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Abstract

In recent years, the need for a better understandng andmore spedfic apgications

in Biology, has lead to a synergy between theoretical and experimental Biology and
Systems Theory. This relatively new appication field is called Systems Biology. In a
clinical contex, this fusionintendsto provide a systematic guideline for unveli ng the
core medhanisms of seveal diseases. In the present work, the dynamical study of the
mathematical model of the Extrinsic andIntrinsic Apoptosis Pathways is performed in
order to provide a better characterization d the pathways. It is important to remark
that malfunction o this cdlular processhas been involved with neurodegenerativedis-
eases and cancer.
In order to identify the most important reactions in the pathway andto determine the
role of each ore, a descentralized controller scheme isidentified and andyzed in bath
pathways and a bfurcation andysisis performed to the Extrinsic Apoptosis Pathway
and findly the robustnessof the stahility and performancein the linearization of both
pathwaysis gudied.



Chapter 1

| ntroduction

In this s2dionthe concepts of Systems Biology andcdl death processes areintroduced.
In Chaper 2, the dynamical models which reproduce the reactions dynamics in two
different apoptosis pathways are presented. Chapter 3 shows the steady state andysis
and cecentrali zed structure of the systems. Then, in Chapter 4 the qudlitativebehavior
of the system is explained via a bifurcation dagram and, finally, the robustnessof the
stahility and performanceindexes are andyzed in Chapter 5.

1.1 Systemsbiology concept

The idea of understanding the phenomena present in a living being is not new. In
the late 1940s, Norbert Wiener in his book Cybernetics proposed the motifs present
in the living beings as a benchmark for human-made designs. Althoughin this ap-
proach some mechanisms present in the living beings are studied and understood, the
main godl is to apply this knowledge to the human-made designs rather than provide
ahdlistic understanding o the living being. In 1944 Schrodinger pased the question:
Can the phenomena present in the living matter be explained with the aurrent physi-
cd knowledge? Or are they explained with a new physicd law? (Schrodinger, 1944).
Certainly, the hypaheses posed in order to answer the previous questionsinvolved yet
undeveloped experimental work. Recent techndogicd developments have provided a
means for testing some of these hypaheses and to oktain meaningful answers. How-
ever the technicd avail ability of experimental equipment and the expertise in its use,
is just one part for getting information o process occurring in a cél, for example.
A sound bochemicd knowledge of the phenomenonitself and a systematic way for
testing the hypaheses have to be available, i.e., the biologicd knowledge ca claim
how the mechanism of a catain phenomenon reppens and a systematic approach pro-
vides the guideline for accepting o refusing this claim. With the identificaion o the
structure of DNA by Watson and Crick (Watson and Crick, 1953, the basis for under-
standinga célular processas awell defined mecdanism was st in motion. Sincethen,
the development in bah the experimental and theoreticd Moleaular Biology hes fur-
thered the understanding. As yeaswent by, awide variety of processes, ranging from



the cdlular divisionto the evolution o viruses, have been studied.

A further step isto abstraa this biologicd knowledge into a set of dynamicd and
algebraic equations. In the remaining o this thesis, the term *model” will refer to this
set of equations. After this model has been experimentally validated, it can be used
to explore cdl behavior in computational experiments (in sili co analysis) and further
analyticd studies can be performed to infer some dynamicd properties. Thislast step
is main the theme of thisthesis.

The disciplines of Biology and Systems Theory can lead to a better biologicd un-
derstanding o cdlular dynamics. In turn Systems Theory finds new challenges which
will | ead to afurther development of the theory. Some examplesof the collaboration of
these aeas can be foundin the terms Computational Physiology and Systems Biology.
This later term was first used by Kitano, who states: “Systems biology is a new field
of Biology that aims to devdop a system-levd understandng o biological systems.
System leve understandng requires a set of principles and methoddogies that links
the behaviors of moleaules to system characteristics and functions. Ultimately, cdls,
orgarnisms, and human beings will be described and undrstood & the system levé
grounced on aconsistent framework of knowledge that is underpinned by the basic
principles of physics’ (Kitano, 2001).

In contrast to Kitano, other authors define it as a synergy of different disciplines
rather than a pure Biologicd area “[...] Systems biology is the aoordinated study of bi-
ological systems by (1) investigating the comporents of celular networks andtheir in-
teractions, (2) apdying experimental high-throughpu and whole-genome techniques,
and (3) integrating computationa methods with experimental efforts. [..] Systems
biology comprises experimentation andcomputationa modeling. To this end, it inte-
grates approaches from diverse areas of science such as biology, chemistry, physics,
mathematics, appied science engineeing, cybernetics, andcomputer science By de-
mandng new strategies, it also stimulatestheir further devdopment andcontributesto
new solutions.[..]* (Klippetal., 2005

Recantly, the methods of Control Engineaing have been used to provide this /s
tematic insight, for providing a better understanding of a cetain biologicd processes.
In (Wellsteed et al., 2008 and (Sorntag, 2009 a statement of Biologicd problemsand
the potential of applying a Systems Theory approach to them are presented in Engi-
neegingterms.

1.2 Cadll death signalling

In genera, cel deah is aprocessas important as the cdl divisionitself, sinceits fun-
damental aim isto keep tissue hedthy and functioning corredly viathe removal of old,
damaged or unhedthy cdls. Thisisawell studied phenomenonwhich has attraded the
attention of researchers from diff erent fields. In the last decale, the study o the medh-
anismin which a cdl dieshas been divided into three caegories (Lockshin and Zakeri,
2004): autophegy, apoptosis and reaosis.

e Autophegy
The term autophagy is derived from Greek roots: auto, meaning 'self’, and



phagy, 'to ea’. It is a well-known physiologicd processinvolved in routine
turnover of cdls constituents. In this processa spedfic membrane in the ¢ytosol
engufs the organelle to be removed and it is digested by lysosomal enzymes.
Figure 1.1 shows the relationship of this type of cdl deah with the outcome of
a cdl: athoughautophagy mostly allows cdls to adapt to stress massve au-
tophegy can also lea to cdl deah. This Figure dso shows the existence of a
competitive scheme between this process of adaptation and a well known cdl
deah processcdled apoptosis.

B

Autophagic threshold —— / \ ——— Apoptotic threshold

—_— -
Suipling | ——
Mutual inhibition l

Adaptation

Figure 1.1: Qualitative interadion amongautophagy and apoptosis (Image taken from
Lockshin and Zakeri 2004

e Apoptosis
The term apoptosis has also Greek roots: apo which means 'off’ and ptosis,
‘faling, thus apoptosis resembles leaves falling o atree It is a programmed
cdl dedh based onthe adivation o caspases. The Caspases (Cysteine-ASPartic
Acid protegASES) are afamily of proteolytic adds which cleaves after asparte
residues in substrate proteins. There exist two type of caspases:

— Initiator caspases
They are caspases adivated in resporse to a spedfic triggering event.
«x Caspase 8: is adivated via the deah-receptor ligands in the outer
membrane of the cdl.
+ Caspase 9: isadive when bounckd to aspedal protein cdled Apopto-
some.
«x Casgpase 2: isadivated when DNA damage has been encourtered.

— Effedor caspases
They are adivated viathe initiator caspases. This aubtype of caspasesin-
clude the Caspases 3, 6 and 7.

Inthe case of apoptosis, Caspase 3 isthe cagpase that exertsthe most representa-
tive dfed in the cdl dismantling. It can be adivated by either Caspase 8 or Cas-
pase 9, the extrinsic or intrinsic gopoptosis pathway. The adivation of caspases
is present in awide variety of processs: from virus propagation (Wurzer et al.,
2003 to bloodclottingandwound reding (Rai et a., 2005 and, as dated above,
the core medchanism of apoptosis.



When the gpoptosis mechanism is not triggered corredly, the natural cdl cy-
cle is disrupted. When apoptosis is underadivated the survival of cancer cdls
can be promoted. On the other hand, the over adivation o the medhanism can
kill hedthy cdls. in the nervous g/stem the deah of a kind o cdls has been
implicated in Parkinson's disease.

Inrecent yeas, the developmentsin the optoel edronicindustry have made avalil -
able powerful automated microscopeswhich can give meaningful informationto
the experimental biologists. In the cdlular level, imaging viaionized dyes is
the ad hac media for remvering quelitative data from a wet experiment. See
(Paul et al., 2008, for example.

e Neaosis
This term includes al the phenomena not included in the ebove foregoing con-
cepts (Lockshin and Zakeri, 2004. Sinceit can be caised by a wide variety of
ressons, the acual classficationisnot straightforward and li es beyondthe scope
of thisinformal i ntroduction.

1.3 Outlineof thethesis

Thisthesisisfocused onthe study of the dynamics of two apoptosis pathways: the Ex-
trinsic Apoptosis Pathway (EXAP) (Eissng, 2007 and the Intrinsic Apoptosis Path-
way (INAP) (Rehmetal., 2006. The main aim of this gudy is to provide abetter
insight in the pathway and to classfy the readions acording to their relevancein the
structural bistability and sensitivity of the locd stability andlocd performance Given
the complexity of the networks, no dyremica properties could be obtained and just
a numericd charaderizaion was caried ou. In previous works (Eissng, 2007 and
(Carotenuto et a., 2007 a Monte Carlo analysis and a one and two parameter bifur-
cation analysis are performed in order to identify the set of parameters that lead to a
bistable scenario, respedively. Inthiswork, aone parameter bifurcationanalysisis per-
formed in order to determine the passhble behaviors of the network and the feasibility
to read them.

In the next Chapter, the dynamicd models which reproducethe readion dyremics
in the two different apoptosis pathways are presented. In Chapter 3 a methoddogy
for identifying the structure of the model i s presented and a stealy state analysisis per-
formed, which charaderizesthe bistable behavior of themodel of the EXAP. In Chapter
4 the charaderization d the bistable property of the EXAP model i s presented. Finally
in Chapter 5, robust stability and performanceindexes are computed for both apoptosis
pathways. To conclude this Chapter, alist of the main contributionsis presented.

1.4 Main contributions

e A propartional derivative control medhanism isidentified arising from a particu-
lar reation dagram



e A bifurcaionanalysisis performed for the Extrinsic Apoptosis Pathway model,
identifying some of the possble behaviors of the network. In this regard, aro-
bustnessindex is evaluated in terms of the impad of the variation of one param-
eter in the structural bistability property of the network

e The sensitivity of the models analyzed is performed via the Structural Singuar
Value



Chapter 2

Apoptosis models

This Chapter presents an overview of two Apoptosis Pathways as deter ministic dynam-
ical systems. Both models are build upon the knowledge of the interaction among the
reactants present in each pathway. Both, the INAP and EXAP model, reproduce accu-
rately the concentration of the compounds involved in each mechanism. Remarkably,
the model of the EXAP has the interesting dynamical property of bistability.

2.1 Introduction

Onceidentified the chemicd spedesinteradingin areadion network, areadion da-
gram can be established (e.g. A + B — C). From this readion dagram, the assg-
nation o a suitable readion mechanism leals to a set of differential equations: the
mathematicd model of the readion network. When a nominal set of parametersis
leded for the model, quantitative analyses can be performed in order to determine the
particular charaderistics of the system: fixed paints and stability, for instance. A more
genera analysis can be dorein disregard of any numericd assgnation to the parame-
ters. The results of thislater analysis are the properties of the readion network, rather
than the properties of a particular readion. Consider for example the next readions:

k k
0;1‘A;3\B
ko kya

Thedynamicd model with the dedion of massadionreadionmecdhanism (seeSedion
222)is

[A] k1 — (kg + k3)[A] + k[ B]
[B] = k3lA] — ku[B] (2.1)

Itsfixed pantis:

(am) = (pe)



Ascan beseen from the expressonabovethefixed pantisuniquefor any definition
of k1, ko, k3, k4. The stability analysisof the system (2.1) concludesthat the fixed pant
will be stableif all the constants are positive. That is to say that the global stability is
a property of the network. Neverthelessthe locaion o a fixed pant of interest is a
charaderistic of a spedfic system with spedfic constants.

Theidentification df the propertiesof anetwork can bein general very complicated.
However, if it isachieved, aqualitative characerizaion o the behavior of the network
can be inferred. In Chapter 3, the identification o the structure of the two apoptosis
models are presented and afurther steady state analysisis performed to find properties
of the network.

The next subsedion presents some basic definitions and an informal overview of
the cdl deah medhanisms.

2.2 Fundamentals

In comparison to traditional engineeing systems, biologicd systems present a wider
variety of scdesin bah time and sizein a single phenomenon Moreover, the com-
plexity of the biologicd systems make them cumbersome & a first glimpse and in
particular cases difficult to analyze. Another important differenceis that dynamic test
and measurement are widely present in engineaing design. However, the red-time
data aquisition o a cdlular processis, in general, atechnica challenge.

Despite these difficulties, the principle of biologicd phenomena can be explained
ona dhemicd basis. Some of these concepts are introduced in the foll owing subsec
tions. First aprotein degradationmedanism, then two readions mechanism andfinally
general modelsfor readion networkswill be presented.

2.2.1 Protein degradation

Most of the proteins that are degraded within the cdl (in the ¢ytosol) are delivered to
large protein complexes cdled proteasomes, which are dispersed throughot the cdl.
Eadh proteasome consist of a central cylinder formed from multi ple distinct proteases
and ads on proteins that have been spedficdly marked for destruction bythe atach-
ment or a protein (ubiquitin) (Albertset a., 2002. In general thisis the mechanismin
which a deaved protein is degraded. In the case of apoptosis, this mechanism plays a
very important role, since, oncethe pod of adivated caspase has cleared a protein, a
final degradation hasto be made to totally remove unwanted proteins.

Itisimportant to remark that moreways of protein degradation have beenidentified,
but for the scope of the present work the knowledge of the mecdhanism presented will
be sufficient to make aplausible presentation o the topic.

2.2.2 Reaction Mechanisms

e Massadion Principle
TheMassAction Principle statesthat thereadionrateis propartional to the prob-
ability of the readant S; to mee S5. In turn, this probability is propartional to



the concentration o the readants to the power of the moleaularity. Let R be a
readion from n readantsto m products:

YidS = X hR

where d; and h; are the stoichiometric constants of the readants S; and the
products P;. Then the Massadion Principle states that :

v H[Si]di

i=1

The propartionality constant & is defined by:

K(T) = Ae™ &
where:
A Arrhenius constant Readion dependent
E, Activation Energy Readion dependent [K J]
R Universal GasConstant  8.314x10[-£7]
T  Absolutetemperature  [K]

In the rest of this work, the dependence of k£ on the temperature will be consid-
ered to be negligible.

