
INSCRIPCIONES 
CENTRO DE EDUCACION CONTINUA DE LA 
DIVISION DE ESTUDIOS SUPERIORES DE 
LA FACULTAD DE INGENIERIA, U. N. A. M. 

Palacio de Mineria Calle de Tacuba No. 5 
México 1, O. F. 

Horario de oficinas: 
Lunes a viernes de 9 a 18 h. 

Cuota de inscripción $ 4,000.00 

La cuota de inscripción incluye: 
o una carpeta con las notas de los profesores 
• bibliografía sobre el tema • 
• servicio de cafeteria 
• comidas 

Requisitos 

" Pagar la cuota de mscripcron o traer oficio 
de la empresa o institución que ampare su 
inscripción, a más tardar una semana antes 
del inicio del curso 

• Llenar la solicitud de inscripción 

Para mayores informes hablar a los teléfonos 

521-40-20 521-73-35 512-31-23 

CONSTANCIA DE ASISTENCIA 

_as autoridades de la Facultad de tn'geniería de la 
J.N.A.M., otorgarán una constancia· de asistencia a 
os participantes que concurran regularmente y que 
·ealicen los trabajos que se les asignen durante el 
:ursa. 
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OBJETIVOS DEL CURSO 

En la aplicación de computadoras a pro­
blemas de hidráulica en países en desa­
rrollo, el problema no estriba en la dispo­
nibilidad de computadoras, sino en la 
dificultad de comunicar a los ingenieros el 

· "saber como" involucrado .en los problemas 
de cálculo. En este curso se proporciona 

. el entrenamiento necesario en· Hidráulica, 
Métodos Numéricos y Desarrnllo de "Soft-

. ware'', que permite al ingeniero la reali­
zación y-/o uso eficiente de programas de 
computadora apticables a problemas de 
interés práctico. 

A QUIEN VA DIRIGIDO 

El curso ha sido diseñado para aquellas 
personas que trabajan en disciplinas rela­
cionadás con la Ingeniería Hidráulica e 
Ingeniería Ambiental y que se enfrentan 
de alguna manera a problemas de disper­
sión de contaminantes y movimientos en 
grandes volúmenes de agua. 
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TEMARIO 

1.- INTRODUCCION 

2.- DESARROLLOS RECIENTES EN EL 
USO DE COMPUTADORES EN 
PROBLEMAS DE HIDRAULICA. 

3.- METODOS DE LAS DIFERENCIAS 
FINITAS. 

4.- METODOS DE LOS ELEMENTOS 
FINITOS. 

5.- PROPIEDADES FISICAS DE LAGOS 
Y AGUAS COSTERAS. 

6.- CIRCULACION ESTACIONARIA EN 
CUERPOS DE AGUA HOMOGE­
NEOS. 

7.- APLICACION DE METODOS NU-
MERICOS. 

8.- CIRCULACION TRANSITORIA. 

9.- DISPERSION DE CONTAMINANTES 

10.- CONSIDERACION DE ESTRATIFl-
CACION. 

11.- DESCRIPCION Y USO DE LOS 
PROGRAMAS DE COMPUTADORA. 

é 

PROFESORES 

DR. GUSTAVO A Y ALA MILIAN 

DR. GERARDO HIRIART 

DR. PEDRO MARTINEZ PEREDA 

CONFERENCISTAS INVITADOS 

DR. JAMES A. LIGGETT 
Profesor de la Universidad de Cornell 

DR. JEROME J. CONNOR 
Profesor de.l Instituto Tecnológico de 
Massachusets. 

NOTA: 

Los cursos tienen cupo limitado. 

Es recomendable inscribirse con oportuni­
dad pára garantizar su asistencia. 
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l. G0\'1 JWIJIC l·:qUl\'.:'IOWi - PLUID 

J .l <:ool·Llinntc c.t,rrLeliiS; po.rticlc llc:rivative 

He sclect c. fixed o:rtho¡gonal refcrcnce frrune hav ing directions 

x
1

,·X::-', ;.:~ us :1houn in Pjcure 1-1. 'l'he coordinates of n roint. a.t time t !U'e 

x
3

, nnd. thc coordinates at timt~ t = O n.re a
1

, a
2

, a
3

. In a 

"T.at.'.ranc;únu" formulation, onc tnkcn the initinl coordinn.tcs (a.) 
. .. l. 

and time ( t) a.n the indP.penclent vo.rio.Lle3 

(1-1) 

Thin ic quite rcnsonablc .for a. salid since the chune;c in shape of 

tht: lJot.ly ia smo.ll. Iloucver, a fluid undergoes. significant deformation an<l 

it is more convenient to to.l·:c the coordinates at time t as the 

independcnt variables. This choice is called a "Eulerian" formulation. 

(1-·2) 

All dcpt~nclcut vo.rio.blcs suc h ns pressure, ternpcratu:re, veloci ty, etc. , 

nre conBiderecl to be functions of (x
1

, x
2

, x
3

, t) in o.n Eulerian 

formulntion. 

Let un connillcr n sco.lar function, f("i_, t), associated "rith a 

pFJ.rticlc (sec Ficure 1··2). ~le co.n cxpr .. ~ss thc total change in f 

t.luc to cho.nr;c in po:;itiou of the particle and time increment as: 

'\rhere or js thc 

óf = 

" ~f = óf + ~ ó~f + ••• 

''f irst" ortl.er ch~nc;e, 

3f 
L\x

1 
Df 

lix
2 

H_ +- + 
Ox1 

ax2 ax
3 

llX3 + !L lit nt 

(1-3) 

( 1-1~ ) 
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The l i1a.i. t, na J\t -~ O, of U 1 !lt in defiued aa thc "particlc" or "Ctokes '' 

r1crivRtivc and ir. ur:ittcu ar. D.f'/Dt. 

Df lim 
Dt = M.+ ó 

fif -= 
J\t 

L lim 
lit.,. o 

.aL. . ~. 
l 

l'lo1t, thc vclocity vector for a particle is de.fined as 

~ 
v - velocity vector -· 

~ 

Opcrntínc on r, 

lim. 
flt-t o 

~ ...loo 
1\r Dr -= 
'J\t Dt 

a.ud notinc tha.t ax./at =O nincc x. nrc independcnt va.riables,we 
l l 

oLta.in. 

~ 

Dr m= lil"'l 
t -tO 

~ 

'"""' ~ ) e =v.t. 
J J J 

v. ·- cor1poncnt of v in the ;x. llircction 
J J 

Pinnlly, ve cnn uritc (1-)) RS 

Dl' = ;)f + I Jf 
llt Ot :)x. 

J 

v. 
J 

Dx. 
=~ 

Dt 

(1-5) 

(1-6) 

(1-7) 

(1- 8) 

(1-9) 

Tlie first tcrm is thc "local" rate of cha.nl)e awl the remaininc; terms a.rc 

"convcctive" tcrr11n. 

In the La.grnnee l"'•!) >l'(·~;c·nta.tion, one \frites 

x. = a. + :..~. (:lJ-, e~, a
3

, t) 
l l 1 o .:;. 

(1-10) 

.. , 



11ll1.·re u. js tltc tliGnlo.cc;¡c.;ut frma tbc; initial position. ':'he vc1ocity 
1 "' 

"'orrpon0J,t:; rctlucc to 

lim 
V. = 

1 zit ·J·' o 

i.;ince a.. cu•c conotant. 
l 

Jl • ...lso , 

Dí' ~f' 
Dt ~ '0-t 

1.2 Equ:i1i1Yt'ÍUJ.! cquntion 

/1,;.{. 
1 

t.t 

()u. 
~ 

at 
(1-11) 

(1-12) 
1 

'11\1:' cxt,·J·nnl n.ctioun 1U''' rr•prene:ntet1 lJy n distrihutell i3urface 1oudinc; . ~· 
(p) anJ. FL tlistr.i.uutcu Lotly force (u). Applyine; Ncvton's. 1aH 

1eo.ds t.o the followiug cquilibriurn cor.di tions for the tata1 vo1ume, 

fff 
.,.b 

lJclV + = fff p 

~ 

Dv 
IJt dV (1-13) 

JJJ ~ xt)tlV + Jf (~ X p) dG = J JI p (F X (1-14) 

where th~: intc:¡_:;rnJ.s· pertain to the posi tion at time t; p is the mass 

-1>. 

dcnBity; ."l.nd Dv/Dt is t!Je nc:celcrntion vector. 

He obtain "micro" cCJ.uilibriwu cquations by expnnding thc GUl'face 

-~ 
intesrn1 involvine p in tcrms of stress vectors and then applyinc 

Gausn'n inte¡;ro.tion 1y ports formuln. 
~ 

We define cr. as the stress 
·J 

vector (force pcr unit nrca) actinc on tlle +j face, i.e. the face 

vhose outvard normal point3 in the + :e. direction o.s shm·m in Fieur<= 
J 

l-3(b). Thc cartesin.n component rcprcc;entation is 



~ ~ 

o. = ·a '1 9., 
J .J -~ .... 

(l-1)) 

o '1 = o., (xl, X.,' .XJ' t) 
J .. J ... 

~!.~tu:·.: ur:Jnt.: thc: imlici:ü ::-.wtU!1:1.Uou convc~ut.ion Itere for cunvenicncc. 

,, ,, 
fl rncc in c;ivcu hy (r.:ce figure 1-·3(c)} 

~ ~ ~ ~ 
0 n ·· 0 nl 0 1 + rt.n2 °2 + rt.n3 °3 = a •• cr •· 

TlJ J 
(1-16) 

,, . == e o~ ( n, )(.) 
nJ J 

wil·'rc n :i t: tlw "out,:ru·cJ '' normal. F'inully, thc components ii:l the n and 

n di rcction!": m· e 

1 

~ ~ 

(l -- (t rt. O·y = on R. rm llJ nk J '• n 
(1-·17) 

~ ...ll. ,, - a rt 1· a 'J· = pll R. 
flB !Jj S,,,·: J" fl ., ' ; 

Hilt~rr· ~; i u orthoc;nnfll to n 1 mt other•ri f;c nrbi trary. 

l{o'"l, nt the bowHlnry, 

~ ~ ~ 

p = o :: tJ • tT • n 11J J 
(1-·Hl) 

':'l1CI1 1 

JI p JJ 
..... 

c\C...,... (1 
nj 

a . uf, 
J 

(1-19) 

/\pplyi¡~¡_; C:r.1u~n 'n forrmlll, 

JIJ G 
2!_ dV = .JI a i, src1:; JfJ r ~dV ax. n .. ax. 

l 1 

(1-20) 

to thc ::mrfncc iuteBral, w~ outa.in fimüly 

'· 



fJ ~J~ .-- H J 

. ..:. 
:Jo. 
__J_ clV 
ax. 

J 

':'lil' force C''l,uilil•!'iwn Cf"lttHtioll, (l·lJ), trn1wfonu1 fo 

IJI 

~ 

..l!. Zlo • 
( ], + _..J. 

:)x. 
J 

...b 

!'lv 
P Dt } <lV 

anJ ·· i t . í'ollmm thn t 

-~ 
1; + = 

. ..). 
Dv' 

P Dt 1n V 

...t. ....,. 

~~ut.:;LiLuti.JlC.: fot· 1;, p in (1-111), 'Llt•.! I;!UW!llt ct¡u:i1iLriw.t (~quation, 

TJ¡c ~il:~t..lar 

... . .:. ...:. 
9.. X o. -· o 

J J 

cquation:.; [t.l"C: 

;) 
t 0.1 + 

;Jx. J ~ l; 
J 

a. k = al . J . tJ 

+ v. 
1 

J.n V 

Dv].; 
= p 

Dt 

in V 

on e 

On<.! cnn olltain IUl 1u Lcrwtte forll! of tlJe "macro'' equilibriwn 

( 1 21) 

(a) 

(l· 22) 

(l-·23) 

cquatiun::; Ly intec;ro.tiur; the z·ight htmd side of (1·-13) and (1-lh). 

Cousicler iuc; (1--13), thc rir,llt hnnd term trnrwfor1an to 
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Jffp 
~ 

Jf 
..!> 

Dv dV == Ct V. Pvdr.~ 
Dt n.i 1 (a) 

+ JI J [ 
J .:t. -~[ rv .. DPJ } dV 
JL 

( Pv) + 
1,1 Dt 

'ro i11tcrprct these terms, "'e connider thc volwne fixed in space 

' , . 1 1 ) l OCL' •· 1¡:. -- 1 , The fir:::;t term is thc momentum flow out of the 

Ll01nuin. uud thc second tcrrn is the local rate of change in momentum~ 

'l'hc tl~:i.nl tcrm relate~ the outva.rd mo.¡_;a flmr andlocal rate of chauge 
1 

in· dcnsity. ~·o nhow t11in, He cxpa.nd. thc particle derivative, 

D~r o ~ 
P v. . + -. == '\.:-- ( pv .J + "t 

1,1 nt; u.'\.. 1 ' u 
l. 

(a) 

'.rLe inwnr!l llla:;:J flow 10 cqual to the ratc of chnnt;e 1n density, 

JI - p(ani vi)df! = Jff ~~ dV (b) 

" ..... 

Intcgrcd~.i.ne by part:J lcnds to a "continuity" con<lition, 

f Jf { .le. ... J (pv. )} tlV o == :lL JJ<, 1 
1 

.ij. 
l_Q.+ ;) 

( pv. ) o V == 1n 
~t ;)x. 1 

(1-25) 
1 

Uit11· (1--2)), ve can write thc force cquilibrium cqua.tion as: 

Eq. (1··2G) in cnlled the "momcntwn" equation. One shoulcl note that 

(1-·26) + (1-25) is equivo.lent to .the original forro of th~ equilibrium 

equutlon, (1-13). 



~le coulJ have cstul!lishcd (1-2)) uy c.llowing th¿ volumc to move 

,une\ r·~qu1r1nc; no m1.~;r; fl.mr ncro~s tl!e 1:;oundar~·. In tbin ~:~.pproach 1 

_the pnrti~le d-~r i':m.d v~~ oJ' tlie tot:ll r.1n::.s is zero, 

gt III J JI [ g~- dV + p n ... (cw) ' pdV = J :::: o D., (1-27) 

He.wiJl ~;h0\-1 la ter tlltL!l 

.D (JV) (av./;h:.')dV = Dt 1 .l 
(1-23) 

n,".!fnrc rnoviné,'; on to ldnemntic relations, He comment briefly 

· on un invir.cid fluid. Tf the shcar ntress components 1r1 the otress 

tcn:~nr o.1·c ncglectcd, 

o i =1- J 

tllc flui.J i:1 cnlled "I'r .iction.l:eo:o1" or invbcid. To U.ctcrmine 

whcther t!Jere are any rclo.tions bctHe.;:u thc nonzero elements 

(o
11 

,o
22 

,o
33

), \fe consid.r.r the stress transforrnntion lo.~-1, (1-17), 

J3ut, a 
nn 

O for n f:. n. Thin requircs 

for ·a. . = o . . G •• 
l.J lJ J.,} 

a.nd thc rcmo.inine t1·uw.:¡formntion lm1 reduces to 

ü -a . a o. = a 
nn , HJ nli: Jk 

(1-2?) 

(a) 

(1-30) 

(l-31) 

The sto.tc of strer:G b defincd lJY e. s:i nelc variable, o. For a fluid~ 
.¡ 
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u l.G ncgntive (compression) nnd thcrefore \.¡e slm.11 tul:e 

a = -· p (p denotes. pressure) (1-32) 

·The cqui1ibrium equations and ·boundary conditions for a frictionless 

a 
+ bk 

Dvk 
in V .·- -()- p = p 

Dt ~ 

pn = - p on ,.. 
•> 

Note tha.t one ca.nnot npp1y n ta.ngentia.l boundnry force to an 

inviscid f1uiJ, i.e. p must be zero. 
::¡ 

1.3 Principle of Virtu~l rmrcr 

.. ,, 

He ucrive the Principie of Virtual PolTer by opera.tin¡; on the 

ntress equilibrium equa.tions a.nd stress·-boundary force relations, 

= a . a •
1 UJ J ~ 

= in V 

on e 

The "~rue" solution for thc stre:::o componente se.tisfies (a). Let 

(1-33) 

(a) 

us multipl:r (o:) by a function, sa.y ;lt' and intee;rate over the domain. 

Equntion. (b) must be snt5.sfiecl i'o1· nrbitrary vlt if the stress field is 

o.n equHibrium fie1d. Ilext, 1Ve integra.te the st;~ess term lrith Gauss 's 



fori•'LL1 :t, ;:nJ. ubtaln t.lw ''princil>:i.(: ,..,;: v.i.l'tU.!J.l pouer", 

JJJ 
, r 

''l. V). ( l V 1· J JI ]' V J.[i ·-. . ]~ t . J
rr 
JJ

'fü. 
,J l. :) .•. 

J 

é'l v,_ 
h 

Dvk 
+ rv

1 
} JV 

.\. Dt. 

(1-·34) 

'l'hc ·lcf't hn.ntl tcrm can Le i ntcrprctc:L1 ns virtuol pom~r it' one 

an u "vlrtuaJ" vclocit;r. Gimilarly, the rir,ht hund terms 

cau ·~>e ''interprctcJ cts thc virtun.l tir:c ro.te of cho.ncc (particlc 

dcJ.·i y,'ll:,.i, ..-e) of thc intcrnn.l clcformn.tipn Hork nnd the Jdnctic enero;y. 

tlot~ tlw.t (1··311) n.pplies for a particnJ;¡,r tine, t, end nrbitra.ry :;k. 

·..re cnt.!_ll.:tr>ize tl:(tt i.t ic. jw;t a.n nlternn.tc stntcmerit of cquili"brium. 

'L'ltc principlc of virtunl pouer in the basis for finite eler.lcnt 

uocl·.;l!> in fluid nechn.nic::;. Itr; role is simillll' to thnt of the 

rrjnciplc uf vh·i..u.:1.l cli:;J.'l~.\cem,~nt.:; in nolid mcchn.nics. If He take 

v -:-: v
1

_·, th,! nctun.J vcloc i.ty, th,~ 11rinciple of virtual pm1er coincides 
1' .... 

\:itlt tliC fir:;t ln.vr or ther:>~Otlyn:tmics, 

l~atc of f.xtcrnn.l 1./orl: = r.atc of dcformo.tion uorl: 

+ -::-~te o r chane e of the Id nctie cnergy 

(1-35) 

fll~ó' He ou:..;crV<J Llmt thc pr~l·ticlc t'! criva ti ves of the ucformation 

mcn::nu·cs nrrJ thc qurwtitic~; rcqtdrcd. Thc total' (fl.ctual) clcfor111.ations 

do not . .!l.J.1pcnr 1n thc v:uin.tionnl ~tnter:wr.t. Finally, onc can ut:ilize 

thc prindple of vjrtunl r•o11cr to csto.1)l:i.sl'.\ "consistent" bound.ar~r 

conu:i.t.ions. For c;~umple, :lf on(; nrJ~;umcs thc fluid is inviscid, 

fff 
21 r , r () 

CT ') 
--y clV ~ J J J .. p --v dV J • h. L () ,. 1· . - A, .1.-

J ~~ (o.) 

JI d~ 1J ff () 
:: -· r V V --J·dV 

n 1 ~ dv ... ..) , . ., 
A 
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-- JI { p v -1· 11 -;; ) ar. 
n n e !1 

{b) 

ve C)íitn.~ n the "con::~istcnt" f.l tress - nu.rfa.cc force boundo.ry condi tion 

= 

= o 

nnd :tht:' equiliuriurn ·~qua.tion, 

= 
Dvk :1 

él~ p + P Dt 

1-.11 Ki!JC'mntic nd11tionr. 

(e) 

(d) 

Otu· olljcctivc in this !"lcction is to estn.1Jlin'h cxpressions for 

tlle time r:tte of chn.ncc of the defor~.,<1.tion mensures. To simpli:fy tl1.e 

discusdon, ii(;) conoirler init.inlly tlw 2-climcnsiona.l co.se. The 3--

. uimcndonul cxprc::.:;~;lons can b(! obtnin,cd l>y gcnernlisinc thc 2--dimendonal 

Ji'i¡_:;m·c 1--~ sJ¡mtr. tite iniUnl (tir<h: t) n.nu deformed {time t + ~t) 

¡.onitiow> of 2 diff~r.-:JJL.ial liw~ clencutr.. He visunlise thc rnovement 

nf n liuc· to con::i:Jt ol' traur:lation, rotat:i.on, and cxtension. 

J.ct 6e: Je:notc the rc1ntiv(~ incrcmcntul ext12:nsion of line PQ, 
1 

1 
= 

dX¡ 

~ 

IP'Q' 1 ·- 1 

Cub!:ititutiut.; for lr'Q' 1 , we obtain after sc.1me al¡:;ebra, 

'•' 

(1-36) 
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D 
Dt el 

v .. , 1 .... , 

&' 

V') 
'-

l\~1 lit-• u, Ll .. : rrúiilliJ'.cnl' tc:rJ:J:J VttlliuJ¡ rt,llJ '-'L' nrc: left 11:ith 

= vl , 
,~ 

r.y ILllnloe;~;, ~ --"" 
_ IP'R.'! ·· ¡m· 

-."b 

¡rn 1 

Gcncrn.liz:i nc, lfC can '·ITÍ te 

e;. - v .. 
1 1,1 

(no Gum) 

(1--37) 

(1·-38) 

(1-39) 

(1-I~O) 

'I'hc rtüntivc incrcmcntn.J voJ.ume chan~e, f:..c , j ~; dctermincd frorn 
V 

t-. (vol tlJI'l.t: ) 
1 

___::.. . ...._.:. 

J 
1 

!le = - P'Cl' x P'n' --- .. 1 
V iuitia.l volumc dx

1 
clx

2 

~ (1·-111) 

(vl 1 0 )/lt ( v, 1 
2 

lit: = + V,... + V r, ') .. V v"l l)(l'lt) 
V 

' t.::,'- ..... , '- , ,_ 1,2 "'• 

~.¡e define E O. S thc volumctric strn.in rate, 
V 

lira 
f..r::. 

D V 
cv = = E. 

.\t·•o l\t Dt V 

(l-42) 
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IJairig tllc noto.tion of vector calculus, 

~ a 
'iJ = R, -k ax. 

J 

= . ~ 
D1v. v 

Last1y, '!-re consider the rotation terms e12 and e21 • 

sinM12 = 

r::inM 21 = 

The lirni ts are 

v2a1 t~t 

l+t~E1 

v1a2 t~t 

l+Ac 2 

621 =V 1,,2 

The shear strain rate is the sum of e12 and e21 

Genera.lizing, 

= v .. +v. 
J,~ l,J 

It is convenient to introduce the strain rate tensor, 

(1-·43) 

(1-44) e~ 

(1-45) 

(1-46) 

(1-47) 

e. . ' lJ 

(1-48) 



"The strain measures in terms of eij are 

'E· = e .. €V = I e .• 
l ll ll. 

"{ .. . = 2 e ... 
J..j J.J 

Let us re-examine the rctation terma, e12 aud e
21 

. 
. , .. 

' 

Jlllt!Íi· there is ~nly rigid body motion, y = O and 

e23_ = ·- w 12 

"here w12 is the angular velocity about the x
3 

axis. This suggests 

that '"e take, s.e a measure cf' the angular~ ve1ocity, the difference 

between e12 and e21 : 

w12 = average value of angular ve1ocity about tl~e x
3 

axis 

. . 
= Hel2 - 821) = 

1 

Genera1ising (b), we write 

. . 
w •• 

lJ 
= He .. - e .. ) = 

lJ Jl 
Hv .. -v ... ) 
. J,l l,J 

Cyclic permutation of the subscripts gives the average velocities 

about the 3 axes. 

1123 ~ w 1. 

(a) 

('b) 

{1-50) 

(1-51) 

The tensor, w • • , is skew symmetric a.nd is cal1ed tbe vcrtici ty tensor. 
lJ 

It ia not difficult to show that. w •• is invariant for. ce1·ta:i.n trans­
lJ 

f'ormations of axes. For example, 
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w:~ere. w •12 c.orresponds to the directlons (X{ , x; , x3 ) • 'l'his is 

a.ctually vhy we can in·t;erpret it as the average rotation about x3• 

He end this section by listing two definitions. 

1)" A fluid is incompressib1e vhen the vo1ume strain rate is zero. 

. . 
= o 

p = mass density = constant 

In this case, we have to determine the pressure from an equilibrium 

consideration. 

2) The motion is irrotationa1 when w12 = w23 = w31 = O. 

Thie requireo 

v2 1 •. V = o , 1,2 

v3.2 
•. V = o 2,3 

vl,3 - v3,1 = o 

1.5 Stress-strain relations - Newtonian Fluid. 

He consider first a linearly ela.stic solid to provide us with 

sorne bacl~round. The stress-strain relations are 

O•" = -"Ev o .. + 2G e .. lJ lJ lJ 

where A, G are material properties, Ev is the volumetric strain, 

and e .. is the strain tensor. 
lJ 

(1-53) 

(1-54) 

(1-55) 

Tb distinguish between the volumetric and shear deformation modes, 
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. wc expresa the strain (and stress) tensor.s as a combination of 2 

:tenaors which are called tbe "spherical" and 11dev'iatoric" components. 
·:· 

G d 
c .. - cij + c." 
lJ ' l,) 

S d 
cr •• = o-. + a •. 
lJ lJ lJ 

l-lhere. , .. 
'S 1 

<S •• <S •• e .. = E = f. m lJ 3 V lJ l.J 

1( + e22 +' c33)· E :: 3· ell m 

d e., = e,. - E 
l. l. ll m 

d 
(1-56) 

e .• = (! •• i :f j 
lJ lJ 

and 

S 1 
+ 0 33, 6ij O' •• = O' l5 •• = 3( 0 11 + 0 22 lJ m lJ 

d 
O' •• = a .• - a 

l. l. ll Dl· 

d i r;. j (} .. = a •. 
lJ lJ '• 

The mean stress can be interpreted as an "cquivaJ.ent" hydrostatic 

pressurc; a~. ref1~cts thc deviation from the hydrostatic state1 and 
ll 

a~. are the shearinr; stresscs. 
lJ 

Similar1y, 

change a.nd 

E is the "o.vera~:;;e".extension corresponding toa volume 
m 

d e .. 1eads to a cho.nge in sha:pe, i.e. 9 shearing deformation. 
lJ 

The trace of the deviatoric components vanishes, 

d + d + c1 - ;·o 
al1 O,.,r¡ 0

33 
::: 

' .:. .... 
(l-57) 

d d + d 
() e11 + e.,.') e33 -... , 
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which shows that the devia.toric componente are assoc-iated vith 

nonuniform states, 

UsinG (1-55), we find 

(:;_·-58) 

K = bulk modulus 3~ + 20 = 
3 

and 

d = 2.G e .. 
~J 

= 2G(e .. - h
3 

6 • • ) 
~J V ~J 

(1-59) . 

We introduce the assum¡)tion of inc~mpressibility by setting K = co, 

In this case, a has to be determined from the equilibrium equations 
m 

and the displacements are constrained by e = O •. 
V 

n1e stress-strain relntions for a Nevtonian fluid are similar in 

form to those of the salid except that the strains are replaced with 

strain ratea. We write 

a • • = - p6. j + T •• 
~ lJ 

(1-60} 
lJ 

where p iri the hydrostatic pressure and t.. are the stresses due to 
' ~J 

motion ,. refcrred to o.s the "viscous" stress es. The relation for 

T •• is talr:.en as 
~J 

* \fhcre >.. , }4 are viscoaity coefficiepts. 

stress is determined from 

In this approach, the mean 

(1-61) 



The 

to 

* 

* . 
e - p + Y.: E 

V 

* 

-17·· 

K = 3). + ?M 
3 = coefficient of bulk viscos:i.ty 

p = p (density, temper~ture) = p(P,T) 

deviatoric stress es are given by 

fietting 

d 1 
. 

a •• = a .• - a c5 •• = 2,q( e .. - - E c5 .. ) 
3 V lJ lJ 

* K = o is 

* " 

m lJ .. 

knmm as the 

2 =--A 3 

lJ 

"Stokes" 

-p 

1 . ' 
a .• =- :p<S .. + 2Je(e •• - -

3 
·E <5 •• ) 

lJ li..J l.J V lJ . 

p, e p(p,T) 

lJ 

condition and leads 

(1-62) 

(1-63) 

(1-64) 

Uith this aseumption, the mean stress coincides with the thermodynamic 

pressure, p. lTe ~int out that (1-60) and (1-64) are valid only for 

laminar flow, 
' •.. ! 

i.6 Sumrnary of OovernipS EquatiQgs 

At this pqint, ve swmuarize the governing equations: 
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Eg, uil i br i wn 

in V 

p. 
J 

= on S 

I:inemntic 

e .. = Hv .. + V' • ) = strain rate tensor 
lJ 1 ,J J,l 

E:• = c .. Y· • = 2eij 1 11 1J 

' .. 
cv = cll + e22 + e33 

w •• = Hvj . - v .• ) = vorticity tensor lJ ,1 l,J 

~tress-stra~ - Newtonian fluid-

a .. e - p6 .. + T .. 
lJ lJ lJ 

p = p{p,T) 

Qe. = -· P e:v Dt 

T·' lJ 

~ :'. ~ .• ' ¡,, ~ ·, ·: : ·0 '' = .h E: 6 • • + ,,,e . . -
V lJ . "F.'" lJ ., ~ : 1 • 

2 
~--J;t. 

3 
for "Stokes" condition 

{1-65) 

(1-65} 

\ 

(1-67) 

' •• J_ :~ 
,.•. 

It is also of interest to.express the pl:linciple o:r virtual.power (1-34) 

in terms of the strain rate measures. 

. l 

1 
...... 1 
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lle let 

(1-68} 

'ttnd .note that oince the stress components are sy11llnet:dca1 in the 

S'.,tbacripts, 

a -
CT -V = 

jlt ax J le 
~ cr .,.( 5vk . + av. 1 ) 

Jr• , J J 1 t 
(a) 

Then, we can write the principle of virtual power as 

(1-69) 

= JJJ 

for a.r'bitra.ry !Svk 

1.7. flavicr ntokes equations- incompressi'blc Newtonian fluid. 

The ec¡uilibriurn equa.tions and exprcssions for the nurface f'orcen, 

(1-·65), in terms of p nnd T •• are 
lJ 

on S 

in V 

He tn.ke T •• accordi~ to (1-67) and constr-ain the velocities to 
lJ 

(1-70) 



·satisfy E = O 1 
V 

-20-

)l{vj k + vk . ) 
1 1 J 

Al.;3o~ we consider the body forces to be due to gra.vity, and write 

(1-71) 

(1-72) 

{l-73) 

Substit~tins for t., and bk in (1-70) results in the "navier-Stokes" 
JK 

equations, 

1 , ~ 

in V 

and 
() •J 

pn/P = - {p/P) + 2Va~ 

on S 

= 

where v = Jt!P is tbe kinew~otic viscos:ity. The expression for Ps 

npplien when the boundo.ry is stra.ight. For a curvad boundary, we 

must us~ 

a a a = V{ añ V S + "3'8 V n - V k ak ank } 

The unknO\m variab1co nre the velocity components, v j, and the 

pr~asur~, p •. They have to satiafy the eq~i1ibrium equations and 

(1-75 j 

(1-76) . 
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i.ncoLlprcssibility condition in V and thc boundary condition 

or v · 
S 

prescribed 'on n 

J:.et us now see how we have to modi.f'y the principle of virtual 

power • ( 1-C9). If wc set cv r.: O, tl~e pressure term drops out. 
' ¡ . 

However, thc virtual velocities are no loneer arbitra._ry but are 

nOl.f constrained hy 

= o 

\-le can include the constraint condition by introducing a Lagrange 

multiplier ). and requiring 

c5 [ A ~v J = ). o cv + ISA cv = O in V 
·,, 

·ror arbitrary A· Since cv is volumetric strain, the physical sig­

nificance of A is hydrostatic tensile stress. Then, we reverse the 

sign and take >.. = -·p. The final form of the principle. of virtual 

power is 

= o 

for arbitrary tSp, óvk 

(1·~77) 

(1-78) 

(1 ... 79) 

(1-80) 
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Suk ~.itutinc 

!. 't'j = v ( v . 1 + vk . ) 
p k J,~ ,J 

ÓE:. e ~V 
-v L,l~ 

s.nü intee:rntine·by parts 1eads to (1·-74) and (1-?5)~':. 

fino.lly, we introduce the assumption of frictionléss :flou 

1::y scttinG t;k = O. The reduced equntions are 
" 

nnd 

;) Dvk 
-· __ e_ {p/p) + Gk + Dt = O 
~~ 

v. . = o 
l,l 

= o 

for o.rbitrnry Svk, op 

~ • ... Jo, 

in V 

or v = v0 ~ 
on S 

v nrbi trary · 
S 

-,, . 

(a) 

(1-81) 

(1- 82) 
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Fli\ITE ELE~lENT SIIALLOW LAKE 

CIRCULA TION ANALYSIS 

By Richard H. Gallagher, 1 F. ASCE, James A. Liggett, 2 !\1. ASCE, 
and Stc,·cns T. K. Chan, 3 A. M. ASCE 

Jl'lt&RODUCTION 

The finite elcmcnt mcthod has drawn increasing attcntion as a numerical 
analysis too! for fluid flow problems. The reasons for this gro•.vth of interest 
include the following: (1) Irregular boundarics can be trcated accc:rately without 
computational d1fficulties or changes in programming or formulation of the meth­
od ·, (2) practica! use can be m a de of widely available, general-rurpose, finite 
element anaiysis prograrns which are virtually unhmited in the SIZC of problem 
thcy can handlc; and (3) known spacewise variations of physical properties 
can easily be takcn into account. 

Becansc of these advantagcs the finite clement method is especially attractive 
as a practica! method of analysis of lake circulation problcms. In lakc analysis 
irregular bound:>.ries must be considered. The phcnomcnon dcscribcd, is so com­
plex in form that any numerical analysis procedurc will entail hundreds, or 
prrhaps thousands of unknowns. Dueto the ease of transfcrence of finite clement 
programs from one comput.er facility to another, the developmcnt of relationships 
for this class of problcm contributes to a capability which eventually may be 
applied routinely by analysts in many different and widely scparatcd organiza­
tions. 

As -noted previously, variable physical properties are easily hand!cd by the 
finitc elcmem method if thcir spatial distribution is known a priori. Thus. for 

Notc:.-Di;;cuo;sion opcn u;Hil Deccmbrr 1, 1973. To extcnd thc c;o~ir>g date one month, 
a writtcn rcqucst mu~! be filcd wiih the Editor of Technical Publications, ASCE. This 
papcr is pan of th~ copy1tghted Journal of the Hydraulics C·ivisior.. Procecdings of the 
American Society oi Civil Enginecrs, Vol. 99, ?-;o. HY7, July, 1973. Manuscript was 
submiltcd lor ·rcview 'fcr ~ossible puhiication on Scptcmber 13, '1972. 

'Prof. of Civ. and Environmcntal Engrg., Corncll Univ., lthaca, N.Y. 
~Prof. of Clv. and Environmcntal Engr¡;., Corncll Univ., lthaca, N. Y. 
JRescarch Assoc., Sch. of Civ. and Environmcntal Engrg., Corr:cll Univ., IIhaca, N.Y. 
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thc ~ubjcct problem, vanat10ns in eddy visco$ily or the Coriolis acceleration 
can be takcn intr. accounl if Known. Vari:1tions in density present a more basic 
difficulty bcc.mse the density distribution m a stratified lake (cither through 
'al! or tempcrature) is itself a part of the solution and cannot be spccificd 
a priori. The extension of thc finite e!ement m':!thod to account for such coupled 
phcnomcna is feasible, however, and the present work, on one side of the 
uncouplcd problem is a step in this direction. 

Thi~ p:1pcr presents ::;, finite elcment formulation and numerical results for 
thc analysis of the wind-induced steady-state circulation of variablc-depth shal­
lnw homogcneous lakes. Formulative efforts and numerical results for finite 
clcmcnt rcpre~entations of lake and shallow basin ciículation ana!ysis have pre­
vi.,us!y bccn dc~cribed by Cheng (2) and by Loziak, Anderson, and Bclytschkó 
l(O). Thcse developments are exclusively two-dimcnsional, i.e., no account is 
takcn of the variation of Iake depth and the resulting velocities-do no! change 
\\ ith dcpth. Leonard and Melfi (6) present.... the theoretical relationships for a 
thrL'C-d¡mcnsioníll analysis which accounts for the velocity of the lakc normal 
to thc free surface, but no rcsults are pre5ented. 

Thc prescnt paper depends for its theoretical basis en a formu!ation of the 
¡:nvcrning differcntial equation that has been dcrived. in detail by Liggett and 
llau¡ithcodorou in Ref. 8. This development assumed homogcnicty, hydrostatic 
rrcr.;urc, specified wind shears, and small Rossby number. The latter assump­
tion, together with a boundary condition of zero vclocity normal to the lake 
free surface and thc bottom, enables construction of a linear equation in i'>'.'O 

dimcn~ions whose cocfficients are a function of all three dimemions. Thus, 
thc cquation accounts for variable depth of the lake and for depthwise variation 
of vclocity through numerical intcgration of equation cocfficients that are func­
tion~ of planform location. 

Thc convcntional ba5is for constructicn of a finite element representation 
¡, an integral form which, in the sense of a variational principie, corresponds 
to thc govcrning differential equation. The transformation of the govcrning dif­
fcrcn!ial cquation to integral form is accomplished herc by use oí thc method 
l'f wcightcd residuals (3) rath~r than through varia!ional calculus. The specific 
finitc clcmcnl rcpresentation employed is of triangular planform shape with 
un a~surned linear variation of the strcam funclion. 

lt should be noted that numcrical solutions of the aforcmcr.tioned governing 
lhffcrcnlial equation, or of specialized forms of it, ha ve previously bcen obtained 
with use of finite differences. Rectangular basins were analyzcd in this manncr 

· in Rds . .S, 7, and 8 whilc Liu and Perez {9) sol ved the rectangular has in problem 
\\ ith rcmoval of the Coriolis effect, i.e., with restriction to very shallow basins. 
Thc finitc d!fferencc solutions are drawn upon herein lo furnish comparison 
data for finite elc:nent solutions. In order te. demonstrate the advantages of 
¡,:cnmctric representa! ion, alluded to ear!icr, t!le fir.ite element method ís al so 
applicu hcrein to an analysis of the wind-driven circu!ation of Lake Ontario, 
fm which no comparison results are available. 

GovtRNING EauAnoNs 

Thc purpose in this se·-:: :on is tC' present tht: govcrning differcntial equation 
fllr the stcady-statc, ·~ ;~.,~-drivcn circulation of shallow, homogencous \akes, 
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as formulated by Liggctt and Hadjithcodorou (8). Bccausc detailcd development 
of this equation is beyond the scope of :his paper, interested readers should 
consult Ref. 8. 

A cross section of the type of lake under study is pictured in Fig. 1. The 
origin of coordinates is fixed at the surface of the lake with z measured upwards. 

1 

~ 
1 

D 

L._¡__---2~~""""~wr· 

"-------- L -----~ 

FIG. 1.-Representative Lake Cross Sec­
tion 
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FIG. 3.-Rectangular Lake 
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2 

FIG. 2.Triangular Element 

For ent1re loke: 

No of elements = 360 
No. of nodes = 209 

FIG. 4.-Finite Element Representation 
in Ouadrant of Rectangular Lake 

In accordance with the assumptión of shallowness, i.e., hydrostatic pressure 
distribution, D << L. The eddy viscosity, -r¡, and Coriolis parameter f are 
assumed constan! in the formulation of the differential relationships. The distri­
bution of pressure is assumed to be hydrostatic and surface wind stresses 
(T.,, T n> an scribed. In order lo Jinearize the problem the Rossby number 
(ratio of inel .. ul forces to rotat10nal forces) is taken to be small. The depths 
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to be u~cd in a calculatíon are t2ken to be the actual depths under the a>sumed 
wmd st¡ess or, a.!terr.ately, that the equilibrium depths are a sufficient approx1· 
mation hJ the actual depth under the assumed wind stress. '[he x, y .. pJane 
coincides wirh the water SiJrfllce and w = O al ;:: = O. '.~':..-

Many of the as~umption> or approximat1ons mentioned in cohnection with 
the pre~cnt ~ndy havt~ bccn evahl3t..:d by t·iggett (7). Steady flow is as~umed 
a~ !he primary function of this paper is to mdicate the utllity of the finite 
clcment reprc~entation. This coulá be extended to an unsteady formula!JOn in 
much the ~ame way as was done in Ref. 7. The time response o(a homogeneous 
lake, !he effects of vari<1ble eddy viscosity, and the Iinearization were examined 
in Ref. 7. Unlike the unsteady problem, no rigid lid on the free surface is 
necessary if the depths are taken as the actual depths under the assumed wind · 
~tress. Even if the depths are taken as equilibrium depths, wind set-up can 
be computcd from the resulring pressures. 

Undcr the f01egoing assumptions, the x, )', and z, direction momentum equa­
tions are of the form 

I op a2 u 
-- fv = -- - + --

p ax az2 

1 ap a2 v 
fu = --- + TJ --

P éJy iJ¡;2 

1 ap 
g=--­

p az 

...... (1) 

....... (2) 

...... (3) . 

in which u and v ;,. the x and y direction velocities; p = the mass density 
per unit volume; and g = the acceleration dueto gravity. The continuity equation 
is 

au av aw 
-+-+-=0 
ax ay az 

. (4) 

and the boundary conditions relating to shear on the lake surface 

a u av 
-r¡-=T 'T)-=T az •t' az yt 

......... (5) 

and of zero velocity (u = v = w = 0) on all sol id surfaces. 
Operations on the preceding to produce a governing differential equation pro­

ceed as foll'ows. First, the equations are written in noJ1dimensional form through 
the introduction of an appropriate set of new variables. Then, a stream function, 
~', which satisfies the vertically integrated continuity condition corresponding 
to Eq. 4 is introduced. The stream function is defined as 

- 1 illjJ - 1 illjJ 
U=---; V= --- ••••••••• , •••••••••••••••••. (6) 

Ir ay l1 ax . 
in which ii and v = depthwise averages of the componen! velocities. Finally, 
!he first three cquations, with associated boundary conditions ce 'ered, are· 
solved in terms of the stream function. The result is 
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él~ ljl él
2

"' éllj¡ illj¡ 
- +- + A(x,y)- + B(x,y)- + C(x,y) =O 
élx 2 ély2 élx ély 

.. (7) 

with the boundary condition that ljJ is constan! on thc shore line. The cocfficicnts, 
A, B, and C, in the equation are functions of thc planform location (more 
specifically, functions of the lake bottom topography) as defined in Ref. 8, 
and e dcpcnds on the wind shear strcsses as well. -

The condition that 1\1 is conqant on the lakc houndary prescribes zcro average 
- velocity normal to thc boundary. Howcver, a stronger condition is nccessary 

to insure that the point vclocities normal to thc boundary are C\'erywhere zero. 
Such a condition is avoided by forbidding vertical boundaries. Thus the lake 
is confined by the surface and thc bottom, on which all point veiocities are 
specified as zero. 

FINrTE ELEMENT REPRESENTATION 

_ T1here are three aspccts to thc establishment of the finite elcment equations: 
(1) Construction of integral reiotionships which corrcspond to the governing 
equations of the problcm; (2) dcfinition of the geometric fonn of the clements; 
and (3) represcntation of the assumcc! modes of bchavior of the elcment. 

Ir. the fini!c element analysis of many physical problems, notably structural 
analysis, the preceding integral rclationship is the stationary value of the fuuction­
al, defining the variational (or energy) statement of the problerr:. The go\'erning 
diffacntial equations of the problem in terms of the independent variables of 
the functional are Euler equations of the functional. For certain circumstances 
the solution which yields a rninimum value of the functional corresponds to 
the exact solution of the govcrning differcntial equatioP.. 

When the governing differential equations are not self-adjoint, as in the present 
case, there is doubt that a true variational statement of the problem can be 
constructed (1). Note further that variational principies do not have a pre-cmin­
ent, well-established position in fluid mechanics as they do in the approximate 
so!ution procedures in struclurai mcchanics. The desired integral formal for 
the subjecl problem is therefore e!>tablished through application of the method 
of weighted residua!s (4), noting that a particular form of this method gives 
identically the sa~c integral re!ationship for problt.:ms which are self-adjoint. 

The weighted ~esidual conccpt assumes that an approximate representation 
cf the independent variable, which in general does not satisfy thc govcrning 
differential equation, will be choscn. In the present case this approximating 
trial function, ~, rs of the form 

.......................... (8) 
1~1 

in wh:ch ljJ 1 = a particular value of the inde¡::endent variable and gene rally 
refers to such a vdue at the point i, ami n = the chosen number cf undeteímined 
paramet ers ~· ¡. 

Designating the governing differential Eq. 7 as L(I!J) = O, note thal due to 
the approximate nature of ~ the rcs'Jlt is 

L(~) = R ~O ................................. (9) 

!1 
1 
1 

1 

·• ,. 
,, 
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in which R = a residual value. Bccausc the govcrning d•ffcrcntial equation 
cannot be sati5ficJ pointwis~ throughout the domain, V, of thc problem its 
satisfaction is sought in the scnse of a wcightcd average over the domain, 
r.e. 

J V L(~) c1JdV =o ..... : ........................ (10) 

in which <1> = the wc¡ghti:1g function. 
The weighting function may be specified in one of any nurnber of forms. 

H:::re, the Galcrkin form is chosen, in which the cocfficients, N, of the tria! 
function are cmplo) ed. Each distinct triJl function leads lo a scpa~ate algebraic 
cquation, u~ing !he procedure detailed in the following scctions. 

ln the present case, simple triangular clrments are used to represcr1t thc 
planform of a lake under consideration. The stream function is assumed to 
vary lincarly in each element (Fig. 2), so that for this case Eq. 8 is of the 
form 

~~=N,Iji,+N21j¡2+NJI!Jl ........•.............•.. (11) 

in which 1!1 1 , .¡; 2 • t\1 3 = the values of the strcam function al the vertices; and 
N 1 , N 2 , N 3 = the corresponding shape functi0m. These functions are defined 
as 

1 
N 1 =-(a + b

1
X + c.y) 

26. 1 1 
•••••••••••••• o o • o o •• o •••• (i2) 

with A = arca of the triangular element ijk 

a1 = x1yk- xkyl' b1 = y1 - y k, c1 = xk- x1 ...•......... (13) 

in which i, j, k take the valucs of 1, 2, 3 cycliciy. 
Applying Galerkin 's criterion, the result is 

éi~LNJ aLNJ • aLNJ) 
+·--,-+A--+B-- {lj¡} 

ay· ax ay 

+ e J dxdy = o · ...... •. . . . . . . . . . . . . . . . . . . . . . . . . . (14) 

Ncxt, integration by parts is applied in the plane (Green's theorem). This 
0peration reduces the order of thc derivatives ap¡Jearing in the integral <!nd 
introduces the boundary terms into the rcsulting integral. In the present case 
thc result is 

aLNJ) J f itjNJ +B{N}-_- {o.j¡}+{N}C dxdy+ {N}-----{Ijl}dS=O ... (15) 
rJ y . • éln 

Thc values l!f 1 = zcro on the cntire exterior boundary in thc prescnt problem 
and !he closure integrals al0ng interna! (intcrclcmcr.\) boundaries vanish as eie-
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ment size decreases (13), or 1f con!Inllil) of éJ L N J /011 acros~ clement bounJaries 
is preserved. Thus, thc contour integral tnrn IS cxcluded from subscqucnt c¡)nsid­
eration. Evaluation of Eq. 15 then yieiJs the system of cquations 

[k'] {"'} = { ,. } . o o o o . . o . . . . o . o . o o o o o . o o • ( ló) 

in which [k'] = f f (- a { N} a l N J _ ~1_ a l N J 
6 ilx iJx ay ay 

.......... 

aLNJ iJLNJ) +A{ N}--+ B{N} -- dxdy o o •••••••••• 

ax ay 
• o ••• (17) 

{ r•} = - J J 
6 

{ N} Cdxdy . o . . o . o . . . . . . o . . . o • o ••• (18) 

Note should be takcn of certain aspects of the numerical evaluation of Eq. 
17. First, dueto thc tcrms A {N} (al N J / ax) and B {N} (aL N j /ay). the result­
ing algebraic equations will be nonsymmetric. This mcans that advantage can 
not be taken of symmctricity as encountercd in most structural finite element 
analysis. That is, evcry term of the elcment matrix has to be evaluated and 
the entire bandcd system matrix has to be stored for computing the solutiono 

As Eqo 7 indicates, the coefficients A, B, and C are functions of x and 
y. Herein the decision is made to approximate the variation of these terms 
within each element by linear functions, similar to Eq. 11. Choice of a constant 
value for each clcment, say at the centroid, y,ould simplify integration of Eqso 
17 and 18. Proper comparison of the finite diffcrence solutions of Ref. 8, in 
which these coefficient~ vary between the points of the mesh, is bcing sought, 
however. lt should further be observed that integration within the triangle is 
simplified considerably by use of arca coordinates (12). 

The equations of the complete lake are constructed from the equations of 
the elements :by imposing the condition of stream function continuity at each 
element joint~ which is synonymous with simple addition of all coefficients 
(k;¡ and r¡) with like subscripts. Thus, the full set of equations is of the form 

[K]{I!J}={,R} (19) 

in whic.h K;j= ~k;¡ (20) 

R, = ~r1 .. o (21) 

and the summations range over all elements with terms with the subscripts 
i and j. 

After solution of Eq. 19 for { ljl}, other variables, such as averaged velocities, 
pressure gradients, and velocities at different dcpth lev~ls can be subsequently 
evaluated by back substitutions. Herein, because a linear field in 1)¡ has been 
assumed, its derivatives aljljax, aljlfay are constants in each element. Thus, 
from the definition of ljl, the average velocities ü and v are coustant within 
each elcment. From Ref. 8 the point velocities as a function o! planform and 

- depth' are 

iJp 
U=--

ay 
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FIG. 5.---Comparison of Stream Function Solutions for Rectangular lake at Repre­
sentative Sections 
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v = !..!!_ + cos m¡(c 1e'"' + c
3
e-'"') +sin m¡(c 2 e'"' + c 4 e-'"') 

rlX 
(22 b) 

in which lhe lerms m, c 1 , c 2 , c 3 , and c 4 = funclions of x and y. Thc rcader 
is rcferred lo Ref. 8 for lhe exacl dcfinitions of lhese lcrms, which are rather 
complex. The same paper expresscs lhe pressure gradients as· a function of 
x and y and the derivatives of lf¡. · 

NuMERtCAL REsuLTS 

Two problems are solved as an illustration of the prescnt approach. The 
first problem, shown in Fig. 3, cnables comparison with finite diffcrence rcsults 
(8}. This idealized lake is orientcd in a north-south direction with a lcngth four 
times the width. The following values were employed in numerical calculation: 
f = 0.0001 rad/s; D = 8,000 cm; 'Tl = 200 cm 2 /s; L = 1.25 x !07 cm; T 

= I.Ocm 2 /s 2 ;andg=980cm/s2
• 

Scole,km 

o 8 16 
L__L_j 

No. of elements = 561 
No of no des = 32:3 

FIG. 7.-Finite Element Representation of lake Ontario 

The finíte element rcpresentalion of a quadrant of this lake is shown in Fig. 
4. A total of 90 elcments are ;.mayed in the quadrant but four times this number, 
360, with 209 joirits, and therefore the samc number of equations, wcre cmployed 
in actual computation because the gcometric symmetry about the x and y-axes 
does not aprly to the circulation behavior h~ing calculatcd. 

As is apparent from the definition of lf¡, a zcro depth represents a compulalional 
~;ng~tlarity and it is necessary to havc a finite, ·but small, dcplh all along llie 
boundary. The flow region under analysis was, lherefore, taken 10 be one bound­
ed by a contour of 5% maximum depth, a value which has bcen found to 
be adequatc in prcvious numerical solutions, and the flcw exterior to the bounda­
ry 1S ignorr.d (assumed lo be at rest). 

Figs. S and 6 show results for 1\! and 1hc velocity resultant at selectcd cross 
sections for the ca~c of a south wind acting on the lake surfacc. Also shown 
ar,e the finite diffcrence rcsults from Re f. !i, in wP.ich 1,701 equally-spaced 
pivota) points were used. The finite differencc and finite clcmcnl results are 
seen to be in close agrccmcnt. lt shou!d be nolcd that :hcsc comparisons are 
presenled to affirm thc validity of thc finite clcmenl melhod in solution of 

1092 

:¡ 

JULY 1973 

'ill : 1: 
i • 

~ . 

-------
"' .... ... ... ..... LL"1 ~1' 

'IUt•:. 
... 

-o .. 
~ .. 

:::J 
o 
'1:! 
o 

l 
"' .. 
e 
o 

Cl> 
.X 
fJ _, 
1 

có 

ci 
¡¡: 

HY7 



HY7 LAKE CIRCULATION M..JAL YSIS 1093 

this problem and not to mcasure the reliltlve effi,·,ency of the f1nitc ci, ment 
and finite 'd•ffcrcncc proccdures. A bare compa.nson of computational cffort, 
based on the number of equations to be solvcd would not be rea!Jqic due 
to such factors as the rclative cffort in forming the equations and the narrow 
bandwidth of finite difference equations. 

Also, it is quite possible that finite difference resu:ts, which would prove 
comparable with the finite clcmcnt solution, could have been obtained with 
much fewer than 1,701 pivota! points. The computational costs of the two solu­
tions cannot be co.npared dueto "Significant d1ffcrences in the computer hardware 
and software employed for thc respective cases. 

The second problem for which numerical results are dcscribed herein is the 
calculation of the circulation of Lake Ontario due to a wind shcar prevailing 
in the local avewge direction at Rochestcr in February, as shown in Fig. 8. 

... 
u 
e 
o 

"' a 

~~=-z---:----_--'4'-'---o"!-"o=::.:...i4 ___ s.~_ _ _.JJ2 

Streom Function, 1J! x 106 

FIG. 9.-Stream Function and Total Velocity Solution on Lake Ontario Surface at 
Section ~-~ 

A careful repre~,cntation of the geometry and bottom topography of this lake 
was compiled by Canada Center for Inland Waters (2). These data are employed 
herein to define a finite element representation consisting of 561 triangles joined 
at 323 points. The specified wind shear stress and the physical constants ¡, 
'11· and g are thc samc as in the first problem. 

Fig: 8 shows contours of the stream function in the circulating lake. This 
figure has becn gene;ated by a contour plotting routine which is part of the 
computer program. A plot of the distribution of the stream function and ve!ocity 
on a reprcscntativ_e north-south section across the lake appcars in Fig. 9. 

No comparison rcsults are available for this problem. Although the correct 
Coriolis parameter was used, no attempt was made to choose a physically accu­
rate eddy viscnsity or to represen! ice formation or variation of wind stress. 
It is unlikel) : ficld measurements of the form necessary for comparison 
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purposes will be av;!ilable in the futur~. Large-~_caic mcdeling is a pror.nsmg 
alrc.:rna!ivc :,nurcc of comparison data but 'lO such data exist yet for this lake 
and whcn tl1cy are ci::'tair.d it is to be cxpected that limitations on represemat;on 
oí thc pcnincnt dimensionless ratios (sce Rumer and Hoopes (ll)] will-require 
somcwhat diffcrcnt ronditions on thc ~.:omp?.r ison analyses than those employed 
hcrcin. 

In comput:~tiona! ;;spccts. áecution times for the finite element solutions· 
of the preceding problem~ wcre generally small, between 1/2 min and 1-1/2 
min on an II3M 360/65. 

One mcthod of cstablishing confidencc in the Y<didity of the prescnt results 
is by performance of [urlher analyscs with c11hcr a re vi sed gridwork or with 
hi&hcr-order elcmcnts on the samc ¡;ridwork. Work in this direction is in progress. 
Corrcspondence of the results of these solutions wiii add to confidcnce in the 
é\Ccuracy of the solution of Eq. 7 for this situation but cannot, of course, demon­
strate that this differential equation properly describes the bchavior of the actual 
lake. 

SuMMARY ANO CoNcLus:oNs 

The finite elemcnt method has been shown !o be effcctive in the analysis 
of lake circulation. Such problems are quite complicated from a geometric 
standpoint and a rcalistic analysis with u~c of any method must incvitably require 
a large-scale computation. The finite elemcnt mcthod is attractive in this respect 
because of the possibility of using existing large-scale, general-purpose, finite 

element computcr programs. lt is especially promising as the basis for analysis 
of more complex circulation phenomena in lakes, such as the response to the 
introduction of a thcrmal plume into a stratif1ed lake. Extension of the present 
work to three dimensions in a more general way, with re m oval of the assumptions 
which produced a two-dimensiona1 differential equation, can be accomplished 
without extension of basic theory. Appropriate tria! functions for such elements 
are reviewed in Ref. 4. The isoparametric element concept (14), in which higher­
order polynomial tria! functions are also employed to map curvilinear element 
boundaries, is especially attractive as a means of improving the efficiency of 
thrce-dimcnsional elements in gcometric representation of a problem. The 
computational expense of three-dimensional representations is inevitably vastly 
increased in comparison with two-dimensional models, however, their application 
must necessarily be motivated by a desire to include new phenomena. 
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APPENDIX 11.-NOTATION 

' 
The following symbols ore used in this paper: 

A,B.C; 
a1, b¡o c1: 

e,, c2 • C'J, c4 

D 
f 
g 
h 

PK} 
[ k•] 

L 

L(I!J) 
m 

= 

-

cocfficients in Eq. 7 as dcfined in Ref. 8; 
quantitics reiating coordinates of joints in element; 
cocfficicnts for evaluating velocity components a~. defined 
in Rcf. 8; 
typical vertical dimension .uscd to normalize dcpth; 
Coriolis parameter; 
acccleration of"gravity; 
normali7.ed dcpth of lake; 
coefficicnt matrix of rcsulting sys!em equations; 
3 x 3 elcmcnt matrix as defined by Eq. 17; 
typical hurizontal dimension v~.ed to normalize horizontal 
dimcmions; 
linear opcrator to operate on q,; 
Df/2-r¡; 
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N, 
n 
p 
R 

{ ,. } 

U, V, W 

ü,v 

V 
X, y, Z 

1:. 
Tj 

p 

Tn, T )'l 

l!r 
¡¡, 

= 
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shapc function at joint i; 
cho~cn numbcr of undctcrmined para meter~ IV 1 ; 

local pressure; 
r.ight-hand side of system equ;;tions or residual; 
clcmer.t column matrix as defincd by Eq. 18; 

HY7 

vclocity componcnts in x, y, and z directions, resf!ectively; 
average vclocity componcnts in x and y directions, rcspec­
tively; 
en tire flow doma in under considct ation; 
Cartcsian coordinates with x positive eastward, y posttJve 
northward, and z positive upward and zero at surface; 
arca of triangular eleiTícnt; 
eddy viscosity; 
fluid dcnsity; . 
surfacc wind stresses in x and y directions, respectively; 
strcam function; and 
approximate stream function solution. 
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INTRODUCTION 

The simul!aneous prediction of nhlmentum, heat, or mass transfer in clo~ed 
cavities has challrnged rt'\earchcrs for years. Certain flow situations marked 
by extreme diffus¡on or high rnertia can be mathematically analyzed by closed­
form solution or a boundary laycr analysis (5.17 .) 1 ). When a flow problem 
is not dominatcd by either phy~ical process, mathematical decoupling of the 
momentum 'transport from the heat (or density) trdnsport is prohibited. The 
resul!ing natural or combined convection cavit~' problem ( 17). difficuit as it 
is, quite often is further complicated by the occurrence of circulation cells 
accompanied by high shear rates and density gradients (4.8,29,34). Since the 
governing simul!aneous ec¡uations are nonlinear they require C<!reful numerical 
analysis. 

