UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
FACULTAD DE INGENIERIA

DIVISION DE ESTUDIOS SUPERIORES
CENTRO DE EDUCACION CONTINUA

S DIRECTORIO GENERAL
\/ REGISTRO DE ASISTENTES Y PROFESORES.
NOMSRE DEL CURSO: FOLIO ! | ZLAVE ASOC|
i 5 6 7
v i" B E 3
L] ¥l NN RN
8 13, L4 NOMBRE(S) APELLIDO PATERNO APELLIDO MATERNO 41
REG. FED. CAUS. | CED. PROF,
2 51 52 . 58
TEL. PARTICULAR | TEL. OFICINA EXTENSION
59 65 66 72 73 76
MARQUE CON UNA CRUZ
ASISTEMTE D PROFESOR l:] D L’j
77 80
i .
g~ DOMICILIO PARTICULAR (CALLE. NUMERO Y No. INTERIOR) 41
N
]
o j ZOPD
42 COLONIA 71 72 73
ESTADO 74 75
1 2]
TITULO PROFESIONAL 76 77 ESPECIALIDAD 7879 80
8 DOMICIUOQ DE OFICINA (CALLE, NUMERO Y No. INTERIOR) A1
i ! _ Z.P. E~
42 COLONIA 71 7273
3]
ESTADO 74 75 80

—~ N

J,\W/SOCEACIONES A LAS QUE PERTENECE.

e, Nl

-~

~

)

Fecha
Occ. 21

Tor, 22

-

Nov, a4

Nov. &

Nov, 11

PP §
[N]

Nowv,

Sai3h

4al8h

O

ATLICACION DE MINICOMPUTADORAS

Tema
INTRODUCCION
CEOUITOs LOGICOS

ARQUITECTURA DE MINICOMPUTA -
DORAS

INTRADA Y SALIDA DE MINICONIPU
TADORAS

ACCESO DIRECTO A MEMORIA

PECCRAMACION DY SISTEMAS

3

SISTEMA OP?
RA

T ICACIONES

APLICACIONES EN UNA MINICOMPU-
TADORA

CLAUSURA

-y
7
¢

octubre al 12 de neviembre de 187

“RATIVO EN TiEMPO REA(
SELECCION DE UNA MINICOMPUTADC

Profosor
M. -n ' Marcial Portilla Robertson

M., en C. Marcial Portilla Robertsorn

M. 20 €, Marcial Porrilla Robervtsor

Ing, Raymuulde Segovia

M. en C. Manucl Grijalva Lopez

dr. Viector Gevez Gresies

3

Ing. Raymundo Segovia

Dr. Adolio Guzman Arenas

Dr, Victor Gerez Greiser

M. en C. Gertudiz Kurts de Lara
Sr. Ferrando Lepe Casillas

@

DIRECTQORIO DE PROFESORES DEL CURSO APLICACION

DE MINICOMPUTADORAS

DE ., VICTOR GEREYZ GREISER
PROFESOR TITUILLAR

INGENIERIA MECANICA Y BLLECTRICA
FACULTAD DE INGENIERIA

UNAM

TEL..:350.52.15 E. 3746

M. EN C. MANUEL GRIJALVA LOPEZ

JEFE DE LA SECCION DE INGENIERIA DE CONTROL
SECCION DE INGENIERIA MECANICA V ELECTRICA
FACULTAD DE INGENIERIA

UNAM

TEL.: 850.52.16 E. 375l y 3/.52

DR, ADOLFO GUZMAN AR®NAS

INVESTIGADOR

INSTITUTO DE INVESTIGACICNES EN MATEMATICAS
APLICADAS Y EN SISTEMAS

UNAM

TEL.: 550.52.15 E. 4385 y 4584

M. EN C. GERTUDIS KURTZ DE LARA
LABORATORIO DE CIBERNETICA
FACULTAD DE CIENCIAS

JNp

M. N C, MARCIAL PORTILLA ROBERTSON

JEFE DE LA SECCION DE COMPUTACION

EDIFICIO DE INGENIERIA MECANICA Y ELECTRICA
FACULTAD DE INGENJERIA

UNAM

TEL.: 550.5Z2.15 2. 3730

ING. RAYMUNDO SEGOVIA
INVESTIGADOR

INSTITUTO DE INVESTIGACIONES EN MAT
APLICADAS Y EN SISTEMAS

UNAM

TEL.: 50.52.15 E. 4583

1
e
=
>
,,..’i
ot
S
o>
(@2

‘edcs. 7, X, 1877

O

. - 228 -
- - RN RN w L

| R

] 7 divisisn de .l estudios. superiores
ame e facultad de ingenieria, unam

safz centro de educadion continua’ g

i

APLICACION DE MINICOMPUTADORAS

PROGRAMACION DE SISTEMAS

Tomado del libro Minicomputer
Systems Organization and Progra-
mming. (PDP-11).

Noviembre, 1977

Palacio de r4i reria Calie de Tacube 5, primer piso. México 1, D. F.

O

Fr4
@ 1/0 PROGRAMMIMG

Zeing able to program a computer to doc calcu.lations is of little use if
inete is no way of getting the results of calculations from ti:le l_nachme.
ixewise, the programmer often must suppiy th% computer _v\th m_forma-
cion to be processed. A programmer must, therefore, be provided with thai
means to transfer information between the comfputir atnd the peripher
cevi ¢ lv input or that sere as a means ol output. ‘
~te“IC§50~$iiSr§§);fogn an 1/O function, the programmer must specify yvh:%t
+he data are, where they are to go or come from,.and h.ow th.e-I/O dev1ce3
15 be controlled. Depending on the small compufer bemg ut'xhzed, the I/
function may require the CPU to wait until the I/O f)peratxon is complet;, or
he 1/O function may allow the CPU to go on and process oth'er f;\lnlcdxons
while the operation is being performed. When the 1/O function ho vshup
she CPU, we say that the I/O operation is interlocked with the CPU. When

;;)th can be performed simultaneously, we say that IO is concurrent with
Lamgtl)lrtzztti:.nt operation is becoming the standard mede for mc?st sm;ﬂéi
computers. This mode takes several forms. Ir:x one forn'n, the concun:ent It,h:
fuhction can operate on data words one at a time. During the opemtlorlx,‘t e
data word is held temporarily in-a special register, such as the accumulator.

In another form, the 1/O function operates‘directly between melir;lc;rg
and the I/O unit. This mode of operation requires a separate path [c: ?t
a direct memory access { DA A} path] between the memory and !:‘he [/O unit.
The DMA allows the 1/O function to be serformed with a mnimum of de-

rt of the CPU.)

penc}fr;?i’rgnmtggepif operation allows a large block of [/O information to ‘?u
passed between an I/O umt and the memory. As support fdor such b[?(’}‘
trnsfers, special registers are prov:ded for holding a count of the number o

154
@

11O PRHOG R AAINMING Lreak o,
7N

words yet to be transferred, the current /O unit and memory\'é{idress of the

data word being iransferred, and the data. Ounce miuated by an /O nsorus:

tion, btlock transfers run concurrently and independenilv of the CPU unui

they are completied (i.e., the word count goes 10 zeio or an address.rg ery ¢

oceurs),

Whenever there 13 a DMA path as well as a CPU path to memory, con-
flicts may arise. Because the {/O requests for memory are time dependent,
occur infrequently, and are of short duration, the 1/O reguest is given pref-
erence over the CPU regquest. . Sueh preferential treatment is cailed cvcle
stealing in that the [/O unit is granted memory cycles at the expense of
the CPU. -

It should be fairly obvious from this brief introduction that with the
various possibilities, I/O programming is very machine dependent. The com-
plexity of the I/O system determines the corresponding complexity of ihe
I/O programming. On the PDP-11, the programming of 1/O devices is ex-
tremely simple, and no new I/O nstructions are necessary for dealing with
input/output operations.

The key to the simplicity of 1/O programming is the UNIBUS, described
n Chapter 3. The UNIBUS permits a unified addressing structure in which
control, status, and dida registers for pernpheral devicees are directly addressed
v memory locations Therefore, all operations on these registers, such as
transferring mformation into or vut of them or manipulating data with them,
are performed by normal memaory reference instructions.

/

51. BASIC1/O PROGRANMMING AND OPERATIONS
FOR THE PDP-11

The use of memory reference instructions on peripheral device registers
Freatly increases the flexibility of 1/O programming. For example, informa-
tion in a device register can be compared directly with a vaiue and a hranch
marle on the result.

CMFE
EEN

fre s % T
ve = YEL

CHARACTER = ¥~
iT s

In this case the program looks for a “Y’ in the keyboard data buffer (TKB)
and branches if it finds it. There is no need to transfer the information into
an intermediate register for comparison.

When the character is of interest and is to be saved, a memory reference
instruction can transfer the character into a user buffer in memory or Lo
another peripheral device. The instruction

1ove

transfers a character from t? » paper tape reader buffer (PRB) into a user-

Zefined longlion.

FRE, LOC SAVE CHAFACTER IN MEMORY LOCATION “LOCY

SFC b1 BASIC 170 PROGRAMMING AND OPERATIONS FOK "HEPD™ 1] 155

Another aspect of I/C programming is that arithmetic op-1. tions may be
performed on a peripheral device register that 1s used for hoth input and

output. Thus there is no need to funnel all data transfers, arithmetic opera- -
tions, and companson through other words or general-purhose registers.
Instead, the peripheral device register can itself be treated as an accumulator.

6.1.1. Device Registers

All peripheral devices are specified by a set of registers that are addressed
as memory and manipulated as flexibly as an accumulator. For each device,
there are two types of associated registers:

1. Contro! and status registers.

2. Data registers.

Each peripheral has one or more control and status registers (CSR’s) that
contain all the information necessary to communicate with that device. The

general form shown here does not necessarily appiy to every device, but is
presented as a guide:

A A T A L R L
] I —l
bbby
\ },] — Y_._) _Y_/;__T_JT
{
Errors I ! |
Busy ————— |
Uit gelact R ‘
"Done or ready — —————— ‘ ; 3
Interrupt enable — | ‘

Memory extension ——
Device tunction
Enable

—_— — e — . J

Many devices require less than 16 status bits. Other devices will require more
than 16 bits and therefore will require additional status and control registers.

The bits in the control and status registers are generally assigned as
follows:

Descripttion

Generally, there is an individaal bit assocated with a

spectflic error When mone bits are reacocd for errors,
they can be obtained by expanding the eiror section n
the word or by using another status word., Generally,
bit 15 1s the inclusive OR of all other erroc bits (1f ther

is more than one). All errors are generslly indicated by
2 Y T n] nbntbiie ot

I/C PROGRAMMING CHAP ¢

11 Busy Indicates that a step is being performed,

10-8 Unit Select Some peripheral systems have more than one device per
control. For example, a disk system can have multiple
surfaces per control, and an analog-to-digital converter
can have multiple channels. The unit bits select the
proper surface or channel.

7 Done or Ready The register can contain a DONE bit, a READY b, or
a DONE-BUSY pair of bits, depending on the device,
These bits are set and cleared by the hardware, but may
be queried by the program to determine the avalability
of the device.

6 Interrupt Enable Independently programmable, If bit 6 is set, an inter-
rupt will occur as a result of a function done or error
condition,

5-4

Memory Extension Will allow devices to use a full 18 bits to specify ad-

dresses on the bus.
3-1 Device Function
Bits

Specify operations that a device is to perform. For
example, a paper tape read function could be ‘‘read one
character,” An operation for a disk could be ‘“‘read a
block of words from memory and store them on the
disk.”

0 Enable When set, this bit enables the device to perform the
I/0 device function, .

Each device has at least one buffer register, besides the CSR registers, for
temporarily storing data to be transferred into or out of the computer. The
number and type of data registers is a function of the device. The paper tape
reader an.d punch use single 8-bit data buffer registers. A disk would use 16-

bit data registers and some devices may use two 16-bit registers for data
buffers.

6.2. BASIC DEVICE FUNDAMENTALS

The two most basic peripheral devices commonly attached to a PDP-11
are the ASR-33 Teletype® and the DEC PC-11 high-speed paper tape unit.
Actually, these two devices are really four units in, that the teletypewriter
keyboard/reader and printer/punch are two separate units, as are the paper
tape reader and punch contained in the PC-11.

6.2.1. Teletype Keyboard/Reader

The teletype control contains an 8-bit buffer (TKB) wh(o/assembles and

holds the code for the last character struck on the keyboard or read from the

rha

tape. Teletype characters ‘rom the keyboard/reader are received serially by
the 8-bit shift register TXB. Upon Program cominand, the contents of the
TKB may be transferred in paraliel to & memory jocailon or a general register,

A characier is read from the low-speed reader by setting the teletype
seader enable bit, (RDR ENB), toa 1. This sets the busy bit (BUSY)toa 1.
When a teletype character starts to enter, the control deenergizes a relay in
the teletype unit to release the tape feed latch. When released, the latch
mechanism stops tape motion only when a complete character has been
sensed and before sensing of the next character is started. When the charac.
ter is available in buffer (TKB), the busy bit {BUSY) is cleared and the done
flag (DONE) is set. The keyboard must be read within 18 milliseconds of
DONT t5 ensure that there is no loss of information,

‘Teletypewriter Keyboard/Reader Status Register (TKS):

1514 13 12 11 10 9 3 76 5 4

J 21 0
7, 7] 7 /7 o
7 7 % A {
% n i
; 7Y !
A EY
| !
Busy ————- | . ’
Done—roooo . | i |
Interrupt enable —— | 4
Reader enable ——— . i
Bit Name Description

45-12 Not used,.

50 Busy Indicates that the teletype controj is receiving a start bit
cr information bits, Cleared by INIT, set by start bit,
cleared after receprtion of first halt bit. Read only,

10-8 Not used,

7 Done Character availabie in buffer, Clearad by INIT, cleared
by referencing data buffer, causes interrupt when INTR
ENB = 1, Read only, Cleared when RDR ENB is set,

5 Reader Interrup: Interrupts Enable. Enables Srror or Done to cause an

Enable (INTR ENB) interrupt, Cleared by INIT,

5-1 Not wsed,

<

Reader Enable

Enabies reader (nc: teyboard) 10 read one character,
{RDR ENR)

Cleared by IMIT ol el »hEn esilimate sinrt bit i
detected, Lo ool s

= A 188 :/O PRCGRAMMING /1 CITAR
B -~ s A
Q ASIC DEVICE FUND. STENTALS ‘-(\ _>

B

Teletypewriter Kayboard/Reader Buffer {TKB):

i5|4l3‘.2‘1110‘\78765132!0‘j
T T)
W‘///////// /%7 M}////) o C]
T Y)] |
[/ 2 AN A / . i
%/ T o !
:
Data
Bit Name Description
i
15-8 Not used.
7-0 Data Holds character read. Cleared by start bit. Read only.

Any reference to TKB (as word or byte) or TKB + 1 clears DO(I;E.
The‘ “unused” and ‘“load only” bits are always rea'd as 22ros. Loading
“unused” or ‘“‘read only” bits has no effect on the bit position. 'I"IheRni‘le;-
moniz: “INIT” refers 1o the initialization signa! issved by ON, POWE s
console START, or RESET,

6.2.2. Teletype Printer/Punch

command, a character 15 sent in par_allel from a memory
loca(t}iznp(r:rg?;neral register) to the T_PB for transmissmg to {t:}}:e zeipggiii
punch unit. This transfer of information from the TPB into ! ete ise“ o
punch unit is accomplished at the normal telet.ype rate anc requxu Zh o
milliseconds for completion. The READY flag in the teieprmter/P tr;n.ance
dicates that the TPB is ready to receive a new character, Kg .mazlt enance
mode is provided which connects the TPB ocutput to the TKB inp

the teletypewriter operation inay be verified.

Teletypewriter Printer/Punch Status Register (TPS):

1 14 13 _172 l/i 10 9 3,'7 6 S5 4 ;1/ 2 ;/lh 0
R Y
T

Ready <
Interrupt enable

Maintenance

Name Description
am

Not vsed,

BASIC DEVICE FUNDAMENTALS 19

7 Ready Punch available. Set by INIT, cleared when buffer i.
loaded, set when punching complete, Caused interrupt
if INTR ENB = 1. Read only,

6 Interrupt Enable Enables READY to cause interrupt. Cleared by INIT.

{(INTR ENB)

5-3 Not used.

2 Maintenance Maintenance function. Disables serial line input from
teletype unit and enables serial output of punch to feed
into reader buffer. Cleared by INIT.

1-0 Not used.

Teletypewriter Printer/Punch Buffer Register (TPRB):

1514 13121110 9 8 7 6 S 4 3 2 1 0

. IImn

'/5',)///),4/§ QA7
}

J

Data - -
Bit Name Description
15-8 Not used.
7-0 Data Holds character to be punched. Cleared by INIT. Load

only.

Any instrmiction that could modify TPB as a byte or word clears READY and
ininates punching. Other references to either byte or word have no effect on
the punch

The four addressable registers associated with the teletype may be read
or loaded using any PDP-11 instruction that refers to their address. The ad-

dress assignments for these resisters oo £ e
Register Address

TKS 177560

O TKB 177562

TPS 177564

TPB 177566

160 1/0 PROGRAMMING CHAP. 6
When using PAL-11, a direct assignment is made {e.g., TKB = 177562) so

that the device registers may be referenced symbolically,
6.2.3. Simple Programming Example
Since the teletype keyboard is treated as a separate unit from the printer,

it Is necessary to write a simple program to “echo’ back to the printer a
character typed on the keyboard. This program looks as follows:

TKE=1775686 » DEFINE

TKE=TKS+2 » STARATUS

TPS=TKS+4 » AND EBUFFEFR

TPE=TKS+E , REGISTERS

ce =1008
ECHC INC TKS » SET READER ENRELED
LOOFL TSTE TKS «TEST FOR DONE

EFL LOOFL » GOES NEGATIYE WHEN SET
LOGFPZ TSTER TR » TEST PRINTER RESDY

BFL LOOF2 » GOES NEGARTIYE WHEMN SET

MOVE TkE, TPE , MOVE CHARARLTEK

Bk ECHO » LOQF ARQUND ARGAIN

END STRRT

The value of making the DONE bit line up with the byte boundary is
clearly demonstrated in this example. Had it not been set up as the sign bit
of the byte, it would have been necessary to copy the status register to a
temporary location so that a bit test (BIT) could have been performed, fol-
lowed by a branch on zero. Since this alternative, although possible, is not
as “neat” as the TSTB, it illustrates once again the value of properly design-
ing a computer at both the hardware and software levels.

The setting of the reader enable bit in this program is superfluous. How-
ever, by including the instruction to do so the program is generalized in that
mput is allowed to come from either the keyboard or the reader. Likewise,
output can go to either the printer or the punch. All that is necessary is for
the user to place a paper tape in the reader and set it to ‘‘start,” or to tum
on the punch, and these paper tape devices become operative (in parallel)
with their counterparts (e.g., the keyboard or the printer). Consequently,
this one program allows for any legitimate combination of teletype devices
to be connected together

6.2.4. More Complex Octal Dump Program

A programming tool frequently used by assembly langu=ge programmers
is the memory dump program. This program aids the user w/” \is developing
or debugging programs by providing him with an octal copy o1 a program or

C

The program shown is 2 memory-to-teletypewriter cctal dump reutine
ing tlustrates basic I/C programming utihzing ine teleprinter. It also ilius-
aies the use of pasition-independan: cocding., The nesd for PIC 15 dicrated,
of course, by the necessity of being able tc {oad the dump routine anywher2
in memory, .

The program begins by typing an “A” character and waiting for the user
{0 type in an octal starting location (up to five digits). The return key causes
the program to respond with a line feed and an “N* character, signifying a
program request for number of words to be dumped. The second retum
begins the dump:

BASTC DEVIC® FUNDAMENTALS 18!

2 6 2

Aitea

Mi2

801608 010706 QBSTas 112760 2BAALS BA4TET? QOaldz 21127ad
531829 @B4767 oaalzz

A flowchart of this program is shown in Fig, 6-1, and the actual program
lo0ks as shown in Fig. 6-2.
8.2.%5. High-Speed Reader/Punch

“he high-speed reader/punch consists of two uniis for reading and punch-
g eight-hole perforated paper tape at, respectively, 300 characters per
serond and 80 characters per second. Each unit has its own status and buffer
registers capable of controlling the transfer of one byte to or from the unit.

Data are recorded (punched) on paper tape by groups of holes arranged
inn a definite format along the length of the tape. The tape is divided into
channels, which run the length of the tape, and into columns, which extend
across the width of the tape as shown in Fig. 6-3.

The status register for the paper tape reader is 2lmost identical in format
o the status register for the teletypewriter keyboard/reader. The difference
is found in the error bit. which is set by an *'out of tape” or “off-hne”
condition,

Paper Tape Reader Status Register (PRS5):

151413 1211109 8 7 6 S5 4 3 2 1

0
)) ‘LT ////g//f{,/}%/j/{@ l
I |
|

Error
Busy
Done

Peader iierrupt snable

Feader enab g ~—— ——

O

162

TN
Start 3
_/

| Serup 3t |
powmnter |

7 PCHAR
Put out carriage
return, line feed
and an “A"

Y ACHAR
Accept an
octal starting
address

PCHAR

é(;!iAR

Accept ary

octal word)
unt

Set up word
count and last
address to be
dumpea

Convert dump
address to
ASCII

[nitialize
words/line |

No

/O PROGRANMNING

r— e,

(I ACHAR \)

Sevdigit |
count (¢ 3

Keyboard "~
ready .-
]

Read and echo

character
Akl

—

Character
an S

{ Stop)N_(<é®\
T 2 Cdarnigs

5::turn" e &
\// C___ A

v
Convert ASCli ’

charactar to octal

count

Convert and

priat out one

memory word

ninted”
p a4

Words

No

- /\;
Printer
ready?

