

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

Estudio para Determinar la Eficiencia Electromecánica de 200 Pozos, Diagnóstico Previo a la Rehabilitación de un Pozo y Rehabilitación de Pozos de Agua Potable en el Sistema de Aguas de la Ciudad de México

INFORME DE ACTIVIDADES PROFESIONALES

Que para obtener el título de

Ingeniero Petrolero

PRESENTA

Mauricio Figueroa Bahena

ASESOR DE INFORME

M.I. Gilberto Sebastián Barrera

AGRADECIMIENTOS

A MIS PADRES:

Por haberme brindado todo su apoyo durante mucho tiempo y por el ánimo que siempre me dieron para terminar todo tipo de trabajo. Muchas Gracias

A MI ESPOSA Y A MIS HIJOS:

Por creer en mí, por tantos años de vida juntos y sobre todo porque siempre han sido mi principal motor para seguir adelante. Muchas Gracias Familia

A MIS COMPAÑEROS DE TRABAJO:

Que sin saberlo siempre me recordaban que tenía un pendiente por terminar. Muchas Gracia

A MIS HERMANOS:

Por su apoyo en los momentos difíciles de mi vida. Muchas Gracias Hermanos

A MIS AMIGOS Y COMPAÑEROS DE LA CARRERA:

Que me brindaron su amistad y apoyo durante mi estancia en la facultad y que siempre están y estarán en mí. Muchas Gracias Amigos

A MI ASESOR DE INFORME:

El cual me dio su apoyo desinteresadamente para la realización de este trabajo. Muchas Gracias

RESUMEN

Este documento corresponde al informe de actividades profesionales relacionado a un estudio hecho a 200 pozos de agua potable del SACMEX, con el objetivo de estimar la eficiencia electromecánica de cada uno de ellos; asimismo, se abordan los tópicos principales para el diagnóstico previo a la rehabilitación de un pozo.

El contenido de este documento está agrupado en cuatro secciones principales:

- 1. La parte de la metodología, donde se muestran las técnicas, herramientas y procedimientos necesarios para llevar a cabo el estudio antes mencionado y que comprenden principalmente con las actividades de recopilación de información, levantamiento de características físicas, medición de parámetros hidráulicos y electromecánicos, determinación de eficiencias hidráulicas y electromecánicas, elaboración de la memoria de cálculo y la medición a través de gráficas.
- 2. La parte de resultados, donde se plasman los parámetros eléctricos e hidráulicos medidos en los pozos de estudio, además de los resultados sobre la eficiencia electromecánica.
- 3. La parte de análisis financiero, donde se abordan las premisas tomadas en cuenta para definir la rentabilidad de la rehabilitación de los pozos en estudio.
- 4. Definición de las actividades de rehabilitación contempladas para los pozos del estudio de eficiencia antes mencionado.

CONTENIDO

AGRADECIMIENTOS	2
RESUMEN	3
CONTENIDO	4
LISTA DE TABLAS	5
LISTA DE FIGURAS	7
LISTA DE ANEXOS	7
INTRODUCCIÓN	8
1 ANTECEDENTES	10
2 OBJETIVO	13
2.1 Objetivo Principal	13
2.2 Objetivos Secundarios	14
3 METODOLOGÍA	16
3.1 Recopilación de la información	16
3.2 Levantamiento de características físicas	19
3.3 Medición de parámetros hidráulicos y electromecánicos	19
3.4 Determinación de eficiencias hidráulicas y electromecánicas	22
3.5 Memoria de cálculo	22
3.6 Medición a través de gráficas	22
4 RESUMEN DE RESULTADOS	23
4.1- Región Norte	23
4.2 Región Xochimilco	25
4.3 Región Centro	27
4.4 Región Poniente	31
4.5 Región Azcapotzalco	34
4.6 Región Coyoacán	36
4.7 Región Tlalpan	42
4.8 Región Oriente	45
5 - TABLAS INDICADORAS	50

6.2 Análisis de las Inversiones Asociados al Proyecto	53
6.3 Análisis de los Beneficios Asociados al Proyecto	53
7 ACTIVIDADES DE REHABILITACIÓN DE POZOS	55
7.1 Diagnóstico de pozos ineficientes	55
7.2 Problemáticas de pozos	56
7.2.1 Ademes rotos, colapsados o mal soldados	56
7.2.2 Cementaciones deficientes	57
7.2.3 Incrustaciones	57
7.2.4 Daños en la geometría del pozo	57
7.2.5 Daños en el equipo de bombeo	59
7.2.6 Obstaculización del pozo	59
7.2.7 Descenso de los niveles de bombeo	59
7.2.8 Reposición del filtro granular	60
7.3 Verificación de la rehabilitación	60
REFERENCIAS	62
NOMENCLATURA	63
ANEXOS	64
LISTA DE TABLAS	
Tabla 1. Factores que provocan ineficiencia en pozos de agua	
Tabla 2. Resumen de parámetros eléctricos de los pozos de la región Norte	
Tabla 3 . Resumen de parámetros hidráulicos de los pozos de la región Norte Tabla 4 . Resumen de eficiencia electromecánica de los pozos de la región Norte	
The second secon	

6.- ANÁLISIS FINANCIERO52

Tabla 5. Estimación del ahorro por concepto de sustitución de equipos de bombeo.25Tabla 6. Resumen de parámetros eléctricos de los pozos de la región Xochimilco.25Tabla 7. Resumen de parámetros hidráulicos de los pozos de la región Xochimilco.26Tabla 8. Resumen de eficiencia electromecánica de los pozos de la región Xochimilco.26Tabla 9. Estimación del ahorro por concepto de sustitución de equipos de bombeo.27

Tabla	10.	Resumen de parámetros eléctricos de los pozos de la región Centro	28
Tabla	11 .	Resumen de parámetros hidráulicos de los pozos de la región centro	28
Tabla	12.	Resumen de eficiencia electromecánica de los pozos de la región Centro (Parte 1)	29
Tabla	13 .	Resumen de eficiencia electromecánica de los pozos de la región Centro (Parte 2)	29
Tabla	14.	Resumen de eficiencia electromecánica de los pozos de la región Centro (Parte 3)	30
Tabla	15 .	Resumen de eficiencia electromecánica de los pozos de la región Centro (Parte 5)	30
Tabla	16.	Estimación del ahorro por concepto de sustitución de equipos de bombeo	31
Tabla	17 .	Resumen de parámetros eléctricos de los pozos de la región Poniente	32
Tabla	18 .	Resumen de parámetros hidráulicos de los pozos de la región Poniente	32
Tabla	19.	Resumen de eficiencia electromecánica de los pozos de la región Poniente	33
Tabla	20.	Estimación del ahorro por concepto de sustitución de equipos de bombeo	34
Tabla	21.	Resumen de parámetros eléctricos de los pozos de la región Azcapotzalco	34
Tabla	22.	Resumen de parámetros hidráulicos de los pozos de la región Azcapotzalco	35
Tabla	23.	Resumen de eficiencia electromecánica de los pozos de la región Poniente	35
Tabla	24.	Estimación del ahorro por concepto de sustitución de equipos de bombeo	36
Tabla	25.	Resumen de parámetros eléctricos de los pozos de la región Coyoacán (parte 1)	37
Tabla	26.	Resumen de parámetros eléctricos de los pozos de la región Coyoacán (parte 2)	37
Tabla	27.	Resumen de parámetros hidráulicos de los pozos de la región Coyoacán (Parte 1)	38
Tabla	28.	Resumen de parámetros hidráulicos de los pozos de la región Coyoacán (Parte 2)	38
Tabla	29.	Resumen de eficiencia electromecánica de los pozos de la región Coyoacán (Parte	1).
			39
Tabla	30.	Resumen de eficiencia electromecánica de los pozos de la región Coyoacán (Parte	2).
			39
Tabla	31.	Resumen de eficiencia electromecánica de los pozos de la región Coyoacán (Parte	3).
			40
Tabla	32.	Resumen de eficiencia electromecánica de los pozos de la región Coyoacán (Parte	4).
			40
Tabla	33.	Estimación del ahorro por concepto de sustitución de equipos de bombeo (Parte 1)	41
Tabla	34.	Estimación del ahorro por concepto de sustitución de equipos de bombeo (Parte 2)	41
Tabla	35.	Resumen de parámetros eléctricos de los pozos de la región Tlalpan	42
Tabla	36.	Resumen de parámetros hidráulicos de los pozos de la región Tlalpan	43
Tabla	37.	Resumen de eficiencia electromecánica de los pozos de la región Tlalpan (Parte 1).	43
Tabla	38.	Resumen de eficiencia electromecánica de los pozos de la región Tlalpan (Parte 2).	44
Tabla	39.	Resumen de eficiencia electromecánica de los pozos de la región Tlalpan (Parte 3).	44
Tabla	40.	Estimación del ahorro por concepto de sustitución de equipos de bombeo	45
Tabla	41.	Resumen de parámetros eléctricos de los pozos de la región Oriente	46
Tabla	42.	Resumen de parámetros hidráulicos de los pozos de la región Oriente	46
Tabla	43.	Resumen de eficiencia electromecánica de los pozos de la región Oriente (Parte 1).	47
Tabla	44.	Resumen de eficiencia electromecánica de los pozos de la región Oriente (Parte 2).	47
Tabla	45.	Resumen de eficiencia electromecánica de los pozos de la región Oriente (Parte 3)	48
Tabla	46.	Resumen de eficiencia electromecánica de los pozos de la región Oriente (Parte 4)	48
Tabla	47 .	Estimación del ahorro por concepto de sustitución de equipos de bombeo	49
Tabla	48.	Resumen de ahorro de energía y dinero de todas las regiones	50

Tabla 49. Montos derivados por ahorro de energía. Tabla 50. Causas de ineficiencia de los pozos de agua.												
Tabla 50. Causas de ineficiencia de los pozos de agua	56											
Tabla 51. Cálculo de eficiencia electromecánica (Pozo Ortiz Rubio)	66											
LISTA DE FIGURAS												
Figure 4. Trans de descarge de un nove de couerde e la normatividad enlicable	4.0											
Figura 1. Tren de descarga de un pozo de acuerdo a la normatividad aplicable Figura 2. Tubo Pitot.												
Figura 3. Medidor de flujo ultra sónico												
Figura 4. Sondas eléctricas para medir nivel dinámico del pozo												
Figura 5. Equipo analizador de redes eléctricas.												
Figura 6. Amperímetro de gancho.												
Figura 7. Porcentaje por región de los pozos analizados.												
Figura 8. Número de bombas a sustituir por región	50											
Tigata C. Mamoro do comicao a cacada por regioni												
LISTA DE ANEXOS												
	<u> </u>											
Anexo 1. Ejemplo de estimación de la eficiencia electromecánica	64											

INTRODUCCIÓN

El Sistema de Aguas de la Ciudad de México (SACMEX) es un órgano desconcentrado de la administración pública de la Ciudad de México, adscrito a la Secretaría del Medio Ambiente, cuyo objetivo principal es la operación de la infraestructura hidráulica y la prestación de los servicios públicos de agua potable, drenaje, tratamiento y reusó de aguas residuales.

Para el gobierno de la Ciudad de México es prioritario reforzar las estrategias y acciones necesarias para garantizar el abastecimiento de agua potable con oportunidad e igualdad a la población, en cantidad y calidad suficiente de acuerdo a la normatividad aplicable en materia de agua potable para salvaguardar la salud de los usuarios.

Mediante actividades previamente analizadas, evaluadas y consensadas, se pretende corregir las eficiencias electromecánicas de los pozos de agua potable, para restaurar en lo posible las condiciones óptimas de funcionamiento de las fuentes de abastecimiento; para obtener el máximo caudal de producción recomendable con el menor abatimiento del nivel dinámico de bombeo y un decremento en el consumo de energía eléctrica, sin demeritar las condiciones de abastecimiento y servicio de agua potable a la población.

De acuerdo a la metodología establecida para realizar el Estudio de Eficiencia Electromecánica, el área técnica emite un dictamen al área correspondiente en el cual contempla los trabajos recomendados a realizar.

Generalmente la mayoría de los pozos que están sujetos a trabajos de medición de eficiencia electromecánica, se encuentran operando para proporcionar el servicio de agua potable a la población de la Ciudad de México, razón por la cual es imperativo que los trabajos se realicen dentro del programa de obra establecido por el Sistema de Aguas, a fin de reducir al máximo las molestias a los usuarios.

El Sistema de Aguas de la Ciudad de México tiene implementada una metodología y programas permanentes de monitoreo (medición diaria, semanal y mensual de parámetros operativos de pozos de agua potable de acuerdo a los formatos establecidos por el SACMEX), es imperativa la toma de mediciones y de los resultados obtenidos de estas depende la planeación para resolver sobre las acciones que se deben de implementar para mejorar la operación, la distribución y el servicio de agua potable a la población de la Ciudad de México.

El Gobierno de la Ciudad de México, ha generado diversas acciones, por citar una, la implementación de la sectorización y una base de datos técnicos fidedignos que permiten proporcionar eficientemente la distribución de los servicios hidráulicos, poniendo a la vanguardia los sistemas de operación para brindar el servicio oportunamente en cantidad y calidad.

Conforme a la Ley son de utilidad pública: la planeación, los estudios, y los proyectos para construir y operar los sistemas de agua potable.

Se entiende por operación las actividades necesarias para administrar, conservar, reparar, ampliar y mejorar el servicio.

Se entiende por estudios los trabajos de investigación electromecánica, sanitaria, topográficos, geoquímicos, hidrológicos, geohidrológicos, estadísticos, de catastro y de financiamiento necesarios para fijar en detalle las condiciones operativas de los sistemas y permitir su mejoramiento.

Luego entonces, se ve claramente la contribución que se pretende obtener del Estudio de Eficiencia Electromecánica para mejorar la cantidad y calidad del servicio y abastecimiento de agua potable que proporciona el gobierno de la Ciudad de México a los habitantes de esta ciudad.

1.- ANTECEDENTES

La Ciudad de México y la Zona Metropolitana que la rodea, presenta el crecimiento demográfico más dinámico de la República Mexicana, resultando actualmente la mayor concentración humana en el mundo; esto es como resultado del notable crecimiento natural de la población y de una migración hacia este centro de población.

A consecuencia de este acelerado crecimiento del área urbana, se ha generado un déficit, aún más en lo que corresponde a los servicios públicos, principalmente en el sistema hidráulico de agua potable y drenaje de las aguas servidas y pluviales, esto requiere de un equipamiento y una infraestructura cada vez más compleja y costosa.

El Gobierno de la Ciudad de México, a través del Sistema de Agua de la Ciudad de México (SACMEX) perteneciente a la Secretaría del Medio Ambiente, tiene dentro de su programa de trabajo, para satisfacer la demanda de los servicios públicos en comento de la población creciente, la construcción de obras de reforzamiento hidráulico; así como mejorar la operación dando mantenimiento al sistema actual de abastecimiento y distribución de agua potable.

El SACMEX extrae aproximadamente 23 m³/s de agua potable del acuífero de la zona Metropolitana de la Ciudad de México, para abastecer a la población de esta Ciudad; La explotación se realiza mediante 970 pozos profundos equipados con bomba-motor operando las 24 horas del día. Por lo anterior, la extracción del vital líquido debe estar operando en buenas condiciones, por lo que es necesario revisar y medir periódicamente los parámetros operativos de los equipos electromecánicos, implementar medidas para la optimización de los sistemas de bombeo con base en la información obtenida en las mediciones, evaluar la factibilidad técnica y rentabilidad económica de la sustitución de equipos ineficientes por otros de mayor eficiencia electromecánica y así garantizar una operación eficiente, continuidad en el servicio, disminución de costos de mantenimiento y prolongación de la vida útil de todos los componentes del sistema de extracción.

La principal fuente de abastecimiento de la ciudad de México es subterránea por lo que se aprovecha por medio de pozos profundos construidos, operados y mantenidos por el SACMEX que requieren un constante monitoreo.

En el medio de la explotación de aguas subterráneas es conocida la gran frecuencia con la que los pozos funcionan ineficientemente; incluso pozos que se suponen eficientes, no lo son, ya que en su construcción o en la rehabilitación no se aplicó toda la tecnología disponible hoy en día. En cualquier sistema donde tenga lugar una transformación o transmisión de energía; la eficiencia es la capacidad que tiene el sistema para realizar estos procesos, considerando que estas eficiencias nunca son totales, al existir pérdidas por fricción, turbulencia, permeabilidad, transmisividad, etc., comúnmente se define a la eficiencia como la relación entre la energía proporcionada al sistema y la que se recupera del mismo, expresada generalmente como un porcentaje.

Dentro del sistema pozo de agua se tienen tres áreas principales de eficiencia: la eficiencia electromecánica del sistema bomba-motor, pozo y acuífero.

La eficiencia de un pozo es su efectividad para captar agua del acuífero; por lo que es necesario desarrollar métodos comprobados y certificados, entre ellos el cálculo del valor del rendimiento específico, el cual está relacionado con el caudal de producción y abatimiento inducido por el bombeo; diferencia entre el nivel estático y dinámico.

El ahorro de energía eléctrica en el bombeo de agua potable, debe de estar vinculado en forma muy estrecha con las acciones referentes al estudio del acuífero, rehabilitación de la cuenca, recuperación de caudal y difusión cultural, donde las aplicaciones de las medidas para el ahorro del agua aportan beneficios que se suman directamente al ahorro de energía eléctrica en el bombeo de agua.

Para comprender fácilmente el manejo adecuado de estos métodos, se deben conocer las causas que pueden producir la ineficiencia del equipo electromecánico y pozo, las cuales se indican en la **Tabla 1**.

	* Selección inadecuada del equipo, tanto de motor eléctrico como bomba.
	* Bajo factor de potencia
	* Interrupciones de energía eléctrica.
	* Variaciones de voltaje y frecuencia por parte de la cía. Suministradora
	* Voltaje desbalanceado
	* Sobrecarga de equipos
Equipo electromecánico	* Desgaste de impulsores por introducción de arenas al interior del pozo.
	* Baja calidad de los materiales empleados en la fabricación de impulsores.
	* Atascamiento del equipo debido a la introducción de sólidos (azolve) al interior del ademe.
	* Vida de diseño rebasado
	* Severo trabajo a los que son sometidos durante las 24 hrs del día y los 365 días del año.
	* Descargas atmosféricas.
	* Cedazo en exceso
	* Falta de cedazo
	* Información litológica inadecuada
	* Filtro granular mal colocado
Defectos de diseño	* Defectos de la colocación del ademe
	* Falta de verticalidad del pozo
	* Aforo mal realizado o interpret ado
	* Defectuosa protección sanitaria
	* Falta de mantenimiento del pozo.
	* Falta de mantenimiento a la bomba.
Defectos operacionales	* Falta de reposición del filtro granular.
	* Arrangues y paros frecuentes del equipo.
	* Abatimiento del acuífero en forma indiscriminada.
	* Fluidos de perforación inadecuados.
	* Falta de desarrollo del pozo.
	* Filtro granular mal colocado.
Defectos constructivos	* Defectos de colocación del ademe.
	* Falta de verticalidad del pozo.
	* Materiales defectuosos o inadecuados.
	* Aguas corrosivas.
Droblemes veriendes	* Aguas incrustantes.
Problemas regionales	* Bacterias ferroginosas.
	* Abatimientos regionales de los niveles freáticos.

Tabla 1. Factores que provocan ineficiencia en pozos de agua. Fuente: Elaboración propia con información de [1]

2.- OBJETIVO

2.1.- Objetivo Principal

El objetivo principal de este trabajo es mostrar los resultados de un documento técnico operativo que permite al "Sistema de Aguas de la Ciudad de México" dirigir, controlar y supervisar, los trabajos preliminares para la rehabilitación de 200 pozos. Con la implementación de los términos base de este documento que garantiza la medición de la eficiencia electromecánica y corregirla a un 65% como mínimo, obteniendo los siguientes beneficios:

- Recopilación de datos sobre consumo, demanda máxima, facturación, factor de potencia y otros parámetros eléctricos, durante los doce meses anteriores que tiene en operación los equipos, dispositivos y sistemas consumidores de energía eléctrica, así como su análisis estadístico.
- Censo de equipos de bombeo, sistemas y dispositivos que consumen energía eléctrica, debidamente clasificados de acuerdo al impacto en el importe de la facturación que representan y a su potencial de ahorro.
- 3. Recopilación básica e inventario general de las instalaciones.
- 4. Mejorar la eficiencia a un 65 % como mínimo del equipo electromecánico.
- 5. Ahorro de energía eléctrica
- 6. Corrección del factor de potencia
- 7. Incrementar el caudal de extracción
- 8. Diseño de la carga dinámica total tomando en consideración el abatimiento por bombeo y través de los años.
- 9. Selección adecuada de los equipos y sistemas
- 10. Definir que equipos se deben de sustituir debido a que su diseño fue modificado o no cumple con las condiciones de carga y gasto.
- 11. Los análisis y cálculos detallados necesarios para estimar las posibilidades de ahorro de energía eléctrica y las áreas de oportunidad que se presentan en las instalaciones, para lo cual deben evaluarse los sistemas y equipos eléctricos, considerando la factibilidad de adoptar nuevas tecnologías.
- 12. Evaluación técnico económica de los equipos y sistemas a sustituir por otros de mayor eficiencia, que incluya:
 - a. Descripción detallada de la situación actual.
 - b. Explicación detallada de los cambios propuestos y aspectos técnicos a considerar.
 - c. Ahorros potenciales en consumo, demanda y facturación eléctrica, considerando las tarifas eléctricas vigentes al momento de entrar en operación las medidas evaluadas, y los porcentajes que representan sobre la base de los respectivos valores totales de los servicios de energía eléctrica.
 - d. Si aplica, se indicará la capacitación que, para implementar las medidas recomendadas necesita el personal del SACMEX.

- e. Un resumen ejecutivo que mencione todas las acciones propuestas y que incluya, para cada una, el monto total de la inversión que requiere, el ahorro esperado en kWh, kW y pesos, así como el período de recuperación de la inversión a realizar.
- f. Recomendaciones para llevar a cabo las medidas de ahorro que requieran instalación, modificación o sustitución de dispositivos en las instalaciones de los sistemas y las especificaciones generales (marca, modelo, tamaño, etc.) del equipo cuya adquisición se propone.
- 13. Incrementar la vida útil del equipo al funcionar dentro características de diseño
- 14. Obtener las recomendaciones para corregir los factores que causan la ineficiencia del equipo electromecánico tales como:
 - a. Selección inadecuada del equipo.
 - b. Bajo factor de potencia
 - c. Interrupciones de energía eléctrica.
 - d. Variaciones de voltaje y frecuencia por parte de la cía. suministradora
 - e. Voltaje desbalanceado
 - f. Desgaste de impulsores por introducción de arenas al interior del pozo.
 - g. Baja calidad de los materiales empleados en la fabricación de impulsores.
 - h. Atascamiento del equipo debido a la introducción de sólidos (azolve) al interior del ademe.
 - Severo trabajo a los que son sometidos durante las 24 horas del día y los 365 días del año.
 - j. Vida de diseño rebasado
 - k. Descargas atmosféricas

2.2.- Objetivos Secundarios

La siguiente serie de objetivos está relacionada con las actividades necesarias para el cumplimiento de la mejora en la eficiencia electromecánica de los pozos de estudio.

- Efectuar la medición de eficiencia electromecánica apangándose a las Normas Oficiales Mexicanas NOM-006-ENER-1995 y NOM-010-ENER-1996
- Determinar el consumo de energía eléctrica, el promedio anual de todos los pozos de la red y definir el ahorro esperado en caso de la rehabilitación y sustitución de todos los equipos.
- Analizar los resultados de los 200 pozos para llevar a cabo el diseño preliminar de una nueva bomba tomando en consideración el abatimiento por bombeo, gasto específico y abatimiento debido al vaciado del acuífero además de considerar la sumergencia de la bomba.

- 4. Determinar y garantizar la línea base del consumo y ahorro de energía eléctrica de 200 pozos del Sistema de Aguas de la Ciudad de México, y sus emisiones de CO₂ las cuales son directamente proporcional y asociadas a este. Por lo que el estudio deberá elaborar una memoria descriptiva y de cálculo que ostente el ahorro de energía eléctrica y la disminución en forma cuantitativa en toneladas métricas, de emisiones de CO₂, en función del decremento de consumo de energía eléctrica y la estimación de los barriles equivalentes de petróleo evitados.
- Incrementar la eficiencia a un 65% como mínimo promedio en los 200 pozos y con esta meta se estará en condiciones de obtener beneficios por la venta de los Certificados por Reducción de Emisiones de CO₂.
- 6. Elaborar programas de mediciones de parámetros eléctricos, hidráulicos con una periodicidad de por lo menos cada mes a fin de mantener la estadística operativa de cada fuente y con los resultados obtenidos se establecerá una planeación, programación y seguimiento de mantenimiento preventivo y correctivo de las fuentes de abastecimiento, una vez iniciadas las mediciones y dando seguimiento a la evaluación de los equipos de bombeo y las condiciones hidráulicas del pozo se podrá conocer la relación de funcionamiento equipo- pozo.

3.- METODOLOGÍA

La metodología empleada para llevar a cabo el Estudio de la Eficiencia Electromecánica de 200 pozos comprende 6 actividades:

- 1. Recopilación de información
- 2. Levantamiento de características físicas
- 3. Medición de parámetros hidráulicos y electromecánicos
- 4. Determinación de eficiencias hidráulicas y electromecánicas
- 5. Memoria de cálculo
- 6. Medición a través de gráficas

3.1.- Recopilación de la información

Para efectuar el proyecto, el SACMEX seleccionó y entregó la relación y ubicación de los 200 pozos elegidos para el estudio, de manera que se tuviera base para elaborar el programa de recorridos y cuadrillas e instrumentos requeridos. También se entregaron los formatos para levantamiento organizado de datos.

Se procedió a recopilar información en la Dirección de Operación, Mantenimiento, Construcción y Técnica, así como en la biblioteca del Sistema de Aguas de la Ciudad de México, sobre las características técnicas necesarias para la realización del estudio, características relacionadas con equipos de bombeo, perfiles litológicos, historial de niveles estáticos y dinámicos, caudales, etc.

Dentro de los trabajos ejecutados para el proyecto denominado "Estudio para la Eficiencia Electromecánica de 200 pozos", se llevaron a cabo las actividades de medición de gasto o caudal, así como del nivel estático, dinámico y mediciones eléctricas de cada pozo, cuyos datos se asentaron en los formatos mencionados.

Respecto al levantamiento y recopilación de datos en campo, es importante mencionar que se presentó la siguiente problemática durante la ejecución de los trabajos:

El servicio del suministro de agua potable para los habitantes de la Ciudad de México resulta cada vez más difícil y costoso, debido al crecimiento poblacional, así como a las condiciones físicas en las que se encuentra la infraestructura hidráulica en cada uno de los pozos, por múltiples razones, principalmente a la falta de mantenimiento que requieren.

Para ello se debía contar con las condiciones físicas preparatorias para su ejecución, así como con los elementos de apoyo como válvulas y conexiones, elementales para realizar las mediciones mencionadas en forma adecuada y en consecuencia para contribuir a la correcta operación del pozo.

Es decir se presentaron múltiples y variadas condiciones en la instalación hidráulica para cada pozo en particular, careciendo en algunos casos de los elementos básicos como la válvula de

tipometría para realizar las mediciones de gasto, mismas que se encuentran deterioradas debido a su antigüedad o por falta de mantenimiento y con fugas que sucedieron al operarlas; en otros casos algunas válvulas no contaban con la rosca interior, lo cual no permitía el acoplamiento en este caso para el equipo de medición y en otros casos en donde no se contaba con dicha válvula, las condiciones para su instalación no eran favorables, es decir no se tiene un tramo recto para instalarla, lo cual no permitiría realizar en un momento dado la medición del gasto de producción del pozo, si se instalara en dicho tramo.

Habrá que tener muy en cuenta el párrafo anterior ya que, el determinar con cualquier tipo de medidor el dato del gasto o caudal de un pozo, permite diagnosticar su comportamiento, no solamente para este tipo de proyecto, sino para su historial operativo, también debe considerarse la correcta y buena instalación de los elementos de medición, que están operando, como los que se piense a futuro por las mismas razones.

En otros casos algunos pozos no contaban con la válvula expulsora o eliminadora de aire, lo cual es de suma importancia, ya que, al no realizarse la expulsión de aire en la línea de salida del pozo, se incrementa la presión interior en la tubería, aumentando la fatiga y reduciendo el tiempo de vida de los elementos de conducción; y para el caso de la medición dicho aire genera registros erróneos, muchas veces significativo para los datos del gasto que aporta el pozo.

Por otro lado, se presentaron casos en donde el tren de piezas se encontró desalineado e inclinado, lo cual genera fugas en los elementos de piezas especiales como juntas dresser, bridas, etc., así como un mal aspecto de la instalación. Debido a esto se encontraron algunos "apoyos" de refuerzo en la línea del pozo como puntales de madera o piedras, para soportar la infraestructura.

En la mayoría de los pozos se encontró que no contaban con manómetro de presión, y en los pocos que se tenía instalado o no funcionaba por diferentes razones, o estaba instalado inadecuadamente.

Otro aspecto por mencionar es el de las válvulas de seccionamiento tipo compuerta las cuales permiten el control de suministro y en su caso el regreso de agua cuando sucede un paro intempestivo o provocado en la operación del pozo, dichas válvulas en la mayoría de los casos se observaron con falta de mantenimiento u obsoletas.

En general en el tren de descarga las piezas y/o elementos con los que contaba cada uno de los pozos no estaba funcionando, ni existía físicamente al 100%, es decir los elementos no funcionaban o faltaban en el tren de piezas, lo cual reduce su tiempo de vida, un deficiente suministro a la red, etc.

En el caso de la medición de los niveles estático y dinámico se encontraron aspectos donde el brocal del ademe se encontraba sellado en su totalidad con concreto o tapas de lámina, no existe la preparación para tomar dichas mediciones, las cuales son muy importantes para saber el comportamiento del acuífero.

En lo que respecta a la medición eléctrica en algunos pozos se encontró que la tapa del arrancador se encontraba soldada, indicaron que era debido al vandalismo por robo de cable, el detalle está en que si se llegara a tener algún corto circuito o incendio no se podría atender de forma inmediata.

En términos generales, en la mayoría de los casos se encontraron diversos aspectos que limitaron y evitaron la obtención de los datos necesarios para el diagnóstico electromecánico de cada pozo, lo cual deberá ser atendido a la brevedad para mejorar la operación del pozo y en consecuencia el suministro a la población.

Se recomienda rediseñar el tren de descarga de acuerdo a la normatividad la cual se muestra en la **Figura 1**, así también de dejar las condiciones para realizar los niveles piezométricos, mismos que en la mayoría de los pozos ya se encuentra sellado el ademe por salubridad, lo cual impide dejar la preparación adecuada de un conducto de al menos ¾ de pulgada con una manguera que permita el libre acceso de la sonda hasta la profundidad necesaria para la toma de niveles estático y dinámico.

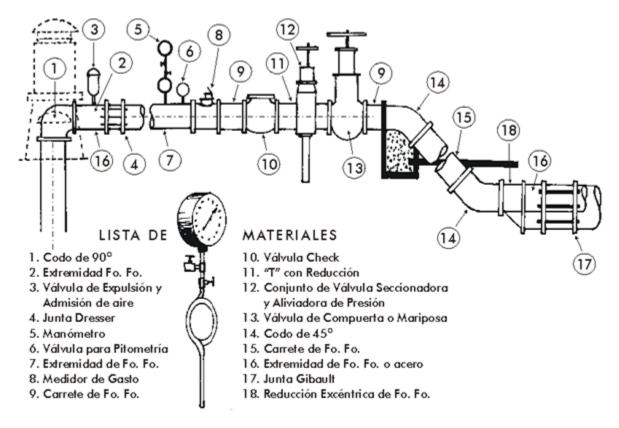


Figura 1. Tren de descarga de un pozo de acuerdo a la normatividad aplicable.¹
Fuente: Extraído de [1].

¹ Norma Oficial Mexicana NOM-001-ENER-1995

3.2.- Levantamiento de características físicas

El levantamiento de datos físicos en campo se hizo empleando los formatos diseñados para este propósito, los cuales fueron entregados por el Sistema de Aguas de la Ciudad de México. En ellos se incluye la toma de las características con datos de placa relacionados con los equipos principales: equipo de desinfección (dosificador de cloro), transformador, tableros de control y protección y obra civil. Además, se tienen formatos para el levantamiento de sistemas auxiliares: tuberías de descarga, válvulas, tierras, alumbrado, automatización, etc.

Se levantaron todos los datos necesarios para identificar correctamente el motor de la bomba, tales como número de serie, modelo, marca, etc. y, especialmente, el número de inventario establecido por el SACMEX.

