centro de educación continua:

ANALISIS SINTESIS Y OPTIMACION EN INGENIERIA MECANICA

facultad de ingenieria

2. FUNDAMENTALS OF RIGID-BODY THREE-DIMENSIONAL KINEMATICS

DR. JORGE ANGELES ALVAREZ

unam.,

24

AGOSTO, 1980

n Kibigun (y. 1995) no she bu nin su to thro deleducal dri contribusi (

. , *·*

. : · - .

. · · ·

· · · .

2. FUNDAMENTALS OF RIGID-BODY THREE-DIMENSIONAL KINEMATICS.

2.1 <u>INTRODUCTION</u>. The rigid body is defined as a continuum for which, under any physically possible motion, the distance between any pair of its points remains <u>unchanged</u>. The <u>rigid body</u> is a mathematical abstraction which models very accurately the behaviour of a wide variety of natural and man-made mechanical systems under certain conditions. However, as such it does not exist in nature, as neither do the elastic body nor the perfect fluid. The theorems related to rigid body motions are rigorously proved and the found<u>a</u> tions for the analysis of the motion of systems of coupled rigid bodies (linkages) are laid down. The main results in this chapter are the theorems. of Euler, Chasles, the one on the existence of an instant screw, the Theorem of Aronhold-Kennedy and that of Coriolis.

2.2 NOTION OF A RIGID BODY.

Consider:a:subset D'of the Euclidean three-dimensional physical space occupled by a rigid body, and let x be the position vector of a point of that body... A rigid body motion is a mapping M. which maps every point x of D into a unique point y of a set D', called "the image" of D under N,

H : x + y (2.2.1)

such that, for any pair x_1 and x_2 , mapped by M into y_1 and y_2 , respectively, one has

$$||\mathbf{x}_2 - \mathbf{x}_1|| = ||\mathbf{y}_2 - \mathbf{y}_1||$$
 (2.2.2)

The symbol [[.]] denotes the Euclidean norm* of the space under consideration.

It is next shown that, under the above difinition, a rigid-body motion preserves the angle between any two lines of a body. Indeed, let x_1 , x_2

* See Section 1.8

:5.1.1. :5.1.1.

n in the second se

.

:2.1.0 •

A provide the provide state of the state of

ೆ. ಕ್ರಾಂತ್ರದ ವರ್ಷ-ಬ್ಯಾಟ್ ಕ್ರಾಂತ್ರಿ ವರ್ಷ- ಸ್ಥಾನ ವರ್ಷ- ಸ್ಥಾನ ಸಂಗ್ರಾ ಕ್ರಾಂತ್ರಿ ಸಂಗ್ರಾ ಸಂಗ್ರಾ ಸಂಗ್ರಾ ಸಂಗ್ರಾ ಸಂಗ್ರಾ ಸಂಗ ಕ್ರಾ ಸ್ಥಾನ ವರ್ಷ- ಸಂಗ್ರಾ ಸಂಗ

,

and \underline{x}_3 be three noncollinear points of a rigid body. Let <u>M</u> map these points into \underline{y}_3 , \underline{y}_2 and \underline{y}_3 , respectively. Clearly,

$$\frac{\left|\left|x_{3}-x_{2}\right|\right|^{2}}{=\left(x_{3}-x_{2},x_{3}-x_{2}\right)=\left(\left|x_{3}-x_{1}\right|\right)-\left(x_{2}-x_{1}\right),\left(x_{3}-x_{1}\right)-\left(x_{2}-x_{1}\right)\right)}{=\left|\left|x_{3}-x_{1}\right|\right|^{2}-2\left(x_{3}-x_{1},x_{2}-x_{1}\right)+\left|\left|x_{2}-x_{1}\right|\right|^{2}}$$

Similarly,

$$||y_{3}-y_{2}||^{2} = (y_{3}-y_{2},y_{3}-y_{2}) = ||y_{3}-y_{1}||^{2} - 2(y_{3}-y_{1},y_{2},-y_{1}) + ||y_{2}-y_{1}||^{2}$$

From the definition of a rigid-body motion, however,

$$||\mathbf{y}_{3} - \mathbf{y}_{2}||^{2} - ||\mathbf{x}_{3} - \mathbf{x}_{2}||^{2}$$

Thus,

$$||\mathbf{x}_{3} - \mathbf{x}_{1}||^{2} - 2(\mathbf{x}_{3} - \mathbf{x}_{1}, \mathbf{x}_{2} - \mathbf{x}_{1}) + ||\mathbf{x}_{2} - \mathbf{x}_{1}||^{2} - ||\mathbf{y}_{3} - \mathbf{y}_{1}||^{2} - 2(\mathbf{y}_{3} - \mathbf{y}_{1}, \mathbf{y}_{2} - \mathbf{y}_{1}) + ||\mathbf{y}_{2} - \mathbf{y}_{1}||^{2}$$

$$(2.2.3)$$

However, again from the rigid-body motion definition, .

$$||\mathbf{x}_{3} - \mathbf{x}_{1}||^{2} = ||\mathbf{y}_{3} - \mathbf{y}_{1}||^{2}$$
(2.2.4)

and

$$||x_2 - x_1||^2 = ||y_3 - y_1||^2$$
 (2.2.5)

Thus clearly; from (2.2.3); (2.2.4) and (2.2.5); '

$$(x_3 - x_1, x_2 - x_1) = (y_3 - y_1, y_2 - y_1)$$
(2.2.6)

which states that the angle (See Section 1.7) between vectors $x_3 - x_1$ and $x_2 - x_1$ remains unchanged.

The foregoing mapping \underline{n} is, in general, nonlinear, but there exists a class Q of mappings \underline{n} , leaving one point in a body fixed, that are linear.

In fact, let 0 be a point of a rigid body which remains fixed under $\frac{1}{2}$, its position vector being the zero vector 0 of the space under study (this can always be rearranged since one has the freedom to place the origin of coordinates in any suitable position). Let x_1 and x_2 be any two points of

, · ·

.

. •

·

. . .

: . .

· · ·

this rigid body.

From the previous results,

$$||\mathbf{x}_{i}|| = ||\varrho(\mathbf{x}_{i})||, i = 1, 2$$
 (2.2.7)

$$(\underline{x}_{i}, \underline{x}_{j}) = (\underline{Q}(\underline{x}_{i}), \underline{Q}(\underline{x}_{j})), i, j=1, 2$$
 (2.2.8)

Assume for a moment that Q is not linear.

Let

$$e^{\pm Q}(x_1+x_2) - \left(Q(x_1)+Q(x_2)\right)$$

Then

$$\begin{split} \|\underline{e}\|^{2} &= \|[\underline{\varphi}(\underline{x}_{1}\underline{x}_{2})\|^{2} + \|[\underline{\varphi}(\underline{x}_{1}) + \underline{\varphi}(\underline{x}_{2})\|^{2} - 2(\underline{\varphi}(\underline{x}_{1} + \underline{x}_{2}), \underline{\varphi}(\underline{x}_{1}) + \underline{\varphi}(\underline{x}_{2})) = \\ &= \|[\underline{x}_{1} + \underline{x}_{2}\|]^{2} + \|[\underline{\varphi}(\underline{x}_{1})\|\|^{2} + \|[\underline{\varphi}(\underline{x}_{2})\|\|^{2} + 2(\underline{\varphi}(\underline{x}_{1}), \underline{\varphi}(\underline{x}_{2}))] \\ &- 2(\underline{\varphi}(\underline{x}_{1} + \underline{x}_{2}), \underline{\varphi}(\underline{x}_{1})) - 2(\underline{\varphi}(\underline{x}_{1} + \underline{x}_{2}), \underline{\varphi}(\underline{x}_{2})) \end{split}$$

where the rigidity condition has been applied, i.e. the condition that states that, under a rigid body motion; any two points of the body remains a equidistant. Applying this condition again, together with the condition :: of constancy of the angle between any two lines of the rigid body (eq. (2.2.6)), $||e||^2 = ||x_1||^2 + ||x_2||^2 + 2(x_1, x_2) + ||x_1||^2 + ||x_2||^2 + 2(x_1, x_2)$

 $=2[|x_1|^2+2||x_2|^2+4(x_1,x_2)-(2||x_1||^2+2||x_2||^2+4(x_1,x_2))$

=0

From the positive-definiteness of the norm, then

e=0

thereby showing that

 $\mathcal{Q}(\mathbf{x}_1^{+}\mathbf{x}_2^{-}) = \mathcal{Q}(\mathbf{x}_1^{-}) + \mathcal{Q}(\mathbf{x}_2^{-})$

· · • • · . • . . •

i.e. Q is an <u>additive</u> operator*

On the other hand, since Q preserves the angle between any pair of	lines				
of a rigid body, for any given real number $a>0$, $Q(x)$ and $Q(ax)$ are	e paral-				
lel, i.e. linearly dependent (for x and ax are parallel as well).	Hence,				
$Q(\alpha x) = \beta Q(x), \beta > 0$	(2,2.9)				
Since Q preserves the Euclidean norm,					
$ Q(\alpha \underline{x}) = \alpha \underline{x} = \alpha \cdot \underline{x} $	(2.2.10)				
On the other hand, from eq. (2.2.9),					
$\left \left \mathcal{Q}\left(\alpha_{\mathbf{x}}\right)\right \right = \left \left \beta\mathcal{Q}\left(\mathbf{x}\right)\right \right = \left \beta\right , \left \left \mathcal{Q}\left(\mathbf{x}\right)\right \right = \left \beta\right , \left \left \mathbf{x}\right \right $	(2.2.11)				
Hence, equating (2.2.10) and (2.2.11), and dropping the absolute-value					
brackets, for $\alpha,\beta>0$,					
α = β					
and					
$Q(\alpha \mathbf{x}) := \alpha Q(\mathbf{x}) \oplus \langle \rangle$	(2.2:12)				
and hence, "Q is a homogeneous operator. Being homogeneous and addi	tive,				
Q is <u>linear</u> . The following has thus been proved.					
THEOREM 2.2.1 If Q is a rigid body motion that leaves a point fix	ced,				
then 2 is a linear transformation.					
From the foregoing discussion, Q is representable by means of a 3x	3 matrix				
referred to a certain basis (theorem 1.2.1)					
If $B=\{e_1,e_2,e_3\}$ is an orthonormal**basis for the 3-dimensional Euclidean					

ş

** $(e_i, e_j) = \delta_{ij}$ (The Kronecker delta)

٧.

This proof is due to Prof. G.S. Sidhu, Institute for Applied Mathematics and Systems Research, U. of Mexico

۔ ۲۰ 8 .

.

<u>وم</u>

. · .

space, the i<u>th</u> column of the matrix Q is formed from the coefficients of $Q(e_i)$ expressed in terms of B according to Definition 1.2.1. In fact, the resulting matrix is orthogonal. Since Q is linear, Q(x) can be expressed simply as Qx. Now if

<u>у</u> = Q×

then

||y||=||<u>×</u>||

Hence

 $y^{T}y=x^{T}Q^{T}Qx = x^{T}x$, for any x Hence, clearly

the identity matrix." This result can then be stated as <u>THEOREM 2.2.2</u> A rigid body motion leaving one point fixed is represented with respect to an orthonormal basis by an orthogonal matrix.

2.3 THE THEOREM OF EULER AND THE REVOLUTE MATRIX.

In the previous sections it was shown that the motion of a rigid body which keeps one of its points fixed can be represented by an orthogonal 3 x 3 matrix. In view of Sect. 1.9 there are two classes of orthogonal matrices, depending on whether their determinant is plus or minus unity. Orthogonal matrices whose determinant is +1 are called proper orthogonal and those whose determinant is -1 are called improper orthogonal.

Proper orthogonal matrices represent rigid body rotations, whereas improper orthogonal matrices represent reflections. Indeed, consider the rotation of axes X_1, Y_1, Z_1 into X_2, Y_2, Z_2 as shown in Fig 2.3.1

2

•

ė

•

*

•

The matrix representation of the above rotation is obtained from the relationship

 $x_{2} = x_{1}$ (2.3.1) $y_{2} = z_{1}$ (2.3.1)

₹2⁻⁻¥1

where x_1 , x_2 represent unit vectors along the X_1 and X_2 -axes, respectively. etc. From eqs. (2.3.1),

•	[1	0	٥J	·				
{ <u>o</u> }, =	0	0	-1		·		(2.3.2)	
	0	3	oJ					

 $\left(\begin{array}{c} 0 \end{array} \right)_1$ means the rotation expressed in terms of the basis $\left\{ \begin{array}{c} x_1, y_1, z_1 \end{array} \right\}$. Clearly,

det Q=+1

and thus it is a proper orthogonal matrix.

On the other hand, consider the reflection of axes x_1, y_1, z_1 , into

• • . . -• · . • *

r.

 $\{x_2, y_2, z_2\}$, as shown in Fig 2.3.2

Now,

 $x_2^{z-x_1}$

Hence,

$$(\underline{0})_{1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & 1 \end{pmatrix}^{T}$$

and so,

det
$$Q \approx -1$$

i.e., Q as obtained from (2.3.3) is a reflection. Applications of reflections were studied in Sect. 1.12.

From Corollary 1.9.1 it can be seen that a 3 x 3 proper orthogonal matrix has exactly one eigenvalue equal to +1. Now if <u>e</u> is the eigenvector of

7

(2.3.3)

. . . • , . · · · • • • • . . .

Q corresponding to the eigenvalue +1, it follows that

Qe = e

and, furthermore, for any scalar α ,

Qae = ae

Hence all points of the rigid body located along a line parallel to \underline{e} passing through the fixed point 0, remain fixed under the rotation \underline{c} . Hence, the following result, due to Euler $\{2,1\}$:

<u>THEOREM 2.3.1 (Euler)</u>. If a rigid body undergoes a displacement leaving one of its points fixed, then there exists a line passing through the fixed point, such that all of the points on that line remain fixed during the displacement. This line is called "<u>the axis of rotation</u>" and the angle of rotation is measured on a plane perpendicular to the axis.

The matrix representing a rotation is sometimes referred to as "the revolute". Clearly, the revolute is completely determined by: a scalar parameter, the angle of rotation and a vector, the direction of the axis of rotation?. From the foregoing discussion it is clear that the direction vector of the revolute is obtained as the (unique linearly independent) eigenvector of the revolute associated with its + 1 eigenvalue. The angle of rotation is obtained as follows:

From Euler's Theorem, it is always possible to obtain an (orthonormal) basis $B = \{b_1, b_2, b_3\}$ such that, say b_3 , is parallel to the axis of rotation, b_1 and b_2 thus lie in a plane perpendicular to this axis. The rotation would then rotate the vectors through an angle θ . Let b_1' and b_2' be the corresponding images of b_1 and b_2 after the rotation under consideration, represented graphically in Fig 2.3.3

r

^{*} These parameters are also called "the invariants" of the revolute, for they remain unchanged under different choices of coordinate axes.

. . . -. . .

Fig 2.3.3 Rotation through an angle θ about axis b $\approx 3^{-1}$. Then

$$b_{1}^{\dagger}=\cos\theta b_{1}+\sin\theta b_{2}$$

$$b_{2}^{\dagger}=-\sin\theta b_{1}+\cos\theta b_{2}$$

$$b_{3}^{\dagger}=b_{3}$$
(2.3.4)

and it follows that the -

$$\left(\underbrace{\mathbf{Q}}_{\mathbf{B}} \right)_{\mathbf{B}} = \left(\begin{array}{ccc} \cos \theta & -\sin \theta' 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array} \right)^{-1}$$

$$(2.3.5)$$

Due to its simple and illuminating form, it seems justified to call matrix (2.3.5) a "<u>canonical form</u>" of the rotation matrix.

Exercise 2.3.1 Devise an algorithm to carry any orthogonal matrix into its canonical form (2.3.5).

Let a revolute matrix Q be given referred to an arbitrary orthonormal basis A= $\{a_1, a_2, a_3\}$, different from B as defined above. Furthermore, let

1 . • · · · · · ·

10

where

$$b_j = (b_{1j}, b_{2j}, b_{3j})^T, j = 1, 2, 3$$

 b_{ij} being the <u>ith</u> component of b_{ij} referred to the basis A, i.e.,

 $\frac{b}{2}j = \frac{b}{1}j^{a}1^{+b}2j^{a}2^{+b}3j^{a}3$

Since both A and B are orthonormal, $(\underline{p})_A$ is an orthogonal matrix. Thus, the canonical form can be obtained from the following similarity transform<u>a</u>tion

$$\left(\underline{\rho}\right)_{\mathbf{B}} = \left(\underline{\rho}^{\mathrm{T}}\right)_{\mathbf{A}} \left(\underline{\rho}\right)_{\mathbf{A}} \left(\underline{\rho}\right)_{\mathbf{A}}$$
(2.3.7)

From the cononical form given above, it is apparent that -

$$\operatorname{Tr}\left(\underline{Q}\right)_{\mathbf{n}} \approx 1 + 2\cos^{2}$$

from which

$$\theta = \cos^{-1}\left(\frac{1}{2}(\operatorname{Tr}(\underline{0})_{\mathrm{B}}^{-1})\right) ; \qquad (2.3.6)$$

is readily obtained. It should be pointed out that, since the trace is invariant under similarity transformations, i.e. since

$$\operatorname{Tr}(Q)_{B} = \operatorname{Tr}(Q)_{A}$$

one can compute the rotation angle without transforming the revolute matrix into its canonical form.

Eq. (2.3.8), however, yields the angle of rotation through the \cos^{-1} function, which is even, i.e. $\cos^{-1}(-x) = \cos^{-1}(x)$; hence, the said formula does not provide the sign of the angle. This is next determined by application of Theorem 2.3.2. The proof of this theorem needs some background; which is now laid down.

In what follows, dyadic notation will be used*. Let L be the axis of a

For readers unfamiliar with this notation, a short account of algebra of dyadics is provided in Appendix I.

,

•

. · · ·

•

. .

. .

rotation about point O, whose existence is guarenteed by Euler's Theorem. Moreover, let θ be the corresponding angle of rotation, as indicated in Fig 2.3.4, and e a unit vector parallel to L.

Fig.2.3.4 Rotation about a point.

In Fig.2.3.4 P% is the rotated position of point P. If PQ is perpendicular to L, so is P*Q, because rotations preserve angles of rigid bodies. Thus points P; P*, and Q:determine:a.plane.perpendicular.to L, on which the angle. of rotation, 0, is measured. From that figure,

$$\mathbf{r}' = \mathbf{0}\mathbf{\hat{Q}} + \mathbf{Q}\mathbf{P}'$$

and

$$\vec{OQ} = \mathbf{r} - \vec{QP}$$

Hence

$$\mathbf{r}' = \mathbf{r} - \overline{\mathbf{QP}} + \overline{\mathbf{QP}}' \tag{2.3.9}$$

"Let'QP" be a line contained in plane PP'Q, at right angles with line PQ and of length equal to that of QP. Thus, vector \overrightarrow{QP} ' can be expressed as a linear combination of vectors \overrightarrow{QP} and \overrightarrow{QP} ". But

$$\widehat{QP}'' = e \times r$$
 (2.3.10)

, . . · · - · , • , . •

whereas

$$\overrightarrow{QP} = -e_{x} (o_{x} \underline{r})$$
(2.3.11)

which can readily be proved. Besides, \overrightarrow{QP}' can be expressed as

 $\overrightarrow{OP}^{\bullet} = \overrightarrow{OP} \cos\theta + \overrightarrow{OP}^{*} \sin\theta$

which, in view of eqs. (2.3.10) and (2.3.11), yields

 $\frac{\partial QP}{\partial P} = -\cos\theta ex(e \times r) + \sin\theta e \times r \qquad (2.3.12)$

Substituting eqs. (2.3.11) and (2.3.12) into eq. (2.3.9) leads to

 $\mathbf{r}^{*} = \mathbf{r} + \mathbf{e} \times (\mathbf{e} \times \mathbf{r}) - \cos \theta \mathbf{e} \times (\mathbf{e} \times \mathbf{r}) + \sin \theta \mathbf{e} \times \mathbf{r}$ (2.3.13) But

 $e \times (e \times r) = (e \cdot r)e - (e \cdot e)r = (e-1) \cdot r$ (2.3.14). where 1 is the identity dyadic, i.e. a dyadic that is isomorphic to the identity matrix. Furthermore

 $exr = 1 \cdot exr = .1 \times e \cdot r$. (2.3.15)

where the dot and the point have been exchanged; what is possible to do. . by virtue of the algebra of cartesian vectors. Substituting eqs. (2.3.14) and (2.3.15) into eq. (2.3.13) one obtains

 $\mathbf{r}^{\prime} = \mathbf{r} + (1 - \cos \theta) (ee^{-1}) \mathbf{r} + \sin \theta \mathbf{1} \times \mathbf{e} \cdot \mathbf{r} = 0$

- $= ((1-\cos\theta)ee + \cos\theta + \sin\theta + \sin\theta + x e) \cdot r =$
- = 0.r (2.3.16)

i.e. r' has been expressed as a linear transformation of vector r. The dyadic Q is then, isomorphic to the rotation matrix defined in Section 2.2. That is

 $Q = ee + (1-ee)\cos\theta + \sin\theta 1 x e$ One can now prove the following (2.3.17)

<u>THEOREM 2.3.2</u> Let a rigid body undergo a pure rotation about a fixed point 0 and let \underline{r} and \underline{r}' be the initial and the final position vectors of a point of the body (measured from 0) not lying on the axis of rotation

. . -• • -

Furthermore let θ and <u>e</u> be the angle of rotation and the unit vector pointing in the direction of the notation. Then

sgn(axa'.e)=sgn(0)

Proof.

Application of eq. (2.3.16) leads to

```
rxr' = (1 - \cos\theta) (e.r) rxe + \sin\theta rx (exr) == (1 - \cos\theta) (e.r) rxe + \sin\theta (r^2 e^- (r.e) r)
```

where

r²=||<u>r</u>||²

Thus,

```
\operatorname{rxr}^{*} \cdot \operatorname{esin}\left(\operatorname{r}^{2} - \left(\operatorname{r}, \operatorname{e}\right)^{2}\right)
```

which can be reduced to

rxr'.e =.r²sin0sin²(r,e)

* 'where'(r,e)fis the angle between vectors r and e. Hence,

```
sgn(rxr'.e)=sgn(sin0)
```

But

```
sgn(sin0)=sgn(0)
```

for sin() is an odd function, i.e. sin $(-x = -\sin(x))$.

Finally, then

```
sgn(rxr'.e)=sgn(0),q.e.d (2.3.18)
```

In conclusion, Theorem 2.3.2 allows to distinguish whether a rotation in the specified direction e is either through an angle θ or through an angle $-\theta$.

Exercise 2.3.2 Let p and p' be the initial and the final position vectors of a point P of a rigid body undergoing a screw motion whose rotation matrix is Q. Show that the displacement p'-Qp lies in the null space of Q-I.

· .

•

Exercise 2.3.3 Show that the trace of a matrix is invariant under similar ity transformations.

Exercise 2.3.4 Show that a revolute matrix Q has two complex conjugate eigenvalues, λ and $\overline{\lambda}$ ($\overline{\lambda}$ = complex conjugate of λ).

Furthermore, show that

$$\operatorname{Re}\{\lambda\} = \frac{1}{2} (\operatorname{Tr} Q - 1)$$

What is the relationship between the complex eigenvalues of the revolute matrix and its angle of rotation?.

In the foregoing paragraphs the revolute matrix was analyzed, i.e. it was shown how to obtain its invariants when the matrix is known. The inverse-problem is discussed next: Given the axis and the angle of rotation; obtain the revolute matrix referred to a specified set of coordinate axes.

It is apparent that the most convenient basis (or coordinate axes) for $-\infty$ representing the revolute matrix is the one for which this takes on its canonical form. Let $B = \{b_1, b_2, b_3\}$ be this basis, where b_3 coincides. . with the given revolute axis, and b_1 and b_2 are any pair of orthonormal vectors lying in the plane perpendicular to b_2 .

Hence, $\begin{pmatrix} Q \end{pmatrix}_B$ appears as in eq. (2.3.5), with given θ . Let $\lambda = \{a_1, a_2, a_3\}$ be an othonormal basis with respect to which Q is to be represented, and let

12.

. . .

$$(\underline{\mathbf{p}})_{\mathbf{A}} = (\underline{\mathbf{b}}_1 \qquad \underline{\mathbf{b}}_2 \qquad \underline{\mathbf{b}}_3)_{\mathbf{A}}$$

be a matrix formed with the vectors of B. Then, it is clear that $\cdot \quad \left(\varrho \right)_A = \left(\underline{P}^T \right)_A \left(\underline{\varrho} \right)_B \left(\underline{P}^T \right)_A$

Example 2.3.1 Let

$$Q = \frac{1}{3} \begin{pmatrix} 2 & 1 & 2 \\ -2 & 2 & 1 \\ -1 & -2 & 2 \end{pmatrix}$$

Verify whether it is orthogonal. If it is, does it represent a rotation?. If so, describe the rotation

Solution:

$$\begin{array}{c} \mathbf{Q}\mathbf{Q}^{\mathrm{T}} = \frac{1}{9} \begin{pmatrix} 2 & 1 & 1 \\ -2 & -2 & 1 \\ -1 & -2 & 2 \end{pmatrix} \begin{pmatrix} 2 & -2 & -1 \\ 1 & 2 & -2 \\ 2 & 1 & 2 \end{pmatrix} \\ = \frac{1}{9} \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} = \frac{1}{12} \begin{bmatrix} 2 & -2 & -1 \\ 1 & 2 & -2 \\ 2 & 1 & 2 \end{bmatrix}$$

Hence Q is in fact orthogonal. Next,

$$\det \left[2\frac{2}{3} \begin{vmatrix} \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & \frac{2}{3} \end{vmatrix} + \frac{2}{3} \begin{vmatrix} \frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} \end{vmatrix} + \frac{2}{3} \begin{vmatrix} \frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} \end{vmatrix} - \frac{1}{3} \begin{vmatrix} \frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} \end{vmatrix} - \frac{1}{3} \begin{vmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{vmatrix}$$
$$-\frac{2}{3} (\frac{4}{9} + \frac{2}{9}) + \frac{2}{3} (\frac{2}{9} + \frac{4}{9}) - \frac{1}{3} (\frac{1}{9} - \frac{4}{9}) = +1$$

Thus Q is a proper orthogonal matrix and consequently represents a rotation. To find the axis of the rotation it is necessary to find a unit vector $e^{-}(e_1,e_2,e_3)^{T}$ such that

/5

۰. ۰

-

. X

. •

i,e.

$$\begin{vmatrix} 2 & 1 & 2 \\ -2 & 2 & 1 \\ -1 & -2 & 2 \end{vmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} = \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}.$$

Henco

$$-e_1 + e_2 + 2e_3 = 0$$

 $-2e_1 - e_2 + e_3 = 0$
 $-e_1 - 23_2 - e_3 = 0$

from which

 $e_1 = e_3$ $e_2 = -e_3$

and so
$$e = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} e_3$$
.

. Setting ||e||=1, it follows that $e_3 = \frac{\sqrt{3}}{3}$, and \cdots

 $\mathbf{e} = \frac{\sqrt{3}}{3} \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$

Thus, the axis of rotation is parallel to the vector e given above. To find the angle of rotation - is an even simpler matter:

$$T_{Z} Q = \frac{1}{3} (2+2+2) = 1 + 2 \cos \theta$$

Thus $\theta = \cos^{-1}(\frac{1}{2}) = -60^{\circ}$

where use was made of Theorem 2.3.2 to find the sign of 0.

• • • • , . -, • · · · • . . _

I

i

Example 2.3.2. Determine the revolute matrix representing a rotation of 90° about an axis having three equal direction cosines with respect to the X,Y,Z axes. The matrix should be expressed with respect to these axes.

Solution:

Let $\underline{B} = \{\underline{b}_1, \underline{b}_2, \underline{b}_3\}$ be an orthonormal basis with respect to which the revolute is represented in its canonical form. Let \underline{b}_3 be coincident with the axis of rotation. Clearly

$$b_3 = \frac{\sqrt{3}}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

It remains only to determine b_1 and b_2 to Clearly, these must satisfy

$$\underline{b}_1 \cdot \underline{b}_2 = \underline{b}_1 \cdot \underline{b}_3 = \underline{b}_2 \cdot \underline{b}_3 = 0$$
.

Let

	[a]		{x`) i
(b,)*=.	β	, (b ₂), =	μ	•
· •	(γ)		ł٧,)

Thus, the components of b₁ must satisfy

```
\alpha+\beta+\gamma=0, \gamma
\alpha^2+\beta^2+\gamma^2=1. \gamma
```

It is apparent that one component can be freely chosen. Let, for example,

α #0

Hence,

$$\beta + \gamma = 0$$

 $\beta^2 + \gamma^2 = 1$

from which

2
$$\beta^2 = 1$$
. Thus $\beta = \frac{\pm\sqrt{2}}{2}, \gamma = \pm \frac{\sqrt{2}}{2}$

Thus, choosing the + sign for β ,

* • **. .** . . .

.
$$\mathbf{b}_{1} = \begin{bmatrix} \mathbf{0} \\ \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \end{bmatrix}$$

b can be obtained now very easily from the fact that $\frac{b}{1}, \frac{b}{2}$ and $\frac{b}{3}$ constitute an orthonormal right-hand triad, i.e.

$$b_2 = b_3 x \ b_1 = \frac{\sqrt{6}}{6} (-2, 1, 1)^T$$

With respect to this basis, then, from eq. (2.3.5) the rotation matrix has the form

$$\left(\underbrace{O}_{B} \right)_{B} = \left(\begin{matrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{matrix} \right)$$

Thus, letting A be the basis defined by the given X, Y and Z axes,

$$(P)_{A} = \begin{cases} 0 & -\sqrt{6}/3 & \sqrt{3}/3 \\ \sqrt{2}/2 & \sqrt{6}/6 & \sqrt{3}/3 \\ -\sqrt{2}/2 & \sqrt{6}/6 & \sqrt{3}/3 \end{cases}$$

and, from eq. (1.5.12), defining the following similarity transformation; $\left(\underline{Q} \right)_{A} = \left(\underline{P} \right)_{A} \left(\underline{Q} \right)_{B} \left(\underline{P}^{T} \right)_{A}$

With $(Q)_B$ in its canonical form, the revolute matrix Q, expressed with respect to the X,Y,Z axes, is found to be

$$\begin{pmatrix} 0 \\ -1 \\ -2 \\ 1 + \sqrt{3} & 1 + \sqrt{3} \\ 1 + \sqrt{3} & 1 & 1 - \sqrt{3} \\ 1 - \sqrt{3} & 1 + \sqrt{3} & 1 \\ \end{pmatrix}$$

Exercise 2.3.6 If the plane x + y + z + 1 = 0

is rotated through 60° about an axis passing through the point (-1, -1, -1)

. . .

•

.

1

7

and with direction cosines $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$, what is the equation of the place in its new position?.

Exercise 2.3.7. The four vertices of an equilateral tetrahedron are labelled A, B, C, and D. If the tetrahedron is rotated in such a way that A, B, C, and D are mapped into C, B, D, and A, respectively, find the axis and the angle of the rotation.

What are the other rotations similar to the previous one, i.e., which map every vertex of the tetrahedron into another vertex?.

All these rotations, together with the identity rotation (the one leaving the vertices of the tetrahedron unchanged), constitute the <u>symmetry group</u>* of the tetrahedron.

Exercise 2.3.8 Given an axis A whose direction cosines are $(\frac{\sqrt{2}}{2}, \frac{1}{2}, \frac{1}{2})$, with respect to a set of coordinate axes XYZ, what is the matrix representation; with respect to these coordinate axes; of a rotation about Atthrough ...

<u>Exercise:2.3.9</u> A-square matrix: A is said to be idenpotent of index X whenever k is the smallest integer for which the $k^{\underline{th}}$ power of $\underline{\lambda}$ becomes the identity matrix. Explain why the matrix obtained in Exercise 2.3.8 should be idempotent of index n.

Exercise 2.3.10 Show that any rotation matrix Q can be expressed as $\lambda \theta$ Q=e

where \underline{A} is a nilpotent matrix and θ is the rotation angle. What is the relationship between matrix \underline{A} and the axis of rotation of Q?

*See Sect. 2.4 for the definition of this term.

Ċ

.

. .

• •

.

•

Exercise 2.3.11 The equation of a three-axes ellipsoid is given as

$$\frac{x^2}{x^2} + \frac{y^2}{y^2} + \frac{z^2}{z^2} = 1$$

what is its equation after rotating it through an angle θ about an axis of direction numbers (a,b,c)?

2.4 GROUPS OF ROTATIONS.

A group is a set g with a binary operation θ such that

i) if a and b ε g, then a b ε g

- ii) if a,b,c then aO(bOc)=(aOb)Oc
- iii) \cdot g contains an element i, called the <u>identity</u> of g under o, such \cdot that, for every a ε g

aoi = ioa = a

iv) for every $a \in g$, there exists an element denoted $a^{-1}eg$, called the inverse. of a under g such that 2.

 $a a a^{-1} = a^{-1} a a = i$

Notice:that-in the above definition it-is:not required that the group be commutative, i.e. that a0b=b0a for all a,bcg. Commutative groups are a special class of groups, called abelian groups.

Some examples of groups are:

a) The natural numbers 1,2,..., 12 on the face of a (mechanical, not quartz or similar) clock and the operation kom corresponding to ..., "shift the clock hand from location k to location k + m", where k
and m are natural numbers between 1 and 12. Of course, if k + m>12, the resulting operation is meant to be (k + m) (mod 12).

b) The set of rational numbers with the usual multiplication operation.

. . , , _ i .

.

c) The set of integers with the usual algebraic addition operation. The set of integers with the multiplication operation do not constitute a group (Why?)

Exercise 2.4.1 Show that the set of all the rotations referred to in Exercise 2.3.5 actually constitute a group.

Exercise 2.4.2 What is the symmetry group* of

i) an icosahedron?

ii) a regular pentagonal prism?

iii) a circular cylinder?

iv) a sphere?

It is clear; from the above discussion, that the set of all orthogonal matrices constitute a group under matrix multiplication. In particular, the set of proper orthogonal matrices constitutes a group under matrix multiplication; but the improper set does not (Why?).

Example 2.4.1 Referring to Fig 2.4.1, find the matrix representation, with respect to the X_1, Y_1, Z_1 axes, of the rotation that carries vertices A and B of the cube into A' and B', respectively, while leaving vertex O fixed. A' and B' lie in the Y_1Z_1 plane and points A', O and D, are collinear, as are B', F and E.

* See Exercise 2.3.5 for a definition of a symmetry group.

1.

• . . , · · · · • . .

Fig.2.4.: Rotation of a cube

Solution:

Let $(Q_{12})_1$ be the matrix-representing the rotation of axes-labelled 1 into those labelled 2 (referred to axes 1). (Then, letting x_i , y_i and z_i be unit to vectors directed along the x_i -, y_i -and z_i axes, respectively,

- $\begin{array}{c} \underline{\mathbf{p}}_{12} \mathbf{x}_{1} = \mathbf{x}_{2} = \mathbf{z}_{1} \\ \underline{\mathbf{p}}_{12} \mathbf{y}_{1} = \mathbf{y}_{2} = \mathbf{y}_{1} \\ \end{array}$
- $\sum_{i=1}^{Q} \sum_{j=1}^{Z} \sum_{i=1}^{Z} \sum_{j=1}^{Z} \sum_{$

from which

$$(Q_{12})_{3} = \begin{cases} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{cases}$$

Next, rotate axes labelled 2 into axes labelled 3. Call this rotation Q_{23} . This rotation would leave axis X_1 fixed whereas it would carry axis Y_1 into Z_1 and axis Z_1 into $-Y_1$. Hence,

. -.

•

and so,

$$\{Q_{23}\}_{1} = \begin{cases} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{cases}$$

Let Q_{13} be the rotation meant to be obtained. Its matrix can be computed then as

$$(Q_{13})_1 = (Q_{23})_1 (Q_{12})_1 = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

which could also have been obtained by noticing that -- ...

$$\underline{Q}_{13} = \underline{z}_{13} =$$

Matrix $(Q_{13})_1$ represents a rotation through an angle $\theta = 120^\circ$ about an axis with direction cosines $-\alpha, \alpha, \alpha$. Although in this example the rotation could be obtained by an alternate method, in many cases, such as the one in Exercise 2.4.3, the use of rotation composition scens to be the simplest method.

Exercise 2.4.3 Determine the axis and the angle of the rotation tarrying axes X,Y,Z into axes ξ,η,ζ , as shown in Fig. 2.4.2

. . **ی** . . . ۲ • • -• • *

ł

ļ

Fig 2.4.2 Rotation of axes

Exercise 2.4.4 The cube appearing in Fig 2.4.1 is rotated 45° about diagonal OC. Find the matrix representation, with respect to X_1, Y_1, Z_1 , of a this rotation and the distance that vertex (B, is displaced through ...

2.5 2 RODRIGUES :- FORMULA AND CARTESIAN DECOMPOSITION OF THE ROTATION MATRIX.

The image r_2 of a Cartesian vector r_1 under a rotation through an angle θ about: an axis parallel to the unit vector e passing through the origin of coordinates was shown to be (See Section 2.3)

$$\mathbf{r}_{2} = \left((1 - \cos\theta) \underbrace{ee}_{1} + \sin\theta \underbrace{1xe}_{1} \right) \cdot \mathbf{r}_{1}$$
(2.5.1)

Multiplying both sides of eq. (2.5.1) times gx yields

$$r_2 - r_1 = \tan \frac{\theta}{2} \exp(r_1 + r_2)$$
 (2.5.2)

which is called <u>Rodrigues' formula</u> (2.3,2.4)

Form (2.5.1) of the rotation dyadic is advantageous since it shows explicitly the invariants e and θ of the rotation.

24

. . • . •

Other useful expression of the rotation matrix is now derived. Letting

$$\mathbf{e} = (\mathbf{u}, \mathbf{v}, \mathbf{w})^{\mathrm{T}}$$
(2.5.3)

the rotation matrix can be written as $\{2,5\}$

$$Q = R + T \cos\theta + P \sin\theta \qquad (2.5.4)$$

where

$$\mathbf{R} = \begin{pmatrix} \mathbf{u}^{2} & \mathbf{u}\mathbf{v} & \mathbf{u}\mathbf{w} \\ \mathbf{u}\mathbf{v}' & \mathbf{v}^{2} & \mathbf{u}\mathbf{w} \\ \mathbf{u}\mathbf{w} & \mathbf{v}\mathbf{w} & \mathbf{w}^{2} \end{pmatrix} , \quad \mathbf{T} = \begin{pmatrix} \mathbf{v}^{2} + \mathbf{w}^{2} & -\mathbf{u}\mathbf{v} & -\mathbf{u}\mathbf{w} \\ -\mathbf{u}\mathbf{v} & \mathbf{u}^{2} + \mathbf{w}^{2} - -\mathbf{v}\mathbf{w} \\ -\mathbf{u}\mathbf{v} & \mathbf{u}^{2} + \mathbf{w}^{2} - -\mathbf{v}\mathbf{w} \\ -\mathbf{u}\mathbf{w} & -\mathbf{v}\mathbf{w} & \mathbf{u}^{2} + \mathbf{v}^{2} \end{pmatrix} , \quad (2.5, 5a)$$

and

÷	(0	-w	vļ				
P =	. w	0	-11	•	L		(2.5.5b)
	{-v	u	oj				

In fact; computing the dyadics_involved in expression (2.3.17), •

$$1 = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$
 (2.5.7)

Sence

$$1 \times e = (ii + jj + kk) \times (ui + vj + wk) =$$

$$= uiixi + viixi + wiixk +$$

$$+ ujj \times i + vjj \times k +$$

$$+ ukk \times i + vkk \times j + wkk \times k$$
(2.5.8)
But'

i x i = j x j = k x k = 0 (2.5.9)

• • . • . •

26 -

and

$$i \times j = -j \times i = k$$
, $i \times k = -k \times i = -j$ (2.5.10a)
 $j \times k = -k \times j = i$ (2.5.10b)

• Thus

$$x = - w_{ij} + v_{ik}$$

+ $w_{ji} - u_{jk}$
- $v_{ki} + u_{kj}$ (2.5.11)

Dyadics (2.5.6) and (2.5.7) can be written in matrix form as

$$\underbrace{\left(\begin{array}{c} e_{0} \\ e_{0} \\ \vdots \\ u^{\prime} \end{array}\right)}_{i} = \begin{bmatrix} u^{2} & uv & uw \\ uv & v^{2} & uw \\ uw & vw & w^{2} \end{bmatrix}, \underbrace{\left(\underline{1}x\underline{e}\right)}_{i} = \begin{bmatrix} 0 & -w & v \\ w & 0 & -u \\ -v & u & 0 \end{bmatrix}$$
 (2.5.12)

and

$$\left(\underline{1} - \underline{e}\underline{e}\right) = \begin{cases} v^{2} + w^{2} - uv & -uv \\ -uv - u^{2} + w^{2} - -vw \\ -uv & -u^{2} + v^{2} \end{cases}$$
(2.5.13)

Substitution of matrices (2:5.12) and (2.5:13) into eq. (2.3:17), leads and directly to eq. (2.5.4)...This expression of matrix Quistory Useful... because it allows one to determine the sign of θ without requiring to compute the image r' of a vector r under Q. Indeed, from eqs. (2.5.5a) and (2.5.5b), it is clear that matrices R and I are symmetric, whereas P is skew symmetric. Hence, and from Theorem 1.7.1, P sin θ can be obtained as

$$P_{2} \sin \theta = \frac{1}{2} (Q_{2} - Q_{2}^{T})$$
 (2.5.14)

1.e. eq. (2.5.4) can be regarded as the cartesian decomposition (see Section 1.7) of matrix Q. Now, calling e_i the ith component of vector \underline{e} , as given by eq. (2.5.3) and taking definition (2.5.5b) and eq. (2.5.14) into

. .

•

.

account, one obtains

$$-e_{1}\sin\theta = \frac{1}{2} (q_{23}-q_{32}) , \qquad (2.5.15a)$$

$$+ e_{2}\sin\theta = \frac{1}{2} (q_{13}-q_{31}) (2.5.15b)$$

$$-e_{3}\sin\theta = \frac{1}{2} (q_{32}-q_{21}) (2.5.15c)$$

Introducing the alternating tensor ϵ_{ijk} defined as

 $\varepsilon_{ijk} = \begin{cases} +1, if i, j \text{ and } k \text{ are in cyclic order} \\ -1, if i, j \text{ and } k \text{ are in acyclic order} \\ 0, if at least one index is repeated \end{cases}$

eqs. (2.5.15) can be written as

$$e_i \sin \theta = \frac{1}{2} \varepsilon_{ijk} (q_{jk} q_{kj})$$

from which, if e, does not vanish, ...

$$sgn\theta = \epsilon_{ijk} sgn(\frac{q_{kj} - q_{jk}}{e_i})$$

follows directly. 7.

Exercise: 2.5.1.: Given matrices T and P, as defined in eqs. (2.5.5a) and r. (2.5.5b), prove that $T = -p^2$ and device an algorithm to compute P given T. Exercise 2.5.2 Use eq. (2.5.16) to determine the sign of θ for the rotation matrix of Example 2.3.1 and verify the result thus obtained with the one obtained previously.

• • • • . • . ' . . . • . .

2.6 GENERAL MOTION OF A RIGID BODY AND CHASLES' THEOREM

In the previous sections only the motion of a rigid body about a fixed point was discussed. There are rigid body motions, however, with no fixed point. Such motions are studied in this section.

Consider a motion under which one point is displaced from A to A' and another one is displaced from R to R', as shown in Fig 2.6.1 This motion can take place in any of three different ways, namely i) any pair of points A,R of the body undergo a displacement to A', R', respectively in such a way that line A' R' is parallel to line AR; this motion is referred to as <u>pure.translation</u>;...ii) a line of the body remains fixed,...in, which.case,.... according to Euler's Theorem (Theorem 2.3.1); the motion is referred to as pure rotation;

Fig 2.6.1 General motion of a rigid body

. . -· · ·

.

iii) no point of the body remains fixed under the motion, in which case it is referred to as general motion.

The motion from configuration 1 to configuration 2 can be regarded as the composition of two motions: first the rigid body is displaced from 1 to 1 without any rotation. Hence, the lines connecting any pair of points in 1 are parallel to those connecting them in the intermediate configuration I. Since this is a rigid body motion, the length of each segment remains unchanged. Thus, letting a,a', r,r' and r'' be the position vectors of points A,A', R,R' and R'', respectively,

$$\underline{r}' - \underline{a}' = Q(\underline{r}'' - \underline{a}')$$
 (2.6.2) ...

-=: Substitution:of#(2.6.1)#intob(2.612)band_rearrangement;of the terms:yield:=::::

$$r'=a'+Q(r-a)$$
 (2.6.3)

27

4

4

• • • •

.

Exercise 2.6.1 Obtain eq. (2.6.3) by performing first a rotation and then a translation.

The main result in this section is <u>Chasles'Theorem</u>, which states that, given any rigid body displacement, it can always be obtained as the rotation about a line of the body, known as "the screw axis"; followed by a translation parallel* to the rotation axis. Moreover, the displacements of all points of the body along the screw axis are of minimum magnitude. The displacement vector of a point is defined as the vector between the final and the initial positions of the point, e.g. the displacement of point.R in the previous discussion is

$$u=r_{-r=a}^{1}+Q(r-a)-r_{-}=$$
=a'-Qa+(Q-1)r (2.6.3a)

From eq. (2.6.3) notice that u is a linear function of one-single-variable, r. Hence, the norm of usis at linear function of r only the the square of this norm is quadratic in relations given as z.

