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~ OBJETIVOS DEL CURSO

En la aplicacién de computadoras a pro-
blemas de hidraulica en paises en desa-
rrollo, el problema no estriba en la dispo-
nibilidad de computadoras, sino en la
dificultad de comunicar a los ingenieros el
" “saber como” involucrado en los problemas
de calculo. En este curso se proporciona
.el entrenamiento necesario en Hidraulica.
- Métodos Numéricos y Desarrollo de *Soft-
“ware”’, que permite al ingeniero la reali-
zacién y-fo uso eficiente de programas de
computadora aplicables a problemas de
interés practico.

A QUIEN VA DIRIGIDO

El curso ha sido disefiado para aquellas
personas que trabajan en disciplinas rela-
cionadas con la Ingenieria Hidraulica e
Ingenieria Ambiental y que se enfrentan
de alguna manera a problemas de disper-
sion de contaminantes y movimientos en
grandes volimenes de agua.

TEMARIO
1.- INTRODUCCION.

2.- DESARROLLOS RECIENTES EN EL
UsO DE COMPUTADORES EN
PROBLEMAS DE HIDRAULICA.

3.- METODOS DE LAS DIFERENCIAS
FINITAS. .

4-METODOS DE LOS ELEMENTOS
FINITOS.

5.- PROPIEDADES FISICAS DE LAGOS
Y AGUAS COSTERAS.

6.- CIRCULACION ESTACIONARIA EN
CUERPOS DE AGUA HOMOGE-
NEOS.

7.- APLICACION DE METODOS NU-
MERICOS.

8.- CIRCULACION TRANSITORIA.
9.- DISPERSION DE CONTAMINANTES

10.- CONSIDERACION DE ESTRATIFI-
CACION. :

11- DESCRIPCION Y USO DE LOS
PROGRAMAS DE COMPUTADORA.
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PROFESORES
DR. GUSTAVO AYALA MILIAN
DR. GERARDO HIRIART

DR. PEDRO MARTINEZ PEREDA

CONFERENCISTAS INVITADOS
DR. JAMES A. LIGGETT
Profesor de la Universidad de Cornell

DR. JEROME J. CONNOR
Profesor del Instituto Tecnoldgico de
Massachusets.

NOTA:
Los cursos tienen cupo limitado.

Es recomendable inscribirse con oportuni-
dad para garantizar su asistencia.
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1. GOVIRNTNG BQUATTIONS — TLUID

1.1 Coordinate sysicms; particle derjvative

Yo select o fixed orthogonal reference frame having directions

X ws shown in Figure 1-1. The coordinates of a point at time t are

f
Ao
o3

e
.All LY
Xy vitns Xqs and the coordinates at time t = O are 815 8ns a3, In &

"Tagringenn"” formulation, one takes the initial coordinates (ai)

and time (t) as the independent varialles

'

CRANGE .= X, -
LACRANGE =» x4 xl(al, a5, 85, t) (1-1)

This isc quite rcasonable for o solid since the change in shape of
the bedy is small, lowever, a fluid undergoes. significant deformation and
it is morc convenient to take the coordinates at time t as the

independent variables. This choice is called a "Fulerian" formulation.

FUTIR :%} 8, = ai(xl, X5s X3 t) (1-2)

ALl dependeut variebles such as pressure, temperature, velocity, ete.,
are considered to be functions of (xl, X, x3, 1) in an Eulerian

formulation.

Let us consider a scalar functien, f(xi, t), associated with a
perticle (sce Figure 1--2). Ye can express the total change in f
due to change in position of the particle and time increment as:

e

§°F + ... (1-3)

Py

Af = s +
vhere &f is the "first" order change,

3 of of of
= o AX, e e = -1
3y - [xl o 0, F 3w Axs vy At (1-1)




-y

The limit, as AL~ O, of &f/At is defined as the "particle" or "Ctokes"

dcrivd%ivq and is written as Df/Dt.

pe_ lim gf _of , J1uim B4 ar (1-5)
Dt T A+ AT 0t T Atso AU X,

1

llov, the velocity vector for a particle is defined as

. A -
= velocity vector = lim. Ar _ Dr (1-6)

wh
22
At+ 0 ‘At Dt

. -~
Operating on r,

DN N ) ' (1~7)

and noting that axi/at = 0 since %, are independent variables,we

ottain.
- . AX . - -
L I T Ay (1-8)
Lt t 50 At J J4J
> Dx,
v, = conponent of v in the . dircction = —
J 7| Dt
Finally, we can urite (1-%) as
DE _ or ar | .
T} v (1-9)

The first term is the "local" rate of change and the remaining terms are

"convective" terns.

In the Lagrange reoprescentation, one writes

x; = a; +ouglay, ag, a5, t) (1-10)
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vhere w, is the displacenent from the initial pesition. The velocity

~omponents reduce to

AL ou,

lim i 1 ‘
- S N 3 1-11
Vi T ateto At at (1-11)
Since 8y are constant, Mso,
DT ¥f
— —— — <1
Dt P 5 (1-12)

1.2 Tquilibriuw cquation

e consider o specific volume at time t as shown in Figure 1-3.
The c¢xternal actions e represented by a distributed surface loedinc
-~

Cﬁ) and a distributed Vody force (b).  Applying Kewten's. law

leads to the following cquilibrium conditions for the total volume,

f[] v e [0 = [[fo Bra o
j” (r xb)av + ” (* xp)as = ”J o x -g%)dv (1-1%)

vhere the integrals pertain to the position at time t; p ds the mass

. -
density; and Dv/Dt is the acceleration vector,

We obtain "micro" ecquilibrium cquations by expanding the surface

-l
integral involving p in terms of stress vectors and then applying
- - 3 A
Gauss's integration Ly perts formula. We define Uj as the stress

vector (force per unit arca) acting on the +j face, i.e. the face
vhose outward normal points in the + XJ direction as showmn in Figure

1-3(b). The cartesian component representation is




—d -
o, ='g., &
J Jioe
(1-15)
9 T 95 (xl’ Xns X4 t)

JMe are uning the indieial swmmation convention here for cunvenience.

M stress vector acting on the "n" Cace is given by (ece figure 1-3(c))
o = - =
0 Op * @ 3 03 o se O,
(1-16)

[

nj = o8 h),}g)

wierre n oo the "outward" normal, Finally, the components in the n and:

5 dircetions are

1
- N
“an T g "k 99k n n
(1-17)
. o -
ns T % “Sb,ij R
! ’ !
vhere 5 is orthognnal to n hut otherwisce arbitrary.
Kow, at the boundary,
TeT (1-18)
D=0, "%s59; ’
Then, | )
Y Y
S o . s E‘ ' ! .
JI p d IJ a5 0548 , (1-19)

Applying Causs's forrula,

r-?f.— - : ey oo Pﬁ.— -
jIJ ¢ e av -.JJ o igran JJ{ f 2 av | (1-20)

to the swrface integral, we obtain finally
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C%he force equilibrium equution, (1-13), transforms to

')—‘ o
- o . 1 -2
J]J (b= 5 s ) av o= 0 (a)

J
und“iétfollows thak
. . - N

e JT . Ty
D . .
Lo+ 5;% = p ﬁ% in V (1-22)
J

wly - '
Cubstituting for b, p in (1-14), the monent equililriwe equation,

1edds to

A - ( |
£, x0.=0 in V 1-03
it ?
The scalar cquations arc:
J K
— + b = —
X . QH Lk P bt
J
in V
ik T (1-2h)
. pj = ﬂn}_ Olj on o
whera -
v, Dwd' Dv}
—_— oz et gy, —
Dt ot Vi ax.
4

One can obtain an &l lernate Torm of the '"macro" equilibriwa
equations Ly integrating the right hand side of (1-13) and (1-1h).

Considering (1-13), the right hand term transforms to



o> N
”Jp Y ogy = ” @ v, fval
Dt nl i ’ (a)
, .
e 2y L QEJ :
4 JJJL 3 (ov) Vwrpvi,i + o }av

To interpret these terms, we consider the volume fixed in space

(§0u Tig. 1-W)., The Tirst term islthe momenfum flow ggg of the
Gomain and the second term is the local rate of change in momentum.
The third term relates the outwvard masg flov andlocal rate of change

in density. To show this, ve cxpand the particle derivative,

Dp ] ap
R L)t
e v1,1 Dt, Qxi (DVI). ot (a)

The inward mass flow is equal to the rate of change in density,

“ - p(uni vi)dS = J” %% av | (v)

Integreting by parts lcads to a "continuity" condition,

[al
o

i
%% + 357 (pvi) = 0 in V (1-25)
i

Vith (1-25), we can write the force equilibrium equation as:

[ 30 o= Ry o[ b

Eq. (1--26) is called the "momentum" equation. One should note that
(1-26) + (1-25) is equivalent to the original form of the equilibrium

equation, (1-13).



Je could have established (1-27) Ly =zllowing the volune to move
and roquiring no mass flov across the boundary. Tn this approach,

the particle devivative of the tetal mass is zero.

e f[foer =[] fravsoBan ) =0 0o

We.will show later than

D T -— - ! r ¥
o (av) = (avi/ali)du (1-28)

Dafore moving on to kinematic relations, we comment briefly
‘on un inviscid fluid. 7T the shear stress components in the stress

tensor are neglected,

- P -2
o3 0 A (1-29)
the Fluil is called "Irictiontess" or inviscid. To determine

whethier there are any rcloations between the nonzero elements

(011,022,033), ve consider the stress transformation law, (1-17),

Yns T “nj %sk Ujk
{a)
=o. 0 . 0., for o,, = §,.0..
nk 78 JJ 1] 1)
But, LA = 0 for s # n. This requires
o] =g =0 =0 1-30
11 oz T 33 (1-30)
and the remaining transformation lawv reduces to
g =0 .0 u, = g 1-31
nn, aj nk gk . (1-31)

The stote of stress iswdefined Ly 2 single variable, o, TFor a fluig,



o is negative (compression) and therefore we shall take
6 =-p (p denotes. pressure) (1-32)

_~The cquilibrium equations and boundary conditions for a frictionless

fluid ere:

] _ k .
- p+bk-p'-—"Dt in V
(1-33)
P = -~ p on o

Note that cne cannot apply a tangential boundary force to an

inviseid fluid, i.e. p_ must be zero.
-~ N

1.3 DPrinciple of Virtual Dover

Ve .derive the Principle of Virtual Power by operating on the

stress equilibrium equations and stress-boundary forcc relations,

2 Dy,
.B—J'C.J-‘ Ujk + bk = P hr in V (a)
pk L = an,j Ujk on

The "true" solution for the stress components setisfies (a). Let

us multiply (&) by a function, say ;i, and integrate over the domain.

Dv
__3___ - ......1.(." 9 - T A0 =
JJJ( ij ojk *o, "0 5t } v, av + JJ[pk anjchk} v, 48 £ 0 (b)

Equation (b) must be satisfied for arbitrary ;k if the stress field is

an equilibrium field. Hext, ve integrate the stiess term with Gauss's



s PN
-

~

formula, ond obtain the "principie of virtusl pover',

o (f 3 ;L : ka
- - 1 I -
) : VAl = + —z
JII by, v av J} A JJJ[”JL Tt fepp P

, J

(1-3L)

The “Left hand term can bo interpreted as virtual pover if one
congiders v, as a "virtual' velocity. Similarly, the right hond terms

IN

can -be ‘interproted as the virtual tirme rate of change (particlce
derivative) of the internal deformation work and the itinctie energy.

4 ]

K *

Yo emplasize theat it is just an alternate statement of equilibrium.

Note thot (1--34) applies for a particuwlar tine, t, and erbitrary

The principle of virtunl power is the basis for finite elerent
vodels in fluid mechanies. Its role is similar to that of the
rrinciple of virtual displacements in solid mechanics. If we take
v, = v 5, the actunl velocity, the principle of virtuel pover coincides

vith the Cirst lav of thermedynamics,
!

-

Fate of Fxternal York = Nate of deformation vorlk
+ rate of change of the kinetic cnergy

(1-35)

M56, we observe Lhat the perticle derivatives of the deformation
measures are the quantities required. The total (actual) deforuwations
do not appear in the variational statement. Finally, onc can utilize
the principle of virtual pover to establish "consistent” boundary
conditions. For cxample, if one assumes the fluid is inviscid,

f N {

g, v, AV =P
ij . J

Jh - o
: (a)

-




-L0-
Mien, cxpaading the surface Torce: tornm,
WV An = v+ pvo)as (b)
JJ o N Ml JJ (pn n s n)‘

we obtain the "consistent" stress — surface force boundary condition

‘l'l " (C)

4]

b = ——-——n p + p -——-k (d)

1.4 Kinematic Relations

Ouf objective in this section is to estallish expressions for

the time rate of change of the deforﬁation measures. To simplify the
diﬁcussion, we consider initially thev2-dimcnsional case. The 3-
‘dimencional expressions can be obtained by generalising the 2-dimensionel
e;ci\rcss;ions .

Figure 15 showvs the initial (tim: t) and deformed (time t + At)
positiéux'of 2 differcnlinl line clencnts. Ve visualise the movenment
of a linc to consiat of truunslation, rotation, and extension.

Tet A%_denotc the relative incrcmental extension of line IQ,

._;a.'f - s
by = e er_; leal Ei- Q| -1 (1-36)
[PQ] !

Substitutiug for IP'Q'I , Wwe obtain after some algebra,

2 2

+ (v At)S }

At) 51
9

: 1
At + (Vl,l

(n)



...ll_

whers
e v v S— v
v = S - - .
1,1 OAl‘ 1l 2,1 Dxl 2

Ve -define the astrain rate s the particle derivative,

lin  O€ D
s =k = 2 | (1-37)

s e =

€1 7 Atso AL Dt &1

Aa At o, Lhe nonlinear lerms vanich and vwe are left with

1 V1,1

Py annlopy,

AE’) - PR
]
(1-33)
&£ % Yo
Ceneralizing, we can write
€. = v, . (no sum) (1-h0)

The relative inerementnl volume change, Acv, is determined fraowm

‘

_ A{volume) - A .....'...s' —
Ae, = Thitial voiume ] P . Pin i dxldxo 1
\U/ (1-h1)
. | ) 2
be = (Vl,l + VE’Q)At + (Vl, Yoo T V1p vz’l)(At)

We define €, as the volunctric strain rate,

Ae

é =lim v 2——5
v Ato AL Dt Tv
(i-42)
= v { v v

[
-
—
ro
PO
()
| 93]



Using thie notation of vector calculus,

- o
V = R o=
k ax.
. J
Y . =
€. =V .,.v = Div, v

Lastly, we consider the rotation terms 612 and 621.
vV, q Bt
3 = .—".2.__.——
SInAB 5 = Toae
1
\'2 At
. 1,2
= = K.
£1n40 5y T+Ac
2
The limits are
912 T Va1 21 % V1,2
The shear strain rate i1s the sum of 612 and 621
Yip T 015 * 0y
Generalizing,
e = 0., +0,. = Vv, + Vv, .
Vi ij Ji Jrl 1,J

1

It is convenient to introduce the strain rate tensor,

. avi v,
1

e, s = M=+ =)

1] axj axi

e..
1J

(1-43)

(1-bb)

(1-k5) -

(1-46)

(1-47)

(1-18)



When  there is only rigid body motion, Y

‘between e

™M
J}
M
i
r~1
@ .

= g : ~ {1-L

Lep us re-examine the rctation terms, 612 and 921.

d and

812 = w5 0oy = 7 W5 , (&)

vhere Wy is the angular velocity about the X3 axis. This suggests

that we take, ae a measure cf the angulaf'velocity, the‘difference

end 8

12 o ¢

€
1]

1o = average value of angular velocity about the X3 axis

Hoyp = 85) = dlvy 5 = vy o) (b)

/

Generalising (b), we write

= 3(6,, -8..) = 3v - v 1-50
wgs = o -840 = My vy ) (1-50)
Cyclic permutation of the subscripts gives the average velocities
about the 3 axes.
m12-!> w3
Wy 6], (1-51)
U3y =P Yy

The tensor, Wy g iz skew symmetric and is called the verticity tensor.
It is not difficult to show that T is ilnveriant for certain trans-

formations of axes. For example,



-14-~

! o -

w 12 = 0)12 (l 52)
wﬁere.(n‘lo corresponds to the directions (Xi . Xé ’ X3 ). This is
actually why we can interpret it as the average rotation about X3.

We end this section by listing two definitions.
1} A fluid is incompressible when the volume strain rete is zero.
e = v +V, ,+V = 0 (1-53)

V l,l 2’2 3"3

{

p = mass density = constant

In this case, we have to determine the pressure from an equilibrium

-—

asonsideration,

2) The motion is irrotational when}wlz = Wpg = Wy = 0,

1

This requires

Va1 " V1,20
v3’2 - v2’3 =0 (1-54)
vl’3 - v3’l =0

1.5 OStress—-strain relations - Newtonian Fluid.

We consider first a linearly elastic solid to provide us with

some background. The stress—strain relations are

Oz = AEY 8., +2G &3 . (1-55)

vhere )\, G are material properties, €, is the volumetric strain,

and eij is the strain tensor.

To distinguish between the:volumetric and shear deformation modes,



‘we express the strain (and stress) tensors &s a combination of 2

tensors which are called the "spherical" and "deviajoric" components.

= es +* nd
EN A "1
- s 4
95 % %15 Y94
where .
' '8 1 -
eij =3 £, éiJ =& le
1
1 .
e = 5leqy + epp ¥ e33)
d
€., = €,, €
ii ii m ‘
\ \ - (1-56)
v T Q. 14]
elJ 1)
and _
” s
= . = == + .o
Gij 9, 613 3(011 + 0,5 033)6lJ
d
6.. = 0., ~
ii ii m
oig = oij 1.4

The mecan stress can be interpreted as an fequivalen£" hydrostatic
pressure; o?i reflects the deviation froﬁ the hydrostatic_stéte; and
cgj are the sh?aring gtresses,

Similarly, € is the "average' .extension corresponding to & volume
cﬁange and egj leads to aléhaqge in shape, i.e., shearing deformation.

The trace of the deviatoric components vanishes,

oil + oiq + 023 =0 ' “
(1L-57)
a d a -
e tepp tE33 T U



vhich shows that the deviatoric components are associated with

nonuniform states,

Using (1-55), we find

E | \ (2-58)
K = bulk modx;lus = §_L_L3*_'§9_
and
gy = ey = ley - ge, 8yy) (1-59)

We introcduce the assumption of incompressibility by setting K = .
In this case, o has to be determined from the equilibrium equations

and the displacements are constrained by €y = 0. .

The stress-strain relations for a Newtonian fluid are similar in
form to those of the solid except that the strains are replaced with

strain rates, We write

= - pGij + 1., (1“60)

O..
1) 1)

vhere p is the hydrostatic pressure and Tij are the stresses due to
motion, referred to as the "viscous" stresses, The relatiom for

7,. 1s taken as \
1]

# " ; -
: Coeg . - (1-61)
ES ey Gi.i * R %1 .

* .
vhere A , Ay are viscosity coefficiepts. In this approach, the mean

stress is determined from



= X
0 = 30y * 9y + 035)
= - p + i(f. + T, To.,)
3711 22 33 (1-62)
* L]
= -p+ K ¢
#
% )
K = Ql_ai;:éﬂ = coefficient of bulk viscosity
p = p (density, temperature) = p(p,T)
p . .
Dt P&y ‘
The'deviatoric stresses are given by
a _ - N ~ -£3).
055 = 935 " O dij := gg(eij 3 & Gij) (1-63)
#
Setting K = 0 is known as the "Stokes" condition and leads
to
¥ . .2
A= 3){.(
g =J‘-(c + 0 + @ ) = -p
m - 3% " %2 T %3 | ‘ (1-64)
Oii = - pb,, + iles, - e 6;.)
1) J 1J 3 vy
P = P(p:T)

With this assumption, the mean stress coincides with the thermodynemic
pressure, p. Ve point out that (1-60) and (1-€4) are valid only for

laminar flow,

]
wos

1.6 Summary of Coverning Equations

At this point, we swmarize the governing equafions:
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Equilibrium

) ka
o Y Y oS- Ty in V. -
J (1-65)
. = [o JREY
P ®nk K on S
ik %K)
I'inematic \
e., = 3(v. + v, = gtrain rate tensor
i3 %( 1,9 ’1)
& = ¢ i T 285
(1-66)
€y T ;1 T epp t ey |
e = v, ., ~ v, .} = vorticity tensor
wig = 20vy 1 7 vy 5) Y
Stress-strain - Newtonian fluid
O35 % T PO * Ty
\‘~
-‘! N L[]
Dt = P Ev
. _ o :I.,",‘ wE ot e ’ !
Pe = A ..+ ..
TlJ A evleA ;gelJ
. . .~ '\':.; . . o
# 2 e :
o= -oS M for "S8tokes" condition

It is also of interest to. express the principle of virtual power (1-34)

ip terms of the strain rate measures.



We- let

<

'bndlnbte that oince the stress components are symmetrical in the

subscripts,

T =
T3k s Ve = o lev oo vy
(&)
= 935k 6ejk

Then, we can write the principle of virtual power as

ka
- 1 4
JJ pk dvde + JJJ bk &rde JJJ {a. k Jk e ﬁv } av

. (1-69)

o . ka
- - Vmp— (2
JJI { pée,, + Tjkaejk +p Dt 6vk} av

for arbitrary 6v

1.7. Jav1er Otokes equations - incompressible Newtonian fluid.

The equilibrium equations and expressions for the surface forces, .

(1-G5), in terms of p and Ty 5 are

] ) D‘V]'
- Bx] P* X, Tjk * bk = P Dt in ¥
< J
= - p 4+
Pn P anjanktkj
on S ' (1-70)
Pg = asjanhlq

Ve take T3 according to (1-67) and constrain the velocities to
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‘satisfy e, = 0,

ey = 0P Vig tVa,ti3 7O (1-71)

T T A T MOy g) (-12)

..l

Alsdg we consider the body forces to be due to gravity, and write

b, = - 08, | (0.-73)

Substituting for Tjk and by in (1-70) results in the "Navier-Stokes"

equations,

) vy
3;: (p/e) + g, = Wy.55 T TE
' N inV
vigi < o (174}
and
9 v
p /0 == (p/p) + 2v;—=
) on S (1-75)
v v
p /P = Mg+ 5

where v = ff/p is the kinematic viscosity. The expression for Pg
appliien when the boundary is straight. For a curved boundary, we

must use

vty +y -y A 76)
ps/p - “{an Vs * as 'n 'k 3%k “nk ) (1-76)

The unknown variables are the velocity components, vj, and the

pressure, p.. They have to satisfy the eqﬁilibrium equations and
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" {incompressibility condition in V and the boundary condition

~ prescribed on S ' (177}

Let us now see how we have to modify the principle of virtual

power, (1-C9). If we set €y "~ 0, the pressure term drops out,
¢ 4 "

However, the virtual velocities are no longer arbitrary but are

now constrained hy

e, = le,l YoV, ot 6v3’3 = 0 (1-78)

We can include the constraint condition by introducing a Lagrange
multiplier )\ and requiring -

-

8 [ A eV‘W = Ade, + G}EV = 0 inV = (-79)

"for arbitrary A. Since €, is volumetric strain, the physical sig-
nificance of A is hydrostatic tensile stress. Then, we reverse the
sign and take )\ = -p. The final form of the principle of virtual

power is

i JJ ( 2 > |
= !l(p 8v_ + p_év_)as - JJJ g 6v, av
p n n s 8 k 'k (1-60)

for arbitrary ©6p, 6vk
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Subz “ituting

= = L+ v, (a)
= T v(vJ,k k,J)

= ’ = §
Se, &V, Se., %(ij’k + Vk,')

I

. and inteprating by parts leads to (1-TL4) and (1—75);M

!
¢

Finnlly, we introduce the assumption of frictionless flow

Lty setting 5 = 0. The reduced equations are

g . Dv
3 k _
in V
v. . = 0
i,
(1-81)
pn = p orv = vn
on S
p, = 0 vs'a;bltrgry

ﬁnd
Dv . .
3 [ oo = [[[o 5] on - ey o e

for arbitrary &, > 6p (1-82)
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FINITE ELEMENT SHALLOW LAKE
CIRCULATION ANALYSIS

By Richard H. Gallagher,' F. ASCE, James A. Liggett,? M. ASCE,
and Stevens T. K. Chan,® A. M. ASCE

INTRODUCTION

The finite element mcthod has drawn increasing attention as a numerical
analysis tool for fluid flow problems. The reasons for this growth of interest
include the following: (1) Irregular boundarics can be trcated accurately without
computational difficulties or changes in programming or formulation of the meih-
od; (2) practical use can be made of widely available, general-purpose, finite
element analysis programs which are virtually unhimited in the size of problem
they can handle; and (3) known spacewise variations of physical properties
can easily be taken into account.

Becanse of these advantages the finite clement method is especially attractive
as a practical method of analysis of lake circulation problems. In lake analysis
irregular beundzaries must be considered. The phcnomenon described, is so com-
plex in form that any numerical analysis procedure will entail hundreds, or
perhaps thousands of unknowns. Due to the ease of transference of finite clement
programs from one computer facility to another, the development of relationships
for this class of problem contributes 1o a capability which eventually may be
applied routinely by analysts in many different and widely scparated organiza-
tions.

As noted previously, variable physical properties are easily handled by the
finitc elemen! methiod if their spatial distnibution is known a priori. Thus, for

Note.—Discussion open uatil December 1, 1973, To extend the ciosing date one month,
a written request must be filed with the Ediior of Technica! Publications, ASCE. This
paper is part of the copynghted Journal of the Hydrauvlies Division. Proceedings of the
American Society of Civil Enginecrs, Vol. 99, No. HY7, July, 1973. Manuscript was
submitted Tov revitw for possible pubiication o September 13, 1972,

'Prof. of Civ. and Environmental Engrg., Cornell Univ., Ithaca, N.Y.

*Prof. of Civ. and Environmental Engrg., Cornell Univ., Ithaca, N.Y.

*Rescarch Assoc., Sch. of Civ. and Environmental Engrg., Correll Univ., fthaca, N.Y.
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the subject problem, variations in eddy viscosity or the Coriolis acceleration
can be taken inte accoun: if known. Variations in density present a more basic
difficulty because the density distribution 1n a stratified lake {either through
«alt or temperature) is itself a part of the solution and cannot be specified
a priori. The extension of the finite element method to account for such coupled
phenomena is feasible, however, and the present work, on one side of the
uncoupled problem is a step in this directiorn.

This paper presents a finite element formulation and numerical results for
the analysis of the wind-induced steady-state circulation of variable-depth shal-
low homogencous lakes. Formulative efforts and numerical results for finite
element representations of lake and shallow basin circulation analysis have pre-
viously been described by Cheng (2) and by Loziak, Anderson, and Belytschko
(10). These developments are exclusively two-dimensional, i.e., no account is
tahen of the variation of lake depth and the resulting velocities-do not change
with depth. Leonard and Melfi (6) presen{ the theoretical relationships for a
three-dimensional analysis which accounts for the velocity of the lake normal
to the free surface, but no results are presented.

The present paper depends for its theoretical basis en a formuiation of the
governing differential equation that has been derived. in detail by Liggett and
Hadyithcodorou in Ref. 8. This development assumed homogenicty, hydrostatic
pressure, specified wind shears, and small Rossby number. The latter assump-
tion, together with a boundary condition of zero velocity normal to the lake
free surface and the bottom, enables construction of a linear equation in two
dimensions whose cocfficients are a function of all three dimensions. Thus,
the equation accounts for variable depth of the lake and for depthwise variation
of velocity through numerical integration of equation coefficients that are func-
tions of planform location. '

The conventional basis for construction of a finite element representation
is an integral form which, in the sense of a variational principle. corresponds
to the governing differential equation. The transformation of the governing dif-
{crential equation to integral form is accomplished here by use of the method
of weighted residuals (3) rather than through variational calculus. The specific
finitc element representation employed is of triangular planform shape with
an assumed linear variation of the stream function.

1t should be noted that numerical solutions of the aforementioned governing
differential equation, or of specialized forms of it, have previously been obtained
with use of finite differences. Rectangular basins were analyzed in this manner

-itt Refs. S, 7. and 8 while Liu and Perez {9) solved the rectangular hasin problem

with removal of the Cariolis effect, i.e., with restriction to very shallow basins.
The finite difference solutions are drawn upon herein to furnish comparison
data for finite element solutions. In order to demonstrate the advantages of
geometric representation, alluded to earlier, the finite element method is also
applicd herein to an analysis of the wind-driven circulation of Lake Ontario,
fer which no comparison results are available. -

Coverning Equamons

The purpose in this seriion is to present the governing differential equation
for the steady-state, wing-driven circulation of shaliow, homogeneous lakes,
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as formulated by Liggett and Hadjithcodorou (8). Because detailed development
of this equation is beyond the scope of this paper, interested readers should
consuit Ref. 8.

A cross section of the type of lake under study is pictured in Fig. 1. The
origin of coordinates is fixed at the surface of the lake with z measured upwards.

FIG. 1 ——Rep.esen‘(at:ve Lake Cross Sec-

FIG. 2.Triangular Element

tion
B
— - \ Y
. T A
4LA A ! For entire loke:
L 4 : : No of elements =360
0,3 h No.cof nodes = 209
m i
D1|l :
2L ]
L . / |
B~ :

= -3 - : X
A-A__[') L5

FIG. 3.—Rectangular Lake FIG. 4 —Finite Element Representation

in Quadrant of Rectangular Lake

In accordance with the assumption of shallowness, i.e., hydrostatic pressure
distribution, D << L. The eddy viscosity, n, and Coriolis parameter f are
assumed constant in the formulation of the differential relationships. The distri-
buiion of pressure is assumed to be hydrostatic and surface wind stresses
(1,..7,,) ar scribed. In order to linearize the problem the Rossby number
(ratio of iner...t forces to rotational forces) is taken to be small. The depths

'
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tc be used in a calculation are tzken to be the actual depths under the assumed
wind stiess or, alterpately, that the equilibrium depths are a sufficient approxi-
mation 0 the actuai depth under the assumed wind stress. The x, y--plane
coincides with the water sinface and w = 0 at £ = 0, LT

Many of the assumptions or approximations mentioned in connection with
the present study have been evaluated by Ligeett (7). Steady flow is assumed
as the primary function of this paper is to indicate the utility of the finite
clement representation. This could be extended to an unsteady formulation in
much the same way as was done in Ref. 7. The time response of a homogeneous
lake, the effects of variable eddy viscosity, and the linearization were examined
in Ref. 7. Unlike the unsteady problem, no rigid lid on the free surface is
necessary if the depths are taken as the actual depths under the assumed wind -
stress. Even if the depths are taken as equilibrium depths, wind set-up can
be computed from the resulting pressures.

Under the {oregoing assumptions, the x, y, and z, direction momentum equa-
tions are of the form :

1 6 d%u
~fv=~-— °p v S (1)
p 9x az° .
1 ap atv
fu= —-——+q IR e e e e e @)
p oy daz
i ap
= ——a—z' .................................. 3)
p

in which 1 and v = the x and y direction velocities; p = the mass density

per unit volume; and g = the acceleration due to gravity. The continuity equation
is

and the boundary conditions relating to shear on the lake surface

u av
N S T T T T T, e e e e et e e et e e e e e e e e (6))]
. e % :

and of zero velocity (u = v = w = 0) on all solid surfaces.

Operations on the preceding to produce a governing differential equation pro-
cecd as follows. First, the equations are written in nondimensional form through
the introduction of an appropriate set of new variables. Then, a stream function,
U, which satisfies the vertically integrated continuity condition correspondmg
to Eq. 4 is introduced. The stream function is defined as

Sl Ay 1 oy

= —— = ——— 6
h ay h ax )

in which @t and Vv = depthwise averages of the component velocities. Finally,
the first three equations, with associated boundary conditions cc  'ered, are’
solved in terms of the stream function. The result is
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+ + A(x,y)—+ B(x,y)—+ C(x,y)=0 . . ......... V)
axt  ay? ax ay

with the boundary condition that { is constant on the shore line. The coefficients,
A, B, and C, in the equation are functions of the planform location (more
specifically, functions of the lake bottom topography) as defined in Ref. 8,
and C depends on the wind shear stresses as well. ’
The condition that { is constant on the lake boundary prescribes zero average

- velocity normal to the boundary. However, a stronger condition is necessary

to insure that the point velocities normal to the boundary are everywhere zero.
Such a condition is avoided by forbidding vertical boundaries. Thus the lake
1s confined by the surface and the bottom, on which all point velocities are
specified as zero.

Finre ELemenT RePRESENTATION

here are three aspects to the establishment of the finite element equations:
(1) Construction of integral reiationships which correspond {o the governing
egualions of the problem; (2) definition of the geometric form of the clements;
and (3) representation of the assumed modes of bchavior of the element.

in the finite element analysis of many physical problems, notably structural
analysis, the preceding integral relationship is the stationary value of the function-
al, defining the variational (or energy) statement of the problem. The governing
differential equations of the problem in terms of the independent variables of
the functional are Euler equations of the functional. For certain circumstances
the solution which yields a minimum value of the functional corresponds to
the exact solution of the governing differential equation.

When the governing differential equations are not self-adjoint, as in the present
casc, there is doubt that a true variational statement of the problem can be
constructed (1). Note further that variational principles do not have a pre-emin-
ent, well-established position in fluid mechanics as they do in the approximate
solution procedures in structurai mechanics. The desired integral format for
the subject problem is therefore established through application of the method
of weighted residuals (4), noting that a particular form of this method gives
identically the same integral relationship for probiems which are self-adjoint.

The weighted residual concept assumes that an approximate representation
cf the independent variable, which in general does not satisfy the governing
differential eguaticn, will be chosen. In the present case this approximating
trial function, §, 1s of the form

b= 3N, =

[N]{v}

in which {; = a particular value of the independent variable and generally
refers to such 2 value at the point i, and n = the chosen number ¢f undetermined
parameters | .

Designating the governing differential Eq. 7 as L(¢) = 0, note that due to
the approximate nature of ¢ the result is

L(Uy=R#0
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in which R = a rcsidual value. Because the governing differential equation
cannot be satisfied pointwise throughout the domain, V, of the problem its
satisfaction is sought in the sense of a wcighted average over the domain,
i.e.

f LOGAV =0 . . oo (10
y :

in which ¢ = the weighting function.

The weighting function may be specified in one of any number of forms.
Here, the Galerkin form is chosen, in which the cocfficients, N,, of the trial
function are employed. Euch distinct trial function leads to a scparate algebraic
cquation, using the procedure detailed in the following sections.

In the present case, simple triangular elements are used to represent the
planform of a lake under consideration. The siream function is assumed to

vary linearly in each element (Fig. 2), so that for this case Eq. 8 is of the
form

U= N+ Ny, Ny oo (1)

in which §,, dr,, §, = the values of the stream function at the vertices: and

N, N,, N, = the corresponding shape {unctions. These functions are defined
as

l .
Ni=—(a, +bx+cy) .. i e, i
{ 2A_ ] 1 :)) (12)
with A = area of the triangular element ijk
a,=x!yk—xky,,b,=yi—y,‘,c,=xk-x, ................ (13}

in which i, j, k take the vaiues of 1, 2, 3 cyclicly.
Applying Galerkin's criterion, the result is

[3'|N} @*IN| 3IN] " 3INJ
N
“.A{ }[( x? * ay* vA ax +B ay )N}

+C]dxdy=0 ....... e e e e e e e e e e e e e e (14)

Next, integration by parts is applied in the plane (Green’s theorem). This
eperation reduces the order of the derivatives appearing in the integral and

introduces the boundary terms into the resulting integral. In the present casc
the result is

JI [(_'a{N} aLN] _a{N}_aLNJ +A(N}a_1_ﬂ
a

ax ax ay ay ax

LN aiNJ
+ B(N}T){¢}+{N} C]dxdy +é{N]~:3-""* {v}dS=0

o

... (15)

The values ¢, = zero on the entire exterior boundary in the present problem
and the closure integrals along internal (interelement) boundaries vanish as ele-
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ment size decreases (13), or f conunuity of ¢ NJ/én across element boundaries
is preserved. Thus, the contour integral term 1s excluded from subsequent consid-
eration. Evaluation of Eq. 15 then yvieids the system of equations

(ke d{wY={r) . e e (16)

, N : ;
inwhich [k*] =JJ (— AN} oLN] ol 9LN; : |
s éx ax ay ay !

~

aLN| 3 N|
+ AN} — + B{N} > AXAY oo e (7

. " 1 1
' 85025 00 025 G50 Funite sifference:
{r}= ‘,” (NYCdxdy . oo (18) {a) Section Y= 1 5L -
R Finite element:

(-2 -]

T T

Note should be taken of certain aspects of the numerical evaluation of Eq.
17. First, due to the terms A{N} (8| N]/ax) and B{N} (3| N]/ay). the result-
ing algebraic equations will be nonsymmetric. This means that advantage can
not be taken of symmetricity as encountered in most structural finite element
analysis. That is, every term of the element matrix has to be evaluated and
the entire banded system matrix has to be stored for computing the solution.

As Eq. 7 indicates, the coefficients A, B, and C are functions of x and -6 1 2
y. Herein the decision is made to approximate the variation of these terms -030 -025 )?/?_ 025 030
within each element by linear functions, similar to Eq. 11. Choice of a constant (b) Section Y=00
value for each clement, say at the centroid, would simplify integration of Eqs.

17 and 18. Proper comparison of the finite diffcrence solutions of Ref. 8, in , FIG. 5-—Comparison of Stream Function Solutions for Rectangular Lake at Repre-
which these coefficients vary between the points of the mesh, is being sought, sentative Sections
however. It should further be observed that integration within the triangle is :

yr x 103

simplified considerably by use of area coordinates (12). g 15 : .

The equations of the complete lake are constructed from the equations of '\é L {
the elements ;by imposing the condition of stream function continuity at each s 10 ! ¢ T
element joint, which is synonymous with simple addition of all coeificients e sl 50 7
(k; and r)) with like subscripts. Thus, the full set of equations is of the form 5 0 . J |
[KI{UY = LR} « ot et e (19) ©° -050 -025 00 o025 050
inwhich Ki=3ky . .ooonn.... F R (20) , (a) Sectiony=tsr e difference:
R=Sr ....... JE @1 g Finite element:

Q 15 T “ °o

and the summations range over all elements with terms with the subscripts E
iand j. ' : ] o 7

After solution of Eq. 19 for {{}, other variables, such as averaged velocities, — 5 o
pressure gradients, and velocities at different depth levels can be subsequently < o . J
evaluated by back substitutions. Herein, because a linear field in ¢ has been F .050 025 00 025 050
assumed, its derivatives ay/dx, d¢/ay are constants in each element. Thus, X/L
from the definition of {, the average velocities i and Vv are constant within : (D) Seciton Y=0.45L
each element. From Ref. 8 the point velocities as a function of planform and - .
-depth‘are lF:th. G.-—(ioppagiso‘r-\ of Tetal Velocity Sohlutions on Rectangular Lake Surface at

epresentative Sections !
u= —-—:—p- s mz(c,e™ — c,e”™) ~sinmz(c,e™ - c,e”™) . ... (Q24)
y
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ap . .

v=-— + cosmz(c,e™ + cye”™) + sinmz(c,e™ + c,e”™) L. L L 22b)
ax

in which the terms m, c,, c,, ¢;, and ¢, = functions of x and y. The reader

is referred 1o Ref. 8 for the exact definitions of these terms, which are rather

complex. The same paper expresscs the pressure gradients as a function of
x and y and the derivatives of .

Numericat Resutts

Two problems are solved as an illustration of the present approach. The
first problem, shown in Fig. 3, enables comparison with {inite difference results
(8). This idealized lake is vriented in a north-south direction with a length four
times the width. The following values were employed in nusmerical calculation:
f = 0.0001 rad/s; D = 8,000 cm; m» = 200 cm?/s; L = 1.25 x 107 cm;

= 1.0cm?/s?;and g = 980 cm/s?,

No. of elements = 561

Scole,km No of nodes =323
O 8 (6
L4
[_’A ) I .
| l ; I | I
o NI i i -

P

FIG‘. 7.—Finite Element Representation of Lake Ontario

}.L_u.\ M

Lea

The finite element representation of a quadrant of this lake is shown in Fig.
4. A total of 50 elcments are arrayed in the quadrant but four times this number,
360, with 209 joints, and therefore the sanic number of equations, were employed
in actual computation because the geometric symmetry about the x and y-axes
does not apfly to the circulation behavior being calculated.

As is apparent from the definition of {1, a zero depth represents a computational
singularity and it is necessary to have a finite, ‘but small, depth all along the
boundary. The {low region under analysis was, therefore, taken to be one bound-
ed by a contour of 5% maximum depth, a value which has been found to
be adequate in previous numerical solutions, and the flcw exterior to the bounda-
ry 1s ignored (assumed to be at rest).

Figs. S and 6 show results for ¢ and the velocity resultant at selected cross
sections for the case of a south wind acting on the lake surface. Also shown
are the f{inite difference resulis from Ref. 8, in which 1,701 equally-spaced
pivotal points were used. The finite difference and finite clement results are
seen to be in close agreement. It should be noted that these comparisons are
presented to affirm the validity of the finite clement method in solution of
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this problem and not to measure the relative efficiency of the finite cloment
and finite 'diffcrence procedures. A bare companson of computational effort,
based on the number of equations to be solved would not be reahstic due
to such factors as the rclative effort in forming the equations and the narrow
bandwidth of finite difference equations.

Also, it is quite possible that finite difference results, which would prove
comparable with the finite clement solution, could have been obtained with
much fewer than 1,701 pivotal points. The compuiational costs of the two solu-
tions cannot be compared due to significant differences in the computer hardware
and software employed for the respective cases.

The second problem for which numerical results are described herein is the
calculation of the circulation of Lake Ontario due to a wind shear prevailing
in the local average dircction at Rochester in February, as shown in Fig. 8.

Stream Velocity, cm/sec

=4 -10 -5 0 o] 10 'S
40 L T
£ N
@ 32 Totol Velocityw}‘
.- 2 A,
“ 4
— 4
=) 24 l;( ~
9 /
v 4
5 /
c '8 £ .
I3
g ?
el A}
v 8 Yy N .
[=] S
¥
0 1 1 =T I
-2 -8 -4 o] 4 8 12

Stream Function,  x 108

FIG. 9.—Stream Function and Total Velocity Solution on Lake Ontario Surface st
Section A-l_\
A careful representation of the geometry and bottom topography of this lake
was compiled by Canada Center for Inland Waters (2). These data are employed
herein to define a finite element representation consisting of 561 triangles joined
at 323 points. The specified wind shear stress and the physical constants f
m, and g are the same as in the first problem.

Fig.- 8 shows contours of the stream function in the circulating lake. This
figure has been geneiated by a contour plotting routine which is part of the
computer program. A plot of the distribution of the stream function and velocity
on a representative north-south section across the lake appears in Fig. 9.

No comparison results are available for this problem. Although the correct
Coriolis parameter was used, no attempt was made to choose a physically accu-
rate eddy viscosity or to represent ice formation or variation of wind stress.
It is unlikely : field measurements of the form necessary for comparison
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purposes will be aveilable in the futurs. Large-scaie medeling is a promising
alternative source of cemiparison data but no such data exist yet for this lake
and when they are ortained it s to be expected that limitations on representation
of the periinent dimensioniess ratios [sce Rumer and Hoopes (11)] will-require
somewhat different conditions on the compatison analyses than those employed
herein. ’

In comiputational zspects, execution times for the finite elemen! solutions
of the preceding problems were generally small, between 1/2 min and 1-1/2
min on an IBM 360/6S.

One method of establishing confidence in the validity of the prescent results
is by performance of further analyses with either a revised gridwork or with
nigher-order elements on the same gridwork. Work in this direction is in progress.
Coryespondence of the results of these solutions will add to confidence in the
accuracy of the solution of Eq. 7 for this situation but cannot, of course, demon-
strate that this differential equation properly describes the behavior of the actual
lake.

Sumniary AND CONCLUSIONS

The finite element method has been shown to be effective in the analysis
of lake circulation. Such problems are quite complicated from a geometric
standpoint and a realistic analysis with use of any method must inevitably require
a large-scale computation. The finite element method is attractive in this respect
because of the possibility of using existing large-scale, general-purpose, finite
element computer programs. It is especially promising as the basis for analysis
of more complex circulation phenomena in lakes, such as the response to the
introduction of a thermal plume into a stratified lake. Extension of the present
work to three dimensions in a more gencral way, with removal of the assumptions
which produced a two-dimensional differential equation, can be accomplished
without extension of basic theory. Appropriate trial functions for such elements
are reviewed in Ref. 4. The isoparametric element concept (14), in which higher-
order polynomial trial functions are also employed to map curvilinear element
boundaries, is especially attractive as a means of improving the efficiency of
three-dimensional elements in geometric representation of a problem. The
computational expense of three-dimensional representations is inevitably vastly
increased in comparison with two-dimensional models, however, their application
must necessarily be motivated by a desire to include new phenomena.
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APPENDIX Il.—NQTATlon

The following symbols are used in this paper:

A, B,C = coefficients in Eq. 7 as defined in Ref. 8;
a, b, c‘.f = quantitics relating coordinates of joints in element;
s €, €, ¢, = cocfficicnts for evaluating velocity components as defined
in Ref. 8;
D = typical vertical dimension used to normalize depth;
f = Coriolis parameter;
g = acccleration of gravity;
h = normalized depth of lake;
KT = coefficient matrix of resulting system equations;
[k*] = 3 x 3 elcment matrix as defined by Eq. 17;
L = typicul horizontal dimension vsed to normalize hcrizontal
dimensions;
L) linear operator to operate on ¢,
m = Df/2n;
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shape function at joint i;

chosen number of undetermined parameters ¢

local pressure;

right-hand side of system equations or residual;

element column matrix as defined by Eq. I8;

velocity components in x, ¥, and z directions, respectively;
average velocity components in x and y directions, respec-
tively;

entire flow domain under consideiation;

Cartesian coordinates with x positive eastward, ¥ positive
northward, and z positive upward and zero at surface;
arca of triangular element;

eddy viscosity;

fluid density; )

surface wind stresses in x and y directions, respectively;
stream function; and

approximate stream function solution.
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INTRODUCTION

The simultaneous prediction of momentum, heat, or mass transfer in closed
cavities has challenged researchers for years, Certain flow situations marked
by extreme diffusion or high mertia can be mathematically analyzed by closed-
form solution or a boundary layer analysis (5.17.31). When a flow problem
is not dominated by either physical process, mathematical decoupling of the
momentum 'transport from the heat (or density) transport is prohibited. The
resulting natural or combined convection cavity problem (17). difficult as it
is, quite often is further complicated by the occurrence of circulation cells
accompanied by high shear rates and density gradients (4.8,29,34). Since the
governing simultaneous equations are nonlinear they require careful numerical
analysis. '

The finite element method will be used to form a numerical analog for the
viscous cavity problem. A review of finite difference schemes for convection
problems is found in Ref. 25. Several features of the physical problem are
particularly suited for analysis by the finite element method (FEM) such as:
(1) Irregular boundaries are treated accurately without computational difficulty;
(2) variable boundary conditions such as differential heat input, tempcrature
distribution, or 'wind shear are casily handled by the FEM; and (3) the solution
of non]iqear fluid problems by FEM is just beginning (4,21.22,23,32), but already
excellent iterative stability and rapid convergence are apparent.

The first fluid mechanics application of the FEM was 1o linear potential flow
problems (2,33). Extensions to lubrication and creep flow followed thercafter
(1,9,10). Solutions of viscous homogeneous flow problems are now available
(6,7,15,16,20,27). Nonlinear viscous flow problems, being the most difficult,
are only beginning tc receive attention. Olson (29) presents a quintic element

Note.—Discussion open until May 1, 1976. To extend the closing date one month,
a written request must be filed with the Editor of Technical Publications, ASCE. This
paper is part of the copyrighted Journa] of the Engineering Mechanics Division, Proceedings
of the American Socicty of Civil Engineers, Vol. 101, No. EM6, December, 1975. Manuscript
was submitted for review for possible publication on August 2, 1974,

! Asst. Prof. of Civ. Engrg., The Ohio State Univ., Columbus, Ohio.

2Prof. of Civ. and Environmental Engrg., Cornell Univ., Ithaca, N.Y.
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Newlcn-Raphcon FEM procedure 1o analyze several homogencons Tlows for
the Reynolds pumber as high as 1000, Stabie iteration and rapid convergence
are partizularly notceable in this method. Skiba, Unny, and Weaver (32) present
a rectangular clement steady-state solution for natural convection in a slot.
A weighted average methosd was used to iterate velocity and temperature values,
ceusing iteration and converpence behzvior o be inferior to Olson's method.
King, Norton, and Orlcb (23) present a Newton-Raphson technique to analyze
stratificd flow over a bioad-crested weir.

In this work a finite clement analog is presented for the class of steady,
viscous, incompressible. two-dinmensional, heat, or mass tran<fer flow problem.
The Galerhin method of weighted residuals (MWR) is used to derive a functional.
A cubic plate bending element is used with the streamifunction. ¢, and temperature
or density (T or p) as unknowns. The element provides nodal continuity for
not only ¢ but more importantly the flow velocities which are derivatives of
&. An amalgamation of Olson’s (29) Newton-Raphson method and Skiba's (32)
weighted average techniques is used to iterate the coupled system of equation.
The results from three cases are presented. These include homogeneous linear
shear driven cavity flow, lateral temperature gradient induced natural convection
in a box, and shear driven stably stratified cavity flow.

ConservaTiION EQUATIONS

The three problems anatyzed in this paper are treated by the same equations.
The coordinate system is indicated in Fig. 1. .

Only stcady-state problems are considcred. Lamin'ar fncl.lon is used although
the viscosity maybe interpreted as an eddy viscqs:fy which is held con‘sl.am
in the spirit of mathematical tractibility. Density variations are assumed neg]lgnl?le
except in the buoyancy terms (the Boussinesq approximation), and the density
is unaffected by pressure (incompressible fluid). ' .

General Form of Basic Equations.—The general form 9f thcf. two dimensional
steady-state shear or buoyancy driven cavity flow equations is as follows. The

continuity cquation is

du 1 ap .
u—a—lf-+w-—-—=—-————+nvzu ...................... (
ax 92 p, 0X

The z-momentum equation is

d 19 p \
uf—+wﬂ=———tj—+nvzw—-—g ................ ...

ax . 82 p, 92 Po

The diffusion-convection equation is

9—¢—+ wEdL:aVzcb .......................... “
ox az
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in which u and w are the velocitics in the x and z directions, respectively:
P = the pressure; p = the density; ¢ is cither the temperature, T, or the mean
turbulent density; and m, o. and p, are the viscosity, diffusivity, and reference
density.