The finite element method will be used to form a numerical nnalog for the 
viscous cavity problem. A rcview of finite differcnce schemes for convection 
problems is found in Ref. 25. Severa! features of rhc physical problem are 
particularly suiled for analysis by the finitc ckment mctiK)d (FEM) ~uch as: 
(1) Irregular boundaries are trcatcd accurately without computational difficulty; 
(2) variáble boundary conditions such as differential heat input, tempcrature 
distribution, or 'wind shear are casi! y handled by the FEM; and (3) the solution 
of nonlinear fluid problems by FEM is just beginning (4,21.22,23,32), but already 
excellent iterati~e stability and rapid convcrgence are apparent. 

The first flui¡:l mechanics application of the FEM was to linear potential flow 
problems (2,33). Extensions to Jubrication and creep flow followed thercafter 
(1,9, 10). Solutions of viscous homogencous flow prohlems are now avail.:!ble 
(6,7,15,16,20,27). Nonlinear viscous flow problems, bcing thc most difficult, 
are only beginning to receive attention. Olson (29) presents a quintic' element 

Note.-Discussion open until May 1, 1976. To extcnd the closing date orre month, 
a written request must be filed with the Editor of Technical Publications, ASCE. This 
paper is part of the copyrighted Journal of the Engineering Mechanics Division, Proceedings 
of the American Society of Civil Engineers, Vol. 101, No. EM6, December, 1975. Manuscript 
was submitted for review for possible publication on August 2, 1974. 

1Asst. Prof. of Civ. Engrg., The Ohio State Univ., :=·olumbus, Ohio. 
2 Prof. of Civ. and Envirorunental Engrg., Cornell Univ., Ithaca, N. Y. 
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~ewtcn-Raphcon FF\1 prncl'di.rC to :,n;dyze Se\'eral ho:no:;cnclliJS fl0ws ·ror 
thc Rcvnol;h r;uml>cr "" high a~ 1.000. Stabie itcr;¡\.i,m ;;nd rariJ corl\ ergcnce 
are p:lr~i,:ubriy not¡..:c.rble in thi.., method. Skiha, Unny, and Wc:-rvcr (3:!) pres'!nt 
a r.:.::tanf.'lilar c:emcnt -;tc::ldy·st;,¡e so!ution for natural convection in a slot. 
A '"cigh~~d ah·ragc mctht'd \';as US•'J to ¡¡crate velocity and temper<>.ture values, 
c·~i~llig iteration <1nd coowergenc~ beh~:'> ior to be inferior to Olson's method. 
Kir.g, ~ort-Jn, <~nd Orlob (23) pre~cnt a Newton-Raphson technique to <~nalyze 
stró'ltificd flow over a broad-crcsted weir. 

In this v.·ork a finite ciernen! ;;nalog is prescnted for the class of stet~dy, 
vi~cou~. incornpressible. two-dimcn~kmal. heat, or mass tran,fer flow problem. 
Thc G1lcr!-.in mcthod of weighted residuals (i\1\VR} is u sed to derive a functional. 
A cubic ola te bending elemcnt is u sed with the strean,function. tJ¡, and temperature 
or dcnsity ( T or p) as unknowns. The element pro vides nodal continuity for 
not only ~~ but more importantly the flow velocities which are derivatives of 
l!J. An amalgamation of Olson's (29) Newton-Raphson method and Skiba's (32) 
wcighted average techniques is used to ite;ate the coupled systern of equation. 
The results from thrce ca~cs are prcsented. These include homogcneous linear 
shear drivcn cavity flow, lateral temperature gradient induced nó'ltural convection 
in a box, and shear driven stahly stratified cavity f!ow. 

CoNSERVAnON EauAnONS 

Thc threc problcrns an;¡lyzcd in this papcr are trcJted by the same equations. 

The coordinate system is indicatcd in Fig. J. . . . 
Only stcady·<;tate prohlcrm are considcrcd. Laminar fnc~JOn !s used although 

thc viscosity maybe interpreted as an edd~ visc~si~y whrch JS held con_st_ant 
in the spirit of mathematical tractibility. Dens1ty vanatr~ns a~e assumcd neg]Jgi~le 
except in the buoyancy terms (the B~ussine~q approximation), and the dens1ty 

js unaffec;ed by pre~sure (incompressJble flUid). . . 
. General Form of Basic Equations.-The general form ~f th~ two drmens10nal 
steady-state shear or buoyancy driven cavity flow equatrons IS as follows. The 

continuity cquation is 

au aw 
-+-=0 ..... . ............... . ••••.•••• ( 1) 

ax az 
The x-momentum equation is 

u~+ w ~ = __ 1_ ~+,"V 2 u . . . . . . . . ............. (;!) 
a~ az. p o ax 

The z-momentum equation is 

u _aw_ + w ~ = -~ ~ + TJ "V 2 w- ~ g ................ -· .. (3) 

ax . az Po az. Po 

The diffusion-convection equation is 

(4) 
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in v.l)ich u and w are the vel~citics in thc x and z directions, resrccti\'cly: 
P = thc press~ro!; p = the dcns•ty; 4> is cithcr thc tcmpcrature, T, or thc mean 
turh~lcnt dens!ty: and TJ, a. and Po are the viscosity, diffusivity, and rcfcrence 
dens•ty. 

Gowro.in¡; Cavity Flow Equa:ions.-The equations are written in nondimen­
sior¡aJ form by defining the following variables: 

--($ - 4> ) 
4> = o 

cf,T- <!> B 

u 
u• =-· 

u' 
w 

w"' =-· 
u' 

TI 
,. = -; 

"'lo 

a 
a*=-; 

00 

p 
P.=---- 5 . . . . . . . . . . . . . . . . ( ; 

1 
• --p,CJ2 

2 

in which !1, U, a
0

, T]
0

, and Po represen! reference values; and <!> and <!> 
are con~ervation quantities at the cavity top and bottom. Upon s:bstitutio~ 
of these variables into the cquations the asterisks are d10ppcd, and all variahles 
from this point are dimcnsionless (exccpt in defining R, Pr, Gr). 

Eq_s. 2 and 3 are cross differentiated, thereby eliminating thc pressure and 
formmg a vorticity equation. Finally, a pair of coupled equ:;tions emerge which 
will be used for the solutiou: 

.... (6) 

-a a(<!>.l!l) 
-\7<!> 1 +--=0 ............................. (7) 
PrR a(z,x) 

in which 1!1 = the streamfunction (u= ilt!J/ az, w = -i"ll!l/ ax); Pr = Tt/a (Prandtl 
number), R = UH/TJ

0
(Reynolds numbcr); and Gr = (\7p)gH3 /p,TJ!(Grashof 

number). Thc nonlinear lerms represcnted by the Jacobian make the equations 
difficult to solve. The adequate solution of thc problem reqnires full rc!emion 

of thesc terms in the numerical method. 

N;.rMERICAL TECHNIQUE 

The developmcnt of the FEM analog begins with the dcri·vation of a functional 
form of the goverrting equations by thc Galerkin wethod of wcighted re~idua!s 
(MWR). The rcmaind.er of this section considers in order: (1) f0rmulation of 
the extrcmum principie; (2) the elcment and the clemcnt stiffness matrices; 
(3) the itera ti ve solution technique; (4) boundary conditions; and (5) othcr mcthods. 

Formulation of Extrcmum Prir.ciplc.-Despitc derivations of nonlincar "varia­
tional principies" (11,13,14,18,19,24) a true variational formulation is unknown 
for ·this nonlincar problem. Altho~gh piOofs of bo~n.9~9!1ess and convcrgence 
do not existas in the linear case, the Galerkin MWR provid'!S a direct formulation 
of an integral cxpression for the system of noniinear eq¡ • .:;_tions. The cor.cept 
assumes that an approximation to the dependent variablcf> (\ji,<!>) exists and is 
of the forro J¡ = ¿7_

1 
N

1
1!1 1 ~ = }:~-• N 1<!>,, in which ~. (or <!>¡) is a particular 

value of the variable at point i, and N, functions of- x and z are called shape 
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funcrions. If the governing equarion, Eq. 6, is J.:sJ_snat•:J fJ 1 (·~•.<!>) thcn the 
sub~titution of the series, Eqs. 3 and 9, gives D 1 (J¡.J,) = R~ 1- O. in \~hich 
R'; is thc residual caused by thc approximate nature of the series. The Galerkin 
criterion specifies that the weighted average of the residual ovcr the domain 
of the cavity be zero, thus fA D 1 (~1,~) N, dA= O, in which the weight function 
is chosen as the shape function, N 1• 

Eqs. 6 and 7 are multiplied by the weight functions, N 1, and integrated over 
the cavity, the result after integration by parts is 

JI ( 
aN1 éli!J a N~) + ----- + -- 'i7 2\jl dxdz 
ax az az ax 

Gr JJ a~ 11 f aN1 a
2

1)1 -- N
1
-dxdz-- -----dx= O 

R2 éJx Re éJ¡ éJ¡2 
........... (8) 

and from Eq. 7 

a Jf (aN1 a~ aN, a~) -- ---+--- dxdz 
PrR ax ax az az 

+ JJ (N
1 
~~±_- N

1 
_a~ a~) dxdz =o .................. (9) 

az ax ax az 

The boundary integral~ arising from the integrarion by parts provide the device 
by which boundary conditions are imposed. 

Element Formulatiqn.-The elemenl tci be used in this paper is the nine 
degree-of-freedom nonconforming plate bcnding triangle presented by Bazeley, 
et al.· (3). The element has the unknown I!J and its first derivativcs as nodal 
unknowns; the'rcfore,. the streamfunction is immcdiately differentiable to obtain 
the velocities.' Previous application of cubic elements to flow problems (6, 15) 
also shows the element to be ·accurate and reduces the number of elcments 
necessary to describ~ the system. This element is a slightly altered form of 
the 10 degree-of-freedom element-(-3,6, 12,15) in that thc centro id node is distributed 
a~~ng t~e nine corner nodes. For nonlinear iterative analysis the computational 
d•ff•cult1es of the centroid nodes are severe and require its elimination. The 
element though nonconforming appears to give satisfactory first cut approxi­
mations for initial work on flow problems. 

To establish the cubic polynomial the unknown 1!1 (or ~) and its derivatives, 
1)1. and 1)1,, are defined at thc three comer nodcs (Fig. 2). If area coordinates 
are defined as L 1 = AJA, in which A = total arca of the element, and A. i,·. 
= the area of the triangular subregion (i = 1,2,3), then the shape f unctio~ 
description is as given by Ref. 3: 

I)I.I=_N,I!J, + N2\)lxl + NJ\)IZ¡ + ... + N9\)I¡J }· 
Á N · · · · · · ....... (10) 
'~' •1 - 1 tP 1 + N 2 4J · N 3 ~z 1 + ... + N 9 ~ z 3 
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( 1 l) : 

and a 1 = X 2 Z 3 - x 3 z2 , b 1 = z2 - ¡ 3 , c 1 = x 3 - x 2• N 4 ¡¡nd N 7 arcfoundby-cyclic 
permutation of índices in Eq. 11 :;imilarly, N 5 and N 8 are found from N 2 and 
N 6 and N 9 are found from N 3• 

First.. and sccond-order differentiations are now performed and the resultin;: 
matrices are substituted into thc functional expressions, Eqs. 10 and 11, yiclding, 
two sets of non linear algebraic equations for the element, e (sce Ref. 35). Thus 

~ Gr - R<l>;,lll, + e,k,l)lk 1)1, + ~>-.,¡<!> 1 - P~ =o ................. (12¡ 

.. ( JJ, 

Column vectors P,'and Q,<are formulatcd fwm the bour.dary integrals in Eqs. 
8 and 9. It is assumed that these vcctors are zcro for all element sides no: 
on the physical boundary of the problem. The custornary procedurc is to asscmbi:­
thc elcment stiffness matrices (10, 12) into a global systems of equations, treatir.:; 
the nonlinear matrices, O ando., as quasilinear in thc summation process. Judicious 
application of the iteration technique would then result in acceptable results. 
For reasons given in a later section, the solution process is reversed, {.e., the 
iteration or perturbation techniquc is employed at the elcment leve! and a global 
system is then composed. 

Itera ti\· e Solution Technique.-Thc solution of Eqs. 12 and 13 is by a Ncwton­
Raphson technique couplcd with a wcightcd averaging mcthod. This method 
is an amalgamation of Olso'n 's (29) and S k iba 's (32) work. 

The method begins by applying the Ncwton-Raphson procedure at the element 
leve!. Let 1!1~ and ~~-be the nth approximation to the correct solution, 1)1~ 
and <!>~ (for e

1
1ement ~) of Eqs. 12 and 13. lf the ith equation in Eq. 12 is 

1 • 
f, and the ith equation in Eq. 13 is g1 then by a twncated Taylor senes: 

9 (élf) f . (·'·"-1 A,.n-1) + " -' ~1)1" =J. (M ~<) = O 
1 '+'o¡ • 'l'c¡ ,L¡ él•'· 1 1 '+'¡• J 

1~1 '+'1 

.....•........ (14) 

and 

9 (ag.) 
g (,¡,n-1 A,.n-1) +" _, /:).A-

1
•= g (ljl~.~c) =O ........ . 

, ...., o
1 

, '+'o, .LJ a ,f.. "+' • ~ , J 
1=1 'l' 1 

. . (15) 

cf. _.,., ~ 9 
1 ., " e ) 1 n-1 in which -.-. ,- = -~,1 + LJ (91k/ + lik '+'o& • • • • • • • • • 

o't' i R 1 ~ 1 

.. (16) 

a 9 • + ~ ,¡,n-1 -, -1;;¡¡ LJ 'lT¡kj'+'o• •••• • • •• • 
.Pr 1-1 

..•.......... (17 



El\16 

M7 = ~JJ:,- ~Ji~;• 

~<1>7 = <t>:, - 4>:,-1 

and 
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( 18) 

(19) 

)¡ 'l'o1 •'+'o¡ R o¡. o¡ ok¡'l'o• 'l'o¡ RZ o¡'+'o¡ 
1 (•l,n-1 .¡.,n-1) = -TJ <l> .~J¡•-1 + 9 .. l.n-l,l,n-1 +~A .¡.,n-1 ¡ 

o o o o o o o (20) 

a 
( ,l,n-1 .¡.,n-1) e _¡,n-1 + .l.n-l.¡.,n-1 g¡ '+'o, ''Vol =--':,¡¡'Vol 'IT•ki'+'ol '~'oJ 

PrR 

A final set of equations for the element e perturbation values is written 

(21) 

:n which s~j = a¡Ja¡J¡,; and TZ = agJa<f!,. 
The systems of element "slope" matrices can be assembled into a set of 

global ·'slope" matrices 

s~- 1 t.~J;,"= --Fr-• <22> 
T¡¡-• t.<!>; -= ·-e¡-• (23) 

in whic~, if :nere are p nodes in the system, ó,~,"(a:-td similarly t. <!17) equals 
. 1 

aó.~JJ 1 Jó.~JJ, aó.wp aó..Vp 
t.l!l¡ = 6.1!11' --·, --, ... , ó.wr, --,--- .............. (24) 

ax az ax az 
A weighted average schcme completes the iteration process. When Eq. 22 

is o.;olved the new pcnurbation values, ~w;, are nddcd to the old solution vector 
(Eq. IR) to form thc vector of current strcamfunction values. Aftcr multiplication 
by the rroper wcight function the ncw &nd o:d solution vector!> are added and 
the aver;¡gcd answer is sent te Eq. 17 for use in solving Eq. 23. The same 
process is then repeated for ~q,¡. Thc ave~aging scheme is then 

IJ¡? = w (y~l-l .J_ .1!~) + w (·1·"- 1)} 1 1 1 • '11¡ 2 '1'¡ 

(h~ = W (.¡.,n-I_+_(?)+ \V !,.¡.,n-I) • • • • • · • •• , • • • • •. (25) 
r' 1 1 't' J '1-'¡ 2 \'Vj 

' 
The repetitive population and solution of Eqs. 22 and 23 using the mosl 

currcnt weighted $olution vcctors, Eq. 25, is the itP.rative process. Complete 
specification of th~ numeri·:al tcchniqOJe clases with a brief description of the 
metl'.od of handling boundary conditions. 

Boundary Conditions.-Known nodal boundary values of w, iJI!J / i!x, éJ4•/ az, 
<t:· i!<!>/ iJ.(, and aq¡¡ azare mtroduced into the starting vectors, ~~: and <J> ;. Sincc 
incse value~ never change the corresponding perturbation quantities, ~~· 1 and 
L'. ~· ;. are aiways equ;:!l to z.ero. Whcr., as in the ca~e of the variable b~ttom 
topogr-.phy, boundary conditions are specified in terms of normal and tangential 
dcrivatives a coordinare transformation of the affectcd boundary nodes is 
nc_c.:ssa"ry. lñ'e 'riii!"thod, rc:adily u sed in structural ana!ysis, is describcd in ·Refs. 
4 and 15. 

So!ution Procedure.--Computation 'lnd storage requirements are greatly re­
duced by dividing the method into two specific programs, an element library 
program and an iteration program. 

.M6 

Thc clement libra~y cr<:a:c< th.:: <;lffnL'\~ matrices, <1•, O, A, TI, and ~ (10.12), 
for c:td1 of the "diff.::r.:nt" lir m:.:n Lk•11.:nts in a p3rlicular d..:scr.:ti;ation. 
Th..:rcforc, evcn if thcre are IUO F.lcmcnts (Fig. 3(b)], stiffness matrices from 
only four :..:re d..::tennincd and ~:orcd. Allhough this mclhod cncouragcs elcmcnt 
unif01mity, the re:duction in cort: src•rag..: requirement justifies the approJch. 

The iterat ive ~olu:ion pro¡:_:r::m soh .::s the non linear systcm of ec¡uations by 
the Newton-Raphs:ln proccdurc. s~\'Cf<t! 0rg3ni;:ational features are 11l1teworthy. 
The o;olution ordcr of the two cquation scts is cstablished by thc critcrion that 
the most linear govcr ning equation, Eq. 6 or 7, js sol ved first. Beca use the 
test time per itera! ion i<; con~iderable, no con~crgence test was incor poratcd 
in the com~11ter program. To test for convcrgence thc results from a completed 
run of n specified itcrations were mcast.;r.,;d again<>t the convergence CJ iterion 
!El< O.l?í:. Results not falling betwecn tho>c limits wcre u~ed as ~tarting vcctors 
and the progr am rur_ for o.nothcr sp..:cified numher of iterations. As c0mpil;;tion 
time was only 3 sec a considerable cconomy in compc;:ation time resulted. 
Fui! advantage is t:lken of the b:lndc:d but nonsyrnmctric slope m:1triccs, S¡

1 
and T ... Once con\·erger.ce occurs, the solution vec;tors. IJ¡, and <!1,. a~e printed 
out a~·d passed dircctly into a card fiie. These files ~erve as st;~rting vc;:;ors 

for the next case. 
Although an app<trently c!umsy technique rcquiring the repcat'ed popt.lation 

of the slope matrices, :hi~ mc~hod aíOse in rc-;ponsc to the restrictions in 
computation machinery (all calcul:uions were performed on an !BM 360/65) 
and thc ddicirncies in the currently avai!ablc mcthods (23 ,29 ,32). A bricf 

dcscription of the deficiencics follows. 
Other Solution J\1ethods.-Thc mcthod of Olson (29), the point of ueparture 

for this work, is a full Newton-Raphson procedure. \Vith reference to Eqs. 
12 and 13, the method sums the ciernen! stiffness matrices te globnl matrices 
and then applies the Ncw:on-Raph<>on procedure. Thc rc:>ulting g1ohal lhrec­
dimcnsional slopc matrice;; rcquire ~o much storage that they rnust be :.tored 
on disk and rctrieved at each iteration. For this particular problcm mor:.: time 
was spcnt retricving the globa] matrices frorn disk thail repeatcdly populating 

S" and T" with the proccdure outlined herein. 
lj IJ , , f d ~ 
The method of Skiba (32). an accclcraiOr method, !S ~!r'il[~ht orwar · tqs. 

12 ~nd 13 are summed directly to the glot.al systcm. Using values of 4> and 
I!J from the previous iteration thc noniinear 1crms are cvaluated and the alJetmic 
equalions are solvcd for ~~~. not the pcrtmb3iion quantitics. A ~·eighted z..~e~~ge 
of $ ~ is fcrmcd and u sed then to sol ve the system of equallons ~or <!>_;. l. he 
process is repeated for the spccified numbcr of !terations. The sav¡r,gs m lime 
per iteration is considerable but convcrgcnce proceeds at a much slower pace. 

Again, the storagc of large thrcc-di~ncnsional matrices ¡~ rec;uirc?· . 
Finally thc method of King (23) elirninates !he neccss1ty of nsmg h1gh~r üí~er 

approximations by solving the four c.onservation equations di:-ectly. Thc Jteratl~n 
technique, a Newton-Raphsc;. procedure, requires solving at once a large matnx 
for values of the velocities, pressure, and d·~n;,ity. Agaia the ver y large_ storage 
requiremci'\tS plus the necessity of solving tlre sensitivé pressw <! cquation c!iminatc 

this method: 

PsoBLEM SoLUT10NS 

The fiDite clement method is now uscd to solve severa! example problems. 
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The results emphasize the convergence, accuracy. ~md dfici..:ncy 11f :he l<':::l1nique. 
For two of the thrce problems previous re~ults are u,._.d 10 e::.iahii~h s:l)uiion 
accuracy. The thi1d problem, the motivation for the devclopment ot thc rneihod, 
is new and thus previous resuits are not available. · 
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AG. 4.-Vertical Streamline Profile at x = 0.3 and 0.7; Homogeneous. R =O, Shear 
Driven, 0(1) Cavity 
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AG. S.-Vertical Streamline Profile at x = 0.5; Homogeneous. R = O, Shear Driven, 
0(1) Cavity 

Linear Biharmonic Model.-The analysis of a shear driven cavity model satisfies 
three objectives: to determine the number of nodes / elements necessary for 
accurate cavity results and to determine the effects of a symmetric versus non 
symmetric flow f" :~~~iscretization. · 

1 
1 
1 
1 

i 
! 
¡ 

1 
1 
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·;·he rl C)\->lcm is t.icfinc-d z:s f,,l;ch'."!;, A honwg..:IISt'\IS w;¡[cr fillcd ,·;¡vit) is 
'Ct :!:lu r¡·,lltll>ll hy ti·.·: ::pr!;,-;,!."n of :1 ¡._llO\\ n ~hc:1r o;trc>~. Th,, rr,ll,lcm i-; 
J:n~;,r¡;:cd by Cl;n~i..!::.r ing th::: R = O C:l''- Eq 6 reduces to v" w '= O The 
boundary conditi,ms <~pplicd to the surface z = O are w = O. and T)n (i711/élz) 

= T./Pv• in which '• is a knvwn ~hcar s~;-css. On thc walls and bottom thé 
no-~lip condition holds ;;nd nn fbw is all,l\vcd through the boundary . 

In his .,.,ork Olson suggests th:u for a 1 x 1 cavity 72 clcmcnts or six on· 
a side is ~ati~factory. Figs. 4 and 5 thcn .comparrc the re~11lts from a 6 x 6 
box [Fig. 3(a)] to <~ 10 x 10 box [Fig. 3(b)] and thc finite óiffcrencc re'IJits 
of Rotcm and Ratkowsky (.)0). TI1e streamfunction prdilcs comrarc fa\orably 
with the pub!;~hcd rcsults everywhcre hui thc vMtex center. Thc fullness of 
the Ratkowsky and Ro:em results is not matched by the 6 x 6 cavity and 
the 10 X 10 cavity duc perhaps to the rwnconformity adJ~ littlc rcfincment. 
Bccausc rne~h rcfincmcnt failed to improve rc~u!ts suh<;tantially the coarser 
mesh is con-;idcred sufficient. By lowering the numbcr of elements from 100 
to 72 the ~ystem of cqu:ltiüns is reduced from 3ó3 to 147, a <;ignificant diffcrence. 

Natural C<•ll' cction :'>lmlcl.-The model. utilizing the full nonlincar ;¡fgor ithm, 
considers fluid motion in a completcly enclo~ed ~quare c:wity thc sides of which 
;;re held at u•nst::Jnt but differcnt ternpcratures. The rnotio~ is assumcd !:~minar. 
A warm lemperature, Th, is evenly applied lo the Jeft vertical -wall and the 
right vertical wall is kept at a constan! but colder temperature, Te. lf the density 
is related to the tcmperature by p = p

0 
[1 - ¡3(T- T0 )] and if U= H/T, 

T• = (T- T,.)/(Th- Te>• in which ci = thermal diffusivity, and T = reference 
time = H 2 / 0.. Thcn Eqs. 6 and 7 be come 

a('\7
2

\jl,lj¡) aT l -Pr'\7 4 1!1+ -RaPr-=0 
il(z.x) ax 

éi(T,Ijl) 
- '\7 2 T + --- = O 

a(z,x) 

..••............. (26) 

' , .. 
' 
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pro¡;r:.m solving two sy~tems of algcbra:c cqll:!!iono; rcr Jlcr:i:i(•n ru¡uircd 106 
K of stor<Jge ;¡nd 113.6 sec of IBM 360/65 Fort G nccution tirne. ()J,on C9) 
reports that for one iteration on an IB\1 360/67, T2 ~ec of c\c:cution time 
were required to solve one governing equa~ions approximatcd by 172 algchraic 
equations. Therefore, the present method reprcsents a fivefold incrcase m 
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efficíency, suggesting that disk storage sr.ould be avoided where possible. Chan 
(6) reports that stuJies of flow ovcr a cylinder using a 207-equation Newton-Raph­
~on soh:rion !O{lk ::!R,O sec per e.qu::~tion per iterati0n. Ag.ain the ir.J)"'rtwement 
;, rvj,f.-nt 

....... 
tM ....... 1 • o ,_ 

.... '-· 1 • '. ~ 
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cPnvcct:on probkm; therefore, the ~esult is not ur.expcctcd. !\1c:mnc-ment of 1 

th..:<;e p~opcrtics is done by corr.;1aíing thc nt!mhcrs of it;:r;¡tio:l r<-quir.:d for 
convergcncc and the size of thc R:dcigh uumber jump takcn while rcmaining 
st,.¡h]e. As a step increase of Ra = 10 3 require.d thrce :o four itcrations and 
no v.:eighted avcraging. Step increases of Ra = 104 were done in Jcss than 
nine itcrations with simple averaging (i.e., W1 = 0.5, W2 = 0.5). The ma,..imum 
reliablc step siz.e for flow 1egimcs up lo Ra = 2 x JO:! is 5 x 10 4 requiring 

T 

FIG. 8.-Strear.llino and lsothorm Contour5; Natural Convection, Ra 
1.0 

r 

00 

FIG. 9.-Streamline and lsopy::nic Ccniours; Si1ecu Oriven, li(í) C?.vity, R 

Pr = 1.0. Gr = 5,000 

100,' 

JOto 12 itcrations with simple averaging. Although su~cessful convergcnce was 
achieved at a step size of 7 x 104 the probability of con::.istent!y good results 

is reduced. 
De Vahi Davis (8) reports that thc stability C'f the fi¡¡it.! difference anal~g 

is threatcned for stcp incn·ases greatcr than 5 x wz. Skihd' s (32} mcthod :as1ly 
handles step increases of Ra = 4 x 104

; howev·;r, the results are ach~e~ed 
with a Pr == 1 ,000, a very stable configuration for th'! problem. No su eh restncuon 
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is ncccs~ary here. L'nfortunatcly, no íc~ults are r ~rortcJ on thc ntr:nbcr of 
iter:~tions rcquircd for Skib:.1's mcthod. 

Combincd ConH:ction Prohlcm.-The primary moti\ation for ihc :il¿:onthm 
development was the solution of a combincd cünvcction p;oblem. Smcc rcsults 
are not available for this problcm rigorous chccking of the mcthocl against the 
established results of the previous cases indicates the corrcctness of !he solution. 
The problcm is this scction explores the interplay of wind ~hcar ;;nd a stable 
vertical den~ity gradient, and is peculiar in that distinct circubtion "cells .. can 

occur. 
The cavity model considers fluid motion in a cavity founded on the sides 

and bo11om and set into motion by a known applied shear stress on the surface. 
A s:able vertical temperature gradient is imposed by specifying maximum <•nd 
mínimum temperatures on the top and bottom of the cavity. The surf:1ce 
temperature is T1-and the boltom temperature is T5 and if U(Eq. 5) is T, H/(11

0
P,) 

then Eqs. 6 and 7 bccome 

. . . . . . . . . . . . . . . . . . . (27) 

The boundary condit ions are that u = w = O on thc bottom and si des and 
w =O on lh.! surfa:e. Further'au/Jz = T,/(TJ

0
p

0
) is specified on the ~urface. 

Heat flux is prohibited through the sides. 
Calcul3tions were performcd for a variety of flow conditions. The range of 

paramcters was:_R of 1 to 1,000, Pr of 1 lo 10, and Gr of 1 lo 10 3 • Extensive 
results lo this prohlem will appear in another paper, however, a streamfunction 
and isopycnal plot is presenled hcre, in Fig. 9 for demonstration purposes. 

Iteration and convergence bchavior is lhe same as the natural convection 
problem. 

CoNctusroNs 

From this study severa) conclusions about the use and application of this 
method are drawn. 

The full Newton-Raphson method can be made an efficient ;md, for this 
class of problem, a preferred computational scheme. With the proper use of 
element libraries the necessity qf using disk storage is elimi11ated. The use of 
higher arder interpolations reduces the number of necessarv clements and is 
highly recommended. · ' 

This paper establishes that the use of the FEM encourages solution stability 
and iterative speed. The method is preferred over finite difference schemes 

for this class of steady problems. Problems and questions are plentiful and 
unfortunately the solution of coupled nonlinear equations by the FEM remains 
unresearched e ven in light of recent Swansea (22) conference. In physical domains 
where analytica,! ,,answers are impossible the FEM seems to be the correct 
approach. ~-
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APPENDlX 11.--NOTATION 

The following symbols are used in tlús paper: 

A,A 1 

a,.b,.c1 

Co.Cx,Cz 
C::a:, Cxz, Czz. 

DI'D2 
d,e,f 
E,Eo 

elemcnt arca and area of subregion i. respectiveiy; 
elcment geometry cocfficients; 

coefficient matrices for shape fundions and first and 
second derivatives; 

opcrator nota~ion for governing equations; 
column vector~ of elewent !ntegrab!e functions; 
turbulent dcnsity cddy vi~cosity and referencc vaiues; 

"13 

1 

¡~ 

F~,f~ 

G~g~ 

Gr 
g 

H 
i,j,k 

L 
L., L2, L3 

N 
N¡. 
P, 

Pr 
p 

Q: 
R 

Ra 
R* 

1 

S~ 
T 

To, Th, Te 
T!' 

l[ 

u.w 
U,\\.' 

wl, w2 
x.z 

~ 

0: 
~ 
E 

TJ,TJo 
6 ikj• :>..¡¡. 

el> ij• ~ ij• 'ff •kl 
p, Po 

Pro Pa 
T 

T..i' 

<!>.el> 
ljl'j. ll<!>J 

l(l,I!J 
lj.<j, Alj¡'j 

= 

Dí.:CEr.!iBER 1975 'JI3 

ith giohal and cicmc;-¡t algebraic cqua1ions at nth iter:ttion · 
f or vort icity eq u:llions; 

ith global and clemcnt algehraic equation at nth iteration 
for con~erv~,tion equation; 
Grashof number; 

gravitational c0dficicnt; 

ma:>..imum cavity depth; 
indices; 

cavity lcngth; 

elemcnt arca coordina tes; 

maximum number of iterations; 
elemcnt shape functions; 

bound;;ry condition vector for vorticity element stiffness 
cqu<Jtions; 
Prandtl numher; 
pressure; 

b<1 undary condition vector for conservation clemer.t 
stiffncss equations; 
Reynolds number; 
Raleigh number; 
res!dual for ith cquation; 
ith global slope matrix at 11th iterc.tion for vorticity cquatíon; 
tempera!ure; 
ref¡::rc:nce, left wall and right waH temper<ttures; 
íth global ~!of;e matrix at 1oth iteration for coascrvatior 
eyuation: 
reference vclocitie~.; 
horizontal and vertical velocities; 
wcight function; 
rectangular Cartesian coordinates; 
diffusivity for conservaticn quantity $; 
molecular thcrrnal difusivity at rcference density p0 : 

volumetric cxpansion coefficient; 

error limít; 
edcy viscosity and rcference value; 

eleme.nt stiffness matrices; 
density and rcference value; 
density at the cavíty top ar~d bottom; 

thermal diffusion tirnt>; 
:;urface shear stress; 
conservc.tion quantity and !.eries reprcsentation; 
vectors of q, and perturhation quanlities at 11th itcratíon; 
streamfunction and its series repre~.entation; and 
vecto1 s of \)1 and perturbation quantities at nth iteration. 

• 
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THE CALCULUS OF VAR!ATIONS 

1.1 lntrod~ction 

In the ctudy of elementary differential calculus we investigate 

how certain quantities say '.f', varies as another quantity~ say- 'x' 

i s al tered when there is a relationship between x and 0. We sáy th;:. l; 

f i s a function of x, f u f(x), if there is sorne rule whereby we 

can calcula te the val ue of ~ if '\'Te know the val ue of x. One particule.r 

investigat1on we make is into the determination of tile maximum a.nd 

minimtun valucs ·~· may have and the conditions for finding these 

values. 

In the calculuo of variations we consider a similar type of 

problem, we study how a quantity called a 1functional 1 varies as we 

chane;e the func-.tion . f = f(x) to another function, sa~r Q = ~ (x), 

and in particular try to find the function which gives the functional 

an oxtremum (maximum or mínimum) value. 

A functional is a q_uanti ty v;hose value depends upon a function, 

for example 
1 

F a J f(x) d.""C 
o 

is a simple functionaL The value ot·· the definite integral will 

depend upon which functl.on ,f(x) we chose. We shall be conc<:rned wi th 

integrals in the forra of defínite integrals in which the i:ntcgrand 

may not only include the function f .but also its derivatives. A 

typical nroblem might be to find the f~ction f(x) which gives 

L 

F -= r 
' 

( 1. 2) 
o 
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a mínimum value, and also satisfies some specified conditions at x = O 

and x = L. Further restrictions will also be placed upon the range of 

functions out of which f(x) is to be selected, these generally will 

require that f is a continuous function of x and that sorne of its 

derivativas are al so continuous. The range of .functions which sati sfy 

the boundary conditions and have the required degree of continuity 

we call'admissibl& functions. 

\'le will denote a functional by F(f) if f is the required function. 

If more than one function is required we list thcse in the parenthesis, 

e.g. F(u,v,w) means·that we will be looking for functions u, v and w. 

The integrand we wri te as I( ) , and in the parenthesis we write much · 

of the required functions and their derivativas as appear in the 

integrand and the independent variables. Thus the functional cited 

above -(1.2)- would be w±itten as 

F(f) 

or 
L 

F(f) e S 
o 

2 
I(f, d1 ,_x) dx 

dx 

I( :t, f , x) dx 
XX 

where the suffix notation indicates differentiation 

df 
lt~ = di f 

XX 

( 1.3) 

, etc. 

The first problem we ~hall consider is the determination of the 

function that gives sorne integral which dependa upon f and fx a 

maximum, mínimum or more generally a stationary value. 

.. 
... ~ 
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1.2 Functionals of the formF(f) =J I(f, .fx' x)dxe 
x1 
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Let us try to find the function :t(x) that has the values. r 1 "" .. r(x1) 

at x = x1 and f 
2 

e f(x2) at x = x2 and gives a stationary V?Llue to 

the functional. . 

_F(f) = , x)dx: ( í. 5) 

I'Te Will uso the symbol f to denoté the function that gives the 

stationary value to this functional. Any other function which passes 

through the points (f. 1 ~ x1) and (:t:
2

, x2) can be put in the form f(x) 

+ ~(x), where ~(x) is zero at x = x1 and x = x2.(figure (1.1). 

The expression, 

h(x, e) = f(x) + e ~(x) ( 1. 6) 

· will represent a series of curves each of which passes through the 

specified end points. \Ve limit ourselves to functions f{x) and n(x) 
. . 

which are continuous in the interval x1 < x< x2 • For each function 

11(x) the above expression h(x, e) will give a family of curves, and 

all the possible such families will contain f(x) when e is zero. If 

we now evaluate the functional F(f) we know that this will be aR 

extremum when e = O and its value will then be F(y). The value of 

F(f) will vary with .:: and we know, from the definition that .f extremizes 
. ' 

the functional, that F(f) will be aYJ. e:xtremum with respect to 1': when 

e = O. 

Now 

· F(h) 

and 

I(h, h , x)dx 
X 

f ·+ e 11 
X X 

(1.7) 

( 1. 8) 
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If we differentiate (1.7) with respect toe, 

di - dx = c1:: = 

(Note that x does not vary). 

The second term ariscs ~s not only does I change with variations 

in h(x) but also will variations in illi/dx (or h ) • 
X 

From h = f+ r.1) and h =Í X+ e'Tix X 

we find 

bh 
oh 

i1 and 
-x 

1l:x: be = "'8';" = 

Whence 

(__1. 10) 

(1.11) 

( 1. 12) 

Integrating the second term in the right hand side by parts we 

get 

d'F(hl ::: 
de ( 1. 13) 

The laat term in this expression is zero as 'Jl(x) is zero at both 

limits x = x1 and x = x2• We tpus find, 

x2 

this 

~~h) = S r ~~ - ! e~;) 1 TI dx 
x1 ·-x 

(1.14) 

For a stationary value of F(f) this equation must be zero, and 

occurs when e = O and h = f • We thus have, 
·X · X 

dF(hl 
de 

e=o 

x2 

= J r br. - ..!.cbr n , dx = o 
~f dx bf x1 x 

(1.15) 

~bis is to be trua for all the admissible functions 1), that is for 

all functions h(x) which are zero for x~= x and x = ~ and are contin-

.. 
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uous in the interval x1 < x < x2 •. 

The Basic Lerruna of the Calculus of Variations 

x2 r <:c((:x:) 'll(x) dx = o 
1 

1-5 

(i.16) 

for all admissible .functions 1'\(x) then a(x) - O throughout the lnterval." 

Let Ci(x) not be zero at some point x = x. Since all the necessary 

functions are assumed to be continuous, O'(x) will have the same sign 

in small·interval a = x - 5 < x < x + '5 ·= . b • For instance 

(figure 1.2) the function 

'Tl(x) = O , x <a x> b 
(1,17) 

11(x) = (x-a)2
(x-b) 2 , a< x < b • 

will be continuous and have a continuous derivativa, and is thus 

admissible. Since in the interval a< x < b ~ 'll(x) is essentially 

positive the integral, 
x2 b 

S Ci(x) 1l(x)dx - S cv(x) 11(x)dx 
x1 a 

(1.18) 

will not be zero, which contradicts our initial condition. Hence 

a(x) cannot have any value at any point in the region considered. 

A similar argnment applies if we require the nth derivative of 

~(x) to be continuous, but in this case we use 

11(x) = O ' 
X'>. b 

( í. 19) 
a< x< b 

since this will give the required continuity., 

Thus, the function r'(x) which gives a stationary value for F ~ 

equation (1.15)- is such that satisfies a(x) ~ O or, 
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?'li d ( bi) = o Ef-dib'f 
X 

( 1. 20) 

throughout the interval x1 < x < x 2 . 

F.quation (1.20) is callad the Euler-Lagrange equation and 

representa a second order differential equation. 

should be stationary, subjected to f( 1) = O , :t( o) ... O 

We have, 

I = A(E~) 2 
+ B(.!f) + C ~2 + D.f 

d.x d.x 
(b) 

Thus, 

?'li 2Cf + D ?'li 
2Afx + B bf. = F;f~ = (e) 

Whence, equation (1.20) becomes, · 

bi. - ..!. 1 bi ) - 2Cf+D- 2A"' ... o 
bf dx 'bf J.xx 

X 

(d) 

or (e) 

v:i th boundary con di tions f = O at x = o, x = 1 • 

Examnle 1. 2 The deflection of a strip of film, wi th film tension 

T, under normal pressure p is such that it extremizes the following 

functional 
L 

J T ~w 2 
F(w) = 

0 
( 2 (dx) - pw } dx (a) 

where w is the deflection and is zero at the ends of the interval, 

x···~ o, L. 



L' 

'. 

No\v, 
I e: 

hi 
ow ::::: - p 

2 1 (dw) 
2 dx -

~ pw 

bi 
bw = 

X 

Tw 
X 

Whence the Euler-JJagrange condi tion give s 

or 

- - p - ..-ª.. ( Tw ) "" - O 
dx X 

..:· 1....,....~~·-\ 
~ -

The solution:1of this equation is, 

. n 2 
VI = - 2T X - + Ax + B 

and since w( o) = o, w(L) = O · 

w e: _p_ X (L - x) 
2T 

1.3 Fnnctionals of the Porro F(;f) I(f, f , f , x)dx 
X XX 

(b) 

(e) 

( d) 

'' 

(e) 

(f) 

(g) 

We consider now. funct-ional s whose val ue depende upon the na-ture 

of a function and its first,\d~rivativés 

(1.21) 

,_-, 

The required value is the function f(x) that gives a stationary value 

to this function and b.as specified values r
1

! r
2 

at x ""_ x
1

, x29 a."'ld 

als~ specified values for the first derivativeo f (x1' ~ f and x ' x 1 
f, (x

2
) == f x · x2 
We proceed as wfore, denot:i..ng the energizing function by ~(x), and 

. ( \ 1 j.{ ) ( ) considering functions h x, ==, ""_,x + eTI x • In this i't is nP-cessa!"J 
' .. 

that i)(x) is zero at x "" x1 and x rJ x,... ,_ and that the first der-.ivativc 
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1l(x) is zero at x = x1 and x .. x2 and that the first derivativa ,Tix(x) 
. . 

is also zero at the ends of the interval (figure 1.3). Noting that, 

h = h + en ~~ = 11 

bh 
X 

11: "" f x + e1lx ' be ::a , 
X 

h = :L + en 
hhxx 
- = 11 be :x:x: XX XX XX 

we find that the value of a functional F(h) is 

x2 

F(h) = J I(h, hx' hxx' x)dx 
x1 

and this is stationary with respect to e when e = O. We have 
x2 

hF r hi-(')h l'II (')hx hi hnxx 
he z:; • (hh be + oh b·e + bh ~ )dx "" 

:x:1 X XX 

x2 

(1.22) 

( 1. 23) 

= r ·(1.23) 
" x1 

and since when e =O , f(x) = ~(x), 

x2 

~! 1 e J (~; 1l + h(')f 1'lx + b~-1lxx) 
e=O x 1 . X XX 

dx e O (1.24) 

We now integrate the second term by parta once, and the third 

term by parts twice, i.e. 
x2 x2 x2 

J -bL '~' dx= I~Ln - S .i.. c.h.L ) 11x dx = bf XX 11"11 X dx bfx 
x1 XX . XX x1 x1 

. ( 1. 25) 

We can write (1.24) as 

., 
. . ' 



,. 

bi 
x2 

+ bfxx Tlx = o ( 1. 26) 

x1 

But t.he admissible functiol~~(x) are ~eh "that ~(x) = O and 

i1x(x) = O at x = x1 and x = x2, so that all the limit t.er:na iri (1.26) 

are zero. The integral term i s zero for all 1l(x), hence by __ the Basic 

Leruma, 

(1.2:7)-

This i l:l the EuJ.er equation corre sponding to functiomü ( 1. 21) 

and represents a f.our·th arder differential equation for the function 

Example 1.3 Find the condition that, 

L 

.J 
o 

2 2 
f EI ( !!.!!) + ~ w2 - pw 1 dx 
· 2 dx2 2 

(a) 

shall be a minimum. The function w and its derivati~e having specified 

values at x = o and x =L. 

Thus 

whence, 

I = k 2 +- w e• pw 
' 2 

bi 
'Cw e kw - p 

..QL 
bw = 0 

. X 

2 d2 -
d (EI w

2
) + kw - p = O 

"dx2 dx 

(b) 

2 ·-

= EI d¿. ·(e) 
dx2 . 

( d) 

which is the equilibrium equation for a beam on elastic foundaticn • 
.- ... \.. ,,; . _,_ ,-1 , r-



/ 
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1.4 Functionals involving dcrivatives up to the n-th degree. 

Let us considcr now the ·problem of finding the condition that the 

function r(x) gives a stationnry value to the functional 

x2 

F(f) = J I(f, fx' fxx' ••• , fx(n)' x)dx 
x1 

dnf 
where fx(n) denotes dxn 'l.' he flmction f and i t s first ( n-1) 

(1.28) 

derivativas have sorne · specifled values. at the limits x = x1 and 

x = x..,. The admü;si ble fuJl.ctj ons can again be wri tten in the form 1 ... 

r(x) + e Tl(x) ( 1. 29) 

í(x) being tr~ required function giving the stationury value to 

F(r), but now 11(x) ~1d its first(n-1) derivativas must be zero at the 

ends oí the interval of integrntion. We.proceed as before and find, 

x2 

Í i"ll ?lh hi (")hx oi bhxx 
= <ohE;+bii"""be"+~~+ 

x
1 

X XX 

... 

and with e m O (that is h = f, ~ = fx' etc), 

x2 

dF(l]} ~ (?>I hi ?>I 
()e = OÍ 'Tl + hf 11x + oi- 11xx + 

X XX 1 -

... 

( 1. 30) 

(1.31) 

·We now integrate the various terma by parta until in each case 

the second term in the integrand becomes 11. Thus a typical term 
i.l.. y' k1,. 

J ?>I Tl d.x - i"JI 11 1- ~ -~ il + 
of(') x(j) - o.r(') x(j-1) dxof(·) x(j-2) >J-XJ XJ XJ , 

"' -...(, "'1 

'., 'J,...,_ 

~ 2 
d ~x) + + ~fd _hl._ 11 • ( -1) j-1 ?>I 

::dx2 o . .t'x( j) x( J-3) 
... + 

dxj-1 ofx( j) 
'l., (1.32) 

ib -..¡_, 
--~ 

x2 -:.·.-:.--~"""'' 

+ (-1)j I 
dj -2L 

dxj bf.>.:(j) 
'fldx 

1 
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All the terms to b~ evaluated at the limi ts are zero since the;r all 

include factors of ~ or its first n-1 derivativas. The remaining · 

integrals e.ach contain the factor i)(x)rr ~d since Tl(x) is arbitrary, 

apart from its continuity conditions, the condition for stationar~r 

val ue becomes, 

i'li d i'li . d
2 

1'\I 
~ - d.x (¡.;-:.:--) + -2 <-5r.:-) o o o + 

. ..LX dx XX 
•• Q 

( 1. 33) 

r:'his condi tion represents, in most cases, a differentinl equation of 

order 2no 

Example 1 .4 Find the condi tion that 

x2 

e J 
x1 

• d4f 2 B d2-r 2 df 2 2 f!!. (--) + .!:!.! ---=-) + C (--·) + D:.f + E·f '~1 dx 
2 d..·é 2" dx2 dx . · 

(a) 

.Dhall be a minimum, f and its first three derivatives having· specified 

i'l"I 
of = ~f +E 

bi 
IT" = 
·X 

hi 

2C .9i 
dx 

(¡J 
hi-. 

XX 

?'.,f (4) 

d71 ~ 
= A -:o¡ 

dx 

Whence the Euler equation becomes, 

(b) 

(e) 



1.5 Boundary Conditions 

In the previous section·we have considered that the required 

function, and its firDt n-1 derivatives were specified at each end of 

the region of integration. Let us look now at the problern: 'find 

the function f(x) which give~ a stationary value to' 

x2 

F( .1;') ::s J I( i:~ fx' x)dx 
x1 

( 1. 34) 

with the condition :f(x1) =f1 and the value of :f,'(x) at x2 being 

unspecified. If we proceed as before t'1e admissible function i)(x) 

must be such that n(x1) = O , but there is no r~striction placed upon. 

As before we find (equation (1.13) with e =O, whence f = ~). 

f ll 'n - ~ (.bi_) 11 J dx ~I TI ,. = o 
· bf dx ~f + OF '1 . X X 

x2 

( 1. 35) 

The admi~oible functions include those for whic~ i)(x2) = O, 

, .. _ ~~, 

130 tha.t we ca.n say that the integral term must be zero for all admiss-

i ble functions wi th !1 ((x) = O at x = x1, and x = x2, so that the 

condition 

bi d hi 
?'l f - dx bf- = o 

X 

(1.36) 

stiJ.l holds. F.ut the range of admissible functions also includes 

functions n(x) which are not zero at x = x2, whence if 

we ~st have 

I'>I 
'F)f- n 

X 

bi 
bf = o 

. X 

= o (1.37) 

., 



... 
..-.. _ 

Thus oí all the continuous functions tha"t pass through f(x1) = ,.f1 , 

the one that gives a stationary value to F(f) will satisfy the differ-

ent.ial equation ( 1. 36) and al so the boundary condi tion ( 1. 38) at 

x = x
2

• The bou.nC.ary condition (1.38) i:a called the 'natural bo,mdo.ry 

cond.i tlon 1 of the problem. 

Note that by adding terms to thB variational :t'unctional i t is 

possi.ble to alter the 'natut·al' bo1.mdary conditions but the Euler 

equati.on will rerna.in the same. Let us add the functions H
1 

valid 

a t x1 and II
2 

valid at x
2 

to the íunctional ( 1. 7). 
x., 

'-

F(h) = ¡ I(hf hx' x)d..x + II2(f) + H 1( f) 
1 -

( 1. 39) 

If we differentiate (1.39) with respect toe and substHuteP.. b;)r (1.6), 

we obtain 

(l]i' 1 ., 
t.e 

e=o 

( 1. 40) 

Thus the Euler equation is the ~;ame as obtained before but 

the na.tural boundary con di tions are, 

bi b I~ 
bf- - 0;-y = o a t x1 . X . 

Exam:Qle 1.;] Find the f:m.ction which extremises 

1 
df· 2 

.. ... 

F(""'' r ((d.X) + 4f
2 

- 3f 1 <.lx ~a) J.') = J ' o ,, 

and has the value 1 ~ 1 at :;e e oft 



The Euler-Lagrange condition gives 

- ...!. ( 2 Sf.) + 8 'r - 3 e o 
dx dx 

or 

o~ 
:.:~- ·' 

the~solution of whlch is 

3 
f = A sin 2x + E e os 2x - B 

The specified boundary condition is f(o) = 1, whence 

1-14 

( b). 

(e) 

( d) 

11 
B e 8 (e) 

Since f ( 1) was not specified the function f(x) must satisfy 

the natural bounr.ary condi tion -

ni o 2 htl -..- ;:: -bf 
X=1 

bx 
1 X X= 

( f) 

whence 

d•f 1 
dx X=1 = 2A cos 2- .u 

4 
sin 2 = o (g) 

A 
11 

2 = -tan 8 

giving, 

f = ~ (11 tan 2 sin 2x + 11 cos 2x - 3) (h) 

If no restrictions had been placed upon the value of 'l"'(x) at the 

ends of the interval we can see that 11(x) would be arbitrary, subject 

only to its being continuous in the interval. :By c~osing first the 

set of functions ~(x) such that ~(x) = O at x = x1, x2 we would 

establish the Euler-Lagrru1ge condition, by choosing the se~ of 

-ii.mctions Tl(x) such that Tl(x1) = O we would establish the natural 

.. 
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boundary concli t:J.or.'il ft x = x
2

, and by choosing the set of functions 

such that 1l(x
2
) "" O we would establish similar boundary conditions 

at x = x1 • 

Example 1.6 Find the function f(y) that extrerntzes the f-urwtiono.l of 

example 1.5, if no boundary conditions at x1 x2 are given. 

From the Euler-Lag1•ange condi tion we find, as befare 

f "" .A sln 2x + B e os 2x - i ( a) 

Since no restrictions have been placed upon .f( o) or ··f( 1) the· 

extremizing function will satisfy the natural bolmdary condition~ at 

x =O and x = 1, i.e. 

df dx = O at x == O, 1; · 

. The se condi tion:J give A "" O, B = O , whence 

is the required function. 

. 3 
= -8 

(b) 

.(e) 

We can also investigate the other types of f1mctionals when less 

restrictiva conditions are imposed at the ends of the interval of 

integration. -Thus for the functional 
x2 

F(f) = [ · I(;r,. fx' ·tx, x)dx 

1 

we obtain the expression 

~J r~:i _ ~ ~:r_ + _i_ ....bL l + 
'b f dX bf d.x2 hfv~· "'\ x1 · x . .;J. 

'(1.42) 

( 1. 4 3) 

= o 
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If no restriction, apart from the continu.ity of r' and f , is placed \_e , X 

onr(x), and hence on_~(x), ~e can establish the Euler-Lagrange 

conditions by taking the set of functions n(x) with ~(x1 ) = nx(x1) 

e ~(x2) = ~x(x2) = O. By choosing the set of functions n(x) such 

that three out of the four conditions above are satisfied we establish 

the natural boundary conditions one at the time. They are, 

M: d _lL o 
{':f - dx ofxx = x = x1 ' 

x = x2 . X 

( 1. 44) 

..M_ = o x = x1 x = x2 ?'Jfxx 
,. 

We can carry out a similar operation for functionals including 

higher order derivativas. We. can see· by inspection that the first set 

~f natural boundary conditions can be obtained from the Euler-Lagrange 

condi tion by taking the derivativas wi th· re·s_pect to x arid red.uciñg these 

derlvatives by one arder. The second set is obtainedby reducing these 

by one more order and so on. 

Example 1.7 Find the natural boundary conditions for the functiQnaJ. 
x2 -

4' 4 2. 2 
F(;f.) = r ((.!!j'-) +A (d 1) 1cbc (a) 

x ruc4 dx2 
1 

The Euler-Lagrange condi tion i s 

(b) 

~hence the natural boundary conditions are 

al so 

d hi 
+ dx~ 

.XX 

... o d 1-r d31' 
or --1 + A 3 e O, on x = x 1 ,x2 cb.: . dx 

(e) 

.. 
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( d) 

similarly 

e O :: o (e) 

It will be noticed that all the natural boundary condl tions of a 

problem involve derivativas of the saroo order as, or of higher order 

than, the highest order of the derivativas in the functionals. The 

boundary conditions which may be specified for any particular problem 

can then be sp:at into two groups. If the functional cont.ains · ·, · 

nth order derivativas, then boundary conditions relatingonly ~o 

derivativas up to the order n-1 are called es·sential, and those 

relating to higher ·order derivatives supplementary. If we have some 

process for finding th8 stationary value of a ftinctional by using . \ . 

trial functions then these trial functions must be admissible· f\unctions 

and hence satisfy any spec_ified essential boundary concli_t_ion. In 

physical problema other boundary conditions will in fact relate to 
_., 

the natural 'boundary condi tions, and these need not be ~_tisfied by 

the trial functions. Vlben the functions giving the functi<;mal i ts 

stationary value is obtained, it will automatically satisfy these . -' ' ,-

boundary condit~ons. 

1.6 Functionals with Several Denendent Varíables 

The procedure used in the earlier sections of this chapter for 

e stablishing the condi tions for a stationary value for a functiona.l 

can easily be extended to the case of functionals with s~veral 

-~ependent variables. We will only consider the ~irnplest case where 



the functional involves two dependent variables, .~(x) and ·g(x) ru1d 
1 

their first derivativas, 

F~ f, g ) I( f, ·f , 
X 

( 

/ 

g, ~ x)dx ( 1 '45) 

where the functions f and g are to have the values. f 1 , &¡, .. f2 , g •2 

respectively at x = x
1

, x
2

• The functions passing through (x1. r1) and 

( :.:
2 

f
2

) can be put in the forro 

rlx) = .· f(x) + e 11(x) ( 1. 46) 

with ~(x1 ) = 1)(x2) = O, as before. The functions passing through 
1 

(x 1g 1) and (x2 é2) can likewise be put in the form 

l<{x) =, g (x) + e c(x) ~----=----< ~_. 47) 
--------~------- ----------- ---------------------------

The fact that we have used the same parameter e does not imply 

that a given g can lead to a given f, or vice versa, since ~ ande 

ara ar~itrarJ· (SÚbjected to s~tisfying the conditions at the end of 

the interval and their being continuous). 

In the above we use f, g·(x) to denote the actual functions 

which give the stationary value to F. We thus see that for all the 

possible values of e ·, the one tha.t ,gives the minimum value to the 

F(f,g) will be e = O , i.e. as before at e = O we have 

Now 
F(h,_,k) 

dF( b, k) . 
de e=O 

= o 

I ( h, h , . !~.:, !c.x:' ~e) dx 
. ' X 

( 1. 48) 

(1.49) 

.. 



whence 

( 1. 50) 

Putting this 

dlf 
=·i1 ele 

hl'í 
X 

he 
e: , 

X 

and setting h(x) ':::: f(x) P JJ.{x) ='g(x) siilce e = o, we obtain -
x2 

I _rhi -n · .QL 'fl l'li;.,. ..hL r ldx .,. o 
1.{')f 11 + Of X + O ':> + b "'X 

1 
x g gx . 

(1.51) 

(1.52) 

Integrating by parts the second and fourth terms in this expression 

(1.53) 

The limit terms are zero since 'Tl(x), C(x) are zero at the liruits 

and since i1 and ( are arbitrary_ each· of the· l?<>undary terms in the 

integral must be zero, 

hi d l'li u - dx E"i'- = o 
X 

(1.54) ' 

. ,•· 
~. ; 

Similar terms would_ pe:obtained if:there were more dependent 
< 

functions in the. functional. The Euler Lagrarige conditions for 

functional with higher order derhratives would·appl:y for each of t.he 

dependent variables. 

/ Finally the ne.tural boundary conditions for f1mctionals with 

two or more dependent variables can be established as in the case of 

only ene dependent var:i_able. They will be found to have exactly the 

same form. 
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::Jxample 1.8 Find the condition that the functional 

F( f, g ) 

x2 

Í df 2 

= , [ (dx) + (a) 
:x:1 

shall be stationary. f and g being specified at x = x1 and x = x2 • 

Here, 

(b) 

whence 

hi = 
bf 

hi 
Bf ' hf = 

X 

"f ?'II 2 . ?'II 2 ' f 
.:· X + ¡;. ' b g "' g t b'~ = ~ + X 

(e) 

The Euler-Lagrange condi tions thus give 

( d) 

1.7 Functionals with two or more _Independent Variables 

Consider the functional, 

F(f) = JJ1~ ( f, fx' f , x, y)dx dy 
D - y 

.(1 .. 55) 

where the integratioP is carried out over sorne region D, and ~ has 

specified values r5(x,y) at all poin~s of the boundary or the 

region s(x,y). The function ~(x,y) is to be continuous (figure 1.4). 

As before we denote by f the function which 6'ives. a stationary 

value to this functional. Then any function such that satisfies ·r ~ 

~S on the boundary can be put in the form 

.lt:x,y) = .f.(x,y) +.e ll(x;y) ( 1.56) 

We knpw that whatever function we choose for ~, the functional F(f) 

will be stationary for e = o, i.e. 

'· .. 



.. 

llow 

( 1. 58) 

. dh ~ d:hy 
.Using de ... 1'1 , de" ... il:x:' de = 'fly , ;md. putting e = O , so t!k1.t 

f(x,y) = í(x,y) 

.. JI ( 1. 59) 

Ir.tegrating by parts the second and third term we obtain (Green's 

theorern) 

(1 •. 60) 

JI ..h.t. , dxdy .., _ JI ~ < ..ht.) 11 d.xdy ~ f . '>..'hfi "!1 dx 
D 'bfy y D by 'b,fy S o y 

The equation (1.59) can now be wr±tten after changing variables x, y 

to s on the boundary as 

1-21 

fr .l"JI b 1'll)· h (bi) J bl dv bi dx t-· ... -- (-- - ~- -} il dxdy + ('>..f-~ds- ">.. •• r ~) 11 d~ (1.61) 
, 'b¡f bx hfx by b.fy S u :x: u.~y dlV 
D S 

The second term, that is the line integral around the "t?oundal.•y in 

(1.61) is zero since Tl is zero on the boundary. This leads to the 

con el ':lsion tha t, sin ce 11 i s arbj_ trary, 

( 1. 62) 

Problema involving higher order deriva.tives can be treated in a like 

manner. Thu.s for functionals of the form, for instance, 
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F(w). = JJJ I(w, wx' wy' wz' wxx' wyx, wyz' wxz' wyy' ''yz' wzz)dxdtc.z 
V 

(1.63) 

the Euler condition is 

hi b hi h hi h bi ) () 
2 

hi ?'1
2 

bi h 
2 

hi 
bw - <bx ~ + ñy ei.7 + bz bw + ~ ~ + bxby b'V1 + bx8Z gw-

x · · . _ y Z u X XX xy XZ 

Example 1.9 Find tb~ condition for stationary of 

pw } d:x:dy· · (a) 

Here, 

I = ~2fwxx2 + w 
2 

+ 211. w w + 2( 1-JJ.) w 2 1·-pw (b) 
\ YY XX YY xy 

so that; 

bi bW = - p 
i"li ( ) _hi ( ) tw:= ::oc B Wxx +1-LWYY 9 ow = B w +JJ.W 

XX yy yy xx 

- (e) 
1'> 

F;V( -= 2B( 1-ll) • ~xy 
xy . . 

