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OBJETIVOS DEL CURSO

. En la aplicacién de computadoras a pro-
blemas de hidraulica en paises en desa-
rrollo, el problema no estriba en la dispo-
nibilidad de computadoras, sino en la
dificultad de comunicar a los ingenieros el
“saber como” involucradoen los problemas
de.calculo. En eétb%é,utégv,"se proporciona
el entrenamiento necesﬂéi‘id""éfhr Hidraulica,
Métodos Numéricos y Desarrollo de."Soft-

" ware”, que permite al ingeniero la reali-
zacion y-/o uso eficiente de programas de
computadora aplicables a problemas de
interés practico.

A QUIEN VA DIRIGIDO

El cureo ha sido disefiado para aquellas
personas que trabajan en disciplinas rela-
cionadds con la Ingenieria Hidraulica e
- Ingenieria Ambiental y que se enfrentan
de alguna manera a problemas de disper-
sion de contaminantes y movimientos en
grandes volimenes de agua.

TEMARIO
1.- INTRODUCCION.

2.- DESARROLLOS RECIENTES EN EL
USO DE COMPUTADORES EN
PROBLEMAS DE HIDRAULICA.

3.- METODOS DE LAS DIFERENCIAS
FINITAS.

4- METODOS DE LOS ELEMENTOS
FINITOS.

5.- PROPIEDADESFISICAS DELAGOS
Y AGUAS COSTERAS.

6.- CIRCULACION ESTACIONARIA EN
CUERPOS DE AGUA HOMOGE-
NEOS.

7.- APLICACION DE METODOS NU-
MERICOS.

8.- CIRCULACION TRANSITORIA.
9.- DISPERSION DE CONTAMINANTES

10.- CONSIDERACION DE ESTRATIFI-
CACION.

11.- DESCRIPCION Y USO DE LOS
PROGRAMAS DE COMPUTADORA.

t

PROFESORES

DR. GUSTAVO AYALA MILIAN
DR. GERARDO HIRIART

DR. PEDRO MARTINEZ PEREDA

CONFERENCISTAS INVITADOS
DR. JAMES A. LIGGETT
Profesor de la Universidad de Cornell

DR. JEROME J. CONNOR
Profesor del Instituto Tecnoldogico de

Massachusets.

NOTA:
Los cursos tienen cupo limitado.

Es recomendable inscribirse con oportuni-
dad para garantizar su asistencia.
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A LOS ASISTENTES A LOS CURSOS DEL CENTRO DE EDUCACION
CONTINUA

Las autoridades de la Facultad de Ingenierfa, por conducto el Jefe del
Centro de Educacibn Continua, otorgan una constancia de asiz.ancia a -
Guienes cumplan con los requisitos establecidos para cada curss. Las
persoras que deseen que aparezca su titulo profesional preced:iendo a -
su nombre en la constancia, deberé&n entregar copia del mismo o de su -
cédula a ma&s tardar el SEGUNDO DIA de clases, en las oficinas del Centro
con la senorita encargada de inscripciones.

El control de asistencia se llevard a cabo a través de la persona encar
gada ‘de entregar las notas del curso. Las inasistencias ser&n compata-
das por. las autoridades del Centro, con el fin de entregarle constancia
solamente a los alumnos que tengan un minimo del 80% de asistencia.

Se recomienda a los asistentes participar activamente ccn sus ideas y
experiencias, pues los cursos gque ofrece el Centro estén planeados para
que los profesores expongan una tesis, pero sobre todo, para gque coordi
nen las opiniones de todos los interesados constituyendo verdadecros se-
minarios.

Es muy importante que todos los asistentes llenen y entregen su hoja -
de inscripcién al inicio del curso. Las personas comisionadas por al-
guna institucién deberé&n pasar a inscribirse: en las oficinas del Centro
en la misma forma que los dem&s asistentes, entregande el coficio respec
tivo.

Con objeto de mejorar los servicios que el Centro de Educacién Continua
ofrece, al final del curso se hard una evaluacifén a tr&ves de un cues--
tionario disenado para emitir juicios anfnimos por parte de los asisten
tes.
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1. GOVIRNING YNUARIONS - FLUID

1.1 Joordinate systems; particle derivative

e select a fixed crthogonal reference frame having directions

XX

1 Sas XB us ahown in Tigure 1-1. The coordinates of a point at time t wre

Xy »%ns x3, and the coordinates at time t = O are al, ag, a3. In a

"Laprangean” formulation, onc takes the initial coordinates (ai)

and time (t) as tlie independent variables

L]

LACRAICE = x, = x(a, a,, 25 t) (1-1)

This is quite rcasonable for a solid sincce the change in shape of
the body is small. lowever, a fluid undergoes significant deformation and
it is more convenient to take the coordinates at time t as the

independent variables. This choice is called a "Eulerian" formulation.

FULIR :% a, = a,(x Xos x3,t). (1-2)

A1l dependent variebles such as pressure, temperature, velocity, etec.,
are considered to be functions of (xl, X xj, t) in an Eulerian
- (=

formulation.

Let us consider a scalar function; f(xi, t), associated with a
particle (sce Figure 1--2). Ye can express the total change in T
due to change in position of the particle and time increment as:

4]

Af = &F + 3 5°F + ., (1-3)

vhere &f is the "first" order .change,

3 or of of
= 2 Ay 4 O + 4 + = A -1)
ST = g bxy Fag Bxp 5 axg typT A (1-4]




The limit, ns At > 0, of &f/At is delined as the "particle" or "Ctokes"

derivative and is written as DE/Dt.

of (1-5)

RS =9
T - Lty . lim.  Ar _Dr ‘ i}
v = velocity vector = My o AT - DT (1-6)
. ~
Operating on r, -
- i -
¥ = X Byt Xaly * Xl (1-7)

and noting that axi/at = 0 since %, are independent variables,we

obtain.
= . AX ., Y -
Lo (m 2 )T =3 (1-9)
It t -0 At J JJ
- Dx.
v, = conponent of v in the 35 direction = le
Pinally, we can vrite-(1-5) as

Df 20 ar
——-:———+ ———— . -
5 5 X 3¥j vJ (1-9)

The first term is the "local" rate of change and the remaining terms are

"econveetive" terms.

In the Lagrange represcentation, one writes

(1-10)

X, = &,

; g uj(al, 8,5 83, t)



vhere g in the displacerient [rom the initial position., The velocity

~orponenty reduce to

lim A“{i aui
Vi T Moo At => ot (1-11)
Since a, are congtant. flso,
Dt « 3JFf
Bt (-12)

1.2  Tguilibriw equation

Ve consider o specific volume at time L as shown in TFigure 1-3.
The external actions ware represented by a distributed surface loading
-l
/1

G?) and A distributed body force {b). Applying Hewton's law

leads to the following cquilibrium conditions for the total volume,

HJ by J)f?d"" = UJD‘%“V © (1113)

J” (r xb)av + H (T xp)as = m o(T x g%)dv (1-14)

2]

vhere the integrals pertain to the position at time t; p 4is the mass

by
density; and Dv/Dt is the acceleraticn vector.

e obtain "micro" equilibrium equations by expanding the surface
- 3 - -k - *
integral involving p in terms of stress vectors and then applying
. . . .A
Causs's integration by perts formula. Ve define 03 as the stress
vector (force per unit arca) acting on the +j face, i.e. the face
vhose outward normal points in the + Xj direction as shown in PFigure

1-3(b). The cartesian component representation is




= ¢, 2,‘
J Jhoa
(1-19)
9T Y (s %55 %45 t)

JHe are ucing the indicial swmumation convention here for counvenicnce.

e stress veetor acting on the "n" Cace is given by (cce figure 1-3(c))

-> [N nY - -
a .

(1-16)

g = eos hu,)%)

whore nois the "outward" normal. Finally, the components in the n and

s direetions arc

- S
Y T %nj “nk ojk - In 4
(1-17)
- ’ - A .A
“ns T %y sk %3k T In 2
where o iu orthogonal to n bhut othervise arbitrary.
Now, at the boundary,
a0 - ( 9)
P= oo, BRI , ’ . 11
Then,
-d -
(o [ -
JJ p aS JJ %5 05 as (1-19)

Applying: Causs's forrmla,

f-?—f-‘.- = ’ - oo -QE—.- -
fjj I Bxi av \J[ a grar JJJ f axi av (1-20)

to the surface integral, we obtain finally



\Us]
1

-
0 . :
N
” pls = J“ ‘5—*1' dv (1 21)
b

C%he forcee equilibrium equution, (1-13), trausforms to

—
- Ja. 1~"b el
)-\r
1 4 A — ay =
m ( —b o s ) av 0 (a)
J
' and":it‘:."‘o‘llows that
. , - N
- do. =
g Dv ST
+ = = . A
b ™ P % in v (1 )
. - a .A - » 3 -
“ubstiluting Tor b, p i (1-10), the moment equililrium equation,
lends Lo
—d Y (. Y .
2, %0, =0 inV (1-23)
J J
- T T“xcw_;.lzlr(qml_tzbnb arc:
J K
—— . + = ——
., et h Dt
J
t inV
56 7 “kj (1-2k)
pj = ol'j on o
whered -
J
Mol M, My
Nt ot 1 9x

One can obtain an alternate Torm of the "macro" equilibriwa
equations Ly integrating the right hand side of (1-13) and (1-1h).

Considering (1-13), the right hand term transforms to

A



o> b
UJD Y av = ” o v, Pvas : ‘
Dt ni 1 (a)

[ J XY Y I)Q- .
. r .1 - — E
+ JJJL 0 {pv) v!-ﬂvi’i + D l }av

To interpret these terms, we consider the volume fixed in space
{sce Pip. 1-h). The Tirst term is the momentum flow out of the
Jowain and the second term is the local rate of change in momentum.

The third term relates the outward MASS flov andlocal rate of change

in density. To show this, we expand the particle derivative,

Jp

D 0 ) Y
p ) . -+ oyt . +
v1,1 bt, X, (pvl)‘ ot . (a)

The iaward mass Tlow i1s equal to the rate of change in density,

” + pla; v,)as = m —;’f av ()

jJJ {-%6/+ 3£T (pvi)] av. = 0
1
..QQ. + .--;2—.- (DV-) = O in V ’ (1'25)

Vith (1-25), we can write the force equilibrium equation as:

m T ”‘%ds =” _‘\'((;Vn)ds +”J52€ (ov)av (1-26)

Eq. (1-20) is called the "momentun" equation. One should note that
(1-26) + (1-25) is equivalent to the original form of the equilibrium

equation, (1-13).



e could have cstablished (1-27) Ly allowing the volume to move
and requiring no mass flov across the boundary. TIn this approach,

the particle derivative of the total mass is zero.

Ellfe [l Boreogen) -0 aen

We.will show later than

D _ e ‘ A
v (av) = (Bvi/ahi)dV (1-28)
Defore moving on to kinematic relations, we comment briefly

“on an inviscid fluid. Tf the shear stress components in the stress

tensor are neglected,

- L3 -2
055 = O A (1-29)
the flujd is called "frictiontess" or inviscid. To determine

vhether there are any rclations between tlie nonzero elements

(011,022,033), we considor the stress transformation lawv, (1-17),

Ons = “nj %sk Ujk
(a)
=, G . Oy for g.,. = §,. 0..
nk "85 JJ 1] 1] 1J
But, o = 0 for s # n. This requires
0] =0 = = 0 - \
11 22 7 733 (1-30)
and the remeining transformation lav reduces to
=q , . G 1-
an unJ * GJR - (1-31)

The state of stress is defined by a single variable, o. TFor a fluid,



.o 1is negative (compression) and therefore we shall tale
O =-p (p denotes pressure) (1-32)

_~The ecquilibrium equations and boundary conditions for a frictionless

fluid ere:

3 . k .
v c—— .' ] et —
P bk p bt in 'V
(1-33)
P,="Fp on
Note that one cannot apply a tangential boundary force to an
inviscid fluid, i.e. p_ must be zero.
1.3 DPrinciple of Virtual Powver
Vie derive the Principle of Virtual Power by operating on the
stress equilibrium equations and stress-boundary force relations,
2 vy

—na . + - —— 3

%, ot P TP IE in V (a)

Py L f anj Ujk on O

The "true" solution for thec stress components satisfies (a). Let

us multiply (a) by a function, say:;{, and integrate over the domain.

d ' vy f = :
mf T ot o e T 4 fin, e o) Rz )

Equation (b) must be satisfied for arbitrary v, if the stress field is

I

an equilibrium field. lext, we integrate the stress term with Gauss's



forwmul:, ond obtain the "principle ol virtual pover',

' 2 v, Dv
~ - L - 'k
I ) S S Lt —
m by v ” RH J”{‘,;L LN R

J
{1-3h)
The ‘left hand term can Lo interpreted as virtual pover if one
“congiders v as a "virtual" velocity.  Similarly, the right hand terms

54

can -he interpreted as the virtual time rate of change (particle

derrivative) of the internal dcformation work and the kinctic energy.

4 [

Mote thot {1 -34) applies for 4 particulyr tinme, t, end erbitrary v, -

le emphasize that it is juct an alternate statement of  equilitrium.
e principle of virtuel power is the basis for finite element

rodels in fluid nechanies. 1lts role is similar to that of the

rrinciple of virtual displacements in solid mechanics. If we tuke

v, TV the actunl velocity, the principle of virtual pover coincides

vith the first law of thermodynamices,

Fate of Fxternal Yorlt = Nate of dcformation work

a
s

ate of change of the kinetic energy

(1-35)

Ao, ve observe that the particle dorivatives_of the deformation
measures are the quantities required. The total (actualj deformations
do not appear in the varintional ntntémcnt. Finally, onc can utilize
the principle of virtual pover to estaﬂlish "consistenth bOundary.
conditions. For cxemple, if one assumes the fluid is inviscid,

J” o 3—:'{';&/ == J(J” - p 5—?{-—7 av

an
v 1 ’
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Mhen, expanding the surface force toernm,

o v, as = v o+ v)an
JJ lk \h ! If (pnvn Psvﬂ)d (v)

‘we obtain the "consistent" stress - surface force boundary condition

n ‘. ' (C)

«©

Dv .
= 3 k
k - axl; p + p«D.L (d)
Y

1.4 FKinematic Relations

Ouf‘objcctivc in this section is éo estallish expressions for

the time rate of change of the deformﬂtion mecasures. To simplify the
discussion, we consider initially the 2-dimensional case. The 3~
dimencional expressions can be obtained by generalising the 2-dimensional
c;{i\:'(::;s: ions.

CFigure 1-5 shows the initial (tiwe: t) and deformed (time t + At)
positiéuz; of 2 differcntinl line eclencuts. Ve visualise the movenent
of a linc to consist ol translation, rotatiom, and extension.

Tcl Ae::L Jdenotle the relative incrcmental extension of line PQ.

B -

gl - 1rg 1o

AE = = -—‘—— IP"‘Q'I - l (l~36)
! |7 &g

Substitutiug for IP'Q'I , Wwe obtein after some algebra,

) 1 _ ) 1 2 2
-;‘At‘l (1 + e, ) = V1.1 AL + 3 { (vl,l At)T =+ (Ve.l At)S )



._.11_.

wvhera
D 3
J = "‘:".-— v \[ = Sy v
1,1 by 1 2,1 g 2

We define the strain rate as ihe partlcle derivative,

Clim % p .
1 " ateo At T Dt &1 (1-37)

Ag At o, Lhe nonlinear terms vanish and we nre left with

= - a0y,
cl .fl ,l (l 3\))

Py analogyr,

Ae, = ‘.....:.-
‘ ™|
(1-39)
E") = V"J (o]
- L.,L.
Ceneralizing, we can write
c. = Vv, . (no sunm) (1-ho)

The relative incrementnl volume change, Acv, is determined frow

A}

- A(VOlqu) - XX :_'_-‘0 I
fe, = initial volume ; PQ .A PR i d:cld:c,J 1

\U, (1-41)

v, l)(t\t)2

v 1,1 2,2 1,1 "2,2 " V1,2 Vo,

We definc €, 85 the volumetric strain rete,

e = iim A_E.ng.,e
v Atro AL Dt v
(1-42)
= v + v + v



Using the notation of vector calculus,

9
Vo= ax‘j
(1-43)
_ > D" Y
€, = v.Vv = v, Vv
Lestly, ve consider the rotation terms 912 and 85
o, = 218 | ,
sind8,, = T+he, _
, (1-kk) ()
singo.. = 12
21 l+Ae2
The limits are
610 % Vo1 Oo1 % V1,2 (1-45)
The shear strain rate is the sum of 612 and 621
Yig T 00 T 0y | (1-46)
Generalizing,
e = B8.,+0,. = vV, ., +vV, . -4
Yij " Yig T i Ji "L (1-47)
It is convenient to introduce the strain rate tensor, eij s
. avi v,
1
R ] e v -
e15 = 205s, 3"1)' (1-48)



"The strain measures in terms of e;; ore
, J ‘
R ¥ e, = Loy
tes = 2 €., -
55 = @ eiJ (1-h9)
= - 1 . Y A
ch us re-~examine the rotation terms, 612 and 921.
When there is only rigid body motion,y = O and
%12 7 Y32 | °2 T T 92 (a)

vhere Wy 5 is the angular veloeity about the X3 axis. Thic suggests

that we take, as a measure of the angular velocity,‘the»difference

between 612 and 621 :

W, = average value of angular velocity about the X3 axis
=30y, = 0,) = d(vy 5 - vy ) (b)
/
Generalising (b), we write
= 3{(8,, - 06,.) = 3(v -V 1-50
wgy = Mgy =050 = dlvy 5 vy 9 (1-50)
Cyclic permutation of ‘the subscfipts gives the average velocities
about the 3 axes.
le«% m3
e 67 (1-51)
Wiy =P Uy

The tensor, wij’ is skew symmetric and is called the vorticity tensor.
It is not difficult to show that I is invariant for certain trans-

formations of axes, For example,



~14-

w'lz =010 (1-52)
wﬁere. w'y, corresponds to the directions (X. , Xé . X3/). This is
actually why we cén interpret it as the average rotation about X3.

We end this section by listing two definitions.
1} A fluid is incompressible when the volume strain rate is zero.
’; = v + v + v ' = 0 (1-53)

p = mass density = constant

. In this cese, we have to determine the pressure from an equilibrium

eonsideration. -

2) The motion is irrotational when Wp = Wpy = Wy = 0.

This requires ’
V2,1 " V1,2 %0
v3,2 ~\v2’3 =0 (1-5k)
1,37 73,17 0

1.5 Otress-strain relations - Newtonian Fluid.

Ve consider first & linearly elastic solid to provide us with

some background. The stress-strain relations are

Oss = Ag. 8.. + 2G e, . (1-55)

where ), G are material properties, CH is the volumetric strain,

and eij is the strain tensor,

To distinguish between the volumetric and sheer deformation modes,



we express the strain (and stress) tensors as a combination of 2

‘tensors which are called the "spherical and "deviatoric" components.

3 d
e,. = @, + ..
ij ij id
8 d
L] = . 9 + 4 %
) 913 %3 %1;
where |
E?. = }-e §.. 5 ¢_ 6.,
1) 3 VO] m i)
]
L .
ey = Flegy + ey ¥ eg3)
a
€., = €., ~ &
ii ii m ‘
a (1-56)
s, = QL. i#]
elJ 13
and .
oo, =0 6., ==(c.. + 0.+ 3.)6,,
id mo1j 311 22 337713
d
0., = G,. - G
ii ii m
oij = oij 1.¢ J

The mean stress can be interpreted as an "gquivalent" hydrostgtic.
pressure; o?i reflects the deviation froﬁ the hydrostatic state; and
cgj are the sh?aring stresues.

Similarly, € is the "average' extengion corresponding to & volume

change and egj leads to a change in shape, i.e., shearing deformation.

The trace of the deviatoric components vanisghes,

cd + ch + cd S ¢
moos (1-57)
d d d . .
ell + e22 + e33 = 0



- 16 -

vhich shows that the deviatoric components are associated with

nonuniform states,

Using (1-55), we find

cm = I\ Ev _'."DB) '
”y
K = bulk modulus = 22 Ee
and
o, = 26ed, =26(e.. -2 6..) (1-59)
1j 1] iJ 3" v 13 .
We iIntroduce the assumption of incompressibility by setting K = o,

Tn this case, o has to be determined from the equilibrium equations

and the displacements are constrained by e, = 0.

The stress-strain relations for a Newtonian fluid are similar in
Torm to those of the solid except that the strains are replaced with

strain rates. We write
= - pé.j + 1., (1-60)

vhere p is the hydrostatic pressure and Tij .are the stresses due to
motion, referred to as the "viscous" stresses, The relatiom for

T,. 1s taken as
1)

# " . -
= L gL : ' 1-61)
T Noe, 6ot Bmey (

e
L SN
<
=
[}

* »
vhere X , jgare viscosity coefficients. In this approach, the mean

stress is determined from



= X
Oy = 3093y * 9pp * 033
1
= - + o + +
p*3layy ¥ Tt Ty (1-62)
_»l
=-p+ K ¢
L]
M 3N+ 2 . . .
K = 3 = coefficlent of bulk viscosity
p = p (density, temperature) = p(p,T)
Dp . .
Dt pev.
The deviatoric stresses are given by
d : 1’
= - e = 6.- -
055 = 935 " O Gij := %(elJ 3 &y 1J) (1~63)
*
Setting K = 0 is known as the "Stokes" condition and leads
to .
* L .2
A M
o =Xa, +0,, +0.,) E -p
m 3711 22 33 (1-614)
o..=-—p6..+2ﬂ(<;..—-l-::6..)
1) 1] 1) 3 vi) :
p = plp,T)

With this assumption, the mean stress coincides with the thermodynamic
pressure, p. Ve roint out that (1-60) and (1-€4) are valid only for

laminar flow.

)

i.6nASummary of Coverning Equations

’

At this point, we swmarize the governing equetions:
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‘Equilibrium

Dv

3 a + b -3
axj‘ jk T 7k - P oDt

Pj = en okJ

e %k

Kipematic

i b
e., = z(v. + v =
&1 T i1 YlJ
€ = e + e + e

cij = - Pdij + Tij

r = p(p,T)
Di - ) v
Dt~ P&

Tij= A Cvﬁij + %eij

>
n
1
wird
k\

for "Stokes" condition

inV

(6]

on

strain rate tensor

vorticity tensor

(1-65)

(1-66)

(1-67)

It is also of interest to. express the principle of virtual power (1-3k)

ip terms of the strain rate measures.



Ve let

v ‘ (1-68)

it
2

'ﬁnd.pbte that oince the stress components are symmetrical in the

Qpbscripts,

S IR |
O3k o Yk 2 ij(avk,j * 6Vj.k)
. (a)
= 05k S5k
Then, we can write, the principle of virtusl pover as
.' L] m]' '
jj Py 5vde + IJI bk Gvkdv = JII (ajkﬁejk +p BE—-GVK} av
(1-69)

. . ka
= IJJ {~ pde, + Tjkaejk +p BE"GVk} av

for arbitrary Gvk

1.7. Navier Otokes equations - incompressible Newtonian fluid,

1

The equilibrium equations and expressions for the surface forces,

(1-65), in terms of p and Ty ore

Dv .
__9 ) - k .
B © Yo, gk % TP in. ¥
< J
= - + .
Pn P amjmnkaj _
on S L -~ (1-70)

Pg = o‘E’»jal'l.‘t:-[)gi

We take Tij according to (1-67) and constrain the velocities to

Hy
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'satisfy e, = 0,

e, =0 =%? Vi FV, p t Y = 0 (1-71)

Tix = gqéjk = ;a(vj;k +_vk,j) . o (1-72)

1"

Aisc, we consider the body foreces to be due to gravity, and write
- ~— ’ -
bk = P8, (1-73)

Substituting for T,

3k and by in (1-70) results in the "Navier-Stokes"

equations,

3 _ _ _k
o, (p/e) + gy = vy 55 TR 1 |
’ } : o . in v
= -7l
Vi 0 (1-7h)
and
2 i 5
p /P =~ (p/p) + 2vy—
- ‘on 8 (1-75)
i)Vs avn
/o = My v
where v = §#/p 1is the kinematic viscosity. The expression for Pg
applies when the boundary is straight. For a curved boundary, we
must use
3. -, d ) : -
P/P = V5oV Y 3T VY 7 Ve AR Ok ) (1-76)

i

The unknown variablecs are the velocity components, Vj’ and the

pressure, p..-They have to satisfy the equilibrium equations and
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" incompressibility condition in V and the boundary condition
~ prescribed on 'S (1~77)

Let us now see how we havé to modify the principle of virtual

power, (1-G9). If we set €y = 0, the pressure term drops out.

. However, the virtual velocities are no longer arbitrary but are

nov constrained by

8e, = éyl,l + 6v2,2 + 6v3,3‘ = 0 (1-78)

We can include the constraint condition by introducing a Lagrange

multiplier )\ and requiring °
é [ A ev,] = Ae, *8e, = 0 inV = (~79)

for arbitrary A. Since £, is volumetric strain, the physical sig-
nificance of ) is hydrostatic ternsile stress. Then, we reverse the
sign and take )\ = -p. The final form of the principle of virtual

power is

i L
> jJ(pnGVn + psdvs)db JJJ gkﬁvk av | (1-80)

=J” {-'SGEV--SRE +%1.6e. +;~1-(-<Sv } =0

for arbitrary &p, 6v



-0~

Sub:z tituting

%-r. =v(vj’k+v .) | (a)

. and intepgrating by parts leads to (1~T4) and (1—75).'”

.

Finally, we introduce the assumption of frictionless flow

by setting Ty = 0. The reduced equations are

. Dv
2 X _
in V
v. . = 0
1,1
(1-81)
p, = P orv = v
on £
Pq = 0 v_ arbitrary

;md ’
DV . L]
11, s = X L
| -; ” pnsvn ag = ”J{[gk + Bt ] ewk p[p&ev + cvép]} av

for arbitrary 8V, » Op (1-82)

- - i
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N (outward normal )
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tixed domain

P = mass.density

_mass flow = Pv,dS

= Pofh,-v;ds 7
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FiniTE ELEMENT SHALLOW LAKE
CIRCULATION ANALYSIS

By Richard H. Gallagher,' F. ASCE, James A. Liggett,? M. ASCE,
and Stevens T. K. Chan,* A. M. ASCE

InTRODUCTION

The f{inite element method has drawn increasing attention as a numerical
analysis tool for fluid fiow problems. The reasons for this growth of interest
include the following: (1) Irregular boundarics can be treated accurately without
computational difficulties or changes in programming or formulation of the meth-
od; (2) practical use can be made of widely available, general-purpose, finite
clement analysis programs which are virtually unlimited in the size of problem
they can hzndle; and (3) known spacewise variations of physical properties
can easily be taken into account.

Because of these advantages the finite element method is especially attractive
as z practical method of analysis of lake circulation problems. In lake analysis
irregular boundaries must be considered. The phenomenon described, is so com-
plex in form that any numerical analysis procedure will entail hundreds, or
perhaps thousands of unknowns. Duz (o the ease of transference of {finite element
programs from one computer facility to another, the deveiopment of relationships
for this class of problem contributes to a capability which eventually may be
applied routinely by analysts in many different and widely separated organiza-
tions.

As noted previously, variable physical properties are easily handled by the
finite element method if their spatial distribution is known a pricri. Thus, for

Note.--Discussion open until December 1, 1973, To extend the closing date one month,
a winitten request must be filed with the Editor of Technical Publications, ASCE. This
paper is part of the copyrighted Journal of the Hydraulics Division. Proceedings of the
Amenican Society of Civil Engineers, Vol. 99, No. HY7, July, 1973. Manuscript was
submiited for review for possible publication on Sepiember. {3, 1972,

'Prof. of Civ. and Environmental Engrg., Cornell Univ., Ithaca, N.Y.

2prof. of Civ. and Environmental Engrg., Cornell Univ., Ithaca, N.Y.

*Research Assoc., Sch. of Civ. and Environmental Engrg., Cornell Univ., Ithaca, N.Y.
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the subject problem, variations in eddy viscosity or the Coriolis acceleration
can be taken into account if known. Variations in density present a more basic
difficulty because the density distribution 1a a stratified iake (either through
salt or temperature) is itsef a part of the solution and cannot be specified
a priori. The cxtension of the finite element method to account for such coupled
phenomiena is feasible, however, and the present work, on one side of the
uncoupled problem is a step in this direction.

This paper presents a finite element formulation and numerical results for
the analysis of the wind-induced steady-state circulation of variable-depth shal-
low homogeneous lakes. Formulative efforts and numerical results for finite
clement representations of lake and shallow basin circulation analysis have pre-
viously been described by Cheng (2) and by Loziak, Anderson, and Belytschko
(10). These developments are exclusively two-dimensional, i.e., no account is
taken of the variation of lake depth and the resulting velocities do not change
with depth. Leorard and Melfi (6) preseng the theoretical relationships for a

three-dimensional analysis which accounts for the velocity of the lake normal

1o the free surface, but no resuits are presented.

The present paper depends for its theoretical basis on a formulation of the
governing differential equaiion that has been derived in detail by Liggett and
H.djithcodorou in Ref. 8. This development assumed homogeniety, hydrostatic
pressure, specified wind shears, and small Rossby number. The latter assump-
tion, together with a boundary conditicn of zero velocity normal to the lake
free surface and the bottom, enables construction of a linear equation in two
dimensions whose coefficients are a function of all three dimensions. Thus,
the equation accounts for variable depth of the lake and for depthwise variation
of velocity through numerical integration of equation coefficients that are func-
tions of planform location. .

The conventional basis for construction of a finite clement representation
is un integral form which, in the sense of a variational principle, corresponds
to the governing differential equation. The transformation of the governing dif-
{crentiai equation to integral form is accomplished here by use of the method
of weighted residuals (3) rather than through variational calculus. The specific
finite clement representation employed is of triangular planform shape with
an assumed linear variation of the stream function.

H should be noted that numerical solutions of the aferementicned governing
differential equation, or of specialized forms of it, have previously been obtained
with use of finite differences. Rectangular basins were aralyzed in this manner
in Refs. 5, 7, and 8 while Liu and Perez (9) solved the rectangular basin problem
with removal of the Coriolis effect, i.e., with restriction to very shallow basins.
The finite difference solutions are drawn upon herein to furnish comparison
data for finite element solutions. In order tc demonstrate the advantages of
geometric representation, alluded to earlier, the finite element method is also
applied herein to an analysis of the wind-driven circulation of Lake Ontario,
for which no comparison results are available.

Goveaning EauaTioNs

The purpose in this section is to present the governing differential equation
{or the steady-state, wini-driven circulation of shallow, hoemogeneous lakes,
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as formulated by Liggett and Hadjithcodorou (8). Because detailed development
of this equation is beyond the scope of this paper, interested readers should
consult Ref. 8.

A cross section of the type of lake under study is pictused in Fig. 1. The
origin of coordinates is fixed at the surface of the lake with z measured upwards.

/

\
y o

X

Y

FIG. 1.—Representative Lake Cross Sec-
tion

FiG. 2.Triangular Element

(]
4LA A i For entire loke:
L 4 | No of eiements =360
c? 1 No.of nodes =209
fen]

e X

| s

FIG. 4 —Finite Element Representation
in Quadrant of Rectangular Lake

—i
<ZE~Z
FIG. 3.—Rectangular Lake

In accordance with the assumption of shallowness, i.e., hydrostatic pressure
distribution, D << L. The eddy viscosity, 1, and Coriolis parameter [ are
assumed constant in the formulation of thé differential relationships. The distri-
bution of pressure is assumed to be hydrostatic and surface wind stresses
(7,0 7)) an escribed. In order to linearize the problem the Rossby number
(ratio of ineiual forces to rotational forces) is taken to be small. The depths

o1
TUE—— P = —
h
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to be used in a calculation are taken to be the actual depths under the assumed
wind stress or, alternately, that the equiiibrium depths are a sufficient approxi-
mation to e actual depth under the assumed wind stress. The x, y plane
coincides with the water seiface and w == 0 at z = 0, R

Manyv of the as-rmplions or appioximations mentioned in cofinection with
the present study have been evaluated by Liggett (7). Steady flow is assumed
as the primary function of this paper is to indicate the utility of the finite
clement representation. This could be extended to an unsteady formulation in
much the same way as was done in Ref. 7. The time response of a homogencous
lake, the effects of variable eddy viscosity, and the linearization were examined
in Ref. 7. Unlike the unsteady problem, no rigid lid on the free surface is
necessary if the depths are taken as the actual depths under the assumed wind
stress. Even if the depths are taken as equilibrium depths, wind set-up can
be computed from the resuliing pressures.

Under the foregoing assumptions, the x, y, and z, direction momentum equa-
tions are of the form

1 ap d%u
—fv=—--—+—2 ............................. 1
p ox 92
1 ap alv
fu=———+n7 T LRI 2
p oy az
I op
o e e e 3)
p 62

"in which u and v = the x and y direction velocities; p = the mass density

per unit volume; and g = the acceleration due to gravity. The continuity equation
is

and the boundary conditions relating to shear on the lake surface

ou v
N =T, . |— =7

az M ez T
and of zero velocity (u = v = w = 0) on all solid surfaces.

Operations on the preceding to produce a governing differential equation pro-
cecd as follows. First, the equations are wriften in nondimensional form through
the introduction of an appropriate set of new variables. Then, a stream function,
W, which satisfies the vertically integrated continuity condition corresponding
to Eq. 4 is introduced. The stream function is defined as

N 1 ab
ay h ox )
in which it and ¥ = depthwise averages of the component velocities. Finally,

the first three equations, with associated boundary conditions ¢ lered, are’
solved in terms of the stream function. The result is
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3y AWy ay 3y
-+ + A(X,y)— + B(x,y))— + C{x,»)=0 . .......... 1Y)
ax?  ay? ax 3y

with the boundary condition that ¥ is constant on the shore line. The coefficients,
A, B, and C, in the equation are functions of the planform location (more
specifically, functions of the lake bottom topography) as defined in Ref. 8,
and C depends on the wind shear stresses as well. '

The condition that & is constant on the lake boundary prescribes zero average
- velocity normal to the boundary. However, a stronger condition is necessary
to insure that the point velocities normal to the boundary are everywhere zero.
Such a condition is avoided by forbidding vertical boundaries. Thus the lake
is confined by the surface and the bottom, on which all point velocities are
specified as zero.

Finrre ELemenT REpPRESENTATION

There are three aspects to the establishment of the finite element equations:
(1) Construction of integral relationships which correspond to the governing
equations of the problem; (2) definition of the geometric form of the elements;
and (3) representation of the assumed modes of behavior of the element.

In the finite element analysis of many physical problems, notably structural
analysis, the preceding integral relationship is the stationary value of the function-
al, defining the variational (or energy) statement of the proSlem. The governing
differential equations of the problem in terms of the independent variables of
the functional are Euler equations of the functional. For certain circumstances
the solution which yields a minimum value of the functional corresponds to
the exact solution of the governing differential equation.

When the governing differential equations are not self-adjoint, as in the present
case, there is doubt that a true variational statement of the problem can be
constructed (1). Note further that variational principles do not have a pre-emin-
ent, well-established position in fluid mechanics as they do in the approximate
soiution procedures in structural mechanics. The desired integral format for
the subject problem is therefere established through application of the method
of weighted residuals (4), noting that a particular form of this method gives
identically the same integral relationship for problems which are self-adjoint.

The weighted residual concept assumes that an approximate representation
of the independent variable, which in general does not satisfy the governing
differential equation, will be chosen. In the present case this approximating

trial function, ¥, is of the form

=D N =[NJ{d} - (8)

t=1
in which ¢;; = a particular value of the independent variable and generally
refers te such a value at the point i, and n = the chosen number of undetermined
parameters ¥,.
" Designating the governing differential Eq. 7 as L(¢) = 0, note that due to
the approximate nature of { the result is

L= RE0 o o e e e e 9)
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in which R = a rcsidual value. Because the governing differential equation
cannot be satisfied pointwise throughout the domain, V, of the problem its
satisfaction is sought in the sense of a weighted average over the domain,
ie.

f L) GdV =0 ... oo (10)
y .

in which ¢ = the weighting function.

The weighting furction may be specified in one of any number of forms.
Here, the Galerkin form is chosen, in which the coefficients, N,, of the trial
function are employcd. Each distinct trial function leads to a separate aigebraic
cquation, using the procedure detailed in the following sections.

In the present case, simple triangular clements are used to represent the
planform of a lake under consideration. The stream function is assumed to

vary linearly in each element (Fig. 2), so that for this case Eq. 8 is of the
form

V=N, + Ny, + Nydy oo an

in which ¢, ¥,, ¢, = ihe values of the stream function at the vertices; and

N,, N;, N, = the corresponding shape functions. These functions are defined
as

1
Ni=-zz(a,.+b,x+ T ) (12)

with A = area of the triangular element ijk
G=X Y, - XY b=y Y= x,ox, oo (13)

in which i, j, k take the values of 1, 2, 3 cyclicly.
Applying Galerkin’s criterion, the result is
" 3LN]
+B ){q: }

H {N}l'<8‘lNJ JULNL O aLN]
A L
]

ax? ay? ax ay
+Cdedy =0 ....... e e e e e e e e e e e e e (i4)

Next, integration by parts is applied in the plane (Green’s theorem). This
operation reduces the order of the derivatives appearing in the integral and
introduces the boundary terms into the resulting integral. In the present case
the result is

/ N 3
” [K_a(a } 3IN] 9{N]} aN] a(n) 2N
&

x ax av ay ax

o N i 2i N
+B{N}——;—;—J—){d:}+{N}Cszdy+q§{N}-—:3—n—J {$}dsS=0 ... (15)
4

The values §; = zero on the entire eaterior boundary in the present problem
and the closure integrals along internal (interelement) boundaries vanish as ele-
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ment size decreases (13), or if continuity of a|{ N J/én across clement boundaries
is preserved. Thus, the contour integral term s excluded from subsequent consid-
eration. Evaluation of Eq. 15 then yieids the system of cquations

[ked{wl={r) .o (16)
inwhich [k¢] =jj (_ (N} aLNJ _2{N} 3LNJ
- a ax ax ay ay
alN| aLN
A{N} —= B{N}———a——) AXdY o v o (17)
y
{r'}=—ff {N}Cdxdy .......... . ........ o (18)
. A

Note should be taken of certain aspects of the numerical evaluation of Eq.
17. First, due to the terms A{N} (8| N]/dx) and B{ N} (a{ NJ/ay). the result-
ing algebraic equations will be nonsymmetric. This means that advantage can
not be taken of symmeltricity as encountered in most structural finite element
analysis. That is, every term of the element matrix has to be evaluated and
the entire banded system matrix has to be stored for computing the solution.

As Eq. 7 indicates, the coefficients A, B, and C are functions of x and
y. Herein the decision is made to approximate the variation of these terms
within each element by linear functions, similar to Eq. 11. Choice of a constant
value for each clement, say at the centroid, would simpliiy integration of Egs.
17 and 18. Proper comparison of the finite difference solutions of Ref. 8, in
which these coefficients vary between the points of the mesh, is being sought,
however. It should further be observed that integration within the triangle is
simplified considerably by use of area coordinates (12).

The equations of the complete lake are constructed from the equations of
the elements éby imposing the condition of stream function continuity at each
element joint, which is synonymous with simple addition of all coefficients
(ky and r) w?th like subscripts. Thus, the full set of equations is of the form

[K]1{¢}= {:"R} ............................... (19)
inwhich Ki=Zky o ooouinint i, (20)
O Q1)

and the summations range over all elements with terms with the subscripts
iand j. :

After solution of Eq. 19 for {{}, other variables, such as averaged velocities,
pressure gradients, and velocities at different depth levels can be subsequently
evaluated by back substitutions. Herein, because a lincar field in ¢ has been
assumed, its derivatives d¥/dx, oy /ay are constants in each element. Thus,
from the definition of §, the average velocities @ and v are constant within
each element. From Ref. 8 the point velocities as a function of planform and
depth are

u= —-5; os mz(c,e™ — c,e"™) — sin mz(c,e™ - c,e"™)- . ... (22a)
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FIG. 6.—Comparison of Stream Function Solutions for Rectangular Lake at Repre-
sentative Sections
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FIG. 6.—Comparison of Total Velocity Solutions on Rectangular Lake Surface at
Representative Sections ’ )
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V= . +cosmz(c,e™ + cye”™) + sin mz{c,e™ + coe”™) T L L L. (22b)
ax

in which the terms m, €1» €5, €, and ¢, = functions of x and y. The reader

is referred to Ref. 8 for the exact definitions of these terms, which are rather

complex. The same paper expresses the pressure gradients as a function of

x and y and the derivatives of . '

Numericat ResuLts

Two problems are solved as an illustration of the present approach. The
first problem, shown in Fig. 3, enables comparison with finite difference results
(8). This 1decalized lake is oriented in a north-south direction with a length four
t:mes the width. The following values were employed in numerical caiculation:
f = 0.0001 rad/s; D = 8,000 cm; n = 200 cm?/s; L = 1.25 x 10" ¢m; 1
=1.0cm?/s?;and g = 980 cm/s?.

N3 of elements = 561

Scole,km No. of nodes= 323

0 8 1Is
[ SR S—)

T
! n

e s
FIG. 7.—Finite Element Representation of Lake Ontario

The finite element representation of a quadrant of this lake is shown in Fig.
4. A totai of 90 elements are arrayed in the quadrant but four times this number,
360, with 209 joints; and therefore the same aumber of equations, were employed
in actual computation because the geometric symmetry about the x and y-axes
does not apply to the circulaticn behavior being calculated.

As is apnarent {rom the definition of ¥, a zero depth represents a computational
singulatity and it is neceszary to have a finite, but small, depth all along the
‘boundary. The flow region under analysis was, therefore, taken to be one bound-
cd by a contour of 5% maximum depth, a value which has been found to
be adequate in previous numerical solutions, and the flow exterior to the bounda-
ty is ignored (assumed to be at rest).

Figs. 5 and 6 show results for ¢ and the velocity resultant at selected cross
sections for the case of a south wind acting on the lake surface. Also shown
are the finite difference results from Ref. 8, in which 1,701 equally-spaced
pivotal points were used. The finite difference and finite element results are
seen to be in close agreement. It should be noted that these comparisons are
presented to affirm the validity of the finite element method in soiution of
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this problem and not to measure the relative efficiency of the finite eicment
and finite difference procedures. A bare comparison of computational cffort,
based on the number of equations tc be sclved would not be realistic due
to such factors as the rclative effort in forming the equations and the narrow
bandwidth of finite difference equations.

Also, it is quite possible that finite difference results, which would prove
comparable with the finite element solution, could have been obtained with
much fewer than 1,701 pivotal points. The computational costs of the two solu-
tions cannot be comparcd due to sigaificant differences in the computer hardware
and software employed for the respective cases.

The second probiem for which numerical results are described herein is the
calculation of the circulation of Lake Ontario due to a wind shear prevailing
in the local average dircciion at Rochester in February, as shown in Fig. 8.

Stream Velocity, em/sec
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Stream Function, y x 108

FIG. 9.—Stream Function. and Total Velocity Soiution on Lake Ontario Surface at
Section A-A

A carcful representation of the geometry and bottom topography of this lake
was compiled by Canada Center for Inland Waters (2). These data are employed
herein to define a finite element representation consisting of 561 triangles joined
at 323 points. The specified wind shear stress and the physical constants f
7, and g are the same as in the first problem.

Fig. 8 shows contours of the stream function in the circulating lake. This
figure has been generated by a contour plotting routine which is part of the
computer program. A plot of the distribution of the stream function and velocity
on a representative north-south section scross the lake appears in Fig. 9.

No comparison results are available for this problem. Although the correct
Coriolis parameler was used, no attempt was made to choose a physically accu-
rate eddy viscosity or to represent ice formation or variation of wind stress.
It is unhkel: it field measurements of the form necessary for comparison
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purposes will be available in the future. Large-scale modeling is a promising
alternative source of comparison data but no such data exist yet for this lake
and when they are obtained it is te be expected that limitations on representation
of the pertinent dimensionless ratios [sce Rumer and Hoopes (11)] will require
\onu‘\ hat different conditions on the comparison analyses than those employed

"I'Cln

In computational aspects, cxecution times for the finite element solutions
of the preceding problems were generally small, between 1/2 min and 1-1/2
min on an IBM 360/65.

One mcthod of establishing confidence in the svzlidity of the present results
is by performance of further analyses with either a revised gridwork or with
higher-order elements on the same gridwork. Work in this direction is in progress.
Correspondence of the results of these solutions will add to confidence in the
accuracy of the solution of Eq. 7 for this situation but cannot, of course, demon-
strate that this differential equation properly describes the behavior of the aciual
lake.

SummaRy AND CONCLUSIONS

The finite element method has been shown to be effective in the analysis
of lake circulation. Such problems are quite complicated from a geometric
standpoint and a realistic analysis with use of any method must inevitably require
a large-scale computation. The finite element method is attractive in this respect
because of the possibility of using existing large-scale, general-purpose, finite
element computer programs. It is especially promising as the basis for analysis
of more complex circulation phenomena in lakes, such as the response to the
introduction of a thermal plume into a stratified lake. Exiension of the present
work to three dimensions in a more general way, with removal of the assumptions
which pioduced a two-dimensional differential equation, can be accomplished
without extension of basic theory. Appropriate trial functions for such elements
are reviewed in Ref. 4. The isoparametric element concept (14), in which higher-
order polynomial trial functions are also employed to map curvilinear element
boundaries, is especially attractive as a means of improving the efficiency of
three-dimensional elements in geometric representation of a problem. The
computational expense of three-dimensional representations is inevitably vastly
increased in comparison with two-dimensional models, however, their application
must necessarily be motivated by a desire to include new phenomena.
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Appenpix il.-~NotaTion

The following symbols are used in this paper:

>

e

0
|

coefficients in Eq. 7 as defined in Ref. 8;
a,, b;, ¢, = quantitics relating coordinates of joints in clement; .
€, €, €, €, = coefficients for cvaluating velecity components as defined
in Ref. 8;
D = typical vertical dimension used to normalize depth; ;
f = Coriolis parameter; i
g = acceleration of gravity; i
h = wuormalized depth of lake; '
[K] = cocfficicnt matrix of resulting system equations;
(k] = 3 x 3 elcment matrix as defined by Eq. 17; )
L = typicai horizontal dimensicn used to normalize horizontal 5
dimensions; J
L) = linear operator to operate on {s; _ ,l

m = Df/2n;
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INTRODUCTION

The simultaneous prediction of momentum, heai. or mass transfer in closed
cavities has challenged researchers for years Certain flow situations marked
by extreme diffusion or high mertia can be mathematically analyzed by closed-
form solutior or a boundary layer analysis (5.17.31). When a flow problem

_is not dominated by either physical process, mathematical decoupling of the
momentum transport from the heat (or density) transport is prohibited. The
resulling natural or combined convection cavity problem (i7). difficult as it
is, quite often is further complicated by the occuirence of circulation cells
accompanied by high shear rates and density gradients (4.8,29,34). Since the
governing simultaneous equations are nonlinear they require careful numerical
analysis.

The finite element method will be used to form a numerical analog for the
viscous cavity problem. A review of finite difference schemes for convection
problems is found in Ref. 25. Several features of the physical problem are
particularly suiged for analysis by the finite element method (FEM) such as:
1) lrreg‘,uiar boundarics are treated accurately without computational difficulty;
(2) variable boundary conditions such as differential heat input, tempcrature
distribution, or'wind shear are easily handled by the FEM; and (3) the solution
of nonlinear fluid problems by FEM is just beginning (4,21,22,23,32), but already
excellent iterative stability-and rapid convergence are apparent.

The first fluid mechanics :application of the FEM was to linear potential flow
problems (2,33). Extensions to lubrication and creep flow followed thercafter
(1,9,10). Solutions of viscous homogencous flow problems are now available
(6,7,15,16,20,27). Nonlinear viscous flow problems, being the most difficult,
are only beginning to receive attention. Olson (29) presents a quintic element

que.—~Discussion open until May 1, 1976. To extend the closing date one month,
a written request must be filed with the Editor of Technical Publications, ASCE. This
paper is part of the copyrighted Journal of the Engineering Mechanics Division, Proceedings
of the American Society of Civil Engineers, Vol. 101, No. EM6, December, 1975. Manuscript
was submitted for review for possible publication cn August 2, 1974.

' Asst. Prof. of Civ. Engrg., The Ohio State Univ., {'olumbus, Ohio.

2Prof. of Civ. and Environmental Engrg., Cornell Univ., Ithaca, N.Y.
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Mewton-Rapheon FEM piocedure to analyze several homogencous flows for
the Reynolds number as high as 1.000. Stable iteration and rapid convergence
are particutarly noticeable in this method. Skiba, Unny, and Weaver (32) present
a rectanguiar element steady-state solution for natural convection in a slot.
A weighted average methed was used to iterate velocity and temperature values,
cpusing steration and convergence behavior to be inferior to Olson's method.
Kirg, iNorton, and Oriob (23) prescnt a Newton-Raphson technique to analyze
stratified flow over a broad-crested weir.