™
,Prmt chara

—_—

-

27

-~

SEC 62

CORE

_ADDR

LOOP1

ARND

aCTAL

164
BASIC DEVICE FUNDAMENTALS 163
EDUMF - AN OCTAL CUMF FROGRAM
WRITTEN EY ELLIOT SULGKAY E£/1/72
INPUTS ARE N -- THE NUMEER OF WORDS toneP
AND A -- THE STRRTING ADDRESS
OUTPUT 1S THE STARTING MEMQORY ADDRESS
AND THE CONTENTS OF UP TO 8 WORDS FUDG
OF MEMORY
RB=129
R1=11
R2=12
R¥=%3%
R4=24 !
R5=45 :
SP=ig .
FIVE
=97
PC=2 BUF
TKS=1775€a
=TKS+2
TKE=TKS+2 CNT

TPS=TKS+4
TPB=TKS+o

CR=15S
LF=12

MOV pPC, cF ,SET UF STARCK FOINTER

TET -(SP)

MOVE #CR, R@ » PRINT INITIAL CHRRIAGE

JSR PC, FCHAR , RETURN HAND

MOVvB #LF, Re »LINE FEED USING

JSR PC, PCHAR . FPUT (HAFACTER SUEBROUTINE

MOVvEe # A, R ., PRINT AN "R

G3E -rC, FLRAR

JER FC, RCHAR JACCERT UP TO 5 OCTAL CIGITS AS ADDRESS
Moy RS, R1 »R1 CONTHINS STHRT ADDRESS

MovE $°N, R@ -FPRINT 8N N FOR NUMEEF GF WORDS

JSR #C, PCHRR

JSR FC, ACHAR S, RCCEFT (= S QCTARL OIGITS

MoV RS, RZ , FORM WORD COUNT NUMEEF

ROD RS, K2 ., TQO BE OUMFED

ADD r1, k2 , FORM ENDING RODRESS

TET -(RZ) SLESS TWi

Mov FC., R4 SET UP RELATIVE ADLRESS

ADD BEUF-LOOF1-2+4¢, R4 COUTFUT EBUFFER STAFT ROCDRESS
Moy #CR, K9 ,RESET PRINTER

JSR PL, FCHAR , CARRIAGE

HOY #LF. Fa , FOR DuUMFP

JER PC. PCHAFR , INFORMATION

MOV ‘R1, R@ » CONVERT THE CUMF RODRESS

JSR FPC, CNVYRTZ TG ASCID CHARACTERS

Moy #& ,RX¥ » NUMEER 0OF WORDS DIUMFED FER LINE

Moy PC, R4 + SET UFP RELATIVE ADORESS OF

RD #EUF-OCTHL-2+F, R4 , BUFFER <:>
JSR PC, ONVRTL s FRINT ONE WORD

TST
cmp
BLT
MoLYE
Moy
ROD
CchF
BGE
RTS
MnMove
JESR
MOVE
JER
JER
JIp

[/O0 PROGRAMMING CH:

(R1)+ ;s NEXT RDDRESS TQ EE DUMFED
k2, ~R1 » ARE WE DONE™

FULG +YES, PRINT A CR.LF

(RiY+ agTPRE ,MOVE IT T TELEFRINTEFR

FU, ke LCRLCULATE L¥ET BYTE ADDRESS
$RUF-COMP+2+7. kB, OF BUFFER

Q. R4 » ARE WE DONE™

DiF »NQ. PRINT ANOTHER CHRRACTER
FC ., YES, RETURN

FLR, R8 »PUT OUT THE CKR

PC. PCRAR

#LF, Ry ,AND LF COMEINATION

FC, FCHAR

PL. FCHAFR

HODR » RETURN

CONSTANTS AND DRTA EBUFFERS

WORD
WORD
=, +4
ASCII
WORD
END

o &

[AN

Fig 6-2 (cont)

Channels
AL
r)

87654 321

\\///\/4}//4JA
-]
°
000000060 | «——Column
o
L]
o
L]
o
-]
]
o
9
L]
o
9
\/\ °

Fig. 6-3 Punched paper tape.

O .

SIC DEVICE FUNDAMENTALS

Description
T

~Indicates one ofthree possible.error conditions: «no tape

3EC 62 O aA
Bit Name
i5 Brrore: &
14-12
+31 Busy
10-8
A Done
T8, Reader Interrupt
‘Enable
{RDR CIJNT ENP:
Bl
Q Readér Enable
{RDR ENB)

in the reader, reader 1s off-line, or-reader has no power,
Disables RDR ENB;-causes interrupt 1if RDR INT ENB
= L

Not-used.

Indicates that a character is in-the process of being read,
Cleared by INIT, set by RDR ENB, cleared when charac-
ter is available in buffer.” Read only.

Not used.

Character available in buffer, Cleared by INIT, set when
character available, cleared by referencing reader buffer
(PRB), cleared by setting RDR, ENG; causes interrupt
when RDR INT ENB = 1, Read only. '

Interrupts enable. Enables the error or dene bits to
cause an interrupt. Cleared by INIT.

7am

Not used.

Enables reader to fetch one character. Clears done, sets

busy, and clears reader buffer (PRB), Operation of thi

bit is disabled if ERROR = 1; attempting to set it whe

ERROR- = 1 will causé an immediate.interrupt if RD1.
-INT ENB = 1. Load only. -

h~':.5: ‘The paper tape punch unit behavesﬁi_u‘ch iike the teletypewriter key-
_ board/punch, only at a-higher speed. Ii, too, like the paper tape redder, has
an error bit which is set when the punch is “out of tape” or is “off-line.”

Paper Tape Reader Buffer (PRB):

15 14 13 12

1110 9 8 76 5 4 3210

—

t

Data

O

166 1.0 PROGRAMMING Q LH.—‘\P; 5
Bit Name Description .
15-8 Notrusaed.

7-0 Data " Holds character to be read. Cleared by RDR ENE.

Read only.

Note: Referencing either -high byte or low byte or both bytes clears DONE. Ref-
erencing is any-operation.(read, load, tést,.compare). .

Paper Tape Punch Status.(E;PS):

\

1514131271110 9 8 7 6 5 4 3 2 1 0
i’z

/777

STAZL

Vi

Error

g - 00
e M

Ready

Punch interrupt enable ——=

o

Bi)t Name Description
15 Error Indicates one of two error conditions in punch: no tape
in punch, or punch unit out of power, Causes interrupt
if PUN INT ENB (or PPS) = 1.
14-8 Not used..
ki Ready Ready to punch ch:;racter. Set by INIT, cleared by load-
ing data buffer (see note under PPB), set when punching
complete, Causes interrupt when PUN INT ENB = 1.
Read only.
6 Punch Interrupt Interrupts enable. Enables error or ready to cause
Enable interrupt. Cleared by INIT,
(PUN INT ENB)
5-0 Not used,

Paper Tape Punch Buffer Register (PPB):

15 14 13 12

1Mig 98 7.6 5 4 3 2 10

RN

. m

—

Daia

5.3 INITIAL LOAD PROBLEM 157

Name Description

Data Wnte only. Any instruction that could modify bits 7-0
of PPB clears Ready and initiates punching. An im-
mediate interrupt will occur when punching is initiated

if error = 1 and PUN INT ENB =

iNITIAL LOAD PROBLEM

When a computer is first received by the customer, its memory is usually
n unloaded state. With the exception of the hardware bootstrap option
cussed later), which may have been purchased with the system, the com-
er “knows” nothing, not even hcw to accept input. The problem is that
rder to load memory with a user program, there must already be instruc-
1s in memory for 'oading the user program. This seeming contradiction is
n compared to lifting oneself up by one’s own bootstraps, and therefore
5 the name of the bootstrap or initial load problem.
One possible solution to this apparent dilemma is to require the CPU to
2 some form of deposit mechanism which allows the user to deposit
hine language instructions in specified memory locations. This mechan-
includes a way of specifying both the data to be deposited and the
ress in memory of where 1t 1s to go.
The software bootstrap for the PDP-11 is a sequence of instructions for
ling user programs. The bootstrap utilizes a special paper tape format
self-maodification in order to work. The bootstrap loader source program
nown in Fig. 6-4. The ctarting address in the example denotes that the

" deERa1

Ri=% s USED FOR THE DEVILCE ADORESK
Bop0nz R_=?_ USED FOR THE LOAD RDOFE=S DISF
217400 LORC=174a0 ,DARTA MAY BE LOACED NO LOMWE
. THAN THIS
Q17744 =177a4 L START ACDRESY OF THE EBOOTSTRHF LOAC
744 @ievEl START My GEVICE. R1 SPICK UFR CEVICE RDOFESS
gapi’e
738 B12702 LOOFP Moy # -LORD+2, RZ SFPICK WP AUORESS DICSPLACEMENT
aeaise
734 PoSZ11 ENRELE INC ®R1 » ENARELE THE FHFES TAFE RERDEF
e 195711 WAIT TETE BR1 CWATT UNTIL FRFAME
"D 10MITE EFL WAIT > IS ARVAILRELE
g2 116162 Move R, LOADCRZY , STORE FRAME RESD FROM TAFE
glipoe 2
61748
rTe BUS2EY INC LOOF+ » INCREMENT LORD AOOFESS
CCOISFUACEMENT
177756
‘74 BOBPEDS BRNCH ER LOOE » GO BACK AND RERD MORE DATH
'VE 008009 s RODR OF INFPUT CEVICE

DE/"NE @
END

aaee01

™ oM~ g

LARCE =%

168 1/O0 PROGRAMNMING CHA

loader is to be loaded into memory bank zero (a 4K system). It is loac
by hand, using the deposit switch (see Appendix E), into the last 14, me
ory words of the computer.
In operation, the bootstrap actually loads the data read into success
< bytes located above the LOAD address. A sample tape input to load d
starting at location 17600 and ending at 17742 would be

351
351

Id

351 {
177 } lower byte of starting displacement — 1

date to be loaded

301
035
026
000

302
025
373

XXX

byte equivalent to MOV DEVICE,R1

byte equivalent to MOV #.LOAD+2,R2

address between 17600 and 17742 where loaded program begir

The necessity for the special leader is dictated by the need to be able t
load an all-zero byte or blank tape. The bootstrap loader starts by loadin
the device status register address into R1 and 3523 into R2. The next in
struction indicates a read operation in the device and the next two instruc
tions form a loop to wait for the read operation to be completed. When dat
are encountered, they are transferred to a location determined by the sum o
the index word (177400) and the contents of R2.

Because R2 1s mitially 352, the first word is moved to location 17775:
and it becomes the immediate data to set R2 in the next execution of th
loop. These immediate data are then incremented by 1 and the prograr
branches to the beginning of the loop.

The leader code, plus the increment, is equal in value to the data place
in R2 during the imtialization, therefore, leader code has no effect on th
loader program. Each time leader code 1s read, the pr or executes th
same loop and the program remains unmodified. The first code other tha

(ITTAL LGAD PROBLEM

dress). Subsequent bytes are read noi into the location of the immediate

The piogram will thus he read in
byte by byte. The INC insiruction which operates on the data for R2 puts
data bytes in sequential locations and requires that the value of the leader
code and the offset be 1 less than the desired value 1n R2.

The boot overlay code will overlay the first two instructions of the
loader, because the last data byte is placed in the core location immediately
vreceding the loader. The first instruction is unchanged by the overlay, bu!
ihe second instructing is chargold o plase the next byte reed) fump olliet
into the Jower byte of the branch nstruction. By changing the offset 1o ths
pranch instruction, the loader can branch to the start of the loaded program
ot 1o any point within the program. The self-modification scheme used not
oriy loads the data but also initializes the hootstrap code and forces a jump
£ an address 17X XX within the progzram just icaded,

The key requirement for a deposited bootstrap loader is that it be short

f1a1
ulness

in length. Clearly, as the bootstrap program becomes longer, its usefuln
decreases as the frustration to deposit it 1n memory increases. Therefore,
anower technique is used to bootstrap in user programs.

tThe alternative technique is to add a hardware bootstrap loader to th»
{?U so that the hardware can perform the initial program load (IPL}. Th.
TP g activated by pushing a “load’ button on the CPU causing a predefine.l
instauction sequence to be executed. This instruction sequence inciude:
both the command sequence for the input device and the specific memory
.ocations into which information is to be placed.

The form that the hardware bootstrap mechanism takes varle:
rnzchine to machine. Examples inciude zither reading a data record into
memory and executing the first (or last) instruction word read in, or exe-
cating an instruction sequence held in read-only-memory {the PLP-11 uses
1 ROM) or on an alterable “dead-scart’™ panel. Regardless of the method,
the result is usually the same, the loading into memory of a short program
serience called the absolute loader.

In operation, the absclute loader is a systems program for seading input
records that contain machine language instructions bound to absolute mem-
ory locations. Unlike the bootstrap loader, the absolute loader is capable of
reading large amounts of information into various segments of memory. The
format of the information is such that each record contains

o

from

1. A word count of the number of words in the record.

2. A load address where the first and subsequent words in the record
are to be loaded.

3. The words to be loaded.

4. & transfer address for the absaoluta wader.

i~

/O PROGRAMMING (AR

Beth the absolute and bootstrap loaders are systems pr(g‘\;—r.s. Systems
programs are those programs which of themselves dc not produce useful
resuits but rather 2id the programmer i accomplishing his desired ohiestive.
Systems programs are written by systems programmers -whose ioh 15 the
support of the users of the system. Systems programs include such things 23
PAL-11 and EDUMP. Chapter 7 is devoted entirely to discussing the multi-
tude of systems programs available to PDP-11 users

6.4. TAPE AND DISK STORAGE UN!ITS

Many large-capacity storage devices may be connected to a small ~om-
puter such as the PDP-11. Two such devices commonly found on this com-
puter are the DECtape (capacity 147,968 words) and th: DECdisk (capacity
65,536 words). Since these bulk storage devices require more elaborate
programming and ontrol, it is instructive to examine their characteristics
and operation.

6.4.1. DECtape Operation

DECtapes consist of 10 tracks arranged in the format shown in g 6-5.
On a tape the first five tracks include the timing and mark tracks, plus three
data tracks. The other five tracks are identical counterpaits and serve to
ncrease system reliability through redundant recording.

o DEC1tape
L \ Timing ‘\)
Z Mark -7
\ Data 1A "—Q\ Redundant
ya Data 2A 7 wacks
o g ‘2 . Data3a __ \
iTavks Daty chunnel | 7/
x Data channel 2 ‘\
/ Data channel 3 7/
N\ Mark chanse N
Y / Timing channzl ;

Fig. 6-5 DECtape format,

The timing and mark channels are recorded prior to all normal data
reading and writing on the information channels. Information read frem the
mark channel is used during the reading and writing of data to indicate the
beginning and ending of data blocks and to detetmine the functions to be per-
formed by the system in each «ontrol mode. The data in one bit position of

z

SEC

6 4 TAPE AND DISK STORAGE UNITS 171

each track are referred to as a line or a character. Since six lines or characters
make up a word, the tape can record 18-bit data words. Normally, the 2
extra bits are ignored.)

Areel of DECtape is divided into three major areas: end zones, extension
zones, and the information zones. The informauon area consists of blocks
of data, contamning 256 data words per block. Altogether there are 573
blocks of information (see Fig. 6-6).

i—f 260 feet 'I'

End | Extension Block Block //, Biock | Block Extension| End

zone area area zone
|~——lnformduon area — 240 t'eet«———"

Fig. 6-6 DECtape block arrangement

Block Block

The blocks permit digital data to be partitioned into groups of words
that are interrelated, at the same time reducing the amount of storage area
that would be needed for addressing individual! words. A simple example of
such a group of words 1s a program. A program can be stored and retrieved
from magnetic tape in a single block format because it 1s not necessary to be
able to retrieve only a single word from the program. It is necessary, how-
ever, to be able to retrieve different programs that may not be related in any
way. Thus each program can be stored in a different block on the tape.

Since DECtape is a fixed address system, the programmer need not know
accurately where the tape has stopped To locate a specific point on the
wape he must only start the tape motion in the search mode. The address of
the block currently passing over the head 1s read into the DECtape control
and loaded into an interface register. Simultaneously, a flag 1s set and a
program interrupt can occur. The program can then compare the block
number found with the de-.red block address and tape motion continued or
reversed accordingly.

All DECtape operations are handled by the controller through program
instructions. The controller selects the transport, controls tape motion and
durection, selects a read or write operation, and buffers data transferred

The controller can select any one of eight commands that control opera-
tion of the DECtape system When the system 1s operated on-line, these
commands are used for reading or writing data on the tape and for control
ling tape motion. The desired command is selected by the program, which
sets or clears bits 03, 02, and 01 in the command register (TCCM) to specify
an octal code representing the desired command.

Th mands are as follows. O

172 1/0 FPROGRAMMING

CHAE
Octal
Code Mnemonic Function

0 SAT Stops all tape motion.

1 RNUM Finds the mark track code that icd-.:. .. the block number ¢
the tape 1n the selected tape unit. Block number found is ava
able in the data register (TCDT).

2 RDATA Assembles one word of data at a time and transfers it directly :
memory. Transfers continue until word count overflow, at whic
time data is read to the end of the current block and panty
checked.

3 RALL Reads information on the tape that is not read by the RDAT
function.

4 SST Stops all tape motion in selected transport only.

5 wRTMT Wnites timing and mark track information on blank DECtap:
Used for formatting new tape.

6 WDATAT Writes data into the three data tracks. 16 bits of data are tran
ferred directly from memory.

7 WALLT Writes information on areas of tape not accessible to WDAT

function,

TSwitches on the DECtape unit 1itself must be set in order to prevent accident:
wverwriting on information already on the DECtape.

All software control of the DECtape system is performed by means ¢

five device registers. They can be read or loaded using any PDP-11 instruc
tion that ref- - to their address.

Register Address
Control and Status Register (TCST) 777340
Command Register (TCCM) 777342
Word Count Register (TCWC) 777344
Bus Address Register (TCBA) 777346
Data Register (TCDT) 777350

The bit utilization for each of these registers is showx@ Fig. 6-7.

23]
9]

-

O TAPE AND DISX STORAGE UNITS

75 -
Od 1,0 PROGRAMMING O CHAP. & -

Conunand regster (TCCHM) s .
. Bus address register (TCBA)

~3
—_—
(=]

1514 1312 1110°9° 8 7 6 5 4. 3- - !
pas . 15141312 1110 98 7 6 § 4 3 2 | 0

i LS

. W/ R i , Us o memory 4 idress) 2 ‘ l'l'
i BEEEREER AR NN e N

b NN EENERNENN
Error | Data registers (TCDT).

Maintenance

Delay infubut 1

1

Tape direction

5
Tape umt selection — “[l Data word))
oot ber b b b

Interrupt enable B
Extended bus address ‘ Fig. 6-7 (cont)
Function - . ’ -

Do))
Search
{ .

Control and status register (TCST)

15141312 1110 9 8 7 6 S 4 3 21 0
n Search 1n reverse

— d f .
EEEERENREEEE o direction for thid

| 1] |
e i WENES S Lol
End zone J ’ ‘ ! ;
Parnity error ‘ . .

Mark track error
“Illegal operation
Selection error ———
Block missed ——

Data missed
Non-exist memory

Tape 1s up to speed
Clock simulates timing -) Y
Maintenance mark track
Data tracks

No, keep going

Séarch in forward

‘Extended data -— ; N direcuon for desired }—e
R block
Word count register (TCWC) . B Yes Not
A found,
1514 1312 11 10.9 8 7 6 5 4 3 21 0 . 8o
. / forward
l [Word count L l
EENRE NN
. 11 the end) -
Fig. 6-7 zone? .
(:Réﬁlrn ’

@ Not round, |
g0 backward

SEC 6.4 TAPE AND DISK STORAGE UNITS 175

5.4.2. Programming Examples

Because DECtapes are organized like disks, they are programmed in
much the same fashion. Thus, before one can write in a specified block, the
block must be located. A typical method to locate a block is to initiate tape
motion and then search for the desired block in either the forward or reverse
direction. The search consists of examining each block number as it is read
and comparing it to the block number being sought. As soon as a match
occurs, reading or writing to the located block may begin.

Although this procedure is relatively simple, several DECtape character-
istics must be taken into consideration. First, before DECtapes can be read
or written, they must be “up to speed.” Thus it takes some time and hence
some tape passed over the tape heads before the first block number will
actually be read. Second, while waiting for a block number to read after
start-up, the tape may be repositioned in the end zone. This error condition
requires the tape motion to be reversed so that the tape may be searched in
the opposite direction. Third, and finally, having found the desired block,
reading or writing must be initiated shortly thereafter, or else the transfer
will be unsuccessful and a tape error condition rased.

With these points in mind, it 1s possible to flowchart and code the search
procedure as shown in Fig. 6-8. The routine to find a specified block (1) ex-
pects the block number wanted to be legitimate and 1n RO, a:3 (2) finds the
block while searching in the forward direction, see Fig. 6-9.

, DECTAPE SERRCH ROLUTINE
,R@ CONTRINS DESIRED ELOCK NUMEBER

A
AL T

, BLOCK FOUND [N FORWARD DIRECTION

TLE =177 344 , CONTROLASTATUS REGISTER

TCCM=TLZT+2 CCOMMAND REGISTER

TLOT=Trs™ ¢ L OHTA REGISTER
SERRCH nav R, BUWENT , SAYE ELOCK NUMEER

CUE #3, BUANT ,UFFSET TG DESIRED EBLOCK

1oy #4000, TLOM CRERD BLOCK NUMEBERS IN REVERSE DIFK
LOOPL BIT 1oy TLin CLHECK READY AND ERROR EBITS

EBEN LICF L CWALT FOR RERDY

Enl ERFLR L FOUND AN ERROR™

SUE TLOT. BWHNI » CHECK ELOCK FOUND

ELT SEAFCH CKEEFR SEARCHING EACKUARPOS
FORWEL MUy R BWANT CSAVE BLOCK NUMEER

Ay #7. TCn , READ EBLOCK NUNMEBERS IN FORUARRD IR
LOOFz EIT FLOOZO0, TCoM +CHECK REARDY AND ERRCOR EBITS

EEDQ LOoF s CWAIT FOR RESDY

EMl ERFOR . HAVE AN ERROR™

Sue TCOT, BWANT CCHECK BLOCK FUNG

BGT FORWRD , BLOCK NLIMEER TOO SMALL

BELT SERRIIH s BLOCK MUMEER TOO BIG

RTS FC S RETURN WHEN ELOCK FQOUMD
ERFOF TET TCET , END ZONE ERROR™

LOOF: , [F S0 BRANCH

O

SOTHERWIZE HALT ON ERROR

™. rrn

1758 I[/C PROGRAMMING CHaP
LOCPZ SIT #4g0a, TCCM »TEST DIRECTION

egE 522#?g » IF RgVEFSE, SERRCH FORWARD
SuANT . < - » IF FORWARD, SERRCH FEVERSE

S BLOCK NUMEER

Fig. 6-9 (cont)

Wh'en a specified block has been searched for and found, the next thin
tio do is to transfer information from or to it. The routiné shown in Fig
6-10 uses t}?e SEARCH subroutine to read 100 words from block 50 ogr
DECtape unit 0. The program calls SEARCH, sets up the word count an
buffer address, and then waits for the read to be completed. The reade
should note that although blocks contain 256 data words ax;y number |
words (up to 256) may be specified in the transfer operation’. °

s ROUTINE TO

T REFD 193 WORDS FROM
s BLOCK Sd. DELTAFE UNIT a
ngi9 s REGISTER ZERO
;c:ég » STALCK REGISTER

- PROGRAM COUNTER

» COMMAND REGISTER
+WORD COUNT REGISTER
- BUS ADDRESS RERISTER

TCLM=177P342
TCWC =T+
TCER=TCLm+4

STHA ! m?v FC, &P »INITIALIZE STARCK
;8; —(?P)_ B FOINTER
Ton #éuLR? ,8LOCK Se TO gE
oy :L;;gHﬁgz_ s SEARCHED FOR
. - > TCWC +COMFLEMENT OF WOR
gg: #EUFFER, TCER . BUFFER RODRESS P CounT
) 4 i~ - - - -
. oo #1f,r?%m) s READ CATA FORWARD DIRECTION
e Q%?@dbU,TCLM s CHELK ERRQR AND REACY
o ngF SWALT FOR REAQCY AND NO ERFOF
ERF » BRANCH ON ERRCC
ERE ,
;UFFR HTL1‘] SHHLT ON ERROR
Jughau . + SAVE ROOM FUR BUFFER
£ START +END OF ASSEMELY

Fig. 6-10

64.3. Disk Operation

.Because of.the diffeing requirements for disk storage, many storage alter-
natives are available to the small computer user. The choice of disk systems
spans the range from fast access and fast storage to large storage and medium-

and scientific applications where fa; ccess and fast

\
C TAPE ALD DS STORAGE UNITS 3T

transfer are important. The moving-head systems are ideal for large storage
sequirements where fast access times are less vatal.

Before discussing the prograrming of the disk devices, it is important
to understand theur basic operution. Generally, all disk devices are orgarized
around flat magnetic surfaces, called platfers, which look like pancaies. The
surface is divided into concentric rings called tracks with each track subD-
divided into sectors. The sector is the smallest addressable unit and generslly
is capable of stcnng many coinputer words (e.g., 32 words per sector).
Figure 6-11 shows such a disk organization.