Whence 
b2 . 

- p + B (-2 (w +1-L w .·) 
bx xx YY 

(d) 

.. .. 
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FJx~ple :1.10 Consider the functional 

1 JJ 'hf 2 2 
!'(f) (h:t:_) J = 2 r <bx) + dxcly by 

ITere 

I "" .:!.(f2+f2) 
2 X ·y 

thus, 

bi o ~1- fx 
~I 

fy fi·- = tí = , -rr; = 
X 

Thc Euler-Lagrange condition is, 

which is the Laplace equation, 

Note that for this case the boundary term (equation (1.61)) is 

S ( bi .2¡ _ _N_ dx) 1l dS 
'hf ds bf ds 

X y 
S 

S (f. ~ -f. dx ) 'n dS 
·- x ds - y ds 

S 

(e) 

(a) 

(b) 

(e) 

(d) 

{e) 

\ 
1 

1 1 
? 1 ,_...__.._~--<-' (, -- \ ' e r - - -'' 

\ 

(f) 

This gives (figure 1.5) the following natural boundary condition 

term, 

J ?lf 'n dS 
S 'hn 

(g) 



----~ 
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1.8 Functionals wi th several Dependent and Independent Variables. 

Let us now consider the case of a function3l which dependa on two 

separata functions f and i and applies on a_domain D, function of x and 

y. 

W~ can conaider a f and g function as. in 1.6 and obtain for the 

stationary condition 

which gives for e = O 

(1.65) 

(1.66) 

~~ = J:J·, rhl , + & , + llL , + h~ e + ~t. e + .QL e l dxdy 
·-:-:::J de e =O t> b f b fx x b fy y ~ g . t ~ x b ~ y .. 

( 1,67) 

Integrating by parta we obtain, 

SS r[hi - b hi b bi hÍ. o bi b bi J--~-- <---) -- <---n , + { -. -- (--) -- (--)1 e dxdy 
_ bf bx b_fx hy bfy bg hx bBX by ~~ 

:!> . 

S [ oi dv oi dx hi Ñ.r bi dx J . + (--~ + -·- -) i1 + (--:- .!!1Z. + -;:- -) ~ dS 
{),go_ ds bf ds bg ds bg da · 

iá '-X Y_ ~ y 

( 1. 68) 

As 'Tl and C are zero on S boundary we ha ve the following two Eu.ler 

equationa 

( 1. 69) 

. ' 

.. 
,. 



.. 
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Example 1.11 Let us consider the following two dimensional' function~ 
-.t- -' ' t ' ( '--· ~ 1:3, )' ) 1 ': 1 •• ·, .1 " 

which applies for the internal energy of a plane stress structure, 

2 bu bv J } dxd + by. Si y (a) 

where h ;i.B the thickness of the plate,, E the modulus of elasticity, U 
' ' 

the Poisson' s ratio and u, v the displacements in x, y directions. 

Vle have 

(b) 

b ( bi ) •• Eh ( 2v + 2 1J. u ) 
by bv Y 2( i;J. 2)· yy xy 

Which gives the following Euler' s equations, 

_!h_ ( U + 11 V + { i=!J,) (u + V '. 1 = 0 
· 2 XX ,.. yx 2 yy xy1 " 
1~ (e) 

E~2 ( V ·1- ¡.¡. \L._ + { i-u) (V + U ) } = 0 
1"1-L XX .;..y 2 XX yx 

These: are the equilj brium equations for a two dimensional pla.nc stress 

elast:ic solid writte n in te1.-ms of di splacement s. In terms of stresses 

they are, 

Wt¡~J ~ 

! ( 
•/' 



.'--

OO'y bT 
+-by bx = o 

where 

1.9· · The Va.riational U'otation 

We will now define the concept of a 'variation' in,order to 
...... 

simplify the notation we have been 'tsing. Consider the case of the 

simple functional, 

x2 
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F(f ). = J I(f, ,frx' x) dx 
x1 

(1. 70) 

wi th an extrcmum for r'. 

The new function h = r' + e '!) will be wri tten as h = f + 6t 

where 6~ is called the 'variation' of f (ct' = e'!)). Thus 

l'i = .t + 5f 

and 
h = i + 61 

X X X· 

d ( · d ) dn df. 
as dx 6t) = dX (ell(x ) = 6 dx = .s (dx) 

(1.71) 

The quantities of, 5fx are arbitrary in the inte:cva.l x1 < x < x 2. 

· The functional F can be expanded in the vicinity of the extremum 

solution f in function of e • 

.l -
dF 1 1 d2yl 2 ·, F(h) = F(f) + de e + 2 ~ 2 . e + ••• 

e=o de e=o · 
( 1.72) 

.. 
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\ 

The total increment of P function is 

dF 1 d~ 2 
/:). F ,., de e + 2 t d 2 e t 

e =O . e: e:coo 
... (·_, '7')) 'o ',) 

The.first term on the:right hand side is defined·as the first order 
. . 

increment or first variation of F; the secorid as the second order incre-
' 

ment·or-second variation, etc. They are written as 

1 2...... 1 

M == 5F + 2 ~ 6 "F + ••• 

The first order increment can be \'Tritten (equation 1.12~ with 

e == O) as 

dF 
6F = de e 

e=o 

bi bi 
( -·· 5 f + - 6 f ) dx 
bf bfx x 

as x doe s not vary. Finally, 

(1~75) 

--- ·---;> Equation (1.75) shows t~at a ~ariation can be applied toa 

functional in the same form as the d:tfferential of calculus, once the 

depend~nt variables are identified. 

Although the variational notation and the notation used previously 

are equivalent, the former is easier to use o For instance, to o.btain 

the Euler equation for the above functional we can do, 

(oi bi 
- 5f + -- 6f )d.x bf bf X 

X 

( 1. 76) 

which integrating by parts, gives 



= o 
' \ 

( 1. 77) ' 

Thus the Euler condition is 

bi ~ ~ (_QI_) = O 
bf dx of 

X 

(1.78) 

Let ·us now consider the case of a function of two variables 

( equation 1.45) 
x2 

F(f 1 g·') = J I(r', g, fx' ix' x)dx 
x1 

with the new f~ctions, 

h(x) = f.(x) + e~(x) 

k(x) = g(x) + eC(x) 

(1.79) 

( 1. 80) 

We can expend F in the proxirni ty of f, g solution, assuming x i s 

not varied and the limits are fixed. Thus, 

dF 1 d~ 1 F(h ·,k) = F(f , g) + e de + 2:1" 2 + • • • · ( 1. 81) 
e=o de e=O 

or ~ F e 5 F + 2\ 5 ~ + ••• 

The first order increment is (equation 1.52) 

6F = = 

( 1.82) 

Integrating by parts we will obtain the two Euler equations 

,, 
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J2.!. 5f 
x2 

bi 
x2 

+ + ~·- Óao 
~f bgx c. 

X 

(1 .83) 

'X1 x1 

It is interesting to generaliza the variational notation to a 

fun~tion·of 'n' variables, ~1ch as 
) 

( ,1 2 3 ' F±,f,f ••• 1 ( 1.84) 

The increment of this functional is now defined as 

L\ F = o F + 21~ 6 ;, + ••• (1.85) 

where 

ó (óF) 

The secoud inc:cement for a functional like J Ú r1
, l, x)dx is, 

When € ... O we havew 

{1.8'{) 

Thus 

( 1. 88) 



,. 
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i 
. ·Example 1.12 Using the variational notation, deduce the Euler 

· equation of the followíng functional, 

which can be written 

F = F(:t;a, fxy' fyy' f., x, y). (b) 

Thus, 

Integrating this last equation by parts and neglecting the 

boltnd~J terms, which are going to be satisfied, we-obtain 

5F = SS (e) 

'rhe Euler Lagrange equation is, 

(f) 

1.10 Subsidiary Conditions 

.In certain cases we want the variations to satisfy, in addition 

to the boundary conditions, certain other conditions, called subsidia~. 

These conditions can be introduced using IJagrange mttltipliers. 

Let us review brie.fly what they are before proposing their use in 



TABLE 1 ~ 1 

Some Functionals and their Corres;ponding ~uler-Lagra..."'lge ·Eauations 

FUNGriONAL EULER-LAGRANGE EQUATIONS BOUND.ARY TERMS 
- ----------------+--------------·- --- ------+---------·------- - --

x2 

J I(x,f,i"x:)d.x+h2(x,f)l -h1(x,f)¡· 
x1 x2 x1 

x2 

J I(x~ f, Íz'r'xx)dx + 
x1 

+ h2( x,f ,t'x) -H.1( x,f ,r' x) 1 
x2 lx1 

--------------------------
x2 

r I(:x, f', fx,r'xx'. • .fx(n))dx 
X1 

hi - 4:(M_) = o 
b f dx of . X 

bi -~hi )- A_¡__2I_) (-f'n dn (bF ) ==a of di'(')f '2'?'1f + ••• + 1 n n 
X eL"! XX\ dx i')X 

e: o 

=o 

(-- + -~)5f' hi ?'IH. 1 
~.f .xx tfx X 

. X::X. 

= o 

l. 

hi . . d bi ?'.Hi 
<rf - dx of- + "bf-) ~r 

X XX 
=,0 

n 1 n2 are direction cosines of normal 
. to boundary S with respect to 

x and y. 



TABLE 1.1 (contd) 

--··----- ·--- -· 

FUNCJriONAL EULER-LAGRfu~GE EQUATIONS· BOUN"DARY TERMS 

i"'I óf o bi = o = --5g 
i"'fx ?'g 

X 
xi xi 

~~ tí 1 o bi 1 = ' "t.g- ég = o ('f 
y y . X yi i 
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functionals. Consider a function f(x,y,z) of which we want to obtain 

the stationary va.lue 

?lf hf bf 
df ... - dx + - dy + - dx = o bx by bz 

( 1.89) 

subject tó the two constraints 

g 1(x y z) = O 
( 1. 90) 

g
2
(x y z) ;.1 O 

Note that. now we will only have one independent variable. 

We can_ differer.tiate ( 1.90) 

bg1 bg1 bg1 
dg1 "' bx dx: + by dy + bZ dz = O 

( 1 91) 

Let us roultiply ('1.91) by the unlmown parameters ). 1 ), 2 and add to 

{1.89). Then 9 we obtain 

bf bg1 ' bg2 bf bg1 hg2 
(bx+).1 bx +h2bx)dx_+(by+).1 oy +).2 by)d~ 

. ( 1_.92) 

= o 

This gives 3 equations which add -to ( 1.90) permi tts to determine.!. 

the fi~e unlmowns x, y, z, ).. 1 ).2- 'l'he pa.rameters ~ A2 are lmown.as 

Lagrange mul tipliers, as sometime s they ca.n be given a physi cal meaning. 

FinallY!i we can now write the problem as the minimiza.tion of a new 

functional 

( 1. 93) 

We can miminize ( 1.93) wi th repsact to ~-:-, y, z, >.. 1 and " 2 and 

obtain 



l'lf + ). 
l'lg1 bg2 

o -+).- = by 1 (by 2 by ( 1. 94) 

bf bg1 bg2 
o bz + ). 1 -+).- = bz 2 bz 

Ex.ample 1 • 14 Let us find the extre~e value of a f(x,y) function. 

' 2 2 f(x,y) = x + y + 2 (a) 

subjected to the constraint 

g(x,y) = x + y - 1 = O (b) 

The Lagranglan mul tiplier A allows to form a new function · 

F(x,y) = f(x,y) +Ag(x,y) (e) 

This function ca now be extremized wi th respect to :X, y, X. It gives 

hF = 2x + ). = o 
bX 

?'>F 2f +A o by = = ( d) 

bF 
X+ y- 1 o bX = = 

The solution of (d) gives, 

X = ~ , y = ~ , ). = -1 (e) 

Thus the extremum of f(x,y) under the subsidiary condition (b), is 

(f) 

--:--



., .... 

Let us now assume to have a functional, 
. x2 

F e r I(x, f, f )dx 
' . X 
x1 

su.bje.cted to the subsidiary condi tion~.' 
X 

2 

J.~ J G(x, f, fx)dx = O 
x1 

( 1. 95) 

(1.96) 

Usint3' the Lagrange rnul tiplier 'A we can wri te a new functi.:mal 

F + ),J ' ( 1.97) 

\Ve .can minimize ( 1.97) wi th respect to f, fx and ). 

5(F + ),J) = O (1.98) 

?'>(F+>.J)sr bltt.lllor oCF+'AJ)5'A o 
bf + ?'>f X + h'A = 

. . X 

The first two terms give an F..'uler equation 

..Q:... _L (I + 'AG) - ~. (I + 'AG) = O 
dx bfx bf 

and the third, the condition 

J = o 

If the functíonal depend9 on two variables f,. g, we have 
x2 

( 1. 99) 

F :e J I(x,f,_ g, .rx, gx)dx (1.101) 
x1 

plus a subsidiary condition 
. x2 

J""' J G(xj fjg,f ,g')dx =O 
' , t X. X 

x1 
( ~. 102) 

The new functio~al is, 

F +'A J \ 1.103) 
- ¡ 
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Equation ( 1. 103) should satisfy _ 

6 (F + X J) = O ( 1. 1 04) 

which gives the following Euler equations 

.J!.. _Q_ (I + XG) - ..2.. (I + ).G) = O 
dxbfx _ bf (1,105) 

.J!.. ~!. .. (I + XG) - JL (I + ).G) = O 
dx bt;c; bg 

plus the subsidiary condit~on J = O. 

The same procedure· is valfd for problema with more variables. 
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Finite elernent simtllation of 
'va ter circt1lation in the 
North Sea 

C. A. Brebbia and P. W. Partridge* 

Departmem o} Ciril Englllt:ermg, Ullit·ersity of Souzl:wuptou, Soutlwmpton 509 5NH, U 1\ 
(Recen•t•d F~hruary 19761 

1 • 1 The modelling of t1dal effects. storm surges and currents m arge 
bodies of water is cons•dered. The solution is attempted usu1g the 
evolutionary shallow water equations with velocities and wave 
heights as unknowns. Two finite element simulation models are 
described based on six noded triangular elements. Spec1al 
consideration has been give11 to the .Jdequacy of the models which 
were applied to the North Sea only after extensive tests in channels. 
Results for velocities and wave heights are compa~ed and discussed. 
A set of conclusions on the applicability and scope of the models is 
presentad. 

lntroducrion 

This papcr is conccrned \\ ith the modelling of tidal 
effect~. storm surges and current patterns in larg~ 
b0dics of water. The solution is at<o:mptcd using the 
shallov. water cquauons. which are evolutionary 
equations with n:locmcs nnd wave ho::1ghts as 
un k nov. ns. Thcy reqUire tho.: iniual condllions as well 
as thc bounoary condiuons to be known. 

Thc solution of tho.:sc equallons is U>Ually found by 
applyrng a numerical tcchniquc. The mcthod uscd 1s of 
fundamo.:ntal importance. 1 n a tinite ..:lemcnt or linite 
ditfcrence approach thc grid ~ilc wlil determine 1 h..: 
type of plnmom~non whtch can he mv.:stig~1ted. In 
addition gnd si7c relat..:s to st:~hility critcrion and 
accuracy in C\olution:~ry problc:ms. 

Th..: rclincmcnt of a modd. thuugh dcsir:1blo.: in 
principie, may demand a larg.: numocr of p:.~rameters 
which rcl.\u1r.: morc e\pcrimcntal Jata. Th..:,~ data c:~n 
be diflicult to 0b1:~in .tnd produce a new typ~ uf error 
affcctin!! thc contiucnce om: can have in thc r..::.ulls. 
Thc an~l)>l thually has to .:ompromisc ho.:tw.:.:n ha\tng 
:1 sophi>ti.:atcd moJel or a pr.ll.:tic;il one. gi\ ing rdiabk 
resu!ts ll'r thc variabh:s undcr considcration In 
addilll>n, largc modds are c.,pcnsivc to run. 

\Ve dc~.:nbe ho.:rc l\1 o ti nito.: ch:mcnt moJds. 8oth 
m0dcb 1';,1\C b.:t:n dt:\clopcJ lhing s1x nod..:d tnangul;tr 
elcmcnt,, but onc is b:~,cd unan impli..:1t lntcgr.uion 
schcmc. thc othcr m .111 ..::-.pli.:it on..: 1tl1<: forma aliows 
ro~ elcmcnt~ Wllh CUI'\o.:J ~··k,¡. Spcclal con,IJ.:rat!vll 
hJS b.:;:n :_!1'.'0::: lO the :!CkqüaO:)' uf iho: ntuJ.:h '-lrtli ~lllly 

after eKtensive tests on channels 1 were they applied to 
North Sea st'udics. Th..: North Sea is an import<tnt and 
busy seaway. c:sp.:c•ally since th.: discovcry of gas and 
oil. From the numencal point of view. the :~rea is wc:ll­
conditJOned, North Sea topography bcing r..:gular and 
changcs m dcpth gradual. Nevcrtheless. the mo¡i~ls can 
and have b..:cn applied to diiTcrcnt reg10ns (e g .• thc 
Solent in England~. Othcr modds of the Nonh Sea 
exist: an expiiCtt finite d•fT.:rcnce schcme by Hcaps3• an 
implic:it three-node fintte .:lcment onc by Grotkop4 and 
a quartic qu:~drilat.:ral finite do.:ment model by Davis 
and T:~ylor5 . 

The pr::sent model is based on the shallow water 
equations which are venically averaged vcrsions of 
Na\ ier-Stokcs equations, and tak.: in lo cons•der:ttton 
tidc:;, bottom friction. :~dvcctivc forccs, coriolis, \1 1nd 
tang.:ntial strc;scs and atmosph.:nc pre;sure gradients. 

R.:sults for vclocllies .1nd 11ave hetchts in the North 
Sca ar..: comparcd a!ld discus~ed. A s;t of c0nclusions 
on thc applicability and scop..: ot' the modcls ts 
pres.:ntcd. indicating are as v. he re further work. is 
rcquired. 

1 

Sh:lllow water equarións l¡ ' 1 

Th.: .:volutionary .:quauon.; u.;cd in marine and certain 
typco; of cstuari.il modclhng arc c.dlcd th.: shJ!Iow 
water ..:quauons. Thcy are :1 v..:rtically inH:grJtcd 
version of Na~i..:r-Stokcs mcmcntum equ:~tions :tnd 
thc con:inully equ;nion 11 hich acts as a constraint 
cvndit1on. In ;~ddition inuial ami boundary condllions 
havc ro be fullillcd. Thc d1tT.:n:nt a~sumptions im0h.:J 
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h 

Ftgure 1 Geometncal notat.on for the shallow water equatrons 

are tre:ltrd in detail elsewherc:2.6. The two shallow 
~~oater mom.:ntum equations are: 

élV1 11 1'1 cV1 -+ 111-+ V2-=B1 ar OX¡ r:c2 

cV2 ilV2 cV2 
-;¡-+V¡-;-+ V2-.- = Bz 
Gl u:c 1 c:x2 

where 

(1¡ 

B1 = OV2 - g~- ~(!!!) - .!..r 1! + .!..r 11 
CX¡ ih¡ p p ¡& p • (2) 

· 82 = -{lV¡- g :I/ - -l-(!'!_) - .!_T 1 + .!_T21 
L:C2 CXz p p ~b p s 

V¡ are the averaged veloctties: 

! •q 

V.=- J v-dx3 1: 1i -h 1 . (3) 

H is the total dcpth, H = '1 + h, where r¡ is the wave 
lwght abme a ccrtain datum plane and /¡ is tho: dcpth 
from the J;atum to tho: hottom of thc ~ea. x3 is the 
coordin<IIC 111 thc vertical dircction (Figure /), {l 
= 1w ~m qt i~ th..: corio)i, cocflkaent. rf¡ is thc lautude 
anJ w thc ~ngular rotatton of the earth. g is gravtty. p 
th~: water dcmlly anJ p. tia: atmo~phcric pressurc. The 
surfacl! and bottom sm:sscs are written as: 

T -1 '(W2 + wz¡t/2 
1 

., IY 

1•- p Hl 1 2 
i = 1;2 

1 (g) v.,lll V2)1!2 T¡lb = - ;:I P-¡¡ ' 1 + 2 i = 1,2 

e is the Chezy coefficient. IV. are the wind speed 
componcnts and 1' is a parameter related to 
¡Jimospheric density p. (usually given as a constan! 
muluphed by p.). . 

In addition equations (1) have to satisfy the 
vertically intcgrated continuny equatton, i.e., 

(4) 

(5) 

The systems of equations ( 1) and (5) describe the 
movement of large bodics of sh:.lllow water The factors 
affecting thc movemcnt are many: thc morphology and 
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posiuon of the scabcd. thc shapc and \'.tr;.,¡;.,r ;" 
~hapc of tht: l'O;btline, frtction h.:th'.-·¡, ,¡,, e" ".,. 

the wa!l.:r. h..:nc..: thc mah:n;~l of the ~.:abed. the 
metcorological conditwns. indudmg wind. etc. 
Althou!!h th~ c¡rculation of th.: c;~rth and the 
a,trom;m,c;~l forccs of the ~un and th~ moon act on the 
1\,ller 11~ 11\H.Iy fon;¡;~. lh~ m<P!l ~·íl\l~e of udal watr;r 
movcm.:nts in areas such as thc North s~a 1s the 
driving force c:auscd by tid .. tl motion of thc water on 
the boundarics of the area undcr con,ideration. 

The shapc of the land surface containing the body 
Of W;Jh:r ¡, USUalJy very COmpJex, in SOme Có.lSCS 001 
e1en static. though the cffects of erosion generally 
occur ovcr too large a period of time to be important. 

Bollom fnct10n is mtroduced in the model via 
C'hezy co~fficients. The in;1dcquacy of using constan! 
C'hczy cocflici.:nts for all thc model 1s evident. The 
diffcrent mah:nals making up the se;~bcd have dtfTerent 
fncttonJI rcsist:mces as the water d.:pth and the 
velocitie~ change. 1t must be pointed out that bottom 
friction and wind are of great irnportance in the 
movement of shallow water. 

Thc mam causes of inaccuracies in tidal predictions 
are the wmd forces and atmosphetic pressure 
variations, which are importan! for large areas such as 
the North Sea. 

Boundary and initial conditions 

The solution of equations (1) and (5) require the 
knowledge of the corresponding boundary and initial 
conditions. The boundary conditions of the model are 
of two 1) p.:s: (a) fixed or land boundaries such as those 
given by the coasthnes, where the normal velocities are 
zero, and the tangent velocity can be set free; (b) open 
boundaries where the elevation of the sea level (or the 
normal componen! of vdocity) is prescribed. 

The determination of the initial conditions requires 
the knowlcdge of the free surface position at i =O. 
Usually this knowledge is not possible and the models 
have to be started wnh zero eh:vation and zero velocity 
conditions. This is called a ·cold start'. 

Finite clement model 

In ordrr to build finite elcmcnt models the two 
momcntum equJtions ( 1) and continuity (5). including 
innu:---type bounrlary cond1110ns have to be writtcn in 
the following weighted rcs1dual way: 

ff{c1~1 + V
1 
av1 + V2 av, - B 1} bV1 dA =o 

Ol axi Dx2 

ff{,,~2 + V1 av2 + V2 ~v2 
- B2} bl'2 dA =o (6) 

oc OX¡ (¡.'(2 

ff{ oH+ ~(HJ-í) + j._(HV}bHdA = r(HV,-
or ax¡ ~xl. J -

. Hfl.)SHdS 

The continuity equation is usua!ly integ.ratcd by parts 
to rcndcr a simplr:r expression. Th1s integration gives: 

ff{ JIV1 r~H + HV/~H- 0!1 bH} dA 
ox 1 cx2 t'l 

= fni~MI dS (7) 
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Figure 2 S•x node elements (a) Sl<a•ght s•des. (b) cu•ved s•des 

The above weighted rcsidu:¡J statemcnts [equations (6) 
and (7)] are thc starting point for the fimte clcmcnt 
models. Assumc that over an element thl! sume 
interpolation function applies for the V1 , V2 and H 
unknowns, i.e. 

fl=t/111" (8) 

tfJ is the interpolation function and V'¡, lf' are nodal 
values of V¡, H. · 

In what follows six nodcd triangular finite elements 
with curved boundarics wcre uscd in ordcr to define 
the bounduries belter (Figure 2). Thc~c e!cmenls are 
called isoparamelric and can be formulaled by a 
simple coordina te lransformation, lhe de1ails of which 
have been given by Connor and Brebb1a ,_ Curved 
elements have the important feature that thcy tend to 
elimmate the spurious fon:cs that may be generated on 
the boundaries by straight side elements joining at an 
angle. 

Substituting equations (8) into (6) and (7), one 
obtains: 

and 

M Ji¡+ KJI'j- !lMJ'i + G111" + F1 =O 

MJii + QMJI'j + KJ'i + G11f' + F2 =O 

Mil"- C1 Jl'j - C2 J'i + F11 =O 

where 

K;. fq,rq,,;V1 dA + J,¡,rq,_ 2V2 dA + 

(?) Jq,r(Vf +:i)lll 1/>dA 

G1 =g Jq,rq,_,dA M= Jt~>rt/>dA 

(9) 

F¡ = Jq,r ( ~ L dA+(;) Jcpr~(Wf + JVj)ll~d.4 

and 

'( iJ l.l = ;¡-:-. 
CX¡ 

• iJ 
{ )=­

VI 

Equations (9) cun be written us 

[M M 
·lfvq [K · j l Vi ¡· + 11M 

M lf• -C1 

i = 1,2 

!' :: l =1~ ¡ ,•u OJ 
or more simply, 

MQ+KQ= F 

{10) 

(11) 

Formula ( 11) is val id for each unconnected element. 
The n~xt ~tag~ is to U$scmblc all thc ckment equJtions 
into a globul sy~tem and 1mposc boundary conditions 
in H and V,. To climinate prolifcration of notation the 
global system will be defined with the same notation as 
equation ( 11). 

Time integrarion 

Two lime intcgration schemes wcre used, one an 
implicit and the other an explicit scheme. The implicit 
integration procedure is the trapezoidal rule. Starting 
with: 

MQ+KQ= F 

one assumes: 

(l = Q,- Qo 
D.t 

F= Fo + F, 
2 

Q = Q, + Qo 
2 

Hence equation (12) becomes: 

(12) 

. (13) 

(-1M+ K) Q, = (Fo + F,) +(~1M- K) Q0 (14) 

or 

K*Q, = F* (15) 

The recurrence relationship is then: 

Q, = (K*)-1 F* (16) 

The K* matrix to be inverted generally is a large non­
symmetric banded matrix of size approximately three 
umes the numbl!r of uodcs by six times the elcment 
band v.idth (i.c., the maximum diffcrcnce beti\Cen 
elemcnt nodal point numbcrs plus onc). Thc computer 
program has bccn optimizcd by taking boundary 
conditions into account in such a \\ay that the 
corrcsponding rows and columns are elimmated lrom 
the elemcnt matrices before as~.:mblin!!. This 
significantly reduces the maxunum siz; of the global 
matrix. lt w;:s also advantagcous to store thc m:1trix 
in a onc-dimcnsional form such that only one and not 
two addrcs~es necd to be evalu:ll.:d each lime an 
eleml!nl of thc array is ac::esscd. 

The explicit time intcgr:~tion schemc uscd was thc 
well-known f:Jurth order Rungc-Kuttu sch.:mc. 

North Sea mcdel 

The above fi.nitc el~ment formulation has b.:cn applicd 
to modd the North Sea. Th1s is a sh:~llow ~~a var) ing 
in dcpth from undcr_SJJ.m..in....tllc.:...so.utll-l.o.-400 m in ,¡ 

trench otT thc coast ol Non1ay. Dcrths werc obt .. IÍned 
from Admiralty charts. Scctlons wcrc drawn at 
dili"crent angles across th~ wholc region to determine 
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f,gute 3 Fonote element mesh lar the Nonh Sea 

thc bcst locattons for nodes and lhe more accurate way 
of rl!"prcscntmg !he bol!om topography. Elemcnts werc 
carcfully posttioned in order to obtain the besl po,si~le 
rcprc~entation of the lopography using a predetermined 
numl:oer of nodcs. Thc final mc~h compriscs .:!28 nodes 
and 97 ~•x noded elcments as sh0\\11 111 Fi!(ure 3. 

The lldal char;u:h:nstics of the North Sea are 
com.pllcaicd. ltd¡d amp!ltudc~ vary from zcro to ~ix 
metrc:s and lul!h water times chanl!c throughout thc 
cycle around ~ach of lhc thrce amphidromic pomts. 

Tidal hctghts for houndary condttions wcn: laken 
from the charts of co-ti:.bll!ne~. Thc v-avchetght 
forcing functior¡s wcrc spcctfied m thc form (Ftgure 4) 

(17) 

on e:~ch of the e:. tremes of the lidal boundanes, with 
tho: inlcrmedtale lwghts being ltncarly mtcrpolated. 
This formulauon approximales the mw.t importan! 
tldal compon.:nt for thc North S.:a. 1 hcsc curves have 
bccn tal.cn from thc Admtr:dty Tidc Tables They are 
assumcd 10 be rcfcrrctl 10 thc ~ame datum smce o1her 
mfo~mation tS ntll avail:tble. Bccau~e of this. the nisults 
prc~enled in tlm r-•rcr may nor be quanlllattvely 
corree! hut thc cono¡)ari,on bct\\Ccn modds are still 

. valttl. The chans of co-tJdJI line> gtve thc approximate 
tu.lal rangc and h1gh \latcr times for lhc interior points 
on thc gnd. The circuiJllon pallcrn and velocity 
magnnudes for par!> of thc Sea may be sccn m the 
ridal srrcam aliases~· 9 . 

Wind anJ ~torl11 surl!cs wcrc no1 modelled as this 
scn~s of tests was carri~d out to invcsltgatc the general 
performance of the modcl. 

,\rtcr severa! re,¡~ it was decidcd to take a 
conllnuous 11dal h,)Undary m thc Norrhern parl from 
notlc41 lo 1 and lto 11 (Figurt'4).othcrni'e 
tn~rabtlity origmateJ from thc Sh.·tland blands 
ckmcnt. showmg 1ha1 onc clcmcnt ts inadcquate lo 
rcrrc~cnt a discontinuous tidal boundary prorerly. 
Tttlal condllton~ wcrc also specllied at the Dovcr Strail 
tpoints ~~6 to ~~!!) and aftcr a numhcr of lnals also for 
thc Balite Sea l:ooundary (nodcs t:6-!<7-109). lt was 
fountl that indu~ton of lhc Baltic Sea impro\'ed thc 
w¡m:hctght rcsult~. 
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On the l:.tnd houndari.:s. the no-slip boundary 
condition 1'1 = 1'! = O 1s >pc¡;ifi.·d. This assumption 
simph!les 1hc nl.'ccssary computing and is rcasonable as 
lhe North Se¡¡ ts a rcgularly shaped rcgion. Bccausc of 
lhc impo;;uion of tht, conJit10n. curveu bound.try 
clcmcnt>. \1 hid1 are more cxpcnsi\ e lo run. werc not 
necessJry. By contras! \\ hcn mod.:ihng the Solent, 
curvcd sidcd boundary clcments \\'Cr.: u>ed allowing 
the tangcnlial vdocuy lo rcmain free 2• 

Stability and accuracy 

The smalbt stability limtl for the North Sea as given 
by lhe Fri~dncks-Lewy-Courant condiuon. occurs for 
an clcment off the Norwegian coast. lt gives: 

Át ~ 450sec (18) 

The worst case on a tidal boundary gives Ál ~ 650 sec. 
This is importan! as instabili11es aiways start at these 
boundarics. The average valuc is around 900sec and 
lor lhc shallow southern North Sea lhe cnterion 
suggests a limiung lime step of lcss than 2000 sec. 
The explicll programme which uses a fourth-order 
Runge-K.utta proc.:dure was run \\ith a time step of 
600sec. For the imphcit programme instead a time step 
of 30min wa!> uscd. 

To obtuin stable results with bolh models requires 
lhe application of special techniques. For this work 
three dtiTcrent 1cchniques were uscd. The first and 
sJmplcst of thcm ts ro work always with a constant 
value of fri¡;tion 0\er al! the rcgion, starting with a low 
valuc (e= 1Om 11!/scc) and incn:asing it by 1 O over two 
to four cycles. This technique did not gtve good results 
and the solution tends to bccome unstable for large 
valu.:~ of e, i.e., ~111:.111 values of fnction. In addition il is 
unrcalistic 4o assume that the Chczy coeffictent will be 
the same ovcr al! lhe domain. 

The second tcchnique was to prescribe a higher 
order of fnction for the elcments on lidal boundanes 
and a smaller valuc for interna! elcments. This is 
because there is a general tcndcncy for the tidal 
boundary 10 gencrate disturbanccs. Thcse 
perturb¡¡tions may be due lo a number of factors and 
cause the transmission of short waves lhrough the 
systcm. The spccificalion of highcr values or"friction for 
the lldal houndary elements reduce the propagalton of 
errors. 

lt was decidcd lo apply a Chczy coefficient 
e = 20m 1 '!;scc at the boundaries. which produces 
stable results. 

6 
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2 
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Ftgure 4 T odal bouncary concjotoons ter the Nonh Sea 
Be1gen.- - -. Lerwock>.:----. Korkwafl ---. Dover 
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The third ditf.:rcnt st:thdizing t.:chn1quc is to start 
with a reJJi.,1ic valuc of friction from the bcginning and 
try to rcmove tl11: ~hort wav.:s by ·mm~cncal 
smoothing·. This smouthmg c:u1 also b.: apph.:d every 
time thc leve! of friction is dccrcascd Th~ op.:ration 
n~eds 10 be carried out for a numb.:r of stcp~ and af1~r 
1he perturba1ions ha ve bccn removed 1hc solut ion docs 
no1 nccd to be smooth.:d any longcr. This numerical 
smoo1hing cons1sts of taking for the nc\1 time step not 
th.: actual nod;d values JUSI obtained bu1 wcightcd 
av.:mges. These average-; ar.! cah:ulated by Y.dghling 
every nodal value by a constan! und adding to 11 th.:: 
weigh1ed value~ of the ncighbol1ring points. For the 
programmcs d~.:scrib.:d hen: the node under 
cons1deration hus half the wci gh t and the oth.:r half is 
distributed among six nc1ghbo-uring points 
propor:ionully to thc1r area of inlluem:e. (For 
boundary nod.:s only 3 ne1ghbouring pomts are taken 
mto con~ideration.) In gcner,tl, the coars.:r th.: mesh 
thc more rc!at1ve weight thc central nodc wdl have. 

Thc actual weight used do::s not seem to be too 
importan! provided that the coelficicnt for thc node 
under considerauon is rea>onably large by comparison 
with the coetlici.:nts for the neighbouring nodcs. A 
simpler way of wcighting may be for instance. to 
mult!ply the solut1on vector by the mass matrix. 
Smoothing has becn surce~sfully applied by the 
authors m small estuanal ar..:as, such as thc Solent in 
England but it es le~~ nccessary for the North Sea as 
the system i:; more stable. 

Tests 

Many tests were run with di!Tcrcnt t1me int.:gration 
schemes, fricuon coeflil.:ients und smoothmg schcmes 
but only two of them will bt: prest:nted for brevity. The 
first, Test 1, uses 1mplicit integrution (ür = 30 m1n) :md 
the second. Te'it :!, expliCJt fourth-order Runge-Kutta 
(t.t =lO mm). 

Test 1 was started with a Chczy coefficient of 
10 m112 /sec. uftcr two tidal cycles th1s 11us increased to 
15 and after anoth<.:r 11~0 lo :!0. Thcn tht: incllon 20 
was left for the elements on the tidal boundary but the 
value of thc interna! fricuon was d.:creascd to e = 40 
over four lldal cyclcs. Finally, the interna! Chczy 
coefficient was taken as u variable givcn by: 

e= 151og,(0.9H) [in m112¡sec] (19) 

This formula gives low fricllon in the mterior of the 
North Sea (e g. for fl = 55 m. e = 60). The same friction 
was apph.:d during 6 mqrc t1dal cycb to obt;¡m 
repetition of rcsults. In addition th.: re~u!ts 11t:rc 
numerically smoothed ov..:r 3 h 11 . ..: .. 6 s~er>) af!cr 
change of Chay·s codlic1.:nt. th..:n the >moothmg 11 as 
stopped. For the lcvt:l of friction I!II'Cil by formula ( 19) 
the velocity elltpse> tend to IIH:r~;¡,e in size anu thdr 
dnft is.a..:c..:ntuat..:d "' the l.:vel uf fricuon IS rcJ111:~ú. 
As the'fri..:uon 1s v.lfiablc. thc rc~ults are not b..:inc 
obtatn.:d und..:r con-;tant condttton.., uf dampin~ :!~d 
th.: ellipst:> do not quit..: clo>.: ..:ven :tftcr tltr..:..: or four 
lldJI cyo.:J..:,. lt i~ >Urpn>ing thal good r<.:>tdb 11.:re 
n:port..:d by Da1 1s und Taylor' aftcr only tlm:c tiJa! 
cyclcs from cold start, usmg 1h1s vanablc fricrinn 
formula. 

Test 2 was run w1th tidal boundary c!cm..:nts friction 

:0A []·8 r~ [§JO --rv Ll ~ 
~-osol · _..._ 
~oe8[i]eo o o&~ r---1 f-] r-3Ja 
Jooo •¡ f ~ 1 f cO 1 ~ '\. 

·080- t . J ~~_J L 
-080 o 080 b 
V~IOCity, V, (m/~ec) 

Figure 5 Veloctty e 1pses for (a) 'mpilc1t and (b) exphcit 
rnodels A Nao a 51. B. nodc 57. C. nada 105. D. nade 148 

e = ~O (rn 11 ~ /sec) :.~nd values of interna! friction of 40 
and 60. The soluuon was initJatcd from lhc implicit 
rnodel results fcr e = :!O throughout instead of dircct 
r.old start. (This 1\<tS done simply to save c::Jmputer 
costs.) 

Re~ults 

Velocity elhpses are usefui to find out if steady state 
has b.:~n reached. if tho::re are any disturbunccs present 
in th·~ system whi.:h are hkely to cause inst:lhJiity, the 
magnitud~: of dnft velocl!ies. the changcs in velocity 
magnitudes due to changes in Chezy's coefficients. time 
step. etc. 

TI\ o comparable sets of results obtained usmg the 
same tidul bound~ry Chczy coetlicient (20 m1 '2¡sec) and 
the same interna! iriction (e= 40) are sho\\ n in Fi¡:ure 
5. lt can be seen that the ellipses for the expli..:it 
scheme tend to be sm::lller (this is also truc for other 
points) than those obtamed with impiicit intcgration. 
Thc dnft is ubo less in thc explica method. This may 
be duc to the largc time step uscd in thc implicit 
solution. As a smoother circu!ation pattern and smaller 
drifts are obtained one could concludc that the explicit 
solution is more u.:curate in this case. Therc are also 
slight ditTerences in thc shape of thc ellipses. 

Thc large drift 1 in thc ordcr of 1 O to 20 cm/sec for · 
son:H: points) may Jlso be el!.pluin~d by the coarsencss 
of the gnd: A typi.:~tl plot of velocities ovcr all the Sea 
is al so sh0\1 n in F:~ure 6 (results are from the implicit 
programme. the Chezy coeftic1cnt is 20 on tidal 
boundaries and .40 mside), 1\·here they are compared 
against results pub!ished in thc tidal :>!reum atla~es 
avnilablc in Britain. The general trend of the vclccities 
compares well. 

W..: should be aware, howcv~r. th:1t the tidal stream 
atla>es vclocities are smoothed out. the ohscrv;Jtwos 
are mddt: 111 only the top !ayer of thc water. Thc 
programme mstcud yiá.b d~pth avcrag.:d velocJtio::s 
givcn by equ;¡tion :3). 1-kncc thc curn:nts worked out 
by th.: prog:ramme dre not e~ac1ly as ,!he atLt~cs 
currcnis Thc pragr.unmc r..:sull:i are bcing alkcted by 
local 11uctuauon-; in dt:rtlt toa greal..:r dq~r.:c than thc 
ligur..:, in th..: atla,c,. 

Gr¡_¡phs sho1\Íng th..: w:m:h..:1gh1 svlutiOJb for th.: 
~ame t~sts :mJ at t!lt: saml' poinls as th..: \Cioctlt<!> are 
;hown 111 Figure 7. Tn..'ré.: aré-l:i'i-mpiiratively htgh 
van.t1tc>nS in ti~bl rJ:l!!<! anJ hil!h \\<itcr time:~. The 
ll.ltn..:ss of the wavehe;ght curv;s at nodes ncd!' an 
ari1phiúromic point 1S ;bu noticcahle. 
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Figure 6b 'l~locoty v"ctors from tt1e Adm•• olty chans 2 hour> 
afler h1gn V'.ater 

Fu1ally thc co-range lines chart for thc North Sea 
has bcen cornputcd from result~ obto.uncd usmg the 
1mphcit program1m: with fricuon e = ~O m lil scc on 
tidal bound~Jr) anJ for interior ckmcnt~ e as given by 
formula (llJi anJ ~hown in F1g111<' ti. lf the co-range 
lincs are wmparcd ag:.unst th.: rcsult~ "hown m 
Admiralt) d1:.11t 505S the agn.:emcnt 1s reasonable. 
Sin11lar cunes \\ere also rcportcd by Grotkop•.and 
Nihoul6

. 
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Conrlusions 

For :.1 COiht.mt leve! of fri.:tion throughout the grid the 
rc.:,ults h.:c,Jmc Uibtabk for J value of Chczy's 
cudliclcnt of 60 m 1'2.'scc unlcss ~recia! procedures are 
u~~J SuJdcn rcducuons of the le\ el of friction (te .. 
im:rca~L·, 111 q c.Ju~c a sm.1il ~hod. 10 be tran~mittcd 
throu~h thc systcm. Short wavc> are abo gcnerated on 
thc tahl boundary by thc discrew changes in the 
llllpo,.:J tidal bcig.ht al cach time stcp. A way of 
d.tmpmg out those cfl'.:cts 1s by dccrcasing the e 
codlicicnts 111 ckmcnts on thc ttdal boundary and this 
tcl.hlllLJUC ha~ bccn usi!J for Jll the rcsults ~hown 111 

th1s p.1pcr. :\nothcr dampmg procedure is the . 
numc.:ncal ~moothing. for \\ h1ch thc moJel could be 
~t~rtcJ \\'tlh a rcahstic lcvcl of fnction and the rcsults 
numencally smoothed until the disturbance caused by 

~::baGB~ 
J::[a~[;d~ 

o 60 120 
Trme alter lcw wowr (Bqrgenl 

Figure 7 Wavelength for (a) •mphc•t and (b) explocrt models A. 
Po1nt 51. B. po•nl 57. C po•nt 105; D. pornt 148 
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the cold st:ut ha~ bcen rcdut:cd. Sincc 1t is not 
necessary to alta thc fricl!on param~ta :.~ftcr this the 
mtrodu~:tion of furthér ">hon wal'cs may in sorne cases 
be avo1dcd. For thc n.:.,tllts reponed m thi> paper the 
numeric,tl smoothing tc~:hniquc was only uscd once for 
a short lime, to stabiliz.: thc imDlic1t modd rcsults 
whcn the Chczy codli~:icnt cha~gcd from 40 to the 
value ¡pv.:n by formuiJ (i9). 

Both time integration schemcs, impllcn and explicit, 
givc sinular rcsult.,; holl'c·.·er, the fourth-ordcr 
Runge-Kuua 1s mure accurarc using tlr = IOmin 
which is thc highc~t a:lowable lime >lcp 1n this case. 
But it should be also point.:d ol\1 thal thc 1mplicJt 
programme (ar = 30m in) n~cds less thar. hall 1he 
compu1cr 1imc rcquiréd for lhe exp!ic1t programme. 

For evolu1ionary proccssés of thc 1ype h.: re 
describcd computcr time can b.: vcry cxpcnsti'C <tnd the 
programme should be furthcr optimiLt:d before 
undcrtaking producllon rum. lt sc~:ms. however, that 
for a problcm wilh thc dimens10ns of thc North Sea 
ami a tini1.: element grid sunllar to the one uscd here, 
the expli~:it programmc m.ty be more conve11icnt to 
use. This is not the case when thc doma:n 1s smaller 
(for instancc for thc Sulcnt) or th..: gnd vcry tinc. In 
other words implicit schcm~s ;,¡,·e more expensive per 
timestep th:.1n explicit one> but allow for larger 
t1mesteps. This can b<! of mlcrest in probkms where 

the timt: step may b..: increased considerabl~ ov..:r a 
simpler sch::mc. withoul .,¡gntfkantly atT.:cung :he 
accuracy of the r.:.,ults. 

Thc viabiltty of 1hc '>il( ll•)des finitc dem~nt 
ctrculation modcl for thc North Sea has bc.:n 
establi.,hed. Sccond ordcr elcments of thts t~ pe are 
esp..:c1a!ly suuablc to rcptescnt nccur:ttely thc 
topography of thc rcg10n (1.c., variable d.:plh and 
curv.:d bound¡¡ri~o:s). 
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DISPERSION IN TWO-LAYER STRATIFIED WATER BODIES 

by 

George c. Christodoulou1 and Jerorne J. Connor2 , M.ASCE 

INTRODUCTION 

During the winter season a water body is usually well­

mixed through the depth. Howe.ver, this· is not the case in the 

summer. Due mainly to increased heat input near the surface, 

a density stratification begins to develop in the spring and by 

rnid-surnrner a strong therrnocline (pycnocline) often exists, 

, dividing the water column into two distinct layers. The dynamics 

of such a system cannot be adequately represented by depth-

averaged approximations: The effect of stratification on the 

--flow pattern has been demonstrated by means of analytical solutions 

for oceans, coastal waters, and lakes, under severe simplifications 

of geometry and the governing equations. Ultirnately, frorn a 

practica! viewpoint, of main interest is not the flowfield itself, 

but rather the transport and dispersion of sorne substance in it. 

To achieve a better description of both the vertical and 

the horizontal variability of flow in a natural water body of 

arbitrary geometry and bottom topography~ multilayer or quasi­

three-dimensional numerical rnodels are being formulated and the 

development of large multi-purpose finite-difference computer 

codes initiated [1, 10, 17]. Although transport of constituents, 

1Assistant Professor, Applied Hydraulics Lab., National Technical 
University of Athens, Athens, Greece 

2Professor, Department of Civil Engineering, Mass. Inst. of 
Technology, Cambridge, MA 02139 
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notably water quality -parameters, is being incorporated in these 

models, primary emphasis is placed on improving the computational 

techniques and software and little attention is given to such 

important issues as assigning values to the paramete.rs involved, 

parameter sensitivity, and model verification. As the number of 

layers increases, model verification becomes a very difficult and 

costly task, as extensive field data, particularly boundary 

conditions, is required. 

A two-layer model, while re~uiring minimal "tuning", pro-

vides a picture significantly different than a one-layer approach, 

and is quite appropriate when there is strong natural stratification. 

In this paper, a model is ·presented for the·description of the 

dispersion of matter in such a two-layer system. After the 

mathematical forrnulation, the physical aspects of the problem are 

discussedt, focusing primarily on quantification of the dispersJ:on 
1 

·coefficients and the interfacial transport mechanisms in terms 

of _the mean flow characteristics. The finite element method is 

chosen for numerical implementation because of its successful 

application to one-layer dispersion problems [11]. The solution 
. . 

o 

procedure is discussed and its stability requirements are 

established. Verification of the numerical results against 

analytical solutions, available for simple flow conditions [6], 
'' -. 

- is performed. Finally, an ap~lication of the model to the 

Massachusetts Bay in conjunction with a large scale field 

experiment serves as an example of its applicability to real 

world problems. 



3 

MODEL FORMULATION 

The model presented herein is intended to describe the 

dispersion of an arbitrary constituent, possessing in general 

sorne vertical mobility, in a two-layer (coastal) water body of 

variable bottom topography and boundary geometry. The velocity 

field in both layers, as well as the !ayer thickness, are assumed 

known, presumably obtainable from a separate_hydrodynarnic rnodel. 

By.uncoupling the hydrodynamic and dispersion rnodels, the sarne 
. 

flow pattern can be used to investigate very econornically the 

transport of severa! different substances and to experirnent w~th 

various loading strategies, parameter values, etc. However, this 

can only be done provided the constituent of interest does not 

significantly affect the flow field or the density structure. 

The mass balance of a constituent is expressed by the 

3-D convection-diffusion equation: 

= - ~x (uc + q) - l_ {ve+ qy) - l_ ({w-w· )c+q) + p 
o x ay az s . z 

(1) 

e is the local concentration 

u,v,w are the water velocities in the x,y,z directions, 
respectively 

w is the particle settling velocity, positive when in 
sthe negative z direction 

qx, qy' qz are diffusive fluxes 

p represents generation or decay of the constituent. 

Integrating (1) between the !ayer boundaries and using 

Leibnitz's rule, the equations pertaining to a layered systern are 

obtained. Thus, for the top !ayer (Figure 1): 



n 

J 
cdz = 

-h 
' 1 

4 

n l_J (uc+q )dz + 
ay -h Y 

1 
e 

1 

pdz + 

+[c(DDtn - w + w )-q ] 
S S n 

Dhl 
+ [c(Dt + w- w )-q.] h 

S 1 - l 

(2) 

The terms in brackets represent fluxes through the layer 

boundaries, -i. e., the free súrface and interface, 

respectively. The kinematic conditioq at the surface 

requires 

ron 
Dt 

( 3) 

However, the interface, which is defined as the position of 

steepest density gradient (ideally, a density discontinuity), 

is not necessarily a material surface. For this surface, one 

can write 

(4) 

whcre we represents the relative velocity of the water 

particles (on the average) with respect to the layer boundary 

and is referred to as "entrainrnent" velocity. It is con-
--------------~~ 

sidered positive when·upward, indicating net water motion from 

the bottom to the top layer. The diffusive flux component, q., 
1 

' 
of the interfacial transport may be expressed as a function of 

the concentration difference betw'een the two 1 ayers. If the 

concentration at the interface is-approximated by the average 

value of the two l~yers (consistent'with the two-layer 
1 

idealization), the overall transport from layer 2 (bottom) to 
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to layer 1 (top) can be written in the form: 

where .a. is a variable parameter. Equation ( 5) shows that 

settling counteracts entrainmentr while for a neutrally 

·buoyant constituent (w
8

=0) the top layer would gain material 

through entrainment when we > O. 

With respect to the remaining terms in Equation· (2) 1 the 

following notation is introduced 
n 

e = J cdz = c 1H1 
-hl 

-e = e + e 11 
, u = u + u 11 

1 v = v + V 11 

(6) 

where the overbar denotes the average value over the layer 

thickness and the double prime represents spatial deviation 

from the áverage. Equation (2) now takes the form: 

ac 1 a cü1c1 > 

at + ax 
a a 

= - ax 0xl - ay 0yl + pl 

(7) 

Sources, decay, and boundary flux terms are included in 

_P 1 . The total dispersive fluxes 1 Q, account ~or both 

horizontal turbulent diffusion and dispersion due to vertical 

velocity nonuniformities and are assumed to be approximated by 

Fickian expressions: 

Qx Jn (u"c 11 +q ) dz -H (E 
ac

1 E 
ac

1 = = -- + ay> 
1 -h X 1 xx

1 ax xyl 
1 

n (8) 
ac

1 
ac 1 

Qyl = J ( v 11 e 11 +q ) d z -H
1

(E + E -- ax -) 
-h y yxl yyl ()y 

1 
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The overall dispersion coeffici~nts are elements of a second 

order tensor, consisting of an eddy diffusivity component 

and a shear dispersion component: 

(9) 

Their quantification is discussed in the next section. 

Following the same approach, one obtains the integrated 

equations for the bottom layer: 

a Q + P .... ay Y2 ¿ 

(l.O) 

whe:e P~ ~ill, in general, include deposition to the bottom. 

Equations · ~ 7) and ( 10) are the governing equations of the two-

layer system. 

The boundary conditions for the dispersion problem are of 

two types (see Figure 2) : 

(i) concentration specified: C = C* on Se 

(ii) normal dispersive flux (i.e., concentration 

gradient) specified: Q = Q* on sq. n n 

Assuming reflecting land boundaries, one usually prescribes 

Qn = O. Of major concern is the treatment of the ocean (open) 

boundary. The concentration may be maintained at zero only 

as long as the plume remains sufficiently far from 

the boundary. An ideal, but not economical, solution is 

to make the grid so large as to ensure that the plume 

will always remain well within the computational domain. 
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In practice, different conditions are p:escribed for 

outflow and inflow boundary segments. In the former case, 

the concentration gradient is commonfy specifi@d, it§ VelY@ 

obtained by extrapolation from the interior. In the latter 

cas~, the concentration should be specified, but this is 

difficult since it is related to mixing conditions outside of 

the ·domain being modeled [10]. A simple procedure, which 

preves satisfactory when the plume reaches the boundary with 

a low concentration gradient at a segment of predominantely 

outward flow, is to specify and maintain the gradient at 

zero [16]. This allows the material to advect through the 

boundary and assumes essentially complete mixing in its 

neighborhood. 

DISPERSION COEFFICIENTS 

The horizontal spreading of a constituent within a given 

"layer" is accomplished by the following three mechanisms: 

(a) Advection, in particular spatial or temporal 

variability of layer average currents, 

(b) Turbulent diffusion, i.e., mixing dueto small or 

large scale turbulent eddies, and 

(e) Dispersion·due to vertical shear, that is, velocity 

nonuniformities over the layer thickness. 

The contribution of the last two mechanisms is commonly 

expressed by the introduction of diffusion and dispersion 

coefficients, by analogy to the molecular mixing process. 
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These coefficients ba~ically arise from the simplified 

representation of the velocity field, and, indeed, the more 

simplified the latter becomes, the larger the coefficients 

need to be. Considering the diffusion of a cloud due to 

~urbulence, it is noticed that, at first, moderate size eddies 

contribute to the advection of the cloud as a whole, while 

mixing takes place at very small scales. As the size of the 

cloud increases with time, larger eddies become involved in 

its internal mixing. Thus, it is ·found that diffusion 

coefficients increase with time .(or cloud size) [13]. 

Hvwever, when the flow field is specified at a certain spatial 

discretization, such continuous growth of the diffusion 

coefficients is not justified once the cloud increases beyond 

the level of discretization, since eddies of the scale of the 

grid size are still described by the·advection terms. 

one approach for quantifying the eddy diffusivity is basec 

on using the 4/3 diffusion law derived from the theory of 

locally isotropic turbulence. This is applicable to horizontal 

diffusion in the ocean if one assumes that the eddies are 

essentially isotropic horizontally [14]. Then 

(10) 

where 

E is the eddy diffusion coefficient 

e is the rate of energy input, per unit surface area 

L is the length scale, presumably related to the grid size 

b is a numerical constant, or order 0.1. 

....... : . 

. ' 

·. ' ... 
-"· 

; ~- ... 

¡•', ,.._ 
> 

{/-'! 
.• ":t..;· 
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. 
An alternative expression for E, based on mixing length 

arguments· [2,8] has the advantage of using the readily 

available mean velocity gradients: 

2 E=L/Ci) 

where 

~ = 2(au)2 + 2(av)2 + (au + av)2 
ax ay ay ax 

(11) 

According to [8], the sub-grid scale eddy coefficient is 

modeled using a length scale which is an ord~r or magnitude 

smaller than the grid size. However, the resolution of the 

flow field description, associated with spatial averaging 

in ·the hydrodynamic model being employed, has to be taken 

into account and the coefficient increased accordingly. 

The~analogy between the effective horizontal spreading 

due to nonuniformity of the velocity p~ofile and the turbulent 

diffusion process was shown initially by Taylor [18]. for_ 

steady 1-D flow through a pipe and later by Elder [9] for open 

channel flow. A parallel argument for the case of two 

horizontal velocity components (u·, v) shows that the representation 

of the dispersive fluxes according to ('8) is indeed appropriate 

[ 6] • The shear dispersion coefficients are identified as: 

Ed 1 J: 1 [ I: u"dr;] 2dz = XX H Ez 

Ed !_ JH 1 [J: v"dr;]
2
dz (12) ' = y y H O E z 

Ed Ed 1 JH !.._[Jz u"dr;] [Jz v"dr;]dz = = xy yx H O Ez O O 

. i 
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where É is· the vertical diffusion coefficiént, and H is z 

the layer·tqickness. Once the velocity profile is specified; 

the above integrals can be evaluated'. _One can prove that the 

shear dispersion coefficients comprise a second order tensor 

[6). Therefore, profile information is needed only along any 

two perpendicular directions. In the simplest case, if 

self-similarity of the velocity profile in a layer is assumed, 

the dispersion coefficients may be related directly to the 

mean velocity and layer thickness. 

This treatment of shear dispersion is valid, only when 

sorne "initial time" has passed after the introduction of the 

material. The initial time is related to the vertical mixing 

time scale, given by [3]: 

.-" 2 2 
T = H /TI e: e - z 

( 13) 

it has been found [3] that the dispersion coefficient is 

essentially the same as if ~he flow was steady at any point 

of the tidal cycle provided that 

T /T > 1 . ( 14 ) . 
-------------------e-------------------------------------------------------------------·-

For typical values, H = 10-20 m (30-60 ft), E = 50 cm2/sec z 
2 

(0.05 ft /sec), one obtains T ~ 0.5- 2 hours, and condition 
e 

(14) holds. 
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INTERFACIAL TRANSPORT 

The erosion of the quiescent lower l~yer by the upper 

~.ayer,· moving under the influence of wind or other driving 

:nechanism, is a well-known phenomenon in water bodies. It 

is explained by the one-way transport from the nonturbulent 

to the· turbulent layer, often called entrairiment. The term 

is most familiar _in the context of a- je_t, which draws ambient 

fluid due to i ts high momentum. ·The mechanism of eros ion of 

a distinguishable density inter~ace'has been examined in the 

past, mostly experimentally. Turbulent eddies appear to 

scour the interface, sweeping away interfacial disturbances 

at relatively large time intervals [19]. When both layers 

are turbulent and have comparable velocities, as is usually 

the case in coastal waters, there must be a two-way transfer. 

Denoting the respective volumetric rates of transport, per 

unit area, by m21 and m12 (see Figure 3), the net rate of 

transport of material toward the top layer is 

(15) 

This, of course, assumes that the particles of interest 

do not have independ~nt motion, which would provide yet another 

contribution to interfacial transport. By setting w
8 

= O 

in Equation (5) and comparing with Equation (15), it is 

evident that 

we = m21 - m12 

(16) 
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Thus, the entrainment vclucity expresses the net rate 6f 

w~ter motion between the layers, while a represents an 

average exchange rate and indicates"that interfacial transport 

is present even without net entrainrnent (i.e., 11 steady-state 11 

c~riditiqq~_with respect to layer boundaries). · 1 

Several_experimental and theoretical investigations 

[4, 12, 19] haye been carried out in the past, mostly in 

1-D.two-layer systems with one layer quiescent. The one-way 

trgnsport ~ate/(similar to mij' above) was then determined 

by the thickening of the moving layer. It was found 

pr_oportional to sorne characteristic veloci ty and inversely 

proportional to a Richardson number associated with the 

st~bility of the system. Various lerigth ~nd velocity scales 

' 
have beé·n used and, at first, the agreement between a number of 

the proposed formulas seems .to b-e-on-ly-qua"-1-r-t·a-b:ve-.-H·owe-ve·r, 

if comparable -~easures are used, a rather general expression 

emerges in the form [6]: 

m.. ~ 
)1 

Io- 3¡v. 1 
1 

Ri o 
i,j = 1,2 

(i;lj) 

where, in a 2-D domain, the overall Richardson number is 

de . .fined as 

g Llp, ~ 

Ri = p 
o -+ -+ 2 

(V. - V.) 
1 J 

( 17) 

( 1 o) 

--•. --
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and /:,p is the (small) density difference 

p is the density of either layer 

H is the average 1ayer thickness, i. e. , half the depth 

V. ,V. are 
l. J 

the depth-average velocities in 1ayers, i,j. 

