

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

Experimentos de Laboratorio PVT: Metodologías y Validación para Muestras de Aceite Negro, Aceite Volátil y Gas Condensado

TESIS

Que para obtener el título de

Ingeniero Petrolero

PRESENTA

Licona Rodríguez José Oswaldo

DIRECTOR DE TESIS

Dr. Jorge Alberto Arévalo Villagrán

Ciudad Universitaria, Cd. Mx., 2019

Contenido

Contenido	III
Índice de Figuras	I
Capítulo 1 Introducción, objetivos y alcance del trabajo	1
1.1 Introducción	1
1.2 Objetivos	2
1.3 Alcance del trabajo	3
Capítulo 2 Antecedentes y revisión bibliográfica	4
2.1 El Petróleo	4
2.1.1 Origen del petróleo	4
2.1 Comportamiento de fase de sistemas multicomponentes	5
2.2.1 Definición de fase	5
2.2.2 Diagrama de Fase	6
2.2.3 Diagrama de un componente (sustancia pura)	6
2.2.4 Diagramas de dos componentes (Binarios)	7
2.2.3 Diagramas de una mezcla multicomponente	10
2.3 Tipos de fluidos petroleros	12
2.3.1 Aceite Negro	13
2.3.2 Aceite Volátil	14
2.3.3 Gas y Condensado	15
2.3.4 Gas Húmedo	16
2.3.5 Gas Seco	16
2.4 Clasificación de los yacimientos petroleros	17
2.4.1 Clasificación de fluidos por Tiburcio Méndez	17
2.4.2 Clasificación de fluidos por Alfredo León	19
2.4.3 Clasificación de fluidos por Rafael Pérez Herrera	21
2.5 Ecuación de estado	22
2.5.1 Ecuación de gas ideal	22
2.5.2 Comportamiento de gases reales	23
2.6 Propiedades de los fluidos de los yacimientos petroleros	24

2.6.1 Propiedades del gas natural	
2.6.2 Propiedades del aceite	
Capítulo 3 Experimentos de laboratorio PVT	
3.1 Planeación del muestreo de fluidos	
3.1.1 Factores que influyen en la planeación	
3.1.2 Métodos de muestreo	
3.2 Clasificación de los experimentos de laboratorio PVT	47
3.3 Análisis composicional de fluidos	
3.3.1 Destilación	
3.3.2 Cromatografía de gases	51
3.4 Prueba de expansión a composición constante (CCE)	
3.5 Prueba de separación diferencial (DL)	
3.6 Prueba de agotamiento a volumen constante (CVD)	
3.7 Prueba de separador en laboratorio	64
3.8 Pruebas no convencionales	67
3.8.1 Pruebas de hinchamiento	67
3.8.2 Experimento de tubo capilar	
Capítulo 4 Metodología de validación PVT	
4.1 Validación para muestras de aceite negro	71
4.1.1 Corrección de B_o y R_s	71
4.1.2 Función Y	72
4.1.3 Validación por prueba de densidad	73
4.1.4 Validación de la prueba DL por Balance de Masas	
4.1.5 Validación por la prueba de desigualdad	
4.2 Validación para muestras de aceite volátil y gas y condenado	
4.2.1 Método de validación Whitson-Torp por balance de materia	
4.2.2 Validación de balance molar por método de Bashbush	
4.2.3 Validación por Hoffmann-Crump-Hocott	
4.2.4 Máxima condensación retrógrada	
Capítulo 5 Programa de Cálculo	
5.1 Programa de cálculo para muestras de aceite negro	

5.2 Programa de cálculo para muestras de aceite volátil	
5.3 Programa de cálculo para muestras de gas y condensado	91
Capítulo 6 Casos sintéticos y casos reales	95
6.1 PVT pozo A-2	95
6.1.1 Validación por clasificación para PVT A-2	98
6.1.2 Corrección de B_o y R_s por método de A. Al-Marhoun (2001) para PVT A-2	
6.1.3 Validación por Función Y para PVT A-2	103
6.1.4 Validación por Prueba de densidad para PVT A-2	106
6.1.5 Validación por Balance de masas	108
6.1.6 Validación por prueba de desigualdad	112
6.1.7 Conclusiones del PVT A-2	114
6.2 Casos Aceite Negro	114
6.2.1 Validación por clasificación	115
6.2.2 Corrección de B_0 y R_s por método de A. Al-Marhoun (2001)	119
6.2.3Validación por Función Y	122
6.2.4 Validación por Prueba de densidad	125
6.2.5 Validación por Balance de masas	125
6.2.5 Validación por prueba de desigualdad	128
6.2.3 Conclusiones para casos de Aceite Negro	131
6.2.3.1Conclusiones del para PVT C-101	131
6.2.3.2Conclusiones del para PVT CY-184	131
6.2.3.3Conclusiones del para PVT TW-4	132
6.2.3.4 Conclusiones del para PVT S-3	133
6.3 PVT pozo J-2	133
6.3.1 Validación por clasificación para PVT J-2	135
6.3.2 Validación por método de Whitson-Torp para el PVT J-2	138
6.3.3 Validación método de Bashbush para PVT J-2	147
6.3.4 Validación por método de Hoffmann-Crump-Hocott para PVT J-2	153
6.3.5 Análisis de resultados de la validación para PVT J-2	156
6.4 PVT pozo T-115	162
6.4.1 Validación por clasificación para PVT T-115	164

6.4.2 Validac	ión por método de Whitson-Torp para el PVT T-115	167
6.4.3 Validac	ión método de Bashbush para PVT T-115	170
6.4.4 Validac	ión por método de Hoffmann-Crump-Hocott para PVT T-115	174
6.4.5 Análisis	s de resultados de la validación para PVT T-115	176
6.6 Casos Gas (Condensado	
6.6.1 Validac	ión por clasificación	
6.6.2 Validac	ión por método de Whitson-Torp	186
6.6.3 Validac	ión método de Bashbush	190
6.6.4 Validac	ión por método de Hoffmann-Crump-Hocott	193
6.6.5 Análisis	s de resultados de la validación para PVT Condensado-7	197
6.6.6 Análisis	s de resultados de la validación para PVT OCS-G-999	201
6.6.7 Análisis	s de resultados de la validación para PVT X-1	206
Capítulo 7	Conclusiones	212
Recomendacior	1es	214
Limitaciones		214
Anexo A		215
A.1 PVT pozo .	A-2	215
A.1.1 Validad	ción por clasificación para PVT A-2	217
A.1.2 Correct	ción de B_o y R_s por método de A. Al-Marhoun (2001) para PVT A-2	221
A.1.3 Validad	ción por Función Y para PVT A-2	
A.1.4 Validad	ción por Prueba de densidad para PVT A-2	
A.1.5 Validad	ción por Balance de masas	
A.1.6 Validad	ción por prueba de desigualdad	231
A.2 PVT pozo	I-2	232
A.2.1 Validad	ción por clasificación para PVT J-2	233
A.2.2 Validad	ción por método de Whitson-Torp para el PVT J-2	236
6.2.3 Validac	ión método de Bashbush para PVT J-2	6
Anexo B		1
B.1 PVT pozo	C-101	1
B.2 PVT pozo	CY-184	5
B.3 PVT pozo	ΓW-4	8

B.4 PVT pozo S-3	
B.5 PVT pozo Condensado-7	15
B.6 PVT pozo OCS-G-999	17
B.7 PVT pozo X-1	21
Bibliografía	

Índice de Figuras

Figura 2-1 Ventana del Petróleo5
FIGURA 2-2 DIAGRAMA DE FASE PARA UN SÓLO COMPONENTE
FIGURA 2-3 DIAGRAMA DE PRESIÓN-COMPOSICIÓN DE UNA MEZCLA DE DOS COMPONENTES CON UNA LÍNEA DE UNIÓN 1238
FIGURA 2-4 DIAGRAMA PRESIÓN VS COMPOSICIÓN DE DOS COMPONENTES (COMPONENTE A Y B)9
FIGURA 2-5 DIAGRAMA DE TEMPERATURA-COMPOSICIÓN PARA UNA MEZCLA DE DOS COMPONENTES (COMPONENTE A Y B)10
FIGURA 2-6 DIAGRAMA DE FASE DE PRESIÓN-TEMPERATURA PARA UN SISTEMA MULTICOMPONENTE
FIGURA 2-7 DIAGRAMA PRESIÓN VS TEMPERATURA DEL COMPORTAMIENTO TÍPICO DE UN ACEITE NEGRO
FIGURA 2-8 DIAGRAMA PRESIÓN VS TEMPERATURA DEL COMPORTAMIENTO TÍPICO DE UN ACEITE VOLÁTIL
FIGURA 2-9 DIAGRAMA PRESIÓN VS TEMPERATURA DEL COMPORTAMIENTO TÍPICO DE UN GAS Y CONDENSADO15
FIGURA 2-10 DIAGRAMA PRESIÓN VS TEMPERATURA DEL COMPORTAMIENTO TÍPICO DE UN GAS HÚMEDO16
FIGURA 2-11 DIAGRAMA PRESIÓN VS TEMPERATURA DEL COMPORTAMIENTO TÍPICO DE UN GAS SECO17
FIGURA 2-12 TABLA GENERAL DE CLASIFICACIÓN DE FLUIDOS DE YACIMIENTO POR TIBURCIO MÉNDEZ
FIGURA 2-13 VOLUMEN RELATIVO DE ACEITE CONTRA PRESIÓN ADIMENSIONAL, INDICANDO ZONAS DE ACEITE NEGRO, ACEITE LIGERO
Y GAS Y CONDENSADO19
FIGURA 2-14 CLASIFICACIÓN DE FLUIDOS POR ALFREDO LEÓN EN FUNCIÓN DEL PESO MOLECULAR PROMEDIO
FIGURA 2-15 CLASIFICACIÓN POR COMPONENTES LIGEROS C1
Figura 2-16 Clasificación por componentes ligeros C_7^+
Figura 2-17 Forma típica del comportamiento del factor de volumen B _g , en función de la presión de yacimiento a
TEMPERATURA CONSTANTE
Figura 2-18 forma típica del comportamiento del factor C _g , en función de la presión de yacimiento a temperatura
CONSTANTE
FIGURA 2-19 ESQUEMA QUE PERMITE ENTENDER LA RESISTENCIA AL AVANCE DE UNA PLACA HORIZONTAL SOBRE LA SUPERFICIE DE
UN FLUIDO NEWTONIANO
FIGURA 2-20 COMPORTAMIENTO DE LA VISCOSIDAD EN FUNCIÓN DE LA PRESIÓN DEL YACIMIENTO
FIGURA 2-21 COMPORTAMIENTO TÍPICO DEL FACTOR DE VOLUMEN DE FORMACIÓN DEL ACEITE
FIGURA 2-22 COMPORTAMIENTO TÍPICO DE LA RELACIÓN DE SOLUBILIDAD CON RESPECTO A LA PRESIÓN DEL YACIMIENTO
FIGURA 2-23 COMPORTAMIENTO DE LA RGA CON RESPECTO A LA PRESIÓN DEL YACIMIENTO
FIGURA 2-24 CONDICIONES PARA EL CÁLCULO DE LA RGA
Figura 2-25 Cambio de volumen cuando la presión se reduce por debajo de la presión de burbuja a temperatura de
YACIMIENTO CONSTANTE
Figura 2-26 Comportamientos típicos del B_T y B_o para un aceite negro, en función de la presión de yacimiento a
TEMPERATURA CONTANTE
FIGURA 2-27 COMPORTAMIENTO TÍPICO DE FACTOR DE COMPRESIBILIDAD DEL ACEITE, EN FUNCIÓN DE LA PRESIÓN DE YACIMIENTO
FIGURA 2-28 COMPORTAMIENTO DE LA VISCOSIDAD M ₀ , EN FUNCIÓN DE LA PRESIÓN DE YACIMIENTO

Figura 3 -1 Ejemplo de muestreador de fondo	42
Figura 3 -2 Tipos de probadores de formación, desde el más básico hasta el más completo	43
Figura 3 -3 Ejemplificación de muestreo en un separador vertical	44
Figura 3-4 Posición y referencia del muestreo en cabeza de pozo	45
Figura 3-5 Ejemplo de análisis composicional de una muestra de aceite, por destilación	50

Figura 3-6 Propiedades de las fracciones más pesadas y de la muestra tota51
Figura 3-7 Muestra el esquema básico de un cromatógrafo de gases52
Figura 3-8 Cromatograma típico para una composición de gas natural52
Figura 3-9 Composición de una muestra de gas a diferentes etapas de presión, técnica usada: cromatografía de
GASES
FIGURA 3-10 PROCEDIMIENTO DE LABORATORIO PARA LA EXPANSIÓN A COMPOSICIÓN CONSTANTE
Figura 3-11 Gráfico de el volumen total en función de la presión de cada etapa, para la identificación de la presión
DE SATURACIÓN
FIGURA 3-12 PRUEBA DE EXPANSIÓN A COMPOSICIÓN CONSTANTE EN UN REPORTE PVT
FIGURA 3-13 PROCEDIMIENTO DE LABORATORIO PARA LA PRUEBA DE SEPARACIÓN DIFERENCIAL
Figura 3-14 Prueba de separación diferencial en reporte PVT59
FIGURA 3-15 PROCEDIMIENTO DE LABORATORIO PARA LA PRUEBA DE AGOTAMIENTO A VOLUMEN CONSTANTE, PARA UNA MUESTRA
de Aceite Volátil
Figura 3-16 Análisis composicional de las muestras de gas extraído, de una prueba de agotamiento a volumen
CONSTANTE (CVD)
Figura 3-17 Resultados de una prueba de agotamiento a volumen constante (CVD)64
FIGURA 3-18 PROCEDIMIENTO PARA LA PRUEBA DE SEPARADOR EN LABORATORIO
FIGURA 3-19 CONSIDERACIONES PARA DETERMINAR LA PRESIÓN ÓPTIMA DE SEPARACIÓN
FIGURA 3-20 RESULTADOS DE LA PRUEBA DE SEPARACIÓN EN LABORATORIO67
Figura 3-21 Prueba de hinchamiento
Figura 3-22 Prueba de tubo capilar

FIGURA 5-1 PAQUETERÍA DE CÓMPUTO UTILIZADA PARA EL DESARROLLO DE ESTE TRABAJO	85
Figura 5-2 Interfaz general del programa para validación de Aceite Negro	86
Figura 5-3 Entrada de datos generales	86
FIGURA 5-4 ENTRADA DE DATOS DE COMPOSICIÓN ORIGINAL Y PRUEBA DE LIBERACIÓN INSTANTÁNEA	87
Figura 5-5 Entrada de datos de la prueba de liberación diferencial y prueba de separación en laboratorio	88
Figura 5-6 Botones que ejecutan la validación automatizada	88
Figura 5-7 Interfaz general del programa para validación de Aceite Volátil	89
FIGURA 5-8 ENTRADA DE DATOS GENERALES Y ANÁLISIS COMPOSICIONAL	89
Figura 5-9 Entrada de datos de la prueba de agotamiento a volumen constante	90
Figura 5-10 Botones para ejecutar la validación para Aceite Volátil	91
Figura 5-11 Interfaz general de entrada de datos para la validación correspondiente a gas y condenado	91
Figura 5-12 Entrada de datos generales y de análisis composicional	92
FIGURA 5-13 ENTRADA DE DATOS DE LA PRUEBA DE AGOTAMIENTO A VOLUMEN CONSTANTE	93
Figura 5-14 Botones para ejecutar la validación para gas y condensado	93

Figura 6-1 Resumen de los datos del reporte PVT del Pozo A-2	95
Figura 6-2 Datos de análisis composicional y prueba de liberación instantánea	95
Figura 6-3 Datos medidos de la prueba de liberación diferencial del pozo A-2	96
Figura 6- 4 Resultados de la prueba de separación en laboratorio del pozo A-2	96
Figura 6- 5 Entrada de datos del PVT del pozo A-2	97
Figura 6-6 Resultados de la prueba de validación por clasificación de Alfredo León	98
Figura 6- 7 Resultados de la prueba de validación por clasificación de Tiburcio Méndez	100

FIGURA 6-8 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE RAFAEL PÉREZ HERRERA	101
Figura 6-9 Validación por corrección de B_o y R_s	103
FIGURA 6-10 CÁLCULOS RESULTANTES DE FUNCIÓN Y, FUNCIÓN Y SUAVIZADA Y PB RECALCULADA, GENERADOS POR EL PROGRAM	√IA DE
CÁLCULO	104
FIGURA 6-11 GRÁFICO DE FUNCIÓN Y Y FUNCIÓN Y SUAVIZADA, AMBAS MUESTRAN UN COMPORTAMIENTO LINEAL	104
FIGURA 6-12 DATOS RESULTANTES DE LA VALIDACIÓN POR CALCULA DE LA DENSIDAD	107
FIGURA 6-13 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR BALANCE DE MASA	109
Figura 6-14 Gráfico R _s medido y R _s calculado vs presión	109
FIGURA 6- 15 PORCENTAJE DE ERROR ENTRE LOS VALORES DE R _s , NO PASAN DEL 5%	109
FIGURA 6-16 RESULTADOS DE LA VALIDACIÓN POR LA PRUEBA DE DESIGUALDAD	113
FIGURA 6-17 RESULTADOS DE MUESTRAN EL CUMPLIMIENTO DE LA CONDICIÓN DE LA PRUEBA DE DESIGUALDAD	113
FIGURA 6-18 GRÁFICO DE RESULTADOS LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE ALFREDO LEÓN PARA PVT C-101,	CY-
184, ТW-4 ү S-3	116
FIGURA 6-19 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE TIBURCIO MÉNDEZ LEÓN PARA PVT C-101,	, CY-
184, TW-4 Y S-3	118
FIGURA 6-20 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE RAFAEL PÉREZ HERRERA (C1)	119
FIGURA 6-21 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE RAFAEL PÉREZ HERRERA (C7 ⁺)	119
Figura 6-22 Gráfico de corrección de B_0 y R_s para PVT C-101	121
Figura 6-23 Gráfico de corrección de B_0 y R_s para PVT CY-184	121
Figura 6- 24 Gráfico de corrección de B _o y R _s para PVT TW-4	122
Figura 6- 25 Gráfico de corrección de B_0 y R_s para PVT S-3	122
FIGURA 6-26 GRÁFICO DE FUNCIÓN Y Y FUNCIÓN Y CORREGIDA PARA PVT C-101	123
FIGURA 6-27 GRÁFICO DE FUNCIÓN Y Y FUNCIÓN Y CORREGIDA PARA PVT CY-184	124
FIGURA 6-28 GRÁFICO DE FUNCIÓN Y Y FUNCIÓN Y CORREGIDA PARA PVT TW-4	124
FIGURA 6- 29 GRÁFICO DE FUNCIÓN Y Y FUNCIÓN Y CORREGIDA PARA PVT S-3	124
FIGURA 6-30 GRÁFICO RS MEDIDO Y RS CALCULADO VS PRESIÓN PARA PVT C-101	126
FIGURA 6-31 GRÁFICO RS MEDIDO Y RS CALCULADO VS PRESIÓN PARA PVT CY-184	127
FIGURA 6-32 GRÁFICO RS MEDIDO Y RS CALCULADO VS PRESIÓN PARA PVT TW-4	127
FIGURA 6-33 GRÁFICO RS MEDIDO Y RS CALCULADO VS PRESIÓN PARA PVT S-3	127
FIGURA 6-34 GRÁFICO DEL CUMPLIMIENTO DE LA CONDICIÓN EN LA PRUEBA DE DESIGUALDAD PARA PVT C-101	129
FIGURA 6-35 GRÁFICO DEL CUMPLIMIENTO DE LA CONDICIÓN EN LA PRUEBA DE DESIGUALDAD PARA PVT CY-184	130
FIGURA 6-36 GRÁFICO DEL CUMPLIMIENTO DE LA CONDICIÓN EN LA PRUEBA DE DESIGUALDAD PARA PVT TW-4	130
FIGURA 6-37 GRÁFICO DEL CUMPLIMIENTO DE LA CONDICIÓN EN LA PRUEBA DE DESIGUALDAD PARA PVT S-3	130
FIGURA 6-38 DATOS GENERALES DEL PVT PARA EL POZO J-2	133
FIGURA 6-39 DATOS MEDIDOS DE LA PRUEBA DE AGOTAMIENTO A VOLUMEN CONSTANTE	134
FIGURA 6-40 HOJA DE ENTRADA DE DATOS DEL PROGRAMA DE CÁLCULO PARA ACEITE VOLÁTIL	134
FIGURA 6-41 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE ALFREDO LEÓN PARA PVT J-2	135
FIGURA 6-42 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE TIBURCIO MÉNDEZ PARA EL PVT J-2	136
FIGURA 6-43 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE RAFAEL PÉREZ HERRERA	137
FIGURA 6-44 PESO MOLECULAR APARENTE PARA CADA ETAPA DEL AGOTAMIENTO PARA EL PVT J-2	139
Figura 6-45 Peso molecular aparente de la mezcla original, volumen de la celda que se mantuvo constante	
DURANTE LA PRUEBA	139
FIGURA 6-46 RESULTADOS DEL BALANCE MOLAR Y VOLÚMENES PARA CADA ETAPA DEL AGOTAMIENTO PARA EL PVT J-2	141
FIGURA 6- 47 MOLES TOTALES(LB _M -MOL) CONTENIDAS EN LA CELDA PARA EL PVT J-2	141
Figura 6- 48 Moles de gas (LB _M -MOL) en la celda	142
Figura 6- 49 Moles de gas extraídas (LB _M -Mol) en cada etapa	142

Figura 6- 50 Moles de líquido (LB _M -MOL) en la celda	.143
FIGURA 6-51 PORCENTAJE MOL DE LA FASE LÍQUIDA PARA EL PVT J-2	.143
FIGURA 6-52 CONSTANTES DE EQUILIBRO (K) DE CADA ELEMENTO PARA CADA ETAPA DEL AGOTAMIENTO PARA PVT J-2	.144
FIGURA 6-53 COMPORTAMIENTO GRÁFICO DE LAS CONSTATES DE EQUILIBRIO (K) PARA PVT J-2	.144
Figura 6-54 Peso molecular aparente de la fase líquida para PVT J-2	.146
FIGURA 6-55 RESULTADOS CORRESPONDIENTES A LAS MASAS, PESOS MOLECULARES Y DENSIDADES CALCULADAS PARA CADA ETA	٩PA
DEL AGOTAMIENTO PARA PVT J-2	.147
FIGURA 6-56 BALANCE MOLAR PARA CADA ETAPA DE AGOTAMIENTO PARA EL PVT J-2	.148
FIGURA 6-57 MOLES EXTRAÍDAS EN CADA ETAPA DEL AGOTAMIENTO PARA PVT J-2	.149
FIGURA 6-58 MOLES DE GAS EN LA CELDA DE CADA ELEMENTO PARA CADA ETAPA DEL AGOTAMIENTO DEL PVT J-2	.150
FIGURA 6-59 MOLES EXTRAÍDAS ACUMULADAS EN CADA ETAPA DEL AGOTAMIENTO PARA PVT J-2	.150
FIGURA 6-60 MOLES DE LÍQUIDO EN LA CELDA PARA CADA ELEMENTO DE CADA ETAPA DEL AGOTAMIENTO PARA PVT J-2	.151
FIGURA 6-61 PORCENTAJE MOL PARA LA FRACCIÓN LÍQUIDA DE CADA ELEMENTO EN CADA ETAPA DEL AGOTAMIENTO PARA PVT	J-2
	.151
FIGURA 6- 62 CONSTANTES DE EQUILIBRIO (K) DE CADA ELEMENTO EN CADA ETAPA DEL AGOTAMIENTO PARA PVT J-2	.152
FIGURA 6-63 COMPORTAMIENTO GRÁFICO DE LAS CONSTANTES DE EQUILIBRIO (K) PARA PVT J-2	.152
FIGURA 6-64 PESO MOLECULAR DE LA FASE LÍQUIDA PARA CADA ETAPA DEL AGOTAMIENTO PARA PVT J-2	.153
FIGURA 6-65 CÁLCULO DEL FACTOR DE CARACTERIZACIÓN B DE CADA ELEMENTO PARA PVT J-2	.154
FIGURA 6-66 CÁLCULO DE K*P USANDO LAS CONSTANTES DE EQUILIBRIO CALCULADAS CON EL MÉTODO DE WHITSON & TORP.	.154
FIGURA 6-67 DISPERSIÓN GRÁFICA DE LOG(K*P) VS B (CONSTANTES DE EQUILIBRIO CALCULADAS POR WHITSON&TORP)	.155
FIGURA 6-68 CÁLCULO DE K*P USANDO LAS CONSTANTES DE EQUILIBRIO CALCULADAS CON EL MÉTODO DE BASHBUSH	.155
FIGURA 6-69 DISPERSIÓN GRÁFICA DE LOG(K*P) VS B (CONTANTES DE EQUILIBRIO CALCULADAS POR BASHBUSH	.156
FIGURA 6-70 COMPOSICIÓN DE LÍQUIDO EN LA ÚLTIMA ETAPA DE SEPARACIÓN, MEDIDA Y CALCULADA	.156
FIGURA 6-71 COMPORTAMIENTO TÍPICO DE LAS CONSTATES DE EQUILIBRIO PARA UNA MUESTRA DE ACEITE VOLÁTIL	.158
FIGURA 6-72 ANÁLISIS Y COMPORTAMIENTO DE LAS CONSTANTES DE EQUILIBRIO POR EL MÉTODO DE WHITSON Y BASHBUSH	.159
FIGURA 6-73 VALORES MEDIDOS Y CALCULADOS DE LA DENSIDAD DEL ACEITE PARA PVT J-2	.160
Figura 6-74 Masa molecular medida y calculada del líquido, el gas y la fracción C_7^+ del aceite en cada etapa de	
SEPARACIÓN	.160
Figura 6-75 Comparación de método de Hoffman y Hoccot para las constantes de equilibrio K (Whitson y	
Bashbush)	.161
FIGURA 6-76 DATOS GENERALES PARA PVT T-115	.163
FIGURA 6-77 DATOS MEDIDOS DE LA PRUEBA DE AGOTAMIENTO A VOLUMEN CONSTANTE PARA PVT T-115	.163
FIGURA 6-78 HOJA DE DATOS PRINCIPAL PARA LA VALIDACIÓN DEL PVT T-115	.164
FIGURA 6-79 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE ALFREDO LEÓN PARA PVT T-115	.164
FIGURA 6-80 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE TIBURCIO MÉNDEZ PARA EL PVT T-115	.165
FIGURA 6-81 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE RAFAEL PÉREZ HERRERA PARA PVT T-115	.166
Figura 6-82 Peso molecular aparente de la mezcla original, volumen de la celda que se mantuvo constante	
DURANTE LA PRUEBA	.168
FIGURA 6-83 RESULTADOS DEL BALANCE MOLAR Y VOLÚMENES PARA CADA ETAPA DEL AGOTAMIENTO PARA EL PVT T-115	.168
FIGURA 6-84 PESO MOLECULAR APARENTE PARA CADA ETAPA DEL AGOTAMIENTO PARA EL PVT T-115	.168
FIGURA 6-85 PORCENTAJE MOL DE LA FASE LÍQUIDA PARA EL PVT T-115	.169
FIGURA 6-86 CONSTANTES DE EQUILIBRO (K) DE CADA ELEMENTO PARA CADA ETAPA DEL AGOTAMIENTO PARA PVT T-115	.169
FIGURA 6-87 COMPORTAMIENTO GRÁFICO DE LAS CONSTANTES DE EQUILIBRIO (K) PARA PVT T-115	.170
FIGURA 6-88 PESO MOLECULAR APARENTE DE LA FASE LÍQUIDA PARA PVT T-115	.170
FIGURA 6-89 BALANCE MOLAR PARA CADA ETAPA DE AGOTAMIENTO PARA EL PVT T-115	.171

FIGURA 6-90 PORCENTAJE MOL PARA LA FRACCIÓN LÍQUIDA DE CADA ELEMENTO EN CADA ETAPA DEL AGOTAMIENTO PARA PVT T	-
1151	72
FIGURA 6-91 CONSTANTES DE EQUILIBRIO (K) DE CADA ELEMENTO EN CADA ETAPA DEL AGOTAMIENTO PARA PVT T-1151	72
FIGURA 6-92 COMPORTAMIENTO GRÁFICO DE LAS CONSTANTES DE EQUILIBRIO (K) PARA PVT T-1151	73
FIGURA 6-93 PESO MOLECULAR DE LA FASE LÍQUIDA PARA CADA ETAPA DEL AGOTAMIENTO PARA PVT T-1151	73
FIGURA 6-94 CÁLCULO DEL FACTOR DE CARACTERIZACIÓN B DE CADA ELEMENTO PARA PVT T-1151	74
FIGURA 6-95 CÁLCULO DE K*P USANDO LAS CONSTANTES DE EQUILIBRIO CALCULADAS CON EL MÉTODO DE WHITSON & TORP PA	RA
PVT T-1151	74
FIGURA 6-96 DISPERSIÓN GRÁFICA DE LOG(K*P) VS B (CONTANTES DE EQUILIBRIO CALCULADAS POR WHITSON&TORP)1	75
FIGURA 6-97 CÁLCULO DE K*P USANDO LAS CONSTANTES DE EQUILIBRIO CALCULADAS CON EL MÉTODO DE BASHBUSH1	75
FIGURA 6-98 DISPERSIÓN GRÁFICA DE LOG(K*P) VS B (CONTANTES DE EQUILIBRIO CALCULADAS POR BASHBUSH1	76
FIGURA 6-99 COMPOSICIÓN DE LÍQUIDO EN LA ÚLTIMA ETAPA DE SEPARACIÓN, MEDIDA Y CALCULADA PARA PVT T-1151	76
FIGURA 6- 100 COMPORTAMIENTO TÍPICO DE LAS CONSTATES DE EQUILIBRIO PARA UNA MUESTRA DE ACEITE VOLÁTIL1	78
FIGURA 6-101 ANÁLISIS Y COMPORTAMIENTO DE LAS CONSTANTES DE EQUILIBRIO POR EL MÉTODO DE WHITSON Y BASHBUSH1	79
FIGURA 6- 102 VALORES MEDIDOS Y CALCULADOS DE LA DENSIDAD DEL ACEITE PARA PVT T-115	80
FIGURA 6-103 MÁXIMA CONDENSACIÓN RETRÓGRADA, MEDIDA Y CALCULADA PARA PVT T-1151	80
Figura 6-104 Comparación de método de Hoffman y Hoccot para las constantes de equilibrio K (Whitson y	
Bashbush)1	81
Figura 6- 105 Gráfico de resultados la prueba de validación por clasificación de Alfredo León para PVT	
Condensado-7, OCS-G-999 y X-11	84
Figura 6- 106 Resultados de la prueba de validación por clasificación de Tiburcio Méndez León para PVT	
Condensado-7, OCS-G-999 y X-11	85
FIGURA 6- 107 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE RAFAEL PÉREZ HERRERA (C1)1	86
FIGURA 6- 108 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE RAFAEL PÉREZ HERRERA (C7 ⁺)1	86
Figura 6- 109 Peso molecular aparente de la mezcla original, volumen de la celda que se mantuvo constante	
DURANTE LA PRUEBA	87
Figura 6- 110 Resultados del balance molar y volúmenes para cada etapa del agotamiento para el PVT	
Condensado-71	87
Figura 6- 111 Peso molecular aparente de la mezcla original, volumen de la celda que se mantuvo constante	
DURANTE LA PRUEBA1	87
FIGURA 6-112 RESULTADOS DEL BALANCE MOLAR Y VOLÚMENES PARA CADA ETAPA DEL AGOTAMIENTO PARA EL PVT OCS-G-99	9
	88
Figura 6- 113 Peso molecular aparente de la mezcla original, volumen de la celda que se mantuvo constante	
DURANTE LA PRUEBA	88
FIGURA 6-114 RESULTADOS DEL BALANCE MOLAR Y VOLÚMENES PARA CADA ETAPA DEL AGOTAMIENTO PARA EL PVT X-11	88
Figura 6- 115 Constantes de equilibro (K) de cada elemento para cada etapa del agotamiento para PVT	
Condensado-7 (Whitson-Torp)1	89
FIGURA 6-116 CONSTANTES DE EQUILIBRO (K) DE CADA ELEMENTO PARA CADA ETAPA DEL AGOTAMIENTO PARA PVT OCS-G-99	9
(Whitson-Torp)1	89
FIGURA 6- 117 CONSTANTES DE EQUILIBRO (K) DE CADA ELEMENTO PARA CADA ETAPA DEL AGOTAMIENTO PARA PVT X-1	
(Whitson-Torp)1	90
FIGURA 6-118 BALANCE MOLAR PARA CADA ETAPA DE AGOTAMIENTO PARA EL PVT CONDENSADO-7 (BASHBUSH)1	90
FIGURA 6-119 CONSTANTES DE EQUILIBRIO (K) DE CADA ELEMENTO EN CADA ETAPA DEL AGOTAMIENTO PARA PVT CONDENSADO)-
7 (Вазнвизн)1	91
FIGURA 6-120 BALANCE MOLAR PARA CADA ETAPA DE AGOTAMIENTO PARA EL PVT OCS-G-999 (BASHBUSH)1	91

FIGURA 6-121 CONSTANTES DE EQUILIBRIO (K) DE CADA ELEMENTO EN CADA ETAPA DEL AGOTAMIENTO PARA PVT OCS-G-99) 9
(Bashbush)	192
FIGURA 6- 122 BALANCE MOLAR PARA CADA ETAPA DE AGOTAMIENTO PARA EL PVT X-1(BASHBUSH)	192
Figura 6- 123 Constantes de equilibrio (K) de cada elemento en cada etapa del agotamiento para PVT X-1	
(Ваѕнвиѕн)	193
FIGURA 6-124 CÁLCULO DEL FACTOR DE CARACTERIZACIÓN B DE CADA ELEMENTO PARA PVT CONDENSADO-7	193
FIGURA 6-125 CÁLCULO DE K*P USANDO LAS CONSTANTES DE EQUILIBRIO CALCULADAS CON EL MÉTODO DE WHITSON & TORI	Р
para PVT Condensdo-7	194
FIGURA 6-126 CÁLCULO DE K [*] P USANDO LAS CONSTANTES DE EQUILIBRIO CALCULADAS CON EL MÉTODO DE BASHBUSH PARA F	PVT
Condensado-7	194
FIGURA 6- 127 CÁLCULO DEL FACTOR DE CARACTERIZACIÓN B DE CADA ELEMENTO PARA PVT OCS-G-999	195
FIGURA 6- 128 CÁLCULO DE K [*] P USANDO LAS CONSTANTES DE EQUILIBRIO CALCULADAS CON EL MÉTODO DE WHITSON & TORI	Р
para PVT OCS-G-999	195
FIGURA 6-129 CÁLCULO DE K [*] P USANDO LAS CONSTANTES DE EQUILIBRIO CALCULADAS CON EL MÉTODO DE BASHBUSH PARA F	PVT
OCS-G-999	195
FIGURA 6- 130 CÁLCULO DEL FACTOR DE CARACTERIZACIÓN B DE CADA ELEMENTO PARA PVT X-1	196
FIGURA 6-131 CÁLCULO DE K [*] P USANDO LAS CONSTANTES DE EQUILIBRIO CALCULADAS CON EL MÉTODO DE WHITSON & TORI	Р
para PVT X-1	196
FIGURA 6-132 CÁLCULO DE K [*] P USANDO LAS CONSTANTES DE EQUILIBRIO CALCULADAS CON EL MÉTODO DE BASHBUSH PARA F	PVT
X-1	196
FIGURA 6-133 COMPOSICIÓN DE LÍQUIDO EN LA ÚLTIMA ETAPA DE SEPARACIÓN, MEDIDA Y CALCULADA PARA PVT CONDENSAD	0-7
	197
FIGURA 6-134 ANÁLISIS Y COMPORTAMIENTO DE LAS CONSTANTES DE EQUILIBRIO POR EL MÉTODO DE WHITSON Y BASHBUSH.	198
FIGURA 6- 135 VALORES MEDIDOS Y CALCULADOS DE LA DENSIDAD DEL ACEITE PARA PVT CONDENSADO-7	199
FIGURA 6-136 MÁXIMA CONDENSACIÓN RETRÓGRADA, MEDIDA Y CALCULADA PARA PVT CONDENSADO-7	200
Figura 6- 137 Comparación de método de Hoffman y Hoccot para las constantes de equilibrio K (Whitson y	
Bashbush)	200
FIGURA 6-138 COMPOSICIÓN DE LÍQUIDO EN LA ÚLTIMA ETAPA DE SEPARACIÓN, MEDIDA Y CALCULADA PARA PVT OCS-G-999	€202
FIGURA 6-139 ANÁLISIS Y COMPORTAMIENTO DE LAS CONSTANTES DE EQUILIBRIO POR EL MÉTODO DE WHITSON Y BASHBUSH.	203
FIGURA 6- 140 VALORES MEDIDOS Y CALCULADOS DE LA DENSIDAD DEL ACEITE PARA PVT OCS-G-999	204
FIGURA 6-141 MÁXIMA CONDENSACIÓN RETRÓGRADA, MEDIDA Y CALCULADA PARA PVT OCS-G-999	204
Figura 6-142 Comparación de método de Hoffman y Hoccot para las constantes de equilibrio K (Whitson y	
Bashbush)	205
FIGURA 6-143 COMPOSICIÓN DE LÍQUIDO EN LA ÚLTIMA ETAPA DE SEPARACIÓN, MEDIDA Y CALCULADA PARA PVT X-1	207
FIGURA 6-144 ANÁLISIS Y COMPORTAMIENTO DE LAS CONSTANTES DE EQUILIBRIO POR EL MÉTODO DE WHITSON Y BASHBUSH.	208
FIGURA 6- 145 VALORES MEDIDOS Y CALCULADOS DE LA DENSIDAD DEL ACEITE PARA PVT X-1	209
Figura 6-146 Máxima condensación retrógrada, medida y calculada para PVT X-1	209
Figura 6- 147 Comparación de método de Hoffman y Hoccot para las constantes de equilibrio K (Whitson y	
Bashbush)	210

FIGURA A- 1 RESUMEN DE LOS DATOS DEL REPORTE PVT DEL POZO A-2	215
FIGURA A- 2 DATOS DE ANÁLISIS COMPOSICIONAL Y PRUEBA DE LIBERACIÓN INSTANTÁNEA	215
FIGURA A- 3 DATOS MEDIDOS DE LA PRUEBA DE LIBERACIÓN DIFERENCIAL DEL POZO A-2	216
FIGURA A- 4 RESULTADOS DE LA PRUEBA DE SEPARACIÓN EN LABORATORIO DEL POZO A-2	216
Figura A- 5 Datos generales del PVT para el pozo J-2	232

FIGURA A- 6 DATOS MEDIDOS DE LA PRUEBA DE AGOTAMIENTO A VOLUMEN CONSTANTE	232
FIGURA A- 7 BALANCE MOLAR PARA CADA ETAPA DE AGOTAMIENTO PARA EL PVT J-2	8

TABLA 6- 1 RESULTADOS LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE ALFREDO LEÓN PARA PVT C-101, CY-184, TW-4 Y
S-3
TABLA 6- 2 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE TIBURCIO MÉNDEZ LEÓN PARA PVT C-101, CY-
184, TW-4 y S-3117
TABLA 6- 3 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE RAFAEL PÉREZ HERRERA LEÓN PARA PVT C-101,
CY-184, TW-4 y S-3
TABLA 6- 4 RESULTADOS DE VALIDACIÓN POR CORRECCIÓN DE BO PARA PVT C-101, CY-184, TW-4 y S-3120
TABLA 6- 5 RESULTADOS DE VALIDACIÓN POR CORRECCIÓN DE R _S PARA PVT C-101, CY-184, TW-4 y S-3121
TABLA 6- 6 CÁLCULOS RESULTANTES DE FUNCIÓN Y, FUNCIÓN Y CORREGIDA Y PB RECALCULADA, PARA PVT C-101, CY-184, TW-
4 Y S-3123
TABLA 6- 7 RESULTADOS DE LA VALIDACIÓN POR CÁLCULO DE LA DENSIDAD PARA PVT C-101, CY-184, TW-4 y S-3125
TABLA 6- 8 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR BALANCE DE MASA PARA PVT C-101 Y CY-104126
TABLA 6- 9 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR BALANCE DE MASA PARA PVT TW-4 y S-3126
TABLA 6- 10 RESULTADOS DE LA VALIDACIÓN POR LA PRUEBA DE DESIGUALDAD PARA PVT C-101 Y CY-184128
TABLA 6- 11 RESULTADOS DE LA VALIDACIÓN POR LA PRUEBA DE DESIGUALDAD PARA PVT TW-4 y S-3
TABLA 6- 12 RESULTADOS DE LA COMPOSICIÓN DEL LÍQUIDO EN LA ÚLTIMA ETAPA DEL AGOTAMIENTO PARA PVT J-2157
TABLA 6- 13 RESULTADOS DE LA COMPOSICIÓN DEL LÍQUIDO EN LA ÚLTIMA ETAPA DEL AGOTAMIENTO PARA PVT T-115177
TABLA 6-14 RESULTADOS LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE ALFREDO LEÓN PARA PVT CONDENSADO-7, OCS-G-
999 ү Х-1
TABLA 6-15 RESULTADOS DE LA PRUEBA DE VALIDACIÓN POR CLASIFICACIÓN DE TIBURCIO MÉNDEZ LEÓN PARA PVT CONDENSADO-
7, OCS-G-999 Y X-1
Tabla 6- 16 Resultados de la prueba de validación por clasificación de Rafael Pérez Herrera León para PVT
Condensado-7, OCS-G-999 y X-1186
TABLA 6-17 RESULTADOS DE LA COMPOSICIÓN DEL LÍQUIDO EN LA ÚLTIMA ETAPA DEL AGOTAMIENTO PARA PVT CONDENSADO-7
TABLA 6- 18 RESULTADOS DE LA COMPOSICIÓN DEL LÍQUIDO EN LA ÚLTIMA ETAPA DEL AGOTAMIENTO PARA PVT OCS-G-999202
TABLA 6- 19 RESULTADOS DE LA COMPOSICIÓN DEL LÍQUIDO EN LA ÚLTIMA ETAPA DEL AGOTAMIENTO PARA PVT X-1207

Capítulo 1 Introducción, objetivos y alcance del trabajo

1.1 Introducción

A lo largo de la historia del progreso de la industria petrolera en México, siempre se han tenido retos a superar, los avances e investigaciones acerca de las propiedades de los fluidos petroleros han sido fundamentales en el desarrollo integral de los yacimientos petroleros. Siguiendo el nuevo esquema de la Administración Integral de Yacimientos, la innovación y desarrollo de herramientas para el estudio de los fluidos de explotación, forman un componente fundamental, en la sinergia que se debe tener.

Para entender el comportamiento de yacimientos de hidrocarburos, la información es indispensable. Desde la geología del yacimiento, pasando por el tipo de energía que gobierna en este, sin olvidar la obtención de los datos de las propiedades de los fluidos, para finalizar, el tipo de instalaciones que se necesitarán para su extracción, manejo y distribución.

En este trabajo se abordará la teoría básica del comportamiento de las propiedades de los fluidos en función de la presión, volumen y la temperatura. Posteriormente los parámetros generales de las diversas pruebas de un PVT composicional como lo son la prueba de liberación flash, prueba de liberación diferencial, prueba de agotamiento a volumen constante, pruebas de separador en laboratorio y pruebas de composición.

La obtención de los datos para la estimación de las propiedades de los fluidos petroleros, se debe obtener de fuentes confiables. Las principales formas de obtenerlos son de correlaciones y experimentos de laboratorio. En este trabajo de tesis, los experimentos de laboratorios, también llamados pruebas de laboratorio PVT (Presión, Volumen y Temperatura) son la principal fuente de información.

Posteriormente, se muestran los diferentes métodos con los cuales se pueden verificar la consistencia de los datos medidos en las pruebas PVT. Estos métodos en conjunto crean

todo un procedimiento muy completo y rápido, con el cual se podrá verificar y dar por válidos, los datos de los reportes PVT.

No obstante, es papel del Ingeniero Petrolero, verificar la consistencia de estos datos, es decir, que la información proporcionada en estos experimentos tenga validez, además de interpretar el comportamiento de los fluidos y anticiparse a posibles problemáticas, que puedan afectar análisis posteriores (formas de explotar el yacimiento, perforación, instalaciones superficiales, etc.). En este trabajo de tesis, se aplican las metodologías de validación de datos PVT, en datos reales, para muestras representativas de Aceite Negro, Aceite Volátil, Gas y Condensado, con lo cual se podrá verificar, la funcionalidad de las mismas.

Adicionalmente, se creó un programa de cálculo, como herramienta para implementar la metodología propuesta, y tener mejor entendimiento, así como reforzar la calidad de los datos. Los resultados permitirían en el caso de encontrar alguna inconsistencia o anomalía, reportarla y si es posible, corregirla oportunamente.

1.2 Objetivos

- Poner a prueba los métodos de validación para datos PVT, aplicándolos en casos reales y observar su eficiencia.
- Crear una metodología para la validación de PVT, tomando como apertura el tipo de fluido del yacimiento (Aceite Negro, Aceite Volátil, Gas y condensado).
- Determinar si las muestras analizadas, son representativas para aplicarlas en posteriores cálculos del comportamiento de los fluidos.
- Desarrollar un programa de cómputo que sirva para realizar la validación de datos experimentales de un análisis PVT de muestras de Aceite Negro, Aceite Volátil, gas y Condensado, para determinar la confiabilidad de los datos y disminuir tiempos de cálculo.

- Que la herramienta de cálculo facilite la interpretación e identificación de anomalías de pruebas PVT, y esté enfocada a estudiantes de Ingeniería Petrolera, para introducirlos y reforzar los conocimientos aprendidos.
- Resaltar la importancia de la representatividad de las pruebas PVT.

1.3 Alcance del trabajo

Este trabajo busca crear una herramienta, por medio de un programa de cómputo, que sea fácil de obtener y sobre todo que sea confiable, para poder validar los datos reales de pruebas PVT, además que sea apertura al mejoramiento de la misma y un parteaguas para un programa más completo, puesto que tienen un sin fin de aplicaciones.

Además, una de las principales aplicaciones que se le puede dar dentro de la Universidad Nacional Autónoma de México es, incluir una asignatura en el plan de estudios de la carrera de Ingeniería Petrolera, esta asignatura cubriría desde el comportamiento de las propiedades de los fluidos en función de presión, volumen y temperatura, hasta la simulación PVT que es de principal importancia en el campo laboral.

Lo anteriormente mencionado tiene la finalidad, de reforzar los conocimientos correspondientes al estudio de las propiedades de los fluidos, así como de darle la importancia competente al estudio de los experimentos de laboratorio PVT.

Capítulo 2 Antecedentes y revisión bibliográfica

2.1 El Petróleo

El petróleo es una mezcla de hidrocarburos, con diferentes masas moleculares, la cual se presentan en los tres estados de la materia (sólido, líquido y gas). Eduardo Rodríguez (2014) refiere que el petróleo tiene su origen en la descomposición de la materia orgánica que existió hace millones de años, que, gracias a diversos procesos geológicos, diagénesis y sincronía, se generaron grandes yacimientos de lo que hoy se conoce como aceite y gas (teoría orgánica).

2.1.1 Origen del petróleo

A lo largo de la historia se han descartado diversas teorías acerca de la generación del petróleo, sin embargo, la teoría más aceptada, es la teoría orgánica, la cual dice Eduardo, R. S. (2014), se basa en los principios de la generación del kerógeno y los procesos químicos que involucra a través de la acción del calor y el sepultamiento de sedimentos ricos en material orgánico producto de la descomposición de organismos.

A mayor profundidad de sepultamiento, lo cual implica un aumento en la temperatura, hacen que la materia orgánica gradualmente se convierta en kerógeno. Eventualmente a mayor profundidad el calentamiento incrementa y posteriormente el kerógeno se convierte en bitumen y aceite. (McCarthy, Rojas, Palmowski, Peters, & Stankiewicz, Verano de 2011)

A medida que se libera aceite, el kerógeno se vuelve más pobre en contenido de hidrógeno. El incremento de la madurez también hace que los compuestos del petróleo inicialmente complejos experimenten un proceso de simplificación estructural;

generalmente comienzan con petróleo, continúan con gas húmedo, y terminan con gas seco como se muestra en la *Figura 2-1*.

Figura 2-1 Ventana del Petróleo

2.1 Comportamiento de fase de sistemas multicomponentes

2.2.1 Definición de fase

El término de fase hace referencia a una parte de cualquier sistema que contiene una sustancia homogénea, la cual es físicamente distinta, y está separada por superficies de frontera. Por ejemplo, en la naturaleza se encuentran hidrocarburos en diferentes fases, sólida(bitumen), líquida(aceite) y gas (gas hidrocarburo). (Árevalo Villagran, Abril 2016)

El cambio que existe entre las fases se le llama comportamiento de fase, el cual está en función de parámetros como la presión, temperatura, volumen y la composición. Estos

cambios pueden ser observados de mejor manera con gráficos, que describen el comportamiento.

2.2.2 Diagrama de Fase

Los diagramas de fase corresponden a la representación gráfica que ejemplifican el comportamiento de un componente o una mezcla de componentes, en función de diferentes parámetros. El uso de diagramas de fase como herramienta para la identificación de los diferentes tipos de yacimientos, juega papel importante en etapas tempranas de el plan de desarrollo de un yacimiento. En diversas fuentes se encuentran regularmente los siguientes diagramas de fase:

- Presión vs Temperatura
- Presión vs Volumen específico
- Temperatura vs Volumen específico
- Densidad vs Temperatura
- Presión vs Composición

2.2.3 Diagrama de un componente (sustancia pura)

En un sistema de un sólo componente, existe sólo una clase de átomos o moléculas. Se debe tener claro que componente se refiere al número molecular o especies atómicas. Este tipo de conocimiento es básico para posteriormente entender comportamiento de fases más complejos. En la *Figura 2-2* se representa gráficamente por medio de un diagrama de fases presión vs temperatura, el comportamiento de una sustancia pura (un componente). (Árevalo Villagran, Abril 2016)

Figura 2-2 Diagrama de fase para un sólo componente

2.2.4 Diagramas de dos componentes (Binarios)

Los diagramas de una mezcla de dos componentes presión vs composición a T=constante, se muestra en la *Figura 2-3*. A una presión, p_1 y temperatura, T_1 del sistema, el punto 1 representa una mezcla de dos componentes en equilibrio en dos fases, el punto 2 representa la composición del líquido en equilibrio y el punto 3 muestra la composición del gas en equilibrio. Para una mezcla de dos componentes, las líneas de unión siempre son horizontales, estas líneas unen la composición del líquido con la composición del gas en equilibrio.

La línea de puntos de burbuja representa la localización de las composiciones del líquido cuando las dos fases (gas y líquido) están presentes. De igual manera, la línea de puntos de rocío representa la localización de las composiciones del gas cuando el gas y el líquido están en equilibrio.

Figura 2-3 Diagrama de presión-composición de una mezcla de dos componentes con una línea de unión 123

La línea de unión se puede emplear para calcular las cantidades de gas (vapor) y líquido presente en el punto 1. La longitud de la línea $\overline{12}$ dividida por la longitud de la línea de unión $\overline{23}$, representa la relación de moles de gas a los moles totales de la mezcla. De igual manera la longitud de la línea $\overline{13}$ dividida por la longitud de la línea $\overline{23}$ representa la relación de los moles de la mezcla.

Figura 2-4 Diagrama presión vs composición de dos componentes (componente A y B)

En la *Figura 2-4* se puede apreciar el comportamiento gráfico presión vs composición de una mezcla de dos componentes (A y B). Se observa que existen cuatro envolventes de saturación que corresponden a cuatro temperaturas. En la esquina inferior derecha del gráfico, representa el 100% del componente A (en este caso metano), en la esquina inferior izquierda del gráfico, representa el 100% del componente B (en este caso etano) y sobre el eje izquierdo de las ordenadas, indican las presiones de vapor de cada componente, así como su presión crítica.

Las líneas de puntos de burbuja y las líneas de puntos de rocío, convergen en el punto crítico de cada envolvente.

La *Figura 2-5* muestra una serie de diagramas temperatura vs composición para mezclas de dos componentes (metano y etano). Se muestran seis envolventes de saturación que corresponden a seis presiones del sistema.

Figura 2-5 Diagrama de temperatura-composición para una mezcla de dos componentes (componente A y B).

La línea inferior de cualquier envolvente de saturación representa la línea de *puntos de burbuja* y la línea superior de cualquier envolvente de saturación representa la línea de *puntos de rocío*. Cuando la presión excede la presión crítica de uno de los componentes, la curva de *puntos de burbuja* y de *puntos de rocío* convergen en un *punto crítico*. Cuando la presión de la mezcla excede las presiones críticas de ambos componentes, la envolvente de fase presenta dos *puntos críticos*.

2.2.3 Diagramas de una mezcla multicomponente

El comportamiento de fase de sistemas multicomponentes de hidrocarburos en la región líquido-vapor es muy semejante al comportamiento de fase de sistemas de dos componentes

puros. A pesar de esto, los rangos de presión y temperatura en los cuales las dos fases existen se incrementan significativamente si el sistema llega a ser más complejo y con un gran número de componentes puros. (Árevalo Villagran, Abril 2016)

Es decir, conforme la complejidad de la mezcla de hidrocarburos se incrementa, la separación entre las líneas de puntos de burbuja, puntos de rocío y líneas de iso-volumen de líquido en la mezcla, en el diagrama de fase es mucho mayor, existiendo una amplia variedad de presiones críticas y temperaturas críticas, así como diferentes localizaciones de los puntos críticos sobre las envolventes de saturación.

La *Figura* 2-6 representa un diagrama de presión-temperatura para un sistema multicomponente con una composición total específica.

Figura 2-6 Diagrama de fase de presión-temperatura para un sistema multicomponente

El buen entendimiento de los diagramas de fase presión vs temperatura, es de utilidad para la identificación de los puntos más importantes que son referencia para la verificación del comportamiento de la mezcla. A continuación, se mencionan los siguientes:

Curva de puntos de burbuja. - La curva de puntos de burbuja (*línea BC*) se define como la línea que separa la región de la fase líquida de la región de dos fases (vapor-líquido).

Curva de puntos de rocío. - La curva de puntos de rocío (*línea AC*) se define como la línea que separa la región de la fase de vapor de la región de dos fases (vapor-líquido).

Punto crítico. - El punto crítico de una mezcla multicomponente es el estado en que a determinada presión y temperatura todas las propiedades intensivas de las fases líquido y vapor son idénticas (*punto C* de la *Figura 2-21*). En el punto crítico, la correspondiente presión y temperatura se denominan presión crítica, p_c , y temperatura crítica, Tc, de la mezcla.

Cricondenterma, *Tct.* - La cricondenterma se define como la temperatura máxima por arriba de la cual la fase líquida no se puede formar independientemente de la presión que se tenga (punto E).

Cricondenbara, *pcb.* - La cricondenbara es la presión máxima por arriba de la cual la fase de vapor (gas) no se puede formar independientemente de la temperatura que se tenga (punto D). **Líneas de calidad (iso-volumen de líquido en la mezcla).** - Las líneas interrumpidas dentro de la región de dos fases del diagrama de fase de presión-temperatura se denominan líneas de calidad. Estas líneas proporcionan las condiciones de presión y temperatura para volúmenes equivalentes de líquidos. Observe que todas las líneas de calidad convergen en el punto crítico.

La localización del punto crítico, así como la forma y tamaño del diagrama de fase son función del tipo de fluidos que contiene el yacimiento.

2.3 Tipos de fluidos petroleros

Cuando los yacimientos de hidrocarburo son descubiertos y delimitados, es de suma importancia identificar el tipo de fluido que se encuentra en ellos, diversas fuentes bibliográficas, como la American Petroleum Institute (API), clasifican a los yacimientos por su tipo de fluido, los cuales son nombrados por sus componentes y su comportamiento característico en función de la presión y la temperatura, en un proceso de explotación.

Existen cinco tipos de fluidos de yacimiento (McCain, 1990), y son identificados por su comportamiento, su diagrama de fases, así como por su composición.

- Aceite Negro
- Aceite Volátil
- Gas y Condensado
- Gas Húmedo
- Gas Seco

A continuación, se mencionan con mayor detalle.

2.3.1 Aceite Negro

Los yacimientos de aceite negro se caracterizan por tener una amplia variedad de familias y especies químicas, las cuales incluyen moléculas largas, pesadas y no volátiles. Es importante mencionar, que el nombre de aceite negro no hace referencia al color del fluido, además también se le conoce como aceite de bajo encogimiento. El término de bajo encogimiento, se refiere a que a condiciones de superficie no desprenden cantidades de gas, lo que ocasiona que el volumen no se reduzca respecto al que se tenía en yacimiento. En la *Figura 2-7* se observa el comportamiento típico de un aceite negro mediante un diagrama presión vs temperatura.

Figura 2-7 Diagrama presión vs temperatura del comportamiento típico de un Aceite negro

2.3.2 Aceite Volátil

En los aceites volátiles, la presencia de moléculas pesadas es muy poca, puesto que la mayoría son moléculas del tipo intermedias (etano, butanos, propanos y hexanos) con respecto a la composición de los aceites negros. (McCain, 1990)

Los aceites volátiles también se les conoce como aceites crudos de alto encogimiento y aceites cercanos al punto crítico. El término de alto encogimiento, se refiere que a condiciones de superficie desprenden cantidades de gas, lo que ocasiona que el volumen se reduzca respecto al que se tenía en yacimiento. En la *Figura 2-8* se muestra el comportamiento típico de un yacimiento de Aceite volátil en función de la presión y la temperatura. Las condiciones iniciales de yacimiento se encuentran muy cercanas al punto crítico.

Figura 2-8 Diagrama presión vs temperatura del comportamiento típico de un Aceite volátil

El gas que se obtiene de este tipo de aceites suele ser muy rico en componentes intermedios y generalmente este es de comportamiento retrógrado, por lo que cuando estos yacimientos son explotados, se generan grandes cantidades de condensados, camino hacia superficie. (Árevalo Villagran, Abril 2016)

2.3.3 Gas y Condensado

También conocido como gas retrógrado-condensado, inicialmente a condiciones de yacimiento se le encuentra en estado gaseoso, pero con forme se va explotado, presenta un comportamiento retrógrado. Como lo menciona McCain en su trabajo, el nombre más apropiado y debido a su comportamiento debe ser gas retrógrado. La *Figura 2-9*, muestra el comportamiento isotérmico de la producción para este tipo de yacimiento. Al líquido que se recupera de la producción a condiciones de tanque, se les conoce con el término de condensados, de manera análoga al líquido producido a condiciones de yacimiento.

El gas libre que se encuentra en las instalaciones superficiales es abundante en componentes intermedios y el procesamiento de éste consiste en eliminar los componentes líquidos (líquidos de planta) como el propano, butano, pentanos e hidrocarburos de gama pesada.

Figura 2-9 Diagrama presión vs temperatura del comportamiento típico de un gas y condensado

Éste condensado libre, normalmente, no fluirá hacia los pozos productores e iniciará a formar un anillo de condensado dentro yacimiento lo que podría obstruir el flujo de fluido hacia los pozos y ocasionar una menor recuperación de hidrocarburos.

2.3.4 Gas Húmedo

En este tipo de yacimientos, a condiciones iniciales, el fluido se encuentra en estado gaseoso. Los condensados líquidos, se obtendrán en superficie. A este tipo de yacimiento algunas veces se le conoce como yacimientos de gas y condensado. La *Figura 2-10* muestra un ejemplo típico del comportamiento presión vs temperatura del gas húmedo. La palabra húmedo en gases húmedos no significa que el gas está húmedo con agua, esto se refiere al hidrocarburo líquido que se condensa a condiciones de superficie. (McCain, 1990)

Figura 2-10 Diagrama presión vs temperatura del comportamiento típico de un gas húmedo

2.3.5 Gas Seco

En este tipo de yacimientos, la composición del fluido carece de moléculas intermedias y pesadas, de tal forma que, al inicio y final de la producción, siempre encontrara en forma de

gas, y en muy pocas ocasiones, pequeñas fracciones de condensados líquidos. El gas seco esta principalmente formado por metano con algunos componentes intermedios. Esto implica que las trayectorias de producción tanto a condiciones de yacimiento como de superficie (separador) no cruza la envolvente de fases. La *Figura 2-11* representa un diagrama común de presión-temperatura para un gas seco.

Figura 2-11 Diagrama presión vs temperatura del comportamiento típico de un gas seco

2.4 Clasificación de los yacimientos petroleros

En la literatura y en muchas más investigaciones, diversos autores han propuesto distintas clasificaciones de fluidos tomando como base el comportamiento termodinámico del fluido en el yacimiento. El tipo de diagrama de fases, la temperatura del yacimiento, la ubicación de punto crítico en la envolvente de fases, el comportamiento de las líneas de iso-volúmen de líquido en la mezcla (líneas de calidad), la composición del fluido, la RGA, la °API y la densidad del líquido son algunos de los parámetros que han ayudado a establecer las clasificaciones de los yacimientos.

A continuación, se presentan algunos de los más importantes autores de estas clasificaciones de fluidos.

2.4.1 Clasificación de fluidos por Tiburcio Méndez

Gracias a muchas pruebas de laboratorio aplicadas de diversas muestras de fluidos, Méndez pudo realizar una clasificación de los diferentes tipos de yacimientos, en función de diferentes parámetros como el diagrama de fase, la posición del punto Crítico, la composición de la mezcla, las líneas de iso-volúmen de líquido en la mezcla, el RGA, densidad, °API, condiciones de presión y temperatura entre otros. La clasificación fue para identificar fluidos llamados, aceite negro, aceite volátil, gas y condensado, gas húmedo y gas seco.

Adicionalmente Méndez, propuso una gráfica, conocida como "la colorina", en el cual se grafican los % de volumen líquido (saturación de líquido) con respecto a una presión adimensional. Esta presión adimensional se estima dividiendo la presión de cada etapa de separación entre la presión de saturación. Según Méndez & Teyssier (1979), nos muestran la sigueinte clasificacionen la *Figura 2-12*.

	Yacimientos de aceite y gas disuelto Yacimientos de Gas				
Características	Bajo encogimiento (Aceite Negro)	Alto Encogimiento (Aceite Volátil)	Gas y Condensado	Gas Húmedo	Gas Seco
Diagramas de Fase	Antic Negr	Anter Fail	Circumstant Circum	The second secon	Paramete Provide Conference Confe
Temperatura	Ty <tc< td=""><td>Ty ≤Tc</td><td>Tc<ty<cricondenterma< td=""><td>Ty>Cricondenterma</td><td>Ty>Cricondenterma</td></ty<cricondenterma<></td></tc<>	Ty ≤Tc	Tc <ty<cricondenterma< td=""><td>Ty>Cricondenterma</td><td>Ty>Cricondenterma</td></ty<cricondenterma<>	Ty>Cricondenterma	Ty>Cricondenterma
Punto Crítico	$p_c \rightarrow Cricondenbara$	p _c cercano Cricondenbara	$p_c \leftarrow Cricondenbara$	$p_c \leftarrow Cricondenbara$	$pc \leftarrow Cricondenbara$
Estado en el yacimiento	p>pb @Ty Bajo saturado (1 fase) p≤pb@ Ty Saturado (2 fases)	p>pb @Ty Bajo saturado (1 fase) p≤pb@ Ty Saturado (2 fases)	p>pr @Ty Bajo saturado (1 fase) p≤pr@ Ty Saturado (2 fases)	py nunca entra a la región de 2 fases	py nunca entra a la región de 2 fases
Líneas de calidad	Equidistantes	Se separan conforme el % de líquido disminuye	Tienden a pegarse		
Singularidades			Fenómenos retrógrados		
Producción en superficie	Dentro de región de dos Fases	Dentro de región de dos Fases	Dentro de región de dos Fases	Dentro de región de dos Fases	Fuera de región de dos Fases
Composición	Grandes cantidades de componentes pesados	Grandes cantidades de componentes intermedios	Grandes cantidades de componentes intermedios	Grandes cantidades de componentes intermedios	Grandes cantidades de componentes ligeros
$RGA (m^3/m^3)$	<200	200-1000	500-15000	10000-20000	>20000

Densidad líquida (g/cm ³)	>0.85	0.85-0.78	0.82-0.75	0.82-0.75	<0.75
°API en el tanque	<45	<40	>40	Arriba de 70	
Color	Obscuro	Ligeramente Obscuro	Ligeramente Coloreado	Casi transparente	Transparente

Figura 2- 12 Tabla general de clasificación de fluidos de yacimiento por Tiburcio Méndez Para construir los datos de la *Figura 2-13* se utilizaron algunos fluidos típicos y el valor adicional de esta gráfica es que se puede comparar el volumen relativo del aceite para yacimientos de gas y condensado, se muestran las zonas de aceite negro, hacia la parte alta de la *Figura 2-13* con aceites que tienen muy bajo encogimiento entre 50 y 70 % y aceite volátil con encogimiento entre 28 a 50%, hacia la parte baja se tiene la zona de gas y condensado muy cercanos al punto crítico.

Figura 2-13 Volumen relativo de aceite contra presión adimensional, indicando zonas de aceite negro, aceite ligero y gas y condensado

2.4.2 Clasificación de fluidos por Alfredo León

Derivado de diversos estudios de las cuatro regiones de PEP, Alfredo León propone un gráfico en función del comportamiento del Peso Molecular Promedio (*PMP o M_a*) de la composición original del fluido de yacimiento y a la presión de saturación. Logrando establecer para un PMP de 44 g/g-mol se encuentran los fluidos denominados como críticos (aceite volátil y gas y condensado).

Debajo de 44 g/g-mol es un comportamiento de gas y condensado, por encima de los 78 g/g-mol es un yacimiento de aceite negro y entre 44-78 g/g-mol los yacimientos de aceite volátil. A continuación, la Figura 2-14 representa el gráfico explicando lo antes mencionado. (León García, Alamilla Carillo, & García Hernánez, Julio 2013)

Figura 2-14 Clasificación de fluidos por Alfredo León en función del peso molecular promedio

Además, en el trabajo de Alfredo león se habla de un nuevo enfoque en la manera de clasificar a los yacimientos, en donde menciona que, para los fluidos de las regiones sur y marina de México, se necesita ampliar los rangos de clasificación. Observó que al ampliar estos criterios se debía incluir un aceite de transición entre el aceite negro y el aceite volátil, llamándolo aceite ligero.

2.4.3 Clasificación de fluidos por Rafael Pérez Herrera

Concretamente menciona que los componentes ligeros (C_1) como los componentes pesados (C_7^+) tienen una gran importancia en la clasificación de fluidos, y gracias a un estudio del comportamiento de estos parámetros con respeto a la RGA, para una gran variedad de una gran variedad de mezclas de gases, lograron establecer los rangos que se muestran en las *Figuras 2-15 y 2-16*. (Pérez Herrera, Paredes Enciso, Perera Pérez , & Larez Campos , Abril 2016)

Figura 2-15 Clasificación por componentes ligeros C1

Aceite 20 < RG C₁

Figura 2-16 Clasificación por componentes ligeros C_7^+

2.5 Ecuación de estado

Las ecuaciones de estado son expresiones matemáticas que se caracterizan por relacionar los parámetros de presión, volumen y temperatura, para describir el comportamiento termodinámico de cualquier sustancia. La principal ventaja de usar ecuaciones de estado es que la expresión matemática puede ser utilizada para modelar el comportamiento de todas las fases y así asegurar una consistencia en los cálculos de equilibrio de fase.

2.5.1 Ecuación de gas ideal

Para comprender a fondo la expresión matemática y el comportamiento es necesario tener en cuenta las siguientes consideraciones. Como punto de partida para generar la ecuación de estado para gases reales, primero se debe conocer el comportamiento de un gas hipotético. Esto se puede ver de mejor manera partiendo de las leyes de Boyle, Charles y Avogadro.

$$pV = nRT \tag{2.1}$$
En donde R representa la constante universal de los gases y V es el volumen de n moles de gas a una presión p y a una temperatura T. El valor numérico de la constante R es función de las unidades empleadas en cada una de las variables.

Sustituyendo unidades base de 379.4 [ft^3], 520 [R] y 14.696 [$lb/pg^2 abs$], para una masa de 1 lb_m -mol se tiene:

$$R = \frac{pV}{nT} = \frac{14.696 \left[\frac{lb}{pg^2} abs\right] 379.4 [ft^3]}{1[lb_m - mol] 520[^{\circ}R]} = 10.732 \left[\frac{\left(\frac{lb}{pg^2} abs\right) - (ft^3)}{(lb_m - mol) - (^{\circ}R)}\right]$$
(2.2)

2.5.2 Comportamiento de gases reales

La magnitud del comportamiento de la desviación de un gas real a partir de las condiciones de un gas ideal es mayor conforme la presión y la temperatura incrementan y/o cuando la composición del gas varia en forma sustantiva. La razón para justificar esta variación es que la Ley de los Gases Ideales se derivó bajo la suposición de la teoría cinética de los gases.

De modo que se tiene un error significativo entre el comportamiento ideal del real. Una manera de escribir la ecuación de gasea reales es introduciendo un factor de desviación a la ecuación de estado de gases ideales, para contrarrestar y corregir la desviación presente. Quedando la siguiente expresión:

$$pV = znRT \tag{2.3}$$

Donde z es el factor de desviación y se define como:

$$Z = \frac{V_{real}}{V_{ideal}} \tag{2.4}$$

Donde, V_{real} es el volumen real de gas que corresponde a una presión y temperatura dadas específicamente, y V_{ideal} es el volumen de gas calculado con la ecuación para gases ideales. Por lo tanto, una de las formas de obtener z seria:

$$z = \frac{pV}{nRT}$$
(2.5)

Existen diversas formas para estimar el valor de z, de manera numérica o de manera gráfica. El factor de compresibilidad z es adimensional. Comúnmente, z es próximo a la unidad. Para gases cercanos al punto crítico, z se encuentra entre 0.3 y 0.4; si la temperatura y la presión aumentan el factor de compresibilidad z incrementa hasta un valor igual o mayor a 2.

Posteriormente se crearon ecuaciones de estado que atacan las principales idealizaciones de la ley de gases ideales y teoría cinética de los gases, autores como van der Waals, Redlich-Kwong, Soave, Peng-Robinson crearon ecuaciones de estado más especializadas y por lo tanto más exactas.

2.6 Propiedades de los fluidos de los yacimientos petroleros

Las propiedades cumplen con un papel indispensable para entender el comportamiento de los fluidos en el yacimiento, desde sus condiciones iniciales de presión y temperatura en yacimiento, durante la explotación, hasta llegar a las condiciones de superficie. Existen diversas maneras para calcular las propiedades de los fluidos, estas son por pruebas de laboratorios, como lo son las pruebas PVT, correlaciones empíricas y por cálculos a partir de ecuaciones de estado.