En la mayoría de los pozos no se pudo obtener información de las placas en los equipos, ya que no existían o eran ilegibles; este hecho obligo a que se consultaran los archivos de cada uno de los sistemas, en donde se recopiló el máximo de la información reportada.

3.3.- Medición de parámetros hidráulicos y electromecánicos

En cada pozo se hicieron las siguientes mediciones:

- Medición de caudal (lps) en la descarga del pozo utilizando el método del tubo Pitot (Figura 2), como primera opción, comprobando la existencia de la válvula de inserción correspondiente y en caso de no existir ésta, se empleó un medidor de flujo ultra sónico marca Thermo Scientific mod. TX10 (Figura 3). Aprobado por el área técnica del SACMEX.
- 2. La medición del nivel dinámico y nivel estático (m) se hizo empleando sondas eléctricas con capacidad de registro hasta 250 y 400 metros (**Figura 4**) respectivamente.

Figura 2. Tubo Pitot. Fuente: Extraído de [1].

Figura 3. Medidor de flujo ultra sónico. Fuente: Extraído de [1].

Figura 4. Sondas eléctricas para medir nivel dinámico del pozo. Fuente: Extraído de [1].

- 3. La medición eléctrica comprendió los siguientes aspectos:
 - a. Medición de variaciones de tensión durante periodos de 1 minuto durante 50 minutos (50 lecturas) en operación normal.
 - b. Medición y graficación de los principales parámetros eléctricos durante periodos de
 1 minuto durante 50 minutos en operación normal.
 - c. Medición del contenido armónico en intensidad y tensión a la novena armónica para toma de datos, aunque el equipo nos da hasta la 50 ava armónica, graficación del contenido de la forma de onda de tensión y corriente.
 - d. Medición de paro y arranque de motor-bomba.
 - e. Para la medición de armónicas, parámetros eléctricos, variaciones de tensión e intensidad y captura de las formas de onda se utilizó un equipo analizador de redes

- eléctricas marca AEMC, modelo power pad 8335, el cual realiza la transformada rápida de Fourier para la medición de armónicas. (**Figura 5**)
- f. Para realizar las mediciones eléctricas con este equipo de medición, se utilizaron los siguientes TC'S: TC'S de 1.2 KA, Marca AEMC.
- g. Para la recopilación de información grabada en los equipos de medición, se utilizaron medios electrónicos.
- h. Para poder pasar la información del equipo power pad 8335 al equipo de cómputo es necesario un software especial (Data View)
- i. Para poder realizar la medición a los equipos se utilizó un amperímetro de gancho, el cual registra valores de curva senoidal del lado positivo y herramientas en general. (Figura 6)
- j. Una vez que fue recopilada toda la información requerida se procedió al llenado de los formatos proporcionados por Sistema de Aguas de la Ciudad de México.

Figura 5. Equipo analizador de redes eléctricas. Fuente: Extraído de [1].

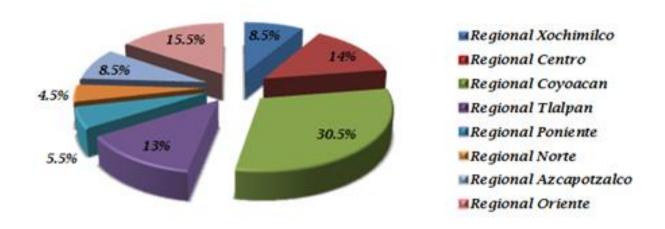
Figura 6. Amperímetro de gancho. Fuente: Extraído de [1].

3.4.- Determinación de eficiencias hidráulicas y electromecánicas

Con todas las mediciones efectuadas en campo se determinaron las eficiencias hidráulicas y electromecánicas, utilizando los formatos que proporcionó el Sistema de Aguas de la Ciudad de México y aplicando la Norma Oficial Mexicana NOM-001-ENER-1995.

3.5.- Memoria de cálculo

La memoria de cálculo para determinar la vida útil del pozo, del equipo de bombeo, proyección de consumo de energía actual y futura corrigiendo el factor de potencia y costo por m³ de caudal extraído se elabora con los resultados previamente determinados de las eficiencias y de las lecturas de los parámetros operativos.


En resumen, esta memoria de cálculo se desarrolló la memoria de cálculo para saber el comportamiento de la explotación de vida útil del pozo y del equipo de bombeo.

3.6.- Medición a través de gráficas

Se muestran los resultados obtenidos por medio del equipo eléctrico, donde se aprecian las gráficas de comportamiento, así como también las 60 lecturas que se tomaron cada minuto en un proceso de una hora (Frecuencia, Voltaje de fases, Voltajes de líneas, Amperes, kilowatts-hora y Factor de potencia).

4.- RESUMEN DE RESULTADOS

Los 200 pozos analizados para la determinación de su eficiencia electromecánica son agrupados en 6 regiones, el porcentaje de pozos que le corresponde a cada región es mostrado en la **Figura** 7.

Figura 7. Porcentaje por región de los pozos analizados. Fuente: Extraído de [1].

En las siguientes secciones de este informe se muestran los parámetros eléctricos, parámetros hidráulicos y el cálculo de la eficiencia electromecánica para los pozos de cada región.

Además, se muestran los resultados del ahorro en costos de producción derivado de la propuesta de sustitución de la bomba actual con una bomba nueva.

4.1- Región Norte

Los pozos analizados de la Región Norte son 8, ninguno de estos pozos supera el 80% de eficiencia eléctrica (**Tabla 2**). Por su parte, los parámetros hidráulicos muestran una muy baja de presión de descarga (**Tabla 3**).

No.	NOMBRE DEL POZO	CARGA	FACTOR DE POTENCIA	EFICIENCIA (%)	MEDIDO	RES DE CIA I FUERZA	DE LUZ Y	H.P	V a-b (VOLTS)	V b-c	V c-a	V prom	la	lb	lc	Iprom
NO.	NOMBRE DEL FOZO	DINÁMICA			KWH	KW	KVAR			(VOLTS)	(VOLTS)	(VOLTS)	(AMP)	(AMP)	(AMP)	(AMP)
1	CHARCO 3	86.77	0.87	59.07	41.59	87.10	98.10	115.31	436.00	437.70	436.20	436.63	136.10	138.90	119.50	131.50
2	TEPEXPAN NORTE 3	102.20	0.95	49.80	22.49	74.65	80.57	98.76	464.20	461.20	4 61.10	462.17	110. 4 0	83.50	98.30	97.40
3	VENTA DEL CHARCO 3	97.48	0.87	38.66	33.73	71.59	91.69	95.82	440.00	442.20	439.60	440.60	105.30	109.30	109.90	108.17
4	VENTA OJO DE AGUA No. 8	84.31	0.86	64.42	53.04	110.38	169.72	147.66	471.20	473.90	473.00	472.70	154.80	158.50	158.80	157.37
5	VENTA OJO DE AGUA No. 10	78.83	0.83	60.18	37.79	99.91	107.80	108.70	454.70	454.70	456.30	455.23	121.50	124.30	124.90	123.57
6	VENTA OJO DE AGUA No. 12	82.22	0.97	65.62	51.53	108.58	84.59	144.99	438.60	437.00	438.70	438.10	147.00	147.90	144.60	146.50
7	VENTA OJO DE AGUA No. 13	81.29	0.89	65.89	21.21	99.90	172.21	133.68	450.00	452.90	452.80	451.90	127.50	149.10	150.80	142.47
8	TEPEXPAN NORTE 4	105.19	0.90	37.54	28.35	92.30	120.36	147.37	421.00	427.00	424.00	424.00	171.00	161.00	167.00	166.33

NOTA: TODOS LOS DATOS QUE SE EXPRESAN EN ESTA TABLA FUERON TOMADOS EN CAMPO POR LA CONTRATISTA

Tabla 2. Resumen de parámetros eléctricos de los pozos de la región Norte. Fuente: Extraído de [1].

No.	NOMBRE DEL POZO	No. DE SERIE DE MEDIDOR	MARCA DEL MEDIDOR	TIPO DE MEDIDOR	DIÁMETRO DEL MEDIDOR	* GASTO (L/S)	HORAS DE OPERACIÓN MENSUAL	™ HORAS DE OPERACIÓN DIARIA (HR)	EXTRACIÓN MENSUAL (M3)	EXTRACCIÓ N DIARIA (MB)	°NIVEL ESTÁTICO (MTS)	°NIVEL DINÁMICO (MI'S)	*PRESIÓN (KG/CM2)
1	CHARCO 3	~~~~	~~~	~~~~	~~~~	59.70	540.00	18.00	154742.40	5158.08	72.49	73.60	1.20
2	TEPEXPAN NORTE 3	~~~~	~~~~	~~~~	~~~~	36.60	720.00	24.00	94867.20	3162.24	90.26	94.65	0.60
3	VENTA DEL CHARCO 3	~~~~	~~~~	~~~~	~~~~	28.90	600.00	20.00	74908.80	2496.96	89.42	93.60	0.25
4	VENTA O JO DE AGUA No. 8	~~~~	~~~	~~~~	~~~~	85.80	600.00	20.00	222393.60	7413.12	72.39	78.56	0.10
5	VENTA O JO DE AGUA No. 10	~~~~	~~~	~~~~	~~~~	63.10	720.00	24.00	163555.20	5451.84	73.15	74.86	0.10
6	VENTA O JO DE AGUA No. 12	~~~	~~~	~~~~	~~~~	88.00	540.00	18.00	228096.00	7603.20	73.16	74.40	0.30
7	VENTA O IO DE AGUA No. 13	~~~~	~~~~	~~~~	~~~~	82.40	720.00	24.00	213580.80	7119.36	72.21	73.94	0.30
8	TEPEXPAN NORTE 4	~~~	~~~	~~~	~~~~	40.00	660.00	22.00	103680.00	3456.00	79.50	83.65	2.00

^{~~~} NO EXISTE O NO SE PUDO TOMAR DATO EN CAMPO

Tabla 3. Resumen de parámetros hidráulicos de los pozos de la región Norte. Fuente: Extraído de [1].

Con la información de las tablas mostradas anteriormente, se calculó la eficiencia electromecánica de los equipos de bombeo de cada pozo, resultando que ninguno supera el 70% (**Tabla 4**).

						NOM	BRE DEL POZO			
No.	SÍMBOLO	DESCRIPCIÓN	CHARCO 3	TEPEXPAN NORTE 3	VENTA DEL CHARCO 3	VENTA OJO DE AGUA No. 8	VENTA OJO DE AGUA No. 10	VENTA OJO DE AGUA No. 12	VENTA OJO DE AGUA No. 13	TEPEXPAN NORTE 4
1	DI	Diámetro interno de la tubería (m)	0.302	0.201	0.201	0.201	0.201	0.201	0.201	0.201
2	RPM	Frecuencia de rotación (rpm)	3500	3500	3500	1780	1780	1780	3500	3500
3	ND	Nivel Dinámico (m)	73.60	94.65	93.60	78.56	74.86	74.40	73.94	83.65
4	he	Distancia desde el nivel del piso al eje de la tuberia de descarga (m)	0.82	0.76	0.62	0.92	0.92	0.97	0.98	1.15
5	P1	Lectura del manómetro a la descarga (m)	12.00	6.00	2.50	1.00	1.00	3.00	3.00	20.00
6	Pm	Presión a la descarga=(4)+(5) (m)	12.82	6.76	3.12	1.92	1.92	3.97	3.98	21.15
7	а	Área del tubo de descarga=(3.1416X(1)2)/4 (m2)	0.072	0.032	0.032	0.032	0.032	0.032	0.032	0.032
8	Q	Gasto (m²/s)	0.060	0.037	0.029	0.086	0.063	0.088	0.082	0.040
9	hv	Carga de velocidad = ((8)/(7))2/19.6133 (m)	0.035	0.068	0.042	0.373	0.202	0.392	0.344	0.081
10	hfc	Pérdidas de fricción en la columna (m)	0.31	0.720	0.720	3.46	1.848	3.46	3.024	0.31
11	hd	Carga a la descarga = (6)+(9)+(10) (m)	13.167	7.548	3.882	5.749	3.970	7.818	7.348	21.543
12	Н	Carga total =(3)+(11) (m)	86.767	102.198	97.482	84.309	78.830	82.218	81.288	105.193
	la	Corriente linea A (amperes)	136.100	110.40	105.30	154.80	121.50	147.00	127.50	171.00
	lb	Corriente linea B (amperes)	138.900	83.50	109.30	158.50	124.30	147.90	149.10	161.00
13	k	Corriente linea C (amperes)	119.500	98.30	109.90	158.80	124.90	144.60	150.80	167.00
	1	Promedio= (la+lb+lc)/3 (amperes)	131.500	97.40	108.17	157.37	123.57	146.50	142.47	166.33
	Vab	Tensión de fase AB (volts)	436.000	464.20	440.00	471.20	454.70	438.60	450.00	421.00
	Vbc	Tensión de fase BC (volts)	437.700	461.20	442.20	473.90	454.70	437.00	452.90	427.00
14	Vca	Tensión de fase CA (volts)	436.200	461.10	439.60	473.00	456.30	438.70	452.80	424.00
	V	Promedio = (Vab+Vac+Vbc)/3 (volts)	436.633	462.17	440.60	472.70	455.23	438.10	451.90	424.00
	tp a	Factor de potencia línea A	0.831	0.972	0.869	0.855	0.833	0.970	0.978	0.88
	tp b	Factor de potencia linea B	0.853	0.974	0.858	0.861	0.839	0.975	0.860	0.90
15	tp c	Factor de potencia linea C	0.912	0.888	0.872	0.849	0.825	0.974	0.845	0.92
	Fp	Promedio= (fpa+fpb+fpc)/3	0.865	0.945	0.866	0.855	0.832	0.973	0.894	0.90
40	n.	Potencia de entrada al motor =		77.070		*****	04.000		00.705	
16	Pe	= 1.732X(13)X(14)X(15)/1000 (KW)	86.055	73.652	71.511	110.157	81.092	108.161	99.725	109.935
4.7		Potencia de salida de la toma =		20.004		70.007	40.700			44.070
17	Ps	= 9.81X(8)X(12) (KW)	50.816	36.694	27.637	70.963	48.796	70.977	65.709	41.278
18	η	Eficiencia electromecánica (%)	59.05	49.82	38.65	64.42	60.17	65.62	65.89	37.55

Tabla 4. Resumen de eficiencia electromecánica de los pozos de la región Norte. Fuente: Extraído de [1].

^{*} DATOS TOMADOS EN CAMPO POR CONTRATISTA

DATOS PROPORCIONADOS POR PERSONAL OPERATIVO DE LA REGIONAL NORTE

Finalmente, al efectuar la proyección de ahorro (en costos de producción) en un horizonte de tiempo de 5 años a partir del reemplazo del equipo de bombeo de cada pozo, se estima que éste ahorro será de \$ 7'501,019.82 (**Tabla 5**).

						BOMBA ACTU	AL		BOMBA	PROPUESTA		AHORRO REAL DE	AHORRO REAL DE	
No.	NOMBRE DEL POZO	GASTO (lps)	FACTOR DE POTENCIA	EFICIENCIA %	POTENCIA (HP)	POTENCIA A LA QUE TRABAJA (HP)	PRECIO POR METRO CÚBICO (\$/m3)	POTENCIA DE TRABAJO CALCULADA	POTENCIA (HP)	PRECIO POR METRO CÚBICO (\$/m3)	% DE AHORRO POR m3	CONSUMO ANUAL EN PESOS MEXIC ANOS	CONSUMO A 5 AÑOS EN PESOS MEXICANOS	
													: 1	
1	CHARCO 3	59.70	0.87	59.07	150	115.31	0.55	90.82	100	0.48	13.27	\$ 138,454.25	\$ 692,271.26	
2	TEPEXPAN NORTE 3	36.60	0.95	49.80	125	98.76	0.77	65.58	75	0.59	23.40	\$ 214,955.68	\$ 1,074,778.42	
3	VENTA DEL CHARCO 3	28.90	0.87	38.66	150	95.82	0.95	49.40	50	0.50	47.40	\$ 414,392.85	\$ 2,071,964.26	
4	VENTA OJO DE AGUA No. 8	85.80	0.86	64.42	200	147.66	0.49	126.38	150	0.50				
5	VENTA OJO DE AGUA No. 10	63.10	0.83	60.18	125	108.70	0.49	87.22	100	0.49				
6	VENTA OJO DE AGUA No. 12	88.00	0.97	65.62	150	144.99	0.47	126.86	150	0.48				
7	VENTA OJO DE AGUA No. 13	82.40	0.89	65.89	150	133.68	0.47	117.44	125	0.44	6.45	\$ 77,956.29	\$ 389,781.46	
8	TEPEXPAN NORTE 4	40.00	0.90	37.55	200	147.37	1.06	73.77	75	0.53	49.10	\$ 654,444.88	\$ 3,272,224.42	
											TOTAL	\$ 1,500,203.96	\$ 7,501,019.82	

Tabla 5. Estimación del ahorro por concepto de sustitución de equipos de bombeo. Fuente: Extraído de [1].

4.2.- Región Xochimilco

Los pozos analizados de la Región Xochimilco son 16, solo 2 pozos de éstos superan el 70% de eficiencia eléctrica (**Tabla 6**). Por su parte, los parámetros hidráulicos muestran una muy baja de presión de descarga (**Tabla 7**).

No.	NOMBRE DEL POZO	CARGA	FACTOR DE		MEDIDO	RES DE CIA FUERZA	DE LUZ Y	H.P	V a-b	V b-c	V c-a	V prom	la	lb	lc	l prom
	NOMBRE DEL POLO	DINÁMICA	POTENCIA	(%)	KWH	KW	KVAR		(VOLTS)	(VOLTS)	(VOLTS)	(VOLTS)	(AMP)	(AMP)	(AMP)	(AMP)
1	PERIFÉRICO No.8	117.38	0.89	46.49	44.359	78.078	48.246	104.24	448.70	447.20	450.30	448.73	112.60	110.50	114.60	112.57
	LA NORIA No.2	90.92	0.86	61.72	20.060	59.393	98.828	79.41	454.60	453.30	452.70	453.53	86.90	88.50	87.10	87.50
3	LA NORIA No.6	71.08	0.85	23,44	27.463	65.194	40.455	87.72	459.50	460.70	456.60	458.93	96.10	96.30	98.20	96.87
4	LA NORIA No.7	147.89	0.86	63.98	32.106	76.237	48.773	104.00	463.70	468.70	467.10	466.50	107.60	111.70	115.90	111.73
5	SAN GREGORIO ATLAPULCO	105.13	0.83	70.03	19.918	36.747	38.199	47.38	456.00	457.30	460.70	458.00	51.60	53.00	56.00	53.53
6	SAN LORENZO ATEMOA YA	152.30	0.74	40.40	19.918	36.747	38.199	109.07	476.50	480.30	479.70	478.83	130.80	132.40	133.50	132.23
7	SAN LUIS No. 1	49.93	0.79	47.08	13.572	28.187	37.275	37.65	424.60	420.80	423.40	422.93	47.80	50.40	48.10	48.77
8	SAN LUIS No.2	71.15	0.88	46.50	85.393	82.056	58.597	104.42	452.90	452.90	454.40	453.40	110.80	115.10	112.10	112.67
	SAN LUIS No.8		P () Z ()	F U	E R	A	D E	1	s	E R	V I	C I	0	
	SAN LUIS No.11	79.57	0.85	46.85	49.931	100.133	61.497	134.00	466.50	470.00	470.00	468.83	138.20	146.30	148.50	144.33
11	SAN LUIS TLAXIALTEMALCO	136.22	0.77	41.79	72.682	123.689	195.515	165.49	466.20	463.20	465.10	464.83	197.60	213.20	190.60	200.47
	SANTA CRUZ ACALPIXCA No. 1	64.26	0.81	49.08	34.872	61.813	45.451	86.09	439.20	493.40	444.80	459.13	95.80	100.70	104.60	100.37
13	SANTA CRUZ ACALPIXCA No. 2	76.13	0.86	61.76	16.731	81.409	105.79	111.85	428.80	432.90	431.00	430.90	121.80	127.30	129.80	126.30
14	SANTIAGO TEPALCATLALPAN	98.87	0.84	57.80	32.079	72.263	46.921	96.73	463.30	461.80	465.50	463.53	111.50	104.90	104.60	107.00
	TEPEPAN No. 1	120.49	0.77	74.59	24.623	56.720	45.256	72.22	483.50	483.30	481.20	482.67	83.00	82.80	84.00	83.27
	TEPEPAN No. 2	98.56	0.73	56.70	48.688	64.360	62.437	99.44	473.80	475.70	473.90	474.47	114.20	114.80	113.70	114.23
17	TEPEPAN No. 3	108.67	0.86	44.01	106.650	116.340	69.003	155.88	476.20	478.80	477.20	477.40	164.30	161.30	166.90	164.17

NOTA: TODOS LOS DATOS QUE SE EXPRESAN EN ESTA TABLA FUERON TOMADOS EN CAMPO POR LA CONTRATISTA

Tabla 6. Resumen de parámetros eléctricos de los pozos de la región Xochimilco. Fuente: Extraído de [1].

⁻⁻⁻ DATO INCOMPLETO POR FALTA DE ALGUNA INFORMACION QUE NO SE PUDO LLEGAR A CABC * DATO TOMADO COMO REFERENCIA DE ANTECEDENTE.

No.	NOMBRE DEL POZO	No. DE SERIE DE MEDIDOR	MARCA DEL MEDIDOR	TIPO DE MEDIDOR	DIÁMETRO DEL MEDIDOR	* GASTO (L/S)	HORAS DE OPERACIÓN MENSUAL	** HORAS DE OPERACIÓN DIARIA (HR)	EXTRACIÓN MENSUAL (M3)	EXTRACCIÓN DIARIA (M3)	*NIVEL ESTÁTICO (MI'S)	*NIVEL DINÁMICO (MTS)	*PRESIÓN (KG/CM2)
1	PERIFÉRICO No.8				l	31.40	540.00	18.00	81388.80	2712.96	103.22	108.50	0.80
	LA NORIA No. 2					41.00	720.00	24.00	106272.00	3542.40	55.34	61.30	2.80
3	LA NORIA No.6					22.00	720.00	24.00	57024.00	1900.80	52.30	67.50	0.20
4	LA NORIA No. 7					34.12	720.00	24.00	88439.04	2947.97	52.30	66.00	8.00
5	SAN GREGORIO ATLAPULCO					24.00	600.00	20.00	62208.00	2073.60	87.00	96.00	0.80
6	SAN LORENZO ATEMOAYA					22.00	720.00	24.00	57024.00	1900.80	131.00	135.00	1.40
7	SAN LUIS No. 1	No. 1				27.00	600.00	20.00	69984.00	2332.80	38.00	≃46.00	0.20
8	SAN LUIS No.2					51.90	720.00	24.00	134524.80	4484.16	63.20	66.90	0.20
9	SAN LUIS No.8		POZ	O F	U E	R A	D E	S S	E R	V I	C I	0	
10	SAN LUIS No.11					∞ 60.0	720.00	24.00	155520.00	5184.00	63.60	66.18	1.20
11	SAN LUIS TLAXIALTEMALCO					38.61	720.00	24.00	100077.12	3335.90	95.20	103.00	3.20
12	SANTA CRUZ ACALPIXCA No. 1					50.00	540.00	18.00	129600.00	4320.00	₩ 49.20	∞ 52.80	1.00
13	SANTA CRUZ ACALPIXCA No. 2					69.00	720.00	24.00	178848.00	5961.60	45.20	61.30	1.30
14	SANTIAGO TEPALCATLALPAN					43.00	720.00	24.00	111456.00	3715.20	92.50	95.29	0.10
15	TEPEPAN No. 1					34.00	720.00	24.00	88128.00	2937.60	92.30	111.30	0.80
16	TEPEPAN No. 2					≃ 40.0	720.00	24.00	103680.00	3456.00	80.00	87.00	1.00
17	TEPEPAN No. 3					48.00	720.00	24.00	124416.00	4147.20	59.00	67.00	4.00

Tabla 7. Resumen de parámetros hidráulicos de los pozos de la región Xochimilco. Fuente: Extraído de [1].

Con la información de las tablas mostradas anteriormente, se calculó la eficiencia electromecánica de los equipos de bombeo de cada pozo, resultando que ninguno supera el 75% (Tabla 8).

			NOMBRE DEL POZO																
No.	SÍMBOLO	DESCRIPCIÓN	Periférico No. 8	Noria No. 2	Noria No. 6	Noria No. 7	San Gregorio Atlapulco 1	San Lorenzo At. No. 1	San Luis No. 1	San Luis No. 2	San Luis No. 8	San Luis No. 11	S an Luis Tlaxialtemalco	Sta. Cruz Acalpixca No. 1	Sta Cruz Acalpisca No. 2	Santiago Tepakatlalpan	Tepepan No. 1	Tepepan No. 2	Tepepan No
1	DI	Diàmetro interno de la tuberia (m)	0.203	0.203	0.203	0.203	0.203	0.203	0.305	0.198		0.304	0.201	0.201	0.201	0.201	0.203	0.201	0.201
2	RPM	Frecuencia de rotación (rom)	3500	3500	3500	1780	3500	3500	3500	1780		3500	3500	3500	3500	3500	3500	3500	3500
3	ND	Nivel Dinámico (m)	108.50	61.30	67.50	66,00	96.00	135.00	46.00	66.90		66.18	103.00	52.80	61.30	95,29	111.30	87.00	67.00
4	he	Distancia desde el nivel del piso al eje de la tuberia de descarga (m)	0.23	0.90	1.19	1.02	0.63	2.85	1.10	1.10		0.85	0.35	0.28	0.70	1.40	0.40	0.65	0.79
5	P1	Lectura del manòmetro a la descarga (m)	8.00	28.00	2.00	80.00	8.00	14.00	2.00	2.00		12.00	32.00	10.00	13.00	1.00	8.00	10.00	40.00
6	Pm	Presion a la descarga=(4)-(5) (m)	8.23	28.90	3.19	81.02	8.63	16.85	3.10	3.10		12.85	32.35	10.28	13.70	2.40	8.40	10.65	40.79
7	а	Àrea del tubo de descarga=(3.1416X(1) ²)/4 (m ²)	0.032	0.032	0.032	0.032	0.032	0.032	0.073	0.031	0	0.073	0.032	0.032	0.032	0.032	0.032	0.032	0.032
8	0	Gasto (m³/s)	0.031	0.041	0.022	0.034	0.024	0.022	0.027	0.052	-	0.060	0.039	0.050	0.069	0.043	0.034	0.04	0.048
9	hv	Carga de velocidad = ((8)/(7)) ² /19.6133 (m)	0.048	0.081	0.023	0.056	0.028	0.023	0.007	0.145) I	0.035	0.075	0.127	0.241	0.094	0.056	0.081	0.117
10	hfc	Pèrdidas de fricción en la columna (m)	0.60	0.640	0.37	0.81	0.47	0.43	0.82	1.00	>	0.50	0.79	1.05	0.89	1.09	0.73	0.83	0.77
11	hd	Carga a la descarga = (6)-(9)+(10) (m)	8.878	29.621	3.583	81.886	9.128	17.303	3.928	4.245	ER	13.385	33.215	11.457	14.831	3.584	9.186	11.561	41.677
12	Н	Carga total =(3)+(11) (m)	117.378	90.921	71.083	147.886	105.128	152.303	49.928	71.145	S	79.565	136.215	64.257	76.131	98.874	120.486	98.561	108.677
	la	Corriente linea A (amperes)	112.60	86.90	96.10	107.60	51.60	130.80	47.80	110.80		138.20	197.60	95,80	121.80	111.50	83.00	114.20	164.30
13	lb	Corriente linea B (amperes)	110.50	88.50	96.30	111.70	53.00	132.40	50.40	115.10	D E	146.30	213.20	100.70	127.30	104.90	82.80	114.80	161.30
13	lc	Corriente linea C (amperes)	114.60	87.10	98.20	115.90	56.00	133.50	48.10	112.10		148.50	190.60	104.60	129.80	104.60	84.00	113.70	166.90
	1	Promedio= (la+lb+lc)/3 (amperes)	112.567	87.50	96.87	111.733	53.533	132.233	48.770	112.667	K A	144.333	200.467	100.370	126.300	107.000	83.267	114.23	164.167
	Vab	Tensión de fase AB (volts)	448.70	454.60	459.50	463.70	456.00	476.50	424.60	452.90	E	466.50	466.20	439.20	428.80	463.30	483.50	473.80	476.20
14	Vbc	Tensión de fase BC (volts)	450.30	452.70	456.60	467.10	460.70	479.70	423.40	454.40	Þ	470.00	465.10	444.80	431.00	465.50	481.20	473.90	477.20
14	Vca	Tensión de fase CA (volts)	447.20	453.30	460.70	468.70	457.30	480.30	420.80	452.90	14	470.00	463.20	493.40	432.90	461.80	483.30	475.70	478.80
	V	Promedio= (Vab+Vac+Vbx)/3 (volts)	448.733	453.53	458.93	466.50	458.000	478.833	422.933	453.400	0	468.833	464.833	459.133	430.900	463.530	482.667	474.47	477.400
	фa	Factor de potencia linea A	0.899	0.857	0.845	0.872	0.810	0.736	0.773	0.892	N	0.852	0.722	0.795	0.861	0.804	0.779	0.728	0.853
15	tрb	Factor de potencia linea B	0.886	0.861	0.857	0.863	0.767	0.744	0.784	0.887	0 4	0.872	0.776	0.830	0.876	0.818	0.768	0.73	0.854
10	tpc	Factor de potencia linea C	0.882	0.868	0.848	0.835	0.920	0.746	0.802	0.874	_	0.833	0.799	0.789	0.847	0.859	0.773	0.722	0.863
	Fp	Promedio= (fpa+fpb+fpx)/3	0.889	0.862	0.850	0.857	0.832	0.742	0.786	0.881		0.853	0.765	0.805	0.861	0.840	0.774	0.727	0.857
16	Pe	Potencia de entrada al motor = = 1.732X(13)X(14)X(15) 1000 (KW)	77.776	59.248	65.447	77.366	35.346	81.372	28.090	77.903		99.973	123.466	64.223	83.439	72.159	53.877	68.215	116.286
17	Ps	Potencia de salida de la toma = = 9.81X(8)X(12) (KW)	36.156	36.570	15.341	49.500	24.751	32.870	13.224	36.223		46.832	51.594	31.518	51.532	41.708	40.187	38.675	51.174
18	7	Eficiencia electromecànica (%)	46.488	61.723	23.441	63.982	70.027	40.395	47.079	46.497		46.845	41.788	49.076	61.760	57.800	74.589	56.696	44.007

Tabla 8. Resumen de eficiencia electromecánica de los pozos de la región Xochimilco. Fuente: Extraído de [1].

⁻⁻⁻ NO EXISTE O NO SE PUDO TOMAR DATO EN CAMPO

* DATOS TOMADOS EN CAMPO POR CONTRATISTA

** DATOS PROPORCIONADOS POR LA REGIONAL XOCHIMILCO

Finalmente, al efectuar la proyección de ahorro (en costos de producción) en un horizonte de tiempo de 5 años a partir del reemplazo del equipo de bombeo de cada pozo, se estima que éste ahorro será de \$ 17, 927,522.20 (**Tabla 9**).