'Governing Cavity Flow Equations.—The equaticns are written in nondimen-
sional form by defining the following variables:

xt=_x_.; Zt_.-z_; un_i; M_,'er:_“_’.; nt=_n_- at=a_-
H H U U n, a,’
= -0,) (-9, p
¢ = = P s
br—dp Ad 1
.—2--p(,U2

in which 4, U, a, m, and p, represent reference values; and ¢, and
are conzervation quantities at the cavity top and bottom. Upon substitutioi
of these variables into the equations the asterisks are diopped, and all variables
from this point are dimensionless (except in defining R, Pr, Gr).

Eqs. 2 and 3 are cross differentiated, thereby eliminating the pressure and
forming a vorticity equation. Finally, a pair of coupled equations emerge which
will be used for the solution:

7 HV2yy) Gr ad
o =0

B _V4 ............... y
R v a(z,%) RZ ax oo (6)

. CLONI

PrR e N

in which & = the streamfunction (u = 3§/2z, w = —a4/ax); Pr = n/a (Prandtl
number), R = UH/m, (Reynolds number); and Gr = (Vp)gH?/p,m?2 (Grashof
number). The nonlinear terms represcnted by the Jacobian make the equations
difficult to solve. The adequate solution of the problem requires full retention
of these terms in the numerical method.

NunsericaL TECHNIQUE

The development of the FEM analog begins with the derivation of a functional
form of the governing equations by the Galerkin snethod of weighted residuals
(MWR). The remainder of this section considers in order: {1) formulation of
the extremum principle; (2) the element and the clement stiffness matrices;
(3) the iterative sclution technique ; (4) boundary conditions; and (5) other methods.

Formulation of Extresaum Prirciple.—Despite derivations of nonlinear ‘‘varia-
tional principles’ (11,13,14,18,19,24) a true variational formulation is unknown
for this nonlincar problem. Although proofs of boundedness and coanvergence
do not exist as in the linear case, the Galerkin MWR provides a direct formulation
of an integral expression for the system of nonlinear equations. The <orcept
assumes that an approximation to the dependent variables (§,4) exists and is
of the form ¥ = 7, N,¥; & = =, N;d,, in which ¢, (or &) is a particular

value of the variable at point i, and N, functions of x and z are called shape
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functions. If the governing equation, Eq. 6, is designated D, (ind) then the
substitution of the series, Eqgs. 3 and 9, gives D, () = R% # 0. in v hich
R* is the residual caused by the approximate nature of the series. The Galerkin
criterion specifies that the weighted average of the residual over the domain
of the cavity be zero, thus [, D, (I,&) N,dA = 0, in which the weight function
is chosen as the shape function, N;.

Eqs. 6 and 7 are multiplied by the weight functions, N;, and integrated over
the cavity, the result after integration by parts is

G
— +2
R 3z az?
aN, d oN
+ (—3——‘—4}+—ﬂ)vzwdxdz
ax a2 0z 9x

G d 7 aN, 3%y
il N,—?-dxdz——ﬁg-—-‘——dpo..._ ............ @)
R2? ax Re J a9z 92?

3IN, 3% 3’N, 3%y
+ dzdx
9xdz dxdz  ax? ox?

and from Eq. 7

a N, 3¢ N, ad
— — + ———} dxdz
PrR ax ax 8z 9z

a0 a3
+fj (N_.l-i~ N, »-i—dl) dxdz=0 . . ©)
az ax dx 6z

The boundary integrals arising from the integration by parts provide the device
by which boundary conditions are imposed.

Element Formulation.—The element to be used in this paper is the nine
degree-of-freedom nonconforming plate bending triangle presented by Bazeley,
et al.: (3). The element has the unknown ¢ and its first derivatives as nodal
unknowns; therefore, the streamfunction is immediately differentiable to obtain
the velocities. Previoius application of cubic elements to flow problems (6,15)
also shows the element to be accurate and reduces the number of elements
necessary to describe the system. This element is a slightly altered form of
the 10 degree-of—freedbm element(3,6,12,15) in that the centroid node is distributed
among the nine corner nodes. For nonlinear iterative analysis the computational
difficulties of the centroid nodes are severe and require its elimination. The
element though nonconforming appears to give satisfactory first cut approxi-
mations for initial work on flow problems.

To establish the cubic polynomial the unknown & (or &) and its derivatives,
¥, and {,, are defined at the three corner nodes (Fig. 2). If area coordinates
are defined as L, = A,/A, in which A = total area of the element, and A,

= the area of the triangular subregion {i = 1,2,3), then the shape function
description is as given by Ref, 3.

¢¢1=Nl¢l +N;¢

U= Ny, + Nobx, + Ny g, + oo + Nobzg
“Nydz, + ... + N9¢z,}
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inwhich N, =I3+3L3(L,+ LYy+2L,L,1L;

-y ‘ i
N, =c, (L}LZ +—;L,L:L3) - ¢, (L,L; + ?L,LZLJ); |

/ 1 \ ( 1
N, = —b, KU, Lyt g LiLals + b LLi+ S Lilaly ) oo (-

and @, = X,2, ~ X, 25, b, = 2, = 2,, ¢, = X3 — X,. N,and N, are found by cyclic
permutation of indices in Eq. It similarly, N and Ny are found from N, and
N, and N, are found from N,.

First and second-order differentiations are now performed and the resulting
matrices are substituled into the functional expressions, Egs. 10 and 11, yiclding
two sets of nonlinear algebraic equations for the clement, ¢ (sce Ref. 35). Thus

M Gr
"Ed)i,‘!‘j"{'e,k,¢L¢l+;)“j¢l*P:=0 ................. (12

;Egi,d’l +oar b d; - Q=0
Column vectors Pfand Q¢are formulated from the bourdary integrals in Egs.

8 and 9. It is assumed that these vectors are zero for all element sides no:

on the physical boundary of the problem. The customary procedure is 10 asscmbls
the element stiffness matrices (10,12) into a global systems of equations, treatir.3
the nonlinear matrices, 0 and =, as quasilinear in the summation process. Judicious
application of the iteration technique would then result in acceptable results.
For reasons given in a later section, the solution process is reversed, i.e., the
iteration or perturbation technique is employed at the element level and a global
system is then composed. )

Iterative Solution Technique.—The solution of Eqs. 12 and 13 is by a Newton-
Raphson technique coupled with a weighted averaging method. This method
is an amalgamation of Olson’s (29) and Skiba's (32) work.

The method begins by applying the Newton-Raphson procedure at the ¢:.Iementr
level. Let &g and 7, be the nth approximation to. the correcl.soluuon:’ \P,
and ¢ (for clement e) of Egs. 12 and 13. If the ith equation in Eq. 12 is
f, and the ith equation in Eq. 13 is g, then by a truncated Taylor series:

9 afl
f;(l!J"',"',d)Z‘")+z<—)A¢;'=f,(¢j,¢f)=0 .............. (14)
=1 a“bl
and
Wo ', en-ty + i <§—> Abr=g (Y5, =0 ... ... (15) .
gl o 'To & a(b[ 1 i ] ] )
N of, - “ e 6.y po-t 16
in which EJ = _R—d)" + ;(6"“ + lik) Yop o e e e
B S LS n-1 .7
L S A e
8, iPr i ; ol
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AP =00 —WnTh (18)
ABT = dn — I (19)
and
5 = T+ 0, 8

R L (20)

a

8.'('1'3,",4){,',") = EE&,—; o +'ff.,q-¢',',,°'y o
A final set of equations for the element e perturbation values is written
STAYT = —f17Y TLAP = -glTt L Qn

in which Sf = af /oY and Tf = ag;/o b,
The systems of element ‘‘slope’ matrices can be assembled into a set of
global “*slope’ matrices

Si A gy = -
-1 [
T AY) =

in which, if there are p nodes in the system, Aq;;‘(zxnd similarly A¢7) equals

Ay, Ay,

‘» LEEERE] P ]

~

6z ax a9z

iA aA '
0y By 24)

AT =AY,

A weighted average scheme completes the iteration process. When Eq. 22
is solved the new periurbation values, AT, are added to the old solution vecior
(Eq. 18) to form the vector of current streamfunction values. After multiplication
by the proper weight function the new and old solution vectors are added and
the averaged answer is sent 1c Eq. 17 for use in solving Eq. 23. The same
process is then repeated for Adf. The averaging scheme is then

Ui =W @ e + W, (w,-"")}
b= W (@7 + ¢ + Wi

il

‘ The repetitive population and solution of Egs. 22 and 23 using the most
current weighted $olution vectors, Eq. 25, is the iterative process. Complete
specification of the numerizal technique closes with a brief descripiion of the
method of handling boundary tonditions.

Boundary Conditions.—Known noda! boundary values of &, aw/dx, ad/dz,
&, 8d/dx, and dd/ 3z are introduced into the starting vectors, ¢! and d)". Since
these values pever change the corresponding perturbation quantities, Ayl and
Ad':. are slways equal to zero. When, as in the case of the variable bottcm
topography, boundary conditions are specified in terms of normal and tangential
derivatives a coordinate transformation of the affected boundary nodes is
necessary. The 'mivithod, readily used in structural analysis, is described in Refs.
4 and 15.

Solution Procedure.—~Computation and storage requirements are greatly re-
duced by dividing the method into two specific programs, an clement library
program and an iteration program.

J DECZIABER 14975 M6

The element library creates the <uffness matrices, dr, 6, X, m, and £ (10.12),
for cuch of the “different™ ur auan doments in a particular descretization,
Therefore, even if there are 100 elements [Fig. 3(b)], stiffress matrices from
only four are determined and stored. Alihough this method encourages element
uniformity, the reduction in core storage requirement justifies the approach.

The iterative solution program solves the nonlinear system of equations by
the Newton-Raphson procedure. Severa! organizational features are noteworthy.
The sclution order of the two equation sets is established by the criterion that
the most linear governing equation, £q. 6 or 7, is solved first. Because the
test time per iteration is considerable, no convergence lest was incoiporated
in the computer program. To test for convergence the results from a completed
run of n specified iterations were measured against the convergence ciiterion
le] < 0.1%. Results not falling between those limits were used as starting vecturs
and the progiam rur. for another specified number of iterations. As compilation
time was only 3 sec a considerable economy in computation time resulted.
Full advantage is taken of the banded but nonsymmetric slope matrices, §,
and T,. Once convergence occurs, the solution vectors, §, and &,, are printed
out and passed directly into a card file. These files serve as starting veciors
for the next case.

Although an apparently clumsy technique requiring the repeated population
of the slope matrices, this mcthod arose in response to the restrictions in
computation machinery {all calculations were performed on an IBM 360/65)
and the deficiencies in the currently available methods {23,29.32). A brief
description of the deficiencies {ollows.

Other Solution Methods.—The method of Olson (29}, the point of departure
for this work, is a full Newton-Raphson procedure. With reference to Egs.
12 and 13, the method sums the element stiffness matrices t¢ global matrices
and then applies the Newton-Raphson procedure. The resuiting global ihree-
dimensional slopc matrices require so much storage that they mus! be f.*:c-_red
on disk and retrieved at each iteration. For this particular problem morz time
was spent retricving the global matrices from disk than repeatedly populating
Sy and T} with the pracedure outlined herein. ' ' _

The method of Skiba (32). an acceleraior method, is siriightforward. Egs.
12 and 13 are summed directly to the glotal system. Using values of & an.d
¥ from the previous iteration the noniinear werms are cvaluated anfi the alzetraic
equations are solved for i}, not the perturbation quantities. A Yuelghted ave::'_a?ge
of ¢ris formed and used then to solve the system (?f equations f‘0r d)'; {he
process is repeated for the specified number of iterations. The savings in ime
per iteration is considerable but convergence proceeds at a r.?uch slower pace.
Again, the storage of large three-dimensional matrices is requn‘c.d. '

Finally the method of King (23} eliminates the necessity o.f using hlgh_er c-r:'ier
approximations by solving the four conservation equatiqns directly. The iteration
technique, a Newton-Raphscn procedure, requires solving at once a large matrix
for values of the velocities, pressure, and dznsity. Again the very l.arge. §:9ragc
requirements plus the necessity of solving the sensitivé pressuse equation eliminate
this method.

Psostem SoLumions

The finite clement method is now used to solve several example problems.

f
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The results emphasize the convergence, accuracy. and cfficiency of the technique.
For two of the three problems previous results are used to esiubiish solution
accuracy. The third problem, the motivation for the development of the method,
is new and thus previous resuits are not available.

a A Rotem ond Rotkowsky
12 A .
r— A O 0ni0 Covity

—— 616 Covity

W (10%)

FIG. 4.—Vertica! Streamline Profile at x = 0.3 and 0.7; Homogeneous, R = 0, Shear
Driven, 0{1) Cavity

-2
4 Rotem and Rathowsky
10 1= 0 10x10 Cowity
— 616 Covity
-08 -
g
T o6} :
>3- ;
08 |- :
!
02 !
0 1 i ! 1 L t 1 1 L
[} 01 ‘02 “03 -04  -05 06 o7 -08 ‘09 10

4

FIG. 5.—Vertical Streamline Profila at x = 0.5; Homogeneous, R = 0, Shear Driven,
0(1) Cavity

- Linear Biharmonic Model.—The analysis of a shear driven cavity model satisfies
three objectives: to determine the number of nodes/elements necessary for
accurate cavity results and to determine the effects of a symmetric versus non
symmetric flow f> “.discretization. l
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The pioblem is defined s foliows, A homogencous water filled caviy s
~¢t mto moton by the upplicat.on of a2 known <heur suess, The problem s
Incanzed by considiring the R = 0 case. Eq 6 reduces 1o V4w = () The
boundary conditions applied 10 the surface z = 0 are w = 0, and m, (41/a2)
= 7,/p,. in which 7_is a known shear siress. On the walls and bottom the
no-slip condition holds and ne flaw is allowed through the boundary.

In his work Olson suggesis that for a 1 x 1 cavity 72 elements or six on-
a side is satisfuctory. Figs. 4 and 5 then compare the results from a 6 X 6
box [Fig. 3(a)] tc a 10 x 10 box {Fig. 3(b)] and the finite difference re<ults
of Rotem and Ratkowsky (30). The sircamfunction profiles compare favorably
with the published results everywhere but the vortex cemer. The fullness of
the Ratkowsky and Roiem results is not matched by the 6 X 6 cavity and
the 10 x 10 cavity duc perhaps (o the nonconformity adds little refincment.
Because mesh refinement failed to improve results substantially the coarser
mesh is considered sufficient. By lowering the number of elements from 100
10 72 the system of equations is reduced from 363 to 147, a significant difference.

Natural Conmvection Model.—The model. utilizing the full nonlincar algorithm,
considers fluid motion in a completely enclosed <quare cavity the sides of which
are heid at constant but different temperatures. The motion is assumed laminar.
A warm temperature, T,, is evenly applied to the left vertical wall and the
right vertical wall is kept at a constant but colder temperature, T_. If the density
is related to the temperature by p = p, [1 — B(T - T,)] and if U = H/7,
T* = (T - T,)/(T, — T.), in which @ = thermal diffusivity, and T = reference
time = H?/a. Then Eqgs. 6 and 7 become

5(V 2y, aT
_prveg 4 2V el o
a(z.%) ax 26)
T,
_OIT+ ATW) ~o
a(z,x)

in which Ra = Raylcigh number = [gB(T, — T.)/(am)]H". The boundary
conditions for the. flow field are that u = w = 0 on the boundary and the
temperature field is restricted to an insulated condition on the top and bottom.
The negative horizontal temperature gradient, a vorticity source, is governed
by the size of the Rayleigh number; therefore, the magnituce of the Prandtl-
Rayleigh number product controls the evolution of the solution.

Applied to a 6 x 6 cavity, the procedure begins with a null starting vector
for y" and sceks a weak heat conduction field for Ra = 1.0. The value of
Pr forl all runs was 1.0. Computations for Ra up to 10% were performed and
compare favorably with finite difference solutions by Wirtz (34) and DeVahl
Davis (8). The resuits for Ra = 10* and Ra = 105 are plotted in Figs. 6 and
7. Streamlines and isotherms for the Ra = 10° case are presented in Fig. 8.

The results indicate that the initial choice of the 72-element cavity was accurate.
Using this 49-node configuration reduced the problem size considerably, Wirtz
use? 8¢ and 289 node configurations and DeVahl Davis used 121 nodes.

p f i . e~ time
e it e e et e oY A ecertinl erpiation 1% arnadl  Th 'I'
. FTE I PRSP .
trCa el gl i'F tl""'“; W ffi s et ang st bongeatary «
DR ¥ T 4t .. PRI

et .
a7 abona, aml foarm a2 me g0 Rt e teer ve
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program solving two systems of algebraic equations per rieration roquired 106
K of storage and 113.6 sec of IBM 360/65 Fort G execution time. Olson (29)
reports that for one iteration on an IBM 360/67, 72 sec of exccution time
were required 10 solve one governing equations approximated by 172 algebraic
equations. Therefore, the present method represents a fivefold increase in

O RA Wirtz Ro = 105
O RAWnz Ra=i0°

€x6 Cawity

[o]-3 ol

o4

03—

- 80
O RA Wwtz Ra=10°
O RAwrrz Ra =109 64
——_— 6126 Covity
- 45
< -
=) [=}
- Q
o H
frd o
; ~a0b- E
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120l _
~160 -~ ,
~200%-
FIC. 7.—MNiidheight Vertical Velocity w Profile; Natural Convection, Ra = 104, and
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efficiency, supgesting that disk storage should be avoided where possible. Chan
(6} reports that studies of flow over a cylinder using a 207-equation Newton-Raph-
son salution took 28.0 sec per equation per iteration. Agzin the improvement
1e evident
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convection problem; therefore, the result is not ureapected. Mcasurcment of
these properties is done by comparing the numbers of iteration required for
convergance and the size of the Rileigh number jump taken while remaining
stahle. As a step increase of Ra = 103 required three to four itcrations and :
no weighted averaging. Step increases of Ra = 10* were done in Jess ihan
nine iterations with simple averaging (i.e., W, = 0.5, W, = 0.5). The maximum
reliable step size for flow 1egimes up to Ra = 2 x 10° is 5 x 10* requiring '

//“/ I
//\‘——oj’
| 0z :.

FIG. 8.—Strearaline and Isotherm Contours; Natural Coavection, Ra = 105, Pr =
1.0
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FiG. e.—Streamline and lsopycnic Ceniours; Shear Drived, G{5) Cavity, R = 100,
Pr = 1.0, Gr = 5,000

10 to 12 iterations with simple averaging. Although successful convergence was
achieved at a step size of 7 x 10* the probability of consistently good resulis

is reduced. o .
De Vahi Davis (8) reporis that the stability of the fwmite difference analpg
is threatened for step increases greater than 5 X 02, Skiha's {32) method easily

handles step increases of Ra = 4 X 104 howevar, the results are achicved

with a Pr = 1,000, a very stable configuraticn for the prablern. No such restriction
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is nccessary here. Unfortunately, no results are 1:ported on the mumber of
iterations required for Skiba’s method.

Combined Convection Problem.—The primary motivation for the algorithm
development was the solution of a combined convection pioblem. Since results
are not available for this problem rigorous checking of the method against the
established results of the previous cases indicates the correctness of the solution.
The problem is this section explores the interplay of wind shear and a stable
vertical density grudient, and is peculiar in that distinct circulation “‘cells™ can
occur.

The cavity model considers fluid motion in a cavity founded on the sides
and bottom and set into motion by a known applied shear stress on the surface.
A stable vertical temperature gradient is imposed by specifying maximuin and
minimum temperatures on the top and bottom of the cavity. The surface
temperature is Ty and the bottom temperature is Tgand if U(Eq. S)ist, H/{n p,)
then Eqs. 6 and 7 become

n_,.  dVia)  GreT
- — f—_— e —— =
N z,x) R? ax
................... 7
E a(T,
_E gAY
PrR a(z,x)

The boundary conditions are that u = w =
w = 0 on the surfaze. Furtherdu/dz =
Heat flux is prohibited through the sides. )

Calculations were performed for a variety of flow conditions. The range of
parameters was: R of 1 to 1,000, Prof 1 to 10, and Gr of I to 105, Extensive
results to this problem will appear in another paper, however, a streamfunction
and isopycnal plot is presented here, in Fig. 9 for demonstration purposes.

Iteration and convergence behavior is the same as the natural convection
problem.

0 on the bottom and sides and
7./(n,p,) is specified on the surface.

ConcLusions

From this study several conclusions about the use and application of this
method are drawn.

The full Newton-Raphson method can be made an efficient and, for this
class of problem, a preferred computational scheme. With the proper use of
element libraries the necessity of using disk storage is eliminated. The use of
higher order interpolations reduces the number of necessary clements and is
highly recommended.

This paper establishes that the use of the FEM encourages solution stability
and iterative speed. The method is preferred over finite difference schemes
for this class of steady problems. Problems and questions are plentiful and
unfortunately the solution of coupled nonlinear equations by the FEM remains
unresearched even in light of recent Swansea (22) conference. In physical domains

where analytical answers are impossible the FEM seems to be the correct
approach. ¥

€16 DECEMBER 1475 EME

AR OWLEDGRENT

Work desenibed here was supported in part by the National Science Foundation
under Reseaich Grant GK-23992. Work done by the scnior writer at Cornell
University was supported by an Environmental Protection Agency Research,
Fellowship. The invaluable assistance of R. Gallagher is gratefully acknowledged.

Arpenoix |.—RerFERENCES

1. Argyris, J. H., Marecsek, C., and Scharpf, D., “"Two and Thiee-Dimensional Flow
Using Finite Elements.”” Aerciantical Journal, Vol. 73. Nov., 1969, pp. 961-964.

2. Athinson, B., et al., “Low Reynolds Number Developing Flow,' Amcrican Institute
of Chenucal Engineers, Vol. 15, July, 1969,

3. Bazely, G. P.. eval., Trizngular Elements in Bending-Conforming and Nonconforming
Solutions."" Procecdings of the Confercnce on Matria Methods in Structural Mechanics.
Air Force Institute of Technology, Wright Patterson Air Force Base, Ohio. 1965.

4. Bedford, K. W., "*A Numerical Investigation of Stably Stratified, Wind Driven Cavity
Flow by the Finite Elemems Mcthod,' thesis presented to ithe Cornell University.,
at Ithaca, N Y., in 1674, in parual fulfillment of the requirements for the degree
of Ductor of Philosophy.

5. Bird, R. B.. Stewurd, W. E.. and Lightfeot,
Wiley and Sons, Inc., New York, N.Y., 1960.

6. Chan, S. T. K., and Larock, B. E., “*Potential Flow Around a Cylinder Between
Parallel Walls by Finite Element Mecthods,"" Journal of the Engineering Mechanics
Duvision, ASCE, Vol. 98. No EMS. Proc. Paper 9228, Oct.. 1972, pp. 1317-1322.

7. Cheng, R.. “'Numerical Investigation of lake Circulation Around lslands by the Finite
Element Method,™™ International Journal for Numerical Methods in Engineering, Vol
5, No. 1, 1972. _

8. De Vahl Davis, G., “‘Laminar Natural Convection in an Enclosed Retangular Cavity,””
International Journal of Heat and Mass Transfer, Vol. 11, 1968, p. 1675.

9. De Vries, G., and Norrie, D. H., "*The Application of the Finite Element Technique
to Potential Flow Problems," Joumal of Applicd Mechanics, Paper No. 71-APM-22,
1971. : .

. Doctors, L. J.. ““‘An Application of the Finite Element Technique to Boundary Value
Problems of Potenual Flow.™ International Journal of Numerical Methods in Enginecr-
ing. Vol. 2, 1970, p. 243. ) ]

11. Donnelly, R. J., Horman, R., and Prigogine. I, eds., Non Equilbrian 'l”lwrquynanucs,
Variational Techniques, and Stability, University of Chicago Press, Chicago. l1lI.,
1966.

. Felippa. C. A., “'Refined Finite Element Analysis of Linear ‘und _Nonlincar Two
Dimensional Structures,” Report SESM 66-22. Structural Engineering Laboratory,
University of California, Berkeley, Calif., Oct., 1966. o o

. Finlayson, B. A., The Mecthod of Weighted Residuals and Variational Principles, Vol.
87, Academic Press, New York, N.Y., 1972. o o

. Finlayson, B. A., and Scriven, L. E., *'On the Search for Variational Principles,
Heat and Mass Transfer, Vol. 10, 1967, p. 799-821. _

. Gallagher, R., and Chan, S. T. K., "*Higher Order Finite Element Anal).'ms of Lakg
Circulation,”* Proceedings of the Conference on Computers in Fluid Dynamics, Analysis
and Design, Polytechnic Institute of Brooklyn, Broqk[yn. N.Y., 1973. ‘ )

. Gallagher, R., Liggett, J. A, and Chan, S. T. K., **Finite Elcr'ncm _Cl.xgulanon Analysis

of Variable-Depth Shallow Lakes,” Journal of the Hydraulics Division, ASCE, Vol.

99, No. HY7, Proc. Paper 9855, July, 1973, pp. 1083-1096.

Gebhart, B., Heat Transfer, McGraw Hill Book Co., Inc., Nevy York, N.Y., 1971.. :

Glansdorf, P., and Prigogine, 1., “*Sur les proprietes differnticlles de la production

d'entropie,”* Physica Grav., Vol. 20, 1954, p. 773. . ] o ]

19. " sdorf, P., and Prigogine, 1., *On a General Evolution Criterion in Macroscopir

.cs,” Physica Grav., Vol. 30, 1964, p.351.

E. N., Transport Phenomena. John

17.
18.



EM6 FINITE ELEMENT ANALOG 817

20

21.

22.

24.

25.

26.
27.

28.

33.

34,

3s.

Giymon. u. L., “Applicmim{ of the Finite Flement Method for Simulation of Surfuce
Water Transport Problems,” Institute of Water Resources, University of Alaska,
Riport No. IWR 21, College, Alaska. June, 1972

Ikenouchi, M., und Kimura, N., **An Approximate Numerican Solution of the Navier
Stokes Equations by the Galerkin Method,” Finite Elements in Flow Problems, J.
T. Oden, ed., Conference Proceedings, Swansea, Wales, 1974,

Kawahara. M., Yoshimura, N., and Nokagawa, K., ““Analysis of Steady Incompressible
Viscous Flow,"" Finite Elements in Flow Problems, J. T. Gden. ed.. Conference
Proccedings, Swansea; Wales, 1974,

. King, 1. P.. Norton, W. R., and Orlob, G. T., **A Finite Element Solution for

Two-Dimensional Stratified Flow,”” Water Resources Engincers, Inc., Walnut Creek,
Calif., Apr., 1973.

Lardner, T. J., *‘Biots Variational Principle in Heat Conduction,” American Institute

of Acronautics and Astronautics Journal, Vol. 1, 1963, p. 196.
Lomax, H., **Nunierical Solution of Partical Differential Cquations Governing Convec-
tion.” Technical Report, North Atlantic Treaty Organization, Advisery Group for
Aerospace Research and Development, 1970,
Oden, 1. T., Finite Elements of Nonlinear Contirua, McGraw-Hill Book Co., Inc.,
New York, N.Y., 1972,
Oden. J. T, ard Sornogyi. D.. “*Finite Elecment Applications in fluid Dynamics,”™
Journal of ihe Enygincening Mechanics Diwvision, ASCE, Vol. 95. No. EM3. Proc.
Paper 6584, June, 1969, pp. 821-826.
Oden, 3. T., et al., eds., Fimte Element Methods in Flow Problems. Proceedings,
of the Inteiiational Sympasitan on Finite Element Methods in Flow Problemns, Swansea,
Wales, Jan., 1972.

lson, M. D, “*A Variational Finite Element Methad for Two Dimensional Steady
Viscous Flows,”" Proceedings of McGHI-EIC Conference on Fiuite Element Methods
in Civil Engincering, Montreai, Canada, June 1-2, 1972,

. Ratkowsky, D. A.. and Rotem, Z., **Viscous Flow in a Rectangular Cut,”” Physics

of Fluids, Vol. 11, 1968, p. 2761.

. Schhiciing, H.. Boundary Layer Theory, McGraw-Hill Book Co.. Inc., New York,

N.Y., 1968.

. Skiba, E.. Unny, T. E., and Weaver, D. S.. **A Finite Elemant Solution for a Class

of Two Dimensional Viscous Fluid Dynamics Problems,* Computer Aided Engineering,
Proccedings of a Symposium, University of Watcrloo, Waterloo, Ontario, Canada,
1971. .

Tong, P., "*The Finite Element Method for Fluid Flow,” Paper U.S. 5-4, Japan-United
States Seminar on Matrix Metheds of Structural Analysis and Design, Tokyo, Japan,
Aug., 1969,

Wirtz, R. A., Rriggs, D. G., and Chen, C. F., “*Physical and Numerica! Experiments

on Layered Cenvection in a Density Stratified Fluid,” Geophysical Fluid Dynamics, -

Vol. 3, 1962, np. 265-288.

Zienkiewicz, G. C., The Finite Elcment Method ir. Engincering Science. McGraw-Hill
Book Co. Ltd., London, England, 1971.

Appenoix I1.~-NoTtanon

The following symbols are used in this paper:

A,A; = celement area and area of subregion i, respectiveiy;
a,.b.c, = element geometry coefficients;
Co.Cx,Cz
Cxx,Cxz,Czz = coefficient matrices for shape functions and first and
second derivatives;
D|,D, = operator notation for governing equations;
d,e,f = column vectors of eleinent integrable functions;

E,Eo = turbulent density eddy viscosity and reference vaiues;

W, W,
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ith global and eiemcent algebraic equations at nth iteration

for vorticity equations;

ith global and elemient algebraic equation at nth iteration
for conservation equation;

Grashof number;

gravitational cocfficient;

maximum cavity depth;

indices;

cavity length;

element arca coordinates;

maximum number of iterations;

element shape functions;

boundary condition vector for vorticity element stiffness
eguations;

Prandt] number;

pressure;

boundary condition vector for conservation clement |

stiffness equations;

Reynolds number;

Raleigh number;

residual for ith cquation;

ith global slope matrix at nthiteration for vorticity equation:
temperature;

reference, left wall and right wall temperatures;

ith global slope matrix at rth iteration for conservatior
equation;

reference velocities;

horizontal and vertica! velocities;

weight function;

rectangular Cartesian coordinates;

diffusivity for conservaticn quantity ¢;

molecular thermal difusivity at reference density p,:
volumetric expansion coefficient;

error limit;

eddy viscosity and reference value;

element stiffness matrices;

density and reference value;

density at the cavity top and bottom;

thermal diffusion time;

surface shear stress;

conservation quantity and series represeniation;

vectors of ¢ and perturbation quantities at nth iteration;
streamfunction and its series reprasentation; and
vectors of ¢ and perturbation quantities at nth iteratios:.

*
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THE CAICUIUS OF VARIATICNS

1.1 Introduction

In the study of elementary differeantial calculué we investigate
how certain quantities say 'f', varies asg another quantity, say 'x°
is altered when there ié a relationship between x and . We say thutb
{ is a function of x, f’u f(x), if there is some rule whereby we
éan calculate the value of ¢ if we knmow the value of x. One particular
investigation we make is into the determination of the maximum and
minimum values '@' mey have and the conditions for finding these
values,

In the caleculus of variations we consider a similar type of
problem, we study how a quéntity called a 'functional' varies as we
change the function £ = f{x) to another function, say ¢ = o (x),
and in pérticular try to find the function which givesthe functiocnal
an extremum (maximum or minimum) value. |

A functional is a quantity whose value depends upon a function,

for example
1

F = f f(x) dax (1;1)

0

is a simple functional, The value of the definité integral will
depend upon wﬁich function §(x) we chose. We shall be concerned with
integrals in the form of definite integrals in which the integrand
may not only include the function.f,but galso its derivatives., 4
typical problem might be to find the function f(x) which gives

Lo, _ ,
P f {(é-%) -2af} ax (1,2)
o dx
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a minimum value, and also satisfies some specified conditions at x = O
and x = L, Further restrictions will also be placed upon the range of
functions out of which f(x) is to be selected, these generally will
require that f is a continuous function of x and that some of its
derivatives.are also continuous, The range of famctions which satisfy
the boundary conditions and have the required degree of continuity
we call'admissible' functions.

ﬁe will denote a functional by F({) if £ is the required function.
If more than one function is required we list these in the parenthesis,
e.g. F(u,v,w) means-that we will be looking for functions u, v and w,
The integrand we write as I( ), and iﬁ the parenthesis we write much
of the required functions and their derivatives as appear in the
integrand aﬂd the independent variables. Thus the functional cited

above ~(1.2)- would be written as

: a°r
P(f) = (£, =< , x) ax
() jo (£, £5 0.
or L | (1.3)
F(f) = fo I(£, £, %)

whe;e the suffix notation indicates differentiation

2

Hy

. _af a
&Y =35 i;x = . , etc,

The first problem we shall consider is the determination of the
function that gives some integral which depends upon f and fx a

maximum, minimum or more gererally a stationary value,
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1.2 Functionals of the form F(f) =J I(r, Ly x)dx,
X
1

Yet us try to find the function £(x) that has the values £y ==‘.{"(x1‘)
at x = x4 a.ndi‘2 = f(xz) at x = X, and gives a stationary wvalue to
the functional. . x

2
w8 = [ (e, &, Oax (1.5)

. x-
1

We will use the symbol [ to denote the function that givés the
stationary value to this functional. Any other function which passes
through the points (f1, x1) and (ﬁz, x2) can be put in the form f(x)
+ T(x), where n(x) is zero at x = x, and X = x2,(figure (1.1).

The expression,

n(x, ¢) = £(x) + ¢ n(x) o (1.6)

'will represent a series of curves each of which passes through the
specified end points. We limit ourselves to functions £(x) and n(x)
which are continuous in the interval x1~< x < Koo

n(x) the above expression h(x, ¢) will give a family of curves, and

For each function

all the possible such families will contain £(x) when ¢ is zero,‘ If

we now evaluate the functional F(f) we know that this will be an
extremum when ¢ = O and its‘value will then be F(y). The value of

F(f) will vary with = and we know, from the definition that f extremizes

~ the functional, that F(f) will be an extremum with respect to » when

€ = Oo
Now . xg L .
. F(h) = J. I(n, h, x)ax (1.7
X
'1 - .
and
h f S
ah %; + & %E = fx'* e M, (1,8)‘



If we differentiate (1,7) with respect to ¢,

. X

N

ax k h I dh 1 OB
% & £ (5% 3= +*c‘h Fe o (1.9)-

o
M
Ko

(Note that x does not vary).

The second term arises 2s not only does I change with variations

~in h(x) but also will variations in di/dx (o¥ hx) .

From h = £+ em and hi = fx + eM, (j.10)
we find
dh
dh X
be = n and be = T]x (1.11)
Whence - x2 ‘
dFﬁuz N f oI
= | G g e (1.12)
Xy x

Integrating the second term in the right hand side by parts we

get
2 X5
dF(h) I d,dI dI
de = J B3 " - olgpontax + 3= n (1.13)
X X X x1

The last term in this expression is zero as n(x) is zero at both

, limits X = x4 and X = x We thus find,

2.
X, b .
dr(h oI a ,0I
—5§—1=x (3E - ) o (1.14)

For a stationary value of F(f) this equation must be zero, and

this occurs when ¢ = 0 and h =‘§i. We thus have,

Xy

- {---a‘ix-(gg)}naxr_-o (1.15)
€=0 I1 ) '

Fn)

de

mhis is to be true for all the admissible functions M, that is fof

a2ll functions h{x) which are zero for x,= X and X = X, and are contin-



wous in the interval X, < x< xz.

The Basic Lemma of the Calculus of Variations

wIt x,
L' @(x) () dax = 0 , (1.16)

1
for all admissible.functions M(x) then o(x) = 0 throughout the intervai."

Let o(x) not be zero at some point x = X. Since all the necessary
functions are assumed to be continuous, o(x) will have the same sign
in small interval a = x - § < x< X+ ¥ = b. TFor instance

(figure 1.2) the function

.nx) =0 , x<a , x>0b '
(1,17)

nW(x) = (x-a.)?(x-b)2 ,a<x<b.
will be continuous and have & continuous derivative; and is thus
admissible. Since in the interval a< x< b , N(x) is essentially

positive the integral,
x

2 b o ’
J et n@e « [ o) a0x)ex (1.18)
X1 a

will not be zero, which contradicts our initial condition., Hence
a(x) cannot have any value at any point in the region considered,
A similar argument applies if we require the nth derivative of .
n(x) to be continuous, but in this case we use
nMx) = 0 , x<a, x>b,
] ~ (1.19)
n(x) = (ea)™*(xp)™! |, acx<y
since this will give the reqliired continuity,
Thus, the function f"{x) which gives a stationary value for 7 -

equation (1.15) = is such that satisfies o(x) 2 0 or,
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1

d ,dI - .
..-&-(M_x) = 0 (1.20)

2

throughout the interval x, < x< X,

Equation (1.20) is called the Fuler-Lagrange equation and

represents & second order differential equation.

Example 1.1 Find the condition that
- . 2 |
arf ar 2
F(£) = L (A + BED + o + 2 ax (a)

should be stationary, subjected to £(1) = 0 , £(o) = 0

We have, ,
1= aEH &)+ cf wnf (b)
Thus, ‘
L | sceed . R o af 4B ()
£ fx X

Whence, equation (1.26) becomes, -

a ol ) |
bf—dxf‘bfx)“' Xf+D-2AL, =0 (a)
2
or 24 g_g -2L-D = 0 (e)
ax

~with boundary conditions f =0 at x =0, x = 1,

Example 1,2 The deflection of a strip of film, with film tension

T, under normal pressure p is such that it extremizes the following

functional

L ) .
Pw) = | (3D -mw)ax (2)
’ (o)

where w is the deflection and is zero at the ends of the interval,



=1

Now, 2
T ,dw
I = 5() - (v)
bI pI_
ow =P bwy = Tw (C)

Whence the Buler-Lagrange condition gives

d .
- =P (TW) = 0 (d)
or
2 ) . .
d"w h:] . '
+ in =- 0 (e)
dx2 P
\'-L'\Lv'v&\

The solutioniof this equa{ion is,

: 2
W o= - g% x“ + Ax + B | (£)

and since w(o) = 0, w(L) = 0"

e 2 -
v oo Zx (L - x) | | (&)
_ %o ,
1.3 Functionals of the Form FP(f) = £ I(f, P S x) dx

1

We consider now. functionals whose value depends upon the nature
. ") -
of a function andits firstiderivatives

__12

CF(f) = [ I(f, L0 £ %) dax (1.21)
’ X .
1

The required value is the function f(x) that gives a stationary value

to this function and has specified values f,, £, at x = x,, %,, and

2

also specified values for the first derivative, f£ (x,) = fx1 and
f~x(x2) = fx2 V

We proceed as btefore, denoting the energizing function by g(x), and
considering functions h(x) = £{x) + en(x) . In this it is necessary

that N(x) is zero at x = x, and % = X, and that the first derivative

ba
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N(x) is zero at x = x and X = x, and that the first derivative ﬂx(x)

1 2
is also zero at the ends of the interval (figure 1.3). Noting that,

h = h+ G'n ] %% = T]
h
h = f_ + eN Z.')—---3-c-=’f] (1.22)
x X x ! de x ’ ‘
dh
XX
h = f:xxar N oo = ﬂxx

we find that the value of a functional F(h) is

X

F(h) =

M

I(n, hy, H_, x)ax (1.23)
]

and this is stationary with respect to e when ¢ = 0, We have

2 \ .
PP [ @aLdh, Al oy a1 bhxx)dx
de . dh de bh 5e " tn_ Oe =

3{1 XX

*a

I DI m:

= [ GRm+ N )ax (1.23)
%, o, x

and since when ¢ = 0 , f(x) = #(x),

X5
Pj dT ' : -
5 -] e ePon) e = o (1.24)
e=0 X1 X XX -

We now integrate the second term by parté once, and the third

term by parts twice, i.e,

: X, X2
LT N L Y- TP
i = X4 1
X
2 X 2
ek M TaRl [ 4 £ D omax (1.25)
l ‘ x4 x1

We can write (1.24) ag



2 9 22
DT o)
L [ 3% - &6t ) 2<bf Nnaxs - <--~ Ml a
1 : b
xo .
dI =
o 'S-f:‘_ ‘nx = 0 ("..26)
4

But the admissible functiomst(x) are wuch that N(x) = 0 and
’ﬂx(x) = 0at x = }f1

are zero, The integral term is zero for all T(x), hence by the Basic

and x = X,, so that all the limit terna in (1.26)

Lemma,

e+ (bf ) = 0 (1.27)

This is the Euler equation corresponding to functionzl (1.21)
and represents a fourth order differential equation for the function

't

Example 1,3 Find the condition that,

L 2 2

BY ,dw k 2 .
[ 5 (3 +3v -pv} d ~(a)
0 dx

shall be a minimum. The function w and its derivative having specified

values at x = o and x'= L.

I EI dw) +_I_2c_w2 . pw ‘ (v)
Thus
dI bl vI w
v = =P o 5 = 0, g = Bl (e)
. XX dx
whence,
CoEmEH swap = 0 ()
2 dx2 .
dx

which is the equilibrium equation for a beam on elastic foundation.
N ,..\\ "l'\ N \"I ¢ \'-‘ L]
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1.4 Functicnals involving derivatives up to the n-th degree.

Let us consider now the problem of finding the condition that the

function f(x) gives a stationary value to the functional

X2
F(f) = j I(f) f0 £00 < v o o fe(n)? x) dx (1.28)
X
1
‘ a's :
where f denotes —= . The function f and its first (n-1)
x(n) o ke

derivatives have some specified values at the limits x = x, and

X = X,. The admissible functions can again be written in the form,

-

Bx) = (%) + e N(x) (1.29)

£(x) being the required function giving the stationary value to
F(£), but now N(x) and its first(n-1) derivatives must be zero at the

ends of the interval of integration., We.proceed as before and find,

2
a(h) [ @I2L I h op My NS ST C) I
T = N de Y30 e TOh_ me T ovcetUy de =
X, x plo x(n)
(1.30)
and with ¢ = 0 (that is h = f, bx = fx, etc),
I : ‘»I
( Mt M+ T Mg et 57 = 7 Ydx = 0
£ f f, 2L, (n) x(n)
(1,31)

‘We now integrate the various terms by parts until in each case

the second term in the integrand becomes . Thus a typical term

T Y. ‘ ‘1
a2 4 [ d al
=D i = | E— - e,
;[‘b-fx(j) X( J) bfx( j) X( 3-1) dx bfx( j) X( J~2) .
A \ 17_
+ E? D s (IS 1y '
2853 | axd1 ¥oy(g) ¥ (1.32)
1}_:‘. \

X

2
3
+ (-1)3 ‘i A,y S dx
o sy

Wite
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All the terms to be evaluated at the limits are zero since they all
include factors of M or its first n-1 derivatives, The remaining -
integrals each contain the f;ctor 1(x)3 and since n(x) is arbitrary,
apart from its continuity conditions, the condition fpr stationary

vzlue becomes,

2 s ad
5T d HT - d oL a I
O o _~.(“.‘) + =3 (““"#‘ veo + (_1)3 —— ( )

b 08 " ad Dy axd (g
d N
+ (-1 = (g;fg;—- ) = 0 (1.33)
dx" “x(n) . :

"'his condition represents, in most cases, a differential equation of

order 2n.

Example 1.4 Find the condition that

X
2
4e 2 202 2
0 A %12 Bacr ar 2
#lg) = | 1505 + X —3) + 0@ + D+ B ax (a)
%4 dx ax :

£hall be a minimumn, £ and its first three derivatives having specified

values at X = Xy X

20
DL _ oor.p dT e df | AL _ L
pf T ot O dx * »f_ % 2
X . dx
(b)
2l o S At
et S
x(3) (4) dx

Whence the Fuler equation becomes,
2. 8

a 4 e . .
2D3f+E~2C—~§ +Bi‘f-+A§-§ = 0 ()
- dx” ax dx




1.5 Boundary Conditions

In the previous section'we have considered that the required
function, and its first n-1 derivatives were specified at each end of

the region of integration. Let us look now at the pfoblem: tfind
A

the function f(x) which gives a stationary value to’
x

2
P9 = [ 18 g, oax (1.34)
%
1
with the condition f(x1) = I, and the value of £(x) at X, being

unspecified, If we proceed as before the admissible function M(x)
must be such that ﬂ(x1) = 0, but there is no restriction placed upon

ﬂ(xz). As before we find (equation (1.13) with ¢ = O, whence f = ¢).
x ,

2

o
| {%n-%(ﬁI—)n}dX+ 55 1 =0 (1.35)
X, x x x, '

. The admissible functions include those for which n(xz) = 0,
so that we can say that the integral term must be zero for all admiss-

ible functions with n(x) = 0 at x = x4, and X = X,, 8o that the

condition
JoR d dI )

sti2l holds., ¥%u% the range of admissible functions also includes

functions 7M(x) which are not zero at x = X,y Whence if

2L 4 -0 ... (1.37)
b'q
X5
we mpst have
»1 :
.bf = 0 at x =.x2
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Thus of all the contimuous functions that pass through f(x1) = £

the one that givez a stationary value to F(f) will satisfy the differ-
ential equation (1.36) and also the boﬁndary condition (1.38) at

X = X,. The boundary condition (1.38) ia called the 'natural boundary
condition' of the problem. ‘

Note that by adding terms to the wvariational functiénal it is
possible to alter the 'natural' Loundary conditions but the Euler
equation will remain the same. Let usz add the functions H1 valid
ét X

and I, valid at x, to the functional (1.7).

1 2 2

x’)
F(h) = I I(h, h, x)dx + Hz(’f) + H1(f) (1.39)
<4 L o

If we differentiate (1.39) with respect to ¢ and substituted by (1.6),

ve obtain
*2
| i vH : d
ar oI 4 dI R S 2L M
e = ‘- GF =& dr- ) M dx+ 37 +bfl ““’lb;- YR
€ =0 ):1 X X X2 ' X ; 1

Thus the Buler equation is the same as obtained tefore but

the natural boundary conditions are,

I OH , .
or 2 Y 2 Y
SE - .y = 0 at Xy s 3T 3F S 0 at X, (1.41)
b's x .
Example 1.5 Find fhe fanection which extremises
. 1 df 2 ~ .. P . - o
re) = [ 1wt & ()

(o]

and has the value f = 1 at x = o,
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The Euler-Lagrange condition gives

-3 (2 + 85=3 = 0 (®)
or
2
a°f 3
——.—_-4f = - (c)
dx2 2

.

o
4.

thepsolution of which is

f=Asin&+Bcost-—g- , (a)

The specified boundary condition is f(o) = 1, whence
/ .

)

B = '181 . ' (e)

Since f("l) was not specified the function f(x) must satisfy

the natural ‘boundary condition -

N = 0 = 2% (£)
bfx X=1 bx x=1
whence
af 11
dxx=1=2Acos2-4sin2=O (g‘)
. 11
e A = 8 tan 2
giving,
f:%(11tan251nbc+11cos2x-3) (n)

If no restrictions had been placed upon the value of n(x) at the
ends of the interval we can see that n(x) would be-arbitrary, subject
only to its being continuous in the interval. By chaosing first the
we would

set of functions N(x) such that N(x) = 0 at x = x,, x

1? 72
establish the Euler-Lagrange condition, by choosing the set of

-functions M(x) such that n(x1) = 0 we would establish the natural
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boundary conditiors ¢t x = Xps and by choosing the set of functions
such that ‘n(xz) = 0 we would establish similar boundary conditions
at X = Xyo
Example 1.6 Find the function f(y) that extremizes the functional of
example 1,5, if no boundary conditions at Xy X, are given.,

From the Eulefu-Lagrange condition we tind, as before
qusian+Bcos2x-% (a)

Since no restrictions have been placed upon f(o) or "f{1) the
extremizing function will satisfy the natural boundary conditions at

x=0and.x=1,icec

df

o o= 0 atx=0,1 (v)

.These conditions giire A =0, B=0, whence

is the required function.

We can also investigate the other types of functionals when less
restrictive conditions are imposed at the ends of the interval of

integration. Thus for the functional
x

2 . .
F(f) = Ll(f, e £, X)ax (1.42)
; _ N

we obtain the expression ‘
X2 2 v( 12 x2
J'fb_. - S SN SR SRR -3 SR SR Y B ‘TM 1 -

Xy 0.f  ax bJc“x dx bfxx ) o x dx b_fxx ’\lx_ o, x

' 1 =i
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If no restriction, apart from the continuity of.f:and.fx ; is placed

on r(x), and hence on M(x), we can establish the Euler-Lagrange
conditions by taking the set of functions N(x) with ﬂ(x1) = nx(x1)

= n(xz) = M (x,) = 0. By choosing the set of functions n(x) such

that three out of the four conditions above are satisfied we establish

the natural boundary conditions one at the time. They are,

2T 4 ¥
e, @ o - © X=X, X=X
(1.44)
DI '
bfm{:O x=x1, x=x2

We can carry out a similar operation for functionals including
higher order derivatives., We. can see by inspection that the first set
of natural boundary conditions can be obtained’from the Euler-Lagrange
condition by taking the derivatives with respect to x and reducing thééé
derivatives by one order, The second set.is obtained by reducing these

by one more order and so on,

Example 1.7 Firnd the natural boundary conditions for the functional

X, . .
2~ 2 '
; d i 4 4T
() = [ (S +4 G tax (a)
Xy dx
/\.‘
The Euler-Lagrange condition 1s ,
J
4 2 T 4 i
d4 :(bth ) + d 2 (b?‘ = 0 (b) b
ax’ “Tx(4). ax XX » €
Whence the natural boundary conditions are
3 7 3 '
_‘1_3..1..01_ +%-£.L = 0 or—%+A-d—-§=0, on X = X,,X, (c)
£x(4) , ax’ dx

Y

also




—%%—-».t-'—?\l—n 0 or g—-%-;-!&%uo,onx:x.', Xy (a)
ax x(4) Sty dx ax g :
similarly
5 4
Emg = 0 and.g;§ = 0 onX=xXy, X, (e)
dx T odx

It will be noticed that all the natural boundary conditiqns of a
problem involve derivatives of the same order as, or of higher order
thén, the highest order of the derivatives in the functionals, The
boundary conditions which may be specified for any particular problem
can then be spiit into two groups. If the functional contains ‘' .-
nth order derivatives, then boundary conditious relating,only to
derivatives up to the order n-1 are called essential, and those
relating to higher order derivatives supplementary. If we have some
process for finding the stationary value of a funciional by p§ipg
trial functions then these trial functions must be adﬁiésible'functions
and hence satisfy an} specified essential boundary éondit;on; In
physical problems other boundary conditions will in fact relate to
the natural boundary conditions, and these need not be ég%iéfied by
the trial functions. When the functions giving the fuqctiqnal its
stationary value is obtained; it wili automatically saﬁisfy these

boundary conditions.

