pemex Exploración y Producción, 2014)
3.3.2.3. Sistema de bombeo de crudo

Después de pasar el hidrocarburo por el separador segunda etapa, este se considera crudo estabilizado, y por la baja presión en la que se encuentra; este se bombea (Sistema de bombeo Figura 3.14), las bombas van acopladas a una turbina o un motor eléctrico que es el mecanismo que proporciona la fuerza mecánica para que se mueva la bomba. Al crudo estabilizado se le incrementa la presión, de tal forma que pueda llegar a otra instalación donde sea procesado o almacenado.

Figura 3.14 Imagen representativa de una electrobomba instalada en una plataforma de producción (Pemex Exploración y Producción, 2014)

Entre la salida de crudo del separador de segunda etapa y la succión de las bombas de aceite se encuentran instalados filtros de captación de impurezas (generalmente sólidos). En ocasiones existe una alta presión diferencial en estos equipos lo cual origina que el crudo no llegue con facilidad a las bombas, esto se ve asociado a su obturación, lo cual reduce el área de flujo y disminuye el gasto. Cuando existe una deficiencia en alguna de las etapas de separación, el crudo
tendrá más gas de lo normal y esto ocasionará en la succión de las bombas un fuerte problema llamado cavitación y generará vibración en el equipo de bombeo.

Durante mucho tiempo, en varias instalaciones costa afuera existió el problema de cavitación y la solución a este problema fue realizar un disparo en el cabezal de succión de bombeo, el cual eliminó el exceso de gas y se direccionó hacia el quemador. Al implementar esta solución, los equipos pudieron aumentar la velocidad sin riesgo de vibración por cavitación.

Estos equipos cuentan con un contador lógico programable (PLC) instalado en el mismo patín del equipo y una interfaz hombre máquina (IHM) localizada en el cuarto de control, con lo cual es posible monitorear y controlar el estado y condiciones operativas de dichos equipos.

Cada equipo de bombeo tiene un sistema de recirculación, que interconecta la descarga de cada bomba hacia un cabezal de recirculación por donde el aceite crudo se incorpora al separador de segunda etapa.

La Figura 3.15 es la representación de una bomba tipo tornillo instalada en una plataforma de producción.

Figura 3.15 Imagen representativa de una bomba tipo tornillo (Pemex Exploración y Producción, 2014)
En caso de que se presente un bajo nivel en el separador de segunda etapa, actuará el paquete de recirculación por bajo nivel, este tiene la función de retornar crudo hacia el separador de segunda etapa hasta llevarlo a una condición segura de operación. Si se llegará a presentar una alta presión en la descarga de las bombas actuará el paquete de recirculación por alta presión, el cual retornará el crudo hacia el separador de segunda de etapa.

Después de las bombas se tiene un medidor de crudo y posteriormente se tiene una válvula de control de presión de descarga (PV), esta tiene la función de controlar la presión de descarga de las bombas con el propósito de mantener las condiciones ideales de presión dentro de la curva de eficiencia de estas. En la Figura 3.16 se muestra un diagrama de bombeo de una instalación típica.

Figura 3.16 Diagrama de bombeo en una plataforma de producción (Pemex Exploración y Producción, 2014)
3.3.2.4. Sistema de medición de crudo

La descarga de las bombas de exportación de crudo se envía a un patín de medición de crudo y una vez cuantificado el flujo, la corriente se interconecta a la salida de crudo hacia la terminal de almacenamiento por medio de oleoductos.

Los patines de medición también son controlados por válvulas de control de flujo, válvulas de doble sello e instrumentación asociada como indicadores locales, trasmisores, termopozos, detectores de temperatura, medidores de densidad, medidores de agua, válvulas de corte, válvulas manuales y tubería asociada. Todos estos elementos son necesarios para poder implementar de manera adecuada la transferencia de custodia.

El patín de medición cuenta con tres medidores, dos de los cuales son utilizados como trenes de producción y el tercero como tren maestro, para realizar la calibración por comparación directa de los trenes de producción. En la Figura 3.17 se muestra un medidor tipo ultrasónico.

Figura 3.17 Medidor ultrasónico (Pemex Exploración y Producción, 2014)
La medición del flujo se realiza en tiempo real y los controles envían señal al computador de flujo (Figura 3.18), el cual tiene comunicación con el SDMC que está ubicado en el cuarto de control de la plataforma.

![Computador de flujo](image)

Figura 3.18 Computador de flujo (Pemex Exploración y Producción, 2014)

Cuando el patín de medición cuantifica el flujo de la descarga de las bombas de exportación de crudo, la corriente de crudo se interconecta a la salida que va a otras instalaciones a través de ductos donde se va a procesar o almacenar.
3.3.2.5. Sistema de recuperación de vapores

Los vapores o gases de baja presión producidos en el separador de segunda etapa alimentan al cabezal de succión de los recuperadores de vapor o VRU´s (Figura 3.19), se usan dos trenes de compresión, uno succiona gas de baja presión y descarga al cabezal de succión de los turbocompresores, mientras que el otro succiona gas de alta presión del cabezal de succión de los turbocompresores booster y descargando en el cabezal general que se envía a la terminal de distribución.

Figura 3.19 Imagen representativa de una recuperadora de vapores (Pemex Exploración y producción, 2014)

El proceso que a continuación se describe se puede apreciar en la Figura 3.3 donde se observa la trayectoria del gas.

El gas amargo de baja presión se mide a la salida del separador de segunda etapa, para posteriormente alimentar al cabezal de succión de VRU´s, así mismo cuenta con un paquete de regulación de gas de baja de desfogue al quemador. Posteriormente, el gas pasa a través de los separadores de succión donde se remueve cualquier líquido presente y este es enviado al tanque de drenaje cerrado mediante una válvula de control de nivel.
Después del separador de succión, el gas se comprime a condiciones normales de operación, posteriormente se enfri y pasa al separador de descarga; los líquidos allí recuperados se envían al separador de succión de segunda etapa por una válvula de control de nivel y el gas comprimido se envía al cabezal de descarga del compresor de gas amargo. El gas comprimido pasa por los enfriadores para reducir su temperatura.

Los separadores de succión y descarga cuentan con un control de nivel en caso de que se tenga acumulación de líquidos. Los líquidos descargados mediante la válvula de control se envían al cabezal de alimentación del separador de segunda etapa o al tanque del drenaje cerrado.

Adicionalmente existe una recirculación en el cabezal general de descarga hacia la entrada del separador de succión lo cual previene una baja presión del separador de succión.

Este proceso se puede apreciar en la Figura 3.20, donde se observa la trayectoria que sigue el gas en el proceso.

Figura 3.20 Diagrama de un recuperador de vapor (Pemex Exploración y Producción, 2014)
3.3.2.6. Sistema de compresión de gas de alta

La plataforma de producción se alimenta de gas amargo que proviene de los separadores de primera etapa (generalmente instalados en las plataformas satélites) por medio de gasoductos.

Las líneas de alimentación de gas amargo se integran a un cabezal y entran al Slug Catcher, donde se tiene la función de recuperar los líquidos que arrastre la corriente de gas, los líquidos recuperados se envían a la entrada del separador de segunda etapa.

Como medida de seguridad si existe una sobreproducción, el gas no aprovechado se envía al paquete de regulación de desfogue de gas a quemador.

El proceso de la compresión se puede apreciar en la Figura 3.3. El proceso de compresión del gas se realiza de la siguiente manera:

El gas amargo que sale del Slug Catcher entra a los enfriadores de succión disminuyendo su temperatura; luego pasa a los separadores de succión eliminando condensados, los cuales se envían al separador de segunda etapa mediante un cabezal. Posteriormente, el gas pasa a la succión del compresor y ya descargado pasa a otro enfriador, de ahí es direccionado a un separador de descarga donde los líquidos recuperados se envían a la entrada del separador de segunda etapa. Finalmente, el gas se envía al cabezal de descarga donde se ubica un paquete de regulación para proteger por baja presión de descarga.