						BOMBA ACTU	AL	ВС	OMBA PROPUES	TA		AHORRO REAL DE	AHORRO REAL DE
No.	NOMBRE DEL POZO	CARGA DINÁMICA (m)	FACTOR DE POTENCIA	EFICIENCIA %	POTENCIA (HP)	POTENCIA A LA QUE TRABAJA (HP)	PRECIO POR METRO CÚBICO (\$/m3)	POTENCIA DE TRABAJO CALCULADA	POTENCIA (HP)	PRECIO POR METRO CÚBICO (\$/m3)	% DE AHORRO	CONSUMO ANUAL EN PESOS MEXICANOS	CONSUMO A 5 AÑOS EN PESOS MEXICANOS
1	Periferico 8	117.38	0.89	46.49	150	104.24	0.95	64.62	75	0.69	28.00	\$ 264,420.95	\$ 1,322,104.75
2	Noria No. 2	90.92	0.86	61.72	100	79.41	0.55	65.36	75	0.52	5.55	\$ 39,887.43	\$ 199,437.17
3	Noria No. 6	71.08	0.85	23.44	100	82.72	1.14	27.42	50	0.66	41.62	\$ 330,253.40	\$ 1,651,267.00
4	Noria No. 7	147.89	0.86	63.98	150	103.71	0.87	88.16	100	0.84	3.58	\$ 33,583.04	\$ 167,915.18
5	San Greg. Atlapulco 1	105.13	0.83	70.03	75	47.38	0.56	44.24	75	0.89	0.00	\$ -	\$ -
6	San Lorenzo At. No. 1	152.30	0.74	40.40	150	109.07	1.42	58.74	75	0.98	31.00	\$ 308,066.77	\$ 1,540,333.87
7	San Luis No. 1	49.93	0.79	47.08	50	37.65	0.40	23.63	50	0.84	0.00	s -	s -
8	San Luis No. 2	71.15	0.88	46.50	150	104.42	0.57	45.43	75	0.41	28.00	\$ 266,118.29	\$ 1,330,591.44
9	San Luis No. 8		/	***************************************			POZO	FUERA DE S	ERVICIO	***************************************			
10	San Luis No. 11	79.57	0.85	46.85	150	134.00	0.64	83.70	100	0.48	25.37	\$ 307,460.58	\$ 1,537,302.91
11	San Luis Tlaxialtemalco	136.22	0.77	41.79	200	165.49	1.64	92.20	100	0.74	54.92	\$ 1,101,935.82	\$ 5,509,679.09
12	Sta. Cruz Acalpixca No. 1	64.26	0.81	49.08	100	86.09	0.49	56.33	75	0.43	12.87	\$ 100,264.16	\$ 501,320.78
13	Sta. Cruz Acalpixca No. 2	76.13	0.86	61.76	150	111.85	0.46	92.10	100	0.41	10.59	\$ 107,174.75	\$ 535,873.73
14	Santiago Tepalcatlalpan	98.87	0.84	57.80	150	96.73	0.65	74.54	100	0.66	0.00	s -	s -
15	Tepepan No. 1	120.49	0.77	74.59	100	72.22	0.61	71.82	75	0.63	0.00	s -	s -
16	Tepepan No. 2	98.56	0.73	56.70	125	99.44	0.71	69.12	75	0.54	24.57	\$ 221,017.60	\$ 1,105,088.02
	Tepepan No. 3	108.67	0.86	44.01	200	155.88	0.93	91.47	100	0.60	35.84	\$ 505,321.65	\$ 2,526,608.26
											TOTAL	\$ 3,585,504.44	\$ 17,927,522.20

Tabla 9. Estimación del ahorro por concepto de sustitución de equipos de bombeo. Fuente: Extraído de [1].

4.3.- Región Centro

Los pozos analizados de la Región Centro son 27, ninguno de estos pozos supera el 70% de eficiencia eléctrica (**Tabla 10**). Por su parte, los parámetros hidráulicos muestran una muy baja de presión de descarga (**Tabla 11**).

		CARGA	FACTOR DE	EFICIENCIA	MEDIDORES	DE CIA DE LU	Z Y FUERZA		V a-b	V b-c	V c-a	V prom		lb	lc	1 prom
No.	NOMBRE DEL POZO	DINÁMICA	POTENCIA	60	KWH	KW	KVAR	H.P	(VOLTS)	(VOLT2)	(AOLI2)	(VOLTS)	la (AMP)	(AMP)	(AMP)	(AMP)
1	ALTAVISTA	158.25	0.86	33.98	35.059	102.163	107.865	193.52	463.10	461.00	461.30	461.80	207.80	214.90	210.60	211.10
	ARENAL SANÁNGEL	150.25	uoo	33.90	33.039	W 1= 12	107.863	195.52	403.10	401.00	1 (2)	401.00	207.80	214.90	21000	211.10
3	CAMPESTRE	93.14	0.85	27.72	34.350	76,996	58.984	110.46	425.70	430.70	425.70	427.37	135.60	126.60	130.10	130.77
4	CASA AMARILLA	93.39	0.82	52.12	18.134	70,315	36.644	94.26	439.00	442.00	443.00	441.33	87.18	120.00	128.00	111,73
5	DIRECTO 22	102.67	0.88	37.53	44.920	23.646	69.339	147.51	432.00	432.30	432.00	432.10	163.30	168.80	168.40	166.83
6	HUERTAS DEL CARMEN	101.84	0.89	53.05	89.645	106.283	78.074	143.15	453.70	452.80	453.70	453.40	152,40	152.10	155.60	153,37
7	IARDÍN MORELOS	138.84	0.97	74.09	44.096	102.123	26.084	140.46	434.30	435.10	436.30	435.23	143.70	144.20	142.30	143,40
	JARDÍN DE SAN JACINTO	113.25	0.87	47.70	15.102	13.154	39.512	93.66	436.70	437.50	435.90	436.70	106.40	105.90	106.00	106.10
9	IARDINES DEL PEDREGAL No. 4-B	119.88	0.88	25.58	26.319	66,293	137.662	203.35	445.00	443.90	443.60	444.17	226.30	222.14	223.80	224.08
	IARDINES DEL PEDREGAL No. 1	112.56	0.87	38.30	13.134	15.583	47.847	84.71	422.30	421.70	423.20	422.40	100.30	100.90	97.80	99.67
	IARDINES DEL PEDREGAL No. 2	95,65	0.82	26.43	60.303	96,553	79.080	137.99	442.00	441.90	441.50	441.80	159.80	168.80	166.40	165.00
		113.89	0.89	55.97	94.645	80,653	47.198	108.11	447.00	447.00	445.00	446.33	117.00	121.00	115.00	117.67
	MARINA NACIONAL No. 3	75.01	0.76	27.00	26.995	81.778	22.077	109.62	445.00	447.00	443.00	445.00	140.00	140.00	137.00	139.00
14	MÁRTIRES DE TACUBAYA	74.82	0.90	18.87	19.607	112.798	21.285	151.2	451.00	455.00	453.00	453.00	161.00	157.00	163.00	160.33
	MIRAFLORES	78.19	0.63	56.59	23.135	65.052	36.816	87.20	480.40	479.10	477.40	478.97	127.30	120.40	12850	125.40
16	MIRAVALLE	74.84	0.87	67.39	65.605	52,290	35.240	70.09	448.00	452.20	447.40	449.20	78.50	75.90	77.80	77.40
	MOLINO DEL REY	147.13	0.82	58.61	25.315	96,406	56.503	129.23	448.10	446.20	446.00	446.77	151.90	154.10	148.70	151.57
18	NORMANDÍA	72.52	0.84	53.27	89.671	54,754	29.170	73.4	448.50	447.90	452.00	449.47	81.60	84.10	86.90	84.20
	ORTIZ RUBIO	75.36	0.87	48.00	12.208	83,171	39.923	111.49	438.70	433.80	434.90	435.80	130.70	127.40	120.70	126.27
20	PAROUE DE LOS VENADOS	77.12	0.84	32.33	39.721	93,613	30.261	125.49	435.00	437.00	433.00	435.00	142.00	149.00	151.00	147.33
	RADIO MIL	68.63	0.92	44.12	11.525	56.459	24.911	75.68	441.00	446.00	441.00	442.67	75.00	83.00	83.00	80.33
	RÍO SAN JOAQUÍN	92.95	0.76	59.99	86.389	63,838	38.298	85,57	448.00	449.00	446.00	447.67	109.00	109.00	107.00	108.33
	SALESIANO	67.87	0.84	32.51	39.904	77.826	25.300	104.32	439.00	443.00	437.00	439.67	121.00	120.00	12400	121.67
	SAN FELIPE POPOTLA	68.19	0.83	35.67	43.061	108,778	38,797	145.82	439.70	439.50	441.90	440.37	164.90	172.10	17870	171.90
	SAN IOAOUÍN TACUBA	95.10	0.82	58.86	85,260	79,245	46.646	106.23	442.00	442.00	441.00	441.67	123.00	129.00	127.00	126.33
	TACUBA	83.25	0.89	16.29	17.027	120.319	19.600	161.28	445.00	449.00	444.00	446.00	179.00	171.00	177.00	175.67
	VERÓNICA NUEVO	70.96	0.95	24.03	24.762	90,977	21.579	121.95	429.70	432,50	429.90	430.70	132.80	127.60	125,00	128.47
	VIADUCTO	89.71	0.75	48.07	12.275	74.334	35.731	99.64	447.00	483.00	481.00	470.33	116.00	124.00	125.00	121.67

Tabla 10. Resumen de parámetros eléctricos de los pozos de la región Centro. Fuente: Extraído de [1].

No.	NOMERE DEL POZO	No. DE SERIE DE MEDIDOR	MARCA DEL MEDIDOR	TIPO DE MEDIDOR	DIÁMETRO DEL MEDIDOR	# GASTO (L/S)	HORAS DE OPERACIÓN MENSUAL	M HORAS DE OPERACIÓN DIARIA (HR)	EXTRACCIÓN MENSUAL (MB)	EXTRACCIÓN DIARIA (MB)	^a NIVEL ESTÁTICO (MTS)	"NIVEL DINÁMICO (MIS)	*PRESIÓN (KG/CM2)
	ALTAVISTA					31.6	600.00	20.00	81907.20	2730.24	121.90	131.30	2.500
	ARENAL SANÁNGEL			FWERA	DE	81	RVI	@11@					
3	CAMPES TRE					25.0	720.00	24.00	64800.00	2160.00	79.70	91.60	0.300
4	CASA AMARILLA		_			40.0	540.00	18.00	103680.00	3456.00	82.00	90.00	1.000
5	DIRECTO 22					41.0	660.00	22.00	106272.00	3542.40	78.40	84.75	1.600
6	HUERTAS DEL CARMEN					56.7	600.00	20.00	146966.40	4898.88	78.40	90.15	1.000
7	JARDÍNMORELOS		B ADGER METER	ELECTROMAGNETICO	8"	57.0	660.00	22.00	147744.00	4924.80	99.75	110.80	2.500
8	JARDÍN DE SAN JACINTO		-			30.0	660.00	22.00	77760.00	2592.00	91.40	96.50	1.500
9	JARDINES DEL PEDREGAL No. 4-B					33.0	720.00	24.00	85536.00	2851.20	76.30	115.10	0.250
10	JARDINES DEL PEDREGAL No. 1		-			28.0	720.00	24.00	72576.00	2419.20	71.40	85.40	2.500
11	JARDINES DEL PEDREGAL No. 2					29.0	720.00	24.00	75168.00	2505.60	81.05	91.21	1.100
12	JARDINES DEL PEDREGAL No. 3					40.4	720.00	24.00	104716.80	3490.56	90.45	110.65	1.300
13	MARINA NACIONAL No. 3					30.0	600.00	20.00	77760.00	2592.00	60.11	72.05	1.500
14	MÁRTIRES DE TACUBAYA					29.0	540.00	18.00	75168.00	2505.60	58.6	71.95	1.100
15	MIRAFLORES					48.0	600.00	20.00	124416.00	4147.20	56.30	72.23	1.100
16	MIRAVALLE					48.0	600.00	20.00	124416.00	4147.20	58.49	71.52	1.500
17	MOLINO DEL REY					39.2	660.00	22.00	101476.80	3382.56	78.25	105.40	4.000
18	NORMANDÍA					41.0	600.00	20.00	106272.00	3542.40	60.24	69.85	0.500
19	ORTIZ RUBIO					54.0	660.00	22.00	139968.00	4665.60	60.9	72.00	1.200
20	PARQUE DE LOS VENADOS					40.0	660.00	22.00	103680.00	3456.00	63.73	73.07	0.850
21	RADIO MIL					37.0	540.00	18.00	95904.00	3196.80	52.95	66.42	1.000
22	RÍO SAN JOAQUÍN					42.0	540.00	18.00	108864.00	3628.80	77 .9 5	90.95	1.000
23	SALESIANO					38.0	720.00	24.00	98496.00	3283.20	60.23	65.00	1.100
24	SANFELIPE POPOTLA					58.0	720.00	24.00	150336.00	5011.20	57.09	64.40	0.700
25	SAN JOA QUÍN TA CUBA					50.0	540.00	18.00	129600.00	4320.00	80.55	90.95	1.400
26	TAC UBA					24.0	660.00	22.00	62208.00	2073.60	77 .8 5	80.18	1.000
27	VERÓNICA NUEVO					31.4	660.00	22.00	81388.80	2712.96	55.35	68.53	1.100
28	VIADUCTO					40.6	660.00	22.00	105235.20	3507.84	73.45	86.99	1.100

Tabla 11. Resumen de parámetros hidráulicos de los pozos de la región centro. Fuente: Extraído de [1].

Con la información de las tablas mostradas anteriormente, se calculó la eficiencia electromecánica de los equipos de bombeo de cada pozo, resultando que ninguno supera el 70% (**Tabla 12**, **Tabla 13**, **Tabla 14** y **Tabla 15**).

						NOMBRE I	DEL POZO			
No.	SÍMBOLO	DES CRIPCIÓN	ALTAVISTA	ARENAL SAN ÁNGEL	CAMPESTRE	CASA AMARILLA	DIRECTO 22	HUERTAS DEL CARMEN	JARDÍN MORELOS	JARDÍN DE SAN JACINTO
1	DI	Diámetro interno de la tubería (m)	0.203		0.203	0.201	0.203	0.301	0.203	0.203
2	RPM	Frecuencia de rotación (rom)	3500		3500	3500	1800	3500	3600	3500
3	ND	Nivel Dinámico (m)	131.30		91.60	90.00	84.75	90.15	110.80	96.50
4		Distancia desde el nivel del piso al eje de la tubería de descarga (m)	1.18	0	0.95	1.50	0.98	1.35	1.00	1.05
5	P1	Lectura del manómetro a la descarga (m)	25.00	67 N	0.30	1.00	16.00	10.00	25.00	15.00
6	Pm	Presión a la descarga=(4)+(5) (m)	26.18		1.25	2.50	16.98	11.35	26.00	16.05
7	а	Área del tubo de descaraa=(3.1416X(1)2)/4 (m2)	0.032		0.032	0.032	0.032	0.071	0.032	0.032
8	0	Gasto (m²/s)	0.032		0.025	0.040	0.041	0.057	0.057	0.030
9	hv	Carga de velocidad = ((8)/(7)F/19.6133 (m)	0.049	50	0.030	0.081	0.082	0.032	0.158	0.044
10	hfc	Perdidas de fricción en la columna. (m)	0.720	15	0.264	0.004	0.854	0.312	1.879	0.654
11	hd	Caraa a la descaraa = (6)+(9)+(10) (m)	26.949	m	1.544	2.586	17.916	11.694	28.037	16.748
12	Н	Carga total = $(3)+(11)$ (m)	158.249	200	93.144	92.586	102.67	101.844	138.837	113.248
	la	Corriente linea A	207.80	- W	135.60	87.18	163.30	152.40	143.70	106.40
	lb	Corriente linea B	214.90	0.00	126.60	120.00	168.80	152.10	144.20	105.90
13	lc	Corriente línea C	210.60	Щ	130.10	128.00	168.40	155.60	142.30	106.00
	1	Promedio= (la+lb+lc)/3 (Amperes)	211.10	<u>a</u>	130.767	111.727	166.833	153.37	143.400	106.100
	Vab	Tensión de fase AB	463.10		425.70	439.00	432.00	453.70	434.30	436.70
	Vbc	Tensión de fase BC	461.30		425.70	443.00	432.00	453.70	436.30	435.90
14	Vca	Tensión de fase CA	461.00	a t	430.70	442.00	432.30	452.80	435.10	437.50
	V	Promedio= (Vab+Vac+Vbc)/3	461.80		427.37	441.333	432.100	453.400	435.23	436.70
	tp a	Factor de potencia línea A	0.849	25	0.858	0.800	0.881	0.895	0.972	0.871
15	tp b	Factor de potencia línea B	0.861	100	0.867	0.850	0.882	0.885	0.967	0.870
15	tv c	Factor de potencia línea C	0.855		0.829	0.820	0.881	0.880	0.969	0.871
	Fp	Promedio= (fpa+fpb+fpc)/3 %	0.855	3)	0.851	0.823	0.881	0.887	0.969	0.871
		Potencia de entrada al motor =			00.403	70.745	*****	400 705	404.707	00.074
16	Pe	= 1.732X(13)X(14)X(15)/1000 (KW)	144.363	4	82.403	70.315	110.041	106.788	104.783	69.871
1.7		Potencia de salida de la toma =	40.050		22.044	20.014	41.202	50.040	77033	22.220
17	Ps	= 9.81X(8)X(12) (KW)	49.056		22.844	36.644	41.293	56.649	77.633	33.329
18	η	Eficiencia electromecánica (%)	33.981		27.722	52.115	37.525	53.048	74.089	47.700

Tabla 12. Resumen de eficiencia electromecánica de los pozos de la región Centro (Parte 1). Fuente: Extraído de [1].

						NOMBRE DEL PO	ozo			
No.	SÍMBOLO	DESCRIPCIÓN	JARDINES DEL PEDREGAL No. 4B	JARDINES DEL PEDREGAL No. 1	JARDINES DEL PEDREGAL No. 2	JARDINES DEL PEDREGAL No. 3	MARINA NACIONAL No. 3	MÁRTIRES DE TACUBAYA	MIRAFLORES	MIRAVALL
1	DI	Diámetro interno de la tubería (m)	0.201	0,203	0,203	0,203	0,203	0.201	0.203	0.203
2	RPM	Frecuencia de rotación (rpm)	3500	3500	3500	3500	3500	3500	3500	3500
3	ND	Nivel Dinámico (m)	115.10	85.40	91.21	110.65	72.05	71.95	72.23	71.52
4	he	Distancia desde el nivel del piso al eje de la tuberia de descarga (m)	1.50	0.24	0.89	0.96	0.82	0.96	0.93	0.90
5	P1	Lectura del manómetro a la descaraa (m)	2.50	1.80	1.10	1.30	1.50	1.10	1.10	1.50
6	Pm	Presión a la descarga=(4)+(5) (m)	4.00	2.04	1.99	2.26	2.32	2.06	2.03	2.40
7	a	Área del tubo de descaraa=(3.1416X(1)²)/4 (m²)	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
8	0	Gasto (m²/s)	0.033	0.028	0.029	0.040	0.030	0.029	0.048	0.048
9	hv	Caraa de velocidad = ((8)/(7)) ² /19.6133 (m)	0.055	0.038	0.041	0.079	0.044	0.043	0.112	0.112
10	hfc	Perdidas de fricción en la columna. (m)	0.720	0.624	2.410	0.005	0.006	0.765	3.813	0.806
11	hd	Caraa a la descaraa = (6)+(9)+(10) (m)	4.775	2.702	4.441	2.345	2.370	2.868	5.955	3.318
12	Н	Carga total =(3)+(11) (m)	119.875	88.102	95.651	112.995	74.420	74.818	78.185	74.838
	la	Corriente linea A	226.30	100.30	159.80	117.00	140.00	161.00	127.30	78.50
13	Ib	Corriente linea B	222.14	100.90	168.80	121.00	140.00	157.00	120.40	75.90
13	lc	Corriente linea C	223.80	97.80	166.40	115.00	137.00	163.00	128.50	77.80
	1	Promedio= (la+lb+lc)/3 (Amperes)	224.080	99.667	165.000	117.667	139.000	160.333	125.400	77.400
	Vab	Tensión de fase AB	445.00	422.30	442.00	447.00	445.00	451.00	480.40	448.00
14	Vbc	Tensión de fase BC	443.60	423.20	441.50	445.00	443.00	453.00	477.40	447.40
14	Vca	Tensión de fase CA	443.90	421.70	441.90	447.00	447.00	455.00	479.10	452.20
	V	Promedio= (Vab+Vac+Vbc)/3	444.17	422.40	441.80	446.333	445.000	453.000	478.97	449.20
	tp a	Factor de potencia linea A	0.883	0.875	0.846	0.880	0.760	0.880	0.703	0.862
15	tp b	Factor de potencia línea B	0.875	0.863	0.802	0.880	0.760	0.890	0.228	0.888
13	tp c	Factor de potencia linea C	0.882	0.862	0.798	0.900	0.770	0.920	0.945	0.855
	Fp	Promedio= (fpa+fpb+fpc)/3 %	0.880	0.867	0.815	0.887	0.763	0.897	0.625	0.868
16		Potencia de entrada al motor =	151.698	63,194	102.942	80,653	81.778	112,798	65.052	52,290
10	Pe	= 1.732X(13)X(14)X(15)/1000 (KW)	131.090	03.194	102,942	a	01.770	112.790	0.002	32,290
17		Potencia de salida de la toma =	38.807	24.200	27.212	45.137	22.077	21.285	36.816	35.240
	Ps	= 9.81X(8)X(12) (KW)	50.007	24200	21.212	4.0137	220//	21.203	54,010	33.240
18	η	Eficiencia electromecánica %)	25.582	38.295	26.434	55.965	26.996	18.870	56.594	67,393

Tabla 13. Resumen de eficiencia electromecánica de los pozos de la región Centro (Parte 2). Fuente: Extraído de [1].

					NOMBRE	DEL POZO		
No.	SÍMBOLO	DES CRIPCIÓN	MOLINO DEL REY	NORMANDÍA	ORTIZ RUBIO	PARQUE DE LOS VENADOS	RADIO MIL	RÍO SAN JOAQUÍ
1		Inc	0.203	0.201	0,201	0.201	0.201	0,201
2	DI	Diámetro interno de la tubería (m)	3500	3500	3500	3500	3500	3500
3	RPM ND	Frecuencia de rotación (rpm)	105.40	69.85	72.00	73.07	66.42	90.95
4	he	Nivel Dinámico (m) Distancia desde el nivel del piso al eje de la tuberia de descarga (m)	0.79	1.50	1.00	1.50	120.00	1.00
5	P1	Lectura del manómetro a la descarga (m)	40.00	0.50	1.20	73.07	1.00	1.00
6	Pm	Presión a la descarga=(4)+(5) (m)	40.79	2.00	2.20	74.57	1.00	1.00
7	а	Área del tubo de descarga=(3.1416X(1)*)/4 (m²)	0.032	0.032	0.032	0.032	0.032	0.032
8	Q	Gasto (m³/s)	0.039	0.041	0.054	0.04	0.037	0.042
9	hv	Carga de velocidad = ((8)/(7)) ² /19.6133 (m)	0.075	0.085	0.148	0.081	0.069	0.089
10	hfc	Perdidas de fricción en la columna. (m)	0.862	0.588	1.016	1.617	1.143	0.912
11	hd	Carga a la descarga = (6)+(9)+(10) (m)	41.726	2.673	3.364	76.268	2.212	2.001
12	Н	Carga total =(3)+(11) (m)	147.126	72.523	75.364	149.338	68.632	92.951
	la	Corriente línea A	151.90	81.60	130.70	142.00	75.00	109.00
13	Ш	Corriente línea B	154.10	84.10	127.40	149.00	83.00	109.00
15	lc	Corriente linea C	148.70	86.90	120.70	151.00	83.00	107.00
	1	Promedio= (la+lb+lc)/3 (Amperes)	151.567	84.200	126.267	147.33	80.333	108.33
	Vab	Tensión de fase AB	448.10	448.50	438.70	435.00	441.00	448.00
14	Vbc	Tensión de fase BC	446.00	452.00	434.90	433.00	441.00	446.00
14	Vca	Tensión de fase CA	446.20	447.90	433.80	437.00	446.00	449.00
	V	Promedio= (Vab+Vac+Vbc)/3	446.77	449.47	435.800	435.00	442.667	447.667
	tp a	Factor de potencia linea A	0.831	0.847	0.882	0.840	0.940	0.760
15	tp b	Factor de potencia linea B	0.815	0.817	0.852	0.850	0.890	0.750
10	tp c	Factor de potencia línea C	0.820	0.842	0.884	0.840	0.920	0.770
	Fp	Promedio= (fpa+fpb+fpc)/3 %	0.822	0.835	0.873	0.843	0.917	0.760
16		Potencia de entrada al motor =	96,406	54.754	83.171	93,613	56.459	63,838
	Pe	= 1.732X(13)X(14)X(15)/1000 (KW)	55.200	52/54	55.171	55.015	50.450	33.030
17	Ps	Potencia de salida de la toma = = 9.81X(8)X(12) (KW)	56.503	29.170	39.923	30.261	24.911	38.298
18	η	Eficiencia electromecánica (%)	58.609	53.274	48.001	32.326	44.123	59.992

Tabla 14. Resumen de eficiencia electromecánica de los pozos de la región Centro (Parte 3). Fuente: Extraído de [1].

					N OMBRE I	DEL POZO		
No.	SÍMBOLO	DESCRIPCIÓN	SALESIANO	SAN FELIPE POPOTLA	SAN JOAQUÍN TACUBA	TACUBA	VERÓNICA NUEVO	VIADUCTO
	1			JI.				
1	DI	Diámetro interno de la tubería (m)	0.201	0.201	0.201	0.201	0.201	0.201
2	RPM	Frecuencia de rotación (rpm)	3500	3500	3500	3500	3500	3500
3	ND	Nivel Dinámico (m)	65.00	64.40	90.95	80.18	68.53	86.99
4	he	Distancia desde el nivel del piso al eje de la tubería de descarga (m)	1.00	1.50	1.50	1.50	0.86	0.89
5	P1	Lectura del manómetro a la descarga (m)	1.10	0.70	1.40	1.00	1.10	1.10
6	Pm	Presión a la descarga=(4)+(5) (m)	2.10	2.20	290	2.50	1.96	1.99
7	а	Área del tubo de descarga=(3.1416X(1)2)/4 (m²)	0.032	0.032	0.032	0.032	0.032	0.032
8	Q	Gasto (m²/s)	0.038	0.058	0.050	0.024	0.031	0.041
9	hv	Carga de velocidad = ((8)/(7)) ² /19.6133 (m)	0.073	0.170	0.127	0.029	0.049	0.083
10	hfc	Perdidas de fricción en la columna. (m)	0.696	1.417	1.122	0.540	0.420	0.648
11	hd	Carga a la descarga = $(6)+(9)+(10)$ (m)	2.869	3.787	4.149	3.069	2.429	2.721
12	Н	Carga total =(3)+(11) (m)	67.869	68.187	95.099	83.249	70.959	89.711
	la	Corriente línea A	121.00	164.90	123.00	179.00	132.80	116.00
	lb	Corriente línea B	120.00	172.10	129.00	171.00	127.60	124.00
13	lc	Corriente línea C	124.00	178.70	127.00	177.00	125.00	125.00
	1	Promedio=(la+lb+lc)/3 (Amperes)	121.667	171.900	126.333	175.667	128.467	121.667
	Vab	Tensión de fase AB	439.00	439.70	442.00	445.00	429.70	447.00
	Vbc	Tensión de fase BC	437.00	441.90	441.00	444.00	429.90	481.00
14	Vca	Tensión de fase CA	443.00	439.50	442.00	449.00	432.50	483.00
	V	Promedio= (Vab+Vac+Vbc)/3	439.667	440.37	441.667	446.000	430.70	470.333
	tpa	Factor de potencia línea A	0.840	0.842	0.810	0.910	0.946	0.710
15	tp b	Factor de potencia línea B	0.850	0.805	0.830	0.880	0.960	0.820
15	tpc	Factor de potencia línea C	0.830	0.842	0.820	0.870	0.942	0.720
	Fp	Promedio=(fpa+fpb+fpc)/3 %	0.840	0.830	0.820	0.887	0.949	0.750
16		Potencia de entrada al motor =	77.826	108.778	79.245	120.319	90,977	74,334
10	Pe	= 1.732X(13)X(14)X(15)/1000 (KW)	77.820	108.778	79.243	120.519	90.977	74.334
		Potencia de salida de la toma =	25.300	38.797	46.646	19.600	21,579	25.724
17	Ps	= 9.81X(8)X(12) (KW)	25.300	38.797	40.646	19.600	21.579	35.731
18	η	Eficiencia electromecánica (%)	32,509	35,666	58.863	16.290	23,719	48.068

Tabla 15. Resumen de eficiencia electromecánica de los pozos de la región Centro (Parte 5). Fuente: Extraído de [1].

Finalmente, al efectuar la proyección de ahorro (en costos de producción) en un horizonte de tiempo de 5 años a partir del reemplazo del equipo de bombeo de cada pozo, se estima que éste ahorro será de \$ 53, 427,338.11 (**Tabla 16**).

					вомв	IA ACTUAL		вомв	A PROPUESTA			
No.	NOMBRE DEL POZO	GASTO (lps)	FACTOR DE POTENCIA	EFICIENCIA ELECT ROMECÁNICA 69	POTENCIA (HP)	PRECIO POR METRO CÚBICO (\$/m3)	POTENCIA DE TRABAJO CALCULADA	POTENCIA (HP)	PRECIO POR METRO CÚBICO (\$/m3)	% DE AHORRO POR m3	AHORRO REAL DE CONSUMO ANUAL EN PESOS MEXICANOS	AHORRO REAL DE CONSUMO A 5 AÑOS ES PESOS MEXICANOS
	Inches and the second											
1	ALTAVISTA	31.6	0.86	33.98	193.52	1.76	87.68	100		48.3	\$ 845,795.45	\$ 4,228,977.2
2	ARENAL SAN ÂNGEL		γ		WEBS	A DE	SEE	Alen				
3	CAMPESTRE	25.0	0.85	27.72	110.46	1.27	40.83	50	0.57	55.1	\$ 546,821.56	
A	CASA AMARILLA	40.0	0.82	52.12	9426	0.68	65.49	75	0.54	20.6	\$ 174,098.34	
5	DIRECTO 22	41.0	0.88	37.53	147.51	1.03	73.80	75	0.52	49.5	\$ 655,790.63	
6	HUERTAS DEL CARMEN	56.7	0.89	53.05	143.15	0.72	101.25	125	0.63	12.5	\$ 164,132.55	
	JARDÍNMORELOS	57.0	0.97	74.09	140.46	0.71	138.75	150	0.75	0.0	s -	s .
8	JARDÍN DE SAN JACINTO	30.0	0.87	47.70	93.66	0.90	59.57	75	0.72	20.0	\$ 168,775.98	\$ 843,879.8
9	JARDINES DEL PEDREGAL No. 4-B	33.0	0.88	25.58	203.35	1.77	69.36	75	0.65	63.3	\$ 1,160,833.43	\$ 5,804,167.10
10	JARDINES DEL PEDREGAL No. 1	28.0	0.87	38.30	84.71	0.87	43.25	50	0.51	41.4	\$ 313,934.71	\$ 1,569,673.50
.11	JARDINES DEL PEDREGAL No. 2	29.0	0.82	26.43	137.99	1.36	48.64	75	0.74	45.6	\$ 569,723.49	S 2,848,617.4
12	JARDINES DEL PEDREGAL No. 3	40.4	0.89	55.97	108.11	0.77	80.67	100	0.71	7.8	\$ 73,385.60	\$ 366,928.0
13	MARINA NACIONAL No. 3	30.0	0.76	27.00	109.62	1.05	39.46	50	0.48	54.3	\$ 539,244.16	
14	MÁRTIRES DE TACUBAYA	29.0	0.90	21.29	151.20	1.50	38.04	50	0.49	67.3	\$ 915,325.67	
15	MIRAFLORES	48.0	0.63	56.59	87.20	0.52	65.80	75	0.45	13.5	\$ 110,351.19	
16	MIRAVALLE	48.0	0.87	67.39	70.09	0.42	62.98	75	0.45	0.0	s -	\$
17	MOLINO DEL REY	39.2	0.82	58.61	129.23	0.95	100.99	125	0.92	3.2	\$ 38,262.84	
18	NORMANDÍA	41.0	0.84	53.27	73.40	0.51	52.13	75	0.52	0.0	s .	5
19	ORTIZ RUBIO	54.0	0.87	48.00	111.49	0.59	71.35	75	0.40	32.2	\$ 330,023.05	\$ 1,650,115.2
20	PARQUE DE LOS VENADOS	40.0	0.84	32.33	125.49	0.90	54.09	75	0.54	40.0	\$ 456,620.19	\$ 2,283,100.9
21	RADIO MIL	37.0	0.92	44.12	75.68	0.59	44.52	50	0.39	33.9	\$ 232,280.65	\$ 1,161,403.2
	RÍO SAN JOAQUÍN	42.0	0.76	59.99	85.57	0.58	68.45	75	0.51	12.1	\$ 95,632.85	\$ 478.164.2
22	SALESIANO	38.0	0.84	32.51	104.32	0.79	45.22	50	0.38	51.9	\$ 491,330.74	
23	SAN FELIPE POPOTLA	58.0	0.83	35.67	145.82	0.72	69.34	75	0.37		5 640,478.22	
24	SANJOAQUÍNTACUBA	50.0	0.82	58.86	106.23	0.61	83.37	100	0.57	6.6	\$ 56,315.24	
25	TACUBA	24.0	0.89	16.29	16128	1.93	35.03	50	0.60	68.9	\$ 1,006,509.07	
. 26	VERÓNICA NUEVO	31.4	0.95	24.03	121.95	1.11	39.07	50	0.46	58.6	\$ 650,807.73	
27	VIADUCTO	40.6	0.75	48.07	99.64	0.70	63.86	50	0.35	50.0	\$ 448,994.29	
28		. 40.0		1007	, ,,,,,,	. 0.70	03.00	, 50	0.55	302	110,03423	- LJE 44/3/174.

Tabla 16. Estimación del ahorro por concepto de sustitución de equipos de bombeo. Fuente: Extraído de [1].

