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RESUMEN

COLAPSOS DE COLUMNAS GRANULARES

Horacio Tapia McClung

Instituto de Investigaciones en Materiales,

Universidad Nacional Autónoma de México

En este trabajo se presenta un análisis dimensional y de escalamiento del colapso

de columnas granulares, explorando los parámetros asociados por medio de simu-

laciones numéricas. Por medio del Teorema Pi-Buckingham y de la auto-similaridad,

construimos las leyes de escalamiento observadas experimentalmente para las al-

turas máximas de las columnas, que dependen de la relación entre la altura y el

ancho inicial de la columna por medio de una ley de potencias. Se discuten los

parámetros adimensionales obtenidos y se exploran los efectos que éstos tienen

en relación con el flujo granular generado durante el colapso de columnas bidi-

mensionales por medio de simulaciones numéricas basadas en el método del ele-

mento discreto. Por un lado, se presentan resultados sobre el efecto de formar las

columnas con granos alargados, estudiando los colapsos variando el parámetro

de relación de aspecto inicial y el alargamiento de los granos, encontrando que

las distancias finales que caracterizan los depósitos siguen las mismas leyes de

potencia independientemente del tipo de grano utilizado para formar la columna.

Por otro lado estudiamos los colapsos de columnas formadas por granos circula-

res que ocurren en diferentes gravedades, dadas por múltiplos del valor nominal

de la gravedad en la Tierra. Se encuentra que cuando las mediciones se escalan de

manera apropiada, las distancias finales, particularmente la altura máxima de los

depósitos, ocurren de manera similar independiente del valor de la gravedad en



donde ocurren o del valor de la fricción entre los granos que forman las columnas,

y en todos los casos las alturas finales de los depósitos siguen las mismas leyes

de escalamiento reportadas. La invariancia de las leyes de escalamiento son indi-

cativas de la auto-similaridad de las propiedades finales del colapso de columnas

granulares y justifican el uso del análisis dimensional para obtener dichas leyes

de escalamiento.



ABSTRACT

COLLAPSES OF GRANULAR COLUMNS

Horacio Tapia McClung

Instituto de Investigaciones en Materiales,

Universidad Nacional Autónoma de México

This work presents a dimensional analysis of the collapse of granular columns and

explores the effect of the dimensionless parameters using numerical simulations.

By means of the Buckingham-Pi Theorem and self-similarity, we obtain the power

law scaling observed experimentally for the maximum height of the columns, de-

pending only on the ratio between the initial height and width of the columns. The

dimensionless parameters obtained are discussed and their effects on the granular

flow are explored for the collapse using numerical simulations based on the dis-

crete element method. Results of collapses of columns made of elongated grains

are presented, in which the initial aspect ratio parameter is varied together with

the elongation of the grain, finding that the scaling laws are preserved and de-

pend weakly on the type of grain used. On the other hand, the effect of gravity is

studied by collapsing columns under different gravitational accelerations, given

as multiples of the value on Earth, for columns made of grains with different fric-

tion values. In this case it is found that, when scaled appropriately, the maximum

height of the columns does not depend on the value of gravity and the final height

still scales with the initial aspect ratio as a power law. The invariance of the scaling

laws to the dimensionless parameters explored are indicative of the self-similarity

of the final distances of the collapse, and justify the way the scaling laws are ob-

tained by making use of dimensional analysis.
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CHAPTER 1

INTRODUCTION

Granular media are ubiquitous and fundamental to a large number of natural phe-
nomena and anthropogenic processes. Many of these involve static piles, Fig. 1.1a,
that result from the accumulation of material and/or the collective flow of par-
ticles on spatial scales ranging from millimeters to several kilometers, Fig. 1.1b.
These two features of granular media, the tendency to remain static and the flow
properties they display, are important in natural processes such as erosion or se-
dimentation, and in catastrophic events such as landslides or volcanic eruptions
[30].

Despite being so common, the behavior of these systems consisting primarily of
large collections of individual particles of different shapes and sizes, is far from
simple and is not yet well understood. From the problem of the distribution of
pressure in a static pile of granular material, to the observed complex flows that
can develop under external forces, there is as yet no theory that describes comple-
tely the observations, and in many cases prediction is still a challenge [16, 18].

Due to the lack of a theoretical model similar to that of a Newtonian fluid or a
Hookean solid, research on granular media has focused on the analysis of simple
flows that can be controlled and reproduced in the laboratory, an approach that
has provided some understanding of the basic processes involved. An example
of this kind of flow that has received much attention in recent years due to its
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(a) Examples of static piles and flows of granular materials.

(b) Natural processes involving a granular flowing phase.

Figura 1.1: Examples of granular materials.
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Figura 1.2: Sketch of the granular column collapse experiment. The top figure shows the initial
state before the walls are removed, the bottom figure shows the final state after the walls have been
removed. Figure from [30]. In the top figure hi, xi represent the initial height and radius of the
column, while in the bottom figure δr = r∞ − r0 is the run out distance while h∞ represents the
final height of the deposit.

simplicity and the rich dynamics observed, is the collapse of a granular column
[3, 19, 22, 24, 25, 26, 27, 28, 29, 30, 39, 40, 43, 46].

This simple table-top experiment is partly inspired by the flows of mass in which
the granular phase dominates, for example, geophysical events such as avalan-
ches, rock, mud-slides or landslides on a cliff, where the material moves as a gra-
nular flow initiated by its own weight (Fig. 1.1b), and serves as a paradigm for
the study of processes that can be observed at a larger scale, thus becoming a test
case for the development of numerical and theoretical models for granular media
(for example [21, 22, 24, 30, 39]), and for studying similar extraterrestrial events
[26, 36].

1.1. The collapse of a granular column

This simple experiment consists of the quick release of a column made of so-
me granular material like sand, rice, seeds or glass beads, over a horizontal sur-
face, and study the process leading to the final emplacement (Fig. 1.2). It has
been found that the final state of the deposits, characterized by the total distan-
ce traveled by the grains on the horizontal surface, denoted by x∞ and the fi-
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nal height of the deposit after the collapse, depends only on the ratio of initial
height and width of the column, a = h0/x0. Measurements that allow study of
the dynamics of the process as the collapses occur also reveal interesting cha-
racteristics of the transient flow. Whereas the measured properties seem to de-
pend on the initial aspect ratio of the columns, it appears that this dependence
is weak in other variables determining physical characteristics of the material
used, for example, the shape, size or frictional properties of the grains. These
seem not to contribute greatly in determining the final properties of the emplace-
ments, and neither does the substrate of the surface on which the collapses occur
[3, 19, 22, 24, 25, 26, 27, 28, 29, 30, 39, 40, 42, 43, 44, 46].

1.2. Scaling and similarity

That the final properties of the emplacements scale only with the initial aspect
ratio of the columns has been confirmed by several experiments and numerical
simulations using different materials and in different configurations. An incom-
plete list of governing parameters influencing the collapse of a granular column
over a horizontal surface could be: the initial conditions, h0, x0; physical and me-
chanical properties of the grains like the mean diameter d and density ρ; the value
of the local gravitational acceleration g; externally applied normal and shear stres-
ses P, σ; the friction coefficient between grains µ and other friction properties; the
width of channel, etc.

In order to study the process, among all the possible variables that could affect
the outcome, only those with most direct influence that seem relevant and can be
controlled experimentally are chosen.

A tool for gaining insight into how a dependent variable, for example the final
height of the deposit after the grains have come to rest, h∞ (see bottom of Figu-
re 1.2), depends on the relevant governing variables, such as the initial conditions
h0, x0, gravity g, density ρ, mean diameter d and external stresses P, σ, is Dimensio-
nal Analysis. This tool allows study of a system that depends on many governing
parameters in such a way that relevant scaling laws are revealed.

A simple example is the classical frictionless pendulum, which is worked out in
detail in Chapter 3, where dimensional analysis is used to show that the period of
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oscillation T of a finite mass m hanging from a massless string of length l moving
only on a plane with no friction with its surroundings, under the acceleration of
gravity g, can be expressed as a dimensionless function that takes the form

T = const ×
√

l/g.

For the problem of the final height of the emplacement after the granular column
has collapsed, we can write

h∞ = H(ρ, d, P, σ, g, h0, x0, µ).

Using dimensional analysis it is possible to write, for example,

h∞

h0
= Π

(
P

ρgh0
,

σ

ρgh0
,

x0

h0
,

d
h0

, µ

)
.

The dependence on the three governing parameters ρ, g, h0 is “absorbed“ into di-
mensionless quantities that are combinations of the relevant parameters. The fun-
ction Π is a dimensionless function describing the dependence of the final height
in terms of k = 4 dimensionless parameters, as opposed to the original n = 7
governing parameters.

The initial aspect ratio appears naturally as a dimensionless argument as x0/h0.
In all the experiments the ratio of typical grain size to the height of the column is
small, d/h0 ≪ 1. If, by the end of the collapse the ratio of the externally imposed
stresses to the weight of the column is negligible, then for the final height of the
emplacement we can write

h∞

h0
= Π1(a),

where a = h0/x0 is the initial aspect ratio of the column, and the function Π1

is assumed to exist in the desired limits. The formalism developed by Barenblatt
[4], that will be presented in a following chapter, permits the assumption that the
function Π1 depends as a power law on the parameter a as

h∞

h0
∼ aβ,

which is precisely the scaling law observed experimentally and confirmed by se-
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veral works.

Unfortunately, neither dimensional analysis nor the approach developed by Ba-
renblatt [4] gives us any information on the value of the scaling exponent β in
the above expression; this has to be obtained by means of experiments or nume-
rical simulations. The observed scaling law, which can be constructed by means
of scaling assumptions, reveals a fundamental property of the system: the final
properties of the collapse of a granular column are self-similar in the initial aspect
ratio of the column.

1.3. Previous experimental and numerical work

Much of the work done on the problem of the collapse of a granular column
has been devoted to reproducing the scaling laws observed in the original experi-
ments and to find them under different conditions [3, 26, 29, 43]. Other research
has employed numerical simulations to search for these scaling laws while provi-
ding details of the collapse process [22, 39, 40, 46].

Some research has been done using a simple model based on a continuum descrip-
tion [3, 27, 33] that reproduces the observations in certain ranges of the relevant
parameters. A detailed numerical simulation using a model for granular rheology
[21, 23] has shown that the deposit’s final properties scale with the initial aspect
ratio of the column.

Very few studies have addressed the dependence on other parameters. Until re-
cently, the shape of the grains used to make the columns was studied in a syste-
matic way experimentally [44] and numerically [42], and remarkably, in both ca-
ses a similar scaling law was found, suggesting that the shape of the grains used
weakly affects the final properties of the collapse.

Analytically, it is a difficult problem to study due to the lack of a well establis-
hed theory, but dimensional arguments can be used to obtain these scalings from
simple models [24]. Recently, a rheology for granular flows has been suggested
[13, 17] and used with some success to reproduce the observations of the collapse
of granular columns [21, 23] using numerical simulations.
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This so called µ-rheology describes the frictional properties of the flow by means
of a single dimensionless quantity called the inertial number, I. The numerical
simulations performed using this model for the flow friction properties [21, 23]
are able to reproduce the observed scaling properties of the system.

1.4. Original contribution

There is yet no satisfactory explanation of why the final properties of the deposits
made from collapses of dry granular columns scale only with the initial aspect
ratio of the column. Heuristic models based on the experimental observations [24]
or continuum based models and numerical simulations [3, 21, 23, 27, 33] do not
provide a general framework to understand these scalings. The fundamental goal
of this research is to show that the scaling law

h∞

h0
= aβ,

for the final height of the deposits, can be understood using scaling arguments
based on well established experimental and numerical results. The details of the
assumptions leading to this relationship are the core of this thesis.

The way this work contributes to the problem of the granular column collapse is
in that it provides a description of the final properties of the deposits using a syste-
matic analysis of the relevant parameters governing the process. To better unders-
tand the effect of relevant parameters on the collapse of granular columns, the va-
lue of the local gravitational acceleration, the coefficient of friction between grains
and the elongation of the grains forming the column are varied in this study.

The effect of gravity is relevant because the collapse of a column occurs due to its
own weight. It is the weight of the column that causes the grains to be in contact,
thus the importance of the friction between grains. The elongation of the grains is
relevant to understand the differences from the case of circular grains with respect
to friction and granular flow.

The results of collapses of granular columns made of elongated grains have been
published as an article in a specialized journal [42], and is one of the main contri-
butions of this thesis to the problem of the collapse of a granular column, as it is,
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together with [44], one of the first systematic studies of the problem using elonga-
ted grains to conform the columns. It is relevant to the problem because not much
is known of the collapses of columns made of grains with different shapes.

This thesis is divided as follows: in Chapter 2 we present the main results of the co-
llapse of a granular column with an emphasis on the relevant parameters. Next, on
Chapter 3, the self-similarity and scaling theory is presented, followed by Chapter
4, on the numerical method used. In Chapter 5 we use the theory of Chapter 3 to
solve a simple model for granular flow in the context of the collapse of a column.
The study of the dependence of the elongation of the grains is considered in Chap-
ter 6, followed by the results of varying the value of gravity, Chapter 7. We finish
with concluding remarks and suggestions for future work.



CHAPTER 2

THE COLLAPSE OF A GRANULAR
COLUMN

One of the simplest configurations in which a granular flow can develop in the ab-
sence of other external forces (in addition to the acceleration due to gravity), is the
collapse of a granular column. This experiment can be seen as a paradigm of phe-
nomena such as sedimentation, erosion or catastrophic events such as avalanches
and landslides.

Despite the simplicity of the experiment, it presents complex and rich dynamics
and, like many other phenomena involving granular media, the observed beha-
vior is still not well understood. Early research on this problem focused primarily
on the description of the deposit’s final state, starting from a cylindrical configu-
ration in which the material used (grain type), the initial height and initial radius
of the column and the type of surface on which the collapse occurs was varied.
Figure 2.2 shows a schematic of the original experiments.

In this chapter we present the fundamental results of the scaling of the final pro-
perties of the deposits found experimentally and numerically on the published
literature, emphasizing on the 2 dimensional configuration’s results and on the
parameters explored (size, shape, dimensions, friction coefficients, etc.). Likewise,
notation to be used in the remainder of this work is introduced.
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Figura 2.1: Example of materials used for the collapse of granular columns. Figure from [30].

d [cm] h0[cm] µ = tg(δ) Other grain properties Reference
0.035 0.7-25 0.4 glass beads, ρ = 2500kg/m3 [24]
0.032 1.8-46.5 0.6 sand, ρ = 2600kg/m3 [30]
0.7×0.2 2.8-64.2 0.6 rice, ρ = 1460kg/m3 [30]
0.08 4-40 0.7 grit, ρ = 2600kg/m3 [3]
0.1 4-40 0.45 glass beads, ρ = 2500kg/m3 [3]
0.015 1.4-14.8 0.56 quartz sand, ρ = 2600kg/m3 [28]
0.1 1.95-40.95 0.7 sugar, ρ = 1580kg/m3 [28]
0.7×0.2 1.95-35.1 0.6 rice, ρ = 1460kg/m3 [28]
0.25 4.8-38 0.43 polypropylene ρ = 946kg/m3 [22]

Tabla 2.1: Typical properties of grains used in experiments of the collapse of granular columns.

2.1. Description of the problem

The original experiments [24, 30] consist of a cylindrical container of radius x0,
filled with granular material (for example sand, salt, rice, etc.., Fig. 2.1) up to an
initial height h0.

At the beginning of the experiment, the cylindrical container is quickly removed
causing the material to flow axisymmetrically. When the flow comes to rest, the
final distance traveled in radial direction, x∞, and the final height of the deposit,
h∞, are measured, as depicted on Fig. 2.2. In a variant of the original experiment,
a rectangular container was used [3, 22, 28, 29]; the process is similar, with a gate
rising to allow the material to flow effectively in a single direction (Fig. 2.3).

In both experimental settings, it was found that the quantities characterizing the
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Figura 2.2: Sketch of the granular column collapse experiment. Same as Fig. 1.2. Figure from [30].

Figura 2.3: Sketch of the granular column collapse experiment in a rectangular container. Figure
from [29].
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final state of the deposits, namely x∞ and h∞, do not depend on the type of granu-
lar material used, which implied a weak dependence on the frictional properties
of grains. In fact, it was found that these final quantities depend only on the ra-
tio between the initial height and initial radius of the columns, which became
known as the initial aspect ratio parameter, a = h0/x0 with fluctuations inside the
limit of experimental error in both axisymmetric and rectangular configurations
[3, 22, 28, 29].

The final properties x∞ and h∞ scale as a power law ∼ λaβ, where the scaling expo-
nent β varies depending on the range of values of a and seems to depend weakly
on grain properties like shape or size, while the scaling coefficient λ shows so-
me dependence on the frictional properties of the grains used and on interactions
with boundaries of the container.

The existence of a scaling law that describes the final properties of the empla-
cements formed by collapses of granular materials that depends weakly on the
frictional properties of the system comes as a big surprise. No satisfactory expla-
nation exists yet to account for these observations.

The evolution of the collapse also depends on the initial aspect ratio of the column
[11, 24, 30]: for wide columns, a < 1, the collapse occurs over a well defined sliding
plane and only the grains that are near the edges of the column participate in the
flow with a big number of them staying still in the center region of the column.

As the value of a increases, the angle of the sliding plane with respect to the hori-
zontal surface increases and becomes less defined, causing more grains to partici-
pate in the collapse and subsequent flow. For intermediate values of a, the collapse
occurs on planes that make a well defined conical pile made of grains remaining
still during the process, while others flow as an avalanche over the free surface.
The shape of the cone is related to the frictional properties of the material used
[24] and to the initial preparation of the samples [9].

2.2. Summary of Experimental Results

The observation that final properties of the emplacements after the column has
collapsed depend on the column’s initial aspect ratio has been established by se-
veral experiments [3, 11, 24, 25, 28, 29, 30]. In the remainder of this work we will
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use the notation h0, x0 for the initial height and width of the column. In axisym-
metric experiments, x0 corresponds to the radius of the cylindrical column, while
in two dimensional experiments it refers to the initial width of the container. The
normalized run-out distance and final height of the deposit are usually reported
as

x* =
x∞ − x0

x0
(2.1)

h* =
h∞

x0
(2.2)

and used to identify the scaling laws of the form

x*, h* = λiaβi . (2.3)

The main experimental results are shown in Table 2.2. It is interesting to note the
transition from a linear dependence to a power law in the scaling relation as the
initial aspect ratio of the column varies from small to larger values, most notable
for the normalized run out distance. We focus our attention on the experiments
performed on a rectangular container [3, 22, 25, 28], referred to as unidirectional
in Table 2.2. It is convenient to express the final height of the column as

h* =
h∞

h0
(2.4)

instead of Eqn. 2.2, i.e., normalized by the initial height of the column h0. Expres-
sed like this, the data for the normalized height of the deposits are shown in Table
2.3. The experimental results are not conclusive on the value of the scaling expo-
nent, either for the final runout distance or the final height of the deposits.