In this work a finite element analog is presented for the class of steady.
viscous, incompressible, two-dimensional, heat, or mass tran<fer flow problem.
The Galerkin method of weighted residuals (MWR) is used to derive a functional.
A cubic plate bending element is used with the streamfunction, s, and temperature
or density (T or p) as unknowns. The element provides nodal continuity for
not only ¢ but more importantly the flow velocities which are derivatives of
&. An amalgamation of Olson’s (29) Newton-Raphson method and Skiba’s (32}
weighted average techniques is used to iterate the coupled system of equation.
The results from three cases are presented. These include homogeneous linear
shear driven cavity flow, lateral temperature gradient induced natural convection
in a box, and shear driven stably stratified cavity flow.

ConservanioN EquaTions

The three problems analyzed in this paper are treated by the same equations.
The coordinate system is indicated in Fig. . .

Only stecady-state problems are considered. Laminar frlct'lon is used a]lhough
the wviscosity maybe interpreted as an eddy viscosity which is held con'st.ant
in the spirit of mathematical tractibility. Density variatiqns are assumed negllgxl?le
except in the buoyancy terms (the Boussinesq approximation), and the density
is unaffected by pressure (incompressible fluid). ' )

General Form of Basic Equations.—The general form of the two dimensional
steady-state shear or buoyancy driven cavity flow equations is as follows. The
continuity equation is
au aw . W

B I

ax az

The x-momentum equation is

u 1 ap . .
uiz-+ W= mmm AN VIU e (

ox a9z p, OX
The z-momentum equation is
, aw 1 op p : ’
u§-1+w~—=—————+-quw———g ................... €))
ax az p, 92 P

The diffusion-convection equation is

'f-d—)'+ wi?-=uvz¢ .......................... . (@
dx az
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in which u and w are the velocities in the x and z directions, respectively:

0 (L.0)  +x P = the pressure; p = the density; ¢ is cither the temperature, T, or the mean
~— turbulent density; and n, «, and p, are the viscosity, diffusivily, and refcrence
density. o
. . .Gmerr.ing Cavity Flow Equations.-—The equations are written in pondimen-
A ] ’ sional form by defining the following variables:
n x z u
r— + : xt=____; Zt=_; u-=__; w¢=1; .ntz__l_; aa=a_;
; H H U U n, a,
A e A W L .
: = = DpEE e by
(0,-H) D (L,-H) ! dr—dg Ad 1 - ©
+s : ! s e U?
\ | i
- + . .
n in which H, U, «,, m, and p, represent reference values; and ¢, and ¢4

are conservation guaatities at the cavity top and bottom. Upon substitution
of these variables into the equations the asterisks are dropped, and all variabies
from this point are dimensionless (except in defining R, Pr, Gr).
- - b B ¥ Eq_s. 2 and §-are cross diffgrcmiated. thereby eliminating the pressure and
by P ¥z, . forming a vorticity equation. Finally, a pair of coupled equations emerge which
will be used for the solution:
Al

T .B(VZ\MI) Gr a¢ -0
R a(z,x) R? ax

FIG. 1.—Notation and Coordinate Systems for Rectangular Cavities

q’z'q’xz"pzz —a To? + 3(d, ¥ 0 -

Vivx,. ¥z, . ! PrR ¢ 3(z,%)

in which ¢ = the streamfunction (u = /az, w= —ab/ax); Pr=q/a (Prandtl
tx | number), R = UH/v, (Reynolds number); and Gr = (Vp)gH?*/p, m2 (Crashof
FIG. 2.—Element Degraes-of-Freedom number). The nonlinear terms represented by the Jacobian make the equations

difficult to solve. The adequate solution of the problem requires full retention

of these terms in the numerical method.

0 +X 0

/7 / / ANAN AumericaL TECHNIQUE

/ i -
_\A \; rdvdvd N The development of the FEM analog begins with the derivation of a functional

[ ‘\\t 748 /| ™ form of the governing equatious by the Galerkin method of weighted residuals
Z - / N - . (MWR). The remainder of this cection considers in order: (1) formulation of

the extremum principle; (2) the element and the element stiffness matrices;
(3)the iterative solution fechnique;(4) boundary conditions; and (5) other methods.
i /| Formulation of Extremum Principle.—Despite derivations of nonlinear *‘varia-
Y N ' tional principles™ (11,13,14,18,19,24) a true variational formulation is unknown
for this nonlinear .problem. Although proofs of boundedness and convergence
do not exist as in the linear case, the Galerkin MWR provices a direct formulation
of an integral expression for the systeta of nonlinzar equations. The corncept
assumes that an approximation to the dependent variables (4,0) exists and is
of the form & = =", N,¥; & = =, N,;b,, in which ¢, (or $) is a particular
valie of the variable at point i, and N, functions of x and z are called shape

N

N,
N\,
/s

(i, : .
-2 (e} " -2 (5) (1)

FIG. 3.—Cavity Discretizations
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functions. If the governing cquation, Eq. 6, is designated D, (4.d) then the
substitution of the series, Eqgs. 3 and 9, gives D, o) = Ry # 0. v hich
R% is the residual caused by the approximate nature of the series. The Galerkin
criterion specifies that the weighted average of the residual over the domain
of the cavity be zero, thus [, D, W,d) N, dA = 0, in which the weight function
is chosen as the shape function, N, .

Eqgs. 6 and 7 are multiplied by the weight functions, N,, and integrated over
the cavity, the result after integration by parts is )

Gt
—_ +2
R az? az?

3N 9%y dIN, 8%
- + ! dzdx

9x3z 9x9z axt ax?
aN. oy aN oy
+ [ (—-—‘—lp—+——)v2¢ dxdz
J ax 0z dz ox
Gr FY S n [ 8N, 3%y
I N, S dxdg - — @ ————dx=0 . ... ®
R? ax Re 9z az?

and from Eq. 7

a 3N, 3¢ N, ab
—_— ——t+ — —} dxdz
PrR éx odx az 38z

a0 av
+Ij (N,—ii~ N, ——&) dxdz=0 . . oo ©)
4z dx ax dz

The boundary integrals arising from the integration by parts provide the device
by which boundary conditions are imposed.

Element Formulation.—The element to be used in this paper is the nine
degree-of-freedom nonconforming plate bending triangle presented by Bazeley,
et al. (3). The/t_:lement has the unknown ¢ and its first derivatives as nodal
unknowns; therefore, the streamfunction is immcdiately differentiable to obtain
the velocities.” Previous application of cubic elements to flow problems (6,15)
also shows the element to be accurate and reduces the number of elements
necessary to describe the system. This element is a slightly altered form of
the 10 degree-of -freedom element<(3,6, 12,15) in that the centroid node is distributed
among the nine corner nodes. For nonlinear iterative analysis the computational
difficulties of the centroid nodes are severe and require its elimination. The
element though nonconforming appears to give satisfactory first cut approxi-
mations for initial work on flow problems.

To establish the cubic polynomial the unknown ¢ (or &) and its derivatives,
Y, and ¢, are defined at the three corner nodes (Fig. 2). If area coordinates
are defined as L, = A,/ A, in which A = total area of the element, and A
= the area of the triangular subregion (i = 1,2,3), then the shape function
description is as given by Ref. 3:

by =
b=

N]d‘l + Nz¢x| + N3"JZ| + ...+ IV9\1123
N[¢|+de "N3¢Z!+...‘+N9¢z3}
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inwhich N, =L3+2L3(L,+ Ly +2L,L,Ly:
N,=c¢, (Lfi;+—!--L,L,l.J\ - c, (L L2 + —I-L L.L );
: 2 ] TG\ Ty s ,
N, = —b, (L} L,+ I?L, L7L,) + b, (L,Lf + —;— L, LZL,) ...... an.

anda, = X325 - X32,, b, = 7, = 75, ¢, = x5 ~ x,. Nyand N, are found by cyclic
permutation of indices in Eq. 11 similarly, Ny and Ny are found from N, and
Ngand Ngare found from N,. :

First and second-order differentiations are now performed and the resulting
matrices are substituted into the functional expressions, Eqs. 10 and 11, yielding
two sets of nonlinear algebraic equations for the element, e (see Ref. 35). Thus

M Gr ,
- E¢i’¢j+ eik]‘!‘lkq‘,l-i-;)‘ljd)i_ P‘ =0. . ... ... . .o

o

_P—I‘_R—Ei,(bi + Truk“‘bkd)j - Qf =0 . e e e e e e e e e e e e e e
Column vectors Pfand Q¢are formulated from the boundary integrals in Eqs.

8 and 9. It is assumed that these vectors are zero for all element sides no!
on the physical boundary of the problem. The customary procedure is to assemble
the element stiffness matrices (10,12) into a global systems of equations, treatirz
the nonlinear matrices, 8 and =, as quasilinear in the summation process. Judicious
application of the iteration technique would then result in acceptable results.
For reasons given in a later section, the solution process is reversed, i.e., the
iteration or perturbation technique is employed at the element level and a global
system is then composed.

Iterative Solution Technique.—The solution of Eqgs. 12 and 13 is by a Newton-
Raphson technique coupled with a weighted averaging method. This method
is an amalgamation of Olson’s (29) and Skiba’s (32) work.

The method begins by applying the Newton-Raphson procedure at the e}ementc
level. Let ¢g, and ¢7 be the nth approximation tq the cor.rect.so]ulnon‘,) d,.;,
and &7 (for element ¢) of Egs. 12 and 13. If the ith equation in Eq. 12 is
f, and the ith equation in Eq. 13is g;then by a truncated Taylor series:

9 af'
e+ (—) AU = £, (45.45) = 0
{=1 a‘b,

and
W5heo) + é (ai> APP=g, (P =0 ..o (15)
8, o *'To < ad)‘ 1 1\ -
aj‘ -T S -3 (16)’
cwhich = —— b+ SO0 Uaet oo
in which ‘a\ll, R Cbu ; ikj ijk N
%% = ; -1 .. a7
B 2 /e LI
3, APr bu ; .
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Aur =g~ o (18)
AT = = T e (19)
and

n—1 n-1 b n-1 a-11n-1 GT n-1
fn( 0; '(bo; =—0e "pol +91ki¢ok lbo; +;{Au o}

[]
L 20)
-t -1 (!_ i -1 =1
gi(‘!’z, vd):;‘ )= PR g,j z,_ +77.|q‘1‘;. :,
A final set of equations for the element e perturbation values is written
STAUr = —frhy TEAR = —glTt on

in which S = af /a¥;and T] = dg;/3 ¢,
The systems of element ‘“‘slope’” matrices can be assembied into a set of
global ‘*slope’’ matrices

SPtAYr=—Fr™ 22

Tp A= =G e (23)

in which, if there are p nodes in the system, Ay (and similarly A ¢7) equals
Ay, FAY, ahy, Ay,

Al!ﬂ:AlI},"——,— ICEER I » >
! " oax T ez P oax 9z

A weighted average scheme completes the iteration process. When Eq. 22
is solved the new perturbation values, Aq;,f', are added to the old sclution vector
(Eq. 18) to form the vector of current streamiunction values. After multiplication
by the proper weight funciion the new and old solution vectors are added and
the averaged answer is sent to Eq. 17 for use in solving Eq. 23. The same
process is then repeated for Ad. The averaging scheme is then

b= W W0 ) + W, (uz:*')}
& =W (6171 + &7} + W, (o)

The repetitive population and solution of Egs. 22 and 23 using the most
current weighted $Soiution vectors, Eq. 25, is the iterative process. Complete
specification of the numerical technique closes with a brief description of the
method of handling boundary conditions.

Boundary Conditions.—Known nodal boundary values of &, ay/dx, afi/dz,
¢, 8b/3x. and ad/az are introduced into the starting vectors, ¥land ¢ Since
thete values never change the corresponding perturbation quantities, z‘S\in‘ and
A(b". are always equal to zerc. When, as in the case of the variable bo'uom
topograplty, boundary conditions are specified in terms of normal and tangential
derivatives g coordinate transformation of the affected boundary nodes is

necessary. The method, readily used in structural analysis, is described in Refs.
4 and 5.

Solution Procedure.—Computation and storage requirements are greatly re-
duced by dividing the method into two specific programs, an element tibrary
program and an iteration program.

J DECZIA3ER 1675 -.M6

The element Library creates the siffaess matrices, 4, 8, A, =, and £ (10.12),
for cach of the “‘differcnt™ or m.an Jdements in a pariicular descretization.
Therefore, even if there e 100 elements [Fig. 3(b)], stiffness matiices from
only four are determined and <tored. Although this method cncourages element
uniformity, the reduction in core storage requirement justifies the approach.

The iterative solution program solves the nonlinear system of equations by
the Newton-Raphson procedure. Several organizational features are noteworthy.
The solution order of the two cquation sets is established by the criterion that
the most linear goveining equation, Eq. 6 or 7, is solved fist. Because the
test time per iteration is considerable, no convcigence test was incorperaied
in the computer program. To test for convergence the results from a completed
run of n specified iterations were measured against the convergence ciiterion
le] < 0.1%. Results not falling betweer those limits were used as starting vectoers
and the program run for another speciftes number of iterations. As compiiation
time was only 3 sec a considerable economy in computation time resulted.
Full advantage is taken of the banded but nonsyvmmetric slope matrices, S,
and T,. Once convergence occurs, the solution vectors, §; and ¢, are printed
out and passed directly into a card file. These files serve as starting vecwors
for the next case.

Although an apparently clumsy technique requiring the repeated population
of the slops matrices, this meihod arose in response to the restrictions in
computation machinery (all calculations were performed on an IBM 360/65)
and the deficiencies in the currently available methods (23,29.32). A brief
description of the deficiencies foilows.

Other Solution Methods.—The method of Clson (29), the point of departure
for this work, is a full Newton-Raphson procedure. With reference to Egs.
12 and 13, the method sums the elemeant stiffness matrices 1o global matrices
and then applies the Newton-Raphson proceduse. The resulting global three-
dimensional slope matrices require so much storage that they must be stored
on disk and retrieved at each iteration. For this particular problem more time
was spent retricving the global matrices from disk than repeatedly populating
Spand Ty with the procedure outlined herein. .

The method of Skiba (32). an accelerator method, is straightforward. Eqgs.
12 and i3 are summed directly 1o the glohal system. Using values of ¢ and
¥ from the previous iteration the nonrlinear terms are evaluaied and the algebraic
equations are solved for ¢/}, not the perturbation quaniities. A Y»cigh{cd average
of Yris formed and used then to solve the system of equations tjor (p', 'I"he
process is repeated for the specified number of iterations. The savings in time
per iteration is considerable but convergence proceeds at & much slower pace.
Again, the storage of large three-dimensional matrices is required. ‘

Finally the method of King (23) eliminates the necessity of usinglng‘n.er orfler
approximations by solving the four conservation equations directly. The iteration
technique, a Newlon-Raphson procedure, requires solving at once a large matrix
for values of the velocities, pressure, and density. Again the very large storage
requirements pius the necessity of solving the sensitive pressure 2quation eliminate
this method.

ProsLEM SOLUTIONS

The finite element method is now used {o solve several cxample pioblems.



o e e VRt

EM6 FINITE ELEMENT ANALOG 811
The results emphasize the convergence, accuracy. and cfficicacy of the technique,
For two of the three problems previous results dare used 10 estabiish saluiion
accuracy. The third problem, the motivation for the developrient of the method,

is new and thus previous results are not available.
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FIG. 4.—Vertica! Streamiine Profile at x = 0.3 and 0.7; Homogeneous, R = 0, Shear
Driven, 0{1} Cavity
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FIG. 5.—Vertical Streamline Profile at x = 0.5; Homogeneous, R = 0, Shear Driven,
0(1) Cavity

Linear Biharmonic Model.—The analysis of a shear driven cavity model satisfies
three objectives: to determine the number of nodes/elements necessary for

accurate cavity results and to determine the effects of a symmetric versus non
symmetric flow { discretization.
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The pioblem s defined as follows. A homegeneous water Tilled cavity s
¢t mio motion by the upphcation of a knewn <hear suess. The problem s
Licuized by considening the R = 0 cuse. Eg 6 reduces 10 V44 = 0 The
beundary conditions apphed to the surfuce z = 0 are w = 0, and 7, (41/a2)
= 1,/p, in which +, is a knowsn shear stress. On the walls and bottom thé’
no-shp condition helds and no flow is aillewed through the boundary.

In his work Clson suggests that for a 1 x 1 cavity 72 elements or six on ~ °
a side is satisfactory. Figs. 4 and § then compare the results from a 6 X 6
box [Fig. 3(a)] 10 a 10 x 10 box [Fig. 3(b)] and the finite difference 1esults
of Rotem and Ratkowsky (30). The sirecamfunction profiles comipare favorably
with the published results everywhere but the vortex ceater. The fullness of
the Ratkowsky and Rotem results is not matched by the 6 X 6 cavity and
the 10 X 10 cavity duc perhups to the ncnconformity adds little refinement.
Because mesh refinement failed to improve results substantially the coarser
mesh is considered sufficient. By lowering the number of elements from 100
to 72 the system of equations is reduced from 363 to 147, a significant difference,

Natural Conmvection Model.—The model, utilizing the full nonlincar algorithm,
considers fluid motion in a completely enclosed square cavity the sides of which
are held at constant but different temperatures. The motion is assumed laminar.
A warm temperature, T,, is evenly applied to the left vertical wall and the
right vertical wall is kept at a constant but colder temperature, T,. If the density
is related to the temperature by p = p, [} — B(T - T,)] and if U = H/~,
T* = (T - T.)/(T, — T.), in which @ = thermal diffusivity, and 1 = reference

time = H?/&. Then Egs. 6 and 7 become
V2, oT
pevey s S0 pe 2l
3(z.x) XN, 26
a(Tp)
a(z,x)

in which Ra = Rayleigh number = [gB(T, - T)/@w]H". The boundary
conditions for the flow field are thut u = w = 0 on the boundary and the
temperature ficld is restricted to an insulated condition on the top and bottom.
The negative horizontal temperature gradient, a vorticity source, is governed
by the size of the Rayleigh number; therefore, the magnituce of the Prandtl-
Rayleigh number product controls the evolution of the solution. _

Applied to a 6 x 6 cavily, the procedure begins with a null starting vector
for ¢"and sceks a weak heat conduction field for Ra = 1.0. The value of
Pr for all runs was 1.0. Computations for Ra up to 10% were performed and
compare favorably with finite difference solutions by Wirtz (34) an.d DeVahl
Davis (8). The results for Ra = 10% and Ra = 105 are plotted in Figs. 6 and
7. Streamlines and isotherms for the Ra = 105 case are presented in Fig. 8.

The results indicate that the initial choice of the 72-element cavity was accurate. -
Using this 49-node configuration reduced the problem size considerably, Wirtz

gsed 81 ard 289 nede conligurations and DeVahl Davis used 121 nodes.
S The time

RN R A A L 4 "..Yf"'rmid erginticm in wrpall
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program sclving two systems of algebraic eguations per iteration required 106

K of storage and 113.6 sec of 1BM 360/65 Fort G execution time. Olvon (29)
reports that for one iteration on an IBM 360/67, 72 <ec of exccution time
were required 1o solve one governing equations approximated by 172 algebraic
equations. Therefore, the present method represents a fivefold increase in

O RA Witz Rg = !05
O RawWnz Ro:i0?
T €16 Covity

04

03

02

FIG. 6.—iviidhaight Temperature T Profile; Natural Convection, Ra = 104, and 10

. - 80
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FIG. 7.—Wiidheight Vertical Velocity w Profile; Na'tural Convection, Ra = 0%, and
108

efficicncy, suggesting that disk storage should be avoided where possible. Chan
(6) reports that studies of flow over a cylinder using a 207-¢quation Newion-Raph-
<on fnlution ook 280 sec per equalion per iteration. Again the improvemant
cevadens
e v, e
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convection problem; thercfore, the result is not unexpected. Measurcment of
these properties is done by comparing the numbers of iteration required for
convergence and the size of the Ruleigh number jump taken whiie remaining
stable. As a step increase of Ra 103 required three to four iterations and |
no weighted averaging. Step increases of F!a = [0* were done in less than
nine iterations with simple averuging (i.e., W, = 0.5, W, = 0.5). The maximum
reliable step size for flow regiines up to Ra = 2 x 10%is § x 104 requiring '

60

—

\,__

_‘_————_——-—-.—..\
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FIG. 8.—Streamline and lsotherm Contours; Natural Convection, Ra = 105, Pr -
1.0
14 T
—"\&\
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000004 %8
06000! J

FiG. 9.—Streamiine and Isopycnic Contours; Shear Driven, G(1} Cavity, R = 100,
Pr = 1.0, Gr = 5,000

10 to 12 iterations with simple averaging. Although successful convergence was
achieved at a step size of 7 % 10* the probability of consistently good results
is reduced.

De Vahi Davis (8) reports that the stabiiity of the finite difference analog
is threatened for step increases greater than 5 107, Skiba's (32) method easily
handles step increases of Ra = 4 x 10% however, the results are achieved
witha Pr = 1,000, a very stable configuration for the problemm No such restncnon!
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is nccessary here. Unfortunately, no results are seported on the number of
{terations required for Skiba’s method.

Combined Convection Problem.—The primary motivaiion for the aigonthm
development was the solution of a combined consvcction problem. Since vesults
are not available for this problem rigorous checking of the mecthod zpainst the
established results of the previous cases indicates the correctness of the solution.
The problem is this scction explores the interplay of wind shear and a stable
vertical density gradient, and is peculiar In that distinct circulation “‘cells™ can
occur.

The cavity model considers fluid motion in a cavity founded on the sides
and bottom and sct into motion by a known applied shear stress on the surface.
A stable vertical temperature gradient is imposed by specifying maximum and
minimum temperatures on the top and bottom of the cavity. The surface
temperature is Tand the bottom temperature is Tgand if U(Eq. 5)ist, H/(ap,)
then Egs. 6 and 7 become

n aVigw) Gr T
__vl. + y __-)_.—h-?-—a——-z
(2,x) S Q@n
, a(TW)
——— —— ——— T 0
PrR a(z,x)

The boundary conditions are that « = w = 0 on the bottom and sides and
w = 0 on the surface. Further’du/dz = r,/(n,p,) is specified on the surface.
Heat flux is prohibited through the sides.

Calculations were performed for a variety of flow conditions. The range of
paramecters was: R of | 1o 1,000, Pr of 1 to 10, and Gr of 1 to 10°. Exiensive
results to this problem will appear in another paper, however, a streamfunction
and isopycnal plot is presented here, in Fig. 9 for demonsiration purposes.

Iteration and convergence behavior is the same as the natural convection
problem.

ConcLusions

From this study several conclusions ahout the use and application of this
method are drawn.

The full Newton-Raphson method can be made an efficient and, for this
class of problem, a preferred computational scheme. With the proper use of
element libraries the necessity of using disk storage is eliminated. The use of
higher order interpolations reduces the number of necessary elements and is
highly recommended.

This paper establishes that the use of the FEM encourages solution stability
and iterative speed. The method is preferred over finite difference schemes
for this class of steady problems. Problems and questions are plentiful and
unfortunately the solution of coupled noniinear equations by the FEM remains
unresearched even in light of recent Swansea (22) conference. In physical domains

where analytical answers are impossible the FEM seems to be the correct
approach.
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Appenpix Hl.—NoTtanion

The foliowing symbols are used in this paper:

A,A; = element area and area of subregion i, respectively;

a,.b,c, = clement geometry coefficients;

Co.Cx,Cz
Cxx,Cxz,Czz = cozfficient matrices for shape functions and first and
second derivatives;

D,,D, = operator notation for governing equations;
d,e,f = column vectors of element integrabie functions;
E,Eo = turbulent density eddy viscosity and reference values;
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ith global and clement algebraic equations at nth iteration

for vorticity equations;

ith global and element algebraic equation at nth iieration
for conservaiicn equation;

Grashof number;

gravitational coefficient;

maximum cavity depth;

indices;

cavity lengih;

element area coordinates;

maximum number of iterations;

element shape functions;

boundury condition vector for vorticity element stiffness
equations;

Prandt! number;

pressure;

boundary condition vector for conservation element
stiffness equations;

Reynolds number;

Raleigh numbér;

residual for ith equation;

ith global slope matrix a1 nthiteration for vorticity equation;
temperature;

reference, left wall and right wall temperatures;

ith global slope matrix at =th iteration for censervatior
equation;

reference velocities;

horizontal and vertical velocities;

weight function;

rectangular Cartesian coordinates;

diffusivity for conservation quantity ¢;

molecular thermal difusivity at reference density p,;
volumetric expansion coefficient;

error limit;

eddy viscosity and reference value;

element stiffness matrices;

density and reference value;

density at the cavity top and botiom;

thermal diffusion time;

surface shear stress;

conservation quantity and series iepicsentation;

vectors of ¢ and perturbaiion quantities at nth iteration;
streamfunction and its series representation; and
vectors of ¢ and perturbation quantities at ath iteration.
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THE CAICUIUS OF VARTATICNS

1.1 Introduction

In the study of elementary differential calculus we investigate
how certain quantities say 'f', varies as another quantity, say 'xf
is altered when there ié a relationship between x and ﬁu We say that
T isa function of x, f = f£(x), if there is some rule wherahy we
can calculate the value of ¢ if we lmow the value of x, One ﬁarticu}ar
vinvestigation we make is into the determination of the maximum and
minimum values '@° may\have and the conditions for finding these
values,

In the calculus of variations we consider a similar type of
problem, we study how a quéntity called a 'functional' variles as we
change the function ;f = f(x) to another func"tion, say @ = @('x),
and in particular try to find the function which givesthe functional
an extremun (maximum or minimum) value. |

A functional is a quantity whose value depends upon a function,

for example
1

F o= I £o(x) & - (1.1)

o]

is a simple functional. The value of the definite integral will
depend upon which function £{(x) we chose. We shallvbe concerned with
integrals in the form of definite intégraIS'in which the integrand
may not only includs the function f but also ité derivatives., A

typical nroblem might be to find the function f(x) which gives

L

2. 2
P [’ {(9-»%) -2 f)ax (1.2)
S ax |
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a minimum value, and also satisfies some spécified conditions at x = O
and X = L. Further restrictions will also be placed upon the range of
functions out of which f(x) is to be selected, these generaliy will
require that f is a continuous function of x and that some of its
derivativeslare also continuous, The range of finctions which satisfy
the boundary conditions and have the required degree of continuity
we call'admissible' functions.

We will denote a functional by F(f) if £ is the required functiomn.
If more than one function is required we list these in the parenthesis,
e.g. F(u,v,w) means that we will be looking for functions u, v and w,
The integrand we write as I( ), and in the parenthesis we write much’
of the required functions and their derivatives as appear in the
inlegrand aﬁd the independent variables. Thus the functional cited

above =(1.2)~ would be written as

p a%r '
P(f) = jo (g, S5 00 o
or ' L | (1.3)
P(f) = jo I(f, 5, ¥) &

whe;e the suffix notation indicates differentiation

5 °
af a°f

f = == f = —= , ete,

x  dx ple.d dx2

The first problem we shall consider is the determination of the
function that gives some integral which depends upon f and fx a

maximum, minimum or more generally a stationary value.
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2

1.2 Tunctionals of the form F(f) =~.J I(f, Ly x)dx,
X
1

ILet us try to find the function f£f(x) that has the values £y :ﬁf{xj)
at x = Xy and..f.‘2 = f(xz) at X = x, and gives a stationary value to

the functional.
o

\ ds :
F(e) = [ g, 8L, wax (1.5)
x
1
We will use the symbol £ to denote the function that gives the

stationary value to this functional. Any other function which passes
through the points (f1, x1) and (fz, x2) can be put in the form f(x)
+ N(x), where n(x) is zero at x = x, and x = X, (figure (1.1).

The expression,

n(x, e) = £(x) +en(x) (1.6)

"will represent a serles of curves each of which passes through the

specified end points., We limit ourselves tc functions f(x) ard n(x)

which are continuous in the interval x1'< x < x2.

N(x) the above expression h(x, ¢) will give a family of curves, and

For each function

all the possible such families will contain f(x) when ¢ is zero,‘ If

we now evaluate the functional F(f) we know that this will be an
extremum when ¢ = O and its value will then be F(y). The value of

F(f) will vary with = and we lmow, from the definition that f extremizes

the functional, that F(f) will be an exiremum with respect to ¢ when

€ = Oo
Now x2 ' |
Py = [ x(nn, xx (1.7)
x \
1
and
©af . .
gz%x‘+e%g(1=f-+€ﬂ ‘ (1.8)

dx



If we differentiate (1.7) with respect to ¢,

x2 2
aF( 1 roar g, (AL oh oh
e L Gon 35 * ﬁ\—b?)dx (1.9)
1

(Note that x does not vary).

The second term arises as not only does I change with variations

in h(x) but also will variations in di/dx (o¥ h) .

From h = £+ e7 and h‘Jc = fx + e‘nx (’1010)
we find

= 2 M (1.11)

be = be - ‘X ‘
Whence - x2

aF(a) J‘ dI DL

i = . (hh‘n M ﬂx)dx (1.12)
1

Integrating the second term in the right hand side by parts we

get
*5 *2
ar(n A a,dT dI
"%:>'= f G- &legontax + [ (1.13)
- x1 X b 4 x1

The last term in this expression is zero as ‘n(x) is zero at both-

limits x = x, and X = x,.. We tms find,

1 2
f -2—- %(b—%) Tnax (1.14)
*,

For a stationary value of F(f) this equation must be zero, and

this occurs when ¢ = 0O a.nd.hx = fx. We thus have,

=f {s'f-a( )1ndx=o (1.15)
X

This is to be true for all the admissible functions N, that is for

all functions h{x) which are zero for x,= x and X = X, and are eontin-
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wous in the interval xy < x< Xy

The Baslc Lemma of the Calculus of Variations

“WIL x2 ¢ .
‘I{ @(x) n(x) dx = 0 ' (1.16)
1

for all admissible-functions M(x) then o(x) 0 throughout the intervai."

Let o(x) not be zero at some point x = X, Since all the necessary
functions are assumed to be continuous, o(x) will have the same sign
in small interval a =X - § < X< X+ % = b . Tor instance

(figure 1,2) the function

oz =0 , x<a , x>0b '
(1,17)
n(x) = (x-—a)2(x-b)2 ,a<x<b.,

will be continuons and have a continuous derivative, and is thus
.admissible. Since in the interval a< x< b , N(x) is essentially

positive the integral,
x

2 b -
J a{x) N(x)ax = f o(x) N(x)ax (1.18)
x1 a *

will not be zero, which confradicts our initial condition. Hence
o(x) cannot have any value at any point in the region considered.

A similar argument applies if we require the nth derivative of
n(x) to be continuous, but in this case we use

Mx) = 0 , x<a, x>3bH

(1.19)
n(x) = (x»a)n+1(x»b)n+1 , a<x<Vb

since this will give the required continuity.
Thus, the function £(x) which gives a stationary value for F -

equation (1.15) - is such that satisfies o{x) 2 0 or,
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dI 4 (dI
Ze5=GF) = 0 (1.20) -
df T dx “df,

throughout the interval Xy < x< x,
Equation (1.20) is called the Euler-Lagrange equation and

represents a second order differential equation.

Exanple 1.1 Find the condition that

1 N
(o) = [ @D+ 3D 4 ey 2t ax (a)
[o}

should be stationary, subjected to f(1) =0, f(o) = 0

We have, 5
I = 28D+ BED + o wnf (b)
Thus,
8L _ o0 4D ‘ DL . af 4B (¢)
£ ‘ Qx p'e

Whence, equation (1.26) becomes,

o
H

oI _ & ,dl vy _ -
b"-dx!‘fx)'— Lf+D-2Ar =0 (d)
2
or 2A-d—-§-201'-])= 0 (e)
dx

with boundary conditions f = 0 at x = 0, x = 1,

Example 1.2 The deflection of a strip of film, with film tension

T, under normal pressure p is such that it extremizes the following

functional 1

M o= [ (2 -l ()
(o] .

where w is the deflection and is zero at the ends of the interval,

»’= 0, L,



Now, 2
T dw
I = 5(3x) - , (v)
[ bl
oW = e D wa = Tw (C)

Whence the Buler-lagrange condition gives

j=7
N ®

d-
- =D () = O (

or

(s)

'pa
5
+
Sk
|
o

3%}

&

ol

The solutionqof this equation is,

sz
w = 57 * +Ax+Bv . (f)

and since w(o) = 0, w(L) = 0

W o= —QPT—‘x (L - x) ‘, ()

X

2 .
1.3 TFunctionals of the Form F(f) = [ (£, S x) dx
lx El
1

We consider now functionals whose value depends upon the nature
. e
of a function and its first,derivatives

-

X

o) = |
x4

2 . '
(£, fxr ’fxx’ x) dx . (1.21)

The required value is the function fr(x‘) that gives a stationary value
to this function and has specified values :11 f2_ at x = Xy Ko and
also specified values for the first derivative, f (x,) = fx1 and
f'x(x2) = 'fxz

We proceed ds before, dencting the energizing function by ¢(x), and
considering functions h(x) =0 £(x) + en(x) . 'In this it is necessary

that N(x) is zero at x = x, and X = x, and that the first derivative



n(x) is zero at x = x, and X = X, and that the first derivative 'nx(x)

is also zero at the ends of the interval (figure 1.3). Noting that,

h = h+ eN y %l-;- = ‘n

o3

o= fo+eN, , ryall Ty (1.22)
bh

hoy= S+ eN .y 5 = 'ﬂm

we find that the value of a functional F(h) is

X

P(h) =

K— o

I(hy hy, b, X)dx (1.23)

and this is stationary with respect to ¢ when e = 0, We have

X
2 :
bE [ eron, a1 Mk oar Mmoo
de -x1 dh de th de Cnxxbe |
x2 .
AT .
[y, R 2L n  yax (1.23)

- T+ M. +

and since when ¢ = 0 , f(x) = #(x),

X

, 2
% ‘=3[(z>f“+z>f “x'*b 1) d&x = 0 (1.24)
€=0 1

We now integrate the second term by parté once, and the third

tem by parts twice, i.e.

I o2 4
ffxx“ d’“!;x ‘3‘; af)“d"=
1 ! 11 1 -
’ I 2 % 2
= Fr— Ty - ( ) M + I (-?) ndx  (1.25)
‘ = !"1 Xy x1

We can write (1.24) as



2 22 X2
4 /b B 4 .
1 X XX <
1
X
2
o1
+ 6fm ‘nx = 0 1.26)
. JC1

But the admissible functionsn(x) are wsuch that N(x) = 0 and
nx(x) = O at x = x, and x = x,, so that all the limit terms in (1.26)
ore zero. The integral term is zero for all T(x), hence by the Basic

Lemma,

£ - Tt ) + 2(?,f ) = 0 (1.27)

This is the Euler equation corresponding to functional (1.21)

and represents a fourth order differential egquation for the function

£

Example 1.3 Find the condition that,

L
[EI()152

_ + 5 W = pw } ax (a)
(o}

‘shall be a minimum, The function w and its derivative having svecified

values at Xx = 0 and x = L.

2L n? k.2
- B ke S
Thus
2
bL b1 dI dw -
= = kW=p , === = 0 , 3= = EI — (c)
dw bwi hwﬁx dxz
whence,
2
_q_.Q.(EIdW)+kW-p=O (a)
ax dx

which is the equilibrium equation for a beam on elastic foundation,
\l FI . . A ' " \P‘- ° "




1.4 Functionals involving derivatives up to the n-th degree.

Let us consider now the problem of finding the condition that the

function f(x) gives a stationary value to the functional

X2
F(f) = L I(f, fx’ fxx, e o o 9 f( ), X)dx (1n28)
1
d'f
where f d8notes == . The function f and its first (n-1)
, x(n) a

derivatives have some specified values at the limits x = X, ana

X = X, The admissible functions can again be written in the form,

- w(x) = £(x) + e N(x) (1.29)

£(x) being the required function giving the stationary value to
F(f), but now n(x) and its first(n~-1) derivatives must be zero at the

ends of the interval of integration. We proceed as before and find,

2
[ @L2h 1 oh, a1 0y

1 + 3 + T eos +
dhde T dl de T dn . de %x(n) de

dI dI »I ‘ dI
(1.31)
We now integrate the various terms by parts until in each case

the second term in the integrand becomes n. Thus a typical term

LGN Y1 X1
(2 DI d AR
J~ — 1 dx 1N, - =~ = )
f . bf . "‘1 -»
x.b- x( 3) x( J) x( 3) x(3-1)| " |dx L (1) x( j-2) N
i ‘L'L

.S S _
ax™1 0%x( ) x\L- (1.32)

\

cen # (1)

+ E{’d o) S
dxz ¥ x( 3) Te( 3-3)

4
X

3 T
+ (=1) l; 2 g oa
4 d-xj of NG))

NIy
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All the terms to be evaluated at the limits are zero since they all
include factors of M or its first n-1 derivatives, The remaining
integrals each gontaiﬁ the f;ctor N(x)y and since m(x) is arbitrary,
apart from its continuity conditions, the condition fpr stationary

value becomes,

2 . qd '
I 4 ,dI. 4° ,»I j a A
== = () =5 ) e+ ()Y — () L.
£ dx v axe Pl dsxd hlx(j)
n a% I '
dx- “*x(n)

"his condition represents, in most cases, a differeni:ial equation of

order 2n.,

Example 1.4 Find the condition that

X
2
4. 2 2,2 2
P A ,d7f,2 B,3°F ar 2
P o= [ AED RS o@D v vfumr ) ax (o)
Xy dx ax

£hall be a minimum, £ and its first three derivatives having specified

values at x = Xy Xge
dL onf + B %r‘[‘ 2 & Bl def'
F = . s = - 5 X¥_ = )
o1 iy ax L ax”
(b)
AL o r ., db
OFf (o ’ i -
Whence the Euler equation becomes,
2, 4. 8; . .
ODf 4 E - 2C 5;5 N S Q—é = 0 (c)




1.5 Boundary Conditions

In the previous.éqction'we have considered that the required
function, and its first n-1 derivatives were specified at each end of
the region of integration., Let us look now at the pfoblem: tfind

_the function f(x) which gives a stationary value to!'

X5

P9 = [ 1(8) £, Oax (1.3)
X
1
with the condition £(x;) = f; and the value of £(x) at x, being
unspecified. If we proceed as before te admissible function T(x)

must be such that n(x1) = 0, but there is no restriction placed upon

n(xz). As before we find (equation (1.13) with e = 0, whence f = ).

*2

N
[ 1B L@ |gln]| = o0 (1.35)
x1 X X X2 X

The admissible functions include those for which.n(xz) = 0,
so that we can say that the integral term must be zero for all admiss-

ible functions with (%) = 0 at x = X4 and X = X,, S0 that the

condition

I [o}!

—

S S} S
dx bfx

o g

0 (1.36)

o g
H

still holds. FBut the range of admissible functions also includes

functions n(x) which are not zero at x = Xy9 whence if

2L = 0 o , (1.37)
x
Xo
we must have
el S 0 at x =-x2

of



1=13

Thus of all the continuous functions that pass through f(£1) = Iy
the one that gives a stationary value to F(f) will satisfy the differ-
ential equation (1.36) and also the boundary condition (1.38) at
X = X5, The bowndary condition (1.38) & called the 'natural boundary
condition' of the problem.

Note that by adding terms to the variational functional it is

possible to alter the 'natural' boundary conditions but the BEuler

equation will remain the same. Let us add the functions H1 valid

at x, and M, valid at x, to the functional (1.7.
x2 ’
F(h) = L 1(h, h x)dx + 112(1‘) + 1{1(1‘) (1.39)

1

If we differentiate (1.39) with respect to ¢ and substitutel vy (1.6),

we obtain
*5
. eH ‘ d
ar [o@L 4 2 ) >I 2 d B
- e R oe e ) N X+ T4+ Nelst~==r| N
e lo o -JX1 £ dx -i'x b,['x or x, b'lx 1 ]

Thus the Buler equation is the same as obtained before but

the natural boundary conditions are,

o OH.
ST | I 2 ‘
b.fx - 3F = 0 at Xy oy —I-:;' -3F = 0 at X, (1.41).

Example 1,5 Find the function which extremises
L P
rE) = [ 0D« 42?300 & (=)
o} " ' '

and has the value f’ = 1 at X = 0.
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The Euler-Lagrange condition gives

R PP S S
- (23) +85-3 = 0 (v)
or
2
ia°f 3
== - 4f = = (e)
dx2 ' 2

oy
—=7 thepsolution of which is

f = A sin 2x + B cos 2x - %— ()

The specified boundary condition is f(o) = 1, whence

/

11 ‘
B = '—8— . (e)

Since f(ﬁ) was not specified the function f(x) must satisfy

the natural boundary condition

D = 0 = 29 ' (£)
bfx x=1 ox x=1
whence
af 11
Gelgoq = 22 cos2- 7 sin 2 = 0 | (g)
. 11
giving,

£ o= -% (11 tan 2 sin 2x + 11 cos 2x - 3) (h)

If no restrictions had been placed upon the value of M(x) at the
ends of the interval we can see that T(x) would be arbitrary, subject
only to its being continuous in the interval. By chaosing first the

set of functions T(x) such that B(x) = 0 at x = x,, X, we would

17 72
establish the Euler-Lagrange condition, by choosing the set of

-functions N(x) such that ﬂ(x1) = 0 we would establish the natural
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boundary conditjors ¢t x = x,, and by choosing the set of functions

2
such that 'n(xz) ‘= 0 we would establish similar boundary conditions

atx=x1’.

H

Example 1.6 Find the function f(y) that eriremizes the functional of
example 1,5, if no boundary conditions at X, X, are given.

From the Eulex"-Lagrange condition we find, as before

-i:::Asian+Bcos2x-% (a)

Since no restrictions have been placed upon £(o) or “f(1) the
extremizing function will satisfy the natwral bdoundary conditions ét

X =O a.ndx = 1, ineo,

g oo atx-o ()

.These conditions give A = 0, B = O , whence

is the required function.

We can also Investigate the otheéc types of functionals when less
restrictive conditions are imposed at the ends of the interval of

integration., Thus for the functional
x

2 ; o :
F(s) = %fc I(£, £, %, xdx (1.42)

we obtain the expression _

' 2 1 1 X2 ’xz
[ LN SR A R R ) SR % A dL 4 0

19 - = - ha =
‘x1 L ax 05y dx2 hf:x.x N l or ax oL A O yx x! t
' x4 Xy



If no restriction, apart from the continuity of;ﬁ and.fx ,’is placed

on f£(x), and hence on N(x), Wwe can establish the Euler-Lagrange
conditions by taking the set of functions M(x) with n(x,) = nx(x1)

= n(x2) = nx(x2) = 0, By choosing the set of functions n(x) such

that three out of the four conditions above afe satiéfied we establish

the natural boundary conditions one at the time., They are,

oI d o' .
el e S | x=x’ X =X
et dx ¥f 1 2 ,
(1.44)
0l ‘
hfﬂI:o x=x1, x=x2

Ve can carry out a similar operation for functionals including
higher order derivatives. We. can see by inspection that the first set
of natural boundary conditions can be obtained from the Euler-Lagrange
condition by taking the derivatives with respect to x and reducing these
derivatives by one Srder. The second set is obtained by reducing these

by one more order and so on.

Example 1.7 Find the natural boundary conditions for the functional

X2 - )
dg 4 25 2 '
; a'f 4"t
PE) = [ () +4 (& tax (a)
k1 dx dx
The Euler-Lagrange condition 1is ,'
!
4 2 T . (
d HX d D~ N
7D+ 3G =0 (b) 3
ax’ "“Tx(4) dx xx £
Whence the natural boundary conditions are
3 T 3
—‘1—3-8}9;— +§%ES%I— = 0 or-é-%-+Ag-—§-=0, on X = X,,%, (c)
v dx x(4) dx ax

also
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2 6 24
-g_éﬁ&-.*ﬁl‘: 0 or 'El',"é-l-ﬂg"‘é“‘ovonx:x-'! x2 ()
ax x(4) Ty dx dx
similarly
5 4 '
E_g e O and.g—§ = 0 onx-= Xy X, (e)
dx dx

It will be noticed that all the natural boundary conditigns of a
problem involve derivatives of the same order as, or of higher corder
than, the highest order of the derivatives in the functionals. The
boundary conditions which may be specified for any particular problem
can then be split into two groups. If the functional contains:
nth order derivatives, then boundaxy conditions relating only to
derivatives up to the order n-1 are called essential, and those
relating to higher order derivatives supplementary. If we have some
process for finding the stationary value of a funciional by usipgz
trial functions then these trial functions must be adﬁiés;ble'functions
and hence satisfy any specified essential boundary éondition.4 In
physical probleﬁs other boundary conditions will in faqt‘rglate to
the natural boundary conditions, and these need not be éatisfied by
the trial functions, When the functions giving the functional its
stationary value is obtained, it wili automatically sa@isfy these

boundary conditions.

1.6 Functionals with Séveral Devpendent Variables

The procedure used in the earlier sections of this chapter for
establishing the conditions for a stationary value for a functional
can easily be extended to the case of functionals with several

_¢gpendent variables, We will only consider the simplest case where
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the functional involves two dependent variables, £(x) and ‘g(x) ‘and _

4

£

their first derivatives,

X5

F(f, g) = £: (£, £, e g x)dx (1,45)
. 1

where the functiogé f and g are to have the values f1, g1,-fé, g'2

respectively at x = x,, X,. The functions passing through (X1Af1) and

(%, f2) can be put in the form

“fﬂx) = f(x) + ¢ n(x) (1.46)

with n(x1) = n(xz) = 0, as before, The functions passing through

(x7g 13 and (x2 éb) can likewise be put in the form

KMx) =,8(x)+e ¢(x) (1.47)

with g(x1) = g(xz) = 0.

The fact that we have used thg gsame parameter ¢ .does not imply
that a given g can lead to a given f, or vice versa, since M and
are arbitrary (subjected to satisfying the conditions at the end of
the interval and their being continuous).

In the above we use f, g (x) to denote the actual functions
vhich éive the stationary value to F. We thus see that for all the
possible values of ¢ -, the one that gives the minimum yalue to the

FP(f,g) will be ¢ = 0 , i.e. as before at ¢ = O we have .

dr I
m = 0 (1.48)
€=0
X
Now 2 o
F(h, &) "= L I(h, b, k, K, x)dx (1.49)
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whence x
2 dn_ iy
F(h B r pl dh I __x Bl dk __.bI ..._.. Ydx = O (1.50)
de” T J dhde TR de “oxde T Ok, @ :
1 x.
Putting this
dH bk
di Rk e S
EG- 'n 14 -B-é- 'nx ? bc - C [ ;be = ;x (1351)
and setting n(x) = £(x), Xx) =g(x) since ¢ = 0, we obtain
DI dI i
j; B+ 55 Mt hs 0+ G J&X = O (1.52)

Integrating by parts the second and fourth terms in this expression

we obtain
X

J‘{(_Q_ .4 dIT 4 T
® dxbi‘
*4

@ZL
ax Ogy

=) 7o+

(1.53)

2 2
7
3o Clax oo+ ¢
bfx dex 7|,
1 *1

The 1imit terms are zero since N(x), C(x) are zero at the limits

and since T and { are arbitrary each of the boundary terms in the

integral must be zero,

o2

_DI.
of of

= 0 ,

L
?

-4
dx "8y

o

(1.54)

ooy
3 (H

Similar terms would be obtained if there were more dependent -

functions in the functional.

The Euler Lagrange conditions for

functional with higher order derivatives would apply for each of the

dependent variables,

Finally the natural beoundary .conditions for functionals with

two or more dependent variables can be established as in the case of

only one dependent variable,

same form.

They will be found to have exactly the
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Zxample 1,8 Find the condition that the functional

*2

ca 2 .2 o .
P(56) = [ 1§D + & + @EH + 48Pl (a)
X
1

shall be stationary. f and g being specified at x = X, and x = X, .

Here,
a2 2 2
I = £ +8, + 1 g+ 4ﬁ2-+ g (b)
whence
0 S R S 2L S SR
YRCIIE YRS YR AN Vi
X ~
(c)
The Buler-Lagrange conditions thus give
2 2 2, 2
2Lt ,LE pr -0, $f. 288 252 0 (a)
dx dx dx dx
1.7 Functicnals with two or more Tndependent Variables
Consider the functional,
? ’.
r(e) = [[1(s 5, £, x vaxay (1,55)
D y

where the integration is carried out over some region D, and ¢ has
specified values fs(x,y) at all points of the boundary or the
region s(x,y). The function £(x,y) is to be continuous (figure 1.4).