4.4.- Región Poniente

Los pozos analizados de la Región Poniente son 10, ninguno de estos pozos supera el 75% de eficiencia eléctrica (**Tabla 17**). Por su parte, los parámetros hidráulicos muestran una muy baja de presión de descarga (**Tabla 18**).

No.	NOMBRE DEL POZO	CARGA	FACTOR DE	EFICIENCIA	MEDIDOR	ES DE CIA FUERZA	DE LUZ Y	H.P	V a-b	V b-c	V c-a	V prom	la	lb	lc	l prom
NO.	NONBRE DEL POZO	DINÁMICA	POTENCIA	(%)	KWH	KW	KVAR	n.P	(VOLTS)	(VOLTS)	(VOLTS)	(VOLTS)	(AMP)	(AMP)	(AMP)	(AMP)
1	AV. CENTRAL	118.44	0.72	65.04	19.303	53.313	53.667	69.45	486.30	483.10	484.20	484.53	86.60	86.80	82.40	85.27
2	CHAPULTEPEC No. 7	144.16	0.87	49.02	14.05	24.136	12.354	85.05	408.10	409.70	411.90	409.90	105.90	97.30	103.90	102.37
3	OLIVAR DE LOS PADRES	149.17	0.83	39.51	25.825	69.247	47.986	92.34	424.50	422.70	424.10	423.77	114.60	115.10	111.20	113.63
4	OLIVAR DEL CONDE	130.14	0.59	51.84	32.928	88.121	36.61	96.06	4 61.00	462.20	458.40	460.53	151.60	153.20	152.80	152.53
5	SANTA FE No. 1	167.35	0.89	68.12	19.061	64.632	31.669	90.45	442.10	458.40	453.00	451.17	94.70	88.70	106.80	96.73
6	SANTA LUCÍA No. 1	115.95	0.82	72.61	38.102	76.435	54.219	102.7	464.50	460.80	462.60	462.63	122.20	117.50	111.90	117.20
7	TACUBAYA No. 2	143.30	0.81	44.68	43.151	95.684	69.569	126.5	420.90	423.80	423.90	422.87	161.50	155.80	161.00	159.43
8	TACUBAYA No. 3	P O	z o		F U	E	R A		D	E	s	E	R	V I	с	1 O
9	TETELPAN	114.28	0.84	67.51	32.301	73.405	44.58	91.27	463.50	464.40	462.80	463.57	98.80	100.80	101.70	100.43
10	TOTOLOAPAN	188.15	0.88	64.27	17.037	51.973	35.972	66.21	434.20	435.20	430.70	433.37	72.70	77.00	75.40	75.03
11	VISTA HERMOSA	139.41	0.83	34.00	6.126	66.237	43.429	87.34	450.20	451.10	448.50	449.93	97.70	102.10	101.80	100.53

NOTA: TODOS LOS DATOS QUE SE EXPRESAN EN ESTA TABLA FUERON TOMADOS EN CAMPO POR LA CONTRATISTA

Tabla 17. Resumen de parámetros eléctricos de los pozos de la región Poniente. Fuente: Extraído de [1].

No.	NOMBRE DEL POZO	No. DE SERIE DE MEDIDOR	MARCA DEL MEDIDOR	TIPO DE MEDIDOR	DIÁMETRO DEL MEDIDOR	* GASTO (L/S)	HORAS DE OPERACIÓ N MENSUAL	** HORAS DE OPERACIÓN DIARIA (HR)	EXTRACIÓN MENSUAL (M3)	EXTRACCIÓN DIARIA (M3)	*NIVEL ESTÁTICO (MTS)	*NIVEL DINÂMICO (MTS)	*PRESIÓN (KG/CM2)
1	AV. CENTRAL	ilegible	Badger-Meter	Electromagnetico	200.00	29.0	360.00	12.0	75168.0	2505.6	93.40	97.35	1.800
2	CHAPULTEPEC №. 7	0704-278	Badger-Meter	Electromagnetico	150.00	22.0	360.00	12.0	57024.0	1900.8	94.00	102.50	4.000
3	OLIVAR DE LOS PADRES					18.6	720.00	24.0	48211.2	1607.0	95.00	115.00	3.200
4	OLIVAR DEL CONDE					29.1	720.00	24.0	75427.2	2514.2	86.70	98.00	3.000
5	SANTA FE No. 1					28.0	480.00	16.0	72576.0	2419.2	132.56	157.80	0.800
6	SANTA LUCÍA No. 1					48.9	600.00	20.0	126748.8	4225.0	98.00	112.00	0.200
7	TACUBAYA No. 2					30.0	720.00	24.0	77760.0	2592.0	105.27	131.00	1.000
8	TACUBAYA No. 3		P O Z	O F	U E	R A	D	E	S I	R V	I C	I 0	
9	TETELPAN	G-00 697	Sparling	Volumetrico	200.00	41.0	600.00	20.0	106272.0	3542.4	60.00	65.00	4.500
10	TOTOLOAPAN					17.2	360.00	12.0	44582.4	1486.1	168.00	175.00	1.100
11	VISTA HERMOSA					16.2	480.00	16.0	41990.4	1399.7	92.30	105.60	3.200

⁻⁻⁻ NO EXISTE O NO SE PUDO TOMAR DATO EN CAMPO

* DATOS TOMADOS EN CAMPO = -

Tabla 18. Resumen de parámetros hidráulicos de los pozos de la región Poniente. Fuente: Extraído de [1].

^{*} DATOS TOMADOS EN CAMPO POR CONTRATISTA

** DATOS PROPORCIONADOS POR LA REGIONAL XOCHIMILCO

Con la información de las tablas mostradas anteriormente, se calculó la eficiencia electromecánica de los equipos de bombeo de cada pozo, resultando que ninguno supera el 75% (**Tabla 19**).

							NO	MBRE DEL PO	ZO				
No.	SÌMBOLO	DESCRIPCIÓN	AV. CENTRAL	CHAPULTEPEC No. 7	OLIVAR DE LOS PADRES	OLIVAR DEL CONDE	SANTA FE No. 1	SANTA LUCÌA No. 1	TACUBAYA No. 2	TACUBAYA No. 3	TETELPAN	TOTOLAPAN	VISTA HERMOSA
1	DI	Diàmetro interno de la tuberìa (m)	0.201	0.152	0.152	0.203	0.204	0.254	0.304		0.152	0.152	0.106
2	RPM	Frecuencia de rotación (rpm)	3500	3500	3500	3500	3500	3500	3500		3500	3500	3500
3	ND	Nivel Dinàmico (m)	97.35	102.50	115.00	98.00	157.80	112.00	131.00		65.00	175.00	105.60
4	he	Distancia desde el nivel del piso al eje de la	0.47	0.31	1.00	1.20	0.67	0.68	0.30		0.82	1.50	0.57
5	P1	Lectura del manòmetro a la descarga (m)	18.00	40.00	32.00	30.00	8.00	2.00	10.00		75.00	11.00	32.00
6	Pm	Presiòn a la descarga=(4)+(5) (m)	18.47	40.31	33.00	31.20	8.67	2.68	10.30		75.82	12.50	32.57
7	a	Àrea del tubo de des carga=(3.1416X(1)²)/4 (m²)	0.032	0.018	0.018	0.032	0.033	0.051	0.073		0.018	0.018	0.009
8	Q	Gasto (m²/s)	0.029	0.022	0.019	0.029	0.028	0.049	0.030		0.041	0.017	0.016
9	hv	Carga de velocidad = ((8)/(7)) ² /19.6133 (m)	0.043	0.075	0.054	0.041	0.037	0.047	0.009		0.260	0.046	0.172
10	hfc	Pèrdidas de fricción en la columna (m)	2.58	1.28	1.11	0.90	0.84	1.22	2.00	9	3.20	0.60	1.07
11	hd	Carga a la descarga = (6)+(9)+(10) (m)	21.093	41.661	34.166	32.141	9.547	3.949	12.304	ξ	79.280	13.146	33.814
12	н	Carga total =(3)+(11) (m)	118.443	144.161	149.166	130.141	167.347	115.949	143.304	SERVICIO	144.280	188.146	139.414
	la	Corrient e linea A	86.600	105.90	114.60	151.60	94.70	122.20	161.50	. •,	98.80	72.70	97.70
	lb	Corrient e linea B	86.800	97.30	115.10	153.20	88.70	117.50	155.80	DE	100.80	77.00	102.10
13	lc	Corrient e linea C	82.400	103.90	111.20	152.80	106.80	111.90	161.00		101.70	75.40	101.80
	1	Promedio= (la+lb+lc)/3 (Amperes)	85.267	102.367	113.633	152.533	96.733	117.200	159.433	FUERA	100.433	75.033	100.533
	Vab	Tensión de fas e AB	486.300	408.10	424.50	461.00	442.10	464.50	420.90	JO.	463.50	434.20	450.20
	Vbc	Tensión de fas e BC	483,100	409.70	422.70	462.20	458.40	460.80	423.80		464.40	435.20	451.10
14	Vca	Tensión de fase CA	484,200	411.90	424.10	458.40	453.00	462.60	423.90	POZO	462.80	430.70	448.50
	V	Promedio= (Vab+Vac+Vbc)/3	484,533	409,900	423,767	460,533	451.167	462.633	422.867	. <u>0</u>	463,567	433,367	449,933
		Factor de potencia linea A	0.704	0.910	0.816	0.846	0.943	0.800	0.817		0.842	0.873	0.830
	to b	Factor de potencia linea B	0.742	0.880	0.833	0.032	0.853	0.844	0.812		0.852	0.868	0.825
15	tpc	Factor de potencia linea C	0.726	0.830	0.829	0.889	0.882	0.803	0.796		0.839	0.890	0.840
	Fp	Promedio= (fpa+fpb+fpc)/3 %	0.724	0.873	0.826	0.589	0.893	0.816	0.808		0.844	0.877	0.832
	rp	Potencia de entrada al motor =					÷						
16	Pe	= 1.732X(13)X(14)X(15)/1000 (KW)	51.807	63.469	68.891	71.662	67.476	76.599	94.389		68.085	49.392	65.156
17		Potencia de salida de la toma =	33,696	31.113	27.218	37.152	45,967	55,622	42.174		58.031	31.746	22,156
1/	Ps	= 9.81X(8)X(12) (KW)	33.090	31.113	21.210	37.132	45.907	33.022	42.174		30.031	31./40	22.130
18	n	Eficiencia electromecànica (%)	65.041	49.020	39.509	51.843	68.123	72.614	44.681		85.233	64.274	34.004

Tabla 19. Resumen de eficiencia electromecánica de los pozos de la región Poniente. Fuente: Extraído de [1].

Finalmente, al efectuar la proyección de ahorro (en costos de producción) en un horizonte de tiempo de 5 años a partir del reemplazo del equipo de bombeo de cada pozo, se estima que éste ahorro será de \$ 5'199,308.79 (**Tabla 20**).

						BOMBA ACTUAL		В	OMEA PROPUES	TA .			
No.	NOMBRE DEL POZO	CARGA DINÁMICA (m)	FACTOR DE POTENCIA	EFICIENCIA %	POTENCIA (HP)	POTENCIA A LA QUE TRABAJA (HP)	PRECIO POR METRO CÚBICO (\$/m\$)	POTENCIA DE TRABAJO CALCULADA	POTENCIA (HP)	PRECIO POR MET RO CUBICO (\$/m3)	% DE AHORRO	AHORRO REAL DE CONSUMO ANUAL EN PESOS MEXICANOS	AHORRO REAL DE CONSUMO A 5 AÑO EN PESOS MEXICANO
1	AV. CENTRAL	142.44	0.72	65.04	100.00	69.45	0.69	72.43	75	0.74	0.00	s -	s .
2	CHAPULTEPEC No. 7	144.16	0.87	49.02	100.00	85.05	1.11	55.60	75	0.98	11.82	\$ 90,928.80	\$ 454,644.0
3	OLIVAR DE LOS PADRES	149.17	0.83	39.51	150.00	92.34	1.39	48.64	75	1.13	18.77	\$ 156,761.25	\$ 783,806.20
4	OLIVAR DEL CONDE	130.14	0.59	51.84	150.00	96.06	0.95	66.40	75	0.74	21.92	\$ 190,465.53	\$ 952,327.6
5	SANTA FE No. 1	167.35	0.89	68.12	150.00	90.45	0.93	82.15	100	1.02	0.00	s .	s .
6	SANTA LUCÍA No. 1	115.95	0.82	72.61	150.00	102.68	0.61	97.58	100	0.59	2.61	\$ 24,247.68	S 121,238.40
7	TACUBAYA No. 2	143.30	0.81	44.68	250.00	126.52	1.21	75.37	100	0.95	21.49	\$ 239,809.56	\$ 1,199,047.78
8	TACUBAYA No. 3				OZ	0 F	UERA			E R V I		0	
9	TETELPAN	114.28	0.84	67.51	100.00	91.27	0.65	82.15	100	0.70	0.00	s -	s -
10	TOTOLOAPAN	188.15	0.88	64.27	75.00	66.21	1.11	56.74	75	1.26	0.00	s -	s -
11	VISTA HERMOSA	139.41	0.83	34.00	125.00	87.34	1.57	39.59	50	0.89	42.74	\$ 337,648.94	\$ 1,688,244.72
											TOTAL	\$ 1,039,861.76	\$ 5,199,308.79

Tabla 20. Estimación del ahorro por concepto de sustitución de equipos de bombeo. Fuente: Extraído de [1].

4.5.- Región Azcapotzalco

Los pozos analizados de la Región Azcapotzalco son 16, ninguno de estos pozos supera el 70% de eficiencia eléctrica (Tabla 21). Por su parte, los parámetros hidráulicos muestran una muy baja de presión de descarga (Tabla 22).

					MEDIDO	RES DE CIA I	DE LUZ Y						١		70	154.53 140.70 70.37 127.53 159.83 186.33 100.17 125.40 112.93 129.13
No.	NOMBRE DEL POZO	CARGA DINÁMICA	FACTOR DE POTENCIA	EFICIENCIA (%)	KWH	KW	KVAR	НР	V a-b (VOLTS)	(VOLTS)	V c-a (VOLTS)	V prom (VOLTS)	la (AMP)	lb (AMP)	lc (AMP)	
1	AZCAPOTZALCO No. 1	102.09	0.94	50.36	51.06	103.36	38.47	138.63	411.60	411.70	413.80	412.37	157.20	152.30	154.10	154.53
2	DEPORTIVO REYNOSA	105.99	0.89	56.66	35.04	98.33	55.96	130.37	445.20	447.90	446.10	446.40	138.90	140.60	142.60	140.70
3	JARDÍN SAN ÁLVARO	70.99	0.62	67.96	14.67	33.51	12.44	45.06	448.00	447.50	445.60	447.03	70.70	70.20	70.20	70.37
4	NUEVA SANTA MARÍA	97.28	0.84	56.80	33.72	80.55	56.52	106.99	423.20	433.00	431.70	429.30	125.10	135.80	121.70	127.53
	PANTACO 1	96.29	0.87	45.01	50.46	102.18	57.88	136.15	420.90	422.10	422.20	421.73	161.40	157.20	160.90	
	PARQUE TEZOZOMOC	104.68	0.87	44.83	59.97	121.81	97.32	160.91	428.00	426.60	425.50	426.70	187.50	186.70	184.80	
7	PETROLERA	100.88	0.84	65.67	29.13	81.86	66.30	84.85	434.40	432.40	433.60	433.47	101.10	102.70	96.70	100.17
8	PRADOS DEL ROSARIO	97.37	0.83	40.43	35.30	89.22	64.58	108.30	448.70	449.20	448.30	448.73	127.30	122.60	126.30	125.40
9	SAN JUAN TLIHUACA	104.59	0.90	35.00	50.54	101.71	48.07	136.35	422.70	423.20	424.70	423.53	154.40	151.00	155.10	153.50
10	SAN MARTÍN XOCHINAHUAC No.2	100.35	0.99	40.37	26.52	85.76	42.05	113.75	432.00	453.30	431.50	438.93	112.40	116.30	110.10	112.93
11	SAN MIGUEL AMANTLA	89.41	0.64	47.55	32.09	77.35	88.71	86.06	451.00	449.50	449.20	449.90	129.80	129.10	128.50	129.13
12	SAN PEDRO XALPA No. 2	105.41	0.81	48.98	36.38	87.27	56.90	98.49	435.10	433.90	434.00	434.33	122.90	116.90	121.20	120.33
13	CLAVERÍA	105.11	0.77	64.20	42.88	93.77	78.31	124.88	422.70	417.10	420.30	420.03	163.40	169.70	166.70	166.60
14	SANTIAGO AHUITZOTLA	101.94	0.87	67.89	32.72	69.19	38.91	94.77	443.00	443.00	441.00	442.33	106.00	106.00	105.00	105.67
15	HOGAR Y SEGURIDAD	88.13	0.86	69.81	40.10	37.21	22.73	49.80	420.00	420.00	419.00	419.67	59.00	59.00	61.00	59.67
16	OBRERO POPULAR	101.61	0.78	37.05	48.25	67.26	24.92	90.16	445.00	452.00	451.00	449.33	110.00	105.00	116.00	110.33

NOTA: TODOS LOS DATOS QUE SE EXPRESAN EN ESTA TABLA FUERON TOMADOS EN CAMPO POR LA CONTRATISTA
--- DATO INCOMPLETO POR FALTA DE ALGUNA INFORMACIÓN QUE NO SE PUDO LLEGAR A CABO EN CAMPO
*- DATO TOMADO COMO REFERENCIA DE ANTECEDENTE.

Tabla 21. Resumen de parámetros eléctricos de los pozos de la región Azcapotzalco. Fuente: Extraído de [1].

No.	NOMBRE DEL POZO	No. DE SERIE DE MEDIDOR	MARCA DEL MEDIDOR	TIPO DE MEDIDOR	DIÁMETRO DEL MEDIDOR	* GASTO (L/S)	HORAS DE OPERACIÓN MENSUAL	** HORAS DE OPERACIÓN DIARIA (HR)	EXTRACIÓN MENSUAL (M3)	EXTRACCIÓN DIARIA (MB)	°NIVEL ESTÁTICO (MTS)	*NIVEL DINÁMICO (MI'S)	*PRESIÓN (KG/CM2)
1	AZCAPOTZALCO No. 1	~~~	~~~~	~~~	~~~~	52.00	720.00	24.00	134784.00	4492.80	78.35	88.61	1.10
2	DEPORTIVO REYNOSA	~~~~	~~~	~~~~	~~~~	53.00	720.00	24.00	137376.00	4579.20	77.85	91.08	1.25
3	JARDÍN SANÁLVARO	~~~~	~~~~	~~~~	~~~~	32.80	480.00	16.00	85017.60	2833.92	63.10	66.90	0.25
4	NUEVA SANTA MARÍA	~~~	~~~~	~~~	~~~~	47.50	600.00	20.00	123120.00	4104.00	75.26	83.15	1.20
5	PANTACO 1	~~~~	~~~~	~~~~	~~~~	48.40	360.00	12.00	125452.80	4181.76	79.26	81.43	1.25
6	PARQUE TEZOZOMOC	~~~~	~~~~	~~~	~~~~	52.40	480.00	16.00	135820.80	4527.36	79.80	91.20	1.10
7	PETROLERA	~~~~	~~~	~~~	~~~~	42.00	720.00	24.00	108864.00	3628.80	71.10	78.70	2.00
8	PRADOS DEL ROSARIO	~~~~	~~~~	~~~	~~~~	34.20	240.00	8.00	88646.40	2954.88	78.10	80.92	1.50
9	SANJUANTLIHUACA	~~~~	~~~~	~~~~	~~~~	34.70	540.00	18.00	89942.40	2998.08	78.10	94.76	0.80
10	SANMARTÍNXOCHINAHUAC N	~~~~	~~~	~~~	~~~~	34.80	480.00	16.00	90201.60	3006.72	77.92	81.15	1.75
11	SANMIGUEL AMANTLA	~~~~	~~~~	~~~	~~~~	34.80	720.00	24.00	90201.60	3006.72	74.13	80.31	0.75
12	SANPEDRO XALPA No. 2	~~~~	~~~~	~~~~	~~~~	34.80	240.00	8.00	90201.60	3006.72	73.85	86.21	1.75
13	CLAVERÍA	~~~~	~~~~	~~~~	~~~~	58.00	480.00	16.00	150336.00	5011.20	81.12	92.15	1.00
14	SANTIAGO AHUITZOTLA	~~~~	~~~~	~~~	~~~~	48.00	720.00	24.00	124416.00	4147.20	83.60	91.75	0.80
15	HOGAR Y SEGURIDAD	~~~~	~~~~	~~~~	~~~~	30.00	600.00	20.00	77760.00	2592.00	69.00	76.00	1.00
16	OBRERO POPULAR	~~~~	~~~~	~~~~	~~~~	25.00	720.00	24.00	64800.00	2160.00	82.30	89.60	1.00

NO EXISTE O NO SE PUDO TOMAR DATO EN CAMPO

Tabla 22. Resumen de parámetros hidráulicos de los pozos de la región Azcapotzalco. Fuente: Extraído de [1].

Con la información de las tablas mostradas anteriormente, se calculó la eficiencia electromecánica de los equipos de bombeo de cada pozo, resultando que ninguno supera el 70% (Tabla 23).

			NOMBRE DEL POZO															
No.	SÍMBOLO	DESCRIPCIÓN	AZCAPOTZALCO No.1	DEPORTIVO REYNOSA	JARDÍN SAN ÁLVARO	NUEVA SANTA MARÍA	PANTACO1	PARQUE TEZOZOMOC	PETROLERA	PRADOS EL ROSARIO	SAN JUAN TLIHUACA	SAN MARTÍN XOCHINAHUAC No.2	SAN MIGUEL AMANTIA	SAN PEDRO XALPA No. 2	CLAVERÍA	SANTIAGO AHUITZOTLA	HOGAR Y SEGURIDAD	OBRERO POPULAR
1	DI	Diàmetro interno de la tuberia (m)	0.201	0.201	0.201	0.201	0.201	0.201	0.201	0.201	0.201	0.201	0.201	0.201	0.203	0.203	0.201	0.201
2		Frecuencia de rotación (rpm)	3500	3500	3500	3500	3500	35500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500
3	ND	Nivel Dinàmico (m)	88.61	91.08	66.90	83.15	81.43	91.20	78.70	80.92	94.76	81.15	80.31	86.21	92.15	91.75	76.00	89.60
4	he	Distancia desde el nivel del piso al eje de la tubeña de descarga (m)	0.82	0.74	0.82	1.06	1.02	0.82	1.13	0.67	1.05	0.92	0.82	0.92	0.95	0.85	145	1.15
5	P1	Lectura del manòmetro a la descarga (m)	11.00	12.50	2.50	12.00	12.50	11.00	20.00	15.00	8.00	17.50	7.50	17.50	10.00	8.00	10.00	10.00
6	Pm	Presiòn a la descarga=(4)+(5) (m)	11.82	13.24	3.32	13.06	13.52	11.82	21.13	15.67	9.05	18.42	8.32	18.42	10.95	8.85	11.45	11.15
7	a	Àr ea del tubo de descarga=(3.1416X(1)²)/4 (m²)	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
8	Q	Gesto (m³/s)	0.052	0.053	0.033	0.048	0.048	0.052	0.042	0.034	0.035	0.035	0.035	0.035	0.058	0.048	0.030	0.025
9	hv	Carga de velocidad = ((8)/(7))*/19.6133 (m)	0.137	0.142	0.054	0.114	0.119	0.139	0.089	0.059	0.061	0.061	0.061	0.061	0.164	0.112	0.046	0.032
10	hfc	Pèrdidas de fricciòn en la columna (m)	1.524	1.524	0.720	0.960	1.224	1.524	0.960	0.720	0.720	0.720	0.720	0.720	1.848	1.224	0.630	0.830
11	hd	Carga a la des carga = (6)+(9)+(10) (m)	13.481	14.906	4.094	14.134	14.863	13.483	22.179	16.449	9.831	19.201	9.101	19.201	12.962	10.186	12.126	12.012
12	н	Carga total =(3)+(11) (m)	102.091	105.986	70.994	97.284	96.293	104.683	100.879	97.369	104.591	100.351	89.411	105.411	105.112	101.936	88.126	101.612
	la	Corriente linea A (amperes)	157.20	138.90	70.70	125.10	161.40	187.50	101.10	12730	154.40	112.40	129.80	122.90	163.40	106.00	59.00	110.00
13	lb	Corriente linea B (amperes)	152.30	140.60	70.20	135.80	15720	186.70	102.70	122.60	151.00	116.30	129.10	116.90	169.70	106.00	59.00	105.00
15	lc	Corriente linea C (amperes)	154.10	142.60	70.20	121.70	160.90	184.80	96.70	126.30	155.10	110.10	128.50	121.20	166.70	105.00	61.00	116.00
	1	Promedio= (la+lb+lc)/3 (amperes)	154.53	140.70	70.37	127.53	159.83	186.33	100.17	125.40	153.50	112.93	129.13	120.33	166.60	105.67	59.67	110.33
	Vab	Tensión de fase AB (volts)	411.60	445.20	448.00	423.20	420.90	428.00	434.40	448.70	422.70	432.00	451.00	435.10	422.70	443.00	420.00	445.00
14	Vbc	Tensión de fase BC (volts)	411.70	447.90	447.50	433.00	422.10	426.60	432.40	44920	423.20	453.30	449.50	433.90	417.10	443.00	420.00	452.00
14	Vca	Tensión de fase CA (volts)	413.80	446.10	445.60	431.70	422.20	425.50	433.60	448.30	424.70	431.50	449.20	434.00	420.30	441.00	419.00	451.00
	v	Promedio= (Vab+Vac+Vbc)/3 (volts)	412.37	446.40	447.03	429.30	421.73	426.70	433.47	448.73	423.53	438.93	449.90	434.33	420.03	442.33	419.67	449.00
	tp a	Factor de potencia linea A	0.938	0.898	0.924	808.0	0.866	0.881	0.825	0.814	0.898	0.993	0.638	0.802	0.764	0.880	0.850	0.800
15	tp b	Factor de potencia linea B	0.942	0.889	0.755	0.849	0.866	0.855	0.853	0.836	0.911	0.987	0.636	0.806	0.761	0.870	0.880	0.800
15	tp c	Factor de potencia linea C	0.930	0.896	0.172	0.868	0.879	0.879	0.847	0.836	0.901	0.985	0.640	0.827	0.781	0.870	0.840	0.750
	Fp	Promedio= (fpa+fpb+fpc)/3	0.94	0.89	0.62	0.84	0.87	0.87	0.84	0.83	0.90	0.99	0.64	0.81	0.77	0.87	0.86	0.78
16	Pe	Potencia de entrada al motor = = 1.732X(13)X(14)X(15)/1000 (KW)	103.417	97.253	33.616	79.813	101.572	120.036	63.295	80.796	101.717	84.854	64.198	73.474	93.163	70.699	37.153	67.262
17	Ps	Potencia de salida de la toma = = 9.81X(8)X(12) (KW)	52.079	55.105	22.844	45.332	45.720	53.812	41.564	32.668	35.603	34.259	30.524	35.986	59.806	48.000	25.935	24.920
18	η	Eficiencia electromecànica (%)	50.36	56.66	67.96	56.80	45.01	44.83	65.67	40.43	35.00	40.37	47.55	48.98	64.20	67.89	69.81	37.05

Tabla 23. Resumen de eficiencia electromecánica de los pozos de la región Poniente. Fuente: Extraído de [1].

DATOS TOMADOS EN CAMPO POR CONTRATISTA DATOS PROPORCIONADOS POR LA REGIONAL COYOACAN

Finalmente, al efectuar la proyección de ahorro (en costos de producción) en un horizonte de tiempo de 5 años a partir del reemplazo del equipo de bombeo de cada pozo, se estima que éste ahorro será de \$ 14'975,670.26 (**Tabla 24**).

	NOMBRE DEL POZO	GASTO (lps)	FACTOR DE POTENCIA			BOMBA ACTU	IAL		ВОМВА	PROPUESTA			
No.				EFICIENCIA %	POTENCIA (HP)	POTENCIA A LA QUE TRABAJA (HP)	PRECIO POR METRO CÚBICO (\$/m3)	POTENCIA DE TRABAJO CALCULADA	POTENCIA (HP)	PRECIO POR METRO CÚBICO (\$/m3)	% DE AHORRO POR m3	AHORRO REAL DE CONSUMO ANUAL EN PESOS MEXICANOS	AHORRO REAL DE CONSUMO A 5 AÑOS EN PESOS MEXICANOS
		52.00	0.94	50.36	150.00	138.63	0.76	93.08	100.00	0.55	27.63	\$ 349,409.07	\$ 1.747.045.3
1	AZCAPOTZALCO No. 1 DEPORTIVO REYNOSA	53.00	0.89	56.66	150.00	130.37	0.71	98.49	100.00	0.54	23.94	\$ 274,604.98	
3	JARDÍN SAN ÁLVARO	32.80	0.62	67.96	75.00	45.06	0.39	40.83	75.00	0.63	0.00	\$ -	\$ -
4	NUEVA SANTA MARÍA	47.50	0.84	56.80	125.00	106.99	0.65	81.02	100.00	0.60	7.69	\$ 63,165.21	\$ 315,826.03
5	PANTACO 1	48.40	0.87	45.01	150.00	136.15	0.81	81.72	100.00	0.59	27.16	\$ 326,979.96	\$ 1,634,899.82
6	PARQUE TEZOZOMOC	52.40	0.87	44.83	200.00	160.91	0.88	96.18	125.00	0.68	22.73	\$ 324,797.67	\$ 1,623,988.3
7	PETROLERA	42.00	0.84	65.67	100.00	84.85	0.58	74.29	100.00	0.65	0.00	\$ -	s -
8	PRADOS DEL ROSARIO	34.20	0.83	40.43	125.00	108.30	0.91	58.39	75.00	0.63	30.77	\$ 301,216.80	\$ 1,506,084.02
9	SAN JUAN TLIHUACA	34.70	0.90	35.00	150.00	136.35	1.13	63.63	75.00	0.62	45.13	\$ 554,908.16	\$ 2,774,540.78
10	SAN MARTÍN XOCHINAHUAC No. 2	34.80	0.99	40.37	150.00	113.75	0.94	61.23	75.00	0.62	34.04	\$ 350,500.21	\$ 1,752,501.0
11	SAN MIGUEL AMANTLA	34.80	0.64	47.55	100.00	86.06	0.71	54.56	75.00	0.62	12.68	\$ 100,021.68	\$ 500,108.40
12	SAN PEDRO XALPA No. 2	34.80	0.81	48.98	150.00	98.49	0.81	64.32	75.00	0.62	23.46	\$ 212,409.68	\$ 1,062,048.38
13	CLAVERÍA	58.00	0.77	64.20	150.00	124.88	0.62	106.89	125.00	0.85	0.00	s -	s -
14	SANTIAGO AHUTZOTLA	48.00	0.87	67.89	125.00	94.77	0.57	85.79	100.00	0.65	0.00	\$ -	s -
15	HOGAR Y SEGURIDAD	30.00	0.86	69.81	125.00	94.77	0.57	85.79	100.00	0.65	0.00	S -	\$ -
16	OBRERO POPULAR	25.00	0.78	37.05	150.00	90.16	1.03	44.53	75.00	0.97	16.80	\$ 137,120.63	\$ 685,603.10
											TOTAL	\$2,995,134.05	\$ 14,975,670.26

Tabla 24. Estimación del ahorro por concepto de sustitución de equipos de bombeo. Fuente: Extraído de [1].

4.6.- Región Coyoacán

Los pozos analizados de la Región Coyoacán son 38, ninguno de estos pozos supera el 70% de eficiencia eléctrica (**Tabla 25** y **Tabla 26**). Por su parte, los parámetros hidráulicos muestran una muy baja de presión de descarga (**Tabla 27** y **Tabla 28**).

