Indice

Lista de F	iguras	iii
Lista de T	ablas	vii
Introduce	ión	1
Objetivo	s	2
CAPÍTULO	1	4
El problen	na de inundaciones en Tabasco	4
1. El pro	blema de inundaciones en Tabasco	5
1.1 De	scripción general del estado de Tabasco	5
1.1.1	Fisiografía	6
1.1.2	Cuencas	8
1.1.3	Clima	14
1.1.4	Precipitación	15
1.2 Mo	dificaciones del drenaje por intervención antropogénica	20
1.2.1	Rompidos	20
1.2.2	Complejo Hidroeléctrico del Grijalva	25
1.3 Int	undaciones recientes	27
1.3.1	Inundación de 1999	29
1.3.2	Inundación de 2007	30
1.3.3	Inundación de 2009	38
1.4 Pro	ogramas federales de control de inundación	40
1.4.1	Programa Integral de Control de Inundaciones (PICI)	40
1.4.2	Plan Hidrico Integral de Tabasco (PHIT)	40
CAPÍTULO	2	42
Campaña	de Campo	42
2. Camp	aña de Campo	43
2.3 Zo	na de Estudio	43
2.4 Me	diciones	45
2.4.1	Batimetría	45
2.4.2	Medición de la variación de caudal en un ciclo de 24 horas	48
2.4.3	Medición de la velocidad del flujo	50
CAPÍTULO	3	54
Modelo Hi	drodinámico en dos dimensiones	54
3. Model	o hidrodinámico en dos dimensiones	55
3.1 Int	roducción	55

i

3.2	Ecuaciones de gobierno (Aguas someras)	55
3.3	Resolución numérica e integración en el tiempo	56
3.4	Inundación y secado de celdas	
3.5	Puesta a punto del modelo numérico	58
3.5	5.1 Malla de modelación	59
3.5	5.2 Definición de las condiciones de frontera	61
3.6	Validación del modelo	64
CAPÍT	ULO 4	66
Result	ados	66
	sultados	
4.1	Introducción	67
	Tránsito de la avenida con periodo de retorno de 100 años liciones actuales del cauce	
4.3	Propuestas de alternativas de alivio en la llanura de inundación	70
4.4	Análisis de las alternativas de alivio en la llanura de inundación	76
4.4	4.1 Cálculo de áreas de inundación	77
4.4	4.2 Obtención de volúmenes y costo del dragado	77
4.4	1.3 Relación entre la anchura del dren y el costo de dragado	80
4.4	1.4 Relación del área de inundación y el costo	81
Concl	isiones	
Defera		85

Lista de Figuras

Figura	1 Ubicación del río González en la costa del estado de Tabasco (las flechas
rep	resentan la dirección del flujo)
Figura	1.1 División de la subregiones del estado de Tabasco (GET, 2010) 6
Figura	1.2 División política de los municipios que pertenecen al estado de
Tab	pasco (GET, 2010)
Figura	1.3 Mapa Fisiográfico de la Cuenca del Grijalva (APFM, 2006)
Figura	1.4 Regiones Hidrológicas del Estado de Tabasco con sus respectivas
cue	encas (Rosique PJ.A., 2006)9
Figura	1.5 Cuenca del Grijalva (APFM, 2006)11
Figura	1.6 Mapa de Climas del estado de Tabasco, se observa que el clima
pre	dominante es el cálido húmedo con abundantes lluvias en verano Am.
(IN	EGI, 2010)15
Figura	1.7 Precipitaciones pluviales anuales por Entidad Federativa.
(Es	tadísticas de CONAGUA, 2010)16
Figura	1.8 Mapa de precipitaciones en el estado de Tabasco (INEGI,
20:	10)
Figura	1.9 Sistema hidrológico superficial del estado de Tabasco en el siglo XVI
(Ve	lázquez G.V, 1994)20
Figura	1.10 El rompido de Nueva Zelandia que causó la unión del río Mezcalapa
con	ı el río Grijalva (Velázquez G.V., 1994)21
Figura	1.11 El rompido de Manga de Clavo originó el nacimiento del río Carrizal,
que	e en su parte final se conoce como río González (Velázquez G.V., 1994)22
Figura	1.12 Mapa de San Juan Bautista en 1884, la capital de Tabasco cercada
por	el río Grijalva. (Atlas Histórico de Tabasco, 1982)
Figura	1.13 Rompido de la Pigua, dio origen al río la Pigua. (Velázquez G.V.,
199	94)
Figura	1.14 Ubicación del rompido de Samaria y los municipios afectados: Jalpa,
Cu	nduacán y Nacajuca. (Velázquez G.V., 1994)24
Figura	1.15 Rompido de Cañas que originó al río Cañas, se aprecia en color rojo.
(Ve	lázquez G.V., 1994)24
Figura	1.16 Rompido el Veladero, ocurrió en el año 1952 próximo a la población
Nu	eva Zelandia. (Velázquez G.V., 1994)25