‘As before we denote by f the function which gives a stationary

value to this functional. Then any function such that satisfies f =

¢s on the boundary can be put in the form

h(xvy') = £(x,y) + ¢ T](X,Y) (1056)

We know that whatever function we choose for 7, the functional F(f)

will be stationary for ¢ = 0, i.e,
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Now .
dn dn
x O "y ,
’U {?\h de bh de +bh 3o ldx dy (1.58)

o0
de

= Moy & = ny , and. putting e = 0 , so that

ﬁsing*g% = M,
£(x,y) = £(x,y)

b1
II { bf SE;’“x bf n, 1 dxdy = 0 (1.59)

Integrating by parts the second and third term we obtain (Green's

. theorem)

[, o - Il & @B vew | Fne
(1.60)

II n dxdy = jj = ( ) n dxdy g%?-n ax

The equation (1.59) can now be written after changing variables x, y

to s on the boundary as

[ -2 @D -2 QF >}rdxay ( - 2L &y a4y (1.61)
.[; df  dx dI, be ds b,-iydggs)

The second term, that is the line integral around the boundary in
(1.61) is zero since 1 is zero on the boundary. This leads to.the

conclusion that, since 1 is arbitrary,

I o o) )
x --§;(—&I) -2 @ - o (1.62)

)I‘

Problems involving higher order derivatives can be treated in a like

manner, Thus for functionals of the form, for instance,
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F(w) = I_” I(w, W, Woo Won Woyr Wogr Woon Wogo Woon Woon W ,)dxdtdz

(1.63)
the Buler condition is
Q;_(_Q__g_x_+l_?3;_+_g_bx)+bz 2T »2 I . A% I
W Ox W dy wa bz dw bx2 dw Oxdy Ow 0x0Vz waz
. a2 I N 22 a1 N 2% o1 - 0
by2 bwyy Ox02 bwyz bz2 5wzz
Example 1.9 Find the condition for stationary of
o w b o) w 2
F(w) = [_( ) 2 CHOH 21 u.xmy) |
- pw } dxdy - (a)
Here,
, By 2 2 2
I = Q{WH + Wyy + 21 L wyy+ 2(1-u.)wxy} W (b)
so that,
ol . [ A o2
L - - p =B(w 4w ), 3o = B(w +pv )
ow wa:x vy bwyy Yy xx
\ - (c)
Whence :
2 62
-p+B{-';"(w U W )+;;-(Wyy+uw ) + 2(1- u)-;;o—y'( xy)} =0

()
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4 4 4 |
i T e The L LIS
e ) Y dxdy"  dY

Fxample 1,10 Consider the functioral

-2 2
P 1 of. df.
re) = 3 (& v ) ey (a)
Here
1 . 2 ;2
thus,
T o] 8 (031
o o, o, R o (c)
et ! et x ° fy Y

The Euler-Lagrange condition is,

2 (t) +a5 () = 0 (a)

which is the Laplace equation,

2 . .2 |
Q-% + 2520 (e)
Ox by
‘ , ( L
’ I
Note that for this case the boundary term (equation (1.61)) is ‘ot
\0:)/,’(’\—"\(:'( \' R
O dx _F e dy - dx ) .
J(bf ds " b WS = | Eg-f,g)nes (1)
S

This gives (figure 1.5) the following natural boundary condition

term,
df ,

S
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1.8 PFunctionals with several Dependent and Independent Variables,

Let us now consider the case of a functional which depends on two
separate functions f and ¥ and applies on a domain D, function of x and
\ .
y.s
P(f, &) ﬂ 18, £, £, & e 8, Y By (1.65)
We can consider a f and g function as in 1,6 and obtain for the

stationary condition

& [[dLdn, o e, oy arax ar M a0 - ) axd
de hde ¥ dn de bh de * 0k *dk de bk de Y
o
(1.66)
which gives fore¢e = O
ar reoedl dI dI dI DI
el T BEN L M Tyt rg b X * o G Yaxdy
def _o JJD of £, x bfy Y tgx gy
(1.67)
'Integra.ting by parts we obtain, _
dL bI d (DI _d dI 7.
[ D - @GN 3 -R G0 -y R ¢ ey
fj Oy bfy bg T ax gx i‘gy

S dy BT dx DI dy | I dx '
+~[ [(b%c as ¥ b'fy d_s)‘n bg as t bg ds) C J dS (1.68)

As N and { are zero on S boundary we have the following two Euler

equations
}
dT _ b ¢ DLy _ 2 (2L - '
O} =X ( ?’fx) - dY (&i\y = 0 (1-69)
I  d (01
og © dx (Fg;) ( gy = 0



Example 1.11 Let us consider the fol]ow1ng two dimensional functiend,
[ L, . . ‘\}(j:( ’-'"’r.
- . \ i

which applles for the internal energy of a plane stross structure,

f(u.y>= e )2 ] e ) + 20 G @D+ Lr”“) (2—‘,92

]1 sty (a)

+
N
(odied
<17
[odled
M

where h is the thickness of the plate, E the modulus of elasticity, u

the Poisson's ratio and u, v the displacements in x, y directions.

We have
TAL . bl Eh
3 = 0 'bx(buj() e (20, + 2uv ),
d BT Eh Py
2 QL - [y + v )]
VR e LT T
(v)
DI b ,0I Eh
L o, ) [+ u) ]
dv Ox bvx 2(1_u2) XX yX
Eh
( ) (2v, + 2pu )
ov 2142 WV x
Which gives the following Euler's equations,
Eh (1-u) z
' ;-§ {u +w Vox * "2 (uyy + vky)} = 0
-‘L \ (c)
Eh (1)
1$2{ “1&y+ ? (%m+‘%9} = 0

These are the equilibrium equations for a two dimensional plane stress
elastic solid written in terms of displacements., In terms of stresses

they are,

woud b V2



.bo‘—x_b_blco E.X-@-m'::()
0x dy - oy  dx

where

1.9  The Variational Wotation

We will now define the concept of a 'variation' in order to
T

simplify the notation we have been using. Consider the case of the

simple functional,

*o

Re) = [ I(f,'ﬂx., x) dx (1.70)
*1

with an extremum for f.
The new function h = £ + e 1| will be written ash = f + 6f

where 8@ is called the 'variation' of £ (68 = en). Thus

kB = f + &F

and __ . (1.71)
hy =f_ +6f

Bs o (60) = & (en(0) =6 D . @D

1'< x< Xy

' The functional F can be expanded in the vicinity of the extremum

The quantities 67, 6fx are arbitrary in the interval x

solution f in function of ¢ .

F(h) e F(f) +%I € +";_"i2'F: 62+ coe (1.72)
2 ¢ ~|e=b * de le=0
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%

The total increment of F function is

aF 1 a%F 2 .
AF = -a-e- 2’. ""—'5 [4 '} LY ) ($n73)
e=o de  e=0

The :first term on the right hand side is defined as the first order
increment orfirst variation of F; the second as the second order incre-

men% or second variation, etc, They are written as

AF - 6F+-§-,-62F+ e : (1.74)

. The first order increment can be written (equation 1,12, with

€ = 0) as
3{2 x2
dF . dI oL _ DI
8F = 3 e = ¢ j (bf N+ 37 ’nx)dx = J‘ ( §8f + 57 I 8 £ )dx
€=0 1-1 . X x~1

as X does not vary. Finally,

8F = g ol +bf 8 (1.75)
- Equation (1,75) shows that a variation can be applied to a
functional in the same form as the differential of calculus, cnce the
dependent variables are identified. ‘ |
Although the variational notation and the notation used previously
are equivalent,; the formgr is easier to use, For instance, to pbtgin

the Buler equation for the above funciional we can do,

X

X2 2
- xJF c= [ BLers g’fI 5€_)ax (1.76)
1 x4

which integrating by ba:ts, gives



1=C5

12 x2
W\
oF = | [%In%(gbfL)1afu [5f-§%—] =0 (1.77)
x, L x - x
1 x4

Thus the Euler condition is

(o218

o~ o

4 dLy |
ok ) = 0 (1.78)

Let 'us now consider the case of a function of two variables

{equation 1.45)

R(£, &) - J I(C, gy £, & X)dx (1.79)

with the new functions,

h(x) £(x) + &N(x) and h

fx+e’ﬂx

x
(1.80)

k(x) = &(x) +eC(x) and k= g+ e,

We can expend F in the proximity of f, g solution, assuming x is

not varied and the limits are fixed, Thus,

_ | aF a%r
Flak) = P(e, @) +e | +9ro% 4 .o (1.87)
€=0 ' de [e=0

or . AF = 6F+'§%~62f‘+ 0oe o

The first order increment is (equation 1.52)

dr OF OF OF OF
6F = — e =5 Ne + 57~ MNe +5-Le +5-—~L e =
de =0 ef bfx P4 dg t_gx x
(1.82)
dF .. . BF dF F
= ,fﬁaf'*bi;csfx'*bga.\g +b‘gxagx e 0

Integrating by parts we will obtain the two Euler equations
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)
5F uxj (G~ dary) o + G- i ) 08 ) o
M
o1 [ 2 dI 2 e
+ {"—f_-;éf 3 + -gé; bg .

It is interesting to generalize the variational notation to a

fun-tion of 'n! variébles, such as
e . :
F(f’f29f3 oo') (1'84)

_The increment of this fgnctional is now defined as

AF = 6F+-2l!6?'F Foeee (1.85)
where
bp = S‘ l’_.FI 5fi : 52]? = §(6F) = ys‘ jbf 6f
o 51 bf net

The second increment for a functicnal 1ike.f I(f1, f2, x)dx is,

aF 00,2 »°F h, OB % dhy 2 1.86)
= .2(.6-6 (be)(be) -2\66) (
®hy dhydhy dh,
When ¢ = O we have,
a AF .2 Zp S o '
% & - MO w25 My Ty v T T, (1.87)
de emo M12 1 daE0E, 12 bf92 o N
Thus
2 F .2 2P 2 L2
62F = — 61‘1 +2-——-—~5*16f2+—-—26f2 (1.88)



1-30

Example 1,12 Using the variational notation, deduce the Euler

equation of the following functional,
2.2 2. 2 2:2 ‘
F = ” (D + 20 + @) -2p) axay  (e)
5x2 dxd by2

which can be written

Fo= F(fx-xo fxy’ fy.y’ £y X, ¥). (v)
Thus,
' dF_ .. dF_ . d o
5P = 5 6iﬂ+?f 6ny+bfyy6fw,+b 5f (c)

I ra e, v an ey v 2 8t - 2tlaxey ()

Integrating this last equation by parts and neglecting the

boundary terms, which are going to be satisfied, we obtain

A 2 4
8F = ”{29—-2% 425 L o2 S ieraxay (o)
‘ bx 0x Oy dy
The Euler Lagrange equation is,
4 4 4
AP S (1)
dx dx Oy oy

1.10 Subsidiary Conditions

.In certain cases we want the variations to satisfy, in addition
to the boundary conditions, certain other conditions, called subsidiary,

These conditions can be introduced using Lagrange miltipliers.

Let us review briefly what they arve before proposing their use in



FUNCTIONAL EULER-LAGRANGE EQUATIONS BOUNDARY TERMS
? »I 4,21 B CH
2 I(x,f, fx)dx+h2(x,f)lx -h1(x,f)l 5F " ESE(EI‘;) = 0 (E—f; - 358 fa =0
T *=%y 1=1,2.
"2 . dI d,0dI, a° , I ni . Py
| 1t gar e s sE-axar 0t 3 Gr o) = 0 Ge o * 7, = =0
X1 o x xx X Y=3,
_ ] X
+ Pt af )| —Eq(xL5E5) 3: 4
X x 01 d dl i
2 1 F -yt ?E”) &% =, 0
c o
1
. . 11,2
s
I : - »I 4 I a n g"
I{x, £, £ .08 ¢ y)dX =57 )- ——( LYot (1) ) a
x; p ¥ xx? x(n) dE T dxDL T 42D xx\ dxn .
¥ d _ 4, dTy 4 bl i ;i ;i
JT(Es 30,8, 0 £ ) dxdy + Y E?c(bfx) - ?137(efy) = 0 [( 1) (-~-€’f + 2)n1 }f-_- 0
D

+ r [ 1(x93"yf)n "Hz(stQf)n Ps

n, n, are direction cosines of normal
"~ to boundary S with respect to
x and y.




TABLE 1.1 (contd)

FUNCTIONAL

EULER-LAGRANGE BQUATIONS

BOUNDARY TERMS

Ij I(X,Y9f9g9fx9fyvsk’8&)dA

I _ 4 I a,0ly _
bf-dxbf_)“a;(hfy) = 0

1 .
o , &g
?‘gx
[0}
o Ty &g

]

eLE=l

"
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functionals, Consider a function f(x,y,z) of which we want to obtain

the stationary value

of ¥ af
af = P oax+ bydy+bzdx = 0 (1.89)

subject té6 the two constraints

31(Xy Z) = 0 ' (1 90)

gxyz) 8 0
Note that now we will only have one independent variable.
We can differentiate (1.90)
dg1 = -—b-i;-dx+—6y-—dy+‘8—z’dz = 0
(191

bg2 bg2 bg
d, = '63:’_‘3’“'6_‘15”"6‘{‘12

1l
o

Let us multiply (1.91) by the unknown parameters Ay X, and add to

(1.89),- Then, we obtain

z’31 08, vgy ey
(bx"’H ox t 2bx)d"+(by”1 5y *re Oy)dy )
| 1.92
gy - b, (1.92

A RRE RS LI

A\

This gives 3 equations whicﬁ add 4o (1.90) permitts to determine.l
the five wmknowns x, y, z,x1 xz -~ The parameters 3 12 are known as
Lagrange multipliers, as sométimes tﬁey cén be given a physical meaning.

Finally; we can now write the problem as the minimization of a new
functional

F f £ 48+ Azgé ‘ (1.93)

We can miminize {1.93) with repsect to X, y, 2z, Ay and A, and

obtain



V=35

Mt = O

be de
df 1 2
syt May tresy = O (1.94)
df vg, 08,

plus g1==0 ,‘g2:=0

Example 1.14 Let 'us find the extreme value of a f(x,y) function,

£(x,y) = 4yl 42 ‘ (=)

subjected to the constraint

g(x;y) = x+y=-1 = 0 (b)
The Lagranglan multiplier A allows to form a new function

F(X9Y) = f(x,y) +}\E(X’Y) , (c)
= x2+y2+2+)\(x+-y-1)
This function ca now be extremized with respect to x, y, A\. It gives

F = 2x+ )X = O
0xX

OF

3y = F+r =0 ' (a)

%Fx=x+y-1=0

The solution of (d) gives,

X = 3, ¥y= %, A= -1 (e)
Thus the extremum of f(x,y) under the subsidiary condition (b), is

f(xy) = B2+ B)2+2 = 2 (£)




Let us now assume to have a functional,

.x2

F = l I(x, £, £,)dx (1.95)

1

subjected to the subsidiary conditions,

*2

13
"

X4

Using the Lagrange multiplier A we can write a new functional

F 4 AJ _ {1.97)

_)'We can minimize (1.97) with respect to f, £y and \

B(F+2J) = O . (1.98)

§P+XJ2 57 + S +lJ2 61‘ Q!F+)‘J267\ -
The first two terms give an Euler eguation

4

dx

and the third, the condition

[ ax, £, e9ax = 0 (1.96)

SPF(IHG)-—-(IMG) = 0 (1.99)
X

1-34

J = 0 (1.100)

If the functional J(clepends on two variables f, g, we have
5 .

P = f I(x,.f5 & £y gx)dx (1.101)

X
1

plus a subsidiary condition
x
-2

J = r G(X, ’6'1 ;b)dx = 0 (1.102)

"1

The new functional is,

Pa4drJd 11.103)



Equation (1.103) should satisfy

5(F+rJ) = 0 o (1.104)

which gives the following Euler equations

lo

d

@ B (IJ'}G)"E%(I”G) =0 (1,19
d o 0

& bg (I +16) - de (I +1G) = 0

plus the subsidiary condition J = O,

The same procedure is valid for problems with more variables.
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Finite elemeént simulation of
water circulation in the

North Sea

C. A. Brebbia and P. W. Purtridge®

Depariment of Civil Engingering, University of Southumpton, Southampton S09 SNH, UK

(Recewed February 1976)

The modelling of tidal effects, storm surges and currents in large
bodies of water is considered. The sciution 1s attempted using the
evolutionary shallow water equations with velocities and wave
heights as unknowns. Two finite element simulation models are
descrnbed based on six noded triangular elements. Special
consideration has been given to the adequacy of the models which
were applied to the North Sea only after extensive tests in channels.
Results for velocities and wave heights are compared and discussed.
A set of conclusions on the applicability and scope of the models is

presented.

Introduction

This paper is concerned with the modelling of tidal
effects, storm surges und current patterns in large
bodics of water. The solution is atiempted using the
shallow waler equations, which are evolutionary
equations with velocities and wave heights as
unknowns. They require the inival conditions as well
as the boundary conditions to be known.

The solution of these equations is usually found by
applying @ mumericul technique. The method used 1s of
fundamental importance. In a finite element or finite
ditlerence approach the grid size will determine the
type of phenomenon which can be investigated. In
addition grid size relates to stability criterion and
accuracy in evolutionary problems.

The retinement of 4 model, though desiruble in
principle. may demand a large number of parameters
which require more experimental data. These data can
be difficult to obtain and produce 4 new type of error
affecting the confidence one cun have in the results.
The analyst wsually has to compromise between having
a sophisticated model or a practical one, giving reliable
results tor the variables under consideration In
additon, large models are expensive 1o run,

We deseribe here two finite element models. Both
moadels have been developed using six noded triangelar
elements, but one is based on an implicit integration
scheme, the other 1n an explicit one (the former allows
for elements with curved sides). Special considerateon
has besn gron to the adequiicy of the mudels wod only

)

. N |
*Present address: Federal University, Porto Alegre, Brazil
i

after extensive tests on channels! were they applied to
North Scu studies The North Sea is an important and
busy seaway, especially since the discovery of gas and
oil. From the numerical point of view, the area is well-
conditioned, North Sea topography being regular and
changes in depth gradual. Nevertheless. the modzls can
and have been applied to different regions (e.g., the
Solent in England®. Other models of the North Sea
exist: an explicit finite difference scheme by Heaps?®, an
imphicit three-node finite element one by Grotkop* and
a quartic quadrilateral finite element model by Davis
and Taylor®.

The present model is based on the shallow water
equations which are vertically averaged versions of
Navier-Stokes equations, and take mto consideration
tides, bottom friction, advective forces, coriolis, wind
tangential stresses and atmospheric pressure gradients,

Results for velocities and wave heights in the North
Sca are compared and discussed. A set of conclusions
on the applicability and scope of the models 1s
presented. indicating areas where further work is
required.

Shallow water equations o

The evolutionury equatons tsed in marine and certain
types of estuarial modelhing are called the shallow
water equations, They are a verucully integrated
version of Nuvier-Stokes mementum equations and
the continuity equation which acts as a constraint
condition. In addution initigi and boundary condutions
have to be fulfilled. The ditferent assumptions imvolved

Appf Math. Modelling, 1976, Vol i, September 101
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X3Y;

v

Figure I Geometrncal notation for the shallow water equations

are treated in detail elsewhere?-®. The two shallow

water momnentum cquutions are:

v, VY,
_l + V:( VZEV, B,
0 Xy XZ (l
)
eVz [ Vz C“Vz :
+ V, 2=
or lax, Vzi‘x B,
where
3] 0 1 ;1
QVz ——g— -~ pﬂ) - =Ty +‘_t| -
5"1 ox, [T s (2)
& ¢ (p) 1
By= -QV) —g——~—[2] ——1)| +-1
! 6\2 éxa\pl o s iF
V, are the averaged velocities:
V, L
= ﬁj—h v;dxy 3

H is the 1otal depth, H = iy + h, where g is the wave
height above a certain datum plane and h is the depth
from the dutum 10 the bottom of the sea. x; is the
coordinate in the verticul direction (Figure 1), Q

= 2wsin ¢ is the coriolis coefficient, ¢ is the latitude
and (v the angular rotation of the earth, g is gravity, p
the water density and p, the atmospheric pressure. The
surface and bottom stresses are writien as:

r,.L == —(w2 Wi =152
p H

(4)
I A4 : :
tl,b = - 2.'2' pﬁ(l’f + Vg)l’z i=12
¢ is the Chezy coefficient, W, are the wind speed
components and y is a parameter related to
atmospheric density p, (usually given as a constant
muluphed by p,).
In addition equauons (1) have to sansfy the
vertically mlq_mlcd conlmuny equation, i.e.,
‘H é
HYV, + —(HV) = 5
o t3 x, ( ) ( ) ( 4

The systems of equations (1) and (5) describe the
movement of large bodics of shullow water. The factors
affecting the movement are many: the morphology and
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position of the scubed, the shape and variatis- i
shupe of the coastling, friction betwecn the vt

the water, hence the material of the seabed, the
meteorological conditions, including wind, etc.
Although the circulation of the carth and the
astronomical forces of the sun and the moon act on the
water as hody forees. the minp cause of tidal water
movements in areas such as the North Sea is the
dniving force caused by tidual motion of the water on
the boundaries of the area under consideration.

The shape of the land surfiace containing the body
of water is usually very complex, in some cases not
even static, though the effects of erosion generally
occur over 1oo large a period of time to be important.

Bottom friction is introduced in the model via
Chezy cocfficients. The inadequacy of using constant
Chezy coceflicients for all the model is evident. The
different materals making up the seabed have different
frictional resistances as the water depth and the
velocities change. It must be pointed out that bottom
{riction and wind are of great imponance in the
movement of shallow water.

The main causes of inaccuracies in tidal predictions
are the wind forces and atmospheric pressure
variations, which are important for large areas such as
lhc North Sea.

Boundary and initiai conditions

The solution of equations (1) and (5) require the
knowled ¢e of the corresponding boundary and initial
conditions. The boundary conditions of the model are
of two 1y pes: (a) fixed or land boundaries such as those
given by the coasthines, where the normal velocities are
zero, and the tangent velocity can be set free; (b) open
boundaries where the elevation of the sea level {or the
normal co mponent of velocity) is prescribed.

The detarmination of the initial conditions requires
the knowledge of the free surface position at t = 0.
Usually this knowledge is not possible and the models
have to be started with zero elevation and zero velocuy
conditions. T"his is called a “cold start’.

Finite element model

In crder to build finite element models the two
momentum equ.ations (1) and continuity (5). including
wnflun-type boundary conditions have to be written in
the following weirhted residual way:

.
ﬂ{”:' y, Vzaﬁ—B}évldA=0
Y

u\‘

v ,
H{‘VZ p e pn2h —B}éVsz=0 ©)
6A, 0x,

”{%’; + —-(HI ) + —(HVz)}éHdA f(HV—-
HV)5H dS

The continuity equation -is usually integrated by parts
to render a simpler expr 'ssion This integration gives:

H
H{Hvl”m Hl-,(; oH }dA

2

. j = fnzouds L)
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AN A

Figure 2 Six nade elements (a) Straight sides, {b) curved sides

The above weighied residual statements {equations (6)
and (7)] are the swrting point for the finite element
models. Assume that over an element the sume
interpolution function applies for the V,, ¥, and H
unknowns, i.e.

i=e¢n, H= oM @®

¢ is the interpolation function and ¥7, H" are nodal
values of V,, H.

In what follows six noded triangular finite elements
with curved boundaries were used in order to define
the boundaries better (Figure 2). These elements are
called isoparametric and can be formulated by a
simple coordinate transformation, tle details of which
have been given by Connor and Brebbia’, Curved
elements have the important feuture that they tend to
eliminate the spurious forces that may be generated on
the boundaries by straight side elements joining at an
angle.

Substituting equations (8) into (6) and (7), ane
obtains:

MIn+ KV —QMVy + G H" + F, =0
MV, + QMY + KV + G H' + F, =0

V=941,

(9

and
MH' —C,V = C,Vi+ Fy =0
where
K= J-¢T¢,IV, d4 + J’qbrqb_zVZdA +
8 [ rtvi+ vy
(‘.2) fd’ H ¢pdA
G = gf¢7¢_.d,4 M= J.¢T¢§1A
3 W,
F, = J'q)’(ﬁ) dA + (_’_) J-‘I’T'-‘(Wf + Whtda
Pl p H
i=12
C = f¢IH¢‘ dA, Fy= fudeA
and '
. d .
(= Fral t)= &

Equations (9) can be written as
Mo 'I [i’:] K -aMm G,-! vy
: vy '

Mo koM Kk Gl Fis+
. M“H"} -C, -G, ojl Hq"

F) (o
F20=40 (i0)

or more simply,
MO -KQ=F {(1n

Formula (11) is valid for each uncennected element.
The rext stage is to assemble all the element equations
into & global system and impose boundary conditions
in H and ¥,. To eliminate proliferation of rotation the
global system will be defined with the same notaticn as
equation (!1).

Time integration

Two time integration schemes were used, one an
implicit and the other an explicit scheme. The implicit
integration procedure is the trapezoidal rule. Starting
with:

MO+KQ=F (12)
one assumes:
s Q-0 _0+0Q
¢==7 Q==
- (13)
Ffoth
P

Hence equation (12) becomes:

(—?'—M+ ]{) Q. =(Fy+ F)+ (;%M’— K) Qo (14)

Ar
or
K*Q, = F* (15)
The recurrence relationship is then:
0 =(K*)"'F* (16

The K* matrix to be inverted generally is a large non-
symmeatric banded matrix of size approximately three

“times the number of nodes by six times the element

bard width (i.c.. the maximum differcnce between
element nodal point numbers pius one). The computer
program has been optirmzed by taking boundary
conditions inio account in such a way that the
carresponding rows and columas are eliminated from
the element matrices before assembling. This
significantly reduces the maximum size of the global
matrix. It was also advantageous to store the malrix
in a one-dimensional form such that only one and not
two addresses need to be evaluated each time an
element of the array is accessed.

The explicit time integration scheme used was the
well-known fourth order Runge-Kutta scheme.

!

North Sea model

The above finite element formulation has been applied -
to model the North Sea. This is a shallow sea varying

_in depth.from under_30m-in.the south4e-400m in a

tiench ofl the coast of Norway. Denths were obtained
from Admiralty charts. Sections were drawn at
different angles across the whole region to determinge

Appi. Math Mcdelling, 1976, Vol 1, September 103
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Frgure 3 Finnte element mesh for the North Sea

the best locations for nodes and the more accurate way
of representing the bottom topography. Elements were
carefully posittoned in order to obtain the best possible
representation of the topography using u predetermined
number of nodes. The final mesh comprises 228 nodes
and 97 sia noded elements as shown in Figure 3.

The ttdal characteristes of the North Sea are
canpheuted, tidual amplitudes vary from 7ero 1o six
metres and high witer tmes change throughout the
cycle around cach of the three amphidromic points.

Tidal heights for boundury conditions were taken
from the churts of co-tidul lines. The waveheight
forcing functions were specified in the form (Figure 4)

[ [
j=uu[sm(-;r;—+c +’] a7

on euch of the extremes of the tidal boundaries. with
the intermediate heights being linearly interpolated.
Thus formulation approximates the most important
udal component for the North Sea. These curves have
been taken from the Admiralty Tide Tables They are
assumed to be referred 1o the same dittum since other
information is not available, Because of this. the results
presented in this paper may not be quantnatively
correct but the comparison between models are still
vahd. The charts of co-udul lines give the approximate
tdal"range and high water times for the intenior pomnts
on the gnd. The circulation patiern and velocity
magnttudes for parts of the Sea may be seen in the
udal streum atlases®®,

Wind and storm surges were not modelled as this
series of tests was carried out to investigate the general
performance of the model.

After several tests it was decided to take a
continuous tidal houndary in the Northern part from
node 41 10 1 and | to 1} (Figure 4). otherwise
instability ornigmated from the Shetland 1slands
clement, showmg that one clement is inadequate to
represent a discontintous tidal boundary properly.
Tidal conditions were also specified ut the Dover Strait
{points 226 to 228) and after 4 number of trials also for
the Balue Sea boundury (nodes 86-87-109). It was
found that inclusion of the Baltic Sca improved the
wincherght results.

+
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On the land boundaries, the no-slip boundary
condition ¥} = ¥, = 01s specified. This assumption
simplifies the necessary computing and is reasonable as
the North Sea is u regularly shaped region. Because of
the imposition of this condition, curved boundury
elements, which are more expensive 1o run, were not
necessary. By contrast when modelling the Solent,
curved sided boundary elements were used allowing
the tangential velocity 1o remain free?.

Stability and accuracy .

The smallest stability limit for the North Seca as given
by the Friedricks-Lewy-Courant condition, occurs for
an clement off the Norwegian coast. It gives:

Ar § 450sec (18)

The worst casc on a tidal boundary gives At § 650 sec.
This is important as instabilities always start at these
boundaries. The average value 1s around 900 sec and
for the shallow southern North Sea the criterion
suggests a limiung tme step of less than 2000 sec.

The explicit programme which uses a fourth-order
Runge-Kutta procedure was run with a time step of
600sec. For the imphcit programme instead a ume step
of 30min was used.

To obtuin slable results with both models requires
the application of special techniques. For this work
three different technigues were used. The first and
simplest of them 1s to work always with a constant
value of friction over all the region, starting with a low
value (¢ = 10m"%sec) and increasing it by 10 over two
to four cycles. This technique did not give good results
and the solution tends to become unstable for large
values of ¢, i.e, small values of friction. In addition it is
unrealistic 40-assume that the Chezy coefficient wili be
the same over all the domain.

The second technique was to prescribe a higher
order of friction for the elements on tidal boundaries
and a smaller value for internal elements. This is
because there is a general tendency for the tidal
boundary to gencrate disturbances. These
perturbations may be due to a number of factors and
cause the transmission of short waves through the
system. The specification of higher values of friction for
the tidal boundury elements reduce the propagation of
errors.

1t was decided to apply a Chezy coefficient
¢ =20m'"?/scc at the boundaries. which produces
stable results.

6r

Depth (m)

0T 2 3 45 6 780 0121
Hours 85 65 45 25 OS5 15 25
Betare High water Dover Atter

Figure 4 Tidal boundary condions tor the North Sea

Bergen, — — — Lerwick. ™ ~—=~— . Kirkwall

. Dover
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The third different stabilizing technigue 15 to start
with a realistic vatue of friction from the beginning and
try to remove the short waves by "numerical
smoothing’. This smoothing cun also be applied cvery
time the level of friction is decreased. The operation
needs to be carried out for a number of steps and after
the perturbations have been removed the solution does
not need to be smoothed any longer. This numerical
smoothing consists of tuking for the next time step not
the actual nodal values just obtained but weighted
averages. These averages are calculated by weighting
every noda! value by a constant and adding to it the
weighted values of the neighbouring points. For the
programmes described here the node under
consideration has half the weight und the other hall is
distributed among six neighbouring points
proportionally to their urea of influence, (For
boundary nodes only 3 neighbouring poiats are taken
into consideration.) {n generil, the courser the mesh
the more relative weight the central node will have.

The actual weight used does not seem to be 00
important provided that the coelficient for the node
under consideration 1s reasonably large by comparison
with the coefticients for the neighbouring nodes A
simpler way of weighting may be for nstance, to
multiply the solution vector by the muass matrix.
Smoothing has been successiully applied by the
authors 1n small estuanal areas, such as the Solent in
England but it 1s less necessary for the North Sea as
the system is more stable.

Tests

Many tests were run with dilfercnt time integretion
schemes, friction coeflicients and smoothing schemes
but only two of them will be presented for brevity. The
first, Test 1, uses implicit integration (Ar = 30min) and
the second, Test 2, explicit fourth-order Runge-Kutta
(Ar = 10min).

Test 1 was started with a Chezy coefficient of
10 m**3/sec. after two tidal cycles this was incrensed to
15 and after another two to 20. Then the friction 20
was left for the elements on the tidal boundary but the
value of the internal friction was decreased to ¢ =40
over four tidal cycles. Finally, the internzl Chezy
coefficient was taken as a variable given by:

¢=15log (0.9H)  [in m'/sec] (19)

This formula gives low friction in the interior of the
North Sea {c g. for H = 55m. ¢ = 60). The same fnction
was applied during 6 more tidal ¢ycles o obtain
repetition of results. In addition the results were
numencally smoothed over 3h (Le.. 6 steps) after
change of Chezy's coeflicient. then the smoothig was
stopped. For the level of friction aiven by formula (19)
the velocity ellipses tend to increase i stze and their
drift is.accentuated as the level of friction 1s reduced.
As the friction is variable, the results are not bemyg
obtained under constant condinons of damping und
the ellipses do not quite close even after three or four
tidal cycles 1tas surprising that good results were
reported by Davis and Taylor™ alter only thred tidal
cycles from cold start, using this vanable friction
formula.

Test 2 was run with tidal boundary elements friction
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Figure 5 Velocity e pses for (a) imphcit and (b) exphicit
models A, Nede 51, B node 57, C. node 105, D. node 148

¢ = 20 {m'"*/sec) and values of internal friction of 40
and 60. The solution was initiated from the implicit
model results for ¢ == 20 throughous instead of direct
cold start. (This was done simpiy to save computer
costs.)

Results

Velocity ellipses are useful to find out if steady state
has been reached. if there are any disturbances preseat
in the system which are likely to cause instability, the
magnitude of dnft velocities, the changes in velocity
magnitudes due to changes i Chezy's coefficients, time
step, etc.

Two comparable sets of results obtained using the
same tidal boundury Chezy coefficient (20 m' ?/sec) and
the same internal inction (¢ = 40) are shown in Figure
5. It can be seen that the ellipses for the explicit
scheme tend to be smaller (this is also true for other
pownts) thain those obtuained with implicit integration
The drift s also less in the explicit method. This may
be due to the large time step used in the implicit
solution. As a smoother circulation pattern and smaller
dnifts are obtained one could conclude that the explicit
solution 1s more accurate in this case. There are also
shight differences in the shape of the ellipses.

The lurge dnft tin the order of 10 to 20cm/sec for
some points) may also be explained by the coarseness
of the grid. A typical plot of velocities over all the Seca
is also shown in Figure 6 (results are from the implicit
programme, the Chezy coefficient is 20 on tidal
boundaries and 40 inside), where they are compared
against results published in the tidal stream atlases
availlable in Britain. The general trend of the velocities
compares well,

We should be aware, however, that the tidal stream
atlases velocities are smoothed out, the observations
are mude 1n oniy the top layer of the water. The
programme instead yields depth averaged velocities
given by equation 13). Hence the currents worked out
by the programme are not exactly as the atiases
currenis> The progranume results are being aflected by
local fuctuations tn depth to a greater degree than the
figures in the atlases

Gruphs showing the waveheight solutions for the
sume tests and at thesame points as the velocities are
shown in Figure 77 THERS dre comparatively high
variations i tidal ranee and high water times. The
flatness of the wasvceheight curves at nodes near an
amiplidromic poni is also noticeable.
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Figure 6a  VeluCity vectors oblained with the imphicit progiamme
2 hours after high water at Dover
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Figure 6b  Velocity vectors from the Admiralty charts 2 hours
after hignh water

Finally the co-range lines chart for the North Sea
has been computed from results obtuined using the
implicit programme with friction ¢ = 20m'/* sec on
tidal boundiry and for interior clements ¢ as given by
formuia (191 and shown in Figuwe 8 {f the co-range
hines are compared against the results shown in
Admiralty chart 5058 the agreement 1s reasonable.
Similar cunes were also reported by Grotkop* and
Nihoul®.
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Conclusions

For a constant level of friction throughout the grid the
results became unstable for a value of Chezy's
coellicient of 60 m'?ssec unless special procedures are
sed Sudden reductions of the level of friction (ie.
increases i ¢) cause a smail shock 10 be trunsmitted
through the system. Short waves are also generated on
the udul boundary by the discrete changes in the
mposed udal height at each time step. A way of
damping oul those effects 1s by decreasing the ¢
cocflicients i elements on the tidal boundary and this
techmique has been used for all the results shown in
this paper. Another dumping procedure 1s the .
numerical smoothing. for which the model could be
started with a realistic level of friction and the results
numenically smoothed until the disturbance caused by
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Figure 7 Wavelength for (8) implicit and (b) exphicit models A,
Point 51, B, point 57, C, point 105, D, point 148
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the cold start has been reduced. Since it 15 not
necessary to alter the friction parameter after this the
introduction of further short waves may in some cuses
be avoided. For the results reported in this paper the
numericil smoothing technique was only used once for
a short time, to stabilize the imphcit model results
when the Chezy coeflicient chunged from 40 to the
value given by formula (19).

Both time integration schemes, implicit and explicit,
give similar results, however, the fourth-order '
Runge-Kutta is more uccurate using Ar = {8min
which is the highest allowable time step in this case.
But it should be aiso pointed out that the implicit
programme (A7 = 30 min) needs less than half the
computer time required for the explicit programme.

For evolutionary processes of the type here
described computer time can be very expensive and the
programme should be further optimized before
undertaking production runs. It seems, however, that
for a problem with the dimensions of the North Sea
and a finite element grid similar to the one used here,
the explicit progrumime may be more convenient to
use. This is not the case when the domain is smaller
(for instance for the Solent) or the grid very fine. In
other words implicit schemes are more expensive per
timestep than explicit ones but allow for larger
timesteps. This cun be of interest in problems where

the time step may be increased considerably over a
simpler scheme, without significantly affecting the
accuracy of the results

The viabihty of the six nodes finite element
circulation model for the North Sza has been
established. Sccond order elements of this type are
especially suitable 1o reprasent accurately the .
topography of the region (i.e.. variable depth and
curved boundarics).
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TRANSIENT FINITE ELEMENT SHALLOW
LAKE CIRCULATION

By Frank D. L. Young? and James A. Liggett,2 M. ASCE

InTRODUCTION

The general problem of lake circulation is very complex and remains unsolved
for practica! engineering needs; wide use, however, has been made in recent
years of the steady-state solution to the circulation of a nonstratified lake.
A finite element program described in Ref. 3 has had considerable utilization
in many parts of the world. This paper extends that analysis to transient problems

A steady-state analysis uses the Ekman generalizations of Welander (11) under
the restrictions of constant vertical eddy viscosity, no horizontal eddy viscosity,
and a small Rossby number. Under these conditions the three-dimensional velocity
field can be found in an efficient manner since the depthwise variation of the
horizontal velocities is removed through integration in the vertical. A finite
difference program using this technique is described in Ref. 6. The finite element
program (3) was written to take advantage of the finite element network’s ability
to represent odd geometries and for the ease of universal use, including simplified
input data and mesh generation. Considerable success has been reported.

A transient solution, described in Ref. 4, exists. There the vertical velocity
variation was removed by u Fourier transform, but the evaluation of a considerable
number of Fourier series terms each time step proved to be inefficient. A fulr
three-dimensional velocity analysis (5) was as efficient and more general. The
method described herein uses a Laplace transform with numerical inversion.
The technique of removing the vertical velocity distribution fits easily into the
method; also, the program does not step through time in the finite difference
sense but needs 1o be run only about six to 12 times in a typical analysis.
The gain in ease in handling such problems is very large, as is the increase
in efficiency.

Techniques frequently used for time-dependent problems within the framework

Note.—-Discussion open until July i, 1977. To extend the closing date one month,
a written request must be filed with the Editor of Technical Publications, ASCE. This
paper is part of the copyrighted Journal of the Hydraulics Division, Proceedings of the
Americun Society of Civil Engineers, Vol. 103, No. HY?2, February, 1977. Manuscript
was submitted for review for possible publication on April 14, 1976,

'Research Assoc., School of Civ. and” Environmeantal Engrg., Cornell Unv., Ithaca,
N.Y.

2Prof., School of Civ. and Environmental Engrg.. Cornell Umiv., Ithaca, N.Y.
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of the finite element method include Runge-Kutta integration (1), finite differences
in time (10), and finite efements in time (2). An interesting example of the
step method used to solve a practical problem s cited in Ref. 7. In that calculation.
time steps of 2 min were used to simulate up to 4 hr of real time. In addition,
an iterative method was used. The number of solutions using the Laplace transform:
technique is an order of magnitude less. Unfortunately, algebraic development
of the present scheme is difficult and lengthy, even though the problem is
conceptually straightforward. In order to avoid stumbling over the algebra, many
of the expressions have been placed in Appendix 1.

Governing Eauamions

Basic assumptions and derivation of the governing equations are exactly the
same as in Ref. 4 and will-not be repeated herein. The equations are

du 1 op %y
e Vs e T e e e e e e e e (N
at p ax az?
av 1 op v
— et fu=s M e e e e e e 2)
at p ay az?
1 9p
B — e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 3)
p 92
du av aw
— b=+ —-=0 . e e e e e e e e e {4
Ix ay a7
Subjected to the boundary conditions
u=v=w=0 onallsolidboundaries. z=-h. .. ... ...._.... 5)
du av
and 7 —a— =1, N —a—— =7, atthe freesurface, z=0.......... {6)
H Z

The notation isdefined in Ref. 4 and 15 included in Appenu\ II1. The following
nondimensional parameters are defined:

ve = (_fi)‘ 2T =
gD 2]
=] - . [maYy Lo
A*:[—f—‘—]; and - r*=[£~—]. N -
ng ’ L »7]&‘; AR

These variables are mtreducad into the cquatmns ard the asterisks are omitted
Hercufter. only dimensionless varizbles appear (except in the definitton of the
Tavlor and Ekmun anumbers). The dimensionless equations are

A ap 1 8°u

S e N T {7
or éx  2m* 4z’

4,
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3v ] 1 83w '

—_— T u= —"—!',— ks R AL A {8)

3t 3y m?aZ’

i‘-’— =0 e e e e e e e e e e e e e e e e e e e s {%

8z

ﬂ'— + fi + i‘i B 1 2 A {10)

ax oy [} 4

With the boundary conditions

u=v=w=0 at z2=—h . . e e e et e e e, {13)
du av

and —=A4; —=T at z=0.% ... ... .. ... a2
az az

To this point, the details can be found in Ref. 4. The problem is described

in terms of three parameters: m {in which 2m® = fD*/n = Ta, the Tayior

sumber, or 1/2m? = E, the Ekman number); A; and T. In addition, depth
is a prescribed function of the horizontal coordinates, i = h{x,y).

Sownon

The time derivatives of the equations are removed by means of the Laplace
wansform. The transformed variables are

a= J LY S U R {13)
()
Thus all terms are multiplied by e~* and integrated to yicld
» it R )
ax  2m? 37’
p 1 aF i
s+ a= -_!7_ B A (13}
oy 2m* 87;
-a—l: D U (16)
a2
_61 + -ai + 31 e | OO an

Gart=w=0 4l I=—R ... i e e e e e e . 8
4 _ ot

and — =3 — =@ at =0 . . ... ..o 19
42 -

Also. imtal conditions of w = v = 0 have been used in Egs. 14 and 15. If

other 1L conditons are desited. addional terms would be included in Egs.
3 and 15 which are siv v..0) and vix.¥y.2.0).

b

A
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Since Eq. (6 states that 5 is not a function of z, Egs. 14 and !5 can be
vertically integrated, giving -

-1 b ap
i=— 5+ + cos Nz{c,eMt ~ c e ™)
st ax 3y )
~sin Nz(c,eM ~ cye ™) .. L 29
) -1 ap ap "
and ¥ = — (—— + 5 ——) 4 cos Nz{c, eM + ¢, e ™)
s 41 ax dy
+sin Nz(c,e™ + e e™™) L @2n
5 / ¢
inwhich M=V2ZmVEcos— ... .. .. ... ... ... (22)
2
N=V2mVERSsin—. ... {23)
R=VTT+50) ..o 24
1
d=lanT! — L o, (25)
s

The comstants, ¢, ¢, ¢4, ¢,, can be determiuned .through the boundary
conditions and are fouad to be

1 _ _ .
CG=Cy b — (MbP - NAY 26
b7 M NY) 2
1

¢, = —¢, + —T‘_T“ (NT + MAY ..o @en

: (M?® + N?) :
fvs—edp v +es op -

c, = : i F(Pe =8y o+ (By +8e)A |. ... .. 28
a ls?+ 1 ax  s2+1 ay
1 | ~(y+es) op +ys—zap ~-]

C,=— ——~—+—T———+(78+EB;I‘+W@—EBA . {29)
@ st 41 ax + 1 dy

Note for later reference (Eq 55) that 85/0x. 8p/dy. c,. .... ¢, all approach

infinity as 1/5s as s — 0. The abbreviations previously used (and in Appendix
I) are

a = Cos? Nit(e Mh 4 M) L qin? Nh(e-Mh — oMMy ... ... (30)
e«Mh

B= (Nsin Nh— McosNh) . . .. .. .. .. .. .. .. 31

(M2 + N3) Gh

y = sin Nh(e-Mh — gMry o 32)
e—\"l

= == (Msin N+ Ncos Nh) .. .. .. . ... 3
(M? + N?) > , 33
€ =cos Nh(e Mg oMy ., (34)
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eMh
K = *(—A;—f———; (Nsin Nh+ McosNR) . . . ... .. .. o .. (335)
- ( [ NZ
L,Mh
= (’VI’ N NeosNh) . ... .. ... ... ... (36}
1 + -

The transformed vertical veincity. . can be easily obtained by the integration
of Eq. 17:

T 9w oo avy
w=| —dE=- e a7
_n 0% _p \dX ay /

The resulting expression is lengthy; it appears as Eq. 60 in Appendix [.

Pressure Equation.—The boundary conditicns of the vertical velocity lead
to equations for the honizontal pressure distribution. Using w = 0 at z = 0
in Eq. 60 leads to

atp a2 p atp ep 3p

a + b +c +d—+e—=f .. . ... .. (33}
ax? axady ay? ox ay

in which the coefficients a, b. ..., fare functions of x and y.

Vertically Averaged Velocities.— A verticzl average of the transformed velocities

1 0

u=— Adz . . e e e e e (39)
h -h
1 0

Vo= — Vdz . e e e e e e e e e (40)
hJ_,

Egs. 20 and 21 are substituted into Egs. 39 and 40 and verticul integrations
carried out to yield

ap I - .
i=h —+h;—+h,T+h, A 0000000 1)
ax ay
ap ap
\7=—h——~4-h—-+h}!“—h.3 ..................... 42)
ax ay

in which h, h,, h,, and h, are functions of x and y and are given in Appendix
I. The condition that & = v = 0 at the edge of the lake is used to provide
the boundary conditions on Eq. 38 by means of Eqs. 41 and 42.

Stream Function.—The numericul solution is actually carried out for the stream .
function defined as

1 oy
B = e e e e e e e e e e e (43)
h ay
1 o
Voo — s e e e e e e e e e e e e e (44)
h .

Thus. the integruted continuity equation
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f° fea v\ %] ]

— +—jdz=—h)+—h¥)=0.. . .. ... ... .... (45)

_p \OX ay ax ay !

is automatically satisfied. Eqgs. 43 and 44 are substituted into Egs. 41 and 42,
and the result solved for the pressure gradients:

3p EX b _ -

—=q—+q,—+q T -q,A. ... . L. 46
ax 'ay ’ax ¢ q? @8
ap 3y ay S @
—=q,——q,—=-q,F—-q 8 .. . . ... ... ...

ay ay 'ax 3 ¢

The variables, q,, q,, g5. q,. are defined in Appendix 1. By cross differentiation
of Eqs. 46 and 47, the following equations is obiained for the stream function:

a2y aty 3 3y
T+ + A(x,y:8)— +Bx,y;5)— + C(x, y;5)=0 . .. ... 48
ax?  3y? ax Iy
h 5 E
in which A(x,y;s)=—(h] + h:)(—ﬂ + % ) ............ {49)
h, ax ay
h aq aq
B(x.y;5)=— i+ hi)(—l -2 ) .................. 50
h, ay ax

h 3 N @ -
Clx,y;8) = —hi + A —(g;T) — —(q;A)
h, 3x ay

;] _ 2 -
+—q )+ —(q M} ... ... 3D

ay ax. -

Eqg. 48 is solved numericaily under the condition that & is 2 constan: along
the boundury of the lake. Changing this constant {or making & variable over
a small length) accounts for inflow and outflow. Once ¢ is known, Fgs. 26
and 47 provide the pressure gradients: thea. transformed poial velocities are
found from Eqgs. 20. 21, and 60. The renl peoint velocilies are obtainad from
the inverse Laplace transform, which must be done numericaliy.

Finrre Ewement Anavysis

Eq. 48 is the same as Eq. 7 of Ref. 3. except that Eg. 48 contaias the
additional parameter, 5. Exactly the same solution technigue is employed as
that described in Ref. 3. A separate soivtion musi be porformed for each velue
of the parameter. At this writing. 2 program using linear trizagular elemenis
has been modified for the transient calcwiation. Huwever, a genaral program
for the steady state is inuse which pruvides a choice of linzus frisngular elements,
cubic triangular elentents. or quadentic isoparsmiotti elcmeris, Sor., mesh

generation facility is alse included. This lattar piogiaa. could be moddied for

the transic kil sis by simply charging some of the Tooct, .
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Lamacs Transrorm INvERSON

The procedure to this point has paralleled that of Refs. 3 and 6, with the
addition of the transformed Ume derivative. The finite clement program, wiih
the final wse of Egs. 20, 21, and &0, gives the values of the transformad velociiies.
The 1averse wamsform remains In order 10 find the physical velocines. The
collocation methed of Schapery (9) is used for the numerical transform inversion.
The method assumes the funclional form of the dependent variables with time
in which the assumed function contains a number of undetermined coefficients.
These coefficients are fonnd from the solution of a set of simuitaneous eguations.