1.6 Punctionals with Several Devendent Varidbles

The procedure used in the eaxiier sections of this chapter for
establishing the conditions for a stationary value for a functional
can easily be extended to the case of functicnals with several

dependent variables. We will only consider the simplest case where
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the functional involves two dependent va.riables,/,ct‘(x) and ‘g(x) and

<

their first derivatives,

*a

F(f’ g) = L‘ I(f1 'fx, &y gx x)dx

1

s

(1,45)

where the functions f and g are to have the values f,, g1,,~f2, g’y

resgpectively at x = X49 X5o The functions passing through (xi_ f1) and

(3:2 1'2) can be put in the form

JHx) = f(x) + e n(x)

- (1.46)

with 'n(x_i) = n(xz) = 0, as before. The functions passing through

(x.g 1) and (x2 5;2) can likewise be put in the form

W) =g () 4 ((x)

with g(x1) - g(xz) = 0.

_;_ﬁ_,(jji,? ),.___, R

The fact that we have used the same parameter ¢ does not imply

that a given g can lead to a given f, or vice versa, since M anéd (

are arbitrary (subjected to satisfying the conditions at the end of

the interval and their being continuous).

In the above we use f,& (x) to denote the actual functions

vhich give the stationary value to F, We thus see that for all the

possible values of ¢, the one that gives the minimum value to the

F(f,g) will be e

Now

P(h, X)

0, i.,e, as before at ¢ = O we have

(1.48)

(1.49)
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’

whence e ’
a(ny  foaran ot P arax ar By
de Y dh de +b}ix e T kde k, de )

1

Putting this

bﬁx

an ok X
55 =T _8? & T\x 'ode & e = gx (1051)

de
and setting'h(x)) £(x), k(x) =g(x) since ¢ = 0, we obtain -

‘ 3 dI L
i .2 SRR Y IR o SR (1.52)

Integrating by parts the second and fourth terms in this expression

we oblain
x X2 X2
2L . 4 DI dL 4 X . . |aL DI
J;{(b o) Tt Ggmmdg) UET Re Mt 3g © (1.53)
' 1 S

The 1limit terms are zero since T(x), £(x) are zero at the limits
and since M and [ are arbitrary each of the'boundary terms in the

integral must be zero,

oI

——

3
f T oax

1
(@]

EDI; b " H e = O (1.54) -
Similar terms‘would_be;obtainedlif:there were more dgpendent
functions in the functional, The Euler Lagrange conditions for
functional with higher order derivatives would apply for each of the
dependent variables.
/ Finally the natural boundary conditions for functionals with
two or more dependenf variables can be established as in the case of

only one dependent variable. They will be found tq have exactly the

same form,
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Ziample 1.8 Find the condition that the functional
x

2 e 2 2 - )
P(r,6) = [ TG0 + D + EH + 4 Flx (a)
X
1

shall be sfationary. f and g being specified at x = X, and x = X, .

Here,
a2 .2 L2
I = ;; +8, + £ g + 4T2-+ g (v)
whence
) S 2L _ . 2L FR.) SO
pf = Oy pr =t Mt g v 3t %8 pg L
(c)
The Buler-Lagrange conditions thus give
2 2 2. 2
28t 88 e -0, $L. 288 22 0 ()
dx dx dx dx
1.7 Functionals with two or more Tndependent Variables
Consider the functional,
¥ ' )
P = [[1(s 5, £, x, y)ax ay (1,55)
D _ J

where the integratior is carried out over some region D, and @ has

specified values fé(x,y) at all points of the boundary or the

region s(x,y). The function £(x,y) is to be continuous (figure 1.4).
.As before we denote by f the function which gives a stationary

value to this functional. Then any function such that satisfies f =

¢S on the boundary can be put in the form
Hx,y) = £(x,5) + e (%) (1.56)

We know that whatever function we choose for M, the functional F(f)

will be stationary for ¢ = 0, i.e.
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dh dh

aF - aran ar S ot My
= ,U nlide * dh de ch 1 Jax dy (1.58)

. dh :
Using-%% = T , g;? = Ty 7ﬂ; = ny , and. putting e = O , so that

£(x,y) = £(x,y)

”{Mﬂ+f'ﬂ+,1yﬂ]dxdy==0 ‘ (1.59)

Integrating by parts the wecond and third term we obtain {Green's
theorem)

r bf M, dkdy = Jj ;; ( ) N dxdy + I S?- n dy
(1.60)

jj -1, axay

” by( )‘ndxd S-?-:%‘ﬂdx

The equation (1.59) can now be wriiten after changing variables x, y

" to & on the boundary as

I 8- G0 - @01 v s [QEE - 21w (1)
y

» S
The second term, that is the line integral around the boundary in

(1.61) is zero since T is zero on the boundary. This leads to the

conclusion that, since 1 is arbitrary,

oI o dI 1 P ;
TeomE) s @) =0 (1.62)
X y

Problems involving higher order derivatives can be treated in a like

" manner., Thus for functionals of the form, for instance,
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Y2

. ‘
F(w) = JJJ I(w, Wer Wy Wy W Wyx’ W W oyt gt wzz)dxdtdz

(1.63)

the Buler condition is

bl _ (b oL, 2 2l b 2L, 22 o1 32 a1 a2 a1
v Ox ?)JC oy g;_wy bz dW bx2 wax dxdy way §xbz waz
PR SOUS SR S SR St A
byz bwyy dX0Z hwyz bz2 bwzz

Example 1.9 Find the condition for stationary of

-2 2 2 2 -
i) - [ E[ED P (b ><” DY) + 2(1- uxm y
. D dx Oy
- pw } dxdy - (a)
Here,
B 2 2 27}
I = §{wxx + W 2u W, L 2(1-u)wxy} pw (v)
so that,
dI 2 bl
= = =D = B(w_ +uw ) = B(w _+pw_)
ow ’ wax xx yy'? bwyy vy xx
\ ' (e)
Sw = 2B(1-u) . fw
Vo v xy
Whence '
2 2 ,
-p+B{-— (W, +u W )+“(Wyy+“wﬁ)+2(1'“)'x—b}'( Vo))

bx by

()

=0
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4 4 4 .
Dug, p B, 28 2 oo (o)
—— 'D x@ . 0x by dy
Exampie 1.10 Considexr the functional
. 2 2
1 of of.
re) = 3 [ 1@ + & ey (a)
Here
1 2 , 2
thus,
dT 01 O1
. = 0 9 -~=- = T v = = f (C)
et t-i‘x b bfy y
The Euler-Lagrange condition is,
o o
2 )+ () = 0 (a)
which is the Laplace equation,
2 2
Ox dy
’ - . r_,—,
Note that for this case the boundary term {equation (1.61)) is {\CJ“
\71)4/.%_,,,‘/.’,., (3]

I (bf ds bf ds) nds = I (Fegs - f, ) M S (£)
S

This gives (figure 1.5) the following natural boundary condition
term,

i
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1.8 Fupctionals with several Dependent and Independent Variables,

Let us now consider the case of a functional which depends on two
separate functions £ and E‘and‘apﬁlies on a domain D, function of x and

Y.

F(s, ) = HD I, T4 20 8 G 60 X, ¥) Axdy  (1.65)

We can consider a f and g function as in 1.6 and obtain for the

stationary condition

4 du - a ok
aF I4 ooy a
& [[eaian, otk b Ty arde, a1 R e S

D de . e "®n & t¥n E TOkde YRR G TRk ey
(1.66)
which gives for ¢ = 0
dF Pl dI bL "
T = = e R vl LI c = e+ 7, t;}dxy
D de|__ JJD df Of, x bf Sx sy
| (1.67)
Integrating by parts we obtain, )
. jH-n-‘—— & - % & )M (5 -R6D -3 <gy)}gjmy

S[EEE g H EEED e oo

As M and ( are zero on S boundary we have the following two Euler

equations

DL _ b DIy _ D (AL - '

pf~3x (&) ~oy () = O (1.69)
x - y

L d (dIy d (BL
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Example 1.11 Let us consider the following two dimensional functiond,

’\*'/‘ __(‘ lL ‘,-ul:-urj'u'l"‘ "'f"

which applles for the internal energy of a plane stress structure,

. 2
» bv du dv
F(f"‘,'”21., zj Qe ) ¢ 2n CHED. L;B-y->+<-b—;>
»2 B30 1) ey (a)

where h is the thickmess of the plate, E the modulus ¢f elasticity, u

the Poisson's ratio and u, v the displacements in x, y directions.

We have
BRSSP Y S Eh |
== 0, ) = ( +2uv ),
du ox bux 2(1_11'2) zuxx yx
d ,dI Eh
2 @& (), + )]
Oy bluy 2(1#2 L Xy
()
I E |
B0 ) - = [ e+ )|
2( 1)
D Eh
2v 2
> (b ) 2(1-u2) ( vt uuxy)
Which gives the following Euler's equations,
Eh (3-1) vy
— 1 = 0
-1_“2{uxx+uvyx+ 3 (uyy+\vxy,, \
. (e)
Eh (1)
S { v +Fu_+ (v, +u )} = 0
1'11'2 xx I%y 2 xx yX

These are the equilibrium equations for a two dimensional plane stress
elastic solid written in terms of displacements. In terms of stresses

—p ' they are,

. wo\bw& \r)
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bx dy - oy 0x
where
(u, + pv, ) o, = s (v + pu) '1'=—(——5(E w4 V)
Ox = 2 \Ux * BV Oy 3 \Vy + Wi/ 2(1+u )y 7 x

T8

1.9 The Variational Wotation

We wil) now define the concept of a ‘variation' in -order to
~N
simplify the notation we have been using. Consider the case of the

simple functional,

*5

F(f) = f I(f,,,f.x; x) dx (1.70)
*1

with an extremun for f.
The new function h =f + ¢ T will be written as h =f + 6f

where 8@ is called the 'variation' of f (§f = ¢7). Thus

E = f + 8f

and i _ (1.71)
hx = f:!c + Gf-x‘

as £ (68) = & (1) =6 P = 5D

The quantities 61, 6fx are arbitrary in the interval x, < x< Xpe
" The functional F can be expanded in the vicinitj of the extremum

solution £ in function of ¢ .

F(h) = F(f) ++—| e+ 1 4F , €2 4 .ue (1.72)
. de 2t , 2
a~ e=0 de e=0 '




——
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The total increment of F function is

dF 1 %‘ 2 I
AF = "a—G" .2'—"—5 € “' ¢ 9 , (‘073)
C=° . de e¢=0

The first term on the right hand side is defined as the first order
increment orfirst variation of P; the =eccnd as the second order incre-

ment -or -second variation, etec., They are written as

AF = 8P 4 37'62F 4+ eoo ) (1.74)

The first order increment can be written (equation 1,12, with
e l=: 0) as

X X

2
ar dI
5F=dee=oe =¢:J(bfﬂ T])dx f ( 6f+bf 6f)dx

as x does not vary., Finally,

>
5P . 5-?.5f+b 81 (1.75)

Equation (1.75) shows that a variation can be applied to a
functional in the same form as the differential of calculus, once the
dependent variables are identified. ~

Although the variational notation and the notation used previously
are equivalent, the former is easier to use., For instance, to obtain

the Euler equation for the above functional we can do,

2 2
[} oI
§F = r §I dX = J(s—f- 6§f + hf §f )chc (1.76)
x1 x1

which integrating by parts, gives
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x, x,
»I 4 oI , DI _ oy
§F = i‘-g,mdx(bf)]&lfdx-[{ifbf ] = 0 (1.717)
X - X - X
1 x,
Thus the Euler condition is
ol 4 (2ly _ (1.78)

oF T ax
Let us now consider the case of a function of two variables

{equation 1.45)
. x

2
F(f.’ g) = j I(f, g, fx! ths x) dx (1.79)
*4
with the new functions,
h(x) = £(x) + M(x) and h = f .+ en
' (1.80)

k(x) = g(x) +eC(x) and k= g + el

Ve can expend F in the proximity of f, g solution, assuming x is

not varied and the limits are fixed, Thus,
. .
£=0 " de” |e=0
or AF = 5F+§1,-62F+...
The first order increment is (equation 1.52)
dr dF bF OF dF
6F = — e =31 MNe T\e+~'§e+—‘C€ =
de e=0 £ bf dg E-gx
(1.82)
Q_F,'_ s bF bF

Integrating by parts we will obtain the two Euler equations
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g
, I P _ 4 (L
¥ = xf 6 - % bf =) os t e g b8 ) &
1
. ., (1.83)
2L DL |
+ or 6f + de, bg
'x_' 11

It is interesting to generalize the variational notation t'o a

fun~tion of 'n' variables, such as

r(e, e L) (1.84)

. 'The increment of this functional is now defined as

AF = 6F+-2‘-1§'62«F + oo (1’85)
where
bp = ) Last T - seE) = ) ) 5 6575
»‘; df 51 bf ~

The secoud increment for a functional likej l;(fj, f2, x)dx is,

4oy | 4o or O om MM
de ‘de de hy de bh2 €
ap Oy 2 5 2F h1 dhy,  \%p Ohy 2
= ——2 ('6';") + 2 (b bG) z\be) (1'86)
b,h'1 b‘h,lbh2 ?shz
When ¢ = O we have,
a ,aF 3P 2 2P zst o '
T @) = 2 M Mt o T (1.87)
B 0 " e 1 vipt, M N2 ¥ bf22 2 |
Thus ‘
' )
8%F - 9-2%51*12+ 2-DE_gsr6r bzl?-afzz (1.88)



_fxample 1,12 Using the variationmal notation, deduce the Euler

.equation of the following functional,
: "\ :
2.2 2, 2 2.2
Poa [[(QD v 2B + @D -ap)ady  (a)
bv2 dxd byz

which can be written

F = F(JQ:X’ fxy’ fyy" £, X, Y)- (b)
Thu#,
| > » OF AP
EF & o DL 5- 5 c
S T 6fxx+tfxy6 xy+bfy_y6fyy+h £ ( )
- ” (2 B6,, + 46,58, + & SE - 2mrlaxdy (a)

Integrating this last equation by parts and neglecting the

boundary terms, whichvare going to be satisfied, we obtain

: 4 2 4
§F = ” {29—f+ 4 2L +29—-f-2p1efdxdy (&)
Ox 0x Oy dy
The Euler Lagrange equation is,
4 4 4 :
Ty gy | (1)
Ox dx Oy dy

1.10 Subsidiary Conditions

.In certain cases we want the variations to satisfy, in addition
to the boundary conditions, certain other conditions, called subsidiary,

These conditions can be introduced using Lagrange multipliers.

Let us review briefly what they are before proposing their use in



Some Functionals and their Corresponding

TABIE 1.1

Buler-Lagrange Equations

+ J‘ [H-,(x93’yf)n2'H-2(x9Y’f)n1}1S

FUNCTIONAL EULER-LAGRANGE EQUATIONS BOUNDARY TERMS
"2 ' »I 4 ,dI ar _ Uh
XJF I(x, fx)dx+h2(x,f)‘x 9| - - o @ - 5eel =0
1 X=X, 1=1,2.
X2
) : I _ 4 ,dIy 4 dI b1 i _
I T(xs £y f0f ) 00 + F- e )t Gro) = O (G =+ e b4 =0
x, x A - F X=X,
’ 1
+ hy(x ~Eq(xoL £ )| : S0
%, %, (EI_.__Q__?’__._,_ 1) sr - 0
¢ dx »f 3 - =
pd XX
X=X .
i=1.2
*2
f ‘ = : dI 4 I 4/ DL \n & a bI‘
X f f -oaf“ dx e ~ ¢ o a 1 O
f ) oI d ) dH hH
. d: = - 0 1

n, n, are direction cosines of normal
" to boundary S with respect to
x and vy,




TABLE 1.1 (contd)

FUNCTIONAL

EULER-LAGRANGE EQUATIONS -

BOUNDARY TERMS

II I(X,y,f,g,fx,fy,gk,g&)dA

eLe=L
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functionals, Consider a function f(x,y,z) of which we want to obiain

the stationary value

nf . . 0f o dE
Af = o dx+pody+grdx = 0 (1.89)

subject t& the two constraints

g-!(x y Z) = 0

] {1.90)
gxyz) 2 0
Note that now we will only have one independent variable.
We can differentiate (1.90)
dg1 = 3% dx-«—b dy + Zdz=0
(1 91)
o8, ez o8,

1
(o

dey = Ty Ty Wy G

Let us multiply (1.91) by the unknown parameters Ay X, and add to

(1.89). Then, we obtain
bg1 - g, dgy b2,
(bx+)‘1 3% * 2ax)d"+(by+"1 57 e W

(1.92)

- AF ogy 08,

+-\b"+7\.l 55t Ao To )dz = 0

This gives 3 equations which add 4o {1.90) permitts to determine.!
the five unknowns x, y, 3, X1 Xé - 'The parameters 3 7\2 are known as
Lagrange multipliers, as sometimes they \I':a.n be given a physical meaning.

Finally, we can now write the problem as the ndnimiZatilon‘ of a new

functional

F = f+k1g1 + ngz (1.93)

We can miminize (1.93) with repsasct to x, y, z, 4 and A, and

obtain
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! dx 1 dx 2 dx
dg dg
of 1 2
37 * X1£;-+ Ay 5y 0 (1.94)
af b8 08, o

Example 1,14 Let us find the extreme value of a f(x,y) function.

£(x,y) = x4 y2 42 (a)

subjected to the constraint

g(x,y) = x+y=-1 =0 (v)

The Lagranglian multiplier XA allows to form a new function

F(x,y) = £(x,5) A8{x,¥) (e)
= x2+y2+ 2+ A (x+y-1)
This function ca now be extremized with respect to x, y, \. It gives

bF 0

0x

2x + A

F

5 = F+r o= 0 - (a)

g—Fx=x+y-1=O

The solution of (d) gives,

X = %, v = %, A= -1 (e)
Thus the extremum of f(x,y) under the subsidiary condition (b), is

£(xy) = B2+ BZ42 = 2 (2)
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Let us now assume to have a functional,
' . X
2 . _
Fo= [ Ix, £, £ )ex (1.95)
1
subjected to the subsidiary conditions,

xX
2

Joe | o6lx e = 0 (1.96)
X
1
Using the Lagrange multiplier A we can write a new functional
F 4+ A 7 : £ 1.97)
. We can minimize (1.97) with respect to f, £, and A

§(F+rJ) = O (1.98)
b§F+XJ!5f_+h§FfXJ26f _+Q§F4<XJ261 - 0
df bfx X oA
The first two terms give an Euler eguation

4 -8%;(1+xc)-§f(1+xc) =0 (1.99)

and the third, the condition

J = 0 (1,100)

If the functional gepends on two variables f, g, we have
2 :

P = Jr I(xy.5, g £ &,)dx (1.101)
x * .
-! <

plus a subsidiary condition
X
.2

J = xf 6(x, £, @) L4y 8)dx = O (1.102)
1

The new functioral is,

Pi+rJ 11.103)



1-35

Equation (1.103) should satisfy

5(F+2J) =0 | (1.104)

which gives the following Euler equations

d .

A0 a0 - o (1,109
d > d '

—_— . (T 2G) - = (I A\C = 0

vlus the subsidiary condition J = O,

The same procedure is valid for problems with more variables.
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Finite element simulation of
water circulation in the

North Sea

C. A. Brebbia and P. W. Partridge* -

Department of Civil Engingering, University of Southampton, Southampton S09 SNH, UK
(Recewed February 1976)

The modelling of tidal effects, storn)m surges and currents in large
bodies of water is considered. The sciution is attempted using the
evolutionary shallow water equations with velocities and wave
heights as unknowns. Two finite element simulation models are
described based on six noded triangular elements. Specia!
consideration has been given to the adequacy of the models which
were applied to the North Sea only after extensive tests in channels.
Results for velocities and wave heights are compared and discussed.
A set of conclusions on the applicability and scope of the models is

presented.

Introduction

This paper is concerned with the modelling of tidal
effects, storm surges and current patterns in lurge
bodies of water. The solution is atiempted using the
shallow water equations, which are evolutionary
equations with velocites und wave heighis as
unknowns. They require the initial conditions us well
as the boundary conditions to be known.

The solution of these equations is usually found by
applymg a numerical technique. The method used s of
fundamental importance. In a finite element or fnite
difference approuach the grid size will determine the
type of phenomenon which can be mnvestigated. [n
addition grid size relates to stability criterion and
accuracy in evolutionary problems.

The relinement of a model. though desiruble in
principle, may demand a large number of parameters
which reyuire more evperimental Jdita. These data can
be diflicult to obtain and produce a new type of error
affecting the confidence onc can have in the results.
The analyst usually has to compromise between having
a sophisticated model or a practical one. giving reliuble
results tor the variables under consideration In
additron, large models are expensive to run.

We describe here two finite element models. Both
models kave been developed using six noded triangular
elements, but one is based on an imphicit itegration
scheme, the other in an explicit one (the former aliows
for elements with cuned sudes). Special consideraton
has bezn given to the adequacy of e models und only

*Present address: Federal University, Porto Alegre, Brazil

after extensive tests on channels® were they applied to
North Sea studies. The North Sea is an important and
busy seaway, especially since the discovery of gas and
oil. From the numerical point of view, the areu is well-
conditioned, North Sea topography being regular and
changes i depth gradual. Nevertheless, the modals can
and have been applied to different regions (¢ g., the
Solent in England®. Other models of the North Sea
exist: an explicit finite difference scheme by Heaps?, an
implicit three-node finite clement one by Grotkep* and
a Quartic quadrilateral finite element model by Davis
and Taylor®,

The present model is based on the shallow water
equiations which are vertically averaged versions of
Navier-Stokes equations, and take into consideration
tides, bottom friction, advective forces, coriolis, wind
tangential stresses and atmospheric pressure gradients.

Results for velocities and wave heights in the North
Sca are compared and discussed. A set of conclusions
oun the applicability and scope of the models 1s
presented, indicating areas where further work is
required.

[ '

'

-
Shallow water equations

The evolutionary equations used in marine and certain
types of estuarial modethng are called the shallow
water equations. They are a vertically integrated
version of Nuvier-Stokes mementum equations and
the continuity equation which acts as a constraint
condition. In addition imtial und boundary conditions
have to be fulfilled. The ditferent assumptions invelved
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Y1

Figure ! Geometrical notauon for the shallow water equations

are treated in detail elsewhere?:¢. The two shallow
witer momentuim equations are:

LA A7

i RO VARG RV Rt R
ot e T a, = B o
}
&V, ] A A :
—+VN—+V,—=8
o 'ox, | texy P
where
0 d 1
Bl —QV; - g—i - —(&) T +-1
6-‘1 aX| P P P s (2'
' é ¢ 1 1
PRI N
dxy  éxal\p P e P s
¥, are the averaged velocities:
L ,
4 I=EJ..,. v;dx; (3)

H is the 1o1al depth, H = y + h, where 5 is the wave
height above a certain datum plane and I is the depth
from the dutum 1o the bottom of the sea. x5 is the
coordinate m the vertical direction (Figure {), Q

= 2wsin ¢ is the coriolis cocefficient, ¢ is the lautude
and «w the angular rotation of the earth. g is gravity, p
the water density and p, the atmospheric pressure. The

surfuce and bottom stresses are written as:
1% ’
o == W+ W) =152
. pH ]

g\ ¥ .
‘L"L = ‘((—"2) p—g(Vlz + V%)”z i=12

¢ is the Chezy coefficient, ¥ are the wind speed
components and y is a parameter related to
atmospheric density p, (usually given as a constant
muluphed by p,).

In addition equations (1) have to satisfy the

vertically integrated continuity equation, i.e.,
H @ é
S (M) 4 sV = 0 (5)
M Ax, X,

The systems of equations (1) and (5) describe the
movement of lurge bodics of shallow water The factors
affecting the movement are many: the morphology und
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position of the scabed, the shape and variatiae in
shape of the coastline, friction betweei hie o o

the walter. hence the matenal of the seabed, the
meteorological conditions, includiag wind, etc.
Although the circulation of the eurth and the
astronomical forces of the sun and the moon act on the
water s hody forces. the miun ciuse of ndal water
movements in areas such as the North Sea 1s the
driving force caused by tidal motion of the water on
the boundaries of the area under consideration.

The shape of the land surfuce contuaining the body
of water is usually very complex, in some cases not
even static, though the effects of erosion generally
occur over too lurge a period of time {0 be important.

Bottom friction is introduced in the model via
Chezy cocficients. The inadequacy of using constant
Chezy coeflicients for all the modct 1s evident. The
different matenals making up the seabed have different
frichional resistances as the water depth and the
velocities change. Tt must be pointed out that bottom
friction and wind are of great importance in the
movement of shallow water. :

The mun causes of inaccuracies in tidal predictions
are the wind forces and atmospheric pressure
variations, which are important for large areas such as
the North Sea.

Boundary and initial conditions

The solution of equations (1) and (5) require the
knowledge of the corresponding boundary and initial
conditions. The boundary conditions of the model are
of two types: (a) fiaed or land boundaries such as those
given by the coasthines, where the normal velocities are
zero, and the tangent velocity can be set free; (b) open
boundaries where the elevation of the sea level (or the
normal component of velocity) is prescribed.

The determination of the initial conditions requires
the knowledge of the free surface position at ¢ = 0.
Usually this knowledge is not possible and the models
have to be started with zero elevation and zero velocity
conditions. This is called a ‘cold start’.

Finite element model

In order to build finite element models the two
momentum cquations (1) and continuity (5). including
influx-type boundary conditions have to be written in
the following weighted residual way:

M,
J‘J.{ ot V'B Xy Vza X2
ﬂ{‘ ey pth -—Bz}él/sz =0 (6

@r, 0xs
61

The continuity equation is usually integrated by parts
1o render a simpler expression. This integration gives:

) 2 H
H{HV,’.‘S_H HY, ."_H - %JH} dA

.}5V,dA=0

(HV,) + ——(HV;)}&HdA [(Hv -
HTV)SH d§

' {
L= f HV.5H dS )
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a b

Figure 2 Six node elements (a) Straight sides. (b) curved sides

The above weighted residual statements {equations (6)
and (7)] are the starting point for the fimte element
models. Assumne that over an element the same
interpolution function applies for the V;, V5 and H
unknowns, ie.

L =9V, Vi=¢V, H=¢H (8)

¢ is the mlerpolauon function and V}, H" are nodal
values of V|, H

In what lollows six noded tnannuldr finite elements
with curved boundarics were used in order to define
the bounduries better {Figure 2). These elements are
called isoparametric and can be formujated by a
simple coordinate transformation, the details of which
have been given by Connor and Brebbia”. Curved
elements have the important feature that they tend to
eliminate the spurious forces that may be generated on
the boundaries by straight side elements joining at an
angle.

Substituting equations (8) into (6) and (7), one
obtains:

MV + KV - QMVy + G H' + F, =0
MV + QMY + KV + Gl + F, =0

)

and
MH""C[V'; -C2V3+FH=O
where
K;f¢T¢‘,V.dA +J¢T¢2Vsz +
I/Z
( )J."’T(V' ALY
Gi=g[¢70.a4 M= [¢74da
F, = f¢’(&) dA + (i) fd,rﬂ(wf + W3t d4
N p H
i=12
C = J'¢§u¢ dA. F, = J.HV,,¢TdA
and .
_ ) . @
()a= P {)= o

Equations (9) can be written us

n.1 : -”V:] K

i
M o oNYWPir+ | am K o,’/ Vi +
. M_Hll"l -C, -C, 0 _ll H"

’

. (R (o

Fpp =0 (10)
VFuj (9}

or more simply, :
MQ+KQ=F (1)

Formula (11} is valid for each unconnected element.
The next stage is to aszemble all the element equations
into a globul system and impos¢ boundary conditions
in H and V,. To eliminate prohferation of notation the
global system will be defined with the same notation as
equation (11).

Time integration

Two time integration schemes were used, one an
implicit and the other an explicit scheme. The implicit
integration procedure is the trapezoidal rule. Starting
with:

MQ+KQ=F (12)
one assumes: .
Q__Q IQo Q=—Q%-&
(13
roFotF )
T2

Hence equation (12) becomes:

(-2—M+K 0 =(Fo+ F)+

-E-M— K) 0, (14)

Ar At
or
K*Q, = F* (15)
The recurrence relationship is then:
Q0 =(K)'F (16)

The K* matrix to be inverted generally is a large non-
symmetric banded matrix of size approximately three
umes the number of nodes by six times the element
band width (ie.. the maximum differcnce between
element nodal point numbers plus one). The computer
program has been optimized by taking boundary
conditions into account in such a way that the
corresponding rows and columns are eliminated from
the element matrices before assembling. This
significantly reduces the maxunum size of the global
matrix. It was also advantageous to store the matrix
in a onc-dimensional form such that only one and not
two addresses need to be evaluated each time an
element of the array is accessed.

The explicit time integration scheme used was the
well-known fourth order Runge-Kutta scheme.

North Sea medel

The above finite element formulation has been applied -~
to model the North Sea. This is a shallow sea varying

_in depth from under 30.m.inthe-south+4o-400m in a

trench ofl the coust of Norway. Depths were obtained
from Admiralty charts. Sections were drawn at
diffcrent angles across the whole region to determine
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ni'%?é"

Figure 3 Finnte element mesh for the North Sea

the best focations for nodes and the more accurate way
of representing the boitom topography. Elements were
carcfully positioned in order to obtain the best possible
representation of the topography using a predetermined
number of nodes. The final mesh comprises 228 nodes
and 97 siax noded elements as shown in Figure 3.

The udal charactenstics of the North Sea are
comphcated, tida! amplitudes vary from zero to six
metres and hugh water times change throughout the
cycle around cach of the three amphidromic points.

Tidal hetghts for boundary conditions were taken
{rom the charts of co-tidul Iines. The waveheight
forcing functions were specified in the form (Figure 4)

e [:U[sin(z-;i + c) + I] (17

on euch of the extremes of the tidal boundartes, with
the intermediate heights being linearly interpolated.
This formulation approximates the most important
tdal component for the North Sca. These curves have
been taken from the Admiralty Tide Tubles They are
assumed to be referred 1o the same datum since other
information 1s not available. Because of this. the results
presented in this paper may not be quantitatively
correct hut the comparison between models are still
-valid. The charts of co-tidal lines give the approximate
tdal range und high water times for the interior points
on the gnd. The circulation pattern and velocity
magnitudes for parts of the Sea may be scen 1n the
tida! stream atluses®?,

Wind and storm surges were not modelled as this
senies of tests was carried out to investigate the general
performance of the model.

Alter several tests it was decided 10 take a
continuous ndal houndary 1n the Northern part from
node 41 10 1 and | to 11 (Figure 4). otherwise
mstability originated from the Shetland Islands
clement. showmg that onc element 15 inadequate to
represent a discontinuous tidal boundury properly.
Tidal conditions were also speaified at the Dover Strait
{points 226 10 228) and after a number of tnals also for
the Balue Sea boundury (nodes 86-87-109). It was
found that inclusion of the Baltic Sea improved the
waveheight results.
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On the land boundaries, the no-slip boundary
condition ¥, = 1, = 0 1s specified. This assumption
simphfies the necessiry computing and is reasonable as
the North Sea 1s 2 regularly shuped region. Because of
the imposition of this condition, curved boundary
elements, which are more expensive o run, were not
necessary. By contrast when modelling the Solent,
curved sided boundary elements were used allowing
the tangential velocity to remain free?,

Stability and accuracy .

The smallest stability limit for the North Sea as given
by the Friedncks-Lewy-Courant condition, occurs for
an clement ofl the Norwegian coast. It gives;

Ar € 450 sec (18)

The worst case on a tidal boundary gives At § 650 sec.
This is important as instabilities always start at these
boundarics. The average value is around 900sec and
tor the shallow southern North Sea the cnterion
suggests a limiting ime step of less than 2000 sec.

The explicit programme which uses a fourth-order
Runge-Kutta procedure was run with a time step of
600sec. For the implicit programme instead a time step
of 30min was used.

To obtain stable results with both models requires
the application of special techniques. For this work
three dilferent techniques were used. The first and
simplest of them 1s to work always with a constant
value of friction over all the region, starting with a low
value (¢ = 10m'/%/sec) and increasing it by 10 over two
to four cycles. This technique did not give good results
and the solution tends 10 become unstable for large
values of ¢, i.e., small values of fnction. In addition it is
unrealistic 40 assume that the Chezy coefficient will be
the same over all the domain,

The second technique was to prescribe a higher
order of friction for the elements on tidal boundanes
and a smaller value for internal elements. This is
because there is a general tendency for the tidal
boundary to gencrate disturbances. These
perturbations may be due to a number of factors and
cause the transmission of short waves through the
system. The specification of higher values of friction for
the udal boundury elements reduce the propagation of
errors.

It was decided to apply a Chezy coefficient
¢ = 20m'"*'sec at the boundaries. which produces
stable results.

(13

Depth (m) -

P

9 10 1 12 13

Hours 85 65 45 25 OS| 15 25

Betore High water Dover Atter
Frgure 4 Tidal boundary conditions to the Nonth Sea
Bergen, — — —, Lerwick. ™= -~ -~, Kirkwall . Dover
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The third different stabilizing technique is to start
with a realistic value of friction from the begtaning and
try to remove the short waves by “numertcal
smoothing’. This smoothing can also be applied every
time the level of [riction is decreased The operation
needs to be carried out for a number of steps und after
the perturbations have been removed the solution does
not need to be smoothed any longer. This numerical
smoothing consists of tuking for the next time step not
the actual nodal values just obtained but weighted
averages. These averapes are calculated by weighting
every nodal value by a constant and adding to it the
weighted values of the neighboliring points. For the
programmes described here the node under
consideration has half the weight and the other hall is
distributed among six neighbouring points
proportionally to their area of influence. (For
boundary nodes only 3 neighbouring points are taken
nto consideration.) In general, the coarser the mesh
the more relative weight the central node will have.

The actual weight used docs not seem to be oo
important provided that the coelficient for the node
under consideration is reasonably lurge by comparison
with the coeflicients for the neighbouring nodes. A
simpler way of weighting may be for instance, to
multiply the solution vector by the mass matrix.
Smoothing has been successfully applied by the
authors 1in small estuanal areas, such as the Solent in
England but it is less necessary for the North Sea as
the system is more stable.

Tests

Many tests were run with different time integration
schemes, frictton coeflicients and smoothing schemes
but only two of them will be presented for brevity. The
first, Test 1, uses implicit integration (Ar = 30 mun) and
the second, Test 2, explicit fourth-order Runge-Kutta
(At = 10 min).

Test | was started with a Chezy coefficient of
10m'3/sec, after two tidal cycles this was increased to
15 and after another two to 20. Then the firiction 20
was left for the elements on the tidal boundary but the
value of the internal friction was decreased to ¢ =40
over four udal cycles. Finally, the internal Chezy
coefficient was taken as a variable given by:

¢ =15log(0.9H)  [in m"?sec] (19

This formula gives low friction in the nterior of the
North Seu (e g. for H = 55m.¢ = 60). The sume friction
was applied during 6 more ttdul cycles to obtain
repetition of results. In addition the results were
numerically smoothed over 3h {re.. 6 steps) after
change of Chezy's cocflicient. then the smoothing was
stopped. For the level of friction given by formula (19)
the velocity ellipses tend to increase in size and their
dnft is.accentuated as the level of fricton 1s reduced.
As the'friction 1s variable, the results are not being
obtamed under constant condittons of daniping and
the ellipses do not guite close even after three or four
udal cycles. [tis surprising that good results were
reported by Davis and Tavlor™ after only three tidal
cycles from cold start, using this varable friction
formula. '

Test 2 was run with tidal boundary elements friction
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Figure 5 Velocity e ipses for (8) implicit and {b) exphicit
models A Noge 51, B, node 57, C. naede 105, D, node 148

¢ = 20 {r'*jsec) and values of internal friction of 40
and 60. The solution was initiated from the implicit
model resuits for ¢ = 20 throughout instead of direct
cold start. (This was done simply to save computer
costs.)

Resuits

Velocity ellipses are useful to find out if steady state
has been reached. if there are any disturbances present
in the system which are hikely to cause instability, the
magnitude of dnft velocities, the changes in velocity
magnitudes due 10 changes in Chezy's coefficients, time
step, elc.

Two comparable sets of results obtuined using the
same tidal boundury Chezy coefficient {20 m''?/sec) and
the same internal friction (¢ = 40) are shown in Figure
5. It can be seen that the ellipses for the explicit
scheme tend to be smaller (this is also true for other
points) than those obtained with implicit integration.
The dnift is also less in the explicit method. This may
be duc to the large time step used in the implicit
solution. As a smoother circulation pattern and smaller
drifts are obtained one could conclude that the explicit
solution is more accurate in this case. There are also
stight differences in the shape of the ellipses.

The large drift jin the order of 10 to 20 cm/sec for
some points) may also be explained by the coarseness
of the gnid’ A typical plot of velocities over all the Sea
is also shown in F:gure 6 (results are from the implicit
programme, the Chezy coeflicient is 20 on tidal
boundaries and 40 inside), where they are compared
against results published in the tidal stream adases
available in Britain. The general trend of the velecities
compares well,

We should be aware, however, that the tidal stream
atlases velecities are smoothed out, the observations
are made 1n only the top layer of the water. The
programme wstead yields depth averaged velocities
given by equation 13). Hence the currents worked out
by the programme are not evactly as the atlises
currenis The programme results are being affected by
local Buctuauens in depth o a greater degree thun the
figures in the atloses.

Graphs showing the waveheight solutions for the
same tests and at the samie points as the velocities are
shown i Figure 7. Thére dre Compdratively high
vartions in tidal range and high water times. The
flatness of the waveherght curves at nodes near an
amphidromic point 1s also noticeable.
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Figure 6 Velocity vectois obtained w.'h the implicst programme
2 hours after high water at Dover
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Figure 6b  Velocny vectors from the Admivaity charts 2 hours
after hign water

Finally the co-runge lines chart for the North Sea
has been computed from results obtained using the
imphcit programme with friction ¢ = 20m'/? sec on
tidal boundury und for interior elements ¢ as given by
formula (19) and shown in Figwe 8. If the co-range
lines are compared against the results shown 1n
Admiralty churt 5058 the agreement 1s reasonable,
Similar cunes were also reported by Grotkop* and
Nihoul®.
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Conclusions

For a constant level of friction throughout the grid the
results became unstable for a value of Chezy's
cocflicient of 60m''?ssec unless special procedures are
used Sudden reductions of the leved of friction (1e..
increases 1 c) cause a smail shock 10 be trunsmitted
through the system. Short waves are also generated on
the tidul boundary by the discrete changes in the
imposed tidal height at each time step. A way of
damping out those effects 1s by decreasing the ¢
coeilicients i elements on the tdal boundary and this
tlechmque has been used for ail the results shown 1n
this paper. Another damping procedure is the .
numcrical smoothing, for which the model could be
started with a reahstic level of friction and the resuits
numerically smoothed until the disturbance caused by

40
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Figure 7 Wavelength for (a) implicit and (b) explicit models A,
Point 51. B. point 57, C point 105; D, point 148
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the cold stast has been reduced. Since 1t is not
necessury to alter the friction parameter after this the
introduction of further short waves may in some cases
be avoided. For the results reported 1n this puper the
numerical smoothing technigue was only used once for
a short ume, 1o stabilize the implicit model results
when the Chezy coceflicient changed from 40 to the
value given by formula (i9).

Both time integration schemes, impheit and explicit,
give simudar results; howeser, the fourth-order
Runge-Kutia 1s more accurate using Ar = 10min
which is the highest allowable time step in this case.
But it should be also pointed out that the implicit
programme (A = 30 min) needs less than halt the
computer time required for the explicit programme.

For evolutionary processes of the type here
described computer time can be very expenstve and the
programme should be further optimized before
undertaking production runs. It scems, however, that
for a problem with the dimensions of the North Sea
and a finite element grid sunilar to the one used here,
the explicit programme may be more conveient to
use. This is not the case when the domain s smaller
(for instance for the Sufent) or the gnd very fine. In
other words implicit schemes are more expensive per
timestep than explicit ones but aliow for larger
timesteps. This can be of interest in problems where

the time step may be increased considerably over a
simpler schzme, without sigmficantiy affecung the
accuracy of the resulis. .

The viabihty of the six nodes finite efement
circulation modet for the North Sea has been
established. Second order elements of this type are
espeeially suituble to represent accurately the
topography of the region {1.¢., variable depth and
curved boundarics).
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DISPERSION IN TWO-LAYER STRATIFIED WATER BODIES
by.

George C. Christodouloul and Jerome J. Connorz, M.ASCE

INTRODUCTION

During the winter season a water body is usually well-
mixéd through the depth. Howevef, this is not the case in the
summer. Due mainly to increased heat input near the surface,

a density stratification begins to develop in the spring and by
mid-summer a strong thermocline (pycnocline) often exists,

. dividing the water column into two distinct layers. The dynamics
of such a system cannot be adequately represented by depth-
averaged approximations. The effect of stratification on the

flow patterg has been demonstrated by means of analytical solutions
for oceans, coastal waters, and lakes, under severe simplifications
of geometry and the governing equations. Ultimately, from a
practical viewpoint, of main interest is not the flowfield itself,
but rather the transport and dispersion of some substance in it.

To achieve a better description of both the vertical and
the horizontal variability of flow in a natural water body of
arbitrary geometry and bottom topography, multilayer or quasi-
three-dimensional numerical models aré‘being formulated and the
development of large multi-purpose finite-difference computer

codes initiated [1, 10, 17). Although transport of constituents,
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2Professor, Department of Civil Engineering, Mass. Inst. of
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notably water guality parameters, is being incorporated ip these
models, primary emphasis is placed on improving the compufational
techpiques and software and little attention is given to such
important issues as assigning values to the parameters involved,
parameter sensitivity, and model verification. As the number of
layers’inc;eases, model verification becomes a very difficult and
costiy task, as extensive field data, particularly boundary
conditions, is required.

A two-layer model, while requiring minimal "tuning", pro-
vides a picture significantly different than a one-layer approach,
and is quite appropriate when there is strong natural stratification.
In'this paper, a model is presented for the description of the
‘dispersion of matter in such a two-layer system. After the
mathematical formulation, the physical aspects of the problem are
discussed, focusing primarily on quantificat;on of the dispersion
 coefficients and éhe interfacial transport mechanisms in terms
of_thg mean flow characteristics. The finite element method is
choéen for numerical implementation because of its successful
application to one-layer dispersion problems [1l1]. The solution
procedure’is diséussed and its stability fequirements are
established. Verification of the numerical results against
analytical sélut;qns, available for simple flow conditions [6],
is performed. Finally, an application of the model to the
Massachusetts Bay in conjgnction.with a large scale field
experiment serves as an exémple of its applicability to real

world problems.



MODEL FORMULATION

The model presented héfein is intenaed to describe the
dispersion of an arbitrary constituent, possessing in general
some vertical mobility, in a two-layer (coastal) water body of
variable bottom topography and boundary geometry. The velocity
field in both layers, as well as the layer thickness, are assumed
known, presumably obtainable from a separate hydrodynamic model.
By .uncoupling the hydrodynamic and dispersion models, the same
flow péttern can be used to inveétigate very economically the
transport of several different substances and to expériment with
various loading strategies, parameter values, etc. However, this
can only be done provided the constituent of interest does not
significantly affect the flow field or the density structure,.

The mass balance of a constituent is expressed by the

3-D convection-diffusion equation:

ac _ _ 3 - 9_ -
3 = % (uc + qx) (ve + qy)

5 ((w-w_)ctq ) + p

(1)

i
N

where
c is the local concentration

u,v,w are the water velocities . in the x,y,z directions,
respectively :

w_ is the particle seEtling velocity, positive when in
the negative z direction

dyr 4, 9, are diffusive fluxes

Y
p represents generation or decay of the constituent.
Integrating (1) between the layer boundaries and using

Leibnitz's rule, the equations pertaining to a layered system are

obtained. Thus, for the top layer (Figure 1):



n n n N -
.a._ = - .a— -— —3— , + d +
X {-h cdz = ™ Ih (uc+qx)dz 3YJ_h (uc+qy)dz J—h pdz
1l 1 1 1
Dn Dhl )
+[c(5€ - w + ws)-qS]n + [c(BE— +w - ws)-qi]_h

1
(2)
The terms in brackets represent fluxes through the layer
" boundaries, ‘i.e., the free surface and interface,
respectively. The kinematic éondition at the surface
requires
[D

n .- = .
'I')-E W]n-—o (3)

However, the interface, which is defined as the position of
steepest density gradient (ideally, a density discontinuity),
is not necessarily a material surface. For this surface, one
can write 7 - . I - S

Dhl
W+ e lon, = Ve - (4)

where Ve represents the relative velocity of the water
particles (on the average) with respect to the layer boundary

and is referred to as "entrainment" velocity. It is con-

sidered positive when upward, indicatihg net water motion from
the bottom to the top layer. The diffusive flux component, q;
of the interfacial transport ﬁay be expressed as a function of
the concentration differencexbetWEen £he two layers. If the
concentration at”fhe interface ié”approximated by the average
value of the two layers (consisténf'with the two-layer

idealization), the overall trénsport from layer 2 (bottom) to



to layer 1 (top) can be written in the form:

, C1+Cz
Q1= WeWg)C_=y = Wgmwg) 35— + aleymey) (3)

where o is a variable parameter. Equation (5) shows that

settling counteracts entrainment, while for a neutrally

‘buoyant constituent (ws=0) the top layer would gain material

through entrainment when wWe > 0.
With respect to the remaining terms in Equation' (2), the

following notation is introduced
n

cdz = c.H
J_h 18

C

(6)

c=c+c", u=u+u", v=v+v"

where the overbar denotes the average value over the layer
thickness and the double prime represents spatial deviation
from the average. Equation (2) now takes the form:

aC 3 (u,C,) 3(v.C.)
1, g R 171 _ 3 0 -

d
+
ot oX Yy X Tx Q P

1 ) yl 1
| (7)

Sources, decay, and boundary flux terms are included in

Pl' The total dispersive fluxes, Q, a0couht for both

horizontal turbulent diffusion and dispersion due to vertical
velocity nonuniformities and are assumed to be approximated by

Fickian expressions:

n 8_1 3c,
0 = J (u'"c"+g_)dz = ~H, (E —= 4+ E =)
Xy ~h, X 1 XX; 9x XY Yy
(8)
n 4 82, 3¢,
= v'c"+q _)dz = -H_ (E —= + E —
le J—hl( Iy ¢ Y%; 9x Yy, 3y )



. The overall dispersion coefficients are elements of a second
order tensor, consisting of an eddy diffusivity component

and a shear dispersion component:

E E
[—XX Xy a (9)

E = = + E
2 E E - -
LYX YY ]

Their quantification is discussed in the next section.
'. Following the same approach, one obtains the integrated
equations for the bottom layer:
ac2+a(ﬁzc2) a(\’zzcz) Ll o 2o 4
it 9x oy ax X, Yy Yo 2
(10)

whe: e PZ_Will, in general, include deposition to the bottom.

Equations’ (7) and (10) are the governing equations of the two-

layer system.

The boundary conditions for the dispersion problem are of

two types (see Figure 2):
(i) concentration specified: C = C* on S

(ii) normal dispersive flux (i.e., concentration

gradient) specified: Qﬁ = Q; on S

q
Assuming reflecting lana boundaries, one usually prescribes
Qn = 0. Of major concern is the treatment of the ocean {open)
boundary. The concentration may be maintained at zero only
as long as the plume remains sufficiently far from

the boundary. An ideal, but not economical, solution is

to make the grid so large as to ensure that the plume

will always remain well within the computational domain.



In practice, different conditions are péescribed for
outflow and inflow boundary segments. In the former case,
the concentration gradient is commonly épéaifiéd,'itﬁ value
obtained by extrapolation from the interior. In the latter
case, the concentration should be specified, but this is

difficult since it is related to mixing conditions outside of
Ithe-domain being médeled [10)]. A simple procedure, which
proves satisfactory when the plume reaches the boundary with
a low céncentration gradient at a segment of predominantely
outward flow,,is to specify and ﬁaintain the gradient at
zero [16]). This allows.the material to advect through the

boundary and assumes essentially complete mixing in its

neighborhood.
DISPERSION COEFFICIENTS
The horizontal spreading of a constituent within a given
"layer" is accomplished by the following three mechanisms:
(a) Advection, in particular spatial or temporal
variability of layer average currents,
(b) Turbulent diffusion, i.e., mixing due to small or
large scale turbulent eddies, and '
(c) Dispersion-due to vertical shear, that is, velocity
nonuniformities over the layer thickness.
The contributioﬁ of the last two mechanisms is commonly
expressed by the introduction of diffusion and dispersion

coefficients, by analogy to the molecular mixing process.



These coefficients basically arise from the simplified
representation of the velocity field, and, indeed, the more
simplified the latter becomes, the larger the coefficients
need to be. Considering the diffusion of a cloud due to
turbulence, it is noticed that, at first, moderate size eddies
contribute to the advection of the cloud as a wholé, while
mixing takes place at very small scales. As the size of the
cloud increases with time, larger eddies become involved in
its internal mixing. Thus, it is -found that diffusion
coefficients increase with time .(or cloud size) [13].

However, when the flow field is specified at a certain spatial
discretization, such continuous growth of the diffusion
coefficients is not justified once the cloud increases beyond
the levéi of discretization, since eddies of the scale of the
grid size are still described by the advection terms.

One approach for quantifying the eddy diffusivity is basecd
on using the 4/3 diffusion law derived from the theory of
locally isotropic turbulence. This is applicable to horizontal
diffusion in the ocean if one assumes that the eddies are

essentially isotropic horizontally [14]. Then

e = be'/L4/3 (10)
where
€ is the eddy diffusion coefficient
e is the rate of energy input, per unit surface area
L is the length scale, presumably related to the grid size

b is a numerical constant, or order 0.1l.