In general, the velocity v of readionistherate of “vanishing’ of the readants .S;
and o “credion” of the products P;. Stated in mathematica terms,

d
@
d
-p =
dt? v
Catalyzed Readions
Catalyzed readions are performed in several steps and in the presence of a cd-
alyzing agent, whoserole is to modify the adivation energy of the readion. The
basic scheme of thistype or readionsis:

k ,
StE—LES™ pytE
k_

where E stands for the enzyme, Sfor the substrate, E:Sis the complex enzyme-
substrate and P, the product. Under the assumption that the total amourt of



enzyme (E:S + E) remains constant in time, the velocity of readion from the
substrate to the product yields:

_ kR [EN[S]
ki [S]+ k- + Ky

— T

Normally, this equationis referred to as the Michadis-Menten equation.

Catalyzed readions exhibit awide variety of behaviors depending onthe detail s
of the mechanism involved, for instance, it can either acceerate or slowdown the
rate in which the product is being formed (Klipp et al., 2009.

2.2.3 Moded of areaction network

In general, the set of differential equations that arise from a readion retwork is
norlinea and hence can exhibit awide range of behaviors, such as multi stability
or oscill atory resporses for certain ranges of the parameters.

In general, let this nonlinea system be described by
d
=S = £(S(H).p) S(0)=So

where S isavedor containing the concentrations of all the spedesinvolved and
p isavedor of parameters.

Due to the structure of a readion retwork, the foregoing dfferential equation
has a well defined structure defined by the readion dagram. The information
contained in thisdiagram can be synthesized thelinea map g : v € Re — %S:

25 = N@p©)

where N is a matrix whose i — th element is the stoichiometricad coefficient
of thes — th compoundin the j — th readion. Asa mnventionthe sign o this
element is positive if the compoundis a product and negativeif it is a substrate.
This matrix is usually referred to as the stoichiometric matrix. v stands for the
velocity rate of ead readion. Note that the fad that the concentrationsare norn
negative, canna be considered in this approach.

Theinformation contained in the stoichiometric matrix is the linear combination
of readions that, althoughthey have anonzero value, the product Nv, equals
zero -if v, € ker(N)- andleal to a stationary state in the mncentration d the
readants.

Alsointhisapproach, afurther reduction o the model can be adieved provided
the matrix IN is not full rank, since some of the concentrations will be just a
linea combination d the linea independent ones.

Another modeling approach is presented in (Feinberg, 1979. In these notes,
the term 'spede€’ is used to refer to every chemicd compoundtaking part in the

10



reacion retwork andtheterm’complex’ is eat ore of the term appeaingthe &
heads and tail s of the readion arrow. For instancethe readion

2A +3A:B—5A +3B

hasthe spedes A, A:B and B andthe complexes2A + 3A:B and 5A + 3B.
With thisin mind, alinear map 4 : [(S)] — %S can be established:

d

—S = YAi[¥(S

p k[ (S)]

where Y is the moleaularity matrix, whose ij — th entry is the is the stoichio-
metric coefficient of the ¢ — ¢th spedein the j — th complex, ¢ (S) is a vedor
whose comporents are the readion functions of the spedes involved in every
entry. Where:

Ap(S)] = D wi(8) Y kijle; —ei)
i=1 jeT;

1 if i=j
Eij:{ f j

0 otherwise

where ¢, (S) denotesthe i — th comporent of ¢ (S).

The main advantage of this modeling approadhisthat it hasagraphicd interpre-
tation: ead ore of the spedes can be regarded as a noce in a graph and eath
readion as an edge. This approac is further exploited by Horn, Jadkson and
Feinberg (seefor example, (Feinberg, 1979), where the properties of the graph
are explored in order to determine the qualitative behavior of the model. Re-
cently, Otero-Muras (Otero-Muraset a., 2009 has used this approach to find
the set of parameters where the network exhibits multi stable behavior. The main
drawbadk of the methodis that strong conditions on the graph have to be com-
plied.

2.3 Apoptosismodels

In this ®dion two different pathways and their respedive models will be presented.
First a general model resembling the adivation o an effedor caspase is introduced.
Note that this smple readion mechanism is present in bah apoptosis pathways. A
simplified explanation of the mechanismis given for eat of the pathways and a math-
ematicd model is presented.

2.3.1 Corereactions

Thebasic interadion o caspasesis represented by the following set of readions:

11



K, +C % ¢C, + K,
c. +k LK, +c,

where C is the initiator caspase and K is the dfedor caspase. The subindex a
representsthe adivated version o ead caspase.

The Figures 2.1-2.3 show threediff erent caspase adivation mecdhanisms. In these
Figures, the readants are in the tail s of the arows and the products, at the heads. The
interadion of two or more read¢ants occur when two arrows are meding. As can be
seen in Figure 2.1, thereis a positive feedbadk of mutual adivating elements. Hence,
once asingle moleaule of C, is present, the whole pod of the dfedor caspase will
be adivated and the cdl will eventually die. Althoughthis model represents the basic
adivation o caspases, it failsto recver the robust dedsionin the adual process This
property of robustnessis important, since asignificant concentration o adive caspase
3 canirreversibly cleare important proteinsfor the cdl survival.

The mathematicd model of this readion retwork is:

€] -1 0
Ca | _ L0 <a[CH/Ca]>
K] 0 —1] \BlC][K]
[/Ca] 0 1

Note that the rank of the stoichiometric matrix istwo. Hencetwo of the concentra-
tionsare linealy dependent, for example choose [C] and [K]. Note that:

—C =1 -KJ=IK]
Integrating with resped to the time:
[C] = [Calo+[Clo = [Ca]  [K] = [Kalo + [Klo — [Ka] (22

Together with the equations in (2.2) the two following ODEs fully describe the
system:
C = oK)
[K:a] = ﬁ[CaH’C]

In Figure 2.4 the dynamics of the model above ae presented. Note that only 15
minutes are necessry to convert the whole pod of the initiator caspase C into the
adivated effedor caspase IC,,. It is also remarkable that a relatively small initial con-
centrationis enoughto adivate the mechanism.

2.3.2 Extrinsic Apoptosis Pathway (EXAP)

The simplified scheme of the processis shown in the right column of Figure 2.5.
Thereadionsare:
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Figure 2.2: Simplified diagram of the EXAP

Figure 2.3: Simplified diagram of the INAP (inhibitors and adivators not shown)
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Time [min]

Figure 2.4: Trajedories of the states of the basic cagpase interadion. The magni-
tude of the concentrations have been narmali zed using the following fadors [C) . =
1300000, [Ca]maz = 2600000, [K]maz = 42000, [Kalmaz = 21000.

The parameters used in the simulationare o = 5.8 x 107° and 8 = 107>,

Theinitial condtionsare:

x0 = [[Clo, [Calos [K]o, [Kalo] = [130000, 150, 21000, 0]

Cgq + Cs LN C3q + Csq Cs, +Cy b2, Cgq + Cq
k.
Cha + TAP == [AP : C3, Csa +IAP 54 0,
km3
Csa 220 Csa 0
ks kg
IAP :C3, —5 0 IAP —=0
kms
k k
Oy —=0 Oy —2 0
kmo Em1o
k k
Csa + CARP == CARP:(Cs, CARP =220
kmi11 kmi2

CARP: Cy, 220

As a mnvention, the readion to/from zero will be understoodas an efflux/influx of
asubstance. It can be though of the inpus and ouputsin an open reador.

Inthis pathway theiniti ator caspaseis Caspase 8 andthe df ector caspaseis Caspase
3. CARP (Céllular Apoptosis Regulatory Protein ) representsthe inhibitor of Cs,; and
AP (Inhibitor of Apoptosis Protein ), theinhibitor of Cs,,.

In Figure 2.2 note that definingC = Cs, C, = Csq, K = C5, K, = C3,, the core
caspase adivation medchanism is present in this pathway.

This model considers an initial concentration of the adivated initiator caspase
present ([Cs.] # 0), these moleaules of Cy,, can either be degraded via its inhibitor
or can adivate the dfedor caspase Cs. In turn, the C'5, can be dther degraded by its
inhibitor or can adivate the initiator caspase Cs. Both IAP and CARP, inhibit the ac

14
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Figure 2.5: Apoptosis Pathways Schematic

tivated version o the correspondng caspase when it bonds to the adivated site of the
caspase, avoiding afurther readion.

In comparisonto thefour statesmodel, thismodel hasa doser behavior to the adual
process since the presence of a small concentration of the adivated initiator caspase
does nat mean the outcome of the cdl i s deah. Clealy, thisis due to the presence of
the inhibitors, since they can degrade the adivated version d the respedive capase
and hence make the cdl immune to a cetain concentration o the adivated caspases.
However, the pod of the inhibitors can be consumed more rapidly than its generation,
thus the pod of the inhibitor eventually run ou and the respedive capase will be
eventually adivated. Itisclea that for such an important dedsionfor the cdl to read,
the medchanism hasto be very predsely adivated.

The dynamicd model has eight states and nineteen parameters. It is build uponthe
MassAction Principle, and the equationsread as foll ows:

[Cs] = —ka[Cs4][Cs] — ko[Cs] + kmo

[Csa] = k2[C34][Cs] — k5[Csa] — k11[Csal[CARP] + k11 [CARP : Csa]
[Cs] —k1[Csa][C3] — k10[C3] + km1o

[Csa] = k1[Csa][C3] — k6[Csa) — k3[Csa][TAP) + kms[IAP : Csa]

[[AP] = kns[IAP: Csa) — ks[TAP] 4 kms — (ks + ka)[Csa][[AP]
[[AP:C3a) = —(kma+ kr)[[AP : Csa] + k3[Csa][IAP)]
[CARP] =  kmii[CARP : Csa] — ki2[CARP] + kmia — k11[Csa][CARP]
[CARP : Csa] = —(kmi1 + k13)[CARP : Csa] + ki1[Csa] [CARP]

The nominal parameters (Eissng, 2007) are presented in Table 2.1.

The phase portrait of this model with nominal parameters has three fixed pants,
two of them are stable nodes and oreis a saddle (Bulli nger, 2005 and (Dunne, 2008.
Moreover, with the nominal seledion o parameters the system does not seem to have
any strange dynamics -chaos or limit cycles- and seams to present only two global
attradors: one of them has alow concentration o C3, and the other one ahigh con-
centration of C3,. Inthe next sedions, these fixed pantswill bereferredto asthe’life’

15



Table 2.1: Nominal parametersfor the EXAP. *Mo = Moleaules

Name Value Units Name Value Units
ky 58x107° [Mo ! min™1] ki 39x1073  [min~!]
ko 1075 [Mo™! min™' ki 5x107%*  [Mo~! min™!]
ks 5x1074 [Mo™! min™' ko 1073 [min~—1]
ky 3x1074 [Mo™! min=' ki3 116x1072  [min~!]
ks 58x1073  [min~! km3 0.21 [min=1]
ke 58x1073  [min~! kms 464 [Ae]
Ky 1.73x10~2  [min~! kmo 507 [ e
ks 116x10~%  [min~! kmio 819 [ e
ko 3.9x107%  [min~! kmi1 021 [min=1
kmi2 40 [Lo]
TN [T
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Concentration [1]

T
~—
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Figure 2.6: Trajedoriesof the states of the EXA P. The magnitude of the concentrations
have been namalized to the maximum value of ead of the concentrations present.
[Cs]maz = 1300000, [Csa)maz = 89890.3, [Cs]maz = 21000, [Cs4]maz = 10683.9,
[{AP] ez = 40000, [[AP : Cs4|max = 48267, [CARP)max = 40000, [CARP :

Csalmaz = 24647.2.
The parameters used in the simulation are the nominal and the initial condtions

are. xg = [[Cg]o, [C&L]o, [Cg]o, [Cga]o, [IAP]O, [IAP : Cga}o, [CARP]Q, [CARP :

Csa]o] = [130000, 1000, 21000, 0,40000, 0, 40000, 0]

and’dedh’ fixed pant, respedively.

It isimportant to nae that the fixed pant with a high level of C5, doesnot have a
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red biologicd meaning because once ahigh concentration o C', is readed, the cdl
will start to dismantle itself andthe model isnot longer valid. Neverthelessthis model
recversthe cgadty of the cdl to remain alive despite the presenceof relatively small
amourtsof theinitiator caspase Cs,. Thenominal dynamicsof themodel are presented
in Figure 2.6. Note that once the pods of the inhibitors have been consumed, the
adivation of caspasesis amost immediately. As a matter of fad oncethe mecdanism
is adivated, the dynamics are similar to the dynamics of the four states model (see
Figure 2.4 on page 14). Note dso that the time that the inhibitors take to degrade
trandatesinto adelay in the triggering o the mechanism.

2.3.3 Intrinsic Apoptosis Pathway (INAP)

The oontents of this edion are based on (Rehm et al., 2006. In the recent yeas the
reseach in the INAP has been very fruitful and adive. In theleft column of Figure 2.5
on page 15 a simplified diagram of the adivation mechanism of this pathway is pre-
sented. Note that the name of this pathway relies onthe origin of the triggering signal
of the mechanism. A more detail ed explanation o the processis presented below.

The mitochondia ae one of the organelles of the aukariotic cdls which regulate
severa processs of the cdl and cary out the important oxidation of food moleaules
(Albertset al., 2002. Inthe INAP, the adivation o the dfedor caspases is triggered
by an inpu signal to the mitochondia and the subsequent release of proteins which
promote gpoptosis. The release of cytochrome c (cyt-c) triggers the formation o the
apoptosome, amulti protein complex whose boundwith Caspase 9 adivatesthe €f ecor
Caspases 3 and 7. Asin the EXAP, the presence of inhibitors (IAP) courterad the
adivation o the caspases. However, the mitochondia dso releases an adivator of
the process whose role is the inhibition o | AR, promoting the final adivation o the
effedor caspases. This adivator isreferred in the literature & Smacor DIABLO. The
formation of the gpoptosomeis also regulated by the BIR.