Folowing the lead of Shapery (9) the velocity is written as

a@@d=us+8u(t) ....... e e et e e e e {32)

with a similar expression for v and w. The 4, is a constant and the fast temm
is given by the finite Disichiet series

An(@) =D ae™ . .. 53)
. pou
Using Eq. 53, Eq. 52 is ransfermed and muftipited by s to yield
_ ~ 9
S =uet D> L 54)
N B %
5
The constant, u,. is clearly the steady-state valze of « for large time, or
o =Hmsa(s) . ... . e e e e {33)
fan V]

If the @ constants. b;, are chosen by some means. then a values of s {e.g.,
5;) can be selected so that Eq. §4 represents m equations in the undetermined
coefficients, ;. Schapery indicates thul the error will be acarly mimimized if
the b, are chosen equal to the selected s, values. ie.

b= =l 2@ i e {38
Then n simultaneous aigebraic equations occur in the a;:

n ai . .
s u{s) =u, + z I T R 37

£ 5.

=3

st

s

]

Choice of the s, remains. First sa(s) versus log s is plotted as in Fig. 1.
The sigaificunt range is that shovwing a definite vanaton of si(s). Numerical
experiznce {8.9) has shown that optimal resulls are achieved by selecting the
5, in a geomelric sequence

in which r > a fined ratio. Thus. the upper and lower boun” ¥ the s, are
sclected from the plot and the ratio. 7. is Tixed by choosing ViCE-Versa

I
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The accus is generally increased by choosing a large n, but a too large
n will result in numerical instability.

In the present study, the following values were used: n = 8, r = 10, s,
=2x107% 2 x 1074, ..., 2 x 102, The resulting eight equations were solved
using a standard Gauss-Jordan elimination procedure. The result yields a continu-
ous solution for u(t), v(t), and w(t). The procedure is repeated at each point
in the x,y plane where the soiution is desired. Thus, the.number of constants,
a;, needed is the number of node points X n x 3. Although this number can

5, sV X 6272

10

FIG. t.—Transformed Velocity Components at Lake Surface for x = 0.2, y = 05
orx=08 y=35 . '

be farge (209 x 8 x 3-= 5,016 in the present study). the n X n-coefficient
matrix of the a, needs to be inverted only once; i.e., Eq. 57 becomes

a, a, i a, -
+ + ...+ =5,u(s)) — uy;
s s s
1 2
1+— 1+ P+ — ,
s, s, s,
a, a. a, B
+ + ...+ = $5,i(s,) — ugy;
s, s, s,
'+ — 1+ 1 +—
L L s,
al a'_' a, -
S T i T 1L T T (59)
5, 3, s, )
P+ — 1+ —= 1+ —
s'l sn SII

in which only the right sids changes with different positions in the x, v plane.
Nuwmericat Resuuts

The method was checked by solving a test case in an ideahzed basin The
problem chosen is that solved in Ref. 4, using a Fourier transform te remove
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t = 0.000C! rad/sec
D = 8000cm
L=125x107¢m
7 = 200 cm2/sec
7= 1.0 cm2/sec
4L g= 980 cm/sec?

'——b
Ly

NV

g~ 8-B

S J—

]
A-A

FIG. 2.—Rectangular Lake Configura- FIG. 3.—Finite Element Mesh Arrange-
tion ment for Rectangular Lake

Finite difference

e Finita slement

t

u, v cm/sac

0 L ' 1 L 1 1 ) 1 3
[] t 2 3 4 -] 6 7 8 9
. Dimansiontess 1Ima
o) 28 56 8.4 1.2 14 168 196 224 2532

Time 1n heurs (using the values of Fig 3)

FIG 4.—Compa'rison of Two Different Types of Solution for Velocity Components
at Lake Surface at Typical Point (v = 0.3, y = 2.0, : = 0)
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vertical dependence and finite differences to step through time. The test basin
is described in Ref. 4 and appears in Fig. 2 with the dimensional parameters.

The finite element grid is shown in Fig. 3. The grid consists of 360 elements
with 209 nodal points. The finite element resojution is much greater than the
finite difference resolution used in Ref. 4. Details of the finite element calculation
are given in Ref. 3.

The results of the computation was compared to the resuits of the study
of Ref. 4 at a large number of grid points. A typical comparison is shown
in Fig. 4. The horizontal velocity- components are shown at x = 0.3, y = 2.0,
z = 0 (equal to the solution at x = 0.7, vy = 2.0, z = 0 due to antisymmetry).
Small differences between the two caiculations are attributed to differences
inresolution and the different method of handling the time variation. No statement
can be made as to which is the most accurate. The differences appear sufficiently
small to be of no practical importance.

Concrusions

The Laplace transform with numerical inversion technique appears to have
a large efficiency advantage in the present problem, stemming especially from
the fact that the vertical distribution of velocity can be stated explicitly in
algebraic equations instead of in the rather awkward (for machine calculation)
Fourier series or in a finite difference sense. The result is a velocity distribution
continuous in depth and time and. using the automatic interpolation facility
of the finite element formulation, continuous in the horizonta! dimensions also.

Any three-dimensional time dependent problem is very large. This problem
has been reduced to two dimensions plus an algebraic formula in depth plus
a few (eight in the results presented herein) solutions to a “’steady-state problem
with parameter.’” These shortcuts have created a situation whereby the calculation
is quick and economical and can be performed many times for parameter study.
However. the presentation of results still remains a problem. It is not easy
to picture the three velocity components varying with time in a three-dimensional
space. Work is currently underway to develop computer graphics procedures
which will resoive the presentation problem. The development of such procedures
was. in fact. the major motivation for finding efficient solutions that could
be stored in the computer and called at will for graphical presenration,

AcxnowLEcGMENT

Work described in this paper was supported by the National Science Foundation
under Research Grants GK23992 and ENG76-05029.

Appsrioix 1.~-Foamutas

VPN + )

y =

*

s+ 1

] dcy, dc, N )
-— - — = — eM (M cos N2+ Noaan N2
(M* + v \ay ax
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— e M (Mcos Nh — Nsin NIt) + e (-~ M cos Nz + N sin Nz)
+ e (M cos Nh + N sin Nh)j

1 ac, dc, i
+W — 4 — {e"ﬁ(Msm Nz — Nces Nz)
i+ -

ox 3y
+ e ™ (M sin Nh + N cos Nh) + e 2=(M sin Nz + Ncos Nz)

+ e’ (M sin Nh — N cos Nh)}

ax ay
— e~ *2(7 cos Nh — Nsin Nh)]

1 at aA - ]
- (M2 +.N2)? N{— — — }{e*(Mcos Nz + Nsin Nz}

alfr oA
- M|— — — J{eM(Msin Nz — Ncos Nz)
ax dy

— e M (~Msin Nk — Ncos Nh)]}

1 af aa )
- ————— {M{— + — }[e¥={M cos Nz + Nsin Nz)
(M2 + N?)? dy ax

~ e"™*(M cos Nh — Nsin Nh)}

ar  aA
+ N{— + — J{e™{Msin Nz — Ncos N3)

oy ax
— e M (—Msin Nh — N cos Nh)]} ........... ‘. . .' ....... {60)
hy=———[-sha +{y+es)B+r) +(—ys+edd+2)] ..... ®n
ah(s* + 1) .
i a 2MN '
h:.;*[ ( +NB—M8)—(\1B+€5)(B+K)
oft LM2+ N2 \M*>+ N?
—(ﬁe—&y)(s-l—k)]............' ................. (3]
By = — [ s (M: N oM Ns) 1B + )
= —— + + + - +
e M N\ M+ N2 B (Be = BYXB +
—(By+5e)(8+k)].....‘.........._ ............. (63)
1 .
h, = :—-[—ah-i»(e—'ys!(ﬂﬂ:x)—(‘y +es)(®d+A)) .. ... .. 69
ah(s® + 1}
hl
@, = e Y ()
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h,

k(ht + hd)

il

= — T e e e e e e e e 67)
i + hl (
i h - h h
= (68)
hy + h?

Aprenoix 1), — RerFerences

10.

. Coanor, J. J., and Wang, J., *'Finite Element Mé)de!ing of Hydrodynamic Circutation,™

Numerical Methods in Fluid Dynarmics, C. A. Brebbia and J. J. Connor, eds., Pentech
Press, London, Engiand, 1974, pp. 255--387.

. Fried, 1., “'Finite-Element Analysis ¢f Time-Dependent Phenoimena,” Americar: Insti-

tute of Aeronautics and Astronautics Journal, Vol. 7, No. 6, June, 1969, pp. 1170-1173.

. Gallagher, R. H., Liggett, J. A., and Chan, S. T. K., *‘Finite Element Shallow Lake

Circulation Analysis.” Journal of the Hyvdraulics Division, ASCE, Vol. 99, No. HY7,
Proc. Paper 9355, July, 1973, pp. 1083-1096.

. Liggett, J. A., “Unsteady Circulation :n Shallow, Homogeneous Lakes,”” Journal

of the Hydraulics Division, ASCE, Vol. 95, No. HY4, Proc. Paper 6686, July, 1969,
rp. 1273-1288 ’

. Ligget, J. A.. “A Cell Method for Computing Lake Circulation,” Journal of the

Hydrauldics Division, ASCE. Vol. %6, No. HY3, Proc. Paper 7152, Mar., 1970, pp.
725-743.

. Liggett. J. A., and Hadjithecdorou, C., **Circulation in Shallow Homogeneous Lakes,”’

Journal of the Hydraulics Division, ASCE, Vol. 95, No. HY2, Proc. Paper 6454,
Mar , 1969, pp. 609-620.

. Lindh, G.. and Bengatsson, L.. “"Wind-Induced Circulation in a Lake.”’ Bulletin Series

A No. 10, Division of Hydraulics, institute of Technology, University of Lued, Lund,
Sweden, 1972.

. Rizro, F. J., and Shippy. D. J., “A Methad of Solution for Certain Problems of

Transient Heat Conduction.” American Institute of Aeronautics and Astronautics
Journal. Vol. 8. No. 11, Nov., 1970, pp. 2004-2009.

. Shapery. R. A.. " Approximate Methods of Transtorw Inversion for Viscoelastic Stress

Analvsis.”" Proceedings of the 4th U.S National Congress of Applied Mechanics,

Vol. 2. {962, pp. 1075-1085.

Taylor, G.. and Hoed. P., “"A Numerical Solution of the Navier Stokes Equations
Using the Finite Element Technique,’ Computers and Fluids, Vol. {, pp. 73-100.

. Welander, P.. ""Wind Action on a Shallow Sea: Some Generalizations of Ekman's
Theory,” Tellus. Vol. 9, No. 1, Feb., 1957, pp. 45-52.

Arsenoix Ill.—Noration

The following symbols ure used in this paper:

A,B,C.c,,c,,¢,,
¢, a,b,cdefh,

h2’h3’h4vq|vq11
43.4,.2,8.v.8,
€,k,A = function of xand y;
a,.b,,uy.n constants;
D typical verucal diswension used to normalize depth;
f = Coriolis parameter.
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acceleration of gravity; .
normalized depth of lake: '
typicai horizontal dimensicn used 1o normalize width
and length;

VZImA\Kcos (b/2); |
V' Df/Zn;

VZ mVEsin(b/2)

local pressure;

V(I + 5%

ratio of yeometiic series:

Laplace transform parameter;

time; ;

average transformed velocity components in x and y
directions, respectively;

Cartesian Coordinates with x and y in a horizontal plane
and z positive upward and zero at the surface;

eddy viscosity; )

fluid density;

surface wind stresses in x and y directions, respeciively;
tan~!' (1/5);

stream tunction; and

transformed variabie.
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PROPERTIES OF CIRCULATION IN STRATIFIED LAKES

By James A. Liggett," M. ASCE and Kwang K. Lee,® A. M, ASCE

INTRODUCTION

The complexity of circulation in a stratified body of water precludes an
accurate analysis at the present time. It appears that such problems can be
attacked by a large computing program (7); however, even a sophisticated
conmputer program must contain a number of simplifying approximations.
Morecver, the computer method has the disadvantage that the features of the
circulation, the causes und effects, get lost in a massive program. The ob-
jective herein is to delineate features of motion in a stratified body of water
i a way that explains observed phenomena and can be used to develop intu-
itive ingight into the problem.

To accomplish this objective, many assumptions and approximations must
be made. These upproximations render the quantitative aspects of the results
doubtful, although the writers believe that the quantitative results could be
used in the ubscuce of a more rigorous method, Only the problem of steady
flow has been considered in this paper. Although the time response of a
stratified lake is in doubt, it appears that a true steady flow seldom occurs.
However, muny of the features of a steady flow analysis are observed in
lakes. The steady flow analysis can also be used to define an average condi-
tion; it 18 this average condition which is likely to be useful for designpur-
" Note.—Discussion npen until June 1, 1971, To extend the closing date one month, &
written request must be filed with the kxecutlve Dlrector, ASCE. This paper is part

of the copyrightcd Journal of the Hydraulics Division, Proceedings of the American
Soefety of Civil Engineers, Vol. 97, No, 1IY], January, 1971, Manusoript was submitted

lor review fur possable publtication on February 19, 1970,
PAsgoc, Pror., meehool of Civil Engrg., Cornell Untv., Ithaca, N.Y.
ZAsst, Prof., College of Environmentul Sciences, Unlv. of Wisconsin, Green Bay,

Wisc.; formerly Keseurch Assoc., School of Clvil Engrg., Cornell Univ., Ithaca, N.Y.
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poses. The great mass of data of an unsteady analysis is often confusing and
not useful; hence the climatology of a lake is better defined by averages.

PROBLEM FORMULATION

The summer stratification of a lake often consists of three layers: (1) the
epilimnion, an upper layer of near-constant density; (2) the metalimnion, a
middle layer of steep density gradient; and (3) the hypolimnion (1,6,7,13). The
stratification is assumed to approximate a two-layer system herein. Fig. 1
indicates the idealization to a two-layer lake in which the epilimnion and hy-
polimnion are considered homogeneous.

The equations of motion are the linearized equations which have been used
to describe the motion in homogeneous (8,9,10) and two-layer {2,7) lakes. The
nonlinear terms are neglected due to a small Rossby number (i.e., the ratio

Z  EQuUIBRILM
r SURFACE
Free )

: T Surface C

1
_L!.__;,,__‘_—L_—:T:’___’_’%J-’__’__’_;Y

EPILIMNION @ !

/Thermochne(or interface) \J\
H
HYPOLIMNION 6,
Solid Bottom .

FIG. 1.—DEFINITION SKETCH OF LAKE

of inertial and rotational forces). Only vertical friction is considered; the
Coriolis parameter is taken as a constant; and the pressure is assumed to be
hydrostatic. The equations for each of the two layers are:

- fup = - :—k%‘%k+nk%} ........................ (1)
fuk=——p; %Zif+nk %}- ......... ................ 2)
gi—Ei—%[;h .................................... (3)
%+%—l}¥"+%&=0..: ........................... (4)

in which the subscript # = 1 for the epilimnion and £ = 2 for the hypchimnion,
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The coordxrates are x, y, and z with x-y plare horizontal and z vertically up-

ward; the velocmes correspondmb to the x, y, z directions are u, v, w re-

spectively; f,= Corlo‘xs parameter; p = density; p = pressure; 7 = kinematic

eddy viscosity; a.nd £ = accelerahon of gravity. ’
The boundary conditions on the epilimnion are:

"t ou 3

,:n,p,EL,Tyzn,pl '521‘ at 2 =0 ,......... PR ¢5))
[N 8z =Gy Pt 2 Gyat z=~h.............. (6)

in which 7, and Ty = components of surface wind stress (assumed as known)
and G, and G = shear’ stresses acting on the epilimnion at the thermocline.
The prlmary (ysteady state) drwmg forces for currents in the hypolimnion are
the pressure gradient and’ the interface stresses, G, and G, Curren:s in the
epilimnion are caused by the wind stresses, T and Ty and are modified by
the pressure gradient and interface stresses.

METHOD'OF SOLUTION®

From the precedmg equations, the velocity components in the .upper layer
are found to be

1 3p, oy .
= - , - A, exp (- q2)
u, 7o, 3y cos gz [A, "exp (gz) 4 exp (- g2)]
- sin gz {A, exp (92) = A, exp (- g2)] .. it (7).
1 %, - - . o

v, = For —ale. + cos gz [A; exp (gz) -+ A, exp (- qz)] ..

+ sin gz |A, exp(gz) + A, exp (- qz)] ..... e e e . (8)
in which ¢ = Vf/27,. The values of A\, A,, A, and A are determined by the
boundary COndl't'lOnS As a sherthand” notahon, de[me A = - 2(cosh 2qh -
cos 2qh); Ty (Ty, - T)/2qmp,;. T, = (Ty + 72)/2qmpy 5 Ty = (G +

G )/2qn1p1u and T = (C - Gx)/Z(]mpl
The A’s are: A, = {T {cos 2qh'- exp (2q9h)] ~ T, (sin-2qh) .

' - T, (2 sin gk cosh gh) + T, (2 cos gh sinh gh)}/A ... ..., .. (9)
2 = T, [exp (- 2gh) - cos 2qh]) + T, (sin 27h)
- T, (2 sin qh cosh gh) + T, (2 cos ghsinh gh)}/a......... (10)
s = {7, (- sin 2qh) - T, [exp {2qh) - cos 2qh]
+ T, (2 cos gk sinh qh) + T, (2 sin gk cosh qh)}/a ... ... L.
« = {T, (sin 2qh) - T, [exp (- 2qh) - cos 2qh]
- T, (2 cos qh sinh qh) - T, (2 sin gk cosh gh)}/a . .... ... (12)
From Eqs. 7 and 8, the epilimnion velocities are functions of the pressure
gradiciut, wind she o, and interface stress. Approximations are found in the
following sections for the interface shear and pressure gradients.
Inteyfeee Shear —Let Wy = uy « iy, in which W = complexhorizomtal
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velocity and i = V- 1. Omitting subscript %, Eqs. 1 and 2 become:

1 /. 2 . 2w
fW=5(z g%-55)-zn——.....................:(13)

The horizontal velocity is separated into twoparts asW = W' + Wg; inwhich
Wg = (1/pf) [i (3p/3x) - 3p/3y]; and thus

.1 % _1 3 '
= of ay'vg-p_f B C ot tterereresss (14)

are the geostrophic velocities. Then ’

uUg

fW* = - in %5,'— ................................ -(15)

in which it is assumed, through the hydrostatic approximation that, 3°W /82>
= 0. Solving Eq. 15 and adding the geostrophic component yields

Wy = /3,, exp [(1 é)m z] + ﬁ'k exp [- (i -ﬁ)m z] + Wep (16)

Constants Ak and ﬁk could be determined from the free surface and bottom
boundary conditions as well as from the interface conditions; however, the
result would be rather complex. The purpose of this exercise is to derive an
approximate expression for the interface shear; therefore, it is assumed that
the solution near the interface is not greatly changed by ignoring the boundary
conditions on the free surface a22d the bottom. Obviously such an approxima-
tion is valid if both of the two lzyers are thick, so that motion near the ther-
mocline is determined primaril. by pressure gradients (geostrophic flow).

Eq. 16 would have resulted hzd the origin of the coordinate system been at
the thermocline. Let z' = z + &; then

Wy = A} exp [(z -L)m z'] + B} exp [- (i —L)m z'] + Wep (A7)

e e

If the free surface and lower beu:ndary are far away, then

12
W, ‘= B] exp [-(i ;IL) z'] + Wi o (18)
1
’ 1/2
W, = A} exp [(1 L) z'] +Wog oo (19)
. N2 .
approximately. The appropriate interface conditions are:
. - aw, aw .
w, =“i and p,n, 22 TP -i;,z atz'=0........... - (20}
' " | p,m"
Therefore 312:1';: - Wk— (“lg - “’zg) ............... (21)
, p 2 )
A = mnﬁ;f (“lg - Wzg) .................... (22)

The interfuce stresses are four” 0 be
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in which K = f—“zﬂz (—ﬁé—’lﬂz——h—) .................... (25)

Py’ + ppmy

From the hydrostatic condition (Eq. 3) and the condition that the pressure
is continuous at the interface (p, = p, atz' = 0)

%’- =p,,gr—i;—§'-r ................................... (26)
% =p,g§~§ ................................... @7
%=p,g%+p,g%—ng%---.r ---------------- (28)
%:p,gg—i+plg%-p,g% ............... {29)

Using the definition of geostrophic flow (Eq. 14), the interface stresses can
be written in terms of the surface and interface gradients as:

G- B (LB L E LB (30)

f [/ ax 3y ax ay
_ 2K o, \f3 3t a3 3 ' 31
Gy = F (1 - ;:)(ax T T ax By) """""""" 31)

Horizontal Velocities.—Eqs. 7 and 8 are derived for a wind stress in any
direction. For the present research, they can be simpiified without loss of
generality by considering only a wind stress in the y-direction, i.e., 7y = 0.
Substituting Eqs. 26 throagh 31 into Egs. 7 and 8, the current velocity under a
y-shear on the free surface is

j 2

u = - & L, R b2 {cosh qz sin q (2h é—'z)“’
! J 3y qh P, ’

- sin gz cosh g (Yt + 2) + cos gz sinh q {2k + 2)

sinh gz cos g (2h + 2)] + (%)(1 - f:) [( ‘;‘

+ -

g’—;) {sinh qh cos qh cos gz cosh qz

+

sin gk cosh gh sinh gz sin qz)

_{3t ah . )
(a.‘_ + ax) (sin gh cosh gh cosh gz cos gz

cos gh sinh gh sin gz sinh qz)]},-’(cosh 2qh - cos 2qh) ... (32)
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_ £ 8 1 Ty .
v, =2 = - —/—— {-F . < S . -
V2P T Fs )2 [sinh qz- cos. q-(Zh- + z)t

‘ :
- cos gz sinh ¢ {2k + 2) + cosh gz sin q (2h + z)

- si ) 2Xg\(; . ;)\ |23t
sin gz cosh q (2h + z}] +( 7 )(1 -;;1) [(5;

n o
+ @) (cos gz sin gh cosh gk cosh gz

- ¢ns gh sin gz sinh gh sinh qz)

] 8h
+ (.Tf: + 5) (cos gz cos gh sinh gh cosh gz

+ sin gz sin gh cosh gh sinh qz)]}/(cosh 2qh - cos 2qh) . ... (33)

Surface and Thermocline Slopes.—The surface and thermocline slopes
create pressure gradients which extend to the bottom of the lake. These
slopes are the remaining unknown factors in the velocity equations. The pri-
rary cause of the pressure gradients is surface wind stress, although the pres-
sure gradients are modified by the Coriolis force and the hottom stress. The
latter effects will be neglected in this approximate theory.

Integrating Eqs. 1 and 2 with 2 = 1, 2 and with the wind stress in the y-
direction (7, = 0) yields

¢ o9, ¢ o%u 3
[, o dz - ma, f_hTz—gldz=3%L(§+h)+Gx=0....(34)

{ v . t p2
L, 5 de -mey [ Spdz= Pi e
_ ey ),

r 8y 322
STy =Gy =0 (35)
ey, (T Fu o, ;

Ly z-nzpzf_ﬂEi-dz=ax(-h+h)-c,=o (36)
h o, g, f"’ﬂzd - %

o Whe | gFde = X h+H) -G =0, (3]

Using Eqs. 26 through 29, Eqs. 34 through 37 become

3 K o, \/eh o '
P,(§+h)5;-7(1—3:>(a+5;'>=0 ............. (38)

8z K P ah ah T
Pt v )5 S (1-;:)((“ . -37)=Ev ............ (39)
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(- 5) 5 o w
-%‘(1-%:)(% %)-—0 ......................... {40)
TRIETET
;%(1-72:)(-2—’5.-%):0 ........................ (41)

In Eqs. 38 through 41 8¢ /ax has been neglected when added to 8k/dx, since
8t /ox is of the order {1 - (p,/p;)] 8h/dx, and 8¢ /3y has been neglected when
added to 3h/3y. Solving Eqs. 38 through 41 for the four unknown gradients
yields:

oh Ty l- o

— N A Y P S, . T R I R T T T 42
3y ~ g(p2 - m)Dp (1 - af +o? “2)
dh Ty o

e e 43
dx  glpa - P )DE (1 - @) + o (e
L Ty (1 - a)Dy - 2aDp) + D (44
5y~ 2p 05 Dp + D I - aF 2 & 1 rrrrie

8t _ _ 7y Dy - (45)

3x pgDg Dg + Dy (1 - ay + of

in which Dg = b + ¢ = epilimniun depth; Dy = H - I = hypolimnion depth:
and o = (K/p, fDg) [1 + (Dg/Dy)].

Due to the simplifications made in cbtaining Eqs. 18 and 19 from Eq. 17,
the above equations are valid only for sufficiently thick epilimnion and hypo-
limnion. The writers believe that o < 0.3 is an appropriate limit on epilim-
nion thickness, since 8h/3y = Oat @ = 1 and 8(32/3v)/8c = 0 at @ = 0.297.
In the following discussion a < 0.3 is assumed. :

Obviously, all the derivatives of k and ¢ are positive, indicating that the
free surface slopes upward in the downwind direction and to the right of the
wind. The interface slopes downward in the downwind direction and to the
right of the wind. Since « is small ak/ay > 8k/dx, indicating that the slope of
the interface along the direction of the wind is greater than crosswind.

Eqs. 44 and 45 are simgplified if the hypolimnion thickness is large, Dy —
w© {0

.a£ - Ty l1-ao . _a£ _ T\L a . (46
3y  gp,Dg (1 - @) +a®* 7 3¢  gp,Dg (1 - @l + o? )

Eq. 46 look much like Eqs. 42 and 43 except that the effective density is p,
instead of p, - p,. Thus the interface will tend to slope by a much greater’
amount:

~ % .
oy Pz - Ny By

than the free surface.
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FIG. 3 —EFFECT OF DENSITY DIF FERENCE ON GRADIENTS OF SURFACE AND
THERMOCLINE
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In the Great Lakes the cold hypolimnion water occasionally touches the
surface in a celd water upwelling (2,3,4,7). Usually such upwelling occurs
near the beach during an offshore wind. However, it may also occur if the
wind is blowing parallel to the shore from the right (facing the lake) to the
left (2,3,11).

NUMERICAL RESULTS

Most of the results can be more easily discussed if reasonable numerical
values.are assigned to the parameters. The following values will be used for

FIG 6.—EPILIMNION HORIZONTAL VELOCITIES FOR DIFFERENT EPILIMNION
THICKNESS (ARROWS REPRESENT VELOCITY VECTORS AT DEPTHS z = 0; z =
- 2R/T;...:2=~6h/7,2=-h) .

the calculations in this paper unless otherwise noted: f = 107* per sec; g =
680 cm per sec; Ty =0; 7, = 1 dyne per sq cm; p, = 0.99777 gm per cu cm;
p; = 0.99997 gm per cucm; 7, = 40 sq cm per sec; 77, = 4 sq Cm per sec;
H = 80 m; and # = 18 m. The values are of the order of magnitude of those
found or assumed by others for the Great Lakes (2,5,7,9). .
Fig. 2 indicates the slopes of the free surface and thermocline using the
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above numbers, except that the epilimnion depth is allowed to vary. The
strongest gradient is in the thermocline, which is tilted downward in the
downwind direction. The thermocline is also tilted downward to the right of
the wind, but the crosswind tilt is an order of magnitude less than the down-
windtilt. The free surface is tilted in the opposite direction irom the thermo-
cline with the crosswind tilt again an order of magnitude less than the
downwind tilt.

Fig. 3 indicates the tilting of the surface and thermocline as a function of
the density difference. As expected, the density difference has a large influ-
ence in the thermocline tilt, but practically no influence in the free surface
tilt. When the density difference is small, the thermocline may tilt very
steeply so as to be unstable. Such a mechanism seems to cause the fall over-

SPEED ({crvsec)
10 20 30 a0
) T F T T L]

-

L— — — — 2 — — THERMOCLINE
3o}

60

804

DERPTH (m)

150

1801

ralvly

FIG. 9.—AVERAGE SUMMER CURRENT SPEEDS IN LAKE MICHIGAN (AFTER J. L.
VERBER, Ref. 14)

turn when the epilimnion cools to such a degree that a moderate wind can up-
set the natural stability of the stratification.

Fig. 4 shows the tilt as a function of the parameter K. Egs. 32 and 33 in-
dicate that the velocities are complex funciicnz of the various parameters
even when effects of sideboundaries and bottom topography are excluded. The
velocities are linearly proportional to wind stress. Thus an increase in wind
stress only increases the velocities in magnitude wi*hiont adirectional change,
neglecting the effect a higher wind stress might havs on the eddy viscosity.

Fig. 5 indicatzs eifect of epilimnion thickness on epilimnicn velocities.
The thicker epilimnion has greater velocities for the sume wind stress aw?
has an Ekman spiral which 15 mores nearly comyples-
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Fig. B indicates the elfect of eddy viscosities on erilimnion velocities. The
eddy viscosities are largely anknown; thus it is imporiant to determine the
grror macde in current velocity due to incorrectly guessing eddy viscosity.
The smaller eddy viscosities are associated with large velocities and more
complete spirais.

Fig. 7 shows current speed as a function cf depth for differeni epilimnion
thicknesses. Fig. 8 shows cuorrent speed as a function of depth for different
eddy viscosities. The average summer current speed as determined by
Verber {14) is shown in Fig. 9. Egs. 32 and 33 dispilay the interaction within
the stratified iake due to the different effects oI each factor with respect to
depth. Characteristically, the speed is maximom at the surface, decreasing
to 2 relative minimum at three-sevenths the epilimnion depth, then increasing
t0 a relative maximum just above the thermocline.

CONCLUSIONS

The present study is an attempt to gain some insight into the complex
problem of circulation in a stratified lake. U the effect of the lateral bound-
aries and the bottom topography are neglected, reasonably simple equations
can be derived for the slopes of the free surface and the thermocline and for
the circulation. The approximate Tesulis present a satisfactory explanation
for some of the cbserved phenomena. The results also indicate the eifects of
varying parameters of the problem as indicated in Figs. 2 through 8.

The guantative accuracy of this study is doudbtful because of the numercus
approximations. However, the results are in approximate quantitative agree-
ment with the computer calculations of Lee and Liggett {7) in the regioa where
the effects of the bottem boundary condition and the shore configaration be-
come less important.

The response time of a stratified lake is unknown, but it is probably long,
of the order of several days. In this respect the steady-state circulation may
rarely, if ever, be attained in a natural lake. However, the steady-state con-
dition might be expected to represent an average condition under average
winds. Evidently, 1t is this average which would be most aseful for purpeses
of design, {or obtaining flushing data, for calcalating the transport of physical
guantities, etc. Since the problem appears to de linear to a good approxima-
tion {certainly to better accuracy than mony of the approximations contained
herain}, the efiects of through flow, or other non-wind-Jdriven circuiation, may
be added.

The writers hope that the engineer cancombinethis type of study with field
data {e.g., velocity measurements or drift card data) to infer the general cir-
culation in any given lake. )
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APPENDIX 1I.—NOTATION

The following symbols are used in this paper:

All.Az;A:n Adv
A, B, A', B' = functions of x and y;
Dg = depth of epilimnion;
Dy = depth of hypolimnion,
" f = Coriolis parameter;,
) £ = acceleration of gravity,
G,, Gy = components of interface stress at thermocline;
h = positioa function of epilimnion;
H = posttion function of lake bottom;

V- B o

k = subscript (¢ = 1 for epilimnion; & = 2 for hypolimnion);
K = constant (see Eqs. 23 and 24),
b

q

pressure,
= ‘constant;
T,, T,, T,, T, = constant functions;
u, v, w = velocity components in v, v and 2 directinax~,

HY 1

ug,';f";

W' =

W
x%9,2
xhy', 2z
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horizontal geostrophic velocity components;
complex horizontal velocity;
transformed complex horizontal velocity;

= complex geostrophic velocity;

three-dimensiona! coordinates;
transformed coordinatefs;
dimensionless constant;
function of x and y;

= position f\unction of free surface; o
= eddy viscosity;
= density of fluid; and

wind stress components in x and y directions.
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Abstract—The finite element method is applied to the analysis of the wind-driven circulation of
variable-depth, shallow, homogeneous lakes. Attention is concentrated upon higher-order
descriptions of the flow phenomena within the individual elements and upon the use of these
higher order functions in the definition of curved element boundaries (isoparametric elements.)
Numerical results are presented for a rectangular basin, for which alternative results are
available from both first-order finite element representations and finite difference analyses, and
also for Lake Ontario, for which only the first-order finite element solution is available for
comparison. These comparisons confirm the accuracy and efficiency of the finite element
method in this field of application.

1. INTRODUCTION

The finite element method has drawn increasing attention as a numerical analysis tool for
problems in fluid dynamics. The rcasons for this growth of interest include the following:
(1) irregular boundaries can be trcated accurately without computational difficulties or
changes in formulation of the method or computer program, (2) wide use can be made of
universally-available general-purpose programs[1] which are virtually unlimited in the size
of problem they can handle, and (3) inhomogeneous or variable properties-of the problem
can be easily taken into account.

Because of these advantages the finite element method is especially attractive as a method
of analysis of lake circulation problems. Natural lakes of course feature irregular boun-
daries and the phenomcnon being described is so complex in form that any numerical
analysis procedure will necessarily entail hundreds, or perhaps thousands, of unknowns.
Proper description of thermal stratification introduces the need to deal with spatially-
varying physical properties. i

The authors have presented, in ref. 2, a finite element formulation and numerical results
for the wind-driven circulation of variable-depth, shallow, homogeneous lakes. The govern-
ing differential equation of this problem was taken to be that derived by Liggett and
Hadjitheodourou (ref. 3). The independent variable in this equation is a specially defined
stream function which we will refer to as the *flow parameter”. Using the method of
weighted residuals (ref. 4), with the Galerkin criterion in the selection of the weighting
function, the integral form necessary for the construction of a finite element representation
was constructed. To this point the work described in ref. 2 is quite general as a basis for
finite element apalysis of the subject problem. The adopted representation of the element
flow parameter was then limited, for the purpose of generating numerical results, to a first
order (linear) function on a triangular domain.

* Professor of Civil Engineering.
t Research Assoc’ School of Civil and Environmental Engineering.
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I
i The present paper extends the work of ref. 2 to higher-order finite clement repr
ilions, where the term * higher-order™ refers to the level of sophistication in b
geometric description of the element and the assumed representation of the flow par.
Evidence from: the exfensive finite clement analysis experience in structural mechar
shown that higher-order representations are in general more efficient than the simplest
of clement formulation. There are, naturally, limits on the degree of sophistica
higher order formulations. A more significant motivation for the use of higher order el
arises in the lake circulation problem. Since no experimental evidence exists for
driven circulation of large lakes (we refer in this to uncertainty with respect to both tt
"input and the lake response) it is essential that some economically fcasible means -
checking be available in any numerical analysis technique. Such checks are made a\
in finite element analysis through comparison of alternative solutions obtained with d.
types of clements, .

Two distinct classes of higher-order clement representation are treated in this pap:
 first is a direct expansion of the degree of polynomial representation of the flow par
| within a triangular element domain. The simplest triangular element employs a linea
 the element considered here describes the flow parameter with use of a cubic polyr
: The second type of element is intrinsically rectangular and employs guadratic re;
i tation of the flow parameter. This same field is also employed to describe the bounc
. the element in a special curvilinear coordinate system. This is a particular case of t
_parametric element approach to the formulation of elements with curved bour

wherein the same (**iso”’) parameters are used to describe both the behavior of the e
" and its geometry. .

The paper is organized as follows. First, a brief description is given of the formula
the subject lake circulation problem as a finite element analysis problem. A more ¢
development of this work as well as a review of efforts on finite element lake circ:
analysis by other investigators, can be found in ref. 2. Then, the formulation of the tw
of higher order elements is detailed and attention is given to certain questions the,
regarding boundary conditions. Finally, numerical results are presented for recta
basin problem, defined first by Liggett and Hadjitheodourou[3] and Lake Ontari
importance of the rectangular basin analysis is that comparison results are available |
only the first- and higher-order finite element representations, but also from a pr
finite difference solution. The significance of the Lake Ontario analysis is that verifi
of the integrity of the numerical finite element solution can derive only from th
contained comparison of finite element representations of different degrees of refin

'

2. BASIC THEORY OF FINITE ELEMENT REPRESENTATION
OF SUBJECT PROBLEM

Detailed development of the governing differential equations of the subject probl
formulated by Liggett and Hadjitheodourou(3), and of the integral form associated v
finite element representation, is beyond the scope of this paper. Rather, we define th
physical problem and the final form of the governing equations.=~ -

A cross-section of the type of lake under study is pictured in Fig. 1. We fix the or
coordinates at the surface of the lake with z measured upwards. In accordance w
assumption of shallowness (i.e. hydrostatic pressure distribution), D < L. The eddy vi“
(n) and Coriolis parameter (f) are assumed constant in the form “on of the diffe

l relationships. The distribution of pressure is assumed to be hydi. _.atic and surfac
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Fig. 1. Representative lake cross section

stresses (1,., 7,,) are prescribed. In order to linearize the problem the Rosst:: number
(ratio of inertial forces to rotational forces) is taken to be small. The values of the lake depths
(h(x, y)) are assumed to be the actual depths under the assumed wind stress or, alternately,
that the equilibrium depths are a sufficient approximation to the actual depth under the
assumed wind stress. The x, y-plane coincides with the water surfacc and w =0 at z = 0.
With these assumptions, appropriate forms of the momentum equations are constructed,

the continuity equation is invoked, and after integration in the z-direction and introduction
of a stream function () there is obtained

e? 6 0

——f + —‘é U’ + B —!'b +C=0

ox? ox dy
with the boundary condition that w is constant on the shoreline. The stream finction is
related to the average velocities (i1, D) by

l/' - 10y

y' U7 Thax @)

)

=

B*I'—-
3

The coefficients 4, B, and C in the equation arc functions of the planform location in x and
y coordinates (more specifically, functions of the Jake bottom topography) as defined in
ref. 3, and C depends on the wind shear stresses as well.

The finite element representation of (1) is obtained by the method of weighted residuals.
This concept assumes that an approximate representation of the independent variable,
designated by ¥, which does not satisfy the governing differential equation, will be chosen.
In the preseat case this approximating trial function is of the form

¢=i§1Ni¢i=

where ¢, is a particular value of the independent variable and generally refers to such a
value at the point i, i =1, ... n, and the coefficients N,, which are functions of the x and y
coordinates, are-termed shape functions. ’

esignating the governing dlﬁ'erenhal equation (1) as L({) =
approximate nature of i/ we have

N 3)

0, we note that due to the

L) =R#0

where R is a residual value. Since the governing differential equation cannot be satisfied
pointwise throughout the domain (V') of the problem we can seek its satisfaction in the sense
of a weighted average over the domain, i.e.

fVL(;E)¢ dv =0 (5)
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where ¢ is the weighting function, which may be specified in one o1 any numbér of i
Here, we choosc the Galerkin form in which the cocflicients (N,)-of the trial functic
{cmploycd. Each distinct trial function leads to a scparate algebraic cquation, as fol
"First, we substitute (3) into L({), as given by equation (1) and designate the integr
idefined by equation (5), where now ¢ = N,. We obtain, for all N,, i=1,..
element

.n,in

@ N, &N o N o N ‘
N 4+ ———d 4424 B2 )=
f { }[( Gt AT B ){df}fC]dxd) )

where {N} = NTis a 1 x n column vector containing the shape functions N,.

Next, one applies integration by parts in the.plane, reducing the order of the derivi
appearing in the integral and introducing the boundary terms into the resu]lmg inte
This leads to the following system of algebraic equations

(U} = () + §
where

N

_{N}a_N, AN, powy

dy Oy
vr=-] J'A{N}c dx dy

+ ANy

- Jf (-2 8N 0 P

and §* symbolizes a boundary integral.
Due to the terms A{N} (6_N/dx) and B{N} (¢_N_/cy) thesc algcbraic equation:
nonsymmetric. Also, as noted plewous]y, the coefficients 4 -and B are functions of x a
The equations of the complete lake are constructed from the equations of the elemen
imposing the condition of stream function continuity at each element joint, which is syr
mous with simple addition of all coefficients (k;;° and r;%) with like subscripts. Thus, th.
set of equations is of the form

[KKy} = {R}
K=Yk
Ri=Yrf+) §¢

and the summations range over all elements with terms with the subscripts i and j.
fter solution of equation (10) for {¥}, other variables, such as averaged velocities,
sure gradients, and velocities at different depth levels can be subsequently evaluate
back substitutions into equations presented in ref. 3.
We next examine, in the following two sections, the choice of shape functions N; (equ:
3) for two classes of higher order elements and the use of these functions in the develop:
of element equations from equations 8 and 9.

where

3. HIGHER ORDER TRIANGLE

The triangle holds a special place in finite element ana]'ys}isl‘due to its association
“complete* polynomials of lower order. This point is illustrated by the array of the.c’

cients of the polynomial series in the form of a Pascal triangle (Fig. 2). A complete ]
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Fig. 2. Pascal triangle and relationship to higher-order elements

fu-nction is identified with the simplest triangle (the location of the cocfficients in the Pascal
triangle identifies joints in the clement), a quadratic function corresponds to a triangle with |

Joints at both the vertices and the midpoints of the sides. In this way we can perceive a

“family” of triangles with no upper limit on the degree of polynomial employed. The |

functions of degree higher than one are collectively termed * higher-order” functions and
. when an element formulation is based on such functions it is called a
element.

The advantage of a higher order element derives from two principal considerations. It is
possible to write the higher-order function directly in “*shape function” form. The Pascal
triangle identifies a polynomial series representation of ¥, where the coefficients of the series
do not have the physical significance of shape functions. For more general shapes of element
the tra'nsformation of the polynomial coefficients into shape function form may be an
expensive operation. Secondly, explicit formulas are available for the integrals of the shape
functions over the triangle domain. Both of these considerations, which are detailed in
ref. 6, stem from the existence of triangular coordinates, defined as

, _ (Area);

(L) = Gares a3
where (Area) is the total area of the triangle, (Area); is the area of the triangular subregion
i(i=1,2,3) (see Fig. 3a) and is a linear function of the x, y coordinates of point p. It

“higher-order™

Y Y
|

a Area coordinates b. Higher order representotion

Fig. 3. Triangular elements
!'o]]pws t'hat one can construct a linear representation of a quantity such as B, the coefficient
in equation (1), as follows
B=L B, +L,B, +L,B, (1

where B;, i =1, 2, 3 are the values of B at the element veriices.
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As Fig. 2 discloses, the basic higher-order triangle nossesses 6 joints and the shape,
tion corresponds to a complete quadratic polynomial. Chan and Larock[7) have utihiz
element of this form in the analysis of potential flow problems The results obtaim
application of the clement disclosed significant improvements over those obtained
lincar-field elements.

We go one step further in the present approach and adopt a shupe function based u,
compleie cubic polynomial. Rather than defining clement joints at the ten location

: scribed in Fig. 2, however, we deal with only the three vertices and:'fh’;point at the centr.
. the element (see Fig. 3.b). To accommodate the ten terms of a coriiplete cubic we tre,

derivatives of ¥ at the vertices (3y/@x, dy/dy, at points 1, 2 and 3)-as solution puaram

! Thus, at a typical vertex i we have as parameters ¥, ¥,, = (0/dx)|,, ¥,, = (0Y[dy)];

only solution parameter at point 4 is i, .

By introducing the derivatives of i as solution parameters and thereby eliminating_
along the side of the element we reduce the bandwidth of the algebraic equations
solved (cquation 10). Furthermore, from equation (2), the solution parameters are di
proportional to quantities of interest, & and 3, and so the latter are in effect directly p:
out after computation of the solution.

The present triangle (Fig. 3b) has been used extensively in finite element analysis
number of authors, including flow analysis problems[8). The shape function descripti
¥, given by Felippa[9] is

=N+ Notby + Ny, + Ny + - No,, + Nyo ¥y

where
Ny =L(L, + 3L, + 3Ly) = 7y
Ny =L*(%,2L; = x3;L3) + (x3; — X12)y
Ny =L(y31Ls = y12L2) + (12 — y31)y
Ny=L*(L,+3Ly +3L)~ 1Ty
Ns =Ly (x23L3 — X33 L) + (%52 — X23)

N = L’ (12 Ly = y23L3) + (023 — 3,

N, =L*Ly+3L, +3L,) ~ 7y

Ng = Ly*(x3; Ly — x33Lp) + (%23 — X

N =L3*(r23L; — y3: L) + (r3y — 12
Nyo =27y
Xij=Xi—X; . Viy=Vi—); y=L,L,L,4

In the evaluation of the element coefficients, through integration of equations (8) an

. the terms A, B, and C are assumed to have linear variation over the region of the eleme
i given by equations of the form of (14). This is convenient since B, B,, etc., the valt

these quantities at the “joints”, are the conventional input parameters in an analysis
One inconvenient aspect of the element formulation resulting from the use of equ

! (16) is the presence of point 4 in the interior of the element. This solution parameter doe

join to any other so it can be eliminated from the element equation before assembly ¢
latter into the system representation (equation 10). Thus, the element equations a
order 9 x 9 immediately before assembly.

As mentioned in Section 2, consideration of boundary conditions requires that the st
function is a constant, which for convenience is chosen to be zero, all along the boun
In the present representation the stream function varies cubically between two ad;
joints and requires specification of four parameters for unique defin**'~n along such an
Thus, in addition to the two stream function values at the joints th iues of the tang:
derivative of the stream function at both end joints should also be zero. As in finite elt
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The validity of these expressions is confirmed in two ways. First, the N.’s must take,
values such that = {; when ¢ is eviluated for the coordinates of point j (re., N, =1,
i=j,N;=0fori # f). Secondly, when evaluating ¢ 2long an edge it sheuld be found tot
function of only the values of Jr; along that same edge. This meuans that ( will be continu.
across clement boundaries and in forming a geometric idcalization with curved bounda,
the geometry will be continuous if the same shape functions are adopted, i.e.

analysis by using triangular clements, the boundary is usually approximated by broken lines
and hence the tangential direction of a joint is rather ambiguously defined. Hence, some
further .1ppr(mmdtlon is nceded to choose its direction. For instance, one may consider the
average direction of the two lines meeting at the same joint as its tangential dircction, or
alternatively, take cither one indicated by the two lines as the required direction (but con-
sistently for all the joints). The latter is adopted in the present study for the sake of simplicity. ’
That is, the line connecting a joint and its adjacent joint in front, taken in counterclockwise x=N;x; ++"Nx;+ - Nygxg
order, is considered to be the tangential direction at that joint. Once the tan;;entxal direction’
at each boundary joint has been established, a matrix transformation is necessary in order to,
introduce the tangential and normal derivatives of the stream function, in place of the x- and! Now, it is reciiled from equation (8) that evaluation of the element coefficients inve!
y-derivatives, as solution parameters. This transformation can be performed either at the, the derivatives of the shape functions with respect to x and y and integration over the ¢
element level or at the system matrix level. After that, the stream function value and its' of the element. The above shape functions are defined in terms of £ and i, however, so
tangential: derivative: at each of the boundary joint are set equal to zero and finally the {he transformation to x and y must be established. From the chain rule of dlm.r(.ntiat

y=Ny;+:-Niy,+-Ngyg {

system of equations:is.solved. ! for a typical shape function N,
D. 1SOPARAMETRIC ELEMENT { é}_V_, ox ay ?ﬁl ?_A_,_‘
The four:sided isoparametric element is shown in Fig. 4. The simplest order of shape func- | o o¢ OC ox x
tiom which: will describe curved boundaries, a quadratic, is chosen here. A cumhnear»\ oN, = ox oy |l ow, = [/} oN,
. ! = = =— || =~ -
v o g | o on on 1\ & o
e 3 l where [J], the Jacobian matrix, Is evaluated by differentiation of (19). Also
= |J|df dn
where |J| symbolizes the determinant of {J]. (

Equations (20) and (21) give the necessary basis for evaluation of (8). The resulting mtej
is too complicated for explicit evaluation so that numerical integration must be emplo .
Gaussian integration was applied in the present case, with 3 Gaussian pcintsineach direct.
The coefiicients 4, B and C were evaluated at the origin of -7 coordinates and were assu: *
to be constant throughout the element. It should be noted that in the presence of det:”
X data for a given physical problem it would be feasible to evaluate these quantities at eat™
the numerical integration points, and thercby obtain a betier approximation to the equs'
coefficients. However, computation time is expected to increase considerably as the exy
coordinate system (&, n) is defined within the element in such a way that the corners of the | sions for these coefficients are rather involved. :
element have coordinates 4+1 or —1 as indicated in the figure. Rectangular coordinates
(x, »), in terms of which the'location of wode points are initially defined, are also estublished.