Figura 1.17 Sistema Hidroeléctrico del Grijalva. (CFE, 1988)	26
Figura 1.18 Perspectiva aérea de las Centrales Hidroeléctricas ubicadas e	n el
Complejo Grijalva. (CFE, 1988)	27
Figura 1.19 Inundación en la calle 27 de febrero, en el centro de la ciudad	1 de
Villahermosa, en el año de 1929. (Archivo de la Sociedad de Fotógrafo	s del
estado de Tabasco).	29
Figura 1.20 Inundación de 1936 en el Parque Juárez de Villahermosa, Ta	abasco.
(Archivo de la Sociedad de Fotógrafos del estado de Tabasco)	29
Figura 1.21 Sistema meteorológicos actuantes durante los últimos días d	le
octubre en el 2007. (CONAGUA, 2007)	31
Figura 1.22 Localización del Complejo Hidroeléctrico del Grijalva. (APFM,	-
Figura 1.23 Precipitación máxima diaria de los últimos días de octubre de	
(SMN-CONAGUA, 2007)	34
Figura 1.24 Panel izquierdo: Las principales avenidas de Villahermosa est	tuvieron
anegadas por el desbordamiento de los ríos que rodean la ciudad. Pan	ie1
derecho: Pocas personas pudieron atravesar las calles de Villahermos	a
utilizando las lanchas (Diversas páginas de internet)	37
Figura 1.25 El éxodo de la mayor parte de la población fue a pie, cargand	o sus
pertenencias y objetos de valor. (El Universal, 2007)	37
Figura 1.26 El rescate aéreo llegó a las zonas que se encontraban incomu	ınicadas
(Diversas páginas de internet, 2007)	37
Figura 1.27 Vista aérea de la ciudad de Villahermosa, es una imagen	
devastadora que muestra la magnitud del daño que sufrió la ciudad.	
(Diversas páginas de internet, 2007)	38
Figura 1.28 La infraestructura carretera se vio gravemente afectada adem	iás de
dejar incomunicada a la población. (Diversas páginas de internet, 200	9) 39
Figura 1.29 Camiones de gran tamaño se veían imposibilitados para trans	sitar las
carreteras afectadas (Asociación Ecológica Santo Tomás, 2009)	40
Figura 2.1 Zona de estudio, incluye el sistema de la laguna Mecoacán y el	l río
González, y otros cuerpos lagunares menores	44
Figura 2.2 Funcionamiento de la ecosonda para detectar el fondo marino	45
Figura 2.3 Sistema de medición del fondo marino	46
Figura 2.4 Panel izquierdo: antena GPS diferencial. Panel derecho: Sonar	
sumergido	46

Figura	2.5 Rutas de navegación de batimetrías
Figura	2.6 Detalle del mini ADCP montado en la moto acuática y esquema de la
me	todología de corrientes48
Figura	2.7 Transecto en la desembocadura del río González49
Figura	2.8 En la moto acuática se instalaron un ADCP, CTD y una computadora
en	la realización de transectos (panel izquierdo). Acercamiento del ADCP
(pa	nel derecho)49
Figura	2.9 Serie temporal de caudal Q, en la boca de la desembocadura del río
	nzález (panel superior) durante un ciclo de marea. En mareas vivas (panel erior)50
Figura	2.10 Velocímetro acústico
Figura	2.11 Ubicación del vector sobre el río González
Figura	2.12 Series de tiempo de velocidad y dirección del flujo (paneles 1 y 2), y
niv	el del agua (panel 3) en el río González, y el nivel del mar (panel 4)52
Figura	3.1 Mapa de elevaciones y profundidades generado con el MDE SRTM de
30	m59
Figura	3.2 Panel superior: Elevaciones/profundidades en el dominio del cálculo;
par	nel inferior: malla de cálculo con elementos de resolución variable60
Figura	3.3 Marea astronómica registrada para el mes de Agosto en la costa del
est	ado de Tabasco61
Figura	3.4 Mediciones tipo del perfilador acústico frente a la barra de Chiltepec
	62
Figura	3.5 Mediciones tipo del perfilador acústico frente a la barra de Chiltepec
	63
Figura	3.6 Comparación de resultados de gasto medio en la desembocadura
obt	enidos con el modelo numérico (línea continua) vs los datos de campo
(lin	ea discontinua)64
Figura	3.7 Comparación de resultados de velocidad de corriente obtenidos con el
mo	delo numérico (línea continua) vs los datos de campo (línea discontinua)65
Figura	4.1 Hidrograma de entrada que se utiliza en la condición de frontera del
Dre	n Victoria68
Figura	4.2 Escenarios de inundación a lo largo de la simulación numérica del
dre	naje de la avenida extrema asociada a un Tr=100 años69
Figura	4.3 Diagrama de las alternativas en la llanura de inundación