Myrection of rotation
Magnetis aisk st.-face

o

SSE—

ST D)

H Dick rrack
/N NI
Reac/wr'tf\\\w—-//g/
heacs Disk sector

Fig. 6-11 Drek organization.

If the disk platter can be removed from the disk drive mechanism, and

another platter used in its rlac=. the removable surface becomes a disk pack.
platters, with multiple surfaces being
" lat ¢ time. fixed/mov . Lot

latency, seek time, fixed/moving head, number of disk surfaces, and so an.

D:sk packs may consist of one or more

stacked vertically on the same shaft. as shown in Fig. 6-12. By logically

grouping all the tracks at th¢ same radius on each suriace into a cylmdt’r,l

wore information is accessible as a unit, thereby effactively increasing the

Gensity of the system. However, since disk pack devices are manipulated in a
11 is sufficient to consider only

similar fashion to simpler one-surface devices.
the programming of devices typified by Fig. 6-11.

Read/write
heuds

[/O PROGRAMIING

O CHAP 3
Reaamgf)r writinig disk tracks and sectors can be accomphshad in one of
two ways. First, there can be one read/write head, which inust be positionzc
over one track or another; this is the moving-head system, mentioned earlie
Second, there can be one read write head per track, selemad o earbar a3
ffu(wi-nea" disk sy.tem. The advantage of the fixed-hzad system 13 that there
1s no mechanica! seek time associnted with the physical-positxoning of the
head over the appropriate track. Instead, there is a small electronic s&itchiné
tune. required to select the appropriate head. The fixed-head system thus
requires less time before the accessing of data, but there i1s a C'reater cost
associated with 1t because more read/writz heads ave nesdad .
1 Regardless of the type of system, fixed or moving head, there is annther
delay associated with the disk called latency. This 1s the time it takes fo-r a
sector to pass under the read/write head after the appropriate heaxd has beer
sefected. .Ancther nar.e for latency is rotziione!] delay, and In a tense i
corresponds to the latency of a tape unit wrile waiting for a particular tape
block to con.2 under the tape unit’s read/write heads o
_Latency time can be reduced by speeding up the rotation of the di:zk
il“hls also has tne effect of pas\sing more information by the read write hea;
in a zwen amount of time, thereby wncreasing the number of ChéraCters pe.
second, or transfer rate of the device iteeif. Alternatively, the transfer rate
nay be increazed by just putting more informatior on a track {e g., Increas-
wg the density of information). All these factors, then, density, trabn'sfer rate,

e

5
-

+

must be considered when selecling the appropriate disk system for a par-

ticular problem.
6.4.4 Prograrmming 3 DECdisk

For simplicity we shall consider a fixed-head DECdisk which has 3:
words per sector, b4 sectors per track, and 32 tracks per surface, providing a
total capacity of 65,536 words per disk unit. Scftware control of L’;ls
DECdisk system is performed by means of eight device registers. Like the
registers of other 1/O devices, these registers can be read or loaded using a -/
PDP-11 instruction that refers to their address: /

Register Address
Look Ahead Register (RCLA) 777440
Disk Address Register (RCDA) 777442
Disk Error Status Register (RCER) - 177444
Command and Status Register (RCCS) 777446
Word Count Register (RCWC) 777450
Current Address Register (RCCA) T7745¢
Maintenance Register (RCMN) 777434
Dats Buffer Rer! -or (RCDB) 777456

SEC 6 4

TAPE AND DISK STORAGE UNITS

The bit utilizations for these registers are shown 1n Fig. 6-13.

Look ahead register (RCLA)

1514 13121110 9 8 7 6

|||

l |

L

Bad
address
Unit number

Track number

Sector address

Disk address register (RCDA)

151413 121110 9 8 7 6 S 4

%

g
_n

Unit number
Track number -

Sector addicy

Disk error status register (RCER)

15 14 13121110 9 8

76 4 3 2 1

% ﬁ%//f{//

i
Data late T T
Block check error
Data sync error ————J
Non-exist memory

" A track error

Address parity - - _

e

" Address sync error

Disk overflow

Olsscd transter — —— - —

173 180

Disk contro! and status register (RCCS)

151413 12 1

10 9 8

1/O PROGRAMMING

7

I

T I
Special (| ‘
condition :
Data error ——
Address error ——

Write lock —J

Non-exist disk ———-

Write check error ——
Inhibit CA increment

Lol

Abort
Ready

L !

Interrupt e-2nie

Extended m2v 27y —_

Mode

Function -—

Go -

Word count register (RCWQC)

1514 13 1211 10 9 8

7 6

s 4 3 2 1

Complemented word count —

Current address register (RCCA)

1514 13121110 9 8

2

Current address

@

Fig 6-13 (cont)

C

Maintenance register (RCMN)

SEC.6 4 TAPD AND DISK STORAGE UNITS 181

15 14°13°12°11 10 .9 8 7 6 5 14 33 2] 0

j HENEEREEN
*T}ﬁu{u{uu1ﬁ

Unit 3 select
Unit 2 select
Unit 1 select

Unit select ————

Wnte enable ———

Word count overflow
DMA request
Address found
Clock polanty
DMA enable
Data track
Address (C) track
Phase lock clock —
Address mark
Data mark P
Clock (A) track

Data buffer register (RCNDR)

151413 12 1110 9 8(7 6.5 4 3 210
Clen b b bl
!

Fig 6-13 (cont.)

Although there are maorce registers associated with the disk than with the
tape unit, programming is easier because the search for a particular sector
does not require us to start, stop, or reverse the direction.of the-disk. ;In-
stead, the disk rotates at a constant speed, and all that is necessary is for us
to set up the sector address, word count, and buffer address and then wait
for the transfer to occur. 'This sequence of operations can be programmed
as shown in Fig. 6-14.

CHAP I

O

/0 PROGRAMNING

» FROGRAM TO FEAD 169 WORDS FrOM

» DLISK UNIT w1, TRHACK 1, SECTOR 77

RCUR=177442 JDISK RDDRESS REGISTER

RCER=KCDA+Z ; DISK ERRGR REGISTER

RCCS=RCDRA+4 » DISK CSR REGISTER

RCHC=RCDA+e > DICK WORD COUNT REGISTER

RCCA=RLOA+18 ;DICK CURRENT ROORESS REGISTER
START mov #1777, RCDHA »UNIT, TRACK, SECTOR ADORESS

MOV #-104, RCUA » HORD COUNT

MoV $BUFFR, RCLR . BUFFER ADDRESS

Moy #5, RCCS » RERD DISK

TST RCCS » ANY ERROR?

EMl EFROK » IF NEG, VYES
ERRCR TsT RCEF » CHECK TYPE OF ERROR

» TRKE AFPRUOFRIATE ACTION
BUFFR = +200 . BUFFER ARREA
END STRRT » END QF ASSEmELY

Fig. 6-14

As for the tape operation, any number of words (up to 65,536) may be
transferred, since the disk address register 1s incremented automatically after
each sector is transferred. This process continues both across tracks and even
across disk units. Alternatively, if only a portion of the sector (less than 32
words) is desired, the word count register is set accordingly, and only that
number of words is transferred to the buffer area.

6.5. PRIORITY INTERRUPT PROGRAMMING

The running time of programs using input and output routines is pri-
marily made up of the time spent waiting for an 1/O device to accept or
transmit information. Specifically, this time is spent in testing or “poliing”
the status register of a device and waiting in a loop for a done condition:

TEST TSTE
BFL

TR=
TEST

,» TEST L&k
, WATIT FOR DONE

Such waiting loops waste a large amount of computer time. In those cases
where the computer can be doing something else while waiting, the loops
may be eliminated and useful ioutines included to take advantage of the
waiting time. This sharing of s computer between two routines or tasks is
accomplished through a progra— wnterrupt facdity, which is standard on all
FDP-11 series computers.

SEC 65 PRIORITY INTERRUPT PROGRAVMING 183
The value of an interrupt facility lies in the ability of the processor to
respond automatically to conditions outside the system, or in the processor
itself. Unusual conditiocns occurring at unknown times (such as I/O com-
pletion) can generate an interrupt and force the computer to execute an
interrupt routine in response to the interrupting action. Thus the user need
not poll or test for the occurrence of a condition after the execution of each
instruction, but he may write interrupt routines in case they occur.

Basically, an interrupt is a subroutine jump executed by the hardware, as
opposed to one written as an explicit software instruction. The interrupt
occurs after the execution of an instruction (and before the I-fetch of the
next instruction) and must inform the system of the cause of the interrupt.
¥or example, when an interrupt occurs on some machines, an interrupt bit is
set in an interrupt status register, indicating what condition raised the inter-
rupt. At the same time, the CPU takes the address of the next instruction
from a fixed interrupt location (possibly memory location zero) and begins
execution of the interrupt analysis routine at that location.

6.5.1. Interrupt Linkages

Like subroutines, interrupts have linkage information so that a return to
the interrupted program can be made. More information is actually necessary
for an interrupt transfer than a subroutine transfer because of the random
nature of interrupts. The complete machine state of the program immediate-
Iy prior to the occurrence of the interrupt must be preserved in order to
return to the program without any noticeable effects (i.e., was the previous
operation zero or negative?). In this way the interrupt will be “invisible” to
the interrupted program. since nec. infarmation, only time, will be lost be-

tween the time th= :uiinng program is interrupted and the time its execution”

reocermed.
6.5 2. Machine State During Interrupt

The complete machine state of the progran immediately prior to the
occurrence of the interrupt is generally held in a processor status word
(PSW). On computers with sufficiently long memory words, the PSW in-
cludes both the condition codes and the program counter. On minicom-
puters such as the PDP-11, it is necessary to subdivide the PSW into two or
more words in order to maintain the processor status (PS) and the program
counter (PC).

Using one or several words, the technique for handling the interrupt is to
replace the current PSW with the interrupt PSW, saving the current PSW
somewhere in memory. Diagrammatically this process 1s depicted 1n Fig
6-15. The\figure shows that two memory locations are required for t
nterrupt ress, plus a register to hold the current PSW. @

184 1/O PROGRAMMING

New Old

Dn(crrupt PSW I Isi\'ed current PSWJ

—
\ Current
\—.>l?roce~.sor status word

Fig. 6-15 Swapping processor status,

8.5.3. Stacking of Interrupts

One problem with this scheme is that all interrupts use the same swar
ping°technique. Thus, should a second interrupt occur during the executio
of the routine to service the first interrupt, the old PSW for the first interrur
will be overwritten and lost. To prévent this, it is necessary to disable furthe
interrupts while the interrupt is being serviced. By allocating a bit in th
PSW for interrupts enabled/disabled, it is a simple matter to have this bit o
ut the old PS'V and cff in the new PSW. Thus when the current PSW be
comes the new PSW, interrupts are disabled. When a return from interrug
(RTI) occurs, the current PSW becomes the old or saved PSW and interrupf
are once more enabled.

During the time in which interrupts are disabled, it is conceivable th:
other I/O conditions which would ordinarily cause an interrupt may occu
Instead of being allowed to cause an interrupt, these conditions are note
and held in the interrupt status register (ISR). Consequently, when interrup
are enabled, they can cause an interrupt; this guarantees their eventual service

The interrupt status register serves many purposes. First, it indicate
which device has raised an interrupt condition. Second, it saves interruptabl
conditions during the time that interrupts are disabled. And third, 1t allow
the programmer flexibility in deciding what device to service next after a
interrupt has been raised. In particular, this flexibility allows the progran
mer to decide on the relative priorities of the various interrupts. In this was;
under programmer control, when several interrupts occur simultaneousl;
the most critical interrupt may be serviced first

Allowing the programmer to assign the prorities can lead to problem:
however. For example, if a high-priority interrupt is raised when interrupf
are disabled, there 1s no way the interrupt can be serviced until the interrug
analysis program is once again executed. Thus it becomes necessary to re
enable the interrupt mechanism during interrupt processing. To do so re
quires stacking the interrupt return information (the old PSW) and settin
the interrupt enable bit. However, one problem connected with the priorit
of interrupting devices still remains.

38C 8 5 O POIORITY INTERRUTT PROGR A MMING 11:.\/
§.5.4. ¥Friority interrupi,
Once the interrupt cnadle bit ig set, any device raay interrupt. The

program to analyze inierrupts nmiust therefore examine all the bits in the
inderrupt status regisicy to choose the highesi-priogly inferrupt o process.
Clearly, ai! that is needed is to allow uniy higher-priority rcutines to cause
pew itercupts, since intsrrupts al the sarie or iower levels can wail to be
serviced. Thus for programamer convenience, the priority can be bult inte
the hardware and & prionty inferrupt scheme can assign devicas to groups
within a given priority level. Part of the PSW is used to hold the current
pricrity level, and the loading of the PSW determines the value of the
sriority level.

Typical PSW and ISR words are shown in Fig. 6-16. The-e words could
=evve as Lue basis for a sophisticated interrupt scheme except for one thing.
uihough only higherdevel priosity nterrupts are aliswed te cause an inter
t still is the programmer’s job to determire who caused the interrupt
eme would be io let each priority group take its PSW from a
m moxy location. Thus when =0 interrupt occurred, it would be
priori that only certain devices could havs raused the interrupt

-,
N x'g.r N

~—= ! ! B
i { s 1 rc
{ ¥
1 i |]
——
S Pricnity level
PSW
= AR S R S R
1 BER
e
{ I i | L 3
A ~— s
"-——Devnce interrapt oits

SR

Fig. 6-16 Processor and interrupt status words

3.5.5. Automatic Priority Interrupts

Carrying this idea to its logicai conclusion, it should be possible for eacht
device to have its own PSW. Thus, giver 100 devices, there will be 100 ne

PSWs (and 100 old PSWs) pointing to 100 potentially different interrupt

;0 PROGRAMMING

service routines. Since each interrupt is uniquely identified, there iz no nted
to have an interrupt status register, and hence no intorrupt anatysis routing

is needed. The resuttant savings in time and progiam space is absorbed, how-
ever, by the large number of PS5V words th'!t must be reserved in memory

A modified versior: of this automatic
found in the PDP-11. This compurter uses tv'-“; v'm‘c‘ , the processor status
word and the program counter, to hold sl the machme state mfr‘m tion (se"
g 3-1). Upon n\terru*)f the conrents of the PC and the PS are automa
ailly pushed onto the system stack mai~tained by the SP {registar 8). The
effect is the same as if

riority nterrupt scheme can be

Mov
1Hov

S, —LE5P)
FPC, = SP)

, PUSH PROCESSOR Y TATUS
, BRD PROGRAM COUNMTER
had been executed.

The new contents of the PC and the PS are loadea
consecutive memory locstions called an interrup:
tions are chosen by the deviee interface and are !acated in low
memory addresses. The fist word zontains tbe interrupt service routire
address (the address of the new program sequence}, and the second word
contains the new PS, which will determine the machine status and pricnty
ievel. The contents of these vectors are determinzd by the programmer and
may be set under program control.

After the interrupt service rcutine has been completed, an RTT tretum
from interrupt) 1s pprlorrneH The two top words of the stuck are autome-
tically *“‘popped” and placed in the PC and PS, respectively, thus resuming
the interrupted progmm Because the Interrupt mechanism utilizes the stack
automatically, interrupts may be nested in much the same manner that
subroutines are nested. In fact, it is pcssible to nest any arbitrary mixture
of subroutines and interrupts without confusion. By using the RTU arA RTS
mistruc tions, resypectively, the proper returns are automatic

from two
vecior. The aciua’ loca-

designer

6.5.6. Reader Interrunt Serv'ce

An example of an interrupt operation for the PDP-11 can be found in
the routine tc read a block of characters from the paper tape reader to a
buffer as shown in Fig 6-17. This code is written in 2 PIC format and in-
cludes setting up the interrupt vector (memory location 70} for the paper
tape reader. There are two separate routines. The first, beginning at label
INIT, initializes the buffer address pointer and word count in the interrupt
routines; then calculates the relocaticn factor from the offset PRSER-X-2
as follows:

I" DC, is the PC that was u_\sumed for the program when load at 0,
if PC, is the current w2f PC, the calculation 1s

SFC.6 5

PRIORITY INTERRUPT PROGRAMMING 187

I

PRSER — PC, + PC,
= PRSER + (PC, — PC,)

PRSER — X — 2 + PC,

since (X + 2) = PCy. As a result, the relocation factor, PC,
— PC,, is added to the assembled value of PRSER to produce the
relocated value of PRSER.

Set up buffer
ponter ana
character count

¥

Set up interrupt
vectors and
enable reader

Code which may be L_l_"frilip_‘_ ______

executed concurrently occurs

with the paper tape

reading
!
i

End l Place character
| in buffer
1
l -~
1 Update buffer
H pownt and
i character count
.' Y
|
P |

!
| Enable reader
|
1 >
|

Fig. 6-17

Then it establishes the priority level for the reader and sets it to interiupt
after a character has been read This frees up the CPU so that other code
may be executed while the buffer is being filled.) .

The second routine, the paper tape interrupt service routine, PRSER, is
actwated each time a character 1s recewed. Once activated, the routine
stores thy Naracter in the buffer, updates the buffer pointer and word co@
and resets—the interrupt enable bit if more characters are to be read. &

I/O PROGRAMMING CHAP |

logical flow, then, of these two routines looks as shown in Fig. 6-17, and the
code 1s as given 1n Fig. 6-18.

» INTERRUFT DRIVEN ROUTINE TO
, INFUT CHARRARCTERS FROM FRPER
, THFE RERLER

R@=x0 . DEFINE REGISTERS
SP=26
pC=17
PRS=177558 ; DEFINE DEVICE
PRB=FRS+2 . REGISTERS
INIT: HOV PC. SF ; INITIALIZE STACK
TST -(SF) . TO POINT TG INIT
nov #BUFRDR, PTR ,SET UF BUFFER ADDRESS POINTER
MoV #1066, CRCNT ,SET UF CHARACTER COUNT
X MOV PC, R@ , RE=ADDR{X+2)
ADD $PRSER-X-2,R@ , ADD OFFSET
MOV R@. @478 ,SET UF YECTOR ADDRESS
HOV gzan, gE72 ,STATUS TO FRIORITY 4
MOV #101, FRS ,SET INTR ENE AND RDR ENE
CODE WHICH MAY BE EXECUTED WHILE
BUFFER 1S EEING FILLED
EUFADR . = +1686 ,1ea CHARALTER EUFFER
PRSER - TST FRS , TEST FOR ERRCOR
BMI ERROR .DO ERRCR THING
MOVE FRE, BPTR , STORE CHARACTER IN BUFFER
INC PTR s BUMP POINTER
DEC CRCNT . DECREMENT CHARACTER COUNT
BEQ DONE , BRANCH WHEN INFUT DONE
INC PRS . START UP RERDER
DONE RTI , RETURN
ERROR HALT ,STOP ON ERROR
PTR o ., BUFFER FOINTER
CRCNT @ . CHARACTER COUNTER
END INIT ,END OF RSSEMELY
Fig. 6-18

6.5.7. Priority Levels and Masking Interrupts

Within a group, any number of devices may cause an interrupt at a giver
priority level. Since it is conceivable that at any given time a programme
may wish to ignore some of the devices, the hardware usually includes ;
mechanism to mask interrupts from selected devices.

The PDP-11 uses a simple mechanism to mask device interrupts, by al
lowing the programmer to clear the interrupt enable bit 1n the device contro
and status register. Actually, the interrupt bit is automatically cleared éacl
time the system is initialized (by pushing the START key or executing th
RESET instruction) and must be set under program cont{) However, onc
set, the bit stays set until cleared.

PRIORITY INTZERARUPT PROGRAMAING (\
S

SEC 6.5 Q

Another approu :h Lo *his nroblem s Y0 use a mask register. This register
contains o bxt for each nterruptable group (or bit in the ISR if one exists),
and the nzudwsre uses tha mask bits by ANDing them to the inte vozt bits

Only if the result is a 3 i the interrupt 2llowed to sceck in elfect, the
wask disarms ceriain gpecified interrupts, Still, the mask only d\tirma in-
terrupis within a grovp and does noi :e' up any prionties herwaen intzirupts
oY Zroups.

The need for prinsities is demonstrated by the following exzmpis pro-
ayam. This program utilizes rhe telenrinter and the 50-ayele <lock on rhe
PTP-11. After being loadaed and staried, the program types cut

WHART TIME 1S 177

to which the user respends with a four-digit number.
wrara, utilizcing clock interrupts every 1/60 of a second. <ecps
uime, responding with

Al THE BELL THE TIME wlLl B NX ®¥ XX
zvery time a keyboard character is struck.

411 three devices (keyboara, printer. and clock) are miterrupt-driven.
Tteie while the printer is interrupiing to 4l its buffer. the clock can be
stsrmupiing to tick off anolher 1760 of 2 secons, However, the priority of
i clock must be grealer than that of the printer if ticks are not to be lost
{That this loss of ticks can actually occur can be demonsiraied by changing
the priority levels set nie wr label NOFIX 1n the program.)

Yriority level 1s, howaver, not simply a function of the davice. Althoug

=ach group or device has its own priority level, tne munning program also ha.,
3 ﬂ'/el Thus each intersupt that cavses an interrupt to occur can raize, lower,
r maintain the current priority level of the running program, As aresalt, if
an interrupt occurs at level 7, say, and the inter,upt routine does not set th
new level at 7, it is quite Dossu)k for the higherdevel miterrupt service routine
o be conbtdntly interrupted by lower-level devices. With this in mind, it can
ba seen that the processor prionty level as mairtained in the PS word acts »s
an I/O device interrupt mask,
The various vector addresses and priority ievels for the teletype, high-

speed reader/punch, and clock on the PDP-11 are as follows:

Device YVector Address Pricnity
Teletype keyboard £C 4
Teletype printer 84 4
High-speed reader 70 1
High-speed punch T4 3
Line clock 100 51

190 VO PROGRAMMING

O

‘The example in Fig. 6-19 demonstrates the use of priority levels. Ir

add:tion, it uses recurstve program mlum and it freely intermives suoroarim
stacking with interrupt processing.

CHAP 6

king L is therefore far from a trivial ex 2
of the pewer and Dexibdity of an interrupt iacuity on a small 2o puter,
togical {low is inciuded because it provides an oversll picture of what th-
oregiam does. Of parficular interest is the clock interrupt reutine, which
calls on the clock incremcent subroutine in a recuisive fashion,

T
{/ Start ;‘

-1
i-imt.ahze’
)

———

——

rpuat mma(
tim=ard s

"m inte-ral '

' time clock J
B

Ena_P—;l_em—l
and clock
‘; **** —J Ciock

—— mterrapt 7 ™,
e] Portmmdnia b QIR LS
i Ke)board i
% interrupi e
Sex poinier
S ™, o least
TKINT > sigmficant |
S cleck field i

e

Consert nime L. .
field to «scnl Call INCT
j__ INCTEST|™ ™ INCTEST
Print out %
he o , R Y lncretnsm
il eturn / clock count
*—? \ e -t
~ »Rcmrn) Cnh Ve
reached

£07

[rm e e e

7

= e i e e e e

No

Clear count

Select next
clock field

Call IN I
L__d__l__CTEST

"""‘*“—‘—"P'{/- Retarn

e e e

tn
@]
[>]
e

BEGIN

NEXTD

MNEXT

RFOUND

MORE

ADC
uﬁﬁ;x

o

O

RGHIN

PRIORITY INTERRUPT PROGRAMMING

R@=8
Ri=4L1

Ra=4
RI=4Z

R4=V4

SP=iE

pPC=i?