 $\phi(\underline{r}) = \underline{u}^{T} (\underline{q} - \underline{I})^{T} (\underline{q} - \underline{I}) \underline{r} + 2 (\underline{a}^{T} - \underline{c}\underline{a})^{T} (\underline{q} - \underline{I}) \underline{r} + (\underline{a}^{T} - \underline{c}\underline{a})^{T} (\underline{a}^{T} - \underline{c}\underline{a}) \qquad (2.6.4) \qquad (2.6.4)$

The theorem is now proved via the minimization of $\phi(\mathbf{r})$. This function has... one extremum at the point \mathbf{r}_0^{-1} where $\phi'(\mathbf{r}_0)=0$. The derivative $\phi'(\mathbf{r})$ is next computed, and zeroed at \mathbf{r}_0 .

Applying the "chain rule" to ϕ ,

$$\phi'(\bar{z}) = \left(\frac{3\bar{z}}{3\bar{u}}\right)^{T} \frac{3\bar{u}}{3\phi}$$

30

^{*} The direction of a pure translation of a rigid body is understood here as the direction of the displacement vectors of the points of the body.

• . . . · -. **`**. ı

where, from eq, (2,6.3a),

$$\frac{\partial u}{\partial r} = Q - I$$
 (2.6.5a)

and

$$\frac{\partial \phi}{\partial u} = 2u \qquad (2.6.5b)$$

Thus, letting $u_0 = u(r_0)$, the zeroing of the gradient of ϕ at $r = r_0$ leads to

$$(\underline{0}-\underline{1})^{T}\underline{u}_{0}=\underline{0}$$
 (2.6.6)

or

$$u = 0$$
 (2.6.6a)

Now, "if both sidesiof eq: (2.6:6) are multiplied by: Q, - one obtains are multiplied by: Q, - one obtains

$$Q u_0 = u_0$$
 (2.6.6b)

thereby concluding that the minimum-norm displacement \underline{u}_0 lies in the real spectral-space of $\underline{0}$, i.e., if is parallel to the axis of rotation of $\underline{0}$. What is now left to complete the proof of Chasles. Theorem is to determine ----the set of points of the rigid body having a displacement vector parallel. to the rotation axis. This is done next. Substituting \underline{u}_1 evaluated at \underline{v}_0 ; as given by eq. (2.6.3a) into eq. (2.6.6), and rearranging terms leads to

$$(Q-1)^{T}(Q-1)r_{0} = (Q-1)^{T}(Qa-a')$$
 (2.6.6c)

from which \underline{r}_0 cannot be solved for, since $(\underline{Q}-\underline{I})$, and hence $(\underline{Q}-\underline{I})^T (\underline{Q}-\underline{I})$ is singular." In fact, it can be readily proved that this matrix is of rank 2. [Exercise 2.6.1] Prove that $(\underline{Q}-\underline{I})^T (\underline{Q}-\underline{I})$ is of rank 2, except for $\underline{Q}=\underline{I}$.

Although r_0 cannot be solved for from the latter equation, interesting results can be derived from it. Indeed, given a point R_0 , with position vector r_0 , of minimum-magnitude displacement u_0 , define a new point S_0 .

· . . 4 •

with position vector \underline{s}_0 given as .

where <u>e</u> is the unit vector parallel to the axis of rotation of Q. Multiplying s_0 , as given before, times $(Q-I)^T(Q-I)$ gives $(Q-I)^T(Q-I)s_0 = (Q-I)^T(Q-I)(r_0+\alpha e) = (Q-I)^T(Q-I)r_0 + (Q-I)^T(Q-I)e$

but \underline{e} , being parallel to the rotation axis of \underline{Q} , is in the mull space of \underline{Q} -I, hence, in the null space of $(\underline{Q}$ -I)^T(\underline{Q}-I). Therefore, the second term in the right-hand side of the latter equation vanishes, the latter equation thus reducing to

$$(\underline{Q}-\underline{I})^{T}(\underline{Q}-\underline{I}) \cdot \underline{a}_{0} = (\underline{Q}-\underline{I})^{T}(\underline{Q}a-\underline{a}^{t})$$

i.e. y_0 also satisfies eq. z(2.6.6c). The conclusion $falls points g_0$ of g_0 minimum-magnitude displacement; y_0 , fieron a line parallel to the axis for of rotation of Q.

Exercise: 12.6.2.4 Show=that-the r_0 satisfying: eq. -(2.6.6)-actually yields $\pm 1/2$ a minimum.

From Exercise 2.6.1, if $Q\neq I$ the rank of Q=1 is exactly 2. Therefore stwo the of the three scalar equations of (2.6.5) are linearly independent. These two equations can be expressed in matrix form as

$$Ar_{0} = c$$
 (2.6.7)

where <u>A</u> is a 2 x 3-rank-two matrix and vectors r_0 and <u>c</u> are 3-and 2-dimensional, respectively. Now, since the rank of <u>A</u> is 2, <u>AA</u>^T, being 2x2, is nonsingular and hence, the minimum norm solution to eq. (2.6.7) is (See Section 1.11)

 $r_0 = \Lambda^T (\Lambda \Lambda^T)^{-1} c$ (2.6.8)

The geometric interpretation of the previous result is that r_0 , as given by (2.6.8), is perpendicular to the sought axis. This axis is "the screw"

· · · ·

. . . ٠ 1 , . . axis" and is totally determined by the rotation axis, which gives its direction, and the point r_0 whose position vector, r_0 , is given by eq. (2.6.8). The name "screw" comes from the fact that the body moves as if it were fastened to the bolt of a screw whose axis were the screw axis. Other facts motivating the name of the screw axis will be shown later. Another method of finiding a point on the screw axis is via Rodrigues' formula as it appears in (2.6). This procedure can be developed as follows: As was pointed out from eq. (2.6.6), the minimum-norm displacement is parallel to the axis of rotation. Hence, the displacement of R₀ must satisy

$$\underline{u}_{0} = \underline{r}_{0} - \underline{r}_{0} = \alpha e$$
 (2.6.9)....

where α -is a scalar. Substituting the initial and the final position vectors of R:in Rodrigues informula, eq. (2.5.3), ...,

 $r_{0}^{+} = tan \frac{\theta}{2} ex (r_{1}^{+} + r_{0})$ (2.6.10)
(2.6.10)
which; together; with eq:-(2.513) for vectors; a and a', denoting the the

initial and the final positions of point A, yields the

$$\underline{a}' - \underline{r}_{0}' - (\underline{a} - \underline{r}_{0}) = \tan \frac{\theta}{2} \underline{e} x \left((\underline{a}' - \underline{r}_{0}') + (\underline{a} - \underline{r}_{0}) \right)$$
(2.6.11)

From eq. (2.6.9),

$$\exp(r_0' - r_0) = 0 \tag{2.6.12}$$

Hence, eq. (2.6.11) becomes

$$\underline{a}' - \underline{a} = \alpha \underline{e} = \tan \frac{\theta}{2} \underline{e} x (\underline{a}' + \underline{a}) - 2 \tan \frac{\theta}{2} \underline{e} x \underline{r}_0$$
(2.6.13)

Multiplying both sides of eq. (2.6.13) times $\cot \frac{\theta}{2} gx$,

$$\cot \frac{\theta}{2} cx (a'-a) = ex (ex (a'+a)) - 2ex (exr_0) =$$

= cx (ex (a'+a)) - 2(e.r_0) e+2(e.e)r_0 (2.6.14)

To determine r_0 from eq. (2.6.14), it is necessary to impose one extra

33

• • . . •

condition on it, which is done next. Let it be the particular point on the screw axis which is closet to the origin; hence,

and so, substituting this vector into eq. (2.6.14) and solving for r_0 in the same equation, leads to

$$r_{0} = \frac{1}{2} \cot \frac{\theta}{2} \exp(a^{1} - a) - \frac{1}{2} \exp(\exp(a^{1} + a))$$
(2.6.15)

which is an alternate expression for r_0 . The foregoing result is summarized next.

<u>THEOREM 2.6.1 (CHASLES)</u>. The most general displacement of a rigid body is equivalent to a translation together with a rotation about an axis parallel to the translation.

Alernatively, Chasles'Theorem can be stated as'follows:

"Given:an:arbitrary displacement of a rigid body, there exists a set of points:of the body,-constituting a line, such that all points on that _ . line:undergo a displacement-parallel to the line, which is of minimum --Euclidean norm"

A property of the screw axis is established in the next theorem read, <u>THEOREM 2:6.2.5</u> The displacement vectors of all the points of a rigidize a body undergoing an arbitrary motion have the same projection along the screw axis.

Proof:

Let P be an arbitrary point of a rigid-body and S.a point on the screw axis; let P' and S' represent the corresponding points after the displacement. From eq. (2.6.3), the displacement of P, \underline{u}_p , is given in terms of the position vectors of P, S and S', by

$$u_{p} = \xi' - Q\xi + (Q - \xi) p$$
 (2.6.16)

.

•

.

•

• •

·

•

. .

The projection of u_p onto the screw axis is computed now by obtaining the scalar product of u_p times u_s . From eq. (2.6.16) this becomes

$$\underline{u}_{p}^{T}\underline{u}_{S} = (\underline{s}^{*} - \underline{Q}_{S})^{T}\underline{u}_{S} + \underline{p}^{T} (\underline{Q} - \underline{I})^{T}\underline{u}_{S}$$
(2.6.17)

where the second term on the right hand side vanishes because, as already shown, u_{S} is an eigenvector of Q'and Q^{T} . Thus, eq. (2.6.17) becomes -----

$$\underline{\mathbf{\tilde{u}}}_{\mathbf{p}}\underline{\mathbf{\tilde{u}}}_{\mathbf{S}}^{=}(\underline{s}^{*})^{\mathbf{T}}\underline{\mathbf{\tilde{u}}}_{\mathbf{S}}^{-}\underline{\mathbf{s}}^{\mathbf{T}}\underline{\mathbf{\tilde{u}}}_{\mathbf{S}}^{=}(\underline{s}^{*}-\underline{s})^{\mathbf{T}}\underline{\mathbf{\tilde{u}}}_{\mathbf{S}}^{\pm}\underline{\mathbf{\tilde{u}}}_{\mathbf{S}}^{\mathbf{T}}\underline{\mathbf{\tilde{u}}}_{\mathbf{S}}$$

From the above expression it follows that the projection of \underline{u}_p onto the screw axis has lenght $||\underline{u}_s||$, q.e.d

Using the same notation as above, the final position vector of a point of we a rigid body undergoing an arbitrary motion and its displacement can be _____ expressed as _____

$$v_{p} = v_{s} + (Q - I) (p - s) = (2.6.19) (2.6.19)$$

Exercise .2.6.2 Derive: eq. * (2.6.19)

i) The magnitude of the scrow displacement, $||u_{ij}||_{i=1}^{i+1}$

(ii) One point of the screw axis, R_{0} whose position vector is r_{0}

iii) The axis of rotation, e

iV) The angle of rotation, θ

Given the above data, vector \mathbf{u}_{s} is obtained as

 $u_{\rm S} = ||u_{\rm S}||_{\rm B}$ (2.6.20)

and matrix Q is given by eqs.(2.5.1) or (2.5.4). Point R_0 and vector g completely determine the screw axis, henceforth called L. From Theorem 2.6.2 it is clear that a rigid body undergoing an arbitrary motion, moves

-. . • - . . · .

.
as if it were welded to the bolt of a screw whose axis where L and whose pitch were given by

$$\lambda = \frac{2\pi ||\mathbf{u}_{\mathrm{S}}||}{\theta}$$
(2.6.21)

For this reason, the pair (L,Q), which completely determines a rigid body motion, is called a "screw", and rigid-body motions are thus referred to as "screw motions". It was shown in section 2.3 how to obtain the matrix Q, given a rigid body motion with a fixed point. Vectors \underline{r}_0 and \underline{u}_s , which define L, are obtained from eqs. (2.6.15) or, alternatively, from eq. (2.6.7) and eq. (2.6.20).

The following interesting: results is derived immediately from Theorem 2.6.2. \therefore <u>Corollary 2.6.1</u> Airigid body motion is a rotation about a fixed point; if is and only if the displacement of one point of the body is perpendicular to the screw axis=of-the motion.

Anotherruseful result is the following a g

Exercise 2.6.3 Prove corollaries 2.6.1 and 2.6.2

Clearly, the motion of any one plane of a rigid body completely determines the motion of the body. Futhermore, three noncollinear points determine a plane; thus it follows that the motion of any three noncollinear points of a rigid body determine the motion of the body. In other words, knowing the initial and the final positions of three noncollinear points of a rigid body, one can determine the axis, the displacement and the rotation of the corresponding screw. In the following, formulae are derived to compute the screw parameters of a rigid body motion in terms of the motion of .

١

. ·

.

.

three noncollinear points of the body. It will be shown that these formulae require that the displacements of the involved points be noncoplanar. Now, if three points of a rigid body are collinear, their displacements under any motion are coplanar. The converse, however, is not true, for three noncollinear points of a rigid body could have, under special circumstances, coplanar displacements, as is proved in Theorem 2.6.4... To prove this, a previous result is derived in the following

THEOREM 2.6.3 If the displacements of three noncollinear points of a rigid body are identical, the body undergoes a pure translation:

Proof:

Let A, B, -C. be three noncollinear points of a trigid body manda, b, c, their mate respective position vectors an Using Feq: (2.6(19)) the displacements of F math these points can be written as

 $\begin{array}{l} u_{A} = u_{S} + (Q-I) (a-s) & \rightarrow \\ u_{B} = u_{S} + (Q-I) (b-s) & \rightarrow \\ u_{D} = u_{S} + (Q-I) (b-s) & \rightarrow \\ u_{D} = u_{S} + (Q-I) (c-s) & \rightarrow \\ \end{array}$

where sisting the position vector of a point S on the screw axis.

(Q-I) (a-c)≑0

and

$$(Q-1)(b-c)=0$$

Hence both a-g and b-g $\in N(Q-I)^*$, i.e. a-g and b-g lie in the same one-diment sional space spanned by the real eigenvector of Q. This cannot be so

.

.

1

• .

- · <u>·</u> ·

•

because A,B,C were assumed to be noncollinear. Thus, the only possibility for the two latter equations to hold is that Q=I, i.e. the motion contains no rotation and hence is a pure translation, q.e.d.

<u>THEOREM 2.6.4</u> The non-identical* displacements of three points of a rigid body.are.coplanar.if and only if one of the following three conditions is. ... met:

i) The motion is a pure rotation - ---

ii) The motion is general, but the points are collinear

Proof:

("if" part)

i) If the motion is a pure rotation and the origin of coordinates is located along the axis of rotation, the displacement u of any point. _, of position vector rais then - - -;

u=(Q-I)r

i.e. ucR(Q-I); Since N(Q-I) is of dimension transmety the axis of m rotation, then from cq:=(1,3,1), R(Q-I) is of dimension 2, namely m; a plane passing through the origin, normal to the axis of rotation. Thus, all displacements are coplanar, thereby proving this part.

ii) Let A,B and C be the given three collinear points of the rigid body undergoing a general motion. Let a,b and c be their respective position vectors. Hence, vectors c-a and b-a are linearly dependent and they are related by

*If the displacements of the three noncollinear points were identical, the motion would be a pure translation, according to Theorem 2.6.3.

3%

• · • . • • • · · . . .

$$c-a=\alpha(b-a)$$
 (11.1)

From eq. (2.6.3),

$$u_{C} = a' + Q(c-a) - c$$

$$= a' - a + c + (Q-I) (c-a) - c$$

$$= u_{A} + u (Q-I) (b-a) - c$$
(11,2)...

But, also from eq. (2.6.3),

$$(Q-1)(b-a)=u_{B}-u_{A}$$
 (ii.3)

Hence, eq. (ii.2) can be written as

 $u_{C}^{-(1-\alpha)}u_{A}^{+\alpha}u_{B}^{-\alpha}$

thus making evident that the three involved displacements mare coplarate iii) Using eq. (2.6.19), the displacements of points A, B and C.are

$$\begin{split} \hat{n}^{C} = \hat{n}^{2} + (\hat{\delta} - \hat{1}) (\hat{c} + \hat{s}) & , \\ \hat{n}^{B} = \hat{n}^{2} + (\hat{\delta} - \hat{1}) (\hat{c} - \hat{s}) & , \\ \hat{n}^{B} = \hat{n}^{2} + (\hat{\delta} - \hat{1}) (\hat{s} - \hat{s}) & , \end{split}$$

$$c-a=\alpha(b-a)+\beta u_{S}$$

or

$$c = (1-\alpha)a + \alpha b + \beta u_s$$

Substituting the latter expression into u_{C}^{*} - after cancellations and \tilde{c}^{*}

rearrangement of terms,

$$u = u_a + \alpha (Q-I) (a-b)$$

But, from the above expressions for \underline{u}_A and \underline{u}_B ,

$$u_{A} - u_{B} = (Q - I) (a - b)$$

. .

. - ÷ • • •

. .

•

.

and so, from the latter expressions for u_{cf}

$$\underline{u}_{-C}^{-(1-\alpha)}\underline{u}_{A}^{+\alpha}\underline{u}_{B}^{+}$$

thereby showing the linear dependence, i.e. the coplanarity of the three displacements involved.

("only if" part)

If u_A , u_B and u_C are coplanar, then

$$\det(\mathbf{u}_{\mathbf{a}},\mathbf{u}_{\mathbf{B}},\mathbf{u}_{\mathbf{C}})=0$$

Introducing eq. (2.6.3), u_B and u_C can be written as

$$u_{B} = u_{A} + (Q-I) (b-a)$$
$$u_{C} = u_{A} + (Q-I) (c-a)$$

Hence; the coplanarity condition can be written, after proper simplification tions, as

$$\det \left\{ u_{\mathbf{A}} - (\underline{\mathbf{Q}}_{\mathbf{I}}) (\underline{\mathbf{b}}_{\mathbf{I}} \mathbf{a}) - (\underline{\mathbf{Q}}_{\mathbf{I}}) (\underline{\mathbf{c}}_{\mathbf{a}}) \right\} = 0$$

or. in Gibbstnotation. 2.

$$(\underline{Q} + \underline{I})_{a}(\underline{b} + \underline{a}) \times (\underline{Q} + \underline{I})_{a}(\underline{c} + \underline{a}) \cdot \underline{u}_{A}^{\dagger} = 0_{a}$$

From (2.6, p.5); the first product can be expressed as ...

where

$$\alpha=2(1-\cos\theta)\exp(b-a)\cdot(c-a)$$

0 and e being the angle of rotation and the unit vector parallel to the axis of this rotation;

Exercise 2.6.4 Derive the above expression for a

The double product thus can vanish if any one of the following conditions is met:

• . . • •

•

which, from Corollary 2.6.1, states that the body undergoes a pure rotation

ii) α=0

which is satisfied under one of the two following conditions:

ii.1) 1-cosθ=0

which implies 0=0; i.e. the motion reduces to a pure translation. This case, however, has been discarded in the present analysis, for the displacements have been assumed to be non-identical (See Theorem - ----

2.6,3)

11.2) ex(b-a).(c-a)=0,

which in turn is satisfied under one of the following two conditions: . . ii.2:a) < e, b-a and c-a are coplanar, -i.e., points_A, and C_lie on a plane parallel to the rotation axis_(Picture_it!)__:)

ii.2.b) (b-a)x(ç-a)=0

which implies that A, B and C are collinear, thus, completing _____ the proof.

<u>COROLLARY-2:6.3</u>—Assume a rigid-body undergoes an arbitrary motion and <u>undergoes</u> an arbitrary motion and <u>undergoes</u> an arbitrary motion and <u>undergoes</u> a

Exercise 2.6.5 Prove Corollary 2.6.3

Further consequences of Theorem 2,6,4 are next stated.

<u>Corollary 2.6.4</u> The displacements of any two points of a rigid body cannot be parallel and different, unless the body undergoes a pure rotation

• • . . . • . .

Exercise 2.6.6 Prove Corollary 2.6.4. Hint; Use eq. (2.6.19) and the fact that the two terms of its right-hand side are linearly independent; in fact, orthogonal.

<u>Corollary 2:6.5</u> If two, and only two, displacements of three noncollinear points of a rigid body are parallel, then either i) the parallel displace ments are identical and belong to points: lying on a line parallel to the screw axis, or ii) the parallel displacements are different from each other, in which case the motion is a pure rotation whose axis is parallel to the line connecting the two-points of parallel displacements. <u>Corollary 2:5.5</u> If one, and only one of three points of a rigid body has a zero displacement and other two points, noncollinear with the former, _ . have parallel but different displacements, then the body undergoes a pure rotation; whose axis is determined by the intersection of the plane containing the three-given points with a second plane defined by the ---displaced positions of the points.

Exercise:2:6.7-Prove Corollaries 2.6.5-and-2.6.6 Astro-

Let A, B, C and A', B', C' be the initial and the displaced positions of three noncollinear points. Denoting by $\underline{a}, \underline{b}, \underline{c}, \underline{a}', \underline{b}'$ and \underline{c}' the corresponding position vectors, the displacement vectors are, then

. . . .

$$u_{B}^{a} = b^{t} - b$$
 (2.6.22a)
 $u_{B}^{a} = b^{t} - b$ (2.6.22b)
 $u_{C}^{a} = c^{t} - c$ (2.6.22c)

$$= \frac{(\underline{u}_{A} - \underline{u}_{C}) \times (\underline{u}_{B} - \underline{u}_{C})}{\left| \left| (\underline{u}_{A} - \underline{u}_{C}) \times (\underline{u}_{B} - \underline{u}_{C}) \right| \right|^{2}}$$
(2.6.23)

To determine the magnitudes of the screw displacement; $||u_S||_{r}$ all that is the needed is a component of u_A^{-1} , $u_{B^{-1}}^{-1}$ or u_C^{-1} onto u_C^{-1} . Hence,

$$||\mathbf{u}_{S}|| = |\mathbf{u}_{A}, \mathbf{e}|$$
 (2.6.24)

where the absolute value has been taken because eq. (2.6.23) determines the vector e up to a change-of-sign (the order of the vectors in the cross product could have been changed). Vector u_{c} can now be computed as

$$u_{s} = ||u_{s}||e \operatorname{sgn}(u_{h}, e)$$
 (2.6.25)

where sgn is the signum function, i.e., sgn(x) is-1 if x<0; it is + 1 if x>0 and it is irrelevant if x=0. The latter ideterminacy of sgn(0) causes no difficulty for, if $u_A \cdot e=0$, $||u_S||=0$, and, from corollary 2.6.1. •

• •

.

•

.

-

the motion is one of rotation about one fixed point.

Now, notice that, if vector u_{S} is subtracted from the vectors defined in (2.6.23), the new vectors u_{A}^{i} , u_{B}^{i} and u_{C}^{i} lie in the same plane (Why?). To completely determine the screw, the rotation angle θ and the location of the screw axis are next determined. Since u_{A}^{i} , u_{B}^{i} and u_{C}^{i} are coplanar, they can be regarded as the displacements of three points of a rigid brdy... undergoing pure rotation. Let A'', B'' and C'' be the final positions of ... points A, B and C undergoing displacements u_{A}^{i} , u_{B}^{i} and u_{C}^{i} . Since these vectors are coplanar, the mediator planes π_{1}^{-} and π_{2}^{-} of segments $\lambda the mediator planes <math>\pi_{1}^{-}$ and π_{2}^{-} of segments $\lambda the mediator planes <math>\pi_{1}^{-}$ and π_{2}^{-} of segments $\lambda the mediator planes <math>\pi_{1}^{-}$ and π_{2}^{-} of segments $\lambda the mediator planes <math>\pi_{1}^{-}$ and π_{2}^{-} of segments $\lambda the mediator planes <math>\pi_{1}^{-}$ and π_{2}^{-} of segments $\lambda the mediator planes <math>\pi_{1}^{-}$ and π_{2}^{-} of segments $\lambda the mediator planes <math>\pi_{1}^{-}$ and π_{2}^{-} . This intersection is next determined, π_{1}^{-} .

Fig 2.6.2. Determination of the screw axis.

Let M and N be the middle points of segments AA" and BB", their resiton vectors being denoted by m and n, respectively.

-. . . • ٠ ٠ Clearly,

 $m = a + \frac{1}{2^2 A}$ (2.6.26a)

$$u=b+\frac{1}{2}u_{B}^{*}$$
 (2.6.26b)

The equations of planes π_1 and π_2 are thus

$$(\underline{r}-\underline{m}) \cdot \underline{u}_{A}^{*=0}$$
 (2.6.27a)

$$(\underline{r}-\underline{n}) \cdot \underline{u}_{B}^{*=0}$$
 (2.6.27b)

respectively.

The set of points r, satisfying both eqs. (2.6.27), yield line L, the screw axis. The angle of rotation, 0, is then simply, angle AIA" (or equivalently, angle BIB" or angle CIC"). This angle is readily obtained once the Line L is known, for it can then be computed from the dot product of vectors \overrightarrow{IA} in and \overrightarrow{IA} , both lying in a plane normal to L.

Example-2.6.1 - Determine the screw of the displacement of the cube of ... Fig:2.6.3 as it is moved from configuration=1=to:configuration:2; 3.

Assume_the-sides-of-the-cube-have=lenght_h.

Solution I:

The:problem is first solved via-arminimization.procedure.

Step:i)::Determination:of the revolute.Porthis:purpose, assume: acrigid ---body rotation about point B, as shown in Fig 2.6.4

From Fig 2.6.4 it is clear that the cube undergoes a rotation about line EB, thereby saving the analysis performed in example 2.4.1 to determine the axis of rotation. Thus,

$$\underbrace{\overset{e}{EB}}_{EB} = \frac{\sqrt{3}}{3} \left(-\frac{e}{x} + \frac{e}{y} + \frac{e}{z} \right)$$
(2.6.28)

-

. .

.

Fig.2.6.3: Motion of a cube

Fig 2.6.4 Rotation of a cube about a fixed point

9-6

• . • •

or, in matrix form,

$$\left(\frac{e}{2}\right) = \frac{\sqrt{3}}{3} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

Let M be the intersection of the line BE and a plane perpendicular to it. but containing point A (the plane also contains point A", since AA" is perpendicular to BE, as can readly be checked).

Let m be the position vector of M:=Now m-g-is perpendicular to BE, and M is contained/incline(BE,=:BE-is:specified;as the intersection;of the planes...

Since AM is perpendicular to BE_{r} m-a must be perpendicular to vector g of (2.6.28)... Hence, the coordinates of M(x,y;z) must satisfy the relation.

· · · x+h-y-z=0) · · · · · · · · (2.6.29c) ·····

which Together with eqs. 4(2.6:29) Tdetermines M, - namely - 22

$x=\frac{h}{3}$.	-					
$y_m \frac{h}{3}$	•				(2.6.3	10)
z= <u>h</u> 3				-		

Hence,

$$\underline{\mathbf{m}} = \frac{\mathbf{h}}{3} \{ -\underline{\mathbf{e}}_{\mathbf{x}} + \underline{\mathbf{e}}_{\mathbf{y}} + \underline{\mathbf{e}}_{\mathbf{z}} \}$$
(2.6.31)

It can also be readily checked that $m-a^*$ is perpendicular to e, as expected, if point A* were to lie in the plane perpendicular to EB. The angle of rotation, 0, can now be computed from the relationship

$$\cos\theta = \frac{(\underline{a}-\underline{m}) \cdot (\underline{a}''-\underline{m})}{\left\| |\underline{a}-\underline{m}| \right\|^2}$$

• • . ·

i.e.

$$\cos\theta = -\frac{1}{2}, \sin\theta = \frac{\sqrt{3}}{2}$$
 (2.6.32)

Knowing the axis of rotation, EB, and the angle fo rotation, θ , the revolute matrix is now readily constructed form eqs. (2.5.4), where

$$u = \frac{\sqrt{3}}{3}, v = \frac{\sqrt{3}}{3}, w = \frac{\sqrt{3}}{3}$$
 (2.6.33)

and so

$$(\underline{\mathbf{P}}) = \frac{\sqrt{3}}{13} \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix}, \quad (\underline{\mathbf{R}}) = \frac{1}{3} \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}, \quad (\underline{\mathbf{T}}) = \frac{1}{3} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

Therefore;----

$$(\underline{Q}) = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & -0 \end{pmatrix}, \quad (\underline{Q}-\mathbf{I}) = \begin{pmatrix} -1 & 0 & -1 \\ 1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & -1 & -1 \end{pmatrix}$$

<u>Steptii</u>): <u>Determination</u> of the screw: axis, π^{2} The minimum-magnitude; displace - . ment \underline{u}_{R} of point R is obtained; from eq. (2.6.3a), expressed in iterms of the ... coordinate: axes of Fig.2.6.3... Thus, ____

$$\begin{pmatrix} u_{R} \end{pmatrix} = \begin{pmatrix} 2h - x - z \\ h - x - y \\ -h + y - z \end{pmatrix}$$
 (2.6.36)

and

$$\phi(\underline{r}) \equiv \left| \left| u_{R} \right| \right|^{2} = 2x^{2} + 2y^{2} + 2z^{2} + 2xz + 2xy - 2yz - 6hx - 4hy - 2hz + 6h^{2}$$
(2.6:37)

Sence

$$(\phi'(\underline{r})) = 2 \begin{pmatrix} 2x + y + z - 3h \\ x + 2y - z - 2h \\ x - y + 2z - h \end{pmatrix}$$
 (2.6.38)

. ¢ • . *,* , · · · ``. . . -

and, equating $\phi^*(x)$ to zero, a set of three linearly dependent equations is obtained, from which the following linearly independent set is sorted out.

$$\begin{pmatrix} 2 & 1 & 1 \\ & & \\ 1 & 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} h$$
 (2.6.39)

This has a minimum-norm solution (according to eq. (2.6.8) given by

$$\left(\underline{\mathbf{r}}_{0}\right) = \begin{pmatrix} \mathbf{x}_{0} \\ \mathbf{y}_{0} \\ \mathbf{z}_{0} \end{pmatrix} = \frac{\mathbf{h}}{3} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$
 (2.6.40)

thereby determining the screw-axis; which passes through point R_0^{-1} (whose position vector is r_0), as given by eq. (2.6.40) and is parallel to vector e, as given by eq. (2.6.28)... In order to compute the pitch of the screw, as λ_{1} is necessary to compute $|||u_{s}||^{1}$, which, if rom Theorem 2.6.2, is given in as

$$||\mathbf{u}_{-\mathbf{S}}|| = |\mathbf{u}_{-\mathbf{D}}, \mathbf{e}| = \frac{2\sqrt{3}}{3}\mathbf{h}^{-1},$$
 (2.6.41a)

and

$$u_{-S} = \frac{2\sqrt{3}}{3}he$$
 (2.6.41b)

The pitch is, then, from eq. (2.6.21a),

Solution II

An alternative solution is now given, using eqs. (2.6.23), (2.6.24) and (2.6.27). In order to simplify the computations, choose the displacements of points C, D and G to determine the screw. Thus,

• • . • . .

$$\begin{split} & \underline{u}_{C} = \underline{c}^{1} - \underline{c} = h \left(\underline{e}_{x} + \underline{e}_{y} \right) \\ & \underline{u}_{D} = \underline{d}^{1} - \underline{d} = 2h \underline{e}_{x} \\ & \underline{u}_{C} = \underline{d}^{1} - \underline{d} = 2h \underline{e}_{x} \\ & \underline{u}_{C} = \underline{q}^{1} - \underline{q} = -2h \underline{e}_{x} \\ & \underline{u}_{C} = \underline{u}_{C} \right) \times \left(\underline{u}_{D} - \underline{u}_{C} \right) = 2h^{2} \left(-\underline{e}_{x} + \underline{e}_{y} + \underline{e}_{z} \right) \end{split}$$
(2.6.43)

from which

$$\left|\left(\underline{u}_{C}^{-}-\underline{u}_{G}^{-}\right)\times\left(\underline{u}_{D}^{-}-\underline{u}_{G}^{-}\right)\right|\right|=2\sqrt{3}\ln^{2}$$

and so,

$$e = \frac{\sqrt{3}}{3} (-e_{x} + e_{y} + e_{z}), o_{z} = \frac{\sqrt{3}}{3} \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
(2.6.44)

which is identical with the value previously obtained in (2.6.28), ...; $\left\| u_{S} \right\|_{=S} \left\| = \left\| u_{D} \cdot e \right\| = \frac{2\sqrt{3}}{3}h - \frac{1}{3}h - \frac$

and so ites.

where the sign of u_S has been reversed, as compared with that of $e_1, \dots, because -u_D, e<0.$ Next form the vectors, -

$$\begin{array}{l} u^{*} = u \\ -C \\ -C \\ -S \end{array} = h \left(\frac{1}{3} \frac{1}{9} + \frac{1}{9} \frac{2}{1 + 2} \right) \\ (2.6.46a) \end{array}$$

$$u'=u_{D}-u_{S}=h\left(\frac{4}{3}\times\frac{2}{3}\times\frac{2}{3}-2\right) \qquad (2.6.46b)$$

$$u'=u_{-u} = h(-\frac{2}{3-x}+\frac{2}{3-y}+\frac{4}{3-2})$$
 (2.6.46c)

which can be readily verified to be coplanar, as expected. Next, the requations of planes π_1 and π_2 are obtained. Let

$$m = c + \frac{1}{2^{\circ}c} - \frac{h}{6} (7e_{x} + 5e_{y} + 2e_{z})$$
(2.6.47a)

• . • . , •

$n=d+\frac{1}{24}n+\frac{1}{3}(2e_{x}+4e_{y}+e_{z})$	•	(2,6.47b)

The equation of plane π_{1} is, then,

. x-y+2z-h=0 {2.6,48a}

(2.6.48b)

and that of plane π_2 is

2x+y+z-3h=0

-x+y+z=0 (2.6.48c) which, together with eqs. (2.6.48ta=Andtb)=constitutes a linear algebraic ... system:of:3.equations:and 3 unknowns.....Its solution is:

/ {3}	
$(\underline{\mathbf{r}}_{\mathbf{I}}) = \frac{\mathbf{h}}{3} 2^{-1}$	(2.6:49)
1	

which is a solution identical to that obtained in eq. (2.6.40). The angle of rotation is now obtained from the relationship

 $\cos\theta = \frac{(\underline{c}-\underline{r}_{\underline{I}}) \cdot (\underline{c}+\underline{u}_{\underline{C}}-\underline{r}_{\underline{I}})}{||\underline{c}-\underline{r}_{\underline{I}}||}$ (2.6.50)

where

$$(\underline{\mathbf{e}} - \underline{\mathbf{r}}_{\mathbf{I}}) = \frac{\mathbf{h}}{3} \begin{pmatrix} \mathbf{0} \\ \mathbf{1} \\ -\mathbf{1} \end{pmatrix}, \quad \underline{\mathbf{e}} + \underline{\mathbf{u}}_{\mathbf{C}} - \underline{\mathbf{r}}_{\mathbf{I}} = \frac{\mathbf{h}}{3} \begin{pmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{1} \end{pmatrix}$$

1 . •

Thus,

$$(c-r_1) \cdot (c+u_C'-r_1) = -\frac{h^2}{9}$$
 (2.6.51)

and

$$||_{c-r_{I}}||_{gh^{2}}^{2}$$
 (2.6.52)

Substitution of eqs. (2.6.51) and (2.6.52) into: eq. (2.6.50).yields, then, $\cos\theta = \frac{1}{2} \text{ or } \theta = -120^{\circ}$ (2.6.53)

where the minus sign was found by application of the result of eq. (2.5.16) The screw displacement; $||u_{S}||$ is obtained from eq. (2.6.45) as $||u_{S}|| = \frac{2\sqrt{3}}{3}$ (2.6.54) ...

and the pitch, -k, is obtained from eq. (2.6, 21a) as, ____

 $\lambda = 2\sqrt{3h}$

Let a and a '-be' the initial and the final position vectors, respectively, ..., of a given point A of a rigid body, which are known: Also: Let r and r' be the initial and the final position vectors of another point, R; both yet unknown: If point R is to lie on the screw axis, then $u_R = r' - r$ is parallel to the axis of rotation, e, as was found previously. From Rodrigues' Formula, eq. (2.6.3),

$$\mathbf{a}^{\prime} - \mathbf{a}^{\ast} \tan \frac{\theta}{2} \exp\left(\mathbf{a}^{\prime} + \mathbf{a}\right)$$
(2.6.56)

and

 $t' r' - r = tan \frac{\theta}{2} ex(r' + r)$

Subtracting eq. (2.6.56b) from eq. (2.6.56a) and taking into account that r'-r is parallel to e, i.e., writing $r'-r=\alpha e$, α being a scalar,

1.24

•

.

$$a^{1}-a-ae=tan\frac{\theta}{2}ex(a^{1}+a)-tan\frac{\theta}{2}ex(r^{1}+r)$$
 (2.6.57)

Since r'-r=ce, it follows that

exr'-exr

Hence, eq. (2.6.57) can be written as

 $\underline{a}^{\dagger} - \underline{a} - \underline{a} = \tan \frac{\theta}{2} \exp \left(\underline{a}^{\dagger} + \underline{a} \right) - 2 \tan \frac{\theta}{2} \exp \left(\frac{1}{2} \exp \left(\frac{1}{2} + \underline{a} \right) - 2 \tan \frac{\theta}{2} \exp \left(\frac{1}{2} + \underline{a} \right) + 2 \tan \frac{\theta}{2} \exp \left(\frac{1}{2} + \underline{a} \right) + 2 \tan \frac{\theta}{2} \exp \left(\frac{1}{2} + \underline{a} \right) + 2 \tan \frac{\theta}{2} \exp \left(\frac{1}{2} + \underline{a} \right) + 2 \tan \frac{\theta}{2} \exp \left(\frac{1}{2} + \underline{a} \right) + 2 \tan \frac{\theta}{2} \exp \left(\frac{1}{2} + \underline{a} \right) + 2 \tan \frac{\theta}{2} \exp \left(\frac{1}{2} + \underline{a} \right) + 2 \tan \frac{\theta}{2} \exp \left(\frac{1}{2} + \underline{a} \right) + 2 \tan \frac{\theta}{2} \exp \left(\frac{1}{2} + \underline{a} \right) + 2 \tan \frac{\theta}{2} \exp \left(\frac{1}{2} + \underline{a} \right) + 2 \tan \frac{\theta}{2} \exp \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \exp \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \exp \left(\frac{1}{2} + \frac{1}{2} \exp \left(\frac{1}{2} + \frac{1}{2}$

Multiplying both sides of eq. (2.6.57a) times $\cot \frac{\theta}{2^2}$ ex, one obtains $\cot \frac{\theta}{2}$ ex(a'-a)=ex(ex(a'+a))-2ex(exr)=ex(ex(a'+a))-2(e.r)e+2r (2.6.58) If r is chosen to be the position vector of the point on the screw axis closest to the origin, then

e.r=0 °

and vector r_0 thus can be obtained from eq. (2.6,58) as

$$\frac{1}{2} \cot \frac{\theta}{2} \exp \left(\frac{a}{2} - \frac{a}{2} \right) - \frac{1}{2} \exp \left(\exp \left(\frac{a}{2} + \frac{a}{2} \right) \right)$$
(2.6.59)

ThisFoould-be:due-to-two:possibilities:_either"the-points=liefin.a plane parallel.to-the-screw_axis::(or:to:the-axis:of:rotation_if_the motion is a pure rotation); or they do?not; but the motion is then necessarily a-pure ... rotation.

First possibility. The three points lie in a plane prallel either to the screw axis or to the axist of rotation. From Corollary 2.6.3 the differences of displacement vectors are parallel and hence the cross product appearing in eq. (2.6.23) vanishes thus rendering the computation of e indeterminate. This vector can be computed, nevertheless, attending the aforementioned Corollary and the fact that it is perpendicular to vector \underline{u}_{A} - \underline{u}_{C} , according to Corollary 2.6.2. The condition that e is contained in the plane of the given points A,B and C is expressed as

. بالمريح الحريم المريح الح

۲.

-

-

.

۱.

• .

.
$$e=\alpha(a-c)+\beta(b-c)$$
 (2.6.60)

The perpendicularity condition between e and u = u is expressed in turn as A = C

$$(\underline{u}_{A}, \underline{u}_{C})^{T} \underline{e} = 0$$
 (2.6.61)

Substitution of eq. (2.6.60) into eq. (2.6.61) yields

$$\alpha (\underline{u}_{A} - \underline{u}_{C})^{T} (\underline{a} - \underline{c}) + \beta (\underline{u}_{A} - \underline{u}_{C})^{T} (\underline{b} - \underline{c}) = 0$$
(2.6.62)

Hence

$$\alpha = -\beta \frac{(\underline{u}_{A} - \underline{u}_{C})^{T}(\underline{b} - \underline{c})}{(\underline{v}_{A} - \underline{v}_{C})^{T}(\underline{a} - \underline{c})}$$
(2.6.63)

provided $u_A = u_C^{-1}$ is not orthogonal to $a = c = f_A$ if this dst tso, then from eq. (2.6:62) $T = \beta = 0^{-1}$ and, since g that been defined as of a magnitude equal to unity, where then the second second

Now; since points A; B and C are not collinear, then its cannot happen that $y_A = x_A$ and y_C be orthogonal: to both a-g and b-g = If, however, $y_A = y_C$ is orthogonal to b-g, then a=0, from teg = (2.6.62), and, in this instance, ...,

--If neither a nor β vanish, then from eq. (2.6.63) and the condition imposed on e as being of magnitude unity,

$$\frac{1}{\beta^{2}} ||\underline{a}-\underline{c}||^{2} \left(\frac{(\underline{u}_{A}-\underline{u}_{C})^{T}(\underline{b}-\underline{c})}{(\underline{u}_{A}-\underline{u}_{C})^{T}(\underline{a}-\underline{c})}\right)^{2} - 2 (\underline{a}-\underline{c})^{T}(\underline{b}-\underline{c}) \frac{(\underline{u}_{A}-\underline{u}_{C})^{T}(\underline{b}-\underline{c})}{(\underline{u}_{A}-\underline{u}_{C})^{T}(\underline{a}-\underline{c})} + ||\underline{b}-\underline{c}||^{2}$$

$$(2.6.66)$$

Eq. (2.6.66) yields β . With the value of β known, a is then computed

÷4

• . . • --•

from eq. (2.6.63). Thus, e is finally computed from eq. (2.6.60). Second possibility. The motion is pure rotation. If the three points are noncollinear and the displacements are nonidentical and parallel but vectors $u_A^{-u_C}$ and $u_B^{-u_C}$ are nonparallel, then, from Theorem 2.6.4 and Corollary 2.6.3, the motion is one of pure rotation. In this case the axis of rotation can be obtained simply from the intersection of the mediator planes of segments AA' and BB'. The perpendiculars to the axis of rotation, traced from A and A' intersect that axis at a common point, I. The angle of rotation is:then, simply AIA'; thereby_completing:the-motion:parameters.______ The.computation of the screw-parameters is realised in by SUBROUTINE-SCREW; which:considers all cases that could arise regarding the relationships amongst all three displacement vectors. These possible cases are shown in the "tree" diagram appearing in.Fig.2.6.5. SCREW uses the following auxiliarysubroutines: - :

SUBROUTINE COPL 2 computes the screw parameters when the points lie in

 a. plane parallel either to the screw axis or to the axis of rotation.
 Two different cases could arise, which are distinguished with the aid
 of the integer variable INDE.

3. SUBROUTINE GENMOT computes the screw parameters when the motion is general and the three given displacements are noncoplanar.

The computation procedure for each case is next described. All over, the vectors referred to are the given displacement vertors, \underline{u}_A , \underline{u}_B and \underline{u}_C , of the three given points, λ , B and C, whose position vectors in the reference configuration are \underline{e}_1 , \underline{b}_1 and \underline{c}_1 , whereas those in their displaced configura

35

. .

.

• · · •

.

.

Fig 2.6.5 Tree diagram showing the different possible relationships amongst the displacements of three noncollinear police defining a rigid-bady motion.

N N

. . . .

•

. . .

. •

• . .

•

. .

らえ

Fig 2.6.5 (continues)

j. 47

-

•

.

٠

٠

•

tions are a2, b2 and c2.

INDEX = 1. One vector is zero and the remaining two vectors are not

identical; they are parallel, however. It follows from Corollary 2.6.1 that the motion is pure rotation. The location of the axis of rotation follows from the fact that the axis of rotation is contained in the intersection of two planes, π_1 and π_2 , where π_1 is the plane of the three given points and π_2 is defined by the displaced positions of these points. Notice that the point of zero displacement is contained in both π_1 and π_2 .

Let C be the point of zero displacement and the origin of coordinates. Furthermore, the displacements u_A and u_B are given as

 $u_{A} = (Q-I)a_{1} u_{B} = (Q-I)b_{1}$ (2.6.67)

Since \underline{u}_{A}^{+} and \underline{u}_{B}^{+} are parallel; there exists a scalar α such that \underline{u}_{A}^{-} . $\underline{u}_{A}^{+} + \alpha \underline{u}_{B}^{-} 0$ (2.6.58)

Substituting eqs., (2.6.67), into eq. (2.6.68) yields

 $(Q-1) \{a_1 + ab_1\} = 0$ (2.6.69) which means vector $a_1 + ab_1$ is parallel to the axis of rotation. i.e. the axis of rotation is contained in the plane determined. by A,B and C. Moreover, since

 $a_2 = a_1 + u_A, b_2 = b_1 + u_B$ (2.6.70) The displacements of these points are given by

 $u'_{A} = (Q-I)a_{2}, u'_{B} = (Q-I)b_{2}$ (2.6.71) . Introducing eqs. (2.6.70) into eqs. (2.6.71) and then simplifying

. -. • .

. .

. · · · ·

•

.