[€]. The shear dispersion coefficients are identified as:

An alternative expression‘for €, based on mixing iength
arguments [2,8] has the advantage of using the readily

available mean velocity gradients:

e = L2/g | o (11)
where .
- 222 3vy2 . 3u . 3v,2
¢'— 2 (3% +.2(3y * (ay * 3%

According to [8), the sub-grid scale eddy coefficient is
modeled using a length scale which is an order or magnitude
smaller than the grid size. Howevér, the resolution of the
flow field description, associated with spatial averaging
in ‘the hydrodynamic model being employed, has to be tgken
into account and the coefficient increased accordingly.

The analogy between the effective horizontal spreading
due to nonuniformity of the velocity p;bfile and the turbulent
diffusion process was shown.initially by Taylor [18]). for

steady 1-D flow through a pipe and later by Elder [9] for open

channel flow. A parallel argument for the case of two

horizontal velocity components (u,v) shows that the representation

of the dispersive fluxes according to (8) is indeed appropriate

H 2z
Eix = % J 1 [j u"dclzdz

0 %z 0

H Z
gd =1L f 1 [J v'dr] 2dz (12) -
yy Hijy €, o

H 4 Z

d - d — l l—__ " n
Exy = ny =g fo EZ[JO u dc][Jo v"dgldz
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where éz is’ the vertical diffusion coefficient, and H is
the layer‘thickness. Once the velocity profile is specified,
the above integrals can be evaluated. One can prove that the.
shear dispersion coefficients comprise a second order tensor
[6]. Therefore, profile information is needed only along any
two perpendicular directions. In the simplest case, if
self—éimilarity of the velocity profile in a layer is assumed,
the dispersion’coefficients may be related directly to the
mean velocity and layer thickness.

This treatment of shear dispersion is valid, only when
some "initial time" has passed after the introdﬁction of the
material. The initial time is related to the vertical mixing

time scale, given by ([3]:

- 2 2 ’ -
= - 13
T, = H/m¢, \ (13)

Furthermore, with respect to the effect of a tidal component,
it has been found [3] that the dispersion coefficient is
essentially the same as if the flow was steady at any point

of the tidal cycle provided that

7 JE S L ., (14)

~

For typical values, H = 10-20 m (30-60 ft), c_ = 50 cm’/sec
(0.05 ft2/sec), one obtains Tc = 0.5 - 2 hours, and condition

(14) holds.
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INTERFACIAL TRANSPORT

The erosion of the quiescent lower layer by the upper
layer, moving under the influence of wind or othgr driving
mechanism, is a well-known phenomenon in water bodies. It
is explained by the one-waf transport from the nonturbulent
to the turbulent layer, often called entrainment. The term
is most familiar in the context of a jet, which draws ambient
fluid due to its high momentum. 'The méchanism of erosion of
a distinguishable density interface has been examined in the
past, mostly experimentally. Turbulent eddies appear to
scour the interface, sweeping away interfacial disturbances
at relatively large time intervals [19]. When both layers
are turbulent and have comparable velocities, ;s is usually
the case in coastal waters, there must be a two-way transfer.
Denoting the respective volumetric rates of transport, per
unit area, by m,q and my, (see Figure 3), the net rate of

transport of material toward the top layer is

Q1% M31% = ™% . (15)

This, of course, assumes that thé particles of interest

do not have independent motioﬁ, which Qodld provide yet another
contribution to interfacial transport. By setting w, =0

in Equation (5) and comparing with Equation (15), it is
evident that

Wo T Moy 7 Myp
(16)

o = (m12 + m2l)/2
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Thus, the entrainment veiocity expresses the net rate of

water motion between the layers, while a represents an

average exchange rate and indicates'that interfacial transport
;s present even without net entrainment (i.e., "Steady—state"
conditions.with respect to layer boundaries).

7 ‘Several.experimental and theoretical investigations
[4, 12, 19] have been carried out in the past, mogtly in
l—thwo—lagerAsystems with one layer quiescent. The one-way
trapsport rate/(similar to mij’ above) was then determined
by Fhe thickening of the moving layer. It was found
proportional to some characteristic velocity and inversely
p%oportional to a Richardson number associated with the
stqbi}ity_of the system. Various length ‘and velocity scales

have been used and, at first, the agreement between a number df

the proposed formulas seems .to be—only qualitative.  However,
if comparable measures are used, a rather general expression
emerges in the form [6]:

1073 v, | |
m-. x ————— v i,j = 1,2 ' (17)

where, in a 2-D domain, the overall Richardson number is

defined as

>

Ap.
0

feo] I

Rio = (18)

<t @

i j

<+

(



and Ap is the (small) density difference
p is the density of either layer
H is the average layer thickness, i.e., half the depth

Vi,V. are the depth-average velocities in layers, i,d.

The rates of interfacial transport are typically small
for stably stratified water bodies; e.g., the value of a
is of the order of lO-5 m/sec (ft/sec). Nevertheless, this is

of the order of settling velocities of fine particles and its

contribution may become signifigént over the relatively
large length and time scales typical of coastal areas -
especially when multiplied by a large concentration
difference.

The use of Equation (17) is conditional on the existence
of a mean velocity in the layer, which is usually the case
in tidally dominated flows in coastal areas. However,
interfacial transport may well be present in the absence of
mean flow,'as indicated by experiments with stirfing grids
[18). Further research is needed in this area for a more

general quantification.

NUMERICAL TECHNIQUE

" The finite element method is chosen for spatial discretiza-
tion because of its great flexibility in grid layout and easy
handling of spatial variability. To find the approximate>
solution the weighted residual method is applied to each

’layer, resulting in the symmetrical weak form [11]. Then, the
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domain is subdivided into linear triangular elements,
resulting in a set of linear ordinary differential equations

with the nodal concentrations as unknowns;

//

Mc, =%
] A (19)
Mc,=¢,

~

In Equation (19), M is the geometrical system matrix (it

is assumed that the spatial discretization is the same’

for both layers), and Ei is the forcing vector for layer i
containing advection, dispersién; decay, interfacial transfer,
sources and boundary conditions. Time integration is performed

by an implicit jterative trapezoidal scheme, as follows:

(i+1) At -1 ,5(i) ', 3
Ci,evae T C1,e T M T Briiae Y B, )
(20)
(i+1) At -1 a(i) + P
Colevar = Co,e T30 ‘?2,t+At FE L)

Since M is time invariant, it has to be inverted only once.
By lumping all other terms in éi’ maximum generality in
handling time variability or nonlinearity of the relevant

" parameters and loadings is achieved. 1In practice, the
iteration continues until either a measure of the difference
between consecutive iterates is below a specified tolerance,

~or the number of iterations reaches an imposed upper limit.

In the case of constant and equal layer K thicknesses, no

entréinment and constant a, Equation (19) can be written

in the expanded form [6]:
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: ‘ - _ b
MCy+ (B + Ky + D)) Cy +G(C) ~Cy) =8 - F
(21)
: _ b
MC, + (By + Ky + D) Cy +C(C, - Cy) =8, --F
where A K D,, G. are the advection, dispersion, decay,

~1' it Jif i

~

and interfacial diffusion matrices; Si contains source loadings;

and F? includes the terms resulting from the prescribed

.boundary conditions.

The trapezoidal integration scheme applied to Egquations
(21) can be shown to be unconditionally stable, under no
iteration, for an arbitrary grid [6]. The procedure is similar
to that of the one layer case [7]. Actually, the inter-layer
exchange term enhances the stability of the system. However,
the iterative procegure used imposes a:restriction on the time

step.

Applying the time integration scheme to (21) yields:

(i+1) _ _ At ' (1) At (i)

MCina T 72 @Rt Cinet 7 G Sonl Y
(i+l) _ _ At . (1) At (i+1)

M Cont1™ ~ 7 (BKo#Dy0) 1 S ne1T T Cne1 Cine1l T 92

(22)

where the subscript n+l refers to time t+At and the quantities
Qs Q, are known from the previous time step. To investigate

convergence of the iteration procedure, the eguations are written

as:

=sc 4o (23)
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‘where
(1+1)
o (i+1) €1 n+1 1y |Sionel M 0
- = C - R = .
- c{i+l) ) T |- Ate
~2,n+l ~2,n+l 2 .n+l M
[ At At B
3 (AR 4D146) =3 ne1
B =
. . At ) ~
0 - T (AptRyTDC ) i
The convergence requirement is
..l \
[IR" B||] <1 (24)
Expressing R as a product,
om0l 1 0
R = ~ ~ ~ ' - (25)
~ At | -1
0 %J - 5>— M G I
Hing ~ 2 -~ ~n+l ~
leads to
- T -
[ -1
I 0 |M 0
_l -~ ~ ~ ~
R = (26)
~ At -1 -1
> M G Iilo M-
L L -

Since now both R™! and B involve triangular
eigenvalue norms are conveniently expressed
diagonal elements, Thus, coridition (22) is

-1

At
M7 5= (4K 404460 ] ] <2

matrices, their
in terms of their

equivalent to

1,2 (27)
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which implies

At < 2 (28)

| IM™ L (A, +K,+D. 4G | |
~ ~1 ~1 ~1 ~

A more restrictive condition is

At < 2 (29),

-1 -1 -1 =
17 a1+ Ik |+ D | ]+ ] (e

These criteria,afe,analogous to the one-layer results [7], the
difference being the addition of the interfacial exchangé
term.

Evaluating the matrix expressions for an individual
equilateral triangular element of side As yields an

approximation to (29) 1in terms of the problem parameters:

—

(30)

1
v, E,
+ 8 =

i i
1.2 s 5

where k is the decay rate, a' a/H, Ei is the (assumed isotropic)
dispersion coefficient and Vi is the (assumed uniform) velocity
of layer i. As discussed earlier, the value of a' is

commonly small and its contribution to limiting the time step

will typically be marginal. Then, At is basically restricted

by the flow conditions in the individual ilayers.:

VERIFICATION
To test the accuracy of the numerical approximation,
comparisons with analytical solutions are desirable. However,

the latter are available only under very simple flow conditions.
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In Figure 5, the numerical model is compared with the

séiution for an instantaneous source in the top layer of a

1-D counterflow, derived in [6]. A unit load is distriﬁuted
between the three nodes at x = 0 of the grid whown in Figure 4,
and the results adjusted to yield values per unit width of

the channel. A unit depth is assumed for each layef. Zero

concentration is specified at the ends of the grid and zero

flux is prescribed along the side boundaries. The parameters
used are:

Vl = -V2 = 0.05 m/sec (0.164 ft/sec)

E, = E, = 0.01 n”/sec (0.108 £t2/sec)

a =5 x 10"% m/sec (16.4 x 1073 ft/sec) kK = 0

At = 0.1 sec
Very‘good agreement with the analytical soclution is obtai=ned.
The much lower concentrations observed in tge bottom layer
- support to some extent the traditionél treatment of the inter-
face as a barrier. However, this simplification may not be
reasonable for long time periods and is certainly not valid
for substances possessing vertical mobility. Figure 5 also
‘points out the great advantage of the two-layer treatment,
in relation to the more detailed description of the flow field.
In this particular counterflow case, the depth-average velocity
is zero and a one-layer approaéh‘wquld imply a stationary
concentration peak located at the origin.

The behavior of the model at steady state was also examined.
The resulﬁs'for a continuous load, of one unit/sec¢, introduced

in the top layer, are shown in Figure 6. A high decay rate is
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specified to speed up the arrival at steady-state and keep

appreciable concentrations away from the boundary. Th2

remaining parameters are the same as in the transient test,

égcept for a higher interfacial mixing rate used to 'make the
' i

exchange between the layers mOre pronounced. Again agreement

is quite good.

APPLICATION

To establish confidence in.thé preéictive capability of
the model and the degree of its applicability under naturél
conditions, further verification consisting of comparison to
real world cases is necessary. Agreement can never be expected
to be perfect, in view of the extreme complexity of the
physicai/processes involved and the unavoidable simplificaﬁions
employed in any model. Nevertheless, the ability of the model
" to reproduce certain basic features of the actual data should
be evaluated.

A dispersion experiment was carried out by the R.M. Parsons
Laboratory of M.I.T., sponsored by the Boston Edison Co.,
in the vicinity of the Pilgrim Nuclear Power Station on the
Massachusetts Coast (Figure 7), in August 1975. Five hundred
pounds of small sphalerite particles (ZnS) with fluorescent
incluéions were introduced into the water and their motion was
subsequentiy'monitored for five days through samples taken
by boat and by helicopter. By averaging, at each location,

samples taken above and- below the thermocline, the field data
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were, reduced to a single representative value fdr each layer.
The resulting plots, in particles/lt, are shown in Figures 8a,
b, ¢, corresponding to 1, 2 and 3 days after the dumping took
place. The plume is seen to move slowly to the southeast,
approximately parallel to the shoreline and later extend to the
east.

In the numerical simulations, the finite element grid was
the same as used in previous applications of one-layer models
to the Bay [15, 16]. The shaded  .triangle was loaded over a
period of Fhree timesteps (i.e., 4500 sec.), which corresponds
approximately to the actual duration of the dumping. However,
the area of the triangle is quite large in comparison to the
actual source and consequently one should expect unrealistically
large plume areas for short times. The value of the (isotropic)
dispersion coefficient, 30 m2/sec,(323 ft2/SeC)d and the differ-
ence in tidal amplitude between the ends of the open boundary were
kept the same as established for the one layer models [6]. The
circulation model used to provide velocity inputs is that of
Wang and Connor [20]. Since this requires, at present, that
both.layers extend over the whole domain, some nodal depths had to
be artificially increased to at least 15 m (49.2 ft), in order
to avoid intersection of the interface with the bottom. As ini-
tial condition, the position of the interface was set at 8 m (26.2
ft), consistent with the little available information [5]. Along
the ocean boundary the interface was assumed to vary linearly and

move together with the free surface over the tidal cycle.
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The sensitivity to the type of interface motion was found‘
small [6], but other than linear configurations were not
examined. Actual time varying wind data were used in the
computations, while a "typical" tidal cycle was ﬁséd repeatedly.

The interfacial mixing rate was set at 10‘"5 m/sec (3.28 x 10-5 ft/

sec) and the settling velocity at 7.3 x 10-5 m/sec (24 x 10-5-
ft/sec), based on an average particle size of 7 miérbns.
Computed concentrations at 1, 2, 3 days after the injection
are shown in Figures 9a, b, c¢. Taking into account the initial
spreading of the source and the uncertainties about the velocity

field, good qualitative agreement is observed, with respect

to the location and peak values of the plume.

CONCLUSIONS

In this paper, the problem of disperéion in strongly
stratified water bodies is examined. The two-layer idealization
is adopted as a useful extreme case and, at the same time, the
simplest to handle mathematically. Quantitative expressions
for the dispersion coefficients ana the interfacial transport
rates, needed for engineering applications, are proposed.
Also, a criterion for selecting the time step is presented.

The ability of the two-layer model to handle transport
between the layers was seen to be important in providing a
refined picture of the vertical concentration distribution,
whether or not the constituent of interest has some Qertical

‘mobility. A further advantage of the two-layer formulation
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lfeé in the more detailed description of the velocity field.
This, in turp,'poipps out the need for using realistic current
inputs.

The development of numerical techniques is oﬁtgrowing
the present ability to define realistic inputs and also the
basic knowledge of some of the physical processes involved.
Further fundamental research is needed for better understanding‘
the turbulent mixing process in stratified environments. Also,
field monitoring programs are required to provide reliable
\inputs, primarily on the behaviér of the interface along open

boundaries.
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NOTATION

numerical constant

AN

local concentration
layer average éoncentrations

concentration deviation from average value
rate of energy influx

interface elevation

bottom elevation

itgration ihdex

decay rate

one-way interfacial transport rates
time discretization index

internal volumetric source/sink term
turbulent diffusion fluxés

diffusive fluxes through interface and
surface

time

local velocity components

layer average velocities

velocity deviations from average values
entrainment velocity . |
settling velocity

cartesian coordinates

advection matrix

matrices

layer—-integrated concentrations
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D decay matrix
E, Exx’ Eyy overall dispersion coefficients
Ed Ed Ed shear dispersion coefficients
’ xx' yyl .
Eb boundary conditions vector
~' interfacial transport matrix
Hy, Hy layer depths
H average of Hl and H2-
K dispersion matrix
L length scale for diffusion
M. geometrical matrix
P term including sources/sinks, b.c. and
interfacial transfer
)% overall forcing vector
Q- QY' Q, dispersive fluxes
021 overall interfacial transport
R, overall Richardson number
S source vector
S, S boundary segment where concentration, or
c q : g . Y s
dispersive flux, is specified
T tidal period
Tc time scale for mixing
Vl' V2 layer velocities
o proportionality factor for interfacial
diffusion
1] -
a a/H

X Y
n
p, Ap
As
At

turbulent diffusion coerficients
surface elevation

density, denSity difference

grid size

time step
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INTRODUCTION

Experience and engineering judgment form the basic foundation
for designing sampling programs. Collection of accurate field
data is required for verification of constituent (pollutant)
dispersion predictions. However, the complexity of the dis-
persal phenomenon precludes the design of optimal sampling
strategies based upon only qualitative analyses; more substan-
tial quantitative analyses are required.

The most informative sampling strategy would require the
collection of samples covering the entire spatial and temporal
domains of the particular problem at sufficiently small spatial
and temporal intervals to ensure the identification of all
important information. A greatly reduced number of samples is
usually collected due to the imposition of cost constraints.

In such cases, decisions must be reached as to which samples are,
and which are not, to be collected. The importance of such
decisions is magnified in short—term field sampling pro-

grams. In long-term monitoring programs, one has the capabil-



ity of altering the initial strategy to improve its éffective~
ness as data becomes available. Due to the relatively short
duration of typical field sampling programs (e.g., tracer
experiments), they must be designed before the start of the

" sampling effort, since the results of sampling are not usually
available until after the conmencement of the field program.
Thus it is desirable that a methodology be made available

to assist in the designing of effective sampling programs.

Only within the last few years have quantitative methodologies
‘for determining spatial and temporal sampling intervals begun
to appear in the technical literature. The particular
methodclogy of interest is based upon the concepts of Estima-
tion Thedry (specifically, Kalman-Bucy filtering): Estimation
Theory refers to a variety of statistical techniques developed
for determining best approximations of unknown quantities from
observations (data) which are recognized as being imperfect,
i.e., containing uncertainty. Kalman-Bucy filtering is a
technique available for the estimation of the states of a
system by the sequential extraction of information from data,
as the data becomes available. It has been employed success-
fully in the field of navigation and guidance of spacecraft
since the mid 1960's, and several investigators have recently
attempted-to apply these concepts to envirommental pollution
problems. Moore [1973] applied filtering techniques to
determine the minimum monitoring frequency of certain water
quality constituents for a simulated river system. Brewer and
Moore [1974) extended the work of Moore {1973} to include the
problem of determining the water quality constituent to be
sampled and their spatial locations. Although Desalu [1974]
did not directly address the monitoring design problem, he
illustrated the applicability of Estimation Theory to such

air pollution problems as: i) estimation of the three-
dimensional distribution of pollutant concentrations from ob-
served data, ii) identification of the diffusion coefficient
and other model pardmeters and iii) identification of the major
sources of air pollution. Pimentel [1975] illustrated that a
simplified formulation results when measurements are made
infrequently. This approach required‘ignoring the advection of -
the constituent; only diffusion is considered, an assumption
unsuitable for estuarine areas. In addition, the important
question of what is the maximum rate of sampling that can be
considered as infrequent was not addressed.

A common deficiency of the above studies is the lack of effort
directed at quantifying the modeling uncertainty. Although
filtering concepts are straightforward, difficulty arises in
their application. A major difficulty is the quantification
of the modeling uncertainty. Lettenmaier [1975] considers
uncertainties in tributaries, waste sources and certain ‘param-
eters in his approach to design of river wonitoring programs
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for detection of water quality trends. The use of a steady-
state one-dimensional model and temporally constant uncertainty
statistics severely restricts its usefulness. The work of
Dandy {1976] appears to be the most complete study published
to date. He considers the design of riverine monitoring pro-
grams using a one-dimensional transient model of the advection
of water quality constituents. Modeling uncertainty due to
randomly varying streamflow, tributary discharges, and waste
sources is considered. However, he neglects constituent dis-
persion and model parameter uncertaintieé, and uses a simpli-
fied representation of the hydrodynamics.

In this paper, the analytical framework for applying Kalman-
Bucy filtering to dispersion in a coastal water body is
developed. Particular emphasis is placed on quantification of the
model uncertainty due to model parameters, source loadings, and
velocity -fields. The formulation is discretized with the
Finite Element Method, and a number of comparison studies are
presented.

. S
In what follows, we outline first the filtering strategy, then
describe briefly the Finite Element implementation, and
lastly discuss some examples. ‘

FILTERING CONCEPTS

Consider a linéar, discrete mathematical model of the following
form:

Xerar) = 2eorX o eriery 2o >

where

P
/]

a n-dimensional system state vector
a n x n dimensional state transition matrix
a n-dimensional vector of known deterministic inputs
a n x n dimensional factor matrix of the deterministic
input vector
is a n-dimensional vector of model uncertainty having.
zero mean and covariance QM , as designated by
(O,QM ) (t)
(t) R

represents the array evaluated at time t+At

L |€1e ]
[ S
[ ]

B

( )t+At
- ( )t represents the array evaluated at time t

At "is the time increment

The state-space model form of Equation 1 allows the calculation
of the system state vector at time t + At from the system state,
vector at time t. Since © is independent of X ., the model
is linear in the independéSE)variable_K )° It iétglso discrete,
as opposed to continuous, since it allows’'the computation of the
dependent system state vector at only discrete times (temporally



spaced At units of tiwme apart). The deterministic model would
not normally include the last term, 2, .. It is included here
to signify the uncertainty in ‘the res&f%s predicted by the
deterministic model. Specification of a zero mean model uncer-
‘tainty defines an unbiased model. If the model is biased, and
the value of .the bias is known, the model uncertainty can be
represented by a deterministic bias and a zero mean random con-
tribution.

Consider next, the following lipear, discrete form of the ob-
servations:

Ziey T Bk T L 2

vhere

-E(t) is a m-dimensional vector of field observations

?(t) is a m x n dimensional observation matrix )

I{t) is a m-dimensional vector of observation uncertainty
having zero mean and covariance Q , as designated
by (0,Q ) O] )

(v) ' -

The observation matrix, R , designates the locations at which
the data is collected. Aétgach time step, a new observation ma-
trix may be formulated, with the number of rows corresponding to
the number of observations at that time. For each row, zeros
(0's) appear in all coluuns except the column corresponding to

a node of sampling; in this column, a one (1) is placed. For
example, if only node 2 is measured in a 4 node system, the
observation array will be:

[0 1 0 0]

Information from the model and observations can be combined by
Kalman-Bucy filtering, as presented by Gelb [1974]), Jazwinski
[1970]), and Schweppe [1973]. The first stage of the filter (i.e.,
prediction state) entails the extrapolation of both the state
estimates and the system error covariances forward in time to the
next discrete time point using the system model of Equation 1.
Assuming that the model uncertainty is uncorrelated in time, the
predicted system error covariance is:

_ T
Leewae|o) T 2o lode 9M(t) (3)

where
Z(t+At|t) is a n x n dimensional predicted system error
- covariance matrix evaluated at time t+At, given
measurements only up to and including time t.
is a n x n dimensional updated system error -covariance
matrix evaluated at time t, given measurements uj
tc and including time t

)



The above expression emphasizes that the system uncertainties
are propagated through the model in a way analogous to the system
states themselves. The model error covariance, QM , arises

' : (v)
due to the error introduced in the propagation of the system
errors from one time step to the next by use of the model state

transition matrix.

The updated system states are obtained from the predicted sys—
tem states and a linear weighting of the difference between
the predicted system values and the observations as:

~

H

Xierar) = Eeerar) T Xenne) Eerary Eenae)Eerany! )

states

Since minimum variance system state estima;es are desired,
that weighting function is computed which minimizes the trace
of the predicted error covariance matrix. This weighting
function, specifically called the Kalman gain matrix, is:

-1
]

T T
I;((t+/:\t) - E(t—!—Atlt)}}(t-}-At) [I}(t+At)§ (tﬂt[c)‘f(ﬁm)“’o(tﬂﬂ

(5
where

K(t+At) is the n x m dimensional Ralman gain matrix

( )_l indicates the inverse of the giveﬁ array

( )T indicates the transpose of the given array

It is seen from Equation 5 that the Kalman gain matrix is
computed from the weighting of the uncertainties in the predic-
ted system values and the observations. With such, the updated
system uncertainty is computed from:

’

[x I3X (6)

§(t+At]t+At) == Ky (eear) - (tHat]e)
where

I is an n x n dimensional identity matrix



From the above, it is seen that the updated system error co-
variances can only be less than or equal to the predicted sys-
tem error covariances. With perfect data, the system error
covariances are reduced to zero at the locations of sampling.
With uninformative data, the updated system error covariances
will correspond exactly to the predicted system error covariances.
An extremely important characteristic of the system error co-
variance update is its independence of the actual data values;
only the statistics of the data uncertainty are required. This
property allows the system error covariances to be computed
before the data is made available, and thus, can be made to
assist in the design of data collection programs.

To summarize the filtering process and computational require-
ments, the filter equations are presented in the flowchart of
Figure 1. Whether data is available or not, the predicted
system states and system error covariances must be calculated
at each time step; the major computational cost of the filter
is incurred here. 1In actuality, the computational difficulty
and cost of filtering depends on whether the errors are yhite
or colored (temporally- invariant or correlated), and on
whether the system is linear or nonlinear. The filtering al-
gorithm presented here has made use of simplifying assumptions
appropriate for linear system dynamics and temporally uncorre-
lated errors. For more detailed descriptions of filtering,
the reader is referred to the works of Gelb [1974], Jazwinski
[1970], and Schweppe [1973].

DETERMINISTIC DISPERSTON MODEL

The deterministic model employed here is a vertically averaged
two-dimensional finite elemwent discretization which is applicable
when the velocity and concentration vary slowly over the water
colum, i.e., for well mixed conditions. We have restricted the
treatment to a vertically averaged formulation since our objective
was to investigate the computational feasibility of applying
filtering techniques and a three-dimensional treatment would be
premature at this time.

Integrating the general convective diffusion equation over the
water column results in the following governing equation
(see Leimkuhler [1974] for details):

9 9 (= o (3 - .8 4 .3 p < p
e GO +5 GO O 3y &t Sy rs ts, (D
where

C is the depth integrated concentration,

p is the mass density of the constituent and water mixture
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Fipure 1 Schemactic Diagram of Kalman Filtering Process

(from Pearce, et al. {1975))
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¢, u, v are the depth-averaged values of concentration and
horizontal velocity components

h is the total height of water column

Si is the constituent mass input rate per unit projected area

S_, S, are the normal source loading flux components through

the surface and bottom of the water column

The flux terms are approximated with isotropic Fickian disper—
sion expressions, )

3c
= - — 8
Qx ph Ex,y ox . ‘ (8)
Q =-phE &2 ©)
,Yay
where E is the isotropic dispersion coefficient

For the partiXUIar case of settling of discrete partlcles (e.g-,
sphalerite tracer particles, suspended sediment, etc.), the
" source and sink terms are simplified by assuming a first order
decay rate due to the settling velocity of the particles,and
constant concentration through the layer. This yields
~

S; +S,+8 =5 -pw_c ' : (10)

where v is the pafticle settling velocity.

For coastal problems, the concentration is specified as C = 0 on
the ocean boundary when the boundary is far from the plume. - The
normal dispersive flux is specified as Qn = 0 along the land
boundary. If the plume intersects the ocean boundary, the normal
dispersive flux can be prescribed as being equal to zero provided
that the concentration is constant outside the domain.

Equation (7) is transformed to its symmetrical weak form and the
Finite Element spatial discretization is applied. The details
are presented by Leimkuhler, et al (1975), and we list here only
the final form of the governlng equation:’
M-g— C + A + C+E .K-C+w -D-C-S+F=20 (11)
~ ot — - X,y ~ s ~ - - -
where A contains the advective terms, K defines the dispersion
component, D refers to decay, S contains the source loading, and
F represents the dispersive boundary flux term.

The trapezium method is employed to propagate the solution in
time. In the deterministic case, the scheme is relatively inex—
pensive since the state transition matrix, ¢, does not have to be
generated. However, it is required for the covariance propagation
If advection is treated with the '"pure'" trapezium, the generation
of ¢ would require matrix factorization at each time step. To
redice this effort, an Eulerian approximation for advection. is’
introduced and the solution is propogated with




At - At
—_— - . = - — E ’K+w ‘D)
[g 3 (Ex,y F + Vs P)]9n+l [y 2 ( X,y -~ s =~
At ~ ~
-oe o ade, + 4R G 8D

" a2
where

( j)n designates the given array evaluated at the discrete
time point, tn
At is the time incrément

The Euler approximation for advection decreases the stability
~ limit but this is -usually-not a problem for coastal dispersion.



QUANTIFICATION OF DISPERSION MODELING UNCERTAINTY

The major effort required in applying Kalman-Bucy filtering to
coastal dispersion prcblems is quantification of the modeling
“uncertainty. Since coastal dispersion generally Involves a 4
~ large number of unknowns, only a first—order uncertainty analy51s
" is feasible. In first-order analyses, each variable is consid-
ered to be a random function in which the mean represents the
best estimate of the variable, and the variance quantifies the
uncertainty in the estimate.

To compute the uncertainty in the predicted concentratioas,
due to parameter and input uncertainties, the deterministic
model is expanded in a Taylor series about the mean values of
the variables. Retaining only first-order terms, results in
the following equation which defines the propagation of the
uncertainty in concentration:

[M + —— (E X + LA D)] C

X,y -~ t+At
=[M—A—t(E 'K+w'D)-—At'A]E
- 2 X,y -~ s - -t — ¢t

At =x,y ~ .
- — . . +
,[ > (Et § + w D) At é ] C

O
At ~
- [-—- (E *K+w “D)] C
t+At - st+At - —t+At
AL 18). + (8)...] (13)
2 —t —%+At

wvhere ( ) represents the uncertainty in the given variable at
time t

Our representation of the model parameters and inputs is
equivalent to considering the uncertainty about the mean
value as a zero mean process. The isotropic dispersion co-
ef ficient and first-order decay rate uncertainties are inter-
preted as

ix,y ~ (0, osz,y)

- ) .
LA (0, ows )
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where 02 represents the variance of the uncertainty in the
X
variable x ‘

Representation of the model inputs uncertainty creates more
difficulty. For multi-location source discharges, each dis-
charge would normally have its own characteristic level of
uncertainty. However, to simplify,the loading is expressed
in terms of a single loading parameter and a vector defining
the spatial distribution of the loading as,

where »
Xt is the loading parameter

R _.1s a vector descriﬁing the geographic locations of
the loadings

If only one source location exists, such as in most tracer field
experiments, the above expression is exact. The uncertainty

in the loading parameter is represented as a random function
with zero mean and prescribed variance, ’

- 2
A (0, o,7)
t A,

where .
lt is the source loading uncertainty

% 2 is the variance of the source loading uncertainty
t

The flexibility of handling temporally and spatially variant
velocity fields creates difficulty in representation of the

advection field uncertainty. Our approach is based on form-
ulating the uncertainty at the element level similar to the

formulation of the element advection matrix of the determin-
istic dispersion model. :

Equation 13 shows that the effect of velocity uncertainty on
the uncertainty of the predicted model concentrations is
determined from

K+w.D)]C = —At° A " C (14)

At
[¥ * 2 (Ex,y - s —t+AL -t —t



The advection uncertainty term is decomposed into influence
matrices and vectors of the x and y component velocity field
uncertainties as

S -
e =a® w2 Py as

is the vector of x component velocity field uncer-
tainties '

is the vector of y component velocity field uncer-
tainties

Using Equations 14 and 15, the following factor matrices can
be defined (details are presented in DeGuida [1976]):

- At R B )

?u,t [y ) (Ex,y' K+, P)] At (16)
) At Cpy1~l A9

?v,t - [¥ t 2 (Ex,y' § + Ys 9)] : é t (17)

Collecting the various uncertainty contributions, the two-
dimensional model uncertainty expands to:

- i -

Covar = % et &

+ ix;y. g  EX
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?u,t and ?v,t are as defined in Equations 16 and 17.

The propagation of the variance is obtained by squaring the

uncertainty and taking the expected value.

The two-dimension-

al form is, assuming stationary random processes (i.e., time
invariant statistics of the uncertainty) (see DeGuida [1976]):
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where

r is the variance of the model predicted concentra-
-&t tions at time t

r is the variance of the x—directional depth averaged
velocity components ’

r is the variance of the y- d1rect10nal depth averaged
velocity. components

SAMPLING EFFECTIVENESS DETERMINATION

Once the modeling uncertainty is quantified, a Kalman filter-
ing algorithm is developed to quantify the effectiveness of
sampling, as has been shown by previous investigators (e.g.,
Moore (1973), Brewer and Moore (1974), Pimentel (1975), and
Dandy (1976)). With Kalman filtering, all that needs to be
specified for the update of the system uncertainty are the
observation matrices defining the locations of measurements
in time and the statistics of the uncertainty in those
measurements. If an estimate of the measurement uncertainty
is available, the system uncertainty can be propagated in
time, considering different observation matrices, i.e.,
dlfferent sampling strategies. Comparing the system un-
certainty allows one to evaluate the potential effectiveness
of various sampling strategies before the actual experiment
is performed.

In designing sampling strategies by Kalman filtering, care-
ful analysis is required in defining the observation matrices.
The formulation as stated is entirely general, such that an
infinite number of possible sampling networks (i.e., defini-—
tion of the time-variant spatial locations of sampling) can
be analyzed, if so desired. However, specific characteris-
tics of each problem will normally limit the possible number



of sampling strategies to be tested. Of concern might be
such factors as budgets allotted for sampling, required

level of information from sampling, restricted sampling days
and/or hours of sampling (e.g., only sunlight hours), politi—'
cal boundaries, certain legal aspects, and so on. All these
factors, and many more, will probably influence the selection
of possible sampling strategies. Of extrenme importance here
is the use of experience in sampling and engineering judgment.

For observations to be informative, the uncertainty of the ob-
servations must be less than the uncertainty in the predicted
concentrations, i.e., the updated system uncertainty must be
less than the predicted system uncertainty. It is therefore
natural to choose the sampling strategy of minimum system
uncertainty (i.e., the minimum system error covariance
matrix). However, as the duration of time increases after

the last observation has been made, the system uncertainty
increases until finally no reduction in the system uncertain-
ty is noticed. Therefore, at different times, different
measures of the effectiveness of sampling would be obtained.
To compute the sampling effectiveness over the entire time
duration of the experiment, the reduction in the system error
covariance matrix (i.e., predicted system error covariance
matrix minus updated system error covariance matrix) is calcu-
lated at each time a sample is cdllected. Since the majority
of the reduction occurs in the uncertain variances (i.e.,
diagonal elements of the system error covariance matrix), only
the reductions in the trace are computed. Summation over time
of these component reductions leads to a total measure of
sampling effectiveness. Maximization of the total reductions
of the system uncertainty is therefore an appropriate measure
of sampling effectiveness for the specific problem of tracer
experiments.

Some may criticize the previously described optimality criter—
ion for the simplistic way of defining the feasible set of -
sampling strategies, i.e., observation matrices. In reality,
even though a particular sampling strategy may not satisfy

all the constraints, the penalty-incurred in the constraint
violation may be so small that the design will be more effec-
tive than all the others tested which satisfy the imposed
constraints. These problems can be avoided by the definition
of a utility function which could be made to reflect the value
of sampling in light of all the complicating factors. The
criterion for determining the most effective sampling network
would be that network which maximizes the expected utility.
Such a maximization of the expected utility has become a
traditional objective in Bayesian statistical decision theory.

A major disadvantage of defining the sampling effectiveness as



maximization of the expected utility is the difficulty of ex-—
pressing the utility in mathematical form. It is often very
difficult to quantify certain characteristics of the problem;
it may be practically feasible for only very special cases.
Therefore, in light of the necessity to develop simpler eval-
vation criteria, evaluation of only feasible sawmpling strate-
gies, as previously described, appears to be the most appro-
priate for the purposes of this study.

RESULTS

For purposes of illustrating the usefulness of the filtering
algorithm for evaluating sampling effectiveness, some results
for the one-dimensional modeling of a channel are presented
first. The finite element grid used is shown in Figure 2.

A constant depth of 1 meter is used. Contaminant is contin-
uously injected at the source node. Zero concentrations are
specified at the extreme ends of the grid (i.e., at x = 0 and
X = 3 meters). A time increment of 0.1 seconds is used in

the model. The mean values and standard deviations of the
model parameters and inputs are:

Parameter Mean Value Standard Deviation
longitudinal

dispersion co- 2 2
efficient 0.01 meters  /sec 0.005 meters [sec

first order decay
rate 0.2/sec 0.1/sec

Input-

longitudinal flow
velocity 0.05 meters/sec 0.0l meters/sec

continuous source
loading rate 1 gram/sec 0.1 gram/sec

In additjion, the standard deviation of the measurement
uncertainty is taken as 0.01 grams/meter3.

Examination of the deterministic solution shows that the peak
concentration occurs at the source location. Therefore, the
first sampling strategy evaluated consisted of sampling at the
source discharge location (node 9 in Figure 2) every second
after the start of discharge. Since the trace of the error
covariance matrix is the desired measure of sampling effec-
tiveness, a plot of the trace of the error covariance matrix
versus time is presented in Figure 3. The solid line in the
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figure represents the modeling uncertainty (i.e., system un-
certainty with no measurements); the dashed line represents
the system uncertainty as measurements are taken. Each
measurement reduces the system uncertzinty at the time of
measurement. However, as time progresses, the system un-—
certainty increases, but not quite to the level corresponding
tc no measurement. This indicates that the measurements are
Iinformative. A measure of their value is the total reduction
in system uncertainty over timae.

Figure 4 shows the variation of system uncertainty with dis-
tance from the source. The solid line defines the standard
deviation of the system uncertainty immediately before the
measurement is taken at 10 seconds; the dashed line is the
"corrected" distribution. The effect of the measurement is
" quite local, reducing the system uncertainty to essentially
the measurement uncertainty at the observation point but
diminishing rapidly away from the source.

Figure 5 illustrates the effect of sampling every second after
the start of discharge at the source node and half a meter
downstream (i.e., nodes 9 and 13), as measured by the trace

of the error covariance matrix. Figure 6 shows the reduction
of the system uncertainty as a function of distance from the
source at 10 seconds after start of discharge. The additional
downstream observation point reduces the covariance trace,

and also incréases the spatial extent of the correction. The
effect of increasing the sampling frequency while sampling at
only the source node is illustrated by comparing Figures 3

and 7. Figure 7 illustrates the effect of taking a sample
every half second.

'Considerable interest in the Massachusetts Bay environment

has been expressed in connection with a once proposed offshore
sand and gravel dredging project called NOMES (New Eangland
Offshore Mining Environmental Study). Such interest has moti-
vated this study, and it seemed logical to attempt a simula-
tion of the NOMES dispersicn experiment.

The finite element grid of Massachusetts Bay is shown in
Figure 8. The ability to use elements of different sizes and
.shapes affords the flexibility required to model such complex
geometric configurations as Massachusetts Bay. The dump site
of tracer particles (sphalerite) is indicated by the starred
area. Depths at the nodal points are taken from the Coast and
Geodetic Survey bathymetric chart 0808N-50.

Velocity time histories were generated with a two-dimensional
finite element circulation model, CAFE (Circulation Analyses
by Finite Elements) (see Wang and Connor [1975]) using simu-
lated tidal input and actual wind conditions collected during
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the time period of the experiment.

In the NOMES experiment, approximately 1200 lbs. of sphalerite
particles (mean diameter of approximately 5 microns; esti-
mated 2.9 x 1013 particles) were dumped in a small area to
simulate a point source discharge. Discharge began approx-
imately one hour before low tide and lasted for approximately
10 minutes. Certain approximations are required in the math-
ematical modeling of the discharge. In the numerical simula-
tion, it is necessary to take the duration of discharge equal
to at least one time increment. (The time increment used in
the dispersion model is 900 seconds.) In addition, although
the discharge was essentially a point source, the source has
to be distributed over a larger area (starred in Figure 8) in
order to reduce the high concentration gradients which intro-
duce numerical difficulties. In addition, the finite element
grid is refined in the general dischargé'area for the same
reason. Due to the spreading of 'the source over larger
spatial and temporal scales, initial spreading is expected to
be greater for the numerical results than in the actual ex-
periment. With increasing time, this discrepancy should
vanish.

The first order decay rate due to particle settling is ob-~
tained from Stoke's Law and assuming a uniform concentra-
tion profile over the water column depth as 3.3 x 10~
meters/sec. The isotropic dispersion coefficient is chosen
as 30 meters /sec (Pearce and Chrlstodoulou L975]).

Sensitivity of the dispersion model to uncertainty in the
dispersion coefficient is addressed. Taking the standard
deviation of the isotropic dispersion goefficient as 50Z of
the mean value (i.e., opX,y= 15 meters” /sec), the effect on
the predicted concentrations is shown in Figure 9 for a time

" of 12 hours after dump. Since dispersion is influenced by
the concentration gradient, larger concentration uncertalnties
are expected in regions of steep concentration gradients.

This is confirmed by the results shown.

Figure 10 illustrates the model sensitivity to a standard
deviation of the decay rate equal to 50% of the mean value
(i.e., Oyg = 1.65 x 107> meters/sec) at a time of 30 hours
after dump. The model is observed to be less sensitive to a
50% of mean value standard deviation of the decay rate un-
certainty than the dispersion uncertainty. The largest
effect of the decay rate uncertainty is observed at the high-

est concentrations, as is expected.

The extent of application of the filtering algorithm for
quantifying sampling effectiveness at the NOMES site was
severely restricted by the high computational cost. For
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simulating the experiment for two full prototype days, the
50 state variable problem (see Figure 8) is required, but

the computational problem is much too large for extensive

simulation.

Given computational cost constraints, only one hypothetical
sampling strategy was evaluated. Sampling was initiated at
9:002.m. on the day following the dump (i.e., corresponding °
model time step 88). Samples were collected at the model
source loading nodes every hour, until the completion of the
sampling day at 4:00p.m. (i.e., corresponding to model time
step 116). For purposes of presentation, the modeling un-—
certainty was computed from the uncertainty in the decay rate
only. Figure 11 illustrates the effectiveness of the defined
sampling strategy. In this figure, one observes the reduction
in the system uncertainty due to the sampling effort. An in-
teresting result is the very slow increase of the system un-
certainty after the completion of sampling.  Unfortunately,
due to computational cost constraints, it was not possible

to calculate the time duration after which no effect of the
sampling would be felt.

CONCLUSIONS

Although a limited computer budget restricted the application
to the NOMES éxperiment in Massachusetts Bay, these applica-
tions and extensive applications of the one-dimensional form-

ulation have provided useful information on its computational
costs and applicability.

The assessment of sampling effectiveness is made possible by
filtering techniques. It allows the investigation of altered
spatial and temporal frequency of sampling. However, the
methodology does have limitations. One of the most critical
is the requirement of the state-space representation of the
system dynamics. Models are not generally developed in this
form, due to the computational efficiency of other solution
forms and the non-intuitive nature of the state-space form.

Although computation of the modeling uncertainty due to un-—
certainty in the dispersion coefficient, decay rate, velocity
field, and source loading is presented, other uncertainty
sources are not included. Uncertainty arises from assump-
tions made in the model formulation itself, which is difficult
to quantify. For example, models are imperfect due to the
assumptions of the applicability of Fickian diffusion and
representation of naturally variant three-dimensional water
bodies by lower dimensional models. Physical discretization
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of the continuous problem, both spatially and temporally,
introduces numerical errors. By refining the grid and re-—
ducing the time increment, more accurate results are obtained,
but at the expense of increased computational costs. In
addition, round-off error can have significant effect on
modeling results, but unfortunately has not received much
attention.

The major reason for not including the effect on the modeling
uncertainty of the above factors is the increased computation-
al cost required. As is, calculation of the modeling uncer-
tainty due to uncertainty in the parameters and inputs is
costly for large systems. Calculation of the one-dimensional
modeling uncertainty took roughly about 2 minutes of CPU time
on an IBM 370 model 168 computer for a simulation of 21 nodes
for 100 time steps. In comparison, calculation of the two-
dimensional modeling uncertainty in application to Massachus-
etts Bay (neglecting uncertainty in the velocity field) took
roughly 90 minutes of CPU time on the same computer for a
simulation of 50 nodes for 144 time steps. Therefore, for
large systems, the cost of computing the modeling uncertain-
ty does become excessive; the additional cost of the Kalman
filtering algorithm is insignificant. '

An especially important conclusion of this study is the
necessity to quantify the modeling uncertainty by a relatively
detailed analysis. Many previous investigators (e.g., Moore
(1973), Brewer and Moore (i974) and Pimentel (1975)) have ob-
tained constant values of the modeling uncertainty based ’
strictly upon subjective judgment. This practice is not ad-
visable, as this work has shown the large spatial and tem~
_poral variability of the modeling uncertainty.

The tradeoff between computational cost and accuracy in quan-
tifying the modeling uncertainty is evident. For simplistic
one-dimensional modeling attempts, the relatively low
computational cost justifies detajled modeling uncertainty
analyses. The modeling uncertainty due to model assump-
tions, physical discretizations, round-off error, etc., should
be addressed. On the other hand, difficulty in justifying

the excessive computational costs of two-dimensional modeling
of a Massachusetts Bay size problem exists. Although it is
felt that the investment made in the simulation of a field
experiment before it is actually performed will pay for itself
in the higher return of information, the initial capital out-
lay for computational time may deter the use of such a method-~
ology. Cheaper methods of calculating the modeling uncertain-
ty are needed.
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By Frank D. L. Young' and James A. Liggett,2 M, ASCE

inTRODUCTION

The general problem of lake circulation is very complex and remains unsolved
for practical engineering needs; wide use, however, has been made in recent
vears of the steady-state solution to the circulation of a nonstratified lake.
A finite element program described in Ref. 3 has had considerable utilizatior,
in many parts of the world. This paper extends that analysis to transient problems.

A steady-state analysis uses the Ekman generalizations of Welander (11) under
the restrictions of constant vertical eddy viscosity, no horizontal eddy viscosity,
and a small Rossby number. Under these conditions the three-dimensional velocity
field can be found in an efficient manner since the depthwise variation of the
horizontal velocities is removed through integration in the vertical. A finite
difference program using this technique is described in Ref. 6. The finite element
program (3) was written to take advantage of the finite element network’s ability
to represent odd geometries and for the ease of universal use, including simplified
input data and mesh generation. Considerable success has been reported.

A transient solution, described in Ref. 4, exists. There the vertical velocity
variation was removed by & Fourier transform, but the evaluation of a considerable
number of Fourier series terms each time step proved to be inefficient. A fuli
three-dimensional velocity analysis (5) was as efficient and more general. The
method described herein uses a Laplace transform with numerical inversion.
The technique of removing the vertical velocity distribution fits easily into the
method; also, the program does not step through time in the finite difference
sense but needs to be run only about six to 12 times in a typical analysis.
The gain in e¢ase in handling such problems is very large, as is the increase
in efficiency.

Techniques frequently used for time-dependent problems within the framework

Note.—Discussion open until July 1, 1977. To extend the closing date one month,
a written request must be filed with the Editor of Technical Publications, ASCE. This
paper 1s part of the copyrighted Journal of the Hydraulics Division, Proceedings of the
American Society of Civil Engineers, Vol 103, No. HY?2, February, 1977. Manuscript
was submitted for review for possible publication on April 14, 1976.

'Research Assoc., Schoo! of Civ. and Environmental Engrg., Corneli Univ., Ithaca,
N.Y.

2Prof., School of Civ. and Environmental Engrg., Cornell Univ., Ithaca, N.Y.
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of the finite element method include Runge-Kutta integration (1), finite differences
in time (10), and finite elements in time (2). An interesting example of the
step method used to solve a practical problemis cited in Ref. 7. In that calculation.
time steps of 2 min were used to simulate up to 4 hr of real time. In addition,
aniterative method was used. The number of solutions using the Laplace transform
technique is an order of magnitude less. Unfortunately, algebraic development
of the present scheme is difficult and lengthy, even though the problem is
conceptually straightforward. In order to avoid stumbling over the algebra, many
of the expressions have been placed in Appendix I.

Governing Eauations

Basic assumptions and derivation of the governing equations are exactly the
same as in Ref. 4 and will not be repeated herein. The equations are

du 1 ap %u
e e e T )
at p ax 822
av 1 ap v
—— U= e e e e e e )
at p dy az?
1 ap
e e e e e e e e e e e e 3
p 9z
ou av aw
—+——+— =0 .. e e 4
ax ay a9z
Subjected to the boundary conditions
u=v=w=0 onallsolidboundaries, z=-h. ... ........... )
du av
and n——=71; m——=71, at the free surface, z=0....... ... (6)
az 9z

The notation 1s defined in Ref. 4 and is included in Appendix 1. The following
nondimensional parameters are defined:

X z . fL
- vr=— - t*=ft; w*=\—]u;
L L D gD

A= = [—f};] and T'* = [Llff—].
ng ng

These variables are introduced into the equations, and the asterisks are omitted.
Hercufter. only dimensionless varniables appeuar (except in the definition of the
Taylor und Ekman nurnbers). The dimensionless equations are

an ap 1 9%u.