For the final height of the deposit, values of β obtained experimentally differ
slightly from one experiment to another, but are all in the same range regardless of
the materials used: looking carefully at the data of Table 2.3, we see that the diffe-
rence between scaling exponents is no more than 10 percent between the greatest
(β = −0.55) and the lowest (β = −2/3) values.

Notice from the information on Table 2.3 that the scaling exponent is, in all cases,
equal to unity for values of the initial aspect ratio a below a çritical"value, indica-
ting a transition on the scaling as the initial aspect ratio increases. This is consistent
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x* = (x∞ − x0)/x0 h* = h∞/x0 Observations Reference
∝ a(a < 3) a(a < 0.74) Axysimmetric [24]
∝ a1/2(a > 3) 0.74(a > 0.74)
1.24a(a < 1.7) a(a < 1) Axysimmetric [30]
1.6a1/2(a > 1.7) 0.88a1/6(1.7 < a < 10)
∝ a0.55(w = 1cm, a > 2) ∝ a0.45(a > 1.5) Unidirectional [3]
∝ a0.9(w = 20cm, a > 2)
∝ a(a < 3) ∝ a(a < 0.7) Unidirectional [25]
∝ a2/3(a > 3) ∝ a1/3(a > 0.7)
1.6a(a < 1.8) ∝ a2/5(a > 1.15) Unidirectional [28]
2.2a2/3(a > 2.7)
1.2a(a < 1.8, symmetric)
1.9a2/3(a > 2.7, symmetric)
∝ a(a < 2.2) ∝ a0.45(d = 2.5mm, a > 1) Unidirectional [22]
∝ a0.72(d = 2.5mm, a > 2.7) ∝ a0.39(d = 5mm, a > 1) w = 1.2d
∝ a0.83(d = 5mm, a > 2.7)

Tabla 2.2: Main experimental results for the final properties of the deposits of the collapse of a gra-
nular column made of coarse grains of typical size d & 0.3mm. In the unidirectional experiments
w is the width of the channel.

with the physical observation that for small initial aspect ratio columns, the final
height is equal to the initial height: h∞ =h0.

2.3. Summary of Numerical Results

Significant advances in the problem of the collapse of a granular column have
been achieved using numerical simulations, with results that are comparable both
qualitatively and quantitatively, with experimental observations. Among the se-
veral techniques for studying the problem numerically, one of the most useful is
the family of methods known generically as the Discrete Element Method (DEM)
which will be discussed in detail in the next chapter. This particular method is
convenient because it gives access to all the information of the system at each
time step.

Results from numerical simulations [22, 39, 46] have found values for the sca-
ling exponents that differ slightly from those found experimentally, among other
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h* = h∞/h0 w Reference
∝ a−0.55(a > 1.5) w [3]
∝ a0(a < 0.7) w [25]
∝ a−2/3(a > 0.7)
∝ a−3/5(a > 1.15) w [28]
∝ a−0.55(d = 2.5mm, a > 1) w [22]
∝ a−0.61(d = 5mm, a > 1) w=1.2d

Tabla 2.3: Main results for the final height normalized by the initial height of the column in unidi-
rectional experiments, where. Data is recalculated from Table 2.2.

reasons, because of the approximations used to model granular materials: the use
of spherical particles (or disks in two dimensions), the geometric constraints of a
2D configuration and the different values of simulation parameters like the fric-
tion coefficient or the elastic properties of the grains, all have an effect in the final
numerical value of the scaling exponents [40] that makes it different from the ex-
perimental results.

Nevertheless, it has been shown that the scaling laws obtained from numerical
simulations are consistent with the experimental results [22, 39, 46] and that it
is possible to reproduce exactly the numerical values of the exponents and pre-
factors when the parameters of the model are tuned appropriately [22]. This is
important because it allows a calibration between the numerical model used and
the experiments to replicate or simulate, with the assurance that the results obtai-
ned numerically are valid.

The advantage of numerical simulations is that complete access to all the infor-
mation of the system is available, allowing a detailed analysis of the problem.
For example, using numerical simulations, the free falling phase of the collapse
was quantified [39] and characterized in terms of the value of the parameter a;
an energy balance was performed to understand how energy is lost during the
process [42, 46] providing some insights into why final properties of the columns
scale similarly. These detailed analysis are difficult or impossible to measure expe-
rimentally.

Numerical results of the scaling of the final distances have shown that these scale
as ∼ λaβ, in accordance to experimental results. As opposed to what experiments
suggest, results of numerical simulations appear to depend slightly on the pro-
perties of the grains used, specifically on the value of the friction coefficient µ
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between grains [46]. Finally, [42] found numerically that the shape of the parti-
cle is also irrelevant to the scaling laws and the exponents and pre-factors have
numerical values that are still in the range of those experimentally measured.

2.4. Remarks

The scaling laws of the form
x*, h* = λaβ,

for the final distances of the deposits formed by the collapse of a granular co-
lumn have been consistently observed and confirmed both experimentally and
numerically. It is remarkable that these scaling relations hold under a variety of
conditions: the way in which the grains are released, how the samples are prepa-
red, changing the substrate on the horizontal surface on which the collapse occurs,
whether the collapse is axysimmetric or unidirectional, or even the type of grains
used.

In all the experiments the dimensions of the columns are of the order of centime-
ters, with typical grain size of millimeters (see Table 2.1), therefore the ratio of
typical grain size to initial height is of the order of d/h0 ∼ 10−2 − 10−3, which can
be considered small.

All experiments are performed under controlled laboratory conditions of air tem-
perature and humidity, under the gravitational acceleration of Earth, with a no-
minal value of g0 = 9.81m/s2. To our knowledge, no experiments have yet been
performed under different gravitational accelerations (e.g. extraterrestrial).

The first experiments were done with different types of materials (see for exam-
ple Fig. 2.1) with similar values of the friction coefficient (see Table 2.1), which is
probably why no effect on this property was observed. Subsequent work showed
that the use of grains with different friction properties slightly changed the values
of the scaling coefficients λ, but the scaling exponents did not vary considerably
[3].

This remarkable and important observation leads to the question of whether the
collapses depend or not on the friction properties of the grains comprising the
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columns. A partial answer to this question is provided by numerical simulations
[22, 39, 40, 42, 46] but the question is still open.

Arguably, the flow properties depend on the friction coefficient between grains,
which acts to dissipate energy as the grains remain in contact during motion. The
final properties of the deposits characterized by the distances x*, h*, clearly de-
pend on the transient flow developed during the collapse, so they must depend
on the friction properties of the system. This is discussed further in Chapter 3.

To close this Chapter, different experiments and numerical simulations of the co-
llapse of granular columns have established scaling laws for the final properties
of the deposits that depend on the ratio of initial height to width of the columns,
and very weakly, or none at all, on other variables that would seem likely to affect
the collapse, such as the density, shape or size of the grains.

Using experimental evidence, a mathematical model based on scaling properties
of the system is built which contains the discussed scaling laws. The question
remains open. What is the mechanism at the grain level that makes the deposits
end with similar properties? The theory of self-similarity provides a mathematical
framework that allows us to partially answer this question.





CHAPTER 3

SCALING AND SELF-SIMILARITY

The scaling law for the final properties of the emplacements discussed earlier un-
derlie the important property of similarity; two granular columns, each with its
own values of h0, x0, etc., collapsing under the same horizontal surface may seem
like different unrelated events, but in the particular case in which both columns
have the same value of the parameter a, i.e.

h0

x0
=

H0

X0
, (3.1)

the scaling relations observed experimentally indicate that, in both cases, the final
height and run-out distances have the same values:

h*∞ = H*
∞ (3.2)

x*∞ = X*
∞, (3.3)

and the two events are similar.

Recognizing this property of similarity of the collapse of a granular column, sug-
gests that the approach developed in [4, 5] can be applied to study the problem.
This Chapter describes this mathematical tool, starting from a method for redu-
cing physical problems to their simplest form known as Dimensional Analysis, at
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the heart of which is the concept of similarity [38]. Similarity refers to a transfor-
mation of variables in a physical system that reduces the number of independent
variables that specify the problem [38] by looking at possible relationships bet-
ween variables based on their dimensions [7].

When it is possible to write all the governing laws and boundary conditions of
a given problem in mathematical form, dimensional analysis provides a way to
find similarity solutions by identifying the dimensionless variables that appear
in the equations. This is done by means of the fundamental result known as the
Buckingham-Pi Theorem, presented, without proof, in the first section of this Chap-
ter.

With this result, the concepts of self-similarity of the first and second kind are
introduced in the next section, and applied to the problem of the collapse of a
granular column, where a mathematical formulation is missing, to give insight
into the origin of the scaling laws observed experimentally and numerically.

3.1. Dimensional Analysis and Self-similarity

Dimensional analysis is a tool relating the dimensions of physical quantities in a
meaningful way. Its main result, known as the Buckingham-Pi Theorem, provides
a way to rewrite a physical equation depending on p physical variables (with
dimensions) as an equivalent equation in m = p − k dimensionless parameters,
by identifying the dimensionless groups based on the number of fundamental
units k (for example mass, length and time).

Consider, as an example, the problem of finding the period T of small oscillations
of a simple frictionless pendulum (Fig. 3.1). Assume a relation exists between the
period T, the length L, the mass M and the acceleration due to gravity on the
surface of the Earth g, which has units of length divided by squared time, such
that

T = f (L, M, g). (3.4)

Three fundamental physical units can be identified so that k = 3: time t, length l,
and mass m, from the list of three physical variables (p = 3) L, M and g on which
the quantity of interest depends on. The units of the dimensional variables are
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Figura 3.1: The simple pendulum. Image from http://en.wikipedia.org

T = [t]; L = [l]

M = [m]; g = [lt−2].

Expressing the dimensions of T as products of powers of the dimensions of L, M
and g as [T] = [L]a1 [M]a2 [g]a3 , for some values a1, a2, a3, we find that

[T] = [L]a1 [M]a2 [g]a3

⇔
t = la1ma2(lt−2)a3

= la1+a3ma2t−2a3

⇔
a1 + a3 = 0

a2 = 0

−2a3 = 1

so that a1 = 1/2, a2 = 0, a3 = −1/2 and thus

[T] = [L]1/2[M]0[g]−1/2.

We can construct a single dimensionless quantity Π as

Π =
T

(L/g)1/2
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such that relation 3.4 is, in dimensionless form

Π = const. (3.5)

The fact that the right hand side of the last expression is a constant follows from
the fact that there are p = 3 physical governing parameters (L, M, g) and k = 3 pa-
rameters with independent dimensions (t, l, m), so that, according to the Buckingham-
Pi Theorem, the number of remaining dimensionless parameters becomes m =

p − k = 3 − 3 = 0. Relation 3.5 implies that

T = const
√

L/g

for the period of small oscillation of a simple pendulum. Dimensional analysis
does not give any information on the numerical value of the constant. A detailed
analysis of the problem shows that its value is 2π.

3.1.1. The Buckingham-Pi Theorem

We now sate the Buckingham-Pi Theorem, using the previous example as a reference.
The statement of the theorem comes from the principle that any physical law must
be dimensionally homogeneous, that is, true and valid independent of the size of
the base of units used. The theorem tells us that any complete physical equation
will, in an appropriate dimensionless form, reduce the number of independent
quantities in the problem.

The theorem can be stated as follows [5]: “A physical relationship between so-
me dimensional quantity and several dimensional governing parameters, can be
written as a relationship between a dimensionless parameter and several dimen-
sionless products of the governing parameters; the number of dimensionless pro-
ducts m equals the total number of governing parameters p minus the number of
governing parameters with independent dimensions k“.

A set of parameters a1, . . . , ak has independent dimensions if none of them has
a dimension function that can be represented as a product of the dimensions of
the others. This set of independent quantities is not unique; consider the simple
pendulum example: a complete set of quantities with independent dimensions
is comprised of {M, L, T} because the dimensions of g can be obtained from a
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combination of the others as [g] = [M]0[L]1[T]−2, but another complete set can be
{M, L, g} because the dimensions of T can be obtained as [T] = [M]0[L]1/2[g]−1/2.

In general, relationships among quantities that characterize the phenomenon are
obtained in the form

y = f (a1, a2, a3, . . . , ak, b1, . . . , bm), (3.6)

where y is the quantity being determined (for example, the period of small oscilla-
tions of the simple pendulum T), and its p = k + m arguments

a1, a2, a3, . . . , ak, b1, . . . , bm

are assumed to be given. These are called the governing parameters [4, 5], and
are divided into k parameters a1, a2, a3, . . . , ak that have independent dimensions,
while the dimensions of the m parameters b1, . . . , bm can be expressed as products
of powers of the dimensions of the parameters a1, a2, a3, . . . , ak:

[b1] = [a1]
p1 · · · [ak]

r1

...

[bi] = [a1]
pi · · · [ak]

ri

...

[bm] = [a1]
pm · · · [ak]

rm

If the dimensions of all the governing parameters are independent, then m = 0
and p = k; this is the case of the simple pendulum example. In general k, m > 0.

The dimension of the quantity to be determined must be expressible in terms
of the dimensions of the governing parameters with independent dimensions
a1, a2, a3, . . . , ak as

[y] = [a1]
p · · · [ak]

r.

In the simple pendulum example we have [T] = [M]p[L]q[g]r. Introducing the
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parameters

Π =
y

ap
1 . . . ar

k

Π1 =
b1

ap1
1 · · · ar1

k
, . . . , Πi =

bi

api
1 · · · ari

k
, . . . ,

Πm =
bm

apm
1 · · · arm

k
,

where the exponents are chosen such that all the parameters Π, Π1, . . . , Πm are
dimensionless we can write

Π =
f (a1, a2, a3, . . . , ak, b1, . . . , bm)

ap
1 · · · ar

k

=
1

ap
1 · · · ar

k
f (a1, a2, a3, . . . , ak, Π1ap1

1 · · · ar1
k , . . . , Πmapm

1 · · · arm
k ).

so that
Π = F(a1, a2, a3, . . . , ak, Π1 . . . , Πm)

for a certain function F. It follows, from the principle of dimensional homogeneity
of the physical laws, that the function F must be independent of the arguments
a1, a2, a3, . . . , ak [4, 5, 38] and can be written in terms of a function Φ of m argu-
ments

Π = Φ(Π1 . . . , Πm), (3.7)

from which it follows that the relationship for y can be written in terms of a fun-
ction with a smaller number of variables:

y = f (a1, a2, a3, . . . , ak, b1, . . . , bm) = ap
1 · · · ar

kΦ

(
b1

ap1
1 · · · ar1

k
, . . . ,

bm

apm
1 · · · arm

k

)
,

(3.8)
which is the statement of the Buckingham-Pi Theorem. Self-similar solutions can be
derived using dimensional analysis when a mathematical model of the problem is
available. In Chapter 5 we apply dimensional analysis to a simple mathematical
model for the collapse of a granular step to show this. In what follows of this
Chapter, the concepts of self-similarity of the first and second kind are discussed.
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3.1.2. Self-similarity of the first and second kind

Consider Eqn. 3.7,
Π = Φ(Π1 . . . , Πm),

and suppose that when Πm is very small, the limit of the function Φ exists and is
finite and non-zero. Then

Φ0(Π1 . . . , Πm−1) = lı́m
Πm→0

Φ(Π1 . . . , Πm),

defines a new function Φ0 of one less argument, but more importantly, if it is true
that

lı́m
Πm→0

Φ(Π1 . . . , Πm) = Π, (3.9)

i.e., if the limit exists, we see that the influence of the parameter Πm, and thus of
the corresponding dimensional parameter bm, on the phenomenon of interest is
negligible as bm → 0, and can be ignored from the list of governing parameters,
replacing Φ by a function of one less parameter Φ0.

When this situation occurs, it is said that the phenomenon has a complete self-
similarity, or self-similarity of the first kind with respect to the dimensionless pa-
rameter Πm [4, 5]. A similar conclusion is reached if the limit of Φ exists and is
non-zero when the considered parameter is very large.

On the other hand, if
lı́m

Πm→0
Φ or lı́m

Πm→∞
Φ

vanish or diverge, the dimensional parameter bm is essential to the phenomenon
and we cannot ignore it from the list of governing parameters. In this case Φ can
not be directly replaced by a function with one less argument. Yet, it may be pos-
sible to simplify the problem. If we can write

Φ = Πα
mΦ1(Π1 . . . , Πm−1) + h.o.t., (3.10)

even when Πm → 0 (or Πm → ∞), where the higher order terms h.o.t. vanish for
sufficiently large or small Πm, then we have that

Φ1 = Π ·Π−α
m =

y

bα
map−αpm

1 . . . ar−αrm
k

= Π*, (3.11)
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where Φ1 depends on one less argument, but the parameter bm remains essential,
as it appears in Π*. The form of Π* cannot be obtained by dimensional analysis,
as it depends on the value of the exponent α. In this case, if it is possible to express
Φ1 as in Eqn. 3.11, the phenomenon is said to have a self-similarity of the second
kind with respect to Πm [4, 5].

Notice that Eqn. 3.11 is a special case of the more general expression

Π = Πα
mΦ1

(
Π1

Πα1
m

, . . . ,
Πm−1

Παm−1
m

)
(3.12)

when all the exponents αi = 0, i = 1, . . . , m − 1. With this method for reducing the
number of arguments for the function describing the phenomenon, the dependen-
ce on the essential parameter bm appears as a power law.

The same procedure can be applied with any dimensionless parameter Πi of the
list for which the limit exists when large or small values are considered. In the next
section we will discuss the implications of these assumptions for the problem of
the collapse of a granular column.

3.2. Dimensional analysis of the collapse of a granu-

lar column

To conclude this Chapter, the formalism of dimensional analysis and self-similarity
of the first and second kind described previously is applied in the problem of the
collapse of a granular column, which despite its simplicity, depends on many go-
verning parameters.