		CARGA	FACTOR DE	EFICIENCIA	MEDIDO	RES DE CIA E FUERZA	DE LUZ Y		V a-b	V b-c	V c ·a	V prom	la	lb	lc	l prom
No.	NOMBRE DEL POZO	DINÁMICA	POTENCIA	(%)	KWH	KW	KVAR	H.P	(VOLTS)	(VOLTS)	(VOLTS)	(VOLTS)	(AMP)	(AMP)	(AMP)	(AMP)
,		•			s	UBSISTEMA	COYOAC	ÁN								
1	ACOXPA No. 32	98.48	0.73	73.46	59.86	141.90	121.60	148.09	392.41	390.10	388.58	390.36	225.98	224.26	225.87	225.37
2	AJUSCO	93.67	0.86	40.56	30.83	72.16	42.58	96.87	416.80	415.50	414.80	415.70	116.30	116.50	116.80	116.53
3	CANTIL	112.05	0.89	42.75	38.53	82.06	199.79	109.61	419.40	417.10	420.50	419.00	125.30	120.10	136.00	127.13
4	CARACOL	96.05	0.88	39.28	18.33	41.93	23.98	56.60	429.10	430.30	430.40	429.93	60.40	65.00	69.00	64.80
5	COUNTRY CLUB	80.10	0.78	33.36	33.64	66.70	50.07	83.66	403.98	400.37	400.28	401.54	113.99	116.75	113.85	114.86
6	DEPORTIVO DURANGO	108.09	0.83	41.93	36.93	78.82	53.00	105.76	451.40	452.20	452.80	452.13	124.40	116.00	123.90	121.43
7	LOS REYES COYOACAN	95.45	0.86	44.98	49.68	99.72	59.92	133.10	428.40	430.90	427.90	429.07	153.20	155.80	158.90	155.97
8	MULTIFAMILIAR COAPA No. 8	63.22	0.41	69.90	33.44	86.43	61.08	46.03	483.30	479.70	481.10	481.37	102.00	100.50	102.30	101.60
9	PEDREGAL DE CARRASCO	95.92	0.82	30.34	44.48	93.43	65.14	123.49	434.80	435.40	434.50	434.90	148.50	150.90	148.40	149.27
10	PEDREGAL DE SANTO DOMINGO	119.11	0.95	39.45	22.54	80.68	93.70	154.87	430.70	429.70	430.00	430.13	160.00	162.50	167.90	163.47
11	PERIFERICO DIRECTO No.20 - B	94.22	0.85	29.74	38.46	118.74	171.14	158.75	476.60	475.40	475.70	475.90	174.70	166.50	164.50	168.57
12	PERIFERICO DIRECTO No. 21	91.83	0.86	28.31	36.23	113.62	72.49	95.99	416.80	415.50	414.80	415.70	115.30	116.50	114.60	115.47
13	PERIFERICO DIRECTO No. 24	100.14	0.83	76.82	22.03	50.66	33.08	68.56	458.80	459.20	461.30	459.77	78.50	75.30	77.90	77.23
	PERIFERICO No.1	91.10	0.87	40.29	45.08	93.19	120.92	124.58	476.70	479.70	477.60	478.00	126.40	132.10	128.90	129.13
	PERIFERICO No. 17	87.79	0.85	43.81	57.75	83.07	50.65	110.42	445.40	444.70	446.10	445.40	118.40	121.30	137.30	125.67
16	PRADOS CHURUBUSCO	90.38	0.84	65.57	49.56	105.43	68.32	139.57	482.50	484.90	481.40	482.93	144.70	148.70	151.70	148.37
17	ROMERO DE TERREROS	99.87	0.62	72.04	46.64	113.29	72.86	60.16	429.30	440.81	441.70	437.27	96.59	83.78	104.52	94.96
18	SAN NICOLAS TOLENTINO	75.73	0.83	35.74	26.18	96.58	42.88	70.49	425.50	422.70	424.30	424.17	82.70	87.90	86.90	85.83
19	SANTA URSULA COAPA	101.56	0.83	61.20	59.02	122.81	99.67	144.02	452.40	451.30	447.60	450.43	162.70	170.00	167.50	166.73
20	TERRANOVA	133.19	0.83	38.24	46.64	113.29	72.86	140.14	425.50	422.70	424.30	424.17	173.80	170.70	167.40	170.63
21	ZAPOTECAS	121.67	0.67	68.73	30.42	73.22	59.65	69.14	433.51	433.99	435.45	434.32	101.70	100.04	103.44	101.73
					SUBSISTE	ма соуоа	CÁN - TU	LYEHUALO	00							
22	TULYEHUALCO SUR No. 6	92.51	0.82	64.82	58.57	139.08	97.76	185.79	475.00	472.50	477.40	474.97	211.20	204.80	202.40	206.13
23	TULYEHUALCO SUR No. 34	84.21	0.91	46.24	34.33	95.06	48.15	136.50	446.20	449.20	445.80	447.07	139.90	144.10	151.60	145.20

Tabla 25. Resumen de parámetros eléctricos de los pozos de la región Coyoacán (parte 1) Fuente: Extraído de [1].

		CARGA	FACTOR DE	EFICIENCIA	MEDIDO	RES DE CIA I FUERZA	DE LUZ Y		V a-b	V b-c	V c-a	V prom	la	lb	lc	l prom
No.	NOMBRE DEL POZO	DINÁMICA	POTENCIA	(%)	KWH	KW	KVAR	H.P	(VOLTS)	(VOLTS)	(VOLTS)	(VOL12)	(A MP)	(AMP)	(AMP)	(AMP)
					•	DOZOS /	AISLADOS	•			<i>'</i>		<u> </u>			
					T		1	1		:	1	1	1	ı		
24	ZAPATA No. 16	111.36	0.94	31.09	33.23	109.77	63.49	150.73	440.30	440.90	442.10	441.10	149.90	163.80	156.70	156.80
25	REY MOCTEZ UMA	100.59	0.79	32.01	49.87	100.87	85.82	136.05	411.20	410.90	414.30	412.13	184.51	185.18	167.31	179.00
26	TULYEHUALCO No. 10	112.04	0.85	64.72	35.80	108.69	70.34	145.70	437.00	436.00	435.00	436.00	168.20	171.20	166.40	168.60
27	TULYEHUALCO No. 33	81.60	0.87	31.92	28.90	117.86	37.62	157.99	457.00	455.00	457.00	456.33	170.40	172.50	173.50	172.13
28	A COXPA No. 31	92.04	0.84	73.30	31.30	76.15	55.82	84.43	463.00	467.00	469.00	466.33	107.00	113.00	115.00	111.67
29	BOSQUES DE TETLAMAYA	101.74	0.79	13.29	30.65	103.21	13.71	138.35	417.00	419.00	419.00	418.33	183.00	181.00	179.00	181.00
30	CEDRAL	88.62	0.95	56.79	45.36	59.61	33.85	79.91	407.00	407.00	405.00	406.33	93.00	89.00	87.00	89.67
31	PERIFERICO 4	84.32	0.85	12.42	20.60	74.11	9.21	99.34	441.00	441.00	439.00	440.33	117.00	115.00	113.00	115.00
32	RUIZ CORTINEZ	104.95	0.85	31.69	28.60	71.39	43.44	95.70	417.00	418.00	417.00	417.33	221.00	222.00	223.00	222.00
33	VIVEROS EL RELOJ	114.40	0.86	64.08	49.60	77.54	49.69	103.94	419.00	421.00	421.00	420.33	123.00	123.00	127.00	124.33
34	20 DE AGOSTO	95.75	0.87	38.24	35.20	122.82	46.96	164.64	439.00	436.00	433.00	436.00	188.00	185.00	190.00	187.67
35	A UXILIAR XO TEPINGO 3-A				N O	EXI	S T E	E L	POZO	E N	CAM.	P O				
36	A UXILIAR XO TEPINGO 6-C	93.44	0.87	40.88	41.60	60.54	24.75	81.15	415.00	419.00	417.00	417.00	93.05	97.00	99.00	96.35
37	A UXILIAR XO TEPINGO 7-C	87.78	0.83	51.40	52.80	67.01	34.44	89.83	486.00	486.00	489.00	487.00	96.00	99.00	91.00	95.33
38	A UXILIAR XO TEPINGO 10-B	95.88	0.86	27.50	22.50	85.51	23.52	114.61	421.00	421.00	423.00	421.67	135.00	135.00	140.00	136.67
39	EDUCACIÓN II	98.59	0.69	66.37	45.60	81.91	54.37	109.80	403.00	388.00	401.00	397.33	171.00	166.00	178.00	171.67

NOTA: TODOS LOS DATOS QUE SE EXPRESAN EN ESTA TABLA FUERON TOMADOS EN CAMPO POR LA CONTRATISTA --- DATO INCOMPLETO POR FALTA DE ALGUNA INFORMACIÓN QUE NO SE PUDO LLEGAR A CABO EN CAMPO * DATO TOMADO COMO REFERENCIA DE ANTECEDENTE.

Tabla 26. Resumen de parámetros eléctricos de los pozos de la región Coyoacán (parte 2). Fuente: Extraído de [1].

No.	NOMBRE DEL POZO	No. DE SERIE DE MEDIDOR	MARCA DEL MEDIDOR	TIPO DE MEDIDOR	DIÁMETRO DEL MEDIDOR	* GASTO (L/S)	HORAS DE OPERACIÓN MENSUAL	** HORAS DE OPERACIÓN DIARIA (HR)	EXTRACCIÓN MENSUAL (M3)	EXTRACCIÓN DIARIA (M3)	*NIVEL ESTÁTICO (MTS)	*NIVEL DINÁMICO (MTS)	*PRESIÓN (KG/CM2)
					SUI	BSISTEMA	COYOACÁN						
1	ACOXPA No. 32				*****	84.0	360.00	12.00	217728.00	7257.60	65.00	79.00	1.700
2	AJUSCO					31.9	600.00	20.00	82684.80	2756.16	76.8	85.00	0.700
3	CANTIL					31.8	480.00	16.00	82425.60	2747.52	82.60	95.00	1.500
4	CARACOL					17.6	480.00	16.00	45619.20	1520.64	71.20	85.60	0.850
5	COUNTRY CLUB					26.5	720.00	24.00	68688.00	2289.60	55.90	68.11	1.000
6	DEPORTIVO DURANGO					31.2	720.00	24.00	80870.40	2695.68	87.20	96.10	1.000
7	LOS REYES COYOACAN					47.7	600.00	20.00	123638.40	4121.28	62.80	72.48	2.150
8	MULTIFAMILIAR COAPA No. 8					38.7	600.00	20.00	100310.40	3343.68	56.00	60.90	0.100
9	PEDREGAL DE CARRASCO					29.7	720.00	24.00	76982.40	2566.08	79.60	85.60	0.850
10	PEDREGAL DE SANTO DOMINGO					39.0	720.00	24.00	101088.00	3369.60	98.70	109.50	0.750
11	PERIFERICO DIRECTO No.20 - B					38.1	600.00	20.00	98755.20	3291.84	78.60	81.45	1.150
	PERIFERICO DIRECTO No. 21					22.5	600.00	20.00	58320.00	1944.00	66.30	75.60	1.500
13	PERIFERICO DIRECTO No. 24					40	720.00	24.00	103680.00	3456.00	85.3	97.50	0.150
14	PERIFERICO No.1					41.9	720.00	24.00	108604.80	3620.16	65.5	75.95	1.300
15	PERIFERICO No. 17					41.9	600.00	20.00	108604.80	3620.16	65.3	71.39	1.450
16	PRADOS CHURUBUSCO					77.0	720.00	24.00	199584.00	6652.80	68.20	75.80	1.100
17	ROMERO DE TERREROS					33.0	720.00	24.00	85536.00	2851.20	72.00	85.00	1.350
18	SANNICOLAS TOLENTINO					25.3	360.00	12.00	65577.60	2185.92	52.6	64.30	1.000
19	SANTA URSULA COAPA					66.0	300.00	10.00	171072.00	5702.40	73.20	85.70	1.250
20	TERRANOVA					30.6	720.00	24.00	79315.20	2643.84	105.69	122.30	0.900
21	ZAPOTECAS					29.7	480.00	16.00	76982.40	2566.08	102.60	109.40	0.900
					SUBSISTEM	A COYOA	CÁN - TULYEHU	JALCO					
22	TULYEHUALCO SUR No. 6					99.0	360.00	12.00	256608.00	8553.60	64.20	76.15	1.500
23	TULYEHUALCO SUR No. 34					57.0	480.00	16.00	147744.00	4924.80	63.80	72.00	1.000

Tabla 27. Resumen de parámetros hidráulicos de los pozos de la región Coyoacán (Parte 1). Fuente: Extraído de [1].

No.	NOMBRE DEL POZO	No. DE SERIE DE MEDIDOR	MARCA DEL MEDIDOR	TIPO DE MEDIDOR	DIÁMETRO DEL MEDIDOR	* GASTO (L/S)	HORAS DE OPERACIÓN MENSUAL	** HORAS DE OPERACIÓN DIARIA (HR)	EXTRACCIÓN MENSUAL (M3)		*NIVEL ESTÁTICO (MTS)	*NIVEL DINÁMICO (MTS)	*PRESIÓN (KG/CM2)
24	ZAPATA No. 16					32.0	480.00	16.00	82944.00	2764.80	78.60	92.50	1,700
	REY MOCTEZUMA					33.0	660.00	22.00	85536.00	2851.20	74.00	85.00	1.350
	TULYEHUALCO No. 10					64.0	720.00	24.00	165888.00	5529.60	72.50	85.20	2.500
	TULYEHUALCO No. 33					47.0	720.00	24.00	12182400	4060.80	52.80	59.30	2.000
28	ACOXPA No. 31					61.8	660.00	22.00	160237.44	5341.25	66.61	85.20	0.430
29	BOSQUES DE TETLAMAYA					13.7	540.00	18.00	35614.08	1187.14	79.10	85.23	1.400
	CEDRAL					38.9	720.00	2400	10093248	3364.42	73.20	76.05	1.000
31	PERIFERICO 4					11.1	540.00	1800	28848.96	961.63	72.76	7482	0.700
32	RUIZ CORTINEZ					42.2	660.00	22.00	109382.40	3646.08	79.10	85.36	1.700
33	VIVEROS EL RELOJ					44.3	660.00	22.00	114773.76	3825.79	78.86	85.80	2.600
	20 DE AGOSTO					50.0	720.00	24.00	129600.00	4320.00	76.50	83.20	1.000
35	AUXILIAR XOTEPINGO 3-A				N O	EXIS	TE EL	POZO	EN C	AMPO		***************************************	***************************************
	AUXILIAR XOTEPINGO 6-C					27.0	600.00	20.00	69984.00	2332.80	68.36	76.35	1.500
37	AUXILIAR XOTEPINGO 7-C					40.0	660.00	22.00	103680.00	3456.00	76.30	80.50	0.500
38	AUXILIAR XOTEPINGO 10-B					25.0	720.00	24.00	64800.00	2160.00	76.30	88.90	0.500
	EDUCACIÓN II					56.2	720.00	2400	145696.32	4856.54	77.00	86.60	1.000

Tabla 28. Resumen de parámetros hidráulicos de los pozos de la región Coyoacán (Parte 2). Fuente: Extraído de [1].

<sup>NO EXISTE O NO SE PUDO TOMAR DATO EN CAMPO

DATOS TOMADOS EN CAMPO POR CONTRATISTA

ATOS PROPORCIONADOS POR LA REGIONAL COYOACAN</sup>

Con la información de las tablas mostradas anteriormente, se calculó la eficiencia electromecánica de los equipos de bombeo de cada pozo, resultando que solo 2 pozos superan el 70% (**Tabla 29**, **Tabla 30**, **Tabla 31** y **Tabla 32**).

							SUE	BSISTEMA COYO	ACÁN				
No.	SÍMBOLO	DESCRIPCIÓN	ACOXPA No. 32	AJUSCO	DEPORTIVO CANTIL	CARACOL	COUNTRY CLUB	DEPORTIVO DURANGO	LOS REYES COYOACAN	MULTIFAMILIAR COAPA No. 8	PEDREGAL DE CARRASCO	PEDREGAL DE SANTO DOMINGO	PERIFERICO DIRECTO No.20 · B
1	DI	Diàmetro interno de la tuberia (m)	0.254	0.200	0.201	0.152	0.201	0.203	0.199	0.201	0.200	0.201	0.200
2	RPM	Frecuencia de rotación (rpm)	1700	3500	1780	3500	3500	3500	1780	3500	3500	3500	3500
3	ND	Nivel Dinàmico (m)	79.00	85.00	95.00	85.60	68.11	96.10	72.48	60.90	85,60	109.50	81.45
4	he	Distancia desde el nivel del piso al eje de la tuberia de descarga (m)	0.85	1.02	1.10	0.90	1.05	1.10	0.75	0.81	1.15	1.10	0.57
5	P1	Lectura del manòmetro a la descarga (m)	17.00	7.00	15.00	8.50	10.00	10.00	21.50	1.00	8.50	7.50	11.50
6	Pm	Presiòn a la descarga=(4)+(5) (m)	17.85	8.02	16.10	9.40	11.05	11.10	22.25	1.81	9.65	8.60	12.07
7	a	Àrea del tubo de descarga=(3.1416X(1)2)/4 (m²)	0.051	0.031	0.032	0.018	0.032	0.032	0.031	0.032	0.031	0.032	0.031
8	0	Gasto (m²/s)	0.084	0.032	0.032	0.018	0.027	0.031	0.048	0.039	0.030	0.039	0.038
9	hv	Carga de velocidad = ((8)/(7))²/19.6133 (m)	0.140	0.053	0.051	0.048	0.036	0.047	0.120	0.076	0.046	0.077	0.075
10	hfc	Pèrdidas de fricción en la columna (m)	1.485	0.600	0.900	1.005	0.900	0.840	0.602	0.432	0.624	0.936	0.624
11	hd	Carga a la descarga = (6)+(9)+(10) (m)	19.475	8.673	17.051	10.453	11.986	11.987	22.972	2.318	10.320	9.613	12.769
12	Н	Carga total =(3)+(11) (m)	98.475	93.673	112.051	96.053	80.096	108.087	95.452	63.218	95.920	119.113	94.219
	la	Corriente linea A (amperes)	225.98	116.30	125.30	60.40	113.99	124.40	153.20	102.00	148.50	160.00	174.70
	lb	Corriente linea B (amperes)	224.26	116.50	120.10	65.00	116.75	116.00	155.80	100.50	150.90	162.50	166.50
13	lc	Corriente linea C (amperes)	225.87	116.80	136.00	69.00	113.85	123.90	158.90	102.30	148.40	167.90	164.50
	1	Promedio= (la+lb+lc)/3 (amperes)	225.370	116.533	127.133	64.800	114.863	121.433	155.967	101.600	149.267	163.467	168.567
	Vab	Tensión de fase AB (volts)	392.41	416.80	419.40	429.10	403.98	451.40	428.40	483.30	434.80	430.70	476.60
	Vbc	Tensión de fase BC (volts)	390.10	415.50	417.10	430.30	400.37	452.20	430.90	479.70	435.40	429.70	475.40
14	Vca	Tensión de fase CA (volts)	388.58	414.80	420.50	430.40	400.28	452.80	427.90	481.10	434.50	430.00	475.70
	V	Promedio=(Vab+Vac+Vbc)/3 (volts)	390.363	415.700	419.000	429.933	401.543	452.133	429.067	481.367	434.900	430.133	475.900
	tva	Factor de potencia linea A	0.718	0.858	0.853	0.874	0.778	0.842	0.863	0.401	0.824	0.942	0.857
	tp b	Factor de potencia linea B	0.715	0.866	0.916	0.855	0.775	0.840	0.848	0.214	0.820	0.957	0.834
15	tpc	Factor de potencia linea C	0.742	0.86	0.890	0.896	0.791	0.807	0.859	0.601	0.814	0.947	0.866
	Fp	Promedio=(fpa+fpb+fpc)/3	0.725	0.861	0.886	0.875	0.781	0.830	0.857	0.405	0.819	0.949	0.852
16	Pe	Potencia de entrada al motor = = 1.732X(13)X(14)X(15)/1000 (KW)	110.472	72.269	81.775	42,221	62416	78.896	99.292	34.334	92.121	115.530	118.425
17	Ps	Potencia de salida de la toma = = 9.81X(8)X(12) (KW)	81.147	29.314	34.955	16.584	20.822	33.083	44.666	24.000	27.947	45.571	35.215
18	η	Eficiencia electromecànica (%)	73.46	40.56	42.75	39.28	33.36	41.93	44.98	69.90	30.34	39.45	29.74

Tabla 29. Resumen de eficiencia electromecánica de los pozos de la región Coyoacán (Parte 1). Fuente: Extraído de [1].

				COYOA CÁN - IUALCO
No.	SÍMBOLO	DESCRIPCIÓN	TULYEHUALCO No. 6	TULYEHUALCO No. 34
		Diàmetro interno de la tuberia (m)	0.301	0.004
2	DI	Frecuencia de rotación (rpm)		0.201
	RPM	Nivel Dinàmico (m)	3500	3500
3	ND he	Distancia desde el nivel del piso al eje de la tuberia de descarga (m)	76.15 0.84	72.00 1.00
5	P1	Lectura del manòmetro a la descarga (m)	15.00	10.00
6	Pm	Presiòn a la descarga=(4)+(5) (m)	15.84	11.00
7	a	Àrea del tubo de descarga=(3.1416X(1)2)/4 (m2)	0.071	0.032
8	Q	Gasto (m³/s)	0.099	0.057
9	hv	Carga de velocidad = $((8)/(7))^2/19.6133$ (m)	0.099	0.165
10	hfc	Pèrdidas de fricción en la columna (m)	0.418	1.041
11	hd	Carga a la descarga = (6)+(9)+(10) (m)	16.357	12.206
12	Н	Carga total =(3)+(11) (m)	92.507	84.206
	la	Corriente linea A (amperes)	211.20	139.90
13	lb	Corriente linea B (amperes)	204.80	144.10
15	lc	Corriente linea C (amperes)	202.40	151.60
	1	Promedio= (la+lb+lc)/3 (amperes)	206.133	145.200
	Vab	Tensión de fase AB (volts)	475.00	446.20
	Vbc	Tensión de fase BC (volts)	472.50	449.20
14	Vca	Tensión de fase CA (volts)	477.40	445.80
	V	Promedio= (Vab+Vac+Vbc)/3 (volts)	474.967	447.067
	tp a	Factor de potencia linea A	0.812	0.905
15	tp b	Factor de potencia linea B	0.830	0.884
15	tp c	Factor de potencia linea C	0.810	0.928
	Fp	Promedio= (fpa+fpb+fpc)/3	0.817	0.906
16	Pe	Potencia de entrada al motor = = 1.732X(13)X(14)X(15)/1000 (KW)	138.598	101.825
17	Ps	Potencia de salida de la toma = = 9.81X(8)X(12) (KW)	89.842	47.085
18	η	Eficiencia electromecànica (%)	64.82	46.24

Tabla 30. Resumen de eficiencia electromecánica de los pozos de la región Coyoacán (Parte 2). Fuente: Extraído de [1].

						POZOS AI	SLADOS			
No.	SÍMBOLO	DESCRIPCIÓN	ZAPATA No. 16	REY MOCTEZUMA	TULYEHUALCO No. 10	TULYEHUALCO No. 33	ACOXPA No. 31	BOSQUES DE TETLAMEYA	CEDRAL	PERIFERICO No. 4
1	DI	Diàmetro interno de la tuberia (m)	0.199	0.198	0.251	0.201	0.301	0.201	0.203	0.201
2	RPM	Frecuencia de rotación (rpm)	3500	3500	3500	3500	3500	3500	3500	3500
3	ND ND	Nivel Dinàmico (m)	92.50	85.00	85.20	59.30	85.20	85.23	76.05	74.82
4	he	Distancia desde el nivel del piso al eje de la tuberia de descarga (m)	1.00	0.95	0.75	1.19	1.50	1.50	1.50	1.50
5	P1	Lectura del manòmetro a la descarga (m)	17.00	13.50	25.00	20.00	4.30	14.00	10.00	7.00
6	Pm	Presiòn a la descarga=(4)+(5) (m)	18.00	14.450	25.750	21.190	5.800	15.500	11.500	8.500
7	a	Àrea del tubo de descarga=(3.1416X(1)2)/4 (m2)	0.031	0.031	0.049	0.032	0.071	0.032	0.032	0.032
8	Q	Gasto (m³/s)	0.032	0.033	0.064	0.047	0.062	0.014	0.039	0.011
9	hv	Carga de velocidad = $((8)/(7))^2/19.6133$ (m)	0.054	0.059	0.085	0.112	0.038	0.010	0.074	0.006
10	hfc	Pèrdidas de fricción en la columna (m)	0.804	0.850	1.000	1.000	1.000	1.000	1.000	1.000
11	hd	Carga a la descarga = (6)+(9)+(10) (m)	18.858	15.359	26.835	22.302	6.838	16.510	12.574	9.506
12	Н	Carga total =(3)+(11) (m)	111.358	100.359	112.035	81.602	92.038	101.740	88.624	84.326
	la	Corriente linea A (amperes)	149.90	184.51	168.20	170.40	107.00	183.00	93.00	117.00
	Ib	Corriente linea B (amperes)	163.80	185.18	171.20	172.50	113.00	181.00	89.00	115.00
13	lc	Corriente linea C (amperes)	156.70	167.31	166.40	173.50	115.00	179.00	87.00	113.00
	1	Promedio = (la+lb+lc)/3 (amperes)	156.800	179.001	168.600	172.133	111.667	181.000	89.667	115.000
	Vab	Tensión de fase AB (volts)	440.30	411.20	437.00	457.00	463.00	417.00	407.00	441.00
	Vbc	Tensión de fase BC (volts)	440.90	410.90	436.00	455.00	467.00	419.00	407.00	441.00
14	Vea	Tensión de fase CA (volts)	442.10	414.30	435.00	457.00	469.00	419.00	405.00	439.00
	V	Promedio=(Vab+Vac+Vbc)/3 (volts)	441.100	412.133	436.000	456.333	466.333	418.333	406.333	440.333
	tp a	Factor de potencia linea A	0.929	0.830	0.830	0.877	0.864	0.815	0.946	0.837
15	tp b	Factor de potencia linea B	0.955	0.765	0.844	0.870	0.824	0.866	0.957	0.836
15	tp c	Factor de potencia linea C	0.932	0.788	0.887	0.852	0.845	0.761	0.931	0.862
	Fp	Promedio= (fpa+fpb+fpc)/3	0.939	0.794	0.854	0.866	0.844	0.787	0.945	0.845
16	Pe	Potencia de entrada al motor = = 1.732X(13)X(14)X(15)/1000 (KW)	112.446	101.495	108.69	117.864	76.152	103.210	59.613	74.111
17	Ps	Potencia de salida de la toma = = 9.81X(8)X(12) (KW)	34.957	32.489	70.340	37.624	55.817	13.713	33.854	9.207
18	η	Eficiencia electromecànica (%)	31.09	32.01	64.72	31.92	73.30	13.29	56.79	12.42

Tabla 31. Resumen de eficiencia electromecánica de los pozos de la región Coyoacán (Parte 3). Fuente: Extraído de [1].

						POZOS AI	SLADOS			
No.	SÍMBOLO	DESCRIPCIÓN	RUIZ CORTINEZ	VIVEROS DEL RELOJ No. 2	20 DE A GOSTO	AUXILIAR XOTEPINGO 3-A	AUXILIAR XOTEPINGO 6-C	AUXILIAR XOTEPINGO 7-C	A UXILIA R XOTEPINGO 10 B	EDUCACIÓN No .2
1	DI	Diàmetro interno de la tuberia (m)	0.202	0,203	0.203		0.202	0,203	0.200	0,201
2	RPM	Frecuencia de rotación (rpm)	3500	3500	3500		3500	3500	3500	3500
3	ND	Nivel Dinàmico (m)	85.36	85.80	83.20		76.35	80.50	88.90	86.60
4	he	Distancia desde el nivel del piso al eje de la tuberia de descarga (m)	1.50	1.50	1.50		1.05	1.20	0.95	1.10
5	P1	Lectura del manòmetro a la descarga (m)	17.00	26.00	10.00		15.00	5.00	5.00	10.00
6	Pm	Presion a la descarga=(4)+(5) (m)	18.500	27.500	11.500		16.050	6.200	5.950	11.100
7	а	Àrea del tubo de descarga=(3.1416X(1)2)/4 (m2)	0.032	0.032	0.032		0.032	0.032	0.031	0.032
8	Q	Gasto (m³/s)	0.042	0.044	0.050		0.027	0.040	0.025	0.056
9	hv	Carga de velocidad = ((8)/(7))²/19.6133 (m)	0.088	0.095	0.122	0	0.036	0.078	0.032	0.160
10	hfc	Pèrdidas de fricción en la columna (m)	1.000	1.000	0.930	campo	1.000	1.000	1.000	0.730
11	hd	Carga a la descarga = (6)+(9)+(10) (m)	19.588	28.595	12.552	g	17.086	7.278	6.982	11.990
12	Н	Carga total =(3)+(11) (m)	104.948	114.395	95.752		93.436	87.778	95.882	98.590
	la	Corriente linea A (amperes)	221.00	123.00	188.00	en	93.05	96.00	135.00	171.00
	lb	Corriente linea B (amperes)	222.00	123.00	185.00	ZO	97.00	99.00	135.00	166.00
13	lc	Corriente linea C (amperes)	223.00	127.00	190.00	ozod	99.00	91.00	140.00	178.00
	1	Promedio = (la+lb+lc)/3 (amperes)	222.000	124.333	187.667	el j	96.350	95.333	136.667	171.667
	Vab	Tensión de fase AB (volts)	417.00	419.00	439.00		415.00	486.00	421.00	403.00
	Vbc	Tensión de fase BC (volts)	418.00	421.00	436.00	existe	419.00	486.00	421.00	388.00
14	Vca	Tensión de fase CA (volts)	417.00	421.00	433.00	X	417.00	489.00	423.00	401.00
	V	Promedio = (Vab+Vac+Vbc)/3 (volts)	417.333	420.333	436.000		417.000	487.000	421.667	397.333
	to a	Factor de potencia linea A	0.867	0.842	0.850	No	0.880	0.850	0.850	0.610
	tv b	Factor de potencia linea B	0.874	0.864	0.870		0.870	0.820	0.870	0.660
15	tp c	Factor de potencia linea C	0.822	0.864	0.880		0.860	0.830	0.850	0.810
	Fp	Promedio = (fpa+fpb+fpc)/3	0.854	0.857	0.867		0.870	0.833	0.857	0.693
16	Pe	Potencia de entrada al motor = = 1.732X(13)X(14)X(15)/1000 (KW)	137.092	77.543	122.821		60.542	67.010	85.505	81.909
17	Ps	Potencia de salida de la toma = = 9.81X(8)X(12) (KW)	43.447	49.692	46.966		24.748	34.444	23.515	54.365
18	η	Eficiencia electromecànica (%)	31.69	64.08	38.24		40.88	51.40	27.50	66.37

Tabla 32. Resumen de eficiencia electromecánica de los pozos de la región Coyoacán (Parte 4). Fuente: Extraído de [1].

Finalmente, al efectuar la proyección de ahorro (en costos de producción) en un horizonte de tiempo de 5 años a partir del reemplazo del equipo de bombeo de cada pozo, se estima que éste ahorro será de \$ 56'131,439.39 (**Tabla 33** y **Tabla 34**).

						BOMBA ACTUA	AT.	POTENCIA DE	BOMBA	PROPUESTA		AHORRO REAL DE	AHORRO REAL DE
No.	NOMBRE DEL POZO	GASTO (lps)	FACTOR DE POTENCIA	EFICIENCIA ELECTROMECÁNICA (%)	POTENCIA (HP)	POTENCIA A LA QUE TRABAJA (HP)	PRECIO POR METRO CÚBICO (\$/m3)	TRABA JO CALCULADA (HP)	POTENCIA (HP)	PRECIO POR METRO CÚBICO (\$/m3)	% DE AHORRO	CONSUMO ANUAL EN PESOS MEXICANOS	CONSUMO A 5 AÑOS EN PESOS MEXICANOS
						SUBSISTEMA	COYOA CÁN						
1	ACOXPA No. 32	84.0	0.725	73.46	200	148.09	0.51	145.03	150	0.51	0.0		S -
2	AJUSCO	31.9	0.861	40.56	200	96.87	0.87	52.39	75	0.67	22.6	\$ 197,861.07	\$ 989,305.34
3	CANTIL	31.8	0.886	42.75	200	109.61	0.99	62.48	75	0.68	31.6	\$ 313,037.55	\$ 1,565,187.74
4	CARACOL	17.6	0.875	39.28	100	56.60	0.92	29.64	50	0.81	11.7	\$ 59,649.29	\$ 298,246.46
5	COUNTRY CLUB	26.5	0.781	33.36	150	83.66	0.91	37.22	50	0.54	40.2	\$ 304,429.62	\$ 1,522,148.11
6	DEPORTIVO DURANGO	31.2	0.830	41.93	200	105.76	0.97	59.13	75	0.69	29.1		\$ 1,390,786.31
7	LOS REYES COYOACAN	47.7	0.857	44.98	200	133.10	0.80	79.83	100	0.60	24.9	\$ 299,398.23	\$ 1,496,991.14
8	MULTIFAMILIAR COAPA No. 8	38.7	0.405	69.90	75	46.02	0.34	42.90	50	0.37	0.0		s -
9	PEDREGAL DE CARRASCO	29.7	0.819	30.34	250	123.49	1.19	49.95	75	0.72	39.3	\$ 438,519.29	
10	PEDREGAL DE SANTO DOMINGO	39.0	0.949	39.45	250	154.87	1.14	81.45	100	0.74	35.4	\$ 496,228.77	
11	PERIFERICO DIRECTO No.20 - B	38.1	0.852	29.74	250	158.75	1.20	62.94	75	0.56	52.8	\$ 757,497.52	:
12	PERIFERICO DIRECTO No. 21	22.5	0.861	28.31	200	95.99	1.22	36.23	50	0.64	47.9	\$ 415,968.95	\$ 2,079,844.75
13	PERIFERICO DIRECTO No. 24	40.0	0.832	76.82	75	68.56	0.49	70.23	75	0.54	0.0	s .	s .
14	PERIFERICO No.1	41.9	0.869	40.29	250	124.58	0.85	66.92	75	0.51	39.8	\$ 448,460.84	\$ 2,242,304.21
15	PERIFERICO No. 17	41.9	0.850	43.81	200	110.42	0.76	64.49	75	0.51	32.1	\$ 320,311.85	\$ 1,601,559.26
16	PRADOS CHURUBUSCO	77.0	0.839	65.57	200	139.57	0.52	122.02	150	0.56	0.0	s -	s -
17	ROMERO DE TERREROS	33.0	0.624	72.04	100	60.16	0.52	57.78	75	0.65	0.0	s .	s .
18	SAN NICOLAS TOLENTINO	25.3	0.834	35.74	200	70.50	0.80	33.60	50	0.57	29.1	\$ 185,373.51	\$ 926,867.57
19	SANTA URSULA COAPA	66.0	0.826	61.20	200	144.03	0.63	117.52	125	0.54	13.2	\$ 172,037.29	\$ 860,186.45
20	TERRANOVA	30.6	0.834	38.24	250	140.14	1.31	71.46	75	0.70	46.5	\$ 589,218.62	
21	ZAPO TECAS	29.7	0.674	68.73	100	69.14	0.67	63.36	75	0.72	0.0	s .	:
					SUBSIS	ГЕМА СОУОАС	ÁN - TULYEHUAI	.co					
22	TULYEHUALCO SUR No. 6	99.0	0.817	64.82	250	185.79	0.54	160.57	175	0.51	0.0	s -	s -
23	TULYEHUALCO SUR No. 34	57.0	0.906	46.24	250	136.49	0.69	84.16	100	0.50	26.7	\$ 330,132.16	\$ 1,650,660.82
						POZOS AI	SLADOS						

Tabla 33. Estimación del ahorro por concepto de sustitución de equipos de bombeo (Parte 1). Fuente: Extraído de [1].