A continuación, se presentan métodos para determinar algunas de las propiedades de los fluidos más fundamentales, que se requieren para diversos cálculos destinados a la ingeniería de yacimientos. Asimismo, se presentan algunas definiciones y correlaciones para calcular las propiedades de los gases naturales, aceites hidrocarburos y del agua de formación.

2.6.1 Propiedades del gas natural

Versiones recientes de la norma IUPAC, definen a las condiciones estándar como aquellas en las cuales las propiedades físicas de los componentes puros son evaluadas para un efecto de normalización, estas condiciones son $14.7 \frac{lb}{pg^2}abs$ y 60 °*F*. Estas propiedades se utilizan en cálculos que se basan en reglas de mezclado desarrollando las reglas pseudo para mezclas de gases. Las propiedades físicas para estudios de ingeniería petrolera se describen a continuación.

2.6.1.1 Peso molecular aparente (M_a) de una mezcla de gases

Conociendo el porcentaje (%), así como el peso molecular de cada componente de una mezcla de gas, se puede obtener el peso molecular aparente de la mezcla de gases de la siguiente manera:

$$M_a = \sum_{j=1}^{j=n} (y_j) (M_j)$$
(2.6)

2.6.1.2 Densidad relativa de un gas

La densidad relativa de un gas se refiere a la relación de la densidad de un gas, entre uno de referencia, en este caso, el gas de referencia es el del aire seco. De manera que:

$$\gamma_{gas} = \frac{\rho_{gas}}{\rho_{aire}} \tag{2.7}$$

En términos de una ecuación de estado para gases ideales:

$$\gamma_{gas} = \frac{\frac{pM}{RT}}{\frac{pM_{aire}}{RT}} = \frac{M}{M_{aire}}$$
(2.8)

En donde, γ_g es la densidad relativa del gas (*aire*=1.0), M_{aire} es el peso molecular del aire e igual a 28.9625 *lb_m/lb_m-mol* y M es el peso molecular del gas en *lb_m/lb_m-mol*.

2.6.1.3 Factor de volumen del gas de formación

El factor de volumen de gas de formación es definido como el volumen de gas a condiciones de yacimiento requeridos para producir un pie cubico de gas a condiciones estándar en superficie, la expresión que define lo anterior es:

$$B_g = \frac{V_{gas}@c.y.}{V_{gas}@c.e.}$$
(2.9)

En términos de la ecuación de estado para gases reales se obtiene:

$$B_g = \left(\frac{zT}{p}\right) @c.y. \left(\frac{p}{zT}\right)_{@c.e.}$$
(2.10)

Sustituimos las condiciones estándar ya mencionadas, para una presión p @c.e.=14.65 lb/pg^2abs y una T @c.e.=60°F (519.59 R), y un valor de z=1 se tiene:

$$B_g = \left(\frac{zT}{p}\right)_{@c.y.} \left(\frac{14.65\frac{lb_m}{pg^2}abs}{(1)(519.59R)}\right)_{@c.e.}$$

Obteniendo la siguiente expresión:

$$B_g\left[\frac{ft^3de \ gas@c.y.}{ft^3de \ gas@c.e.}\right] = (0.0282)_{@c.e.}\left(\frac{zT}{p}\right)_{@c.y.}$$
(2.11)

En donde B_g presenta unidades de ft^3 de gas @ c.y./ ft^3 de gas @ c.e. La Figura 2-19 presenta el comportamiento isotérmico típico del factor de volumen del gas de formación respecto a la presión del yacimiento.

Figura 2-17 Forma típica del comportamiento del factor de volumen B_g , en función de la presión de yacimiento a temperatura constante.

2.6.1.4 Coeficiente de compresibilidad isotérmico del gas

El coeficiente de compresibilidad isotérmico del gas se define como el cambio fraccional de volumen en función de un cambio de presión a una temperatura constante. Por ejemplo, en la siguiente expresión c_g , representa el decremento en fracción de volumen que ocurre debido a un incremento de unidad de presión:

$$c_g \cong -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_T \tag{2.12}$$

En términos de una ecuación de estado:

$$c_g = \frac{p}{znRT} \frac{\partial}{\partial p} \left(\frac{znRT}{p} \right)$$
(2.13)

Expandiendo en término de derivadas parciales:

$$c_g = -\frac{p}{z} \left[z \frac{\partial}{\partial p} \left(\frac{1}{p} \right) + \frac{1}{p} \left(\frac{\partial z}{\partial p} \right) \right] = \frac{1}{p} - \frac{1}{z} \left[\frac{\partial z}{\partial p} \right]_T$$
(2.14)

Para el comportamiento de un gas ideal se considera lo siguiente:

Sustituyendo se muestra que y con un valor de z=1

$$c_g = -\left(\frac{1}{V}\right)\left(-\frac{nRT}{p^2}\right) = \left(-\frac{p}{nRT}\right)\left(-\frac{nRT}{p^2}\right)$$
(2.15)

$$c_g[psia^{-1}] = \frac{1}{p[psia]}$$
 (2.16)

La *Figura 2-20* presenta el comportamiento isotérmico típico del coeficiente de compresibilidad isotérmico del gas de formación respecto a la presión del yacimiento.

Figura 2-18 forma típica del comportamiento del factor c_g , en función de la presión de yacimiento a temperatura constante

Se debe tener en claro que el término de compresibilidad isotérmico del gas c_g , y el factor de compresibilidad z son distintos, aunque ambos términos se relacionan para explicar el efecto de la presión sobre el volumen de gas, c_g es un coeficiente y z es un factor para corregir a la ecuación de estado del comportamiento ideal.

2.6.1.5 Coeficiente de viscosidad del gas

El coeficiente de viscosidad mide la capacidad de resistencia de un fluido a fluir. De manera que si se midiera el esfuerzo cortante y el gasto cuando un fluido se encuentra en movimiento entre dos placas paralelas, en donde una de las placas se mueve en una dirección con respecto a la otra placa para un gasto cualquiera, se encuentra que la magnitud del esfuerzo cortante es proporcional al gasto, como se muestra en la *Figura 2-21*.

Figura 2-19 Esquema que permite entender la resistencia al avance de una placa horizontal sobre la superficie de un fluido newtoniano

En donde la constante de proporcionalidad se define como la viscosidad del fluido, μ_g , es decir:

$$\sigma_{xy} = \mu_g \frac{\partial u}{\partial y} \tag{2.18}$$

Al coeficiente recíproco de la viscosidad se le denomina fluidez. En unidades de campo, la viscosidad se expresa en centipoises, *cP*.

La viscosidad del gas, decrece con forme la presión del yacimiento decrece. Por lo que, a bajas presiones, las moléculas de las que se compone el gas, están separadas y se mueven fácilmente una sobre otra. La *Figura 2-22* muestra el comportamiento de la viscosidad en función de la presión del yacimiento a tres temperaturas diferentes.

Presión del yacimiento, p_y

Figura 2-20 Comportamiento de la viscosidad en función de la presión del yacimiento

2.6.2 Propiedades del aceite

Las propiedades que a continuación se definen, son parámetros fundamentales para las ecuaciones de cálculo de balance de materia. Estas propiedades físicas pueden obtenerse mediante datos de campo, estudios de laboratorio y con el empleo de correlaciones empíricas.

2.6.2.1 Densidad relativa del aceite

La densidad relativa del aceite está definida como la relación que existe entre la densidad de un aceite con respecto a un valor de densidad de un fluido de referencia, que en este caso se refiere a la del agua, esta relación debe ser medida a las mismas condiciones de presión y temperatura. Es decir:

$$\gamma_{o} = \frac{\rho_{o(aceite)} \left[\frac{lb_{m}}{ft^{3}} \right]}{\rho_{(agua)} \left[\frac{lb_{m}}{ft^{3}} \right]}$$
(2.19)

Lo que denota que este factor es adimensional, asimismo la densidad relativa del aceite, se puede expresar como $[60^{\circ}/60^{\circ}]$, lo que significa que las densidades del aceite y del agua fueron tomadas a $60^{\circ}F$ a la presión atmosférica. En la industria petrolera también se puede definir en grados API con la siguiente expresión:

$$^{\circ}API = \frac{141.5}{\gamma_o} - 131.5 \tag{2.20}$$

2.6.2.2 Factor de volumen de formación del aceite

Entonces, el factor de volumen de formación del aceite se define como la relación de el volumen de aceite más su gas disuelto a condiciones de yacimiento, entre el volumen de aceite a condiciones de superficie. O, en otras palabras, cuanto volumen de aceite más su gas disuelto a condiciones de yacimiento se necesitan para obtener un barril en superficie.

$$B_{o} = \frac{(volumen \ de \ aceite + gas \ disuelto \)_{@c.y.}}{(volumen \ de \ aceite)_{@c.e.}}$$
(2.21)

O bien

$$B_o = \frac{V_{o+g}@c.y.}{V_o@c.e.} \left[\frac{Bls \ aceite@c.y.}{Bls \ aceite@c.e.} \right]$$
(2.22)

La *Figura 2-23* representa el comportamiento típico del factor de aceite de formación en función de la presión para un aceite negro.

Figura 2-21 Comportamiento típico del factor de volumen de formación del aceite

A presiones por arriba de la presión de burbuja, el factor de volumen de formación disminuye al tiempo que aumenta la presión, esto debido a la compresibilidad del aceite. Por debajo de la presión de burbuja el factor de volumen de formación del aceite, disminuye conforme la presión decrece, debido a la liberación del gas en el espacio poroso además de que el líquido remanente a condiciones de yacimiento contiene menor gas en solución.

2.6.2.3 Relación de solubilidad

Se define como relación de solubilidad a la relación que existe entre el volumen de gas que se encuentra en solución en el aceite a ciertas condiciones de presión y temperatura, por cada barril de aceite en el tanque, medidos ambos volúmenes a condiciones estándar. Por tanto:

$$R_s = \frac{volumen \ de \ gas \ disuelto \ (en \ el \ aceite \ @c.y)@c.e.}{volumen \ de \ aceite \ @c.e.}$$
(2.23)

La *Figura 2-24*, representa el comportamiento típico de la relación de solubilidad en función de la presión de yacimiento.

Presión de yacimiento, p_v , (lb/pg^2abs)

A presiones por encima de la presión de burbuja, la relación de solubilidad se comporta de manera constante. Esto se explica debido a que, a estas presiones, el gas no se libera en el

Figura 2-22 Comportamiento típico de la relación de solubilidad con respecto a la presión del yacimiento

espacio poroso y la mezcla total de líquido (gas + aceite + agua), se produce dentro del pozo. A presiones por debajo de la presión de burbuja, la relación de solubilidad, decrece junto con la presión del yacimiento. Esto se explica debido a la liberación del gas del espacio poroso, quedando atrapado en el casquete de gas y no dejando que fluya hacia los pozos productores.

La relación gas-aceite, RGA, GOR, se define como la relación de la cantidad de gas producido (gas disuelto producido + gas libre producido), entre el volumen de aceite producido, ambos en condiciones estándar. Y su comportamiento típico se muestra en la *Figura 2-25*.

Presión de yacimiento, p, , (lb/pg^2abs)

Figura 2-23 Comportamiento de la RGA con respecto a la presión del yacimiento

Y en la *Figura 2-26*, se puede apreciar la ejemplificación de las condiciones y el comportamiento de las condiciones en las que se mide la RGA, de manera que

$$Figura 2-24 Condiciones para el cálculo de la RGA$$
$$RGA[scf/STB] = \frac{volumen de gas producido @c.e.}{volumen de aceite @ c.e.}$$
(2.24)

2.6.2.4 Factor de volumen total de la formación

También conocido como factor de la fase mixta, este término es definido como la relación del volumen total de la mezcla de hidrocarburos (aceite y gas) a condiciones de yacimiento, sobre el volumen de aceita a condiciones de tanque, de manera que:

$$B_t = \frac{Bls \ de \ aceite \ y \ gas \ en \ solucion \ @ \ c.y. + Bls \ gas \ @ \ c.y.}{Bls \ de \ aceite \ @ \ c.e.}$$
(2.25)

Por lo que el factor de la fase mixta se puede calcular con la siguiente expresión:

$$B_t = B_o + B_g (R_{sb} - R_s)$$
(2.26)

Donde el término R_{sb} es la cantidad de gas en solución a la presión de saturación, en yacimiento de aceite negro y volátil. Y como se puede observas el factor de la fase mixta está en función de los factores volumétricos ya mencionados y explicados antes:

El término $R_{sb} - R_s \left[\frac{bls \ gas @C.e.}{bls \ aceite \ @c.e.} \right]$ se refiere al gas liberado al momento del cambio de presión. Es decir, el volumen de gas libre está representado por la siguiente expresión:

$$B_g(R_{sb} - R_s) = B_g \left[\frac{Bls \ gas@c.y.}{Bls \ gas@c.e.} \right] (R_{sb} - R_s) \left[\frac{Bls \ gas@c.e.}{Bls \ de \ aceite \ @c.e.} \right] = \left[\frac{Bls \ gas@c.y.}{Bls \ aceite \ @c.e.} \right]$$
(2.27)

Para llegar finalmente a:

$$B_t = B_o \left[\frac{Bls \ aceite@c.y.}{Bls \ aceite@c.e.} \right] + B_g (R_{sb} - R_s) \left[\frac{Bls \ gas@c.y.}{Bls \ aceite@c.e.} \right]$$
(2.28)

$$B_t = \frac{Bls \ de \ aceite \ y \ gas \ en \ solucion \ @ \ c.y. + Bls \ gas \ @ \ c.y.}{Bls \ de \ aceite \ @ \ c.e.}$$
(2.29)

En la *Figura 2-27* se explica la ejemplificación de una celda en donde a condiciones iniciales se tiene aceite más su gas disuelto, después, al bajar la presión mediante la extracción del mercurio en la celda, el aceite disminuye de volumen debido a la liberación de su gas, este proceso es a temperatura constante.

Figura 2-25 Cambio de volumen cuando la presión se reduce por debajo de la presión de burbuja a temperatura de yacimiento constante

En la *Figura 2-28*, se muestra el comportamiento del factor de la fase mixta, B_t , y el factor de volumen del aceite, B_o , para un yacimiento de aceite negro.

Presión de yacimiento, p_v , (lb/pg^2abs)

Figura 2-26 Comportamientos típicos del B_t y B_o para un aceite negro, en función de la presión de yacimiento a temperatura contante

2.6.2.5 Coeficiente de compresibilidad isotérmico del aceite

Se define cómo el cambio fraccional de volumen de un líquido (en este caso del aceite), con respecto al decremento de la presión, siendo esto un proceso a volumen constante. A presiones de yacimiento mayores que la presión de saturación $(p>p_b)$, la compresibilidad del aceite, se define como se hizo con la compresibilidad del gas. Para presiones de yacimiento menores a la presión de saturación $(p<p_b)$, se debe tener en cuenta un término que tome en cuenta la cantidad de gas liberada por el aceite. De manera que

Para $p > p_b$:

$$c_o = -\frac{1}{B_o} \left(\frac{\partial B_o}{\partial p}\right)_T \tag{2.37}$$

Para $p < p_{b}$:

$$c_o = -\frac{1}{B_o} \left[\left(\frac{\partial B_o}{\partial p} \right)_T - B_g \left(\frac{\partial R_s}{\partial p} \right)_T \right]$$
(2.38)

En la *Figura 2-27* se muestra el comportamiento del factor de compresibilidad isotérmico para aceites.

Presión de yacimiento, p_v , (lb/pg^2abs)

Figura 2-27 Comportamiento típico de factor de compresibilidad del aceite, en función de la presión de yacimiento

La discontinuidad que existe en la p_b , es debido a la presencia de gas, que se empieza a liberar del aceite, lo cual causa un cambio abrupto en el volumen.

2.6.2.6 Coeficiente de viscosidad del aceite

La viscosidad μ_0 es una medida de la resistencia al flujo ejercida por un fluido, esta, generalmente se expresa en centipoises. Además, es afectada por la presión y la temperatura, es decir, un incremento en la temperatura provoca un decremento en la viscosidad, una disminución en la presión provoca una disminución en la viscosidad, un decremento en la cantidad de gas en solución en el líquido provoca un incremento en la viscosidad, siendo la cantidad de gas en solución una función directa de la presión, como se muestra en la siguiente Figura.

Presión del yacimiento, p_y , (lb/pg^2)

Figura 2-28 Comportamiento de la viscosidad μ_{o} , en función de la presión de yacimiento

En el rango de $p \ge pb$ conforme p decrece la μ_o decrece debido a que las moléculas se alejan más una de otra y se mueven más fácilmente. Conforme la presión del yacimiento decrece por debajo de la presión de burbuja p < pb, el líquido cambia su composición, el gas que se libera toma las moléculas más pequeñas (ligeras) del líquido, dejando al líquido remanente en el yacimiento las moléculas con formas más complejas (más pesadas).

Capítulo 3 Experimentos de laboratorio PVT

Las pruebas de laboratorio PVT se refieren a los experimentos con los cuales se puede obtener a partir de una muestra representativa de un fluido de yacimiento, las propiedades más elementales, así como su comportamiento en función de la Presión, Volumen y Temperatura (PVT), todo esto con el objetivo de simular en el laboratorio, el comportamiento de los fluidos de yacimiento a lo largo de toda su vida productiva.

El también llamado, análisis de comportamiento de fase PVT, necesita realizarse en muestras de fluido representativas, recogidas a la primera oportunidad, normalmente durante la perforación del primer pozo de exploración, y desde luego antes de poner en

plena producción la explotación del yacimiento. Esta forma altamente especializada de análisis proporciona resultados útiles para efecto de la ingeniería de yacimientos, y también facilita el diseño y la optimización de los procesos y las instalaciones.

Gracias es estos estudios de laboratorio se puede conocer las siguientes propiedades

- > Densidad del aceite y densidad relativa (gravedad específica) del aceite (γ_0)
- > Viscosidad del aceite (μ_o).
- Factor de volumen del aceite (B_o) .
- > Factor de volumen del gas (B_g) .
- > Factor de volumen Total (B_t).
- > Relación de Solubilidad del gas disuelto (R_s) .
- > Compresibilidad de un Fluido (c_o, c_g, c_w).
- > Presión de Saturación (p_b).
- Relación Gas Aceite (*RGA*).

Además de poder estimar reservas y hacer todo un plan de desarrollo óptimo para la explotación de un campo. También funge un papel indispensable para el diseño de instalaciones superficiales y en la toma de importantes decisiones, por ejemplo, si es posible la implementación de un sistema de recuperación primaria, secundaria, terciaria o mejorada, o bien un sistema artificial de producción.

3.1 Planeación del muestreo de fluidos

El muestreo de los fluidos, requiere toda una metodología, y dependerá del tipo yacimiento que se quiera explotar. El objetivo principal del muestreo de fluidos siempre debe ser el obtener una muestra representativa del fluido de yacimiento. Esto quiere decir, que la muestra que se recolecta, debe de estar lo más parecida a las condiciones de presión y temperatura iniciales del yacimiento.

La situación óptima, cuando el objetivo es obtener una muestra de fluido original del yacimiento, es recolectar muestras antes que la presión de fondo fluyente, caiga por debajo de la presión de saturación. El fluido que entra al pozo bajo estas condiciones, será representativo del fluido original de yacimiento, y esto es gracias a que este no ha sido

sometido a presiones por debajo de la presión de saturación en cualquier punto cercano al yacimiento. De lo contario, si la presión de fondo fluyendo, cae por debajo de la presión de saturación, el flujo será bifásico (gas y aceite) por lo que se tendrá diferente composición. (API, Abril 2003)

Por eso es fuertemente recomendable que los muestreos se empiecen en etapas tempranas de la vida del pozo, Sin embargo, tomar muestras de fluidos después de que la presión estática del yacimiento haya disminuido por debajo de la presión de saturación original es una práctica deficiente, y no se recomienda a menos que no haya otra alternativa.

3.1.1 Factores que influyen en la planeación

Uno de los factores más importantes para comenzar con la planificación del muestro, es identificar el comportamiento de los tipos de fluidos de yacimiento. Muchas decisiones con respecto al acondicionamiento del pozo y al óptimo muestro del pozo pueden verse afectadas por el comportamiento del fluido de yacimiento, tanto en el fondo como es superficie.

Por tanto, el entendimiento cualitativo del comportamiento de los diversos tipos de fluidos es esencial para el proceso de planificación.

Las características de la producción de cada pozo también son consideradas. Las características para una producción deseable son:

- Sin producción de agua
- Relación gas-aceite y densidad relativa similar de pozos aledaños
- Índice de productividad relativamente alto
- Flujos estables sin cabeceo
- Conocimiento del tipo de flujo (monofásico, bifásico, trifásico)

3.1.2 Métodos de muestreo

En general, existen categorías generales para el muestreo de fluidos de yacimiento y la decisión de cual elegir está en función de un importante número de consideraciones. Estas

incluyen el volumen de muestra requerido para el laboratorio, el tipo de yacimiento a ser muestreado, el ritmo de agotamiento del yacimiento, las condiciones mecánicas del pozo y el tipo de equipo de separación de gas-aceite disponible. (API, Abril 2003)

- Sub-superficiales
 - \checkmark Muestreo de fondo de pozo
 - ✓ Probadores de formación
- Superficiales
- En cabeza de pozo

3.1.2.1 Muestreo sub-superficial

El muestro de fondo es un método convencional de muestreo sub-superficial, el cual consiste en bajar un dispositivo de muestreo comúnmente llamado "muestreador de fondo" al pozo a una profundidad preseleccionada. Los muestreadores de fondo pueden ser empleados en pozos con agujero descubierto o revestidos. Cuando una muestra es recolectada a la profundidad de interés, el muestreador de fondo mantiene la condición de presión a las que se encuentra. Cuando se lleva a superficie, la muestra puede subir perturbaciones o alteraciones en la presión, por lo que esta muestra se le vuelve a aumentar la presión donde se restaura la condición monofásica. Después se busca un contenedor adecuado para su transporte a laboratorio. (API, Abril 2003)

Figura 3 -1 Ejemplo de muestreador de fondo

Este tipo de muestreo se utiliza frecuentemente para yacimientos que aún no alcanzan su presión de saturación. Cuando se requiere gran volumen de muestra, se repite la operación, aunque en herramientas más actuales, los barriles muestreadores contienen mayor capacidad de volumen.

Por otro lado, los probadores de formación, consisten en una sonda alámbrica que regularmente se puede extender por un costado del pozo, la cual es controlada en superficie. Contienen varias cámaras que pueden abrir o cerrar, las cuales pueden recoger una fracción de cualquier fluido que esté dentro el pozo.

Esta herramienta también tiene la capacidad de bombear lodo de perforación y fluido de terminación, lo cual es una clara desventaja puesto que esto puede contaminar, posteriormente a las muestras. Hoy en día existe una gama muy grande en herramientas que pueden realizar este tipo de muestreo, sin embargo, entre más especializada sea la herramienta, más alto será su costo.

Figura 3 -2 Tipos de probadores de formación, desde el más básico hasta el más completo

3.1.2.2 Muestreo superficial

Los métodos de muestreo en superficie, consisten en tomar muestras del separador de aceite y gas, todo esto sabiendo las tasas de flujo del aceite y gas. Los fluidos de yacimiento son recombinados en laboratorio en proporción a la RGA estimada. Con este método se pueden obtener de manera fácil grandes volúmenes de muestras. (API, Abril 2003)

Por lo tanto, las instalaciones para hacer estas determinaciones deben estar en excelentes condiciones y ser operadas por personas completamente instruidas en su uso. El equipo de medición debe estar calibrado correctamente. La importancia de estas calibraciones no puede escatimarse. Cualquier error en la medición de la relación gas-aceite se reflejará en los cálculos de recombinación y puede evitar que el personal del laboratorio reconstituya inadecuadamente el fluido del yacimiento. De manera que el método de muestreo en superficie puede proporcionar buenos resultados, si se recogen buenas muestras y si los datos de medición de flujo son precisos y representativos.

Figura 3 -3 Ejemplificación de muestreo en un separador vertical

3.1.2.3 Muestreo en cabeza del pozo

Este método es el menos común, pero es potencialmente valioso. Si se sabe que un fluido está en estado monofásico en las condiciones de temperatura y presión del cabezal del pozo, esta técnica puede producir resultados más fáciles y confiables. Comúnmente, se emplea sólo para aceites que están altamente bajosaturado en condiciones de cabezal de pozo o para gases secos. Sin embargo, el problema al utilizar el muestreo en cabeza del pozo, es saber que el fluido es verdaderamente monofásico en el punto de muestreo. (API, Abril 2003)

Estas muestras sólo pueden tomarse cuando la presión de fondo fluyente y la temperatura son mayores a la presión de saturación del yacimiento, de tal manera que el fluido se mantiene monofásico en el cabezal del pozo. Estas condiciones no son comunes, pero a veces existen, por ejemplo, en pozos submarinos en los que los fluidos producidos pueden mantenerse monofásicos desde el fondo del pozo hasta el recolector múltiple en superficie.

Figura 3-4 Posición y referencia del muestreo en cabeza de pozo

3.1.2.4 Ventajas del muestreo sub-superficial y superficial

El siguiente es un resumen de las ventajas que se deben considerar para la selección del tipo de muestreo. (API, Abril 2003)

- A. Ventajas del muestreo sub-superficial:
- 1. Recoge la muestra deseada directamente del yacimiento o formación productora.
- 2. Puede mantener la presión total en la muestra (con herramienta especializada).
- 3. Evita el uso de separadores de superficie.
- 4. Evita la necesidad de dispositivos de medición de caudal, y su adecuado calibrado y calibración (para la determinación de la relación gas-aceite).
- 5. Requiere que se transmita menos información de muestreo a laboratorio de pruebas.
- 6. Elimina posibles errores en la recombinación de gas y muestras de aceite requeridas para muestras de superficie.

- Menos contenedores de muestra necesitan ser llevados al campo, ya que tres muestras pueden proporcionar una cantidad de muestra representativa para los estudios de laboratorio de rutina.
- B. Ventajas de los probadores de formación:
- 1. Mismas ventajas que el muestreo sub-superficial anterior.
- 2. Recoge la muestra deseada directamente de la formación (dentro del pozo).
- 3. Se tiene una muestra representativa del fluido del yacimiento en un intervalo de profundidad muy estrecho
- 4. Muestra no es afectada por la segregación de fluidos en el pozo.
- 5. Puede tomar muestras del fluido del yacimiento, incluso si hay agua en el pozo.
- 6. Puede muestrear el fluido del yacimiento en las condiciones originales (antes de que se haya producción).
- 7. Disminución de presión controlada durante la toma de la muestra.
- C. Ventajas del muestreo de superficie:
- 1. Relativamente fácil, conveniente y menos costoso comparado al muestreo subsuperficial
- Evita la pérdida de producción durante el periodo de cierre que es requerido para el muestreo sub-superficial (período de 1 a 4 días, o más para pozos de baja capacidad de entrega).
- Evita la posibilidad de obtener herramienta atascada o perdida de la tubería si está dañada o desviada, o si la herramienta de muestreo se baja por debajo del nivel de la tubería.
- 4. Aplicable en casos donde se espera agua en la tubería, a la profundidad de la formación productora, donde el muestreo sub-superficial no puede ser usado.
- 5. No requiere que se produzca fluido monofásico en el pozo.
- 6. Es el método preferido para yacimientos de gas y condensado.
- Grandes volúmenes de muestras, son más fáciles de obtener que los muestreadores sub-superficiales.

3.2 Clasificación de los experimentos de laboratorio PVT

Las propiedades del aceite y su gas en solución dependerán de las condiciones bajo las cuales sean medidas. Se debe recordar que, la calidad de los datos que obtenidos dependerá de un buen muestreo, así como de la representatividad de la muestra obtenida.

Existen diversas pruebas de laboratorio que son vitales para el estudio del comportamiento del fluido de yacimiento, además de que son pruebas convencionales y en conjunto, crean un análisis muy completo. Sin embargo, además de estar en función de la Presión, Volumen y Temperatura, también la composición tanto del aceite como del gas, hacen que las pruebas y el estudio que en ellas conllevan sean más detallados y por lo tanto más valioso, estas pruebas son:

Experimentos Convencionales

- Análisis composicional del fluido
- Expansión a composición constante o flash
- Separación diferencial
- Agotamiento a volumen constante (separación diferencial a volumen constante)
- Prueba de separación en laboratorio

Y para otros casos, existen experimentos de laboratorio que son poco convencionales, pero atacan problemas más específicos, regularmente son para estudiar la miscibilidad.

Experimentos para inyección de gases

- Prueba de hinchamiento
- Prueba de tubo capilar
- Prueba de contacto múltiple
- Presión mínima de miscibilidad

En este trabajo de tesis se estudiarán de las muestras de Aceite Negro, Aceite Volátil y Gas y Condensado. Por lo cual se propone la siguiente metodología de análisis.

• Para <u>aceites negros</u>, las pruebas PVT estándar son:

- ✓ Pruebas de Separación o Liberación Diferencial (DL)
- ✓ Pruebas de Expansión a Composición Constante (CCE)
- ✓ Pruebas del Separador
- ✓ Análisis composicional
- Para aceites volátiles y gas-condensado, la prueba estándar es:
- ✓ Agotamiento a Volumen Constante (CVD)
- ✓ Pruebas de Separación o Liberación Diferencial (DL)
- ✓ Análisis composicional

3.3 Análisis composicional de fluidos

El análisis composicional de fluidos corresponde a la determinación de la cantidad y la identificación de los componentes que están presentes en un fluido, en este caso aceite o gas. En general existen dos técnicas para analizar las muestras de hidrocarburos, la destilación fraccionada (generalmente aplicada a fluidos en fase líquida) y la cromatografía de gases. Los componentes de hidrocarburos se identifican, por lo general, por medio de fracciones con números de carbono: C_1 , C_2 , C_3 , etc., hasta C_n , donde el número de carbono limitante, n, está definido por la técnica analítica en particular. También se pueden identificar otros componentes que no son hidrocarburos, tales como nitrógeno, metales pesados, azufre y sales.

3.3.1 Destilación

La destilación fraccionada se utiliza cuando la mezcla de productos líquidos que se pretende destilar contiene sustancias volátiles de diferentes puntos de ebullición. Al calentar una mezcla de líquidos de diferentes presiones de vapor, el vapor se enriquece en el componente más volátil y esta propiedad se aprovecha para separar los diferentes compuestos líquidos mediante este tipo de destilación. El rasgo más característico de este tipo de destilación es que necesita una columna de fraccionamiento. (Wentworth & Ladner, 1975)

Una columna de fraccionamiento contiene pequeños platos distribuidos a lo largo de su longitud, de forma que las pequeñas cantidades de líquido que se encuentran en cada una de ellas, durante el proceso de la destilación, contienen mezclas cada vez más enriquecidas en el líquido más volátil. El plato situado en la parte superior de la columna contendrá el líquido más volátil.

La *Figura 3-5*, muestra el análisis composicional que se muestra en el informe final, resultado de la prueba de destilación para una muestra de aceite, como se logra apreciar, el total de los componentes suma 100% además de que también lo pueden cuantificar en fracción peso (% peso). En la *Figura 3-6*, se muestra la agrupación de los componentes más pesados.

Análisis Composicional de la Muestra de Fondo - Cilindro No. 8727-MA					
Componente	% Molar	% Peso			
Hidrógeno	0.29	0.00			
Sulfuro de Hidrógeno	1.84	0.15			
Dióxido de carbono	1.05	0.11			
Nitrógeno	1.76	0.12			
Metano	7.69	0.30			
Etano	2.21	0.16			
Propano	4.04	0.44			
i-Butano	0.64	0.09			
n-Butano	2.48	0.35			
Neo-Pentano	0.00	0.00			
n Pentano	1.29	0.23			
Herenano	1.03	0.52			
M-C-Pentano	0.49	0.01			
Benzeno	0.11	0.02			
Ciclohexano	0.22	0.05			
Heptanos	2.37	0.58			
M-C-Hexano	0.34	0.08			
Tolueno	0.03	0.01			
Octanos	2.64	0.74			
E-Benzeno	0.18	0.05			
M/P-Xileno	0.15	0.04			
O-Xileno	0.07	0.02			
Nonanos	2.78	0.87			
1,2,4-TMB	0.19	0.06			
Decanos	3.01	1.05			
Undecanos	3.24	1.17			
Dodecanos	2.82	1.11			
Totradepage	2.78	1.19			
Tetradecanos	2.02	1.22			
Hevedecanos	2.47	1.20			
Hentadecanos	2.29	1.24			
Octadecanos	1.96	1.10			
Nonadecanos	1.87	1.20			
Eicosanos	1.63	1.10			
Heneicosanos	1.54	1.09			
Docosanos	1.45	1.08			
Tricosanos	1.33	1.04			
Tetracosanos	1.23	1.00			
Pentacosanos	1.16	0.98			
Hexacosanos	1.06	0.93			
Heptacosanos	1.05	0.96			
Octacosanos	1.02	0.97			
Nonacosanos	1.02	1.00			
Triacontanos	0.93	0.94			
Hentriacontaños	0.87	0.91			
Dotnacontanos	0.83	0.90			
Tetretriseentenee	0.80	0.90			
Pentatriacontanos	0.75	0.07			
Hexatriacontanos más	20.08	67.24			
rioxanacontanos mas	20.00	07.24			
Totales :	100.00	100.00			
· ·					

Figura 3-5 Ejemplo de análisis composicional de una muestra de aceite, por destilación

Análisis Composicional de la Muestra de Fondo - Cilindro No. 8727-MA					
Propiedades de las Fracciones Pesadas					
Heptanos más	% Mol Peso Molecular (g mol-1) Densidad a 15.6°C (g cm-3)	72.01 551 1.0156			
Undecanos más	% Mol Peso Molecular (g mol-1) Densidad a 15.6°C (g cm-3)	59.43 642 1.0318			
Eicosanos más	% Mol Peso Molecular (g mol-1) Densidad a 15.6°C (g cm-3)	37.40 903 1.0660			
Hexatriacontanos más	% Mol Peso Molecular (g mol-1) Densidad a 15.6°C (g cm-3)	20.08 1367 1.1165			
Propiedades de la Muestra Total					
	Peso Molecular Promedio (g mol-1) Densidad a 15.6°C (g cm-3)	408.2 0.9903			

Figura 3-6 Propiedades de las fracciones más pesadas y de la muestra tota

3.3.2 Cromatografía de gases

La cromatografía de gases es una técnica de separación, y es de las más utilizadas para identificar los componentes de una mezcla de gases hidrocarburos, y se incluye para el análisis de composición en las pruebas PVT. Para la realización de una separación mediante cromatografía de gases, se inyecta una pequeña cantidad de la muestra a separar en una corriente de gas inerte a elevada temperatura; esta corriente de gas, atraviesa una columna cromatografía que separa los componentes de la mezcla por medio de un mecanismo de partición (cromatografía gas-liquido), de adsorción (cromatografía gas-solido) o, en muchos casos, por medio de una mezcla de ambos.

Los componentes separados, emergerán de la columna a intervalos discretos y pasarán a través de algún sistema de detección adecuado, o bien serán dirigidos hacia un dispositivo de recogida de muestras.

Los componentes fundamentales un cromatógrafo de gas son los:

- \checkmark Fuente de gas
- ✓ Sistema de inyección
- ✓ Horno y columna cromatografía
- ✓ Sistema de detección
- ✓ Sistema de registro

Figura 3-7 Muestra el esquema básico de un cromatógrafo de gases

En el informe PVT regularmente se muestran dos análisis composicionales, el gráfico a partir de un cromatograma y una tabla donde se desglosa los componentes y las cantidades en porcentaje de las que se conforma la mezcla. En la *Figura 3-8*, se presenta un cromatograma, que representa el resultado gráfico de la cromatografía.

Figura 3-8 Cromatograma típico para una composición de gas natural

En el caso de una cromatografía óptima, los diferentes picos corresponden a los componentes de la mezcla separada. La posición de los máximos corresponde a el elemento presente y su área indica la cantidad existente de dicho elemento, todo esto cualitativamente. Para efectos de cálculos cuantitativos, en la *Figura 3-9* se muestra la tabla de datos que contienen los porcentajes de cada elemento que compone a una mezcla de gases.

Component	p-psia	5200	4500	3800	3200	2700	2100
	MW			Mol%			
N2	28.01	0.49	0.49	0.50	0.51	0.51	0.51
C02	44.01	6.36	6.37	6.42	6.47	6.50	6.55
H2S	34.08	0.00	0.00	0.00	0.00	0.00	0.00
C1	16.04	72.85	73.12	74.05	74.86	75.39	75.82
C2	30.07	9.28	9.28	9.27	9.27	9.29	9.34
C3	44.10	3.81	3.80	3.75	3.70	3.68	3.68
I – C4	58.12	0.78	0.78	0.76	0.74	0.73	0.72
N - C4	58.12	1.16	1.15	1.12	1.09	1.06	1.04
I – C5	72.15	0.44	0.44	0.42	0.40	0.39	0.37
N - C5	72.15	0.37	0.36	0.34	0.33	0.31	0.30
C6	84.00	0.99	0.98	0.91	0.84	0.78	0.71
C7	96.00	0.65	0.63	0.57	0.49	0.43	0.36
C8	107.00	0.47	0.45	0.39	0.33	0.27	0.21
C9	121.00	0.23	0.22	0.19	0.15	0.12	80.0
C10	134.00	0.26	0.25	0.21	0.16	0.12	0.08
C11	147.00	0.24	0.23	0.18	0.14	0.10	0.06
C12	161.00	0.24	0.23	0.18	0.12	0.08	0.05
C13	175.00	0.26	0.24	0.18	0.12	0.07	0.04
C14	190.00	0.24	0.23	0.16	0.10	0.06	0.03
C15	206.00	0.27	0.25	0.16	0.09	0.05	0.02
C16	222.00	0.13	0.12	0.07	0.04	0.02	0.01
C17	237.00	0.11	0.10	0.05	0.03	0.01	0.00
C18	251.00	0.15	0.13	0.07	0.03	0.01	0.00
C19	263.00	0.08	0.07	0.03	0.01	0.01	0.00
C20	275.00	0.04	0.03	0.01	0.00	0.00	0.00
020	291.00	0.02	0.02	0.01	0.00	0.00	0.00
C22	300.00	0.02	0.02	0.00	0.00	0.00	0.00
022	312.00	0.01	0.01	0.00	0.00	0.00	0.00
020	324.00	0.01	0.01	0.00	0.00	0.00	0.00
024	337.00	0.01	0.01	0.00	0.00	0.00	0.00
025	349.00	0.01	0.00	0.00	0.00	0.00	0.00
020	360.00	0.01	0.00	0.00	0.00	0.00	0.00
027	372 00	0.01	0.00	0.00	0.00	0.00	0.00
020	202.00	0.01	0.00	0.00	0.00	0.00	0.00
029	500.00	0.01	0.01	0.00	0.00	0.00	0.00
C30+	00.06	0.01	0.00	0.00	0.00	0.00	0.00
Total		100.00	100.00	100.00	100.00	100.00	100.00
Calculated MW		27.21	26.72	25.29	24.17	23.47	22.89
odiodiacou ivivi		27.21	20.72	20.20	27.17	20.47	22.00
Viscosity (cP) 0.030 0.027 0.024 0.022 0.020 0.017						0.017	
Heat Content (BTU/sr	of) - Dry	1450	1423	1344	1282	1243	1210
Heat Concent (D10/30	JJ - DIY	1400	1420	1344	1202	1243	1210

COMPOSICIÓN DE MUESTRA DE GAS A DIFERENTES ETAPAS DE PRESIÓN (Muestra 1.01)

Figura 3-9 Composición de una muestra de gas a diferentes etapas de presión, técnica usada: cromatografía de gases

3.4 Prueba de expansión a composición constante (CCE)

La prueba de expansión a composición constante o también llamada prueba de liberación flash o vaporización flash, son aplicados generalmente para muestras de gas y condensado y de aceite líquido (aceite negro y aceite volátil), para simular la relación presión-volumen de estos hidrocarburos. Esta prueba se realiza para determinar la presión de saturación (punto de burbujeo o presión de punto de roció), los coeficientes de compresibilidad isotérmica y el volumen total de hidrocarburos en función de la presión. (Tarek Ahmed, 2007)

Con esta prueba de laboratorio pueden ser identificados los siguientes parámetros:

- ✓ Presión de saturación
- ✓ Volumen relativo
- ✓ Saturación del liquido
- ✓ Viscosidad
- ✓ Densidad
- ✓ Factor de compresibilidad del líquido saturado

Figura 3-10 Procedimiento de laboratorio para la expansión a composición constante

El procedimiento experimental, que se muestra gráficamente en la *Figura 3-10*, implica en que una muestra representativa del líquido de yacimiento, se coloca en una celda, con el propósito de estabilizarla a condiciones de presión y temperaturas originales del yacimiento.

Una vez estabilizadas las condiciones iniciales de yacimiento en la celda PVT, regularmente se eleva la presión de la celda por encima de la presión inicial de yacimiento, una vez hecho esto, empieza un proceso de decremento de presión por etapas. La presión se reduce en pasos a temperatura constante mediante la eliminación de mercurio de la celda, y el cambio de volumen total de hidrocarburos, V_t , se mide para cada decremento de presión.

Ya identificados los volúmenes totales de a cada etapa, se pueden graficar como se muestra en la *Figura 3-11*, de tal forma que se puede identificar la presión de saturación y el volumen de saturación, mediante la identificación de un quiebre en el comportamiento gráfico de la presión vs volumen total como se muestra a continuación.

Volumen

Figura 3-11 Gráfico de el volumen total en función de la presión de cada etapa, para la identificación de la presión de saturación

Esto da pie a un nuevo concepto que se denomina Volumen relativo y se exprese de la manera siguiente

$$V_r = \frac{V_t}{V_{sat}} \tag{3.1}$$

A continuación, se describe el proceso experimental por pasos:

- a) La presión es equilibrada a un valor igual o mayor a la p_i .
- b) Se ajusta la temperatura a la temperatura inicial de yacimiento.
- c) La presión será reducida mediante la extracción de mercurio, por etapas.

- d) La composición se mantiene constante durante todo el proceso, por lo que ningún liquido o gas es eliminado de la celda.
- e) El volumen es denominado volumen total, V_t , desde que la presión está por debajo de la presión de burbuja y este volumen lo conforma tanto el gas como del líquido.
- f) La relación de presión vs volumen es medida y analizada en laboratorio.
- g) Se identifica la presión de saturación (presión de burbuja o presión de rocío) mediante la representación gráfica de la presión vs V_t

Generalmente en los reportes PVT los datos obtenidos de esta prueba se muestran de la siguiente manera:

Table 7: Constant Composition Expansion at 150°F (Sample 1.01)							
	Pressure (psia)	Relative Vol (V,=V,/Vs)	% Liquid (V,/V,)	% Liquid (V,/V,)	Bulk Density (g/cm³)	Compressibilty (10 ⁶ /psia)	Z Factor
p,	10000	0.852	0		0.441	24.14	1.526
	9500 9000	0.864 0.877	0 0		0.435 0.429	27.03 30.24	1.469 1.413
	8000 7000	0.907 0.945	0 0		0.415 0.398	37.67 46.58	1.299 1.184
p,	591 7 5500	1.000 1.028	0 0.21	0 0.22	0.376 0.366	57.88	1.060
	5450 5000	1.032 1.069	0.23 0.56	0.24 0.60	0.364 0.352		
	4500 4000	1.123 1.202	2.59 7.22	2.91 8.68	0.335 0.313		
	3500 3000	1.317 1.486	9.76 10.08	12.85 14.97	0.286 0.253		
	2500 2000	1.747 2.181	9.06 7.29	15.83 15.90	0.215 0.172		
	1800	2.437	6.46	15.74	0.154		

Figura 3-12 Prueba de expansión a composición constante en un reporte PVT

3.5 Prueba de separación diferencial (DL)

Esta prueba se realiza para fluidos del tipo aceite Negro, o con grandes cantidades de gas disuelto, con la finalidad de simular el agotamiento del yacimiento por efectos de la producción, desde las condiciones iniciales de yacimiento, pasando por la presión de

saturación, hasta la presión atmosférica. Cuando la saturación del gas alcanza la saturación crítica, el gas liberado empieza a fluir, dejando atrás al aceite donde estaba contenido originalmente. Esto se atribuye al hecho de que los gases tienen en general movilidades mayores a las del aceite. (Aramendiz Pacheco & Velasquez Osma, 2008)

Los datos obtenidos gracias a esta prueba incluyen:

- ✓ Factor Volumétrico de formación de aceite, gas y total diferencial (B_{od}, B_{gd}, B_{td}) .
- ✓ Solubilidad del gas (R_s).
- ✓ Densidad del aceite a temperatura del yacimiento, a presiones por arriba y por debajo de la presión de burbuja.
- ✓ Densidad relativa del gas liberado en cada una de las etapas
- \checkmark Factor de compresibilidad (*z*) del gas liberado en cada una de las etapas.
- ✓ Composición del gas liberado en cada una de las etapas.
- ✓ Densidad API del aceite residual.

El procedimiento consiste en tener acondicionada en una celta, una muestra representativa de fluido a presiones igual o mayor a las del yacimiento, así como a la temperatura inicial del yacimiento, cabe mencionar, que esta prueba es de carácter isotérmico, por lo que la temperatura inicial se mantendrá constante hasta el final del proceso.

La celda es llevada a la presión de burbuja, para después generar una capa de gas mediante la disminución de la presión. A continuación, se extrae el gas generado, dejando en la celda sólo el aceite, la extracción se hace manteniendo la presión de la etapa en curso. Este proceso se repite de 10 a 15 etapas hasta llegar a condiciones atmosféricas que representarían el tanque de almacenamiento como se muestra en la *Figura 3-13*.

Se debe notar que el aceite residual que queda en la celada, sufre continuamente cambios en su composición, convirtiéndose progresivamente más rico en los componentes más pesados.

Figura 3-13 Procedimiento de laboratorio para la prueba de separación diferencial

Para esta prueba se pueden obtener propiedades elementales para cada etapa de separación de manera por ejemplo para cada etapa se puede calcular el factor de volumen de formación diferencial del aceite B_{od} de la siguiente manera:

$$B_{od} = \frac{V_L}{V_{sc}} \tag{3.2}$$

La relación de solubilidad diferencial R_{sd} se calcula de la siguiente manera:

$$R_{sd} = \frac{V_{gd}}{V_{sc}} \tag{3.3}$$

Para el cálculo del factor de la fase mixta diferencial, B_{td}, se considera lo siguiente:

$$B_{td} = B_{od} + (R_{sdb} - R_{sd})B_{gd}$$
(3.4)

Donde se encuentra el factor de volumen de formación diferencial (para cada etapa), que se define de la siguiente manera:
$$B_{gd} = \left(\frac{p_{sc}}{T_{sc}}\right) \left(\frac{zT}{p}\right) \tag{3.5}$$

Donde el factor de desviación z representa lo siguiente:

$$z[adim] = \left(\frac{Vp}{T}\right) \left(\frac{T_{sc}}{V_{sc}p_{sc}}\right)$$
(3.6)

De esta forma se calculan estos parámetros volumétricos y se muestran de la siguiente forma en los reportes PVT:

		Sección E	- Vaporizaci	ón Diferencial	(DV)			
Vaporización Diferencial de la muestra 1.01								
Factor de Factor de Factor de De								
Presión	Relación de	volumen del	volumen	Densidad del	Factor de	volumen del	relativa del	
1100101	solubilidad *	aceite ^b	de la fase mixta ^c	aceite	desviación	gas ^d	gas	
psig	R _{sd}	B _{od}	B _{td}	ρο	Z	B _{gd}	Yg	
1936	933	1.73	1.73	0.6484				
1700	841	1.679	1.846	0.6577	0.864	0.01009	0.885	
1500	766	1.639	1.982	0.665	0.869	0.01149	0.894	
1300	693	1.6	2.171	0.672	0.876	0.01334	0.901	
1100	622	1.563	2.444	0.679	0.885	0.01591	0.909	
900	551	1.525	2.862	0.6863	0.898	0.01965	0.927	
700	479	1.486	3.557	0.6944	0.913	0.02559	0.966	
500	400	1.44	4.881	0.7039	0.932	0.03626	1.051	
300	309	1.382	8.138	0.7161	0.955	0.06075	1.23	
185	242	1.335	13.302	0.7256	0.97	0.09727	1.423	
120	195	1.298	20.439	0.7328	0.979	0.14562	1.593	
0	0	1.009		0.7745			2.375	
	At 60 °F=	÷ 1						
Gravity of residual /	oil = 34.6°API at	t 60°F						
Density of residual	l oil = 0.8511 gn	n/cc at 60°F						
Cubic feet of gas a	at 14.73 psia an	d 60°F per barr	el of residual	oil at 60°F.				
Barrels of oil at inc	dicated pressur	e and temperat	ure per barrel	of residual oil a	t 60°F.			
Barrels of oil and I	liberated gas at	indicated press	sure and temp	perature per barr	rel of residual	oil at 60°F.		
⁴ Cubic feet of gas r	at indicated pres	ssure and temp	erature per ci	ubic feet at 14.73	3 psia and at 6	30°F.		

Figura 3-14 Prueba de separación diferencial en reporte PVT

3.6 Prueba de agotamiento a volumen constante (CVD)

La prueba de agotamiento a volumen constante se aplica para muestras de fluido del tipo aceite volátil y gas y condensado (cercanos al punto crítico), el objetivo principal de esta prueba es buscar reproducir de la manera más fiel posible, las caídas de presión dentro del yacimiento y como estas afectan a la composición. La principal característica de esta

prueba es que, se debe mantener un volumen inicial constante (que por lo general es el volumen del fluido a la presión de saturación), al momento de la extracción del gas de la celda, de manera que se simula un modelo de una formación de volumen constante.

El procedimiento consiste en acondicionar una muestra de fluido representativa en donde las condiciones iniciales deben ser un volumen de muestra definido, a condiciones de presión de saturación y temperatura de yacimiento. (Tarek Ahmed, 2007)

Figura 3-15 Procedimiento de laboratorio para la prueba de agotamiento a volumen constante, para una muestra de Aceite Volátil

La presión se reduce, de tal forma que el gas es liberado dentro de la celda (en el caso de gas y consensado, aparecerán condensados líquidos), después de esto y manteniendo la presión de la etapa correspondiente, se extrae parte del gas de la celda, hasta tener de nuevo el volumen inicial, de manera que no se extrae todo el gas. Este procedimiento se repite en periodo de 10 a 15 etapas hasta llegar a las condiciones atmosféricas, como se muestra en la *Figura 3-15*.

Al gas que se extrae de la celda, se analiza para determinar su composición y peso molecular de C_7^+ .

Los cálculos más elementales para esta prueba van acompañados del procedimiento de toda una metodología, que a continuación se explica de manera más detallada:

- a) Se monta en una celda PVT, una cantidad previamente medida de una muestra representativa del fluido original del yacimiento a la presión de saturación y cuya composición de la mezcla de hidrocarburos z_i es conocida. Se debe mantener constante durante todo el proceso la temperatura inicial del yacimiento, T, además el volumen inicial, V_i , se debe tomar como referencia durante todo el proceso.
- b) Se calcula el factor compresibilidad inicial del gas real a partir de la ecuación de estado para gases reales:

$$Z_d = \frac{p_d V_i}{n_i RT} \tag{3.7}$$

c) Mediante la reducción del mercurio de la celda, se disminuye la presión, y aumenta la cantidad de gas que se libera del aceite (para gas y condensado se crean condensados retrógrados). Cuando ambas fases se encuentran en equilibrio se toman lo volúmenes de gas y liquido V_g y V_L respectivamente. El volumen de líquido en la celda se reporta como porcentaje del volumen inicial V_i , cual básicamente representa la saturación de líquido retrógrado y se expresa de la siguiente manera:

$$S_L = \frac{V_L}{V_i} \tag{3.8}$$

En donde también se puede corregir la saturación de aceite por medio de la siguiente expresión:

$$S_o = (1 - S_w) S_L \tag{3.9}$$

Para la mayoría de los yacimientos retrógrado, la máxima caída de líquido retrógrado se da entre las 2000 y 2500 psia. Cho, Civan y Starting (1985) desarrollaron la siguiente expresión en función de la temperatura del yacimiento (en °*F*) y la fracción molar de C_7^+ es decir, z_{c7^+} , en la mezcla de punto de rocío:

$$(LDO)_{max} = 93.404 + 479.9(z)_{C_7^+} - 19.73\ln(T)$$
(3.10)

- d) Se reinyecta mercurio dentro de la celda PVT a de manera que la presión de la etapa se mantenga constante, mientras al mismo tiempo se extrae gas de la celda hasta volver a alcanzar el volumen inicial V_i.
- e) El gas que se extrajo mediante un equipo especializado, que generalmente es por medio de cromatografía de gases, se determina su composición y_i , y su volumen se mide a condiciones estándar y se le nombra $(V_{gp})_{sc}$. Adicional a esto, se puede calcular los moles correspondientes al gas extraído por medio de la siguiente expresión.

$$n_p = \frac{p_{sc}(V_{gp})_{sc}}{_{RT_{sc}}} \tag{3.11}$$

 f) Además, se calcula el factor de compresibilidad, z , del gas a partir de la ecuación de gases reales, de la siguiente forma

$$z = \frac{p(V_{gp})_{p,T}}{(n_i - n_p)RT}$$
(3.12)

Donde el término $(V_{gp})_{p,T}$ representa el volumen de gas remanente medido en la celda PVT a condiciones de *p* y *T* de la correspondiente etapa.

Otra propiedad que también es mediada, es el factor de desviación z del gas para las dos fases presentes, el cual representa la compresibilidad de toda la mezcla (gas y liquido retrógrado) en la celda y su ecuación se obtiene a partir de la ecuación de los gases reales:

$$z_{2f} = \frac{pV_i}{(n_i - n_p)RT}$$
(3.13)

Con el fin de evaluar la producción del gas y condensado, el factor de z de dos fases puede ser calculado en función de volúmenes equivalentes, de la siguiente manera

$$z_{2f} = \frac{z_d}{p_d} \left(\frac{p}{1 - \left(\frac{G_p}{GIIP}\right)} \right)$$
(3.14)

 g) Se calcula el volumen de gas producido como porcentaje del gas inicial, con la siguiente expresión matemática

$$\% G_p = \left[\sum \frac{(V_{gp})_{sc}}{GIIP} \right] x 100 \quad \acute{0} \quad \% G_p = \left[\frac{n_p}{(n_i)_{original}} \right] x 100 \qquad (3.15)$$

El procedimiento experimental se repite varias veces hasta que se alcanza la presión mínima de la prueba, después de la cual se determina la cantidad y la composición del gas y el líquido retrógrado que quedaron de remanentes dentro de la celda.

Los resultados	que se muestran	en el reporte	final PVT,	generalmente	son los si	guientes:

Component	p-psia	5200	4500	3800	3200	2700	2100
	MW			Mol%			
10	00.04	0.40	0.40	0.50	0.54	0.54	0.54
N2	28.01	0.49	0.49	0.50	0.51	0.51	0.51
COZ	44.01	6.36	6.37	6.42	6.47	6.50	6.55
HZS	34.08	0.00	0.00	0.00	0.00	0.00	0.00
	16.04	72.85	/3.12	74.05	/4.86	/5.39	/5.82
C2	30.07	9.28	9.28	9.27	9.27	9.29	9.34
C3	44.10	3.81	3.80	3./5	3.70	3.68	3.68
1-04	58.12	0.78	0.78	0.76	0.74	0.73	0.72
N – C4	58.12	1.16	1.15	1.12	1.09	1.06	1.04
I – C5	72.15	0.44	0.44	0.42	0.40	0.39	0.37
N – C5	72.15	0.37	0.36	0.34	0.33	0.31	0.30
C6	84.00	0.99	0.98	0.91	0.84	0.78	0.71
C7	96.00	0.65	0.63	0.57	0.49	0.43	0.36
C8	107.00	0.47	0.45	0.39	0.33	0.27	0.21
C9	121.00	0.23	0.22	0.19	0.15	0.12	80.0
C10	134.00	0.26	0.25	0.21	0.16	0.12	0.08
C11	147.00	0.24	0.23	0.18	0.14	0.10	0.06
C12	161.00	0.24	0.23	0.18	0.12	0.08	0.05
C13	175.00	0.26	0.24	0.18	0.12	0.07	0.04
C14	190.00	0.24	0.23	0.16	0.10	0.06	0.03
C15	206.00	0.27	0.25	0.16	0.09	0.05	0.02
C16	222.00	0.13	0.12	0.07	0.04	0.02	0.01
C17	237.00	0.11	0.10	0.05	0.03	0.01	0.00
C18	251.00	0.15	0.13	0.07	0.03	0.01	0.00
C19	263.00	0.08	0.07	0.03	0.01	0.01	0.00
C20	275.00	0.04	0.03	0.01	0.00	0.00	0.00
C21	291.00	0.02	0.02	0.01	0.00	0.00	0.00
C22	300.00	0.01	0.01	0.00	0.00	0.00	0.00
C23	312.00	0.01	0.01	0.00	0.00	0.00	0.00
C24	324.00	0.01	0.01	0.00	0.00	0.00	0.00
C25	337.00	0.01	0.00	0.00	0.00	0.00	0.00
C26	349.00	0.01	0.00	0.00	0.00	0.00	0.00
C27	360.00	0.01	0.00	0.00	0.00	0.00	0.00
C28	372.00	0.01	0.00	0.00	0.00	0.00	0.00
C29	382.00	0.01	0.01	0.00	0.00	0.00	0.00
C30+	580.00	0.01	0.00	0.00	0.00	0.00	0.00
Total		100.00	100.00	100.00	100.00	100.00	100.00
Calculated MW		27.21	26.72	25.29	24.17	23.47	22.89
Viscosity (cP)		0.030	0.027	0.024	0.022	0.020	0.017
Heat Content (BTU/sc	f) - Dry	1450	1423	1344	1282	1243	1210

Figura 3-16 Análisis composicional de las muestras de gas extraído, de una prueba de agotamiento a volumen constante (CVD)

Pressure	Total	Produced Vapor Properties			Calculated Lie	Two Phase	
	Recovery	Z Factor	MW	Density	Volume %	Density	Z Factor*
psia	(%)		(g/gmol)	(g/cm ³)		(g/cm ³)	
5975	0.00	1.067	27.39	0.345	0.00		1.067
5200	6.34	0.991	27.21	0.321	0.40	0.784	0.992
4500	13.66	0.926	26.72	0.292	2.03	0.615	0.931
3800	23.11	0.878	25.29	0.246	6.48	0.590	0.882
3200	32.96	0.854	24.17	0.204	8.69	0.603	0.853
2700	42.28	0.845	23.47	0.169	9.38	0.619	0.837
2100	54.25	0.848	22.89	0.127	9.37	0.651	0.826
1500	66.94	0.869	22.57	0.088	8.90	0.681	0.827
1000	77.63	0.899	22.55	0.056	8.29	0.704	0.831
*7 /7 *1/	7.41.)		1. 6. 10		CONTRACTOR OF A		1 1 1 1 1 1 1

*Z = (Z_g *V + Z_L *L), where V and L are mole fractions of vapor and liquid at each stage (i,e., after displacing the excess gas to achieve constant volume)

Figura 3-17 Resultados de una prueba de agotamiento a volumen constante (CVD)

3.7 Prueba de separador en laboratorio

Mediante la prueba de separadores en laboratorio, se busca simular las condiciones óptimas de producción, desde las condiciones del yacimiento, hasta condiciones de separador. Una muestra de fluido representativo de yacimiento, es llevada y preservada a laboratorio. El procedimiento se explica detalladamente a continuación:

Antes de iniciar esta prueba, se debe determinar, la temperatura y las diferentes presiones de trabajo en el separador, las cuales son definidas utilizando la información proporcionada de campo (McCain, 1990)

- a) La mezcla de fluidos del yacimiento se coloca en una celda PVT de análisis y es acondicionada a la temperatura del yacimiento T, y a la presión de burbuja p_b .
- b) El líquido y gas es extraído de la celda generalmente en dos etapas de separación.
- c) Las condiciones de p y T, representadas por el tanque de almacenamiento es una etapa de separación, sí este tiene una presión menor al separador.
- d) La presión de la celda se mantiene constante al punto de burbuja por la reducción del volumen de la celda, mientras el gas es expulsado.

- e) La temperatura del separador de laboratorio y el tanque de almacenamiento usualmente son ajustados para representar las condiciones promedio en el campo.
- f) El tanque de almacenamiento se encuentra siempre a presión atmosférica.
- g) La presión en el separador es seleccionada por el operador.

Figura 3-18 Procedimiento para la prueba de separador en laboratorio

Mediante esta prueba se pueden medir principalmente las siguientes propiedades:

- ✓ Factor de volumen de formación de aceite, B_b
- ✓ Relación gas aceite, *RGA*
- ✓ Relación de solubilidad, R_s
- ✓ Gravedad, API
- ✓ Composición del gas y aceite extraídos

$$B_{oSb} = \frac{Volumen \ de \ líquido \ extraído \ de \ la \ celda}{Volumen \ de \ líquido \ que \ llega \ al \ tanque \ de \ almacenamiento}$$
(3.16)
$$R_{sSb} = \frac{Volumen \ de \ gas \ en \ el \ separador + volumen \ de \ gas \ en \ el \ tanque}{volumen \ de \ líquido \ en \ el \ tanque}$$
(3.17)

Ya con los datos proporcionados de esta prueba, se puede identificar las condiciones óptimas de separación. La presión óptima de separación, corresponde a la que se obtiene una gravedad API máxima, una relación gas-aceite (GOR), y un factor de volumen de formación del aceite B_o , mínimo, como se muestra en la *Figura 3-19*. La distribución de los componentes entre el gas producido y el aceite del tanque de reserva depende del número de etapas de separación y de la presión y la temperatura de los separadores. La disposición óptima es la que produce más aceite de tanque de reserva, teniendo en cuenta también otros criterios económicos. (Tarek Ahmed, 2007)

Figura 3-19 Consideraciones para determinar la presión óptima de separación

Los resultados obtenidos en él informen PVT se muestra generalmente de la siguiente manera:

Presion de	separador	Gas/oil Ratio	Gas/oil Ratio	Stock Tank Gravity %PI	Formation Volumen Factor	Separator Volumen Factor	Specific Gravity of
		(1)	(2)	@60%F	(3)	(3)	Flashed Gas
psig	bar	SCF/bbl	SCF/STB		vol/vol	vol/vol	
50	4.45	715	737			1.031	0.84
to							
0	0	41	41	40.5	1.481	1.007	1.338
100	7.9	637	676			1.062	0.786
to							
0	0	91	92	40.7	1.474	1.007	1.363
200	14.8	542	602			1.112	0.732
to		0					
0	0	177	178	40.4	1.483	1.007	1.329
300	21.7	478	549			1.148	0.704
to							
0	0	245	246	40.1	1.495	1.007	1.286
) Gas/Oil) Gas/Oil) Formation) Separation	Ratio in cubie Ratio in cubie on Volume Fa or Oil Volume	c feet of gas c feet of gas actor is barr e Factor is b	@ 60ºF and @60ºF and els of satura arrel of oil @	d 14.65 psia pe 14.65 psia per ted oil @ 2620) indicated pres	r barrel of oil @ inc barrel of stock tar psig and 220°F pe ssure and tempera	licated pressure and hk oil @ 60ºF. r barrel of stock tan ture per barrel of sto	d temperature. k oil @60ºF. ock tank oil @ 6

Figura 3-20 Resultados de la prueba de separación en laboratorio

El aceite del tanque de reserva generalmente contiene sólo un rastro de metano y una cantidad insignificante de etano, independientemente de las condiciones de separación. La concentración de C_7^+ en la fase gaseosa es muy pequeña en la mayoría de los casos. Es la distribución relativa de las fracciones intermedias entre las fases la que determina las condiciones de separación óptimas.

3.8 Pruebas no convencionales

Las pruebas de laboratorio no convencionales, fungen un papel importante, ya que estas pruebas son muy específicas, y atacan problemas muy detallados, que regularmente son enfocados a la recuperación primaria, secundaria y mejorada de yacimientos, a continuación, se mencionan algunas.

3.8.1 Pruebas de hinchamiento

Las pruebas de hinchamiento, se llevan a cabo a muestras de aceite, con el propósito de observar como es el comportamiento, a partir de una inyección de gas. El procedimiento consiste en condicionar una muestra de aceite en una celda PVT, y por otro lado una muestra de gas de inyección. Ya acondicionadas, se transfiere una cantidad molar conocida del gas de inyección a la celda donde se encuentra el aceite. Se aumenta la presión de la celda de tal forma, que se asegurar que todo el gas se inyecto, se disuelva totalmente en el aceite. (Schou Pedersen, L. Christensen, & Azeem Shaikh, 2015)

Figura 3-21 Prueba de hinchamiento

Ya disuelto todo el gas inyectado en el aceite, se reduce un poco la presión, para tener registro de la presión de saturación, además de el volumen al cual el aceite se hincho, y se toma un registro. Este proceso se repite en una serie de etapas como se muestra en la *Figura 3-21*.

Esta prueba de hinchamiento proporciona información sobre el aumento de volumen (comportamiento de hinchamiento) como resultado de la cantidad de gas inyectado además indica que tanta presión extra se necesita para disolver una cantidad de gas inyectado. El incremento del volumen y la presión de saturación son factores clave para determinar si la inyección del gas tendrá un efecto de recuperación mejorada y secundaria dentro del yacimiento. Hoy en día, la inyección del gas normalmente significa una inyección de CO_2 lo cual implica una manera de evitar la liberación del CO_2 a la atmosfera y aprovechar este gas en mejorar la recuperación del aceite.

3.8.2 Experimento de tubo capilar

Con el propósito de aumentar la producción del yacimiento, es muy común que se implemente la inyección de un gas, estos pueden ser desde vapor de agua hasta CO_2 . El propósito de esta prueba es buscar la presión mínima de miscibilidad o una miscibilidad apropiada para que, en un proceso de recuperación mejorada, esta actúe bajando la

viscosidad del fluido (la miscibilidad permite un mayor desplazamiento del fluido en el yacimiento) y la producción aumente de manera eficiente.

Estos parámetros de miscibilidad pueden ser determinados mediante la prueba de tubo capilar la cual consiste en el siguiente procedimiento. (Schou Pedersen, L. Christensen, & Azeem Shaikh, 2015)

Dos cilindros, que contienen aceite y gas respectivamente, alimentan a un tubo muy delgado (capilar), y mediante una bomba, primero se llena en su totalidad el capilar de aceite, a lo cual se le tomara el volumen que ocupa dentro del tubo, estos se acondicionan de tal forma que la presión y la temperatura se mantienen constantes.

Después de estar estabilizado el sistema, se hace fluir el gas de manera forzada a través del tubo, con el propósito de estimular el desplazamiento del aceite. Al fluido que es producido, se le puede observar a por medio de un vidrio especial. Con ayuda de un separador flash se pueden determinar las cantidades de aceite y gas producidos.

La primicia de esta prueba es que, la recuperación se define como la relación del aceite producido sobre el volumen que alimenta al tubo, por lo cual se puede determinar si el aceite y el gas son miscibles por medio de las siguientes consideraciones.

- ✓ Si la recuperación es al menos 90 %, se dice que el aceite y el gas son miscibles, por lo que la secuencia se repite a muchas otras presiones, y la recuperación se registra para cada presión.
- La menor presión a la cual la recuperación es del 90% se define como la presión de mínima miscibilidad del sistema gas- aceite actual.

Figura 3-22 Prueba de tubo capilar

Capítulo 4 Metodología de validación PVT

La validación de los datos de un PVT debe ser parte fundamental del estudio de las propiedades de los fluidos, puesto que, gracias a estas se pueden realizar una diversidad muy grande de cálculos, en lo cual radica la importancia de obtener datos lo más confiable posible. La calidad de los datos PVT debe ser primordial y para asegurar de que así sea, se debe de implementar una metodología para verificar que los datos medidos y analizados sean consistentes.

La validación de los datos PVT consiste en comparar los datos medidos experimentalmente en las pruebas de laboratorio, con los datos recreados del mismo experimento por medio de ecuaciones conocidas o correlaciones empíricas. La finalidad de esto es que la diferencia entre estos datos sea mínima o que el porcentaje de error sea mínimo.

El método de validación de los datos PVT tiene apertura en la verificación del tipo de fluido con el que se está trabajando, de manera que se tiene que comprobar mediante los métodos de clasificación mencionados en este trabajo, que los parámetros de clasificación, ajusten al fluido mencionado en el reporte PVT. Ya identificado el fluido se implementa la siguiente metodología de validación.

Aceite Negro	Aceite Volátil	Gas y condensado
Corrección B _o	Validación por Bashbush (SPE 10127)	Validación por Bashbush (SPE 10127)
Corrección R _s	Validación por Whitson (SPE 10067)	Validación por Whitson (SPE 10067)
Validación por el método de la función "Y"	Validación por Hoffmann- Crump-Hocott (SPE 219)	Validación por Hoffmann- Crump-Hocott (SPE 219)
Validación por la prueba de densidad		Validación del PMLR (SPE 158494)
Validación de la prueba de Liberación Diferencial por Balance de Masas		
Validación por la prueba de desigualdad		

4.1 Validación para muestras de aceite negro 4.1.1 Corrección de B_o y R_s

Una corrección para los datos de la prueba de separación diferencial más reciente es propuesta por A. Al-Marhoun, (2001), anteriormente existían correlaciones propuestas que estiman valores negativos de R_s y valores por debajo de uno para el B_o al extrapolar a las condiciones de superficie, debido a esto Muhammad propone una nueva aproximación al ajuste de los datos del experimento de separación diferencial a condiciones de separador.

Esta corrección se basa en el hecho de que tanto los datos de la prueba de separación diferencial como la prueba de separación flash, debe dar el mismo valor de densidad relativa del aceite a condiciones de yacimiento.

$$R_{si} = R_{sdi} \left(\frac{R_{sbf}}{R_{sbd}}\right) \tag{4.1}$$

$$B_{oi} = B_{obf} + C_i (B_{odn} - B_{obf})$$

$$(4.2)$$

$$C_i = (B_{obd} - B_{odi}) / (B_{obd} - B_{odn})$$
(4.3)

4.1.2 Función Y

La presión de burbuja, p_b es el resultado más importante de la prueba de expansión a composición constante (prueba flash), y su medición es más precisa en tanto que mayor sea el contraste entre las compresibilidades del flujo bajo saturado y el saturado, el cual se ve reflejado en los cambios de volumen que sufre la muestra de aceite, con forme transcurre la prueba.

La función "Y" se define mediante la siguiente expresión:

$$Y = \frac{p_b - p}{p\left[\left(\frac{V_t}{V_b}\right) - 1\right]}, \ \left(\frac{V_t}{V_b}\right) = V_r \tag{4.4}$$

La validación se realiza graficando la función "*Y*" con respecto a la presión en cada etapa de separación del experimento de liberación instantánea y determinando la mejor recta con mínimos cuadrados. Si el gráfico obtenido presenta un comportamiento lineal, la prueba es válida.