Como una medida de flexibilidad de varias instalaciones costa afuera, se cuenta con una línea de derivación en la línea de descarga de cada uno de los compresores booster; a través de la cual se derivará hasta el 30% del flujo máscico para aprovechar su temperatura como medio de calentamiento al Sistema de Acondicionamiento de Gas Combustible (gas que utilizan las turbinas para su combustión). Posteriormente el gas amargo es retornado al cabezal de descarga.
Se cuenta además con una recirculación desde el cabezal general de descarga de los compresores para prevenir una baja presión de succión e inestabilidad en el sistema de compresión.

En la Figura 3.21 se muestra la trayectoria del gas en el proceso descrito anteriormente.

Figura 3.21 Diagrama del sistema de compresores de alta (Pemex Exploración y Producción, 2014)
3.3.2.7. Cuarto de Variadores de Frecuencia BEC

El cuarto de variadores de frecuencia se utiliza para las instalaciones donde se encuentran pozos que operen con un sistema artificial de producción de bombeo electrocentrífugo, en esta instalación se encuentran concentrados los variadores de frecuencia y los equipos de servicios auxiliares de los mismos.

3.3.2.8. Elementos de limpieza interna

En la plataforma de producción se disponen de trampas receptoras (Figura 3.23) y lanzadoras (Figura 3.24) para la limpieza en los ductos, los elementos de limpieza, también llamados ELI o diablos (Figura 3.22), son elementos que pasan por la tubería con el objetivo de eliminar todos los residuos incrustados en ella.

La trampa receptora para la limpieza en ductos tiene una conexión para incluirse en la producción de aceite en el separador de segunda etapa.

Figura 3.22 Elemento de Limpieza Interna(ELI) (Hotta, H., Suyama, K., Yonemura, Y., Mashiko, T., 2005)
3.3.3. Sistema de acondicionamiento de gas combustible

La turbomaquinaria requiere de gas combustible para su funcionamiento, específicamente para que operen las turbinas, las cuales van acopladas a bombas,
compresores o generadores. Este gas se maneja, acondiciona y distribuye por un paquete que consta de los siguientes equipos:

- Separador de gas combustible
- Filtro separador de gas
- Intercambiador de calor de gas combustible
- Calentador eléctrico de gas combustible
- Válvulas de control de presión
- Filtro coalescedor

El gas residual se recibe por un gasoducto de bombeo neumático submarino, el cual llega a la plataforma de producción. Donde una vez recibido el gas en el paquete, pasa al separador de gas combustible cuya función es la de recolectar los condensados formados en la línea; este separador cuenta con un indicador de presión. Posteriormente, pasa a un primer tren de regulación que consta de una válvula reguladora operando y una de relevo, las cuales ayudan a bajar la presión. Para garantizar la eliminación de los condensados, el gas se hace pasar por un filtro separador.

También existen filtros diseñados para retener hasta el 99.96% de partículas metálicas mayores a 3 micrones transportadas en el gas, estos filtros funcionan por medio de magnetos, los cuales generalmente se instalan en pares, ya que uno se utiliza en forma continua y el otro como respaldo.

El calentamiento del gas se lleva a cabo con el intercambiador de calor, utilizando como medio de calentamiento el gas de descarga de los booster para el aprovechamiento de la energía. Cuando el gas combustible pasa por el lado de los
tubos incrementa su temperatura por encima de su punto de rocío, para el mismo objetivo se cuenta con un calentador eléctrico que opera únicamente durante el inicio de un arranque de la plataforma, este tiene la misma función de calentar el gas cuando los compresores booster están fuera de operación.

A la salida del calentador, el gas se envía a un segundo tren de regulación, donde se disminuye la presión para utilizarse en las turbinas.

En la Figura 3.25 se aprecia el proceso de acondicionamiento de gas combustible.

3.3.4. Sistema de generación y distribución eléctrica

La plataforma de generación (Figura 3.26) tiene como función generar la energía eléctrica para suministrar a ella misma y a las plataformas periféricas a través de un cable eléctrico submarino. La energía eléctrica se genera por medio de turbogeneradores.
El sistema de generación y distribución eléctrica se desarrolla de acuerdo con la filosofía, la cual contempla operar con una cantidad de turbogeneradores tal que generen una potencia nominal que represente una disponibilidad que garantice la continuidad de energía eléctrica por falla de equipos; así mismo las cargas eléctricas operarán preservando los equipos de mayor prioridad.

![Imagen de plataforma de generación eléctrica](image)

Figura 3.26 Componentes en una plataforma de generación eléctrica (Pemex Exploración y Producción, 2013)

La energía eléctrica generada se envía al tablero de media tensión por medio de los interruptores de alta tensión, el cual a su vez se interconecta con otro tablero de media tensión con interruptores que distribuyen la energía eléctrica hacia las plataformas.
Adicionalmente, se requiere de un motogenerador (Figura 3.27) de emergencia que opera manualmente. Se instala con el objetivo de respaldar las cargas críticas cuando no se tenga gas combustible y para efectos de arranque de la plataforma de generación eléctrica.

![Figura 3.27 Turbogenerador (Pemex Exploración y Producción, 2014)](image)

Esta plataforma cuenta con un SDMC para centralizar el monitoreo y controlar en tiempo real las plataformas a las que se les suministra energía eléctrica, además cuenta con un sistema de control y disparo de cargas eléctricas para la centralización y segregación de las cargas eléctricas en tiempo real de las plataformas de generación, producción y satélites.

En la Figura 3.28 se muestra un tablero de media tensión en una plataforma de generación eléctrica.
En la Figura 3.29 se muestra el sistema de distribución de energía eléctrica en instalaciones costa afuera.
3.3.5. Sistema de gas de instrumentos

El sistema de producción cuenta con una red general de gas para instrumentos, constituida por un paquete de regulación de nitrógeno, donde se regula su presión para poder alimentar principalmente a la instrumentación neumática de los equipos dinámicos y estáticos. Algunos de estos equipos son: válvulas de control, válvulas automáticas de seguridad, dispositivos de arranque neumático de motobombas contra incendio y red de tapones fusibles para detección de fuego.
3.3.6. Drenajes

Este sistema se divide en dos: drenaje presurizado y drenaje atmosférico (Figura 3.30):

El drenaje o tanque atmosférico a través de un cabezal de tuberías, capta corrientes de agua y agua aceitosa provenientes de las charolas de contención de líquidos instaladas en separadores, rectificadores, trampas de diablo, bombas, compresores y generadores. Los líquidos recuperados en el tanque, por diferencia de densidades se separa, el aceite separado se envía a la entrada del separador de segunda etapa por medio de bombas, mientras que el agua aceitosa se envía al tanque tratamiento de aguas aceitosas.

El drenaje presurizado a través de un cabezal de tuberías capta en un tanque las purgas o drenes de líquidos de los equipos estáticos (separadores, rectificadores, filtros y trampas de diablos) y dinámicos (bombas, compresores y generadores); así como también los flujos de aceite provenientes del drenaje atmosférico. Los líquidos recuperados en el tanque se envían hacia la entrada del separador de segunda etapa a través de bombas.