The basic interadion o Caspases for this model i s presented in Figure 2.3 and the
whole set of equations can be splited asfoll ows.

The basic interadion o caspasesin this pathway is represented by the readions:
Coq +C3 s, Cya + C3a
Coa + C3a Fe, Cop + C3a
Cop +C3 L Cop + C3a
Cs + Csa 25204,

Note from Figure 2.3 and the gorementioned readions that the basic interadion of
caspases has been modeled to present autoadivation o Cs,,.

Thereadions of XIAP andthe cagpases are:

Csa + XIAP X2 XTAP : Cs,

XIAP : Csy 219 Cy, + XTAP

Csa + XIAP : Cogy 15 XTAP : CoqCsq
XIAP : CoaCsa 212 O34 + XIAP : Coq

C3q + XIAPDP2frag & XIAPp2frag: Cs,
XIAPp2frag : Csq LT C3q + XIAPp2frag
Csa + XIAP 7. Bir12 + Bir3R + Csq
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Csa + XIAP : Coq Y25, Bir12 + Bir3R : Coq + Csa

Csa + XIAP : C3a 222 Bir3R + Birl2 : C3a + Csa

C3q + XIAPp2frag Fzo, C3q + Birl2 + Bir3Rp2frag

Csa + XTAPp2frag : Csa 25 Csa + Birl2 : Csa + Bir3Rp2frag
Csa + XIAP : CouCsq 225 Cay + Birl2 : Caa + Bir3R : Coq
C3q + XIAP : 2Smac K2, C3q + Birl2 : Smac + Bir3R : Smac
Csa + XIAP : CoaCsq ~24 Cgy + Cop + XIAPp2frag : Caa
Csa + XIAP : Coq 225 O34 + Cop + XIAPp2frag

Csa + Bir3R : Coq <25 C3, + Bir3Rp2frag + Cop

Coa + XTAP *27, XTAP : Co,

XTAP : Coy ¥25, Coy + XIAP

Coa + XIAP : C3a X2 XTAP : Coy : Csq

XIAP : Coq : Csa 3% Coy + XIAP : Csq

XTAPp2frag 234 X1AP

XIAP +2Smac 35, XIAP : 2Smac

XIAP : 2Smac 225, XTAP + 2Smac

XIAP : Coq + 25mac 375 XTAP : 2Smac + Coa

XIAP : 25mac + Coa 35, XIAP : Coq + 2Smac

XIAP : C34 + 2Smac ka0, xrap: 2Smac + Csq
XTAP2Smac + Csq F4% XTAP : Csy + 2Smac

XIAP : Cy, : C34 + 2Smac ba, XIAP :2Smac + C34 + Cop
XIAP : 2Smac + Csq + Cop 225 XIAP : Cog : Csq + 2Smac
XIAPp2frag 4+ 2Smac LN XIAPp2frag : 2Smac
XIAPp2frag : 2Smac ¥52. XTAPp2frag + 2Smac

Theregulationeffed of the BIR isrepresented by the readions:
Csa + Bir12 212 Bir12.: Gy,
Birl2: Cs, 1% Oy, + Birl2
Coa + Bir3R 25 Bir3R : Co,
Bir3R : Coq 22 Cy, + Bir3R
Bir3Rp2frag a3, Bir3R
Birl2 + Smac Bas, Birl2 : Smac
Birl2 : Smac Faa, Birl2 + Smac
Bir3R + Smac Kas, Bir3R : Smac
Bir3R : Smac LN Bir3R + Smac
Birl2 : C34 + Smac ka7, Bir12 Smac + Csq
Birl2 : Smac + C3q Fas Birl2 : C3q + Smac
Bir3R : Cgq + Smac Fao, Bir3R : Smac + Coq
Bir3R : Smac + Coq m Bir3R : Coq + Smac

Theinflux and degradation of the diff erent readants, with:

X1AP F. 0
0, xrap

18



=

o
©

o
o

Figure 2.7 Trajedories
of the states of the INAP.
The magnitude of the
concentrations have been
normali zed acording
with the next fadors:
[03], [Cga] — 0.12;

o
Y

o
o

Concentration [1]
o
1

0.4r
[Cop], [Coal, [Apotosome] —
03 0.03 and [Smac] — 0.126
The parameters used in
02 the simulation are the
01 nominal and the initial
condtions are dl zeo
0 ; except for [C3]p = 0.12
° ° lc')l'ime [min]15 2 % and[I AP], = 0.0603.
Cop ~22, 0
Coa 240
Caa 55,0
kse

XIAP : C3q —>0
XIAP : CoaCsa ~25 0
XIAP : Coq 225, 0
XIAPp2frag k50,9
XIAPp2frag : Csa +59, 0
XTAPp2frag : 2Smac ko1, 0
XIAP : 2Smac ko2, 0
Birl2 £9. o
Bir3R X%, 0
Birl : 2Smac Kes, 0
Bir3R : Smac Kea, 0
Birl2: Cs, 267, 0
Bir3R : Coq ~%2,0
Bir3Rp2frag e, g
Smac Ko, 0
Thereadions presented above reproducethe processfrom the release of cyt-c to the
final adivation of the dfedor caspase. The set of ODEs that represents the model is
presented in Appendix B and the nominal parameters are shown in Table 2.2. Finaly,
Figure 2.7 shows some of the trgjectories of the relevant states.
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Table 2.2: Nominal parametersfor the INAP

Name Value Units Name Value  Units

Ky 0.0039 [min~ } ks 0.133  [min~ ]

ko k1C34mi [uM~tmin=t  ksy 420 [uM ~2min1
ks 0.0116 [rin~ } kss 156 [uM ~tmin=1]
ka ksXTAP;;  [pM~tmin™]  kag 420 [uM ~2min1
ks 6 [uM -~ 1mzn N ko 156 [uM ~tmin=1]
ke 12 [uM~tmin=t] kg 0 -

ke 48 [uM " tmin=]  kyo 0 -

ks 24 (WM~ tmin=1] ks 4.45 [uM ~tmin=1]
kg 156 (WM~ tmin=]  kuy 319 [min~1]

k1o 0.1440 [min=1] kas 0.33 [uM ~tmin=1]
k11 0 - kae 14.2 [min_l]

k12 0 - ka7 4.45 [uM’lmmfl]
ki3 0 - kas 156 [uM‘lmin_l]
k14 0 - k4o 0.3300 [uMﬁlminfl}
k15 156 (WM~ tmin=1] ks 156 [uM ~tmin=1]
k16 0.1440 [min=1] k51 420 [uM ~2min=1]
k17 12 (WM tmin™1] ko 156 [uM ~tmin™1
k1s 12 (WM~ tmin=1]  kss 0.0058 [min~1]

k1o 12 [uM " tmin=']  ksy 0.0058 [min~!]

K20 12 (WM~ tmin=1]  kss 0.0058 [min~1]

ko1 12 [uM~tmin=]  kse 0.0347 [min~1]

koo 12 (WM~ tmin=t  ksr 0.0347 [min~1]

kas 12 [uM~tmin=]  ksg 0.0347 [min=1]

Eoa 12 (WM~ tmin=1]  ksg 0.0058 [min~1]

kas 12 [uM~tmin=]  keo 0.0347 [min~1]

kog 12 [uM " min='] ke 0.0347 [min~!]

ka7 156 (WM~ tmin=]  keo 0.0347 [min=1]

kss 01440 [min=1] kes 00058 [min~!]

kag 0 - ko4 0.0347 [min~1]

k3o 0 - kes 0.0058 [minfl]

ka1 156 [uM~tmin=']  kee 0.0347 [min~!]

ks 01440 (min=1] ker 00058 [min~!]

k33 0 - kes 0.0058 [min’l]

k3a 0 - koo 0.0347 [min‘l]

k3s 420 [uM~2min=]  kqo 0.0058 [min~!]
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Chapter 3

Steady State Analysis and
Structure | dentification

I ntroduction

In general, dynamic models of cdlular signaling pathways are complex and tightly
regulated. The network of readions present in a pathway can be interpreted as a chain
of readions endowed with regulators. As aresult, every readion can influencethe rest
of the network at the gppropriatetime and amourt. Inthiswork, based onadeterminis-
tic representation d the pathway, a methoddogyfor a systematic goproad to identify
the building Hocks of the network is presented, as a technique for coping with the
complexity of the network. A further analysis of the identified subsystems can define
their role in the network, thus giving insight to the network. The outline of the pro-
posed methoddogyrealsasfollows: in the context of Graph Theory, areduction o the
incidencematrix bandwidth via the reverse Cuthill -McKee adgorithm is done (Cuthill,
1969. The analysis of the identified subsystems is performed, resulting in the identi-
fication o the controller of the network. In Chapter 5 robustnessanalysisis applied in
both dynamicd modelsto charaderizethe charaderistic properties of the networks.

3.1 Extrinsic Apoptosis Pathway

3.1.1 Plant-Controller Schemein the Extrinsic Apoptosis Pathway

As introduced in Chapter 2 the model of the extrinsic Apoptosis pathway (Eissng,
2007 ispresented in Equation 3.1.

[Csl = —k3[C34][Cs] — ko[Cg] + kmsg

[Cgal = k2[C3q][C8] — k5[Cga] —k11[C8al[CARP] + k11 [CARP : Cgq]
[C3] = —k1[C8a]lC3] — k10[C3] + kmi0

[C3q] = k1[CgallC3] — k6[C3ql —k3[C3q[TAP] + k3 [ITAP : C34]

[TAP] = km3[IAP : C3q] — kg[IAP] + kg —(k3 + k4)[C34][TAP]

[IAP: C34] = —(km3 + k7)[ITAP : C34] k3[C3q][IAP]
[CARP] = km11[CARP : Cgq] — k12[CARP] + k12
1=

—k11 [CS(L%[C‘ARP]

—(km11 + k13)[CARP : Cgql k11[CgallCARP]

(31
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Note that the separation presented in the model, which at first glimpse may seem arbi-
trary, refleds animportant property of the network. Thefirst four diff erential equations
are function almost solely of the variables which appea diff erentiated, i.e., these first
four equations can be regarded as a system with two exogenous input signals (the re-
maining terms).The very same analogy can be dore for the last four equations.

In this context, (3.1) can be written as the interconnedion o two systems:. the inter-
adion among the capases and the interadions due to the presence of the inhibitors
(Figure 3.1). Let this former system be cdled the plant and the inhibitor’s diff eren-
tial equations, the regulator. A closer look to (3.1) shows that this same idea ca be
performed again in the plant and the controll er, that is to say, the four diff erential equa-
tions in the plant can be splited again into two subsystems. the adivation o Caspase
3 (third and fourth eoluation) and Caspase 8 (first and second equation). Even more
important, the controller can be decompaosed in a similar way and the “inpu” to ead
controller isonly one of the adivated caspases. The regulator presented in Figure (3.1)
is decantralized (seeFigure 3.2). Note that: i) the controllers can be thougtt as output
controllersandii) the four subsystems are nonlinea SISO, namely:

[Cs]
731 B [CSa]

v1=Y1

. ’_/\

Ky : [CARP] km11[CARP : Csq] — k12[CARP] + kmi2 — k11 [Csa] [CARP)
[CARP : Cgq] —(km11 + k13)[CARP : Csa] + k11[Csq][CARP]

—k2[C34][Cs] — ko[Cs] + kmg
k2[C34][Cs] — k5[Csa] —k11[Csa][CARP] 4 km11[CARP : Csq)

ul

[¢3] = —k1[Cga][C3] — k10[C3] + km10
Pa:q [C3a] = k1[Csa][C3] — k6[C3a] —k3[C3a][TAP] 4+ km3[IAP : C34]
“ V2=Y2
. —
Ka _[IAP] = kmS[IAPCSa] — ]CS[IAP] + kms — (k3 + k4) [Cga} [IAP]
{ [IAP:C34] = —(km3+k7)[IAP : C3a] + k3[Csa][IAP)

Note dso that the nomenclature present in the definitions abowve is in acerdance with
the Figure 3.2 and the dedion o the output of ead system is the adivated caspase.
Note dso that the output of ead plant is the input to its respedive controller and the
next plant, i.e,, y1 = v; = we and y» = v, = w;. Note that Figure 3.2 can be
simplified, sincethe signalsy; = v; are the same, but keguing this dructure intends to
emphasizethe decouging o the dynamics.

In order to perform the previous decouging, an heuristic gpproach was used. Nev-

w y
—_— —
P
V\—J
u v

K -

Figure 3.1: A general controlled system

22



) )

P1 P2

~—— ~——

4_ 4_

Figure 3.2: Block diagram representation for the EXAP

ertheless a systematic goproach can be adopted as foll ows. Let:

o 1 Iy #0

where J = {J;;} is the Jambian of the full system (3.1) and the dement /;; shows
the dependenceof the i-th diff erential equation uponthe j-th variable, i.e. £ = {l;;}
istheincidencematrix . In order to isolate the subsystems, consider the ordering of £
after applying the reverse Cuthill-McKee agorithm (Cuthill and McKeg 1969 to L,
whichisin esence areordering o the matrix’s rows and columns such that the biggest
quantity of norzero elementslie the dosest to the principal diagoral as possble. For a
formal statement of the problem, see Appendix A. In order to kegy some biochemicd
sense, arearangement of this %t up can be dore. Figure 3.3 shows this rearrangement
for theincidencematrix £ of the system (3.1). In Figure 3.3, the functional form of the

rdt(caalap) | [ ® @Y ...... .
d/dt{iaP) |1 @@ : .
didt(c8aCARP) | * @ .
dﬁ'dt[CARP]_ ......... - & ‘, ............
eegy] Y P W ol
drd(csa) | PSP P , e
didt(c3) | : .
didt{c3a) | ® ‘ LR
IAP  CARP  c8a c3a

Figure 3.3: Sparse Graph o the EXAP model.
The boxes represent a subsystem and the dots out of them, interconredion signals
amongthe systems.
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inpus and the outputsis not shown, but only the dependenceitself.

Oncedemmposed, themain questioniswhat arethe esential i nterconnedion prop-
erties of the blocks such that the robust bistable properties hold. Under which sets of
parameters the evolution of Cs,, isbistable? What are the key readions? The answers
to these questions are considered in the foll owing chapters. In the next sedionasimple
steady state analysiswill be caried ou.