						BOMBA ACTUA	L	POTENCIA DE	BOMBA	PROPUESTA			
No.	NOMBRE DEL POZO	GASTO (lps)	FACTOR DE POTENCIA	EFICIENCIA ELECTROMECÁNICA (%)	PO TENCIA (HP)	POTENCIA A LA QUE TRABAJA (HP)	PRECIO POR METRO CÚBICO (\$/m3)	TRABAJO CALCULADA (HP)	POTENCIA (HP)	PRECIO POR METRO CÚBICO (\$/m3)	% DE AHORRO	AHORRO REAL DE CONSUMO ANUAL EN PESOS MEXICANOS	AHORRO REAL DE CONSUMO A 5 AÑOS EN PESOS MEXICANOS
							S AISLADOS						
_	:												
	ZAPATA No. 16	32.0	0.94	31.09	250	150.73		62.48	75	0.67		\$ 684,996.96	\$ 3,424,984.8
	REY MOCTEZUMA	33.0	0.79	32.01	250	136.05	1.18	58.07	75	0.65		\$ 552,119.67	
26	TULYEHUALCO No. 10	64.0	0.85	64.72	200	145.69	0.65	125.72	150	0.67	0.0	s -	s -
27	TULYEHUALCO No. 33	47.0	0.87	31.92	250	157.99	0.96	67.75	75	0.46	52.5	\$ 750,586.93	\$ 3,752,934.6
	ACOXPA No. 31	61.8	0.84	73.30	150	102.08	0.47	99.76	100	0.46	0.0	s -	s -
29	BOSQUES DE TETLAMEYA	13.7	0.79	13.29	250	138.35	2.89	24.51	50	1.04	63.9	\$ 799,082.29	
30	CEDRAL	38.9	0.94	56.79	150	79.91	0.59	60.51	75	0.55	6.1	\$ 44,373.25	
31	PERIFERICO No. 4	11.1	0.85	1242	200	99.34	2.56	16.46	50	1.29	49.7	\$ 446,278.55	
32	RUIZ CORTINEZ	42.2	0.85	31.69	250	183.77	1.25	77.65	100	0.68	45.6	\$ 757,618.76	
33	VIVEROS EL RELO J No.2	44.3	0.86	64.08	150	103.95	0.67	88.81	100	0.65	0.0	s -	s -
34	20 DE AGOSTO	50.0	0.87	38.24	250	164.64	0.94	83.94	100	0.57	39.3	\$ 584,611.56	
35	AUXILIAR XOTEPINGO 3-A				N O	EXIS	T E E L	P 0	z o	E N C	A M P	0	
36	AUXILIAR XOTEPINGO 6-C	27.0	0.87	40.88	150	81.16	0.86	44.23	50	0.53	38.4	\$ 281,758.04	
37	AUXILIAR XOTEPINGO 7-C	40.0	0.83	51.40	150	89.83	0.64	61.56	75	0.54	16.5	\$ 134,089.67	
	AUXILIAR XOTEPINGO 10 B	25.0	0.86	27.50	200	114.62	1.31	42.03	50	0.57	56.4	\$ 584,490.33	
39	EDUCACIÓN No. 2	56.2	0.69	66.37	150	109.80	0.56	97.17	100	0.51	0.0	s -	s .
			•			•				•		\$ 11,226,287.88	\$ 56,131,439.38

Tabla 34. Estimación del ahorro por concepto de sustitución de equipos de bombeo (Parte 2). Fuente: Extraído de [1].

4.7.- Región Tlalpan

Los pozos analizados de la Región Tlalpan son 25, ninguno de estos pozos supera el 80% de eficiencia eléctrica (**Tabla 35**). Por su parte, los parámetros hidráulicos muestran una muy baja de presión de descarga (**Tabla 36**).

		CARGA	FACTOR DE	EFICIENCIA	MEDIDO	RES DE CIA FUERZA	DE LUZ Y		V a-b	V b-c	V c-a	V prom	la	lb	lc	l prom
No.	NOMBRE DEL POZO	DINÁMICA	POTENCIA	(%)	KWH	KW	KVAR	H.P	(VOLTS)	(VOLTS)	(VOLTS)	(VOLTS)	(AMP)	(AMP)	(AMP)	(AMP)
1	37 · H IS	163.67	0.80	71.51	41.00	88.89	107.36	117.39	464.60	463.40	461.10	463.03	134.50	133.10	141.20	136.27
2	27 - BI S	115.26	0.77	47.44	22.28	60.63	50.61	79.87	445.60	447.90	448.30	447.27	98.80	99.20	102.20	100.07
3	ARENAL	105.54	0.80	51.98	43.61	102.28	159.99	184.21	462.10	458.70	458.30	459.70	221.50	216.00	214.10	217.20
4	PEÑA POBRE	139.81	0.81	43.49	20.76	80.28	119.02	147.96	443.80	444.20	445.70	444.57	175.20	179.50	178.00	177.57
5	BELISARIO DO MÍNGUEZ	124.54	0.83	39.77	45.69	92.61	61.54	127.64	456.10	456.60	453.60	455.43	140.50	149.90	144.00	144.80
6	DEPORTIVO VIVANCO	138.47	0.86	49.64	34.09	72.43	75.90	95.38	425.30	426.30	428.80	426.80	107.60	116.20	111.20	111.67
7	DEPORTIVO XÓCHITL	103.87	0.81	44.05	23.56	53.37	39.08	65.43	492.60	491.30	493.80	492.57	69.90	71.30	71.30	70.83
8	ISSFAM	123.09	0.77	35.96	35.03	78.80	69.46	105.33	481.70	486.40	482.60	483.57	125.10	115.10	125.50	121.90
9	LIMANTITLA	90.03	0.64	53.81	18.06	41.61	34.53	54.79	436.40	431.40	433.30	433.70	85.70	86.80	83.10	85.20
10	PADIERNA No. 2	94.45	0.85	39.42	43.44	75.22	61.25	100.83	459.00	460.00	459.00	459.33	114.00	111.00	110.00	111.67
11	PADIERNA No. 4	105.96	0.64	40.02	18.57	90.24	68.96	97.48	464.00	464.40	464.40	464.27	147.10	146.40	131.30	141.60
12	PEÑA POBRE 1	116.69	0.80	59.00	44.21	108.27	62.26	108.20	443.10	445.30	443.40	443.93	129.10	132.00	131.26	130.79
13	PERIFÉRICO No. 5	157.77	0.85	52.84	28.55	87.87	61.29	117.79	445.00	447.00	443.00	445.00	135.70	129.90	135.20	133.60
14	PERIFÉRICO No. 6	109.39	0.89	31.96	38.06	107.54	56.53	144.02	468.40	466.40	467.00	467.27	147.80	155.30	147.10	150.07
15	R-2	120.23	0.82	69.20	25.77	59.65	45.01	82.93	458.90	457.40	461.70	459.33	94.70	96.00	95.20	95.30
16	R-3	81.07	0.81	66.77	1.27	10.03	26.41	63.87	420.00	419.00	424.00	421.00	79.00	85.00	78.00	80.67
17	R-5	136.78	0.86	38.58	42.58	89.38	60.54	119.81	417.00	417.00	419.00	417.67	141.00	145.00	145.00	143.67
18	R-6	95.89	0.85	53.85	14.00	40.46	25.12	54.80	457.90	457.30	460.70	458.63	60.00	63.70	57.50	60.40
19	R-7	107.93	0.80	33.44	29.68	69.63	60.85	97.62	432.50	435.00	431.30	432.93	121.80	121.70	121.30	121.60
20	R-8	108.16	0.86	53.26	30.26	78.20	46.77	108.15	431.40	435.20	432.20	432.93	124.80	122.20	127.90	124.97
21	REINO AVENTURA	123.96	0.77	36.66	19.79	86.66	71.37	114.72	420.10	426.60	420.70	422.47	151.30	153.60	150.00	151.63
22	SAN FERNANDO TLALPAN	149.62	0.78	76.89	24.12	86.12	68.50	115.15	415.10	411.20	412.50	412.93	153.00	155.70	151.70	153.47
23	SAN PEDRO MÁRTIR	110.14	0.90	34.40	37.10	134.41	238.86	133.91	412.40	416.30	413.20	413.97	152.60	151.90	161.30	155.27
24	TRÉBOL Y REBOMBEO (CTL-28)	112.93	0.85	71.96	15.82	52.78	55.27	70.17	455.30	452.40	453.10	453.60	76.80	81.70	77.30	78.60
25	VIADUCTO TLALPAN No. 2	109.60	0.83	70.46	11.44	50.36	54.21	67.51	466.50	469.30	465.40	467.07	76.60	73.10	75.40	75.03

Tabla 35. Resumen de parámetros eléctricos de los pozos de la región Tlalpan. Fuente: Extraído de [1].

No.	NOMBRE DEL POZO	No. DE SERIE DE MEDIDOR	MARCA DEL MEDIDOR	TIPO DE MEDIDOR	DIÁMETRO DEL MEDIDOR	* GASTO (L/S)	HORAS DE OPERACIÓN MENSUAL	™ HORAS DE OPERACIÓN DIARIA (HR)	EXTRACIÓN MENSUAL (M3)	EXTRACCIÓN DIARIA (M3)	*NIVEL ESTÁTICO (MTS)	*NIVEL DINÁMICO (MTS)	*PRESIÓN (KG/CM2)
1	37 BIS					39.00	600.00	20.00	101,088.00	3,369.60	76.85	104.50	5.80
2	27 BIS					25.00	720.00	24.00	64,800.00	2,160.00	78.23	103.50	1.00
3	ARENAL					69.00	720.00	24.00	178,848.00	5,961.60	59.80	84.35	1.95
4	PEÑA POBRE					35.00	600.00	20.00	90,720.00	3,024.00	97.17	108.30	3.00
5	BELISARIO DOMÍNGUEZ					31.00	720.00	24.00	80,352.00	2,678.40	85.71	93.40	3.00
6	DEPORTIVO VIVANCO					26.00	660.00	22.00	67,392.00	2,246.40	89.14	97.30	4.00
7	DEPORTIVO XÓCHITI.					21.10	660.00	22.00	54,691.20	1,823.04	85.25	89.20	1.20
8	ISSFAM					23.40	720.00	24.00	60,652.80	2,021.76	77.90	90.45	3.00
	LIMANTITLA					24.90	600.00	20.00	64,540.80	2,151.36	66.25	87.14	0.10
10	PADIERNA No. 2					32.00	660.00	22.00	82,944.00	2,764.80	82.98	87.49	0.51
11	PADIERNA No. 4					28.00	720.00	24.00	72,576.00	2,419.20	86.23	89.75	1.45
12	PEÑA POBRE 1					41.60	660.00	22.00	107,827.20	3,594.24	81.20	92.40	2.20
13	PERIFÉRICO No. 5					30.00	660.00	22.00	77,760.00	2,592.00	64.15	86.58	7.00
14	PERIFÉRICO No. 6					32.00	720.00	24.00	82,944.00	2,764.80	86.50	96.20	1.15
15	R-2					36.30	660.00	22.00	94.089.60	3,136.32	76.12	88.48	3.00
16	R-3					40.00	720.00	24.00	103,680.00	3,456.00	65.28	75.65	0.30
17	R-5					25.70	660.00	22.00	66,614.40	2,220.48	87.10	106.20	2.00
18	R-6					23.40	600.00	20.00	60,652.80	2,021.76	70.35	87.20	0.70
19	R-7					23.00	660.00	22.00	59,616.00	1,987.20	65.20	86.15	2.00
20	R-8					40.50	720.00	24.00	104,976.00	3,499.20	91.32	96.84	1.00
21	REINO AVENTURA					25.80	660.00	22.00	66,873.60	2,229.12	65.90	71.15	5.00
22	SAN FERNANDO TLA LPAN					45.00	720.00	24.00	116,640.00	3,888.00	78.25	107.46	4.00
23	SAN PEDRO MÁRTIR					31.80	660.00	22.00	82,425.60	2,747.52	76.18	88.64	2.00
24	TRÉBOL Y REBOMBEO					34.00	600.00	20.00	88,128.00	2,937.60	68.26	105.75	0.50
25	VIADUCTO TLALPAN No. 2					33.00	660.00	22.00	85,536,00	2,851,20	96.52	102.24	0.60

Tabla 36. Resumen de parámetros hidráulicos de los pozos de la región Tlalpan. Fuente: Extraído de [1].

Con la información de las tablas mostradas anteriormente, se calculó la eficiencia electromecánica de los equipos de bombeo de cada pozo, resultando que ninguno supera el 75% (**Tabla 37**, **Tabla 38** y **Tabla 39**).

						NO:	MBRE DEL	POZO			
No.	SÍMBOLO	DESCR I PCIÓN	37 BIS	SUR 27 BIS	ARENAL	PEÑA POBRE	BELISARIO DOMÍNGUEZ	DEPORTIVO VIVANCO	DEPORTIVO XÓCHITL	ISSFAM	LIMANTITLA
		44					,				
1	DI	Diámetro interno de la tubería (m)	0.251	0.201	0.251	0.251	0.201	0.201	0.150	0.201	0.201
2	RPM	Frecuencia de rotación (rpm)	3500	3500	3500	3500	3500	3500	3500	3500	3500
3	ND	Nivel Dinámico (m)	104.500	103.500	84.350	108.300	93.400	97.300	89.200	90.450	87.140
4	he	Distancia desde el nivel del piso al eje de la tubería de descarga (m)	0.790	0.910	1.240	0.960	0.530	0.700	1.280	0.900	1.040
5	P1	Lectura del manómetro a la descarga (m)	58.000	10.000	19.500	30.000	30.000	40.000	12.000	30.000	1.000
6	Pm	Presión a la descarga=(4)+(5) (m)	58.790	10.910	20.740	30.960	30.530	40.700	13.280	30.900	2.040
7	a	Área del tubo de descarga=(3.1416X(1)2)/4 (m2)	0.049	0.032	0.049	0.049	0.032	0.032	0.018	0.032	0.032
8	Q	Gasto (m³/s)	0.039	0.025	0.069	0.035	0.031	0.026	0.021	0.023	0.025
9	hv	Carga de velocidad = ((8)/(7)) ² /19.6133 (m)	0.032	0.032	0.099	0.026	0.049	0.034	0.073	0.028	0.031
10	hfc	Pérdidas de fricción en la columna (m)	0.700	0.910	0.530	0.710	0.530	0.438	1.320	1.710	0.822
11	hd	Carga a la descarga = (6)+(9)+(10) (m)	59.522	11.854	21.367	31.696	31.111	41.172	14.673	32.638	2.893
12	Н	Carga total =(3)+(11) (m)	164.022	115.354	105.717	139.996	124.511	138.472	103.873	123.088	90.033
	la	Corriente línea A (amperes)	134.500	98.800	221.500	175.200	140.500	107.600	69.900	125.100	85.700
40	lb	Corriente línea B (amperes)	133.100	99.200	216.000	179.500	149.900	116.200	71.300	115.100	86.800
13	Ic	Corriente línea C (amperes)	141.200	102.200	214.100	178.000	144.000	111.200	71.300	125.500	83.100
	1	Promedio=(la+lb+lc)/3 (amperes)	136.267	100.067	217.200	177.567	144.800	111.667	70.833	121.900	85.200
	Vab	Tensión de fase AB (volts)	464.600	445.600	462.100	443.800	456.100	425.300	492.600	481.700	436.400
14	Vbc	Tensión de fase BC (volts)	461.100	447.900	458.300	444.200	456.600	428.800	493.800	482.600	433.300
14	Vca	Tensión de fase CA (volts)	463.400	448.300	459.700	445.700	453.600	426.300	491.300	486.400	431.400
	V	Promedio=(Vab+Vac+Vbc)/3 (volts)	463.033	447.267	460.033	444.567	455.433	426.800	492.567	483.567	433.700
	tpa	Factor de potencia línea A	0.780	0.761	0.787	0.807	0.833	0.876	0.808	0.745	0.636
15	tp b	Factor de potencia línea B	0.809	0.780	0.804	0.822	0.866	0.871	0.821	0.770	0.975
15	tpc	Factor de potencia línea C	0.815	0.765	0.793	0.793	0.802	0.839	0.794	0.794	0.305
	Fp	Promedio=(fpa+fpb+fpc)/3	0.801	0.769	0.795	0.807	0.834	0.862	0.808	0.770	0.639
16		Potencia de entrada al motor =	07.570	FO FOC	427.425	440.202	05.224	74.455	40.007	70.500	40.074
10	Pe	= 1.732X(13)X(14)X(15)/1000 (KW)	87.572	59.586	137.425	110.382	95.221	71.155	48.807	78.580	40.874
17		Potencia de salida de la toma =	62.752	20 201	71 550	40.000	27.065	25.210	21 501	20 255	24.002
1/	Ps	= 9.81X(8)X(12) (KW)	62.753	28.291	71.559	48.068	37.865	35.319	21.501	28.255	21.992
18	n	Eficiencia electromecánica (%)	71.659	47.479	52.071	43.547	39.765	49.636	44.052	35.957	53.805

Tabla 37. Resumen de eficiencia electromecánica de los pozos de la región Tlalpan (Parte 1). Fuente: Extraído de [1].

						NO	MBRE DEL	POZO			
No.	SÍMBOLO	DESCR IP CIÓN	PADIERNA No. 2	PADIERNA No. 4	PEÑA POBRE No.1	PERIFÉRICO 5	PERIFÉRICO 6	R-2	R-3	R-5	R-6
1	DI	Diámetro interno de la tubería (m)	0.201	0.251	0.199	0.201	0.203	0.201	0.201	0.201	0.199
2	RPM	Frecuencia de rotación (rpm)	3500				3500	3500	3500	3500	3500
3	ND	Nivel Dinámico (m)	87.490	89.750	92.400	86.580	96.200	88.480	75.650	106.200	87.200
4	he	Distancia desde el nivel del piso al eje de la tubería de descarga (m)	1.000	1.300	1.000	0.600	1.100	0.900	1.140	0.950	1.020
5	P1	Lectura del manómetro a la descarga (m)	5.100	14.500	22.000	70.000	11.500	30.000	3.000	20.000	7.000
6	Pm	Presión a la descarga=(4)+(5) (m)	6.100	15.800	23.000	70.600	12.600	30.900	4.140	20.950	8.020
7	a	Área del tubo de descarga=(3.1416X(1) ²)/4 (m ²)	0.032	0.049	0.031	0.032	0.032	0.032	0.032	0.032	0.031
8	Q	Gasto (m³/s)	0.032	0.028	0.042	0.030	0.032	0.036	0.040	0.026	0.023
9	hv	Carga de ve locidad = ((8)/(7)) ² /19.6133 (m)	0.052	0.016	0.091	0.046	0.050	0.067	0.081	0.033	0.029
10	hfc	Pérdidas de fricción en la columna (m)	0.810	0.390	1.200	0.540	0.540	0.780	1.200	9.600	0.636
11	hd	Carga a la descarga = (6)+(9)+(10) (m)	6.962	16.206	24.291	71.186	13.190	31.747	5.421	30.583	8.685
12	Н	Carga total =(3)+(11) (m)	94.452	105.956	116.691	157.766	109.390	120.227	81.071	136.783	95.885
	la	Corriente línea A (amperes)	114.000	147.100	129.100	135.700	147.800	94.700	79.000	141.000	60.000
13	lb	Corriente líne a B (amperes)	111.000	146.400	132.000	129.900	155.300	96.000	85.000	145.000	63.700
15	lc	Corriente líne a C (amperes)	110.000	131.300	131.260	135.200	147.100	95.200	78.000	145.000	57.500
	1	Promedio= (la+lb+lc)/3 (amperes)	111.667	141.600	130.787	133.600	150.067	95.300	80.667	143.667	60.400
	Vab	Tensión de fase AB (volts)	459.000	464.000	443.100	445.000	468.400	458.900	420.000	417.000	457.900
14	Vbc	Tensión de fase BC (volts)	459.000	464.400	443.400	443.000	467.000	461.700	424.000	419.000	460.700
14	Vca	Tensión de fase CA (volts)	460.000	464.400	445.300	447.000	466.400	457.400	419.000	417.000	457.300
	V	Promedio= (Vab+Vac+Vbc)/3 (volts)	459.333	464.267	443.933	445.000	467.267	459.333	421.000	417.667	458.633
	tp a	Factor de potencia líne a A	0.830	0.636	0.807	0.870	0.898	0.817	0.800	0.850	0.882
15	tp b	Factor de potencia líne a B	0.860	0.975	0.809	0.870	0.884	0.816	0.840	0.880	0.839
13	tp c	Factor de potencia líne a C	0.850	0.305	0.792	0.820	0.872	0.815	0.790	0.850	0.835
	Fp	Promedio= (fpa+fpb+fpc)/3	0.847	0.639	0.803	0.853	0.885	0.816	0.810	0.860	0.852
16		Potencia de entrada al motor =	75.216	72.720	80.717	87.868	107,443	61.867	47.644	89.378	40.878
10	Pe	= 1.732X(13)X(14)X(15)/1000 (KW)	/5.216	12.120	80.717	87.808	107.445	01.80/	47.044	89.378	40.878
17		Potencia de salida de la toma =	29,650	29,104	47.621	46,430	34,340	42.813	31.812	34,485	22.011
1/	Ps	= 9.81X(8)X(12) (KW)	29.000	29.104	47.021	40.430	54.340	42.613	51.812	54.485	22.011
18	η	Eficiencia electromecánica (%)	39.420	40.022	58.998	52.841	31.961	69.202	66.771	38.584	53.845

Tabla 38. Resumen de eficiencia electromecánica de los pozos de la región Tlalpan (Parte 2). Fuente: Extraído de [1].

					NC	MBRE DE	L POZO		
No.	SÍMBOLO	DESCRIPCIÓN	R-7	R-8	REINO AVENTURA	SAN FERNANDO TLALPAN	SAN PEDRO MÁRTIR	TREBOL Y REBOMBEO CTL-28	VIADUCTO TLALPAN 2
1	DI	Diámetro interno de la tubería (m)	0.201	0.201	0.150	0.201	0.201	0.201	0.251
2	RPM	Frecuencia de rotación (rpm)	3500	3500	3500	3500	3500	3500	3500
3	ND	Nivel Dinámico (m)	86.150	96.840	71.150	107.460	88.640	105.750	102.240
4	he	Distancia desde el nivel del piso al eje de la tubería de	1.090	0.820	1.220	1.170	0.550	0.840	0.930
5	P1	Lectura del manómetro a la descarga (m)	20.000	10.000	50.000	40.000	20.000	5.000	6.000
6	Pm	Presión a la descarga=(4)+(5) (m)	21.090	10.820	51.220	41.170	20.550	5.840	6.930
7	a	Área del tubo de descarga=(3.1416X(1)²)/4 (m²)	0.032	0.032	0.018	0.032	0.032	0.032	0.049
8	Q	Gasto (m³/s)	0.023	0.041	0.026	0.045	0.032	0.034	0.033
9	hv	Carga de velocidad = ((8)/(7)) ² /19.6133 (m)	0.027	0.083	0.109	0.103	0.051	0.059	0.023
10	hfc	Pérdidas de fricción en la columna (m)	0.660	0.420	1.477	0.887	0.900	1.280	0.410
11	hd	Carga a la descarga = (6)+(9)+(10) (m)	21.777	11.323	52.805	42.160	21.501	7.179	7.362
12	Н	Carga total =(3)+(11) (m)	107.927	108.163	123.955	149.620	110.141	112.929	109.602
	la	Corriente línea A (amperes)	121.800	124.800	151.300	153.000	152.600	76.800	76.600
13	lb	Corriente línea B (amperes)	121.700	122.200	153.600	155.700	151.900	81.700	73.100
13	Ic	Corriente línea C (amperes)	121.300	127.900	150.000	151.700	161.300	77.300	75.400
	1	Promedio= (la+lb+lc)/3 (amperes)	121.600	124.967	151.633	153.467	155.267	78.600	75.033
	Vab	Tensión de fase AB (volts)	432.500	431.400	420.100	415.100	412.400	455.300	466.500
	Vbc	Tensión de fase BC (volts)	431.300	432.200	420.700	412.500	413.200	453.100	465.400
14	Vca	Tensión de fase CA (volts)	435.000	435.200	426.600	411.200	416.300	452.400	469.300
	V	Promedio= (Vab+Vac+Vbc)/3 (volts)	432.933	432.933	422.467	412.933	413.967	453.600	467.067
	tp a	Factor de potencia línea A	0.798	0.849	0.782	0.741	0.883	0.832	0.844
45	tp b	Factor de potencia línea B	0.800	0.869	0.766	0.829	0.912	0.846	0.831
15	tp c	Factor de potencia línea C	0.798	0.865	0.766	0.778	0.897	0.865	0.814
	Fp	Promedio= (fpa+fpb+fpc)/3	0.799	0.861	0.771	0.783	0.897	0.848	0.830
		Potencia de entrada al motor =							
16	Pe	= 1.732X(13)X(14)X(15)/1000 (KW)	72.823	80.680	85.581	85.905	99.895	52.344	50.360
		Potencia de salida de la toma =							
17	Ps	= 9.81X(8)X(12) (KW)	24.352	42.974	31.373	66.050	34.359	37.666	35.482
18	η	Eficiencia electromecánica (%)	33.439	53.264	36.659	76.887	34.395	71.959	70.456

Tabla 39. Resumen de eficiencia electromecánica de los pozos de la región Tlalpan (Parte 3). Fuente: Extraído de [1].

Finalmente, al efectuar la proyección de ahorro (en costos de producción) en un horizonte de tiempo de 5 años a partir del reemplazo del equipo de bombeo de cada pozo, se estima que éste ahorro será de \$ 23'203,586.34 (**Tabla 40**).

						BOMBA ACTU	JAL		BOMBA	PROPUESTA			
No.	NOMBRE DEL POZO	GASTO (lps)	FACTOR DE POTENCIA	EFICIENCIA %	POTENCIA (HP)	POTENCIA A LA QUE TRABAJA (HP)	PRECIO POR METRO CÚBICO (\$/m3)	POTENCIA DE TRABAJO CALCULADA	POTENCIA (HP)	PRECIO POR METRO CÚBICO (\$/m3)	% DE AHORRO	AHORRO REAL DE CONSUMO ANUAL EN PESOS MEXICANOS	AHORRO REAL DE CONSUMO A 5 AÑOS EN PESOS MEXICANOS
	37 BIS	39.00	0.80	71.66	150.00	117.39	0.86	112.15	125.00	0.91	0.00	s .	s .
	27 BIS	25.00	0.77	47.48	100.00	79.87	0.92	50.56	75.00	0.86	6.09	S 44,009.40	
2	ARENAL	69.00	0.80	52.07	200.00	184.21	0.76	127.90	150.00	0.62	1856	\$ 309,317.95	
	PEÑA POBRE	35.00	0.81	43,55	200.00	147.96	1.21	85.90	100.00	0.82	3241	S 433,791.00	
5	BELISARIO DOMINGUEZ	31.00	0.83	39.77	150.00	127.64	1.18	67.67	75.00	0.69	41.24	\$ 476.103.20	
6	DEPORTIVO VIVANCO	26.00	0.86	49.64	150.00	95.38	1.05	63.12	75.00	0.83	21.36	S 184,282,37	
7	DEPORTIVO XÓCHITL	21.10	0.81	44.05	100.00	65.43	0.89	38.43	50.00	0.68	23.60	S 139,545,40	
8	ISSFAM	23.40	0.77	35.96	150.00	105.33	1.29	50.50	75.00	0.92	28.80	\$ 274,362.50	\$ 1,371,812.50
9	LIMANTITLA	24.90	0.64	53.81	75.00	54.79	0.63	39.31	50.00	0.58	8.74	S 43,330.60	
10	PADIERNA No. 2	32.00	0.85	39.42	150.00	100.83	0.90	52.99	75.00	0.67	25.56	\$ 233,577.90	
11	PADIERNA No. 4	28.00	0.64	40.02	150.00	97.48	1.00	52.02	75.00	0.77	23.10	S 203,316.80	\$ 1,016,583.98
12	PEÑA POBRE 1	41.60	0.80	59.00	150.00	108.20	0.75	85.11	100.00	0.69	7.58	\$ 74,161.53	
13	PERIFÉRICO No. 5	30.00	0.85	52.84	150.00	117.79	1.13	82.98	100.00	0.96	15.30	\$ 160,859.11	
14	PERIFÉRICO No. 6	32.00	0.89	31.96	200.00	144.02	1.29	61.37	75.00	0.67	48.06	\$ 624,292.89	
15	R-2	36.30	0.82	69.20	100.00	82.93	0.66	76.52	100.00	0.79	0.00	<i>S</i> -	S -
16	R-3	40.00	0.81	66.77	75.00	63.87	0.46	56.86	75.00	0.54	0.00	s -	s -
17	R-5	25.70	0.86	38.58	150.00	119.81	1.34	61.64	75.00	0.84	37.40	S -	S -
18	R-6	23.40	0.85	53.85	75.00	54.80	0.67	39.34	50.00	0.61	8.76	\$ 43,403.35	\$ 217,016.74
19	R-7	23.00	0.80	33.44	150.00	97.62	1.22	43.52	50.00	0.62	48.78	\$ 430,638.80	
20	R-8	40.50	0.86	53.26	125.00	108.15	0.77	76.81	100.00	0.71	7.54	\$ 73,712.95	\$ 368,564.74
21	REINO AVENTURA	25.80	0.77	36.66	150.00	114.72	1.28	56.07	75.00	0.83	34.62	\$ 359,229.38	\$ 1,796,146.90
22	SAN FERNANDO TLALPAN	45.00	0.78	76.89	125.00	115.15	0.73	118.05	125.00	0.80	0.00	<i>s</i> -	<i>s</i> -
23	SAN PEDRO MÁRTIR	31.80	0.90	34.40	150.00	133.91	1.21	61.41	75.00	0.68	43.99	\$ 532,782.15	\$ 2,663,910.74
24	TRÉBOL Y REBOMBEO	34.00	0.85	71.96	75.00	70.17	0.59	67.32	75.00	0.63	0.00	<i>s</i> -	s -
25	VIADUCTO TLALPAN No. 2	33.00	0.83	70.46	75.00	67.51	0.59	63.42	75.00	0.65	0.00	s -	S -

Tabla 40. Estimación del ahorro por concepto de sustitución de equipos de bombeo. Fuente: Extraído de [1].

4.8.- Región Oriente

Los pozos analizados de la Región Norte son 26, ninguno de estos pozos supera el 75% de eficiencia eléctrica (**Tabla 41**). Por su parte, los parámetros hidráulicos muestran una muy baja de presión de descarga (**Tabla 42**).