El sistema de tratamiento de aguas aceitosas tiene la función de separar y remover sólidos hidrocarburos, aceite disperso y emulsionado contenido en una corriente contigua de aguas aceitosas que se recogen de las charolas de diferentes equipos; principalmente de las que se envían del drenaje abierto, finalmente el agua separada limpia es vertida al mar.
3.4. Sistemas auxiliares, seguridad y procesos

La descripción del proceso productivo de un sistema de producción se lleva a cabo dividiendo las características del proceso, los sistemas, los subsistemas, los equipos y componentes o partes en niveles. Los sistemas asociados a los procesos productivos y su interrelación con los sistemas auxiliares y/o de seguridad se muestran en la Figura 3.31.
Figura 3.31 Diagrama de sistemas auxiliares (Pemex Exploración y Producción, 2014)
La interacción de los sistemas de las áreas de proceso de aceite, gas, y generación eléctrica con los sistemas auxiliares, de seguridad y control (SPPE, SAI, SGC, SDFyG, SCI, Consola Baker, Gas de Instrumento) se muestran en líneas punteadas de la Figura 3.31.

Las interacciones de cada uno de los sistemas de seguridad y auxiliares con las áreas de proceso se muestran en la Tabla 3.1.

Tabla 3.1 Interacción de los sistemas auxiliares y de seguridad (Pemex Exploración y producción, 2014)

<table>
<thead>
<tr>
<th>ÁREA DE PROCESO</th>
<th>SISTEMA</th>
<th>INTERACCIÓN CON SISTEMAS AUXILIARES/SEGURIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pozos</td>
<td>Extracción</td>
<td>SPPE SAI SGC SDGF C. Baker Gas Inst. SDMC SCI</td>
</tr>
<tr>
<td>Aceite</td>
<td>Recolección/ Distribución de hidrocarburos</td>
<td>x x x x x</td>
</tr>
<tr>
<td></td>
<td>Separación/ Rectificación</td>
<td>x x x x</td>
</tr>
<tr>
<td></td>
<td>Bombeo</td>
<td>x x x</td>
</tr>
<tr>
<td>Gas</td>
<td>Recolección/ Distribución de gas</td>
<td>x x x</td>
</tr>
<tr>
<td></td>
<td>Compresión de gas</td>
<td>x x x</td>
</tr>
<tr>
<td>Generación</td>
<td>Generación</td>
<td>x x</td>
</tr>
<tr>
<td>Generación</td>
<td>Distribución eléctrica</td>
<td>x</td>
</tr>
</tbody>
</table>

3.5. Ventanas operativas

Las ventanas operativas definen el conjunto de condiciones y variables que intervienen en la operación de una instalación, ajustadas a rangos que permiten operar de manera óptima y confiable en el proceso.

Los rangos a los que se ajustan las instalaciones para su correcta operación se le llaman condiciones esperadas de operación. Para determinar las variables operativas a controlar y sus rangos de operación se seleccionan aquellas variables consideradas como críticas, y que además tienen un impacto directo en el proceso en la instalación o en los equipos.
En la **Tabla 3.2** se muestran los rangos en colores y características de las ventanas operativas, donde se indican las protecciones, alarmas, disparos, límites seguros de operación mínimos y máximos y rangos de operaciones normales mínimos y máximos.

Tabla 3.2 Rangos en colores y características de las ventanas operativas (*Pemex Exploración y Producción, 2014*)

<table>
<thead>
<tr>
<th>Protecciones</th>
<th>Límites seguros de operación</th>
<th>Acciones para corregir desviaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSO min</td>
<td>Seguro</td>
<td>Variable operativa</td>
</tr>
<tr>
<td>LSO max</td>
<td></td>
<td>Rango mínimo variable operativa</td>
</tr>
</tbody>
</table>

La representación de parámetros y áreas de riesgos en ventanas operativas se define en colores como se muestra en la Tabla 3.2, dichos colores son explicados a continuación.

- **El color verde representa** las condiciones esperadas de operación (CEO), que corresponde al rango seguro de operación normal de la variable. Se realizan simulaciones con ayuda de los datos tomados y se considera una confiabilidad del 80% de las condiciones normales de operación. Posteriormente, los datos obtenidos con las simulaciones se evalúan operacionalmente para fijar los valores definitivos que se consideran en las ventanas operativas.

- **El color amarillo representa** los límites seguros de operación (LSO), en los que un equipo o instalación puede operar temporalmente y por un tiempo limitado cuando se presenta un cambio de escenario operativo. Se deben tomar acciones inmediatas al estar operando en esta área a fin de poder
retornar la variable a su condición esperada de operación (Área verde). Al igual que en el caso anterior se utiliza una simulación, pero tomando como referencia el 90 % de la confiabilidad para obtener los rangos. Estos rangos obtenidos con las simulaciones se evalúan con personal operativo y finalmente se fijan los valores definitivos que representaran los LSO mínimo y LSO máximo.

- El color naranja representa el área de protecciones, que significa peligro y en donde los sistemas de alarma se activan reportando las alertas ante situaciones peligrosas que de no tomarse las acciones correctivas inmediatas pudieran causar inestabilidad en el proceso, instalación y/o equipos.

- El color rojo representa el área de protecciones, donde los sistemas de protección actúan sacando fuera de operación el equipo o instalación y afectando el proceso productivo.

Un ejemplo de las variables operativas de cada instalación se presenta en la Tabla 3.3.
<table>
<thead>
<tr>
<th>Tabla 3.3 Ejemplos de las variables operativas de diferentes equipos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable operativa de los equipos</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Ejes de la tabla ver. de los equipos</td>
</tr>
<tr>
<td>Temperatura del alcohol</td>
</tr>
<tr>
<td>Presión de la entrada</td>
</tr>
<tr>
<td>Temperatura de la entrada</td>
</tr>
<tr>
<td>Temperatura de la salida</td>
</tr>
<tr>
<td>Presión de la salida</td>
</tr>
<tr>
<td>Temperatura del alcohol en la salida</td>
</tr>
<tr>
<td>Presión de la entrada en la salida</td>
</tr>
<tr>
<td>Temperatura de la entrada en la salida</td>
</tr>
<tr>
<td>Presión de la salida en la salida</td>
</tr>
</tbody>
</table>

Obs: Los valores de las variables varían dependiendo del equipo y la situación operativa.
En todas las plataformas de producción se encuentra instalado un cuarto de control (CC), donde se monitorea y controla todo el proceso asociado al transporte, manejo y acondicionamiento de aceite y gas. Adicionalmente, en cada una de las plataformas del centro de proceso se ubican sistemas de monitoreo locales, los cuales permiten supervisar la operación de los equipos principales que lo constituyen.

Los equipos que operan en las instalaciones que constituyen el centro de proceso, cuentan con dispositivos de alarma y protección que actúan cuando los valores de las variables de proceso alcanzan valores anormales de operación.

El operador debe tomar acciones correctivas cuando una alarma se presenta en el proceso; sin embargo, en ocasiones las desviaciones no pueden controlarse efectivamente, lo cual, origina que las variables de proceso alcancen valores que atenten contra la seguridad de las personas y equipos. Por lo anterior, existe un nivel de paro para cada variable de proceso que permita parar la instalación de manera segura lo cual evita que se presente un accidente.

3.6. Características de insumos y productos

Los sistemas de producción son instalaciones diseñadas y construidas para recibir corrientes de aceite, gas y/o mezclas de hidrocarburos; los cuales pueden someterse a procesos de separación, compresión o transporte, y acondicionamiento en las plataformas que lo constituyen.

Dependiendo de los objetivos corporativos y de la flexibilidad operacional que esté presente en el momento requerido, las corrientes de hidrocarburos que entran al sistema de producción se someten a una serie de procesos fisicoquímicos, cuyo producto final arrojan corrientes de aceite y gas natural estabilizados. Estos procesos requieren una serie de insumos para generar los productos requeridos con ciertas especificaciones.
Los insumos y productos requieren de una amplia calidad y disponibilidad garantizada en todo momento para poder cumplir los objetivos de producción, los sistemas de producción pueden manejar los siguientes insumos: diésel, aceite crudo, gas natural, aceite lubricante, entre otros.