En caso contrario, se considera que el análisis es inconsistente; si la curva no presenta una desviación severa, ésta se puede modificar para hacerla rectilínea y obtener la presión de burbuja corregida.

De manera que se sigue el siguiente procedimiento.

a) Con los datos de la prueba de liberación flash, se grafican, los valores de volumen relativo (V_r) vs la presión para cada etapa (p).

- b) De este gráfico de (V_r) vs (p), se ubica el quiebre o cambio de pendientes, el quiebre representa la presión de burbuja.
- c) Con los datos de volumen relativo y presión de burbuja, sustituimos en la función "Y".
- d) Se grafican los valores de Función "Y" para cada dato de presión de cada etapa, con estos datos, y con el método de mínimos cuadrados, se linealizan los puntos, de tal manera que se obtiene una ecuación de línea recta de la forma.

$$y = mx + b \to Y' = (m)(p[psia]) + Y_{p=0}$$
 (4.5)

e) Sustituimos valores de presión en la función "Y" suavizada, de tal forma que se considera lo siguiente:

$$Y' = Y = \frac{p_b - p}{p\left[\left(\frac{V_t}{V_b}\right) - 1\right]} \tag{4.6}$$

 f) Finalmente se realiza la corrección de los siguientes parámetros para cada etapa de la prueba, ajustando los valores por medio de un promedio aritmético.

$$p_{bcorregida} = \left[Y'(p(V_r - 1))\right] + p \tag{4.7}$$

$$V_{rcorregido} = \left[\frac{p_b - p}{Y'p}\right] + 1 \tag{4.8}$$

4.1.3 Validación por prueba de densidad

Esta prueba consiste en comparar, la densidad del aceite saturado con gas a la presión de burbuja durante la prueba de liberación diferencial, sea igual a la calculada a partir de los datos obtenidos a condiciones de separación. El cálculo de la densidad a la presión de burbuja de la prueba de separador, se realizará mediante la siguiente expresión:

Se parte del concepto de densidad:

$$\rho = \frac{masa}{volumen}$$

$$\rho_o(p_b) = \frac{(masa \ de \ aceite)_{tanque} + (masa \ de \ gas)_{separador} + (masa \ de \ gas)_{tanque}}{Unidad \ de \ volumen \ de \ aceite \ @p_b} \tag{4.9}$$

Por lo que se puede expresar de la siguiente manera:

$$\rho_o(p_b) \left[\frac{g}{cm^3}\right] = \frac{\gamma_o \rho_w}{B_{oSb}} + \left[\left(\frac{0.0763277}{B_{oSb}}\right) \left(\left(\gamma_g R_s\right)_{sep} + \left(\gamma_g R_s\right)_{tan} \right) (0.0028557) \right] \quad (4.10)$$

Esta prueba se considera consistente cuando la diferencia entre la densidad del aceite en el punto de burbuja (dato de la prueba de separación diferencial), y la densidad del aceite en el punto de burbuja calculada de la prueba de separador en laboratorio, sea menor al 5 %.

4.1.4 Validación de la prueba DL por Balance de Masas

La prueba de liberación diferencial, puede ser validada recalculando los valores de R_s , en función del B_o , ρ_o , γ_g , y comparándolos con los valores medidos. Los cálculos consisten en un balance de masas del gas, realizado entre cada etapa de separación sucesiva de la prueba. Para el cálculo de la R_s se inicia de la presión más baja, de la última etapa de expansión, es decir, desde la presión y temperatura atmosférica y finaliza hasta la presión de burbuja y temperatura de yacimiento.

Para el cálculo de las masas, se toma como referencia 1 litro de aceite residual a condiciones atmosféricas de 60 °F y 14.7 psia, se tiene la siguiente expresión:

$$m_{o1} = \rho_o 1000 cm^3 \tag{4.11}$$

$$m_{o1} = (\gamma_o \ \rho_w) 1000 \ cm^3 \tag{4.12}$$

También a condiciones atmosféricas se considera lo siguiente.

$$m_{g1} = 0$$
 $V_{g1} = 0$ $R_{s1} = 0$

Al pasar a la primera etapa de la prueba de liberación diferencial, se hace un cambio de temperatura a condiciones de yacimiento. Lo cual implica calcular lo siguiente:

Para calcular la masa del aceite, considerando una referencia de 1 litro, se puede obtener de la siguiente manera:

$$m_{oi} = (B_{odi} \,\rho_{odi}) \,*\, 1000 \, cm^3 \tag{4.13}$$

Considerando un balance de masas, la masa de gas a estas condiciones es igual a la diferencia entre las masas del aceite a la presión correspondiente a la etapa en curso "i" menos la masa del aceite a la presión correspondiente a la etapa"i - 1". La masa se calcula mediante la siguiente expresión:

$$m_{gi}[g] = m_{oi}[g] - m_{oi-1}[g]$$
(4.14)

Ya con la masa del gas obtenida, se calcula el volumen del gas,

$$V_{gi} = \frac{m_{gi}}{\gamma_{gi}(\rho_{aire})_{1000}}$$
(4.15)

Finalmente se recalculan las relaciones de solubilidad, con lo siguiente expresión:

$$R_{si}[STF/STB] = (R_{si-1} + V_{qi})[L](5.615)$$
(4.16)

4.1.5 Validación por la prueba de desigualdad

La prueba de desigualdad consiste en que se cumpla la desigualdad entre la derivada parcial del factor volumétrico obtenido con respecto a la presión sea menor al producto del factor volumétrico del gas por derivada parcial de la relación de solubilidad respecto a la presión y esta condición se debe cumplir cuando la caída de presión en cada intervalo es positiva, es decir:

$$\frac{\partial B_{od}}{\partial p} < B_{gd} \frac{\partial R_{sd}}{\partial p} \tag{4.17}$$

4.2 Validación para muestras de aceite volátil y gas y condenado

Para la validación de muestras de aceite volátil y gas y condensado, debido a que son fluidos cercanos al punto crítico, además de que muestran un comportamiento retrógrado, se implementan los mismos métodos de validación, salvo algunos métodos adicionales para gas y condensad, las cuales se muestran a continuación:

4.2.1 Método de validación Whitson-Torp por balance de materia

El método de validación de Whitson-Torp, está basado en realizar un balance de materia, con los datos obtenidos de la prueba de agotamiento a volumen contante (CVD). De manera general se comienza por definir un volumen de hidrocarburos que ocuparía 1 mol a la presión de saturación (presión de burbuja para aceite volátil y presión de roció para gas y condensado) del fluido de estudio. Para gas y condensado se utiliza la ley general de los gases y para aceite volátil se requiere conocer el peso molecular y la densidad del aceite a la presión de burbuja. (Whitson & Torp, 1981)

Esta metodología utiliza información contenida de los análisis composicionales del gas obtenidos en cada etapa de separación de las pruebas. De esta manera, al comparar los datos medidos con los calculados y observar qué tanto difieren unos de otros, se puede determinar la consistencia de estos análisis.

Con esta prueba se pueden obtener y comparar: Composición del líquido, las constantes de equilibrio, densidad del líquido y masa molecular de la fracción C_7^+ del líquido, en cada etapa de separación

Este proceso parte del siguiente balance de materia, desarrollado en moles totales y componentes individuales dado por la siguiente expresión:

$$n_{Ti} = n_{Li} + n_{Vi} \tag{4.18}$$

Expresado en término de las fracciones de cada componente:

$$n_{T(i)}(z_{ij}) = n_{Li}(x_{ij}) + n_{Vi}(y_{ij})$$
(4.19)

76

Este procedimiento se rige mediante dos consideraciones importantes:

- 1. Se tiene un mol de fluido original, esto es a presión de saturación (primera etapa reportada en el CVD).
- 2. El gas presente en la celda se comporta como un gas real (en cada etapa de separación).

Tomando estas consideraciones, se pueden obtener las moles de gas remanentes durante cada etapa de la siguiente forma:

$$n_{Ti} = 1 - \sum_{i=2}^{k} (\Delta n_{pi}) \tag{4.20}$$

Similarmente la fracción molar de los componentes j remanentes en la celda después de cada etapa, será:

$$n_{Ti}(Z_{(ij)}) = Z_{(1,j)} - \sum_{i=2}^{k} (\Delta n_{pi})(y_{ij})$$
(4.21)

Para convertir las moles a volúmenes, se debe tener un volumen de referencia, que, en este caso, será el volumen representativo a al volumen de la celda. Según el tipo de fluido que se está estudiando, el volumen de la celda, se recomienda calcularlo de la siguiente manera:

 Para gas y condensado el volumen representativo de la celda para un mol, se calcula mediante la siguiente expresión:

$$V_{cel} = \frac{(z)nRT}{p_1} \tag{4.22}$$

Donde:

 \checkmark n \rightarrow moles en la celda, para las condiciones iniciales se considera 1 lbm – mol

 Para aceites volátiles, en la prueba CVD se proporciona el peso molecular y la densidad del líquido a la presión de burbujeo por tanto el volumen de la celda, para un mol será calculado con:

$$V_{cel} = \frac{M_L}{\rho_L} \tag{4.23}$$

Donde:

 \checkmark M_L es igual a la masa molecular del aceite a p_b , ya que se trata de 1 mol de fluido original. Se puede calcular utilizando la regla de mezcla Kay, puesto que se trata de una mezcla de una gama de componentes:

$$M_L = \sum_{i=1} z_i M_i \tag{4.24}$$

Ya calculado el volumen representativo de le celda, V_{cel} , se procede a calcular el volumen del líquido ocupado en la celda, de manera que:

$$V_{Li} = V_{cel} S_{Li} \tag{4.25}$$

Y por tanto el volumen del gas ocupado en la celda se calcula como:

$$V_{Vi} = V_{cel}(1 - S_{Li}) \tag{4.26}$$

Para obtener la cantidad de moles de gas (remanentes), se utiliza la ley de los gases reales

$$n_{\nu i} = \frac{p_i V_{V i}}{z_i R T} \tag{4.27}$$

Por tanto, la composición del líquido remanente en la celda en cada etapa, se da mediante la siguiente expresión.

$$x_{ij} = \frac{(n_{Ti}z_{ij}) - (n_{Vi}y_{ij})}{n_{Ti} - n_{Vi}}$$
(4.28)

De manera que:

$$x_{ij} = \frac{(z_{ij} - \sum_{j=2}^{n} \Delta n_{pi} y_{ij}) - ((n_{Vi} y_{ij}))}{n_{Ti} - n_{Vi}}$$
(4.29)

Finalmente, se obtienen las constantes de equilibrio K

$$K_{ij} = \frac{y_{ij}}{x_{ij}} \tag{4.30}$$

Adicionalmente se hacen los cálculos para recalcular la densidad del aceite y compararla con los datos medidos. Para volver a calcular la densidad del aceite, se siguen los siguientes pasos:

Para calcular la masa de vapor extraídas se tiene la siguiente expresión:

$$m_{\nu p} = \Delta n_{pi} M_{\nu p} \tag{4.31}$$

En seguida se obtiene la masa total que se encuentra en la celda, m_{tcel} , referida a la mezcla de gas y líquidos.

$$m_{tcel} = (m_{tcel})_{i-1} - (m_{vp})_i \tag{4.32}$$

Por lo que las pasas del vapor y del líquido en la celda se dan a continuación

$$(m_{\nu})_{i} = (M_{\nu pi}) * (n_{\nu i})$$
(4.33)

$$(m_L)_i = m_{tceli} - m_{vi} \tag{4.34}$$

Obteniendo finalmente la densidad de líquido y vapor en la celda

$$(\rho_L)_i = \frac{(m_L)_i}{V_{Lj}}$$
(4.35)

$$(\rho_{\nu})_{i} = \frac{(m_{\nu})_{i}}{V_{Vi}} \tag{4.36}$$

4.2.2 Validación de balance molar por método de Bashbush

El método más completo para corregir los errores experimentales. Consiste básicamente en utilizar información obtenida en el experimento de agotamiento a volumen constante (CVD) y efectuar un balance molar para cuantificar las moles de gas extraído, de gas en la celda y de líquido en cada etapa del experimento. (Bashbush, 1981)

Este método consiste en la aplicación de un balance molar, al fluido original presente a condiciones de la presión de saturación (presión de burbuja o presión de roció). El objetivo es obtener la composición del gas obtenido en laboratorio para calcular los valores de K, incluyendo los componentes no hidrocarburos.

Para verificar la consistencia del experimento de laboratorio se utiliza una gráfica de valore de K_i contra la presión de las etapas de separación; si se presentan deformación o inflexiones bruscas en las curvas obtenidas para casa componente, es indicativo de que existen errores experimentales, para lo cual se deben corregir las composiciones registradas de laboratorio hasta lograr obtener curvas suaves y sin inflexiones.

Otra manera de verificar la exactitud del experimento PVT es a través de la comparación de la composición del líquido calculada mediante la técnica de balance molar con la obtenida en la última etapa del CVD; el error debe ser mínimo.

La información que se requiere, se toma de igual forma que en el método de Whitson y es la siguiente:

- 1. Composición inicial del fluido a la presión de saturación.
- 2. Composición del gas desplazado durante cada decremento de presión.
- 3. Factor de desviación del gas.
- 4. Cantidad del gas desplazado en cada paso.
- 5. Volumen de la fase líquida en la celda PVT.
- Para aceites volátiles también es necesario conocer el peso molecular del fluido, así como su densidad a la presión de burbujeo

El procedimiento está dividido en ocho pasos:

- 1. En el primer paso el número total de moles en el sistema N_T , es obtenido en función del volumen de la celda en la primera etapa de separación V_1 .
- ✓ Para aceites volátiles es necesario conocer la densidad en el punto de burbuja, además del peso molecular aparente de la mezcla original del yacimiento.
- Para gas y condenados, la presión de rocío y el factor de desviación, son suficientes puesto que se puede aplicar la ley de los gases reales

De manera que:

$$N_T = \frac{p_D}{10.732 \, (z_D)(T_r)} \tag{4.37}$$

 Cálculo para el número de moles de fluido remanentes en la celda en la etapa j de agotamiento:

$$N_i = (N_T) \left(\frac{1 - WSP_i}{100}\right) \tag{4.38}$$

3. Para el cálculo de las moles de gas, moles de líquido y factor de desviación z de dos fases, se tienen las siguientes expresiones:

$$(N_g)_i = \frac{p_i(1 - RVL/100)}{10.732(z_i)(T_R)}$$
(4.39)

$$(N_L)_i = N_i - (N_g)_i \tag{4.40}$$

$$(z_{2pc})_i = \frac{p_i}{10.732(N_i)(T_R)} \tag{4.41}$$

4. Numero de moles retirados en la etapa j del agotamiento

$$S_i = \frac{WSP_i - WSP_{i-1}}{100} \tag{4.42}$$

5. Balance de materia para el componente i en la etapa j de agotamiento

$$(y_1)_j N_T = (y_i)_j (N_g)_i + (x_i)_j (N_L)_i + (y_i)_j S_i$$
(4.43)

$$(x_i)_j = \frac{(y_1)_j N_T - (y_i)_j [(N_g)_i + S_i]}{(N_L)_i}$$
(4.44)

6. Finalmente se calcula la relación de equilibrio:

$$K_i = \frac{y_{ij}}{x_{ij}} \tag{4.45}$$

- 7. Extrapolación de las curvas de las constantes de equilibrio K
- 8. Balance de materia para obtener el peso molecular del líquido y el peso molecular de la fracción pesada C_{7^+} , en el líquido.

4.2.3 Validación por Hoffmann-Crump-Hocott

El método de Hoffmann-Crump consiste en determinar un Factor de Caracterización "*B*", que está en función de las Temperaturas Críticas de los componentes $C_1 a C_6$. Este factor al ser graficado por el producto de las constantes de equilibrio *K* con la presión en cada etapa de separación. De manera que se tendrá un gráfico $\log(Kp) vs b\left(\frac{1}{T_B}\right) - \left(\frac{1}{T}\right)$. (Hoffmann, Hocott, & Crump, 1953)

$$logKp = f\left[b\left(\frac{1}{T_B}\right) - \frac{1}{T}\right]$$
(4.46)

Donde:

$$b = \frac{\log(pc/14.7)}{\frac{1}{T_B} - \frac{1}{T_C}}$$
(4.47)

A una presión dada los puntos de log Kp vs F, correspondientes a varios componentes, deben alinearse a través de una recta. Así al aplicar este criterio a la prueba CVD se debe obtener un número de rectas igual al número de etapas de agotamientos y al aplicarlo al separador se obtiene una sola.

Se debe tomar en cuenta que las dispersiones de los puntos muestran malas mediciones y/o deficiencias en el equilibrio termodinámico entre las fases. Alta dispersión de los puntos muestra inconsistencia de los resultados.

4.2.4 Máxima condensación retrógrada

La validación de la máxima condensación retrógrada, se basa en una correlación que puede ser empleada para validad o predecir el porcentaje máximo de líquido retrógrado para cualquier yacimiento de gas y condensado, la cual está fundamentada en el análisis de la relación que existe el peso molecular de la mezcla original y la RGA, este análisis a partir de más de 50 estudios PVT.

La metodología propuesta puede corregir la curva completa de la propiedad de líquido retrógrado a partir de MRC calculado. Adicionalmente se establecieron rangos de la RGA y el peso molecular promedio (PMP) que permiten realizar una validación inicial con lo cual se puede identificar si existen inconsistencias en la propiedad de líquido retrógrado. (Paredes, Pérez, & Larez, 2012)

Para el cálculo de la Máxima Condensación Retrógrada (MRC) se tiene la siguiente expresión:

$$MRC = -32.34 + 1.541(PMP) + 0.0001045(RGA)$$
(4.48)

Para calcular la validación de la curva completa se necesita hacer lo siguiente:

- 1. Se ubica el máximo porcentaje de líquido reportado en el estudio PVT.
- 2. Se calcula un porcentaje de error entre el máximo porcentaje de líquido y el porcentaje de líquido de cada etapa de presión reportada en el estudio PVT.
- Para validar la curva de porcentaje de líquido de cada etapa de presión, se calcula el MRC, con el correspondiente porcentaje de error calculado previamente,
- 4. Se comparan las curvas de porcentaje de líquido reportados, y los porcentajes recalculados a partir del MRC.

Capítulo 5 Programa de Cálculo

Con el propósito de automatizar los cálculos y tener de manera organizada los datos de los diversos estudios PVT, se creó un programa de cálculo, con el cual, a partir de datos de entrada, que son los datos de las diferentes pruebas de laboratorio antes mencionadas, y mediante la metodología propuesta, se pueden hacer pruebas de validación PVT.

Este programa de cálculo tiene como objetivo, que el analista, tenga una herramienta con la cual, de manera óptima y rápida, tenga un análisis consistente de los estudios de laboratorio, para posteriormente, hacer cálculos de ingeniería de yacimientos, con toda la confianza y certidumbre.

Excel es un programa desarrollado por Microsoft y forma parte de Office que es una suite informática la cual incluye otros programas como Word y PowerPoint. Excel se distingue de los demás programas porque permite trabajar con datos numéricos, es decir, realizar cálculos, crear tablas o gráficos y también analizar los datos con herramientas tan avanzadas como las tablas dinámicas.

Figura 5-1 Paquetería de cómputo utilizada para el desarrollo de este trabajo

Para la automatización de los datos, se utilizó la herramienta de programación que ofrece Excel, que son las macros, las cuales, para este trabajo, fueron de mucha ayuda, además de la versatilidad que éstas ofrecen, a lo largo del ámbito laboral y estudiantil, aunado a la disponibilidad con la que se puede obtener.

De esta manera se realizaron tres interfaces para el estudio y validación de muestras de fluido correspondientes a aceite negro aceite volátil, y gas y condensado.

5.1 Programa de cálculo para muestras de aceite negro

La *Figura 5-2* muestra la pantalla principal, del programa de validación para muestras de aceite negro, en la cual se pondrán los datos de entrada correspondientes a las principales pruebas a las que se someten estas muestras.

Figura 5-2 Interfaz general del programa para validación de Aceite Negro

En esta parte de la hoja de entrada, se colocan los datos generales, que se encuentran en la hoja de resumen del reporte PVT. Estos datos corresponden a la fecha del análisis, el nombre del campo, así como el del pozo. Además, la densidad °API y la RGA del aceite residual, la temperatura de yacimiento y la presión de burbuja.

Figura 5-3 Entrada de datos generales

De manera similar en la *Figura 5-4* se muestra la sección, en donde se deberán ingresar los datos de las pruebas de análisis composicional de la mezcla original, y de la prueba de liberación instantánea (prueba flash). Con estos datos, se podrán hacer las validaciones para la clasificación del tipo de fluido y la prueba de validación por medio de la función "*Y*".

Figura 5-4 Entrada de datos de composición original y prueba de liberación instantánea

En esta sección se tendrán que registrar los datos correspondientes a las pruebas de separación diferencial y las pruebas de separación en laboratorio (separación óptima). Estos datos serán de importancia para las pruebas restantes correspondientes a la validación de muestras de aceite negro.

Figura 5-5 Entrada de datos de la prueba de liberación diferencial y prueba de separación en laboratorio

La hoja de entrada de datos, cuenta con botones para cada prueba en específico, además de un botón para realizar un análisis completo. Realizado el análisis, se desplegará una hoja de resultados, con el análisis de la prueba correspondiente, esta hoja se mostrará más adelante, en el capítulo siguiente.

Figura 5-6 Botones que ejecutan la validación automatizada

5.2 Programa de cálculo para muestras de aceite volátil

En la *Figura 5-7* se muestra la interfaz principal del programa de cálculo para la validación de las pruebas de laboratorio correspondientes a las muestras de aceite volátil. En los espacios en blanco será donde se depositará la información correspondiente a cada prueba. A continuación, se explican cómo está compuesta.

Figura 5-7 Interfaz general del programa para validación de Aceite Volátil

Figura 5-8 Entrada de datos generales y análisis composicional

En la *Figura 5-8* se muestra una parte de datos de entrada, se piden datos específicos como lo son la fecha del análisis, el nombre del pozo, presión de saturación, la densidad del aceite a condiciones de presión de saturación, temperatura de yacimiento y la constante universal de los gases. También se piden ingresar los datos del análisis composicional de la mezcla original del fluido del yacimiento.

En la *Figura 5-9*, se muestra la parte de la interfaz donde se deberán colocar los datos referentes a la prueba d laboratorio de agotamiento a volumen constante (CVD), las cuales constan de la composición del fluido original, y para cada etapa de presión, la composición del gas liberado. Además, para cada etapa de agotamiento, se deben registrar más propiedades medidas en el reporte PVT como lo son peso molecular de la fracción pesada, factor de compresibilidad z, moles de vapor producidas, saturación de líquido y densidad de líquido.

Figura 5-9 Entrada de datos de la prueba de agotamiento a volumen constante

Finalmente, para ejecutar el programa, se muestran los siguientes botones, los cuales inician el procedimiento de validación, con el respectivo método empleado, de tal forma que se ejecuta por partes la metodología completa, aplicada para las muestras de aceite volátil. Una vez ejecutados todos los botones, los resultados aparecerán en una hoja aparte

en donde se el analista podrá comparar los datos y definir si los datos de laboratorio son válidos o no.

Figura 5-10 Botones para ejecutar la validación para Aceite Volátil

5.3 Programa de cálculo para muestras de gas y condensado

La interfaz de datos de entrada es la que se muestra a continuación en la siguiente imagen. A continuación, se explican detalladamente:

Figura 5-11 Interfaz general de entrada de datos para la validación correspondiente a gas y condenado

En esta parte, se ingresan datos específicos, que regularmente se encuentran en la hoja de resumen de los reportes PVT, estos abarcan datos como la RGA, presión de saturación,

°API, entre otras. Además, se debe registrar el análisis composicional de la mezcla original del fluido muestreado.

Figura 5-12 Entrada de datos generales y de análisis composicional

En esta parte de la interfaz de entrada, se transcriben los datos del experimento de agotamiento a volumen constante, claramente la muestra inicial, para este experimento, comienza con un gas, más adelante se mostrará un ejemplo donde se pondrá énfasis en la muestra original de las muestras.

Figura 5-13 Entrada de datos de la prueba de agotamiento a volumen constante

Finalmente se muestran los botones con los cuales se podrá dar inicio a la validación, con el respectivo método a datos referidos a gas y condensado, de manera que se generarán los resultados correspondientes en una hoja, en donde el analista podrá interpretar y podrá justificar que los datos son válidos o contienen alguna irregularidad.

Figura 5-14 Botones para ejecutar la validación para gas y condensado

Cabe mencionar, que cada procedimiento, cuenta con una hoja de resultados, con la cual se presentan los datos finales de los correspondientes métodos de validación, y con los cuales

se podrá realizar un análisis detallado en función de las aproximaciones, porcentajes de error de los datos medidos y comportamientos atípicos, para finalmente justificar, si los datos son válidos o no, y así tomar decisiones importantes.
Capítulo 6 Casos sintéticos y casos reales

A continuación, se muestran los siguientes ejemplos con los cuales se pone a prueba tanto la metodología como el programa de cómputo, además se hace un análisis muy completo con el cual se podrá justificar si los datos que se muestran en los reportes PVT son confiables y válidos para posteriores cálculos en la ingeniería petrolera.

6.1 PVT pozo A-2

El siguiente caso corresponde a un reporte PVT con los siguientes datos generales.

Resumen del reporte PVT							
Campo:	A						
Pozo:	A-2						
Tipo de Muestreo:	Fondo						
Tipo de fluido:	Aceite Negro						
°API =	23.1						
Temperatura de yacimiento (°C)=	97.2						
Presión de Burbuja (kg/cm²) =	145.9						
$RGA(m^3/m^3) =$	75.2						

Figura 6-1 Resumen de los datos del reporte PVT del Pozo A-2

El análisis composicional y la prueba de liberación instantánea midió los siguientes datos:

Aná	Análisis composicional de la muestra 1.01						
	Componente	%mol					
	N ₂	0.28					
	CO ₂	1.85					
	H₂S	1.03					
	C 1	28.84					
	C ₂	8.68					
	C₃	6.22					
	i-C4	0.96					
	n-C4	3.34					
	i-C₅	1.21					
	n-C₅	1.29					
	C ₆	2.49					
	C7 ⁺	43.81					
	TOTAL	100					

Pru	ueba de liberación instantánea a de la muestra 1.0						
	p(kg/cm²)	Vol. Relativo					
	145.92	1					
	144.76	1.002					
	143.81	1.004					
	141.9	1.008					
	138.37	1.016					
	129.93	1.036					
	119.66	1.066					
	108.71	1.107					
	96.19	1.168					
	84.15	1.249					
	71.56	1.372					
	<i>58.98</i>	1.556					
	48.71	1.783					
	37.96	2.18					
	29.66	2.795					

Figura 6-2 Datos de análisis composicional y prueba de liberación instantánea

Prueba de separación diferencial de la muestra 1.01								
p(kg/cm²)	$B_o(m^3/m^3)$	$B_g(m^3/m^3)$	$R_{\rm s}(m^3/m^3)$	$\rho(g/cm^3)$	°API	γgas (aire=1)		
145.92	1.321	0	87.629	0.787		0		
136.05	1.309	0.008	82.82	0.791		0.757		
122.45	1.293	0.009	76.052	0.796		0.759		
108.84	1.277	0.01	69.818	0.801		0.765		
95.24	1.262	0.012	63.584	0.806		0.767		
81.63	1.247	0.014	57.529	0.811		0.775		
68.03	1.23	0.017	50.048	0.817		0.787		
54.42	1.215	0.021	44.349	0.822		0.81		
40.82	1.198	0.028	37.581	0.828		0.842		
27.21	1.18	0.043	30.278	0.834		0.911		
13.61	1.153	0.085	21.373	0.843		1.081		
1.03	1.061	0.181	0	0.874	23.1	1.727		

La Prueba de liberación diferencial, tubo el siguiente comportamiento.

Figura 6-3 Datos medidos de la prueba de liberación diferencial del pozo A-2

Y los resultados de la presión óptima de separación que se obtuvo de la prueba de separación el laboratorio fueron los siguientes:

Figura 6-4 Resultados de la prueba de separación en laboratorio del pozo A-2

Como se puede ver en los datos, este reporte PVT, corresponde a una muestra de aceite negro, de manera que se le aplicaron las pruebas de análisis composicional, la prueba de

liberación instantánea, la prueba de liberación diferencial y por último la prueba de separador en laboratorio, en donde se obtuvo la presión óptima de separación. Siguiendo la metodología propuesta, se verifica la clasificación del fluido que se está estudiando. Este paso es fundamental puesto que el tipo de fluido es importante para comenzar con la validación. El procedimiento se realizará a partir de las clasificaciones abordadas en el Capítulo 2 y se explicará de manera detallada en el Anexo A.

De manera que:

Lo primero que se realiza es ajustar la hoja de datos de entrada.

Figura 6-5 Entrada de datos del PVT del pozo A-2

En esta hoja de entrada de datos, se alojarán las mediciones de las pruebas de análisis composicional, liberación instantánea, prueba de liberación diferencial y prueba de separador en laboratorio. De primera instancia se debe verificar que la suma de los porcentajes mol sea 100% y que las presiones manejadas sean absolutas, además de ingresar los datos en las unidades que se indican en la hoja de cálculo. De no ser así, los resultados serán de carácter erróneo y carente de algún tipo de interpretación.

Presionando el botón de "Clasificación" se abrirá la hoja en la cual, aparecerán las clasificaciones implementadas en este trabajo. Usando los datos registrados, y para el caso del PVT del pozo A-2 se tiene el siguiente análisis de validación por clasificación.

6.1.1 Validación por clasificación para PVT A-2

Por medio de la clasificación de Alfredo León García (2013), se establece que para un Peso molecular aparente (M_a) de 44 g/g-mol se encuentran los fluidos denominados como críticos (aceite volátil y gas y condensado). Debajo de 44 g/g-mol es un comportamiento de gas y condensado, por encima de los 78 g/g-mol es un yacimiento de aceite negro y entre 44-78 g/g-mol los yacimientos de aceite volátil.

Para obtener el peso molecular promedio de la mezcla, se considera la siguiente expresión matemática:

$$M_{a(i,j)}[g/g - mol] = \sum_{j=1}^{j=n} (y_{(i,j)})(M_j)$$

Finalmente ejecutando el programa de cálculo, se obtuvieron los siguientes resultados presentados en la *Figura 6-6*. Resultando un peso molecular aparente de:

$$\sum_{j=1}^{j=n} (y_j)(M_j) = 155.674 \left[\frac{g}{g - mol} \right]$$

Figura 6-6 Resultados de la prueba de validación por clasificación de Alfredo León

Finalmente se puede concluir que a partir del peso molecular promedio de la mezcla y de la presión de saturación registrada y tomando como referencia los parámetros de la clasificación de Alfredo León:

$$M_a \rightarrow 155.673 (g/g - mol) > 78 (g/g - mol)$$

✓ Cumple como Aceite Negro con la clasificación de Alfredo León

Para la clasificación de Tiburcio Méndez (1979), se tomaron en cuenta los parámetros de referencia de la gráfica denominada "La Colorina" donde se grafican los % de volumen líquido (saturación de líquido) con respecto a una presión adimensional.

Para el análisis de esta validación, se ocuparon los valores volumétricos de la prueba de separación diferencial, para efectos de este procedimiento se utilizará el factor de volumen de formación del aceite B_o . De manera que, la presión de la etapa adimensional se utilizará la siguiente expresión.

$$p_{adim} = \frac{p_{etapa}}{p_{referencia}}$$

En donde la presión de referencia será la presión de burbuja que se registró en los datos de entrada. Para el porcentaje de líquido o volumen relativo que también es un coeficiente adimensional, y además es referenciado a partir de las condiciones de presión de saturación, se tiene la siguiente expresión.

%Vol. Relativo =
$$\frac{B_{o@p.yT.}}{B_{o@pb}} x100$$

En la *Figura 6-7* se muestra el resultado final de la ejecución de la hoja de cálculo para la validación de esta clasificación, como se podrá observar los porcentajes de volumen relativos son altos, lo cual representa que el encogimiento fue bajo, por ende, estos puntos de alojarían en la parte superior de la gráfica, indicador de que corresponde a un aceite negro.

✓ Cumple como Aceite Negro con la clasificación de Tiburcio Méndez

Figura 6-7 Resultados de la prueba de validación por clasificación de Tiburcio Méndez

Para los criterios de clasificación de fluidos propuesta por Rafael Pérez Herrera (2016), se necesitan los valores de RGA y las fracciones mol de los componentes de la fracción ligera y la fracción pesada (C_1 y C_7^+ respectivamente). De esta manera:

 $RGA = 75.5(m^{3}/m^{3})$ $C_{1} = 28.84\% mol$ $C_{7}^{+} = 75.2\% mol$

A partir de estos datos el análisis es el siguiente, mostrados además en la Figura 6-8:

Para clasificar como Aceite Negro en función de la fracción ligera se debe cumplir el siguiente criterio:

$$20 < RGA < 150$$

$$C_1 < 35$$

$$20 < 75.5 < 150$$

$$28.84 < 35$$

✓ Cumple como Aceite Negro con la clasificación de Rafael Pérez Herrera para componentes ligeros

Para clasificar como Aceite Negro en función de la fracción pesada se debe cumplir el siguiente criterio:

$$20 < RGA < 150$$

 $C_7^+ > 35$
 $20 < 75.5 < 150$
 $75.2 > 35$

✓ Cumple como Aceite Negro con la clasificación de Rafael Pérez Herrera para componentes pesados

Figura 6-8 Resultados de la prueba de validación por clasificación de Rafael Pérez Herrera

Debido a que las cuatro pruebas resultaron consistentes para aceite pesado, ya es seguro proceder con la metodología de validación para aceites Negros, esto implica que el analista, ya cuenta con justificación para asegurar y predecir cómo se va a comportar el fluido, en este caso Aceite Negro.

6.1.2 Corrección de B_o y R_s por método de A. Al-Marhoun (2001) para PVT A-2

Como siguiente paso, se procede a validar los datos de factor de volumen de formación del aceite B_o y los de la relación de solubilidad R_s de la prueba de liberación diferencial. Además, se necesita conocer la gravedad °API, los datos de densidad del aceite, los datos de densidad y la relativa del gas. Se seguirá el trabajo de A. Al-Marhoun (2001) y de esta manera para la corrección se tiene:

Para p = 145.92:

$$B_{oi} = B_{obf} + C_i (B_{odn} - B_{obf})$$

$$C_i = (B_{obd} - B_{odi}) / (B_{obd} - B_{odn})$$

$$C_1 = (1.321 - 1.321) / (1.321 - 1.053) = 0$$

$$B_{o1} = 1.26 + (0)(1.061 - 1.26) = 1.26(m^3/m^3)$$

$$B_{obf} = 1.26 \left(\frac{m^3}{m^3}\right) \rightarrow se \ tom6 \ de \ la \ prueba \ de \ separador$$

$$R_{si} = R_{sdi} \left(\frac{R_{sbf}}{R_{sbd}}\right)$$

$$R_{si} = 87.629 \left(\frac{75.2}{87.629}\right) = 75.2(m^3/m^3)$$

 $R_{sbf} = 75.2 \ (m^3/m^3)$ se tomó de los datos generales del PVT

Para p = 136.05:

$$C_{1} = (1.321 - 1.309)/(1.321 - 1.053) = 0.04477$$
$$B_{o1} = 1.26 + (0.04477)(1.061 - 1.26) = 1.251(m^{3}/m^{3})$$
$$R_{si} = 82.82 \left(\frac{75.2}{87.629}\right) = 71.07(m^{3}/m^{3})$$

Siguiendo este procedimiento para las siguientes etapas de presión y ejecutado en programa de cómputo se obtienen los resultados (Fig-6-9):

Figura 6-9 Validación por corrección de Bo y Rs

Como se puede apreciar el comportamiento de los valores medidos como de los calculados, tienen la misma tendencia, esto significa que los valores calculados en función de los medidos tienen un comportamiento típico descrito en la literatura (McCain, 1990), por lo cual se concluye que los datos de B_o y R_s medidos en la prueba de liberación diferencia, son válidos.

\checkmark Cumple validación por corrección de B_o y R_s por método de A. Al-Marhoun, (2001)

6.1.3 Validación por Función Y para PVT A-2

Por medio de la función Y, se puede verificar la consistencia de la prueba de liberación instantánea (flash), a partir de recalcular las presiones de burbuja, en función de una linealización de los datos calculados por la función Y. De manera que ejecutando el programa de cálculo y siguiendo la metodología mencionada en el capítulo anterior, se generaron los siguientes resultados:

Presión	Presión	Volumen	Función	Función Y	P _b	
kg/cm ²	(psia)	relativo	Y	corregida	calculada	
145.920	2074.982	1.000	0.000			
144.760	2058.487	1.002	4.007	3.670	145.823	
143.810	2044.978	1.004	3.668	3.659	145.915	Pendiente 0.0122
141.900	2017.818	1.008	3.541	3.635	146.027	
138.370	1967.621	1.016	3.410	3.592	146.323	nada al origen 1.9039
129.930	1847.604	1.036	3.419	3.489	146.252	
119.660	1701.565	1.066	3.325	3.364	146.228	Pb corregida 145.937 Kg/cm2
108.710	1545.856	1.107	3.199	3.230	146.287	
96.190	1367.822	1.168	3.077	3.078	145.925	% error -0.01145
84.150	1196.613	1.249	2.948	2.931	145.559	
71.560	1017.583	1.372	2.793	2.777	145.488	consistent
58.980	838.696	1.556	2.651	2.624	145.015	inconsiste
48.710	692.656	1.783	2.549	2.498	143.994	
37.960	539.791	2.180	2.410	2.367	143.988	-
29.660	421.765	2.795	2.184	2.266	150.290	4
						-
						-
				†		

Validación por función "Y"

Figura 6-10 Cálculos resultantes de Función Y, Función Y suavizada y Pb recalculada, generados por el programa de cálculo

Validación por función "Y"

Figura 6-11 Gráfico de Función Y y Función Y suavizada, ambas muestran un comportamiento lineal

Recordando, la Función Y está dada por la siguiente expresión:

$$\mathbf{Y} = \frac{p_b - p}{p\left[\left(\frac{V_t}{V_b}\right) - 1\right]}$$

A partir de los datos de la prueba de liberación instantánea, se calculó un valor de Función Y para cada etapa de agotamiento, los cuales se muestran en la *Figura 6-10*. Obtenidos los valores, se hizo una linealización de los puntos, de tal forma que se obtuvo una pendiente y una ordenada al origen (Figura 6-11), para poder crear una nueva ecuación linealizada de la forma y = mx + b. Este proceso se explica detalladamente a continuación:

$$P_{b}(medida) = 145.92 [kg/cm^{2}]$$

Para $p = 144.76 (kg/cm^2)$

$$Y = \frac{145.92 - 144.76}{144.76[(1.002) - 1]} = 4.006$$

Para $p = 143.81(kg/cm^2)$

$$Y = \frac{145.92 - 143.81}{143.81[(1.004) - 1]} = 3.668$$

Para $p = 141.9(kg/cm^2)$

$$Y = \frac{145.92 - 141.9}{141.9[(1.008) - 1]} = 3.541$$

El procedimiento se repite con cada una de las etapas, los resultados se graficaron contra la presión y se creó el gráfico que se muestra en el la *Figura 6-11*, posteriormente se aplicó una regresión lineal y se obtuvo lo siguiente:

Pendiente
$$m = 0.0122$$

Ordenada al origen $b = 1.9039$

Por lo que la función Y suavizada o corregida tiene la siguiente expresión:

$$y = mx + b \rightarrow Y' = (m)p[psia] + Y_{p=0}$$

 $Y' = (0.0122)p[kg/cm^{2}] + 1.9039$

Se calcularon los valores de la función Y suavizada para poder obtener la presión de burbuja asociada a la fórmula original de la función Y, y así saber si hay alguna irregularidad en la prueba. De manera que:

$$Y' = (0.0122)p[kg/cm^2] + 1.9039$$

Despejando de la ecuación de función Y original

$$p_{bcorregida} = [Y'(p(V_r - 1))] + p$$

Aplicando el procedimiento para las etapas posteriores, se recalculó la presión de burbuja y se obtuvo el porcentaje de error con respecto al valor medido de la prueba de liberación instantánea mostrados en la *Figura 6-10*.

Presion de burbuja recalculada =
$$\frac{\sum Pb \ calculadas}{\#etapas} = 145.9367 \ \frac{kg}{cm^2}$$

Y calculando el porcentaje de error del valor calculado con respecto al valor medido en la prueba de liberación diferencial se obtuvo:

$$\% Error = \left| \frac{145.92 - 145.9367}{145.92} \right| * 100 = 0.0114\%$$

Por lo que se puede concluir que los datos de la prueba de liberación instantánea son válidos, puesto que el comportamiento de la función Y es de tendencia lineal y la P_b calculada presenta un %Error del 0.0114% con respecto a la P_b medida y no rebasa el 5% que se tiene permitido.

✓ Cumple con validación por Función Y

6.1.4 Validación por Prueba de densidad para PVT A-2

Para la validación por la prueba de densidad se necesitan los datos de la prueba de separador en laboratorio y el dato de la densidad a la presión de burbuja de la prueba de separación diferencial. Parar el PVT A-2 son las siguientes:

$$\rho_{obdif} = 0.787 \ [g/cm^{3}]$$

$$^{\circ}API = 23.1$$

$$B_{obsep} = 1.26 \left[\frac{m^{3}}{m^{3}}\right]$$

$$R_{ssep} = 70.887 \left[\frac{m^{3}}{m^{3}}\right] = 398.0 [SCF/STB]$$

$$\gamma_{gsep} = 0.877$$

$$R_{stan} = 4.275 \left[\frac{m^{3}}{m^{3}}\right] = 24.0 [SCF/STB]$$

$$\gamma_{gtan} = 1.178$$

Se ejecutó el programa en función de los datos anteriores y el resultado se presenta en la siguiente Figura:

	Validación por prueba de densidad								
DATOS NECESA	ARIOS								
		PRUEBA DE SEPARACION DIFERENCIAL							
Densidad 0.787	g/cm³	Medida							
		PRUEBA DE SEPARADOR							
$ B_{ofb} = 1.260 R_s Separador 398.001 R_s Tanque 24.002 ^API (Tanque) 23.100 $	m ³ /m ³ SCF/STB SCF/STB	Yg(Sep)= 0.877 Yg(Tan)= 1.178							
		Den-ofb =277.1lb/Bl @cyDen-ofb =0.7913g/cm 3Calculada							
El porcenta,	ie de diferer	cia con respecto al valor de la prueba de liberación diferencial será:							
	%Dif =	✓ 0.548							

Figura 6-12 Datos resultantes de la validación por calcula de la densidad

El procedimiento es simplemente volver a recalcular la densidad a condiciones de presión de burbuja a partir de la siguiente expresión:

$$\rho_o(p_b) \left[\frac{g}{cm^3}\right] = \frac{\gamma_o \rho_w}{B_{oSb}} + \left[\left(\frac{0.0763277}{B_{oSb}}\right) \left(\left(\gamma_g R_s\right)_{sep} + \left(\gamma_g R_s\right)_{tan}\right) (0.0028557)\right]$$

De manera que se empieza por el cálculo de la densidad relativa del aceite

$$^{\circ}API = \frac{141.5}{\gamma_0} - 131.5$$

$$\gamma_o = \frac{141.5}{\circ API + 131.5} = \frac{141.5}{23.1 + 131.5} = 0.9152$$

Sustituyendo en la ecuación se obtuvo:

$$\rho_{o}(p_{b}) \left[\frac{g}{cm^{3}}\right] = \frac{(0.9152)(1\left[\frac{g}{cm^{3}}\right])}{1.26\left[\frac{m^{3}}{m^{3}}\right]} + \left[\left(\frac{0.0763277}{1.26\left[\frac{m^{3}}{m^{3}}\right]}\right) \left(\begin{pmatrix} 0.877\left(398\left[\frac{SCF}{STB}\right]\right) \\ + \left(1.178\left(24\left[\frac{SCF}{STB}\right]\right) \right)_{sep} \\ + \left(1.178\left(24\left[\frac{SCF}{STB}\right]\right) \right)_{tan} \end{pmatrix} (0.0028557) \right] \\\rho_{o}(p_{b}) \left[\frac{g}{cm^{3}}\right] = 0.7264 + 0.06527 \\\rho_{o}(p_{b}) = 0.7916\left[\frac{g}{cm^{3}}\right]$$

Calculando el porcentaje de error de la densidad calculada con respecto a la densidad medida se obtuvo:

$$\% Error = \left| \frac{0.787 - 0.7916}{0.787} \right| * 100 = 0.548\%$$

Con lo cual se concluye que los datos medidos en la prueba de separación en laboratorio son válidos, ya que se presenta un error muy pequeño, cuantificable en 0.548%

✓ Cumple validación por cálculo de densidad al no rebasar el 5%

6.1.5 Validación por Balance de masas

La validación por balance de masas consiste en recalcular valores de R_s y compararlos con los valores medios en la prueba de liberación diferencial. Cabe mencionar que el procedimiento comienza desde la última etapa de la prueba. Teniendo en cuenta lo anterior mencionado, se ejecutó el programa de cálculo, arrojando los siguientes resultados:

Validación por Balance de Masas

Presión (kg/cm²)	Presión (psia)	B。 (m³/m³)	B _g (m³/m³)	R _s (m³/m³)	R _s (SCF/STB)	ρ _o (g/cm ³)	Y _g (aire=1)	Masa aceite (g)	Masa gas (g)	Densida d gas (g/cm³)	Vol. Gas lib (L)	Rs (m³/m³)	R _s Calc. (SCF/STB)	% DIF
145.920	2074.982	1.321	0.000	87.629	492.000	0.787	0.000	1039.627	4.208	0.00093	4.544	87.085	488.948	0.620
136.050	1934.631	1.309	0.008	82.820	465.000	0.791	0.757	1035.419	6.191	0.00093	6.668	82.541	463.434	0.337
122.450	1741.239	1.293	0.009	76.052	427.000	0.796	0.759	1029.228	6.351	0.00094	6.787	75.873	425.993	0.236
108.840	1547.705	1.277	0.010	69.818	391.999	0.801	0.765	1022.877	5.705	0.00094	6.081	69.085	387.886	1.049
95.240	1354.313	1.262	0.012	63.584	356.998	0.806	0.767	1017.172	5.855	0.00095	6.176	63.005	353.744	0.911
81.630	1160.779	1.247	0.014	57.529	323.001	0.811	0.775	1011.317	6.407	0.00096	6.656	56.828	319.067	1.218
68.030	967.387	1.230	0.017	50.048	280.999	0.817	0.787	1004.910	6.180	0.00099	6.237	50.173	281.699	-0.249
54.420	773.852	1.215	0.021	44.349	249.001	0.822	0.810	998.730	6.786	0.00103	6.589	43.935	246.679	0.933
40.820	580.460	1.198	0.028	37.581	211.002	0.828	0.842	991.944	7.824	0.00111	7.021	37.347	209.686	0.624
27.210	386.926	1.180	0.043	30.278	169.998	0.834	0.911	984.120	12.141	0.00132	9.182	30.325	170.264	-0.156
13.610	193.534	1.153	0.085	21.373	120.000	0.843	1.081	971.979	44.665	0.00211	21.144	21.144	118.712	1.074
1.030	14.647	1.061	0.181	0.000	0.000	0.874	1.727	927.314	0.000	0.00000	0.000	0.000	0.000	

Figura 6-13 Resultados de la prueba de validación por Balance de masa

Figura 6-14 Gráfico R_s medido y R_s calculado vs presión

Figura 6-15 Porcentaje de error entre los valores de R_s, no pasan del 5%

Realizando el análisis correspondiente para la prueba de validación por balance de masas, para el PVT A-2 primero se obtuvieron las condiciones iniciales a condiciones estándar 60°F y 14.7 psia.

Donde:

$$\gamma_o = \frac{141.5}{\circ API + 131.5} = \frac{141.5}{23.1 + 131.5} = 0.91526$$
$$m_{oatm} = \left((0.91526) \ 1 \left[\frac{g}{cm^3} \right] \right) 1000 \ cm^3 = 915.26 \ [g]$$
$$m_{gatm} = 0$$
$$V_{gatm} = 0$$
$$R_{satm} = 0$$

Para condiciones de la última etapa de la prueba de liberación diferencial 1.03 kg/cm² y 206.96 °F

$$m_{oi} = (B_{odi} \ \rho_{odi}) \ * \ 1000 \ cm^3$$

$$m_{oi} = \left(\left(1.061 \left[\frac{m^3}{m^3} \right] \right) \ \left(0.874 \left[\frac{g}{cm^3} \right] \right) \right) \ * \ 1000 \ cm^3$$

$$m_{o1} = 927.314 \ [g]$$

$$m_{g1} = 0$$

$$V_{g1} = 0$$

$$R_{s1} = 0$$

Para p=13.61 kg/cm² y 206.96 °F

$$m_{o2=}\left(\left(1.153\left[\frac{m^3}{m^3}\right]\right) \ \left(0.843\left[\frac{g}{cm^3}\right]\right)\right) \ * \ 1000 \ cm^3$$
$$m_{o2} = 971.979 \ [g]$$
$$m_{g2}[g] = m_{o2}[g] - m_{o1}[g]$$
$$m_{g2}[g] = 971.979 - 927.314$$
$$m_{g2} = 44.665[g]$$

Para la densidad del gas en cada etapa se considera lo siguiente:

$$\gamma_{g} = \frac{\rho_{gas}}{\rho_{aire}} = \frac{\rho_{gas} \left[\frac{g}{cm^{3}}\right]}{0.0012232 \left[\frac{g}{cm^{3}}\right]}$$

$$\rho_{gi} = (\gamma_{gi-1}) \left(0.0012232 \left[\frac{g}{cm^{3}}\right]\right)$$

$$\rho_{g2} = (1.727) \left(0.0012232 \left[\frac{g}{cm^{3}}\right]\right)$$

$$\rho_{g2} = 0.00211246 \left[\frac{g}{cm^{3}}\right]$$

$$V_{g2} = \frac{m_{g2}}{\rho_{gi}}$$

$$r_{g2} = \frac{44.665[g]}{[g]} = 21143.53 c$$

$$V_{g2} = \frac{44.665[g]}{0.0012232 \left[\frac{g}{cm^3}\right]} = 21143.53 \ cm^3$$
$$V_{g2} = 21143.53 \ cm^3 \left[\frac{1[L]}{1000 \ cm^3}\right] = 21.1435 \ [L]$$

Cumpliendo la relación de solubilidad por cada litro

$$R_{s2} = \frac{21.1435 \ [L]}{1000 \ [cm^3]}$$

$$R_{s2}' = \frac{21.1435 \ [L]}{1000 \ [cm^3]} \left[\frac{.001m^3}{1 \ [L]} \right] \left[\frac{1x10^6 \ cm^3}{1m^3} \right] = 21.1435 \left[\frac{m^3}{m^3} \right]$$

$$R_{s2}' = 21.1435 \left[\frac{m^3}{m^3} \right] (5.6145833) = 118.7172 \ [SCF/STB]$$

$$R_{s2} = (R_{si-1} + R'_{s2}) \ [SCF/STB]$$

$$R_{s2} = 0 + 21.1435 \left[\frac{SCF}{STB} \right] = 21.1435 \left[\frac{SCF}{STB} \right]$$

En la *Figura 6-13* se encuentran los datos medidos y los datos calculados del R_s para todas las etapas del agotamiento, aplicando el correspondiente balance de masas, y como se puede apreciar, los porcentajes de error no sobrepasan el 5%, esto re reafirma con las *Figuras 6-14* y 6-15 en las cuales se muestran gráficamente los valores de R_s y el porcentaje de error respectivamente. Se puede concluir finalmente que, los datos de la prueba de liberación diferencial, son válidos,

✓ Cumple validación por balance de masas

6.1.6 Validación por prueba de desigualdad

Con la validación con la prueba de desigualdad se comprobó que los datos de la prueba de liberación diferencial del PVT A-2, cumplieran con el siguiente criterio:

$$\frac{\partial B_{od}}{\partial p} < B_{gd} \frac{\partial R_{sd}}{\partial p}$$

Para 136.05 kg/cm²

$$\frac{(1.321 - 1.309)}{(145.92 - 136.05)14.22} < (.008) \frac{(87.629 - 82.82)}{(145.92 - 136.05)14.22}$$
$$8.55x10^{-5} < 2.74x10^{-4}$$

Para 122.45 kg/cm²

$$\frac{(1.309 - 1.293)}{(136.05 - 122.45)14.22} < (.009) \frac{(82.82 - 76.052)}{(136.05 - 122.45)14.22}$$
$$8.27x10^{-5} < 3.15x10^{-4}$$

Al ejecutar el programa de cálculo, se obtuvieron los resultados de la *Figura 6-16*, como se pueden observar en los datos, ara cada etapa del agotamiento se cumple la condición, por lo que se concluye, que los datos de la prueba de liberación diferencial del PVT A-2 son validos.

Presión kg/cm²	Presión psia	⊿ p-Int psia	R _s SCF/STB	B _o (m³/m³)	Bg (m³/m³)	<u>⊿ Bob/⊿ P</u>	Bg∆Rsd⁄ ∆P	Cond>0
145.920	2074.982	0.000	492.000	1.321	0.000	0.00000	0.00000	0.00000
136.050	1934.631	140.351	465.000	1.309	0.008	0.00009	0.00027	V 0.00019
122.450	1741.239	193.392	427.000	1.293	0.009	0.00008	0.00031	√0.00023
108.840	1547.705	193.534	391.999	1.277	0.010	0.00008	0.00032	√0.00024
95.240	1354.313	193.392	356.998	1.262	0.012	0.00008	0.00039	V 0.00031
81.630	1160.779	193.534	323.001	1.247	0.014	0.00008	0.00044	√0.00036
68.030	967.387	193.392	280.999	1.230	0.017	0.00009	0.00066	√0.00057
54.420	773.852	193.534	249.001	1.215	0.021	0.00008	0.00062	√0.00054
40.820	580.460	193.392	211.002	1.198	0.028	0.00009	0.00098	√0.00089
27.210	386.926	193.534	169.998	1.180	0.043	0.00009	0.00162	V 0.00153
13.610	193.534	193.392	120.000	1.153	0.085	0.00014	0.00391	√0.00377
1.030	14.647	178.888	0.000	1.061	0.181	0.00051	0.02162	√ 0.02111

Validación por la prueba de desigualdad

Figura 6-16 Resultados de la validación por la prueba de desigualdad

Figura 6-17 Resultados de muestran el cumplimiento de la condición de la prueba de desigualdad

6.1.7 Conclusiones del PVT A-2

De acuerdo a la revisión realizada sobre el informe final de los resultados del análisis PVT del pozo A-2 se pueden realizar las siguientes afirmaciones:

- Fueron reportados los experimentos de:
 - a) Análisis composicional
 - b) Prueba de expansión a composición constante
 - c) Prueba de separación diferencial
 - d) Prueba de separación en laboratorio

Contando todos con sus datos mínimos necesarios para cada uno de ellos.

 De acuerdo a las pruebas realizadas se puede afirmar que el análisis PVT del pozo A-2 es consistente por lo tanto es válido, ya que todas las pruebas realizadas presentan consistencia en la mayoría de los resultados reportados, basadas en las metodologías presentadas.

6.2 Casos Aceite Negro

A continuación, se mostrarán los resultados obtenidos de la aplicación de la metodología de validación de datos PVT para muestras de Aceite Negro, de manera que se utilizaron datos de los reportes PVT para los siguientes pozos, (sus respectivos reportes, se encontraran en el anexo B):

- C-101
- CY-184
- TW-4
- S-3

6.2.1 Validación por clasificación

Por medio de la clasificación de Alfredo León García (2013), se establece que para un peso molecular aparente (M_a) de 44 g/g-mol se encuentran los fluidos denominados como críticos (aceite volátil y gas y condensado). Debajo de 44 g/g-mol es un comportamiento de gas y condensado, por encima de los 78 g/g-mol es un yacimiento de aceite negro y entre 44-78 g/g-mol los yacimientos de aceite volátil.

Para obtener el peso molecular promedio de la mezcla, se considera la siguiente expresión matemática:

$$M_{a(i,j)}[g/g - mol] = \sum_{j=1}^{j=n} (y_{(i,j)})(M_j)$$

		C- 2	101	CY-	184	TV	V-4	S-3	
		p _b = 1 kg/	119.5 cm ²	p _b =)	×XX	p _b = 1 kg/c	185.3 cm ²	p _b = kg/	106 cm ²
	M [g/g-mol]	%mol	M₄ [g/g- mol]	%mol	M₄ [g/g- mol]	%mol	M₄ [g/g- mol]	%mol	M₄ [g/g- mol]
N ₂	28.013	0.41	0.1149	-	-	0.16	0.0448	0.56	0.1569
CO ₂	44.01	0.1	0.0440	-	-	0.91	0.4005	0.96	0.4225
H₂S	34.076	0	0.0000	-	-	0	0.0000	0	0.0000
C ₁	16.043	29.48	4.7295	-	-	36.47	5.8509	19.22	3.0835
C ₂	30.07	5.32	1.5997	-	-	9.67	2.9078	5.19	1.5606
C ₃	44.097	6.69	2.9501	-	-	6.95	3.0647	5.57	2.4562
i-C₄	58.124	2.06	1.1974	-	-	1.44	0.8370	0.92	0.5347
n-C₄	58.124	3.89	2.2610	-	-	3.93	2.2843	3.29	1.9123
<i>i-C</i> ₅	72.151	2.2	1.5873	-	-	1.44	1.0390	1.4	1.0101
n-C₅	72.151	2.46	1.7749	-	-	1.41	1.0173	2.1	1.5152
C ₆	86.178	4.15	3.5764	-	-	4.33	3.7315	2.99	2.5767
C ₇ ⁺		42.5	90.5420	-	-	33.29	72.5722	57.69	204.222
Total %		<u>100</u>		-		<u>100</u>		<u>100</u>	
М _{с7+} [g/g-mol]		213	213.04		-		18	3	54
M₄ [g/g-mol]		110.377		-	-		750	219	.451
Condi M₄ [g/g-mol]>	ición 78 [g/g-mol]	110.377 >78		-		93.750 >78		219.451 >78	
Valida	ción	✓ Cur	nple	-		✓ Cur	mple	✓ Cur	nple

Ejecutando el programa de cálculo, se obtuvieron los siguientes resultados:

Tabla 6-1 Resultados la prueba de validación por clasificación de Alfredo León para PVT C-101, CY-184, TW-4 y S-3

Figura 6-18 Gráfico de resultados la prueba de validación por clasificación de Alfredo León para PVT C-101, CY-184, TW-4 y S-3

Para la clasificación de Tiburcio Méndez (1979), se tomaron en cuenta los parámetros de referencia de la gráfica denominada "La Colorina" donde se grafican los % de volumen líquido (saturación de líquido) con respecto a una presión adimensional.

Para el análisis de esta validación, se ocuparon los valores volumétricos de la prueba de separación diferencial, para efectos de este procedimiento se utilizará el factor de volumen de formación del aceite B_o . De manera que, la presión de la etapa adimensional se utilizará la siguiente expresión.

$$p_{adim} = \frac{p_{etapa}}{p_{referencia}}$$

En donde la presión de referencia será la presión de burbuja que se registró en los datos de entrada. Para el porcentaje de líquido o volumen relativo que también es un coeficiente adimensional, y además es referenciado a partir de las condiciones de presión de saturación, se tiene la siguiente expresión.

%Vol. Relativo =
$$\frac{B_{o@p.yT.}}{B_{o@pb}} x100$$

En la *Tabla 6-2* se muestra el resultado final de la ejecución de la hoja de cálculo para la validación de esta clasificación, como se podrá observar los porcentajes de volumen relativos son altos, lo cual representa que el encogimiento fue bajo, por ende, estos puntos de alojarían en la parte superior de la gráfica, indicador de que corresponde a un aceite negro.

	C-	101	C١	/-184	TW-4		S-3	
	p₀ adim.	Vol. Relat %	p _d adim.	Vol. Relat %	р _d adim.	Vol. Relat %	p _d adim.	Vol. Relat %
	1.000	100.000	1.000	100.000	1.000	100.000	1.000	100.000
	0.618	95.124	0.826	97.852	0.898	97.125	0.907	99.267
	0.412	92.498	0.593	95.752	0.803	94.688	0.795	98.453
	0.294	90.848	0.361	93.453	0.708	92.438	0.684	97.638
	0.176	89.197	0.012	83.537	0.613	90.313	0.571	96.906
	0.118	88.072			0.518	88.250	0.460	96.091
	0.059	86.722			0.423	86.375	0.347	95.195
	0.009	80.120			0.328	84.438	0.235	94.218
					0.233	82.500	0.140	93.078
					0.138	80.188	0.091	92.182
					0.066	77.750	0.011	87.704
					0.006	62.500		
Validación	✓ Cı	Imple	√ C	Cumple	✓ C	Cumple	✓ Cı	ımple

Tabla 6-2 Resultados de la prueba de validación por clasificación de Tiburcio Méndez León para PVT C-101, CY-184, TW-4 y S-3

Figura 6-19 Resultados de la prueba de validación por clasificación de Tiburcio Méndez León para PVT C-101, CY-184, TW-4 y S-3

Para los criterios de clasificación de fluidos propuesta por Rafael Pérez Herrera (2016), se necesitan los valores de RGA y las fracciones mol de los componentes de la fracción ligera y la fracción pesada (C_1 y C_7^+ respectivamente). De esta manera:

• Para clasificar como Aceite Negro en función de la fracción ligera se debe cumplir el siguiente criterio:

$$20 < RGA < 150$$

 $C_1 < 35$

• Para clasificar como Aceite Negro en función de la fracción pesada se debe cumplir el siguiente criterio:

$$20 < RGA < 150$$

 $C_7^+ > 35$

	C-101	CY-184	TW-4	S-3
RGA[m ³ /m ³]	99.1	-	106.86	45.3
C ₁ 29.4		-	36.47	19.22
C ₇ ⁺	42.5	-	33.29	57.69
20 <rga[m³ m³]<150<="" th=""><th>20<99.1<150</th><th>-</th><th>20<106.86<150</th><th>20<45.3<150</th></rga[m³>	20<99.1<150	-	20<106.86<150	20<45.3<150
C₁ [%mol]<35	29.48 [%mol]<35	-	36.47 [%mol]<35	19.22 [%mol]<35
Validación	✓ Cumple	-	No Cumple	✓ Cumple
20 <rga[m³ m³]<150<="" th=""><th>20<99.1<150</th><th>-</th><th>20<106.86<150</th><th>20<45.3<150</th></rga[m³>	20<99.1<150	-	20<106.86<150	20<45.3<150
C7 ⁺ [%mol]>35	42.5 [%mol]>35	-	33.29 [%mol]>35	57.69 [%mol]>35

	Validación	✓ Cumple	-	No Cumple	✓ Cumple
--	------------	----------	---	-----------	----------

Tabla 6-3 Resultados de la prueba de validación por clasificación de Rafael Pérez Herrera León para PVT C-101, CY-184, TW-4 y S-3

Figura 6-20 Resultados de la prueba de validación por clasificación de Rafael Pérez Herrera (C_1)

Figura 6-21 Resultados de la prueba de validación por clasificación de Rafael Pérez Herrera (C_7^+)

6.2.2 Corrección de Bo y Rs por método de A. Al-Marhoun (2001)

Como siguiente paso, se procede a validar los datos de factor de volumen de formación del aceite B_o y los de la relación de solubilidad R_s de la prueba de liberación diferencial. Se

seguirá el trabajo de A. Al-Marhoun (2001) y de esta manera para la correccion se obtuvo lo siguiente:

C-101		CY-184			TW-4			S-3			
p kg/cm²	В _о m ³ /m ³	B _o Corregida	p kg/cm²	В _о m³/m³	B _o Corregida	p kg/cm²	В _о m ³ /m ³	B₀ Corregida	p kg/cm²	В _о m ³ /m ³	B₀ Corregida
119.5	1.333	1.277	86.053	1.253	1.216	185.278	1.600	1.474	92.334	1.228	1.170
73.82	1.268	1.226	71.050	1.226	1.194	166.290	1.554	1.438	83.734	1.219	1.164
49.22	1.233	1.198	51.045	1.199	1.172	148.710	1.515	1.407	73.434	1.209	1.158
35.15	1.211	1.181	31.041	1.171	1.149	131.129	1.479	1.378	63.134	1.199	1.152
21.09	1.189	1.163	1.034	1.046	1.046	113.548	1.445	1.352	52.734	1.190	1.147
14.06	1.174	1.152				95.967	1.412	1.325	42.434	1.180	1.140
7.03	1.156	1.137				78.386	1.382	1.302	32.034	1.169	1.134
1.06	1.068	1.068				60.805	1.351	1.277	21.734	1.157	1.126
						43.224	1.320	1.253	12.934	1.143	1.118
						25.643	1.283	1.224	8.434	1.132	1.111
						12.212	1.244	1.193	1.034	1.077	1.077
						1.030	1.000	1.000			
✓ Cui	✓ Cumple con validación ✓ Cumple con validación		✓ Cumple con validación			✓ Cumple con validación					
١	Ver Figura	6-22		Ver Figura	6-23	1	Ver Figura	6-24	Ver Figura 6-25		

Tabla 6-4 Resultados de validación por corrección de Bo para PVT C-101, CY-184, TW-4 y S-3

C-101			CY-184			TW-4			S-3		
p kg/cm	R _s m³/m³	R _s Corregid a	p kg/cm²	R _s m³/m³	R _s Corregid a	p kg/cm²	R _s m³/m³	R _s Corregid a	p kg/cm²	R _s m³/m³	R₅ Corregid a
119.5	99.89 0	99.100	86.05 3	1.25 3	1.216	185.27 8	152.10 4	106.860	92.33 4	45.30 0	45.300
73.82	65.12 0	64.605	71.05 0	1.22 6	1.194	166.29 0	135.89 6	95.473	83.73 4	42.50 0	42.500
49.22	48.00 0	47.620	51.04 5	1.19 9	1.172	148.71 0	121.82 6	85.588	73.43 4	39.20 0	39.200
35.15	38.38 0	38.076	31.04 1	1.17 1	1.149	131.12 9	109.00 2	76.579	63.13 4	35.70 0	35.700
21.09	29.40 0	29.167	1.034	1.04 6	1.046	113.54 8	96.891	68.070	52.73 4	32.00 0	32.000
14.06	23.15 0	22.967				95.967	85.314	59.937	42.43 4	28.20 0	28.200
7.03	17.15 0	17.014				78.386	74.093	52.054	32.03 4	24.00 0	24.000
1.06	0.000	0.000				60.805	63.050	44.296	21.73 4	19.40 0	19.400
						43.224	52.007	36.538	12.93 4	14.70 0	14.700
						25.643	39.718	27.904	8.434	11.70 0	11.700
						12.212	27.963	19.645	1.034	0.000	0.000
						1.030	0.000	0.000			
√ Cur	mple con v	alidación	√ Cun	nple con v	validación	No Cumple con validación			✓ Cumple con validación		
١	/er Figura	6-22	ν	/er Figura	6-23		Ver Figura 6-	24	Ver Figura 6-26		

Figura 6-22 Gráfico de corrección de Bo y Rs para PVT C-101

Figura 6-23 Gráfico de corrección de Bo y Rs para PVT CY-184

Figura 6-24 Gráfico de corrección de Bo y Rs para PVT TW-4

Figura 6- 25 Gráfico de corrección de B_o y R_s para PVT S-3 6.2.3Validación por Función Y

Por medio de la función Y, se puede verificar la consistencia de la prueba de liberación instantánea (flash), a partir de recalcular las presiones de burbuja, en función de una linealización de los datos calculados por la función Y. De manera que ejecutando el programa de cálculo y siguiendo la metodología mencionada en el capítulo anterior, se generaron los siguientes resultados:

Presión kg/cm²	Función Y	Función Y corregida	Presión kg/cm²	Función Y	Función Y corregida	Presión kg/cm²	Función Y	Función Y corregida	Presión kg/cm²	Función Y	Función Y corregida
119.500	0.000		86.034	0.000		185.278	0.000		92.334	0.000	
116.010	2.486	2.487	82.534	2.602	2.604	184.223	2.603	2.677	90.934	4.399	4.591
112.920	2.459	2.464	74.034	2.486	2.489	183.238	2.715	2.670	83.734	4.446	4.390
98.850	2.358	2.357	66.034	2.383	2.380	177.964	2.669	2.633	73.434	4.185	4.103
84.860	2.259	2.251	60.034	2.300	2.299	169.877	2.590	2.577	63.134	3.883	3.815
70.730	2.147	2.144	55.034	2.228	2.231	159.469	2.509	2.504	52.734	3.579	3.524
43.800	1.940	1.940	49.034	2.153	2.150	148.006	2.421	2.425	42.434	3.277	3.237
32.130	1.848	1.852	41.034	2.047	2.041	134.434	2.316	2.330	32.034	2.951	2.946
			38.034	2.005	2.001	120.440	2.219	2.233	21.734	2.606	2.659
			35.034	1.960	1.960	104.898	2.118	2.125	18.434	2.506	2.567
			32.034	1.916	1.919	91.888	2.028	2.035			
			28.034	1.859	1.865	74.167	1.920	1.912			
						59.399	1.823	1.809			
						46.037	1.727	1.716			
						34.223	1.621	1.634			
Ve	er Figura	6-26	Ve	er Figura	6-27	Ve	r Figura (5-28	Ve	er Figura	6-29
<i>р</i> ь со	=rregida kg/cm	119.504	рь со	rregida= kg/cm ²	86.036	p _b cor	regida= 1 kg/cm²	85.273	p_b corregida= 92.442 kg/cm ²		
Válid	o si %Err	or < 5%	Válido	o si %Erre	or < 5%	Válido si %Error < 5%			Válido si %Error < 5%		
%	Error=0.0	0359	%Error=0.00248			%Error=0.00235			%Error=-0.11732		
√ Cumple				✓ Cumpl	le		✓ Cumple	9	v	Cumple	;

Tabla 6- 6 Cálculos resultantes de Función Y, Función Y corregida y pb recalculada, para PVT C-101, CY-184, TW-4 y S-3

Figura 6-26 Gráfico de Función Y y Función Y corregida para PVT C-101

Figura 6-27 Gráfico de Función Y y Función Y corregida para PVT CY-184

Figura 6-28 Gráfico de Función Y y Función Y corregida para PVT TW-4

Figura 6-29 Gráfico de Función Y y Función Y corregida para PVT S-3

6.2.4 Validación por Prueba de densidad

Para la validación por la prueba de densidad se necesitan los datos de la prueba de separador en laboratorio y el dato de la densidad a la presión de burbuja de la prueba de separación diferencial. Se ejecutó el programa en función de los datos anteriores y los resultados se presenta a continuación:

		C -101	CY-184	TW-4	S-3	
S. Diferencial	Densidad (g/cm³)	<u>0.7156</u>	<u>0.7567</u>	<u>0.6562</u>	<u>0.8374</u>	
0	B _o (m ³ /m ³)	1.277	1.216	1.474	1.170	
oratori	R _s (m³/m³) Separador	250.860	303.749	636.974	129.697	
n Labo	R _s (m³/m³) Tanque	34.698	36.495	92.000	16.282	
ción e	Υ _g (Sep)	0.98	0.882	0.789	0.877	
epara	γ _g (Tan)	1.49	1.039	1.363	0.916	
S	°API (Tanque)	39.100	37.150	35.100	18.600	
	Densidad (g/cm³)	<u>0.69997</u>	<u>0.74445</u>	<u>0.66879</u>	<u>0.82929</u>	
	%Error =	2.184	1.619	1.918	0.968	
	Validación %Error < 5%	2.184 < 5	1.619 < 5	1.918 < 5	0.968 < 5	
		✓ Cumple	✓ Cumple	✓ Cumple	✓ Cumple	

Tabla 6-7 Resultados de la validación por cálculo de la densidad para PVT C-101, CY-184, TW-4 y S-3

6.2.5 Validación por Balance de masas

La validación por balance de masas consiste en recalcular valores de R_s y compararlos con los valores medios en la prueba de liberación diferencial. Cabe mencionar que el procedimiento comienza desde la última etapa de la prueba. Teniendo en cuenta lo anterior mencionado, se ejecutó el programa de cálculo, arrojando los siguientes resultados:

	C-	101		CY-184					
Presión [kg/cm²]	Rs [m³/m³]	R₅ Calc. [m³/m³]	%Error		Presión	Rs [m³/m³]	R₅ Calc. [m³/m³]	%Error	
119.50	560.841	562.962	0.378	\checkmark	86.053	386.845	381.352	1.420	\checkmark
73.82	365.622	368.029	0.658	\checkmark	71.050	333.506	328.332	1.551	\checkmark

49.22	269.500	271.523	0.751	✓	51.045	267.254	263.194	1.519	✓	
35.15	215.488	215.578	0.042	\checkmark	31.041	198.195	195.151	1.536	\checkmark	
21.09	165.069	166.143	0.651	✓	1.034	0.000	0.000			
14.06	129.978	131.081	0.849	\checkmark						
7.03	96.290	99.514	3.348	✓						
1.06	0.000	0.000								
Porcer	ntajes de e	rror menor	res al 5%	6	Porcentajes menores al 5%					
	✓ Cumple	validació	n	✓ Cumple validación						
	Ver Fig	jura 6-30			Ver Figura 6-31					

Tabla 6-8 Resultados de la prueba de validación por Balance de masa para PVT C-101 y CY-104

	7	W-4			S-3						
Presión [kg/cm²]	R _s [m³/m³]	R₅ Calc. [m³/m³]	%Erro	%Error		R _s [m³/m³]	R _s Calc. [m³/m³]	%Err	or		
185.278	854.0	983.807	15.200	×	92.334	254.341	253.408	0.367	✓		
166.290	763.0	896.273	17.467	×	83.734	238.620	238.805	0.078	✓		
148.710	684.0	815.242	19.187	×	73.434	220.092	220.752	0.300	✓		
131.129	612.0	741.275	21.123	×	63.134	200.441	199.361	0.539	\checkmark		
113.548	544.0	674.875	24.058	×	52.734	179.667	181.351	0.938	✓		
95.967	479.0	608.754	27.088	×	42.434	158.331	158.828	0.314	\checkmark		
78.386	416.0	548.941	31.957	×	32.034	134.750	134.131	0.459	✓		
60.805	354.0	485.786	37.228	×	21.734	108.923	111.366	2.243	✓		
43.224	292.0	423.729	45.113	×	12.934	82.534	85.386	3.455	✓		
25.643	223.0	355.432	59.386	×	8.434	65.691	64.758	1.419	\checkmark		
12.212	157.0	290.669	85.140	×	1.034	0.000	0.000				
1.030	0.0	0.000									
Ро	rcentajes	mayores a	15%	P	orcentajes	menores al	5%				
*/	lo cumple	con valida	nción	✓ Cumple validación							
	Ver Fig	gura 6-32				Ver Fig	gura 6-33				

Tabla 6-9 Resultados de la prueba de validación por Balance de masa para PVT TW-4 y S-3

Figura 6-30 Gráfico Rs medido y Rs calculado vs presión para PVT C-101

Figura 6-31 Gráfico Rs medido y Rs calculado vs presión para PVT CY-184

Figura 6-32 Gráfico Rs medido y Rs calculado vs presión para PVT TW-4

Figura 6-33 Gráfico Rs medido y Rs calculado vs presión para PVT S-3

6.2.5 Validación por prueba de desigualdad

Con la validación con la prueba de desigualdad se comprobó que los datos de la prueba de liberación diferencial, cumplieran con el siguiente criterio:

$$\frac{\partial B_{od}}{\partial p} < B_{gd} \frac{\partial R_{sd}}{\partial p}$$

		C-101				CY-184		
Presión [kg/cm ²]	∂B _{ob} ∂p	$B_g \frac{\partial R_{sd}}{\partial p}$	Diferencia>0	Presión [kg/cm²]	∂B _{ob} ∂p	$B_g \frac{\partial R_{sd}}{\partial p}$	Diferencia>0	
119.500	0.00000	0.00000	0.00000 🗸	86.053	0.00000	0.00000	0.00000 🗸	
73.820	0.00010	0.00083	0.00073 🗸	71.050	0.00013	0.00063	0.00051 🗸	
49.220	0.00010	0.00116	0.00106 🗸	51.045	0.00009	0.00087	0.00078 🗸	
35.150	0.00011	0.00162	0.00151 🗸	31.041	0.00010	0.00156	0.00146 🗸	
21.090	0.00011	0.00256	0.00245 🗸	1.034	0.00029	0.00000	-0.00029 🗸	
14.060	0.00015	0.00541	0.00526 🗸					
7.030	0.00018	0.01051	0.01033 🗸					
1.060	0.00104	0.24141	0.24038 🗸					
✓ Cumple	e con validad	\checkmark Cumple con validación, $B_g \frac{\partial R_{sd}}{\partial p}$ es mayor que $\frac{\partial B_{ob}}{\partial p}$						
	Ver	Figura 6-34		Ver Figura 6-35				

Tabla 6-10 Resultados de la validación por la prueba de desigualdad para PVT C-101 y CY-184

	T	W-4			ę	S-3		
Presión [kg/cm²]	$\frac{\partial B_{ob}}{\partial p}$	$B_g \frac{\partial R_{sd}}{\partial p}$	Cond>0	Presión kg/cm²	$\frac{\partial B_{ob}}{\partial p}$	$B_g \frac{\partial R_{sd}}{\partial p}$	Cond>0	
185.278	0.00000	0.00000	0.00000 🗸	92.334	0.00000	0.00000	0.00000 🗸	
166.290	0.00017	0.00041	0.00024 🗸	83.734	0.00007	0.00036	0.00028 🗸	
148.710	0.00016	0.00043	0.00028 🗸	73.434	0.00007	0.00040	0.00034 🗸	
131.129	0.00014	0.00045	0.00031 🗸	63.134	0.00007	0.00050	0.00044 🗸	
113.548	0.00014	0.00050	0.00036 🗸	52.734	0.00006	0.00064	0.00058 🗸	
95.967	0.00013	0.00058	0.00044 🗸	42.434	0.00007	0.00083	0.00076 🗸	
78.386	0.00012	0.00070	0.00058 🗸	32.034	0.00007	0.00122	0.00114 🗸	
60.805	0.00012	0.00090	0.00078 🗸	21.734	0.00008	0.00200	0.00192 🗸	
43.224	0.00012	0.00129	0.00117 🗸	12.934	0.00011	0.00405	0.00394 🗸	
25.643	0.00015	0.00249	0.00234 🗸	8.434	0.00017	0.00779	0.00762 🗸	
12.212	0.00020	0.00667	0.00646 🗸	1.034	0.00052	0.00000	-	
1.030	0.00153	0.00000	-					
✓ Cumple co	on validaciór	n, $B_g \frac{\partial R_{sd}}{\partial p}$ es n	nayor que $rac{\partial B_{ob}}{\partial p}$	\checkmark Cumple con validación, $B_g \frac{\partial R_{sd}}{\partial p}$ es mayor que $\frac{\partial B_{ob}}{\partial p}$				
	Ver Fig	jura 6-36			Ver Fig	gura 6-37		

Tabla 6-11 Resultados de la validación por la prueba de desigualdad para PVT TW-4 y S-3

Figura 6-34 Gráfico del cumplimiento de la condición en la prueba de desigualdad para PVT C-101

Figura 6-35 Gráfico del cumplimiento de la condición en la prueba de desigualdad para PVT CY-184

Figura 6-36 Gráfico del cumplimiento de la condición en la prueba de desigualdad para PVT TW-4

Figura 6-37 Gráfico del cumplimiento de la condición en la prueba de desigualdad para PVT S-3
6.2.3 Conclusiones para casos de Aceite Negro

6.2.3.1 Conclusiones del para PVT C-101

De acuerdo a la revisión realizada sobre el informe final de los resultados del análisis PVT del pozo C-101 se pueden realizar las siguientes afirmaciones:

- Fueron reportados los experimentos de:
 - a) Análisis composicional
 - b) Prueba de expansión a composición constante
 - c) Prueba de separación diferencial
 - d) Prueba de separación en laboratorio

Contando todos con sus datos mínimos necesarios para cada uno de ellos.