The rates of interfacial transport are typica1ly small 

for· stab1y stratified water bodies: e.g., the va1ue of a 

is of the order of 10-S m/sec (ftjsec). Nevertheless, this is 

of the order of settling vélocities of fine particles and its 

contribution may becorne significant over the relatively 

large length and time scales typical of coastal areas -

especially when mul tiplied by a larg_e concentration 

difference. 

The 9se of Equation (17) is conditional on the existence 

of a mean velocity in the layer, which ~s usually the case 

in tidally dominated flows in coastal areas. However, 

interfacial transport may well be present in the abserice of 

mean flow, as indicated by experiments with frtirring grids 

[19]. Further research is needed in this area for a more 

general quantification. 

NUMERICAL TECHNIQUE 

· The finite element method is chosen for spatial discretiza-

tion because of its great flexibility in grid layout and easy 

handling of spatial variability. To find the approximate 

solution the weighted residual method is applie·d to each 

layer, resulting in the symmetrical weak form [11]. Then, the 
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domain is suL¿ivided into linear triangular e1ements, 

resulting in a set of linear ordinary differential equations 

with the nodal concentrations as unknowns: 

~1 
A 

M = ~1 
(19) 

~2 
A 

M = ~2 

In ~quation (19), M is the geometrical sys~em matrix (it 

is assurned that the spatial discretization is the same 
A 

for both layers), and p. is the forcing vector for 1ayer i 
-l 

containing advection, dispersion; decay, interfacia1 transfer, 

sources and boundary conditions. Time integration is performed 

by an implicit iterative trapezoidal scheme, as follows: 

c<i+l) 
-l,t+ót 

c<i+l) 
-2,t+~t 

~t -1 ~(i) A 

= ~l,t + ~ ~ (~~ t+~t + ~l,t) 
(20) 

Since ~ is time invariant, it has to be inverted on1y .once. 
A 

By lumping al1 other terms in P., maximurn genera1ity in 
-1 

handling time variabi1ity or non1inearity of the relevant 

parameters and 1oadi~gs is achieved. In practice, the 

iteration .continues unti1 either a measure of ~he difference 

between consecutive iterates is be1ow a specified to1erance, 

or the nurnber of iterations reaches an imposed upper 1imit. 

In the case of constant and equa1 1ayer.thicknesses, no 

entrainment and constant a, Equation (19) can be written 

in the expanded form [6]: 



(21) 

whEre A., K., D., G. are the advection, dispersion, decay, 
-1 -1 -1 -1 

and interfacial diffusion matrices; S. contains source loadings; 
-1 ' 

and F~ inc1udes the terms resulting from hhe prescribed 
-1 

boundary conditions. 

The trapezoidal integration scheme applied to Equations 

'(21) can be shown to be unconditionally stab1e, under no 

iteration, for an arbitrary grid [6]. The procedure is similar 

to that of the one !ayer case [7]. Actually, the inter-layer 

exchange term enhances the stability of the system. However, 

the itera ti ve procedure used imposes a\ restriction on the time 

step. 

App1ying the time integration scheme to (21) yie1ds~ 

M e (i+l) 
-l,n+1 = - ~t <~1+K_1+D_,l+G_)n+l c<i) + ~t G e (i) + º-1 ~ _ -l,n+l 2 -n+l -2,n+l 

M C (i+l)= _ ~t(A K D •~"") C(i) + t.t G C(i+l) + Q 
-2,n+l ~ -2+-2+-2~ n+l -2,n+l 2 -n+l -l,n+l -2 

(22) 

where the subscript n+l refers to time t+~t and the quantities 

91 , ~t2 ,,are known from the. previous time step. To investigate 

convergence of the iteration procedure, the equutions are written 

as: 

,, ( i+1) 
R \... = B c<i) + Q (23) 
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where 

c<i+l~ 
c<i+l) c(i) M o 
-l,n+l 

c<i>= 
-i,n+l 

R = 
e (i+l) c<i> ~t G 
-2,n+l -2,n+l 2 -n+l M 

~t G 
2 -n+l 

B = 

o 

The c~nvergence requirement is 

11!:-l ~11 < 1 (24) 

.-
Expressing R as a product, 

~ ol [ I 
R = 

~ -o ~t M-lG 
~.....- 2 - -n+l 

( 25) 

Jeads to 

I 0l ~-1 o 
-1 ~ ¡-R = 

~t M-lG I 'O -1 
2 - -n+l - l~ 

M 

{26) 

Since now both R-l and B involve triangular matrices, their 

eigenvalue norms are conveniéntly expressed in terms of their 

diagonal elements, Thus, coridition (24) is equivalent to 

i = 1,2 (27) 
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which implies 

2 
6t. < 1 

11M- (A.+K.+D.+G 1 1 
- -l. -J. -l -

( 28) 

A more restrictive condition is 

6t < 
2 ( 29.) 1 

These criteria are analogous to the one-layer results [7], the 

difference being the addition of the interfacial exchange 

term. 

Evaluating the matrix expressions for an individual 

equilateral triangular element of side ~s yields an 

approximation to (29) in terms of the problem parameters: 
( 

At < V. 
l. 

1.2 L'ls + 8 

1 
E. 
_l._+ 

6s 2 
k a' 
2 + 2 

' 

(30) 

where k is the decay rate 1 a' = a/H 1 Ei ..i.s the · (assumed isotropic) 

dispersion coefficient and v. is the (assumed uniform) velocity 
l. 

of layer i. As discussed earlier 1 the value of a' is 

commonly small and its contribution to limiting the time step 

will typically be marginal. Then 1 ~t is basically restricted 

by the flow conditions in the individual 1layers. 

VERIFICATION 

To test the accuracy of the numerical approximation 1 

comparisons with analytical solutions are desirable. However, 

the latter are available only under very simple flo~ conditions. 
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In Figure 5, the numerical model is compaLed with the 

solution for an instantaneous source in the top layer of a 

1-D counterflow, derived in [6]. A unit load is distributed 

between the three nodes at x = O of the grid whm~n in Figure 4, 

and· the resul ts adj·usted to yield values per uni t width of . 

the channel. A unit depth is assumed for each layer. Zero 

concentration is specified at the ends of the grid and zero 

flux is prescribed along the side boundaries. The parameters 

used are: 

vl :::: -V = 0.05 m/sec (0.164 ft/sec) 2 

El = E2 = 0.01 2 m /sec (0.108 ft2/sec) 

a = S X 10-4 
m/ se e ( 16. 4 X 10-3 ft/sec) k = o 

6t = 0.1 sec 

Very good agreement with the analytical solution is obtai~ed. 

'I'he much lower concentrations observed in the bottom layer 

support to sorne extent the traditional treatment of the inter-

face as a barrier. However, this simplification may not be 

reasonable for long time periods and is certainly not valid 

for substances possessing vertical mobility. Figure S also 

points out the great advantage of the two-layer treatment, 

in relation to the more detailed description of the flow field. 

In this particular counterflow case, the depth-average velocity 

is zero and a one-layer approach w~uld imply a stationary 

concentration peak located at the origin. 

The behavior of the model at steady state was also examined. 

The results for a continuous load, of one unit/sec, introduced 

in the top layer, ~re shown in Figure 6. A high decay. rate is 
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specified to speed up the arrival at steady-state and keep 

appreciable concentrations away from the bounqary. Th2 

remaining parameters are the same as in the transient test, 

~xcept for a higher interfacial mixing rate used to ·make t~e 

exchange between the layers more pronounced. Again agreement 

is quite good . 

. APPL'rCATION 

To establish confidence in th~ predictive capability of 

the.model and the degree of its applicability under naturál 

conditions, further verificatíon consisting of comparison to 

real world cases is necessary. Agreement can never be expected 

to be perfect, in view of the extreme complexity of the 

physical processes involved and the unavoidable simplifications 

employed in any model. Nevertheless ;- the abili ty of the model 

to reproduce certain basic features ·of the actual data should 

be evaluated. 

A dispersion experiment was carried out by the R.M. Parsons 

' Laboratory of M.I.T., sponsored by the Boston Edison Co., 

in the vicinity of the Pilgrim Nuclear Power Station on the 

Massachusetts Coast (~igure 7), in August 1975. Five hundred 

pounds of small sphalerite particles (ZnS) with fluorescent 

inclusions were introduced into the wat~r and their motion was 

subsequently·monitored for five days through samples taken 

by boat and by helicopter. By averaging, at each location, 

samples taken above and,below the thermocline, the field qata 
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wete reduced to a single representative value for each layer. 
' ' ..... 

The resulting plots, in particles/lt, are shown in Figures 8a, 

b, e, corresponding to 1 1 2 and 3 days after the dumping took 

place. The plume is seen to move slowly to the southeast, 

approximately parallel to the shoreline and later extend to the 

east. 

In the numerical simulations 1 the finite element grid was 

the same as used in previous applications of one-layer models 

to the Bay [15 1 16]. The shaded·triangle was loaded over a 

period of three timesteps (i.e., 4500 sec.) 1 which corresponds 

approximately to the ~ctual duration of the dumping. Howeverl 

the area of the triangle is quite large in comparison to the 

actual source and consequently one should expect unrealistically 

large plÚme areas for short times. The value of the (isotropic) 

2 2 
dispersion coefficient 1 30m jsec 1 (323 ft jsec)~ and the differ-

ence in tidal amplitude between the ends of the open boundary were 

kept the same as established for the one layer models [6]. The 

circulation model used to provide velocity inputs is that of 

Wang and Connor [20]. Since this requires 1 at present1 that 

both layers extend over the whole domain 1 sorne nodal depths had to 

be artificially increased to at least 15 m (49.2 ft) 1 in order 

to avoid intersection of the interface with the bottom. As ini-

tial condition 1 the position of the interface was set at 8 m (26.2 

ft), consistent with the little available information [5]. Along 

the ocean boundary the interface wa·s assumed to vary linearly and 

move together with the free surface over the tidal cycle. 
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The sensitivity to the type of interface motion was found 

small [6], but other than linear configurations were not 

examined. Actual time varying wind data were used in the 

computations, while a "typicai" tidal cycle was used repeatedly. 

The interfacial mixing rate'was set at 10-5 m/sec (3.28 x 10-5 ft/ 

-5 -5 sec) and the settling velocity at 7.3 x 10 m/sec (24 x 10 

ft/sec), based on an average particle size of 7 microns. 

Computed concentrations at 1, 2, 3 days after the injection 

are shown in Figures 9a, b, c. Taking into account the initial 

spreading of the source and the uncertainties about the velocity 

field, good qualitative agreement is observed, with respect 

to the location and peak values of the plume. 

CONCLUSI-ONS 

In this paper, the problem of dispersion in strongly 

stratified water bodies is examined. ~he two~layer idealization 

is adopted as a useful extreme case and,at thé same tim~ the 

simplest to handle mathematically. Quantitative expressions 

for the dispersion coefficients and the interfacial tran,sport 

rates, needed for engineering applications, are proposed. 

Also, a criterion for selecting the time step is presented. 

The ability of the two-layer model ~o handle transport 

between the layers was seen to be'important in providing a 

refined picture of the vertical concentration distribution, 

whether or not the constituent of interest has sorne vertical 

mobility. A further advantage of the two-layer formulation 
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" ' 
lies in the more detailed description of the velocity field. 

This, in turn, potnts out the need for using realistic current 

inputs. 

The development of numerical techniques is outgrowing 

.the present ability to define realistic inputs and also the 

basic knowledge of sorne of the physical processes involved. 

Further fundamental research is needed for better understanding 

the turbulent mixing process in_stratified environments. Also, 

field monitoring programs are required to provide reliable 

inputs, primarily on the behavior of the interface along open 

boundaries. 
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INTRODUCTION 

Experience and engineering judgment form the ~asic foundation 
for designing sampling programs. Collection of accurate.field 
data is required for verification of constituent (pollutant) . 
dispersion predictions. However, the complexity of the dis­
persal phenomenon precludes the design of optimal sampling 
strategies based

1 
upon only qualitative analyses; more substan­

tial quantitative analyses are required. 

The most informative sampling strategy would require the 
collection of samples covering the entire spatial and temporal 
domains of the particular problem at sufficiently small spatial 
and temporal intervals to ensure the identification of all 
important information. A greatly reduced number of samples is 
usually collected due to the imposition of cost constraints. 
In such cases, decisions must be reached as to which samples are~ 
arid which are not, to be collected. The importance of such 
decisions is magnified in short-term field sampling pro-
grams. In long-term monitoring programs, ene has the capabil-
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ity of altering the initial strategy to improve its effective­
ness as data becómes available. Due to the relatively short 
duration cif typical field sampling programs (e.g., tracer_ 
éxPeriments), they must be designed befare the start of the 

. sampling effort, since the results of sampling are not usually 
available until after the commencement of the fieid program. 
Thus it is desirable that a methodology be made avaiiabie 
to assist in the designing of effective sampling programs. 

Only_within the last few years have quantitative methodologies 
·tor determining spatial and temporal sampling intervals begun 
to appear in the technical literature. The particular 
methodology of interest is based upon the concepts of Estima­
tion ThÉÚ)ry (specifically, Kalman-Bucy filtering) ¡,· Estimation 
Theory refers to a variety of statistical techniques developed 
for determining best approximations of unknown quantities from 
observations (data) which are recognized as being imperfect, 
i.e., containing uncertainty. Kalman-Bucy filtering is a 
technique available ior the estimation of the states oi a 
system by the sequential extraction of information from qata, 
as the data becomes available. It has been employed success­
fully in the field of navigation and guidance of spacecra~t 
since the mid 1960's, and several investigators have recently 
attempted,to apply these concepts to environrnental pollution 
problems. Moore [1973] applied filtering techniques t9 
determine the .mínimum monitoring frequency of certain water 
quality constituents for a simulated river system·. Brewer and 
Moore [1974) extended the work of Moore [1973J to include the 
problem of determining the water quality constituent to be 
sampled and their spatial locations. Although Desalu [1974J 
did not directly address the monitoring design problem, he 
illustrq.ted the applicability of Estimation Theory to such 
air pollution problems as: i) estimation of the three­
dim~nsional distribution of pollutant concentrations from ob­
served data, ii) identification of the diffusion coefficient 
and other model parameters and iii) identification of the ~jor 
sources of air pollution. Pjmentel [1975] illustrated that ·a 
simplified formulation results when measurements are made 
infrequently. This approach required ignoring the advection of • 
the constituent; only diffusion is considered, an assumption 
unsuitable for estuarine ai:-eas. In addition, the importan·t 
question of what is the maximum rate of sampling tha"t can be 
considered as infrequent was not addressed. 

A cormnon deficiency of the above studies is the lack of effort 
directed at quantifying the rnodeling uncertainty. Although 
fil tering concepts are s t ra ight forward, difficul ty arise·s in 
their application. A major cJifficulty is the quantificat:io·n 
of the rnodeling uHcertainty. Lettenmaier [1975) consiéle·rs 
uncertainties in tributaries, waste sources and cer-tai-n :p·a·ram­
eters in his approach to clesign of river monitoring jnogr-a-rns 
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for detection of water quality trends. The use of a steady­
state ene-dimensional model and temporally constant uncertainty 
statistics severely restricts its usefulnes~. The work of 
Dandy [1976] appears to be the most complete study published 
to date. He considers the design of riverine monitoring pro­
grams using a ene-dimensional transient model of the advection 
of ~ater quality constituents. Modeling uncertainty due to 
randomly varying streamflow, tributary discharges, and waste 
sources is considered. However, he neglects constituent dis­
persion and model parameter uncertaintie's, and uses a simpli­
fied representarían of the hydrodynamics. 

In this paper, the analytical framework for applying Kalman­
Bucy filtering te dispersion in a coastal water body is 
developed. Particular emphasis is placed on quantification of the 
model uncertainty due to model parameters, source loadings, and 
velocity.fields. The fonnulation is díscretized wíth the 
Finite Element Method, and a number of comparison studies are 
presented. 

\ 

In what follows, we outline first the filtering strategy, then 
describe briefly the Fínite Element implementation, and 
lastly discuss sorne examples. 

FILTERING CONCEPTS 

Consider a linear, discrete mathematical model of the following 
forro: 

where 

(1) 

X is a n-dimensional system state vector 
~ is a n x n dimensional state transition matrix 
~ is a n-dimensional vector of known deterministic inputs 
S is a n x n dimensional factor matrix of the deterministic 

input vector 
n is a n-dimensional vector of model uncertainty having. 

zero mean and covarianc'e QM , as designated by 
{O,QM ) (t) 

(t) 
( ) t+ót represents ~he array e val uated at time t+ó·t 

( )t represents the array evaluated at time t 

6t 'is the time increment 

The state-space model form of Equation 1 allows the calculation 
of the system state ve~t6~ at time t + At from the system stat~ 
vector at time t. Since ~( ). is independent of Xft)' the model 
is linear in the independerlE variable~ ). lt ig álso discrete, 
as opposed to continuous, since it alloJ~ the computation of the 
dependent system state vector at only discrete times {temporally 



spaced 6t units of time apart). The deterroinistic rnodel vould 
not normally include the last term, n . It is included here 
to signify the uncertainty in·the res~f~s predicted by the . 
deterministic model. Specification of a zero mean model uncer­
tainty defines an unbiased mode1. If the model is biased~ and 
the value of ·the bias is known, the model uncertainty can be 
represented by·a deterministic bias anda zero mean random con­
tribution. 

Consider next, the following linear, discrete forro of the ob- . 
serva tions: 

Z =H X +v 
-(t) - (t)-(t) .!..(t) 

(2) 

where 
z -(t) 
H 
- (t) 
.r.c t) 

is a m-dimensional vector of field observations 
is a m x n dimensional observation matrix 
is a m-dimensional vector of observation uncertainty 

having zero mean and covariance Q ~ as designated 
by (O,Q ) 

0 (t) \ 
o (t) 

The observation matrix~ ~( )' designates the locations at which 
the data is collected. Attéach time step, a nev observation ma­
trix may be fo.rmulated, with the number of rows corresponding to 
the number of observations at that ·time. For each row, zeros 
(O's) appear in all columns except the column corresponding to 
a node of sa~pling; in this column, a one (1) is pláced. For 
example, if only node 2 is measured in a 4 node system, the 
observation array will be: 

[O 1 o O] 

Information from the model and observations can be combined by 
Kalman-Bucy filtering, as presented by Gelb [1974], Jazwinski 
[1970), and Schweppe [1973]. Th~ first stage of the filter (i.e., 
prediction state) entails the extrapolation of both the state 
estimates and the system error covariances forward in time to the 
next discrete time point using the system mode1 of Equation l. 
Assuming that the model uncertainty is uncorrelated in time, the 
predicted system error covaríance is: 

where 

r = ~ r 1 ~ T + Q _(t+ht!t) _(t)_(t t)_(t) _M(t) 
(3) 

~(t+htlt) is a n x n dimensional Eredicted system error 
covariance matrix evaluated at time t+~t, given 

is a 
measurements only up to and including time t• 
n x n dimensional updated system error ·covarianc."' 
matrix evaluated at time t, given measurements u¡ 
te and including time t 



The above expression emphasizes that the system uncertainties 
are propagated through the model in a way analogous to the system 
states themselves. The model error covariance, Q , arises 

M(t) 

dueto the error"introduced in the propagation of the system 
errors from one time step to the next by use of the model state 
transition matrix. 

The updated system states are obtained from the predicted sys­
tem states and a linear weighting of the difference between 
thP- predicted system values and the observations as: 

x(t+llt) = x(t+t.t) + ~(t+llt) [~t+t.t)-~(t+t.t)x(t+.6t) J (4) 

where .... 
X(t+.6t) is the n-dimensional vector of updated system 

states 

Since minimum variance system state estimates are desired, 
that weighting function is computed Which minimizes the lrace 
of the predicted error covariance matrix. This weighting 
funct~on, specifically called the Kalman gain matrix, is: 

K 1: HT [H ! HT ~ ]-l 
_(t+t.t) = _(t+t.t!t)~(t+.6t) _(t+6t)-(t~t!t)_(t+.6t) o(t+.6t) 

~(t+t.t) is the n x m dimensional Kalman gain matrix 

, ( )-l indicates the inverse of the given array 

( )T indicates the transpose of the given array 

:es) 

It is seen from Equation 5 that the Kalman gain matrix is 
computed from the weighting of the uncertainties in the predic­
~ed system values and the observations. With such, the updated 
system uncertainty is computed from: 

K H ]I: 1 _(t+~t)_(t+t.t) _(t+6t t) 
(6) 

where 

I is an n x n dimensioruJ identity matrix 



From the above, ii is seen that the updated system error co­
variances can only be less than or equal to the predicted sys­
tem error covariances. With perfect data, the system error 
covariances are reduced to zero at the locations of sampling. 
With uninformative data, the updated system error covariances 
vill correspond exactly to the predicted system error covariances. 
An extremely irnportant characteristic of the system error co­
variance update is its independence of the actual data values; 
only the statistics of the data uncertainty are required. This 
property allows the system error covariances to be computed 
before the data is made available, and thus, can be made to 
assist in the design of data collection programs. 

To summarize the filtering process and computational require­
ments, the filter equations are presented in the flowchart of 
Figure l. Whether data is available or not, the predicted 
system states and system error covariances must be calculated 
at each time step; the major computational cost of the filter 
is incurred here. In actuality, the computational difficulty 
and cost of filtering depends on whether the errors are ~hite 
or colored (temporally·· invariant or correlated), and on 
whether the system is linear or nonlinear. The filteríng al­
gorithm presented here has made use of simplifying assumptions 
appropriate for linear system dynamics and temporally uncorre­
lated errors. For more detailed descriptions of filtering,· 
the reader is.referred to the works of Gelb [1974], Jazwinski 
[1970], and Schweppe [1973]. 

DETERMINISTie DI.SPERSION NODEL 

The deterministic model employed here is a vertically averaged 
two-dimensíonal finite element discretization whích ís applícable 
when the velocíty and concentration vary slowly over the water 
column, i.e., for well míxed condítions. We have restricted the 
treatment to a vertically averaged formulation sínce our objectíve 
was to ínvestigate the computational feasíbílíty of applying 
filtering techniques and a three-dimensional treatment would be 
premature at this time. 

Integrating the general convective diffusion equation over the 
water column results in the following governing equation 
(see Leimkuhler [1974] for details): 

j} 
+-ª-- (Ü e) 

j} - a a --e + -- (ve) :: - ()x Qx -ay~ + S. + S + sb (lt Clx ()y l. S 

where 
e is the depth integrated concentrat~on, 

e= pe· h 

(7) 

p is the mass density of the constituent aod water mixture 
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e, u, v are the aepth-averaged values of concentration and 
horizontal velocity components 

h is the total height of l.later column 
~i i~ the constituent- mass input rate per ut~it projected area 
Ss, Sb are the normal source loading flu~ components through 

the surface and bottom of the water column 

1ne flux terms are approximated with isotropic Fickian disper­
sion expressions, 

h E ()e· 
p "x x,y o 

(8) 

a-e (C; > O =-phE , 
~ x,y ay o 

where E is the isotropic disper5iOn coefficient 
For the parti~ular case of settling of discrete particles (e.g., 
sphalerit~ tracer particles, suspended sediment, etc.), the · 

o source and sink terms are simplified by assuming a first arder 
decay rate due to the settling velocity of the particles,and 
constant concentration through the layer. This yields 

s. + s + sb = s. - p w e 
1 S 1 S 

(lO) 

where w is the particle settling velocity. 
S 

For coastal problems, the concentration is specified as C = O on 
the ocean boundary when the boundary is far from the plume. o The 
normal dispersive flux is specified as Q = O along the land 
boundary. If the plume intersects the ogean boundary, the normal 
dispersive flux can be prescribed as being equal to zero provided 
that the concentration is constant outside the domain. 

Equation (7) is transformed to its symmetrical weak form and the 
Finite Element spatial discretizatiori is applied. The details 
are presented by Leimkuhler, et al (1975), and we list here only 
the final form of the governing equation:: 

M -ª.._ e + A • e + E • K • e + w • D • e - S + F = O (11) 
- é)t - - x,y S 

where A contains the advective terms, K defines the dispersion 
component, ~ refers to decay, ~ contai~s the source loading, and 
I: represents the dispers'ive bouodary flux term. 

.-

The trapezium method is employed to propagate the solution in 
time. In the deterministic case, the scheme is relatively inex­
pensive since the state transition matrix, ~. does not have to be 
generated. However, it is required for tlte-covariance propagation 
If advection is treated with the "pure" trapezium, the generation 
of ~ would require matrix factorization at each time step. To 
redüce this effort, an Eulerian approximation for advection, is" 
introduced and the solution is propogated vith 



[M+ ~t (E ·K+ w · D))C ~[M- ~2 t (E • K+ w • D) 
2 x,y s - -n+l _ x,y s 

where 

- ~t - A Jc + ~2 t c--ns +l + s > 
-n -n n (12) 

( .')n designates the given array evaluated at the discrete 
time point, t 

~t is the time incr~ment 

The Euler approximation for advection decreases the stabili~ 
_ limit but this is -usually-not a problem for coastal disp-ersion • 

····· 



QUANTIFICATION OF DISPERSIOH MODELING UNCERTAINTY 

The majar effort required in applying Kalman-Bucy filtering to 
coastal dispersion problems is quantification of the modeling 
uncertainty. Since coastal dispersion generally involves a . 
large number of unknowns, only a first-order uncertainty analysis 
is feasible. In first-order analyses, each variable is consid- · 
ered to be a random function in which the mean represents the 
best estímate of the variable, and the variance quantifies the 
uncertainty in.the estímate. 

To compute the uncertainty in the predicted concentrations, 
due to parameter and input uncertainties, the deterministic 
model is expanded in a Taylor series about th.e mean values of 
the yariables. Retaining only first-order terms, results in 
the following equation which defines the propagation of the 
uncertain.ty in concentration: 

[M+ ót (E ·K+ w ·D)J e 
- 2 x,y s t+6t 

= [M - ót (E • K + w • D) 2 x,y _ s _ 

-. [ 6
t
2 

(Ex,y • K + ~ · D) + 6t ·A J .S. 
t - st - -t ~ 

r6t (Ex,y . K + v • D) 1 S.+,.t 
2 t+~t st+ót ~ u 

(13) 

where ( )t representa the uncertainty _in the given variable at 
time t 

Our representation of the model parameters and inputs.is 
equivalent to considering the uncertainty about the mean 
value as a zero mean process. The isotropic dispersion co­
efficient and first-order decay rate uncertainties. are inter­
preted as 

~,y~ (0, aE2x,y) 

( a 2 ) V ~ 0, 
S V 

S 



2 nts the variance of the uncertainty in the where ox represe 
variable x 

Representation of the model inputs uncertainty creates more 
difficulty. For multi-location source discbarges, each dis­
charge would normally have its own characteristic level of 
uncertainty. However, to simplify,the loading is expressed 
in term5 of a single loading parameter and a vector defining 
the spatial distribution of the loading as, 

where 

S. - ' R 
~ "t -t 

At is the loading parameter 

R .is a vector describing the geographic locations of 
--t the loadings 

If only ene source location exists, such as in most tracer field 
experiments,the above expression is exact. The uncertainty 
in the loading parameter is represented as a random function 
with zero mean and prescribed variance, 

where 
~t is the source loading uncertainty 

2 aA is the variance of the source loading uncertainty 
t 

The flexibility of handling temporally and spatially variant 
velocity fields creates difficulty in representation of the 
advection field uncertainty. Our approach is based on form­
ulating the uncertainty at the elem~nt level similar to the 
formulation of the element advection matrix of the determin­
istic dispersjon model. 

Equation 13 sho~s that the effect of velocity uncertainty on 
the uncertainty of the predicted model concentrations is 
determined from 

[M + ~ (E • K + w . D)) -te +At = -ót. A • e (14) 2 x,y _ s o _t -t 



The advection uncertainty term is decomposed into inf1uence 
matrices and vector_s of the x and y component ve1ocity fie1d 
uncertainties as 

-llt· A • C =A (u). +A (v). v 
-t -"t - t ~ t -'-t 

(15) 

vhere· u is the vector of x component ve1ocity field uncer­
-'-t tainties · 

~ is the vector of y component velocity field uncer­
, tainties 

Using Equations 14 and 15, the following factor' matrices can 
be ~efined (details are presented in DeGuida [1976]): 

~ = [M+~ (E _u,t _ 2 x,y 
K+ w • D)]-1 .A (u) 

S - - t 
(16) 

~ = [H + ~ (E _v,t _ 2 x,y 
K + w • D)] - 1 • A (v) 
- S - - t 

(17) 

Col1ecting the various uncertainty contributions, the two­
dimensiona1 model unc~rtainty expands to: 

f...+At = ~ + e ... u _c,t6t--t 

if•Y. m ·· ix,y 
+ t .LE ,t + t+At. ÍE. ,t+llt 

x,y x,y 

+w· .d. +w • .1. 
S: · .ZW t., S ·. .l:. W t+flt 

t s t+L\t s' 

+ A t . i A , t + "- t+6 t . i A , t+ll t 

+~ .u +~ .v u, t - t V, t - t 
'(18) 

where 

~ _c,t+6t 
= [M + L\

2
t (E • K + w • D) f-l 

x,y s 

[M - ót (E K ) + w • D -L\ t . A ] 2 x,y s _t 



A -1- At = [M + __!_ (E • K + w • D) J (- - • K • e ) _ 2 x,y s _ , 2 _ ~ 

= [M+ At
2 

(E · K+w • D)]-1 
x,y s 

(- ~ ) 2 ·K· e t+flt 

K+ w • D) ] - 1 (- A t ~ D • e ) 
S- 2_--t 

[M+ bt ( )]-1 = 
2 

E • K+w .D _ x,y s _ 

!,.,t- [~+.6~ (E • K + w • D) ] -l 
x,y s 

A = .[M + At 
.:r.. X, t+út 2 (E .K+w .D)] x,y _ s _ 

(At • R ) 
2 - t 

-1 

~ t and ~ are as defined in Equations 16 and 17. _u, _v, t 

The propagation of the variance is obtained by squaring the 
uncertainty and taking the expected value. The two-dimension­
al form is, assuming stationary random processes (i.e., time 
invariant statistics of the uncertainty) (see DeGuida [1976)): 

r = ~ ·r ~T _c,t+At _c,t+At _c,t _c,t+6t 

2 T T 
+ C1Ex,y_ [_tE t fE t + ÍE , t+At !E , t+At 

x,y' · x,y• x,y x,y 

- . 

+ C1'W 

2 
fiw . t ¿ . t + ~ • t+'ót ~-~ 't+fl t 

S S S S S 



where 

+ (~ tb tbT') + (~_c,t+ll.t ~s.t _¿s,t)T] _c,t+6t ~.t ~~.t • 
S S 

T T T 
+ (~c,t+ll.t i>.,t i~,t) + (~c,t+ll.t .!>.,t ~>.~t) J 

+ ~ r l + rfl r ~T _u,t -.u _u,t _v,t _v ._v,t (19) 

r is the variance of the mgdel predicted concentra­
_c,t tions at time t 

r _u 

r 
-V 

is the variance of tbe x-directiona1 depth averaged 
ve1ocity components 

is the variance of the y-directional depth averaged 
velocity. components 

SAMPLING EFFECTIVENESS DETERMINATION 

Once the mode1ing uncertainty is quantified, a Kalman f~lter­
ing algorithm is developed to quantify the effectiveness of 
samp1ing, as has been shown by previous investigators (e.g •• 
Moore (1973), Brewer and Moore (1974), Pimentel (1975), and 
Dandy (1976)). With Kalman filtering, all that needs to be 
specified for the update of the system uncertainty are the 
observation matrices defining the locations of measurements 
in time and the statistics of the uncertainty in those 
measurements. If an estimate of the measurement uncertai.nty 
is available, the system uncertainty can be propagated in 
time, considering different observation matrices, i.e., 
different sampling strategies. Comparing the system un­
certainty allows one to evaluate the potential effecti~eness 
of various sampling strategies befare the actual experiment 
is performed. 

In designing sampling strategies by Kalman filtering, care­
ful analysis is required in defining the observation matrices. 
The formulation as stated is entirely general, such that an 
infi~ite number of possible sampling netvor~ (i. e., defini­
tion of the time-varíant spatial locations of sampling) can 
be analyzed, if so desired. However, specific characteris­
tics of each problem will normally limit the possible number 



of sampling strategies to be tested. Of concern might be 
such factors as budgets allotted for sampling. required 
level of information from sampling. restricted sampling days 
and/or hours of sampling (e.g., only sunlight hours), politi-· 
cal boundaries, certain legal aspects, and so on. All these 
factors, and many more, will probably influence the selection 
of possible sampling strategies. Of extreme importance here 
is the use of experience in sampling and engineering judgment. 

For observations to be informativa, the uncertainty of the ob­
servations must be less than the uncertainty in the predicted 
concentrations, i.e., the updated system uncertainty must be 
less than the predicted system uncertainty. It is therefore 
natural to choose the sampling strategy of minimum system 
uncertainty (i.e., the mínimum system error ·covariance 
rnatrix). However, as the duration of time increases after 
~he.last observation has been made, the system uncertainty 
increases until finally no reduction in the system uncertain­
ty is noticed. Therefore, at different times, different 
measures of the effectiveness of sampling would be obtained. 
To compute the sampli~g effectiveness over·the entire time 
duration of the experiment, the reduction in the system error 
covariance matrix (i.e., predicted syatem error covariance 
matrix minus updated system error covariance matrix) is calcu­
lated at each time a sample is cóllected. Since the majority 
of the reducfion occurs in the uncertain variances (i. e., 
diagonal elements of the system error covariance matrix), only 
the reductions in the trace are computed. Summation over time · 
of these component reductions leads to a total measure of 
sampling effectiveness. }~ximization of the total reductions 
of the system uncertainty is therefore an appropriate measure 
of sampling effectiveuess for the specific problem of tracer 
experiments. 

Some may criticize the previously describeJ optimality criter­
ion for the simplistic way of defining the feasible set of -
sampling strategies. i.e., observation matrices. In reality, 
even though a particular sampling strategy may not satisfy 
all the constraints, the penalty·incurred in the constraint 
violation may be so small that the design will be more effec­
t:ive th.an all the others tested which satisfy the imposed 
constraints. These problems can be avoided by the definition 
of a utility function which could be made to reflect the value 
of sampling in light of al! the cornplicating factors. The 
criterion for determining the most effective sampling network 
would be'that network which maximizes the expected utility. 
Such a maximization of the expected utility has become a 
traditional objective in Bayesian statistic~l decision theory. 

A majar disadvantage of defi?ing the sampling effectiveness as 

/ 



maxímization of the expect~J utíltty is the difHculty of ex­
pressíñg the utilíty in mathematical form. It is often very 
difficult to quantify certain characteristics of the problem; 
ít may be practically feasiole for only very specíal cases. 
TI1erefore, in light of the necessity t~ develop simpler eval­
uati9n criteria, evaluation of only feasible sampling strate­
gies, as previously described, appears to be the most appro­
priate for the purposes of this study. 

RESULTS 

For purposes of illustrating the usefulness of the filtering 
algorithm for evaluating sampling effectiveness, sorne results 
for the ene-dimensional modeling of a channel are presented 
first. The finite element grid used is shown in Figure 2. 
A constant depth of 1 meter is used. ~ontaminant is contin­
uously injected at the source node. Zero concentrations are 
specified at the extreme ends of the grid (i.e., at x =O and 
x = 3 meters). A time increment of 0.1 seconds is used in 
the model. The mean values and standard deviations of the 
model parameters and inputs are: 

Parameter 

longitudinal 
dispersion co~ 
efficient 

first arder decay 
rate 

Input-' 

longitudinal flow 
velocity 

continuous source 
loading rate 

Mean Value 

2 
0.01 meters /sec 

0.2/sec 

0.05 meters/sec 

1 gram/sec 

Standard Deviation 

2 
0.005 meters /sec 

0.1/sec 

0.01 meters/sec 

0.1 gram/sec 

In addition, the standard deviation of the measurement 
uncertainty is taken as 0.01 grams/rneter3. 

F~amination of the deterministic solution shows that the peak 
concentration occurs at the source location. Therefore, the 
first sampling strategy evaluated cónsisted of sampling at the 
source discharge location (node 9 in Figure 2) every second 
after the start of discl1arge. Since the trace of the error 
covariance matrix is the desired me asure ,of sampling eff ec­
tiveness, a plot of the trace of the error covariance matrix 
versus time is presented in Figure 3. The salid line in the 
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figure represents the modeling uncet·tainty (i. e., system un­
certainty with no measurements); the dashed line represents 
the system uncertainty as measurements are taken. Each 
measurement reduces the system uncertainty at the time of 
measurement. However, as time progres.ses, the system un­
certaL~ty increases, but not qulte to the level corres?onding 
to no measu't'ement. This indit:ates that the measurements are 
informativa. A measure of their value is the total reduction 
in system uncertainty over time. 

Figure 4 shows the variation of system uncertainty with dis­
tance from the source. The salid line defines the standard 
deviation of the system uncertainty immediately befare the 
measurement is taken at 10 seconds; the dashed line is the 
"corrected" dtstribution. The. effect of the. measurement is 
qui~e local, reducing the system uncertainty to essentially 
the measurement uncertainty at the observation point but 
diminishing rapidly away from the source. 

Figure 5 illustrates the effect of sampling every second after 
the start of discharge at the-source node and half a meter 
downstream (i.e., nades 9 and 13), as measured by the trace 
of the error covariance matrix. Figure 6 sho~s the reduction 
of the system uncertainty as a function of distance from the 
source at 10 seconds after start of discharge. The additional 
do~stream observation point reduces the covariance trace, 
a~d also inc~eases the spatial extent of the correction. The 
effect of increasing the sampling frequency while· sampling at 
only the source node is illustrated by coruparing Figures 3 
and 7. Figure 7 illustrates the effect of taking a sample 
every half second. 

Considerable interest in the Massachusetts Bay environment 
has been expressed in connection vith a once proposed offshore 
sand and grave! dredging project called NOMES (New England 
Offshore Mining Environmental Study). Such interest has moti­
vated this study, and it seemed logical to attempt a simul~­
tion of the NOMES dispersion experiment. 

The finite element grid of Massachusetts Bay is shown'in 
Figure 8. The ability to use elements of different sízes and 

.shapes affords the flexibility required to model such complex 
geom2tric configuratíons as Massachusetts Bay. The dump site 
of tracer particles (sphalerit~) is indicated by the starred 
area. Depths at the nodal points are taken from the Coast and 
Geod.etic Survey bathymetric chart 0808N..:..so. 

Velocity time histories ~ere generated with. a two-dimensional 
finite element circulation model~ CAFE (Circulation Analyses 
by Finite Elements) (see Wang and Connor [1975])using simu­
lated tidal input and actual uind conditions collected during 
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the time period of· the experiment. 

In the NOMES experiment, appraximately 1200 lbs. of sphalerite 
particles (mean diameter of approximately 5 microns; esti­
mated 2.9 x 1015 particles) were dumped in a small area to 
simulate a poínt source discharge. Discharge began approx­
imately one hour befare low tide and !asted for approximately 
10 minutes. Certain approximations are required in the math­
ematical modeling of the discharge. In the numerical simula­
tion, it is necessary to take the duration of discharge equal 
to at least one time increment. (The time increment used in 
the dispersion model is 900 seconds.) In addition,-although 
the discharge was essentially a point source, the source has 
to be distributed over a larger area (starred in Figure 8) in 
arder to reduce the high concentration gradients which intro­
duce numerical difficulties. In addition, the finite element 
grid is ~efined in ~he general dischargé area for the same 
reason. Due to the spreading of 'the source over larger 
spatial and temporal scales, initial spreading is expected to 
be greater for the numerical results than in the actual ex­
periment. With incrcasing time, this discrepancy should 
vanish. 

The first arder decay rate due to particle settlin-g is ob­
tained from Stoke's Law and assuming a uniform concentra­
tion profile over the water column depth as 3.3 x lo-5 
m~ters/sec. The isotropic dispersion coefficient is chosen 
as 30 meters 2/sec (Pearce and Christodoulou R97~). 

Sensitivity of the dispersion model to uncertainty in the 
dispersion coefficient is addressed. Taking the standard 
deviation of the isotropic dispersion 2oefficient as 50% of 
the.mean value (i.e., aEX,y~ 15 meters /sec), the effect on 
the predicted concentratiohs is shown in Figure 9 for a time 
of 12 hours after dump. Since dispersion is influenced by 
the concentration gradicnt, largar concentration uncertainties 
are expected in regions of steep concentration gradients. 
This is confirmed by the results shown. 

Figure 10 illustrates the model sensitivity to a standard 
deviation of the decay rate equal to 50% of the mean value 
(i.e., aws = 1.65 x lo-5 meters/sec) ata time of 30 hours 
after dump. The model is observed to be less sensitive to a 
50% of mean value standard deviation of the decay rate un­
certainty than the dispersion uncertainty. The largest 
effect of the decay rate uncertainty is observed at the high­
est concentrations, as is expected. 

The extent of application of the filt_ering algorithm for 
quantifying sampling effectiveness at the NOMES site was 
severely restricted by the high computational cost. For 

.-, 
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simulating the experiment for two full prototype days. the 
50 state variable problem (see Figure 8) is req.ui red, but 
the computational problem is much too large for extensive 
simulation. 

Given computational cost constraints, only· one hypothetical 
sampling strategy was evaluated·. Sampling was initiated· at· 
9:OOa.m. on the da y f ollowing the dump (i. e. , corresponding 
madel time step 88). Samples were collected at the model 
saurce loading nades every hour, until the completion of the 
sampling day at 4:00p.m. (i.e., corresponding to model time 
step 116). For purposes of presentation, the modeling un­
certainty was computed from the uncertainty in the decay rate 
only. Figure 11 illustrates the effectiveness of the defined 
sampling strategy. In this figure~ ene observes the reduction 
in the system uncertainty due to the sampling effort. .\n in­
teresting result is the very slow increase of the system un­
certainty after the completion of sampling. Unfortunately, 
due to computational cost constraints, it was not possible 
to calculate the time duration after which ~o effect of the 
sampling would be felt. 

CONCLUSIONS 

Although a limit~d computer budget restricted tbe application 
t~ the NOMES experiment in Massachusetts Bay, these applica­
tions and extensive applications of the ene-dimensional form­
ulation have provided useful information on its computational 
cagts and applicability. 

The assessment of sampling effectiveness is made possible by 
filtering techniques. It allows the investigation of altered 
spatial and temporal frequency of sampling. However, tbe 
methodology does have limitations. One of the most critica! 
is the requirement of the state-space representation of the 
system dynamics. Models are not generally developed in this 
form, due to the computational efficiency of other solution 
fa~ and the non-intuitive natura of the state-space form~ 

Although computation of the modeling uncertainty due to un­
certainty in the dispersion coefficient, decay rate, velocity 
field, and source loading is presented, other uncertainty 
sources are not included. Uncertainty arises from assump­
tians made in the model formulation itself, which is difficult 
to quantify. For example, madels are imperfect due to tbe 
assumptions of the applicability of Fickian diffusion and 
representatian of naturally variant three-dimensional water 
bodies by lower dimensional models. Physical discretization 
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of the continuous problem, both spatially and temporally. 
introduces numerical errors. By refining the gr-id and re-­
ducing the time increment, more accurate results are obttiined, 
but at the expense of increased computational costs. In 
addition, round-off error can have significant effect on 
modeling results, but unfortunatcly has not received much 
attention. 

The majar reason for not including the effect on the modeling 
uncertainty of the above factors is the increased computation­
al cost required. As is, calculation of the modeling uncer­
tainty due to úncertainty in the parameters and inputs is 
costly for large systems. Calculation of the ene-dimensional 
modeling uncertainty took roughly about 2 minutes of CPU time 
on an IBM 370 mpdel 168 computer for a simulation of 21 nades 
for 100 time steps. In comparison, calculation of the two­
dimensio~al mode1ing uncertainty in application to Massachus­
etts Bay (neglecting uncertainty in the velocity field) took 
roughly 90 minutes of CPU time on the same computer for a 
simulation of ·50 nades for 144 time steps. Therefore. for 
large systems, the cost of computing the modeling uncertain­
ty does become excessive; the additional cost of the Kalman 
filtering algorithm is insignificant. 

An especia11y important conc1usion of this study is the 
necessity to quantify the modeling uncertainty by a re1ative1y 
detai1ed analysis. Many previous investigatórs (e.g., Moore 
(1973), Brewer and Moore (1974) and Pimentel (1975)) have ob­
tained constant values of the mode1ing uncertainty based · 
strict1y upon subjective judgment. This practice is not ad­
visable, as this work has shown the 1arge spatial and tem­
poral variability of the modeling uncertainty. 

The tradeoff between computational cost and accuracy in quan­
tifying the mode1ing uncertainty is evident. For simplistic 
ene-dimensional modeling attempts, the ~e1atively low 
computationa1 cost justifies detailed modeling uncertainty 
ana1yses. The modeling uncertainty due to model assump-
tions, physica1 discretizations, round-off error, etc.~ should 
be addressed. On the other hand, difficu1ty in justifying 
the excessive computational cosí:s of two-dimensional mode1ing 
of a Massachusetts Bay size problem exi~ts. Although it is 
felt that the investment made in the simulation of a field 
experiment befare it is actually performed will pay for itse_lf 
in the higher return of infunnation, the initial capital ol,lt­
lay for computational time may deter the use of such a method­
ology. Cheaper methods of ca]cu]ating the modeling uncertain­
ty é!re needed. 
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The general problem of lake circulation is very complex and remains unsolved 
for practica! engineering needs; wide use, however, has been made in recent 
years of the steady-state solution to the circulation of a nonstratified lak~. 

A finite element program described in Ref. 3 has had considerable utilizatio1, 
in many part~ of the world. This paper extends that analysis to transient problems. 

A stéady-state analysis uses the Ekman generalizations of Welander (1 1) under 
the re~trictions of constan! vertical eddy viscosity, no horizontal eddy viscosity, 
anda smalll<'.ossby number. Under these conditions the three-dimensional velocity 
field ::an be found in an efficient manner since the depthwise variation of the 
horizontal velorities is removed through integration in the vertical. A finite 
diff erence program using thi~ technique is described in Re f. 6. The finite element 
program (3) was written to take advantage of thc finite element network's ability 
to répresent odd geometries and for the e ase of universal use, including simplified 
input data and me~h generation. Considerable success has been reported. 

A transicnt solut10n. described in RcL 4, exists. There the vertical velocity 
variation was removed by a Fouricr transform, but the evaluation of a considerable 
number of Fouricr series terms each time step proved to be inefficient. A fuli 
threc-dimensional velocity analysis (5) was as efficient and more general. The 
method described herein uses a Laplace transform with numerical inversion. 
The technique of removing the vertical velocity distribution fits easily into the 
method; abo, the program does not step through time in the finite differem;e 
~ense but needs to be run only about six to 12 times in a typical analy1>is. 
The gain in ~ase in handling such problems is very large, as is the increase 
in efficiency. 

Techniques frequently used for time-dependen! problems within the framework 

NoÍe.-Discussion open until July 1, 1977. To extend the closing date one month. 
a written request mus! be flled with the Editor of Technical Publications, ASCE. This 
paper 1S pan of thc copyrighted Journal of the Hydrauhcs Division, Proceedings of thc 
American Soc1cty of Clvd Enginecrs, Vol 103, No. HY2, f'ebruary, 1977. Manuscript 
was submilled for rev1ew for possible publicallon on April 14, 1976. 

1 Resean.:h A~soc., School of Civ. and Environmental Engrg., C01nell Univ., Ithaca, 
N.Y. 

2 Prof., School of Civ. and Envi10nmental Engrg., Cornell Univ., Ithaca, N.Y. 
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of the finite element method include Runge-Kutta integration ( 1), finite differences 
in time (10), and finite elements in time (2). An interesting example of the 
step method used to sol ve a practica( problem is cited in Ref. 7. In that calculation. 
time steps of 2 m in were u sed to simulate up to 4 hr of real time. In addition, 
an itera ti ve method was u sed. The number of solutions using the La place transform 
technique is an order of magnitude less. Unfortunately, algebraic development 
of the present scheme is difficult and lengthy, e ven though the probkm is 
conceptually straightforward. In order to avoid stumbling over the algebra, many 
of the expressions have been placed in Appendix l. 

GovERNING EauAnoNs 

Basic assumptions and derivation of the governing equations are exactly the 
same as in Ref. 4 and will not be repeated herein. The equations are 

au 1 ap a2 u 
- - fv = --- + TI -- . 
at p ax az 2 

. . . . . . . . . . . . . . . ( 1) 

av ( ap a2 V 

- + fu = --- + TI -- . 
at p ay azz 

............... (2) 

1 ap 
g= ---. ................................ (3) 

p az 
au a~- a..-
- +- + - =o .............................. (4¡ 
ax ay az 
Subjected to the boundary conditions 

u=v=w=O on all solid boundaries. :.:=-h. . (5) 

au av 
and TI--= T ,; TI-= T Y at the free surface, 

az az. 
. (6) z =o. 

Th.:: nlllation rs defined in Ref. 4 and is includcd in App.::ndl\ 111. The follovving 
nonJime11~ional pdramcters are defined: 

X 
x* =-; 

L 

V 
v* = ..:...... . L. 

v* = (~~) r; w* = 

[ 
fl.T ] 

,l * = -TI---: ; and 

u*= (;~)u; z 
... = -~; t"' = ft; 

D 

p • = c:D ) + (~ ) ; ( fU. )w: 
gD-

h 
h* = -; 

D 

f * = [!_L~ '-]. 
116 

The~e vari:-tble~ are rntroduced into thc cqu<~tiuns. and th.: astcrisks are omi!td. 
Herr:<~flcl. only dimcnsionkss ,·ar¡af--1..:, app•:ar (ex..:..:pl in the ddmillvn of the 
Ta~lor and EknMn nurnbers). The JrTJien,wnk,~ equation~ are 

ap a2 !1-

ar 
- l = -- + ----

ax 2m 2 :J::.~ 
. i7) 
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av ap a2 v 
-+u=--+---- ........ . . (8) 
ot ay 2m 2 az2 

ap 
--=0 

au av aw 
-+-+-=0 
ax ay az 

.......................... (9) 

............... ' ........ (10) 

With the boundary conditions 

u= v = w =O at z = -h .. ................ (11) 

au av 
and - = ,l ; - = r -at z = o . ~ (12) 

az az 
To this point, the details can be found in Ref. 4. The problem is described 
in terms of three parameters: m (in which 2m 2 = [D 2/l] = Ta, the Taylor 
number, or !/2m 2 = E, the Ekman number); ,l; and f. In addition, depth 
is a prescribed function of the horizontal coordinates, h = h (x, y). 

SoLUTION 

The time derivatives of the equations are removed by means of the Laplace 

transform. The transformed variables are 

ü = J: ue-" dt ........................ · · · · · · · · (13) 

Thus all terms are multiplied by e-sr and integrated to yield 

a{J a 2 ti 
s :i - v = - - + -----;-- ---; 

ax 2m· a:· 
• • • • • • • • • • • • • o • o • • • • • • ~ • • (14) 

a{J a 2 i' 
Sl" + Ü = -- + --- . . . . . . . . . . . . . . . . . . . . . . . . . ( 15) 

ay - 2m~ az 2 

..........•.......... ( 16) 

a,; ar al\· 
-+-+-=0 . • . • • • • • • • • • • • • • • • . • • • • ( 1 7) 

ax ay a: 

with bounJar r conditions 

,; = i = 1i = O at ~ = - h (18) 

ali ai 
t ami --- = ...l = at ;: = o ( 19) 

a: a: 
·\ls·•- rntr·~d C•1ndlt'·)ll~ of 11 -=- ,. = o ha\e been u~ed in Eqs. 14 and 15 lf 
othc:: lfllíl·•l Cl'nJitl011' ar.: Je.;ired. add,!••'nal tellil' \\ otdd b.: includ.~d in Eq-; 
J..l :md 1~ whi-:h are ul\,y.;:.O) anJ l'(\,y.:.O). 
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Since Eq. !6 states that p is not a function of z. Eqs. 14 and 15 can be 
vertically integrated, giving 

-1 ' ap ap \ · · 
ü = ~---· f s ·- + -} ..;. l:os Nz(c

2 
eM<- c

4 
e-M:) 

s· + 1 \ ax ilJ" 

....... (20) 

-r ( ap . a¡;) 
and ii=--- ---+s- +cosNz(e

1
eM:+c,e·"'l) 

s 2 + 1 o). ay -

in which 
¡- 'ir. ..¡, M =-o \r 2 m v R co5 -

'r-- r= ti> N= v 2 m V R sin -

R =V (l + s2 ) 

1 
<l> = tan··l- . 

S 

2 

2 
•••••••••••••• o • 

(21) 

(22) 
~ 

(23) 

(24) 

(25) 

The constants, e 1 • c 2 , e 3 , c 4 , can be determined through the boundary 
ccnditiuns and 'are found tu be 

·¡ 
e 1 = c 3 + (Jff - Nii) ..................... (26) 

(M2 ..... Nz) 

l - -
e2 =-e,+--,---,-- (Nf t- Mil) 

(M-+N-) · 
..... (27) 

1 ['Y S - f. a p "/ + e S iJ p _ l 
e 3 =- -,----- + -,----- + (i3E -o-y )f + (¡3-y +Be )ii 

o: s- + 1 ax s- + 1 ay .J 
... {28) 

1 [-(-y+ es) ap -ys- e ap J 
c.=- , - + ~--- + (-yi3 + e&) f + (-yo - ef:j)J. ... (29) 

o: s· + 1 iJ:r s- + 1 ay 

Nnk for later reference (Eq. 55) Üldt apjax. ap/oy, e¡' c. al! approach 
infinity as l / s as s -> O. The ::~bbrevwtions pr.:viously used (and in Append1x 
1) are 

(30) 

e·Mh 

13 = (N sin Nlr- M cos Nh) 
(Mz + Nz) 

(31) 

-y= sin Nlr(e-M"- eMh) ........ . (32) 

e -.\fh 

& = ----- (M sin Nlr + N co5 N Ir) 
(Af 2 + N 2 ) • 

(33) 

E = cos N Ir (t! · .\fh + e·\fh) ..•.... . . . . . . . (34) 
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eMh 

K= -----(Nsin Nlr + Mcos Nh) 
(M2 + Nz) 

eMh 
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(35) 

X=----- (M sin NI:- N cos Nh) .................. (36) 
(1\-F + N 2

) 

The transformed vertical vebcity. 1\•, can be casi]"_: obtaincd by ;be tntegratior. 
of Eq. 17: 

w = J' aw d~ = -J' (a¡¡_+-~-) di; . ................. (37) 
_,. a~ -h ax a y 1 

The resulting expression is lengthy; it appears a5 Eq. 60 in Appendix I. 
Pressure Equation.-The boundary conditions of the vertical velocity lead 

to equations for the honzonta! pressure di~tributio.1. Using w = O at z '= O 
in Eq. 60 lcads to 

a2 j5 a2 j5 a2 p a¡) ap. 
a--+ b --- + e---+ d --- + e-= ¡ 

ax 2 axay iJy 2 ax iJy 
. ...... (38) 

in whtch the coeffic~ents a, b, ... , fare fur11:tions oÍ x and y. 
Vertically Averaged Ve1ocities.-A verticai average of the transformed Vt.'locitit's 

is 

u = ¡ f~h !Id: ' .. ' ................. : .......... (39) 

v = ~- f~h v dz . . ... (40) 

Eq<>. 20 and 21 are sub>tituted into E4s. 39 aml 40 and vertical integrations 
carrred out to yield 

ap ap _ _ 
¡¡ = h 1 -- + 11 4 - + h2 r + h 3 ~ ax ay 

. . (4 1) 

ap ap _ _ 
v=-lr.-+h 1 -a +hJ-h 2 ::l 

·ax y 
. . . ( 42) 

m which /¡ 1 , lr 2 • 1! 3 , and lr 4 are functions of x and y andar.: given 111 Appendix 
l. The condition that ¡¡ = v = O at the edge of 'the la k e is u sed to provtde 
the boundary conditiuns on Eq. 38 b~ means of Eqs. 41 and 42. 

Stream Functiun.-The numeri..:;!l solution is actual! y carried out for the stream 
function defined as 

1 a~ 
r4=-­

h ay 

1 aJ¡ 
ii= 

/ lt d.\ 

Thu'>. the int~grateJ conttnul!) equ.ttioll 

..... (43) 

...... (44) 
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J
o (aú av) a a -+- dz=-(hü)+-(hv)=O. 
-h ax ay ax ay 

(45) 

is automatically satisfied. Eqs. 43 and 44 are substituted into Eqs. 41 and 42, 
and the result solved for the pressure gradients: 

ap a~ a~ _ _ 
- = q,- + q2- + q4r- q 36 ..................... (46) 
ax ay ax 
ap a~ a~ _ · _ 
a;=q2a;-q,a;-qJf-q46 ..................... (47) 

The variables, q 1 , q 2 , q 3 , q4 • are defined in Appendix I. By cross differentiation 
of Eqs. 46 and 47, the following equations is obtained for the stream function: 

a2 1j¡ a2 1j¡ a~ a~ 
- +- + A(x.y; s)- + B(x, y; s)- + C(x, y; s) =O ...... (48) 
ax 2 ay 2 ax ay 

h (aq, aq2) 
in which A(x,y;s) =- (hi + h~) -- + -- ............ (49) 

h, ax ay 

h (aq, aq 2 ) 
B(x,y;s) =- (hi + hl) ----- ..... 

h, ay ax 
. . . . . . . . . . . . . (50) 

h [ a a 
C(x,y;s) = -(h~ + h~) -(qJ')- -(q

3
.1) 

h, ax ay 

a _ a _ ] 
+ -(q.f) + -(q46) ..... . 

ay ax . . . . . . . . . . . . (51) 

Eq. 48 is solved numerically under the condition that J¡ is a constant along 
the bounJary of the lake. Changing this constan! (or making J¡ variable over 
a small length) account~ for inflow and outflo\' Once ,1 is kno\' n. Eqs. 46 
and 47 pruvide the pressure grauients; then. t¡ansformed point velocities are 
found from Eqs. ~O. 21, and 60. The real point velocitics are obtained from 
the inverse La place transform, which must be done numeri.:ally. 

FINITE ELE~ENT ANALYSIS 

Eq. 48 is the same as Eq. 7 of Ref. 3. except that Eq. 48 contains the 
additional para meter, s. Exactly the san~ e solution technique is employed as 
that described in Ref. 3. A separ:lk soiution :;~w.t b.: p.:rfl•rm<?d for each \·alue 
of the parameter. At thi~ \~riting. a prugram usrng hnr·,tr tr1.1ngL,¡,tr derneCJiS 
has been modified for the tran<;ient .:alcul,ltion. Ho"<.:\.:r. a gener.d program 
for the skad;. ~tate is in use which prüvides a ch,li'-L' .A lm.:,u tr~ctr:l:ui,íl- ek-ments, 
cubic triangular eiernent~. or quadratic isop.••·' ~~e·'," ek:nc·r't:. So1ne mesh 
generation facihty is :1lsu inc!udcd. This latkr p;u<or""' ,;,••:!·1 be muJtfied fnr' 
the transi· ·nc~l;. ,,¡~by 5imrly _ch::mgimz, ·;:Jrn..: •J; ¡}¡, f:lf:•:'''"·. 
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lAPLACE TRANSFORM INVERSION 

The procedure to this point has paralieled that of Refs. 3 and 6, with the 
addition of the transformed time derivative. The finite element program, with 
the final use of Eqs. 20. 21. and 60. gives the val u es of the transformed velocities. 
The inverse transform remains in order to find the physical velocities. The 
collocation method of Schapery (9) is used for the numerical transform inversion. 
The method assumes the functional form of the dependen! variables with time 
in which the assumcd function contains a number of umletermined coefficients. 
These coefficients are found from the solution of a set of simultaneous equations. 