As experiments have shown, not all of considered parameters seem to be relevant
to the results obtained. In particular, the final run-out and the final height of the
emplacements depend only on the initial aspect ratio of the column, and seem to
be independent of, e.g., the substrate over which the collapses occur, the density
of the material used or the size and shape of the grains, at least when the shape is
not extremely aspherical, as in [12, 15].

The final properties of a deposit resulting from the collapse of a column depend
on the characteristics of the developed flow during the emplacement formation.
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In the remainder of this thesis, attention will focus on the maximum height of the
deposit hm, obtained from the height profile of the emplacements h = h(x, t) at
x = 0, assuming they are symmetric. Therefore hm = hm(t) = h(0, t).

The physical quantities on which the function describing the height profile h(x, t)
depends, are assumed to be relevant only at the flow scale and not at the grain
scale. Under this assumption, the normal and shear stresses affecting the flow can
be approximated based on the arguments given in [42]. The height profile of the
deposits as the collapse occurs is likely influenced by the following variables:

x : Spatial coordinate, unidirectional flow;

t : Time;

ρ : Density of the granular material;

d : Typical size of the grains used;

σ : Macroscopic externally imposed shear stress due to the flow;

P : Macroscopic externally imposed normal stress due to the self weight of the
column during flow;

γ̇ : Macroscopic externally imposed deformation rate due to the flow;

g : Local gravitational acceleration;

µg : Inter-granular friction;

h0, x0 : Initial conditions.

The inter-granular friction coefficient µg, is a dimensionless scalar value that des-
cribes the ratio of the force of friction with the force that presses together two
grains in contact. It is described, at the grain level, according to a Coulomb fric-
tion model: ft = µ f fn. A different coefficient of friction that describes the global
friction properties of the flow can be defined as the ratio of the macroscopic shear
stress to the macroscopic normal stress as

µe f f =
σ

P
. (3.13)
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The final height of the deposit, i.e. the maximum height after the collapse occurs
and grains have stopped their motion, can be seen as the limit

h∞ = lı́m
t→∞

hm(t).

The steps for applying dimensional analysis require us to write, for the maximum
height of the emplacement

hm(t) = H(t, g, d, ρ, σ, P, γ̇, h0, x0, µg). (3.14)

Equation 3.14 is written based on the experimental and numerical evidence dis-
cussed throughout this thesis. The quantity of interest, the maximum height of the
emplacement hm, depends on p = 10 governing variables. We choose the k = 3
variables with independent dimensions h0, P, g. According to the Buckingham-Pi
Theorem, we can express it as a dimensionless function of m = p − k = 7 parame-
ters:

Π =
hm

h0

Π1 =
t√

h0/g

Π2 =
ρgh0

P
Π3 =

d
h0

Π4 =
σ

P
Π5 =

γ̇√
g/h0

Π6 =
x0

h0
Π7 = µg,

so that
Π = Ψ (Π1, Π2, Π3, Π4, Π5, Π6, Π7) , (3.15)

describes, in dimensionless form, the maximum height of the deposit as the co-
llapse occurs.
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3.2.1. Evolution of the maximum height

The evolution of the normalized maximum height of the deposit, Eqn. 3.15, can be
expressed as

h*m = Ψ

(
τ, a,

d
h0

,
σ

P
,

ρgh0

P
,

γ̇√
g/h0

, µg

)
. (3.16)

As noted before, the ratio of the shear stress σ to the normal confinement macros-
copic stress P can be seen as an effective macroscopic coefficient of friction for the
flow, µe f f = σ/P.

In the case that ρgh0/P ≪ 1 or ρgh0/P ≫ 1, it can be assumed that the maximum
height of the deposit has a self-similarity of the second kind on this dimensionless
parameter, allowing us to write

h*m =

[
ρgh0

P

]α

Ψ1

 τ[
ρgh0

P

]α0
,

a[
ρgh0

P

]α1
,

d/h0[
ρgh0

P

]α2
,

µe f f[
ρgh0

P

]α3
,

µg[
ρgh0

P

]α4
,

γ̇√
g/h0[

ρgh0
P

]α5

 .

Further, assume that the self-similarity exponents are such that α0 = α1 = α2 =

α3 = α4 = 0 therefore

h*m =

[
ρgh0

P

]α

Ψ1

τ, a,
d
h0

, µg, µe f f ,

γ̇√
g/h0[

ρgh0
P

]α5

 .

If the remaining scaling exponents are related as α − α4 = 1/2, the combination
of dimensionless parameters

[
ρgh0

P

]α

·

γ̇√
g/h0[

ρgh0
P

]α5

reduces to
h0γ̇√
P/ρ

,

and the dependence on gravity only appears in the dimensionless time τ. There-
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fore, we can write, for the maximum height

h*m = Ψ1

(
τ, a,

d
h0

,
h0γ̇√
P/ρ

, µe f f , µg

)
. (3.17)

Notice that there is no a priori reason why the scaling exponents should have these
values. They are just selected for convenience.

Recently, significant advances have been reached in the rheological description
of granular flow [13]. A single dimensionless number, the inertial number I, has
been used to describe flow properties, in particular for the transient flow in the
column collapse problem [21, 23]. The inertial number I can be interpreted as the
ratio of two time scales at the grain level, I = tP/tD, where tD = γ̇−1 is the time
that one layer of material takes to move over a distance d with respect to another,
and tP = d

√
ρ/P is the time needed by the top layer to be pushed back to its lower

position after climbing over another grain [13], so that

I =
γ̇d√
P/ρ

.

This number characterizes the nature of the flow into a quasi-static regime, when
I → 0; a dense regime, when 10−2 < I < 10−1 ; and a collisional regime, for
I > 10−1. Together with the inertial number, an effective friction coefficient µe f f

for the flow can be constructed, as defined previously, as the ratio of deformation
to normal stresses.

It has been observed that this effective friction is constant during the quasi-static
regime (I1), while it increases with I and thus is no longer constant in the dense
regime, indicating a shear rate dependent regime [13]. It is argued that a unique
relationship between the effective friction coefficient of the flow µe f f = σ/P and
the number I exists at the grain scale,

σ

P
= µe f f (I),

that describes average flow properties like volume fraction, velocity profiles and
effective friction [13]. Noticing that

h0γ̇√
P/ρ

= I · h0

d
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in Eqn.3.17, and assuming a unique relation between this number I and the effec-
tive friction of the flow, we can write

h*m = Ψ1

(
τ, a,

d
h0

, µe f f , µg

)
(3.18)

µe f f = µe f f (I), (3.19)

for the final height. Note that the explicit dependence on I has been absorbed into
the rheological description of the flow given by µe f f = µe f f (I). In all experiments
and numerical simulations, the ratio of the typical grain size to the initial height
of the column is of the order of d/h0 ∼ 10−1 (see Table 2.1), so we can write Eqn.
3.18 as

h*m = Ψ0
(
τ, a, µe f f , µg

)
(3.20)

µe f f = µe f f (I), (3.21)

where Ψ0 = lı́md/h0→0 Ψ1. From the experimental settings of the problem the in-
fluence of the dimensionless parameter d/h0 is negligible. In terms of the discus-
sion following Eqn. 3.9, the final normalized height of the deposits has a self similarity
of the first kind on the parameter d/h0.

The number I can be defined locally for homogeneous simple granular flows, but
in the collapse of a granular column it is difficult to determine it locally due to the
transient nature of the flow [21, 23]. Nevertheless, a macroscopic equivalent to the
inertial number can be constructed [42] comparing two macroscopic time scales,
to obtain

I =
de f f (x − x0)

3/2

h − h0

1
t
√

c0Ag
, (3.22)

where de f f is an effective grain diameter, equal to the typical diameter d of the
grains in a mono-disperse column, and c0A is the initial 2D area occupied by the
compacted grains in the column. The details leading to Eqn. 3.22 can be found in
[42] and go as follow: in the flowing phase of a collapsing column, a horizontal
deformation is experienced such that the rate of deformation of the deposit can be
approximated as

γ̇ ∼ x(t)− x0

t
1

h0 − h(t)
.

A characteristic time TP can be constructed from the pressure of the whole column
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at the base P = Mg
x−x0

, where M is the total mass of the column, g the acceleration
due to gravity and x is the extension of the deposit, as

TP = d
(x − x0)

1/2√
c0Ag

,

where c0A is the initial 2D area. Comparing the pressure time scale with the effec-
tive shear rate, the inertial number I shown above is obtained. As it has been dis-
cussed by others, large values of I indicate that the pressure of the material above
dominates over horizontal deformation of the deposit, as expected for short times.
As time advances, I decreases as the shear deformation becomes important.

3.2.2. The final height of the deposit

In the previous section we found that the dimensionless function given by Eqn.
3.20

h*m = Ψ0
(
τ, a, µe f f , µg

)
together with the rheological empirical law µe f f = µe f f (I) describe, in principle,
the evolution of the maximum height of the deposits in terms of 4 dimensionless
parameters. The final height of the deposit h∞ can be found from Eqn. 3.20 taking
the appropriate limit in the time variable:

h*∞ = lı́m
τ→∞

h*m. (3.23)

This limit exists and is finite, because all emplacements reach a measurable final
height. The final height can thus be seen as a function of 4 dimensionless parame-
ters a, µe f f , µg, I expressed as

h*∞ = Φ0
(
a, µe f f , µg

)
(3.24)

µe f f = µe f f (I), (3.25)

where Φ0 = lı́mτ→∞ Ψ0. Assuming a self-similarity of the second type when the
parameter a → 0 or a → ∞ gives

h*∞ = aβΦ1

(
µe f f

aβ0
,

µg

aβ1

)
(3.26)
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for the final height of the deposit. Again, no information on the values of the self-
similar exponents βi is available. They have to be evaluated either by experiments
or numerical simulations. Assuming β0 = β1 = 0 simplifies Eqn. 3.26 to

h*∞ = aβΦ2
(
µe f f , µg

)
.

This last expression coincides with [26], with the additional result of the power
law scaling on the initial aspect ratio a recovering the experimentally observed
scaling law for the final height of the deposit.

3.3. Conclusions and remarks

This Chapter has described the general ideas of dimensional analysis, scaling and
self-similarity of the first and second kind for general systems. When applied to
the problem of the collapse of a granular column, it is found that the height of
the deposit depends on at least p = 10 governing parameters. Using dimensional
analysis this can be reduced to m = 7 dimensionless parameters. The dimension-
less final height, obtained when the grains stop moving after very long times, can
be described using a function of m = 5 dimensionless parameters, while the evo-
lution of the maximum height still depends on the m = 7 arguments.

Assuming that a self-similarity of the second kind exists for the maximum height
when the pressure of the column is large compared to its own weight and that
the effect on gravity only occurs on the time variable, can lead to a function that
depends on the inertial number via a local rheology, as proposed by some authors
[13], of the form µe f f = µe f f (I). This function also depends on the initial aspect
ratio as a power law, Eqn. 3.26, if self-similarity of the second kind is assumed. The
numerical values of the scaling exponents are unknown, but they can be evaluated
by means of experimental results or numerical simulations.

Experimental considerations show that these functions have a self-similarity of
the first kind on the ratio of typical grain size to initial height of the column d/h0.
Once the collapse ends, the assumption of self similarity of the second kind, in the
limit of small or large initial aspect ratio, of the column leads to the power law
scaling of the final height scaling with this parameter, Eqn. 3.26, as a function that
depends on the frictional properties of the material.
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In the remainder of this work we present results of numerical simulations of the
collapse of granular columns to test the validity of the hypothesis of self-similarity
discussed in this Chapter. The next Chapter describes the numerical method used
to perform the simulations and the parameters used to obtain the results, which
are reported in Chapter 6, where we study the effect of varying the shape of the
grains used to make the column, and Chapter 7, where the effect of varying the
value of the local gravitational acceleration is studied. Before such results are pre-
sented, in Chapter 5 we show how a mathematical setting of the problem allows
the construction of self-similar solutions from a simple model used to describe
granular flow.



CHAPTER 4

NUMERICAL METHOD

There are many different numerical methods for the simulation of granular media
(see for example [34] for a comprehensive review) and each has its advantages and
disadvantages. Since granular materials are collections of many individual parti-
cles, with sizes ranging from micrometers to centimeters, one suitable method to
perform simulations of this type is the Discrete Element Method (DEM).

This method consists in the numerical integration of the equations of motion, as
given by Newton’s laws, for each of the particles making up the granular me-
dium and is the subject of this Chapter. We start by a description of the model for
granular materials used in the numerical simulations, followed by the numerical
algorithm used to integrate the equations of motion.

A grain is modeled as a spherical(disk) particle of radius R in 3(2) dimensions.
This way of modeling granular particles is the simplest possible and allows us to
express the interactions in terms of quantities related to the geometry properties
of the particles. The location in space of a grain of typical size Ri and mass mi is
determined by a position vector ri = (xi, yi, zi) with zi = 0 in 2 dimensions.

The dynamics of N grains located at the positions

ri, i = 1, · · · , N
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is governed by 3N time dependent coupled equations given by Newton’s Second
Law:

r̈i =
fi(rij, vij)

mi
(4.1)

τi = Iiω̇i (4.2)

where fi and τi are the total force and the net torque acting on the ith particle
(radius Ri, mass mi, moment of inertia Ii) due to all the jth particles that interact
with it. The force that gives rise to the linear and angular accelerations r̈i and ω̇i is
an explicit function of the relative position and velocity of the interacting particles:

rij = |ri − rj| (4.3)

vij = |vi − vj|. (4.4)

In general, the 3N nonlinear coupled equations given by 4.1 can not be solved
analytically and numerical solutions must be sought. The numerical method which
calculates the forces (and torques) and integrates Eqns. 4.1 to obtain the trajecto-
ries of every particle in the system, is known as the Discrete Element Method
(DEM) [34]. Unlike the classical Molecular Dynamics calculations [1, 35], in the
DEM for granular media, interactions are short ranged and only occur when the
particles are in contact.

Two grains interact if the distance from their centers is less than the sum of their
radii. In other words, if a positive relative overlap between grains occurs, then
there is force between them, otherwise the force is zero. The total force fi on the
ith grain is the sum of all pairwise interactions with the rest of the grains that are
in contact:

fi = ∑i ̸=j fij(rij, vij). (4.5)

The interaction law between the grains, i.e. the explicit functional form of the pair-
wise forces fij(rij, vij) in Eqn. 4.5, is determined by the so-called contact model.
Before discussing it, the numerical algorithm implemented to integrate the sys-
tem given by Eqn. 4.1 is described.
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4.1. Integration algorithm

The numerical integration of the equations of motion Eqn. 4.1 for the translatio-
nal degree of freedom is done using an algorithm known as the Velocity-Verlet
method is used [1, 2, 41]. This method approximates the solution to the second
order differential equation for the ith grain, at the discrete time tk+1 = (k + 1)dt
using a non-zero step size dt, from the information at the previous time tk = kdt,
according to the following rule:

rk+1
i = rk

i + dtvk
i + dt2 f k

i
2mi

(4.6)

vk+1
i = vk

i + dt
f k
i + f k+1

i
2

(4.7)

where we have used the notation

Xk
i = Xi(tk) = Xi(kdt)

for the value of the dynamical variable Xi at the kth time step. Note that the nume-
rical method requires the value of the force at a future time step tk+1 = (k + 1)dt,
therefore to be able to use this algorithm, the explicit functional form of the for-
ce has to be known in advance; this is known as the contact model and will be
discussed next.

4.2. Contact Model

The functional form of the interaction between grains when they are in contact
is needed for the numerical algorithm described previously. The contact model
provides an expression for these forces when grains are interacting. No model
can completely describe all the possible interactions occurring when two (or more
grains) are in contact during grain motion. All models are restricted and limited
by the assumptions leading to them, and the best possible model depends on the
problem to be solved.

The simplest model, and the one used in this work, is that in which grains can be
represented as spheres (in 3 dimensions) or disks (in 2 dimensions) that interact
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Figura 4.1: Schematic diagram of interaction forces during mechanical contact.

only at mechanical contact. Mechanical contact is defined in terms of the distance
between the centers of mass of the interacting grains: two grains with radius Ri, Rj

located at the positions given by the vectors ri, rj are in mechanical contact if

ξij = Ri + Rj − rij > 0, (4.8)

where rij = |rij| = |ri − rj| is the relative distance between the positions of the
grains. The quantity ξij defined by Eqn. 4.8 measures the relative overlap of inter-
acting grains and is sometimes referred to as the compression. When mechanical
contact exists between two grains, the force is nonzero and acts to prevent furt-
her overlap and to break off the contact i.e., the force is of the form of a repulsive
spring with a magnitude that explicitly depends on the compression: as the com-
pression between grains increases, so does the repulsive force.

This simple interaction models the physical effect of an elastic deformation around
the point of contact on the surface of the grains. The elastic deformation is accom-
panied with a loss of energy during the contact, a fundamental characteristic of
granular media which are highly dissipative systems.

The interaction between grains in mechanical contact is divided into two mutually
orthogonal components in the normal (n̂) and tangential (t̂) direction relative to
the line joining their centers as shown schematically in Fig. 4.1.

Ignoring the force due to the acceleration of gravity, the force acting between par-
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ticles that are in mechanical contact can be expressed as:

fij =

 f n
ij n̂ + f t

ij t̂ if ξij > 0

0 otherwise
, (4.9)

where f n
ij ( f t

ij) is the magnitude of force in the normal (tangential) direction acting
on the ith grain due to the interaction with jth grain, with which it is in mechani-
cal contact. The force in the normal direction causes a change in the translational
degree of freedom, while the tangential force causes a change in the rotational
degree and in the translational degrees of freedom.

The force in the normal direction acts as a spring modeling elastic deformation
and preventing further overlap of the grains and dissipates energy. This is achie-
ved with an elastic contact force that depends on the normal compression ξn

ij, and a
damping force proportional to the normal relative velocity vn

ij of the grains. In the
tangential direction a shear elastic and damping force proportional to the tangen-
tial overlap ξt

ij, and relative velocity vt
ij respectively is implemented. Altogether

the interaction contact model can be written as:

f n
ij = knξn

ij − γnvn
ij (4.10)

f t
ij = ktξ

t
ij − γtvt

ij. (4.11)

Friction is implemented via a Coulomb type model, characterized by a friction
coefficient µg, such that

f t
ij ≤ µg f n

ij , (4.12)

i.e., the tangential force grows according to the model 4.11 until f t
ij/ f n

ij = µ and is
then maintained at f t

ij = µg f n
ij until the grains lose contact.