3.1.2 Steady State analysis

Let the system
& = —(kaiwi + kei) T} + mei
ih = ki) — keai®h + U
323)
yoo= 1 = w

represent the plant P; with 2! = (Cs, Cs,)T and Py with 22 = (C5,C3,)T. The
parametersfor ead system arelisted in Table 3.1.

Note that the same property holds for the regulators £y and KC; and let the system
representing them, to be & foll ows:

2 = —[(kri + Erpi)Vi + knil 2} + kmrizh + kmni
2 = kevizt — (Kmei + keni) 24

(3.9
ui = —kpiviz} + kmrizh

where 2! = ([CARP],[CARP : Cs,]) and 2% = ([IAP],[IAP : Cs,]). Inthe
following the index 7 will be omitted for readability, except when the analysis of bath
plantsis being performed.

It is important to nde that both the states and the parameters in the two systems
abowe can only have positive values. In the following sedions, a steady state analysis

Table 3.1: Parameter definitionfor the EXAP

P1— Ky Po — Ko Label Velocity parameter of the readion

ko k1 ke Activation o caspase

ks ke kea Activated caspase degradation

ko, kmo k10, km1o ke, kme Caspase turnover

k12, kmi2 ks, kms kn,Emn Inhibitor turnover

ki1, kmi1, kiie k3, k‘mg, k4 k’r, kmra k., Reversiblereadion

ki3 ke ken Degradation o the complex Caspase : Inhibitor
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x1
=0

Figure 3.4: Equili brialoci of the open loop dant (regulator)

will be performed to the plant P;, the regulator /C;, the interconredion o the plant and
the controller (dencted by P; — K;) andfinally the interconnedions of both plants and
controllers.

Plant

Thefixed pant of (3.3) is:

— kmc
—
! ko + kot
kakmc 0 ]- —
Ty = ——efmeW g (3.5)

kca(kc + kaw) kca
Figure (3.4) presents the locus of the fixed paint as a function o (w, w), with a =
kmc/kc; ﬁ = (kmc + ’a)/kca and’Y = ﬂ/kjca-

Remark 3.1.
The pair (%1, Z2) isuniquefor each (w, u), seethe Equation (3.5) andFigure 3.4.

Claim 3.1. Let the deviation from the fixed pant be represented by e = x — X. Its
ewlutionin timeis determined by:

() = ("™ (@) (36)

Then, regarding w as a parameter, (3.6) islinear andstable for w € (—,’j—;, oo).
Proof. The proof is graightforward sincethe system is|lower-diagoral. O

Remark 3.2. Reall (3.3) isthe model of a chemical reaction retwork.

i Sncew isaconcentrationit i s always positiveand rence(3.6) is always deady-
state stable.
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ii Sncep € RP?, the dgenvaluesare real numbers. Hencethe fixed pantisa noce.
iii Theinpu u does not affed the stahility of (3.6), yet determines the location o
the fixed pant of (3.3)
Regulator
Asinthe previous analysis, let the model of both regulators be represented by:

21 = —[(kr + krp)v + kn]z1 + k22 + ks
20 = kevzr — (kmr + ken)22
3.7
u = —kvz1+ kmrzo
whose uniquefixed pantis:

- (ken + kmr) kmn

kn (ken + kmr) + (krken + krb (kmr + ken)) 0
- krkmn® 39

kn (kcn + kmr) + (krk?cn + krb(knw + kcn)) v

Despite the complexity of the previousexpressons, they have the same functional form

as (3.5). Thus Figure 3.4 aso represents the equili brium loci for the regulator with the

definition of o = ko /kn,y B = [krkmn]/[kn (Ken + kme )+ (Erken + kvt (Kmr + ken))]
and~y = 0.

Claim 3.2. Letr = z — Z, beingitsthe ewlutionin time:

(E) _ (—((kr+vkg)@+kn) —(kj"lrkm)> (Z) 9

Asaumingv as a parameter, (3.9) isa linear stable system.

Proof. The charaderistic palynomial of (3.9) is:
5245 [(kyr + kro)0 + kn 4 ken + kmp | H[(Er + k)T + kn] [Ken + Emr]+Kmrkr T =0

From the Routh criterion, the stabilit y of (3.9) is guaranteed for:

kn + k(;n + kn’Lr kn [kCTL + k'm'r] }

v A - 3.10
o mat { ’ [kr + krb] [kC7L + k’mr} + krkmr ( )

ky 4+ krp

Sincev is a mncentration, it is positive. So this condtionis always satisfied and the
claimis proven. O

In order to predse the regulator’sadion onthe plant, consider the next propasition.

Proposition 3.1. Let WV bethe reaction network described by the reactions
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v
CotT — C,: T

Co 225 0
70
Co: T2 0
Then [C,] ([Z]) is controlled by the function

U= %[Ca T+ kei[Ca - T) = POk, {[Ca : T]}

That isto say, theregulator isa classcal Propartiond Derivative (PD) controller .

Proof. Letv = vy — v_. The mathematicd model of W is:

d
L) = —o-hic
d
%[I] = —v—KklZ]
d
2T = v kalCa: ]

letu=2L[Cq: I) + keilCa : I) = PO, {[Ca : Z]} = v , then W becomes

d
E[Cu} = —u—kc[C,]
d

Then u can beregarded asan inpu to the concentration of C,, (Z). For ablock diagram
of this scheme, seeFigure 3.5. O

Remark 3.3. Note that:

e Thelast propasitionisvalid regardlessof the assgnation o the reaction mecha-
nism to the network

e This reaction retwork leads to a negativefeedback scheme
e [C, : Z] can be considered asanerror signd.
Claim 3.3. Theregulator R; isa propartiond derivative cntroller.

Proof. Note from the readion mechanism (in Sedion 2.3.2) in R; has the same reac
tionsas W in Propasition 3.1.
O
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W; Yi

(%3

Figure 3.5: PD controll er structure, where the subindex ; standsfor ead of the subsys-
tems.

Remark 3.4. (3.7 on page 26) can berewritten in the following way (seeFigure 3.5).

R - 21 = —kpnzi +knntu
" 22 krvzy — (kmy + ken) 22

d
- (kanQ + EZ2>

u

Closed Loop
Claim 3.4. Consider theinterconredion o P; (3.3) andC; (3.4):

o = —(kaw + ko)1 + Fme

T2 = kowxy — keaT2 — krx221 + ke 22

21 = —[(kr + Erp)xo + knlz1 + Emrza + kmn
Zy = kpxozi — (ke + ken)2o
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The fixed pant of this interconredionis:

— _ kmc
T ke kew
_ 1 _ - -
T = 5 [fb(w) + /b (w) + 4c(w)}
7 = (ke + kmr) kmn
kn (ken + kme) + (krken + kv (Kmr + ken)) T2
_ o krkmni‘Z
2T T (Ren + Ronr) + (Rokien + Ky (Fr + ko)) 22
dy do

where b andc are defined in (3.12) and (3.13), respedively.

Proof. Solving (3.11), the fixed pants stisfy:

_ kmc
T —
! ko + kot
ka'w k'mr _
To = T A1
" P (19
_ kmr 5, + kmn
z = z
! len + (kr + krp) T2~ ko + (kr + ko) T2
_ k'r-i'Q _
z = P EEEE——
2 kmr + kcn !
From (3.5) ; andform (3.8) zy, z; are:
_ kmc
T -
! ko + kot
— (kC’fL + k”{n’f') kTYLTL (kcn + k’"LT‘) k’”’LTL
z =
! kn (kcn + ka) + (krkcn + krb(kmr + kcn)) 52 dl + d2-f2
_ krkmnié krkmnEZ
z =
? kn (kcn + kmr) + (krkcn + krb(kmr + kcn)) i’Q dl + d2£2
dy da
Repladngthemin Z:
T34+ biy—c=0
Where
koakmcw
= kcad - kakn kcn kmr krkmnkcrt - 7 = 312
(kead2) (ken + Emr) + R (312
dikg  kmcw
= ! ke >0 (313

d2kca kc + ]C,,U_}
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Thusthe solutionsfor z, are:

By = %[fb(u’))i P2(@) + de(w)|

Sincec > 0, the solutions are dwaysred and orly the positive sign o the square root
leadsto anonregative solution. Thusthe fixed pantisunique. Thislast equationwith
the choiceof a positive sign, together with (3.5) and (3.8) complete the proof. O

Note that all the entries of the fixed pant in closed loop are parameterized orly by
the exogenousinpu w.
Interconnedion of systemsP; — Ky and Py — Ko

Let x; denoate the j-th entry of the state vedor in the i-th system. From (3.11):

Rw) = g |otw)+ o) +e)| = o

For readabilit y the definiti ons of the constants and variablesin (3.11) are defined next:

bi(wi) = i — kg (wi)
ci(wi) = ’}/31‘(5(101') >0
1
T = 7 7 kaid i kmnikrikcni 0
n kcaiin[ et }>
dy;
T kqida; >0
dli = kn(kcnz + kmrz) >0
d2i = krikcni + krbi(kmri + kcnz) >0
w;
o 7 = kaikmcii >0
(ws) kei + kaiw;

Recdl the unitary positive feedbadk of P, — K; and P, — K> (seeFigure 3.2 on
page 23) is defined by

fi(wy) = 73 = wy fo(ws) = 73 = wy

and the gopropriate nstants for ead system are defined in Table 3.1. Closing the
loop:

fao fi(wr) = w; (3.19
With the nominal parameters, the solutionfor w; to (3.14) is:
wy = 0.,w; = 0.393609, w; = 5161.58
InFigure 3.6 thefunction f5 o f1(w1) is shownwith nominal parameters. In Figure 3.7

and 3.8 the solutions of f5 o f1(w1) — w1 = 0 are presented.
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Figure 3.6: f5 o f1 with the nominal parameters

fao fi—w

Figure 3.8: f> o f1 — w; = 0 Detail for w; aroundthe saturation of f5 o f;
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Note from (3.14) that all the fixed pants can be parameterized by w; . i.e., the dght
coordinates of the fixed pant can be parameterized by orly one mordinate. In Chapter
4, the bistability properties of the network will be explored.

3.1.3 Methodology summary

A summary of the procedure followed to identify the structure of the network is pre-
sented next.

S.1 Obtain the incidencegraph with the matrix £ (See3.2)
S.2 Reorder the labeling o the nodesin order to reducethe bandwidth
S.3 Reorder the labeling so biochemicd meaningis preserved (heuristic)

S.4 Identify the subsystems present as the blocksin the main diagoral and the inter-
conredionsignals as the off- diagoral terms

S.5 Analyzethe (open loop) identified subsystems

S.6 Generate the block structure of the network

3.2 Intrinsic Apoptosis Pathway

The readions of this pathway are presented in Sedion 2.3.3 and the mathematicd
model, in Appendix B.
3.2.1 Plant-Controller Schemein the Intrinsic Apoptosis Pathway

Followingthe methoddogy presented in Sedion 3.1.3, the analysis of the model of the
INAPisasfollows:

S.1-4 The reduction o the bandwidth and the identificaion o the subsystems and
interconredionsignals are shown in Figure 3.9.

S.5 Structureidentification. Let

p, o LG = —hsaCoa] = ks[Coal[Cou] + up—py +urc, + 11
" | [Cop] = —ks3[Cop] + k6[C34][Coa] — up, —p,
- [Cs) = — (k1 + k5[Coa] + k7[Cop] + ks[C3a])[Cs] + k2
2 [Csa] = (k5[Coa] + k7[Cop] + ks[Cs4a]) [Cs] — ks55[Csa] + vk,

Claim 3.5. Theregulators of P; and P, are propartiond derivative cntroll ers.

32



didt{(XIAPp2frag2Smac)-| |® ® g L S
didt(XIAPp2frag)
didi{XIAPp2fragCasp3)
didi{Bir12)
didl(Bin20:2asp3,‘|mfR2
dfd{Biri2Smac)
dfdt(Bir3Rp2frag)
didt(Bir3R)
didt(Bir3RSmac) Ry
didt(Bir3RCasp9)
didt{Smac)

dfdt{XIAP)
didi(XIAPCasp3)
didi(XIAPCasp9)
dfdi{XI1AP2Smac) Ral ]
didt{XIAPCasp9Casp3)
didt{Casp3)
dfdt{Procasp3)
didt{Casp9)
didt{CaspaP)

J
L B BN )
[ BN BN )

L

L

L)

b
[ ]

[ BN BE BN J

(33K ]
o0 000
)

!
!
.
T
|

®
®
®
[ ]
[ X J

tort

]

L
]
®
L 3N J :@ olLe

[ BN J

P1

[ BN )

I
t

XIAPp2frag BirizSmac Bir3RCasp9 XIAPCasp9 Procasp3

t

Figure 3.9: Sparse graph o the INAP model

A A
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The proof of Claim 3.5 is presented in Appendix C where is also stated that the

error signals are:
e = ([XIAP : C3u : Cga], [XIAP : Cga], [BZT3R : CguD
ey = ([XIAP . Cga : Cga], [XIAPprTCLg . Cg}, [XIAP . Cga], [BZ’I“lQ : Cga])

S.6 Theblock diagram of the network is shown in Figure 3.10.
The definition o theinterconredionsignalsis:

V1 = UApoptosome Y2 = [CBa]
vy = ([Codl, [Cop])” (> [Csa]
w; = [Coal 5 = ([XIAPp2frag : Cg])
s1 = [Bir3R: Cy,] [Birl2 : Cs,)
B [XTAP : Cy,] S5 ( [XIAP : C3,) )
-1 = \[XTAP : CyoC5) - [XIAP : Cyy : Cs]
[Bir3R] [Birl2]
B [Bir3Rp2frag] [Birl2 : Cs,]
r = [Bir3R : Smac] - [Birl2 : Smac]
[Bir3R : Co,) [XTAPp2frag : Smac]
XTAPp2frag|
_ [XTAPp2frag) [ '
a = ([XIAPp2frag . 4] [XTAPp2frag : Cs]
43 = USmac
[C3a]
P12 = [Cod]
[Cop]

3.2.2 Steady State Analysis

As can be seen from Appendix B, the complexity of the mathematicad model makes it
difficult to be analyzed. Moreover the system does not have any spedal charaderis-
tic with the nominal parameters, but reproducing the triggering o I ntrinsic Apoptosis
Mecdhanism. However, the basic interadion of caspases will be analyzed in order to
provide apoint of comparison with the EXAP. In the following sedions, the analysis
of the subsystems chasen as plants will be performed.