Figura 4.4 Condición final de la alteración con ampliación de la anchura del	
Dren Victoria a 240 m. y una profundidad de 9 m.	.72
Figura 4.5 Condición final de la alternativa con ampliación de la anchura del	
Dren Victoria a 300 m. y una profundidad de 9 m.	.73
Figura 4.6 Condición final de la alternativa con ampliación de la anchura del	
Dren Victoria a 380 m. y una profundidad de 9 m.	.73
Figura 4.7 Condición final de la alternativa con ampliación de la anchura del	
Dren Victoria a 600 m. y una profundidad de 9 m.	.74
Figura 4.8 Condición final de la alternativa con la ampliación de la anchura de	e1
Dren Victoria a 240 m. y una profundidad de 7.5 m.	.75
Figura 4.9 Condición final de la alternativa con ampliación de la anchura del	
Dren Victoria a 365 m. y profundidad de 7.5 m.	.76
Figura 4.10 Secciones del dren Victoria con diferentes anchuras, con una	
profundidad de 9 m.	.77
Figura 4.11 Secciones del dren Victoria con diferentes anchuras, con una	
profundidad de 7.5 m	.78
Figura 4.12 Relación entre el área de inundación y la anchura del dren para lo	s
escenarios simulados	.80
Figura 4.13 Relación entre la anchura del dren y el costo de dragado para los	
escenarios simulados	.81
Figura 4.14 Relación entre el área del dren y el costo del dragado pa	ra
los escenarios simulados	.82

Lista de Tablas

Tabla 1.1 Clasificación de las Regiones y Cuencas Hidrológicas del estado de Tabasco.	
(INEGI, 2010)	. 9
Tabla 1.2 Símbolos referentes a los tipos y subtipos climáticos del estado de Tabasco	
utilizando la clasificación de Wilhelm Kōeoppen adaptado por M.en C Enriqueta	
García (1994)	14
Tabla 1.3 Periodos de lluvias, sequías, temporales y nortes. (Velázquez G.V., 1994)	17
Tabla 1.4 Cronología de inundaciones (1879-1955) en el estado de Tabasco. (Gamma	
L.C., et al, 2008)	28
Tabla 1.5 La serie de eventos meteorológicos comenzó desde mediados de septiembre,	
continuaron hasta finales de octubre. (CENAPRED, 2000)	30
Tabla 1.6 Fenómenos meteorológicos en la temporada de lluvias en el 2007 (SMN, 200	7)
	31
Tabla 1.7 Afectaciones en las localidades del Estado de Tabasco ocasionadas por las	
inundaciones del 2007. (GET, 2007)	36
Tabla 1.8 Impacto socioeconómico de las inundaciones ocurridas en el Estado de Taba	500
en los meses de octubre y noviembre, 2009. (CENAPRED-CEPAL, 2010)	39
Tabla 4.1 Àreas de imundación para cada escenario de alivio simulado en km²	77
Tabla 4.2 Areas de dragado para los diferentes escenarios de alivio propuestos, el rengl	ón
correspondiente a 100 m. de anchura representa la condición actual	78
Tabla 4.3 Los valores del área de inundación, el volumen de dragado y el costo para un	18.
profundidad de 9 m.	79
Tabla 4.4 Los valores del área de inundación, el volumen dragado y el costo para una	
profundidad de 7.5 m.	79