The interaction model described by Eqns. 4.10 and 4.11 is referred to as a “spring-
dashpot“ model due to the form of the elastic and damping terms. The elastic and
viscoelastic constant coefficients kn, kt and γn, γt are calculated from material pro-
perties according to formulas that depend on the masses, the radii, the restitution
coefficient and Young’s and shear moduli, and together are known as the Hertz or
Hooke contact model [20].

In this work we used the Hertz contact model, in which the elastic coefficient kn

depends non-linearly on the compression ξn
ij as ∝

√
ξn

ij, compared to the Hooke
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Figura 4.2: Typical initial state of the system. a = 1.6, g = 9.81m/s2.

case in which the normal force is linear in the compression.

4.3. Simulation Parameters

In this study the Hertz contact model, described in the previous section, is used
to simulate the collapse of granular columns in a quasi-2D configuration. Grains
are modeled as spheres of uniform density ρ = 2500kg/m3 with a constant dia-
meter d = 0.9mm, a restitution coefficient of e = 0.5, a Young’s modulus of
Y = 4.0 × 106Pa and a Poisson ratio equal to ν = 0.5. These values, typical of
glass beads used in the laboratory, are fixed in all the numerical simulations. The
friction coefficient value µ is the same for all the grains on a given column, and is
varied between [0.5, 0.95]. Interaction with the walls before the collapse begins is
modeled with the same Hertz contact model, considering the walls as having the
same material and friction properties.

Columns are constructed by pouring Nt = 5000 grains initially at random posi-
tions into a rectangular region defined by walls whose half separation determines
the initial width x0 of the column, and a depth equal to one diameter. As shown
in Fig. 4.2, grains are confined such that the system is essentially in 2 dimensions.
The walls holding the grains in the direction perpendicular to the reading plane
are such that the values of µ, γn, γt are all equal to zero so that no dissipation
with these walls occur and they only act as holding planes for the grains in the
corresponding direction.
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Tabla 4.1: Parameter values used for the simulations. The inter-granular friction coefficient µ and
the value of gravity are changed for each column of initial aspect ratio a, defined in the main text.
(g0 = 9.81m/s2).

µ: 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

a: 22.53 14.63 5.75 4.55 3.70 3.08 2.58 2.20 1.67 1.50

g/g0: 0.1 0.2 0.3 0.4 0.5 1.0 10.0

After pouring the grains they are left to settle and reach an equilibrium state. At
this moment the grain with the largest vertical position is located to determine the
initial height of the column, h0, and the value of the corresponding initial aspect
ratio of the column is obtained as a = h0/x0. In this way 11 columns with 1.5 ≤
a ≤ 22.5 are obtained.

Figura 4.3: State of the column of Fig. 4.2 75 time steps after the walls have been released, t ∼
0.075s. Colors indicate the magnitude of the velocity of the grains.

At t = 0 the side walls are removed instantaneously, releasing the grains and
initiating the collapse. Figure 4.3 shows the state of a typical run after 75 time
steps once the walls have been removed, for a column collapsing under Earth’s
gravity g = g0 = 9.81m/s2. Finally, for this study the magnitude of the gravita-
tional acceleration under which the collapse occurs is also varied, so that for each
column and each value of inter-granular friction, the value of the gravitational
acceleration is also changed. We considered fractional multiples of the value of
gravity on Earth g0 = 9.81m/s2, as shown in Table 4.1.





CHAPTER 5

EXAMPLE 1. SHALLOW WATER
EQUATIONS MODEL IN ONE

DIMENSION

Despite the lack of a theoretical framework, several attempts to model the granu-
lar flow of the collapse of a granular column have been conducted [11, 19, 21, 23,
27, 33], but none of them provides full understanding of the nature of the power
law behavior observed experimentally [26]. It is possible to understand the power
law scaling for the final run-out by means of a dimensional analysis based on the
balance between inertia, pressure gradient and frictional forces, under the assum-
ption that the flow is localized on a surface layer and vertical momentum transfers
are taken into account [25].

The difficulties of modeling the collapse of a granular column come with the tran-
sient nature of the flow. Any model should take into account the transfer of verti-
cal momentum during the downfall of the column at the initial stage of the collap-
se [25, 27], and a second stage during which material flows over static grains in a
layer whose shape varies in time and depends on the initial aspect ratio [25].

A complete modeling of the collapse of a granular column is beyond the objective
of this work. Instead we are interested in applying the concepts of self-similarity
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and scaling presented earlier in Chapter 3. In this Chapter we present a simple
model that has been used with some success to describe the collapse of granular
columns [3, 19, 27, 32, 33]. Although the model, known as the shallow-water ap-
proximation, is derived under the assumption of negligible vertical momentum
transfer and basal friction, it captures some of the observed behavior for small va-
lues of a, in particular the run-out distance of the emplacements. The model has
also been used as a starting point to model similar events on other planets, like
the Valles Marineris landslides of Mars [26, 31, 33].

No formal derivation of the shallow-water equations in one dimension is presen-
ted (see [19] for a detail derivation of the model equations), instead they are solved
analytically by means of dimensional analysis, constructing a self-similar solution
that satisfies the initial and boundary conditions of a finite volume (area) of gra-
nular material that starts to flow at t = 0 by releasing one of the side walls (see
Fig. 5.1).

5.1. The Shallow Water Equations

The Shallow Water Equations (SWE) is a model obtained by depth averaging the
momentum conservation equations [19, 27, 33] under the assumptions that verti-
cal velocities of an incompressible flow of constant density are smaller than the
characteristic tangential velocity. In one dimension they are

∂h
∂t

+
∂(uh)

∂x
= 0

∂u
∂t

+ u
∂u
∂x

= −gK
∂h
∂x

+ s
(5.1)

where u is the depth-averaged horizontal velocity, h the height of the flowing
grains and g the acceleration due to gravity. The term gKhx is proportional to
the material slope; K is a constant known as the “Earth pressure coefficient“ and
represents the ratio between vertical and horizontal normal stresses [19, 25, 27].
Its value depends on the internal friction but does not affect the value of the sca-
ling exponent of the power law dependence [3, 25]. Following [27] we will set its
value equal to unity, K = 1. The source term s is included as a model for the basal
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t = 0

t > 0

Figura 5.1: Schematic of the flow due to the collapse of a semi-infinite granular column. Classical
dam break problem with a granular material.

friction. In this work a Coulomb type friction law

s = −g tg δsgn(u), (5.2)

is used, where sgn defines the sign of u and δ is the internal friction angle (friction
coefficient of the granular material). More complex models exist [17, 19] that better
capture details of the granular flow, in particular the friction properties of the
granular materials, but we keep the simplest possible model which has been used
previously [3, 19, 27, 32, 33] with interesting results.

In this chapter the system given by Eqns. 5.1 is used to study the collapse of a
granular column in one dimension. The problem is sketched in Fig. 5.1: a mass
of granular material of uniform density ρ is placed in a step with initial height h0

and initial width x0, so that a = h0/x0 ≪ 1, and left to flow under the action of
gravity by removing the right side wall at t = 0. The functions h(x, t) and u(x, t)
of Eqns. 5.1 give the height and the velocity of the flowing granular mass.
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With reference to Fig. 5.1, a fixed impenetrable wall is located at x = 0 and the
releasing gate is at x = x0, so the following initial and boundary conditions hold:

h(x, 0) =

h0 if 0 ≤ x ≤ x0

0 if x > x0

; u(x, 0) = 0

h(x f , t) = ∂h
∂x

∣∣∣
x=x f

= 0; u(0, t) = 0

x f (0) = x0; ẋ f (0) = 0,

(5.3)

where x f (t) is the position of the front as the flow moves towards the positive
x direction (Fig. 5.1). In this configuration the velocity is always positive, so the
basal friction model Eqn. 5.2 becomes

s = −gµ, (5.4)

with µ = tg δ is the friction coefficient. The total area, or volume per unit length,
of granular material is constant and equal to A0 = x0h0 = ax2

0.

5.2. Dimensional analysis and scaling

The mathematical formulation of the problem makes it possible to express the
height and the velocity of the flowing grains in terms of the governing parameters.
Once the initial width x0 and height h0 are specified, the total area of material
A0 = x0h0 is fixed by these choices. The value of gA0 can be used as a governing
parameter instead of x0. Then the height and velocity can be written as

h = h(x, t, g, h0, gA0, K, µ)

u = u(x, t, g, h0, gA0, K, µ).
(5.5)
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There are p = 7 governing parameters with dimensions

[h] = [x] = [h0] = L,

[u] = LT−1,

[t] = T,

[g] = LT−2,

[gA0] = L3T−2

[K] = [µ] = 1.

Note that there are only k = 2 parameters with independent dimensions (L, T).
The results of Chapter 3 tell us that we can express the functions of Eqns. 5.5 in
terms of m = p − k = 7 − 2 = 5 dimensionless parameters. It is convenient to
work with the function gh instead of h itself. By choosing as a complete set of pa-
rameters with independent dimensions the pair (gA0, t), the m = 5 dimensionless
parameters are

gh
(gA0)2/3t−2/3 = φ(Π1, Π2, Π3, Π4, Π5)

u
(gA0)1/3t−1/3 = ψ(Π1, Π2, Π3, Π4, Π5)

ξ = Π1 =
x

(gA0)1/3t2/3

Π2 =
h0

(gA0)1/3t2/3

Π3 =
g

(gA0)1/3t−4/3

Π4 = K

Π5 = µ.

(5.6)

so that

gh = (gA0)
2/3t−2/3φ(ξ, Π2, Π3, Π4, Π5)

u = (gA0)
1/3t−1/3ψ(ξ, Π2, Π3, Π4, Π5).

(5.7)

By plugging the expressions given by Eqns. 5.7 into the shallow water equation,
we find the ordinary differential equations for the dimensionless functions φ, ψ.
Before doing so, a different scaling is presented which reduces the system of Eqns.
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5.1 further. Following [3], we introduce the following parameters:

ĥ =
h
h0

x̂ =
x

h0Kµ−1

û =
u√

gh0K

t̂ =
t√

h0K/g
,

(5.8)

Notice that under these transformations the case µ = 0 must be treated separately,
but since we are studying granular materials the friction coefficient is assumed
not to vanish. With the scalings given by Eqns. 5.8, the shallow water equations
become

∂ĥ
∂t̂

+
∂(ûĥ)

∂x̂
= 0

∂û
∂t̂

+ û
∂û
∂x̂

+
∂ĥ
∂x̂

= −1
(5.9)

The initial and boundary conditions become

ĥ(x̂, 0) =

1 if 0 ≤ x̂ ≤ 1
aKµ−1

0 if x̂ > 1
aKµ−1

; û(x̂, 0) = 0

ĥ(x̂ f , t̂) = ∂ĥ
∂x̂

∣∣∣
x̂=x̂ f

= 0; û(0, t̂) = 0

x̂ f (0) =
1

aKµ−1 ;

(5.10)

where aKµ−1 is the rescaled initial aspect ratio.

Equations 5.9 with the boundary conditions 5.10 are solved using the self-similar
solutions obtained by dimensional analysis, by combining the scalings given by
Eqns. 5.7 and 5.8:

gh = gh0ĥ = (gA0)
1/3t−2/3φ(ξ)

u = (gh0K)1/2û = (gA0)
1/3t−1/3ψ(ξ),
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It is found that

ĥ =
1

(a2K)1/3 t̂−2/3φ(ξ)

û =
1

(aK2)1/3 t̂−1/3ψ(ξ),
(5.11)

with the self-similar length scale

ξ =
x̂(

µ3

aK2

)1/3
t̂2/3

. (5.12)

The boundary conditions become

ĥ(x̂ f , t̂) = 0 ⇒ φ(ξ f ) = 0

ĥx̂(x̂ f , t̂) = 0 ⇒ φ′(ξ f ) = 0

û(0, t̂) = 0 ⇒ ψ(0) = 0

û(x̂ f , t̂) =
dx̂ f

dt̂

(5.13)

Accelerations, given by Π3 from Eqn. 5.6, transform as

Π3 = (aK2)1/3 t̂4/3. (5.14)

Substituting Eqns. 5.11 into Eqns. 5.9, we find the ordinary differential equations
satisfied by φ, ψ:

−2
3
(φ + ξφ′) +

1
µ
(φψ)′ = 0

−1
3

ψ − 2
3

ξψ′ +
1
µ

ψψ′ +
K
µ

φ′ = −Π3,
(5.15)

where the prime denotes differentiation with respect to ξ. The solutions φ, ψ to
Eqns. 5.15 are given in terms of the dimensionless parameters Πi, according to the
analysis described earlier. We now proceed to solve them.

The first of Eqns. 5.15 can be easily written as

(
1
µ

φψ − 2
3

ξφ)′ = 0, (5.16)
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which can be integrated directly to give

1
µ

φψ − 2
3

ξφ = c1. (5.17)

Applying the boundary conditions at ξ = 0 we find that

c1 = 0

and the solution
ψ(ξ) =

2µ

3
ξ. (5.18)

Substituting this solution into the second of Eqns. 5.15, we are left with

K
µ

φ′ =
2
9

µξ − Π3. (5.19)

Applying the boundary condition at the front we find that

2
9

µξ f = Π3 (5.20)

. Integrating directly Eqn. 5.19 we find

K
µ

φ(ξ) =
1
9

µξ2 − Π3ξ + c2. (5.21)

The constant of integration c2 can be evaluated using the boundary condition at
the front φ(ξ f ) = 0 so that

K
µ

φ(ξ) =
1
9

µ(ξ2 − ξ2
f )− Π3(ξ − ξ f ). (5.22)

The position of the front satisfying the boundary condition is given by

x̂ f (t̂) =
µ

(aK2)
1/3 ξ f t̂2/3 +

µ

aK
. (5.23)
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Differentiating with respect to time we find

û f =
dx̂ f

dt̂

=
2
3

µ

(aK2)
1/3 t̂−1/3ξ f

which is the same as if we had used the self-similar solution given by Eqn. 5.18.
From the condition that the local slope vanishes at the front, Eqn. 5.20, we find

ξ f =
9

2µ
Π3, (5.24)

so that the position of the front Eqn. 5.23 is

x̂ f (t̂) =
9
2

t̂2 +
µ

aK
, (5.25)

after using Π3 from Eqn. 5.14. The front increases from the initial value µ
aK follo-

wing a parabolic time dependence. The speed of the front is

û f = 3t̂, (5.26)

linear in the dimensionless time. Using Eqn. 5.20 we can write the solution given
by Eqn. 5.22 as

K
µ

φ(ξ) =

=
1
9

µ(ξ2 − ξ2
f )− Π3(ξ − ξ f )

=
1
9

µ(ξ2 − ξ2
f )−

2µ

9
ξ f (ξ − ξ f )

=
1
9

µ(ξ2 − ξ2
f − 2 f + 2ξ2

f )

=
1
9

µ(ξ − ξ f )
2,

so that we can write

φ(ξ) =
µ2

9K
(ξ − ξ f )

2

ψ(ξ) =
2µ

3
ξ.

(5.27)
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5.3. Discussion

A self-similar solution of the shallow water equations for the release of a constant
volume of granular material has been found by means of dimensional analysis.
The height and velocity of the granular fluid are expressed in terms of the dimen-
sionless functions φ, ψ given by Eqns. 5.27. In terms of the rescaled height and
velocity, Eqns. 5.11, the solutions are

ĥ =
µ2/9K
(a2K)1/3 t̂−2/3(ξ − ξ f )

2

û =
2µ/3

(aK2)1/3 t̂−1/3ξ

(5.28)

which become

ĥ =

( x̂ − x̂ f

3t̂

)2

û =
2
3

x̂
t̂

.

(5.29)

after substitution of ξ as given by Eqn. 5.12. In terms of the original variables x
and t we have

h =
µ2

9gK

(x − x f

t

)2

u =
2
3

µ
x
t

.

(5.30)

with the front of the granular flow given by

x f (t) = x0 +
9

2µ
gt2. (5.31)

These solutions are valid in the region 0 ≤ x ≤ x f and for all times t > 0. The
height of the granular flow varies with the position parabolically while the velo-
city of the flow increases linearly with position. It is interesting to observe that the
position of the front shows a parabolic dependence on time given by the position
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of free fall modulated by the friction coefficient. The speed of the front is

u f =
9
µ

gt,

which becomes of the order of unity when time t ∼ µg−1 and the position of the
front becomes x f ∼ x0 +

9
2 µ/g.

The solution found is particular for the following reasons: first, the right hand side
of the second of Eqns. 5.15 is not exactly a constant as it depends on the rescaled
time. Nevertheless, the solutions found coincide with the self-similar solutions
constructed by others [8, 14, 37] using more complex methods. It is possible to
remove all time dependence on Eqns. 5.15 using a length scale of the form

ξ = xt−2,

but the resulting equations can not be integrated directly.

The objective of this Chapter was to show how dimensional analysis can lead
to self-similar solutions when a mathematical formulation of the problem exists,
which we have accomplished with Eqns. 5.27.





CHAPTER 6

EXAMPLE 2. COLLAPSE OF
COLUMNS FORMED BY
ELONGATED GRAINS

In Chapter 3, based on the experimental evidence presented in Chapter 2, we
argued that the phenomenon of the collapse, characterized using the maximum
height function (which measures the height of the emplacement as the collapse
occurs), has a self-similarity of the first kind on the parameter d/h0 ≪ 1. This
means that a column comprised of grains with a typical larger (or smaller) size
will follow the same scaling laws, as long as the ratio d/h0 remain small.

A column comprised of larger grains will have a greater initial height h0, but as
long as d/h0 ≪ 1, the same scaling laws will hold and the maximum height fun-
ction will continue to have the property of self-similarity of the first kind with
respect to this parameter. Under this condition, this implies that the properties of
the collapse are independent of the typical size of the grains used.

But, what about the shape of the grains? In the list of possible relevant parame-
ters influencing the phenomenon, we did not consider explicitly the shape of the
grains. In some of the experiments described in Chapter 2, collapses were perfor-
med with columns made of grains of different shapes, but as this effect was not the



56 EXAMPLE 2. COLLAPSE OF COLUMNS FORMED BY ELONGATED GRAINS

main objective of their investigations, no conclusive evidence of the dependence
on the shape of the grains was provided. Under certain constraints, as an effect of
the elongation, grains tend to self-organize into a preferred direction along which
they align during motion [6, 10, 45], changing the flow properties and reaching
steady states that reflect this alignment preference.