T V= kT i7)

or 8x  2m?* 3zt
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, 1 a%v .
a—t +u= —-a—p— .......................... 8)
at ay 2m? 322
—afi= ..................................... )
z
i“—+ a—v+gt e O T (10)
ax ay az N
With the boundary conditions
U=v=w=0 at 2= =R . . i it e e e e e (09}
au av
and —=A; —=T 7at z=0.%... ... ... ... (12)
az a2z

To this point, the details can be found in Ref. 4. The problem is described
in terms of three parameters: m (in which 2m? = fD*/q = Ta,‘t.he Taylor
number, or 1/2m? = E, the Ekman number); A; and . In addition, depth

’

is a prescribed function of the horizontal coordinates, h = h(x,y).
SowuTion

The time derivatives of the equations are removed by means of the Laplace
transform. The transformed variables are

sSVH = —— + — e e e e e e e e e (15)
ay - 2m- az-

il =0 L e e e e e e e e e e e e e (16)

3z

ﬂl_+_¢9_\'_+ﬂ 1 2 an

0x oy az

with boundary conditions

n=1=uw=0 at :=—h.... ...................... (18)
au . av _

and —— =3 —-=F at z=0 .. ... ... .0 19)
N a2

Also. mtal conditions of « = v = 0 have been used in Egs. 14 and 15 It
other il condivons are desired, addiienal terms wonld be included in Eqgs
11 and IS which are 1(y, y.2.0) and viv. y.2.0).
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Since Eq. (6 states that p is not a function of z, Eqs. i4 and 15 can be
vertically integrated, giving ‘

-1 [/ 8p ap)
=—— (s — ‘) + oS Nz(c,eMt — ¢ e~ M)
st + 1 ax 3y
—sin Nz{c,e™ — coe ™) . ..., (20)
-1 ap . op
and v = (——~~ + 5 —‘/—) + cos Nz(c, eM* + ¢, e~ ¥1)
s2+ 1 3 ay i
+sin Nz{c,eM + o e™™y . L. 2D
. . = ¢
inwhich M=V2mVRcos— . ... ... ... . ... ... {22)
2 o
N=VZImVRsin—. ... . ... .. . . . ... .. ... ... (23)
R=NV {1 +352) . 24)
1
d=tan"l— L, (25)
s

The constants, ¢,, ¢,, ¢;, ¢,, can be determined through the boundary
conditions and are found to be '

1 ) )
= Cyt——————(MI - NA) . .. ... (26)
(1\4"" IVZ)
1 _ -
;= —C,+— — (NT + MA) . . .. ... . (27)
(Ml + NZ) ,
P lys—€edp v +esap - -
Cy= | =+ ———— + (Be —8y)[ + By +8&e)A | ... .. {28)
a Ls?+1 9x s+ 1 3y J

c, =

o4

1 | ~(y+es) 3p ~vys—e€dp - -
. -— 4 — +(YB + €B)] +(yd —€B)A [ ... (29
s+ 1 9x  s2+ 1 3y ) ‘

Note for later reference (Eq. 55) that dp/dx. 85/dy, €,. .... ¢y ail approach

infinity as 1/s as s - 0. The abbreviations previously used (and in Appendix

I) are
a =cos® Nh(e M 4+ oM 4 ogin Nh(e-Mh — gM0y: . (30)
e-Mh
B= m (Nsin Nh— McosNh)y . .. ... .. ... ...... @aGn
y=sin Nh(e ™ — My . 32)
e—Mh
= (M:+WT) (Msnp Nh+ NcosNhy ... . ... .. ... ...... (33)
€ =cos Nh(e M+ My | . . (34)
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ehlh . N
K= (Nsin Nh+ Mcos NR) . . . . .. .. ... . .... (35
(M2 + N3
th -
A= -(Msin NEk— Ncoa Nh) . . . .. 0o v oo oo (36}
(M2 + N?) .

The transformed vertical velecity . W, can be easilv obtained by the ntegration
of Eq. 17:

9w tofaa 9V
o= g (oS Nae o 37
_y 9 _n \ox 3y /

The resulting expression is lengthy; it 2ppears as Eq. 60 in Appendix I.
Pressure Equation.—The boundary conditions of the vertical velecity lead
to equations for the horizonta! piessure distribution. Using w = 0 at 7 = 0
in Eq. 60 leads to
25 25 25 5 5
ap+b—(2——?—+c?—p-+d?£+eai=f ............... (38)
ax? Ixady 3y? ax 3y

in which the coefficients g, b, ..., fare functions of x and y.
Vertically Averaged Velocities.— A verticzi average of the transformed velocities

is
l V)
u=— 77 (39)
-h
1 [¢]
V= ——~J' Vdz . . e 40)
hJ_,

Egs. 20 and 21 are substituted into Egs. 39 and 40 and vertical integrations
carried out to yield :

ap ap - ~
i=h —+h—+h,T+h A 0. .o (40)
ax ay .
ap ap - .
V= ~h,—+h —+hT~-h,A . . ..., . .. ... (42)
"ax ay

in which #, h,, hy, and h, are functions of x and y and are given n Appendix
[. The condition that @ = v = 0 at the edge of "the lake is used to provide
the boundary conditions on Eq. 38 by means of Eqgs. 41 and 42,

Stream Function.—The numerical solution is actually carried out for the stream
function defined as

1 ab
B = e e e e e e e e e e e e e (43)
h ay -
1 av
V= = == e e e e e e e e e e e (44)
~  h ax ‘

Thus. the integrated continuity equation
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0 dua av d d .
—+—Jdz=—(thi)+—hv)=0. .. . ... ........ (45)
ax ay ax ay

is automatically satisfied. Eqs. 43 and 44 are substituted into Eqs. 41 and 42,
and the result solved for the pressure gradients:

op ol ay _ _
;;=q,a—y+q2;+q4l"—q,A ..................... (46)
ap N o _ .
a—y=qza—y—q|;—q3r—q4A ..................... “n

The variables, q,, q,, q,, q,. are defined in Appendix . By cross differentiation
of Egs. 46 and 47, the following equations is obtained for the stream function:

-

3ty 3%y AC )aJJ B( LI '
+ X, y;8)— + X,y; —_— 4+ , Y =V ... ...
x| oyt y o X,¥y;5) 3 (x,y;5)=0 (48)
h ]
in which A(x,y;s) = — (h? + h? )( : qz) ............ (49)
h, ax ay
h aq, 3q, '
B(x,y;s)=—(h%+ hz)(———— .................. 50
Ryt Ny ax 0

C( )———h (h’+h2)[——a £) - (q,4
X,y,S8 H
’ R P ay (@ 2)

+ I + — AL

Eq. 48 is solved numerically under the condition that & is a constant along
the boundary of the lake. Changing this constant (or making & variable over
a small length) accounts for inflow and outflon Once & is known, Eqs. 46
and 47 provide the pressure gradients: then. tiansformed point velocities are
found from Egs. 20. 21, and 60. The real point velocities are obtained from
the inverse Laplace transform, which must be done numerically.

Finite Etement ANALYSIS

Eq. 48 is the same as Eq. 7 of Ref. 3. except that Eq. 48 contains the
additional parameter, s. Exactly the same solution technique is employed as
that described in Ref. 3. A separate solution tuust be performed for each value
of the parameter. At this writing. a program usiig hoear tn angular elements
has been modified for the transient calculation. However. a general program
for the steady state is in use which provides a choree f lincar triangular elements,
cubic triangular eiements, or quadratic isopw.amuine elements. Some mesh

generation facility is also included. This tatter piosriee conll be modified for®

the transi: ‘nalysis by simply changing some o7 the fnoena,, .
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Laprace TRanSFORM INVERSION

The procedure to this point has paralieled that of Refs. 3 and 6, with the
addition of the transformed time derivative. The finite element program, with
the final use of Eqgs. 20, 21, and 60, gives the values of the transformed velocities.
The inverse transform remains in order to find the physical velocities. The
collocation method of Schapery (9) is used for the numerical transform inversion.
The method assumes the functional form of the dependent variables with time
in which the assumed function contains a number of undetermined coefficients.
These coefficients are found from the solution of a set of simultaneous equations.

Following the lead of Shapery (9) the velocity is written as

Wty =ug+Au(t) .. ... e (52)

with a similar expression for v and w. The u, is a constant and the last term
is given by the finite Dirichlet series

Au(t) = 2 a, L (53)
. 1=1
Using Eq. 53, Eq. 52 is transformed and multiplied by s to yield
n ai
SA(S) =ug+ ) — e e e e (54)
1=1 bl
l —_
N

The constant, ug, is clearly the steady-state value of u for large time. or

o= lmsa(s) . .. L (55)

s—0

If the n constants. b, are chosen by some means, then n values of s (e.g.,
5,) can be selected so that Eq. 54 represents n equations in the undetermined
-oefflcxcnts a,. Schapery indicates that the error will be nearly minimized if
the b, are chosen equal to the selected s, values, i.e.

by=s; J=L2,..on .o (56

Then n simultaneous algebraic equations occur in the a,:

§,4(s8,) = uy

5,

5.

Choice of the s, remains. First sia(s) versus log s is plotted as in Fig. 1.
The significant range is that showing a definite variation of si(s). Numerical
experience (8.9) has shown that optimal results are achieved by selecting the
§,in a geometric sequence N

in which ris a fixed rato. Thus. the upper and lower boun's of the s, are
selected from the ploi and the 1ato, rois fised by choosing r vice-versa
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The accu is generally increased by choosing a large n, but a too large
n will result in numerical instability.

In the present study, the following values were used: n = 8, r = 10, s,

=2x107% 2 x 107%, ..., 2 x 102 The resulting eight equations were solved
using a standard Gauss-Jordan elimination procedure. The resul yields a continu-
ous solution for u(r), v(t), and w(t). The procedure is repeated at each point
in the x,y plane where the solution is desired. Thus, the number of constants,
a;, needed is the number of node points X n X 3. Although this number can

su, sv X 6272

FIG. 1.—Transformed Velocity Components at Lake Surface fo:j x =02 y=05
orx=08, y=35 . :

be large (209 x 8 x 3 = 5,016 in the present study), the n X n coefficient
matrix of the a; needs to be inverted only once; i.e., Eq. 57 becomes

a, a, a, o
—+ +oF = 50(s) — Uy
s, s, S,
I+— 1+ 1+ —
s, s, 5,
al a! an -
+ + ...+ = $,i(s,) — uy;
S $a Sh
l+— 1+ 1 +—
L S, $,
a, a, a, )
+ ...+ SEsu(s) Uy oL R A1)
S 52 $n
1+— 1+—= J+—
SII Sﬂ S'I

in which only the right sidz changes with different positions in the x, y plane
Numericat Resuits

The method was checked by solving a test case in an ideahzed basin. The'
problem chosen is that solved in Ref. 4, using a Fourwer trunsform to remove
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s
/

f = 0.000! rod/sec f Z
D = 8000cm

L=1.25x10" cm
7 = 200 cm?2/sec
t = 1.0 cm@/sec
4L g= 980 cm/sec?

-,

r——1>
L-»

g8-J B-B :

U p—

A-A

FIG. 2.—Rectangular Lake. Configura- FIG. 3.—Finite Element Mesh Arrange-/
tion ment for Rectangular Lake

Finite difference

[o} Finita elamant

u, v cm/sec

0 ! L 1 1 ) 1 1 Il 1]
0 [ 2 3 9 5 6 7 8 S
Dimansionless time
o] 28 36 84 11.2 14 168 19.6 224 252

Time n heurs (using the values of Fig.3)

FIG 4.—Comparison of Two Difierent Types of Solution for Velocity Components
at Lake Surface at Typical Point (A = 0.3,y = 2.0, - = 0) .
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vertical dependence and finite differences to step through time. The test basin
is described in Ref. 4 and appears in Fig. 2 with the dimensional parameters.

The finite element grid is shown in Fig. 3. The grid consists of 360 elements
with 209 nodal points. The finite element resolution is much greater than the
finite difference resolution used in Ref. 4. Details of the finite element calculaticn
are givenin Ref. 3.

The results of the computation was compared to the results of the study
of Ref. 4 at a large number of grid points. A typical comparison is shown
in Fig. 4. The horizontal velocity components are shown at x = 0.3, y = 2.0,
z = 0 (equal to the solution at x = 0.7, y = 2.0, z = 0 due to antisymmetry).

Small differences between the two calculations are attributed to differences .

inresolution and the different method of handling the time variation. No statement
can be made as to which is the most accurate. The differences appear sufficiently
small to be of no practical importance.

ConcLusions

The Laplace transform with numerical inversion technique appears to have
a large efficiency advantage in the present problem, stemming especially from
the fact that the vertical distribution of velocity can be stated explicitly in
algebraic equations instead of in the rather awkward (for machine calculation)
Fourier series or in a finite difference sense. The result is a velocity distribution
continuous in depth and time and, using the automatic interpolation facility
of the finite element formulation, continuous in the horizontal dimensions also.

Any three-dimensional time dependent problem is very large. This problem
has been reduced to two dimensions plus an algebraic formula in depth plus
a few (eight in the results presented herein) solutions to a *‘steady-state problem
with parameter.’’ These shortcuts have created a situation whereby the calculation
is quick and economical and can be performed many times for parameter study.
However. the presentation of results still remains a problem. It is not easy
to picture the three velocity components varying with time in a thice-dimeasional

-space Work is currently underway to develop computer graphics procedures
which will resolve the presentation problem. The development of such procedures
was, in fact. the major motivation for finding efficient solutions that could
be stored in the computer and called at will for gruphical presentation,
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W=
N

(sV PNz + )
s+ 1 ) .

1 ac, dc,
- - | — = — e (Mcos Ni = N N2y
(M*+ """ \ay ax .
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— e Mt (M cos Nh — Nsin Nh) + e M(—~Mcos Nz + Nsin Nz)
+ eMi(M cos Nh + N sin Nh)]

| ac, dc,
+ ———— | — + — |[eM (M sin Nz — Ncos Nz)
(M?+ N?) \ox ay
+ e Mh(M sin Nh + N cos Nh) + e~™:(M sin Nz + N cos Nz)
+ eMr (M sin Nh — N cos Nh)]
1 ol oA
- —————{N|— - — }[eM*(Mcos Nz + Nsin Nz)
(M? +,N?)? ax ay
~ e~Mh(M cos Nh — Nsin Nh)]
of oA
- M{— - — )[eM*(Msin Nz — Ncos Nz)
ax ay -
— e~M"(~Msin Nh — Ncos Nh)]}
1 af  aa
- ————— {M|— + — |[eM:(Mcos Nz + Nsin-Nz)
(M? + N?)? ay  ax
— e~Mh(Mcos Nh — Nsin Nh)]
ol 8A
+ N{— + — J[eM(Msin Nz — Ncos Nz)
ay X
— e Mh(—Msin Nh — Ncos Nh )]} ..................... (60)
1
hy=————[-sha +(y +es)B +x) + (—ys +)B +N)] ... .. (6D
ah(s?+ 1) '
1 a 2MN
hy = — + NB— M3 ] —(yB+ed)B +x)
“ah M2+ N> \M?+ N? :
— (Be — 3yY)B + }\)] .................... .. (62
he= [ : (M:_Nz MB Ns) (Be - 8Y)(B + K)
. = — + + + (Be — + Kk
3T ah LM+ N \MT £ N Be — &y
— (By + 8e)(d + x)] ............................. (63)
‘ |
hy=————[-ah+(e-ysYB+x)~(y+es)3B+N)] .. ... .. (64)
ah(s7+ 1)
hl
g =—--"- . . o (65)

- h(hy = hd)
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9s

e e e e e e e (66)
h(h + 1}

h h 4+ hh . ’
= (67)

h3 + kK2
hyh, = h h, .
e . 68)
h? + h3 . (
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The following symbols ure used in this paper:

A.B,C,c,cy,¢,,
c,a,b,¢c.d, e fh,

hy.h;,hyq,.9;.

q,.q4.u,B.'y,8, .
e,x.A = function of x and y;
a,.b uy,.n constants;
D “typical vertical dithension u<ed to normalize depth;
f = Coriolis parameter,
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acceleration of gravity;

normalized depth of lake;

typical horizontal dimension used to normalize width
and length;

V2 m /R cos (/2);

VDIf/2m;

V2 mVRsin(db/2):

local pressure;

V(I + 5%,

ratio of geometric series;

Laplace ttansform: paramerer;

time;

average transformed velocity components in x and y
directions, respectively;

Cartesian Coordinates with x and v ia a horizontal plane
and z positive upward and zero at the surface;

eddy viscosity;

fluid density; .

surface wind stresses in x and y directions, respectively:
tan ! (1/s):

stream function; and

transformed variable.
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PROPERTIES OF CIRCULATION IN STRATIFIED LAKES

By James A. Liggett,’ M. ASCE and Kwang K. Lee,? A. M. ASCE

' INTRODUCTION

The complexity of circulation in a stratified body of water precludes an
accurate analysis at the present time, It appears that such problems can be
attacked by a large computing program (7); however, even a sophisticated
computer program must contain a number of simplifying approximations.
Moreover, the computer method has the disadvantage that the features of the
circulation, the causes and effects, get lost in a massive program. The ob-
jective herein 1s to delineate features of motion in a stratified body of water
m a way that explains observed phenomena and can be used to develop intu-
itive insight into the problem.

To accumplich this objective, many assumptions and approximations must
be made. These upproximations render the quantitative aspects of the results
doubtful, ulthough the writers believe that the quantitative results could be
used in the absence of a more rigorous method. Only the problem of steady
flow has been considered in this paper. Although the time response of a
stratified lake 1s in doubt, it appears that a true steady flow seldom occurs.
However, many ol the features of a steady flow analysis are observed in
lakes. The steady flow analysis can also be used to define an average condi-
tion; it is this average condition which is likely to be useful for design pur-

Note.—Discussion open until June 1, 1971. To extend the closing date one month, a
written request must be filed with the Executive Director, ASCE. This paper is part
of the copyrighted Journal of the Hydraulics Division, Proceedings of the American
Soclety of Civil Fngineers, Vol. 97, No. HY1, January, 1971, Manuscript was submitted

for review tur possible publication on Fehruary 19, 1970,
TAssoc. Pror., mchool of Civil Engrg., Cornell Univ., Ithaca, N.Y.
ZAsst. Prot., ¢ ollege of Environmental Sciences, Univ. of Wisconsin, Green Bay,

Wise.; formerly Kesearch Assoc., School of Civil Engrg., Cornell Univ., Ithaca, N.Y.
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poses. The great mass of data of ar unsteady analysis is often confusing and
not useful; hence the climatology of a lake is better defined by averages.

PRORLEM FORMULATION

The summer stratification of a lake often cousists of three layers: (1) the
epilimnion, an upper layer of near-constant density; (2) the metalimnion, a
middle layer of steep density gradient; and (3) the hypolimnion (1,6,7,13), The
stratification is assumed to approximate a two-layer system herein. Fig. 1
indicates the idealization to a two-layer lake in which the epilimnion and hy-
polimaion are considered homogeneous.

The equations of motiorn: are the linearized eguations which have been used
to describe the motion ir homogeneous (8,9,10) and two-layer (2,7) lakes. The
nonlinear terms are negiected due to a small Rossby number (i.e., the ratio

4 EQULIBRIUM
t SURFACE
Free :
: T Surchelj/
_.}.__._P:_;,___,.:—%_l——’_f_’_-—:/:_f_. —— ——
EPILIMNION € -f

\\ h’
/Thermocline(or interface) \J\

H

HYPOLIMNION  §,

Schid Bottorn
7. 777777, 777

e
FIG. 1.—-DEFINITION SKETCH OF LAKE

of jnertial and rotational forces). Only vertical friction is considered; the
Coriolis parameter is taken as a constant; and the pressure is assumed to be
hydrostatic. The equations for each of the two layers are:

- fup = - i‘%%kJrnk %‘-} ........................ (1)
Sfup = - pl_k %ﬁf + N %k .......................... (2)
E= - B )
%’3+%§%+%§k=0 .............................. (4)

in which the subscript » = 1 for the epilimnion and ®» = 2 for the hypehimnion,
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The coordinates are x, y, and z with x-y plane horizontal and z vertically up-
ward; the velocities correspcnding to the x, y, z directions are &, v, w re-
spectively; f = Coriolis parameter; p = density; p = pressure; 4 = Kinematic
eddy viscesity; and g = acceleration ¢! gravity.

The boundary conditions on the epilimnion are:

au ov . .
Ty = IDy _BEL y Ty = by —62‘- at z =0 ... L (5)
du, v
[/ ?ZL =GC,, /7y ?E.'L =Gy at 2 = - hoooooooonii . (8}

in which 7. and T, = components of surface wind stress (assumed as known)
and G, and G, = shear stresses acting on the epilimnion at the thermochine.
The primary (steady state) drivingforces for currents in the hypolimnion are
the pressure gradient and the interface stresses, G, and G,. Currents in the
epilimnion are caused by the wind stresses, 7, and 7, and are modified by
the pressure gradient and interface stresses. i

METHOD OF SOLUTION

Frorﬁ the preceding equations, the velocity ccmponents in the upper layer
are found to be

]

u, = - —fl? ?%L + cos gz [A; exp (92) - A, exp (- qz)}

) .
-singz {4, exp(gz) - A, exp (-q2)] ... ... ... .. (7)

a
v, = j%— —5%‘- +cos gz (A, exp (gz) + A, exp (- q2)]

N 2

+ sin gz [Ad;. exp (gz) + A, exp (- q2)] ... oo (8)

in which ¢ = VJ/27,. The values of 4,, A,, 4, and 4, are determined by the
boundary conditions. As a shorthand notation, define A = - 2 (cosh 2qit -
cos 2qh); T, = (T, - T/ 2qmpe; T, = {1y + T/ 2qn 05Ty = (G +
Gy)/2qnp,;and T, = (Gy - Gy)/2qm,p; .

The A’sare: A, ={T, [cos 2g4 - exp (2q1)] + T, (sin 2qh)

- T, {2 sin gh cosh gh) + T, (2 cos gh sinh qmi}/a oo (9)
A, ={T, [exp (- 2qh) - cos 2qh] + T, (sin 24h)
- T, (2 sin gh cosh ght) + T, (2 cos qh sinh a¥/a. ... (10)
A, ={T, (- sin 2gh) - T, [exp (2qh) - cos 2qh]
+ T, {2 cos gk sinh ¢gh) + T, (2 sin gk cosh gi)}/a . ... ... (11)
A, = {T, (sin 2qh) - T, lexp (- 2qh) - cos 2qh] '
- T, (2 cos qgh sinh qh) - T, (2 sin gh cosh gh)}/A ... ... .. (12)
From Eqs. 7 and 8, the epilimnion veloctities are functions of the pressure
gradient, wind shewr, and intorface stress. Approximations are found in"the
following sectrons for the mtvrfice shear and pressure gradients.
hitesjcce Sheay —Let Wy =y, - itg, in which W = complexhoiizomtal
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velocity and { = V- 1. Omitting subscript #, Eqs. 1 and 2 become:

fW=%(ig%—%§>-in32—w ..................... . (13)

The horizontal velocity is separated into twoparts as W = W' + Wg; inwhich
Wg = (1/pf) [i (8p/ax) - 8p/8y]; and thus

- .1 2 - L 2
ug = of 3y’vg—p_f Bx Tt (14)
are the geostrophic velocities. Then
, . aﬂ w
fW' = -9 TBET Tttt (15)

in which it is assumed, through the hydrostatic approximation that, 92 Wg/az2
= 0. Solving Eq. 15 and adding the geostrophic component yields

Wy = fik exp [(1 %)m z] + ﬁk exp [- (z‘ .L>m z] + Wap (16)

Ul

Constants Ak and .ék could be determined from the free surface and bottom
boundary conditions as well as from the interface conditions; however, the
result would be rather complex. The purpose of this exercise is to derive an
approximate expression for the interface shear; therefore, it is assumed that
the solution near the interface is not greatly changed by ignoring the boundary
conditions on the free surface and the bottom. Obviously such an approxima-
tion is valid if both of the two layers are thick, so that motion near the ther-
mocline is determined primaril= by pressure gradients (geostrophic flow).

Eq. 16 would have resulted hzd the origin of the coordinate system been at
the thermocline. Letz' = z + h: then

12 1/2
Wy = AL exp [(l ;;5) z'] + B} exp [- <z77':_> z'] + Wep (17)

If the free surface and lower be :ndary are far away, then

12
W, = B] exp [-(i ;)L) z':l +Wie oo (18)
1
_L 1/2
W, = A; exp [(z > z':‘ +Wag oo (19)
M2 -
approximately. The appropriate interface conditions are:
W, aw .,
W, = W, and p,n, %,— = Py, B—Y,- atz'=0.......... .. (20)
, [ _l’/Z
Therefore B] = - m—;}; ST Wig-Wog) o (21)
' p,my" :
Az = W p;ﬁ; (“ .z Wzg) .................... (22)
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Gy = Klug - Upg = Vag+Usg) oot (23)
Gy=K(u1g-u2g+v1g-v2g). ...................... (24)
N _ I 0,0 25
in which K = p) m .................... (25)

From the hydrostatic condition (Eq. 3) and the condition that the pressure
is continuous at the interface (p, = p, atz' = 0)

%:plg%i ................................... (26)
%:p,g-g—i ................................... (27)
%:p,g%+p,g2—z-p,g%..............j ..... (28)
%:plg%+p,g%-ng%....‘ ................ (29)

Using the definition of geostrophic flow (Eq. 14), the interface stresses can
be written in terms of the surface and interface gradients as:

cx=-5ﬁ(1-&)<§+§+%+ﬁ> ............... (30)

f P2 J\Bx B3y ¥x By
- £K () B N\(BE _BL Bh_BRN L 31
©y= 7 (1 0, )(3x By Tax T dy ey

Hovrizontal Velocities.—Eqs. 7 and 8 are derived for a wind stress in any
direction. For the present research, they can be simplified without loss of
generality by considering only a wind stress in the y-direction, i.e., 7, = 0.
Substituting Eqs. 26 through 31 into Eqs. 7 and 8, the current velocity under a
y-shear on the free surface is

g ot -1 Ty .
S - N S ¥ [cosh qz sin q (2h + z)
T T ey T ogne, {2 [

sin qz cosh q (2h + z) + cos gz sinh q (2 + Z)

sinh gz cos q (2h + 2)] + (%’;‘g)(l - Ep:) [(Zi‘

+ Z—’:) (sinh gh cos qh cos qz cosh qz

+ sin gh cosh qh sinh gz sin gz)

_(ﬂ oh

ax * a-x) (sin gh cosh qh cosh gz cos gz

cos g swh gh sin 4z sinh qz)]}/(cosh 2qh - cos 2qh) ... (32)
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=823 1 )Ty s
v, = 7 3x " 7ma. —23 {sinh gz cos q (2 + z)

- cos gz sinh g (2 + 2z} + cosh gz sin ¢ (2r + z)

- sin gz cosh g (2h + 2)] + (#)(1 - f:) [(%

ah .
+ 5) {(cos gz sin qh cosh qh cosh gz

- cos gh sin qz sinh gh sinh ¢z)

9 oh
+ (a—i + ) {cos gz cos gk sinh gk cosh gz

+ sin gz sin gh cosh gh sinh 'qz)]}/(cosh 2qh - cos 2qh).... (32)

Surface and Thermocline Slopes.—The surface and thermocline slopes
create pressure gradients which extend to the bottom of the lake. These
slopes are the remaining unknown factors in the velocity equations. The pri-
mary cauSe of the pressure gradients is surface wind stress, although the pres-
sure gradients are modified by the Coriolis force and the bottomn stress. The
latter effects will be neglected in this approximate theory.

Integrating Eqs. 1 and 2 with # = 1, 2 and with the wind stress in the y-
direction (7, = 0) yields

L 3 L9y
f_\h —a%"dz-nlp, _h—az—ld —RL(g+h)+c =0 .... (39
t o 3%y 8
1
L, 5 de - mey [ Stdz= B oan
0 O | (35)
-k 2
%u
_H—B-dz ey | G dr =2 ke -G, =0 (36)
[ B2 gy f_hﬁ%dz=3p°(h+m G, 37
-y 3y e g 02t ay - 0... 37

Using Eqs. 26 through 29, Eqs. 34 through 37 become

9t K p a7 ot
p,(c+h)a—x-f—(1_;:><§+#)=o ............. (38)

ot K o
p, (& + h) F™ +7(1 - %:)(5—:, - a—:) =é—~” ............ (39)
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h
ou - h)[(l &) %o ?EJ

0, P, Bx
-%(1-%:)(-2—2— %) 0 (40)
o -n|(1-2) 8- 2 5]
+f£(1§4)<§1; ] g’;) 0 e (41)

In Eqs. 38 through 41 8% /8x has been neglected when added to 91 /a9x, since
8t /ax is of the order [1 - (p,/p,)] 8h/0x, and 8% /8y has been neglected when
added to 3h/dy. Solving Eqs. 38 through 41 for the four unknown gradients
yields:

ah Ty l1-a

3y = 2Ps ~ P Dp (T aF s @ " e (42)
8h Ty o

Fri on ~ P Dg - GQF TR e (43)
8L _ Ty (1 -a)Dy ~ 20Dg) + Dp (44)

2y = gprE (DE A DH) l(l = 0’)2 ¥ Olz] ...............
E Ty DH o (45)

L T

ax p,8Dg Dg + Dy (1 - a) + a?

in which Dg = k + ¢ = epilimnion depth; Dy = H - 'h '=-hypolimnion depth;
and o = (K/p, fDg) [1 + (Dg/Dy)]}.

Due to the simplifications made in obtaining Egs. 18 and 19 from Egq. 17,
the above equations are valid orly for sufficiently thick epilimuion and hypo-
limnion. The writers believe that @ < 0.3 is an appropriate limit on epilim-
nion thickness, since 3i/8y = Oat o = 1 and 3(3h/3y)/8c = O at @ = 0.297.
In the following discussion @ < 0.3 is assumed. :

Obviously, all the derivatives of h and ¢ are positive, indicating that the
free surface slopes upward in the downwind direction and to the right of the
wind. The interface slopes downward in the downwind direction and to the
right of the wind. Since a is small 8h/3y > 8h/dx, indicating that the slope of
the interface along the direction of the wind is greater than crosswind.

Eqs. 44 and 45 are simplified if the hypolimnion thickness is large, Dy —
w, to : .

ar Ty 1 - o L Ty A a
3y ~ gpDg (1 -aP + & ' ax gp,Dg (I- aF + o

(46)

Eq. 46 look much like Eqs. 42 and 43 except that the effective density1s p,

instead of p, - p,. Thus the interface will tend to slope by a much greater
amount:
h oy ROy B (47)

av P - Py By’ Bx p, - p, 9x

than the free surface.
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In the Great Lakes the cold hypclimnion water gccasionally touches the
surface in a cold water upwelling (2,3,4,7). Usually such upwelling occurs
near the beach during an cifshore wind. However, it may also occur if the
wind is blowing parailel to the shore from the right (facing the lake) to the
left (2,3,11).

NUMERICAL RESULTS

Most of the r«sults can be more easily discussed if reasonable numerical
values are assigned tc the parameters. The following values will be used for

o} No/

u
3g
€
o

r
/e
#
$af ©
AL
f DE=6m

FIG 6. —-EPILIMNION HORIZONTAL VELOCITIES FOR DIFFERENT EPILIMNION
THICKNESS (ARROWS REPRESENT VELOCITY VECTCRS AT DEPTHS z = 0; 2z =
- 2R/T;...,28=-6h{7;z = - h)

the calculations in this paper unless otherwise noted: f = 107* per sec; g =
980 cm per sec; 7, = 0; 7, = 1 dyne per sg ¢m; p, = 0.99777 gm per cu cm;
p, = 0.99997 gm per cucm; 7, = 40 sq cm per sec; 7, = 4 sq cm per sec;
H = 80 m; and h = 18 m. The values are of the order of magnitude of those
found or assunied by others for the Great Lakes (2,5,7,9).

Fig. 2 indicates the slopes of the free surface and thermocline using the
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above numbers, except that the epilimnion depth is allowed to vary. The
strongest gradient is in the thermocline, which is tilted downward in the
downwind direction. The thermocline is also tilted downward to the right of
the wind, but the crosswind tilt is an order of magnitude less than the down-
wind tilt. The free surface is tilted in the opposite direction frocm the thermo-
cline with the crosswind tilt again an order of magnitude less than the
downwind tilt.

Fig. 3 indicates the tilting of the surface and thermocline as a function of
the density difference. As expected, the density difference has a large influ-
ence in the thermocline tilt, but practically no influence in the free surface
tilt. When the density difference is small, the thermocline may tilt very
steeply so as to be unstable. Such a mechanism seems to cause the {all over-

SPEED (cmv/sec)
l30

OO 1[0 - 2IO

40
T

b — — — 5> — — THERMOCLINE
30

60

90T

DEPTH (m)

1801

210L

FIG. 9.—~AVERAGE SUMMER CURRENT SPEEDS IN LAKE MICHIGAN (AFTER J. L.
VERBER, Ref. 14)

turn when the epilimnion cools to such a degree that a moderate wind can up-
set the natural stability of the stratification.

Fig. 4 shows the tilt as a function of the parameter K. Eas. 32 and 33 in-
dicate that the velocities are complex functions of the various parameters
even when effects of sideboundaries and botton: toposraphy are excluded. The
velocities are linearly proportional te wind stress. Thus an mcrease in wind
stress only increases the velocities in magnritude wi*liont adivectional change,
neglecting the effect a higher wind stress might have ca the eddy viscosity.

Fig. 5 indicates elffect of epilimnion thickness on epilimnion velocities.
The thicker epilimnion has greater velocities for the same wind stress and
has an Ekman spiral which is mare aearly conmjpict-
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Fig.6 indicates the effect of eddy viscosities on epilimnion velocities. The
eddy viscosities are largely unknown; thus it is important to determine the
error made in current velecity due to incorrectly guessing eddy viscosity.
The smaller eddy viscosities are associated with large velocities and more
complete spirais.

Fig. 7 shows current speed as a function of depth for different epilimnion
thicknesses. Fig. 8 shows current speed as a function of depth for different
eddy viscosities. The average summer current speed as determined by
Verber (14) is shown in Fig. 9. Eqs. 32 and 33 display the inleraction within
the stratified lake due to the different effects of each factor with respect to
depth. Characteristically, the speed is maximum at the surface, decreasing
to a relative minimum at three-sevenths the epilimnion depth, then increasing
to a relative maximum just above the thermocline.

CONCLUSIONS

The present study is an attempt to gain some insight into the complex
problem of circulation in a stratified lake. If the effect of the lateral bound-
aries and the bottom topography are neglected, reasonably simple equations
can be derived for the slopes of the free surface and the thermocline and for
the circulation. The approximate results present a satisfactory explanation
for some of the observed phenomena. The results also indicate the effects of
varying parameters of the problem as indicated in Figs. 2 through 8.

The quantative accuracy of this study is doubtful because of the numerous
approximations. However, the results are in approximate quantitative agree-
ment with the computer calculations of Lee and Liggett (7) in the region where
the effects of the bottom boundary condition and the shore configuration be-
come less important. .

The response time of a stratified lake is unknown, but it is probably long,
of the order of several days. In this respect the stcady-state circulation may
rarely, if ever, be attained in a natural lake. However, the steady-state con-
dition might be expected to represent an average condition under average
winds. Evidently, 1t is this average which would be most useful for purposes
of design, for obtaining flushing data, for calculating the transport of physical
quantities, etc. Since the problem appears to be linear to a good approxima-
tion (certainly to better accuracy than many of the approximations contained
herein), the effects of through flow, or other non-wind-driven circulation, may
be added. )

The writers hope that the engineer cancombine this type of study with field
data (e.g., velocity measurements or drift card data) to infer the general cir-
culation in any given lake.
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APPENDIX II.—NOTATION

The following symbols are used in this paper:

All.AZLA:H A-n

A, B, A', B' = functions of x and y;

Dg = depth of epilimnion;

Dy = depth of hypolimnion,
f = Coriolis parameter, -
£ = acceleration of gravity;

G,, G, = components of interface stress at thermocline;

h = position function of epilimnion;
H = position function of lake bottom;
i= v'—-__T;
k = subscript (k.= 1 for epilimnion; ¥ = 2 for hypolimnion),
K = constant (see Egs. 23 and 24);
p = pressure,
q =-constant;.

T,, T,, T,, T, = constant functions;
u, v, 1w = velocity components in y, v and z directinns;

HY 1

‘o f
w'

wy

x’ y’z
x"y'xz'

VIR QR

T 53 Ty
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= horizontal geostrophic velocity components;

complex horizontal velocity;
transformed complex horizontal velocity;
complex geostrophic velocity;
three-dimensional coordinates;
transformed coordinaies;

dimensionless constant;

function of x and v;

position function of free surface;

eddy viscosity;

density of fluid; and

wind stress components in x and y directions.
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HIGHER-ORDER FINITE ELEMENT ANALYSIS
OF LAKE CIRCULATION

RicHARD H. GALLAGHER* and STevens T. K. Cnant
Cornell University, Ithaca, N. Y., U.S.A. ,

(Received 14 December 1972)

Abstract—The finite element method is applied to the analysis of the wind-driven circulation of
variable-depth, shallow, homogeneous lakes. Attention is concentrated upon higher-order
descriptions of the flow phenomena within the individual elements and upon the use of these
higher order functions in the definition of curved element boundaries (isoparametric elements.)
Numerical results are presented for a rectangular basin, for which alternative results are
available from both first-order finite element representations and finite difference analyses, and
also for Lake Ontario, for which only the first-order finite element solution is available for
companson These comparisons confirm the accuracy and efficiency of the finite element
method in this field of application.

1. INTRODUCTION

The finite element method has drawn increasing attention as a numerical analysis tool for
problems in fluid dynamics. The reasons for this growth of interest include the following:

(1) irregular boundaries can be treated accurately without computational difficulties or :

changes in formulation of the mcthod or computer program, (2) wide use can be made of
universally-available general-purpose programs[l] which are virtually unlimited in the size
of problem they can handle, and (3) inhomogeneous or variable properties of the problem
can be easily taken into account.

Because of these advantages the finite element method is especially attractive as a method
of analysis of lake circulation problems. Natural lakes of course feature irregular boun-
daries and the phenomenon being described is so complex in form that any numerical
analysis procedure will necessarily entail hundreds, or perhaps thousands, of unknowns.
Proper description of thermal stratification introduces the need to deal with spatially-
varying physical properties.

The authors have presented, in ref. 2, a finite element formulatlon and nuinerical results
for the wind-driven circulation of variable-depth, shallow, homogeneous lakes. The govern-
ing differential equation of this problem was taken to be that derived by Liggett and
Hadjitheodourou (ref. 3). The independent variable in this equation is a specially defined
stream function which we will refer to as the *‘flow parameter”. Using the method of
weighted residuals (ref. 4), with the Galerkin criterion in the selection of the weighting
function, the integral form necessary for the construction of a finite element representation
was constructed. To this point the work described in ref. 2 is quite general as a basis for
finite element analysis of the subject problem. The adopted representation of the element
flow parameter was then limited, for the purpose of generating numerical results, to a first
order (linear) function on a triangular domain.

* Professor of Civil Engineering.
t Research Assoc” School of Civil and Environmenta! Engineering.
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,! The present paper extends vhe work of ref. 2 «¢ highicr-order finite clement repr.
tions, where the term *higlicr-order™ refers o the Jevel of sophistication in b
' geometric description of the clement and the assumed representation of the flow par.
Evidcence from the extensive finite clement analysic experience in structural mechar
shown that higher-order represeatations are in general more efficient than the simplest
of clemnent formulation. There are, naturally, limits on the degree of sophistica
higher order formulations. A more significant motivation for the use of higher order cl
arises in the lake circulation problem. Since no expcrimental evidence exists for
_driven circulation of large lakes (we refer in this to uncertainty with respect to both th
input and the lake response) it is essential that some economically fcasible means
checking be available in any numerical analysis technique. Such checks are made a\
in finite element analysis through comparison of alternative solutions obtained with d.
types of clements.
Two distinct classes of higher-order element representation are treated in this pap.
“first is a direct expansion of the degrec of polynomial representation of the flow par
- within a triangular element domain. The simplest triangular element employs a linea

! . . . .
. the element considered here describes the flow parameter with use of a cubic polyr

+ The second type of element is intrinsically rectangular and empleys quadratic rc;
 tation of the flow parameter. This same field is also employed to describe the bounc
- the element in a special curvilinear coordinate system. This is a particular case of t
parametric element approach to the formulation of elements with curved boun
wherein the same (**iso ") parameters are used to describe both the behavior of the ¢
and its geometry.

The paper is organized as follows. First, a brief description is given of the formula
the subject lake circulation problem as a finite element analysis problem. A more d
development of this work as well as a review of efforts on finite element lake circ:
analysis by other investigators, can be found in ref. 2. Then, the formulation of the tw:
of higher order elements is detailed and attention is given to certain questions the
regarding boundary conditions. Finally, numerical results are presented for recta
basin problem, defined first by Liggett and Hadjitheodourou[3] and Lake Ontari
importance of the rectangular basin analysis is that comparison results are available |
only the first- and higher-order finite element representations, but also from a pr
finite difference solution. The significance of the Lake Ontario analysis is that verif:
of the integrity of the numerical finite element solution can derive only from th
contained comparison of finite element representations of different degrees of refin.

2. BASIC THEORY OF FINITE ELEMENT REPRESENTATION
OF SUBJECT PROBLEM

Detailed development of the governing differential equations of the subject probl
formulated by Liggett and Hadjitheodourou[3}, and of the integral form associated v
finite element representation, is beyond the scope of this paper. Rather, we dcfine th
physical problem and the final form of the governing equations.

A cross-section of the type of lake under study is pictured in Fig. 1. We fix the or
coordinates at the surface of the lake with z measured upwards. In accordance w
assumption of shallowness (i.e. hydrostatic pressure distribution), D < L. The eddy Vi
(n) and Coriolis parameter (f) are assumed constant in the forn-..-ion of the diffe
relationships. The distribution of pressure is assumed to be hydrisiatic and surfac,

—
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Fig. 1. Representative lake cross section

stresses (7,., T,,) are prescrlbed In order to lincarize the problem the Rosst: number
(ratio of inertial forces to rotational forces) is taken to be small. The values of the Jake depths
(h(x, y)) are assumed to be the actual depths under the assumed wind stress or, alternately,
that tiie equilibrium depths are a sufficient approximation to the actual depth under the
assumed wind stress. The x, y-plane coincides with the water surfaccand w=0at z = 0.

With these assumptions, appropriate forms of the momentum equations are constructed,
the continuity equation is invoked, and after integration in the z-direction and introduction
of a stream function () there is obtained

AN
ax2

with the boundary condition that  is constant on the shoreline. The stream function is
related to the average velocities (i, 0) by

A%+Bé%-}c 0 1)

@)

The coefficients 4, B, and C in the equation are functions of the planform location in x and
y coordinates (more specifically, functions of the lake bottom topography) as defined in
ref. 3, and C depends on the wind shear stresses as well.

The finite element representation of (1) is obtained by the method of weighted residuals.
This concept assumes that an approximate representation of the independent variable,
designated by ¢, which does not satisfly the governing differential equation, will be chosen.
In the present case this approximating trial function is of the form

t/7=§‘,1N.¢.~=

where i, is a particular value of the independent variable and generally refers to such a
value at the point 7, i = 1, ... n, and the cceflicients N;, which are functions of the x and y
coordinates, are termed shape functions.

Designating the governing differential equation (1) as L ({) =
approximate nature of i we have

LN (3

0, we note that due to the

L) =R#0

where R is a residual value. Since the governing differential equation cannot be satisfied
pointwise throughout the domain (V) of the problem we can seek its satisfaction in the sense
of 2 weighted average over the domain, i.e.

[L@rgav-9 ()

@) -
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where ¢ is the weighting function, which may be specified in one o1 any number of fi
Here, we choose the Galerkin form in which the cocflicients (N,) of the trial functio
cmploycd Each distinct trial function lcads to a scparate algebraic equation, as fol
{First, we substitute (3) into L(y), as glVLn by equation (1) and designate the intcgr

1dcﬁncd by cquation (5), where now ¢ = N,. We obtain, for all ¥;,i=1,...n, in
‘element ‘
P N, a2 N o_N a_N '
N L-’A"JBLJ) Cldxdy =
Jf, 00| (s + T + 4252+ 5w 4 €| ar oy - (0
where {N} = N7 is a 1 x n column vector containing the shape functions N,.

Next, one applies integration by parts in the plane, reducing the order of the derivi
appearing in the integral and introducing the boundary terms into the refuhmg int
This Jeads to the following system of algebraic equations

kYY) =} + §°

where
AN} N, 3N)3_N N \
kc d J d
k1= [ f ( e + a2y g x dy
‘Y= N}Cdxd
9= J[ cdxay
and §° symbolizes a boundary integral. -

Due to the terms A{N} (§_N /ox) and B{N} (_N_/3dy) these algebraic equation:
nonsymmetric. Also, as noted previously, the coefficients 4 and B are functions of x a
The equations of the complete lake are constructed from the equations of the elemen
imposing the condition of stream function continuity at each element joint, which is syr
mous with simple addition of all coefficients (k;;* and r;®) with like subscripts. Thus, th.
set of equations is of the form '

[KKy} ={R}
Kij= Z kl‘jt
Ri=Yre+)Y §e

and the summations range over all elements with terms with the subscripts i and j.
After solution of equation (10) for {¢/}, other variables, such as averaged velocities, ,
sure gradients, and velocities at different depth levels can be subsequently evaluate
back substitutions into equations presented in ref. 3.
We next examine, in the following two sections, the choice of shape functions N; (equ:
3) for two classes of higher order elements and the use of these functions in the develop:
of element equations from equations 8 and 9.

where

3. HIGHER ORDER"’ TRIANGLE

The triangle holds a special place in finite element andl)sw due to its association
“complete” polynomials of lower order. This point is illustrated by the array of the ¢

cients of the polynomial series in the form of a Pascal triangle (Fig 2). A complete I.
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Fig. 2. Pascal triangle and relationship to higher-arder elements

function is identified with the simplest triangle (the location of the cocfficients in the Pascal l
triangle identifies joints in the clement), a quadratic function corresponds to a triangle with f
Jjoints at both the vertices and the midpoints of the sides. In this way we can perceive a
“family” of triangles with no upper limit on the degree of polynomial employed. The |
functions of degree higher than one are collectively termed “ higher-order ™ functions and
when an element formulation is based on such functions it is called a
element.

The advantage of a higher order element derives from two principal considerations. It is
possible to write the higher-order function directly in “shape function” form. The Pascal
triangle identifies a polynomial series representation of ¥, where the coefficients of the series
do not have the physical significance of shape functions. For more general shapes of element
the transformation of the polynomial coefficients into shape. function form may be an
expensive operation. Secondly, explicit formulas are available for the integrals of the shape
functions over the triangle domain. Both of these considerations, which are detailed in
ref. 6, stem from the existence of triangular coordinates, defined as

(Area);
(Area)

w}.1ere (Area) is the total area of the triangle, (Area),: is the area of the triangular subregion
i(i=1,2,3) (see Fig. 3a) and is a linear function of the x, y coordinates of point p. It

*higher-order™

(Lyr = (13)

Y
Y

a Area coordinates b. Higher order representation

Fig. 3. Triangular elements

rol]ows that one can construct a linear representation of a quantity such as B, the coefficient
n equation (1), as follows

B=L B +L,B, +LyB,

where B;, i = 1, 2, 3 are the values of B at the element vertices.

(14
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As Fig. 2 discloses, the basic higher-order triangic possesses 6 joints and the shape,
tion corresponds 1o a complete quadratic polynomial. Chan and Larock({7] have utihz
element cf tiis form in the analysis of potential flow problems The results obtain
application of the clement disclosed significant improvements over those obtained
lincar-field elements.

We go one step further in the present approach and adopt a shupe function based u
complete cubic polynomial. Rather than defining clement joints at the ten location

: scribed in Fig. 2, however, we deal with only the three vertices and & point at the centr

the element (see Fig. 3.b). To accommodate the ten terms of a coniﬁlglc cubic we tre:
derivatives of ¢ at the vertices (é/8x, 6y/dy, at points 1, 2 and 3) as solution param
Thus, at a typical vertex i we have as parameters ¥, ¥, = (00/0x)|,, ¥,, = (@¢Y[dy)];
only solution parameter at point 4 is .

By introducing the derivatives of i as solution parameters and thereby climinating
along the side of the element we reduce the bandwidth of the algebraic equations
solved (equation 10). Furthermore, from equation (2), the solution parameters are di
proportional to quantities of interest, # and 5, and so the latter are in cffect directly ps
out after computation of the solution.

The present triangle (Fig. 3b) has been used extensively in finite element analysis
number of authors, including flow analysis problems[8]. The shape function descripti
¥, given by Felippa[9] is

Y =Ny, + Ny, + Naby, + Nofy + - Nop,  + Nyo¥y
where

Ny =L*L; +3L, +3Ly) =7y
Ny =Ly*(x12L; — X33 L3) + (x3; ~ x1,)y
Ny =L?(rsiLs — y1aLa) + 0r2 — vy
Ny=L,*(L, +3Ly+3L) -7y
Ns =Ly (xa3Ly = x;2Ly) + (X1, — X23)7

Ne =L’ (r1aLy = y23Ls) + (23 = ¥,
Ny =L%(Ly + 3L, +3L) — Ty

Ng = Ly*(x3; Ly — x53L3) + (x5 — X

N = L3*(r23L; - y3 L) + (031 — »2
N,o =27y

Xi, = X; = X; Yii=Yi—Y; y=L,L,L,

In the evaluation of the element coefficients, through integration of equations (8) an

the terms A, B, and C are assumed to have linear variation over the region of the eleme
given by equations of the form of (14). This is convenient since B, B,, etc., the valu

i these quantities at the ““joints”, are the conventional input parameters in an analysis

One inconvenient aspect of the element formulation resulting from the use of equ

i (16) is the presence of point 4 in the interior of the element. This solution parameter doc

join to any other so it can be eliminated from the element equation before assembly ¢
latter into the system representation (equation 10). Thus, the element equations a
order 9 x 9 immediately before assembly. ’

As mentioned in Section 2, consideration of boundary conditions requires that the st
function is a constant, which for convenience is chosen to be zero, all along the boun
In the present represcntation the stream function varies cubically between two ady
joints and requires specification of four parameters for unique definit’ -~ along such an
Fhus, in addition to the two stream function values at the joints the  aes of the tang:
derivative of the stream function at both end joints should also be zero. As in finite ele®
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‘-malysis by using triangular clements, the boundary is usually approaimated by broken lines
1nd hence the tangential direction of a joint is rather ambiguously defined. Hence, some
further approximation is nceded to choose its direction. For instance, one may consificr the
average direction of the two lincs meeting at the same joint as its tangential dircction, or
alternatively, take cither one indicated by the two lines as the required direction (but con-
sislcnllyz for all the joints). The latter is adopted in the present study for the sake of simplicity.
That is, the line connecting a joint and its adjacent joint in front, taken in counterclockwise
order, is considcred to be the tangential direction at that joint. Once the tangential direction’
'at each boundary joint has been established, a matrix transformation is necessary in order to
'introduce the tangential and normal derivatives of the stream function, in place of the x- and!
‘y-dcrivatives, as solution parameters. This transformation can be performed cither at the:
clement level or at the system matrix level. After that, the stream function value and its'
tangential derivative at each of the boundary joint are set equal to zero and finally the

system of equations is solved. :

D. ISOPARAMETRIC ELEMENT

The four-sided isoparametric element is shown in Fig. 4. The simplest order of shape func- l
tion which will describe curved boundaries, a quadratic, is chosen here. A curvilincar§

No.n
6

{(i.1)
5

Fig. 4. Quadratic isoparametric element

coordinate system (£, 1) is defined within the element in such a way that the corners of the
clement have coordinates +1 or —1 as indicated in the figure. Rectangular coordinates
(x, v, in terms of which the location of node points are initially defined, are also established.