Caspase 9
Letx = ([Cga}, [Cgp])T andw = [Oga], then

#1 = —(ksakew)r1 — ks3zo + Uk, +u1 +up,—p

To = —kszxo + kgwry — up,—p,
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Fixed point
up, + U1+ Uy
wke + ks4
kew (g1 + t1) — ksatip,
ks3(kew + ksa)

Ty =

The equili brialoci isplottedin Figure 3.4 with defininga. = (ap1+ ik, +1)/ks4,
B = (ug, +u1)/ks3, v = —tp1/ks3.

Error variables
Letny = x1 — T1, no = 2 — T2. Thedeviation dyramics are:

() = 5 ) ()

Note that this g/stem is the same &s the one presented in Claim 3.1, hence this
system islinea and stable, regardingw as a parameter.

Caspase 3

Letz = ([C3], [Cs4])" andv = ([Coal, [Cop])”.

21 = —(k1 —ksvi — kyva — kgzo)z1 + ko
(k‘51)1 + k7vs + /4?322) z1 — kss29 + UK, (315)

2

Fixed points
Thefixed pant of (3.15) is:

ksszo —ug,

T 0+ kgzo
Ho= (- +\/2+ 1 (k20 + txc, [k1 +0])
Zo = 5 7 1% Feakas 2 UK, Rl
where:
0 = k5’lﬁ+k’7’l72
1 1
po= —(k1+0) — — (ko + ux,)
kg kss

Note that there is a seledion o parametersthat give apaositive fixed pant. Note dso,
that this positive fixed pantisunique.

Withou the exogenousinpusto the system (cyt-c andthe formation o the Apopto-
some) and the nominal parametersthe only fixed pant hasall the entries st to zero ex-
cept for those aorrespondngto Caspase 3 and IAP, whose numericd valuesare 0.1282
and 0.0603 respedively.
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3.3 Conclusions

It has been shown that the formation, dissociation and degradation of a readant can
be represented as aregulating propartional-derivative adion in a network of readions.
This effed is present in bath pathways in the networks presented. It is a well known
fad that inappropriate seledion o the controll er's parameters may lead to a undesired
closed-loop kehavior. In this regard, the seledion o parameters is fundamental to
guaranteethe nominal performanceof the network. Inthiswork, the parametersare not
fredy €eligible, but they are charaderistic of the chemicds taking part in the network.
This fad shows the level of organization present in living beings. the chemicds are
nat only being creaed and degraded in the gpropriate quantity, but the way they do
it, influence and regulate other compounds in the network. Note that the propartional
gain of the controller isthe rate of degradation of the so-cdled ’error signal’.

The conclusions obtained alongthe dhapter can be summarized as foll ows:

EXAP

e Despite the complexity of the model, it can be regarded as a simpleinterconrec
tion of four two-states gystems

e Themodel can be analyzed as a decentralized control system

e Ead of the four subsystems are open-loop stable, assuming the positivenessof
the constants

e Eadh of thefour subsystems has only one (stable) fixed pant

e Both regulators present in the interconneded system can be viewed as PD con-
trollers

INAP

e The mathematicd model of this pathway does not seem to present any peauliar
dynamicd charaderistic, but reproduces acairately the evolution of the experi-
mentally measured concentrationsin time

e The system can be though of an almost decentrali zed controll ed system
e The dght regulatory medanisms can be represented as PD controllers

In the following two chapters analysis will be performed in order to determine
limits on the parameters uch that the charaderistic properties of the network are pre-
served.
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Chapter 4
Bistability Analysis

Inthischapter a brief overview of threedifferent approachesto characterize the multi-
stability are presented. The model andyzed isthe EXAR sinceit i s the only one which
presents two stable fixed pants with the nominal parameters. Althoughthis model
seams to present a histable property, no gobd conclusion can be achieval. Neve-
thelessthe conclusions achieval allow to determine which are the posshle scenarios
that the network may present andwhich are the parameters of the system that alter the
bistable structure more significantly.

4.1 Introduction

In general, avariation onthe parametersin adynamicd system can modify its equili b-
ria set, drasticdly changing the qualit ative behavior of the system. This phenomenon,
cdled bifurcation, can leal to a change of the stability charaderistic of a paint of in-
terest, hence destroying the usefulness of the system, in some caes. An interesting
question that arises is to determine the biggest deviation o the nominal parameters
such that the qualit ative behavior of the network is preserved. Several approaches have
been devel oped to answer these questions, exploiting dff erent dynamica and structural
properties.

In the next sedions, the monaonicity and the graph o the readion retwork are
analyzed for the EXAP model, but no conclusions are adieved. Therefore, a dasscd
bifurcaion analysis is performed, resulting in the identificaion o the posshle locd
behaviors of the model with variation of only one parameter at atime.

4.2 Monotonicity
A red functiony(x) : Re — Re is sid to be mondonicincreasingif for every e > 0

ylx+e)—y(x)>0
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and strong monatonic increasing if the inequality is drict. The same definitions can
be made for a monaonic deaeasing function, with the gpropriate seledion o the
inequality sign. The main qualitative property of this kind d functions is that they
preserve order.

When the function y(z) is not scdar, the symbals “<” and “>" are no longer
naturally defined. Nevertheless a partial order in a general Banach space(B) can be
defined given that two elements 21, x5 € B satisfy therelationx; — x5 € K, whereK
isanonempty, pointed cone.

With thisin mind, adynamicd system ¢ : K x X ¢ B — X ismonaoneif and
only if:

T, > Ty —> ¢(t7$1) > Qb(tv‘T?)

That is to say that the order imposed by the seledion o the initial condtionsis
preserved in the tragjedory of the system in a given time ¢. It can be shown that this
spedal property can leal to very restricted trajedories of the state and strong conclu-
sions abou stability, under some asumptions. For instance, no chaotic or periodic
trajedories exist in amonaone system (Hirsch and Smith, 2005.

In (Angeli and Sontag, 2003) the extension o the concept of a monatone system
with inpusand ouputsis defined, viathe esssgnation o an order in the spaceof inpus
and ouputs. Let u denote theinpu of the system and i () represent the output, then a
system isinput-output monaoneif and oy if:

up > ug,x1 > X2 == h(t,x1,u1) > h(t, x2, u2)

It can be shown that the interconredion o two monaone systems under positive
feedbadk is monatone, thus making the theory suitable for analyzing large scde, de-
centralized systems.

An easy way to determine whether or not a system is monaone is to analyze the
incidence graph o the system. It is obtained as follows (Angeli et al., 2004: for a
system with n states, the graph has n + 2 nodes (the extranodes are the input and the
output of the system). An arrow is drawn from a node x; to a node x; Vi such that
j # 1, if z; affedsdiredly the rate of change of z;. Also asignis assgned to this
arrow: + if the dfed of «; of positive end — if its negative. The sign o a path isthe
product of these signs alonga dosed tragjedory in the graph.

In (Angeli and Sontag, 2003 it is gated that a system which admits an incidence
graphis monaonewith resped to some orthants for the states, theinput and the output
if and orly if its graph dces not contain any negative gycles. Moreover, under some
stability and assumptions, two monatone systems can be interconreded and the set
of fixed pants can be eaily determined and charaderized. This conclusions can be
guaranteal in the whole state space thus obtaining a sound dobal charaderizetion of
the interconreded system.

In the cae of the EXAP, the incidence graph is shown in Figure 4.1, where the
separation o the system introduced in Sedion 3.1.2 is presented.

Unfortunately the model of the EXAP is not monaone -since the sign for some of
the paths are negative: the path wq, Cs, Cs,, w1, for example- and noconclusion on

38



Figure4.1: Incidencegraphfor the EXAP

the multi stable properties of this s/stem can be made using this theory.

4.3 Chemical Reaction Network Theory

The Chemicd Readion Network Theory based onthe work of Horn, Jadksonand Fein-
berg (Feinberg, 1979 for example) was developed to predict the behavior of a chemicd
reacdion network based onitsreadion dagram. Despite strong notineaity inherentin
the mathematicd model of areadion retwork, the evolutionin time of the concentra-
tion of thereadantsand productsisvery restricted (the trajedories of the concentration
in time can orly belongto a subspace céed the 'compatibility class determined by
the 'readion vedors of the network’, which represent the diredionin which a concen-
tration is being modified). Moreover, under some strongassumptions on the incidence
graph o the network, the evaluation of a sole index can determine the way the phase
portrait looks and thus the qualitative trajedories of the concentrations can be deter-
mined. Thisindex is cdled the deficiency of the network.

A basic asaumption for this theory to apply, is a wedk reversihility property of
the incidence graph d the network: if there exist a direded path gang from node x;
to nock z;, there must exist another direded path gaing from z; to «;, diredly or
indiredly through dher nodes. The main drawbadk of this methoddogy is that this
requirement istoo restrictive.

In the case of the EXAP, the wea reversibility property is not complied by the
model (seefrom Figure 4.1(a) that there exists apath joining Cs to Cy,,, but thereisno
path in the oppdasite diredion). Thus no conclusioncan be made using this theory.

4.4 The EXAP model asa general dynamical system
The fad that the system is not monatone or that the graph is not wealy reversible,

does not mean the system is not globally multistable. It only means that this g/stem
does not have the mentioned properties: exhaustive simulations changing the initial
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concentration show that the only behavior of the system with the nominal parameters
is the convergenceto either of the stable fixed pants (data not shown), but no formal
proof has been dore in this regard. In the present sedion the charaderizaion o the
bistability properties of the system will be performed via a dasscd bifurcaion anal-
ysis with the variation o one parameter at a time. This analysis intends to show the
posshle behaviors of the model andto determinethe structural robustnessof the (locd)
bistability of the system to variationin parameters.

In (Eisdng, 2007 anontraditional bifurcationanalysisis performed viathe Monte
Carlo approach, sincethe traditional analysis considering the variation o all parame-
tersat atimeisvery demandingin computational terms. Here, aparameter is perturbed
off the nominal valuein order to explore the posshble behaviors the systems can have.
A structural robustnessindex will be evaluated in terms of kegpingthe qualit ative prop-
erties of the equili bria set: two stable and ore unstable fixed pants.

For doing this, consider the equation ( 3.14 on page 30) presented below, for read-
ability. Recdl that the dlocaion o the @ght coordinates of the fixed pantsis parame-
terized by orly one of them: w; .

f20f1(w1) = wi (4.1)

where (defined in 3.1.2),

1 /
fz(wl) = 5 {—b,-(wi) + b? (U)Z) + 4Ci(’wi):|
bi(wi) = i — ko0 (ws)
cL(wz) = ’\/315(’[1)1) >0
1
i = ﬁ[kaidli + Emnikrikeni] >0
cai2q
dii
o= ‘1dz' >0
dli - kn(kcni + kmri) >0
d2i = krikcni + krbi(kmri + k(’nz) >0
5(11),) = kaikmci Wi — >0

kei + Kaiw;
The definition o the parametersis presented in Table 3.1 on page 24.

Remark 4.1. The solutionsof f> o f1(w1) = w1y, which parameterize the fixed paint,
satisfy:

e w; = 0 isalwaysa solution.
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This can be seen asfoll ows:

fi0) = %[—m(ow b?(0>+4c,-(0)}
1
= 5[—%1‘,4-711']
fi(0) =0

Hence f2 o f1(0) =0

e InFigure 4.2 can be seen that wy ~ maz(fs o f1(w1)) isa solution when the
function f5 o f1(w;) saturates’'faster’ thanthe line w; grows. Ascan be seen
in Figure 4.2, f5 o f1(w;) has a sigmoidal characteristic andis monaonically
increasing, thus the intersedion with the unitary line will be near the ordinated
pair (w1, f2 o fi(w1)) = (f2 o fi(wr — 00), fa o fi(wr — 00)).

The maximum of the function f5 o f1 (w1 ) isobtained by nating:

1
w}iinoo 5(“’1‘) = kaikmei m
Then
1| ket et \ >
lim f(w) = |7+ -+ Y1 — T + 4v31kmet
w1 — 00 2 kcal kcal

andin the dosed loop, the acomposition o functions f2 o f1 (w7 — o) hasone
real positive \alue. With the nominal parameters, f2 o f1(wy — o0) =~ 5161.58,
the actual solutionto (4.1).

If noseledion o parameters is made, the dosed loop function (4.1) can be used
to determine the set of parameters that lead to the existence of threesolutions. Note
that as the parametersvary the plot of (4.1) in Figure 4.2 will deform. Seefor example
Figure 4.3, where only one parameter is varying. In alimit condtion, the line and the
sigmoid will be tangent. The tangency point w;, satisfies (Alvarez 2008:

Cl foo fi(w)) = wi, i.e, theline and the sigmoidal curve hasto intersed eah
other

C2 Dy, f20 fl(w1)|w1+ = 1, that is to say that beside finding a solutionin wf the
curves have to be tangent in this point.

The two condtions above, can be used to find all the bifurcaion pdnts as a func-
tion o the parameters. Nevertheless the function (4.1) and D,,, f2 o f1(w1)lw1+ =1
are too complicated to be treaed analyticdly and noconclusionregarding histable be-
haviour can be made, notwithstanding this equations has been used to give insight to
the structure of thismodel. Note that finding the restriction of the parametersthat lead
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Closed Loop Characteristic

Figure4.2: f, o f1 with the nominal parameters

Figure 4.3: f> o f1 with the variation of the parameter k5 (kcq1)
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to threefixed pants does not guaranteethat two of them will be stable and the other
unstable, but afurther analysis can be made.
Instead a bifurcaionanalysisis performed as foll ows:

i Compute the lineaization d the model, as afunction o the parameters and the
fixed pant

il Choose avaluefor the chosen parameter and leare the value of the rest as nomi-
nal

iii Findall the fixed pants of the model with this st of parameters

iv Evaluatethelineaizaionin thefixed pantsfoundandthe parametersand deter-
mine the stability property of ead solution

v Then goto step ii until adesired parameter range has been explored

Following this procedure, the bifurcation dagrams are obtained. Althoughevery
parameter has an effed on the location o the fixed pants, Figures 4.4 to 4.7 show
some representative cases. Spedal care shoud be taken when reading the graphs snce
the wy axisislogarithmic for w; > 1 andlinea for w; € [0,1]. The'z’ axisisthe
relative, absolute aror of the value of the parameter resped to the nomina parameter
in percent. In the bifurcation dagrams the red color will represent instability and the
blue one, stability.