TKCSR=4775cB
TKDER=177562
TPCSR=4177S5c4
TPRER=17735€E
LKCSR=17754€

=1@0a

MOV #5000, cP
MOV #M1, R2

nov #EM1, R

SR FC,DFRL
Mov TIME RZ
MoV #4, K1

MoV Rz, RZ

INC TKCER

TETE TKCER

EFL -4

MOVE TKDEBR, (RZ)
JER FC., OFRL
7sTe (RI+

DEC R1

BNE NEXTD

MOVE TIME+1, HOURS
BIC #1777@40, HIURS
SUE #£0, HOURS
BIC #1777008. TIHME
CHMFE TIME, #£1
ELT _oroLny

nuw #L12 HOURS
cue #1. TIME

BR NEXT

Mmave TINE+Z. MIN
BIC #ATT 0O, IN
SUE #ot, MIN
MOvE TINE+Z2, &
gIcC #L777a0. 80
Moy #12, k1

SUE #el. Py

=330 NOF I

BED [00

RLD #17 K1

pEC Ra

ENE MORE
ADC FL,MIN
1Moy #oa, gz
HOW BTKINT £
MOy #3403, 402
MoV SLKIMT. 102
Moy #1081, TRESR
may #1009, LEKCSR
WHIT

INITIRLIZE <F
ASK FOR

THE TImE
SFPRINT [T O™

AOOF 0OF TImE FlZLD
COUNT Foum (H=E
, PRINT ACC=ZIfc:s
READ THE TImME
TEST FOR A CHERACTER
S WAIT

JPUT IT IN TIME FIELD
FRINT IT
, NEXT SYTE
DECREASE COUNT
 KEEFR QOING
LSO OF HOLRS
CLEAR PARITY
» CONVERT TO OCTHL
CLEAR PRRITY
s ANY TENS™?
, NO
» INCREASE VALUE
,DEC TENS COUNT
, ANYMORE™

CGET MINUTES LD
JLLEAR FPREITY
, CONVERT TO OCTAL
MUST CORKRECT TENS
REMOVE FARARITY
ACC 12 OEC

TEST FOR A ONZ
NO TENS
ONE TEN
s TRY AGRIN
COUNT THE TENS
MORE ™
L RDD IN # OF TENS
LEVEL 4 INTERSUFT
FOR THE T7Y KED
LEVEL 7 TMTEREUFRT
FOR THE CLOCK
INIT KED
AND CLOCK
NOTHING TO DO

s

~

~

~

O

RETURN
TKINT

CNVRT

LOOP

ADDUP

DFR1

DPRZ
M1

EnMi

TIME
ouT
BELL

HOURS
MIN
SEC
MSEC
Mz

Mmooy
JER
RT1
INC
cinpP
ENE
CLR
18T
JSR
RTS
novy
MOy
JSR
MoV
Moy
MoV
CLKk
oy
cne
eLT
INC
sue
ER
RCOD
MOVE
ADD
MOVE
TISTE
DEC
ENE
Moy
Moy
MoV
T<T
JSR
RTI
CHF
BGT
TSTE
EFL
MOVE
EF
RTS
EYTE
ASCIT
EYTE
EVERN
EYTE
BYTE
EYTE
EVEN
WORD
WORD
WORD
WORD
BYTE
RSCII
EYTE
oD

I/0 PROGRAMMING

(rR@
(R2), #cd
RETUFN
(RE
=-(ka)
FC, INCTEST
PC

#M RZ
BENMZ, RZ
FC, OFR1
#3.RZ
#0UT, R2
$HOURS, R4
fFa

(R4Hr+ R1
kL, w1l
RODL'F

Ra

#1z R
LOgOF

#00, Ra
Ré, CR2Y+
#5000, KL
R1, ¢RI+
(RZ)+

RZ

CNYRT
#OUT, R2
HEELL. RS

#1091, TRCSK

TROEF
PC.DFRL

R2. F3
DFRZ
TFCSR
-4

(R21+, TFDER

DFRL
PC
15,12

RODREZZS OF LS FIELD
RECURSIVE CALL
CLOCK URPUATEL

RDD ONE

REAIHIC LINMIT?

» RO

RESET FIELD

AOOR OF NEXT FIELD
CALL ME HAGHRIN
RETURN HOME

.

~

~

~

s PRINT OUT

i THE TIME

s MESSHGE

» NUMEES OF FIELDS
s OUTFUT ARER ’

FIRST FIELD ALOR
SINITIALIZE

FIRST YALUE

S BNY TENST

~

N
» YES, COUNT
» DEC TENS

DO 1T AGHIN
TENS IN ASLII
STORE 1T

UNITS IN ASCII
STURE IT

, SKIF

LOCOP COUNT

DO 1T THREE TIMES
READY

» TO FRINT

,» RDFR ENE

, CLEARR DUONE EIT
S YES

, DOME HT LARST

, ARE WE DONE™

S YES

, READY TO PRINT™
» NI

,FUT IN EBUFFEFR
s NEXT CHRFACTER
, RETURN

, CR AND LF

~

-~

~

~

JWHAT TIME IS 177/

1

AT

AN R RO R

DESIN

Z
THE BELL

, FOUR CHAR TIME

=

,» STRIKE THE GUONG

THE TIME WILL Ei:)

CHAP.

PRIDRIT Y INTIRRLP T PRUGRAMMIN G T

@,

. C
To understand how the increment ciock routine works, 1t is necessary te

examine the stack after each call. Just after the line labeled LKINT is
axecuted, the symboiic contents of the stack {(and RO} wili be

L omory
L WW_ i Hours
Stk R
? [s
T rgp [MSEC = XX_{ Msec
Processar | — - SP poJIXINT 2]
status
Agamn

i

MNew, when the subrontine INCTEST 15 2alled, the picture changes to

Memory
ey
N WV Hours
_ Swack 77 M

1
S {
LKINT + | ~~ - P
10

R SFC] —~ |

s T TLET
bs pe [INCTEST)

Agan

(¢ the vaiue in location MSEC is less than 59, it will be incremented by 1,.
~sburn made f{rom the subroutine {c.g., the stack is popped) feilowed by a
retwra f1om the interrupe routine (popping off the PC and PS from the stack).
and the program will ornce again wait {or an interrapi. .

Suppose, however, that the value in location MSEC equals 38, In this
case the merement subrovtine will now set MSEC = 0, advance the pointer
‘n RO to peoint toc the lccation SEC. and call the subroutines INCTEST
vecursively. At this point the pictuce looks as {ollows:

Memory
T ww | Hows
o]
7 «}M"‘
Retvmn |- ——SF Py [SEC j—1_¥Y | e
LKINT + 00] e
0 | pe [(INCTEST |
Processor
status
Agam
gan

Again the value at the location pointed to by R¢ is checked to s2e if it is 59.
1f 1t is, it is zerced, R is advarced 1o peins to wha neximoest o roificant field.

> . - - S e e - -
A cln wrasbina TR 3T Yt oy [4

WA e e Ao

Alternetively, if the vaiue pointed to by RO is i=3s thar”), we have the
vase discussed previously, where the vaiue pointed to by RO incremented
and 2 subroutine return is made. Since the return causes the instruction
following the subroufine call to be executed and this insituction is a retur
from subroutine, the stack is popped twice (or & b urtd thy =2tue frow
inlernupt occurs, at which point the program v.irs for a new @ “errapt wo
ocenr,. The actual unwinding of the recursive oilly becomes quite siciple
since if only serves {0 restore the slack.

i

6.6, BUFFERING AND BLOCKING

Although basic 1/O units {teleprinter and paper tape reader‘punch} oper
ate on characters, characters per se are not exaclly what the programmer
wishes to mput or outpui. Rather, IfO prograwming is concerned with
strings of characters suich ss 10-digit numbers, pecple’s rames, octal repre
sentations of memory words, or linass of assembly code. in other worads, the
1/0 consists of blocks of data that have a legical conrection.

Since the I/O device does not perform I/O in a odlock fashion, it is
generally the programmer’s responsibility to dlock characters on input and
debiock them on output. Bujfers, which are conticunus blocks of mermaory,
act as repositories for the blocks of data and 2daw the program to stream

Reader Progran, Punch
Start P 11 V1 1t} fvA%
2ad reader

Read complete
Raise miefupt
Start next read

e - o e
Move chatacter
1o buffer, ininiahze
Punch === v o o i wn s 2 Slart

] punch
Bead complete i
Raise interrupt — = ~2 Mgye character
Start nevi read to buffler T
| : ?
® Punch compicte
2 e Rame iaterrupt
° 2 Sturt next purdh
Read complete e
Raise mterr’up(Move character i
Buffer full to buffer
Ead of read /};
Punch complete
Endof = — — — — — Ruise interrupt
program Buifer mply

End punch

SEC 67 INPUT/OUTPUT PROGRAMMING SYSTEMS i95

data to or from an I/O unit at a rate consistent with the I/O device. Buffers
are of particular use between two [/O devices with dissimilar I/O rates. For
example, if the high-speed paper tape reader is six times faster than the
high-speed paper tape punch, a buffer can be used to allow simuitaneous
input and output, provided, of course, that a full buffer terminates input and
4n empty buffer terminates output.

The overlap of input and output on the high-speed reader punch is shown
in Pig. 6-20. Each device is running in interrupt mode at its maximum rate.
Because the reader has a higher I/O transfer rate, it will finish first, followed
by the punch routine emptying the buffer, and then by termination of
~ the program.

8.6.1. Overlap of Computation and 1/O Processing

Another use of buffers and blocking can be found in the overlap of
computation and 1/O processing. For this situation double buffering is used,
so that while one buffer is being filled (or emptied), a second buffer is
available to the running program. Actually, the number of buffers may be
more than two, depending upon their rate of utilization by the program and
the I/O device and updn the size of the buffers. In a balanced system, the
Huffer size and number is adjusted so that computation and I/O processing
are 100 percent overlapped. When the computation is less than 100 percent,
the system is said to be I/0 bound. Correspondingly, when the system is
computation bound, the I/O utilization is less than 100 percent.

Whether a system is one way or another depends on many things, includ-
ing the computer configuration, economic considerations, system load, and
so on. These consideratiors f2ii iitu the province of the systems program-
monowhe - Thiiceinea with operating systems design and performance.

6.7. INPUT/OUTPUT PROGRAMMING SYSTEMS

In order to facilitate effective utilization of I/O devices and to assist the
user in writing his I/O code, most computer manufacturers provide their

computer users with an input/output programming system (IOPS). Such
a system

1. Frees the programmer from the details of dealing directly with I/O
devices.

2. Provides better I/O organization and service.

3. Facilitates I/0 programming through simple assembly language

macros.t O O

4. ProvVides conformity across various operating enviroments.

196 1/O PROGRAMMING CHAP

In addition, the programmer can use an I/O programming system to allow

Asynchreonous I/O service.
Concurrent {overlapped) I/O operation

Device-independent programming.

Ll

Blocking and buffering.

1/O programming system macros fall into three categories. The fir
category includes the initializing commands. These commands initialize bot
the IOPS tables and the device interrupts, and assign unit numbers to syste:
devices. In many respects these commands are similar to the assignment an
open commands in FORTRAN, which relate a unit number to a device an
open a file on the specified device.

The second caregory of commands includes all the actual data transfer
such as READ and WRITE. Finally, the third category includes the contr
commands, such as EOF, WAIT, and RESTART. The latter two categoris
include macro statements, which make reference to I/O buffers. 1O buffe

L Data -~

are of the form
} Buffer header

The size of the buffer is of interest to IOPS in that it cannot allow da
to overflow the buffer. On the other hand, the amount of data is of conce:
to the programmer, since 1t tells him how much of the buffer is filled. Fq
both IOPS and the programmer, the mode and status bits are necessary
order to describe the buffer contents (e.g., ASCII, binary, formatted, u
formatted, packed, unpacked) and to indicate the status of the I/O operatic
(e.g., complete, EOF, checksum error, truncation upon buffer overflow

Buffer size
Status L Mode
Amount of data

J 1

6.7.1. Example

An example of the use of IOPS to provide a simple input-process-outp
sequence would include

1. The definition of a buffer.

2. The initialization of the system. O

3. A read into the buffer.

'Y
.
s
™.
o+
sy
o
L2
i ad
o
m
")
[}
3.
[ud
O
>
t
5!
3
v
v
v
2

Lhe

=
j= 2
(')
r\
('.)
)
n
3
i

oh
4
=
3
[a]
rrmy
=
4
rt
)
oy
s }
(g2
[l
[
—
-
g
-

This sequecrce might be coded using 10X {input/ouiput 2xeculve; 0t the

PIp-11

START RESCT LINITIALIZE 1o
PEAD KBD, EUF. ASCLI ,READ INTO BUFFER
SDLE WRITR IDLE ,WRIT TIL READ DONE
PEOCESS BUFFER
WEITE FRT, BUF. ASCII ,WRITE OUT SUFFER
END STRRT

The purpose of the macro instruction is to serve as a finxage t‘o the 11O

oregrarrining system. Thus each macro instruction results in a service cajl to

33 with the macro arguments being passed to 10X as a means of specifying
~oney e to be done.

3.7.2. 1GP8 Linkage Problem

ro into a service
der. Since

arge compuater system the expc

In a ar
soutine ’_nketfe requires both a macro assembler and 2 inking ic
neither of *hese exist as part of the basic software ed
computsr systen: {although they may be avoilable as part of advanced soft-
ware systems), it becomes tre programmer’s respunsibility 0 expand the
macros into a& embly language statements and to link up the program with
10FS.

The technigue mosi sflen uscd te link programs with 10PS 1 through
interrupt-producing maching instructions called service cails {8V} or 1/0
(IOT). These vrogram-itiated interrupts are ":a wdied ‘;'tw 1O infer-
rupts, and result m the replacement of the curreni PSW by a new PSW
sointing to the IO progranmimung syster. Buch SV’TS or IQTs have all the
advantages of subroutine calls, including arguments passing | the oid PC in
the PSW points to the ficst word in the argument st} they aiso facil>fate
the functioning of the I/ programming system in that

rans

1. It need not save the processor state {except for the vegister it uses).
2. It can operate at any priority level it wishes to

3. It provides a direct linkage between the user program and IOPS
a fixed memory location.

INPUT/QUTEUT FROGRAMMING §* TTEMS 1(_\/

-
w
(s8]

I;0 PROGRAMMING Claev g

O
The Iast point is clearly the most importart,
fectively deoes away with e need for a2 linking 3
will be througn U0OTs, wanicn de not :
{CPS need cunly preload it trap ve:tor so that all IC'}"@ Wi cange 2 araasfer
L

The trap insbucion of

siue2 A1 ‘{uL O call

o1 control to IOPS, at w‘r.u:h poing the reason Tor the [0OPY cali can be
deternined. 'n this regard an /G trap is ana}% ous tu the sinple Yes ol inte
rupt svstemn already discussed

6.7.3. lnte.rupts and Traps

it is worthwhile to aigress for a moment
and traps are noi assc
may be used to

and powrt ouf that
ciated only with 1/Q inswructions, Indeed,

inferrupts
interrinis

1. indicate program faulte, such as addiessing emiors,
grrors, ard abnormal arithmetic resuiis.

ilegal instruction

2. Handle machine erors. including mesory parity checks and auto-
metical’y detected hardware malfunctions.

3d. Flag external condiiions, such

interruptions.

zs power failure and console xey

Additionally, since these interrupts cause a changs in the current PSW, it is
possible to utilize an interrupt-generating condition to change the protection
state of the system.

For example, if 1/O instructions are illegul in the protected or user state,
they will cause an intermipt to be raised whenever the compate: atlempts o
execute themn. However, should the sysiemn be in the unproiccted or monito
state, no mterrupt will occur., Consequently, all I/C requests must be handlec
by an 1/C programming system, which iz activated by an SVC or 10T msirue
tion that results 1n 2 change of state from protecied fc unprotected mode.

The monitor and user modes perinit a stiuctured environment by pro-
viding for two distinct states of systermn operaricnn. Depending upon the
state, full or limited memorcy addressing and 1nstruction execution capabili-
ties are permitted. By meking the system state a bil n the PSVy, a change of
stat2 can occur avtornatically, thas guarantecing that all systen, capabilities
may be made aveilable to the interrupt service routine. in Chapter 8, where
more advanced operating systems {such as multiprogrammed and time-sharing
systems)} are discussed, this concept of system state will be discussed more
fully.

r
3
a

6.7.4. Programiming of a Trap inst-.ction

Turning hack

Lo o eXamnmine D

to the use ¢f an I;0 programming system, it would be well
ow such a sysiem might be used on the PDF-11. The earher

SEC 67 INPUT;OUTPUT PROGRAMMING SYSTEMS 199

macro program, although quite nice, just does not exist. Inst.ead,.the I/0
executive IOX requires the same problem to be cast as shown in Fig. 6-21.

RECET=2 , BSSIGN 10X COMMAND

READ=11 » CODES ¢

WRITR=4

WRITE=12

KBD=9

PRT=1

STRART 107 ;170 TRAP INSTRUCTION

WORD a , PERFORM NECESSARY

BYTE RESET. @ , INITILRIZATION

ioTv , TRAP TO 10X
. WORD BUF , SPECIFY BUFFER

8SYTE RERD, KED , AND KEYBORRD READ
=T x
DLE 1a7 » TRAF Tg 1Q
I WORD IDLE ,JumMpP TQ 1DLE ~
BYTE WAITR, KBD ,kBD READ 1S FINISHED

PROCESS BUFFER

107 , TRAP TO 10X
WORD BUF , SFECIFY BUFFER

BYTE WRITE, PRT ; AND FRINTER WRITE
89 ,BUFFER SI1ZE (BYTES)
BUF i ;s STRTUS/MODE (ASCID)
5 L, 10X WILL FILL IN BYTE COUNT
P -~ , RESERVE 16@ EYTES
e~ T TEND STARRT

Fig. 6-21

An important point to notice is that since IOX processes buffers, inter-
rupt handling is no longer at the character level but rather at the buf_fer
(filled or empty) level. Since thisis consistent with the units of infgrmahon
required (strings of digits, lines of input, ete.), the useability of I0X is clearly
demonstrated.

6.7.5. Coroutine Example Utilizing 10X

In Chapter 4 it was mentioned that coroutines were used for I/O process-
ing and represented one of the basic operations to be performed by modern

routines in &__ouble-buffer I/O scheme which overlaps I/O with computatio
nerforming ac follows:

operating sy~tems. The example that follows demonstrates the use of co(—3

200 1/0 PROGRAMMING CHAP 6
Write 01 Write 02

Read I1 concurrently Read 12 concurrently

Process I2 Process I1

The reader should recall that the JSR PC, @(SP)+ always performs a jump to
the address specified on top of the stack and replaces that address with the

" new return address. Thus each time the JSR at B is executed, it jumpsto a

different location: initially to A and thereafter to the location following the

. JSR executed prior to the one at B. All other JSR’s jump to B+2 (Fig.

6-22). This code, although deceptively short, is a powerful and elegant solu-
tion for the programming of double-buffered I/O overlapped with computa-
tion. It clearly demonstrates the power and capability of the small computer,

on which may be developed time-sharing, real-time, and communications-
based systems.

EXERCISES

1. Write a program to type out the message “HELLO?” on the teleprinter.

2. Write a format subroutine for the teleprinter to tab-space the teleprinter carriage.
The subroutine is entered with the number of spaces to be tabbed in register RO.

3. Write a program to read columns from the low-speed paper tape reader, punching
out each column on the high-speed paper tape punch as three octal digits.

4. Write a subroutine that accepts one to six octal digits from the teleprinter and
forms a 16-bit word in R@ As each character is typed, it should be echoed back to
the teleprinter. Assume that the line is terminated with a carriage return and that
your routine will insert a line feed.

[$3]

Rewrite Exercise 3 to utilize interrupts.

6. Wnte an interrupt structured program to read 400 characters simultaneously from
the high-speed reader, while punching and printing the first 100 characters read Be

careful to terminate the reading while allowing the slower printing and punching
devices to complete,

7. Devise a scheme for measuring execution time used by a program This scheme
should be accurate to within 16.6 milliseconds. .

8. Code Exercise 3 utihzing 10X,
9. Can Exercise 6 be coded using 10X”

10. Code the coroutine double-buffer example on page 200 so that it can duplicate a
paper tape from the low-speed reader to the high-speed punch. O

BEGIN

D EXERCISES

SP=1E
FC=UT }
(DO 1/0 RESETS, INITS, E7C

107 JREAD INTO It TD START FROCESS
WORD 14 -

‘BYTE RERD. INSLOT o

Moy BR, -(SP) ; INITIALIZE STHCK FOR FIRST JSR

JSR oC, B(SPY+ . . DO 1/0 FOR 01 AND 14 Or 02 ARD

PERFORIM PRQCESSING

BR' e ,MORE 170

. ERD OF MAIN LOOFP

,1/0 CO-ROUTIMES FOLLOW

ﬁ .

107 , READ INTO 12
HARD iz
. BYTE RERD, INSLAOT

SET PARAMETERS T PROCESS 11 AND O3

JSE PC, @(SP)+ ,RETURN TQ FPROCESS AT E+2
1§2x1 JWRITE FROM OL

WORD o1

BYTE WRITE, OUTSLT i

107 LRERD INTOD 11

WORD I1

BYTE READ. INSLDT

CET FAPRMETERS TO FFOCESS 12 AND oz

P

JSK FC.BLSFO+ , RETLRN T PROCESS AT B+
ICT JURITE FROM 02
. KORD oz
BYTE WRITE, OLITSLTY)
BR A , READ INTO 12

END BEGIN
Fig. 6-22

FE]

202 10 PROGRAMMING Ol CHA? ¢

REFERENCES
1/O programming is very personal in the sense that eacn cdmputer’type has its own Y/C
instructicns and hence I/O idiosyncracies. Books by Flores (1969), Helierman (1967),
and Foster {1970) discuss /0 from the conceptual level, making it more universal
Bavor. Others, like this book, treat 1/O as it is embodied in a particular machire. For the
PDP-11 the best source is the Periphereis and Interfacing Hendbook, which covars not

only I/O devices but also UNIBUS exiensions, communication interfaces, and dé‘ta’and
control options. ’

~.

s,

G0

iy SYSTIM SOFTWARE

-ormpantes each compuier

A comprehensive package ol sysiem software o

n use today, from the small minicomuuier to the large number cruncher

rese packages include prowy wns ard rouires plus as-ociated documentation
wiwh allow the progra- mer write, adit, ‘ssekr_‘!,le, ~ompde, debug, and
-un his programs, making the full data-processi apability of the computer
trunediately available. ' .

System software repiesents fhe on-gomng process and ccntmua] efforts of
system pregrammers 1o raake the unlizatien of computers easier, more com-
prohensible, and less time-coasuming o than was possible beflove. Mostﬁ systems
wre modaular and open-ended. permitting the user to construct specified <y+
seros tailored to his particular environment., As st uch, they act as the buffer
oc inter faces between the user’s needs and the hardware’s capabilty.

We have introduced you previously to three software systems’ ﬂneT as-
sorpbler, the 1/O programming svstem, and the memnary dump roufine. Now
vour attention 1s directed to those oLther Soitwaie Systeoms that asast In the
creation and execution of programs—the eriitor, the meacro assembler, and

In addition, since no aontrivial prograitt Of §yvaLer 1
it 15 worthwnile to conciade ourmvestigation of system

e}

w
¢4
<

wnhe loader
dermcweo or tested,
soltware with an examation of testing and debugmng tes chimge

7.1. EDITOR

The text editor is a powerful context-ec:ling prograr used to create and
modify symboilic sotirce progiams and other text material, By means of com-
mands 1ssued from the teleprinter, the editor can be vsed to create and delcte
characters, lines, or groups of lines which 1 mantains in its internal buffer.