ı

the resulting expression with the aid of eqs. (2.6.67), one obtains

$$\underline{u}_{A}^{\prime} = \underbrace{Q}_{A}^{\prime}, \quad \underline{u}_{B}^{\prime} = \underbrace{Q}_{B}^{\prime} \qquad (2.6.72)$$

eqs. (2.6.68) and (2.6.72) lead to

$$u_{A}^{+} + \alpha u_{B}^{+} = Q(u_{A}^{+} + \alpha u_{B}^{-}) = 0$$
 (2.6.73)

But, introducing eqs. (2.6.71) into eq. (2.6.73),

 $(Q-1)(a_2 + ab_2) = 0$ (2.6.74) which implies that vector $a_2 + ab_2$ is parallel to the axis of rotation, i.e., this: axis: is: contained, in the plane: defined by the points: A_2 , B_2 and C_2 , thereby completing the proof. Other parameters are computed using: the general procedure many previously outlined.

INDEX:= 2 One vector.is zero: and the remaining: two are identical.... The term
motion_is:pure.rotation, due to Corollary 2:6.1; and the axis...,
of.rotation-is-defined-by a-line passing through the point of the zero displacement in the direction of the line.connecting the reg
other two points.

Proof

Let C be the point of zero displacement. The displacements of the other two points are

$$\underline{u}_{A} = (Q-\underline{I}) \underline{a}_{1}, \ \underline{u}_{B} = (Q-\underline{I}) \underline{b}_{1}, \ (2.6.75)$$

Since $u_{A} = u_{B}$, it follows that

$$u_{A} - u_{B} = (Q - I)(a_{1} - b_{1}) = 0$$
 (2.6.76)

which implies that vector $\underline{a}_1 - \underline{b}_1$ is parallel to the axis of rotation, i.e. the line connecting points A and B is parallel to the axis of rotation, q.e.d.

59

. • • · . . - . •• •• •• •• •• •• •• •• • • • • • .

- INDEX = 3. One vector is zero and the remaining two vectors are not parallel. The motion is pure rotation, due to Corollary 2.6.1, and the axis of rotation passes through the point of zero displacement, in the direction of the cross product of the two nonzero displacement vectors, which is a consequence of Theorem 2.6.4 and Corollary 2.6.1.
- INDEX = 4. Two vectors are zero. The motion is pure rotation and the -Axis of rotation is defined by the two points of zero displacement.
- - to the plane of the given vectors. Its location can be determined using the general procedure, already outlined for pure rotation.

Proof

Let \underline{u}_{A} and \underline{u}_{B} be parallel but different. Then the following relationship holds

 $\underline{\mathbf{u}}_{\mathbf{B}} = \alpha \underline{\mathbf{u}}_{\mathbf{A}} \tag{2.6.77}$

Let e be the unit vector along the screw axis. Then, from Theorem 2.6.2,

60

. • • . . . • .

 $u_{B} \cdot e^{\pm} u_{A} \cdot e^{\pm}$ (2.6.78) Substituting eq. (2.6.77) into eq. (2.6.78), one obtains $(1-\alpha)u_{A} \cdot e^{\pm 0}$ (2.6.79).... which vanishes if either a=1 or if $u_{A} \cdot e^{\pm 0}$. The first condition is impossible to meet because u_{A} and u_{B} have been assumed to be different. Hence the only possibility for eq. (2.6.79) to hold is ...

.ų_A.ę =0

which-indicates that the motion is one of pure rotation. according to Corollary 2.6.1, q.e.d.

- INDEX ===7. No.vector=is.zero:and-all three:vectorstare_parallel_tereach ===
 other. Furthermore;=not all three:vectors are identical to each
 other, although there may be, a pair of identical vectors. The
 motion:is=one-offpure=rotation:and the axis.of=rotation is
 determined by the intersection of the plane.defined by the
 given-points_in.their.reference.configuration=with that defined
 by the points in.their.final.configuration.
 - Proof

It was shown in the case for which INDEX=6 that the existence of at least two parallel nonidentical vectors guarantees that the motion is one of pure rotation.

It will be shown first that the plane of the three given points contains the axis of rotation. In fact, the corresponding displacements are given by

$$u_{A} = (Q-I)a_{1}, u_{B} = (Q-I)b_{1}, u_{C} = (Q-I)c_{1}$$
 (2.6.80)

which are all parallel to each other. Thus, the diferences

.

$$\underline{u}_{A} - \underline{u}_{C} = (\underline{0} - \underline{I}) (\underline{a}_{1} - \underline{c}_{1}), \ \underline{u}_{B} - \underline{u}_{C} = (\underline{0} - \underline{I}) (\underline{b}_{1} - \underline{c}_{1})$$
(2.6.81)

are also parallel to each other. Thus, there exists a scalar such that

67

$$\underline{\mathbf{u}}_{\mathbf{A}} - \underline{\mathbf{u}}_{\mathbf{C}} + \alpha (\underline{\mathbf{u}}_{\mathbf{B}} - \underline{\mathbf{u}}_{\mathbf{C}}) = \mathbf{0}$$
(2.6.82)

But, substituting eqs. (2.6.81) into eq. (2.6.82),

$$(Q-I) \left\{ a_1 - C_1 + a(b_1 - C_1) \right\} = 0$$
(2.6.33)
which implies that the vector $a_1 - C_1 + a(b_1 - C_1)$, contained in the
plane ABC, is parallel to the axis of rotation. Next, tonsider
the position vectors of the points in their displaced positions
 $a_2 = a_1 + u_{A'} + b_2 = b_1 + u_{B'} + c_2 = C_1 + u_{C'}$ (2.6.34) ...
The displacements of these points are, pafter (substitutions and set)
cancellations,

$$u_{A}^{\dagger} = Qu_{A}^{\dagger} + u_{B}^{\dagger} = Qu_{B}^{\dagger} + u_{C}^{\dagger} = Qu_{C}^{\dagger}$$
 (2.6.85)....
1.e. $u_{A}^{\dagger} - u_{B}^{\dagger}$ and u_{C}^{\dagger} are all parallel to each other. Hence, the final differences

$$\underline{u}_{A}^{\dagger} = \underline{u}_{C}^{\dagger} = (\underline{Q} - \underline{I})^{\dagger} (\underline{a}_{2}^{\dagger} = \underline{c}_{2}^{\dagger})^{\dagger} = \underline{u}_{B}^{\dagger} = \underline{c}_{C}^{\dagger} = \underline{c}_{C}^{\dagger} = \underline{c}_{2}^{\dagger} (\underline{p} - \underline{I})^{\dagger} (\underline{b}_{2}^{\dagger} = \underline{c}_{2}^{\dagger})^{\dagger} = \underline{c}_{1}^{\dagger} (2, \varepsilon; 86) = \underline{c}_{1}^{\dagger}$$

are also parallel to each other. Hence, there exists_a.scalar β such that

$$\underline{u}_{A}^{*} - \underline{u}_{C}^{*} + \beta(\underline{u}_{B}^{*} - \underline{u}_{C}^{*}) = 0$$
 (2.6.87)

Substitution of eqs. (2.6.86) into eq. (2.6.87) yields then $(Q-I) \left(a_2 - c_2 + \beta (b_2 - c_2)\right) = 0$ (2.6.88)

which means that the vector $a_2 - c_2 + \beta (b_2 - c_2)$, contained in the plane $A_2 = B_2 = C_2$, is parallel to the axis of rotation. Mcreover, both planes, ABC and $A_2 = B_2 = C_2$, are nonparallel, for the vectors

, . • • •

•

÷

 u_{-A} , u_{-B} and u_{-C} have been assumed to be not all three identical to each other. Hence both planes intersect along a line which is the axis of rotation, q.e.d.

either=general:or=a=pure-rotation,-butlthe!screw.axis.or,

correspondingly; the axis of rotation, is parallel to the line
 defined by the points with identical displacements.

: ··· - Proof

Let B and C be the two points:with:identical:displacements: These displacements-can-berexpressed-using eqs.+(2.6.3a) as;

 $= \underbrace{\mathbf{u}}_{\mathbf{B}} = \underbrace{\mathbf{u}}_{\mathbf{A}} + (\mathbf{Q} - \mathbf{I}) (\mathbf{b} - \mathbf{a}_{1})$ (2.6.95a)

 $= - \underbrace{\mathbf{u}}_{\mathbf{C}} = \underbrace{\mathbf{u}}_{\mathbf{A}}^{*} (\mathbf{Q} - \mathbf{I}) (\mathbf{c}_{1} - \mathbf{a}_{1})$ (2.6.95b)

Subtracting eq. (2.6.95b) from eq. (2.6.95a) one obtains $u_{B}-u_{C}=(Q-I)(b_{1}-c_{1})=0$ (2.6.96)

which states that the vector connecting points B and C is parallel to the axis of rotation of matrix Q. Hence, line BC is parallel to the screw axis. This axis is located following the general procedure previously outlined.

• . , . • • INDE = 2.. No yector is zero and no two yectors are parallel, but they are coplanar. The motion is either general or a pure rotation and the given points lie in a plane parallel either to the screw axis or to the axis of rotation, according to Theorem 2.6.4 and Corollary 2.6.4. The direction of the screw axis or, correspondingly, of the axis of rotation, is found using eqs. (2.6.60)-(2.6.66). Summarizing, one-has-the-following sector.

<u>THEOREM 2.6.5</u> The motion of a rigid body is determined, i.e. its screw parameters: can be computed; if, and only: if; the positions of three *** noncollinear points of the body are known in both its reference and its _** final configurations.--*

Subroutines SCREW, "COPL'1; COPL'2; and GENMOT; timplementing the foregoing ----computations; ause-LOCAT.1; LOCAT.2; ANGLE; CYCLIC; EXCHGE; "CROSSTand.SCALTE" as subsidiary subroutines. Listings: of all these subroutines appear in-Figs 2.6.6 - 2.6.16

Exercise 2.6.8 In a manufacturing process it is required to position the workpiece of Fig 2.6.17 in configuration 2 starting from configuration 1; by means of an arm fastened to the bolt of a screw, a Determine the location of the axis of this screw as well as its pitch. If the operation is to take place in a screw revolutions plus a fraction, what is the value of this fraction?

* • . . • • • •

.

580	SUBROUTINE SCREW(AIN, BIN, CIN, AFIN, BFIN, CFIN, E, RHO, THETA, DISPL)
790 C	•
10 C	
010 C	THIS SUBROUTINE COMPUTES THE SCREW-PARAMETERS OF A RIGID BODY MOTION
620 C	
630 C	
640 C	INPUL:
650 C	THE XIY AND Z-COURDINATES OF THREE NONCOLLINEAR MOINTS OF THE
660 C	RIGIN BUDY IN BUTH ITS INITIAL (AINTEINTOIN 3-DIMENSIONAL VECTORS) AND IN ITS SINAL (ASIN, DEIN, CEIN 7-DIMENSIONAL DECOMOR)
67V G	CONFIGURATIONS
680 C	CORFIGURATIONS:
700 C	литент:
710 C	1.) THE DIRECTION E. OF THE SCREW AXIS
720 C	2.) THE LOCATION RHO OF THE POINT ON THE SCREW AXIS LYING CLOSEST
730 C	TO THE ORIGIN.
740 C	3.) THE ANGLE OF ROTATION (SIGN WITH RESPECT TO THE DIRECTION OF E
750 C	INCLUDED), THETA,
760 C	4.) THE SCALAR DISPLACEMENT DISPL, ALONG E (SIGN WITH RESPECT TO
770 C	THE DIRECTION OF E INCLUDED).
780 C	· · · · · · · · · · · · · · · · · · ·
790 C	SUBSIDIARY SUBROUTINES:
800 C	
810 C	CUPLI(*****/- CUNTAINS THE SAME PARAMETERS AS SUREW PLUS INDEX AND TM. UNION DEFINE FACH PACTICLEAD PRECISE CACE
020 C	INT WRICH DEFINE EACH FARTICULAR FUSSIBLE CASE? Computed The order cartage duck the motion to duce
	CONCULS THE SCACW PHAMMETERS WHEN THE HUTTON IS FURE
540 C	CORE 2(*****) COMPUTES THE SCREW PARAMETERS WHEN THE GIVEN POINTS
3 0 26	LIE IN A PLANE PARALLEL IN THE SCREW AXIS. THE NOTION
870 C	IS EITHER GENERAL OR FURE MOTATION.
880 C	GENMOT(****),- COMPUTES THE SCREW PARAMETERS WHEN THE MOTION IS
890 C	GENERAL AND THE GIVEN DISPLACEMENTS ARE NONCOPLANAR.
900 C	CROSS(A, B, C) COMPUTES THE CROSS PRODUCT DE VECTORS A AND B, IN THIS
910 .C	ORDER, AND STORES THE PRODUCT IN VECTOR C.
920 C	SCAL(A,B,C) - COMPUTES THE SCALAR PRODUCT OF VECTORS A AND B AND
930 C	STORES THE PRODUCT IN THE SCALAR S.
940 C	
950 C	T DINCHAIONAL DEGISION A D D ADD ADDI IADM FILT DD
760 C	3-DIMENSIONAL VECTORS AFBIC ARE AUXILIART MIELDS.
980	
990	$- + HC(3) \cdot A(3) \cdot R(3) \cdot C(3) \cdot F(3) \cdot F(3)$
1000	LOGICAL LD(3)
1010	COMMON ZERO
1020 C	•
1030 C	: /COLLINEARITY OF GIVEN POINTS IS VERIFIE™ WHEN POINTS ARE COLLINEAR,
1040 C	ZERO IS SET EQUAL TO -1. AND SUBROUTINE RETURNS TO MAIN PROGRAM.
1050	LO 10 I=1,3
Ŧ	· · · · · · · · · · · · · · · · · · ·
· • :	

•

.

.

•

Fig 2.6.6 Listing of SUBROUTINE SCREW (first part)

•

.

· •

.

•.

| _-I I · - / - | 1 • · · · . .

• • •

· 0			LO(I)=,FALSE,
, i			A(I)=AIN(I)-CIN(I)
		10	B(I)=BIN(I)-CIN(I)
1080			CALL CROSS(A,B,C)
1070			CALL SCAL(C+C+S)
1110			S=SQRT(S)
1120			1F(S-ZERD) 20,20,30
1130		20	ZERO=-1.
140			WRITE(6,1000)
1150			RETURN
1160	С		
1170	C	I IONI	
1180	Ĉ	COME	PABILITY IS VERIFIED. IF THIS IS NOT MET, THEN ZERO IS SET EQUAL
1190	C	TO -	-2.,-3.,OR -4., DEPENDING UPON WETHER DISTANCE AC, DC, OR AB DOES
1200	Ĉ	NOT	REMAIN CONSTANT THROUGHOUT THE MOTION.
1210		30	DO 40 I=1.3
1220			C(I)=AFIN(I)-CFIN(I)
1230		40	CONTINUE
1240			CALL SCAL(A,A,SI)
1250			S1=SQRT(S1)
1260			CALL SCAL(C,C,S2)
1270			S2#SQRT(S2)
1280	•		IE(ABS(S1-52).LE.ZERO) GO TO 50
1000			
1300			URITE(5,1010)
1310			RETURN
20		50	DO 60 I=1/3
1330			C(I)=BFIN(I)-CFIN(I)
1340		60 .	CONTINUE
1350	•		CALL SCAL(B,B,S1)
1360			CALL SCAL(C+C+S2)
1370			S1=SQRT(S1)
1380			S2=SQRT(S2)
1390			IF(ABS(S1-S2),LE,ZERO) GO TO 70 .
1400			ZER0=-3
1410			WRITE(6+1020)
1420			RETURN
1430		70	DO BO I=1,3
1440			A(I) = AIN(I) - BIN(I)
1450		80	B(I)=AFIN(I)-BFIN(I)
1460			CALL SCAL(A,A,S1)
1470			CALL SCAL(B, B, S2)
1480			S1=SQRT(S1)
1490			S2=SQRT(S2)
1500			IF(ABS(S1-52).LE.ZERD) 60 TO 90
1510			ZER0=-4 .
1520			WRITE(6,1030)
1530			RETURN
•			
			•

Fig 2.6.6 Listing of SUBROUTINE SCREW (second part)

.

. 66

• . • , -. . . · . . .

```
1540 C
         .
        JONE
  '50 C
        DISPLACEMENT VECTORS ARE COMPUTED
  60 C
       90
             [ID 100 I≠1,3
1570
                    UA(I) = AFIN(I) - AIN(I)
1590
                    UB(I) = BFIN(I) - BIN(I)
1590
           UC(I)=CFIN(I)-CIN(I)
1600
      100
1610 C
         DONE
1620 C
         NUMBER OF ZERO-DISPLACEMENTS IS DETERMINED AND STORED IN NUZE.
1630 C
        DISPLACEMENT MAGNITUDES ARE TEMPORARILY STORED IN E. IF GUZE.EG.O
1640 C
         THEN NUZE IS SET EQUAL TO 4.
1650 C
             CALL SCAL(UA,UA,E(1))
1660
             CALL SCAL(UB,UB,E(2))
1670
             CALL SCAL(UC;UC;E(3))
16B0
             NUZE=0
1670
             DO 110 I=1.3
1700
                    E(I)=SQRT(E(I))
1710
                     IF(E(1),GT,ZERO) GO TO 110
1720
                    NUZE=NUZE+1
1730
1740
                     LO(I)=.TRUE.
             CONTINUE
      110
1750
             IF(NUZE, EQ.O) NUZE=4
1760
1770 C
         DONE
1780 C
        EACH CASE(NUZE=0,1,2,3) IS NOW INVESTIGATED
1790 C
             GO TO(111,211,311,411),NUZE
 900
             DO 120 I=1,3
  10
      111
1820
                    IF(LO(I)) IN=I
             CONTINUE
1830
      120
             GO TO(121,131,141), IN
1840
1850
      121
             CALL CROSS(UB,UC,C)
             DO 130 I=1,3
1860
                    A(I)=UB(I)-UC(I)
1870
             CONTINUE
1880
      130
             GO TO 160
1890
1900
             CALL CROSS(UA,UC,C)
      131
             DO 140 I=1.3
1910
                     A(I)=UA(I)-UC(I)
1920
             CONTINUE
1930
      140
             GO TO 160
1940
1950
      141
             CALL CROSS(UA,UB,C)
             00 150 I=1,3
1960
                    A(I) = UA(I) - UB(I)
1970
             CONTINUE
      150
1980
      160
             CALL SCAL(C,C,S1)
1990
             CALL SCAL(A,A,S2)
2000
2010
             S1=SQRT(S1)
               . . . . . . . .
```

7 2.6.6 Listing of SUBROUTINE SCREW (third part)

67

• . , *,* . **,**

.

•

S2=SQRT(S2) 9 INDEX⇒3 1) IF(S1,LE,ZERD) INDEX=1 2040 IF(S2.LE.ZERO) INDEX=2 . 2050 2060 60 TO 230 INDEX=4 2070.211 DO 221 I=1,32080 2090 IF(10(1)) 60 TO 221 וש≓ו 2100 221 CONTINUE 2110 CALL COFLI(AIN, BIN, CIN, AFIN, BFIN, CFIN, E, RHO, THETA, DISPL, INDEX, 2120 230 2130 IN) ' RETURN 2140 311 ZERO=-5 2150 WRITE(6,1040) 2160 2170 RETURN 2180 C 2190 C DONE ONE, TWO AND THREE-ZERO-DISPLACEMENT CASES WHERE ALREADY DEALT WITH 2200°C ND-ZERD DISPLACEMENT CASE IS NEXT INVESTIGATED. 2210 C PARALLELISM OF DISPLACEMENTS IS FIRST DETERMINED, CROSS PRODUCT 2220 C 2230 C MAGNITUDES ARE TEMPORARILY STORED IN E. 2240 411 CALL CROSS(UA+UB+A) CALL CROSS(UA,UC,8) 2250 2260 CALL CROSS(UB,UC,C): - 70 CALL SCAL(A, A, E(1)) 30 CALL SCAL($B_{F}B_{F}E(2)$) 2290 CALL SCAL($C_{1}C_{2}E(3)$) DO 510 I=1,3 2300 LO(I)=.FALSE. 2310 510 2320 DO 520 I=1,3 E(I) = SQRT(E(I))2330 IF(E(1).GT.ZERO) GO TO 520 2340. LO(I)=.TRUE. 2350 2360 520 CONTINUE 2370 IF(LO(1).OR.LO(2).OR.LO(3)) 60 10 525 2380 C 2390 C DONE NO TWO DISPLACEMENT VECTORS WERE FOUND TO BE PARALLEL. COPLANARITY 2400 C IS NEXT VERIFIED. 2410 C 2420 CALL SCAL(UC,A,S) 2430 IF(ADS(S),LE,ZERO) GD TO 523 2440 CALL GENMOT(AIN, BIN, CIN, AFIN, BFIN, CFIN, E, RHO, THETA, DISPL) 2450 RETURN 2460 C COLLINEARITY OF DIFFERENCE VECTORS IS VERIFIED. 2470 C DIFFERENCES OF DISPLACEMENT VECTORS ARE TEMPORARILY STORED IN A 2480 C 2490 C THE CROSS PRODUCT OF THE LATTER IS STORED IN C. AND B.

ig 2.6.6 Listing of SUBROUTINE SCREW (fourth part)

65

. . . . 、 . . ,

```
2500
      523
              DO 524 I=1,3
                      A(I)=UA(I)-UC(I)
2510
      524
  20
              B(I) = UB(I) - UC(I)
CALL CROSS(A,B,C)
              CALL SCAL(C,C,S)
2540
              S=SQRT(S)
2550
2560
              IF(S.LE.ZER0) GO TO 700
              INDEX=5
2570
              CALL COPLI(AIN, BIN, CIN, AFIN, BFIN, CFIN, E, RHO, THETA, DISPL, INDEX,
2580
2590
                          IN)
2600
              RETURN
2610 C
         DONE
2620 C
         DETERMINES WHICH VECTORS ARE PARALLEL BY SETTING LO(I) EQUAL TO .TRUE
2630 C
      525
              DO 530 I=1,3
2640
2650
                      IF(LO(I)) GO TO 528
                      GO TO 530
2660
2670
      528
                      IN≠I
2680
                     INDEX=6
2690 530
              CONTINUE
2700 C
2710 C
         DONE
         INVESTIGATES IF ALL THREE VECTORS ARE PARALLEL
2720 C
2730
              DO 540 I=1,2
2740
                     IP1=1+1
2750
                     DO 540 J=101.3 ·
2760
                             IF(LO(I).AND.LO(J)) INDEX=7
      540
 '70
              CONTINUE
 280
              JNDEX=INDEX-5
2790
              GD TO(550,600), JNDEX
2800 C
2810 C
        DONE
2820 C
         DETERMINES IF, FOR TWO PARALLEL VECTORS, THESE ARE IDENTICAL
              GO TO(551,561,571),IN
2830
      550
2840
      551
              DO 552 I=1/3
2850
                     A(I)=UA(I)
2860
                     C(I) = UC(I)
2870
                      UA(I)≠C(I)
      552
             · UC(I)=A(I)
2880
2890
              GO TO 571
2900
              DO 562 I=1/3
      561
2910
                     A(I)=UA(I)
2920
                     9(I)=UD(I)
2930
                    UA(I)=B(I)
              UB(I)=A(I)
2940
      562
              DO 572 I#1,3
2950
      571
2960
                     A(I)=UB(I)-UC(I)
2970
      572
              CONTINUE
```

'g 2.6.6 Listing of SUBROUTINE SCREW (fifth part)

61

A. .

CALL SCAL(A,A,S) :980 S=SQRT(S) 2990 3000 1F(S.LE.ZERO) GO TO 750 3010 CALL COPLI(AIN, BIN, CIN, AFIN, BFIN, CFIN, E, RHO, THETA, DISPL, INDEX, 3020 IN) 3030 RETURN 3040 C 3050 C DONE DETERMINES IF ALL THREE FARALLEL VECTORS ARE IDENTICAL 3060 C 3070 600 100 610 I=1,33080 A(I)=UA(I)-UC(I) 3090 610 B(I)=UB(1)-UC(I)3100 CALL SCAL(A,A,S1) CALL SCAL(B,8,S2) 3110 S1=SQRT(S1) 3120 S2⇒SQRT(S2) 3130 IF(S1.LE.ZERO.AND.S2.LE.ZERO) GO TO 910 3140 3150 CALL COPLI(AIN, DIN, CIN, AFIN, BFIN, CFIN, E, RHO, THETA, DISPL, 300EX, 3160 IN) 3170 RETURN 3180 C 3190 C TIDNE 3200 INDE=2 700 GO TO 900 3210 3220 INDE=1 750 1230 900 CALL COPL2(AIN, BIN, CIN, AFIN, BFIN, CFIN, E, RHO, THETA, DISPL, 19DE, 3240 (NI 3250 RETURN 3260 C IF MOTION IS PURE TRASLATION, ZERO IS SET EQUAL TO ~6 3270 C 3280 910 ZER0≠-6 3290 WRITE(6,1050)(UA(I),I=1,3) 3300 RETURN 1000 FORMAT(5X,*POINTS ARE COLLINEAR, MOTION IS UNDEFINED*/) 3310 3320 1010 FORMAT(5X, MOTION IS NOT RIGID, LENGTH AC DOES NOT REMAIN ... * CONSTANT,*/) 3330 3340 1020 FORMAT(5X, MOTION IS NOT RIGID, LENGTH BC DOES NOT REMAIN ... 3350 CONSTANT. */> FORMAT(5X, MOTION IS NOT RIGID, LENGTH AB DOES NOT REMAIN. 3360 1030 3370 CONSTANT. //) 3380 1040 FORMAT(5X, NO MOTION, ALL THREE DISPLACEMENTS VECTORS ARE', * ZER0.*/) 3390 3400 1050 FORMAT(5X, THE MOTION IS PURE TRANSLATION, *//15X, THE ** 3410 *DISPLACEMENT HAS THE FOLLOWING X-+Y-AND Z COMPONENTS :* 3420 /15X,F12.5,5X,F12.5,5X,F12.5/) 3430 END 4

'ig 2.6.6 Listing of SUBROUTINE SCREW (sixth and last part)

+ .

 τc

۵ ۲۰۰۰

-. .

: .

•		
40	•	SUBROUTINE COPLICAIN, BIN, CIN, AFIN, BFIN, CFIN, E, RHO, THEIA, DISPL
;0		- ,INDEX,IN)
5460	C	
3470	С	THIS SUBROUTINE COMPUTES THE SCREW PARAMETERS E, RHO, THETA AND DISPL
3460	C I	WHEN THE RIGID BODY UNDER STUDY UNDERGOES A PURE ROTATION.
3490	C (THE SUBROUTINE PARAMETERS WERE DEFINED IN SUBROUTINE SCREW, EXCEPT
3500	C 'i	FOR INDEX AND IN. THESE ARE DEFINED NEXT.
3510	С	INDEX = 1, IF ONLY ONE DISPLACEMENT IS ZERO AND THE OTHER TWO
3520	С	DISPLACEMENTS ARE PARALLEL, BUT NOT IDENTICAL.
3530	C	INDEX = 2, IF ONLY ONE DISPLACEMENT IS ZERO AND THE DIHER TWO
3540	С	DISPLACEMENTS ARE IDENTICAL
3 550	C	INDEX = 3, IF ONLY ONE DISPLACEMENT IS ZERO AND THE OTHER TWO
3560	C	DISPLACEMENTS ARE NOT IDENTICAL.
3570	C	INDEX = 4, IF EXACTLY TWO DISPLACEMENTS ARE ZERD.
3580	C 2	INDEX = 5, IF NO DISPLACEMENTS IS ZERD AND ALL DISPLACEMENTS ARE
3590	3	NUNPARALLEL, PROVIDED THE TWO DISTINCT DISPLACEMENT
3600	e	DIFFERENCES ARE NUNCOLLINEAR.
3610	C	INDEX = 6; IF NO DISPLACEMENT IS ZERU AND EXACTLY IND VECTORS ARE
3620		MARALLEL BUI UIFFERENI.
3630	C .	INDEX = 7; IF ALL THREE DISPLACEMENTS ARE MARALLEL BUT NOT ALL THREE
3640	C	ARE IDENTICAL.
3650	L'	
3660	C	IN/ DETECTS WHICH VECTORS ARE PARALLEL ON IDENTICAL/ IF AT ALL.
3670	C :	SUBSIDARY SUBRUUTINES :
3680	С 2	LUCATI(*****) LUMPUIES VELIUK KHUY WHEN NU IWU Stock Accessit Licetoor Are Sabali cl
3690		UISPLACENENT VECTORS ARE CHRACLED.
		LUCATZ(*****).* LUMPUTES VECTOR E AND KNU MMEN AT LERST The DIGPLACEMENT DECIDES ARE GARALED
3/10	5	INU DISFLAGEMENI VEGIUNS AND FARMELEGA ANDE CARRANA CONDUCCE INE ANDER OF SOIATION
3720	с С	HNDLE $(A + A + A + A) = CONFULES INE ANOLE OF AUTHINUM. CYCLIC(A, B, C) = OFDEDBAC A FYCLIC CHANCE OF USETODS A.B$
3/30	5	TO DELECTIVE FERFORMS A CICLIC COMMER OF VECTORS AND TO DE TELECTIONS AND A CICLIC COMMER OF VECTORS AND
3740		E CY 1.2.7 H 15 SET ENONE TO BY D 15 SET EDUAL TO C.
3730	с С	EVOLUTION OF THE LOCATIONS OF FIELDS A AND S
3760	с С	EXCHOE (H)B) - EXCHANGES THE LUCHITUNS OF FIELDS H AND B
3770	č	
3700	C	\$541 ATH/31.81N/31.02N/31.AETN/31.8ETN/31.CETN(31.6(3).890(3).
3/70		$= H\Delta(\mathbf{X}) \cdot HB(\mathbf{X}) \cdot HB(\mathbf{X}) \cdot BFB(\mathbf{X}) \cdot \Delta(\mathbf{X}) \cdot B(\mathbf{X})$
3810	C	
3820	ř	COMPUTES THE DISPLACEMENTS
3830	č	
3940	5	DO 10 T=1.3
3850		UA(I) = AFIN(I) - AIN(I)
3860		UR(I) = RFIN(I) - RIN(I)
3870	10	$UC(I) \neq CFIN(I) - CIN(I)$
3880		G8 TD(100,100,100,400,500,600,700),INDEX
3890	С	•
3900	C D	DONE
3910	C 1	IN WAS SET IN SUBROUTINE SCREW EQUAL TO 1,2 OR 3, DEPENDING ON WHICH
ŧ		
_ :.		·
g 2	.6.7	Listing of SUBROUTINE COPL1 (first part)

.

•

.

•

.

•

· · ·

ţ

11.1

.

•

., *

· .

.

- · ·

.
VECTOR IS ZERO, UA, UB, OR UC, RESPECTIVELY 3.10 C 100 GD TO(120,110,110), IN 3930 110 3940 CALL CYCLIC(UA, UB, UC) 3950 CALL CYCLIC(AIN, BIN, CIN) 3960 IF(IN.EQ.2) GO TO 120 CALL CYCLIC(UA,UN,UC) 3970 3980 CALL CYCLIC(AIN, BIN, CIN) 3990 GO TD(130,200,300), INDEX 120 4000 C 4010 C COMPUTATION OF RHO AND E WHEN INDEX=1 4020 130 WRITE(6,1000) CALL LOCAT2(AIN, BIN, CIN, AFIN, BFIN, CFIN, RHO, E) 4030 4040 GO TO 320 4050 C 4060 C DONE 4070 C COMPUTATION OF THE DIRECTION OF THE AXIS OF ROTATION WHEN INDEX=2 4080 200 WRITE(6,1010) 4070 DO 210 I=1,3 4100 210 E(I)=BIN(I)-CIN(I)4110 CALL SCAL(E,E,X) 4120 X=SQRT(X) GO TO 305 4130 4140 C 4150 C DONE COMPUTATION OF THE DIRECTION OF THE AXIS OF ROTATION WHEN INDEX=3 0 C 300 0 WRITE(6,1020) 4180 CALL CROSS(UB+UC+E) CALL SCAL(E,E,X) -4190 4200 X=SORT(X) 4210 305 10 307 1=1,3 307 -4220 E(I) = E(I) / X4230 C 4240 C **I**IONE 4250 C COMPUTATION OF THE POINT OF THE AXIS OF ROTATION LYING CLOSEST TO 4260 C THE ORIGIN. 4270 CALL SCAL(AIN, E, S) 4280 DO 310 I=1,3 4290 310 RHD(I)=AIN(I)-S*E(I) 4300 C 4310 C DONE 4320 C COMPUTATION OF THE ANGLE OF ROTATION 320 4330 CALL ANGLE(BIN, UB, E, RHO, THETA) 4340 DISFL=0. 4350 RETURN 4360 C 4370 CT DONE INVESTIGATES THE CASE WHEN TWO DISPLACEMENTS ARE ZERO. IN WAS SET 4390 C 4390 0 IN SUBROUTINE SCREW EQUAL TO 1,2 OR 3, DEPENDING ON WETHER UA, UB, OR

Fig 2.6.7 * Listing of SUBROUTINE COPL1 (second part)

ラド

I • I. L I I. L I I . . ÷

I.

I

```
UC RESPECTIVELY, IS DIFFERENT FROM ZERD. THEN THE SCREW PARAMETERS .
4400 C
4410 C
         ARE COMPUTED.
  20
      400
              WRITE(6,1030)
              GO TO(420,410,410), IN
. 430
              CALL CYCLIC(AIN, RIN, CIN)
4440
      410
              CALL CYCLIC(UA,U8,UC)
4450
              IF(IN,EQ.2) GO TO 420
4460
              CALL CYCLIC(AIN, BIN, CIN)
4470
              CALL CYCLIC(UA;UB;UC)
4480
              DO 430 I=1+3
      420
4490
                     E(I)=CIN(I)-BIN(I)
      430
4500
              CALL SCAL(E,E,X)
4510
              X = SORT(X)
4520
              DO 440 I=1,3
4530
                     E(I) = E(I)/X
4540
      440
              CALL SCAL(BIN, E, S)
4550
              DO 450 I=1,3
4560
      450
                     RHD(I)=BIN(I)-S*E(I)
4570
           CALL ANGLE(AIN,UA,E,RHO,THETA)
4580
              DISPL=0,
4590
4600
              RETURN
4610 C
4620 C
         DONE
         COMPUTES THE SCREW PARAMETERS WHEN NO DISPLACEMENT IS ZERO, AND
4630 C
         ALL THREE VECTORS ARE NONPARALLEL, FURTHERMORE, THE TWO DIFFERENCE
4640 C
         VECTORS ARE NONCOLLINEAR. HENCE THE MOTION IS A FURE ROTATION.
4650 C
              WRITE(6,1040)
1660
      500
 .70
              GO TO 610
.6B0 C
          COMPUTES THE SCREW PARAMETERS WHEN NO DISPLACEMENT IS ZERO BUT
4690 C
         EXACTLY TWO VECTORS ARE PARALLEL AND DIFFERENT. IN IS SET IN SUB-
4700° C
         ROUTINE SCREW EQUAL TO 1.2 OR 3 DEPENDING UPON WETHER UC, UB OR UA IS
4710 C
          THE NONPARALLEL VECTOR.
4720 C
              WRITE(6,1050)
4730
      600
4740
              IF(IN.NE.2) GO TO 610
              CALL CYCLIC(AIN, BIN, CIN)
4750
              CALL CYCLIC(UA;UB;UC)
4760
4770
      610
              CALL CROSS(UA,UC,E)
              CALL SCAL(E,E,S)
4780
              S=SQRT(S)
4790
              DO 620 I=1,3
4800
4810
        ۰.
                     Ë(I)=E(I)/S
4820
      620
              CONTINUE
              CALL LOCAT1(AIN,CIN,UA,UC,RHD)
4830
              CALL ANGLE(AIN, UA, E, RHO, THETA)
4840
4850
              DISPL=0.
              RETURN
4860
4870 C
ŧ
```

g 2.6.7 Listing of SUBROUTINE COPL1 (third part)

. • . . . • , _ • .

4880	С	זאסיז	
- 70	C	сомя	PUTES PARAMETERS FOR NO-ZERO-DISFLACEMENT-CASE WITH ALL THREE
00	£	VECI	TORS PARALLEL BUT NO TWO VECTORS IDENTICAL TO EACH OTHER.
4910	700		WRITE(6,1060)
4920		,	CALL LOCAT2(AIN, HIN, CIN, AFIN, BFIN, CFIN, RHD, E)
4930			CALL ANGLEKAIN, UA, E, RHO, THETA)
4940			DISFL≠0.
4950	•	•	RETURN
4960	1000		FORMAT(5X, ONE DISPLACEMENT IS ZERO AND THE OTHER TWO ARE ',
4970		-	'PARALLEL'/SX, BUT DISTINTCT, THE MOTION'IS FURE ROTATION. *,
4980		-	• INDEX=1*/)
4790	1010		FORMAT(5X, ONE DISFLACEMENT IS ZERO AND THE OTHER TWO ARE ',
5000		-	<pre>*IDENTICAL.*/5X, THE MOTION IS FURE ROTATION, INDEX=2*/></pre>
5010	1020		FORMAT(5X, ONE DISPLACEMENT IS ZERO AND THE OTHER TWO ARE ',
5020		-	NEITHER IDENTICAL'/5X, NOR PARALLEL. THE MOTION IS PURE ',
5030		-	*RDTATION, INDEX=3*/)
5040	1030		FORMAT(5X, TWO DISPLACEMENTS ARE ZERO. THE MOTION IS FURE',
5050			<pre>ROTATION.*/5X,*INDEX=4*/)</pre>
5060	1040		FORMAT(5X, THE DISPLACEMENTS ARE COPLANAR, THE TWO DISPLACEMENT ,
5070		-	BIFFERENCES / 5X, ARE NONCOLLINEAR AND NO DISPLACEMENT IS ',
5080		_	"ZERG. THE MOTION IS PURE"/SX, ROTATION, INDEX=5"/)
5090	1050	1	FORMAT(5X, TWO DISPLACEMENTS ARE PARALLEL BUT DIFFERENT AND',
5100		-	• NO DISPLACEMENT /5X, IS ZERO, THE MOTION IS FURE ROTATION. ,
5110		-	INDEX=6'/)
5120	1060	•	FORMAT(5X, THREE DISPLACEMENTS ARE PARALLEL, BUT NOT ALL THREE',
5130		-	• ARE IDENTICAL. 75%, THE MOTION IS PURE ROTATION. INDEX=7'/)
. 40			END

₽¶.

Fig 2.6.7 Listing of SUBROUTINE COPL1 (fourth and last part)

• • • F • . . .

		•
5150		SUBROUTINE COPL2(AIN, BIN, CIN, AFIN, BFIN, CFIN, F, RHD, THETA, DISPL
5160		INDE. IN)
- 70	С	
iõ	č	THIS SUBROUTINE COMPUTES THE SCREW PARAMETERS F. RUD. THETA AND STOOL
งกั	ř	HHEN THE DIERCHERCHIE OF THE THEEF GIVEN POINTS ADD FOR ANAD IN
5100	č	WHEN THE DISTENCEDENTS OF THE THINLE OFVEN FOINTS ARE CUPLANARY IN
5200	č	WHICH CASE THE FUINTS ETE IN A FLAME FARALLEL EITHEN TO THE SCREW
5210	ь С	HAIS ON TO THE HAIS OF ROTHIEON.
5220	С -	THE SUBRUUTINE PARAMETERS WERE DEFINED IN SUBRUUTINE SCREW EXCEPT
5230	Ľ	FUR INDE AND IN. THESE ARE DEFINED NEXT.
5240	C	INDE = 1, WHEN TWO OF THE SAID DISPLACEMENTS ARE IDENTICAL. IN,
5250	С	DETECT WHICH VECTORS ARE PARALLEL, IF AT ALL.
5260	С	INDE = 2, WHEN ALL THREE DISPLACEMENTS ARE NONPARALLEL BUT THE
5270	C	CORRESPONDING TWO DIFFERENCE DISPLACEMENT VECTORS ARE
5280	C	COLLINEAR.
5290	C	SUBSIDIARY SUBROUTINES WERE ALREADY DESCRIBED IN SUBROUTINE SCREW.
5300	с.	
5310		REAL AIN(3), BIN(3), CIN(3), AFIN(3), BFIN(3), CFIN(3), E(3), RH0(3),
5320		- UA(3),UR(3),UC(3)
5330		COMMON ZERD
5340	С	
5350	Ē	COMPUTES THE DISPLACEMENTS
5340	č	
5370	•	DD 10 1=1.3
5790		= 10/(1) - 0
		UD(1)-0CTN(1)-HIR(1)
5400		, UC(1)-D(1(1)-D(1((1)))
	10	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
5410		B0 10(100)200)/INDE
~ 420	ь С	
50	С а	
_ ,40	L 5	CURPUTES THE SCREW PARAMETERS WHEN INDE =1
5450	Ľ	RELABELS THE PUINTS AND THEIR DISPLACEMENTS
5460	100	WRITE(6,1000)*
5470		GB TO(110,120,130),IN
5480	110) CALL EXCHGE(AIN,CIN)
5490		CALL EXCHGE(UA,UC)
5500		GO TO 130
5510	120) CALL EXCHGE(AIN,BIN)
5520		CALL_EXCHGE(UA+UB)
5530	130) DO 140 I=1,3
5540		E(I) = CIN(I) - BIN(I) + CIN(I)
5550	140) CONTINUE
5560		CALL SCAL(E,E,S)
5570		S=SQRT(S)
5580		DO 150 I=1,3" ·
5570		E(1)=E(1)/S
5600	150) CONTINUE
5610		CALL SCAL(UA,E,DISPL)
5620	С	
*		÷.
		· .

\$
3 2.6.8 Listing of SUBROUTINE COPL2 (first part)

73

. . • • • • . · · · -•

15630 C DONE ELIMINATES THE TRANSLATION PART OF THE HOTION ,40 C 5450 C DO 160 I=1,3 5660 5670 S=DISPL*E(I) 5680 UA(I)=UA(I)~S UB(I) = UB(I) - S'5690 160 UC(I) = UC(I) - S5700 GO TO 310 5710 5720 C DONE 5730 C 5740 C COMPUTES THE SCREW PARAMETERS WHEN INDE =2 DIFFERENCES ARE TEMPORARILY STORED IN AFIN, BFIN AND CFIN 5750 C 5760 C WRITE(6,1010) 200 5770 DO 210 I=1,3 5780 5790 AFIN(I)=UA(I)-UC(I) BFIN(I)=BIN(I)-CIN(I) 5800 210 CFIN(I) = AIN(I) - CIN(I)5810 5820 CALL SCAL(AFIN, BFIN, PRO1) CALL SCAL(AFIN, CFIN, PRO2) 5830 5640 CALL SCAL(BFIN, BFIN, BC) CALL SCAL(CFIN, CFIN, AC) 5850 5860 BC=SQRT(BC) 5870 AC=SQRT(AC) IF(ABS(PR02).6T.ZER0) GO TO 240 <u>-980</u> 90 00 230 I=1,3 5900 E(I)=CFIN(I)/AC CONTINUE 5910 230 -5920 GO TO 290 240 IF(ABS(PR01).GT.ZER0) GO TO 260 5930 5940 DO 250 I=1,3 5750 E(I)=BFIN(I)/BC 5960 250 CONTINUE - GO TO 290 5970 5980 QUOT=PR01/PR02 260 CALL SCAL(BFIN/CFIN/PRO3) 5990 BETA=(AC*AC*QUOT-PRO3-PRO3)*QUOT+BC*BC 6000 6010 BETA=1./BETA BETA=SORT(BETA) 6020 Ξ. 6040 DO 280 I=1,3 6050 E(1)=ALPHA*CFIN(1)+BETA*BFIN(1) CONTINUE 6060 280 6070 C COMPUTES THE SCREW DISPLACEMENT 6080 C 290. CALL SCAL(UA,E,RISPL) 6090 6100 C #

'Fig'2.6.8 'Listing of SUBROUTINE COPL2' (second part)

······ ···· ··· ··· ··· ··· ···

76

• . -

مە بەھەستە مەھەستە مەھەستە مەھەستە مەھەستە مەھەستە مەھەستە مەھەستە مەھەستە

•

. **. .**

	6110	C El	[IMINA]	TES THE	TRAN	SLATIC	IN PART	OF	THE	HOTI	ON:			-		
	6120	•	00 30	00 I=1,	3											
	6130		•	S≈DI	SPL*E	(I) -										
	6140			UA(I)≓UA(I)-S										
	6150	300	UB(I))=UB(I)	-5											
	6160	310	CALL	LOCATI	(AIN)	BINYUA	, UB ≠ RH	0)								
•	6170		CALL	ANGLE (AIN/U/	A≠E • RH	O, THEY	A)		• •	•					• •
	6180		RETUR	RN .									-			
	6190	1000	FORM	T(5X)*	TWO DI	ISPLAC	EMENTS	ARE	1 D E	ENTIC.	AL. TI	HE POI	N75 '	,		
	6200	• -	-	CORR	ESPON	DING"/	5X• * TO	т не	Sε τ	ISPL	ACEBEI	NTS LI	E ON	A L:	אני י	• •
	6210	-	-	'PARA	LLEL '	ТО ТНЕ	SCREW	I*75X	(+*A)	(IS (OR TO	THE A	xis d	DF '		
	6220	-	-	, ROT	ATION	, IF T	HE MOT	40T	IS F	URE .	/5X,*8	ROTATI	0.0	INLE	=1"/	1
-	6230	1010-	FORM	AT (SXF	THETI	WOTDIS	PLACEM	ENT-	DIFF	FEREN	CES"A	RE COL	LENEA	₩R. 7	HE '	• • **
	6240	-	-	•GIVE	N POIN	NTS*/5	X+*LIE	IN .	A PL	ANE	PARALI	LEL TO	THE	SCRE	ω.	•
	6250	-	-	•AXIS	(OR)	TO THE	AXIS	OF 1/	′5X+	ROTA	TION,	IF TH	E ::01	NOI	15 '	• •
	6260	-	. .	• PURE	ROTA	TION).	INDE=	21/)	I							
	6270	С	· .													
-	6280	C D(DNE													
	6290		END													
	*															
-							•									

1 2.6.8 Listing of SUBROUTINE COPL2 (third and last part)

-۰ ۲ • • •

•

```
SUBROUTINE GENMOT( AIN, BIN, CIN, AFIN, BEIN, CFIN, E, RHD, THETA, DISPL)
4300
  10 C
 J20 C
           THIS PROGRAM COMPUTES THE SCREW PARAMETERS WHEN THE MOTION
           15 GENERAL AND THE RESULTING DISPLACEMENTS ARE NONCOMPLANAR.
6330 C
6340 C
          SUBSIDIARY SUBROUTINES WERE
                                         ALREADY DESCRIPED IN SUBROUTINE
                         6350 C
          SCREW.
6360 C
             REAL AIN(3), BIN(3), CIN(3), AFIN(3), BFIN(3), CFIN(3), E(3), RHO(3)
6370
6380
             REAL UA(3), UB(3), UC(3)
             COMMON ZERO
6390
6400 C
6410"C
          COMPUTES THE DISPLACEMENTS.
             DO 10 I=1,3
6420
6430
                   UA(I)=AFIN(I)-AIN(I)
                   UP(1)=BF1N(1)-BIN(1)
6440
6450
       10
             UC(I) = CFIN(I) - CIN(I)
6460 C
         DONE
6470 C
6480 C
         COMPUTES VECTOR E
         STORES DIFFERENCE VECTORS TEMPORARILY IN AFIN AND BFIN -
6490 C
             UO 20 I=1+3
6500
                   AFIN(I)=UA(I)-UC(I) ·
6510
6520
                   BFIN(I) = UB(I) - UC(I)
       20
             CONTINUE -
6530
            CALL CROSS(AFIN, BFIN, CFIN)
6540
            CALL SCAL(CFIN+CFIN+S)
6550
 560
             S=SQRT(S)
 370
            DO 30 I≠1,3
                   E(I)=CFIN(I)/S
6580
       30
             CONTINUE
6590
6600 C
6610 C
         DONE
6620, C
         COMPUTES DISPL
6630
            CALL SCAL(UA,E,DISPL)
6640 C
6650 C
         DONE
         STORES DISPLACEMENT VECTOR (UA*E)*E TEMPORARILY IN RHO AND COMPUTES
6660 C
6670 C
         VECTORS UA', UB' AND UC', AND STORES THEM IN UA, UB AND UC,
6680 C
         RESPECTIVELY.
            DO 40 I=1.3
6690
                   RHO(I)=DISPL*E(I)
6700
6710
                    UA(I)=UA(I)-RHO(I)
                    UD(I)=UB(I)-RHG(I)
6720
6730
                    UC(I)=UC(I)-RHO(I)
6740
       40
            CONTINUE
6750 C
6760 C
         DONE
         DETECTS PARALLELISM AMONGST THE MODIFIED DISPLACEMENT VECTORS AND
6770 C
۰
-rig-2:6.9_Listing.of SUBROUTINE.GENMOT.(first.part).______t.
```

. . - - - · . . _ _ **_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _** .