 De acuerdo a las pruebas realizadas se puede afirmar que el análisis PVT del pozo C-101 es consistente por lo tanto es válido, ya que todas las pruebas realizadas presentan consistencia en la mayoría de los resultados reportados, basadas en las metodologías presentadas.

6.2.3.2 Conclusiones del para PVT CY-184

De acuerdo a la revisión realizada sobre el informe final de los resultados del análisis PVT del pozo CY-184 se pueden realizar las siguientes afirmaciones:

- Fueron reportados los experimentos de:
 - a) Prueba de expansión a composición constante
 - b) Prueba de separación diferencial
 - c) Prueba de separación en laboratorio

Contando todos con sus datos mínimos necesarios para cada uno de ellos.

 De acuerdo a las pruebas realizadas se puede afirmar que el análisis PVT del pozo CY-184 es consistente por lo tanto es válido, ya que todas las pruebas realizadas presentan consistencia en la mayoría de los resultados reportados, basadas en las metodologías presentadas. Cabe mencionar que, para la última etapa de la prueba de liberación diferencial, se presentan inconsistencias en la medición.

Recomendaciones

Obtener los resultados de la prueba de composición del fluido original del yacimiento para poder tener un análisis más completo.

6.2.3.3 Conclusiones del para PVT TW-4

De acuerdo a la revisión realizada sobre el informe final de los resultados del análisis PVT del pozo TW-4, tomado del libro "The properties of petroleum fluids" de McCain (1990) se pueden realizar las siguientes afirmaciones:

- Fueron reportados los experimentos de:
 - a) Análisis composicional
 - b) Prueba de expansión a composición constante
 - c) Prueba de separación diferencial
 - d) Prueba de separación en laboratorio

Contando todos con sus datos mínimos necesarios para cada uno de ellos.

 De acuerdo a las pruebas realizadas se puede afirmar que el análisis PVT del pozo TW-4 no es válido, debido a inconsistencias importantes en las mediciones refertes a los factores volumétricos. Cabe mencionar que, para la última etapa de la prueba de liberación diferencial, se presentan inconsistencias en la medición.

6.2.3.4 Conclusiones del para PVT S-3

De acuerdo a la revisión realizada sobre el informe final de los resultados del análisis PVT del pozo S-3 se pueden realizar las siguientes afirmaciones:

- Fueron reportados los experimentos de:
 - a) Análisis composicional
 - b) Prueba de expansión a composición constante
 - c) Prueba de separación diferencial
 - d) Prueba de separación en laboratorio

Contando todos con sus datos mínimos necesarios para cada uno de ellos.

 De acuerdo a las pruebas realizadas se puede afirmar que el análisis PVT del pozo S-3 es consistente por lo tanto es válido, ya que todas las pruebas realizadas presentan consistencia en la mayoría de los resultados reportados, basadas en las metodologías presentadas.

6.3 PVT pozo J-2

El siguiente caso corresponde a un reporte PVT para una muestra de Aceite volátil, a continuación, se muestra los resultados obtenidos en las pruebas empleadas.

Resumen del reporte PV	'T
Campo:	J
Pozo:	J-2
Tipo de Muestreo:	Fondo
Tipo de fluido:	Aceite Volátil
°API =	44.3
Temperatura de yacimiento (°C)=	165
Presión de Burbuja (kg/cm²) =	340.4
$RGA(m^3/m^3) =$	423.8

Figura	6 38	Datas	annaralas	dal DV7	nara al	nozo 1 2
rigura	0-50	Duios	generales	uei I VI	para ei	pozo J- 2

Prueba de composicion a volumen constante	(CVD) de la	muestra	1.01

	Mezcla Original	Con	nposición c	lel vapor ei	n c/u de las	s etapas de	agotamiei	nto y _(i,j) (%	mol)	Líquido
Presión (kg/cm²):	340.43	303.36	268.2	233.05	197.9	162.74	127.59	85.4	45.73	45.73
N ₂	1.805	2.215	2.205	2.192	2.18	2.165	2.149	2.127	2.093	0.673
CO ₂	1.63	1.909	1.909	1.91	1.91	1.911	1.912	1.912	1.912	0.753
H₂S	0	0	0	0	0	0	0	0	0	0
C1	58.375	70.42	70.139	69.805	69.419	68.956	68.481	67.796	66.99	25.093
C ₂	10.381	11.464	11.547	11.645	11.76	11.896	12.04	12.223	12.36	5.76
C ₃	5.195	5.3	5.373	5.463	5.571	5.714	5.857	6.035	6.207	3.678
i-C4	0.939	0.902	0.917	0.932	0.952	0.97	0.988	1.011	1.036	0.865
n-C₄	2.219	2.114	2.144	2.175	2.21	2.243	2.281	2.323	2.366	2.184
i-C5	0.89	0.78	0.786	0.794	0.805	0.814	0.827	0.842	0.859	1.131
n-C5	1.154	0.977	0.985	0.996	1.006	1.017	1.03	1.043	1.061	1.59
C_6	1.689	1.151	1.16	1.18	1.2	1.239	1.258	1.329	1.466	3.102
C ₇ +	15.73	2.768	2.835	2.908	2.987	3.075	3.177	3.359	3.65	55.171
TOTAL	100.007	100	100	100	100	100	100	100	100	100
PMC ₇ + (g/g-mol)	187.99	113.5	114.4	115.18	115.18	116.54	117.42	118.35	119.43	218.11
Z	0	0.978	0.949	0.925	0.907	0.897	0.899	0.916	0.946	
ΣΔn _{pi} (%)	0	6.92	14.22	22.23	30.76	40	49.69	60.29	71.34	
$ ho_{o}(g/cm^{3})$	0.433	0.483	0.527	0.547	0.564	0.581	0.599	0.622	0.648	
S _L (%)	100	69.76	57.02	50.86	46.5	44.86	42.77	40.37	37.63	

Figura 6-39 Datos medidos de la prueba de agotamiento a volumen constante

Con estos datos correspondientes a la prueba de agotamiento a volumen contante, además de las pruebas composicionales para cada etapa, se puede iniciar con la validación con los criterios de clasificación. Lo siguiente fue montarlos en la hoja de entrada del programa de cálculo como se muestra en la *Figura 6-40*.

POZO: FECHA:	J-2 2018 °API	44.3	1					V	4	_//	DA	I <i>C</i>	IC	DN	P	V	7		
Temperatura del Yao	cimiento (T):	165	°C ·	→ 789.0	°R						Ac	eite	Volá	itil					
Presion de Sald	uracion (p _s).	340.4	Kg/cm	² → 4040.5	psia						_								
Constante de los	a $PS(p_b)$.	10 700	9/cm -	→ 27.03	IDm/IL							0	/D						
Constante de los	S Gases (n).	10.732	psia-π ∕ib	m-mi 8.3143	J/moi-*K				Comp	osición o	lol vanor	onclud		nas do a	aotamio	ato v (%	moll		
R	GA (m /m)	423.0	ON ORIG	INAI			Mezcia Original		Comp	JSICIONI	lei vapoi	Vapor	e ids eid	pas ue a	golarniei	10 y (70	mory	Líq	juido
	COMPONENTE	% mol	Peso Mo	ol Peso Mol	F	Presión	340.43	303.36	268.2	233.05	197.9	162.74	127.59	85.4	45.73			4	5.73
	N.	1 905	(g/mol)	Aparente	(<i>R</i> g	g/cm*):	1 905	2 2 1 5	2 205	2 102	2.10	2 165	2 140	2 127	2,002				672
	CO.	1.600	20.01	0 7174		co.	1.63	1 0/0	1 000	2.132	2.10	2.105	2.143	2.127	2.093			0.	753
	H ₂ S	0.000	34.076	6 0		H ₂ S	0	0	0	0	0	0	0	0	0			0.	0
	C 1	58.375	16.043	3 9.3651		C1 5	58.375	70.42	70.139	69.805	69.419	68.956	68.481	67.796	66.99			25	5.093
	C ₂	10.381	30.07	3.1216		C2 1	10.381	11.464	11.547	11.645	11.76	11.896	12.04	12.223	12.36			5.	5.76
	C ₃	5.195	44.09	7 2.2908		C3	5.195	5.3	5.373	5.463	5.571	5.714	5.857	6.035	6.207			3.	.678
	i-C₄	0.939	58.124	4 0.5458		i-C₄	0.939	0.902	0.917	0.932	0.952	0.97	0.988	1.011	1.036			0.	.865
	n-C ₄	2.219	58.124	4 1.2898]	n-C₄	2.219	2.114	2.144	2.175	2.21	2.243	2.281	2.323	2.366			2.	184
	i-C 5	0.890	72.15	1 0.6421]	i-C ₅	0.89	0.78	0.786	0.794	0.805	0.814	0.827	0.842	0.859			1.	.131
	n-C 5	1.154	72.15	1 0.8326]	n-C ₅	1.154	0.977	0.985	0.996	1.006	1.017	1.03	1.043	1.061		_	1.	.59
	C ₆	1.689	86.178	8 1.4555		C ₆	1.689	1.151	1.16	1.18	1.2	1.239	1.258	1.329	1.466		$ \rightarrow $	3.	.102
	C7 ⁺	15.730	187.99	9 29.571		C 7+	15.73	2.768	2.835	2.908	2.987	3.075	3.177	3.359	3.65			55	i.171
		100.007		<u>50.337</u>	(g/g-mol) 7	TOTAL 1	100.01	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>			1	00
Clasificaci	ón Va	alidación V	hitson	Pes	o Molecular C7 ⁺ (M) (lb m	/b_m-mol) 1	187.99	113.50	114.40	115.18	115.18	116.54	117.42	118.35	119.43			218	8.110
				Factor de 0	Compresibilidad (z) ((adim)	0	0.978	0.949	0.925	0.907	0.897	0.899	0.916	0.946				
Validación Bas	shbush	Validació	in N	Aoles de vapor	producidas (ΣΔn _{pi})	(%)	0	6.92	14.22	22.23	30.76	40	49.69	60.29	71.34				
		Hoffmann-Ci	rump	Densid	lad del Líquido (p _o) (g	g/cm ³)	0.433	0.483	0.527	0.547	0.564	0.581	0.599	0.622	0.648				
Ordenar Datos de	Entrada I i	mpiar Resu	ultados	Saturacio	ón de Líquido (S _{Liq})	(%)	100	69.76	57.02	50.86	46.5	44.86	42.77	40.37	37.63				
			inddoo	Peso Mole	cular gas y líquido (lbm	/lb_m-mol) 5	50.337	25.7	25.85	26.03	26.2	26.4	26.68	27.07	27.614				

Figura 6-40 Hoja de entrada de datos del programa de cálculo para Aceite volátil

6.3.1 Validación por clasificación para PVT J-2

Para comenzar los criterios de clasificación, en el experimento de agotamiento a volumen constante, la primera etapa corresponde la composición original del fluido, de manera que con estos datos y recordando que Alfredo León García (2013), se establece que para un Peso molecular aparente (M_a) de 44 g/g-mol se encuentran los fluidos denominados como críticos (aceite volátil y gas y condensado). Debajo de 44 g/g-mol es un comportamiento de gas y condensado, por encima de los 78 g/g-mol es un yacimiento de aceite negro y entre 44-78 g/g-mol los yacimientos de aceite volátil.

Para obtener el peso molecular promedio de la mezcla, se considera la siguiente expresión matemática:

$$M_a[g/g - mol] = \sum_{j=1}^{j=n} (y_j)(M_j)$$

Ejecutando el programa de cálculo y siguiendo los criterios, se obtuvo finalmente un peso molecular aparente de la mezcla de:

$$\sum_{j=1}^{j=n} (y_j) (M_j) = 50.34[g/g - mol]$$

Figura 6-41 Resultados de la prueba de validación por clasificación de Alfredo León para PVT J-2

Finalmente se concluye que a partir del peso molecular promedio de la mezcla y de la presión de saturación registrada y tomando como referencia los parámetros de la clasificación de Alfredo León:

$$M_a[g/g - mol] \rightarrow 44 > 50.337 > 78$$

✓ Cumple como Aceite Volátil con la clasificación de Alfredo León

Para la clasificación de Tiburcio Méndez, se tomará en cuenta los parámetros de referencia de la gráfica denominada "La Colorina" en el cual se grafican los % de volumen liquido (saturación de líquido) con respecto a una presión adimensional.

Para el caso del PVT del pozo J-2 se obtuvieron los siguientes resultados por medio del programa de cálculo.

Figura 6-42 Resultados de la prueba de validación por clasificación de Tiburcio Méndez para el PVT J-2

Como se puede observar, los porcentajes de saturación iniciales son medios (entre 28 y 50 %), lo cual representa que el encogimiento fue medio, por ende, estos puntos se alojarían en la parte media del gráfico, indicador de que corresponde a un aceite volátil.

✓ Cumple como Aceite Volátil con la clasificación de Tiburcio Méndez

Para los criterios de clasificación de fluidos propuesta por Rafael Pérez Herrera, se necesitan los valores de RGA y las fracciones mol de los componentes de la fracción ligera y la fracción pesada (C_1 y C_7^+ respectivamente). De esta manera:

$$RGA = 423.8(m^{3}/m^{3})$$
$$C_{1} = 58.375\% mol$$
$$C_{7}^{+} = 15.73\% mol$$

A partir de estos datos el análisis y los datos obtenidos por el programa de cálculo son los siguientes:

Figura 6-43 Resultados de la prueba de validación por clasificación de Rafael Pérez Herrera

Para la fracción ligera, el criterio de aceite volátil se debe cumplir lo siguiente:

$$150 < RGA < 600$$

 $37 < C_1 < 66$
 $150 < 423.8 < 600$
 $37 < 28.84 < 66$

Como se puede apreciar, los datos correspondientes a la fracción ligera del PVT J-2, corresponden a los rasgos permisibles para esta clasificación.

✓ Cumple como Aceite Volátil con la clasificación de Rafael Pérez. Herrera para componentes ligeros

Para clasificar como Aceite Volátil en función de la fracción pesada se debe cumplir el siguiente criterio:

$$150 < RGA < 600$$

 $33 > C_7^+ > 12$
 $150 < 423.8 < 600$
 $33 > 15.73 > 12$

Los datos correspondientes a la fracción pesada del PVT J-2, corresponden a los rasgos permisibles para esta clasificación.

✓ Cumple como Aceite Volátil con la clasificación de Rafael Pérez Herrera para componentes pesados

6.3.2 Validación por método de Whitson-Torp para el PVT J-2

A continuación, se procede con la validación por el método de Whitson-Torp (1981), en donde a partir de los datos del experimento de agotamiento a volumen constante, se calcularon las constantes de equilibrio, con el siguiente procedimiento (en el Anexo A se mostrará el desarrollo a detalle de este método).

 Cálculo del peso molecular aparente para cada etapa, correspondiente a la composición medida.

Para obtener el peso molecular promedio de la mezcla, se consideró la siguiente expresión matemática:

$$M_{a(i)}[lb_m/lb_m - mol] = \sum_{j=1}^{j=n} (y_{(i,j)})(M_{(j)})$$

De manera que, para todas las etapas de agotamiento, se generaría la siguiente tabla de resultados correspondiente al peso molecular aparente. Cabe mencionar que, para cada etapa, el peso molecular de la fracción pesada, es diferente.

Componente	F	<mark>eso l</mark>	Nolec	ular A	paren	ite de	la me	zcla l	<mark>M _a (11</mark>	b _m /lb	m-mol	,	Liquido
Presión (kg/cm²):	340.430	303.360	268.200	233.050	197.900	162.740	127.590	85.400	45.730	0.000	0.000	0.000	45.730
N ₂	0.506	0.620	0.618	0.614	0.611	0.606	0.602	0.596	0.586				0.189
CO ₂	0.717	0.840	0.840	0.841	0.841	0.841	0.841	0.841	0.841				0.331
H ₂ S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				0.000
C 1	9.365	11.297	11.252	11.199	11.137	11.063	10.986	10.877	10.747				4.026
C ₂	3.122	3.447	3.472	3.502	3.536	3.577	3.620	3.675	3.717				1.732
C 3	2.291	2.337	2.369	2.409	2.457	2.520	2.583	2.661	2.737				1.622
i-C4	0.546	0.524	0.533	0.542	0.553	0.564	0.574	0.588	0.602				0.503
n-C₄	1.290	1.229	1.246	1.264	1.285	1.304	1.326	1.350	1.375				1.269
i-C 5	0.642	0.563	0.567	0.573	0.581	0.587	0.597	0.608	0.620				0.816
n-C ₅	0.833	0.705	0.711	0.719	0.726	0.734	0.743	0.753	0.766				1.147
C 6	1.456	0.992	1.000	1.017	1.034	1.068	1.084	1.145	1.263				2.673
C 7+	29.571	3.142	3.243	3.349	3.440	3.584	3.730	3.975	4.359				120.333
TOTAL	50.34	<u>25.70</u>	25.85	26.03	26.20	26.45	26.69	27.07	27.61				134.64

Figura 6-44 Peso molecular aparente para cada etapa del agotamiento para el PVT J-2

2) Cálculo del volumen de la celda de trabajo considerando 1 lb_m-mol.

$$V_{cel} = \frac{50.34 \ [lb_m]}{0.433 \left[\frac{g}{cm^3}\right] (62.42792)} = \frac{50.34 \ [lb_m]}{27.023 [lb_m/ft^3]} = 1.860 \ ft^3$$

Este volumen es el que se mantuvo constante durante toda la prueba de agotamiento, el cual esta referenciado a las condiciones de presión de burbuja.

Figura 6-45 Peso molecular aparente de la mezcla original, volumen de la celda que se mantuvo constante durante la prueba

3) Cálculo de volumen de líquido en la celda para cada etapa de agotamiento.

$$V_{liq(i)} = \frac{\% S_{liq(i)}}{100} (V_{cel})$$

4) Cálculo del volumen de gas contenido en cada etapa del agotamiento.

$$V_{gas(i)} = \left(1 - \frac{\% S_{liq(i)}}{100}\right) (V_{cel})$$

 Cálculo de las moles de gas contenidas en la celda, a partir de la ecuación de estado para gases reales.

$$n_{v(i)} = \frac{p_{(i)}[psia] V_{gas(i)}[ft^3]}{z_{(i)} \ 10.732 \left[\frac{psia \ ft^3}{lb_m - mol \ ^\circ R}\right] T[^\circ R]}$$

6) Cálculo de las moles totales contenidas en la celda mediante la siguiente expresión:

$$n_{t(i)} = 1 - \frac{\sum n_{p(i)} \, [\%]}{100}$$

7) Cálculo de las moles producidas en cada etapa del agotamiento.

$$n_{p(i)} = \sum n_{p(i)} - \sum n_{p(i-1)}$$

8) Cálculo de las moles de líquido en la celda en cada etapa del agotamiento.

$$n_{liq(i)} = n_{t(i)} - n_{v(i)}$$

9) Cálculo de las moles totales del sistema.

$$n_{ts(i)} = n_{liq(i)} + n_{v(i)} + \Sigma n_{p(i)}$$

Presion kg/cm ²	340.43	303.36	268.2	233.1	197.9	162.7	127.6	85.4	45.73	0	0	0
Volumen Líquido Celda (VLk) ft ³	1.862	1.299	1.062	0.947	0.866	0.835	0.796	0.752	0.701			
Volumen Vapor Celda (VVk) ft ³	0.000	0.563	0.800	0.915	0.996	1.027	1.066	1.110	1.161			
Volumen total en la celda (VLk=VVk) ft ³	1.862	1.862	1.862	1.862	1.862	1.862	1.862	1.862	1.862			
Moles de vapor en celda (n _{vk}) (lb _m -mol)	0.000	0.293	0.380	0.387	0.365	0.313	0.254	0.174	0.094			
Moles Totales en celda (n_{tk}) (lb_m -mol)	1.000	0.931	0.858	0.778	0.692	0.600	0.503	0.397	0.287			
Moles vapor prod. C/etapa (Dn pi) (lb m-mol)	0.000	0.069	0.073	0.080	0.085	0.092	0.097	0.106	0.111			
Moles de líquido en celda (n _{Lk}) (lb _m -mol)	1.000	0.637	0.478	0.391	0.327	0.287	0.249	0.223	0.192			
Moles Totales del sistema (n_t) (lb $_m$ -mol)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			

Figura 6-46 Resultados del balance molar y volúmenes para cada etapa del agotamiento para el PVT J-2

De esta manera es como se realiza el balance molar del total de la mezcla con los datos correspondientes a la prueba de agotamiento a volumen constante. Ahora se calculará el balance molar correspondiente para cada elemento de la misma prueba. De manera que se continua con el procedimiento.

10) Cálculo de las moles totales (líquido + gas) contenidas en la celda a partir de la siguiente expresión:

$$n_{t(i,j)} = z_{(i)} - \left(\frac{y_{(i,j)}}{100}\right) \left(\frac{\Sigma \Delta n_{p(i)}}{100}\right)$$

		Mole	es total	es en la	a celda	[líquid	o + vap	oor] (n	t) [lb	_m -mo	IJ	
Presión (kg/cm²):	340.430	303.360	268.200	233.050	197.900	162.740	127.590	85.400	45.730			
N ₂	0.018	0.017	0.015	0.013	0.011	0.009	0.007	0.005	0.003			
CO ₂	0.016	0.015	0.014	0.012	0.010	0.009	0.007	0.005	0.003			
H ₂ S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
C 1	0.584	0.535	0.484	0.429	0.370	0.308	0.243	0.175	0.106			
C 2	0.104	0.096	0.087	0.078	0.068	0.056	0.044	0.030	0.016			
C ₃	0.052	0.048	0.044	0.040	0.035	0.029	0.023	0.016	0.008			
i-C4	0.009	0.009	0.008	0.007	0.006	0.006	0.004	0.003	0.002			
n-C 4	0.022	0.021	0.019	0.017	0.015	0.013	0.011	0.008	0.005			
i-C 5	0.009	0.008	0.008	0.007	0.006	0.006	0.005	0.004	0.003			
n-C 5	0.012	0.011	0.010	0.009	0.008	0.007	0.006	0.005	0.004			
C ₆	0.017	0.016	0.015	0.014	0.013	0.012	0.011	0.009	0.006			
C 7+	0.157	0.155	0.153	0.151	0.148	0.145	0.142	0.137	0.131			
TOTAL	<u>1.000</u>	<u>0.931</u>	<u>0.858</u>	<u>0.778</u>	<u>0.692</u>	<u>0.600</u>	<u>0.503</u>	<u>0.397</u>	<u>0.287</u>	0.000	0.000	0.000

Figura 6-47 Moles totales(lbm-mol) contenidas en la celda para el PVT J-2

11) Cálculo de las moles de gas de cada elemento de la mezcla para cada etapa del agotamiento con la siguiente expresión:

$$n_{v(i,j)} = n_{v(i)} \left(\frac{y_{(i,j)}}{100}\right)$$

	Moles de vapor en la celda (n _v) [lb _m -mol]														
Presión (kg/cm²):	340.43	303.36	268.2	233.05	197.9	162.74	127.59	85.4	45.73						
N ₂	0.000	0.006	0.008	0.008	0.008	0.007	0.005	0.004	0.002						
CO ₂	0.000	0.006	0.007	0.007	0.007	0.006	0.005	0.003	0.002						
H₂S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
C 1	0.000	0.207	0.266	0.270	0.253	0.216	0.174	0.118	0.063						
C ₂	0.000	0.034	0.044	0.045	0.043	0.037	0.031	0.021	0.012						
C 3	0.000	0.016	0.020	0.021	0.020	0.018	0.015	0.010	0.006						
i-C 4	0.000	0.003	0.003	0.004	0.003	0.003	0.003	0.002	0.001						
n-C ₄	0.000	0.006	0.008	0.008	0.008	0.007	0.006	0.004	0.002						
i-C 5	0.000	0.002	0.003	0.003	0.003	0.003	0.002	0.001	0.001						
n-C 5	0.000	0.003	0.004	0.004	0.004	0.003	0.003	0.002	0.001						
C 6	0.000	0.003	0.004	0.005	0.004	0.004	0.003	0.002	0.001						
C 7+	0.000	0.008	0.011	0.011	0.011	0.010	0.008	0.006	0.003						
TOTAL	<u>0.000</u>	<u>0.293</u>	<u>0.380</u>	<u>0.387</u>	<u>0.365</u>	<u>0.313</u>	<u>0.254</u>	<u>0.174</u>	<u>0.094</u>	0.000	0.000	0.000			

Figura 6-48 Moles de gas (lb_m-mol) en la celda

12) Cálculo de moles extraídas de gas en cada etapa mediante la siguiente expresión:

$$\Delta n_{p(i,j)} = n_{v(i)} y_{(i,j)}$$

	Moles de vapor extraidas en cada etapa (Δn_p) [lb _m -mol]														
Presión (kg/cm²):	340.430	303.360	268.200	- 233.050	197.900	162.740	127.590	85.400	45.730		-				
N ₂	0.00000	0.00153	0.00161	0.00176	0.00186	0.00200	0.00208	0.00225	0.00231						
CO ₂	0.00000	0.00132	0.00139	0.00153	0.00163	0.00177	0.00185	0.00203	0.00211						
H ₂ S	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000						
C 1	0.00000	0.04873	0.05120	0.05591	0.05921	0.06372	0.06636	0.07186	0.07402						
C2	0.00000	0.00793	0.00843	0.00933	0.01003	0.01099	0.01167	0.01296	0.01366						
C ₃	0.00000	0.00367	0.00392	0.00438	0.00475	0.00528	0.00568	0.00640	0.00686						
i-C4	0.00000	0.00062	0.00067	0.00075	0.00081	0.00090	0.00096	0.00107	0.00114						
n-C4	0.00000	0.00146	0.00157	0.00174	0.00189	0.00207	0.00221	0.00246	0.00261						
i-C ₅	0.00000	0.00054	0.00057	0.00064	0.00069	0.00075	0.00080	0.00089	0.00095						
n-C 5	0.00000	0.00068	0.00072	0.00080	0.00086	0.00094	0.00100	0.00111	0.00117						
C ₆	0.00000	0.00080	0.00085	0.00095	0.00102	0.00114	0.00122	0.00141	0.00162		1				
C 7+	0.00000	0.00192	0.00207	0.00233	0.00255	0.00284	0.00308	0.00356	0.00403						
TOTAL	0.0000	0.0692	0.0730	0.0801	0.0853	0.0924	0.0969	0.1060	0.1105	####	####	####			
	4														

Figura 6- 49 Moles de gas extraídas (lb_m-mol) en cada etapa

13) Cálculo de las moles de líquido de cada elemento para cada etapa del agotamiento.

$$n_{liq(i,j)} = Z_{(i,j)} - n_{v(i,j)} - \sum \Delta n_{p(i,j)}$$

	Moles de líquido en la celda (n _L)[lb _m -mol]														
Presión (kg/cm²):	340.430	303.360	268.200	233.050	197.900	162.740	127.590	85.400	45.730						
N ₂	0.018	0.010	0.007	0.005	0.003	0.003	0.002	0.001	0.001						
CO ₂	0.016	0.009	0.006	0.005	0.003	0.003	0.002	0.001	0.001						
H₂S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
C 1	0.584	0.328	0.217	0.158	0.115	0.089	0.065	0.049	0.030						
C ₂	0.104	0.062	0.044	0.033	0.025	0.020	0.015	0.011	0.007						
C 3	0.052	0.033	0.024	0.019	0.015	0.012	0.009	0.007	0.005						
i-C ₄	0.009	0.006	0.005	0.004	0.003	0.003	0.002	0.002	0.001						
n-C₄	0.022	0.015	0.011	0.009	0.007	0.006	0.005	0.005	0.004						
i-C 5	0.009	0.006	0.005	0.004	0.004	0.003	0.003	0.003	0.002						
n-C₅	0.012	0.008	0.006	0.005	0.005	0.004	0.004	0.004	0.003						
C ₆	0.017	0.013	0.011	0.010	0.009	0.008	0.008	0.007	0.007						
C 7+	0.157	0.147	0.143	0.140	0.138	0.136	0.134	0.133	0.131						
TOTAL	<u>1.000</u>	<u>0.638</u>	<u>0.478</u>	<u>0.391</u>	<u>0.327</u>	<u>0.287</u>	<u>0.249</u>	<u>0.223</u>	<u>0.192</u>	0.000	<u>0.000</u>	0.000			

Figura 6- 50 Moles de líquido (lb_m-mol) en la celda

14) Cálculo de las fracciones mol de la fase líquida x_(i,j).

$$x_{(i,j)}[\%mol] = \frac{n_{liq(i,j)}}{\sum n_{liq(i,j)}} x100$$

Presión					011 0/ 01	ue las e	etapas (de agot	amient	o (x) [[% m	ווכ	
(kg/cm ²): 34	40.430	303.360	268.200	233.050	197.900	162.740	127.590	85.400	45.730	0.000	0.000	0.000	45.730
N ₂ 1	1.805	1.572	1.366	1.194	1.018	0.877	0.703	0.563	0.348				0.673
CO ₂	1.630	1.471	1.325	1.193	1.055	0.934	0.783	0.652	0.450				0.753
H₂S (0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				0.000
C ₁ 5	58.375	51.519	45.478	40.358	35.207	31.073	25.955	21.891	15.368		[25.093
C ₂ 1	10.381	9.764	9.118	8.457	7.684	6.922	5.959	5.026	3.723				5.760
C ₃ 5	5.195	5.135	5.010	4.822	4.549	4.205	3.773	3.308	2.687				3.678
i-C ₄ (0.939	0.960	0.965	0.958	0.935	0.908	0.873	0.831	0.775				0.865
n-C ₄ 2	2.219	2.278	2.305	2.304	2.281	2.244	2.191	2.127	2.050				2.184
i-C 5 (0.890	0.952	1.004	1.044	1.077	1.102	1.128	1.144	1.174				1.131
n-C 5	1.154	1.255	1.340	1.406	1.471	1.521	1.579	1.627	1.701				1.590
C ₆ 1	1.689	1.995	2.268	2.492	2.717	2.875	3.098	3.222	3.380		[3.102
C ₇₊ 1	15.730	23.099	29.821	35.773	42.006	47.342	53.960	59.610	68.344		[55.171
TOTAL 1	00.01	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	Y	·	•	100.00

Figura 6-51 Porcentaje mol de la fase líquida para el PVT J-2

15) Una vez calculados los porcentajes mol de fase líquida $(x_{(i,j)})$ y con los porcentajes de la fracción gas $(y_{(i,j)})$ de la prueba de liberación a volumen constante, se calcularon las contantes de equilibrio, para cada etapa, de cada elemento:

$$K_{(i,j)} = \frac{y_{(i,j)}}{x_{(i,j)}}$$

					Val	ores K	(y / x)			Liqui
	4840.91	4313.78	3813.80	3313.97	2814.14	2314.16	1814.33	1214.39	650.28	650
sión cm²):	340.430	303.360	268.200	233.050	197.900	162.740	127.590	85.400	45.730	 45.7
I ₂		1.40934	1.61370	1.83537	2.14083	2.46895	3.05833	3.77920	6.02246	 3.1
02		1.29761	1.44070	1.60078	1.81069	2.04655	2.44162	2.93069	4.24984	2.5
I2S										
C 1		1.36687	1.54227	1.72964	1.97174	2.21920	2.63846	3.09704	4.35899	2.6
C 2		1.17411	1.26639	1.37693	1.53047	1.71867	2.02048	2.43208	3.32010	2.1
C ₃		1.03219	1.07237	1.13303	1.22459	1.35901	1.55252	1.82425	2.31025	1.6
-C 4		0.93964	0.95020	0.97299	1.01779	1.06872	1.13205	1.21721	1.33682	1.1
-C ₄		0.92782	0.93018	0.94407	0.96905	0.99960	1.04130	1.09194	1.15404	1.0
-C 5		0.81894	0.78262	0.76082	0.74769	0.73868	0.73339	0.73624	0.73166	0.7
n-C 5		0.77878	0.73531	0.70852	0.68386	0.66880	0.65221	0.64124	0.62368	0.6
C ₆		0.57701	0.51151	0.47355	0.44160	0.43099	0.40609	0.41250	0.43369	0.4
C 7+		0.11983	0.09507	0.08129	0.07111	0.06495	0.05888	0.05635	0.05341	0.0

Figura 6-52 Constantes de equilibro (K) de cada elemento para cada etapa del agotamiento para PVT J-2

Figura 6-53 Comportamiento gráfico de las constates de equilibrio (K) para PVT J-2

De esta manera, ya calculadas las constates de equilibrio, se procede a calcular los pesos moleculares, masas y densidades de las fases líquida y gaseosas de cada etapa del agotamiento de la prueba.

16) Cálculo de la masa de gas producida.

$$m_{vp(i)} = (n_{p(i)})(M_{a(i)})$$

17) Cálculo de la masa total de la celda.

$$m_{tc(i)} = (m_{tc(i-1)}) - (m_{vp(i)})$$

18) Cálculo de la masa del gas en la celda.

$$m_{gc(i)} = (n_{v(i)})(M_{a(i)})$$

19) Cálculo de la masa del líquido en la celda.

$$m_{liqc(i)} = m_{tc(i)} - m_{vc(i)}$$

20) Cálculo de la densidad del gas en la celda.

$$\rho_{gasc(i)} = \frac{m_{gc(i)}}{V_{gas(i)}}$$

21) Cálculo de la densidad del líquido en la celda.

$$\rho_{liqc(i)} = \frac{m_{lqc(i)}}{V_{liq(i)}}$$

22) Cálculo del peso molecular del líquido en la celda.

$$M_{liq@p_i} = \frac{m_{tc(i)} - m_{gc(i)}}{n_{liq(i)}}$$

23) Peso molecular aparente de cada elemento de la fase líquida hasta el C_6 .

$$M_{a(i)} = \sum_{N_2}^{c_6} (x_{(i,j)}) (M_j)$$

De manera que el peso molecular de la fracción pesada de la fase líquida quedaría resuelto de la siguiente manera:

$$M_{C_{7}^{+}(i)} = \frac{M_{liq(i)} - \sum_{N_{2}}^{c_{6}} (x_{(i,j)})(M_{j})}{\left(\frac{x_{c_{7}+(i)}[\%]}{100}\right)}$$

$$M_{aC_{7}^{+}(i)} = \left(\frac{x_{c_{7+}(i)}[\%]}{100}\right)_{@p_{i}} M_{C_{7+}(i)}$$

			Pesc	o Molec	ular de	el Liqu	ido M _a	(lb _m /lb	m -mol)				Liquido
Presión (kg/cm2):	340.430	303.360	268.200	233.050	197.900	162.740	127.590	85.400	45.730				45.730
N ₂	0.506	0.440	0.383	0.335	0.285	0.246	0.197	0.158	0.097				0.189
CO ₂	0.717	0.647	0.583	0.525	0.464	0.411	0.345	0.287	0.198				0.331
H ₂ S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				0.000
C 1	9.365	8.265	7.296	6.475	5.648	4.985	4.164	3.512	2.466				4.026
C 2	3.122	2.936	2.742	2.543	2.311	2.081	1.792	1.511	1.119				1.732
C ₃	2.291	2.264	2.209	2.126	2.006	1.854	1.664	1.459	1.185				1.622
i-C4	0.546	0.558	0.561	0.557	0.544	0.528	0.507	0.483	0.450				0.503
n-C₄	1.290	1.324	1.340	1.339	1.326	1.304	1.273	1.237	1.192				1.269
i-C ₅	0.642	0.687	0.725	0.753	0.777	0.795	0.814	0.825	0.847				0.816
n-C 5	0.833	0.905	0.967	1.014	1.061	1.097	1.139	1.174	1.227				1.147
C ₆	1.456	1.719	1.954	2.147	2.342	2.477	2.670	2.777	2.913				2.673
C 7+	29.571	44.604	58.346	70.553	83.398	94.388	108.055	119.828	138.051				120.333
TOTAL	<u>50.337</u>	64.351	77.105	88.367	100.162	110.166	122.619	133.249	149.746	0.000	<u>0.000</u>	<u>0.000</u>	134.642
	_												

Figura 6-54 Peso molecular aparente de la fase líquida para PVT J-2

24) Cálculo del peso molecular aparente de la mezcla de gas en la celda

$$M_{agas(i)} = \frac{m_{gc(i)}}{n_{v(i)}}$$

25) Cálculo del peso molecular aparente del líquido en la celda

$$M_{aliq(i)} = \frac{m_{tc(i)} - \left(M_{agas(i)}n_{v(i)}\right)}{n_{liq(i)}}$$

26) Cálculo de volumen de gas producido

$$V_{gp(i)} = \frac{n_{p(i)} z_{(i)} TR}{p_{(i)}}$$

27) Cálculo de la densidad del gas producido

$$\rho_{gp(i)} = \frac{m_{vp(i)}}{V_{gp(i)}}$$

Masa vapor extraídas (m _{vp}) (lb _m -mol)	0	1.7782	1.8872	2.0848	2.2349	2.444	2.586	2.869	3.0513			
Masa total en la celda (m _{tcel}) (lb _m -mol)	50.337	48.559	46.672	44.587	42.352	39.91	37.32	34.45	31.402			
Masa del vapor en celda (m _{vk}) (lb _m -mol)	0	7.5378	9.82	10.077	9.5644	8.274	6.779	4.706	2.6036			
Masa del líquido en celda (m _{Lk}) (lb _m -mol)	50.337	41.021	36.852	34.51	32.788	31.63	30.54	29.75	28.798			1
Densidad del vapor (r _{vk}) g/cm ³	0	0.2144	0.1965	0.1764	0.1538	0.129	0.102	0.068	0.0359			
Densidad del líquido en celda (r _{Lk}) g/cm ³	0.433	0.5058	0.5559	0.5837	0.6065	0.607	0.614	0.634	0.6583			1
Peso molecular del liquido (M _{Lk}) (lb _m /lb _m -mol;	50.337	64.351	77.105	88.367	100.16	110.2	122.6	133.2	149.75			i
Peso molecular del C ₇ + (M ₇ ⁺) (lb _m /lb _m -mol)	187.99	193.1	195.66	197.23	198.54	199.4	200.3	201	201.99			218.11
Peso molecular del gas (M vk) (lb m/lb m-mol)	0	25.697	25.852	26.028	26.2	26.45	26.69	27.07	27.614			1
Peso molecular del liquido (M _{Lk}) (lb _m /lb _m -mol)	50.337	64.351	77.105	88.367	100.16	110.2	122.6	133.2	149.75			i
Volumen Vapor Prod. (V _{Vk}) (lb _m /lb _m -mol)	0	0.1328	0.1538	0.1893	0.2328	0.303	0.407	0.677	1.3612			1
Densidad del Vapor Prod. (r $_{Vk}$) g/cm 3	0	0.2144	0.1965	0.1764	0.1538	0.129	0.102	0.068	0.0359		ים	J

Figura 6-55 Resultados correspondientes a las masas, pesos moleculares y densidades calculadas para cada etapa del agotamiento para PVT J-2

6.3.3 Validación método de Bashbush para PVT J-2

Para el siguiente criterio de validación se utilizará el método de Bashbush para el cálculo de las constates de equilibro de cada elemento en función de un balance molar que se ejemplifica en la siguiente serie de pasos: 1. Cálculo de las moles totales.

$$N_T = \frac{\rho_D}{RZT} \dots \dots Para \ gas$$
$$N_T = \frac{\rho_o}{M_a} = \frac{m}{M_a V} \dots \dots Para \ aceite$$

~

2. Cálculo de las moles de fluido remanente.

$$N_{(i)} = N_T \left(1 - \frac{WSP_{(i)}}{100} \right)$$

3. Cálculo de las moles de gas.

$$N_{g(i)} = \frac{p_{(i)} \left(1 - \frac{RLV_{(i)}}{100}\right)}{10.732(z)(T)}$$

4. Cálculo de las moles de líquido.

$$N_{l(i)} = N_{(i)} - N_{g(i)}$$

5. Cálculo del factor de desviación Z de dos fases.

$$\left(Z_{2f}\right)_{(i)} = \frac{p_{(i)}}{RN_{(i)}T}$$

6. Cálculo de numero de moles retirados de la etapa.

$$S_{@p_i} = \frac{WSP_{(i)} - WSP_{(i-1)}}{100} (N_{T(i)})$$

Presión (kg/cm²)	340.43	303.4	268.2	233.05	197.9	162.74	127.59	85.4	45.73		
Presión (psia)	4840.91	4314	3813.8	3313.97	2814.1	2314.2	1814.3	1214.4	650.28		
Factor z	0	0.978	0.949	0.925	0.907	0.897	0.899	0.916	0.946		
N⊤ Gas (lb _m -mol)	0.00	0.521	0.4746	0.42311	0.3664	0.3047	0.2383	0.1566	0.0812		
WSP _j (%mol)	0	6.92	14.22	22.23	30.76	40	49.69	60.29	71.34		
RLV (%mol)	100	69.76	57.02	50.86	46.5	44.86	42.77	40.37	37.63		
N _j (Ib _m -mol)	0.537	0.5	0.4606	0.41763	0.3718	0.3222	0.2702	0.2132	0.1539		
(N _g) _j (lb _m -mol)	0	0.158	0.204	0.20791	0.196	0.168	0.1364	0.0934	0.0506		
(N _l) _j (Ib _m -mol)	0.537	0.342	0.2567	0.20971	0.1758	0.1542	0.1338	0.1199	0.1033		
(Z _{2pc})j	1.06461	1.019	0.9778	0.93713	0.8938	0.8482	0.7931	0.6725	0.499		
S _j (lb _m -mol)	0	0.037	0.0392	0.04301	0.0458	0.0496	0.052	0.0569	0.0593		
S _{j acum} (Ib _m -mol)	0	0.037	0.0764	0.11938	0.1652	0.2148	0.2668	0.3238	0.3831		

Figura 6-56 Balance molar para cada etapa de agotamiento para el PVT J-2

Los resultados mostrados en la *Figura 6-56*, son el comportamiento numérico del balance molar para cada etapa de prueba de agotamiento a volumen constante, con estos datos generales para cada etapa de presión, se procedió a discretizar el balance molar para cada elemento que compone la mezcla de hidrocarburos, de esta manera y siguiendo con la metodología se calcularán las constates de equilibrio.

7. Se realizó el análisis composicional para cada etapa de agotamiento.

En la primera etapa del agotamiento, se calcularon las moles totales y a partir de la segunda etapa se calcularon las moles retiradas de la celda. De manera que:

Para la composición original, moles totales:

$$N_{T(i,j)} = \frac{Z_{(i,j)}}{100} N_{(i)}$$

Para las etapas consecutivas a la primera:

$$S_{(i,j)} = y_{(i,j)}S_{(i)}$$

Figura 6- 57 Moles extraídas en cada etapa del agotamiento para PVT J-2

8. Cálculo de las moles de gas en la celda de cada etapa de agotamiento para cada elemento.

$$N_{g(i,j)} = y_{(i,j)} N_{g(i,j)}$$

				MOLES	S DE GA	AS EN L	A CELD	0A (Ib _m -	·mol)			
Presión (kg/cm²):	340.43	303.36	268.2	233.05	197.9	162.74	127.59	85.4	45.73			
N ₂	0	0.0035	0.0045	0.004557	0.0043	0.0036	0.0029	0.002	0.0011			
CO ₂	0	0.003	0.0039	0.003971	0.0037	0.0032	0.0026	0.0018	0.001			
H_2S	0	0	0	0	0	0	0	0	0			
C 1	0	0.1109	0.1431	0.145135	0.1361	0.1158	0.0934	0.0633	0.0339			
C 2	0	0.0181	0.0236	0.024212	0.0231	0.02	0.0164	0.0114	0.0063			
C 3	0	0.0083	0.011	0.011358	0.0109	0.0096	0.008	0.0056	0.0031			
i-C ₄	0	0.0014	0.0019	0.001938	0.0019	0.0016	0.0013	0.0009	0.0005			
n-C 4	0	0.0033	0.0044	0.004522	0.0043	0.0038	0.0031	0.0022	0.0012			
i-C 5	0	0.0012	0.0016	0.001651	0.0016	0.0014	0.0011	0.0008	0.0004			
n-C 5	0	0.0015	0.002	0.002071	0.002	0.0017	0.0014	0.001	0.0005			
C 6	0	0.0018	0.0024	0.002453	0.0024	0.0021	0.0017	0.0012	0.0007			
C 7+	0	0.0044	0.0058	0.006046	0.0059	0.0052	0.0043	0.0031	0.0018			
TOTAL	0	0.1575	0.204	0.207914	0.196	0.168	0.1364	0.0934	0.0506	0	0	0

Figura 6-58 Moles de gas en la celda de cada elemento para cada etapa del agotamiento del PVT J-2

9. Cálculo de moles extraídas a cumuladas.

$$\Sigma S_{(i,j)} = S_{(i,j)} + \left(\Sigma S_{(i-1,j)}\right)$$

				MOLES E	XTRAIL	DAS AC	UMULA	DAS (Ib	_m -mol)			
Presión (kg/cm²):	340.43	303.4	268.2	233.05	197.9	162.74	127.59	85.4	45.73			
N ₂	0	8E-04	0.0017	0.00263	0.0036	0.0047	0.0058	0.007	0.0083			
CO ₂	0	7E-04	0.0015	0.00228	0.0032	0.0041	0.0051	0.0062	0.0073			
H ₂ S	0	0	0	0	0	0	0	0	0			
C 1	0	0.026	0.0537	0.08369	0.1155	0.1497	0.1853	0.2239	0.2637			
C ₂	0	0.004	0.0088	0.0138	0.0192	0.0251	0.0314	0.0383	0.0456			
C 3	0	0.002	0.0041	0.00643	0.009	0.0118	0.0149	0.0183	0.022			
i-C4	0	3E-04	0.0007	0.0011	0.0015	0.002	0.0025	0.0031	0.0037			
n-C ₄	0	8E-04	0.0016	0.00256	0.0036	0.0047	0.0059	0.0072	0.0086			
i-C 5	0	3E-04	0.0006	0.00094	0.0013	0.0017	0.0021	0.0026	0.0031			
n-C 5	0	4E-04	0.0007	0.00118	0.0016	0.0021	0.0027	0.0033	0.0039			
C 6	0	4E-04	0.0009	0.00139	0.0019	0.0026	0.0032	0.004	0.0048			
C 7+	0	0.001	0.0021	0.00339	0.0048	0.0063	0.0079	0.0099	0.012			
TOTAL	0	0.037	0.0764	0.11938	0.1652	0.2148	0.2668	0.3238	0.3831	0	0	0

Figura 6-59 Moles extraídas acumuladas en cada etapa del agotamiento para PVT J-2

10. Cálculo de moles de líquido en la celda.

				MOLES L	DE LÍQU	IIDO EN	I LA CE	LDA (Ib	m -mol)			
Presión (kg/cm²):	340.43	303.36	268.2	233.05	197.9	162.74	127.59	85.4	45.73			
N ₂	0.009693	0.0054	0.0035	0.002505	0.0018	0.0014	0.0009	0.0007	0.0004			
CO ₂	0.008753	0.005	0.0034	0.002503	0.0019	0.0014	0.001	0.0008	0.0005			
H ₂ S	0	0	0	0	0	0	0	0	0			
C 1	0.313476	0.1764	0.1167	0.084652	0.0619	0.0479	0.0347	0.0263	0.0159			
C ₂	0.055746	0.0334	0.0234	0.017739	0.0135	0.0107	0.008	0.006	0.0038			
C 3	0.027897	0.0176	0.0129	0.010113	0.008	0.0065	0.005	0.004	0.0028			
i-C 4	0.005042	0.0033	0.0025	0.002009	0.0016	0.0014	0.0012	0.001	0.0008			
n-C 4	0.011916	0.0078	0.0059	0.004832	0.004	0.0035	0.0029	0.0026	0.0021			
i-C 5	0.004779	0.0033	0.0026	0.002189	0.0019	0.0017	0.0015	0.0014	0.0012			
n-C 5	0.006197	0.0043	0.0034	0.002949	0.0026	0.0023	0.0021	0.002	0.0018			
C 6	0.00907	0.0068	0.0058	0.005227	0.0048	0.0044	0.0041	0.0039	0.0035			
C 7+	0.084471	0.0791	0.0765	0.075034	0.0739	0.073	0.0722	0.0715	0.0706			
TOTAL	0.537042	0.3424	0.2567	0.209752	0.1758	0.1542	0.1338	0.1199	0.1033	0	0	0

$$N_{l(i,j)} = N_{T(i,j)} - N_{g(i,j)} - \Sigma S_{(i,j)}$$

Figura 6-60 Moles de líquido en la celda para cada elemento de cada etapa del agotamiento para PVT J-2

11. Cálculo de porcentaje de líquido (x) en la celda.

$$x_{(i,j)} = \frac{N_{l(i,j)}}{N_{l(i)}}$$

				PORCEN	ITAJE DE	LIQUIDO		ELDA x (S	%mol)				LIQUIDO
Presión (kg/cm²):	340.43	303.36	268.2	233.05	197.9	162.74	127.59	85.4	45.73				45.73
N ₂	1.805	1.5717	1.3664	1.194309	1.0183	0.8769	0.7027	0.5628	0.3475				0.673
CO ₂	1.63	1.4712	1.3251	1.193168	1.0548	0.9338	0.7831	0.6524	0.4499				0.753
H ₂ S	0	0	0	0	0	0	0	0	0				0
C 1	58.375	51.519	45.478	40.35812	35.207	31.073	25.955	21.891	15.368				25.093
C 2	10.381	9.764	9.118	8.457213	7.6839	6.9216	5.959	5.0257	3.7228				5.76
С3	5.195	5.1347	5.0104	4.821588	4.5493	4.2045	3.7726	3.3082	2.6867				3.678
i-C4	0.939	0.9599	0.9651	0.957873	0.9354	0.9076	0.8728	0.8306	0.775				0.865
n-C₄	2.219	2.2785	2.3049	2.303859	2.2806	2.2439	2.1905	2.1274	2.0502				2.184
i-C 5	0.89	0.9525	1.0043	1.043612	1.0766	1.102	1.1276	1.1436	1.174				1.131
n-C 5	1.154	1.2545	1.3396	1.405754	1.4711	1.5206	1.5792	1.6265	1.7012				1.59
C 6	1.689	1.9948	2.2678	2.491802	2.7174	2.8747	3.0978	3.2218	3.3803				3.102
C 7+	15.73	23.099	29.821	35.7727	42.006	47.342	53.96	59.61	68.344				55.171
TOTAL	100.007	100	100	100	100	100	100	100	100	0	0	0	100

Figura 6-61 Porcentaje mol para la fracción líquida de cada elemento en cada etapa del agotamiento para PVT J-2

12. Cálculo de las constantes de equilibrio:

$$K_{i,j} = \frac{y_{i,j}}{x_{i,j}}$$

			CONSTA	NTES L	E EQU	LIBRIO	K BASH	HBUSH		
Presión (kg/cm ²):	303.36	268.2	233.05	197.9	162.74	127.59	85.4	45.73		
N ₂	1.4093	1.6137	1.835372	2.1408	2.4689	3.0583	3.7792	6.0225		
CO ₂	1.2976	1.4407	1.60078	1.8107	2.0466	2.4416	2.9307	4.2498		
H ₂ S	0	0	0	0	0	0	0	0		
C 1	1.3669	1.5423	1.72964	1.9717	2.2192	2.6385	3.097	4.359		
C ₂	1.1741	1.2664	1.376931	1.5305	1.7187	2.0205	2.4321	3.3201		
C 3	1.0322	1.0724	1.133029	1.2246	1.359	1.5525	1.8243	2.3102		
i-C ₄	0.9396	0.9502	0.972989	1.0178	1.0687	1.132	1.2172	1.3368		
n-C4	0.9278	0.9302	0.944068	0.9691	0.9996	1.0413	1.0919	1.154		
i-C ₅	0.8189	0.7826	0.760819	0.7477	0.7387	0.7334	0.7362	0.7317		
n-C ₅	0.7788	0.7353	0.708517	0.6839	0.6688	0.6522	0.6412	0.6237		
C 6	0.577	0.5115	0.473553	0.4416	0.431	0.4061	0.4125	0.4337		
C 7+	0.1198	0.0951	0.081291	0.0711	0.065	0.0589	0.0563	0.0534		
Presión (psia):	4313.8	3813.8	3313.971	2814.1	2314.2	1814.3	1214.4	650.28		

Figura 6-62 Constantes de equilibrio (K) de cada elemento en cada etapa del agotamiento para PVT J-2

Figura 6-63 Comportamiento gráfico de las constantes de equilibrio (K) para PVT J-2

13. Cálculo del peso molecular aparente de la fase líquida.

$$M_{a(i,j)} = (x_{i,j})(M_j)$$

			PES	O MOLEC	ULAR PI	ROMEDIC	D DEL A	CEITE [Ib	o _m /lb _m -m	ol]			Liquido
Presión (kg/cm²):	340.43	303.36	268.2	233.05	197.9	162.74	127.59	85.4	45.73				45.73
N ₂	0.505635	0.4403	0.3828	0.334562	0.2853	0.2456	0.1968	0.1577	0.0974				0.18853
CO ₂	0.717363	0.6475	0.5832	0.525113	0.4642	0.4109	0.3446	0.2871	0.198				0.3314
H ₂ S	0	0	0	0	0	0	0	0	0				0
C 1	9.365101	8.2652	7.296	6.474653	5.6482	4.985	4.1639	3.5119	2.4655				4.02567
C ₂	3.121567	2.936	2.7418	2.543084	2.3106	2.0813	1.7919	1.5112	1.1194				1.73203
C 3	2.290839	2.2643	2.2094	2.126176	2.0061	1.8541	1.6636	1.4588	1.1848				1.62189
i-C ₄	0.545784	0.558	0.5609	0.556754	0.5437	0.5276	0.5073	0.4828	0.4504				0.50277
n-C₄	1.289772	1.3243	1.3397	1.339095	1.3256	1.3042	1.2732	1.2365	1.1917				1.26943
i-C 5	0.642144	0.6872	0.7246	0.752976	0.7768	0.7951	0.8136	0.8252	0.8471				0.81603
n-C 5	0.832623	0.9052	0.9665	1.014265	1.0614	1.0971	1.1394	1.1736	1.2274				1.1472
C ₆	1.455546	1.719	1.9543	2.147385	2.3418	2.4774	2.6697	2.7765	2.9131				2.67324
C 7+	29.57083	44.604	58.346	70.55312	83.398	94.388	108.05	119.83	138.05				120.333
TOTAL	50.3372	64.351	77.105	88.36718	100.16	110.17	122.62	133.25	149.75	0	0	0	134.642

Figura 6-64 Peso molecular de la fase líquida para cada etapa del agotamiento para PVT J-2

6.3.4 Validación por método de Hoffmann-Crump-Hocott para PVT J-2

La metodología de Hoffmann, Hocott, & Crump,(1953) consite en determinar un Factor de Caracterización "*B*", que está en función de las temperaturas críticas y de ebullición de los componentes C_1 a C_6 . Este factor al ser graficado por el producto de las constantes de equilibrio *K* con la presión en cada etapa de separación. De manera que se tendrá un gráfico log(K * p) vs B.

$$B = b\left(\frac{1}{T_B}\right) - \frac{1}{T}$$

Dónde:

b=pendiente de la línea recta que une el punto crítico y el punto de ebullición a presión atmosférica en una gráfica de presión de vapor vs 1 / T.

$$b = \frac{\log(p_c/14.7)}{\frac{1}{T_B} - \frac{1}{T_C}}$$

A una presión dada los puntos de log Kp vs B, correspondientes a varios componentes deben alinearse a través de una recta. Así al aplicar este criterio a la prueba CVD se debe obtener un número de rectas igual al número de etapas de agotamiento y al aplicarlo al separador se obtiene una sola. De esta forma y ejecutando el programa de cálculo se obtuvieron los siguientes resultados:

			HOF	-MANN, C	RUMP, H	юсотт	(AIME VO	DL. 198,	1953)		
Ρι	into de Ebui	llición	Temperatu	ıra Crítica			Presid	on Critica	a F	actor de	e caracterizacion
		-		¥					1		-
Componer	T _B nte (°F)	T _B (°R)	1/T _B (1/°R)	T _C (°F)	T _C (°R)	1/T _C (1/°R)	1/T (1/°R)	P _C (nsia)	Ь	В	
	C ₁ -258.69	200.9	8 0.005	-116.6	343.04	0.0029	0.0013	667.8	804.33	2.9826	
	C ₂ -127.48	3 332.1	9 0.003	90.09	549.76	0.0018	0.0013	707.8	1412.3	2.4616	
	C ₃ -43.67	416	0.0024	206.01	665.68	0.0015	0.0013	616.3	1799.5	2.045	
i-(C₄ 10.9	470.5	7 0.0021	274.98	734.65	0.0014	0.0013	529.1	2037.2	1.7472	
n-	C₄ 31.1	490.7	7 0.002	305.65	765.32	0.0013	0.0013	550.7	2152.7	1.658	
i-(C ₅ 82.12	541.7	9 0.0018	369.1	828.77	0.0012	0.0013	490.4	2383.3	1.3783	
n-	C ₅ 96.92	556.5	9 0.0018	385.7	845.37	0.0012	0.0013	488.6	2479.3	1.3121	
	C ₆ 155.72	615.3	9 0.0016	453.7	913.37	0.0011	0.0013	436.9	2778.6	0.9935	
								T (°R)=	789		

Figura 6-65 Cálculo del factor de caracterización B de cada elemento para PVT J-2

Se realizó el cálculo de K por p usando las constantes de equilibrio calculadas con el método de Whitson & Torp (1981), en la *Figura 6-66* se muestran los resultados:

Cálculo de K * P		Consta	ntes de	Equilibri	io a la Pr	esión de	e Análisi	s tomad	lo de Mé	todo de	Whitson	
Presión kg/cm²	340.43	303.36	268.2	233.05	197.9	162.74	127.59	85.4	45.73			
C 1	0	414.65	413.64	403.09	390.208	361.15	336.64	264.49	199.34			
C 2	0	356.18	339.65	320.89	302.88	279.7	257.79	207.7	151.83			
C ₃	0	313.12	287.61	264.05	242.347	221.17	198.09	155.79	105.65			
<i>i-</i> C ₄	0	285.05	254.84	226.76	201.422	173.92	144.44	103.95	61.133			
n-C ₄	0	281.46	249.47	220.02	191.775	162.67	132.86	93.251	52.774			
<i>i-</i> C₅	0	248.43	209.9	177.31	147.968	120.21	93.573	62.875	33.459			1
n-C ₅	0	236.25	197.21	165.12	135.335	108.84	83.215	54.762	28.521			
C ₆	0	175.04	137.19	110.36	87.3917	70.14	51.813	35.227	19.832			Í

Figura 6-66 Cálculo de K*p usando las constantes de equilibrio calculadas con el método de Whitson & Torp

Figura 6-67 Dispersión gráfica de Log(K*p) vs B (constantes de equilibrio calculadas por Whitson&Torp)

Se realizo el cálculo de K por p usando las constantes de equilibrio calculadas con el método de Bashbush(1981), en la *Figura 6-68* se muestran los resultados:

Cálculo de K * P		Const	Constantes de Equilibrio a la Presión de Análisis tomado de Método de Bashbush											
Presión kg/cm²	340.43	303.36	268.2	233.05	197.9	162.74	127.59	85.4	45.73					
C 1	0	414.65	413.64	403.09	390.208	361.15	336.64	264.49	199.34					
C 2	0	356.18	339.65	320.89	302.88	279.7	257.79	207.7	151.83					
C 3	0	313.12	287.61	264.05	242.347	221.17	198.09	155.79	105.65					
i-C₄	0	285.05	254.84	226.76	201.422	173.92	144.44	103.95	61.133					
n-C₄	0	281.46	249.47	220.02	191.775	162.67	132.86	93.251	52.774					
i-C ₅	0	248.43	209.9	177.31	147.968	120.21	93.573	62.875	33.459					
n-C₅	0	236.25	197.21	165.12	135.335	108.84	83.215	54.762	28.521					
C ₆	0	175.04	137.19	110.36	87.3917	70.14	51.813	35.227	19.832					
- 0		1 2.0 .								1	1	1		

Figura 6-68 Cálculo de K*p usando las constantes de equilibrio calculadas con el método de Bashbush

Figura 6-69 Dispersión gráfica de Log(K*p) vs B (contantes de equilibrio calculadas por Bashbush

6.3.5 Análisis de resultados de la validación para PVT J-2

Se presenta la comparación de la composición del líquido calculada y experimental en la última etapa y el error calculado entre ambos valores.

Figura 6-70 Composición de líquido en la última etapa de separación, medida y calculada.

La diferencia entre estos dos conjuntos de valores debe ser mínima. Todos los reportes de CVD incluyen el análisis de la composición del líquido remanente de la última etapa de agotamiento. Esta composición debe ser comparada con la composición calculada.

Para la mayoría de los componentes con concentraciones molares iniciales mayores a 0.4%, la diferencia entre la composición calculada y la medida en el laboratorio debe ser menor a 1%. En la siguiente tabla se comparan dichas composiciones y se presenta el error calculado, donde se observa que en todos los componentes no cumple.