Un aspecto indispensable para garantizar la adecuada explotación de los hidrocarburos es mantener el monitoreo de la calidad de cada una de las corrientes que se procesan en las instalaciones. De esta manera se puede detectar a tiempo cualquier variación de algunos de los parámetros de control, y así poder tomar acciones correctivas a las que haya lugar.

Es importante también saber las características precisas de la producción, por lo que se hacen estudios de las corrientes de crudo en las líneas principales de entrada y salida del sistema de producción. Esta caracterización incluye el tipo de aceite, densidad, porcentaje de agua, porcentaje de sedimento y salinidad.

Así como se caracteriza el crudo, el gas pasa por una cromatografía en las corrientes de entrada y salida; este estudio arroja información del tipo de gas a condiciones de presión y temperatura, unidad de masa atómica, densidad relativa, factor de compresibilidad, poder calorífico, el porcentaje mol de sus contaminantes y la fracción molar de los componentes hidrocarburos.

Los productos químicos que se usan tanto en el proceso como en el laboratorio son los siguientes: ácido sulfúrico, acetileno, almidón, antiespumante, butanol, floculante, inhibidor de asfáltenos, metanol, nitrato de plata, solución búffer, xileno, tolueno y yodo.

3.7. Redundancias

En caso de falla o por mantenimientos programados, el sistema de producción cuenta con un esquema operacional capaz de garantizar la continuidad de los
procesos para los que fueron construidos y diseñados, a esta flexibilidad operacional se le denomina redundancia.

La redundancia se presenta principalmente en los equipos de proceso, generación eléctrica y SPPE y se debe tener identificada la cantidad de equipos en operación y la cantidad de equipos que permanecen disponibles.

Podemos encontrar redundancia en algunos paquetes de válvulas, equipos de bombeo y en ocasiones hasta de separadores, con el objetivo de garantizar la continuidad operativa.

En el sistema de generación eléctrica cuenta con redundancias en equipos como turbogeneradores y motogeneradores.

La parte electrónica está compuesta por los sistemas digitales de monitoreo y control, paro por emergencia, detección de gas y fuego, equipos que por su nivel de importancia deben tener triple redundancia.

Es importante también considerar la redundancia en el sistema de medición de flujo; lo anterior implementando un tren de medición primaria y de medición secundaria (de forma cruzada), siendo el tren de medición secundaria el que respalde la medición del tren primario y de esta forma garantizar la cuantificación del flujo de crudo.

3.8. Alarmas y dispositivos de protección

El sistema de producción debe contar con un sistema de protección capaz de mitigar cualquier situación de emergencia que se presente en la instalación. Dichos sistemas actúan inmediatamente al activarse de manera automática y/o manual y permiten evitar mayores consecuencias de los efectos de la falla.
3.8.1. Sistema de paro por emergencia (SPPE)

El SPPE tiene como objetivo el cierre operacional de sistemas de proceso, de una instalación, varias instalaciones o todo el sistema de producción de forma automática, al detectarse lecturas de variables de proceso fuera del rango de condición normal de operación que representen un riesgo, o por la activación por parte del personal de una botonera de cierre manual cuando sea necesario, evitando así, daños y eventos no deseados.

Las lecturas automáticas para la activación del SPPE corresponden generalmente a fugas de gas, fugas de aceite o fuego en el sistema de producción, o con una condición fuera de los límites máximos o mínimos de operación. También a lo largo de las instalaciones se encuentran ubicadas una serie de botoneras de emergencia que pueden presionarse por cualquier persona que detecte alguna condición de emergencia. Al activarse el SPPE, los equipos de proceso pasan inmediatamente a condición segura.

El paro de las instalaciones se realiza en diferentes niveles de acuerdo con las secuencias seguras de cierre, programadas en cada uno de los controladores lógicos programables. Los cuales, están configurados para obtener lecturas de instrumentos en campo y estaciones de paro por emergencia, alarmando y actuando sobre válvulas de corte de seguridad SDV’s consumando así el cierre de las instalaciones.

Cada controlador lógico programable es un sistema autónomo, cuenta con su propia fuente de alimentación ininterrumpida y provee temporalmente al equipo de energía en caso de falla en el suministro eléctrico.

Con el fin de garantizar que el sistema cumpla con su propósito, se implementan tres tipos o niveles de paro: Paro Nivel 1 (Paro General Despresurizado), Paro Nivel 2 (Paro de Plataforma Presurizado) y Paro Nivel 3 (Paro por Equipo o Sistema).
Todas las variables (nivel, temperatura, presión, flujo) alarman en la consola de operación del SPPE, previo a un disparo y se consideran en el proceso algunos sistemas y disparos con doble o triple redundancia según el riesgo de las líneas o equipos.

La activación se generada por la señal del sistema de gas y fuego o por condiciones de proceso fuera de control.

El sistema de paro considera flexibilidad para realizar acciones operativas en caso de cierre temporal de cualquier parte del proceso.

3.8.2. Sistema de desfogue

El sistema de producción posee un sistema de desfogue que permite la quema segura de los hidrocarburos gaseosos que se procesan en condiciones normales de operación, o bien que se desalojan en caso de un mantenimiento operacional, paro o puesta en servicio de algún equipo que maneje hidrocarburos gaseosos. Cada una de las plataformas de producción y compresión del Centro de Proceso cuenta con este sistema, cuyo elemento final, lo constituye un quemador capaz de producir la combustión de manera segura y controlada de los hidrocarburos gaseosos provenientes de los recipientes presurizados. En la Figura 3.32 se muestra un diagrama de proceso del sistema de desfogue en instalaciones costa afuera.
Figura 3.32 Diagrama del sistema de desfogue en una plataforma de producción (Pemex Exploración y Producción, 2014)
Al presentarse un paro por emergencia o una condición de operación no segura, se activan las válvulas de seguridad de los equipos presurizados por gas. Posteriormente, el gas fluye de los equipos a los cabezales de alta y baja presión hasta el paquete de recuperación de condensados, el cual cuenta con retorno al tanque de drenaje para incorporarlos al proceso de separación. Finalmente, los gases de desfogue continúan su recorrido hasta el quemador (Figura 3.33).

Figura 3.33 Quemador instalado en un sistema (Pemex Exploración y Producción, 2013)

3.8.3. Sistema de detección de gas y fuego

El propósito del sistema de detección y supresión de gas y fuego es conseguir una operación segura durante el arranque, paro y operación normal, así como prevenir riesgos al personal, al ambiente y al equipo.
El sistema de detección de gas y fuego consiste en un conjunto de detectores de cuatro tipos, un conjunto de alarmas audibles/visibles y un controlador lógico programable. Los detectores pueden censar fugas de gas combustible, fugas de gas tóxico, generación de humo y presencia de algún fuego. Enlazado a este sistema se tienen dos sistemas de extinción de incendios y son: el sistema de agua de contra incendio y el sistema de agente limpio.

Dependiendo de la condición detectada, el sistema responde activando ya sea las alarmas anunciando la presencia de gas, humo o fuego, activando el sistema de agua contra incendio. O activando el sistema de depresión con base en un agente limpio, si detecta la generación de humos en cualquiera de los locales protegidos como el cuarto de control de instrumentos, cuarto de control eléctrico y laboratorio.

La electrónica de la unidad de procesamiento remoto del sistema de detección de gas y fuego está basada en microprocesadores con funciones específicas para la adquisición de datos en tiempo real y ejecución de acciones de control para activar los sistemas de supresión de incendios, detectar y alarmar la presencia de gases tóxicos y combustibles. Existe una unidad de procesamiento remoto de gas y fuego para el monitoreo y control de la plataforma, adicionalmente una por cada equipo paquete, de la turbo maquinaria (compresores de gas amargo y compresores de vapor recuperado). La unidad de procesamiento remoto de la plataforma ubicada en el cuarto de control es la única que enviará señales de paro por emergencia.