The stream funciion for the velocity is described by the following
Y=Ng, + Ny +--Ngig )

We note that in this case only the values of § at'the joints, ahd Tiot the derivatives of , are
chosen as unknowns. The shape functions N, are given in ref. (10) by

Ny =31 + EE)QA +n) — (1 = &) E+amy) — (4§80 — n*))
for i=1,3,51

% Ricianp H. Garvaguin and Stevins T, K. Cian

The validity of these expressions is confirmed in two ways. First, the N,’s must take
values such that § = ¢, when i is eviluated for the coordinates of point j(ie., N, =1
i=j, N, =0fori#})). Secondly, when evaluating § along an edge it should be found to t
function of only the values of ; along that sume edge. This means that ¢ will be continu
across clement boundarics and in forming a geometric idcalization with curved bounda
the geometry will be continuous if the same shape functions are adopted, i.e.

X =N1X1 +"'N‘Xl +"‘N3x3
y=Nyyy+- "Ny, + - Ngys

Now, it is recalled from cquation (8) that evaluation of the element coefficients inve
the derivatives of the shape functions with respect to x and y and integration over the
of the element. The above shape functions are defined in terms of ¢ and 7, however, so
the transformation to x and y must be established. From the chain rule of differentiat
for a typical shape function N,

aN)Y [ox ay(aN, oN,
o¢| |ocacf|ex ox
= =1
an;l |ax oy ||on, &N,
‘on)  Lom anflay. 3

where [J], the jacobian matrix, is evaluated by differentiation of (19). Also
dA4 = |J|d¢dn

where |J| symbolizes the determinant of [J].

Equations (20) and (21) give the necessary basis for evaluation of (8). The resulting int
is too complicated for explicit evaluation so that numerical integration must be emplc
Gaussian integration was applied in the present case, with 3 Gaussian pointsineachdirec
The coefficients 4, B and C were evaluated at the origin of &-5 coordinates and were assu
to be constant throughout the element. It should be noted that in the presence of det
data for a given physical problem it would be feasible to evaluate these quantities at ea
the numerical integration points, and thereby obtain a better approximation to the equ:
coefficients. However, computation time is expected to increase considerably as the ex;
sions for these coefficients are rather involved.

E. NUMERICAL RESULTS

To study the feasibility of the present approach, two problems, presented in ref. 2
again analyzed by using the higher-order elements described herein. For both prob
fewer isoparamctric elements, and henceforth a reduction in the number of soluticn |
meters, have been used to demonstrate the merits of high-order clement over the si
linear stream function representation. The same idea could have Bzn applied to the «
field representation but it was decided to use the same element gridworks adopted i
lincar field so as to gain some idea about how solution eventually converges with tt
crease in number of solution parameters. o ,

The first problem, shown in Fig. 5; isan idealized rectangular basin oriented in a n

i=2,6 (18)

for

Ny =301 = &) + )

ssouth direction with a length four times its width. Wind was assumed to blow from Sov
North. Values employed in the actual computations are shoewn in Fig. 5.
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As mentioned in ref. 3, a zero depth represents a computational singularity. Hence, only | For entire loke. For entire loke:
the flow region bounded by a contour of 5 per cent maximum depth, as used in ref. 2, is 3%2 Elecrjnenfs ,Zg %fd”;:“"
. . . odes
considered zmd.the cffects from ﬂow exterior to the. boundary are assun‘ﬁed to be neghgnbly (a) Tnangular elements (b} Iscporametric quodriioterals
small. This choice of the flow region, rather than using the actual shoreline boundary with a
non-zero depih assigned along it, is preferred beca}Jse the bo?tom topograpby of the lake is Fig. 6. Finite element representation of rectangular lake
retained. 1t is to be noted that although the lake is geometrically symmetric about x- and
y-axes, this property of symmetry does not apply to the circulation behavior being calcu-
lated. Therefore the entire lake must be considered. Fig. 6 shows the finite element gridworks
for a quadrant of the lake. For the entire lake, 360 triangular elements (either linear or
cubic) with 209 joints, or 40 isoparametric elements (quadratic) with 149 joints, have been
used in the numerical computation.
Figures 7 and 8 show results for the stream function ¢ and the magnitude of surface Scate{cmsAec)
velocity at selectc.ed sections, as predicted by various finite element representations. Atlso 1
shown are the finite difference results from ref. 3, where 1701 equally-spaced pivotal points Y = 1.5L 0 5 10
were used. For the finite element representations, 209 solution parameters were used for the
linear field, 149 for the quadratic field, and 627 for the cubic field approximation. The Finite difference:
finite element and finite difference results are seen to be in close agreement. Also, it is noted
that results obtained by using isoparametric elements compare well with others, in spite of Finite element
the fact that only an amount of 72 per cent in solution parameters, compared to the linear o Triangle - linear field
field rcprcantatron, has been used. This fact seems to confirm that higher-order clement a Triongifj— cubic field
representation is more desirable, regarding accuracy and efficiency, over the simple linear x 1soparametric
field representation. Of course, our results could have been improved further if the coeffi- guodritoteral
cients 4, B, and C in the governing equation had been evaluated at all Gaussian points .
instead of only one point for each element as presently carried out. The results from cubic . Y = 0.45L
field representation, as expected, are far more accurate and coincide almost exactly with the
finite difference resuits based on a much finer gridwork. Fig. 7. Comparison of total velocity solutions on rectangular lake surface =*
“The seco roblem considered is the prediction of circulation of Lake Ontario due to a represcntative sections
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Fig. 8. Comparison of stream function solutions for rectangular lake at
representative sections

vind shear prevailing in the NE direction with 7° to the East (the local average direction at
Rochester in February). The same numerical values of f, , 7, g as used in the previous
xample were used in the present case. The characteristic length (L), which can be chosen
rbitrarily, was set to be 2 x 107 cm, while the characteristic depth (D) was chosen to
cpresent the maximum nodal depth after the lake had been discretized with finite elements.
‘he value of D may vary slightly with the gridwork. For instance, it is 22500 c¢m for the
riangular element gridwork and 21650 cm for the isoparamelric representation. Figures 9
nd 10 show the gridworks employed in the present analysis: 561 triangular elements with
23 joints, or 70 isoparametric elements with 257 joints. The geometry and bottom topo-
raphy of the lake described in ref. 5 was uscd herein to define the finite element representa-
ons. Again, to avoid computational singularity, the flow region studied is the one bounded
y the contour line having depth of water of 12 m, not the actual shoreline.

Figures 11 and 12 show the stream function values and the magnitude of surface velocity

No. of Elemenis =56l
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S5 6 4
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Fie. 9. Finite element representation of Lake Ontario bv triancular elements
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Fig. 10. Finite element represcntation of Lake Ontario by isoparametric clements
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Fig. 11. Comparison of stream function solution for Lake Ontario at section A-A

AN
" h - en
at a represcitative section of the lake. These results are seen to be in goodragrf_f.;rz
. . . g o o
general. Near the south shoreline, however, some discrepancies in the slrea‘m unc (
prediction and those obtained by the other tworepre:

w the isoparametric element : :
P ; be inaccurate because a 12

ations. The results obtained by the former are believed to ! use 8
coarse gridwork had been used, and as a consequence, tnt hottom topography mg
represcated in that region. This inaccuracy, however, does not seel

e B P gion, as seen in Fig. 12. This

i i iction in that re
affect seriously the surface velocity pred:clxon. in that r¢ ’ ,
suggests that surface velocity distribution, which is mainly affected by the surface and

; 1 1
‘rounding conditions, is less influenced by the bottom topography than the stream func

No comparison resulis by other methods are available for this protlem. Although
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Fig. 12, Comparison of total velocity solutions on Lake Ontario surface at section A-A4

-correct Coriolis parameter was used, no serious atternpt was made to choose a physically .
“accurate eddy viscosity or to account for ice formation or variation of wind stress. It is |
unlikely that field measurements of the form necessary for comparison purposes will be
available in the foreseeable future. Large-scale modcling is 4 promising alternative source of
" comparison data but no such data yet exists for this lake and when they are obtained it is to
" be expected that limitations on representation of the pertinent dimensionless ratios (ref. 11)

will require somewhat different conditions on the comparison analysis than those employed
herein. ’

F. CONCLUDING REMARKS

The results presented in this paper demonstrate that higher-order and isoparametric
elements represent important components of the most effective utilization of the finite
element method in lake circulation analysis. The improved accuracy of the triangle with
cubic stream-function field is gained without significant increase in formulative cost over
that involved in the simplest triangle. Additionally, the use of derivatives of the stream |
function as solution parameters is a convenience in the treatment of boundary conditions
involving prescribed inflow or outflow rate. It is questionable, however, that still higher-
order representations (e.g., based on quintic functions) would be more efficient because for
these the element formulative cost is no longer insignificant. Also, the large number and
type of solution parameters per element may prove awkward. In any case, realistic assess-
ments of ““ optimal” degree of higher-order representation are needed.

Isoparametric element representation would appear to be of special importance in the
finite element analysis of natural lakes, which possess irregular shorelines. The represent-
ation of such Jakes can be accomplished wit!. large numbers of straight-sided elements but
in that case many "~ments and solution parameters are employed solely for geometr’
representation. Th.  oparametric concept enables cach element to serve the functions o
both geometric and behavior representation. This factor will be of overriding importance as

Ricyaid M, Gaitatiiw and STIVENS T. K. CHanN

, ceal representation is eatended to thres dizzensions and more umrp‘..cx phen
the ‘hcmcml'ﬁuig interaction. 1t should be noted that although the four-sided cle
& th”'lm'-» )arw.-nciric representation, it is ulso possible to cast the triungle ”‘.‘h
poplu!]af l:;:(();uc;iion of “optiral” degree of shape function iy once again Imy
g:,cil;z,),/:;c[ilz] lcn;]s towards the desirability of second- or third-degree functions.

Achnowledoym ni--Work dewcribud in this paper was supported by the N:xli(;gjil Scicnce Foundati
~ AC etds ohi- A :
Rescarch Grant GK-23992.

EAN

REFERENCES

- Structural Analysis™ in General Purp
allagher, R. H., “Large-Scale Compuier Proy'rams Jor r sis _
’ CE;'x-n.:lcir Computer Programs, P. V. Marcal, Editor. ASME Special I.’ubhca'hon, Novc_ml:/cr 19b
G;-xllagher R. H., Liggett, J. and Chan, S, “‘Finite Element Analysis of Circulation in Vana
*l' «cneous Lakes™, J. Hyd. Div., ASCE, 99, 1973. .
i?::;lcc::v ;.(:An.w:,nd Hadjitheodorou, C., **Circulation in Shallow, Homogeneous Lakes™, Proc
aulics Div., 95, No. HY2, 1969, 609-620. o o
{:;ﬂavglég: 'Cg. Aw, “The Method of Wcighted Residuals and Variational Principles”, Acader
., 1972 ) . ) . ' .
5 go:c:: F. M., *Lake Ontario Digitized Bathymetry”, 2nd revised edition, Canada Center fc
) 5 y jvate communication). ) L
6 ;,:]?t:srlse:prl;d“Iglgh-Ordcr Polynomial Triungular Elements for Potential Problems™, 7/nf. .
" Ser. 7, 849-561, 1969. . ’
7 f‘chlarz, S4T K znd Larock, B. E., "' Potennal Flow Around a Cylinder Between Parallel Walis
" Element Methods™, J. Eng. Mech Diw, ASCE, 98, No. EMS, 1317-1322, 1972. e
8 Argyris J. H.. Mareczek, C. and Scharpf, D., “Two- and Three-Dimensional Flow Using
' " deronaut J., 13, 1969, 961-964. o
9 r}'?:lril;;a' é.ex.m‘l‘uR‘c]ﬁncd Finite Element Analysisof Liqearand Nonlinear Two-Dimensional Str:
- Report )No. SESM 66-22, Structural Engrg Lab., Univ. of Cahf. at Bcrkcley, 196?‘[3] o
Ergatoudis, I, Irons, B. and Zienkiewicz, O., ‘" Curved Isoparametnc Quadrilateral Elements ;
Element Analysis™, Int. J. Solids Struct., 4, 1968, 31-42.

—

N

w

~

10.

Wiscons,

11. Rumer, R. and Hoopes, 1. A, ““Modelling Great Lakes Circulations’, Report,
5 s Center, 1971, ) e
12 }Zziizo;i::c\:icz O. C., “‘Isoparametric and Allied Numerically Integrated Elements—A Review

ONR International Symposium on Numerical and Computer Methods in Structural Mech
Robinson, Ed., Academic Press, New York, 1972.



wy -

centro de educacion continua

k\/:'_"rdivisién de estudios superiores

37 'y ¥

'l.-) l;z:&.-’ . . -

g‘\g“@ facuitad de ingenierfa, unam
“"-,')\.4___ -

USOS DE COMPUTADORAS EN PROBLEMAS DE CIRCULACION Y DISPRESION

EN AGUAS, COSTERAS LAGOS Y RIOS

METODOS DE LOS RESIDUOS PESADOS

MAYO,1978.

Paiacio de Mlner(a Calle de Tacuba 5, primer pisc México 1, O, F. Tels 521.40-29 5 Llneclts



NN TN R a mopE g g 5 R A
2OLIEE B S REVIEVIG
PEUVER PRI S I 1P SATRY SN EARERS IRRRVAVIRY
vOL. 19, NO. 9 SEPTEMBER 1966
,_“.- ‘{// Q,r
(—/\\,'\ Z(fq‘)-{) C/Z’{"!/ﬂ’-b'
m -‘\C‘s“\"ﬁ"
The Method of Weighted Residuals—-4A Review
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Abstract A. Basie Method
";"hc method of weighted residuals unnifies many ap- The best available treatments of MWR have been
i proximate methods of solution of differential equa- theose by Crandall {1], who coined the name method of
w tions thai are buing used curcendy. This review weighted residvals, Ames {2}, and Collutz (3], who
presents the basic method in its historical contexr and calls thesu methods errcr-distribution principles,  The

shows some of the many possible mocdifications that
have been used throughout the past fifty years. The re-
!ationship between the Galerkin method, which is one
version of the method of weighted resideals, and varia
tional methods is outlined. Alsc inciluded Is an exten-
sive listing of published applications of the method of
weigheed residuals.

Introduction

The method of weighted residuals is
o for (an;, approximate. th
of change of distributed Tsystems.” and in=
(otuon can be distifled inte”a reasonable and some-

t:mes quite accurate first guess, from which it is possi-

an cngmeer 's

olutions to the nquauons

Expdrience

nle to proceed to successively Improved approxima-
nons. The analytical form of the approximate solution
:~ often more useful than solutions generated by numer-
cal untegration, and the approximite sclution usually
less computation tine to generate The
method is applicable to nonlincar and non- :.le-adlomt
'\mhl( ms—one of its most ’lllrlC[XV_(;_r_J_lﬂ.l{ [

The method of \\cn;,h(cd residuals (MWR) includes
many approxnmnuon methods that are being used cur-
rently, It provides a vantage point from which it is
casy to see the unity of these methods
relationships between them.

reguires

as well as the
after outiin-
ing application of the basic mcthod to miual-value,
boundary-value, and eigenvalue problems, surveys the
istory of major contributions to the subject and dis-

This review,

cusses some of the many modifications of che basic
method. The review concludes with a listing of appli-
cations of weighted residual methods to problems aris-
ing in applied mechanics and related fields. Four prac-
tical aspects of MWR in need of further research are
wlentified.

—_—
*Present address:

Offilce Vof Naval Research, Washington,,
D. C. :
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following outline paralleis their treatments, in places
contrasting them and elaborating on them.

Given a system oi differential or integro-differential
equations of change and constiutive reiations, bound-
ary conditions representing the interactions between
the system and its surroundings, and initial condirions
reptesenting some base state of intersst, the geneial
approach is to assume a trial solution whese functional
dependence on positicn is chosen, but which includes
undetermined funceions of time.
requiring thac the trial solution satisfy the differential
equation in some specifiad approximate sense.

Initial Valye Problem

Consider the differcntial equation for {(u{x, !):

(1)

Ney-Z4 20 xinV, 1>
ot
where N{(-) denctes a general ditferential ecperator in-
volving spatial derivatives of 4, V is a three—din.len-
sional domain with boundary 5, and { represents ume,
Suppcse the initial and bounddr/ condirions are

u(x, 0} = uo(x), X in V (2
ui{x, t) = f<{%, 1}, Xon 5
Assume a trial solution of the form
N
N PPN SR IO EREND) (3)
. A

=1

where the approximating functions, &y &fe prezceibed
and satisfy the boundary conditzons
i = O-

xou £

vy=fg ¥ {4)

efies che boundary conditions for sll func-
It is not necessary that tie wial solution

Then u* sati
tions c!-(f),

5

The latter are found by



be hinear w the o, but such o cherce 1s usually made
tor sioplicity; no Lystematic study of alternatives las
The diffee-

been teported, so far as the authors know.

ential equation restdual and inival residual,

dur

R(u*) =N(u*) - —
(u*) (1*) by (5)

N
Ro(1®) = 1g(X) = ug(X, 0) = Z ci (0w, (%, 0) (6)
t=1

the function w*
equation and initial condi-
As the number N of approximating
functiuns 1, is increased in successive approximations,
one hopes the residuals will become smaller; the exact
solut.on Is obtained when both residuals

Zelo,

medasures of the excent to which
the differential
respectively,

are
satrsties
tions,

are identically
As an approximation to this 1deal, the weighted
integrals of the residuals are set equal to zero:

l’ q

<w,; R(u')>= o]
<wl~; Ro(ll‘)>=;

where .

<w' u> = .} ll/UdV

v
represents a spatial average or inner product and w; is
a prescribed weighting function.  If u4* is the exact
solution, kquations (7) are sausfied regardless of the

choice of werghting functions.
The weighung functions can be chosen in several
different ways, and each choice corresponds to a dif-
ferent eriterion tn MWR,  Once the choice is made,

Equarions (7) become a set of N first-order ordinary

)]

(=]

it

(8

ditferential equations o the N unknowns c; (¢). For the
Hacear problem
(/u
w= = L{u) (9)
v

with approximating functions w, and wus that do not
themselves depend on time, Equations (7) become simply

: ﬁ(u,

<w,, % > Z‘ <“/,; L(”r)) +

1=

<w,~; L(us)> (10)
or, in matrix notation
= d— - _
A e T (11)
dt
The solution to thesce equations is substituted into

solution to the
Successive approximations are obtained by
increasing N and solving Equation (10) anew. The
convergence of successive approximations gives a
clue, but not necessarily a defimnitive one, to the rea-
sonableness of the approximation:

Equation (3) to give the approximate
problem,

Boundary Value and Eigenvalue Problems

The method is equally applicable te steady-state and
eigenvalue problems. For steady-state problems, the

¢, are constants rather than functions of time; for linear
problems they are determined as solutions to

BC=-b. (12)

For nonlinear boundary-value problems it may be useful
to assume trial solutions of a more general form than
Liquation (3), viz.:

u‘(x)=¢({c,-l,u,(x)) (13)
For the linear eigenvalue problem
L(u)-Au=0, (14)
the approximate solution is determined by
N
Z ¢ <w,-; L(u,-)> -A <w,; u,'>
1= ] N I
Z ci(dji=ABj)=0 (15)
te ]

and this set of equations has a non-trivial solution only
if
- t\B,‘,') =0

det(Aj; (16)

The values of A for which this is true are the approxi-
mations to the first N eigenvalues A,.

Weighting Functions

The choice of the weighting functions, w, in ' (7),
corresponds to various criteria in MWR: the historical
relationship of the criteria is portrayed 1n Table I,

In_the collocation method, due to Frazer, jones, and

Skan {4], the weighting funcuons are the Dirac delta
functions
wj = 8(x; ~ X); (17)
TABLE |
HISTORY OF APPROXIMATE METHODS
Date Investigator Method
+71915 Galerkin [wE Galerkin method
.* 1921 _ Pohlhausen [ 18] Integral method
' 1923 Biezeno and Koch [5] Subdomain mechod
1928 Picone [9 Method of least squares
1932 Kravchuk [ITB Method of moments
1933 Kantorovich 30] Method of reduction to ordi-
nary differential equations
1937 Frazer, Jones, and
_ Skan [4] Collocation method
- 1938 Poritsky [31] Method of reduction to ordi-
i nary differential equations
1940 Repman [55] Convergence of Galerkin’'s
method
- 1941 Bickley [12] Collocation, Galerkin, least
squares for initial-value
. problems
- 1942 Keldysh [57] Convergence of Galerkin's
method, steady-state
1947 Yamada [16] Method of moments
1949 Faedo}SQ}] Convergence of Galerkin's
1953 . Green | GO method, unsteady-state
~'1956 Crandall [1] Unification as method of

weighted residuals
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che difierential equ. wion is then ,msﬁmi cxacely at the
v collocation points, \,. As N is increased, the resid-
at morg and more points and r)rc-,um.;b.y
:xppro:\chc» zero throughout V.,

Lf the weighting functions are

uall vansahes

(1 xinv,

w, = (18)
0 xnotan V;

then the difrerential equuticn is satisfied on the aver-
Qs in each of the N subdomains, V, ;this is the sub-
.Jom in method [5, 6], If the V; are disjoinc (which they
nced not be), the size of one or wrcre subdomains de-
creases as N is increased, with the resulc that the dif.
ferential equation is satisfied on the average in smaller
and smaller regions, and presumably the residual ap-
proaches zero everywhere. It was Biezeno's presenta-
tion |7] of the subdomain mecthod at the First Internae
tional Congress of Applied Mechanics which prompted
Courant's remark [8) that led Crandall to choose the
name, ‘‘method of weighted residuals.'’ The authors’
teanslation of Courant’s remark reads:

*“Mr. Courant (Gdttingen) indicated afterward that
the methed advanced by Mr. Biczenc can be viewed
from the standpoint of the calculus of variations in
the following manner. If a differentiai equation, as
it arises for example in a variational problem, must
be sarisfied, then we can express it so that the left
side of the ditferential equation, muleiplied with
arbitrary function und then integraced, must give us
the value zero (vanishing of the first variation). In-
stead of taking an- arbitrary function, we can also
take infinitely many determined functions, if these
only form a so-called complete function system {or
the region in question. The piccewise constant func-
vions advanced by Mr. Biezeno are indeed just an
especially simple special case of such a complete
function system.'’

The leust-squares method, which seems to have been
first presented for this type of application by Picone in
1928 (91, Juses the weighung tunctions dR(u*)/dc;. The
corrcspondmg interpretation is that the mean square
residual !

= r R(u*)]? dV ‘
J [R(:*)] (19)

v

xs minimized with respect to the constants c,.

In the Gﬁlerkm method {101, developed in 1915 as the
first criterion of what is now known us the method of
weighted residuals,* the weighting functions w; ae
just the approximating functions of u,. 'The upproximat-
ing functions are often members of a complete_system
of functions, although this property, required for mathe-
‘matical purposes, :s sometimes ignoted in praciice,
The Galerkin method then can be interpreted as making
the resxdu.xl orthogonal to members of the complete set.

*See Mithlin [11] for a discussion of the contribution by
Buabaov in ! ‘)l ,; while his method is the same as the Galerkin
mechod rStknlin and others in recent Russian literarure call
it the Bubnov-Galerkin method), it was Gulerkin who devel-
oped the method independently of uny variational principle.

AJfundamencal property (s‘mcnmcr the definitien) of a
complete_systen of functions is th'\t a4 piecewise cons
tinuous function can be onno.)on\l to cach and .\'Lry

‘member only if the function is ideatically zero, In the
approximation scheme outlined above, the residual is
usually continuous (depeading upan the dilferential
operator and the choice of approximating functions),
and hence the residual can vanish only if it is ortho-
gonal to each member of a complet: system of feuce
tions. Of course in practice the residual is made ¢iche-

‘gonal te no more than a medest, finite number of the

members of a compicte set.  In the oupinal Galesiin
method, developed in the study of elastic equilibrium
and stability of rods and plates, Galurkin used irial
sclutions with unknown constant cocificients. Now
many similar techniques are often referred o us the
Galerkin or generalized Galerkin method: (i} the one
given above in which €; = ¢;(¢) for time-dependent prob-
lems [12, 1]; ©1i) one in which trial solutions are of the

.more general form u* = f(x%, ]c,t) with weighting func-

tions 0//()::, {13]; and (iii) one in which weighting tunc-
tioas are of the formn K(u;), rather than u;, where K is a
specified differential operator [14, 15).

The method of moments is similar to the Galerkin
method except that the xesnddi_l_g_que orthogonal co
membc1s of a
the same as the approxxmurmg fur‘cuon.,. Both mechods
aie combined under the single name of orthogonaliza-
tion methods by Collatz f3! Yamada [16) and Krav-
chuk [17] applied the methad of moments to ordinary
differential equations by using the weighting functions
x| cegardless of the choice of approximating func-
tions. For the first approximation, the weighting func-
tion isunity, and the method of muments in this case
is equivalent to the subdomain method and is usually
called the integral method, or von Kérmdn-Pohlhausen
method [18, 19]. For the iategral method, reviewed in
detail by Goodman [20], the differential ‘equation is
satisficd on the average over the domain of interest.

Boundury Methods

In the foregoing it is presumed that the wial solution
satisfics the boundary conditions but not the differen-
tial equation. The converse situation can also be
treated: the differential equation is satisfied buc the
boundary conditions are no:. Trial solutions of this
sert lead to boundary methods, as they are called by
Collatz [3]; the procedures arc analogous to those
above, but wicth the spatial average, Equation (4}, re-
placed by an average over the boundary.

Mixed Methods

The intermeodiate zituatica can also be handled: in
so-calied mixed methods the wial solwricn satisfies
neither the dificrential equations nor bouadary condi-
tions. In Schuleshko's treatment of mixed methods (21],
the difterential-vquarion residual is made orthogoual o
one set of weighting functions, using (8) as e inacr
product, while cthe boundary residual is simultanzously
made orhogonal to another sct of weighting functions,
using an appropriate surface integral as the inner prod-
uct.  If N_weighting functions are used, this leads to
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4 Jall [1] (page 235},

N conditions, yet ain gencral only N conditions can be
catistied by the ¥ independent o,
too work,

R Foo this procedure
some of the conditions must be discarded, as
was notrced by Snyder, Spriggs
discussion of the Galerkin methaod.

On che other hand, Bolotin 231, Mikhlin {111,
Finlayson 124 have pointed our that for the Galerkin
method the dilemma can be resolved by adding the dif-
ferential-equation residuals to the boundary resrduals,
The combnation is made 1 such a way that the differ-
catial~equation residual, when mntegrated by parts,
cels wdentical terms of die boundary residual.

can-
The sit-
untion s analogous to the treatment of natural boundary
conditions :n the calculus of variations, and indeed
oniy boundary conditions analogous to natural boundary
conditions can be handled in this way, Such a combina-
tion of equation and boundary residuals represents a
generalization beyond the treatment given by Cran-
who states that MWR cannot be ap-
phied unless the trial solution Satistics all boundary
conditions. , Crandall [ 1] {page 321) does com-
Line the residuals for egenvalue problems in which an
cigenvalue appears in both the differential equation and
boundary conditions. The combination of residuals for
wete general problems is important in establishing the
cquivalence between the Galerkin method and several
«u-called variational methods |25, 24] (see below).

However

B. Refinements on the Basic Method

Other modifications are possible: Duncan {26] makes
the approximating functions satisfy derived (or second-
ary) boundary condittons which are determined by re-
quiring that the ditferential equation be satisfied on
the boundary. Derived boundary conditions are also
used in boundary-layer theory in the von Kdrmdn-Pohl-
hausea method; other compatibility conditions——such
as continuity of the velocity and certain of its deriva-
tives at the edge of the boundary layer—are employed
as well. Recently it has been shown {27, 28] thac ad-
ditional compatibility conditions are required to assure
uwood results when the integral method is applied to
magnetohydrodynamic  boundary-layer problems. In
these cases the additional conditions are found by dif-
ferentiating che
normal

duferential cquation in the direction
to the sutface; all crial solutions must then
sausfy this equation at both the solid surface and the
edge of the boundary layer. A variation of the colloca-
tion method 1s given by Collatz [ 3], who differentiates
an ordinary differential equation and applies the collo-
c‘nuon method to the residual of the resulting equaton,
too

Kantorovich and Krylov [29] outline a method for
two-dimensional problems in which the residual is re-
quired to be zero along a line in the domain (such as

= y). The method of reduction to ordinary differential
equations, as developed by Kanrorovich {30) and inde-
perdently by Poritsky [311, reduces a partial differen-
tial equation to a system of ordinary differential equa-
tions. This 1s the procedure, described above for inttial-
value problems but it can be applied equally well to
boundary-value or eigenvalue problems. The spatial
averages (Equation (8)) are taken over all the inde-
pendent variables except one, and the approximate so-

and Stewart [22] thcir‘ ‘posed in the context of variational principles,

and i

lution is found by solving a set of ordinary differeny,,]
cquations involving this remaining independant vy,
able. While this semi-direct method was originally pto
Kantogo.
vich {32]) in 1942 showed its equivalence to the Gale.
kin method. Even earlier Bickley [12] had applied the
Galerkin method to unsteady-state problems in a manne,
equivalent to the method of reduction to ordinary dif.
ferential equations. In_general, MWR can be used 1y
reduce the number of mdcpendent vanables in_any pa-.
tial differential equation. The resulting system of
equat:ons is simpler (it may be algebraic or ordnmq
differential equations or even a sect of partial differen.
tial equations), but its solution remains only an approx.
imate solution to the original problem.

In the collocation method a critical problem is the
choice of collocation points. For ordinary dxffcrcnual
equations Wright [33] has shown that the residual js
minimized if the collocation points are given by the
roots of the Chebyshev polynomials. o

Naturally the method of weighted residuals can be
combined with other methods. Collatz [3] presents a
combination of the iteration method "and MWR. Yang
{34, 35, 36] uses the approximate solution generated by
the integral method as the first step in the following
procedure for time-dependent problems: the result of the
integral method is substituted into those terms involve
ing time-derivatives and equatjon thereby obtained is
solved as a steady-state, nonhomogeneous, partial dif-
ferential equation. An advantageous coupling of MR
and numerical finite difference methods has been cm-
ployed by Kaplan {37], Kaplan and Bewick (38}, and
Kaplan, Marlowe, and Bewick [39] to reduce the com-
puter time necessary to solve certain nuclear reactor
problems; the number of independent variables was re-
duced from four to three or two by using MWR. Other
modifications and hybrid schemes ate possible and will
undoubtedly be proposed as needs arise.

Choice of Approximating Functions

The choice of approximating functions can be crucial
in applying MWR. How to arrive at a good, if not the
best, selection is an outstanding problem. Certainly
any symmetry properties of the system should be ex-
ploited but there seems to be no way available at pres-
ent to do this systematically for all problems. In prob-
lems of conventional types it is usually convenient to
have the approximating functions satisfy the boundary
conditions, and Kantorovich_and Krylov [29] show how
to construct complete sets of functions which vam.i[]‘on
a boundary of compllcated sﬁﬁpe. Snyder and Stewart
[40] combine this scheme and symmetry arguments to
find approxxmatmg functions for the velocity vector
field in fluid flowing through regularly packed beds of
spheres,

Derived boundary conditions can also be used to
place restrictions on the approximating functions ad-
mitted, and improvement sometimes results [26, 148].
Usually, however, several sets of approximating funce
tions are admissible and it is not possible to choose
one as the “‘best.’”” Heywood and Moffatt {41} even .
suggest_as a qualitative crxterﬁxqpﬁthnt_t»hc__u}_);huoxkl_miti
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. vore re.nlvel. “sessitive to Jiflerenr but rea-
Ceocaceces of the crpronmating fuucuons,
Lotnods e been devised for Consuuctng approxie

woting tunactions especi:lly for eigenvalue problemns in-
volvine tpiirorder ordinary differential equations of the
st that arse an the theory of convectve inscabilicy
w3, gt The approximating functions just
ceenfunciions of one er another lowcer-order, simpler
vet related cxgcnv:\‘\m problem on the same domain,
Palynomi. s are popular approximating {unctions; they
Lave even besn csed in eylindrical and spherical do-
mains [431 where proper regind must be taken of pessi-
wle singuiiwriaes. Falk {46) uses Hemmite polynomials,
“which are orthogona! on a semi-infinite domain., Other
withors 139, 47] emphasize that numerical difficulties
(for targe V) can be avoided in the Galerkin meihod Hif
e approximating functions are orthonermalized.

approx:mating functions remains somewhar

i are

Seiecting

Iependent on the user’s intuwitton and ¢xpedence,_ and

¢us 15 otten regarded as a major disadvantage of MWR.,
Vicarly, the question of methods for arciving at optimal
choices of approximaring functions warrants thorough
avesugation.  Leads may exist an che local solutions
and regronal expansions used in perturtbation meth-

wds [7al.

Comparison ef Ditferent Criteria

Comparisons of differeat criteria as applied to the
wame problem exist only for relatively simple, linea:,

imttial-value problems 12, 25, 48} and boundary-value
problems f4, 1%, 1}. In the literawure on eigenvalue

problems the Galerkin methed predominates, although
there are a few comparisons with the collocation and

east-squares  methods 11, 4], The resules of these
comparisons may be summarized by Crandail's re-
mark [1) (page 375):"' The vacriation between results ob-

cuned by applying different criterie to the same trial
much less than the variations

that can result from the chorce of different wrial fami-

tanibv, o oas significant

N

Ties.” However, there may be a great difference in the
worh necessary to obtain the approximate solution when
using  dufferent criteria.  Crandall’s expecience evi-
dendy 1s based entirely on hinear problems. The only
comparison for nonlinear problems appears to be the un-
oublished  thests by Collings [49], as referenced by
12}, Ames comes to the conclusion that the
Galerkin method is superior, but cautions that chis
stand is based on limited experience and may not hold
in general [2].

For linear, ordinary differenrial equations
Jones and Skan (4] argue that the
squares, and Galerkin methods are
limit as N—— ~, Other similarities the
methods [11; e.g. when the approximating functioas are

imes

Frazer,

collocauon, least

exist between

r. .
chosen to be the cxgz:nfuncuon:: of the ‘linear operator,

e, L(ul) Au, feast-squurcs and Galerkin
‘method coincide.

For self-adjeint (hence nccessanily lLincar) eigen-
value problems, the eigenvalues real, Cran-

dall [1] emphasizes that the Galerkin method leads to

Lhcn the

are and

symmetric snatnices in Lquation (15)-—und hence real- {

valued approximations—whercas the other methods may
sive complcx elgenvaluc'; as approximnuox.» e the
-

/

equivalent 1 the

real eizenvalues. mechond
particndarly o

it

exact The least-squares

unsueed for ll neas

peny, .!uc prn’wlcms

cansc rhu lincgr into a ronlinear

{1l

The least-squares procedvre for eigenvalue problems
as cutlined by Decker 150} differs some what from thac
of Crandall {1]; Becker does not have such a difficuley

i the first approximation. Wheress Crandall uses e

rurns

Or

weighting function ¢ /dc, for the first approximation
Becker uses OI/0XN, where X iz the eigeavelue, o
sider the linear eigenvalue probien

LY+ hw=0 '{203

with « = 0 on the boundary. For the {irst appiozimation
with a triz] solution u* = ¢ &, the residual is

Ru)=c(ilu) s Auy {21)
The mean square error is then
[= e} f (LQuy+rul dv (22)
v
Crandall apparently wouid determine A from
ol/dc, = 0 = 2c, f{i_(u,‘) FAe Fdv (23)

v

which is a quudracic in X and may lead to ecomplex
values of \. Becker, on the otiter hand, would deter-
mine A from

/9N =0=2c} [[L(u,) +Au e dv (24)
v

which i1s linear in A and gives real values as fong as
the equation and u, are real. Becker's procedure ap-
peais to be simpler for the first approximation,

For higher approximations both ptocedures lead to

nonlinear equations for chis linear p‘"oblem. Crandall
wonld use as wesghting functions gl/dcy, i =1, 2, ...,
N, and Becker would use JI/9A, 9//dc;, | =2, 3, ...,

N. The latter is thus using the e.genvaluc )\ as one of
the parameters and is also exploiting the fact that the
mean square error can be minimized as a function of
Yoy = c;/c,}, rather than {c,| since

Keyep ovvneny Ay =l 1L, O

S ety

Ay, A). (25)

For initial-value problems, the least=squares methad
muss  be applied curetully and has cerrain disadvan-
tages. The method is applicable if the time depend-
ence of the approximate solution specified-—in other
wotds,  semi-direct methods cannot be used 1 the,
method of lca'-t squares. Consider the probiem ¢/dt =
L{x)} and assume a trial solution of the ferm w* = . ¢
p tan{x, t). ‘Then the functional i,
mean square residual, can be micimized:

representing the

A I'a 2
¢ . .
=j f[—-—L(u)-I‘ 4V dt. (26)
o v ot i
Of course the solution depends on the value of T. If
the upper limiz of integration 1s infinite, che solution
, may no longer have this ambiguity. This was the af-
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v proaci taken by bickley 112] in lus least-squares cal-
culadions tor time-dependent problems.,

Ottentimes, however, the ume dependence of the so-
Tution is difficult to guess and the trial solution must

involve  undetermined  functions  of

time, u® =ug+
l\'
o . .
L ¢, {t)u,(x). The mean square residual is
1=
)
ffif‘--:.(uﬂ (27)
|

at J

however, | depends on time and involves time
derivatives. Consequently it cannot in general be made
a minimum for all time by any set of functions c,{1);

v L

Now,

this was shown by Citron {51] and Finfayson and
Szronen (2500 Consecuently, if a seni=<tirect method s
- x: o to siive iis twre cf problem the tem least
Sl.ESs s 2T mer Secause the mean scoare resice
«i. 15 not being minimizec.

‘T1e least-squares method is discussed at length in a
monograph by Becker |501. Listing criteria which he
maintains a good variutional method musc satisfy, he
concludes that the least-squares method is. the best
peneral criterion of MWR.  Hecker's list includes the
following points: (1} crrors should be minimized in some
scise; (1) the functional should be positive definite:
(:i1) the procedure should be capable of treating initial-
value problems, as well as others. These seem some-
whut slanted toward the least-squares method; indeed,
items (1) and (i1) cannot be realized for all problems
except in rthe least-squares method.  Yet no one has
shown that a solution 1s necessartly best because its
mean square residual Is smallest; such a definition or
proof will certainly depend on the particular applica-
tien. In addition, the least-squares mechod can be used
to treac mital-vatue problems in only a limited way, as
shown Furchermore, an importane point should
be added to the list of desiderata—the method should
be sunple to apply.  As already
inmediately  ehiminates  the

ahove,

thrs criterion
least-squares method for
binear eigeavalue problems because it tumns a linear
problem into a mere difficult nonlinear one. Becker
realized that his conclusion may not always be valid
1501 (page 61): ""While the least-squares method seems
to be the most suitable general approach, in specific
applications (in which some specific criteria may be
added to our ‘gencrul’ list) other methods may be pref-
erable.”’ Becker illustrutes the advantages of the
method of least-squares by solving a set of nonlinear,
time-dependent  purtial differential  equations  which
the fuel depletion 1n a nuclear reactor; he finds
results that compare well with the more lengthy numeri-
cal solutions.

In this discussion of the various criteria of MWR, the
Galerkin  method has been distingurshed from the
method of moments by means of the weighting functions
used in the two. In the Galerkin method, the weighting
functions must be the same set of functions which are
used for the trial solution, whereas in the method of
moments the weighting functions can be some other set
of functions. This distinction is not always made (52]
and is probably unimportant in practice, although the

shown,

model

two methods have different histories and may have (yf-
ferent convergence properties. There are inconsisten-
cies of terminology in the literature; for example,
Kawaguit [53] used the method of moments rather thay
the Galerkin method as he claimed, for the weighting
functions differ from the approximating functions in hs
wotk. Another example of confusing nomenclature iy
the name method of integral relations, which refers 1o 3
generalization of ‘the subdomain method; it is ade.
quately reviewed by Belotserkovskii and Chushkin [$4],

C. Convergence Theorems

Galerkin Method

After inwoduction of cthe Galerkin mecthod in 191§
sc—e twentr-five vears elagsed befcre the convergence
: fiel. Even tolav mioch remaing
to be done; oal. a few theorems have been proved, and
these pertain exclusively to linear problems. Rep-
man [55] was the first to prove convergence of solu-
tions obtained by the Galerkin method though only for a
certain Fredholm-type integral equation. Petrov [56)
then studied the convergence of the Galerkin method for
eigenvalue problems of fourth-order ordinary differencial
equations—in particular, the Orr-Sommerfeld equatioa
of hydrodynamic stability theory. Keldysh [57] weated
general ordinary differential equations and also second-
order elliptic partial differential equations. Mikhlin (11]
later simplified Keldysh’s proofs. The equations are of
o9 ou

the form
2 3 ()

i, =l -

ZB —+ Cu=/ (28)

ial

L{u) = -

Both Keldysh and Mikhlin prove that the first deriva-
tives of the Galerkin approximate solution converge in
the mean to the first derivatives of the exact solution.

Whenever the Rayleigh-Ritz and Galerkin methods
coincide (see below), the convergence proofs for the
Rayleigh-Ritz method imply convergence of the Galerkin
method, too. Thus the Galerkin-conveigence proofs

‘given by Kantorovich and Krylov [29] apply only to

specific problems with a minimum or maximum princi-
ple, whereas the convergence proofs mentioned here ate
applicable to problems whether ot not they have a cor-
rcsponding variational principle. It has been claimed

tions is sufficient to assure convergence, but the proof‘

given by Mikhlin and others show clearly that this is
not enough,

Recently convergence proofs have become available
for certain eigenvalue problems associated with hydro-
dynamic stability investigations [58, 15].

Results applicable to unsteady-state problems are
less extensive. Faedo [59] applied the Galerkin
method to a hyperbolic differential equation and in-
spired the important wotk of Green [60], who proved the
uniform convergence of the Galerkin method when ap-
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iied o the fellowi, | equation
1

i (}u

——p(x, u=[f(x, 1)

ond ot

e Goletkin nethod has been used to prove the exist-
(ree ol weak seludons to (i) the Navier-Stokes equa-
cwens with ume depeadence [61), and (i) cquarions
representing the unsteady-siate transport equation with
+ hnown velociry Qteld [G2):

"”\ Z 8,

1w ]

al/

——+

du
Cy~-~— =F ¢,
g at &, 0)

decently the Galerkin method has been applied to the
Javlor problem with time-dependent disturbances {63],
ardoa meihod has been developed to generate improv-
hle, pomiwise upper and lower bounds—and heuce
erior bowmtu—{or the solution to Equation (30) [129a].

Other Methods

Convergence proofs are rarely available for the other
of MWR, The notable exception is the least-
wquares method, which is well-treated (for boundary-
problemis) the notable texe by Mikhlin [11L Mikhlin
proves conditens which insuce that the method of feast
IR sequence of approximate solutions
winch converge in the mean to the exacr solution. Fur-
thermore, the mean-squarc-error of the approximare so-
lution can be determined. e also points out that the
fcast-squares method converges more siowly than the
itz method (when the latter can be apphied) but may
mve convergence rather chan convergence 1n
the Some results for the collocation method ars
given by Kadner {G4l, while the method of moments is
treated by Kravchulk {65).

criteitag

gl\’CS a

untrorim
mean,

Nonlinecr Problems

Very lLittle 1s known about the convergence of MWR
for nonlincar problems without a corresponding varia-
principle.  Krasnosel’ski [G6) presents theo-
rems—mostly without proofs——for the Galedkin method
applied to nonlinear intcgral equacions. Glansdorff [67]
mentions a torthcomirg proof of the convergence of the
local potential method, which is identical in applica-
tion to the Galerkin method; he treats the steady-suite
heat conduction equation with temperature-dependent
thermal  conductivity.  Of as Ames [2] has
pointed out, convergence proofs are noi as uscful as ec-
ror bounds. Even a computer does not make it possible
to calculate infinitely many terms and when truncating
the series once always wonders how good the resulting
approximate solution 1s. Comparison of success ap-
proxtmations 1s an aid 1n such a case, but ap-
proximute solution that seems to be converging may not
the exact solution. The
thecorems and crror bounds are so sca
that enpincer and applied scientist must usually excrap-
rolate from previously tested results for other preblems
to new s.tuations when applying approximate mechods.

tional

course,

1ve
aven an
available
rce

be canverping to

converpence
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D, Comparisen to Other Mothods

Separation of Veriables

The Galerkin method is related to a wide variety of
other approximate n‘ethods as well to some exact
methods of analysis. In particular, it can be shown
{29, 22, 24] that if a pmhluv._yxelris_ to the method of
.JC[):I.F.N’IOH of varmbl\s and if the Galerkia” merha(’ is
appired & _certain way L‘an Lhe [\VU b
the zame, providad the Lx erl\m

tn.ough to completion, Of zourse in pumerical T

a e

as ax

in_ way*

“‘meth

“tions, after obtaining an exact 'solution in the fora of
an infinite sertes, one calculates enly a finice number

a

of terms as 2 mateer of practical necessiry.

Variatienal Meihods
There is also a close relationship berween the
Galerkin method and the Ritz or Rayleigh-RitzT method
when the latter can be applied [i4, 69, 70, 1, 21, 3, 29,
71, 721 ln parciculas, if the same trial funcuons are
used, the resulting calculations are identical. Contrary
te a currently prevalent opinion, this equivalence stiil
persists when the trial functions co not satisfy the
natural boundary conditions {23, 11, 25, 24], which they
need not do in the Rayleigh-Ritz mechod. ThP bouadary
esidual 1s either added or subtracted to the differential
equ:&uon residual, and the calculations are again equiv-
alent to the Ritz or Rayleigh-Ritz method. The choice
cf adding or subtracting is diciated either by mathemar-
ical cenvenience~—patt of the differential-equation
residual can be integrated by parts to cance! part of the
boundary residual-—or by the physics——the differential
equaticn and boundary conditions both come from macro-
scopic balances taken over the volume and surface,
respectively; these macroscopic balances can be com-
bined in otly one way, and the residuals are combined
in exactly the same way. A very important diiference
between the Rayleigh-Ritz method and the Galerkin
method is that in the former some functional-—possibly
representing an eigenvalue—-is being minimized or
maxzimized. Consequently the approximate values of
the functional represent either upper or lower bounds.
In the Galerkin method this information is missing;
exactly the same values would be obtained, but cone
would not know that these were upper or lower bounds.
However, when the variational integral is of no signifi-
cance, the Galerkin method, because of its generality,
may be preferred. The variational and Galerkin meth-
ods are compared schematically in Figure L.
JMost variationa) principles are mecely  stationary
principles, rather thaa minimwia or ‘mazimum principles.

.

ax

*The approximating functions in the Galerkin mesligd must
be  the eigenfunctions found by the separation of variables
and the Gulerkin method must be applied o ‘the initial condi-
rlon< a5 well as te the differential cqu‘nlon, Such a result
‘neans simply that f the exace s c,lmmn 5 cor\lnln\_u in the
1 find it
ally but a sm;,le m hod, it
.n] 0[

Tﬂmub‘x there is bas i

¥~

venirat to follow the om (scarcely uni 1
auishing between the “Ruylrlg‘! ~lee n‘e:ho‘ when ot is ap=
plied <o mu\lmum or “maximum principies ‘and’ the’ ‘Rl'z

method?’ when' it xs upnhed to merely smudnuw prmupl s,



r_ ADITMNT '
‘ VAPIATIONAL GALERKIN
i——- o IL‘.UE.E_ [ donvcotonly | _ME_T.HO_? _ __l
7
, Yuriational megral tn cartain coses Computations are
v sitonary simpler, no adjoint
l system 1s narded
it velf
adigin
N
o
' VARIA TIONAL [
I PRmCie L l GALERKIN
i {(RITZ L 1HOD) P Compulations N METHOD
[ SR E S — — — —
I Vorianiunal iregral identical 7| Yariational integral
: ts _tationary L 18 ammatertal
— —
b
it porinive
def.nire
N
MAXI!MUM OR
MINAUM
Pl LE
(RAYL1'GI-RITZ GALERKIN
i '\‘L ””)Dl ya cuﬂlpulolloni METHOD
e — — — (e e e ——— ]
Gives upper or lower vdenticol Bounds on vorigtional
bYounds i variglionel! integial are immatartal
intequgl ) -
Fiqure 1: Comparison of Variational and Galerkin Methods for
Linear Probloms.

In such cases, the Ritz method is again equivalent to
the Gualerkin method.  The calculations are identical;
the resnits are idencical; but in the variational method
one knows that the variational integral is being made
statiotiary, t.e., 1nsensttive to changes in the trial so-
i the vartatona! iegral has physical signifi-
cance wd s the quanuty of interest, then the varia-
tional methods have an advantage over the Galerkin
metnod even though the answers are the same.

uton.