Following the lead of Shapery (9) the velocity is written as 

ll(t)=u 0 +6u(t) .............................. (52) 

with a similar expression for v and w. The 11 0 is a constant and the last ter m 
is given by the finite Dirichlet series 

" 
~u(t) =La, e-b¡r •.•••••..••••••••••.••••••.••• (53) 

¡=1 

Using Eq. 53, Eq. 52 is transformed and multiplied by s to yield 

" a. 
sú(s) = 11 0 + L --'-- ........................... (54) 

¡=1 b, 
1 +­

S 

The constan!, 11 0 • is clearly the steady-state value of 11 for large time. or 

u0 = lim sii(s) ... 
s-o 

. (55) 

ff the 11 constants. b,, are chosen by sorne means, then 11 values of s (e.g., 
s,) can be selected so that Eq. 54 reprc<;ents 11 equations in the undetermined 
:~oefficients. a

1
• Schapcry indicates that the error will be nearly minimized if 

the b, are chosen equal to the selccteu s
1 

values. i.e. 

b
1
=s; j=l,2, .... n ............... . ......... (56) 

Then 11 simultaneous algebraic equations occur in the a 
1

: 

" a. 
s,ti(s,) = 11 0 + L -·-'- i =l. 2, ... , n . ................. (57) 

¡= 1 S 1 
' 1 + --

S¡ 

Choice of the s, remains. First sti(s) versus Jog s is plotted as in Fig. l. 
The significan! range is that sh01\'ing a definite variation of sü(s). Numerical 
experien.:e (8.9) has shown that optimal results are achieved by selecting the 
s, in a gcomctric scquence 

s,_, 
--= r. 

s, 
(58) 

in which r :~ a fl';cd rat10. Tht~>. the upper and lowe1 lwun• 1' of the s, are 
seiected from the plni ami !he: J<J!IP. r. i~ fi.\cJ by chlHl~ing r vice-ver<.,,¡ 
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The accUJ is generally increased by choosing a large n, but a too large 
n will result in numerical instability. 

In the present study. the following values were use~: n = 8, r = 10, s, 
= 2 x w-s. Z x 10-4, ... , 2 x 10 2• The resulting eight equations were solved 
using a standard Gaw;;,-Jordan elimination procedure. The resulr yields a continu­
ous solution for u(t·), v(t), and w(t). The procedure is repeated at each point 
in the x, y plane where the solution is desired. Thus, the number of constants, 
a¡. needed is the number of node points x n x 3. Although this number can 

10 

-----su 

----------------·· 

FIG. 1.-Transformed Velocity Components at Lake Surface for x 
or .{ = 0.8, y= 3.5 

0.2. y = 0.5 

be farge (209 x 8 x 3 = 5,016 in the present study), the n x n coefficient 
matrix of the a¡ needs to be inverted only once; i.e., Eq. 57 becomes 

a, a, a. 
--- + _...::__ + ... + --· =. s.ü(s.)- u

0 
s, s2 sn 

1+- 1+- 1+-

(59) 

S n 

in which only the right side change~ with different positions in the x, y plane 

NuMERICAL RESUL rs 

The m~thoJ was checked by solving a te~t ca'.: m .m Jdt:aiJlt:d ba,in. The' 
problem .:huo;en is that solveJ in Ref.. 4, using a Fount:r tran,forrn to remove 

HY2 

A 
L 

4L 

A-A 

A 
J 

B-8 

FINITE ELEMENT 

f. = 0.0001 rod/sec 
O= 8000cm 
L = 1.25 x 107 cm 
'"'1 = 200cm2/sec 
T = 1 .O cm2fsec 
g = 980 cm/sec2 

1\ .. 1\1\ 1/ 

1\' 1\1\l/111/l; 

11 

1/ 

1\ l/ 
1\ 1/ 

1\ !\ 

1\ 

1/ 1 \i\ l\1\ ' 
1/ 1\1\1\ 1\' 
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AG. 2.-Rectangular Lake. Configura­
tion 

FIG. 3.-Finite Element Mesh Arrange· 
ment for Rectangular Lake 

--- Finite dilference 

8 O Finola olemsnl 

L_ _ _J___ 

2 3 4 5 6 7 8 9 
D1msnsionloss timo 

o 2.8 ~6 84 11.2 14 168 19.6 22 4 25.2 

Tome on houra (ullng lho voluel of Fog. 3) 

FIG 4.-Comparison of Two Dif.erent Typt:s of Solution for Velocity Component5 
at Lake Surface at Typical Point (.\ = 0.3, ) = 2.0, ~ = O) 
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vertical dependence and finite differences to step through time. The test basin 
is described in Ref. 4 and appears in Fig. 2 with the dimensional parameters. 

The finite element grid is shown in Fig. 3. The grid consists of 360 elements 
with 209 nodal points. The finite element resolution is much greater tnan the 
finite difference resolution used in Ref. 4. Details of the finite element calculaticn 
are given -¡·nRef. 3. 

The results of the computation was compared to the results of the study 
of Ref. 4 at a large number of grid points. A typical comparison is shown 
in Fig. 4. The horizontal yelocity components are shown at x = 0.3. y = 2.0. 
z = O (equal to the solution at x =: 0.7. y = 2.0, z = O due to antisymmetry). 
Small differences between the two calculations are attributed to differences . 
in resolution and the different method of handling the time variation. No statement 
can be made as to which is the most accurate. The differences appear sufficicntly 
small to be of no practica! importance. 

CoNCLUSIONS 

The Laplace transform with numerical inversion technique appears to have 
a large efficiency advantage in the present problem. stemming especially from 
the fact that the vertical distribution of velocity can be stated explicitly in 
algebraic equations instead of in the rather awkward (for machine c'alculation) 
Fourier series orina finite diffc:rence sense. The result is a velocity distribution 
conti'luous in depth and time and. using the automatic interpolation facilit} 
of the finite element formul::ttion. continuous in the horizontal dimensions also. 

Any three-dimensional time dependen! problem is very large. This problem 
has been reduced to two dimensions plus an algebraic formula in depth plus 
a few (eight in the results presented herein) solutions to a "steady-state problem 
with para meter." These shortcuts ha ve created a situation whereby the calculation 
is quiek anJ economical and can be performed many times for parameter study. 
However. the presentation of results still remains a problem. lt is not ea S} 

to picture the three velocity components varying with time in a th•ee-dimensio1ldl 
. space Work is currently unden\a~ to develop compt:kr graphic~ prucedures 

which will re~olve the pre-;enwtion probkm. The de\dopmc:nt of such procedures 
was. in fact. the major moti\atiL)n for finJrng efficient solution5 that could 
be storeJ in the computer and c::llléJ at will for graphrcal pr<'>entation. 
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APPE~óDIX ¡_'__:.FORMULAS 

1 
''' = --(s'V:p)(~ + h) 

s 2 + 1 

---------- (ac3- ac•)(e·""(Mco~ N~ . .., S"'"'':> 
(¡'vi~+ . '') ay ax -

HY2 FINITE ELEMENT 

- e-Mh(Mcos Nh- N sin N/1) + e-M•(-Meos N-z +N sin Nz) 

+ eMh(Meos Nh +N sin NI!)] 

1 (ac 3 ac4 ) + ----- -- +- (eM'(Msin Nz- Neos Nz) 
(M 2 + N 2) ax ay 

+ e-Mh(Msin Nh +Neos Nh) + e-M<(Msin Nz. +Neos Nz) 

+ eM"(Msin Nh- Neos Nh)] 

1 
{N(af -a~ )reM'(Meos Nz +N sin Nz) 

(M 2 +.N 2 ) 2 ax ay 

- e-Mh(Meos Nh- N sin NI!)] 

- M (at - a~) [eM'(M sin Nz - Neos Nz.) 
ax ay _ 

- e-Mh( -M sin Nh- Neos Nh)]} 

1 
{M(af +a~ )[eM'(Mcos Nz + Nsin-Nz) 

(.'\11 2 + N 2 ) 2 ay ax " 

- e-Mh(M cos Nh- N sin N/1 l) 

+ N(at + aó)[eM'(Msin N:- Neos N:,) 
ay a:c 
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- e-Mh(-Msin N/1- Neos N/z)]} ..................... (60) 

1 
h 1 = -[ -sha +(-y+ u)(¡) +K)+ (--ys + e)(8 + >-.)] (61) 

alt(s~ + 1) · 

h, = _l [ a ( 
2
M"!_+ N~- M8)- (-yj3 + E8)(~ +K) 

• · a/z M 2 +N~ M:+ N 2 -

-(~e- o-y)(&+>--)] ............................. (62) 

lr
3 

= -
1- [--a- (M~- N~ + M~ + N8) + (j3e- O"f)(~ +K) 

a/1 M~+N2 M~+N2 

- (~-y + &e).<o + >--)] ............................. (63) 

1' . 
h4 = -----:---- [-ah+ (e- -ys)(j3 +K)- (y+ es)(&+>..)] ....... (64) 

oh(l- + 1) 

h, 
.. ' .. (65) 
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h4 
qz = ------

h(h~ + h¡J 

h 1 h 3 +h2 h< 
q) = --,--~­

h¡ + h¡ 

lt3h4·-h,h2 

APPENDIX 11.-REFéREN~ES 

FEBRUARY 1977 HY2 

(66) 

. (67) 

..............•. - . . . . . . (68) 

l. Con-.1cr, J. J., ar.d Vv';,,¡g, .' .. "Finite Eler:tent Model;ng of Hydrodynamic Circulation." 
Nttmericai Muhotfs in !7/l:i<i Dvnamics, C 1\. Breobia and J. J. Connor, eds., Pentech 
Pless, London. Eng!and, 1974: pp. 355-5&7. 

2. Friet.!, !., ''Fmiie-Eicment A.lalysis of Time-Dependent Phcnomena," American lnsti· 
iute of Aerunaucic~ nnd Astronau:ics .Toumai, Vol. 7, No 6, JunP., 1969, pp. 1170-1173. 

.J. Galla[;;her, R. H., Ligg.:!tt, 1: A., and Cr.an, S. T. K., "Finitc Eiemen~ Shallow Lake 
Circu!ation Analysis," Jo:mwl of tile Hydraulics Division, ASCE, Vol. 99, No. HY7, 
Proc. Paper 9355, July, :973, ¡..p. 10l!3-t096. 

4. Liggctt, J. A., "Uns:ea:ly Circuiatwn in Shallow, Homogeneous Lakes," Jvumal 
of the Hydí-aulics Divisiun, ASCE, Vol. 95, No. HY4, Proc. Paper 668iJ, July, 1969, 
pp. 1273-1288. 

5. L!ggett. J. A., ·'A Celi Method for Computing Lake Circulativn,'' Journa/ of the 
Hydraulics Division. -\SCE. Vol. 96, No. HY:l, Proc. Pdpl!r 715"2, ~,-far., 1970, pp. 
725-743. 

6. Li;,;gett, J. A., an.J Haujithe-l'dorou. C., "Circulation in Shr.llow Homog<>ce.:~us Lakes." 
Journttl of tite fly:.!rawi.-s Divisio''· ASCE, Vol. 95. No. HY2, Proc Paper 6454, 
Mar., ·!969, pp. 609-6"20. 

7. Lindh, G., and B..:ng~sson, L., "Wmd-Induccd Circ•Jlat1on in a La k e," Bulletin Series 
. .'\No. 10, Divi~1on of Hydraulic~. I!'stitute of Technology, University of Lund, Lund, 
Sweden, 1972 

8. Rizzo. F. J.. and Shippy. D. J .. "A Method of Solution for Certain Problems of 
Transier.t Heat Conc;uct!on," Amaicari lnstitllte of Aeronautics and Astl'unmttics 
Joumul. Vol 8, N e ! l. No"., 1970, pp. 2004-2009. 

9. Sh~lp<!ry, R. A., "AppruxirP8\e Me:hod<, of Transfmm lnv.::rsio11 for Yiscoelastic Stress 
Analysis, .. Proceedings of !he 4rli U. S. Narionu! Congre~s of Applied Mec'w::ics, 
Vol. 2. 1962. pp 1075- 1085. . 

10. Taylo1, G .. ami Hood. P .. "A Numeric~l So!ution of thc ~~2.·1ier Stnl!;es Equ:1tions 
Usmg th..: Finitc- E!em~nt Technique,'' Comp!itt?rs and Fluids, Vol. 1, pp. 73-100. 

11. Welander, P., "WinJ Actiun on a Shallow Sea. Some Generalizations of EKrroan's 
Theury ,'' Tellus. V•Jl. 9. No l. Feb., 1957, pp. -+5-52. 

APPE"Jo:x m.-NoTATic.o\1 

The folloll·illg symbols are 11seJ in this paper: 

A,B,C,c 1,c2 ,c3 , 

c4 , a, b, c,d, e,f, h¡o 
h2,h3,h4,ql,q2, 
q3,q4,a,~,-y,&, 

lO, K, A 
a,. b,, 11 0 • n 

D 
f 

function of x and y; 

constants: 
· typical vert1cal di ll~<::n~i"!l ~<ed t~· n;>l ma!ize depth; 
Corioli~ parameter. 
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\ 

g 
h 
L 

M 
m 
N 
p 
R 
r 

S 

ü, V 

x, y,z 

'T] 

p 

FINITE ELEMENT 121 

acceleration of gravity: 
norm.1lizcd dep~h of la k e; 
typir:al horizontal dimension t.:sed to normalize width 
and length; 
V2 m ·v7t cos (cj>/2); 
VlYJ/2T].; 
\.0 m viR sin (<j> /2): 
local pressure; 
v'(T+ s2); 

ratio of geornetíic series; 
Lapbce t:aH,forrn 11ar:1mcrer; 
time; 
average tr<"hformcd v.:Jocity componenls in x and y 
dircctions, respecti'-ely; 
Cartesian C::>or-Jinates with x and y i,l a horizontal planc 
and z positive upward and zero m the surface; 
eddy viscosity; 
fluid densi ty; 

surface wind stresses in x and y directions, respectively: 
tan- 1 (1/s}: 
stream function; and 
transformcd variable. 



1 
)" 

7793 January, 1971 HY l 

Journal of the 

! IYDRAULICS DIVISION 

Proceedings of the American Society of Civil Engineers 

PROPERT1ES OF CIRCULATION IN STRATIFIED LAKES 

Dy James A. Liggett, 1 M. ASCE and Kwang K. Lee,2 A. M. ASCE 

INTRODUCTION 

The complexity of circulation in a stratlfied body of water precludes an 
accurate analysis at the present time. It appears that such problems can be 
attacked by a large cumputing program (7); however, even a sophisticated 
computer program must contain a number of simplifying approximations. 
Moreover, the compuler method has the disadvantage that the features of the 
circulation, the causes and effects, get lost in a massive program. The ob­
¡cc.tive herei n ¡s to del ineate features of motion in a stratified body of water 
m a way 1 hal cxpla1ns observed phenomena and can be u sed to develop intu­
il!ve inSl¡;(IJt into th.~ problem. 

To accumplish this ob¡ective, many assumptions and approximations must 
be made. These appnJximations render the quantitative aspects of the results 
douiJtful, alt hou¡~tl t'lt~ writers be lleve that the quantitative results could be 
used 111 the aiJ:-;l'nec of a more rigorous method. Only the problem of steady 
flow has be en considered in this paper. Although · the time response of a 
stratified lake 1s m doubt, it appears that a true steady flow seldom occurs. 
Howe\'er, many of the features of a steady flow analysis are observed in 
laltes. The steady flow analysis can also be used to define an average condi­
tion; it is ~!l~--~\'erage condition which is likely to be useful for designpur-

Note.-Discussion open until June 1, i971. To extend the closlng date one month, a 
written requcst ruust IJc filed with the Executive Director, ASCE. This paper ls part 
of the copyr1~htcd .rournal of the Hydraulics Dlvision, Proceedings of the American 
Soclety ni ('lvrl ¡:n;?;rneers, Vol. 97, No. I!Yl, January, 1971. Manuscrlpt was submltted 
for rcvlcw hn· fHJ•;,,r\de publ!catlon on FciJruary 19, 1970. 

1 1\ssoc. l'n•r., :-.c~(¡oJ ui Civil Engr·¡¡., Cornell Unlv., Ithaca, N.Y. 
2 t\Sst. l'rul., i c,l!t.:go.: of Envlrunrncntai St:iences, Univ. of Wlsconsln, Green Bay, 

Wlsc.; forme¡·fy Hcs~:urch Assoc., Sdrool uf Crvll Engrg., Cornell Unlv., Ithaca, N. Y. 
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poses. The great mass 'of data of ar.. unsteady analysis is often confusing and 
not useful; hence the cli r:-oatology of a lake is better definecl by averages. 

PROBLEM FORMULATION 

The summer stratification of a lake often consists of three laye~s: (1) the 
epilimnion, an upper !ayer of near-consta~t densHy;· (2) the metalimnion, a 
midd!e layer of stecp density graiiient; and (3) the hypolimnion (1,6,7,13). The 
stratification is assumed to :!pproximate a two-layer system herein. Fig. 1 
indica tes the idealization to a two- !ayer lake in which the epilimmon and hy­
polim;üon are consiciered homogeneous. 

The equations of rnotioJt are the linearized equ?.tions which have been used 
to describe the motion in homoger.eous (8,9, 10) and two-layer (2, 7) lakes. The 
non!inear terms are negiected due to a small Rossby number (i.e., the ratt:-> 

FIG. l.--DEFii':lTION SKETCH OF LAKE 

of inertial and rcitational !orces). Only vertical friction is considered; the 
Coriol!s para meter is taken as a constant; and the pressure is assumed to be 
hydrostatic. The equations for each of the two layers are: 

. . . . . • . . . . (1) 

1 ap o2 tk 
- - - 11 + Tlk (2) Pk oy éJz2 • . . . . • • • • • • • • • • • • . . • • • • . • . . 

...!_~ 
g = - Pk ilz .. ........................... - .. (3) 

iluk ... ~.11. + ~~ = O 
ax ily az • · · · · · · · · · · · · · · · · · · · - · · - · · · · · · ( 4) 

in which the .:;ubscript k= 1 for the epihmnion anrl k :: 2 for· ~he hypollr:1nion. 
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The coordinates ¡¡_re x, y, and z with x-y pbne horizontal and z vertically up­
ward; the velocities correspcnding to the x, y, z directions are a, v, w re­
spectively; f = Coriolis parameter; p = density; p = pressure; 1¡ = kinemath: 
eddy visccsity; and g = accelen.twn r.;: gravity. 

The boundary condi!ions on thi~ epilimnion are: 

~!..l. ov o (5) Tx = T/¡ Pt Ty = r~¡ P1 
_'::..1._ at z -· az J oz 

P¡ TJ¡ ~ = 
,., 

P¡ T;¡ ~ = G}, at z = - J¡ (6) 
az vx' az 

in which T :r: and T y = components of surface wind stress (assumed as known) 
and G x and Gy "' .shea¡· stresses acting on the epilimnion at the therm:Jcl! ne. 
The primar y (steady state) drivmg forces for currents in the hypolimnion are 
the pressure grad1ent and the interface stresses, G-.: and Gv. Currents in the 
epilimnion are caused by the wind stresses, T x and T v• a!Íd are modified by 
the pressure gradient and interface stresses. , 

METHOD OF SOLUTION 

From the preceding equations, the velocity ccmponents in the upper !ayer 
are found to be 

u =- -
1- ~ + cos qz [A 3 exp (qz)- A. exp (- qz) 1J 

1 /P¡ .ay • 

- sin qz (A 1 exp (qz) - .A 2 exp (- qz)] •.........•....... (7) 

1 oh 
v 1 = /P

1 
.:::;-: + cos qz [A 1 exp (qz) + A2 exp (- qz)] 

+ sin qz [A 3 . exp (qz) +A. exp (- qz)] .•...........••..• {8) 

in which q = ,1¡j 2r¡ 1 • The values of A 1 , A 2 , A 3 andA • are determined by t~e 
boundary conditions. As a shorthand notation, define ~ = - 2 (cosh 2 qh -

cos 2qh); T 1 = (7y- Tx)/2qr¡ 1 p 1 ; T2 = (Ty + T 1)/2qr¡ 1 p 1 ;T, = (Gx + 
Gv)/2qr¡1 p 1 ; and T4 = (Gy - Gx)/2qr¡ 1 p1 • 

The A's are: A 1 = {T1 [::os 2qh - exp (2qh)] + T2 (sin 2qlz) 

- T3 (2 sin qh cosh qh) + T 4 (2 cos qh sinh qlzl} / ~ .... (9) 

A 2 = {T1 (exp (- 2qlz) - cos 2qh] + T2 (sin 2qh) 

- T3 (2 sin qh cosh qh) + T4 (2 cos qh sinh qll)}/6 ......... (10) 

A 3 = {T1 (- su¡ 2qh) - T2 - (exp (2qh) - cos 2qlz) 

+ T3 (2 cos qh smh qh) +T. (2 s1n qh cosh qll)}/6 ........ (11} 

A 4 = {T1 (sin 2qh) - T2 [exp (- 2qh) - cos 2qlz] 

- T3 (2 cos r¡h sinh qlz) - T4 (2 sin qlz cosh qlz)}/t. ........ (12) 

Fr•Ym E¡s. 7 anri 8, the epilimnion veloclties are functions of the pressure 
gr;.~r!:u1l, v. l!ld ;:;h•: . .:, .1nd llllL:·f:l,·,_. st¡·ess. Approx1mations are found in-thr:! 
foll<'Wing .secll•Jn.'. :.)r ti:·: llllt d.11·e ;,he.lr J.nd pressure gradients. 

lnle;f{ <!' S/i,·r¡:· - Lrt 11 k = !lk - i l'il, in wh1rh \\' = complex hot; .'.'''\l.ll 
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velocity and i .r:---I. Omitting subscript k, Eqs. 1 and 2 become: 

fW = ~ (i * -~)- i71 ~:~ •....•••..•...•...•.• ; (13) 

The horizontal velocity is separated into two parts as W W' + W g; in which 
w g = (1/pf) [i (apjax) - apjay ]; and thus 

U---~-~ V _ _}_~ 
g - pJ ay ' g - pf ax ................... (14) 

are the geostrophic velocities. Then 

a2 W' ¡w· = - Í1] aza- . . . . . . . . . . . . . . . . . . . (15) 

in which it is assumed, through the hydrostatic approximation that, a2 W g/az 2 

O. Solving Eq. 15 and addin'g the geostrophic component yields 

wk = Ak exp [(i !;; r2 

z] + Bk exp [- (i fkYh z] + Wgk (16) 

Constants A k and Bk could be determined from the free surface and bottom 
boundary conditions as well as from the interface conditions; however, the 
result would be rather complex. The purpose of this exercise is to derive an 
approximate expression for the interface shear; therefore, it is assumed that 
the solution near the interface is not greatly changed by ignoring the boundary 
conditions on the free surface .:!.::d the bottom. Obviously such an approxima­
tion is valid if both of the two byers are thick, so that motion near the ther­
mocline is determined primaril:: by pressure gradients (geostrophic flow). 

Eq. 16 would have resulted h.:.d the origin of the coordinate system been at 
the thermocline. Let z' = z + h: then 

Wk = Ak exp [(i {; r2 z] + Bj. exp [- (i 
77

: r2 z'] + Wgk (17) 

If the free surface and lower be ~:1dary are far away, then 

W1 = B; exp [- ( i -!;} 2 z'] + W1 R' ..•••••••••••••.•• (18) 

W2 =A~ exp [(i {; r2 z'] + W2 g .................... (19) 

approximately. The appropriate interface conditions are: 

w ll ct aw, aw. , o 
1 = · 2 an, P1 771 az , = P2 7]2 a¡;- at z = . . . . . . . . . . .. (20) 

B' p 77~12 
Therefore .l. = - ~P 711 2 -+ P _:ñ (tr 1 g - W2 gl ............... (21) 

1 1 2 } 

A ' - PI 77t2 ) (2 ) 
2 - pl 11~12 + Pz 7)~12 ( 11'. 5 - W 2 g . . . . . . • . . . . . . . . . . . . . 2 

The interface stresses are fou ·-e :o be 
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G" =K (u 1 g_- U 2 g- v 1 g + V2 g) ...................... (23) 

Gy =K (ll¡g - U2g + V¡g - V2g~ •••.•.••••••.••...••.. (24) 

(25) 

From the hydrostatic condition (Eq. 3) and the condition that the pressu1·e 
is continuous at the interface (P 1 = P2 at z' = O) 

~ = plg a~ . . . . .... . . .. (26) ax ax 

~ = p¡g a~ . . . . . .. . . (27) ay ay 

~ a~ ah ah 
(28) plg + plg - p2g . . . . .. ax ax ax ax 

~ a~ ah ah 
(29) = P¡g + plg - p2g . . .. ay ay ay ay 

Using the definition of geostrophic flow (Eq. 14), the interface stresses can 
be written in terms of the surface and interface gradients as: 

G" = _ ~!K ( 1 _ 8.1 )(a~ + a¡; + ah + ah) ............... (30) 
p2 ax ay ax ay 

Gy = lfr ( 1 _ ~ )( ~; _ :~ + ~~ _ ~~) . . • . . • . • • • • • • • . • (31) 

Horizontal Velocities.-Eqs. 7 and 8 are derived for a wind stress in any 
direction. For the present research, they can be simplified without loss of 
generality by considering only a wind stress in the y-direction, i.~., T" = O. 
Substituting Eqs. 26 through 31 into Eqs. 7 and 8, the current veloc1ty under a 
y-shear on the free surface is 

u1 = - g_ a¡; + -~- {I.J¡ [cosh qz sin q (2h + z) f ay qr]¡p 1 2 

- sin qz cosh q (2h + z) + cos qz sinh q (2/z + z) 

- sinhqz cosq(2h +z)] +(o/)(1-!:) [Ot. 
+ ah ) (sinh ql1 cos qlz cos qz cosh qz ay 

+ sin qlz cosh qh sinh qz sin qz) 

- cos 

+ é!h) (sin qh cosh qh cosh qz cos qz 
ax' 

qlt Slllh ·¡h .;,m 'F sinh r¡z) J}/{cosh 2qll - cos 2qlz) ... (32) 
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v .8.. a~ 1 JI.,¡¡ [sinh qz cos q (2h + z) 
1 = J a; - .qT/¡;J1 .l 2 

- cos qz sinh q (2h + z) + cosh qz sin q (2h + .z) 

-sin qz cosh q (2h + z)] + c~g)(l- ~) [(:; 
+ :~) (e os qz sin qh cosh qh cosh qz ·-

- cos qh sin qz sinh qh sinh qz) 

+ ( :; + :~) (e os qz cos r¡h sinh qh cosh qz 

+ sin qz sin qh cosh qh sfnh ·qz >]} /(cosh 2 qh - cos 2 qh) .... (33) 

Surjace and Thermocline Slopes.-The surface and thermocline slopes 
create pressure gradients which extenct to the bottom of the lake. These 
slopes are the remaining unknov:n Iactors in the velocity equations. The pri­
mary cause of the pressure gradients is surface wind stress, although the pres­
sure gradients are modified by the Coriolis force and the bottom stress. The 
latter effects will be neglected in this approximate theory. 

Integrating Eqs. 1 and 2 with k = 1, 2 and with the wind stress in the y­
dire.ct ion ( T x = O) yields 

J,t ~ d 1.1: o2u oh 
z - 1)1 p1 ..:....:::l. dz = .::LL (>- + h) + Gx 

-h ax -h a.z 2 ax " o .... (34) 

..... (35) 

--h ah, -;, 82 

J = dz - 7' p J ~ d.z 
-H ax •2 2 -H az2 

~ (- h ) ax + H - Gx o (36) 

J-h ~ J-h 82 v, ap, 
-H ay dz - 71z P2 -ll az2 dz = ay (- h + H) - Gy O . . . (37) 

U~ing Eqs. 26 through 29, Eqs. 34 through 37 become 

P1 (!; + h) :~ - ; ( 1 - ~ ) ( ~~ + :~) = O .. . .. .. .. .. .. (38) 

p1 (!; + J¡) 8?; 
a.v + K (1 - !!.l.)(~ - 8/r) = I.Ji 

f P2 a-e a.~ r g 
............ (39) 
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[( n.) _ah_ p, _at_] 
pz'(H - h) 1 -.. ..t:.J.Pz. ~ ax - p2 ax 

-7(1- ~)(~~ + :~)= 0 ......................... (40), 

P2 (H - h) [ ( 1 - ~) ~~ - ~ :; J 

fi) = o ......................... (41) 

In Eqs. 38 through 41 ar; jax has been neglected .when added to 3Jz/ax, since 
o!;/ax is of the order [1 - (p2 /p1 )] 8lz/8x, and at;jay has beenneglectedwhen 
added to aJzjay. Solving Eqs. 38 through 41 for the four unknown gradients 
yields: 

a1z 
ay 

ah 
ax 

at 
ay 

1 - a 

T a 
g(p

2 
P

1
)DE (1 a)2 + a 2 ••••••••••••••••• ' 

T (1 - a}(Du- 2aD¡;;) + !2E. 
gp1 DE (Dg + D 8 ) [(1 - a)2 + a 2 ) • • • • • • • • • • • • • • • 

a 
(1 - a)2 

(42) 

( 43) 

(44) 

(45) 

in which DE = h + !; = epilimnion depth; D H = H - · h ·= · hypoli mnion depth; 
anda= (K/P2 /DE) [1 + (DE/Dn}]. 

Due to the simplifications made in obtaining Eqs. 18 and 19 from Eq. 17, 
the abo ve equations are va lid only for sufficiently thick epili m11ion and hypo­
limnion. The writers believe that a < 0.3 is an appropriate limit on epilim­
nion thickness, since ah/a)' = O ata = 1 and a(oh/ay)jaa = O at cr = 0.297. 
In the following discussion a < 0.3 is assumed. 

Obviously, all the derivatives of h and !; are positive, indicating that the 
free surface slopes upward in the downwind direction and to the right of the 
wind. The interface slopes downward in the downwind direction and to thc 
right of the wind. Since a is small oh/ay > oh/ox, 1ndicating that the slope of 
the interface along the direction of the wind is greater than crosswind. 

Eqs. 41 and 45 are simpliiied if the hypolimnion thickness is large, Dn­

""• to 

(46i 

Eq. 46 look much like Eqs. 42 :mct 43 except that the effective density IS p 1 
instead of p2 - P1 .. Thus the interface w1ll tend to slope by a much greater 
amount: 

oh.,.-~ ~-
ay p2 - p 1 av (47) 

than the free surf.~t·e. 
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FIG 4.-EFFECT OF EDDY VISCOSITY ON GRADIENTS OF SURFACE ANO THER­
MOCLINE (SEE EQS. 23 and 24 FOR DEFINITION OF K) 
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In the Great Lakes the cold hypolimnton water Qccasionally touches the 
surface in a cold water upwelling (2,3,4,7). Usually such upwelling occurs 
near thc beach during ::m offsh.Jr·e wind. However, it may also occur if the 
wintl is blowing parallel to the shore from the right (facing the lake) to the 
left (2,3,11). 

NUMERJCAL RESULTS 

Most cf the r,_ sults can be more easily cliscussed if reasonable numerical 
values are assignec! to the parameters. The following values v;ill be used for 

1 

1~1-
8 

u 
"7 

~;¡ 
3 

F1G 6.-EPILL\I:·HO~ HORIZONTAL VELOCIT!ES FOR DIFFERENT El?IL!i\1:\!0N 
TiiiCK::-<ESS (.-\RROWS REPRESE:OiT VELOCITY VECTOR::l AT DEPTHS z ; O; z; 
- '!. h/7; ... ' l ; - 6 h /7; z = - h) 

ihe calculatwns in this paper unless otherwise notcd: f = to-• per sec; g = 
980 cm per sec; T x = O; T y = 1 dyne per sq cm; p1 = 0.99777 gm per· cu cm; 
p,_ = 0.99997 gm per cu cm; 771 = 40 sq cm pe¡· sec; 772 = 4 sq cm pe¡· sec; 
H = 80 m; and h = 18 m. The values are of the order of magnitude of those 
found or assumed by others for the Great Lakes (2,5,7,9). 

Fig. 2 indicates the slopes of the free surface anct thprm<;cline using the 
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above numbers, except that the epilimnion depth is allowed to vary. The 
strongest gradient is in the thermocline, which is tilted downward in the 
downwind direction. The thermocline is also tilted downward to the right of 
the wind, but the crosswind tilt is an order of magnitude less than the down­
wwd t1lt. The free surface is tilted in the opposite direction from the thermo­
chne with "the crosswind tilt again an order of magnitude less than the 
downwind tilt. 

Fig. 3 indicates the tilting of the surface and thermocline as a function of 
the density difference. As expected, the density difference has a large influ­
ence in the thermocline tilt, but practically no influence in the free surface 
tilt. When the density difference is small, the thermocline may tilt very 
steeply so as to be unstable. Such a mechanism seems to cause the fall over-

SPEED (cm/~ec) 

0o~ ____ ,ro~.--T2o~ __ _,J=o _____ ~ 
: 

JO 
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I .... 
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g; 150 

180 

J 
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FIG. 9.-AVE:RAGE su:,L\!ER CURRS:-IT SPEEDS IN LAKE MICH!GAN (AFTER J. L. 
VERBr.:R, Ref. 1-l) 

turn when the epil!mnion cools to such a degree that a moderate wind can u¡:J­
set the natural stabil ity of the stratification. 

Fig. 4 shcws the tilt as a function of the p:1rameter K. Eqs. 32 anu 33 in­
dicare that the velocities are CO!nplex funcaons of the various parameters 
even when effects of si de boundaries and bottor.: to¡;o:;raphy are exdudéll. The 
velocities are linearly propnrt!or,al to wind stres<-;. Thus an 1ncrease in wind 
stress only increases the veloc1tJes m magr.itude\\'i'~:o'lt adirertionalchange, 
neglecting the effect a hig!":er wi:1d stress m1ght h~xc Gti th2 eddy vis~osity. 

Fig. 5 indicares e!"fect of ep1!imnion thicknes:> on epilimmon velocit!es. 
The tlacker ep!lnnnion has greater veloc1ties for the ::o11n:e '-'· !!ld strt•:;.s·and 
has an Ekman spiral which is mor·: olPl'·[y con:¡.:c·'·' 
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Fig. 6 indicates the effect of eddy viscosities on e¡:;ilimnion velocities. The 
eddy viséosities are largely unknown; thus it is important to determine the 
error made in current velocity due to incorrectly guessing eddy viscosity. 
The smaller eddy viscositles are associated with large velocities and more 
complete spirais. 

Fig. 7 shows current speed as a function of depth for different epilimnion 
th¡cknesses. Fig. 8 shows current speed as a function of depth for different 
eddy viscosities. The average summer current speed as determined by 
Verber (14) is shown in Fig. 9. Eqs. 32 and 33 display the inleraction within 
the stratified lake due to the different effects of each factor with respect to 
depth. Characteristically, the speed is ma.ximum at the surface, decreasing 
to a relative mínimum at three-sevenths the epilimnion depth, then increasing 
toa relative maximum just above the thermocline. 

CONCLlJSIONS 

The present study is an attempt to gain sorne insight into the complex 
problem of circulation in a stratified lal,e. If the effect of the lateral bound­
aries and the bottom topography are neglected, reasonably simple equations 
can be derived for the slopes of the free surface and the thermocline and for 
the circulation. The approximate results present a satisfactory explanation 
for sorne of the observed phenomena. The results also indicate the effects of 
varying parameters of the problem as indicated in F1gs. 2 through 8. 

The quantative accuracy of this study is doubtful because of the numerous 
approximations. However, the results are in approximate quantitative agree­
ment with the computer calculations of Lee and Liggctt (í) in the region where 
the effects of the bottom boundary condition anrl the shore configuration be­
come less irnportant. 

The response time of a stratified lake is unknown, but it is probably long, 
of the order of severa! days. In this respect the stc.1dy-state circulation may 
rarely, if ever, be atta1ned in a natural lake. Hm~ever, the steady-state con­
dition might be expectecl to represent an avera;:.c condition under average 
winds. Ev1dently, 1t is th1s aver.:tge which \~oulcl be most useful for purposes 
of design, for obtaining f111shing data, for calculat 1:1~ the transport of physical 
quantities, etc. Since the problem appears to be linear toa good approxima­
twn (certainly to better accuracy than many of the approximations contained 
herein), the effeds of through flow, or other non-wind-driven circulation, may 
be added. · 

The writers hope that the engineer can combine this type of study \\oith field 
data (e.g., velocity measurements or drift card data) to infer the general cJr­
culation in any given lake. 
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APPENDIX 11.-NOTATION 

The following symbols are used in this paper: 

A 1 ,A2 ,A 3 ,A., 
A, B~ A', B' 

DE 
DH 

f 
g 

Gv 
Íl 
H 
i 

k 

functions of x and y; 
dept!Í of epilimnion; 
depth of hypolimnion; 
Coriolis parameter, 
acceleration of gravity; 
components of interface stress at thermocline; 
position function of epilimnion; 
position function of lake bottom; 
v-=-r; 
subsc ript {k,= 1 for epilimnion; k 
constant (see Eqs. 23 and 24); , 

2 for, hypolimnion); 
K 
p pres,sure; 
q =- consta.nt;-

constant functions; 
= ve loe it y components in.\, v and <: diredinn;; 

\ 

HY 1 

Ug, ~f 

W' 
Wg 

x,y,z 
.'t'', y', z 1 

a 
ll 

t 
TI 
p 

Tx, Ty 
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honzontal geostrophic velocity components; 
complex horizontal velocity; 
transformed complex horizontal velocity; 
complex geostrophic velocity; 
three-dimensional coordiaates; 
tr:m.sformed coordinates; 
dimensionless constant; 
function of x and y; 
position function of free surface; 
eddy viscosity; 
density of fluid; and 
wind stress components in x and y directions. 
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HlGHER-ORDER FJNJTE ELEMENT ANAL YSIS 
OF LAKE CJRCULATJON 

RICHARD H. GALLAGHER• and STEVENS T. K. CHANt 
Cornell L'nivcrsity, lthaca, N. Y., U.S.A. 

(Rrceived 14 Decemher 1972) 

Abstract-The finite element method is applied lo the analysis of the wind-driven circulation of 
variable-depth, shallow, homogeneous lakes. Attention is concentrated upon higher-order 
descriptions of the flow phcnomcna within the individual elcmenl_s an_d upon the _use of these 
higher ordcr functions in the dcfinition of curved elemcnt. boundane~ (1~oparam~tnc elements.) 
Numerical results are pre~ented for a rectangular basrn, for whrch allernallve results are 
available from both first-order finite elcmcnt rcprc~entations and finite differcnce analyses, and 
also for Lake Ontario, for which only thc first-order finitc elcment solution is available for 
comparison. These comparisons confirm the accuracy and efficiency of thc fini!c element 
method in this field of application. 

120 

j Thc prc\cnt p:tpcr cxknds 1 h;: work of rcf. 2 te. htghcr-ordcr finitc clcmcnt rcpr. 
tions, whcre thc trrm "highcr·(•r<Jcr" rdcr:; ío thc leve) of !>ophi~;tic:Jtion in b, 

1 
gcomttric áe~<.:ription of !he c!CJ:lcnt and the assu,mcd n:prescntation of !he flow p:n, 
Evidcnce fr01n the extcnsivc í.nitr clemcnt :Jnaly~is cxpcricncc in structural meck11: 
shown that higher-ordcr rcprt:S<',J!.d ions are in general more efficient th;¡n 1 he ~implcst 
of elcmcnt formulation. Thcrc are, naturally, limits on the dcgree of ~ophistica 
higher order formulations. A more significan! motivation for the use ofhigher order el 
arises in the lake circulation problem. Since no experimental evidcnce exists for 
drivcn circui:Jtion oflargc lake!> (we refer in this lo unccrtainty with re~pcct to both tJ, 

· input and the Jake response) it is essential that some cconomically fcasiblc means 
checking be available in any numcrical analysis tcchnique. Such checks are made a' 
in finite element analysis through comparison of altcrnative solutions ohtained with d 
typcs of elements. 

Two distinct classes of higher-order element representation are treated in this pap, 
' first is a direct expansion of the degrec of polynomial representation of the flow par 
: within a triangular ekment domain. The ~i:nplest triangular clemcnt t:mploys a linea 
! the element considered hcre describes the flow parameter with use of a cubic polyr 
: The !>econd typc of element is intrinsically rectangular and employs gu:idratic re¡ 
j tation of the ftow paramf'ter. This same field is also employed to describe the boun< 

l. INTRODUCTION : the element in a special curvilinear coordinate system. This is a particular case oft 
The finite elemcnt method has drawn increa~ing attention a~ a num~rical analysis tool_ for parametric elcmcnt approach to the formulation of elements with curved boun 
problems in fluid dynamics. The reasons for this grow~h of mterest m~lude th~ follo_wmg: wherein the same (" iso ") parameters are used to describe both the bchavior of the e 
(1) irregular boundaries can be treated accurately wrthout comp~tatron;¡_J drfficult1es or : and its geomctry. 

changes in formulation of the mcthod or computer p:ogram, ~2) wrde us: c~n b~ m a de _of 1 The paper is organized as follows. First, a brief description is given of the formula 
universally-available general-purpose programs[l] whrch are vrrtually unlrmrted 10 the stze : the subject la k e circulation problem as a finite element analysis problem. A more d 
of problem they can handle, and (3) inhomogeneous or variable properties of the problem development of this work as well as a review of efforts on finite element lake circ¡ 

can be easily taken into account. analysis by other investigators, can be found in ref. 2. Then, the formulation ofthe tw' 
Because ofthese a'dvantages the finite element method is especially attract!ve as a method of higher order elements is detailed and attention is given to certain questions the 

of analysis of lake circulation problems. Natural lakes of course feature rrregular bo~n- regarding boundary conditions. Finally, numerical results are presented for recta 
daries and the phenomenon being described is so complex in form that any numencal basin problem, defined first /by Liggett and Hadjitheodourou[3] and Lake Ontafi. 
analysis procedure will necessárily entail hundreds, or perhaps thousands, o_f unkno_wns. importance of the rectangular basin analysis is that comparison results are available 1 

Proper description of thermal stratification introduces the need to deal WJth spatrally- only the first- and higher-order finite element representations, but also from a pr 

varying physical properties. · finite difference solution. The significance of the Lake Ontario analysis is that verif, 
The authors have presented, in ref. 2, a finite element formulation and nurnerical results of the integrity of the numerical finite element solution can derive only from th 

for the wind-driven circulation of variablc-depth, shallow, homogcneo~s lakes. T~e govern- contained comparison of finite elcment representations of different degrees of refin. 
ing differential equation of this problem was taken to be that dwved by L1ggett and 
Hadjitheodourou (ref. 3). The independent variable in this equation is a specially defined 
stream function which we will refer to as the "flow parameter ". Using the method of 
weighted residuals (ref. 4), with the Galerkin criterion in the selection of the weight!ng 
function, the integral form necessary for the construction of a finite element reprcsentatJOn 
was constructed. To this point the work described in ref. 2 is quite general as a basis for 
finite element analysis of the subject problem. The adopted representation of the element 
flow parameter was then limited, for the purpose of generating numerical results, to a first 
order (Íinear) function on a triangular domain. 

• Professor of Civil Engineering. 
t Research Assoc· School of Civil and Environmental Engineering. 

2. BASIC THEORY OF FlNITE ELEMENT REPRESENTATION 
OF SUBJECT PROBLEM 

Detailed development of the governing differential equations of the subject probl 
formulated by Liggett and Hadjitheodourou[3], and of the integral form associated ' 
finite element rcpresentation, is beyond the scope of this paper. Rather, we define th 
physical problcm and the final form of the governing equations. 

A cross-section of the type of lake under study is pictured in Fig. l. We fix the or 
coordinates at the surface of the lake with z measured upwards. In accordance w 
assumption of shallowness (i.e. hydrostatic pressure distribution), I!:_ ~ L. The eddy "¡ 
(r¡) and Coriolis parameter (f) are assumed constant in the forrh~> ion of the diffe 

J relationships. The distribution of pressure is assumed to be hyd)'tj.,ati<: and surfac~ 
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Fig. L Rcprcscntative lakc cross scction 

1 

strc~ses (r ... , r,,) are prescribed. In order to lincarize the problem the Rosst-_, number 
(ratio ofinertial forces to rotational forces) is takcn to be small. The values ofthe Jake dcpths 
(h(x, y)) are assumcd to be the actual depths under the assumed wind stress or, alternately, 
that ti•e equilibrium depths are a sufficicnt approximation to the actual depth under the 
assumed wind stress. The x, y-plane coincides with the water surfacc and w =O at z =O. 

With these assumptions, appropriate forms of the momentum equations are constructed, 
the continuity equation is invokcd, and after integration in the z-direction and introduction 
of a stream function (1/t) there is obtained 

o21/t o2 1/t ol/f ol/f 
-+-+A-+B--t-e=O a:xl· oy2 ax ay (1) 

\\ ith the boundary condition that 1/J is constant on the shoreline. The stream function is 
related to the average velocities (ü, v) by 

_ 1 ol/f 
u=--. 

Jz ay 
ii= 

1 al/f 
hax 

(2) 

The coefficients A, B, ande in the equation are functions ofthe planform Iocation in x and 
y coordinates (more specifically, functions of the lake bottom topography) as defined in 
ref 3, and e depends on the wind shear stresses as well. 

The finite element representation of (1) is obtained by the method of weighted residuals. 
This concept assumes that an approximate representation of the independent variable, 
designated by 1/i, which does not satisfy the governing differential equation, will be chosen. 
In the present case this approximating tria/ function is of the form 

n 

i¡i = 'f.N,!/1¡ =LN)I/t} (3) 
i= 1 

v. he re 1/t ¡ is a particular value of the indcpendent variable and generally refers to such a 
value at the point i, i = 1, ... n, and the coefficients N¡, which are functions of the x and y 
::.oordinales, are termed shapefunctions. 

Designating the governing differential equation (1) as L (1/1) =O, we note that due to the 
3pproximate nature of líi we have 

(4) o 

whcre tf) is the wcighting function, which may be !>pccificd in one 01 any numbcr off, 
Jlcre, wc choo~e the Galcrkin form in which thc cocffici~nts (N1) of thc tria) functi~ 

'cmployed. Each di~tinct tria! function Jeads to a !>cparate alg~.:briiÍC cyuation, as fol 
First, 'Ve substitute (3) into L(!/1), as givc'n by equation (1) and dc,ignate thc intcgr 
dcfincd by cquation (5), whcrc now cp = N1 • We obtain, for al! N1 , i = 1, ... n, m 
element 

2 o 2 -

JI [(a L N J O L N J aL N J aL N J) ] 
..i{N} ox2 +--v-+A~+B--¡¡y-- {1/t}+e dxdy={O} 

whcre {N} = NT is a 1 x n column vector containirig the shape functions N 1 • 

Next, one applies integration by parts in thc piane, reducing the arder of the dcriv; 
appearing in the integral and introducing the boundary terms into the resulting int• 
This Jeads to the following system of algebraic equations 

(¡('){1/J} = VJ + §• 
l where 

Wl =JI (- a<:'l aL N J _ a{N} aL N J + A{N} aL N J + B{N} aL N .. /\ dx dy 
b. ox ax ay ay ax ay 1 

V}=- JJ {N}Cdx dy 
A 

and §• symbolizes a bo~ndary integral. 
Due to the terms A{N} (oLN jox) and B{N} (aL N _Jay) these algebraic equation: 

1 

nonsymmetric. Also, as noted previously, the coefficients A and B are functions of x a 
The equations of the complete la k e are constructed from the equations of the elemcn 

¡ imposing the condition ofstream function continuity at each elementjoint, which is syr. 
1 mous with simple addition of all coefficients (k;/ and r/) with like subscripts. Thus, th 

set of equations is of the form · 

[K]{I/t} = {R} 

where 

R; ='f.r/+ r.f 
and the summations range over all elements with terms with the subscripts i and j. 

After solution of equation (10) for {1/t}, other variables, such as averaged velocities,, 
sure gradients, and velocities at different dcpth levels can be subsequently evalua·~e 
back substitutions into equations presentcd in ref. 3. 

\Ve next examine, in the following two sections, the choice of shape functions N, (eyu; 
3) for two classes of higher order elements and the use of these functions in the develop; 
of elemcnt equations from equations 8 and 9. 

3. HIGHER ORDER T~IANGLE 
·~·here R is a residual value. Since the governing differential equation cannot be satisfied 
pointwise throughout the domain (V) ofthe problem wc can seek its satisfaction in thc sense 
:>fa weighted average over the domain, i.e. ., The triangle holds a special place in finite elcm~nt-a~aiysis due to its associalion 

l ".compl:te" polynomi.als of.Jo~·er order .. This point is illt~~trated ~y the array of the e' 
(5) ¡ t1ents ot the polynom¡aJ senes m the form of a Pascal tnangle (F1g 2). A complete J. f L(i/i)if! dV = :; 

y 



1 , ' 
,' ' 

X----Y 
, ' ,' ' 

( Lmeor) 

2 ' 2 ,X ----XY----Y, (Ouodrofic) 
3/ ' 

X ----x2Y--- --XY2---'Y3 (Cublc) , ' 
/ - ', 

123 . 124 

As Fig. 2 di~clo<.cs, thr h:~sic highrr-ordcr triangíc pos~cs~cs 6 joints and thc shapc, 
tion corn·sp(lnds toa rum,rlctc quadratic polynomial. Chan and Larock[7] havc util17 
elcm~nt cf tilis form in the anal)sis of polt:ntial flow prohlcms Thc H'\ults oht:1in: 
applic:Jtion 0f thc ckrncnt cii<;clo~cd significant improwmcnt> ovcr tho~e obtaincd 
lincar-ficld clcmcnts. 

x4 ____ x3Y---x2y2 ___ xy3 ____ y4 

\Ve go onc step furthcr in thc prc~ent approach and adopta sL:1pc function ha~cd u 
complete cubic polynomiaL Rather than dcfining clcnH.:nt joint~ ~.t .. thc ten loc:ltion 

( Ouort1c > , scribed in Fig. 2, however, we deal with only the thrce verticcs and ii point at the ccntr• 
Fig. 2. Pascal trianglc and rclationship to highcr-ordcr elcmcnts l the ch:ment (see Fig. 3.b). To accommodate the ten tcrms of a compl~tc cubic we trc: 

. ! dcrivatives of"' at the vertices (o¡Jtfox, o¡Jtfoy, at points 1. 2 and 3) as solution paran'\ 
function is identified with the simplest triangle (the Jocation of the cocfficients in the Pascal 1 Thus, at a typical vertex i we ha ve as parameters 1/1 1 , 1/tx, = (o¡Jt fox) 1 

1
, 1/1

1
, = (o¡Jt/oy) 1 

1 
triangle identifies joints in the clement), a quadratic function corre~ponds toa triangle with! only solution parameter at point 4 is l/t

4
• 

joints at both the vertices and the midpoints of the sides. In this way we can perceive a : By introducing the derivatives of ¡Jt as solution parameters and thereby climinating_ 
"family" of triangles with no upper limit on the degree of polynomiaf employed. The i a long the side of the elemcnt we reduce the bandwidth of the algebraic equations 
functions of d'cgree higher than one are collectively termed "higher-order" functions and ! sol ved (equation 10). Furthermore, from equation (2), the solution parameters are di 
when an element formulation is based on such functions it is called a "higher-order" 1

1 

proportional to quantities of interest, u and ü, and so the Jatter are in cffect directly p1 
element. . out after computation of the solution. 

The advantage of a higher ordcr element derives from two principal considerations. Jt is 1 The present triangle (Fig. 3b) has been used extensively in finite element analysis 
possible to write the higher-order function directly in "shape function" form. The Pascal; number of :JUthors, including ftow analysis problems[8]. The'shdpe function descripti 
tri:::mgle identifies a polynomial series rcpresentation of ¡Jt, where the coefficients ofthe series 1 1/t, given by Felippa[9) is 
do not ha ve the physical significance of shape functions. For more general shapes of element 
the transformation of the polynomial coefficients into shape. function form may be an where 
expensive operation. Secondly, explicit formulas are available for the integrals ofthe shape 
functions over the triangle domain. Both of these considerations, which are detailed in 
ref. 6, stem from the existence of triangular coordinates, defined as 

(13) 

where (Area) is the total area of the triangle, (Area}1 is the area of the triangular subregion 
i(i = 1, 2, 3) (see Fi_g. 3a) and is a linear function of the x, y coordinates of point p. It 

y y 

3 

2 

'--------x L_ ________________ x 
a Area coord1notes b. H1gher arder representotion 

Fig. 3. Triangular elements 

follows that one can construct a linear representation of a quantity such as B, the coefficient 
in equation (1), as (ollows 

B=L1 B1 +L2 B2 +L3 B 3 (14 

v. he re B;, i = 1, 2, 3 are thc values of B at the element vert ices. 

N3 = L/(y31L3- Y12L2} + (y12- YJt)Y 

N4 = L/(L2 + 3L3 + 3L1} - 7y 

N 5 = L/(x23 L 3 - x 12 L 1} + (x 12 - x23)y 

N 6 = L/(y¡2Ll- Y23L3) + Ú'23- Y1 ., 

N 8 = L/(x31 L 1 - x 23 L 2 ) + (x23 - X; 

N9 = L/(J'23L2 -- Y31 L¡} + (y31 - Y2 

N 10 = 27y 

J n the evaluation of the element coefficients, through integration of equations (8) an 
the tt:rms A, B, and C are assumed to ha ve linear variation over the region of the eleme 
given by equations of the form of (14). This is convenient since B 1 , B2 , etc., the valü 
these quantities at the "joints ", are the ·conventional input parameters in an analysis 

One inconvenient aspect of the element formulation resulting from the use of equ 
(16) is the presence ofpoint 4 in the interior ofthe element. This solution parameter dor 
join to any other so it can be eliminated from the element equation befare assembly e 
latter into the system representation (equation 10). Thus, the element equations a 
order 9 x 9 immediately before assembly. 

As men.tioned in Section 2, consideration of boundary conditions requires that the st 
function is a constarit, which for convenience is chosen to be zero, all along the boun 
In the present representation the stream function varíes cubically between two ad~ 
ioints and requires specification of four parameters for unique definit · ·., along such an 
fhus, in addition to the two stream function values at the joints the. c~es of the tang' 
deriva ti ve of the stream function at hoth end joints should al so be zero. As in finite ele' 
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~¡n 3 1ysis by U\Íng triangular clcmcnts, thc boundary is usually approximatcd hy bwl.-cn lincs 
md hcncc thc tangcntial dircction of a joint is rathcr ambiguously dcfincd. llcncc, some 
further appro.\imation is nccdcd to choose ils dircction. For inst3nce, one may considcr the 
average dircction of thc two lincs meeting at the samc joint as its tangcntial dircction, or 
altcrnativcly, take cithcr one indicatcd by the two lincs as the requircd direction (but con­
sistcntly for all the joints). The lattcr is adopted in the prescnt study for the sake ofsimplicity. 
That is, the line connecting a joint and its adjacent joint in front, ta k en in countcrclockwise 
order is considered to be the tangcntial direction at that joint. Once the tangential direction · 

,at ea;h boundary joint has been established, a matrix transformation is necessary in arder toi 
i introduce the tangential and normal derivatives of the stream function, in place of.thc x- and 1 

y-dcrivatives, as sol~tion paramcters. This transformation can be performed either at the \ 
clemr:nt leve! or at the system matrix leve!. After that, the stream function value and itsi 
tangential dcrivative at each of the boundary joint are set equal to zero and finally the 
system of equations is solved. l. 

1 
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The validíty of thesc cxprc~ . .sions is confirmcd in two w;¡ys. First, the N,'s must taJ.,e 
values such that 1/1 = ~~ 1 whcn V' i!. ev;duatt:d for thc coúrdinatc!. of point j (i.e., N, o= Í 
¡ = j, N

1 
=O for i-:/- j). Sccondly, whcn cvalu<Jting t/1 a long an edgc it should be fnund to l 

function of only thc values of t/1¡ along that samc cdge. This means that t/1 will be continu 
across clcmcnt boundaries and in forming a gcometric idc<Jlization with curvcd bl'Unda 
the geomctry wili be continuous if the same shape functions are adopted, i.e. 

x = N 1 x 1 + ···N1x 1 + ···N8 x8 

Y= N1Y1 + · ··N,y, + ···NsYs 

Now, it is recalled from equation (8) that evaluation of the e!ement coefficicnts invo 
the derivatives of the shape functions with respect to x and y and integration over the: 
of the element. The above shape functions are defined in tcrms of ~ and r¡, howcver, so 
the transformation to x and y must be establishcd. From the chain rule of diffcrentiat 
for a typical shape function N 1 

D. ISOPARAMETRIC ELEMENT {aN) [ax ay]{aN) {aNJ 
The four-sided isoparamctric element is shown in Fig. 4. The simplest order of shape func- a~' . a~ a~ ox

1 

ox
1 

tion which will de:.;cribe curvcd boundaries, a quadratic, is chosen here. A curvilinear = · = [J) . 

y 1 . ":.· :: :; ";· ";· 

2 
(0,-1) 

4 
( 1,0) 

L------------x 
Fig. 4. Quadratic isoparametric element 

where [J ], the Jacobian matrix, is cva~uated by differentiation of (19). Al so 

dA= 11 Id~ dr¡ 

where 11 1 symbolizes the determinan! of [J). 
Equations (20) and (21) give the necessary basis for evaluation of(8). The resulting int< 

is too complicated for explicit evaluation so that numcrical integration must be emplc 
Gaussian integration was applied in the present case, with 3 Gaussian points in each direc• 
The coefficients A. B and C were evaluated at the origin of ~-1¡ coordina tes and were assu 
to be constant throughout the elcment. It should be noted that in the presence of det 

1 

data for a _give_n physi~al pro~lem it would be feasible to evaluate these quantities at eat 
the numencal mtegrahon pomts, and thercby obtain a bctter approximation to the equ: 
coefficicnts. Howevcr, computation time is expect~d to increase comiderably as the ex: 

coordina te system (~. 1¡) is definec within the element in such a way that the corners of the sions for these coefficients are rather in volved. 
element have coordinates + J or ·-1 as indicatcd in the figure. Rectangular coordinates 
(x, y), in terms of which the location of node points are initially defined, are al so established. 

The stream func~ion for the velocity is described by the following 

(17) 

We note that in this case only"thc val u es of t/1 aúhe joi·nts, ;:¡¡,·a 'TJOnhe·de·rivatives of t/1. are 
chosen as unknowns. The shape functions N 1 are gi•cn in ref. (10) by · 

N¡= H(J + ~~,)(1 + r¡r¡,)- <I - ex1· + '/'1,) - (1 +~~~>o - r¡
2 )J 

for i=1,3,5,7 

for i = 2, 6 (18) 

E. NUMERICAL RESULTS 

To study thc feasibility of the present approach, two problems, presented in ref. 2 

1
again ~nalyzed by_ using the higher-order elements described herein. For both prob: 

l
fewer Isopararnetnc elements, and henceforth a reduction in the numbcr of solution ¡ 
mcters, ha ve been_ used to demonstrate the merits .::;[ high-order clement over the si 

¡linear stn:am fu~ction re_Presenlati~n. Thc same 'iácR coúld 'have 'hl:en applied to th~ 1 

;field rcprescntat10n hut It was dec1ded to use the ~.ame ~Jement g:-idworks adopted i 
linear field so as to gain sorne ídea about how solution cventually converges with ü 
crease in number of solution parameters. 