In the granular column collapse, until [44] and [42], no systematic study of the
dependence on the shape, in particular on the elongation of the grains, on the
collapse of granular columns was reported. These works found that the scaling
laws of the form ∼ aβ still hold for collapses of columns made with elongated
grains and is the topic of this Chapter.

The contents of this Chapter are presented verbatim as it appeared published
in Physical Review E under the title “Computer simulations of the collapse of
columns formed by elongated grains“ by Horacio Tapia-McClung and Roberto
Zenit (http://pre.aps.org/abstract/PRE/v85/i6/e061304). The work
leading to this article is part of the study of the dependence in the collapses of
granular columns on the relevant parameters, in particular in this case, the shape
of the grains, focusing on elongated grains.

6.1. Results

Columns are constructed by randomly placing a total number Nt = 2000 of grains
of type Nk, where k is the number of circular grains used to make an elongated
one, between two walls whose half separation determines the initial length, x0 of
the column. The simulation parameters used here correspond to glass particles of
diameter d̄ = 0.3mm with a 10 % size distribution, except for the friction coefficient
between grains, which was chosen equal to µ = 0.5 to directly compare with the
results reported in [46].

Once the grains have settled under gravity and reached an equilibrium state, the
maximum height of the particles, h0, is measured and the value of the correspon-
ding parameter a is obtained for the column. In this way we prepare columns
with initial aspect ratio values a in the interval [0.3, 15] for elongated grains of ty-
pes: N1 (circular grains), N3, and N5; only a few cases where run for N8. At t = 0
the walls are removed instantaneously, releasing the grains and initiating the co-

http://pre.aps.org/abstract/PRE/v85/i6/e061304
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llapse. When the grains come to a stop, the final maximum height and extension of
the deposit are measured. No systematic study of the dependence of the collapse
on the preparation of the columns was performed. During the collapse, an energy
balance is performed as described in Chapter 4.

The main result is that the final distances that characterize the collapse scale with
the initial aspect ratio, a, similar to columns made of circular grains. For all types
of grains used, a monotonic increase (decrease) of the final run-out (height) with
a is observed. The scaling exponent seems to depend weakly on the elongation of
the grains.

Energy calculations like those shown in Figure 3 of the article, indicate that the fi-
nal properties of the deposits can be understood in terms of the energy conversion
of the system as the collapse occurs: columns with similar values of initial aspect
ratio a transform the initial potential energy in such a way that the final properties
of the deposit are similar, irrespective of the type of grains used, as long as they
are not extremely aspherical [12, 15]. The use of the the available energy for sprea-
ding does not depend on the type of grain used but does depend on the value of
a, as with circular grain columns[39].

The time evolution of the inertial number I shows a quick decrease for short times
τ < 1. Then I reaches a steady value close to 0.02 regardless of the grain type and
we conclude that the shape of the grains does not modify the effective friction in
a significant manner. Therefore, it is not surprising that the run-out is similar for
all grain types.

6.2. Discussion

The results presented in this work show that the collapse does not depend on the
type of grain, in particular, on the elongation of the grain. We can therefore use this
evidence to assume that the phenomenon of the collapse has a self-similarity of the
first kind on a dimensionless parameter involving the shape of the grains, similar
to d/h0. Further the use of the quantity similar to the inertial number provides a
tool to characterize the flow and understand the effective friction of the flow in
terms of the initial aspect ratio and the elongation of the grains.





CHAPTER 7

EXAMPLE 3. COLLAPSES OF
COLUMNS IN DIFFERENT

GRAVITIES

From the scaling relations obtained in Chapter 3 using dimensional analysis, time
is scaled according to

τ =
t

(h0/g)1/2 , (7.1)

where h0 is the initial height of the column and g the gravitational acceleration.
The meaning of this scaling can be easily understood if we consider a single grain
falling from an initial height h0 under the constant acceleration g. In this situation,
the well known free falling law gives the height of the grain as a function of time

h(t) = h0 −
1
2

gt2.

If we perform the variable change

t →
(

2h0

g

)1/2

τ,
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this expression becomes

h = (7.2)

= h0 −
1
2

gt2 (7.3)

= h0 −
1
2

g

[(
2h0

g

)1/2

τ

]2

(7.4)

= h0 −
1
2

g
(

2h0

g

)
τ2 (7.5)

= h0(1 − τ2) (7.6)

so that scaling the grain’s height h with the initial height at which it is dropped h0

results in
h* = (1 − τ2), (7.7)

with h* = h/h0. In other words, the dimensionless height of the grain is indepen-
dent of the initial height and on the value of gravity. This means that if the grain
is left to fall from an initial height h0 on Earth or on Mars, the vertical position
of the grain is described by the scaling law 1 − τ2, as long as time is measured as
τ = t/(h0/g)1/2, i.e. the free fall of a grain "looks"the same, in the scaled variables
h*, τ on Earth or on Mars.

This chapter explores the question naturally arising from this trivial observation:
will a granular column, under the same nominal conditions, collapse similarly on
Earth or on Mars? The chapter is presented verbatim as it has been submitted
for consideration to be published at the specialized journal “Earth and Planetary
Science Letters“. Currently the article is in review.

7.1. Results

Varying the gravitational acceleration it is found that the scaling

h∞/h0 ∼ aβ

is preserved. Further evidence that the scaling exponent does not depend on the
inter-granular friction is provided. When the evolution of the dimensionless height
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for similar initial aspect ratio columns is plotted as a function of the gravity de-
pendent characteristic time τ =

√
2h0/g the curves are very close to each other,

irrespective of the friction between grains and the value of g. We have also found
that the inertial number for all cases lies in the dense flow regime, with high(low)
aspect ratio columns having smaller(larger) final values of this quantity. We found
that for a given gravity, the inertial number is a decreasing function of the initial
aspect ratio.

As the value of gravity is lower, the grains appear to be on a fluidized state du-
ring the beginning of the collapse, similar to an observed experimental effect [36].
Since vertical accelerations due to gravity are very low, the grains that collapse
at low gravities show less contacts and appear fluidized in a natural way, thus
dissipating less energy by frictional contacts. On the other extreme, grains of co-
lumns collapsing at large gravities have greater vertical accelerations and tend to
compact and present enduring contacts, dissipating energy much faster.

The inertial number I, on which the effective friction of a granular flow depends,
has large values for columns collapsing at low gravities, thus fewer contacts bet-
ween grains occur during the flow. In these cases, according to the µ-rheology,
there is a larger effective friction which balances with the lack of dissipation by
frictional contacts and making the final height be similar to that of deposits of
columns collapsing at higher gravities, where the value of the inertial number is
lower and energy is dissipated by enduring friction contacts.

If the initial aspect ratio of the column is large and the collapse occurs under a low
gravitational acceleration, a fluidized state develops increasing the pore pressure
that eventually diffuses. This initial fluidization reduces the effective friction of
the system, due to fewer contacts, leaving the grains enough energy that is dissi-
pated later during the flow, resulting in final distances that are similar to the dry
experiments performed on Earth. We have found that the scaling ∼ aβ is preser-
ved and that the influence of the grains coefficient of friction is weak on the scaling
exponent β.
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7.2. Discussion

The results of this study evidence the independence of the collapses on the value
of the local gravitational acceleration and provide further indication that the fric-
tion between grains weakly affects the collapses. For our purposes, these results
confirm that the maximum height of the collapse adheres to the self-similarity
assumptions discussed in Chapter 3 and so that the observed scaling laws can
indeed be recovered using these ideas.



CHAPTER 8

GENERAL CONCLUSIONS

8.1. Discussion of results

The collapse of a granular column is a very simple table-top experiment that can
be performed almost anywhere. Due to its simplicity it has been explored tho-
roughly in different configurations and using different materials since the first
experiments were reported almost a decade ago. Even today the experiment is
used as a paradigm and test case for understanding flows of granular material
that occur naturally on Earth and other planets.

A bibliographic search of the problem in specialized journals shows that the pro-
blem is far from being outdated, that new discoveries are still being found on
this system and it is being used as a comparison test for studying events that are
difficult to reproduce at the laboratory scale. Although it has been widely studied,
the scaling relations found for the final properties are still not yet well understood.
Since there is no theoretical framework that describes a granular flow in full, there
is no way to obtain these relations from first principles.

In this thesis we have proposed an approach that explicitly considers the relevant
physical parameters to the problem by studying the influence they have using
numerical simulations. In Chapter 3 we showed that the parameters that influen-
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ce the maximum height function are the dimensionless time, the effective friction
and the initial aspect ratio of the column. The effective friction, a property of the
flow, can be described by means of the so called µ-rheology [13] in terms of a sin-
gle dimensionless number, the inertial number I. By using dimensional analysis,
the evolution of the maximum height of the emplacement is expressed in terms of
dimensionless parameters and their influence on the maximum height of the co-
llapse is explored numerically by means of simulations using a Discrete Element
Method described in Chapter 4.

As an example of the application of dimensional analysis, a self-similar solution
is constructed analytically from a simple mathematical model in Chapter 5. The
self-similar solution found coincides with solutions for the release of a constant
volume of fluid constructed by different methods [8, 37]. This self-similar solution
describes the height and velocity of the granular fluid at the intermediate state
when certain details of the initial conditions cease to be relevant to the flow [4, 5],
when some parameters remain small (or large) thus not influencing the system; in
this case, the initial width of the column and thus the initial aspect ratio parameter.

Clearly the system is an idealized simplification of the model, but is serves its
purpose as a good example for constructing self-similar solutions, and it could be
used, in principle, to study the more realistic case of a column with a larger initial
aspect ratio, as long as the assumptions leading to the system are still valid.

We postulate that the effective friction during the collapse changes as the elonga-
tion of the grains used to form the columns increases, and so the final height and
runout distance of the deposits depend on this parameter. To explore this depen-
dence we performed numerical simulations of the collapse of granular columns
made of elongated grains, and present the results of this work in Chapter 6.

It was found, as in the experimental work of [44], that the power law scaling is
preserved when columns made of elongated grains collapse [42, 44]. This can be
interpreted as the maximum height having a self-similarity of the first kind on a
parameter relating to the elongation of the grains. This work also introduces a di-
mensionless quantity similar to the inertial number I that characterizes the flow in
terms of its values. It was found that for elongated grains the shape does not mo-
dify the effective friction in a significant way. These results have been published
as an article in the specialized journal Physics Review E.
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The next relevant parameter is the dimensionless time. This is normalized using
the value of the local gravity, thus any change on this acceleration should be reflec-
ted in a change of the maximum height of the emplacements. We have performed
numerical simulations of columns comprised of grains with different friction pro-
perties in different gravities, and found that the scaling of final height with the
initial aspect ratio is preserved, and that for short dimensionless times the collap-
ses follow the free fall scaling law very closely.

This means notably, that at the macroscopic level the emplacements occur simi-
larly on Earth or on Mars. At the grain scale differences arise, specially in low
gravities: due to the small vertical accelerations grains are less in touch during the
first stages of the collapse, effectively causing a natural fluidization that reduces
the effective friction, which is, notwithstanding, increased again when the grains
are in contact in the second stage of the collapse. This effect is more pronounced
for columns with large initial aspect ratios collapsing in low gravities. These re-
sults have been submitted as an article to the journal Earth and Planetary Science
and is currently under revision.

8.2. Final remarks

The results obtained in this research consistently show that the scaling of the fi-
nal distances characteristic of emplacements formed by the collapse of granular
columns- columns made of elongated grains, and columns collapsing on different
gravities (including Earth)- have final properties that scale as a power law of the
initial aspect ratio parameter. This suggests something like a “universality“ of this
scaling law. Dimensional analysis shows that the dependence of quantities like the
maximum height of the emplacement depend, among others, on this crucial para-
meter.

The presence of such a scaling law indicates that the collapse is self-similar. As
discussed in Chapter 3, this implies that different columns that have the same
initial aspect ratio, regardless of the particular characteristics, like the grains they
are made of, if they are collapsing under different substrates, even if they have
different initial widths and heights, will collapse such that the final distances scale
in a similar way.
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This observation, supported by the experimental evidence is the starting point to
apply the formalism developed by [4, 5], known as self-similarity of the first and
second kind to obtain, mathematically, the power law scaling. By postulating that
the maximum height of the deposits, and therefore the final height, have a self
similarity of the second kind on the initial aspect ratio parameter, the experimen-
tally observed and confirmed power law scaling for this quantity is recovered.

After that, numerical simulations are performed, where values of the parameters
are varied to explore both the validity of this scaling law and the value of the
scaling exponents, for which neither dimensional analysis nor the self-similarity
formalism provide information.

8.3. Future work

In this work, we focus on the power law scaling with the initial aspect ratio pa-
rameter of the maximum height of the deposits. Clearly this does not give a com-
plete description of the phenomenon nor is it characterized in full. Most research
focuses on the final runout largely because for hazard assessments, this quantity
seems to be more relevant that the final height. Future work is required to study
the evolution of the front of the deposits as the collapse occurs.

No results on the velocity profiles of the grains during the collapse have been pre-
sented, which are fundamental to understand the flow. Few visual comparisons
have been performed during the course of this research of the speed of the grains
as they collapse under different gravities, finding that, when scaled appropriately
with the value of the local gravity, the column falls at the same speed. No syste-
matic research has been done in this direction, but the feeling is that by scaling the
velocities of the grains, a similar result as that with the maximum height can be
obtained.

A mathematical expression for the profile of the columns, h(x, t) that contained all
the information about the emplacements is a first step to describe the collapse of a
granular column. Such an expression is no doubt, difficult to obtain, and we have
provided some initial insight towards the properties this function must have.

It is rather surprising that the power law scaling is obtained under so many dif-
ferent circumstances. Of course, final runouts from natural events are not as ideal
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as controlled experiments or numerical simulations, and in general do not follow
these scaling laws so well, therefore, a system with the characteristics of the granu-
lar collapse which deviate from these scaling laws is desired. A column collapse
comprised of polydisperse grains would be a candidate, and represents the next
natural step to study the problem.
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.1. Appendix

In the next pages we present the journal article and manuscript documents contai-
ning the results of collapses of columns made of elongated grains (Chapter 6) and
of collapses of columns under different gravities (Chapter 7).

The first document is shown as it appear published in the specialized journal
Physical Review E under the title “Computer simulations of the collapse of co-
lumns formed by elongated grains“ which can be found in the following url link:
http://pre.aps.org/abstract/PRE/v85/i6/e061304.

The second document is the manuscript sent for consideration to the journal Earth
and Planetary Science Letters, and for which we are waiting response at the time
of this writing.

http://pre.aps.org/abstract/PRE/v85/i6/e061304
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A numerical investigation of the collapse of granular columns has been conducted. In particular, we address
the effect of the grain shape on the properties of the collapse. We show that the final runout and height of the
deposits scale as a power law of the initial aspect ratio of the column, a, independently of the elongation of the
grains used. We describe this process in terms of an energy balance, and construct an “inertial number” that
can be used to describe the flow in terms of a recently proposed granular rheology. We argue that an effective
friction that results from this dimensionless quantity explains why the shape of the grains is irrelevant for the
final properties of the collapse.

DOI: 10.1103/PhysRevE.85.061304 PACS number(s): 45.70.Ht, 45.70.Cc

I. INTRODUCTION

The dynamic behavior of granular materials is fundamental
in many natural and industrial phenomena where the flow
and accumulation of particles is of central concern. Many
anthropogenic and natural processes, like road construction
and landslides, involve a granular phase which displays a
behavior that differs from that of ordinary fluids. Despite
their ubiquity, the understanding of granular materials is
still a developing subject that requires the collaboration
of many fields of knowledge. Much of what is known of
granular matter is the result of recent experimental studies
and numerical simulations that complement the empirical
knowledge obtained by many years of experience and use
of these materials.

A simple experiment that has received attention in recent
years is that of the sudden collapse of vertical granular
columns, where the flow is driven only by gravity. The
original experiments [1,2] released granular materials from a
cylindrical container into a flat horizontal surface and studied
the flow and properties of the final deposits. In a different
setup, the cylindrical column was replaced by a rectangular
step [3–5]. In both cases, it was found that the final state of
the deposits, characterized by the total distance traveled in
the radial (or horizontal) direction and the final height of the
deposited mass, scale with the column aspect ratio [1–7]. The
aspect ratio, a, is defined as the ratio of the initial height h0 to
the initial radius r0 (or the initial horizontal extension x0) of
the column: a = h0/x0.

Numerical studies that take into account the discrete nature
of the system have been able to reproduce experimental
observations using different numerical schemes [3,6,7]. So
far, these simulations have considered only spherical particles
or disks to model grains. Real granular materials involve a
large collection of particles with different properties, including
different shapes and sizes, that can have an effect on the
collective behavior of the grains. It is interesting to note that
the results of Refs. [2,4] suggest that the scaling properties of
the collapsed columns do not depend strongly on the shape of
the grains used. In most experiments, a single type of elongated

*horaciotmc@iim.unam.mx

grains were used having similar friction properties as the round
particles. The same scaling law was observed. Because these
works were not explicitly looking for the effect of particle
shape on the final properties of the collapses, this question
remained unanswered. Recently, a systematic experimental
study has addressed this issue [8].

Whereas the effect of the shape of the grains has not
been fully explored in the column collapse problem, it has
been addressed in other configurations. Elongated granular
materials, like rods, show a phase transition from a disordered
to an ordered state on a preferential direction exclusively
as a result of the elongation of the grains [9,10]. Rods and
elongated grains have a larger surface area on which friction
acts modifying the dynamics observed on circular grains.
While circular grains can have high packing fraction values,
elongated particles tend to leave many voids, decreasing the
packing fraction, which will also cause different dynamics
when the grains flow [8].

In this paper we present results of the scaling properties of
the final deposits of the collapse of 2D granular columns made
of grains with different elongations obtained with numerical
simulations. Individual circular grains are modeled as soft
disks that interact under prescribed elastic and viscous contact
forces in the normal and tangential directions, while elongated
grains are created by “gluing” two or more circular grains and
constraining them to a linear geometry. Elongated grains made
of k circular grains are denoted by Nk; for example, N1 refers
to circular grains, N2 to elongated grains made of two circular
grains, and so on.

II. NUMERICAL SCHEME AND PARAMETERS

Numerical simulations of the collapse of granular columns
were performed using a discrete element method similar to
that used in Ref. [7], as an idealization of the experimental
studies of Refs. [1,2].

