
(__j

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
FACULTAD DE 1 NG ENI ERIA

DIVISION DE ESTUDIOS SUPERIORES
CENTRO DE EDUCACION CONTINUA

DIRECTORIO GENERAL

REGISTRO DE ASISTENTES Y PROFESORES.

NOMBRE DEL CURSO....,: -~ --~-==-=====-= F O L 1 O rn 1 1 ! :~:LAVE AsocOJ
1 5 6 7

D_lJIJi] [-] 1 1 1 l 1 1 _1 __ 1_ 1 _1 1 1 1 1] 1 1 ___ I 1 [11 I ll ·_TI
8 13 • -L4 NOMBRE (S) APELLIDO PATERNO APELLIDO HA TERNO 41

1

REG, FEDo CAUS. 1 U 1 l 1 1 1 TJJ CED. PROF. w 1 rm
4.2 51 52 . 58

TEL PARTICULAR [[] 1 1 i f 1 TEL. OFICINA 1 1 I 1 1 [1 J EXTENSJON t_ILI_f
59 65 66 72 73 7 6

Ki\RQ'L'E CON ú'NA CRUZ

ASISTENTE D PROFESOR D D [~]
77 80

ITI i 1 1 1 1 1 1 1 1 1 1 1 l IJTI 1 1 1 r 1 L 1 1 1 1 1 ITIJ · t DOMICILIO PARTICULAR (CALLE. NUMERO Y No. INTERIOR) . 41

r 1 1 1 _ ' 1 ·1 ,- 1 1 1 1 1 1 1 1 1 1 1 ;_ 1 1 1 1 1 r 1 1 1 1 1 z . p p rn
42 COLONIA 71 72 73

w
ESTADO .74 75

rn rn· lTI
TITULO PROFESIONAL 76 77 ESPECIAL! DAD 78 79 80

r~_J 1 1 1 1 u 1 1 1 1 1 1 r 1 1 1 1 1 1 1 1 1 1 r 1 r l 1 r 1 IJ
8 DOMICI UO DE OFICINA (CALLE, NUMERO Y No. 1 NTERIOR) 41

~2 1 J 1 1 J01~0l1~ 1 1 1 1 1 1 ITITTT 1 TmJ 1 1 _r;;J z.P. rn
7273

1

rn
74 75 ESTADO

[3]¡

:.C)OCIACIONES A LAS QUE PERTENECE.

rn
------0]

[JJ

rn

80:

o
o

(i

e o ()

~~~-'LICACTON DF MTNICOMPLífADORAS 

(del 21 dé octubre al 12 dt:; nc~r~ewbr::: de 1977) 

Pecha Du:::ació::1 

Oc[ . '21 -'. - l7 a 2] h 

q a l3 h 

Oct. 28 17 8 21 h 

Oct. 29 9 a 13 h 

17 8 21 h 

Nov. 5 

14 a 18 h 

Nov. 11 17 a 21 h 

9 .'3 13 h 

'edcs. 6, .'( 197 7. 

INTRODUCCJON 

CI~~ f'UITOS LOGICOS 

ARQUiTECTURA DE i'vliNICQMPUTl\­
DORAS 

ENTR ADf, Y SALIDA DE MINICOr~PU 
TAeORAS 

ACCESO DIRECTO A I\llEMORIA 

?AGlNACiüN 

INTERFASES 

Pf:CGRAMAClON DE SISTET\1AS 

SISTEMA OPERATIVO EN T~EMPO REAf 
SELECCION DE UNA MINICOMPUTAOO 

Profesor 

M. ;n (', Marcial PortlJla Robertsor. 

M, en C. NJarcial Portilla Roh2rtsor. 

M. en C. 1vlarc.:l3I PuniU8 Kobertson 

Ur. Adolfo Gu"2:mán ,1\ ret~r- s 

VfrtrYr Gerez Gres1e.t 

Ra vmuw.lu SeQovía 
J '-' 

RA Dr. Adoho Guzmán Arenas 

APT !CAC:IONES 

APLlCACIONES EN UNA MlNICOMPLJ­
TADORA 

<':. 

CLAUSURA 

DT. Víctor Gerez Greiser 

rv1. en C. Gertudiz Kurts de !Jara 
Sr. Ferrtando L.epe CasLllas 



o o o 



o 

o 

DIRECTORIO DE PROFESORES DEL ,CURSO APLJCACION 
DE MINICOMPl1TADOH AS 

DF. VICTOR GEREZ GREISEH 
PROFESOR 11TULAR 
lNGENIERIA J\.1ECANICA Y ELECTRICA 
FACULTAD DE INC~El'nERLA. 
UNAM 
TEL.: 550.5~.15 E. 3746 

M, EN C. M.Ai·-JUEL GR[JALVA LOPEZ 
rr·'rr OP LA c¡-'('("'1('1\.1 ljL' y 'GT'NT'"•DT \ f'P (.,"N·rrnor jJ~. •" ,.::, ·~ ~ U;::'. , _, )J.'! L'L ll'i ~:, ,..t:.J-~lh L.l.L" ~\_) l\. J.~ 

SECCION DE INGENIERIA MECANíCA Y ELECTfUCA 
F ACUl .. TAD DE INGEl\~IERli~ 

· UNAM 
"1~I · sr:)o ..; ~ 1c E' Q!'':l " ~~; "'? 

.j.. L.:, - a • \ L ~ •_1 L o .o U ,. \...1 1 .._¡ )' V .: ~' """~ 

DR. ADOLFO GUZMr\N ART:-.NAS 
INVESTIGADOR 
INSTITUTO DE lNVESTIGi\CIC:--.JES EN M A'T'E~1ATICA S 
A PLICA DAS Y EN SlSTEh!lAS 
UNAM 
TET · sc::o S" 1:::. E ¡¡-g~ ., ~t.:;Q4 .!.....-<.. ,J,_ <;, L ....... \._.. ... "' .:rJ 0 J ""'t'- o 

M. EN C. GERTl!DIS KURTZ [1E LAftA 
LABOI\ATORIO DE CIBERNETICA 
FACULTAD DE CIENCIAS 
Ji'T "ll -

M. éN C. MARCIAL PORTILLA .ROBER'TSON 
JE ,¡:<E DE LA SECCION DE COMPUTl\CiON 
EDIFICIO DE INGENIEHIA Iv'lECANICA Y ELECTRICA 
FACULTAD DE 11'-:GENJE}<lA 
UNAM 
TEL.: SSO . .52. JS 2 .. '3750 

ING. EA YNlUNDU SEGOVlA 
INVESTIGADOR 
INSTITUTO DE lNVESTl:GACIONES EN !VJA'TEMATlC'AS 
APLICADAS Y EN SlSTI:MAS 
UNAJ\11 
TEL.: 50.52.15 E. tl58:3 

'edcs. 7, X, 1977. 



() 



o 

-.. 
' ~ . ' ·- ": .... · ...,-~.:::- ~--

\' - > • • t -:-~...... - .? _,.._ - - ~ 

centrb de. ecfuéácié)'¡¡ 'cor)tinlJa. 
. ' . ' ¡ ' ~ . - . - ' . -.. - ~ .: '. . . 

di vis i ól n de·.: es t.u·d· i os._ . superiores 

">~~~_¿~ : f .á e u ··rt ~ d d e i n g e n i e r r a , u n a m 

APLICACTON DE MINICOMPLJT ADORAS 

PROGRAMACION DE SISTEMAS 

Pal'aclo de f~l1erfa 

Tomado del libro Minicomputer 
Systems Organization and Progra­
mming. ( PDP-11). 

Noviembre, 1977 

Calle de Tpcubc 5, primer piso. MQxlco 1, D. F. 



. .. 

o 

o 

o 



e 0)154 . l/U l'fl()(;,¡ \\l',fi'-G '· ,, ·>!' '· 

./\ 
,,·ords yet to be tmnsrerred, the current I/0 unit a!'t~ memor/ú~dress of t:'e 
data word being i;ransfer.ced, an.d the date.. Once i!llLJ:.:te(1 by an l/0 mscru·.;: 

1/0 PROGRA~\MING 

.::eing able to program a computer to do calculations is of iittle us: if 
tí"H.•Te is no way of gettíng the results of calculations from the machme. 

_; ,ú<:cwise, the programrr.er often must suppiy the computer with informa­
~ton to be processed. A programmer must, therefore, be provided with the 
ma:us to transfer information between the computer and the penpheral 
c,evices that supply input or that sen e as a means of output. 

In arder to perform an I/0 fun.::tion, the programmer must specify what 
the data are, where they are to go or come from, and how the I/0 device is 
Lo be controlled. Depending on the small computer being utilized, the I/0 
funct\on may require the CPU to wait until the I/0 operation is complete, or 
~he l/0 function may allow the CPU to go on and process other functions 
,vhile the operation is being performed. \\11en the l/0 funclion holds up 
the CPU, we say that the I/0 operation is znterloched wJth the CPU. When 
both can be performed simultaneously, we say that 1¡0 is concurrent wüh 

computation. 
Concunent operation i:> becoming the standard mede for most smali 

computers. This mode takes severa! fonns. ln one form, the concun-ent I/0 
fu'nction can operate on data words one ata time. During the operation, th~ 
d:>.ta word is held temporari.ly in--a specit.'l register, such as the accumulator. 

In another forro, the l/0 function operates directly between memory 
:1nd the I/0 unit. This mode of operation requires a separa te path { call:d 
a direct memory access ( D?.t -\) pa~h) bet\\ een t"he memory and the I/0 umt. 
The DMA allO\'vS the l/0 function to be performed with a mmimum of de-

oendency on the part of the CPu. 
' A third mode of operation al!-:•\' s a iargP block of l/0 information to be 
pas~ed between an I/0 umt and :ht: nwmory. As support for such bloc/, 
tt,,n~fers, specíal regislers are prm :ded foi holcting a count of the number nf 

1Sl 

twn, t-lock transfers run co:J.currer.tly ,md indept:I~de:'1tly of the CPU u:;u[ 
they a?e completed (Le., the word count goes 10 zero or :on acd:-ess _ _:¿: er. -~ 
occurs). · 
~- Whencvc: thcre 1s a DMA p~th as 'séll as a CPU paih to tn<'l"!lOry, con­
f1lcts may ar1se. Because the 1/0 requests ior memory are time depC'ndent, 
occur mfrequently, and are of short duration, the l/0 request is giv<.?n pref­
erence over the CPU request_ _ Such preferentia! treatment is called cvcle 
stealing in that the I/0 unit is granted mernory cycles at the expens~ of 
the CPU.· . 

It should be fmrly obvious from this brief introduction that wlth the 
various poss1bilities, I/0 programming is very machine dependent. The com­
plexity of the I/0 system determines the corresponding complexitv of the 
I/0 programming. On the PDP-11, the programming of l/0 devic-es is ex­
tremely simple, and no new I/0 mstructions are necessa.ry for dea!ina with 
mputjoutput operations_ "' 

The key to the stmplicity of I/0 programmi:1g is the UNIBLTS, described 
,n Chapter 3. The l!NIBUS permits a unified addre<>sing structure in which 
· Otltrol, status. and dala re!..(i:-.L('rs ror ¡¡,•np/rl'lcd dt>vit'l'" art• dirt•cllv addn•-;s .. d 
¡-, llll'lllory lo<'allnn.., Tlwn•ron·, all n1wrattons on lhc";f' rPgJ•.IPr'>, s1wh ;¡<; 

Lrano;fernng m[ormalwn mto or uut of t.hem or manipulating data wtth them, 
are performed by normal memory reference instructions_ 

G 1. BASIC 1/0 PROGRAMMING ANO OPEHATIONS 
FOR THE PDP-11 

The_ use of memory reference instructions on peripheral device regi.,ters 
great~y mercases the flexibtlity of 1/0 programming. For example, infmma­
tJOn m a devtce reg1~t0r can be comparcd directly with a value a.11d a hranch 
nw.rle 0:1 the result. 

e r-w E 
E· E•·· 

n E· ll i' 
'Y'!:.S 

¡~ CHA~AClE~ • ~~ 

·r'E.:!· 1 T IS 

In this case the prc.gram looks for a "Y" in the keyboard data buffer (TKB) 
and branches if it finds it. There is no need to transfer the information into 
an intermedia te register for comparison. 

When the character is of intRrest and is to be saved, a memory reference 
instmction can transfer the charactt•r intd a user buffer in mt.•mory or to 
anothcr peripheral d1·vicP. The 1n~l.nwt 10n 

IIO'·'E" S~VE CHAFACTE~ !N MEMORY LOCAT!ON "LUC" 

transfers a character from U ~ paper tape reader buffer (PRB) into a user· 
C:2~1r:.ed !or.&.Lio~. 



.SF( h 1 BI\SIC 110 PROGRA:'vl\li"'G ANO OPER \ fi0:'-1;, ~ 01< '' 11 E Pll" 1 1 155 

Another aspect of I/0 programming is that anthnwttc op"t. tions may tw 
performed o,n a peripheral device regtster that ts U'iPd for hnth mput ami 
output. Thus there is no need to funnel all data transfers, ar1 1 hmetic opera­
tio~s. and C~mparlSOrl through Other WOfCS Of gpn¡·raJ-pur~H)S€ regis~erS. 
Instead, the peripheral device register can itself b~ trPatPd as :m Jccumulator. 

6.1.1. Dev1ce Registers 

All peripheral devices are specified by a set of registers thal are addressed 
as memory and manipulated as flexibly asan accumulator. For each device, 
there are two types of associated registers: 

l. Control and status registers. 

2. Data registers. 

Each peripheral has one or more control a11d stat•.1s registPrs (CSR's) that 
contain all the information necessary to communicatP with thal device. The 
~eneral form shown here does not necessarily appiy to every devtce, but is 
presented as a guidt->: 

1 ~ 1 1 1 l 1 ~ 1 1 1 () <) ~ 7 (> 

[¡ 

i;E:L:.d, l _¡ . 1 
\TT'l 
1 1 ; lnterrupt enJhle 

Mernory ~xten.,JOn 
----' ! 

Dev1ce tunct!On ------­
EnJhl~ ----------------- -- ___ j 

\1any devices requtre less than 16 status bits. Other clevwes wi11 rPquire more 
than 16 bits and therefore will require addition.1l statu., .me! cort! rol reg1sters. 

The bits in the control and status registers are generally assigned as 
follows: 

----------
Btt N ame 

15-1:! Errors GPtwr.dly, there !~ ,m ind1vrd·o,d btt ''"'•< r,tted w1th a 

156 

11 

10-8 

7 

6 

5-4 

3-1 

o 

Bus y 

Un1t Select 

Done or Ready 

Interrupt Enable 

Memory Exter.sion 

Device Function 
Bits 

Enable 

l/0 ?ROGR->,~1:-!I"-G CH,_P 

lnd1ca~es that a step is being performed. 

Sorne penpheral systems have more than one device per 
control. For example, a disk system can have multiple 
surfaces per control, and an analog·to-digitai converter 
can ha ve mul t1ple channels. The umt b1ts select the 
proper surface or channel. 

The register can contain a DONE bit, a READY b1t, or 
a DONE-BUSY pair of bits, depending on the device. 
These bits are set and cleared by the hardware, but may 
be quened by the program to determine the avai.lability 
of the dev¡ce. 

Independently programmable. If bit 6 is set, an inter­
rupt will occur as a result of a function done or error 
condition. 

Will allow devices to use a full 18 btts to specify ad­
dresses on the bus. 

Spectfy operations that a device is to perform. For 
example, a paper tape read function could be "read one 
character." An operat10n for a disk could be "read a 
block of words from memory and store them on the 
disk." 

When set, this bit enables the device to perform the 
l/0 device function. _ 

Each device has at least one buffer register, besides the CSR registers, for 
temporarily storing data to be transferred into or out of the computer. The 
number and type of data registers is a function of the device. The paper tape 

' reader ar:-4 1-JUnch use smgle S-bit data buffer registers. A disk would use 16-
bit data registers and sorne devices may use two 16-bit registers for data 
buffers. 

6.2. BASIC DEVICE FUNDAMENTALS 

The two most basic peripheral devices commonly attached to a PDP-11 
are the ASR-33 Teletype® and the DEC PC-11 h1gh-speed paper tape umt. 
Actually, these two dev1ces are really four umts in. that the teletypewriter 
keyboard/reader and printer/punch are two separate units, as are the paper 
tape reader and punch contained in the PC-11. 

»fJf"c!f!c r·rrnr W1•rn "'"" ¡,,,,.u,·,, . .,,,,..! r'or <'rror,, 6.2.1. Teletype Keyboard/Reader 
they c.1n be obt.11ned by exp.l!Hrlll~ lile· t'r ror ''-'' t1on 111 

the word or by using another statu~ word. Generally, The teletype control contains an S-bit buffer (TKB) whr}assembles and 
bit 15 IS the inclustve OR of al! other e~ror b1ts (1f therQ -'-.J • 
is more than one). Al! errors are gener,dly 1ndtcated by holds the code for the last character struck on the keyboard or read from the o 
individual status b1ts. 



::zc 6 2 e 
tape. Teletype char2cters ~·rom ·h., '·--d· rl' · 
··he 8 ·n·t h -~t L.,~ K e¡ uoa..r ~~ reader are receivod serial!" be• 
·• • 1 s ~"" 1>eg1ster 'i'KB u ,., u ~ · :t ." 
'"'1;{n..... b ~. • . · · pon ,;ro,ra.rn comrnand, the contenh; nf t"ne 
... :.D .... ay e wai"'sierred " " ..... 1· l ""- _,_ 

A ch~acter .is re<>d lf.:_oiJm<:U;uthle tlo ~ :nemdory locaciOn ora general r~glster. 
- ~ -· ·• e ov. ·:.Dee re,"~·,.. b·· - tr" .~-, 

Jeader enable bit (RDR END) ~ l ·Th" ~'""~· . i ::.e ~u:g u.e teletype 
Wñen a "-1 ty 'h • • .o a . . lS sets tne ousy blt (Bl'SY) toa 1 
· • ~ e pe e aracter starts t t h · 
the teietype un¡"t + l th o en er, _t .e control deenergizes a relay in 

.o re ease e tape fee ., 1 t · Wh 
:::nechanism stops tape motion tl a a en. en released, the latch 
sensed and befare . or. y when a complete character has been 
ter is available in b~~smg of the next ch::z-~cter is started. \Vhen the charac­
flag (DONE) is set ;~ ('iKB~, the busy t:!t (BUSY) is cleared and the done 
DON': h enswe th~t th e .:Y olard mu_st _be read within 18 milliseconds of 

ere 1:; no oss of mronnation. 

l'eletypewriter Keyboard/Reader Status Register (TKS): 

f f ______ j 1 
r 

1 
----...i 

"Bit Name 
Description 

.<Ó-12 Not used. 

ll Busy 

10-8 

7 

S 

5-l 

o 

Done 

Rearler Interrupt 
Enable (INTR ENB) 

Reaci<>r Enable 
(RDH ENR) 

Ind!c-ates that the teletype control is receivíng a start b¡t 
or mform.ltion bits. Cleared by INIT set by start b"t 
cl~arl'd after recep rion of first halt bit. RC!ad only. 

1 
' 

:Not used. 

Character availabie in b•Jffer. Cleared by INIT clearf'd 
~~~e~rer.cing data buffer, causes interrupt wh~n INTR 

- l. Read vnly Cleared when RDR ENn ·
• • ::> 1s set.

~nterrupts Enable. En<~bles Error or Done to cause an
mterrupt. Cleared hy INlT.

l/0 PROGi1A:\!'.1!:s-G

Teletype··N:riter Keyboard/Reade.r Buffer (TKB):
C)

1 o

Data --------

---' ---
Bit N ame Description

15-8 Not used.

7-0 Data Holds character read. Cleared by start bit. Read only.

Any reference to TKB (as word or byte) or TKB + 1 clears DONE.
The "unused" and "load only" bits are always read as zercs. Loading
"unused" or "read only" bits has no effect on thú bit position. The mne­
moníc "L"\liT" refers to the initialization signal issued by ON, POWER UP,
console START, or RESET.

6.2.2. Teletype Printer/Punch

On program command, a character 1s sent in parallel from a memory
location (ora general register) to the TPB for transmission to the teleprinter/
punch unit. This transfer of infonnation from the TPB into the teleprinter/
punch unit is accomplished at the normal teletype rate and requires 100
müliseconds for completion. The READY flag in the teleprinter/punch in­
dicates that the TPB is ready to receive a new character. A maintenance
mode is provided which connects the TPB output to the TKB input so that
the teletypewriter operation may be verified.

Teletype\vriter Print~r/Punch Status Register (TPS):

Bit N ame

j_f..-8

Rcady ,
lnterrupt enable -----­

Ma.ntenance -------

Not c·sec.

Description

SEC 6 2

7

6

5-3

2

1-0

Ready

Interrupt Enable
(INTR ENB)

Maintenance

BASIC DEVICE FU~DAMENT ALS 1:.9

Punch available. Set by INIT, cleared when buffer L,
loaded, set when punching complete. Caused interrupt
if INTR ENB = 1. Read only.

Enables READY to cause interrupt. Cleared by INIT.

Not used.

Maintenance function. Disables serial line input fron·
teletype unit and enables serial output of punch to feed
into reader buffer. Cleared by l~IT.

Not used.

Teletypewriter Printer{Punch Buffer Register (TPB):

15-8

7-ú

Data---- t

N ame

Data

Description

Not used.

Holds character to be punched. Cleared by INIT. Load
only.

Any inst~1c'.:io:1 that could modify TPB as a byte or word clears READY and
inwa~c' punching. Other references to either byte or word have no effect on
the pur:ch

The four actdressable regi~ters associa~ed with the teletype may be read
or loaded using any PDP-11 instruction that refers to their address. The ad-
dre~s asstgnments for these re;'i:>ters :>~.~ r ,p-,'-·:s·

Reghter Address

160 l/0 PROGRAMMING CHAP. 6

Wben using PAL-11, a direct assignment is made (e.g., TKB
that the device regísters m ay be referenced sym bolically.

177562) so

6.2.3. Simple Programmmg Example

Since the teletype keyboard is treated as a separate unit from the printer,
it is necessary to write a simple program to "echo" back to the printer a
character typed on the keyboard. This program looks as follows:

TK5=17756Ei , DEF l NE
TK8=TK'::+:: , STATUS
TPS=H'5+4 , AND E:UFFEP
TPB=TI~S+t. , REG 1 STER::.

·• =10tHJ
ECHC INC. T!~S , SET f''EADE¡;· ENF1E'L EC•
LOOP~ TSTB TKS • TEST FOI'" DONE

8F'L LOOP1 , GOES NEtjAT I 1/E WHEN 5ET
LOOF'2 TSTB TF'S , TEST PRINTER f'.E"!D~'

8FL LOOF'2 , GOES NEGATI'/E WHEN SET
M OVE: Tt: 8, TPS , MOVE CHAI''At TER
81' ECHO , LOOP Af''OUND fltjF. IN

END STP~T

The value of making the DONE bit line up with the byte boundary is
clearly demonstrated in this example. Had it not been set up as the sign bit
uf the byte, it would have been necessary to copy the status register to a
temporary location so that a bit test (BIT) could have been performed, fol­
lowed by a branch on zero. Since this altemative, although possible, is not
as "neat" as the TSTB, it illustrates once again the value of properly design­
ing a computer at both the hardware and software levels.

The setting of the reader enable bit in this program is superfluous. How­
ever, by including the instruction todo so the program is generalized in that
mput is allowed to come from either the keyboard or the reader. Likewise,
output can go to e1ther the printer or the punch. All that is necessary is for
the us¿r to place a paper tape in the reader and set it to "start," orto turn
on the pun~h, and these paper tape devices become operative (in parallel)
with therr counterparts (e.g., the keyboard or the printer). Consequently,
this ene program allows for any leg1timate combination of teletype devices
to be connected together

6.2.4. More Complex Octal Dump Program

TKS

o TKB
TPS
TPB

177560
177562
177 564
177 566

A programming tool frequently used by assembly lan.;u~ge programmers
Qs the memory dump program. This program aids the user wOs developing

or debugging programs by providing hun with an octal copy m: a program 01
- ~-- J..L_ ~~--··'- -',...,..,YV'\,..._~,

t;;:; 6 2 e (\
BASlC DEVIC<: FUNDA~!E)ITALS 161 _/'

'I'he progra.rn sho;vn is a mernor;-to-teletypewriter octal dump routme
!..'10 illustratBs basic I/C programm1:-1g utihzmg ~ne teleprir.ter. It also il!us­
tta•es :.~a use of pasi~io:!·i::depe:".-:::e~.: cc-:.::::g. Tr!e !;eed ~o: PIC ~s dic:ated,
of course, by the nece~sity of betng ab!e ~o io'ld the d:.ar.p routi!1e <my·.vhere
~ memory.

The pr:ogram bcgi:1s by typing an ".-\" character and waiting for the user
to type in an octal sta.rting location (up to five digits). The return key causes
t.."le program to respond with a lL'1e feed and a.'1 "N" character, signifying a
program request for number of words to be dumped. The second retum
~egins the dump:

0e~eea 010706 005745 t1270B 0e~~15 0~4767 000142 1127~~ e~e01~
68L820 004767 0001~2

A flowchart of this program is shown in Fig. 6-1, an:i the actual program
~ooirs as shown in Fig. 6-2.

$.2.S. High-Speed Reader/Punch

:'he high-speed readerjpunch consists of two units for reading and :punch­
il'g eig.."lt-hole perforated p<>.per tape at, respective1y, 300 characters per
:~;~ond and 60 characters per second. Each unit has its own status and buffer
regist<·rs rapable of controUing the transfer of one byte to or from the unit.

Data are recorded (punched) on paper tape by groups of hales arranged
Til a definite format along the length of the tape. The tape is divided into
channels, which rJ.n the length of the tape, and into columns, which extend
across the width of the tape as shown in Fig. 6-3.

The status register for the paper tape reader is almost identical in format
to the status regu;ter for the te\e~ype·.vritcr keyboard/reader. The difference
i.s found in the error bit. which is set by an "out of tape" or "off-lme"
:ondition.

Paper Tape Reader Status Register (PRS):

15 14

Error
Busy-----­

DP.ne

?.eader mterrupt enable ---- ------------'

1
i

F~ader enJb e------------------------------- 1

e Stop

162

Set up word 1
coun t and last
address to be 1
dump~:::i __j

No

t ______ ~,

3!g. 6-1

CH

,---~~ - ~-~-- \

t PC:!4 '< '
\ '
--~.,...----·

SEC 6 2

CORE

ADDR

LOOP1

ARND

OCTAL

BASIC DEVICE FUNDAMENTALS

EDUMP - AN OCTAL DUMP PROGRAM
WRITTEN BY ELLIOT SOLOWAY 6/1/72

INPUTS A~E N THE NUM6ER OF WORDS
AND A -- THE STARTING ADD~ESi

OUTPUT 15 THE STARTING MEMORY ADDRESS
ANO THE CONTENTS OF UP TO 8 WORDS
OF MEMOR'T'

R0=%0
R1=%1
~2=%2

R:S=%:S
R4=%4
RS=%5
SP=:, • .;
PC=%7

TKS=17756.1
TKB=TI~5+2

TPS=TI:.5+4
TPB=TKS+.;

CR=15
LF=12

MOV
TST
MOVB
JSR
MOVB
JSR
MOVB
._.-. ..

PC.SP
-<SP)
ltCR.Re
PC,PCHAR
ltLF.Re
PC PC HAI''
t'

1
A. Rú

.SET UF' STACK POINTER

.PRINT INITIAL CARRIAGE
, RETURN AND
, LI NE FEED LIS I NG
,PUT CHARACTER SUBROUTINE
.PRINT AN "A"

163

JSR
MOV
MOVB
JSR
JSR
MOV
ADD
ADD
TST ,
110V
AúC•
MOV
JSR
MOV_
JSI<'
MOV
JSR·-­
MOV
MOV

-:-C. ~¡_ hHf<
Pe,ACHAR
RS,Ri
#'N,R\3
Pe, PCHAR
PC. AC HFf¡;·
RS,R::::

,ACCEPT UP TO 5 OCTAL DIGITS AS A~D~ES~
.Ri CONTAINS STA~T ADD~ESS

ADO
JSR

RS,R.;:
Rl. ¡;·¿
-<R21
F'C. p.¡

.PRINT AN N FOR NUM6EP OF WORDS

.ACeEPT <= 5 OCTAL DIGITS

.FORM WO~D eOUNT NUMEEF
, TO E.E C•UMPEO
.FORM ENDING AODRESS
, LESS TWO
.SET UP RELATIVE ADúRES~

ij~UF-LOOP1-2+€,R4 .QUTPUT 8UFFE~ STAPT ADDFESS
ltCR.R8 .RE~ET PRINTER
PC.PCHAR ,(ARRIAGE
#LF,J-0 , F(l¡;· DUt1P
PC, PCHR¡;· , l NFOI''MAT ION

'R1,R0 ,CONVERT THE DUMP ADDRE~S
PC, CNVRT 2 , TO ASC 1 I CHAl'' AL TERS
#8 ,I<'J ,NUM~ER OF WORDS DUMFED PER LINE
PC,R4 .SET UP RELATIVE ADD~E~S OF
#8UF-OCTAL-2+(,R4 .BUFFER
PC,(NVI<'T1 .PRINT ONE WORD

o

164

COI·lP

FUDG

FIVE
BUF

CNT

TST
CMP
BLT
t·1C,t..'8
MOl/
ROD
CI1F'
BGE
RTS
110Y 8
JSR
1101/8
JSR
ER
JI1P

l/0 PROGRAMMING CHl

<R1J+ ;NEXT ADORESS TO BE DUMPED
R2.~1 ,ARE WE DONE?
FUDG ,YES, PRINT A CR.LF
<~~·· ~.;TPS ,MOVE IT TO TELEP~INTEP

FC. ~l' ~CALCULATE L"t::T E:~'TE A(•C·~ESS

ll8liF-CCir1F'+2+7, ~·ü, OF 8UFFES'
R0.~4 ,ARE WE DONE?
DUMF' ,NO. PRINT ANOTHEP CHARAeTER
PC .~ES. RETURN
.;e~·. ;;:e , PUT OUT THE CR
PC.PCHHR
.LF.R~ ,AND LF COMBINATION
PC,f'CHAR
Pe. PCHAI''

, RETURN

CONSTANTS AND DATA 8UFF~RS

WORD o
WORD e
=. +4
ASC 11 1
WOI'[) e
ENC•

Fig 6·2 (cont)

Chann~ls

87654 321

o
o
o

o o o o o • o e o -Column
o

•

C_ Sprocket
hole

Fig. 6·3 Punched paper tape. o

.SEC 6 Z o
Bit N ame

15

H-12

BASIC DEVICE FT:-;DA:\lE:\"TALS

Descript:on

_ •• Indicates one of--three possible.er:ot conditions: ~no tape
Íll the reader, reader !S oif ·line, OC -reader· has nO power,
Disables RDR ENB;·causes interrupt 1f RDR lNT ENB
::; l.