The streans function for the velocity is described by the following

Fig. 4. Quadratic isoparametric element

E. NUMERICAL RESULTS

To study the feasibility of the present approach, two problems, presented in ref. 2 -
again analyzed by using the higher-order elements described herein. For both probt
Y =Ny +- N+ - Netg (17) |fewer isoparametric elements, and henceforth a reduction in the number of solution p -
meters, have been used to demonstrate the merits of high-order element over the sk.
linear stream function representation. The same idea 'could have been applied to the ¢
field representation but it was decided to use the same clement gridworks adopted i

We note that in this case only the valucs of ¥ at the joints, and not-the derivatives of . are
chosen' as-unknowns. The shape functions N, are given in ref. (10) by

=31 + EEYH + ) — Q0 =N +an) = (1 + £E)A — )} linear field so as to gain some idea about how solution cvcntually converges with thr
for i=1,3,57 crease in number of solution parameters.

The first problem, shown in Fig. 5, is an idealized rectangular basin oriented.in a ne;

=31 -¢H(1 +nn) for i=2,6 (18) Louth direction with a length four times its width. Wind was assumed to blow from Solg

- . . 4o FNorth. Values employed in the actual computations are shown in Fig. 5. £
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As mentioned ur ref. 3, 2 2ero depth represeats a computational singularity. Hence, only

the fiow region bounded by z contour of 5 per cent maximum depth, as used in ref. 2, is
considered and the effects from fow exterior to the boundary are assumed to be negligibly
small. This choice of the flow region, rather than wsing the actval shoreline boundary with a
non-zero depth assigned 2long it, is prefested because the bottom topography of the lake is
retained. It i1s to be nated that sithough the lake is geometrically symmetric about x- and
j-axes, this property of symmetry does not apply to the circulation behavior being calcu-
lated. Therefore the entire lake must be considered. Fig. 6 shows the finite element gridworks
for a quadraat of the lake. For the entire lake, 350 triangular elements (either linear or
cubic) witk 202 joints, or 40 isoparametric dements {quadratic) with 149 joinis, have been
used in the numerical computation.

Figures 7 and 8 show results for the stream function ¥ and the magnitude of surface
velacity at selected sections, as predicted by various finite element representations. Also
shown are the fintte difference results from ref. 3, where 170} equally-spaced pivotal points
were used. For the finite element representations, 209 solution parameters were used for the
Iinear field, 149 for the quadratic field, and 627 for the cubic field approximation. The
finite element and finite difference resuits are seen to be in close agreement. Also, it is noted
that results obtained by using isoparametric elements compare well with others, in spite of
the fact that only ann amount of 72 per cent in solution parameters, compared to the linear
field representation, has been used. This fact seems to confirm that higher-order element
representation is more desirable, regarding accuracy and efficiency, over the simple linear
field representation. Of course, our results could have been improved further if the coeffi-
ciems A, B, and C in the governing equation had been evaluated at all Gaussian points
instead of only one point for ezch element as presently carried out. The results from cubic

eld representation, as expected, are far more accurate and coincide almost exactly with the
finite difference results based on a2 much finer gridwork.

The seco roblem considered s the prediction of circulation of Lake Ontario gue to a
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rind shear prevailing in the NE direction with 7° to the East (the Jocal average direction at
.ochester in February). The same numerical values of f, #, 1, g as used in the previous
xample were used in the present case. The characteristic length (L), which can be chosen
rbitrarily, was set to be 2 x 107 cm, while the characteristic depth (D) was chosen to
-present the maximum nodal depth after the lake had been discretized with finite elements.
he value of D may vary slightly with the gridwork. For instance, it is 22500 cm for the
iangular element gridwork and 21650 cm for the isoparametric representation. Figures 9
nd 10 show the gridworks employed in the present analysis: 561 triangular elements with
23 joints, or 70 isoparametric elements with 257 joints. The geometry and bottom topo-
-aphy of the lake described in ref. 5 was used herein to define the finite element representa-
ons. Again, to avoid computational singularity, the flow region studied is the one bounded
¢ the contour line having depth of water of 12 m, not the actual shoreline.

Figures 11 and 12 show the stream function values and the magnitude of surface velocity

No. of Elements =561

Scale (km) No. of Nodes =323

| IS M|
O 8 16

NS

: L.

Fig. 9. Finite element representation of Lake Ontario by triangular elements
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Fig. 10. Finite clement representation of Lake Ontario by isoparamelric elements
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Fig. 11. Comparison of stream function solution for Lake Ontario at section A-A

at a representative section of the lake. These resu!ts are seen %o be in goodrag;eicor:c:
general. Near the south shoreline, however, some dlscrcpanctes in the strea}x]n ur? ,—e;
between the isoparametric element prediction and th.ose oblamc(-l by the othertworep n;
ations. The results obtained by the former are believed to be inaccurate bec;uyscr:n'fxom
coarse gridwork had been used, and as a consequence, th:.bouom,lo.pog;ap )n by 1;::‘:P
have been properly 1epresented in that regifm. Thls inaccuracy, ]'\)ovw:\'.cr,F.oesl2 gy
affect seriously the surface velocity prcdichon. in llhat region, as "seet: |tnh ;%,‘rfac.e e
suggests that surface velocity distribution, which is mainly aﬁ‘ectedh y the urface ane
rounding conditions, is less influenced by the bottom"topography:t an b]e 3 pri
No comparison results by other mcthods are avaiiable for this prodlem.
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Fig. 12. Comparison of total velocity solutions on Lake Ontario surface at section A-A4

. correct Coriolis paraméter was used, no serious attempt was made to choose a physically

accurate eddy viscosity or to account for ice formation or variation of wind stress. Tt is
unlikely that field measurements of the form necessary for comparison purposes will be
available in the foreseeable future. Large-scale modeling is a promising alternative source of
comparison data but no such data yet exists for this lake and when they are obtained it is to
be expected that limitations on representation of the pertinent dimensionless ratios (ref. 11)

will require somewhat different conditions on the comparison analysis than those employed
herein.

F. CONCLUDING REMARKS

The results presented in this paper demonstrate that higher-order and isoparametric
elements represent important components of the most effective utilization of the finite
element method in lake circulation analysis. The improved accuracy of the triangle with

cubic stream-function field is gained without significant increase in formulative cost over !

that involved in the simplest triangle. Additionally, the use of derivatives of the stream |

function as solution paramelers is a convenience in the treatment of boundary conditions
involving prescribed inflow or outflow rate. It is questionable, however, that still higher-
order representations (e.g., based on quintic functions) would be more efficient because for
these the element formulative cost is no longer insignificant. Also, the large number and
type of solution parameters per element may prove awkward. In any case, realistic assess-
ments of *“ optimal” degree of higher-order representation are nceded.

Isoparametric element representation would appear to be of special importance in the
finite element analysis of natural lakes, which possess irregular shorelines. The represent-

ation of such lakes can be accomplished wit'. large numbers of straight-sided elements but

in that case many -'ements and solution parameters are employed solely for geometr’
representation. Th

sparametric concept cnables each element to serve the functions o. |
both geometric and behavior representation. This factor will be of overriding importance as i
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atation is cuiended to thice dinwanions and more cmnpl_cx phen
thernal-fluid interaction. It should be noted {'!.\:!_' although the fofxr-\ld-:.d cle
©E ari isoparametric representation, it is ulso possible 1o cast the triangle nn’lh,
pop'u!‘lar ltr;p' q;:cstion of “optimal ™ degrec of shape function is once agfiin imj
giéﬁ:ﬁcu;] tends towards the desirability of second- or third-degice functions.
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Abstract

‘T’“hc method of weighted residuals unifies many ap-
i proumatc methods of solution of difterential egua-
« tions thai are being used currently. This review

presents the basic method in its historical centext and
shows some of the many possible modifications that
have been used throughout the past fifty years. The re-
lationship between the Galerkin method, which is ene
version of the method of weighted residuals, and varia-
tional methods is outlined. Also included is an exten-
sive listing of published applications of the method of
weighted residuals.

Introduction

The method of weighted residuals :s an engineer's
tool for (mep, ‘approximate ;ohmun_x, to the equations
uf Change of distributéd Tsystems. Eéperience and in-
can be distilled Tinto Ta reasunable

t:mes quite accurate first guess, from which it 1s possi-

Uation and some-

vle to procced to successively improved approxima-
tins. The analyucal form of the approximate solution
s often more uselul than solutions generaced vy numer-
cal antegratton, and the approximate solution usually
less computation time to gencrate.  The

nerhod s ap_ghcable to nonlinear and non- sc’f ad]om

tequires

'~mM( ms—one of its most attractive features,

The method of \\.cu,hrcd residuals (Ni‘)’l() includes
many approximation mecthods that are being used cur-
rentdly, It provxdcs a vantage point from which it is
casy to see the unity of these methods us well as the
telationships between them. This review, after ontlin-
ing applization of the basic mechod to initial-value,
boundary-value, and eigenvalue problens, surveys the
tstory of major contributions to the subject and dis-
cusses some of the many modifications of the basic
method.  The review concludes with a listing of appli-
cations of weighted residual methods to problems aris-
ing in applied mechanics and related fields. Four prace
tical aspects of MWR in need of further research are
wdentified.

*Present address: Office of Naval Rescarch, Washingron,
D. C.
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The best available treatments of MWR have been
those by Crandall [1], who coined the name mechod of
weighted residuals, Ames {2}, and Collatz [3], who
calls these methods error-distribution principles. The
following outline paralleis their treatments, in places
contrasting them and elaborating on them.

Given a system of differential or integro-differential
equations of change and constitutive relations. bound-
ary conditions representing the Jnteractions between
the system uand its surroundings, and iaitial conditions
representing some base state of, interest, the general
approach is to assume a trial solution whose functional
dependence on position is chosen, but whicl includes
undetermined functions of time. The latter are found by
requiring that the trial solution sat;sfy the differential
equation in some specified approximate sence,

Initial Value Problem
Consider the differentianl equation for (u(x, ):
(1)

N(u)-—ﬂz() XinV,:>0
ot

denotes a gereral differential cperator in-
three-dimen-

where N(-)
volving sopatial derivatives of u, V is a

sional domain with boundary §, and ¢ represents time.
Suppose the nitial and boundary conditions are
| .
(X, 0) = uo(X), X V (2
u(x, 1) =/s(x, 1), Xon ¥
Assume a trial solucion of the form
N
Tt
u*(x, t)y =ug(n, )+ > Gl (x, 1) (3)
Lancd
1=l

where the appreximating funcrions, uj, M€ prescribed

and satisfy the boundaiy conditioas

“s"‘fsv U= O, XOﬂS (4)

Then u* satisfies the beundary coaditions fog aii fuac-

tions ¢;{#). It is not necessary that 1he wial solation
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be Lincar an the ., but such a chioice s usuvally made
tor sunplicity; nu Lystematic stady of alternatives has
been reported, so fur as the authurs know. The differ-
ential cquation residual and inftal residual,
dut

R@u*) =N(u*) -~ — (5)

dJt

N

Uil
Ro(u®) = ug(X) = ug(X, 0)—2_‘ c;(0)u,(x, 0) (G)

measures of the extent to which the function u*
satisfies the differential equation and initial condi-
tions. respectively,

afre

As the number N of approximating
functions u, is increased in successive approximations,
vne hopes the residuals will become smaller; the exact
solut.on 15 obtained when both residuals are identically
LCTO,

integrals of the residuals are set equal to zero:

<wl; R(u‘)>=0
j=1,2,...
Cwri Rolu®)y =0

<w, u> = J‘wudV
v

represencs a spatial average or inner product and w is
a prescribed weighting function.  If u* is the exact
solution, Equations (7) are satisfied regardless of the
chotce of weighting functions.

The weighting functions can be chosen in several
different ways, and each choice corresponds to a dif-
ferent criterson in MWR,  Once the choice is made,
Fquations (7) become a set of N first-order ordinary
differencial equations in the N unknowns ¢;(1). For
lincar problem

7)

where

(8)

the

che
= = L{u)
ot

(9

with approximating functions u; and ug that do not
themselves depend on time, Equations (7) become simply

15'1 de, '

N
2—‘ _{7[__ <lU,’; " ’-> = Z [} <w,-; L(ll,)) +

-] 1=

<u),'; L(us)> (10)
or, in matrix notation
S df = -
A —=Bc+b (11)
dt
The sclution to these equations is substituted into

llquatten (3) to give the approximate solution to the
problem.  Successive approximattons are obtained by
increasing N oand solving Equaton (10) anew. The
convergence of approximations gives a
clue, but not necessanily a definitive one, to the rea-
sonableness of the approximation.

successive

Boundary Value and Eigenvalue Problems

The method is equally applicable to steady-state and
eigenvalue problems. For steady-state problems, the

As an approximation to this ideal, the weighted

c, are constants rather than functions of time; for linear
problems they arc determined as solutions to

Bc=-b. (12)

For nonlinear boundary-value problems it may be useful
to assume trial solutions of a more general form than
Equation (3), viz.:

us(x) = (il u, (x)) (13)
For the linear eigenvalue problem
L)~ =0 (14)

the approximate solution is determined by

N

)

1=

c; <w,-; I..(u,~>-—A<w,‘;”i> =
N

Z cilA,i=ABj)=0 (15)

[T

and this set of equations has a non-trivial solution only
i

det(A,; - ABjj) = 0. (16)

The values of A for which this is true are the approxi-
mations to the first N eigenvalues A,.

Weighting Functions

The choice of the weighting functions, w; in (7),
corresponds to various criteria in MWR: the historical
relationship of the criteria is portrayed in Table I.

In_the collocation method, due to Frazer, Jones, and
Skan {4], the weighting functions are the Dirac delta
funceions

w,-=5(x,-- X); (17)

TABLE |
HISTORY OF APPROXIMATE METHODS
Date Investigator Method
+71915 Galerkin [wa Galerkin method
. 1921 Pohlhausen (18] Integral method
1923 Biezeno and Koch {5} Subdomain method
1928 Picone {9] Method of least squares
1932 Kravchuk [17[] Method of moments
1933 Kantorovich {30 Method of reduction to ordi-
nary differential equations
1937 Frazer, Jones, and
_ Skan { 4 Collocation method
1938 Poritsky [31] Method of reduction to ordi-
- nary differential equations.
1940 Repman [55) Convergence of Galerkin’s
method
© 1941 Bickley [12] Collocation, Galerkin, least
squares for initial-value
problems
- 1942 - Keldysh [57] Convergence of Galerkin's
method, steady-state
1947 Yamada [16] Method of moments
1949 Faedo([59]] Convergence of Galerkin's
1953 Green (60 method, unsteady+state
71956 Crandall {1] Unification as method of

weighted residuals
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the differential equution s then satisfied exactly at the
V collocation points, v As N is increased, the resid-
ual at more and more points and’ presunmbly
:qxpronchcs zero throughout V.

il the weighting functions are

van:shes

1 xinV
{18)
0 xnotinV;

then the differential equation is satisfied on the aver-
JBe in each of the N subdomains, V;; this i's. the sub-
.dnm.un_ mcthod [5 6] If the V are dn sjoint {which they
nced not be), the size of one or more subdomains de-
creases as N is increased, with the result that the dif-
ferential equation is satisfied on the average in smaller
and smaller regions, and presumably the residual ap-
proaches zero everywhere. It was Biezeno's presenta-
tion |7] of the subdomain method at the First Interna-
uonal Congress of Applied Mechanics which prompted
Couranc’s remark [8] that led Crandall to choose the
name, ‘'method of weighted residuals.”” The authors’
translation of Courant’s remark reads:

“'Mr. Courant (Goteingen) indicated afterward that
the method advanced by Mr. Biezeno can be viewed
from the standpoirnt of the calculus of variations in
the following manner. If a diffcrential cquation, as
1t arises for example in a variational problem, must
be satisfied, then we can express it so that the left
side of the differential equation, multiplied with an
arbitrary function and then integrated, must give us
the value zero (vanishing of the first variation). In-
stead of taking an arbitrary funcrion, we can also
take infinitely many dctermined functions, if these
only form a so-called complete function system for
the regron in question, The piecewise constant func-
tions advanced by Mc. Biczeno are indeed just an
especially simple special casc of such a complete
function system.’’

The least-squares method, which seems to have been
first presented for this type of application by Picone in
1928 (9], Juses the weighting functions JR(u‘)/c)c- The
COl'bePOndlﬂg interpretation is that the mean square

residual
E‘/‘[R(!l‘)]z dv
1/

Jsminimized with respect to the constants c,.

In the Ga]erkm method {10], develaped in 1915 as the
first criterion of what is now known as the method of
weighted residuals,* che weighting functions 1w; are
just_the approximating functions of w,. "The approximat-
ing “Tunctions are often members of a complere system
of “functions, althouz.,n this property, required for mathe-
’rﬁutical purposc is somctimc: '

(19)

ignored in ptaczice.

the usndu 1l

orthogonal to members of the complete set.

*See AMibtlin [11] for a discussion of the contribution by
Bubaov 1 1913, while his method is the sume as the Galerkin
method (“iknhin and others in recent Russian literature call
it the Bubnov-Galerkin method), it was Galerkin who devel-
oped the muthod independently of uny variational principle.

.

A fundameatal property (somctimcs the definition) of a
complete_system of functions_is _that a piccewise cons
tmuous function can be ortnogon\l to cach and every
member only if the function is identically zero. I the
approximation scheme outlined above, the residual is
usually continuous (depending upon differential
operator and the choice of approxumating functions}),
and hence the residual can vanish enly if it is ortho-
gonal to each member of a compicte system of funce
tions, Of course ia practice the residual is made ornto-
gonal to no more than a modest, finite number of the
members of a complete set. In the ariginal Galestin
method, developed in the study of elastic equilibrium
and stability of rods and plates, Gaierkin used trial
solutions with unknown constant coefficients. Now
many similar techniques ate often referred to as the
Galerkin or generalized Galerkin method: (i) the one
given above in which ¢; = ¢, (¢) for time-dependent prob-
lems [12, 1}; (ii) one in which trial solutions are of the
more general form u* = f(X, lc, }) with weighting func-
tions ()//ac, {i3]; and (iii) one in which weighting func-
tions are of the form K(u;), rather than u;, where K is a
specified differential operator {14, 15].

The method of momenis is sx»mxlnr to the Galerkin
method except that the reszdual _is_made orthogonal to
members _of a system of functions_which .need _not_be
the same as the approximating functmns Both methods
are combined uader the single name of orthogonaliza-
tion methods by Collatz {3], Yamada [16) and Krav-
chuk {i7] apphed the method of moments to ordm.uy
differential equations by using the weighting functions
{x"} regardless of the choice of approximating func-
tions. For the first approximation, the weighting func-
tion isunity, and the method of moments in this case
is cquivalent to the subdomain method and is usually
called the integral method, or ven Kdrmdn-Pohlhausen
method [18, 19]. For the integral method, reviewed 1n
detail by Goodman [20], the differential ‘equation is
satisfied on the average over the domain of interest.

the

Boundary Methods

In the foregoing it is presumed that the trial solution
satisfies the boundary conditions but not the differen-
tial equation. The converse situation can also be
treated: the differential equation is satisfied but the
boundary conditions are not. Trial solutions of this
sort lead to boundary methods, as they are called by
Collatz [3); the procedures are analogous to those
above, but with the spatial average, Equation (8), re-
placed by an average over the boundary.

Mixed Methods

The intermediate situatior can also be handled: in
so-called mixed methods the trial solution satisfies
neither the differential equations nor buundary condi-
tions. In Schuleshko's zreatment of mixed methods {217,
the differential-equation residual is made orthogonsl to
one set of weighting functicns, using (B) as the iuner
product, while the boundary residual is simultaneously
made octhogona! to another set of weighting functions,
using an appropriate surface integral as the inner prod-
uct. If N weighting functions ere used, this leads 1o
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A

2N conditions, yet in general only N conditions can be
Tatintied by the N mdependent . For dhis procedure
to work, some of the condinions must be discarded, as

was noticed by Snyder, Spriggs and Steware [22] in thcnr‘
discussion of the Galerkin method.

On the other hand, Bolotin 23], Mikhlin_ {111, and |
Finlayson [2:4) have pointed our that for the Galerkm
method the dilemma can be resolved by adding the dif-
fercnuial-cquation residuals to the boundary residuals.
The combinaten is made 1 such a way that the differ-
gnunlwqu.mon residual, when integrated by parts, can-
cels adenticul terms of the boundary restdual., The sit-
aation 14 analogous to the trearment of nactural boundary
conditions in the calculus of variations, and indeed
only boundary conditions analogous to natural boundary
coaditions can be handled in this way. Such a combina-
tion of equation and boundary residuals represents a
guneralization beyond the treatment given by Cran-
dall [1] (page 235), who states that MWR cannot be ap-
plied unless the trial solution Satisfies all boundary
conditions. However, Crandall | 1] (page 321) does com-
Line the residuals for eipenvalue problems in which an
cigenvalue appears in both the differential equation and
beundary conditions.  ‘The combinution of residuals for
more general problems is important 1n establishing the
cquivalence between the Gulerkin method and several
so-called variational methods |25, 24} (see below).

B. Refinements on the Basic Method

Other modifications are possible: Duncan [26] makes
the approximating functions satisfy derived (or second-
ary) boundary conditions which are determined by re-
quiring that che ditferential eyuation be satisfied on
the boundary.  Derived boundary conditions are also
used n boundary-layer theory in the von Kdrmdn-Pohl-
hausen method; other compacibility conditions—such
as continuity of the velocity and certain of its deriva-
tives at the edge of the boundary layer—are employed
as well. Recently it has been shown [27, 28] that ad-
ditional compatibility condidons are required to assure
good results when the integral method is applied to
magnetohydrodynamic  boundary-layer problems. In
these cases the additional conditions are found by dif-
ferentiaung the itferential cquation in the direction
normal to the sutface; all trial solutions must then
satisfy this equation at boch the solid surface and the
edge of the boundary layer. A variation of the colloca-
tion method 1s given by Collatz [3], who differentiates
an ordinary differential equation and applies the collo-

cation mecthod to the residual of the resulting equation,
Al

100,

' Kantorovich and Krylov [29] outline a method for
two-dimensional problems in which the residual is re-
quired to be zero along a line in the domain (such as
a2 =y). The method of reduction to ordinary differential
equations, as developed by Kantorovich [30] and inde-
pegdently by Poritsky [31], reduces a partial differen-
tial equation to a system of ordinary differential equa-
tions. This 1s the procedure described above for initial-
value problems but it cin be applied equally well to
boundary-value or eigenvalue problems. The spatial
averages (Equation (8)) are taken over all the inde-
pendent variables except one, and the approximate so-

lution is found by solving a set of ordinary different
equations Involving this remaining independine

Varg.
able. While this semi-direct method was origmally‘r,‘).
posed in the context of vartational principles, Kantoro.

vich [32] in 1942 showed its equivalence to the Galep.
kin method. Even earlier Bickley {12] had applied the
Galerkin method to unstcady-state problems in a maqne,
equivalent to the method of reduction to ordinary djf.
ferential equations. In_general, MWR can be used (,
reduce the number of 1ndcpendent vanablcs in any pa.
tial dxfferentnl equation, The rceultmg s}ét—cm of
equatxons is sxmpler (it may be ‘algebraic or ordmm
differential equanons or even a set of partial dlf!crcn.
tial equations), but its solution remains only_ an approx.
imate solution to the original problem.

In the collocation method a critical problem is the
choice of collocation points. For ordinary dlﬁ'ercnml
equations Wright (33] has shown that the res:dual is
minimized if the collocation points are given by the
roots of the Chebyshev polynomials.

Naturally the method of weighted residuals can be
combined with other methods. Collatz [3] presents a
combination of the iteration method and MWR. Yan,
34, 35, 36| uses the approximate solution generated by
the integral method as the first step in the following
procedure for time-dependent problems: che result of the
integral method is substituted into cthose terms involv.
ing time-derivatives and equation thereby obtained is
solved as a steady-state, nonhomogeneous, partial dif.
ferential equation. An advantageous coupling of M¥R
and numerical finite difference methods has been em.
ployed by Kaplan [37], Kaplan and Bewick [38], and
Kaplan, Marlowe, and Bewick [39] to reduce the com-
puter time necessary to solve certain nuclear reactor
problems; the number of independent variables was re-
duced from four to three or two by using MWR. Other
modifications and hybrid schemes are possible and will
undoubtedly be proposed as needs arise.

Choice of Approximating Functions

The choice of approximating functions can be crucial
in applying MWR. How to arrive at a good, if not the
best, selection is an outstanding problem. Certainly
any symmetry properties of the system should be ex-
ploited but there seems to be no way available at pres-
ent to do this systematically for all problems. In prob-
lems of conventional types it is usually convenient to
have the approximating functions sartisfy the boundary
conditions, and Kantorovich_and Krylov [29] show how
to construct complete sets of functnons which vnp_l_sj_l‘ﬂ
a boundary of complicated shape “Snyder and Stewart
[40] combine this scheme and symmetry arguments to
find approx:matmg functions for the velocity vector
field in fluid flowing through regularly packed beds of
spheres.

Derived boundary conditions can also be‘used to
place restrictions on the approximating functions ad-
mitted, and improvement sometimes results (26, 148).
Usually, however, several sets of approximating func-
tions are admissible and it is not possible to choose
one as the ‘'best.”” lHeywood and_ Molfatt [41] even_
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. 7 s to Juiferens but tea-
CoL arsroanmating functons,
Yomods Bove been devised for consuucting appros,-

aaniy funcuons especially for eizensalue problems in-

o aaph-order ocdinary differenual equations of the

ot that anise in the theory of convective instabilicy
gi0, 43, il The appreximating functions are just
cipenfuncuons of one or ancther lower-order, simpler

vet related cigcnvnh'e problem on the same domain,
"nl\nunn s are popular approximating funcrions; they
have even been used in cylindrical and ph..r'c'-x do-
[4s] where proper regard must be taken of possi-
tle singularities. Falk [40] uses Hermite polynomials,
which ure orthogonal on 2 semi-infinite domain. Other
anthors 139, 47 emphasize that numerical difficulties
dor Large N) can be avoided in the Galerkin method -if
the approximating funcrions are orthonormalized.

maIns

\chC[lnb ﬂP]‘IOle‘I(H]g l'unctxons I'C'nxillﬂ.z 70InLWh [

wemdent on the user’s intuition and e..:p(.ucncr_,_ and
vis 15 often reg ”~rded as a major dlsadv'mruf;e of MWR.
Uicarly, the question of methods for a:riving at optimal
Jhorces of approximating functions warrants thorough
Leads may exist in the local solutions
expansions used in pertuzbation meth-

vestigation,
ard regional

wls [47aT.

Comparison of Different Criteria

Cowparisons of different criteria as
wame probiem cxist only for relatively simple, linear,
witial-value problems [12, 25, 18} and boundarv-value
problems f4, 13, 1. In the literatuze on cigenvalue
rroblems the Galerkin method predominates, although
there are a few comparisons with the collocation and
lcast-squares methods |1, 1).  The results of these
comparisons may be summarized by Crandall’s re-
aark (1] {page 375): '"The variarion between results ob-
tuned by applying different criteria to the same tiial
tamily, .

applied to the

.15 much less significant than _the variations
that can result from the (hoice of different trial fami-
However, there may be a great difference in the
work necessary to obtain the approximate solurion when
different Crandall’s experience evi-
deatly 15 based entirely on linear problems. The only
cumpartson for nonlinear problems appears o be the un-
oublished thesis by Collings (9], as referenced by

fes,

using criteria,

Ames 2], Ames comces co the conclusion that the
Galerkin method is superior, but cautions that this

stind is based on limited experience and may not held
in general {2].

For linear, ordinary differential cquauons Frazer,
Jones and Skan (4] argue that the collocarion, least
squares, and Galerkin methods are equivalent in the
limit as N—— ~, Other similarities exist betveen the
methods {11 e.g. when the a appioximating functions are
Shosen to be rhe c'ucnfunctmns of the hinear op-m—(o:,
e L(u,) = X ou,y, then the Jeast-squares and Galerkin

‘method comcxd

For self—ad)omt (hence necessarily linear) eigea-
value problems, the eigenvalues are real, and Cran-
dall [1] emphasizes that the Galerkin method leals to

symmetric natrices in quuation (1%)——und hence real- f
! . . . . . . s . . .
the upper limit of integration is tnfiaire, the soiuvtion

valued approximations-—whereas rhe other mechods may
aive complex eigenvalues as approximations to the

The methed is

unsted fur lmc.xr e

ir tmr..

raal (‘i":“]\'illlC‘S. leastesunares.

n\.xlur ‘“‘nmhms be-

[)L hm_.lr prm,lem into A mmlmcz-

Tuusr-squares procedure for eigenvalue probiems
as outlined by Decker {50) differs somewhar from rhat
of Crandall [1}; Becker does not have such a difficulry
in the firsc approximation. Whereas Crandail uszs tiic
weighting fanction di/de, for the first approximation,

Becker uses dl/d, where A rs the
s:der the linear eigenvalue problem

L{u)y v Au =0

migenvajve, Cog-

(29)

with ¥ = ¢ on the bosundary, For the fivst approximation
Y

with a trial solution u® = cu,, the residual js
R(u)=c (L(u)+ Au} 21
The mean square error is then
T [ @)+ Au,?dv (223

v
Crandal! apparently would determ:ne A from

ol /de, = 0 = 2¢, ,rli.(u,) +hu fdv (23)

~u .

which is a quadratic in A and may lead o compiex
values of Bzcker, oa the other hand, would deter-

mine A fromn

'

/oA = 0 = 263 _} (L@ +duJudv  (24)

which is linear in A and gives real values as long as
the equation and u, are real. Becker's procedure ap-
pears to be simpler for the first approximation,

For higher approximations both procedures lead o
nonlinear equations for this linear probler. Crandall
would use as weignting functions dl/dc,, t =1, 2, ...,
N, and Becker would use di/d\, dl/dcj, 1 =2, 3, ...,
N. The latter is thus using the eigenvalue X as one of
the paramcters and is also exploiting the fact that the
mean square error can be minimized as a function of
{¢y = ¢;/c,}, rather chan {c;} since

A A S T o [ I S

<O A (25

ror Amnal value problems, the Jeasi-squares methad
must be .xpphr*d carefully and has certain disadvan-
tages. The method is applicable if the time depend-
ence of the approximate solution is specified—inr crher.
words, semi-direct. methods cannot be used in ihe
merthod of least squares. Consider the problem du/cr =
L{u) and assume a trial soiation of the form u¥ = wg +
E a,-u,v(x, !).
mean squace residual,

[ [ -L—}i-—L,(u)j’.ﬂ/ dt.

Of course the solution depends on the value of T. If

Then the functional !, represeating the
can be minimized:

(200

may no longer have this ambiguity. Thig was the ap-
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v oproach ken by Bckley [12] in his least-squares cal-
culitions for time-dependent probicms.

Oftentunes, however, the ume dependence of the so-
Iution 1s Jdifficule to guess and the trial solution must

involve  undetermined  functions  of time, uw* = ug +
l\:
- . .
L c,(t)u,(x). The mean square residual is
F=)

)

= f [‘—,“-_L(,,ﬂ (27)
71 J
v

Now, however, | depends on time and involves time
Consequently it cannot in general be made

a minimum for all time by any set of functions c,(¢);

derivatives

this was shewn by Citron [51) and Finlayson and
Sziiven (251, Consecuentlv, if a sewni~direct method 1s
..zt o sz.ve this wvye cf preblem the tert leas:
st.ires :s & misnomer Secause the mean scoare resié-
w.!'s not beung minimized.

The least-sguares method is discussed at length in a
monograph by Becker [50]. Listing criteria which he
mantains a good variational method must satisfy, he
concludes rhat the least-squares method is the best
general criterion of MWR.  Hecker's list includes the
following pointss (i) errors should be minimiced in some
scase; (1) the functional should be positive definite;
(i11) the procedure should be capable of treadng initial-
value problems, as well as others. These seem some-
what slanted roward the least-squates method; indeed,
trems (1) and (11) cannot be realized for all problcms
except in the least-squares method.  Yet no one has
shown that a solution 1s nccessarily best because its
mean square residual is smallest; such a definition or
proof will certainly depend on the particular applica-
tivn, In addition, the least-squares mechod can be used
to treat initial-value problems in only a limited way, as
shown above.  Furthermore, an important point should
be added to the list of desiderata—the method should
be sunple to apply.  As already shown,
eliminates

this criterion
least-squares method for
itmear eigenvalue problems because it turns a linear
problem into a more difticult nonlinear one. Becker
realized that his conclusion muy not always be valid
1505 (page G1): "'While the least-squares method seems
to be the most suitable general upproach, in specific
applications (in which some specific criteria may be
added to our 'gencrul’ list) other methods may be pref-
erable.””  Becker illustrutes the advantages of the
method of least-squares by solving a set of nonlinear,
time~dependent  partiul -differential  equations  which
model the fuel depletion in a nuclear reacror; he finds
results that compare well with the more lengehy numeri-
cal solutions.

In this discussion of the various criteria of MWR,
Galerkin  method has been distinguished from the
method of moments by means of the weighting funcrions
used in the two. In the Galerkin method, the weighting
functions must be the same set of functions which are
used for the trial solution, whereas in the method of
moments the weighting functions can be some other set
of functions. This distinction is not always made [52]
and is probably unimportant in practice, although the

immediately the

the '

two methods have different histories and may have (.
ferent convergence properties. There are inconsisten-
cies of terminology in the literature; for example,
Kawaguit [53) used the method of moments rather than
the Galerkin method as he claimed, for the weighting
functions differ from the approximating functions in hys
work. Another example of confusing nomenclature is
the name method of integral relations, which refers to 3
generalization of the subdomain method; it is ade-
quately reviewed by Belotserkovskii and Chushkin {54),

C. Convergence Theorems

Galerkin Method

After introduction of the Galerkin method
sc—e twearr-live vears elaTsed belcre the
of e method was srzdiel. Even toldav =m:ch remains
to be done; onl. a fews theozems have beea proved, and
these pertain exclusively to linear problems. Rep-
man {55] was the first to prove convergence of solu-
tions obtained by the Galerkin method though only for a
certain Fredholm-type integral equation. Petrov [56]
then studied the convergence of the Galerkin method for
eigenvalue problems of fourth-order ordinary differential
equations—in particular, the Orc-Sommerfeld cquation
of hydrodynamic stability theory. Keldysh [57] treated
general ordinary differential equations and also second.
order elliptic partial differencial equations. Mikhlin (11]
later simplified Keldysh's proofs. The equations ate of
the form

w1919

Cm".'f{‘:;e'xcc

- 9,
Z c?xi fiax,-

i, fal .

m
d
ZB,--(—}—;—‘+ Cu={

i=l '

L(u)=-

(28)

Both Keldysh and Mikhlin prove that the first deriva.
tives of the Galerkin approximate solution converge in
the mean to the first derivatives of the exact solution,

Whenever _the Rayleigh-Ritz _and Galerkin methods
coincide (see below), the convergence proofs for the
Rayleigh-Ritz method imply convergence of the Galetkin
method, too. Thus the Galerkin-convergence proofs
‘given by Kantorovich and Krylov [29] apply enly to
specific problems with a minimum or maximum princi-
ple, whereas the convergence proofs mentioned here are
applicable to problems whether or not they have a cor-
rcsponding variational principle. It has been claimed

not enough B

Recently cohvergence proofs have become available
for certain eigenvalue problems associated with hydro-
dynamic stability investigations [58, 15].

Results applicable to unsteady-state problems are
less extensive. Faedo [59] applied the Galerkin
method to a hyperbolic differential equation and in-
spired the important work of Green [60}, who proved the
uniform convergence of the Galerkin method when ap-
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ied to the followi . cquation
{/l/

2 gt
dJ!

yu = f{x,1 (29)

e Gulerhin method has been used to prove the exist-
cove of weak solutions to (i) the Navier-Stokes equa-
sens wnh tme dependence {61], and (ii) equ'\tio'\s
representing the ussteady-state transport equauoq with
4 haown velociey freld 1621

D. Comparison fo Gther Methods

Separation of Yariabies

The Galertkin method is related to a wide variety of
other approximate methods as well as to some exact
met}mds of analysis. In pdrmular it can_be shown

(29, 22, 24} that if a pr.em yxe ds to the metho

paranon of variables arnd it the Gn(t’f‘\ A

applied in_a_cercain way*, then The twd :
. ) ghe same. provided the }_):1_.c:klx‘ nethed 18 Caried
\° s /A ____U” Z B, d” .thrq_ugh to completion, Of conrse in numerical Taldula-
,j,_.' da, \ tions, aiter obtaining an exact solution in the forn «f
e =

Cu-ili Fix, t; (30)
ot

Revently the Galerkin methiod has been applied co the
Lavlor problem wich time-dependent disturbances [63],
a.t a method has been developed to generate improve
ahle, pointwise upper and lower bounds—and hence
crsor bounas—rFor the solution to Equation (30) [129al.

Other Methods -

Converpence proofs are rarely avarlable for the other
correrra of MWR. The notable exception is the least-
wquares method, which is well-treated (for boundary-
problems) 1w the notable texe by Mikhlin {11} Mikhlin
thar the method of least
sequence of approximate solutions
which vonverpe in the mean to the exact solution, Jour-
thermore, the mean-squarc-error of the 1pproxmmt£ s0-
lution can be decermined. He also points out that the
least=squares method converges more slowly than the
Ritz mechod (when the latter con be applied) but may
convergence rather than convergeace in
the mean.  Some results for the coliocation method are
given by Kadner [64), while the method of moments is
trcated by Kravchuk {65].

proves condizions which insure

squdres  grves o

nive untform

Nonlinear Problems

Very litdde 1s known about the convergence of MWR
for nonlincar problems without a corresponding varia-
tron al Krasnosel’ski [66] presenrs theo-
rems—mostly without proofs—for the Galetkin method
applied to nonlinear integral equations. Glansdorff [67]
mentions a forthcoming proof of the convergence of rhe
local potential method, which is identical in applica-
tion to the Galerkin method; he treats the steady-state
heat conduction equation with temperature-dependent
thermal conductivity.  Of course, as Ames 12] has,
painted out, convergence proofs are not as useful aser-
ror bounds. Even a computer does not maxe it possible
to calculate infinitely many terms and when truncating
the scries one always wonders how good the resulting

principle.

approxumate solution ts. Comparison of successive ap-
proaimdtions is an aid in such a case, but even an ap-
proximate solution that seems to be converging may not
solution. The avuilable
thcorems and error bounds are so scarce
that enpincer and applied scicatist must usually exteap-
olate from previously tested results for other problems
to new s.tuations when applying approsimute methods.

be converping to the exact

converpence
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an iafinite series, one calfculates only a finite number

of terms as a matter of practical necessity.

a

Variationo! Methods

There also a close relationship betwessn the
Galerkin method and the Rizz or Rayieigh-RitzT method
when the laweér can be applied [14, 69, 70, 1, 21, 2,
71, 721. In parucular, if the same wial fuactions are
used, the resulting calculations are identical., Contrary
te a currently prevalent opinicn this eqmvaichéc still
persists when the crial furfnons do nror sausfy the
uatural bounchry conditioas {23, 11, 25, 24], which they
need not do in the Rayleigh-Ritz inethod. The boundary
residual is either added or subtracted to the differential
equation residval, and the calculations are again equiv-
alent to the Ritz or Rayleigh-Ritz method. The choice
of adding or subtracting is dictaved either by mathemat-
ical convenience—part of the differential-equation
residual can be integrated by parts to cancel part of the
boundary residual-—or by the physics-——the diiferential
equation and boundary conditions both come from macro-
scopic balances taken over the volume and surface,
respectively; these macroscopic balances can be com-
bined in only one way, and the residuals are combined
in exactly the same way. A very important difference
between the Rayleigh-Ritz method and the Galerkin
method is that in the former some functional——possibly
representing an eigenvalue—is being minimized o
maximized.  Conscquently the approximate values of
the functional represent either upper or lower bounds.
In the Galerkin me:hod this information is missing;
exactly the same values would be obtained, Lut one
would not know thact these were upper or lower bounds.
However, when the variational integral is of no signifi-
cance, the Galerkin medhod, because of its generality,
may be pieterred. The variarional and Galerkin meth-
ods compared schematically in Figure 1,

Most_ variational principles are’ megely  stationpry
p;i_n»cxple_s, rather than minimum or maximum principles.

is

are

— e e e e e

rkin method must
.ti(;n of var iables
condi-
tions as wcll as to me Lllffcunu.nl equation, Su h a tesule
Tnéans simply that if the ¢xact solution is contained in the
trial funcrion, che Gale'km ‘method will find i00

TTxough there is basically but a single methad, it is cone
venient to follow the cu Lom (scarzely universal) of distin-
guishing between the YRy yleigh-Ritz method™ when it is ape
plied (o minimum 6r WaXximum principles wod ™ tt. T 'Riz
method'” whean it xs apu'xcd to mcrtly smnundr/ prmcxples.
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figure 1. Comparison of Variational and Galerkin Methods for
Lineer Problems.

In such cases, the Ritz method is again equivalent to
the Galerkin method.  The calculations are identical;
the resules are identical; but in the variational method
one kuows that the variational integral is being made
stationary, 1.e., nsensitive to changes in the trial so-
It che variauonal mtegrul has physical signifi-
cance and is the quantity of interest, then the vuna-
tional methods have an advantage over the Galerkin
methud even though the answers are the same,

Laton.

Adjoint Variational Methods

Varratonal principles exist for linear problems only
o riy are self-adjoint. For non-self-adjoint linear
problems, variational principles can be formulated for
the oiginul equations and their adjoints, and again
MWR s related to the corresponding variational meth-
ods. The impetus for using the adjoint operator in vari-
ationa! formulations scems o stem from Morse and
Fesubach 173], who guve o variational principle for the
unsteady-state heat conduction equation; Roussopou'os
174! also gave a variational punciple for any lincar
non-self-adjoint problem. Schmic |75) and Washizu [76]
have applied such a prnciple to the unsteady-state
heat conduction equation, while Selengut [77, 78] de-
veloped the idea for nuclear reactor problems.  Many
other examples exist, such as those of Nichols and
Bunkoff (79 for convective diffusion of heat, Finlay-
son |24} for convective diffusion of a multicomponent
mixture of chemical species; Lewins [80], Slactery (811,
Flumerfelt and Slattery '82) for extensions to nonlinear
probiems; and many authors !83-94, 38] for nuclear re-
actor and associated problems. In applications to
lincar non-sclf-adjoint problems, the method of weighted
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residuals yields the same results as any of these varia-
tional principles as long as the weighting functions for
the original equations are taken as the approximatmg
functions for the adjoint, and vice versa [75, 24]. The
question to whether this variationaj
method, which can be regarded as an application of one
form of MWR, is preferable to Galerkin’s method, which
does not require the complication ot an auxiliary ad.
joint system. There is some evidence that the adjoint
variational principle leads to slightly better results[95-
971, and Clark and Ilansen [98] imply that the use of
adjoint weighting functions might speed convergence,
Kaplan and Bewick [38] claim that the variational
method is the best strategy in that it gives better an-
swers more often. However, they go on to say:

"‘Of course, practical considerations may intro-
duce yet another meaning of the work '‘best'’;
namely, ‘'most economical.”” In this sense we
find that the Galerkin method (which uses the trial
functions also as weighting functions) is, in most
instances, preferable to the variational method,
since it gives results which are almost as good but
does not require separate calculations of the
weighting functions.”’

In essence, the_adjoint variational method. trades in-
c[@é_s;ejd_g_oml)lc:glty for possibly better results: there
still is no clear-cut answer to the question of whether
the Galerkin method or the adjoint-variational method
is best.- - .

For certain initial-value problems there may be no
difference between the variational! method and Galerkin's
method if the semi-direct approach is used in both,
Whenever the corresponding steady-state problem is
self-adjoint, it is reasonable to expand the unsteady-
state solution and its adjoint in terms of the same func-
tions of position with unknown functions of time as co-
efficients:

then arises as

N
us + Z c it i (X) 61

=]

n

N
ut mus s ) eHDu(%) (32)
i:l

Because the approximating functions are the same for
both u and u*, the weighting functions in the adjoint
method are the same as those in the Galerkin method.
Consequently, the solutions are identical, whether
derived by the adjoint method or the more direct Galerkin
method.

The adjoint system is also useful for eigenvalue
problems. Roberts [99] presents the general theory, and
examples can be found in the works of Chandrasekhar
{43] and DiPrima [100] as well as others. While intro-
duction of the adjoint system does increase the com-
plexity of the problem—particularly the boundary con-
ditions—some advantage is gained over the straight-
forward application of MWR because the eigenvalue is
made stationary, and hence insensitive to changes in
the trial function. This advantage does not usually ap-
ply to boundary and initial-value problems since the
variational integral is seldom of interest in those cases.



Method of Least Squa. s

Mikhlin {11) points out that for boundary-value prob-
lems the least-squares method for

Lu
Biu =

[

[ inV
0

(33)
(34)

is cquivaleat to applying the calculus of variations to
the cquation

on §

L*(bu-f)=0 (35)

Consider the following minimum principle: minimize the
functional
I = f(l_u — /Y av .+ f(B,-u)’ ds
v 5

among all functions u having the appropriate continuity
and differentiability requirements. The natural bound-
ary conditions comresponding to this variational princi-
ple are of the form [so]

(36)

Ni(Lu=[)=0 (37)

where N, are differential cperators. The Culer equation
is just equation (35) and the equivalence with equa-
tion (33) rests with the premise that the equation

L* =0 {38)

(39

has only che trivial solution. Note chat the natural
boundary conditions (37) are similar to the compatibilicy
conditions mentioned above 10 connection with the inte-
gral method for magnetohydrodynamic boundary-layer
problems. '

."3:-1( =0

Method of the Local Potential

~ A procedure based on the so-called local potential of
Prigogine und Glunsdorff [101-104] has been propésed
4> a variational mechod for determining approximate so-
lutions to boundary-value {105-104}, eigenvalue [109],
and more recently initial-value problems {108, Rosen
1110=113) used the same type of computatienal scheme
-earlier. The actual applications of these methods have
been shown to be equivalent to the Galerkin method
{114, 24]. Moreover, 1t has been demonstrated that the
variational integral is not stationary in the local poten-
tial method and that no mmimum principle exists in ap-
plications {114, 24].  Conscyuently, the advantages
usually associated with variational principles are miss-
ing from the local potential method, which can be re-
gurded as a disguised application of the Galerkin
method. See Ref. 129b for a more detailed critique.

Lagrangian Thermedynemics

The so-called variational methods due to Biot [1]5=~
121} and others [122-128, 51§ are ulso equivalent o the
Galerkin method (25, 24). In these Lagrangian thermo-
dynamic mcthods there is no variational integral which
is’ being made stationary [23, 79}; their sole signifi-
cince appears to be as means for generating a computas

tienal scheme.  That scheme is, however, identical to
the Gaterkin method, which is more swraipheforward and
applicable to a hioader range of situations. There is
no reason that the Galerkin method should not be pres
ferred, so far as the authors know. Sece Ref. 129b for a

morc detailed critique.

E. Applicatiens

The MWR
sions and various refinemenics have been presented, and
tes rejationships to certain other approximation methods
have been sketched. Which of all these methods ace
superior, and over just what ranges of citcumstances
the superiosity exists, are matters that can Le settled
finally only on the basis of representative applications.
More systematic comparative studies and evaluations
are needed than have been reported ro date. Until they
are forthcoming the investigator of a new problem can
expect little more help than he can get out of seeing
how others have handled more or less similar problems.
References 130-187 have been selected as much to il-
lustrace pitfalls, shortcomings, and failures as te cite
the attractive features and successes of different ver-
sions of MWR. The preponderance of recent papers ac-
curately refleces the upsurge of applications of these
methods in one field after another; the emphasis on
problems .of flow and transport is conditioned by intér-
ests of the authors. The popularity of the integral .
methods which originated in boundary-layer studies (18,
20, 34~36, 136-153, 160~163, 166-169] can be dis-
counted in part as a tradition perpetuated by formal in-
struction beginning with elementary texts in fluid me-
chanics and heart transfer.

generni features of in its aumcrous ves:

Beyond any guidance he can get from past experience
the problem-solver can look for reassurances in com-
parisons of different ferms of tria! solutions and of suc~
cessive approximations in any one form: the appear-
ances of convergence with more numerous adjustable
parameters and of insensitivity to form of approximating
functions do lend confidence to results. So do close
matches with established information on special cases
and limiting cases. It is also true that MWR, Like vari-
ationa! methods, may yield better estimates of proper-
ties of the solution at large, such as an integral or
eigenvalue, than of the solution itself. The main ad-
vantage and disadvantage of MWR are contained in the
same featuie, namely, that the results depend on more
or less arbitrary decisions by the user. Intuttion, ex-,
perience, any available information all can be rapidly
exploited but cthe reliability of the results is frequently
hazy. Hopefully this review sheds light on the basic
tssues and will be useful to those interested in apply-
ing weighted residual methods and related technigues.