O

204 SYSTEM SOFTw ARE Citap. ™

O

to commands

Because the editor is on-line 1In most sys
mmediate and dynarnic.
A gocd editor s both produciive

e118s, 1

response

and cosi-affoctive,

tolepriniser nto & vesy s‘“phxsi‘cated wpe, cioer that assists the poograr e
in the normal “cut and paste” operat 3 PULLING d pro gT:A:n \Q“P'(uL As L
result, the editor snust not only allow fer he iasertion 1 deletwn ¢!

characters and lines, but it must also be capable of 1
corrections, and reading or writing blocks of data
Typical editor commands include the following:

ocating gymhd s mauking

1. INPUT: toenter arew sirnng of characte

2. DELETE" to delete a stiing of chavacters

3. CHANGE: to replace one string ¢ choracters with another

4. LOCATE to find the fitst or nth occurrence of a character string.
5. PRINT: to print a string of characters

5. VERIFY- to print out a string alter it has been changed, or located
7. READ to fll the editor’s internal buffer by reading a block of text

from some peripheral device

3. WRITE- to

o emapty the internal buffer onto a perinheral device

T

'n addition, there are commands that have to do with the
pomter.

character or line

Associated with the internal buffer of the editor is a pointer that refers
to the 1 ne or character in the puffer consideced to be the current line or
character. The current line or character 1s defined as the line or character
Lha Demg created or edited hy the user.

Some editors nper ate only on lires, some only on characters, others
operate on boch If che editor recognizes entire lines 1t does 30 by defuung
a line to erd wirh an especia’ly sigaificant character, sueh as a cartiage re.urn,
[n this way the editor may assime that eacn line begins with the character
after the fermuaving carnage return in the last ine and ends wirh the ter-
minating carnage return for the current line

Various ed:tor requests are provided for moving the current location

pointler. These requests include

1. BECIN: to position the pointer at the beginning of the buffer.

2. END: to position the pomnter at the end of the buffer.

3. NEXT: to positicn the pointer at the beginning of the next line.
4. LAST: to posttion th pomter at the begimnimg of the previcus line.

206 SYSTEM SOFTWARE —T

WEC 71 EDITOR 205 This subset of editor commands may be used to write the trivial prog
given in Fig. 7-1. In the example, the editor is assumed to be running and
5. FORW: to move the pointer forward one character position. nonprinting characters are not shown (e.g., carnage return, tab, line fe
6. BACK' to moue the ponter Sackward one character position. ;igit‘l)‘olnily, the right-hand comments have been added for the sake
{n addition, editor commands, such as LOCATE, INPUT, DELETE, and sc «¢ USEF FLACES ECITOR
5n, will cause the current locauion pointer to be repositioned. F:E'=:':9 IN INFUT MOUE AMO TYFES INM
There are two response modes in which the editor environment may ;%,\:l 1. PO LINES OF INPUT
operate. These are called “normul” and “brief” modes. The normal mode CLR Rl
automatically types out each hine that has been changed or searched for as CHP R, Pl
the result of an editer request. The brief mode does not respond by typine END STRET _ S
the edifed lines and thus requires the user to issue a verify command (for THMEUT m.;,EELmE_FELD TESHINATES
one line) or a print request (for several lines) in order to see the results of the
‘e FOSITION FOINTES AT EEGIMMING

last command(s).
The editor environment includes two modes of operation: the input and -« 2zn AOVANCE 2 LINES
the command modes. The input mode specifies that all characters entered

are to be treated as input until a special character is recognized as a request - vy 1. R FRINT THE CUFFENT LINE
for a mode change. The command mode unplies that the character strings
entered are to be treated as requests to the editor. 1 ERCK TO INFUT MOCE
The sophistication of the editor depends greatly on its operating environ-
ment. Large computer systems allow for maximum editor flexibihity, in- z7asT AND ROD F LAEEL
cluding full or abbreviated ‘commands, concatenation 'of‘ command strings . o eerme) .
(.. .o statements), file manipulating requests, and sophisticated text editing TO THE E-En;um‘n—;n-;I;émT‘H;HEI:gI »

Small computers generally have very terse, one-letter commands, limitec
internal buffers, and ngid « ommand formats. Nonetheless, even small com

. — T . . +1L < < '
puter edite-z"&iLwsuthicient flexiblity for creating and modifying source THE LINE Is LISTEL
nrugrams. START MOy #1. ka
¥13J THE CHAFACTER O IS TO
7.1.1. Example of the Use of a Small Computer Editor *1C BE CHANGED TO A 8
8
The editor for the PDP-11 1s typical of the small computer editor . i }
Requests are entered while the editor 1s in command mode (each line begin: o THE FOINTER 15 FEFOSITIUNED
with the editor typing out an «), and they include *1L AU ToT LINE LS PFINTED QUT
. STRET MOy #1, R
1. B: equivalent to BEGIN. ' Lo
2. #nA: equivalent to NEXT or LAST depending on the sign. n specifie. Fig 7-1

the number of lines.
‘ Although far from exhaustive, this example demonstrates how a st
3. #nd: like A but for characters (e.g , equivalent to FORW and BACK) computer editor might work.

4. I: equivalent to INPUT.

5. tnC: to replace n characters before (—) or after (+) the curren’ 7.2, MACRO ASSEMBLERS
pownter position (e.g., equivalent to CHANGE).
The reader has already read how a basic symbolic embler makes

6. tnL: & _fivalent to PRIN bt i O
x o PRINT but 2n lines from the current pointer chine language programming easier, faster, and more e r«lent. In addit:

N
ke reader hasﬁ;len presented with the need for and advantage of pasuco-
operation instructions for duecting the oscuons of the assembler Neow we
zhall discuss the advarced features of a macro instruction generator, which 1s
an expanded or moero agssembler. Note that the keyword is
eypanded,”’ since the macre astembler containg alli the features normally
ound in e symoolic wsertler plus those recessary to handie macre instrac-
:aneration Thus MACRG-LL, the muanro ansembier for the PLiP-11, is n
suparser of PAL-1L, the symbolic assembler, and users of MACRO-11 may
wille programs that are identical t¢ the programs thac they weunld wnife
for PAL-11.
Ome of the features of 3 macro-instruction generator 1s that it permits
easy handling of recursive instruction seguences utidizing the sunple tech-
nique of parameterization. The generator allows the programmer to create
new language elements in order fo be able to adapt the assembler to his
specific programming applwations. In agdition, macros may be called inside
nacros, nested to multiple levels, and redeFued within the program.
=t this point it might be well 1o define just what a macro is rather than
snsy what 14 can do. Very specificaily. a macro is an “open routine’” which
‘s defined in a formal segnence of coded instruciions and. when called or
vviged, resalts in the replacemient of the actuel body of
cose that b represents. The use of a inacro statement does not resut in
s3vag memory locations but rather in zaving programm=2e ime.
Yor example, when a program 1s bemg written, 1L often happens that
1 coding sequences are repeated severyd funes, with only the arguments
cornged. It would be convenient if the entire repzated sequence could be
generated by a single staternent. To accomplish this it is Dirst necessary tc
el e the coding sequence with dummy paramelers as a macro instruction.
rowering to the macro name along with 2 list of real arguments that will
epiace the dummy paramelers and generate the desired seguence.

e

,,
et}
-
T

macre call by the

eery

dacros must be defined before they may be used., The way to define a
macro 1s to bound the sequence of symbolic instructions with the pseudo-ops
MACRGC and (ENDAML For example,

MRCEU PIRC <=3 ticro name
LINEL }) '
LIMEZ ¢ =77 4 o body
Cine s Macro body

Ty

With each macro call (macre order), the macro body 1s substituted n place
of the macro name:

ADD it E
ALD 5. E vy oo
Moy e R inElL
MAC T LINED
Pl L. F LInNEE

L [

98
./
This replacement process cceurs eszentially
ceived of as a character-string subsatution.
33 3 P v » o 2 P arm - - } o
Since the progimmmer may wish $0 use the samo macro bit on differen

data, macro coails include argument transs no Thus, of a nrogromer s
ipairo Infs P o~ ot Vs {) o !
desires to define a macro msiruction “add byts” {ADDEB), the flowson

macro definition would suffice

ARCRO RDDE. ML Y
Moy RO, TEDRY P SHYE RA
i Ri.¥omes P THVE B
WQUE <, R SEUTE FIRET BYTE IN RS
MIVE YR SEUTES TEOOND EYTE IN S1L
Al kat, F L s FOFME FESULT
MOvVE Fioy S FPLALE REZULT IN ¢
o TEMFL, ko - RESTORE RO
Moy TEMPZ R , HNEG By
gF TEMPl+ CERANTH SR OUND
remey WOE b CTEMFR LR TIONS
TEMFz WORD X
TNOM

7.2.1. Lecanon and Crezied Symbais

Although il may wot have been ned essary, the macvo tody of the ore
£ 18

Y
ceding example preserved the contents of tegisters R@ and 1. In doing so,

N N L o - - -
Lh::— n}abro definition developed a sericus probiem. Fach time the maecro iy
cailed, the symbois TEMP1 and TEMP? will be redefined, cesulting 1n an

" assembly error message.

There are, fortunately, two ways out of this dilenima:

1. Parametlerize the temporacy locations, leaviny their defimtion up io
the programmer; for example,

MHTEGD ALDE < & TENMRPL TENPZ
EDE Fee TENF L
N 4 M
2. Allow the progrummer to inforn: the assembler that certain synmbols
are known only to the macro and should be replaced by the macro assembler
with a created symbol, which will be urigue for each call ~f the macro

MACRDY ROFCS. R, B
] na #E, RN D IRIFT COUNT
g Fln A LFGTATE
EEE i SDECREMENT ComT
SME £ LR ITF NOT [OME
ENOHM

which generates the following cade when called:

LC 72 MACRO ASSEMBLERS 209
M #e . FQ
[EF 3 FLF U
RORe Sum LEr Rt
EMNE 3
Moy #5., Fa
S5 3 rOR VHRLUE
RORC VALUE CEL %]
\ ENE (=5 3

Created symbols are always local symbols between 648 and 127$%. The
ocal symbols are created by the macro assembler in numerical order and are
senerated only when there 1s no real argument being substituted 1n place of
:;he dummy argument in the macro definition. If a real argument 1s specified
n the macro call, the generation of a local symbo! 1s inhibited and normal
‘eplacement is performed.

7.2 2. Nesting of Macros

Macros may be nested, that 1s, macros may be defined within other
macros. For ease of discussion, levels are assigned to nested macros The
outermost macros (those defined directly) are called first-level macros
Mac. s defined within first-level macros are called second-level macros, anc
so on. For example,

MACKD LEVELL A.E 3
ACD A E
MACRDT LEVELZ.C,O
SUE [
. . malen LEVELZ E.F\
:E-E E; J Lgvel 3 Level 2 } Level 1
END
[[
EnDrM
CLR H
ENDI1

At the beginning of the macro processing only first-level muacios are
defined and may be called in the normal manner. Second- and hiwgher-level
macros will not yet be defined However, when a first-level macro 1s called,
all its second-level macros become defined. Thereafter, the level of defimi-
tion is irrelevant and macros at either level may be called in the normal
manner. Of course, higher-level macros will not be defined until the lower-
level macros containing them have been called.

@,

210 SYSTEM SOFTWARE CHAP 7

Using the last example, the following would occur:

Call Expansion Comments
LEVELL XY ADD XY Causes LEVEL?2
CLR X to be defined.
LEVEL2 IJ SUB 1IJ Causes LEVEL3
CLR I to be defined
LEVEL3 Y1 ADD Y,1
ADD I1

If a call to LEVEL3 were made before LEVEL2 defined 1t, an error would
result, since the code expansion would be undefined.

7.2.3. Macro Calls Within Macro Definitions

The body of a macro defimition may contain calls for other macros which
have not yet been defined However, the embedded calls must be defined
before a call 1s 1ssued to the macro which contains the embedded call

As an example, we consider the macro called SWITCH, which transfers
the contents of buffer A to buffer B and vice versa-

MAC PO SWITCH. A B, TEMF, N
COFy A. TEMF. N
- CORY E, R N
ENLM
MACKRD COFY, FROM, TO. COUNT, ~L
M COUNT, R
MOy FRomt, TO
fer [S1Y]
- NE L
ENCM

7.2.4 Recursive Calls

Although it 1s legal for a macro definition to contain an embedded call to
1tself, care must be taken to ensure that the recursive macro expansion will
eventually terminate Somchow the assembler must be told that a condition
has been detected and that the recursive definition may now stop. The
technique used to accomplish this 1s the conditional assembly statement,
although such statements may be used for things other than recursive macro
definitions.

7241 Conditional Assembly

’O Conditional assembly directives are most often used to a@nble certain .

Nnarte af 2 entlirre Nraoram Aan arn arnfianal hacie The inctriirtinn e of thoe farm

—

SEC T2 C MLACRO »3SEMBLERS 21
IF cond argument(s)
where cond represents a condinonae thai

1. Tests the vaiue of an srgument expression. or

0%

7. Tuests

the assembly ennronment;

3. Detennunes the attribuies of a sugle symbol or address expressior; or

4, Tests the value of chazacter strings.

d,1that part of the source orogram starting with
‘Co lowwng the conditional 5tau}mem, and nciud-
emply directive,
the code is not

ne condition is sativGi
cbatement immediately
sla temr_r‘f% up to the .ENDC {end conditional} ass

However, \{ the condition s not sabisfied,

‘e g
G the
e assembled.
resermbled.
Conditional staterients may be nested. For each 1T statement there
fouel Be a termination (ENDO staternent. If tha cutermost .IF s not satisfied,

g cahtre group is not assembled. If the first IF is satisfied, the following

~oar iz vssembled. However, if an nner .IF 15 encountered. its condition 1s
:zed, ang the code given i Table 7-1 is assemnbled only if the second IV 15
gh ‘..'szied Legically, ne"ued JF statencents are ke AND circuids I the first

nested .IF

’)

czeendl and thued are sacsfied, the code that follows the third

tament 1o assembled.

114

Table 7-1 Conditional assembly direclives

Lypa Preudo-on Conditicn
‘omgarand F EQ argument = §
I NE arguient # 0
IFf GT argument > 0
JF GE argument 2 0
AF LT argument < 0
IF LE argumeant < 0
Zavironment AF B I macro-type argument? blank (ie,
missing)?
AF NB is macro type ,‘rgurr'entT aot blank (e,
present;?
Attribute AF DF is argument sy mbol defined?
IF NDF Is argumen! symbol undefined”
Character String JF (DN Are lwo macro-type uu_,hments identical?
IF DIF Arz2iwo alacro-type ary qmentsT different”

- . . . B v A\
TA macro-type argument is one enclosed in rngiz hracl ols (e.g, (A B O

wents allow axpressicus To ne treated as single “erms

;

=y
/

7.2.5. Repeat Blocks, Concatenation, and Numeric

in line with other scurce codes.,

- — block of the ferm
Such argu-

51
L1 SYSTES SOTTIWARDY !

('"\
1. The code generitor s /

’ - ih “e generator should put out a BR mnstruction if rhe relative
distance Lor the branch is 255 bytes or less. !

o ol o ﬁtherm;e, a J\,H 1S generated,
Lie cond L eoCe s
MRS RS SOnE, Lo
LF D LOGE
iF LT e 5%~ -1 008
nE LR
chnpl
iviF L e
En{C
Crim
{The ¥ DF i i ey . - N
d scessary since LOOP miay be a forward-refecenced label)

2 Code mav be saved [. e
‘ mAYy oe saved wihen using the previously defh
when t 5 Wit bl 1y defined ADDR macre

7 rr\—"io ‘or more such macics are used in the same grogram, since TEAVPY
and TEMP2 need oaly be defiged once

MRORDT ARLE.A B
M Fos TEF
Y L TEMFPZ
Mg H,
RDONS EOFL
[RYoe L
MGY'E (SR
Tl TORFL, RO
MO TEMF2 AL
IF HDF, S
Sl=1
g +5
TEMAY [NTRl<38) f .
TenF2 LS D]
ENCLC
ENDM ‘

3. The ¢ tio
conditional assembly code may be used to terminate mecro

recursion.

M=

SLin P RO P
RO oy
F=i+rl
1= NE A-
AN .Y
ENLC
Exlm

Argquinents

Oc_asmnallv it 13 usef! to d.mhcate a black of code a number of times
This is performed by creating a repeat

SEC 72 MACRO ASSEMBLERS 213

REFT E:FF

EMLF

where expr is any legal expression controlling the number of times the block
of code 15 assembled. For example, to generate a table of ASCII characters,
the .REPT could be used as follows:

A=
FEFT
EYTE

H=H{+ 1
EMNG

[

O N

[he repeat pseudo-op can also be usefully combined with two other macro
teatures. The first 1s concatenation. This feature allows the apostrophe or
single quote (’) character to operate as a legal separating character such that
when the ’ precedes and/or follows a dummy argument, the ’ is removed and
substitution of the real argument occurs at that point.

The second feature 1s the capability of passing a symbolic argument as a
numernc string. Such an argument is preceded by the unary operator back-
slash (\) and is treated as a number. Combining these features, we get the
following interesting example:

E=10
MACKD INC AL E
CMT R.“E
.. F=E+1
- ENOR
R MALFL CNT A E
A€ RIDID 2B
EHCM
This macro pair, when called by
FEFT <
LML ~ B
EMOk
results in the following macro expansion.
%43 HECIT @
E) neC Il L
2 HECID 27
I ASCID A2y
' RECID 3

The two macros are necessary because the dummy value of B cannot b

updated 1n t}C(’

CNT macro. This is because the ASCII characters represent C?ystem monitor.

214 SYSTEM SOFTWARE CHAP 7

ing the number are inserted in the macro expansion. Thus in the CNT macro,
the number passed 1s treated as a string argument

7.2.6. System Macros

In any macro assembler there can be found a system macro facility. This
facility allows the user to access a set of macros that have been predefined
for programmer convenience. The system macros are called like any other
macro but result in a search of some system library to find the requested
definition.

Most often the purpose of calling a system macro is not merely that of
substituting a macro body for a macro call. Instead, the macro calls are
treated more as subroutine calls on the system to perform such functions as
1/O reads and writes, register saving and restoring, and other specialized
functions, including using a real time clock or returning control to the
monitor after completion of a user program.

Typical system macro calls look as follows:

KRERL ° FARL FRFZ

WRITE FARRZ, FAFS

where PAR1, PAR2, ... are parameters associated with the macro call. The

actual expansion of the macro looks as follows.

M $FAFL. -1 SFD
My BEHF D -0 SF
EMT 3

M #FEF . —(SF
Mo #FRFG - LF
EMT z

On the PDP-11, the EMT (emulator trap) instruction serves as a call to the
Thus the effect of making a read/write ;50 call is the
stacking of parameters and the tuming over of control to the mdnitor, which-

'R T I Tt~ T O T

C A g resy

sound

<EC 73 f\‘ THE 1.0 aDER
N2
7 2.7. Power of the Macro Assembler

Macro assernblers, which possess the features of nasted definitiouns, con-
Zitional code generation, and recursive calls, provide a capability more nower
ful than a subroutine facility. The reason is that the macro assembler allows
code generation al trezasiation that tne actual progran: generated fite
e appiicatious for wiiich 1t was inlended. Thus, uniike Lhe subroutine, it
aoes not require exiensise testing of conditions that may cccur at execution

Limme so

20,
A

mame because the cod= was genersted to handle only those cases that weve

#rown to ocour,
An example in the use of such macro assemblers can he feund in system

senerstors. System generators are parameterized macro programs that allow
rne user o define his particular operation environment as arguments to the

,»

gty The programm may then be assembled, and produces as output
raachue 1anguage programs tailoved ro his instailagon 8uch programs do
2st to see how much memory or what options are available; instead,
information is aiready ambedded in the opemmng env.ronment code.

g, instractions for testing memory size or waether or not a printer
¢ available need never be exacuted.

‘*"\aﬂy a powerful use of macros can be found in wotally parameterized
213270 programs. The inscructions in such programs are either macro calis or
rame definibions based eitirelv on defined macros. Thus the

programmer need never kaow whal ine zetual machine instractions
wie or what they are capable »f doing. Indeed. the programmer need vot
now anylhing at all sbeur the host computer, since the macro eXxpansion
‘s oased on character sirings :md does not depend on the generated result,

A classic example o 2 of such a macro-generation scheme can be
in the implemeniation f NCBOL4 by T

3T

/1‘

- 1)
TeVIGUSIY

PN

ST ot

l"h

its designers and asere. This
rraguege is written as a macro-generation implementation and only rzauwre.
that each macro be defined fr)r the host computer.

defined, the macros, along with the SNORBOL4 system, may be ossemnbled
1tn a running SNOBOL4 interpretor,

7.3. THE LOADER

The mitial load problem was discussed in Chapter 6 in conneciton with
tne bootstrap loader. The boctistrap loader, although sufficient for loading
short programs, was not gencral or fexible enough foroaching long programs.
Instead, that task falls on the absolwte [oader.

The absolute loader is a sysiein program .vhxw enables the programmer
to load his programs 1mto any available mer 2rv locationg, in any order. Itis

used load programs thut cre in absohute binwry {le| f‘.x*a Lo absolute
memory iocations) or PIC tormat, Having comoieted its task, the absolute

bnel
%

£y

lcader will either hait or transfer control .o raef of the rrf—*,af‘y loacied

program.

Onee epch macro is

{

The absolute loader is usually loaded by the bootstrar into-oie uppermost
area of availahle memory. In this way it may be preserved across user or
system program loads so that it can be available without reloading. Gf
course, when writing niograms, the "ixer must be awasre of what memory
iocations the absolute loader {and the bhootstrup i1 i resides in memory)
occupies so thau it wili net ke altered by iis progr Jn(

An absolute program as seen by the abszclute loader consists of one or

more biocks of data. Zach block mav include

3~

Y
i

b

starl-of-block indicuor.
A record count of the number of bytes, words, and so0 on, to be 15aded
A joad address.

The inforn

.

o

wation to be loaded.

o

A bleek checksum.

Although the fivst and iast iternz are not absolutely necassary, they nccur
frequently 1 block requirer sinall computer loaders.

Tre start of block indica t s used to indicate that a load block follows.
in this way nonloader data may be mixad with lcader mfotmition. For
exampie, a small computer wich only a telelype as a system /U device may
nui both the assembly listing and the binary loader tove oul to the teletype
punch, and leave it up to the lsader to separate the two.

The block checksurn isused as ercor indicator for the loader As 2ach load
record 1s generated by the assembler it i added (;owvzd‘.y) to the checksum.
which eventually becomes part of the load block. During normal program
ioading, the checksum is again computed, and if this new value does not
agree with the block checksum of the bmm\ data, a lead error 13 indicated
and the loader halts. Thus the block checksum serves to guarantee that the
load ope*ation has been performed correctly.

he rest of the loader block fields are used as shown by the flowch it
i rlg 7-2. Note that the iast load address may or may not be used as a
transfer address upon completion of the load process This decision depends
on whether the assembly program termmated with a

tsr

Eritr LrtEL
or stmply an .END. One way of mdicating this cdifference, which 15 used by
the absolute loader for the PDP-11, is to make the load address even or odd,
depending on its being a transfer wd:“s cr not,

As an aiternative to taking the load address from the load block, it should
be possible to indicale the low: address by use of the computer console
switches. This capability =lic v= PIC programs to be loaded in memory

SEC 73 THE LOADER

Read the next
loader block

217

Is the record
count that of a
short record?