Adjoint Variational Methods

Vasiational principles exist for linear problems only.
of are self-adjoint.  For non-self-adjoint linear
prohlems, variational principles can be formulated for

Uy

the ongmal equations and their adjoints, and again
MWR s related to the corresponding variational meth-
ods.  [he impetus for using the adjoint operator in vari-
ationa! formulations o stem from Morse and
Feshbach 73], who gave a variational principle for the
unsteady-state heat conduction cquation; Roussopoulos
[74! also gave a variactonal principle for any linear
non-self-adjoint problem. Schnic [75] and Washizu [76)
have upplied such a principle to the unsteady-state
heat conduction equation, while Selengut [77, 78] de-
veloped the idea for nuclear reactor problems.  Many
other examples exist, such as those of Nichols and
Runkoff [79] for convective diffusion of heatr, Finlay-
son 124] for convective diffuston of a multicomponent
mixture of chemical species; Lewins {80!, Slattery [81],
Flumerfele and Slattery {82] for extensions to nonlinear
probiems; and many authors |83-94, 38] for nuclear re-
actor and associated problems. In applications to
lincar non-self-adjoint problems, the method of weighted
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residuals yields the same results as any of these vara-
tional principles as long as the weighting functions faor
the original equations are taken as the approximating
functions for the adjoint, and vice versa [75, 24]. The
question then arises as to whether this vanational
method, which can be regarded as an application of one
form of MWR, 1s preferable to Galerkin's method, which
does not require che complication of an auxiliary ad-
joint system. There is some evidence that the adjoint
variational principle leads to slightly better results[95-
97}, and Clark and Hansen [98] imply that the use of
adjoint weighting functions might speed convergence.
Kaplan and Bewick [38| claim that the variational
method is the best strategy in that it gives better ans
swers more often. However, they go on to say:

‘Of course, practical considerations may intro-
duce yet another meaning of the work ‘'best’;
namely, ‘'most economical.’”’ In this sense we
find that the Galerkin method (which uses the trial
functions also as weighting functions) is, in most
instances, preferable to the variational method,
since it gives results which are almost as good but
does not require separate calculations of the
weighting functions.”’

In essence, the_adjoint variational method trades in-
c(,ezims:e:d_‘gomplc:.(ity for possibly better results: there
still is no clear-cut answer to the question of whether
the Galerkin method or the adjoint-variational method
is best. .

For certain initial-value problems there may be no
difference between the variational method and Galerkin's
method if the semi-direct approach is used in both,
Whenever the corresponding steady-state problem is
self-adjoint, it is reasonable to expand the unsteady-
state solution and its adjoint in terms of the same func-
tions of position with unknown functions of time: as co-
efficients:

N

N=ug+ Z c()u;(x) 31
i=1
N

ut =us + Z ct(t)u (%) (32)
i=1

Because the approximating functions are the same for
both u and u*, the weighting functions in the adjoint
method are the same as those in the Galerkin method.
Consequently, the solutions are identical, whether
derived by the adjoint method or the more direct Galerkin
method.

The adjoint system is also useful for eigenvalue
problems. Roberts [99] presents the general theory, and
examples can be found in the works of Chandrasekhar
[43] and DiPrima {100] as well as others. While intro-
duction of the adjoint system does increase the com-
plexity of the problem—particularly the boundary con-
ditions—some advantage is gained over the straight-
forward application of MWR because the eigenvalue is
made stationary, and hence insensitive to changes in
the trial function. This advantage does not usually ap-
ply to boundary and initial-value problems since the
variational integral is seldom of interest in those cases.



Method of Least Squares

Mikhlin {11] points out that for boundary-value prob-
lems the least-squares method for

!
0

Lu
Bju

inV (33)
(34)

is cquivalent to applying the calculus of variations to
the equation

on §

L*(lu~-/)=20 (35)

Consider the following minimum principle: minimize the

functional
] = f(l_u —- /Y dV + f(B,-u)‘ ds

v

(36)

among all functions « having the appropriate continuity
and differeaciability requirements. The natural bound-
ary condittons cormresponding to this variational princi-
ple are of the form [50]

© Ni(Lu=)=0- (37)

where N; are differential operators. The Euler equation
is just equation (35) and the equivalence with equa-
tion (33) rests with the premise that the equation

LYu

0 (38)

(39)

has only the rrivial solution. Note that the natural
boundary condiuons (37) are similar to the compatibility
condittons mentioned above 1n connection with the inte-
gral method for magnetohydrodynamic boundary-layer
problems.

0

Biu

Method of the Local Potential

A procedure based on the so-called local potential of
Prigogine and Glansdorff {101-104] has bLeen proposed
as a vartational method for determining approximate so-
tutions to boundary-value {105~108], eigenvalue [109],
and more recently initial-value problems [108]. Rosen
1110-113] used the same tyne of computational scheme
earlier, The actual applications of these methods have
been shown to be equivalent to the Galerkin method
[114, 24]. Moreover, 1t has been demonstrated that the
variational integral 1s not swtionary n the local poten-
ttal method and that no minimum principle exists in ap-
plications [114, 24]. Consequently, the advantages
usually associated with variational principles are miss-
ing from the local potential method, which can be re-
garded as a disguised application of the Galerkin
method. See Ref, 129b for a more detailed critique.

Lagrangian Thermodynamics

The so-called variational methods due to Biot [115=
1311 and others [122-128, 51] are also equivalent to the
Galerkin method [25, 24]. In these Lagrangian thermo-
dynamic methods there is no variational incegral which
15’ being made stationary (25, 79}; their sole signifi-

4
cance appears to be as means for generating a computa-

7

\

4

tional scheme. ‘That scheme is, however, idenriczl to
the Galerkin method, which is more straighcforward and
applicable to a brouder range of situations. Theie is
no reason that the Galerkin method should nor be pre-
ferred, so far as the authors know. Sce Ref. 129b for 2
more detailed critique,

E. Applications

The general features of MWR in its aumctovs ver
sions and various refinements have been presented, and
its relationships o certain other approaimation metheds
huve been skeiched. Which of all these methods are
superior, and over just what ranges of circumstances
the supericrity exists, are matters that can be sertled
finally only on the basis of representative applicaticns.
More systematic comparative studies and evaluations
are necded than have been reported to date. Until they
are tosthcoming the investigator of a new problem can
expect little more help chan he can get out of seeing
how others have handled more or less similar problems,
References 130-187 have bzen s=lected as much to il-
lustrate pitfalls, shortcomings, and failures as to cite
the attractive features and successes of different ver-
sions of MWR. - The piependerance of recent papers ac-
curately reflects the upsurge of applications of these
methods in one field after another; che emphasis on
problems .of flow and transport is conditioned by inter-
ests of the authors. The popularity of the integral .
metheds which originated in boundary-iayer studies [18,’
20. 34~36, 136-~153, 160-163, 166~169] can be dis-
counted in part as a tradition perpetuated by formal in-
structton beginning with clementary texts in fluid me-
chanics and heat transfer.

Beyond any guidance he can get from past experience
the problem-solver can look for rcassurances in com-
parisons of different forms of irial solutions and of suc-
cessive approximations in' any one form: the appear-
ances of convergence with more numerous adjustable
parameters and of insensitivity to form of approximating
funcrions do lend cenfidence to results. 'So do close
matches with established informazion on special cases
and limiting cases. It is also true that MWR, like vari-
ational mechods, may yield better estimates of proper-
ties of the sclution at large, such as an ntegral or
eigenvalue, than of the solution itself. The main ad-
vantage and disadvantage of MWR are conrained in the
same feature, namely, rhat the results depend on mote
or less arbitrary decisions by the user. latuition, ex-,
perience, any available information all can be rapidly
exploited but the reliability of the results is frequently
havy. Hopefully this review sheds light on the basic
issnes and will be useful to those interested in apply-
ing weighted residual methods and related techuiques.

F. Areas for Further Research

Of the unsolved problems concerning MWR che follow-
ing ate most important in the opinion of the authors:

(1) Choice of criterion in MWR. Systematic compara-
tive studies using representative (nonlinear) problems
are needed. The ieast-squares procedure for nonhinear
problems particularly warrants attention, The Galetkin
method and adjoint variational method for linear prob-
lems need to be compared.

3



e b [

(M Dovelopment of rattonal methods for selecting ap-
functions, for cxample by systematically
applyng symmeuy properties of the problem. A related
whether combinations of functions

are more cffective than nonlinewr forms, especially for

prosimating

question s hnear
nonlinear problems.

(3) Definmion of mathematical or engineering criteria
for 1dentityng optimal approaches in (1) and (2). Op-
timization theory should be brought to bear on the de-
cisions that have to be made by users of weighted-
restdual and other approximation methods.

(4) Derwvation of error bounds for approximate solu-
tions by MWHR. And chough they are not as directly use-
ful, convergence proofs are needed, especially for non-
lincar problems.
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ENVIRONMENTAL PRORLEMS ASSOCTATED WITH FLUID FLOW
R. H. Gallagher and D. L. Young

I. INTRODUCTION

The topic of computational fluid mechanics does not have 2
long history. By the 1930's there were only a limited number of
papers on this‘topic, a condition that was duc not only to the
absence of high speed computational facilities but also to dif-
ficulties in dealing with the inﬁerent nonlinesrrity of most
problems of interest. Thus, computational fluid mechanics has
developed in tandem with the finite element method. Very many
applications\of the latter to flow probiems have been recorded,
as described in References 1-4. As these references demonstrate,
a detailed review of the complete field would require a complete
text. We therefore limit our attention, in these lecture notes,
to the application of the finite element method to environmental
problems associated with fluid flow.

A large number of conditions can bé grouped under the
heading of "environmental problems". )Ip the present case we
refer principally to the transport of ﬁeat or the concentration
_of a substance through a body of water. The processes of con--
vec;ion and diffusion participate in the transport proéess.
Velocities appear in the convective terms and, although tﬁe nost
vigorous freatment of the problem will involve cdupling of

_ | .
velocity and temperature (or concentration) equations, practical
considerations may require,independent solutions for the two

fields. We thercforc include in our review a discussion of solu-

tions for flow veiocities alone for lake and .stream situations.




A study of the literature of topic under review discloses
that’dlthough the problems aré basically three—aimensional; no
numerical solutions of this scalec have yect been 5ttemptéd.
Simplifying assumptions arc customarily made ahout onc of the
dimcnsions .and the problem is reduced to one of analysis in the
plane. Indeed,'some investigations make assumptions repgarding
two.of the dimensions and study the velocity in one dimension
together with the temperature.

In view of thc above circumstance, these notes are catcgorized
with respect to the different types of two-dimensional situations.
Only the cascs of flow in planform and that of flow on the narrow
cross-section of a lake or similar body of water are treated in
this review; |

First we define the coordinate systems associated with the_
respective types of problems. Then, scparate sections are

devoted to,each'typc.

II. COORDINATE SYSTEMS AND GOVERNING EQUATIONS

Figure 1 illustrates the Lody of water and the associated
coordinate systems, The body of water we have in mind is a lake,
although céses will be treated which.refér to streams and estu-
aries. In;the iatter circumstances the fiow is predominantly in
the y-direéfion. |

The p15nfofm (x-y plané) is the basis for analysis of wind-
driven circulation and of flow through bésins and estuaries.,

The assumptions that are_invﬁk;d are discussed in some detail
later, but, for fhe preseﬁt we‘simply note that they are directed

to climination of the z-coordinate from the problem. The maximum



| Planform

B
g
q ey e

2 . - "
SR RIS TR
\ L,
B

Section A-A

| Figure 1 Lake-Planform and Side Views

A7 N /'”’i“/77(¢_<77/<‘\
L .

Figurc 2 Narrow-Cross-Section (Scction B-B)

(Vertical and Yiorizontzl Nimcensions have been
Exagscrated in Comparison with Fig. 1)



z-dimension is very much smaller than the y- and x-dimensions.
The latter may ﬁc of approximutély the same magnitude.

The narrow cross-section (x-z) is intended to represent the.
section of a lake or similar body of water. llere, the x- and
z-dimcnsio&s ar$ of similar magnitude and the y-direction is
very larﬁc. Finally, we have thc side vicw (y-2), which refers
principally to flow in strcams and estuaries and which is often
reduced to just the y-direction.

Physically, the velocity and tcemperature fields are deter-
mincd through the conservation of mass, momentum and energy. The
governing equatlons are

"Continuity (Conservation of mass)
%+%+%=o (1)

x-Momentum

3u 3u Ju 3u . . 1 93p ., 3,M 3u
7t Y T Vet Ya: fu 53 5x * 3% Kxx 3%
L 2N duy o, M du (2)

y “xy 3y’ 3z "xz 3z
and correspondingly for y and z. (In the z-direction therg is no
Coriolis force (- fu) but a buoyancy ter@ (él gx) must be added
to the left side.) °

Temperature (Conservation of Energy)

ﬂ.+u.al+v.a_t+w.a_1‘_=_a_()(”£)+_3_.(KH.3_I)

ot 23X D4 d< X X gX Yy Yy
3 ,H BT
*+ Ff(kz 32/ (3)

In these equations u, v, and w are the x, y, and z-direction
yelocities, g is the gravitational acceleration, p is pressure,
- . - - Ill .
p 1is dcns1ty,po is reference density, T is temperature. f is

the Coriolis parameter and KM and’K“ (wi}h appropriate directional



subscripts) are the viscosity and Jitfusivity. The above equa-
tions arc supplcmented by equations of state, such.as density
8s a function of,tcmperafurc, pressure and, concentration of a
substance, and the viscositics and diffusivitics as a function
of "stability paramcters", e.g., Richardson Nﬁmber, Prandtl Number,
Monin-Obukhov Length, etc. : o

These are very general equations.. ConsequentIy), in_fgct,
the following approximqpions may be introduced, aepending on the
analyst's'interests and goal.

1) The Boussinesq approximation: The variation of density is

small, so that the fluid can be treated as an incompressible
} t

fluid. The variation of density is only considered in the
‘ |
buoyancy term él g in the z-momentum .equation.
0 ) . 1

2) The shallow water approximation: The inertia forces are

negligible 'compared to the other forces. Also, the

w-component is much smaller thdn the horizontal components, -

so that thé pressure is hydrostatic (g = - % %% , Where
g is the acceleration due to gravity).

”

3) The eddy viscosity and diffusivity appro¥imations: Since
fe

the stratification is almost perpendicular to the gravi-
tational force, it is customary to assume that the horizontai
: \ v t

eddy viscosity (KM

XX, etc.) and' diffuysivity (KE} are approxi-

mated by constants, while the verti¢a1 ones are functions

. . 1 t
of the gradients of density and velocity. The exact rela-
tionships are still hot debate, In practical analysis, the

determination must come from semi-empirical stratified

turhulent theory. (Monin-Yagloh, Ref. 5)
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111.  PLANFORM ANALYSTS. WIND-DRIVEN CIRCULATION AND FLOW
THROUGH BASINS

The cross-section shown in Figure 2 defines the basic
geomctric parﬁmcters of thif development, which is due to
Liggert and Hadjithcodourou(6) in its fundamental theoretical
form. The origin of coordinates is fixed at the surface of the
lake, wiph velocity w = 0 at z =-0. (The 'rigid lid' assump- '
tion). The physical properties of the lake, including the eddy
viscosity and the mass density per unit volume, are assumed to
be constan% and the Coriolis parameter-is also assumed.constant.
The pressure is taken to vary hydrostatically. The surface
wind stresses rkz‘and Tyz are presc;ibed. Under these assump-

tions the momentum equations take the form

' - 13 du M 4
ofy = - .p_.og.g + ;z._z. KO - ( )
1 3p 'azv M ' (s)
fu = - — + —-...2. v K
% 4 9z °
-. L 3p (6
g ' ) dz c, ( )

The continbity equiation is unmodified.

A stream functinn ¢ is defined as follows

W _ o~y |
3y - uh | (7)

3 = h | (8)

=X
in which T and V are depthwise averages of the comporent veloci-
ties. After combination of the above eduations, with consideration
of the boundary conditions (zero velocity on all solid surfaces
M 3u M 3v

and Tz © Ko x * Yyz © Ko 5;) one obtains



2 Z

s . g + A(X,Y) ay + B( Y =

— g YY) o (X,)’) i Y C(x,y) = 0 . (9
ax2 Byz 9x : 9y

The terms A(x,y), B(x,y) and C(x,y) are those which result {rom
consideration of the varying depth and, as indicated, arc func-
tions of the planform cocrdinates x and y. Thus, they account
for the varying dcpth; |

Transformation of Eq. (9) into the finite element form,
siven in detail in Ref. 7, is accomplished by means of the
Galerkin method. The approximation of ¢ is by means of the trial
function ¥, which has the form

e N o= M) | (10)

wherein the N, are the shape functions and {y} are the nodal

values of the stream function. Applying now the weighted residual

concept
(aof2, 2% Ao, BaNy -
{N}( -+ R I e C)dl\ (y} = (11)
“A 3x Iy © X

Next, integration by parts in the plane is applied to reduce
the order of the derivatives appearing in this integral and to

produce boundary terms. One obtains

-9 3tNJ ) 3 NNy’ N,
fA[. -5-)-,-{N) 5y + AN} =

+ B(N) ‘-N" {p} + (N}C)dA

_({ (N} a‘”’ (v} dS = 0 (12)

The values of {¢)} are zero on the entire exterior boundary
and the closure intcgrals along interclement boundaries vanish
if continuity is preserved across these boundaries. Thus, the

contour integral term is excluded from subsequent consideration.



Evaluation of the vemaining integrals for all i then yields the

following system of element cquations

1wy = %) SR
in which
_ B(N} BLNJ a{N) aLN_, \_NJ o WNJ
j.( - - 3y 3y + A{N} 5% * B{N} 3y ) dA
(r®) = - [ (0 cdn (14)

' , N 9N,
1t should be noted that duec to the terms A{N} 3;71 and B{N —%?L

the rcsultiﬁg algebraic cquations will be nonsymmetric.

The cquations for the complete lake are constructed from
the equations of the eiements by imposing the condition of strcam
function continuity at cach element joint. Thus, the global
equations arc, by simple addition of all coefficients with like
subscripts

[X1{y} = {R} (15)

Atter solution for {¢) the other vafiables, such as averaged
velocities and pressure gradients, can subsequently be evaluated
by back substitution.

Numerical solutions to Eq. (15) have been obtained for both
simple test problems and for Lake Ontario(7) Since field data
is not available for Lake Ontario the convergence of the solution
has been studled with use of hlgher order e]ements(g) Cheng(g)
has analyzed Lake Erie, using a formulation which excludes con-
sideration of variablé depth, ‘TOpg(lo) includes this factor in
a finite element formulation based on Welander's theory,(ll)

which does not differ significantly from the theory cited above.




If a stream function is adopted as the ‘dependent yaridblb.
as is done in the formulations discussed previously, thec presentce
of islands raises a basic complication in the definition of the
boundary conditions at the nods pmints of the isiand shorc }incq
The strcam function is zero at points on the shore of the lake
but takes on a constant, undefined value on each of the islands.
(10)

Thus, as Tong proposes, the values of the stream function on

a piven island arc set equal to a single value that is determincd
in the solution process. This substantially contracts the number
of unknowns in thc equations to he solved. |
Cheng(g) adopts a different approach to the treatment of
islands. Thc system of global equations is first assembled
without consideration of the islands and their boundary condi-
tions. We denote this solution as (Wo}. Then, in succession,i
'unit' solutions {Wi} (i=1, .. M, where M is the number of
islands) arc obtained for Wj = 1 for node points on the respecrivo
islands. Finally, an M x M system of equations must be solved
to give the amplitudes Gi (i=1..M) which apply to the unit solu-
tions. The complete solution is then represented by

M

I G.{¥.} (16)

{v}=(vo}+ Bt

i

The detcrmination of the planform distribution by transpert

of temperature in a lake or basin with known flow is also a
problem of major practical importance, especially for cooling
ponds and similar basins. Temperature distributions have been
determined for such conditions by Loziuk, Anderson, aﬂd

(r12,13) {10

Belytschko Tong ) presented a more general developnient



along these lines which permits the finite clement calculation

of :any concentration of substance in a lake.

1attor in this section.

We outline the

! If we define ¢ as the average concentration across the.

depth (h) of the substance undcr.study, the governing differen-

tial cquation can be written as

(2(he) | u 3(he) , v 3(h

ot h oX h y
wherc K” and K”
X y

a source or sink term.
written in

¢ = Ny ¢

(‘)ﬁ

3X Tx

the form of the trial function

Ny {6)

2

3y K.

H 3
Y

Now, thc approximation of ¢ can be

(17)

are the eddy diffusivity coefficients and Q is

(18)

where {¢} represents nodal values of h¢ and oN; is the relevant

sct of shuape functions.
temperature,

lake, T = hé.

When the -analysis is performed for

witn a single tcmperature across the depth of the

Application of the Galcrkin approach can again be made to

construct element equations.
obtains

[h] {4} +
where

[h] = {JPA (N} WV dA]

f [y @ g LN—'

H (N} 3N H
0X

{s] =

* kx Tox

Using Egqs.

(17) and (18), one

(s1{¢} = {Q}

v 9Ny
4+ .l_. -—a—y——
H 3(N} BLNJ]
A

(19)

(20)

(21)



The vector Q) accounts for the source or sink terms and any
prescribed boundary conditions. Finally, by asscmbly of the
global equotions from the clcment equations

(H3€8) + (S17} = (Q) (2)
where {ilj, 1S] and {6} correspond to [h}, (s] and {Q}.

The idealization for transport analysis is donc in the same
way as for flow analysis. Aftcr calculation of the velocitics
in the flow analysis the values obtained are used in the forma-
tion of the matrix [s].

1 (12,13) apply the above approach to various

Loziuk, et a
practical problems, including an actual lake with irregular
boundary. Available field data indicate a reasonable level of
agrecment with the analysis results. Tong(lo) calculates the
dif fusion of a substance in a rcctangular basin containing a
circular island.

Solutions for transicnt [low governed by the shallow water
cquations have been given by Connor and Wang(za). By integratiﬁg'
across the depth and assuming uniform velocity and hydroc<tatic
pressure over the depth they establish equations in terms of
nodal valucs of flux and elevation. Solutions are given for
harmonic forcing of a rectangular basin and for tidal circulz- -
tion in Massachusetts Bay.

Taylor and Davis(26) have developed finite clement representa-
tions of tidal propagation in estuaries, The unknowns in
these cquations are the node point velocities and elevations.

Surface runoff, described by means of the shallow-water equa-

tions, has been studied by Al-Mashidani and Taylor (Ref. 30).



Tth trcat a one-dimensional casc, with velocity and surface'
clé%ntion as problem unknowns. |

Taylor and Davis (26) and Adcy and Brebbia (27) have
studied dispersion in cstuarics. Rcf; 27 uses kaown values of
velocity and solves [(or the concentration. Taylor and Davis,
on the other hand, solve for concentration, velocity, and
surface clevation.

Planform (x-y) finite element analysis of-a rather diffcrent
environmental probiem has been persented by Mercer and Pinder (29).
They cxamince hecat transport in the liquid and solid phases in a
ground-water flow system., The finite element equations to be
solved consist of two sets, one being a flow equation in terms
of pressurc and the sccond being a temperature equation. The

solutions are marched in time.

IV. (CROSS-SECTION ANALYSIS

The motivation for cross-section analysis (x-z) has prin-
cipally been the nrediction of thermal stratificétion, although
attempts have also been made to deal with more basic phenomena
in viscous flow.

Thermal stratification is widely believed to exert an
important influence on lake flow phenomena through its effects
on density variations and other phfsical factors. In many lakes
uniform temperature conditions are realized in winter and, as
summer atmospheric conditions approach, a rise in temperature
occurs in the upper regions of the lake. ‘The peak is reached

in these 'regions towards the end of summer. Since the rise in



Ttemperature penctrates to enly a limited depth (say 20 to 40
fect) the lower portions of the lake arc not affected, and a
somewhat 'stratificd' temperature profile prevails. The heated
upper repion is known as the qgjlimgjég while the unheated lower
region is tcrmed the hypolimaion.

The problem to be solved is the vertical temperature profile.
There is an influcnce, however, of the action of the wind and
this produces a two-dimensional problem. ’,

Liggett and Redford (Ref. 14) and Bedford (Ref. 15) have
deult with the steady-state problem of a two-dimensional cavity
containing a nonhomegencous fluid subjected to surface shear.

No consideration was given to eddy viscosity and diffusivity
variations. The latter was accounted for by Young, Ligpett, and
Gallagher (Ref. 16) and the results demonstrate that stratifica-
tion, as well as circulation patterns, can be predicted with

the proper empirical definition of these variations. Skiba,

Unny and Weaver (Ref. 17), Debongnic (Ref. 18),'and Kawahara,

et al (Ref. 19) have studicd cavity {low without the considecra-
tion of temperature. Coupled velocity-temperature solutions

are also described by Zienkiewicz, Gallagher, and Hood (Ref. 20).
In the following we describe the development of Young, liggett
and Gallagher.(lﬁ)

The physical properties which enter into the differcntial
cquations of the problem are the cddy viscosity and the eddy
diffusivity. The eddy viscosity and diffusivity in the horizontal
d;rection (fo ctc., and Kz) can rcalistically be taken as constant.

Valucs of these coefficients arc customarily taken as the samd



magnitude as those which are mcasured under neﬁtral stratifica-

tion. The vertical eddy viscosity and diffusivity (K?:z etc. and

Kg) vary highiy within the whole basin, however, and. are depcndeét

on such factors as the turbulence 1evé1 in the surface layer,

the depth, the local density gradient and the overall motion

with respect to the specified geometry., B
No satisfactory thcory for the prediction of these varia-

tions {rom the more basic environmental and physical parameters

is presently available and dependence must be placed on empirical

relationships, In this work the relationships employed arc

)
extended forms of thosc proposcd by Sundaram and Rchm(ZI’, as
follows

!
Mo M =Moo 6 R (233
Xz 3 ) m
H _ H } .
Kz = KO (1 oth) (24)
where Ri, the Richardson number, is
a2 22
po U

I .
in which U is a characteristic velocity, O and o, are empirical

constants, and Kz and KQ are the vertical eddy viscosity and
diffusivity under neutral stratification. The continuity equa-

tion, with the assumption of incoﬁprcssibility, simplifies to

LA (26)

o:lcu
»ic
+
!
B

In defining the relevant forms of the momentum equations we
assume that Boussinesq's approximation upplies (p 1is taken as

constant exccpt when multiplied by g, ‘i.e., in buoyancy terms).



Thus,

3u ou _ 1 3p 3 M odu 3 M 3du

Max TM T T g, ek T (Ko 30 * 37 (K, 59 (27)

W oW 1 9p 9 .M ow 9 Moowy o p 8

ax v an T T pc s aw Koan) tar (K i) gt U8

where p is the local pressuic,

The diffusion-advection of tcemperature is given by
aT At 9 JHo aT 0 A1 3T

Uax Yo T e Koad) e (K ey (29)

Finallv, the cquation of statc can be written morc explicicly

as p=p,l1 - B(T - T))] (30)

in which B ic the coelficicnt ¢f volumetric expansion (assumcd

constant) and To is the point about which the true relationship-

is linecarizcd.

We introduce the strcam function ) in place of u and v,
such that
= .a_._lp = - .8.—!2
u 3z ' W 9X (31)

The resulting two differential cquations, which replace Egs.
(27-30), can then be written in terms of nondimensional variables

as {ollows

2
- . o4 A(VTy, vy _ . 9p
Dl(!l’.p) v ‘P + Re ‘—3-(3-(—,-;)- Re Rlo X
2 ' 2
+ o, Rij ij (z2 3o 3 g
9z z 9z ‘
2 "2
87 (2 3p 3.
* 9XO L (z Z 3x32)§ 0 (32)
and, '
- . 3(p, )
B, (¥,0) Vp + Re Pr Xz
. .9 . 9p. 2 - \
+ L-h Rlo -a—z- {(Z —a—i-) } 0 (35']



whérc Re = UH/KS is the Reynolds number, Pr = KZ/KS is the
turbulcnt Prandtl number under neutral stratification, and
Ri0 = - Angll/pou2 is tﬁc overall Richardson number. -H is the
depth of the cavity. All parameters and variablces have been
nondimensionanlized, e.g., x and z have becn divided by H.

To transform thec above into a finite element representa-
tion we adopt shape function approximations for ¢ and p and
usc the Gulcrkﬁn method. Thus, with p = Niwi and p = Qipi we

have the following weighted inteprals
Ja NiID (F,5)1dR = 0 - (34)
Jf'A Q; [P, (¥,7)1dA = 0 _, (35)

This lcads to the following sct of nonlinear algebraic

equations

1 2 . 3
Sijwj + Re Sijkijk + R?\Rlo Sijpj
. 4
- Oy Rig Sisvi0 * Py = 0 (36)
S?.p. + Re Pr S?. ¥.p, - o, Ri S7 p.p, = 0 (37)
1j75 ijk¥j%k h 7o "ijk7 ik

The multipliers Re, Rio, Pr, o and o have been preserved in
these represcentations to enable identification of the source

of each ternm.

1 7

The specific algebraic form of the coefficients Sif""’sijk

is obtained after performance of the integration indicated in
Eqs. (34) and (35).

| The global representation is og;ained by summation, froﬁ
the cocfficicnts of the above element equations, of all coef-

ficients with like subscripts. The resulting equations are of



a form identical to that of Eqs. (36) and (37). The Newton-
Raphson approach is adopted as the method of solution of these

coupled nonlincar cquations.

*Nuperical calculations were performed for the square cavity
of Fig..}a'for thc boundary conditinns shown and for various assumed
vertical formulations of the eddy viscosity and diffusivity. The
tinitc clement representation consisted of 72 elements arrayed in
the G:J};nrédw01k.(Fig. 3h).

Stecady state calculations have been performed for Re = 1 to
“Re =°'1000, Gr = 0 to Gr . 10000, and Pr = 1 to Pr = 10 where Gr is
the Gfushof nunber (The Grashof number is Gr = Re 2 Rio.). Addi-
tional numerical experiments were performed to test the scnsitivity
of the solution on the assumed behavior of the eddy viscosity and
eddy diffusivity. Ten such computations were performed, all using
Re = 100, Pr = 1, Rio = 1 but different choices of oh and om and
also different assumptions as to the form of the depthwise variation
of KN

Xz
teristic numbers represent, of course, an infinite variety of

and KS as summarized in Table 1. The values of the charac-

physical data, but the following are typical: Pg = 1.0 gr/cm3,

= 3 . - AO© - . 2 oM H
or 0.9999 gr/cm (Tp - Ty = 4°C), L 1.0 dyne/enm®, K0 Ko
100 cmZ/sec, H= 10m, and g = 980 cm/secz. These are approximately
equivalent to the experimental data of Sundaram et al(zz), How-
ever, in the present case the boundary conditions have been chosen

so that a steady-state solution exists, a condition relaxed in some

subsequent computations.
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TABLE 1

Summary of Computations
for Re » 100, Pr = 1, Rij s 1

N 2|
.|
NO. .

, .
1 2 i 3 i 4 s
I Cut-off Below t;; . B
oy % Depth-Dependent | First Cut-off Depth | Plot Symbols
~ 1 i
ol o .ae o
0.1]0.035 No .- A
0.2 ,0.07 Yes .ca
¢.310.1 Yes " mes
0.5]0.15 Yes .-- 5}
0.5 |0.25 Yes --- .
2.0 ] 0.35 No No A
1.0 | 0,35 Yes No )
2.0 0.35 Yes Yes e
2.0 0.70 Yes No é




Conclusions resulting from the first sct of stcady-state runs
a}e s%own in Table 2 (Rel.15). In these runs eddy viscosity and
eddy diffusivity were held constant, A typical piéture of stream-
lincs and isopycnals is shown in Figure 4. The influence of ;hc
stratification on the circulation is obvious. Additional runs
could ﬁfobably have elicirted a specific relationship between the
formatfnﬂ of multiple, closed circulation cells and the three
pafamctcfs, Re, Pr, and Gr. However, such a relationship was not
pursued. since it would undoubtedly be altered with different gcome-
trics'aﬁd since the cddy viscosity and eddy diffusivity relation-
ships probably have a larpe effect.

That cff{cct has been tested in ten subsequent runs which are
summarized in Figures 5 and 6. In these cases the same sorf of
cell structure formed as shown in Figure 4, but with considerable
variation in the details of the velocity, shape and size of the
cells, and the density distribution,

The latter computations show that the density structure con-
tinues to have a large effect on the velocity structure and also the
velocity structure grcatly alters the density distribution. With
the eddy viscosity and eddy diffusivity formulation that Sundaram
and Rchm(ZI) found necessary in their one-dimensional analysis,
the surface shear alonc is sufficient to form a fhermocline type of
structurc. This result is quite different, but does not conflict
with, those of previous invcstiﬁators who have used a one-dimensional
analysis. In those previous investigations the thermocline struc-
ture {ormed over a period of time (several weeks) while unsteady
heat inputs werc applied. We have shown, however, that given an

initial inhomogpgenicty in density, a wind shear is quite sufficient
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Flpure k. Streanmline and Iscpycnic Contours; Shear Driven, O(l) Cavity, Re = 100, CGr = 1000, Pr = 5.0
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Figure §

Vertical Distribution of Eddy VlSCCblty (K )
and Eddy Diffusivity [k ) at x = 0.8333.

(Sce Tatle 1 for definition of symbols)




a. x = 0.1667 : b. x = 0.8333

Figure 6 Density (p) versus Cepth (z) at x = 0.1667

(See Table 1 for defirnition of syrbols)



to form the thermocline. Unsteady computations, shown below,
indicatc the tirnie séalc involved in such a formation and also the
extent of the fccdb%nk vhich influences the current structure.

IFewor transient computations of cavity flow were made due to
thc';omputer costs. A total of five runs with Reynolds numbers of
100 nndIIOOO and Richardson numbers of 1 and 10 were made. Two
values of %, wcrc'used.” Figure 7 indicates the results of one of
these calculations, Inﬁali cascs in which the motion begins from
rest; the entire cavitygbcgins to circulate as a whole; that is, the
cavity forms a single'Eirculation ce]l: As time progresses the
flow may break up intééiwo or more cells, as is indicated in Figure
7. At the same time:tﬁe‘density distribution is altered to show the
typical thermocline shﬁpc.

The flow docs not change from a state of rest to the final cell
formation montonically. Instead thc veclocities increasc rapidly to
a valuc not far from the stecady state valuc and then osciliate about
this value. The frequency of oscillation is near the Brunt-Vaisala
frequency. Other characteristics of the flow, the density gradient,
the cell location, and the strecamline positions, show similar damped
oscillations. |

The number of cells can be calculated, using certain gross
approximations, from the theory of Turner(SZ)'as expandced for this
problem by Young(31l This theory has been compared with the transi-
ent and steady-state computations with rough agreement. The dif-
ficulty in the ;pplicatibn of such theories to real lakes (sr cven
cavities) is that all the factors, the most important being the
density distribution, and the interaction of those factors cannot

te considered adequately. Results indicazte that multiple cells are



Figure 7 S-ccamtine vattern for Stratificd
Flow at Various (Dimcunsionless) Times
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;<Iiﬁuly to form in the case of a diffusc metalimﬁion wherecas aisharp
thermocline promotes two cell circulation., However, the fecdback
of the currents in£o the density structurc has not been considered,
and this fecdback may alter the dcn;ity distribution, thus changing
the results of the theory.

Variable viscosity, especially a formulation which is strongly

|

dependent on the density gradient, has a great. effect on the
ability of the current structure to alter the density distribution.
A teduction of viscosity in zones of steep density gradienf promotes
the oscillations obscrved previously and increascs their amplitude
(but docs not affect the frequency). The reduction in viscosity
also increascs the time to equilibrium significantly in those cases
in which-a stcady state exists.

A particularly striking result of the transient calculations
-is the time scale involved in thermocline formation. A shear
applied at thc surface may alter the density distribution and
create a thermocline-like structure in a few hours versus the weeks
involved in -the one-dimensional computations. Thus the entire
process of the development, maintenance, and erosion of the thcrmo-
cline is a complex process strongly influenced by the current
structure, The '"physical constants" (i.e., eddy diffusivity)
derived for tHe one-dimensional analysisihave, in reality, little

phy;ical meaning when the current structures is neglected.
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STABILITY OF FINITE ELEMENT MODELS
FOR CONVECTION-DIFFUSION

by

1 2

Jerome J. Connor~ and George C. Christodoulou
INTRODUCTION

The convection—diffusion equation, a typical parabolic
partial differential equation, is of great importance in a variety
of fields. It is essentially an expression of conservation gf a
quantity which is subkject to advection and at the same time spreads
out due to molecular or larger scale mechanisms. Applications are
in heat éonduction, flow in porou; media, vorticity transport in
viscous flows, and dispersion in air or water bodies.

If the domain is irregular, the equation has to be solved
numerically and criteria for the stability of the particular
numerical scheme used is essential. A large number of finite
difference techniques have been empléyed in the past and their
stability and accuracy characteristics have been examined for
simple convection, simple diffgsion, and combined convection-
diffusion. A review of these methods can be found in [7].

Use of the finite element method in fluid problems has
recently become quite popular {2,3]. The finite element discretiza-
tion is normally applied on}y in the spatial domaiin, while time

integration prcceeds through conventional schemes. Rigorous
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Assistant Professor, Applied Hydraulics Lab., National
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theoretical analysis has focused on such fundamental problems

aé the convergence of the finite element approximation to the
true solution, determination of error bounds, etc. [10], but has
failed so far to yield practical results. This is due largely to
the inherent difficulty in extracting simple expressions in terms
of the problem parameters from the matrix equations defining the
stability limit. Thus, important issues in problem-solving, such
"as the selection of time step, are mostly dealt with through

experience or experimentation.

<

>

This paper discussed a stability investigation of the finite

element method applied to the 2-D convection-diffusion equation.

A generalized (arbitrary) spatial discretizaﬁion is assumed,

along with a simple implicit iterative scheme based on the
trapezoidal rule for fime integration. The method is shown.to

be unconditionally stable for an arbitrary grid, constant
parameters, and no iteration, except under certain rare boundary
conditions. General criteria for convergence of the iteration
proéedure are developed and specialized for the particular case of
triangular elements with linear interpolation functions. The
effect of the finite element discretization on the accuracy of the
s&lution is also briefly examined. Finally, results of numerical

experiments which confirm the theoretical results are presented.

FINITE ELEMENT FORMULATION

The general convection-diffusion equation has the form

c o . -
3—{ +Vo(uf):V‘Q‘ﬂ‘+5 (1)



where C is the solution variable, e.g. the concentration of a

. xS . - . » .

constituent, U is the (local) velocity vector, ¢ is the diffusive

flux vectcer, fd and f_ are the decay and source terms, respectively.
P

In the simplest case of a linear decay, fd is expressed as

£ oh C

where k 1is the decay constant (> 0).

(2)

A two-dimensicnal domain is considered here. 2n analogous

procedure can be applied to one dimensional problems. Incorporating

(2) into (1), considering the fluid incompressible, and integrating

through the transverse direction leads to an “"averaged”

3C >C SC =2 220 -4£C+ £
== S U= L +
D¢ +HM 31 ok G BJQJ (S:”

where u, v are the average velocity components and Qx’ Q

egquation,

are
Y
the average diffusive fluxes in the x, y direction. Tf the

diffusion mechanism is assumed to follow a Fickian behavior, one

can write

where the set of difrusion coefficients comprise a second order

symmetrical tensor E. Finally the boundary conditions for the

problem are of two types (see Figure 1):
(i) Essential, i.e., concentration specified

¥

C: C_ are SC | {5
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(ii) Natural, i.e., normal diffusivé flux specified
. 14 J;

GD = (> e
" " g

< Applying the method of weighted residuals to (3) and

(5b)

integrating the flux terms by parts leads to the symmetrical

weak form [2]:

R= [ (% X evdS rhCo Vs

-)H 3¢ ox Y
[ (0.2 “@J?ﬁ’\d@ r [ wus =0
d < _(6)

F

where W represents a weighting function. Since only first
derivatives appear in/this form (wheﬁ Qx' Qy are expressed \
through Eqg. (4)), the trial function C (approximate solution)
and weighting function W have to be only piecewise continuous
within the domain A. At the boundary, the trial function is
required to satisfy (5a), while the weighting function must
satisfy the homogeneous form, i.e., W = 0 on Sc.

In the finite element method, the domain is subdivided into
"elements" and the total residual, R, which is required by Eq. (6)
to vanish, is evaluated as the sum of the element re51duals, RE.

The trial and test variables distributions over an element

domain are expressed as

C

"
2
$My

(7)
W

i
2
‘T
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e

where Ce, W- are. column vectors containing the values at the

element nodes, and N contains interpolation functions restricted
only by interelement continuity of C and W. Using Eq. (7), and

(4), the residual for a ningle element expands to

(we T/(f N/Ya’.:) ({(N(q-—-—.‘-'lf jo/ﬁ)g
A (ff 2 aTe p )¢

, * 7
- -
f[[0hen + [ w70l 45
S, ' (8)

Introducing simplified ‘notation for the matrix coefficients
results in -
e T (¢ e o € €& [T ¥ _[/ Tr dn
R < (v) JC e (450K DF)C s @S (]2
- (9) ;

where the various element matrices are defined as

~ (geometrical)
7, M 3 | ‘
~€= /Lv//"j * U_a'§" )‘//‘9 (advection)
{f B_(j/’—E Bd AR (diffusion)
d . (10)
= A ] w70 47 (aecay)

Both @e and Qe are symmetric éositive definite matrices.

The character of_ge depends on E. Since diffusion is normally
a "dissipative" mechanism, it is reasonable to assume E is
positive definite. Then, Ee is positive semi-definite with

respect to Ce
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)
Summing up the element residuals, one obtains the

total set of equations relating the nodal concentration.

M

t0)e

+ (A + K + D) C = contributions from sources
.7 7 7  and boundary conditions (11)

The symmetry and definiteness properties of M, D and K are
the same as for the corresponding element matrices.
To establish the characteristics of the advection matrix,

partial integration is carried out over the element domain

( Jf .c/’"(v}f’w_v. |#5) ¢
(g@ oy /\/1/4)(.' (”(a’y a4 %ru-g)m)g
(32 A /J) (/‘7 ) e *

(12)

(4

where u denotes the outward normal velocity. When the

element residuals are summed, the interior element line infegrals
will cancel out &nd provided that céntinuous expansions are used
for u, v and C. Then,

pes (STt s)e - 2T

(13)

The line integral in Eg. (13) is restricted only to that part
of the boundary, Su’ where the normal velocity is finite. This
excludes land boundaries which, by definition, require un=0.

If Su=0 or the concentration is set to zero on Su' the integral

vanishes and the system advection matrix is skew-symmetric.



In general, one can write:

/?:ﬁsfﬁ

N L™

=5 (14)

where A A denote the symmetric and skewsymmetric varts of A,
respectively. According to (13)495 is associated with the
boundary segments on which the normal velocity and concentration
are finite.

No use has been made of the particular form of the interpolation
functions N, or the element shape. Therefore, the conclusions as
to the properties of the system matrices are valid for:an'érbitrary

spatial discretization based on continuous expansions ,

STABILITY OF TIME INTEGRATION
One of thevsimplést time integration methods is based on
the trapezéiggl rule. In order to examine its stability
characteristics when applied to the discretized finite element
transport Eqﬁation, (11), the homogeneous form of the latter"
will be considered, i.e.,
3 ' .
mc +( A+ K+D)C =0
~ o~ ~ - (15)

The recurrence relation for the trapezium method is

[ 1+ $(pr5+n) ]§M+, = [/j -4 //.?%1(17‘0) 1¢.

lea S

where the subscript denotes the time index.

1
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Assuming the advection, dispersion, and decay matrices are

time independent, one can express the solution of (16) as

¢ :BC, |
- (17)

~ an#l

where B is the amplification matrix. An alternate form is

gm: )\ i) (18)

where A, ¢ are the eigenvalue, eigenvector of B. The sufficient

~

condition for stability is
1Bl <1 > | A_|<1 |
‘ (19)
Substituting (18) into (16), premultiplying both sides by ¢, the

transpose of the complex conjugate of ¢, one obtains:

-T ~T ' :
A M o4 O A¢
¢ [m+& /)+K+D\& 2 ¢ (m-2 A+I<+Q)]¢
~[5‘2(~~~)? g_’L-z_(‘-)~ ~  (20)
Since M, K and D are symmetric positive matrices, it follows that
-
0 M d = am O

= & >0

lex
4
A
I

d o (21

n

F

D¢

The advection term expands to

—_T . )
A - a. + ta
(P ~ d) $ SS (22)

~—
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where a_ is related to the symmetric and a g to the skew-~

symmetric part of A. With this notation, one can write

4% , 4r
= o (QS+E-4J}"C z QSS
At 4%
%+?(Qs+€4°'l)*‘?ﬁss
(23)
If a_ =0, |x] <1 for abritrary At.

That is, the integraticn scheme is unconditionally stable

foF an arbitrary grid whén the system parameters are constant.
The value of a, can be different than zero only if there

is a segment of Sq on which the normal velocity does not vanisﬁ.'

Noting (12)s, and the positive definite property of NTN,

a 7 ¢ - S."r(;g 0, AN s ) ¢
&

~ (24
one finds that ag has the sign of u - Therefore, when the
normal velocity is directed outwards, a > 0, and Eq. (23)
-indicates that |A| < 1. Actually, the stability is enhanced
in this case. Howeve;, when u, is directed inward, ag < 0, and
the stability depends on the relative magnitudes of ag and € + d.
Sufficiently strong diffusion or decay mechanisms can offset
a negative ag-

It is a common practice, based on physical considerations,

to specify the concentration during inflow and the concentration

gradient during outflow. With this procedure, stability of the
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scheme is usually maintained. The source of instability for
the case of inflow from a boundary with brescribed concentration
gradient is the introduction into the domain of an uncontrolled

quantity of material.

ITERATION CONVERGENCE
Although the feature of unconditional stability makes the
trapezoidal integration scheme extremely attractive, problems
involving time variability of parameters or inputs will necessarily
require a restriction on the time step. In such a case it would
be economical to invert a new matrix of the form M + é% (A+K+D)
at every time step only for a very small problem. An iteration
procedure is, therefore, preferred. Iteration has the additional
advantage of being able to handle nonlinear decay, nonfickian
diffusion, etc. For the homogeneous problem examined here, the
recurrence relation is expressed as . ,f"
: ()

() At C
M C = [M-‘_‘_*(chw&l:} ],CM-—,;_(,'?‘-‘_F*P) X M
~ NM+| A~ z. -~ -~ . i~ ) (25)

where the superscript denotes the iteration index.
The sufficient condition for convergence is the requirement

that the norm of the amplification matrix be less than unity.

| M 42 (askep) || <1

- Mt (26)

Solving for At yields
A

[ 17 (Aven)]] (27)

[ad
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A more conservative _form is

A
R -
(o™ Al + N e+l 7 0 (28)

In principle, the norm expression (27), can be evaluated.
However, calculation of the commonly used eigenvalue norms
involves long machine computations once the matrices are
formed. An explicit relation between the time step and the
;parameters of the problem would be very desirakle for practical
applications. An approximate relation can be derived by eQaluating
the norm expressions for an individual element. Provided there
are no drastic changes in the grid or the prameters over éhe
domain, the conclusions reached at the element level can be
generalized for the whole system. That.is, satisfacticn of (27)
for the "worst"” element would indicate convergence for the total

system of elements.

CRITERIA FOR LINEAR TRIANGLES
Norms for the triangular element (see Figure 2) and a linear

expansion are presented in this section. Starting with the

expansion
ﬂ:[g, gz_ 23]
> N ' - 5
g—-:ZRQY b, by b;]‘ 2/~
N /
E::J_Ta[a, a, Q3]:7-:7_;;2 @
> zA” (29)

where A® is the area of the triangle and



G, ¥g ¥ b, < f» /2
a, = ’)(-;‘7(3 ‘ b :/3 -l;f'
G,z Y, -X b,
z !
’ L K A ‘7"_ (30)
one obtains the following element matrices:
(1) . Geometrical matrix .
a 2 ! /
M = = { o ‘
~ AL [ A
.\—'— . -— ’ - e e ~ - -
L oo . NS
- R -~ vl R |
-1 3 A . ! l
Jd N vt .. (31)

(ii) Advectidhﬂﬁaﬁfik,'for uniform flow (u,v),
,c) ¢ oz (‘4 b +V &

-
—

!

Y Ml [as 45, ¢n g, 4153@:4_3]
2R < ' :
(32)

{ 2 ' C ey -
where U = yj u2+v”‘is the magnitude of the velocity vector,
Asi is the length of the ith side, and ¢i is the ahgle
between the velocity vector and the inward normal to Asi.
This notation is illustrated in Figure 3.

(iii) Diffusion matrix, for isotropic conditions

(B y = B, = E, Ex§ = E,. = 0).
o [t s s, 48645, 0, |
R=n gs,” - 45,85, w6,
| > as,” ]
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where ei is the angle opposite side i.

(iv) Decay matrix

D =+ ([ nTran = A
- (34)
Proceeding now to form the products appearing in (28),
it is first noticed that
-1
M D:zA:_

~ =~ (35)

Since the rows of K are linearly dependent, and noting

the second form of Mnl, one can write
-1 | &
M K = q K .

Specializing (36) for the particular case of an equilateral

triangle
212 -/ -1
M“'K:-'-} £4S 0 = -

The matrix eigenvalues are 0, 3, 3. Using 3 yields a lower
bound on At,

2
o] = 2223 s 2 o

8 (2 6sY) 8s* (38)

This result is too conservative. A more reasonable estimate

i
is obtained with the "average" value of the eigenvalues, i.e.,

2.

—t - -z
M k) =16 T

O (39)
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The last term, which involves E—l and A has the form

U ?
/1 [As,cncp, as end, 453m¢3]

-1
M A= ——
~ 28 /; (40)

—~

A norm measure is generated using the Eudidean norms for the

vectors, Ui
- T 2 X
U B <% U3 {5,020, + (a5 o) # (25,0 4 Z
) ) (41)
Specializing for an equilateral triangle,
! A
hemell < s (42)

Similar expressions can be derived for any triangular orx
rectangular shape. The above expressions also apply for a right
triangle, provided the flow is parallel to one of the short
sides.

Combining (25), (39), and (42), one obtains an estimate for

stability of the iteration scheme applied to an equilateral

grid,
!
nt <
la %+ 8- +~% , (43)

In actual applications, ocen designs the grid with approximately
equilateral triangles, avoiding angles in excess of 90°.

Eguation (43) provides a good starting point for select}ng_ghe
time step in any given problem. Its validity is tested
experimentally in a later section. Its primary value, irrespective

of the numerical constants which vary with element type,
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lies in .the inclusion of all relevant parameters in a single
expression. In the past, these have been examined separately,
if at all, and only by numerical experimentation. For instance,
[5) suggests thét for satisfactory time integration using the
same iterative scheme and the same type of elements, bcth of

the following cenditions must hold:

2

4s 4s

At L Az <
/0 U /0 K

(44)
These bounds are stricter than (43) especially with respect
to advection. In problems with significant spatial variations,
it is clear that the largest values of E/As2 and U/As limit
the time step. As a consequence, a local refinement of the grid

for better resolution will lead to a smaller allowable time step.