F. Areas for Further Research

Of the unsolved problems concerning MWR the follow-
ing are mest important in the opinion of the authors:

(1) Choice of criterion in MWR. Systematic compara-
tive studics using representative (nonlinear) preblems
are needed. The least-squares procedure for nonlinear
problems particularly warrants attention, The Galetkin
method and adjoint variational method for lincar prob-
lems need to be compared.
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ENVIRONMENTAL PRORLEMS ASSOCTATED WITH FLUID FLOW
R. H. Gallagher and D. L. Young ’

I. INTRODUCTTON N

a

The topic of computational {luid mechanics does not have 2
long history. By the 1930's there were only a limited number of
papcrs on this_topic, a condition that was duc not only to the
absencc of high speed computa;ionai facilities but also to dif-
ficulties in dealing with the inherent nonline?ritf of'most
problems of intercst. Thus, computational fluid mechanics has
developed in tandem with the finite element method. Very many
applications of the latter to flow probiems have been recorded, -
as described in References 1-4. As these references demonstrate,
a detailed review of the complete field would require a complete
text. We therefore limit our attention, in these lecturc notes,
to the application of the finite element method to environmental
problems associated with fluid flow.

A large number of conditions can bé grouped under the
heading of "environmental problems". In the present case we
refer principally to the transport of heat or the concentration

.
.of a substance through a body of water. The processes of con-
vec;ion and diffusion participate in the transport proéess.
Velocities appear in the convective terms and, glthough the most
vigorous treatment of the problem will involve coupling of
velocity and temperature (or conc;ntration) equations, practical
considerations may require independent solutions for the two

fields. We thercfore include in our review a discussion of solu-

tions for flow veiocities alune for lake and .stream situations.



A study of the literaturc of topic under review discloses
that éithoﬁgh the problems are basically three°Aimensional,\no
numerical solutions of this scale have yet been ﬁttemptcd.
Simplifying assumptions arc customarily made about onc of the
dimensions .and the problem is reduced to one of analysis in the
plane. Indeed,,some investigations, make assumptions regarding
two of the.diménsions and study the velocity in one dimension
together with the temperafure. _

In view of the above circumstance, these notes are categorized
with vespect to the differcent types of two-dimensional situations.
Only the cases of flow in planform and that of flow on the narrow
cross-scction of a lake or similar body of water are treated in
this review. |

First'we define the coordinate systems associated with the
respective;types of problems. Then{ sepafate sections are

devoted to each'type.

" II. COORDINATE SYSTEMS AND GOVERNING EQUATIONS

Figure 1 illustrates the tody of water and the associated
coordinate systems. The body of water we have in miad is a lake,
although céses will be treated which refér to streams and estu-
aries. In;the iatter circumstances the fiow is predominantly in,
the y-direEtion. |

The planform (x-y plane) is the basis for analysis of wind-
driven circulation and of flow through bésins and estuaries.

The assumptions that are invoked are discussed in some detail
later, but, for fhe preséng Qe ﬁimply note that they are directed

to climination of the z-coordinate from the problem. The maximum
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z-dimension is very much smaller than the y- and x-dimensions.
The latter may be of upproxim&iely the same magnitude.

The narrow cross-section (x-z) is intended to represent the-
section of a lakc or similar body of water. llere, the x- and
z-dimensions aré of similar magnitude and the y-direction is
very large. Finally, we have thc side vicw (y-z), which refers
principally to fLoQ in strcams and éstuaries and which is often
reduced to just the y-direction.

Physically, the velocity and tcmperature fields are deter-
mined through the conservation of mass, momentum and energy. The
governing c¢quatlions are

Continuity (Consgrvation of mass)

3u ov oW )
x iyt 0 (1)

x-Momentum

au Ju Ju ou o 1 3, o M 3Ju
Tt U T Vay t Wy o fu by 93X * ax Kex 3
3 ..M du, ., 3.M 3u
* Ey(kxy 3y’ azﬂ Xz az) (2)

and correspondingly for y and z. (In thé z-direction therg is no
Coriolis force (- fu) but a buoyancy term (él gx) must be added

' ' 0
to the left side.)

Temperature (Conservation of Energy)

al . ., 3T AT 4w 3T o a3 H 3Ty , o ¢kH 3T
st T US T VY YT T e 5% Yy (K &)

¢ (0 3D (3

In these ehuations u, v, and w are the x, y, and z-direction
velocities, g is the gravitational acceleration,. p is pressure,
. i )
p is density, Py is reference density, T is temperature. f is

the Coriclis parameter and KM and KH (wilh appropriate directional



subscripts) are the viscosity and Jiffusivity. The above equa-
tions arc supplcmented by equations of state, such as density
as a function of,tchperafurc, pressure and, concentration of a
substance, and the viscositics and~diffusivitics as a function
of "stability parameters", e.g., Richardson Number, Prandtl Number,
Monin-Obukhov Length, etc. .

Thesc are very general equations.. Consequently, in.cht,
the followiﬁé approximations may be introduced, depending on the
analyst's interests and goal.

1) The Boussinesq approximation: The variation of density 1is

small, so that the fluid can be treated as an incompressible
! { .

fluid. The variation of density is only considered in the
' A
buoyancy term él g in the z-momentum|equation.
o , .

2) The shallow water approximation: The inertia forces are

negligible '‘compared to the other forces. Also, the

w-component is much smaller than the' horizontal components,

so that the pressure is hydrostatic''(g = - % %g , Wwhere

g is the acceleration due to gravity).

3) The eddy viscosity and diffusivity approximations: Since

the stratification is almost perpendicular to the gravi-

tational force, it is customary to assume that tlie horizontal
’ \ i

) andfdiffﬁsivity (Kﬁ) are approxi-

. . M
eddy viscosity (Kxx, ete.

mated‘by constants, while the Yerti¢a1 ones are functions
of thé graéients of density and velécity. The exact rela-
tionsbips are still hot debate, In;practical analysis, the
deterwination must come from semi-empirical stratified

turbulent theory. (Monih-Yagloﬁ, Ref. 5)




. / .
IIT. PLANFORM ANALYSTS. WIND-DRIVEN CIRCULATION AND_FLOW
THROUGH BASINS

The cross-section shown in Figure 2 defincs the basic
geomctric paramcters of this development, which.is due to
Liggett and Hadjithcodourou(6) in its fundamental theoretical

form. The origin of coordinates. is fixed at the surface of the

lake, with velocity w = 0 at z = o. (The 'rigid lid' assump-
tion). The physical properties of the lake, including thec eddy
viscosity and the mass density per unit volume, are assumed to
be constané and the Coriolis parameter is also assumed.constant.

The pressure is' taken to vary hydrostatically. The surface

yz are prescribed. Undgr these assump-

tions the momentum cquations take the form

wind stresses Tki and T

5 .
P du , M
fv ’535-"'——2- Ko (4)
© 9z , i
£ '-: 1-3..24'32" M
u - "-p—'ay ;—-Z-'Ko (5)
o z
= . L1 23p |
g ! paaz (6)
The continuity equation is unmodified.
A stream function ¢ is defincd as follows
/
Y _ o '
3y " uh (7)
W _ - ' (
T Vh (8)

in which U and ¥V are depthwise averages of the componrent veloci-
ties. After combination of the above equations, with consideration

of the boundary conditions (zero velocity on all solid surfaces

- M 3u M 3
and = = = KA
Xz Ko ox ! Tyz Ko 3y

) one obtains -
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X oy .
The terms A(x,y), B(x,y) and C(x,y) are those which result from
consideratien of the varying depth and, as indicated, arc func-
tions of the planform cocrdinates x and y. Thus, they'account
for the varying depth.

Transformation of Eq. (9) into the finite element form,

fiven in detail in Ref., 7, is accomplished by means of the
Galerkin method. The approximation of ¢ is by means of the trial

function ¥, which has the form

Vo= Nu, o= LNy (10)

wherein the N, arc the shape functions and {y} are the nodal
values of the stream function. Applying now the weighted residual

concept

2

2

2 22N |

I {N}( -1 I TLE c)an (v =0 (i)
A 3x 3y X y

Next, integration by parts in the plane is applied to reduce
the order of the derivatives appearing in this integral and to
producc boundary terms. One obtains

f;\ (-2 2 AN, oy 2

L
Yy 9x

-
EY{N)

+ BNY 252 (9] + (NIC dA

+ 9—5—':’— {p} dS = 0 (12)
The values of {y} are zero on the entire extericr boundary

and the closure integrals along interclemcnt boundaries vanish

if continuity is preserved across these boundaries. Thus, the

contour integral term is excluded from subsequent consideration.



Evaluation of the vemaining intcgrals for all i then yields the

foilowing system of element equations

in which
a(N) 3 N, AN} 3N aLNy BL\U
f.( T 0% T ey oy AN == - BIND =5 da
(r®) - -'f (N) C dA (14)

N 3, N
1t should be noted that due to the terms A{N} 3571 and B{N —%;L

the resulting algebraic cquations will be nonsymmetric.

The cquations for the complete lake are constructed from
the cquations of the eiements by imposing the condition of strcan
function continuity at cach elecment joint. Thus, the global
equations arc, by simple addition of all coefficients with like
subscripts

[K1{y} = (R} (15)
fiter solution for {y} the other variables, such as averaged
velocities and pressure gradients, can subsequently be evaluated
by back substitution.

Numerical solutions to Eq. (15) have been obtained for both
simple test problems and for Lake Ontario(7). Since field data
is not available for Lake Ontario the convergence of the solution
has been studied with use of higher-order e]ements(g). Cheng(g)
has analyzed Lake Grie, using a formulation which excludes con-
sideration of variable depth. Tong(lo) includes this factor in
a finite element formulatlon based on Welander's theory,(ll)

which does not differ sxgnlflcantly Jrom the theory cited above.




If a stream function is adopted as the dependent variable,
as is done in the formulnpjgns‘discussed previously, thc presence
of islands raiscs a basic complication in the definition of tho
boundary conditions at the node po}nts of the isiand shorc line,
The strcam function is zcro at points on the shore of the lake
but takes on a constant, undefined value on each of the islands,

(10) proposces, the values of the stream function on

Thus, as Tong
a piven island arc set equal to o single value that is determingd
in the solution process. This substantially contracts the number
of unknowns in the equations to be solved.

Cheng(g) adopts a different approach to the treatment of
islands. The system of global equations is first assembled
without consideration of the islands and their bcundary condi-
tions. We denotc this solution as (¥ }. Then, in succession,
‘unit' solutions {Wi} (i=1, .. M, where M is the number of
islands) arc obtained for Wj = 1 for node points on the respecrtive
islands. Finally, an M x M system of equations must be solved
to give the amplitudes Gi (i=1..M) which apply to the unit solu-

tions. The complete solution is then represented by

() = (v} +

=

- Gi{vi} (16)
The determinaticn of the planform distribution By transpert
of temperature in a lakc'or basin with known flow is aiso a
problem of major practical importance, especially for cooling
ponds and similar basins. Temperature distributions have bcen

determined for such conditions by Loziuk, Anderson, and

(12,13) 710)

A\
Belytschko Tong presented a more general deveiopment

¢



along thesc lines which permits the finite clement calculation
of any coﬁé;ntratiOn,gf §uﬁstance in a lake. We outline the
latter in this section; |

If we define ¢ as the avcrage concentration across the
depth (h) of the substance under study, the governing differen-

tial ecquation can be written as

(h¢), _ 3  H athe) , 2 H 3a(he) , 4
) K + K, <5y * @

(17)

she) , T a(he) , ¥ 0
(3¢~ R ~ax YR Ty O 3y

wherc K”
X

and Kg are the eddy diffusivity coefficients and Q is
a source or sink term. Now, thc approximation of ¢ can be
written in the form of the trial function

¢ = Ni 4’1 = LNJ {¢} (18)

where {¢} reprcsents nodal values of h¢ and (N, is the relevant
set of shupe functions. When the analysis is performed for
temperature, witn a single tcmperature across the depth of the
lake, T = hy¢.

Application of the Galerkin approach can again be made to
construct elemcnt equations. Using Eqs. (17) and (18), one
obtains

[h1{s} + [s]{¢} = {Q) (19)
where '

. [} = [JPA {N} N, dA] (20)

51 = (f, ,-(N}(E e T2,

H 3N} 2 H (N} 3LNJ.I ‘
* Ko =% 3¢t Ky 5y dA] (21)




The vector [Q} accounts for the source ot sink terms and any
prescribed boundary conditions. Finally, by assembly of the

global equutions from the clement eauations

~N
g
)
e

1) (3) + (SI{6} = (Q)
where {ti,, {S] and {6} correspond to [h], [s] and (GQ}.
The idealization for transport analysis is done in the same
way as for flow analysis. Aftcr calculation of the velocitices
in the flow analysis the values obtained are used in the forma-
tion of the matrix (s].

Loziuk, et 31(12’13)

apply the above approach to various -
practical problems, including an actual lake with irregular
boundary. Available field data indicate a reasonable level of

(10) calculates the

agrecment with the analysis results. Tong
diffusion of a substance in a rectangular basin containing a
circular islond.

Solutions for transicnt [low governed by the shallow water
cquations have been given by Connor and Wang(24). By integrating
across the depth and assuming uniform velocity and hydrostatic
pressure over the depth they establish equations in terms of
nodal values of flux and elevation. Solutions are given for
harmonic forcing of a rectangular basin and for tidal circula-
tion in Massachusetts Bay.

Taylor and Davis(26) have devcloped finite clement representa-
tions of tidal propagation in estuaries, The unknowns in
these cquations are the node point veleocities and elevations.,

Surface runoff, described by means of the shallow-water ecoua-

tions, has becen studied by Al-Mashidani and Taylor {Ref. 30).



They treat a one-dimcnsional casc, with velocity and surfa;9
clevation as problem unknowns.
Taylor nﬁd Davis (26) and Adcy and Brebbia (27) have
studied dispersion in estuarics. Ref. 27 uses known values of
velocity and solves [or the concentration. Taylor and Davis,
on the other hand, solve for concentration, velocity, and
surface clevation. |
Planform (x-y) finite clement analysis of a rather diffcrent
environmental problem has been persented by Mercer and Pinder (29).
They examince heat transport in the liquid and solid phascs in a
ground-water flow system. The finite element equations to be
solved consist of two sets, one being a flow equation in terms
of pressurc and the second being a temperature equation. The

solutions arce marched in time.

IV, (CROSS-SECTION ANALYSIS

The motivation for cross-section analysis (x-z) has prin-
cipally becen the prediction of thermal stratificétion, although
attempts have also been made to deal with more basic phenomena
in viscous flow.

Thermal stratification is widely believed to exert an
important influence on lake flow phenomena through its effecfs
on density variations and otvher phfsical factors. 'In'many lakes
uniform temperature conditions are realized in winter and, as
summer atmospheric conditions approach, a rise in temperature
occurs in the upper regions of the lake. The peak is reached

in these regions towards the end of summer. Since the rise in



temperaturce penctrates to only a limited depth (say 20 to 40
fect) fhc lower portions of the lake are not affected, and a
somewhat 'stratificd' temperature profile prevails. The heated
upper region is known as the epilimnion while the wnheited lower
region is tcrmed the hypolimnion.

The problem 1o be solved is the vertical temperature profile.
There is an influence, however, of the action of the wind and
this produces a two-dimensional problem.

Liggett and Redford (Ref. 14) and Bedford (Ref. 15) have
deult vith the steady-state problem o1 a two-dimensional cavity
containing a nonhomegencous fluid subjected to surface shear.

No considerution was given to eddy viscosity and diffusivity
variations. The latter was ﬁcc0unted for by Young, Liggett, and
Gallagher (Refl. 16) and the results demonstrate that stratifica-
tion, as well as circulation patterns, can be predicted with

the proper empiricual definition of these variations. Skiba,

Unny and Weaver (Recf. 17), Debongnic (Ref. 18), and Kawahara,

et al (Ref. 19) have studicd cavity {flow without the considcra-
tion of temperaturc. Coupled veclocity-temperature solutions

are also described by Zienkiewicz, Gallagher, and Hood (Rcf..ZO).
In the {ollowing we describe the development of Young, Liggett
and Ga]lagher.(lﬁ)

The physical properties which enter‘into the differential
ecquations of the problem are the cddy viscosity and the eddy
diffusivity. The eddy viscosity and diffusivity in the horizontal
direction (Kl::x ctc. and Kg) can rcalistically be talen as constant.

Valucs of these coefficients are customarily taken as the sawme



magnitude as those which are mcasured under neutral stratifica-
tion. The vertical eddy viscosity and diffusivity (K::Z etc. and
KS) vary highiy within the whole basin, however, and are depcndent
on such factors as the turbhulence levél in the surfnée layer,

" the depth, the local density gradient and the.overall motion

with respect to the specified geometry., -
No satisfactory thcory for the prediction of these varia-

tions {rom thec more basic environmental and physical parameters

is presently available and dependencc must be placed on empirical

relationships, In this work -the rclationships employed arec
extended forms of thosc proposcd by Sundaram and Rchm(ZI), as
follows
]
Mo M kM- o ri . (23)
X2 z2 ) m
H H .
= - 24
. X =k, (-eR) o (24)
where Ri, the Richardson number, is
gt 32
oo U

in which U is a characteristic velocity, o and o, are empirical
M H
0

o, are the vertical eddy viscosity and

constants, and K and K

diffusivity under neutral stratification. The continuity equa-
tion, with the assumption of incompressibility, simplifies to

) ow
cu , 9w
X oz

=0 (26}

In defining the relevant forms of the momentum equations we
assume that Boussinesq's approximation ipplies (p is takea as

constant exccpt when multiplied by g, 'i.e., in buoyancy terms).



Thus,

¢ au _ 1 3dp 9 M 3u 9 M 3u 7
“ax P g ax o (o) T ez (Kp ) (z7)
3w 9w _ 1 9p ] Mdw 3 Mowy o 23
ax Y3 3; 3z T OE% (Ko 3%) * 332 (kz 3z o & (28)

where p is the local pressure,

The diffusion-advectien of temperature is given by

AT ) JHoaT 9 H _@I
ax VUL T X (ko ) b oaz (Kz 3z (29)

c
|3
+
|}

IFinallv, the cquation of state can be written morc explicitly
as p = pyll - B(T - T . (30)
in which B is the coelficicnt ¢f volumctric expansion (assumcd
constant) and To is the point about which the true relationship-
is lincarized.

We introduce the stream function ¢ in place of u and v,

such that

=_3.~l£ :_alp
v 35z 0¥ 9x (31)

The resulting two differential cquations, which replace Egs.
(27-30), can then be written in terms of nondimensional variables

as follows
2

- o4 B(V _ . ap
Dl(w,p) = V¢ + Re -—a-(-i Re Rlo X
2 2
s o Ri ( (2* 2224
° { 9z Z %z
LS
2 ‘"2
ot 230 2%l
* 0X0%L (z zZ axaz)J 0 (32)

and,

D, (¥,p) = - v"p + Re Pr 9—({—2—'1)-

. 2 90 2? _
b o Rlo 37 {(z 55) j’ = 0 (33)



where Re = UH/KS is the Reynolds number, Pr = Kg/Kg is the
turbulent Prandtl number under neutral stratification, and
Ri_ = - Ang”/noUz is the overall Richardson number. H is the
depth of the cavity. All parameters and variablcs‘havc been
nondimcnsionnli:cd, e.¢., x and z have becn divided by H.

To transform the above into a finite element representa-
tion we adopt shape function approximations for ¢ and p and

use the Galerkin method. Thus, with ¢ = Niwi and p = Qipi we

have the following weighted integrals

Jo Nyl (B, 7)14A = 0 (34)
JFA Q; [, (¥,p)1dA = 0 (35)
This lcads to the following sct of nonlinear algebraic
equations
1 2 “ . 3
Sijwj + Re Sijkijk + Re Rlo Sijpj
) 4 )
- o Rig Sio¥iep * Py =0 (36)
S>.p. + Re Pr S%. y.o, - o, Ri_ S’ .. p.p, = 0 (37)
ij ) ijk'37k h 7o "ijk7j"k ‘

The multipliers Re, Rio, Pr, oo and %% have been preserved in
these represcntations to enable identification of the source
of each ternm.

The specific algebraic form of the coefficients S} 97

j’l..’\ijk
is obtained after performance of the integration indicated in
Eqs. (34) and (35). |

The global representation is obtained by summation, from

~the cocfficicnts of the above element equations, of all coef-

ficients with like subscripts. The resulting equations are of



a {orm identical to that of Eqs. (36) and (37). The Newton-

Raphson approach is adopted as the method of soluticn of these

coupled nenlincar cquations.

‘Nmerical calculations were performed for the squarec cavity
of Fig.via'for the boundsry condit{nns shown and for various assumed
vertical formulations of the eddy viscosity and diffusivity. The
tinite clement representation consisted of 72 elements arrayed in
the Gxﬁ;grédwoyk.(Fin. 3bY. .

Steady state calculations have bheen performed for Re = 1 to
Re =°1000, Gr = 0 to Gr = 10000, and Pr = 1 to Pr = 10 where Gr is
the Gfushof nunber (The Grashof number is Gr = Re Rio.). Addi-
tional numerical experiments were performed to test the sensitivity
of the solution on the assumed behavior of the eddy viscosity and
eddy diffusivity. Ten such computations were performed, all using
Re = 100, Pr = 1, Rio = 1 but different choices of oh and om and
also different assumptions as to the form of the depthwise variation
of K” and KH

Xz z
teristic numbers represent, of course, an infinite variety of

as summarized in Table 1. The values of the charac-

physical data, but the following are typical: Py = 1.0 gr/cms,
pr = 0.9999 gr/em® (T, - Ty = 4°C), t_ = 1.0 dyne/cm’, xg = xg -
100 cmz/sec, H = 10m, and ¢ = 980 cm/secz. These are approximétely
equivalent to the experimental! data of Sundaram et 31(22). How-
ever, in the present case the boundary conditions have been chosen
so that a steady-state solution exists, a condition relaxed in some

L

subscquent computations.
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TABLE 1

Summary of Computations
for Re » 100, Pr = i, Rio a ]

z i '
w12 3 E N e
NO..| | | Cut-off Bclow the
O 0, | Pepti-Dependent | First Cut-off Depth | Plot Symbols
— =
1 0! o e 1 —e- o
2 0.1 0.035 No 5 .- B
310.2:0.07 Yes ---
410.310.1 Yes ---
5|0.5]0.15 Yes --- a
6 10.5]0.25 | Yes --- .
2 |2.0]0.35 No No A
8 2.0/0,35 Yes No 0
9 12.010.35 Yes Yes o
10 | 2.0 | 0.70 Yes No ¢




"Conclusions resulting from the first set of steady-state runs
are sﬁown in Table 2 (Ref.195). In these runs cddy viscosity and
eddy diffusivity were held constant. A typical picture of stream-
lincs and isopyenals is shown in Figure 4. The influence of ;hc
stratification on the circulation is obvious: Additional runs
could probably have clicited a specific relationship between the
formation of multiple, closed circulation cells and the three
paramctérs, Re, Pr, and Or. lowever, such a relationship was not
pursued. since it would undoubtedly be altered with different gcome-
tries and since the cddy viscosity and eddy diffusivity relatiop~
ships probably have a larpe effect.

That effect has been tested in ten subsequent runs which are
summarized in Figuves 5 and 6. In these cases the same sort of
cell structure formed as shown in Figure 4, but with considerable
variation in the details of the velocity, shape and size of the
cells, and the density distribution.

The latter computations show that the density structure con-
tinucs to have a large effect on the velocity structure and also the
velocity structure grecatly alters the density distribution. With
the eddy viscosity and eddy diffusivity formulation that Sundaram
and Rchm(ZI) found necessary in their one-dimensional analysis,
the surface shear alone is sufficient to form a thermocline type of
structure. This result is quite different, but does not conflict
wvith, those of previous investigators who have used a one-dimensional
analysis. In those previouns investigations the thermocline struc-
ture formed over. a pcriod of time (several weeks).while unsteady
heat inputs werc applied., We have shown, however, that given an

initial inhomogenicty in density, a wind shear is quite'sufficicnt
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Ratio momentuwa diffusion can'e penetrate the wall
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cavity) teonposite directicn to and ks O(19) less in-
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Fijure L, étrcamline and Isopyenic Contours; Shear Driven, O(1) Cavity, Re = 100, .Gr = 1000, Pr = 5.0



Figure 5

Vertical Distribution of Eddy Viscoesity (KT)

and Eddy Diffusivity‘(ﬂg) at x = 0.§335.

(Sce Tatle 1 for definition of sy=bols)
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a. x = 0.1667 L . b. x = 0.8333

Figure 6 Density (p) versus Lepth (z) at x = 0.1667

(See Table 1 for definitien of syrbols)



to form the thermocline., Unsteady computations, shown beclow,
indicate the time séalc invelved in such a formation and aléo the
cxtent of the fccdhénk vhich influcnces the current structure.

Fewer transient gomputations of cavity flow were made duc to
vthc computer costs. A totai of five runs with Refnolds numbers of
100 dnd']UOO and Richardson numhers of 1 and 10 were made. Two
values of 0y, were used. ‘Figurc 7 indicates the results of cne of
these calculations, In'all cases in which the motion begins from
rest, the entire cavity:bcgins to circulate as a wholé; that is, the
cavity forms a singIC'Eirculation ce]l; As time progresses the
flow may break up intéfmwo or more cells, as is indicated in Figure
7. At the same time ‘the density distribution is alterced to show the
typical thermocline shépe.

The flow does not change from a state of rest to the final cecll
formation montonically. Instead thc velocities increasc rapidly to
a value not far from the steady stute valuec and then osciliate about
this valuc. The frequency of oscillation is near the Brunt-Vaisala
frequency. Other characteristics of the flow, the density gradient,
the cell location, and the strcamline positions, show similar damped
oscillations. |

The number of cells can be calcuiated, using certain gross
approximations, from the theory of Turner(SZ)‘as expandcd for this
problem by Young(Sll This theory has been compared with the transi-
ent and stcady-state computations with rough agrecment. ‘the dif-
ficulty‘in the ;pplication of such theories to rcal lakes (or cven
cavities) is that all the factors, the most important being the
denéity distribution, and the interaction of those factors cannot

te considered adequately, Results indicate that multiple cells are
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likcly.to form in the case of a dif{fusc metalimmion whereas aiéharp
thermocline promotes two cell circulation. However, the fecedback
of the currents into the density structurc has not been considered,
and this fecdback may alter the density distribution, thus changing
the results of the theory.

Variable viscosity, especially a formulation which is strongly
dependent on the density gradient, has a great cffect on the
ability of the currcnt'structure to alter the density distribution.
A reduqrion of viscosity in zones of steep 'density gradient promotes
the oscillations observed previously and incrcasc; their amplitude
(but docs not affect the frequency). The reduction in viscosity
also increascs the time to equilibrium significantly in those cases
in which a stcady state cxists.

A particularly striking result of the transient calculations
is the time scale involved in thermocline formation. A shear
applied at thc surface may altef the density distribution and
create a thermocline-like structure in a few hours versus the weeks
involved in the one-dimensional computations. Thus the ecntire
process of the development, maintenance, and erosion of the thcrmo-
cline is a complex process strongly influenced by the current
structure. The '"physical constants" (i.e., eddy diffusivity)
derived for the one-dimensional analysis have, in reality, little

Physical meaning when the current structures is neglected.
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STABILITY OF FINITE ELEMENT MODELS
FOR CONVECTION-DIFFUSION

by
2

Jerome J. Connorl and George C. Christodoulou
INTRODUC&ION

The convection-diffusion equation, a typical parabolic
partial differential equation, is of great importance in a variety
of fields. It is essentially an expfession of conservation of a
quantity which is subject to advection and at the éame time spreads
out due to molecular or larger scale mechanisms. Applications are
in heat conduction, flow in porous media, vorticity transport in
viscous flows, and dispersion in air or water bodies.

If the domain is irregular, the equation has to be solved
numerically and-criteria for the stability of the particular
numerical scheme used is essential. A large number of finite
difference techniques have been employed in the past and their
stability and accuracy characteristics have been examined for
simple convection, simple diffusion, and combined convection-
diffusion. A review of these methods can be found in [7].

Use of the finite element method in fluid problems has
reéently become quite popular I2,3].‘ The finite element discretiza-

tion is normally applied only in the spatial domain, while time

integration proceeds through conventional schemes. Rigorous

lProfessor, Dept. of Civil Engineering, Massachusetts Institute
of Technology, Cambridge, MA 02139 ,

2Assistant Professor, Applied Hydraulics Lab., National
Technical University of Athens, Athens, Greece
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{-fheoretical analysis has focused on such fundamental problems

as the convergence of the finite element approximation to the
true solution, determination of error bounds, etc. [10], but has
failed so far to yield practical results. This is due largely to
the inherent difficulty in extracting simple expressions in terms
of the prqblem parameters from the matrix equations defining the
stability limit. Thus, important issues in problem-solving, such
as the selection of time step, are mostly dealt with through

experience or experimentation.

-

-

This paper discusseﬂ!a stability investigation of the finite
element method applied to the 2-D qonvection—diffusion equation.
A generalized (arbitrary) spatial discretization is assumed,
along with a simple implicit iterative scheme based on the
trapezoidal rule for time integratiqn. The method is sthn~to
be unconditionally stable for an arbif;ary grid, constant
parameters, and no iteration, except under certain rare boundary
conditions. General criteria for convergence of the iteration
procedure are developed and specialized for the particular case of
triangular elements with linear interpolation functions. The
effect of the finite element discretization on the accuracy of the
solution is also briefly examined. Finally, resulté of numerical

experiments whichvconfirm the theoretical results are presented.

FINITE ELEMENT FORMULATION

The general convection-diffusion equation has the form

C - S = =
317 yve(DC)zveQ-Ff - F (1)



where C is the solution variable, e.g. the concentration of a

constituent, U is the (local) velocity vector, 5 is the diffusive

flux vector, fd and fS are the decay and source terms, respectively.

In the simplest case of a linrear decay. fd is expreszed a&s

FIEY We

where k is the decay constant (> 0).

(2)

A two-dimensional domain is considered here. An analogous

procedure can be applied to one dimensional problems. Incorporating

(2) into (1), considering the fluid incompressible, and integrating

through the transverse direction leads to an "averaged" eguation,

E!; U éj; % 4f:§£; :?JZ CP \;-—.Q) o C ¢ 4%

D¢ 2% 2F ox LS G (3)
where u, v are the average velocity components and Qx' Q? are
the average diffusive fluxes in the x, y diraction. If the

diffusion mechanism is assumed to follow a Fickian behavior, one

can write

Gpﬂ Ky ’ J
- _ oCs (
QJ I:‘:(,c ':_77 a(‘;r

where the set of diffusion coefficients comprise a second order

symmetrical tensor E. Finally the boundary conditions for the
problem are of two types (see Figure 1):

(i) Essential, i.e., concentration specified

C {5a)



- oX

(ii) Natural, i.e., normal diffusive flux specified
EPUENY

Q = 0Q
" A g

Applying the method of weighted residuals to (3) and

(5b)

integrating the flux terms by parts leads to the symmetrical
weak form [2]: :
C
R:gg(ﬁ ey 2002 - f YwdA

3¢ PR S
A

— W
ﬁ(Q Dl Q\!?}Luﬁg/p 7‘me Wel/§ = O
Ay
d Sé_ . (6)

where W represents a weighting function. Since only first
derivatives appear in this form (when’Qx, QY are expressed .
through Eq. (4)), the trial function C (approximate solution)
and weighting function W have to be only piecewise continuous
within the domain A. At the boundary, the trial function is
required to satisfy (5a), while the weighting function must
satisfy the homogeneous form, i.e., W= 0 on Sc.

In the finite element method, the domain is subdivided into
"elements" and the total residual, R, which is required by Eq. (6)
to vanish, is evaluated as the sum of the elemeht residuals, RE.

The trial and test variables distributions over an element

domain are expressed as

C

e

n
Y
¢y

(7)
W

{4
2
'Y
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e ..
where Ce, W are column vectors containing the values at the
element nodes, and N contains interpolation functions restricted

only by interelement continuity of C and W. Using Eg. (7)., and

(4), the residual for a sinﬂle element expands to

e e . oYY | ) e
R = (_B')'—[[(Jff/\//?’a'a ({(N q—:-mr(j j!a/ﬁ/):
iAo ((f4r74yz//;}ge+ (f[[;.é_y _321 ]

| e
= (78)C
[jfé/’;csa/,q -,'-f _/;/7-@,:4/5}
s (8)

Introducing simplified notation for the matrix ccefficients
résulta in .
/&
pS (w} Ceq4 (451K %D)C fﬂ/fw" ff 7‘”
(9)

where the various element matrices are defined as

(geometrical)
/_[C/T ;g * U—'? )‘//‘7 (advecti.on)
ff 2N E ¥ /A (diffusion)
e ff 2 g B

Both @e and Qe are symmetric positive definite matrlves.

The character of__I_<e depends on E. Since diffusion is normally
a "dissipative" mechanism, it is reasonable to assume E is
positive definite. Then, K°© is positive semi-definite with

.

respect to Ce.



6
Summing up the element residuals, one obtains the

total set of equations relating the nodal concentration.

M

1)

+ (A + K + D) C = contributions from sources
~ 7 7 7 and boundary conditions (1L)

The symmetry and definiteness properties of M, D and K are
the same as for the corresponding element matrices.
To establish the characteristics of the advection matrix,

partial integration is carried out over the element domain

(jf»ﬂ" ¢, 327 \aaq) <
;(95 Ay, Q’«P"S')Se- ([[(ég'—ulv,‘ 9;/ )/a)c

SQ

) (gé;!:/-rc{m 4 /J)'Ce ) -(errge ‘ :

(12)

€

where u denotes the outward normal velocity. When the

element residuals are summed, the interior element line integrals
will cancel out &nd provided that céntinuous expansions are used
for u, v and C. Then,

AC - (f/‘/%i“a’f) -Z?TE =

(13)

The line integral in Eqg. (13) is restricted only to that part
of the boundary, Su' where the normal velocity is finite. This
excludes land boundaries which, by definition, require un=0.

If Sﬁ=0 or the concentration is set to zero on Su, the integral

vanishes and the system advection matrix is skew-symmetric.



In general, one can write:

A= A. +f9$g

-~ ~ 3

(14)

where A, A denote the symmetric and skewsymmetric parts of A,

ss
respectively. According to (13)495 is associated with the
boundary segments on which the normal velocity and concentration
are finite.

No use has been made of the particular form of the interpolation
functions N, or the element shape. Therefore, the éonclﬁsions as

to the properties of the system matrices aré valid for .an arbitrary

spatial discretization based on continuous expansions ,

STABILITY OF TIME INTEGRATION

One of the simplest time integration methods is based\én
the trapezoiggl rule. In order to examine its stability
charactefistics when applied to the discretized finife element
transport\Eéuation, (11), the homogeneous form of the latter
will be considered, i.e.,

.
Mc +( A+ K+D)C =0
~o -~ ‘ - (15)

The recurrence relation for the trapezium method is

where the subscript denotes the time index.
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Assuming the advection, dispersion, and decay matrices are

time independent, one can express the solution of (16) as

~ it - ~B C’“

(17)

where B is the amplification matrix. An alternate form is

c,- A ¢

where A, ¢ are the eigenvalue, eigenvector of B. The sufficient

~

(18)

condition for stability is
18l <1 = | A_ <1

Substituting (18) into (16), premultiplying both sides.by ET, the

(19)

transpose of the complex conjugate of ¢, one obtains:

-T T |
Vo [mett(asran)|ds §[m-£(arrn)]e

~

Since M, K and D are symmetric positive matrices, it follows that

- T
d Md = am S0

—_T
dKg=€ >0
9T
D = d '
,‘?~Q 70 (21)

The advection term expands to

—T .
- a .t a
b A d = Lot LG

(22)
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where as is related to the symmetric apd ass to the skew-

symmetric part of A. With this notation, one can write

- B (ageg4d) i T s

T
H

“n +9_.Z (Gg+ €4d) + ¢ -g-tczss

(23)
If a, =0, |A] <1 for abritrary At.

That is, the integration scheme is unconditionally stable

fo; an arbitrary grid whenrthe system parameters are constant,
The value of ag can be different than zero only if there

is a segment of Sq on which the normal velociﬁy does not vanish.

Noting (12), and the positive definite property of NTN,

o P g g ([dua)t
§

X, (24)
one finds that ag has the sign of u - Therefore, when the

normal velocity is directed outwards, a_ > 0, and Eq. (23)

s
indicates that |A| < 1. Actually, the stability is enhanced

in this case. However, when u, is directed inward, a_ < 0, and

s
the stability depends on the relative magnitudes of ag and € + 4.
Sufficiently strong diffusion or decay mechanisms can offset
a negative ag-

It is a common practice, based on physical considerations,

to specify the concentration during inflow and the concentration

gradient during outflow. With this procedure, stability of the
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scheme is usually maintained. The source of instability for
the case of inflow from a boundary with prescribed concentration
gradient is the introduction into the domain of an uncontrolled

quantity of materia..

ITERATION CONVERGENCE

Although the feature of unconditional stability makes the
trapezoidal integration scheme extremely attractive, problems
involving time variability of parameters or inputs will necessarily
require a restriction on the time step. In such a case it Qould
te economical to invert a new matrix of the form M + é% (§+§+9)
at every time step only for a very small problem. An iteration
proceduré is, therefore, preferred. Iteration has the additional

advantage of being able to handle nonlinear decay, nonfickian

diffusion, etc. For the homogeneous problem examined here, the

recurrence relation is expressed as '
. ()
(L'*'\ - . .- At n C
m C = [M—g(ﬂﬂ#@*g\ ],CM‘-.;_(,{?‘L.‘C"'P) ~ m)
P ~ = _ P i ) M+l (25)

where the superscript denotes the iteration index.
The sufficient condition for convergence is the requirement
that the norm of the amplification matrix be less than unity.
-1 , l
w4 (avkep) | <1
2 Aq 3 (26)

Solving for At yields
2.

Il (preen)] e

At <
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A more conservative .form is

2

M~ Al + Im" k] *I/Q“"D/I (28)

In principle, the norm expression (27), can be evaluated.

At <

However, calculation of the commonly used eigenvalue norms

involves long machine computations once the matrices are

formed. An explicit relation between the time step and the
parameters of the problem would be very desirable for practical
applications. An approximate relation can be derived by evaluating
the norm expressions for an individual element. Provided there

are no drastic changes'in the grid or the prameters over the

domain, the conclusions reached at the element level can be
generalized for the whole system. That. is, satisféction of (27)
for the "worst" element would indicate convergence for the total

system of elements.

CRITERIA FOR LINEAR TRIANGLES
Norms for the triangular element (see Figure 2) and a linear
expansion are presented in this section. Starting with the

expansion

d:[g‘ ;z_ §3]

> l -
™) —~;Y5,5L by ] = The b

b\(:z‘q ZH
2 1 . a
—_— e Q a 7 < ~
3y zi-}’e[ A 4] 2"

{29)

where A% is the area of the triangle and
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'&1 = ){3..X2. bl = ft-ny3
@, = %1 ~7%3 b, = /3 wk
CL = 1,(1"75, b = -—
3 37 i (30)
one obtains the following element matrices:
(i) Geometrical matrix
2 / /
Moo= £ [ row ! ‘
~ /1= [ |
N - I ey
M :__:3 12 0 ! ! l
-~ A- -1 3 -y =T - o |t | i
-1 —1 v ! { (31)
(ii) Advection matrix, for uniform flow (a,v) ,
A= —te = | 4 b +v 4
U ) d
T Y M ) [45‘ca¢.’ a3, C(D¢1 AS3C<D 3]
29 - ' . .
‘ v (32)

where U = ,j u2+v2 is the magnitude of the velocity vector,
Asi is the length of the ith side, and.cpi is the angle
between the velocity vector and the inward normal to As; .
This nofation is illustrated in Figure 3.

(iii) Diffusion matrix, for isotropic conditions

(Exx = Eyy = E, EXy = EYX = 0).

- A5, 45, w8 - 45,43, 2 9,
A qp- - 4s, -ASzég;Qoé,

I
ngm_ 4,

\
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where Gi is the angle opposite side 1i.

(iv) Decay matrix

D =+ ([ nTran = A1
- ’ (34)
Proceeding now to form the products appearing in (28),

it is first noticed that
-1
~ o~ (35)
Since the rows of K are linearly dependent, and noting

the second form of M-l, one can write

- -1 2
M K = -'/_-)- K

Specializing (36) for the particular case of an equilateral

triangle
212 -/ -1
- Vi
w1 E8ST L L ‘

The matrix eigenvalues are 0, 3, 3. Using 3 yields a lower

bound on At,

12e 4s” £
el = 2S5
- ‘9(7379 ASV) as (38)

This result is too conservative. A more reascnable estimate
is obtained with the "average" value of the eigenvalues, i.e.,
2.

-1 =
M k) =16 ==

G , (39)
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The last term, which involves ﬂ—l and A has the form

v [! , |
1] 4s, g, asend, 45360¢3]

~1
M A= ——
~ ~ 2 8 ) (40)

A norm measure is generated using the Eudidean norms for the

vectors, Ui
. g . .
' Al < U3 { (a5, 00} 4 (25.000) 4 (a5, 0 4, [
N i ‘ (41)
Special%zing for an equilateral triangle,
/{/\fl_ {/ Z L‘ygg u.ﬁi
~ ~ AS (42)

Similar expressions can be derived for any triangular of
rectaﬁgular shape. The above expressions also apply for a fight
triangle, provided the flow is parallel to one of the short
sides.

Combining (25), (39), and.(42), one obtgins an estimate for

stability of the iteration scheme applied to an equilateral

grid,
' }
At <
/'-25%*82%1 +§ (43)

In actual applications, oen designs the grid with approximately
equilateral,t;iangles, avoiding angles in excess of 90°.

Equation (43) érovides a good starting éoint fsr selecting the
time step.in any given problem. Its validity is tested
experimentally in a later section. Its primary value, irrespective

of the numerical constants which vary with element type,
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lies in the inclusion of all relevant parameters in a single

expression. In the past, these have been examined separately,
if at all, and only by numerical experimentation. For instance,
[5) suggests that for satisfactory time integration using the
same iterative scheme and the same type of elements, both of

the following conditions must hold:

2
4S 4s
Ad <L
/0 U ‘ ‘ /70 £

4t £

(44)
These bounds are stricter than (43) especially with respect
to advection. 1In problems with significant spatial variations,
it is clear that the largest wvalues of E/As2 and U/As limit
the time step. As a consequence, a local refinement of the grid

for better resolution will lead to a smaller allowable time step.

ACCURACY

In addition to stability considerations, an important issue
that has to be addressed is the accuracy of the numerical
solution i.e., how closé the true solution is being approximated.
Accuracy depends on the space and time discretization and the
type of problem being solved. The two basic errors considered
in diffusion problems are those of numerical damping and numerical
dispersion. The former relates to excessive (or inadequate)
damping of the magnitude of individual wave components and is

sometimes expressed by an artificial diffusion coefficient.
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The latter relates to incorrect phase propagation of individual
wave components, which leads to distortion of the shape of the
overall distribution. These errors may be easily examined in
finite difference schemes; they can also be examined, in an
anaiogous way, when the finite element discretization involves a
regular grid. Thus, it has been found that the trapezoidal
integration scheme with linear triangular elements gives negligible
phase error and rather small amplitude error {[1] - actually
being neutrally stable for simple coﬁvection. Similar results
have been obtained foxr ractangular isoparametric elements [9].

However,- when significant high frequency components exist in
the function to be approximated, serious difficulties may arise
from the inability of the grid to represent them adequately.
In particular, linear interpolation functions are suitable for
describing the Gaussian or exponential analytical solutions of
diffusion problems only if the grid is fine. Higher order
interpolation is superior, but also more expensive. The usual
result of the inadequacy of the grid to accommodate steep gradients
is the appearance of spatial oscillations and negative concentra-
tions in the numerical solution. This unnatural behavior is
due basically to the "coarseness" of the spatial discretization
and it has been shown that it would occur even if the problem is
one of steady state [7].

Considering a regular finite element grid (Figure 4) and a
one-dimensional steady state problem, the discretized equation
for Node A is [1]:

ua> (Ce“cc . CE”MF'C(;\‘LE@CH-CC ‘CF) " ©
(o (45)



17
Suppose that, due to the presence of a source and because the
problem is one-dimensional,
(i) the concentrations at C and D are relatively high,
CC = CD'= M.
(ii) nodes F and G are essentially out of the plume,

- C = 0.

n
0

F G

n
0

= C

(1ii) CB E A

Specializing (45) yields

M ’ _ ves
ng = TZ ! 2 = )

(46)
This.shows that, in order to avoid negative concentrations
upstream of a continuous source, the following condition has
to be satisfied:
E_ S L

UA'S z (47)
Condition (47) is analogous to the restriction on grid Reynolds
number required in central finite difference schemes [7]. 1Its
applicability to the finite element discretization has been
established earlier, through numerical experiments [5]. Violation
of (47) is sufficient to cause negative concentrations for
continuous source l1-D problems. Applying a similar type of
approximate analysis as above has indicated that (47) is somewhat:
conservative for 1-D transient problems, but is not quite

adequate for 2-D problems [l]. The additional difficulty that

arises in a two-dimensional domain is the singularity of the
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analytical solution for a continuous point source. Local
refineﬁent of the grid and spreading of the source over a few
elements are the easiest ways to improve the numerical
solution. If the immediate vicinity of the source is to be
modeled accurately, inclusion of singular terms in the

trial functions should be considered ([8].

EXPERIMENTAL RESULTS

Condition (43) limiting the time step,

/.2 U—d—fg;_ g £2% o5 dat <
VAS ASt

is written in the more general form

U At Eo+ sy hdt <
A S 2 a8t 3

(48)

where My Mor Mg are numerical constants dependent on the

type of the elements used. If the nondimensional groups,

- UAt/as, EAt/Asz, ﬁltrare viewed as Cartesian coordinates,

a useful geometrical @nterpretation of (48) emerges: the sufficient
condition corresponds to bbundihg the "acceptable; space by a
certain plane surface. in the absence of decay, which typically

gives a negligible contribution, the space is reduced to two-

dimensions. The inequality

h],
~-

UAt | . FAT,
[2 ZZ— t s is® < | (49)
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determines a theoretically "safe" area bound by a straight

line, as shown in Figure 5. A less conservative inequality

9 .
(11,
, - -
6L
;(LZ gé?) g (’ukJi) < |/
4as A S

(50)
defineé an elliptical boundary.

To test the Validity of the theoretical results, a large
nuﬁber of runs were carried out using the one-dimensional grid
shown in Eigure,ﬂﬁgﬂA poiﬁt source was simulated by loading
the three nodes marked with dots. Most runs involved continuous
relegseé, but instantaneous injections were also made. The
contribution of the decay term was generally less than 5%,
and thus neglected. For each run the corresponding point was
plotted on Figureﬁ%& The symbols used to clarify the runs
with respéct to iteration convergence behavior and the occurence
of significant spatial oscillations are explained in Table 1.

The most important feature of Figure-;‘is that all runs
which exhibit difficulty witﬁ iteration convergence lie outside
the "safe" region. Not too far from the eliiptical boundary,
there are points representing runs that rapidly become unstable.
Points closer to that boundary, but still outside, generally
have iteration errors of 20 to 75%, sometimes decreasing slowly
over time. Since there is a limit of 10 iterations per time
step in the program, it is not known wﬁether these runs would
eventually become unstable'if allowed to continue iterating.
Apparently, when the iteration is stopped with s small error,

the behavior tends to improve over the following time steps.

Of course, these errors are accumulated in the solution.
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Rﬁnslbetween the two boundaries defined by (49) and (50) have
érrors of less than 10% which diminish with time. Finally,
runs within the inner boundary generally converge very well,
with errors less than 1%. |

It may be concluded that the theoretical criteria, indended
as sufficient conditions, are indeed quite abpropriate as such.
The elliptical bound (50) is not too conservative, in view of
the relatively large errors occurring outside its domain. The
linear boundary (49) is somewhat conservative far from the
axes; this is a consequence of working with (28) rather than
the actual condition (27). Numerical experiments for 2 D
problems and applications involving irregular grids of natural
water bodies (1] have further confirmed the validity of the
theoretical criteria.

The other important result of the experiments is associated
with the accuracy condition (47). It is seen that the line
E/UAs = 1/2 differentiates the regions where runs do or do
nog.show appreciable upstream negative concentrations and spatial
oscillations. These oscillations become more severe near the
UAt/4 s axis, és the ratio E/UAs diminishes, and\they are
practically eliminated as E/UAs increases slightly above 1/2.

