Índice de figuras

		Página
Figura 1.1	Esquema de una celda de biocombustible	1
Figura 1.2	Clasificación de los dispositivos electroquímicos	4
Figura 1.3	Esquema de una media celda de biocombustible (cámara anódica)	5
Figura 2.1	Celda microbiana de biocombustible	8
Figura 2.2	Diseño típico de una CMB	9
Figura 2.3	Diferentes diseños de CMB	20
Figura 2.4	CMB utilizadas en operación continua	
Figura 2.5	Sistema de tipo de producto: Fermentador externo que alimenta a la celda	
	de combustible H ₂ /O ₂	22
Figura 2.6	Sistema de tipo de producto: Compartimento fermentador/ánodo	
	en la celda de biocombustible	22
Figura 2.7	Sistema TDE	24
Figura 2.8	Figura 2.8 Sistema TEM	
Figura 2.9	ra 2.9 Celda fotoquímica de combustible	
Figura 3.1	Curvas de polarización (a) y curvas de potencia (b) de una CMB operada	
	con almidón	35
Figura 4.1	Dispositivo original de una CMB	39
Figura 4.2	Desarrollo de voltaje en las celdas microbianas utilizando soluciones de	
	glucosa al 5, 10, 20, 30, 40 y 50% y 5g de levadura en cada caso	40
Figura 4.3	Desarrollo del voltaje variando cantidades de levadura	41
Figura 4.4	Voltaje obtenido variando la temperatura	41
Figura 4.5	Efecto de corto circuito utilizando levadura y glucosa	43
Figura 4.6	Reacciones redox que se llevan a cabo en la CMB	46
Figura 4.7	Aclimatación de la CMB con tres aplicaciones sucesivas de inóculo	52
Figura 4.8	Generación de voltaje a partir de glucosa como sustrato	53
Figura 4.9	Voltaje máximo obtenido a partir de la concentración de glucosa	53
Figura 4.10	Generación de electricidad en la etapa de medición continua, utilizando	
	resistencias externas de 100 y 600 Ω	54
Figura 4.11	Generación de potencia en la CMB, empleando una resistencia	
	de 1000 Ω (A) y una resistencia de 600 Ω (B)	55

Figura 4.12	2 Efecto del pH en la densidad de potencia, con una resistencia		
	de 1000 Ω (a) y una resistencia de 600 Ω (b)	57	
Figura 4.13	Relación de la temperatura de operación sobre la densidad de		
	corriente, utilizando 100 y 600 Ω	59	
Figura 4.14	Corriente registrada en función del tiempo		
Figura 4.15	Diagrama de una CMB creada en México		
Figura 4.16	6 Voltaje a circuito abierto y sometido a una resistencia externa		
Figura 4.17	Voltaje y corriente en función de una Rext		
Figura 4.18	18 Método gráfico para encontrar Rint		
Figura 4.19	Potencia máxima obtenida de la CMB	64	
Figura 6.1	Siete subunidades conectadas eléctricamente en paralelo para		
	proporcionar potencia suficiente para a la boya	71	
Figura 6.2	Boya meteorológica usada en la demostración en el muelle		
	del Laboratorio de Investigación Naval en Washington, DC	71	
Figura 6.3	Ejemplo de un registro meteorológico de 7 días en una boya marina	72	
Figura 6.4	Ánodo de la segunda versión de una CMBB		
Figura 6.5	Registro de la generación de energía en los primeros 30 días		
	de la instalación de la segunda generación de una CMBB	73	
Figura 6.6	Fotografía de prototipo Ecobot I	75	
Figura 6.7	Desplazamiento del Ecobot I	75	
Figura 6.8	Promedio de ciclos de carga y descarga del Ecobot I		
Figura 6.9	EcoBot II con una CMB y cátodos de O2 colocados en el exterior para permitir		
	su exposición al aire	77	
Figura 6.10	EcoBot II	78	
Figura 6.11	Ciclo típico de agotamiento para ocho CMB diferentes antes de conectarlas		
	con el EcoBot II	79	
Figura 6.12	Arreglo experimental para las carreras del EcoBot II	79	
Figura 6.13	Tiempo promedio de las tres carreras para llegar a la meta del		
	robot a 50 cm	80	
Figura 6.14	Gradiente de temperatura producido y detectado por el robot cuando		
	se movía hacia el calor de la fuente de luz	81	