Not·used.

· 11 BuEy Indicates that a charact~r is in-the process of being read.
Cleared by INIT, set by RDR ENB, cleared-when charác­
ter is available in buffer.· Reaq ohly.

'!0-8

"13

\'i-1

Done

Reader Interrupt
· Enable
(RDR INT ENP \

a

Reader Enable
(RDR ENB)

Not used.

Character available in buffer. Clea.ted by INIT, set when
character available, cleared by referéncing reader .buffer
(PRB), cleare(f by setting RDR,' EÑG; causes -interrupt
when_RDR INT ENB = 1'. Read only.

Ipterrupts enable. Enables the error or done bits to
ca~se an inte0"upt. Cleared by INIT.

Not used.

Enables reader to fetc'h one charaC'ter. Clears done, setE
busy, and clears reader bufier (PRB). Operation of thi
bit is disabled if ERROR'=· Í; att~rnpting to set it whe
ERROR== 1 will caus.:i'an immediate.interrupt if RDl.

. INT ENB = l. Load only.

... -The paper tape punch unit behaves mu'ch like the teletypewriter key­
board/punch, only at a-h1gher speed. It, tóo, like the paper tape re:ider, has

' an error bit wh.ich is set when the punch is "out of tape" or is "off-line."

Paper Tape Reáder Buffer (PRB):

15 14 13 12 11 JO 9 8 7 6 5 4 3 2 o

Data----------------------------~t

166 o
Bit Náme Desc:iption

--------------- --------------·-
15-8

7-0 Data . Holds· character to be read. Cleared by RDR E~E.
Rea·d only. ·

-------------------------'---
Note: Referencing either ~igh byte or low .byte' or both bytes clea~ DONE. Ref·

erencing is any.operatlon.(~ead, load, tést,-compare).

Bit

15

'
Paper Tape Punch Status.(PPS):

N ame

Error

1 S 1 4 13 \ 2 '1 1 1 O 9 8 7 6 5 4 3 2 O

Error
Rea'!Y -----------..,..---'
Punch mterrupt cnable ----'~---...

Description

lndicates one of two error condition& In punch: no tape
in punch, or punch unit out of power. Causes interrupt
if PUN INT ENB (or PPS) = l.

14-8 Not used ..

7

6

Ready

Punch Interrupt
Enable
(PUN INT ENB)

Ready to punch character. Set by INIT, cleared by load·
ing data buffer (see note under PPB), set when punching
complete. Cause!> interrupt whe~ PUN INT ENB = l.
Read only.

Interrupts e~able. Enable, error or ready to cause
interrupt. Cleared by INIT.

Not used.

·------- -------- -------

Paper f'á.pe Punch Buffer Register (PPB):

15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 o

--1.!1 1
~~--------~r-----~1

t
Dar a

~ ~
u•-'

N ame

Data

INITIAL LOAD PROBLEM 167

DescriptlOn

Wnte onl:y. Any inst!"llct!On that could modify bn;; 7-0
oC PPB clears Ready and inniates punchtng. An lm­
mediate mterrupt will occll'r when punchmg is imt1ated
if error = 1 and PUN INT ENB = l.

iNITIAL LOAD PROBLEM

Wlien a computer is first received by the customer, its memory is usually
n unloaded state. With the exception of the hardware bootstrap option
cussed later), which may have been purchased with the system, the com­
~r "knows" nothing, not even hcw to acce;Jt input. The proble:n is that
1rder to load memory wlth a user program, there must already be instruc­
IS in memory for loading the user program. This seeming contradiction is
•n compared to lifting oneself up by one 's own bootstraps, and therefore
:s the name of the bootstrap or zmtialload problem.
One possible solution to th1s apparent dilemma is to require the CPU to
~ sorne forrn of deposit mechamsm which allows the user to deposit
hine language irg;tructions in specified memory locat10ns. This mechan-
includes a way of spec¡fying both the data to be deposited and the

ress in memory of where 1t 1s to go.
The software bootstrap for the PDP-11 is a sequence of instructions for
iing user programs. The bootstrap utilizes a special paper tape format
self-modification in order to work. The bootstrap loader source program

'lOwn in Fig. 6-4. Th<> sb,:_:!:¡; addr~:o:os in the example denotes that the

138~1€1131 Ri=:-;1 . USEC• Füf;· THE DEVI(E FWC•RE::'S
00800.2 R2='-:2 USEC'• F(l¡;· THE LOAD ACoN'E::'.S C'•l::'F'LACE . '
01(4(1(1 LOAC•=17400 , DATA MA~' BE L OH C· E [l NO LO~JE

. THAN THIS
017744 =17744 , S TART AC•NE::'-::' OF THE E:OOTSH ."-iF LOA[" 744 01t;-'131 s rA¡;·T t1(11/ C•Eii!CE. R1 , F' 1 e r<. UF.· C•EVICE AC•C·' E::'::.
0000-=:t.

?50 0127€12 LOOF' MOV ~ -LOAD+2, f;'2 . F'IO UF' AC·C·~·E-: S C• l -:F'LAC E1·1nn
000352

?'54 005~11 ENRE:LE INC ¡_¡,¡;·~ , ENAE-LE THE F'HF E;; TRF'E REH[•O
::' (5t~ Ht5711 WA!T T::'TE: t.!lf;'1 . WH l T UNT!L F~·li~lE
"6(1 1l1':.1i-7t. E'F'L WA!T ' IS H'v'H l Lt'-E'L E
7€.2 j16162 110\/E: 2<1;1), L0HCo(R.2> , STü~·E F"-r1:1E ¡; EA[• FRüM TAF E

000002
€117400

:l'('tt 005267 INC LOOF'+2 ' I NC f;'EMENT LOAD R[lC'·~·ESS

. C•ISFLACEMENT'
1777'56

'74 000765 BRNCH 8R LOOF' , GO E:AC t< AN[l RERC• 1'10RE DATA
'?6 000~)(10 DEOE 0 , 1'-!C'•C•f;· OF INPUT C•EVICE o 800001 END

F111. f\-4

168 l!O PROGRA~.!~!I¡-.,G CHA

Ioader is to be loaded into memory bank zero (a 4K system). It is loac
by hand, usmg the depos1t sWJtch (see Appendix E), into the last 14 10 mE
ory words of the computer.

In operation, the bootstrap actually loads the data read i.11to success
, bytes Iocated above the LOAD address. A sample tape inpt..:t to load d

starting at location 17600 and ending at 177 42 would be

351 l 351

'

351 f
177 }

)
301 } 035
026
000

302
025
373

}
xxx}

lower byte of starting displacement - 1

date to be loaded

byte equivalent to MOV DEVICE,R1

byte equivalent to MOV #.LOAD+ 2,R2

address between 17600 and 17742 where loaded program begin

The necessity for the special Ieader is dictated by the need to be able ~
load an all-zero byte or blank tape. The bootstrap loader starts by loadin¡
the dev1ce st:ltus reg¡:;ter addres:; mto R1 and 3528 mto R2. The next in
struction indicates a read operation in the device and the next two instruc
t10ns form a loop to wa1t for the read operation to be completed. When dat<
are encountered, they Clfe transferred toa location determmed by the sumo
the mdex word (177 400) and the contents of R2.

Because R2 1s lnJtJally 3528 , the fmt word is moved to location 177752
and it becomes the rmmediate data to set R2 in the next executwn of th~
loop. These immediate data are then incremented by 1 and the progran
branches to the beginmng of the loop.

The leader code, plus the mcrement, is equal in value to the data placee
in R2 during the in1tJalization, therefore, leader code hf\:,no effect on thE
loader program. Each time leader code 1s read, the pr{_por executes. thE
same loop and the program remains unmodified. The first code other thar

St:C G 3

'lnlue wh1ch acts as a pu1nter to the pr0g'iTu'11 startL1g locat10n {loading ad­
l.'l.ress). Subsequent bytes are read not ir:.to the locacion of t.'le immed1ate
data b;..¡t into consecut1ve cor2 !ocac1or~. The progra:-:1 ·""ill ü1:.;..:: ::¿ r;:::::.c L'"":
~yte by byte. The INC instruct10n \~btch operates on the dD.t.a for R2 put<>
::lata bytes in sequential locat10ns anr! reqUlres that the value of the leader
~od·e and the offset be 1 le::.s than the demed value m R2.

'fue boot overlay code will overlay the iirst two instructions of the
loader, because the last data byte is placed in the core location immediat.:l;,
¡:;rec.eding the loader. The first instruction is unchanged by the overlay, bu 1

:1?.-J: "~n.d í.n.drur_-tfr~r~ ü r:hf.::.;:;o/1 v., plv.:l~ th~: r.e.it lqk: rt::21"1, ¡ ::.;.. c.f&-:_
mto the Jower byU: úf che i:Jit:11¡Ch ~ •. ,~~c:~:Dn. By ~h<lflf;lY"1;5' the otfY:t tr. tl" • .s
Oianch ínstructíon, the loader can branch to the start of the loaded program
cr to any poi.r'lt •vit!1:n the progYa...r:l. The self-modification scheme used not
or•.;y loads the data but also initl3.lizes the hootstrap code and forces a jump
í:v an aridress 17XXX w1thin the pro 6; -<.11 just ;oaded.

The key requirement for a depos1ted bootstnp loader 1& that it be short
in !ength. Clearly, as the bootstrap program be comes longer, its uscfu!r.e"is
fi¡;·creas.es as the fmstration to depos1c it m memory increases. Therefore,
:a:.not;1er technique is used to bootstrap in user progr<.Uns.

The alternative techmque is to add a hardware bootstrap loader to th•'
C:rU :.o that the hardware can perform the initi<··J program load (IPL). Th.~

';PX .. is activated by pushing a "load" button on the CPU, callsing a predefineJ
m.stmction sequence to be executed. This i..nstruction sequence inciude;
0oth the command sequence for the input dev1ce and the spectfic memory
:ocatío11s into which information is to be placed.

"fhe furm that the hardware bootstrap mech311ism takes varíe~ from
rn.zchine to machine. Examples inciude either reading a data record into
rnemory and executíng the f¡rst (or Jast) imtruction word re:Jd m, or exe­
C'-lting an instructio'1 sequen ce held in re:1J-onl y-memoc:,.; {the PDP-11 uses
;;;¡ ROM) or on an alterable "dead-sc:::rt'' panel. Regardle:;s of the method,
t.he result is usually the same, the loading mto men:ory of a short program
srquence called the absohlte loader.

In operation, the absolute Joader is a systems program fo1 ¡ec,Jing input
records that contain machine language ínstructions bound to absolute mem­
ory locations. Unlike the bootstrap loader, the absolute load~r is capable of
readino laroe amounts of information into various sef!Tllents of memory. The o o ' ...,

format of the information Ü; such that each record contams

l. A word count of the number of word~ in the record.

2. A load address where the first and subsequent words in the record
are to be loaded.

3. The words to be loadcd.

4. A transfer ac!Jre::.s for the abs,:J\u'.2 ¡n~,.íer.

tíO PROG~l).:\1\1i:'{G

o Both the absolute and bootsnap loaders J.Ie systcms pn· :. ,. -r.;;. Sysler:1:;
pr<.1gra.ms are those progr2m.s which of lhemse!v~s de not pro¿uce useful
res1.Jl':s but rat~er a:d t::e prO§,'Tarnr:oer:.;; acccrnplishmg h!s de~ired ohje,~tiv¿_­
Syst<:>ms progra...~1s are wntten by syst.:ms progta....'nme:rs ·.vhose job l'> t'1e
support of the users oí the system. Systems programs include such thmgs as
PAL-11 and EDU~IP. Chapter 7 is devoted entirely to dtscussíng t!"le multi­
tude oi systems programs avrulable to PDP-11 users

6.4. TAPE AND DISK STORAGE UN!l S

Many large-capacity storage devices may be conr.ected to a r;mall ~mn­
puter such as the PDP-11. Two such devices commonly found on this com­
puter are the DECtape (capacity 1.;7,968 ·.vords) artd th2 DECd1sk (capacit".i
65,536 words). Since these bulk storage devices require more elabonte
programming and nntrol, it is instrc~ct1Ve to examine thei:r charact"Prist1cs
and operat10~.

6.4. 1. DECtape Operatlon

DECtapes constst of 10 tracks arranged L• the for:nat shown in F1g. 6-5.
On a tape the first five tracks include the timins and m:uk tracks, plus three
jata t:racks. The ot!1er five tracks are identical c0unterp.uts and serve to
increase system reliability through redunda..rü recording.

DECtape

Ttmmg __ ___i)
Mark 1

Data lA \
Data 2A -----¡

10
--{

DatJ 3A \

------_i
-----! 1

1 \br>. clunr,d
t Ttmmg .:hannd

'------"------------------~

F1g. 6·5 DECtape format,

Redundant
trac\;s

The timmg and mark channels are recorded prior to a1l nom1ai data
readmg and writing on the information channels. Information read from the
mark channel is used during the reading aud writing of data to indicate the
beginning and e.ndmg of data blocks and to de ter mine the funct\ons to be per·
formed by the system i11 each •;ontrol mode. The data in one bit position of

·;EC 6 4 TAPE A!'< O D!SK STORAGE UNITS 171

each track are referred to as a line or a character. Since si..x lines or characters
make up a word, the tape can record 18-blt data words. Normally, the 2
extra bits ~e ignored. _

A reel óf DECtape is div1ded into three majar areas: end zones, extens;on
"Lones, and the information zones. The mformanon area consists of bloc';-:;

of data, contaming 256 data words per block. Altogether there are 578
blocks of informatwn (see Fig. 6-6).

Fig. 6-6 DECtape block arran5eme:ot

The blocks pem1it digital data to be partitioned into groups of words
that are interrelated, at the same time reducmg the amount of storage area
that would be needed for addressing mdividual ""ords. A simple example of
such a group of words 1s a program. A program C3.!1 be stored and retrieved
from magr¡etic tape m a smgle block format because it !S not necessa..ry to be
able to retneve only a smgle word from the program. It is necessary, how­
ever, to be able to retrieve different programs that may not be related in any
way. Thus each program can be stored m a dtfferent block on the tape.

Since DECtape is a fi.xed address system, the prograrnmer need not know
accur::~.tP1y _ whP>:::o t~<? t:::.p<> has stopped To locate a specific point on the
HI!Je he must only start the tape motwn in the search mode. The address of
the block currently passing over the head 1s read into the DECtape control
and loaded into an mterface register. Simultaneously, a flag 1s set and a
program interr~tpt can occur. The program can then compare the block
number found with the df -. rPrl block addrcsÓ> :.md t;:¡pe motion continued or
reversed accordmgly.

Al! DECtape operations are handled by the controller through program
instructions. The controller selects the transport, controls tape motwn and
dJiection, selects a read or wnte operat10n, and buffers data transferred

The controller can seleLt any one of e¡ght comrnands th:lt control opera­
twn of the DECtape system When the system 1s operated on-hne, these
commands are used for readmg or wntm~ data on the tape and for control
lmg tape motion. The desued com·mand is selected by the program, wh1cL
set~ or clears bits 03, 02, and 01 m the command register (TCC:\1) to spec1fy
an octalXde representmg the des1red command.

Tház_)nmands are as follows. Q

172

Jctal
Code

o

l

2

3

4

5

6

7

Mnemonic

SAT

RNUM

RDATA

RALL

SST

WRT:\lt

WDATAt

110 PROGRA::.l:\tl="G CHAP

Function

Stops all tape mot10n.

Fmds the mark track code that lC-·.::.:,. __ ¡ the block number o
the tape m the selected tape unit. Block number found is avai
able m the data repster (TCDT).

Assembles one word of data at a time and tran~fers it directly :
memory. Transfers' continue unt1l word count overflow, at wh1c
time data is read to the end of the current block and panty
checked.

Reads information on the tape that is not read by the RDAT.
funct10n.

Stops all tape motion in selected transport only.

Wntes tim:ng and mark track informal!on on blank DECtap~
Used for formattmg new tape.

Wnte, data mto the three data tracks. 16 bits of data are tran
fernd directly from memory.

Wntes mformation on areas of tape not accessible to WDA'J'
funct10n.

tswitches on the DECtape unit 1tself must be set in arder to prevent accident:
.werwriting on mformation already on the DECtape.

All software control of the DECtape system is performed by means e
ftve device registers. They car.. be read or loaded using any PDP-11 instruc
tw·· th~tt ref- r tn their addre.;s,

Reg1ster

Control and Statu, Reg1ster (TCST)
Command Re¿¡,ter (TCC:-1)
Word Count Reg¡ster (TCWC)
Bus Addres~ Reg,ster (TCBA)
Data Reg¡,ter (TCDT)

Address

777340
777342
777344
777346
777350

The bit utilization for each of these registers is shoWO Fig. 6-7.

s ~e 6. ~ o TAPE AND DISK STO~AG;;: UN!TS

Command regJ>ter (TCC\1)

1o·-9- a T -6 s 4 3- 2 o· ----.

lnterrupt ~nable -------.... ------'
Extended bus address _________ _J

Funcuon -------------------...J
Do---------------------------~

Control and stJtus reg¡ster (TCST)

Mark track error
'lllegal operat10n
Selecuon ~rror _____ ...J
Block mtssed --------'
Data mtsscd ----------'
Non-ex1st memory ------­
Tape 1s up to speed
Clock SlmUIJtt:s !lmmg _________ __.J

Mamt~nan.:e nurk trae k--------------

Data !rack~ -----------------_¡
'Extended daLa --- --

Word count regí, ter (TCWC)·

3 2 o r-----------r--LUJ-Word count

1 1 1 1 1 1

1 5 14 13 ' 1 2 1· ¡ 1 o ' 9 8 7 6 S 4

Fig. 6-7

1¡0 PROGRAM~II!'IG o
' -

Bus address reg¡ster (TCBA)

15 14 13 12 11 10 9 8 7 6 5 4 J 2 o
Bus or mei:lO.r\o .1 jJress

1 1 1 1 1 1 - ¡' .. , --~' ..I,...____L_,j__U=

Data registers (TCDTl.

15

Fig. 6-7 (cont)

No, keep gomg

Sca~ch m for;vJ;d
r-------------------1 dtrcCÍIOn for dt:>~rt:d ._ __,

block

B
Y e~

Not found,
go bJckwJrd

CHAP. 6 -··

Not
found,

go
forwJrd

SEC 6.4 TAPE _'\>iD DrSK STO!=t.>,.GE l''-.!TS 175

6.4.2. Prosramm1ng Examples

Because DECtapes are organized like disks, they are programmed in
much the sac.-ne fast-.:::n. Thus, before one can ·.Hite in a specified block, the
block must be located. A typ1cal method to locate a block is to initiate tape
motion and then search for the desired block m either the forward or reverst
direction. The search consists of examming each block number as it is read
and comparing it to the block number bei.11g sought. As soon as a match
occurs, reading or ..,.,y,tmg to the located block may begi.11.

Although this procedure is relatlvely simple, several DECtape character­
i.stics must be taken into consideration. First, befare DECtapes can be read
or written, they must be "up to speed." Thus ít takes sorne time and hence
sorne tape passed over the tape heads befare the first block number will
actually be read. Second, while waiting for a block number to read after
start-up, the tape may be reposition.::d m th2 end zone. This error condition
requires the tape monon to be rever~ed so that the t3.pe may be searched in
the oppos1te direcnon. Third, and finally, havmg found the demed bloá,
reading or writi.ng must be initiated shortly thereafter, or else the transfn
will be unsuccessful and a tape error conditlon ra1sed.

With these pomls m mi.nd, it 1s poss1ble to flowchart and code the sear;l·
procedure as shown m F1g. 6-8. The routme to fmd a specified block (1) ex­
pects the block number wanted to be legitimate and m RO, a:.:! (2) finds the
block while searching m the forward direction, see F1g. 6-9.

.DECTAPE SEARCH ROUTINE

.Ra CONTAINS OE~IRED ~LOCK NUMBER
,BLOCk FOUND IN FORWA~D DIRECTION

HS r=l77J..¡L3
TCLr-l=H·:.T+.:::
TCDT=Tr_-=:T _ ·-·

SEAF.CH 110'/
:.u E:
11011

LOOP1 BIT
8E1j
E:~ll

Sl!E'
E'LT

F OI<'•Jf. e• 11ll\i
110V

LCIOF'2' BIT
BEO
E:l·li
SUB
BGl
BLT
IHS

El'.¡; o~· TST

O~r

R0, E:WA•H
#]. E'WF'IlT
#4ü0~. HCr1
1 Cn) ,;_ ,-, ·~ re e 11
L CtOF' l
E~ ~·uf<.

T(C>T. E:Wii~J r

SEAFCri
R(•. E-WAN T
#: .. rc,:r~
ff l[n) .:_ •:n:t . r e e 1'1

LOOF·.:::
Ef'·~-o~

TCC•l, E:WAN 1
F ORWf<.'D
SEAf;·C H
F'C
re ::r
LOOF' 2

,(I)NTROL/STATU~ REGI~TE¡;

-COMMANC> REGI:OTER
, C•ATI'i I''EGI::TE~·

.SAVE BLOCK NUM&ER

.OFFSET TO C>ESI~ED 8LOCk
-REI'iD BLOC~ NUM8ERS IN ~EVERSE DI~

-CHECk ~EADY ANO E~ROR 8IT5
.wAIT FOf.<· 'EI'1C•Y
. FOUND AN ERROR,
.CHEC~ BLOCK FOUND
. kEEP SEARCH!NG ~ACkWAPDS
. SAVE BLOCk NUM8E~

, ¡;:•EAD E:LOC f: NUflE:E,.·:.:. IN F•)~'olf'l¡;·[> [•! ¡;_

• C HE C 1(RE A [• ~· A N O E¡;·~- C1 ¡;_ E: I T S
. lJA 1 T FOR ¡;·E8C·~·

. HAVE AN E;;·Ro;;· ''
-CHECK BLOCk FOUNG
.BLOCN NUMBER TOO SMALL
.BLOCK NUMBER TOO BIG
,RETURN WHEN 8LOCK FOUND
, ENC• ZONE ERI''OR~·

, l F SO E:f'·ANCH o
,QTHE¡;wi:.:E HALT ON E~~OR

"n - ro n

176

LOOF'l

E'liA~IT

BIT
BNE
e¡;·
o

U4(1(n~, TCCI1
FORw;;o
SEAf;'(H

, TEST DIRECT!ON
'IF I''EVERSE. SEAPCH FOI''WA~'C•
• IF FORWAI''D, SEA¡;·(H PE'v'EI''SE
, BLi"''CK NUME:ER

Fig. 6-9 (cont)

CH.>,.P ~

Wh_en a specüied block has been searched for and found, the next thing
~o do ls to transfer information from or to it. The routine shown in Fi
o-10 uses t~e SEARCH subroutine to read 100 words from block 50 0~
DECtape umt O. The program calls SE...-\RCH, sets up the word count and
buffer address, and then waits for the read to be completed The reader
should note that although blo_cks conta.in 256 data words, ~Y number of
words (up to 256) may be spec1fied in the transfer operation.

LOOP

oROUTINE TO RE~D 10J WGf;.DS FROM
; BLOCK 5•3. DEC TAF'E UN I T 1Zt

Ra=;-.o
SP=·~;¿;

PC=:-:?
TCCI1=17?34~
TC WC-= TCC r·1 +¿

TCBA= TCC r·J+ 4

r1ov
TS T
1101/
JSR
1101/
MOV
MOV
I::IT
8EQ
8t1I

HPiL T

.. +20~·

F·c, SF'
-<SP)
li511t.R0
F'C.SEARCH
lt-10(1, TCWC
¡;E:UFFER. TCBA
#15, TCCM
#10020(1, TCCI1
LOOP
Ef<·J;·

f::ND STAI''T

• REG!STEI'' ZE~·o
• STA(K I''EGI~TE;;·
· Pj;:OGI''AM CCIUNTER
.COMMANC> REGJSTER
.WORD COUNT ~EGISTER
-BU:; ADORESS PEGISTER

• INITIALIZE STACK
POINTE¡;

• BLOCK 50 TO E:E
SEARCHED FOR

.COMF'LEMENT OF WORD COUNT
• BUFFER AC•C•RESS
.REAO DATA FORWARD D!RECTION
.CHECK EJ;f;(IR ANC> READY
• I~A I T FOR ~·EAC·~· ANO NO ERI''Of'·
• E:I''ANCH ON E¡;·¡; cr·

. HHL 1 (!~~ E¡;_¡;(!¡;·

.~AYE ~LiOM FOR BUFFER
• ENC• OF AS::Er1E'L~'

Fig. 6·1 O

6 4.3. Disk Operat1on

. Because of_the diffe--,n6 requlrements for d!sk storage, many storage alter­
natlves are ava!lable to the sn1d!l computer user. The choice of dlsk systems
spans the ~ange from fast access and fast storage to large storage and medlUm·
access dev¡ces. For example, {z:r:ed-head disk systems are suited for swapping­
typ:. dev¡ces (e.g., those w~er~ ~he contents of memory and disk must be
rap¡dly exchanged) and sc1entif!c applicatwns where fa.Occess and fast

~EC 6 -it o
transfer are important. The mov•n.,:-head systems are ideal for larg..: storage
;equirements where fast access tim!:s are less vital._

Befare discu5sing the prograr1ming of the dtsk dev1ces, 1t 1s lffipor~an~
to understand thetr basic oper4!tion. Generally, all disk dev1ces are orgar iZo:-·-"

around flat magnetlc surfaces, called piatters, whi<;h look like pa:--.~a;:;;s. T~e
surface is divided mto conl:entri.c nngs called tracks with each track suo­
divi.ded into sectors. The sector is the smallest addressable unit and gener:J.lly
is capable of stonr.~ many comput.N v<.ords (e.g., 32 words per sector).
Figure 6-11 shows such a disk organization.

Fig. 6-:1 D1ek organizat!Cn.

lf the disk platter ca'1 oe removed from the disk cnve mech'!nis;n. a1~d
another platter used in ítr rlaL'~. the removable su~face b~~omes a~d!s~<. pa~'R. :
D:sk packs may consist of or:~ or more pbttus, wüh multlple sur1aces ?e,n;; ,
:-.m.cked vertically on the same shaft. as shown in Fig. 6-1 '2.. By log1caJ1.:r ,
grouping all the tracks at thc same radius on each surfact: into a cy_/¡nder, •
more infonnation is accessíble as a un~t, thereby e_ff~ctiveJy in_cr_eas~t:'~ _t~H'
ciensit·• of the system. Ho,vevcr, since d1sk pack dev1ces are mar.!pul_a ~.:u m a
siinil~ fashion to simpler one-surface devices_ 1t is sufficient to cons1der only

the programming of devices typified by Fig. 6-11.

Read/wnte
he:~ds

o
I< eacimg or writin;:: d.lsk tracks and 3ectors can be accor..t:' i\s}-- cd m on•2 e:f

two ways. First, there can be oue readjw:;it¿ head, wlnch must be positwr..:u
over one track or another; this is the movmg-head syster.1, menboned ertrlie1
Secowl, th"'re can be 011~ read. -,Hice hcad per trae:.., ;,-:·¿r:-.::d :;:, e:·.!'L·.,_~ a3

fLx•:d-;;e::d dlsk sy .~e:n. The advantage of the fL'<ed-h2ad :>yott:~Jc1 1s ~hat there
is no mecha.ntc::>1 seek time associ::ted w1th the physical positwning of the
head over r;he appropriate track. Instead, there is a small electronu:- switching
tune requ~ed to select the appropriate head. T!1e fi'<cd-head systern thus
requires le.ss tüne be:o·~e the accessin~ of data, but there 1s a gre:1ter cost
a.ssoc1ated with 1t becaL,se more read/wnte heads are neer_~ed

Regard1ess of the type of system, fixed or r.1ovirig head, thP:·e is annther
delay associated with thc disk called latency. Thts 1s the tune it takes foca
sector to p:::;s under the read/write head aiter the appropriate he 1d has been
seiccted. .\~1o'.::--.9r n<' .. I'-~ for le~tency is rot:;~:·ar.c! de!ay. and in a sense it
correspo11ds to the iatency of a tape un1t wr.Ue \.vaiting for a panlcu!ét! t.<>.p-~
block to cc::.e unde:: the tape unit's read/·-Hite head:.

Latenc'-' time can be reduced by sneeci_;-¡z up the rotz.tion of thc: dLl~.
This also h~as tt1e effect of pa~ing mor~ i::~for;a.t:on by the rea.J, wr.te head
in a gwen an1ount of t1me, thereby mcre:::.strg the nun~ber of characte!s pe:.
second, or transfer ratr of the device it:oeif. Altema'::wely. the transfer rate
may be increased by just puttmg more infonnat10r 0::1 a ctJ.ct: (e g., mcreas­
u:g the dcnsity of mformatwn). All these factors. t!'>.~n, dem;r~·, ~ransfer ra~e,
latency, seek tü:-1e, fi.xe¿/r~1ovmg head, numbcr of dJsk su:-Lices, and so on.
must be considered when sel':'cLing the appropri:J.te ósk system for a pa""­
tlcular probiem.

6.4.4 Prograr.1r;1iPg a DECdrsk

For simplicit-¡ we shall consider a fixed-head DECá1s~ \Vhlch has 3~
words per sectm-, 64 sectors per trae'!<, and 32 tracks per surface, providmg a
total capac:ty of 65,536 words per disk unit. Software control of th1s
DECdisk system is performed by means of eight device reg1sters. Like ':L•!
regi:,ters of other I/0 devices, these registers can be read or loaded usiDg .i · ;­

PDP-11 instruction that refers to thei.r address:

Reg1ster

Look Ah~ad Rc¡;:ister (RCLA)
Disk Address Register (RCDA)
Disk Error Status RegL;ter (RCER)
Command and Status Register (RCCS)
Word Count Register (RCWC)
Current Address :R.egister (RCCA)
Ma1ntenance Regbter (RC;\IN)
Datr, Bu'fer R."l': --:: (RCDB)

Address

777440
777442
777444
777446
777450
777-~5';

777-154
777456

SEC 6 4 TAPE ANO DISK STORAGE UNITS

The bit utillzatwns for these reg1sters are shown m Ftg. 6-13.