	CARGA	FACTOR DE	EFICIENCIA	MEDIDO	RES DE CIA I FUERZA	DE LUZ Y		V a-b	V b-c	V c-a	V prom	la	lb	lc	1 prom
No. NOMBRE DEL POZO	DINÁMICA	POTENCIA	(%)	KWH	kw	KVAR	H.P	(VOLTS)	(VOLTS)	(VOLTS)	(VOLTS)	(AMP)	(AMP)	(AMP)	(AMP)
	-0			er mere	TEMA IZT	A DATADA	A LA DED								
	70.00	0.00	77.00		:	:	1	:	470.00	440.40	47057	54.00	40.40	50.70	5040
1 AGRÍCOLA ORIENTAL No. 4	79.68	0.80	73.86	12.97	30.40	23.64	40.57	439.00	436.60	440.10		51.20	48.40	50.70	50.10
2 FRACCIONAMIENTO DEL PARQUE	82.86	0.88	71.58	25.31	66.17	47.37	88.70	444.00	445.00	440.00	443.00	100.00	93.00	101.00	98.00
3 IZTAPALAPA No. 4	90.65	0.83	37.02	19.66	58.67	102.65	78.57	440.50	440.30	443.50	441.43	92.80	90.70	9470	92.73
4 LA VIGA No. 3	74.19	0.87	41.17	30.16	68.05	39.54	91.71	452.20	451.10	450.50	451.27	104.30	106.40	92.20	100.97
5 LOS REYES IZTAPALAPA	96.82	0.86	40.42	39.53	89.36	52.89	119.70	448.50	443.40	443.70	445.20	131.90	139.50	134.30	135.23
6 PANTEÓN CIVIL No. 2	79.76	0.80	56.68	20.64	63.35	47.32	83.83	417.00	419.10	416.80	417.63	106.70	110.90	106.60	108.07
7 SANTA ANITA NUEVO	90.47	0.74	38.63	29.27	86.02	74.12	110.55	485.70	484.30	485.00	485.00	133.70	135.00	127.00	131.90
8 SANTA CATARINA No. 8	96.82	0.84	71.03	21.48	21.48	21.48	80.84	448.60	445.70	446.90	447.07	94.10	93.70	91.80	93.20
9 SANTA CATARINA Na 9	94.49	0.85	31.14	54.15	108.95	75.96	145.26	473.50	471.40	471.00	471.97	153.90	157.90	153.70	155.17
10 SANTA CATARINA No. 10	116.05	0.82	48.43	18.92	85.00	58.84	113.43	436.80	437.80	441.30	438.63	136.50	131.40	139.10	135.67
11 SANTA CATARINA No. 13	106.45	0.70	77.04	33.06	66.90	14.78	78.14	448.80	446.50	449.90	448.40	110.50	103.20	109.50	107.73
12 SANTA ÚRSULA XITLA	74.28	0.70	48.13	28.22	62.60	60.60	78.14	448.80	446.50	449.90	448.40	110.50	103.20	109.50	107.73
13 SECTOR POPULAR No. 2	81.73	0.62	63.44	26.93	65.91	50.39	66.07	426.10	432.20	424.20	427.50	106.10	110.20	107.90	108.07
·				SUBS	ISTEMA PL	ANTA PER	UFÉRICO								
14 AUXILIAR XOTEPINGO 8-C	94.88	0.89	70.08	49.36	109.82	56.97	84.74	251.20	259.70	248.60	253.17	161.50	164.90	159.40	161.93
15 AUXILIAR XOTEPINGO 9-C	106.03	0.86	44.80	48.71	114.50	67.61	153.13	446.20	444.50	448.30	446.33	176.70	171.00	167.40	171.70
16 AUXILIAR XOTEPINGO No. 6-A	88.48	0.83	82.75	58.99	119.89	69.76	82.26	451.00	449.00	448.00	449.33	95.10	95.20	9470	95.00
17 SANTA CATARINA No. 12	90.70	0.88	37.30	47.01	96.86	51.40	129.40	417.90	415.50	413.90	415.77	151.70	154.80	150.50	152.33
	•			SUBSIS	TEMA AME	LIACIÓN :	TLÁHUAC								
18 RAMAL TLÁHUAC NEZA No. 24	77.810	0.835	44.314	33.411	77.742	51.776	104.597	478.400	478.200	480.900	479.167	114.200	110.000	113.600	112.600
				SUBSI	STEMA AG	RÍCOLA O	RIENTAL								
19 AGRÍCOLA ORIENTAL No. 5	87.557	0.87	45.33	50.20	94.75	68.56	127.010	433.00	433.00	435.00	433.667	145.00	147.00	143.00	145.000
20 AGRÍCOLA ORIENTAL No. 6	100.252	0.85	23.79	20.36	103.37	50.36	138.57	453.00	455.00	451.00	453.000	157.00	151.00	157.00	155.000
21 RAMAL TLÁHUAC NEZA No. 25	103.732	0.88	54.51	47.52	112.02	61.06	150.16	454.00	453.00	454.00	453.667	161.00	162.00	163.00	162.000
22 SANTA ANITA	93.809	0.87	65.41	35.65	70.35	46.01	94.3	445.00	447.00	447.00	446.333	103.00	107.00	105.00	105.000
23 REFORMA IZTACCIHUATL		A	P	0 Z () F	U E	R A	D E	s	E R	VIC	I 0	·····		
24 PEÑÓN No. 6	83.003	0.86	34.08	30.20	107.52	36.64	144.13	426.00	426.00	427.00	426.333	168.00	163.00	175.00	168.667
25 LA VIGA No. 2	86.555	0.81	54.06	36.52	70.69	38.21	94.75	527.00	417.00	527.00	490.333	105.00	101.00	101.00	102.333
26 CIUDAD DEPORTIVA No. 1	89.923	0.76	52.79	43.25	91.90	48.52	123.19	491.00	493.00	491.00	491.667	155.00	126.00	145.00	142.000
27 GRANJAS ESTRELLA No. 3	100.054	0.98	46.00	58.26	111.60	51.33	149.59	41400	415.00	413.00	414.000	156.60	165.70	155.90	159.400

Tabla 41. Resumen de parámetros eléctricos de los pozos de la región Oriente. Fuente: Extraído de [1].

No.	NOMBRE DEL POZO	No . DE SERIE DE MEDIDOR	MARCA DEL MEDIDOR	TIPO DE MEDIDOR	DIÁMETRO DEL MEDIDOR	* GASTO (L/S)	HORAS DE OPERACIÓN MENSUAL	** HORAS DE OPERACIÓN DIARIA (HR)	EXTRACIÓN MENSUAL (M3)	EXTRACCIÓ N DIARIA (M3)	"NIVEL ESTÁTICO (MTS)	*NIVEL DINÁMICO (MTS)	*PRESIÓN (KG/CM2)
				SUBS	ISTEMA IZTA	APALAPA A	LA RED						
1	AGRÍCOLA ORIENTAL No. 4	~~~~	~~~~	~~~~	~~~~	28.60	540.00	18.00	74,131.20	2,471.04	64.15	70.25	0.50
2	FRACCIONAMIENTO DEL PARQUE	~~~~	~~~~	~~~~	~~~~	58.27	600.00	20.00	151,035.84	5,034.53	59.50	63.95	1.30
3	IZTAPALAPA No. 4	~~~~	~~~~	~~~~	~~~~	24.40	600.00	20.00	63,244.80	2,108.16	73.60	76.70	1.10
4	LA VIGA No. 3	~~~~	~~~	~~~~	~~~~	38.70	540.00	18.00	100,310.40	3,343.68	61.00	67.30	0.50
5	LOS REYES IZTAPALAPA	~~~~	~~~~	~~~~	~~~~	38.00	600.00	20.00	98,496.00	3,283.20	81.70	84.10	0.90
6	PANTEÓN CIVIL No. 2	~~~~	~~~~	~~~~	~~~~	45.30	600.00	20.00	117,417.60	3,913.92	71.22	74.56	0.40
7	SANTA ANITA NUEVO	~~~~	~~~~	~~~~	~~~~	35.90	540.00	18.00	93,052.80	3,101.76	72.10	83.00	0.50
8	SANTA CATARINA No. 8	~~~~	~~~~	~~~~	~~~~	45.10	600.00	20.00	116,899.20	3,896.64	86.80	91.15	0.15
9	SANTA CATARINA No. 9	~~~~	~~~~	~~~~	~~~~	36.40	660.00	22.00	94,348.80	3,144.96	85.40	89.72	0.20
10	SANTA CATARINA No. 10	~~~~	~~~~	~~~~	~~~~	36.00	600.00	20.00	93,312.00	3,110.40	88.71	93.49	2.00
11	SANTA CATARINA No. 13	~~~~	~~~~	~~~~	~~~~	43.00	540.00	18.00	111,456.00	3,715.20	85.10	88.70	1.50
12	SANTA ÚRSULA XITLA	~~~~	~~~~	~~~~	~~~~	38.50	600.00	20.00	99,792.00	3,326.40	62.15	63.75	0.70
13	SECTOR POPULAR No. 2	~~~~	~~~~	~~~~	~~~~	39.00	600.00	20.00	101,088.00	3,369.60	63.50	68.70	1.10
				9	SUBSISTEMA PL	ANTA PERIFÉ	RICO						
14	AUXILIAR XOTEPINGO 8-C	~~~~	~~~~	~~~~	~~~~	47.60	660.00	22.00	123,379.20	4,112.64	72.00	84.22	0.70
15	AUXILIAR XOTEPINGO 9-C	~~~~	~~~	~~~	~~~~	49.20	600.00	20.00	127,526.40	4,250.88	73.40	86.42	1.60
16	AUXILIAR XOTEPINGO No. 6-A	~~~~	~~~~	~~~~	~~~~	58.50	540.00	18.00	151,632.00	5,054.40	68.50	76.40	0.70
17	SANTA CATARINA No. 12	~~~~	~~~~	~~~~	~~~~	40.50	600.00	20.00	104,976.00	3,499.20	79.50	89.26	1.00
				SL	JBSISTEMA AM	PUACIÓN TL	ÁHUAC						
18	RAMAL TLÁHUAC NEZA No. 24	~~~~	~~~~	~~~~	~~~~	45.30	600.00	20.00	117,417.60	3,913.92	61.30	69.15	0.70
				S	UBSISTEMA AG	RÍCOLA ORIE	NTAL						
19	A GRÍCOLA ORIENTAL No. 5	~~~~	~~~~	~~~~	~~~~	50.0	720.00	24.00	129,600.00	4,320.00	66.10	69.20	1.60
20	A GRÍCOLA ORIENTAL No. 6	~~~~	~~~~	~~~~	~~~~	25.0	600.00	20.00	64,800.00	2,160.00	62.30	68.00	3.00
21	RAMAL TLÁHUAC NEZA No. 25	~~~~	~~~~	~~~~	~~~~	60.0	660.00	22.00	155,520.00	5,184.00	65.10	66.60	3.50
22	SANTA ANITA	~~~~	~~~	~~~	~~~~	50.0	600.00	20.00	129600.00	4320.00	76.30	85.10	0.700
23	REFORMA IZTACCIHUATL			POZ	O F	UEF	R A	D E	SER	V I C	I 0		,
24	PEÑÓN No. 6	~~~~	~~~	~~~	~~~~	45.0	720.00	24.00	116640.00	3888.00	71.50	75.60	0.500
25	LA VIGA No. 2	~~~~	~~~~	~~~~	~~~~	45.0	720.00	24.00	116640.00	3888.00	72.30	78.50	0.600
26	CIUDAD DEPORTIVA No. 1	~~~~	~~~~	~~~~	~~~~	55.0	600.00	20.00	142560.00	4752.00	73.00	83.20	0.500
27	GRANJAS ESTRELLA No. 3	~~~~	~~~~	~~~~	~~~~	52.3	720.00	24.00	135561.60	4518.72	84.15	86.80	0.900

Tabla 42. Resumen de parámetros hidráulicos de los pozos de la región Oriente. Fuente: Extraído de [1].

NO EXISTE O NO SE PUDO TOMAR DATO EN CAMPO

DATOS TOMADOS EN CAMPO POR CONTRATISTA

ATOS PROPORCIONADOS POR PERSONAL OPERATIVO DE LA REGIONAL ORIENTE

Con la información de las tablas mostradas anteriormente, se calculó la eficiencia electromecánica de los equipos de bombeo de cada pozo, resultando que ninguno supera el 70% (**Tabla 43**, **Tabla 44**, **Tabla 45** y **Tabla 46**).

					SUBSISTEMA IZ	TAPALAPA A	LA RED		
No.	SÍMBOLO	DESCRIPCIÓN	1. AGRÍCOLA ORIENTAL No. 4	2. FRACCIONAMIENTO DEL PARQUE	3. IZTAPALAPA No. 4	4. LA VIGA No.	5. LOS REYES IZTAPALAPA	6. PANTEÓN CIVIL No. 2	7. SANTA ANTA NUEVO
1	DI	Diámetro interno de la tubería (m)	0.201	0.201	0.147	0.201	0.201	0.303	0.201
2	RPM	Frecuencia de rotación (rpm)	3500	3500	3500	3500	3500	3500	3550
3	ND	Nivel Dinámico (m)	70.25	63.95	76.70	67.30	84.10	74.56	83.00
4	he	Distancia desde el nivel del piso al eje de la tubería de descarga (m)	1.00	1.12	0.85	1.08	1.25	0.79	0.90
5	P1	Lectura del manómetro a la descarga (m)	5.00	13.00	11.00	5.00	9.00	4.00	5.00
6	Pm	Presión a la descarga=(4)+(5) (m)	6.00	14.12	11.85	6.08	10.25	4.79	5.90
7	а	Área del tubo de descarga=(3.1416X(1)*)/4 (m²)	0.032	0.032	0.017	0.032	0.032	0.072	0.032
8	Q	Gasto (m²/s)	0.029	0.058	0.024	0.039	0.038	0.045	0.036
9	hv	Carga de velocidad = ((8)/(7)) ² /19.6133 (m)	0.041	0.172	0.105	0.076	0.073	0.020	0.065
10	hfc	Pérdidas de fricción en la columna (m)	3.39	4.620	2.00	0.74	2.400	0.390	1.500
11	hd	Carga a la descarga = (6)+(9)+(10) (m)	9.432	18912	13.950	6.892	12.723	5.200	7.465
12	Н	Carga total =(3)+(11) (m)	79.682	82.862	90.650	74.192	96.823	79.760	90.465
	la	Corriente linea A (amperes)	51.20	100.00	92.80	104.30	131.90	106.70	133.70
13	lb	Corriente linea B (amperes)	48.40	93.00	90.70	106.40	139.50	110.90	135.00
15	lc	Corriente linea C (amperes)	50.70	101.00	94.70	92.20	134.30	106.60	127.00
	1	Promedio = (la+lb+lc)/3 (amperes)	50.10	98.00	92.73	100.97	135.23	108.07	131.90
	Vab	Tensión de fase AB (volts)	439.00	444.00	440.50	452.20	448.50	417.00	485.70
14	Vbc	Tensión de fase BC (volts)	436.60	445.00	440.30	451.10	443.40	419.10	484.30
14	Vca	Tensión de fase CA (volts)	440.10	440.00	443.50	450.50	443.70	416.80	485.00
	V	Promedio = (Vab+Vac+Vbc)/3 (volts)	438.57	443.00	441.43	451.27	445.20	417.63	485.00
	tра	Factor de potencia linea A	0.781	0.920	0.815	0.868	0.940	0.795	0.756
15	tp b	Factor de potencia línea B	0.793	0.870	0.833	0.843	0.784	0.812	0.733
13	tp c	Factor de potencia linea C	0.812	0.850	0.832	0.890	0.845	0.793	0.744
	Fp	Promedio = (fpa+fpb+fpc)/3	0.795	0.880	0.827	0.867	0.856	0.800	0.744
16	Pe	Potencia de entrada al motor =	30,267	66.170	58,611	68.419	89,296	62,535	82.471
10	Pe	= 1.732X(13)X(14)X(15)/1000 (KW)	30.267	66.170	38.611	00.419	09.296	02.535	02.4/1
17	Ps	Potencia de salida de la toma = = 9.81X(8)X(12) (KW)	22.356	47.366	21.698	28.167	36.094	35.445	31.860
18	η	Eficiencia electromecánica (%)	73,863	71.583	37,021	41.168	40.421	56.680	38.632

Tabla 43. Resumen de eficiencia electromecánica de los pozos de la región Oriente (Parte 1). Fuente: Extraído de [1].

				SU	BSISTEMA IZTAP	ALAPA A LA REI	D	
No.	SÍMBOLO	DESCRIPCIÓN	8. SANTA CATARINA No. 8	9. SANTA CATARINA No. 9	10. SANTA CATARINA No. 10	11. SANTA CATARINA No. 13	12. SANTA ÚRSULA XITLA	13. SECTOR POPULAR No. 2
1	DI	Diámetro interno de la tubería (m)	0.201	0.201	0.201	0.201	0.201	0.201
2	RPM	Frecuencia de rotación (rpm)	3500	3500	3500	3500	1780	3500
3	ND	Nivel Dinámico (m)	91.15	89.72	93.49	88.70	63.75	68.70
4	he	Distancia desde el nivel del piso al eje de la tubería de descarga (m)	1.01	1.04	0.69	0.98	1.05	1.19
5	P1	Lectura del manómetro a la descarga (m)	1.50	2.00	20.00	15.00	7.00	11.00
6	Pm	Presión a la descarga=(4)+(5) (m)	2.51	3.04	20.69	15.98	8.05	12.19
7	а	Área del tubo de descarga=(3.1416X(1)²)/4 (m²)	0.032	0.032	0.032	0.032	0.032	0.032
8	0	Gasto (m²/s)	0.045	0.036	0.036	0.043	0.039	0.039
9	hv	Carga de velocidad = ((8)/(7)) ² /19.6133 (m)	0.103	0.067	0.066	0.094	0.075	0.077
10	hfc	Pérdidas de fricción en la columna (m)	3.060	1.662	1.800	1.680	2.400	0.760
11	hd	Carga a la descarga = (6)+(9)+(10) (m)	5.673	4.769	22.556	17.754	10.525	13.027
12	Н	Carga total =(3)+(11) (m)	96.823	94.489	116.046	106.454	74.275	81.727
	la	Corriente linea A (amperes)	94.10	153.90	136.50	110.50	110.50	106.10
13	lb	Corriente linea B (amperes)	93.70	157.90	131.40	103.20	103.20	110.20
15	lc	Corriente línea C (amperes)	91.80	153.70	139.10	109.50	109.50	107.90
	1	Promedio= (la+lb+lc)/3 (amperes)	93.20	155.17	135.67	107.73	107.73	108.07
	Vab	Tensión de fase AB (volts)	448.60	473.50	436.80	448.80	448.80	426.10
14	Vbc	Tensión de fase BC (volts)	445.70	471.40	437.80	446.50	446.50	432.20
14	Vca	Tensión de fase CA (volts)	446.90	471.00	441.30	449.90	449.90	424.20
	V	Promedio= (Vab+Vac+Vbc)/3 (volts)	447.07	471.97	438.63	448.40	448.40	427.50
	tp a	Factor de potencia linea A	0.935	0.848	0.795	0.670	0.670	0.820
15	tp b	Factor de potencia línea B	0.860	0.853	0.840	0.694	0.694	0.450
13	tp c	Factor de potencia línea C	0.712	0.862	0.828	0.726	0.726	0.578
	Fp	Promedio= (fpa+fpb+fpc)/3	0.836	0.854	0.821	0.697	0.697	0.616
16	Pe	Potencia de entrada al motor = = 1.732X(13)X(14)X(15)/1000 (KW)	60.307	108.364	84.619	58.289	58.289	49.290
17	Ps	Potencia de salida de la toma = = 9.81X(8)X(12) (KW)	42.837	33.741	40.983	44.905	28.053	31.268
18	η	Eficiencia electromecánica (%)	71.032	31.136	48.432	77.039	48.126	63.437

Tabla 44. Resumen de eficiencia electromecánica de los pozos de la región Oriente (Parte 2). Fuente: Extraído de [1].

	sís mos -		s	UBSISTEMA PLAN	NTA PERIFÉRIC	20	SUBSISTEMA AMPLIACIÓN TLÁHUAC
No.	SÍMBOLO	DESCRIPCIÓN	14. AUXILIAR XOTEPINGO 8-C	15. AUXILIAR XOTEPINGO 9-C	16. AUXILIAR XOTEPINGO No. 6-A	17. SANTA CATARINA No. 12	18. RAMAL TLÁHUA NEZA No. 24
1	- Pr	Diámetro interno de la tubería (m)	0.201	0.201	0.201	0,201	0.303
2	DI	Frecuencia de rotación (rpm)	3500	3500	3500	3500	3500
3	RPM	Nivel Dinámico (m)	84.22	86.42	76.40	89.26	69.15
4	ND he	Distancia desde el nivel del piso al eje de la tubería de descarga (m)	0.97	0.92	1.03	0.92	1.12
5	P1	Lectura del manómetro a la descarga (m)	7.00	16.00	7.00	0.00	7.00
6	Pm	Presión a la descarga=(4)+(5) (m)	7.97	16.92	8.03	0.92	8.12
7	a	Área del tubo de descarga=(3.1416X(1)²)/4 (m²)	0.032	0.032	0.032	0.032	0.072
8	Q	Gasto (m³/s)	0.048	0.049	0.059	0.041	0.045
9	hv	Carga de velocidad = $((8)/(7))^2/19.6133$ (m)	0.115	0.123	0.173	0.083	0.020
10	hfc	Pérdidas de fricción en la columna (m)	2.570	2.570	3.881	0.440	0.520
11	hd	Carga a la descarga = (6)+(9)+(10) (m)	10.655	19.613	12.084	1.443	8.660
12	Н	Carga total =(3)+(11) (m)	94.875	106.033	88.484	90.703	77.810
	la	Corriente linea A (amperes)	161.50	176.70	95.10	151.70	114.20
	lb	Corriente línea B (amperes)	164.90	171.00	95.20	154.80	110.00
13	lc	Corriente línea C (amperes)	159.40	167.40	94.70	150.50	113.60
	1	Promedio = (la+lb+lc)/3 (amperes)	161.93	171.70	95.00	152.33	112.60
	Vab	Tensión de fase AB (volts)	251.20	446.20	451.00	417.90	478.40
	Vbc	Tensión de fase BC (volts)	259.70	444.50	449.00	415.50	478.20
14	Vca	Tensión de fase CA (volts)	248.60	448.30	448.00	413.90	480.90
	V	Promedio = (Vab+Vac+Vbc)/3 (volts)	253.17	446.33	449.33	415.77	479.17
	tp a	Factor de potencia línea A	0.909	0.853	0.860	0.876	0.835
15	tp b	Factor de potencia línea B	0.881	0.874	0.810	0.881	0.839
15	tp c	Factor de potencia línea C	0.881	0.855	0.820	0.883	0.831
	Fp	Promedio = (fpa+fpb+fpc)/3	0.890	0.861	0.830	0.880	0.835
10	D.	Potencia de entrada al motor =	62.216	111.220	01.205	00.533	70.030
16	Pe	= 1.732X(13)X(14)X(15)/1000 (KW)	63.218	114.238	61.365	96.533	78.030
17	Ps	Potencia de salida de la toma = = 9.81X(8)X(12) (KW)	44.303	51.177	50.780	36.037	34.578
18	η	Eficiencia electromecánica (%)	70.079	44.798	82.751	37.331	44.314

Tabla 45. Resumen de eficiencia electromecánica de los pozos de la región Oriente (Parte 3). Fuente: Extraído de [1].

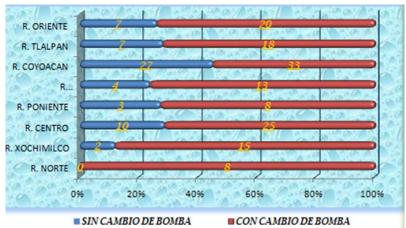
					SUBS	ISTEMA AC	GRÍCOLA ORIE	ENTAL			
No.	SÍMBOLO	DESCRIPCIÓN	19. AGRÍCOLA ORIENTAL No. 5	20. AGRÍC OLA ORIENTAL No. 6	21. RAMAL TLÁHUAC NEZA No. 25	22. SANTA ANITA	23. REFORMA IZTACCIHUATL	24. PEŇÓN No. 6	25. LA VIGA No. 2	26. CIUDAD DEPORTIVA	27. GRANJAS ESTRELLA
1	DI	Diámetro interno de la tubería (m)	0.201	0.150	0.201	0.200		0.201	0.200	0.201	0.201
2	RPM	Frecuencia de rotación (rpm)	3500	3500	3500	3500		3500	3500	3500	3500
3	ND	Nivel Dinámico (m)	69.20	68.00	66.60	85.50		75.60	78.50	83.20	86.80
4	he	Distancia desde el nivel del piso al eje de la tubería de descarga (m)	1.45	1.35	0.95	0.35	P	1.20	0.95	0.85	0.94
5	P1	Lectura del manómetro a la descarga (m)	16.00	30.00	35.00	7.00	2	5.00	6.00	5.00	9.00
6	Pm	Presión a la descarga=(4)+(5) (m)	17.45	31.35	35.95	7.35	0	6.20	6.95	5.85	9.94
7	a	Área del tubo de descarga=(3.1416X(1)²)/4 (m²)	0.032	0.018	0.032	0.031	1	0.032	0.031	0.032	0.032
8	0	Gasto (m²/s)	0.050	0.025	0.060	0.050	90	0.045	0.045	0.055	0.052
9	hv	Carga de velocidad = ((8)/(7))-/19.6133 (m)	0.127	0.102	0.182	0.129		0.103	0.105	0.153	0.139
10	hfc	Pérdidas de fricción en la columna (m)	0.78	0.80	1.00	0.83		1.10	1.00	0.72	3.18
11	hd	Carga a la descarga = (6)+(9)+(10) (m)	18.357	32.252	37.132	8.309		7.403	8.055	6.723	13.254
12	Н	Carga total =(3)+(11) (m)	87.557	100.252	103.732	93.809	70	83.003	86.555	89.923	100.054
	la	Corriente línea A (amperes)	145.00	157.00	161.00	103.00	Þ	168.00	105.00	155.00	156.60
	lb	Corriente línea B (amperes)	147.00	151.00	162.00	107.00		163.00	101.00	126.00	165.70
13	lc	Corriente línea C (amperes)	143.00	157.00	163.00	105.00		175.00	101.00	145.00	155.90
	1	Promedio= (la+lb+lc)/3 (amperes)	145.00	155.00	162.00	105.00		168.67	102.33	142.00	159.40
	Vah	Tensión de fase AB (volts)	433.00	453.00	454.00	445.00		426.00	527.00	491.00	414.00
	Vbc	Tensión de fase BC (volts)	433.00	455.00	453.00	447.00	10 0	426.00	417.00	493.00	415.20
14	Vca	Tensión de fase CA (volts)	435.00	451.00	454.00	447.00		427.00	527.00	491.00	413.70
	V	Promedio= (Vab+Vac+Vbc)/3 (volts)	433.67	453.00	453.67	446.33	双	426.33	490.33	491.67	414.30
	tp a	Factor de potencia línea A	0.88	0.86	0.88	0.87		0.87	0.81	0.75	0.983
	tp b	Factor de potencia línea B	0.86	0.85	0.88	0.87	1 -	0.84	0.82	0.72	0.975
15	tp c	Factor de potencia linea C	0.87	0.84	0.88	0.86	1010	0.88	0.81	0.81	0.969
	Fv	Promedio= (fpa+fpb+fpc)/3	0.87	0.85	0.88	0.867		0.863	0.813	0.76	0.976
		Potencia de entrada al motor =	04.753	403.374		70.14-	O	407.55	70.005	04.004	
16	Pe	= 1.732X(13)X(14)X(15)/1000 (KW)	94.753	103.371	112.017	70.347		107.524	70.685	91.901	111.597
17	Ps	Potencia de salida de la toma = = 9.81X(8)X(12) (KW)	42.947	24.587	61.057	46.013		36.641	38.210	48.518	51.334
18	η	Eficiencia electromecánica (%)	45.325	23.785	54.507	65.409		34.078	54.056	52.794	45.999

Tabla 46. Resumen de eficiencia electromecánica de los pozos de la región Oriente (Parte 4). Fuente: Extraído de [1].

Finalmente, al efectuar la proyección de ahorro (en costos de producción) en un horizonte de tiempo de 5 años a partir del reemplazo del equipo de bombeo de cada pozo, se estima que éste ahorro será de \$ 29'878,568.49 (**Tabla 47**).

						вомва аст	JAL		BOMBA	PROPUESTA			
No.	NOMBRE DEL POZO	GASTO (lps)	FACTOR DE POTENCIA	EFICIENCIA (%)	POTENCIA (HP)	POTENCIA A LA QUE TRABAJA (HP)	PRECIO POR METRO CÚBICO (\$/m3)	POTENCIA DE TRABAJO CALCULADA	POTENCIA (HP)	PRECIO POR METRO CÚMICO (\$/m3)	% DE AHORRO	AHORRO REAL DE CONSUMO ANUAL EN PESOS MEXIC ANOS	AHORRO REAL DE CONSUMO A 5 AÑO: EN PESOS MEXIC ANOS
					SU	BSISTEMA IZT	APALAPA A LA I	RED					
1	AGRÍCOLA ORIENTAL No. 4	286	0.795	73.86	50.00	40.57	0.41	39.96	50.00	0.50	0.0	s -	s -
2	FRACCIONAMIENTO DEL PARQUE	583	0.880	71.58	100.00	88.70	0.44	83.51	100.00	0.49	0.0		s -
3	IZTAPALAPA No. 4	24.4	0.827	37.02	100.00	78.57	0.92	38.78	50.00	0.59	35.9	\$ 258,359.03	\$ 1,291,795.15
4	LA VIGA No. 3	38.7	0.867	41.17	100.00	91.71	0.68	50.34	75.00	0.56	17.6	\$ 151,184.28	\$ 755,921.42
5	LOS REYES IZTAPALAPA	38.0	0.856	40.42	150.00	119.70	0.90	64.51	75.00	0.57	36.7	\$ 404,330.06	
6	PANTEÓN CIVIL No. 2	45.3	0.800	56.68	100.00	83.83	0.53	63.35	75.00	0.47	11.3	\$ 79,896.11	
7	SANTA ANITA NUEVO	35.9	0.744	38.63	150.00	110.55	0.88	56.94	75.00	0.60	31.8	\$ 321,524.24	\$ 1,607,621.18
8	SANTA CATARINA No. 8	45.1	0.836	71.03	100.00	80.84	0.51	76.56	100.00	0.64	0.0	s -	٠ .
9	SANTA CATARINA No. 9	36.4	0.854	31.14	175.00	145.26	1.14	60.30	75.00	0.59	48.2	\$ 635,410.45	\$ 3,177,052.27
10	SANTA CATARINA No. 10	36.0	0.821	48.43	150.00	113.43	0.90	73.25	75.00	0.60	33.3	\$ 347,590.49	\$ 1,737,952.46
11	SANTA CATARINA No. 13	43.0	0.697	77.04	100.00	78.14	0.52	80.26	100.00	67.00	0.0	s -	S -
12	SANTA ÚRSULA XITLA	38.5	0.697	48.13	100.00	78.14	0.58	50.14	75.00	0.56	3.4	\$ 28,369.79	\$ 141,848.93
13	SECTOR POPULAR No. 2	39.0	0.616	63.44	75.00	66.07	0.49	55.88	75.00	0.55	0.0	s -	\$ -
					S	UBSISTEMA PI	ANTA PERIFÉRIO	00					
14	AUXILIAR XOTEPINGO & C	47.6	0.890	70.08	100.00	84.74	0.51	79.18	100.00	0.60	0.0	s .	\$ -
15	AUXILIAR X OTEPINGO 9-C	49.2	0.861	44.80	200.00	153.13	0.89	91.47	100.00	0.58	34.8	\$ 480,467.78	\$ 2,402,338.90
16	AUXILIAR XOTEPINGO No. 6-A	585	0.830	82.75	100.00	82.26	0.40	90.76	100.00	0.49	0.0	s -	s -
17	SANTA CATARINA No. 12	40.5	0.880	37.33	150.00	129.40	0.92	64.41	75.00	0.53	42.4	\$ 491,985.43	\$ 2,459,927.14
					SU	BSISTEMA AN	PLIACIÓN TLÁHU	JAC					
18	RAMAL TLÁHUAC NEZA No. 24	45.3	0.835	44.31	150.00	10460	0.66	61.80	75.00	0.47	28.8	\$ 267,694.39	\$ 1,338,471.94
					St	JBSISTEMA AG	GRÍCOLA ORIENT	TAL .					
19	AGRÍCOLA O RIENTAL No. 5	50.0	0.870	45.33	150.00	127.01	0.73	76.75	100.00	0.57	27.0	\$ 244,289.58	\$ 1,221,447.88
20	AGRÍCOLA ORIENTAL No. 6	25.0	0.850	23.79	150.00	138.57	1.59	43.94	75.00	0.86	45.9	\$ 574,912.49	\$ 2,874,562.46
21	RAMAL TLÁHUAC NEZA No. 25	60.0	0.880	54.51	175.00	150.16	0.71	109.12	125.00	0.60	16.8	\$ 227,564.48	\$ 1,137,822.38
22	SANTA ANITA	50.0	0.87	65.41	100.00	94.30	0.54	82.24	100.00	0.57	0.0	s -	s -
23	REFORMA IZTACCIHUATL				P O	Z 0	F U E R	A D	E S	E R V I	c i o		
24	PEÑÓN No. 6	45.0	0.86	34.08	200.00	144.13	0.92	65.49	75.00	0.48	47.8	\$ 625,226.43	\$ 3,126,132.14
25	LA VIGA No. 2	45.0	0.81	54.01	150.00	94.75	0.60	68.23	75.00	0.48	20.8	\$ 178,584.16	\$ 892,920.82
26	CIUDAD DEPORTIVA No. 1	55.0	0.760	52.79	150.00	123.19	0.64	86.72	100.00	0.52	18.8	\$ 209,742.43	\$ 1,048,712.16
	GRANJAS ESTRELLA No. 3	52.3	0.98	46.00	200.00	149.59	0.82	91.75	100.00	0.55	32.9	\$ 448,582.08	\$ 2,242,910.40
											TOTAL	\$5,975,713.70	\$29,878,568.49

Tabla 47. Estimación del ahorro por concepto de sustitución de equipos de bombeo. Fuente: Extraído de [1].