	6780	С	COMPUTES	THE SCREW PA	RAMETERS.				
	6790		CALL C	RUSS(UA,UB,A	FIN)				
: 52	6800		CALL C	ROSS(UB+UC+B	FIN)				-
	6810	•	CALL C	ROSS(UC+UA+C	FIN)				
	6820		CALLIS	CAL(AFIN;AFI	N;RHO(1))				
	6830		CALL S	CAL (BEIN, BEI	N;RHD(2))				
	6840		CALL S	CAL(CFIN/CFI	N,RHD(3))				
	6850		DD 60	1=1,3					
н	6860			RHD(I)=SQRT(RHO(I)	· -		1.49 F	•
	6970			IF(RHD(I),GT	.ZERO) GO TO	50			
	6880		-	CALL CYCLIC(AIN+BIN+CIN)				
	6890			CALL CYCLIC(UA, UB, UC)	_			
	6900	50	I	I=3				· ·	
	6910	ĂŐ		UΕ				·	
	6920		CALL	OCATI (ATN, BI	N.UA.UB.RHO)			-	
	4030			NGI F (ATN+IIA+	F.RHO,THETA)				
	4940	r.							
-	4950	č	DONE						
	4040	÷	LISTIE	6+1001				-	
	6700	100	COPHAT	757."THE MAT	TON TO GENER		THE GIVEN	DISPLACEMENTS A	48F *
	2000	100	- FUMINI	VSY. NONCOR	ANAD! /)		THE DIVEN		
	078V 2000		-	I DAF HUNCUPE					
	2000		1000 C						

۰,

۰.

Fig 2.6.9 Listing of SUBROUTINE GENMOT (second and last part)

6

79

· · . · · • • • • • • • • • • .. .

SUBROUTINE LOCAT1(AIN, BIN, UA, UB, RHD)70 7600 C THIS SUBROUTINE COMPUTES VECTOR RHO, I.E., THE POINT ON THE AXIS OF 7610 C 7620 C A FURE ROTATION LYING CLOSEST TO THE ORIGIN. PROCEDURE : 7630 C THE PSEUDO-INVERSE FORMULA (BEN-ISRAEL A, AND GREVILLE T.N.E., 7640 C GENERALIZED INVERSES THEORY AND APPLICATIONS, WILEY N. YORK, 1974) 2650 C IS APPLIED TO FIND THE MINIMUM-NORM SOLUTION TO THE OVERDETERMINED 7660 C LINEAR 2X3 SYSTEM A*X=B, THESE EQUATIONS BEING THOSE OF TWO NON-7670 C *PARALLEL*PLANES* THIS*FORMULA THUS FINDS THE POINT.OF..THE LINE... 7680 °C DEFINED BY THE INTERSECTION OF TWO NON-PARALLEL PLANES LYING CLOSEST 7690 C TO THE ORIGIN. 7700 C THESE PLANES ARE THE MEDIATOR PLANES OF SEGMENTS AFIN-AIN AND BFIN-7710 C 7720 C BIN. 7730 C 7740 C COMPUTES THE POSITION VECTORS OF THE MID-POINTS OF THE GIVEN 7750 C SEGMENTS, EACH IS THEN TEMPORARILY STORED IN RHD AND TEMP, THEN 7760 C 7770 C CONSTRUCTS VECTOR B. 7780 C 7790 C 7800 REAL AIN(3), BIN(3), UA(3), UB(3), RHO(3), TEMP(3) DO 10 I = 1,37810 7820 RHO(I) = AIN(I) + UA(I) * 0.5TEMP(I)=BIN(I)+UB(1)*0.5 30 10 CONTINUE 10 7850 C 7860°°C "BUILDS MATRIX A*(ATRANSP)" CALL SCAL(UA, UA, A11) 7870 7880 CALL SCAL(UB, UB, A22) 7890 CALL SCAL(UA,UB,A12) 7900 CALL SCAL(UA, RHO, B1) 17910 CALL SCAL(UB, TEMP, 82) 7920 DEN=A11*A22-A12*A12 7930 1F(ABS(DEN),LE.ZERO) GO TO 30 X1=(B1*A22-B2*A12)/DEN 7940 X2=(B2*A11-B1*A12)/DEN 7950 DD 20 I=1+3 7960 RHO(I)=UA(I)*X1+UB(I)*X2 7970 CONTINUE 7980 20 RËTURN 7990 WRITE(6,50) 8000 30 DO 40 I=1.3 8010 RHO(I) = UA(I) + UB(I)B020 RH0(I)=RH0(I)*0.5 8030 40 CONTINUE 8040 50 FORMAT(//5X; MATRIX A*(AT) IS SINGULAR*/) 8050 RETURN 8060 P^70 ENĐ

Fig 2.6.10 Listing of SUBROUTINE LOCAT1

80

•

· ·

f - - .

.

•

•	•			$\kappa(\cdot)$
• .			•	- 1
8080			SUBROUTINE LOCAT2(AIN;BIN;CIN;AFIN;BFIN;CFIN;RHO;E)	
8090	С			
5100	C	тн	IS SUBROUTINE COMPUTES VECTORS RHO AND E WHEN ALL THREE RE	SULTING
	Ċ	$\mathbf{D}\mathbf{I}$	SPLACEMENTS ARE PARALLEL BUT NOT TWO VECTORS ARE IDENTICAL	TO EACH
8120	č	OT		
	ř	E-021	OCEDURE : ,	
6140	ř	FA	CH PLANE IS DETERMINED BY A TRIAD OF NONCOLLINEAR POINTS (ALU-SIN.
0150	č	С Т.	NAFIN.REIN.CEINY, USEDOR F IS DETERMINED BY THE CROSS A	ROUCT
0110	2	01	THE NORMALE TO THE PLANCE PUBLIC CONDUCED EVACTLY AS IN	
0160	ц.	Ur	THE MURNING ID THE FLAMES, AND IS CONFUTED EXACTLY AS IN	EUCHII.
8170	ь С			
8180	C	,		
B190		•	REAL AIR(3), BIR(3), CIR(3), AFIR(3), BFIR(3), CFIR(3), DIFI(3.	/ >
8200			D1F2(3);FROD(3);RHU(3);E(3)	
8210			po 10 I=1,3	
8220			DIF1(I) = BIN(I) - AIN(I)	,
6230			DIF2(I)=CIN(I)-AIN(I) **	. ,,
8240		10	CONTINUE	
8250			CALL CROSS(DIF1,DIF2,PROD)	
8260			no 20 I=1,3	
8270			<pre>UIF1(I)=BFIN(I)-AFIN(I)</pre>	,
8280			DIF2(1)=CFIN(1)-AFIN(1)	
8290		20	CONTINUE	
8300			CALL CROSS(DIF1,DIF2,RHO)	
8310			CALL CROSS(PROD,RHO,E)	
8320			CALL SCAL(É,E,S)	
B330			S=SQRT(S)	
8340		•	IF(ARS(S)+LE.7ERD) GD TO 40	
8350	С			
8340	č	Fit J	TEDS MATRIX A*(ATRANSP) AND VECTOR 8.	
8370	·	2.5	CALL SCAL(PROD.PROD.ALL)	
8			CALL SCAL (RH0, RH0, A22)	
0.000			CALL SCAL (PROD-SHO+A12)	
0370			CALL SCAL (PROD.CTN.B1)	
0410'	-	• .		
0410				
0420			ΤΕ/Δ98/ΠΕΝΊ ΕΕ.ΤΕΡΟΊ ΟΠ ΤΟ ΔΟ	
8430			T1=(8+*A22-B2*A12)/DEN	
0450	•		$T_{2} = (R_{2} \times \Delta 1) - R_{1} \times \Delta 1) / DEN$	•
0470			$\frac{1}{10} \frac{1}{10} \frac$	
B400 D470			E(I)=E(I)/S	
9400			⁸ RHD(I)-R&OD(I)#T14RHD(I)#I7	
0400		70	CONTINUE	
0470		50	DETURN	
DEIN		40	$\mathbf{D} = \mathbf{D} \mathbf{A} \mathbf{C}$	
8210		40	DU JV 1-175 7 DIES(T)-CETN/I) -CIN/I) -	
852V 8520		EA 1		5 55
0540		50 5	CONTINUE CALL COORS (DICL DOOD E)	
8540			CALL CROSSINFFIFRUPPE/	
8550			LALL SURL(E)E)	
8560			5=54K((3) DO /A I=1-7	· .
0570		_	- DU GV 14175	•
8580		-	E(1)=E(1)/5 +	
8570		60	CONTINUE	
8600			CALL SCAL(AIN, E, T)	
8610			DO 70 I=1.3	
B <u>4-30</u>			RHO(I) = AIN(I) - T * E(1)	
B		70	CONTINUE	-
8640		*	RETURN	•
B620			END	

Fig 2.6.11 Listing of SUBROUTINE LOCAT2

•

.

. .

.

• •

.

****** --**va** -

•

·

k ۶ ,

-----SUBROUTINE ANGLE(AIN, UA, E, RHO, THETA) 8660 8670 C THIS SUBROUTINE COMPUTES THE ANGLE OF ROTATION OF A PURE-ROTATION 8680 C 8690 C NOTION 8700 C FROCEDURE: USE IS MADE OF RODRIGUES' FORMULA (BISHOP N.E., "RODRIGUES' FORMULA 8710 C AND THE SCREW MATRIX', JOURNAL OF ENGINEERING FOR INDUSTRY, TRANS. 8720 C ASME, SERIES B, VOL. 91, FEB. 1969) : 8730 C R2-R1=TAN(THETA/2)EX(R1+22) 8740 C WHERE R1 AND R2 ARE THE INITIAL AND THE FINAL POSITION VECTORS OF 8750 C ONE FOINT OF THE BODY NOT LYING ON THE AXIS OF ROTATION. THE BRIGIN 8760 C IS ASSUMED TO BE LOCATED AT ONE POINT OF THE AXIS OF ROTATION. THETE 8770 C 8780 C AND E ARE THE ANGLE OF ROTATION AND THE UNIT VECTOR PARALLEL TO THE AXIS OF ROTATION, RESPECTIVELY. 8790 C 8800 C 8810 C 8820 REAL AIN(3)+UA(3)+E(3)+RHD(3)+TEMP(3) 6630 DO 10 I=1,3 AIN(I)=AIN(I)-RHO(I) 8840 8850 UA(I) = AIN(I) + UA(I)9860 TEMP([)=AIN(1)+UA(I) 170 UA(1) = UA(1) - AIN(1)**_880** 10 CONTINUE 6890 CALL CROSS(E,TEMP,AIN) QUD1=0 8900 · · · · · · PO 20 I≈1+3 8910 8920 IF(ABS(AIN(1)).LE.ZERO) GO TO 20 8930 QUOT=UA(1)/A1N(1) THETA=ATAN(QUOT)*2.0 8940 8950 GO TO 30 B960 20 CONTINUE 30 8970 IF(ABS(QUOT).GT.ZERO) RETURN 8980 THETA=ATAN(1.0)*4.0 8990 RETURN 9000 END

Fig 2.6.12 Listing of SUBROUTINE ANGLE

とズ

• • . • I Ι • i ļ I i :

I

-

 $\mathcal{C}\mathcal{Z}$

7010	SUBROUTINE CYCLIC (A,B,C)
, 7020 C	· · · · · · · · · · · · · · · · · · ·
7030 C TI	HIS SUBROUTINE PERFORMS A CYCLIC RELABELLING OF VECTORS A, B, C,
; 7040 C I	.E. VECTORS A, B AND C ARE RELABELLED B, C AND A RESPECTIVELY.
• 7050 C	
7060 C	
7070	REAL A(3),8(3),C(3),AUX(3)
7080	DO 10 I=1.3
····· • 7090	AUX(I)=A(I)
· 7100	A(I)=B(I)
7110	B(1)=C(1)
7120	C(I)=AUX(I)
7130 10	CONTINUE
7140	RETURN
7150	END
	· · ·
	· · · · · · · · · · · · · · · · · · ·
Fig 2.6.13	Listing of SUBROUTINE CYCLIC
•	
	· · ·
	·
!	
7160	SUBROUTINE EXCHGE (A,B)
7170 C	•
7190 C	THIS SOBROUTINE EXCHANGES THE FIELDS OF A AND B, I.E., IT
7190 C	RETURNS B AS A AND A AS B .
7200 C	
7210 C	
7220	REAL A(3), B(3), AUX(3)
7230 .	DO 10 I=1,3
7240	AUX(I)=A(I)
7250	A(I)=B(I)
7260	B(I)=AUX(I)
- 7270 J10	CONTINUE
7280	RETURN
7290	END .
-	•

÷ -

Fig 2.6.14 Listing of SUBROUTINE EXCHGE

.

÷,

. . . . •

7300		SUBRO	JAITU	CROSS	(A)B	·C)					
7310	С			•							
7320	C	THIS SUB	ROUTIN	E PERF	ORMS	THE CRO	SS PRODU	CT A AN	D B, I	N THIS	DRDER
7330	Ċ	AND STOR	ES THI	S PROD	UCT I	N C.					
7340	С								•		
7350	С					-					
7360		REAL	A(3),E	3(3),C(3)				•		
7370		DO 10	K=1,3	5	-				_		
7380			C(K)=	0.		•			-		
7390			DO 10) L=1,3							
7400				D0'10	M=1,:	3					
7410					N=(L-	-K)*(M-I	_)*(K-M)				
7420					C(K):	=C(K)-N)	KA(L)*9()	M)/2.			
7430		10 CONTI	NUE								
7440		RETUR	N								
7450		END	• •								
ŧ											
-			•		• ·			-	-	•	2
		-		_							•

Fig 2.6.15 Listing of SUBROUTINE CROSS

7460 SUBROUTINE SCAL (A, B, S) ·7470 C 7480 C THIS SUBROUTINE PERFORMS THE SCALAR PRODUCT OF VECTORS A AND B 7490 C AND STORES THIS PRODUCT IN S. 7500 C 7510 C 7520 REAL A(3), B(3) 7530 S=0. 7540 DO 10 I=1,3 7550 .: ⊾_S=S+A(I)*R(I) 2 7560 10 CONTINUE 7570 RETURN 7580 ËND 4

Fig 2.6.16 Listing of SUBROUTINE SCAL

v

•

,

.

r'=a'+Q(z-a)

Fig. 2.6.17 Motion of a workpiece

<u>Exercise 2.6.9</u> (Taken from (2.7)) Let $\underline{a}, \underline{r}, \underline{a}$ and \underline{r} be the position vectors of the initial and the displaced positions of points A and R of a rigid body under the screw motion

Q being the rotation of the screw. Show that the set of points of the body that, under the given motion remain equidistant from a fixed point P, lie in a plane.

2.7 VELOCITY OF A POINT OF A RIGID BODY ROTATING ABOUT A FIXED POINT.

In the previous sections the motion of a rigid body when moving between two finitely separated configurations was analyzed. In this section and the following ones, the motion of a rigid body between two infinitesimally separated configurations is analyzed. The variables involved in the body motion are considered to be functions of time and results concerning their time derivatives are obtained.

Let y(t) be the image of vector x under a pure rotation Q(t). Clearly,

. • · · · • . -

x is an independent variable; however, its image, y(t), is a function of time. If the origin of coordinates is placed at the fixed point, then

Differentiating the above equation with respect to time, one obtains

y(t)=ý(t)x

y(t)=Q(t)x

which is an expression for the velocity of the point located by vector \underline{x} in its initial configuration, at time t. Expression (2.7.2), however, is not practical to compute the velocity of the said point, for it requires knowledge of the point position in its initial configuration. Solving for \underline{x} in eq. (2.7.1) and introducing the corresponding value in eq. (2.7.2) yields

$$\underline{v}(t) = \underline{v}(t) = \underline{\tilde{\rho}}(t) \underline{\rho}^{T}(t) \underline{v}(t)$$
 (2.7.3)

which is an expression for the velocity of a point of a rigid body moving about a fixed point, in terms of the current position vector of the moving, point. The matrix poduct, $\dot{Q}(t)Q^{T}(t)$, called the angular velocity* of the rigid body, represented by $\Omega(t)$, is a skew symmetric matrix. Then, the velocity v(t) can be expressed as

 $v(t)=\Omega(t)y(t)$

(2.7.4a)

(2.7.1)

(2.7, 2)

where

 $\Omega(t) = \dot{Q}(t) Q^{T}(t)$

Exercise 2.7.1 Show that, if Q(t) is orthogonal, then $\dot{Q}(t)Q^{T}(t)$ is skew symmetric.

* Truesdell (2.8) prefers to call it "the spin" and so it is found also under this name in the literature

. .

Exercise 2.7.2 Show that the velocity of a point of a rigid body moving about a fixed point is perpendicular to its position vector (directed from the fixed point). Since $\Omega(t)$ is skew symmetric and 3x3 it is totally determined by three independent scalars, thus being isomorphic to a cartesian vector, $\omega(t)$, called also the angular velocity of the rigid body. Using cartesian vector notation, the velocity v(t) then can be expressed as $v(t)=\omega(t)xr(t)$ (2.7.5)

Exercise 2.7.8 Obtain the components ω_1 of vector ω in terms of the components Ω_{ij} of matrix Ω .

Equation 2.7.5 makes the result of Exercise 2.7.2 apparent. Since $\Omega(t)$ is skew symmetric and 3x3, it has one zero eigenvalue, as is shown below. Furthermore, its other two eigenvalues are complex (and conjugate, of course). Indeed, assume Q(t) is in its canonical form, i.e.

 $\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right) = \left(\begin{array}{c} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ \sin\theta & 0 & 1 \end{array} \right)$ (2.7.6)

$$(\dot{Q}(t)) = \begin{pmatrix} -\sin\theta & -\cos\theta & 0 \\ \cos\theta & -\sin\theta & 0 \\ 0 & 0 & 0 \end{pmatrix} \dot{\theta}$$
 . (2.7.7)

😁 😅 From the above expressions, 👥

$$\dot{Q}(t)\dot{Q}^{T}(t) = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \dot{\theta}$$
(2.7.8)

which makes evident that all vectors of the form $\{e\} = (0,0,\alpha)^T$, α being any scalar, correspond to a zero eigenvalue. The other two eigenvalues

87

. . (. . • . ,

-

are readily found to be

 $\lambda_1 = \hat{\theta} i_1 \lambda_2 = -\hat{\theta} i_1$ (2.7.9) where i is the imaginary unity, $\sqrt{-1}$.

The null space of $\Omega(t)$ (see Sec. 1.3) is, from the foregoing discussion, of dimension 1, i.e. a line. All the points lying on that line have zero velocity, the line thus being called "the instant axis of rotation" of the rigid body.

A cone rolling without slipping on a plane is a simple example of a rigid body rotating about a fixed point, its apex; its instant axis of rotation is clearly, the element of the cone touching instantaneously the plane. Another example would be a sphere rotating on a plane in such a way that the contact point remains fixed; the instant axis of rotation of the sphere is thus the diameter passing through the point of contact.

Exercise 2.7.4 A cone of revolution rolls on a conic surface, also of revolution, without slipping, in such a way that both appices are coincident. What is the instant axis of rotation of the cones in motion?.

Exercise 2.7.5 Show that the spin matrix Ω can be written as

Ω=A6

where A is a constant matrix and $\hat{\theta}$ is the time derivative of θ , the rotation angle.

2.8 VELOCITY OF A MOVING POINT REFERRED TO A MOVING OBSERVER.

In what follows, an observer will be understood to be a set of coordinate axes provided with a clock (2.8, p.26). Assume a point P_o, located by vector \underline{x}_{o} , is the origin of a coordinate system in motion with respect to another coordinate system, which will be arbitrarily referred to as "fixed".

82

. . -· · · · * . • • • ł -.. •1 • 2 , <u>م</u> ۲

•

:

-

The latter system constitutes a fixed observer, whereas the first, a moving one.

Let x be the position vector of a point P, in motion with respect to both observers. Vectors and matrices expressed with respect to the fixed observer will be indexed with letter F, whereas those expressed with respect to the moving one will be indexed with letter M. Let ξ be the position vector of P in the moving observer and Q the rotation dyadic from the fixed observer to the moving one.

Bence,

$$\left(\underline{\mathbf{x}} \right)_{\mathbf{F}} = \left(\underline{\mathbf{x}}_{\mathbf{O}} \right)_{\mathbf{F}} + \left(\underline{\xi} \right)_{\mathbf{F}}$$
 (2.8.1)

where it is understood that all three vectors are functions of time. The velocity of P is obtained differentiating both sides of eq. (2.8.1) with respect to time, i.e.

$$\sum_{\mathbf{r} \in \mathbf{r}} \left(\mathbf{v} \right)_{\mathbf{F}} = \left(\mathbf{v} \right)_{\mathbf{F}} + \left(\mathbf{\xi} \right)_{\mathbf{F}}^{2}$$
 (2.8.2)

where v is the velocity of point P and, since

$$\left(\xi\right)_{\rm F} = \left(\varrho\right)_{\rm F} \left(\xi\right)_{\rm M} \tag{2.8.3}$$

then

$$\left(\xi \right)_{\mathbf{F}} = \left(Q \right)_{\mathbf{F}} \left(\xi \right)_{\mathbf{M}} + \left(Q \right)_{\mathbf{F}} \left(\xi \right)_{\mathbf{M}} =$$

$$= \left(\Omega \right)_{\mathbf{F}} \left(\xi \right)_{\mathbf{F}} + \left(Q \right)_{\mathbf{F}} \left(\xi \right)_{\mathbf{M}}$$

$$(2.8.4)$$

Thus, eq. (2.8.2) becomes

where the first two terms of the right hand side represent the velocity of P as if it were one point of the rigid body defined by the moving observer*

* See Section 2.9

• **-** · • • • • •
and the last term is the velocity of P as measured by the moving observer. Matrix $(Q)_F$ transfers the description of velocity $(\xi)_M$ to the fixed observer. Thus, eq.=(2:8.5) states that the velocity of point P equals. that of point P as if it were fixed to the moving coordinate axes, plus the velocity of point P as if the moving observer were fixed. Given any two points, P₁ and P₂, moving with velocities \underline{v}_1 and \underline{v}_2 , respectively, "the relative velocity of P₂ with respect to P₁" is defined as

 $\frac{y}{2/1}$ (2.8.6) Similarly, the relative angular velocity of body 2, moving with angular

velocity Ω_2 , with respect to body 1, moving with angular velocity Ω_1 , is

. defined as

 $\hat{\Omega}_{2/1} = \hat{\Omega}_{2} - \hat{\Omega}_{1}$ (2.8.7)

or, alternatively,

 $\frac{\omega_{2/1} - \omega_{2} - \omega_{1}}{\omega_{2} - \omega_{1}}$ (2.8.7)

2.9 GENERAL MOTION OF A RIGID BODY

Let a rigid body B undergo the most general motion, i.e., in general, no point of B remains fixed. Let v_p be the velocity of one of its points, P, with position vector x_p and angular velocity Ω . Thus, the relative velocity, v_p , of any other point R(located by x) with respect to P, is given by

 $\underline{v} - \underline{v}_{\mathbf{p}} = \underline{\Omega} (\underline{x} - \underline{x}_{\mathbf{p}})$

- (2.9.1)

for $\underline{v}-\underline{v}_{p}$ is the velocity that R would have if P were fixed. From eq. (2.9.1),

 $(2.9.2)_{1.1}$

• . · · · · · is the velocity of point R, and is given in terms of the velocity of another point, P, the angular velocity g_1 and the position vector of R with respect to P.

Given two rigid bodies in motion, body 1 rolls without slipping with respect to body 2 if, and only if, there exists a set of points on both 1 and 2 such that the relative velocity of points on that set is zero. Regarding the velocity v, as given by eq. (2.9.2) as the relative velocity of one point R of body B with respect to body C, the fixed observer, the condition for B to roll without slipping on C is that there exists a set of points, whose position vector is given by x, for which v=0. But for this to happen, the condition is

 $\mathbf{v}_{\mathbf{p}} = -\Omega(\mathbf{x} - \mathbf{x}_{\mathbf{p}})$

(2.9.3)

which states that y_p is in the range (See section 1.3) of Ω . However, it was shown in Section 2.8 that the null space of Ω if of dimension 1; hence -cq. (1.3.1)- the range of Ω is of dimension 2, thereby existing vectors in E^3 not belonging to the range of Ω . If y_p happens to lie outside the range of Ω , it is impossible to find a vector x for which eq. (2.9.3) is satisfied. Those vectors lying outside the range of Ω lie necessarily on its null space, i.e., on a line parallel to the eignevector of Ω corresponding to its zero eigenvalue or, equivalently, are parallel to the vector ω associated with Ω . In case y_p has a nonzero component along the null space of Ω , body B is said to slide on body C, which is the case of the worm-gear or of the hypoid gear couplings. In these couplings there are power losses due to the involved sliding and, since the dissipated power is proportional to the sliding velocity, the contact between the ... two mechanical elements under consideration should take place along points of minimum magnitude of sliding velocity. For hypoid gears this set

-71

. • • . ^ • • • . · · ·

*

of points lie on a line which, paralleling Chasles' Theorem, is called "the instant axis of the screw motion of body B with respect to C" or, for short, "the instant screw axis". Indeed, let the sliding velocity be given we given the points of minimum magnitude of sliding velocity corresponds to finding the vectors x of expression (2.8.2) which minimize the quadratic form $\phi(x) = y^{T}y$, which has a stationary value (Section 1.10) when $\phi'(x)$ vanishes.

Applying the "chain rule" to $\phi(x)$,

 $\phi^*(\mathbf{x}) = 2\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^{\mathrm{T}} \mathbf{y}$

where, from eq. (2.9.2),

 $\frac{\partial y}{\partial x} = \frac{\Omega}{2}.$ (2.9.4b)

Thus, points x_0 yielding an extremum of $\phi(x)$ satisfy the equation

 $\Omega^{\mathrm{T}} \underline{\mathbf{y}} = - \Omega \underline{\mathbf{y}} = \mathbf{0} \tag{2.9.5}$

Exercise 2.9.1 Show that the gradient of $\phi(x)$ is twice the left hand side of eq. (2.9.5).

Since Ω has one zero eigenvalue (and only one), eq. (2.9.5) states that the minimum-magnitude velocity, given by

 $\dot{\mathbf{v}}_{\mathbf{0}} = \mathbf{v}_{\mathbf{p}} + \hat{\mathbf{g}} (\mathbf{x}_{\mathbf{0}} - \mathbf{x}_{\mathbf{p}})$

is=in-theynullispace of Ω , i.e. is a vector parallel to ω . Notice that $\gamma = \gamma f$ eq. (2.9.6) does not yield a unique vector \mathbf{x}_0 for, if any vector α_1 (in the null space of Ω) is added to \mathbf{x}_0 , the velocity \mathbf{y}_N of the new point, is given by

 $\cdot \tilde{\mathbf{n}}^{\mathsf{N}} = \tilde{\mathbf{n}}^{\mathsf{L}} + \tilde{\mathbf{u}} \left(\mathbf{x}^{\mathsf{O}} + \alpha \tilde{\mathbf{n}} - \tilde{\mathbf{x}}^{\mathsf{D}} \right) = \tilde{\mathbf{n}}^{\mathsf{D}} + \tilde{\mathbf{u}} \left(\tilde{\mathbf{x}}^{\mathsf{O}} - \tilde{\mathbf{x}}^{\mathsf{D}} \right)$

Hence, the points of minimum-magnitude velocity lie in a line passing

-9%

(2.9.4a)

(2.9.6)

• · · · .

.

·

.

,

<u>screw axis</u> of the motion under study. The particular point P_0 on the screw axis, located by x_0 , is chosen such that x_0 be normal to the screw axis, thus, x_0 happens to be the minimum-norm vector satisfying (2.9.6). This vector can be found in a similar way as vector r_0 of eq. (2.6.8) was found, namely, choose two linearly independent equations out of eq (2.9.5) and form the system

Ax,=b (2.9.7)

where A is a 2x3 matrix and b is a two-dimensional vector. Hence, the minimum-norm solution x_0 is given as

$$\underline{\mathbf{x}}_{\mathbf{0}} = \underline{\mathbf{\hat{A}}}^{\mathrm{T}} (\underline{\mathbf{\hat{A}}}_{\mathbf{1}}^{\mathrm{T}})^{-1} \underline{\mathbf{\hat{b}}}$$
(2.9.8)

An alternative way of finding x_{-0} is now presented, expressing eq (2.9.5) in cartesian vector form, namely,

$$-\omega x \left(v_{p} + \omega x \left(r_{0} - r_{p} \right) \right) = 0$$
(2.9.9)

which can be expanded as

 $\sum_{\mu=\mathbf{p}}^{\infty} \frac{\omega \mathbf{x} \mathbf{v}}{\mathbf{p}} + \omega \mathbf{x} \left(\omega \mathbf{x} \left(\mathbf{r}_{\mathbf{0}} - \mathbf{r}_{\mathbf{p}} \right) \right) = 0$

or, expanding the double cross product*,

$$\begin{split} & _{\psi \times v_{p}} + \left(_{\omega}, \, (_{0} - _{p}) \right) _{\omega - \omega}^{2} \, (_{t_{0}} - _{p}) = _{0} \end{split}$$

If now \underline{r}_0 is specified to be normal to $\underline{\omega}$, i.e., to be the minimum-norm vector of all those satifying eq. (2.9.9), then it can be obtained from the above equation as

$$\mathbf{r}_{0} = \mathbf{r}_{p} + \frac{1}{\omega^{2}} \left(\omega \mathbf{v}_{p} - (\omega, \mathbf{r}_{p}) \omega \right)$$
(2.9.10)

which is an expression similar to that appearing in eq. (2.6.15).

* ພ²≡ພ. ຼ

95

.

_

The foregoing results are summarized in a theorem similar to that of Chasles'.

<u>THEOREM 2.9.1</u> Any rigid body motion is equivalent to a screw motion, composed of a velocity v_0 and a spin about an axis parallel to v_0 . The points whose velocity is v_0 are located on a line parallel to v_0 , called the instant screw axis and v_0 is of minimum magnitude. The screw axis passes through point P_0 whose position vector is given either by eq. (2.9.8) or by eq. (2.9.10)

The counterpart of Theorem 2.6.2 now follows:

<u>THEOREM 2.9.2</u> The velocities of all the points of a rigid body undergoing an arbitrary motion have identical projections along the instant screw axis.

Proof:

The velocity of any point of the rigid body can be written as

 $y=y_p+\omega x (r_r_p)$ Dot multiplying both sides of the above equation times ω (a vector parallel to the screw axis) yields

 $\mathbf{v} \cdot \boldsymbol{\omega} = \mathbf{v}_{\mathbf{p}} \cdot \boldsymbol{\omega} + \boldsymbol{\omega} \mathbf{x} \left(\mathbf{r} - \mathbf{r}_{\mathbf{p}} \right) \cdot \boldsymbol{\omega}$

But the second term of the right hand side clearly vanishes. Hence

By virtue of the latter result, the projection of the velocities of all the points of a rigid body in motion along the screw axis is given by

 $|[v_0|]$, which is called "the sliding". The pitch of the instant screw is given by

$$\lambda = \frac{2\pi ||\underline{\mathbf{y}}_0||}{||\underline{\boldsymbol{\omega}}||}$$

<u>ν.ω=ν</u>...ω

.(2.9.11)

q.e.d,

· · • -•

which is the counterpart of eq. (2.6.21a)

After Theorem 2.9.2, there follows one method of determining the orientation e of the screw axis of a rigid body motion when the <u>non-coplanar</u> velocities of three points A, B and C of a rigid body are known. Indeed, paralleling the derivation of eq. (2.7.24) one obtains

$$\mathbf{e} = \frac{(\mathbf{v}_{\mathrm{A}} - \mathbf{v}_{\mathrm{C}}) \times (\mathbf{v}_{\mathrm{B}} - \mathbf{v}_{\mathrm{C}})}{\left|\left((\mathbf{v}_{\mathrm{A}} - \mathbf{v}_{\mathrm{C}}) \times (\mathbf{v}_{\mathrm{B}} - \mathbf{v}_{\mathrm{C}})\right)\right|\right|}$$
(2.7.12)

Exercise 279.1 Show that the velocity of all-the points of a rigid body, three of whose points, A, B and C, have velocities v_A , v_B and v_C , respectively, have identical projections along vector \underline{e} , as given by eq. (2.9.12). The sliding velocity, v_0 , can then be obtained as

$$\mathbf{v}_{0} = (\mathbf{v}_{h}, \mathbf{e}) \mathbf{e} \operatorname{sgn} (\mathbf{v}_{h}, \mathbf{e})$$
(2.9.13)

where the signum function has been introduced in order to make the directions of both y_0 and e coincident.

To completely determine the instant screw, only the angular velocity ω needs be computed. This is done in what follows, after deriving some results similar to those of Section 2.6

<u>Corollary 2.9.1</u> If at least one point of a rigid body has a velocity which is normal to its angular velocity or zero, the body undergoes a pure rotation.

The foregoing Corollary is a direct consequence of Theorem 2.9.2 and so its proof is left as an exercise for the reader.

Exercise 2.9.2 Prove Corollary 2.9.1

THEOREM 2.9.3 The difference vector of the velocities of any two points of a rigid body undergoing an arbitrary motion is perpendicular to the instant screw axis.

95

r . , . ł

Proof

Let v_A and v_B be the velocities of two points, A and B, of a rigid body. From eq. (2.9.2) these are related by 96

 $v_{B} = v_{A} + \Omega (b-a)$

Hence, the difference, d, is given by

 $d = \underline{v}_{B} - \underline{v}_{A} = \Omega(b-a)$

which makes it clear that d lies in the range (See Section 1.3) of Ω , thereby being normal to the null space of Ω , i.e., normal to the screw axis. Alternately this result can be proved resorting to Gibbs' notation. This way, d can be written as

d = ωx (b-a)

and hence

d.ω= ωx (b-a).ω

which vanishes because the double product at the right hand side contains two identical vectors, g.e.d.

THEOREM 2.9.4 If the velocities of three noncollinear points of a rigid body are identical, the body undergoes a pure translation.

Proof

Let \underline{v}_A , \underline{v}_B and \underline{v}_C be the respective velocities of points A,B and C. Referring these to the velocity of an arbitrary point P, one obtains

$$\begin{split} &\tilde{\mathbf{v}}_{\mathbf{p}} = \tilde{\mathbf{v}}_{\mathbf{p}} + \tilde{\mathbf{v}} \left(\tilde{\mathbf{p}} - \tilde{\mathbf{p}} \right) \\ &\tilde{\mathbf{v}}_{\mathbf{p}} = \tilde{\mathbf{v}}_{\mathbf{p}} + \tilde{\mathbf{v}} \left(\tilde{\mathbf{p}} - \tilde{\mathbf{p}} \right) \\ &\tilde{\mathbf{v}}_{\mathbf{p}} = \tilde{\mathbf{v}}_{\mathbf{p}} + \tilde{\mathbf{v}} \left(\tilde{\mathbf{p}} - \tilde{\mathbf{p}} \right) \end{split}$$

 $v_{\lambda} - v_{C} = \Omega (a - c) = 0$

 $\Psi_{\mathbf{B}} - \Psi_{\mathbf{C}} = \Omega (\mathbf{b} - \mathbf{c}) = 0$

Subtracting the third equation from the first two yields

. . . • 1 . .

•

,

which implies that both a-c and b-c lie the null space of Ω . This space, however, is of dimension 1, as discussed in Section 2.7. Since points A, B and C are noncollinear, vectors a-c and b-c are linearly independent and hence cannot be simultaneously in the null space of Ω , unless $\Omega = 0$, the motion thus reducing to a pure translation, q.e.d.

<u>THEOREM 2:9.5</u> The nonidentical velocities of three points of a rigid body are coplanar if and only if one of the following conditions is met:

i) The motion is a pure rotation

ii) The motion is general, but the points are collinear

iii) The motion is general and the points are not collinear, but lie in

a plane parallel to the screw axis.

Proof

"if" part:

 If the motion is a pure rotation, the velocity of any point with position vector r is given by

y = Ωr

which states that y lies in the range (See Section 1.) of Ω , which is of dimension 2, as was discussed in Section 2.7. This means that all velocity vectors lie in a plane perpendicular to the null space of Ω , i.e. perpendicular to the axis of rotation, thereby showing that these velocities are coplaner.

 ii) Let A, B and C be three collinear points of the rigid body and a, b and c be their respective position vectors. The velocities of these points, referred to an arbitrary point with position vector p are

 $\mathbf{v}_{\mathbf{A}} = \mathbf{v}_{\mathbf{P}} + \Omega (\mathbf{a} - \mathbf{p})$ $\mathbf{v}_{\mathbf{B}} = \mathbf{v}_{\mathbf{P}} + \Omega (\mathbf{b} - \mathbf{p})$ $\mathbf{v}_{\mathbf{B}} = \mathbf{v}_{\mathbf{P}} + \Omega (\mathbf{c} - \mathbf{p})$ $\mathbf{v}_{\mathbf{C}} = \mathbf{v}_{\mathbf{P}} + \Omega (\mathbf{c} - \mathbf{p})$

77

. . , . . ۲ r . . . •

ı.

Since the points are collinear, their position vectors are related by

. c-a=0(b-a)

Now, adding $\Re a$ to v_C and subtracting it simultaneously from the same expression, one obtains

 $v_c = v_p + \Omega (a-p) + \Omega (c-a)$

whose first two terms can be readily identified with v_A . Moreover, substituting c-a in the third term of the latter equation by a(b-a), as given above, leads to

 $v_{C} = v_{A} + \alpha \Omega (b - a)$

But

 $\Omega(b-a) = v_B - v_A$

Rence, the expression for v_{C} is transformed into

 $\mathbf{v}_{\mathbf{C}} = \mathbf{v}_{\mathbf{A}} + \alpha (\mathbf{v}_{\mathbf{B}} - \mathbf{v}_{\mathbf{A}})$

or, equivalently,

 $\mathbf{v}_{\mathbf{C}} = (1 - \alpha) \mathbf{v}_{\mathbf{A}} + \alpha \mathbf{v}_{\mathbf{B}}$

thereby proving the linear dependence, i.e. the coplanarity of \underline{v}_A , \underline{v}_B and \underline{v}_C .

iii) The velocities of the three given points, A,B and C, are referred to that of a point P on the screw axis. These velocities take on the form appearing in.ii. Thus, the velocity of P, v_{p} , is parallel to the screw axis. On the other hand, the fact that A, B and C lie in a plane parallel to the screw axis allows one to establish the following relationship

 $c-a=a(b-a)+\beta y_p$

or, equivalently,

 $c=(1-\alpha)a+\alpha b+\beta v_p$

• ، . ب . .

Substituting the latter expression in \boldsymbol{y}_{C} as given in ii leads to

 $y_{c} = y_{p} + \Omega(c - p) =$

 $= \mathbf{y}_{\mathbf{p}} + \Omega \left(\mathbf{a} - \mathbf{p} \right) - \alpha \Omega \left(\mathbf{b} - \mathbf{a} \right) + \beta \Omega \mathbf{y}_{\mathbf{p}}$

whose two first terms can be readily identified as v_A , its fourth term vanishing because it lies in the null space of Ω . Hence

 $\underline{v}_{C} = \underline{v}_{A} - \alpha \Omega (b-a)$

But

 $\Omega(b-a) = v_B - v_A$

Thus, the latter expression for y_C is transformed into

 $\underline{v}_{C} = \underline{v}_{A} - \alpha \widehat{\omega} (\underline{v}_{B} - \underline{v}_{A})$

which shows the linear dependence of the three given velocity vectors, i.e. its coplanarity.

"only if" part:

Assuming that the velocities y_A , y_B and y_C of three given points A,B and C are coplanar, the following relationship holds - $\frac{1}{2}$

 $\det(\underline{y}_{A}, \underline{y}_{B}, \underline{y}_{C}) = 0$

Referring \underline{y}_B and \underline{y}_C to \underline{y}_A one has

 $V_{\mathbf{B}} = V_{\mathbf{A}} + \Omega (\mathbf{b} - \mathbf{a})$

w very the (cra)

Thus, the above expression for the determinant becomes

 $\det \left(\mathbf{v}_{\mathbf{A}}, \mathbf{v}_{\mathbf{A}} + \Omega \left(\mathbf{b} - \mathbf{a} \right), \mathbf{v}_{\mathbf{A}} + \Omega \left(\mathbf{c} - \mathbf{a} \right) \right) = 0$

 $det(\mathbf{v}_{\mathbf{A}}, \ \Omega(\mathbf{b}-\mathbf{a}), \ \Omega(\mathbf{c}-\mathbf{a}))=0$

97

.

• •

which is equivalent to

 $\Omega(b-a) \times \Omega(c-a) \cdot v_A = 0$

Introducing Gibbs' notation, and expanding the resulting expression,

100

$$\begin{split} \widehat{\Omega}(\underline{b}-\underline{a}) \times \widehat{\Omega}(\underline{c}-\underline{a}) &= \left(\bigcup_{k=1}^{\infty} (\underline{b}-\underline{a}) \right) \times \left(\bigcup_{k=1}^{\infty} (\underline{c}-\underline{a}) \right) \neq \\ &= \left(\bigcup_{k=1}^{\infty} (\underline{b}-\underline{a}), (\underline{c}-\underline{a}) \right) \bigcup_{k=1}^{\infty} \left(\bigcup_{k=1}^{\infty} (\underline{b}-\underline{a}), \bigcup_{k=1}^{\infty} (\underline{c}-\underline{a}) \right) \end{split}$$

where the expression in brackets in the second term of the rightmost hand side clearly vanishes. Hence

$$- \Omega(\underline{b}-\underline{a}) \times \Omega(\underline{c}-\underline{a}) \cdot \underline{v}_{A} = (\underline{\omega} \times (\underline{b}-\underline{a}) \cdot (\underline{c}-\underline{a})) \underline{\omega} \cdot \underline{v}_{A}$$

which vanishes under one of the following conditions:

i) $\omega \cdot \mathbf{v}_{\mathbf{A}} = 0$

which implies, under Corollary 2.9.1, that the motion is a pure rotation

(b-a)x(c-a)=0 ii)

which means that points A, B and C are collinear

iii) $\omega x (b-a) \cdot (c-a) = 0$

which indicates that vectors \underline{w} , $\underline{b}-\underline{a}$ and $\underline{c}-\underline{a}$ are coplanar, q.e.d. A direct consequence of the foregoing result is the following <u>Conollary 2.9.2</u> Assume a rigid body under motion and choose any three noncollinear points A, B and C of the body. Letting \underline{v}_A , \underline{v}_B and \underline{v}_C be the three involved velocities, then the difference vectors $\underline{v}_A-\underline{v}_C$ and $\underline{v}_B-\underline{v}_C$ [and, consequently, $\underline{v}_A-\underline{v}_B$] are parallel if and only if the points lie in a plane parallel to the screw axis when the motion is general. If the motion reduces to a pure notation, then the said plane is parallel to the axis of notation.