Yes

1

Use the load address
as the location at
which execution s to
begin, if appropnate

Se—tl—=—o]

Move record; to the
location which s
given by

load address + |

Setl=1+1

Isl=

record count
9

Yes

Fig. 7-2

_loeations diffeent Irar the relative load addresses given in the load blocks.
P1C programs are thereby relocated into new memory positions by the simple

process of making the actual load address for each block be the sum of the
two addresses provided.

7.3.1. Relocation of Programs

Relocation of PIC programs by the absolute loader turns out to be not
only useful but necessary. For example, it allows the user to control the
loading of the dump routine so that it may be placed in a location of memory
that does not overlap the area to be dumped. More generally, such reloca
tion of PIC programs makes it possible for the user to write separate PIC
segments, which may be combined in memory to form one large program

However, making the programmer write all his relocatable programs 1r
PIC format i D duly restrictive. Instead, it seems much more sensible t.;

218 SYSTEM SOFTwARE CHAP 7
leave the mechanical process of relocation up to the computer since it can
easily handle th’e problem. Consequently, the programmer is encouraged to
write all his programs in a relocatable form.

As ‘the FORTRAN programmer knows, each FORTRAN program and
subprogram requires a separate compilation by the FORTRAN translator.
The following are advantages of this requirement:

1. Errors discovered in one FORTRAN program (or subprogram) require
only that that program and not all others be recompiled.

2. Absolute addresses need not be assigned at translation time. Thus
programs are prevented from arbitrarily overlaying each other. This flexi-
bility also allows subroutines to change size without influencing the place-
ment of other routines or affecting their operation.

3. Separate translations allow the same symbols to be used in different
source programs.

4. Once translated, subroutines may be placed for general use in a
library for future use without retransiation.

Fortunately, these advantages apply to assembly language programming as
well, provided that a relocatable assembler and a linker/loader are available
as system programs.

Up to now we have not really considered how subroutines are linked and
loaded with their calling routines. By default, the absolute assembler would
hbe used to assemble all programs and subprograms together, determining
which portions of memory each routine is to occupy, and maintaining the
subroutine entry addresses in the assembler’s symbol table. However, should
we have decided to assemble each routine separately, we would have been
faced with the tasks of keeping track of what memory is to be allocated to
which routine and what addresses need to be adjusted (e g., the address
portion of uie

instruction must be modified to point to the entry point of the subroutine).

The relocatable assembler and linker/loader mechanize this process for
us in the following way. Furst, the assembler produces object code as if it
were to be loaded starting at location zero. Second, the assembler flags each
relative address and data word so that the linker/loader will know what parts
of the program will be affected by relocation. Third, the assembler allows
the programmer to declare certain symbols global symbols. A global symbol
is either defined in a program (as a label or by direct assignment) or it is
assumed to be defined in some other separately assembled pragram. In the
irst case the global is called an entry symbol; in the secona\)se it is called,
an external symbol.

e T3) THE LG A DER 218
L
'.3.2. Linking and Loading
A it Handdoy rmeoiy
As ine start of L.e iinking and loadipg process, the linker/loader rzreives

e

he fotlowing information from ‘the relocaiable assembier

1. Object code.

3 Relocation bidomation abouarn tag individual fields in the obiect code
5. Reiative assembly address of the [ust instruction or datum in the load
noduie.

4. Glohal entry point and external 1eference symbolz.

%, Length of the load module

"is infc rmalior. assisls the linker/loader in developing a load map detail-
nE W h..)\, prograns have beern lorded, how tong they are, where they resice mn
remory, 4nd what other prograims thoy require. The linker/loader will at-
empy b0 load programs uniil all prograins are toaded and no new ones ars
eguirad, or program: are found to be missing. ’ '

lema programs may be part cf a user or system library Such hibraries
funciions such as SiN,

aiready iransiated user rottines and mnfrmsi

AN, EXP, LOG, and ~o on. These programs must De located hy the
sverlonder through 2 dirsclory wiich c!e:uibes the routine, its entry

yoints {sume routiies such as 5IN and COS may share common code), what
sther routines this routline may aeed, the length of the routine, and where
e routine is to be found. A typical load map and directery aie shown in
a 7

3
<.

Load Man

Routines Memory , i i Rouiinss I Cailing
present addiess v Lengtn ' requued | addresse.
e e e e — ,}__.,4 B s e L e e =
MAIN 150 1075 1. i 350
SUBI 1175 300 ' SIN 1220, 1245
: EXP 41s
]
Drectory
|
Eniry “alted i Phyaical
Routine 50 nts roulnes Length location
— ,*.- f e e e ——
SIN SIN, €08 - = I 263 ; Desk addrss
MATH EXP, { GG FLIPT, | 300 | Paper tye
SGRT CLOG i | tertemad)
i i
Fig 7-2 Load mau 507 duector.

270 S¥E5 EM SOFTWARL (/,) CliaP 2
e

The actual process of Imlnng and loading j: generally handled by one of

two possible lechniques. The first 1 called she Zv‘mm' , .Jec:o' ineiton !

utiizes a techaiquesimuar 1o the Jjump fabic s amp’s presented 1o Uhapti» 4

2y making sach external rounine cail resull in a transfer intod a jump ol

the loader can eventualiy fill in the address where the calmd routinc hias & 20

[
[

loaded. TFigure 7-4 shows hiow the assembler code for the FDP-11 coul
used to produce relocatable code hat includes a mmp table to the ¢ L.cj
routines MUL and DIV, After nading, these tavle antries will contain jump
imstructions to the actudd starting locations for MUL and DIV.

Program e memosy

Assemblervode 2
Twith MUL at 200, DIV a1 360}

Relocotabie outpus

0 MUL 9O 10 JMP 200

GLOBL MUL, DIV 2 DIV o0 102 NME 300
ADD AR 4 ADD 36,52 104 ADD 154,152
si PCMUL 12 J8RPC Wi J8R PCICC
S*IB 2,C '6 SUP 5254 i SUB 152154
iSR PC DtV 24 ISR BC2 124 SR PC02
JET PCMUL 50 ISk PO (o ISR PC GO

I B a

° s s

) v N &

Fig. 7-4 Loading process using the transfer vector technigue,

The linking loader methed atiempes to avoid the one level of indire ciness
of the transfer vector technigue. Iy therefore creates a linked list nf all calls
to the external routine and preserves tais list until such time as the relative
ioud address of the external routine is xnown. At that time, the linking loader
traverses the linked list, building up direct calls to the eAfemal routine(s).

Figure 7-5 shows the same PDP-11 code being linked and jcaded as in
Tig. 7-4, except that the linking loader technique is used in the figure. The
relocatahle output of the assembler includes a linked hist of all references to
the same external routine, wath the list terminating in 2 null {shown by a
dash {-) in the f{igure]. .

The basic difference between these two techniques s that the transfer
vector method resolves iinks during loading, while the linking lcader dues
it before loading. The outnut of the linker part of the linking loader is,
therefore, one fon,p‘em l0ad module, which is loaded by the relocateble

ioader part.

vC 74 DEBUGGING TECHNIQUES

Program in memory
(with MUL at 200, DIV at 300)

Assembler code Relocatable output

MUL L24

GLOBL MUL,DIV DIV L20)
ADD AB 0 ADD 44,46 100 ADD 144,146
JSR PCMUL 6 JSR PC— 106 JSR PC,200
SUB B.C 12 SUB 46,50 112 SUB 146,150
JSR PC,DIV 20 JSR PC,- 120 JSR PC,300
JSR PCMUL 24 JSR PC,L6 124 JSR PC200

° ° °

. . .

Fig. 7-5 Loading process using linking loader technique,
in either case, the results are the same:

1. Object modules are relocated and assigned absolute addresses.

9. Different modules are linked together and global symbpls are corre-
lated between those modules which define them and those which use them

3. A load map is produced, displaying the assigned absolute addresses.

thus allowing the programmer to assemble his program and subprogram:
separately.

7.4. DEBUGGING TECHNICUES

One of the maxims of programming seems to be that no program of any
degree of complexity will run correctly the first time it is executed The
problem is that a symbolic program can be assembled correctly and s.tlll
contain logical errors, that is, errors that cause the program to do something
other than what is intended. Although the assembler can check for and de-
tect syntactic errors, it cannot detect logical errors. Consequently, logical
errors are usually detected only when the program is run on a computer,

Determining whether or not a program has a logical error is sometimes
difficult in itself. A computer is generally used to solve the kinds of prob-
lems that require involved calculations, which preclude knowing much about
the answers generated. As a result, only when answers are grossly incorrect

O

Czram assembly hsting, mentally execute his program.

222 SYSTEM SOFTIwARE CHAP 7

1s the programmer sure that a logical error exists. When seemingly small
errors or results that cannot be measured against known values appear, the
programmer is faced with the difficult task of deciding whether or not his
program is indeed incorrect. And gven a large, complicated program, the
programmer may not be able to test all conceivable cases that could be
generated, thus causing him to accept on faith that his program does work,
“intil proved wrong'

Assuming that a logical error is known to exist, the problem becomes

~that of determining 1ts cause. Several techniques for this are available:

1. Taking a memory dump of all locations that affect the results.

2. Using the console switches and lights to monitor program execution.
3. Tracing the program as it is executed.
4

. Producing intermediate output as the results are generated.

Taking a memory dump, although often helpful, 1s both static and after the

_fact. By the time the dump is taken, the error may have caused all pertinent

information, including itself, to be altered or eliminated.

Alternatively, the programmer, having the machine to himself, may use
the console switches to examine specific locations while stepping through
he program instruction by instruction Besides the difficulty in both inter-
reting binary console displays and translating them into symbolic expres-
~ions related to the user’s program listing, this technique 1s extremely time-
~onsuming and very tiring. A better technique would be to place a halt in

he program just before the section of code which is to be checked so that
the magnitude of the operation may be reduced. Of course, this requires the
srogrammer to know where to place the halt,

A better technique would be to let the computer print out the program
instructions and results as they are being interpreted by some trace program.
This, too, is a time-consuming process, but only on the part of the computer,
since the programmer need not be present while the trace 1s being run. Some
computers, the PDP-11, for example, even have a T-bit in the processor status
word to assist 1n tracing instructions. This bit, when set, causes a processor
trap at the end of each instruction execution, greatly facilitating the tracing
process. D)

If computer time is a matter of concern, the programmer 1s faced with
having to trace only selected variables or locations. Either a trace routine 1s
used, or the programmer himself generates intermediate output which indi-
cates that a certain variable has changed value or a specific location has been
branched to or referenced. .

The programmer can, of course, while sitting at his desk using the pro-
This/” ythod 1s fre-

)uently used with very short programs, but only with very“short ones.

SEC 74 DEBUGG NG IECHNIQUES

C
L!uman memcry cannot retain every step and instruction in even a fairly short
regram; it cannot maich a computer memory.

What is needed to debug a vser program conveniently and accurately isa
service program that will assume the tasks the programmer would have to
perform if he used the conscie switches, ook 2. memory dump, and/or
serectively traced his program. 8uch a facility 1s known s a dynamic debug-
Jing program (DD,

On a small computer, the DDP takes the form of a conversational system
rcgram. It provides the user with a convenient means for debugging and
losely monitoring the operaticn of their programs. In fact, the DDP acts
;oth as a program supervisor and as a binary editor.

Through commands issued to the DDP via the teletype, the user is able
to: {1) start a program, (2) suspend its execution at predetermined points,
i5) examine and moedify the contents of memory words and registers, and
7=} maxe additions and corrections to the running program using either
symbolic or octal code. Commands are of the following forms:

\,f

(=]

(o

2. CPEN: to examine and/or modify contents.
2. CLOSE: to go on to anctlier OPEN or DDP? operation.
3. MODE: to establish the type of in or out modes ¢f operation.

4. BREAKPOINT:
vermined peint.

to suspend the execution of the program at a prede-

SEABCH: to searcn for a particular occurrence otf a bit pattern (e.g.,
n address, 2 constant, or an instruction).

6. LIMIT: to establish the limits (memory addresses} of the search
7. BEGIN: to start execution of the user program at a specified location

8. PROCEED: to continue exectution after a breakpoint interruption

Like all other system piograms discussed in this chapter, the sophistication
of the dynamic debugging program depends on its operating environment

7.4.1. Example of a Debuqging Session

ODT-11 (On-line Debugging Technique) for the PDP-11 is typical of a
small-computer dynamic debugging program. Like the PDP-11 editor, ODT
has a command mode that is mdicated by an as‘erisk being printed out by
the systen:. Basic ccmmands include

n/: opens word n.

2. c¢r: acarriage return to close an

2‘;/\\

/3. n;G: begins exccution at location n.

4. n;B: sets a breakpoint at location n.

e

;£ proceeds frcin a breakpoint.
6. 2n/: opens register n.

Given the following trivial assembly language program

auG

il e

Fa=".0
BlL="01

VIAET M #i. k5
LR 1
onE FO R
HALT
BN

{ro label follows .END, since ODT will begin execution of the program},
then using ODT-11, the following dialogue mav be had {comments have been
added for readabdity).

v1l@ld anSany EWRMINE THE JLRP IMNSTRLOTIOY
rEL O 2045 CHPENGE THE CONTEMTY OF &L
1404, B FUACE BEFERFECINTS AT
210101, B CRDCATILNS Lada AN LELa
IR EcniM EECOTION RT STHFET
Bt Quions BRFESEFODINT QICHURS

g U L CHELL FO BMD &1

+§1 7102458 FAMD THENM

+ R FROCEED

El whie1n NEMT EFER POINT

+F1 DuDan CHECY FO aNn

&I SNDC L RGHIM

_ Although this example is rather brief, it does give the reader some idea of
what a dynamic debugging program does. When faced with a typicai small
computer, with its often-limited number of display lights and means for
examining memory or processor rcgisters, the programmer quickly seizes the
opportunity to use a D'DP rather than probe memory and measure program
prc. s through the console.

7.5. QPERATING ENVIRONMENTS

Having dealt with comput: -2, including their crganization and program-
ming, we should now consider their operating environment. After all, fr m

the user’s poih.of view, the purpose of the computer is to assis: {ne user in /

the mechanics of solving problems. Thus the operating environment greatly
T

influences how the usar is sble to solve his problems. This subject forms the
content of Chapter 8.

EXERCISES

1. What are the diffcrences between an enitor used for program creatior and one used
for manuscript creation” What types of commands might yeu find in one or the
other?

-3

Using the PDP-11 program editor as an example, list its good and bad features Then
give a suggested remedy for each of its bad features.

3. Expand the macro call

SWITCH SUFL BUFZ SFRRE L

Do

for the macro definiticn given above.

Rewrite the macro defin:tions for SWITCH so that the intermediate storage array
T
i

rLivIP need only be one word long

Define the macro BSS X which 5 to reserve a block of storage locations X bytes
iong.

®

¢, Develop a macro that can perfuim multiplication through recursive calls to the
macro body, which performs shifting and adding.

7 Wrtea prograr toimplement the absclate loader function as flowcharted in Fig. 7 2

8. What features are missing from ODT-11 as described in the text? Describe a methoc
for implementing them.

». What difference is there between an on-line debugging package and a contiruou
trace program?

=N, Develop a procedure for implementing a dynamic dump coutine which produce 2
selective dump of specified memory and register contents upon call, without affect-
ing the results of the running program that cails it

REFERENCES

One of the best references for text editing can be found in the survey article by Van Dam
and Rice (1971). Of course, for a particular system, one should read the approprate
manual, such as the PDP-11 Edit-11 Tex! Editor. Simiarly, the manuals Macro-11]
Assembler, ODT-11R Delnugging Program, and Link-11 Linter and Libr-11 Librerian
cover the topics of macros, outline debugging, and linking/ioading for the POP-11 How-
ever, the books by Gear (1369), Wagner {19683, and Stone {(1972), as well as the sunvey
by Kent (1969), are excellent treatments of macroe asserublers, winle the sur ey article b
Presser and White (1972} s an equaliy well doe sowgeniziron of Lovern oo d loader

OPERATING SYSTEMS

Toeday it is inconceivable that a medium-to-large computer could exist
without an operaling system for its users. Indeed, vven small or minicorn-
puters can and do have sophisticated disk and tape operating systens as part
of manufacturer-supplied software. For this reason, almost all programimers

~will, at one time o1 another, come face to face with an operating systemn
" environment.

Operating systems, if properly designed, exist for the users’ convenience.
They serve to bridge the gap between the needs >f the user and the charac-
teristics of the hardware. In this capacitv, they directly assist the user in
solving his problems through simplified programmming and more efficient
computer operation. However, to alarge extent, the user never knows what
the operating system 15 really doing. Instead, the user sees the system in
terms of the services it provides for: program preparation, translation,
execution, and debugging.

In order to understand what a computer system is all about, it is neces
sary to understand the system components and their organization. These
components, computer hardware and software, were discussed m previcus

. chapters. This chapter is thus concerned with the general job of organization
p 2 g

as it is performed by the operating system. However, since our concern has
been with small computer systems, we shall continue that interest as we take
a look at rather specialized operating environments which exist for this class
of machines. Because of the limited resources available, operating systems
for small machines tend to be more constrained than for their larger com-
puter system counterparts. Nonetheless, the same principals and concepts
apply, the chief difference being that of the relalive emphasis placed on the
verious system components.

SLC 82 COMPONENTS OF A DISK OPERATING SYSTEM 227

8.1. VERY BASIC COMPUTER SYSTEMS

At the very least, every small computer comes complete with a paper
iape system. In this environment, very reminiscent of the early days of
computing, the input and output of programs and, data are performed man-
ually by the user via a paper tape reader and punch. The user communicates
with, and receives printed output from, system and user programs through
the teletypewriter device connected to the machine.

Even though the loading of programs is performed manually, a paper
tape system normally contains a comprehensive software package of com-
monly used system programs which provide the user with complete facilities
for writing, editing, translating, debugging, loading, and running his own
programs. Since system programs have already been covered in Chapter 7
and earlier chapters, the reader 1s familiar with the capabilities of such a
paper tape system.

Unless the reader has had the experience of using a paper tape system, he
is not likely to realize how unsatisfactory and trying it can be. Operating
such a basic system requires the user to take his co.l~d program and manually
perform the following operations:

Load and execute the paper tape editor.
Produce paper tape source programs using the editor

Load and execute the paper tape assembler.

o o

Translate the editor produced source program.

_ Load and execute the binary object program produced by the
assembler.

)]

6. Debug the program, repeating the first five steps as necessary.

Each step presumes that the software bootstrap and absolute loaders remain
intart Avving ov. cestve program loads and executions Unfortunately. this is
"uot.usuaﬂy the case, and more often than not, the beginning programmer
will load both loaders at one time or anothet.

Manual control of the operating environment is clearly inconvenient. It
involves manipulating and maintaining numerous paper tape programming
systems, and 1t results, in general, in the inefficient use of the hardware.
Consequently, a more automatic level is desirable, and this level of control
is found in the typical general-purpose disk operating system (DOS).

8.2. COMPONENTS OF A DISK OPERATING SYSTEM

The addition of a secondary storage system device (e.g., a disk) is what
makes the disk operating system a comprehensive operating environment for

O

|

/7:;87 OPERATING SYSTEMS CHAP 8
hoth the development and execution of user programs. User programs and
data, along with system programs, can all reside on the disk and other sec-
ondary storage devices, to be loaded into memory under program control.

[nstead of loading and reloading paper tapes, the DOS user can perform the

. same functions by lissuing commands to the system. These commands not

only provide user services (such as program loading) but also provide for
efficient program and system management. Typical commands and their
functions are shnwn in Table 8-1 for the PDP-11 disk operating system.

Table 8-1 System commands.

Command Function
GET Load a program
RUN Load and begin a program
DUMP Remove a program from memor-
BEGIN Start execution of a program
STOP Halt the current program
CONTINUE Resume execution of a halted program
END End input from a device
LOGIN Identify user to system
FINISH Log off system
ASSIGN Assign a physical device to a dataset

Commands, however, are only the outward manifestation of an operating
system. To gain an understanding of how its functions and facilities are
provided, it is necessary to consider the components of the system and their
organization. Since one of the most important functions of an operating
system 1s the effective management of its information structures (e.g., pro-
grams and data), it 1s important to understand the basic informational unit

+ of the system. This unit 1s called a file.

O

8.2.1. Files—Organization and Access

A file is a collection of related records or data items treated as a unit.
The word “file” is thus used in the general sense of ‘“‘any collection of
information items similar to one another in purpose, form, and content.”
For example, a program may be a file, just as a data structure {(called a
dataset) or even some system program such as an editor or assembler, may
be. Unfortunately, the same word file is also generally applied to external
storage media, such as disks and tapes, when what is really meant is file-
oriented devices.

Each file-oriented peripheral device has a file structure, which represents
the method of recording, linking, and cataloging data files. The file structure
dictates the organization of the file on the device and the method of file
access. This organizational structuring is important because—a file can be

@,

C CCMPONENTS OF A DISK QPR ATING 37800
effective for a user application only f it
sequirements. Surkh faccors as size, actlvicy, acn oncessib
sidered when determining the ctructure of 2 file,

The way in which a file i; org" ued upon a storage media depends upon
the way in which the user noognal ‘,‘,ptch to create and later orocass it
Three methods that have heen usod ate: {1} contiguous allocstl {2) linked
i

1s azsigned to nieet specific user

Jiry must be cor-

Hst edocation, and (3) indexed BMocstion Fach of these mothods is shown
in Fig, 81
File # 1 ile #2
7 e ~ Aeos
——— “_‘ir"“" """""" ————m
!
Record # 1| Recoad & 2 | Record 57 3 l Recora # 41 Recced 4 1
N 3
X §
\ Blodk \ Block Block N Sicek \ Blotk
#7723 #7724 #7325 S #Tg #7727
{a) Connguous atfocaticn
file g | Fie £ 2
Va A \ l; Nae
U 1 /i 1 [L T ‘;}__—__‘—_Pj
O s 0] '(u ‘_}\;ea e !
o] Record # 1 z) Reconl #21 }+ |oi Record # 3 B io Recoma # 44 x| Racord # 1 |
Gl o S I I S R (] BREY ’
b 1] € 5 4 . - p
® Block Y Block \\\ Block v Block f\ Biock
S #1046 #1052 A 100 L 1a64 1103
{2) Linked Lst nilocatron
Sle g] Fle#
- - A e N et LT
{) 1 o ”—“ﬁ { é { 3
) Record # 1 | Record 4 2 Record #3{ ; Recurd # 4 ; } Record # 1 1
l i . . Lol g
)
1 Blosk R Bock Y Blont] \ Blowk { Bicck
#3572 # 620 / #623 / #7717 #1012
/
Record //

index address e
1 572 | / //
2 |20 L 4 7
3 [623 7
4 717 __//

(c) Indexed ailocatign

Fig. 8-1 File organization,

In the small computer gystem, {ile structiize organization is not usually

Y2t up 1o the user but ic predefmeu F~y rpe wverious perivheral devices

]
£

/\glm.ﬂarxy, the method of access is system cefined and s ultunagiely coane..cu

N

\J,vxth the file structure. 'The most usual access technique inf jes se uenticl
S q

access to both the data file and the indwidual data records, This access
method ¢ of umdirectioaal devsces, susi 85 magneie fape,
aithough other devices, such os disks, may be organized so as to permit
sequential acecess.

Sequential access is a sterage rerrmw;r technogue
records within it must be remrieved in the which thay vhyswally
oceur. Sequencial access, wien egplied (o the process of locating the begin-
ning of a file or a data record within the {ile, mizans that the time required
for such access is dependent on the necessity for waiting while nondesired
files or records are processcd in tum,

Traditionally, contiguous allocation is used to 1mplemeat sequentially
accessed files on sequentially orsanized devices such a¢ magnefic tape. After
each record is processed, the next record :s immediately available, since
positioning of the physwal media wiil leave 1hat record posinoned at the

18 characierish:

' which a file and the
CEQUenCe in

&:t
e

.read/write head of the device.