Thc first problem, shown in Fig. s: is··an idealized ·rectangular basin oriented in a ~ 
[outh direction with a length four times its width. Wind was assumcd to blow from Sot: 
¡North. Values employcd in the actual computations are shown in Fig. 5. 
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f = O 0001 rod/sec 
D = 8000cm 
L = 1 25 ~ 107 cm 
7J = 200 cm2! se e 
T = 1 O cm2/sec 
g = 980 cm/sec2 

Fig. 5. Rectangular lake 

As mentioned in ref. 3, a zero dcpth reprcsents a computational singularity. Hence, only 
the flow region bounded by a contour of 5 per cent maximum depth, as used in ref. 2, is 
considered and the cffects from ftow exterior to the boundary are assumed to be negligibly 
small. This choice o_f tl1e ftow region, rather than using the actual shoreline boundary with a 
non-zero depih assigned a long it, is preferred beca use the bottom topography of the lake is 
retained. 1t is to be noted that although the Jake is geometrically symmetric about x- and 
y-axes, this propcrty of symmetry does not apply to the circulation behavior being calcu­
lated. Therefore the en tire lake must be considered. Fig. 6 shows the finite elcment gridworks 
for a quadrant of the lake. For the entire lake, 360 triangular elements (either linear or 
cubic) with 209 joints, or 40 isoparametric elements (quadratic) with 149 joints, have been 
used in the numerical computation. 

Figures 7 and 8 show results for the stream function 1/J and the magnitude of surface 
velocity at selected sections, as predicted by various finite element representations. Also 
shown are the finite difference results from ref. 3, where 1701 equally-spaced pivota} points 
were used. For 'the finite element representations, 209 solution parameters were used for the 
linear field, 149 for the quadratic field, and 627 for the cubic field approximation. The 
finite elemenl and finite difference results are seen to be in close agreement. Also, it is noted 
that results obtained by using isoparamctric elements compare well with others, in spite of 
the fact that only an amount of 72 per cent in solution parameters, compared to the linear 
field represcntation, has been used. This fact secms to confirm that higher-order element 
representation is more desirable, regarding accuracy and efficiency, over the simple linear 
freid representation. Of course, our results could ha ve been improved further if t~e coeffi­
cients A, B, and C in the governing equation had been evaluated at all Gaussian points 
instead of only one point for each element as presently carried out. The results from cubic 
field representation, as expected, are far more accuratc and coincide almost exactly with the 
finite difference results based on a much finer gridwork. 

The seco .roblem considered is the prediction of circulation of Lake Ontario dueto a 
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For ent.re toke. 

360 Elements 
209 Nodes 

(o) Tr.ongulor elements 
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For enhre loke: 

40 Elements 
149 Nodes 

(b) l50PD'Ometric QJOdrdoterols 

Fig. 6. Finite element representation of rectangular lake 
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Fig. 7. Comparison of total velocity s?lution~ on rectangular lake surface 2\ 

representatrve sccttons 
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y = 00 
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Finite difference: 

F inite element: 

o Tr•ongle-lineor field 

A Triongle-cubic field 

x Isoporometric 
quodriloterol 

Fig. 8. Comparison of stream function solutions for rectangular lake at 
representative sections 
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~·ind shear prevailing in the NE direction with 7° to the East (the local average direction at 
\ochester in February). The same numerical values off, r¡, -r, gas used in the previous 
·xample were u sed in the present case. The characteristic length (L ), which can be chosen 
,rbitrarily, was set to be 2 x 107 cm, while the characteristic depth (D) was chosen to 
~present the maximum nodal depth after the Jake had becn discretized with finite elements. 
"he value of D may vary slightly \vith the gridwork. For instance, it is 22500 cm for the 
riangular elcment gridwork and 21650 cm for the isoparametric reprcsentation. Figures 9 
nd lO show the gridworks employed in the present analysis: 561 triangular elements with 
23 joints, or 70 isoparametric elements with 257 joints. The geometry and bottom topo­
raphy ofthe lake described in ref. 5 was used herein _to define the finite element representa­
ons. Again, to avoid computaíional singularity, the flow region studied is the one, bounded 
y ·the contour line having depth of water of 12 m, not the actual shoreline. 
Figures 1 I and 12 show the stream function values and the magnitude of surface velocity 

No. of Elements=561 
Scole (km) 

No. of Nades = 323 

Fig. 9. Finite element representation of Lake Ontario by triilngular clemcnts 
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Scole(lo.m) 

No ol E it:rnenls = 70 
Nc el Nodes = 25 7 

Fig. 10. Finite ciernen! reprcscntation of Lake Ontario by isoparametric clements 
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o Trtongulor linear elements 

A Trtongutor cubic etements 

x !soporometric quod. 
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Fig. 11. Comparison of stream function solution for Lake Omario al s<"..ction A-A 

o 

at a represcntative section of the la k e. Thcse resu~ts are se:n ~o be in g~od agrct:e: 
general Near the <:outh shoreline, however, some dtscrepanc¡es m the stream funct o ~ 
betwee~ the isopa;ametric element prcdiction and those obtaine~ by the other two repre~ 

1 ations The results -obtained by the former are belie~ed io be maccurate beca use ~ r 
. \ . ·d k hao' bc~n used and a~ a ccmequcnce, ~h: bottom topography Jmght 

l, coarse gn wor ~ - ' d 

1 

have been prcperly repre~.ented irÍ that r~gi~n. !his inac;c~racy, howev~r, ioe\~0~~¡:1 

affect seriously the surface vdocity predJCtlon m that r~g 1 on, as secn m F g. f · d 
1 suggests that surface velocity distribution, which i~ mainly affected by the sur ace ,an 
• rounding conditions, is less influenced by thc bottom _topography_than ~e str~~h~~~~~ 

No comparison resulls by other methods are ava¡Jab!c for t!l!S pro · em. v ~ 
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. , . cn•·1tion ¡~ 0 ;r· 11 ,kd to ¡¡,,,_.,_. dí¡ucn:-ions .llld more l0111p1c' phcl' 
thc • hcorct:ca. n.:pro .. - - 1 h 1 f . 1 d 1 

l ¡ n 'd ;nt•·•"t~tion. lt ~lrllLJ)d be !1<'-ll'd tí;at a!t wug t ](' (•tJf·'>l( ,. e e 
thc1111:1 - ur · ·''" · · ... •1 · h 

e.g. · ·- - r·nne'ric rcpn.:~rntation it i~ abo po~~~blc lo c.:<,! tl.e lrr.t"g e ¡n 1 • 
Popular m •sopa ~ ' ' · · , - ,. · · 'l' 

· t. f "oplior:·'" dcgrcc of shapc funct10n r;, unlc a,!;;<~IJJ 11· t Cl ,. 1 the qucs ron o '" ,.1, . . 

Ev~d:~~:c[l:L] t(·nds towards :he d-::~:r.~bility of scwnd- or thrrd-cl('gít·e functrons. 

o Tr1ongulor lmeor elements 

A Tr1ongulor cubic elernents 

x Quodrot ic quodriloterals 

, ¡ 
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\\'ork ·1c•r1ibtd in thi~ p .• pcr v.a~ supporrcd by thc J'.:;.rir.::l:d <;Licnc<.: Fuunclat: 
- AcÁJIOhH r <:Jf1h ... 11 -- • • ··- j- !' 
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Fig. 12. Comparison of total velocity solurions on Lahe Ontario surface al section A-A 

· correct Coriolis parameter V.·as. used, no serious atternpt was made to choose a physically . 
accurate eddy viscosity or io account for ice fonnation or variation of wind stress. It is l 
unlikely that field measurements of the form necessary for comparison purposes will be 
available in the foreseeable future. Large-scalc modcling is a promising alternative source of 

· comparison data but no such data yet exi~ts for this lake and when they are obtained it is to 
·be ellpected that limitations on representation ofthe pertinent dimensionless ratios (ref. 1 1) 

will require somewhat different conditions on the comparison analysis than those employed 
h . 1 

erem. · 1 

F. CONCLUDJNG R EMARKS 

The results presented in this papcr demonstrate that higher-order and isoparametric ! 
elemcnts represent important components of the most effective utilization of the finite ' 
element method in lake circulation analysis. The improved accuracy of the triangle with 
cubic stream-function field is gained without significan! increase in formulative cost over 
that involved in the simplest triangle. Additionally, the use of derivatives of the stream 
function as solution parameters is a convenience in the treatment of boundary conditions 
involving prescribed inflow or outflow rate. It is questionable, however, that still higher­
order representations (e.g., based on quintic functions) would be more efficient because for 
these the element formulative cost is no Jonger insignificant. Also, the Jarge number and 
type of solution parameters per element may preve awkward. In any case, realistic assess­
ments of "optimal" degree of higher-order representation are needed. 

Jsoparametric element representation would appear to be of special importance in the 
finite element analysis of natural Jakes, which possess irregular shorelines. The represent­
ation of such lakes can be accomplished witl. large number5 of straight-sided elements but 
in that case many · 'ments and solution parameters are employed solely for geometr· 
representation. Th. Jparametric concept e na bies cach element to serve the functions O! 

both geometric and behavior representation. This factor will be of overriding importance as 
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The Method of Weighted f\e~idua!s--P.\ Revie'N 

B. A. FINLAYSON * AND L. E. SCRIVtN 

UNIVERSiT'f OF MII'JNESOT A, 
MINNEAPOUS, MiNNESOTA 

A bstroct 

"'7""h'-" mcthod of wcightcd residuals unifies many ap­
·¡. proxirnatc mcthods of solution of Jiífcrcnúai equa· 
"' tions thaL are bt:ang uscd currendy. This review 

prc.:sents the b:1sic method in ics hisroncal contexr and 
~bows sorne of the many possible rnocif•cations L;lat 
ha1·e been used chroughour the past fifty ycars. The re· 
!.,tionship berween the Ga!erkin rncthod, which is one 
vcrsion of che rnethod of weighted residt:als, and vari<!· 
tion.d rnethods !s outlincd. 1\lso inch:ded i:. an extcn­
sive liscing of published applicacions o[ thc rnethod of 
wcightcd residuals. 

1 ntroduc 1 ion 

Thc rncchod of wcighted residuals 1s ::n cngiaeer's 
!oiO~Í-O~n/i apprOXllfo;C-C--,;oJtÍtÍUn!> [O tlJe-cqu:Üíons 
.. :· :h..u¡_:e of Ji~[[ioul:c•a -sy;;teill-:.;:·· Exp,:rieiic-e and-i0: 
'.:w•n ('an be d,~rill._:d ---wi_o_ a rc~.sonablc nnd sorne· 

1:111e~ ,qu!le accurate first gucs:., frorl' which ir is possi· 
· .• :e· to procccJ ro successivel}' irnproveJ <tpproxirna· 
:""'~- Thc analyt¡cal form'oí che approxirr,;.He solution 
'' oitcn more useful rhan so!ution:. gcner;Hed by nurner· 
.c.li 1nte¿;racion, .md rhc approxirnate solurion usually 
requ1r~·,; less computation r!mc to' generate, The 
-n~rl:~d is applicable ro nonlincar aud non·sclf-¡¡_9j~inr 
rr .. ,!)Ic.·lns-one of its m-0~1W~-r;~~llJ"t~-;:~·-- -

--o¡:¡;c mcthod -;;r-,~·ci¡.;hteJ rcs•J•uls--T\1-~·r{) indnd.~s 
m.my approxirnarion rncthods rhac are bcing u~ed cur· 
r<·ntly. It providcs a vantagc poinc from wl11ch ir is 
"·'~Y to see the uniry of thcsc rncthods .1s wdl ,¡s tll,­
r<·I.Hionships bctwcen them. This rcvicw. afcer outlin· 
1ng appúcacion of the b:~sic mcthod ro inH!al-valu.:, 
:. .. undary·valuc, and cigenvaluc prohkms, surveys the 
:11srory of majar comributions to che sub¡ect ;:,nd dis­
cusscs sorne of che many modiiic'-ltion:, of rht: bas1c 
method. Thc rcvicw concludes w1th a lisring of appli· 
cations of wcighted residual mcthods lO problcms aris­
•ng in applicd mcchan¡cs and rebtcJ Í1e!ds, Four prac­
~~cal aspects o~ ~IWR in need of furrher research are 
¡Jcntificd. 

•Presem ndJress: Office of Naval Renenrch, Washington,. 
D. C. 

A. !la:.ic: Meth.-,d 

The bese avai!able creatmr.nts of MWR ha>~c becn 
those hy Crandall [I]. who ccoined !he r,a me method of 
wei¡;ht;,d residt,als, Ames [2!, and Collut:: [31. who 
calis thesr" methods ecrcr-d!stribucion principies, The 
fi)liowJng o~.:rline paralleb tl:eir tr~:~tments, in pbces 
contrastin¡; chem nnd elabor:Hing on rhem. 

Given a syst<::ffi oi differential or integro-differenri<~l 
equ:Hions of ch:1r:ge anJ c<;mstiturive reiaci,ms, bound­
ary c-onditions rcpresenting eh~ i'lteractions bctween 
che system and it:; s~:rmundlllgs, and initia! condirion:; 
repcescnring sorne base statt: of inrerest, thc ¡~enetnl 
approach 1s to 3ssume a rrial solution whosc funcrional 
dependence on posiricn is chosen, cut which incl\ldes 
~indecermined funcciol'1s of time. The l,uter are found by, 
requiring !hac che tria! solution s.:Jtisfy che difkrenr.ial 
cquacion iu sorne specifi;:d approxirnate scn,e. 

lniti:d Volue Problem 

Consider the diifer{;ntiai equation for (u(1t, !): 

N(u)-
211

=0 xinV, >O 
di 

(1) 

where N(·) dcncces ~ general ditferenrir,1 cv~raro~ in­
voivin¡; spatial derivatives of r<, V i~; a chree-di!ll~n­
sJon.ll ..lomain with boundary :0, and t rcpre~ems ciml!. 
Suppcse the inirial and boundary conc!:~ions are 

u(x, O)'~ uu(x), A: in V 
(2) 

Assur.~e a tria! solution of tne forn1 

N 

u~(lL, t)"' u 5 (X, t) + L e, (t) 1: 1 ().(, t) (3) 

lo.: ~ 

where rhe approxi:nating func::ions, i..¡, He pre:c:cnbed 
and sati;;;íy :he boun~!ar¡ conJitwns 

{4) 

Then u" satidies c!-.e boun~bry coudilions ior uil iur.c· 
tion.;; c¡(f). Jt is rwt necessary that tbe uia! solut:on 
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hL I111V.or 111 che ,, lnl! 'uch ,, d11>1ce 1s usually maolc 
lor "'"'l'l,.·l!y; llu .ys¡c•m.HIC ,,tu.ly of altcrnacivcs 1,,,., 
l>co·11 rcpc>rtcd, so l.tr .1s tite auchur' know. Thc dilfcr­
cnri.d (',lu,¡CÍon rcs1dual and ini[lal rco;idual, 

C" 1 are constants rather chan funccions ol rime; for linear 
problcms rhcy are determined as solut1on.s ro 

(12) 

(Íu• 
/((u•)=N(u•)-­

¡)¡ 

For nonlinear boundary-value proble-ms ic may be useful 
(5) ro assume tria! solucions of a more general focm chan 

Equarion (3), v1z.: 
'1 

H0(u•)"' u 0(X)- u 5 (X, O)- L e¡ (O)u,(X, O) ({¡) 

1= 1 

are mc.osures ol che cxcenc ro which che functJOn u• 
S.IIJ>;/,cs thc d.ffcrencial equacion ¡¡nd inicial conr.Ji­
tion~. ro.'specrivc!y. As che number N of approximaring 
Íunclt<HI!> u¡ is increa~ed in succcssive approximat10ns, 
Oóic liC•f•c:; thc rcsiduals wdl becornc smaller; the cxact 
:-.olut.oll is obtaincd when horh rcsiduals nre idcntica!ly 
zc::u. ¡\,, ;~n .1pproximarion tu rl.is Ideal, che we•glued 
inu:¡;o;d '• of che res1duals :ue· ser equal ro zero: 

L 2, ... , N (7) 

(w¡; Rg(u•))=' O 

whcrc 

(w, v) ;;; J wvdV (8) 

" 
rcprc,,crHs a .spacial average or inner product and w¡ is 
a presnibcd wcighcing funcrion. lf u• is rhe exacr 
soluc1ull, Equ.nions (7) are s..1tisfied regardless of che 
choice ol wc,ghring .funccions. 

Thc we1ghnng iunccions can be chosen in severa! 
diffnt·nt ways, ..~nd e.och choice corresponds ro a dif­
fel(·nt cr1tcrion in ~lWH. Once che cho1ce is made, 
Equar ion:, (7) becomc a ser ol N first-<.>rder ordinary 
dllft·lential cquaci,>ns m thc N unknowns c¡(l). For thc: 
1 i:rc aJ" pro~>l ern 

r'lu 
= L(u) (9) 

tll 

W>th :opproximacing funcrions u, and u 5 chat do not 
thcuJsclv<·s depend on c1nie, Ec¡uations (7) become simply 

\i , N 

L ~~; 1 

(w 1; u¡)= Le, (w 1; L(u,)) + 

1- 1 '" 1 

or, in matrix noracion 

,
1 

dr _ --=nc,b. 

"' 
(11) 

The solution ro the.sc equations is subsrituted into 
Equarion (3) ro givc thc approx1marc solution ro che 
prublern. Succes!>ive approximarions are obtained by 
1ncrcasing ,\' nnd ,olvi11g El¡u.ltJon (JO) anew. Thc 
convergence uf succe.ss1ve approximat1ons gives a 
cluc, but noc necessari!y a dcfmi¡¡ve one, to che rea­
souablcness of che appruximacion; 

Boundary Valuo and Eigenvalue Problems 

The mechod is equally applicable ro steaJ>·-scace and 
eigcnvalue problems. For steady-srare problems, che 

u•(x) = 9(lc;l, u,(x)) 03) 

For che linear eigenvalue pcoblem 

L(u)-ÑJ=O. (14) 

che approximare solution is decermined by 

N 

[ e¡ {('"¡; /_(u;)) -A (w,; :i)} " 
l = 1 

Lc;(A¡;->..B¡;)=O (1 ~) 

le l 

and chis sec of equarions has a non-trivial solution only 
if 

det (A¡¡ - AB ¡;) = O. (16) 

The values of ,\ for which chis is true are che appcoxi· 
marions ro che first N eigenvalues Ak· 

Weighting Functions 

The choice of che weighting functions, w1 in· (7), 
corresponds co various criteria in MWH: the historical 
relationship of che criteria is porcrayed 1n Table I. 

In the col!ocation m~thqc!, due to Frazer, Jones, and 
Sk an- .[ 4Cch·~- -;,e ighting func;tio~~- are- rhe Dir~c-·;re-ha 
funccions 

w¡ = 8(x¡- x); (17) 

TABLEI 
HISTORY OF APPROXIMATE METHODS 

Date lnvestigator 

•' 1915 Galerkin [IO) 

Method 

Galerkin methoJ 
Integral m~thod 
Subdomain mf'thod 
Method of leasc squares 
Method of moments 

-- 1921. Pohlhausen (¡a) 

. 

1923 Biezeno and Koch [5) 
1928 Picone (9] 
1932 Kravchuk (¡¡] 
1933 Kancorovich [30] 

1937 Frazer, ¿ones, aod 
Skan 4] 

1938 Poritsky [31) 

1940 Repman (55] 

1941 Bickley [ 12] 

1942 Keldysh [57) 

1947 Yamada [16) 
1949 Faedo l59; 
1953 . Greeo 60 

....... 1956 Craodall [1j 

Method of reduction to ordi­
nary differential equadons 

Collocation method 
Method of reduction ro ordi­

nary differential equacions 
Convergence ol Galerkin's 

rncthoJ 
Collocation, Galerkin, least 

squures for inicial-vulue 
problems 

Convergence of Galerkin's 
mechad, sready-state 

Method of moments 
Convergence ol Galerkin's 

method, unsteady•state 

Unificacion as method of 
weighted residuals 
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r~a: <lifiert'ntial egu.:r ¡,,n is rhc:1 •;:~nsficd cxacdy __ ac che 

\ ~o~loc.lt!On poim,, \'" ;-' .\' is Incrc·as~_dL-d_I<: __ ~_~sid~ 
;1.:: v.Jn ,_,~les .a mor_~· ,,nJ more po111ts nnd fJ~c:;uinably 
:'J'proachc., ;¿ero chroughouc \'. 

).i che wci¡;hcin~ fu11ctions are 

w 
1 

X in V 
.1 

X noc 111 V¡ 
( 1 R) 

rbc11 che_ J.fr'crc11rial er¡u:.(ion is sarisficd on rhc avcr­
,.:'1g~ in .;ach oí rhe ,'IJ subdomains, V1 ; chis is che sub· 

_J,,m.~i:1_3_let_hod [5, 6], lf che V¡ :m: d1s¡oiuc (which they 
nccJ noc be), che size of one or Jf'<.-re subdomains de­
creases as N is increased, wich che result thac che dif­
fcrcucial equacio11 is sacisfied on the average iu fmaller 
anJ sm01ller rcgio11s, and presum01biy che, residual ap­
pro:.chcs zero everywhere. le was Riezeno's presenta· 
uo11 !7] of the subdomain mcthod at che Firsc Incern~·· 
riorwl Co11grcss of Ap¡)lied Mechanics which prompted 
Coura11t' s remark [8] rh:lt led Crandail to choose che 
name, "mcrhod of weighted residuals." The auchors' 
nansl ation of Couran t' s remar k reads: 

"~Ir. Coura11t (Gorci11gen) indicaced aíterward chat 
the merhcd adva!lceJ by Mr. Bicze11c can be viewcd 
from che scandpoirít of che c::~lculus of variacions in 
che following manner. lf a_ ddfere11tiai equacion, as 
ic arisc:::s for example in a variaciona! problem, must 
be. sarisfi(·d, rhcn we can express ir so thar che !efe 
sdc of che Jiticrt'ntial cquacion, multiplicd with an 

arbtcwry funuion :md rhen inregraced, muse give us 
r!w vaiuc zuo (va11ishi11g of che Lrst v".riation). In· 
scead of caking an· arbicrary funcrion, we can also 
cake infinict·ly rnany dcrermirH.:d iunctions, if rhese 
only furm .1 so-c.dled complete funccion syscem for 
thc regiOil 10 qucscior .. The pit:cewise consrant func· 
{IOI1s advanccd by Mr. Biezc11o are iudeed ¡ust an 
especially simple special case oi ;,uch a complete 
function syscem." 
The lcast·squ.ucs mcthod, which secms to have becn 

first presenced for chis cype of applicario11 by Picone in 
1928 [9l. .. u_ses che weighung lunctiOns ar~(u•)/ac¡. The 
corresponding incerpreracio11 i;, rh¡¡r che mean square 
restdúai 

_ J [/?(u • )]' dV 
V 

(19) 

is minimized with respecc ro che co11st::.11ts c 1• 

.,.._.ln_~hc:_G,alerkil1 mcchod [IOI, Jevc!opcd in 1915 as rbe 
firsc cricc~ion of wh¡;c j;, 110w k11own as ti1c mechcd of 
wcighced residuals, • t.he weigiHIIIf; funccions w¡ a1e 

j~~c __ che_ apprqximating funct10ns of ui' Thc approximac­
ing funccio11s 01re ofccn rnembers of a compiecc._system 
o{ fÜI1cCÍOI1S, although Chis propcrcy, rcquircd fnr mvthc· 
matical purposcs, lS ~omctim,:s t¡;nored in pranicc. 
The"GakrkHl method thcn c:J.n be in:up,ered a:;_n:akin¡; 

Í~- iesiJual onhogonal to n.crnl>crs of che ::omp:~re ser. 

•::;..,, ,\~:lltlin [¡ 11 for a discussion of the contribution 'o>• 
O.tbaov i11 I'IJ 1.; while his mctboJ is the samc as the G¡dcrkin 
mecho,! f'.'d.;:n!ln ..1nJ ochcr~ in recent Rus~ian lítcrarure cull 
it thc Buc""'v-<..~alcrktn mcthod), it was G.dcrkin who deve\­
opeJ the m<:thoJ •ndcpcnJently of uny var~acional pCJnciple. 

.:l.! f.!iJ}d;\;JJcn..ta 1 . NOP_~r_ly _( son~e~ Íll_!__C ~.~he dd iu it~ nn) _of a 
C<l•npl('t_~ __ ;;y_stcnl of function~ .. i-~ __ char a piccewise con• 
c'l!HillliS _(_l:!r!ctit>11 can he oHho_¡;~n.d lv c,¡ch :-.nd evcry 
·m,·nlb('r onlv if che fu11ccion i~ id<:.Hicallv zcro. ln thc 
approxin)i;r¡~;l scherne ou.t!i11-~~¡" aGovc, t.hc rcsich!al is 

\lsuall¡ concinuous (d<!pcnJing upon d11: ddír~remial 

opcrato1 and the choice o! r.pprox i m a ri11g fun crioo s), 
and hcnce che residu:d can vanisli on!y If ic is on:w­
p,onal to each member of a cornplcc., !iystcm of luuc• 
tions. Of co:Jrse in prz.ccjce cbl:' rt!..;Ídu;d !~: made f·i'hc~· 

· go11al t.:- f!U more than a mc.d·~st, fi:1ite number ni :J.c: 
mcmbers of a compiete sN. la che oti[:ina! G,,lckin 
method, devcloped ill che ~rudy of ehlstJC egudiSr;,;m 
and stabiiity of rocls and platcs, Gal..:rkln U5t:d tria! 
scbcio11~ .,..·ith unknown >:'Jnstanc cocíficients. Now 
many similar cc-chniques are ofcen referred (0 as tl1:: 

Gal~rki11 oc generaiizcd Galerkin mechad: (i) ~he orte 
given above in which e¡"' c;(l) for ci:ne-cependenc proh· 
lems [12, 1]; (ti) ene ir. which tria! solutions are of che 

. more :;eneral form u• = f(x, 1 e¡ i) with wt"ightin;;; íunc­
cions a¡;ac, [131; and (iii) one in ~·hich weighting 'runc• 
tior~s are of che form K(u¡), rather chan u¡, where K is a 
specified differential operator tJ 4, 15]. 

The mechad of moments is simila_~ t_o che GaJer!ün 

m~c hod ~~c_epc _char the .residuaf(~ .. m:tdc orrhogo!Jal __ ~~ 
members of a syscem ot iunctiOfl!i .. !\'h!ch net.;.o:!. f!.O~-~~-­
rhe sa,,·,e- a;- che approximaring--f~nccion:;. Borh medwds 
a¡e comb_i.ned undf'r""che- si11gle ... naine of orthogon?.liza­
tion methods by Collatz [3}. Yam'ada [ ¡6) 0111d Krav­
cbuk [17] applied che merhod of momenrs m ordi~uúy 
differential equarions by using che weighring funcrions 
1 x"l regardless of the choice of approxin.acing func­
tion,s. For che firsc approxi~nation, che weigluing func• 
tion is unity, and che n>ethoJ of moments in chis case 
¡~ eguivalent t¿ che subdomain mcthod ¡¡nd is usually 
called che integral mechod, or von Kárm<Sn-Ponlhausen 
merhod [18, 19]. For che integral method, reviewed in 
dctail by Goodman [20], che difierential eguacio1• is 
satisfied on che average over the dom:~;n oí interest. 

Boundory Method s 

In che foregoing ic is pre:oumed thac che tria! solucion 
sncisfics che bou11Jary condicions but not thc c!ifferen· 

ti01l equation. T11e converse sicua:ion can also be 
treated: che differential equation is sarisfied bm the 
boundary condicions are noto Trial solutions of chis 
S'Jrt lcad to boundary methods, as che}' are called by 
Collatz [3]; che íJCOcedures are analogous co chose 
above, but wich the sparial avernge, Equation (8), r.:.­

placed by an <J.vcrage over che boundary. 

Mi.<cd Mcthod s 

The int<!cnkdiat:: :;;ruado:~ ca;-, al::;c. be hnnd~ed: in 
so-ca!leci mixed mcLhod,. th.:' uj¡¡J !óOllltic·~ sacisfie~; 

neither the difi.:rential eyJ'\tÍons 11or boundary condi­
t ions. h Schtdeshko' s ere.; ~mene <lf mi xed mct!wd s [2¡), 
che diftcrential-c:quarion rcsicl·~al is rnade orrhogonal ro 
one sec of weightir.g fur:ctions, using (8) ;;s :loe inn(;r 
produce, wbile rhe boundary residual _is sinn.Jraneously 
mac!e orr.hogona! to anothc:r sct d weighcing h;nctions, 
using an appropnare sudan~ intt'gral as thc inn~:r prod­

u.::r. ]f N __ weigh~i_!lg_ f~mcdon~_a:-e u":ed,_ this___le::.~~--~ 
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:•\ cnndirions, ycr "' ¡:<·nt·r.d ooly N condirion~; can be 
-... ,ti•.! "''! '•y rhc N indep<'ll,l.·nt ',. "'" rhis proct'llurc 
r .. "'''~· "'""'-' of dll' condlli<>IIS 11111st he discardcd, as 
\\,ls llolllcd !>y Snyder, Spn¡:¡::· .11Hf SteW.Jrt l22lrn rheir1 
"''•t'llssroll .>f thc Galcrk1n mcrhod. 

!)n ch .. othcr hand, llc>lt1lln J:•"ll, Mikhli.n 1111, and¡ 
Fr11!.l)'""" l2•íJ havc pointcd om rhar for rhc (j,¡lcrklll 
mcrht~d tl1c dilcmma can be resolved hy adding rhc dif­
fercnrr.d-c<~uarion rcsiduals ro thc_ houndary res~tlu.ds. 

Thc coml>•'l.ltlon is mo~dc 1Í1 :.uch a way -rhac rhc diffcr­
L'ntial·Niu,trton residual, whcn Jlltt:¡~rared by parts, C:Hl­

cc!s rdl'll[ICn! [(;~ms of thr: IJCJU!)(Iaq• rr:sidual. The sit­
u:.uon ¡,, .walo¡.:ous ro che rrr:atrne11t of natural boundary 
condirions !n rhc calculus of V.lfi,Jtions, and indecd 
o¡¡:y iJoundary condiriuns ana!ogou~. ro natural boundary 
C<>nditions can be handled in rhis way. Such a combina­
\1<>11 of cquarion and boundary rcsiduals represcnrs a 
~·:ncr<t!Jzarion beyond che creatmcnr given by Cran-

'*' ,1.111 ll) (page 2~5), who starco; rh.n ,\!WR cannor be ap­
p:,,!d _ un)ess che tria! soluuon ~-;~,rislics al! bouud;¡¡y 
c .. n,!irions. l!awcver, Crandalllll (p,¡ge 321) does com­
t.iar: rhc residuals íor cr¡:cnv.duc problems in which an 
<: 1gr:nvalue appears in horh rl1c differcnrial equatton and 
btn:nd.:uy conditions. Thc cnmbtnacion of residuals for 
tltO!<: .1;eneral problems is irnpnrtanr in esrablishing rhe 
c<¡uivalencc between thc G:dcrlun method and severa! 
·.u··c:alled v::uiatinnal metlwd!> 125, 2t1J (see below). 

B. Refinements on the Basic Method 

Othcr modifications are possible: Duncan [26) tnakes 
rhe approximaring functions sarisfy der1ved (or second­
ary) boundary condHtons which are determined by re­
quiring ch.1r che dJtfercncial e'lllalton be satisfied on 
r he bouut!ary. Dcriv,·d hound.try conclition s are al so 
u,.cJ in bouudary-laycr tlnory 111 che von Kármán·Pohl­
L,H, sen merhod; other compar 1bi 1 ir y con di rions-such 
·'"' conrinu11y of thc velouty and cercain of its deriva­
r ives at dJL' t·d¡::e of rhc boundary !ayer-are employed 
as well. l{cceut!y 1t has l>cen shown l27, 28] chat ad­
dllion:d comp.uibillly condirions are required to assure 
!;ood result5 whcn thc inccgr:.d mcthoJ is applicd to 
magnetohydrodynamic boundary-layer problems. In 
thcse cases rhc .tdditiun.ll condittuns are found by dif­
(.,rcntiatlng che ddfcrcrH1al c•¡<~.tllnn in che direcrion 
normal to che surfac•·; al! rrral soluí:Jon::; muse then 
sausfy tl1is cc¡uar,on ,Jt borh rhc salid surface and che 
cJge of thc bounJ.uy l.1ycr. A variation of_~i:J.e colloca­
rion method Js g1vcn by Co!Íatz 1.;], who differenllates 
an ordinary drifr:rential equat1011 ancl applies che collo­
cation rncthod tn rhc rr:,i,!ua! of thc: resu!tin¿; cquatron, 
too. 
' Kantorovich and Krylov [291 ourl1ne a merhod for 
rwo-dimenswnal problcms in which che residual is re· 
quired ro be zero along a l1nc in che domain (such as 
x =y). The mechad of rcduction tu ordinary differential 
equauons, as dr:velopc:J by Kanrorovich [30) and inde· 
pcqdenrly by Puritsky 1311, reduces a partial differcn· 
tia! equation to a systr:m of ordin.uy differential equa­
tions. 'l11is Js the procedure,descr1bcd above for initJal· 
value problems but it c,111 be appl1cd equally well to 
l>oundary-valuc or eigenv,,Jue problcms. The spatial 
averages (Equation (l:l)) are raken over all the inde· 
pendcnt variables except one, and the appcoximate so· 

lution is found hy so!ving a seto( ordinary diffPrcnr •. d 
cquarions involving chis rcmaining indcpcncknt v,111 . 
ahlc. While th1s sem¡·direct mechad was origrnally pr,. 

'puscd in che context of vanational principies, 1\anrorn· 
v1ch l32] in J91¡2 showed lls equivalcncc to thc (;;1 1~r· 
kin mechad. Even ear!Jer Bickley 1121 had applicd rhr 
Galerkin mechad to unsready·state problems in .1 manncr 
equivalent to che merhod of reduction to ordinary ,]¡¡. 
ferenrial equarions. ~n_ general, M\l.'R can be _u~cd t.¡~ 
reduce che number of indcpen~ent_ "aria~les in any P'};:... 
tia! dif_ferential equacion. The resulcing sY.stcm of 
equa.tions is simpler (it may bé algebra~c ~-~ -~rgin;~:· 
dlfferenria·l equations or even a set of partial __ di(f~H'_n._ 
tia! equarions), but its solu_cion remains only an appro1 • 

imate solution to the original problem. 
In che collocation mechad a critica! problem is rhe 

choi~e of collocation poinrs. For ordinary differcntial 
equations Wright [33] has shown that che resid;;;¡-¡~ 
nunirnized if rhe collocation poincs are given by che 
roors of che Chebyshev polynomials. · ·-· · · 

N:uurally che mechad of weighted residuals can be 
combined with other methods. Collatz f3J prescnt~ a 
combinatton of the iteration method · and MWH. Yan~ 

134, 35, 36luses che approximate solution generared by 
che integral rnethod as the first step in che folJo,.ing 
procedure for time-dependent problems: che result of the 
integral method is substituted inca those terms involv· 
1ng time-derivatives and equation thereby obtaincd is 
solved as a steady-stare, nonhomogeneous, parcial dif. 
ferential equation. An advanrageous coupling of Mlt'R 
and numerical finite difference methods has be en cm• 
ployed by Kaplan [37]. Kaplan and Bewick [38], and 
Kaplan, Marlow~:, and Bewick [39] ro reduce che com· 
puter time necessary ro salve certain nuclear reactor 
problems; rhe numb~:r of independent variables was re· 
duced from four to three or rwo by using MWR. Other 
modifications and hybrid schemes are possible and wil! 
undoubtedly be proposed as needs arise. 

Choice of Approximating Functions 

The choice of approximating functions can be crucial 
in applying MWR. How to arrive at a good, if not che 
bese, seleccion is an outstanding problem. Certainl) 
any symmetry properties of the system should be ex· 
ploited buc there seems to be no way available at pres· 
ent to do chis systematically for all problems. In prob· 
lems of convencional types ir is usually convenienl to 
have the approximating functions satisfy che boundary 

conditions, ªnd Kan(Qro_vich_!!!!.c:!_~Y.!<?v. (~L~h~~ ho"'· 
e o construct complete __ sets of functions which _va ni~~-~ 
a boundary--of complicated shape·:---Sñy-dcr and Scewart 
r 4o"l combine" chis scheme -·ano "symmetry arguments to 
f ind approximating functions for the ve loe ity vector 
f ield in fluid flowing through regular! y packed beds of 

spheres. 
Derived boundary conditions can al so be u sed to 

place restrictions on che approximaring functions ad· 
mitted, and improvement sometimes results [26, !48] .. 
Usually, however, severa! sets of approx imating func• 
tions are admissible and it is not possibl~: to choose 
one as the "bese." HeywoQd_and Moffntt [41] _ey~~--­
suggest __ ll.~.a qualitative critec_ion _thnt _che _ _ue~rox_i~~t~ 
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. ·(· L.l~· ... e~ L~:- :!·<..~ ~;~t ... 'At:-:.\ri;l,'i'! i~~::CtiQn.s: 

\~( :!J,I•_;., l·¡·.L· ~·ce:-: Je\;.Sl:d ¡,..,¡ constructtng ~!rrr\.,XI .. 

¡,: trin¡: :un((lu:l'i e""pccJ ll!: fur ei!;cn\'aluc rrobJcms lfl­

,,.l\'11:1: ltt¡:ll·nrder r,rdin .. -.~rr J!U<::enrral c ... ¡u.ltJons of thc 

. ·'" ti,'' ,orJ·o<: m rhe thcory ,,¡ CGitvccr¡•;e inscabdicy 
[, 

1
, .~ \, ·l i!. "J":le approximac}ng funct1on.:; art~ JUSr 

, '.·:•·nltillCI!IlflS oí é!lle oc anoclwr low.:r-or.dcr, simpler 

11·r rd,,r,·d c1gcnva!ue problcm on thc sante Joma1n, 
p,,lyrwnu.ds are popular approximacing (l!ncrions; rhr:y 
!, ¡~·e t·vcn lo<"~·n t.:s<:d 111 cyl:nJrical and spherical do­
r.:.l i!:,. l·i )1 wh<:re proper rq~;u d m u st be tak en o f pes si·· 
;.le ,in¡;ul Hltlcs. F;:dk f,¡G: uses lle:mice P•"lynorr.iaJs, 

',,hich are <'rthogona! on a s<:mi-JClfm¡te dom~in. Other 

"'rhr•rs [ )!), ·i?! cmphasize thilt munerica! difficu!ties 

¡L•r l.tr~.: .V) can be avoiJcd in che Galcrkin med10d -if 
r::c ·'l'J'f•>XIm.HJ!lf.: functions are orthunormalized. 

. -'~.kctm¡: ;~ppr~x_:maring funcrions remains so_mf'whaL 
•,:,c•hkrH on rhe user's imuHron and cxp~:cience,_ and 
;:;;, ,, otten rl'garded as .:1 m?.jvr d1sadvant.:>.ge of MWR. 
·, ic.HI]·, r:1c question of mcchods for arriving at oprim.:~l 
,b.H(CS of approxirn.:~ring luncrions warranrs rhorough 
",., ... u¡;:u,on. L<"ads may ex1sr m che local sulutions 

.onJ reg1onal expansiuns used in pcrcurbarion meth· 
,.,;, ¡.p,,]. 

Comparison of Difforcnt Criterio 

("mpari!>ons c•f different criceria as applied ro rhe 
,,,me p10blem exist only for rclativdy simple, linea:, 
,nrn:d-v.llue problcms ~ 12, 25, .j8j and boundary-value 

rr··blcrolS l•í, 13, 1 J. In the liu.:rmu;e 011 eigenvalue 
rrú~>lcms the Galcrkin methcd predominares, although 
till'fC .:uc a few co:npart~ons with rhe collocat1on an'd 
:c.lst-squ.lfCS rnechods 11, 11. TIH: resulrs of rhese 
.:0mparisons may be summarized by Crandall's re­
::~.Hk ll! (p.1ge 375):_"The ·~;¡riat!On hccwe~n results ob­
: "ncd by applying difft:rent cricni:> to .the sarne tria! 
l•mdy ... Js much less sJgnrf1cant than _che varidcions 
rh.11 can rcsult frorn the choice of drfferent tr1al farnr­
'!~es." llowever, the;e rnay be a great diffl'rc·nce in rh~ 
"''Hk nect:::.sary to obrain the approximace solucion wlwn 
u'tng ddfer<:nr crircria. CrandalJ'~ exper1ence ev1-
.:c••rl]' rs b.1seJ enrircly on l1ne:,u ¡)[oblt:ms. Thc only 
co:np.arl~·Orl for nonlmear prohl.:rns appears ro be: the un­
·'"b:,sh.:d thesis by C:ollings f·l9\. as refcrenced by 
\m~s 12]. Ames comes en che conclusJOn rh;tt rhe 

(;alcrkin merhod is superior, bur cauci .. ns tilal rhis 
~t.lllJ is bascd on lrmited expcr1ence and may nol hold 
m general [2]. 

For linear, ordinary differenrial equ.tt<uns Frazer, 
Jones nnd Skan (ti] argue rhat che ,·,:-¡J\ocaunn, least 
sguares, and Galerkin nH:!hOLL are equi\·alcnr 111 the 
:irnit as N----7"'. Otiler simliarÍCJes L'J.,¡:;t h<·rwe:c-n the 
mc.:rhods [J]; e.g. v.hcn tlu:: .. aJ>rroxin•::tin¡; functJD:ls are , ---- -- -~ ----- - -

,cho!>en .ro be the cigenfunctJon~ of thc ·l,near u¡•cracor, 
. :.e, _L(r~ 1J._':' A u 1, .. thL·n .che lc;~;t-s_quart:;, ano.! CalerKin 
mcthod coincidt:. 

For -~e!(-.ldjoinr (hence neLessardy lu1ear) eigen­
,·a!ue problems, the eigenvalues are real, aml Cran­
r!all [!] cmpl.a~izcs that the Ga!erl:in mcrhoJ leads ro 
S)'mmetric ~~acr1cts 111 Equation ( 15)-and hc.::1ce re¡,]­
v.J!ucd approximncions-wliercas rhc otbt:r methods ma)' 
,:;1\·c compJex e¡genv;,lue~ as a!'proxim;,¡,or.~ LO the 

e-~ .1~...·~ : •. : 1l e i .~:c>n' .1 lut,s. Tt~~~~::·:_Y!~-~:~r_c.·.s __ !]ll'ill~1·.Í _!_,~~ 
r.uricnl.ulv IHi~l!l(('l! i\'r Ii~lC.U ci¡~('n\-,t!uc prnblt'll!S t-.,_. .. 
é".tt.,;c i-r--;~;ns ~h-e !i;"L",>:::¡,~~i~¡.i····¡,lC;> a. ~''";¡i;te-:lr 
()/1 :· ¡¡-¡:-- ... --- . ---. . . 

'J'i:,;-··!::asr·squ:~rcs pro;::edt'!é! ior cigcnv,due rorüblems 
as curlinerl by llccker [ 'íO] Jiffcrs son•c 1•:h.H f:om tlut 
of Crandr.ll ( l]; lkckcr doe:, noL hnve such a ddfico..;!cy 
111 che first approxirr:ation. \Vhere:>.s C;and,lii u;,es ~:;e 

weighrin; function (}[ /rlc, fo; the first .~pproximati•)•:, 

B~cker uses Dl/c"t'A, ,.,hr:-rc \ ;s the e!g-=nvah¡r:. r:,~n·· 

s!der the linear eigenv:due p!nbÍt:íC! 

L(r.) +;u, =O 

with u"' O on the boundc.ry, For thc: firsc ap?:.:>::im.lLiNI 

with :l trial solution u~= c,u 1 ,, rhc residt!<'.l is 

R(u 1 ) = e 1(L(u,); A u,) 

The rnean square error ís rhen 

1 = e: J [L(u,) ..-A u,]l dV 
V 

Crandall apparendy wouid determine Afro::;, 

(21) 

(22) 

at/ac, =O= 2c, 1 [L(u,) 1· A~:,'!' dV (23) 
t: 

which 1s a quadraric in .\ ancl may lr:acl ro r.0mplex 

va!ues of .\. Becker, on the other hánd, would deter­
mine A from 

al/d'A = O = 2c~ (24) 

·.vhich JS linear in A. and gives real valucs as bn~ 'as 

the equation :1nd u, are real. Becket's ¡;rocedure ap­
pea¡s to be simpler for the f:rsr approximation. 

For higher approximations both procedures Jead co 

nonlinear t:quations for chis linear problern. Cr;UJd,dl 
would use as we 1ghring functions ,JI/de¡, i = J. 2, ... , 
N, and Becker wou!J use JI/dA, di/Je 1, j = 2, 3, ... , 
N. The latter is rhus using the eigenvaJue A as one of 
the parameters and is abo exploiting che fact •hat the 
mean square error can be minimized ¡;;; a funcr(:m of 
! u.¡= e ¡le,!. rarher rhan !c¡l since 

/(e, e,, ... , eN, A)= e: 1(1, 0: 7 , , O.N, .\). (25) 

.J ()f in irial-va lu~-P.!S;.bü:.m~ ... the _ _I.!:!Úst.~squ[lrc,; :m:l ho.:l 
musr b.: "pplied careiully __ and has ccnain disadvan­
cages. The method is applicable if ;he time depend­
cnce of the approximace solution is specified--in nrh~r 
'YOtdG., semj-:dirc;:,~~ .. D1ethods c:annor be \l~l.!d 1n th<:. 
mcthod of lea::;~_:.;qua_r~s. Consider tbc proHern iJ.r/~l¡ ~ 

/"('¡) and assume a erial solt1rion of íhe form u• = "·" ! 

::S U¡u, {x, t). Thcn che functional 1, represcnting :he 

mean square residual, é:an be mir.imized: 

L(u)l
2 

dV dt. 
_j 

(26) 

f Of course che solurion depenris on rhe val u e o{ T. H 

' the upper lirni' of imegracion is infinit<', ,J¡.~ s0!ucion 
, may no lottgcr have this ambi¡;uicy. '{hir; wa~: rhe ·11·-
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' !''''·"·¡, 1..!-:en by ¡,,,kJey 1121 in l11s least-squares cal­
C<JI.,tÍ•>Il~ lor tim<:-J..:p<:ndc:nt problems. 

l)lttntlln<:~, howc:ver, the ume dependence of the so­
lutwll is dtfficult to gu<::;s .• nd th<: tria! solution must 
Jfl\'ulvc: undcterrnincd functtons of time, u• = u 5 + 

N 

\' L c,(t)u,(.-.:). The mean square residual is 

,.,¡ 

J r ()u l' 
1= -,---L(u)J·dV 

' 11/ 
" l 

(27) 

~~o·,.·, !101.1.ever, 1 depends on time and involves time 
derl\':Hin·:>. Con!.equently ir cannot 111 general be mace 
a ;>i.limum for al! time by anr set of functions r 1 (t); 

tl,:s 1.1.as !>ho'ó!.n by Cirron (51] and Fi:-~iapon and 
s.:;.·.e;¡ [251. Co:Jsec:..:e;:rl·:, if a se-:-.i-<.l~ect r.,et~OC IS 

_ . _ to ~:>.·e ~:-~:~ r:.·;e e~ ;::-:.~:e:::. ·:~e Le::-: :e as~ 
::.-.-.:..:.-::s. :~a ~-~~:--.c::-:er ~~c~:..~se ~~.e ::-.ea:. s~...:a:e ;es:C­
... .-.: :s r.t\t t..::jng r:j:njr.¡JzeC. 

T1e least-s<¡uares medJOd i!. d1scussed at lengrh in a 
monograph br Becker i SO\ L1 sring criteria which he 
n-:.11nt:•ins a good vaci:Jrional method must satisfy, he 
c-:>nclude,; ¡hat che lea~t-:.c¡u.tres methoJ is. che b~st 

¡:c:neral critcrJOn oí ,\f\VH. lic:cker's list includes the 
{,;llowing pn:nts: (i¿,errors slwulci be minimized in sorne 
sense; (11) dw funcrion .. d ,hould be positive definHc; 
(:!!) che procedurc- shou!J be capablt: oí treating init1al· 
v:t!•.le problc:rns, as well as others. These seem some­
wh.~t slanted towacd rhe !ca:.t-sc¡u.Lres method; indecd, 
ircms (1) ;u¡J (it) canno1 be reali<:ed for all problcms 
except in the lcast•syuare'i lll<:tlwJ. Yet no one has 
shown r},;,r a solution ~~ nec<:s»arliy best because its 
mean square residual ¡, :.malle:.t; such a dc:íinition or 
;>ro<>f wil! cena:nly Jepend on rhc p.!rtlcular applica-
1 "'n. In ;,ddition, the i<:a-;t-squar(•» m<:thod c.1n be u sed 
lO [fC.![ IIIÍ1J.lJ•V;J(ue probfelll~ in unJy a rimÍted ~ay, as 
-;h<>wn ai•uve. Funhcr·nore. an impc,rcant point shou!d 
he .Jc!de,l 1" the Ii~t oí ,(esiclcrat.l-the methoJ should 
be :.11nple ro ·•pply. A, alre;¡Jy ,;/iuwn, rl11s criterion 
Jll,nJ<·cliatt:ly clllnin.ltes thc ]e.l:-.t-:,quarcs method lor 
1 lllear CJ¡;cnvaluc prublcms because it curns a linear 
problem Jnto a more ddficult nonl1near one. 13ecker 
r<:.llized rhat his conclu:,JOn m.•y not always be valid 
l )Qj (pagc GI): "While che lcast-s<¡udfe~ mcthod seems 
to be rhe rnost suitable general approach, in specific 
application!> (;n which sorne specific criteria may be 
added to our 'genn.d' l1st) other m<:thods rnay be prcf­
erable." f3ecker illustrares che adv::~nrages of the 
method of least-square~ by solv1ng a sec of nonlinear, 
time-depcndent p.Hti;d ·differc:ntial equat10ns which 

moJel rhc fud depletion 1n a nuclear rca¡:tor; he finds 
results th;,r compare well with the more lcngrhy numeri­
cal :;olut¡ons. 

In thi'> discussion of the v.uious criceria of MWR, the ' 
Galerkln mc:thod has been distingurshed frorn the 
method of mornents by rneans of che we1ghting functions 
used in the two. In che Galerkin method, the weighting 
funccions mu5t be the same ser of functions which are 
used for che erial solution, whereas in the method of 
moments thc weighcing functions can be sorne other set 

of funccions. TI1is distinction is not always made [52] 
and is probably unimportant in praccice, alchough the 

rwo methods have different histories and may havc ,¡¡¡. 
ferent convergcnce properties. There are inconsisrcn· 
cies of terminology in the literature; for exampl~. 
Kawaguit [53] used the method of momcnts rather rh.1n 
the Galerkin method as he claimed, for che weiglnin¡: 
functions differ from che approximating funct1ons 111 1115 

work. Anorher example of confusing nomenclaturc is 
che name merhod of imegral relations, which refers toa 
generalization of ·the subdomain method; it is adc· 
quately reviewed by Belotserkovskii and Chushkin (HJ. 

C. Convergence Theorems 

Golerkin Method 

.\fter introduction of che Galerkin merhod in 191~ 

se--e t._·e:-:t::·f:\ e yea:s e:a;:;;e:! bei..::e ::-:e corive:~e:'lce 

of -:.:;e ::-.e::-.o: •·as s:--~:e=.. E~e:1 t~~-/ -:-• ..:.::-. :-e:":"l.1:ns 

to be done; o:Jl:. a íe"'· r:-.eo:er:Js ha>e bee:J p:o·•ed, and 
these pertain exclusive!¡- to linear p:oblems. Rep­
man [55] was the first to prove convergence of solu· 
tions obtained by the Galerkin mechad though only for a 
certain Fredholm-type integral equation. Perrov (56] 
then studied the convergence of the Galerkin method for 
eigenvalue problems of fourrh-order ord1nary diflerential 
equarions-in particular, che Orr-Sommerfeld equation 
of hydrodynamic scability rheory. Keldysh [57] treared 
general ordinary differential equations and also second· 
order elliptic parcial differential equacions. Mikhlin (11] 
later simplified Keldysh's proofs. The equations are o( 

che form 

m a 
"\"' B; _!!__ + e u = 1 e 28) 
L. éJx· 
i&:lll ' 

Both Keldysh and Mikhlin prove that che first deriva­
tives of the Galerkin approximate solution converge 10 
the mean ro che first derivatives of the exact solution. 

\Yht;never the Rayleigh-Ri~a_nd Gal <:rk rn methods 
coincide (see below), che convergence proofs for the 
Ray 1 eigh-Ritz method imply·- conv-ergen ce of the Galerkm 
merhod, too. Thus che Galér!Cin-convergerrce prools 

'given by Kantorovich and Krylov [29] apply only to 
specific problems with a mínimum or maximum princi­
pie, whereas the convergence proofs mentioned here are 
applicable to problems whether or not they have a cor­
r<:sponding variational principie. It has b(!en .. c::lai~e~ 
140] that cornp]etenes_~_of .che ~et of approximating func• 
tions is sufficient [Q assure conv~_fgence, but rhe proofs 
given by Mikhlin arid others show clearly that chis-15-· 
'!ot enouglr,. _ -· - · -·--- ·- .. ·---·-

Recent!y convergence proofs have become available 
for certain eigenvalue problems assoc:iated with hydro­
dynamic stability investigations [58, 15]. 

Results applicable to unsteady·state problems are 
less extensive. Faedo [59] applied the Galerkin 
method ro a hyperbolic differential equation and in­
spired the important work of Green [60], who proved the 
uniform convergence of the Galerkin method when ap· 
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¡-i:~.! 10 1ilc follow>,, ··<¡uo~cion D, Compooison fo Other Mothods 

ii'u c)u 
----- g(x, l)u: /(x, 1) 
rJ.\' dt 

(29) Sc¡:oration ,,f Vcrioblcs 

¡< 11 . ¡,,,! .. 1kln .ncthod has bccn used to prove che exist­
' .,. , . .,t wc.•k ~o!.rcion:, co (i) che Navicr-Scokes C'-JU"· 

1 ,,.11 , .w1th crme dcpe('!Jcnce [6JJ, and (ii) cquarions 

1, ¡•rc·,c·nt :ng rhc unsce:1dv -sto:.ce transpcorc equalion with 
,1 kn.nm vl'locrry f¡eJd lÓJ: 

,, 
' , 

1 

L 
'· ,, .. ¡ 

á ( tiu \ -- A··-- + • 1 1/. . 
eh,\ ux,¡ 

m 

¿ 
·~ 1 

a u 
Cu- -- = F(x, 1) (30) 

dt 

:\c,entl)' the (ialerkin mechad has been applied to che 
¡ .11·1>H pr .. blcm wich cime-dependenc disturbances í63J. 

•11 ·.! " rneri~<•J has heen devcloped ro generate 1mprov· 
.•'•!e, pc>lfli\\ISC uppcr and lower bounds-and heuce 
rr:.:r b,>:.:,.h-for che solucion to Equation (30) [J 29al. 

Othcr ,'1-\cthods 

C.>nv< r¡:c·nc.e proofs are rareiy ;>.v:libble for che orher 
(lit:·¡¡,, üf ~1\lJR. The noc.,hle exc("ption is tht> leasc­

"i'"''t'S flll'ii!Od, wl;ic.h is well-treaced (for boundary­
rr•<i>lelll!>) 111 the llCllab!e LCXC by ¡.,jjkiJJin (!Jl. !\fik!din 
¡•:cH'L'S cnndiut<ns whtcll insure th:H the method of it:<~!;t 

"i"·""' .~1ves .1 sequence of approximatc soluuons 
11i11ch converge in thc· me.m co the exac.r ~;olu:ion. ).:tlr­
r'Jermore, the mc.ln-S<JII.ue-error of the approximarc :;o­

itiiiOII c.•n be deccrrnined. lle .dso points out chac che 
;t.J...,t·S(jllares mcchocl con\"l'rgc.s more slow!y thJn the 

iii:z mt li~o>d (when the lauer c.1n be appltcd) huc mny 
.·~"·e U!llfor1n convcrgence rarh.:r rhan convcrgencc 111 

:::e mc.ln. Some results for che colloc;~tion mc:hod are 
~1\'1.'11 bv 1\adncr [ú,íl, while che rnethod of moments is 

!re.1red by 1\ravchuk l65J. 

Nonl1nccr Problcms 

Vt'ry l1tde 1s known ahouc che conve:gcnce of MWR 
lor nonlinear problems w1thout a corrcspondmg varia­

rion.d J>flnciple. Krasno:,.:l'ski lG6! prc5cnrs thco­
rcms-mostly withouc prooís-for rhe Gnll'rkln medwJ 
Jpp!ieJ cu nonlinear int<'grnl ("quacions. Glansdorff [67J 
mentions n torchcomir.¡; prooi of che convcrgencc of thr.: 
local potencial method, wltich is identic~ll in applica­
tion co che Gn!erkm method; h'! crc~ts thc sccady-st:uc 
hcat conduccion equati0fl wirh ccmpcrarure-d::pcnd<:n~ 
rhcrm.d cont!uccivicy. Oí CL>ursc, ,¡s A:ncs ! 2! h:<s 
pnintcd out, convergence i>roof, are r~o< as u~dul .1~ f>C­

rur buunds. Evcn a computer iloc.<, not rnakc it pos,;;b!c 

The Galcrkin meclwd is rclace<i to a ..-:iúe var:ety of 
o!hcr approximate mechods as well a:; ro some exacc 
mcthods of analysis. !11_ p~_r:_ticular, it c.an !Je s!wwn 
f2Y, 22. 24] r!.ac :r ;t.Irn!>l<:':':·~y•et .. ls co r!.c metilo~: -.;r· 
!;epar;ldQn ___ of variabl<;>s and if che- Galerkln--nlerh;)ci i s 
apf,lJ,•ci in:·; .~er;; ~~; ~~:;~Y' ;~i'!le-ri-·rhe t 'vo s0TLI~ii1r: ; ~;¡.c·-
·rhe .':a~.:,_ providr:d che Gaf~r-kin -~·cd;;,~¡ ;-;;---c:Üri-c:d 

.. throo~gh tu completi~n.- Of'~~~:st>. in i'Umcríca!'~¡iicull-· 
'cioiís, ait~r obtainir.g a11 ex¡¡cr ·soluriofl in the for,r. ·Jf 
an iniinite seriés, one cal.::ulatf>S f>nly a finHe n•1mber 
of tcrms as;:: rnatt~r of practica! necessiry. 

Variatic-nal Methods 

There !S also a close relationship between r:,~ 

Gaierkin mechc,d an.::l the Ritz or Rayltigh-Ritzt method 
when the Imcer can be applied [i4, 69, 70, 1, 21, 3, 29, 
71, 721. L1 pMricu!m, if the same tri al funccions are 
useJ, che resulting calculations are identical. Conrr:try 
ro a currcn,ly prevalent opinion, this ec¡uivalence sciil 
per~:ists when che cr¡'a[ functionu ¿o not satisfy the 
natura 1 boundary condii:i'oñs lf3, 1 J, 25, 24f,·-;_,·hic.J, rhey 

ne_«:~ n~c do in rhe Rayleigh·~Hicz merhod. The bou:1dary 
~efiidual ¡~,·ei[her added or subrracted to :he differcncial 
cqu:uion residual, and che cakulations are ng.1in equiv­
alent ro rhe Ritz or Rayleigh··Hitz rnethod. The cho;ce 

cf adding or subtractin¡; is dictnted either by mathenun­
ical ccnven i ence--part of the difíerenti al -equat ion 

residual can be incegrated hy parts to canee! par1 of the 
boundary• rcs:dual-or by che physics-the diíferentiat 
equac it>n a.ild boundary condit ion s borh come from mac• o­
s copie ha!ances taken over che volume and surface, 
respeccively; these macroscopic balances can !:.e com­
binc-d in only one wny, and che residual5 ate combined 
in cxa.:tly che same way. A very imporcar.t differcnce 
hccween the Rayleigh-Rirz mcthod and the Galerk111 
mechoJ is thar in rhe forrner some functional--possibiy 
representing an eigenvalue--ís being minimJze.I or 
ma:,imizcd. Consequently che approx11nace valucs of 
the funcc:oll.,¡ represenc either upper or lower boun.:ls. 
In thc Galerki!l method chis informacion is missing; 

exactiy the same valucs would be oblained, buc one 

would not know that these were upper or lowcr bounds. 
l!owever, when the variational integral is of no signifi· 
canee, che Galerbn method, l>ecause of its genc::rality, 
may be preferred. The variarional and Gr,Jerk,io meth· 
oJs Me compared schematicaliy in Flgure l. 