Look ahead reg1~ter 1 RCLA)

IS 14 13 12 11 10 9 8 7 6 S 4 '3 2 o

lJ
sL J"'!'
addre's

Umt number
Trae k number ____ __J

Sector addre~s ___________ ___J

IS 98765432 o

-~-L~

~~::~:~~~~ 1
'\ector ac.!« ·o -----------

D1sk error status reg¡ster (RCfR)

D1sk overnow ----------

015sed tr.H\Siér- ---

1

1

---- ____ j

179 180

o

l/0 PROGRAMMING t ~" p

D1>k lOr\trol Jnd status reg1ster (RCCS)

!5 !4 !3 ~~ 11 10 9 8 7 6 S 4 3 2 o

~:::~:,, J 11 1
Data error ___J

Wnte check error LJ
lnhlblt CA_I_n,_·r_efT'_e_nr _______ · _ 1

Abort-

Ready -------------

lnterr .. pt e·J~~~ -----

Mode-----------------~

Func::on ----___________________ __)

Go--------

Word count reg¡ster (RCWC)

1 S 14 13 12 11 10 9 8 7 6 S 4 3 2 o

1 1 1
Compkmen!d "ord count-

Curren! address reg~>ter (RCCA)

1 S 14 13 12 11 10 9 8 7 6 ' 4 3 2 o

~I 1 1 1 1
\, J

T Curren! addre,s

Fig 6-13 (cont) o

SEC. 6 .;\
o

TAP:: ,\!'ID DlSK STORAGE U!'IITS

Maintenance reg~ster (RCMN)

l 1 1 1 1

1

1 1 1 l 1
1
1

t

nt overflow

est

ound 1
anty

ble

C) track ·------
el oc k --

ark ·------

Umt 3 sel
Umt 2 se!

Umt 1 sel
Umt selt:c

Wnte ena

Word cou

DMA requ

Address f

Clock poi

DMA ena

Data track
Addn:ss (

Phase lock

Address m
Data mark ------------------------

1 1 1 1

Clock (A) track --~-----··-------

Data buffer reg¡ster (RCD 8)

15 14 l3 12 11 10 9 8 7 6 S 4 3 2 l O

[ll_lj__,_¡ ~-'----'----'--'---'---'---'---'----'
Data _______ _j

Fig 6-13 (cont.)

Although there are mr.Jce registers associated with the disk than with the
tape unit, programming is easier because the search for a particular sector
does not require us to start, stop, or re verse the direction. of the -disk. iln­
stead, the disk rotates at a constant spetd, and all that is necessary is for us
to set up the sector address, word count, and buffer address and then wait
for the transfer to occur. · This sequencE' of operations can be programmed
as shown in Fig. 6-14.

START

Ej;ROR

BUFFR

110 PROGRA~I{1.'1NG o CHAP "

,p;QGRAM T~ READ 100 WORD5 FkOM
, D ¡sK UN I T (!, n;·¡;:,c ~~ 1, SECTOR 77

RCt·~=17744.2

RCER:i<:CDA+2
RCCS=RCDA+4
RCWC=RCDA+6
RCCA=RCDA+10

MOl,' #177, RCDA
MOY #-1(11), RCIJA
MOV ~BUFFR, ¡;:(.CA

f10V #S,RCCS
TST RCCS
8111 Ef;·ROR

TST RCEI''

= +2013
END STRRT

;DiSK ADDRE55 REGISTER
;DISK ERiO~ REGISTER
.DISK CSR REGISTER
.DICK WORD COUNT ~EGISTER
;DICK CURRENT ADD~ESS REGISTE~

.UNIT. TRACK. SECTOR ADDRE~S
, WORD COL•NT
, BUFFER AOORESS
, RERD DISK
, ANir' ERROR?
, IF NEG, YES

.CHECK TYPE OF ERROR

.TRKE APPROPRIATE ACTION

. BUFFER A~'EA
, E~jCo OF ASSEME:L 'r'

Fig. 6-14

As for the tape operation, any number of words (up to 65,536) may be
transferred, since the disk address register 1s incremented automatically after
each sector is transferred. This process contmues both across tncks and even
across disk units. Altematively, if only a portian of the sector (less than 32
words) is desired, the vwrd count reg1ster is set accordingly, and only that
nurnber of words is transferred to the buffer area.

6.5. PRIORITY INTERRUPT PROGRAMMING

The running time of programs using iríput and output routines is f>rl·
marily made up of the tin1e spent waiting for an I/0 device to accept or
transmit informatwn. Specifically, th1s time is spent in testing or "polling"
the status register of a device and waiting in a loop for a done conditi.on:

TEST TST8
BF'l

TI~ S
TEST

, TEST CSF<'
, WA I T FOR DONE

Such waiting loops waste a large amount of computer time. In those cases
where the computer can be doing something else while waiting, the loops
may be eliminated and useful routines included to take advantage of the
waiting time. This sharing of a computer 'between two routines or tasks is
accomplish ed through a progra'"'. m teiTl..J.¡:' t factlity, -,,, hich is stc.ndard on :lll
rDP-ll series cornputErs.

SEC 6 5 PRIORITY INTERR\.:PT PROGRA'V1~1l~G 183

The value of an interrupt facihty líes in the ability of the processor to
respond automatically to conditwns outside the system, or in the processor
itself. Un usual condltions occurring at unkno>\ n times (su eh as I/0 com­
pletion) can generate an interrupt and force the .computer to execute ar1
interrupt routine in response to the interrupting action. Thus the user need
not poll or test for the occurrence of a condition after the execution of each
i.nstruction, but he may write interrupt routines in case they occur.

Basically, an interrupt is a subroutine jump executed by the hardware, as
opposed to one written as an explicit software instruction. The interrupt
occurs after the execution of an instruction (and befare the I-fetch of the
next instruction) and must inform the system of the cause of the interrupt.
For example, when an interrupt occurs on sorne machines, an interrupt blt is
set in an interrupt status reg1ster, indicating what condition raised the inter­
rupt. At the same time, the CPU takes the address of the next instruction
from a fLxed interrupt location (poss1bly memory location zero) and begins
execution of the interrupt analysis routine at that location.

6.5.1. lnterrupt Linkages

Like subroutines, interrupts have linkage mformation so that a return to
che interrupted program can be made. More information is actually necesso.ry
for an interrupt transfer than a subroutme transfer because of the random
nature of interrupts. The complete machme state of the program immedlate­
ly prior to the occurrence of the interrupt must be preserved in arder to
retum to the program without any noticeable effects (i.e., was the prevwus
ooeration zero or negative?). In this way the interrupt will be "invisible" to
the interrupted program. sm;~P ~P.~ ~n ~'nrmatwn, only time, will be lost be­
tween the time th-:: ':..;;nH1g program is interrupted and the time its execution ·

5.5 2. Machine State During lnterrupt

The complete machme state of the program immed1:J.t~ly pnor to th.
occurrence of the interrupt is generally held in a processor status worc·
(PS W). On computers wlth sufftcJently long memory words, the PSW in­
eludes both the cond1tion codc>s and the program counter. On mmicom­
puter::. such as the PDP-11, it is necessary to subdivide the PSW into two or
more words in arder to maintain the processor status (PS) and the program
counter (PC).

Usmg one or several words, the technique for handling the intem1pt is to
replace the current PS\V with the mterntpt PSW, savmg the current PSW
somewhere in memory. D1agrammattcally th1s proce~s 1s deptcted m Ftg
6-15. Th~igure shows that b\ o mernory locatwns are required for !fu\
ntemtpt Üess, plus a regii.ter to hold the current PSW. U

184 l/0 PROGRAMMING CHAP. t

New O Id

lntcrrupt PSW [Saved curren! PSW 1

Fig. 6-15 Swapping processor status.

5.5.3. Stacking of lnterrupts

One problem with this scheme is that all interrupts use the same swa_¡::
pmg"technique. Thus, should a second interrupt occur during the executio1
of the routine to service the first i::1te!"YU.pt, the old PSW for the first interrup
will be overwritten and lost. To prevent this, it is nece-;sary to d:sable furthe
interrupts while the interrupt is being serviced. By allocatmg a bit in th
PSW for intem1pts enabled¡'disabled, it is a simple matter to have th1s bit 01
U1 the old PS'.\. ar.d cff in the new PSW. Thus when the current PSW be
comes the new PSW, interrupts are disabled. When a return from interrup
(RTI) occurs, the current PS\V becomes the old or saved PSW and interrupt
are once more e:-,abled.

During the time in which interrupts are disabled, it is concetvable thc
other I/0 conditions which would ordinarily cause an interrupt may occw
Instead of being allowed to cause an interrupt, these conditions are note
and held in the interrupt status regtster (ISR). Consequently, when interrupt
are enabled, they can cause an interrupt; thi:> guarantees their eventual servicE

The interrupt status register serves many purposes. First, it indicate
which device has raised an ínterrupt condition. Second, it saves interruptab1
conditions during the tune that interrupts are di.sabled. And third, 1t allo\\
the programmer flexibility in deciding what device to service nex t after a
mterrupt has been raised. In particular, this flexibility allows the progran
mer to decide on the relati.ve pnoriti.es of the varwus interrupts. In this wa~
under programmer control, when several interrupts occur simultaneousl~
the most cnttcal mterrupt may be serviced first

Allow1ng the programmer to assign the pnorities can lead to problem;
however. For example, 1f a high-priority interrupt is ratsed when interrupt
are disabled, there 1s no way the mterntpt can be serviced until the interru¡:
analysis program is once again executed. Thus it becomes necessary to r1
enable the interrupt mechanism during interrupt processing. To do so rE

quires stacking the interrupt retum information (the old PSW) and settin
the interrupt enable bit. However, one problem connected with the priorit
of interrupting devices still remains.

o

S:EC O 5 o u:' '·.)fUTY fNTEi<.RU;-T PRúGRP. .\!Mli'JG

13.5.4. ?nority lnterrupt.

nnce the interrup~ 2Molr~ bit is set, any de·Jice may interrupt. The
¡;:;1ogram to anaJy<:e inLP:-c-... ... pts mu.st therefore examine aJl the bits in the
l.ülerru-pt status regis~,~~ to c~wose t11B l1i¡:h::st-!n1ority int<::rrJ.~t :o process.
Clearly, ail that is needed is to allow ur.iy higher-pnority rcutínes to caus<'
new illtErmpts, since ln~Errupt.; at the same or iower lcveis can wali. to be
;erviced. Thus for programmtr convenience, tte priority can be buut intc
the hardware and a ¡:•·wnty ir¡ie;ru.pt scherr,e Ca..'1 assi§,Tl cevic::s to gYOL'pS
:vW:ün a given prioúty leve!. Part of tht FSW is used to hold the currer.t
~1riority level, and the loading of the PSW determines· the value of the

':niority level.
- Typical PSW and ISR words are shown in Fi.g. 6-16. The.,.e words could
:'i~1'Vc as Ute bas1s fm a sophisticated inte::rupt scheme except for one thir.g.
;~.though only higher-k;d priority i.'1ten-up;.s are a1bwed te· cm¡s~ an inter
;·~~;\)(, it stiJl is the programmer's job to detem1.il:e who caused the i.nte::r...:pt
.. ,> better sch~me wouk be to let each priority group take it> PS\V from a
diiferent mer.aory location. Thu~ whe:i ~ú1 ~nterrupt oc.::\lr:·d, it ""0:2:d be
:msml. u priori that only certa1n c.Jc>';ices c.:mld hav:; causec the mterrupt

r- -,---~---~----l

j ¡ i'S 1 PC ¡
L. __L___ -____ j
--r---

L __ rnonty leve!

PSW

'----------y--------

!SR

Fig. 6·16 Processor ::md ;nterrupt statu~ words

S.5.5. Automatic Priority lnterrupts

Carrying this idea to its logkru condusíon, it should be pos!:.ible for eat.!L
device to have its own PSW. Thus, give-n 100 dev1ces, there w1ll be 100 ne.,
PSWs (and 100 old PSWs) point.ir;g to J 00 potentially diffetent interrupt

()

service routines. Smce eac!~ rnterrupt JS uníquely id en tit'tc~._í. thcre i:: no n;,ed
t.o have ru'l interrupt status :register, and hcr.C;} PO i::1t2~Tctpt :mc.!ysis rout:n..:
is needed. The ¡·esulta;·1t savm5s in time ar.d prog<:u:¡ :>p'lce is absorbed, ~uv­
ever, by the large nur:-1ber of PS~.'.' worc:!s that mmt be :·cser\'ed in rr.e::'.0!'\'.

A Tílodi.fied verswr. of th1s au.tom:;t<c p~ionty :nterr:.:pt scl'rme can bt
fnnnd in the PDP-11. This 1;omputer uses tv;o ;"ord~, the proc2·,;sor st;"cfus
word and the program ('O'.mter, to bold all the mC~chmc :;bte informatio:: (set
F1g. 3-1). Upon mterru;_Jt, the ronrent:: o! the PC a;¡,d t:1c PS a::e autc•matk­
aüy pushed onto the syst9rn star:k mau··ta:n1:d by ti1e SP (reg1st.:=:r f1). Th2
effect is the same as if

/10Y
110V

had bee:1 executed.

f'S,-<SF';
PL _, SP;

.PUSH P~GCE~SOR ~TATUS
,AND PROG~HM COUNTE~

The new contents of the PC ::md the PS are loa:iea ~rom ';•;yo D:-"'a''Íf.'.r.~·\'
consecutive memory loca::o:.::. c::.lled an ir.te:-n:p~ vccrnr. The ~ct¡;a_' luca·
twns are chosen by the dcvice inte:face des1gne: aild are 1ocated }n low
memory :1ddresses. The fi:~t word :::ontains tbe intermpt servict> routir.2
aodress (the address of the ne·,,- pr0gram sequence), and thE' second word
contains the new PS, whlch w1ll determine the m¡1chine status and pncnty
:evel. The contents of these vectors are detPrmino:'d by the p:o¡,Tammer and
may be set under program controL

After the interrupt :>en t~e rC'utine has been completed, an RTJ •_return
from interntpt) 1s perfonned. The t/10 top words of t,t,e st.áck are automc.­
tically "popped" and p!aced in the PC and PS, respectively, thus resuming
the interrupted program Because the interrupt mechanism utiJ.izes the stack
automatic<Jly, interrupts m ay be nested in mud: the same manner that
o.ubroutines are nested. In fact, it is pcssible to nest any arhitrary mix:ture
of subroutines and interrupb without confusion. By using the R.T1 'lr.d Rl'S
mstru(t.ions, res¡:- ectively, the proper returns are automatic

6.5.6. Reader interrupt Serv·ce

An example of an interrupt operation for the PDP-11 can be found m
the routine to read a block cf characters from the paper tape reacier to a
buffer as shown in Fig 6-17. This code is writtf'n in a PIC for'Tla~ and in­
dudes -setting up the intprrupt vector (memory loc-ation 70) for the paper
tape reader. There are two separate routmes. The fi.rst, begi.nning at label
INIT, initializes the buffer address pointer and word count in the intemtpt
routines; then calculates the r<:>location factor from the offset PRSER-X-2
as follows:

If PCc is the PC that W:l" ·..c.ssumed for the program when load at O,
a.r1d iJ PC,, is be current ,_...¿:j PC, the calculation 1s


~~~~~~~~~~~~~~~~~~~~~-----------

SFC. 6 5 PRIORITY INTERRUPT PROGRAM~f!NG 

PRSER- X- 2 + PC" PRSER - PC0 + PC" 

PRSER + (PC" - PCo) 

since (X + 2) = PC
0

• As a result, the relocation factor, PCn 
PC is added to- the assembled value of PRSER to produce the 

0• 
relocated value of PRSER. 

Set up mterrupt 
vectors and 
enable reader 

readmg 

occur~ 

¡ 
1 
1 
l 
1 
1 
l 
L---

Update buffer 
p01nt anc.l 
character count 

Fig. 6·17 

187 

Then it estabhshes the prionty level for the reader and sets it to in ten upt 
after a character has been read This frees up the CPU so that other code 
may be executed while the buffer is being filled. ~ . 

The second routine, the paper tape interrupt ser·nce routme, PR:"::>ER, lS 

actlV<lted each tune a character 1s rece1ved. Once activated, the rounne 
stores th(""'-\practer in the buffer, updates the buffer pointer and word e oc~ 
and resef:s---the interrupt enable b1t ¡f more characters are to be read. -: 

188 l/0 PROGRA~r!.ff)IG CHAP l 

logical flow, then, of these two routines looks as shown in Fig. 6-17, and thE 
code 1s as given m Fig. 6-18. 

lNIT: 

X 

E:UFADR. 
PRSER· 

DO~IE 

ERROR 
PTR 
CRCNT 

, INTER~UPT ORIVE~ RO~TJ~E TO 
, INPUT CHAf;'ACTE~·S FROr·l F'APER 
, TAPE f;'EAC Ef;· 

R0=%0 
SP=%6 
PC=%7 
PRS=177550 
PRB=PRS+2 

MOV 
TST 
MOV 
MOV 
11011 
ADD 
M O Ir' 
MOV 
MOV 

PC.SP 
-<SPJ 
#8UFA['tR,PTR 
lt100.CRCNT 
PC. ,;·0 
#PR:OE¡;·--x-2. Re 
R0.@#70 
#200.@#72 
#181. F'RS 

.DEFINE REGISTERS 

;DEFINE DEYICE 
• REG 1 STERS 

; INITIALIZE STACI<. 
.TO POINT TO INIT 
,SET UF' BUFFER ADDRESS POINTER 
.SET UF' CHARACTER COUNT 
, R€1=ADDR0<+2) 
, f<Dl! OFF"SET 
,SET UF' VECTOR FtDDRESS 
,STATUS TO PRIORITY 4 
.SET INTR ENB AND RDR ENB 

CODE WHICH MA~ BE EXECUTED WHILE 
BUFFER IS BEING FILLED 

= +:l.BB 

TST 
811 I 
MOVB 
INC 
DEC 
BEQ 
INC 
RTI 
HALT 
a 
a 

END 

p¡;·s 
ERROR 
PRB.@F'TR 
PTR 
CPCNT 
DONE 
PRS 

INIT 

,:1.00 CHARACTER EUFFER 
, TE::T FOR n·ROR 
.DO ERROR THING 
.STORE CHARACTER IN BUFFER 
; BUMP PO l NT ER 
,OECREMENT CHARACTER COUNT 
.BRANCH WHEN INPUT DONE 
, STAPT UP READER 
, J;>ETLif;'N 
, STOP ON E¡;•¡;·o¡;· 
.BUFFER FOINTEf;' 
.CHARACTER CCIUNTER 
, END OF ASSEME:L 'T' 

F1g. 6·18 

6.5. 7. Priority Levels and Maskmg 1 nterrupts 

Within a group, any number of devices may cause an interrupt ata giver 
priority level. Since it is conceivable that at any g¡.ven tune a programmeJ 
may wish to ignore some of the devices, the hardware usually includes é 

mechai1ism to mask intern1pts from selected devices. 
The PDP-11 uses a simple mechanism to mas k device in terrupts, by al 

lowing the programmer to clear the interrupt enable bit m the device contra: 
and status regiskr. Actua.lly, the interrupt bit is automatically cleared éach 
time the system is imtial1zed (by pushing the START ke~r executing thE 
RESET instructwn) and must be set under prograrn contU However, oncE 
set, the bit stays set unttl cleared. 



SEC 6.5 o 
Another approach to "!".his problem lS :o use a mask regider. This reglster 

contains a bit ior eaó U1~€nuptatle !?¡roup (or bit 111 the ISR if one exiscs}, 
a:1d the hadw::m~ uses t!;o. r;-,as].; bit~ by AND.ng tl:em to th-:: ;ntc!:'"-;:: ~.;~:; 
.o,.,·,,._, if thP .,.esu1t is a 1 j, tl-1~~ interr:1u~ allo-..vr~d to occt..:.t ~f1 e:f(~~~~ t!1e ~ ,¡¡ -1 .,J. .... ,... ... .. 

:;~a.sk di>arms cenRm specified !ntenupt:5. Stlll, the ma.s~ only di~,::m-; in­
t.erruou; within a gro••p 8-'~d doe>o 1wi. ~et 'JP any prionties hecv,ee'1 int.;;o•"tp~; 
o:r groups. 

The neen for nrioritii•S is demonsttated by the followm¡; €:.,::>.,11pt2 pro­
·:>,JCfllT\. This prow&m uüli~.es rhe te!e~rínter and the 30-::y:'le dock on thc 
?t'P-11. After being ioaded and staned, ~"le prog;·am type;:; C·Ut 

WHRT TIME 15 IT? 

t.0 which the user .re::,p..:.:,s.s wi~h a four-digit nurnber. There~..ft2r, lhe pro­
:-;;:ar;~. utilizing clock interrupto, evecy 1/60 of a seconci .• ~eéps r.r2.ck of thé 
t.ime, responding with 

A r i'HC: Bt:LL THE' r !t1E w l LL t::t.: 

e·,r:;~'V time a keyboard c:1aracrer is str..1ck. 
:cul three devices (keyboara, pnnter. .md dock' an: mturupt-driVE"i. 

Th'l~ while the print.~r is interruptmg to flll its buffer. the dock can be 
q:".-"'L;'l" .. o tick off anoLher 1/6G of a seconr:. How¡;v2r, the oriQrit-y o{ .............. ..l.J.\.,~1" u.;::; "" ~ - -

t}.': -cbck m1:st be grea!~r than t~tat of the printa if tick:s are :1C;t to be lo.sl_ 
f':''hat this loss of t;d,s .-can ach1ally occur can be demonsnúed by ch2.ngm'S 
i.h{l priority levels set r;e 1..r label NOFTX m the prog:am.) 

?rbrity ievel 1s, ho>,·<:ver, not simply a function of t~e device. Althu;g 
d.C~ group or device has its ow11 prioriry leve!, thc nmmng prograrn also na. 
q\evel. Thus each intErrüpt tho.t cm'S"S ::m mtecrupt to occur caJ, rabe, !ov. ~r, 
c•r nHintain the cur.ent pciority le·, el uf tfh? ru:~:1ing progr:L'1L As 3. res<~lt. i:' 
?ti! inter::upt occurs at le\'el 7, say, and the i:1ter.upt routine does not .>et the 
·:i<:W len! at 7, it is quite poss,:~l~ fnr the h~;;1-."'r-l2<:;:1H,terrupt s<en;ce rouunf 
tn be constantly interruptsd by lowe:r-le•.el dc'dCt:,. V>i1th this in E1i'ld, 1t c2.n 
h<! seen that the processor prionty leve! as mait•ta;ned in the PS \~ord 9.cts ?.S 

&.n r;o device interrupt mask. 
The various vector addresses and priority levels for the te1etype, hie;h­

:::peed readerjpunch, a.r1d clock on the PDP-11 are as follow;;: 

Device Vector Ad<lre,;s Prionty 

Telctypc keyboarrl ¡or. 
JV 4 

Teletype printer o-t 4 
High·specd rcadcr 70 1 
High·speed pune\-¡ "74 4 
Line clock 100 6 

190 o CH '\P 5 l/0 PROGRA!\1:\HNG 

The e·{arr1ple in Fig. 6-19 demonstrates the t:se 0f pnoriry level-s: ;,_ 
add!tion, it uses recurs¡·,e prograrnmíng, and it freely intermb:.es subroutin::> 
:>tac!<:i:-.g W1 t:h :ntErrup;: pro:.:e~s::1g. It is therer'ore fétr from d trivial e:-. 21:'0l~ 
of ~:he pcwer o.nd flex1btl!ty of an ínterrept lac:!lity on a ~m::ül ¡;tJT'qJUter .. -, 
!og1cal í1ow is in.;i>..tded becd.use 1t provH:íes an overall o1ctu:e ,J( ••rhat H>· 
prcguun does. Of particular i.rne:rest is the dock intH~·upt routwe,. which 
calls on the dock increrr:.ent s·..tbroutíne in a 1€cmsive fashion. 

(-~-~~~----.. \ 
\.. 1 ...___--r-__......... 

,l. 



SEC 6 :'.. PRIORITY 11\TI::RRuPT PROGRA~!\Ilc·G 

BEGIN 

NEXTD 

NEXT 

R6=:~8 

R1 =,.1 
R2=:~2 

R3=:G 
R4=:~4 

SP=%6 
PC=%7 

TKCSR=17750::.6 
TKDE:I''= 17750::.2 
TPCSR=1?75b4 
TPDE:~'=177566 

LKCSR=1??546 

=10(10 
MOV 
MOV 
MOV 
Js~· 

MOV 
HOII 
MOV 
INC 
TSTB 
BPL 
MOVB 
JC:R 
TSTS 
DEC 
BNE 
110V8 
BIC 
SUB 
BIC 
CI1F'8 
BLT 
-nUl) 

=u E: 
BR 

#500.SP 
#11L R2 
ltE11L RJ. 
PC DF~ 1 
!ti l 11E R~ 

lt4, ~·1 

R2. RJ 
HCSR 
TKC~¡;· 

-4 
TKD8R, < R2 > 

pe, C•PIU 
(R3J+ 
R1 
NO.TD 
T ,Ir1E + 1. HOU RS 
il177760, r!OURS 
#t'.(t, HOURS 
11177700. Tir1E 
TI11E, l*t'l 

ltl2. HOUf<·:: 
#1.T!f1E 
NEX:T 

RF'OUN[• MOVt:: T !f1E + ~ . 11 1 N 
# 1 7 7 7 L") • ~ 1 ! '< 
#t.·:•. 1·1 r N 
T!f1E<:. S•3 
#1777~3~). ¡;o 
1112. ¡; 1 

MORE 

RDC• 
~! r: ¡=:¡ X 

o 
RGRIN 

SIC 
::.u E· 
11 (IV E· 

BiC 
11(11¡' 

SUE: 
E:l'll 
BEO 
RC•C• 
l'EC 
BNE 
AOCo 
110v 
1iGV 
M(1V 

MOV 
110V 
rlOv 
l~R 1 T 

l*t 1. ¡;·.:. 
NOFI> 
ADCo 
#1~ R1 
RO 
110RE 
RL 11IN 
1*30>~. t'2 
# T K! N T •) 
#:}.1(1, iü 
~LI(JNr. O 
#lOL TK ~· 

il106. u: R 

INITIAL!ZE ::F· 
.ASK FOR 
. THE Tlr'E 
, P ~· 1 N T 1 ~ •:,_ -
.ADCoR OF T!ME ~lELO 

'COUNT FC¡• ·=· ( ... ¡.:.:; 
, F'RINT RL'·:·• :.::¿;; 
,READ THE TIME 
,TEST FOR ~ Ch~RACTER 

, WRIT 
,f'LIT IT IN TIME FIELCo 
, PR!NT IT 
, NE'·<:T 8~'TE 

, DECRE-i::'E COLINT 
. KEE~· ·~C•ING 

,LSD OF r'C:V"-:: 
, CLERR PAR 1 T'r' 
.CONVERT TO OCTAL 
, CLEAR F'P.<;:I T'r' 

J NO 
• l NC~·EA::E I,'ALUE 
, DEC TENS COUNT 
, RN'r'I10RE~· 
. GET r1l"'UE:? L::C• 
J C L E.~ F' F· h F' ! T ,. 
, CONVERT TO OCTAL 
,MUST COR~ECT TENS 
• ~·E110 ~·E F RF !T'r' 
, FIN• 1•21 DEC 
, TEST FC•¡; A •:1N::: 
, NO TENS 
, ONE TEN 
, T R't' A r:,A 1.'1 
,COLINT THE TENS 
, MORE-. 

,ADD IN* OF TENS 
, LEVEL 4 1 NTEF ,e; UF T 
,FOR THE TTY kED 
,LEVEL 7 lNTER•UPT 
,fOR THE CLOCI: 

HJIT kE.C' 
, ANC• CLCrr: f: 

, "10TH HIG TO DO 

191 
192 

o 

LK UJT J1(rV 

J::~· 

RTI 
!NCTE:T !NC 

Ct1P 
BNE 
e u· 
TST 
JSR 

RETURN RTS 
TKHH MOv 

MOV 
JSR 
MOV 
f10V 
f10V 

CNVRT CLR 
r~ov 

LOOP UlF' 
BLT 
INC 
SUB 
E·~· 

RODUP ROD 
MOVE. 
RC•D 
110VE: 

TST8 
DEC 
BNE 
110 V 
110V 
110V 
TST 
JSF., 
RTI 

DPR1 CMF 

DPR2 

E111 

T 1 11E 
OUT 
BELL 

HOURS 
11 IN 
SEC 
f1SEC 
112 

E112 

BGT 
TST8 
BPL 
MOV8 
E:F' 
RTS 
B~'TE 

RSC l 1 
E:'r'TE 
EVEN 
8'T'TE 
8'r'TE 
B't'TE 
EVEN 
wcll;:c· 
wo~·o 

WORD 
WOI"D 
B'r'TE 
RSC I 1 
BYTE 
END 

I!O PROGRA\lMI:-IG 

:tr"l::E~: ~ ü 
F'C, 1 NC TE::. T 

(R8> 
< Rü J, lié e< 
RETUF'N 
(R0' 
- ( ~·0) 
F'C. INC TEST 
PC 
iil12 ¡;·¿ 
liE1~2. ~·J 

F'C, DF·~·1 
liJ. ~·¿ 
liOUT,R2 
lt HOU ~·S, R 4 
~·0 

< R4 > ... ~·1 

~L !Jl.:. 
AC•N'F 
Ra 
!112 R1 
LOOF 
#ttL F'..¿1 
~·0, 'R2)+ 
;t¿;,). K' 1 
RL <F.::>+ 
< R:<: ¡ + 
R1 
CNVF.'T 
IIOUT, R2 
#E'ELL. R:> 
lllOL Tf~Cs~· 
TKC•E:F· 
PC. N~ 1 

R2. ~·J 
DF·~ 2 
TF'CSR 

.ADD~EC:S OF LS FlELG 
,¡;:·ECU~:O!VE CALL 
, CLOC K LIF'(!HTEf> 
, RC•D CINE 
,¡;_E¡.~"¿: LI11IT-, 
, NO 

, RE 5 E T F l EL [• 
.ACoDR OF NEXT F!ELD 
, CRLL 11E AGA IN 
, I''ETUI'N HOME 
,PRINT OUT 
;THETI11E 
, ME55RGE 
,NUMEE~ OF FIELDS 
, OUTF'UT A~ EA 
,fJRST FIELCo ACoDR 

INITIALI:E 
.FIRST VALUE 
, AN't' TENS"• 

NO 
,'t'E::, COUNT 
, DEC TENS 
, DO IT Ft(;A 1 N 
, TENS IN R~.CI l 
, STü~·E IT 
, UN! E IN ASC l 1 
• STCI~E IT 
, SK 1 F' 
, LOOP CüUNT 
,DO IT THREE TIMES 
, READ'l' 
,TOPRINT 
, RDF: ENE· 
, CLEAI<' f•ONE E:I T 
, 't'E-' 
, DONE AT LA::T 
, A~'E WE DONE-. 
, ~·Es 
, READ'r' TO F'R 1 Nr' 

-4 ,NO 
( R2 1+, TF DE·K , F'UT IN E:UFFG· 
DP~l ,NEXT CHA~ACTE~ 
PC ,RETURN 
15, 12 , CR AND LF 
IWHAT TIME 15 JT?/ 

B.O B.B ,FOLIR CHAR TIME 
0.>), ,(1.(1,' ,(1,0 

7 ,STR!kE THE GONG 

6 
0 
e 
Et 
15. 12 
dH THE BELL THE T !11E w 1 LL E'O 
BEG!N 

CHAP. 6 



Sf.C 6.5 e ?Ri0Rl1 i :'<TUl.:l.Ll'i' PHUG.C1A:\L\t!',C; '~ .. 

To understand how the incre:nent el -:.:-e k routine wm ks, 1t is necezs:uy to Q Alwm;;.-tívt:!y, 1f the va.lt;.e pomted to by RO is ].:>3s tt2r), we ha>~: the 
~Xfu'Tiine the stack after each call. ,Ju:;t after the line labeled LKINT is ease discussed previously, wh2re the value pointed to ~y RCns inrrem,~n.L2d 
.. ~x.ecutt'd, the symboL: contents of the :.r:.,~k (a.nrl RO) ;,;]¡be and a subrou~1:-,e retl..!.rn is made. Since the retun: cau·~es U-.e inst::-uct:on 

following the SllbrOUtH~e C~ll to be executed and t~:s lnS~T'-!C1..10D is a !'Stv~'\ 
frum subroutine, the stack is popped tw1ce (or t'· ··t-\ tH'é.lt Lh; :-du.m f-rot'' 
Lnl.er:.·upt occurs, at whtch p•)Ínt the progxam v·.,¡¡-s for a new ;. ":2rc-'-f'l ~..;, 

oceu.r. Tht" actual unwi.ndmg of the rec•Jrs~,-~. e<.~:., bel'Omf-:. qcí~e ~u::;:-le, 
since it only serves to restare the "-Ü?.ck. 

Stack 
;-----~ 

~
' -·------¡ 
~~~~sor ji ~--- SP 

status
-:----¡

~~::~m_j

, ' 'T1DfY
i -----;.