Accuracy considefations significantly reduce thé area of
acceptability of combinations (UAt/ts, EAt/Asz) to a much
smaller set than thét required for iteration convergence.

Fortunately, continuous source problems, which are the most
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demanding, are not too sensitive to the value of the
diffusion coefficient; this may be changed by almost an order
of magnitude without appreciable change in the results ([4].
Therefore, it may be possible in some cases to impréve the
numerical solution by artificially increasing the value of the

diffusion coefficient. Another alternative is to resort to

higher order elements.

CONCLUSIONS .

It has been shown that the trapezoidal integration scheme
applied to the discretized convection-diffusion equation
(including decay) is unconditionally stable for an arbitrary
grid and constant system parameters. This was based upon
the examination of the character of the matrices involved, in
particular, the skewsymmetry of the advection matrix.

When the system parameters are time dependent, anviterative
solution technique is preferred. Its convergence requirements
imply)some restriqtion on the time step. Conservative bounds
on the time step have been developed for the case of linear
triangular elements, based upon a simplified analysis at the
individual element level. Results of numerical experiments,
mostly on a 1-D grid, confirm to a large extent the
theoretical arguments.

Accuracy considerations, related to oscillations of the solution,
limit rather severely the use of linear elements in some practical
applications. Resort to higher order elements may be worthwhile,

despite the increased cost, when there is weak diffusion.



22

Figure Captions

Figure 1  Solution rield

Fignre.2 Typical Linear Tria.gular Element

"igure 3 Regular Finite Element Grid

Figure 4 Comparison of 1-D Trial Rgns with Theoretical Criteria

Figure 5 1--D Test Grid
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Figure 2 Typical Linear Triangular Element
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Figure 3 Reqgular Finite Element Grid -
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Comparison of 1-D Trial Runs with
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Table 1

Symbols used in Figure 4

Symbol Error after Negatives as Remarks
10 Iterations Peroent: of Peak
0 < 1% < 10% Good, smooth solution.
0 < 1% > 10% Good convergence, but

. solution exhibits
oscillations

A <
§ 10% < 10% Tteration error goes
\ < 10% > 10% down rapidly with time
2 o o .
> 10% < 10% rieration error decreases
il > 10% ’ > 109 slowly with time

& L ; - Blows up
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DISPERSION IN TWO~LAYER STRATIFIED WATER BODIES

by

’
George C. Christodoulou™ and Jerome J. Connorz, M.ASCE

INTRODUCTION

During the winter season a water body is usually well-
mixed through thée depth. However, this is not the case in thel
summer. Due mainl& to increased heat input near the surface,
a density stratification begins to develop in the spring and by
mid-summer a strong thermocline (pycnocline) often exists,
dividing the water column into two distinct layers. The dynamics
of such a system cannot be adequately represented by depth-
averaged approximations. The effect of stratification on the
flow patterﬁ has been demonstrated by means of analytical solutiohs
for oceans, coastal waters, and lakes, under severe simplifications
of geometry and the governing equations. Ultimately, from a
practical viewpoint, of main interest is not the flowfield itself,
but rather the transport and dispersion of some substance in it.

To achieve a better description of both the vertical and
the horizontal variability of flow in a natural water body of
arbitrary geometry and bottom topography, multilayer or gquasi-
three-dimensional ngmerical modéls are being formulated and the
development of %frge multi-purpose finite-difference computer

codes initiated [1, 10, 17). Although transport of constituents,

lassistant Professor, Applied Hydraulics Lab., National Technical
University of Athens, Athens, Greece

2Professor, Department of Civil Engineering, Mass. Inst. of

Technology, Cambridge, MA 02139



notably water quality parameters, is being incorporated in these
models, primary emphasis is placed on improving the computational
techqiques and software and little attention is given to such
important issues as assigning values to the parameters involved,
parameter sensitivity, and model verification. As the number of
layers increases, model verification becomes a very difficult and
costly task, as extensive field data, particularly boundary
conditions, is required.

A two—layer_model, while requiring minimal "tuning", pro-
vides a picture significantly different than a one-layer approach,
and is quite appropriate when there is strong natural stratification.
In'this paper, a model is presented for ;he description of the
dispersion of matter in such a two-layer system. After the
mathematical formulation, the physical aspects of the problem are
discussed, focusing primarily on quantification of the dispersion
coefficients and the interfacial transport mechanisms in terms
of the mean flow characteristics. The finite element method is
chosen for numerical implementation because of its successful
application to one-layer dispersion problems [1l1]. The solution
procedure is discussed and-its’stability requirements are
established. Verification of the numerical results against
analytical solutions, available for simple flow conditions [6],

* is performed. Finally, an application of the model to the
Massachusetts Bay in conjunction with a large scale field
experiment serves as an example of its applicability to real

world problems.



MODEL FORMULATION

The model presented hérein is intended to describe the
dispersion of an arbitrary constituent, possessing in general
someé vertical mobility, in a two-layer (coastal) water body of
variable bottom topography and boundary geometry. The velocity
field in both layers, as well as the layer thickness, are assumed
known, presumably obtainable from a separate hydrodynamic model.
'By uncoupling the hydrodynamic and dispersion models, the same
flow pattern can be used to inveétigate very economically the
transport of several different substances and to experiment with
various'loading strategies, parameter values, etc. However, this
can only be done provided the constituent of interest does not
significant;y affect the flow field or fhe density structure.

The mass balance of a constituent is expressed by the

3-D convection-diffusion equation:

oC _ _ 9_ - 9 _ (v -
=T % (uc + qx) (ve + qy)

5y ((w-ws)c+qz) +p
‘ ‘ (1)

Qi
N

where
¢ is the local concentration

u,v,w are the water velocities in.the x,y,z directions,
respectively

w_ is the particle settling velocity, positive whén in
the negative z direction

dyr 9 q, are diffusive fluxes

yl
p represents generation or decay of the constituent.
Integrating (1) between the layer boundaries and using

Leibnitz's rule, the equations pertaining to a layered system dre

obtained. Thus, for the top layer (Figure 1):



n (n n N
3__ = - 3_ - 3_ + d +
T j—h cdz e lh (uc+qx)dz EYJ_h (uc+qy)dz J-h pdz
1 1 1 1
Dn Dhl :
+[c(5€ - W+ ws)-qs]n + [C(EE— + w - ws)---qi]__h

1
(2)

The terms in brackets represent fluxes through the layer
boundaries, i.e., the free surface and interface,
respectively. The kinematic condition at the surface
requires

,~[g% - wlp =0 (3)
However, the ihterface, which is defined as the position of
-gfeépést density gradient (ideally, a density discontinuity),
ié not’ﬁééeséarily a material surface. For this surface, one
can write |

Dh1

[w + ——

BE J—h =W (4)

1 - &

where W, represents the relative velocity of the water
particles (on the average) with respect to the layer boundary
and is referred to as "entrainment" velocity. It is con-
sidered positive when upward, indicating net water motion from
the bottom to the top layer. The diffusive flux component, q;
of the interfacial transport may be expressed as a function of
the concentration difference between the two léyers. If the
concentration at the interface is approximated by the average
value of the two layers (consistent‘with the two-layer

idealization), the overall transport from layer 2 (bottom) to



to layer 1 (top) can be written in the form:

. cl+c2
Q21=(we*ws)c_h—qi=(we—ws) 5 f a(cz-cl) (5)

where o 1is évvariable parameter. Equation (5) shows that
settling counteracts entrainment, while for a neutrally
buoyant constituent (ws=0) the top layer would gain material
thfough entrainment when Wy > 0.

. With respect t6 the remaining terms in Equation: (2}, the

following notation is introduced
n

cdz = c.H,
J—h 171

C

. (6)
c=c+c", u=u+u", v=v+v"
where the overbar denotes the average value oOver the layer
thickness and the double prime represents spatial deviation
from the average. Equation (2) now takes the form:
3c,  3(u;cy) 3 (V,Cy) s

= - 9_ -2
3 T TTax - oy T X Qxl dy Qyi t P

(7)
Squrées, decay, and boundary flux terms are included in
_Pl' The total dispersive fiuxes, Q, accouﬁt for both
horizontal turbulent diffusion and dispersion due to vertical
velocity nonuniformities and are assumed to be approximated by

Fickian expressions:

n 9 ] vacl
Q = j (U"C"‘}'q Ydz = -H, (E — 4+ E )
Xy ~h, X 1 XXy 09X xy, 9y
_ (8)
n 82, 8¢,
= My { = —-H E - —— 4+ E —
v, J-h (vict+ay)de 1Fyx, % vy, 37

1



. The overall dispersion coefficients are elements of a second
order tensor, consisting of an eddy diffusivity component

and a shear dispersion component:

E E )
XX Xy a (9)

E =
- E E
[_yx Yy

Il
tm
+
1 o)

Theix quantification is discussed in the next section.
Following the same approach, one obtains the integrated
equations for the bottom layer:

3C2 . 8(u2C2) 3(v2C2) 3

3
= - £ ~ +
3t 3% 5y ox "x, ~ 3y %y, T T2
' (10)

whe: e Pz_will)‘in general, include deposition to thg bottom.
Equations (7) and (10) are the governing equations of the two-
layer system.

The boundary conditions for the dispersion problem are of
two types (see Figure 2):

(i) concentration specified: C = C* on S

(ii) normél dispersive flux (i.e., concentration

%radient) specified: Q = Q; on S

n q’

ASsuming reflecting land boundaries, one usually prescribes

Qn = 0. Of major concern is the treatment of the ocean (open)
boundary. The concentration may be maintained at zero only
as long as the plume remains sufficiently far from

the boundary. An ideal, but not economical, solution is

to make the grid so large as to ensure that the plume

will always remain well within the computational domain.



In practice, different conditions are prescribed for
outflow and inflow boundary segments. In the former case,

- the concentration gradient is commonly épéeifiéd,.itﬁ value
obtained by extrapolation from the interior. In the latter
éése, the concentration should be specified, but this is
difficult since it is related to mixing conditions outside of

Ithe-domain being modeled [10]. A simple procedure, which
proves satisfactory when the plume reaches the boundary with
a low concentration gradient at a segment of predominantely
outward flow, is to specify and ﬁaintain the gradient at
zero [16]. This allows the matefial to advect through the

boundary and assumes essentially complete mixing in its

neighborhood.

-

DISPERSION COEFFICIENTS
The horizontal spreading of a constituent within a given
"layer" is accomplished by the following three mechanisms:
(a) Advection, in particular spatial or temporal
variability of layer average currents,
(b) Turbulent diffusion, i.e., mixing due to small or
large scale turbulent eddies, and ‘
(c) Dispersion due to vertical shear, that is, velocity
nonuniformities over the layer\thickness.
The contribution of the last two mechanisms is commonly
expressed by the introduction of diffusion and dispersion

coefficients, by analogy to the molecular mixing process.



These coefficients bésically arise from the simplified
representation of the vélocity field, and, indeed, the more
simplified the latter becomes, the larger the coefficients
need to be. Considering the diffusion of a cloud due to
turbulence, it is noticed that, at first, moderate size eddies
contribute to the advection of the cloud as a wholé, while
mixing takes place at very small scales. As the size of the
cloud increases with time, larger eddies become involved in
its internal mixing. Thus, it is :found that diffusion
coefficients increase with time (or cloud size) [13].
However, when the flow field is specified at a certain spatial
disdretization, such continuous growth of the diffusion
coefficients is not justified once the cloud increases beyond
the levéi of discretization, since eddies of the scale of the
grid size are still described by the'advection terms.

One approach for quantifying the eddy diffusivity is based
on using the 4/3 diffusion law derived from the theory of
locally isotropic turbulence. This is applicable to horizontal

diffusion in the ocean if one assumes that the eddies are

essentially isotropic horizontally [14]. Then
1/3.4/3
= bel/3LY/ . (10)

where
€ is the eddy diffusion coefficient
e is the rate of energy input,'per unit surface afea
L is the length scale, presumably related to the grid size

b is a numerical constant, or order 0.1l.



An alternative expression for €, based on mixing iength
arguments [2,8] has Ehe-advantage of using the readily

available mean velocity gradients:

e = L2/$ ' (11)
where
= (24,2 av,2 . 3u , 3v,2
0= 200+ 2G0T+ Gp )

According to [8], tﬁe sub-grid scale eddy coefficient is
modeled using a length scale which is an order or magnitude
smaller than the grid size. Howevér, the resolution of the
flow field description, associated with spatial averagihg
in ‘the hydrodynamic model being employed, has to be taken
into account and the coefficient increased accordingly.

The analogy between the effective horizontal spreading
due to nonuniformity of the velocity prbfile and the turbulent
diffusion process was shown initially by Taylor [18] for
steady 1-D flow through a pipe and later Sy Elder [9] for open
channel flow. A parallel argument for the case of two
horizontal velocity components (u,v) shows that the répresentation
‘'of the dispersive fluxes according to (8) is indeed appropriate

[€). The shear dispersion coefficients are identified as:

H 2
4 1 J 1 J 2
gd -1 Lol urar)?az
xx  H 5 e, Jg '
H Z o

gd =1 f 1 [J vdz] 2dz (12)
yy H o €, g

H Z 4 .
d — d - -]_._ l " "
Eq, = Eoy = i fo E;[Jo u"dr] [Io v"dr]dz
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wﬁere €, is the vertical diffusion coefficiént, and H is
the layer thickness. Once the velocity profile is specified,
the above integrals can be evaluated. One can prove that the
shear dispersion coefficients comprise a second order tensor
[6]. Therefore, profile information is needed only along any
two perpendicular directions. In the simplest case, if
self—éimilarity of the velocity profile in a layer is assumed,
the dispersion coefficients méy be related directly to the
mean velocity and layer thickness.

This treatment of shear dispersion is valid, only when
some "initial time“ has paséed after the introduction of the
material. The initial time is related to the vertical mixing

time scale, given by [3]:

.2, 2
= . 13
T, HY/n%e, (13)

Furthermore, with respect to the effect of a tidal component,
it has been found [3] that the dispersion coefficient is
essentially the same as if the flow was steady at any point

of the tidal cycle provided that

'1‘/'1'c > 1 | ] (14)

For typical values, H = 10-20 m (30-60 ft), €, = 50 cm2/sec

(0.05 ft2/sec), one obtains Tc = 0.5 - 2 hours, and condition

(14) holds.
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INTERFACIAL TRANSPORT

The erosion of the quiescent lower layer by the upper
Tayer, moving under the influence of wind or othe; driving
:nechanism, is a well-known phenomenon in water bodies. It
is explained by the one-way transport from the nonturbulent
to the turbulent layer, often called entrainment. The term
is most familiar in the context of a jet, whicﬁ draws ambient
fluid due to its high momentum. The mechanism of erosion of
a distinguishable density interface has been examinéd in the
past, mostly experimentally. Turbulent eddies appear to
scour the interface, sweeping away interfacial disturbances
at relatively large time interwvals [19]. When both layers
are turbulent and have comparable velocities,‘as is usually
the case in coastal waters, there must be a two-way transfer.
Denoting the respective volumetric rates of transport, per

unit area, by m and m (see Figure 3), the net rate of

21 12
transport of material toward the top layer is

C, = My,Cy (15)

This, of course, assumes that £he particles of interest

do not have independent motion, which would provide yet another
contribution to interfacial transport. By setting Wy = 0

in Equation (5) and comparing with Equation (15), it is

evident that

w =m

e 21 ~ M

12
{16)
a = (m12 + m2l)/2
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Thus, the entrainment veiuvcity expresses the net rate of

water motion between the layers, while o represents an

average exéhange rate and indicates that interfacial transport

is present even without net entrainment (i.e., "éteady—state"
conditions with respect to layer boundaries).

Severai experimental and theoretical investigations
[4, 12, 19} have been carried out in the pést, mostly in
1-D two-layer systems with one layer quiescent. The one-way
transport rate (similar to mij' above) was then aetermined
by the thickening of the moving layer. It was found
proportional to some characte;istic velocity and inversely
pfoportional to a Richardson number associated with the

stability of the system. Various length ‘and velocity scales

have beén used and, at first, the agreement between a number of

the proposed formulas seems .to be only qualitative. However,
if comparable measures are used, a rather general expression
emerges in the form [6]:

10'3lvi] .
M1 T TR, 1.3 =1,2 (17)
(i#3)

where, in a 2-D domain, the overall Richardson number is

defined as

(18)

.....



[
W -

and Ap is the (small) density difference
p is the density of either layer
H is the average layer thickness, i.e., half the depth

Vi,V. are the depth-average velocities in layers, i,j.

The rates of interfacial transport are typically small
for - stably stratified water bodies; e.g., the value of a
is of the o6rder of 1077 m/sec (ft/sec). Nevertheless, this is

of the order of settling velocities of fine particles and its

éontribution may become significant over the relatively
large length and time scales typical of coastal areas =
especially when multiplied by a large’concentration
difference.

+ The use of Equatioﬁ (17) is conditional on the existence
of a mean velocity in the layer, which is usually the case
in tidally dominated flows in coastal areas. However,
interfacial transport may well be present in the absence of
mean flow, as indicated by experiments with stirring grids

[19]). Further research is needed in this area for a more

general guantification.

NUMERICAL TECHNIQUE

The finite element method is chosen for spatial discretiza-
tion because of its great flexibility in grid layout and easy
handling of spatial variability. To find the approximate
solution the weighted residual method is applied to each

layer, resulting in the symmetrical weak form [11]. Then, the
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domain is subdivided into linear triangular elements,
resulting in a set of linear ordinary differential equations

with the nodal concentrations as unknowns;

MG =k
. ~ (19)
Mmc, =rb,

In Equation (19), M is the geometrical system matrix (it

is assumed that the spatial discretization is the same

for both layers), and éi is the forcing vector for layer i
containing advection, dispersién; decay, inteffacial transfer,
sources and‘boundary cqnditions. Time integration is performed

by an implicit iterative trapezoidal scheme, as follows:

(i+1) _ At -1  a(i) 3
C1,evae = C1,e v ¥ Briiae B
‘ V ' (20)
(i+1) At -1 s(i) & |
Co,trat = S2,e V¥ T By iae Y B, )

Since M is time invariant, it has to be inverted only once.
By lumping‘all other terms in éi’ maximum generality in
handling timg variability or nonlinearity of the relevant
" parameters and loadings is achieved. 1In practice, the
iteration continues until either a measure of the difference
between consecutive iterates is below a specified tolerance,
or the number of’iterations reaches an imposed upper limit.
’In the case of constant and equal layer thicknesses, no
entrainmen£ and constant a, Equation (19) can be written

in the expanded form [6]:



. _ _ @b
MCy + (B + Ky +Dy) Cy +G(Cy ~Cy) =8 - Fy
(21)
MG, + (A, + K, +D.) C, + G(C, - Cy) = &, - .F2
~ <2 ~ ~2 ol o ~'<2 <1 <2 2
where Ai’ Ki, Di’ Gi are the advection, dispersion, decay,

~

and‘interfacial diffusion matrices; Si contains source loadings;
and E? includes the terms resulting from the prescribed
.boundary conditions.
The trapezoidal integration scheme applied to Equations

(21) can be shown to be unconditionally stable, under nd
iteration, for an arbitrary gfid [6]. The procedure is similar
to that of the one layer case [7]. - Actually, the inter-layer
exchange term enhances the stability of the system. However,
the iterative proceduré used imposes ékrestriction on the time

step.

Applying the time integratien scheme to (21) yields:

(i+l) _ _ At ' (1) At (1)
MCynr1 =~ 3 ByFKy+Di#6) i1 S nt1™ 2 Cnel Sonel T
(i+1)_ _ At (i) At (i+1)
M Coni1™ ~ 7 Ba*Ko#Da4CG) iy Coneit 77 Cne1 Cinrl T D2
(22)

where the subscript n+l refers to time t+At and the quantities
Ql' Qé are known from the previous time step. To investigate

convergence of the iteration procedure, the equations are written

as:

R C =pct 4 g \ (23)



where

(i41)
C(1+1)_ ~1l,n+l C(i)
' (i+1) ~

~2,n+1

[ At

T(Al~+13+G)
B =

0

/

1%

M 0
= R = .
| At
2 .n+l M
At 7]
+1 =5 Cn+l
(A2+K2+D +G) n+l
-

The convergence requirement is

| IR

~

-1

B |

<1

Expressing R as a product,

leads to

M 0 I 0
At -1
0 gﬂ - M §n+l 1
I olim1 0
At -1 -1
5> M EE+1 %J 9 @ :

Since now both R} and B

involve triangular

eigenvalue norms are conveniently expressed

diagonal elements, Thus,

| IM

1

At
2

(A.+K.+D. +G)
~l ~1 Ti

condition (24) is

n+lH

(24)

(25)

(26)

matrices, their
in terms of their

equivalent to

1,2 (27)
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which implies

At < 2 (28)

TEatR R

A more restrictive condition is

At < 2 ‘ (29),

-1 -1 -1 =
[Tty [+ Itk |+ ] 1t [+ e ]|

These>criteria are analogous to the one-layer results [7], the
difference.being the addition of the interfacial exchange
term.

Evaluating the matrix expfessions for an individual
equilateral triangular element of side As yields an

approximation to (29) in terms of the problem parameter:s:

—

At < 1 (30)
.Yy By x o
1.2 Ais + 8 'I;—'z—+ 5 + 5
s
where k is the decay rate, a' = o/H, E. is the (assumed isotropic!)

dispersion coefficient and Vi is the‘(assumed uniform) velocity
of layer i. As discussed earlier, the value of a' is

commonly small aﬁd its contribution to limiting the time step
Qill typically be marginal. Then, At is basically restricted

by the flow conditions in the individual ‘layers.

VERIFICATION
To test the accuracy of the numerical approximation,
comparisons with analyticél solutions are desirable. However,

the latter are available only under very simple flow conditions.
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IniFigure 5{ the nume?i;al model is compared with the

solution for an instantaneous source in the top layer of a

1-D counterflow, derived in [6]. A unit load is distributed
between the three nodes at x = 0 of the grid whown in Figure 4,
and the results adjusted to yield values per unit width 6§

the channel. A unit depth is assumed for each layer. Zero

concentration is specified at the ends of the grid and zero

A.flux is prescribed along the side boundaries. The parameters
.used are:

Vl = —V2/= 0.05 m/sec (0.164 ft/sec)

E, = E, = 0.0l m°/sec (0.108 f£t2/sec)

a =5 x 10 % n/sec (16.4 x 1073

At = 0.1 sec

ft/sec) k =0

Very good agreement with the analytical solution is obtainead.
The much lower concentrations observed in the bottom layer
support to some extent the traditionél treatment of the inter-
face as a barrier. .However, this simplification may not be
reasonable for long time periods and is certainly not valid
for substances possessing vertical -mobility. Figure 5 also
points out the great advantage of the two—la&er treatment,
in relation to the more detailed description‘of the flow field.
In this particular counterflow case, the depth-average velocity
is zero and a one;layer approach would imply a stafionarf
concentration peak located at the origin.

The behavior of the model at steady state was also examined.
The results for a continuqus load(rof one unit/sec¢, intrcduced

in the\top layer, are shown in Figure 6. A high decay rate is
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specified to speed up the arrival at steady-state and keep
appreciable concentrations away from the boundary. Thz

., remaining parameters are the same as in the transient test,
except for a higher interfacial mixing rate used to 'make the
exchange between the layers MOre pronounced. Again agreement

is quite good.

APPLICATION

To.establish confidence in the predictive capability §f
the model and the degree of its applicability under natural
conditions, further verification consisting of comparison to
real world cases is necessary. Agreement can never be expected
to be perfect, in view of the extreme complexity of the |
physicai/processes involved and the unavpidable simplifications
employed in any modei. Nevertheless, the ability of the model
‘to reproduce certain basic features of the actual data should
be evaluated.

A dispsrsion experiment was carried out by the R.M. Parsons
Laboratory of M.I.T., sponsored by the Boston Edison Co.,
in the vicinity of the Pilgrim Nuclear Power Station on the
Massachusetts Coést (Figure 7), in August 1975. Five hundred
poundsaof small sphalerite particles (ZnS) with fluorescent
inclusions were introduced into the water and their motion was
subsequentiy'monitored for five days through samples taken
by boat and by helicopter. By averaging, at each location,

samples‘taken above and below the thermocline, the field data
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Qﬁré?reduced to a single fepresentative value for each'iéyer.
The resulting plots,. in particles/lt, are shown in Figures 8a,
b, ¢, corresponding to 1, 2 and 3 days after the dumping took
place. The plume is seen to move slowly to the southeast,
approximately parallel to the shoreline and later extend to the
east.

In the numerical simulations, the finite element grid was
the same as used in previous applications of one-layer models
to the Bay [15, 161. The shaded 'triangle was loaded over a
period of three timesteps (i.e., 4500 sec.), which corresponds
approximately to the actual duration of the’dumping. However,
the area of the triangle is quite large‘in comparison to the
actual source and consequently one should expect unrealistically
large plume areas for short times. The value of the (isotropic)
 dispersion coefficient, 30 m2/sec,(323 ft2/SeC), and the differ-
ence in tidal amplitude between the ends of the open boundary were
kept the same as established for the one layer models [6]. The
circulation model used to provide velocity inputs is that of
Wang and Connor [20]. Since this requires, at present, that
both layers extend over. the whole domain, some nodal depths had to
be artificially increased to at least 15 m (49.2 ft), in order
to avoid intersection of the interface with the bottom. As ini-
tial condition, the position of the interface was set at 8 m (26.2
ft), consistent with the little available information [5]. Along
the ocean boundary the interface was assumed to vary linearly and

move together with the free surface over the tidal cycle.
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The sensitivity to the type of interface motion was found

small [6])], but other than linear configurations were not
examined. Aqtual time varying wind data were used in the
computations, while a "typical" tidal cycle was used repeatedly.

The interfacial mixing rate was set at 10-5 m/sec (3.28 }‘:‘10"5 £t/

sec) and the settling velocity at 7.3 x 10-5 m/sec (24 x 10-5
ft/sec), based on an average particle size of 7 microns.
Computed concentrations at 1, 2, 3 days after the injection
are shown in Figures 9a, b, c. Taking into account the initial
spreading of the souéce and the uncertainties aboﬁt the velocity

field, good gqualitative agreement is observed, with respect

to the location and peak values of the plume..

CONCLUSIONS

In this paper, the problem of dispersion in strongly
stratified water bodies is examined. The two-layer idealization
is adopted as a useful extreme case and, at the same time, the
simplest to handle mathematically. Quantitative expressions
for the dispersion coefficients and the interfacial transport
rates, needed for engineering applications, are proposed.
Also, a criterion for selecting the time step is presented.

The ability of thevtwo—layer model to handle transport
between the layers was seen to be important in providing a
refined picture of the vertical concentration distribution,
whether or not the constituent of;interest has some vertical

mobility. A further advantage of the two-layer formulation
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lies in the more detailed description of the velocit§ field.
This, in turn, points out the need for u;ing realistic current
inputs.

The development of numerical techniques is oﬁtgrowing
the present ability to define realistic inputs and also the
basic knowledge of some of the physical processes involved.
Further fundamental research is needed for better understanding
the turbulent mixing process in stratified'environments. Also,
field monitoring programs are required to provide reliable
inputs, primarily on the behaviorlof the interface aiong open

boundaries.
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NOTATION

numerical constant

local concentration

layer average concentrations

concentration deviation from average value

rate of energy influx

%nterface elevation

bottom elevation

itgration ihdex

decay rate

one-way interfacial transport rates
time discretization index

internal volumetric source/sink term
turbulent diffusion fluxes |

diffusive fluxes through interface and
surface

time

local velocity components

layer average velocities

velocity deviations from average values
entrainment velocity |
settling velocity

cartesian coordinates

advectioﬁ matrix

matrices

layer-integrated concentrations
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decay matrix

<

overall dispersion coefficients

shear dispersion coefficients

boundary conditions vector
interfacial transport matrix
layer depths

average of Hl and H2

dispersion matrix
length scale for diffusion
geometrical matrix

term including sources/sinks, b.c. and
interfacial transfer

overall forcing vector
dispersive fluxes

overall interfacial transport
overall Richardson number
source vector

boundary segment where concentration, or
dispersive flux, is specified

tidal period
time scale for mixing
layer velocities

proportionality factor for interfacial
diffusion '

a/H

turbulent diffusion coeificients
surface elevation

density, density difference

grid size

time step



FIGURE CAPTIONS

FIGURE 1 The Two-Layer Idealization

FIGURE 2 Solution Field and Boundary Conditions

FIGURE 3 Schematization of Interfacial Transport

FIGﬁRE 4 One-Dimensional Finite Element Test Grid

FIGURE 5 '1-D Distribuﬁion at £t = 10 sec After an Instan-
taneous Injection

FIGURE 6 1-D Steady State Distribution for a Continuous
Load NE

FIGURE 7 Massachusetts Bay Finite Element Grid

FIGURE 8 (a) Experimental Results at Day D+l

(b) Experimental Results at Day D+2
(c) Experimental Results at Day D+3

FIGURE 9 (a) Computed Concentrations at Day D+1
(b) Computed Concentrations at Day D+2
(c) Computed Concentrations at Day D+3



1

7WM
7777777777777

Figure 1 The Two-Layer Idealization



Figure 2 Solution Field and Boundary Conditions
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Figure 3 Schematization of Interfacial Transport
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Figure 8a Experimental Results at Day D+l
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Figure 8b Experimental Results at Day D+2
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INTRODUCTION

Experience and engineering judgment form the basic foundation
for designing sampling programs. Collection of accurate. field
data is required for verification of constituent (pollutant)
dispersion predictions. However, the complexity of the dis-
persal phenomenon precludes the design of optimal sampling
strategies based upon only qualitative analyses; more substan-
tial quantitative analyses are required.

The most informative sampling strategy would require the
collection of samples covering the entire spatial and temporal
domains of the particular problem at sufficiently small spatial
and temporal intervals to ensure the identification of all
important information. A greatly reduced number of samples is
usually collected due to the imposition of cost constraints.

In such cases, decisions must be reached as to which sawmples are,
and which are not, to be collected. The importance of such
decisions is magnified in short-term field sampling pro-

grams. In long-term monitoring programs, one has the capabil-



ity of altering the initial strategy to improve its effective-
ness as data becomes available. Due to the relatively short
duration of typical field sampling programs (e.g., tracer
experiments), they must be designed before the start of the

" sampling effort, since the results of sampling are not usually
available until after the commencement of the field program.
Thus it is desirable that a methodology be made available

to assist in the designing of effective sampling programs.
Only within the last few years have quantitative methodologies
for determining spatial and temporal sampling intervals begun
to appear in the technical literature. The particular
methodology of interest is based upon the concepts of Estima~
tion Theory (specifically, Kalman-Bucy filtering): Estimation
Theory refers to a variety of statistical techniques developed
for determining best approximations of unknown quantities from
observations (data) which are recognized as being imperfect,
i.e., containing uncertainty. Kalman-Bucy filtering is a
technique available for the estimation of the states of a
system by the sequential extraction of information from data,
as the data becomes available. It has been employed success-
fully in the field of navigation and guidance of spacecraft
since the mid 1960's, and several investigators have recently
attempted to apply these concepts to envirommental pollution
problems. Moore [1973) applied filtering techniques to
determire the minimum monitoring frequency of certain water
quality constituents for a simulated river system. Brewer and
Moore [1974] extended the work of Moore [1973] to include the
problem of determining the water quality constituent to be
sampled and their spatial locations. Although Desalu [1974]
did not directly address the monitoring design problem, he
illustrated the applicability of Estimation Theory to such
air pollution problems as: 1i) estimation of the three-
dimensional distribution of pollutant concentrations from ob-
served data, ii) identification of the diffusion coefficient
‘and other model parameters and iii) identification of the major
sources of air pollution. Pimentel [1975] illustrated that a
simplified formulation results when measurements are made
infrequently. This approach required ignoring the advection of -
the constituent; only diffusion is considered, an assumption
unsuitable for estuarine areas. In addition, the important
question of what is the maximum rate of sampling that can be
considered as infrequent was not addressed.

A common deficiency of the above studies is the lack of effort
directed at quantifying the modeling uncertainty. Although
filtering concepts are straightforward, difficulty arises in
their application. A major difficulty is the quantification
of the modeling uncertainty. Lettenmaier [1975] considers
uncertainties in tributaries, waste sources and certain paraum-—
eters in his approach to design of river monitoring programs



for detection of water quality trends. The use of a steady-
state one-dimensional model and temporally constant uncertainty
statistics severely restricts its usefulness. The work of
Dandy [1976] appears to be the most complete study published
to date. He considers the design of riverine monitoring pro-
grams using a one-dimensional transient model of the advection

of water quality constituents. Modeling uncertainty due to
randomly varying streamflow, tributary discharges, and waste
sources is considered. However, he neglects constituent dis-—
persion and model parameter uncertainties, and uses a simpli-
fied representation of the hydrodynamics.

In this paper, the analytical framework for applying Kalman-
Bucy filtering to dispersion in a coastal water body is
developed. Particular emphasis is placed on quantification of the
model uncertainty due to model parameters, source loadings, and
velocity -fields. The formulation is discretized with the
Finite Element Method, and a number of comparison studies are
presented.

. A}
In what follows, we outline first the filtering strategy, then
describe briefly the Finite Element implementation, and
lastly discuss some examples.

FILTERING CONCEPTS

Conalder-é 11near, discrete mathematical model of the followlng
form:

X (e+ar) =_?(t)§(t)+§(t)!(t)+'9(t) @

where
is a n-dimensional system state vector
is a n x n dimensional state transition matrix
is a n-dimensional vector of known deterministic inputs
is a n x n dimensional factor matrix of the deterministic
input vector
is a n-dimensional vector of model uncertainty having
zero mean and covariance QM ,» as designated by
(O,QM ) (t)
()

represents the array evaluated at time t+At

L€t |
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( )t+At
( )t represents the array evaluated at time t

At is the time increment

The state-space model form of Equation 1 allows the calculation
of the system state vector at time t + At from the system state,
vector at time t. Since © is independent of X the model
is linear in the 1ndepende£E variable X . It 1é glso discrete,
as opposed to continuous, since it allo&s the computation of the
dependent system state vector at only discrete times (temporally



spaced At units of time apart). The deterministic model would
not normally include the last term, § . It is included here
to signify the uncertainty in the res&f%s predicted by the
deterministic model. Specification of a zero mean model uncer- .
tainty defines an unbiased model. If the model is biased, and
the value of the bias is known, the model uncertainty can be
represented by a deterministic bias and a zero mean random con-
tribution.

Consider next, the following linear, discrete form of the ob-
servations:

2y T Bk T )
vhere :

_g(t) is a m-dimensional vector of field observations

g(t)'is a m x n dimensional observation matrix -

X(t) is a m-dimensional vector of observation uncertainty

having zero mean and covariance Qo , as designated
by (0,0 ) %) v -
(v) -

The observation matrix, R , designates the locations at which
the data is collected. Aétgach time step, a new observation ma-
trix may be formulated, with the number of rows corresponding to
the number of observations at that time. TFor each row, zeros
(O'S) appear in all columnmns except the column corresponding to

a node of sawmpling; in this column, a one (1) is placed. For
example, if only node 2 is measured in a 4 node system, the
observation array will be:

[o - 1 0 0]

Information from the model and observations can be combined by
Kalman-Bucy filtering, as presented by Gelb [1974]), Jazwinski
[1970], and Schweppe [1973]. The first stage of the filter (i.e.,
prediction state) entails the extrapolation of both the state
estimates and the system error covariances forward in time to the
next discrete time point using the system model of Equation 1.
Assuming that the model uncertainty is uncorrelated in time, the
predicted system error covariance is:

T
L = +
O DM OO DMO I T (3)
where
E(t+Atlt) is a n x n dimensional predicted system error

covariance matrix evaluated at time t+At, given

measurements only up to and including time t-

E(flt) is a n x n dimensional updated system error covariancz

- matrix evaluated at time t, given measurements up

te. and including time t f



The above expression emphasizes that the system uncertainties
are propagated through the model in a way analogous to the system
states themselves. The model error covariance, QM , arises

' : (v)
due to the error introduced in the propagation of the system
errors from one time step to the next by use of the model state

transition matrix.

The updated system states are obtained from the predicted sys—
tem states and a linear weighting of the difference between
the predicted system values and the observations as:

-~

Z(t+At) -K(t+6t) ?(t+At) [Z(t+At) g(t+At)§(t+At)] ( ?
where. -
Z(t+At) is the n~dimensional vector of updated system

states

Since minimum variance system state estimates are desired,
that weighting function is computed which minimizes the trace
of the predicted error covariance matrix. This weighting
function, specifically called the Ralman gain matrix, is:
T ‘ T -1
- T
l;((t-th) E(t-*-At I t)l.! (t+At) [F.!(t+Ac)- (t+at] t)?(t—l—At)-FQo(t_’_At)]

' (5)
where

K(t+At) is the n x m dimensional Kalman gain matrix

( )_l indicates the inverse of the giveﬁ array -

( )T indicates the transpose of the given array

It is seen from Equation 5 that the Kalman gain matrix is
computed from the weighting of the uncertainties in the predic-
ted system values and the observations. With such, the updated
system uncertainty is computed from:

(6)

(1 ]

E(t+At'] erar) T 12T Xenan)etar) E(c+Aclt)
wvhere

T is an n X n dimensional identity matrix



From the above, it is seen that the updated system error co-
variances can only be less than or equal to the predicted sys-
tem error covariances. With perfect data, the system error
covariances are reduced to zero at the locations of sampling.
With uninformative data, the updated system error covarilances
'will correspond exactly to the predicted system error covariances.
An extremely important characteristic of the system error co~
variance update is its independence of the actual data values;
only the statistics of the data uncertainty are required. This
property allows the system error covariances to be computed
before the data is made available, and thus, can be made to
assist in the design of data collection programs.

To summarize theé filtering process and computational require-
nents, the filter equations are presented in the flowchart of
Figure 1. Whether data is available or not, the predicted
system states and system error covariances must be calculated
at each time step; the major computational cost of the filter
is incurred here. 1In actuality, the computational difficulty
and cost of filtering depends on whether the errors are yvhite
or colored (temporally invariant or correlated), and on
wvhether the systeu is linear or nonlinear. The filtering al-
gorithm presented here has made use of simplifying assumptions
appropriate for linear system dynamics and temporally uncorre-
lated errors. For more detailed descriptions of filtéring,'
the reader is referred to the works of Gelb [1974], Jazwinski
[1970], and Schweppe [1973].

DETERMINISTIC DISPERSTON MODEL

The deterministic model employed here is a vertically averaged
two-dimensional finite element discretization which is applicable
when the velocity and concentration vary slowly over the water
colum, i.e., for well mixed conditions. We have restricted the
treatment to a'vertically averaged formulation since our objective
was to investigate the computational feasibility of applying
filtering techniques and a three-dimensional treatment would be
premature at this time.

Integrating the general convective diffusion equation over the
water column results in the following governing equation
(see Leimkuhler [1974] for details):

3 (g 9_ (3 - -9 _ 8 p p < :
3tc+3x(uc)+3y(vc) e O a>,(%’J¢si+ss+sb @))
where '

C is the depth integrated concentration,

p is the mass density of the constituent and water mixture
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c, u, v are the depth-averaged values of concentration and
horizontal velocity components

h is the total height of water columm

Si is the constituent mass input rate per unit projected area

S, Sb are the normal source loading flux components through

the surface and bottom of the water column

The flux terms are approximated with isotropic Fickian disper-
sion expressions, '

oc
= - — 8
Qx ph Ex,y ox . (8
Q= - PhE 3¢ ‘ ©)
,}'ay
where E is the isotropic dispersion coefficient

For the pa*ti¥ular case of settling of discrete partlcles (e.g-,
sphalerite tracer particles, suspended sediment, etc.), the
source and sink terms are simplified by assuming a first order
decay rate due to the settling velocity of the particles,and
constant concentration through the layer. This yields
~

Sy +S5,+5, =5, -pw_c ' : (10)

where v is the particle settling velocity.

For coastal problems, the concentration is specified as C = 0 on
the ocean boundary when the boundary is far from the plume. - The
normal dispersive flux is specified as Qn = 0 along the land
boundary. If the plume intersects the ocean boundary, the normal
dispersive flux can be prescribed as being equal to zero provided
that the concentration is constant outside the domain.

Equation (7) is transformed to its'symmetrical weak form and the
Finite Element spatial discretization is applied. The details
are presented by Leimkuhler, et al (1975), and we list here only
the final form of the governing equation:’

MiZC+A-C+E _-K-C+w -D-C-S+ - 0 a1)

X,y
where A contains the advective terms, K defines the dispersion
component, D refers to decay, S contains the source loading, and
F represents the dispersive boundary flux term.

The trapezium method is employed to propagate the solution in
time. 1In the deterministic case, the scheme is relatively inex-
pensive since the state transition matrix, ¢, does mot have to be
generated. However, it is required for the covariance propagation
If advection is treated with the "pure'" trapezium, the generation
of ¢ would require matrix factorization at each time step. To
redice this effort, an Eulerian approximation for advection is”
introduced and the solution is propogated with



: At
ac . . = - 2= (E - X+w .D)
[§ + 2 (Ex,y F + Ys P)]§n+l [y 2 ( X,Y ~ S -~

At .z 8
-8t AlC +>—(5 .. +5)
~n-mn 2 o+l " (12)
where ]
( j)n designates the given array evaluated at the discrete
time point, t
At is the time increment
The Euler approxim;tion for advection decreases the stabili?y
limit but this is usually not a problem for coastal dispersion.




QUANTIFICATION OF DISPERSION MODELING UNCERTAINTY

The major effort required in applying Kalman-Bucy filtering to
coastal dispersion prcblems is quantification of the modeling
uncertainty. Since coastal dispersion generally involves a

large number of unknowns, only a first—order uncertainty analysis
is feasible. In first-order analyses, each variable is consid-
ered to be a random function in which the mean represents the
best estimate of the variable, and the variance quantifies the
uncertainty in the estimate.

To compute the uncertainty in the predicted concentrations,
due to parameter and input uncertainties, the deterministic
model is expanded in a Taylor series about the mean values of
the variables. Retaining only first-order terms, results in
the following equation which defines the propagation of the
uncertainty in concentration:

[}_H%(Ex K+wu_ -D)] €

2y -~ s — t+At
~m-2% ® R+w 'D)-at-AlC
- 2 X,y - s - . -t — t
At X,y . - . .
- G 1.(+wst].))+ at-A ) C
At ,Tx,y -
- [= (€2, "K+w "D)] €
2 t+at o st+At - —t4At
+ 2516, + G),,,] (13)
2 "t —%+At

where ( )t represents the uncertainty in the given variable at
time t

Our representation of the model paraweters and inputs'is
equivalent to considering the uncertainty about the mean
value as a zero mean process. The isotropic dispersion co-
efficient and first-order decay rate uncertainties are inter-
preted as

Ex’y,¥ (o, csz,y)

N 2
wo (o, o,
s

y



where 02 represents the variance of the uncertainty in the
X .

variable x

Representation of the model inputs uncertainty creates more
. difficulty. For multi-location source discharges, each dis-
charge would normally have its own characteristic level of
uncertainty. However, to simplify,the loading is expressed
in terms of a single loading parameter and a vector defining
the spatial distribution of the loading as,

Se = R
.where
Xt is the loading parameter

R _.1is a vector describing the geographic locations of
the loadings

If only one source location exists, such as in most tracer field
experiments, the above expression is exact. The uncertainty
in the loading parameter is represented as a random function
with zero mean and prescribed variance,
A, " (0, 0,0
t . ) At

wvhere .
At is the source loading uncertainty

o is the variance of the source loading uncertainty

e

The flexibility of handling temporally and spatially variant
velocity fields creates difficulty in representation of the
advection field uncertainty. Our approach is based on form-
ulating the uncertainty at the element level similar to the
formulation of the element advection matrix of the determin-
istic dispersion model.

Equation 13 shows that the effect of velocity uncertainty on
the uncertainty of the predicted model concentrations is
determined from

L 2 “x,y - s DI Crppp = TALT AT C (14)




The advection uncertainty term is decomposed into influence
matrices and vectors of the x and y component velocity field
uncertainties as

N (u) v)
—At - . = . + A . v 15
At ét C f . u A * (15)
where u_ is the vector of x component velocity field uncer-

tainties

v, is the vector of y component velocity field uncer-
tainties

Using Equations 14 and 15, the following factor matrices can
be defined (details are presented in DeGuida [1976]):

e S Gk, R
o, MA@ koA a7

Collecting the various uncertainty contributions, the two-
dimensional model uncertainty expands to:

Covar = %o, tiat S
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?u,t and ?v,t are ;s defined in Equations 16 and 17.

The propagation of the variance is obtained by squaring the
uncertainty and taking the expected value. The two-dimension-
‘al form is, assuming stationary random processes (i.e., time
invariant statistics of the uncertainty) (see DeGuida [1976]):
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vhere

r is the variance of the model predicted concentra—
-c»t tions at time t
r is the variance of the x-directional depth averaged
ahe velocity components ’
r is the variance of the y-directional depth averaged
-V .

velocity ‘components

SAMPLING EFFECTIVENESS DETERMINATION

Once the modeling uncertainty is quantified, a Kalman filter-
ing algorithm is developed toc quantify the effectiveness of
sampling, as has been shown by previous investigators (e.g.,
Moore (1973), Brewer and Moore (1974), Pimentel (1975), and
Dandy (1976)). With Kalman filtering, all that needs to be
specified for the update of the system uncertainty are the
observation matrices defining the locations of measurements
in time and the statistics of the uncertainty in those
measurements. If an estimate of the measurement uncertainty
is available, the system uncertainty can be propagated in
time, considering different observation matrices, i.e.,
different sampling strategies. Comparing the system un-
' certainty allows one to evaluate the potential effectiveness
of various sampling strategies before the actual experiment
is performed.

In designing sampling strategies by Kalman filtering, care-
ful analysis is required in defining the observation matrices.
The formulation as stated is entirely general, such that an
infinite number of possible sampling networks (i.e., defini-
tion of the time-variant spatial locations of sampling) can
be analyzed, if so desired. However, specific characteris-~
tics of each problem will neormally limit the possible number
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of sampling strategies to be tested. Of concern might be

such factors as budgets allotted for sampling, required

level of information from sampling, restricted sampling days
and/or hours of sampling (e.g., only sunlight hours), politi—'
cal boundaries, certain legal aspects, and so on. All these
factors, and many more, will probably influence the selection
of possible sampling strategies. Of extreme importance here
is the use of experience in sampling and engineeripg judgment.

For observations to be informative, the uncertainty of the ob-
servations must be less than the uncertainty in the predicted
concentrations, i.e., the updated system uncertainty must be
less than the predicted system uncertainty. It is therefore
natural to choose the sampling strategy of minimum system
uncertainty (i.e., the minimum system error covariance
matrix). However, as the duration of time increases after

the last observation has been made, the system uncertainty
increases until finally no reduction in the system uncertain-
ty is noticed. Therefore, at different times, different
measures of the effectiveness of sampling would be obtained.
To compute the sampling effectiveness over the entire time
duration of the experiment, the reduction in the system error
covariance matrix (i.e., predicted system error covariance
matrix minus updated system error covariance matrix) is calcu-
lated at each time a sample is collected. Since the majority
of the reduction occurs in the uncertain variances (i.e.,
diagonal elements of the system error covariance matrix), only
the reductions in the trace are computed. Summation over time
of these component reductions leads to a total measure of
sampling effectiveness. Maximization of the total reductions
of the system uncertainty is therefore an appropriate measure
of sampling effectiveness for the specific problem of tracer
experiments.

Some may criticize the previously described optimality criter—
ion for the simplistic way of defining the feasible set of
sampling strategies, {.e., observation matrices. In reality,
even though a particular sampling strategy may not satisfy

all the constraints, the penalty incurred in the constraint
violation may be so small that the design will be more effec—
tive than all the others tested which satisfy the imposed
constraints. These problems can be avoided by the definitiocn
of a utility function which could be made to reflect the value
of sampling in light of all the complicating factors. The
criterion for determining the most effective sampling network
would be that network which maximizes the expected utility.
Such a maximization of the expected utility has become a
traditional objective in Bayesian statistical decision theory.

A major disadvantage of defining the sampling effectiveness as



maximization of the expected utility is the difficulty of ex—
pressing the utility in mathematical form. It is often very
difficult to quantify certain characteristics of the problem;
it may be practically feasible for only very special cases.
Therefore, in light of the necessity to develop simpler eval-
uation criteria, evaluation of only feasible sampling strate-
gies, as previously described, appears to be the most appro-
priate for the purposes of this study.

RESULTS

For purposes of illustrating the usefulness of the filtering
algorithm for evaluating sampling effectiveness, some results
for the one-dimensional modeling of a channel are presented
first. The finite element grid used is shown in Figure 2.