‘ailowing

s
vy

As an alternative to the sequential organization, the linked-list organiza-
tion may be used for direct-access devices such as Jm\s where the time to
search for and locate the next record s fnsiynificant ia processing the file
The linked-list struclure has the advantoge over the contiguous allocation of
fles to grow larges with time by simply bnkmg i a new record to
the and of the list. This i3 not in general possihle Tor the contigunus ailoca
nion, sitce the next block may 2lready have been aﬁomted.

Another technique for accessing a file is random aceess. Qandeom access
of a fite and records within the file means that fr time reguired fov =uch
access is independent of the location of the file or record relative to other
files or records on the medium Thus the crder of retrieval of file infonna-
tion is ummportant and can be ignored

Again, two possitilities exast when file access is random These are
contiguous allocation and indexed allocation. By knowing where the con-
tiguous file begins, random accessing occurs m much the same fasnion as
element accessing cccurs for a one-dimensional array The limitation of the
contiguous aillocation remains the same, however. files cannet, 1n general
expand 1n length with time,

The use of an index wmito the file allows both rancdom access and growth
with tune. Thus this method of allocation 1s preferred over contiguous
allocation unless access time is important. Tike lLnked-list allocation, n-
dexed allocation requires that the location of the next record be fetched
before the actual record may be accessec.

As a third alternative to the two access methods presented, an inter-
mediate method may be used. This method, nonnally employed on disk and
disk-ike devices, allows a file to be accessed randomly while the file’s data
records may be accessed sequentiaily. This access method 1s called indexed-
sequential and uses the indexed organization with more than one data record
per block

oS e LT TOUTTLUMPOUNZN IS UFTA UIDHK UPERATING SYSiEY

indexed-sequential organization 1s well suited to those applications where
it is necessary to access sets of records randomly but individual records of
the set sequentially. A typical example of such an application would be a
personnel records file where having found the records for a certain employee,
it is necessary to update these employee records in a sequential fashion

822 UDirectories

Having provided a file structure, and having specified its access method,
the next problem is how the file is located by the system once stored away.
One method that could be used is to keep track of the device addresses so
that each file can be retrnieved directly. The use of absolute addresses is not
very acceptable, however, for much the same reasons that absolute addresses
are avoided in symbolic programming Instead, symbolic names must be
associated with each file so that the files may be referred to by thewr
file names .

To provide a connection between the file names and their device loca-
tions, a file directory or table of contents for each directoried file device
must be part of the system. The file directory will contain not only the
unique name of the file and 1ts starting address on the device, but also its file
structure, including, 1f necessary, a pointer to an index table. Figure 8-2
shows a directoried data access for a sequentially organized file that can be

User file directory

File # 1

Name
i
|
i

Location

__User program
potnter

S —

-

File # 2

Name

Locanor

L
o
o

File2n

Name

Location

Desired

I_S_C;,F D g datzlx record

(beove 6zzd @esdodd
[) e T O —,

o

Y T
I File # File # 2 File #

Beginming of physical medium

O

Fig. 8-2 Directoried data access

232 OPERATING SYSTEMNS CHAP 8

randomly accessed. Devices such as tape cassettes and DECtapes have this
capacity by which the transport may search to a known location before it
begins processing the file.

When directoried data files are removable from the system, it is necessary
to preserve the directory of files between uses. To do so requires that the
directory be stored on the physical media, in a fixed location, along with the
files it points to. As part of these directories, bit maps are maintained both
to indicate which device blocks each file occupies and to show all occupied
blocks.

File structures that employ a directory allow simpler and, in the long
run, faster access to a file (e.g., the beginning of a file). This 1s a distinct
advantage over those devices which do not use a directory and must there-
fore rely on a file’s position relative to other files in order to locate it.

8.2.3. Multilevel Directories

When two or more people share the same device (such as the system disk)
for storing files, problems may arise because of duplicate file names. Since
both will have access to the same set of files, one user may accidently modify
or destroy another’s file by simply not knowing that the file name used was
already assigned. The solution to this dilemma 1s to establish a separate user
file directory for each system user. The separate directory will therefore
allow each user to name a file without regard to the names chosen by others.

The basic mechanism for locating user files on a shared device requires a

" two-level file directory, as shown in Fig. 8-3. Each user has a unique code

i that must be provided whenever the LOGIN command is used. This code
" serves to identify a particular entry into the master file directory, which is

actually a pointer to the user’s file directory.

User £1 "
>~ file —s(Fies) U
directory Hes
Master User #2 > 149
file > file Usrelr:.- 2
directory directory , res
User #3
- file >{ File D U“ﬁ’lf
directory
,

Fig. 8-3 Master and user file directories.

O

#rating system is control.

SEC # 2 C COMPONENTS OF A DISK OPERATING sYSTEM 233~ 7 OPERATING SYSTEMS .
& O
8.2.4. Problems of Controf 3. Allocating/deallocating storage space on the devices.
! & 1 111 . 3 " H I~ s r 3 ‘ 5
Now that we have described an elaborate scheme to define the files within | 4. Maintaining current records about user requests and device status
te system, it becornes obvious that one of the cen'ral functiors of a5 op- 5. Coordinating peripheral activities {such as buifering ard blocking) as

For example, the file system represents one large
tacility that inust be controlled in its ailocation of periphersi device space
&nd its storage and retrieval of file informanon on the pernpheral devices.
Fortunately, the function of the &)o the minimiratinp of

15 pvor-\ a'u

PR Wlepy

system

' the potential probleni.

'cempass al! information sets, wncluding devices

"a very special type.

As far as the user 15 concemed, devices themseives are not of primary
nterest; the datasets of files that reside on them are. ‘Ius a simple and
useiul exiension may e inade by broadening the concept of a file to en-
in this mapner it is easy to
paper tape reader as an information set {(and hence a file} of
By special type 1s meant that the information set must
e handled in only a very lunited fashion (e.g., output not allowed to an
nput device). With suitable limitations, there is no reason why all devices
cannot be concewved of as being file-like inforination sets. Al that is neces-
sery is to recognize and buwild into tne S\/‘"P’n the fact that 1t is not possible

& hreat all files uniformly (e.g.. not all files can be read from, written fo,
27 rewound).

RBath the system and the user can treat I/O devices uniformly as informa-

*1on sets. Within the system, however, there must be an interface between

‘ne system or user-created program and the external world of 1/O devices.
{'he purpose of the mterrac:c 18 to minimize /O programming for the DOS
iser in the same way that the I/O programming system {IOPS) simplified 1/O
crogramming for the basic system user, as discussed in Chapter 6. In that
chapter 1t was pointed cut that the IOPS routines served to relieve the user
of the burden of I/O scrvice, file management, overlapping I/O considera-
tiens, and unnecessaiy device dependence. The last point, device indepen-
dence, is especially important in a disk operating system, where an IO service
routine for a nonfile-structured device, such as the paper tape reader, must
irnore (rather than declare as an error) a command to **seek a file”” {which is
required for all file-structured devices prior to issuing read commands).

Clearly, the centra! function of IOPS 1s to establish the information path
between the system and the device This requirement is met somewhat
independently of the user, since one of the goals of IOPS is to minimize the
user knowledge required. And since the user is to be spared the task of
writing system software to perform 1/O. standard system routines {called
device handlers) must be a central part of i{OPS. These routines perform
the functions of

conceive of a

1 Driving the I/O devices.

Manipulating fileg on the devices.

required by the 1/0.

As pointed out in Chapter 7, system macros wre the means of cominuni
cation between user programs and 7/ device handlers, These programmed
170 commands are also referred to as requests, Table &% lists typica! re-
quests for the DOS-11 (PD?-17 DOSY svstem. Not all reguestz shown in the
table actually perform I/O. Some, such as .OPEN and .CLOSE, meraly serve
to winitiahize a dataset or file for subseguent 1/O processing. Of,her.s such as
BiIN2D, .RADPK, and .ALLOC, perform auxiliary operations on the data
or the datz file.

Table 8-2 Programimed requests.

Programmed Request Function

OPEN Open a dataset

ALLOC Allocate a sequential file
CLOSE Close a dataset,

DELET Delete a file

LOGK Search a directory for a file
.READ Read from a device.

WRITE Write on a device

WAIT Wait for device completion
BIN2D Convert binary to decimal ASCII
BIN2O Convert binary to octal ASCI
D2BIN Convert decunal ASCIIL to binary
LO2BIN Convert ocial ASCII to binary
RADPK Radix-50 ASCIH pack

RADCUP Radi«-50 ASCIV unpack

8.2.5. File Management Utility

Although program requests for file management provide the basic func-
tions needed to utilize files, it is inconvenient to have to write a program
every time one wishes to manipulate files. Thus most operating systems
include a system software package for the transfer of data files from one I/O
device to another, while performing simple editing and contrcl functions as
well. This package, known as PIP (Peripheral Interchange Program) on the
PDP-11, handles all data and file formats found in DOS-11 so as to

Transfer a file or group ~7 files from one device to another.

file.

gle

2. Merge files mnto a sing

CSTE? 235
SEC 82 COMPONENTS OF A DISK OPERATING SYSTEM

. Delete, update, rename, or replace files.

3
4. Allocate file space and initialize whole devices.
5. Print listings of file directories.

6

. Handle file protection.

In effect, the file utility package provides at the user level the same sort
of services that IOPS provides at the program level. Users need only ente:
commands to the PIP program and it will decode the command and perform
the desired function. For example, the user mi_ght wish to make a backup)
copy on DECtape of an existing disk file. To do so he would rudr'l\t}EedPtl)f
program and then, In response to PIP’s request for a command (indicated by
a # sign), type in

#DT1 BRCKUF SRCCDCH MYFILE SRC .

The new file, named BACKUP.SRC, would then be a copy of the original
file, called MYFILE SRC. . _

To examine the directory for a certain device, the
would be

command to PIP

4LFP <DCe /DI

indicating that a directory listing of the contents of disk unit zero is to be
Sroduced on the line printer. This listing would appear as

DIRECTORY DCO® C 1.1]

25-NOV-73

MONLIE CIL 4p1C Be-SER-7I (X773
MRCRO OVF oeC 19-MNOV-73 (2333
LINKLL OVF ToC 1S-NOV-73 (233D
MACROF LCA 97 19-NOV-7X (2332
L INK LDA S 19-NOV-T3 L2335
FIF LDA TE 19-NOV-73 233>
EDIT LDA S 19-NOY-T3 (23%5
LIER LODA 3@ 19-NOY-73 (2333
FIFOVE OVR 16 LG=-NOV-73 (233>
PIFOVL QVF 14 19-NOV-73 (233>
FIFOVZ OVR 1€ 19-NOV-73 {2332
FIFOVI OVF 12 19-NOV-73 {2332
oG T GeJ 37 19-NOv-73 (233>
TEST ERK 4 23I-NOV-73 Caea>
TEST FAL S 2I-NOV-73 (oor
TOTL BLKS gre

TOTL FILES 15

—_—

236 OPERATING SYSTEMS CHAP 8

where the fields indicate the file name, file size, file creation date, and file
protection code. Also included are the total number of files and blocks in
use for the “user identification code,” [1,1].

It 1s important to bear .n mind that a file management utility is a system
software program in the same sense as were the programs in Chapter 7. The
goal of such software programs is to provide routines that assist the user in

solving his problems. As a consequence, these programs do not in and of

themselves produce useful results but rather allow the user to utilize the
hardware available to him effectively.

8.2.6. Device Independence

As the reader may recall, system macros are implemented using interrupt-
generating instructions. For example, a write macro operation

WFRITE LNFELY, BUFHCF s WRPITE OHRTHSET

1n DOS-11 is expanded into

Mov #ELUFHLFR, -C(SFD » STRCK
MO HLNKELE, —CSFD » MACFO AFGUMENTS
EMT <

» PERFQFM EMULRTOF TRARF

The two arguments of the macro call are called the linkblock and the buffer
header. The buffer header serves to define the data buffer as described for
IOX earlier in Chapter 6. The linkblock serves to establish the connection

between the data file (logical device) and the physical device. A hnkblock
1s defined as follows:

Error Return Address

LNKBLK Link Pointer

Name of File

Unit Number

Physical Device Name

v

The first two entries are used by the system for error processing and initializ-
ing the dataset. The next entry, the logical name of the dataset, is used to
associate a logical file with a physical device The function of the ASSIGN
command is to fill in this entry. Finally, the last two entries serve to specify
the standard name of the physical device associated with the file.

O

COMPONENTS OF A DISK UPERATING SYSTLANM 237

Ordinarily, a programmer specifies I;O devices as he writes the program.
However, there are circurnstances when he will want Lo change the device

:peaﬁcatmm when his program s run. ¥or example:

1. A device that the user specified when he wrote his program s notl in

operazion at run time, but an alternative device 1s available.

the system for
he s wriling 2

2. The prugrammer does not kaow the configuration of
-which he i3 writing, or does not wish to scecifv it {i.e.,
general-purpose package).

Through the use of tne linkblock, the ASSIGN command, or bv sssuni-

" ing the default condition, the programmer can write programs that are device

‘ndependent. From the user’s point of view, such device independence
results in very flexible programming.

£,2.7, Monitor

The user communicates with the system in two ways: (1) through
woyboard instructions, which have been referred to as cornmends, and {2)
kyough programmed macro jnstructions. In both cases the effect is to
initiate a control prograr or routine which loads a file, makes a correspon
Teewe batween a logical file and a physical device, opens a dataset, wrile:
snto a device, ete.

Ciearly, the control programs must work in mutual harmony if the
3 to operate successfully. Although much of the system can be

ceived as the sequencing of nne program or faskT after the cther, it 1s
hle to have two tasks cperating in parallel {e.g., an 1/O operation and a
Thus a master contro! program called the monitor, which can
system and 2l of its component

watern is
wG
5788l
computation).
se sesponsible for the entire operating
narts, is needed.

Tha monitor must be responsible for the initiation, maintenance, and
termination of all other programs, It ccordinates program-te-program and
'ask-lo-task Lransitions and processes the communications among the user,
the svstera, and the many control programs It also must act on monitor
calis, validate and transmt 1/O calls to device handlers, supervise data and
file manipulations, and provide error diagnostics.

There are basically three sections of a monitor. (1) the permanently
resident momtor, (2) the noniesident monitor, and (3) the system loader,
The resident monitor remains in memory when systam or user programs are

——

TA task is a well-defined unit of work that coripetes for the resources of the system
(e g, memory, fles, [JO) tated more sumply, it s a program or toutine with known
inputs and ouiputs

Sunning ana acts as
facilities. N,

The user/operator miay alter the structure of the yvesident monitor
commands to the nonresident monitor The nonresident monitor 2ile
user to alter many key parts of the syv.len:, in orde; to set up the systein “or
the next program. Normally, at the end of a particuiar progran, the com-
puter user or the program itself retur.s co~trol to the nonrecident monife:
At that point the user issues new commards to set up the systsra far the
next program to be run.

The system loader builds the
mands to the nopresidont mo

‘he Interrace Letween the program epd\me 3ystem,a

via
ows by

resident monitor according to pricr com-
cniter, I lunds oll systern progrems and all
handlers for those system programs frem the system disk, and these pro-
grarns in turn allow the user to edit, assemble, load and link, perform file
manipuwations on, execute, debug, and so on, his programns. Since the pur-
pose of the syutem loader 15 basically to set up the systemn {e.g., by leading
system: programs and setting them into execution), it is complntel 7 invisible
tc the user,

8.2 7 1. Monitor/User Interaction

The console teletypewriter is the primary user-system interface for DOS
crogram control. This control is implemented by comrmands Lo the monitor
which cause system and user programs 1o be ioaded and executed (as «de-
serioed in Section 8.2)) by commeands that perform spf‘"a} services, ana by
control character commands that provide system control whitle running use:

- Or system programs,

Most of the monitor commands must be issued prior to loading programs
and are interpreted by the nonresident monitor, since it is not, in general,
necessary to keep the command recognizer in memory during system or user

progiam execution. However, durnng program execution, a small sel of
kLeybeard commands must be availavle for general program control. These
8¢ g

comimands are interpreted by a portion of the teletypewriter’s 1/0 device
handler (which 1s part of the resident portion of the monitor) and are used
to control program start and restart, dumping of memory, and reloadiry of
the nonresident monitor.

Since the momtor and any program ruaning under it must share the same
conscle teletypewriter, the user must specify whether the given keyboard
input is intended for the monitor or for the operating program. Conse-
quently, the modes of cperation are determined by the first character en-
tered. All characters following a special contiol character (a CTRI./C for
DOS-11) are interpreted as monitor commands and are passed to the monitor
for execution. All other characters are assumed to be for the operaling
program, and the characters will be buffered until required by the program.

8 2.7.2. Monitor Organization

Figure 8-4 illustrates the data f1ow and general organization of the moni-
Although most of the f" ¢ s of the various modules have already
. descnibed, seversl require fi ﬂther comment.

.
£ e} a8

Monitor environment

240 OPERATING SYSTEMS CHA® 3

External environment

— T - = | -
T = { G‘ The first modules of interest are the command processor and the monitor
- 5 B Ol (g | - 3| command decoder. Both the user and the monitor share the same control
| E _% E c | |E biB El program, called the command string interpreter. This routine preprocesses
‘gg 2233l |32 113 £ gl the specification for whatever user or system program it was called by. By
lég 3 53l f== Lo 8l | 2 having one routine for both the system and the user, one common format
=z > £ i |3 1= = for input and output dataset specifications to a program 1s provided throug).
b g . ¥ E [T]a 28l El a singie monitor routine.
i el = ST == 2 § 3 (B S L g ey) The next module of interest 1s the one labeled device assignment table
2 §}, —g g . | 3 = '5 (DAT). This table 15 used to store the data from each ASSIGN entry, since
EE 2 & z <] é“ § | -5 " ‘gl £ device/file specification by console assignment can occur at any time, even
S2 . = e 5 o | E ‘g ‘gl 2 before the program that requires the new assignment 1s loaded. The DAT is
% %g £ 2::_? é |l E =l z set up in a similar format to the linkblock (as shown below) and resides
= 5 gg 5 S £l g within the monmitor so that its entry may be checked whenever the program
&% £z E | 22 & 555 B : % under execution calls for dataset initialization.
3 z - 21z, s £
:2_, = . | E E | c Logical name of dataset
S 5273 2 3
éo 5 g éi% E ; S D : e Physical device name
3 =g2E| |8 . 5| 3
2 r i ;d' Q | E Unit number
3 —~— || 5 T &
<l [Es& § £ | -
2 Sz % =2 = | 1= 3 File name
3 E “© o g gz = | [— ll —é
";: ::: = 2 3 ‘l‘é 4 l : The use of a device assignment table can be illustrated by the followipg
§ & E 5 1= sl _ s £ example. Before being run, a user program wishes to assign a DECtape file
= éﬂ E g |3 3 E 2e B g FREQ.BIN to a dataset called FR@ The ASSIGN command would be used:
3| 2 5 | 5| |=1®| -3 S 5
ES =1 g z © ASSIGN, OT FREC EIN, FFO
1 I B = : -
E,_ “ E ® where the commas act as separators and the colon separates the name of the
oo g En physical device (DT for DECtape) from the file name.
E g:n c At first, the use of the ASSIGN command, the device assignment table,
E :: — — and the linkblock may seem strange. However, the FORTRAN programmer
Sle should be able to recognize that these new commands and tables are nothing
iw more than a new sotution to an old problem. In FORTRAN, when perform-
T < ing reads and writes, the programmer must write statements of the form
>
3 of READ (u,f) I/O hst
5 = WRITE (u,/)) I/Olst
B ~‘
E - | where u represents a unit and f a FORMAT statement label. Usually there
© 3 | are default values for u, and reading a data card is performed on unit 5 [e.g.,
*""— ——————————————— . READ (5,10) A,B,C] while printing a line occurs on unit 6 [e.g., WRITE,

R (6,20) A,B,C]. However, when file-oriented devices such as tapes are ii5¢4,

O O

Q Uleer

-,

SLL 82 RN R A AN 2 U B 5 S Y R 2 T R Sl e I) =

gome [orm g:an assign command (or control card) must be used tc equate
the unif pumbers Lo thew partwular devices. This, of course, sssociutes all
the files on the device media with the unit number, and it 15 up o the user to
spparate out the various {iles.

Going one step further, it would be very nice {o Lo ablzs to sssociate a
aarticular file on 2 particulnr device with a umit number, As “ong as the
fevice has a directory asscciated with it, this 1s a relatively simple process
¥or example, a programuner could issue the command

ASSIGN. DIGK MYFILE &
30 assgn lhe file, MY FILE, on DISKT to unit 6. Alternatively
using unit numbers, dataaet names may be used, so the comme

, instead of
a0¢1 hecomes

ASSIGM. DIGkL MYFILE. AYLATH
allewing the user’s program to refer to the file by its dataset name, MYDATA,
rather than by a unit number.
Teeturning to Fig. 8 4, the last medule to be explained is the one labeled
g hundler. Both at the user level and wnternaily within the monitor. the
siannard method by which 2 monitor routine 1s accessed is through a trap m
onitor calling instructioa. For the PDP-11, the EMT instruction is usefuli
cecnuse its lower byte is not considered in the hardware decoding operation,
’ zi ez therefore be used for a sofiware code L0 identifv the module required
J avoids the use of a second word (e.g., as shown, a call for an I/O .WRITE
's EMT 2 or 104902). By using the stack to pass arguments, the monitor call
.Sm gh the EMT ensures that the called meduie has co mplete freedom in its
Jse of registers and that the necessary handler for this instruction has the
~pportumty to concrol all communication paths throughout the systam (e.g
3T 15 an interrupt-generating instruction). This control facility 1s a particu
\ar advantage to the small computer operating system which must swap
monitor routines in and out of memory and mamtan complete control of

user and system programs, all without the aid of any speet ™ h o iame
8.2 7.3. Monitor Residency Tuble
An important part of the trap handler js thie momitor resdency table

(MRT), which supplies two types of inferr-ation 107 the trap handlen

1. Ir shows which monitor routines are resideni in memorv, either per-
manently or for the duvation of a program run, and where they are loaded
currently.

2. It acts as a dwectory to the remaming routines 2s stored within the
monitor nbrary on the system device, to enaole immediate access vhen one
of these routines rmust bie brought into melaoey .

Q

N

For DCS-11, the table is a set of one-word codes and 18 oroa_ 1 in the se-
uence of those codes starting at .

The format of each word in the table {sce Fig 8-5) shows the currert
location of the monitot routine it reme:enta. using the fact that for a vahd
PDP-11 address for execution access, bit ¢ must be 9 (1 2., a word boundarv’.

EMT
code
MRI [T ‘
RI [.
— =1
! Foimm o eem o ey
| it i
2 _4' Format (A) i
r—‘ Mon:tor - ! Conespanding rcutine 1s
3 requesis - -1 innerory ——
i
' -]
s -
— A Memory start address
S I EENERENEENERE NS
6 L t
WI-AW'MMJ ~=0

Format (B)

Corresponding rouline 13
i the system hbra-v
external'v -~

Number o
blocks -,

\ 7 System device start block
1
R 0 T O S WL

Fig 8-5 Monirer tesidency *able format

The state of the wable depends on which routines must remain within the
computer memory at all times, because they control the sysiemn generally,
and which routines may raside upon the system device, because they perform
ephemeral tasks. By using the system loader, nomea)dent routines may bhe
loaded when requirad and can later be removed when thewr purpose is served.
In this way, avallable memory space need not be used by the system (e g.,
the monitor) but may be made available to the user. Clearly, this 1s a neces-
sary requirement for the small computer user who has a machine with
somewhat limited memory space.