L:_vW __ ¡ l{our~
j ZZ J ~.:·n

~~ G~EC ¡--~-s~~ -1 ~~c.~~
P íTxíÑ'T-::--21

'-- --~-·

:'!o•,v, whc·n the suhr.::J'1tí.ne ll'!CTEST 1s ~:.llled, the pictu:re changes to

Memory ,-----,
l Vv ~ 1-hur'i
r7z-' '"·n ~ ¡·"

,.--.,-, 1
1
__ !'_{_] s~c

Rf.P :\15EC 1 _ _,_ XX 1 ~lsec --- -~ .._ _ ____,

(f th!: vaiue in locatic•n IviS'EC is less than 59, it will be 1ncremented by 1, .
:·eturn rnade f:rom the subrc·IJtine (c.g., the stacl.c ir, popped) fo~lowed by a
T?.turil f¡ \:Jm the intErrupc toutine (popping off tiH' PC ancl PS fmm the stack).
and the program wil\ ortce again wait fo1 an ir.tPrruvt.

Suppose, ho\VeYer, that the v::Uuc in location ~ltS~~(. equal:; 59. In this
ca~;e the mcrunent subro11tir:e will no\~- ser. .MSEC .= O, advance the pointer
.'n RO to point to thE' locati,o:-: SE::C. and call the subroutu1es INCTEST
re1:msively. At this point the p;,:ture locJ·t<s 11S [ollows:

---,

Rw·~ ~------sr~
---l

LKINT + 1

lO·

Processor
status

Agam

Honrs

\1•n

Again ~he value at the 1ocatio'1 pointecl to by R~ is checked to ::.ee if it is 59.
lf ü is, it is zeroPd, Rl;) is adva.::ced te. ~!r'ir;·: to ·~;,~ i';ex~ mo:Ot é':¡;-r:i.ficant field.

6.6. 8UFFERING ANO 8lOCKiNíi

Alt.hou~h basic I/0 units (teleprinter and pc1per L1pe re::1der'punch) oper­
ate on characters, characters per se are l!Ot o:> X adly what th2 prograiT.J<1er
wishes to mput or outp~tt. RaU1er, IíO pr•Jgf8..1tming is conccrr:.ed wüh
.sh'i.n,~s of cbarélcters snch as 10-digit numhers, pec•ple's r.a:ne:s, .xt:-1.1 reort!­
sen tations of memory word:,, or lines of assembly ('Ode. In other wortis,· th~­
I/0 consists of blochs of data that have a loío.;ical conr•ectior.

Since the líO device do¿s not perform I/0 ü1 a block fa.shion, \t is
generally the programn:er's responsibllity to Noe!:- rh~H,lctrr;; on inr.ut and
debiock them on outpL:t. Bur'fers, which are co<l 1 ''~'J.nus blocks uf r~emory,
act as repositories for the block.; of data and :l':nl'· Ü1e rroz-!c;m to ~;trea_-r:<

ReJder Progt3n,
------------------ ---------

)tan-?- _____ In~t~3h7.e
!ali reader

Reaj con1pl~t~
Rat>é m~eriUpt
St~rt next r~Jd

¡
R~ad compkte

~- .. -- ~-

1..\ove chat acrer
!o buffc:, \nlt13ltze

Ra1se mt~rrupt- --,_ 1-!ove cklfacter
SLtrt ne<t redfl to buffer

o
o
• o

Read con1 plete
Ratsc 1nterrupt
Buffer full
End of reJd

o .
•
0~--­
D
~

6
e

Move éharacter
to buffe1

Pt..nch

1
r
t

Punch compict~
- -- Ra•-..e 1:1terrupt

Sl~~('l~Xt pt.r eh

1
T

P~.>nch complete
End of -+: - -· - - - Ratse mterrupt
rrograrn Buffer .::1npty

E.1J pu ndt

SEC 6 7 INPUT/OUTPUT PROGRAMMING SYSTE:\IS 195

data to or from an I/0 unit at a rate consistent wtth the I/0 device. Buffers
are of particular use between two I/0 devices with dissimilar I/0 rates. For
example, if the high-speed paper tape reader is si..x times fast~r than the
high-speed paper tape punch, a buffer can be used to allow simultaneous
input and output, provided, of course, that a full buifer terminates input and
·m empty buffer terminates output.

The overlap of input and output on the high-speed reader punch is shown
m Fig. 6-20. Each device is running in mterrupt mode at its maximum rate.
Because the reader has a higher I/0 transfer rate, it will fmish first, followed
by the punch routine emptying the buffer, and then by termination of
the program.

6.6.1. Overlap of Computation and 1/0 Processing

Another use of buffers and blocking can be found in the overlap of
computation and I/0 processing. For this sltuation double buffering is used,
so that while one buffer is being filled (or e m p tied), a seco :-:d buffer is
available to the running program. Actually, the number of buffers may be
more than two, depending upon their rate of utilization by the program and
the I/0 device and upÓn the size of the buffers. In a balanced system, the
bt..:ffer size and number is adjusted so that computation and I/0 processing
are 100 percent overlapped. When the computation is less than 100 percent,
the system is said to be 1/0 bound. Correspondingly, when the system is
r:omputation bound, the I/0 utilization is less than 100 percent.

Whether a system is one way or another depends on many things, includ­
mg the computer configuration, economic considerations, system load, and
so on. These considerati0n..:_ f::J1 ;;,tu che province of the systems pro!ITam·

- ~ • --- b

:-.--..:-::.._,.;¡o_;.--cü,íceinea wtth operating systems destgn and performance.

6.7. INPUT/OUTPUT PROGRAM!VliNG SYSH:.MS

In order to facilitate effective utilization of I/0 devices and to assist the
user in writing his I/0 code, most compu~r manufacturers provide thetr
computer users with an input/output programming system (/OPS). Such
a systc>m

l. Frees the programmer from the details of dealing directly with I/0
devtces.

2. Proviaes better I/0 organization and service.
-,

3. Facilitates I/0 programming through simple assembly language
rnacros.t Q .

4. Prov1des conform1ty across various operating enviroments. Ü

196 l/0 PROGRAMviiNG CHAP

In addition, the programmer can use an I/0 programming system to allow

l. Asynchronous I/0 service.

2. Concurrent (overlapped) I/0 operation

3. Device-independent programming.

4. Blocking and buffering.

I/0 programming system macros fall into three categories. The fir
category includes the initializing commands. These commands initialize bot
the IOPS tables and the devtce interrupts, and assign unit numbers to syste:
devices. In many respects these commands are similar to the assignment an
open commands in FORTRA 'l",which relate a unit number to a device an
open a file on the specified device.

The second category of commands includes all the actual data transfer
such as READ and WRITE. Finally, the third categ'Jry includes the contr<
commands, such as EOF, WAIT, and RESTART. The latter two categorü
include macro statements, wh1ch make reference to I/0 buffers. I/0 buffe
are of the form

Buffa SIZ~

Status 1 M o de

Amount of data

Data .
T.___ _ _l

The size of the buffer is of inrerest to IOPS in that it cannot allow da
to overflow the buffer. On the other hand, the amount of data is of conceJ
to the programmer, since 1t ~lis h1m how much of the buffer is filled. F1
both IOPS and the progr.liTimer, the mode and status bits are necessary :
order to describe the buffer con~nts (e.g., ASCII, binary, formatted, u1
formatted, packed, unpacked) and to indicate the status of the I/0 operatic
(e.g., complete, EOF, checksum error, truncation upon buffer overflow

6.7.1. Example

An example of the use of IOPS to provide a simple input-process-outp1
sequence would include

l. The definition of a buffer.

2. The initialization of the system.

3. A read into the buffer.
o

SEC !i 7 o

?DP-11.:

SfART

~DLE

RE3[T
I:'Ei"D KRD, f.oJf". 8SC l!
!•lA JTF<: iD LE

PF:tJCESo 8Lif- FER

w;;: ¡TE PRT, E:UF. r1sc i 1
OJeo STHRT

• l N 1 TI RLI ZE ! Ox
,RERD INTO BUFFE~
.~AI7 TIL READ ~ONE

,WRJfE OUT SUFFER

The purpo~e of the rüa<::ro instrucnon lS to ser-;e RS a l_in:.:;,,:;e ~o the I/0
. 3,·c<?,l'a.rf'lning system. 'IhE'l eacn macro instmction resul l-8 m ~ sa>1ce ~:1.ll_ to

,.....,; ·1, 1t', :h,• 11,a··-1 o 'li'm...t•)le•'ts !Jein.:; ·¡;a::;ed to IOX :ls a mea:,s of speClfy>ng J ,.~~ ... ,. __ - \... '-~!?.a...... ·~

· ,,;v:¡, :!:: to be done.

In a lru:gt: computc:é S"JSLem the ex¡Janion of a ro.<icro tlíÜJ a service
l d ,. k' ' ' s· ·e ,·autbe ~ink2ge f2quire:.: both a macr8 as:~0rr:b,er :-.. , a 1:n. mg 1caoer. • me-

r; .. '=icher of -these exist os pa.rt. of the basi._: software suppli?d ;~th a small
,;'n-;.1 put·:t syt>:.e!1! (althm:gh thoy rray be av:Jilable a:: part of advanced soft­
"J"'''e ~yno~n··) 't becom"'~ U- e ¡¡ro¡¿ra;nmer's resounsibilii·y to exp:md thc
ij~ .(.4.0.. "" ,;:) ,.._- ~>..) , ... "' .._ - - "? - •

iT1acros il~to a-:sembly l?.ng"u::Jge st<Jtements and to link up tl¡e program wlth

l~)PS.
The technío\.H~ most :-fLen usL:d to !i::!k p!r..~gTams 'NJlh IOPS IS through

i 1 ,tern:pt-produ~~ng machinE instructions '~alled s::7vice calls (SVC) or 1/0
¡,..~~-. 'IOT\ 1'he"e n¡·o--n-'~m-;.,,¡·•.i:1t"d in'L-c"rnwt:- :ne ;-,andlcd l:h; JjO in'.er-"'''t.'-1" \ ¡• ..., L1 ..._ ~!.'-' -~ - - ~- ~ ~

·,:u,;ts and result m -the- rccl<:t.~sn.ertt of the curren(. P8W by a new PSW
~(;tr:t,ing to the 1/0 prcg-1 ar:.:rnmg syste-c·. Sur.h SVCs or IOTs bave all t~e
;tlVGnt3 cres of subro:.lt.me calls, wcludirJg arguDrr,ts pa::.sing (the old PC m
thé PSW points to 1:he first word in the :=trgument ll~t); they ai~o facil'tate
the fuDctioning of the IíO programming sy~J;em i:1 that

1. It need not save the processor state (e:x.ce:pt for Lhe register it uses).

2. a can operate at any pri.ority leve1 it wishes to.

3 . .::t provides a din:>ct !inkage between the ur.,~r program and IOPS
r.hrough a fi.xed meuu(y locatíon.

198 !,'0 PROGRAl'.'\ll:-:Cr

'!"he l::tst pomt ic; de~ly :he rnost importar t. Th'? trar• in.c:t•·w::~;ori ,.f.
fe,~ti\relv d0ES :3\'·:.l.y Vllth ~.'le 7h-;ec! fcr :l 1]nJ-Ü\i;: ~(.,Pult:r, SifJ¡'~ ctl~ 1Qi_1~] r;{~_í:~

1.vill be throuGh lf)Ts, \Vt~i2n d8 no~ cequixe G:~·~~ct ~1!~~3~:2 ~o t<)P~. Il;~ ~ .. ~.~_­

\OPS r:eed cnly preloarl i~:; tra.¡J ve :torso that al.l lO':!\ w1:i ,;~,t~<· : :ra.,¡,fe·
oí control to !OPS, at whn;h P~'inc the reason fc)r tlw IOf';) cali ('ar, OC'
Uet¡;:!!':r:}ned~ ~n thts re;;;ard an 1/0 trap i:; ¡;_n?Jo~ods :,,.) the -;u:c!e ~e-~.-:1 intel
rupt system already discussed .

6.7.3. l11te.rupts dfld Tíaps

It is V<,orthwhile to ó.igress for :-1 momeat and po1rt üut tr.at. 1nterrupt..c;
and traps are noL ::t.-,sccwtf~d orJ!y witr I/0 instructions. IndePd. 1:1terr'_!pts
may be used to

l. indicc!te prc:)v-~im fault~. such a~ ad::h<?>sin::r, w·!or,., lileeal in:;tructior..
errors, ar.d abnonnal arithmetic results.

2. Ha:ldle machine en-ors. including :11E--::ory pá.rity checks and auto­
IT!ct~ical'y deteded hardware malfunct10ns .

3. Fbt,; externa! cor,c_;¡ur_.ns, such ::.s power failuw~ and consvle >;ey
ínttrruptJOns.

Additionally, sine e these inte:.cupts u. use a chang.:: in the current PSW, it is
poss1ble w utilizE' an interntpt-generating conditioYJ to change the prntectwn
state of the system.

For examplE::, lf :¡o instructiom are 11le~al in the prccected or :(se; state,
they will cause an intem;pt to be u1ised whenever Lhe comp.1te1 <:tLempts ;;o
execute thern . .4cwever, should the systern be i1; the un,Jrorr.:cted or monitor
:,tate, no mterrüpt will occur. Consequently, all I/C .-ee¡uc::ots must be har:dled
oy an l/0 prograr:mnng syste m, w!:ich is n.< tivated by GH SVC or lOT '.no;: ruc
tion th:.lt re~ults m c. ch;mgc of state from protec!ed ~o t.:oprotected rn,),-;e.

The monitor and user modes permlt a st1:uctured environmenl. b::,r pro­
viding for two d1st~nct states oí' sys-::em operarion. Depend1ng t1pon the
state, i'üll m: li.rmted mernucy address1n~; and mstruction execut:OJ¡ rapJ.btli­
ties are permittcd. P,y r:iakmg the ,ystem st::..te a biL m the PS\v, a change o[

stat·~ Cli'1 occür :w torna tic J.ll y, ¡j·¡ 'lS guara:-> ~e·: mg t!1at all syo;ten, capá.bilitJes
m<.y be madc avc.ilable to thE: 1nten·upt serv1ce routine. In Chapter 8, where
ffiOre c.dvmced ope1ating sy;;t,=ms (>-uch <.1s multiprograrnmed and ::ime-sharing
systems) are dif-cusst:d, this concept of system state wlll be discussc;d more
fully.

6.7.4. Programming of a Trap lnsi-Lction

Tunür¡g bsck :o the use c.f an I;'O ¡::rogramming system, it would be well
'~o exa.:r.Í'iE: hov1 :;ucb a syst·~m m;ght be used on the PDF-11. The earlle::-

SEC S 7 JNPUT/OUTPUT PROGRAMMING SYSTEMS 199

macro prograni., although quite nice, just does not exist. Inst:ad,. the 1/0
executive IOX requires the same problem to be cast as shown m F1g. 6-21.

RESET=2
READ=11
WF1ITR=4
WRITE=12
KBD=0
PRT=1

START IOT
WORD a
B'T'TE RESEL 0

IOT
. WORD 8UF

BYTE RERD,K8D

IDLE IOT
WORD IDLE
BYTE WAITR,KBD

PROCESS BUFFEf;'

IOT
WORD BUF
BYTE WRITE.PRT

BUF

a
;. .. _.

END START

,ASSIGN IOX COMMAND
, CODES

; 110 TRAP INSTRUCTION
,PERFORM NECESSARY
, INITILAIZATION

, TRAP TO IOX
, SF'EC 1 F'T' BUFFER
,AND kEYBOARD READ

, TRAF' TO 1 OX
, JUI1P TO I DLE
,KBD READ IS FINISHED

, TRAP TO IOX
, SPEC J,FY BUFFER
;AND F'RINTER WRITE

,BUFFER SIZE CBYTES>
;STATUS/MODE CASC!l)
, IOX WILL FILL IN BYTE COUNT
.RESERVE 100 BYTES

Fig. 6-21

An important point to notice is that since IOX processes buffers, inter­
rupt handling is no longer at the character level but rat~er at_ the bu~fer
(filled or empty) leve!. Smce this is consistent w1th the umts of mformat10n
required (strings of dig1ts, !me<; of mput, etc.), the useabihty of IOX is clearly
demonstrated.

6.7.5. Coroutine Example Utilizing IOX

In Chapt!=!r 4 it was mentioned that coroutines were used for I/0 process­
ing and represented one of the basic operations to be perfonned by modern
operdtJng sr-tfrns. The example that f~llows demonstrat:s the use of cou-<
routines in c...._.¿Ouble-buffer I/0 scheme wh1ch overlaps 1/0 wtth computat10
oerformi..ng as follows·

200

Write 01 l
Read I1
Process 12

concurrently

l/0 PROGRAMMING

Write 02 }
Read 12
Process I1

concurren tly

CHAP 6

The reader should recall that the JSR PC, @(SP)+ always performs a jurnp to
the address specified on top of the stack and replaces that address with the
new return address. Thus each time the JSR at B is executed, it jumps toa
different location: initially to A and thereafter to the location following the
JSR execut~d prior to the one at B. All other JSR's jump to B+ 2 (Fig.
6-2:2). This code, although deceptively short, is a powerful and elegant solu­
tion for the programming of double-buffered I/0 overlapped with computa­
tion. It clearly demonstrates the power and capability of the small computer,
on which may be developed time-sharing, real-ti:-:1e, ar1d communJcations­
based systems.

EXERCISES

l. Write a program to type out the message "HELLO?" on the telepnnter.

2. Write a format subroutine for the teleprinter to tab-space the teleprinter carriage.
1'he subroutine is entered with the number of spaces to be tabbed in reg1ster RO.

3. Write a program to read col u mns from the low-speed paper tape reader, punching
out each column on the high-speed paper tape punchas three octal dig1ts.

4. Write a subroutine that accepts one to six octal d1gits froi11 the telepnnter and
forms a 16-bit word In RGl As each character is typed, it should be echoed back to
the teleprinter. Assume that the !me is terminated with a carriage retum and that
your rout1ne \\Illinsert a line feed.

5. Rewnte Exerc~oc; 3 to uti!Jze interrupts.

6. Wnte an interrupt structured program to read 400 characters simultaneously from
the h1gh-speed reader, while punching and pnnting the tirst 100 characters read Be
careful to termmate the readmg v.hile allowmg the slower printmg and punchmg
dev1ce3 to complete.

7. Devise a scheme for measunrg execut10n time used by a program This scheme
should be accurate to Witlun 16.6 milliseconds.

8. Code Exerc1se 3 utiiiZillg IOX.

9. Can Exercise 6 be coded using IOX'~

10. Code the coroutine double-buffer example on page 200 so that it can duplicate a
paper tape from the low-speed reader to the high-speed punch. Q

BEGIN

o
SP=:~G
f"C==t.l

EXF.RCISí::S

<DO 1/0 RESfTS, ! N 1 TS. ETC

IOT
!<lORD
B'r'H:

I'IOV
J. SR

!1
RE:AD· INSLOT
tiA, -<SPJ
~C. @<SP)+

PE~FORM PPOCES~!NG

BR B

;READ INTO 11 TO START PROCESS

; INITIALIZE STACK FO~ F1RST JSR
,DO 1/0 FO~ 01 ANO 11 OR 02 AN~ 12

, MORE 1/0

.~HD OF MAIN LOOP

,J/0 CO-ROUTINES FQLLOW

IOT
WORD

. E't'TE
12
REAO, lNSLOT

, REAO INTO 12

SET PARAMETERS TO PROCESS 11 ANO 01

JSR
IOT

WORO
B'r'TE

IOT
wo¡;·C>
BYTE

PC. @(SF')+

01
¡.¡¡;·1 TE. OUTSL T

I1
REAC'· INSLOT

,RETURN TO PROCESS AT 8+2
;w¡;·ITE FROM 01

. READ INTO l1

SET PAPAMETER~ TO FPOCESS 12 AND 02

JSR
IOT
. WORO

B'r'TE
BR

02
IJfi'l TE, Ql.'E·L T
A

END BEGIN

,RETUPN TO F'POCE~~ Al ~·L
, w¡;· Il E F I''OM 02

.READ INTO 12

Fig. 6-2::!

202 J¡Q PRo¡;RAl\1MJNG CHA? F

REFERENCES
• >

l/0 progomming is very personal in the sense that eátn córnputei'typ~ has its ov;il 1/D
instructions and hence I{O itliosyncracies. Books,..by. Flores (1969), nelierman ~l967),
and Foster (1970) discuss liO from the conceptu~J level, making it more univ.::rsal, m
flavot. Others, like this book, treat I/0 as it is embodied in a particular machine. For the
PDP-11 the best source is the Peripherais and Interfacmg Hfmdbook, which cov-?.rs not
only I/9 devices but also UNIBUS extensions, communication i~terfaces, and dáta,,and
control optiom. , , '

o o o

o o

SYSiEM :SüfTvVARE

A comprehensive pac ;<;:::gc o:· ::,ystem software ;y ~on:¡-;a.tl ws e:.1:::h ctw•pc. ~er
;:1. ~se t.xiay, trom thP small m:mcom!Ju~er to tile !arg,; nun:lJer crun.__h~r

rlfiCSt:' J!3CKages i:1clude 0l"U'c,t .,¡[S Jí•cl fulltlPc•·, p]uc; 8S,ClC!ate:J COCl.rnentatiOO
'-Vnlc.l• allow the prog1a- 'llc':· Lo \\~·!te. 8dlt. :ls'oí>.r.Lle. ·~orr.ptle, dcbug, and
-CiEl his programs, r:Iakin 2·, ~r.P ful\ dcta-processing c<.pablllty of the eomputer

i~n"1t-diately available.
Sy>.tem software represf~nt~; the on-gomg ptocess and contir.ual efforts of

-;ystem prcgTammeis to :-.1c,)J; the utuizanon of c.ompute1s e<>.;>ler, more com­
P' c.:~ensib!e, and less time-co.1;,uming th;m wa~ po~:;¡l)le before. Most :;yste1r.s
c.r<> mocblar and open-encled. permittltlg Lhe u~er to construct specif1ed sys­
~en's Latlored to his partí,·dar cnvironmenL. ?.s such, they actas the buffers
or inteJfaccs bet·,vecn the us2r's neecl:' ar.cl the harciwate's capc1biltty.

We have 1ntroduced you pn-vtOusly to tl,ree sottwa.re syste'n;;· the as­
~;c·n,bler, the l/0 prograir1ffilttg sy.;;tern. a~1d the m-:r¡~r)r) d 1.<mp rontme. Now
vour aUent1on 1s chrected to tlwst' odwr soít-.'·~lc> sy,r,·rn~ th:H as.;¡~t in tlw
~-reatton and executtú:t of progT<lJ11s-th~ erlltOt, ché rn.:cro asseruhler, ancl
;,hP loaoct. In add1ttün, smce no nontrivt,ll progi.tr't or sy"tPr:1 1s cvel fully
dt•bugged or testee!, tt ts worLll>\iiÜC to conclddc our ttJvesi.lgórton of syslem
software Wt~h an e\.arr\\n:lt.!on o~ test1ng anc\ dvi•u<:: 0 •l•g techmq1""·

7.i. EDITOR

The tex.t editor is a powerful cornext-ecl:~in::; prngr<'r:' usPn to neate and
mocilfy symboiic so'trce progwms :md other text matui;-¡J. By meares of com­
m:.md:> 1ssued from the telcpnntPr, the editor can be used to cre.üe and delcte
char,lclets, lines, or groups of !mes ~vh1cil !~ m:Jmtains in its i.ntemal buffer.

204 SYST!-.\i SOFT.v.\RE o
Because the editor 1s on-lme m mos: syst~ms, respom,? to cummnnd~ ·~
unmediatt> and dynnrnic.

A gocrl ed:tor 1s both product:ve ar:d co~r-,:ffe:_ ti'. P. 111 •:óe :,_ \',¡_--,, rb
t,,;lep:-lnter ~11to a "v2t)" sop:1is~:c:1ted t"\.1 De·~·/ 1-:~c---r ti-P1l ~1 ... ::.: 4-...: T"h,~:. r 1 , ... r\\J• _-•• -.~ ~~.-~-.

1 ' • ~ r ~ • ' ! · · ,_ l '-• 't

ir. th~ normal _''cu:., and paste" operat:on of pu.Ltmg d prD~;r:'u:n ~c..:;et.h~c·c ,-\~ .:.
result. the ed1tor ;m ... st. not only allow fe~ the i"1st·rtton ar:J. deletton u:
charact_ers and !ines, hut it must also be r:a¡::,c.b1c of io::3.1mg 3yml~o!o, r:wkin,:
correctwns, and re<1.ding or wntm¡¿ block:' of ddta ··

Typ1cat editor commar:ds uv~l~:de the followin,,· o•

l. LNPUT: toen ter a r•PW stnng of cha.:.-acter~.

2. DELETE· to delete a stnog of cha.rz,cters.

3. CH.\~~GE: to replace one -;tnng o: ch~:-acCe!"s with a.nother

4. LOCATE to find the fi..tst or nth occurrence of a character string.

5. PRINT· to print a strwg of char:!L'ters

6. VER!FY · to pnnL out a str,nz alter It has bcen changed, or located

. 7. READ to f11l t!w ed1tor's tnLfrn..ll buffer by readmg a block of texc
trom some penpheral dev:cc

S. WRITE· to Pmpty th~ internal buffer orJto a pen;:¡heral device

~n addit\On, there are commands that have to do with Lhe character or lmr
¡~omter.

Associat;~d with the mten~2l buffe1 of the editor is a pomter th"ü refers
to the line or character m the oufftor cons1dered to be the currenL]me or
ch:u-::;_cter. The current line or chan:.cter 1s defmed as the line or r.haracter
that 1s beim; created 01 ecltted hy the user.

Sorne ed1tors o¡wrate :::m!y on hr.es, so:ne only on characters, och~~ts
operat¿· on boch 1f cl•e ed!tor recogm?•:es entire !tncs 1t dne:- so by d:ofmw.g
a lme to érd wHh ::m c'Spécla!h· sgr,¡jf¡c¿qL ch¡tractet "Uf'h ;le a •"'n¡;,ao f"' •trn ... a , . ~ --.. ru. _,~e_ .

In th1s way ~he ed1~üt may a.~srme that e:1c;1 llne begms w1th the <::haracter
after tlle tertnll!,1L 1:'g <'tlHl<~;,(e rPturn E1 the last lme and ends wnh \.he ter­
mmat:ng carno.gc retltf!l fo.c the cun-em !me.

Vanous edttt)r rec¡u·~::.Ls are provtded for movmg the current location
pointer. These req ubts include

l. BECIN: to pos1tion the rointer at the !::leginning of the buffer.

2. END: to poc;,tiGn the pumte1 at the end of the buffer.

3. NEXT: to position tlw pointer at the begmning of the next line.

4. LAST· to pmttl0:-1 tl• ;Jomter a¡; the be;;mr:!ng of the prev10us line.

EDITOR 205

5. FORW: to move the pointer forward one charactcr posit10n.

6. BACK· to mo·,e ~he po,r.:er 1-,¿ct:;v:u-d one char:1cter positlon_

in add1twn, editor commands, such as LOCATE, INPUT, DELETE, and se
:m, wtll cause the current locaL!on pomter to be repo,itwned.