Details of the numerical algorithm, which integrates New-
ton’s equations of motion for each grain of the system, can be
found in Ref. [7]. It is based on a second-order velocity-explicit
Verlet method [11,12] in which grains interact only at contact
by prescribed elastic and viscous forces in the normal and
tangential direction. The friction between grains is modeled
using a Coulomb type sliding friction determined by the

061304-11539-3755/2012/85(6)/061304(5) ©2012 American Physical Society



HORACIO TAPIA-MCCLUNG AND ROBERTO ZENIT PHYSICAL REVIEW E 85, 061304 (2012)

value of the friction coefficient μ. The only external force on
the grains is gravity. To create an elongated grain an extra
force, determined by evaluating the Lagrange multipliers,
is necessary to maintain k circular grains constrained to a
linear geometry at all times. This method is implemented and
described in full detail in Ref. [12].

Columns are constructed by randomly placing a total
number Nt = 2000 of grains of type Nk between two walls
whose half separation determines the initial length, x0 of
the column. The simulation parameters used here correspond
to glass particles of diameter d̄ = 0.3 mm with a 10% size
distribution, except for the friction coefficient between grains,
which was chosen equal to μ = 0.5 to directly compare with
the results reported in Ref. [7]. Once the grains have settled
under gravity and reached an equilibrium state, the maximum
height of the particles, h0, is measured and the value of the
corresponding parameter a is obtained for the column. In this
way we prepare columns with initial aspect ratio values a in
the interval [0.3,15] for elongated grains of types: N1 (circular
grains), N3, and N5; only a few cases where run for N8. At
t = 0 the walls are removed instantaneously, releasing the
grains and initiating the collapse. When the grains come to a
stop, the final maximum height and extension of the deposit
are measured.

We did not perform a systematic study of the dependence
of the collapse on the preparation of the columns. Based on
previous results [13], it is expected that the initial packing
fraction will have an influence on the collapse process. We
performed a few test simulations of columns prepared by
initially placing elongated grains parallel or transverse to
the horizontal surface (on which the collapse occurs) with
the most clear difference being that the column may not
collapse (results not shown). Clearly, a more in depth study
would be needed to assess this issue for the particular case of
elongated grains.

III. RESULTS

A. Final runout and height

For each column the normalized final runout distance x∞,
and final height h∞, measured at the end of the collapse are
shown in Fig. 1 as a function of the column aspect ratio a. The
results are consistent with the previously observed monotonic
increase (decrease) of x∞(h∞) as a increases (decreases). The
general features of the collapse process are captured by our
simulations; a good agreement with previous results [6,7] is
observed. Surprisingly, the data on Fig. 1 show similar scaling
features for all types of grains, with the circular grains (type
N1, red solid circles) having the largest final runout values and
the N5 type grains (black diamonds) having the lower runout
values. The final runout measurements for grains of type N3

(blue squares) and N8 (green triangles) lie in between these
two and remarkably close to each other. A similar behavior
can be observed for the final height of the deposits, shown
as the corresponding open symbols in the figure. We can, in
part, attribute the small differences in the results for different
grains to the uncertainty that arises from considering a “small”
number of particles.

The results of Fig. 1 allow us to write a scaling law for
the final runout distance with the column aspect ratio of
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FIG. 1. (Color online) Final runout (filled symbols) and height
(empty symbols) as a function of the column’s initial aspect ratio a

for columns made of long grains of type N1 (circle), N3 (square), N5

(diamond), and N8 (triangle). The dashed lines correspond to the fit
that gives the scaling exponent of Table I.

the form
r∞
r0

∼ apk (1)

and a similar expression for the final height h∞. By performing
a fit to the data of Fig. 1, we obtain the values shown in
Table I for the exponent pk . Despite the small differences for
each case, these exponents are within the same range as those
found in the experiments [1–5] and numerical simulations [6,7]
for the collapses of columns for circular grains, reinforcing
the hypothesis that the final runout distance of the collapse
of granular columns scale similarly and independently of the
types of grains used.

The final height of the columns, h∞, shown in Fig. 1 as open
symbols, indicate that columns made of larger grains collapse
into deposits that are slightly taller than columns made of
shorter grains. In accordance with Ref. [8] the collapse follows
the same scaling law with the column initial aspect ratio.

B. Evolution of collapse

There are known differences in the dynamics of round and
elongated particles [9,10]. To us, it is perplexing to observe
that such an effect has little influence on the final properties
of the deposits that results from column collapses. To further
investigate this issue, we now turn our attention to the process
that takes place from the initial column state to the final deposit.
Figure 2 shows snapshots of the column collapse process at
different instants for a particular column aspect ratio (a ≈ 4).
We compare three cases for grains of different lengths (N1,N3,
and N8) at dimensionless times τ ≈ 0.0,0.3,0.6,1.5, and 3.0
where τ = t/

√
2h0/g.

TABLE I. Scaling exponents of the final runout distance as given
in expression (1). The values correspond to the slopes of the straight
lines shown in Fig. 1.

Grain type pk

N1 0.57 ± 0.02
N3 0.66 ± 0.07
N5 0.50 ± 0.05
N8 0.69 ± 0.03
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(a) N1 (b) N3 (c) N8

FIG. 2. (Color online) Snapshots of the column collapse process for a column aspect ratio a ≈ 4. Each row shows a snapshot taken at
the dimensionless time τ ≈ 0.0,0.3,0.6,1.5, and 3.0 (from top to bottom) as indicated in Fig. 3. Light gray (blue online) shading to dark
gray (red online) shading colors indicate increasing grain speed. Note that only the right side of the collapses are shown as they are very
symmetric.

For the three columns shown, at all times the collapse
process looks similar. During the collapse, the height and
extension of the columns are indistinguishable from the figure.
Regions of static and moving grains that change in shape as the
collapse occurs can be observed. At τ ≈ 0.3 a nearly triangular
region of static grains of type N1 can be observed at the bottom
of the column. For longer grains this static region appears less
regular in shape and it covers a larger area. We can also notice
that at this instant of the collapse there is a larger portion
of circular grains that have acquired kinetic energy (color
indicates speed), whereas for longer grains (type N8) fewer
grains appear to have a lower energy, as can be seen by the
difference in color.

At a later time τ ≈ 0.6, a surface of flowing grains develops
in all three columns, but the region of static grains has increased
in size, most noticeable for longer grains. The height of the
static region is about half the maximum height of the column
at that instant, whereas for circular grains the static region
is much smaller for the same time. Longer grains have less
mobility as they compact due to their shape. At this instant,
which coincides with the time for which the maximum kinetic
energy is reached (see below), about 2/3 of the circular grains
are participating in the flow while for longer grains only
half of the grains are moving. Until this time, the shape of

the collapsed columns still looks similar for all grain shapes
and, except for the aspects we just discussed, no significant
differences can be observed.

At τ ≈ 1.5 the collapses are near the end of the avalanche
phase and moving grains flow over a bed of static grains below.
During this period of time grains slow down, dissipating energy
mostly by friction. Notice that the region of static grains has
increased in extension in all three cases but we can still observe
that more circular grains participate in the flow. The deposit
of larger grains has more irregularities on the surface than that
for circular grains and a smaller portion of grains are moving.
When the grains have dissipated all their energy, the final
deposits have a different shape due to the irregularity created
by the longer grains: The column made of circular grains ends
up with a deposited mass that has a well-defined maximum
tip, while the long grain deposits show a more rounded surface
profile. On closer inspection, the surface for grains of type
N8 reveal a more irregular surface than for the other columns.
Nevertheless, the overall final extent of the deposits is similar
for all cases, as shown in Fig. 1.

Some of the dynamic differences among the collapses for
different grains can be quantified if we consider an energy
balance. Following Ref. [7], we plot the dimensionless mean
potential and kinetic energy of the grains (normalized by the
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FIG. 3. (Color online) Dimensionless energies as a function of
time for columns with initial aspect ratio of a ≈ 4. Symbols are the
same as in Fig. 1 for grains of type N3 (square), N5 (diamond), and N8

(triangle). The vertical lines indicate the times at which the snapshots
of Fig. 2 where taken. Black curves show E∗

p , blue E∗
k , and red E∗

dis.

initial total energy of the column), E∗
p and E∗

k , together with
the cumulative dissipated energy during the collapse,

E∗
dis = 1 − E∗

p − E∗
k .

Figure 3 shows the energy balance for the columns shown
in Fig. 2. The vertical lines on this plot indicate the instants
of time at which the snapshots of Fig. 2 where taken. The
kinetic energy of the grains increases monotonically to a
maximum value that depends on the type of grains used; the
shorter grains gain more kinetic energy. One can expect longer
grains to accelerate at a slower rate since their surface area
is greater; friction forces between these grains act through a
longer distance. After this acceleration phase, grains decelerate
and E∗

k decreases monotonically, again, at a slower rate for
longer grains. Finally, by the end of the collapse, the kinetic
energy E∗

k of all columns reaches a zero asymptotic value
when they come to rest after dissipating their energy; columns
made of shorter grains dissipate energy at a faster rate than
columns made of longer grains, as can be seen from the red
curves for the cumulative dissipated energy E∗

dis. The potential
energy E∗

p of the grains, which can be related to the maximum
height of the column, also behaves similarly for all columns:
It decreases monotonically as time progresses until it reaches
a finite value. For the columns made with longer grains, the
rate at which the grains convert potential energy to kinetic
energy is slower than that for circular grains. The intermediate
case of N3 type grains falls in between. Surprisingly, all three
columns reach nearly the same final value of E∗

p, supporting
the observation that the final properties of the collapse scale
similarly with the parameter a and do not depend on the type
of grain used [2,4,8].

IV. DISCUSSION AND CONCLUSIONS

Numerical simulations of the collapse of 2D columns
capture the main features of laboratory experiments very well.
For columns made with grains of different elongations, we
have found that the final distances that characterize the collapse
scale with the initial aspect ratio, a, similarly to columns made
of circular grains. For all types of grains used, a monotonical
increase (decrease) of the final runout (height) with a is
observed. The scaling exponent seems to depend weakly on

the elongation of the grains. Energy calculations like those
shown in Fig. 3 indicate that the final properties of the deposits
can be understood in terms of the energy conversion of the
system as the collapse occurs: Columns with similar values of
initial aspect ratio a transform the initial potential energy in
such a way that the final properties of the deposit are similar,
irrespective of the type of grains used.

Recently, significant advances have been reached in the
rheological description of granular flow [14]. A single di-
mensionless number, the inertial number I , has been used
to describe flow properties, in particular for the transient flow
in the column collapse problem [15,16]. Since this approach
has proven quite successful we have used some of these ideas
to explain our results. We construct a quantity equivalent to the
inertial number, which is the ratio of two characteristic times
of the flow during the columns collapse.

The use of the the available energy for spreading does not
depend on the type of grain used but does depend on the value
of a, as with circular grain columns [6]. In the energy plots
of Fig. 3 we notice that the conversion of the available energy
from potential to kinetic is very similar for all grains. When
the deposit experiences horizontal deformation (not during
the initial phase of the collapse) the rate of deformation can be
approximated by

γ̇ ≈ x(t) − x0

t

1

h0 − h(t)
.

On the other hand, we can construct a characteristic time from
the pressure of the whole column at the base P = Mg

x−x0
, where

M is the total mass of the column. Considering an effective
diameter deff = d̄

√
k (k being the number of circular grains of

mean diameter d̄ that make an elongated grain of type Nk) we
can construct a pressure time scale as

TP = deff
(x − x0)1/2

√
c0Ag

,

where c0A is the initial area occupied by the grains in the
column. Comparing the pressure time scale with the effective
shear rate, the inertial number can be written as

I = deff(x − x0)3/2

h − h0

1

t
√

c0Ag
. (2)

In agreement with what has been discussed in Ref. [14],
large values of I indicate that the pressure of the material

FIG. 4. Time evolution of the inertial number I from Eq. (2)
during collapse for the columns of Fig. 2. Symbols and vertical lines
are the same as in Fig. 3.
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above dominates over horizontal deformation of the deposit,
as expected for short times. As times advances, I decreases as
the shear deformation becomes important

Figure 4 shows the time evolution of I for the data shown
in Fig. 3. We see that I quickly decreases for τ < 1. Then
I reaches a value close to 0.02 for all cases, regardless of
the grain type. Following Ref. [14] we can argue that the
effective friction is approximately the same for all grain types
considered: The shape of the grains does not modify the
effective friction in a significant manner. Therefore, it is not
surprising that the runout is similar for all grain types.

In summary, our numerical results are in close agreement
with previously reported results for the column collapse

problem [2,4,8]. We have shown that some differences can
be observed during the collapse for different grain length;
however, such differences do not affect the global friction
coefficient in a significant manner. To us it remains a challenge
to understand why the grain shape does not influence the global
behavior of the collapse.
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Abstract

We present a numerical study of the collapse of two dimensional granular columns
under different gravitational accelerations. We find that the final properties of the
emplacements are not strongly affected by the value of the gravitational accel-
eration and that the scaling law ∼ aβ is preserved. An energy balance shows
differences for high aspect ratio columns collapsing in low gravities which re-
sults from a fluidization of the column induced by the grain motion.

Keywords: Granular Column Collapse, Discrete Element, gravity, scaling law

1. Introduction

Dense gravity-driven granular flows play an important role in shaping the
surface of the Earth and other planets. These complex processes involving solid
particles interacting with an interstitial fluid (like air or water) are abundant in
nature, and represent a natural hazard threatening many anthropogenic activi-
ties. Similar events have been observed in extraterrestrial planets like the Valles
Marineris (VM) landslides on Mars ([13, 16, 10]); they represent a good com-
parison and a test to the knowledge acquired from experiments and numerical
simulations done under terrestrial conditions.

Many theoretical and experimental studies have tried to determine the rele-
vant parameters that influence this events in order to characterize these flows and
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describe the phenomena occurring in Nature. Laboratory experiments of the col-
lapse of granular columns under controlled conditions ([8, 12, 9, 11, 6, 1]) have
shed some light into the physics of these flows having established well defined
unique scaling laws of the final distances that primarily depend on the initial ge-
ometry of the columns. Dense granular flows in natural events are more complex
phenomena involving many different interacting components and usually have
much less energy dissipation than the controlled experiments ([13, 16]). For
example, studies of the VM landslides (Mars) ([13]) have shown some disagree-
ment on the final run-out distances with experiments and theoretical models,
which suggests that some mechanisms result in significantly smaller energy dis-
sipation than that for typical dry flows ([13, 16]). Similar natural phenomena on
Earth also show signatures of a significantly smaller effective friction resulting
in larger run-out distances that in the dry flow cases ([16]).

Recently ([16]), an experimental study of the collapse of a column which is
initially fluidized has shown that the scaling laws of the form λan are more gen-
eral than those observed for dry grains only. The initial fluidization of the grains
increases the interstitial porosity considerably reducing the inter-granular fric-
tion. As the column collapses the pore pressure diffuses with an increase on the
internal friction that still remains below that of a dry (non-fluidized) equivalent.
This initial fluidization and decrease on the internal friction does not change the
scaling laws and only changes the value of the coefficient λ compared to dry
dense flows, but show no significant change in the value of the scaling expo-
nents ([16]). This work also reveals that the exponent n is independent of the
mean friction of the flow. Comparison of experimental results with data of the
VM landslides on Mars ([13, 16]) suggests a lower effective friction as a phys-
ical mechanism contributing to low energy dissipation during the emplacement
of these extraterrestrial events and thus longer run-out distances. This conclu-
sion is reached in the context of the thin layer approach (or the Saint-Venant
equations) together with a Coulomb type friction law ([13, 16]), a simple model
that has successfully reproduced experimental results for a limited range of the
parameters ([15]).

Numerical experiments, even with such minimal models as the one used
by ([15]), are in very good agreement with experimental results on dry flows
([8, 12, 9, 11]) and are capable to reproduce the scaling laws observed in the
experiments. While some discrete element methods tend to overestimate the
run-out distance compared to the experiments ([19, 17]), others successfully re-
produce experimental data ([6]). Overall, they have been used as a powerful tool
to investigate this kind of problems. The nature of these methods allows some
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effects that escape the continuous models and that may be relevant to under-
stand the geological observations. In particular we are interested in the effects
of gravity at the particle scale and how this reflects in the final properties of the
emplacements. Arguably, the behavior of dense granular flows is strongly de-
pendent of frictional forces. As the granular mass flows, the grains remain in en-
during contacts exerting frictional forces on each other. In the column collapse
problem, the force which maintains the grains in contact is their own weight
which, naturally, depends on the value of the local gravity. Hence, we wonder
if one can expect the same granular rheology if the gravitational acceleration is
changed. Under the same nominal conditions (same granular mass and initial
conditions), would an avalanche run out farther, shorter or the same on Earth or
Mars? Using DEM modeling we aim to answer this question and to that matter
we perform numerical simulations of the collapse of dry granular columns and
vary the inter-granular friction and the values of the gravitational acceleration.

We briefly describe the numerical model used and the parameters controlled
and varied in the numerical experiments in section 2. Then a short discussion on
the dimensional analysis of the problem is presented in section 3. In section 4.1, a
confirmation that the final heights of the emplacement scale with the initial aspect
ratio and are independent of the inter-granular friction is presented. Then we
show results that confirm, as concluded in ([13, 16, 15]), that the emplacement
properties are nearly independent of gravity. We show that, at the grain scale,
there is an effect of gravity that contributes to the flow properties. Finally, in
section 5 we discuss the implications of these numerical observations on the
emplacement of granular materials in extraterrestrial gravities.

2. Numerical model and simulation parameters

To study the effect of varying gravity on the collapse of granular columns, nu-
merical simulations using an Open Source Software ([4]) have been performed.
This package, based on the Discrete Element Method (DEM), integrates New-
ton’s equations of motion for each grain on the system which interact only at
contact under prescribed elastic and viscous forces in the normal and tangential
directions. The friction between grains is implemented using a Coulomb type
model determined by the value of the inter-granular friction coefficient µ. The
details of the numerical algorithm can be found in ([4]).

Columns are constructed by randomly pouring Nt = 5000 spherical grains
constrained to move only on a 2D space between two walls whose half sepa-
ration determines the initial width x0 of the column. The simulation parame-
ters used correspond to grains of diameter d = 0.9mm with a density of ρ =
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Table 1: Parameter values used for the simulations. The inter-granular friction
coefficient µ and the value of gravity are changed for each column of initial
aspect ration a, defined in the main tex. ( g0 = 9.81m/s2).