Exercise 2.9.3 Prove Corollary 2.9.2

More results connected with the present discussion are the following

. . .

.

· ·

• • • • ·

.

• • • •

<u>Corollary 2.9.3</u> The velocities of any two points of a rigid body cannot be parallel and different, unless the body undergoes a pure rotation

<u>Corollary 2.9.4</u> If two, and only two, velocities of three noncollinear points of a rigid body are parallel, then either i) the parallel vilocities are identical and belong to points lying on a line parallel to the screw axis, or ii) the parallel velocities are different from each other, in which case the motion is a pure rotation whose axis is parallel to the line connecting the two points of parallel velocities.

<u>Corollary 2.9.5</u> Given three noncollinear points, A, B and C, of a rigid body in motion, such that $v_C = 0$ and v_A and v_B are parallel but distinct, i.e. $v_B = gv_A$, then the body undergoes a pure rotation and its axis passes through C and is parallel to vector b-Ba, a and b being the position vectors of A and B, respectively. If $v_A = v_B$, then the axis-of rotation is parallel to line AB.

The computation of ω given the velocities of three noncollinear points is next discussed. Two cases are considered: i) the arising difference vectors are noncollinear, and ii) these vectors are collinear.

In what follows let A, B and C be the three involved points, v_A , $v_{\bar{E}}$ and $v_{\bar{C}}$ being their corresponding velocities. Then,

mandti). The difference . vectors are not collinear.

 $y_{C/A} = \omega x (c-a)$ (2.9.14)

Hence

$$= \left(\mathbf{v}_{B/A} \cdot \mathbf{v}_{C/A} \cdot \mathbf{v}_{B/A} \cdot (\mathbf{c} \cdot \mathbf{a}) \right) = \mathbf{v}_{B/A} \cdot \mathbf{v}_{C/A} \cdot \mathbf{v}_{B/A} \cdot \mathbf{v}_{C/A} \cdot \mathbf{v}_{D/A} \cdot \mathbf{v}_$$

(2.2.15)

_

 $v_{B/A} = (\omega \times (b-a)) = 0$

But-

Thus, ω can be solved for from eq. (2.9.15) as

 $\omega = \frac{v_{B/A} \times v_{C/A}}{v_{B/A} \cdot (c-a)}$

which is the desired expression for ω , inrespective of whether the motion is general or a pure rotation.

(2,9.16)

(2,9.17)

(2:9718)

11) The difference vectors are collinear. In this case the points lie in ***. a plane parallel to the instant screw axis. Due to the collinearity of the difference vectors; the cross product of the left-hand side of * eq. (2.9.15) vanishes, thus making it impossible to compute w using the procedure of case i). Thus, a different approach is introduced.-According to Corollary 2.9.2, the given points lie in a plane parallel to the instant screw axis, i.e. to w. Hence, the following holds.

According to Theorem 2.9.3,

 $\underline{\omega} = \alpha(\underline{a} - \underline{c}) + \beta(\underline{b} - \underline{c})$

 $(\mathbf{y}_{\mathbf{A}} - \mathbf{v}_{\mathbf{C}}), \omega = 0$ (2.9.19)

or, substituting eq. (2.9.18) into eq. (2.9.19),

 $\alpha (v_A - v_C), (a - c) + \beta (v_A - v_C), (b - c) = 0$ (2.9.20)

Now, several possibilities can arise, namely

given the assumed noncollinearity of points A, B and C. Hence

where a is computed from

· · · <u>ب</u> **ه** . · . .

.

$$y_{B/C} = \omega x (b-c)$$
 (2,9,21)

ile,

$$\mathbf{v}_{\mathbf{B}} - \mathbf{y}_{\mathbf{C}} \models \alpha (\mathbf{a} - \mathbf{c}) \mathbf{x} (\mathbf{b} - \mathbf{c})$$
(2.9.21a)

Dot-multiplying the latter equation times y_{C} ,

$$(y_B - v_C) \cdot v_C = \alpha (a - c) \times (b - c) \cdot v_C$$

from which

, ~	_	$(\underline{v}_{B} - \underline{v}_{C}) \cdot \underline{v}_{C}$
ч		(a-c)x(b-c).v

readily follows. In the latter equation it might have happened that the dot product vanishes. In this case, a cannot be solved for due to the arising indeterminacy. This indeterminacy, however, can be resolved by dot multiplying times y_A or y_B , eq.(2.9.21a), instead. ii.2) The relative velocity $y_A - y_C$ is perpendicular to b-c, in which case eq. (2.9.20) holds only if a vanishes, resorting to the same argument as in ii.1. Hence $\omega = \beta(b+c)$

the constant β being determined as in ii.1. ii.3) No inner product in (2.9.20) vanishes. Hence β can be solved for as

$$\beta = \frac{(\underline{v}_A - \underline{v}_C) \cdot (\underline{a} - \underline{c})}{(\underline{v}_A - \underline{v}_C) \cdot (\underline{b} - \underline{c})} \alpha$$

Substituting the latter expression into eq. (2.9.18),

$$\omega = \left((a-c) - \frac{(v_A - v_C) \cdot (a-c)}{(v_A - v_C) \cdot (b-c)} (b-c) \right) \alpha$$
(2.9.22)

where α can be computed as before. Indeed, substituting eq. (2.9.22) . into eq. (2.9.21), one obtains

. . . • • • . . . -•

$$\mathbf{y}_{B/C} = \alpha \left((\underline{a} - \underline{c}) - \frac{(\mathbf{y}_{A} - \mathbf{y}_{C}) \cdot (\underline{a} - \underline{c})}{(\mathbf{y}_{A} - \mathbf{y}_{C}) \cdot (\underline{b} - \underline{c})} (\underline{b} - \underline{c}) \right) \times (\underline{b} - \underline{c})$$
(2.9.23)

Hence .

 $v_{B/C} = \alpha (a-c) \times (b-c)$

Dot-multiplying both sides of eq. (2.9.24) times v_{C} , a can be solved for as

$$a = \frac{\frac{v_{B/C} \cdot v_{C}}{(a-c) \times (b-s) \cdot y_{C}}}{(a-c) \times (b-s) \cdot y_{C}}$$
(2.9.25)

Again, if $y_{B/C}$, v_{C} happens to vanish then eq. (2.9.25) should be dot-multiplied times either y_{A} or y_{B} instead

(2.9.24)

The computation of the instant-screw parameters (the instant-screw axis, the sliding velocity and the spin) is carried on by SUBROUTINE INSCRU, which parallels SUBROUTINE SCREW and thus considers all cases that could arise regarding the relationships amongst all three velocity vectors. These possible cases are shown in the "tree" diagram appearing in Fig 2.9.1. INSCRU uses the following auxiliary subroutines:

- SUBROUTINE COP1 computes the instant-screw parameters when the motion is pure rotation. It distinguishes amongst the different cases with the aid of the integer variable INDEX
- 2. SUBROUTINE COP2 computes the instant-screw parameters when the points lie in a plane parallel either to the instant-screw axis or to the instant axis of rotation. Two different cases could arise, which are distinguished with the aid of the integer variable INDE.
- 3. SUBROUTINE GEMO computes the instant-screw parameters when the motion is general and the three given velocities are noncoplanar.

The computation procedure for each case is next described. All over, the three given points are A, B and C, their respective position vectors being

¢

•

•

.

· ·

•

.

.

• . · . ·

•

.

--. ~ -

a, b and c. Their velocities are \underline{y}_A , \underline{y}_B and \underline{y}_C

INDEX = 1. One yector is zero and the remaining two yectors are not identi cal; they are parallel, however. The motion is pure rotation according to Corollary 2.9.1 and the axis of rotation is located following Corollary 2.9.5

INDEX = 3. One vector is zero and the remaining two vectors are not parallel. The motion is pure rotation as before, attending Corollary 2.9.1, and the axis of rotation passes through the point of zero velocity in the direction of the normal to the plane defined by

INDEX = 4. Two vectors are zero. The motion is pure rotation and the axis

of rotation is defined by the two points of zero velocity. INDEX'='5. No vector is zero and all three vectors are nonparallel amongst them but coplanar. Furthermore, the two arising difference vectors are noncollinear. According to Theorem 2.9.5 and What corollary 2:9.22 then, Withe motion is pure rotation; and the

instant-screw parameters can be computed using the general procedure.

TWDEX = 6. The vectors are coplaner and no vector is zero but two-vectors are parallel and different. According to Corollary 2.9.4 the motion is pure rotation and the axis of rotation is perpendicular to the plane of the velocity vectors. This axis is located ·

·

*

A shine with a shi

م ۲۰ میں د بہ ۲۰ _{میں} ۲۰ مر میں ۲۰ م

و دومون و دومون و ^{در}ومونو و دومون و دومونو و دومونو و دومونو و دومونو و دومونو و

.
using the general procedure.

INDEX = 7. No vector is zero and all three vectors are parallel to each
wret with other. Furthermore, not all three vectors are identical to each
other. There may be, nevertheless, a couple of identical vectors.
The motion is one of pure rotation and the instant axis of
return of the intersection of the plane of the
given points with a second plane defined next. Let A', B' and
C' be points whose position.vectors are

$$\vec{a}' = \vec{a} + \vec{a}''_{a}, \vec{p}_{a} = \vec{p} + \vec{a}'_{a}, \vec{c}_{a} = \vec{c} + \vec{\lambda}^{C}$$

The second plane is that defined by the noncollinear points A^{\prime} , B^{\prime} and C^{\prime}

108

Proof

According to Corollary 2.9.3 the existence of at least two parallel and distinct velocities guarantees that the motion is pure rotation. Thus, there exists a point O in the body whose velocity is zero. Placing the origin of coordinates at O, then, $\underline{\mathbf{v}}_{\mathbf{A}} = \underline{\omega} \mathbf{x}_{\mathbf{A}}, \ \underline{\mathbf{v}}_{\mathbf{B}} = \underline{\omega} \mathbf{x}_{\mathbf{D}}, \ \underline{\mathbf{v}}_{\mathbf{C}} = \underline{\omega} \mathbf{x}_{\mathbf{C}}$

From the parallelism condition, one has

$$\underline{\mathbf{y}}_{\mathbf{B}} = \beta \underline{\mathbf{y}}_{\mathbf{A}}, \ \underline{\mathbf{y}}_{\mathbf{C}} = \mathbf{y}_{\mathbf{A}}$$

est · Hence

114-144

 $\omega x \{b - \beta a\} = 0$ and $\omega x (c - \gamma a) = 0$

. . .

I.

** *** **** * *

. . On the other hand, recalling the definition of points X', B'

and C', whose position vectors are

$$' \doteq \underline{a} + \underline{v}_{A}, \underline{b}' = \underline{b} + \underline{v}_{B}, \underline{c}' = \cdot \underline{c} + \underline{v}_{C}$$
 ~*

The velocities of these points are then

 $\begin{array}{rcl} \underbrace{\mathbf{v}}_{\mathbf{A}}^{1} &= \underbrace{\mathbf{w}}_{\mathbf{X}} \left(\underbrace{\mathbf{a}} + \underbrace{\mathbf{v}}_{\mathbf{A}} \right) &= \underbrace{\mathbf{v}}_{\mathbf{A}} &+ \underbrace{\mathbf{w}}_{\mathbf{X}} \underbrace{\mathbf{v}}_{\mathbf{A}} \\ & \underbrace{\mathbf{v}}_{\mathbf{B}}^{1} &= \underbrace{\mathbf{w}}_{\mathbf{X}} \left(\underbrace{\mathbf{b}} + \underbrace{\mathbf{v}}_{\mathbf{B}} \right) &= \underbrace{\mathbf{v}}_{\mathbf{B}} &+ \underbrace{\mathbf{w}}_{\mathbf{X}} \underbrace{\mathbf{v}}_{\mathbf{B}} \\ & \underbrace{\mathbf{v}}_{\mathbf{C}}^{1} &= \underbrace{\mathbf{w}}_{\mathbf{X}} \left(\underbrace{\mathbf{c}} + \underbrace{\mathbf{v}}_{\mathbf{C}} \right) &= \underbrace{\mathbf{v}}_{\mathbf{C}} &+ \underbrace{\mathbf{w}}_{\mathbf{X}} \underbrace{\mathbf{v}}_{\mathbf{C}} \end{array}$

i.e. these velocities are parallel and related by $\underline{v}_B^* = \beta \underline{v}_A^*$, $\underline{v}_C^* = \gamma \underline{v}_A^*$

Hence

 $\omega x (b^* - \beta a^*) = 0, \ \omega x (c^* - \gamma a^*) = 0.$

which, by arguments similar to those resorted to previously, imply that points A', b', C' and O are coplanar, their plane containing the axis of rotation. Furthermore, since not all and a second second

· · ·

- ...

· · --- · --- · · · · · · · ·

.

INDE = 1. No yector is zero and two yectors are identical. The motion is

either general or a pure rotation, but the screw axis or, correspondingly, the axis of rotation, is parallel to the line defined by the points with identical velocities.

Proof

Let B and C be the two points with identical velocities. These can be expressed as

 $y_B = y_A + \omega x (b-a), v_C = y_A + \omega x (c-a)$ Subtracting the latter from the former equation,

 $v_{B} - v_{A} = \omega x (b - c) = 0$

which implies that line BC is parallel to ω , i.e. to either the instant axis of rotation or to the instant screw axis.

found by application of eqs. (2.9.18) - (2.9.25)

Thus, one has the following

instant-screw parameters can be computed, if, and only if, the velocities

of three noncollinear points of the body are known

"Subroutines.INSCRU, COP1, COP2, and GEMO implement the foregoing computations. In a They use LOCAT1, LOCAT2, SPIN, CYCLIC, EXCHGE, CROSS and SCAL as subsidiary subroutines. Listings of INSCRU, COP1, COP2, GEMO, LOCAT1, LOCAT2 and SPIN appear in Fig 2:9.2-2.918.

۲ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰

· · · · · · · · · · · ·

.

.

. 2.10. THEOREMS RELATED TO THE VELOCITY DISTRIBUTION IN A MOVING RIGID BODY.

Some results concerning the velocity field in a rigid body in motion are now obtained, the main result of this section being the Aronhold-Kennedy Theorem. First a very useful result is proved.

THEOREM 2.10.1 The velocities of two points of a rigid body have identical components along the line connecting them.

Proof:

Let a and b be the position vectors of two points, A and B, of a rigid body in motion. Thus, for any configuration,

(b-a), (b-a)=const (2.10.1)

from the rigidity condition. Differentiating both sides of eq. (2.10.1), .

(b-a).(b-a)=0

or, alternatively,

$$v_{B}$$
, $(b-a) = v_{A}$, $(b-a)$, q.e.d. (2.10.2)

This theorem is used to check the compatibility of the given velocities of a rigid body in subroutine INSCRU of Sect. 2.9.

Exercise 2.10.1 The triangular plate of Fig 2.10.1 is constrained to move in such a way that vertex C remains on the Z-axis, while vertex A remains on the x-axis and side AB remains on the X-Y plane. Vertex C has a velocity $v_{C}^{e-5e} m/sec$.

i) Determine the velocity of vertices A and B

ii) Determine the angular velocity of the plate

iii) Locate the instant screw axis of the motion of the plate, and compute the pitch of its screw.

.

112

Fig 2.10.1 Triangular plate in constrained motion

THEOREM 2.10.2 (Aronhold-Kennedy). Given three rigid bodies in motion, the resulting three instant screw axes have one cannon normal intersecting all three axes.

Proof:

Referring to Fig 2.10.2 let S_B and S_C be the instant screw axes of bodies B and C, respectively, with respect to body A; let \underline{v}_B and \underline{v}_C be the relative '' sliding velocities of the instant screws S_B and S_C , with respect to A. Finally, let \underline{n}_B and \underline{n}_C be the relative angular velocities of bodies B and C, respectively, with respect to body A and C, the common normal to S_B and C, respectively, with respect to body A and C, the common normal to S_B and $= S_C^{er}$ joining both axes. It will be shown that the third instant screw axis, $S_{B/C}$, passes through the common normal B^*C^* . Let P be any point of the three-dimensional Euclidean space, with position vector r. Points P, P and P of bodies A, B and C, coincide at P.* Let

· · . • • . . . · · · -

 v_{PB} , v_{PB} and v_{PC} be the velocities of each of these points. Furthermore, let y be the relative velocities of P_B with respect to P_C and let 3° and C* be the points in which the common normal intersects S_B and S_C .

Fig 2.10.2 Instant screws of two bodies in motion with respect to a third one.

Thus, .

-£Υ ≟.απ.:

21.5

 $\begin{aligned} \underline{\mathbf{y}} = \underline{\mathbf{y}}_{\mathbf{P}\mathbf{B}} - \underline{\mathbf{y}}_{\mathbf{P}\mathbf{C}} = \\ = (\underline{\mathbf{y}}_{\mathbf{B}} + \underline{\mathbf{0}}_{\mathbf{B}} \underline{\mathbf{r}}) - (\underline{\mathbf{y}}_{\mathbf{C}} + \underline{\mathbf{0}}_{\mathbf{C}} (\underline{\mathbf{r}} - \underline{\mathbf{c}})) = \\ & = (\underline{\mathbf{y}}_{\mathbf{B}} + \underline{\mathbf{0}}_{\mathbf{B}} \underline{\mathbf{r}}) - (\underline{\mathbf{v}}_{\mathbf{C}} + \underline{\mathbf{0}}_{\mathbf{C}} (\underline{\mathbf{r}} - \underline{\mathbf{c}})) = \\ & = (\underline{\mathbf{v}}_{\mathbf{B}} + \underline{\mathbf{0}}_{\mathbf{B}} \underline{\mathbf{r}}) - (\underline{\mathbf{v}}_{\mathbf{C}} + \underline{\mathbf{0}}_{\mathbf{C}} (\underline{\mathbf{r}} - \underline{\mathbf{c}})) = \\ & = (\underline{\mathbf{v}}_{\mathbf{B}} + \underline{\mathbf{0}}_{\mathbf{B}} \underline{\mathbf{r}}) - (\underline{\mathbf{v}}_{\mathbf{C}} + \underline{\mathbf{0}}_{\mathbf{C}} (\underline{\mathbf{r}} - \underline{\mathbf{c}})) = \\ & = (\underline{\mathbf{v}}_{\mathbf{B}} + \underline{\mathbf{0}}_{\mathbf{B}} \underline{\mathbf{r}}) - (\underline{\mathbf{v}}_{\mathbf{C}} + \underline{\mathbf{0}}_{\mathbf{C}} (\underline{\mathbf{r}} - \underline{\mathbf{c}})) = \\ & = (\underline{\mathbf{v}}_{\mathbf{B}} + \underline{\mathbf{0}}_{\mathbf{B}} \underline{\mathbf{r}}) - (\underline{\mathbf{v}}_{\mathbf{C}} + \underline{\mathbf{0}}_{\mathbf{C}} (\underline{\mathbf{r}} - \underline{\mathbf{c}})) = \\ & = (\underline{\mathbf{v}}_{\mathbf{B}} + \underline{\mathbf{0}}_{\mathbf{B}} + \underline{\mathbf{0}}_{\mathbf{B}} \underline{\mathbf{r}}) - (\underline{\mathbf{v}}_{\mathbf{C}} + \underline{\mathbf{0}}_{\mathbf{C}} \underline{\mathbf{r}} - \underline{\mathbf{c}}) = \\ & = (\underline{\mathbf{v}}_{\mathbf{B}} + \underline{\mathbf{0}}_{\mathbf{B}} - \underline{\mathbf{v}}) - (\underline{\mathbf{v}}_{\mathbf{B}} + \underline{\mathbf{0}}_{\mathbf{B}} - \underline{\mathbf{0}}_{$

B*

Ľв

ω ~B

It is next shown that, if P is a point of the relative instant screw axis $S_{B/C}$, then it lies on the line defined by points P* and C*. This is done

* $\frac{v}{B/C}$ is to be interpreted as the relative velocity of B* with respect to C*.

• • · 、 、 -. . • . . ' * . .

via the minimization of the guadratic form -

$$\phi(\underline{r}) = \underline{y}^{T} \underline{y}^{T}$$
 (2.10.4)

 $\phi(\mathbf{r})$ has an extremum at a point \mathbf{r}_0 where its gradient vanishes. The said gradient is, applying the "chain rule" again,

 $\phi'(\mathbf{r}) = 2 \Omega_{B/C_{\tau}}^{T} v$ (2.10.5a)

Thus, at point r_0 ,

$$\Omega_{B/C} \left(\frac{v_{B/C}}{2B/C} + \Omega_{C} c + \Omega_{B/C} r_{0} \right) = 0$$
(2.13.5b)

from which \underline{r}_0 cannot be solved for, since $\Omega_{B/C}$ is singular, of rank two. One possible way to find r_0 is imposing on it the minimum-norm condition, as done proviously in similar instances. Another possible way is to write eq. (2.10.5) in Gibbs' notation as

$$\omega_{B/C} \times (\omega_{B/C} \times \tau_0) + \omega_{B/C} \times (\nabla_{B/C} + \omega_{C} \times \tau_0) = 0$$

Expanding the first term and imposing the condition that $\psi_{\rm B/C}$, be zero, one obtains

$$\overline{\psi}_{B/C} c^{r} 0^{+} \overline{\psi}_{B/C} c^{x} (\underline{v}_{B/C} + \underline{v}_{C} c^{x} c) = 0$$

from which,

$$r_{0}^{=-} \frac{1}{2} \frac{(v_{B/C}^{+} \omega_{C}^{\times C}) \times \omega_{B/C}}{\omega_{B/C}}$$
(2.13.6)

which is parallel to vector c. Since r is parallel to vector c, the -0common normal to axes S_{B} and S_{C} , then $S_{B/C}$ passes through line B*C*, q.e.d. Exercise:2:10:3: Show that r_0 , as given by eq. r(2:10.6), is parallely to $c_{1,MD} \sim r_{10}$ One application of the Aronhold-Kennedy Theorem arises in the pitch surface synthesis of the coupling of two bodies whose relative motion is the composition of-sliding and rotation, as is the case in hypoid gears. This is shown in the following example.

Example 2.10.1 Let L_1 and L_2 be the non-intersecting non-parallel axes of two shafts required to be coupled. These axes are shown in Fig 2.10.3.

. -• ۲

¢

Fig 2.10.3 An application of the Aronhold-Kennedy Theorem In order to have the most efficient coupling, it is required that this takes place along points of minimum-magnitude relative velocity, i.e., on the instant screw axis of shaft 2 with respect to shaft 1.

From the A-K Theorem, that set of points constitutes line L_3 , normal to the Y-axis, a distance a from L_1 . Hence, line L_3 is determined by distance a and angle a. Point Q, the intersection of line L_3 and the Y-axis is found from the minimality condition on the relative velocity magnitude. Let v_{-Q}

• . 4

and v_{Q2} be the velocities of points Q1 and Q2, with respect to the fixed axes X, Y, Z.

Thus,

$$v_{-22} = (d-a)\omega_{-2-x}^{e}$$
 (2.30.7b)

Assuming a required reduction m, i.e.,

$$\omega_2 = m\omega_1$$
 (2.70.8)

eq. (2.10.7b) can be rewritten as

$$v_{-02} = (d-1)m_{u_1-x} e$$
 (2.10.7c)

. Next the quadratic form $\phi(\alpha)$, obtained squaring the relative velocity magnitude, is minimized.

$$\psi(a) = (\underbrace{v}_{Q2} - \underbrace{v}_{Q1}) \cdot (\underbrace{v}_{Q2} - \underbrace{v}_{Q1}) = \\ = \omega_1^2 \left(n^2 (d-a)^2 + a^2 \right)$$
(2.10.9)

 $\phi(a)$ has an extremum when $\phi'(a)$ becomes zero, i.e.

$$\phi^*(a) = \omega_1^2 \left(-2m^2 (d-a) + 2a \right) = 0$$
(2.10.10)

from which the minimizing value of a is obtained as

$$a = \frac{m^2 d}{1 + m^2}$$
 (2.30,11)

Angle a is now obtained from the relationship

$$\cos \alpha = \frac{|\omega_{2/1} \cdot e_x|}{||\omega_{2/1}||}$$

Thus

$$cos a = \frac{1}{\sqrt{1+m^2}}$$
 (2.10.12)

Summarizing, the pitch surface (on 1) is a ruled surface whose elements are fines a distance a^{2} form the X axis, making an angle a^{2} with this axis.

--. . , . . •

.

This is a one-fold hyperboloid of revolution. Hence the name "hypoid" given to such gears.

One very important consequence of the A-K Theorem now follows.

<u>Corollary 2.10.2</u> Given three rigid bodies in motion, A, B and C, there exists an instant axis of:pure rotation {i.a.p.r.} of B with respect to C if, and only if, there exist i.a.s.p.r. of both B and C with respect to A and these intersect, the i.a.p.r. of B with respect to C passing through the said intersection. Furthermore, all three axes are coplanar. Exercise 2.10.4 Prove Corollary 2.10.2.

As an application of Corollary 2.10.2, solve the following problem. <u>Example 2.10.2</u> (Kane(2.9)). A shaft, terminating in a truncated cone C of semivertical angle θ , see Fig 2.10.4, is supported by a thrust bearing consisting of a fixed race R and four identical spheres S of radius r. When the shaft rotates about its axis, S rolls on R at both of its points of contact with R, and C rolls on S.

Proper choice of the dimension b allows to obtain pure rolling of C on S. Determine b

Fig 2.10.4 Shaft rotating on thrust bearings.

• • • • . *,* · ·

Q.

•

.

- ,

.

Solution:

From Corollary 2.10.2, if all C, S and R move with pure rolling relative motion, then the i.a's.p.r. all coincide at one common point. Clearly, the 'i.a.p.r. of C with respect to S is the cone element passing through the contact point (between C and S), whereas the i.a.p.r. of C with respect to R is the symmetry axis of C. The intersection of those two akeswis the cone apex, which henceforth is referred to as point O. Length b is now determined by the condition that the i.a.p.r. of C with respect to R passes through O.

But two points of this axis are already known, namely, the two points of contact of S on R, henceforth referred to as points S_1 and S_2 . Then, the geometry of Fig 2.10.5 follows

---Fig 2.10.5 Instant axes of pure rotation of bodies C, S and R of Fig 2.10.4.

From Fig 2.10.5 it is clear that axis S_{R} makes a 45° angle with axis S_{CR} . Let T be the contact point between C and S. From a well known theorem of plane geometry,

· · • • • ٠ , , . . . ł • . -- - - --

$$\overline{OT}^2 = \overline{OP}_1 \overline{OP}_2$$
 (2,10,13)

Appliying the Pythagorean Theorem to triangle OT'T,

$$\overline{\text{or}}^2 = \overline{\text{or}}^{1^2} + \overline{\text{r}}^{1^2} \overline{\text{r}}^2$$
 (2.10.14)

But

$$OT' = b - rcos\theta$$
 (2.10.15a)

and

$$T'T = b + r + rsin\theta$$
 (2.10.15b)

Hence,

$$\overline{OT}^2 = 2r^2(1+\sin\theta)+2br(1+\sin\theta-\cos\theta)+2b^2$$
 (2.10.16)

Also,

 $\overline{OP}_{1} = \sqrt{2b}$ (2.10.17a)

$$\overline{OP}_2 = \sqrt{2}(b+r)$$
 (2.10.17b)

Substitution of eqs. (2.10.16) and (2.10.17 a and b) into eq. (2.10.13) yields

 $r(1+\sin\theta)+b(\sin\theta-\cos\theta)=0$

from which,

$$b=r\frac{1+\sin\theta}{\cos\theta-\sin\theta}$$
(2.10.18)

One more consequence of the A-X Theorem is summarized in the following <u>Corollary 2.10.3 (Three center Theorem</u>). In plane motion the three instant axes (centers in this context) of three rigid bodies in motion lie on a line {2.10}

2.11 ACCELERATION DISTRIBUTION IN A RIGID BODY MOVING ABOUT A FIXED POINT It was shown in Section 2.7 that the velocity of a point of a rigid body moving about a fixed point is given by

 $\sum_{x} v(t) = \Omega(t) y(t)$

(2,11.1)

1 • .

/ . .

•

• •

190

 $a(t)=\hat{\Omega}(t)y(t)+\Omega(t)y(t)$

But y(t) is v(t), the above equation taking on the form

$$a(t) = (\hat{\Omega}(t) + \Omega^2(t))y(t)$$
 (2.11.2)

The matrix in brackets appearing in eq. (2.11.2) is referred to, by analogy with eq. (2.11.1), as "thé angular acceleration matrix": The acceleration of the point under study is formed by two components, as appearing in eq. (2.11.2), namely, the "tangential acceleration", $\tilde{\Omega}(t)y(t)$, and the "normal acceleration", $\tilde{\Omega}^{2}(t)y(t)$; the former being tangential and the latter being normal to the velocity.

Exercise 2.11.1 Show that $\Omega(t)y(t)$ and $\Omega^2(t)y(t)$ are, respectively, parallel and normal to the velocity.

There is one implicit fact in the above result, namely, in the square matrix vector space; one scalar-product (See Section 1.7) can be defined as $Tr(AB^{T})$, A and B being matrices of the same space.

In this context, matrices $\hat{\Omega}(t)$ and $\hat{\Omega}^2(t)$ are orthogonal, i.e., its scalar product venishes.

Exercise 2.11.2 Show that $Tr(\Omega\Omega^2)=0$

Result (2.11.2) can be expressed, in Gibbs' notation as

 $\mathbf{a}(\mathbf{t}) = \hat{\boldsymbol{\omega}}(\mathbf{t}) \mathbf{x} \mathbf{r}(\mathbf{t}) + \boldsymbol{\omega}(\mathbf{t}) \mathbf{x} \left(\boldsymbol{\omega}(\mathbf{t}) \mathbf{x} \mathbf{r}(\mathbf{t}) \right)$ (2.11.3)

thereby making the result of Exercise 2.11.1 apparent

. . .

. . .

.

· .

.

2.12 ACCELERATION DISTRIBUTION IN & RIGID BODY UNDER GENERAL MOTION.

Consider now the most general case of rigid body motion, in which none of the points of the body remains fixed.

From eq. (2.9.2), the velocity of a point-whose position vector is y(t) - of a rigid body under general motion is

$$\underbrace{\mathbf{v}(\mathbf{t}) = \mathbf{v}_{\mathbf{p}}(\mathbf{t}) + \underbrace{\mathbf{0}}_{\mathbf{p}}(\mathbf{t}) \left(\underbrace{\mathbf{y}(\mathbf{t}) - \underbrace{\mathbf{y}_{\mathbf{p}}(\mathbf{t})}_{\mathbf{p}}(\mathbf{t}) \right)$$
(2.12.1)

where $y_p(t)$ and $y_p(t)$ are the position vector and the velocity, both known, where $y_p(t)$ and $y_p(t)$ are the position vector and the velocity, both known, a given point P-of the rigid body. The acceleration of a general point, a(t), of the body under consideration is next obtained differentiating both sides of eq. (2.12.1) with respect to time, i.e. where $y_p(t) = a_p(t) + \hat{n}(t) (y(t) - y_p(t)) + \hat{n}(t) (\dot{y}(t) - \dot{y}_p(t))$ (2.12.2)

$$\frac{1}{2}$$
 and from eq. (2.12.1)

$$\dot{y}(t) - \dot{y}_{p}(t) = v(t) - \dot{v}_{p}(t) = \Omega(t) \left(y(t) - y_{p}(t) \right)$$
 (2.12.3)

which, when substituted in eq. (2.12.2), leads to w-

$$a(t) = a_{p}(t) + (\hat{u}(t) + \hat{u}^{2}(t)) (y(t) - y_{p}(t))$$
(2.12.4)

which, except for the term $a_p(t)$, is identical to eq. (2.11.2), with $y(t)-y_p(t)$ instead of y(t) of that equation.

$$\underline{a}(t) - \underline{a}_{p}(t) = \left(\Omega(t) + \Omega^{2}(t) \right) \left(y(t) - y_{p}(t) \right)$$

$$(2.12.5)$$

which again, is seen to be composed of both a tangential and a normal component.

Parallelling previous sections, the set of points of minimum-magnitude acceleration is now determined. Thus, the function ϕ defined as

------------------------------φ(y)=a.a

. • . • • • • • • - - · · ۰. ۱ . .

.

is now minimized over y. Applying the "chain rule" to it,

$$\phi^*(\mathbf{y}) = 2 \left(\frac{\partial \mathbf{a}}{\partial \mathbf{y}} \right)^{\mathbf{T}} \mathbf{a}$$
(2,12.7)

where, from eq. (2.)2.4),

$$\frac{\partial \mathbf{a}}{\partial \mathbf{y}} = \Omega^{2} \Omega^{2}$$
(2.12.8)

$$(-\dot{n}+\hat{n}^2)a=0$$
 (2.12.9)

i.e. the minimum-magnitude acceleration is in the null space of $\Omega + \Omega^2$. If both Ω and Ω^2 have the same null-space, then that minimum-magnitude, acceleration lies in that space. Since both Ω and Ω are skew symmetric, vectors $\dot{\omega}$ and ω lying in their null space, can be defined in such a way that, for any vector r.

$$\Omega r = \omega x r, \Omega r = \omega x r$$
(2.12.10)

Hence it becomes clear that for $\hat{\Omega}$ and $\hat{\Omega}$ to have the same null space, $\hat{\omega}$ and $\hat{\hat{\omega}}$ should be parallel. Furthermore, $\hat{\Omega}^2$ and $\hat{\Omega}^2$ have the same null space (Prove it) and hence, for $\hat{\hat{\Omega}}$ and $\hat{\Omega}^2$ to have the same null space, $\hat{\omega}$ and $\hat{\hat{\omega}}$ should be parallel. A simple case for which $\hat{\hat{\Omega}}$ and $\hat{\Omega}^2$ have the same null space. In fact, if this is so, then.

2.12.11)

yields

Ωe+Ωe≠0

But, since the magnitude of e is unity and its direction is constant, g=0 and hence, the latter equation leads to

(2.12.12)

• .

. .

> . .

• •

thereby showing that, under the conditions stated, if <u>e</u> is in the null space of Ω , then it is also in the null space of Ω . Hence, when the instant screw axis has a contant direction; the minimum-magnitude acceler<u>a</u> tion is parallel to that direction. If the involved matrices do not have a common (non-empty) null space, then the only possibility of eq. (2.12.9) to hold is if a=0. The latter condition is equivalent to

 $\tilde{\mathfrak{s}}^{\mathbf{b}} + (\tilde{\mathfrak{Y}} + \tilde{\mathfrak{Y}}_{5}) (\tilde{\mathfrak{A}}^{0} - \tilde{\mathfrak{A}}^{\mathbf{b}}) = \tilde{\mathfrak{O}}$

 $y_0 = y_p = (\hat{\Omega} + \hat{\Omega}^2)^{-1} a_p$

OF

$$(\hat{\Omega} + \Omega^2) y_0 = (\hat{\Omega} + \Omega^2) y_p - a_p$$
 (2.12.13)

which has a unique solution if $\hat{\Omega}$ and $\hat{\Omega}^2$ do not have a common null space, for then, the sum of them becomes of full rank, i.e. in that case rank rank($\hat{\Omega}+\hat{\Omega}^2$)=3, and hence this sum is nonsigular. In this case, then, one single point of the body, located by the position vector \underline{Y}_0 , has a zero acceleration. This point is called an acceleration pole and its position vector is given as

(2.12.14)

Example 2.12.1., For a rigid circular cone rolling without slipping on a plane, its acceleration pole is its apex (prove it)

Exercise 2.12.2 The system shown in Fig 2.12.1 is an inversion of the worm-gear-mechanism and is composed of a rigid tarm OA of lenght b that can ______t. rotate freely about the axis EE', this axis being normal to the plane of motion of OA. A rigid wheel is coupled to OA at A in such a way that the wheel can rotate freely about axis FF's passing though A; this axis is perpendicular _______ to both OA and EE'. If OA rotates at a constant rate p and the wheel rotates about FF' at a constant rate q, show that the point of the disk on CA, a distance d from O, has zero acceleration, the distance.d being given by shown are a · -. . · · · ·

٠

170.

.

٠

.

••

٠

•

574a.

.

.

٠

٠

٠

17.2

.

2.13. ACCELERATION OF A MOVING POINT REFERRED TO A MOVING OBSERVER. CORIOLIS' THEOREM.

In Section 2.18 it was shown that the velocity $\left(\frac{v}{r}\right)_{F}^{*}$ of a moving point, 'referred to a fixed observer, given in terms of its position vector, $\left(\frac{z}{r}\right)_{M}$, referred to a moving observer is given by

$$(\underline{y})_{\mathbf{F}} = (\underline{y}_{\mathbf{O}})_{\mathbf{F}} + (\underline{y})_{\mathbf{F}} + (\underline{y}$$

125

where Q and Ω are the rotation and the angular velocity matrices, respectively, of the moving axes with respect to the fixed ones.

The acceleration, $(a)_{F}$, of the moving point, in the fixed observer, is now we rearrow obtained differentiating eq. (2.13.1) with respect to time, namely

$$(\mathbf{a})_{\mathbf{F}}^{\mathbf{a}} (\mathbf{a}_{\mathbf{O}})_{\mathbf{F}}^{\mathbf{+}} (\mathbf{a})_{\mathbf{F}} (\boldsymbol{\xi})_{\mathbf{F}}^{\mathbf{+}} (\mathbf{a})_{\mathbf{F}} (\boldsymbol{\xi})_{\mathbf{F}}^{\mathbf{+}} (\mathbf{a})_{\mathbf{F}} (\boldsymbol{\xi})_{\mathbf{H}}^{\mathbf{+}} (\mathbf{a})_{\mathbf{F}} (\boldsymbol{\xi})_{\mathbf{H}}^{\mathbf{+}} (\mathbf{a})_{\mathbf{F}} (\boldsymbol{\xi})_{\mathbf{H}}$$

$$(2.13.2)$$

where

$$\begin{pmatrix} \mathbf{a} \\ -\mathbf{o} \end{pmatrix}_{\mathbf{F}} = \begin{pmatrix} \mathbf{v} \\ -\mathbf{o} \end{pmatrix}_{\mathbf{F}}$$
(2.13.3)

But

$$\left(\underline{\xi}\right)_{\mathbf{F}} = \left(\underline{Q}\right)_{\mathbf{F}} \quad \left(\underline{\xi}\right)_{\mathbf{H}} \tag{2.13.4}$$

Hence

$$\left(\xi\right)_{\mathbf{F}} = \left(\emptyset\right)_{\mathbf{F}} \quad \left(\xi\right)_{\mathbf{M}} + \left(\emptyset\right)_{\mathbf{F}} \left(\xi\right) \qquad \qquad (2.13.5)$$

Substitution of eqs. (2.13.4) and (2.13.5) into eq. (2.13.2) yields

$$(\underline{a})_{F} = (\underline{a}_{O})_{F} + (\underline{\hat{u}})_{F} (\underline{\xi})_{F} + (\underline{\hat{u}})_{F} ((\underline{\hat{\varrho}})_{F} (\underline{\xi})_{M} + (\underline{\hat{\varrho}})_{F} (\underline{\hat{\xi}})_{M}) + (\underline{\hat{\varrho}})_{F} (\underline{\hat{\xi}})_{M} + (\underline{\hat{\varrho}})_{F} (\underline{\hat{\xi}})_{M} - (2.13.6)$$
But

$$(\mathbf{Q})_{\mathbf{F}}(\boldsymbol{\xi})_{\mathbf{M}} = (\mathbf{Q})_{\mathbf{F}}(\mathbf{Q}^{\mathrm{T}})_{\mathbf{F}}(\mathbf{Q})_{\mathbf{F}}(\boldsymbol{\xi})_{\mathbf{M}} = (\mathbf{Q})_{\mathbf{F}}(\mathbf{Q})_{\mathbf{F}}(\boldsymbol{\xi})_{\mathbf{M}}$$

.

4

.

.

· · ·

sun in sun in 19 a t

~ ~ ~ ~ ~ ~ ~ ~ ~ ~
\mathbf{and}

 $(\mathfrak{a})_{F}(\mathfrak{g})_{F}(\mathfrak{g})_{F}(\mathfrak{g})_{H} = (\mathfrak{a})_{F}(\mathfrak{g})_{F}$

126

which is an expression for the acceleration of a point in terms of measurements of its position, velocity and acceleration, taken by a moying observer. The first two terms of eq. (2.13.7) are identical to the right hand side of eq. (2.12.4) with $y-y_p$ substituted for ξ ; hence, the two said terms constitute the acceleration of a point fixed in the moving observer, coincident with the moving point under study, at a particular time. The third term stands for the acceleration of the moving point, as measured by the moving observer, and the founth term is an acceleration term arising from the rotation of the moving observer, as is apparent from eq. (2.13.7); this term is known as "<u>Coriolis'...acceleration</u>". Equation (2.13.7) constitutes, then, the Theorem of Coriolis. (2.11)

Exercise 2.13.1 The mechanism shown in Fig 2.13.1 is a component of a quick-return mechanism used in a crank shaper. Assuming that disk 2 rotates at a constant angular velocity ω_2 =1800 rpm, determine graphically the angular acceleration of link 3, for the given configuration. Hint: Two points, B2 and B3, coincide at B. Find the acceleration of B3 via eq. (2.13.7), referred to an observer fixed in 2. .

.

•

-

r

"··. • <u>·</u> ·

74 s : 14 .

-

.

Fig 2.13.1 Driving system of a guick-return mechanism

Exercise 2.13.2 The rectangular plate shown in Fig 2.13.2 is displaced from configuration.1 to configuration 2. Determine the locus of the points of the points of the points of the plate that undergo a displacement of minimum magnitude from 1 to 2. What is the value of this displacement?

• • • • • • • • • • •

.

т. - макиет и спользованиети вазбазано намакиет и и на вызыканиетия были отбащур с што шторыматика на боли от шторы

Fig. 2.13.2 Rigid plate undergoing a general displacement.

.

.

· ·

REFERENCES

5......

2,1	Euler L., "Du movement de rotation des corps solides autour d'un d'un d'un d'un d'un d'un d'un d'un	
2.2	Corben H.C. and P. Stehle.; <u>Classical.Mechanics</u> , 2nd Edition, John Wiley & Sons, Inc., New York, 1960, pp. 140	
2.3. Park to	Rodrigues 0., "Des lois géométriques qui régissent les déplacements d'un système solide dans l'éspace, et de la variation des coordonnés provenant de ces déplacements considerés independemment des causes qui peuvent les produire", Journal de Mathématiques Pures et Appliquées vol. 5, 1st Series, 1840, pp. 380-440	
2.4	Bisshop K.E., "Rodrigues' formula and the screw matrix" <u>Journal of</u> "Engineering for Industry, Trnas., ASME, Series B, vol. 91, February 1969.	
2.5	Gupta V.K., "Kinematic analysis of plane and spatial mechanisms", Journal of Engineering for Industry, Trans. ASME, Series B, vol. 95, May 1973.	
2.6	Fox E.A., Mechanics, Harper & Row, N. York, 1967, p. 11	
2.7	Roth B., "The Kinematics of Motion Through Finitely Separated Positions", Journal of Applied Mechanics, Trans. ASME, Series E, September, 1967.	
2.8	Truesdell C., <u>A First Course in Rational Continuum Mechanics</u> , vol. I. Academic Press, N. York, 1977. p. 38.	
2.9	Kane T.R., <u>Dynamics</u> , Holt, Rinehart and Winston, Inc., N. York, 1968, p. 66.	
. 2.10	Cowie A., <u>Kinematics and Design of Mechanisms</u> , International Texbook Company, Scranton, Penn, 1961, p.144.	
2.11	Veldkamp G.R., "Acceleration axes and distribution in spatial motion" Journal of Engineering for Industry, Trans. ASME, Series B, vol. 91,	
•••••	Feb. 1969: 5	1 ÷.
2.12	Coriolis G., "Mémoire sur les équations du mouvement relatif des systèmes des corps", <u>J. Ecole Polytechnique</u> , 15, cahier 24, 1835, pp. 142-154.	
	н -	•

--

• · • • •

•

a a a

• • •

· -

.

.

•

ANALISIS SINTESIS Y OPTIMACION EN INGENIERIA MECANICA

3. CENERALITIES ON LOWER - PAIR MECHANISMS

DR. JORGE ANGELES ALVAREZ

AGOSTO, 1980

. • . • • •

.

3. GENERALITIES ON LOWER - PAIR MECHANISMS.

3.1 INTRODUCTION

The term <u>mechanism</u> has multiple meanings, depending on the context in which it is found. In the present context, a mechanism is a connection of elements intended to produce a certain action, generally related to the transmission of either power or information. For instance, power transmission is the main objective of a mechanism such as the universal joint or the differential gear train of a vehicle whereas information transmission is the main good of a Watt regulator mechanism. In any case, the basic idea is that of motion transformation.

The interest for the study of mechanisms arose originally in mechanical engineering. The underlying theory, however, has been found to embrace other areas such as biomechanics, and so, it finds wide applications in the study of some living entities like the locomotion systems of humans and animals. The wide variety of mechanisms as defined previously, can be divided into two classes, namely, lower-pair and upper-pair mechanisms. These terms are discussed in the present chapter, together with other related terms such as degree of freedom, kinematic pair and kinematic chain.