There are two response modes m which the editor environment may
opcrate. These are called "normal" and "brief" modes. The normal modf
automatirally types out each lme that has been changed or searched for a),
the result of an editor reque:,t. The bnef mode does not respond by typm§_
the edlted lines and thus requires the user to issue a verify command (for
one lme) ora print request (for several lines) in arder to see the results o_f the
last com!T',md(s).

The edt~or envrronment includ;;s t\\O modes of operation: the input and
the comm::md modes. The mput mocfe spectfies that all characters entered
are to be treatecl as input untll a specwl character is recogmzed as a request
for a mode change. The command mode 1mplies that the character stnngs
entered are to be treated as requests to the editor.

The sophtsttcatwn of the ed1tor clepends greatly on its operatmg envlron­
ment. Large computer systems allow for max_¡mum editor flex1h1hty, m­
cluding full or abbrevwted commands, concatenation of command strings
(I:,, _ .J statements), file manipulating re,qL:<c:::.cs, and sophisticated text ed1bng
Small computers generally have vety terse, one-letter commands, limlte<
mternal buffers, and ng1d ':)mmand formats. Nonetheless, even small com
pw:.-:_: ,e:l\h----:-~:;_.. ,-;~;úthc1ent flex1btllty for creating and modifymg se> urcE
;-• .-Jgran1s.

7.1.1. Example of the Use of a Small Computer Ed1tor

The edHor for the PDP-11 lS typ1cal of the small computer editor
Requesb are entered \vhlle the ed1tor 1s m command mode (each lme begm:
w!th the editor typmg out an ~), and they include

l. B: equivalent to BEG!N.

2. ±nA: equivalent to NEXT or LAST depending on the s1gn. n spec1fie.
the num bcr of !mes.

3. ±nJ: like A but for characters (e.g, equtvalent to FOR\V and BACK)

4. I: equivalent to INPuT.

• l

• 8

+2R

. l

>tOA

>t1L

START

~15J

"'1(

.,1L

~TH~T

5. ±nC: to replace n characters befare (-) or after (+) the curren·
pomter position (e.g., equivalent to CHANGE).

6. ±nL: Üivalent to PRl~T but ±n lmes from the current poinler Ü

206
------ -

SYSTE~I SOFTWARE CH-\

This subset of ed1tor commands may be used to write the triv1al progr
given i.:1 Fig. 7-1. In the example, the editor is assumed to be running ancl
nonpnntmg characters are not shown (e.g., carnage return, tab, lme fee
Addltionally, the right-hand comments have been added for the sake
reacabch::y

~·0=\(1

j;'1=':1
f10V
CLP
Cf'lP

DW

MOl/

MOV

MOV

#1. F·o
¡;l
~·o, F·1
STRFT

ltl.Rü

LI~EF· F'LHC E~ EC• l HIF'
IN INF'UT ~10[•E HN[• TW·E~ l~l

L l ~~E~ OF 1 NF'UT

A L l ~~E-FE E (• TE" ! 1 l N F- TE~
I ~WI_IT ~lüC'•E

PüSIT!üN F'O!NTEP AT EEG!NN!NG

R[•I/H~<C E 2 L l ~~E~.

F'P!NT THE CI.IPFENT LINE

8ACk TO !NF'I_IT MO~E

AN[• AN• A LAE:EL

TO F E.F t)'O l TI Ctl~ THE F'Ct I -­
TO THE ~EGINN!NG OF THE L!NE

THE L!NE !~ LISTEG

THE CHAPACTER O ¡e TO
BE CHHNGE~ TO A ü

f¡g 7-1

Although far from exhaustlve, thts example demonstrates how a sr
computer ed1t.or m1ght work.

7.2. MACRO ASSEMBLERS

The reader has already read how a basic symbohc(~embler makes
chine language programmmg easier, faster, and more e\.._.,Lent. In addlt'

:re reacler hasC:en prosented with the necd [or and :1dvantage of p~;__..uuo­
o~erttrion mstructwn:; fcn duecting lhe octwns of the as~;emblsr N c. w we
~;::tll d1scuss the advar:ced f,-att:res of a .naLro n,struct.on gent:ra~or, which 1s
.-:. ~mt oi an e.q,an.J0d or "L.J(TO as-;2rr1 bter. Nü~e ~hat the keyword is
'~expa~;s3ed)" su1c2 t~e r:~J2~c .:=t:~errtb~r:r contnins cJl the fearures no:rn1ally
!"t>Ut'J in ~ ~ymooit,· :L;s.~r 'f:ler piu;;; tho,~' recess::uy to haniie maerr' instruc·
:,,-,11 ¡;~neraLion Thus 1\íACRO- LL tf-.P ~acro a::,sembler for the PDf'-11, ís :¡

~·.;:;32: ~e!. of PA L-11, r.hP sy .:r. bolíc ::..ssern bler, and users of i\1ACR0-1l m ay
'ifnte programs tbat arP. ident!cu te the prot:rams thac they wonb wnte
for "PAL-11.

One cf the features of J. r11acro-instructwn gener-üor rs that it permits
e.:wy handli11g of recersive instruction sequences utl11z1ng the sunple tech­
nique o.f parameterizat10n. The generator :J.llows the programmer to create
'kW la.'1g1Jage elements m order to be able to adapt the assembler to h1s
specific programming app!tcatíons. Iri aodition, macros may be called \ns1de
_-r¡a-::ro'i, nested to mu\':;ple lev.=>ls, and redt'h1t:c wilhin the prob>Tdm.

CJ
Th1s repbremént proce:;.;; occurs esse,'tia2lv bet·ore a,sembly c.:v:i c:m 1;~ ccr _
ceived of as a character-stnn¡;; :>ubs:Itution.-

s. l

tnce tne prog;a.1llnlcl may wEh ~o us:..; the ss.rne> ;n;_:cro b,t :)~1 J 1 c'fr~re 1 :L
data, n1.acrv cni1s i!lcl~de 2I;1.:1ner<t trru~sr::1s::: .. on. 1'hus, 1f a nrt~,~-r~-r~t~T·---~.
desues to rief:ne a macro 1nstr_,c~wn "add byte" { . .C,.DIJB), the i-,1]-y,•,~r>:'
macro deflmtton wo>.lid .:>ufficc

:1ACRO
"10V
11(¡\i

1·10\·'E·
i1ÜVE

riN·
1101/8
;·101/
110\1
8~·

fEI~P 1 ~J(IF (>

TEl1f";.; ~WF·ú

E: tJC•I·l

fi[{'d::. :---: .. .,..
¡; t-1 ~ TEr>~·i

~: .L' T :-~1~· ¿
/' ,;•(.J

'r'. t="1

~ ~)' .e l

F'' .,.
TErlF'L ~·;1

TE~~r·.:: ~]_

fE•·IF' .:.+ .:_
¿.

ü

, 5A..,.l=: R¿t
, .:fiVE ~· 1
.IUT~ ~~~~T 8YTE IN R0
· F':_,r~. 'cE.•:r•NC'• E:'r'1E IN ~.!.
, FCI~·r·~S F't:':'.IL T
, ~'LHt E F'ESLIL T I ~J 'r'
. ~<·E::. H1F'E ~·e·

. E~~~~~- H ~.~ C1t_:,..J[¡

. TEi1F' L(>t'rH!C•N~
_-...t this point it might. be well to d~üne JUst what ~i macro is rather than

.-.~;;y -vVhat it can do. Very specificaily. a mac1o is ;m "open routme" wh1ch
:s defined in a formal seqnence of coded imtruct.ions and. when c·Jlkd or
':JGn:ed, res'Jlts in the repia.:entent ot t'-:e ma.cr~~ c~l! l::ly the ar:';ual boriy of

, • -r-1.- • t - • •t · 7.2.1. locatJOI~ and Creé:ed S·¡rr.bGi, ;:c,c.¿ !na~ lt represents. ... ue use 01 a macro s ¡o,rement aoes no~ res·_¡, m
~::-,:11g memory locations but r:.Jtl-.~r in :Oaving pn;;;r,tc-nrn.:r t;me.

;:or exarnple, wlwr. a ¡:ro§:Tcim 1s bemg v:riLten, ~~ of!en happe!1S UMt
t'CF _ ·r coding sequences are repeuced sever:.J. t.1r:.1es, w:th ::mly the argumerns
·.!~'":Lnseá. It would be co~1venien-c :f th~ f'ntíre rep~ated .:;equ.t-:nce could be
gr-nH,tted by a single ;;talernent. Te clccomplish. thi3 it is nrsl necessary te
d,.;·:,e the coding sequence with d'..mnny pa.rameter~ as a macro i11structwn.
;_•e•'. rm;; to the mano name aiong vnLh a líst of real arguments that wul
:2pw.ce the dummy pararneters and gt.nerate tr,e destre:.! scqu2nce.

l\bcros must be defmFd beforc the:,: may be usec1. The way to ddme a
:¡.a..:ro 1s to bound the sequence of symhol1c instrur:twn::: with the pseudo-ops
:1\ACRO and .ENDl\1. For ex.a!llple,

W1th each macro cal! tmacro arder), the mBcro body 1s substltuted m rlaL·e
of the macro name:

AC•C•
110\.'

1"1 AC
tiÜ'•/

rlC•C,
~.~ ~ov

E' A Ll:lE
=-==---> L i rJI:

CE' l1 k::

Although ii may no t. hav2 bc'en net es:>Jl"Y. th~: macro b(_¡dy o! the ore
ceding example pre~erVt'd tbe conten~s of teglste-rs !\.0 and P..l.. In dorr:~ St-'
thE: macro def;mt;on .-<evelo_?ed a sr;nous probhrr.. E<~cn tane the !1lar:;o ~~
called, the symbols TElVIPl and TE"IP2 will be r2ddinec, C\:'3Ultrng m d\

assembly error message.
There are, fortu:1ately, two ways out of this düemma ·

l. Parameterize the temporar)' locations, leavwg thei.r defimtion up ta
the rrogramrner; for ex2rnp1e,

'1:'1•:r;Co AC·C·E • ,. TEnr-·1 ruw.::
l·tCt'' ¡;: ~~: íEr~F 1

2. Allow thP 9rogr<m1111er to infornt the assembler that r;ert:Jin synto0ls
are known only to the macro and should be replaced by the macro assemb!er
Wlth a created symbol, whrch will be ur.i(jue foc ~ach call ''l ~he macro·

l1AC~·:< ~C·F·c. t=:. -·E:
!1(11.' lli' ~ (1

8 r=·o¡, ;=;

C•EC ~·,:;

8~JF: ('
¡,_ ,'j [• f'l

.:H.!FT CCtU~~¡

.fC:TA1E
, C•E.: f' Er·lUI T C OUN 1
, LOOF' I F ~WT [·CINE

which generates the fol:owl.ng c:orle when called:

l\!ACRO ,\SSE\!Bl ERS 209

¡ r1•:•v 11.:. F·(1
~·u¡; :: 1_1~1
C•E1: ~·ü

E'fJE o;""->I

¡ M (IV ll .: .. ~·(1

~·o~· v'ALUE
C•EC ~·(1

'
E' NE O:S:f

t;·(l~·¿ VALUE

Created symbols are always local symbols between 64$ and 127$. The
ocal symbols are created by the macro assembler m numerical order and are
5enerated only when there 1s no real argument bemg substttuted m place of
;he dummy argument in the macro deftmtion. lf a real argurnent 1s spec1f1ed
n the macro call, the ger;entwn of a local symbol 1s :nh1b1ted and nom1al
··~placement is performed.

7.2 2. Nestmg of Macros

Macros may be nested, that 1s, macros may be defmed w1thin othe1
macro~. For ease of discuss10n, levels are 3.Sstgned to nested macros Th•
')Uterrnost macros (those defined dtrcctly) are called {trst-/euel macros
Mac:_,~ defined wtthin flrst-level macros are called second-!euel macros, anc
'o on. For exarnple,

11AC~·O LE\/ELL Ft. E:
A(•[J A. E:

11AC ~·O LEiiEL.2. C. L>
SUE. e. e·

t.,~(1:•(1 LEVE U E. F l
AC• [• E.F

Leve! 3 Leve! 2 ti(•[> F F

J EfH•1·1

Level 1

eL ,r:;· e
E f¡[ol•j

eL~· A
ENúll

At the beginnmg of thP macro processmg only first-level rnc~cws are
defmed ancl may be called m the norm.1l mJnner. Second- and htghL·r-level
macros wlil not yet be defined However, when a first-level macro !S called,
3.11 its scconcl-level macros become d.~fmed. ThereaJter, the leve! of defml­
twn is irrelevant and macros at either leve! may be called m the normal
mannPr. Of course, higher-level macros wtll not be defmed until the lower­
level macros containing them have been callee!.

o

210 SYSTE\1 SOFTWARE CHAP 7

Usmg the last example, the followmg would occur·

Cal! Exp::msron Comments
--- -------

LEVE U X, Y ADD X, Y Causes LEVEL2
CLR X to be defmed.

LEVEL:¿ I,J SUB I.J Causes LEVEL3
CLR I to be defined

LEVEL3 Y,I ADD Y,I
ADD I ,l

Jf a call to LEVEL3 were made before LEVEL2 defined 1t, an error would
result, smce the code expanswn would be undefined.

7.2.3. Macro Calls W;thrn Macro Oefrnrtrons

The body of a macro deftmtwn may contam calls for other macros which
have not yet been defmecl Hov.e\er, the embedded calls must be defined
before a cal! ts tssued to' the macro wh1ch contams the embedded ca\l

As an exarnple, \'>e com!cler the macro called SWITCH, whtch transfers
the contents of buffer Ato buffer B and vtce versa·

7.2.4 Recursrve Calls

MliC~O ::wiTCH.A B.TEMP.N
COP~ A. TEMP.N
C OF·'r' E:, A N

ENL•r1

rTAe•·o COF'r', F•·0~1. TO. COLINT, ~.l
MOV COUNT,RO
110~' FF'(If1. TO
r <=:e
::.IJE

EN[·I1
L

Although it 1s legal for a macro defmitton to contalll an embedded call to
1tself, care must hP taken to ensure that the recurstve macro expansron wtll
eventuall:y termmate Sonwhü\v the assembler must be tole! that a condtttort
has been detected anc! that the recurslH' defimtwn may now stop. The
techn1que used to accomplbh th1s 1s the conditwnal a:.sembly statement,
although such statements may be used for thmgs other than recurstve macro
defim twns.

7 2 4 1 Condttwna/ Assembly

'Ü Cond!t!Onal a.ssembly d1recttves are most often used to aOble certain.
narts of a source orof!ram on an ootwnal basts. The mstructwn is of the form

SEC 7 ~ 211

IF cond ;:rgumt>nÜ5)

.'f. 1'':!sts the val u e oí e ha: :.te te:· stc-bgs.

:::1 tbe cor.dittun is sati:.,fí•~d, ü . .>.t pc.rt of ~h·· ,ouzce 9cog::2JT'- ;;.b:.rting '}l,ith
:~':e ~L;:.t<;r.rF:n t Írf!ffil'dintely [o:lovv ~ng the conó it,ionJl stal f'IT'ent, <:~nd includ­
::~.g the sLlt9:nent" up to the .ENDC {end co,1dttiunal) assemoly di.rective,
,<::-e J.3s.:::r;:bled. Ho\\eve,·, \Í the conditwn ;s not saL1sfied. th(: cc.c',e is not
r~seml:l~d.

,-~ondit:onal st.aten>::Pts rrmy be nested. For each .iF sta~e:nenL there
;,;.~.~.- l:.e g termmanon .ENDC statet11ent. If the outermost .IF !S not sB.t1sfl2d,
~;¡<: ::-n~,re ~-roup is n0t i1ssc.n;bled_ lf the fir:.,t IF is satlsfiéd, the fol!owm~
~·.::u-. is <•.%emblt>d. Eov.ever, ¡f an moer .IF 1s encounterecl. 1ts conci.!tJon 1s
-:.':'.2d, anri th~ code given ii1 Tatlt: 7-1 is assembiea only 1f the sccur.d .IF 1s

~<'. :~n:ed. I.cgically, ne:.;;,ed .IF st.<;ten,ents are hke AN D Clrct.nrs : f the first,
::c·-·.:3, and thtd a:ce san.siied, t.he codf~ that ~ollows the third nested .l.F'
:c.at<OmenL ía assembled.

2n;1ronn1ent

Attrrbutc

Char.1cter Strinl{

':'ablt> 7-1 Cünc!:t:onal a~scmbly Lhrf'cl.ive~

~F EQ
IF NE
IF GT

.!F GE
JF' LT
_IF LE

.IF B

JF NB

.IF DF
IF NDF

JF ION
IF DlF

argumerJt O
argnrné!H i- 0
c.rg\.lmt>'lr >O
argument ~ O
argument < 0
argu:n.::nt -;:;: O

Is '11J.<'ro-type argumen~'f blank (i e,
rms~rng)''

Is macro type ~rgumer¡tt not bl.lnk (te.
pres.:nt)?

ís argument sy;:-'IJu! d·~d::1ed?
Is argumenl symbol undefined?

.-i~"' cwo m,,cro-typE at¡;uments~ !dent1cal?
~.-\ . .r.a nvo ,n,1c.ro-typ:: a:;_.;I.1ITltnt:, 1 dtfft:rent'"'

TA macro-type argl:rr.<'r>t ;, one enclo",d 1n ~n!:" ;-,nd ;•t:, :e,g, (J~,R C))_ Such argu­
""r.er.ts aliO\"/ .e.xpre~J::;ICI¡S ro 1)€ trea1eri_ (.l': S¡ng}p ~(.,..,.":'1')

<-:tlf>C
.J•lP

EN(q_";

er-e r·•

{The .IF D F is necess::t.>-y sine~> L- ,'::Q? · • ' • _ ~ - ~ n..;a:,.· ;Je :;., 1Gr~,v:iru-re.tel(!l1C~·d i~lb4.:1)

2. Code rnay be sa·;ed when usin,; the previously ckfi!1ed ADDB macro
wh2r, t•vo or ·y·o··p - ·eh d ·
·_ - rp-,'

1
, .w__ • ~ ~~_.. l rr:ac;c; are ll~e 1n tne S:irne [Jrcgram~ stnce 1,~E~IP~

and ~ t<;l\1P2 need ooty be ddined once.

l'lf1C ;;;·o riC·(E·. F\. E·
11(•1.' F c1) TEt1F'l
rtt!V ~L TUlF·;":
f10'~·'E H, FO
i'"lt=l\,'~ ¡:_ F'l
h[olt c._ \:1 ,. l
r·1C:' 'E: ,., E:
iiÜ\· ; ;.:, t·~ ¡: .L} F'l'
:·t·~· ,,. T fl'lf 2.

·' 1 IF tJ["'' St~
SW-=1
E:(· +t.

1 ff·1F'1 !·J(1F:l• (1

rcr:?2 t·Ju~:[> !)

EIJ[·C
ENE•r·l

3. The condltt<:.,nal assem. bl_y code r:'J''Y b d - ~ .~ use to terminRte rnPcro recursion.

7.2.5.

r'i=-i•
,_:.ufl r·H1C r.·•) :-., .,.

P.~F1 •l
l ~

Sl_lrl

UJl•C
E'H·I·l

:---·. ~\

IIE A-:
,' 'r'

Repe<:t Blot:k;, Concatendtton, 'lnd Numeric A~gthnents

_ ?ccasio~ally it ¡,; usef>l! to ~~1plicate a block of codea number of times
m lme w~th other source cede>. · This is performed by creatmg a re~eat
block of tne fcrm

SEC 7 2 MACRO ASSE\IBLERS 213 214 SYSTEI.l SOFTWA.RE CH -\P 7

~E r T

where expr is any legal express10n controlling the number of times the block
:)[code lS assembled. For exarnple, to generate atable of ASCII characters,
~he .REPT could be used as follows:

R= H
~·EfT 26
E:'T'TE R

H=R+l
UH•r-

l'he repeat pseudo-op can also be usefully combined with two other macro
features. The first 1s concatenatJOn. Th1s feature allows the apostrophe or
single quote (') character to operate as a legal separating character such t:1at
when the ' precedes andfor follows a dummy argument, the ' i~ removed and
substitut10n of the real argument occurs at that point.

The second feature 1s the capability of passmg a symbolic argumentas a
numenc string. Such an argument is preceded by the unary operator back­
slash (\) and is treated as a number. Combmmg these features, we get the
follov. mg mteresting example:

A· E'

Thts macro pair, when callf'd by

8=0
r·1RC ~·o

OJT
~·=E:+ 1

E.NC•r·l

r·1HI. F'l.l

fi: (¡ I
EN(•r·l

~·E F· T
l ~j r:

E. fj[•k

results in the followmg macro expanswn.

x,(t HSr:
.· 1 HC(
.. -, H::·(

>~ = H~.c

•.4 H~.(

!NC A. E:
A. , E.

•: N r A E
"E·.·

-:1
\ E:

I I o.
¡ I ,'1

I I 1 '-

¡ I /'- /

¡ I 4

ing the number are mserted in the macro expans10n. Thus m the C0íT macro,
the nurnber passed 1s treated as a string argument

7.2.6. System Macros

In any macro assembler there can be found a system macro facihty. This
facillty allows the user to access a set of macros that have been predefined
for prograrnmer convenience. The system macros are called like any other
macro but result in a search of sorne systern library ta find the requested
definttion.

Most often the purpose of calling a system macro is not merely that of
substituting a macro body for a macro call. Instead, the macro calls are
treated more as subroutme calls on the sy.stem to perform such funct10ns as
1/0 reads a.11d \VTites, register saving and restonng, and other spec1alized
functions, includmg using a real tune clock or returning control to the
monir.or after comp!etion of a user program.

Typ1cal system macro calls look as follows:

~·ER[• F'A~'l hiF 2

where PARl, PAR2, ... are parameters associated with the macro cal!. The
actual expansion of the macro looks as follows.

r·li)ll
T·liY·i

Er·l r

r10''
r·1ü~,~

ltF'R~·t. - • -:F''
11 F· ~r F :.: . - ' ~ F' •
4

IIFf'IF::. -(~F •
IIF'AF 4 -< ~-F' •

The two macros are necessary because the dummy value of B cannot bt On the PDP:ll, the EMT (emulator trap) instruction serves as a call to the
updated m t!f'"-CNT macro. Thls is because the ASCII characters repre'>ent C?yste~ momtor. Thus the effect of makmg a readjwnte ~'Jo call is the

\.........J stackmg of parameters and the tuming over of control to the Ih-onitor, which·
--.L-------"'-1-- ----~1-- L'-~ T/1'"'- --.-.--..... : r-r ,.... .. ,,....~ +-,.... ,......,.,....,-,.r.l"'l' f.hn,..

~se 1 3 'iHE I.G \DI- 9.
_j..-, -::"~s-;:~- 1 SC.r=-~.\'~·-~E

?1'Jn -"

0
Yhe absolute loader is usuil!ly loaded by the hootstnp m tOe uppern-,o~~

7 '2.7. Power of the Macro Assembler

Macro assemblers, wh:ch po . .,se:.:; ~h·! ;<:-2r.ures 0f nestsd. definitkms, cor.-
·iitíonal code g•:neratloG, an::l recursive >::alls, p!"O'Jide a ~apal::.il!ty mo'Ce oower

, ful than a subromine factltcy. '!'hr- rea:-,on is that the mac1·o assPrnb!er- allows
! coci.t.: general.ion ai tr;v,slat:on lirn2 so Ul.'lt tne actudl p:·ogram generateá fitB
! .v;lf. apvi.icatioliS for vvi1ich 1t was ir.~e:.1dPd. Thus, uniike l1;e s~b!"out.ine, it

ooes not require extensi te testing of conditions thht may occur at execution
{.lme b8cause the cod~ VJ:'t.S ~enenJtcd to har.dle only those cases that were
'u:o~.ern to o;--cur.

. An example in the us~~ vf such macro <.ts~emb1ers Cctn be fc'lmd in svstem
: :::,enerators. System genemtors cue parameterized macro prograrns that~ allow

the nser to define his partinllar oper;ltion environment as :.ugvrn¿nts to the
::ngrum. '!'he progrwn may then bP assembled, ;md pcoduce~ as output

· :";wchl:JP language prog-rarr,s tai.lmed to his ~nst.1üacion Such programs do
. "\ei T8st to see how much rnemory or what opcions are avmiable; instead,
' . c::1 information is ~lready 2mbec.:ded in the oreri!ting env:r,1m112nt code.
· A.•. 2, resuH, ínstr·~ctions fC\r Le;ting me:-norv size or wnethet or nota pnnter

:~· o.v¡;il3b1e need ne•1er be ex2cute::i.
~"~nally, a powerflll use 0f mélcros can be fo:_mci m ~o~ally p2...ran:eterized

.~1a·~·rn programs. The ir.scruclions m such programs C<Ie> e1thr:r ,n<~cro calls or
.,-;.,,,,) dt2fm1 tiuns based .e:~tirely o:1 prevJOc,sly :lefined macro<:.. Thus tl:.e
:'1 i .. ~~re- progran::Jt0r p_eed nevt~r ~~:~10"\\' v-lhn ~ ene :::.ctua~ !r:achlnl3 tnst:-nc ticns

'.:le or what ~hey are capable ')f C!oing. Indeecí. th~ programmer n~2d ec-t
lflúW aP-yibíng at al! obcu¡, the host co-::Jp'JtN, sine<3 r}.e m8.cro <.:XD<,nsioc
:s oas¡:.J 0n character s:nng~ ::md does not Jet-Jend on ;,'he geueratPcl r¡:,:;ult.

A das:;ic ex<1mple of th-:: use cf such a mac::o-gerwrittwn schf'me CJ.Il be
~.)u'1d in the implemPncaLion of SNC3C'TA ty ;ts dí'sisners a.11d ;..~:,u~. Tili~

:r,,\~lwge is written as a rr:<.tcrr__,-~enecatwn í.mpler.v?:-ttation and only rr:qu!re,
tlnt each macro be defHl"'cl for the host comp'_tt~r. Once evch ma·.::ro is
de!:ned, the macros, along ••~it.h the S!\OBOL:¡ s~rsl;em, may be DSSC111bled
L1tn a nmning SNOBOL4 mterptt'tor.

1'.3. 1 HE LOADER

The m1tial load problen1 Y1as discussed in Chapt2r 6 in conne(t10n wtth
'Cle bootstrdp loade1. The bocL:tr.lp lo,1der, although sllff;cJent for !onding
short programs, was not general or í12xib!e enoug'1 for loil(hng l01~g prngrams.
!nstead, that task falls on th~ absolute laader.

The absolute loc~der i.; a system progrG.;n which enables thr pr0gram~er
to load h1s pr:)grams tr:r.o auy avai1~,b~e :~1e1~- •)ry >ca'Í(lD[:, :n ar:y nrder. It is
used to !oad progr;o.ms thd <·.re in absr.'~'Jt~> hir.:~l"Y (i.e., fi:·:eci w ~bsolute

1
memory !ocations) nr PIC íocnat H:wing com•:·lHe3 its tac_~·, :he ahsolt:.te

; lcader -wlll e:ther halt or l,ransfe: c0ntro: ,(; t;;,:: c-~?.-t oí' thf' flH·'~Y \oar!ed
· uroe-ram.

o.rea of availahle memor;. In this way 1t m ay be preservecl acro:o::i u:-er or
';ystem prograrn loads so that it can be r~vaibble w1thout reloarl1ng. (jf
course, whCtl writiag pwgrar:Js, Lhe ".Lt·r must be :r>;<;_re C'lf •:ír,at, memc·r·;
locations the absolde ioader (and the boot'it'"<-tD ;1 i: ·:8sldt::; in DJF;"il'.Jt""\;)

occupies so thal, it wiE not be aÚered by ilis p;ogr~;,rn(s). ''
An absolute pr<>~ram as seen cy t;:¡e r.tbscluLe loader consist<; cf eme o;­

more blvcks of data. Sac~ Olock mJy in('luue

l. 1\. GtarL-of-block indi-::.Lor.

2. A record count of tlte l!urnber of bytes, "NOrds, .:md so on, to be ;::",<>t1Ed

3. A load address.

4. The informati·JO to be k>aded.

5. A block checksum .

iJthough the .fí.rsL ami ;2st i:ern:o :1re not absolutély nec:~.~sary, they nccur
frequently m block requic-emcr.ts icr small comouter loaders.

The start of block ind1cat0r is u;,t~d to ind1;ate that 3 lorld block follows.
in thls way nonloader dcta Dé!Y be mix.<:d 'Nlth !cacler mrotm;irion. Foc
example, a small comb)uter '.v[,;h only a te:clypt~ as a sysu'm I/0 dev¡ce m0y
?Ut both the assen--;bly li3ting at1d the binary lo1.der tn:Je ou: to t::e tP~etype
punch, and leavc it up to thE: l::nder to separate the two.

The block checksum i~ usul as er~or tnd1catur for !.he ioaóu As 2ach load
record 1s gcnerated by the assembler it E: acided Oo~cmly) w th·~ ehPcksum,
which eventuall)' bccornes part e[the load block. During :wrm~d prognnn
Joad111g, the chccksum is agam computed, and i[ti!IS 11e"'· v3lue dcf,S not
af;ree with the block ch..;~.-ksum oí t.he block d<Jla, a ic·acl errc1r 1s indic2.ted
and the loader halts. Tnus the block chet:k::.um s.::;:-J(.S to guarantce th<ü the
load ope:-ation has been performeci corree ti y.

The resL of the loader block fields are used as shown by the flowch :rt
iH F1g 7-2. Note that the iast load address may or ,nay not be used a~ a
transfer address upon completion of the load process Th1s decision depe1;,ls
on whether the assembly program terrnmated wlth a

or stmply an .END. One '-vay of md::.cating this d1fference, wh:ch JS used bv
the absolute loader for the I'DP-11, is to wake the load address even o.r odd
depending on its bt>ing a tcaítsfer ~cd.:.-css cr not. '

Asan altemalive to tal,ítlg· tr_,_, to;:;.d address from tl::e load block, it shoulrl
be possible to ind1caLe' th~ lo;d~ adclres:, by USl~ of the computer console
swttches. This capabtl!ty ó'llc ·~~~ PiC ¡::,ro~S:rams to be loaded in mem0ry

SEC 7 3 THE LOADER

count that of a

Move record 1 to the
locat10n wh1ch IS
g1ven by

load add re;s + 1

Fig. 7·2

Y es

Use the load addre;s
as the locJIIOn at
wh1ch execut1on 1s to
begm, 1f appropnJte

217

loc<l,~~:;r;: ¿~-!'~-~:~::~ ~~.-.,.-.·, thp relative load addresses given in the load blocks.
t'!C programs are thereby relocakrl mto new memory posit10ns by the simple
process of making the actual load address for each block be the sum of th,..
two addresses provided.