µ: 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

a: 22.53 14.63 5.75 4.55 3.70 3.08 2.58 2.20 1.67 1.50

g/g0: 0.1 0.2 0.3 0.4 0.5 1.0 10.0

2500kg/m3, corresponding to laboratory glass beads. Once the grains have set-
tled and reached an equilibrium state, the maximum height of the particles, h0,
is measured and the value of the corresponding initial aspect ratio of the column
is obtained as a = h0/x0. In this way 11 columns with 1.5 ≤ a ≤ 22.5 are
obtained. At t = 0 the walls are removed instantaneously, releasing the grains
and initiating the collapse. Each collapse is performed starting from the same
initial state and varying the inter-granular friction coefficient value from µ = 0.5
to µ = 0.95. For each column and each value of friction, the value of the gravi-
tational acceleration is also changed. We considered fractional multiples of the
value of gravity on Earth g0 = 9.81m/s2. Table 1 summarizes the parameters
used for the simulations.

The numerical simulations reproduce qualitatively well the deposits formed
by columns collapsing under Earth’s gravity, as can be seen on Fig. 8, which
shows snapshots of a typical collapse at different instants for a particular column
aspect ratio (a ≈ 4.5) and an inter-granular friction value (µ = 0.5) for three
different values of gravitational accelerations.

In the next section we discuss the measurements performed during the col-
lapse process to obtain information about the emplacement and the flow as grav-
ity is varied. It will be shown that gravity can be scaled out of the list of variables,
as in ([13, 16, 15]), so that the emplacements are gravity independent. Neverthe-
less, as it will be shown in a following section, for some specific cases gravity
still has an effect in the flow.

3. Dimensional issues

If no other forces are present, dimensional analysis shows that the height h
of a single grain dropped from an initial height, h0, with an initial velocity v0, in

4



a constant gravitational field g0, can be written as

h
h0

= Ψ


t√

2h0/g
,

v0√
2gh0

 , (1)

where Ψ is a dimensionless function. If the initial velocity is zero, the normalized
height reduces to a function of a single dimensionless variable

Π = Ψ1(τ), (2)

where Π ≡ h
h0

and τ = t(2h0/g)−1/2 are the dimensionless height and time. The
functional form of Ψ1(τ) can, in fact, be derived analytically, and is given by
Ψ1(τ) = 1 − τ2, which is independent of the value of gravity. This means that
the height of a grain falling near the surface of Earth (where g = 9.81m/s2 = g0)
or near the surface of Mars (where g ≈ 0.4g0) will follow the same dimension-
less law given by Ψ1(τ), provided that no other interactions exist. Considering
this rather trivial observation, it is natural to ask if the collapse of a column
made of many such grains will have a similar law when collapsing under dif-
ferent gravitational accelerations. In ([15]) a minimal model based on a shallow
water approximation together with a Coulomb type friction law is proposed to
describe the emplacements of columns under the action of gravitational acceler-
ations. Scaling arguments show that the solutions of this model do not depend on
gravity and that the experimentally observed scaling for low initial aspect ratios
is contained in the model equations ([15]). Considering this model ([13, 16])
tried to reconcile the observations for the Valles Marineris landslides on Mars
with interesting results. The dimensional arguments described above lead to the
conclusion that the emplacements of granular columns do not depend on the
value of gravity. However, a granular column is a complex system depending
on many parameters, so a complete dimensional analysis is not feasible. The
numerical simulations of the collapse of two dimensional granular columns in
different gravities reported here are aimed to provide some answers to this mat-
ter. Before presenting the results, in the remaining of this section, we discuss the
measurements to obtain information about the emplacement and the flow.

3.1. The maximum height function
The deposit formed when a granular column collapses depends, among other

variables, on the initial geometry of the column ([8, 12, 9, 11, 6, 1]). Experi-
mentally, the final values of the horizontal and vertical distances traveled by the
grains are measured and found to scale with the initial aspect ratio a = h0/x0. In
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this investigation we focus only on the final height. The final height h f , or top of
the column, is obtained by measuring the top of the deposit once the grains have
come to rest. One of the advantages of numerical simulations is that they pro-
vide access to all the information of the system during the whole process; thus,
the time evolution of the top of the deposit during the collapse is measured. We
call this the maximum height function, hm = hm(t). The measurements generally
reported by the experiments are the asymptotic value of hm:

h f = lim
t→∞

hm(t).

Because the final height depends on the initial geometry of the column (by means
of the parameter a), considering dimensional analysis we can write

h∗ = Φ(τ, a, µ) (3)

where

h∗ =
hm

h0
, (4)

τ =
t√

2h0/g
, (5)

are the dimensionless maximum height of the deposit and the dimensionless time
respectively. This dimensionless maximum height function is the equivalent to
the vertical position of the falling grain example (discussed at the beginning of
this section) and provides information of the collapse process under the gravita-
tional acceleration by means of the dimensionless variable τ. The dimensionless
function Φ is unknown except for some asymptotic values that can be inferred
from experimental observations. As it is not yet clear how the properties of the
grains affect the final results ([8, 12, 9, 11, 6, 1, 17, 19]), and even though the
friction coefficient between grains µ cannot be obtained by dimensional con-
siderations, as done in ([10]), we have included it as a relevant dimensionless
variable on which the collapse may depend on. It is convenient to study, instead,
the function

dh∗ = 1 − h∗ = ϕ(τ, a, µ), (6)

which allows us to directly compare with the functional form Ψ1(τ) of Eqn. 2. In
terms of this function, asymptotic values of the maximum height of the deposit
can be obtained from experimental observations and numerical results, consid-
ering a, µ or τ to be large or vanishingly small. We will discuss this shortly.
Before that, a quantity used to characterize the flow and final state of the deposit
is presented.
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3.2. The inertial number
Recently, significant advances have been reached in the rheological descrip-

tion of granular flow ([2]). A single dimensionless number called the inertial
number I, has been used to describe flow properties, in particular for the tran-
sient flow in the column collapse problem ([5, 7]). A quantity equivalent to the
inertial number can be constructed as the ratio of two characteristic time scales
of the flow during the column collapse ([18]). When the deposit experiences
horizontal deformation the rate of deformation can be approximated by

γ̇ ≈ x(t) − x0

t
1

h0 − h(t)
.

A characteristic time can be constructed from the pressure of the whole column
at the base P =

Mg
x−x0

, where M is the total mass of the column. A pressure time
scale can be then constructed as

TP = d̂
(x − x0)1/2

√
c0Ag

,

where d̂ is the mean grain diameter and c0A is the initial area occupied by the
grains in the column. Comparing the pressure time scale with the inverse of the
effective shear rate, the inertial number can be written as:

I =
(x − x0)3/2

h − h0

d̂
t
√

c0Ag
. (7)

Large values of I indicate that the pressure of the material above dominates over
horizontal deformations of the deposit ([2]), hence the flow is dense and domi-
nated by friction between grains. We expect to observe a decrease on the value
of I as time advances and the shear deformation becomes important. More im-
portant is the fact that an effective friction coefficient can be calculated, solely,
as a function of I ([2]). Therefore, knowing the value of I can help to asses the
amount of dissipation occurring in the flow. In the next section we show results
of this quantity for the collapses of granular columns.

4. Results

In this section we present results of the numerical simulations of collapses of
granular columns in different gravities. For each column with initial aspect ratio
a we vary the inter-granular friction coefficient µ according to the list of values
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shown in Table 1 and let the grains collapse. We then repeat this for each gravity
value shown on the same table. Results are presented starting with the reference
case g = g0 where we find that our results are in accordance with previously
published work. Then, we present results of the collapses for other values of g.

4.1. Reference case: g = g0

Figure 1 shows the evolution of the top of the column normalized by the
initial height (h∗, Eqn. 4) at g = 1.0g0 for the extreme values of inter-granular
friction considered in this study: µ = 0.5 (filled symbols) and µ = 0.95 (open
symbols). As can be seen from the plot, some differences due to the friction co-
efficient between grains are most noticeable for small values of the initial aspect
ratio (top most curves on Fig. 1); however, changing the friction coefficient be-
tween grains results, in general, in small differences on the evolution of the top
of the column and on the final height.

The normalized final height, h∗f , is shown in Fig. 2 as a function of the
parameter a for the same data shown in Fig. 1. Columns made of grains with the
lower friction coefficient (µ = 0.5, filled symbols in Fig. 2) have slightly smaller
heights that those made of grains with the higher friction coefficient (µ = 0.95,
open symbols in Fig. 2).

As many others ([8, 12, 9, 11, 6, 1, 19, 17]) we find a scaling law for the final
height of the form

h∗f = λaβ. (8)

No significant difference is observed as values of µ change and a linear relation-
ship for β = β(µ) and λ = λ(µ) are obtained:

β(µ) ' 0.06µ − 0.80
λ(µ) ' 0.20µ − 0.43.

Clearly, the small value of the slope for β(µ) is indicative of the nearly null
dependence of the exponent on the inter-granular friction coefficient. This seems
to support the hypothesis that the scaling exponents do not depend strongly on
the friction between the grains ([16, 8, 12, 9, 11, 6, 1]). On the other hand the
pre-factor coefficient λ does depend weakly on µ, also consistent with previous
work ([16, 6, 1]). By taking this into account, we found that the final height of
the deposit scales with the initial aspect ratio parameter a according to

h∞
h0
∼ a(−0.80±0.06) (9)
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when g = 1.0g0. Figure 2 shows this result as a dashed line together with the
final height data.

We now turn our attention to the scaling of the top of the column as the
collapse occurs. Figure 3a shows the same data from Fig. 1 but for the shifted
maximum height function dh∗ defined by Eqn. 6. On this plot the free fall scaling
law 1−Ψ1(τ) = τ2 is also shown by a dashed line. It can be seen that for τ < 1 the
columns with intermediate and large values of a follow this law. As a decreases,
the collapse no longer follows the τ2 trend. Also, for all cases, when τ & 1 the
collapse no longer follows the free fall regime.

Figure 4a shows the inertial number I from Eqn. 7 for these results (g =

1.0g0). The inertial number starts at a high value as the column begins to col-
lapse, which indicates that the flow is dominated by the pressure of the material
above. This pressure depends on the gravitational acceleration. As time advances
this quantity decreases reaching a minimum value which depends on the initial
aspect ratio of the column. Then the inertial number slightly increases again until
a final value is reached that depends on a and weakly on inter-granular friction.
The final values of the inertial number lie in the range of a dense flow regime
([2]) and are a decreasing function of the initial aspect ratio a. This means that
flow of columns with a high initial aspect ratio is dominated by the horizontal
deformation, while for columns with a small initial aspect ratio, flow is mainly
determined by the pressure of the material above the emplacement. For columns
with the same aspect ratio the evolution of this quantity is similar, irrespective of
the friction between grains and have similar final values; thus, we expect columns
with similar values of a to flow with a similar rheology in terms of the inertial
number ([2]), and have similar final properties.

4.2. Collapses for other values of g.
The results presented so far correspond to the reference case of Earth’s grav-

ity g = 1.0g0. The fundamental difference of columns collapsing under different
gravitation accelerations with respect to the reference case is in the vertical ac-
celerations. As discussed in Sec. 3, the height of a single grain would follow the
scaling law given by Eqn. 2 and would be invariant with respect to changes in
gravity. In what follows we show results of the collapse of a column to address
the question if the properties of the emplacement change when occurring under
different gravitational accelerations.

Figures 3b and 3c show the evolution of dh∗ (Eqn. 6) for two extreme cases:
g = 0.1g0 and g = 10.0g0. We notice that the scaling is very similar to the
reference case as expected from the dimensional analysis discussed previously.
This confirms that the scaling arguments of ([15]), implying that the collapses
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should be independent of gravity, hold true. It can be observed in both cases,
that the differences on the collapse depend weakly on the inter-granular friction,
but strongly on the parameter a: columns with a larger initial aspect ratio follow
the free-fall scaling law closer than columns with a small initial aspect ratio, spe-
cially at greater gravitational accelerations (Fig. 3c). Some differences between
lower and greater gravities are more noticeable at short times τ < 1 and for small
aspect ratios, as if these columns took some time to react to the collapse. Since
the effect of inter-granular friction is weak and does not affect the results in an
important manner, in what follows we will show only data for µ = 0.5. In Fig.
5 the evolution of h∗ is shown for three gravitational accelerations and three dif-
ferent aspect ratios. Notice that for a given value of a, the top of the column
follows similar curves when the emplacement occurs on different gravities. It is
interesting to note that the top of columns collapsing at small gravity accelera-
tion (g = 0.1g0 continuous curves in Fig. 5) end slightly above the others, more
noticeable for the largest aspect ratio (squares on Fig. 5).

In Fig. 6 we show the normalized final height h∗f as a function of the gravity
acceleration for different initial aspect ratios. It can be seen that the value of h∗f
remains fairly constant when the collapses occur on different gravitational accel-
erations, indicating that somehow the emplacements end with similar properties.

We now turn our attention to the inertial number as defined by Eqn. 7. Fig-
ure 4b shows the inertial number for the same data of Fig. 5. Unlike the top of
the column, curves of the inertial number of collapsing columns under different
gravities do not reach similar values for the same initial aspect ratio. A certain
dependence on the gravity value can be observed, most noticeable when a col-
umn with an initially large aspect ratio collapses under a low value of gravity
(square and solid curve in Fig 4b), for this case the inertial number is highest.
In all other cases except for large gravities, the inertial number has a lower final
value as the initial aspect ratio increases.

To further characterize the emplacements we performed an energy balance
analysis. Following ([19, 18]), we plot the mean kinetic, potential and cumula-
tive dissipation energy during the collapse, normalized by their respective initial
energy, which is gravity dependent. Figures 7a, 7b and 7c show this energy
balance for columns of Fig. 5 as they collapse under different gravities. For a
given aspect ratio, the potential energy follows a similar trend for all the cases
regardless of the gravitational acceleration. By the end of the process when the
kinetic energy approaches zero, all emplacements with the same initial aspect
ratio have a similar final value of potential energy. As discussed in ([18]), this in
part explains why columns with the same initial aspect ratio have the final height
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and thus the emplacements have a similar final geometry and scale as Eqn. 8.
Columns with a large initial aspect ratio collapsing in low gravities take a longer
time to loose their kinetic energy (circle and dotted line in Fig. 7a), while in-
termediate aspect ratio columns reach a zero kinetic energy state faster at when
collapsing at low gravities (circle and dotted line in Fig. 7b). On the other hand,
small aspect ratio columns convert their kinetic energy in a similar way regard-
less of the gravity under which they collapse, as can be seen from Fig. 7c. Notice
that for all aspect ratios, the kinetic energy during the avalanche phase ([17, 18])
is slightly higher when the column collapses in the largest gravity (triangles in
Figs. 7a,7b, and 7c), and slightly lower when gravity is smallest. In all cases, the
cumulative dissipated energy curves are similar.

We now look at the state of the emplacement at the times marked on Fig. 4b.
Figure 8 shows the state of columns with different aspect ratios at dimensionless
time τ collapsing at different gravitational accelerations.

For a similar value of the aspect ratio, the grains collapsing at a lower gravity
appear to be fluidized at the beginning of the emplacement, while for larger grav-
ity accelerations, the granular mass is more compacted. As the collapse evolves,
this initial fluidized state disappears and both emplacements have similar final
characteristics (as the plots of Fig. 5 indicate). In this example the fluidized be-
havior for low gravities is observed clearly. Although the column collapsing on
Earth’s gravity also appears to be slightly fluidized, it can be seen that grains col-
lapsing in the lower gravity environment show a greater spacing between them at
the beginning of the emplacement. This effect is very similar to the one achieved
on ([16]) by initially fluidizing the grains. Notice that as the emplacement occurs
this initial fluidization effect disappears and the final deposits reach similar final
properties, in accordance to the measurements of h∞/h0 shown in Fig. 5.

5. Discussion and Conclusions

We have performed numerical simulations of the collapses of granular columns
varying the gravitational acceleration and found that the scaling

h∞/h0 ∼ aβ

is preserved. We have also provided further evidence that the scaling exponent
does not depend on the inter-granular friction. When the evolution of the dimen-
sionless height for similar initial aspect ratio columns is plotted as a function
of the gravity dependent characteristic time τ =

√
2h0/g the curves are very

close to each other, irrespective of the friction between grains and the value of
11



g. This argument has been discussed by ([14]) but considering a shallow water
approximation and a Coulomb-friction type model. Our discrete element simu-
lations confirm these results. We have also found that the inertial number for all
cases lies in the dense flow regime, with high(low) aspect ratio columns having
smaller(larger) final values of this quantity. We found that for a given gravity,
the inertial number is a decreasing function of the initial aspect ratio.

The evolution of the inertial number, I, is important because according to the
recently proposed µ−rheology ([2]), the value of the effective friction coefficient
can be calculated if I is known. Such a friction coefficient gives a measure of
the dissipation, and therefore could be used to predict the final properties of the
deposit. When the inertial number is compared for columns with similar aspect
ratio collapsing at different gravities, we observe that they evolve in a similar
way depending on a, transitioning from higher to lower values depending on the
initial aspect ratio, and weakly on the gravitational acceleration, with high aspect
ratio columns having a greater inertial number when gravity is very small.

The energy analysis shows that high aspect ratio columns loose their avail-
able kinetic energy much slower when collapsing at low gravities (Fig. 7a). For
intermediate aspect ratios we observe that the kinetic energy takes longer to dissi-
pate in small gravities (Fig. 7b), and for low aspect ratio columns the conversion
of kinetic energy is similar in all gravities (Fig. 7c). In all cases the potential
and the cumulative dissipated energies follows similar curves and reaches sim-
ilar final values thus the final properties of the columns are similar, which, as
discussed in ([18]), in part explains why the final properties of the emplacements
are similar, leading to the observed scaling laws.