.,.M9sc __ vuiationc)_ princ;ples are mC.J:ely_ __ station:lr)' 
P! in e •pies, racher than _minÍII1UI~ or 'maximurn rrinc iples. 

e,, C.J!cul.1te infiniccly many tcrm~; and whcn t:uncacing 
thc :.crreo; onc ;tlways wonJcrs how good the rt:sulttng •The nppri)~!_I!"Hin¡; funccions in tbe Galeck,n mtd:od must 

be .. the eigenfunctions fó-ui,J by th~ sep~rati;;ñ--of ,·ariablcs 
•1 jlproxl!n .• te solucion IS. Comparison of succcssive ap· anJ che G:derkin methoáffiust be upplieJ :u-tbe· initinl r.ond•-
prúJo.lllliiii<Jil!> IS an aiJ 1n such a casi:!, b•H O:::Vl'll .w .lp- rions ;¡~ wcll as te the -Jiffercnuai equ.nior¡, · s .. ch r. re,uit 
J'lOXHllóllt· solutJOn chat SeCmS to DC C'OliVCrg!n¡; may n0C ~r.éans ~Ímp)y ·tl;~r ,( th-~--cxact sc.iution is COntnin.:d in the 
~<· cunvt·r¡~1ng ro thc exact so!utwn. Thc .1vailah!t' , tri;d function, :he Gnl~d<íñ .. ;nethoJ w;\i find ¡·,-: · 
c,1nver¡;t·nc ... thcorcms and error bounds are 50 :;c:.rce '¡ tThnu¡;h there is b:.s'ié<ílly but u sin¡;le rriet!lod, 1: ¡., co:J-

vcni•·nt "to follo,v the--c·ü_:~C:o'm (scarccly ur.i_.>::crs .• :) of d::;tiu· 
thJt t·n¡:<neer al)d npplied scientist muse usually e:nrap- ¡;ui~h•n¡¡ hctween the. "H .. yl.-ig!J-1! 11 ,, metloo,!" whcn !r !s ap· 

·o late lrum prcviously tested results for otlu.:r prcblerns plied w minimuin- (;¡:--niax'imum J·rindples ·nnJ · tlte· "Ritz. 
[0 IICW ,,tU,IIÍOnS when appJying ótpprOXÍillaCC mecf!OJS. method" whe·ñ· ¡( isup~n_l_i_~~-t~ nH'le.Jy SI!Hi(iiuir¡o 'pri(t<:ÍpJ~s-,-

7 41 



,--:;,~.~~~~-· 
1 V·\f''~\ l•VtiAL 

L _··:~~~'~E-
) Vur•<JI•onul 1111eyral 

1 

,-----~'·,¿_~·----, 
1 

GALERKIN 
lo 1 1 1 ME TliOD .,,,,0 :_~ - - - -

rn ceriDin CIJs•• ' Cornpotar.on) arll! 

~tmplcr. oo ad¡o,nt 

:~.ys.lcrn ·~ """dcJ 

r 1 · p 1.: tr t( 1 P ~ [ i (Ril/ ',1 l 1~100) Compulallon 1 1 
GALERKIN 

METHOD 
r-- - -- - - -k======~~ 
1 Vo•n.JIIvru,l tntes.¡•ul ldonrh:;:ol Vor•altonol •ntc~rol 

-, 
t!o _tul •onory 

L----.,-~-.--, ___ _, 
] ' 

;t ó'O: •l11o0 

dcfotHI~ 

-1.)-· 

l
r--~-;:J~--~-0-R---, 

.'.\JI:!I.'.UM 
p¡,•,;¡(lr)l.E 

l. (RA~:.I 'C• .. I<ITZ 
MI. 1 141)8¡ 

¡--- -----
1 G1Yd\ up;or.r ur lowor 

1 

huund•, "'' VOIIQIIQnol 

ii\1.-•J• u 1 
-----------' 

Cc.nlpurot•ons 

•• tmmatorrol 

GALERKIN 
METHOD 

-----
Bounds on varrot•onol 

inreo•ol oro immotonol 

1 

Fioure 1: Comporison o/ Voriotional and Galerkin Methods lor 

Lmo:u Prol.lom•. 

In :;uch cases, thc Ritz method is ag<tin equiva!ent to 
the C.dt:1kin method. The calculations are identical; 
ti1c rt:~••ir:; are idencical; but in rhe variational method 
one know;, that the variarion.d 1nregral i:; bcing made 
st.JIÍ<>n .• :y, 1.e., m:;en;,ICÍVt: ro cl ... nges in che tria! so· 
:"''""· /1 rile varr-"tínn . .! JCJte¡;r .. tl h.ts physical signifi· 
e .111u· ~""! is thc qu.HHII)' uf llltt:rt:·.c, chen thc varia­
! io:1.d lll<'thods h .. 1ve an adv.Jlltagc ovt·r the Galcrkín 
mell''"f even though the .1n"wcrs ... re the same. 

Ad¡oint Variational Method~ 

V·'" .lt ,.,n.d princ ip~<;s ex iM for l•near problems only. 
,[ ''" ·, :.re sclf-acjuinr. l'or nun-self-adjoint linear 
f>r"''~l'll•.'>, v ... riationaJ j)CIIICIJ'ies Call be formuJated for 

tl.v "1•¡.;•nal equations """ thcir ad¡oint:;, and again 
.\ll\'1{ "' rclatcd w thc co~re"pondin¡.: variational meth· 
od,.,. fht: ímpetus for u:-.111g the ad¡uint opcrator in vari· 
arwn.t! form..,lacions Sl'el''" to "tt:m frorn Mor:;e and 
h:sidJ.lch 173]. who gavc .1 v •• rianonal principie for che 
unsteady·srace hcat cond11nion t:<¡uJtion; Hous:;opou!os 
[7·1~ also gave a variallon:tl i'rinc•plc for any linear 
non·self-ad¡oint problc111. :-;chmit [7~1 anJ Washizu [76] 
h.•vc ·'í'PI•t:d such a pri11uple to che unstcady-stace 
hc:ac C••nduction equ:Hion, wllllc Sckngut [77, 78) de· 
vt:lupc.:d thc idea for nucle.u re;¡ctor problems. Many 
other cxarnples exist, such as those of Nichols and 
n .. nkuff [791 for COOVC<:tiVC diffu,,on of heat, Finlay­
!'.llll ! 2•í 1 for convccti ve di {fu ~ron of a multicompone~t 
rn•xrurt: of chcmical spccic:-.; Lew•ns [BOJ. Slatcery [BJI, 
flc.merfelt and Slattery !H2J for exten:;ions to nonlinear 
prul.J!em:;; and many authors 183-94, 38) for nuclear re­
actor and associated problems. In applications co 
iinc.1r non·sclf-adjoint problem:., the method of weighted 

residuals yields thc same results as any of thcse valla· 
tional principies as long as thc wcighting functions for 
che original cquacions are taken ;¡-; che approximat 1ng 
functions for the adjoint, and vice versa [75, 24]. Thc 
qucstion then ariscs as to whether this var1acional 
mcthod, which can he regarded as an application of onc 
form of MWH, Js preferablc lO Galerkin's merhod, which 1 
docs not rcquire che complication oi an auxiliary ad. 1 

joint system. There is sorne evidcnce that the adjoint 1 
variational principie leads to slightly bt:tter results[95-
971. and Clark and llansen [98] imply that the use of 
adjoint weighting functions might o;pced convergence. 
Kaplan and !Jewick (381 claim that che variatioCÍal 
method is the best strategy in that it gives better an~ 
swers more often. 1-Jowever, they go on to say: 

"Of course, practica! considerations may imro· 
duce yet another meaning of the work "bese"; 
namely, "mosc economical." In this sense wc 
f ind that che Ga lerk in method (which uses che tria! 
functions ;¡Jso as weightinjl functions) is, in most 
instances, preferable to che variational method, 
since it gives results which are almost as good but 
does not require separate calculations of the 
weighting functions." 

In esse.E_~~L t~he_a_9jqirg_ ~¡¡_ri_a~i9nf:1l ~~metho!Lt.ra~l~n­
c(e~~~~d __ complcxity for possibly better results: che~-;-~ 
still is no clear-cuc answer co the question of whether 
the Galerkin method or the adjoint·variational method 
is best. 

For certain initial-value problems there may be no 
difference between the variational method and Galerkin's 
method if che semi-direct approach is used in both. 
Whenever the corresponding steady·state problem is 
self-adjoint, it is reasonable co expand che unsteady­
state solution and its adj oint in terms of the same func· 
tíons of position with Wlknown functions of time· as co• 
efficients: 

N 

u= Us + L c¡(l)u¡(X) 

Í= 1 

N 

u• = Us + L c¡(t)u,(x) 

Í= 1 

(31) 

(32) 

Because the approximating functions are the same for 
boch u and u•, che weighcing functions in che adjoint 
method are the same as those in the Galerkin method. 
Consequently, the solutions are identical, whether 
der i ved by the adjoint method or the more d irecc Galerkin 
method. 

The adjoint system is also useful for eigenvalue 
problems. Roberts [99] presents the general theory, and 
examples can be found in the works of Chandrasekhar 
[43] and DiPrima [lOO) as well as others. While imro· 
duction of the ad¡oint system does increase the com· 
plexity of the problem-particularly che boundary con· 
dicions-some advantage is gained over the straight­
forward applicacion of MWR bccause the eigenvalue is 
made stationary, and hence insensitive to changes in 
the tria! function. This advantage does not usually ap· 
ply to boWldary and initial·value problems since the 
variational integral is seldom of interese in those cases. 
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Mcthod of L.:-ost Squ"'''' 

~fikhlin [J J] poincs our rhat for boundary-value prob· 
lt·m~ che lcasc-squares rnctlwd br 

Lu=f in\' 

/3 ;u = O on S 

(33) 

(31) 

is c•.¡<IJvalenr ro applying che calculus of variacions to 
1hc equ.Hion 

L •(Lu -/)=O (35) 

Con.sidcr thf' following minirnurr principie: minirnize the 
limctional 

Ju.u -/)2 
dV + j<a ;u'f dS 

V 5 

(36) 

among al! funcrions u having che appropriace continuiry 
. 1nd Jifferemiability requirements. Thc natural bound­
Jf}' conda10ns corresponding ro chis variacional pinci·· 
pie are oí che form [50] 

Ní(Lu-/)-=0 (37) 

where N¡ are ddferenrial operators. The Euler equacion 
i~ jus: equnrion (35) and che equivalence wich equa­
Cion (33) reses wich the premise that che equat10n 

L •u-= O 

B;u -=O 

(38) 

(39) 

has only che trivial solu_rion. Note cha: thc natural 
boundary condic10ns (37) are similar ro t!lc cornpacibilicy 
condi110ns rnenrioned above tn connecrion wirh tite ince­
gr.d mechad for magnf.'cohydrodynamic boundary-layer 
problems. 

Mcthod of the Loco 1 Potent iol 

A procedure based on che so-called local potenrial of 
l'r•go¡.:inc and Gl.1nsdorff [101-101¡] has t•ccn proposed 
.1~ a var• .. t•on • .J llH.:rlwJ for dercrnnntng approxtrnare so­
lurions ro bound.lry-value [ !05-1081, :?igenvalue r 109], 
.111J more rc:cenr:y ir1iti.d-valuc problem~ [JOS!. Rosen 
! 1 10-113) U!>t:cl che ,a,nc ry?e of cump,nario11al schcme 
<'arlier. The actual applicar!ons of the~e merhocls have 
!:leen shown ro be equiv;¡Jenr ro rhc Calerkin method 
[114, 2·11. Morc:over, H has bcen demono.trared chac che 
variational inrc:groll 1s noc swrion.uy ,n rhe lucal poren­
llal merhod and rhar no m!nimum pr11K1plc ex•sr~, in ap­
plicacions [ 1 J.i, 2IÍ]. Conscqut:ntly, che advancages 
usually assocr..trcd wich variational prtnciplc:s are miss­
ing from rhe ~ocal potencial mcrl.od, which can be re· 
gMded as a disguised ;¡pp!icarion of che Galerkin 
mc:rhod. See Rd. 129b for ~more cletailed critique. 

Lagrongion Thcrmodynomics 

The so-called v.Hiarional merhods due ro Bioc [ 115-
llll and orhcrs [122-128, 51] are also eyuivalenr turbe 
Galerkin mc:rlwd [25, 24]. In rhcsc Lagr,urgi;¡n rhermc•­
dynamic nkthods rhcre is no variarion..tl inrt:gral which 
•s' betng m.tde sracionary [25, 79J; rheir sale signifi-, 
..:ance appears to be as means for genewtJng a computa-

rional schenw. '11wt schcme is, howevcr, icl::cnrtc::J ro 
rhc G~tlerkin rncrhod, which io. more straighrforward .JnJ 
applicable !o d bro;oJer rangc of sin:a~ion:;. T:,e.c is 
no rca~.on rltat che Galerkin merhod should nN be pre­
ferred, so far as che •1urhors know. Scc lkf. 129b for a 
more detniled critique. 

E. Ap¡;li.::otions 

The ¡;en~;r::d fcawres of 1·.!\t/H in ir:; :n:mcrot•.o., ·ter 
s;ons and various rcfir:cmcncs have bcen prc,cnccd, anJ 
its relarionships to ccrrain orher "f'proximaciorr n,erhods 
h:.vc becn ske<ched. Which of all these mcrhod:; are 

!>upcrior, and ovcr jusl wlwt rangcs of circurnstan~es 

che supeLioricy exists., are matrers d1at ca11 be scrrled 
finally only on che basis of rcprcscnr:~t•vc applicaticns. 
More ~yscemaric compar:Hi\'e sruclics and evaluacions 
are needed than have been reporced ro date. Uncil rf-Jey 
are torchcoming the investigaror of a new problem can 
cxpecc lictle more help rhan he can get out of seeing 
how others have handled more or less similar problerns • 
Refcrences 130-187 have L··~en selecred as mu•:h ro il­
lusrrare pitfalls, ~horrcomings, anJ hilures as· ro citr~ 

che arrracrive feJ.turcs and successcs of diffcrenr ver· 
sions d MWR. · 'TI1e pzeponder.u.ce of recent papees dC­

cumrely reflects the upsurgc of appiicarions of rhese 
rnerhods in one field afrer anocher; rhe c:mphasis on 
problems .of flow and cransporc is conc..licionc:J by inter­
eses of che authors. n,e populariry of che integral 
mc:rhocls which origina red in boundary-:ayer srudies [18,' 
20. 34-36, 136-153, 160-163, 166-169] can be dis­
cvunced in pare as a rradicion perpetuatcd by formal in­
srrucuon beginnir.g wirh clementary texcs in fluid me­
chanics and hcat cransler. 

DeyonJ any L~uidance he can gc:c from pase expcrience 
che problem-solver can look for rcassurances in com­
parisons of differc:nc forms of 1rial solurions and of suc~ 
e es~1 ve appror.imacions in· any onc forrn: che appear­
ances of convergencc wich more numerou~ adjusc;:¡bJe 
paramcrers and of :nsensirivity ro forrn of approx•mating 
funccions do Jencl ccnfiJence to resulrs. 'So do close 
marches wich escabhshed informarían on spcc•al cases 
anJ limiring cases. lt is also trU{' that MWR, l1ke vari-
3rion;¡l merhods, may yield berree estimares of propcr­
CH'S of che ~olurion at large, such as an •nregrul or 
eigenvalue, rhan of the solurion itself. Thc matn acl­
vanrage and disadvamage of MWR are conraincJ in che 
:;ame feacure, namely, d1ac the resulrs depend on :nore 
or lcss arbitrary Jecisions by the user. Íóltuicion, eJC-. 

perience, any available inforrnatio!l all cnn be 1apt¿ly 
cxploited buc che reliability of che resulcs is frequent!y 
ha-~y. Hopefully this review shccis !igf-Jr on che ba:;tc 
iss'les ancl will be uscful ro thosc imeresced in ap¡>iy­
ing weighced residu:::l mcrhods and relaced cechrJiques. 

F. Áreas for Further Resea,·ch 

Of che unsolved problems concerning M\f/R che íollow­
ing are mosc imporcanc in che opinion of the ~uchors: 

( 1) Choice of cricerion in ~.!WH.. Sysrematic compara· 
tive stuJies using reprcsenc .. uive (nonlinear) problerns 
are neecled. The icast-squares p:occtlure for nor.lwe;~r 

problems particularly warranc:' accencion, Th~ Ga!erk!rl 
merhod and r.djoinc variacional merhod for lineal ptob­

lems need ro be compared . 
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ENVI !W:'\~IENTAL PJWHI.DlS ASSOCJ ·\TED 1\'TTH FLUID r-LOW 

R. 11. r.~~~-;~~~d- n. L. Y!?~~ 

T. INTRODUCTTON 

Thc topic of computational fluid mechanics docs not have :; 

long history. By the 1930's thcre·wcre only a limitcd numbcr of . 
papcrs on this tapie, a condition that was duc not only tb the 

absencc of high speed computa~ional fac~lities but also to dif­

ficultics in dealJng with thc iriherent nonlin~~rity of.most 

problems of intercst. Thus, computational fluid mechanics has 

dcveloped in taridem with thc finite element method. Very many 

applications of thc latter to flow problems have been recorded, · 

as described in Rcferences 1-4. As these refcrences demonstrate, 

a detRiled review of the complete field would requir~ a complete 

text. We therefore limit our attention, in these lecture notes, 

to the appiication of the finite element method to environmental 

problcms associated with fluid flow. 

A large n~mber of conditions can b~ grouped under the 

heading of "environmental problems". In the present case we 
•: 

refer principally to the transport of heat or the concentration 

.of a substance through a body of water. The processes of con­

vec~ion and diffusion participate in th~ transport process. 

Vclocities appear in the convective terms and, although the mos~ 

vigorous treatment of the problem will involvc coupling of 
1 

velocity ~nd tempcrature (or concentration) equations, practical 

co~sidcrntions may require .indepcndent solutions for the two 

fields. We thcrcforc include in o~r review a discussion of solu-

tions for flow veiocities nlonc for lake and .stream situations. 



A study of thc literatura of tnpic under review discloscs 

that 'although thc prohlcms are basically three-dimensional; no 

numcrical solutions of tl1is scalc havc yct bcen attempt~d. 

Simpl iíying assumptions are customaiily made ahout onc of the 

dimcnsions .and the problcm is rcdüced to one of analysis in the 

plane. Indeed, some investigations make assumptions regarding 

two of the. dimcnsions and ~tudy the velocity in one dimerision 

togethcr with the tewperature. 

In view of thc above circumstance, ~hese notes are ¿atcgorizcd 

with rcspcct to thc differcnt typcs.of two-dimensional situations. 

Only thc c~scs of flow in planform and th~t of flow on the narrow 

cross-scction of ~ lake or similar body of water are treated in 

this review. 

First we define thc coordinate systc~s associated with the 

respective
1
types of pr6blems. Then, scparate sections are 

devoted to_ each typc. 

II. COORDINATE SYSTEMS ANO GOVERNING EQUATIONS 

Figure 1 illustrates the Lady of water and thc associated 

coordinate systems. The body of water w~ have in minJ is a lakc~ 

although cases tdll be treated which. ref~r to streams and estu­

aries. In'the latter circumstances
1

the fiow is predominantly in 

~~r;e y-dire¿tion. 

The planform (x-y plane) is the basis for analysis of wind­

driven circulation and of flow throUgh bhsins and estuaries. 
'1 

The assumptions that are_ invoked are discussed in sorne detail 

latcr, but, for the present we ~;impl)" note that they are directed 

to climination of the z-coordinate from the problem. Thc maximurr. 



A 

L 

D 

Planform 

Section A-A 

Figure 1 Lake-Planform and Side Views 

L 
~---------------- .· 

Figure 2 ~arrow-Cross-Scction (Scction B·B) 
cvcrticnl and Hori:ont~l nimcnsions havc bccn 

Exac;cratcd i~ Comparison with Fig. 1) 



z-dimcnsion is veq: much smaller than the y- and x-dimensions. 
' 

Thc latter may be of approximately the same magnitude. 
t 

The narrow cross-section (x-z) is inte~ded to represent thc-

section of a la'l\e or similar body of water. llere, thc x- and 

z-dimcnsions ar~ of simtlnr rnagnitude and the_y-direction is 

vcry largc. Finally, we havc thc ~ide vipw (y-z), which refers 

principally to flow in strcams and estuaries and w~ich is often 

reduccd to just thc y-dircction. 

Physically, the vclocity and tcmperature fields are deter-

nd.ncd through thc conservation of mass, momcntum and energy. The 

governing cquat~ons are 

Crmt inui ty (Conscrvation of mass) 

a u .. av + aw = o (1) 
;)x ay az 

x-Momcnturn 

3u + u ~u + V ~~ + w a u fu _!,. ~ + _!_(K~1 a u) 
ax az - -

~t ay P' dX ax xx dX o 

+ -~( ¡.:t-1 a u, + _líKM a u) (2) 
óy :x:y ay) a z- xz az 

and correspondi~gly for y and z. (In the z-direction there is no 

Coriol i s force (- fu) but a buoyancy term (_e_ gx) mus t be added 
Po 

to the left sid~.) 

Ternp~rature (Conservation of Eoergy) 

... w 

(3) 

i'• 
In thcse equations u, v, and w are the x, YP and z-direction 

yelocities, g is the gravitational ~ccel~ration, p is pressure, 

p is dcnsity, p
0 

is reference 
·1 

density~ T is temperature. f is 

J e . ·. , M t1c or10l1s paramcter and K and KH (w i:~h appropria te di rect ion al 



s.~bscr-ipts) are thc viscosity and ~,.'if.fusivity. The above equa­

tion• are s~pplcmcnted by cquations of state, such as dc~sity 

as a. function of .tcmperaturc, pressure a,nd 1 concentration of a 

substancc~ and thc viscositics and diffusivitics ~s a function 

of nstabilit,y par.amcters'', e.g., Richardson Number, Prandtl Numbcr~. 

Monin-Obukhov Length, etc. / 

Thcse are very general equation~. Consequentry·, in fact, 

the followirig approximªtions may be introduced, depending on the 

analyst's iriterests and goal. 

1) The Roussi~esq approximation: ~he variation of dcnsity is 

small~ so that the fluid can be treated as an incomprcssible 
1 

fluid. The variation of dcnsity is only considercd in the 
:1 

buoyancy term _e_ g in the z -mamen tum .equat ion. Po . , 

2) The shiallow water approximation: Th'e inertia fo.rces are 

negligiblc '·compared to the othcr forccs. Al so,, the 

w-component is much smaller th~n th~ horizontal components, · 

3) 

so that th6 pressure.is hydrostatic i'(g = -

g is the acccleration due to gravity'). 
'' ~"" 

!. ~ , where 
P az 

The eddy viscosity and diffusivity appr9~:'ímations: Sine e 
{?' 

the stratification is almost perpendicular to the gravi-

tational force, it is customary to assume that the horizontal 
' \ ., 

eddy viscosity (K~x, etc.) and: diff~sivity (K~) are approxi-

mated by constants, whilc thc verti~al ones a~e functiqn~ 
·: 1 

of the gradients of dcnsity and velocity. The exnct rcl~-

tionships are still hot debate, In ,practical analysis, thE: 

deter~inat~on must come from sFmi-e~pirical stratified 

turbulent thcory. _(Monin-Yaglom. Ref. S). 



. . . ' 
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l JI. l~l.ANFOI~~.!_-~NA_l. x_~i_~_I_IJ f~~l-11n IVEN CJ RCOLATJON AN~OW 
THROtiGll BAS 1 i\S 

Thc cross-~ectioJt shown in Pig~re 2 defines thc basic 

gcomctric paramctcrs of this dcvclopmcrit, which is due ~o 

Li.r,gt:-tt and fl:-tc!jitlt~ouourou( 6 ) in its fundamental thcorctical 

form. The origin of coordinatcs is fixed at th·e surface of the 

lake, ~ith vclocity w = O at z =.o. (Th~ 'rigid l1d' assump­

tion). The physica.l properties of the lakc, including thc eddy 

viscosity ~nd the mass density per ~riit ~olume, are assumed to 

be constan~ and the Coriolis parameter·is also assumed constant. 

The prcssure is· takcn to vary hydrostatically. The surface 

wind stresses T~z·and Tyz are prescribed. Under these assump­

tions the momentum cquations take the form 

The 

·fv = - l~+ 
Po X 

·ru ·"' - .!.~+ 
p í)y 
o 

g C:<>- .!. ~ 
'p dZ 

' o 
continuity equation 

a2u . K~f 

37 o 

a2v 
' KM a;r o 

is unmodified. 

A stream functinn 1/1 is defincd as follows 

dl/1 
ay = üh· 

aw 
- ax = Vh 

(4) 

(S) 

. (6) 

(7) 

(8) 

in which Ü and v are depthwise averages of the component veloci­

ties. After combination of the. ab;ve e~uations, with consideration 

of the boundary conditions (zero velocity on al! solid surfaces 

and T.,. .. = KM a u -r = KM av) b .. 
AA• o ax t yz .o ay one o talnS 



a2 r¡r 
+ -2 

a.x. 
(~) 

Thc tcrm$ A(x,y), B(x,y) and C(x,y) are those which rcsult fr.om 

co.nliideratioJ1 of thc varying depth anu, as indicated, are func­

tion~ of thc p1nnform cocrrljnatcs· x on<.l y. Thus, they acco'unt 

for thc varyjng dcpt.h. 

T r a n s f o r m a t i o n o f E q • ( 9 )' in t o t he fin i t e e 1 e m en t f o rm , 

r,iven in dctail i.n Ref. 7, is accomplishcd hy .means of thc 

Galerkjn mctho<.l. Thc approximation of .p is by means of the trial 

functi on 'ijj, \·lh ich ha:; t he fo rm 

w = 

whercjn thc N. are thc shape functions and {llJ} are thc nodal 
1 

(lO) 

vnlues of thc strcam function. Applying now the weightcd resiuual 

conccpt 

Next, intcgration by parts in the plane is applied to reduce 

the order of the dcrivatives appearing in this integral ~nd to 

produce boundary tcrms~ One obtnins 

( [ -..!.{N} 3 LNJ 
JA · ax ax- 2{N} .tlLtiJ. + A{N} 3 lNJ 

ay ay ax 

+ B{N} a~NJ {~1} + {N}C] dA 
. y 

+ f (N} 3tNJ {llJ} dS = O 
dll 

(1 Z) 

The vnlues of {~} are zero on the entire exterior boundary 

and thc closurc intcgrals along interclement boundaries vapish 

if continuity is preserved across thcse boundnries. Thus, tbc 

contour integral tcrm is cxcluded ftom subsequcnt consideration. 



Evaluation of thc n~maining intcgrals for all i then yiclds tlH· 

f o 11 o\.¡ i n g s y s t e m o f e 1 e m en t e qua t i. o n s 

in \.¡hi eh 

[ke] fA(-
ó{N} o LNJ il{N} : ·-ax- ---yx- ay 

{re} = -

~ LNJ 
--- + A{N} 

í.l)' 

J OJJ e di\ 

dLNJ 
R{N} -a-x + 

- (13) 

o tNJ) dA 
ay 

( 1 4) 

· a c.. N J a , N J -·--
lt shou1d be notcd that JUI~ to tlw terms A{N} ~ and R{N} ~y 

thc rvsultinr. n]r,('br~ic cquations will be nonsymmetric. 

Thc cqtwtions ror thc complete. lake are constructcd from 

the equation:; of th? clements by imposing the condition of st.rca.m 

function conUnuity at each_ elcment. joint. Thus, the global 

equations are, by simple addition of all coefficients with like 

subscripts 

[K] {ljl} = {R} (1 S) 

/d.-ter solution for {ljJ}. the other variables, such as averagcd 

velocities and pressure gradicnts, can suhscquently be evaluatvJ 

by back substitution. 

Numerical solutions to Eq. (15) have been obtained :or both 

simple test problems and for Lake Ontario( 7). Since field data 

is not available for Lake Ontario the convergence of the solution 
-- (8) --- -(9) 

has bcen studicd with use of higher-order elements . Cheng . 

has analyzcd Lake Erie, psing a formulation which excludes con­

sideration of variable depth. To~g(lO) includes this factor in 

a finite element for~ulation based on Welander's theory,Cll) 

which does not differ significantly from thc theory cited above. 



lf a stream function is adopted JS the 

·as is do.ne in thc form~l:1tions di..,cusscd pt·eviously, thc presente 

of is1ands ra.iscs a basic complication in the dcfi.nltion of thc 

boundn1~y conrlitjons at thc uodc points of the is:and shorc líne•, 

The slrc;Jn¡ .functjon is zcro at points on thc shore of th" lakc 

but takcs on a con~tant, undefined value on cach of the islands. 

Thus, as Tonf!(JO) propases, the.valucs of thc strcam function or¡ 

a J~iv~n island are sct equal to a single value that is <leterminC:d 

in thc solution process. This substantially contracts the numb~r 

o[ unkHO\:ns in lhc equations to he solved. 

Chcng( 9) adopts a different approach to the treatment of 

isl:mds. Thc systcm of global cquations is first assemblcd 

without considcration of the islands and their boundary condi-

tions. Wc clenote thi~ solution as {'1'
0

}, Thcn, in succession,. 

'unit' solutions {f.} (i=l, .. M, where Mis the numbcr of 
] 

islands) are ohtained for '!'. = 1 for node. points on thc respecriv" 
J 

islands. Finally, an M x M systern of equations must be solVcd 

to givc thc amplitudes Gj_ (i=l..H) which apply to the unit solu.._ 

tions. Thc complete solution is then represcnted by 

M 
{'!') = {~} + t G.{~.} 

o . 1 1 l. 1= • 

(16) 

·rhc determination of the planform distribution by transpcrt 

6f temperaturc in a lake or basin with known flow is also a 

problcm of major practical importance, cspecially for cooling 

ponds and similar basins. Tcmperature distributions have bcen 

dctermined for such conditions by Loziuk, Anderson, and 

B 1 t hk (12,13) •¡· (10) d 1 ~ l . t e y se ·o • ong presente a more genera uevelopmcn 



along thcsc IJncs whicl1 permits the finite clement calculation 

~(~~y conccntration of substancc in a lakc. We outlinc th~ 

lattC'r in thjs scctíon. 

If we define cp ns thc average concentration across the. 

dcpth (h) of the substancc undcr study, the governing differcn-

tial cquation can be writtcn as 

él KH a(h~P) + o KH a(h$)_ +o 
fi X e) X é)y y él y ' 

(17) 

wherc K
11 

and 1\
11 arP thc cddy diffusivity cocffic..ients and Q is X y -

a source or sink tcrm. Now, thc approximation of • can be 

writtcn jn the form of the trial function 

(18) 

wherc {cp}. reprcscnts nodal values of h• and L~ is the relevant 

sct of shape functions. \\'hcn thc ·analysis is performed for 

temperature, \'f'itn a single tcmpc:-ature across the depth of thc 

lakc, T = hcp. 

Application of the Galcrkin approach can again be made to 

construct elemcnt equations. Using Eqs. (17) and (18), one 

obtains 
. 

[h] {q¡} + [s] {•} = {Q} ( 19) 

where 

[h] = ( JA {N} LNJ dA] (20) 

[s] :: fJ r{N}(u íl~NJ + ~ ~LNJ) 
· A L 11 ax h ay 

-o- KH 3{N} 3LNJ + KH .3{N} i1LNJldA] 
X ax ax y 3y 3y J (21) 



l;hc vector fQ} accounts for thc source or sink terms a11d nny 

prcscribcd l>oundary conJitions. Finally, by asscmbly of the· 

global equutjons from the clcmcnt equntions 
" [11](4,} + {S]f4ll •· {Q} 

" Hhcrc [ll], !SJ and {Ql corrcspond te [h} '· (s] and {Q}. 

Thc idcnliz¡¡tion for transport analysis is done in the same 

\\'ay as for flO\v annlysis. Aftcr calculation of the velocitics 

:in thc flol" annlysis the vnlues obtained are used in the forma-

tion of the matrix [s]. 

Loziuk, et al (lZ,l 3) apply thc above approach to various 

practica! problcms, including an nctual la·ke with irregular 

boundary. Availablc ficld data indicatc a reasonablc lcvel of 

agrccrnent with thc analysis rcsults. Tong(lO) calculatcs the 

diffusion of a suhstance in a rectangular basin containing a 

circular isl;1nd. 

Solutions for transicnt flow govcrned hy the shallow water 

cq 1Jations have becn given by Connor and Wang( 24 ). By integratin:g· 

across thc depth and assuming uniform velocity and hydroc-.tntic 

pressure ovcr thc Jcpth thcy cstahlish equations in tcrms of 

nodal valucs of flux and clcvation. Solutions are givcn for 

harmonic forcing of a rectangular basin and for tidal circul~­

tion in Massachusetts Bay. 

Taylor and Oavis( 26 ) have ~cvcloped finitc clement reprcsenta­

tions of tidal propngation in estunries. The unknowns in 

thcse cquation5 are the nodc point. vclocitics and clcvntions. 

Surface runoff, Jcscribed by mcans of the shallow-water cq~a-

tions, has bccn studi cd by Al-M~1shid=tni and Taylor (Ref. 30). 



Thcy trcat a onc-<.lim.cnsionJl ~.:ase, \vith vclocity and surface 
1 

cl~\':lt ion as prohl em unknoh'ns. 

Taylor ;tnd D:tvis (26) and Adcy and Brebbia (27) have 

sturlicd di$pcrsion in cstuarics. Rcf. 27 uses J.-noh'n vnlucs of 

vclncily and salves for the conccntration. Taylor and Davis, 

on thc othcr hand, salve for conccntration, vclocity, and 

surf::tcc clevation. 

Planforrn (x-y) finitc clcment analysis of a r:tther diffcrent 

cnvironmcntnl problcm Itas been pcrsentcd by Nerccr and Pinder (29). 

They cxnllline hcat t:ransport ln thc liquid nnd solid phases in a 

ground-watcr flow systt~m. The finitc elemcnt equations to he 

solvc<.l consist of two sets, one being a flow equation in terms 

of pressurc and the sccond being a tcmperature equation. Thc 

solutions are marchcd in time. 

IV. CROSS-SECTION ~NALYSIS 

The motivation for cross-scction analysis (x-z) has prin­

cipalJy bccn thc nrcdiction of ther~al stratification, although 

uttcmpts havc also bcen made to deal with more basic phcnomena 

in viscous flow. 

Thermal stratification is widely ?~lieved to exert an 
/ 

important influence on lake flow·phenomena through its effects 
1 

on density variations and other physical factors. In many lakes 

uniform tempc~ature conditions are reaiized in winter and, ai 

summcr atmospheric conditíons approach, a rise in tcmpcraturc 

occurs in thc upper: regions of thc lake. The peak is rcached 

in these •rer.ions totoJar-ds the end of summer. Sincc thc ·rise in 



-.. tcmpcraturc penctr:•t.cs to on1y o limitctl dcpth (sny 20 to 40 

fcC't) thc lm-:cr·portions pf thc lakc are not nffcctcd, ando 

somc\vhat 'stratificd' trm¡;eraturc profile prcvails. Thc heatcJ 

uppcr rcr,ion is kll(ll·;n as thc.• ·~pJ l ¡,~_ni~!:.!l \vhilc the unhcatcd lo\~ór · 

rc~ion is tcrmed the hvpolimnion. -'------- ----
Tho problcm to he solvcd i's the vertical temperature profilc. 

Thcrc is .1n influc:ncc, ho\'t'Cv¡:r, of thc action of the \oJÍnd and 

t h i e; p ro l1 u e e s u t\-JO - d i m e n s i o n a 1 p ro b l e m . 

Ligr,ct1 and Hcdford (Rcf. 1 4) and Bcdford (Ref. 15) havc 

clc<.~lt v:ith thc st"':llly-stntt~ prohJcm of a two-climcnsi.unal cavity 

contrJining " nonhomegcncous fluid subjectetl to surface shcar. 

No ronsidcration was given to ctldy viscosity and diffusivity 

varintions. Thc l:~ttcr was accounted for by Young, Li~cett, nnd 

Galloghcr (Rcf. ló) and the results dcmonstratc that str:ltifícll-

tion, as ,.,.ell as circulation pattcrns, can be predicted Hith 

the proper cmpirical definition of thesc variations. Skiba, 

Unny and We~vcr (Rcf. 17), Debongnic (Ref. 18), and Kowahara, 

et al (Ref. 19) have studicd cavity flow without thc consiJcra­

tion oí temperaturc. Couplcd vclocity-temperoture solutions 

are also described by Zicnkiewi.cz., Gallaghcr, and Hood (Rcf. 20). 

In thc fa llo\.,r ing wc dese r ihc thc de ve lopmcn t o f Young, L i gget t 

and Golloghcr.Cl 6) 

Thc physical propertics which cnter into the differcntial 

cquations of thc problem are the cddy viscosity and the eddy 

diffusivity. Thc eddy viscosity ond diffusivity in thc hori:ontal 

direction (KM cte. and ~H) can rcalistically be ta~en as constant. 
XX X 

Valucs of thcsc c:ocfficicnts are customarily taken as the sarílc 



magnltude as thosC' Hhich are mcasured unoer neutral strntifica­

tion. The Vf'rtical cdJy viscosity and diffusivity (K~z. etc. and 

KH) vory highly Hithin the Hholc basin, however, and_ are depcndent z 

on such íacto1·s él S thc t urhul cncc levcl in the surf:1ce lnycr, 

thc dcpth, tite local dcnsity gradient and the overall motion 

with rcspect to thc spccificd gcomctry. 

No satisfnctory thcory for the prediction of these varia-

tions from the more baslc environmcntal and physical pat:ametcrs 

is prcsently availabJe and depenc.lence mu'st be placcd on cmpirical 

reJ utionsh i p~. In this work the rclationships employed are 

extended fo rms o f t hose pro pos cd by S un da ram and Rehm ( Zl) , as 

follO\oJS 

KM = KM = KM (1 - o Ri) xz z.z o m 
( 23} 

KH = KH (1 - ohRi) z o 
(24) 

where IH, the Richard son number, is 

Ri = ( 25) 

in which U is a characteristic velocity, om and oh are ellipiric~l 

constants, ~nd KM and. KH are the vertical eddy viscosity and 
o o 

diffusivity under neutral stratification, The continuity equo-

tion, \oJÍth the assumption of incompressibility, simplifies to 

élu + aw = o 
ax ~~ 

(26) 

In dcfining thc relcvant forms of the momcntum equations we 

assume that Doussinesq's npproximation ··.1pplies (p i~ taken as 

cons t~mt exccpt whcn mu 1 t. ip1 ied b)' g, · i, e. , in buoyancy tcrms). 



Thus, 

dU dll 1 3p a ( K~1 ()u d (Kf'.l a u) u -~fi 
+ w = - ;¡-x: + ax --·) + az ;;z Po o ax z az 

ih" + aw 1 ()p d (1\M (h~) + d (K~2 '"") _E_ u \~ "' + E -
CJX "fi ,,o "fi ;-:x o é'lx 7. az Po 

TJ,,_:: difíusion-advcct1nn of tcmpcraturc is given t.y 

ar u -- + \oJ 
élx 

(27) 

g ( 28) 

(29) 

F1nallv, the cc¡uation oí stat:c can be writtcn more explicitly 

(30) 

in \\'hic!l B i~. the coefficicnt of volumctric expansion (assumcd 

consl :tnt) ancl T is thc point about \oJhich the .true relationship · 
o 

is linrarizcd. 

W •-· in t ro d u e e t he s t re n m fu n e t ion •v i n p 1 a e e o f u a n <.1 v , 

such that 

u = a .P 
dZ ( 31) 

The rcsultinr two differentL1l cquations, which replace Eqs. 

(27-30), can thcn be \Vl"Íttcn in ter:ns of nondimensional variables 

as fo 11 ows 

v4.p 
2 ()p 

1\(!P,p) .. - + Re~~-t)- Re Ri ;) x,z o 3x 

+ o Ri fL (z 
2 (lp aZ.p 

m o az2 3Z az 2 
(. 

.... 2 2 rip ·az.¡, ) 
+ u 

(z o (32) fi ax~) = 
()X o:~ 

and, 

DzCIJI,p) - - 172p + Re Pr él ( p '~·) 
a(x,zr 

.. ;..'!, Ri .l.. {cz ~1 2 } = o ( 3:t) 
H o az az. 



wherc Re = UIJ/K~1 
j s thc Rcy.nolds numhcr, Pr = KM/1-~H is the 

o . o o 

turbulent PrandLl numl>cr undcr neutr31 stratification, and 

Ri " - flr~ll/r u 2 
js thc ovcrall Richardson numbcr. -H is thc o ' t• o 

depth of thc cndty. Al! porameters and variablc:s have been 

non d i nu:- n s i o n ;, 1 i :. e d , e • g . , x a n d z ha ve be en d i v id e d by H • 

To transform the above into a finite element representa-

tion we adopt shope function approximations for tP and p and 

use the Galcrbn methocl. Thus, with tP = N-tP· and p = Q.p. we 
1 1 . 1 1 

ha ve t he f o l 1 o 1-Ji n g w e i g h t e d in te g r a 1 s 

1 Qi[D2 (~,p)JdA =O 
JA 

This leads to thc followlng set of nonlinear a!gebraic 

equations 

1 Re s?.ktP.lJik Re Ri 3 S .. tP. + + S .. P. 
lJ J lJ J -

' 
o lJ J 

Ri 4 P. o - a m S .. kllJ.pk + = o lJ J 1 

S Re Pr 6 Ri 7 o S .. p. + S .. ktP· Pk - ah S. 'kp.pk = 
1J J l.J J o lJ J 

(34) 

(35)-

(36) 

( 3 7) 

The multiplicrs Re, Ri
0

, Pr, am and ah havc been prcserved in 

these reprcscntations to enable identification of the sourcc 

of each term. 

The specific algcbraic form of the coefficicnts s!f'' .. ,sijk 

is obtained after performance of thc integration indicated in 

Eqs. (34) and (35). 

The global reprcsentation is obiained by summation, from 

the· coe ffic i en t s o f thc abo ve el cmcnt equat ions·, of all coef-

ficients with lik~ subscripts. Thc rcsulting cquations are of 



a runA idcnt ical to t h.tt of Eqs. (36) and (37). The Net\'ton­

Raphson .1pproach i~ adoptecl as thc mcthod of solution of th~se 

courled nonl incar cqu;~tions. 

·'Ntn;lcric~l calcul:ttions ucre pcrformcd for thc squ:trc cavit)" 

of Fig. 5.:1 for thc bound:;ry condit i.nns shown nnd for various asshmed 

vcrtjcnl. formulations of the cddy viscosity and diffusivity. Thc 

titlitc clcrncnt rcprcscntation consistcd of 72 elerncnts arrnyed in 

St·cady st~tc c:-~lculations havc becn pcY'formed for Re = 1 to 

Re a ·Jooo, Gr = O to Gr ~ 10000, and Pr = 1 to Pr = 10 whcrc Gr is 

the Grasltof nuraber (The l.rashof numbcr is Gr = Re 2 Ri
0
.). Addi­

tional numerical cxperimcnts wcre pcrformed to test tl1e scnsitivity 

of thc solution on the ássumcd bchavior of the eddy viscosity and 

eddy diffusivity. Ten such comput3tions were performed, all using 

Re e 100, Pr ~ 1, Ri
0 

= 1 but diffcrcnt choices of oh and am and 

also different nssu~p:ions as to thc form of the depthwisc varintion 

of Kl>f and KH as s~tmmarizcd in Tablc l. Thc values of thc charac·-xz z 
teristic numbcrs represcnt, of course, an infinite variety of 

physical data, but the following are typical: Pn e 1.0 gr/cm 3 , 

3 2 -M H Pr a 0.9999 gr/cm (T 1 · T0 : 4°C), tx = 1.0 dyne/~rn , K
0 

= K
0 

= 
100 cm 2/sec, H = 10m, and g a 980 cm/sec 2• These are approxirnat~ly 

equivalent to the cxperi~ental data of Sundaram et a1C 22l. How-

ever, in the pre$ent ca~e thc boundary conditions have been chosen 

so that a str.ady-stat~ sntution exists, a cor-dition relaxcd in sorne 

subscqucnt co~putations. 
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Conclusions resul th,;; fror.t thc first sct of stcady-statc runs 

are shown in Table 2 (RcC. 15). In thcsc runs cddy viscosity and 

cddy diffusivity wcr~ ltcld constant. A typical picture of strcam· 

lincs and isopycnnls is shown in Finurc 4. The influcncc of thc 

stratification on thc circuJation is obvious. Additional runs 

coul<l probably hnvc clícitcd a ~pecific relationship betwcen thc 

formJtion of multiplc, closcd circu1ation cclls ancl the three 

pararnctcrs, Re, Pr, and r.r. lloHcvcr, such ·a rclationship was not 

pursw~d. sincc it h'ould uncloubtcdly be altcrcd with diffcrent gcome­

trics and sincc thc cJJy viscosity nnd cddy diffusivity relation-

ships probahl)' havc a larr,e cffcct. 

1'hat cffect has bccn tcstcd in ten suhsequcnt runs ,.,.hich are 

summarizcd in Figures 5 and fi. In thcsc cases the sane sort of 

ccll structurc formed as sho'm in Figure 4, but with considerable 

variation in the cJet.ails of thc velocity, shape ·and sizc of thc 

cells, and the dcnsity distribution. 

The lattcr cornputations show that thc density structure con­

tinucs to havc a largc effect on thc velocity structure and also the 

vclocity structure cr~atly alters thc density distrihution. With 

the eddy viscosity and eddy diffusivity formulation that Sundaram 

and Rchrn(Zl) found nccessary in thcir one-dimensional analysis, 

thc surface shcar alonc is sufficient to form a thermocline typc of 

structurc. This result is quite different, but does not conflict 

with, thosc of prcvious invcstigators who have used a ene-dimensional 

anal.ysis. In those prcvious invcstir,ations the thermoclinc struc-

ture formcd ovcr a pcriod of time (scvcral wceks) while unsteady 

hcat inputs \m re appl ied. l'lc havc shown, hO\,rcvcr~ that givcn an 

initial inhomoccnicty in dcnsity, a wind shear is quit~ sufficicnt 
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to form the thcrnocline. UnsteJdy computations, shown bclow, 

indicatc the time scalc involvcJ in such a fornation 3nd also thc 

extent of thc fcedha.r:k h'hich 'influcnccs thc current structurc. 

Fcl·:er transicnt s:nlilputntions of cnvi t)' floH were m:.ule duc to 

the computer costs. A total of five runs \dth Rcynolds numbtrs of 

100 nnd 1000 and Richards011 numhcrs of 1 and 10 loJere madc. Two 

Valucs of O'h \oJCTC 1JSCd. , PigurC' 7 indicntcs thc results of Oi1C of 

thcse calculations. In nll cases in which thc motion begins from 

rest, thc entire cavity bcgins to circulatc as a whole; that is, the 
/' 

cavity form5 a single ·circulation ceJl. As time progrcsscs thc 

flo,., mar br~ak up into::~n.,ro or m:.Jre ce1ls, as is indicatccl in Figure 

7. A t thc s ame time 'th;e · dcns i t. y d is tribution is a 1 te red to sho\.,r the 

typicnl thcrmocl inc sh'apc. 

Tho flow does no~ change from a statc of rest to the final cell 

formation montonically. Instcad thc vclocities incrcasc rapirlly to 

a valuc not far from the stca~y st<!te valuc ~nd thcn oscillatc about 

this vnluc. The frcquency of oscillation is near the Drunt-Vaisala 

frequency. Other charactcristics of the flow, the dcnsity gradicnt, 

the ccll location, and thc streamline positions, show similar dampcd 

oscillations. 

The numbcr of cclls can be calculated, using certñin gross 

approximations, from thc thcory of Turncr( 32 ) as expand~d for thi~ 

problcm by Young (31). This thcory has been colllpared \'IÍ th the trans i-

ent and stcady-statc computntions ,.,¡ th rough agrecmcnt. 'fhe dif-

' ficul t)' in the appl ica t ion of such thcor ics te real l<.1h~s ('J r e ven 

cavities) is that all the factors, thc most important bcing thc 

density distribution, and the intcra~tion of thosc factors cnnnot 

te consid~red adcquately. ne~ults indic~tc that multiple ccll5 are 
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fhen:1oclinc promotf's t1.,ro cell circul:ltion. Howevcr, thc feedback 

of thc curr~nts into thc density structurc has not bcen considcrcd, 

and t)d!'; fccdhnck rn3y alter thc dcnsity distributton, thus chan~ing 

thc ·r~sults o( the thcory. 

Variable viscosity, espccially a formulation which is strongly 

dcpendcnt on thc Jensjty gradicnt, has a grcat cffcct on the 

abili.ty of thc currcnt structure to alter. the dcnsity distribution. 

JI' • ' • 

A reJuction of viscosity in zones of steep density gradient promotes 

thc oscillations obscrved prcvjously and incrc~scs their amplitude 

(but docs not nffect the frequency). Thc reduction in viscosity 

~lso increascs thc time to equilibrium significantly in those cases 

in which·a stcady state cxists. 

A particularly striking result of the transient calculations 

. is the time scale involved in thcrmocline formation. A shear 

applied at thc surface may alter the density distribution and 
-

create a thermocline-likc structure in a few hours versus the weeks 

involved {n the one-dimcnsional computations. Thus the cntire 

process of the developmcnt, maintenance, and erosion of the thcrmo­

cline is a complex process strongly influenced by the curre~t 

structure. The "physical constants" (i .. e., eddy diffusivity) 

derived for the one-dimcnsional analysis have, in reality, little 

physical meaning ~hen the cu~rent structures i~ neglected. 
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STABILITY OF FINITE ELEMENT MODELS 
FOR CONVECTION-DIFFUSION 

by 

Jerome J. Connor1 and George C. Christodoulou2 

INTRODUCTION 

The convection-diffusion equation, a typical parabolic 

partial differential equation, is of great importance in a variety 

of field~. It is essentially an expression of conservatio~ ¿f a 

quantity which is s~ject to advection and at the same time spreads 

out due to molecular or larger scale mechanisms. Applieations are 

in heat conduction, flow in porous media, vorticity transport in 

viscous flows, and dispersion in air or water bodies. 

If the domain is irregular, the equation has to be ~olved 

numerically and criteria for the stability of the particular 

numerical scheme used is essential. A large nurooer of finite 

difference techniques have been employed in the past and their 

stability and accuracy characteristics have been examined for 

simple convection, simple diffusion, and combined convection-

diffusion. A review of these rnethods can be found in [7]. 

Use of the finite element method in fluid problems has 

recently become quite popular [2,3]. The finite element discret.iza-

tion is norma¡ly applied only in the spatial domain, while time 

integra tion proceeds through convent.ional schemes. Rigorous 

1Professor, Dept. of Civil Engineering, Massachusetts Instit~te 
of Technology, Cambridge, ~ffi 02139 

2Assistant Professor, ~pplied Hydraulics Lab., National 
Technical University of Athencl, Athsns, Greece 



2 

theoretical analysis has focused on such fundamental problems 

as the convergence of the finite element approximation to the 

true solution, determination of error bounds, etc. [10], but has 

failed so far to yield practical results. This is due largely to 

the inherent difficulty in extracting simple expressions in terms 

of the problem parameters from the matrix equations defining the 

stability limit. Thus, important issues in problem-solving, such 

" ·as the selection of time step, are mostly dealt with through 

experience or experimentation. 

This paper discusse~ a stability investigation of the finite 

element method applied to the 2-D convection-diffusion equat~on. 

A generalized (arbitrary) spatial discretization is assumed, 

along with a simple implicit iterative scheme based on the 

trapezoidal rule for time integration. The method is shown-to 

be unconditionally stable for an arbitrary grid, constant 

parameters, and no iteration, except under certain rare boundary 

conditions. General criteria for convergence of the iteration 

procedure are developed and specialized for the particular case of 

triangular elements with linear interpolation functions. The 

effect of the finite element discretization on the accuracy of the 

solution is also briefly examined. Finally, results of numerical 

experiments which confirm the theoretical results are presented. 

FINITE ELEMENT FORMULATION 

The general convectiori-diffusion equation has the form 

+ -v. (u e) (1) 
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where e is the solution variable, e.g. the concentration of a 

constituent, ~ is the (local) velocity vector, 5 is the diffusive 

flux vector, fd a-nd f
5 

are the decay and so urce ter1l!S, respectively. 

In the simplest cuse of a linear decav 1 f~ is e:xpressed as .. a -

-F = --lz e d 

where k is the decay,constant (>O). 

(2) 

A two-dimensional domai.n is considered here. An analogous 

procedure can be applied to one dimensional problems. Incorpora~ing 

(2) into {1), considering the fiuid incompressible, and integrati.·ng 

through the transverse direction leads to an naveraged" equation, 

where u, v are the average veloci t~· components and Qx, Qy a.re 

the average diffusive fluxes in the x, y direction. If the 

diffusion mechanism is assumed to follow a Fickian behavior, one 

can write 

r oc.1J)(. ) 

' e 
l oC¡' ( 

Jlr . 
(j 1 

( 4) 

where the set of diffusibn coefficients comprise ü seconc order 

symmetrical tensor E. Finally the boundary conditioEs for the 

problem are of two types (see Figure 1) : 

(i) Essential, i.e., concentration specified 

e= e (5a) 
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·or 

(ii) Natural, i.e., normal diffusive flux specified 

(Sb) 

' Applying the method of weighted residuals to (3) and 

integrating the flux terms by parts leads to the symmetrical 

weak form [2]: 

+ rr (-Q ~~·/ - dlv l f- J Q: + QJ ~ JR WdS - o -);.. d~· .- d'-f 
¡:f S? (6) 

where W represents a weighting function. Since only first 

derivatives appear in/this form (when Qx, Qy are expressed 

through Eq. (4)), the trial function C (approximate solution) 

and weighting function W have to be only piece_wise continuous 

within the domain A. At the boundary, the trial function is 

required to satisfy (Sa), while the weighting function must 

satisfy the homogeneous form, i.e., W = O on S . e 

In the finite element method, the domain is subdivided into 

"elements" and the total residual, R, which is required by Eq. (6) 

to vanish, is evaluated as the sum of the element residuals, Re. 

The trial and test variables distributions over an element 

domain are expressed as 

e 
C=IIC 

~ ""'-

e 
W= N 1// 

,.._ """ 
(7) 
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where ce, We are. column vectors containing the ~alues at the 

element nodes, and N con~ains interpolation functions restricted 

only by interelement continuity of C and W. Using Eq. (7) r a~4 

(4), the residual for a single element expands to 

rt ~ (_~/ {/ (ff clt! dl))tr +(If t/(4}: +1r}ff jotll)~e 

+-t. ( () [f 
7 

t! u;;J( -1- ( ff r:t ::'] ~ h~ ~ ti!J J.(~ 

J
' ~ -r f!!; ,¡¡; -¡. js. d T cy""'-v ti S . 

~ (8) 
Introducing simplified notation for the matrix coefficients 

where the various element matrices are defined as 

(geometrical) 

,/·-= ¡r ;v7 rt( ~!! + v- "df! ) c1 R 
- J~ J~ ot (advection) 

Ji~-= (f o_fi~ o~ /R (diffusion) 

E e=-* ff f! 7!! /n (decay) (lO) 

e e Both M and D are symmetric positive definite matrices. 

e The character of K depends on E. Since diffusion is normally - '"'-

a "dissipative" rnechanism, it is reasonable to assume E is 

positive definite. Then, Ke is positive semi-definite witl1 -
respect to ce. 
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~ununing up the element residuals, one obtains the 

total set of equations relating the nodal concentration . 

. 
M C + (A + K + D} C = contributions from sources 

and boundary conditions (11) 

The symmetry and definiteness properties of M, D and K are 
...... - ---

the same as for the corresponding element matrices. 

To establish the characteristics of the advection matrix, 

partial integration is carried out over the elernent domain 

A e( f! :: ( Jf t.~'( t( 'd!..V f-tr ~!! 1 (/,q )-e e 
- - o t)V: J'J J -

t/'c¡ /'11~) (e- (ff((JIY: ;V.;. ~rtrl'l) t/11) C .e 
........ ..._ ._ , en:: - o;¡ :- -

(12) 

where un denotes the outward normal velocity. When the 

element residuals are sununed, the interior element line integrals 

will cancel out ánd'providedthat continuous expansions are used 

for u, v and C. Then, 

;; e - -- (13) - --
The line integral in Eq. (13) is restricted only to that part 

of the boundary, S , where the normal velocity is finite. This 
u 

excludes land boundaries which, by definition, require un=O. 

If S =O or the concentration is set to zero on S , the integral u u 

vanishes and the system advection matrix is skew-symmetric. 
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In·general, one can write: 

R 
{14) 

where A , A denote the S}~etric and skewsymmet=ic parts of A, 
... S -SS · ~ 

respectively. According to (13) A is associa.ted wit.h .the 
"'-rS 

boundary segments on which the normal velocity and concentration 

are finite. 

No use has been made of the particula~ form of the interpol~tion 

functions N, or the element shape. Therefore, the conclusions as 

to the prop8rties of the systern matrices aré valid for ·.o.n · arbitrary 

spatial discretization based on continuous expansions , 

STABILITY OF TIME INTEGRATION 

One of the· simplest time integration methods is based on 
d 

the trapezoisal rule. In arder to examine its stability 

characteristiqs when applied to the discreti~ed finite element 

transport Equation, {11), the homogeneous form of the latter 

will be·considered, i.e., 

. ' o /VI( -- (15) 

The recurrence relation for the trapezium method is 

{ 16) 

where the subscript denotes the time index. 
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Assuming the advection, dispersion, and d~cay matrices are 

time independent, one can express the so1ution of (16) as 

(17) 

where B is the amplification matrix. An a1ternate form is 

e -
(18) 

where A, ~ are the eigenva1ue, eigenvector of B. The sufficient 

condition for stabi1ity is 

/{§// < 1 
(19) 

Substituting (18) into (16), premu1tip1ying both sides by ~T, the 

transpose of the comp1ex conjugate of ~, one obtains: -

(20) 

Since ~, ~ and ~ are symrnetric positive matrices, it fo1lows that 

~TocjJ.:: d ~o - --- {21) 

The advection term expands to 

a~+ L ~s 
( 22) 
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where a
5 

is related to the symmetric and a to the skew­ss 

syrnmetric part of A. With this notation, one can write -
.dt- (a.s+f-1-d) 

~-t 

..... """ - "l... - ! 2 c¿~s 

A --
""'k-\ .¡.. /j"f 

(as+ t: -t d) 1- l 
lJt ..,_ ~a~~ 

(23) 
If as= O¡ IAI < 1 for abritrary ~t. 

That is, the integration scheme is unconditionally stable 

for an arbitrary grid when the system parameters·are constant. 

The value of a can be different than zero only if there 
S 

is a segment of S q on which the normal velocity do es not vanish. 

Noting ( 12 }"-, and the positive definite property of NTN, 

-r 
a_s = P El:s 1 

(24) 

one finds that as has the sign of un. Therefore, when the 

normal velocity is directed outwards, as > O, and Eq. (23} 

-indicates that !"A 1 < l. Actually, the stabili.ty is enhanced 

in this case. However, when un is directed inward, a
5 

< O, and 

the stability depends on the relative magnitudes of a and E + d. 
S 

Sufficiently strong diffusion or decay mechanisms can offset 

a negative a . 
S 

It is a common practice, based on physical considerations, 

to specify the concentration during inflow and the concentration 

gradient during outflow. Hith this procedure, stability of the 
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scheme is usually maintained. The source of instability for 

" the case of inflow from a boundary with prescribed concentration 

gradient is the introduction into the domain of an uncontrolled 

quantity of material. 