	Calculado[%mol]	Medido	%Error
N ₂	0.348	0.673	-93.651
CO ₂	0.450	0.753	-67.371
H ₂ S	0.000	0.000	0.000
C ₁	15.368	25.093	-63.278
C ₂	3.723	5.760	-54.723
C₃	2.687	3.678	-36.895
i-C₄	0.775	0.865	-11.617
n-C₄	2.050	2.184	-6.526
i-C₅	1.174	1.131	3.666
n-C₅	1.701	1.590	6.536
C ₆	3.380	3.102	8.234
C ₇ ⁺	68.344	55.171	19.275

Tabla 6-12 Resultados de la composición del líquido en la última etapa del agotamiento para PVT J-2

Se puede evaluar que los porcentajes de error son muy grandes, lo cual indica inconsistencia en los datos reportados del líquido remanente en la celda luego de finalizada la última etapa de agotamiento.

Con respecto al comportamiento del equilibrio de fases, las curvas de las constantes de equilibrio deben presentarse de manera que en el comportamiento no exista alguna joroba o cruzamiento. En la *Figura 6-71* se puede observar el orden adecuado de las curvas, manteniendo convergencia a un punto fuera de los rangos de presión experimentales sin alguna irregularidad entre ellas, con las curvas de los iso-componentes por encima de las curvas de los componentes normales.

Las curvas de las constantes de equilibrio deben seguir el siguiente orden:

- Nitrógeno, (N_2) .
- Metano y Dióxido de Carbono, (*C*₁, *CO*₂).
- Etano o ácido sulfhídrico, (C₂ o H₂S) dependiendo de la composición del fluido y la temperatura del yacimiento.
- Por debajo de las curvas anteriormente mencionadas, se deben graficar las curvas del resto de los componentes, en el orden de su peso molecular. Los valores-K del iso-butano y del iso-pentano deben ser siempre mayores que el de los correspondientes a los componentes normales.

Figura 6-71 Comportamiento típico de las constates de equilibrio para una muestra de aceite volátil

Los valores-K (constantes de equilibrio), observados en el pozo J-2 muestran un comportamiento satisfactorio puesto que el orden de las curvas es el adecuado y no existen anomalías y cruces entre ellas.

Sin embargo, el cálculo de las constantes de equilibrio medidas en el laboratorio y las calculadas con la metodología, tanto de Whitson como la de Bashbush en la última etapa de separación tienen un margen de error aceptable.

A continuación, se presentan las gráficas del comportamiento de:

- Constantes de equilibrio versus presión obtenidas a través de los métodos de Whitson y Bashbush.
- La comparación entre las constantes de equilibrio calculada y obtenida de la última etapa del agotamiento a través del método de Whitson.
- La comparación entre las constantes de equilibrio con respecto a la presión obtenidas a través de los dos métodos (Whitson y Bashbush).

Figura 6-72 Análisis y comportamiento de las constantes de equilibrio por el método de Whitson y Bashbush

Por otro lado, comparando los valores de la densidad de aceite, la medición presenta considerables porcentajes de error con respecto a los datos calculados, por lo que se considera que la densidad reportada en laboratorio no es consistente. En la tabla anexa se presentan los cálculos correspondientes al error obtenidos para esta prueba.

Presión	kg/cm ²	340.430	303.360	268.200	233.050	197.900	162.740	127.590	85.400	45.730
(p _o) Medido	(g/cm ³)	0.433	0.483	0.527	0.547	0.564	0.581	0.599	0.622	0.648
(ρ _o) Calculado	(g/cm ³)	0.433	0.506	0.556	0.584	0.607	0.607	0.614	0.634	0.658
	%Error	0.000	4.513	5.206	6.282	7.013	4.220	2.490	1.869	1.566

Figura 6-73 Valores medidos y calculados de la densidad del aceite para PVT J-2

A continuación, se presenta la gráfica de la masa molecular medida y calculada del líquido, el gas y la fracción C_7^+ del aceite en cada etapa de separación, mostrando que tienen un comportamiento bastante aceptable ambos datos. En el caso del peso molecular medido del líquido, no fue reportado, por lo que en la gráfica no aparece, mientras que los otros comportamientos son aceptables para esta prueba.

Figura 6-74 Masa molecular medida y calculada del líquido, el gas y la fracción C_7^+ del aceite en cada etapa de separación

Con la metodología de Hoffmann-Crump se calculan factores de caracterización B para cada elemento hidrocarburos (C_1 - C_6). En general, estas líneas deben ser monotónicas con la presión y no debe existir cruce entre líneas, lo cual sería reflejo de un desequilibrio termodinámico. El siguiente gráfico muestra el resultado del pozo J-2 para las constantes de equilibrio calculadas a través de los métodos de Whitson y Bashbush.

Todas las presiones presentan un buen comportamiento, por lo que se puede considerar como una prueba bastante satisfactoria, ya que no existe gran dispersión de puntos para una presión dada o no existe cruce de líneas que pudiesen mostrar inconsistencia en la prueba.

Figura 6-75 Comparación de método de Hoffman y Hoccot para las constantes de equilibrio K (Whitson y Bashbush)

En resumen:

De acuerdo a la revisión realizada sobre el informe final de los resultados del análisis PVT del pozo J-2 se pueden realizar las siguientes afirmaciones:

- Fueron reportados los experimentos de:
 - a) Composición original del fluido de yacimiento.
 - **b**) Agotamiento a Volumen Constante (CVD)
 - c) Volumen de líquido recuperado.

Contando todos con sus datos mínimos necesarios para cada uno de ellos.

- Se realizaron las siguientes pruebas de validación:
 - a) Validación por pruebas de clasificación de León G.A.
 - **b**) Validación por pruebas de clasificación de Méndez L.T
 - c) Validación por pruebas de clasificación de Pérez H.R
 - d) Validación Whitson-Torp por balance de materia.
 - e) Validación de balance molar por método de Bashbush.
 - f) Validación por Hoffmann-Crump-Hocott.
- De acuerdo a las pruebas realizadas se puede afirmar que el análisis PVT del pozo J-2 es consistente por lo tanto es válido, ya que de las pruebas realizadas presenta consistencia en la mayoría de los resultados reportados.

RECOMENDACIONES

• Tener en consideración que la medición de la composición de la última etapa del agotamiento, presenta inconsistencias considerables, así como las mediciones correspondientes a la densidad del aceite.

6.4 PVT pozo T-115

Con los datos correspondientes a la prueba de análisis composicional y agotamiento a volumen contante, a continuación, se analizará una muestra de gas y condensado del PVT correspondiente al pozo T-115. Cabe mencionar que, para esta prueba, la composición original corresponde a un gas, así como las mediciones de la composición para cada etapa del agotamiento. Además, también se midió la composición del líquido remanente en la última etapa de la prueba.

Resumen del reporte PVT										
Campo:	Т									
Pozo:	T-115									
Tipo de Muestreo:	Fondo									
Tipo de fluido:	Gas y Condensado									
°API =	46.2									
Temperatura de yacimiento (ºC)=	183.2									
Presión de Burbuja (kg/cm²) =	373.69									
$RGA(m^3/m^3) =$	791.6									

Figura 6-76 Datos generales para PVT T-115

	Mezcla Original		Compos	sición del va	apor en c/u c	le las etapa	s de agotan	niento y _(i,j) ('% mol)		Líquido
Presión (kg/cm²)	373.69	338.51	310.39	275.23	240.08	197.9	155.71	113.53	74.86	53.76	53.76
N ₂	0.355	0.384	0.395	0.4	0.402	0.402	0.401	0.39	0.375	0.36	0.05
CO ₂	2.535	2.699	2.75	2.77	2.773	2.789	2.781	2.764	2.707	2.68	0.65
H ₂ S	5.443	5.391	5.381	5.391	5.424	5.494	5.605	5.765	5.972	6.133	3.66
C1	64.251	68.629	69.981	70.576	70.863	70.969	70.871	70.141	68.791	67.25	15.1
<i>C</i> ₂	8.032	8.334	8.336	8.311	8.317	8.361	8.398	8.513	8.655	8.895	4.12
C_3	3.868	3.888	3.812	3.775	3.754	3.758	3.791	3.92	4.128	4.372	3.41
i-C₄	0.784	0.767	0.74	0.726	0.719	0.717	0.725	0.755	0.811	0.882	0.98
n-C4	1.694	1.643	1.576	1.54	1.525	1.52	1.541	1.608	1.732	1.898	2.31
<i>i</i> -C ₅	0.709	0.667	0.628	0.61	0.599	0.595	0.6	0.631	0.693	0.764	1.29
<i>n</i> - <i>C</i> ₅	0.878	0.818	0.767	0.742	0.732	0.723	0.728	0.768	0.846	0.937	1.7
C_6	1.276	1.148	1.05	1.006	0.984	0.969	0.964	1.022	1.142	1.266	3.21
C7 ⁺	10.175	5.632	4.584	4.153	3.908	3.703	3.595	3.723	4.148	4.563	63.52
TOTAL	100	100	100	100	100	100	100	100	100	100	100
PMC ₇ + (g/g-mol)	175.54	66.74	56.17	51.14	48.11	45.5	43.8	44.08	46.49	48.96	208.5
z	1.0307	0.996	0.975	0.952	0.932	0.917	0.912	0.918	0.933	0.946	
ΣΔn _{pi} (%)	0	5.88	11.08	18.22	26.22	36.59	47.7	59.72	71.12	77.6	
$\rho_g (g/cm^3)$	0.366	0.225	0.201	0.179	0.158	0.131	0.104	0.076	0.050	0.037	
S _L (%)		13.7	20.14	23.26	24.5	24.64	24.16	22.85	20.52	18.87	

Prueba de composición a volumen constante (CVD) de la muestra 1.01

Los datos mencionados se montaron en el programa de cálculo y se procedió el análisis correspondiente: A continuación, se muestran los resultados obtenidos al aplicar las metodologías de validación por clasificación

Figura 6-77 Datos medidos de la prueba de agotamiento a volumen constante para PVT T-115

POZO: FECHA:	T-115 2018 °API	46.2	1					V	4/	_//	DA	C	10	N	P	V	7		
Temperatura del Ya	acimiento (T).	: 183.2	°C →	821.8	°R						Gaa	. Ca	ndon	cada					
Presión de Sa	turación (p _s)	: 373.69	kg/cm ²	→ 5313.9	psia			Gas y congensado											
Densid	ad a Ps (p _b)	: 0.3634	$g/cm^3 \rightarrow$	22.69	Ib m/ft ³														
Constante de lo	os Gases (R).	: 10.732	psia-ft ³ /mol-	-°R 8.3143	J/mol-°K			CVD											
F	$RGA (m^3/m^3)$	791.6	ľ				Mezcla		Comp	osición d	lel vapor	en c/u a	le las eta	ipas de a	agotamie	nto y ; (9	6 mol)		
	CC	OMPOSICI	ION ORIGIN	AL			Original					Vapor			<u> </u>	.,	, í	Lic	quido
	COMPONENT	≊ % mol	Peso Molecula (g/g-mol)	ar M. (g/g-mol)		Presión (kg/cm²):	373.69	338.51	310.39	275.23	240.08	197.9	155.71	113.53	74.86	53.76		5	53.76
	N 2	0.355	28.013	0.0994]	N 2	0.355	0.384	0.395	0.4	0.402	0.402	0.401	0.39	0.375	0.36		(0.05
	CO 2	2.535	44.01	1.1157		CO ₂	2.535	2.699	2.75	2.77	2.773	2.789	2.781	2.764	2.707	2.68		(0.65
	H₂S	5.443	34.076	1.8548		H₂S	5.443	5.391	5.381	5.391	5.424	5.494	5.605	5.765	5.972	6.133		2	3.66
	C 1	64.251	16.043	10.308]	C1	64.251	68.629	69.981	70.576	70.863	70.969	70.871	70.141	68.791	67.25		1	15.1
	C 2	8.032	30.07	2.4152		C ₂	8.032	8.334	8.336	8.311	8.317	8.361	8.398	8.513	8.655	8.895		4	4.12
	C 3	3.868	44.097	1.7057		C ₃	3.868	3.888	3.812	3.775	3.754	3.758	3.791	3.92	4.128	4.372		3	3.41
	i-C ₄	0.784	58.124	0.4557		i-C₄	0.784	0.767	0.74	0.726	0.719	0.717	0.725	0.755	0.811	0.882		(0.98
	n-C₄	1.694	58.124	0.9846		n-C₄	1.694	1.643	1.576	1.54	1.525	1.52	1.541	1.608	1.732	1.898		2	2.31
	i-C 5	0.709	72.151	0.5116		i-C₅	0.709	0.667	0.628	0.61	0.599	0.595	0.6	0.631	0.693	0.764		1	1.29
	n-C 5	0.878	72.151	0.6335		n-C₅	0.878	0.818	0.767	0.742	0.732	0.723	0.728	0.768	0.846	0.937			1.7
	C ₆	1.276	86.178	1.0996		C ₆	1.276	1.148	1.05	1.006	0.984	0.969	0.964	1.022	1.142	1.266		3	3.21
	C7*	10.175	175.54	17.861		C 7+	10.175	5.632	4.584	4.153	3.908	3.703	3.595	3.723	4.148	4.563		6	33.52
		100.000		39.045	(lb m/lb m-mol)	TOTAL	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>			100
Clasificad	ión V	alidación V	Vhitson	Pes	o Molecular C ₇ * (M)	(lb_m/lb_m-mol)	175.54	66.74	56.17	51.14	48.11	45.50	43.80	44.08	46.49	48.96		20	08.500
				Factor de (Compresibilidad (Z)	(adim)	1.0307	0.996	0.975	0.952	0.932	0.917	0.912	0.918	0.933	0.95			
Validación Ba	shbush	Validacio	ón Mol	es de vapor	rproducidas (ΣΔn _{pi})	(%)	0	5.88	11.08	18.22	26.22	36.59	47.7	59.72	71.12	77.60			
		numann•C	aump	Den	sidad del vapor (p _o)	(g/cm ³)													
	MCR			liq	uido retrogrado (%)	(%)		13.7	20.14	23.26	24.5	24.64	24.16	22.85	20.52	18.87		2	24.64
-	WON			Peso Mole	ecular gas y líquido	(lb m/lb m-mol)	39.045			l				l	I				

Figura 6- 78 Hoja de datos principal para la validación del PVT T-115 6.4.1 Validación por clasificación para PVT T-115

Para comenzar los criterios de clasificación, en el experimento de agotamiento a volumen constante, la primera etapa corresponde la composición original del fluido, de manera que con estos datos y recordando que Alfredo León García (2013), se obtuvieron los siguientes resultados:

Figura 6-79 Resultados de la prueba de validación por clasificación de Alfredo León para PVT T-115

Finalmente se puede concluir que a partir del peso molecular promedio de la mezcla y de la presión de saturación registrada y tomando como referencia los parámetros de la clasificación de Alfredo León:

$$M_a \rightarrow 39.044 (g - mol) < 44 (g - mol)$$

✓ Cumple como Gas y Condensado con la clasificación de Alfredo León

Para la clasificación de Tiburcio Méndez (1979), se tomó en cuenta los parámetros de referencia de la gráfica denominada "La Colorina" en el cual se grafican los % de volumen liquido (saturación de líquido) con respecto a una presión adimensional. De tal forma que:

Figura 6-80 Resultados de la prueba de validación por clasificación de Tiburcio Méndez para el PVT T-115

En la *Figura 6-80* se muestra el resultado final de la ejecución de la hoja de cálculo para la validación de esta clasificación, como se podrá observar los porcentajes de volumen relativos son bajos, por ende, estos puntos se alojarían en la parte superior de la gráfica, indicador de que corresponde a un gas y condensado.

✓ Cumple como Gas y Condensado con la clasificación de Tiburcio Méndez

Para los criterios de clasificación de fluidos propuesta por Rafael Pérez Herrera, se necesitan los valores de RGA y las fracciones mol de los componentes de la fracción ligera y la fracción pesada (c_1 y c_{7+} + respectivamente). De esta manera:

$$RGA = 791.6(m^{3}/m^{3})$$
$$c_{1} = 64.251\% mol$$
$$c_{7}^{+} = 10.175\% mol$$

A partir de estos datos el análisis y los datos obtenidos por el programa de cálculo son los siguientes:

Figura 6-81 Resultados de la prueba de validación por clasificación de Rafael Pérez Herrera para PVT T-115
A partir de estos datos el análisis es el siguiente, mostrados además en la Figura 6-81:

Para clasificar como Gas y Condensado en función de la fracción ligera se debe cumplir el siguiente criterio:

$$500 < RGA < 9000$$

$$63 < C_1 < 88$$

$$500 < 791.6 < 9000$$

$$63 < 64.251 < 88$$

✓ Cumple como Gas y Condensado con la clasificación de Rafael Pérez Herrera para componentes ligeros.

Para clasificar como Gas y Condensado en función de la fracción ligera se debe cumplir el siguiente criterio:

500 < RGA < 9000 $2 < C_7^+ < 14$ 500 < 75.5 < 90002 < 10.175 < 35

 ✓ Cumple como Gas y Condensado con la clasificación de Rafael Pérez Herrera para componentes pesados

6.4.2 Validación por método de Whitson-Torp para el PVT T-115

A continuación, se procede con la validación por el método de Whitson-Torp (1981), en donde a partir de los datos del experimento de agotamiento a volumen constante, se calcularon las constantes de equilibrio, para esta metodología se obtuvieron los siguientes resultados:

• Para el balance molar y volumétrico de cada etapa del agotamiento se obtuvo:

Masa Molecular a Pb (Mb): 39.04 (lb _m /lb _m -mol)	
Volumen en la Celda (Vcel): 1.7106 ft ³ /lb _m -mol	

Figura 6-82 Peso molecular aparente de la mezcla original, volumen de la celda que se mantuvo constante durante la prueba

Presion	kg/cm ²	373.690	338.510	310.390	275.230	240.080	197.900	155.710	113.530	74.860	53.760	0.000	0.000	53.760
	-													
Volumen Líquido Celda (VLk)	ft ³	0.000	0.234	0.345	0.398	0.419	0.421	0.413	0.391	0.351	0.323			
Volumen Vapor Celda (VVk)	ft ³	1.711	1.476	1.366	1.313	1.291	1.289	1.297	1.320	1.360	1.388			
Volumen total en la celda (VLk=VVk)	ft ³	1.711	1.711	1.711	1.711	1.711	1.711	1.711	1.711	1.711	1.711			
Moles de vapor en celda (n _{Vk})	lb _m -mol	1.000	0.809	0.701	0.612	0.536	0.449	0.357	0.263	0.176	0.127			
Moles Totales en celda (n tk)	lb _m -mol	1.000	0.941	0.889	0.818	0.738	0.634	0.523	0.403	0.289	0.224			
Moles vapor prod. C/etapa (Dn _{pi})	lb _m -mol	0.000	0.059	0.052	0.071	0.080	0.104	0.111	0.120	0.114	0.065			
Moles de líquido en celda (n _{Lk})	lb _m -mol	0.000	0.132	0.188	0.206	0.201	0.186	0.166	0.140	0.113	0.097			
Moles Totales del sistema (n t)	lb _m -mol	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			

Figura 6-83 Resultados del balance molar y volúmenes para cada etapa del agotamiento para el PVT T-115

 En cuanto al análisis de cada elemento para cada etapa de la prueba de agotamiento a volumen constante, se obtuvieron los cálculos del peso molecular aparente de las fases líquidas y gaseosas, así como sus respectivas composiciones en porcentaje mol. De esta forma se calcularon, los siguientes valores:

Cálculo del peso molecular aparente de las composiciones del gas, registradas en el reporte PVT para la prueba de agotamiento a volumen constante.

omponente		Pes	o Mole	ecular .	Aparer	nte de	la mez	cla M ;	, [lb _m /	/lb_m-n	nol]		Liquid
Presión (kg/cm²):	373.690	338.510	310.390	275.230	240.080	197.900	155.710	113.530	74.860	53.760	0.000	0.000	53.76
N ₂	0.099	0.108	0.111	0.112	0.113	0.113	0.112	0.109	0.105	0.101			0.014
CO ₂	1.116	1.188	1.210	1.219	1.220	1.227	1.224	1.216	1.191	1.179			0.286
H ₂ S	1.855	1.837	1.834	1.837	1.848	1.872	1.910	1.964	2.035	2.090			1.24
C 1	10.308	11.010	11.227	11.323	11.369	11.386	11.370	11.253	11.036	10.789			2.42
C ₂	2.415	2.506	2.507	2.499	2.501	2.514	2.525	2.560	2.603	2.675			1.23
C 3	1.706	1.714	1.681	1.665	1.655	1.657	1.672	1.729	1.820	1.928			1.50
i-C4	0.456	0.446	0.430	0.422	0.418	0.417	0.421	0.439	0.471	0.513			0.57
n-C₄	0.985	0.955	0.916	0.895	0.886	0.883	0.896	0.935	1.007	1.103			1.34
i-C ₅	0.512	0.481	0.453	0.440	0.432	0.429	0.433	0.455	0.500	0.551			0.93
n-C ₅	0.633	0.590	0.553	0.535	0.528	0.522	0.525	0.554	0.610	0.676			1.22
C ₆	1.100	0.989	0.905	0.867	0.848	0.835	0.831	0.881	0.984	1.091			2.76
C 7+	17.861	3.759	2.575	2.124	1.880	1.685	1.575	1.641	1.928	2.234			132.4
TOTAL	39.04	25.58	24.40	23.94	23.70	23.54	23.49	23.74	24.29	24.93	0.00	0.00	145.9

Figura 6-84 Peso molecular aparente para cada etapa del agotamiento para el PVT T-115

Cálculo del porcentaje mol de la fase líquida (liquido remanente) correspondiente a cada etapa del agotamiento.

		Comp	osición	del líqu	ido en c	/u de la	s etapa	s de ago	otamien	to x (%	mol)		
Presión (kg/cm²):	373.690	338.510	310.390	275.230	240.080	197.900	155.710	113.530	74.860	53.760	0.000	0.000	53.760
N_2	0.355	0.165	0.186	0.187	0.176	0.157	0.131	0.110	0.083	0.064			0.050
CO ₂	2.535	1.459	1.622	1.654	1.620	1.474	1.340	1.116	0.873	0.622			0.650
H₂S	5.443	5.784	5.708	5.646	5.551	5.353	5.023	4.475	3.638	2.931			3.660
C 1	64.251	35.515	39.922	40.559	39.011	35.973	32.101	26.825	20.036	14.999			15.100
C2	8.032	6.050	6.719	6.943	6.894	6.641	6.333	5.630	4.582	3.431			4.120
C ₃	3.868	3.737	4.086	4.185	4.259	4.290	4.260	3.993	3.477	2.885			3.410
i-C₄	0.784	0.896	0.966	0.992	1.020	1.052	1.069	1.051	0.977	0.864			0.980
n-C₄	1.694	2.029	2.183	2.250	2.311	2.393	2.438	2.422	2.296	2.061			2.310
i-C 5	0.709	0.985	1.047	1.070	1.114	1.170	1.224	1.256	1.245	1.196			1.290
n-C ₅	0.878	1.272	1.342	1.375	1.419	1.505	1.583	1.634	1.639	1.590			1.700
C ₆	1.276	2.116	2.222	2.266	2.361	2.524	2.722	2.893	3.028	3.095			3.210
C 7+	10.175	39.994	33.998	32.873	34.264	37.468	41.776	48.595	58.126	66.263			63.520
TOTAL	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	0.00	0.00	100.00

Figura 6-85 Porcentaje mol de la fase líquida para el PVT T-115

Con respecto al comportamiento de fases, el resultado del cálculo de las constantes de equilibrio en función de las fracciones mol de la fase gaseosa y líquida, fuel el que a continuación se presenta.

					Vá	alores	К(х/у)			Liquido
	5313.87	4813.61	4413.75	3913.77	3413.94	2814.14	2214.20	1614.40	1064.51		764.47
Presión (kg/cm²):	373.690	338.510	310.390	275.230	240.080	197.900	155.710	113.530	74.860	53.760	53.760
N ₂		2.332	2.128	2.136	2.279	2.559	3.064	3.534	4.536	5.635	7.200
CO ₂		1.850	1.695	1.675	1.712	1.893	2.075	2.476	3.102	4.311	4.123
H₂S		0.932	0.943	0.955	0.977	1.026	1.116	1.288	1.642	2.092	1.676
C 1		1.932	1.753	1.740	1.816	1.973	2.208	2.615	3.433	4.484	4.454
C 2		1.378	1.241	1.197	1.206	1.259	1.326	1.512	1.889	2.593	2.159
C ₃		1.040	0.933	0.902	0.882	0.876	0.890	0.982	1.187	1.515	1.282
i-C4		0.856	0.766	0.731	0.705	0.682	0.678	0.719	0.830	1.021	0.900
n-C₄		0.810	0.722	0.685	0.660	0.635	0.632	0.664	0.754	0.921	0.822
i-C 5		0.677	0.600	0.570	0.538	0.509	0.490	0.502	0.557	0.639	0.592
n-C ₅		0.643	0.572	0.540	0.516	0.480	0.460	0.470	0.516	0.589	0.551
C ₆		0.542	0.473	0.444	0.417	0.384	0.354	0.353	0.377	0.409	0.394
C 7+		0.141	0.135	0.126	0.114	0.099	0.086	0.077	0.071	0.069	0.072

Figura 6-86 Constantes de equilibro (K) de cada elemento para cada etapa del agotamiento para PVT T-115

Figura 6-87 Comportamiento gráfico de las constantes de equilibrio (K) para PVT T-115

Finalmente, gracias a los cálculos empleados en el balance molar, se obtuvo el peso molecular aparente de la fase líquida para cada etapa del agotamiento.

			Peso	Molec	ular de	el Liq	uido N	/ _a [lb "	/ Ib _m-	mol]		Liquido
Presión (kg/cm²):	373.690	338.510	310.390	275.230	240.080	197.900	155.710	113.530	74.860	53.760		53.760
N ₂	0.099	0.046	0.052	0.052	0.049	0.044	0.037	0.031	0.023	0.018		0.014
CO ₂	1.116	0.642	0.714	0.728	0.713	0.649	0.590	0.491	0.384	0.274		0.286
H_2S	1.855	1.971	1.945	1.924	1.891	1.824	1.712	1.525	1.240	0.999		1.247
C 1	10.308	5.698	6.405	6.507	6.259	5.771	5.150	4.304	3.214	2.406		2.422
C 2	2.415	1.819	2.021	2.088	2.073	1.997	1.904	1.693	1.378	1.032		1.239
C ₃	1.706	1.648	1.802	1.846	1.878	1.892	1.878	1.761	1.533	1.272		1.504
i-C4	0.456	0.521	0.561	0.577	0.593	0.611	0.621	0.611	0.568	0.502		0.570
n-C₄	0.985	1.179	1.269	1.308	1.343	1.391	1.417	1.408	1.335	1.198		1.343
i-C ₅	0.512	0.710	0.755	0.772	0.804	0.844	0.883	0.906	0.898	0.863		0.931
n-C 5	0.633	0.918	0.968	0.992	1.024	1.086	1.142	1.179	1.183	1.147		1.227
C ₆	1.100	1.824	1.915	1.953	2.035	2.175	2.346	2.493	2.609	2.667	 <u> </u>	2.766
C 7+	17.861	110.425	83.522	77.985	80.424	87.718	98.229	116.197	142.579	165.319		132.439
TOTAL	39.045	127.400	<u>101.928</u>	<u>96.731</u>	<u>99.087</u>	106.002	<u>115.910</u>	132.598	<u>156.944</u>	177.697		145.987

Figura 6-88 Peso molecular aparente de la fase líquida para PVT T-115

6.4.3 Validación método de Bashbush para PVT T-115

Para el siguiente criterio de validación se utilizó el método de Bashbush para el cálculo de las constates de equilibro de cada elemento en función de un balance molar dando como resultado lo siguiente:

Presión (kg/cm²)	373.69	338.51	310.39	275.23	240.08	197.9	155.71	113.53	74.86	53.76		
Presión (psia)	5313.87	4813.6	4413.7	3913.7706	3413.9	2814.1	2214.2	1614.4	1064.5	764.47		
Factor z	1.0307	0.996	0.975	0.952	0.932	0.917	0.912	0.918	0.933	0.946		
NT Gas (lb _m -mol)	0.58	0.548	0.5133	0.4661576	0.4153	0.348	0.2753	0.1994	0.1294	0.0916		
WSP _j (%mol)	0	5.88	11.08	18.22	26.22	36.59	47.7	59.72	71.12	77.6		
RLV (%mol)	0	13.7	20.14	23.26	24.5	24.64	24.16	22.85	20.52	18.87		
N _j (lb _m -mol)	0.58104	0.5469	0.5167	0.4751763	0.4287	0.3684	0.3039	0.234	0.1678	0.1302		
$(N_g)_j$ (lb _m -mol)	0.58459	0.4729	0.4099	0.3577293	0.3136	0.2622	0.2088	0.1538	0.1028	0.0743		
$(N_i)_j$ (lb _m -mol)	0	0.0739	0.1067	0.117447	0.1151	0.1062	0.0951	0.0802	0.065	0.0558		
(Z _{2pc}) _j	1.037	0.9981	0.9687	0.9339313	0.903	0.8661	0.8262	0.7821	0.7193	0.666		
S _j (lb _m -mol)	0	0.0342	0.0302	0.0414864	0.0465	0.0603	0.0646	0.0698	0.0662	0.0377		
S _{jacum} (lb _m -mol)	0	0.0342	0.0644	0.1058659	0.1523	0.2126	0.2772	0.347	0.4132	0.4509		
		-			-	-	-		-			

• Cálculo del balance molar para cada etapa del agotamiento

Figura 6-89 Balance molar para cada etapa de agotamiento para el PVT T-115

 En cuanto al análisis de cada elemento para cada etapa de la prueba de agotamiento a volumen constante, también se calcularon los cálculos del peso molecular aparente de las fases líquidas y gaseosas, así como sus respectivas composiciones en porcentaje mol. De esta forma se calcularon, los siguientes valores:

Cálculo de la composición de la fase líquida en porcentaje mol.

				PORCEN	TAJE DE	LIQUIDO	EN LA CI	ELDA Xj(%	‰mol)				LIQUIDO
Presión (kg/cm²):	373.69	338.51	310.39	275.23	240.08	197.9	155.71	113.53	74.86	53.76			53.76
N ₂	0.355	0.156	0.181	0.183	0.173	0.153	0.127	0.107	0.080	0.061			0.050
CO ₂	2.535	1.410	1.596	1.633	1.601	1.454	1.321	1.097	0.855	0.605			0.650
H ₂ S	5.443	5.800	5.715	5.651	5.553	5.351	5.015	4.460	3.615	2.905			3.660
C 1	64.251	34.229	39.221	40.004	38.484	35.448	31.584	26.320	19.568	14.576			15.100
C ₂	8.032	5.961	6.682	6.918	6.870	6.616	6.306	5.596	4.543	3.386			4.120
C 3	3.868	3.731	4.093	4.193	4.267	4.298	4.266	3.994	3.471	2.873			3.410
i-C 4	0.784	0.901	0.971	0.997	1.025	1.057	1.073	1.054	0.979	0.864			0.980
n-C₄	1.694	2.044	2.197	2.263	2.324	2.406	2.450	2.432	2.302	2.062			2.310
i-C 5	0.709	0.997	1.056	1.079	1.123	1.179	1.232	1.263	1.250	1.199			1.290
n-C 5	0.878	1.289	1.355	1.386	1.431	1.517	1.595	1.644	1.647	1.596			1.700
C 6	1.276	2.154	2.249	2.289	2.384	2.547	2.746	2.915	3.046	3.110			3.210
C 7+	10.175	41.329	34.684	33.404	34.766	37.975	42.286	49.118	58.645	66.763			63.520
TOTAL	100	100	100	100	100	100	100	100	100	100	0	0	100

Figura 6-90 Porcentaje mol para la fracción líquida de cada elemento en cada etapa del agotamiento para PVT T-115

Cálculo de las constantes de equilibrio de cada elemento para cada etapa de la prueba de agotamiento a volumen constante.

					Valores	K (x/v)				
Presión (ka/cm²):	338.51	310.39	275.23	240.08	197.9	155.71	113.53	74.86	53.76	
N ₂	2.4595	2.1851	2.1821	2.3285	2.6202	3.1504	3.6413	4.6954	5.8543	
CO ₂	1.9137	1.7231	1.6961	1.7324	1.9184	2.1053	2.5193	3.1663	4.4300	
H ₂ S	0.9295	0.9415	0.9540	0.9768	1.0267	1.1176	1.2927	1.6519	2.1111	
C 1	2.0050	1.7843	1.7642	1.8414	2.0020	2.2439	2.6649	3.5155	4.6138	
C 2	1.3981	1.2476	1.2014	1.2105	1.2638	1.3318	1.5213	1.9050	2.6267	
С3	1.0421	0.9315	0.9004	0.8798	0.8744	0.8887	0.9814	1.1894	1.5217	
i-C4	0.8517	0.7622	0.7279	0.7016	0.6786	0.6756	0.7162	0.8287	1.0213	
n-C 4	0.8039	0.7174	0.6806	0.6561	0.6316	0.6291	0.6613	0.7525	0.9203	
i-C ₅	0.6690	0.5944	0.5656	0.5336	0.5049	0.4869	0.4995	0.5544	0.6371	
n-C 5	0.6344	0.5661	0.5352	0.5116	0.4767	0.4565	0.4671	0.5138	0.5873	
C 6	0.5330	0.4669	0.4395	0.4127	0.3805	0.3511	0.3506	0.3749	0.4071	
C 7+	0.1363	0.1322	0.1243	0.1124	0.0975	0.0850	0.0758	0.0707	0.0683	

Figura 6-91 Constantes de equilibrio (K) de cada elemento en cada etapa del agotamiento para PVT T-115

Figura 6-92 Comportamiento gráfico de las constantes de equilibrio (K) para PVT T-115

Finalmente, en función del balance molar, se obtuvo el peso molecular aparente de la fase líquida para cada etapa del agotamiento.

			PE	SO MOLE	CULAR F	PROMED	IO DEL A	ACEITE (lb _m /lb _m -	mol)			Liquido
Presión (kg/cm²):	373.69	338.51	310.39	275.23	240.08	197.9	155.71	113.53	74.86	53.76			53.76
N ₂	0.099446	0.04374	0.0506	0.051352	0.0484	0.043	0.0357	0.03	0.0224	0.01723			0.01401
CO ₂	1.115654	0.6207	0.7024	0.718767	0.7045	0.6398	0.5814	0.4828	0.3763	0.26624			0.28607
H ₂ S	1.854757	1.97627	1.9475	1.925577	1.8922	1.8235	1.7091	1.5197	1.2319	0.98997			1.24718
C 1	10.30779	5.49129	6.2922	6.417834	6.174	5.687	5.067	4.2225	3.1393	2.33839			2.42249
C 2	2.415222	1.79248	2.0092	2.080119	2.0659	1.9893	1.8961	1.6827	1.3662	1.0183			1.23888
С3	1.705672	1.64519	1.8047	1.848858	1.8816	1.8952	1.8811	1.7614	1.5304	1.26692			1.50371
i-C4	0.455692	0.52345	0.5643	0.579737	0.5957	0.6141	0.6238	0.6127	0.5688	0.50199			0.56962
n-C₄	0.984621	1.1879	1.2769	1.315146	1.351	1.3987	1.4238	1.4133	1.3379	1.19869			1.34266
i-C 5	0.511551	0.71936	0.7622	0.778198	0.8099	0.8503	0.8891	0.9115	0.902	0.86519			0.93075
n-C ₅	0.633486	0.93035	0.9776	1.000222	1.0323	1.0942	1.1507	1.1864	1.1881	1.15121			1.22657
C ₆	1.099631	1.85607	1.9381	1.972732	2.0546	2.1949	2.366	2.5119	2.6249	2.67996			2.76631
C 7+	17.86119	114.111	85.208	79.24617	81.604	88.904	99.427	117.45	143.85	166.565			132.439
TOTAL	39.04471	130.898	103.53	97.93471	100.21	107.13	117.05	133.78	158.14	178.859	0	0	145.987

Figura 6-93 Peso molecular de la fase líquida para cada etapa del agotamiento para PVT T-115

6.4.4 Validación por método de Hoffmann-Crump-Hocott para PVT T-115

A una presión dada los puntos de log Kp vs B, correspondientes a varios componentes deben alinearse a través de una recta. Así al aplicar este criterio a la prueba CVD se debe obtener un número de rectas igual al número de etapas de agotamientos y al aplicarlo al separador se obtiene una sola. De esta forma y ejecutando el programa de cálculo se obtuvieron los siguientes resultados:

			HOF	FMANN,	CRUMP, H	юсотт	(AIME V	OL. 198,	1953)		
Punto de	Ebulliciór	ז Te	mperat	ura Crític	a		Pre	sion Crit	ica Fa	actor de	caracterizacion
		7 —									
	Τ _B	Τ _B	1/Т _В	Tc	Tc	1/T _c	1/T	Pc	b	В	
Componente	(° F)	(°R)	(1/°R)	(°F)	(°R)	(1/°R)	(1/°R)	(psia)			_
C 1	-258.690	200.980	0.005	-116.630	343.040	0.003	0.001	667.800	804.331	3.023	
C 2	-127.480	332.190	0.003	90.090	549.760	0.002	0.001	707.800	1412.342	2.533	
C 3	-43.670	416.000	0.002	206.010	665.680	0.002	0.001	616.300	1799.505	2.136	
<i>i-</i> C₄	10.900	470.570	0.002	274.980	734.650	0.001	0.001	529.100	2037.231	1.850	
n-C₄	31.100	490.770	0.002	305.650	765.320	0.001	0.001	550.700	2152.749	1.767]
i-C ₅	82.120	541.790	0.002	369.100	828.770	0.001	0.001	490.400	2383.306	1.499	
n-C ₅	96.920	556.590	0.002	385.700	845.370	0.001	0.001	488.600	2479.282	1.437	
C 6	155.720	615.390	0.002	453.700	913.370	0.001	0.001	436.900	2778.637	1.134	
		-						T (°R)=	821.76	1	

Figura 6-94 Cálculo del factor de caracterización B de cada elemento para PVT T-115

Se realizo el cálculo de K por p usando las constantes de equilibrio calculadas con el método de Whitson & Torp (1981), en la *Figura 6-95* se muestran los resultados:

Cálculo de K * p		Const	antes de	Equilibr	rio a la Pi	resión d	e Anális	is tomac	lo de Mét	odo de l	Nhitson	
Presión kg/cm²	373.69	338.51	310.39	275.23	240.08	197.9	155.71	113.53	74.86	53.76		
C 1	0	654.13	544.09	478.918	436.103	390.42	343.77	296.86	257.016	241.05		
C 2	0	466.32	385.06	329.464	289.635	249.14	206.48	171.68	141.391	139.39		
C 3	0	352.21	289.57	248.259	211.635	173.37	138.58	111.44	88.88	81.468		
iC₄	0	289.91	237.87	201.331	169.257	134.94	105.64	81.575	62.1412	54.893		
n-C₄	0	274.15	224.11	188.419	158.407	125.68	98.436	75.373	56.4617	49.509		
i-C₅	0	229.3	186.23	156.899	129.092	100.65	76.331	57.035	41.6759	34.352		
n-C 5	0	217.72	177.46	148.569	123.82	95.081	71.59	53.353	38.6395	31.676		
C ₆	0	183.64	146.7	122.199	100.047	75.988	55.144	40.107	28.2351	21.99		

Figura 6-95 Cálculo de K*p usando las constantes de equilibrio calculadas con el método de Whitson & Torp para PVT T-115

Figura 6-96 Dispersión gráfica de Log(K*p) vs B (contantes de equilibrio calculadas por Whitson&Torp)

Se realizo el cálculo de K por p usando las constantes de equilibrio calculadas con el método de Bashbush(1981), en la *Figura 6-97* se muestran los resultados:

Cálculo de K * p		Consta	Constantes de Equilibrio a la Presión de Análisis tomado de Método de Bashbush										
Presión kg/cm²	373.69	338.51	310.39	275.23	240.08	197.9	155.71	113.53	74.86	53.76			
C 1	0	678.72	553.82	485.568	442.077	396.2	349.4	302.55	263.172	248.04			
C 2	0	473.27	387.24	330.67	290.628	250.11	207.38	172.71	142.609	141.21			
C 3	0	352.77	289.11	247.81	211.221	173.05	138.38	111.42	89.0403	81.809			
i-C₄	0	288.3	236.58	200.335	168.434	134.3	105.19	81.308	62.0399	54.902			
n-C₄	0	272.13	222.66	187.326	157.52	125	97.956	75.079	56.3286	49.477			
i-C 5	0	226.46	184.51	155.66	128.112	99.912	75.816	56.707	41.499	34.252			
n-C 5	0	214.74	175.71	147.315	122.835	94.346	71.078	53.025	38.4606	31.571			
C ₆	0	180.43	144.92	120.955	99.0902	75.292	54.673	39.807	28.0671	21.886			

Figura 6-97 Cálculo de K*p usando las constantes de equilibrio calculadas con el método de Bashbush

Figura 6-98 Dispersión gráfica de Log(K*p) vs B (contantes de equilibrio calculadas por Bashbush

6.4.5 Análisis de resultados de la validación para PVT T-115

Se presenta la comparación de la composición del líquido calculada y experimental en la última etapa y el error calculado entre ambos valores.

Figura 6-99 Composición de líquido en la última etapa de separación, medida y calculada para PVT T-115

La diferencia entre estos dos conjuntos de valores debe ser mínima. Todos los reportes de CVD incluyen el análisis de la composición del líquido remanente de la última etapa de agotamiento. Esta composición debe ser comparada con la composición calculada.

En la siguiente tabla se compara dichas composiciones y se presenta el error calculado, donde se observa que en todos los componentes no cumple.

	Calculado	Medido	%Error
N ₂	0.064	0.050	21.740
CO ₂	0.622	0.650	-4.566
H₂S	2.931	3.660	-24.868
C 1	14.999	15.100	-0.676
C ₂	3.431	4.120	-20.094
C ₃	2.885	3.410	-18.195
i-C₄	0.864	0.980	-13.453
n-C₄	2.061	2.310	-12.082
<i>i-C</i> ₅	1.196	1.290	-7.892
n-C₅	1.590	1.700	-6.900
C 6	3.095	3.210	-3.716
C ₇ ⁺	66.263	63.520	4.140

Tabla 6-13 Resultados de la composición del líquido en la última etapa del agotamiento para PVT T-115

Se puede evaluar que los porcentajes de error son muy grandes, lo cual indica inconsistencia en los datos reportados del líquido remanente en la celda, luego de finalizada la última etapa de agotamiento.

Con respecto al comportamiento del equilibrio de fases, las curvas de las constantes de equilibrio se deben presentar de manera que en el comportamiento no exista alguna joroba o cruzamiento. En la *Figura 6-100* se puede observar el orden adecuado de las curvas, manteniendo convergencia a un punto fuera de los rangos de presión experimentales sin alguna irregularidad entre ellas, con las curvas de los iso-componentes por encima de las curvas de los componentes normales.

Las curvas de las constantes de equilibrio deben seguir el siguiente orden:

- Nitrógeno, (N_2) .
- Metano y Dióxido de Carbono, (*C*₁, *CO*₂).
- Etano o ácido sulfhídrico, (C₂ o H₂S) dependiendo de la composición del fluido y la temperatura del yacimiento.

 Por debajo de las curvas anteriormente mencionadas, se deben graficar las curvas del resto de los componentes, en el orden de su peso molecular. Los valores-K del iso-butano y del iso-pentano deben ser siempre mayores que el de los correspondientes a los componentes normales.

Presión (kg/cm²)

Figura 6-100 Comportamiento típico de las constates de equilibrio para una muestra de aceite volátil

Los valores-K (constantes de equilibrio), observados en el pozo T-115 muestran un comportamiento satisfactorio puesto que el orden de las curvas es el adecuado y no existen anomalías y cruces entre ellas.

Sin embargo, el cálculo de las constantes de equilibrio medidas en el laboratorio y las calculadas con la metodología, tanto de Whitson como la de Bashbush en la última etapa de separación tienen un margen de error aceptable.

A continuación, se presentan las gráficas del comportamiento de:

 Constantes de equilibrio versus presión obtenidas a través de los métodos de Whitson y Bashbush.

- La comparación entre las constantes de equilibrio calculada y obtenida de la última etapa del agotamiento a través del método de Whitson.
- La comparación entre las constantes de equilibrio con respecto a la presión obtenidas a través de los dos métodos (Whitson y Bashbush).

Figura 6-101 Análisis y comportamiento de las constantes de equilibrio por el método de Whitson y Bashbush

Por otro lado, comparando los valores de la densidad de aceite, la medición presenta bajos porcentajes de error con respecto a los datos calculados, por lo que se considera que la densidad reportada en laboratorio es consistente. En la tabla anexa se presentan los cálculos correspondientes al error obtenidos para esta prueba.

F	Presión kg/cm²	373.690	338.510	310.390	275.230	240.080	197.900	155.710	113.530	74.860	53.760
(ρ _g) Ι	Medido (g/cm³)	0.3656	0.2246	0.2006	0.1787	0.1577	0.1312	0.1036	0.0758	0.0503	0.0366
(ρ _g) Cal	lculado (gr/cm³)	0.3656	0.2246	0.2006	0.1787	0.1577	0.1312	0.1036	0.0758	0.0503	0.0366
	%Error	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002

Figura 6-102 Valores medidos y calculados de la densidad del aceite para PVT T-115

A continuación, se presenta la gráfica de la máxima condensación retrógrada medida y calculada en cada etapa de separación por medio del método de Paredes, Pérez, & Larez (2012), mostrando que tienen un comportamiento bastante aceptable y por lo tanto valido. Para este PVT se midió un porcentaje máximo de líquido retrógrado de 24.64% y se calculó uno de 27.911%. A continuación, se muestran los porcentajes correspondientes a cada etapa.

Figura 6-103 Máxima condensación retrógrada, medida y calculada para PVT T-115

Con la metodología de Hoffmann-Crump se calculan factores de caracterización B para cada elemento hidrocarburos (C_1 - C_6). En general, estas líneas deben ser monotónicas con la presión y no debe existir cruce entre líneas, lo cual sería reflejo de un desequilibrio termodinámico. El siguiente gráfico muestra el resultado del pozo T-115 para las constantes de equilibrio calculadas a través de los métodos de Whitson y Bashbush.

Todas las presiones presentan un buen comportamiento, por lo que se puede considerar como una prueba bastante satisfactoria, ya que no existe gran dispersión de puntos para una presión dada o no existe cruce de líneas que pudiesen mostrar inconsistencia en la prueba.

Figura 6- 104 Comparación de método de Hoffman y Hoccot para las constantes de equilibrio K (Whitson y Bashbush)

En resumen:

De acuerdo a la revisión realizada sobre el informe final de los resultados del análisis PVT del pozo Tizón- 115 se pueden realizar las siguientes afirmaciones:

- Fueron reportados los experimentos de:
 - a) Composición original del fluido de yacimiento.
 - b) Agotamiento a Volumen Constante (CVD)
 - c) Volumen de líquido recuperado.

Contando todos con sus datos mínimos necesarios para cada uno de ellos.

• Se realizaron las siguientes pruebas de validación:

- a) Validación por pruebas de clasificación de León G.A.
- b) Validación por pruebas de clasificación de Méndez L.T
- c) Validación por pruebas de clasificación de Pérez H.R
- d) Validación Whitson-Torp por balance de materia.
- e) Validación de balance molar por método de Bashbush.
- f) Validación por Hoffmann-Crump-Hocott.

g) Validación por cálculo de máxima condensación retrógrada por Paredes,
 Pérez, & Larez.

 De acuerdo a las pruebas realizadas se puede afirmar que el análisis PVT del pozo T-115 es consistente por lo tanto es válido, ya que realizadas presenta consistencia en el comportamiento de la mayoría de los resultados reportados.

RECOMENDACIONES

• Tener en consideración que la medición de la composición de la última etapa del agotamiento, presenta inconsistencias.

6.6 Casos Gas Condensado

A continuación, se mostrarán los resultados obtenidos de la aplicación de la metodología de validación de datos PVT para muestras de Aceite Negro, de manera que se utilizaron datos de los reportes PVT para los siguientes pozos, (sus respectivos reportes, se encontraran en el anexo B):

- Condensado-7
- OCS-G-999
- X-1

6.6.1 Validación por clasificación

Por medio de la clasificación de Alfredo León García (2013), se establece que para un peso molecular aparente (M_a) de 44 g/g-mol se encuentran los fluidos denominados como críticos (aceite volátil y gas y condensado). Debajo de 44 g/g-mol es un comportamiento de gas y condensado, por encima de los 78 g/g-mol es un yacimiento de aceite negro y entre 44-78 g/g-mol los yacimientos de aceite volátil.

Para obtener el peso molecular promedio de la mezcla, se considera la siguiente expresión matemática:

$$M_{a(i,j)}[g/g - mol] = \sum_{j=1}^{j=n} (y_{(i,j)})(M_j)$$

		Conder	nsado-7	OCS-	G-999	X	-1	
		p _s = 317.9	32 kg/cm ²	p _s = 420.18	83 kg/cm ²	p _s = 574.9	9 kg/cm²	
	M [g/g-mol]	%mol	M _a [g/g- mol]	%mol	M _a [g/g- mol]	%mol	M _a [g/g- mol]	
N ₂	28.013	0.470	0.131	0.490	0.1372	0.876	0.245	
CO ₂	44.01	2.420	1.065	6.360	2.7990	1.484	0.653	
H₂S	34.076	0.000	0	0.000	0	0.050	0.017	
C ₁	16.043	68.220	10.944	72.790	11.677	83.407	13.381	
C ₂	30.07	11.800	3.548	9.280	2.790	3.273	0.984	
C ₃	44.097	5.460	2.407	3.810	1.680	1.898	0.837	
i-C₄	58.124	0.830	0.482	0.780	0.453	0.433	0.252	
n-C₄	58.124	1.740	1.011	1.160	0.674	0.898	0.522	
i-C₅	72.151	0.720	0.519	0.440	0.3174	0.389	0.281	
n-C₅	72.151	0.740	0.533	0.370	0.266	0.507	0.366	
C ₆	86.178	1.070	0.922	1.000	0.861	0.592	0.510	
C ₇ ⁺		6.530	9.664	3.520	5.754	6.193	12.262	
Total %		<u>100</u>		<u>100</u>		<u>100</u>		
М _{с7+} [g/	ˈɡ-mol]	14	48	163	.48	1:	98	
M _a [g/g	ı-mol]	31.2	230	27.4	412	30.310		
Condi M _a [g/g-mol] <	ción 44 [g/g-mol]	31.23	0 > 44	27.412	2 > 44	30.310 > 44		
Valida	nción	✓ Ci	umple	√Cu	mple	✓ C	umple	

Ejecutando el programa de cálculo, se obtuvieron los siguientes resultados:

Tabla 6- 14 Resultados la prueba de validación por clasificación de Alfredo León para PVT Condensado-7, OCS-G-999 y X-1

Figura 6- 105 Gráfico de resultados la prueba de validación por clasificación de Alfredo León para PVT Condensado-7, OCS-G-999 y X-1

Para la clasificación de Tiburcio Méndez (1979), se tomaron en cuenta los parámetros de referencia de la gráfica denominada "La Colorina" donde se grafican los % de volumen líquido (saturación de líquido) con respecto a una presión adimensional.

En la *Tabla 6-13* se muestra el resultado final de la ejecución de la hoja de cálculo para la validación de esta clasificación, como se podrá observar los porcentajes de volumen relativos son bajos, lo cual representa que el encogimiento fue bajo, por ende, estos puntos de alojarían en la parte superior de la gráfica, indicador de que corresponde a un aceite negro.

	Conde	nsado-7	OCS-	G-999	Х	(-1
	р _а adim.	Vol. Relat %	p₀ adim.	Vol. Relat %	p₀ adim.	Vol. Relat %
	1	0.000	1	0.000	1	0.000
	0.8626	5.000	0.8703	0.400	0.8123	10.900
	0.7078	10.300	0.7531	2.030	0.6245	16.300
	0.5530	12.300	0.6360	6.480	0.4366	17.800
	0.3981	12.300	0.5356	8.690	0.2487	16.800
	0.2654	11.600	0.4519	9.380	0.0609	14.600
	0.1548	10.500	0.3515	9.370		
			0.2510	8.900		
			0.1674	8.290		
Validación	✓ Cui	mple	√ Cι	ımple	✓ Cu	Imple

Tabla 6-15 Resultados de la prueba de validación por clasificación de Tiburcio Méndez León para PVT Condensado-7, OCS-G-999 y X-1

Figura 6- 106 Resultados de la prueba de validación por clasificación de Tiburcio Méndez León para PVT Condensado-7, OCS-G-999 y X-1

Para los criterios de clasificación de fluidos propuesta por Rafael Pérez Herrera (2016), se necesitan los valores de RGA y las fracciones mol de los componentes de la fracción ligera y la fracción pesada (C_1 y C_7^+ respectivamente). De esta manera:

• Para clasificar como Gas Condenado en función de la fracción ligera se debe cumplir el siguiente criterio:

$$150 < RGA < 600$$

 $C_1 > 66$

• Para clasificar como Gas Condensado en función de la fracción pesada se debe cumplir el siguiente criterio:

$$150 < RGA < 600$$

 $C_7^+ < 12$

	Condensado-7	OCS-G-999	X-1
RGA[m³/m³]	1202.4	3319.9	1484.6
C ₁	68.22	72.79	83.407
C ₇ ⁺	6.53	3.53	6.193
150 < RGA[m³/m³] < 600	150 < 1202.4 < 600	150 < 3319.9 < 600	150 < 1484.6 < 600
C₁ [%mol] > 66	68.22 [%mol] > 66	72.79 [%mol] > 66	83.407 [%mol] > 66
Validación	✓ Cumple	✓Cumple	✓Cumple
150 < RGA[m³/m³] < 600	150 < 1202.4 < 600	150 < 3319.9 < 600	150 < 1484.6 < 600
C ₇ *[%mol] < 12	6.53 [%mol] < 12	3.53 [%mol] < 12	6.193 [%mol] < 12

|--|

✓Cumple

✓ Cumple

✓ Cumple

Figura 6- 107 Resultados de la prueba de validación por clasificación de Rafael Pérez Herrera (C_1)

Figura 6- 108 Resultados de la prueba de validación por clasificación de Rafael Pérez Herrera (C_7^+)

6.6.2 Validación por método de Whitson-Torp

A continuación, se procede con la validación por el método de Whitson-Torp (1981), en donde a partir de los datos del experimento de agotamiento a volumen constante, se

calcularon las constantes de equilibrio. Usando el programa de cálculo, se obtuvieron los siguientes resultados:

Para el balance molar y volumétrico de cada etapa del agotamiento se obtuvo:

• Para PVT Condensado-7

Figura 6- 109 Peso molecular aparente de la mezcla original, volumen de la celda que se mantuvo constante durante la prueba

Presion	kg/cm²	317.932	274.261	225.035	175.808	126.582	84.388	49.226				49.226
Volumen Líquido Celda (VLk)	ft ³	0.000	0.083	0.171	0.204	0.204	0.192	0.174				
Volumen Vapor Celda (VVk)	ft ³	1.658	1.575	1.487	1.454	1.454	1.465	1.483				
Volumen total en la celda (VLk=VVk)	ft ³	1.658	1.658	1.658	1.658	1.658	1.658	1.658				
										-	-	
Moles de vapor en celda (n _{vk})*	lb _m -mol	1.000	0.857	0.689	0.528	0.373	0.243	0.139				
Moles Totales en celda (n tk)*	lb _m -mol	1.000	0.912	0.783	0.631	0.465	0.321	0.200				
Moles vapor prod. C/etapa (Dn _{pi})*	lb _m -mol	0.000	0.088	0.130	0.151	0.166	0.145	0.121				
Moles de líquido en celda (n _{Lk}) [*]	lb _m -mol	0.000	0.055	0.094	0.104	0.093	0.078	0.061				
Moles Totales del sistema (n t)	lb _m -mol	1.000	1.000	1.000	1.000	1.000	1.000	1.000				

Figura 6- 110 Resultados del balance molar y volúmenes para cada etapa del agotamiento para el PVT Condensado-7

• Para PVT OCS-G-999

Figura 6-111 Peso molecular aparente de la mezcla original, volumen de la celda que se mantuvo constante durante la prueba

Presion	kg/cm ²	420.183	365.682	316.456	267.229	225.035	189.873	147.679	105.485	70.323		70.323
Volumen Líquido Celda (VLk)	ft ³	0.000	0.005	0.026	0.082	0.111	0.119	0.119	0.113	0.105		
Volumen Vapor Celda (VVk)	ft ³	1.273	1.267	1.247	1.190	1.162	1.153	1.153	1.159	1.167		
Volumen total en la celda (VLk=VVk)	ft ³	1.273	1.273	1.273	1.273	1.273	1.273	1.273	1.273	1.273		
Moles de vapor en celda (n _{vk})	lb _m -mol	1.000	0.933	0.853	0.723	0.611	0.517	0.401	0.281	0.182		
Moles Totales en celda (n _{tk}) [*]	lb _m -mol	1.000	0.937	0.863	0.769	0.670	0.577	0.458	0.331	0.224		
Moles vapor prod. C/etapa (Dn _{pi})*	lb _m -mol	0.000	0.063	0.073	0.095	0.099	0.093	0.120	0.127	0.107		
Moles de líquido en celda (n _{Lk})	lb _m -mol	0.000	0.003	0.010	0.046	0.059	0.060	0.057	0.050	0.042		
Moles Totales del sistema (n_t)	lb _m -mol	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		

Figura 6-112 Resultados del balance molar y volúmenes para cada etapa del agotamiento para el PVT OCS-G-999

• Para PVT X-1

Masa Molecular a Pb (Mb):	30.31	(lb _m /lb _m -mol)
Volumen en la Celda (Vcel):	1.3568	ft ³ /lb _m -mol

Figura 6- 113 Peso molecular aparente de la mezcla original, volumen de la celda que se mantuvo constante durante la prueba

Presion	kg/cm ²	574.900	467.000	359.000	251.000	143.000	35.000
Volumen Líquido Celda (VLk)	ft ³	0.000	0.148	0.221	0.242	0.228	0.198
Volumen Vapor Celda (VVk)	ft ³	1.357	1.209	1.136	1.115	1.129	1.159
Volumen total en la celda (VLk=VVk)	ft ³	1.357	1.357	1.357	1.357	1.357	1.357
					-		
Moles de vapor en celda (n _{vk})	lb _m -mol	1.000	0.826	0.660	0.483	0.286	0.070
Moles Totales en celda (n $_{tk}$)	lb _m -mol	1.000	0.878	0.733	0.560	0.354	0.111
Moles vapor prod. C/etapa (Dn _{pi}) [*]	lb _m -mol	0.000	0.122	0.145	0.173	0.206	0.243
Moles de líquido en celda (n _{Lk}) [*]	lb _m -mol	0.000	0.052	0.073	0.077	0.069	0.041
Moles Totales del sistema (n _t) [*]	lb _m -mol	1.000	1.000	1.000	1.000	1.000	1.000

Figura 6-114 Resultados del balance molar y volúmenes para cada etapa del agotamiento para el PVT X-1

Con respecto al comportamiento de fases, el resultado del cálculo de las constantes de equilibrio en función de las fracciones mol de la fase gaseosa y líquida, fue el que a continuación se presenta.

					Vá	alores	K (x/y)			Liquido	
	4520.99	3899.99	3200.00	2499.99	1800.00	1200.00	699.99	0.00	0.00		699.99	
Presión (kg/cm²):	317.932	274.261	22 5.035	175.808	126.582	84.388	49.226				49.226	
N 2		3.882	2.616	3.319	9.689	41.283	129.282				16.000	
CO 2		1.175	1.197	1.265	1.573	1.920	3.336				3.714	
H₂S												
C1		1.777	1.785	2.039	2.546	3.308	4.998				<u>6.043</u>	
C 2		1.083	1.154	1.206	1.344	1.649	2.327				2.486	
C ₃		0.832	0.814	0.772	0.817	0.894	1.290				1.302	
i-C₄		0.594	0.604	0.552	0.554	0.617	0.889				0.867	
n-C₄		0.533	0.547	0.495	0.503	0.556	0.726				0.714	
i-C 5		0.483	0.441	0.388	0.344	0.378	0.454				0.451	
n-C₅		0.431	0.415	0.369	0.327	0.355	0.416				0.393	
Co	l	0.348	0.300	0.252	0.219	0.204	0.215				0.210	
C 7+		0.166	0.127	0.085	0.053	0.040	0.036				0.034	
	Ver Figura 6-134											

Figura 6-115 Constantes de equilibro (K) de cada elemento para cada etapa del agotamiento para PVT Condensado-7 (Whitson-Torp)

					Vá	alores	K(x/y)				Liquido
	5975.00	5200.00	4500.00	3800.00	3200.00	2700.00	2100.00	1500.00	1000.00			1000.00
Presión (kg/cm²):	420.183	365.682	316.456	267.229	225.035	189.873	147.679	105.485	70.323			70.323
N2		0.970	0.990	1.598	2.162	2.139	2.299	2.795	2.681		1	 10.000
CO ₂		0.970	1.159	1.215	1.307	1.398	1.607	1.929	2.504			2.777
H ₂ S			3									
C 1		1.291	1.722	1.485	1.638	1.860	2.200	2.736	3.758		1	4.323
C ₂		0.970	0.990	0.980	0.982	1.009	1.069	1.215	1.504			1.571
C 3		0.970	0.795	0.767	0.705	0.680	0.668	0.694	0.793	[0.767
i-C 4		0.970	0.990	0.670	0.572	0.528	0.476	0.472	0.508			0.463
n-C ₄		0.970	0.547	0.594	0.525	0.448	0.396	0.379	0.385			 0.375
<i>i-</i> C ₅		0.970	0.990	0.528	0.420	0.374	0.292	0.265	0.249			 0.228
n-C ₅		0.970	0.276	0.370	0.363	0.281	0.242	0.199	0.185			0.190
C 6		0.240	0.334	0.344	0.271	0.213	0.158	0.122	0.104			0.100
C 7+		0.217	0.109	0.108	0,069	0.044	c 9.926	0.016	0.011			0.011
					Veri	riguru (J-133					

Figura 6-116 Constantes de equilibro (K) de cada elemento para cada etapa del agotamiento para PVT OCS-G-999 (Whitson-Torp)

					Va	lores	K(x/y	<i>י</i>)			Liquido
	8175.08	6640.74	5104.98	3569.22	2033.46	497.70	0.00	0.00	0.00		497.70
Presión (kg/cm²):	574.900	467.000	359.000	251.000	143.000	35.000					35.000
N ₂		1.573	2.315	3.081	3.639	14.870			1		13.922
CO ₂		1.045	1.193	1.403	1.825	7.980					8.522
H ₂ S		0.644	0.729	0.742	0.966	2.748					3.235
C 1		1.201	1.491	1.840	2.354	10.617					11.011
C ₂		0.965	0.963	1.046	1.280	3.963					4.388
C 3		0.879	0.736	0.727	0.820	1.953					2.193
i-C 4		0.658	0.613	0.562	0.584	1.110					1.263
n-C 4		0.624	0.558	0.505	0.513	0.930					1.063
i-C 5		0.556	0.470	0.397	0.370	0.575					0.664
n-C 5		0.551	0.460	0.380	0.347	0.531					0.604
C 6		0.476	0.372	0.283	0.231	0.290					0.331
C 7+		0.331	0.149	0.079	0.046	0.032					0.031
					Ver I	- iaura (5-144				

Figura 6- 117 Constantes de equilibro (K) de cada elemento para cada etapa del agotamiento para PVT X-1 (Whitson-Torp)

6.6.3 Validación método de Bashbush

Para el siguiente criterio de validación se utilizó el método de Bashbush para el cálculo de las constates de equilibro de cada elemento en función de un balance molar dando como resultado lo siguiente:

Cálculo del balance molar para cada etapa del agotamiento.

								-		
Presión (kg/cm²)	317.932	274.26	225.04	175.808	126.58	84.388	49.226			
Presión (psia)	4520.99	3900	3200	2499.99	1800	1200	699.9937			
Factor z	0.95	0.908	0.876	0.873	0.89	0.917	0.949			
NT Gas (lb _m -mol)	0.60	0.5445	0.4631	0.363041	0.2564	0.1659	0.09351			
WSP _j (%mol)	0	8.761	21.717	36.857	53.451	67.933	80.041			
RLV (%mol)	0	5	10.3	12.3	12.3	11.6	10.5			
N _j (lb _m -mol)	0.60331	0.5505	0.4723	0.38095	0.2808	0.1935	0.120415			
$(N_g)_j$ (lb _m -mol)	0.60331	0.5173	0.4154	0.318387	0.2249	0.1467	0.083692			
$(N_i)_j$ (lb _m -mol)	0	0.0332	0.0569	0.062563	0.056	0.0468	0.036724			
(Z _{2pc}) _j	0.95	0.8982	0.859	0.831959	0.8125	0.7863	0.73696			
S _j (lb _m -mol)	0	0.0529	0.0782	0.091342	0.1001	0.0874	0.073049			
S _{jacum} (lb _m -mol)	0	0.0529	0.131	0.222363	0.3225	0.4098	0.482898			

• Para PVT Condensado-7

Figura 6-118 Balance molar para cada etapa de agotamiento para el PVT Condensado-7 (Bashbush)

Cálculo de las constantes de equilibrio de cada elemento para cada etapa de la prueba de agotamiento a volumen constante.

						Valores	К (х/у)								
Presión (kg/cm ²):		274.261	225.04	175.808	126.58	84.388	49.226								
N ₂		3.8824	2.6159	3.3190	9.6887	41.2828	129.2810								
CO ₂		1.1752	1.1974	1.2652	1.5727	1.9197	3.3359								
H_2S		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000								
C 1		1.7767	1.7853	2.0390	2.5458	3.3081	4.9983								
C 2	2 <u>1.0831</u> <u>1.1538</u> <u>1.2057</u> <u>1.3440</u> <u>1.6492</u> <u>2.3269</u>														
C 3		0.8319	0.8144	0.7720	0.8173	0.8937	1.2903								
i-C4	C4 0.5945 0.6039 0.5522 0.5537 0.6173 0.8892														
n-C 4	n-C ₄ 0.5329 0.5472 0.4954 0.5029 0.5564 0.7258														
i-C ₅	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
n-C 5		0.4314	0.4147	0.3689	0.3274	0.3550	0.4157								
C 6		0.3478	0.3002	0.2522	0.2186	0.2043	0.2154								
C 7+		0.1664	0.1265	0.0847	0.0526	0.0396	0.0358								
Presión (psia):		3899.99	3200.00	2499.99	1800.00	1200.00	699.99								
					Ver Fig	jura 6	134								

Figura 6- 119 Constantes de equilibrio (K) de cada elemento en cada etapa del agotamiento para PVT Condensado-7 (Bashbush)

• Para PVT OCS-G-999

Presión (kg/cm²)	420.183	365.68	316.46	267.2293	225.04	189.87	147.6793	105.49	70.323		
Presión (psia)	5975	5200	4500	3800	3200	2700	2100	1500	1000		
Factor z	1.067	0.991	0.9226	0.878	0.854	0.845	0.848	0.869	0.899		
NT Gas (lb _m -mol)	0.79	0.7364	0.6845	0.607361	0.5258	0.4484	0.347521	0.2422	0.1561		
WSP _j (%mol)	0	6.34	13.66	23.11	32.96	42.28	54.25	66.94	77.63		
RLV (%mol)	0	0.4	2.03	6.48	8.69	9.38	9.37	8.9	8.29		
N _j (lb _m -mol)	0.78568	0.7359	0.6784	0.604106	0.5267	0.4535	0.359447	0.2597	0.1758		
$(N_g)_j$ (lb _m -mol)	0.78583	0.7334	0.6706	0.568004	0.4801	0.4063	0.314958	0.2207	0.1432		
$(N_l)_j$ (lb _m -mol)	0	0.0025	0.0078	0.036102	0.0466	0.0472	0.044488	0.0391	0.0326		
(Z _{2pc}) _j	1.06722	0.9917	0.9309	0.882731	0.8526	0.8355	0.819866	0.8104	0.7985		
S _j (lb _m -mol)	0	0.0498	0.0575	0.074246	0.0774	0.0732	0.094045	0.0997	0.084		
S _{jacum} (lb _m -mol)	0	0.0498	0.1073	0.18157	0.259	0.3322	0.426229	0.5259	0.6099		

Figura 6-120 Balance molar para cada etapa de agotamiento para el PVT OCS-G-999 (Bashbush)

Cálculo de las constantes de equilibrio de cada elemento para cada etapa de la prueba de agotamiento a volumen constante.