3.2 KENEMATIC PAIRS.

A <u>kinematic pair</u> is the coupling of <u>two mechanical elements</u>. If these two olements are rigid bodies, the pair can be either one of two kinds: i} lower pair or ii) upper pair. A <u>lower pair</u> exists when one element is coupled to the other via a <u>wrapping</u> action and contact takes place along <u>a surface</u>. If contact takes place along <u>a line or a point</u>, the resulting coupling is referred to as <u>upper-pair</u>. When a set of elements is connected in such a way that each element is coupled to at least two elements, a kinematic <u>chain</u> is formed. A link supplied with one kinematic pair at each of two ends is , referred to as a dyad.

3.3 DEGREE OF FREEDOM.

The degree of freedom of a mechanical system is defined as an integer number corresponding to the minimum number of generalized (3:1) coordinates required to specify <u>geometrically</u> a configuration of the system. If the degree of freedom of a system is positive, it constitutes a <u>mechanism</u>; if it is zero, it corresponds to a <u>statically determined structure</u>, whereas, if it is negative, it corresponds to a <u>statically undertermined (hyperstatic) structure</u>, the negative of its degree of freedom being referred to as its <u>redundancy</u>. The degree of freedom of a rigid body free to move in space is thus equal to six, namely, a translation along each of three non-coplanar directions, plus a rotation (e.g. Euler's angles) about each of three non-coplanar directions (not necessarily corresponding to the three previous directions). <u>Constraints</u> are imposed on rigid bodies to make their motion useful for a certain purpuse, thus diminishing their degree of freedom. Kinematic pairs are in fact constraints imposed on the involved bodies.

3.4 TYPES OF LOWER PAIRS.

All possible lower pairs can be put into one of six different types, namely, i) Revolute (R), ii) Prismatic (P), iii) Screw (R), iv) Cylindric (C), v) Spheric (S) and vi) Planar (E), physical models of which are shown in Fig 3.4.1, their kinematic models appearing in Fig 3.4.2.

The <u>revolute pair</u> only allows rotation about one axis, therefore imposing five constraints: prevention of translation along three directions and of rotation about two axes.

b) Prismatic

a) Revolute

c) Screw

e) Spheric

d) Cylindric

Fig. 3.4.1 Lower Pairs

3,3

Fig. 3.4.2 Kinematic models of lower pairs

The <u>prismatic pair</u> only allows translation along one direction, also imposing five constraints: prevention of translation along two directions and of rotation about three axes.

The <u>screw pair</u> allows translation along one direction and rotation about the same direction, both being related. Thus, five constraints are also imposed by this pair, namely, prevention of translation along three (or, alternatively, two) directions and of rotation about two (or, alternatively, three) axes.

The <u>cylindrical pair</u> allows two independent motions, namely, translation about one axis and rotation about the same axis. This pair imposes clearly, four contraints.

The <u>spherical pair</u> allows rotation about three <u>non-coplanar</u> axes, thus imposing three constraints: prevention of translation along three non-coplanar directions.

The <u>planar pair</u> allows translation along two independent directions and rotation about one axis perpendicular to the plane of those directions. Thus, this pair imposes three constraints.

A dyad supplied with a revolute pair at each of two ends is referred to as an R-R dyad. Similarly are R-P, R-S, C-S, etc. dyads defined.

3.5 DEGREE OF FREEDOM OF A LOWER-PAIR MECHANISM. THE KUTZBACH-GRÜBLER FORMULA.

With the foregoing backgroud it is possible now to obtain an expression for the degree of freedom of a mechanism composed of main lower pairs, also called a "<u>linkage</u>". Let a linkage be composed of main distributions. Since only the relative motion of the links, with pespect to a given one, is of interest, one link will be arbitrarily assumed to be fixed (to the observer under consideration). Hence, the degree of freedom of the set of links previously to any coupling is 6(n-1). Now, if the links are coupled via p_5 pairs of any of the three types, revolute, prismatic or screw, p_4 cylindrical pairs and p_3 pairs of any of the last two types, then the number of constraints imposed is

Hence, the degree of freedom of the linkage is given by

$$f=6(n-1)-\sum_{3}^{5} ip_{1}$$
 (3.5.1)

which is the so called "<u>Kutzbach-Grübler formula</u>". The topopogy (i.e. the description of the different couplings, regardless of the dimensions involvei) of a linkage is usually referred to as a listing of the different pairs involved. To ilustrate this description, different types of mechanisms, RRRR, RCSR, RSSR, are shown in Fig 3.5.1.

Applying the Kutzbach-Grübler formula to the mechanisms of Fig 3.5.1, it is readily obtained that, whereas the degree of freedom of the RCSR type is one, that of the RRRR type is -2 and that of the RSSR type is +2. However, if the four revolute axes of the RRRR linkage are made parallel, then a planar four-bar linkage is obtained, which is a well known mechanism with degree of freedom + 1. Alternatively, if these four axes are made to intersect in one single point, a spherical linkage is obtained, one particular case of which is the familiar universal joint, also known to have a degree of freedom + 1. The reason why the K-G formula does not apply in these instances is that, in the first case (all revolute axes being parallel), all the points of the linkage move in one plane, whereas in the second case, they move on a sphere. In any of the previous instances, however, a rigid body before coupling has a triple degree of freedom, i.e. two translations and one rotation; hence Grübler's formula for plane mechanisms (3.2) should

Э.6

a) RRRR

b) RCSR

c) RSSR

Fig 3.5.1 Some types of linkages

be applied. One more interesting case of linkage whose degree of freedom cannot be obtained from the K-G formula is the Bennett mechanism. This is a one-degree of freedom RRRR linkage that is neither plane nor spherical, but its links have particular proportions and its revolute axes have partic ular orientations (3.3), as is discussed with more detail in section 5.3. Regarding the RSSR linkage, it is apparent from Fig 3.5.1(c) that, if the rotation of the crank 2 is specified, the rotation of the follower 4 is uniquely defined, thus contradicting the result obtained by application of the Kutzbach-Grübler formula, which claims that (due to the double degree of freedom of the mechanism) two variables of the linkage motion should be specified in order to render the motions of the other links determined. This result arises from the fact that an indeterminacy exists in the motion of the coupler link 3 which, because of being coupled to the other links via two spherical pairs, shows the peculiarity that its motion is undetermined because it is a line rather than a body, i.e. no three noncollinear points can be defined on this link. This indeterminary arises from Theorem 2.6.5, after which the motion of three noncollinear points determine the motion of a rigid body. More on the motion of bodies defined by only two points can be found in (3,4)

3.6 LINKAGE PROBLEMS MEANT TO BE SOLVED BY APPLIED KINEMATICS.

Broadly speaking, there are two kinds of problems in Applied Kinematics regarding lower-pair mechanisms or linkages, namely,

i) Analysis

and .

ii) Synthesis

The analysis problem is concerned with obtaining the different variables

of interest involved in the motion of a given linkage. What is meant by the latter term is that not only the topology of the mechanism' (whether it is RRRR or RSCR, etc.) is given, but also its geometry, i.e. its relevant dimensions. The problem is said to be solved when all the variables of interest (output) of the linkage motion are obtained in terms of other arbitrarily assigned variables (input). If the linkage has a degree of freedom one, then the input of the linkage contains one single variable, sufficient to render the other variables determined. If the linkage has a double degree of freedom, then the input contains two variables, and so on. The variables of interest can be obtained via different means, namely, i) a system of algebraic* equations expressing explicitly the output in terms of the input (This is very seldom obtained), ii) a discrete set of dicital values of the variables involved** (most commonly being the case), :ii) an analog readout (oscillogram), i.e. the cathode ray tube graph obtailed in the oscilloscope of an analog computer, or iv) the actual plot obtained by mechanically recording the output of an existing linkage. In the first three cases the output does not exactly correspond to the mechanism itself. but to its mathematical model; the output is thus obtained via simulation. In the fourth case, the output can correspond to the actual mechanism if it is accessible for measurements, or if it is not accessible, then to its physical model. An example of the latter arises in the case of trying to measure joint motions in a living being, as is recorded in [3.5] where an experiment was made to measure rotations of the human subtalar and anklejoint complex through the rotations of its physical model, an RRRR scherical linkage.

Algebraic equations as opposed to differential or integral equations since no inertia is involved in a purely kinematic analysis.

^{**} This set could be obtained in tabular form or, if a mechanical plotter is used, in graphical form.

The synthesis problem is concerned with obtaining the <u>relevant dimensions</u> of a linkage of a <u>given topology</u> to perform a <u>given operation</u>. In this respect, the synthesis problem can also be thought of as one of system <u>identification</u> (3.6), since it is intended to obtain the parameters defining it starting with an input-output relationship. The synthesis problem can in turn be subdivided into two wide categories, namely, i) <u>exact synthesis</u> and ii) <u>approximate Synthesis</u>. In the first case the obtained system of equations is meant to be solved exactly, whereas in the second one it is intended to obtain a "solution" satisfying the system with a minimum error. In either case, three basic synthesis problems can be defined, namely,

i) Function generation

Rigid-body guidance

111) Path generation

The function-generation synthesis problem is one of finding a linkage (of a given topology) such that its input- and output- links have given coordinate motions. The rigid body guidance synthesis problem is concerned with finding a linkage (of a given topology) such that one of its links follows a prescribed set of configurations. Finally, in the path-generation problem, a mechanism of a given topology is sought, with the property that one of its links contains one point passing through a prescribed set of positions.

In any case, the term <u>finite</u> is associated to the synthesis problem if the data are <u>finitely</u> separated. Otherwise, the synthesis problem is said to be of an <u>infinitesimal</u> character, as would be the case when trying to satisfy conditions imposed on velocities or on accelerations. The analysis problem is discussed in Chapter 4, whereas the three synthesis problems both exact and approximate, are discussed in Chapters 5 and 6, respectively.

REFERENCES

- 3.1 Synge J.L., "Classical Dynamics", in Flügge S., editor, <u>Handbuch der</u> <u>Physik</u>, Vol. III/1, Springer-Verlag, Berlin, 1960, pp. 38-43.
- '3.2 Denavit J. and R.S. Hartenberg, <u>Kinematic Synthesis of Linkages</u>, McGraw-Hill Book Co., N. York, 1964, pp. 132-138
- 3.3 Bennett G.T., "A new mechanism", Engineering, Vol. 76, 1903, pp. 777-778.
- 3.4 Wright D.G., S.M. Desai and W.H. Henderson, "Action of the subtalar and ankle-joint complex during the stance phase of walking", The J. of Bone and Joint Surgery, Vol. 46-A, No. 2, March 1964
- 3.5 Henderson J.M. and J.L. Meriam. "On the space rotation of a two-point link", Mechanism and Machine Theory, Vol. 10, 1975, pp. 347-354
- 3.6 Eykhoff P., System Identication: Parameter and State Estimation, John Wiley and Sons, Inc., London, 1974.

. · -. • • .

centro de educación continua división de estudios de posgrado facultad de ingeniería unam

ANALISIS SINTESIS Y OPTIMACION EN INGENIERIA MECANICA

4. ANALYSIS OF LINKAGE MOTIONS

DR. JORGE ANGELES ALVAREZ

ACOSTO, 1980

. • • , • -٠ · · · · . • •

•

1

4. ANALYSIS OF LINKAGE MOTIONS

4.1 INTRODUCTION.

Two methods of analysis of linkage motions are presented in this chapter, both of them based on matrix computations. Methods based on Cartesian vector algebra or descriptive geometry can also be applied, as shown in $\{4,1\}$, However, these are usually *ad hoc* methods and become cumbersome in many instances. The main aim of this chapter is to establish the methods required to obtain a (usually implicit) relationship between the input and the output variables of single-degree of freedom linkages.

4.2 THE METHOD OF DENAVIT AND HARTENBERG (4.5).

This method first appeared in (4.2) to (4.4) and is based on a closure relationship of successive <u>affine transformations</u>. An affine transformation is a change of coordinates involving a translation of the origin and a rotation of axes. Let X_1 , Y_1 , Z_1 and X_2 , Y_2 , Z_2 be two sets of coordinates related by an affine transformation, as appears in Fig 4.2.1

Fig 4.2.1 Translation and rotation of coordinate axes.

Thus, the position vector of any point P, referred to coordinates ; and 2, can be expressed as

$$\left(\mathbf{p}\right)_{1} = \left(a_{12}\right)_{1} + \left(0_{12}\right)_{1}\left(\mathbf{p}\right)_{2}$$
 (4.2.1)

where a_{12} and Q_{12} are the translation vector and the rotation matrix, from axes 1 to axes 2. Eq. (4.2.1) indicates the general form of an affine transformation. Symbolically, the transformation of (4.2.1) can be written as*

$$(\mathbf{p})_{1} = (\mathbf{T}_{12})_{1} (\mathbf{p})_{2}$$
 (4.2.2)

Affine transformations contitute a group under the composition operation defined as

$$T_{13}T_{23}T_{12}$$
 (4.2.3)

 T_{23} is given through vector a_{23} and matrix Q_{23} as

$$(p)_{2} = (a_{23})_{2} + (Q_{23})_{2} (p)_{3}$$
 (4.2.4)

and T_{13} is given through a_{13} and Q_{13} , correspondingly, as

$$(\underline{p})_{1} = (\underline{a}_{13})_{1} + (\underline{p}_{13})_{1} (\underline{p})_{3}$$
 (4.2.5)

Substitution of eq. (4.2.4) into eq. (4.2.1) yields

$$\{ \underline{p} \}_{1} = \{ \underline{a}_{12} \}_{1} + \{ \underline{Q}_{12} \}_{1} + \{ \underline{Q}_{23} \}_{2} + \{ \underline{Q}_{$$

Nence

$$\left\{ \underline{a}_{13} \right\}_{1} = \left\{ \underline{a}_{12} \right\}_{1} + \left\{ \underline{Q}_{12} \right\}_{1} \left\{ \underline{a}_{23} \right\}_{2}$$
 (4.2.7)

which, alternatively, can be written as

$$(\underline{a}_{13})_{1} = (\underline{a}_{12})_{1} + (\underline{a}_{23})_{1}$$
 (4.2.7a) (4.2.7a)

* $(T_{ij})_i$ should not be mistaken as a matrix. It is in fact a nonlinear operator.

in agreement with the geometrical meaning, that is to say, the vector connecting the origin O_1 to the origin O_3 equals the sum of that connecting O_1 to O_2 plus that connecting O_2 to O_3 . Also, from eq. (4.2.6),

$$(Q_{13})_1 = (Q_{12})_1 (Q_{23})_2$$
 (4.2.6)

thereby showing that the composition of two affine transformations is also affine. Let the identity affine transformation T_{ii} , be defined as

$$\left(\underline{\mathbf{x}}\right)_{\underline{i}} = \left(\underline{\mathbf{T}}_{\underline{i}\,\underline{i}}\right)_{\underline{i}} \left(\underline{\mathbf{x}}\right)_{\underline{i}}$$
(4.2.9)

i.e., \underline{T}_{ii} is the coordinate transformation from coordinates i into themselves. Clearly, its vector, \underline{a}_{ii} , is the zero vector, and its matrix, \underline{Q}_{ii} , is the identity matrix. To show that affine transformations in fact constitute a group under the composition previously noted, all that remains to be established is the existence of an <u>inverse transformation</u>, \underline{T}_{ii}^{-1} such that

$$(\underline{\mathbf{T}}_{ij}^{-1})_{j}(\underline{\mathbf{T}}_{ij})_{i}(\underline{\mathbf{x}})_{j} = (\underline{\mathbf{T}}_{ij})_{i}(\underline{\mathbf{T}}_{ij}^{-1})_{j}(\underline{\mathbf{x}})_{j} = (\underline{\mathbf{x}})_{j}$$
(4.2.10)

where

$$(\mathbf{T}_{ij})_{i}(\mathbf{x})_{j} = (\mathbf{a}_{ij})_{i} + (\mathbf{Q}_{ij})_{i}(\mathbf{x})_{j}$$

and

$$\left[\mathbf{T}_{ij}^{-1} \right]_{j} \left[\mathbf{x} \right]_{i} = \left[\mathbf{T}_{ji} \right]_{j} \left[\mathbf{x} \right]_{i} = \left[\mathbf{a}_{ji} \right]_{j} + \left[\mathbf{Q}_{ji} \right]_{j} \left[\mathbf{x} \right]_{i}$$
(4.2.11)

Thus

$$(\underline{\mathbf{T}}_{ij}^{-1})_{j} (\underline{\mathbf{T}}_{ij})_{i} (\underline{\mathbf{x}})_{j} = (\underline{\mathbf{a}}_{ji})_{j} + (\underline{\mathbf{Q}}_{ji})_{j} ((\underline{\mathbf{a}}_{ij})_{i} + (\underline{\mathbf{Q}}_{ij})_{i} (\underline{\mathbf{x}})_{j}) = = (\underline{\mathbf{a}}_{ji})_{j} + (\underline{\mathbf{Q}}_{ji})_{j} (\underline{\mathbf{a}}_{ij})_{i} + (\underline{\mathbf{Q}}_{ji})_{j} (\underline{\mathbf{Q}}_{ij})_{i} (\underline{\mathbf{x}})_{j} \quad (4.2.12)$$

Substituting eq. (4.2.12) into eq. (4.2.10) one obtains

$$(a_{ji})_{j} + (Q_{ji})_{j} (a_{ij})_{i} = 0$$
 (4.2.13a)

and

$$\left(\underline{o}_{ji} \right)_{j} \left(\underline{o}_{ij} \right)_{i} = \underline{I}$$
 (4.2.13b)

Hence

$$\left(\mathbf{Q}_{ji}\right)_{j} = \left(\mathbf{Q}_{ij}\right)_{i}^{T} \tag{4.2.14a}$$

and

$$(\mathbf{a}_{jj})_{j} = (\mathbf{Q}_{jj})_{j}^{\mathrm{T}} (\mathbf{a}_{jj})_{j}$$
 (4.2.14b)

Next, a general composition law for n transformations is derived.

Assuming that expressions similar to (4.2.7) and (4.2.8) hold for k transformations, it will be shown that they hold also for k+1, thereby obtaining general relationships by induction. Thus,

$$\left(\underline{a}_{1k} \right)_{1} = \left(\underline{a}_{12} \right)_{1} + \left(\underline{a}_{23} \right)_{1} + \dots + \left(\underline{a}_{k-1,k} \right)_{1}$$
 (4.2.15)

$$(Q_{1k})_1 = (Q_{12})_1 (Q_{23})_2 \cdots (Q_{k-1,k})_{k-1}$$
 (4.2.16)

Then,

$$(a_{1,k+1})_1 = (a_{1k})_1 + (a_{k,k+1}) = (a_{12})_1 + (a_{23})_1 + \dots + (a_{k-1,k})_1 + (a_{k,k+1})_1$$

and

 $(o_{1,k+1})_1 = (o_{k,k+1})_1 (o_{1k})_1$

Introducing a similary transformation to refer $\underline{Q}_{k,k+1}$ to k-coordinates, $(\underline{Q}_{1,k+1})_1 = (\underline{Q}_{1k})_1 (\underline{Q}_{k,k+1})_k (\underline{Q}_{1k})_1^T (\underline{Q}_{1k})_1 = (\underline{Q}_{1k})_1 (\underline{Q}_{k,k+1})_k =$ $= (\underline{Q}_{12})_1 (\underline{Q}_{23})_2 \cdots (\underline{Q}_{k-1,k})_{k-1} (\underline{Q}_{k,k+1})_k$

Thus, in general

$$\left(a_{1n}\right)_{1} = \sum_{1}^{n-1} \left(a_{1,i+1}\right)_{1}$$
 (4.2.17)

and

$$(Q_{1n})_1 = (Q_{12})_1 (Q_{23})_2 \dots (Q_{n,n-1})_n$$
 (4.2.18)

which are useful relationships because they enable the analyst, first, to ... compute the final rotation, from 1 to n, referred to coordinate system 1, in term of successive rotations, from i to i+1, referred to coordinate system i. In general, however, $a_{i,i+1}$ will be more readily referred to coordinate system i, but the transformation to system 1 is easily performed as

$$(a_{i,i+1})_{1} = (o_{1i}) (a_{i,i+1})_{i}$$

and $\begin{bmatrix} Q \\ Q \\ 11:1 \end{bmatrix}$ can be obtained from (4,2,18) with n=i. The method of Denavit and Hartenberg (MDH) is based on the closure equation

$$T_n \cdots T_{23-12} T_{-11}$$
 (4.2.19)

or, equivalently,

$$(\underline{a}_{12})_1 + (\underline{a}_{23})_1 + \dots + (\underline{a}_{n+1}, n)_1 + (\underline{a}_{n1})_1 = 0$$
 (4.2.20)

together with

$$(\underline{o}_{12})_1 (\underline{o}_{23})_2 \dots (\underline{o}_{n-1,n})_{n-1} (\underline{o}_{n1})_n = \mathbf{I}$$
 (4.2.21)

where, according to the relationship (4.2.14a),

$$\left(\underline{\boldsymbol{\varrho}}_{n1}\right)_{n} = \left(\underline{\boldsymbol{\varrho}}_{1n}\right)_{n}^{T} \tag{4.2.22}$$

Next, the MDH is applied to a linkage composed of n links (rigid bodies) coupled by any of the six lower pairs (R,P,H,C,S or E) introduced in Chapter 3. Let the axis of the pair be defined as

- 1) the axis of rotation, if the pair is R,
- ii) the direction of traslation, if the pair is P,
- iii) the axis of rotation, which is identical to the direction of traslatica, if the pair is H or C.
 - iv) the direction of the normal to the plane of contact if the pair is E. Only if the pair is spheric no single axis can be defined. In this case, there is freedom to choose the axis of the pair and so, the analyst can choose it to his best convenience.

To implement the MDR, number the links successively 1,2,...,n. Then

a) Let Z_1 be the axis of the pair coupling the first link (the fixed one)

with the second one (the driving or input link), in such a way that the variable denoting the input be positive along Z_1 .

- b) In general, let Z_i be the axis of the pair connecting links i and i+1.
- c) Let X be the common perpendicular to Z_{i-1} and Z_i , directed from Z_{i-1} to Z_i
- d). Let a_i be the distance between z_i and z_{i+1} , always positive.
- e) Let s_i be the coordinate of the intersection of axis X_{i-1} with axis z_i , in frame $X_i - Y_i - Z_i$. Since it is a coordinate, its sign can be plus or minus, depending on the position of the said intersection. The absolute value of s_i is the distance between X_i and X_{i+1} .
- f) Let α_i be the angle between Z_i and Z_{i+1} , measured along the positive direction of X_{i+1}
- g) Let θ_i be the angle between X_i and X_{i+1} , measured along the positive direction of Z_i .
- h) Construct the translation vectors $\{a_{i,i+1}\}_i$ and the rotation matrices $\{0, \dots, i+1\}_i$, as is described next.
- Apply the closure conditions (4.2.20) and (4.2.21) and from them obtain the sought input-output relationship.

In order to construct the translation vectors $(a_{i,i+1})_i$, it is necessary first to construct the rotation matrices $(Q_{i,i+1})_i$, which is done next. The relationship between coordinate systems i and i+1 is shown in Fig 4.2.1, in agreement with the notation of f) and g).

7

4,6

Fig 4.2.2. Relative position of coordinate systems i and i+1 Since X_{i+1} is perpendicular to Z_i (by definition), X_i and X_{i+1} lie in a plane perpendicular to Z_i . Thus, X_i can be made coincident with X_{i+1} by means of a rotation through an angle θ_i about Z_i , as shown in Fig 4.2.3, where X'_i , Y'_i , Z'_i are the original axes X_i , Y_i , Z_i after the said rotation, so that Z'_i coincides with Z_i .

Fig 4.2.3 Rotation through an angle θ_i about axis z_i .

Hence, from Section 2.3,

$$\left(\begin{array}{c} 0\\ \mathbf{i}\mathbf{i}^{\dagger} \end{array} \right)_{\mathbf{i}}^{\dagger} = \left(\begin{array}{c} \cos\theta_{\mathbf{i}} & -\sin\theta_{\mathbf{i}} & 0\\ \sin\theta_{\mathbf{i}} & \cos\theta_{\mathbf{i}} & 0\\ 0 & 0 & 1 \end{array} \right)$$
 (4.2.23)

· 7 .

Next notice that X_{i+1} (i.e.X_i) is perpendicular to Y_i , Y_{i+1}^i , Z_i (i.e.Z_i) and Z_{i+1} . Hence, Y_i^i and Z_i^i can be made coincident with Y_{i+1} and Z_{i+1} by means of a rotation through an angle c_i about X_i^i . The relative position of axes i' and i+1 is shown in Fig 4.2.4.

From Fig 4.2.4 and section 2.3,

Fig 4.2.4 Relative position of axos i' and axes i+1 Finally, from eq. (4.2.18),

$$(Q_{i,i+1})_{i} = (Q_{i,i})_{i} (Q_{i',i+1})_{i}, \qquad (4.2.25)$$

the desired matrix is obtained as

$$\begin{pmatrix} Q_{i,i+1} \end{pmatrix}_{i} = \begin{vmatrix} \cos\theta_{i} & -\sin\theta_{i}\cos\alpha_{i} & \sin\theta_{i}\sin\alpha_{i} \\ \sin\theta_{i} & \cos\theta_{i}\cos\alpha_{i} & -\cos\theta_{i}\sin\alpha_{i} \\ 0 & \sin\alpha_{i} & \cos\alpha_{i} \end{vmatrix}$$
 (4.2.26)

Now it is possible to construct vectors $\begin{pmatrix} a & i \\ i, i+1 \end{pmatrix}_i$. The relative configuration. of three successive links appears in Fig 4.2.5, where the notation of a) to g) has been followed.

Fig 4.2.5 Three successive links of a linkage

From Fig 4.2.5,

$$(a_{i,i+1})_{i} = (\overline{o_{i}o_{i}})_{i} + (o_{i,i+1})_{i} (\overline{o_{i}}, \overline{o_{i+1}})_{i+1}$$
 (4.2.27)

with

$$\left(\overline{\mathbf{o}_{i}} \mathbf{o}_{i}\right)_{i} = \left(\mathbf{0}, \mathbf{0}, \mathbf{s}_{i}\right)^{\mathrm{T}}$$

$$(4.2.28)$$

and

$$\left(\overline{o_{i}}, \overline{o_{i+1}}\right)_{i+1} = \left(a_{i}, 0, 0\right)^{\mathrm{T}}$$
 (4.2.29)

 $\left(\begin{array}{c} 0\\ 2\\ 1\\ 1\\ 1 \end{array} \right)_{i}$ being as given by eq. (4,2,26), Substituting (4.2,26), (4,2,28) and (4.2.29) into (4.2.27),

$$(a_{i,i+1})_{i} = (a_{i} \cos \theta_{i}, a_{i} \sin \theta_{i}, s_{i})^{\mathrm{T}}$$

$$(4.2.30)$$

Expressions (4.2.26) and (4.2.30) enable the analyst to systematically construct the affine transformations required to establish the closure condition (4.2.19).

As is shown in Examples 4.2.1 and 4.2.2, it is not always necessary to apply both closure conditions (4.2.20) and (4.2.21) arising from (4.2.19), since only one suffices.

Example 4.2.1. Analysis of the universal joint. The layout of a universal (or Hooke's) joint appears in Fig 4.2.6, where the DH notation has been used. The universal joint is a special class of RRRR spherical linkages. Obtain an input-output relationship of the form $f(\theta_1, \theta_4) = 0$.

Fig 4.2.6 Universal Joint

Since all coordinate axes involved in this linkage have a common origin, the closure condition on the translation vectors is irrelevant and only that on the rotation matrices will be employed. The rotation matrices appearing in the present analysis are constructed from the fact that, in this case,

$$\alpha_1 \approx \alpha_2 \approx \alpha_3 = 90^\circ$$

Constructing the rotation matrices according to eqs. (4,2,26) and 4,2,30), one obtains

$$(Q_{14})_1 = (Q_{12})_1 (Q_{23})_2 (Q_{34})_3$$

Thus,

$$\left[\left(\begin{array}{c} Q_{12} \right)_{1} \left(\begin{array}{c} Q_{23} \right)_{2} \left(\begin{array}{c} Q_{34} \right)_{3} \end{array} \right]^{=} \left[\begin{array}{c} c\theta_{1} c\theta_{2} c\theta_{3}^{+g}\theta_{1} s\theta_{3} & c\theta_{1} s\theta_{2} & c\theta_{1} c\theta_{2} s\theta_{3}^{-g} - s\theta_{1} c\theta_{3} \\ s\theta_{1} c\theta_{2} c\theta_{3}^{-c} c\theta_{1} s\theta_{3} & s\theta_{1} s\theta_{2} & s\theta_{1} c\theta_{2} s\theta_{3}^{+c} \theta_{1} c\theta_{3} \\ s\theta_{2} c\theta_{3} & -c\theta_{2} & s\theta_{2} s\theta_{3} \end{array} \right] \quad 4.2.31)$$

On the other hand, from (4.2.26) and noticing that, for i=n, i+1=1,

$$\begin{pmatrix} Q_{41} \end{pmatrix}_{4} = \begin{pmatrix} c\theta_{4} & -s\theta_{4}c\alpha_{4} & s\theta_{4}s\alpha_{4} \\ s\theta_{4} & c\theta_{4}c\alpha_{4} & -c\theta_{4}s\alpha_{4} \\ 0 & s\alpha_{4} & c\alpha_{4} \end{pmatrix}$$

But, from (4.2.14a),

$$\left(\underline{\varrho}_{14} \right)_1 = \left(\underline{\varrho}_{41} \right)_4^T$$

Hence,

$$\left[\begin{array}{c} 0\\ 0\\ 14 \end{array} \right]_{1} = \left[\begin{array}{ccc} c\theta_{4} & s\theta_{4} & 0\\ -s\theta_{4}c\alpha_{4} & c\theta_{4}c\alpha_{4} & s\alpha_{4} \\ s\theta_{4}s\alpha_{4} & -c\theta_{4}s\alpha_{4} & c\alpha_{4} \end{array} \right]$$

$$\left[\begin{array}{c} (4.2.32)\\ s\theta_{4}s\alpha_{4} & -c\theta_{4}s\alpha_{4} & c\alpha_{4} \end{array} \right]$$

4,11

4.12

Equating the (1,2)-and the (2,2)-entries of both forms of $(Q_{14})_1$ -eqs. (4.2.31) and (4.2.32) - one obtains

$$\cos\theta_1 \sin\theta_2 = \sin\theta_4$$
 (4.2.33a)

$$\sin\theta_1 \sin\theta_2 = \cos\theta_4 \cos \theta_4$$
 (4.2,33b)

Eliminating θ_{2} in the above expressions,

$$\tan \theta_1 = \cos \alpha_4 \cot \theta_4$$
 (4.2.34)

which is the input-output relationship meant to be obtained.

Example 4.2.2. Analysis of an RSRC linkage. A typical RSCR linkage is shown in Fig 4.2.7, where the DH notation has also been used. The parameters and variables have the values

 $\alpha_1 = \alpha_1 \quad \alpha_2 = \alpha_2 \quad \alpha_3 = -\frac{\pi}{2} \quad \alpha_4 = \frac{\pi}{2}$ $\theta_1 = -\phi \quad \theta_2 = \theta_2 \quad \theta_3 = \theta_3 \quad \theta_4 = \theta_4$ $\alpha_1 = \alpha \quad \alpha_2 = b \quad \alpha_3 = 0 \quad \alpha_4 = 0$ $s_1 = c \quad s_2 = 0 \quad \theta_3 = 0 \quad \theta_4 = -5$

For the analysis of this linkage, only the closure condition of the translation vectors will be needed. Since these vectors, as given by eq. (4.2.30), have to be expressed in one single coordinate system, the rotation matrices will also be constructed. Thus,

$$\begin{pmatrix} Q_{12} \\ -12 \end{pmatrix}_{1} = \begin{pmatrix} c\phi & s\phi ca_{1} & -s\phi sa_{1} \\ -s\phi & c\phi ca_{1} & -c\phi sa_{1} \\ 0 & sa_{1} & ca_{1} \end{pmatrix}$$
(4.2.35a)
$$\begin{pmatrix} Q_{23} \\ -223 \end{pmatrix}_{2} = \begin{pmatrix} c\theta_{2} & -s\theta_{2}ca_{2} & s\theta_{2}sa_{2} \\ s\theta_{2} & c\theta_{2}ca_{2} & -c\theta_{2}sa_{2} \\ 0 & sa_{2} & ca_{2} \end{pmatrix}$$
(4.2.35b)

2
$$-asin$ +b(-sin$ + cos$ + cos$$

c+bsing_sin0_=0

(4.2.39c)

which, for every value of the input angle $\phi(t)$, yields a nonlinear algebraic system for the corresponding three unknowns $\alpha_1(t)$, $\theta_2(t)$ and s(t). One method to solve the foregoing system is via the Newton-Raphson method, as shown in Section 1.13, by application of the NRDAMP subroutine. However, in this particular case it is not necessary to spend so much computer time for, by introducing suitable trigonometric identities, the system 4.2.39) can be reduced to

$$a(t) = a \sin \phi + \sqrt{b^2 - c^2 - a^2 \cos^2 \phi}$$
 (4.1.40)

which explicity provides the set of values of s for each value of :. A table of values for s(t) was obtained from a digital computer output, for the following values of mechanism parameters:

a = 1.00 m, b = 3.00 m, c = 2.00 m

for a value of ϕ constantly equal to 1500 rpm. Similar tables for relocity and acceleration values were obtained via differentiation of s(t) ry application of second central differences. Curves appearing in Fig 4.2.2 were obtained from the said tables.

Notice that eq. (4.2.40) could have also been obtained from the geometry of the linkage of Fig 4.2.7, due to the simplicity of the linkage. In more general instances, however, the geometry is not so simple and the MDH becomes essential to perform the analysis.

In addition to the digital-computer method previously outlined, to obtain the output s(t), $\hat{s}(t)$ and $\ddot{s}(t)$ out of eq. (4.2.40), analog computer methods can also be applied.

An analog computer is a (usually electrical) physical system whose behaviour is governed by the same mathematical model governing the system

Fig 4.2.8 Displacement, velocity and acceleration curves of an RSRC linkage.

Fig 4.2.10 Analog realization of eq. (4.2.41)

Fig 4.2.11 An RSCR linkage

4,17

under analysis. The elements constituting an analog computer perform the usual mathematical operations appearing in mathematical models, i.e., algebraic addition, multiplication, division, integration and differentiation. Besides these operations, the analog computer is also supplied with function generators. All these elements are symbolically represented as appearing in Fig 4.2.9. An analog computer representation of a mathematical model is usually called "<u>a realisation</u>" of the model, because via that representation the model is taken into physical reality.

Equation (4.2.40) could readily be realized in an analog computer, and two differentiations would have to be performed to obtain the acceleration $\ddot{s}(t)$. However, due to the noise present in every physical system, and the fact that a differentiator is a noise amplifier, it becomes undesirable to perform more than one differentiation. To avoid the second differentiation to obtain $\ddot{s}(t)$, then, eq. (4.2.40) is first differentiated to obtain

$$s'(\phi) = \frac{ds}{d\phi} = \frac{\dot{s}}{\phi} = \frac{as \cos\phi}{s-a \sin\phi}$$
(4.2.41)

which has to be integrated once, with initial conditions $s=s_0$ at $\phi = \phi_0$, and differentiated only once to obtain $\ddot{s}(t)$. The analog realization of eq. (4.2.41) appears in Fig 4.2.10 **P**

Détails about analog simulation of linkages can be found in (4.6). Concerning simulation of mechanical systemsin general, the reader can see (4.7).

A digital computer-oriented algorithm, based on an iterative procedure, to obtain the history of all variables of a linkage is presented in $\{4,8\}$. Exercise 4.2.10 Given the RSCR linkage of Fig 4.2.11, obtain an inputoutput relationship $f(\psi,\phi)$, an analog realization yielding ϕ,ϕ and $\ddot{\psi}$ and curves ϕ vs. t, $\dot{\phi}$ vs. t and $\ddot{\phi}$ vs. t, for the following values:

 \cdot^{ω}

4,18

Fig 4.2.9. Elements for analog realisations

4.19

4,20

a=0.5m, b=1.0m, c=0.25m, d=0.75m, e=0.5m, \$\$\phi=1200rpm(const)\$

4.3 AN ALTERNATE METHOD OF ANALYSIS. Using the MDH one does not necessarily obtain one single relationship for the input and the output variables, but usually a system of nonlinear algebraic equations involving all the different linkage variables which appear strongly coupled, as occurs with eqs. (4.2.39). If the system is not very complicated, then it can happen that, after introducing appropriate trigonometric identities, one can obtain a single inputoutput relationship where the only variables appearing are the input and the output. If it is not obvious how to obtain the said single relationship, then one is forced to solve a system, instead of one single nonlinear equation. Gupta (4.10) has presented a method which does not require all the apparatus of the MDH and yields a single relationship between the input and the output. The method is based on an equation establishing the constancy of either a link length or a link angle, throughout the linkage motion. The linkage is assumed to have a single-loop which, for simplicity, is assumed to be composed of just four links*: the fixed link, the input link, the coupler link and the output link. Let A be a point on the input axis; B, a point of the pair connecting the input and the coupler links; C, a point of the pair connecting the coupler and the output links; and D, a point of the output axis. Furthermore, let a_0 , b_0 , c_0 , d_0 and a, b, c, d, denote the position vectors of the corresponding points in both, a reference configuration and a current configuration, respectively.

Let also Q and R be the rotation matrices carrying the input and the output links from the reference configuration to the current configuration. Then, from the lenght constancy of the coupler link,

^{*}This linkage could be RSSR, RSCR or its inversions. Spherical linkages are dealt with next.

$$||\underline{b} - \underline{c}||^2 = ||\underline{b}_0 - \underline{c}_0||^2.$$
 (4.3.1)

where, clearly

$$b = a_0 + Q(b_0 - a_0)$$
 (4.3.2a) ...

and

$$c = d_0 + R(c_0 - d_0)$$
 (4.3.2b)

Hence,

$$\left|\left|\underline{b}-\underline{c}\right|\right|^{2} = \left|\left[\underline{a}_{0}+\underline{b}(\underline{b}_{0}-\underline{a}_{0}) - \underline{d}_{0} - R(\underline{c}_{0} - \underline{d}_{0})\right]\right|^{2}$$

which yiels the desired input-output scalar equation which was to be obtained, after substitution into eq. (4.3.1), namely

$$\left|\left|\underline{a}_{0} + Q(\underline{b}_{0} - \underline{a}_{0}) - \underline{d}_{0} - R(\underline{c}_{0} - \underline{d}_{0})\right|\right|^{2} = \left|\left|\underline{b}_{0} - \underline{c}_{0}\right|\right|^{2}$$
(4.3.3)

Equation (4.3.3) contains only two unknowns, the input and the output angles, thereby showing how one single scalar equation for these two variables can be obtained. The next example illustrates how to apply this method to spherical linkages.

Example 4.3.1 Analysis of the general RRRR spherical linkage.

The MDH can be applied, of course, to general spherical linkages, following the same procedure applied to the universal joint.

The fact that the MDH introduces other variables besides the input and the output, however, produces very cumbersome equations, algebraically difficult to handle. The alternate method proves, in this case, to be particulary helpful. Consider the RRRR spherical linkage appearing in Fig 4.3.1

Fig 4.3.1 General RRRR spherical linkage Let \underline{a}_0 , \underline{b}_0 , \underline{c}_0 , \underline{d}_0 and $\underline{a}, \underline{b}, \underline{c}, \underline{d}$ be the position vectors of points A, B, C and D in a reference configuration and in a time-varying configuration, respectively. Furthermore, let Q and R be the rotation matrices carruing links 2 and 4, respectively, from the reference to the current configurations. Thus,

and

Clearly, $\underline{a}=\underline{a}_0$ and $\underline{d}=\underline{d}_0$. The cosine of a_3 in both the reference and the current configurations is

$$(\cos a_3)_{ref} = b_{-0}^{T}c_{0}$$
 (4.3.6a)

and

$$(\cos\alpha_{3})_{cur} = b_{cur}^{T} c \qquad (4.3.6b)$$

where $||b_0||$ and $||c_0||$, are assumed unity, without loss of generality. Since link 3 is rigid, a_3 remains constant throughout the linkage motion

and, since
$$||\mathbf{b}|| = ||\mathbf{b}_0||$$
 and $||\mathbf{c}|| = ||\mathbf{c}_0||$, one obtains
 $\mathbf{b}^{\mathrm{T}}\mathbf{c} = \mathbf{b}^{\mathrm{T}}\mathbf{c}_0$ (4.3.7)

or, substituting the relations (4.3.4) and (4.3.5) in the above equation,

$$b_{00}^{T} c_{00}^{T} c_{00} = b_{000}^{T} c_{000} c$$

which is the scalar input-output relationship meant to be obtained. The only variables appearing in eq. (4.3.8) are ψ , contained in Q, and φ , contained in R. Define the coordinate axes appearing in Fig 4.3.2, with X_{i} and X_{o} directed along the axes of R_{12} and R_{41} , respectively.

Fig 4.3.2 Fixed coordinate axes containing the axes of R and R 41

Matrices Q and R, referred to i- and o- axes respectively, are given as

 $\left(\underbrace{Q}_{i} \right)_{i} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\psi & -\sin\psi \\ 0 & \sin\psi & \cos\psi \end{pmatrix}, \\ \left(\underbrace{R}_{0} \right)_{0} = \begin{pmatrix} 1 \cdot & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{pmatrix}$ (4.3.9)

Vectors \underline{b}_0 and \underline{c}_0 are shown in Figs 4.1.3a and 4.3.3b Hence,

$$\begin{pmatrix} b_0 \end{pmatrix}_{1} = \begin{pmatrix} \cos \alpha_{2} \\ \sin \alpha_{2} \cos \psi_{0} \\ \sin \alpha_{2} \sin \psi_{0} \end{pmatrix} , \quad \begin{pmatrix} c_0 \end{pmatrix}_{0} = \begin{pmatrix} \cos \alpha_{4} \\ \sin \alpha_{4} \cos \phi_{0} \\ \sin \alpha_{4} \sin \phi_{0} \end{pmatrix}$$
 (4.3.10)

In order to perform the products appearing in eq. (4.3.8) it is necessary to express all vectors and matrices in the same coordinate axes. The transformation matrix carrying the i-axis into the o-axes, referred to the i-axes, is given as

$$\left(\begin{array}{c} s \\ s \end{array} \right)_{i} = \begin{pmatrix} \cos \alpha_{1} & -\sin \alpha_{1} & 0 \\ \sin \alpha_{1} & \cos \alpha_{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (4.3.11)

Fig 4.3.3 Reference configuration of points B and C.

The product $b_0^T Q_{a,0}^T R c_0$ needed in eq. (4.3.8) is next computed

$$\mathbf{b}_{00}^{\mathrm{T}}\mathbf{c}_{\mathbf{c}_{00}}^{\mathrm{T}} = \left(\mathbf{g}\mathbf{b}_{0}\right)_{\mathbf{i}}^{\mathrm{T}} \left(\mathbf{c}_{00}\right)_{\mathbf{i}}^{\mathrm{T}} = \left(\mathbf{g}\mathbf{b}_{0}\right)_{\mathbf{i}}^{\mathrm{T}} \left(\mathbf{s}\right)_{\mathbf{i}} \left(\mathbf{c}_{00}\right)_{\mathbf{o}}^{\mathrm{T}}$$
(4.3.12)

which yiedls

$$b^{T} Q^{T} Rc_{0} = c \alpha_{2} (c \alpha_{1} c \alpha_{4} - s \alpha_{1} s \alpha_{4} c (\phi + \phi_{0})) + s \alpha_{2} c (\psi + \psi_{0}) (s \alpha_{1} c \alpha_{4} + c \alpha_{1} s \alpha_{4} c (\phi + \phi_{0})) + s \alpha_{2} s \alpha_{4} s (\psi + \psi_{0}) s (\phi + \phi_{0})$$

$$+ s \alpha_{2} s \alpha_{4} s (\psi + \psi_{0}) s (\phi + \phi_{0})$$

$$(4.3.13)$$

When eq. (4.3.13) is substituted into eq. (4.3.8) one obtaines the desired input-output equation

$$ca_{2}(ca_{1}ca_{4}-sa_{3}sa_{4}c(\phi+\phi_{0}))+sa_{2}c(\psi+\psi_{0})(sa_{1}ca_{4}+ca_{1}sa_{4}c(\phi+\phi_{0}))+$$

$$+sa_{2}sa_{4}s(\psi+\psi_{0})s(\phi+\phi_{0})-ca_{3}=0 \qquad (4.3.13a)$$

in which ψ and ϕ are measured from the reference values ψ_0 and ϕ_0 , respectively, as defined previously. If the said angles are measured from the plane of the axes of R_{12} and R_{41} , instead, then the latter equation becomes

$$ca_2(ca_1ca_4-sa_1sa_4c\phi)+sa_2c\psi(sa_1ca_4+ca_1sa_4c\phi)+sa_2sa_4s\psis\phi-ca_3=0$$
 (4.3.14)
The input-output equation for the universal joint can now be obtained as
a special case of eq. (4.3.14), letting $a_2=a_3=a_4=90^\circ$, thus obtaining

$$ca_{c}c\psi c\phi + a\psi s\phi = 0 \qquad (4.3.15)$$

or

$$\frac{ca_1}{tan\phi} + tan\psi = 0$$

which is equivalent to eq. (4.2.34) previously obtained. In fact, α_4 of eq. (4.2.34) corresponds to α_1 in eq. (4.3.15) and

$$\psi = 180^\circ - \theta_s, \phi = \theta_s$$

The method of Denavit and Hartenberg, as presented in Section 4.2, is a very well structured systematic procedure for the analysis of "single-loop linkages", i.e. Those whose links are all binary*; but problems arise when "multiple-loop linkages" are to be analyzed. Sheth and Uicker (4.9) have generalized the notation of Denavit and Hartenberg, however, to overcome the aforementioned situation and furthermore, to extend the application of the MDH to the analysis of higher-pair mechanisms.