ITERATION CONVERGENCE 

Although the feature of unconditional stability makes the 

trapezoidal integration scheme extremely attractive, problems 

involving time variability of parameters or i-nputs will necessarily 

require a restriction on the time step. In such a case it would 

be economical to invert a new matrix of the form M + ~t (A+K+D) 
2 - - -

at every time step only for a very small problem. An iteration 

procedure is, therefore, preferred. Iteration has the additional 

advantage of being able to handle nonlinear decay, nonfickian 

diffusion, etc. For the homogeneous problern examined here, the 

recurrence relation is expressed as 

where the superscript denotes the iteration index. 

The sufficient condition for convergence is the requirement 

that the norm of the amplification rnatrix be less than unity. 

1 ¡ 
_, 

¡j"f (e-~-15-~e) /{ ¿_ 1 M -..... '2... 
""'.,. 1 (26) 

Solving for ~t yields 
"2.. 

4.t < 
1{ 

_, 
{~1-t+P}l! t1 -

(27) 
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A more conservative_fo~m is 

!Jf. < 
(28) 

In principle, the norm expression (27), can be evaluated. 

However, calculation of the comrnonly used eigenvalue norms 

involves long machine computations once the matrices are 

formed. An explicit relation between the time step and the 

parameters of the problem would be very desirable for practica! 

applications. An approximate relation can be derived by ~valuating 

the norm expressions for an individual element. Provided there 

are no drastic changes in the grid or the prameters ~ver the 

domain, the conclusions reached at the element level can be 

generalized for the whole system. That.is, satisfaction of (27) 

for the "worst" element would indicate convergence for the total 

system of elements. 

CRITERIA FOR LINEAR TRIANGLES 

Norms for the triangular element (see Figure 2) and a linear 

expansion are presented in this section. Starting with the 

expansion 

!:!. - [ ~. 

o!! r 6, b't.. b3 J b - - 2. A e -aY.. - 2 A e. 

o!! [a: 1 a. - a-:. ll-'1 ]---211-e, ...... - 2-A€ "' ~d {29) 

where A e is the area of the triangle and 
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: cz 1 = '{. 3 - X-1.. h, : ~~ -y3 

Q"1.. ':. '1-1- l-3 b"1.. -- '1 - tr 
i 3 d 1 

a.3 - ij. "l. - ")C 1 q ¿,-:Jl-- :: 
(30) 

... 

ene obtains the fo11owing e1ement matrices: ,, 

(i) Geome~rica1 matrix 

A r : 1 

¡1;! - "t.; - ¡:._ '"'- L L 

/l 

~ \ .... 

-i"··,_r-ll ti. ( 
3 .-1 ~- I -

- ";l ~- ........ -

-1 ..) 
...J . 

! ~ - ,- - • • ' ~ ( 

1- J) 
(31) 

.. -
(ii) Advectiori matrix, ·for uniformflow (u,v), 

[; 
J 1.·· ... e· ) 

·-··· 
1 ~j"(~/1? (:) - - "'Z.. + v a 

~ 1-t./ - ...... ....._ 

- ·u M {,:{ [ ,j s, C4J ~, Ll s, ~ Q,_. IJS3 ~43] -
"2R 

(32) 

where U 1 2 2 · · h · t d f th 1. ·· t t -= V u +v 1s t e magn1 u e o e ve oc1 y vec or, 

~si is the length of the ith side, and ~i is the ang1e 

between the veloci ty vector and the inward norma·l to ~si. 

This notation is illustrated in Figure 3. 

(iii) Diffusion matrix, for isotropic conditions 

(E = E = E E = E = O). xx yy ' xy yx 

ú :s, 
"1.. - (] t, .1 53 Cr.J 6J 2 

~.S 1 1.lS.1 4?é 1 

l.l S '2 
3 

• 
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whe·re e. is the angle opposite side i. 
~ 

(iv) Decay matrix 

p --k[f 
(34) 

Proceeding now to form the products appearing in (28), 

it is first noticed that 

_, 
1/l D = ..h_ ...._ ..... (35) 

Since the rows of ~ are linearly dependent, and noting 

the second form of M- 1 , one can write 
_, 

¡V, 1< = 1'2.. 

A - "" -
e 

Specializing (36) fcr the particular 

triangle 

~ r:2 /VI_, 1< -= 11. ~ _, 
- - A S A _, 

The matrix eigenvalues are O, 3, 3. 

bound on t.t, 

• 3 

(36) 

case of an equilateral 

-1 
-1 1 _, 

"2.. 

(37) 
-· 'l.. 

Using 3 yields a lower 

(38) 

This result is too conservativa. A more reasonable estimate 
1 

is obtained with the 11 average" value of the eigenvalues, i.e., 

2. 

lb 
(39) 

-- l 



14 

The last term, which involves M-l and A has the form 

M-' A = ~ (:} [ ¿ s, C-D 4, --- 2R¿; 
-

A norm measure is generated using the Eudidean norms for the 

vcctors, 'lz.. f (Lis, c.roqi,r + r t.l~ ""tP.)' + {4s3 «D4,r-{ 
( 41) 

Specializing for an equilateral triangle, 

l( 1~1-/ ,q { 1 - ...... 

u ·-tl.S (4 2) 

Similar expressions can be derived for any triangular or 

rectangular shape. The above expressions also apply for a right 

triangle, provided the flow is parallel to one of the short 

sides. 

Combining (25), (39), and (42), one obtains an estimate for 

stability of the iteration scheme applied to an equilateral 

grid, 

' IJt < E 
/ .. 2. JL -1- 8-

4S tJS.,_ 
( 41) 

In actual applications, oen designs the grid with approx~mately 

equilateral tríangles, avoiding angles in excess of goc. 

Equation (43) provides a good starting point for select~ng .~he 

time step in any given problem. Its validity is tested 

experimentally in a later section. Its primary value, irrespective 

of the numerical constants which vary with element type, 
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lies in .the inclusion of all relevant parameters in a single 

expression. In the past, these have been examinad separately, 

if at all, and only by numerical experimentation. For instance, 

[5] suggests that for satisfactory time integration using the 

same iterative scheme and the same type of elements, bcth of 

the following conditions must hold: 

<. 
tS /.1 S 2-

At l.lt < /() u 1 o E. 

(44) 

These bounds are stricter than ( 4 3) especially with respect 

to advection. In problems with significant spatial variations, 

it is clear that the largest values of E/~s 2 and U/~s limit 

the time step. As a consequence, a local refinement of the grid 

for better resolution·will lead toa smaller allowable time step. 

ACCURACY 

In addition to stability considerations, an Jmportant issué 

that has to be addressed is the accuracy of the numerical 

solution i.e., how close the true solution is being approximated. 

Accuracy depends on the space and time discretization and the 

type of problem being solved. The two basic errors considerad 

in diffusion problems are those of numerical damping and numerical 

dispersion. The former relates to excessive (or inadequate) 

damping of the magnitude of individual wave components and is 

sometimes expressed by an,artificial diffusion coefficient. 
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T~~ l~tter relates to incorrect phase propagation of individual 

.- wave components, which leads to distortion of the shape of the 
- ' . '- . . - ~ ' . 

overall distribution .. These errors ·may: be- easi-ly examined in 

finite difference schemes; they can also ·be examined, in an 

analogous way, when the finite element discretization involves a 

regular grid. Thus, it has been found that the trapezoidal 

·-

integration scheme with linear triangular elernents gives negligible 

~hase error and rather srnall amplitude error [11 - actually 

being neutrally stable for simple convection. Similar results 

have been obtained for rectangular isopararnetric elements [9]. 

However, when significant high frequency cornponents exist in 

the function to be approximated, serious difficulties rnay arise 

from the inability of the grid to represent thern adequately. 

In particular, linear interpolation functions are suitable for 

describing the Gaussian or exponential analytical solutions of 

diffusion problems only if the grid is fine. Higher order 

interpolation is.superior, but also more expensive. The usual 

result of the inadequacy of the grid to accornmodate steep gradients 

is the appearance of_spatial oscillations and negative,concentra­

tions in the nurnerical solution. This unnatural behavior is 

due basically to the "coarseness" of the spatial discretization 

and it has been shown that it would occur even if the problem"is 

one of steady state [7]. 

Considering a regular finite element grid (Figure 4) and a 

one-dimensional steady state problem, the discretized equation 

for Node A is [1): 

u /) s (e + 2 e + e - e -- 2. e - e ) + E ( 2 e R - e' - e¡; ) -= o 
e c. D E F G b . (45) 
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Suppose that,, due to the presence of a source and because. the 

problem is ene-dimensional, 

(i) the concentrations at e and D are relatively high, 

Ce :::: c 0 = M. 

(ii) nodes F and G are essentially out of the plume, 

CF :::: CG = O. 

(iii) CB = CE :::: CA. 

Specializing (45) yields 

- 1 
/'IJ ( 
"'2.. 

(46) 

This shows that, in arder to avoid negative concentrations 

upstream of a continuous source, the following condition has 

to be satisfied: 

E 1 -
u A S 2 

(4 7) 

Condition (47) is analogous to the restriction on grid Reynolds 

number required in central finite difference schemes [7]. ¡ts 

applicability to the finite element discretization has been 

established earlier, through numerical experiments [S]. Violation 

of (47) is sufficient to cause negative concentrations for 

continuous source 1-D problems. Applying a similar type of 

approximate analysis as above has indicated that (47) is somewhat 

conservative for 1-D transient problems, but is not quite 

adequate for 2-D problems [1]. The additional difficulty that 

arises in a two-dimensional domain is the singularity of the 
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analytical solutio~ for a continuous point source. Local 

refinement of the grid and spreading of the source over a few 

elements are the easiest ways to irnprove the nurnerical 

solution. If the imrnediate vicinity of the source is to be 

rnodeled accurately, inclusion of singular terrns in the 

tri~l functions should be considered [8]. 

EXPERIMENTAL RESULTS 

Condition (43) lirniting the time step, 

1 '2. + 8 
¡; lrt 

;::. S 'Z.. 

is written in the mere general forro 

1 

( 4 8) 

where ~l' ~ 2 , ~ 3 are nurnerical constants dependent on the 

type of the elernents used. If the nondirnensional groups, 
2 ./.!.. 13 c-

Uót/ós, Eót/ós , K-~ are viewed as Cartesian coordinates, 

• 

a useful geometrical interpretation of (48) emerges: the sufficient 

condition corresponds to bounding the "acceptable" space by a 

certain plane surf~ce. In the absence of decay, which typically 

gives a negligible contribution, the space is reduced to two-

dirnensions. The inequality 

/. ~ 
U!jt -
As. 

¿ 1 (49) 

o 1 
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determines a theoretically 11 safe" area bound by a straight 

iine, as shown in Figure ,s-: A less conservative irtequality 
Lf 

.( ¡.z 

(50) 

defines an elliptical boundary. 

To test the validity of the theoretical results, a large 

number of runs were carried out using the ene-dimensional grid 
5'" 

shown in Figure)?. A point source was simulated by loading 

the three nodes marked with dots. _Most runs involved contiftuous 

releases, but instantaneous injections were also made. The 

contribution of the decay term was generally less than 5%, 

and thus neglected. For each run the córresponding'point was 
~ 

plotted on Figure fr. The symbols used to clarify the runs 

with respect to iteration convergence behavior and the occurence 

of significant spatial oscillations are explained in Table li 
~ 

The most important feature of Figure -8 is that all runs 

which exhibit difficulty with iteration convergence lie outside 

the "safe" region. Not too far from the elliptical boundary, 

there are points representing runs that rapidly become unstable. 

Points closer to that boundary, but still outside, generally 

have iteration errors of 20 to 75%, sometimes aecreasing slowly 

over time. Since there is a limit of 10 iterations per time 

step in the program, it is not known whether these runs would 

eventually become unstable if allowed to continue itetating. 

Apparently, when the itera tion is stopped wi th s srüall error, 

the behavior tends to irnprove over the following tim~ steps. 

Of course, these errors are accurnulated in the solution. 
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Run,s.between the two boundaries defined by (49) and (50) have 

errors of less than 10% which diminish with time. Finally, 

runs within the inner boundary generally converge very well, 

with errors less than 1%. 

It may be concluded that the theoretical criteria, indended 

as sufficient conditions, are indeed quite appropriate as such. 

The elliptical bound (50) is not too conservative, in view of 

ti1e relatively large errors occurring outside its domain. The 

linear boundary (49) is somewhat conservative far from the 

axes; this is a consequence of working with (28) rather than 

the actual condition (27). Numerical experiments for 2 O 

problems and applications involving irregular grids of natural 

water bodies [1] have further confirmed the validity of the 

theoretical criteria. 

The other important resul t of the experiments is ·associated 

with the accuracy condition (47). It is seen that the line 

E/U~s = 1/2 differentiates the regions where runs do or do 
-

not .show appreciable upstream negative concentrations and spatial 

oscillations. These oscillations become more severe near the 

U~tj¿s axis, as the ratio E/U~s diminishes, and they are 

practically eliminated as E/U~s increases slightly above 1/2. 

Accuracy considerations significantly reduce the area of 

acceptability of combinations (U~t/ts, E~t/As 2 ) toa much 

smaller set than that required for iteration convergence. 

Fortunately, continuous source problems, whibh are the most 
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demanding, are not too sensitive to the value of the 

diffusion coefficient; this rnay be changed by alrnost an arder 

of rnagnitude without appreciable change in the results [4]. 

Therefore, it rnay be possible in sorne cases to improve the 

numerical solution by artificially increasing the value of the 

diffusion coefficient. Another alternative is to resort to 

higher arder elernents. 

CONCLUSIONS 

It has been shown that the trapezoidal integration scherne 

applied to the discretized convection-diffusion equation 

(including decay) is unconditionally stable for an arbitrary 

grid and constant system pararneters. This was based upon 

the exarnination of the character of the matrices involved, in 

particular, the skewsymrnetry of the advection matrix. 

When the system parameters are time dependent, an iterative 

solution technique is preferred. Its convergence requirernents 

irnply sorne.restriction on the time step. Conservative bounds 

on the time step have been developed for the case of linear 

triangular elernents, based upon a sirnplified analysis at the 

individual elernent level. Results of nurnerical experirnents, 

rnostly on a 1-D grid, confirrn to a large extent the 

theoretical·argurnents~ 

Accuracy considerations, related to oscillations of the solution, 

lirnit rather severely the use of .linear elements in sorne practi~al 

applications. Resort te higher arder elernents rnay be worthwhil~, 

despite the increased cost, when there is weak diffusion. 
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Figure Captions 

Solution F'jeJd 

TypicLJ.l Lj 11t~::r Triü ,tjular Element 

Regular F'inite Elerncnt G:cid 

Comparison of 1-D Trial Runs with Theoretical Criteria 

1-·D Test Grid 
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Figure~ 1 :;o] uf:i on Field 
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Fi<Jtll·l~ 2 Typ.ic.Jl Lint.:-.Jr: •rriangular Element 
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Figure 3 RetJtllar Finite Element Grid 
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'J';~blc 1 

Symbols uscd in Figure 4 

Error after 
10 Iterations 

< 1% 

< l% 

< 10% 

< 10% 

> 10% 

> 10% 

1·~ L •Fd i_ V e S a S 
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CHAPTER 3 

3.1 FORMULATION 

Beginning with the basic principies of conscrvation of mass and of 

force equilibrium,(Newton's second law), a formal mathematical model is 

developed for transient vertically integrated flow in the plane. The 

approach is somewhat similar to the works by Hansen [27], Reid and 

Bodine [:J<J], Leendertse [38], Norton et. al. [49] and Pritchard [70]. 

We attempt to include all important'steps of the development and to 

account for assumptions and their basis as much as possible. Where 

numerical parameters are needed in the constitutive equations, numbers 

or relationships based on experie~ce are indicated. The model is thus 

intended to be truly predictive with the singular reservation that boun-

dary conditions must be prescribed. The necessary boundary conditions 

for a wel1 posed problem is also discussed. 

3.2 THREE-DIMENSIONAL FLOW. 

The mathematical formulation of the conservation of mass and 

momentum principies for three-dimensional flow has previously been derived 

in an eulerian framework using a cartesian x-y-z coord~_nate syste!ll, (see 

f.ex. ~ 1~). The operat~on consists of balancing mass fluxes or forces 

for a sncll cu~e dx-dy-dz, (see F~gure 3-1), and then taking the theo-

retical limit as the volume of the cube approaches zero. The result is 

(3.2.1) p, + (pu), + (pv), + (pw), = e 
t X Y Z 
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which states that the local rate of change of mass per volume,added to the 

net flux out,is equal to the rate of adding mass per volume, e. If there 

are no interna! sources (henceforth we shall define a sink as a negative 
;·, '•,.; 

source and therefore only need to talk about sources), e is zero. p is 

the density; u,v,w are the velocity components in x,y,z directions and 

partial differentiation is written as a subscript comma followed by the 

independent variable.Equation (3.2.1) expresses a fundamental principle 

for any continuous one phase fluid. 

The equilibrium of forces acting on the control volume is 

written for the x- and y-directions: 

(3.2.2) (pu),t + (pu 2 ) + (puv) + (puw) - pfv = ,x ,y ,z 

-p ,x + Txx,x + Tyx,y + T zx, z + pmx 

(3.2.3) (pv) t + (puv) + (pv2 ) + (pvw) + pfu 
t ,x ,y ,z = 

-p + T + T + T + pm ,y xy,x yy,y zy,z y 

A rotating right handed coordinate system fixed on the earth 

with the z-axis vertical upwards is chosen. The equations(3.2.1) -

(3.2.3) apply to the expected values of velocities and pressures which 

are considered to be stochastic processes. The T's are therefore due to 

molecular viscosity and turbulent rnomentum transfer [15, 62]: 

(3.2.4) 
V - o < u' u' > Tij i j i,j 1,2,3 

where < > signifies expected value of the argument, is the 

viscous stress and u' 1 is the turbulent velocity fluctuation in the i 
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direction. For convenience, here and in the following, frequent use of ten-

sor notation will be made, the 1,2,3 directions being equivalent to 

x,y,z. The left hand sides of (3.2.2)and (3.2.3) represent the inertial 

forces on a unit volume and the right hand sides are the surface forces 

acting on the same volume plus internal sources of momentum mx' m • y In 

arriving at (3.2.2) and (3.2.3) is has been assumed that the vertical 

velocity w is small so that only pfu and pfv are retained from 

the fictitious coriolis force. f is the coriolis pararneter = 2 wearth · 

sin Q , where is the phase velocity of the earth's rotation and ~ 

is the latitude (N) of the location. 

z 

w 

dy 

X 

Figure 3-1. Infinitesimal control volurne. 
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The isotropic normal stress in fluida is usually compressive and'there-

fore d.enoted p for pressure {positive). The deviatoric stresses 

i,j = 1,2,3 are defined as usual, the first index denoting the normal 

direction of the face on which the stress acts and the second, the posí-

tive direction of the stress. 

An order of magnitude. comparison of the in~rtial terms in 

(3.2.2) and (3.2.3) is illustrative. Let t, ~. h, u and w be re-

presentative time, horizontal and vertical length and velocity scales. 

Scaling (3.2.2) then yields 

u 
... 
t 

A A 

•2 
u 

"' - "' .. 
9.. 

uw 
-:-"­
h 

4 .. • • 

f u "' f w 

where f w is the so far ignored component of the coriolis force and 

l .. f -.. -1 is equal to approximately 10 sec at 40° latitude. In order to 

drop r w and keep the remaining terms we must have 

"" "" A 
.... .., 
u » w u w 

=> 
u A 

f -o. = 
9.. h 

;-.... 
u 

A 

For a typical coastal area 
.. 
u = O(O.Sm/sec), 

.... 
w = O(O.OSm/sec) 9..= 0(10 3m), 

h = O(lOOm) 
.. 

giving a corresponding time scale t = 0(2. 10 3sec) = O (O. 6 hr ), 

indeed in agreement with the above scaling relations. 

(3. 2. 5) 

where w 
X 

Vertical equilibrium requires 

(pw) + (puw) + (pvw) + fpw 2 ) + 2~w v - 2ow u = 
,t ,x ,y ' ,z X y 

- p - pg + T + T + i ,z xz,x yz,y zz,z 

and w are the x and y components of the earth's rota:inr. 
y 
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Scaling of: this equation leaves only the pressure, gravity and normnl atreno 

terma as significant, Again -rz?. is relAted to molecular viRc:osity nnd 

the vertical velocity fluctuationst hence it can be neglected in comparison 

with pg and we finally obtain the hydrostatic pressure condition. 

(3.2.6) P = - pg ,z 

Along the boundaries,special conditions apply. Thus the fact that the free 

surface is a material interface is expressed as the kinematical condition 

(3.2.7) D 
Dt <n - z) = = o 

where evaporation and rainfall are neglected. n = n(x,y,t) is the sur­

D 
face elevation, Figure 3-2, and Dt is the total or particle derivative. 

At the bottom z = -h(x,y), which is assurned fixed and irnpermeable,the 

similar condition is 

(3.2.8) ~t (z+h) l z=-h 

For lateral boundaries, which are assumed vertical,(see Figure 3-3) the 

flow must be continuous, implying 

(3. 2. 9) u~ ni[ == o 
.L. 

i = 1,2 

,+ 
q 

ui n. l_ ~ijk J o (3.2.10~ 
i,j 'k 1,2,3 

where ~ijk is the perrnutation tensor, ~123 = ~312 ~ ~231 = 1 

and all other elements are zero • 
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expresa that normal and 

Dynamic equilibrium must aleo be satisfied on the boundaries, 

Projecting the forces for a surface element on x,y and 

result in 

(3.2.11) (T: + Ps n,x> .. 
[Pn ,x - T n,x - Tyx n,y - Tzx] XX 

z•n 

( S+ S 
n,y> ... [pn - Txy n ,x - TYY n,y - T J Ty p ,y zy z•n 

S + S + S 
[-p - + Tzz] -p T' n,x 'ty n,y = 't n - Tyz n,y X xz ,x zan 

and similarly for the bottom (z -h(x,y)). 

(3. 2. 14) b b h [-<P - T ) h h l T p ,x Cl + Tyx + 1 zxj X XX ,x ,y z=--h 

(3.2 .15) b b h - (p - T ) T - p ,y .. [-T h h + T ] y xy ,x yy ,y zy 
a: -h z 

(3.2.16) b S h S h [-p -p - T - T + 1 xz h + T h + Tzz] X ,x y ,y ,x yz ,y 
Z""-h 

On lateral boundaries, continuity of the stresses is again required. 

(3.2. 17) 

(3.2.18) 

+ [normal stress]_ = O 

+ [tangential stress]_ O 

In case the fluid is considered inviscid (3.2.10)and (3.~.18) 
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must be relaxed and only (3.2.9) and (3.2.17 ) enforced. Finally, for 

a well defined problem, the initial flow field must be known: 

(3.2.19) - i = 1,2,3 x,y,z € n t = o 

For anArbitrary geometry, the problem as forrnulated is not 

easily solved. Numerical solutions are stymied by excessive computer re-

quirements and lack of infor~~tion on the proper boundary conditions . 

In coastal areas that are well mixed through the water column, a signifi-

cant simplification is achieved by eliminating the explicit dependence on 

the vertical coordinate. This procesa is described in the following 

section. 

3.3 VERTICAL INTEGRATION 

In shallow water bodies, the flow variation through the depth 

is often leas significant. In such cases, vertically integrated equations 

and variables may adequately describe the situation. This approach yields 

estimates for the transport through any cross section, however, detailed 

information on the velocity structure is lost. In the following, the 

water density is assumed constant in the z dire~tion, i.e. p = p(x,y,t). 

This and the assumption of relatively small vertical velocities and accel-

erations are normally implied by the definition shallow. 

The development of a boundary layer from an applied wind 

s~ress on the surface is dependent on the magnitude of the vertical tur-

bulent momentum transfer. Severa! investigations have found the vertical 

eddy viscosity falling in the range E~l- 200 cm2 /sec. If the time 

scale of 1 hour is retained, a notion of the meaning of the expression 
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shallow in connection with wind driven circulation is obtained from the 

expression 

(3. 3.1) h w = • t '\, 1 - 10 m 

'!be use of vertically integrated quantities to predict dispersion of a 

1 

tracer in this situation is clearly leas satisfactory because of the highly 

non-uniform velocity profile~ although the total transport still may be 

well predicted. In two and multi-layered modele, sorne improvement on thi~ 

point can be expected, For tidal flow, the driving force which is the 

hydrodynamic pressure, acts over the entire depth,and vertically integrated 

values are expected to be representative for the local velocitiea also, 

cxcept cloae to the bottom. Finally, neutrally buoyant etre.am flows en­

tering or leaving the area are well suited for an integrated treatment 

since thoae flows generally are well mixed. Again, in-or outflows with 

8 density differencc are better simulated in multilAYP.r modn!s • 

The governing equations are integrated ovt'.r the totnl dept:h 

to eliminate the z·dependence. Beginning with Equat~on (3.2.1), we for-

mallY write 

(3.3.2) 

Making use of Leibnitz's rule [29] we may change the order 

of integration and differentiation to obtain 

a r an o r élr, + él(-h) 
(3. 3. 3) - pdz- ~ + ~ -hPudz - pujn Pu 1 ílx élt -h élx -h 

+ a Jn pvdz - pv 1 í3n + Pv 1 
él(-h) + pwj - pw ! . = oqi é)y 

-h In ay -h él y n -n 

')2 



• 

Finally applying the kinematic conditions on the surface and bottom 

results in 

(3.3.4) ~1 

where we have introduced the integrated variables, total depth: 

(3.3.5) H a Jn dz 
-h 

h + n 

discharges in x- and y-directions per unit width: 

(3.3.6) qx - J:h u dz 

(3.3.7) ~ - Jn v dz 

-h 

If we let q1 represent the net rate of volume addit~on per unit hori­

zontal area, this result (3.3.4) is generally valid for any type of flows 

including situations with permeable bottom and evapocntion or prec~?it~tio~ 

at the free surface. The primary objective for includine q
1 

is however 

to make possible modeling of internal sources such as ~he discharge from 

a diffuser pipe. 

The integration of the rnomentum equations, (3.2.2) - (3.2.3) 

proceeds analogously: 
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1 
1 

(3.3.8) fn (pu) dz + Jn {(pu2 ) + (puv) } dz + Jn (puw) dz 
-h ,t -h ,x ,y -h ,z 

-Jn pfvdz + Jn p dz - Jn Ct + t )dz - Jn Tzx,z dz 
-h -h ,x -h xx,x yx,y -h 

-Jn pm dz 
-h X 

+ (pu2) 1 a (~h) + ~ Jn (puv) dz - (puv) 1 ~n + (puv) 1 a (~h) 
-h X oy -h 0Y -h y 

·n 

+ P 1 a (-h) - .L Jn T + t 1 an - t 1 o (-h) 
-h OX ax -h x:xd. Z XX . dX XX -h OX 

n 

o rT) dz + T 1 ~ - T o (-h) - ( ) 1 - oy Tyx yx oy yx oy 1zx 
•-h -h 

n n 
+ (T ) ~ 

zx ¡-h 

-pm rl 

X 

d F' s b 
pF~X - Cly p yx - 1 x + 1 x 

s aH b ah 
- piñ - o -- p -

X . OX dX o 

in which we have defined 
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(3.3.9) pF ' -
J:h 

'tx;x: dz 
XX 

(3.3.10) pFyx 
1 

-o 

J:h 
dz 'tyx 

r· (3.3.11) m - m dz 
X -h X 

For computational reasons it is more convcnicnt to work with the 

pressure in excess of hydrostatic pressure corresponding to the water level 

at datum and rest. 

The density may be written as a mean value plus a deviation 

(3.3.12) p (x,y, t) = p + ~p(x,y,t) 
o 

and assuming the instantaneous local deviation is small compared to the 

mean 

(3.3.13) ~p « p 
o 

Boussinesque's approximation [57] is introduced whereby the density in 

all terms is replaced by the constant mean density p • 
o 

This is a reason-

able simplification provided the real density is used in the pressure tenn 

which now takes the form 

(3.3.14) p F = Jn p dz - t p
0 

g h 2 

o p -h 

1 2 1 2 S 
== p

0
g h n + 2 P

0 
g n + 2 óp g H + p H 

With these definitions and approximations, the final form of the equili-

brium equation (3.3.8) becomes 
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(3. 3.15) 

(3.3.16) 

~t (qx) + ~x J:h u
2
dz +~y J:h uv dz- fqy + ~x (Fp- Fx~) 

S b 
1" - 1 

-LFI+ X X 
ay yx p

0 

- m 
X 

8 oH .E__ 
dX g n 

ah _ ~ gH ah = 
ax p ()x 

o 

By complete analogy. the force balance in y-direction gives 

L (q_J + L Jn uv dz + L Jn v2 dz 
at ~ ax -h ()y -h 

+ 

- -ª._ F 1 ax xy + 

8 b 
T -T 

a (F - F 1) + y l 
ay p yy p

0 

ah - gn- Q 

ax 
o 

- m y 

8 
()H _]L_ 

p ax 
o 

with the corresponding definitions: 

(3.3.17) pF 1 - pF 1 - r T dz xy yx -h yx 

(3. 3.18) pF ' -
J:h 

Tyy dz 
yy 

(3.3.19) m -
J:h 

m dz y y 

The number of unknowns still exceeds the nurnber of equations for our 

problern. To overcorne this hurdle, the currently rnost successfully used 

o 

empirical relations for bottom and surface friction are reviewecl in order 

to establish a set of constitutive equations. Previous modeling has 

shown that a quadratic, (in mean velocity), bottorn friction law in all cases 

adequately representa the darnping due to the shear at the bottom. Several 

similar ernpirical expressions, Manning, Chezy, and Darcy-\,'eisbach equa-
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tions [15 ], were originally derived from measurements of steady flo~ in 

channels or pipes; but have been modified for t~o-dimensional unsteady 

circulation. The quoted relationships are the most widely used and relates 

sheár stress to discharge per unit width as follows: 

(3.3.20) 

(3.3.21) 

where 

(3.3.22) 

't"b 
X 

,.b 
y 

-

• 

e ( 2 2) ~ qv 
f P qx + q -

y H2 

Darcy-Weisbach 

Chezy 

Mannine 

Values of Manning's n are only known for fully developed rough turbu-

lent flow, which fortunately is the normal case in coastal areas, as thP. 

Reynolds number 
k 

R • u•H • l:.!.Q. • 10 7 
-6 and the relative roughness 

Ha = 0.01 - 0.1. 
V 10 

For fixed roughness, the friction f~ctor is the.re-

~ 
fore inverse1y proportional te H 3 

• Normal values of n range 0.025 

- 0.040. The values of Cf for some n and depth values are given in 

Table 3-1. 

In other flow regimes, the use of a Moody diagram to find fDW is 

the best approach. Choosing as an example Cf = 0.005 and a velocity of 

1 m/sec gives a shear stress of S N/m 2 which is considered as a large 

bottom friction. 
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1 r~ . 

,' ~ 1 

., 

~ 
H 

--¡ 

m 
(m] 

1 2 5 10 20 30 40 50 lOO i 
1 h- 1 

1 ness 
n 

1 ll<s [m] 
[sec 

-~ ·m 
r 1 

S tones 1 

0.07 0.025 0.0061 0.0049 0.0036 0.0028 0.0023 0.0020 0.0018 0.0017 o. 0013 

Small 
rocks 
0.20 0.030 0.0088 0.0070 0.0052 0.0041 0.0033 0.0028 0.0026 0.0024 o. 0019¡ 

ir)unes 1 

1 o. so 0.035 - 0.0095 0.0070 0.0056 0.0044 0.0039 0.0035 0.0033 0.0021 
t.lO 0.040 - 0.0092 o. 0073 0.0058 0.0051 0.0046 0.0043 0.003 

TABLE 3-1: Values of Cf 

The wind stress on the surface is more complicated to handle be-

cause the water surface is deformable so that waves form,and also the 

~ength scale of the turbulent wind field is so large that the wind stress 

is highly variable in time and space [17, 25]. 

Severa! investigators have derived expressions for the average 

vind stress from measurements in the field [5, 1~. 28, 74, 77, 79].If 

the shear stress is related to the wind speed as fol1ows, 

(3. 3.23) 

where Pair is the air density, (-1.2 kg/m 3
) and u10 is the wind 

speed at 10 m above the surface, then the wind drag coefficient e has 
D 

been found to vary from approximately 0.001 and up according to the fo1-

lowing relations: 
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u10 ~ 1 m/sec 

(3.3.24) .. o.s . u 1{
2

• 
10 

-3 
10 1 < u10 2 15 m/sec Ref.[79] 

u10 .:_ 15 m/sec. 

{ 
1.0 . 10- 3 

u10 ~ 5.6 m/sec Ref. [ 74] 
{3.3.25) <1> = 5.6 1.0 + l. 9 (1 -

u10 
)2·10-3 

u lO > 5.6 m/sec. 

{3.3.26) 0.00228 + (1.0 -
2 en D 7.0/U10) 0.00263 

20 ~ u10 ~ 40 m/sec 

Re f. [ 77] 

0.577 • 10- 3 
u10 ~ 4.9 m/sec Ref. [28] 

{3. 3. 27) en = (-0.125 + 0.1427 u10) 10-
3 4.9~10.::_19.2 m/sec, 

2.62 )9.2 < u
10 

m/sec 

The values given in the referenced papers are plotted in Figure 3-5. The 

data in 5, 74, 77 ] were for ponds or lakes,and [16,28,79]used mea-

surements on the open ocean. There is a significant scatter of the dnta 

and hence of the curves used to fit the data points. Wu's relntionships 

based on ocean data seem to give the best overall fit. Unfortunately, 

there are two discontinuities in the suggested re1ation for ~ ,(3.3.24) 

which physica1ly does not seem reasonable although some justification is 

attempted [79]. Considering the spread of the curves with a factor of 

2 difference between results,it is tempting to fit one straight line 
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re1ation as shown, with the equation 

(3. 3. 28) = {1.1 + o.os36 · u10} • 10-
3 u10 in [m/sec] 

For u10 = 10 m/sec, the drag coefficient is 1.64 · 10- 3 and the predicted 

shear stress 1 6 = O. 2 t1/m2 \oThich is somewhat larger than the -0.1 N/m2 

normally measured in Massachusetts Bay for similar winds.t For wind speeds 

ranging from O - 30 m/sec, we can conclude, the present state of the art only 

allows us to predict the applied wind stress to within a factor of 2. 

However, considering the complexity of this prob1em, such an error seems 

tolerable. 

Finally, the origin and significance of the internal stress terms 

txx' 1xy D 1yx , 1yy are investigated. To clase the formulation we also 

try to expresa these terms as functions of the integrated flow variables 

by means of an eddy viscosity coefficient matrix. The approach.in many 

ways similar to the closure of turbulent f1ow problems [62], is admittedly 

based on a physica1ly very loase foundation; but does yield an attractive 

structure reflecting many of the expected real effects, viz dissipat:i_on, 

and diffusion of momentum. The vertica11y integrated approach is only 

valid when the interna! stresses are relatively s~ll, so an exact repre-

sentation of these terms is assumed to be of minor importance. All this 

trouble is d~rectly caused by averaging the convective acce~erat~o~ terms. 

However, the real root of the problem is the use of eulerian rather than 

lagrangian description (in the latter, the observer follows a particle and 

t In the range O - 10 m/sec, Equation (3.3.28) agrees well with sorne new 
results by Parker and Pearce [55]. 
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the convective terms do not appear). We have to live with the eulerian 

viewpoint in which the observer is fixed in space and propase taking a 

closer look at the implication of ensemble averaging and vertically inte-

grating an instantaneous velocity product. Without loss of generality we 

may write the instantaneous local velocity components U,V as 

(3.3.29) u u+u' =(~+~') + (u"+u"') 

(3.3.30) V v + v' _ (z; + v' ) + ( v" + v "'} 

where u,v are ensemble averages (assuming the flow f~eld is basically 

random); u', v' are random fluctuations whose ensemble means per defi-

nition are zero; u, V are the vertical average values of u, v; Ü~ v' 
are vertical average values of u', v'; u", v" are vertical deviations 

of u, v from Ü, v ; and finally, u"', v"' are vertical deviations of 

u', v' from Ü', -, V • The significance of each of the various components 

is shown in Fig. 3-6. 

The product U•V is now written out in terms of its components 

(3. 3. 31) u . V = (Ü + u' + u" + u"'> e;:; + v' + v" + v'") 

- :;:;• - v" v'" u' - u' - 1 u' v" ~'v''' = u V + u + u + u + V + V + _._ 

+ u" + " ;:;• " v" u" v'" u'" - u'" v' u'"v'" V u + u + + V -:- -,-

and we want to perform an ensemble averaging and vertical integration 

of this product. Noting that the order in which these are done is ar-

bitrary we first take the ensemble average with the result 

{3.3.32) <UV> .. Üv + Üv" + Ü'v' + Ü'v"' + u"v + u"v" ensemble 

+ u "'v' + u' "v' " 
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Figure 3-6. Sketch of vclocity components. 
lJ = instantancous loc~ll value. 
u = enscmhle average local valuc. 
ü = ensemble average, vertical average. 
u'= turbulcnt fluctuation 
u~= vertical Jeviation of u from ~­
ü· = vertical average of u' . 
u·"= vertical deviation of u' from 11' 
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' . 
· ;.. ·.:• since all terms containing only ene turbulent fluctuation (') average 

¡J ~.11 
: ; > 

· ;: out to zero. Similarly, an average over depth is carried out. 
f 

~· ' 

(3. 3. 33) <UV> - - ----ensemble = uv + u'v' + u"v" + u'"v'" 

· • ;, where overbar means vertical average according to 
) ~ : :- :- ~· 

' ~ _.¡._ 

:0 .: ~·- " • 1 1 

.-' 
1 

~ ' 
.~\ ., lt 

.... i., ,, 
·, '! 

"' ,. 

~~ 

().3.34) 1 Jn h+n x dz 
-h 

X e: 

Again, all terms containing only one vertical deviation (") average to 

zero. We can now write the total contribution from the convective ter~st 

(3.3.35) fn <UV> dz 
-h ensemble 

= ~ + (<u'v'+u"'v"'> +u"v")dz q q Jn 
H -h ensemble 

The first term in the integral on the right is the usual turbulent 

Reynolds stress and the two remaining terms are momentum transfers due 

to the vertical velocity distribution. The integral on the right has so 

far not been related to the mean flow in a consistent and satisfactory way. 

Consequently it is often neglected completely. The structure of the terms 

is similar to the molecular momentum transfer process. But while the 

latter is a homogeneous isotropLc process characterized by the ~olecular 

viscosity, this is not the case with turbulent motion and vertica~ velo-

citY shear. Prandtl used mixing length theory to derive a virtual vis-

cosity for turbulent boundary layer flow [62]. In arder to get a closed 

formulation we postulate a similar functional relationship wit'rlOtlt 

t Note that this contribution as .in (3.3.15) - (3,3.16) is not strictly 
correct, because we startcd out with the ensemble averagcd equatinns. 
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invoking any mixing length theories. 

(3.3.36) Jn r \) 1 ( ' ' ) + ( ' 11 ' 11) -
~ T P - < ui u· ui uJ. -'ensemble 

-h x1xj o J -
- u 11 

i 

Cl i,j 1,2 no summing over i,j 

Eij is a symmetric 11 eddy viscosity11 coefficient matrix that depends on 

the mean flow, depth, applied surface stresses and flow history. What 

values actually should be use~ must be determined from experience or by 

trial since the explicit dependence on the mentioned parameters is un-

known. In the literature +S 2 1 - 10 m /sec have b~en quoted for the prin-

cipal values of Eij • In model applications to Massachusetts Bay, the 

use of values up to 10~ m2 /sec has apparently not changed the results 

significantly. In spite of the nebulous circumstances we feel that the 

inclusion of F has severa! attractive properties. It allows for 
x1xj 

interna! friction and thereby energy dissipation, provided E
1

j is posi-

tive; it does represent actual physical processes(although not accurately) 

and it is particularly suitable for damping short wave noise g~nerated 

by numerical methods. 

As an attempt to bring sorne consistency into the anisotropic case 

the direction of the local mean current is chosen as the major principal 

axis of Eij with the minor principal axis perpendicular thereto. Th:i.s 

means that in a local coordinate system with the x-axis in the direction 

of the current, E
1

j is diagonal: 
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(3.3.37) Eij = l 
The corresponding in the global coordinate systern is then found by 

simple rotation. If e is the angle frorn global to local x-axes, (see 

Figure 3-7) the rotation is WTitten 

(3. 3. 38) 

where T 

(3.3.39) 

- T 

is the transformation matrix 

T "' 
[ 

cose 

-sine 

sin el 

cose] 

and superscript T means transpose. In [54] and [ 75], the ratio of 

to was found to be in the range 10 - 60 for a tidal coast and 

a lake. Locally negative values of eddy viscosity have been rneasured 

indicating energy being fed to the mean flow by turbulent eddies; however, 

this happens only under very special conditions. For large areas, the 

overall effect of the interna! stresses is to dissipate energy. [J4, G7] 

give a ~or.e detailed discussion of this tapie with sorne examples. 

We are finally in a situation where we can present a formulation 

in closed form. For convenience, all the pertinent equations are given 

bf'low. 

Conservation of mass 
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streamline 

X 

Figure 3-7. Global and local coordinate-sys~em. 
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i \.' ; ·,:.~· (3. 3. 40) = 
... ' ' ,· 

,,,< ....•. · 
., ... ,,, 

' :-~ ' 

··,1 • 

~~ ~~~.-.· ,, 

:·. ,. ' 

;, 

x and Y equilibrium 

~.t + (~q ) + (Üqy) .y- fq + (F - F ) 
X .x y p xx .x 

- F + l (Ts b 
) - 1 S + t,pg H h ) - gnh = - T m -- (p H yx,y p X X X Po ,x ,x ' .x 

o 

qy,t + (vq > + <vq > + fq - F + {F -F ) 
X ,x y ,y X xy,x p yy .y 

+L S b ) - 1 (ps H + llpg H h ) - gnh = o (ty - T m 
Po y y Po ,y .y ,y 

with the constitutive relations. 

(3.3.14) + l g 1')2 + l M g H2 
S 

F • s h n +L H 
p 2 2 p Po o 

(3.3.36) F Eij 
~ ·aqi 

i ,j .. 1,2 no summing over i,j = ( ax + a;- ) 
X i >~j i j 

The bottom and surface shear stresses are given by (3.3.20)-(3.3.21) 

and (3.3.23) with (3.3.28). 

1:4 Boundary Conditions 

Defining the correct types of boundary conditions is onc of the more 

critical parts of the formulation process. What prescribed v.:lll'C'S rt~st !':e 

given, and -where? The consequence of not specifying enough is norrnally 

che existence of non-unique solut ions whereas too much may lead to t~Je 

non-existence of any solution. These issues are often overlooked becrl.use 

the problems are formulated and solved bypeople who usually do nct hav,• 
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tLe nc1.:essary mathematical ba~kground (and t in:c) tL' \\lnry :.~boul lile 

existence and uniquen~ss of solutions. Still, SL'lution~ havebeen obtained 

and verified with great success, which probabl y i~ due to luck and the fact 

that generally well behaved physical prohlems are solved. 

In recent years, considerable efforts have heen made by mathemati-

cians to preve existence and uniqueness of fluid flow problems, notably 

solutions of Navier-Stokes equations [14]. Unfortunately, such pr.oofs 

do not exist yet for our problem and are not likely to be made in the n2ar 

future.. We shall therefore take the "engineering" approach and assum? an 

automatic proof if a reasonable solution is found. To that end, we have 

to be reasonably certain that the prescribed boundary conditions are 

proper. 

Trying to get a better feeling for what boundary conditions are ne-

cessary, we note that the present flow problem is governed by one 2-com-

ponent vector equation which is the equivalent of ~ewton's 2nd law: 

(3.4.1) Force = mass x acceleration 
-tY 

The law of conservation of mass (3.3.4) is thus a constraint to ba d\r.-

tinguished from an equilibrium equation. 

It is well-knO\."n üat for a single particle, a solution to (3.4.1) 

exists and is unique if an ini~ial condition an~ ~ith~r the for~~ Ft 

or the displacement x
1 

is prescribed. 1'he intuitive generalization to 

our flow problem is then to specify an initial condition and the force 

cr the discharge which plays the role of displacement in a fluid [ '• ] 
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at the boundaries. The initial situation is expressed as 

(3.4.2) (q (x y) q (x y)} for all (x,y) in rG and t • O 
XO ' ' yo ' 

n is the entire interior domain and the initial time is taken as zero. 

Also the initial mass must be known, thus 

ocean 

river 

Figure 3-8: Discharge and Force Boundaries 

(3.4.3) H m ~0 (x,y) for all (x,y) t e Ü 

On the boundaries there are two alternatives as previously mentioned. 

Referring to Figure 3-8, we distinguish betwt:!en discharge boundar~.es 

Sq and force boundaries SF. 

(3.4.4) = 

70 
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(J.t~.s) -a q + et qy ny x nx 
e: = * q:,; 

for the normal and tangential discharges, where the dircction cosines 

are 

(3.4.6) Ctnx • cos (n,x) a • cos (n,y) ny 

and the superecript * signifies a prescribed value, 

On the remain!\lg part o{ the boundary, SF' the external for-cP, 

muat be gtven, thus 

(3.4.7) 

(3.4.8) 

F e;:¡ .. F .+ O. l F + et 2 F + 2et a F nn p . n~ xx ny yy nx ny xy - * F nn 

Fns ~ (a ~ - a 2 ) F - + a a (F - F ) = F * nx {ly xy · nx ny yy xx . n.s 

must hold for the normal and tangential spec!fic force measur~a. 

(Specific force meaeure is equal toa force per unit width nnd den~ity), 

In the idealizad cue. of an invif\lc.id fluid (3.4.4) o.nd (3,1~. 7) 

muat still hold, however F ~ muat be zero aince na ~h~nr rn~ hr ~r­ns 

veloped and (3,4.5) can hence not be impon~d ~ithcr. 

The continuity equation (3.3.4) iR used to find the poaition oí 

the free surface. It ia a maas balance equation and does thnrefora not 

require any boundary conditions. 
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DIRECTORIO DE ASISTENTES AL CURSO USO DE COMPUTADORAS EN PROBLEMAS 
·~~:..:--·, .. ,.~-DE CIRCULACION Y DISPERSION EN AGUAS COSTERAS, LAGOS Y RIOS(DEL 8 

AL 12 DE MAYO DE 1978 ) 

NOMBRE Y DIRECCION 

1.ING. MIGUEL ANGEL AGUAYO Y CAMARCO 
Cultivos No. 144 
Col. Progreso del Sur 
Méxieo 13, D. F. 
Tel: 5-82-61-06 

2.ING. MOISES BEREZOWSKY VERDUZCO 
Camino Sta. Teresa 890-XI-304 
Col. Contreras 
México 20, D. F. 
Tel: 5-68-65-58 

3.VICENTE BETANZOS VELASCO 
Norte 69 No. 2923 

,~'.c.t;:~ Col. Popular .. ;· 
México 16, D.· F. 

4.HOMERO R. CABRERA MORA 
Calle 6a. 123-2 
Ensenada, B. C. 

~5.ING. OCTAVIO CASTELLANOS LOPEZ 
Av. 'copilco 162 Edif. 
2-A:.301 
Copilco-Universidad 
México 20, D. F. 
Tel: 5-50-88-72 

6.ING: JORGE LUIS DE VICTORIA ALMgiDA 
Av. ·Revolución 82b-206 
Col. Mixcoac 
México 19, D. F. 
Tel: 5-63-90-38 

EMPRESA Y DIRECCION 

COMISION ·DE AGUAS DEL VALLE DE 
MEXICO . 
Balderas No. 55-2o. Piso 
México 1, D. F. 
Tel: 5-85-50-66 Ext. 206 

INSTITUTO DE INGENIERIA,UNAM 
Ciudad Universitaria 
México 20, D. F. 
México 20, D. F. 
Tel: 5-50-52-15 Ext. 3608 

SECRETARIA DE AGRICULTURA Y 
Y RECURSOS HIDRAULICOS 
Plaza de la República No. 31-6 
México, D. F. · 
Tel: 5-46-52-75 

CENTRO DE INVESTIGACION Y 
EDUCACION SUPERIOR DE 
ENSENADA B. C. 
Calle Espinoza No. 854 
Ensenada, B. C. 
Tel: 8-13-22. 

SECRETARIA DE AGRICULTURA Y 
RECURSOS HIDRAULICOS 
(CIECCA) 
Av. San Bernabé 549 
San Jerónimo 
México 20, 

SECRETARIA DE AGRICULTURA Y 
RECURSOS HIDRAULICOS 
JCIECCA) 
Av. San Bernabé No. 549 
San Jerónimo 
México 20, D. F. 
Tel: 5-95-24-00 
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DIRECTORIO DE ASISTENTES AL CURSO USO DE COMPUTADORAS EN PROBLEMAS 
DE ClRCULACI-ON "){ DI-S-l2E-RS-IQN-EN A-GUAS G0S!fER:AS, bA-60S Y---RIElS E DE-b 
8 AL 12 DE MAYO DE 1978 

NOMBRE Y DIRECCION 

7. ING. EUGENIO DOMINGO COBO PEREZ 
Copilco 300-12-102 
Col. Coyoacan 
México 20, D. F. 
Tel: 5-S0-68··26 

8. JAVIER ESPINOZA CACERES 
Londres 17 Depto. 203 
Coyoacán 
MSxico 21, D. F. 

9. ING. FERNANDO ENSE~AT ~~CHADO 
Viaducto M. Alemán No. 178-9 
Col. del Valle 
México 12, D. F. 

10. LIC. SALVADOR FARRERAS SANZ 
Apdo. Postal No. 2670 
Ensenada, B. C. 
Tel: 8-.13-22 

11. ING. EDUARDO RA.TviON FERNANDEZ V. 
Laguna de.la Magdalena No. 430 
Col~ Ventura Puente 
Morelia, Mich. 

12. ING. ARTURO GARCIA MENDOZA 
Av. Universidad 1810-F-8 
.Oxtopulco 
México 20, D. F. 
Tel: S-S0-01-36 

~-

.. -
EMPRESA Y DIRECCION 

INSTITUTO DE· -INGENIERIA, UNAM 
Ciudad Univer.sitaria 
México 20, D~ F. 
T-e 1 : s- 4 8- 9 7- 9 s 

. ' - ~ ,_ •. .... 

INSTITUTO DE INGENIERIA,UNAM 
Ciudad Universitaria 
México 20, D. F. 
Tel: S-50-S2-15 Ext. 3607 

DEPARTA\1ENTO DE ESTUDIOS Y 
LABORATORIOS- DIRECCION .GENERAL 
DE OBRAS MARITIMAS 
Le-rdo No. 6 
San Juan Ixhuatepec 
E do •. d_e Méxiéo-
Tel: 5-:69-28-37 

CENTRO I>E !NVESTIGACION C-IENTI­
PICA Y EDUCACION SUPERIOR DE 
ENSENAD~ 1,_ B._ e. 
Av. Esn1noz• 8~3 
Apdo. Postal 2732 
Ensenada, B. C. 
Tel: 8-13-22 

. .. 

JUNTA DE Pi.ANEACION Y URB. DEL 
EDO. DE MI CH .. 
Cas~ de Gobie~no Libramiento Sur 
Morelia, Mlch. 
Te 1 : 2 - 6 S - Qt S 

SECRETARIA DE AGRICULTURA Y RE-
CURSOS HIDRAULICOS -
( CIECCA) . - -

:Ave. San Bernabé No. 549 
San Jerónimo 
México 20, n. F. 

- Tel: 5-66;.03-88 

., ~-'-: 
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DIRECTORIO DE ASISTENTES 'AL CURSO USO" DE. COMPUTADORAS EN PROBLEMAS DE 
CIR~UbA:croN y: n:I §PE=RSJoN': EN': AGUAS. ·coSTERAs·, LAGOS Y RlOS ( DEk.tAk-=-

. ' 

1 2 DE 1v1AYO DE 1 97 8 ) 

NOMRRE Y DIRECCION 

13. CARLOS GONZALEZ GUZ~1AN 
Dakota 395-5 
Col. Nápoles 
México 18, D. F. 
Tel: 5-36-62-69 

14. JESUS MANUEL HAM CHI 
Libra No. 19 Depto. 4 
Col. Prado Churubusco 
México 13, D. F. 
Tel: 6-70-18-87 

l ' 

15. ING. ENRIQUE C. HERNANDEZ CORTES 
Lidia 88-1 
Col. Guadalupe Tepeyac 
México 14, D. F. 
Tel: 5-37-09-58 

16. ING. MANUEL A. HUIDOBRO GARCIA 
Cartago No. 88 
Lomas Estrella 
México 13, D. F. 

17. ING. HUMBERTO JIMENEZ DIAZ 
Zacatecas No. 33-5 
Col. Roma 
México 7, D. F. 
Tel: 5-84-87-33 

EMPRESA Y DIRECCION 

SECRETARIA DE AGRICULTURA Y 
RECURSOS HIDRAULICOS. 
(CIECCA) 
Ave. San Bernabé 549 
San Jerónimo 
México 20, D. F. 
Tel: 5-95-44-53 

SECRETARIA DE AGRICULTURA Y 
RECURSOS HIDRAULICOS 
Paseo de la Reforma No. 69-4o 
Piso · 
Col. Juárez 
México 1, D. F. 
Tel: 5-35-25-25 

SECRETARIA DE AGRICULTURA Y 
RECURSOS HIDRAULICOS 
Paseo de la Reforma 107-Bo.t,? .. 
México 1, D. F. 
Tel: 5-66-06-88-117 

SECRETARIA DE AGRICULTURA Y 
RECURSOS HIDRAULICOS 
(CIECCA) 
Ave. San Bernabé No. 549 
San Jerónimo 
México 20, D. F. 
Tel: 5-95-44-53 

DEPARTAMENTO DE ESTUDIOS Y 
LABORATORIOS 
DIRECCION GENERAL DE OBRAS 
MARI TIMAS 
Lerdo de Tejadá No. 6 
Col. Marina Nacional 
Edo. de México 

. Tel: 5-69-28-36 
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DIRECTORIO DE· ASISTENTES AL' ·cURSO"· USO" DE' COMPUTADORAS' EN PROBLEMAS 
DE CIRCULACTON Y DIS'PE'RSTON· EN AGUAS COSTERAS',· LAGOS Y RIOS ( DEL 
8 AL ·1 2 DE. MAYO DE 1 978 ) 

NOMBRE Y DIRE'GCTON 

18. ING. EDUARDO LOZANO GONZALEZ 
Paseo de la Reforma No. 107-So. Piso 
Col. San Rafael 
Méx-ico 4, D. F. 
Tel: 5-46-14-55 · 

19. ING. GUSTAVO LUNA ESCALANTE 
San Antonio 134-23 
Col. Nápoles 
México 18, D. F. 

20. JESUS MAGALLANES PATIF!O 
Ezequiel Montes 120-24 
Col. San Rafael 
México 4, D. F. 
Tel: 5-46-13-50 

21. FRANCISCO J. MAYTORENA FONTES 
Bucarel i 8 O In t. ''M'' 
México 1, D. F. 
Tel: 5-12-68-07 

22. JESUS R. MENDOZA RUIZ 
.Albino García No. 72 
:Col. Vista Alegre 
México, D. F. 
Tel: 5-19-04~83 

23. CARLOS ANGEL Q. MORTERA GUTIERREZ 
Av. Uni6n 281 
Col. Tepeyac Insurgentes 

·.México 14, D. F. · 
Tel: 5-77-62-35 

' ·······. 

EMP'RESA Y DIRECCION 

SECRETARIA DE AGRICULTURA Y 
RECURSOS HIDRAULICOS 
(CIECCA) 
Paseo de la Reforma 107~1er. 
Col. San .Rafael 
México 4, D. F. 
Tel: 5-66-06-88 Ext. 140 

SECRETARIA DE AGRICULTURA Y 
RECURSOS HIDRAULICOS.· 
SUBDIRECCION DE PROMOCION Y 
PROGRAMAS 
Paseo de la Reforma No. 35-10 
Piso 
México 1, D. F. 
Tel: 5-92-33-24 

SECRETARIA DE AGRICULTURA Y 
RECURSO.S HIDRAULICOS 
Paseo de la Reforma 69-4o.Piso 
México, D. F. 
Tel: 5-46-95-20 

SECRETARIA DE AGRICULTURA Y 
RECURSOS HIDRAULICOS 
Paseo de la Reforma No. 107 
México 1, D •. F. 
Te 1: S- 9 2- 1 O- 31 

SECRETARIA DE AGRICULTURA Y 
RECURSOS HIDRAULICOS 
Plaza de la República No. 31 
Col. Tabacalera 
M6xico S, D. F. 
r~1: 5.-46-50-96 

1 • 

DEPARTAMENTO DE ESTUDIOS Y 
LABORATORIOS-DIRECCION GENERAL 
DE OBRAS MARITIMAS 
San Juan Ixhuactepec 
Tel: 5-69-50-30 
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·--. DIRECTORIO- DE ASISTENTES AL' CURSO USO DE COMPUTADORAS EN PROBLEMAS 
bE' CIRCÜLACION' Y DlSPERSION' EN AGUAS COSTERAS, LAGOS Y RIOS ( DEL 
8 AL 1 2 DE MAYO DE 1 9 7 8 _) 

NOMBRE Y DIRECCION 

24 .. I:NG. ARMANDO MU~OZ PARGA 
. · Laures No. 9 

Col. Sta. Ma. Ribera 
México, D.F. 
Tel. 547-32-48 

25. ING. VICTOR S. PINEDA ESPINOSA 
Río Becerra No. 473-101 
Col. Nápoles 
México 18, D.F. 
Tel. 543-82-83 

26. EUGENIO RIQUELME TORRENTE 
.Ret. 10 Dr. N. León Gpo. 18-N 
Col. J. Balbuena 
México 9, D.F. 
Tel. 552-40 

27. ING. HONORIO RIVERA MOCTEZUMA 
Lago Tana No. 66-C 
Torre Blanca 
México 17, D.F. 

28. ING. FRANCISCO ROMERO LUNA 
Av. Cuauhtémoc No. 883-10 
Col. Narvarte 
México 12, D.F. 
Tel. 543-63-60 

29. RAFAEL F. SAENGER Y FERNANDEZ 
López Cotilla No. 756 
Col. Del Valle 
México 12, D.F. 
Tel. 523-52-53 

30. ING. ANTONIO YOKOYA~~ KM~O 
Torquemada No. 42 
Col. Obrera 
México 8, D.F. 

EMPRESA Y DIRECCION 

SECRETARIA DE AGRICULTURA Y 
RECURSOS HIDRAULICOS 
Plaza de_ la República No. 31 
6o. Piso 
México, D.F. 
Tel. 549-50-96 

DEPARTAMENTO DE ESTUDIOS Y 
LABORATORIOS-DIR. GRAL. DE 
OBRAS MARITIMAS 
Lerdo de Tejada No. 6 
Col. Marina Nacional 
Edo. de México 
Tel. 569-28-36 

SECRETARIA DE AGRICULTURA Y 
RECURSOS HIDRAULICOS 
(CIECCA) 
San Bernabé No. 549 
San Jerónimo 
México 20, D.F. 
Tel. 595-53-44 

CENTRO DE EDUCACION CONTINUA 
Tacuba No. 5-1er. Piso 
México 1, D.F. 
Tel. 521-40-20 

INSTITUTO DE INGENIERIA, UNAM 
Ciudad Universitaria 
México 20, D.F. 

INSTITUTO DE INGENIERIA, UNAM 
Ciudad Universitaria· 
México 20, D.F. 
Tel. 550-52-15 Ext. 3610 

UNIVERSIDAD CATOLICA MADRE Y 
MAESTRA ~ 
Autopista Duarte 
Santiago, República Dominicana 
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