Table 4.1 shows the bounds of the parameters that preserve the bistability cond-
tions.

45 Conclusions

In the present context, only alocd charaderizaion o the multi stable properties of the
EXAP model could be adieved, sinceit fails to comply some well-known properties
that help to explain a global behavior, such as monatonicity. Nevertheless the locd
bifurcaiionanalysis performed, shows that multi ple scenarios are possble, when a pa-
rameter is varied. The key for this procedure to apply is the caability of the system’s
fixed pantsto be parameterized by w,, becaise the qualitative behavior of the system
can be analyzed in a2D plot. Recdl that w; isthe [C3,].

From Figure4.4, it can be seen that alarge enough \ariationin the positivediredion
of the parameter k5 can makethe'life’ fixed pant unstable and passbly leading to the
deah of the cdl.

Figures 4.6 and 4.7 are presented to show that in general threescenarios are pos-
sible: one fixed pant with low level of wy, abistable switch and ore fixed pant with
highlevel of w;.

Aninterestingremark isthat in al cases, the nominal parameter is closeto abifur-
cdion pdnt. Thisfad impliesthat the structural stability is very fragile, since asmall
variation d the parameter can destroy the structural property of the network. Itisinter-
esting that the structural bistability is more sensible to the parametersthat represent the
zero order readionsandto the mutual adivation of caspases (k. 10,5m3,kmo,k1,k2,km11)-
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Figure 4.4: Bifurcaion dagram for parameter k-
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Figure 4.5: Bifurcaion dagram for parameter ks
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Table 4.1: Limits onthe the parametersto present bistability.

Thistableis sorted acoordingto the total percent of all owed variationin the parameter,
such that bistability is preserved (Superior Bound- Inferior Bound).

* = A negative value of the parameter till | eads to a bistable scenario, thus is not
considered in the ranking.

** = A variationlarger than 100 000%] till | eadsto a bistable scenario andisignared
in the ranking.

Nominal Parameter Inferior Bound[%]  Superior Bound[%o]

kmio 819 -64.29 179
ks 0.21 -73.81 198
kmo 507.0 -90.14 185
ko 0.00001 -98.70 165
k1 0.000058 -99.43 165
kmi1 0.21 -10000 197
ks 4640 -1.50 18190
ks 0.0005 -1.50 21800
k7 0.0173 -1.50 28690
kmi2 40.0 -1.65 114500
ko 0.0039 -1.53 1143000
kg 0.0058 -19.54 2388000
ks 0.0058 -17.24 3411000
k1o 0.0039 -1.50 3833000
k12 0.001 * 187
ks 0.0116 * 172
ka 0.0003 * *x
ki3 0.0116 -1.50 *x
k11 0.0005 -1.50 i

When interpreting the diagrams gpedal caution hes to be taken. The presented
plots how a bifurcaion dagram with the variation o only one parameter at a time.
When more than ore parameter are varied at atime, the resulting dagramswould look
very different. Note dso that the results presented here ae only locd and by nomeans
charaderize the global behavior of the system, hence other strange atradors might
exist.
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Chapter 5

Robustness Analysis

I ntroduction

Cellular readionmechanismsarerobust to nase and parameter uncertainty. A clea ex-
ampleisthe gpoptosis processwhich is the mechanism the cdl usesto dedde whether
it continuesliving a naot. In the present context, it is grondy dependent on the struc-
ture of the pathway itself, and, surprisingly, solely ona couge of kinetic parameters. In
order to determine which parameters are more important, the structured singuar value
analysis (SSV) is applied to the lineaization d the model abou the “life” fixed pant.

5.1 Introduction tothe Structural Singular Value
5.1.1 Robust Stability

Once the structure of a model is attained, the main isale is the right choice of the
parametersthat charaderizethe readionsin the pathway, so the model acairrately rep-
resents the observed phenomena. Given the variability of parameters amongthe cdls,
aset of parametersthat preserve the desired behavior is a better charaderization o the
model. In this context, an analysis of the robustnessof the stability and a performance
index of the model can retrieve such sets.

In the case of both apoptosis pathways, one gpproad isto determine which is the
small est perturbationin aparameter for which the stability of afixed pant is preserved.
Thefixed pant considered will bethe’life’ steady state. The destruction df the stability
of this point will mean the incapability of the cdl to maintain itself alive, resulting, -
presumably- in adisease e dated in Chapter 1.

Thetheory iswell established for linea systemsviathe computing of the Structural
Singuar Value (SSV) p of alinea system. In the present case, a perturbation of eadh
parameter will be considered with the am of identifyingthe most important readionsin
terms of stability preservation, i.e., the parameters that can have the small est variation
in order to preserve the stability of the analyzed fixed pant.
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The whole theory of the SSV relies uponthe Small Gain Theorem , which states
the necessary and sufficient condtions for a interconredion o n interconneded £,
stable systemsto be £, stable.

Theorem 1. Given the interconnection shown in Figure 5.1 with M (s) € CP*9,
M(s) € L, andy > 0. Theinterconnected system is well-posed and internally stable
for all A(s) € £, with

a) ||All, <+~ tifandonlyif |[|[M(s)]|, < v
b) A}, < v~ if and onlyif [|M(s)]], < ¥

The proaf of the Theorem can befoundin (Khalil, 2001 or (Zhouet al., 1996, for
example.

In Figure 5.1 the perturbation matrix is represented by the the A(s) block and the
system by the M (s) block. Regarding the Theorem abowe it is possble to know the
maximum L, of the perturbation such that the interconnedion preserves the property
of both blocks. For instance, let this maximum norm be ||Al|, = 371, then the
maximum norm such that the interconredion preservesthe stability is:

B =||M||oc = supsec,T(M(s)) (5.1

Ascan be seen, Theorem 1 isdefined for linea systems 0 in order to apply it to the
current problem, the lineaizaion o the Apoptosis model hasto be taken into acourt.
In (Dunre, 2009 it is shown that about the ’life’ fixed pant, the EXAP, behavior is
amost linea, and agoodestimate of the adual nonlinea robustnesscan be obtained at
least very close to the lineaizaion pant. Let thislineaization be denoted by

i = Ax+ Bu
= C(uz, (5.2
and assume the perturbed system is A, = A + A;, so the transfer functionfrom U((s)
to X (s) can be rewritten as in Figure 5.2, as gated in (Shoemaker and Doyle, 2008.
Via aLinea Fradional Transformation, as shown in Figure (5.3), the interconnedion
studied in the Small Gain Theorem can be adieved.

Oncethis interconredionis obtained, the transfer functionfrom U (s) to X;(s) (where
the subindex i denotesthe signal regardingthe perturbation A,) is:

yp\ (P P2\ [up
() = (& m) () =
———
P
Regarding Figure 5.3-b, the Upper Linea Fradional Transformation of the systemiis:

€T = (P22 + leA(I — PllA)_1P12) Ujg (54)

Since Py : U — X; isa L, stable map, the only source or instability in (5.4) is
Py A(I — Py A)~1 Py, The stability of that transfer function is guaranteed by the
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M(s) |—O=-—

Figure 5.1: Positive feadbadk interconnedion o two systems

Figure 5.2: Perturbed system, where A denotes the nominal system and A;, the pertur-
bation to the nominal system.

(]

(s — A)! "’

!

(CY (b) ©

Figure5.3: Rewritingthe systemviaLFT (@) A perturbed system asa dosed loopinter-
conredion. (b) The interconredion o the system in the general control formulation.
(c) Separating the dfed of the perturbation onthe system.
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multivariable Nyquist stability criterion:
det(I — MA)#0

where M = Py;. In order to determine the size of the maximum perturbation the sys-
tem can endure and maintain stabilit y, the definition o the SSV 1 (Skogestad and Postlethwaite,
1996 seams natural:

pA (M () = min{kq;|det(I — MA(s, kgj)) = 0} (5.5)

The meaning o the subindex j will become dea in the next sedions.

If the system is dable, the meaning o k; isthe smallest gain that push the dosed
loop pdesinto theimaginary axis. In case the system were not stable, thegain k45 isthe
smallest gain that brings the system to stability. In a general context, it isno passble
to have the atual value of p. Instead boundare computed in order to estimate the size
of the perturbation (p(M) < ua (M) < & (M)). Eventighter boundscan be computed
regarding the structure of the perturbation and the system itself, when the information
isavailable.

5.1.2 Robust Performance

In general, not only robust stabilit y hasto be maintained, but also a “good’ performance
is desirable despite the presence of a perturbation. In the ntext of the cae of studya
good gerformancemeans that the mechanism of Apoptosisistriggered in the expeced
way even if an adual parameter is not nominal. In order to establish a meaningful
comparison amongthe diff erence of the nominal response and the perturbed resporse,
aweight function (W, (s)) has to be designed such the magnitude of the eror between
the resporsesis amplified in arepresentative frequency interval.

In order to perform the analysis, (Shoemaker and Doyle, 2008 propacse the intercon
nedion in Figure 5.4, which can be rewritten in the general scheme shown in Figure
5.3-b with the output being = rather than x;:

>El]i>

Figure 5.4: Performance assessnent scheme
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Yp _ (sI — A)~1 (sI — A)71BY (u,
z — \W.C(sI — A)? 0 u
The dosed loop oliained via Upper Linea Fradional Transformationis:
F = WeC(sI—A)'A(I—(sT— A)'A) "' (sT—A)"'B  (56)

Define 8 = ||F||e. The performance mndtion can be formulated as finding the
smallest size of the perturbation such that the weighted narm of the atror = is lessor
equal than 1, i.e., find k,,; such that:

1
1A, kij)lloo = 3 (6.7

Recdling k;; € R and, bath, (5.6) and (5.7), the performance @ndtion can be e-
pressd as.

[[A(s, kij)l|oo || F (5, kij)lloo <1
[[F(s,kij)llo < B (5.8)

Note that the value of £;; is the supremum value for which the performanceindex is
adhieved with the proviso that the internal stability of the system.

5.2 Methodology

In order to determine the set of parameters which maintain the robust stability and
performanceof the system, asuitable construction o the perturbation hesto be chosen.
In this case, let one variation o parameter at atime and assume that the perturbation
of ead parameter is of the form: k;; = k; + kg;, where the subindex 4 stands for
perturbed parameter; d for the disturbingterm and ; isthe definesthe j—th entry of the
parameter vedor. In that case, the perturbed Jambian is:

Ap = A+ Ai(kg)),
where A;(kq;) is obtained evaluating A(k) in a vedor whose j—th entry is kq; and
zero ctherwise.
In sedion5.1.2 has been shown that such a perturbation can be written in the form

of ( 5.3 on page 48). Identifying the perturbation -in this case & A = A;(kq;)- from
Figure (5.3), the general formulation (5.3) becomes:

YA _ (sI —A)~t (sI—A)™! UA
v ) \(s[—A)"1 (s[—A)! u
Thus the Structured Singuar Value (5.5) becomes:

pnt (M(s)) = min{kgj|det(I — (sI — A)~*A;(kq;)) = 0}
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By construction, A; (kq;) isaffinein kq;, so this condtion becomes:
pxt (M (s)) = min{kqj|det(I — kaj(sI — A)~1A;) = 0} (5.9)

Recdlingthat k4; isjust ascdar, the adual solution can be computed by just solv-
ing:

det(I — kqj(sI — A)~'A; = 0)

as afunction of s. The adual values are computed in Matlab with the code listed in
the Appendix D. Figure (5.5) shaws the plot for the structured singuar value for the
parameter kg in the INAP, as an example.

Bode Diagram
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Figure5.5: || M||oo||Al|so for ks in INAP

In order to achieverobust performance aweight functionis defined (Skogestad and Postlethwaite,
1996:

s/M +wp

W, =
() s+ wha

where |[W, (iw)|~! is equal to « in low frequencies and M in high frequencies. The
asymptote aosses 1 at wy;. In this case, the parameters of weight function has been

52



seleded to increase the aror in the resonancefrequencies of the transfer functionfrom
uto z of Figure 5.4. With this €ledion, the weight function becomes:

0.1s+0.001

W.(s) = 5000
(5) s+ 0.0001

Recdli ng the definition o the perturbation, the performance @ndtion (5.8) becmes:
ki A oo || kpiWeC(sT — A) " A; (I — kpi(sI — A) 7' A;B) ||l <1 (5.10)

which can be solved numericdly for k;; by the optimization o (5.10) asuming it is
a aonvex property. The mde is also available in the Appendix D, and Figure (5.5)
shows the Bode magnitude plot for the previous condtion onthe limit value for kg as
an example, in the INAP.

5.3 Resaults

5.3.1 Extrinsic Apoptosis Pathway

Table 5.1 shows the maximum perturbation all owed per parameter using the Structured
Singuar Vaue analysis. The dlowed perturbations that kegp performance and the
maximal all owed variation computed as pk; = |100(kq;/k;)|, where k; isthe nominal
value of the parameter and k4; isthe disturbance omputed bythe analysis. The entries
filled with "*’ are not present in the Jacobian.

5.3.2 Intrinsic Apoptosis Pathway

Table 5.2 shows the maximum perturbation all owed per parameter using the Structured
Singuar Value analysis in order to maintain bah the performance and the stability.
The parametersthat are not shown, are not present in the lineaization o the system.

5.4 Conclusions

The analysispresented here computesthe small est variation d the parametersthat leals
tothelinerizationabou the'life’ fixed pant to preservethe stability and a performance
index. Notwithstanding, the ranking o the readions shown in Tables 5.1 and 5.2 is
just qualitative, since no red behavior is considered. As an example, consider the
parameter k,,11 Whaose variation in order to preserve the stability of the ’life’ fixed
point is 8.04[%]; in Chapter 4 it is shown that only avariation o +1.83[%] can destroy
the bistable scenario.