Los detectores de fuego son de tipo infrarrojo y ultravioleta, en el momento en el que se detecta fuego confirmado por ambos tipos de detectores en la misma área, se activarán de forma automática las alarmas en campo y se activará la red contra incendio en el área afectada.
3.8.4. Sistema digital de monitoreo y control

El sistema digital de monitoreo y control, como su nombre lo indica, tiene como finalidad el monitoreo de variables y el control de todo el proceso productivo de la instalación, esto se hace a través del censo de variables que se obtienen con instrumentación y electrónica instalada en cada uno de los equipos y sistemas que conforman la instalación. A través de este sistema los operadores tomarán las acciones correspondientes para mantener el proceso estable y en forma segura. En la Figura 3.34 se muestra el SDMC de una instalación costa afuera.

![Sistema Digital de Monitoreo y Control](Figura_3.34.jpg)

Figura 3.34 Sistema Digital de Monitoreo y Control de una plataforma de producción (Pemex Exploración y Producción, 2014)

3.8.5. Sistema de red contra incendio

La red contra incendio instalada en el sistema de producción permite controlar y mitigar el fuego que pueda presentarse en las instalaciones, este sistema está constituido por bombas contra incendio, red de tampones fusibles, red de tuberías
con hidrantes, monitores y sistemas de diluvio para brindar protección, usando agua de mar.

La red de agua contra incendio se alimenta, empaca y presuriza con agua de mar, por medio de las bombas de agua contra incendio. La red de tuberías del sistema contra incendio es de fibra de vidrio y se dimensiona en función de una velocidad máxima en las tuberías principales. Además, como mínimo se deben utilizar dos bombas contra incendio ambas con motores de diésel, cada una con capacidad total para satisfacer la mayor demanda esperada de flujo de agua contra incendio y con una presión mínima en el punto más alejado desde el punto de vista hidráulico, por caída de presión.

La activación de las bombas contra incendio está automatizada a la pérdida de presión en el anillo de distribución, para mantener la presión en el anillo de distribución se deben utilizar dos bombas reforzadoras, accionadas por motores eléctricos. En condiciones normales de operación, las bombas principales de diésel deben estar fuera de operación y la presión del cabezal principal de la red contra incendio debe ser mantenida mediante las bombas de reforzamiento accionadas con motor eléctrico.

Con el propósito de mantener el control de presión y monitoreo de la red del cabezal y anillo principal se cuenta con un transmisor localizado lo más cercano posible a las bombas contra incendio sobre el cabezal principal de descarga, el cual enviará una señal tanto al tablero local de cada una de las bombas principales como al cuarto de control inteligente de la plataforma. El tanque hidroneumático, cuentan con dos interruptores de nivel los cuales controlan, a través de la lógica programada, el arranque y paro de las bombas de reforzamiento. El sistema contra incendio se diseña de tal manera que, al quedarse el tanque hidroneumático sin nivel ya sea por falta de aire de plantas o por que la demanda de agua contra incendio sea de tal magnitud que el conjunto bombas de reforzamiento hidroneumático no sea suficiente para satisfacer dicha demanda y el tanque hidroneumático se vacíe, se cuente con la instrumentación, lógica de control y arreglos necesarios para que el suministro de agua que alimentan en estas
condiciones las bombas principales contra incendio, no se vea afectado por la falta de nivel del tanque hidroneumático, ni por la alimentación de aire a este tanque y este aire sea conducido a la red general contra incendio.

En todo momento mientras no se encuentren operando los sistemas de extinción con base en agua, la presión del cabezal principal se debe mantener. Si la presión del cabezal baja debido al uso de algún dispositivo de extinción con base en agua como los hidrantes, gabinetes de manguera, rociadores o aspersores, o por alguna fuga, la presión será repuesta por el agua contenida en el tanque hidroneumático el cual se encuentra presurizado. Cuando el nivel del tanque hidroneumático baje a un nivel crítico, el tanque hidroneumático cuenta con un interruptor por bajo nivel, el cual envía una señal al cuarto de control inteligente; con la finalidad de poner a funcionar la bomba de reforzamiento que se considera en ese momento para estar en servicio, y de manera similar la bomba se detendrá al alcanzar un nivel óptimo en volumen del tanque hidroneumático mediante un interruptor por alto nivel. El volumen restante será ocupado por la cámara de aire de planta que vendrá de los compresores de servicio de la misma plataforma habitacional, para lo cual el tanque hidroneumático cuenta con dos válvulas controladoras de presión, una para controlar la presión de alimentación al tanque hidroneumático la cual deberá de contar con una válvula check después de esta válvula y la otra para desfogar a la atmósfera el exceso de presión en el tanque. El tanque también cuenta con indicadores locales de nivel y presión así como transmisor de presión con la finalidad de tener la indicación de presión en la consola del sistema de gas y fuego ubicada en el cuarto de control inteligente.

Si la presión del cabezal principal de agua contra incendio baja, debido al uso de los sistemas de extinción manual, se deben activar alarmas sonoras por señal del transmisor de presión antes mencionado; tanto en el tablero de control local de las bombas principales como en la consola de operación indicando baja presión en el cabezal principal de la red de agua de contra incendio. Si la presión continúa bajando, debe arrancar de manera automática una de las bombas principales de diésel, con la finalidad de elevar la presión en el cabezal.
Si una bomba no es suficiente para proporcionar el flujo y presión requerida por la contingencia que se presente en las plataformas, es decir que nuevamente la presión baje, debe arrancarse de manera automática la otra bomba. La lógica programada en los tableros de control local podrá permitir el arranque de las bombas en todo momento. El cuarto de control inteligente debe tener acción prioritaria sobre el contador lógico programable de los tableros de control local. Para la protección de la misma red y equipos de la bomba de diésel contra incendio, se deben tener válvulas de relevo de presión en cada una de las bombas, las cuales se ajustarán con un 10% sobre la presión de operación.

En el mismo caso las bombas de reforzamiento se deben instalar válvulas de relevo de presión para su protección, ajustadas al 10% sobre la presión de operación.

El sistema contra incendio incluye sistemas de protección para proteger la red contra incendio contra golpes de ariete con válvulas bloqueadas. Se instala una coladera en la succión de las bombas contra incendio, así como filtros en lugares convenientes de la red contra incendio, con la finalidad de eliminar partículas que puedan obstruir los sistemas de aspersores y rociadores.

Las bombas contra incendio principales y de reforzamiento, se localizan cercanas a las columnas o trabes de los ejes, con objeto de tener la mayor estabilidad estructural mecánica para las camisas de succión.

De acuerdo con el nivel de riesgo de la plataforma habitacional, el sistema de rociadores debe actuar individualmente por medio de los bulbos incluidos en el rociador para activarse por temperatura. Los rociadores se encargarán de proteger habitaciones, pasillos, y cuartos de uso común.

El sistema de boquillas aspersoras fijas, que protegen los tanques de diésel de motogeneradores y los tanques de diésel para las bombas contra incendio, se diseña para actuar a través de válvulas de diluvio. Cada una de las válvulas de diluvio está suministrada como equipo paquete, que incluye todos los accesorios
e instrumentación para su correcta operación. El actuador de la válvula de diluvio y la red de tapones fusibles están presurizados con aire, manteniendo cerrada la válvula. La presión del actuador de la válvula de diluvio podrá ser liberada de 3 maneras:

- Por accionamiento eléctrico a través de la válvula solenoide de 3 vías operada remotamente desde la consola de operación del sistema de gas y fuego.

- Por accionamiento manual local a través del mecanismo de accionamiento en la propia válvula de diluvio.