ACCURACY

In addition to stability considerations, an important issue
that has to be addressed is the accuracy of the numerical
solution i.e., how close the true solution is being aéproximated.
Accuracy depends on the space and time discretization and the
type of problem being solved. The two basic errors considered
in diffusion problems are those of numerical damping and numerical
dispersion. The former relates to excessiﬁe (or inadequate)
damping of the magnitude of individual wave components and is

sometimes expressed by an.artificial diffusion coefficient.
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ThéJlat;er relates to incorrect phase propagation of ihdiviaual
,.wave components, which leads to distortion of the shape of the
‘ overall distribution. These errors’mayfbe-eaSily examined in
finite difference schemes; they can also be examined, in an
anaiogous way, When the finite element discretization involves a .
regular grid. Thus, it has been found that the trapezoidal
integration scheme with linear triangular elements gives negligible
vrase error and rather small amplitude errof‘[ll -Vactgally
'being'neutrally stable for simple coﬁvection. Similar results
havg been obtained for rectangular isoparametric elements ([9].

-However, when significant high frequency components exist in
the function to be approximated, serious difficulties may arise
,;ﬁfrom the inability of the grid to represent them adequately.
In particular, linear interpolation functions are suitable for
describing the Gaussian or exponential analytical solutions of
diffusion probleﬁs only if the grid.is fine. Higher oxrder
interpolation is superior, but also more expensive. The usual
result of the inadequacy of the grid to accommodate steep gradients
is the appearance of spatial oscillations and negative\concentra—
tions in the numerical solution. This unnatural behavior is
due basically to the "coarseness” of the spatial discretizatioh
and it has been shown that it would occur even if the problem;is
one of steady state [7].

Considering a regular finite element grid (Figure 4) and a
one-dimensional steady state problem, the discretized equation
for Node A is [1]:

Las (CB+2C +CD‘ CE-lCF‘C(D\J-E(zC;;”C( ‘CF): O
b < : (45)
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Suppose that, due to the presence of a source and because. the
probiem is one-dimensional,

(i) the concentrations at C and D are relatively high,

CC = CD = M,

(ii) nodes F and G are essentially out of the plume,

1

Q
n

o

- Cp G

n

0O
1]

0

(iii) CB E A

Specializing (45) yields .

M _ vas
C:A ~ = ! 2 £ )

(46)

This shows that, in order to avoid negative concentrations
upstream of a continuous source, the following condition has

to be satisfied:
E>..f_.

uas z (47)
Condition (47) is analogous to the restriction on grid Reynolds
number required in céntral finite difference schemes [7]. mIts
applicability.to the finite element discretization has been
established earlier, through numerical experiments [5). Violation
of (47) is sufficient to cause negative concentrations for
continuous source 1l-D problems. Applying a similar type of
approximate analysis as above has indicated that (47) is somewhat
conservative for 1-D transient problems, but is not quite

adequate for 2-D problems [l]. The additional difficulty that

arises in a two-dimensional domain is the singularity of the
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analytical solutiow for a continuous point source. Local
refinement of the grid and spreading of the source over a few
elements are the easiest ways tO improve the numerical
solution. If the immediate vicinity of the source is to be
modeled accurately, inclusion of singular terms in the

trial functions should be considered [8].

EXFERIMENTAL RESULTS

Condition (43) limiting the time step,

/.2 _({._f_f_,_ g £ Losdar < |
a8 AS™

is written in the mcre general form

U AE £ o+t

’Lﬂ 4L S 4'/qz < J-/q3 Aé'd t < ,
(48)

where Hys My, U4 are numerical constants dependent on the

type of the elements used. If the nondimensional groups,

Uat/As, EAt/Asz,lﬁfErare viewed as Cartesian coordinates,

a useful geometrical interpretation of (48) emerges: the sufficient

condition corresponds to bounding the "acceptable" space by a

certain plane surface. 1In the absence of decay, which typically

gives a negligible contribution, the space is reduced to two-

dimensions. The inequality

E Ot
e < | (49)

-~
~Jy
,C
o
~
~
o




19
deteérmines a theoretically “safe" area bound by a straight
1iné, as shown in Figure ¥. A less conservative inequality

. Y
[L];
2

. g / 2 p...\;\ .
(12 y_;\_t) ,L(,t/f) o |
. 4s A S

(50)

defineé an elliptical boundary.

To test the validity of the theoretical results, a large
number of runs were carried out using the one-dﬁmensional grid
* shown in Figure,BZSﬂA point source was simulated by ioaaipg
the three nodes marked with dots. Most runs involved continuous
relééses, but instantaneous injectioﬁs were also made. The
contribution of the decay terﬁ was genefally less than 5%,
and thﬁs neglected. For each run the cbrreéponding'point was
plotted on Figurei?. The symbols used to clarify the runs
with respect to iteration convergence behavior and the occurénce
of significant spatial oscillations are explained in Table 1:

The most important feature of Figure-;'is fhat all runé
which exhibit difficulty with iteration convergence lie outside
the "safe" region. Not too far from the elliptical boundary;
there are points representing runs that rapidly beéome unstable.
Points closer to that boundary, but still outside, generally
have iteration errors of 20 to 75%, sometimes decreasing slowly
over time. Since there ic a limit of 10 iterations per time
step in the program, it is not known whether these runs would
eventually become unstabie if allowed to continué iteérating.
Apparently, when the iteration is stopped with s small error:

the behavior tends to improve over the following time steps.

Of course, these errors are accumulated in the solution.
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Rugszbetween the two boundaries defined by (49) and (50) have
| eggbrs of less than 10% which diminish with time. Finally,
runs within the inner boundary generally converge very well,
with errors less than 1%.

‘Iﬁ may be concluded that the theoretical criteria, indended
as sufficient conditions, are indeed quite appropriate as such.
The elliptical bound (50) is not too conservative, in view of
the relatively large errors occurring outside its domain. The
linear boundary (49) is somewhat conservative far from the
axes; this is a consequence of working with (28) rather than
the actual condition (27). Numerical experiments for 2 D
problems and applications involving irregular grids of natural
water bodies [1] have further confirmed the validity of the
theoretical criteria.

The other important result of the experiments is associated
with the accuracy condiéion {47). It is seen that the line
E/UAs = 1/2 differentiates the regions where runs do or do
not .show appreciaﬁle upstream negative concentrations and spatial
oscillations. These oscillations become more severe near the
UAt/As axis, as the ratio E/UAs diminishes, and they are
practically eliminated as E/UAs increases slightly above 1/2.

Accuracy considerations significantly réeduce the area of
acceptability of combinations (UAt/ts, EAt/Asz) to a much
smaller set than that required for iteration convergence.

~

Fortunately, continuous source problems, which are the most
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demanding, are not too sensitive to the value of the
diffugion coefficient; this may be changed by almost an order
of magnitude without appreciable change in the results [4].
Therefore, it may be possible in some cases to improve the
numerical solution by artificially increasing the value of the
diffusion coefficient. Another alternative is to resort to

higher order elements.

CONCLUSIONS | :

It has been shown that the. trapezoidal integration scheme
applied to the discretized convection—diffﬁsion equation
(including decay) is unconditionally stable for an arbitrary
grid and constant system parameters. This was based upon
the examination of the character of the matrices involved, in
particular, the skewsymmetry of the advection matrix.

When the system parameters are time dependent, an.iterative
solution technique is preferred. Its convergence requirements
imply some restriction on the time step. Conservative bounds
on the time step have been developed for the case of linear
triangular elements, based upon a simplified analysis at the
individual element level. Results of numerical experiments,
mostly on a 1-D grid, confirm to a large extent the
theoretical arguments.

Accuracy considerations, related to oscillations of the solution,
limit rather severely the use of linear elements in some practigal
applications. Resort tc higher order elements may be worthwhile,

despite the increased cost, when there is weak diffusion.
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Figure Captions

Solution Field

Typical Linear Tria:.gular Element

Regular Finite Element Grid

Comparison of 1-D Trial Rgns with Theoretical Criteria

1--D Test Grid
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Figure 1 Solution Field
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Figure Typi i
Il n.‘2 Typical Linecar Triangular Element
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Table 1

uscd in Figure 4

Negatives as
Peroent of Peak

1083

> 10%

< 10%

< 10%

R > 10%

Remarks

Good, smooth solution
Good convergence, but

solution exhibits
oscillations

Iteration error goes
down rapidly with time

rieration error decreases
slowly with time

Blows up



29

Avpendix I - REFERLNCES

10.

Christodoulou, G.C., et al., "Mathematical Modeling of
Dispersion in Stratified Waters", M.I.T. R.M. Parsons
Laboratory for Water Resources and Hydrodynamics Report
No. 219, Cctober, 1976

Connor, J.J. and Brebkia, C.A., "Finite Element Techniques
for Fluid ¥low", Butterworth, 1976

Callagher, R.H., et al. (ed.), "Finite Elements in Fluids",
Wiley, 1975

Holley, E.R., et al., "Dispersion in Hoinogeneous Estuary
Flow", J. Hydraulics Division, ASCE, Vol. 96, HYS8,
August, 1970

Leimkuhlexr, W.F., et al., "Two-Dimensional Finite Element
Dispersion Model", Symposium on Modeling Techniques
'Modeling 75', San Francisco, Sept., 1975

Price, H.S., et al., "Application of Oscillation Matrices
to Diffusion-Convection Equations", J. Mathematics and
Physics, Vol. 45, 1966

Roache, P.J., "Conmputational Fluid Dynamics", Hermosa Publ.,
Albuguerque, 1972

Strang, G. and Fix, G.J., "An Analysis of the Finite Element
Method", Prentice-Hall, 1973 :

Taylor, C. and bavis, J.M., "Tidal Propagation and Dispersion
in Estuaries", Chap. 5 in "Finite Elements in Fluids", V. 1,
ed. by R.H. Gallagher et al., Wiley, 1975

Wellford, L.C. and Oden, J.T., "Accuracy and Convergence

of Finite Element/Galerkin Approximationg of Time-Dependent
Problems with Emphasis on Diffusion", Chapter 2 in "Finite
Elements in Fluids", V. 2, ed. by R.H. Gallagher, ot al.,
Wiley, 1975



CHAPTER 3

3.1 FORMULATION

Beginning with the basic principles of conservation of mass and of
force equilibrium,(Newton's second law), a formal mathematical model is
developed for transient vertically integrated flow in the plane. The
approach is somewhat similar to the works by Hansen [27]}, Reid and
Bodine {59], Leendertse [338], Norton et. al. [49] and Pritchard [7n].
We attempt to include all importaﬂt.steps of the development and to
account for assumptions and their basis as much as possible. Where
numerical parameters are needed in the constitutive equations, numbers
or relationships based on experience are indicated. The model is thus
intended to be truly predictive with the singular reservation that boun-

dary conditions must be prescribed. The necessary boundary conditions

for a well posed problem is also discussed.

3.2 THREE-DIMENSIONAL FLOW.

The mathematical formulation of the conservation of mass and
momentum principles for three-dimensional flow has previously been derived
in an eulerian framework using a cartesian x-y-z coordinate system, (see
f.ex. 1 15). The operation consists of balancing mass fluxes or forces
for a smell cube dx-dy-dz, (see Figure 3-1), and then taking the theo-

retical limit as the volume of the cube approaches zero. The result is

(3.2.1) p’t + (QU),X + (Dv)yy + (DW)’Z = e

43



which states that the local rate of change of mass per volume,added to the
jnet flux out,is equal to the rate of adding mass per volume, e. If there
ffare no internal sources (henceforth we shall define a sink as a negative
source and therefore only need to talk about sources), e is zero. p 1is
the density; wu,v,w are the velocity components in Xx,y,z directions and
partial differentiation is written as a subscript comma followed by the
independent variable.Equation (3.2.1) expresses a fundamental principle

for any continuous one phase fluid.

The equilibrium of forces acting on the control volume is

written for the x- and y-directions:

2 - =
(3.2.2) (pU)’t + (pu )'x + (puv)’y + (puw)’z pEV
—P’x * Txxnx * Tyx’y M TZX,Z + pmx
2 =
(3.2.3) (c>V)’t + (puv)’x + (pv )'y + (pvw) , + pfu
- + + + +
p’y TX}'.x Tyy,y sz,z pmy

A rotating right handed coordinate system fixed on the earth
with the z-axis vertical upwards is chosen. The equations(3.2.1) -
(3.2.3) apply to the expected values of velocities and pressures which
are considered to be stochastic processes. The T's are therefore due to

molecular viscosity and turbulent momentum transfer [15, 62]:
= o - <u' > L,y = 1,2,3
(3.2.4) Tij = Tij 0 u i uj 1,] = 94 g

where < > signifies expected value of the argument, is the

Y
|

viscous stress and u 1 is the turbulent velocity fluctuation in the i

44
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direction. For convenience, here and in the following, frequent use of ten-
sor notation will be made, the i,2,3 directions being equivalent to
¥,¥,2. The left hand sides of (3.2.2)and (3.2.3) represent the inertial
forces on a unit volume and the right hand sides are the surface forces

acting on the same volume plus internal sources of momentum L my. In

arriving at (3.2.2) and (3.2.3) 4is has been assumed that the vertical
velocity w 1is small so that only pfu and pfv are retained from

the fictitious coriolis force. f 1s the coriolis parameter = 2 Wearth *

sin¢ , where is the phase velocity of the earth's rotation and ¢

earth

is the latitude (N) of the location.

—_——— e > N
I &

n— — | e — at— 7y

dz dx

o
~N
~
'.\\

X

Figure 3-1. Infinitesimal control volume.
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The isotropic normal ét%ess in fluids is usually compressive and there-
fore denoted p for pressure (positive)., The deviatoric stresses Tij’
i, = 1,2,3 are defined as usual, the first index denoting the normal
direction of the face on which the stress acts and the second, the posi-
tive direction of the stress.

An order of magnitude comparison of the inertial terms in
(3.2.2) and (3.2.3) 1is illustrative. Let :, E, ;, : and ; be re-

presentative time, horizontal and vertical length and velocity scales.

Scaling (3.2.2) then yields

o a2 aa
- v~ —afunfw
t 2 h

where f w 18 the so far ignored component of the coriolis force and

£ =f is equal to approximately 10 *sec”? at 40° latitude. In order to

drop ? v and keep the remaining terms we must have

o
u >

£
we
=pled
It}
=gt MR
n
v
= b
4
v
o
rtd
i
b 0
ws

w=oleb
1
Fh b

For a typical coastal area u = 0(0.5m/sec), w = 0(0.05m/sec) E= 0(103m),

h =~ 0(100m) giving a corresponding time scale t = 0(2.10%sec) 0(0.6 hr),
indeed in agreement with the above scaling relations.

Vertical equilibrium requires

(3.2.5) (ow) o+ (puw)  + (ovw) _+ (pw?)

+ 2w v - 200 u =
» X Yy

- - +
p pg * T, +

T + 1
’2 Z,X yz,y 2Z,2

where u& and u& are the x and y components of the earth's rotazior.
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Scaling of this equation leaves only the pressure,gravity and normal strens
terms as significant, Again Tas is related to molecular viscosity and
the vertical velocity fluctuations, hence it can be neglected in comparison

with pg and we finally obtain the hydrostatic pressure condition.
(3.2.6) P = = pg

Along the boundaries,special conditions apply. Thus the fact that the free

surface 1s a material interface 1is expressed as the kinematical condition

(3.2.7) %? (n-2z)

where evaporation and rainfall are neglected. 1 = n(x,y,t) is the sur-

face elevation, Figure 3-2, and %E is the total or particle derivative.

At the bottom 2z = -h(x,y), which is assumed fixed and impermeable,the

similar condition is

= [u %% + v %§'+ w] =0

(3.2.8) 2 (z+h) Jmeh

z=-h
For lateral boundaries, which are assumed vertical, (see Figure 3-3) the

flow must be continuous, implying

+
0 1=1,2

(3.2.9) u, ny

1+
\
"5k Y13 ] = 0 1,9,k = 1,2,3

= = ¢ =
123 = %312 ™ a3 71

2132 = 2213 = 2321 = =1 and all other elements are zero.

where zijk is the permutation tensor, £
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DefiniLtion sketch.

Figure. 3-2.
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;boundary. Equatioﬁs (3.2.9), (3.2.10) express that normal and

tangential velocities just outside and inside the boundary must be equal.

‘g-directions result in

S 8 8 ]
. + = - - -
G210t + P ) [P”,x T Nyx T Tyx My T Tex]
e s ‘
(3.2.12 T, + - = - -
1(3 2 ) (y p n’y) [pn,y TX}' nnx Tyy nly sz- z-n

8 8 8
- + T + = -p - - +
P x L,x Ty Ny [ P™ Ty Mx ™ Tyz N,y Tzz]

z=n
and similarly for the bottom (z = -h(x,y)).
b b B
2. 14) T - h = [—- - + + i
G x P Px (P = T Bx? Tyx Ry Tex] sach
b b
2.15 12 -p°h_ = [_ h - (-
@ y P My Ty M T BT T Ry Ty
(3.2.16) -pb -t h_~-7°n = ;=p+7T1t__h _ 4+ 1 h T
X ,X y o,y Xz ,X yz LYy zz z=-h

On lateral boundaries, continuity of the stresses is again required.

(3.2.17) [normal stress]j = 0

(3.2.18) [tangential stress]f = 0

In case the fluid is considered inviscid (3.2.10)and (3.2.18)
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must be relaxed and only (3.2.9) and (3.2.17 ) enforced. Finally, for

a well defined problem, the initial flow field uin must be known:
in
(3.2.19) u, = ug 1i=1,2,3 X,Y,ze  t=0

i
For an.arbitrary geometry, the problem as formulated is not
easily solved. Numerical solutions are stymied by excessive computer re-
quirements and lack of information on the proper boundary conditions.
In coastal areas that are well mixed through the water column, a signifi-
cant simplification is achleved by eliminating the explicit dependence on
the vertical coordinate. This process is described in the following

section.

3.3 VERTICAL INTEGRATION

In shallow water bodies, the flow variation through the depth
is often less significant. In such cases, vertically integrated equations
and variables may adequately describe the situation. This approach yields
estimates for the transport through any cross section, however, detailed
information on the velocity structure is lost. In the following, the
water density is assumed constant in the z direction, l.e. p = p(x,y,t).
This and the assumption of relatively small vertical velocities and accel-
eration; are normally implied by the definition shallow.

The development of a boundary layer from an applied wind
stregs on the surface 1s dependent on the magnitude of the vertical tur-
bulent momentum transfer. Several investigations have found the vertical
eddy viscosity falling in the range E~1 - 200 cm?/sec. If the time

scale of 1 hour is retained, a notion of the meaning of the expression
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g

“'gﬁallow in connection with wind driven circulation is obtained from the

expression

(3.3.1) h = E-tnr 1-10m

The use of vertically integrated quantities to predict dispersion of a
tracer in this situation is clearly less satisfactory because of the highly
non~uniform velocity profile, although the total transport still may be
vell predicted. In two and multi-layered models, some improvement on this
point can be expected. For tidal flow, the driving force which 1s the
hydzodynamic pressure, acts over the entire depth, and vertically integrated
values are expected to be representative for the local velocities also,
except close to the bottom. Finally, neutrally buoyant stream flows en~
tering or leaving the area are well suited for an integrated treatment
gince those flows generally aré well mixed. Again, in~-or outflows with
g density difference are better simulated in multilayer models.

The governing equa;ions are integrated overlthe total depth
to eliminate the z-dependence. Beginning with Equation (3.2.1), we for-
mallf write |
n

n
(c>v)’y dz + J_h(ow),zdz =J edz

\
=l

n n n
(3.3.2) J P . dz + J pCu) _ dz + j
i -v-h » _h ’x _h

Making use of Leibnitz's rule [29] we may change the order

of integration and differentiation to obtain

3 {7 on .3 [" an 3 (-h)
(3.3.3) -—'I pdz - p— + +— J pudz = pu| =+ + pu ,
ot J_p LR ‘n ox -h ox
e 20 e - ol an+ov| aeh | | _pwi - o
oy -h ‘ ln oy ~h oy n -h I

(W]
AN



Finally applying the kinematic conditioné on the surface and bottom

results in

(3.3.4) (o) o+ (Pa ) o+ (Pqy) o = Pag

where we have introduced the integrated variables, total depth:

n
(3.3.5) H = J dz = h+n
-h

discharges in x- and y-directions per unit width:

n
< I u dz
-h

n
J v dz
-h

If we let q; represent the net rate of volume addition per unit hori-

(3.3.6) q

(3.3.7) qy

zontal area, this result (3.3.4) is generally valid for any type of flow,
including situations with permeable bottom and evaporation or precipitatgon
at the free surface. The primary objective for including qy is however
to make possible modeling of internal sources such as ~he discharge from
a diffuser pipe.

The integration of the momentum equatioms, (3.2.2) - (3.2.3)

proceeds analogously:
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] n n
(3.3.8) J-—h (pu)'tdz + J_h{(puz)’x + (puv)’y } dz + Jmh(puw)’z dz

-h °*
N
—J_hpmx dz =
a " _ an L3 [ avg - eoy] 20
Eve J h\pu) dz - (pu) % T Iw (pu*)dz ~ (pu®) | ==
- z=n -h
n
n
3 (- (-
out)| A LB o) de - | B | 2GR
b y y n Y
‘N
n N
+ (ouw)! = (puw) - pfqy + g—xj pdz - p' %—;—l
n -h -h n
+pl ach) _a (M Lo | . a¢h)
-h 9x ox h xxd z xx{ . 9x xx | 9x
- 0 -
-E—{nr az + 1. | . LIG.) R Y
9y Jop YX y 9 yx |4 dy z zx’ |
- {~h
n n
—Pﬁx -
n n n
) ; o 4 s 2 _ 2 .
FTY (qu) + = J_h (pu®) dz + 3y J-h(QUV) dz pfqy + PP J—h p dz
o9 gpr 3 pr 8. d = __s3H_ b3h
5% Pixx oy prx %t % Ry " P 3x P ax ° 0

in which we have defined
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n
1 -
(30 3-9) prx = j-h Txx dZ
3.3.10 F ' = "
(3.3.10) pyx :'J-h 'ryx dz
- n’ )
(3.3.11) m = J m_ dz
x -h

For computational reasons it is more convenlent to work with the
pressure in excess of hydrostatic pressure corresponding to the water leve]
at datum and rest.

The density may be written as a mean value plus a deviation
(3'3~12) Q(X,Y,t) = po + Ap(anst)

and assuming the instantaneous local deviation is small compared to the

mean
(3.3.13) Ap << f6

Boussinesque's approximation [57] is introduced whereby the density in
all terms 1is replaced by the constant mean density Py This is a reasop-
able simplification provided the real density is used in the pressure ter

which now takes the form
n 1
1 = - = 2
(3.3.14) pon J-h p dz 2 Po & h

- i 2 4 1 2 5
= p,8hn+tZp gn®+ 5 Apg B +p H

With these definitions and approximations, the final form of the equili-

brium equation (3.3.8) becomes
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[ emane ™ aucad

(3.3.15) g—'(q ) + G ! u?dz + o " uv dz - fq_ + g—-(F -F"
3t T x 9x -h ay -h y 9x ' p xx
7% - Tb s
S gy TTx _oo_pSam o dh o . dh
Iy yx Ps x P, ox ax Pq 9x

By complete analogy, the force

balance in y-direction gives

3 3 n no,
oJdse — ——— — f
{3.3.16) T (qy) + " j—h uv dz + 3y J_h vidz + %
Ts_Tb ]
-3 _F v 4 3—-(F ~-F "y +-L Y g5 - D_3H
9x Xy 3y P yy s y P, 9%
- 4 oh oh
fo} gH ay X 0
0
with the corresponding definitions:
3.17 ! ! "
3.3. F 'z pF = d
( ) p xy L J_hTYx z
3.3.18 F'= "
( eJde ) p = ‘J-h Tyy dZ
3.3.19 m "
(3.3.19) my = j_h my dz

The number of unknowns still exceeds the number of equations for our

problem. To overcome this hurdle, the
empirical relations for bottom and surf
to establish a set of constitutive equa
shown that a quadratic, (in mean velocit

adequately represents the damping due t

similar empirical expressions, Manning,
56

currently most successfully used
ace friction are reviewed in order
tions. Previous modeling has

y), bottom friction law in all cases

o the shear at the bottom. Several

Chezy, and Darcy-Weilsbach equa-
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tions [15], were originally derived from measurements of steady flow in
channels or pipes; but have been modified for two-dimensional unsteady
circulation. The quoted relationships are the most widely used and relates

shear stress to discharge per unit width as follows:

b 2 R
e Jde T - il
(3.3.20) x Cf O(qx + qy) -2
b 2 o2 Sy
eJe T - +
(3.3.21) y Cf Q(qx qy ) y
where
( 1
8 wa Darcy-Weisbach
(3.3.22) c, = ! 3 Chezy
c?
n?
3 Manning
\ HYs

Values of Manning's n are only known for fully developed rough turbu-

lent flow, which fortunately is the normal case in coastal areas, as the

Reynolds number R = uwH, l;lgs = 107 and the relative roughness

k Y 10

EE = 0,01 - 0,1. For fixed roughness, the fridétion factor Cf is there~
¥

fore inversely proportional to H . Normal values of n range 0.025
- 0.040. The values of Cf for some n and depth values are given in
Table 3-1.

In other flow regimes, the use of a Moody dilagram to find wa is
the best approach. Choosing as an example Cf = 0,005 and a velocity of
1 m/sec gilves a shear stress of 5 N/m? which is considered as a large

bottom friction.
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ocks

5 . 0.20 | 0.030{0.0088!0.0070 |0.0052}0.0041 |0.0033]0.0028|0.0026 |0.0024 0.00lJ

— K & 7

Bot- (m]

tom 1l 2 5 10 20 30 40 50 100

e

kS[m] [?;f

.m”?3 )

Stones

0.07 0.025{0.0061!0.0049 |0.0036 {0.0028 {0.00230.00201]0.0018|0.0017]0.0013
© |Small

Punes

-

4
10.50 { 0.035 - 10.0095]0.0070{0.0056 {0.00440.0039{0.0035(0.0033]0.002

1.10 | 0.040 - -~ 10.0092{0.0073 {0.0058{0.00510.0046 |0.0043|0.003

TABLE 3~1: Values of Cf

The wind stress on the surface is more complicated to handle be-
cause the water surface 1s deformable so that waves form,and also the
length scale of the turbulent wind field 1s so large that the wind stress
{s highly variable in time and space [17, 25].

Several investigators have derived expressions for the average
wvind stress from measurements in the field (5, 16, 28; 74, 77, 79]).1f

the shear stress 1is related to the wind speed as follows,

2

§ 4
(3.3.23) T pair Cp U10

where P ig the air density, (~1.2 kg/m®) and U, . is the wind
air 10
speed at 10 m above the surface, then the wind drag coefficient CD has

been found to vary from approximately 0.00l and up according to the fol~

lowing relations:
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(3.3.24)

(3.3.25)

(3.3.26)

(3.3.27)

. Vs -3

1.25/U 47+ 10 Ujg £ 1 m/sec
Yo -3
{ 0.5+ U g7 10 1 < Uy <15 m/sec Ref.[79]
-, '
2.6 © 10 UlO > 15 m/sec.
1.0 * 10°° Ujp < 5.6 m/sec Ref.[74]
1.0 + 1.9 - =29%107* v, > 5.6 m/sec.
Ulg 10

0.00228 + (1.0 - 7.0/u10)2 0.00263

20 < U, . < 40 m/sec

- 10 —
Ref.[77]
0.577 * 107" Ujp < 4.9 m/sec Ref.[28]
(-0.125 + 0.1427 U () + 107° 4.9 <U  <19.2 m/sec,
2.62 19.2 < Uso m/sec

The values given in the referenced papers are plotted in Figure 3-5. The

data in

[ 5, 74, 77 1

were for ponds or lakes, and [16,28,79]used mea-

surements on the open ocean. There 1s a significant scatter of the data

and hence of the curves used to fit the data points. Wu's relationships

based on ocean data seem to give the best overall fit. Unfortunately,

there are two discontinuities in the suggested relation for CD,(3.3.24)

which physically does not seem reasonable although some justification ig

attempted

2 difference

Considering the spread of the curves with a factor of

between results,it is tempting to fit one straight linme
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Figure 3-5. Wind drag coefficient,C,, vs. wind spced, U, .






relation as shown, with the equation

-3
(3.3.28) CD = {1.1 + 0.0536 UlO} - 10 U10 in [m/sec]

For UlO = 10 m/sec, the drag coefficient is 1.64 ° 10—3 and the predicted
shear stress t° = 0.2 N/n? which is somewhat larger than the ~0.1 N/m?
normally measured in Massachusetts Bay for similar winds.t For wind speeds
ranging from 0 -~ 30 m/sec, we can conclude, the present state of theart only
allows us to predict the applied wind stress to within a factor of 2.
However, consildering the complexity of this problem, such an error seems
tolerﬁble.

Finally, the origin and significance of the internal stress terms

T =T T are investigated. To close the formulation we also

' Txy T Tyx 0 Tyy

try to express these terms as functions of the integrated flow variables
by means of an eddy viscosity coefficient matrix. The approach.in many
ways similar to the closure of turbulent flow problems [g2], is admittedly
based on a physically very loose foundation; but does yield an attractive
structure reflecting many of the expected real effects, viz dissipation,
and diffusion of momentum. The vertically integrated approach is only
valid when‘the internal stresses are relatively small, so an exact repre—.
sentation of these terms 1s assumed to be of minor importance. All this
trouble 1s directly caused by averaging the convective acceleratior terms,

However, the real root of the problem is the use of eulerian rather than

lagrangian description (in the latter, the observer follows a particle ang

4+ In the range 0 - 10 m/sec, Equation (3.3.28) agrees well with some new
results by Parker and Pearce [55].
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the convective terms do not appear). We have to live with the eulerian
viewpoint in which the observer is fixed in space and propose taking a
closer look at the implication of enseﬁble averaging and vertically inte-
grating an instantaneous velocity product. Without loss of generality we

may write the instantaneous local velocity components U,V as

(3.3.29) U = u+u" S (u+u")+ W +u"

0l
<
+
<

(3.3.30) v ' = (; +3') + W'+ V'™

where u,v are ensemble averages (assuming the flow field is basically
random); u', v' are random fluctuations whose ensemble means per defi-
nition are zero; u, Vv are the vertical average values of u, v; u,) v’

are vertical average values of u', v'; u", v"' are vertical deviations

of u,v fromu, v ; and finally, u'", v'" are vertical deviations of

\J

' from u', v'. The significance of each of the various components

[N V'
is shown in Fig. 3-6.

The product UV 18 now written out in terms of its components

(3.3.31) U*V = (u+u +u"+u""E@+3 + v+ 3™
] 118

= uv+uvi +tuv o+ VFG v +0 v gty

+ u'l v + u'l V' + u” v” + u” v'" + u'll v - U'” V' - UIHV‘IH

and we want to perform an ensemble averaging and vertical integration
of this product, Noting that the order in which these are done is ar-
bitrary we first take the ensemble average with the result

(3.3.32) UV>_ o orble © wv 4+ ouv" 4+ UV o+ Ut "y o+ o

+ U'”V' + ul”vlll
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Figure 3-6. Sketch of veclocity components.
U = instantancous local value.

u = ensemble average local value.

U = ensemble average, vertical averagce.
u' = turbulent fluctuation

u"= vertical deviation of u from T.

u' = vertical average of u'. _
u”= vertical deviation of u' from u' .

< -
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since all terms containing only one turbulent fluctuation (') average

out to zero. Similarly, an average over depth is carried out.

(3.3.33) <UV> I

ensemble = uv + u'v' + u"v'"' + y'"y'""

wvhere overbar means vertical average according to

n
- 1
(3.3.34) X 8 0@ —— J x dz
h+n -h

Again, all terms containing only one vertical deviation (") average to

zero. We can now write the total contribution from the convective termst

n q.4q n
(3.3.35) J <V dz = _:l + J (<U'V'+u' "V'"> +U"V")d2
-h

>
-h ensemble ensemble

The first term in the integral on the right is the usual turbulent
Reynolds stress and the two remaining terms are momentum transfers due
to the vertical velocity distribution. The integral on the right has so
far not been related to the mean flow in a consistent and satisfactory way.
Consequently it is often neglected completely. The structure of the terms
is similar to the molecular momentum transfer process. But while the
jatter is a homogeneous isotropic process characterized by the molecular
viscosity, this is not the case yith turbulent motion and vertical velo-
city shear. Prandtl used mixing length theory to derive a virtual vis-
cosity for turbulent boundary layer flow [62]; In order to get a closed

formulation we postulate a similar functional relationship without

+ Note that this contribution as .in (3.3.15) - (3.3.16) 1is not strictly
correct, because we started out with the ensemble averaged equations.
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invoking any mixing length theories.

n ]
(3.3.36) F = J {Tv lp - <ul u.) + (u,""u,"">
xixj -h xixj o i3 i 73 ensemble

- u" uj"} dz

i

= Eij ( g;i'+ ;;? ) 1i,j = 1,2 no summing over 1i,j
EiJ is a symmetric "eddy vis;ésity" coefficient matrix that depends on
the mean flow, depth, applied-surface stresses and flow history. What
values actually should be used must be determined from experience or by
trial since the explicit dependence on the mentioned parameters is un-
known. In the literature 1 - 10+5m2/sec have been quoted for the prin-

cipal values of E In model applications to Massachusetts Bay, the

i3 °
use of values up to 10" m?/sec has apparently not changed the results
significantly. In spite of the nebulous circumstances we feel that the
inclusion of inxj has several attractive properties. It allows for
internal friction and thereby energy dissipation, provided Eij is posi-
tive; it does represent actual physical processes(although not accurately)
and it 1is particularly suitable for damping short wave nolse generated
by numerical methods.

As an attempt to bring somé consistency into the anisotropile case
the directién of the iocal mean current is chosen as the major principal
axis of Eij with the minor principal axis perpendicular thereto. This

means that in a local coordinate system with the x-axis in the direction

of the current, EiJ is diagonal: !
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[
(3.3.37) E,, = [

The corresponding E in the global coordinate system is then found by

i3

gimple rotation. If @ 1is the angle from global to local x-axes, (see

Figure 3-7) the rotation is written

(3.3.38) E,, = T T

where T is the transformation matrix

cos® sin6)
(3.3.39) T =
-gin@ cosh

and superscript T means transpose. In [54] and [ 75], the ratio of
El to E2 was found to be in the range 10 - 60 for a tidal coast and
a lake. Locally negative values of eddy viscosity have been measured
indicating energy being fed to the mean flow by turbulent eddies; however,
this happens only under very special conditions. For large areas, the
overall effect of the internal stresses is to dissipate energy. [14, 67]
give & more detalled discussion of this topic with some examples.

We are finally in a situation where we can present a formulation
in closed form, For convenience, all the pertinent equations are given

below.

Conservation of mass
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Figure 3-7. Global and local coordinate-system.
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. ] H + + =
. (3.3 40) ot qx’x qy,y qI
x and y equilibrium
+ (u U - -
(3.3.41) U,t . (uqx).x + (uqy).y fqy + (Fp Fxx),x
1.5 b - 1,s |
- + = - - - — -+ - =
yXx,y po(Tx Tx ) mx po(p H,x 4pg H h,x) gr1h,x 0
. + (v + (v + - F + (F -F
(3.3.42) ¢ (vqx)’x (qu)'y fq X% (p yy)‘y
1l s b - 1 s
+ - -m - + -gnh =
(ty =ty ) mmy == (e Hy+hpgHh ) -gnh =0
0 o
with the constitutive relations.
1 1A S
(3.3.14) F = ghn+agn2+=R g2+
P 2 2 Po Po
3q ‘34
0 0 = ._.J.. ___i_ = .
(3.3.36) Ixixj Eij ( oo T ij ) 1,j = 1,2 no summing over 1i,j

The bottom and surface shear stresses are given by {3.3,20)-(3.3.21)

and (3.3.23) with (3.3.28).

w
.
&

Boundary Conditions

Defining the correct types of boundary conditions is onc of the more
critical parts of the formulation process. What prescribed valves rust he
given, and where? The consequence of not specifying enough is normally
the existence of non-unique solutions whereas too much may lead to tle
pon-existence of any solution. These issues are often overlooked because

the problems are formulated and solved bypeople who usually do net have
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ti.e necessary mathematical background (and time) to worry about the
existence and uniqueness of solutions, Still, sclutions havetheen obtained
and verified with great success,which probably is due to luck and the fact
that generally @ell behaved physical problems are¢ solved.

In recent years, considerable efforts have bheen made by mathemati-
cians to prove existence and uniqueness of fluid flow problems, notably
solutions of Navier-Stokes equations [34]. Unfortunately, such proofs
do not exist yet for our problem and are not likely to be made in the nz2ar
future. We shall therefore take the "engineering' approach and assume an
automatic proof if a reasonable solution is found. To that end, we have
to be reasorably certain that the prescribed boundary conditions are
proper.

Trying to get a better feeling for what boundary conditions are ne-
cessary, we note that the present flow problem is governed by one 2-com-

ponent vector equation which is the equivalent of Newton's 2nd law:

(3.4.1) Force = mass x acceleration
A4
Fi = m(xy)

s tt

The law of conservation of mass (3.3.4) 1s thus a constraint to be dis-
tinguished from an equilibrium equétion. (
It is well-known that for a single particle, a solution to (3.4.1)

exists and is unique 1f an initial condition and either the force I’,L

. R
or the displacement Xy is prescribed. The intuitive generalization to

' S
our flow problem is then to specify an initial condition and the force
or the discharge which plays the role of displacement in a fluid [ 4] 2 (:
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at the boundaries. The initial situation is expressed as

(3.4.2) (qx.qy) = (qxo(x,y), qyo(x,y)) for all (x,y)inQand t = O

i is the entire interior domain hﬁd the injitial time is taken as zero.

Also the initial mass must be known, thus

river

Figure 3-8: Discharge and Force Boundaries

(3.4.3) H = H (x,y) for all (x,y) t=0

On the boundaries there are two alternatives as previously mentioned.
Referring to Figure 3-8, we distinguish between discharge boundaries

Sq and force boundaries SF' On Sq we write

%
(3.4.4) qn = [ q + fo q - q

PR R s S T L

e

RS
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(3.4.5) q = -0 _q +o0o q = q

for the normal and tangential discharges, where the direction cosines
are

(3.4.6) O, = cos (n,x) ; Gy = co8 (n,y)

and the superscript * signifies a prescribed value,
On the remaining part of the boundary, SF’ the external force,

must be given, thus

[

(3.4.7) an = Fp - &y Fxx + °‘ny Fyy + 2anx any F Fn
= 2 - 2 - - = *
(3.4.8) Fas (anx qny) ny * %ny (Fyy Fx) Fna

must hold for the normel and tangential specific f?tce measures.
(Specific force measure is equal to a force per unit width and density),
In the idealized case. of an inviscid fluid (3.4.4) and (3.4.7)
must s8till hold, however Fn: must be zaro since no shenr cnn he de~
veloped and (3.4.5) can ﬂence'not be imposmd edither,
The continuity equation (3.3.4) is used to find the position of
the free surface. It is a mass balance equation and does thnregorc not.

require any boundary conditions.
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DIRECTORIQO DE ASISTENTES AL CURSO USO DE COMPUTADORAS EN PROBLEMAS

% ~DE CIRCULACION Y DISPERSION EN AGUAS COSTERAS, LAGOS Y RIOS(DEL 8

1.

2

AL 12 DE MAYO DE 1978 )

NOMBRE Y DIRECCION

ING. MIGUEL ANGEL AGUAYO Y CAMARCO

Cultivos No. 144
Col. Progreso del Sur
México 13, D. F.
Tel: 5-82-61-06

.ING. MOISES BEREZOWSKY VERDUZCO
Camino Sta. Teresa 890-XI-304

Col. Contreras
México 20, D. F.
5-68-65-58

Tel:

.VICENTE BETANZOS VELASCO
Norte 69 No. 2923

Col. Popular ,

México 16, D. F,

.HOMERO R. CABRERA MORA
Calle 6a. 123-2
Ensenada, B. C. ’

-ING, OCTAVIO CASTELLANOS LOPEZ
Av. Copilco 162 Edif.

2-A-301 :
Copilco-Universidad

México 20, D. F.

Tel: 5-50-88-72

-ING. JORGE LUIS DE VICTORIA ALMEIDA
Av. ‘Revolucidn 820-206

Col. Mixcoac -

México 19, D. F.

Tel: 5-63-90-38

EMPRESA Y DIRECCION

COMISION DE AGUAS DEL VALLE DE
MEXICO - ' '
Balderas No. 55-20.
México 1, D, F.

Tel: 5-85-50-66 Ext.

Piso

206

INSTITUTO DE INGENIERIA,UNAM
Ciudad Universitaria

México 20, D. F.

México 20, D. F.

Tel: 5-50-52-15 Ext. 3608

SECRETARIA DE AGRICULTURA Y

Y RECURSOS HIDRAULICOS

Plaza de la Reptiblica No. 31-6
México, D. F.

Tel: 5-46-52-75

CENTRO DE INVESTIGACION Y
EDUCACION SUPERIOR DE

. ENSENADA B. C.

Calle Espinoza No. 854
Ensenada, B. C.
Tel: 8-13-22,

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS
(CIECCA)

Av. San Bernabé 549

San Jerénimo

México 20,

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS
(CIECCA)

Av. San Bernabé No.
San Jerbnimo

México 20, D. F.
Tel: 5-95-24-00

549



~ DE _CIRCULACION_Y DISPERSION—EN— AGUAS*COS—TERAS——LAGOS~~Y--RIOS—>(*~

10.

11.

12.

DIRECTORIO DE ASISTENTES AL CURSO USO DE COMPUTADORAS EN PROBLEMAS

8 AL 12 DE MAYO DE 1978

NOMBRE Y DIRECCION

ING. EUGENIO DOMINGO COBO PEREZ
Copilco 300-12-102

Col. Coyoacan

México 20, D. F.

Tel: 5-50-68-26

. JAVIER ESPINOZA CACERES
Londres 17 Depto. 203
Coyoacan

México 21, D. F.

ING. FERNANDO ENSENAT MACHADO
Viaducto M. Alemin No. 178-9
Col. del Valle

México 12, D. F.

LIC. SALVADOR FARRERAS SANZ
Apdo. Postal No. 2670
Ensenada, B. C.

Tel: 8-13-22

ING, EDUARDO RAMON FERNANDEZ V.
Laguna de.la Magdalena No. 430
Col., Ventura Puente

Morelia, Mich.

ING. ARTURO GARCIA MENDOZA
Av. Universidad 1810-F-8

.Oxtopulco
México 20, D. F.
Tel: 5-50-01-36

- EMPRESA Y DIRECCION

Tel:

JUNTA DE PI.ANEACION Y URB.

Casa de Go

. . Ave.

-Tel:

INSTITUTO DE INGENIERIA,UNAM
Ciudad Universitaria

México 20, D. F.

Tel: 5-48-97-95

INSTITUTO DE INGENIERIA,UNAM
Ciudad Universitaria
México 20, D. F.

Tel: 5-50-52-15 Ext. 3607

DEPARTAMENTO DE ESTUDIOS Y
LABORATORIOS- DIRECCION .GENERAL
DE OBRAS MARITIMAS

Lerdo No. 6

San Juan Ixhuatepec

Edo..de Mé&xico

5 .69-28-37

CENTRO Dn INVESTIGACION CIENTI-
FICA Y FDUCACION SUPERIOR DE
ENSENADA, B. C.

- Av., Esnlhoza 843

Apdo. Postal 2732
Ensenada, B. C.
Tel: 8-13-22

DEL

EDO. DE MIéH
hierno leramaento Sur

Morelia, Mjch.

Tel: 2-65-0'5

SECRETARIA DE AGRICULTURA Y RE-
CURSOS HIDRAULICOS
(CIECCA)

San Bernabé No.
San Jerénimo

México 20, D. F.
5-66-083-88
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13.

14.

15.

16.

17.

DIRECTORIO DE ASISTENTES AL CURSO USO DE COMPUTADORAS EN PROBLEMAS DE

CIRCUEACTON Y DISPERSION EN AGUAS COSTERAS, LAGOS Y RIOS

12 DE MAYO DE 1978 )

NOMBRE Y DIRECCICN

CARLOS GONZALEZ GUZMAN
Dakota 395-5

Col. Napoles

México 18, D. F.

Tel: 5-36-62-69

JESUS MANUEL HAM CHI
Libra No. 19 Depto. 4
Col. Prado Churubusco
México 13, D. F.
Teli 6-70-18-87

ING. ENRIQUE C. HERNANDEZ CORTES
Lidia 88-1

Col. Guadalupe Tepeyac

México 14, D. F.

Tel: 5-37-09-58

ING. MANUEL A. HUIDOBRO GARCIA
Cartago No. 88

Lomas Estrella

México 13, D. F.

ING. HUMBERTO JIMENEZ DIAZ
Zacatecas No. 33-5

Col. Roma

México 7, D. F.

Tel: 5-84-87-33

EMPRESA Y DIRECCION

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS
(CIECCA)

Ave. San Bernabé& 549

San Jerdnimo

México 20, D. F.

Tel: 5-95-44-53

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS '
Paseo de la Reforma No. 69-40
Piso .

Col. Juarez
México 1, D. F.
Tel: 5-35-25-25

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS

Paseo de la Reforma 107-80.7.

México 1, D. F.
Tel: 5-66-06-88-117

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS
(CIECCA)

" Ave. San Bernabé No. 549

San Jerdnimo
México 20, D. F.
Tel: 5-95-44-53

DEPARTAMENTO DE ESTUDIOS Y
LABORATORIOS
DIRECCION GENERAL DE OBRAS

i MARITIMAS

Lerdo ‘de Tejada No. 6
Col. Marina Nacional
Edo. de México

.Tel: 5-69-28-326
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DIRECTORIO DE ASTSTENTES AL CURSO USO DE COMPUTADORAS EN PROBLEMAS
DE CIRCULACION Y DISPERSION EN AGUAS COSTERAS, LAGOS Y RIOS ( DEL

18.

19.

20.

21.

22.

23.

8 AL 12 DE MAYO DE 1978 )

NOMBRE Y DIRECCION

ING. EDUARDO LOZANO GONZALEZ
Paseo de la Reforma No.
Col. San Rafael
México 4, D. F.
Tel: 5-46-14-55

ING. GUSTAVO LUNA ESCALANTE
San Antonio 134-23

Col. Napoles

México 18, D. F.

JESUS MAGALLANES PATIRNO
Ezcquiel Montes 120-24
Cel. San Rafael

México 4, D. F.

Tel: 5-46-13-50

FRANCISCO J. MAYTORENA FONTES
Bucareli 80 Int. "M"

México 1, D. F.

Tel: 5-12-68-07

JESUS R. MENDOZA RUIZ

Albino Garcia No. 72
'Col. Vista Alegre

México, D. P,
Tel: 5-19-04-83

CARLOS ANGEL Q. MORTERA GUTIERREZ
Av. Unién 281
Col. Tepeyac Insurgentes

- México 14, D. F,
, Tel: 5-77-62-35

EMPRESA Y DIRECCION

107-80. Piso

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS
(CIECCA)

Paseo de la Reforma 107-1ler.
Col. San Rafael

México 4, D. F.

Tel: 5-66-06-88 Ext. 140

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS -
SUBDIRECCION DE PROMOCION Y
PROGRAMAS

Paseo de la Reforma No.
Piso

México 1, D. F.

Tel: 5-92-33-24

35-10

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS

Paseo de la Reforma 69-40.Piso
México, D. F.

Tel: 5-46-95-20

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS

Paseo de la Reforma No. 107
México 1, D. F.

Tel: 5-92-10-31

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS

" Plaza de la Repfiblica No. 31

Col, Tabacalera
México 8, D. F.
Tel: 5;46-50~96

DEPARTAMENTO DE ESTUDIOS Y
LABORATORIOS-DIRECCION GhNLRAL
DE OBRAS MARITIMAS

San Juan Ixhuactepec

Tel: 5-69-50-30
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24,

25.

26.

27.

28.

29.

30.

DIRECTORIO DE ASISTENTES AL CURSO USO DE tOMPUTADORAS EN PROBLEMAS

DE" CTRCULACTION"Y DTSPERSTON EN AGUAS COSTERAS, LAGOS Y RIOS (DEL

8 AL 12 DE MAYO DE 1978 )

NOMBRE Y DIRECCION

. ING. ARMANDO MUNOZ PARGA
-~ Laures No. 9
. Col. Sta. Ma. Ribera

México, D.F.
Tel. 547-32-48

ING. VICTOR S. PINEDA ESPINOSA
Rio Becerra No. 473-101

Col. Néapoles

México 18, D.F.

Tel. 543-82-83

EUGENIO RIQUELME TORRENTE

.Ret. 10 Dr. N. Lebn Gpo. 18-N

Col. J. Balbuena
México 9, D.F.
Tel. 552-40

ING. HONORIO RIVERA MOCTEZUMA
Lago Tana No. 66-C

Torre Blanca

México 17, D.F.

ING. FRANCISCO ROMERO LUNA
Av. Cuauhtémoc No. 883-10
Col. Narvarte

México 12, D.F.

Tel. 543-63-60

RAFAEL F. SAENGER Y FERNANDEZ
Lépez Cotilla No. 756

Col. Del Valle

México 12, D.F.

Tel. 523-52-53

ING. ANTONIO YOKOYAMA KANO
Torquemada No. 42 :
Col. Obrera

México 8, D.F.

EMPRESA Y DIRECCION

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS '
Plaza de, la Repiblica No. 31
6o. Piso

México, D.F. |

Tel. 549-50-96

DEPARTAMENTO DE ESTUDIOS Y
LABORATORIOS-DIR. GRAL. DE
OBRAS MARITIMAS

Lerdo de Tejada No. 6

Col. Marina Nacional

Edo. de México

Tel. 569-28-36

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS
(CIECCA)

San Bernabé& No. 549

San Jer6nimo

México 20, D.F.

Tel., 595-53-44

CENTRO DE EDUCACION CONTINUA
Tacuba No. 5-1er. Piso
México 1, D.F.

Tel. 521-40-20

INSTITUTO DE INGENIERIA, UNAM
Ciudad Universitaria
México 20, D.F.

INSTITUTO DE INGENIERTA, UNAM
Ciudad Universitaria

Méxicoc 20, D.F,

Tel. 550-52-15 Ext. 3610

UNIVERSIDAD CATOLICA MADRE Y
MAESTRA o
Autopista Duarte

Santiago, Repliblica Dominicana
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