Aninteresting result isthat in bah cases, the parametersthat are more sensible ae
present in the controll ersidentified in Chapter 3.
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Table 5.1: Maximal Perturbation that maintain stability and performancein the INAP
(w1

x = Thisparameter is not present in the lineaization. Henceit doesnat have any effed
in either the stability or performance

Stability Performance
Parameter [%] Parameter [%0]
kmS * kmS *
kmg * kmg *
km1o * kmio *
km12 * km12 *
ki1 8.040 k11 0.028
kms 8.232 k.3 0.028
k7 98229 ks 1.130
ki3 143129 kq. 1.131
ks 3144100 Kk 1.184
k11 3149500 k43 2.140
ks 8620700 kg 37.406
kg 25641000 Ky 38861
k1o 25641000 Ky 45.699
k1 27431000 k5 82911
ks 49009000 kg 99.875
ke 71135500 ko 227195
k1o 100000000 kqq 352012
ko 159099700 kg 381867
ky 958356400 k1o 1367300
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Table 5.2: Maximal Perturbation that maintain stability and performancein the INAP
(n=1)

Performance Stability

Parameter [%0] Parameter  [%0]

ko 4.95E-004 ko 0.54

ka7 5.43E-004 kso 0.64

kr 2.96E-003 koy 0.64

ks 4.46E-002 kr 2.07

k17 7.22E-002 kyq 3.14

kso 0.15 kag 7.06

ks 0.43 k17 4861

ka6 4.85 ks 20687

k10 5 k32 72239

kos 5.48 k16 72241

ka4 7.25 ksg 94805

ks6 4332 kse 23163

kss 4747 kgq 276249
k36 27269 ks7 28816

ks 28527 kgo 28816

k64 28616 kgo 28816

kss3 78293 kss 288921
k16 129936 k1o 436101

k3o 154136 ks 862069

k1 164366 kg3 1370001
ko3 182420 kg2 1391323
ke2 263455 ks 1512477
ks7 710786 k7o 1718375
keo 710786 kso 1722383
kgo 710786 kss3 1724138
kss 1058652 k1 2564103
ks4 1159779 kos 19881275
k70 1231079 ko7 4451588
kso 2746078 kgs 44530321
ko6 2965636 keg 118149462
ke1 6057297 kss 453393048
ke7 8619046 ks4 544712905
kes 25020131 ke1 12938955
kes 1272955 kegs 9474829329
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Chapter 6

Conclusions

In the present work two different apoptosis pathways are presented and dyremicdly
analyzed. Due to the complexity of the diff erential equations arising from the readion
networks, no structural conclusions could be adieved. However, the symmetry prop-
erty of the Extrinsic Apoptosis Pathway model, allowsasimplificaion o itsdynamicd
analysis.

It is shown that a particular set of readions can lead to a propational derivative
controlling adion. A subsequent analysis of the topdogy d the studied networks,
leads to the identification of a decentralized controller scheme. Regarding the impad
the variation of eat parameter exertsin the bistability, robustnessand performanceof
the network, the most important readions areidentified. The analysisof the multi stable
properties of the Extrinsic Apoptosis Pathway shows that monostable and histable be-
haviors are possble. When only one fixed pant is gable, the switch from 'life’ to
'deah’ is not possble. In fad, this moncstable scenario can be eaily readed by
varying some parameters only by two percent, showing that the structural property of
bistability is not robust. It isimportant to remark that the conclusions obtained from
the bistability analysis are locd and strange dtradors might exist.

The robustnessof the stability and performancefor both apoptosis pathways was
analyzed usingthe Structural Singuar Vaue. Thisall owed to identify the most sensible
parametersin the readion network. A comparisonamongthe three analysis performed
ispresented in Figure 6.1.

It is remarkable that the parameters k,,,19 and k,,,9 do nd play any role in neither
the robust stability analysis nor in the robust performance analysis, but they are one of
the most important in the bifurcaion analysis. In general, the results obtained with the
robust stability analysis are bigger than those obtained with the bifurcaion analysis.
Thereasonfor thisisthat the lineaizationis gudied in the case of the former analysis
and ony locd conclusions can be obtained.
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Figure 6.1: Comparison amongthe diff erent analyses. When a bar is not present in a
parameter, the variation in this parameter can be abitrarily large and noeffed will be
observed onthe property under consideration.



Appendix A

Reducing the Matrix Bandwith

Most of the contents present in this sdionare taken from (Diestel, 2000 and (Marti et al.,
20017, where anovel algorithm, based ontabu seach, for reducing the bandwidth of a
matrix is presented and compared with the leading algorithms.

A graphisa apair G = (V, E) of sets stisfiying E C [V]?, where [V]" denctes
the power set of V' upto n-tupels of elements. The dementsof V' are cdl ed the vertices
of the graph G, the dements of E are its edges. |G| denotes the order of G (number
of vertices) and ||G||, the number of edges. Two vertices u, v are ajacent if uv isan
edgeof G.

Let f(v) bethelabel of vertex v € V, where eat vertex, hasadifferent [abel. The
bandwidth of a vertex v, B(f(v)), is the maximum of the diff erences between f(v)
andthe labels of its adjacent vertices:

By (v) = max{|f(v) — f(u)[Vu € N(v)}

where | f(v) — f(u)| denotesthe ésolute value of f(v) — f(u) and N (v) isthe set of
vertices adjacent to v. The bandwidth of agraph G with resped to alabeling f is

B{(G) = max{Bs(v)Vv € V}.

Let B(G) be the minimum B#(G) over al possble labelings f. The bandwidth re-
duction problem consists of finding alabeling f that minimizes B;(G). Letl;; # 0 if
ij € Eand L = {l;;} betheincidence matrix. Regarding this definitions, the band-
with reduction problem consists of finding a permutation o the rows and the mlumns
that keeps al the nonzero elements of £ in abandthat is as close & possble to the
main diagoral.

Several agorithmsfor solvingthe bandwidth problem has been developed sincethe
late 1960s (see(Marti et al., 2001)). Being the most important:

1969 Reverse Cuthill -McKeeprocedure
1976 GPS
2001 Tabu seach based algorithms
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A complete and detail ed explanation of the dgorithms is not presented here and
the result of an asessnent can be foundin (Marti et a., 200]). Despite the reverse
Cuthill-McKeeprocedure is nat the best of the methodsli sted, its full i mplementation
in MATLAB makesit inmediately avail able.
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Appendix B

Intrinsic Apoptosis Pathway
M odel

Birl2 =
Casp3+* XIAPCasp9 * k18+Casp3 * XIAPp2frag *k20-
Birl2 *Smacrk43+Birl2Smac =*k44-Birl2 *k63;

Birl2Casp3 =

Birl2 *Casp3*k15-Birl2Casp3 *kl16+Casp3 * XIAPCasp3 * k19+
Casp3+* XIAPp2fragCasp3 *k21+Casp3 * XIAPCasp9Casp3 * k22-
Birl2Casp3 *Smacrk47+Birl2Smac * Casp3+*k48-Birl2Casp3 k67,

Birl2Smac =
Casp3* XIAP2Smac* k23+Birl2 *Smacrk43-Birl2Smac *k44+
Birl2Casp3 *Smacrk47-Birl2Smac * Casp3+*k48-Birl2Smac *k65;

Bir3R =

Casp3+* XIAP*k17+Casp3 * XIAPCasp3 *k19-Bir3R  * Casp9* k31+
Bir3RCasp9 *k32+Bir3Rp2frag *k33-Bir3R * Smacr k45+
BirBRSmac * k46-Bir3R  * k64;

Bir3RCasp9 =

Casp3+* XIAPCasp9 * k18+Casp3 * XIAPCasp9Casp3 * k22-

Bir3RCasp9 *Casp3+*k26+Bir3R * Casp9*k31-BirSRCasp9 *k32-
Bir3RCasp9 * Smacr k49+BirBRSmac * Casp9+*k50-BirBRCasp9 *k68;

BirBRSmac =
Casp3* XIAP2Smac* k23+Bir3R * Smacr k45-Bir3RSmac  * k46+
Bir3RCasp9 * Smacx k49-BirBRSmac * Casp9+k50-BirBRSmac * k66;

Bir3Rp2frag =
Casp3+* XIAPp2frag *k20+Casp3 * XIAPp2fragCasp3 *k21+
Bir3RCasp9 *Casp3+*k26-Bir3Rp2frag  *k33-Bir3Rp2frag  *k69;

Casp3 =

Casp9+ Procasp3 *k5+Casp9P * Procasp3 *k7+Casp3 * Procasp3 k8-
Casp3+* XIAP * k9+XIAPCasp3 * k10-Casp3 * XIAPCasp9 * k11+
XIAPCasp9Casp3 * k12-Casp3 * XIAPp2frag *k13+XIAPp2fragCasp3 *k14-
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Birl2 *Casp3*k15+Birl2Casp3 *kl16+Smac™2 * XIAPCasp3 * k39-
Casp3+* XIAP2Smac* k40+Smac™2 * XIAPCasp9Casp3 * k41-
Casp3+* Casp9P+* XIAP2Smac+ k42+Bir12Casp3 * Smac- k47-
Birl2Smac * Casp3+*k48-Casp3 *k55;

Casp9 =

-Casp3 * Casp9+*k6-Casp9 * XIAP* k27+XIAPCasp9 *k28-

Casp9+ XIAPCasp3 * k29+XIAPCasp9Casp3 *k30-Bir3R * Casp9+*k31+
Bir3RCasp9 *k32+Smac™2 * XIAPCasp9 * k37-Casp9 * XIAP2Smac+ k38+
Bir3RCasp9 * Smacx k49-BirBRSmac * Casp9+k50-Casp9 *k54+ul,;

CaspoP =

Casp3+* Casp9+ k6+Casp3 = XIAPCasp9Casp3 * k24+

Casp3+* XIAPCasp9 * k25+Bir3RCasp9 * Casp3* k26+

Smac"2 * XIAPCasp9Casp3 * k41-Casp3 * Casp9P* XIAP2Smacx k42-
Casp9P+k53;

Procasp3 =
-Procasp3 *kl+k2-Casp9 *Procasp3 *k5-Casp9P *Procasp3 *k7-
Casp3+ Procasp3 *k8;

Smac =

-2 * Smac™2 * XIAP * k35+2 » XIAP2Smac+ k36-2 * Smac™2 * XIAPCasp9 * k37

+2% Casp9+* XIAP2Smac+ k38-2 * Smac™2 * XIAPCasp3 * k39+2 * Casp3+* XIAP2Smac* k40
-2 * Smac™2 * XIAPCasp9Casp3 * k41+2 * Casp3+* Casp9P* XIAP2Smacx k42

-Birl2 » Smacrk43+Birl2Smac *k44-BirBR * Smacr k45+Bir3RSmac * k46
-Birl2Casp3 +*Smacxk47+Birl2Smac * Casp3* k48-Bir3RCasp9 * Smacr k49
+Bir3RSmac * Casp9+ k50-2 * Smac™2* XIAPp2frag *k51

+2* XIAPp2frag2Smac * k52-Smac * k70+u2;

XIAP =

-XIAP *k3+k4-Casp3 * XIAPx k9+XIAPCasp3 * k10-Casp3 * XIAP*k17-
Casp9+ XIAP x k27+XIAPCasp9 * k28+XIAPp2frag *k34-

Smac™2 * XIAP x k35+XIAP2Smac * k36;

XIAP2Smac =

-Casp3 * XIAP2Smac k23+Smac™2 * XIAP * k35-XIAP2Smac * k36+

Smac™2 * XIAPCasp9 * k37-Casp9 * XIAP2Smac+* k38+

Smac"2* XIAPCasp3 * k39-Casp3 * XIAP2Smac+ k40+

Smac™2 * XIAPCasp9Casp3 * k41-Casp3 * Casp9P* XIAP2Smacx k42-XIAP2Smac *k62;

XIAPCasp3 =
Casp3+* XIAP * k9-XIAPCasp3 *k10-Casp3 * XIAPCasp3 * k19-Casp9 * XIAPCasp3 * k29+
XIAPCasp9Casp3 * k30-Smac™2 * XIAPCasp3 * k39+Casp3 * XIAP2Smac+ k40-XIAPCasp3 *k56;

XIAPCasp9 =

-Casp3 * XIAPCasp9 * k11+XIAPCasp9Casp3 *kl12-Casp3 * XIAPCasp9 * k18-
Casp3* XIAPCasp9 * k25+Casp9 * XIAP » k27-XIAPCasp9 *k28-

Smac™2 * XIAPCasp9 * k37+Casp9 * XIAP2Smac+* k38-XIAPCasp9 *k58;

XIAPCasp9Casp3 =

Casp3+* XIAPCasp9 * k11-XIAPCasp9Casp3 *k12-Casp3 * XIAPCasp9Casp3 * k22-

Casp3+* XIAPCasp9Casp3 * k24+Casp9 * XIAPCasp3 * k29-XIAPCasp9Casp3 *k30-

Smac"2* XIAPCasp9Casp3 * k41+Casp3 * Casp9P* XIAP2Smac* k42-XIAPCasp9Casp3 *k57;

XIAPp2frag =
-Casp3 * XIAPp2frag *k13+XIAPp2fragCasp3 *k14-Casp3 * XIAPp2frag =*k20+
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Casp3+* XIAPCasp9 » k25-XIAPp2frag  *k34-Smac™2 *XIAPp2frag *k51+
XIAPp2frag2Smac *k52-XIAPp2frag  *k59;

XIAPp2frag2Smac =
Smac™2* XIAPp2frag *k51-XIAPp2frag2Smac  *k52-XIAPp2frag2Smac  *k61;

XIAPp2fragCasp3 =

Casp3+* XIAPp2frag *k13-XIAPp2fragCasp3  *k14-

Casp3+* XIAPp2fragCasp3 *k21+Casp3 * XIAPCasp9Casp3 * k24-
XIAPp2fragCasp3 *k60]
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Appendix C
PD controller in the INAP

This Appendix shows the proof of (3.5) in Sedion3.2.1.

Claim C.1. The regulators of P; and P» (Section 3.2.1)are proportional derivative
controllers.