It could be argued that the observed differences on the conversion of kinetic
energy between high and low aspect ratio columns collapsing at low gravity val-
ues are due to different mechanism occurring at the grain level that are respon-
sible for dissipating energy in such a way that the final emplacements present
similar characteristics. The advantage of numerical methods like the one used
on this work allow us to explore the evolution of the system at the grain level,
and when doing this, we have noticed that as the value of gravity is lower, the
grains appear to be on a fluidized state during the beginning of the collapse, sim-
ilar to the effect obtained in ([16]). Since vertical accelerations due to gravity are
very low, the grains that collapse at low gravities show less contacts and appear
fluidized in a natural way, thus dissipating fewer energy by frictional contacts,
which explains the slow conversion of kinetic energy observed in Fig. 7a for
high aspect ratio columns in low gravity values. On the other extreme, grains
of columns collapsing at large gravities have greater vertical accelerations and
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tend to compact and present enduring contacts, dissipating energy much faster.
It appears that a fine balance exists between the accelerations due to gravity and
the energy dissipated by frictional contacts that makes the system’s final state
posses similar characteristics, irrespective of the gravitational accelerations. The
inertial number I could provide some further understanding of the responsible
mechanism for energy dissipation. Based on the ideas of the µ−rheology, the
effective friction of a granular flow depends on the inertial number solely, so
flows with similar inertial numbers should present a similar effective friction.
We have shown that columns collapsing at low gravities present larger values of
this inertial number, thus fewer contacts between grains occur during the flow, a
conclusion that can be corroborated by the fluidized effect described above, and
so the dissipated energy by friction is reduced but according to the µ−rheology,
the effective friction increases with increasing I ([2, 3]) so that according to our
measurements, a column collapsing at a low gravity has a large effective friction
thus balancing the lack of dissipation by frictional contacts and ending in similar
deposits as columns collapsing at higher gravities, where the value of the inertial
number is lower and energy is dissipated by enduring friction contacts.

We conclude that although gravity can be scaled out of the parameters that
affect the collapse, there is still an effect due to the granular nature of the system
that consists on a naturally occurring fluidization effect similar to that explored
experimentally in ([16]). This effect, which cannot be captured by simple con-
tinuous models, could contribute to the low effective friction and large run-out
distances observed on extraterrestrial events like those of the Valles Marineris
landslides on Mars.

[1] Balmforth, N. J., Kerswell, R. R., 2005. Granular collapse in two dimensions. Journal of
Fluid Mechanics 538, 399–428.
URL http://www.journals.cambridge.org/abstract S0022112005005537

[2] GDR MiDi, 2004. On dense granular flows. European Physical Journal E 14, 341–365.
URL http://www.springerlink.com/index/a94jmg12r9dyw45e.pdf

[3] Jop, P., Forterre, Y., Pouliquen, O., Jun. 2006. A constitutive law for dense granular flows.
Nature 441 (7094), 727–30.
URL http://www.ncbi.nlm.nih.gov/pubmed/16760972

[4] Kloss, C., Goniva, C., 2010. LIGGGHTS:A new open sorce Discrete Element simulation
software. In: Proc. of The Fifth International Conference on Discrete Element Methods.

[5] Lacaze, L., Kerswell, R. R., Mar. 2009. Axisymmetric granular collapse: a transient 3D
flow test of viscoplasticity. Physical Review Letters 102 (10), 108305.
URL http://www.ncbi.nlm.nih.gov/pubmed/19392169

[6] Lacaze, L., Phillips, J. C., Kerswell, R. R., 2008. Planar collapse of a granular column:
Experiments and discrete element simulations. Physics of Fluids 20 (6), 063302.
URL http://link.aip.org/link/PHFLE6/v20/i6/p063302/s1&Agg=doi

[7] Lagrée, P.-Y., Staron, L., Popinet, S., Sep. 2011. The granular column collapse as a contin-
uum: validity of a two-dimensional NavierStokes model with a µ(I)-rheology. Journal of

13



Fluid Mechanics 686, 378–408.
URL http://www.journals.cambridge.org/abstract S0022112011003351

[8] Lajeunesse, E., Mangeney-Castelnau, A., Vilotte, J. P., 2004. Spreading of a granular mass
on a horizontal plane. Physics of Fluids 16, 2371–2381.
URL http://pof.aip.org/resource/1/phfle6/v16/i7/p2371 s1

[9] Lajeunesse, E., Monnier, J. B., Homsy, G. M., 2005. Granular slumping on a horizontal
surface. Physics of Fluids 17 (10), 103302.
URL http://link.aip.org/link/PHFLE6/v17/i10/p103302/s1&Agg=doi

[10] Lajeunesse, E., Quantin, C., Allemand, P., Delacourt, C., 2006. New insights on the runout
of large landslides in the Valles-Marineris canyons, Mars. Geophysical Research Letters
33 (4), 2–5.
URL http://www.agu.org/pubs/crossref/2006/2005GL025168.shtml

[11] Lube, G., Huppert, H. E., Sparks, R. S. J., Freundt, A., 2005. Collapses of two-dimensional
granular columns. Physical Review E 72, 041301.
URL http://pre.aps.org/abstract/PRE/v72/i4/e041301

[12] Lube, G., Huppert, H. E., Sparks, R. S. J., Hallworth, M. A., Jun. 2004. Axisymmetric
collapses of granular columns. Journal of Fluid Mechanics 508, 175–199.
URL http://www.journals.cambridge.org/abstract S0022112004009036

[13] Lucas, A., Mangeney, A., May 2007. Mobility and topographic effects for large Valles
Marineris landslides on Mars. Geophysical Research Letters 34 (10), 1–5.
URL http://www.agu.org/pubs/crossref/2007/2007GL029835.shtml

[14] Mangeney, A., Heinrich, P., Roche, R., Aug. 2000. Analytical Solution for Testing Debris
Avalanche Numerical Models. Pure and Applied Geophysics 157 (6-8), 1081–1096.
URL http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s000240050018

[15] Mangeney-Castelnau, A., Bouchut, F., Vilotte, J. P., Lajeunesse, E., Aubertin, A., Pirulli,
M., 2005. On the use of Saint Venant equations to simulate the spreading of a granular
mass. Journal of Geophysical Research 110 (B9), 1–17.
URL http://www.agu.org/pubs/crossref/2005/2004JB003161.shtml

[16] Roche, O., Attali, M., Mangeney, A., Lucas, A., Nov. 2011. On the run-out distance of geo-
physical gravitational flows: Insight from fluidized granular collapse experiments. Earth
and Planetary Science Letters 311 (3-4), 375–385.
URL http://linkinghub.elsevier.com/retrieve/pii/S0012821X11005371

[17] Staron, L., Hinch, E. J., Dec. 2005. Study of the collapse of granular columns using two-
dimensional discrete-grain simulation. Journal of Fluid Mechanics 545 (-1), 1.
URL http://www.journals.cambridge.org/abstract S0022112005006415

[18] Tapia-McClung, H., Zenit, R., 2012. Computer simulations of the collapse of columns
formed by elongated grains. Physical Review E 85 (6), 061304.
URL http://link.aps.org/doi/10.1103/PhysRevE.85.061304

[19] Zenit, R., 2005. Computer simulations of the collapse of a granular column. Physics of
Fluids 17, 031703.
URL http://link.aip.org/link/?PHFLE6/17/031703/1

14



Figure 1: (Color online) Evolution of the top of the column for the different
values of the parameter a and for the two extreme values of inter-granular friction
explored (see Table 1). Filled blue symbols show data for µ = 0.5 and open green
symbols for µ = 0.95. Different symbols correspond to values of the parameter
a as shown in the box.

Figure 2: (Color online). Normalized final height h∗f as a function of the initial
aspect ratio for the data of Fig. 1. Blue open symbols show data for µ = 0.5,
while green dark symbols show data for µ = 0.95. The red dashed line is the best
fit corresponding to the scaling law Eqn. 9.



(a) g = 1.0g0

(b) g = 0.1g0

(c) g = 10.0g0

Figure 3: (Color online) Evolution of the shifted maximum function (dh∗, Eqn.
6) for columns with different values of the parameter a and inter-granular friction
µ with gravity acceleration g = 1.0g0, 0.1g0 and 10.0g0. Symbols are the same
as in Fig. 2, with open blue symbols showing data for µ = 0.5 and green filled
symbols for µ = 0.95. The dashed red line shows the free fall scaling law ∼ τ2

and the arrow indicates the direction of decreasing a values.



(a) g = 1.0g0

(b) g = 0.1g0

Figure 4: Inertial number (I, Eqn.7) for the same data parameters of Fig. 3a
(4a) and Fig. 6 (4b). Dashed red vertical lines on Fig. 4b correspond to the
dimensionless times at which the snapshots of Fig. 8 where taken.



Figure 5: Evolution of h∗ for columns collapsing under different gravity accel-
erations: red curves g = 0.1g0, blue curves g = g0 and green curves g = 10g0,
and for different initial aspect ratios: squares a = 14.62, circles a = 5.75 and
triangles a = 2.58. The inter-granular friction value is fixed at µ = 0.5 in all
cases show.

Figure 6: Normalized final height h∗f as a function of g/g0. Squares correspond
to the initial aspect ratio a = 14.6, circles a = 5.7 and triangles a = 2.6.



(a) a = 14.6

(b) a = 5.7

(c) a = 2.6

Figure 7: (Color online) Energy balance for columns of initial aspect ratio a =

14.6, 5.7, 2.6. Solid lines indicate potential energy; dotted lines represent kinetic
energy and dash-dot lines the energy difference Ed = 1 − Ep − Ek. Red circle
symbols correspond to g = 0.1g0; blue stars g = g0 and green triangles g = 10g0.



(a) g = 0.5g0 (b) g = 1.0g0 (c) g = 10.0g0

Figure 8: Emplacement comparison in three different gravitational accelerations
g/g0 = 0.5, 1.0, 10.0 for the same initial low aspect ratio a ' 4.5 at dimensionless
times marked on Fig. 4b, τ ≈ 0.0, 0.5, 1.0, 2.0 (from top to bottom). Each column
shows the collapse under a gravity with value g/g0 = 0.5, 1.0, 10.0. Blue (slow)
to red (fast) colors indicate increasing grain speed. Note that only the right side
of the collapses are shown as they are very symmetric.





REFERENCES

[1] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Univer-
sity Press, USA, 1989.

[2] H. C. Andersen, Rattle: A velocity version of the shake algorithm for molecular
dynamics calculations, Journal of Computational Physics 52 (1983), no. 1, 24–
34.

[3] N. J. Balmforth and R. R. Kerswell, Granular collapse in two dimensions, Journal
of Fluid Mechanics 538 (2005), 399–428.

[4] G. I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymptotics: Dimensio-
nal Analysis and Intermediate Asymptotics (Cambridge Texts in Applied Mathema-
tics), Cambridge University Press, 1996.

[5] , Scaling, Cambridge University Press, 2003.

[6] D.l Blair, T. Neicu, and A. Kudrolli, Vortices in vibrated granular rods, Physical
Review E 67 (2003), no. 3.

[7] P. W. Bridgman, Dimensional Analysis, Yale University Press, 1922.

[8] V. Chugunov, J.M.N.T. Gray, and K. Hutter, Some Invariant Solutions of the Sa-
vage Hutter Model, Proceedings of Institute of Mathematics of NAS of Ukrai-
ne 43 (2002), no. 5, 111–119.



[9] A. Daerr and S. Douady, Sensitivity of granular surface flows to preparation, Eu-
rophysics Letters 47 (1999), 324.

[10] L. J. Daniels, Y. Park, T. C. Lubensky, and D. J. Durian, Dynamics of Gas-
Fluidized Granular Rods, Physical Review E 79 (2008), no. 4 Pt 1, 041301.

[11] E. E. Doyle, H. E. Huppert, G. Lube, H. M. Mader, and R. S. J. Sparks, Static
and flowing regions in granular collapses down channels: Insights from a sedimen-
ting shallow water model, Physics of Fluids 19 (2007), no. 10, 106601.

[12] Scott V. Franklin, Geometric cohesion in granular materials, Physics Today 65
(2012), no. 9, 70 (en).

[13] GDR MiDi, On dense granular flows, European Physical Journal E 14 (2004),
341–365.

[14] J. Gratton and C. Vigo, Self-similar gravity currents with variable inflow revisited
: plane currents, Journal of Fluid Mechanics 258 (1994), 77–104.

[15] Nick Gravish, Scott Franklin, David Hu, and Daniel Goldman, Entangled Gra-
nular Media, Physical Review Letters 108 (2012), no. 20, 208001.

[16] H. Jaeger, S. Nagel, and R. Behringer, Granular solids, liquids, and gases, Re-
views of Modern Physics 68 (1996), no. 4, 1259–1273.

[17] P. Jop, Y. Forterre, and O. Pouliquen, A constitutive law for dense granular flows.,
Nature 441 (2006), no. 7094, 727–30.

[18] L. Kadanoff, Built upon sand: Theoretical ideas inspired by granular flows, Re-
views of Modern Physics 71 (1999), no. 1, 435–444.

[19] R. R. Kerswell, Dam break with Coulomb friction: A model for granular slumping?,
Physics of Fluids 17 (2005), no. 5, 057101.

[20] C. Kloss and C. Goniva, LIGGGHTS A new open source discrete element simula-
tion software, Proc. of The Fifth International Conference on Discrete Element
Methods, 2010.

[21] L. Lacaze and R. R. Kerswell, Axisymmetric granular collapse: a transient 3D
flow test of viscoplasticity., Physical Review Letters 102 (2009), no. 10, 108305.



[22] L. Lacaze, J. C. Phillips, and R. R. Kerswell, Planar collapse of a granular column:
Experiments and discrete element simulations, Physics of Fluids 20 (2008), no. 6,
063302.

[23] P.Y. Lagrée, L. Staron, and S. Popinet, The granular column collapse as a con-
tinuum: validity of a two-dimensional Navier–Stokes model with a µ(I)-rheology,
Journal of Fluid Mechanics 686 (2011), 378–408.

[24] E. Lajeunesse, A. Mangeney-Castelnau, and J. P. Vilotte, Spreading of a granu-
lar mass on a horizontal plane, Physics of Fluids 16 (2004), 2371–2381.

[25] E. Lajeunesse, J. B. Monnier, and G. M. Homsy, Granular slumping on a hori-
zontal surface, Physics of Fluids 17 (2005), no. 10, 103302.

[26] E. Lajeunesse, C. Quantin, P. Allemand, and C. Delacourt, New insights on
the runout of large landslides in the Valles-Marineris canyons, Mars, Geophysical
Research Letters 33 (2006), no. 4, 2–5.

[27] E. Larrieu, L. Staron, and E. J. Hinch, Raining into shallow water as a description
of the collapse of a column of grains, Journal of Fluid Mechanics 554 (2006), 259–
270.

[28] G. Lube, H. E. Huppert, R. S. J. Sparks, and A. Freundt, Collapses of two-
dimensional granular columns, Physical Review E 72 (2005), 041301.

[29] , Static and flowing regions in granular collapses down channels, Physics
of Fluids 19 (2007), no. 4, 043301.

[30] G. Lube, H. E. Huppert, R. S. J. Sparks, and M. A. Hallworth, Axisymmetric
collapses of granular columns, Journal of Fluid Mechanics 508 (2004), 175–199.

[31] A. Lucas and A. Mangeney, Mobility and topographic effects for large Valles Ma-
rineris landslides on Mars, Geophysical Research Letters 34 (2007), no. 10, 1–5.

[32] A. Mangeney, P. Heinrich, and R. Roche, Analytical Solution for Testing Debris
Avalanche Numerical Models, Pure and Applied Geophysics 157 (2000), no. 6-8,
1081–1096.

[33] A. Mangeney-Castelnau, F. Bouchut, J. P. Vilotte, E. Lajeunesse, A. Aubertin,
and M. Pirulli, On the use of Saint Venant equations to simulate the spreading of a
granular mass, Journal of Geophysical Research 110 (2005), no. B9, 1–17.



[34] T. Pöschel and T. Schwager, Computational granular dynamics, Classical Conti-
nuum Physics, Springer, 2004.

[35] D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge Univer-
sity Press, 2004.

[36] O. Roche, M. Attali, A. Mangeney, and A. Lucas, On the run-out distance of
geophysical gravitational flows: Insight from fluidized granular collapse experiments,
Earth and Planetary Science Letters 311 (2011), no. 3-4, 375–385.

[37] D. Sahin, N. Antar, and T. Ozer, Lie group analysis of gravity currents, Nonlinear
Analysis: Real World Applications 11 (2010), no. 2, 978–994.

[38] A. A. Sonin, The Physical Basis of Dimensional Analysis, 2nd ed., MIT, Cambrid-
ge, MA 02139, 2001.

[39] L. Staron and E. J. Hinch, Study of the collapse of granular columns using two-
dimensional discrete-grain simulation, Journal of Fluid Mechanics 545 (2005),
no.-1, 1.

[40] , The spreading of a granular mass: role of grain properties and initial condi-
tions, Granular Matter 9 (2006), no. 3-4, 205–217.

[41] H. Tapia-McClung and N. Gr-Jensen, Non-iterative and exact method for cons-
training particles in a linear geometry, Journal of Polymer Science Part B: Poly-
mer Physics 43 (2005), no. 8, 911–916.

[42] H. Tapia-McClung and R. Zenit, Computer simulations of the collapse of columns
formed by elongated grains, Physical Review E 85 (2012), no. 6, 061304.

[43] E. L. Thompson and H. E. Huppert, Granular column collapses: further experi-
mental results, Journal of Fluid Mechanics 575 (2007), 177.

[44] M. Trepanier and S. Franklin, Column collapse of granular rods, Physical Review
E 82 (2010), 1–5.

[45] D. Volfson, A. Kudrolli, and L. Tsimring, Anisotropy-driven dynamics in vibra-
ted granular rods, Physical Review E 70 (2004), no. 5, 051312.

[46] R. Zenit, Computer simulations of the collapse of a granular column, Physics of
Fluids 17 (2005), 031703.


	tesis.pdf
	1 Introduction
	1.1 The collapse of a granular column
	1.2 Scaling and similarity
	1.3 Previous experimental and numerical work
	1.4 Original contribution

	2 The Collapse of a Granular Column
	2.1 Description of the problem
	2.2 Summary of Experimental Results
	2.3 Summary of Numerical Results
	2.4 Remarks

	3 Scaling and self-similarity
	3.1 Dimensional Analysis and Self-similarity
	3.2 Dimensional analysis of the collapse of a granular column
	3.3 Conclusions and remarks

	4 Numerical Method
	4.1 Integration algorithm
	4.2 Contact Model
	4.3 Simulation Parameters

	5 Example 1. Shallow Water Equations model in one dimension
	5.1 The Shallow Water Equations
	5.2 Dimensional analysis and scaling
	5.3 Discussion

	6 Example 2. Collapse of columns formed by elongated grains
	6.1 Results
	6.2 Discussion

	7 Example 3. Collapses of columns in different gravities
	7.1 Results
	7.2 Discussion

	8 General Conclusions
	8.1 Discussion of results
	8.2 Final remarks
	8.3 Future work
	.1 Appendix

	References