218 SYSTE'.l SOFT•' -\?.!': CHAP 7

\eave the mechanical process of relocation up to the computer smce it can
easily handle the problem. Consequently, the programmer is encouraged to
write al! his pro~ams in a relocatable form.

As 'the FORTRAN programmer knows, each FORTRA::--; program and
subprogram reqmres a separate comptlabon by the FORTRAN translator.
The following are advan tages of this req uiremen t:

l. Errors discovered in one FORTRAN program (or subprogram) require
only that that program and not al! others be recompiled.

2. Absolute addresses need not be assigned at translation time. Thus
programs are prevented from arbltrarily overlaymg each other. This flexi­
bility also allows subroutines to change size without influencmg the place­
ment of other routines or affectmg theu operation.

3. Separate translations allow the sarne symbols to be used m d1fferent
source programs.

4. Once translated, subroutmes may be placed for general use in a
library for future use without retranslation.

Fortunately, these advantages apply to assembly language programming as
well, prov¡ded that a relocatable assembler and a hnkerjloader are available
as system programs.

Up to now we have not really considered how subroutines are linked and
loaded with their calling routines. By default, the absolute assembler would
be used to assemble al! programs and subprograms together, determining
which portions of memory each routine is to occupy, and maintaining the
subroutine entry addresses in the assembler's symho\ table. However, should
we have decided to assemble each routine separately, we would have been
faced with the tasks of keeping track of what memory is to be allocated to
which routine and what addresses need to be adJusted (e g., the address
portian of me

7.3.1. Relocation of Programs i.nstruction must be modified to point to the entry point of the subroutine).
The relocatable assembler and lmkerjloader mechanize this process for

Relocation of PIC progrdms by the absolute loader turns out to be not us in the following way. Fust, the assembler produces object code as 1f Lt
only useful but necessary. For example, it allows the user to control the were to be loaded startmg at locat10n zero. Second, the assembler flags each
loading of the dump routine so that it may be placed in a location of memory relattue address and data word so that the lmker/loacler will know what parts
that does not overlap the area to be dumped. More generally, su eh re! oca of the program wul be affected by relocation. Third, the assembler allows
tion of PIC prógrams makes it possible for the user to write. separate PIC the programmer to declare certain symbols global symbols. A global symbol
segments, whicn m ay be combined in memory to form one Jarge program is either defined in a program (as a !abe! or by direct assignmen t) or it fs

However~ making the pro~ammer writ~ al! his relocatable programs Ir· assumed to be defin~d in sorne other separatel~ assembled p¡ogra:n·. In the
PIC format 10duly restnct1ve. Instead, 1t seems much more sensible t-J Qust case the global 1s caJled an entry symbol; m the secona"-. __)e 1t IS called.

- an ex terna/ s m bol.

::.e - 3 01
\~

:?1S

'.3.2. Linkmg ,md Loadmg

L' ~ J.1r':e c-~""lrt 1);· '}.t"-.... ii11~jnv ancl 1 0¿~l;'tJ .~.roces;,; t~relírJ11t::r¡'lo;J.df•r r:::t·ei"/fS .-1.... _ J .. -v-- ·- ·- , ~ - - .::r. .. ~ - u r ~

~}2 fol~rrNing ~!1 fot~nJ>ltion frot'1 1 .. he rPloc!::1; 3.-b:e 8s~~~rnblt:.r:

1 Objed code.

3. Rt:lative a~semtly adcn'ss (lt rbe tC"st instruction or datum ¡,, the load

nudule.

'"'· Length of t.he íor,d modult::.

. . . • . 1. , '1 ·1 • ·1 '• -~ 'o a) .• , ··p .rlet:o;L r~':,-p<; !:H(rn1aL10r. 2-~SIS[,<; the JflKét¡ .Oaüel ln t eV-dlO~)Jo~g il • .a' n,,, - '''"'
· h · l d ~ · ' 'h ~ ''1e~e· t'-"Y' ~e"ide ·n :;q '.'-'!c.t pr•)gr'1•ns. ave u~·en o~, e¡,, now 1ong ! ey ure, ,v, ' ue • ,.- ··

z·~-owry, ·:~nd whdt other programs they Ieqmre. The linker/lo;:¡dt>r wd1 at­
e:!l~'·L to lo<iÚ pr0f[rams uni-il all prog-rarns are ioadPcí and no nc\\ enes ar2
'F.(i11lr~d, or progrn.rn: are four~d Lo be mi;sing. . .

~~'-'!11'~ orograms may be part cf :1 usec or system hbrary Such hbran2s
.... . ' :"'!'N

~··;tu·_:e ::ur<:-n.uv transtat~x~ uf,¿; rot,tmes and mtnns;c i'.mcuons sacr, as ::it ,

v,c .,., ~ 1i'XP r OG 1"!d -o 01 Ttese oro<rr·ar¡s must ::-;e iocated ''Y the
--' :...~ , . ! 1 .6- .. ", ~ ' w ' ~ - • , • • . _, • . .,., '~ -.. , ... : 1 -'-~ ~ ,__; ~ r 't .
·-o:-(r 1 :o~a2r ~htougn :1_ c.u~ctot)' v:~111c~ d8,:,Lrlb"";s t.-he .~.üu\..J.ll,__., 1,.,~ erl ry
J0i!;-;:_, (sume rout!llf'S such a.'! SIN and COS may share co•nmoE r:odr:), what
Jtr,Pr r.:Jutines this routine ma.y oeeci, the ler~gth of the rcutinc, ;:~.r.d whe.re
.r.e E•uti1'1e is to 1:J2 found. .r\ typkal loeld map aPd Jirecí.cry :ue shown in
;.iO

-¡:-
fj 1
1 ~-

Rout1né 1
Enib 1 ::alled , 1 Phy~•cll
?O :1b 1 .:-outln\~•, j Length l ¡,.._,cd:i'Jn

-----t----------1·-------¡---·-·t--------

1

SIN, CI)S ¡ 263 ¡
1

Dr<k .:tlJr··,; SIN

:AATH L\P, ¡ OG FL TPT, 500 Pare; t~'"c
S•~•RT c:_nc, \t.Vtern,,i)

1 '< l

() ::,';.3-; E\1 SOFTWA!l.C (J
The ;:;.ctual proce~s of linking ::zd loacling is gensra!!y handled by one c-f

J:wo ;>ossible Lechniques. The ftrst 1s ullled ~he ¿.·,;rts/u . .Jecto• meU1<1a .. nc:
uttEzes a tec!J.ú:quc sirrLL_;_::u: ~o ~i¡~_: jUD1p ~db:~ r X....únp7,~:. ~)f,.~Jen.teÜ 10 {~lidi)t.~..-- !;

, 2y m.J.krr,g each E.xtenwl rou·cne t:ail 1eslllt ;n a transft:r mt') ;_;, jH<Lp t·,,~,(".,

· the loader can eventually fiJJ in the addre% -..vher.:: the called rouLnc lJ.ts .: ·"''.
: loadcd. Figure 7-4 shows J,ow the as·>ernb1er co.:':e ior the FDP-11 couL f.,,
i U"""d tu produ"e .,,J~er~.,~..le ~·v1" '~··1• ;nc·1u, 1·s ., ¡'· ,.. J ;"h'¡e to ·he r '"" 4

~·t..; _, ~ \... .._r _ _..t__J_,¡A!ot_J_,_ l....:u~...-t .,. JJ v l , .. \.Jt-h a .,L!JC:.f ¡1 v.LJ , .. l ,.,.,¡,.,.A..._•cf_.l

touti.r:es MUL and DIV. Aftf'r !0·'l.d~ng, tlwse table entries will contain jump
in:;tructions to the ac-tual suu tí'1g ilKations for MUL and DfV.

o \IUL 0 100 JMP 200

GLOBL MOL,DiV -. D(V () l02 J\!1' 300 ~

ADD A,B .. AOL> 50 . .)1 ~ ~),-+ A Dr. ! .JO,~ 5 ~

JS\1 PC,),iUL ,~

•'- ;~~ PC/J 'í2 JSR !'C. l ~;\)

S'JB B,C '6 S''" , u. 52.54 ! 16 SlJD J52.l5j

íSR ?C DIV 24 JSR PC,2 i2.4 J:.;R l'C,l02

JSR PC,I'Il!JL 30 JSf,' PC O i.;O JSR PC :uo

"

Fir. 7·4 ~oading pt.Jces~ o:,.ng the transfer •edo(tedm;quP.

The linking loadcr method at~empts to B.voíd ~he onf:O level of indirectness
of the transfer vector technic¡L.P. It therefore cre;ltes a linki;d !isr. nf all ca.lls
to tl;e exte:nal ro~ttme ancl preserve:::> his list untJl such time! as the celat!vt
lGad ac1dre3s of the ex tern<-tl rou t111e is krwwn. At that t1me, the linki>l!;' loader
traverses the link~d list, building up direct calls to th2 externa! rvuttne(s).

Figure 7-5 shows the same PDP-11 code being lmkeJ and loaáeJ as in
F1g. 7-4, except th:ü the linking \oader techniquc is used in the figure. The
relocatable output of the asst'>nbler inclucles a linked hst of all rt:::ferences to
the same extemal routine, ''"'1th thc list terrninatmg in a nu11 [shown oy a
dash { ·) in the figure 1.

The bas;c diffcrence be~ween th2:oe two techniques 1s l.h:.ü. t.he t·ransfcr
vecto~ melhod re<;olves ;_;nks dun:q~ loading, whJle thc hnking :oader ducs
it befare loading. The ou~-:-mt of the linkt>r part of the linking loader is,
therefore, one cor.1plete ·loal: module, which is loaded by the rdocat<.Jb!e
ioader part.

;,_e 1 4 DEBUGGI"-G TECHNIQCES 221

Relocatable output Progum 1n m~mory
(w1th MUL at ~00, O!V at 300)

Assembler code

MUL L24

GLOBL MUl,DIV OIV L20

ADD A,B o ADD 44,46 !00 ADD 144,146

JSR PC,MUL 6 JSR PC,- 106 JSR PC,200

SUB B,C 12 SUB 46,50 ! 12 SUB 146.150

JSR PC,DIV 20 JSR PC,- 120 JSR PC,300

JSR PC,MUL 24 JSR PC,L6 124 JSR PC,200

o o
o

e
o

o o

Fig. 7-5 Loadmg process using linkmg loader technique.

In either case, the results are the same:

1. Object modules are relocated and assigned absolute addresses.

2. D1fferent modules are linked together and global symb?ls are cmre­
lated between those modules which define them and those wh1ch use them

~ A 1 d map is produced, displaying the ass1gned absolute addresses. u . • ,. oa

thus allowing the programmer to assemble h1s program and subprogram~
separately.

7.4. DEBUGGING 1 ECHNIQL:E<:

222 SYSTE~! SOF"i ''-\~S CHAP 7

1s the programmer sure that a log¡cal error exists. When seemmgly small
errors or results that cannot be measured against known values appear, the
progran1mer is faced with the difficult task of decidmg whether or not h1s
Drogram is indeed mcorrect. And g¡ven a large, complicated program, the

1
prograrn mer m ay not be able to test all conceivable cases that could be
generated, thus causing him to accept on faith that his program does work,
· ,ntil provee! wrong 1

Assuming that a logical error is known to ex1st, the problem becomes
that of determining 1ts cause. Severa! techniques for this are ava¡Jable:

l. Taking a memory dump of alllocations that affect the results.

2. Using the console switches and lights to monitor program execution.

3. Tracing the program as it is executed.

4. Producmg intermediate output as the results are generated.

Takmg a memory durnp, although often helpf'-ll, 1s both static and after the
, fact. By the time the dump IS taken, the error rnay have caused all pertinent
inforrnation, including itself, to be altered or elirnmated.

Altematlvely, the prograrnrner, havmg the rnachme to himself, may use
the console switches to examine spec!ftc locat!Ons while steppmg through
.he program mstructwn by mstruct10n Besides the difftculty m both mter­
•reting bmary console d1splays and translating them mto symbohc expres-

'Lons related to the user's program listmg, this technique 1s extrernely time­
··onsuming and very tinng. A better technique would be to place a halt in
he program just befare the section of cacle whtch is to be checked so that

the magnitude of the operation may be reduced. Of course, th1s requues the
Jrogrammer to know where to place the halt.

A better technique would be to let the computer print out the prograrn
mstructwns ancl results as they are bemg mterpreted by sorne trace program.
Th1s, too, is a tirne-consummg process, but only on the part of the computer,

One of the ma."Xims of programmmg seems to be that no prograrn of any smce the programrner need not be present wh!le the trace 1s bemg run. Sorne
degree of complexity will run correctly the fm,t time it is executed T~e computers, the PDP-11, for example, even have a T-btt in the processor status
problern is that a syrnbollc program can be assembled correctly and s~lll word to assist m tracing mstruct10ns. Thts btt, when set, causes a processor
contam logical errors, that is, errors that cause the program todo somethmg tr.1p at the end of each instruct10n executwn, greatly facihtatmg the tracmg
oth~ than what is mtended. Although the assembler can check for and de- process.)
tect syntactic errors, it cannot detect logical errors. Consequently, logical If computer time is a matter of concern, the programmer 1s faced w1th
errors are usually detected only when the program is ron on a computer. havmg to trace only selected variables or locations. Etther a trace routine ¡s

Determining whether or not a program has a logical error is sometime• used, or the programmer h1mself generates intermedwte output which indi­
difflcult in itself. A cornputer is generally used to salve the kind~ of prob· cates that a certain variable has changed value ora spec1f1c location has been
lems that require involved calculations, which preclude knowing much about branched to or referenced.
the answers generated. As a result, only when answers are grossly incorrecc The progrdmmer can, of course, \\hile slttmg at his desk usmg the pro-

¡-~Varn asscmbly hsting, mentaJly execute h1s program. Thls(jthod IS fre-O Liuently used with very short programs, but only with very short ones. ·

e DEBUéiG \G !'ECH;-.;IQCES

Human memcry· ::annot retain evcry ;;tep and instruction in even a fairly short
program; it car,not rr.atch a comr:.c<ter íi'.f:mor¡.

What. is needed to debug a l'S<'r progra.m conveniently and accurately is u
service program that wtil r,::su rnc the tasks the programmer would ha ve to
pt'rform i.f he used the consoie wrltches, took a. memory dump, andfor
se1ectively traced his program. Such a facility i~ known as & d:rnamic debug­
:fing prograrn (DEP).

On a small corr.puter, thc DDP takes the fonn of a conversational systern
prcgra.m. It. provides the user with a convenient means for deb11gging and
dos·~ly monitoring the opetatior.. of their programs. In fact, the DDP acts
both as a program supervi.sor and as a binary editor.

Through commands issued to the DDP via the teletype, the user is able
to: (1) start a program. (2) suspend its execution at predetem1med points,
;_3) .examiy¡e and rnodify the contents of memory words and registers, and
{·~) ma~ce addí.tions and conections to the running program usiPg either
_s:,':n.bo!ic or od.al code. Cornmands are of the following forms:

-·· OPEN: to examine andjor modify contents.

2. CLOSE: to go on to anotl.<:r OPEN or DDP operation.

3. MODE: to establi:;,}, the type of mor ·')Ut modes of operation.

4. BRF:AKPOINT: to suspend the execution of the prograrn at a prede·
i.ermined pcint.

5. SEARCH: to ses.rch for a particular occurrenee oí a bit pattem (e.g.,
n aé!drcss, a constant, oran instruction).

6. LIMIT: to ~stablish the lür..its {memory addres::;es) of the search

7. BEGIN: to start execation of the user program ata specified location

8. PROCEED: to eontinue execdlOn after a bre:1kpoint interruption

Like all other sys-tem ¡;wgrams d:scussed in ti11S chapter, the sophisticati01
of the dynarnic debuggmg pt"ogr::un depenC.:s on its operating environment

7.4.1, Example of a Debugging SesciOP

ODT-11 (On-line Debugging 'Technique) for the PDP-11 is typical of a
small-computer dynamic debuggi.ng pro;.;ram. Like the PDP-11 ed1tor, ODT
has a command modc; that is mdicatcd by an as~er~sk being printed out b~r
the system. 3asic commnnds includt>

l. n/: opens word n.

2. cr: a carnage retl~nt to -::lose :m '-'P'éTt lc·ca.7.ic·~.

3. n;G: begins ex:r:cution at locatwn n.

4. n;B: sets a breakpoint at location n.

5. ;P: proceeds frcm a breakpoi:1L

6. $nf: opens registcr n.

Given the following triv1al a<;sembly Ianguage program

~ 1 ~1~_1 ü
~·o=·.o

F' 1='.1

HALT
.ErH•

{no label follows .END, since ODT vvill begi11 execut10n of the progr<'Jn),
then using ODT-11, the following dialogue ma.v be had (comments 1-:a·,e been
added for readabuity):

l •~11)-+, E:
., 1 C11u. í::

-+ 1 th..1ü. r_,

E,_¡ OulOü-+

-}f~.1 'Ot;0~~1)L

+!l--'~2:-+'5t.

" F·

-,¡, f 1 ~} !J ~=¡ ~~1 ¡=; o
+- f i) o.) ·=1 ~-, ·=1 ~

~LACE ~~·E~f#F·c·I~dr~ AT
r-t,.·:~c~r !C·!IIJS 1(n:~..¡ HrH• .1-~"llr)

E~GI~ E•EC~TtON AT ~TrlPl

CHE.I_k F•) ~m[• ;;·1
A~n· THE~J

F'F'I)(t.E['

•:HE>-~ ¡;0 rl~J~·
FlrH· ;;·1 ~l(:i:"1!11.

_ Although tbis example is rathe~· brief, rt does giv<: the reacler some idea of
what a dynamic debuggmg progra•n does. \Vhen faeed w1th a typical small
computer, with its often-limitec.1 number of display light.s and means for
examining memory or processo~ rcgisters, the progro.mmer quickly seizes the
opportunity to use a DDP ra~hcr than probe memm-y and meast!re program
prc _ ,s through the canso!(~.

7.5. OPERATiNG ENV!RONMENTS

Having dealt with comput• · ·:3, 1ncluding their organization and progBm­
nmg, we sbould now co~'i1d2r their opero..ting environment. After all. fr m

o o o

.~-- ----------

h • .n r · h - · · t · • · n t e user s pOll'l/O vww, t e p~..1rpose or the computer 1s o :J.ss1s~ li1f.' user m '--.../ o
the mechanics of solvwg problems. Thus the operaiir.g environment greatly
bt1uences how the w:er is tJble tn solve his problems. This subject ¡onr.s the
content of Chapter 8.

EXERCISES

l. What ar<? the difference~ between an er~itor used for program creation and one used
for manuscript creation'> What types of command~ might you find in one or the
other?

2. Using the PDP-11 program editor asan example, list its good and t:ad features Then
give a suggested remedy for each of its bad features.

3. Expand the macro cal!

Ior the macro definition given above.

_, Rewrite the macro defin,tions for SWITCH so chat the inter.n,,diatP storage anay
7E1Vf? need only be one word long

•,. Dr:line the mac.ro BSS X wh1ch 'S to reserve a blodc of storagr: locat,ons X bytes

long.

'·'· Develop a macro that can petfotm multlplication through recursive calls to lhe
i'1ac;o body, which pNforms shiftír,g anrl adding.

~Nnte a progrdr.1 to imp;ement th.- at:soiúte loadet funct!or. :Js flowc!1u~ed in Fig. 7 2

8. What f;;atures are missing from ODT· t1 as describPtl in the text? Describe a methoc

for implementing them.

.. , What dtfference lS thrre between an on-line deb11gging package and a contiruot.

trace program'>

:.'.'). Deve!op a procedure for lmpli'm<?nting a dynamic dump cout1ne which produce :!

s<>lect¡ve dump of spec1f1ed memory anrl regbt2r contents upon cal!, w1thout affect·

mg the re!>Ult!> of the running pro~ram th~,t cails 1t.

REFERENCES

One of the best references for text edit1ng can be found m the survey article by Van Dam
,;.nd R1ce (1971). Of cc.urse, for a part1cular syste:n, one sr.oulrl reart the appropnate
manual, such a~ the PDP-11 Ed1l-ll Tex! Ed1tor. Sim1larly, the manua!s Macro-1 1
Assembler, ODT-i IR Deu'!;;g¡ng Progranz, and Unh-11 Lmhr>r and L¡b;--11 L1branan
cover the top1cs of m,tcros, outhne dt'huggwg, a;-¡rllmking!loaclin¡; for !he PDP-11 How·
ever, the books by Gear (1%9), Wegnet (1968). and Stone {1972), a~ well as the sune;
by Kent (1969), are e:-.cellent treatments of rnacr,) 'lS~f'iíl' .. it!r~, wh1le the sun ~y art1cle b:
Presser anJ \Vh1te (1972) '" <2n equ?lly well d,_,¡Jc: ·.'t•,~el1tii: ·e;~ üf Lr:":c: :_. d lo;,rlrr

OPERAT!NG SYSTEMS

Today it is inconceiv able that a medium-to-largc computer could exísl
without an operaLmg systt:m for its usus. Indeed, even ;:;mal: or iT\ini.::or,j­
puters ca.'1 and do have soplú,tieated disk and tape operating systems as part
of manufacturer-supplicJ software. For th1s reason, almost all progr?J11mers

, will, at one tune or another, come face to face wüh an operating systern
· environment.

Operating systems, if properly designed, ex1st for the users' convenience.
They serve to !:lridge the gap betwecn the ;12eds)f the t.:ser and the charac­
teristics of the hardware. In this capacity, they directly ass•st thP user in
solving his problems through simplified progr::nr.ming ami more efficient
computer operation. However, to a large üxtent, the user never lmows what
the operatmg system ts really do:ng. InsteZtd, the user sees the system in
terrns of the services it provides for: program preparatwn, transl:ltion,
execution, and debug;,ring.

In orc!er to undersbnd wha~ a computt:c system is all ahout, lt is nec~o,
sary to understand the system components ami their organintion. These
componen ts, compu ter hard<\ are and software, wae dbcussed 111 prev,ous
chapters. Thts chapter is thus concemed with tbe general JOb of organization
as it is performed by the opcratmg system. However, since our concern has
been with small computer systems, we shall continuc that interesL as we take
a look at rather specialized operating environments which exist. for Lhis clase;
of machines. Because of the limited resources available, operating systems
for sm3.ll machines tend to be mor<! constrained than for their larger com­
puter .>ystem C011nterparts. Nont:thele:,s, th0 same principals and concepts
apply, the chief d1fference being that oi the relaL've emphasis placed on the
nrious system components.

226

COMPOI"ENTS OF A DISK OPER -\ TING SYSTEI\1 227 J?8 OPER".TI"'G SYSTE\!S CHAP 3

8.1. VERY BASIC COMPUTER SYSTEMS

At the very least, every small computer comes complete with a paper
sape system. In thts envtronment, very remmiscent of the early days of
computing, the input and output of programs and.data are performed man­
ually by the user via a paper tape reader and punch. The user communtcates
with, and receives printed output from, system and user programs through
the teletypewriter device connected to the machine.

Even though the loading of programs is performed manually, a paper
tape system normally contains a comprehensive software package of com­
monly used system programs which provide the user wit!1 complete factltties
!or writing, editmg, translating, debuggmg, loadmg, and runnmg hts own
orograms. Since system programs have already been covered m Chapter 7
~d earlier chapters, the reader 1s famtliar wtth the capabtlities of such a
paper tape system.

Unless the reader has l:ad the experience of using a paper tape system, he
is not hkely to realize how unsatisfactory and trymg it can be. Operatin§l
such a basic system reqUires the user to take his coJ "d program and manual!::,
perform the following operations:

1. Load and execute the paper tape editor.

2. Produce paper tape source progran1s using the editor

3. Load and execute the paper tape assembler.

4. Translate the editor produced source progran1.

hoth the development and execution of user programs. User programs and
data, along w1th system programs, can al! reside on the disk and other sec­
ondary storage devices, to be loaded mto memory under program control.
[nstead of loading and reloading paper tapes, the DOS user can perform the
same functions by issumg commands to the system. These commands not
only provide user services (such as program loading) but also provide for
effictent program and system management. Typical commands and their
functions are shnwn in Table 8-1 for the PDP-11 disk operating system.

Command

GET
RUN
DUMP
BEGIN
STOP
CONTINUE
END
LOGIN
FINISH
ASSIGN

Table 8-1 System commands.

Funct10n

Load a program
Load and begin a program
Remove a prograrn irom memor·"
Start execu t10n of a program
Halt the current program
Resume execution of a halted program
End mput from a device
Identify user to system
Log off system
Ass1gn a physical device toa dataset

1 Commands, however, are only the outward manifestation of an operating

5. Load and execute the binary object program produced by
g_ssembler.

1

system. To gain an understanding of how its functions and facilities are
provided, it is necessary to consider the componen ts of the system and their

the 1 organization. Since one of the most important functlons of an operatmg

1

system 1s the effective management of its mformation structures (e.g., pro­
grams and data), it 1s imporLant to understand the basic mformatwna.l unit

1

of the system. This unit 1s call~d a fzle.
6. Debug the program, repeatmg the first flVe steps as necessary.

Each step presumes that th~ sofhvarc bootstrap a11d absolute loaders rema1~
int;:w' ji:·:-:--:;:;;· .. _:_,s¡ve program lo.1ds and executions Unfortunately. thts lS

~ ¡,ot. usually the case, and more often than not, the begmnmg progran1111er
willload both loaders at one t1me or another.

Manual control of the operatmg envíronment is clearly mconvenient. It
involves manipulating and mamtammg numerous paper tape programming
systems, and 1t results, m general, in the inefÍlcient use of the hardware.
Consequently, a more automatic leve! is destrable, and this leve! of control
is found in the typical general-purpose disk operating system (DOS).

8.2. COMPONENTS OF A DISK OPERATING SYSTEM

8.2.1. F !les- Organization and Access

A file is a collection of related records or data items treated as a unit.
The word "ftle" is thus used m the general sense of "any collection of
infonnation items similar to one another in purpose, form, and content."
For example, a program may be a file, just as a data structure (called a
dataset) or even sorne system program such as an edttor or assembler, may
be. Unfortunately, the same word fzle is al so generally applied to externa!
storage media, such as disks and tapes, when what is really meant is fzle­
orien ted deuzces.

Each ftle-oriented peripheral device has a file struct11re, which represents

The addition of a secondary storage system deuice (e.g., a dtsk) is what the method of recording, linking, and cataloging data files. The file structure
makes the disk operating system a comprehensive operating environment for dictates the organization of the file on the device and the method of fil~ Q dccess. This organizational structuring is important becauso file can be

e CC~!PO~~E~T~ OF r\ DISK G?E:-~ ..,_,_ fi:<G _:;-r S ~.,i:\1 ::_¿~::

· 0Si1élarly, the me1.hod oE acr:ess is system defmed and :.o ub¡r,.lt~~~y (:Cntk·.·.;::,__;

effective for a user appli"at•or1 only 1r ;+ , _;_ , to t ·r: ~with the file structure. The most usual access techmaue i~1·:-'_)·es sequent!ci
L -'- • • ... , " .s ae,,.o:nea ntee spec1 1C us~::r · "

· ,. ~ access to both the data file and the ind1vidnai data records. Thos access
i'eGUli21T~.f;nts. :lcr:~ ?ac:o:·s as ~izc:1 ~L. t.iv~~~.'. 2cn {;~cessibiJ:ty ~1u~t be cu....,-
sxdercd when detennining the z.buctvre of 2 fik.

The way in which a me i.~ org:lnized upon a storage media depends upon
thr way in 0-hid:. tht: usc:~r r.ormally expcct<> to r.reJ.tl~ and lah=:r)Toc;;ss i~.
'Thrte nJ.ethods that have b2t::!"l ~~2d ?.J.0: (:) contig-~o:Js aHoc_·;tiCtn .. {2) linked
1i3t d;iocati0n, and (3) indc:cd J.11ocatio:: Ec,.::h of thc:,l! n'.::tht1ris is sl~own
in Fig. 8-1.

File# l rile# 2

(a) L011[Iguou-., ;jl!OcJ:ltt.Y1

FI!t'# l File# 2 ------ ---·-"'-----------------, ,~--~--'--"o

1¡-------¡ ¡r.D,..,l ,.-----.,1 ~1-----l ,!¡~¡--------~ ,;<¡-------!
:~ Rcco;d # 1 1 ~ ~~~ Reccrd # 2j f lsj R~cord;: J

1
~ ioj R..:c.rrJ # rt!)~1 R~cord # 1 ¡

l:[________ _j \.ill _________ j U~4, ____ __j J~L _____ _!)21 ___ __; . . ' \). , R!'JC!< i Blo'- k \ úluc.k , Bh_1c.k
.... -¡1: l0,~6 :f iÜ 1~1 ti ICúü \ ~ \IJ().:!

;;'de#! ,-- ____________ ..;\,. _______________ --..
~ ke~or;;0
(___]
H Bloá
1 \ # 572

Record

{-------,

1 'J - d ") l "e .. ur tt -. l
__________ _¡

Fig. 8·1 File orgaoizaiio,¡_

\ Block
\

tt 1 ~e~

File# 2
,------"-a.:.
r------¡
\ Record 4 l \ l ____ j

\ Block
• # 10! 2

In the small corr-putcr systé:m, file ttrud"''= o::~anization is not usually
1.-:ft up ¡;o the user but 1s preckfined ~"r '!1€' v,j¡i0us perieh2ral rlevices.

r.n~thod 1s characU::ristic of ~~~11di:T:ctio .. ~al c~c·J;(~t~c J ~u--.::1 ~;s :né:gncc:c tap~~

llithough oth~r dev¡ces, such .::.s dL~ks, r:JJY be org:tn\?:ed ro-~ as to pen11it
seyuential access.