- Por accionamiento de los tapones fusibles, los cuales al llegar a cierta temperatura se fundirán dejando escapar el aire y despresurizando la línea, la cual al llegar a un valor de presión se abrirá la válvula de diluvio.

En todos los casos, se despresuriza el actuador de la válvula de diluvio permitiendo el paso de agua a las boquillas aspersoras para protección de los equipos antes mencionados.
Capítulo 4 Análisis técnico-económico

En todos los proyectos, la evaluación económica es un factor clave para poder llevar a cabo el mismo, esto implica tener en cuenta los costos de operación, inversiones, y los ingresos, en este caso se toma en consideración la producción de hidrocarburos y el precio de venta del hidrocarburo.

Si bien el tema en cuestión es la evaluación económica de las operaciones que se llevan a cabo en un centro de procesos costa afuera, los costos de operación del transporte de hidrocarburos por ductos deben tomarse en consideración.

El costo aproximado de transporte por ductos se puede extrapolar a partir de la Tabla 4.1 con información tomada de la lista de tarifas de transporte por ductos. A partir de la distancia, el costo de transporte por barril y la capacidad de transporte se obtiene el costo de operación anual.

<table>
<thead>
<tr>
<th>Distancia del ducto (km)</th>
<th>Costo de operación ($/bbl)</th>
<th>Capacidad (bbl/día)</th>
<th>Diámetro (pg)</th>
<th>Costo de operación anual ($/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>485.78</td>
<td>13.08</td>
<td>240,000</td>
<td>30</td>
<td>2,358,702.21</td>
</tr>
<tr>
<td>472.03</td>
<td>21.31</td>
<td>115,000</td>
<td>24</td>
<td>1,894,979.66</td>
</tr>
<tr>
<td>504.13</td>
<td>25.96</td>
<td>160,000</td>
<td>24</td>
<td>3,007,269.91</td>
</tr>
</tbody>
</table>

Por medio de una extrapolación basada en el método de mínimos cuadrados se obtiene el costo de operación anual de la siguiente manera:

\[
\text{COA} \left[\frac{\$}{km} \right] = d[\text{km}] \frac{3[(\Sigma d \times \text{COA})][\$] - [(\Sigma d)(\Sigma \text{COA})][\$]}{3(\Sigma d^2)[km^2] - (\Sigma d)^2[km^2]} + \frac{(\Sigma \text{COA})(\Sigma d^2)[\$km] - (\Sigma d \times \text{COA})(\Sigma d)[\$km]}{3(\Sigma d^2)[km^2] - (\Sigma d)^2[km^2]}
\]

El cálculo del costo de operación anual se muestra en la Tabla 4.2.
Tabla 4.2 Cálculo de mínimos cuadrados para los costos de operación de ductos

<table>
<thead>
<tr>
<th>Distancia del ducto (d) [km]</th>
<th>Costo de operación anual (COA) [$/km]</th>
<th>d*COA[$]</th>
<th>d² [km²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>485.78</td>
<td>2,358,702.21</td>
<td>1145810360</td>
<td>235,982.21</td>
</tr>
<tr>
<td>472.03</td>
<td>1,894,979.66</td>
<td>894487248.9</td>
<td>222,812.32</td>
</tr>
<tr>
<td>504.13</td>
<td>3,007,269.91</td>
<td>1516054980</td>
<td>254,147.06</td>
</tr>
<tr>
<td>Σd = 1,461.94</td>
<td>Σ COA = 7,260,951.78</td>
<td>Σ (d*COA) = 3,556,352,588.21</td>
<td>Σ d² = 712,941.59</td>
</tr>
</tbody>
</table>

\[COA \left[\frac{\$}{km} \right] = d(km)(34688.40) \left[\frac{\$}{km^2} \right] - 14483804.06 \left[\frac{\$}{km} \right] \]

Se considera una distancia de 600 km ductos, por lo tanto, el costo de operación anual sería de 6,329,237.77 ($/km), lo que da un costo operativo anual total de $3,797,542,663.00, cifra que se considerará en dólares y con un tipo de cambio basado en 19 (peso/dólar), se obtiene un costo por operación de ductos de $199,870,666.50 dólares.

Por otro lado, se considera un costo adicional anual de $100,000,000.00 producto de los costos de operación de los centros de proceso, por lo cual se considera una cifra fija de $300,000,000.00 dólares como costos anuales por operación.

Por otra parte, es necesario incluir la producción de hidrocarburos como un factor clave para evaluar la rentabilidad del proyecto como un ingreso, mismo que interactúa con el precio de venta, por lo tanto, se considera un histórico de producción de los últimos años, mismo que se muestra en la Tabla 4.3.
La tabla 4.3 muestra el histórico de producción anual de crudo pesado en costa afuera (Sistema de Información Energética, 2018).

<table>
<thead>
<tr>
<th>Año</th>
<th>Producción nacional total (mbbl/día)</th>
<th>Producción de crudo pesado (mbbl/día)</th>
<th>Producción de crudo pesado producido costa afuera (mbbl/día)</th>
<th>Total de producción de crudo pesado producido costa afuera (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>3,333.35</td>
<td>2,386.97</td>
<td>2,330.57</td>
<td>69.9%</td>
</tr>
<tr>
<td>2006</td>
<td>3,255.58</td>
<td>2,243.75</td>
<td>2,173.51</td>
<td>66.8%</td>
</tr>
<tr>
<td>2007</td>
<td>3,075.71</td>
<td>2,039.41</td>
<td>1,975.53</td>
<td>64.2%</td>
</tr>
<tr>
<td>2008</td>
<td>2,791.58</td>
<td>1,765.64</td>
<td>1,701.69</td>
<td>61.0%</td>
</tr>
<tr>
<td>2009</td>
<td>2,601.48</td>
<td>1,519.97</td>
<td>1,445.87</td>
<td>55.6%</td>
</tr>
<tr>
<td>2010</td>
<td>2,577.02</td>
<td>1,464.01</td>
<td>1,380.28</td>
<td>53.6%</td>
</tr>
<tr>
<td>2011</td>
<td>2,552.62</td>
<td>1,417.10</td>
<td>1,322.68</td>
<td>51.8%</td>
</tr>
<tr>
<td>2012</td>
<td>2,547.91</td>
<td>1,385.00</td>
<td>1,279.19</td>
<td>50.2%</td>
</tr>
<tr>
<td>2013</td>
<td>2,522.13</td>
<td>1,365.05</td>
<td>1,257.81</td>
<td>49.9%</td>
</tr>
<tr>
<td>2014</td>
<td>2,428.77</td>
<td>1,265.51</td>
<td>1,159.88</td>
<td>47.8%</td>
</tr>
<tr>
<td>2015</td>
<td>2,266.83</td>
<td>1,152.34</td>
<td>1,054.19</td>
<td>46.5%</td>
</tr>
<tr>
<td>2016</td>
<td>2,153.53</td>
<td>1,102.58</td>
<td>1,015.43</td>
<td>47.2%</td>
</tr>
<tr>
<td>2017</td>
<td>1,948.26</td>
<td>1,049.05</td>
<td>976.90</td>
<td>50.1%</td>
</tr>
</tbody>
</table>

De acuerdo con la información del histórico de producción, se considera que más de la mitad de la producción de hidrocarburos en el país corresponden a crudo pesado derivado de yacimientos costa afuera.

En el caso del precio de venta del hidrocarburo, se toma en consideración el histórico del crudo Maya, siendo este el hidrocarburo más pesado producido en México. El precio de venta de este hidrocarburo se muestra en la Tabla 4.4.
Con base en los datos anteriores, se realiza la Tabla 4.5, donde se observa el flujo de efectivo anual y flujo de efectivo acumulado producto de los ingresos por la venta del hidrocarburo y los egresos de los costos y las inversiones. Cabe mencionar que las inversiones se consideran de 50,000,000,000.00 cada cinco años a partir del primer año evaluado, lo anterior con el objetivo de obtener un flujo de efectivo negativo al inicio de la evaluación y tener un valor real en la tasa de retorno de la inversión.