Figura 6.15	15 Distancia promedio versus tiempo promedio para las pruebas de resistencia		
	del EcoBot II	81	
Figura 6.16	Relación entre la temperatura ambiente promedio transmitida por día		
	y la distancia promedio en experimentos con EcoBot II	82	
Figura 6.17	ra 6.17 Robot que se alimenta de babosas (Slugbot)		
Figura 6.18	ura 6.18 Ciclos básicos de operación de un robot		
Figura 6.19	gura 6.19 Celda de combustible de alta temperatura		
Figura 6.20	5.20 Pinza del Slugbot		
Figura 6.21	Dos tipos de CMB: a) CMB con cátodo expuesto al aire, b) CMB		
	con cámara catódica cerrada	95	
Figura 6.22	Cuatro tipos de CMB	95	
Figura 6.23	Voltaje de circuito abierto	96	
Figura 6.24	Corriente de salida de las cuatro CMB en diferentes condiciones		
	de hidratación	97	
Figura 6.25	Efecto de la temperatura en las diferentes configuraciones de cátodos	98	
Figura 6.26	Respuesta de Is como resultado de un aumento en el caudal de agua		
	manteniendo constante una temperatura de 30°C	98	
Figura 6.27	Celda microbiana de biocombustible de una sola cámara	101	
Figura 6.28	Diseño de sistema de una CMB de una sola cámara	102	
Figura 6.29	Variación de la corriente con el tiempo para el enriquecimiento		
	de bacterias electroquímicamente activas	105	
Figura 6.30	Respuesta a la concentración de la DQO con una resistencia externa de 50 Ω	108	
Figura 6.31	Relación entre la carga generada y la concentración de la DQO	108	
Figura 6.32	Reproducibilidad del biosensor de una CMB	109	
Figura 6.33	Variación de la corriente con el tiempo para el enriquecimiento de		
	bacterias en el biosensor CMB de menor volumen	110	
Figura 6.34	Influencia del volumen de los reactores en el tiempo de respuesta de los		
	biosensores a los cambios por etapas en la concentración de DQO	110	
Figura 6.35	Estabilidad a largo plazo del biosensor CMB	112	
Figura 6.36	Variación de la corriente en el biosensor CMB en respuesta a diferentes		
	soluciones de efluentes de una planta de tratamiento de aguas residuales	112	

Índice de Tablas

		Página	
Tabla 3.1	Potenciales estándar E_0 y potenciales teóricos para las condiciones típicas en las CMB	28	
Tabla 4.1	Cabla 4.1 Solución modificada de Pasteur		
Tabla 4.2	a 4.2 Bacterias utilizadas por Cohen y sus potenciales		
Tabla 4.3	Investigaciones realizadas con CMB alimentadas principalmente por la oxidación de la glucosa	48	
Tabla 4.4	Investigaciones realizadas con CMB alimentadas por la oxidación de otros químicos 50		
Tabla 4.5	Composición del extracto modelo para la CMB	61	
Tabla 6.1	Valores medios de salida de corriente y potencia de la CMB, junto con la resistencia interna calculada	97	
Tabla 6.2	Características de las aguas residuales utilizadas en el experimento CMB de una sola cámara	103	
Tabla 6.3	Efecto de la tasa de alimentación en la corriente generada y eficiencia coulombica	105	
Tabla 6.4	Efecto de la resistencia externa en la respuesta dinámica del biosensor CMB	107	
Tabla 6.5	Comparación de los biosensores CMB en relación con el volumen del reactor	111	
Tabla 6.6	DQO medida con método químico y biosensor	111	
Tabla 6.7	Efecto de la temperatura en un biosensor CMB	112	

Glosario

AMA	Agua de n	nar artificial
	I Iguu uo II	inar artificia

- ARS Agua residual sintética
- CMB Celda microbiana de biocombustible
- CVR Carbón vítreo reticulado
- ENH Electrodo normal de hidrógeno, también llamado electrodo estándar de hidrogeno (ESH)
- MIP Membrana de intercambio de protones
- PPM Punto de potencia máxima
- RN Rojo neutro
- TDE Transferencia directa de electrones
- TEM Transferencia de electrones mediada
- VCA Voltaje de circuito abierto