Sequent1ci <1ccess is a stcr8ge refr1(~\,~..l t{:chn~qut ;~). v¡hic~l a file :JPd thc
recu1d::. withm it rnt.st. be rccrieved in ths .'>cquenc? in v;h~ch 1hey r:Jhys~c~Jily
Jct:ur. Sequemial access, w:1e:1 <:>f~l:t.:J co ~he pr•'JC•_'ss 'Jf lo1;3.ting the bc¡.;i:l.­
ning of a file oc a data recofd vnthin the flte, mr:;-¡!ls lhat the time re<¡mred
for ~uch access is dependent. on the nec"':;:>ity for waiting while nondesired
fues or records are processPd in tum.

Traúitionally, ccnt:guous allocation is used to Jmplcment .oeqw'r.tially
acce:;sed filr•'; on sequrnhally or~antu:d Jevice'> such a" :n~'gnetic tapt-~ After
each record is processe~i, the next record 1s immediatPly avatlable, since
positioning of the phys•cal m0dia will leave t~at recürd po<;Í[)oned at the

· read/write head of the dcvice.
As an aitemative te. the sequentíal organization, +,he Hnked-1ist or!5,aniza­

: twn may be usecl for direct-access deui:::es such as disk~, whPre th<~ time to
, :;earch for and loca·~e the next rc~·-'Ord 1s in<;i;;n1ficant i,l proce,:;sing the file.
'f'w lmked-llst struclure l~as the auvu11t,·¡;e OVI'f lhe CGntÍf,llOUS alloc~Jti,·m of

: allowing fües •o grow iarge~· w!th time by s1mpiy lmk•J~g m ;1 nt"w cecmd to
1 the end of the list. Thts i:; not in general pcssil)12 Ir):· the cur!f¡::;,tnus a[1ocr.
! t;on, sÍI~ce th;~ next blocl<: may 1.lreatly have been a11oc,1l~d .

A nother techmque for accu.~sm;:; a file is ranr1c:n access. J ::mdc;n:-t ::tr:cess
'of d Elle and recmds withir. the f1le :rr,c•ans that tl-.2 ti.;'l\8 rec:'.:'red fo'l <:'Jch
access is mdependPnt oí' the location of the fc1e or reco1 d r8ht;ve to o 1:her
t\les or records on tbe mcrhum Thus the crdec of re\ :wvai 'Jf file infonna­
twn is umrr.port:mt and can be lgl10tecl

Again, two possJ~iJhlt~?s ex1st whcn flle a•:cess ís random Thcse are
cor1t1gu ous alloca tlOn ami md ex e el <.tll ocation. By k:wwing vvhel e tbe con­
tiguous fue begms, rJr~dorn accessit\~ occurs m nn~c!l the same fas[lioD as
elemenL accessmg occurs for a one-clnner.stnnal array The hmit,ttwn of tl-)e
contlguous alloc2.t10n remains the same, howeHr. flles cannot, m gener¿;J,
expand m length with time.

The use of an mdex mto che file allows both random access and growth
with time. Thus th1s method of allocation 1s preferred over contlguous
allocatwn unless access time is importanL Like imked-1!~t allocatlon, m­
dexed allocatwn requires that the location of the next record be fetched
befare the actual record may be accE:ss..:d.

As a third aHemaltve to the two access methods presented, an inter­
mediate method may be used. This method, nonnally employed on disk ancl
disk-llke devices, allows a file to be accessed randomly whtle the file's data
records may be accessed sequenli2Jly. Thts acces-, rcethod 1s called mdexed­
sequentwl and uses the indexed organization w1th more than one data record
per block

-~------~--~

Indexed-sequential organization 1s well smted to those applications when•
it is necessary to access sets of records randomly but individual records ot
the set sequentially. A typical example of such an applicatwn would be a
personnel records fue where having found the records for a certam employee,
it is necessary to update these employee records m a sequential fashJOn

8 2 2 Darector1es

i

Havmg provided a file structure, and having specified its access method, '
the next problem is how the file is located by the system once stored away. '
One method that could be used is to keep track of the device addresses so
that each file can be retneved directly. The use of absolute addresses is not
very acceptable, however, for much the same reasons that absolute addresse'
are avoided in symbohc programming Instead, symbolic names must be
as~ocmted with each file so that the files may be referred to by theu
file names •

To provide a connection between the file names and their device loca­
tions, a f¡le dírectory or table of contents for each d1rectoried fue dev!CE'
must be part of the system. The file directory wlll contain not only the
unique narne of the file and Its starting address on the device, but also its fue
structure, including, If necessary, a pomter to an index table. Figure 8-2
shows a d1rectoried data access for a sequentially organized f1le that can be

User file d1rectory

File# 1

N ame

Locat1on

File# 2

N ame

1 -

F1Ie # 1

Begmmng of ph]sJcJI medJum

__ User progrdm
pom ter

File# 2

o Fig. 8-2 D1rectoned data acce%

File# J

232 OPERAT!NG SYSTC:\IS CHAP 8

randomly accessed. Devices such as tape cassettes and DECtapes ha ve th !S
capacity by which the transport may search to a known locabon befare it
begms processing the file.

When drrectoried data files are removable from the system, it is necessar:y
to preserve the directory of files between uses. To do so requires that the
directory be stored on the physical media, in a fixed location, along with the
files it points to. As part of these directories, btt maps are maintained both
to indicate which device blocks each file occupies and to show all occupied
blocks.

File structures that employ a directory allow simpler and, in the long
run, faster access to a file (e.g., the beginning of a file). Th1s 1s a distmct
advantage over those devices which do not use a directory and m ust there­
fore rely on a file's pos1tion relative to other f¡les in arder to locate it.

8.2.3. Mult1level 0JrectorJes

\Vhen two or more people share the same device (such as the system disk)
for storing files, problems may arise because of duplicate file names. Smce
both will have access to the san1e set of files, one user may acc1dently modify
or destroy another's file by sirnply not knowmg that the fue name u sed was
X..:-eady assigned. The solution to th1s dilemma 1s to establish a separate user
file directory for each system user. The separate drrectory will therefore
allow each user to name a flle without regard to the names chosen by others.

The basic mechanism for locating user fues on a shared device reqUlres a
two-level file directory, as shown in Ftg. 8-3. Each user has a unique code
that must be prov1ded whenever the LOGIN command is used. This code
serves to identify a particular entry in to the master file directory, which is
actually a pointer to the user's file directory.

o

Master
file

d1rectory

U ser f= 1
file

d1rectory

User #1
file

d1rectory

Fig. 8-3 :\laster and u'f'r f,l<:> directories. o

SEC !' 2 e COMPONE:--ITS OF A DISK :JPi:.L\ T!'\"G :>YST¿:-,¡

8.2.4. ?wblems cf Control

.Now that wt have described an elaborate se heme to define the files within
c:1e system, it becor.t~':i uh'jious that one of the cen:ral functíor.s of a.·; op- ,
~:mting system is centre!. Por example, tne file system represents one large
b.cility that must be controlled m r~s allocatíon of peripheral devicP space

· .".nd ¡ts storage and reiritval of file ínformanon on L.'J.e penpheral devices.
. F'cntunately, Lhe .fur.ct.::;r.. ;:,.f tbe :t":l2 :;ystem ;s preci;;e!y the n:in:r:~in•ti.;p d
; t.he potential probtem.

.As f'!li a<; the user ;, ~oncemed, ric·lices thems:::ives v.re not of prirr.ary
Lnterest; the datasets of .files that reside on them are. 'l'hus a simple and

! t:seiul 8xtension may oe made by broadening the concept of a file to Pn­
. compass al! information sets, mcludmg devices. In thts manner it is easy io
conceivc of a paper tape read<:!r 3.s an information set (anC. hence a file) of

: 2. very ;;pecial type. By spectal rype 1s me:lnt thac; t!"le information set must
he handled ;,n only a very limíted fashion (e.g., output not aliowed to an
:.npm. dev\ce). With suJtable limitatíons, there is no reason why all devices
:::a.:u~o t bE: conce1ved of as being fil0-líke ÍI1 for::-:an on ~ets. -~ \l tha t is neces­
s:-·¡-y i.s to recognize and btnld into tne syst8m the fact that 11 is not po&sible
· .. e •,:reat all files uniform!y (e.g .. not all files can bt: read from, w:ritten to.
·:::; rewound).

B0th the system a,--;d the user can treat I/0 de\l¡ces uniformly as informa·
~kn sets. Wlthin the system, however, tltere must be an interface between
',[!e syscem or user-creawd program and L!"le externa] world of I/0 dev1ces.
['he ;..¡urpose of the interface 1s to minimtzP 1/0 programrning for the DOS
!3er in the same way that lhe I/0 programming system {IOPS) simplified I/0
~'!'ogramming for the basic system user, as dJscus,;ed in Chapter 6. In that
chapter lt was pointed out that the IOPS routines served to rPl1eve the user
of tlle burden of I/0 scrvice, file management, overlappíng ~/0 considera·
tions, and unnecess.ny dev1ce dependence. The last poin t, dev¡ce indepen·
dence, is especially ;mportant m a d1sk operdti~,¡; sy:,tem, whcre an I/0 service
ruutme for a nonf1le-stntctured dev1ce, such :~s the paper t:1pe reader, must
~¿nore (rather than declare asan enor) a commaJ'd to "seek a file" {which is
.required for all file-structured c!ev1ces prior to issUing read commands).

Cleariy, the central function of IOPS ¡o; to establish the information path
between the sy-stem and the device Th:s requirement is met. somewhat
independently of the user, smce one of thcgoals of IOPS.is to minirnize the
user knowledge required. And since the user is to be sparerl the task of
wn ting systern software to perform l/0. standard system ro u tines (called
dev1ce handlers) must be a central part of IOPS. These routines perform
the functions of

Driving the I/0 devices.

:VI::mipulating fue; on the devices.

OPERAT!~G SYSTE:>!S

3. Allocatmgfdeallocatmg storage space on the devtces.

4. Maintaining current reeords about user requests and dev1ce status

5. Coordinating penphefal activ;t¡e~ (s·..~ch as tlnffenng ard b1ockmg) a'
reqmred by the I/0.

As pointed out in Chapter 7, sysL¡~m nú1.cros ''k-e thf-· mPJr.s of communi
~::.t:::m betwcer. user pr·::Jgnmf 'l:v::l :.'O devlC\' h~Jnrlle,-s, The~P. orogrammeo
l¡O commands are also rderred to as requests. 1.:'ab1e 8-2. lists typ1caJ re­
quests for the DOS-11 (PD?-11 DOS\ system. Not all r•:quest;; show:~ in tlw
table auually ¡.1erform 1/0. SomP, such as .OPE0J <..nd .CLOSE, merely serve
to mitJal1ZP a dataset or fue for subseque11t I/0 processmg. Othen, such as
.BlN2D, .RADPK, and .ALLOC, perform auxiliary ope~dtJOns on the rlat:1
or the d::>.~::t hle.

Table 8·2 P_rogrammed reqt:ests.

Programmed Request

OPJ::N
.ALLOC
. C!:..OSE
.DELET
.LOOK
. READ
.WRITE
.WAIT
BIN20

.Bl0< 20
D2Bl.\'
.02Fl!N
RA.DPK
fL\DCP

8.2.5. F1le M<~n<J\je:nent Utiiity

Funct1on

Open d ddtaseL

A!lo<::~te a sequent1al file
Closp a d:lta~et .
De!ete a tde
Sea:ch a dn ectory for a file
í{ead from a de•11ce .
Wnte on a dev1ce
\Vait for dcvice complet!On
Convert bmary to decimal ASCII
Convert bmuy to oct,li ASCII
Convert decnn.1l ASCII to bma1y
Convert ocLal ASCII to b!llary
Radix-50 ASC!I pctck
R:~ll..<-50 AS('!1 unp.1ck

Although program requests for file management provide the basic func­
tions needed to utlllze files, 1t is inconventent to have to write a progrctm
every time one w1::.hes to manipubte files. Thus most operatmg systems
mclude a system software package for the transfer of data f¡Jes from one I/0
device to another, wh1le performing simple editmg dnd control functwns as
well. Thrs package, known as PlP (Peupheral Jnterchange Program) on the
PDP-11, handles all data and file formats found i!1 DOS-11 so asto

1. Transfer a f1le or group r,'' file<> from one dev1ce to another.

2. :Vler~e flles mto a single ftle.

SEC S 2
COl\IPONENTS OF A DISK OPERATING SYSTE'VI 235

3. Delete, update, rename, or replace f1les.

4. Allocate file space and imtiallze whole devices.

5. Print listings of file directones.

6. Handle fue protection.

In effect the file utility package provides at the user level the same sort
of servJces that IOPS provides at the program level. Users need only ente:
commands to the PIP program and it wtll decode the c?mmand and perfo_rn
the desJred functJOn. For example, the user mi~ht w1sh to make a backu\
copy on DECtape of an existing d1sk file. To do so he would ru~ the PH
program and then, m response to PIP's request for a command (md1cated by

a:¡:¡: sign), type m

~DT1 BACKUP SRC<DC0 M~FILE SRC

The new file, nan1ed BACKUP.SRC, would then be a copy of the angina!

file called MYFILE SRC.
'To exanline the rlirertory for a certain device, the command to PIP

would be

236 OPERATING SYS fE\lS CHAP 8

where the fields indicate the file name, file size, fue creatwn date, and file
protectwn code. Also included are the total number of flles and blocks m
use for the "user identif1cation code," [1,1].

It 1s important to bear .n mmd that a fue management utility is a system
software program in the same sense as were the programs in Chapter 7. The
goal of such software programs is to prov1de routines that ass1st the user in
solving his problems. As a consequence, these programs do not in and of
themselves produce useful results but rather allow the user to utihze the
hardware available to him effectively.

8.2.6. Device lndependence

As the reader may recall, system macros are implemented using mterrupt­
generaring instructwns. For example, a write macro operation

WPITE LNf BL~. BUFH~P

m DOS-11 is expanded into

MOV
~l(IV

ENT

lt E: UF H C• ~·. - (: P)
ltUWE'U', -(5P)
-· ..

• !>.H=' I TE C•ATA:OET

, STACk
, MACPO APGUMENTS
.F'E~FOPM EMULATOP TPAP

iiLF' <DC0 /DI
The two arguments of the macro call are called the /znkb/ock and the buffer

indicating that a directory listmg of the contents of disk unit zero is to be header. The buffer header serve:; to defme the data buffer as described for
.Jroduced on the /me printer. This listmg would appear as , IOX earlier in Chapter 6. The lmkblock serves to establish the connection

between the data flle (logJcal dev1ce) and the physical dev1ce. A hnkblock
DI REC TOR'r' DC (1

25-NOV-7:;

MONL!8 C I L 4t11C
MACRO (IV F· 21;:(
L HlKll (11¡'~· {'~(

f•lRC ROF' LC•A 97
L 1 Nf: LC•R 56
F' I F' LDR]t.
E[, I T L['A ~~~1

Ll8~ LC•A :;(1

PI POliO (11/R H.
PIPOI/1 (11¡' ~- 14
PIF'OI/2 OVR H:
PIPOV3 (11¡' ~- 12
OC•T OE:J 37
TEST BAI< 4
TEST PRL 5

TOTL BLI<S E:?E:

o TOTL FILES 15

L1

0?- O:. E F· -73
1<=1-IWV-?J
1S-N0 1i-73.
19-N0~'-7:<

19-NOV-7:0
19-NOV-7:3.
19-NOV-7:3.
19-NO'v'-7:3.
19-NOV-73
19-NOV-7}
19-NO'v'-73
19-NOV-7::?
19-NOV-7:3.
23-NOV-7:3.
23-NOV-7:0

077)
<231>
(233.)
(¿~3,)

{2:3 J.>
(2~!)

(23:?>
(~3.:<>
(:·< < >
(2:3.3)
(2]j.)

<2:3-D
(2:3.3)
((1(1€1)

((1t1Ü)

1s defmed as follows:

Error Return Address

LNKBLK Lmk Po1n ter

Name of File

Un1t Number

Phys1cal Dev1ce N ame

The first two entnes are used by the system for error proces~ing and initiallz­
ing the dataset. The next entry, the log¡cal name of the dataset, is used to
associate a logical file wJth a phystcal dev1ce The function of the ASSIGN
command is to fill m this entry. Fmally, the last two entnes serve to specify'

oe standard name of the physical device associated with the fü

:OEC 8 2 e "37 :u::nmg ana acts as ';he ilnerr'ace Jetween the program <:>nd l;-.e sys<:em:3
- Qfad;tJes. e__,)

f . I 0 d . 1 t th rogram The user/operator may alter the struct.ure of the re:-oident monitor vÜi Ordinarilv a pro!lrammer spec1 _¡e;; 1 ev1ees as 1e wn es e p . , ,
· ' "'. h . .,. t 1 , '" n t' :!ev¡·~" commands to Lhe nonres1dem mon1tor The nonrcsJc!ent mo:1Itor pJ)O\"/S Li<\c' Linwever there are cucu:TH,Lances w .en ne Wl1l wan .o cno.ngc A1E: t L~ • •

l ... • • '. h ·~ r 1 ,. user to alter many key parts o~ the ~.y ~ten,, ;n arde¡ to set up the sy,te¡n '~r
specificatwns when .ts progran :s run. !! or exan1p •.

1. A device that the user :.pecified when he wrote his p•·o¡¿r:1m is not in
. op2r::1don at run time, but :m alt!:rnative dev1ce 1s av<üb~Jle.

~- The prcgrammer cloes not bloF the config,Jration of ihP system for
'Hhich he is writinr, or cloes not. ·1pish to seecify it (i.e., he is writing :1

;:-¡er.Ha~-purpose package).

Through t.he usP. of tne linkblock, ~he ASSIGN comman<J, or lw é.S'>l•Dl·

· ine- ihe default condition, the programrr.er c:m w::-;te pms-rams that are dPt.nce·
'r.dr-•pendent. From tho user's point of viEw, such device independencf
W".ults in very flexible programming.

The HSeY communicates with the :;ystem in two ways: (1) through
h:•yboarrl instructions, whtch have be2n referred to as cowmsnds, and (2)
:h~·•)l;gh programmed macro instructions. In both cases the etfect is to
;r:inate a control prograrr. or routine which loads a file, makes a correspon
-:r:·~ct? b~tween a log1cal file and a physical d<.>vice, opens a dat.:Jó:et, wriLe~
,)'lto a devi2e, etc. .

í'iaarlu the control p::o!lranls must work in mutual harmony 1f the \.' 'J' ;,r

~v:;:er;\ is to operate successfully. Although much of tbe system c;:m be
:~·ow..:e:vec as the sequellcing of one program or tash:T niter the other, it Js
¡:.-;::,s1h1e to h:'lve two task<; operating in parallel (e.g., ~n 1/0 operatton anda
CC.'l7'lpt:tation). Thus a master control program cal1ed thP mom_tor, which can
IJe .·espons1ble for the entire operating ~y'>tem ar1d zll of 1ts component
n2.:rh, ís needed.
· The monitor must b.: responstble for the initiation, maintenance, and
tcrmirut:on of all other programs, It ccordinatP~ program-to-program and
~~;.sk-to-task lr:msitions and procesS'-'S the cornntuni{·ations among lhe user,
tl:e S':stem, and the ma'ly cont:::-ol programs 1t a!so musl act 011 monitor
~a1is- valida te and trq_nsm1t I/0 calls te dev11'!e hand!ers, supETvise dJta and
f1le ~1an1pulations, and provide error diagnostics.

~'here are basically three sf'ctions of a momtoc {1) the permanently
res1dent momtor, (2) the nomesident monitor, and (3) the system loader.
The resident monitor remains in mernory when syst~>m or user programs are

t A task is a well-defmed umt of work that cor.!p~etPs for the resources of the system
(e g, memory, f¡]~~. l/0) St.~ted n1ore srmply, 1l ts a prograM 0r ro1.1tine> with kno;o;n

mputs antl ouLputs

the next pro¡,r:ram. Normally, at ~he emi of a _;:¡art¡cu~:lf p:..-o~nun, the co:n·
putcr user or the progra..rn itself retuL·~ co-trol to tl>• r~onre<:irlent nwnitc~
At that point the user issues new er:mma:•rlo;; to set up tlle systP;,t fr,r the
next program to be run.

Tl:e system loader builds the res~dent monitor accordi1,g to t.Jrtvr co:n­
:'Ilar~d:: to :he !1oer::::id~r:t r:1:..::1it8r~ I~. 1~:-:.ds ~~ sy~t~r;,. p;cfS:C~!r..s ru-~.d o1l
handlt:rs for those system progr::m1s frcr!1 the systt:rn disk, and these pro­
grams in turn c:.llow the user to edit, assemble, load a.nd link, perform fiJe
rna.nipulations on, execute, d9bug, and so on, his progn.t.ms. Since the pur­
?O~e Gf the system loader lS 'uasicaiiy to set up the syste1n (e.g., by loading
system programs and settmg them inr.o exe(;utwn), it 1s completely mv1s1ble
~o the user.

8.2 7.1. tv!onztor/User Interaction

The console teletypewntcr 1s the p.ri.mctr~¡ user-system interface for DOS
J:rogram control. This control is implemented by comma,1ds to the monitor
which C8.Use system and USt"r prog1ams w be loaded ar.d exe<.:uted (as ,ie­
scnbed in Sectwn 8.2), b; con:.m<:1nds that perfonn ~pecidl st:rvi·~t:>s, anci b;,
control eh aracter commands that provide syslt-:m e un tr :_,¡ \VlillP. n.HlllJ ng use!

· or system programs.
Most of tl1e monitor comrn.ands rnust be issued prior to loading programs

and are interpreted by the 110nresicient monitor, sir.ce it is not, in general,
necessary to keep tht: comm<:ind recogn1zer in memury d•.ning system or uo.er
prog:ram executbn. Howt-ver, dunng progrnm execution, a small seL of
keyboard commands must be avai1a0le for gcfleral program control. Tl1ese
comma.'l.ds are mterpreted by a portton of the telecypewriter's liO dev1ce
handler (wh1ch 1s part of the resiclent portian of the momtof) ami are used
to control progran1 start and restart, dumping of mt'mory, and re!oad:rg o~'
the nonresident monitor.

Since the morntor ,md any progran1 runnmg under it must share the sume
console teletypewnter, the user must spe-:1fy whether the given keyboarct
input is intended for the monitor or for the operating progran1. Conse­
quently, the modes of operation a1e determlíled by the first charader en­
tered. All characters following a special contLol character (a. CTRf./C for
DOS-11) are interpreted as momtor comrnands anclare passed to the monitor
for execution. All other characterg are assumed to be for the operalmg
progrdm, and the characters will be buffered untll required by the program.

8 2. 7.2. Monitor Organization

Figure 8-4 illustrates the dat<1 f'bw and general organization of the moni­
tor. Although most af the func :· .ns of the various modules ha ve .zJready
b2e:: dese: ~L~-'d ,. se v'er<~1 t ;_c{U.lre !;_ ~·ther con1 'TI en t.

--

e: .,
E
"' ~
> ¡-¡

.9
2
o
~

e

"' E
t:

~
:;
t:

"'
"' t:
"'
X

u.J

"' "O
t:

"' E

"' o
u

"O
'· .,
o
.D
;>,

"' ::,¿

1

"' "' 00

"' ~
"'

.,
e -
"' ~

E g
"' 00 w..l

"O

"' ~
o
t:

-" u

"' "'g

"
E
o
CJ

"O
t:

"'
"' .,
00

~
"' E

g
1•1 -.

2
t:

~
"' ~
~

"'
..:; o

t
u.J

~

" "O
t:

"' .e:
:u

f- -¡- S!
;>

"' "O

-¡¡¡
"'' ~1

~1
E¡
E
~1
2¡
o.
:;1
3"1
o
~1
g.¡
-¡

8 .---------i-1
g

.....l,Z

~

"' "' "O ""2
"' o
~ 3: - 2

'---'--+--

s~~ 1

~W--=:..-'=:====--• o
u

"O
t:

o

"'

"' o S!
-- ;> -"'

• 1
~ 1

--- _::. _________ j

"'O

..;
e

"' E
e
o
·= ;>
e
Cl> ...
o ..,
e
o
E

=
;;::
o
e:

]
t:
o
CJ

-o
t:

"' E
E
o
u

240 OPERATING SYSTE~IS

The first modules of mterest are the command processor and the momtor
command decoder. Both the user and the momtor share the same control
program, called the command string znterpreter. Th1s rouhne preprocesses
the spectfícation for \vhatever user or system program it was called by. By
havmg one routine for both the system and the user, one common fonnat
for mput and outpuc dataset spec¡f¡cations to a program 1s provided througJ,
a single monitor routine.

T1'1e next module of mterest 1s the one labeled deurce assignment table
(DAT). Th1s table !S used to store the data from each ASSIGN entry, since
dev1ce(flle specificatwn by console assignment can occur at any trme, even
befare the program that reqmres the P..ew assignment 1s loaded. The DAT is
set up in a s1muar forrnat to the lmkblock (as shown below) and resides
withm the momtor so that its entry may be checked whenever the program
under execution calls for dataset mitialtzatwn .

~cal name of dataset

1 Phys1cal dev1ce name

Un1t number

F1le name

The use of a device assignment table can be illustrated by the following
example. Befare bemg nm, a user program w1shes to assign a DECtape file
FREQ.BIN to a dataset called FRQ The ASSIGN command would be used:

A5~IGN.0T F~EO ~IN.FPO

where the commas act as separators and the colon separates the name of the
phys1cal device (DT for DECtape) from the file name.

At first, the use of the ASSIGN command, the dev1ce ass1gnment table,
and the lmkblock may seem strange. However, the FORTRAN programmer
should be able to recogmze that these new commands and tables are nothmg
more than a new solution toan old problem. In FORTRAN, when perform­
ing reads and writes, the programmer must wnte statements of the form

READ
WRITE

(u,{)
(u,[)

1/0 hst
1/0 hst

where u represents a unit and f a FORMAT statement label. Usually there
are default values for u, and reading a data card is performed on umt 5 [e.g.,
READ (5,10) A,B,C] whue pnntmg a line occurs on unit 6 [e.g., WRITE.
(6,20) A,B,C]. However, when file-oriented devices such as tapes are 1;:,¿d,

o o

Cü•!PO ... ~~ I.S OF ~ úí~1: ~p _L:, ... ,l.'i"-..G .S'tS'ft":'!

sorne iorm ºn ~srgn command (or control c,u-d} must be u,ed te equateQ'or DOS-11, the table is a seL of one-word codes and 1s v.rCJ ~t m the se­
the unit numbers l.<) theu· particular devices. This, of ~0~1se. ;-,"sociates all
:he files on the devH.:e mt:d1a \Yllh the umt nu.·nber, a.nd ;t 1s ur r.u Che user to
oeparate out the various files.

Gomg one step furth~·r, 1t wnuid be very mee to b.? &bl¡; t;:., üssociatc a
oartit:ular fLh: on 2 particu!r:.r dev1ce with u umt !H!m bPr. As · ong as the
iev1cP has a directory us:.cciated with it, this 1s a relatively simple prn,~ess
For example, a programmer cot!ld issLie ctle .::ümmand

ASS I GN. C•I SK m'F l LE. 6

w «.S:>lgn the file, MYFJLE, or1 DISKl to unit 6. Aiternab'E.ly, instead of
uslng unit numbers, data:.;et namcs may be used, so the cornmao0 becomes

allowinfl the user's program to refer to the file by its dat~<':iet namt>, MYDAT A,
i:'<'l.her than by a unit numbec

:~eturnmg to Fig. 8 -±, the la->t module to be explained is the onP labeled
, .i,?¡; huncller. Both at the usPr level and mLernal1y within the momtor. thc

·,:co.n:.;ard method by whicr e momtor rouLme 1s acce:;s,cd is through a tP.p 01

':•9;1itnr ealling m:>truction. For the PDP-11, the El\!T instruct1o~1 ;s usdui
;:ccause its iower byte is not cons¡cereá in the hardwJrP decoding operation,

· :t •.:C'.n iherefore be used for a software code ~o identify the rw)(lul~~ required
xd avoids the use of a ::.eeond word (e.g., as shown, a ca1l for an I/0 .WRITE
·s EMT 2 or llí'4ípfl!2). By us\ng the stack to pa~s arg~mwnts, the rno1¡itor cal~
:.h-:::ugh tb.e EMT ensurP::. l.hat tbe called module has complete freeclom in its
,Js<.: o: l'(;gisters and that the necess::uy }'¡a'ldler for this 1nstruction has the
"pponumty to concrol all communicatJlm ?déhs ~hougi1out th0 syst~rn (e.g
.Si'viT 1S an interrupt-gen.::ratmg mstruction). 'I'h1s control facility lS a part1cu
:ar advantage to ihe small computer oper;.;tir~g system wltich must swap
:nomLor routines m and -:mt of mPmory and mat'llcíl!1 c0rn.plete r..:rmtrol of
user and system programs, all witltout the md of an:y spPr\ ' h · : ·'-ll'='

8.2 7.3. Monitor Rf.'szdency Tu.b!e

An imporLant part of the trap h;:;.ndlec ;s thE: :m,:ntor rec·,doncy tah/¿
(MRT), which supplies two types of mfotT .. él:;on ror thc tr;o~ 1':~:1dl::r:

l. h shows whH.:h monii.nr routine.:> are resiclt-ni i;l memory, e1ther per­
manently or for the dur,ttLon of a pros;:·::~m run, and •.vhere they are loadcd
currently.

2. It acts as a dtrectmy to the rema•nbg routi.nes f'.-" stored within the
monitor ubrary on the system dev¡ce, to enaole immedíate :J.ccess when one
of thesc routmes must l"" brou[!,ht into mew~>r:;

quence of those codes ~b.rting n.t 0.
The fonnai. of each word in the tahlf' (::ee Fig 8-5) ~hnws ti:? currn;t

loe atior, of the momtor routme it rep1esc:nt.>, usm;; thr:- fact that for a valld
PDP-ll 8ddrPss for execut10n access, b1t 0 must be f¡) (1.e., a wnrd boundaryj_

EMT
code

-¡ '

~.m r ro -~r··----------}-'
l r-~----------·--- -- -- ·-!