* If a link is coupled to 2 other links, it is called binary; if it is coupled to 3, it is called ternary, and so on.

REFERENCES

- 4.1 Beggs J.S., <u>Advanced Mechanism</u>, The Macmillan Company, N. York, 1966, pp. 101-120 and 164-167.
- 4.2 Denavit J., "Displacement analysis of mechanisms based on (2x2)
 matrices and dual numbers", VDI Ber., Vol. 29, 1958.
- 4.3 Denavit J. and R.S. Hartenberg, "A Kinematic notation for lower-pair mechanisms based on matrices", <u>ASME. J. Appl. Mech.</u>, Ser. E., vol. 22, June 1955
- 4.4 Denavit J. and R.S. Hartenberg "Approximate synthesis of spatial linkages", ASME. J. Appl. Mech., Ser. E., vol. 27, No. 1, March, 1960.
- 4.5 Depavit J. and R.S. Hartenberg, <u>Kinematic Synthesis of Linkages</u>, McGraw-Hill Book Co., N. York, 1964.
- 4.6 Timm R.F., "Analog simulation of rigid link mechanisms", <u>ASME J. Eng.</u> for Ind., Ser. B, vol. 89, No. 2, May 1967.
- 4.7 Shigley J. E., <u>Simulation of Mechanical Systems</u>. McGraw-Hill Book Co., N. York. 1967.
- 4.8 Uicker J. J., J. Denavit and R.S. Hartenberg, "An iterative method for the displacement analysis of spatial mechanism", <u>ASME. J. Appl. Mech.</u>, Ser. E, vol. 31, June 1964.
- 4.9 Sheth P. N. and J.J. Uicker, "A generalized symbolic notation for mechanisms", ASME. J. Eng. for Ind., Ser. B, vol. 93, Feb. 1971.
- 4.10 Gupta V. K., "Kinematic analysis of plane and spatial mechanisms", ASME. J. Eng. for Ind., Ser. B, vol. 95, May 1973.

• · · · . . ۰. ۲ ` . • , 1

_

centro de educación continua división de estudios de posgrado facultad de ingeniería unam

ANALISIS SINTESIS Y OPTIMACION EN INGENIERIA MECANICA

6. AN INTRODUCTION TO THE OPTIMAL SYNTHESIS OF LINKAGES

DR. JORGE ANGELES ALVAREZ

AGOSTO, 1980

• . .

6. AN INTRODUCTION TO THE OPTIMAL SYNTHESIS OF LINKAGES

6.1 <u>INTRODUCTION</u>. The problems of linkage synthesis outlined in Ch. 5 lead in general to nonlinear systems of algebraic equations. As discussed in Section 1.13, these systems can admit multiple solutions or none, the said solutions satisfying all the equations <u>exactly</u>, if roundoff errors are disregarded, which is done in this case since the numerical eccuracy of the solutions is irrelevant in the current discussion. The resulting solutions, however, were not evaluated regarding the "quality" of the linkage they produced, the said quality being previously defined, of course. The quality under consideration could be the overall "size" of the linkage (this size could be in turn defined as the sum of the lengths of all the links, for example), its minimum mechanical advantage or the maximum angular acceleration of one of its links.

The several possibilities that could arise, different to those studied in Ch. 5, are:

- i) the number of prescribed conditions exceeds the maximum allowable, thus yielding an overdetermined problem which in general cannot be solved exactly
- ii) the number of prescribed conditions is smaller than the maximum allowable, thus making it possible for the designer to select the best linkage (in some sense) from a variety of alternatives.
- iii) disregarding the relationship between the number of prescribed conditions and the maximum available, one <u>objective function</u> of the linkage (size, mechanical advantage, etc.) is meant to be optimized.

All those three cases correspond to problems of <u>linkage optimization</u> and will be discussed in this Chapter.

6.2 <u>THE OPTIMIZATION PROBLEM</u>. The most general, hence most abstract optimization problem, can be stated as follows:

"Given a vector space V and a subset Ω of it, find the vector $\underline{x}^* \mathbf{C} \Omega$ such that a (also given) scalar function f defined over V, attains its optimal value at x^* " 6.2

The problem thus defined has not been solved*, but solutions have been found to some special cases of it, many of which are applicable to linkage synthesis problems.

To begin with, hte kind of problems that usually arise in the realm of linkage optimization are defined over a vector space V of finite dimension, i.e. the problems that will be handled in this context contain a finite number of independent variables. Problems containing an infinite (even more, a non-denumerable) set of unknowns arise in areas such as optimal control systems [6.1] where the vector space V is a Banach space [6.2], i.e. a vector space whose elements are continuous functions of one real variable (time) with some special properties that will not be listed here.

Furthermore, the subset Ω of the finite-dimensional vector spaces V that will be handled in this chapter, is defined by a set of either equality or inequality algebraic relationships (in the case of Banach spaces, the said subset is defined by differential equations). In addition, the objective function to optimize is a functional over V, i.e. a scalar algebraic function (as opposed to integral functional in the case of Banach spaces) of the n independent variables corresponding to the dimension of V. Hence, the optimization problem arising in linkage synthesis can be stated in the general form:

> optimize f=f(x)subject to and $h(x) \ge 0$ (6.2.1)

where x is an n-dimensional vactor of space V, f is a vector-valued scalar function, g is an m-dimensional (m<n) vector-valued vector function and h, a p-dimensional vector-valued vector function, and $m+p\geq n$.

Remark: Vector spaces are non-ordered sets $\begin{bmatrix} 6,3 \end{bmatrix}$, hence no inequality relation can be associated to them. Therefore, the inequality appearing in (6.2.1) should be understood as a compact symbol to mean

 $h_i(x) \ge 0$ i=1,...,p (6.2.2)

^{*}in all its generality

 h_i being the $i\frac{th}{t}$ component of vector h. A similar symbology is used to express positive definite and positive semidefinite square matrices A, i.e.

A>0 (positive definite) $A\geq0$ (positive semidefinite)

An extensive discussion of the formulation of the problem of linkage synthesis as a mathematical programming problem appears in [6.4]. In the abstract of this paper the author states:

"The synthesis of mechanisms thus ceases to be a narrow and isolated scientific field but becomes part of a broad sphere of science encompassing areas obviously very distant such as economy, military science, automation, cybernetics and others".

6.3 OVERDETERMINED PROBLEMS OF LINKAGE SYNTHESIS. It was shown in Section 5.2 that the synthesis of the RSSR linkage for function generation leads to a system of up to eight linear equations in eight unknowns, thus making it possible to satisfy up to eight conditions of the type $\phi_i = \phi_i(\psi_i)$ between the input and the output angles, ψ_i and ϕ_i , respectively*. In Section 5.3 it was shown that a rigid body can be guided through up to three successive configurations by means of an R-R dyad and reference was made to results appearing in the literature [5.11,12,17~19] showing that the said three-positionrigid-body guidance problem, when solvable, has two real solutions, which constitute a Bennett (RRRR-single-degree-of-freedom-spatial) linkage . The resulting synthesis equations were shown to be twelve nonlinear equations in twelve unknowns. Futher on, in Section 5.5 it was shown that, by means of an RRSS linkage, a spatial path can be traced that passes through up to eight points in space, the resulting equations being 39 (according to Suh [5.22]) nonlinear equations in 39 unknowns.

There can arise technical problems, however, that require to synthesize either: i) an RSSR linkage that satisfies a discrete input-output function

^{*}It was also mentioned in that Section that, as Mohan Rao et al. [5.4] claim, it is possible to extend this synthesis problem to 10 precision points if scale factors between the synthesized function and input and output angles are not specified; but this possibility will not be discussed here because the synthesized function is assumed to be defined only at a discrete set of points.

over more than eight points, or ii) an RRRR spatial (Bennett) linkage that carries a rigid body through more than three configurations, or iii) an RRSS linkage that traces a spatial path passing through more than eight points. In all these cases the number of resulting synthesis equations will exceed that of available linkage parameters (unknowns), thus leading to an overdetermined problem. This problem could involve a system of linear equations, as in case i) above, or a system of nonlinear ones, as in the remaining two previously discussed cases. The overdetermined arising problem does not have a solution in the "usual" sense, i.e. in the sense of satisfying the equations exactly. As was discussed in Section 1.11 for linear systems and in Section 1.13

for nonlinear ones, a solution vector x_{0} is sought that yields the minimum error (in the approximation to the said equations), in this instance. The most commonway of measuring such error is through the Euclidean norm of the vector whose components are the involved equations, i.e. if this error is denoted by e and the system of equations is f(x)=0 (Ax-b=0 in the linear case), then

$$e^{2} = ||f(x)||^{2} = f^{T} f$$
 (6.3.1a)

$$\mathbf{e}^{2} = \left| \left| \mathbf{A} \mathbf{x} - \mathbf{b} \right| \right|^{2} = \left(\mathbf{A} \mathbf{x} - \mathbf{b} \right)^{\mathrm{T}} \left(\mathbf{A} \mathbf{x} - \mathbf{b} \right)$$
(6.3.1b)

whether the system of equations is nonlinear or linear optimization resulting problem can be stated as

If the system of equations is linear, f should be replaced by Ax-b in (6.3.2), of course.

Notice that problem (6.3.2) is a particular case of problem (6.2.1), in which no constraints are present, i.e. this is a so-called "unconstrained optimization problem"; furthermore, due to its particular

6.4

or

quadratic nature, it is referred to specifically as a least-square problem. The optimum x is found, as outlined in section 1.12 for the linear case, by triangularization of matrix A via Householder reflections and "back substitution", both of which are implemented in subroutines HECOMP and HOLVE appearing in Figs. 1.12.4 and 1.12.5. The nonlinear case, as discussed in Section 1.13, is solved iteratively by Newton-Raphson method, which requires the computation of the optimal correction at each stage, via the solution of a linear leastsquare problem, which is done, as alroady mentioned, by means of subroutines HECOMP and HOLVE. SUBROUTINE NEWRAMC, whose listing appears in Fig. 1.13.2, combines HECOMP and HOLVE to solve the nonlinear least-square problem (6.3.2).

The least-square problem arising in linkage syntheses has been already dealt with in the litterature. Sub and Mecklenburg [6.5] solved such problem by application of Powell's method. The said method is one of the so-called "direct search methods" and specifically it performs uni-directional searches, i.e. it optimizes the objective function once at each iteration, keeping fixed all the variables but one, at each time. More on direct search methods will be discussed in Section 6.5.

The linear least-square solution via Householder reflections is next illustrated with an example taken from [6.5] for comparisson.

Example 6.3.1. Synthesize an RSSR linkage so that its input ψ and its output ϕ be related according to Table 6.3.1. Referring to the nomenclature of Fig 5.2.1, assume

$$a_4 = 1, \alpha_4 = 90^{\circ}$$

Solution:

Use is made of eq. (5.2.18) and definitions (5.2.19), thus obtaining a system of 19 linear equations in the six unknowns k_1, k_2, \dots, k_5 , of the form

(6.3.3)

Ax=b

TABLE 6.3.1

.

 τ^{+}

间相能发展	AKE -	日日日	SMECLE	七副0	POMES
PS1(0E	GREE	(3)	121	$\mathcal{X} \subset \mathcal{O}$	CENTERY

1	õ.	(F.
	-,50000000000000	.140000000E:01
3	1000000E+02	.31000000EF01
4	1500000E+02	*83000000E+91
5	20000000E+02	.1:500000E+02
5	25000000E(02	.18200000E+02
7	-,300000000000000	.19100000E+02
8	35000000E+02	.23300000E+02
9	40000000E+02	,27700000F402
1.0	4500000E+02	1.3230000008402
1 1.	5000000E+02	.372000002+02
12	-, 55000000E+02	,42300000E402
13	6000000000402	4750000002+02
14	6:000000E+02	.53000000E+02
15	70000000E402	.50700000E+02
16	75000000E+02	.64600000E702
17	80000000E+02	.70900000E+02
18	-,05000000E+02	.78000000E+02
19	9000000E402	.9000000E+02

where A is a 19x6 matrix, x is a 6-dimensional vector whose $i\frac{th}{t}$ component is k_i and b is a 19-dimensional vector whose $i\frac{th}{t}$ component is $c\phi_i c\phi_i + ca_4 s\psi_i s\phi_1$. Both matrix A and vector b appear in Table 6.3.2.

Subroutines HECOMP and HOLVE were used to obtain the least-square solution x_0 , i.e. the six values k_1, \ldots, k_6 that approximate the 19 equations (6.3.3) with the minimum error, in the sense of the Euclidean norm. The optimal resulting values and the corresponding linkage parameters appear in Table 6.3.3

The error obtained with Powell's method, reported in [6.5], as well as that obtained with Householder reflections, are shown in Table 6.3.4. The overall error, for comparisson purposes is taken as

$$e = \left(\frac{\frac{1}{n}}{n1} \left(\phi_{i}^{*} - \phi_{i}^{**} \right)^{2} \right)$$

where ϕ_1^* and ϕ_1^{**} are the generated and the specified values of the output variable, respectively, corresponding to the value ψ_1 of the input variable.

The nonlinear case solution is illustrated with the following example. Example 6.3.2 Synthesis of a plane RRRR linkage for rigid-body guidance through 17 specified configurations.

The specified configurations are shown in Table 6.3.5. The synthesis equations are those derived in Appendix 4, namely, eqs. (A.4.6) which are next rewritten as

$$f_{j} = ||(1 - e^{i\theta j})a_{0} + b_{0} - r_{j}||^{2} - ||b_{0}||^{2} = 0, j = 1, \dots, 16 \quad (6.3.4)$$

The objective function is, then

$$\phi(a_0, b_0) = \int_{-\infty}^{T} \int_{-\infty}^{16} \int_{-\infty}^{2} \int_{-\infty}^{2} \int_{-\infty}^{-\infty} \int_{-\infty}^{16} \int_{-\infty}^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{-\infty} \int_{-\infty}^$$

Minimizing ϕ , as given by eq. (6.3.5) is, then, a nonlinear leastsquare problem, already discussed in case ii) of section 1.13. Thus, it can be solved using SUBROUTINE NERANC. The 17 specified configurations are shown in Table 6.3.5.

		KATRIX	(A		-		920108_B	
1.0000000	0.000000	-1.000000	0.000000	0.000000	-1.000000		1.000000	
0.999123	0.041876	-0.996195	-0.087156	0.041716	1.000000		0,975721	
0.996041	0,088894	-0.984808	-0.173648	0.087544	1.000000		0.930909	
0.987776	0.142327	-0.965926	-0.256319	0.137769	1.000000		0.954050	
0.979925	0.129368	-0.939693	-0.342020	0.197345	1.000000		0,920828	
0.950016	0.262192	-0.006308	-0.422618	0.237624	1.000000		0.874602	
0.934949	0.527218	-0.836025	-0.500000	0.283379	1.000000	,	0.018350	
0.710446	0.393546	-0.819152	-0.573576	0.324012 '	1.000000	4	0:202347	
0.895394	6.464542	-0.756044	-0.642788	0.354090	1.000000	. `	0.378251	
0.945262	0.534352	-0.707107	-0,707107	0.377844	1.000000		0.597690	•
0.796530	0.504599	-0.542788	-0.766044	0.388629	1.000000		0.512000	
0.739631	0.623013	-0.573576	-0.819152	0.386024	1,000000		0.424235	
0.375590	0.737277	-0.500000	-0.866025	0,368639	1.000000		0.337795	
0.601815	0.798635	-0.423518	-0.906308	0.337518	1.000000		0.254339	
0.519519	0.854459	-0.342020	-0.939693	0.292242	1.000000		0.177685	
0.428935	0.903335	-0.259819	-0.965926	0.233800	1.000000		0.111012	
0:327213	0.244749	-0.173649	-0.984808	0.154089	1.000000		0.054921	
0.207912	0.978148	-0.087156	-0.997/195	0.085251	1.000000		0.018121	
-0.000000	1.000000	0.000000	-1.000000	-0.000000	1,000000		0.000000	

TABLE 6.3.3

LINXAGE PARAMETERS

.

.

THESE ARE PARAMETERS K

÷

-

A1=	0.71126871	K(1)=	0.081573
A2=	2.62059792	K(2)=	-3.489375
A3=	0.80357731	K(3)=	1.176454
64= 01= 94= Phi0=	1.00000000 -1.18624029 -2.41755501 21.12786811	K(4)≖ K(5)≖ K(6)≖	-1.395355 0.386422 2.397812

TABLE 6.3.4

£,

.

.

-	,	· · ·
	NEVISATION ERROR COINS	AFRICATION AND A CONTRACTOR
	PODELL'S NETHON	2005297111. 1 Tr
	(DEGREES)	Gerund - 14
•	0.0000000	· · · · · · · · · · · · · · · · · · ·
	-100120000	1999 - 1990 - 1990 - 1990 - 1990 1990 - 1990 - 1990 - 1990
	0,02330000	○○○110月 ●○ 411
	02250000	C 5
	0.00250000	0.02034973
	0.0:3:300000	0.01072786
	0.63830000	0,0240434
	0,1,1100001	のようとものからら知
		Sec. 1 (States)
	0000000	
	0.022 0000	5.51930342
	06770000	
	00020000	03133584
	0.001.60000	5.03434250
	0.000000	0.011 \2+51.0
	- <u>AAAAAAA</u>	0.00179.47
		- 517 15002
	- 102100000 - 102100000	en andre andre en andre
	0.02980000	O . 20 9. 27 7 2

1.1.1

THE ROOT NOTH BRUARE CURCE GATATHED BY:

POWELLIS METHOD IS 0.00165269 (COREAS REUSENDLINE (2 METHOD 18 0.00182009 DISCLIP

~

.

TABLE 6.3.5 Specified configurations for rigid-body guidance

THESE ARE THE SPECIFIED CONFIGURATIONS

			THETA	
	Х (СМ)	Y (CM)	(DEGRÉES) ·	
0	7.880	-0.260	313.720	
1	8.490	-7,290	332.330	
2	7.680	2.820	349,930	
3	6,300	4.210	353,180	
4.	4.580	4,950	359.870	
5	2.740	5.010	355,840	
6	1,010	4.410	356.300	
7	0,259	3,880	3.900	
8	-0:400	-3.090	3.670	
9	0.250	-3.760	3,690	
10	1,000	-4,290	4.150	
11	2,730	, -4.890	5.120	
12	4.560	-4,830	6.810	
13	6.280	-4.090	10,000	
14	7.660	-2.700	13,000	
15	8.440	-0,610	18,000	
16	7.790	-2.690	46,270	

1

A program was written to obtain the least-square solution to the prolbem, which turned out to have two different solutions, one for each side of the linkage, thus enabling the designer to construct the whole linkage. The two solutions are shown in Table 6.3.6 TABLE 6.3.6 Solutions to overdetermined rigid-body guidance problem of linkage synthesis

First solution	Second solution:
A ₀ (5.124,2.255) .	A ₀ {1.444,-6.705)
B _C (0.549,-0.703)	B ₀ (6.371,-9.315)

Thus, the linkage is composed of one fixed link with input-and outputlinks hinged to it at each of both points B shown in Table 6.3.6. The coupler link is hinged to the input- and output links at each of both points $A_{\rm B}$ also shown in that table.

Since the problem is overdetermined, the solutions obtained do not zero each of the 16 fuctions f_j shown in (6.3.4). They minimize the quadratic norm (6.3.5), instead. Since each f_j is in turn quadratic in a_0 and b_0 , ϕ is quartic in these complex numbers. Thus, ϕ has units of length raised to the fourth power. In order to obtain a dimensionless measure of the error in the approximation, the error is computed as

$$\frac{1}{16|b_0|} = \frac{16}{2} \sqrt{|f_j|} = \frac{16}{16|b_0|} = \frac{16}{2} \sqrt{|f_j|} = \frac{16}{16|b_0|} = \frac{16}{2} \sqrt{|f_j|} = \frac{16}{2} \sqrt{|f_$$

This way, the error of the first solution resulted to be 38.74, whereas that of the second one, 60.77%

An overdetermined problem of the RR spatial dyad for rigid-body guidance is presented in the next example.

Example 6.3.3. Synthesis of the RR spatial dyad for rigid-body guidance.

In this case, one fourth position of points A,B and C is added to those three already specified in Example 5.3.1. All four positions are the following:

 $\begin{array}{rll} & \Lambda_0(0,0,1)^{\circ} & B_0(0,1,0) & C_0(1,0,0) \\ & \Lambda_1(0,0,0) & B_1(1,\sqrt{2},1) & C_1(\sqrt{6}/2,\sqrt{2}/2,0) \\ & \Lambda_2(1,0,0) & B_2(1+\sqrt{2}/2,0,\sqrt{6}/2) & C_2(1+\sqrt{2},0,0) \\ & \Lambda_3(0,0,0) & B_3(0,\sqrt{2},0) & C_3(0,\sqrt{2}/2,\sqrt{6}/2) \end{array}$

The synthesis equations are those of Example 5.3.1, eqs. (5.3.53a) to (5.3.53h), except that eqs. (5.3.53a) to (5.3.53d) are now written for i=1,2,3, thus obtaining a system of 16 equations in [2 unknowns. The first two screws were already obtained in that example. The third one, corresponding to the fourth configuration, was also obtained via SUBROUTINE SCREW. All three screws are then

$$s_{-1} = \begin{bmatrix} -0.769 \\ 0.590 \\ -0.245 \end{bmatrix}, a_{1} = \begin{bmatrix} 0.454 \\ 0.787 \\ 0.470 \end{bmatrix}, c_{1} = 0.245, \theta_{1} = -56.600^{\circ}$$

$$s_{2} = \begin{bmatrix} -0.906 \\ 0.194 \\ 0.375 \end{bmatrix}, a_{2} = \begin{bmatrix} 0.305 \\ 0.176 \\ 0.645 \end{bmatrix}, t_{2} = -1.282, \theta_{2} = -129.736^{\circ}$$

$$s_{3} = \begin{bmatrix} 0.194 \\ -0.906 \\ 0.375 \end{bmatrix}, a_{3} = \begin{bmatrix} 0.176 \\ 0.216 \\ 0.430 \end{bmatrix}, t_{3} = -0.375, \theta_{3} = 129.736^{\circ}$$

The nonlinear least-square problem arising from this dyad-synthesis problem was solved using SUBROUTINE NERAMC. The solutions obtained are shown in Table 6.3.7

6.4. UNDERDETERMINDED PROBLEMS OF LINKAGE SYNTHESIS. In this Section the problem opposite to that presented in Section 6.3 is discussed i.e. problems that will be treated here contain an excess of the number of unknowns over that of equations; hence, they admit infinitely many solutions. If the system is linear, then a unique solution exists whose norm is a global minimum and can be found via the Moore-Penrose (See Section 1.11) pseudo-inverse matrix of the system. If the said system is nonlinear, then all local minima can be found, as discussed in Section 1.13 via the introduction of Lagrange multipliers. As Fox and Gupta [6.6] point it out, linear optimization problems arise rarely in mechanism synthesis, that is to say, although (as was shown in Section 5.2) linkage synthesis problems for function generation can be formulated as linear problems, in this case the linkage parameters do not appear directly in the synthesis equations in linearly. Hence, only the nonlinear case will be discussed in this Section and the solution procedure will be illustrated with one example.

Example 6.4.1. Synthesize an R-R dyad that conducts a rigid body through the first two configurations shown in Fig5.4.3. Since the general number of equations for this problem is 4n+4 (See Section 5.4), and for two configurations n=1, the resulting number of equations is 8, but the number of unknowns is 12, thus obtaining an underdetermined system of equations.

Solution:

The data are:

where components are referred to the $X = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ The unknowns are:

$$\begin{bmatrix} a & 0 \\ a & 0 \\ a & 0 \\ a & 0 \end{bmatrix} , \begin{bmatrix} b & 0 \\ b & 0 \\ a & 0 \end{bmatrix} , \begin{bmatrix} b & 0 \\ b & 0 \\ b & 0 \end{bmatrix} , \begin{bmatrix} u \\ u \\ u \\ u \\ u \end{bmatrix} , \begin{bmatrix} u \\ u \\ u \\ u \\ u \end{bmatrix} , \begin{bmatrix} v & 0 \\ v \\ 0 \\ v \\ 0 \end{bmatrix}$$
 (6.4.2)

Equation (5.4.5), written for j=1, is $(a_{01}^{-a}a_{3})^{2}+4a_{02}^{2}+(-a_{02}^{+a}a_{3})^{2}+2b_{01}^{+}(a_{01}^{-a}a_{3})+$ $+4(b_{02}-1)a_{02}+2b_{03}(-a_{01}+a_{03})-2b_{02}+1=0$ (6-4.3a)Equation (5.4.8), written for j=0,1 leads to $u_1b_{01}+u_2b_{02}+u_3b_{03}=0$ (6.4.3b) $u_1(a_{01}-a_{03})+2u_2a_{02}+u_3(-a_{01}+a_{03})-u_2=0$ (6.4.3c)Equation (5.4.9), written for j=0,1 leads to ^v01^b01⁺v02^b02⁺v03^b03^{e0} (6.4.3d) $v_{01}(a_{01}-a_{03})+2v_{02}a_{02}+v_{03}(-a_{01}+a_{03})-v_{02}=0$ (6.4.3e) Equation (5.4.10), written for j=1 is $u_1 v_{03} - u_2 v_{02} + u_3 v_{01} - u_1 v_{01} + u_2 v_{02} + u_3 v_{03}$ (6.4,3£) Finally, eqs. (5.4.11) lead to $u_1^2 + u_2^2 + u_3^2 = 1$ (6.4.3g) $v_{01}^2 + v_{02}^2 + v_{03}^2 = 1$ (6.4.3h) Equations (6.4.3a-h) constitute a system of 8 equations in the 12 unknowns: a₀₁, a₀₂, a₀₃, b₀₁, b₀₂, b₀₃, u₁, u₂, u₃, v₀₁, v₀₂, v₀₃. The objective function that can now be introduced, meant to be minimized, is $\phi(a_0, b_0) = a_0^2 + a_0^2 + a_0^2 + b_0^2 + b_0^2 + b_0^2 + b_0^2$ (6.4.4)

Hence, the optimization problem can be sated as:

"Minimize $\phi(a_0, b_0)$ as given by eq. (6.4.4), subject to eqs. (6.4.3a-h)" The solution to the foregoing problem proceeds as follows: Let f be an 8-dimensional vector whose components are the left-hand sides of eqs. (6.4.3) when all the right-hand sides are set equal to zero, the non-zero terms having been transferred to the left hand side, of course. Let x be a 12-dimensional vector whose components are $\begin{bmatrix} a_{01}, a_{02}, a_{03}, b_{01}, b_{02}, b_{03}, u_1, u_2, u_3, v_{01}, v_{02}, v_{03} \end{bmatrix}^T$. Define a new objective function ψ as

$$\psi = \phi + \lambda^{\mathrm{T}} \mathbf{f}$$
 (6.4.5)

where $\lambda = [\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6, \lambda_7, \lambda_8]^T$ is a vector containing the Lagrange multipliers of the system. The stationarity condition (See Section 1.10) applied to function ψ is

$$\frac{\partial \psi}{\partial x} = \frac{\partial \phi}{\partial x} + \frac{\partial f}{\partial x^{\lambda}} = 0 \qquad (6.4.6)$$

which yields a system of 12 additional equations. System (6.4.6), together with system (6.4.3) constitute a system of 20 equations in 20 unknowns, which are the 12 components of vector x + the 8 components of vector λ . This is a determined system whose roots can be found via the method of Newton-Raphson. Exercise 6.4.1 Solve system (6.4.3a-h), (6.4.6)

6.5 <u>LINKAGE OPTIMIZATION SUBJECT TO INEQUALITY CONSTRAINTS</u>. The class of optimization problems discussed in Section 6.3. does not include any constraints, hence these are called "unconstrained optimization problems". Problems presented in Section 6.4 were formulated as quadratic optimization problems subject to equality constraints. There are several methods of tackling this class of problems, but in that Section only the classical approach, i.e. the Lagrange multipliers, method, was prosented.

Optimization problems subject to inequality constraints arise very frequently in linkage syntheses. For example if the RRRR plane linkage shown in Fig 6.5.1 is synthesized so that its input link be

Fig. 6.5.1 Plane RRRR linkage

a crank, this condition (possibility of 360° rotation) is expressed as [6.7]

a3+a4>a2-a1

and

As another example, assume the transmision angle of the same linkage, μ , defined as the angle between the coupler and the output links, is constrained to lie between μ_a and μ_b , then

µ_a<µ<µ_b

would be the said inequality constraint. The transmission angle μ is clearly given by

μ=φ-8

where ϕ and θ are defined in Fig 6.5.1, except that in this instance ϕ is measured from a line containing the fixed link, i.e. with $\phi_0^{=0}$. Angles ϕ and θ are obtained from Freudentein's equation as

 $k_1 - k_2 \cos \phi + k_1 \cos \psi + \cos (\phi - \psi) = 0$

and

 $\mathbf{r_1}^{+}\mathbf{r_2}^{\cos\theta+}\mathbf{r_3}^{\cos\psi-}\cos\left(\theta-\psi\right)\simeq 0$

the involved coefficients being defined as

and

$$r_1 = \frac{a_4^2 - a_1^2 - a_2^2 - a_3^2}{2a_2a_3}, r_2 = \frac{a_1}{a_2}, r_3 = \frac{a_1}{a_3}$$

As a "rule of thumb", μ is usually constrained to lie between 40° and 140°. This class of problems, then, is of the general type (6.2.1). An extensive account of different methods to solve this problem appears in [6.6]. Fox and Gupta in this reference classify the different methods of solution to this problem as: i) penalty function methods and ii) direct methods. These are outlined next. i) Letting $\phi(x)$ be the original objective function, a new objective function ψ is defined, which "penalizes" violation of the inequality constraints thus ensuring that the optimization search be carried on within the feasible region, i.e, within the subset Ω where all constraints are satisfied. The new objective function or via an "exterior" one. In the first case, it is defined as

Ζ.

$$\psi = \phi(\mathbf{x}) - r \sum_{i=1}^{\mathbf{p}} \frac{1}{\mathbf{h}_{i}(\mathbf{x})}$$

whereas in the second case, as

$$\psi = \phi(x) + r \sum_{i=1}^{P} \left[\max\{0, h_i(x)\} \right]^2$$

where the value of the scalar r is varied at each iteration in a way that it leads to the optimum, namely, assume that ϕ is to be minimized; then, if an interior penalty function is used, r is decreased. Otherwise, r is increased. An algorithm called "Sequential Unconstrained Minimization Technique" (SUMT), implementing the interior penalty function method, has been published and extensively tested. The corresponding computer program, implementing this algorithm as developed by Fiacco and McCormick, appears in [6.8]. ii) Direct methods are those that handle inequalities as such. There are several of this kind, but the most utilized methods in optimal mechanical design are: the method of the feasible directions, the gradient projection method and the complex method.

The method of feasible directions, developed by Zoutendijk [6.9] is intended in principle to handle linear inequality constraints, but nonlinear ones can also be handled if a previous suitable linearization is performed. This method requires first a
• 20.

<u>search direction</u> e and, second, a search distance, s, so that when both are determined, given a current value x of the vector argument, the next value, x_{k+1} , is given by

$$x_{k+1} = x_{k} + s_{k} e_{k}$$
(6.5.1)

where

To find the direction e_k , assume that the inequality constraints are linear, i.e. of the form

||e_k||=1.

Ax+b>0 (6.5.2)

A being anmon matrix (m<n). There are two possibilities, namely, either x lies within the feasible region or it lies on its boundary. If it lies within it, then e_k is just taken as the gradient of the objective function, i.e.

$$e_{k} \stackrel{\text{e}}{=} \frac{\nabla \phi}{||\nabla \phi||}$$
(6.5.3)

where the + sign is taken if ϕ is to be maximized; otherwise, the - sign should be chosen. If, however, $\sum_{k=1}^{\infty} k$ lies on the boundary of the feasible region, then some, say m', of the m inequalities (6.5.2) become equations. If the new value $\sum_{k=1}^{\infty} k + 1$ is not going to violate the constraints (6.5.2), then the search direction and distance should satisfy the inequalities

 $\begin{array}{l} A_{x} + s & A_{e} + b \ge 0 \\ a_{x} + k & a_{x} + b \ge 0 \\ a_{x} - k & b_{x} - a_{x} \end{array}$ (6.5.4)

which constitute a set of m inequalities. However, m' of the components of vector $A_{x,k} + b_{k}$ vanish, as assumed before. Hence, taking c_{k} positive, if (6.5.4) is to be satisfied for all its components, then the search direction e_{k} should satisfy the following inequality

(6.5.5)

Since vector e_{k} must satify a linear inequality, it is most convenient to use a linear norm for it, instead of the Euclidean one, i.e. let

 $\left\| e_{k} \right\|_{1} = \max_{i} \left\{ e_{ik} \right\} = 1$ (6.5.6)

where e_{ik} is the $i\frac{th}{k}$ component of vector e_k . In order to turn the finding of vector e_k into a standard linear programming problem, which requires the sought vector to meet a nonnegativity condition, the following change of variable is introduced

where f is an m-dimensional vector whose components are all unity. Thus, e_{i} is found from the following linear program:

$$\max(\nabla \phi_k)^T (t_k - f)$$

subject to

$$t_{k} + 2f \ge 0$$

and

 $\frac{t}{k} \ge 0$

where the 2n involved inequality constraints arise from (6.5.6). The foregoing procedure to determine e_{k} is due to Glass and Cooper [6.10]. If the inequality constraints are nonlinear, then a local linearization should be performed to find matrix A of (6.5.2) as

$$\frac{\partial h}{\partial x} = x$$

which yields good results if the feasible region is convex. Once the direction search is found, the distance search s_k is determined performing a unidirectional optimization in the direction of $\frac{e}{2k}$. There can arise two possibilities: the first is that the optimizing s_k carries x to a point within the feasible region, in which case no difficulty is present, the other possibility appears when x_{k+1} happens to fall out of the feasible region. In this case, inequality (6.5.4) does not hold any longer for all its components. Assuming that m' of the m inequalities (6.5.4) are violated for the previously found optimizing s_k , then there exist s_{ik} values smaller than s_k (i=1,...,m') for which the

$$a_{i1} + s_{ik} + s_{ik} + b_{ik} = 0, i = 1, 2, \dots, m'$$
 (6.5.8)

where a renumbering of the said relations might have needed be performed. Solving for s_{iv} from (6.5.8),

$$s_{ik} = \frac{a_{ij} x_{jk} + b_{i}}{a_{ij} e_{jk}}$$
(6.5.9)

Hence, the distance search is then taken as

thus completing one iteration of the whole procedure.

The gradient projection method, developed by Rosen [6.11,12], performs the search (for the optimum) initially along the boundaries of the feasible region. The procedure is, as outlinead by Beveridge and Schechter[6.13], the following:

1. Given a point x where r of the inequality constraints become equations, evaluate $\nabla \phi$ at x. The said set of equations is then vritten as

$$g(\mathbf{x}_p) = 0$$

(6.5.10) '

2. Cloulate the projection of the gradient onto the plane tangent to the surface (6.5.9). This projection defines a direction e in space lying in the said tangent plane. Vector e is determined as follows: Let $\frac{d\phi}{ds}$ be the directional derivative of ϕ along direction e, thus

$$\frac{\mathrm{d}\phi}{\mathrm{d}s} = \left(\nabla\phi\right)^{\mathrm{T}} \underset{\sim}{\overset{\mathrm{d}\phi}{\simeq}} \tag{6.5.11}$$

Since e is contained in a plane tangent to (6.5.9),

$$\frac{dq}{ds}(\nabla q) \stackrel{T}{=} \stackrel{e=0}{=} \qquad (6.5.12)$$

vector e being defined as of magnitude unity, i.e.

$$e_{z}^{T}e_{z}=1$$
 (6.5.13)

Define the objective function

.....

$$\psi = \frac{d\phi}{ds} + \lambda_0 \left(1 - e^T e\right) + \lambda_0^T \left(\nabla g\right)^T e \qquad (6.5.14)$$

which accounts for constraints (6.5.11) and (6.5.12). Substitution of of (6.5.10) into (6.5.13) together with the stationarity condition for ψ yield

$$\frac{d\psi}{d\phi} = \nabla \phi + \nabla g \lambda^{-2\lambda} \phi^{\pm 0}$$
(6.5.15)

from which

$$e^{\frac{\sqrt{2}\lambda+\sqrt{4}}{2\lambda_{0}}}$$
 (6.5..16)

which, when substituted in (6.5.11), yields an equation for λ , λ namely

$$(\nabla q)^{T} \nabla q \lambda = - (\nabla q)^{T} \nabla \phi \qquad (6.5.17)$$

 λ_{λ} being computed from

$$\lambda_{\phi} = \frac{1}{2} \sqrt{\left(\nabla\phi\right)^{T} \underbrace{\nablag}_{2} \lambda + \left|\left|\nabla\phi\right|\right|^{2}}$$
(6.5.18)

which follows from the substitution of eq. (6.5.15) into eq. (6.5.12)Hence, e is given as

$$e = \frac{\nabla g \lambda + \nabla \phi}{\left(\nabla \phi \right)^{T} \nabla g \lambda + \left[| \nabla \phi | \right]^{2}}$$
(6.5.19)

- 3. At this stage two possibilities can arise: either e vanishes or it does not. If it does not vanish, intiate a search in this direction until a constraint boundary is found. Let x_p^{t} be the intersection of the line going from x_p in the direction of e, with the boundary. Then, if $\phi(x_p^{t})$ is better than $\phi(x_p)$, one iteration is completed and the procedure is restarted. If, on the other hand, $\phi(x_p^{t})$ is not better than $\phi(x_p)$, perform a unidirectional search along the line connecting x_p and x_p^{t} . Call x_{p+1} the sought optimizing value, and return to step 1 with x_{p+1} being set equal to x_p .
- 4. In case e vanishes, then it could happen that the components of λ have all the same sign or some are zero, thus complying with the Kuhn-Tucker conditions [6.13, p.282]. If this sign is nonnegative, then a minimum has been reached; if nonpositive, then a maximum.

If not all components of λ bear the same sign, then some of these components are deleted from it, keeping only those λ_1 (i=1,2,...,q<r) with the same sign. Next, drop the last r-q components of g(x), i.e., those corresponding to the λ 's with a sign different from those of the λ 's that have been kept. Then restart the procedure at step 2. The PROJG program [6.8pp.399-411] implements Rosen's algorithm. To describe the complex method, due to Box [6.14], some definitions are in order: Given a vector space V of dimension n, the (closed) 6.24

polyhedron imbedded in it with the smallest number of vertices (n+1) is called a <u>simplex</u>. A polyhedron with a larger number of vertices is called a <u>complex</u>. Simplexes in two and three dimensions are the triangle and the tetrahedron, respectively. Complexes in these spaces could be the quadrilateron and the hexahedron, respectively. The complex method of Box proceeds as follows:

- 1. A complex of 2n vertices is defined within the feasible region. There exist some techniques to define these vertices in such a way that they guawantee that all of them fall into the said region, but they are applicable to only a few particular cases. In the absence of a criterion to choose the said vertices, it is advised to assign them randomly, rejecting those that fall out of the feasible region, until the complex is completed.
- Evaluate the objective function at each of the 2n vertices and let x be the vartex where this function attains its worst value.
- 3. Compute the centroid, x_{-c} , of the remaining vertices, i.e.

$$\sum_{n=1}^{2n} \sum_{n=1}^{2n} \sum_{i=1}^{2n-1} \sum_{i=1}^{2n-1} \sum_{i=1}^{2n-1} \sum_{i=1}^{2n} (6.5.20)$$

4. Replace the vertex at x_{w} by a new one, x_{w}^{*} in the following way

$$x' = x - r(x - x)$$
 (6.5.21)

where r is a real positive number whose value is recommended by Box to be taken as 1.3

5, Two possibilities can arise at this stage: either x'_{W} lies within the feasible region or not. If it does, a new iteration can be restarted at stage 2. If it does not, then a new value, x''_{W} , is defined as

$$x_{-w}^{*} = \frac{1}{2} \left(x_{-} + x_{-}^{*} \right)$$

If $x_w^{"}$ again happens to lie outside of the feasible region, a new value is again defined as the middle point between $x_{max}^{"}$ and $x_w^{"}$, until the said new value falls within the feasible region. Once

the rejected vertex has been regenerated, the procedure can be restarted at step 2. If the procedure converges, the complex becomes so small that it can be considered to sink to one single point, which is then taken as the optimizing value x_0 . In practice, the procedure is stopped when the complex has sunk to a size less than a prescribed finite value.

Box's algorithm has been implemented in some computer programs, for example, the one appearing in [6.8, pp. 368-385] and the OPTIM package [6.15, 16]. The latter has been applied very successfully at the University of Mexico in several kinds of problems of mechanical design. When the number of decision variables (dimension of vector x) goes beyond 5, however, it presents convergence difficculties, in which case other method should be used.

Exercise 6.5.1. Repeat the synthesis of Example 6.3.1 imposing the constraint that the transmission angle (See Section 5.2) lie between 40° and 140°

6.26

REFERENCES

- 6.1 Athans M. and P.L. Falb, <u>Optimal Control</u>, McGraw-Hill Book Co., N. York, 1966
- 6.2 Halmos P.R., <u>Introduction to Hilbert Space</u>, Chelsea Publishing Co., N.York, 1957, p.17.
- 6.3 Bowen R.M. and C.-C. Wang, Introduction to Vectors and Tensors. Linear and Multilinear Algebra, vol. 1, Plenum Press, N.York, 1976, p.17
- 6.4 Tomáš J., "The synthesis of mechanisms as a nonlinear mathematical programming problem", <u>Journal of Mechanisms</u>, vol. 3, pp. 119-130, 1968
- 6.5. Sub C.H. and A.W. Mecklenburg, "Optimal design of mechanisms with the use of matrices and least squares", <u>Mechanism and Machine</u> <u>Theory</u>, vol. 8, pp. 479-495
- 6.6 Fox R.L. and K.C. Gupta, "Optimization technology as applied to mechanism design", <u>Journal of Engineering for Industry</u>, Trans. ASME, Series B, vol. 95, May 1973, pp. 657-663.
- 6.7 Prentis J.M., <u>Dynamics of Mechanical Systems</u>, Longman Group Letd., London, 1970, pp.
- 6.8 Kuester J.L. and J.H. Mize, "Optimization Techniques with Portran", McGraw-Hill Book Co., 1973, pp. 412-463
- 6.9 Zoutendijk G., <u>"Methods of Feasible Directions"</u>, Elsevier Publishing Company, Amsterdam, 1960.
- 6.10 Glass M. and L. Cooper, "Sequential search: A method for solving constrained optimization problems", <u>Journal of the Association of</u> <u>Computing Machinery</u>, vol. 12, No 1, 1965,pp.94-120.
- 6.11 Rosen J.B., "The gradient projection method for non-linear programming, Part I, Linear constraints", <u>Journal of the SIAM</u> vol. 8, 1960, pp. 181-127
- 6.12 Rosen J.B., "The gradient projection method for non-linear programming, Part II, Non-linear constraints", <u>Journal of the</u> <u>SIAM</u>, vol. 9,1961, pp. 514-532.
- 6.13 Beveridge G.S.G. and R.S. Schechter, <u>"Optimization:Theory and</u> <u>Practice</u>", McGraw-Hill Book Co., N.York, 1970, pp.469-472.

- 6,14 Box M.J., "A new method of constrained optimization and a comparisson with other methods", <u>Computer Journal</u>, vol. 8, 1965, pp. 42-52
- 6.15 Evans L.B., Optimization Techniques for Use in Analysis of <u>Chemical Processes</u>, A Set of Notes, Massachussetts Institute of Technology, Cambridge (U.S.A), 1971
- 6.16 Murray M.A., E. Chicurel, L.B. Evans, P. Lara, A. Guarda, J.F. Albarrán, <u>Aplicaciones de Computación a la Ingeniería</u>, Limusa, C. de México, 1975.

. • . . · · •

• • • ı -. .

- • . . , . · · · •

centro de educación continua división de estudios de posgrado facultad de ingenieria unam

ANALISIS SINTESIS Y OPTIMACION EN INGENIERIA MECANICA

7. COMPUTER - AIDED ANALYSIS AND SYNTHESIS OF CAM MECHANISMS

• .

DR, JORGE ANGELES ALVAREZ

.

AGOSTO, 1980

.

•

• • · • 1 ι. • • • • . • -3 , , . .

"COMPUTER-AIDED ANALYSIS AND SYNTHESIS OF CAM MECHANISMS"

Jorge Angeles Facultad de Ingeniería Universidad Nacional Autónoma de México Apdo. Postal 70-256 México 20, D. F., México

<u>ABSTRACT</u>. The applicability of both analog and digital techniques to the analysis and the design of cam-follower pairs is presented. It is assumed that either an analog or a digital computer is available for the analysis or the synthesis of follower motions produced by cams, for the corresponding equations are so numerically involved that they are impossible to be solved by any other means (e.g. geometrical methods). It is shown that optimal designs of cams are possible to be obtained by the methods here presented, these designs being optimal in the sense of providing a cam of minimum size for the maximum allowable values of certain parameters such as the pressure angle.

Symbols of operators for analog realizations are defined in the Appendix.

<u>INTRODUCTION</u>. The litterature concerned with the^{β} analysis and the design of cams mainly deals with geometrical methods ([1]* to [5]) and only a few ([θ] to [8]) introduce analytical techniques (i.e. techniques dealing with equations). To the knowledge of the author, little attention has been devoted to obtain constraint equations of motion

*Numbers in brackets designate references at end of paper.

for any cam-follower pair, which allow the analyst or the designer to use the modern techniques available to solve the class of mathematical problems arising from these analyses. It is the aim of this paper to obtain the said constraint equations for two different types of followers and solve them via analog or digital methods. Both the analysis and the design processes are discussed and, as to the latter, a procedure to obtain optimal designs is outlined.