La fórmula para obtener el flujo de efectivo es la siguiente:

$$FE = \left(\text{producción [mbbls]} \times \text{precio \frac{dls}{bbl}} \times 1000 \right) - \text{costos [dls]} - \text{inversiones [dls]}$$
A continuación, se calcula el valor presente neto (VPN) y el valor presente de la inversión (VPI), es decir, se calculará el valor total del flujo de efectivo y de las inversiones en todos los años considerando el 12% de interés por cada año. El interés se fija con base en un promedio de la inflación anual de México según datos del Banco de México, la cual es de aproximadamente 4%, el otro 8% adicional es considerado el riesgo de inversión.

El cálculo del VPN se realizará de la siguiente manera:

$$VPN = \sum_{j=0}^{n} \frac{FE(dls)_j}{(1 + \text{interés})^j}$$

El cálculo del VPI se realizará de la siguiente manera:

$$VPI = \sum_{j=0}^{n} \frac{inversiones(dls)_j}{(1 + \text{interés})^j}$$

Este procedimiento se observa en la Tabla 4.6.

Tabla 4.5 Evaluación económica con flujo de efectivo.

<table>
<thead>
<tr>
<th>Año</th>
<th>Producción (mbbls)</th>
<th>Precio (dls/bbl)</th>
<th>Costos (dls)</th>
<th>Inversiones (dls)</th>
<th>Flujo de efectivo (dls)</th>
<th>Flujo de efectivo acumulado (dls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>850,659.28</td>
<td>40.61</td>
<td>50,000,000,000</td>
<td>69,097,458,421.70</td>
<td>-15,751,270,789.15</td>
<td>-15,751,270,789.15</td>
</tr>
<tr>
<td>2006</td>
<td>793,332.21</td>
<td>51.10</td>
<td>0</td>
<td>51,823,093,816.27</td>
<td>35,930,518,412.57</td>
<td>24,490,909,832.93</td>
</tr>
<tr>
<td>2007</td>
<td>721,069.79</td>
<td>60.38</td>
<td>0</td>
<td>38,867,320,362.21</td>
<td>34,471,281,483.43</td>
<td>67,731,685,325.74</td>
</tr>
<tr>
<td>2008</td>
<td>621,117.27</td>
<td>82.92</td>
<td>0</td>
<td>29,150,490,271.65</td>
<td>36,444,205,377.55</td>
<td>118,933,169,898.40</td>
</tr>
<tr>
<td>2009</td>
<td>527,742.33</td>
<td>56.22</td>
<td>0</td>
<td>21,862,867,703.74</td>
<td>18,666,046,015.23</td>
<td>148,304,554,678.02</td>
</tr>
<tr>
<td>2010</td>
<td>503,800.47</td>
<td>70.65</td>
<td>50,000,000,000</td>
<td>16,397,150,777.81</td>
<td>-8,345,848,343.13</td>
<td>133,596,318,261.26</td>
</tr>
<tr>
<td>2011</td>
<td>482,778.30</td>
<td>98.97</td>
<td>0</td>
<td>12,297,863,083.35</td>
<td>24,054,810,899.67</td>
<td>181,076,249,702.84</td>
</tr>
<tr>
<td>2012</td>
<td>466,905.16</td>
<td>99.99</td>
<td>0</td>
<td>9,223,397,312.52</td>
<td>20,981,659,056.51</td>
<td>227,460,013,275.61</td>
</tr>
<tr>
<td>2013</td>
<td>459,101.25</td>
<td>96.89</td>
<td>0</td>
<td>6,917,547,984.39</td>
<td>17,844,386,495.99</td>
<td>271,642,057,143.26</td>
</tr>
<tr>
<td>2014</td>
<td>423,355.11</td>
<td>83.75</td>
<td>50,000,000,000</td>
<td>5,188,160,988.29</td>
<td>-5,352,440,822.65</td>
<td>256,799,317,197.47</td>
</tr>
<tr>
<td>2015</td>
<td>384,780.55</td>
<td>41.12</td>
<td>0</td>
<td>3,891,120,741.22</td>
<td>4,998,325,221.06</td>
<td>272,323,356,630.02</td>
</tr>
<tr>
<td>2016</td>
<td>370,632.51</td>
<td>35.28</td>
<td>0</td>
<td>2,918,340,555.91</td>
<td>3,672,854,841.65</td>
<td>285,099,565,814.98</td>
</tr>
<tr>
<td>2017</td>
<td>356,569.05</td>
<td>46.41</td>
<td>0</td>
<td>2,188,755,416.93</td>
<td>4,170,868,663.75</td>
<td>301,349,169,997.04</td>
</tr>
</tbody>
</table>
Para lo cual se obtiene:

\[
VPN = 171,785,396,512.49
\]

\[
VPI = 96,401,844,035.01
\]

Con estos resultados se obtiene la eficiencia de la inversión, la cual se calcula de la siguiente manera:

\[
Eficiencia de la inversión = \frac{VPN}{VPI}
\]

Para lo cual se obtiene:

\[
Eficiencia de la inversión = 1.78
\]

Los resultados obtenidos en este análisis se presentan en la Tabla 4.7.

<table>
<thead>
<tr>
<th>Año</th>
<th>Flujo de efectivo (dls)</th>
<th>Inversiones (dls)</th>
<th>(\frac{FE(dls)}{(1 + interés)})</th>
<th>(\frac{inversiones(dls)}{(1 + interés)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>-15,751,270,789.15</td>
<td>50,000,000,000</td>
<td>-15,751,270,789.15</td>
<td>50,000,000,000.00</td>
</tr>
<tr>
<td>2006</td>
<td>40,242,180,622.08</td>
<td>0</td>
<td>35,930,518,412.57</td>
<td>0.00</td>
</tr>
<tr>
<td>2007</td>
<td>43,240,775,492.81</td>
<td>0</td>
<td>34,471,281,483.43</td>
<td>0.00</td>
</tr>
<tr>
<td>2008</td>
<td>51,201,484,572.66</td>
<td>0</td>
<td>36,444,205,377.55</td>
<td>0.00</td>
</tr>
<tr>
<td>2009</td>
<td>29,371,384,779.62</td>
<td>0</td>
<td>18,666,046,015.23</td>
<td>0.00</td>
</tr>
<tr>
<td>2010</td>
<td>-14,708,236,416.75</td>
<td>50,000,000,000</td>
<td>-8,345,848,343.13</td>
<td>28,371,342,785.93</td>
</tr>
<tr>
<td>2011</td>
<td>47,479,931,441.58</td>
<td>0</td>
<td>24,054,810,899.67</td>
<td>0.00</td>
</tr>
<tr>
<td>2012</td>
<td>46,383,763,572.76</td>
<td>0</td>
<td>20,981,659,056.51</td>
<td>0.00</td>
</tr>
<tr>
<td>2013</td>
<td>44,182,043,867.65</td>
<td>0</td>
<td>17,844,386,495.99</td>
<td>0.00</td>
</tr>
<tr>
<td>2014</td>
<td>-14,842,739,945.79</td>
<td>50,000,000,000</td>
<td>-5,352,440,822.65</td>
<td>18,030,501,249.08</td>
</tr>
<tr>
<td>2015</td>
<td>15,524,039,432.55</td>
<td>0</td>
<td>4,998,325,221.06</td>
<td>0.00</td>
</tr>
<tr>
<td>2016</td>
<td>12,776,209,184.96</td>
<td>0</td>
<td>3,672,854,841.65</td>
<td>0.00</td>
</tr>
<tr>
<td>2017</td>
<td>16,249,604,182.05</td>
<td>0</td>
<td>4,170,868,663.75</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Tabla 4.7 Resultados de la evaluación económica.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VPN</td>
<td>171,785,396,512.49</td>
</tr>
<tr>
<td>VPI</td>
<td>96,401,844,035.01</td>
</tr>
<tr>
<td>Eficiencia de la inversión</td>
<td>1.78</td>
</tr>
<tr>
<td>Límite económico</td>
<td>188,223,356.63</td>
</tr>
</tbody>
</table>

Los resultados anteriores concluyen que el proyecto es rentable con una eficiencia de la inversión del 1.78 lo que significa que, por cada unidad invertida, obtendremos 0.78 unidades como ganancia, lo cual se considera como un resultado bastante favorable ya que incluso al considerar inversiones demasiado altas obtenemos una ganancia importante.