5.- TABLAS INDICADORAS

Esta sección es desarrollada para estimar el ahorro energético de los pozos analizados y su correspondiente reflejo en ahorro monetario, esta estimación de ahorro se efectúa en un horizonte de tiempo de 7 años; dando como resultado que es posible obtener un ahorro energético de 210.6 GWh, lo cual se refleja en 291.5 millones de pesos (**Tabla 48**). Es importante señalar que el costo de la energía eléctrica se consideró 1.384 pesos/kWh.²

No.	REGIÓN Y/O SISTEMA	No. POZOS	No. BOMBAS EN BUEN ESTADO	No. DE BOMBAS PROPUESTA DE CAMBIO	PRECIO X METRO CÚBICO (\$/m3) ACTUAL PROMEDIO	PRECIO X METRO CÚBICO (\$/m3) ACTUAL PROMEDIO CAMBIANDO BOMBA	AHORRO DE CONSUMO ANUAL EN PESOS MEXIC ANOS	AHORRO DE CONSUMO A 7 AÑOS EN PESOS MEXICANOS	
1	NORTE	8	0	8	\$ 0.66	\$ 0.50	\$ 1,500,203.96	\$ 10,501,427.72	7,587,736.79
2	XOCHIMILCO	17	2	15	\$ 0.79	\$ 0.65	\$ 3,585,504.44	\$ 25,098,531.08	18,134,776.79
3	CENTRO	35	10	25	\$ 0.94	\$ 0.56	\$ 10,685,467.62	\$ 74,798,273.34	54,044,995.19
4	PONIENTE	11	3	8	\$ 1.02	\$ 0.90	\$ 1,039,861.76	\$ 7,279,032.32	5,259,416.42
5	AZCAPOTZALCO	17	4	13	\$ 0.75	\$ 0.65	\$ 2,995,134.05	\$ 20,965,938.35	15,148,799.39
6	COYOACAN	60	27	33	\$ 0.94	\$ 0.62	\$ 11,226,287.88	\$ 78,584,015.16	56,780,357.77
7	TLALPAN	25	7	18	\$ 0.94	\$ 0.73	\$ 4,640,717.27	\$ 32,485,020.89	23,471,835.90
8	ORIENTE	27	7	20	\$ 0.72	\$ 0.57	\$ 5,975,713.70	\$ 41,829,995.90	30,223,985.48
	SUMA	200	60	140			\$ 41,648,890.68	\$ 291,542,234.76	210,651,903.73
	PROMEDIO	100%	30%	70%	\$ 0.85	\$ 0.65			

Tabla 48. Resumen de ahorro de energía y dinero de todas las regiones. Fuente: Extraído de [1].

Es importante señalar que las regiones de Coyoacán y Centro agrupan el mayor número de equipos de bombeo para rehabilitación (**Figura 8**). Es natural que estas dos regiones representen los mayores montos en ahorro anual por costos de operación (**Tabla 49**).

Figura 8. Número de bombas a sustituir por región. Fuente: Extraído de [1].

-

² Información obtenida del portal de la CFE.

No.	REGIÓN Y/O SISTEMA	AHORRO DE CONSUMO ANUAL EN PESOS MEXICANOS			
1	NORTE	S	1,500,203.96		
2	XOCHIMILCO	\$	3,585,504.44		
3	CENTRO	\$	10,685,467.62		
4	PONIENTE	\$	1,039,861.76		
5	AZCAPOTZALCO	\$	2,995,134.05		
6	COYOACAN	\$	11,226,287.88		
7	TLALPAN	\$	4,640,717.27		
8	ORIENTE	\$	5,975,713.70		
	SUMA	\$	41,648,890.68		

Tabla 49. Montos derivados por ahorro de energía. Fuente: Extraído de [1].

6.- ANÁLISIS FINANCIERO

6.1.- Fundamentos del Análisis Costo Beneficio

En consideración a los "Lineamientos para la elaboración y presentación de los análisis costo y beneficio de los programas y proyectos de inversión" publicado por la Secretaria de Hacienda y Crédito Público en el Diario Oficial el 18 de marzo de 2008, se establece que los proyectos de inversión requieren de una evaluación costo – beneficio, donde se demuestre que dichos programas y/o proyectos son susceptibles de generar un beneficio social neto bajo supuestos razonables.

El proyecto "Estudio para la Eficiencia Electromecánica de 200 pozos. Diagnóstico previo a la rehabilitación de 200 pozos pertenecientes al sistema de aguas de la Ciudad de México", por sus características y en base a los lineamientos antes mencionados podría convertirse en un Programa de Inversión, el cual con base a los lineamientos pertenece a la categoría de Programa de Adquisiciones, ya que este rubro contempla la compra equipos diversos, como podría ser el caso del Equipo de Bombeo para los pozos de agua potable a cargo del sistema de aguas de la Ciudad de México.

El análisis costo-beneficio consiste en una evaluación del proyecto que se encuentra sustentado con información confiable y precisa tanto de los datos de las reducciones de CO2 estimadas, esto al partir de la mejora en la eficiencia energética en equipos de bombeo en pozos de agua potable, derivado de la sustitución de equipos, así como de diferentes datos técnicos como es el caso del número de equipos estimados para la sustitución y sus precios cotizados.

Además de identificar y cuantificar en términos monetarios los costos y beneficios del proyecto, se requiere de un análisis del flujo de los mismos a lo largo del horizonte de evaluación, con objeto de mostrar que el proyecto es susceptible de generar, por sí mismo, beneficios netos para la sociedad bajo supuestos razonables.

Todo lo anterior con el fin de presentar los indicadores financieros de rentabilidad del proyecto: Valor Presente Neto (VPN) y la Tasa Interna de Retorno (TIR).

Otro elemento no menos importante, es el análisis de sensibilidad y riesgos, mediante el cual se busca identificar los efectos que ocasionaría la modificación de las variables relevantes sobre los indicadores de rentabilidad del proyecto, esto es, el VPN, la TIR, y el periodo de recuperación de la inversión. Entre otros aspectos, deberá considerarse el efecto derivado de variaciones porcentuales en: el monto total de inversión, y en los ingresos esperados.

6.2.- Análisis de las Inversiones Asociados al Proyecto

El objetivo es sustituir equipos de bombeo que hayan rebasado su vida útil y tengan eficiencias electromecánicas bajas, por nuevos equipos de bombeo que sean más eficientes en las instalaciones hidráulicas del SACMEX. Mediante la sustitución de estos equipos, además de las reducciones en consumo de energía se estarían reduciendo las emisiones de Gases de Efecto Invernadero (GEI), producto de la quema de combustibles fósiles en centrales termoeléctricas que alimentan de energía a los motores eléctricos que accionan el equipo de bombeo durante la extracción de agua potable en pozos.

Considerando los resultados alcanzados en las diversas actividades del presente estudio, se estima la sustitución de 140 Bombas de los 200 pozos estudiados, las cuales se tiene un costo unitario (promedio) de \$98,000.00 pesos por bomba, según la cotización hechas a diferentes proveedores. Además de tener un costo asociado a la instalación del equipo, el cual tiene un precio unitario del 25% respecto al valor unitario del equipo, lo que corresponde a \$24,500.00 pesos.

Tomando como base las consideraciones previas, se establece que el costo global por la adquisición de los 140 equipos, así como los costos de instalación giran en torno a los \$17, 150,000.00 pesos (lo que equivale a \$1, 379,227.00 dólares americanos).

6.3.- Análisis de los Beneficios Asociados al Proyecto

El bombeo de agua en la Ciudad de México tiene una importante contribución a las emisiones de GEI, lo anterior considerando que una tercera parte del suministro del agua potable al Distrito Federal, requiere de un alto consumo de energía para transportarlo, por un recorrido de 127 kilómetros, elevarlo mil cien metros y distribuirlo. Esto representa un consumo de energía equivalente a 3.4 millones de barriles de petróleo por año.

Los GEI generados en los sistemas de agua de la Ciudad de México son generados principalmente por 3 fuentes:

- 1. La operación de los sistemas de aguas
 - a) para la extracción de agua de pozos;
 - b) para el transporte de agua desde fuentes remotas al Distrito Federal;
 - c) en plantas de potabilización de agua;
 - d) consumo energético para el transporte y la distribución de agua;
 - e) consumo energético para el trasiego y transporte de aguas negras o emisores finales o a plantas de tratamiento de agua residual; y
 - f) consumo energético en plantas de tratamiento de agua residual.

- 2. El consumo y disposición de agua de los usuarios
 - a) consumo energético para la elevación, presurización y acondicionamiento de agua en sistemas propios de usuarios;
 - consumo energético para el calentamiento de agua y generación de vapor; y
 - c) consumo energético en plantas de tratamiento de agua residual.
- 3. El proceso y disposición de aguas residuales;
 - a) generación de GEI por descomposición de lodos activados de desecho de plantas de tratamiento de agua residual, y
 - b) generación de GEI por operación de sistema sépticos

Como ya ha fue señalado, una cantidad considerable de pozos de agua potable en la ciudad de México, operan con equipos de bombeo viejos, deteriorados debido a la falta de mantenimiento y en la mayoría de ellos con eficiencias electromecánicas muy bajas. Las tendencias indican que, de continuar con las condiciones de operación actuales, cada vez se requerirán de mayores cantidades de energía para bombear el agua, con el consecuente crecimiento de los costos económicos y sociales relacionados al acceso del vital líquido a un mayor costo y por supuesto a los efectos de calentamiento global.

En este sentido, por la sustitución de equipo de bombeo en algunos pozos pertenecientes al SACMEX se espera reducir las emisiones de GEI producidas en la operación de los sistemas de aguas durante la extracción de agua potable en pozos. Dichas emisiones, como anteriormente se mencionó, son producto principalmente de la quema de combustibles fósiles en centrales termoeléctricas que alimentan de energía a los motores eléctricos que accionan el equipo de bombeo.

Además, en necesario puntualizar que existe una oportunidad muy importante para reducir el consumo de energía eléctrica mediante la modernización de los equipos de bombeo de agua, es decir mediante la sustitución de equipos obsoletos o de baja eficiencia con los que actualmente operan mucho de los pozos del SACMEX.

La sustitución de equipos de bombeo representaría un manejo sustentable del recurso, mejora en la eficiencia energética en sistemas de bombeo, además brinda un mejor servicio y mayor disponibilidad del vital líquido para los habitantes del Distrito Federal y reduce a la vez las emisiones de GEI.

Actualmente, los equipos de bombeo cuentan con una eficiencia promedio de 50.93%, en tanto que un equipo nuevo representaría una eficiencia promedio del 84.50%, por lo cual, la sustitución de los equipos representa un aumento en la eficiencia del 33.57%.

7.- ACTIVIDADES DE REHABILITACIÓN DE POZOS

Se le llama rehabilitación de pozos al conjunto de operaciones tendientes a mejorar la eficiencia de producción en un pozo que, por determinadas circunstancias, ha salido de esta condición.

Las operaciones y métodos de rehabilitación de pozos son tan variados como puedan ser las condiciones geohidrológicas, de proyecto, constructivas y de operación de la obra, por lo que no resulta práctico el pretender abarcarlas todas. Por tanto, pretender establecer especificaciones precisas de las actividades de rehabilitación resulta prácticamente imposible, pues en cada caso en particular se deberán programar las acciones a realizar, que son adecuadas a esa situación y en ocasiones, incluso ideadas para un caso en particular.

7.1.- Diagnóstico de pozos ineficientes

Desde hace algunos años se ha empleado el registro de vídeo, con el que se obtiene un registro visual a lo largo del pozo, herramienta que se ha vuelto de gran utilidad para la detección de muchos de los problemas que se presentan en los pozos y casi indispensable para planear sus soluciones; por consiguiente, en la actualidad es habitual que una rehabilitación lleve implícita la corrida de al menos uno y a veces varios de estos registros.

Se han dividido en cuatro grupos las causas de mal funcionamiento de los pozos; en el primero se agrupan los originados por un mal diseño y que se hubieran evitado con un correcto diseño de pozo. Existe otro grupo de problemas ocasionados por errores constructivos, pero ni el aspecto del diseño del pozo ni su construcción son tema de este manual, por lo que solamente serán comentados parcial y brevemente cuando se requiera por estar relacionado a la rehabilitación. Los otros dos grupos son las causas debidas a defectos en la operación y problemas regionales en el acuífero (**Tabla 50**).

	- Pozos incompleto					
	- Cedazo en exceso					
	- Falta de cedazo					
Defectos de diseño	- Información litológica inadecuada					
Defectos de diseño	Filtro granular o cedazo mal diseñadoMoro mal realizado o interpretado					
	- Selección inadecuada de bomba					
	- Defectuosa protección sanitaria o química					
	- Fluidos de perforación inadecuados					
	- Falta de desarrollo del pozo					
Defectos constructivos	- Filtro granular mal colocado					
Defectos constituctivos	- Defectos en la colocación del ademe					
	- Falta de verticalidad del pozo					
	- Materiales defectuosos o inadecuados					
	- Falta de mantenimiento del pozo					
Defectos operacionales	- Falta de mantenimiento de la bomba					
Defectos operacionales	- Falta de reposición del filtro granular					
	- Arranques y paros frecuentes del equipo					
	- Aguas corrosivas					
Problemas regionales	- Aguas incrustantes					
Troblemas regionales	- Bacterias ferruginosas					
	- Abatimientos regionales de los niveles freáticos					

Tabla 50. Causas de ineficiencia de los pozos de agua. Fuente: Elaboración propia con información de [1].

7.2.- Problemáticas de pozos

De las problemáticas más comunes y sus respectivas correcciones se encuentran:

7.2.1.- Ademes rotos, colapsados o mal soldados

Se entiende por ademe colapsado, aquel que presenta una deformación de su sección circular original, pero sin llegar a la rotura.

En el caso de ademes colapsados o desgarrados, la rehabilitación comienza por la corrida de calibradores de varios diámetros, para establecer cuál es el mayor que deja pasar el colapso o rotura. Una vez establecida la magnitud del colapso, es necesario restituir el diámetro original al ademe del pozo mediante la corrida de trompos de diámetros crecientes. Si el defecto del pozo consiste sólo en colapso de la tubería, con la restitución del diámetro.

7.2.2.- Cementaciones deficientes

La cementación es una operación rutinaria en la construcción y también es común en la rehabilitación de pozos. Existen dos acciones correctivas: El tapón de fondo y la cementación intermedia.

El tapón de fondo evita el "flujo de fondo" en los pozos, con la entrada de las aguas de menor calidad, que frecuentemente existen en la parte inferior de los acuíferos, además de la posibilidad de subpresiones en el pozo. Por consiguiente, es parte de cualquier pozo correctamente construido, pero por negligencia o ignorancia del constructor y supervisión, es común encontrar pozos ya en operación que carecen de él, por lo que se puede considerar como una operación de rehabilitación. Por otra parte, puede suceder que exista una rotura en el ademe, lo suficientemente cercana al fondo del pozo como para indicar la conveniencia de extender el tapón de fondo hasta tapar dicha rotura.

La cementación intermedia es similar a la que se acaba de describir, pero previamente a la cementación es necesario colocar un tapón perforable que contenga el cemento durante su fraguado. Existen tapones perforables de diversos tipos que se emplean cotidianamente en la industria petrolera, pero su elevado costo y requerimientos técnicos, que generalmente no están al alcance del rehabilitador de pozos de agua, los toman inusuales, por lo que en general se utilizan tapones habilitados en campo. Un tipo de tapón que suele dar buen resultado es el de madera, ajustado al diámetro interior del ademe y lo suficientemente grueso para impedir que gire en él. Este tapón se baja suspendido con alambres o cable delgado, empujándolo con la herramienta de perforación.

7.2.3.- Incrustaciones

Los ademes incrustados, con costras de oxidación o colonias de bacterias ferruginosas y que se van a desarrollar física o químicamente, requieren de cepillado para limpiarlos en su interior, pues al eliminar con facilidad las costras interiores, total o parcialmente, se aumenta la eficacia del desarrollo. El cepillo se construye con dos placas de acero, que confinan trozos de cable también de acero, cuyas puntas floreadas sobresalen de las placas. Los cables cubren un diámetro igual al del ademe y las placas serán de diámetro menor unos 7.6 cm al interior del ademe a cepillar. Además de estar oprimidos por las placas, los trozos de cable se sueldan a una de las placas, para evitar su caída al pozo durante la enérgica operación del cepillado.

7.2.4.- Daños en la geometría del pozo

Como premisa de cualquier trabajo de rehabilitación, es necesario conocer las condiciones del pozo, para así poder planear las acciones a efectuar. La buena calidad de los registros que se describen a continuación establece el éxito o fracaso de la rehabilitación.

Bloques impresores: En numerosas tareas de rehabilitación, en especial las de pesca, es necesario conocer las condiciones reales en que se encuentra el objeto que causa el problema,

para tal fin se emplean frecuentemente los bloques impresores que son herramientas, por lo general construidas en campo, que se unen firmemente a la sarta de perforación, o a una cuchara de dardo y que en la parte inferior constan de un receptáculo que contenga algún material plástico (asfalto, plastilina, jabón, etc.) que es el que recibe la impresión del objeto desconocido.

Calibración del pozo: La sección transversal de un pozo debe ser perfectamente circular a lo largo de toda su profundidad y libre de bordes o cualquier otro tipo de obstáculos que impidan el descenso de la bomba, así mismo, no deben existir codos o cambios bruscos de dirección en el ademe. Con objeto de verificar las condiciones enunciadas se acostumbra correr en los pozos el llamado "registro de calibración", que consiste en pasar a todo lo largo del pozo un "Calibrador" que debe bajar suave y libremente. El Calibrador se construye con dos o tres tubos del diámetro comercial inmediato inferior al del ademe del pozo que se está probando, lo que resulta en una longitud de 12 m a 18 m. La bajada de la herramienta debe ser suspendida con cable con el objeto de que cualquier obstáculo se pueda detectar con facilidad.

Registro de Video: El registro de video es una herramienta de la que se dispone desde hace algunos años y que resulta invaluable para conocer el estado real de un pozo, por lo que se debe considerar como un requisito de rutina, previo a cualquier rehabilitación. Antes de correr un registro de video, es recomendable dejar el pozo en reposo el tiempo necesario para que se depositen los sólidos en suspensión que pudiera haber. Esta clarificación del agua, que permite una imagen nítida, se favorece aplicando al pozo alumbre o hipoclorito de calcio, si bien el efecto de estos productos puede variar notablemente de pozo a pozo.

Registros de verticalidad: En la construcción de pozos profundos, perforados con maquina rotatoria, se pueden tomar lecturas de inclinaciones de la perforación, con inclinómetros que se corren por el interior de la tubería de perforación y reportan el ángulo que se tiene en el punto medido, pero esta técnica requiere de un equipo sofisticado y caro que no resulta práctico ni económico para el rehabilitador de pozos. La falta de verticalidad de un pozo y lo que es más grave aún, el cambio en su dirección, se manifiesta con mayor intensidad en los pozos equipados con bomba de flecha, que en aquellos que tienen bomba sumergible, pero en cualquiera de los dos casos se tiene el problema del contacto entre la bomba y el ademe, que puede favorecer la corrosión de alguno de los dos o ambos, además de un cierto desgaste originado por la vibración que pudiera ocasionar la bomba. El método más usado para medir la verticalidad de un pozo ya terminado se basa en el principio de los triángulos semejantes. Para su aplicación práctica se forma un triángulo rectángulo cuya hipotenusa es h y su cateto horizontal es d, siendo h la altura desde una platina giratoria o juego de regletas, hasta el eje de la polea, de donde pende la sonda. Al inicio del registro, cuando la sonda se encuentra en la boca del pozo y el equipo bien centrado, h debe ser totalmente vertical y consecuentemente d, que es la desviación medida en la platina, es igual a 0. A medida que la sonda va descendiendo a lo largo de un pozo desviado se va generando el cateto d, cuya magnitud es proporcional a D en el triángulo cuya hipotenusa es (h+p) y su cateto horizontal D. Las lecturas generalmente se toman con intervalos de 3 m.

7.2.5.- Daños en el equipo de bombeo

Si existe una bomba en malas condiciones, el encargado de la rehabilitación deba extraerla del pozo y enviarla a donde el dueño de la obra le indique o bien encargarse él mismo de la reparación electromecánica.

7.2.6.- Obstaculización del pozo

La pesca de herramientas, cables, objetos caídos dentro del pozo e incluso los objetos a pescar es una labor que requiere de mucho tiempo e ingenio, por ser muy diversos los objetos a pescar. En consecuencia, la mejor recomendación consiste en tratar de evitar las pescas en lo posible, revisando y tomando las debidas precauciones, como el estado del cable, revisión periódica de uniones roscadas, y no exigir a los equipos condiciones de trabajo fuera de especificaciones.

Las operaciones de pesca son comúnmente sencillas, inmediatamente después de producirse el pescado, pero cualquier error puede complicarlas e incluso imposibilitarlas. Por lo que es preferible no hacer nada antes que proceder en forma inadecuada. Para realizar la maniobra de pesca, se tienen que conocer las dimensiones y posición de lo que se tiene que pescar; si el objeto ha quedado pegado, centrado, inclinado hacia algún lado, dentro de una cavidad, cubierto de desprendimientos, etc. o si la herramienta u otro objeto tienen deformaciones. Para conocer esto se pueden aplicar varios métodos, como el introducir una cámara de video hasta la profundidad de pesca, o correr un bloque de impresión. Además, en prevención de posibles pescas, el operador del sistema de pozos debe siempre anotar las dimensiones de las diferentes herramientas y objetos introducidos al pozo.

7.2.7.- Descenso de los niveles de bombeo

En ocasiones, debido a la sobreexplotación de un acuífero, los niveles de bombeo descienden y un pozo puede resultar corto e ineficiente para las nuevas condiciones. Si sus características geométricas lo permiten, el pozo puede ser perforado por su interior hasta alcanzar las condiciones de explotación actuales. Para que esta operación sea posible se requiere de tres condiciones preliminares:

- Que el pozo tenga un diámetro suficientemente amplio para permitir la reperforación por su interior y posteriormente el ademado y colocación del filtro cuando la reperforación se efectúa en materiales no coherentes.
- 2. El pozo a profundizar se debe terminar con tapón de cemento sin modificación del diámetro original del ademe.
- 3. El ademe original del pozo debe ser de acero, con cedazo de ranura, de tipo canastilla o tipo concha, pues ademes menos resistentes, como el de P.V.C. o el cedazo de alambre

helicoidal, difícilmente resisten el roce o incluso golpes de la pesada herramienta de perforación durante las operaciones de reperforación.

7.2.8.- Reposición del filtro granular

A medida que un pozo permanece en operación y preferentemente si está mal desarrollado, el filtro granular va sufriendo un cierto reacomodo entre gránulos, que se traduce en un descenso del nivel que se manifiesta en la superficie, hasta que alcanza la mejor compactación. Este descenso es más notorio cuando el pozo es productor de arena, pues el material extraído va dejando huecos que el filtro relleno; consecuentemente en estos casos el descenso del filtro es más acelerado, y permanente.

En cambio, cuando un pozo explota acuíferos kársticos o en fracturas, el asentamiento del filtro es leve y sólo ocurre durante el inicio de la operación. Cuando un pozo se desarrolla mecánicamente, dentro de las maniobras, de rehabilitación, la extracción de finos que se produce ocasiona un notable descenso del nivel del filtro, Este descenso es una de las señales determinantes de que el desarrollo se está efectuando eficientemente.

Sea cual sea el motivo del descenso del filtro granular, éste se debe reponer a la brevedad posible, a partir de un volumen de filtro que se debe tener cerca del pozo para estos fines, y por otra parte, el pozo debe contar, desde su construcción, de algún conducto para reponer el filtro, sin necesidad de efectuar maniobras complicadas.

7.3.- Verificación de la rehabilitación

Si la rehabilitación está enfocada a reparar un defecto físico en el pozo, como ademes colapsados o rotos, pescas, etc., evidentemente el éxito de la maniobra se manifiesta en la reparación del daño, y la supervisión a lo más requerirá de una inspección visual del pozo con un registro de vídeo.

Si la rehabilitación se originó por una baja de eficiencia, provocada por incrustación, azolve, bloqueo de acuífero y filtro por finos, o problemas regionales, la verificación de los resultados de las maniobras de rehabilitación se mide por medio de un aforo. Este aforo normalmente es más corto que el realizado en un pozo nuevo (de 24 a 48 hrs.), pues ya se tienen antecedentes de las características del pozo. Los resultados se comparan con los datos de operación previos a la rehabilitación.

Se debe hacer énfasis que el éxito de la rehabilitación no se calibra en función al incremento en el caudal, sino en el de su eficiencia, o como mínimo, cuando el pozo no se vuelve a aforar, en su capacidad específica para un caudal o un nivel determinado, lo que se manifiesta como distintas combinaciones de caudal-nivel dinámico en alguna de las condiciones siguientes:

Mismo caudal que antes de la rehabilitación, pero menor nivel dinámico.

- Mayor caudal para un mismo nivel dinámico.
- Mejoran las dos condiciones anteriores.
- Una condición mejora y la otra empeora, pero de tal modo que la relación beneficio-costooportunidad resulta positiva.

Cuando se corre el registro de vídeo preliminar a la rehabilitación, suele resultar incompleto, pues no es posible bajar la cámara hasta el extremo del pozo, por impedirlo algún obstáculo ("pescado" o azolve), por lo que es conveniente correr un nuevo registro para completar la información y comprobar los resultados de la rehabilitación (cementaciones, cepillado, etc.).

REFERENCIAS

- [1] SACMEX, «Estudio para la eficiencia eléctrica de 200 pozos. Diagnóstico previo a la rehabilitación de 200 pozos pertenecientes al sistema de aguas de la Ciudad de México.,» DIRECCION GENERAL DEL SISTEMA DE AGUAS DE LA CIUDAD DE MÉXICO, CDMX, 2007.
- [2] SACMEX, «Estudio para la eficiencia electromecánica: Región Centro.,» DIRECCIÓN GENERAL DEL SISTEMA DE AGUAS DE LA CIUDAD DE MÉXICO, CDMX, 2007.

NOMENCLATURA

GEI Gases de Efecto Invernadero

kW kilowatt

kWh kilowatt-hora

lps litros por segundo

NOM Norma Oficial Mexicana

SACMEX Sistema de Aguas de la Ciudad de México

TIR Tasa Interna de Retorno

VPN Valor Presente Neto

ANEXOS

Anexo 1. Ejemplo de estimación de la eficiencia electromecánica

Data requerida.

Para la estimación de la eficiencia electromecánica es necesario efectuar mediciones de campo relacionadas con el flujo, el acuífero, el pozo, la instalación y la demanda energética. Estos parámetros corresponden a:

- Diámetro interno de la tubería de producción.
- Velocidad de rotación del impulsor de la bomba
- Niveles dinámico y estático del pozo
- Presión de descarga en superficie
- Área de la línea de descarga en superficie
- Flujo volumétrico (gasto)
- Pérdidas de carga por cambio en la velocidad
- Pérdidas de carga por fricción en la columna
- Carga a nivel de superficie
- Intensidad de corriente promedio en las 3 fases
- Tensión promedio fase-fase
- Factor de potencia en cada fase

La eficiencia electromecánica se calcula al dividir la potencia de salida de la toma entre la potencia consumida por el motor, que traducido en parámetros operativos es:

$$Ps = g * Q * H$$

Donde:

Ps = Potencia de salida de la toma (kW)

g = Aceleración gravitacional local (m/s²)

 $Q = \text{Caudal obtenido en superficie (m}^3/\text{s})$

H = Carga total del sistema (m)

$$Pe = 1732 * I * V * Fp/1000$$

Donde:

Pe = Potencia demandada por el motor (kW)

I = Intensidad de corriente promedio de las fases (Amperes)

V = Tensión promedio entre las fases (Volts)

Fp = Factor de potencia promedio entre las fases (%)

$$\eta = Ps/Pe$$

Para ejemplificar la estimación de esta eficiencia, se hace referencia a las mediciones efectuadas en el pozo denominado "Ortiz Rubio" de la Región Centro, el cual se encuentra dentro de la demarcación Benito Juárez. Los parámetros operativos para el cálculo de la eficiencia se muestran en la **Tabla 51**.

DATOS DE IDENTIFICACIÓN								
NOMBRE: ORTIZ RUBIO			No. DE POZO:					
SISTEMA: REGIONAL CENTRO			SUBSISTEMA: CENTRO					
DON	IICILIO: CENT	ENARIO ENTRE INGENIERO PASCUAL ORTIZ RUBIO Y						
CDA. DE PASCUAL ORTIZ RUBIO			COLONIA: SAN SIMÓN TICUMAC					
DELEGACIÓN: BENITO JUÁREZ			ENTIDAD: D.F.					
CÁLCULO DE LA EFICIENCIA ELECTROMECÁNICA								
No.	SÍMBOLO	DESCRIPCIÓN	1	2	3	VALOR PROMEDIO		
1	DI	Diámetro interno de la tubería (m)	0.201			0.201		
2	RPM	Frecuencia de rotación (rpm)	3500			3500		
3	ND	Nivel dinámico (m)	72.00			72.00		
4		Distancia desde el nivel del piso al eje de la tubería						
	he	de descarga (m)	1.00			1.00		
5	P1	Lectura del manómetro a la descarga (m)	1.20			1.20		
6	Pm	Presión a la descarga=(4)+(5) (m)	2.20			2.20		
7	а	Área del tubo de descarga=(3.1416X(1)²)/4 (m²)	0.032			0.032		
8	Q	Gasto (m³/s)	0.054			0.054		
9	hv	Carga de velocidad = $((8)/(7))^2/19.6133$ (m)	0.148			0.148		
10	hfc	Perdidas de fricción en la columna. (m)	1.02			1.02		
11	hd	Carga a la descarga = (6)+(9)+(10) (m)	3.364			3.364		
12	Н	Carga total =(3)+(11) (m)	75.364			75.364		
	la	Corriente línea A	130.70			130.700		
12	lb	Corriente línea B	127.40			127.400		
13	lc	Corriente línea C	120.70			120.700		
	ı	Promedio= (la+lb+lc)/3 (Amperes)	126.27			126.267		
14	Vab	Tensión de fase AB	438.70			438.700		
	Vac	Tensión de fase BC	434.90			434.900		
	Vbc	Tensión de fase CA	433.80			433.800		
	V	Promedio= (Vab+Vac+Vbc)/3	435.80			435.800		
15	tp a	Factor de potencia línea A	0.882			0.882		
	tp b	Factor de potencia línea B	0.852			0.852		
	tp c	Factor de potencia línea C	0.884			0.884		
	Fp	Promedio= (fpa+fpb+fpc)/3 %	0.873			0.873		
16	Pe	Potencia de entrada al motor =	83.171			83.171		
		= 1.732X(13)X(14)X(15)/1000 (KW)	83.1/1			03.1/1		
17	Ps	Potencia de salida de la toma = = 9.81X(8)X(12) (KW)	39.923			39.923		
18	η	Eficiencia electromecanica (%)	48.001			48.001		

Tabla 51. Cálculo de eficiencia electromecánica (Pozo Ortiz Rubio). Fuente: Extraído de [2]