						Valores	: K (x/y)								
Presión (kg/cm²):		365.682	316.46	267.22925	225.04	189.87	147.6793	105.49	70.323						
N ₂		0.9681	0.9900	1.6016	2.1677	2.1437	2.3033	2.8011	2.6846						
CO ₂		0.9681	1.1628	1.2163	1.3075	1.3988	1.6083	1.9306	2.5074						
H ₂ S		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
C 1	C1 1.3148 1.7445 1.4875 1.6398 1.8624 2.2036 2.7416 3.7670														
C 2	0.9681 0.9900 0.9798 0.9819 1.0091 1.0694 1.2155 1.5045														
C 3		0.9681	0.7926	0.7661	0.7050	0.6794	0.6672	0.6936	0.7925						
i-C ₄		0.9681	0.9900	0.6689	0.5718	0.5271	0.4753	0.4716	0.5073						
n-C₄	-C4 0.9681 0.5430 0.5932 0.5242 0.4480 0.3961 0.3788 0.3852														
i-C 5		0.9681	0.9900	0.5276	0.4196	0.3731	0.2920	0.2651	0.2489						
n-C 5		0.9681	0.2728	0.3696	0.3621	0.2806	0.2413	0.1986	0.1852						
C 6		0.2286	0.3303	0.3437	0.2708	0.2122	0.1582	0.1214	0.1035						
C 7+		0.2068	0.1069	0.1075	0.0693	0.0444	0.0262	0.0161	0.0112						
Presión (psia):		5200.00	4500.00	3800.00	3200.00	2700.00	2100.00	1500.00	1000.00						
				V	'er Fiau	ra 6-1	29								

Figura 6-121 Constantes de equilibrio (K) de cada elemento en cada etapa del agotamiento para PVT OCS-G-999 (Bashbush)

• Para PVT X-1

Presión (kg/cm²)	574.9	467	359	251	143	35				
Presión (psia)	8175.08	6640.7	5105	3569.22	2033.5	497.7				
Factor z	1.322	1.158	1.047	0.982	0.958	0.979				
NT Gas (lb _m -mol)	0.74	0.6835	0.5811	0.433197	0.253	0.0606				
WSP _j (%mol)	0	12.18	26.68	44.01	64.56	88.88				
RLV (%mol)	0	10.9	16.3	17.8	16.8	14.6				
N _j (lb _m -mol)	0.73529	0.6457	0.5391	0.41169	0.2606	0.0818				
$(N_g)_j$ (lb _m -mol)	0.73703	0.609	0.4864	0.356088	0.2105	0.0517				
$(N_l)_j$ (lb _m -mol)	0	0.0367	0.0527	0.055602	0.0501	0.03				
(Z _{2pc}) _j	1.32512	1.2257	1.1286	1.0333	0.93	0.7255				
S _j (lb _m -mol)	0	0.0896	0.1066	0.127426	0.1511	0.1788				
S _{jacum} (lb _m -mol)	0	0.0896	0.1962	0.323602	0.4747	0.6535				

Figura 6-122 Balance molar para cada etapa de agotamiento para el PVT X-1(Bashbush)

						Valores	K (x/y)								
Presión (kg/cm ²):		467	359	251	143	35									
N ₂		1.6135	2.3879	3.1872	3.7443	15.8956									
CO ₂		1.0469	1.1985	1.4123	1.8412	8.2471									
H ₂ S		0.6339	0.7246	0.7388	0.9656	2.7701									
C 1	C1 1.2111 1.5077 1.8651 2.3879 11.1144														
C 2	C ₂ 0.9632 0.9620 1.0469 1.2838 4.0187														
C 3		0.8743	0.7317	0.7241	0.8188	1.9614									
i-C 4	i-C ₄ 0.6485 0.6071 0.5584 0.5813 1.1105														
n-C 4	n-C ₄ 0.6132 0.5521 0.5008 0.5099 0.9299														
i-C 5		0.5454	0.4639	0.3936	0.3676	0.5741									
n-C 5		0.5404	0.4540	0.3757	0.3446	0.5294									
C 6		0.4652	0.3662	0.2800	0.2291	0.2888									
C 7+		0.3220	0.1457	0.0778	0.0454	0.0318									
Presión (psia):		6640.74	5104.98	3569.22	2033.46	497.70									
					Ver Fig	jura 6-	144								

Figura 6- 123 Constantes de equilibrio (K) de cada elemento en cada etapa del agotamiento para PVT X-1 (Bashbush)

6.6.4 Validación por método de Hoffmann-Crump-Hocott

A una presión dada los puntos de log Kp vs B, correspondientes a varios componentes deben alinearse a través de una recta. Así al aplicar este criterio a la prueba CVD se debe obtener un número de rectas igual al número de etapas de agotamientos y al aplicarlo al separador se obtiene una sola. De esta forma y ejecutando el programa de cálculo se obtuvieron los siguientes resultados:

			НОІ	FFMANN,	CRUMP, I	носотт	(AIME V	'OL. 198,	1953)		
Punto	o de Ebullio	ción 7	emperat	ura Crític	a		Pre	sion Crit	tica F	actor de	caracterizacion
	T _B T _B Componente (°F) (°R)			τ _c	τ_{c}	1/T _c	1/T	Pc	Ь	в	
Componer	nte (°F)	(°R)	(1/°R)	(°F)	(°R)	(1/°R)	(1/°R)	(psia)			
(C ₁ -258.69	0 200.98	0.005	-116.630	343.040	0.003	0.001	667.800	804.331	2.908	
(C ₂ -127.48	332.19	0.003	90.090	549.760	0.002	0.001	707.800	1412.342	2.330	
(C ₃ -43.67	0 416.000	0.002	206.010	665.680	0.002	0.001	616.300	1799.505	5 1.877	
i-(C₄ 10.900) 470.570	0.002	274.980	734.650	0.001	0.001	529.100	2037.231	1.558	
n-(C ₄ 31.100) 490.770	0.002	305.650	765.320	0.001	0.001	550.700	2152.749	1.458	
i-(C ₅ 82.120) 541.790	0.002	369.100	828.770	0.001	0.001	490.400	2383.306	1.156	
n-0	C 5 96.920	556.590	0.002	385.700	845.370	0.001	0.001	488.600	2479.282	1.081	
	C ₆ 155.72	0 615.390	0.002	453.700	913.370	0.001	0.001	436.900	2778.637	0.735	

• Para PVT Condensado-7

Figura 6-124 Cálculo del factor de caracterización B de cada elemento para PVT Condensado-7

Se realizo el cálculo de K por p usando las constantes de equilibrio calculadas con el método de Whitson & Torp (1981), en la *Figura 6-125* se muestran los resultados:

Cálculo de K * p		Const	antes de	e Equilibr	rio a la Pi	resión d	e Análisi	s tomad	do de Mét	todo de l	Whitson
Presión kg/cm²	317.932	274.26	225.04	175.81	126.582	84.388	49.226				
C 1	0	487.29	401.76	358.477	322.255	279.16	246.05				
C ₂	0	297.06	259.65	211.968	170.124	139.17	114.54				
C 3	0	228.15	183.27	135.722	103.45	75.414	63.514				
iC 4	0	163.05	135.89	97.0858	70.0852	52.089	43.771				
n-C 4	0	146.15	123.14	87.0991	63.6586	46.953	35.73				
i-C 5	0	132.5	99.24	68.128	43.5076	31.891	22.351				
n-C 5	0	118.31	93.328	64.8595	41.437	29.962	20.465				
C 6	0	95.388	67.554	44.3316	27.6727	17.244	10.602				
			Ve	er Figur	a 6-137	7					

Figura 6-125 Cálculo de K*p usando las constantes de equilibrio calculadas con el método de Whitson & Torp para PVT Condensdo-7

Se realizo el cálculo de K por p usando las constantes de equilibrio calculadas con el método de Bashbush(1981), en la *Figura 6-126* se muestran los resultados:

Cálculo de K * p		Consta	ntes de	Equilibri	o a la Pre	esión de	Análisis	tomad	o de Méta	odo de B	ashbush
Presión kg/cm²	317.932	274.26	225.04	175.81	126.582	84.388	49.226				
C 1	0	487.29	401.76	358.477	322.255	279.16	246.05				
C 2	0	297.06	259.65	211.968	170.124	139.17	114.54				
C 3	0	228.15	183.27	135.722	103.45	75.414	63.514				
i-C 4	0	163.05	135.89	97.0858	70.0852	52.089	43.771				
n-C 4	0	146.15	123.14	87.0991	63.6586	46.953	35.73				
i-C 5	0	132.5	99.24	68.128	43.5076	31.891	22.351				
n-C 5	0	118.31	93.328	64.8595	41.437	29.962	20.465				
C 6	0	95.388	67.554	44.3316	27.6727	17.244	10.602				
			Ve	r Figur	a 6-137	7					

Figura 6- 126 Cálculo de K*p usando las constantes de equilibrio calculadas con el método de Bashbush para PVT Condensado-7

• Para PVT OCS-G-999

			нон	FMANN,	CRUMP, I	юсотт	(AIME V	OL. 198,	1953)		
Punto de	e Ebulliciór	י Te	mperat	ura Crític	a		Pre	sion Crit	ica Fa	actor de	caracterizacion
		TB	1/T _B			1/T _c	1/T	Pc	Ь	в	
Componente	(°F)	(°R)	(1/°R)	(°F)	(°R)	(1/°R)	(1/°R)	(psia)		0 704	
C 1	-258.690	200.980	0.005	-116.630	343.040	0.003	0.002	667.800	804.331	2.791	
C ₂	-127.480	332.190	0.003	90.090	549.760	0.002	0.002	707.800	1412.342	2.125	
C 3	-43.670	416.000	0.002	206.010	665.680	0.002	0.002	616.300	1799.505	1.616	
i-C₄	10.900	470.570	0.002	274.980	734.650	0.001	0.002	529.100	2037.231	1.261	
n-C₄	31.100	490.770	0.002	305.650	765.320	0.001	0.002	550.700	2152.749	1.144	
i-C ₅	82.120	541.790	0.002	369.100	828.770	0.001	0.002	490.400	2383.306	0.810	
n-C ₅	96.920	556.590	0.002	385.700	845.370	0.001	0.002	488.600	2479.282	0.720	
C ₆	155.720	615.390	0.002	453.700	913.370	0.001	0.002	436.900	2778.637	0.330	

Figura 6-127 Cálculo del factor de caracterización B de cada elemento para PVT OCS-G-999

Se realizo el cálculo de K por p usando las constantes de equilibrio calculadas con el método de Whitson & Torp (1981), en la *Figura 6-128* se muestran los resultados:

Cálculo de K * p		Const	Constantes de Equilibrio a la Presión de Análisis tomado de Método de Whitson									
Presión kg/cm²	420.18284	365.68	316.46	267.23	225.035	189.87	147.68	105.49	70.3235			
C 1	0	471.97	544.93	396.885	368.519	353.08	324.85	288.62	264.253			
C 2	0	354.69	313.34	261.859	220.981	191.6	157.92	128.19	105.757			
C 3	0	354.69	251.72	204.884	158.741	129.07	98.576	73.188	55.7414			
iC₄	0	354.69	313.34	178.949	128.799	100.16	70.25	49.779	35.6916			
n-C 4	0	354.69	173.23	158.726	118.075	85.148	58.548	39.983	27.1032			
<i>i-</i> C₅	0	354.69	313.34	141.209	94.5505	70.928	43.17	27.988	17.5139			
n-C 5	0	354.69	87.431	98.9699	81.5936	53.345	35.678	20.968	13.0326			
C ₆	0	87.629	105.77	92.0452	61.0276	40.355	23.394	12.817	7.28667			
Ver Figura 6-142												

Figura 6- 128 Cálculo de K*p usando las constantes de equilibrio calculadas con el método de Whitson & Torp para PVT OCS-G-999

Se realizo el cálculo de K por p usando las constantes de equilibrio calculadas con el método de Bashbush(1981), en la *Figura 6-129* se muestran los resultados:

Cálculo de K * p		Con	stantes de	e Equilibri	io a la Pr	esión de A	Análisis to	mado de	Método d	le Bashk	oush	
Presión kg/cm²	420.18284	365.682	316.456	267.229	225.035	189.873	147.679	105.485	70.3235			
C 1	0	480.7978	552.0432	397.5067	369.017	353.6129	325.4194	289.2002	264.91			
C ₂	0	354.0104	313.2888	261.8424	220.973	191.6016	157.932	128.2187	105.805			
C 3	0	354.0104	250.8081	204.7304	158.642	128.9922	98.52889	73.16183	55.731			
i-C 4	0	354.0104	313.2888	178.7589	128.683	100.0758	70.19691	49.74839	35.6758			
n-C₄	0	354.0104	171.8373	158.5187	117.957	85.06502	58.49675	39.95474	27.0882			
i-C 5	0	354.0104	313.2888	140.9944	94.4346	70.84944	43.12615	27.96444	17.5021			
n-C 5	0	354.0104	86.31557	98.76947	81.4836	53.27715	35.63915	20.94898	13.023			
C ₆	0	83.60884	104.523	91.85109	60.9336	40.2988	23.36561	12.8044	7.2808			
				Ver Fig	jura 6-	142						

Figura 6-129 Cálculo de K*p usando las constantes de equilibrio calculadas con el método de Bashbush para PVT OCS-G-999

• Para PVT X-1

			Н	OFFMANN	, CRUMP,	носот	T (AIME VOL	. 198, 195	i3)		
Punto de	e Ebullición	Ten	peratura	Crítica			Presion Cr	itica F	actor de c	aracteri	zacion
		7 —			1				*		
	T _B	Τ _B	1/Т _В	Tc	Tc	1/T _c	1/T	Pc	b	В	
Componente	(°F)	(°R)	(1/°R)	(°F)	(°R)	(1/°R)	(1/°R)	(psia)			_
C 1	-258.690	200.980	0.005	-116.630	343.040	0.003	0.001	667.800	804.331	2.973	
C 2	-127.480	332.190	0.003	90.090	549.760	0.002	0.001	707.800	1412.342	2.445	
C 3	-43.670	416.000	0.002	206.010	665.680	0.002	0.001	616.300	1799.505	2.024	
i-C ₄	10.900	470.570	0.002	274.980	734.650	0.001	0.001	529.100	2037.231	1.723	
n-C₄	31.100	490.770	0.002	305.650	765.320	0.001	0.001	550.700	2152.749	1.633	
i-C ₅	82.120	541.790	0.002	369.100	828.770	0.001	0.001	490.400	2383.306	1.350	
n-C 5	96.920	556.590	0.002	385.700	845.370	0.001	0.001	488.600	2479.282	1.283	
C ₆	155.720	615.390	0.002	453.700	913.370	0.001	0.001	436.900	2778.637	0.961	

Figura 6-130 Cálculo del factor de caracterización B de cada elemento para PVT X-1

Se realizo el cálculo de K por p usando las constantes de equilibrio calculadas con el método de Whitson & Torp (1981), en la Figura 6-131 se muestran los resultados:

Cálculo de K * p		Coi	nstantes o	le Equilibi	rio a la P	resión de	Análisis t	omado de	e Método	de Whit	son	
Presión kg/cm²	574.900	467.000	359.000	251.000	143.000	35.000						
C 1	0	560.7352	535.1428	461.8443	336.577	371.6116						
C 2	0	450.6103	345.7123	262.5986	183.047	138.7181						
C 3	0	410.5694	264.3228	182.5521	117.323	68.34833						
iC₄	0	307.455	219.9615	141.1634	83.4976	38.84799						
n-C₄	0	291.1757	200.2803	126.7144	73.2939	32.55769						
i-C 5	0	259.7095	168.6313	99.74933	52.9283	20.13426						
n-C ₅	0	257.3853	165.0602	95.25892	49.6189	18.56827						
C ₆	0	222.2742	133.396	71.10764	33.0352	10.1421						
Ver Figura 6-147												

Figura 6-131 Cálculo de K*p usando las constantes de equilibrio calculadas con el método de Whitson & Torp para PVT X-1

Se realizo el cálculo de K por p usando las constantes de equilibrio calculadas con el método de Bashbush(1981), en la Figura 6-132 se muestran los resultados:

Cálculo de K * p		Cor	istantes de	Equilibrio	a la Pres	ión de An	álisis tor	nado de M	létodo de	Bashbu	sh	
Presión kg/cm²	574.900	467.000	359.000	251.000	143.000	35.000						
C 1	0	565.56353	541.28188	468.13529	341.471	389.0049						
C 2	0	449.80841	345.3709	262.77334	183.584	140.6531						
C 3	0	408.30942	262.67161	181.74026	117.093	68.65069						
i-C₄	0	302.85227	217.96195	140.16539	83.1261	38.86677						
n-C₄	0	286.38632	198.20803	125.7029	72.9128	32.5462						
i-C 5	0	254.69896	166.54693	98.783704	52.5739	20.09399						
n-C 5	0	252.3657	162.98256	94.309873	49.2746	18.52728						
C ₆	0	217.23848	131.44944	70.29146	32.7659	10.10842						
		-		Ver F	-igura (5-147						

Figura 6-132 Cálculo de K*p usando las constantes de equilibrio calculadas con el método de Bashbush para PVT X-1

6.6.5 Análisis de resultados de la validación para PVT Condensado-7

Se presenta la comparación de la composición del líquido calculada y experimental en la última etapa y el error calculado entre ambos valores.

Figura 6-133 Composición de líquido en la última etapa de separación, medida y calculada para PVT Condensado-7

La diferencia entre estos dos conjuntos de valores debe ser mínima. Todos los reportes de CVD incluyen el análisis de la composición del líquido remanente de la última etapa de agotamiento. Esta composición debe ser comparada con la composición calculada.

En la siguiente tabla se compara dichas composiciones y se presenta el error calculado, el cual es aceptable en todos los componentes a excepción de la composición del nitrógeno.

	Calculado	Medido	%Error
N 2	0.004	0.030	-708.013
CO ₂	0.779	0.700	10.188
H₂S	0.000	0.000	0.000
C ₁	14.207	11.750	17.293
C ₂	5.385	5.040	6.404
C ₃	4.573	4.530	0.935
<i>i</i> -C₄	1.023	1.050	-2.598
n-C₄	2.576	2.620	-1.693
<i>i-C</i> ₅	1.630	1.640	-0.628
n-C₅	1.804	1.910	-5.873
C_6	4.318	4.420	-2.365
C ₇ ⁺	63.701	66.310	-4.096

Tabla 6- 17 Resultados de la composición del líquido en la última etapa del agotamiento para PVT Condensado-7

Se puede evaluar que los porcentajes de error son bajos, lo cual indica consistencia en los datos reportados del líquido remanente en la celda, luego de finalizada la última etapa de agotamiento.

Con respecto al comportamiento del equilibrio de fases, las curvas de las constantes de equilibrio, los valores-K (constantes de equilibrio), observados en el pozo Condensado-7 muestran un comportamiento satisfactorio puesto que el orden de las curvas es el adecuado y no existen anomalías y cruces entre ellas.

A continuación, se presentan las gráficas del comportamiento de:

- Constantes de equilibrio versus presión obtenidas a través de los métodos de Whitson y Bashbush.
- La comparación entre las constantes de equilibrio calculada y obtenida de la última etapa del agotamiento a través del método de Whitson.
- La comparación entre las constantes de equilibrio con respecto a la presión obtenidas a través de los dos métodos (Whitson y Bashbush).

Figura 6-134 Análisis y comportamiento de las constantes de equilibrio por el método de Whitson y Bashbush

Por otro lado, comparando los valores de la densidad de aceite, la medición presenta bajos porcentajes de error con respecto a los datos calculados, por lo que se considera que la densidad reportada en laboratorio es consistente. En la tabla anexa se presentan los cálculos correspondientes al error obtenidos para esta prueba.

Figura 6-135 Valores medidos y calculados de la densidad del aceite para PVT Condensado-7

A continuación, se presenta la gráfica de la máxima condensación retrógrada medida y calculada en cada etapa de separación por medio del método de Paredes, Pérez, & Larez (2012), mostrando que tienen un comportamiento bastante aceptable y por lo tanto valido. Para este PVT se midió un porcentaje máximo de líquido retrógrado de 12.30% y se calculó uno de 15.912%. A continuación, se muestran los porcentajes correspondientes a cada etapa.

Figura 6-136 Máxima condensación retrógrada, medida y calculada para PVT Condensado-7 Con la metodología de Hoffmann-Crump se calculan factores de caracterización B para cada elemento hidrocarburos (C_1 - C_6). En general, estas líneas deben ser monotónicas con la presión y no debe existir cruce entre líneas, lo cual sería reflejo de un desequilibrio termodinámico. El siguiente gráfico muestra el resultado del pozo Condensado-7 para las constantes de equilibrio calculadas a través de los métodos de Whitson y Bashbush.

Todas las presiones presentan un buen comportamiento, por lo que se puede considerar como una prueba bastante satisfactoria, ya que no existe gran dispersión de puntos para una presión dada o no existe cruce de líneas que pudiesen mostrar inconsistencia en la prueba.

Figura 6-137 Comparación de método de Hoffman y Hoccot para las constantes de equilibrio K (Whitson y Bashbush)

En resumen:

De acuerdo a la revisión realizada sobre el informe final de los resultados del análisis PVT del pozo Condensado-7 se pueden realizar las siguientes afirmaciones:

- Fueron reportados los experimentos de:
 - a) Composición original del fluido de yacimiento.
 - b) Agotamiento a Volumen Constante (CVD)
 - c) Volumen de líquido recuperado.

Contando todos con sus datos mínimos necesarios para cada uno de ellos.

- Se realizaron las siguientes pruebas de validación:
 - h) Validación por pruebas de clasificación de León G.A.
 - i) Validación por pruebas de clasificación de Méndez L.T
 - j) Validación por pruebas de clasificación de Pérez H.R
 - **k**) Validación Whitson-Torp por balance de materia.
 - l) Validación de balance molar por método de Bashbush.
 - m) Validación por Hoffmann-Crump-Hocott.

n) Validación por cálculo de máxima condensación retrógrada por Paredes, Pérez, & Larez.

• De acuerdo a las pruebas realizadas se puede afirmar que el análisis PVT del pozo Condensado-7 es consistente por lo tanto es válido, ya que realizadas presenta consistencia en el comportamiento de la mayoría de los resultados reportados.

RECOMENDACIONES

Considerar que los datos de densidad no fueron reportados, por lo que fueron calculados, además de encontrar inconsistencia para el porcentaje mol del nitrógeno (N₂).

6.6.6 Análisis de resultados de la validación para PVT OCS-G-999

Se presenta la comparación de la composición del líquido calculada y experimental en la última etapa y el error calculado entre ambos valores. La diferencia entre estos dos conjuntos de valores debe ser mínima. Todos los reportes de CVD incluyen el análisis de la composición del líquido remanente de la última etapa de agotamiento. Esta composición debe ser comparada con la composición calculada.

Figura 6-138 Composición de líquido en la última etapa de separación, medida y calculada para PVT OCS-G-999

En la siguiente tabla se compara dichas composiciones y se presenta el error calculado, el cual es aceptable en todos los componentes a excepción de la composición del nitrógeno.

	Calculado	Medido	%Error
N 2	0.187	0.050	73.195
CO ₂	2.640	2.380	9.841
H₂S	0.000	0.000	0.000
C ₁	20.135	17.500	13.086
C ₂	6.384	6.110	4.285
C ₃	4.857	5.020	-3.352
<i>i-</i> C₄	1.497	1.640	-9.521
n-C₄	2.828	2.910	-2.893
<i>i-C</i> ₅	1.526	1.670	-9.450
n-C₅	1.619	1.580	2.397
C ₆	6.370	6.600	-3.616
C ₇ ⁺	51.958	54.530	-4.949

Tabla 6-18 Resultados de la composición del líquido en la última etapa del agotamiento para PVT OCS-G-999

Se puede evaluar que los porcentajes de error son bajos, lo cual indica consistencia en los datos reportados del líquido remanente en la celda, luego de finalizada la última etapa de agotamiento.
Con respecto al comportamiento del equilibrio de fases, los valores-K (constantes de equilibrio), observados en el pozo OCS-G-999 muestran un comportamiento errático puesto que el orden de las curvas no es el adecuado, además que las líneas se cruzan y presentan anormalidades en sus tendencias. A continuación, se presentan las gráficas del comportamiento de:

- Constantes de equilibrio versus presión obtenidas a través de los métodos de Whitson y Bashbush.
- La comparación entre las constantes de equilibrio calculada y obtenida de la última etapa del agotamiento a través del método de Whitson.
- La comparación entre las constantes de equilibrio con respecto a la presión obtenidas a través de los dos métodos (Whitson y Bashbush).

Figura 6-139 Análisis y comportamiento de las constantes de equilibrio por el método de Whitson y Bashbush

Por otro lado, comparando los valores de la densidad de aceite, la medición presenta bajos porcentajes de error con respecto a los datos calculados, por lo que se considera que la

densidad reportada en laboratorio es consistente. En la tabla anexa se presentan los cálculos correspondientes al error obtenidos para esta prueba.

Presión	kg/cm²	420.183	365.682	316.456	267.229	225.035	189.873	147.679	105.485	70.323
(p _g) Medido	(g/cm ³)	0.3451	0.3210	0.2930	0.2461	0.2036	0.1686	0.1274	0.0876	0.0564
(ρ _g) Calculado	(g/cm ³)	0.3451	0.3210	0.2930	0.2461	0.2036	0.1686	0.1274	0.0876	0.0564
	%Error	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002

Figura 6- 140 Valores medidos y calculados de la densidad del aceite para PVT OCS-G-999

A continuación, se presenta la gráfica de la máxima condensación retrógrada medida y calculada en cada etapa de separación por medio del método de Paredes, Pérez, & Larez (2012), mostrando que tienen un comportamiento bastante aceptable y por lo tanto valido. Para este PVT se midió un porcentaje máximo de líquido retrógrado de 9.38% y se calculó uno 10.25%. A continuación, se muestran los porcentajes correspondientes a cada etapa.

Figura 6-141 Máxima condensación retrógrada, medida y calculada para PVT OCS-G-999

Con la metodología de Hoffmann-Crump se calculan factores de caracterización B para cada elemento hidrocarburos (C_1 - C_6). En general, estas líneas deben ser monotónicas con la presión y no debe existir cruce entre líneas, lo cual sería reflejo de un desequilibrio termodinámico. El siguiente gráfico muestra el resultado del pozo OCS-G-999 para las constantes de equilibrio calculadas a través de los métodos de Whitson y Bashbush.

Como se puede apreciar, para todas las presiones referidas, se presenta un comportamiento muy disperso, esto debido a una mala medición en de los porcentajes mol de la prueba de agotamiento a volumen constante, lo cual derivo inconsistencia en el cálculo de la constante de equilibrio, este error se ve reflejado en el comportamiento disperso y errático de las curvas.

Figura 6-142 Comparación de método de Hoffman y Hoccot para las constantes de equilibrio K (Whitson y Bashbush)

En resumen:

De acuerdo a la revisión realizada sobre el informe final de los resultados del análisis PVT del pozo Condensado-7 se pueden realizar las siguientes afirmaciones:

- Fueron reportados los experimentos de:
 - a) Composición original del fluido de yacimiento.
 - **b**) Agotamiento a Volumen Constante (CVD)

c) Volumen de líquido recuperado.

Contando todos con sus datos mínimos necesarios para cada uno de ellos.

- Se realizaron las siguientes pruebas de validación:
 - a) Validación por pruebas de clasificación de León G.A.
 - b) Validación por pruebas de clasificación de Méndez L.T
 - c) Validación por pruebas de clasificación de Pérez H.R
 - d) Validación Whitson-Torp por balance de materia.
 - e) Validación de balance molar por método de Bashbush.
 - f) Validación por Hoffmann-Crump-Hocott.

g) Validación por cálculo de máxima condensación retrógrada por Paredes,
 Pérez, & Larez.

• De acuerdo a las pruebas realizadas se puede afirmar que el análisis PVT del pozo OCS-G-999 no es consistente por lo tanto no es válido, ya que realizadas presenta inconsistencia en el comportamiento de la mayoría de los resultados reportados.

RECOMENDACIONES

• El PVT no es apto para posteriores cálculos en función de la composición medida, se recomienda hacer las correcciones pertinentes, tomando en cuenta que se está cambiando el comportamiento de los datos medidos del PVT.

6.6.7 Análisis de resultados de la validación para PVT X-1

Se presenta la comparación de la composición del líquido calculada y experimental en la última etapa y el error calculado entre ambos valores. La diferencia entre estos dos conjuntos de valores debe ser mínima. Todos los reportes de CVD incluyen el análisis de la composición del líquido remanente de la última etapa de agotamiento. Esta composición debe ser comparada con la composición calculada.

Figura 6-143 Composición de líquido en la última etapa de separación, medida y calculada para PVT X-1

En la siguiente tabla se compara dichas composiciones y se presenta el error calculado, el cual es aceptable en todos los componentes a excepción de la composición del nitrógeno.

	Calculado	Medido	%Error
N ₂	0.060	0.064	-6.813
CO ₂	0.197	0.184	6.363
H₂S	0.020	0.017	0.000
C ₁	8.172	7.880	3.578
C ₂	0.886	0.800	9.667
C₃	1.063	0.946	10.971
i-C₄	0.429	0.377	12.091
n-C₄	1.064	0.931	12.522
i-C₅	0.737	0.639	13.303
n-C₅	1.039	0.912	12.189
C ₆	2.091	1.831	12.446
C ₇ ⁺	84.243	87.249	-3.568

Tabla 6-19 Resultados de la composición del líquido en la última etapa del agotamiento para PVT X-1

Se puede evaluar que los porcentajes de error son bajos, lo cual indica consistencia en los datos reportados del líquido remanente en la celda, luego de finalizada la última etapa de agotamiento.

Con respecto al comportamiento del equilibrio de fases, los valores-K (constantes de equilibrio), observados en el pozo X-1 muestran un comportamiento satisfactorio puesto que el orden de las curvas es el adecuado y no existen anomalías y cruces entre ellas.

A continuación, se presentan las gráficas del comportamiento de:

- Constantes de equilibrio versus presión obtenidas a través de los métodos de Whitson y Bashbush.
- La comparación entre las constantes de equilibrio calculada y obtenida de la última etapa del agotamiento a través del método de Whitson.
- La comparación entre las constantes de equilibrio con respecto a la presión obtenidas a través de los dos métodos (Whitson y Bashbush).

Figura 6-144 Análisis y comportamiento de las constantes de equilibrio por el método de Whitson y Bashbush

Por otro lado, comparando los valores de la densidad de aceite, la medición presenta bajos porcentajes de error con respecto a los datos calculados, por lo que se considera que la

densidad reportada en laboratorio es consistente. En la tabla anexa se presentan los cálculos correspondientes al error obtenidos para esta prueba.

Presión	Kg/cm ²	574.900	467.000	359.000	251.000	143.000	35.000
(ρ_g) Medido	(g/cm³)	0.357844	0.309912	0.234125	0.157865	0.086947	0.021398
(ρ_g) Calculado	(g/cm³)	0.357843	0.309911	0.234125	0.157865	0.086947	0.021398
	%Error	-0.000228	-0.000228	-0.000228	-0.000228	-0.000228	-0.000228

Figura 6-145 Valores medidos y calculados de la densidad del aceite para PVT X-1

A continuación, se presenta la gráfica de la máxima condensación retrógrada medida y calculada en cada etapa de separación por medio del método de Paredes, Pérez, & Larez (2012), mostrando que tienen un comportamiento bastante aceptable y por lo tanto valido. Para este PVT se midió un porcentaje máximo de líquido retrógrado de 17.80% y se calculó uno 14.523%. A continuación, se muestran los porcentajes correspondientes a cada etapa.

Figura 6-146 Máxima condensación retrógrada, medida y calculada para PVT X-1

Con la metodología de Hoffmann-Crump se calculan factores de caracterización B para cada elemento hidrocarburos (C_1 - C_6). En general, estas líneas deben ser monotónicas con la presión y no debe existir cruce entre líneas, lo cual sería reflejo de un desequilibrio termodinámico. El siguiente gráfico muestra el resultado del pozo X-1 para las constantes de equilibrio calculadas a través de los métodos de Whitson y Bashbush.

Como se puede apreciar, para todas las etapas presentan un buen comportamiento, por lo que se puede considerar como una prueba bastante satisfactoria, ya que no existe gran dispersión de puntos para una presión dada o no existe cruce de líneas que pudiesen mostrar inconsistencia en la prueba.

Figura 6- 147 Comparación de método de Hoffman y Hoccot para las constantes de equilibrio K (Whitson y Bashbush)

En resumen:

De acuerdo a la revisión realizada sobre el informe final de los resultados del análisis PVT del pozo X-1 se pueden realizar las siguientes afirmaciones:

- Fueron reportados los experimentos de:
 - a) Composición original del fluido de yacimiento.
 - b) Agotamiento a Volumen Constante (CVD)
 - c) Volumen de líquido recuperado.

Contando todos con sus datos mínimos necesarios para cada uno de ellos.

• Se realizaron las siguientes pruebas de validación:

h) Validación por pruebas de clasificación de León G.A.

i) Validación por pruebas de clasificación de Méndez L.T

j) Validación por pruebas de clasificación de Pérez H.R

k) Validación Whitson-Torp por balance de materia.

I) Validación de balance molar por método de Bashbush.

m)Validación por Hoffmann-Crump-Hocott.

n) Validación por cálculo de máxima condensación retrógrada por Paredes,

Pérez, & Larez.

 De acuerdo a las pruebas realizadas se puede afirmar que el análisis PVT del pozo X-1 es consistente por lo tanto es válido, ya que realizadas presenta consistencia en el comportamiento de la mayoría de los resultados reportados.

Capítulo 7 Conclusiones

Para un estudio más profundo y preciso en materia de las propiedades de los fluidos, así como del comportamiento de yacimientos, es importante que la información con que se dispone, sea lo más representativa posible, de manera que se deben emplear métodos de validación de datos, previo a análisis y cálculos.

El empleo de una excelente técnica de muestreo, implica que la representatividad del mismo sea lo más aproximada a condiciones originales del yacimiento, esto ayudará a que las mediciones en laboratorio, sean precisas. Se recomienda que estos apliquen en etapas tempranas del desarrollo de un yacimiento. Puede que existan métodos para obtener las propiedades de los fluidos, como el empleo de las correlaciones, pero las mediciones en laboratorio, son estimaciones más reales y puntuales.

El control de calidad en las pruebas de laboratorio es otro factor que determina si las mediciones son de alta representatividad o no, de manera que se tienen que seguir absolutamente todas las normas, para evitar errores importantes y de consideración en la obtención de datos.

En caso de que las muestras no sean representativas o sean contaminadas, hacer lo posible por realizar las correcciones pertinentes, puesto que se pueden ahorrar costos y la representatividad puede mejorar.

Los experimentos de laboratorio PVT, deben de contar con el análisis composicional, en especial se debe hacer mayor énfasis en la prueba de agotamiento a volumen constante, puesto que la información y el análisis que se puede hacer, amerita en mayor parte la calidad de los datos.

Los métodos de validación por clasificación empleados en este trabajo (Méndez & Teyssier, 1979), (Pérez Herrera, Paredes Enciso, Perera Pérez, & Larez Campos, Abril 2016), (León García, Alamilla Carillo, & García Hernánez, Julio 2013), arrojaron

excelentes resultados, debido a que fueron desarrollados y calibrados para diferentes experimentos PVT, además de ya estar muy estudiados en la literatura.

El método de validación para Aceite Negro, es muy completo, puesto que se toman en cuenta las pruebas de liberación flash, la prueba de separación diferencial y la prueba de a separación en laboratorio, si existe alguna anomalía en las mediciones, con la metodología de ubica de inmediato.

El método de validación para los fluidos cercanos al punto crítico (Aceite Volátil, Gas y Condensado), es muy completo, debido que el análisis parte de la prueba de Agotamiento a volumen constante, empleando un balance molar para estudiar el equilibrio de fases, con el cálculo de las constantes de equilibrio.

La metodología de Whitson & Torp (1981), arrojo resultados satisfactorio, puesto que, al aplicar un análisis muy detallado del balance molar, se logran detectar las inconsistencias presentes o bien, justificar que los datos de estudio son correctos y por lo tanto válidos.

Los errores encontrados como porcentajes de error altos, se asocian a una mala medición en el muestreo o bien a alguna perturbación en el laboratorio.

La metodología de Bashbush (1981), también arroja un análisis satisfactorio, logra detectar de igual forma anomalías en las mediciones de la prueba de agotamiento a volumen constante. Comparando con los resultados de la metodología de Whitson & Torp, los datos tienen un porcentaje de diferencia casi nulo.

La metodología de Hoffmann, Hocott, & Crump (1953), parar validar el cálculo de las constantes de equilibrio, fue satisfactorio, al igual que los metodos mencionados anteiromente, detecta anomalias y verifica que los resultados, sean consistetes.

Los datos PVT que resultaron válidos, son resultado de una excelente técnica de muestreo y de medición en laboratorio, por el contrario de las pruebas que resultaron inconsistentes, los datos no son aptos para cálculos posteriores y deben de pasar por un proceso de corrección y acondicionamiento, teniendo en cuenta que se estaría modificando la representatividad de los datos.

La validación de los datos de un reporte PVT y de mucha importancia, una mala validación o hacer cálculos con valores inconsistentes, se traduce en una pérdida de esfuerzo, y es un impacto muy fuerte si se extrapola en los proyectos petroleros.

El programa de cálculo desarrollado para este trabajo de tesis, arrojo un análisis muy satisfactorio, el tiempo de cálculo es casi instantáneo, el programa es intuitivo y esta listo para mostrarse en alguna clase, como propiedades de los fluidos petroleros.

Recomendaciones

Parar tener un análisis más completo de los datos PVT, se necesita solicitar un análisis PVT composicional.

En caso de que el reporte no cuente con alguna medición, se debe calcular, sin perder de vista que serán valores que no se midieron.

Al ingresar los datos al programa de cálculo, las unidades deben de estar como se requieren en la interfaz de entrada.

Limitaciones

En ocasiones, los reportes PVT, sólo se pueden encontrar pocas pruebas, con lo cual, se tendrá un análisis muy básico, entre más pruebas se reporten, es mejor.

La calidad del análisis, no depende del todo de la metodología ni del programa de cálculo, depende de la interpretación, conocimiento y experiencia del analista, en este caso del ingeniero petrolero.

Anexo A

A continuación, se muestran los siguientes ejemplos con los cuales se pone a prueba tanto la metodología como el programa de cómputo, además se hace un análisis muy completo con el cual se podrá justificar si los datos que se muestran en los reportes PVT son confiables y válidos para posteriores cálculos en la ingeniería petrolera.

A.1 PVT pozo A-2

Resumen del reporte PVT					
Campo:	А				
Pozo:	A-2				
Tipo de Muestreo:	Fondo				
Tipo de fluido:	Aceite Negro				
°API =	23.1				
Temperatura de yacimiento (ºC)=	97.2				
Presión de Burbuja (kg/cm²) =	145.9				
$RGA(m^3/m^3) =$	75.2				

El siguiente caso corresponde a un reporte PVT con los siguientes datos generales.

Figura A-1 Resumen de los datos del reporte PVT del Pozo A-2

La Prueba de liberación diferencial, tubo el siguiente comportamiento.

Análisis composicional de la muestra 1.01							
	Componente	%mol					
	N ₂	0.28					
	CO2	1.85					
	H₂S	1.03					
	<i>C</i> 1	28.84					
	C ₂	8.68					
	C₃	6.22					
	i-C4	0.96					
	n-C4	3.34					
	i-C₅	1.21					
	n-C₅	1.29					
	C 6	2.49					
	C 7 ⁺	43.81					
	TOTAL	100					

Pru	Prueba de liberación instantánea a de la muestra 1.01					
	p(kg/cm2)	Vol. Relativo				
	145.92	1				
	144.76	1.002				
	143.81	1.004				
	141.9	1.008				
	138.37	1.016				
	129.93	1.036				
	119.66	1.066				
	108.71	1.107				
	96.19	1.168				
	84.15	1.249				
	71.56	1.372				
	58.98	1.556				
	48.71	1.783				
	37.96	2.18				
	29.66	2 795				

Figura A- 2 Datos de análisis composicional y prueba de liberación instantánea

p(kg/cm²)	$B_{o}(m^{3}/m^{3})$	$B_g(m^3/m^3)$	$R_{\rm s}(m^3/m^3)$	$\rho(g/cm^3)$	°API	γgas (aire=1)	
145.92	1.321	0	87.629	0.787		0	
136.05	1.309	0.008	82.82	0.791		0.757	
122.45	1.293	0.009	76.052	0.796		0.759	
108.84	1.277	0.01	69.818	0.801		0.765	
95.24	1.262	0.012	63.584	0.806		0.767	
81.63	1.247	0.014	57.529	0.811		0.775	
68.03	1.23	0.017	50.048	0.817		0.787	
54.42	1.215	0.021	44.349	0.822		0.81	
40.82	1.198	0.028	37.581	0.828		0.842	
27.21	1.18	0.043	30.278	0.834		0.911	
13.61	1.153	0.085	21.373	0.843		1.081	
1.03	1.061	0.181	0	0.874	23.1	1.727	

El análisis composicional y la prueba de liberación instantánea midió los siguientes datos:

Figura A-3 Datos medidos de la prueba de liberación diferencial del pozo A-2

Y los resultados de la presión óptima de separación que se obtuvo de la prueba de separación el laboratorio fueron los siguientes:

Figura A-4 Resultados de la prueba de separación en laboratorio del pozo A-2

Como se puede ver en los datos, este reporte PVT, corresponde a una muestra de aceite negro, de manera que se le aplicaron las pruebas de análisis composicional, la prueba de liberación instantánea, la prueba de liberación diferencial y por último la prueba de separador en laboratorio, en donde se obtuvo la presión óptima de separación de separación. Siguiendo la metodología propuesta, se procede es verificar la clasificación del fluido que se está estudiando. Este paso es fundamental puesto que el tipo de fluido es importante para comenzar con la validación. El procedimiento se realizará a partir de las clasificaciones abordadas en el capítulo 2.

A.1.1 Validación por clasificación para PVT A-2

Por medio de la clasificación de Alfredo León García (2013), se establece que para un Peso molecular aparente (M_a) de 44 g/g-mol se encuentran los fluidos denominados como críticos (aceite volátil y gas y condensado). Debajo de 44 g/g-mol es un comportamiento de gas y condensado, por encima de los 78 g/g-mol es un yacimiento de aceite negro y entre 44-78 g/g-mol los yacimientos de aceite volátil.

Se calcula el peso molecular promedio de la mezcla original de manera que a partir del análisis composicional de la muestra y de los pesos moleculares de cada elemento, se obtiene el peso molecular promedio de toda la mezcla original.

Componente	%mol	Peso Molecular (g/g-mol)
N ₂	0.28	28.013
CO ₂	1.85	44.01
H ₂ S	1.03	34.076
C ₁	28.84	16.043
C ₂	8.68	30.07
<i>C</i> ₃	6.22	44.097
i-C4	0.96	58.124
n-C4	3.34	58.124
<i>n-C</i> ₅	1.21	72.151
<i>n</i> - <i>C</i> ₅	1.29	72.151
<i>C</i> ₆	2.49	86.178
C ₇ ⁺	43.81	315
Total	100	

Para obtener el peso molecular promedio de la mezcla, se considera la siguiente expresión matemática:

$$M_{a(i)}[g/g - mol] = \sum_{j=1}^{j=n} (y_{(i,j)})(M_j)$$

De manera que el porcentaje mol de cada componente se multiplicara por el peso molecular de cada componente en g/g-mol, y finalmente se suman los pesos correspondientes de cada elemento presente en la mezcla, obteniendo el peso molecular promedio o también llamado peso molecular aparente de la mezcla. En la siguiente tabla se muestra los resultados de este procedimiento.

Componente	%mol y _(i,j)	Peso Mol (M _j) (g/g-mol)	$y_{(i,j)}x(M_j)$
N ₂	0.28	28.013	0.0784364
CO ₂	1.85	44.01	0.814185
H_2S	1.03	34.076	0.3509828
<i>C</i> ₁	28.84	16.043	4.626801
C ₂	8.68	30.07	2.610076
C_3	6.22	44.097	2.7428334
i-C4	0.96	58.124	0.5579904
n-C4	3.34	58.124	1.9413415
n-C ₅	1.21	72.151	0.8730271
<i>n-C</i> ₅	1.29	72.151	0.9307479
<i>C</i> ₆	2.49	86.178	2.1458323
C ₇ ⁺	43.81	315	138.00151
Total	100		

$$\sum_{j=1}^{j=n} (y_{(i,j)})(M_j) = 0.0784 + 0.814 + 0.350 + 4.626 + 2.610 + 2.742$$
$$+0.557 + 1.941 + 0.873 + 0.930 + 2.145 + 138.0015$$

Quedando finalmente un peso molecular aparente de la mezcla de:

$$\sum_{j=1}^{j=n} (y_{(i,j)})(M_j) = 155.673[g/g - mol]$$

Además, se tiene como referencia que la presión de saturación de esta mezcla que se registró en el reporte PVT es de 145.9 kg/cm^2 .

Finalmente se concluye que a partir del peso molecular promedio de la mezcla y de la presión de saturación registrada y tomando como referencia los parámetros de la clasificación de Alfredo León:

$$PMP \rightarrow 155.673 (g/g - mol) > 78 (g/g - mol)$$

✓ Cumple como Aceite Negro con la clasificación de Alfredo León

Para la clasificación de Tiburcio Méndez, se tomará en cuenta los parámetros de referencia de la gráfica denominada "La Colorina" en el cual se grafican los % de volumen liquido (saturación de líquido) con respecto a una presión adimensional.

Para este análisis, necesitamos los valores volumétricos de la prueba de separación diferencial, para efectos de este procedimiento se ocupa el factor de volumen de formación del aceite B_o . De manera que, la presión de la etapa adimensional se utilizara la siguiente expresión.

$$p_{adim} = rac{p_{etapa}}{p_{referencia}}$$

En donde la presión de referencia será la presión de saturación que se registró en esta prueba. Para el porcentaje de líquido o volumen relativo que también es un coeficiente adimensional, y además es referenciado a partir de las condiciones de presión de saturación, se tiene la siguiente expresión.

$$\% Vol. Relativo = \frac{B_{o @ p.y T.}}{B_{o @ pb}} x100$$

De tal forma que se obtienen los siguientes resultados:

$P\left(\frac{kg}{cm^2}\right)$	$Bo\left(\frac{m^3}{m^3}\right)$	$rac{p_{etapa}}{p_{burbuja}}$	Vol. Relat %
145.92	1.321	1	100
136.05	1.309	0.932360232	99.091599
122.45	1.293	0.839158416	97.880394
108.84	1.277	0.745888114	96.669189
95.24	1.262	0.652686417	95.533684
81.63	1.247	0.559416115	94.398186
68.03	1.23	0.466214359	93.111282
54.42	1.215	0.372944057	91.975777
40.82	1.198	0.27974233	90.688873
27.21	1.18	0.186472028	89.326263
13.61	1.153	0.093270287	87.282364
1.03	1.061	0.007058662	80.31794

Como se puede observar, los porcentajes de volumen relativos son altos, lo cual representa que el encogimiento fue bajo, por ende, estos puntos de alojarían en la parte superior de la gráfica, indicador de que corresponde a un aceite negro.

✓ Cumple como Aceite Negro con la clasificación de Tiburcio Méndez

Para el criterio de clasificación de fluidos propuesta por Rafael Pérez Herrera, se necesitan los valores de RGA y las fracciones mol de los componentes de la fracción ligera y la fracción pesada (C_1 y C_{7+} + respectivamente). De esta manera:

$$RGA = 75.5(m^{3}/m^{3})$$

$$C_{1} = 28.84\% mol$$

$$C_{7}^{+} = 75.2\% mol$$

A partir de estos datos el análisis es el siguiente:

Para clasificar como Aceite Negro en función de la fracción ligera se debe cumplir el siguiente criterio:

$$20 < RGA < 150$$

 $C_1 < 35$
 $20 < 75.5 < 150$
 $28.84 < 35$

✓ Cumple como Aceite Negro con la clasificación de Rafael Pérez Herrera para componentes ligeros

Para clasificar como Aceite Negro en función de la fracción pesada se debe cumplir el siguiente criterio:

$$20 < RGA < 150$$

$$C_7^+ > 35$$

$$20 < 75.5 < 150$$

$$75.2 > 35$$

✓ Cumple como Aceite Negro con la clasificación de Rafael Pérez Herrera para componentes pesados

Debido a que las cuatro pureabas resultaron consistentes para aceite pesado, ya es seguro proceder con la metodología de validación para aceites Negros, esto implica que el analista, ya cuenta con justificación para asegurar y predecir cómo se va a comportar el fluido, en este caso Aceite Pesado.

A.1.2 Corrección de B_o y R_s por método de A. Al-Marhoun (2001) para PVT A-2

Como siguiente paso, se procede a validar los datos de factor de volumen de formación del aceite *Bo* y los de la relación de solubilidad *Rs* de la prueba de liberación diferencial. Además, se necesita conocer la gravedad °API, los datos de densidad del aceite, los datos de densidad relativa del gas como se muestra a continuación:

P(kg/cm ²)	B₀(m ³ /m ³)	B _g (m ³ /m ³)	R _s (m ³ /m ³)	ρ(g/cm³)	⁰API	γ _{gas} (aire=1)
145.92	1.321	0	87.629	0.787		0
136.05	1.309	0.008	82.82	0.791		0.757
122.45	1.293	0.009	76.052	0.796		0.759
108.84	1.277	0.01	69.818	0.801		0.765
95.24	1.262	0.012	63.584	0.806		0.767
81.63	1.247	0.014	57.529	0.811		0.775
68.03	1.23	0.017	50.048	0.817		0.787
54.42	1.215	0.021	44.349	0.822		0.81
40.82	1.198	0.028	37.581	0.828		0.842
27.21	1.18	0.043	30.278	0.834		0.911
13.61	1.153	0.085	21.373	0.843		1.081
1.03	1.061	0.181	0	0.874	23.1	1.727

Para la corrección del B_0 y R_s se empleará el trabajo de A. Al-Marhoun (2001), de esta manera para la corrección se tiene:

Para
$$p = 145.92 \left[\frac{kg}{cm^2}\right]$$
:
 $B_{oi} = B_{obf} + C_i(B_{odn} - B_{obf})$
 $C_i = (B_{obd} - B_{odi})/(B_{obd} - B_{odn})$
 $C_1 = (1.321 - 1.321)/(1.321 - 1.053)=0$
 $B_{o1} = 1.26 + (0)(1.061 - 1.26) = 1.26(m^3/m^3)$
 $B_{obf} = 1.26 \left(\frac{m^3}{m^3}\right) \rightarrow se \ tom6 \ de \ la \ prueba \ de \ separador$
 $R_{si} = R_{sdi} \left(\frac{R_{sbf}}{R_{sbd}}\right)$
 $R_{si} = 87.629 \left(\frac{75.2}{87.629}\right) = 75.2(m^3/m^3)$
 $R_{sbf} = 75.2 \ (m^3/m^3) \ se \ tom6 \ de \ los \ datos \ generales \ del \ PVT$
Para $p = 136.05 \ \left[\frac{kg}{cm^2}\right]$:

$$C_2 = (1.321 - 1.309)/(1.321 - 1.053) = 0.04477$$
$$B_{o2} = 1.26 + (0.04477)(1.061 - 1.26) = 1.251(m^3/m^3)$$
$$R_{si} = 82.82 \left(\frac{75.2}{87.629}\right) = 71.07(m^3/m^3)$$

Siguiendo este procedimiento para las siguientes etapas de presión, se puede construir la siguiente tabla de resultados:

Presión kg/cm²	B _o (m ³ /m ³)	B₀ corregida (m³/m³)	R _s (m ³ /m ³)	R _s corregida (m³/m³)
145.92	1.321	1.26	87.629	75.2
136.05	1.309	1.2508154	82.82	71.07309
122.45	1.293	1.2385693	76.052	65.26505
108.84	1.277	1.226323	69.818	59.91525
95.24	1.262	1.2148423	63.584	54.56546
81.63	1.247	1.2033615	57.529	49.36928
68.03	1.23	1.1903501	50.048	42.94936
54.42	1.215	1.1788692	44.349	38.05869
40.82	1.198	1.1658577	37.581	32.25064
27.21	1.18	1.1520808	30.278	25.98347
13.61	1.153	1.1314154	21.373	18.34153
1.03	1.061	1.061	0	0

A.1.3 Validación por Función Y para PVT A-2

Por medio de la función Y, se puede verificar la consistencia de la prueba de liberación instantánea, a partir de recalculas las presiones de burbuja siguiendo este proceso. Recordando, la función Y está dada por la siguiente expresión:

$$Y = \frac{p_b - p}{p\left[\left(\frac{V_t}{V_b}\right) - 1\right]}$$

A partir de los datos de la prueba de liberación instantánea, se calcula un valor de la función Y para cada etapa de agotamiento. Obtenidos todos los valores, se hace una linealización de los puntos, de tal forma que se necesita una pendiente y una ordenada al origen para poder crear una nueva ecuación de la forma y = mx + b. Este proceso se explica detalladamente a continuación:

Para $p = 144.76 (kg/cm^2)$

$$Y = \frac{145.92 - 144.76}{144.76[(1.002) - 1]} = 4.006$$

Para $p = 143.81(kg/cm^2)$

$$Y = \frac{145.92 - 143.81}{143.81[(1.004) - 1]} = 3.668$$

Para $p = 141.9(kg/cm^2)$

$$Y = \frac{145.92 - 141.9}{141.9[(1.008) - 1]} = 3.541$$

Repitiendo esta serie de pasos para todas las etapas se puede crear la siguiente tabla:

Presión (kg/cm2)	Volumen relativo	Función Y
145.92	1	0
144.76	1.002	4.006
143.81	1.004	3.668
141.9	1.008	3.541
138.37	1.016	3.410
129.93	1.036	3.418
119.66	1.066	3.325
108.71	1.107	3.198
96.19	1.168	3.077
84.150	1.249	2.947
71.56	1.372	2.793
58.98	1.556	2.651
48.71	1.783	2.548
37.96	2.18	2.410
29.66	2.795	2.1837

Con estos datos de Función *Y*, se realizará una linealización, de manera que, para estos datos, se obtiene una pendiente y una ordenada al origen, en este caso se obtendrán por medio de mínimos cuadrados, para obtener una nueva ecuación que se llamara, Función Y suavizada.

A partir de los datos se obtuvo lo siguiente

Una pendiente m = 0.0122

Una ordenada al origen b = 1.9039

Por lo que la función Y suavizada o corregida tendrá la siguiente expresión:

$$y = mx + b \rightarrow Y' = (m)p\left[\frac{kg}{cm^2}\right] + Y_{p=0}$$
$$Y' = (0.0122)p\left[\frac{kg}{cm^2}\right] + 1.9039$$

Calculamos los valores de la función Y suavizada y ya calculada se puede obtener la presión de burbuja asociada a la fórmula original de la función Y, y así saber si hay alguna irregularidad en la prueba.

Para $p = 144.76 \ (kg/cm^2)$

$$Y' = (0.0122)p\left[\frac{kg}{cm^2}\right] + 1.9039$$
$$Y' = (0.0122)(144.76)\left[\frac{kg}{cm^2}\right] + 1.9039 = 3.669$$

Despejando de la ecuación de función Y original

$$p_{bcorregida} = \left[Y'\left(p\left[\frac{kg}{cm^2}\right](V_r - 1)\right)\right] + p\left[\frac{kg}{cm^2}\right]$$

$$p_{bcorregida} = \left[(3.669)\left((144.76)\left[\frac{kg}{cm^2}\right](1.002 - 1)\right)\right] + 144.76\left[\frac{kg}{cm^2}\right]$$

$$p_{bcorregida} = 145.822\frac{kg}{cm^2}$$

$$p_{bcorregida} = 145.822\frac{kg}{cm^2}$$

Para
$$p = 143.81 \left[\frac{kg}{cm^2}\right]$$

 $Y' = (0.0122)(143.81) \left[\frac{kg}{cm^2}\right] + 1.9039 = 3.658$

Despejando de la ecuación de función Y original

$$p_{bcorregida} = \left[Y'(p(V_r - 1))\right] + p\left[\frac{kg}{cm^2}\right]$$

$$p_{bcorregida} = \left[(3.658)\left((143.819)\left[\frac{kg}{cm^2}\right](1.004 - 1)\right)\right] + 143.819$$

$$p_{bcorregida} = 145.920 \frac{kg}{cm^2}$$

Siguiendo el mimo procedimiento para las etapas posteriores se obtiene la siguiente tabla.

Presión (kg/cm²)	Volumen relativo	Función Y	Función Y corregida	p _b calculado
145.92	1	0		
144.76	1.002	4.006	3.670387745	145.8226318
143.81	1.004	3.668	3.658794641	145.9146576
141.9	1.008	3.541	3.635486603	146.0270081
138.37	1.016	3.410	3.592409372	146.3233185
129.93	1.036	3.418	3.489414215	146.2516632
119.66	1.066	3.325	3.364087582	146.2280884
108.71	1.107	3.198	3.230462551	146.2866364
96.19	1.168	3.077	3.077678442	145.9250336
84.150	1.249	2.947	2.930751801	145.5590668
71.56	1.372	2.793	2.777113676	145.4876404
58.98	1.556	2.651	2.623597383	145.0153046
48.71	1.783	2.548	2.498270512	143.993866
37.96	2.18	2.410	2.367086172	143.9884186
29.66	2.795	2.1837	2.265799522	150.2904968

De esta forma y a partir de un promedio se recalcula la presión de burbuja y obtener su porcentaje de error con respecto al valor medido de la prueba de liberación instantánea.

Presion de burbuja recalculada =
$$\frac{\sum p_b \text{ calculadas}}{e \tan s} = 145.9367 \frac{kg}{cm^2}$$

%Error =
$$\left|\frac{145.92 - 145.9367}{145.92}\right| * 100 = .0114\%$$

✓ Cumple validación por Función Y al no rebasar el 5%

A.1.4 Validación por Prueba de densidad para PVT A-2

Para la validación por la prueba de densidad se necesitan los datos de la prueba de separador en laboratorio y el dato de la densidad a la presión de burbuja de la prueba de separación diferencial. Parar este ejemplo son las siguientes:

$$\rho_{obdif} = 0.787 \ [g/cm^3]$$

$$^{\circ}API = 23.1$$

$$B_{obsep} = 1.26 \left[\frac{m^3}{m^3}\right]$$

$$R_{ssep} = 70.887 \left[\frac{m^3}{m^3}\right] = 398.0 [SCF/STB]$$

$$\gamma_{gsep} = 0.877$$

$$R_{stan} = 4.275 \left[\frac{m^3}{m^3}\right] = 24.0 [SCF/STB]$$

$$\gamma_{gtan} = 1.178$$

El procedimiento el simplemente volver a recalcular la densidad a condiciones de presión de burbuja a partir de la siguiente expresión:

$$\rho_o(p_b) \left[\frac{g}{cm^3} \right] = \frac{\gamma_o \rho_w}{B_{oSb}} + \left[\left(\frac{0.0763277}{B_{oSb}} \right) \left(\left(\gamma_g R_s \right)_{sep} + \left(\gamma_g R_s \right)_{tan} \right) (0.0028557) \right]$$

De manera que se empieza por el cálculo de la densidad relativa del aceite

$$^{\circ}API = \frac{141.5}{\gamma_o} - 131.5$$

$$\gamma_o = \frac{141.5}{\circ API + 131.5} = \frac{141.5}{23.1 + 131.5} = 0.9152$$

Sustituyendo en la ecuación se obtiene

$$\rho_{o}(p_{b})\left[\frac{g}{cm^{3}}\right] = \frac{(0.9152)(1\left[\frac{g}{cm^{3}}\right])}{1.26\left[\frac{m^{3}}{m^{3}}\right]} + \left[\left(\frac{0.0763277}{1.26\left[\frac{m^{3}}{m^{3}}\right]}\right)\left(\begin{pmatrix}\left(0.877\left(398\left[\frac{SCF}{STB}\right]\right)\right)_{sep}\\+\left(1.178\left(24\left[\frac{SCF}{STB}\right]\right)\right)_{tan}\end{pmatrix}\right)(0.0028557)\right]$$

$$\rho_o(p_b) \left[\frac{g}{cm^3} \right] = 0.7264 + 0.06527$$

$$\rho_o(p_b) \left[\frac{g}{cm^3} \right] = 0.7916$$
%Error = $\left| \frac{0.787 - 0.7916}{0.787} \right| * 100 = 0.58\%$

✓ Cumple validación por cálculo de densidad al no rebasar el 5%

A.1.5 Validación por Balance de masas

La validación por balance de masas consiste en recalcular valores de R_s y compararlos con los valores medios en la prueba de agotamiento a volumen constante. De manera que se obtiene el siguiente procedimiento.

Para condiciones atmosféricas 60°F y 14.7 psia se tienen las siguientes consideraciones

$$m_{o1} = \rho_o 1000 cm^3$$

 $m_{o1} = (\gamma_o \rho_w) 1000 cm^3$

Donde:

$$\gamma_o = \frac{141.5}{^{\circ}API + 131.5} = \frac{141.5}{23.1 + 131.5} = 0.91526$$
$$m_{oatm} = \left((0.91526) \ 1 \left[\frac{g}{cm^3} \right] \right) 1000 \ cm^3 = 915.26 \ g$$
$$m_{gatm} = 0$$
$$V_{gatm} = 0$$
$$R_{satm} = 0$$

Para p=1.03 [kg/cm²] y 206.96 °F

$$m_{oi} = (B_{odi} \rho_{odi}) * 1000 \ cm^3$$
$$m_{oi} = \left(\left(1.061 \left[\frac{m^3}{m^3} \right] \right) \ \left(0.874 \left[\frac{g}{cm^3} \right] \right) \right) * 1000 \ cm^3$$

228

$$m_{oi} = 927.314 [g]$$

 $m_{g1} = 0$
 $V_{g1} = 0$
 $R_{s1} = 0$

Para *p*=13.61 [*kg/cm*²] y 206.96 °F

$$m_{o2=}\left(\left(1.153\left[\frac{m^3}{m^3}\right]\right) \ \left(0.843\left[\frac{gr}{cm^3}\right]\right)\right) \ * \ 1000 \ cm^3$$
$$m_{o2} = 971.979 \ [g]$$
$$m_{g2}[g] = m_{o2}[g] - m_{o1}[g]$$
$$m_{g2}[gr] = 971.979 - 927.314$$
$$m_{g2} = 44.665[g]$$

Para la densidad del gas en cada etapa se considera lo siguiente:

$$\gamma_{g} = \frac{\rho_{gas}}{\rho_{aire}} = \frac{\rho_{gas} \left[\frac{g}{cm^{3}}\right]}{0.0012232 \left[\frac{g}{cm^{3}}\right]}$$
$$\rho_{gi} = (\gamma_{gi-1}) \left(0.0012232 \left[\frac{g}{cm^{3}}\right]\right)$$
$$\rho_{g2} = (1.727) \left(0.0012232 \left[\frac{g}{cm^{3}}\right]\right)$$
$$\rho_{g2} = 0.00211246 \left[\frac{g}{cm^{3}}\right]$$
$$V_{g2} = \frac{m_{g2}}{\rho_{gi}}$$
$$V_{g2} = \frac{44.665[g]}{0.0012232 \left[\frac{g}{cm^{3}}\right]} = 21143.53 \, cm^{3}$$

$$V_{g2} = 21143.53 \ cm^3 \left[\frac{1[L]}{1000 \ cm^3} \right] = 21.1435 \ [L]$$

Cumpliendo la relación de solubilidad por cada litro

$$R_{s2} = \frac{21.1435 \ [L]}{1000 \ [cm^3]}$$

$$R_{s2}' = \frac{21.1435 \ [L]}{1000 \ [cm^3]} \left[\frac{.001 m^3}{1 \ [L]} \right] \left[\frac{1x10^6 cm^3}{1m^3} \right] = 21.1435 \left[\frac{m^3}{m^3} \right]$$
$$R_{s2}' = 21.1435 \left[\frac{m^3}{m^3} \right] (5.6145833) = 118.7172 \ [SCF/STB]$$
$$R_{s2} = (R_{si-1} + R'_{s2}) \ [SCF/STB]$$
$$R_{s2} = 0 + 21.1435 \left[\frac{SCF}{STB} \right] = 21.1435 \left[\frac{SCF}{STB} \right]$$

El procedimiento continuo para las etapas posteriores.

Presión (kg/cm²)	Rs (m³/m³)	Masa de aceite (g)	Masa gas (g)	Densidad de gas (g/cm³)	Volumen de gas (L)	R _s (m³/m³)	% error
145.92	87.629	1039.627	4.208	0.001	4.544	87.085	0.620
136.05	82.82	1035.419	6.191	0.001	6.668	82.541	0.337
122.45	76.052	1029.228	6.351	0.001	6.787	75.873	0.236
108.84	69.818	1022.877	5.705	0.001	6.081	69.085	1.049
95.24	63.584	1017.172	5.855	0.001	6.176	63.005	0.911
81.63	57.529	1011.317	6.407	0.001	6.656	56.828	1.218
68.03	50.048	1004.91	6.18	0.001	6.237 50.173		0.249
54.42	44.349	998.73	6.786	6 0.001 6.589 43.935		43.935	0.933
40.82	37.581	991.944	7.824	0.001	7.021	37.347	0.624
27.21	30.278	984.12	12.141	0.001	9.182	30.325	0.157
13.61	21.373	971.979	44.665	0.002	21.144	21.144	1.074
1.03	0	927.314	0	0	0	0	0

A.1.6 Validación por prueba de desigualdad

Considerando la siguiente expresión matemática

$$\frac{\partial B_{od}}{\partial p} < B_{gd} \frac{\partial R_{sd}}{\partial p}$$

Para $p=136.05 \ kg/cm^2$

$$\frac{(1.321 - 1.309)}{(145.92 - 136.05)14.22} < (.008)\frac{(87.629 - 82.82)}{(145.92 - 136.05)14.22}$$

 $8.55x10^{-5} < 2.74x10^{-4}$

Para $p=122.45 \ kg/cm^2$

$$\frac{(1.309 - 1.293)}{(136.05 - 122.45)14.22} < (.009)\frac{(82.82 - 76.052)}{(136.05 - 122.45)14.22}$$

Presión (psia)	∆p (psia)	$\frac{R_s}{(m^3/m^3)}$	$B_o(m^3/m^3)$	$B_g (m^3/m^3)$	$\frac{\partial B_{od}}{\partial p}$	$(B_g)\left(\frac{\partial R_{sd}}{\partial p}\right)$	Dif>0
2074.982	0.000	87.629	1.321	0	0	0	0
1934.631	140.351	82.820	1.309	0.008	8.55E-05	2.74E-04	1.89E-04
1741.239	193.392	76.052	1.293	0.009	8.27E-05	3.15E-04	2.32E-04
1547.705	193.534	69.818	1.277	0.01	8.27E-05	3.22E-04	2.39E-04
1354.313	193.392	63.584	1.262	0.012	7.76E-05	3.87E-04	3.09E-04
1160.779	193.534	57.529	1.247	0.014	7.75E-05	4.38E-04	3.61E-04
967.387	193.392	50.048	1.23	0.017	8.79E-05	6.58E-04	5.70E-04
773.852	193.534	44.349	1.215	0.021	7.75E-05	6.18E-04	5.41E-04
580.460	193.392	37.581	1.198	0.028	8.79E-05 9.80E-04		8.92E-04
386.926	193.534	30.278	1.18	0.043	9.30E-05	1.62E-03	1.53E-03
193.534	193.392	21.373	1.153	0.085	1.40E-04	3.91E-03	3.77E-03
14.647	178.888	0.000	1.061	0.181	5.14E-04	2.16E-02	2.11E-02

$8.27x10^{-5} < 3.15x10^{-4}$

El siguiente caso corresponde a un reporte PVT para una muestra de Aceite volátil, a continuación, se muestra los resultados obtenidos en las pruebas empleadas.

A.2 PVT pozo J-2

El siguiente caso corresponde a un reporte PVT para una muestra de Aceite volátil, a continuación, se muestra los resultados obtenidos en las pruebas empleadas.

Resumen del reporte PVT							
Campo:	J						
Pozo:	J-2						
Tipo de Muestreo:	Fondo						
Tipo de fluido:	Aceite Volátil						
°API =	44.3						
Temperatura de yacimiento (°C)=	165						
Presión de Burbuja (kg/cm²) =	340.4						
$RGA(m^3/m^3) =$	423.8						

Figura A- 5 Datos generales del PVT para el pozo J-2

Prueba de composición a volumen constante (CVD) de la muest	ra 1.01

	Mezcla Original	Con	nposición c	lel vapor ei	n c/u de las	s etapas de	agotamier	nto y _(i,j) (%	mol)	Líquido
Presión (kg/cm²):	340.43	303.36	268.2	233.05	197.9	162.74	127.59	85.4	45.73	45.73
N ₂	1.805	2.215	2.205	2.192	2.18	2.165	2.149	2.127	2.093	0.673
CO ₂	1.63	1.909	1.909	1.91	1.91	1.911	1.912	1.912	1.912	0.753
H₂S	0	0	0	0	0	0	0	0	0	0
C ₁	58.375	70.42	70.139	69.805	69.419	68.956	68.481	67.796	66.99	25.093
C ₂	10.381	11.464	11.547	11.645	11.76	11.896	12.04	12.223	12.36	5.76
C ₃	5.195	5.3	5.373	5.463	5.571	5.714	5.857	6.035	6.207	3.678
i-C4	0.939	0.902	0.917	0.932	0.952	0.97	0.988	1.011	1.036	0.865
n-C₄	2.219	2.114	2.144	2.175	2.21	2.243	2.281	2.323	2.366	2.184
i-C5	0.89	0.78	0.786	0.794	0.805	0.814	0.827	0.842	0.859	1.131
n-C5	1.154	0.977	0.985	0.996	1.006	1.017	1.03	1.043	1.061	1.59
C_6	1.689	1.151	1.16	1.18	1.2	1.239	1.258	1.329	1.466	3.102
C ₇ ⁺	15.73	2.768	2.835	2.908	2.987	3.075	3.177	3.359	3.65	55.171
TOTAL	100.007	100	100	100	100	100	100	100	100	100
PMC7 ⁺ (g/g-mol)	187.99	113.5	114.4	115.18	115.18	116.54	117.42	118.35	119.43	218.11
Z	0	0.978	0.949	0.925	0.907	0.897	0.899	0.916	0.946	
ΣΔn _{pi} (%)	0	6.92	14.22	22.23	30.76	40	49.69	60.29	71.34	
$ ho_o$ (g/cm ³)	0.433	0.483	0.527	0.547	0.564	0.581	0.599	0.622	0.648	
S _L (%)	100	69.76	57.02	50.86	46.5	44.86	42.77	40.37	37.63	

Figura A- 6 Datos medidos de la prueba de agotamiento a volumen constante

Con estos datos correspondientes a la prueba de agotamiento a volumen contante, además de las pruebas composicionales para cada etapa, se puede iniciar con la validación con los criterios de clasificación.

A.2.1 Validación por clasificación para PVT J-2

Se calcula el peso molecular promedio de la mezcla original de manera que a partir del análisis composicional de la muestra y de los pesos moleculares de cada elemento, se obtiene el peso molecular promedio de toda la mezcla original.

Componente	%mol	Peso Mol (g/g-mol)	
N ₂	1.805	28.013	
CO ₂	1.630	44.01	
H ₂ S	0	34.076	
C ₁	58.375	16.043	
C ₂	10.381	30.07 44.097	
C ₃	5.195		
i-C₄	0.939	58.124	
n-C₄	2.219	58.124	
<i>i-C</i> 5	0.890	72.151	
n-C₅	1.154	72.151	
C ₆	1.689	86.178	
C ₇ ⁺	15.730	15.730	
Total	100		

Para obtener el peso molecular promedio de la mezcla, se considera la siguiente expresión matemática:

$$M_{a(i,j)}[g/g - mol] = \sum_{j=1}^{j=n} (y_{(i,j)})(M_j)$$

De manera que el porcentaje mol de cada componente se multiplicara por el peso molecular de cada componente en g/g-mol, y finalmente se suman los pesos correspondientes de cada elemento presente en la mezcla, obteniendo el peso molecular promedio o también llamado peso molecular aparente de la mezcla. En la siguiente tabla se muestra los resultados de este procedimiento.

Componente	%mol y _(i,j)	Peso Mol (M _j) (g/g-mol)	$y_{(i,j)}x(M_j)$
N 2	1.805	28.013	0.505
CO ₂	1.630	44.01	0.717
H₂S	0	34.076	0
C ₁	58.375	16.043	9.365
C ₂	10.381	30.07	3.121
C₃	5.195	44.097	2.290
i-C₄	0.939	58.124	0.545
n-C₄	2.219	58.124	1.289
i-C₅	0.890	72.151	0.642
n-C₅	1.154	72.151	0.832
C ₆	1.689	86.178	1.455
C ₇ ⁺	15.730	315	29.570
Total	100		

$$\sum_{j=1}^{j=n} (y_{(i,j)})(M_j) = 0.505 + 0.717 + 0 + 9.365 + 3.121 + 2.290 + 0.545$$

+1.289 + 0.642 + 0.832 + 1.455 + 29.570

Quedando finalmente un peso molecular aparente de la mezcla de:

$$\sum_{j=1}^{j=n} (y_{(i,j)})(M_j) = 50.34[g/g - mol]$$

Finalmente sé concluye que a partir del peso molecular promedio de la mezcla y de la presión de saturación registrada y tomando como referencia los parámetros de la clasificación de Alfredo León:

$$M_a\left[rac{g}{g-mol}
ight]
ightarrow 44 > 50.34 > 78$$

✓ Cumple como Aceite Volátil con la clasificación de Alfredo León

Para la clasificación de Tiburcio Méndez, se tomará en cuenta los parámetros de referencia de la gráfica denominada "La Colorina" en el cual se grafican los % de volumen liquido (saturación de líquido) con respecto a una presión adimensional.