Es de suma importancia tener en consideración escenarios diferentes a la tendencia de datos actuales, para poder identificar las variables que se pueden ver afectadas debido a fenómenos sociales, económicos, políticos, etc. Este cambio en las variables afecta directamente en las ganancias producidas en el proyecto. Con el objetivo de identificar los cambios en estas variables se toman en consideración los datos de la Tabla 4.8 en donde se presentan escenarios altos y bajos, los cuales son tomados de datos críticos reales ocurridos con anterioridad en México.

Tabla 4.8 Escenarios de las variables que influyen en la evaluación económica.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Escenario</th>
<th>Bajo</th>
<th>Base</th>
<th>Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producción (bbl/día)</td>
<td>100,000</td>
<td>600,000</td>
<td>900,000</td>
<td></td>
</tr>
<tr>
<td>Precio (dls/bbl)</td>
<td>8</td>
<td>45</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Costos (dls)</td>
<td>500,000,000</td>
<td>300,000,000</td>
<td>100,000,000</td>
<td></td>
</tr>
<tr>
<td>Inversiones (dls)</td>
<td>50,000,000,000</td>
<td>20,000,000,000</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Para estos escenarios se considera un flujo de efectivo base para compararlo con el flujo de efectivo de la variable correspondiente a los escenarios bajos y altos, con esto se puede definir cuál es el escenario más crítico. Esta evaluación se obtiene con los resultados de la Tabla 4.9.

Tabla 4.9 Flujos de efectivo bajo, base y alto.

<table>
<thead>
<tr>
<th></th>
<th>FE Bajo (dls)</th>
<th>FE Base (dls)</th>
<th>FE Alto (dls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producción (bbl/día)</td>
<td>-15,800,000,000</td>
<td>6,700,000,000</td>
<td>20,200,000,000</td>
</tr>
<tr>
<td>Precio (dls/bbl)</td>
<td>-15,500,000,000</td>
<td>6,500,000,000</td>
<td>33,700,000,000</td>
</tr>
<tr>
<td>Costos (dls)</td>
<td>6,500,000,000</td>
<td>6,900,000,000</td>
<td>6,900,000,000</td>
</tr>
<tr>
<td>Inversiones (dls)</td>
<td>-23,300,000,000</td>
<td></td>
<td>26,700,000,000</td>
</tr>
</tbody>
</table>

Estos resultados se presentan en la Figura 4.1 en forma de diagrama de sensibilidad para poder identificar la variable más crítica.

Figura 4.1 Diagrama de sensibilidad de la evaluación económica.
Con base en los resultados se observa que la variable que más influye en un escenario alto es el precio del hidrocarburo, mientras que la que menos influye son los costos. Por otro lado, en el caso del escenario bajo, la variable más influyente son las inversiones, mientras que nuevamente los costos resulta ser la variable que menos influye.

Este análisis muestra que los proyectos instalados en costa afuera son rentables incluso con altos montos en las inversiones. Por otra parte, los costos resultan ser el factor menos influyente, es decir, aunque el costo operativo se eleve al doble, es asequible de acuerdo con los ingresos obtenidos. Hay que mencionar, además que las variables como el precio del hidrocarburo no pueden ser controladas, ya que esta cambia por cuestiones sociales, económicas y políticas. Por último, la variable de la producción está dada por la energía propia del yacimiento y la tecnología adicional como sistemas artificiales de producción y recuperación secundaria y mejorada.

En general la instalación de un sistema de producción instalado en costa afuera tiene sus ventajas a nivel seguridad y nivel operativo, por lo que es altamente recomendado implementar este tipo de instalaciones de forma que el hidrocarburo se pueda procesar y de esta manera transportar el aceite y gas estabilizado a puntos de venta y almacenamiento.
Capítulo 5 Conclusiones y recomendaciones

Conclusiones

La tecnología ha avanzado de tal forma que es posible hoy en día extraer hidrocarburos de aguas muy profundas como el pozo Maximino con mayor tirante de agua en México a una profundidad de 2,993 metros (Instituto Mexicano del Petróleo, 2018); razón por la cual es importante evaluar de forma considerable el lugar en el cual se colocará la plataforma, ya que tal como lo dicta la historia de las plataformas el conocer el lugar podrá permitir mitigar riesgos incluso si la mejor decisión es colocar una plataforma flotante.

De igual forma la evaluación del lugar es importante considerar las características específicas del hidrocarburo, volúmenes y las necesidades puntuales que se puedan requerir para entregar de forma óptima el hidrocarburo en punto de venta.

Adicionalmente, la seguridad juega un papel muy importante, razón por la cual existen redundancias en muchos procesos y equipos e incluso acciones específicas en caso de encontrar equipos en funcionamiento fuera de la ventana operativa. Estas acciones garantizan la continuidad operativa y la integridad del personal.

Como es bien sabido la explotación de un yacimiento no es constante, ya sea por la declinación de la producción, pozos adicionales y entre otras razones, por lo cual se menciona que es importante medir constantemente las características de los insumos empleados y del hidrocarburo con ayuda de los aforos en pozos.

Todos los procesos descritos en este trabajo tienen un propósito muy específico dentro del acondicionamiento del gas y del aceite para el punto de venta, sin embargo, las operaciones dependen una de otra, razón por la cual si un proceso
se detiene por un accidente es posible que todo el proceso de producción pueda verse afectado, siendo esta la principal razón de la existencia de equipos de seguridad.

Recomendaciones

Para garantizar el correcto funcionamiento del sistema de producción, es necesario que los operadores tengan los conocimientos generales del funcionamiento de este, mismo que se explicó en el presente trabajo, así como tener en consideración las operaciones que se llevan a cabo en los sistemas instalados, esto implica también conocimientos previos de ingeniería básica de producción.

Es necesario siempre evaluar diferentes aspectos que van desde el tipo de plataforma de producción hasta los equipos que se instalarán para poder extraer el hidrocarburo de forma eficiente tanto en operaciones como en costos.

Como ya se presentó en este escrito el histórico de producción mencionado en el Capítulo 4 indica que más de la mitad de los hidrocarburos producidos diariamente en el país son crudo pesado proveniente en costa afuera, por lo que es altamente recomendable invertir en centros de procesos de producción en costa afuera con el objetivo de obtener un mayor beneficio y tener un producto final de calidad.
Referencias

Energy Information Administration. 2016 Trend in U.S. Oil and Natural Gas Upstream Costs.

Hussein Alboudwarej et al. 2006. Highlighting Heavy Oil.

Hussein Alboudwarej et al. 2006. Highlighting Heavy Oil.

Pemex Exploración y Producción. 2013. ABC de la Administración de yacimientos de la subdirección de producción, Region Marina Noreste.

Pemex Logística. 2015. Permiso de Transporte por Ducto de Petróleo Otorgado a Pemex Logística para el Sistema de Transporte de Crudo Zona Sur, Golfo, Centro, Occidente y Norte.