. A constant depth of 1 meter is used. Contaminant is contin-
uvously injected at the source node. Zero concentrations are
specified at the extreme ends of the grid (i.e., at x = 0 and
X = 3 meters). A time increment of 0.1 seconds is used in
the model. The mean values and standard deviations of the
model parameters and inputs are:

Parameter Mean Value Standard Deviation
longitudinal

dispersion co- . 2 2
efficient 0.01 meters /sec 0.005 meters” /sec

first order decay ‘
rate 0.2/sec 0.1/sec

InEuﬁ

longitudinal flow
velocity 0.05 meters/sec 0.01 meters/sec

continuous source
loading rate 1 gram/sec 0.1 gram/sec

In addition, the standard deviation of the measurement
uncertainty is taken as 0.01 grams/meter3.

Fxamination of the deterministic solution shows that the peak
concentration occurs at the source location. Therefore, the
first sampling strategy evaluated consisted of sampling at the
source discharge location (node 9 in Figure 2) every second
after the start of discharge. Since the trace of the error
covariance matrix is the desired measure of sampling effec-
tiveness, a plot of the trace of the error covariance matrix
versus time is presented in Figure 3. The solid line in the
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Model Simulations



figure represents the modeling uncertainty (i.e., system un-
certainty with no measurements); the dashed line represents
the system uncertainty as measurements are taken. Each
measurement reduces the system uncertainty at the time of
measurement. However, as time progresses, the system un-
certainty increases, but not quite to the level corresponding
to no measurement. This indicates that the measurements are
Informative. A measure of their value is the total reduction
in system uncertainty over time.

Figure 4 shows the variation of system uncertainty with dis-
tance from the source. The solid line defines the standard
deviation of the system uncertainty immediately before the
measurement is taken at 10 seconds; the dashed line is the
"ecorrected" distribution. The effect of the measurement is
quite local, reducing the system uncertainty to essentially
the measurement uncertainty at the observation point but
diminishing rapidly away from the source.

Figure 5 illustrates the effect of sampling every second after
the start of discharge at the source node and half a meter
downstream (i.e., nodes 9 and 13), as measured by the trace

of the error covariance matrix. Figure 6 shows the reduction
of the system uncertainty as a function of distance from the
source at 10 seconds after start of discharge. The additional
downstream observation point reduces the covariance trace,

and also incréases the spatial extent of the correction. The
effect of increasing the sampling frequency while sampling at
only the source node is illustrated by comparing Figures 3 ~
and 7. Figure 7 illustrates the effect of taking a sample
every half second.

‘Considerable interest in the Massachusetts Bay environment

has been expressed in connection with a once proposed offshore
sand and gravel dredging project called NOMES (New England
Offshore Mining Environmental Study). Such interest has moti-
vated this study, and it seemed logical to attempt a simula-~-
tion of the NOMES dispersion experiment.

The finite element grid of Massachusetts Bay is shown in
Figure 8. The ability to use elements of different sizes and
.shapes affords the flexibility required to model such complex
geometric configurations as Massachusetts Bay. The dump site
of tracer particles (sphalerite) ig indicated by the starred
area. Depths at the nodal points are taken from the Coast and
Geodetic Survey bathymetric chart 0808N-50.

Velocity time histories were generated with a two-dimensional
finite element circulation model, CAFE (Circulation Analyses
by Finite Elements) (see Wang and Connor [1975])) using simu-
lated tidal input and actual wind conditions collected during
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the time period of the experiment.

In the NOMES experiment, approximately 1200 1bs. of sphalerite
particles (mean diameter of approximately 5 microns; esti-
mated 2.9 x 1013 particles) were dumped in a small area to
simulate a point source discharge. Discharge began approx-—
inately one hour before low tide and lasted for approximately
16 minutes. Certain approximations are required in the math-
ematical modeling of the discharge. In the numerical simula-
tion, it is necessary to take the duration of discharge equal
to at least one time increment. (The time increment used in
the dispersion model is 900 seconds.) In addition, although
the discharge was essentially a point source, the source has
to be distributed over a larger area (starred in Figure 8) in
erder to reduce the high concentration gradients which intro-—
duce numerical difficulties. In addition, the finite element
grid is refined in the general dischargelarea for the same
reason. Due to the spreading of ‘the socurce over larger
spatial and temporal scales, initial spreading is expected to
be greater for the numerical results than in the actual ex-
periment. With increasing time, this .discrepancy should
vanish. :

The first order decay rate due to particle settling is ob-
tained from Stoke's Law and assuming a uniform concentra-
tion profile over the water column depth as 3.3 x 10~
meters/sec. The isotropic dispersion coefficient is chosen
as 30 meters/sec (Pearce and Christedoulou [1975]).

- =

.»Sgnsitiyify of the dispersion model to uncertainty in the
dispersion coefficient is addressed. Taking the standard
daviation of the isotropic dispersion'ﬁoefficient as 50Z of
"the mean value (i.e., opX,¥= 15 meters”/sec), the effect on
the predicted concentrations is shown in Figure 9 for a time

. of 12 hours after dump. Since dispersion is influenced by

the concentration gradient, larger concentration uncertainties
are expected in regions of Qteep concentration gradients. ’
This is confirmed by the results shown.

Figure 10 illustrates the model sensitivity to a standard

~ deviation of the decay rate equal to 50% of the mean value
(i.e., Oy = 1.65 ¥~1015 meters/sec) at a time of 30 hours
after dump. The model is observed to be less sensitive to a
50Z of mean value standard deviation of the decay rate un-—
certainty than the dispersion uncertainty. The largest
effect of the decay rate uncertainty is observed at the high-
est concentrations, as is expected.

The extent of application of the filtering algorithm for
quantifying sampling effectiveness at the NOMES site was
severely restricted by the high computational cost. For

Al
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simulating the experiment for two full prototype days, the
50 state variable problem (see Figure 8) is required, but
the computational problem is much too large for extensive
simulation.

Given computational cost constraints, only one hypothetical
sampling strategy was evaluated. Sampling was initiated at
9:00a.m. on the day following the dump (i.e., corresponding
model time step 88). Samples were collected at the model
source loading nodes every hour, until the completion of the
sampling day at 4:00p.m. (i.e., corresponding to model time
step 116). TFor purposes of presentation, the modeling un-
certainty was computed from the uncertainty in the decay rate
only. Figure 11 illustrates the effectiveness of the defined
sampling strategy. In this figure, one observes the reduction
in the system uncertainty due to the sampling effort. An in-
teresting result is the very slow increase of the system un-
certainty after the completion of sampling. Unfortunately,
due to computational cost constraints, it was not possible

to calculate the time duration after which no effect of the
sampling would be felt.

CONCLUSIONS

Although a limited computer budget restricted the application
to the NOMES éxperiment in Massachusetts Bay, these applica-
tions and extensive applications of the one-dimensional form-

ulation have provided useful information on its computational
costs and applicability.

The assessment of sampling effectiveness is made possible by
filtering techniques. It allows the investigation of altered
spatial and temporal frequency of sampling. However, the
methodology does have limitations. One of the most critical
is the requirement of the state-space representation of the
system dynamics. Models are not generally developed in this
form, due to the computational efficiency of other solution
forms and the non-intuitive natures of the state-space form.

Although computation of the modeling uncertainty due to un-
certainty in the dispersion coefficient, decay rate, velocity
field, and source loading is presented, other uncertainty
sources are not included. Uncertainty arises from assump-
tions made in the model formulation itself, which is difficult
to quantify. For example, models are imperfect due to the
assumptions of the applicability of Fickian diffusion and
representation of naturally variant three-dimensional water
bodies by lower dimensional models. Physical discretization
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of the continuous problem, both spatially and temporally,
introduces numerical errors. By refining the grid and re-
ducing the time increment, more accurate results are obtained,
but at the expense of increased computational costs. In
addition, round-off error can have significant effect on
modeling results, but unfortunately has not received much
attention,

The major reason for not including the effect on the modeling
uncertainty of the abova factors is the increased computation-
al cost required. As is, calculation of the modeling uncer-
tainty due to uncertainty in the parameters and inputs is
costly for large systems. Calculation of the one-dimensional
modeling uncertainty took roughly about 2 minutes of CPU time
on an IBM 370 model 168 computer for a simulation of 21 nodes
for 100 time steps. In comparison, calculation of the two-
dimensional modeling uncertainty in application to Massachus-
etts Bay (neglecting uncertainty in the velocity field) took
roughly 90 minutes of CPU time on the same computer for a
simulation of S0 nodes for 144 time steps. Therefore, for
large systems, the cost of computing the modeling uncertain-
ty deces become excessive; the additional cost of the Kalman
filtering algorithm is insignificant.

An especially important conclusion of this study is the
necessity to quantify the modeling uncertainty by a relatively
detailed analysis. Many previous investigators (e.g., Moore
(1973), Brewer and Moore (1974) and Pimentel (1975)) have ob-~
tained constant values of the modeling uncertainty based ’
strictly upon subjective judgment. This practice is not ad-
visable, as this work has shown the large spatial and tem-
poral variability of the modeling uncertainty.

The tradeoff between computational cost and accuracy in quan-—
tifying the modeling uncertainty is evident. For simplistic
one~-dimensional modeling attempts, the relatively low
computational cost justifies detailed modeling uncertainty
analyses. The modeling uncertainty due to model assump-
tions, physical discretizations, round-off efror, etc., should
be addressed., On the other hand, difficulty in justifying

the excessive computational costs of two—dimensional modeling
of a Massachusetts Bay size problem exists. Although it is
felt that the investment made in the simulation of a field
experiment before it is actually performed will pay for itself
in the higher return of information, the initial capital out-
lay for computational time may deter the use of such a method-
ology. Cheaper methods of calculating the.modeling uncertain-—
ty are needed.
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CUAPTER 3

3.1 FORMULATION

Beginning with the basic principles of conscrvation of mass and of
force equilibrium,(Newton's second law), a formal mathematical model is
developed for transient vertically integrated flow in the plane. The
approach is somewhat similar to the works by Hansen [27], Reid and
Bodine [59], Leendertse [38], Norton et. al. [49] and Pritchard [70].
We attempt to include all importaﬂt'steps of the development and to
account for assumptions and their basis as much as possible. Where
numerical parameters are needed in the constitutive equations, numbers
or relationships based on experience are indicated. The model is thus
intended to be truly predictive with the singular reservation that boun-
dary conditions must be nrescribed. The necessary boundary conditions

for a well posed problem is alsc discussed.

3.2 THREE-DIMENSIONAL FLOW.

The mathzmatical formulation of the conservation of mass and
momentum principles for three-dimensional flow has previously been derived
in an eulerian framework using a carteslan x~y-z coordinate system, (see
f.ex. 151>, The operation consists of balancing mass fluxes or forces
for a zmall cube dx-dy-dz, (see Figure 3-1), and then taking the theo-

retical limit as the volume of the cube approaches zero. The result is

(3.2.1) Pry + (p“)’x + (DV).y + (pw),z = e
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which states that the local rate of change of mass per volume,added to the

1net flux out,is equal to the rate of adding mass per volume, e. If there

‘" are no internal sources (henceforth we shall define a sink as a negative

source and therefore only need to talk about sources), e is zero. p 1is

the density; u,v,w are the velocity components in x,y,z directions and
partial differentiation 1s written as a subscript comma followed by the
independent variable.Equation (3.2.1) expresses a fundamental principle
for any continuous one phase fluid.

The equilibrium of forces acting on the control volume is

wvritten for the x- and y-directions:

2 - =
(3-2.2) (pu)’t + (pu ).x + (puv) Y + (puw) 2 pfv
- + +
P’x * Txx’x Tyxoy TZX,Z + pmx
(3.2.3) (pv).t + (DUV)’X + (OVZ)’y + (pvw)’z + pofu =
- + + + +
Py ¥ Txy,x T Tyy,y T Tay,z TPy

A rotating right handed coordinate system fixed on the earth
with the z-axis vertical upwards is chosen. The equations(3.2.1) -
(3.2.3) apply to the expected values of velocities and pressures which
are considered to be stochastic processes. The T's are therefore due to

molecular viscosity and turbulent momentum transfer [15, 62]:

_ v - 1 1 sos o
(3.2.4) Tij = Tiy p<u u j > i,] 1,2,3
where < > signifies expected value of the argument, T£3 is the
viscous stress and u'i is the turbulent velocity fluctuation in the i

b4
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direction. For convenience, here and in the following, frequent use of ten~
sor notation will be made, the i,2,3 directions being equivalent to
¥,¥,2. The left hand sides of (3.2.2)and (3.2.3) represent the inertial
forces on a unit volume and the right hand sides are the surface forces

acting on the same volume plus internal sources of momentum m my. In

arriving at (3.2.2) and (3.2.3) 1is has been assumed that the vertical
velocity w 1s small so that only pfu and pfv are retained from

the fictitious coriolis force. f 1s the corilolis parameter = 2 wearth'

s8in¢ , where is the phase velocity of the earth's rotation and ¢

earth

is the latitude (N) of the location.
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Figure 3-1. Infinitesimal control volume.
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" The isotropic normal ét%ess in fluids 1s usually compressive and there-

fore denoted p for pressure (positive). The deviatoric stresses Tij’
i,j = 1,2,3 are defined as usual, the first index denoting the normal
direction of the face on which the stress acts and the second, the posi-
tive direction of the stress.

An order of magnitude comparison of the inertial terms in-
(3.2.2) and (3.2.3) 1is 41llustrative. Let :, E, g, G and ; be re-

presentative time, horizontal and vertical length and velocity scales.

Scaling (3.2.2) then yields

o a2 sa

u u uw @ A e e
- v—v —A fun fw
t L h

-2 -
where f w 18 the so far ignored component of the coriolis force and
t=f 1s equal to approximately 10 *sec”? at 40° latitude. In order to

drop tw and keep the remaining terms we must have

o o
u >» w3

opled
n

= W E A4
f
v
=0
v
s
=2
o
n

oo [

=led
R
b

For a typical coastal area u = 0(0.5m/sec), w = 0(0.05m/sec) §= 0(10°m),
h =~ 0(100m) giving a corresponding time scale E = 0(2.10%sec) = 0(0.6 hr),
indeed in agreement with the above scaling relations.

Vertical equilibrium requires

BATNS 2 — =
(3.2.5) (pw),t + (me)’x + (pvw)’y + (pw*) . + prxv Zomyu

- - + +
p,z pe sz,x Tyz.y Tzz,z

where u& and u& are the x and y components of the earth's rotation.
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Scaling of this equation leaves only the pressure,gravity and normal stress
terms as significant. Again T,, is related to molecular viscosity and
the vertical velocity fluctuations, hence it can be neglected in comparison

with pg and we finally obtain the hydrostatic pressure condition.
(3.2.6) P = - pg

Along the boundaries,special conditions apply. Thus the fact that the free

surface 1s a material interface 18 expressed as the kinematical condition

(3.2.7) = (n-2)

Z=n Tz=n

where evaporation and rainfall are neglected. n = n(x,y,t) is the sur-
face elevation, Figure 3-2, and %? is the total or particle derivative.
At the bottom z = -h(x,y), which is assumed fixed and impermeable,the

similar condition is

(3.2.8) %; (z+h)

9h dh
et [u -5-; + v -5; + w]z--h a ()

For lateral boundaries, which are assumed vertical, (see Figure 3-3) the

flow must be continuous, implying

+
(3.2.9) u; ng } = ( i=1,2
1+
17 2
(3.2.10) G| = 0 1,5,k = 1,2,3
h 2 1s th 203 = =2y T
where 13k s the permutation tensor, 123 2312 231 1

2132 = 2213 = 2321 = =1 and all other elements are zero.
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Figure 3-3. Domain terminology.

Figure 3-4. Surface force notation.
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is a unit vector perpendicular to the boundary directed out of the

h:’ll“"area of interest. + and - are points just outside and inside of the

v'., b
lt

\&boundary Equations (3.2.9), (3.2.10) , express that normal and
#’}1

3% f tangential velocities just outside and inside the boundary must be equal.
4
Dynamic equilibrium must also be satisfied on the boundaries,

4333 Figure 3~4. Projecting the forces for a surface element on x,y and

11‘

: 8 8 I T
+ m - - -
(3 2.11) (t,+p N X Plx ™ Tex Mox ™ Tyx Ny 7 Tax| zen

- -

V' 8 8
i 12 <5+ a - - -
(3 2.12) ( y P n»y) _pn'y Txy nrx Tyy nty TZY_ z%n

' 8 8 8
13 - + + = - - - +
(3 2.13) P Tx Mx Ty Ny [p Txz Mx ~ Tyz N,y Tzz] zen

and similarly for the bottom (z = -h(x,y)).

b b

. . 14 - = |~(p -

i (3.2, 14) T, P h,x [ (P - 1) h’x + Tox h.y + sz] zah
b b

P (3.2.18)  t)-p h_ = |- - -,

v 3 y = P oy [ Ty h,x P - 1t.) h,y + sz] Y e -

b 8 s
3.2- 16) - - T h - h = - +
( P ri e Mx Ty Ny P P T B T Ty Py Y Ty 2=-h

On lateral boundaries, continuity of the stresses 1is again required.

(3.2.17) [normal stress]f = 0

(3.2.18) [tangential stress]t = 0

In case the fluid is considered inviscid (3.2.10)and (3.2.18)
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must be relaxed and only (3.2.9) and (3.2.17 ) enforced. Finally, for

a well defined problem, the initial flow field uin must be known:

in

(3.2.19) u, = u, i1i=1,2,3 X, ¥,z € t=0
i

For an.arbitrary geometry, the problem as formulated is not
easily solved. Numerical solutions are stymied by excessive computer re-
quirements and lack of information on the proper boundary conditions.

In coastal areas that are well mixed through the water columm, a signifi-~
cant simplification is achieved by eliminating the explicit dependence on
the vertical coordinate. This process is described in the following

section.

3.3 VERTICAL INTEGRATION

In shallow water bodies, the fiow variation through the depth
1s often less significant. In such cases, vertically integrated equations
and variables may adequately describe the situation. This approach yields
estimates for the transport through any cross section, however, detailed
information on the velocity structure is lost. In ;he following, the
water density 1s assumed constant in the z direction, l.e. p = p(x,y,t).
This and the assumption of relatively small vertical velocities and accel-
erationg are normally implied by the definition shallow.

The development of a boundary layer from an applied wind
stress on the surface 1s dependent on the magnitude of the vertical tur-
buylent momentum transfer. Several investigations have found the vertical
eddy viscosity falling in the range E~1l - 200 cm?/sec. If the time

scale of 1 hour is retained, a notion of the meaning of the expression
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‘shallow in connection with wind driven circulation is obtained from the

expression

(3.3.1) h = E-t v 1=~-10m

The use of vertically integrated quantities to predict dispersion of a
rracer in this situation is clearly less satisfactory because of the highly
non-uniform velocity profile, although the total transport still may be
well predicted. In two and multi-layered models, some improvement on this
point can be expected. For tidal flow, the driving force which is the
hydrodynamic pressure, acts over the entire depth, and vertically integrated
values are expected to be representative for the local velocities also,
except close to the bottom. Finally, neutrally buoyant stream flows en-
tering or leaving the area are well suited for an integrated treatment
since those flows generally aré well mixed. Again, in-or outflows with
a density difference are better simulated in multilayer models.

The governing equagions are Iintegrated over the total depth
to eliminate the z-dependence. Beginning with Equation (3.2.1), we for-
mally write
n

n
(ow) dz=J edz
»Z
=~

-h :

n n n
(3.3.2) j-h D't dz + J_ho( u)’x dz + Jﬂh(DV)’y dz + j

Making use of Leibnitz's rule [29] we may change the order

of integration and differentiation to obtain

n n
3 _on . 3 _ on 3(=h)
(3.3.3) Tt J-hpdz 3t + e J-houdz Duln I + pu l-h %
2 j” | an l ACh) |, ol |
+ = pvdz = pvi +— + pv —_—=t oWl - W = 0q
|y | 3y Y n h I
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<y

¥inally applying the kinematic conditioné on the surface and bottom

results in
e 3. + + =
(3.3.4) (OH)’t (oqx),x (qu)’y Pq g
where we have introduced the integrated variables, tntal depth:

n
(3.3.5) H = J dz = h +n
~h

discharges in x- and y-directions per unit width:

n
- j u dz
-h

n
J v dz
~-h

If we let 9y represent the net rate of volume addition per unit hori-

It

(3.3.6) q

(3.3.7) qy

zontal area, this result (3.3.4) is generally valid for any type of flow,
including situations with permeable bottom and evaporation or precinite=in-
at the free surface. The primary objective for inclvding 9 is howquv
to make possible modeling of internal sources such as the discharge from
a diffuser pipe.

The integration of the momentum equations, (3.2.2) - (3.2.3)

proceeds anzlogously:
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n n n
(3.3.8) J (pu)  dz + J {(ou?) _ + (puv) _ } dz + J (puw)  dz
-h ’ Y -h ’

-h ' X
N n n n
_J_h pfvdz + J hp’xdz - J_h(Txx,x + Tyx,y)dz - J . Tox,z dz
n
—J—hpmx dz =
9 n an 3 n 2 2 on
(pu) dz - (pu) — + 5 (pu®)dz - (pu®)| =—
a2t h t 9x 3x
- z=N -h
n
- n ~h)
+ (pu?) 3(—3‘3 + %—I (ouv) dz - (puv) %ﬂ+ (uvy| 2GR
_.h X y _h Y “h 0)’
n
n
] ,
+ (puw) | = (puw) - quy + o= j pdz - p' -g—:—l—
n -h ~h n
n
C¢h) 3 an _ 9(h
+ pl h 9x ox h Tood 2 + Tex| x Txx 2x
-LJUT dz + 1 irl-'t —-g-——la_h—(T) + (1 )
ay -h yx| 9y yx | 4 y zZX zZX
- |_}-.
n n
_p;,x

a()+a_” "’d+§—n'd—f+a—nd
3¢ (e, = i (pu”) dz 3y _h(pu\r) z oqy e _hp z

v _ 9 _ s b _ - _ s3dH _ b dh
oF oF %t % PRy 7P 3 T P o

in which we have defined



n
| I
(3'309) prx = J(-h Txx dZ
3 10 F '= "
(3.3.10) p yx = J_h Tyx dz
- n’
(3.3.11) m = J m_dz
x -h X

For computational reasons it is more convenlent to work with the
pressure in excess of hydrostatic pressure corresponding to the water leve)]
at datum and rest.

The density may be written as a mean value plus a deviation

(3.3.12) p(x,y,t) = po + Ap(x,Y,t)

and assuming the instantaneous local deviation is small compared to the

mean
(3.3.13) Ap << Py

Boussinesque's approximation [57] 1s introduced whereby the density in
all terms is replaced by the constant mean density 0y This is a reason-
able simplification provided the real density 1s used in the pressure terg

which now takes the form
n 1
n-lA = - — 2
(3.3 ) pon J_h p dz 2 Py 8 h
1 1 s
= p,g hn+ S p gn®+ 5 0pgh2 +p H

With these definitions and approximations, the final form of the equili-

brium equation (3.3.8) becomes
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Band % maiea

3 S 15) g—-(q ) + o " u?dz + 2 " uv dz - fq_ + 2_ (F-F "
T at " 'x Ix -h a3y -h Yy 9x ' p XX
s __b
- F '+ EEL__;zi -m - flf 3H _ oh _ AQ.QH dh 0
3y yx po M o x BN 3x p. ° 9x

By complete analogy, the force balance in y-direction gives

(3.3.16) 9 (q) + " owvdz + " viaz + £«
- at Iy T ox o 3y |y Uy
Ts°'l’b 8
-3 Fr 4 g _pyy+ XX o R M
oX Xy 3y ' p Yy 0, y poax
Y] dh _ 3h
pogﬂay gnax 0

with the corresponding definitions:

n
1~ -
(3.3.17) pry = prx = J_hryx dz

3.3.18) F ! "

e Je E N d

( oF oy J-h Tyy 42
- n

(3.3.19) m = j m_ dz
y -h

The number of unknowns still exceeds the number of equations for our
problem. To overcome this hurdle, the currently most successfully used
empirical relations for bottom 2nd surface friction are reviewed in order
to establish a set of constitutive equations. Previous modeling has

shown that a quadratic, (in mean velocity), bottom friction law in all cases
adequately represents the damping due to the shear at the bottom., Several

similar empirical expressions, Manning, Chezy, and Darcy-Weisbach equa-
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tions [15], were originally derived from measurements of steady flow in
channels or pipes; but have been modified for two-dimensional unsteady
clrculation. The quoted relationships are the most widely used and relates

shear stress to discharge per unit width as follows:

b 2 2 % 4
. . T = —X
(3.3.20) X Cf O(qx + qy) 2
b 2 2 7 Sz
3.3. T - +
(3.3.21) y Ce Plq q ) >
where
( L f Darcy-Weisbach
8 'DW y
(3.3.22) c, = . 2 Chezy
2
C
n2
g Manning
y y¥s

Values of Manning's n are only known for fully developed rough turbu-

lent flow, which fortunately is the normal case in coastal areas, as the

u'li 1-10 ?

Reynolds number R = — = 10
k \Y 10

£ % 0,01 - 0,1. For fixed roughness, the friction factor Cf is there-

H
Y
fore inversely proportional to H . Normal values of n range 0.025

and the relative roughness

- 0.040. The values of Cf for some n and depth values are given in
Table 3-1.

In other flow regimes, the use of a Moody diagram to find wa is
the best approach. Choosing as an example Cf = 0.005 and a velocity of
1 m/sec glves a shear stress of 5 N/m? which is considered as a large

bottom friction.
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LA
o,
JL

N - — y
Bot- [m] l
tom 1l 2 5 10 20 30 40 50 100 X
rough-| ;
ness |rgec |
ks[m] .72 {

- !
Stones %
0.07 0.0250.0061|0.0049 |0.0036 |0.0028 |0.0023{0.0020{0.0018{0.0017}0.0013)

- |small

- trocks
0,20 | 0.030(0.0088{0.0070}0.00520.0041 |0.0033]0.0028|0.0026 {0.0024]0,0019

Punes

:O.SO 0.035 - 10.009510.0070]0.0056 |0.0044]0.0039]0.0035{0.0033|0.002¢

11.10 0.040 - ~ 10.0092(0.007310.0058[0.0051;0.0046 {0.0043{0.0034
}

TABLE 3-1: Values of Cf

cause the water surface is deformable so that waves form,and also the
1ength scale of the turbulent wind field is so large that the wind str
is highly variable in time and space [17, 25].

Several investigators have derived expressions for the average
vind stress from measurements in the field (5, 16, 28., 74, 77, 79].1f

the shear stress 15 related to the wind speed as follows,
§ =
(3.3.23) 1 p Cp U

where P 1g the air density, (~1.2 kg/m®) and Uy, is the wind

air

The wind stress on the surface is more complicated to handle be-

ess

speed at 10 m above the surface, then the wind drag coefficient C has

D

been found to vary from approximately 0.001 and up according to the fol-

lowing relationsg:
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( 1.25/U1(1)/s © 107 U, <1 m/sec
z cu e 07
(3.3.24) ¢ = 0.5 Ujg°* 10 1 < Uy < 15 m/sec Ref.[79)
—3 .
\ 2.6 10 U10 > 15 m/sec.
1.0 * 1077 Ujp < 5.6 mfsec Ref.[7%)
1.0 +1.9(1 - —<—) - 10 U,. > 5.6 m/sec.
U 10
10
2
(3.3.26) o = 0.00228 + (1.0 - 7.0/U; )" 0.00263
20 < U 5 < 40 m/sec
Ref.[77)
0.577 * 107’ Ujg < 4.9 m/sec Ref.[28)
(3.3.27) ¢y = (-0.125 + 0.1427 Uy ) - 107" 4.9<U, <19.2 n/sec.
2.62 19.2 < U m/sec

10

The values given in the referenced papers are plotted in Figure 3-5. The
data in [ 5, 74, 77 ] were for ponds or lakes,and ([16,28,79]used mea-
surements on the open ocean. There is a significant scatter of the data
and hence of the curves used to fit the data points. Wu's relationships
based on ocean data seem to give the best overall fit. Unfortunately,
there are two discpntinuities in the suggested relation for CD,(3.3.24)
which physically does not seem reasonable although some justification ig
attempted (79). Considering the spread of the curves with a factor of

2 difference between results,it 1is tempting to fit one straight line
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Figure 3-5. Wind drag coefficient,C,, vs. wind speed, U, .



relation as shown, with the equation

-3
(3.3.28) Cp = {1.1 + 0.0536 Ulo} - 10 Ulo in [m/sec])

For Ujp = 10 m/sec, the drag coefficient is 1.64 ° 107° and the predicted
shear stress 1° = 0.2 N/m? which is somewhat larger than the ~0.1 N/m?
normally measured in Massachusetts Bay for similar winds.t For wind speeds
ranging from 0 - 30 m/sec, we can conclude, the present state of the art only
allows us to predict the applied wind stress to within a factor of 2.
However, considering the complexity of this problem, such an error seems
tolerable.

Finally, the origin and significance of the internal stress terms

1 are investigated. To close the formulation we also

Too o T
yx yYy

try to express these terms as functions of the integrated flow variables

xx’ Txy

by means of an eddy viscosity coefficient matrix. The approach,in many
ways similar to the closure of turbulent flow problems [g2]), is admittedly
based on a physically very loose foundation; but does yield an attractive
structure reflecting many of the expected real effects, viz dissipation,
and diffusion of momentum., The vertically integrated approach is only
valid when the internal stresses are relatively small, so an exact repre-.
sentation of these terms is assumed to be of minor importance. All this
trouble 1s directly caused by averaging the convective acceleratior terms,
However, the real root of the problem is the use of eulerian rather than

lagrangian description (in the latter, the observer follows a particle apg

+ In the range 0 - 10 m/sec, Equation (3.3.28) agrees well with some new
results by Parker and Pearce [55].
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the convective terms do not appear). We have to live with the eulerian
viewpoint in which the observer is fixed in space and propose taking a
closer look at the implication of ensemble averaging and vertically inte-
grating an instantaneous velocity product. Without loss of generality we

may write the instantaneous local velocity components U,V as

(3.3.29) U

u + u' = (G + Gv) + (U" + U”’)

i

(3.3.30) \ v+ v' = (v + V) o+ (v o+ V'™

where u,v are ensemble averages (assuming the flow field is basically

random); u', v' are random fluctuations whose ensemble means per defi-
p

nition are zero; u, v are the vertical average values of u, v; u' v'

are vertical average values of u', v'; u", v" are vertical deviations

of u,v fromu, v ; and finally, u'", v'" are vertical deviations of

u', v from u', v'. The significance of each of the various components
is shown in Fig. 3-6.

The product U:V 18 now written out in terms of its components

3.3.31) Uus*vV = (G + -L-l' + u" o+ u'")(\—/ + ;v + V" o+ th)
(

[of]
<
+
[l ]
<
t,
I
<

= uv+uv +uvi+uv'" +0 V4

+u" v+utv o+ TRLIRVALNSTRL U T u'" ; R TRALNR LN L LT

and we want to perform an ensemble averaging and vertical integration
of this product. Noting that the order in which these are done is ar-
bitrary we first take the ensemble average with the result

{3.3.32) <Uv>ensemble = u; + uv" + ;';' +u'v'" + u''v + u''v"



Figure 3-6. Sketch of vclocity components.
U = instantancous local value.

u = ensemble average local value.

u = ensemble average, vertical average.
u' = turbulent fluctuation

u"= vertical deviation of u from u.

u' = vertical average of u'. _
u”"= vertical deviation of u' from u' .
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since all terms containing only one turbulent fluctuation (') average

out to zero. Similarly, an average over depth is carried out.

(3-3-33) <Uv>ensemble = L-l\_l + GIGI + UV + a' Tyt

vhere overbar means vertical average according to

n
- 1
(3.3.34) X = o= J x dz
h+n -h

Again, all terms containing only one vertical deviation (") average to

zero. We can now write the total contribution from the convective termst

+U"V" ) d z

n q_q n
- XYy [ | vt
(3.3.35) I <uv> dz T J-h(<u ViRV nsemble

-h ensemble

The first term in the integral on the right is the usual turbulent
Reynolds stress and the two remaining terms are momentum transfers due
to the vertical velocity distribution. The integral on the right has so
far not been related to the mean flow in a consistent and satisfactory way.
Consequently it is often neglected completely. The structure of the terms
is similar to the molecular momentum transfer process. But while the
jatter is a homogeneous isotropic process characterized by the molecular
viscosity, this is not the case yith turbulent motion and vertical velo-
city shear. Prandtl used mixing length theory to derive a virtual vis-
cosity for turbulent boundary layer flow [62]. 1In order to get a closed

formulation we postulate a similar functional relationship without

s—

+ Note that this contribution as in (3.3.15) - (3.3.16) 1is not strictly
correct, because we started out with the ensemble averaged equations.
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invoking any mixing length theories.

X, X ensemble

n
o« 3. F = { v - ' ' + Ty,
(3.3.36) % J-h~1x1xj /po <(ui uJ) (ui uy )

-u." uj"} dz

i

a Eij ( ;;i + ;;? ) i,j = 1,2 no summing over i,j
Eij is a symmetric "eddy visgosity" coefficient matrix that demends on
the mean flow, depth, applied'surface stresses and flow history. What
values actually should be used must be determined from experience or by
trial since the explicit dependence on the mentioned parameters is un-
known. In the literature 1 - 10+5m2/sec have been quoted for the prin-

cipal values of E In model applications to Massachusetts Bay, the

i3 °
use of values up to 10" m?/sec has apparently not changed the results
gsignificantly. In spite of the nebulous circumstances we feel that the
inclusion of inx. has several attractive properties. It allows for
internal friction ind thereby energy dissipation, provided Eij is posi-
tive; it does represent actual physical processes(although not accurately)
and 1t is particularly suitable for damping short wave noise generated
by numerical methods.

As an attempt to bring some consistency into the anisotropic case
the direction of the local mear current is chosen as the major principal

axis of E,, with the minor principal axis perpendicular thereto. This

i]

means that in a local coordinate system with the x-axis in the direction

of the current, Eij is diagonal: i
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[
(3.3.37) E, = L

The corresponding Eij in the global coordinate system is then found by
gimple rotation. If p 1is the angle from global to local x—-axes, (see

Figure 3-7) the rotation is written

(3.3'38) E =
13 0 E ~

3
)

where T is the transformation matrix

cos® sind)
(3.3.39) T =

-gind cosf

and superscript T means transpose. in [54] and [ 75), the ratio of
El to E2 was found to be in the range 10 - 60 for a tidal coast and
a lake. Locally negative values of eddy viscosity have been measured
indicating energy being fed to the mean flow by turbulent eddies; however,
this happens only under very special conditions. For large areas, the
overall effect of the internal stresses is to dissipate energy. [14, 47]
give a more detalled discussion of this topic with some examples.

We are finally in a siFuation where we can present a formulation
in closed form. For convenience, all the pertinent equations are given

below.

Conservation of mass
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Figure 3-7. Global and local coordinate-system.
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o Xy X ¥y I

T (33400 B +aq  ta o = g

x and y equilibrium

(3.3.41) qx,t + (uqx)’x + (uqy),y- fqy + (Fp— Fxx)

» X
1 s b - 1 8
- F + = - -m - + LA
YX,y OO(TX Ty ) T M Do(p B T OPBHD ) =800,
" (3.3, + (v + (v + - + (F _-F
(3.3.42) 9y, ¢ (qu).x (qu>,y fq, ny.x ( P YY).Y
1 8 b - 1 8
+ L - - S H .+ Hh ) -gnh =0
o Ty T Ty ) Ty oo (Mg vaes HE ) enh,

with the constitutive relations.

8
(3.3.14)  F = ghn+%g“2+%%ggﬂz+gp ’
0 (¢}
: 3q, '3qy
-06 I'l - -——J—+.——-. - .
(3.3.36) Xy %y Eij ( ax, 3XJ i, = 1,2 no summing over 1i,j

The bottom and surface shear stresses are given by (3,3.20)-(3.3.21)

and (3.3.23) with (3.3.28).

Boundary Conditions

\">
.
£

l

Defining the correct types of boundary conditions is onc of the more
critical parts of the formulation.process. What prescribed valves rust be
given, and where? The consequence of not specifying enough is normally
the existence of non-unique solutions whereas too much may lead to tlie
pon-existence of any solution. These issues are often overlooked because

the problems are formulated and solved bypeople whe usually do ne:t have
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ti:e necessary mathematical background (and time) to worry about the
existence and uniqueness of solutions, Still, sclutions havebeen obtained
and verified with great success,which probably is due to luck and the fact
that generally Qell behaved physical problems arc solved.

In recent years, considerable efforts have been made by mathemati-
cians to prove existence and uniqueness of fluid flow problems, notably
solutions of Navier-Stokes equations [34]. Unfortunately, such proofs
do not exist yet for our problem and are mot likely to be made in the near
future. We shall therefore take the "engineering' approach and assume an
automatic proof 1if a reasonable solution is found. To that end, we have
to be reasonably certain that the prescribed boundary conditions are
proper.

Trying to get a better feeling for what boundary conditions are ne-
cessary, we note that the present flow problem is governed by one 2-com-

ponent vector equation which is the equivalent of Newton's 2nd law:

(3.4.1) Force = mass x acceleration
4
Fy = mlxy) 4y

The law of conservation of mass (3.3.4) 1is thus a constraint to be dis-
tinguished from an equilibrium equation.

It is well-known that for a single particle, a solution to (3.4.1)
exlists and is unique if an initial condition and either the force Fi

or the displacement x is prescribed. The intuitive generalization to

i
our flow problem is then to speéify an initial condition and the force

or the discharge which plays the role of displacement in a fluid [ %]
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at the boundaries. The initial situation is expressed as

(3.4.2) (qx.qy) = (g, . YD, qyo(x,y)) for all (x,y)in Qand t = O

f1 is the entire interior domain éﬂd the initial time 1is taken as zero.

Also the initial mass must be known, thus

river

Figure 3-8: Discharge and Force Boundaries

(3.4.3) H o= H (x,y) for all (x,y) t =0

On the boundaries therc are two alternatives as previously mentioned.

Referring to Figure 3-8, we distinguish between discharge boundaries

Sq and force boundaries SF‘ On Sq we write
¥
0404 = X =
3 ) 9y, “hx I + 0tny qy 1,

g b T

25
f



*
(3.4.5) qQ = -a_q +o _gq = g

for the normal and tangential discharges, where the direction cosines

are

(3.4.6) o, = cos (n,x) ; any = cos (n,y)

and the superscript * signifies a prescribed value.
On the remaining part of the boundary, SF’ the external force,

must be given, thus

(3.4.7) F =~F +0 ®F +a??F + 2a a F = F
nn P n¥x xx ny vy nx ny xy nn

(3.4.8) Fo=(?- an;) Fry * %y %oy Fyy™ Frd = Fol
must hold for the normel and tangential specific force measures.
(Specific force measure is equal to a force per unit width and density).
In the idealized case of an inviscid fluid (3.4.4) and (3.4.7)
must still hold, however Fn: must be zero since no shear can b2 da-
veloped and (3.4.5) can ﬁence not be imposed either.
The continuity equation (3.3.4) is used to find the position of
the free surface. It is a mass balance equation and does therefore not

require any boundary conditions.
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Ensenada, B. C.

Tel: 8-13-22

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS
(CTECCA)

Av. San Bernabé 549

San Jerénimo

México 20,

SECRETARTIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS
(CIECCA)

Av. San Bernabé No. 549

San Jerdnimo

Mé&xico 20, D. F.

Tel: 5-95-24-00



DIRECTORIO DE ASISTENTES AL CURSO USO DE COMPUTADORAS EN PROBLEMAS

DE CIRCULACION Y DISPERSION EN AGUAS COSTERAS, LAGOS Y RIOS ( DEL

10.

11.

12.

8 AL 12 DE MAYO DE 1978

NOMBRE Y DIRECCION

ING. EUGENIO DOMINGO COBO PEREZ
Copilco 300-12-102

Col. Coyoacan

México 20, D. F.

Tel: 5-50-68-26

. JAVIER ESPINOZA CACERES
Londres 17 Depto. 203
Coyoacéan
México 21, D. F.

ING. FERNANDO ENSENAT MACHADO -
Viaducto M. Aleman No. 178-9
Col. del Vvalle

México 12, D. F.

LIC. SALVADOR FARRERAS SANZ,
Apdo. Postal No. 2670
Ensenada, B. C.

Tel: 8-13-22

Laguna de la Magdalena No. 430
Col. Ventura Puente
Morelia, Mich.

ING. ARTURO GARCIA MENDOZA
Av. Universidad 1810-F-8

.Oxtopulco
México 20, D. F.
Tel: 5-50-01-36

ING. EDUARDO RAMON FERNANDEZ V.

EMPRESA Y DIRECCION

INSTITUTO DE INGENIERIA,UNAM
Ciudad Universitaria

México 20, D. F.

Tel: 5-48-97-95

INSTITUTO DE INGENIERIA,UNAM
Ciudad Universitaria

México 20, D. F.

Tel: 5-50-52-15 Ext. 3607

DEPARTAMENTO DE ESTUDIOS Y
LABORATORIOS- DIRECCION .GENERAL
DE OBRAS MARITIMAS

Lerdo No. 6

San Juan Ixhuatepec

Edo. de México

Tel: 5-69-28-37

CENTRO DE INVESTIGACION CIENTI-
FICA Y EDUCACION SUPERIOR DE
ENSENADA, B. C.

Av. Espinoza 84%

Apdo. Postal 2732

Ensenada, B. C.

Tel: 8-13-22

JUNTA DE PLANEACION Y URB. DEL
EDO. DE MICH. |
Casa de Gobierno Libramiento Sur
Morelia, Mich.
Tel: 2-65-05

SECRETARIA DE AGRICULTURA Y RE-
CURSOS HIDRAULICOS
(CIECCA)

Ave. San Bernabé No.
San Jerdnimo

México 20, D. F.
Tel: 5-66-08-88

549



DIRECTORIO DE ASISTENTES AL CURSO USO DE COMPUTADORAS EN PROBLEMAS DE
CIRCULACION Y DISPERSTON EN"AGUAS COSTERAS, LAGCS Y RIOS ( DEL 8 AL -

12 DE MAYC DE 1978 )

13.

14.

15.

16.

17.

NOMBRE Y DIRECCION

CARLOS GONZALEZ GUZMAN
Dakota 395-5

Col. Népoles

México 18, D. F.

Tel: 5-36-62-69

JESUS MANUEL HAM CHI

Libra No. 19 Depto. 4
Col. Prado Churubusco
México 13, D. F.

Tel: 6-70-18-87

ING. ENRIQUE C. HERNANDEZ CORTES
Lidia 88-1

Col. Guadalupe. Tepeyac

México 14, D. F.

Tel: 5-37-09-58

ING. MANUEL A. HUIDOBRO GARCIA
Cartago No. 88

Lomas Estrella

México 13, D. F,.

ING. HUMBERTO JIMENEZ DIAZ
Zacatecas No. 33-5

Col. Roma

México 7, D. F.

Tel: 5-84-87-33

EMPRESA Y DIRECCION

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS
(CIECCA)

Ave. San Bernabé 549

San Jerdénimo

México 20, D. F.

Tel: 5-95-44-53

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS ‘
Paseo de la Reforma No. 69-40
Piso .

Col. Juéarez
México 1, D. F.
Tel: 5-35-25-25

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS

Paseo de la Reforma 107-80.7.

México 1, D. F.
Tel: 5-66-06-88-117

. SECRETARTA DE AGRICULTURA Y .

RECURSOS HIDRAULICOS
(CIECCA)

Ave. San Bernabé No. 549
San Jerdnimo

‘México 20, D. F.

Tel: 5-95-44-53

DEPARTAMENTO DE ESTUDIOS Y
LABORATORIOS
DIRECCICN GENERAL DE OBRAS

i MARITIMAS

Lerdo 'de Tejada No. 6
Col. Marina Nacional
Edo. de México )
Tel: 5-69-28-36



DIRECTORIO DE ASISTENTES AL 'CURSO USO DE COMPUTADORAS EN PROBLEMAS

DE CIRCULACION Y DISPERSION EN AGUAS COSTERAS, LAGOS Y RIOS (_ DEL
8 AL 12 DE MAYO DE 1978 )

18.

19.

20.

21.

22.

23.

' Tel: 5-77-62-35

NOMBRE Y DIRECCION

ING. EDUARDO LOZANO GONZALEZ

Pas=zo de la Reforma No. 107-80. Piso

Col. San Rafael
México 4, D. F.
Tel: 5-46-14-55

ING. GUSTAVO LUNA ESCALANTE
San Antonio 134-23

Col. Néapcles

México 18, D. F.

JESUS MAGALLANES PATIRO
Ezequiel Montes 120-24
Col. San Rafael

México 4, D. F.

Tel: 5-46-13-50

FRANCISCO J. MAYTORENA FONTES
Bucareli 80 Int. "M"

México 1, D. F,

Tel: 5-12-68-07

JESUS R. MENDOZA RUIZ
Albino Garcia No. 72
Col. Vista Alegre
México, D. F.

Tel: 5-19-04-83

CARLOS ANGEL Q. MORTERA GUTIERREZ
Av. Unidn 281 ,

Col. Tepeyac Insurgentes

México 14, D. F.

EMPRESA Y DIRECCION

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS
(CIECCA)

Paseo de la Reforma 107-ler.
Col. San Rafael

México 4, D. F.

Tel: 5-66-06-88 Ext. 140

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS :
SUBDIRECCION DE PROMOCION Y
PROGRAMAS

Paseo de 1la Reforma No. 35-10
Piso

México 1, D. F.

Tel: 5-92-33-24

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS

Paseo de la Reforma 69-40.Piso
México, D. F.

Tel: 5-46-95-20

SECRETARIA DE AGRICULTURA Y
RECURSQOS HIDRAULICCS

Paseo de la Reforma No. 107
México 1, D. F.

Tel: 5-92-10-31

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS

Plaza de la Reptblica No. 31
Col. Tabacalera

México 8, D. F.

Tel: 5-46-50-96

DEPARTAMENTO DE ESTUDIOS Y
LABORATORIOS-DIRECCION GENERAL
DE OBRAS MARITIMAS

San Juan Ixhuactepec

Tel: 5-69-50-30



24,

25.

26.

27.

28.

29.

30.

DIRECTORIO DE ASISTENTES AL CURSO USO DE COMPUTADORAS EN PROBLEMAS

DE" CIRCULACION Y DITSPERSTON EN AGUAS COSTERAS, LAGOS Y RIOS (_ DEL

8 AL 12 DE MAYO DE 1978 )

NOMBRE Y DIRECCION

ING. ARMANDO MUNOZ PARGA
Laures No. 9

Col. Sta. Ma. Ribera
México, D.F.

. Tel. 547-32-48

ING. VICTOR S. PINEDA ESPINOSA
Rio Becerra No. 473-101

Col. Néapoles

México 18, D.F.

Tel. 543-82-83

EUGENIO RIQUELME TORRENTE
Ret. 10 Dr. N. Ledn Gpo. 18-N
Col. J. Balbuena

México 9, D.F.

Tel. 552-40

ING. HONORIO RIVERA MOCTEZUMA
Lago Tana No. 66-C

Torre Blanca

México 17, D.F.

ING. FRANCISCO ROMERO LUNA
Av. Cuauhtémoc No. 883-10
Col. Narvarte

México 12, D.F.

Tel. 543-63-60

RAFAEL F. SAENGER Y FERNANDEZ
Ldépez Cotilla No. 756

Col. Del Valle

México 12, D.F.

Tel. 523-52-53

ING. ANTONIO YOKOYAMA XANO
Torquemada No. 42 .
Col. Obrera

México 8, D.F.

o

EMPRESA Y DIRECCION

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS '
Plaza de la Repliblica No. 31
6o. Piso

México, D.F. |

Tel. 549-50-96

DEPARTAMENTO DE ESTUDIOS Y
LABORATORIOS-DIR. GRAL. DE
OBRAS MARITIMAS

Lerdo de Tejada No. 6

Col. Marina Nacional

Edo. de México

Tel. 569-28-36

SECRETARIA DE AGRICULTURA Y
RECURSOS HIDRAULICOS
(CIECCA)

San Bernabé No. 549

San Jerdnimo

México 20, D.F.

Tel. 595-53-44

CENTRO DE EDUCACION CONTINUA
Tacuba No. 5-1er. Piso
México 1, D.F.

Tel. 521-40-20

INSTITUTO DE INGENIERIA, UNAM
Ciudad Universitaria
México 20, D.F. :

INSTITUTO DE INGENTERIA, UNAM
Ciudad Universitaria

México 20, D.F.

Tel. §50-52-15 Ext. 3610

UNIVERSIDAD CATOLICA MADRE Y
MAESTRA

Autopista Duarte

Santiago, Repliblica Dominicana
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