De manera que los resultados fueron los siguientes:

p(kg/cm²)	p _d adimensional	S₀ %
340.42999	1	100
303.35999	0.891108274	69.760002
268.20001	0.787827194	57.02
233.05	0.684575438	50.860001
197.89999	0.581323624	46.5
162.74001	0.478042513	44.860001
127.59	0.374790698	42.77
85.400002	0.250859231	40.369999
45.73	0.134330109	37.630001

Como se puede observar, los porcentajes de saturación iniciales son medios (entre 28 y 50 %), lo cual representa que el encogimiento fue medio, por ende, estos puntos se alojarían en la parte media del gráfico, indicador de que corresponde a un aceite volátil.

✓ Cumple como Aceite Volátil con la clasificación de Tiburcio Méndez

Para el criterio de clasificación de fluidos propuesta por Rafael Pérez Herrera, se necesitan los valores de RGA y las fracciones mol de los componentes de la fracción ligera y la fracción pesada (C_1 y C_{7+} + respectivamente). De esta manera:

 $RGA = 423.8(m^{3}/m^{3})$ $C_{1} = 58.375\% mol$ $C_{7}^{+} = 15.73\% mol$

A partir de estos datos el análisis es el siguiente:

Para clasificar como Aceite Negro en función de la fracción ligera se debe cumplir el siguiente criterio:

$$150 < RGA < 600$$

 $37 < C_1 < 66$
 $150 < 423.8 < 600$
 $37 < 28.84 < 66$

✓ Cumple como Aceite Volátil con la clasificación de Rafael Pérez Herrera para componentes ligeros

Para clasificar como Aceite Negro en función de la fracción pesada se debe cumplir el siguiente criterio:

$$150 < RGA < 600$$

 $33 > C_7^+ > 12$
 $150 < 423.8 < 600$
 $33 > 15.73 > 12$

 ✓ Cumple como Aceite Negro con la clasificación de Rafael Pérez Herrera para componentes pesados

A.2.2 Validación por método de Whitson-Torp para el PVT J-2

A continuación, se procede con la validación por el método de Whitson-Torp, en donde a partir de los datos del experimento de agotamiento, se calculan las constantes de equilibrio, con el siguiente procedimiento.

 Para cada etapa de presión se calcula el peso molecular aparente, correspondiente a la composición medida. Para obtener el peso molecular promedio de la mezcla, se considera la siguiente expresión matemática:

$$M_{a(i)}[lb_m/lb_m - mol] = \sum_{j=1}^{j=n} (y_{(i,j)})(M_j)$$

Para $p=340.430 \text{ kg/cm}^2$

Componente	%mol y _(i,j)	$(M_j) \\ [lb_m/lb_m - mol]$	$y_{(i,j)}x(M_j)$
N ₂	1.805	28.013	0.505
CO ₂	1.630	44.01	0.717
H₂S	0	34.076	0
C ₁	58.375	16.043	9.365
C ₂	10.381	30.07	3.121
C ₃	5.195	44.097	2.290
i-C₄	0.939	58.124	0.545
n-C₄	2.219	58.124	1.289
i-C ₅	0.890	72.151	0.642
n-C₅	1.154	72.151	0.832
C ₆	1.689	86.178	1.455
C ₇ ⁺	15.730	315	29.570
Total	100		

Quedando finalmente un peso molecular aparente de la mezcla de:

$$\sum_{j=1}^{j=n} (y_{(i,j)})(M_j) = 50.34[lb_m/lb_m - mol]$$

De manera que, para todas las etapas de agotamiento, se generaría la siguiente tabla de resultados correspondiente al peso molecular aparente. Cabe mencionar que, para cada etapa, el peso molecular de la fracción pesada, es diferente.

		Pe	so Molecu	lar Aparent	te Ma (yj*M	j) [lb _m /lb	$p_m - mol$]		Liquido
Presión (kg/cm²):	340.430	303.360	268.200	233.050	197.900	162.740	127.590	85.400	45.730	45.730
N ₂	0.506	0.620	0.618	0.614	0.611	0.606	0.602	0.596	0.586	0.189
CO ₂	0.717	0.840	0.840	0.841	0.841	0.841	0.841	0.841	0.841	0.331
H₂S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
C ₁	9.365	11.297	11.252	11.199	11.137	11.063	10.986	10.877	10.747	4.026
C ₂	3.122	3.447	3.472	3.502	3.536	3.577	3.620	3.675	3.717	1.732
C ₃	2.291	2.337	2.369	2.409	2.457	2.520	2.583	2.661	2.737	1.622
i-C₄	0.546	0.524	0.533	0.542	0.553	0.564	0.574	0.588	0.602	0.503
n-C₄	1.290	1.229	1.246	1.264	1.285	1.304	1.326	1.350	1.375	1.269
i-C₅	0.642	0.563	0.567	0.573	0.581	0.587	0.597	0.608	0.620	0.816
n-C₅	0.833	0.705	0.711	0.719	0.726	0.734	0.743	0.753	0.766	1.147
C ₆	1.456	0.992	1.000	1.017	1.034	1.068	1.084	1.145	1.263	2.267
C ₇ ⁺	29.571	3.142	3.243	3.349	3.440	3.584	3.730	3.975	4.359	120.333
TOTAL	<u>50.34</u>	<u>25.70</u>	<u>25.85</u>	<u>26.03</u>	<u>26.20</u>	<u>26.45</u>	<u>26.69</u>	<u>27.07</u>	<u>27.61</u>	<u>134.64</u>

2) Se calcula el volumen de la celda de trabajo considerando 1 $[lb_m - mol]$ de la siguiente forma:

$$V_{cel} = \frac{50.34 \left[lb_m / lb_m - mol \right] \left[lb_m - mol \right]}{0.433 \left[gr/cm^3 \right] (62.42792)} = \frac{50.34 \left[lb_m \right]}{27.023 \left[lb_m / ft^3 \right]} = 1.860 ft^3$$

Este volumen es el que se mantuvo constante durante toda la prueba de agotamiento, el cual esta referenciado a las condiciones de presión de burbuja.

3) Se calcula el volumen de líquido en la celda para cada etapa de agotamiento con la siguiente expresión:

$$V_{liq(i)} = \frac{\% S_{liq}}{100} (V_{cel})$$

Para $p=340.43 \ kg/cm^2$

$$V_{liq} = \frac{(100)\%}{100} (1.860 \ [ft^3]) = 1.860 \ [ft^3]$$

Para $p=303.36 \ kg/cm^2$

$$V_{liq} = \frac{(69.76)\%}{100} (1.860 \ [ft^3]) = 1.29 \ [ft^3]$$

Para $p=268.2 \ kg/cm^2$

$$V_{liq} = \frac{(57.02)\%}{100} (1.860 \ [ft^3]) = 1.06 \ [ft^3]$$

El procedimiento sigue para las etapas restantes del agotamiento

4) Se calcula el volumen de gas contenido en cada etapa del agotamiento

$$V_{gas(i)} = \left(1 - \frac{\% S_{liq}}{100}\right) (V_{cel})$$

Para $p=340.43 \ kg/cm^2$

$$V_{gas} = \left(1 - \frac{(100)\%}{100}\right) (1.860 \ [ft^3]) = 0 \ ft^3$$

Para $p=303.36 \ kg/cm^2$

$$V_{gas} = \left(1 - \frac{(69.76)\%}{100}\right)(1.860 \ [ft^3]) = 0.562 \ ft^3$$

Para $p=268.2 \ kg/cm^2$

$$V_{gas} = \left(1 - \frac{(57.02)\%}{100}\right) (1.860 \ [ft^3]) = 0.800 \ ft^3$$

El procedimiento continuo para las etapas posteriores del agotamiento.

5) Se calculan las moles de gas contenidas en la celda, a partir de la ecuación de estado para gases reales.

$$n_{v(i)} = \frac{p_{(i)}[psia] V_{gas(i)}[ft^3]}{z_{(i)} \ 10.732 \left[\frac{psia \ ft^3}{lb_m - mol \ ^\circ R}\right] T[^\circ R]}$$
Para 340.43 kg/cm^2 no aplica puesto que la composición de la primera etapa es referente a una cantidad de 100 % aceite.

Para
$$p = 303.36 \text{ kg/cm}^2$$

 $n_v = \frac{4312.92[psia] \ 0.562[ft^3]}{(0.978) \ 10.732 \left[\frac{psia \ ft^3}{lb_m - mol \ ^\circ R}\right] 789[^\circ R]} = 0.2926 \ [lb_m - mol]$

Para $p=268.2 \ kg/cm^2$

$$n_{v} = \frac{3813.80[psia]0.8[ft^{3}]}{(0.949)\ 10.732 \left[\frac{psia\ ft^{3}}{lb_{m} - mol\ ^{\circ}R}\right]789[^{\circ}R]} = 0.3796[lb_{m} - mol]$$

6) Se calculan las moles totales contenidas en la celda mediante la siguiente expresión:

$$\begin{split} n_{t(i)} &= 1 - \frac{\sum n_{p(i)} \, [\%]}{100} \\ n_t &= 1 - \frac{0 [\%]}{100} = 1 \, \, [lb_m - mol] \end{split}$$

Para $p=303.36 \ kg/cm^2$

Para $p=340.43 \text{ kg/cm}^2$

$$n_t = 1 - \frac{6.92[\%]}{100} = 0.9308 \ [lb_m - mol]$$

Para $p=268.2 \ kg/cm^2$

$$n_t = 1 - \frac{14.22[\%]}{100} = 0.8578 \ [lb_m - mol]$$

7) Se calculan las moles producidas en cada etapa del agotamiento.

$$n_{p(i)} = \sum n_{p(i)} - \sum n_{p(i-1)}$$

Para $p=340.43 \ kg/cm^2$

$$n_p = 0 \left[lb_m - mol \right]$$

Para $p=303.36 \ kg/cm^2$

$$n_p = \frac{(6.92 - 0)}{100} = 0.069[lb_m - mol]$$

Para $p=268.2 \ kg/cm^2$

$$n_p = \frac{(14.22 - 6.92)}{100} = 0.073[lb_m - mol]$$

8) Se calculan las moles de líquido en la celda en cada etapa del agotamiento.

$$n_{liq(i)} = n_{t(i)} - n_{v(i)}$$

 $n_{liq} = 1 - 0 = 1 [lb_m - mol]$ Para p=303.36 kg/cm² $n_{liq} = 0.9308 - 0.2926 = 0.6368 [lb_m - mol]$ Para p=268.2 kg/cm² $n_{liq} = 0.8578 - 0.3796 = 0.4782 [lb_m - mol]$

9) Se calculan las moles totales del sistema.

$$n_{ts(i)} = n_{liq(i)} + n_{v(i)} + \Sigma n_{p(i)}$$

Para $p=340.43 \ kg/cm^2$

Para $p=340.43 \ kg/cm^2$

$$n_{ts} = 1 + 0 + 0 = 1 [lb_m - mol]$$

Para $p=303.36 \ kg/cm^2$

$$n_{ts} = 0.6378 + 0.2926 + 0.069 = 1 \left[lb_m - mol \right]$$

Presión kg/cm ²	340.43	303.36	268.2	233.05	197.9	162.74	127.59	85.4	45.73
V _{liq} [ft ³]	1.86	1.29	1.06	0.94	0.86	0.83	0.79	0.75	0.70
V _{gas} [ft ³]	0	0.562	0.800	0.915	0.996	1.026	1.065	1.110	1.161
n _∨ Ib _m -mol	0	0.292	0.379	0.387	0.365	0.312	0.254	0.173	0.094
n _t Ib _m -mol	1	0.930	0.857	0.777	0.692	0.6	0.503	0.397	0.286
n _p Ib _m -mol	0	0.069	0.073	0.080	0.085	0.092	0.096	0.106	0.110
n _{liq} Ib _m -mol	1	0.637	0.477	0.390	0.327	0.287	0.249	0.223	0.192
n _{ts} Ib _m -mol	1	1	1	1	1	1	1	1	1

De esta manera es como se realiza el balance molar del total de la mezcla con los datos correspondientes a la prueba de agotamiento a volumen constante. Hora se calculará el balance molar correspondiente para cada elemento de la misma prueba. De manera que se continua con el procedimiento.

10) Se calculan los moles totales (liquido + gas) que contienen la celda a partir de la siguiente expresión:

$$n_{t(i,j)} = z_i - \left(\frac{y_{(i,j)}}{100}\right) \left(\frac{\Sigma \Delta n_{p(i)}}{100}\right)$$

De manera que para $p=340.43 \text{ kg/cm}^2$ y para cada elemento de la mezcla se obtiene lo siguiente:

$$\begin{split} n_{t(N_2)} &= \left(\frac{1.805}{100}\right) - \left(\frac{0}{100}\right) \left(\frac{0}{100}\right) = 0.01805 \ [lb_m - mol] \\ n_{t(C0_2)} &= \left(\frac{1.63}{100}\right) - \left(\frac{0}{100}\right) \left(\frac{0}{100}\right) = 0.0163 \ [lb_m - mol] \\ n_{t(C_1)} &= \left(\frac{58.375}{100}\right) - \left(\frac{0}{100}\right) \left(\frac{0}{100}\right) = 0.5837 \ [lb_m - mol] \\ n_{t(C_2)} &= \left(\frac{10.381}{100}\right) - \left(\frac{0}{100}\right) \left(\frac{0}{100}\right) = 0.10381 \ [lb_m - mol] \\ n_{t(C_3)} &= \left(\frac{5.195}{100}\right) - \left(\frac{0}{100}\right) \left(\frac{0}{100}\right) = 0.05195 \ [lb_m - mol] \\ n_{t(c_4)} &= \left(\frac{0.939}{100}\right) - \left(\frac{0}{100}\right) \left(\frac{0}{100}\right) = 0.00939 \ [lb_m - mol] \\ n_{t(n-C_4)} &= \left(\frac{2.219}{100}\right) - \left(\frac{0}{100}\right) \left(\frac{0}{100}\right) = 0.0089 \ [lb_m - mol] \\ n_{t(i-C_5)} &= \left(\frac{0.89}{100}\right) - \left(\frac{0}{100}\right) \left(\frac{0}{100}\right) = 0.01154 \ [lb_m - mol] \\ n_{t(c_6)} &= \left(\frac{1.154}{100}\right) - \left(\frac{0}{100}\right) \left(\frac{0}{100}\right) = 0.01689 \ [lb_m - mol] \\ n_{t(C_7^+)} &= \left(\frac{15.730}{100}\right) - \left(\frac{0}{100}\right) \left(\frac{0}{100}\right) = 0.1573 \ [lb_m - mol] \\ \sum (n_t)_{@340.43 \ kg/cm^2} = 1 \ [lb_m - mol] \end{split}$$

Para $p=303.3 \ kg/cm^2$ y para cada elemento de la mezcla se obtiene lo siguiente:

$$\begin{split} n_{t(N_2)} &= \left(\frac{1.805}{100}\right) - \left(\frac{2.215}{100}\right) \left(\frac{6.92}{100}\right) = 0.0165 \ [lb_m - mol] \\ n_{t(CO_2)} &= \left(\frac{1.63}{100}\right) - \left(\frac{1.909}{100}\right) \left(\frac{6.92}{100}\right) = 0.0149 \ [lb_m - mol] \\ n_{t(C_1)} &= \left(\frac{58.375}{100}\right) - \left(\frac{70.42}{100}\right) \left(\frac{6.92}{100}\right) = 0.535 \ [lb_m - mol] \end{split}$$

$$\begin{split} n_{t(C_2)} &= \left(\frac{10.381}{100}\right) - \left(\frac{11.464}{100}\right) \left(\frac{6.92}{100}\right) = 0.0958[lb_m - mol] \\ n_{t(C_3)} &= \left(\frac{5.195}{100}\right) - \left(\frac{5.30}{100}\right) \left(\frac{6.92}{100}\right) = 0.0482[lb_m - mol] \\ n_{t(i-C_4)} &= \left(\frac{0.939}{100}\right) - \left(\frac{0.902}{100}\right) \left(\frac{6.92}{100}\right) = 0.0087[lb_m - mol] \\ n_{t(n-C_4)} &= \left(\frac{2.219}{100}\right) - \left(\frac{2.114}{100}\right) \left(\frac{6.92}{100}\right) = 0.0207[lb_m - mol] \\ n_{t(i-C_5)} &= \left(\frac{0.89}{100}\right) - \left(\frac{0.78}{100}\right) \left(\frac{6.92}{100}\right) = 0.008[lb_m - mol] \\ n_{t(n-C_5)} &= \left(\frac{1.154}{100}\right) - \left(\frac{0.977}{100}\right) \left(\frac{6.92}{100}\right) = 0.0108[lb_m - mol] \\ n_{t(C_6)} &= \left(\frac{1.689}{100}\right) - \left(\frac{1.151}{100}\right) \left(\frac{6.92}{100}\right) = 0.0160[lb_m - mol] \\ n_{t(C_7^+)} &= \left(\frac{15.730}{100}\right) - \left(\frac{2.768}{100}\right) \left(\frac{6.92}{100}\right) = 0.155[lb_m - mol] \\ \sum (n_t)_{@340.43 \ kg/cm^2} &= 0.931[lb_m - mol] \end{split}$$

De manera que para todas las etapas del agotamiento se genera la siguiente tabla:

	Moles totales (liquido + gas), $n_t [lb_m - mol]$]	
Presión (kg/cm²)	340.43	303.36	268.2	233.05	197.9	162.74	127.59	85.4	45.73
N 2	0.01805	0.0165	0.0149	0.0131	0.0113	0.0093	0.0073	0.0052	0.0031
CO ₂	0.0163	0.0149	0.0135	0.0120	0.0104	0.0086	0.0067	0.0047	0.0026
H₂S	0	0	0	0	0	0	0	0	0
C ₁	0.5837	0.5350	0.4840	<i>0.4</i> 285	0.3702	0.3079	0.2434	0.1750	0.1058
C ₂	0.1038	0.0958	0.0873	0.0779	0.0676	0.0562	0.0439	0.0301	0.0156
C ₃	0.0519	0.0482	0.0443	0.0398	0.0348	0.0290	0.0228	0.0155	0.0076
i-C₄	0.0093	0.0087	0.0080	0.0073	0.0064	0.0055	0.0044	0.0032	0.0019
n-C₄	0.0221	0.0207	0.0191	0.0173	0.0153	0.0132	0.0108	0.0081	0.0053
i-C₅	0.0089	0.0083	0.0077	0.0071	0.0064	0.0056	0.0047	0.0038	0.0027
n-C₅	0.0115	0.0108	0.0101	0.0093	0.0084	0.0074	0.0064	0.0052	0.0039
C ₆	0.0168	0.0160	0.0152	0.0142	0.0131	0.0119	0.0106	0.0088	0.0064
C ₇ ⁺	0.1573	0.1553	0.1532	0.1508	0.1481	0.145	0.1415	0.1370	0.1312
TOTAL	1.0000	0.931	0.8578	0.7777	0.6924	0.6000	0.5031	0.3971	0.2866

11) Se calculan los moles de gas de cada elemento de la mezcla para cada etapa del agotamiento con la siguiente expresión:

$$n_{v(i,j)} = n_{v(i)} \left(\frac{y_{(i,j)}}{100}\right)$$

Para $p=340.43 \text{ kg/cm}^2$ y para cada elemento de la mezcla se obtiene lo siguiente: Para esta etapa, la muestra consiste en 100 % liquido por lo que no se tendrán moles de vapor por lo que para esta etapa:

$$n_{v(compuesto)} = 0 \ [lb_m - mol]$$

Para $p=303.3 \text{ kg/cm}^2$ y para cada elemento de la mezcla se obtiene lo siguiente:

$$\begin{split} n_{v(N_2)} &= (0.293) \left(\frac{2.215}{100}\right) = 0.00649 [lb_m - mol] \\ n_{v(CO_2)} &= (0.293) \left(\frac{1.909}{100}\right) = 0.00559 [lb_m - mol] \\ n_{v(C_1)} &= (0.293) \left(\frac{70.42}{100}\right) = 0.206 [lb_m - mol] \\ n_{v(C_2)} &= (0.293) \left(\frac{11.464}{100}\right) = 0.033 [lb_m - mol] \\ n_{v(C_3)} &= (0.293) \left(\frac{5.30}{100}\right) = 0.0155 [lb_m - mol] \\ n_{v(i-C_4)} &= (0.293) \left(\frac{0.902}{100}\right) = 0.0026 [lb_m - mol] \\ n_{v(n-C_4)} &= (0.293) \left(\frac{2.114}{100}\right) = 0.0022 [lb_m - mol] \\ n_{v(i-C_5)} &= (0.293) \left(\frac{0.780}{100}\right) = 0.0022 [lb_m - mol] \\ n_{v(n-C_5)} &= (0.293) \left(\frac{0.977}{100}\right) = 0.0028 [lb_m - mol] \\ n_{v(C_6)} &= (0.293) \left(\frac{1.151}{100}\right) = 0.0033 [lb_m - mol] \\ n_{v(C_7^+)} &= (0.293) \left(\frac{2.768}{100}\right) = 0.0081 [lb_m - mol] \\ n_{v(C_7^+)} &= (0.293) \left(\frac{2.768}{100}\right) = 0.293 [lb_m - mol] \\ \sum (n_v)_{@303.3 \ kg/cm^2} &= 0.293 [lb_m - mol] \end{split}$$

Siguiendo este procedimiento, se aplica para las etapas posteriores de la prueba de agotamiento a volumen constate, dando como resultante la siguiente tabla.

			Moles	de gas,	$n_v[lb_m$	-mol]			
Presión kg/cm²	340.43	303.36	268.2	233.05	197.9	162.74	127.59	85.4	45.73
CO ₂	0.0	0.00649	0.00837	0.00848	0.00795	0.00677	0.00545	0.00369	0.00197
N ₂	0.0	0.00559	0.00725	0.00739	0.00697	0.00597	0.00485	0.00332	0.00180
C ₁	0.0	0.20656	0.26642	0.27026	0.25341	0.21572	0.17394	0.11786	0.06316
C ₂	0.0	0.03362	0.04386	0.04508	0.04293	0.03721	0.03058	0.02125	0.01165
C ₃	0.0	0.01554	0.02040	0.02115	0.02033	0.01787	0.01487	0.01049	0.00585
i-C₄	0.0	0.00264	0.00348	0.00360	0.00347	0.00303	0.00250	0.00175	0.00097
n-C₄	0.0	0.00620	0.00814	0.00842	0.00806	0.00701	0.00579	0.00403	0.00223
i-C₅	0.0	0.00228	0.00298	0.00307	0.00293	0.00254	0.00210	0.00146	0.00080
n-C₅	0.0	0.00286	0.00374	0.00385	0.00367	0.00318	0.00261	0.00181	0.00100
C ₆	0.0	0.00337	0.00440	0.00456	0.00438	0.00387	0.00319	0.00231	0.00138
C ₇ ⁺	0.0	0.00811	0.01076	0.01125	0.01090	0.00962	0.00806	0.00583	0.00344
TOTAL	0.0	0.29333	0.37985	0.38717	0.36505	0.31284	0.25400	0.17385	0.09428

12) Cálculo de moles extraídas de gas en cada etapa mediante la siguiente expresión

$$\Delta n_{p(i,j)} = (n_{vi})(y_{(i,j)})$$

Para $p=340.43 \text{ kg/cm}^2$ no aplica puesto que el contenido inicial el de aceite en su totalidad.

Para $p=303.3 \ kg/cm^2$

$$\Delta n_{p(N_2)} = (0.0692) \left(\frac{1.805}{100}\right) = 0.00153[lb_m - mol]$$

$$\Delta n_{p(CO_2)} = (0.0692) \left(\frac{1.63}{100}\right) = 0.00132[lb_m - mol]$$

$$\Delta n_{p(C_1)} = (0.0692) \left(\frac{58.375}{100}\right) = 0.04873[lb_m - mol]$$

$$\Delta n_{p(C_2)} = (0.0692) \left(\frac{10.381}{100}\right) = 0.00793[lb_m - mol]$$

$$\Delta n_{p(C_3)} = (0.0692) \left(\frac{5.195}{100}\right) = 0.00367[lb_m - mol]$$

$$\Delta n_{p(i-C_4)} = (0.0692) \left(\frac{0.939}{100}\right) = 0.00062[lb_m - mol]$$

$$\Delta n_{p(n-C_4)} = (0.0692) \left(\frac{2.219}{100}\right) = 0.00146[lb_m - mol]$$

$$\begin{split} \Delta n_{p(i-C_5)} &= (0.0692) \left(\frac{0.89}{100}\right) = 0.00054 [lb_m - mol] \\ \Delta n_{p(n-C_5)} &= (0.0692) \left(\frac{1.154}{100}\right) = 0.00068 [lb_m - mol] \\ \Delta n_{p(C_6)} &= (0.0692) \left(\frac{1.689}{100}\right) = 0.00080 [lb_m - mol] \\ \Delta n_{p(C_7^+)} &= (0.0692) \left(\frac{15.730}{100}\right) = 0.00192 [lb_m - mol] \\ \sum \left(\Delta n_p\right)_{@303.3 \ kg/cm^2} = 0.0692 [lb_m - mol] \end{split}$$

	Moles extraidas de gas, $\Delta n_p[lb_m - mol]$								
Presión kg/cm²	340.430	303.360	268.200	233.050	197.900	162.740	127.590	85.400	45.730
CO ₂	0.0	0.00153	0.00161	0.00176	0.00186	0.00200	0.00208	0.00225	0.00231
N ₂	0.0	0.00132	0.00139	0.00153	0.00163	0.00177	0.00185	0.00203	0.00211
C ₁	0.0	0.04873	0.05120	0.05591	0.05921	0.06372	0.06636	0.07186	0.07402
C ₂	0.0	0.00793	0.00843	0.00933	0.01003	0.01099	0.01167	0.01296	0.01366
C ₃	0.0	0.00367	0.00392	0.00438	0.00475	0.00528	0.00568	0.00640	0.00686
i-C₄	0.0	0.00062	0.00067	0.00075	0.00081	0.00090	0.00096	0.00107	0.00114
n-C₄	0.0	0.00146	0.00157	0.00174	0.00189	0.00207	0.00221	0.00246	0.00261
i-C₅	0.0	0.00054	0.00057	0.00064	0.00069	0.00075	0.00080	0.00089	0.00095
n-C₅	0.0	0.00068	0.00072	0.00080	0.00086	0.00094	0.00100	0.00111	0.00117
C ₆	0.0	0.00080	0.00085	0.00095	0.00102	0.00114	0.00122	0.00141	0.00162
C ₇ ⁺	0.0	0.00192	0.00207	0.00233	0.00255	0.00284	0.00308	0.00356	0.00403
Δn_p	0.0	<u>0.06920</u>	<u>0.07300</u>	<u>0.08010</u>	<u>0.08530</u>	<u>0.09240</u>	<u>0.09690</u>	<u>0.10600</u>	<u>0.11050</u>

13) Se calculan las moles de líquido de la siguiente manera:

$$n_{liq(i,j)} = z_{(i,j)} - n_{v(i,j)} - \sum \Delta n_{p(i,j)}$$

Para $p = 340.43 \ kg/cm^2$

$$\begin{split} n_{liq(N_2)} &= 0.018 - 0.0 - 0.0 = 0.018 \ [lb_m - mol] \\ n_{liq(CO_2)} &= 0.016 - 0.0 - 0.0 = 0.016 \ [lb_m - mol] \\ n_{liq(H_2S)} &= 0.0 - 0.0 - 0.0 = 0.0 \ [lb_m - mol] \\ n_{liq(C_1)} &= 0.584 - 0.0 - 0.0 = 0.584 \ [lb_m - mol] \\ n_{liq(C_2)} &= 0.104 - 0.0 - 0.0 = 0.104 \ [lb_m - mol] \end{split}$$

$$\begin{split} n_{liq(C_3)} &= 0.052 - 0.0 - 0.0 = 0.052 \ [lb_m - mol] \\ n_{liq(i-C_4)} &= 0.009 - 0.0 - 0.0 = 0.009 \ [lb_m - mol] \\ n_{liq(n-C_4)} &= 0.022 - 0.0 - 0.0 = 0.022 \ [lb_m - mol] \\ n_{liq(i-C_5)} &= 0.009 - 0.0 - 0.0 = 0.009 \ [lb_m - mol] \\ n_{liq(n-C_5)} &= 0.012 - 0.0 - 0.0 = 0.012 \ [lb_m - mol] \\ n_{liq(C_6)} &= 0.017 - 0.0 - 0.0 = 0.017 \ [lb_m - mol] \\ n_{liq(C_7^+)} &= 0.157 - 0.0 - 0.0 = 0.157 \ [lb_m - mol] \\ \sum \left(n_{liq} \right)_{@340.43 \ kg/cm^2} &= 1 \ [lb_m - mol] \end{split}$$

Para $p=303.360 \ kg/cm^2$

$$\begin{split} n_{liq(N_2)} &= 0.018 - 0.00649 - 0.00153 = 0.01002 \ [lb_m - mol] \\ n_{liq(CO_2)} &= 0.016 - 0.00559 - 0.00132 = 0.00938 \ [lb_m - mol] \\ n_{liq(C_1)} &= 0.584 - 0.20656 - 0.04873 = 0.32845 \ [lb_m - mol] \\ n_{liq(C_2)} &= 0.104 - 0.03362 - 0.00793 = 0.06225 \ [lb_m - mol] \\ n_{liq(C_3)} &= 0.052 - 0.01554 - 0.00367 = 0.03274 \ [lb_m - mol] \\ n_{liq(i-C_4)} &= 0.009 - 0.00264 - 0.00062 = 0.00612 \ [lb_m - mol] \\ n_{liq(n-C_4)} &= 0.022 - 0.0620 - 0.00146 = 0.01453 \ [lb_m - mol] \\ n_{liq(i-C_5)} &= 0.012 - 0.00286 - 0.00054 = 0.00607 \ [lb_m - mol] \\ n_{liq(n-C_5)} &= 0.012 - 0.00286 - 0.00068 = 0.00800 \ [lb_m - mol] \\ n_{liq(C_6)} &= 0.017 - 0.00337 - 0.00080 = 0.01272 \ [lb_m - mol] \\ n_{liq(C_7+)} &= 0.157 - 0.00811 - 0.00192 = 0.14727 \ [lb_m - mol] \\ \sum \left(n_{liq} \right)_{@303.360 \ kg/cm^2} &= 0.63753 \ [lb_m - mol] \end{split}$$

Para $p=268.2 \ kg/cm^2$

$$\begin{split} n_{liq(N_2)} &= 0.018 - 0.00837 - (0.00153 + 0.00161) = 0.00653 \ [lb_m - mol] \\ n_{liq(CO_2)} &= 0.016 - 0.00725 - (0.00132 + 0.00139) = 0.00633 \ [lb_m - mol] \\ n_{liq(C_1)} &= 0.584 - 0.26642 - (0.04873 + 0.05120) = 0.21739 \ [lb_m - mol] \\ n_{liq(C_2)} &= 0.104 - 0.04386 - (0.00793 + 0.00843) = 0.04359 \ [lb_m - mol] \\ n_{liq(C_3)} &= 0.052 - 0.02040 - (0.00367 + 0.00392) = 0.02395 \ [lb_m - mol] \\ n_{liq(i-C_4)} &= 0.009 - 0.00348 - (0.00062 + 0.00067) = 0.00461 \ [lb_m - mol] \end{split}$$

$$\begin{split} n_{liq(n-C_4)} &= 0.022 - 0.00814 - (0.00146 + 0.00157) = 0.01102[lb_m - mol] \\ n_{liq(i-C_5)} &= 0.009 - 0.00298 - (0.00054 + 0.00057) = 0.00480 [lb_m - mol] \\ n_{liq(n-C_5)} &= 0.012 - 0.00374 - (0.00068 + 0.00072) = 0.00640 [lb_m - mol] \\ n_{liq(C_6)} &= 0.017 - 0.00440 - (0.00080 + 0.00085) = 0.01084 [lb_m - mol] \\ n_{liq(C_{7+})} &= 0.157 - 0.01076 - (0.00192 + 0.00207) = 0.14255 [lb_m - mol] \\ \sum (n_{liq})_{@268.2 \ kg/cm^2} = 0.47801 [lb_m - mol] \end{split}$$

Γ		Mol	es de líqu	ido en la	celda, n _{li}	$iq [lb_m - n]$	nol]		
Presión kg/cm ²	340.43	303.36	268.2	233.05	197.9	162.74	127.59	85.4	45.73
CO ₂	0.01805	0.01002	0.00653	0.00466	0.00333	0.00252	0.00175	0.00126	0.00067
N ₂	0.01630	0.00938	0.00633	0.00466	0.00345	0.00268	0.00195	0.00146	0.00087
C ₁	0.58375	0.32845	0.21739	0.15764	0.11527	0.08925	0.06467	0.04888	0.02957
C ₂	0.10381	0.06225	0.04359	0.03303	0.02516	0.01988	0.01485	0.01122	0.00716
C ₃	0.05195	0.03274	0.02395	0.01883	0.01490	0.01208	0.00940	0.00739	0.00517
i-C₄	0.00939	0.00612	0.00461	0.00374	0.00306	0.00261	0.00217	0.00185	0.00149
n-C₄	0.02219	0.01453	0.01102	0.00900	0.00747	0.00644	0.00546	0.00475	0.00394
i-C₅	0.00890	0.00607	0.00480	0.00408	0.00353	0.00317	0.00281	0.00255	0.00226
n-C₅	0.01154	0.00800	0.00640	0.00549	0.00482	0.00437	0.00393	0.00363	0.00327
C ₆	0.01689	0.01272	0.01084	0.00973	0.00890	0.00826	0.00772	0.00719	0.00650
C ₇ ⁺	0.15730	0.14727	0.14255	0.13973	0.13753	0.13598	0.13445	0.13312	0.13148
<u>TOTAL</u>	<u>1.0000</u>	<u>0.63753</u>	<u>0.47801</u>	<u>0.39060</u>	<u>0.32742</u>	<u>0.28722</u>	<u>0.24916</u>	<u>0.22331</u>	<u>0.19238</u>

14) Se calculan las fracciones mol de la fase líquida $x_{(i,j)}(\% mol)$ a partir de la siguiente expresión:

$$x_{(i,j)}[\%mol] = \frac{n_{liq(i,j)}}{\sum n_{liq(i,j)}} x100$$

Para $p=340.43 \ kg/cm^2$

$$\begin{aligned} x_{(N_2)j} &= \frac{0.01805}{1.0} x 100 [\% mol] = 1.805 [\% mol] \\ x_{(CO_2)j} &= \frac{0.01630}{1.0} x 100 [\% mol] = 1.630 [\% mol] \\ x_{(C_1)j} &= \frac{0.58375}{1.0} x 100 [\% mol] = 58.375 [\% mol] \end{aligned}$$

$$\begin{aligned} x_{(C_2)j} &= \frac{0.10381}{1.0} x100[\%mol] = 10.381[\%mol] \\ x_{(C_3)j} &= \frac{0.05195}{1.0} x100[\%mol] = 5.195[\%mol] \\ x_{(i-C_4)j} &= \frac{0.00939}{1.0} x100[\%mol] = 0.939[\%mol] \\ x_{(n-C_4)j} &= \frac{0.02219}{1.0} x100[\%mol] = 2.219[\%mol] \\ x_{(i-C_5)j} &= \frac{0.00890}{1.0} x100[\%mol] = 0.890[\%mol] \\ x_{(n-C_5)j} &= \frac{0.01154}{1.0} x100[\%mol] = 1.154[\%mol] \\ x_{(C_6)j} &= \frac{0.01689}{1.0} x100[\%mol] = 1.689[\%mol] \\ x_{(C_7^+)j} &= \frac{0.15730}{1.0} x100[\%mol] = 15.730[\%mol] \\ &\sum x_{@340.43kg/cm^2} = 100[\%mol] \end{aligned}$$

Para $p=303.36 \ kg/cm^2$

$$\begin{aligned} x_{(N_2)j} &= \frac{0.01002}{0.63753} x100[\%mol] = 1.572[\%mol] \\ x_{(C_2)j} &= \frac{0.00938}{0.63753} x100[\%mol] = 1.471[\%mol] \\ x_{(C_1)j} &= \frac{0.32845}{0.63753} x100[\%mol] = 51.519[\%mol] \\ x_{(C_2)j} &= \frac{0.06225}{0.63753} x100[\%mol] = 9.764[\%mol] \\ x_{(C_3)j} &= \frac{0.03274}{0.63753} x100[\%mol] = 5.135[\%mol] \\ x_{(i-C_4)j} &= \frac{0.00612}{0.63753} x100[\%mol] = 0.960[\%mol] \\ x_{(i-C_4)j} &= \frac{0.01453}{0.63753} x100[\%mol] = 2.278[\%mol] \\ x_{(i-C_5)j} &= \frac{0.00607}{0.63753} x100[\%mol] = 0.952[\%mol] \\ x_{(n-C_5)j} &= \frac{0.00800}{0.63753} x100[\%mol] = 1.255[\%mol] \\ x_{(C_6)j} &= \frac{0.01272}{0.63753} x100[\%mol] = 1.995[\%mol] \end{aligned}$$

$$x_{(C_7^+)j} = \frac{0.14727}{0.63753} \times 100[\% mol] = 23.099[\% mol]$$
$$\sum x_{@303.36kg/cm^2} = 100 [\% mol]$$

De manera que, siguiendo este método, se obtienen los porcentajes mol de la fase líquida de las respectivas etapas.

	Por	centaje 1	nol de la	fase liq	uida de c	ada etap	a, x _j [%n	ıol]	
Presión (kg/cm²)	340.430	303.360	268.200	233.050	197.900	162.740	127.590	85.400	45.730
N ₂	1.805	1.572	1.366	1.194	1.018	0.877	0.703	0.563	0.348
CO ₂	1.630	1.471	1.325	1.193	1.055	0.934	0.783	0.652	0.450
H ₂ S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
C ₁	58.375	51.519	45.478	40.358	35.207	31.073	25.955	21.891	15.368
C ₂	10.381	9.764	9.118	8.457	7.684	6.922	5.959	5.026	3.723
C ₃	5.195	5.135	5.010	4.822	4.549	4.205	3.773	3.308	2.687
i-C₄	0.939	0.960	0.965	0.958	0.935	0.908	0.873	0.831	0.775
n-C₄	2.219	2.278	2.305	2.304	2.281	2.244	2.191	2.127	2.050
i-C₅	0.890	0.952	1.004	1.044	1.077	1.102	1.128	1.144	1.174
n-C ₅	1.154	1.255	1.340	1.406	1.471	1.521	1.579	1.627	1.701
C ₆	1.689	1.995	2.268	2.492	2.717	2.875	3.098	3.222	3.380
C ₇ ⁺	15.730	23.099	29.821	35.773	42.006	47.342	53.960	59.610	68.344
TOTAL	100.00	100	100	100	100	100	100	100	100

15) Una vez calculados los porcentajes mol de fase líquida y con los porcentajes de la fracción gas de la prueba de liberación a volumen constante, se calculan las contantes de equilibrio, para cada etapa, de cada elemento:

$$K_{(i,j)} = \frac{y_{(i,j)}}{x_{(i,j)}}$$

Para $p=303.36 \ kg/cm^2$

$$K_{(N_2)j} = \frac{2.215}{1.572} = 1.409 \qquad K_{(n-C_4)j} = \frac{2.114}{2.278} = 0.928$$

$$K_{(C_2)j} = \frac{1.909}{1.471} = 1.297 \qquad K_{(i-C_5)j} = \frac{0.78}{0.952} = 0.819$$

$$K_{(C_1)j} = \frac{70.42}{51.519} = 1.366 \qquad K_{(n-C_5)j} = \frac{0.977}{1.255} = 0.778$$

$$K_{(C_2)j} = \frac{11.464}{9.764} = 1.174 \qquad K_{(C_6)j} = \frac{1.151}{1.995} = 0.576$$

$$K_{(C_3)j} = \frac{5.3}{5.135} = 1.032 \qquad K_{(C_7^+)j} = \frac{2.768}{23.099} = 0.119$$

$$K_{(i-C_4)j} = \frac{0.902}{0.960} = 0.939$$

Para $p=268.2 \ kg/cm^2$

$$K_{(N_2)j} = \frac{2.205}{1.366} = 1.614 \qquad K_{(n-C_4)j} = \frac{2.144}{2.305} = 0.930$$

$$K_{(C_2)j} = \frac{1.909}{1.325} = 1.440 \qquad K_{(i-C_5)j} = \frac{0.786}{1.004} = 0.819$$

$$K_{(C_1)j} = \frac{70.139}{45.478} = 1.542 \qquad K_{(n-C_5)j} = \frac{0.985}{1.340} = 0.782$$

$$K_{(C_2)j} = \frac{11.547}{9.118} = 1.266 \qquad K_{(C_6)j} = \frac{1.16}{2.268} = 0.511$$

$$K_{(C_3)j} = \frac{5.373}{5.010} = 1.072 \qquad K_{(C_7^+)j} = \frac{2.835}{29.821} = 0.0950$$

$$K_{(i-C_4)j} = \frac{0.917}{0.965} = 0.950$$

De esta manera, se calculas las constantes de equilibrio, mediante el método de Whitson, para cada etapa de la prueba de agotamiento a volumen constante. A continuación, se muestran los resultados obtenidos

	Constantes de equilibrio, $K_{(i,j)} = \frac{x_{(i,j)}}{y_{(i,j)}}$								
Presión (kg/cm²)	340.430	303.360	268.200	233.050	197.900	162.740	127.590	85.400	45.730
N ₂	1.3982	1.4093	1.6136	1.8353	2.1408	2.4689	3.0583	3.7791	6.0224
CO ₂	1.2898	1.2976	1.4406	1.6007	1.8106	2.0465	2.4416	2.9306	4.2498
C ₁	1.3573	1.3668	1.5422	1.7296	1.9717	2.2191	2.6384	3.0970	4.3589
C ₂	1.1690	1.1741	1.2663	1.3769	1.5304	1.7186	2.0204	2.4320	3.3200
C ₃	1.0300	1.0321	1.0723	1.1330	1.2245	1.3590	1.5525	1.8242	2.3102
i-C₄	0.9390	0.9396	0.9501	0.9729	1.0177	1.0687	1.1320	1.2172	1.3368
n-C₄	0.9276	0.9278	0.9301	0.9440	0.9690	0.9995	1.0413	1.0919	1.1540
<i>i-C</i> 5	0.8209	0.8189	0.7826	0.7608	0.7476	0.7386	0.7333	0.7362	0.7316
n-C₅	0.7811	0.7787	0.7353	0.7085	0.6838	0.6688	0.6522	0.6412	0.6236
C ₆	0.5805	0.5770	0.5115	0.4735	0.4415	0.4309	0.4060	0.4124	0.4336
C ₇ ⁺	0.1211	0.1198	0.0950	0.0812	0.0711	0.0649	0.0588	0.0563	0.0534

De esta manera, ya calculadas las constates de equilibrio, se procede a calcular los pesos moleculares, masas y densidades de las fases líquida y gaseosas de cada etapa del agotamiento de la prueba.

16) Masa de gas producida

$$m_{vp(i)} = (n_{p(i)})(M_{a(i)})$$

$$m_{vp@340.43 \ kg/cm^2} = (50.340)[lb_m]$$

$$m_{vp@303.36 \ kg/cm^2} = (0.069[lb_m - mol]) \left(25.700 \left[\frac{lb_m}{lb_m - mol}\right]\right) = (1.773)[lb_m]$$

$$m_{vp@268.2 \ kg/cm^2} = (0.073[lb_m - mol]) \left(25.850 \left[\frac{lb_m}{lb_m - mol}\right]\right) = (1.887)[lb_m]$$

El procedimiento continúa para las etapas posteriores de la prueba de agotamiento.

17) Masa total de la celda calcula a partir de la siguiente expresión:

$$\begin{split} m_{tc(i)} &= (m_{tc(i-1)}) - (m_{vp(i)}) \\ m_{tc@340.43 \ kg/cm^2} &= 50.340 [lb_m] \\ m_{tc@303.36 \ kg/cm^2} &= 50.340 [lb_m] - 1.773 [lb_m] = 48.567 [lb_m] \\ m_{tc@268.2 \ kg/cm^2} &= 48.567 [lb_m] - 1.887 [lb_m] = 46.680 [lb_m] \end{split}$$

18) Masa del gas en la celda.

$$m_{gc(i)} = (n_{vc(i)})(M_{a(i)})$$

$$m_{gc@340.43 \ kg/cm^2} = (0[lb_m - mol]) \left(50.34 \left[\frac{lb_m}{lb_m - mol}\right]\right) = 0 \ [lb_m]$$

$$m_{gc@303.36 \ kg/cm^2} = (0.292[lb_m - mol]) \left(25.700 \left[\frac{lb_m}{lb_m - mol}\right]\right) = 7.504[lb_m]$$

$$m_{gc@268.2 \ kg/cm^2} = (0.379[lb_m - mol]) \left(25.850 \left[\frac{lb_m}{lb_m - mol}\right]\right) = 9.797 \ [lb_m]$$

19) Masa de líquido en la celda:

$$m_{lqc(i)} = m_{tc(i)} - m_{vc(i)}$$

$$\begin{split} m_{lqc@340.43\ kg/cm^2} &= 50.340[lb_m] - 0\ [lb_m] = 50.34[lb_m] \\ m_{lqc@303.36\ kg/cm^2} &= 48.567[lb_m] - 7.504[lb_m] = 41.063[lb_m] \\ m_{lqc@268.2\ kg/cm^2} &= 46.680[lb_m] - 9.797\ [lb_m] = 36.883[lb_m] \end{split}$$

20) Densidad de gas en la celda.

$$\rho_{gasc(i)} = \frac{m_{gc(i)}}{V_{gas(i)}}$$

$$\rho_{gasc@@340.43 Kg/cm^2} = 0 \left[\frac{g}{cm^3}\right]$$

$$\rho_{gasc@303.36 kg/cm^2} = \frac{7.504[lb_m]}{0.562[ft^3](62.427)} = 0.213 \left[\frac{g}{cm^3}\right]$$

$$\rho_{gasc@268.2 kg/cm^2} = \frac{9.797 [lb_m]}{0.800[ft^3](62.427)} = 0.196 \left[\frac{g}{cm^3}\right]$$

21) Densidad de aceite en la celda.

$$\rho_{liqc(i)} = \frac{m_{lqc(i)}}{V_{liq(i)}}$$

$$\rho_{liqc@340.43 \ kg/cm^2} = \frac{50.34[lb_m]}{1.860[ft^3](62.427)} = 0.433 \left[\frac{g}{cm^3}\right]$$

$$\rho_{liqc@303.36 \ kg/cm^2} = \frac{41.063[lb_m]}{1.290[ft^3](62.427)} = 0.509 \left[\frac{g}{cm^3}\right]$$

$$\rho_{liqc@268.2 \ kg/cm^2} = \frac{36.883[lb_m]}{1.060[ft^3](62.427)} = 0.557 \left[\frac{g}{cm^3}\right]$$

22) Peso molecular del aceite en la celda.

$$M_{liq(i)} = \frac{m_{tc(i)} - m_{gc(i)}}{n_{liq(i)}}$$

$$M_{liq@340.43 kg/cm^{2}} = \frac{50.340[lb_{m}] - 0[lb_{m}]}{1[lb_{m} - mol]} = 50.340 \left[\frac{lb_{m}}{lb_{m} - mol}\right]$$
$$M_{liq@303.36 kg/cm^{2}} = \frac{48.567[lb_{m}] - 7.504[lb_{m}]}{0.637[lb_{m} - mol]} = 64.463 \left[\frac{lb_{m}}{lb_{m} - mol}\right]$$
$$M_{liq@268.2 kg/cm^{2}} = \frac{46.680[lb_{m}] - 9.797[lb_{m}]}{0.477[lb_{m} - mol]} = 77.322 \left[\frac{lb_{m}}{lb_{m} - mol}\right]$$

23) Peso molecular aparente de cada elemento de la fase líquida

$$M_{a(i)} = \sum_{N_2}^{c_6} (x_{(i,j)}) (M_j)$$

Para $p=340.43 \ kg/cm^2$

Componente	%mol	M_j	$x_{(i,j)} * M_j$
N	A 005		0.500
N ₂	1.805	28.013	0.506
CO ₂	1.630	44.01	0.717
H ₂ S	0.000	34.076	0.000
C ₁	58.375	16.043	9.365
C ₂	10.381	30.07	3.122
C ₃	5.195	44.097	2.291
i-C₄	0.939	58.124	0.546
n-C₄	2.219	58.124	1.290
<i>i-C</i> ₅	0.890	72.151	0.642
n-C₅	1.154	72.151	0.833
C ₆	1.689	86.178	1.456
C ₇ ⁺	15.730		
Total	100		

Para el cálculo del peso molecular (M_a) de la fracción pesada se calcula el peso molecular aparente hasta el C_6 (incluyendo contaminantes) de la siguiente forma:

$$\left(\sum_{N_2}^{C_6} M_a\right)$$

= 0.506 + 0.717 + 9.365 + 3.122 + 2.291 + 0.546 + 1.290 + 0.642
+ 0.833 + 1.456 = 20.766 $\left[\frac{lb_m}{lb_m - mol}\right]_{@340.43 \ kg/cm^2}$

De manera que el peso molecular de la fracción pesada de la fase líquida quedaría resuelto de la siguiente manera:

$$\left(M_{C_{7}^{+}}\right)_{(i)} = \frac{M_{liq(i)} - \left(\sum_{N_{2}}^{C_{6}} x_{(i,j)} M_{j}\right)}{\left(\frac{x_{C_{7}^{+}(i)}[\%]}{100}\right)}$$

$$(M_{C_7^+})_{@340.43 \ kg/cm^2} = \frac{50.340 \left[\frac{lb_m}{lb_m - mol}\right] - 20.766 \left[\frac{lb_m}{lb_m - mol}\right]}{\left(\frac{15.730[\%]}{100}\right)} = 188.010 \left[\frac{lb_m}{lb_m - mol}\right]$$

Finalmente:

$$\left(M_{aC_{7}^{+}} \right)_{@340.43 \ kg/cm^{2}} = \left(\frac{x_{c_{7}^{+}} [\%]}{100} \right)_{@p_{i}} \left(M_{C_{7}^{+}} \right)_{@p_{i}}$$

$$(M_{aC_7^+})_{@340.43 \ kg/cm^2} = \left(\frac{15.730[\%]}{100}\right) \left(188.010 \left[\frac{lb_m}{lb_m - mol}\right]\right) = 29.571 \left[\frac{lb_m}{lb_m - mol}\right]$$

Para las etapas posteriores, el M_a de cada etapa quedaría resuelto en la siguiente tabla:

Presión (kg/cm²)	340.43	303.36	268.20	233.05	197.90	162.74	127.59	85.400	45.730
N ₂	0.506	0.440	0.383	0.335	0.285	0.246	0.197	0.158	0.097
CO ₂	0.717	0.647	0.583	0.525	0.464	0.411	0.345	0.287	0.198
C ₁	9.365	8.265	7.296	6.475	5.648	4.985	4.164	3.512	2.466
C ₂	3.122	2.936	2.742	2.543	2.311	2.081	1.792	1.511	1.119
C ₃	2.291	2.264	2.209	2.126	2.006	1.854	1.664	1.459	1.185
i-C₄	0.546	0.558	0.561	0.557	0.544	0.528	0.507	0.483	0.450
n-C₄	1.290	1.324	1.340	1.339	1.326	1.304	1.273	1.237	1.192
<i>i-</i> C₅	0.642	0.687	0.725	0.753	0.777	0.795	0.814	0.825	0.847
n-C₅	0.833	0.905	0.967	1.014	1.061	1.097	1.139	1.174	1.227
C ₆	1.456	1.719	1.954	2.147	2.342	2.477	2.670	2.777	2.913
C ₇ ⁺	29.571	44.604	58.346	70.553	83.398	94.388	108.055	119.828	138.051
<u>Ma</u>	50.337	64.351	77.105	88.367	100.162	110.166	122.619	133.249	149.746

24) Cálculo del peso molecular del gas en la celda

$$(M_{gc})_{(i)} = \frac{m_{gc(i)}}{n_{vc(i)}}$$

$$(M_{gc})_{@340.43 \ kg/cm^2} = 0 \left[\frac{lb_m}{lb_m - mol}\right]$$

$$(M_{gc})_{@303.36 \ kg/cm^2} = \frac{7.504[lb_m]}{0.292[lb_m - mol]} = 25.698 \left[\frac{lb_m}{lb_m - mol}\right]$$

$$(M_{gc})_{@268.20kg/cm^2} = \frac{9.797 \ [lb_m]}{0.379[lb_m - mol]} = 25.849 \left[\frac{lb_m}{lb_m - mol}\right]$$

25) Peso molecular del líquido en la celda

$$M_{liq(i)} = \frac{m_{tc(i)} - \left(\left(M_{gc} \right)_{(i)} (n_{vc})_{(i)} \right)}{(n_{liqc})_{(i)}}$$

$$M_{liq@340.43 \ kg/cm^{2}} = \frac{50.340[lb_{m}] - \left(0\left[\frac{lb_{m}}{lb_{m} - mol}\right]0[lb_{m} - mol]\right)}{1 \ [lb_{m} - mol]} = 50.340\left[\frac{lb_{m}}{lb_{m} - mol}\right]$$
$$M_{liq@303.36 \ kg/cm^{2}} = \frac{48.567[lb_{m}] - \left(25.698\left[\frac{lb_{m}}{lb_{m} - mol}\right]0.2926[lb_{m} - mol]\right)}{0.6368 \ [lb_{m} - mol]} = 64.459\left[\frac{lb_{m}}{lb_{m} - mol}\right]$$
$$M_{liq@268.20kg/cm^{2}} = \frac{46.680[lb_{m}] - \left(25.849\left[\frac{lb_{m}}{lb_{m} - mol}\right]0.3796[lb_{m} - mol]\right)}{0.4782 \ [lb_{m} - mol]} = 77.096\left[\frac{lb_{m}}{lb_{m} - mol}\right]$$

26) Volumen de vapor producido.

$$\begin{pmatrix} V_{gp} \end{pmatrix}_{(i)} = \frac{(n_p)_{(i)} z_{(i)} TR}{p_{(i)}}$$

$$\begin{pmatrix} V_{gp} \end{pmatrix}_{@340.43 \ kg/cm^2} = \frac{0 \ [lb_m - mol](0)(789[^{\circ}R])10.732 \left[\frac{psia \ ft^3}{[lb_m - mol] ^{\circ}R}\right]}{4840.914[psia]} = 0[ft^3]$$

$$\begin{pmatrix} V_{gp} \end{pmatrix}_{@303.36 \ kg/cm^2} = \frac{0.069[lb_m - mol](0.978)(789[^{\circ}R])10.732 \left[\frac{psia \ ft^3}{[lb_m - mol] ^{\circ}R}\right]}{4312.92[psia]} = 0.132[ft^3]$$

$$\begin{pmatrix} V_{gp} \end{pmatrix}_{@268.20kg/cm^2} = \frac{0.073[lb_m - mol](0.949)(789[^{\circ}R])10.732 \left[\frac{psia \ ft^3}{[lb_m - mol] ^{\circ}R}\right]}{3813.80[psia]} = 0.153[ft^3]$$

27) Densidad del gas producido.

$$\left(\rho_{gp}\right)_{(i)} = \frac{\left(m_{vp}\right)_{(i)}}{\left(V_{gp}\right)_{(i)}}$$
$$\left(\rho_{gp}\right)_{@340.43\ kg/cm^2} = 0\left[\frac{g}{cm^3}\right]$$
$$\left(\rho_{gp}\right)_{@303.36\ kg/cm^2} = \frac{(1.773)[lb_m]}{0.132[ft^3](62.427)} = 0.215\left[\frac{g}{cm^3}\right]$$
$$\left(\rho_{gp}\right)_{@268.20\ kg/cm^2} = \frac{(1.887)[lb_m]}{0.153[ft^3](62.427)} = 0.197\left[\frac{g}{cm^3}\right]$$

6.2.3 Validación método de Bashbush para PVT J-2

Para el siguiente criterio de validación se utilizará el método de Bashbush para el cálculo de las constates de equilibro de cada elemento en función de un balance molar que se ejemplifica en la siguiente serie de pasos:

1. Cálculo de las moles totales.

$$N_T = \frac{p_D}{RZT} \dots \dots Para \ gas$$

$$N_T = \frac{\rho_o}{M_a} = \frac{m}{M_a V} \dots \dots Para \ aceite$$

$$N_T = \frac{27.03 \left[\frac{lb_m}{ft^3}\right] 1[ft^3]}{50.34 \left[\frac{lb_m}{lb_m - mol}\right]} = 0.537 [lb_m - mol]$$

2. Cálculo de las moles de fluido remanente.

$$N_{(i)} = N_T \left(1 - \frac{WSP_{(i)}}{100} \right)$$
$$(N)_{@340.43 \ kg/cm^2} = 0.537 \ [lb_m - mol] \left(1 - \frac{0\%}{100} \right) = 0.537 \ [lb_m - mol]$$
$$(N)_{@303.36 \ kg/cm^2} = 0.537 \ [lb_m - mol] \left(1 - \frac{6.92\%}{100} \right) = 0.500 \ [lb_m - mol]$$

3. Cálculo de las moles de gas.

$$N_{g(i)} = \frac{p_{(i)} \left(1 - \frac{RLV_{(i)}}{100}\right)}{10.732(z)(T)}$$

$$(N_g)_{@340.43kg/cm^2} = 0[lb_m - mol]$$

$$(N_g)_{@303.36\ kg/cm^2} = \frac{4312.92[psia] \left(1 - \frac{69.76[\%]}{100}\right)}{10.732 \left[\frac{psia\ ft^3}{[lb_m - mol]\ \circ R}\right] (0.978)(789[\circ R])} = 0.157[lb_m - mol]$$

$$(N_g)_{@268.20\ kg/cm^2} = \frac{3813.80[psia] \left(1 - \frac{57.02[\%]}{100}\right)}{10.732 \left[\frac{psia\ ft^3}{[lb_m - mol]\ \circ R}\right] (0.949)(789[\circ R])} = 0.203[lb_m - mol]$$

4. Cálculo de las moles de líquido.

$$N_{l(i)} = N_{(i)} - N_{g(i)}$$
$$(N_l)_{@340.43 \ kg/cm^2} = 0.537 [lb_m - mol] - 0[lb_m - mol] = 0.537 [lb_m - mol]$$

$$(N_l)_{@303.36 \ kg/cm^2} = 0.500 \ [lb_m - mol] - 0.157 \ [lb_m - mol] = 0.343 \ [lb_m - mol]$$
$$(N_l)_{@268.20 \ kg/cm^2} = 0.460 \ [lb_m - mol] - 0.203 \ [lb_m - mol] = 0.257 \ [lb_m - mol]$$

5. Cálculo del factor de desviación Z de dos fases.

$$(Z_{2f})_{(i)} = \frac{p_{(i)}}{RN_{(i)}T}$$

$$(z_{2f})_{@340.43 \ kg/cm^2} = \frac{4840.91[psia]}{10.732 \left[\frac{psia ft^3}{[lb_m - mol] \,^{\circ}R}\right] 0.537 \ [lb_m - mol] \,(789[^{\circ}R])} = 1.604$$

$$(z_{2f})_{@303.36 \ kg/cm^2} = \frac{4312.92[psia]}{10.732 \left[\frac{psia ft^3}{[lb_m - mol] \,^{\circ}R}\right] 0.500[lb_m - mol] (789[^{\circ}R])} = 1.019$$

$$(z_{2f})_{@268.20 \ kg/cm^2} = \frac{3813.80[psia]}{10.732 \left[\frac{psia ft^3}{[lb_m - mol] \,^{\circ}R}\right] 0.460[lb_m - mol] (789[^{\circ}R])} = 0.979$$

6. Cálculo de numero de moles retirados de la etapa.

$$S_{@340.43 \ kg/cm^2} = \frac{WSP_{(i)} - WSP_{(i-1)}}{100} (N_{T(i)})$$

$$S_{(i)} = 0 \ [lb_m - mol]$$

$$S_{@303.36 \ kg/cm^2} = \frac{(6.92 - 0)[\%]}{100} (0.537 \ [lb_m - mol]) = 0.037 \ [lb_m - mol]$$

$$S_{@268.20 \ kg/cm^2} = \frac{(14.22 - 6.92)[\%]}{100} (0.537 \ [lb_m - mol]) = 0.039 [lb_m - mol]$$

Presión (kg/cm²)	340.43	303.4	268.2	233.05	197.9	162.74	127.59	85.4	45.73		
Presión (psia)	4840.91	4314	3813.8	3313.97	2814.1	2314.2	1814.3	1214.4	650.28		
Factor z	0	0.978	0.949	0.925	0.907	0.897	0.899	0.916	0.946		
N⊤ Gas (lb _m -mol)	0.00	0.521	0.4746	0.42311	0.3664	0.3047	0.2383	0.1566	0.0812		
WSP _j (%mol)	0	6.92	14.22	22.23	30.76	40	49.69	60.29	71.34		
RLV (%mol)	100	69.76	57.02	50.86	46.5	44.86	42.77	40.37	37.63		
N _j (lb _m -mol)	0.537	0.5	0.4606	0.41763	0.3718	0.3222	0.2702	0.2132	0.1539		
(N _g) _j (Ib _m -mol)	0	0.158	0.204	0.20791	0.196	0.168	0.1364	0.0934	0.0506		
(N _i)j (Ib _m -mol)	0.537	0.342	0.2567	0.20971	0.1758	0.1542	0.1338	0.1199	0.1033		
(Z _{2pc})j	1.06461	1.019	0.9778	0.93713	0.8938	0.8482	0.7931	0.6725	0.499		
S _j (lb _m -mol)	0	0.037	0.0392	0.04301	0.0458	0.0496	0.052	0.0569	0.0593		
S _{i acum} (Ib _m -mol)	0	0.037	0.0764	0.11938	0.1652	0.2148	0.2668	0.3238	0.3831		

Figura A-7 Balance molar para cada etapa de agotamiento para el PVT J-2

7. Se realizo el análisis composicional para cada etapa de agotamiento.

En la primera etapa del agotamiento, se calcularon las moles totales y a partir de la segunda etapa se calcularon las moles retiradas de la celda. De manera que: Para la composición original, moles totales:

$$N_{T(i,j)} = \frac{Z_{(i,j)}}{100} N_{(i)}$$

Para $p=340.43 kg/cm^2$

$$\begin{split} & (N_T)_{N_2} = \frac{1.805}{100} (0.537 \ [lb_m - mol]) = 0.0097 [lb_m - mol] \\ & (N_T)_{CO_2} = \frac{1.63}{100} (0.537 \ [lb_m - mol]) = 0.0088 [lb_m - mol] \\ & (N_T)_{C_1} = \frac{58.375}{100} (0.537 \ [lb_m - mol]) = 0.3135 [lb_m - mol] \\ & (N_T)_{C_2} = \frac{10.381}{100} (0.537 \ [lb_m - mol]) = 0.0557 [lb_m - mol] \\ & (N_T)_{C_3} = \frac{5.195}{100} (0.537 \ [lb_m - mol]) = 0.0279 [lb_m - mol] \\ & (N_T)_{i-C_4} = \frac{0.939}{100} (0.537 \ [lb_m - mol]) = 0.0050 [lb_m - mol] \\ & (N_T)_{n-C_4} = \frac{2.219}{100} (0.537 \ [lb_m - mol]) = 0.0119 [lb_m - mol] \\ & (N_T)_{n-C_5} = \frac{0.890}{100} (0.537 \ [lb_m - mol]) = 0.0048 [lb_m - mol] \\ & (N_T)_{n-C_5} = \frac{1.154}{100} (0.537 \ [lb_m - mol]) = 0.0062 [lb_m - mol] \\ & (N_T)_{C_6} = \frac{1.689}{100} (0.537 \ [lb_m - mol]) = 0.0091 [lb_m - mol] \\ & (N_T)_{C_7} = \frac{15.730}{100} (0.537 \ [lb_m - mol]) = 0.0845 [lb_m - mol] \end{split}$$

Para las etapas consecutivas a la primera:

$$S_{(i,j)} = y_{(i,j)}S_{(i)}$$

Para
$$p=303.39 \ kg/cm^2$$

$$(S)_{N_2} = \frac{2.215}{100} (0.037 \ [lb_m - mol]) = 0.0008 [lb_m - mol]$$

$$(S)_{CO_2} = \frac{1.909}{100} (0.037 \ [lb_m - mol]) = 0.0007 [lb_m - mol]$$

$$(S)_{C_1} = \frac{70.42}{100} (0.037 \ [lb_m - mol]) = 0.0262 [lb_m - mol]$$

$$(S)_{C_2} = \frac{11.464}{100} (0.037 \ [lb_m - mol]) = 0.0043 [lb_m - mol]$$

$$(S)_{C_3} = \frac{5.3}{100} (0.037 \ [lb_m - mol]) = 0.0020 [lb_m - mol]$$

$$\begin{split} (S)_{i-C_4} &= \frac{0.902}{100} \left(0.037 \left[lb_m - mol \right] \right) = 0.0003 \left[lb_m - mol \right] \\ (S)_{n-C_4} &= \frac{2.114}{100} \left(0.037 \left[lb_m - mol \right] \right) = 0.0008 \left[lb_m - mol \right] \\ (S)_{i-C_5} &= \frac{0.78}{100} \left(0.037 \left[lb_m - mol \right] \right) = 0.0003 \left[lb_m - mol \right] \\ (S)_{n-C_5} &= \frac{0.977}{100} \left(0.037 \left[lb_m - mol \right] \right) = 0.0004 \left[lb_m - mol \right] \\ (S)_{C_6} &= \frac{1.151}{100} \left(0.037 \left[lb_m - mol \right] \right) = 0.0004 \left[lb_m - mol \right] \\ (S)_{C_7^+} &= \frac{2.768}{100} \left(0.037 \left[lb_m - mol \right] \right) = 0.0010 \left[lb_m - mol \right] \end{split}$$

Continua el proceso para las etapas posteriores del agotamiento.

8. Cálculo de las moles de gas en la celda de cada etapa de agotamiento para cada elemento.

$$N_{g(i,j)} = y_{(i,j)} N_{g(i,j)}$$

Para $p=340.43 \text{ kg/cm}^2$ aún no se extraen moles de gas.

Para $p=303.39 \text{ kg/cm}^2$ aún no se extraen moles de gas.

$$\begin{split} &(N_g)_{N_2} = \frac{1.805}{100} (0.158 \ [lb_m - mol]) = 0.0035 \ [lb_m - mol] \\ &(N_g)_{CO_2} = \frac{1.63}{100} (0.158 \ [lb_m - mol]) = 0.003 \ [lb_m - mol] \\ &(N_g)_{C_1} = \frac{58.375}{100} (0.158 \ [lb_m - mol]) = 0.1109 \ [lb_m - mol] \\ &(N_g)_{C_2} = \frac{10.381}{100} (0.158 \ [lb_m - mol]) = 0.0181 \ [lb_m - mol] \\ &(N_g)_{C_3} = \frac{5.195}{100} (0.158 \ [lb_m - mol]) = 0.0083 \ [lb_m - mol] \\ &(N_g)_{i-C_4} = \frac{0.939}{100} (0.158 \ [lb_m - mol]) = 0.0014 \ [lb_m - mol] \\ &(N_g)_{n-C_4} = \frac{2.219}{100} (0.158 \ [lb_m - mol]) = 0.0033 \ [lb_m - mol] \\ &(N_g)_{i-C_5} = \frac{0.890}{100} (0.158 \ [lb_m - mol]) = 0.0012 \ [lb_m - mol] \\ &(N_g)_{n-C_5} = \frac{1.154}{100} (0.158 \ [lb_m - mol]) = 0.0015 \ [lb_m - mol] \\ &(N_g)_{C_6} = \frac{1.689}{100} (0.158 \ [lb_m - mol]) = 0.0018 \ [lb_m - mol] \\ &(N_g)_{C_7} = \frac{15.730}{100} (0.158 \ [lb_m - mol]) = 0.0044 \ [lb_m - mol] \\ &(N_g)_{C_7} = \frac{15.730}{100} (0.158 \ [lb_m - mol]) = 0.0044 \ [lb_m - mol] \\ &(N_g)_{C_7} = \frac{15.730}{100} (0.158 \ [lb_m - mol]) = 0.0044 \ [lb_m - mol] \\ &(N_g)_{C_7} = \frac{15.730}{100} (0.158 \ [lb_m - mol]) = 0.0044 \ [lb_m - mol] \\ &(N_g)_{C_7} = \frac{15.730}{100} (0.158 \ [lb_m - mol]) = 0.0044 \ [lb_m - mol] \\ &(N_g)_{C_7} = \frac{15.730}{100} (0.158 \ [lb_m - mol]) = 0.0044 \ [lb_m - mol] \\ &(N_g)_{C_7} = \frac{15.730}{100} \ (0.158 \ [lb_m - mol]) = 0.0044 \ [lb_m - mol] \\ &(N_g)_{C_7} = \frac{15.730}{100} \ (0.158 \ [lb_m - mol]) = 0.0044 \ [lb_m - mol] \\ &(N_g)_{C_7} = \frac{15.730}{100} \ (0.158 \ [lb_m - mol]) = 0.0044 \ [lb_m - mol] \\ &(N_g)_{C_7} = \frac{15.730}{100} \ (0.158 \ [lb_m - mol]) = 0.0044 \ [lb_m - mol] \\ &(N_g)_{C_7} = \frac{15.730}{100} \ (0.158 \ [lb_m - mol]) = 0.0044 \ [lb_m - mol] \\ &(N_g)_{C_7} = \frac{15.730}{100} \ (0.158 \ [lb_m - mol]) = 0.0044 \ [lb_m - mol] \\ &(N_g)_{C_7} = \frac{15.730}{100} \ (0.158 \ [lb_m - mol]) = 0.0044 \ [lb_m - mol] \\ &(N_g)_{C_7} = \frac{15.730}{100} \ (0.158 \ [lb_m - mol]) = 0.0044 \ [lb_m - mol] \\ &(N_g)_{C_7} = \frac{15.730}{100} \ (0.158 \ [lb_m - mol]) \\ &(N_g)_{C_7} = \frac{15.730}{100} \ (0.158 \ [lb_m - mol]) \\ &(N_g)_{C_7} = \frac$$

Para $p=268.20 \text{ kg/cm}^2$ aún no se extraen moles de gas.

$$(N_g)_{N_2} = \frac{2.215}{100} (0.204 [lb_m - mol]) = 0.0045 [lb_m - mol] (N_g)_{CO_2} = \frac{1.909}{100} (0.204 [lb_m - mol]) = 0.0038 [lb_m - mol] (N_g)_{C_1} = \frac{70.42}{100} (0.204 [lb_m - mol]) = 0.1430 [lb_m - mol] (N_g)_{C_2} = \frac{11.464}{100} (0.204 [lb_m - mol]) = 0.0235 [lb_m - mol] (N_g)_{C_3} = \frac{5.3}{100} (0.204 [lb_m - mol]) = 0.0109 [lb_m - mol] (N_g)_{L-C_4} = \frac{0.902}{100} (0.204 [lb_m - mol]) = 0.0018 [lb_m - mol] (N_g)_{n-C_4} = \frac{2.114}{100} (0.204 [lb_m - mol]) = 0.0043 [lb_m - mol] (N_g)_{n-C_5} = \frac{0.77}{100} (0.204 [lb_m - mol]) = 0.0016 [lb_m - mol] (N_g)_{n-C_5} = \frac{0.977}{100} (0.204 [lb_m - mol]) = 0.0020 [lb_m - mol] (N_g)_{C_6} = \frac{1.151}{100} (0.204 [lb_m - mol]) = 0.0023 [lb_m - mol] (N_g)_{C_7} = \frac{2.768}{100} (0.204 [lb_m - mol]) = 0.0057 [lb_m - mol]$$

9. Cálculo de moles extraídas a cumuladas.

$$\Sigma S_{(i,j)} = S_{(i,j)} + \left(\Sigma S_{(i-1,j)}\right)$$

Para $p=340.43 \text{ kg/cm}^2$ aún no se tienen moles acumuladas.