1
7 1

1
- l 1 Format (AJ 2 --~

1 1 1

1
¡-- Mon:tor -- j 1 Cones¡Dm!m~ routme <S

1

3 l rcqucsts ¡--: m menory --
- -¡ 1

4 1 r--~
:Y!emory st art addres•,

i) 1 -~-;
f- -, : 1 ' 1 1 ' _L_I __ LL.L.L'- LLJ__LJ

1 --
'~~-V""---,........_J

Nt.mb.:r o:
blocb --"

Form.11 (31

[orn.:spcPding rour:ne 1.;

IP the sys:em hbrJ'V
~xternai 1 v --

t
L= 0

f Sy:.km Jn':c~ -tort blo.:'.
1 ' 1 _ _L_l__L__L_l__L_L_I _L'_J ___!_L L L _,

+
- = 1

The st.ate of the wble depe;1ds on whtch routines must renHin \'-lithir: ti.e
compuler memory at all tim(s, because they control th~ systetn generaJ!y,
ancl \lrlttch ruut1t1c~, n;ay re:,ide uyon che systern devic8, becausc they perform
ephemer,u ta:-.ks. By using the system load\:r, nonres1dent routmes may be
loaded when fequirr;d and can later be re~11oved when thetr purpose is servecl.
In th1s way, avct'lable memory space need nert be usc-d by the system (e g.,
the monitor) but may be made avadable to the U'Sf~r. Clearly, ti11s 1s a neccs­
sary requirement for tlw snt:ü1 comp•,¡ter user v1ho has a machme wiLh
somewhat limited memory space.

SEC 8 2 CO\IPO:-;"ENTS OF A DISK OPEH-\ TiC,G SYS fE\! 243 244 OPER "-.TJ'.;G SYSTE\lS CHAP 8

8. 2 7.4. Momtor i'v!emory Orgamzatwn

From the previous sections 1t is clear that certain monitor routines/
moduies must be restdent in memory at all t1mes. These routines determme
the mmimum allocat10n of the computer's memory, as shown in Ftg 8-6.
The modular strucwre of the monitor allows the blser to detem1ine which
modules are to be resident and which modules are to be swapped from th.
•'1sk. In the latter case, it should be noted that a temporanly loaded routinf'
uccupies a reserved area wlthin the monitor (the swap area) and does no1
req-,üre that a part of a program be swapped out first. This means that no
restrictwns need be placed upon the actiVities of a proe-ram as might be the
C'ase if part of its area were potentially removable.

Begwmng of
memory HardwJre vector space

Monitor tables/commumcatton region

EMT hJndkr

SwJp areJ and
swap managa

Resident monitOr rout1nes

Console hstener

System loader/System dev1ce dnver

- SYT

/

1 Free memor y

EOM

TOB

End of
mernory

'

t SP
Stack and

1-------------L----------1 ...,_ PLA
Program areJ

L-----------------~~csA

Fig 8-6 Memory a\location

· .. ~:;~~'"e: the fact that swappmg can be accomplished farrly quickly from
the dtsk, 1t stül takes a fmite time, and the user who has memory to spate
may prefer to make use of it. Modularity of the momtor routines again
helps, m tha~

l. If a parttcular module is required so frequently by the user(s) of the
system, that module can be added to the list of those already part of the
permanently resident monitor, or

2. If a module is particularly appropriate to one application, the routine
can be loaded with the program concemed so that the routine is resident for
the duration of the run.

o

8_2. 7.5_ Dynamic Memory Management

Another feature of the monitor as shown in Fig. 8-6 ts its dynamtc buffer
allocation scheme for free memory management_ This schPme postpones the
allocation of memory for the purpose of l/0 serv¡ce untll a runnmg progrctm
actuaUy requires 1t. Only then are the buffers allocated and the I/0 dnvers
loaded, a11d when they are no longer required, their memory space ts re­
leased. The allocation and deallocatwn of memory, bemg dynam 1c, means
that the basic memory map var1es wtth time. A typical mernory map during
program execution would appear as shown m Fig. 8-7_

Begmn i 'lg o f
memor;

,¡.

Permanently
res1dent
rnon1tor

Other monitOr modules
res1dent for program run

Buffers allocated to
data buffers and dev1ce dnvers

Free
memory

EOM

---- TOB

'

---------------------- -+---SP
Stack

~----------~---------------4----PLA -
Program

CSA
End of area
memory

Fig. 8-7 Memory during program run.

.\nother consequence of dynamic mernory allocation is that all the mod­
llll\, t.hat take ¡¡.dvantage of this feature must be independent of the positions
they occupy. Posltion-independent coding presents no problems for a com­
puter such as !the PDP-11, but allowing mdependent modules to intercom­
municate does.' What 1s needed is a system vector table (SVT), which provides
a common area for the storage of mfom1atwn on the state of the system at
any time. In particular, the SVT must contain pomters to the other parts of
the system which provide such information as the end of the monitor, the
start of the m<;:mitor residency table, the name of the loaded program, and so
on, as shown below in Fig. 8-8. These pointers were previously indicated on
F1gs. 8-6 and 's-7, allowing the reader to go back and interpret the1r use_

8.2_8, Use of Operating Systems

Having discovered something about the internals of a typical disk-based
1

operating system, it is worthwhile to examine how an operating system,
meets the more general needs of its users. As m igh t be expected, the needs

Qncl to be rather diverse, and since it is clearly impossible to v::Je operating

COMPCI¡ENTS OF A DIO,~ OI'CtL\ fiNG .,YSTF;\1

[simr.:">I-Mec.nmg ---- Purpose ---¡
--- --1

SVT·l EOM EnJ of 'Tlf'P'!'Jr í\vn~ll"K Of\~1'1 fnr fre~-<::ore huffer spJ-:~ !
1 1

J TOD Top of buff.:rs [;ynauuc .f'Pd of alloLated buffer space 1

1 • '
1 CSA Core s1ze avc,IJl):r. S<::! :m .n•t,.,:,z~tton ¡o h1J;l-¡e5t f'!e:-P.:.ry addre%1

! PLA ?rogram lodd addre~. 3·~t on!y •Yht:n a IJrogram 1s in core (lowest l
1 pom t loaJed) 1

s;:w Sy~tem ccr.figurat•')'1 Pcr·servect for bit ~'YIIche~ !O ¡ndié3te :vallJt·le

' BAT lkO""'"' of DA 'f ;;~;;;~;:' ''"'" ''"'"'"'"' "'"" ~~~
MUS Momtor/user swttch Low oyte l = prugram Jo..,d,•d,

1

- l "program >:u¡:p~d
H1gft DYk ! = prognm r;.~nn1ng,

1 - 1 = progrJrn wa1t1ng 1

1
1

PSA Prog,ram ~tart addre~s Set ¡f progr.;:-11 m cor~ to addre>:. '" ,ource 1
END (o: 1 :f nvne)

1 RSA Rest.ut aJd•eh Set by FrogrJrn 10r RESTART df con,ole
! Keybo..;Id

i
PGN

1

Progra•n narr.c

1 MRT MRT start adare>3

1

1 uDL DDL start address

1 MS_B __ --_M_S_B sta1 t address

() char~cter v~iL<: ~~)CCl3Ced with 'lou::ce
p!Ograrr.

1Js..:d for acc~ss te¡ ~~~e mor11tcr rcs1-:.~er~cy
table

Used for accc:.s to the Pl.lln swa¡:¡ tuffcr

Fig. 8·8 System vector tab!e c0ntents.

sys~ems tailored to each u_ser's applicatwn, op~rating system designers gen­
erPtc systems that meet the neecls of partlcuJar appl1catiÓn areas. Tbese areas
w1d their operatíng env1ronment may -be 0roadly rlassified as one of the
iollowing:

1. Batch and tin1e-sharing systerns.

2. Real-time control sys~em-;.

3. Data-based systems.

4. Computer communicatio::s systen1~-

Batel": ~rocessing and tim~-o,h2_1 in;,; ~yste:'~" ~·.;:-0 fan;,i!iar opPL,tin~ envl­
'i'Ot'menb for mo~t comput,;r sy,;tem u:'-';s_ ·:1-'es2 í;::neral-purposc pro
~:alf~iT1in~ systen1s a.r2 (,t:~t ~u:J..é.-1 f0r th(;~~~~~:!~z.~.rr~~f:: -y~:c- ~?rl:J·!,~·.-: ~::e"r(J!C~)

OP:.:.R \'ll:-iG S~~S I'L \iS o
and execute h1s prof,rr<:~ms. From the standpomt of the sm,Lil computer
d1sk ope1ating system, these systems I9prO?sent add-on capabillt1es to th•~

, Real-time control systPm'i are designed for operJLmg enviwnméYJts where
: many tasks must be mamtamed and controlled as events occur that are ex­
:

ternal to the cor.-1pu¡;er. Thesé. systems mu~t be C~1pnh:e of sc!:ed•1ling the
real-time programs (called tasks) perforrrling the mput or oubut of nPrp::,sary
task mtc .. rmation, commumcalmg to the h~rnan :•pc-Jai.or what is ~appeniilg,
and performing such other functions as required for a real-tm1e, multi.pro­
grammed operation. A typ1cal exarnlJle mighi be found m ;.1 process contra:
applicatíon.

The dis-;;inguishing feature of th9 d::J.ta-b2sed system .is cl~arly th'C' enor­
mous amouots of information that must be G'!<maged. This !nformation must
be readi!y available to the user who queries the system, and must be well
protected against accidental loss or unauthorized intrusion. Like the real­
time system, emphasís is piaced on program use rather than program develo;J-

1 ment or testmg.
' Computer communkutions systems are often likened to electncal po·-ver
1 Utihties and natural gas ner.works. In both cases the systPm presents 1belf as a
! vast web of mterconnected units capable of almost indeflmte growlh so that
' j as the customer load increases, the systern can be exoancled w~tl10ut limit
l! both by adding extra un1ts and by connecting with other utilit1es to ctraw on
. therr unused capac1~y. Such systems require well-ddined mterfaces and
1 mterconnectwn structures.

1

1

i

What fotiows in trm chapier is an exa.mmation in more detall cf eacn !)[

these operatmg systems. Smce the subject of th1s book is the small com­
~utec, emphas1:; will be on what types of small computer operatmg systems
have been developed, and what function they serve.

8.3. B.~ TCH ANO TIMf:-SHARING SYSTEMS

GIVen the capabJlitles of the small cor.1puter plus the added flex1bthty (f
the d1sk-b::,sed operatmg system, ít is ,¡ot too difftcult to develop a bnu:l!
processmg syscem. The balch processor is acttta!iy an add:ttonJ.l control
progrdffi v;ithm the monitor which allows user commands io come from the
sa.i11e dev1ce as the user programs. By placmg user comrnands and prugtams
together to form jObs, the system 1s capable of running many Job-; conse­
cutively ~vithout requiring operaLor intervcnticn.

Spec1al monitor commands (m adclLtion to nonbatch commands) are
used to

1. Enter batch mode.

2. 8efme and separatP jobs.

SEC 8 3 BATCH ANO Tli\IE·SHAibl'lG SYSTE~IS

3. Indicate that data follow.

4. Indicate the end of the job.

5. Termínate batch mode.

247 248 OPERATING SYSTEMS CHAP 8

but he may not interact with the running program and he must wa1t for the
program· to run to completion befare accessmg the generated results.

These com mands fo:-m what 1s called a jo b con tro/ /anguage, and if the batch

The closed, conversaban TSOS IS the most common form of a small
computer time-sharing system. Usualiy e1ght-to-si.xteen users are able to
program in a higher-level language, takmg advantage of most of the system
resources. Generally speakmg, 1t 1s not the computer power wh1ch greatly
limits the number of users but the amount of memory that 1s available to the input device is a card reader, they are punched into JOb control cards.

Besides the batch system, it 1s not uncommon to find tzme-shanng sys system.
tems on small computers. Rather generally defined, a time-sharing system is
one that provides many users with simultaneous access to a central com·
puting facillty.

A time-sharing system is, m fact, a multzprogrammed computer which
; Jlows its multiple users to share system resources in such a fash10n that each
'Iser thmks that he 1s getting individual attention. The system is multJpro­
grammed in that several user programs will be simultaneously resídent in
memory at any given time. Each program receives a quantum of computer
time, called a tzme slzce, during which it may perform computatwns. Should
1t use up its time slice, or reach a point where further computation is not
possible (e.g., sorne 1/0 mformation is needed), the CPU wul be turned over
to another program. Thts transfer of control is handled rapidly smce th1·
next program to gain the CPU wt!l already be in memory.

The time-shared operation of a computer implies sharing the computer's
time and space resources on a dynamic, and hence temporary, basis. Several
(or all) user programs may be memory res1dent, wh1le others may be in the
process of being loaded from orto auxuiary mass storage.- Indeed, if memo!")
is not large enough to hold all the user programs and data, Jt will be necessai)
to swap user information in and out from the auxiliary storage upon demand

The time-sharin¡:r_ n;-P::-:'~''·o Jys~<:lll (TSOS) requires a sophisticated set of
control :--_-:::;::r· ::.::,_, co handle the shanng of system resources, the tJme slicmg,
·~~ ..,t.orage allocation and program relocation, and the bas1c servicmg of
users, bec;¡des the types of operatwns normally assoctated with a disk op­
eratmg system. One of these control programs, the schedulcr, has pnmary
responsibihty for both the ba:,ic serv1cing of the users and the opt1rnal uses
of the system resources Each tllne the monitor aams control 1t u t1hzes the

b '

scheduler to determine which program is to be put mto execution next and
what user swapping must occur lf tt is to keep the system busy and the
users satisfied.

Because of heavy demands placed on the computer, it is often necessary

8.4. REAL-TIME COWf ROL .SVSTEMS

Real-time control systems are designed for handling data in a time that is
conmtent with the response tlme demanded by the process that generated
the informatton. Such systems operate m a multiprogran1med environment
with the real-time momtor controllmg and supervising a large number of
memory- or disk-resident programs and tasks. Th1s control and superviswn
allows the tasks to share memory and disk space, I/0 device handlers. and
resource allocation and use.

The execution of the many tasks is determined by software priorities,
hardware intenupts, timing algorithms, and requests from other tasks. Ad­
ditionally, the user of the real-time system can install new tasks on-line,
establish their software priority, and request their activation at any time
with an automatic reactiVation at a penodic interval of time thereafter.

The actual system response time for a task request depends mainly on
whether or not another task 1s running at a h1gher-priority level. To prevent
h1gh-pnority tasks from executing too long, a watchdog timer 1s often used
to guarantee that al! tasks are serviced. Th1s timer is set at the start of each
task with the max1mum duratwn that a task may run, ata particular prionty
level, befare bemg suspended or dropped.

The real-t1me momtor controls and executes all input and output opera­
tions. Th1s is one of the areas of d1rect concern to the real-time user, smce
most real-time applications are characterized by a large amount of I/0.
Indeed, tasks are in1tiated or suspended by the occurrence of sorne I/0
operation.

8.4:1. Reai·T1me Programming

to hrnit the flexibihty of the TSOS. The most flexible TSOS 1s an open, Programming for real-time control is generally performed in either assem­
conversatwnal system that gives the user direct access to all the facilities bly language or a higher-level language, usually FORTRAN, with extensions
(mcluding I/0 devices) of the operatmg system. C/osed, conversatwnal sys- to allow re:¡U-tirne monitor calls. Program development can be done on-line
tems usually hmit the user to specif1c languages and systems. Remate pro- with the real-t1me monitor, although the amount of memory available or the,
gram entry systems are the most restncted form of time sharmg, m that the sophistication of the system may require off-hne development.
use•· is capablo preparing and submittmg progran1s from remate terminals, Q Q

.ce M 5 o
R.eal-bme programs rely heavily on system macro calls to sc?Jedu!f!, c¡uetw,

ruí\, su<:pend. sync~r,Jcl!le, and <>O ou, r.~1sks y, itl<n the sys;,,~r!L n;'t~n tiw
datil. th~t are colléc:ted by the Lssk :-; simrly stored to he ;-'••ai·ned later unde:
a. gF:neral-purp•)Se prov.ammmg t:ll'JÍlonmenL.

3.5. DA T J.\-BA~E D SYSTF.I\tiS

Opt~rating as a text-onented infonnalion t.ltiiity, the J;,;;a-ozised :;y:-.tem
, :úlo\vs a large numo.:or of ust-·rs to acce:;,g a ~ommon data base. 'Problerns such
· -'B order ent.ry systems, autcrnated medical record:', seat reservations, infor
· mac10n diredories, and eat.alos searching represent primt:' candidaLes fm

1sr.piemenlation of data-based .>ystems.
'!'he conversatíonal en•Jironment m which such systr-:•n~ are designed t(,

0pr"nne typically demands little compute· prccesJing po\·ler, óut tends L1.
dtoill<HlO large storage fat.:illtie~. Wllen uat:l are EI!Lercc, the system must ched
:Lil l::!gality, decide whcre to file it, and seled an appropri,lte response to bt·
~l'v'Cl! to the user. None of these actwns requtres large amount.;; of processing

When data are fetched and reports are generateci, ther"' 'Vlll be a mampu
:;;,:.ion of mformation :md/or the accessmg of data from penobeldl stOtz¡g,
,kvkcs, in arder to assemt-le thP 1equired dat<!. Still, onty a s:11aii amount ol

. :H<:>c:•~ssing is necessar; to actllally form:.<t and ~roduce the repo:·t. As a
· con:,equr:ncc of the sn-lnll dernand for :.;,,_, central proct>ss::rr, such svstem
· can he time-shared between a la:ge n!..!::nber of users. "

Altho;Jgh most of the data >nthin the system may be p~ltPntiallv acressed
,:t ,my time:, largc vokmes of data nced he ava!labl<=: only for low-level,)ow
a-cquency usagc. Thus the lmportant dspect of these sy<;terns is the avail­
.',bí~ity ~f large-capacity periphero.l stou1g ~ c\evic2s ~uch as di.'>ks, clrurns, and
müit cells. Further, an cffective rht:! manae:ement svstem mmt use the
storagP effect1vely, minhmzmg the amount of ~torage ut1lized and providing
fast and efficient data re~rievaL

[l ~) 1 Eaective Data M;mJ¡,ement

Featlires and t:echnJque:; used to provide eff~::ct1ve data ll1c1lldgemE:nL
inc;ude:

l. Stour¡g data in a hierarchical ir<~e sLrllcture so that the most frequent­
ly acces,ed material can be optimally located in the sLructure.

2. Simultaneously updating and retrie':ing- ín!a¡mation.

3. Allowing dynamic restructuring of ,1 structure during use.

('¡ .
4. _-\J1ocating space within the s:·srem as required rílthe\-d~-:m on a stat.1c

hasis

5. Ü¡Jtimally 111<-ipplrt¡J, a data :;tl'ucture Onto O. penp;leraJ de;~C2, el:·,,:

rNncvmg it o; rewti~wg ti: only a~ Cl•~ed.=:d.

6. l'vlaking lht: ~ystem devH.:e-;nde¡~c:l¿ent to z.vnid reprogram1n i'loJ,.

7. Operatin5 rhé syst2m in a reenl.rant méH>nt:!r so that one c:opy r:1.1y t,,~

shared by all users.

8. Keeping rnost of the system ,11id ~.!ser t.:1.sk.s rPsident jr;. men1ory to
minmüze swapping.

One of the most time-consumíng aEpects •)f dP.veloping inforr.,atiP:. ,;ys­
tem programs involves the optimal ÍJÜPrfdcing of t!te user and the syst2m
within a particular application area l\Tnch attentio0 must he g1\·Pn to huma11
cngineeri:1g and to the modiftcaLion and rev~sicn of t[l,, tt>chrünues :tVall<ú)le
to thP user for the storage dnd retneval of syste··n data. In ~dd1tion, the
protection and security of the infom1ation itself must b2 guar::t'lteed.

8.5.2. Storage, Manipuic~tion, a11d Acces~ of Data

The complex\ty, valídity, scc.unLy, and varicty of the dn.ta that mtist he
h::mdled in a data-bascd informalion syo.tem impose a nt:mber of requiremenls
on Lhe systern. A comíderab\e amount of mfonnat:on will l)e input 1n tlw

, fonn of text strings of variable length. In processtng these data, thc system
w1ll often be requu·ed to check Lheu syntax and even dí'tE:rmi:w, whl-'f•~

po!'.sible, their semanttc conlenc against sorne eslablished Jimits.
When the infonnation is acces~ed and possibly manipulawd, the sy:>tcm

must check to sec ¡f the uscr has bcen gwen such privileges. Consequent!y,
each system user must ha ve sorne eaiJa.bihty jderuance lis t. \\ hich um be
compared with the l!st attached to the dah.!, he wishe::. to access and which
wul pr<:vent unauthorized acces> or transfOlll!ation. T0e secunty ancl puvacy
so gained will often be selective and data-dependent.

One way to aid the system m protccting itself is to make it a clost:;,
conversational time-sharing sy~Lem. Users may only make respome:-. to pr~­
defmed system requests, and may not write, te:;:t, or c.ebug genen.l-purpose
programs. AdditiOnal!y, the tenni!lal<; for such systems may be cles1gned so
as to require push-button responses to "canned" m<~ssJ.ges displayed by the
~ystem. Alternatively, higher-level languages m ay be used to constnwt more
cor:1plex sear~h pattcrns or data structuring, but such langlJage'l should be
execu ted inte11Hetively so that sy:::tem integrity m ay br~ preserved.

8.6. COMPUTER COI\1MUNICAT!ON SYSTEM

The computer COl!!:nunicat: _,;\ sy.stem operates as :::n inter~cnnected net­
-,,¡o;·k of ;,nde¡_enr!ent cor.1putef elements ·.vh1ch comrnu<ticate wJth each other

::.~:.C 8 6 C01\1PL fER CO~l\IL:-.tC-\TIO'\ SYSTE\1 251

and share resources. As a component of these networks, the small compute_
generally serves as a dependent system that acts elther as a data commumca
Lor ora data concentrator.

As a data commumcator, the small computer serves as one of th,·
following·

1. A dev1ce for the storing and subsequent forwarding operat10n 01
network messages.

2. A message translator and formator. ·

3. A controller for a large machme which it interfaces to the network

4. A data entry system for prov1ding remate JOb entry t0 a processinf
facihty.

As a data concentrator, the srr,all computer serves as

l. A multiplier that processes many low-speed terminals locally, cot
centrating the data into one medium-speed communicat10ns line to a larg<>
system.

2. A message buffer, commumcations line control, and character-tc_,
message assembler/dlsassembler for low-speed dev¡ces connected to it.

In both applications, the small computer offers a powerful, low-coo.~
altematwe to hard-w1red commumcat10ns controllers on the front end o.
lmge computer systems. And since these small computers are general
purpose machines with character-handling mstructions and powerful inter­
rupt structures, they may be programmed to

1. Route messages.

2. Provide code and speed conversions.

4. Corripress data and format messages.

5. Automatically identify termmals and therr characteristlcs.

6. Provide tune and date stan1ping of messages.

7. Establish communications automatically.

8. Preanalyze messages befare transm ission.

9. Provide edltmg, tabulatlon, anc1 other formating services.

8.6 1. Commumcat10ns Software

252 OPER-\.I¡~,G SYSTE:\IS CH-\P 8

operatlon immediately, and modular systems, which comist of both hard­
ware (mcluding the computer and spectal commumcat10ns hardware) and
special-application software programs, such as device drivers and commum­
catlOn executwes

Tum-key systems do not requtre the user to program the com¡;u ter

¡ nde1~d, sorne of these systems are supplied with read-only memones, whtch
<'annot be accidentally destroyed and whtch have been spec¡flcally pro­
~SYammed to perforrn a fixed sequence of instructwns. On the other hand,
modular systems are used as a base on wh1ch the user can bulld spec!al­
purpose systems tailored to h1s needs.

Wtthin the modLtlar systems there will be m terrupt serv1ce routmes,
+--rminal applicatwns progTnms, and system control/interface packages. Ubl­
- :mg these routmes, the user tmlors his system to h1s spec1fic application,
· hereby mir,imiz;r¡g ·>" am::mnt of bardware and software requued.

REFERENCES

:Olany good books on the subject of operat1ng systems can be found. However, most of
~hem, ltke Watson (1970), Katzan (1973), Donovan (1972), and Organtck (1972), are
eoncPrned with the features and structure of particular systems (e g, 081360, Multics,
and XDS-940). The notable excepttons are Hansen (1973), Cohen (1970), and Oenntng
and Coffman (1973). Unfortunately, the latter three books tend to be mere mathe­
P1aticdl and theorettcal m nature and may not be as useful as those geared to spectftc
ímplementations. For a general treatment of modern operating systems, the reader
should peruse Oenmng's (1971) survey arttcle.

Manufact()-supplied software comes in two forms: complete systems, Q
_~ten referred'--.;o as turn-key systems, wh1ch may be installed and placed in

o

()

("
') '--./

o

DIRECTORIO DE ALUMNOS DEL CURSO APLICACION DE MINICOM-

PUTADORAS 1977

FRANCISCO ALMA DA V.
Sría. de Agricultura y Recursos Hidráulicos
Jefe de la Ofic. de Inform. y Datos
Reforma 35-11°
México 1, D.F.
Tel. : 591. 03. 83

ARTURO AMPUDIA PALMA
Asbestos de Méx., S.A.
Jefe de Sistemas
Carr. Circunv. Km. 12. S
T1a1nepantla, Edo. de Méx.
Tel.: .565. 01.00

SALVADOR BARRA ARIAS
Centro de Cálculo
Fac. de Ing. UNAM
Tel.: 548.65.60 E. 261

FRANCISCO J. BECERRA SANTIAGO

GUILLERMO CAÑIZO LECHUGA
INFONAVIT
Jefe de la Ofi. de Inform Téc.
Bca. del Mto. 280
México 20, D.F.
Tel.: 524.52.33

ARTURO CUADROS REYES
Sría. de Agricultura y Recursos Hidráulicos
Analista de Sistemas
Reforma 35-11°
México 1, D.F.
Tel. : 591. 03. 83

MARIO DIAZ OTERO
Sría. de Agricultura y Recursos Hidráulicos
Jefe da la Ofi. de Programas
Reforma 69 -10
México 1, D.F.
Tel.: 566.17.

GUIDO EBERGENY BELGODERE
Cía. de Luz y -Fza. del Centro S.A.
Jefe de Ctas. Especiales
Melchor Ocampo 171
México 17, D.F.
Tel.: 546.39.35

Plutarco Elía:: Calles 1362-402
México 13, D.F.
TEl. : 539. OS. 65

Horticultura 188
México 2, D.F.
Tel.: 526.18.70

Av. El Caporal Andador 6 No. 25
México 22, D.F.
Tel.: 594.27.16

Lamartine 404
México S, D.F.
Tel.: 545.20.41

Antonio Sola 78-1°
México 11, D.F.
Tel.: 553. 88.22

Floricultura 239
México 2, D.F.

Claveles 211
Fracc. la Florida
Edo. de México
Tel.: 546. 39. 35

o

o

o

L- o =2=

SERGIO FUENTES LOMELI
C.F.E. Club. Cuicaealli 6
Superintendente de Const. Circuito Cronistas

() Subestación Texcoco Cda. Satélite, Edo de Méx.
Texcom, Tex. Tel.: 572o 39. 80
Tel. 4 010.18

ALBERTO GARCIA ADALID
Inst. de Invest. Eléctricas Villaseñor No. S Circ. Geógrafos
Jefe de la Unidad de Cómputo Cdao Satélite, Edo. de Méx.
Leibnitz 14-901 Tel.: 562.16.37
México S, D.F.
Tel:: 511.68. 64

JORGE GARCIA CAMACHO
Paco de Ing. UNAM Netzahualcoyotl 117
Analista Programados México 14, D.F.
México 20, D. F o Tel.: 577.13. 30

ARTURO GUTIERREZ NAVARRO
PE MEX Taxqueña 1818 C-23
Marina Nal. 329 México 21, D.F.
México 17, D.F. Tel.: 544.93.53
Tel. : S 31. 61. 89

o MARTIN HIDALGO WONG
S.A. R.H.
Reforma 69 ~ 10°
México 1, D. F.
Tel.: 566.17.91

ZACARIAS SALVADOR LESSO ROCHA
Cía. Elevadores Otis, S.A. de C.V.
Abedules 75
México 4, D.F.
Tel. : 541. 60 o 00 E. 132

ALEJANDRO LOPEZ ARECHICA
Aseguradora Hidalgo, S.A. Morelos 7-B

__ Ejercito Nal. 180 · México 21, D.F.
México S, D.F. Tel.: 554o 96.46
"TEL.; 592. 39. 07

ALEJANDRO LOPEZ MUÑOZ
López, Goñí y Cía. S.A. J. Fernández de Lizardi 60
Director General Circ. Nov.elistas

o Gante 15-116 Satélite, Edo o de Méx.
México 1, D.F. Tel.: 5620 25.30
Tel.: 585.33.55

·-

o

. ·.

o

o

HERIBER TO OLGUIN ROMO
Fa c. de Ing, UNAM-

() TEL.: 548.65.60 E. 261

o

o

HECTOR RIVERA MAR TINEZ
Centro de Cálculo
Fac. de Ing. UNAM

CARLOS ROJAS TOLEDO
SARH
Dirección de Construcción

]OSE MARIA SALCEDO LOREDO
Sría. de Agricultura y Recursos Hidráulicos
Jefe de la Ofic. de Programas de Obra
Reforma 69 -10°
México 1, D.F. ·.
Tel.: 566.17.91

GUADALUPE ZAMORANO LIMON
--sría. de Agricultura y Recursos Hidráulicos
Reforma 69 -10°
México 1, D.F.
Tel. : 535.13. 26

MANUEL ZARATE CHAVEZ
Cía. Elevadores Otis, S.A. de C.V.
Abedules 07 S
Sta. Ma. Insurgentes
México 4, D.F.
Tel.: 541.60. 00

'edcs. 9,XI,77.

Odontología 69-401
México 20, D.F.
Tel.: 548.18.60

Campo Encantada 39
México 16, D.F.
Tel.: 352.25.51

Nte. 64 No. 4789-18
México 16, D.F.

=3=

U. Habit. Patos -Mz. 4-Edif. O -Depto. 1 ,
México 1, D.F. 1

Tel.: 522.57. 84

Calle Encinos Mnz. 252 L. 8
Villa de las Flores
Tel. : 541. 40. 00 E. 132

.. ·'

o

o