SEC 82 COMPONENTS OF A DISK OPERATING SYSTEM 243

8.2 7.4. Monitor Memory Organization

From the previous sections it is clear that certain monitor routines/
modules must be resident in memory at all times. These routines determine
the mumimum allocation of the computer’s memory, as shown in g 8-6.
‘The modular structure of the monitor allows the wser to determine which
modules are to be resident and which modules are to be swapped from th:
Jisk. In the latter case, it should be noted that a temporarily loaded routine
vccuplies a reserved area within the monitor (the swap area) and does not
require that a part of a program be swapped out first. This means that no
restrictions need be placed upon the activities of a program as might be the
case if part of its area were potentially removable.

Beginning of
memory fard veclor space
Hardware ve p - SVT
Monitor tables/commiunication region
EMT handler
Swap area and
swap manager
Resident monitor routines
Console listener
System loader/System device driver | .~ EOM
L TOB
p Free memory A
T SP
TSlack and
“T PLA
Program area
End of ~— CSA

memory

Fig 8-6 Memory allocation

=~

Togpaee the fact that swapping can be accomplished fauly quickly from
the disk, 1t still takes a finite time, and the user who has memory to spaie
may prefer to make use of it. Modularity of the monitor routines again
helps, in that

1. If a particular module is required so frequently by the user(s) of the
system, that module can be added to the list of those already part of the
permanently resident monitor, or

2. If a module is particularly appropriate to one application, the routine
can be loaded with the program concerned so that the routine is resident for
the duration of the run.

O

244 OPERATING SYSTENS CHAP 8

8.2.7.5. Dynamic Memory Management

Another feature of the monitor as shown in Fig. 8-6 15 its dynamic buffer
allocation scheme for free memory management. This scheme postpones the
allocation of memory for the purpose of 17O service until a running program
actually requires it. Only then are the buffers allocated and the I/O drivers
loaded, and when they are no longer required, their memory space 1s re-
leased. The allocation and deallocation of memory, being dynamic, means
that the basic memory map varies with time. A typical memory map during
program execution weuld appear as shown in Fig, 8-7.

Beginning of <
memory Permanently ¢
resident
monttor
Other monitor modules
resident for program run
< EOM
Buffers allocated to
data buffers and device dnvers
TOB
,JL, Free A
T memory T
——————————————————————— ~-——— QP
Stack .
—~——PLA
| Program
End of area
‘ memory CSA

‘ Fig. 8-7 Memory during program run.

Another cénsequence of dynamic memory allocation is that all the mod-
ules that take advantage of this feature must be independent of the positions
they occupy. Position-independent coding presents no problems for a com-
puter such as fthe PDP-11, but allowing independent modules to intercom-
municate does. What 1s needed is a system vector table (SVT), which provides
a common area for the storage of information on the state of the system at
any time. In particular, the SVT must contain pointers to the other parts of
the system which provide such information as the end of the monitor, the
start of the monitor residency table, the name of the loaded program, and so
on, as shown below in Fig. 8-8. These pointers were previously indicated on
Figs. 8-6 and 8-7, allowing the reader to go back and interpret their use.

8.2.8. Use of Operating Systems

Having dis‘éovered something about the internals of a typical disk-based
operating system, it is worthwhile to examine how an operating system:

meets the more general needs of its users. As might be expected, the needs
Y

Ond to be rather diverse, and since it is clearly impossible to v ‘e operating

N

COMPQNENTS OF A DISK OPCRACING oYSTEM

(9

)

@
l_Symhn’ Meaning Purpose |
i
VT | EOM End of menttor Dvramic orin far freecore huffer space i
TOCB Top of buffers f:ynaymc 2nd of allocated buffer space
CSa Core size avaslable Setan avhiahzation 1o lighest memory address
PLA ?rogram Ioad address 3et only when g nrogram 15 in cove (lowest
pont loaded}
SCW System configurai:on Pa=served for bit nwatches to ndicate svarlatle
facilities
BAT Beginningof D AT E=t only :f a device assigniment tabe s
astablished
MUS Monitor/user switch Low oyte 1= prugram loaded,
— 1 = program siopped
fHhigh pyte | = prograim runming,
— 1 = program waiting
PSA Program start address Set :f prograni in core to address n source
END (or | f none)
RSA Restart address Set by program tor RESTART at console
Keyboard
i
PGN Program name fy character vaiue associated with source
' srogram
MRT MRT start addaress "Jseod for access to the moniter residency
table
oDL DDL stari address Likewse Tor the device diyver hist
MSB -~ MSB stait address Used for access to the main swap buffer

Fig. 8-8 System vector table contents,

systems tailored to each uger’s application, operating system designers gen-
erpte systems that meet the needs of pariicular application areas. These areas
and their operating environment mayv -be croadly classified as cne of the
following:

1. Batch and time-sharing systems.

2. Real-time control syswems,

3. Data-based systems.

4. Computer communicaticns systen.:

y

Batch bprocessing and time-shaing @
rorments for most computer system
grainming systems are Gest suiesd Tor the oo

familiar operating envi-
peneral-purpose pro

s
TALD WRN ST T

s develon

6
3

CPoRATING 3Y5TLMS

.

and execute his programs. From the standpoint of the small comuputer
disk operating system, these systems iepresent add-on capabilibes to the
Sasic DOC environment.

Reai-time control systermns are designed for operaung environments where
many tasks must be maintained and controlled as events occur that are ex-
ternal to the compurer. These systems must be capable of schedufing the
real-time programs (called tasks) performing the input or outnut of necessary
task infermation, communicating to the humanr sperator what is happening,
and performing such other functions as required for a real-time, multipro-
grammed operation. A typ.cal example might be found in 4 process contro!
application.

The diszinguishing feature of the data-besed system is clearly the enor-
mous amounts of information that must be managed. This information must
be readily available to the user who queries the system, and must be well
protected against accidental lcss or unauthorized intrusion. Like the real-
time system, ernphasis is piaced on program use rather than program develop-
ment or testing.

Computer communications systems are aften hkened to electrical power
utilities and natural gas nerworks. In both cases the system presents itself as a
vast web of interconnected units capable of almost indefinite growth so that
as the customer load increases, the system can be expanded wrrhout limit
toth by adding extra units and by connecting with cther utilities to draw on
their unused capacity. Such systems require well-defined interfaces and
mterconnection structures.

What foliows in this chaptler is an examination in more detad ¢f eacn »f
these operating systems. Since the subject of this book is the small com-
puter, emphasis will be on what types of small computer operating systeins
have peen developed, and what function they serve.

oon

38.3. BATCH AND TIME-SHARING SYSTEMS

Given the capabilities of the small coraputer plus the added flexibility of
the disk-based operating system, it is not teo difficult to develop a barch
processing system. The batch processor is actually an additional control
program within the monitor which allows user commands to come from the
same device as the user programs. By placing user commands and programs
together to form jobs, the systemn is capable of running many jobs conse-
cutively without requiring operatlor interventicn.

Special monitor commands {in addition to nonbatch commands) are
used to

1. Enter batch mode.

2. Define and separate jobs.

SEC 83 BATCH AND TIME-SHABRBING SYSTEMS 247

3. Indicate that data follow.
4. Indicate the end of the job.
5. Terminate batch mode.
These commands form what 1s called a job control language, and if the batch

input device is a card reader, they are punched into job control cards.
Besides the batch system, it 1s not uncommon to find time-sharing sys

248 OPERATING SYSTEMS CHAP 8
but he may not interact with the running program and he must wait for the
program to run to completion before accessing the generated results.

The closed, conversation TSOS 1s the most common form of a small
computer time-sharing system. Usually eight-to-sixteen users are able to
program in a higher-level language, taking advantage of most of the system
resources. Generally speaking, it 1s not the computer power which greatly
limits the number of users but the amount ¢f memory that 1s available to tne

system.

tems on small computers. Rather generally defined, a time-sharing system is

one that provides many users with simultaneous access to a central com-
puting facility.
A time-sharing system is, in fact, a multiprogrammed computer which

" Nows its multiple users to share system resources in such a fashion that each

nser thinks that he 1s getting individual attention. The system is multipro-
grammed in that several user programs will be simultaneously resident in
memory at any given time. Each program receives a quantum of computer
time, called a time slice, during which it may perform computations. Should
1t use up its time slice, or reach a point where further computation is not
possible (e.g., some I/O information is needed), the CPU will be turned over

to another program. This transfer of control is handled rapidly since the

next program to gain the CPU will already be in memory.

The time-shared operation of a computer implies sharing the computer’s
time and space resources on a dynamic, and hence temporary, basis. Several
(or all) user programs may be memory resident, while others may be in the
process of being loaded from or to auxiiary mass storage.- Indeed, if memory
is not large enough to hold all the user programs and data, 1t will be necessary
to swap user information in and out from the auxiliary storage upon demand

The time-sharing ~rerrting vysiemn (TSOS) requires a sophisticated set of
contro! rrooemnis 0 handle the sharing of system resources, the time slicing,
=~ storage allocation and program relocation, and the basic servicing of
users, besides the types of operations normally associated with a disk op-
erauing system. One of these control programs, the scheduler, has primary
responsibility for both the basic servicing of the users and the optimal uses
of the system resources Each time the monitor gains control, 1t utilizes the
scheduler to determine which program is to be put into execution next and
what user swapping must occur if 1t is to keep the system busy and the
users satisfied.

Because of heavy demands placed on the computer, it is often necessary
to limit the flexibility of the TSOS. The most flexible TSOS 1s an open,
conversational system that gives the user direct access to all the facilities
(including /O devices) of the operating system. Closed, conversational sys-
tems usually hmit the user to specific languages and systems. Remote pro-
gram entry systems are the most restricted form of time sharing, 1n that the
user 1s capable of preparing and submitting programs from remote terminals,

O

8.4. REAL-TIME CONTROL 3VSTEMS

Real-time control systems are designed for handling data in a time that is
consistent with the response time demanded by the process that generated
the information. Such systems operate in a multiprogrammed environment
with the real-time monitor controlling and supervising a large number of
memory- or disk-resident programs and tasks. This control and supervision
allows the tasks to share memory and disk space, /O device handlers, and
resource allocation and use.

The execution of the many tasks is determined by software priorities,
hardware interrupts, timing algorithms, and requests from other tasks. Ad-
ditionally, the user of the real-time system can install new tasks on-line,
establish their software priority, and request their activation at any time
with an automatic reactivation at a pernodic interval of time thereafter.

The actual system response time for a task request depends mainly on
whether or not another task 1s running at a higher-priority level. To prevent
" high-priority tasks from executing too long, a watchdog timer 1s often used
" to guarantee that all tasks are serviced. This timer is set at the start of each

task with the maximum duration that a task may run, at a particular priority
level, before being suspended or dropped.

The real-time monitor controls and executes all input and output opera-
tions. This is one of the areas of direct concern to the real-time user, since
most real-time applications are characterized by a large amount of I/O.
Indeed, tasks are initiated or suspended by the occurrence of some I/O
operation.

8.4.1. Real-Time Programming

Programming for real-time control is generally performed in either assem-
bly language or a higher-level language, usually FORTR AN, with extensions
to allow real-time monitor calls. Program development can be done on-line
with the real-time monitor, although the amount of memory available or the,
sophistication of the system may require off-line development.

O O

silows & large number of users o access & common data base, ¥

Real-time programs rely heavily on systemn macro calls to schedula, queue,
run, suspend. synchronize, and so o, asks within the sysiem, Oiten the
data thot are collected by the stored to he ynalyzed later unde:
2 general-purpose prog@lamning environment,

b
e
Lask 13 simply

3.5. DATA-BASED SYSTEMS

{perating as a text-oriented informnation atility, the Jdaia-pased system
Problems such
a3 order entry systems, avtcrnated medical records, seat reservations, infor

<mation direciories, and catafog searchiing represent prime candidaies fo

impiementation of data-based systems.

The conversational environment i which such systeins are designed tc
vorrate typically demnands little computer processing power, vut tends L
demana large storage facilities. When dataare enlercd, the systerm must chect
ile ingality, decide where to file it, and seleci an appropriate response to be
Jiven to the user. None of these actions requuires large amounts of processing

When data are fetched and reports are generateq, there wiil be a manipu
iztion of information andjor the accessing of dats from pernipheral storag:
Jevices, in order Lo assemble the required data. Still, onty a smalt amount of
svocescing is necessary to actually formst and produce the report. As a
congaquance of the small demand for e central processar, such sysiem

" gan be time-shared between a large number of users.

Although most of the data within Lhe sysiem may be potentially accessed
ab any time, large velimes of data need be available only for low-level, low
frequency usage. Thus the mmportant aspect of these systerns is the avail-
ability of large-capacity peripheral stoiag: devices such as disks, drums, and
nata cells. Further, an effective datz management system must use the
storage effectively, minimizing the amount of storage utilized anel providing
Zast and efficient data retrieval,

351 Effective Data Managament

Features and techniques used to provide effective data management
inciude:

1. Stoing data in a hierarchical tree siviicture s¢ that the most frequent-
ly accessed material can be optimaily located in the structure.
2. Simultaneously updating and retrieving information.

3. Allowing dynamic restruciuring of a structure during use.

DATA-BASED SYSTEMS 2@

DCERATING Y572 17 AL
() :
5 . T . N .
4. Aioccating space within the svstem as required rother-than on a static
hasis o

5. Gptimally napping a dala structure penphneral device.an!

refrieving it ¢ rewriling & only as needed.

oneo a4

5. Making the system device-independent to avoid reprogramuning,

7. Operating the system in a reentrant manner so that one copy may be
shared by all users.

8. Keeping most of the system and user fasks resident in memory o

minunize swapping.

Orne ¢f the most time-consuming aspects of developing iuformation sys-

tem programs involves the cntimal interfacing of the user and the system

within a particular application area Much attention must be given to human
engineering and tn the modification and revisicn of the technigues avaranle
to the user for the storage and retrieval of systern data, In addition, the
protection and security of the information itself must &2 guaranteed.

8.5.2. Storage, Manipulation, and Access of Data

The complexity, validity, sccunily, and variety of the data that must be
handled in a data-based information system impose a number of requirements
on the system. A considerable amounl of mformation will e input in the
form of text strings of variable length. In processing tliese data, the system
will often be requived to check theilr syntax and even determine, where
possible, their semantic content against some establishied limits.

When the infonnation is accessed and possibly manipulated, the system
must check to see 1f the user nas been given such privileges. Consequently,
each systemn user must have some capability/clearance list which can be
compared with the list attached to the datu he wishes to access and which
will prevent unauthorized access or transformation. The secunty and privacy
so gained will often be selective and data-dependent.

One way to aild the system in protecting itself is to make it a closed,
conversational time-sharing system. Users may conly make responses to pre-
defimed system requests, and may not write, test, or debug general-purpose
programs. Additionally, the terminals for such systemis may be designed so
as to require push-button responses to “canned” messages displayed by the
system. Alternatively, higher-level languages may be used tc construct more
complex search patterns ov data structuring, but such languages should be
executed interpretively so that system integrity may be preserved.

8.6. COMPUTER CONMMUNICATION SYSTEM

aa

ad

The computer coinmunicat: Lo systern operates as an intercennected net-
wndep endent computer elements which commuuicate with each other

w
O
3

3
o]
—y
v

5cC 86 COMPU TER COMMUNICATION SYSTENM 251

and share resources. As a component of these networks, the small compute.
generally serves as a dependent system that acts either as a data communica
Lor or a data concentrator.

As a data communicator, the small computer serves as one of the
foilowir}g'

1. A device for the storing and subsequent forwarding operation o1
network messages.

2. A message translator and formator. -
3. A controller for a large machine which it interfaces to the network

4. A data entry system for providing remote job entry to a processing
facility.

As a data concentrator, the small computer serves as

1. A multiplier that processes many low-speed terminals locally, cot
centrating the data into one medium-speed communications line to a large
system,

2. A message buffer, communications line control, and character-to
message assembler/disassembler for low-speed devices connected to it.

In both applications, the small computer offers a powerful, low-cos:
alternative to hard-wired communications controllers on the front end o:
Jarge computer systems. And since these small computers are general
purpose machines with character-handling instructions and powerful inter-
rupt structures, they may be programmed to

b=t

. Route messages.

2. Provide code and speed conversions.

2, Uxndls ae and error control.

4. Compress data and format messages.

5. Automatically identify terminals and theiwr characteristics.
6. Provide time and date stamping of messages.

7. Establish communications automatically.

8. Preanalyze messages before transmission,

9. Provide editing, tabulation, and other formating services.

8.6 1. Communications Software

252 OPERATING SYSTEMS CHAP B

operation immediately, and modular systems, which consist of both hard-
ware (mcluding the computer and special communications hardware) and
special-application software programs, such as device drivers and communi-
cation executives

Tum-key systems do not require the user to program the computer
indeed, some of these systems are supplied with read-only memories, which
cannot be accidentally destroyed and which have been specifically pro-
grammed to perform a fixed sequence of instructions. On the other hand,
modular systems are used as a base on which the user can build special-
purpose systems tailored to his needs.

Within the modular systems there will be interrupt service routines,
t>rminal applications programs, and system control/interface packages. Util-
.ing these routines, the user tailors his system to his specific application,
‘hereby minimizing **e amount of hardware and software required.

REFERENCES

Many good books on the subject of operating systems can be found. However, most of
them, hke Watson (1970), Katzan (1973), Donovan (1972), and Organick (1872), are
concerned with the features and structure of particular systems (e g , 0S/360, Multics,
and XDS-940). The notable exceptions are Hansen (1973), Cohen (1970), and Denning
and Coffman (1973). Unfortunately, the latter three books tend to be mcre mathe-
matical and theoretical 1n nature and may not be as useful as those geared to specific
implementations. For a general treatment of modern operating systems, the reader
should peruse Denning’s (1971) survey article.

Manufact;

-supplied software comes in two forms: complete systems,@
_ften referre

v0 as turn-key systems, which may be installed and placed in

@

DIRECTORIO DE ALUMNOS DEL CURSO APLICACION DE MINICOM-

PUTADORAS 1977

FRANCISCO ALMADA V.

Sria. de Agricultura y Recursos Hidraulicos
Jefe de la Ofic. de Inform. y Datos

Reforma 35-11°

Méxicol, D.F.

Tel.: 591.03. 83

ARTURO AMPUDIA PALMA
Asbestos de Méx., S.A.
Jefe de Sistemas

Carr. Circunv. Km. 12.5
Tlalnepantla, Edo. de Méx.
Tel.: 565.01.00

SALVADOR BARRA ARIAS
Centro de Calculo

Fac. de Ing. UNAM

Tel.: 548.65.60 E. 261

FRANCISCO J. BECERRA SANTIAGO

GUILLERMO CANIZO LECHUGA
INFONAVIT

Jefe de la Ofi. de Inform Téc.
Bca. del Mto. 280

México 20, D.F.

Tel.: 524.52.33

ARTURO CUADROS REYES

Sria. de Agricultura y Recursos Hidraulicos
Analista de Sistemas

Reforma 35-11°

México 1, D.F.

Tel.: 591.03. 83

MARIO DIAZ OTERO

Sria. de Agricultura y Recursos Hidriulicos
Jefe d= la Ofi. de Programas

Reforma 69-10

México 1, D.F.

Tel.: 566.17.

GUIDO EBERGENY BEILLGODERE
Cia. de Luz y Fza. del Centro S.A.
Jefe de Ctas. Especiales

Melchor Ocampo 171

México 17, D.F.

Tel.: 546.39.35

Plutarco Elias Calles 1362-402
México 13, D.F.
TEl.: 539.05.65

Horticultura 188
México 2, D.F.
Tel.: 526.18.70

Av. El Caporal Andador 6 No. 25
México 22, D.F.
Tel.: 594.27.16

Lamartine 404
México 5, D.F.
Tel.: 545.20.41 .

Antonio Sola 78-1°
México 11, D.F.
Tel.: 553. 88.22

Floricultura 239
México 2, D.F.

Claveles 211
Fracc. la Florida
Edo. de México
Tel.: 546.39.35

O

@

O

SERGIO FUENTES LOMELI
C.F.E.

Superintendente de Const.
Subestacidn Texcoco
Texcow, Tex.

Tel. 4.10.18

ALBERTO GARCIA ADALID
Inst. de Invest. Eléctricas
Jefe de la Unidad de Computo
Leibnitz 14-901

México 5, D.F.

Tel.: 511.68. 64

JORGE GARCIA CAMACHO
Fac. de Ing. UNAM
Analista Programados
México 20, D.F.

ARTURO GUTIERREZ NAVARRO
PEMEX

Marina Nal. 329

México 17, D.F.

Tel.: 531.61. 89

MARTIN HIDALGO WONG
S.A. R.H.

Reforma 69-10°

México 1, D.F.

Tel.: 566.17.91

ZACARIAS SALVADOR LESSO ROCHA

' Cia. Elevadores Otis, S.A. de C.V.

Abedules 75
México 4, D.F.
Tel.: 541.60.00 E. 132

ALEJANDRO LOPEZ ARECHICA

. Aseguradora Hidalgo, S.A.
Ejercito Nal. 180"
‘México 5, D.F.
‘TEL.; 592.39.07

ALEJANDRO LOPEZ MUNOZ
Lopez, Goiii y Cia. S.A.
Director General

Gante 15-116

Meéxicol, D.F,

Tel.: 585.33.55

Club. Cuicaealli 6
Circuito Cronistas
Cda. Satélite, Ed. de Méx.

- Tel.: 572.39.80

Villasefior No. 5 Circ. Geodgrafos
Cda. Satélite, Edo. de Méx.
Tel.: 562.16. 37

Netzahualcoyotl 117
México 14, D.F.
Tel.: 577.13.30

Taxquefia 1818 C-23
México 21, D.F.
Tel.: 544.93.53

Morelos 7-B
México 21, D.F.
Tel.: 554.96.46

J. Fernandez de Lizardi 60
Circ. Novelistas

Satélite, Edo. de Méx.
Tel.: 562.25.30

HERIBERTO OLGUIN ROMO
Fac. de Ing, UNAM-
TEL.: 548.65.60 E. 261

HECTOR RIVERA MARTINEZ
Centro de Calculo
Fac. de Ing. UNAM

CARLOS ROJAS TOLEDO
SARH
Direccitn de Construccion

JOSE MARIA SALCEDO LOREDO

Sria. de Agricultura y Recursos Hidraulicos
Jefe de la Ofic. de Programas de Obra
Reforma 69 -10°
México 1, D.F.
Tel.: 566.17.91

GUADALUPE ZAMORANO LIMON

"Sria. de Agricultura y Recursos Hidraulicos
Reforma 69-10°

México l, D.F.

Tel.: 535.13.26

MANUEL ZARATE CHAVEZ

Cia. Elevadores Otis, S.A. de C.V.
Abedules 075

Sta. Ma. Insurgentes

México 4, D.F.

Tel.: 541.60.00

/

'edcs. 9, X1, 77.

11
w
]

Odontologia 69-401
México 20, D.F.
Tel.: 548.18.60 |

Campo Encantada 39 |
México 16, D.F. . . \
Tel.: 352.25.51

Nte. 64 No. 4789-18 , l
México 16, D.F. ’
' |

|

|

|

U. Habit. Patos Mz. 4-Edif. O Depto.1
México 1, D.F.
Tel.: 522.57. 84

Calle Encinos Mnz. 252 L. 8
Villa de las Flores |
Tel.: 541.40.00 E. 132

O