Para $p=303.39 \text{ kg/cm}^2$ aún no se extraen moles de gas.

$$\begin{split} (\Sigma S)_{N_2} &= 0.0008[lb_m - mol] + 0[lb_m - mol] = 0.0008[lb_m - mol] \\ (\Sigma S)_{CO_2} &= 0.0007[lb_m - mol] + 0[lb_m - mol] = 0.0007[lb_m - mol] \\ (\Sigma S)_{C_1} &= 0.0262[lb_m - mol] + 0[lb_m - mol] = 0.0262[lb_m - mol] \\ (\Sigma S)_{C_2} &= 0.0043[lb_m - mol] + 0[lb_m - mol] = 0.0043[lb_m - mol] \\ (\Sigma S)_{C_3} &= 0.0020[lb_m - mol] + 0[lb_m - mol] = 0.0020[lb_m - mol] \\ (\Sigma S)_{i-C_4} &= 0.0003[lb_m - mol] + 0[lb_m - mol] = 0.0003[lb_m - mol] \\ (\Sigma S)_{n-C_4} &= 0.0008[lb_m - mol] + 0[lb_m - mol] = 0.0003[lb_m - mol] \\ (\Sigma S)_{n-C_5} &= 0.0003[lb_m - mol] + 0[lb_m - mol] = 0.0003[lb_m - mol] \\ (\Sigma S)_{i-C_5} &= 0.0004[lb_m - mol] + 0[lb_m - mol] = 0.0004[lb_m - mol] \\ (\Sigma S)_{C_6} &= 0.0004[lb_m - mol] + 0[lb_m - mol] = 0.0004[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0010[lb_m - mol] + 0[lb_m - mol] = 0.0004[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0010[lb_m - mol] + 0[lb_m - mol] = 0.0004[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0010[lb_m - mol] + 0[lb_m - mol] = 0.0004[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0010[lb_m - mol] + 0[lb_m - mol] = 0.0004[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0010[lb_m - mol] + 0[lb_m - mol] = 0.0004[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0010[lb_m - mol] + 0[lb_m - mol] = 0.0004[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0010[lb_m - mol] + 0[lb_m - mol] = 0.0004[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0010[lb_m - mol] + 0[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0010[lb_m - mol] + 0[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0010[lb_m - mol] \\ (\Sigma S$$

Para $p=268.20 \text{ kg/cm}^2$ aún no se extraen moles de gas.

$$\begin{split} (\Sigma S)_{N_2} &= 0.0009[lb_m - mol] + (0.0008 + 0)[lb_m - mol] = 0.0017[lb_m - mol] \\ (\Sigma S)_{CO_2} &= 0.0007[lb_m - mol] + (0.0007 + 0)[lb_m - mol] = 0.0015[lb_m - mol] \\ (\Sigma S)_{C_1} &= 0.0275[lb_m - mol] + (0.0262 + 0)[lb_m - mol] = 0.0537[lb_m - mol] \\ (\Sigma S)_{C_2} &= 0.0045[lb_m - mol] + (0.0043 + 0)[lb_m - mol] = 0.0088[lb_m - mol] \\ (\Sigma S)_{C_3} &= 0.0021[lb_m - mol] + (0.0020 + 0)[lb_m - mol] = 0.0041[lb_m - mol] \\ (\Sigma S)_{i-C_4} &= 0.0004[lb_m - mol] + (0.0003 + 0)[lb_m - mol] = 0.0007[lb_m - mol] \\ (\Sigma S)_{n-C_4} &= 0.0008[lb_m - mol] + (0.0003 + 0)[lb_m - mol] = 0.0006[lb_m - mol] \\ (\Sigma S)_{i-C_5} &= 0.0003[lb_m - mol] + (0.0004 + 0)[lb_m - mol] = 0.0007[lb_m - mol] \\ (\Sigma S)_{n-C_5} &= 0.0004[lb_m - mol] + (0.0004 + 0)[lb_m - mol] = 0.0007[lb_m - mol] \\ (\Sigma S)_{C_6} &= 0.0005[lb_m - mol] + (0.0004 + 0)[lb_m - mol] = 0.0007[lb_m - mol] \\ (\Sigma S)_{C_6} &= 0.0005[lb_m - mol] + (0.0004 + 0)[lb_m - mol] = 0.0007[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0001[lb_m - mol] + (0.0004 + 0)[lb_m - mol] = 0.0007[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0005[lb_m - mol] + (0.0004 + 0)[lb_m - mol] = 0.0007[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0005[lb_m - mol] + (0.0004 + 0)[lb_m - mol] = 0.0007[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0005[lb_m - mol] + (0.0004 + 0)[lb_m - mol] = 0.0007[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0005[lb_m - mol] + (0.0004 + 0)[lb_m - mol] = 0.0007[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0005[lb_m - mol] + (0.0004 + 0)[lb_m - mol] = 0.0007[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0005[lb_m - mol] + (0.0004 + 0)[lb_m - mol] = 0.0007[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0005[lb_m - mol] + (0.0004 + 0)[lb_m - mol] = 0.0007[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0005[lb_m - mol] + (0.0004 + 0)[lb_m - mol] = 0.0007[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0005[lb_m - mol] + (0.0010 + 0)[lb_m - mol] = 0.00021[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0005[lb_m - mol] + (0.0010 + 0)[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.00021[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0005[lb_m - mol] \\ (\Sigma S)_{C_7} &= 0.0005[lb$$

Continua el proceso para las etapas posteriores del agotamiento.

10. Cálculo de moles de líquido en la celda.

$$N_{l(i,j)} = N_{T(i,j)} - N_{g(i,j)} - \Sigma S_{(i,j)}$$

Para $p=340.43 \text{ Kg/cm}^2$ aún no se tienen moles acumuladas.

$$\begin{split} &(N_l)_{N_2} = (0.0097 - 0 - 0)[lb_m - mol] = 0.0097[lb_m - mol] \\ &(N_l)_{CO_2} = (0.0088 - 0 - 0)[lb_m - mol] = 0.0088[lb_m - mol] \\ &(N_l)_{C_1} = (0.3135 - 0 - 0)[lb_m - mol] = 0.3135[lb_m - mol] \\ &(N_l)_{C_2} = (0.0557 - 0 - 0)[lb_m - mol] = 0.0557[lb_m - mol] \\ &(N_l)_{C_3} = (0.0279 - 0 - 0)[lb_m - mol] = 0.0279[lb_m - mol] \\ &(N_l)_{i-C_4} = (0.0050 - 0 - 0)[lb_m - mol] = 0.0050[lb_m - mol] \\ &(N_l)_{n-C_4} = (0.0119 - 0 - 0)[lb_m - mol] = 0.0119[lb_m - mol] \\ &(N_l)_{i-C_5} = (0.0048 - 0 - 0)[lb_m - mol] = 0.0048[lb_m - mol] \\ &(N_l)_{n-C_5} = (0.0062 - 0 - 0)[lb_m - mol] = 0.0062[lb_m - mol] \\ &(N_l)_{C_6} = (0.0091 - 0 - 0)[lb_m - mol] = 0.0091[lb_m - mol] \\ &(N_l)_{C_7} = (0.0845 - 0 - 0[lb_m - mol] = 0.0845[lb_m - mol] \\ \end{aligned}$$

Para $p=303.39 \text{ kg/cm}^2$ aún no se tienen moles acumuladas.

$$\begin{split} &(N_l)_{N_2} = (0.0097 - 0.003489128 - 0.0008)[lb_m - mol] = 0.005380695 [lb_m - mol] \\ &(N_l)_{CO_2} = (0.0088 - 0.003007109 - 0.0007)[lb_m - mol] = 0.005036668[lb_m - mol] \\ &(N_l)_{C_1} = (0.3135 - 0.110927493 - 0.0262)[lb_m - mol] = 0.176380348[lb_m - mol] \\ &(N_l)_{C_2} = (0.0557 - 0.018058404 - 0.0043)[lb_m - mol] = 0.033427936[lb_m - mol] \\ &(N_l)_{C_3} = (0.0279 - 0.008348704 - 0.0020)[lb_m - mol] = 0.017579166[lb_m - mol] \\ &(N_l)_{iC_4} = (0.0050 - 0.001420855 - 0.0003)[lb_m - mol] = 0.003286428[lb_m - mol] \end{split}$$

$$\begin{split} & (N_l)_{nC_4} = (0.0119 - 0.00333003 - 0.0008)[lb_m - mol] = 0.007800524[lb_m - mol] \\ & (N_l)_{iC_5} = (0.0048 - 0.001228677 - 0.0003)[lb_m - mol] = 0.00326081[lb_m - mol] \\ & (N_l)_{nC_5} = (0.0062 - 0.001538997 - 0.0004)[lb_m - mol] = 0.004294976[lb_m - mol] \\ & (N_l)_{C_6} = (0.0091 - 0.001813086 - 0.0004)[lb_m - mol] = 0.006829201[lb_m - mol] \\ & (N_l)_{C_7^+} = (0.0845 - 0.004360229 - 0.0010)[lb_m - mol] = 0.079081981[lb_m - mol] \\ & 11. Cálculo de porcentaje de líquido (x_{(i,j)}) en la celda. \end{split}$$

$$x_{i,j} = \frac{N_{l(i,j)}}{N_{l(i)}}$$

Para $p=340.43 \ kg/cm^2$

$$\begin{split} (x)_{N_2} &= \frac{0.0097[lb_m - mol]}{0.537[lb_m - mol]} x100 = 1.806 \ [\%mol] \\ (x)_{CO_2} &= \frac{0.0088[lb_m - mol]}{0.537[lb_m - mol]} x100 = 1.63 \ [\%mol] \\ (x)_{C_1} &= \frac{0.3135[lb_m - mol]}{0.537[lb_m - mol]} x100 = 58.375 \ [\%mol] \\ (x)_{C_2} &= \frac{0.0557[lb_m - mol]}{0.537[lb_m - mol]} x100 = 10.381 \ [\%mol] \\ (x)_{C_3} &= \frac{0.0279[lb_m - mol]}{0.537[lb_m - mol]} x100 = 5.195 \ [\%mol] \\ (x)_{C_4} &= \frac{0.0050[lb_m - mol]}{0.537[lb_m - mol]} x100 = 0.939 \ [\%mol] \\ (x)_{nC_4} &= \frac{0.0119[lb_m - mol]}{0.537[lb_m - mol]} x100 = 2.219 \ [\%mol] \\ (x)_{nC_5} &= \frac{0.0048[lb_m - mol]}{0.537[lb_m - mol]} x100 = 0.890 \ [\%mol] \\ (x)_{nC_5} &= \frac{0.0062[lb_m - mol]}{0.537[lb_m - mol]} x100 = 1.154 \ [\%mol] \\ (x)_{C_6} &= \frac{0.0091[lb_m - mol]}{0.537[lb_m - mol]} x100 = 1.689 \ [\%mol] \\ (x)_{C_7} &= \frac{0.0845[lb_m - mol]}{0.537[lb_m - mol]} x100 = 15.730 \ [\%mol] \end{split}$$

Para *p*=303.3 9*Kg/cm*²

$$(x)_{N_2} = \frac{0.0053[lb_m - mol]}{0.343[lb_m - mol]} x100 = 1.545 [\%mol]$$
$$(x)_{CO_2} = \frac{0.0050[lb_m - mol]}{0.343[lb_m - mol]} x100 = 1.471 [\%mol]$$

$$\begin{aligned} (x)_{C_1} &= \frac{0.1763[lb_m - mol]}{0.343[lb_m - mol]} x100 = 51.519 [\%mol] \\ (x)_{C_2} &= \frac{0.0334[lb_m - mol]}{0.343[lb_m - mol]} x100 = 9.764 [\%mol] \\ (x)_{C_3} &= \frac{0.0175[lb_m - mol]}{0.343[lb_m - mol]} x100 = 5.134 [\%mol] \\ (x)_{iC_4} &= \frac{0.0032[lb_m - mol]}{0.343[lb_m - mol]} x100 = 0.959 [\%mol] \\ (x)_{nC_4} &= \frac{0.0078[lb_m - mol]}{0.343[lb_m - mol]} x100 = 2.278 [\%mol] \\ (x)_{nC_5} &= \frac{0.0032[lb_m - mol]}{0.343[lb_m - mol]} x100 = 0.952 [\%mol] \\ (x)_{nC_5} &= \frac{0.0042[lb_m - mol]}{0.343[lb_m - mol]} x100 = 1.254 [\%mol] \\ (x)_{c_6} &= \frac{0.0068[lb_m - mol]}{0.343[lb_m - mol]} x100 = 1.994 [\%mol] \\ (x)_{C_7} &= \frac{0.0790[lb_m - mol]}{0.343[lb_m - mol]} x100 = 23.099 [\%mol] \end{aligned}$$

12. Cálculo de las constantes de equilibrio

$$K_{i,j} = \frac{y_{i,j}}{x_{i,j}}$$

Para $p=340.43 \ kg/cm^2$

$$\begin{split} (k)_{N_2} &= \frac{2.215[\% mol]}{1.545[\% mol]} = 1.409\\ (k)_{CO_2} &= \frac{1.909[\% mol]}{1.471[\% mol]} = 1.297\\ (k)_{C_1} &= \frac{70.42[\% mol]}{51.519[\% mol]} = 1.366\\ (k)_{C_2} &= \frac{11.464[\% mol]}{9.764[\% mol]} = 1.174\\ (k)_{C_3} &= \frac{5.3[\% mol]}{5.134[\% mol]} = 1.032\\ (k)_{iC_4} &= \frac{0.902[\% mol]}{0.959[\% mol]} = 0.939\\ (k)_{nC_4} &= \frac{2.114[\% mol]}{2.278[\% mol]} = .9278 \end{split}$$

$$(k)_{iC_5} = \frac{0.780[\% mol]}{0.952[\% mol]} = 0.8189$$
$$(k)_{nC_5} = \frac{0.977[\% mol]}{1.254[\% mol]} = 0.7789$$
$$(k)_{C_6} = \frac{1.151[\% mol]}{1.994[\% mol]} = 0.577$$
$$(k)_{C_7^+} = \frac{2.768[\% mol]}{23.099[\% mol]} = 0.1198$$

Anexo B

B.1 PVT pozo C-101

El siguiente caso corresponde a un reporte PVT con los siguientes datos generales

RESUMEN EJECUTIVO Propiedades PVT		
Condiciones Iniciales		
Presión	282.61	kg/cm ^z
Temperatura	85.70	°C
Presión de Saturación		
a 85.7 °C:	119.50	kg/cm ²
Relación Gas-Aceite ⁽¹⁾		
Flash Atmosférico	99.1	m³/stdm³
Vaporización Diferencial	99.9	m ³ /stdm ³
Prueba de Separador	87.8	m³/stdm³

Figura B- 1 Resumen de los datos del reporte PVT del Pozo C-101

El análisis composicional y la prueba de liberación instantánea midió los siguientes datos:

Tabla 10: DV - Propiedades de la Fase Aceite (Muestra 1.01 / MPSR 1885 / Pyac: 282.61 kg/cm2 / Tyac: 85.7 °C / 2602.99 m(MD))								
	(kg/cm ²)	(vol/stdvol)	(m ³ /stdm ³)	(g/cm ³)				
	492 64	1265		0 7541				
	457.49	1200		0.7513				
	422.05	1274		0.7487				
	386.90	1.279		0.7456				
	351.82	1.284		0.7427				
	316.87	1.290		0.7395				
	282.63	1.296		0.7361				
yac.	282.61	1.296		0.7360				
	246.50	1.303		0.7322				
	211.34	1.310		0.7280				
	176.12	1.318		0.7240				
	155.17	1.322		0.7213				
	140.90	1.326		0.7193				
	133.86	1.328		0.7182				
	127.05	1.330		0.7170				
	119.94	1.333		0.7157				
Pb	119.50	1.333	99.89	0.7156				
	73.82	1.268	65.12	0.7278				
	49.22	1.233	48.00	0.7355				
	35.15	1.211	38.38	0.7408				
	21.09	1.189	29.40	0.7464				
	14.06	1.174	23.15	0.7493				
	7.03	1.156	17.72	0.7534				
	1.06	1.068		0.7750				

Figura B-2 Datos medidos de la prueba de liberación diferencial (fase líquida) del pozo C-101

Componente	Gas de	Flash	Líquido	de Flash	Fluido de Contamina	Yacimiento do con OBM	Fluido de Ya Contamina	cimiento sin ación OBM
	% peso	% molar	% peso	% molar	% peso	% molar	% peso	% molar
Nitrógeno	0.81	0.83	0.00	0.00	0.10	0.41	0.11	0.42
Dióxido de Carbono	0.33	0.21	0.00	0.00	0.04	0.10	0.04	0.11
Sulfuro de Hidrógeno	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Metano	33.53	60.29	0.00	0.00	4.26	29.48	4.51	30.31
Etano	11.24	10.78	0.01	0.09	1.44	5.32	1.52	5.47
Propano	19.51	12.76	0.20	0.87	2.66	6.69	2.81	6.88
– Butano	6.86	3.41	0.24	0.77	1.08	2.06	1.14	2.12
N – Butano	11.29	5.60	0.69	2.25	2.04	3.89	2.15	4.00
– Pentano	5.17	2.07	0.89	2.33	1.43	2.20	1.51	2.26
N – Pentano	4.77	1.91	1.13	2.98	1.60	2.46	1.69	2.53
N – Hexanos	4.04	1.39	3.01	6.80	3.14	4.15	3.32	4.27
M-C-Pentano	0.18	0.06	0.22	0.49	0.21	0.28	0.23	0.29
Benceno	0.09	0.03	0.08	0.20	0.08	0.12	0.09	0.12
Ciclohexano	0.26	0.09	0.27	0.60	0.26	0.35	0.28	0.36
N – Hentanos	1 17	0.35	3.48	6.87	3.19	3.68	3 37	3.79
M_C_Hoveno	0.22	0.00	0.76	1.46	0.10	0.78	0.73	0.80
Toluono	0.22	0.00	0.70	0.21	0.03	0.70	0.73	0.00
	0.01	0.00	4.21	7.45	2.72	2.06	2.04	2.07
E Dopoono	0.41	0.11	4.ZI	7.40	0.10	0.10	0.10	0.10
E-Belicello	0.01	0.00	0.11	0.19	0.10	0.10	0.10	0.10
	0.01	0.00	0.44	0.76	0.30	0.40	0.41	0.41
U-XIIeno	0.00	0.00	0.14	0.26	0.13	0.13	0.13	0.14
N – Nonanos	0.10	0.02	3.94	6.17	3.46	3.17	3.65	3.25
pseudo C10H22	0.00	0.00	4.86	6.87	4.24	3.51	4.45	3.58
pseudo C11H24	0.00	0.00	4.37	5.64	3.82	2.88	3.87	2.84
pseudo C12H26	0.00	0.00	4.26	5.01	3.72	2.56	3.56	2.38
pseudo C13H28	0.00	0.00	4.28	4.63	3.74	2.37	3.39	2.09
pseudo C14H30	0.00	0.00	4.01	4.00	3.50	2.04	3.05	1.73
pseudo C15H32	0.00	0.00	4.05	3.72	3.53	1.90	3.03	1.59
pseudo C16H34	0.00	0.00	3.62	3.09	3.16	1.58	2.74	1.33
pseudo C17H36	0.00	0.00	3.36	2.69	2.94	1.37	2.55	1.16
pseudo C18H38	0.00	0.00	3.21	2.42	2.80	1.24	2.46	1.06
pseudo C19H40	0.00	0.00	2.99	2.15	2.61	1.10	2.32	0.95
pseudo C20H42	0.00	0.00	2.68	1.85	2.34	0.94	2.15	0.84
pseudo C21H44	0.00	0.00	2.40	1.56	2.09	0.80	1.95	0.72
pseudo C22H46	0.00	0.00	2.25	1.40	1.96	0.71	1.89	0.67
pseudo C23H48	0.00	0.00	2.07	1.23	1.81	0.63	1.78	0.60
pseudo C24H50	0.00	0.00	1.89	1.08	1.65	0.55	1.65	0.54
pseudo C25H52	0.00	0.00	1.75	0.96	1.53	0.49	1.56	0.49
oseudo C26H54	0.00	0.00	1.64	0.86	1.43	0.44	1.48	0.44
oseudo C27H56	0.00	0.00	1.64	0.83	1.43	0.42	1.49	0.43
pseudo C28H58	0.00	0.00	1.57	0.77	1.37	0.39	1 43	0.40
nseudo C29H60	0.00	0.00	1.07	0.67	1.07	0.34	1.30	0.40
C3UT	0.00	0.00	21.69	7.69	18.93	3 93	20.02	4.04
Total	100.00	100.00	100.00	100.00	10.00	100.00	100.02	100.00
MM Eluido	100.00	20 05	100.00	100.00	100.00	110.00	100.00	100.00
		20.00		103.41		110.91		107.00

Tabla 6: Composición Fluido de Yacimiento (Muestra 1.01)

Figura B- 3 Análisis composicional de la mezcla original para el PVT de pozo C-101

Tabla 8: CCE - Expansión a Masa Constante del Fluido de Yacimiento a 85.7 °C

	Presión	Volumen Relativo	Función "Y"	Compresibilidad
	(kg/cm²)	(Vtot/Vsat)	(1)	x10 ⁻⁶ (kg/cm ²) ⁻¹
	492.65	0.9489		90.9
	457.50	0.9525		98.3
	422.06	0.9558		106.5
	386.91	0.9597		115.0
	351.82	0.9635		124.3
	316.88	0.9677		134.2
	282.64	0.9722		144.6
Pyac.	282.61	0.9723		144.6
	246.50	0.9773		156.5
	211.35	0.9830		168.8
	176.12	0.9884		182.0
	155.17	0.9921		190.4
	140.90	0.9949		196.2
	133.87	0.9964		199.3
	127.05	0.9980		202.2
	119.95	0.9998		205.2
Pb	119.50	1.0000		205.4
	116.01	1.0121	2.485	
	112.92	1.0237	2.457	
	98.85	1.0886	2.358	
	84.86	1.1807	2.260	
	70.73	1.3212	2.147	
	43.80	1.8911	1.939	
		0.4714	1 040	

(Muestra 1.01 / MPSR 1885 / Pyac: 282.61 kg/cm2 / Tyac: 85.7 °C / 2602.99 m(MD))

Figura B- 4 Prueba de liberación flash para el PVT C-101

La Prueba de liberación diferencial, tubo el siguiente comportamiento:

Presión	Factor Volumétrico	Factor de Desviación	Viscosidad del	Densidad Relativa
	del Gas (Bg)	del Gas (Z)	Gas	Del Gas
(kg/cm ²)	(vol/stdvol)		(cP = mPa⋅s)	(Aire = 1)
b 119.50				
73.82	0.0155	0.889	0.0144	0.731
49.22	0.0237	0.910	0.0135	0.760
35.15	0.0337	0.924	0.0130	0.801
21.09	0.0571	0.938	0.0123	0.895
14.06	0.0865	0.947	0.0116	1.020
7.03	0.1751	0.959	0.0106	1.272
1.06	1.1951	0.982	0.0086	1.994

Figura B- 5 Datos medidos de la prueba de liberación diferencial (fase gas) del pozo C-101

Y los resultados de la presión óptima de separación que se obtuvo de la prueba de separación el laboratorio fueron los siguientes:

Figura B- 6 Resultados de la prueba de separación en laboratorio del pozo C-101

B.2 PVT pozo CY-184

El siguiente caso corresponde a un reporte PVT con los siguientes datos generales:

I Aceite Saturado	
a) Presión de saturación a 73 °C (T_{y})	85.0 kg/cm ²
b) Relación gas disuelto-aceite a p_s y T_y	68.9 m ³ /m ³
c) Factor de volumen a p_s y T_y	1.2525 m ³ /m ³
d) Densidad a p_s y T_y	0.7218 g/cm ³
e) Viscosidad a p_s y T_y	0.930 cP
f) Factor de expansión térmica	0.000 799 (1/°C)
g) Compresibilidad a Ty de 203.5 a 85 kg/cm²	0.000186 (1/kg/cm²)

II Aceite Residual	
a) Densidad a p _a y 20 °C	0.8443 g/cm ³
b) Viscosidad a p_a y T_y	1.900 cP
c) Factor de Expansión térmica	0.000855 (1/°C)
d)Compresibilidad a 22 °C de 199 a 0 kg/cm2	0.000113 (1/kg/cm²)

Figura B-7 Datos del muestreo para el pozo CY-184

Resumen del reporte P	VT
Campo:	CY
Pozo:	CY-185
Tipo de Muestreo:	Fondo
Tipo de fluido:	Aceite Negro
°API =	37.15
Temperatura de yacimiento (°C)=	73
Presión de Burbuja (kg/cm²)=	85
$RGA(m^3/m^3)=$	72.1

Figura B- 8 Resumen de los datos del reporte PVT del Pozo CY-184

	Separación Flash	
Presión kg/cm²	Volumen relativo (m³/m³)	$B_t(m^3/m^3)$
203.500	0.9780	1.2249
153.000	0.9853	1.2341
100.000	0.9944	1.2455
85.000*	1.0000	1.2525
81.500	1.0163	1.2729
73.000	1.0652	1.3342
65.000	1.1271	1.4117
59.000	1.1883	1.4883
54.000	1.2528	1.5691
48.000	1.3504	1.6914
40.000	1.5357	1.9235
37.000	1.6296	2.0411
34.000	1.7426	2.1826
31.000	1.8798	2.3544
27.000	2.1130	2.6465

La prueba de liberación instantánea midió los siguientes datos:

Figura B- 9 Prueba de liberación flash para el PVT CY-184

La Prueba de liberación diferencial, tubo el siguiente comportamiento:

*Presión de saturación

		Separ	ración Difer	encial		
Presión (kg/cm²)	B _o (m ³ /m ³)	ρ _ο (g/cm³)	μ₀ (cP)	R _s (m ³ /m ³)	B _q (m ³ /m ³)	γ _g (Aire=1)
203.500	1.2249	0.7737	1.060	68.9		
153.000	1.2341	0.7696	1.000 0.940	68.9 68.9		
70.000	1.2525	0.7567	0.930	68.9 59.4	0.0142	0.9346
50.000 30.000 0.000	1.1993 1.1705 1.0463	0.7718 0.7804 0.8069	1.100 1.250 1.900	47.6 35.3 0	0.02104 0.03609	0.7999 0.8204 1.6276

Figura B-10 Datos medidos de la prueba de liberación diferencial del pozo CY-184

Y los resultados de la presión óptima de separación que se obtuvo de la prueba de separación el laboratorio fueron los siguientes:

	Pruebas de para	e separación flash a un proceso de cam, Temperatura	o condiciones de po para un proce a de separación	separadore eso de dos e 30° C	s de campo etapas		
Presion Separador kg/cm²	B _{of} (m ³ /m ³)	RGA Separador (m ³ /m ³)	RGA Tanque (m³/m³)	RGA Total (m ³ /m ³)	ρ _{or} (g/cm³)	γ _g (Aire=1)	Recup. Liq. (%)
0.000	1.274	-	72.100	72.100	0.845	1.039	0.000
2.000	1.239	58.800	5.400	64.200	0.835	0.940	2.800
4.000	1.216	54.100	6.500	60.600	0.839	0.882	4.770
6.000	1.217	47.200	12.900	60.100	0.837	0.828	4.650
8.000	1.222	48.800	13.500	62.300	0.837	0.808	4.200

Figura B-11 Resultados de la prueba de separación en laboratorio del pozo CY-184

B.3 PVT pozo TW-4

El siguiente caso	corresponde a un re	porte PVT con los	signientes datos	generales:
8			0	0

Company Good Oil Company		pled
WellOil Well No. 4	County	Samson
Field Productive	State	Texas
FORMATION	CHARACTERI	STICS
Formation Name		Cretaceous
Date First Well Completed		
Original Reservoir Pressure		4100 PSIG @ 8692 Ft.
Original Produced Gas-Oil Ratio		600 SCF/Bbl
Production Rate		300 Bbl/Day
Separator Pressure and Temperature		200 PSIG. 75 °F.
Oil Gravity at 60° F.		
Datum		8000 Ft. Subsea
Original Gas Cap		No
WELL CHA	RACTERISTI	cs
Elevation		<u>610</u> Ft.
Total Depth		8943 Ft.
Producing Interval		8684-8700 Ft.
Tubing Size and Depth		2-7/8 In. to 8600 Ft.
Productivity Index		1.1 Bbl/D/PSI @ 300 Bbl/Day
Last Reservoir Pressure		3954* PSIG @ 8500 Ft.
Date		
Reservoir Temperature		217* °F.@ 8500 Ft.
Status of Well		Shut in 72 hours
Pressure Gauge		Amerada
Normal Production Rate		300 Bbl /Day
Gas-Oil Ratio		600 SCF/Bbl
Separator Pressure and Temperature		200 PSIC 75 °F
Base Pressure		14.65 PSIA
Well Making Water		None % Cut
SAMPLING	CONDITION	S
Sampled at		8500
Status of Well		Shut in 72 hours
Gas-Oil Ratio		COE (DL)
Separator Pressure and Temperature		BSIC DE
Tubing Pressure		1400 Fold,F.
Casing Pressure		PSIG
Sampled by		PSIG
Type Sampler		Wofford
		1011010

Figura B-12 Resumen de los datos del reporte PVT del Pozo TW-4

COMPONENT	PERCENT	PERCENT	GRAMS PER CUBIC CENTIMETER	@ 60* F	WEIGHT
Hydrogen Sulfide	Nil	Nil			
Carbon Dioxide	0.91	0.43			
Nitrogen	0.16	0.05			
Methane	36.47	6.24			
Ethane	9.67	3.10			
Propane	6.95	3.27			
iso-Butane	1.44	0.89			
n-Butane	3.93	2.44			
iso-Pentane	1.44	1.11			
n-Pentane	1.41	3.97			
Hexanes Hertopes plus	33 29	77 41	0.8515	34.5	218
neptanes plus	100.00	100.00			
	Pressure-V	olume Relation	s at 220 °F.		
		(<u>⊻ı</u>)			
		\Vb/F			
Pressure		Relative		Y	
PSIG		Volume (1)	Func	tion(2)	
5000		0.9639			
4500		0.9703			
4000		0.97/1			
3000		0.9929			
2900		0.9946			
2800		0.9964			
2620		1.0000			
2605		1.0022	2	.574	
2591		1.0041	2	.688	
2516		1.0154	2	.6/3	
2253		1.0645	2	.510	
2090		1.1040	2	.422	
1897		1.1633	2	.316	
1698		1.3618	2	118	
1292		1.5012	2	.028	
1040		1.7802	1	.920	
830		2.1623	1	.823	
472		3.7226	1	.621	
Relative Volume	: V/Vsat i	s barrels at	indicated pre	ssure pe	r

La prueba de liberación instantánea midió los siguientes datos:

Figura B-13 Análisis composicional y prueba de liberación flash para el PVT TW-4

						Well Oil Well No	. 4
	Rep	5m	ifferential Sec	Vaporization at	220 °F.		
	Solution	Relative	Relative	011	Deviation	Gas Formation	Incrementa
Pressure	Gas/Oil	011	Total	Density	Factor	Volune	Gas
PSIG	Ratio(1)	Volume(2)	Volume(3)	gm/cc	Z	Factor(4)	Gravity
2620	854= R _{sDb}	1.600= 8₆₀₀	1,600	0.6562			
2350	763	1.554	1.665	0.6655	0.846	0.00685	0.825
2100	684	1.515	1.748	0.6731	0.851	0.00771	0.818
1850	612	1.479	1.859	0.6808	0.859	0.00882	0,797
1600	544	1.445	2.016	0.6889	0.872	0.01034	0.791
1350	479	1.412	2.244	0.6969	0.887	0.01245	0.794
1100	416	1.382	2,593	0.7044	0.903	0.01552	0,809
850	354	1.351	3,169	0.7121	0.922	0,02042	0.831
600	292	1.320	4.254	0.7198	0.941	0.02931	0,881
350	223	1.283	6.975	0.7291	0.965	0.05065	0.988
159	157	1,244	14,693	0.7382	0.984	0.10834	1.213
0	0	1.075		0,7892			2,039
	8 60°F	. = 1.000					
Gravity of	residual oil =	35.1°API @ 60°F	·.				

La Prueba de liberación diferencial, tubo el siguiente comportamiento:

Figura B-14 Datos medidos de la prueba de liberación diferencial del pozo TW-4

Y los resultados de la presión óptima de separación que se obtuvo de la prueba de separación el laboratorio fueron los siguientes:

	SEPARATOR TESTS OF RESERVOIR FLUID SAMPLE							
-	SEPARATOR PRESSURE PSI	SEPARATOR TEMPERATURE °F	GAS'OIL RATIO (1)	R _{Sb} GASYOIL RATIO (2)	STOCK TANK GRAVITY °API @ 60°F	B _{03b} FORMATION VOLUME FACTOR (3)	SEPARATOR VOLUME FACTOR (4)	SPECIFIC GRAVITY OF FLASHED GAS
	50 to	75	715	737			1.031	0.84
	0	75	41	<u>41</u> 778	40.5	1.481	1.007	1.338
	100 to	75	637	676			1.062	0.786
	0	75	91	<u>92</u> 768	40.7	1.474	1.007	1.363
	200	75	542	602				
	to						1.112	0.732
	0	75	177	<u>178</u> 780	40.4	1.483	1.007	1.329
	300	75	478	549				
	to						1.148	0.704
	0	75	245	<u>246</u> 795	40.1	1.495	1.007	1.286
((; (;	 (1) Gas/ Oil Ratio in cubic feet of gas 60 @ F. and 14.65 PSI absolute per barrel of oil @ indicated pressure and temperatu (2) Gas/Oil Ratio in cubic feet of gas @ 60 F. and 14.65 psi absolute per barrel of stock tank oil @ 60 F. (3) Formation Volume Factor is barrels of saturaded oil @ 2620 PSI gauge and 220 F. per barrel of stock tank oil @ 60° F. (4) Separator Volumen Factor is barrels of oil @ indicated pressure and temperature per barrel of stock tank oil @ 60° F. 							

Figura B-15 Resultados de la prueba de separación en laboratorio del pozo TW-4

B.4 PVT pozo S-3

El siguiente caso corresponde a un reporte PVT con los siguientes datos generales

FORMACION PRODUCTORA	Eoceno Medio
PRESION INICIAL	311 KG/CM2
RGA INICIAL	*
INICIO DE PRODUCC. DEL YACTO	
PRESION ACTUAL DEL YACIMIENTO	268 KG/CM2 (@ 3330 MVBMR)
Np	0.946 MMBLS
Gp	0.366 MMMPCD
Wp	17267 BLS
DENSIDAD INICIAL DEL ACEITE	*
NIVEL DE REFERENCIA	
TIPO DE FLUIDO	ACEITE NEGRO
FECHA DE TERMINACION ELEVACION DE MESA ROTARIA PROFUNDIDAD TOTAL INTERVALO PRODUCTOR PRESION ESTATICA AL NIVEL MEDIO FECHA DE MEDICION DE LA PRESION TEMPERATURA AL NIVEL MEDIO ESTADO DEL POZO.	40702 30 M 4080 MD 3280 - 3395 MD
DIAMETRO DE LA TR.	
DIAMETRO DE TP	

Figura B- 16 Portada del Reporte PVT para pozo S-3

RESUMEN DE DATOS PVT							
Condiciones de Yacimiento Reportado							
Presión Promedio del Vacimiento	268.0	ka/am²(m)					
Temperature Premedie del Vesimiento	200.0	Ng/cirr(iii)					
Temperatura Promedio dei Yacimiento	120.0	τ.					
Relaciones	Relaciones de Presión-Volumen						
Presión de Saturación	91.3	kg/cm²(m)					
Compresibilidad Promedio	100.20	E-6 v/v/(ka/cm ³ (268.0 a 91.3 ka/cm ³ /m))					
Compresibilidad Promedio	100.20	E-0 ww(kg/cm) (200.0 a 91.0 kg/cm (m))					
Datos de la V	/aporizació	n Diferencial					
(a 91.3 k	(a 91.3 kg/cm²(m) y 120.0 °C)						
Relación del Gas Disuelto-Aceite	45.3	m³ / m³ de aœite residual a 15.6 °C					
Volumen Relativo de Aceite	1.228	m³ / m³ de aœite residual a 15.6 °C					
Densidad del Fluido de Yacimiento	0.8374	gr/cm³					
Viscosidad del Eluido de Vasimiento							
Viscosidad d	viscosidad dei Fluido de Yacimiento						
4.01 mDa a a	01.2 ks/sm2/						
4.01 mPa·s a	91.3 kg/cm*(m) y 120.0 °C					

Figura B-17 Resumen de los datos del reporte PVT del Pozo S-3
El análisis composicional y la prueba de liberación instantánea midió los siguientes datos:

<u>Aná</u> Cilir	lisis Composicional de Muestra de Fondo h ndro 818977	<u>asta C36 más</u>	
	Componente	% Molar	% Peso
H ₂	Hidrógeno	0.000	0.000
H₂S	Sulfuro de Hidrógeno	Traza	0.000
CO2	Dioxido de Carbono	0.960	0.190
N ₂	Nitrógeno	0.560	0.070
C,	Metano	19.220	1.410
C ₂	Etano	5.190	0.710
C ₃	Propano	5.670	1.140
iC₄	i-Butano	0.920	0.240
nC₄	n-Butano	3.290	0.870
C5	Neo-Pentano	0.010	0.000
iC5	i-Pentano	1.400	0.460
nC5	n-Pentano	2.100	0.690
C6	Hexanos	2.990	1.180
	Metil-ciclo-Pentano	0.610	0.230
	Benceno	0.150	0.050
	Ciclohexano	0.400	0.150
C7	Heptanos	2.480	1.130
	Metil-ciclo-Hexano	0.580	0.260
	Tolueno	0.330	0.140
C8	Octanos	2.760	1.440
	Etilbenceno	0.210	0.100
	M/P-Xileno	0.370	0.180
	O-Xileno	0.150	0.070
C9	Nonanos	2.730	1.600
	Trimetilbenceno	0.300	0.170
C10	Decanos	3.150	2.040
C11	Undecanos	2.940	1.970
C12	Dedecanos	2.650	1.940
C13	Tridecanos	2.480	1.980
C14	Tetradecanos	2.250	1.950
C15	Pentadecanos	2.110	1.980
C16	Hexadecanos	1.880	1.910
C17	Heptadecanos	1.630	1.760
C18	Octadecanos	1.570	1.800
C19	Nonadecanos	1.490	1.790
C20	Eicosanos	1.300	1.630
C21	Heneicosanos	1.180	1.560
C22	Docosanos	1.090	1.520
C23	Tricosanos	1.000	1.450
C24	Tetracosanos	0.940	1.410
C25	Pentacosanos	0.840	1.330
C26	Hexacosanos	0.820	1.340
C27	Heptacosanos	0.710	1.220
C28	Octacosanos	0.710	1.250
C29	Nonacosanos	0.680	1.240
C30	Triacontanos	0.620	1.170
C31	Hentriacontanos	0.630	1.230
C32	Dotriacontanos	0.590	1.190
C33	Tritriacontanos	0.520	1.100
C34	Tetratricontanos	0.490	1.060
C35	Pentatriacontanos	0.470	1.030
C36+	Hexatriacontanos +	11.880	47.670
	Totales	100.000	100.000

Figura B-18 Análisis composicional de la mezcla original para el PVT de pozo S-3

<u>Análisis Composicio</u> <u>Cilindro 818977</u>	nal de Muestra de Fondo hasta C36 más	
Propiedades Calculada	as de las Fracciones Residuales	
C7 más	% Molar Peso Molecular (g mol-1) Densidad a 60°F (g cm-3)	57.690 354 0.9640
C11 más	% Molar Peso Molecular (g mol-1) Densidad a 60°F (g cm-3)	43.470 431 0.9918
C20 más	% Molar Peso Molecular (g mol-1) Densidad a 60°F (g cm-3)	24.470 613 1.0441
C36 más	% Molar Peso Molecular (g mol-1) Densidad a 60°F (g cm-3)	11.880 879 1.1291
Propiedades Calculada	as de la Muestra Total	
	Peso Molecular Promedio (g mol-1) Densidad a 60°F (g cm-3)	219 0.8983

Figura B-19 Peso molecular y porcentaje mol de las fracciones pesadas del análisis composicional

Composición Constante	a 120.0°C			
	Volumen	Densidad	Compresibilidad	Función-Y (3)
	Relativa (1)	(g cm-3)	Instantánea	randon r (o)
			(kg/cm2-1 x 10-6) (2)	
	0.9755	0.8585	81.94	
	0.9760	0.8580	82.43	
	0.9788	0.8555	85.10	
-	0.9818	0.8530	88.13	
Presión de Yacimiento	0.9824	0.8524	88.88	
	0.9848	0.8503	91.61	
	0.9880	0.8476	95.64	
	0.9913	0.8447	100.36	
	0.9949	0.8417	106.02	
	0.9986	0.8386	112.77	
	0.9987	0.8385	112.88	
	0.9989	0.8384	113.21	
	0.9998	0.8376	114.97	
Presión de Saturación	1.0000	0.8374		
	1.0035			
	1.0231			
	1.0615			4.185
	1.1191			3.890
	1.2098			3.586
	1.3589			3.277
	1.6379			2.951
	2.2465			2.612
	2.5998			2.501
	Composición Constante Presión de Yacimiento Presión de Saturación	Volumen Relativa (1) 0.9755 0.9760 0.9788 0.9818 Presión de Yacimiento 0.9848 0.9949 0.9949 0.9986 0.9987 0.9988 1.0035 1.0231 1.0615 1.1191 1.2098 1.3589 1.6379 2.2465 2.5998	Volumen Relativa (1) Densidad (g cm-3) 0.9755 0.8585 0.9760 0.8580 0.9788 0.8555 0.9818 0.8530 Presión de Yacimiento 0.9824 0.8524 0.9949 0.8447 0.9949 0.8447 0.9949 0.8447 0.9986 0.8386 0.9987 0.8385 0.9988 0.8376 Presión de Saturación 1.0000 1.0231 1.0615 1.1191 1.2098 1.3589 1.6379 2.2465 2.5998	Volumen Relativa (1) Densidad (g cm-3) Compresibilidad Instantánea (kg/cm2-1 x 10-6) (2) 0.9755 0.8585 81.94 0.9760 0.8580 82.43 0.9788 0.8555 85.10 0.9818 0.8553 91.61 0.9984 0.8503 91.61 0.9913 0.8447 100.36 0.9949 0.8417 106.02 0.9986 0.8386 112.77 0.9987 0.8385 112.88 0.9989 0.8376 114.97 Presión de Saturación 1.000 0.8374 1.0231 1.0615 1.1191 1.2098 1.3589 1.6379 2.2465 2.5998 2.5998

Figura B-20 Prueba de liberación flash para el PVT S-3

	VAPORIZACIÓN DIFERENCIAL (a 120.0 °C)												
Presión kg/cm²(m)	Relación de Gas Disuelto- Aceite Rsd (A)	Volumen Relativo de Aceite Bod (B)	Volumen Relativo Total Btd (C)	Porciento de Fase Líquido (D)	Densidad de Aceite gr/cm³	Factor de Desviación Z	Factor Volumétrico de Formación del Gas (E)	Gravedad Incremental del Gas (Aire=1.00)					
b»91.3	45.3	1 228	1 228	100.0	0.8374								
82.7	42.5	1.219	1.262	99.3	0.8415	0.926	0.01557	0.798					
72.4	39.2	1.209	1.319	98.5	0.8459	0.937	0.01796	0.787					
62.1	35.7	1.199	1.402	97.7	0.8499	0.948	0.02113	0.786					
51.7	32.0	1.190	1.528	96.9	0.8537	0.958	0.02556	0.797					
41.4	28.2	1.180	1.727	96.1	0.8575	0.967	0.03205	0.826					
31.0	24.0	1.169	2.080	95.2	0.8615	0.976	0.04285	0.884					
20.7	19.4	1.157	2.809	94.2	0.8662	0.984	0.06379	0.988					
11.9	14.7	1.143	4.444	93.0	0.8711	0.991	0.10791	1.153					
7.4	11.7	1.132	6.708	92.2	0.8744	0.994	0.16617	1.301					
0.0	0.0 @ 15.6 °C	1.077 = 1.000		87.7	0.8873			2.424					

La Prueba de liberación diferencial, tubo el siguiente comportamiento:

Figura B-21 Datos medidos de la prueba de liberación diferencial del pozo S-3

Y los resultados de la presión óptima de separación que se obtuvo de la prueba de separación el laboratorio fueron los siguientes:

ANÁLISIS DEL SEPARADOR FLASH													
Condici	ones	Relación	Relación	Gravedad	Factor	Factor	Gravedad	Densidad					
de Sepa	ración	Gas-Aceite	Gas-Aceite	de Aceite	Volumétrico	Volumétrico	Especifica	del Líquido					
Flas	h	(m³/STm³)	(m³/STm³)	a 15.6 °C	de Formación	del Líquido	del gas	(gr/cm ³)					
kg/cm²(m)	°C	(A)	(B)	(°API)	Bofb (C)	(D)	(Aire=1.00)						
91.3 15.0 8.0 3.1	120.0 67.0 67.0 67.0	20.9 3.0 3.2	23.1 3.3 3.5			1.103 1.095 1.085	0.816 * 0.927 * 1.176 *	0.8374+ 0.8669 0.8701 0.8737					
0.0	55.0	2.8	2.9 Rsfb = 32.8	18.6	1.170	1.028	1.587 *	0.9160					
 * Recuperad + Calculado p 	 Recuperada y analizada en el laboratorio por cromatografia de gas. + Calculado para la balanza material de los volumetricos de separador. 												
(A) Metros cúl: (B) Metros cúl: (C) Metros cúl: (D) Metros cúl:	 + Calculado para la balanza material de los volumetricos de separador. (A) Metros cúbicos de gas a 1.033 kg/cm²(a) y 15.6 °C por metro cúbico de aceite a presión y temperatura indicada. (B) Metros cúbicos de gas a 1.033 kg/cm²(a) y 15.6 °C por metro cúbico de aceite atmosférico a 15.6 °C. (C) Metros cúbicos de aceite saturado a 91.3 kg/cm²(m) y 120.0 °C por metro cúbico de aceite atmosférico a 15.6 °C. (D) Metros cúbicos de aceite a presión y temperatura indicada por metro cúbico de aceite atmosférico a 15.6 °C. 												

Figura B-22 Resultados de la prueba de separación en laboratorio del pozo S-3

B.5 PVT pozo Condensado-7

RESULTS OF TYPICAL LABORATORY EVILSIDERES Company <u>Good Oil Company</u> File<u>RFL 88002</u> Well<u>Condensate No. 7</u> Field<u>Productive</u>State<u>Wyoming</u>

MELL INFORMATION FORMATION CHARACTERISTICS Paysand Formation Datum ft ss Date First Well Completed November 2, 1987 ____psig @___12400 ft Original Reservoir Pressure 5300 Original Produced Gas/Liquid Ratio scf/bbl 8/D Production Rate ٩Ĕ Separator Conditions psig and Stock Tank Liquid Gravity *APT 6 60 F WELL CHARACTERISTICS Elevation 8 1 ft Total Depth 12600 ft 12350-12450 Producing Interval ft l__in.to B/D/psi 0 Tubing Size and Depth Productivity Index Open Flow Potential 12500 ft 2-3/8 B/D MMscf/D Reservoir Conditions: Pressure 5300 psig @ 12400 ft November 30, 1987 275 F 0 1 Date Temperature 12400 ft Shut-in 72 hours Status of Kell Nater Cut percent Û. SUMMARY OF RESERVOIR FLUID DATA Yolumetric_Data Dewpoint pressure at 275°F = 4521 psig Deviation factor (Z) at 4521 psig and 275°F = 0.950 $t/g_{\rm A2}$ Gas expansion factor at 4521 psig and 275°F = 1.262 Mscf/bb1 \Rightarrow Retrograde Condensation Data Maximum retrograde liquid volume is approximately 12.4 percent of the hydrocarbon pore space at 2200 psiq and $275^{\ast}F_{\ast}$

Figura B-23 Reporte PVT Condensado-7

Figura B- 25 Medición de porcentaje de volumen de líquido retrógrado en la prueba de agotamiento a volumen constante

Compositions of Produced Wellstreams - Mole Percent									
		Reser	contr Pres	sure - D	sia				
Component	4521	3900	3200	2500	1800	1200	700	700(1)	
Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane	0.00 2.42 0.47 68.22 11.80	0.00 2.44 0.49 69.90 11.85	0.00 2.46 0.50 71.30 11.96	0.00 2.48 0.51 72.41 12.04	0.00 2.53 0.52 72.85 12.16	0.00 2.55 0.51 72.46 17.35	0.00 2.60 0.48 71.01 12.53	0.00 0.70 0.03 11.75 5.04	
Propane iso-Butane n-Butane iso-Pentane n-Pentane Hexanes Heptanes plus	5.46 0.83 1.74 0.72 0.74 1.07 <u>6.53</u>	5,40 0,80 1,66 0,68 0,69 0,97 <u>5,12</u> 100 00	5.34 0.78 1.61 0.64 0.65 0.87 <u>3.89</u> 100.00	5.28 0.76 1.56 0.61 0.62 0.80 2.93 100.00	5.36 0.77 1.59 0.60 0.61 0.78 <u>2.23</u> 100.00	5.49 0.81 1.68 0.65 0.66 0.81 <u>2.03</u> 100.00	5.90 0.91 1.87 0.74 0.75 0.93 <u>2.28</u> 100.00	4,53 1.05 2,62 1.64 1.91 4,42 <u>66,31</u>	
Cat (recomendation of DV. Pe(20) Nolecular weight of heptanes plus Density of heptanes plus	148 0.793	134 0.776	124 0.767	117 0.760	111 0.754	108 0,751	107 0:750	169 124.bmp	
Niscosity, centipoiserr (gar vircorita)	0.0287	0.0249	0.0215	0.0181	0.0164	0.0149	0,0136		
<u>Deviation Factor - 7</u> Equilibrium gas Two-phase	0.950 0.950	0,908 0,899	0.876 0.850	0.873 0.834	0.890 0.817	0.917 0.794	0.949 0.750		
) Wellstream produced- L Cumulative percent of initial	0.000	8.761	21.717	36.857	53.451	67.933	80.041		

Figura B-26 Datos medidos de la prueba de agotamiento a volumen constante para PVT Condesnado-7

B.6 PVT pozo OCS-G-999

PVT Report for a Gas Condensate Mississippi Canyon 999

OCS-G-999 No. BBB

Figura B- 27 Reporte	PVT OCG-G-999
----------------------	---------------

Table 3: Summary of Results of the Selected Sample										
(Sample 1.01)										
Reservoir Conditions										
Pressure (p,)	10,000	Psia								
Temperature (T _i)	204	°F								
Properties										
OBM Contamination		Wt%								
Dew Point Pressure (p₄)										
At T _i	5,975	psia								
150°F	5,917	psia								
100°F	5,699	psia								
Gas-Oil Ratio										
Single-stage Flash:	18,640	scf/stb								
Properties at 60°F	STO °API	Gas Gravity (Average)								
Single-stage Flash:	43.2	0.784								
Properties at Reservoir Condition	ins									
Viscosity:		сP								
Compressibillity (C.):	28.8	10 [€] /psi								
Density:	0.417	g/cm ³								
Z Factor:	1.484	<u>.</u>								
Pronerties at Saturation Conditi	ons									
Viscosity:		сP								
Compressibillity (C.):	69.6	10 [€] /nsi								
Density:	0.345	a/cm ³								
Z Factor:	1.072	g, on								
Total Doulation Decovery										
Abandonment Pressures	1000	paia								
Wellstream Recovery	77 62%	psia								
wenstream necovery	//.0270									

Figura B- 28 Datos generales para PVT OCG-G-999

Component		Flash	ed Gas	Flashe	d Liquid	Monopl	hasic Fluid
	MW	WI%	MULE %	WI%	MULE %	WI%	MULE %
12	28.01	0.62	0.50	0.00	0.00	0.50	0.49
02	44.01	12.75	6.57	0.02	0.09	10.17	6.36
12S	34.08	0.00	0.00	0.00	0.00	0.00	0.00
1	16.04	53.22	75.30	0.04	0.40	42.46	72.79
2	30.07	12.70	9.59	0.06	0.32	10.14	9.28
3	44.10	7.63	3.93	0.13	0.49	6.12	3.81
- C4	58.12	2.05	0.80	0.09	0.26	1.65	0.78
I - C4	58.12	3.03	1.18	0.20	0.56	2.45	1.16
- C5	72.15	1.40	0.44	0.23	0.53	1.16	0.44
N — C5	72.15	1.14	0.36	0.26	0.60	0.96	0.37
6	84.00	3.28	0.86	2.51	4.84	3.13	1.00
27	96.00	1.37	0.31	6.33	10.50	2.37	0.65
8	107.00	0.54	0.11	7.48	10.88	1.94	0.47
.9	121.00	0.12	0.02	4.90	6.35	1.09	0.23
010	134.00	0.09	0.02	5.87	7.28	1.26	0.26
011	147.00	0.04	0.01	6.19	7.00	1.28	0.24
012	161.00	0.02	0.00	7.06	7.29	1.44	0.25
013	175.00	0.01	0.00	8.12	7.71	1.65	0.26
014	190.00	0.00	0.00	8.40	7.35	1.70	0.25
015	206.00	0.00	0.00	10.05	8.11	2.03	0.27
016	222.00	0.00	0.00	5.29	3.96	1.07	0.13
217	237.00	0.00	0.00	4.84	3.39	0.98	0.11
218	251.00	0.00	0.00	6.83	4.53	1.38	0.15
019	263.00	0.00	0.00	3.88	2.45	0.79	0.08
20	275.00	0.00	0.00	1.87	1.13	0.38	0.04
21	291.00	0.00	0.00	1.32	0.75	0.27	0.03
22	300.00	0.00	0.00	0.69	0.38	0.14	0.01
23	312.00	0.00	0.00	0.72	0.38	0.15	0.01
24	324.00	0.00	0.00	0.75	0.38	0.15	0.01
25	337.00	0.00	0.00	0.39	0.19	0.08	0.01
26	349.00	0.00	0.00	0.41	0.19	0.08	0.01
27	360.00	0.00	0.00	0.42	0.19	0.09	0.01
28	372.00	0.00	0.00	0.44	0.19	0.09	0.01
29	382.00	0.00	0.00	0.91	0.38	0.18	0.01
30+	580.00	0.00	0.00	3.29	0.94	0.67	0.03
alculated MW			22.7		166		27.5

Figura B- 29 Medición de porcentaje de volumen de líquido retrógrado en la prueba de agotamiento a volumen constante

Properties	Flashed Gas Flashed Liquid		Monophasic Fluid
Mole %			
	0.46	01.01	2.52
67+	U.40	91.91	3.52
C12+	0.00	49.89	1.673
C20+	0.00	5.09	0.170
C30+	0.00	0.94	0.032

Figura B- 30 Porcentaje mol de la facción pesada

	Table 9: Constant Volume Depletion at T,												
	(Sample 1.01)												
Pressure	Total	Produce	d Vapor Pro	perties	Calculated Lie	uid Properties	Two Phase						
	Recovery	Z Factor	MW	Density	Volume %	Density	Z Factor*						
psia	(%)		(g/gmol)	(g/cm³)		(g/cm ³)							
5975	0.00	1.067	27.39	0.345	0.00		1.067						
5200	6.34	0.991	27.21	0.321	0.40	0.784	0.992						
4500	13.66	0.926	26.72	0.292	2.03	0.615	0.931						
3800	23.11	0.878	25.29	0.246	6.48	0.590	0.882						
3200	32.96	0.854	24.17	0.204	8.69	0.603	0.853						
2700	42.28	0.845	23.47	0.169	9.38	0.619	0.837						
2100	54.25	0.848	22.89	0.127	9.37	0.651	0.826						
1500	66.94	0.869	22.57	0.088	8.90	0.681	0.827						
1000	77.63	0.899	22.55	0.056	8.29	0.704	0.831						

Figura B-31 Datos medidos de la prueba de agotamiento a volumen constante para PVT OCG-G-999

1	Table 10: Constant Volume Depletion – Vapor Composition (Sample 1.01)										
Component	p-psia	5200	4500	3800	3200	2700	2100				
	MW			Mol%							
N2	28.01	0.49	0.49	0.50	0.51	0.51	0.51				
C02	44.01	6.36	6.37	6.42	6.47	6.50	6.55				
H2S	34.08	0.00	0.00	0.00	0.00	0.00	0.00				
C1	16.04	72.85	73.12	74.05	74.86	75.39	75.82				
C2	30.07	9.28	9.28	9.27	9.27	9.29	9.34				
C3	44.10	3.81	3.80	3.75	3.70	3.68	3.68				
I – C4	58.12	0.78	0.78	0.76	0.74	0.73	0.72				
N – C4	58.12	1.16	1.15	1.12	1.09	1.06	1.04				
I – C5	72.15	0.44	0.44	0.42	0.40	0.39	0.37				
N – C5	72.15	0.37	0.36	0.34	0.33	0.31	0.30				
C6	84.00	0.99	0.98	0.91	0.84	0.78	0.71				
C7	96.00	0.65	0.63	0.57	0.49	0.43	0.36				
C8	107.00	0.47	0.45	0.39	0.33	0.27	0.21				
C9	121.00	0.23	0.22	0.19	0.15	0.12	0.08				
C10	134.00	0.26	0.25	0.21	0.16	0.12	0.08				
C11	147.00	0.24	0.23	0.18	0.14	0.10	0.06				
C12	161.00	0.24	0.23	0.18	0.12	0.08	0.05				
C13	175.00	0.26	0.24	0.18	0.12	0.07	0.04				
C14	190.00	0.24	0.23	0.16	0.10	0.06	0.03				
C15	206.00	0.27	0.25	0.16	0.09	0.05	0.02				
C16	222.00	0.13	0.12	0.07	0.04	0.02	0.01				
C17	237.00	0.11	0.10	0.05	0.03	0.01	0.00				
C18	251.00	0.15	0.13	0.07	0.03	0.01	0.00				
C19	263.00	0.08	0.07	0.03	0.01	0.01	0.00				
C20	275.00	0.04	0.03	0.01	0.00	0.00	0.00				
C21	291.00	0.02	0.02	0.01	0.00	0.00	0.00				
C22	300.00	0.01	0.01	0.00	0.00	0.00	0.00				
C23	312.00	0.01	0.01	0.00	0.00	0.00	0.00				
C24	324.00	0.01	0.01	0.00	0.00	0.00	0.00				
C25	337.00	0.01	0.00	0.00	0.00	0.00	0.00				
C26	349.00	0.01	0.00	0.00	0.00	0.00	0.00				
C27	360.00	0.01	0.00	0.00	0.00	0.00	0.00				
C28	372.00	0.01	0.00	0.00	0.00	0.00	0.00				
C29	382.00	0.01	0.01	0.00	0.00	0.00	0.00				
C30+	580.00	0.01	0.00	0.00	0.00	0.00	0.00				
-											
lotal		100.00	100.00	100.00	100.00	100.00	100.00				
Calculated MW		27.21	26.72	25.29	24.17	23.47	22.89				
Viscosity (cP)		0.030	0.027	0.024	0.022	0.020	0.017				
Heat Content (BTU/s	ct) - Dry	1450	1423	1344	1282	1243	1210				

Figura B-32 Análisis composicional de la prueba de agotamiento a volumen constante para PVT OCS-G-999

			(b.c	,	
Component	p-psia	1500	1000		
	MW			Mol%	
N2	28.01	0.51	0 50		
CO2	44.01	6.50	6.61		
1202	34.09	0.00	0.01		
C1	16.04	75.95	75.66		
°2	30.07	9.45	9.60		
02 C3	44.10	2.72	3.00		
	59.12	0.73	0.76		
N _ C4	58.12	1.05	1.09		
-05	72.15	0.27	0.38		
N = 05	72.10	0.37	0.30		
n - 00 ns	P/ 00	0.25	0.50		
7	96.00	0.00	0.00		
07 CB	107.00	0.30	0.20		
00 00	121.00	0.10	0.14		
C10	121.00	0.00	0.05		
C10	147.00	0.00	0.04		
010	147.00	0.04	0.03		
G12	175.00	0.03	0.02		
014	100.00	0.02	0.01		
015	206.00	0.01	0.01		
010	200.00	0.01	0.00		
017	222.00	0.00	0.00		
017	237.00	0.00	0.00		
U18	251.00	0.00	0.00		
000	203.00	0.00	0.00		
620	2/5.00	0.00	0.00		
	291.00	0.00	0.00		
022	300.00	0.00	0.00		
023	312.00	0.00	0.00		
024	324.00	0.00	0.00		
025	337.00	0.00	0.00		
026	349.00	0.00	0.00		
027	360.00	0.00	0.00		
028	372.00	0.00	0.00		
029	382.00	0.00	0.00		
U30+	580.00	0.00	0.00		
Total		100.00	100.00		
Calculated MW		22.57	22.55		
viscosity (cP)		0.016	0.014		
Heat Content (BTIL/c	ofl - Dry	1101	11.90		

Figura B-33 Análisis composicional de la prueba de agotamiento a volumen constante para PVT OCS-G-999

B.7 PVT pozo X-1

Resumen de	Datos PVT	
Formación Productora	6560 - 6620 md	
Fecha de Muestreo	23-oct2017	
Tipo de Muestra	Recombinado	
Tipo de Fluido	Gas Condensado	
Presión de Yacimiento	1202.4	kg/cm²(a)
Temperatura de Yacimiento	161.0	°C
Fecha de Inicio de Análisis	22 de noviembre de 2017	
Laboratorio	México	
Tipo de Análisis	PVT	
Presión de Saturación a Temperatura de Yacimiento	574.9	kg/cm²(a)
Relación Gas-Líquido a la Presión de Saturación	1640.0	m ³ /m ³
Compresibilidad del Fluido a la Presión de Saturación	727.1	10 ⁻⁶ (vol/vol) / kg/cm²
Densidad del Fluido a la Presión de Saturación	0.3575	g/cm³
Contenido de N ₂ en el gas atmosférico	0.926	% mol
Contenido de CO ₂ en el gas atmosférico	1.569	% mol
Contenido de H ₂ S en el gas atmosférico	0.053	% mol

Figura B- 34 Datos generales para PVT X-1

ID de Muestra: 3.01 Tipo de Muestra: Gas de F							
	Presión kg/cm²(a)	Deposito del Líquido Retrogrado, % vol	Fluido Producido Acumulado, % molar	Factor de Desviación del Gas ⁽¹⁾ , Z	Factor de Desviación en dos fases, Z	Factor Volumetrico de Gas ⁽²⁾ , Bg	Viscosidad de Gas Calculado ⁽³⁾ , cP
Ру	1202.4	•				0.00282	
Pr	574.9	0.0	0.00	1.322		0.00358	0.037
	467.0	10.9	12.18	1.158	1.239	0.00386	0.030
	359.0	16.3	26.68	1.047	1.119	0.00454	0.024
	251.0	17.8	44.01	0.982	1.025	0.00609	0.020
	143.0	16.8	64.56	0.958	0.944	0.01043	0.017
	35.0	14.6	88.88	0.979	0.739	0.04353	0.014

Figura B- 35 Datos medidos de la prueba de agotamiento a volumen constante para PVT X-1

ID de								
	Presión del Agotamiento a	574.9	467.0	359.0	251.0	143.0	35.0	35.0
Componente		%Mol	%Mol	%Mol	%Mol	%Mol	(gas) %Mol	(liquido %Mol
Ne	Nitrágeno	0.876	0.806	0.010	0.032	0.028	0.801	0.064
CO ₂	Dióxido de carbono	1 484	1 495	1 510	1 530	1 554	1 568	0.004
H ₂ S	Sulfuro de Hidrógeno	0.050	0.049	0.049	0.049	0.051	0.055	0.017
C ₁	Metano	83,407	84.517	85.937	87,191	87.857	86,770	7.880
C ₂	Etano	3.273	3.285	3.280	3.305	3.371	3.510	0.800
C ₃	Propano	1.898	1.896	1.857	1.850	1.892	2.075	0.946
iC ₄	iso-Butano	0.433	0.425	0.416	0.409	0.416	0.476	0.377
nC ₄	n-Butano	0.898	0.878	0.853	0.835	0.848	0.990	0.931
iC ₅	iso-Pentano	0.389	0.377	0.361	0.347	0.347	0.424	0.639
nC₅	n-Pentano	0.507	0.491	0.469	0.448	0.446	0.551	0.912
C ₆	Hexanos	0.592	0.566	0.529	0.490	0.470	0.606	1.831
C7	Heptanos	0.840	0.795	0.727	0.652	0.601	0.796	3.688
C ₈	Octanos	0.741	0.685	0.600	0.497	0.407	0.521	5.758
C ₉	Nonanos	0.614	0.561	0.476	0.369	0.271	0.316	6.248
C ₁₀₊	Decanos y más	3.998	3.081	2.017	1.096	0.541	0.450	69.725
		100.000	100.000	100.000	#########	100.000	100.000	100.000
C _{6*}	Hexanos y más	6.785	5.689	4.349	3.103	2.290	2.689	87.249
C ₇₊	Heptanos y más	6.193	5.123	3.820	2.613	1.821	2.083	85.418
C ₁₀₊	Decanos y más	3.998	3.081	2.017	1.096	0.541	0.450	81.730
Propi	edades de Fracciones y más							
Peso Molecular de Heptanos y más Peso Molecular de Decanos y más		198 248	178 225	157 202	138 183	124 169	116 160	239 267
Densidad de Heptanos y más, g/cm ³		0.816	0.756	0.702	0.671	0.665	0.670	0.704
Densidad de Decanos y más, g/cm ³		0.823	0.762	0.705	0.672	0.665	0.671	0.700

Figura B-36 Análisis composicional de la prueba de agotamiento a volumen constante para PVT X-1

Bibliografía

- A. Al-Marhoun, M. (2001). Adjustment of Differential Liberation Data to Separator Conditions. *SPE 68234*, 7.
- API. (Abril 2003). Recommended Practice for Sampling Petroleum Reservoir. *American Petroleum Institute API 44*.
- Aramendiz Pacheco, J. J., & Velasquez Osma, M. A. (2008). *Considerasiones y Procedimientos para el analisis PVT del crudo de campos maduros (Trabajo de Tesis)*. Bucaramanga, Colombia: Univesriodad Industrial de Santander.
- Árevalo Villagran, J. (Abril 2016). Capitulo 2 Comportamiento de fase. *Propiedades de los fluidos petroleros y aplicaciones*, 49.
- Bashbush, J. (1981). A Method to Determine K-Values From Laboratory Data and Its Applications. SPE (10127), 16.
- Eduardo, R. S. (2014). *Apuntes de Geologia del Petroleo*. UNAM: Departamento de Geologia del Petroleo y Geohidrologia.
- Hoffmann, A., Hocott, C., & Crump, J. (1953). Equilibrium Constants for a Gas-Condensate System. SPE (219-G), Petroleum Transactions, AIME, 10.
- León Garcïa, A., Alamilla Carillo, N., & García Hernánez, F. (Julio 2013).
 Clasificación de los yacimientos en México: Un nuevo enfoque. *Ingenieria Petrolera Vol. 53*, 388-409.
- McCain, W. D. (1990). *The properties of petroleum fluids*. Tulsa, Oklahoma: PennWell Publishing Company.
- McCarthy, K., Rojas, K., Palmowski, M., Peters, K., & Stankiewicz, A. (Verano de 2011). La geoquímica básica del Petroleo para la evaluación de las rocas generadoras. *Oilfield Review*, 12.
- Méndez, L. T., & Teyssier, S. (1979). Caracterización de Fluidos de Yacimientos Petroleros . *Revista del Intituto Mexicano del Petróleo*, 21-33.
- Paredes, J., Pérez, R., & Larez, C. (2012). Correlation to Predict and Validate the Maximum Retrograde Condensation in Gas Condensate Reservoirs. SPE(158494), 9.
- Pérez Herrera, R., Paredes Enciso, J. E., Perera Pérez, L. M., & Larez Campos, C. J. (Abril 2016). Control de calidad y criterios de selección para evaluar la confiabilidad de un estudio PVT. *Ingenieria Petrolera*, 189-206.

- Schou Pedersen, K., L. Christensen, P., & Azeem Shaikh, J. (2015). *Phase Behavior* of *Petroleum Réservoir Fluids*. N.Y.: CRC Press is an imprint of Taylor & Francis Group.
- Tarek Ahmed, P. (2007). *Equations of State and PVT Analysis: Applications of Improved Reservoir Modeling*. Houston, Texas: Gulf Publishing Company.
- Wentworth, W., & Ladner, S. (1975). *Fundamentos de quimica fisica*. Belmont, California : Editorial Reverté .
- Whitson, C., & Torp, S. (1981). Evaluating Constant Volume Depletion Data. *SPE* (10067), 21.