Proof. The main plot of the proof is algebraic substitution in the diff erential equation
correspondngto Caspase 3 and 9. Thisis motivated by the biologicd faa theinhibitor
of caspasesadsover the adivated version o the casapases. That isto say control signal
will be present in the diff erential equation o the adivated version d the both Caspase
3and 9

Caspase 9 The variationin the concentration of Caspase 9is:

[Coal = — (k6[Cha] + ko[ XTAPC34] + kisa) [Coal +
+uR17P2 + uRg*Pg + ul (C‘l)
where
Ur,—p, = — (k31Bir3R+ kso[Bir3RSmac]) [Coal +
+kso [BiTSRCga] + ka9 [BiT‘?)RCga] [Smac]
URs—Py, = — (k27[XIAP] + k38 [XIAPQSTTL(J/(/]) [Cga] +
+kog[X TAPCy,) + k3r[Smac)?[ X TAPCy,]
URsp—P, = (k11 — k22)[C34][XTAPCyqy] — k12[XTAPCg,Cl4]

up—p = — [Cga] (k24[XIAP09aC3a] + kos [XIAPCQG} + kog [B?:?"?)cha]> —
—ka1[Smac)?[ X TAPCy,Csq) + ka2[Cs4)[Coa)[X T AP2Smac]
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from the interconredion o systems (seeFigure 3.9):

Up—p, = —POK {[Bir3RCo,]} +

+[C54] (k1s[X TAPCy,)] + koo[ X TAPCy,Cs4))
Ups—p, = —POK? {[XIAPCy,]} —

—[C3a] (k18 + k11)[X TAPCy,] + k12[XIAPCy,C3,])  (C.2)
URgy—Py = —P@KZ?‘;BO {[XTAPC9,C3,]} +

+k29[Coa] [XTAPC3,) —
—ka1 [XTAPCo,Cs,][Smac)? + kia[C34][Coa][X IAP2Smac]
up-p = —P8k53 {[O9P]} + ke [030«} [090«}

where

PO {7} = Pk, {7} + ks[Caaly
Pok, {7} = F+kay (C3)

Substituting the last four equationsin (C.1),

[Coa] = —ksa[Coa] — POhy, {[Cop]} — POy {[XTAPCoq]} —
_P8k57,30 {[XIAPCQ(ZC3(1]} - Pakeg {[BZT3RCga]} +
Caspase 3
For the adivated version of Caspase 3:
[C:Sm] = (ks[Coa] + k7[Cop] + ks[Csa)) [C3] — ks5[Csa] +
+k’41 [XIAPCgan;a] [Smac]2 — k42 [03(1] [Cga] [XIAPQS’ITLG,C]
FURy,—P, T UR —Py + URy,— Py + URg,— Py (CS)
where
URy—Py = — k’15[BZ7’12] + kus [Bzr12Smac]) [Cga] +

(
+ (k16 + kaz[Smac]) [Bir12Cs,)
— (ko[ X TAP] + kao| X ITAP2Smac]) [Csa] +
+ (km + k39 [Smac]z) [XTAPCs,)
URy,—P, = —ki3[XTAPp2fragCsa] + kia[XTAPp2fragCs,]
— k11 [XTAPClyy)[Csa] + k12| XTAPCo,C,)

URy—P;

URg,— P>
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from the other systems

URy—Py = —P8k67 {[BZT’lQCga]} + [Cga} (klg[XIAPC&J
ko1 [XTAPP2fragCsa] + ko[ X TAPCo,C3,])
—POKE {[XTAPCsq]} — kao[Coal [XTAPCs,) +

UR4—P2 -

+/{730 [XIAPCQQC;;Q]
URyy— Py —POKZ {[XTAPp2fragCsal} + kas[Csa] [XTAPCyoCsq)
URgyy—P, = —POky, {{[XTAPCyqCsq]} — (k22 + k24)[C34][X TAPCy,C,) +

+k29[Cou] [XTAPC3,] — k3o[ X IAPCy,C34] +
+]{742 [C3a] [Cga] [XIAPQSmac] — k’41 [XIAPCQQC3G] [S’mac]2

substituting the last four equationsin (C.5),

[Caa] = (k5[Coa] + k7[Cop] + ks[Csa]) [Cs] — ks5[Csal
— POy {[XTAPC3,)} — POk, {[XIAPCy,Cs5,)}
_Pak(s() {[XIAPPQ.fTagC&z]} - Pakw {[3”1203(1]} (CG)

O

Note that in (C.4 and C.6) four different PD controllers are present,i.e., there ae
four mechanismsto regulate eat one of the adivated versionsof the caspasesinvolved.
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Appendix D

SSV code

This sdion contains the scripts used in the present work.

D.1 Modéd linearization
file ./EissngO4Robust/LineaizeModel.m

%This function construct the Jacobian
%of EissingsO4 model with different
%options: symbolical, evaluating
%parameters to zero, numerical
%substitution, and others.

%’'a’ is the variable which

%is to be preserved in the bock.
%if no input is %applied then
%every parameter is

%to be preserved.

%Input b stands for the steady state
%to evaluate the Jacobian

%if ¢ = 'numeric’ then parameters are
%evaluated in the nominal value

function A = LinearizeModel(a,b,c)

%Detecting if there has been an input
%to the function

if nargin == 0
a = 0
b = 0;
c =0;

elseif nargin == 1
b = 0;
c =0;

elseif nargin == 2
c =0;
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end

if iscell(a)
q=";
else

.
’

5

q
if

Q|

Qﬂ)ul
o

{ah

v
end

end

na
na

size(a);
na (1,2);

%Parameters definition

syms k1 k2 k3 k4 k5 k6 k7 k8 k9

k10 k11 k12 k13 km3 km8 km9 kmi10 kmi1l kmi2
p = [k1 k2 k3 k4 k5 k6 k7 k8 k9

k10 k11 k12 k13 km3 km8 km9 km10 kmll km12];
np = size(p);

np = np(1,2);

pn = [5.8e-05 1.0e-05 0.0005 0.0003 0.0058
0.0058 0.0173 0.0116 0.0039 0.0039

0.0005 0.001 0.0116 0.21 464 507 81.9 0.21 40];
dimension = 8; %Dimension of the state space

%States definition
syms c8 c8a c3 c3a IAP c3alAP CARP c8aCARP
x = [c8 c8a c3 c3a IAP c3alAP CARP c8aCARP];

%Reactions definitions

vl k1 *c8ax*c3;

v2 k2 *c3a*c8;

v3 k3 * c3a* IAP-km3 * c3alAP;
v4 k4 = c3axIAP;

v5 k5 *c8a;

v6 k6 * c3a;

v7 k7 = c3alAP;

v8 k8 *IAP - km8;

v9 k9 * c8-km9;

v10 k10 *c3-km10;

v1il k11l *c8a* CARP-km11x cBaCARP;
v12 k12 * CARP-km12;

v1l3 k13 *c8aCARP;

%Differential states system
c8p = -v2-v9;

c8ap = v2-v5-vill;

c3p = -v1-v10;

c3ap = v1-v3-v6;

IAPp = -v3-v4-v8;
c3alAPp = v3-v7;

CARPp = -v11-v12;
c8aCARPp = v11-v13;
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%Computing Jacobian
A = Jacobian([c8p c8ap c3p c3ap IAPp c3alAPp CARPp c8aCARPp]
[c8 c8a c3 c3a IAP c3alAP CARP c8aCARP));

switch q
case 'n’
fprintf(’ No parameter set to zero.\n’)
case 'y’
%Find which index of the parameter vector are to be kept
k = 1;
q=0;
if na > 1
for j = 1:na
for i =1:np
d = sym(cell2mat(a(1,))));
if d == p(1,i)
keep(k) = i;
k = k+1;
end
end
end
elseif na ==
for i =1l:np
d = sym(cell2mat(a));
if d == p(1,i)
keep(k) = i;
end
end
end
try
keep;
catch
q=1
end
switch q
case 0
k = 1;
i =1
%Loop that sets the unwanted parameters to zero
while (i <= np)
if i == keep(1,k)
fprintf(Do not errase. %i\n’,i)
if k < na
k = k+1;
end
else
%fprintfCErrase. %i\n’,i)
A = subs(A,p(1,i),0);
end
=0 +1
end
case 1
fprintfCNo such parameter.\n’)
end
end
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%Evaluate the parameters and the states in the
%nominal value in order to have a numeric matrix
if size(b) == [1 dimension]

for i = l:dimension

A = subs(AX(1,i),b(1,i));

end

fprintf(’ Evaluating the Jacobian in the
requested state.\n’)

A = vpa(A,3);
else

fprintf(’ Neither state nor parameter evaluation.\n’)
end

%Evaluate the parameters in the nominal value.

if ¢ == 'numeric’

fprintf(’ Evaluating the parameters in
the nominal value.\n’)

for i = Linp

A = subs(A,p(1,i),pn(1,i));

end

A = A
end

D.2 Computing the SSV

file /Eissng04Robust/Muill.m Function cdl: (Muill(sys.a,FP))

function Miu = Main(A,FP)

clc
close all
for i = 1:19
try
Miu(i,:) = body(A,FP,i);
catch
fprintf(’ Error in Body.@ %i\n’,i)
%Mui(i,:) = [0,0];
end
end
clc

function m = body(A,FP,i)

syms p k

tol = 0.98;

q = {k1' 'k2' k3" ’'k4’ k5’ k6" 'k7’ 'k8 'k9’

'’k10" k11’ ’k12’ ’'k13’ 'km3’ ’km8' 'km9’ '’km10’ 'km1l’ ’'kml 2%,

pn = [5.8e-05 1.0e-05 0.0005 0.0003 0.0058 0.0058

0.0173 0.0116 0.0039 0.0039 0.0005 0.001 0.0116 0.21 464 507 81.9 0.21 40];

G = inv(p *eyex(8)-A);
Delta = subs(LinearizeModel(q(1,i),FP(1,)),q(1,i),pn ,i);

MDelta = k * G Delta;
[num den] = numden(solve(det(eye(8) - MDelta),k));

num = symz2poly(hum);
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den = sym2poly(den);
[mag phase omega] = bode(tf(num,den),{1e-20 100000});
[k j1 = min(mag);

%Corrects the sign of the perturrbation
if and(phase(j) < 360, phase(j) > 180)
k = k;
else
k = -k;
end

% %%%Miu plot
% figure('Name’, strcat('Parameter_’,
int2str(i), * RS’) ,'Position’,[0 500 1050 500]);
% bodemag(tf(k *den,num));

% grid;

%%% Robust Performance

syms y

We = 50000+ (0.1 =p + 0.001)/(p + 0.0001);
C=[0001000 0]

B=[010000 0 0];

fprintf(’ Now computing the

maximal allowed pertubation in order
to maintain a performance index...\n’)
%Norm of the perturbation

Beta = vpa(l/(y *norm(Delta,inf)),1);

%Transfer function from u(initial condition of C8a) to z (we
Cl = simplify(We * C» G+* y * Delta xinv(eye(8) - G
[num den] = numden(1/Beta * Cl);

% Search for a convex property algorithm
LB = 0.000000005;

pitch = 3;
UB = LB + pitch;
Me = (LB + UB) / 2;

while pitch > 0.000000001
PropLB = maximal(num, den, LB);
PropUB = maximal(num, den, UB);

if and(PropLB < tol, PropUB > tol)
pitch = 0.1 * pitch;
LB = Me - pitch;
UB = Me + pitch;
Mean = (LB + UB) / 2;
elseif and(PropUB < tol, PropLB < tol)
LB = UB;
UB = UB + pitch;
Me = (LB + UB) / 2;
elseif and(PropLB > tol, PropUB > tol)
LB = LB - pitch;
UB LB;
Me = (LB + UB) / 2;

end
end
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%%% Mui Plot for robust performance

% num = sym2poly(subs(num,’y’,Me));

% den = sym2poly(subs(den,’y’,Me));

% figure(Name’, strcat(Parameter_’, int2str(i), * RP’) ,
"Position’,[0 500 1050 500]);

% bodemag(tf(num, den));

% grid

m=[k 100 =k/pn(1,i) Me 100  *Me/(pn(1,i)]

%Computes the singular structured singular value
function r = maximal(hnum,den,j)

syms y

num = sym2poly(subs(num,’y’,j));

den = sym2poly(subs(den,’y’,j));

[mag phase omega] = bode(tf(hnum,den));

r = max(mag);

D.3 Variation of parametersto determine the stability
bounds

file /Eissng04Robuwst/Deltall .m function cdl: Deltall(FP)

%This function determine the maximal variation

%in a parameter while preserving stability in

%the pertrubing system.

%Regarding the perturbed model, it varies one

%parameter perturbation at a time in order to

%compute the eigenvalues and determine the stability.

%The algoritm which searches the maximum allowed
%perturbation is incremental (SLOW!)

%This values can be used to determine bounds.

function Bound = Deltall(SS)

for j = 1:19
Bound(1,j) = Ciclic(SS,j,1);
Bound(2,j) = Ciclic(SS,},0);
end

function bound = Ciclic(SS,j,sign)

%Parameter definition and nominal values
p = {k1' k2’ 'k3" 'k4" kK5’ 'k6" k7' 'k8’
'k9" 'k10’ 'k11’ 'k12' 'k13’ 'km3’

'km8’ '’km9’ '’km10’ 'km11l’ 'km12};

pn = [5.8e-05 1.0e-05 0.0005 0.0003 0.0058
0.0058 0.0173 0.0116 0.0039 0.0039
0.0005 0.001 0.0116 0.21 464 507

81.9 0.21 40];

delta = 0;

i=0;

if sign == 0
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sign = -1;
end

A = LinearizeModel(0,SS,’numeric’);
stable = isstable(A);
cle

%Delta matrix of perturbation
Cosa = subs(LinearizeModel(p(1,),SS),p(1,j),pn(1,)))
pitch = sign * pn(1,j) / 100;

[U S V] = svd (Cosa,’econ’);
U u(:,1);
S = S(1,1);
\Y V(:,1);

w1
w2

U;
SV

%Perturbing the original system
Cl = A + Uxdelta *S+V,

fprintf('Determining largest
allowable perturbation
before instability.\n");
ifS™=0
while stable ==
i=1i+ 1;
delta = delta + pitch;
Cl = A + Wlxdelta *W2;
stable = isstable(Cl);

if i > 1000000
stable = 0;
delta = O;
end
end
else
delta = O;
end

bound = pn(l1,j) + delta;

function stable = isstable(A)
%Parameter definition
stable = 1;

eig(A);
size(r);

r
t
t = t(1,1);

for i=1:t
if r(i,1) > 0 %Positive EigenValue!
eig(A)
stable = 0;
end
end
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