It is pointed out that, contrary to the case of linkage synthesis, where the design parameters form a finite set, in the cam synthesis process, the parameters to be obtained not only form an infinite set, but actually constitute a continuum, i.e. the totality of values of $\rho(\theta)$, for θ .contained in the closed interval $[0, 2\pi]$ $\rho = \rho$ (8) being the polar equation of the cam profile, as shown in Fig. 1. Thus, in the case of came, the design can be obtained via a continuous process, as the one provided by analog computers (of course, the applicability of digital computers is not discarded by this fact). The importance of this is twofold: i) The output of an analog computer is instantaneously read out via a plotter or an oscilloscope, thus allowing to adjust design parameters continuously to obtain optimal designs. ii) Many digital simulators of dynamical systems are programmed from an analog computer realization, thus simplifying the programming labor and saving time and effort.

On the other hand, the numerical output obtained from a digital computer can be directly fed into a numerically controlled machine tool to produce the optimal design obtained via a digital technique. 4

Figure 1. Polar coordinates of the points on the profile of a cylindrical com

ANALYSIS AND DESIGN OF A CAM WITH A KNIFE-EDGED FOLLOWER. Consider the cylindrical cam shown in Fig. 2, where e is the offsetting of the follower path.

From this figure, the relations

$$\mathbf{s} = \rho \quad \sin \left(\theta + \psi \right) \tag{1}$$
$$\mathbf{e} = \rho \quad \cos \left(\theta + \psi \right) \tag{2}$$

follow. The variable $s \{ \psi \}$ is the displacement of the follower, the output of the mechanism. In the same figure, C is a line fixed to the carn, thus revolving counterclockwise at the rate ψ , ψ being the angle between lines C and F, the latter being fixed to the frame of the layout. For each value of ψ contained in $[0, 2\pi]$, equations (1) and (2) constitute a system of nonlinear algebraic equations in the two unknowns θ and s (algebraic equations as opossed to other kinds such as differential or integral equations), if the carn profile $\rho = \rho(\theta)$ is known, as is the case in the analysis of a given mechanism. The unknowns are θ and ρ if the desired output $s(\psi)$ is given, as occurs in the design of a carn to provide a given motion of the follower.

The analog computer realization of system (1), (2) for analysis is shown in Fig. 3, whereas for synthesis of a cam profile, it is shown in Fig. 4. On the other hand, eqs. (1) and (2) can be solved numerically via Newton-Raphson's method [9] or any other one to solve nonlinear algebraic systems. The algorithm suggested for analysis is the following:

Choose a set $\{\psi'\}$ of values of ψ in $[0, 2\pi]$, preferably equally

i.

Figure 4. Analog realization of the synthesis equations of the com profile for a knife-edged follower spaced, but there is no reason to impose this condition. For each value ψ^i , solve equation (2) via Newton-Raphson's method, thus obtaining the set $\theta^i = \theta$ (ψ^i). In order to accelerate the process, choose the initial guess θ^i_0 to start the iteration at $\psi = \psi^i$ as the value $\theta^{i+i} = \theta$ (ψ^{i-i}), obtained in the previous iteration cycle. Because of the continuity of θ with respect to ψ , θ^i is close to θ^{i+i} if ψ^i and ψ^{i+i} are reasonably close.

Applying Newton-Raphson's algorithm, the iterative scheme is

$$\mathbf{s}^{i} = \rho(\theta^{i}) \sin(\theta^{i} + \psi^{i}) \qquad (4)$$

Example 1. Obtain the displacement $s(\psi)$ of the knife-edged follower of a cylindrical cam having the profile given by the cardioid $\rho = 2 - \cos \theta$, with e = 0.5, both ρ and e having the same units of length.

Equations (3) and (4) were implemented in a digital computer, thus obtaining the values shown in Table 1, the corresponding plot appearing in Fig. 5.

TABLE T ANALYSIS OF A RETER-EUGED FOLLCHER CAN

INITIAL GUESS

PSI = 0.

5 = 0+ ""THETA"" \$900E+02"

VARIABLE TAM IS THE ERROR SIZE

•		•	•	
PSI	ТНЦТА	S	TAH	ITER
(DEGREES)	CDEGREES)	- Ку₊ ог LENgTн≯	CDIMENSIONLESS	i)
		-		
ΰ.	.7296885+02	. 1 • 342AE+01	0.	Ľ,
106000F+02	1666.6382402	147-891-01	1.511+60r=06	د ۱
2000000000000	.476131.+02	.1930165401	.7720105-06	
.30000CE+62	. 3493636+02	1060640401	. 420240176-00	
. 4000UCE +0.2		.051.001.400	. 5422055-00	·•
-20100000	1054625+02	.435/450400	.2283036-07	יי א
. 600000E+02	H. 342028. 400	· 0.004000		۳ د
.7000001+62	- 454204C+01	+ 1606201+00 	• 304/////////////	נ
.5650.651+62	- 1866192409	0022071400	10046416-00	ر م
.96600001+62	- 94/3 - 7-4-9	000.045400	10426976711	"
.1000002:02	=.35(4150+02	1074025461	+342600E=10	4. 5.
.11000000+03	H. 4317161+02	11619232401	1090705-00	4 /.
1260065463	H.5130040400	+110019L+01	•195970 <u>6</u> -09	
13500000403	- 6054104400	1.05105401	+317563E-09	
. 1/600000000	- 1763H0.1400	140719L+01 17072+01	**2200000-09	м к
1566066403	- 7610072400	+ LS45376+01 1+0+655+01	•494767L=09 ▲0 ⁰ 745E=00	A
1660065403	- • / 0449/1 • UZ	* (643435+01	1494/022-09	44 N
1700007403	- 00001358L+02	1345752+01	+430557E=09	41
186000000000	- 1000000000	·200513L+01	·320142L=09	4
	- 1102905E+03	.216763L+U1	18/1750-09	4
200000000000		.2323/41.+01	·101863E-09	4
-20000001703	- 1200521.00	•2471492+01	2910366-10	4
2205005403	13G0552+03	·260667E+01	1425198-10	4
.22000000+03	- 146397: +03	·272499L+01	0+	4
•230000E+03	=+1560+6 <u>(</u> +03	+2822486.+01	0	4
24000CE+03	-+1597971.+03	289502L+01		- 5
.25000000+03	=.167647£+03	•294153E+01	·184940E-06	3
.2600001+03	1795942+03	•2y5u01C+01	.417640E=08	3
• 270000E+03	• 1896405+03	-2943721+01	.419110E-06	3
.2000001+03	1997892+03	-269613E+01	 	4
2000001.403	21CD49E+03	.282164E+01	■14>519C+10	4
. 3000000000000000000000000000000000000	2204335+03	271552E+01	160071E-09	
1010010E+03	2369602+03	·258189E+01	·785803E-09	4
1320000L+03	241656E+03	+242372E+01		4
.3300001+63	7+2525972+03	+2264742+01	.1001212-07	4
- 340000E + 03	- 203/112403	+204944[+01	·330149E-07	4
.33000012+03	2751782+03	+184314E+D1	.953587E-07	4
- ************************************	~ ↓2870312+03	1632241.+01		4

Figure 5. Displacement of the knife-edged follower of the cylindrical cam given by the profile ρ =2-cos θ , with offsetting e=0.5

0

OPTIMAL SYNTHESIS OF A KNIFE-EDGED FOLLOWER CAM. In the synthesis process the unknown variables are $\theta(\psi)$ and $\rho(\psi)$ which provide $\rho = \rho(\theta)$, the polar equation of the cam profile. In this case, Newton-Raphson's iterative Scheme [9] for a nonlinear algebraic system $\underline{f}(\underline{x}) = \underline{0}$ is applied. Letting \underline{x}_k be the k th value of vector \underline{x} , the (k + 1) at approximated value of the roots of the vector equation $\underline{f}(\underline{x}) = \underline{0}$ - where \underline{f} and \underline{x} are of the same dimension - is .

$$\frac{\mathbf{x}}{\mathbf{x}_{k+1}} = \frac{\mathbf{x}}{\mathbf{x}} - \underline{\mathbf{J}}^{-1}\left(\underline{\mathbf{x}}_{k}\right) \underline{\mathbf{f}}\left(\underline{\mathbf{x}}_{k}\right), \qquad (5)$$

<u>J</u>(<u>x</u>) being the Jacobian matrix of <u>f</u> with respect to <u>x</u>, i.e. the J_{1m} element of <u>J</u> is given by

$$J_{1m} = \frac{\partial f_1}{\partial x_m}$$
(6)

For the particular system under consideration, let

$$\mathbf{x}_1 = \mathbf{\Theta} \tag{7}$$

$$x_2 = \rho$$
, (8)

$$f_1 = \rho \sin(\theta + \psi) - s, \qquad (9)$$

$$f_2 = \rho \cos(\theta + \psi) - e_{,}$$
 (10)

in eq. (5), thus obtaining the following iterative scheme.

$$\theta_{k+1} = \theta_k + \frac{s(\Psi_1)}{p_k} \cos(\theta_k + \Psi_i) - \frac{e}{p_k} \sin(\rho_k + \Psi_i), \quad (11)$$

$$\rho = s(\psi_i) \sin(\theta_k + \psi_i) + e\cos(\theta_k + \psi_i)$$
(12)

Again, as in the case of the analysis of a given mechanism, the initial

guess (θ_0 , ρ_0) for $\psi = \psi^i$ is taken as (θ^{i+1} , ρ^{i-1}), the solution to system (1), (2) for $\psi = \psi^{i-1}$, in order to accelerate the convergence.

The important parameter in this design is the pressure angle α , defined as the angle between the follower path and line N, normal to the cam profile, as shown in Fig. 6. Notice that the inclination of line N with respect to line OF can be greater or less than 90°, the sign of α thus changing accordingly. Since the absolute value of α is the relevant parameter, the pressure angle is given by

$$\alpha = \left[\phi + \theta + \psi - \pi \right] . \tag{13}$$

From a well known result in analytic geometry [10], the following relations are obtained

$$\phi = \tan^{-1} \frac{\rho}{\rho'(\theta)} , \qquad (14)$$

or

$$\phi = \tan^{-1} \frac{\rho \theta'(\psi)}{\rho'(\psi)}, \qquad (14a)$$

where the chain rule has been applied. Equations (13) and (14a) allow one to compute $\alpha(\theta)$ and hence control this variable, except that $\rho'(\theta)$ is not known in the synthesis process. However, this value can be obtained in terms of θ , ρ , ψ , and $s(\psi)$, as is next shown.

Differentiation of eqs. (1) and (2) with respect to θ and elimination of ψ' (θ) leads to

$$\rho'(\theta) = \frac{\rho s'(\psi) \sin(\theta + \psi)}{s'(\psi)\cos(\theta + \psi) - \rho}, \qquad (15)$$

which is the desired expression, needed to compute α (θ).

Figure 6. Pressure angle of a cylindrical cam with aknife-edged follower

;

۰.

In cam design practice it is customarily recommended to keep the value of α below 30° in order to ensure a good mechanical advantage of the mechanism. Experienced designersknow that if the maximum value of α becomes too large, a way of decreasing this value is to increase the radius of the "base circle" [11] of the cam. How much to increase this radius is something that is left to their expertise and, to the knowledge of the author, there are no systematic means of performing an optimal design. Thus, the designer has to proceed by trial and error \cdot geometric designs which, in addition to being tedious, are very inaccurate.

An alternative to geometrical methods of design is next proposed:

- i) Let (θ_0^1, ρ_0^1) be the initial guess to start the iterates for $\psi = \psi^1 = 0$. Determine the cam profile for this guess, recording the corresponding values of α .
- ii) If the maximum value of α becomes too large, increase ρ_0^{1} , keeping θ_0^{1} as it is. In case the said maximum value of α becomes too small, the cam size is too big, thus a reduction of ρ_0^{1} is possible, provided α is not made too large.
- iii) Proceed of course, automatically in a digital computer by trial and error until the maximum value of a is 30°, thus obtaining the cam of minimum size for which the maximum value attained by the pressure angle is allowable.

The advantage of the foregoing method is that it can easily be implemented in a digital computer so that the trial and error procedure is automated. One more systematic way to proceed is to differentiate the pressure ł

angle and equate its derivative to zero, thus obtaining, with the other constraint equations, a nonlinear algebraic system of dimension three, for unknown values ψ^* , θ^* , ρ^* , at which a equals a_M , the maximum allowable value of α . Since a nonlinear algebraic system has multiple roots, it may become very difficult to find the useful one, i.e. one which is kinematically acceptable. This procedure, though highly systematic, will not be necessarily faster and more accurate than the one previously proposed.

Example 2. Synthesize the cam profile that yields the following displacement of its knife-edged follower:

$$s(\psi) = c + sin^2 \frac{\psi}{2}$$
, (16)

keeping the pressure angle below 30° and the cam size as small as possible. In eq. (16) c is the radius of the base circle, a parameter to be adjusted to yield the optimal desing.

The iterative scheme was implemented in a digital computer with the initial guess:

For $\psi = 0,$

$$\theta = 1 \text{ rad}$$
 (17)

$$\rho = 1, 2, 3, \ldots, 10.$$
 (18)

It was found that the optimal design laid between $\rho = 1.0$ and $\rho = 2.0$. Then a search was performed between 1.0 and 2.0, with an interval length of 0.1, the result being that the said optimizing value of ρ laid between 1.6 and 1.7. At each search, one digit was gained in the optimizing value of ρ , having finally obtained the optimizing value $\rho = 1.6234$. The output of the procedure is shown in Table 2 and the corresponding cam profile in Fig. 7.

ANALYSIS AND SYNTHESIS OF A FLAT-FACED FOLLOWER CAM.

Consider the mechanism shown in Fig. 8, comprised of a disk cam and a flat-faced follower, with offsetting e. Let lines C and F be fixed to the cam and to the frame of the layout, respectively. Angles ψ and 8 have the same meaning as in Fig. 2. Angle ϕ is that formed by the radius vector OA and the tangent to the cam profile at A - i.e. the flat face of the follower. Finally, s (ψ) is the displacement of the follower.

From Fig. 8 it is clear that

$$\mathbf{s} = \rho \sin \left(\left. \mathbf{\theta} + \psi \right) \right), \tag{19}$$

$$\phi = \pi - (\theta + \psi), \qquad (20)$$

$$p'(\theta) \tan \phi \neq \rho(\theta)$$
 (21)

Substituting eq. (20) into eq. (21), one obtains

$$\rho'(\theta)\sin(\theta + \psi) + \rho(\theta)\cos(\theta + \psi) = 0.$$
 (22)

Equations (19) and (22) are the constraint equations for both analysis and synthesis. Consider first the analysis of a given carn and follower mechanism, with $\rho = \rho (\theta)$ known. As in the analysis of a kinfe-edged follower carn, for each value ψ in $[0, 2\pi]$, eq. (22) is a nonlinear algebraic equation in the unknown $\theta = \theta (\psi)$; hence, Newton-Raphson's method can also be applied. Substitution of the computed values θ into

Figure 8. Cylindrical cam with a flat-faced follower

TABLE 2 SYNTHESIS OF A KNIFE-EDGED-ENLLOWER-CAN - -----

••••

	· •	INITIAL GUD	ss		
PSI	= 0,	RHC = →16	2340E+01	THETA = +5	72958E+02
	. VARTAB	LE TAH IS THE	ERROR SIZE		· · · · ·
PSI	8.0	THETA	ALPHA	TAM ,	NO. ITER
(DEGREES)	CLENGTH UNIT:	s) (DEGREES)	(DEGREES)-	- CDIHENSIONLE	\$ S)
CDEGREES) 0. 100000E+02 200000E+02 300000E+02 400000E+02 500000E+02 500000E+02 700000E+02 500000E+02 900000E+02 100000E+03 110000E+03 120000E+03 140000E+03 140000E+03 140000E+03 170000E+03 170000E+03 190000E+03 200000E+03 200000E+03 22000E+03 20000E+03 20000E+03 20000E+03 20000E+	<pre>(LENGTH UNIT) 14546/E+01 146181E+01 146181E+01 151775E+01 151775E+01 156504E+01 162156E+01 169163E+01 176724E+01 176724E+01 176724E+01 201586E+01 201586E+01 235280E+01 236880E+01 241087E+01 241087E+01 241087E+01 235280E+01 235280E+01 241087E+01 241087E+01 235280E+01 235280E+01 241087E+01 235280E+01 235280E+01 235280E+01 235280E+01 235280E+01 235280E+01 235280E+01 235280E+01 235280E+01 235280E+01 235280E+01 235280E+01 235280E+01 235280E+01 235280E+01 193187E+01 193187E+01 184814E+01</pre>	<pre>s) (DEGREES) *690963E+02 *599987E+02 *500968E+02 *407656E+02 *126081E+02 *126081E+02 *126081E+02 *356503E+01 *149999E+02 *243611E+02 *337908E+02 *430946E+02 *337908E+02 *430946E+02 *526754E+02 *625338E+02 *6255338E+02 *625338E+02 *625338E+02 *6255338E+02 *625535E+03 *111970E+03 *132270E+03 *132270E+03 *13235E+03 *13355E+03 *13355E+03 *13355E+03 *13355E+03 *13355E+03 *13355E+03 *13355E+03 *13355E+03 *13355E+03 *13555E+03 *13555E+03 *13555E+03 *13555E+03 *13555E+03 *13555E+03 *13555E+03 *135555E+03 *135555E+03 *1355555555 *13555555555555555555555555555555555555</pre>	<pre>CDEGRELS)- 201037E+02 167407F+02 132589E+02 989596E+01 -686728E+01 237363E+01 237363E+01 244615E+00 633763E-09 -222864E+00 633763E-09 -222864E+00 848064E+00 181320E+01 306109E+01 454053E+01 620597E+01 620597E+01 620597E+01 1993679E+01 119324E+02 180674E+02 180674E+02 180674E+02 219829E+02 237938E+02 269387E+02 269387E+02 269387E+02 269387E+02 291517E+02 -291517E+02 -201030E+02 -291517E+02 -291517E+02 -201030E+02 -291517E+02 -201030E+02 -291517E+02 -201030E+02 -201050E+02 -20100E+02 -20100E+02 -20100E+02 -20100E+02 -20100E+02 -20100E+02 -20100E+02 -20100E+02 -20100E+02 -20100E+02 -20100E+02</pre>	- (DIMENSIONLE - 327525E=06 - 212474E=06 - 299610E=09 - 124064E=08 - 277136E=08 - 515865E=08 - 965999E=08 - 323894E=07 - 234583E=07 - 112373E=07 - 770273E=08 - 565103E=08 - 278822E=08 - 174179E=08 - 937965E=09 - 377701E=09 - 377701E=09 - 377701E=09 - 377701E=09 - 377701E=09 - 377701E=09 - 318241E=08 - 493279E=08 - 318241E=08 - 493279E=08 - 697645E=08 - 114461E=07 - 134362E=07 - 148723E=07	
+200000E+03 +300000E+03 +320000E+03 +330000E+03 +340000E+03 +350000E+03	<pre>+1/0/24E+01 +169163E+01 +162354E+01 +156504E+01 +156504E+01 +151775E+01 +148303E+01 +146181E+01</pre>	- 227192E+03 - 227192E+03 - 237937E+03 - 246632E+03 - 259234E+03 - 269703E+03 - 269001E+03	·2977696+02 ·299997E+02 ·289805E+02 ·289805E+02 ·276260E+02 ·256689E+02 ·231324E+02	•134400E-07 •148792E-07 •131171E-07 •103840E-07 •714960E-08 •407720E-08 •172395E-08	4
+360000E+03	•14546/E+U1	₩•290104E+03	+201037E+02	•398761E-09	4

۰.

eq. (19) yields the desired displacement $s^{i} = s(\psi^{i})$. The iterative scheme for eq. (22) is the following:

$$\theta_{k+1} = \theta_{k} - \frac{p'(\theta_{k}) \sin(\theta_{k} + \psi^{i}) + p(\theta_{k}) \cos(\theta_{k} + \psi^{i})}{\left[p''(\theta_{k}) - p(\theta_{k})\right] \sin(\theta_{k} + \psi^{i}) + 2p'(\theta_{k}) \cos(\theta_{k} + \psi^{i})}$$
(23)

The initial guess θ_{ϕ}^{1} is given by the analyst and the subsequent guesses θ_{σ}^{i} are given by the previously found values θ (ψ^{i+1}), as in the case of the knife-edged follower.

Once $\theta(\psi^{i})$ is found, the displacement $s(\psi^{i})$ is computed as given by eq. (19), i.e. as

$$s(\psi^{i}) = \rho(\theta^{i}) \sin(\theta^{i} + \psi^{i}),$$
 (24)

where

$$\boldsymbol{\theta}^{i} = \boldsymbol{\theta} \left(\boldsymbol{\psi}^{i} \right) \tag{25}$$

Alternatively, eqs. (19), and (22) can be realized in an analog computer diagram, as shown in Fig. 10, for the analysis of the motion of the flatfaced follower.

Example 3. Obtain the displacement $s(\psi)$ of the flat-faced follower of an eccentric circular cam of radius a = 1.0 and accentricity e = 0.5 (both a and e have the same units of length), whose profile is given by the equation

$$\rho(\theta) = e \cos \theta + \sqrt{a^2 - e^2 \sin^2 \theta}$$
 (26)

The iterative scheme (23) was implemented in a digital computer, the corresponding results being shown in Table 3 and Fig. 9.

21

2

TABLE 3 ANALYSIS OF A FLAT+FACED FOLLOWER CAN THESE ARE THE VARIABLES PSI/THETA/TUL/MAX/ IN THIS ORDER .150000E+01 .100000E-05 99 Ο.

VARIABLE TAN IS THE ERRUR SIZE

PSI	THETA		\$			TAN	ITER
(DEGREES)	(DEGREES)		(U+ QF	LENGTH.	>	(NUMBER)	(NUABER)
0.	7506385+000		10000	105+01		.1328071.000	3
. 100000E+02	.6679346+02		. 10434	115+01		. 1373536-00	3
. 2000306402	.5774855+02	•	22401	1 - + 0 1		.1875420-00	1
. 30000000 +02	.4910665402		. 11250	0F+0:			1
.4000002000	. 4063085+02	•	. 11407	06+01		.153904C=10	ž
.500000E+02	.3231906+02		. 11015	515401		.0674031 = 11	.3
.600000E+02	.2413335+02		12165	1E+01		.6637060-11	
.70000002+02	.1603926+02		.12345	25+0:	-	A.	3
.200000E+02	- 800484F+01		12462	05+01		ů.	ĩ
.900001E+02	458365E-04		12500	02+01		A861670-06	ā
.10000000000	- .800493€+01	-	.12262	205+01		+526419E=06	2
110000E+03	-160393F+02		.12345	25+01		9300356-07	2
120000E+03	-+241333E+02		.12165	15+0:		A134911E=07	2
.130000E+03	323190E+02		.11915	1E+01		+307985C+06	2
.14000UE+03	406308±+02		.11607	0E+01		0.	3
.150000E+03	491067E+02		.11250	06+01		.848931E-11	3
.160000E+03	+.577885E+02		10855	05+01		0.	3
.17000vE+03	667235E+02		.10434	1E+01		.124958Ľ=10	3
.1800002+03	- .759638E+02		.10000	10E+01		•5487900™10	3
190000E+03	₩,855668E+02		.95650	00+38		i36416C=09	3
.2000002+03	9559302+02		.91449	95E+00		.2703820-09	3
.210000E+03	106102E+03		. 57500	00+300		.447913E=09	3
.220000E+03	- .117146£+03		.83930)3E+00		.548030Ľ−∂9	3
.230000E+03	1287532+03		.8084	19E+00		.4597542=09	3
.240000E+03	~.140935E+03		•7834	94E+00		.224805€"09	3
.250000E+0j	+.153623E+03		.76507	75+00		•434166E-10	3
.260000E+03	→ .166704E+03		.75371)8E+00		0.	3
.270000E+0j	1000002+03		.75000	00+300		+150541E=08	2
.2800002+03	193296E+03		.75379	∂£+00		.296404C=06	2
.290000E+03	≓ .206377E+03		.76507	72+00		■121200E=10	3
.3000002+03	- .219065E+03		.78349	74E+00		▲2055250*09	З.
.310000E+03	· ·231242E+03		.50848	39E+00	<u>-</u>	.753569E™09	3
•320000E+03	- .242854£+03		.83930)3E+00		123745E +08	3
.3300002+03	.253898E ÷03		.87500	00E+00		•132339 <u></u> 6~08	3
.340000E+03	+,264407E+03		.91449	95E+00		.958613E~09	3
.350000E+03	274433E+03		.95658	86 + 00		÷537749E=09	з
.360000E+03	284036E+03		.10000	0E+01		249510E=09	з

ţ.

.

....

.

.

¢

رت ا

Figure 10. Analog realization of the equations for the analysis of the displacement of the flat-faced follower of a cylindrical cam

.

ξ.

OPTIMAL SYNTHESIS OF A FLAT-FACED FOLLOWER CAM. The

synthesis process for this type of cams is essentially different from its analysis, for the synthesis equations (19) and (22) are not algebraic in both

6 and ρ , since eq. (22) contains ρ' (θ). Hence, Newton-Raphson's method is not applicable any more, and a routine for the integration of ordinary differential systems is to be used. For this purpose, it is necessary to express eqs. (19) and (22) in standard form [12], which is done next.

Differentiation of eq. (19) with respect to Ψ , together with eq. (22) leads to

 $\mathbf{s} \cdot (\psi) = \rho(\theta) \cos(\theta + \psi)$ (27)

Differentiating the latter equation with respect to Ψ once again, together with eq. (22), yields

$$\theta'(\psi) = \frac{s''(\psi) + \rho \sin(\theta + \psi)}{\rho'(\theta) \cos(\theta + \psi) - \rho \sin(\theta + \psi)}$$
(28)

From eqs. (19), (22) and (28),

$$\theta'(\psi) = - \frac{\left\{s(\psi) + s''(\psi)\right\} \sin(\theta + \psi)}{p(\theta)}$$
(28a)

$$\rho'(\psi) = [s(\psi) + s''(\psi)] \cos(\theta + \psi).$$
 (29)

Equations (28a) and (29) constitute a nonlinear ordinary differential system of dimension two, with the initial values

$$\Theta_0 = \Theta (\psi_0), \ \rho_0 = \rho (\psi_0), \tag{30}$$

given. It is in the standard form of state variables to be solved by a suitable routine or to be realized in an analog computer. The synthesis equations, (28) and (29), are realized in Fig. 11.

The pressure angle for this type of follower is zero for any configuration, thus, it is not a relevant design variable. The counterpart of the pressure angle, in this case, is the offset \overline{BA} , of Fig. 8, between the point of contact A and the axis of the follower path. Denoting this length by x, it is given by

$$\mathbf{x} = \mathbf{P}\cos\left(\theta + \psi\right) - \mathbf{e}. \tag{31}$$

For an optimal design it is required to keep the (absolute) value of x below certain allowable maximum x_M , minimizing the cam size. In this case, if x is made too small, the cam size is too big; thus, the cam size cannot be diminished without any constraint for, if it is made too small, the offset x becomes too big. For this reason, the optimal design is that for which the maximum absolute value of the offset x is x_M .

The procedure to obtain the optimal design for this type of follower is suggested to be similar to the case of a knife-edged follower, i.e.

- i) Integrate system (28a), (29) with the initial values θ_0 , ρ_0 and record the value x.
- ii) If max $|x| > x_M$, increase $0 \le 6 \le 2\pi$

 ρ_0 , keeping θ_0 as it is. If that maximum value is below x_M decrease ρ_0 , keeping the same initial value θ .

iii) Proceed by trial and error until max $|x| = x_M$.

Figure 11. Analog realization of the equations for the synthesis of the cam profile for a flat-faced follower

Example 4. Design the profile of a flat-faced follower cam that yields the follower displacement given by

$$s(\psi) = c + \sin^2 \frac{\psi}{2}$$
,

so that this design is of minimum size and the offset x attains a maximum (absolute) value of 10% of the constant c. This constant is the radius of the base circle of the cam. Assume e = 0.

The cam profile synthesis was performed via digital computation for the following initial values:

$$\psi_0 = 0^0$$
 , $\theta_0 = 90^\circ$, $\rho_0 = 1, 2, ..., 10$

It was found that the optimizing value of p_0 is 5.0. The numerical results are shown in Table 4, the corresponding profile, which turned out to be a circle - as it should be - appearing in Fig. 12.

<u>CONCLUSIONS.</u> In Tables 1, 2 and 3 it is seen that the procedure converges very quickly, in at most five iterations (except for a singularity at $\Psi = 90^{\circ}$, in Table 3 of Example 3), when Newton-Raphson's algorithm is used. Column headed ITER gives the number of iterations required to obtain convergence, where the convergence criterion was takes as

$$||x_{k+1} - x_{k}|| < 10^{-6} ||x_{k}||$$

the symbol $|| \cdot ||$ meaning the norm [13] of the argument. This norm was taken as the sum of the absolute value of the components of the vector under consideration. It is called TAM in the program.

AKNOWLEDGEMENTS. This research project was completed under the sponsorship of the Graduate Division (División de Estudios Superiores) and

PSI	THETA	άθο	OFFSET
CONGREES	(DEGREES)	(U. DF LENGTH)	(PERCENT)
0.	. 9000000E+02	.5000000E+01	.2563344E+09
.1000000E+02	.7900660E+02	.5008349E+01	.1736483E+01
.2100000E+02	.6696111E+02	.5036398E+01	.3563682E+01
.3100000E+02	.5609310E+02	.5077950E+01	.5150385E+01
.4100000E+02	.45536051+02	.5133137E+01	.6560595E+01
.51000002+02	.34/14442+62	<pre>•5199879E+01 •5275751E+01 •5358113E+01 •5435526E+01 •5522681E+01 •5608482E+01</pre>	.7771455E+01
.51000002+02	.24245242+02		.8746204E+01
.71000002+02	.13938072+02		.9455193E+01
.50000002+02	.48024562+01		.9348085E+01
.50000002+02	.51944322+01		.1000001E+02
.10000002+03	.15036852+02		.9848085E+01
.1100060E+03	2473617E+02	.5690441E+01	.9392933E+01
.1200000E+03	3430662E+02	.5766282E+01	.6660260E+01
.1300000E+03	4376439E+02	.5833981E+01	.7660450E+01
.1400000E+03	5312700E+02	.5891795E+01	.6427881E+01
.1500000E+03	6241285E+02	.5936278E+01	.5006004E+01
.170000000+03	8063010E+02	•5993034E+01	.1736483E+01
.180000000+03	90000000E+02	•5993034E+01	.1015889E=06
.1900000000+03	9916990E+02	•5993034E+01	1736483E+01
.2000000000+03	1063592E+03	•5972296E+01	3420204E+01
.2100000000+03	1175871E+03	•5938278E+01	500c004E+01
.2200000E+03 .2400000E+03 .2500000E+03 .2600000E+03 .2700000E+03	1268/36E+03 1362356E+03 1456934E+03 1552638E+03 1649632E+03 1748056E+03	<pre>+>891795E+01 +5833981E+01 +5766282E+01 +5690441E+01 +5608482E+01 +5608482E+01 +5522681E+01</pre>	6427881E+01 7660450E+01 8660260E+01 9396933E+01 9848085E+01 1000001E+02
.2800600E+03 .2900000E+03 .3000000E+03 .3100000E+03 .3200000E+03 .3300600E+03	-+1848025E+03 -+1949614E+03 2052850E+03 -+2157700E+03 -+2264060E+03 -+2371754E+03 -+2480526E+03	•5435526E+01 •5349663E+01 •5267B27E+01 •5192752E+01 •5127061E+01 •5073151E+01	9842085E+01 9396933E+01 866026CE+01 7660450E+01 6427881E+01 5000004E+01
.35000002+03	2590067E+03	•5008349E+01	1736483E+01
.3600000E+03	2700000E+03	•5000000E+01	1720596E-07

١.

Figure 12. Can profile that generates the displacement $s=sin^2 \psi/2+C$ of a flat-faced follower, so that the contact point has a maximum offsetting of 10%. C was found to be 5.0 (u. of length)

the Department of Mechanical and Electrical Engineering of the School of Engineering of the University of Mexico (Universidad Nacional Autónoma de México).

References:

- Prentis J. M., Dynamics of Mechanical Systems. Longman Group Ltd., London, 1970, pp. 22-42.
- 2. Tao D. C., Fundamentals of Applied Kinematics, Addison-Wesley Publishing Company, Palo Alto, Cal., 1967, pp. 151-223.
- Molian S., The Design of Cam Mechanisms and Linkages, Constable & Company, Ltd., London, 1968, pp. 9-110.
- 4. Shigley J., Theory of Machines, McGraw-Hill Book Company, N. York, 1961, pp. 272-304.
- 5. Mabie II.H. and Ocvirck F. W., Mechanisms and Dynamics of Machinery, John Wiley and Sons Inc., N. York, 1963, pp. 44-50.
- 6. Cowie A., Kinematics and Design of Mechanisms, International Textbook Company, Scranton, Penn., 1961, pp. 325-376.
- Mischke C. R., An Introduction to Computer Aided Design, Prentice-Hall, Englewood Cliffs, N. Jersey, 1968, pp. 134-147.
- 8. Mabie H. H. and Ocvirck F. W. (opcit.) pp. 61-82.
- Isaacson E. and Keller H. B., Analysis of Numerical Methods, John Wiley and Sons, Inc., N. York, 1966, pp. 85-123.
- Ayres, Jr. F. Calculus, McGraw-Hill Book Company, N. York, 1964, pp. 102-103.
- 11. Tao D. C. (op.cit.), pp. 217, 218
- 12. Isaacson E. and Keller H. B., (op. cit.), pp. 418-420.
- 13. Isaacson E. and Keller H. B., (op.cit.), pp. 1-17.

APPENDIX

.

Figure 13. Definition of symbols for operators in analog realizations

32;

÷

÷.,

"Analyst care Condense von Kurvenmechtnish en mittels Rechners"

<u>Kurzfassvagi</u> Es worden die Anwendungsmöglichkeiten von Analogie und Digitalrechnora bei der Lösung von Gleichungen vorgestellt, die sich aus der Analyse und Synthese von aus Nochensebeibe und Stössel gebildeten kinematischen Paaren ergeben. Es wird einleuchtend dargelegt, dass der Schaltkreis eines Analogierechners oder ein Unterprogramm, das nichtlineare algebreische und/oder nicht-lineare Differentialgleichungen zu lösen vermag, ausreicht, um die Bewegung des Stössels von beliebigem Überpaartyp zu berechnen oder um das Profil der Nockenscheibe, die eine gewünschte Bewegung des Stössels hervorbringen soll, zu bestimmen.

Die hier vorgestellten Methoden zur Erlangung von Synthesen führen unmittelbar zu optimalen Synthesen, optimal in dem Sinne, dass sie gewiese parameter, wie z.B.den Druckwinkel, unterhalb eines gewissen, für eine Nockenscheibe mit minimalen Dimensionen zulässigen Oberwertes halten.

Die Methoden werden an zwei spezifischen Paartypen von Nockenscheibe-Stössel illustriert: Analyse und Synthese von Nockenscheiben mit Spitzstössel und Stössel mit stumpfer Stirafläche. Die sich ergebenden Gleichungen werden per Digitalrechner errechnet, und die erlangten Synthesen sind von optimalen Dimensionen. Die Ergebnisse werden sowohl in tabellarischer als auch in graphischer Form gegeben.

Aus den hier vorgestellten Fakten kann der Leser schlussfolgern, dass diese Methoden auf andere Typen von Nockenscheibe-Stössel-Paaren unmittelbar gibertragber sind.

Abschligssend sei hier bolont, dass mit diesen Methoden möglich ist, jere Präzision und Schnelligkeit optimal auszunätzen, die im Produktionsprozess Werkmaschinen mit numerischer Kontrolle bei der Massenprodaktion von Kurvenmechanipmen bieten.

. . . . × .

.

centro de educación continua división de estudios de posgrado facultad de ingeniería unam

ANALISIS SINTESIS Y OPTIMACION EN INGENIERIA MECANICA

8. SINTESIS DE UN SISTEMA DE SUSPENSION PARA VEHICULOS DE TRANSPORTE MASIVO CON COMPORTAMIENTO DINAMICO PRESCRITO

DR. JORGE ANGELES ALVAREZ

AGOSTO, 1980

.

SINTESIS DE UN SISTEMA DE SUSPENSION PARA VEHICULOS DE TRANSPORTE MASIVO CON COMPORTAMIENTO DINAMICO PRESCRITO.

JORGE ANGELES¹ ISMAEL ESPINOSA²

RESUMEN

Se presenta un procedimiento de síntesis para obtener recomendaciones de rediseño de la suspensión de vagones de transporte masivo. El objetivo de este estudio es mejorar el funcionamiento del sistema de suspensión bajo condiciones dinámicas de operación de tal manera que las velocidades críticas queden fuera del intervalo más frecuente de operación. Los resultados obtenidos indicaron que sólamente una de las dos secciones de la suspensión requieren amor tiguamiento, cuyo valor se obtuvo a través del método de análisis del lugar geométrico de las raíces.

NOMENCLATURA

a,b,c,a',b',c' = a _i *	coeficientes de polinomios del denominador coeficientes del polinomio característico
A =	matriz de coeficientes de 6x6 de la ecuación de estado
. ^b 1 ⁼	amortiguamiento de la suspensión primaria, en N s/m.
^b 2 *	amortiguamiento de la suspensión secundaria, en N s/m.
b _{ij} =	elementos de la matriz de amortiguamiento B
. B=	matriz de amortiguamiento de 3x3
d,e,f,d',c',f' ≭	coeficientes de polinomios del numerador

Profesor Titular de Ingeniería Mecánica
 Profesor Asociado de Ingeniería Eléctrica Universidad Nacional Autónoma de México Apartado Postal 70-256, México 20, D. F.

d = diámetro de la rueda en m.

D = función de disipación

I = matriz de identidad

 $k_1 = rigidez de los resortes que soportan los ejes, N/m$

 $k_A = rigidez del resorte del neumático, N/m.$

k_{ii} ≈ elementos de la matriz de rigidez -K

K = matriz de rigidez de 3x3

 $m_1 = masa delchasis (H), N s^2/m.$

 $m_2 \approx masa$ de cada puente motor diferencial, N s²/m

m_a ⊨ mitad de la masa del cuerpo del vagón, N s²/m.

M = matriz de inercia de 3x3

T = energía cinética

v = velocidad crítica en m/s

V = energía potencial

x = vector de coordenadas generalizadas

x ⊨ velocidad generalizada

 $y \approx$ vector característico asociado con el valor caract<u>e</u> rístico ω^2 .

 ω^2 = valor característico

 ω = frecuencia natural, en s⁻¹

[sI-A] = determinante de la matriz sI-A

INTRODUCCIÓN

 El sistema de transporte masivo en estudio ha mostrado dos ve locidades críticas abajo del valor máximo de operación, de las cua les, la más alta se encuentra dentro del intervalo de operación más frecuente, lo que produce condiciones de vibración indeseables que afectan tanto la comodidad del pasajero como la vida de la estruct<u>u</u> ra de la suspensión.

Algunas de las laternativas que deben tomarse en cuenta para me jorar el funcionamiento del sistema son las siguientes: (1) cambiar únicamente la rigidez de los resortes, (2) sin modificar dichas ri gideces, introducir amortiguadores adecuados y, (3) usar una combi nación de amortiguadores y nuevos valores de rigidez de resortes, lo cual equivaldría a obtener un diseño totalmente nuevo. Por esta razón, sólo se considerará la tercera alternativa en caso de que las dos primeras no fueran factibles.

El primer paso en el procedimiento de sintesis es el de modelar
 con precisión el sistema actual, como se describe a continuación;

MODELADO DEL SISTEMA

Cada tren está compuesto por nueve vagones (Fig. 1) de los cu<u>a</u> les, seis son de tracción y los demás,de arrastre. Cada vagón, ya sea de tracción o de arrastre, está suspendido sobre dos carros l<u>o</u> calizados en sus extremos, llamados comúnmente "bogies". Cada bo gie tiene dos ejes con dos neumáticos en cada eje (Fig. 2). A la vez, cada eje está acoplado al chasis del bogie, denominado "H", por medio de una suspensión llamada "suspensión primaria", compues ta por ocho resortes idénticos, a razón de cuatro por cada eje, de rigidez k_1 , y cuatro más de rigidez k_2 , de los cuales cada par soporta el "puente del motor diferencial". El "bogie" completo está esquemáticamente representado en la Fig. 3. El cuerpo del vagón se acopla a la "H" por medio de una "suspensión secundaria" compuesta de dos resortes idénticos de rigidez k_a. Por otra pa<u>r</u> te, la rigidez del resorte de los neumáticos es k₄. Con exce<u>p</u> ción del amortiguamiento interno del hule en el cual están vulca nizados los resortes, el sistema no cuenta con ninguna otra forma de amortiguamiento. Con referencia a la Fig. 3,

m₁ ≕ masa de la "H"

m₂ = masa de cada puente motor diferencial m_{3,}= mitad de la masa del cuerpo del vagón

El modelo icónico que corresponde al esquema de la Fig. 3 se muestra en la Fig. 4, donde

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3]^T$$

es el vector de coordenadas generalizadas.

۱

Se tomaron medidas de campo [1,2], de las cuales se obtuvieron dos velocidades críticas. La primera tiene un valor medio 5.5 m/s, y la segunda se encuentra entre 17.5 y 18.9 m/s, de forma tal que la última se localiza dentro del intervalo de operación más fr<u>e</u> cuente, entre 5.56 m/s y 22.22 m/s. Para propósitos de diseño, este intervalo de velocidad se denominará "región prohibida".

El modelo matemático que corresponde a la Fig. 4 tiene la fo<u>r</u> ma

$$M\dot{x} + Kx = 0 \tag{1}$$

(2)

donde $M \ y \ K$ son, respectivamente, las matrices de inercia y de rigidez. La masa y la rigidez de los elementos involucrados es su puestamente constante, por lo cual las matrices que aparecen en la ecuación (1) se pueden obtener como las matrices hessianas de la energía cinética con respecto a la velocidad generalizada x, y de la energía potencial con respecto a las coordenadas generalizad das x, respectivamente, o sea,

$$M = \frac{\partial^2 T}{\partial x^2}, \quad K = \frac{\partial^2 V}{\partial x^2}$$

Los numeros en paréntesis rectangular indican las referencias al final del informo.

siendo T y V las energías cinética y potencial, respectivamente. Estas son

$$T = \frac{1}{2} m_1 \dot{x}_1^2 + \frac{1}{2} (2m_2) \dot{x}_2^2 + \frac{1}{2} m_3 \dot{x}_3^2$$
(3)

У

$$V = \frac{1}{2} \{ 8k_1 + 4k_2 + 4k_4 \} x_{1.}^2 + \frac{1}{2} \{ 8k_1 + 4k_2 + 2k_3 \} x_2^2 + \frac{1}{2} 2k_3 x_3^2 - (8k_1 + 4k_2) x_1 x_2 - 2k_3 x_2 x_3$$
(4)

Entonces,

$$\underbrace{M}_{m} = \begin{pmatrix} 2m_{2} & 0 & 0 \\ 0 & m_{1} & 0 \\ 0 & 0 & m_{3} \end{pmatrix}, \qquad \underbrace{K}_{m} = \begin{pmatrix} k_{11} & k_{12} & 0 \\ k_{12} & k_{22} & k_{23} \\ 0 & k_{23} & k_{33} \end{pmatrix}$$
(5)

donde

$$k_{11} = 8k_1 + 4k_2 + 4k_4, \qquad k_{12} = -8k_1 - 4k_2$$

$$k_{22} = 8k_1 + 4k_2 + 2k_3, \qquad k_{23} = -k_{33} - 2k_3$$
(6)

Las velocidades críticas se obtienen del valor característico ω^2 derivado de la ecuación (1). El problema de valores caract<u>e</u> rísticos correspondiente es, entonces,

$$Ky = \omega^2 My$$
(7)

en el cual y es el vector característico asociado al valor característico ω^2 . La relación entre las frecuencias naturales ω y las velocidades críticas v es

$$v = 0.5 \, d\omega \tag{8}$$

donde v está dado en m/s y ω en s⁻¹, siendo d el diámetro de las ruedas en m

Para determinar qué rigidez de resorte deberá cambiarse, se h<u>i</u> zo un análisis de sensibilidad de las velocidades críticas relat<u>i</u> vo a la rigidez de cada resorte. Los cambios de velocidad crítica se obtuvieron por medio de un modelo de computadora de la ecuación (1) en donde se utilizaron los siguientes valores nominales

$$k_{1} = 4.9 \times 10^{6} \text{ N/m}$$

$$k_{2} = 3.43 \times 10^{6} \text{ N/m}$$

$$k_{3} = 8.37 \times 10^{5} \text{ N/m}$$

$$k_{4} = 1.783 \times 10^{6} \text{ N/m}$$

$$m_{1} = 1.971 \times 10^{3} \text{ N s}^{2}/\text{m}$$

$$m_{2} = 1.628 \times 10^{3} \text{ N s}^{2}/\text{m}$$

$$m_{3} = 1.578 \times 10^{4} \text{ N s}^{2}/\text{m}$$

Las figuras 5 a 7 muestran las curvas de influencia de la ri gidez de cada resorte en cada valor de velocidad crítica. Estas curvas se obtuvieron utilizando un paquete IBM de sub-rutinas [3].

DETERMINACION DE LOS VALORES DE AMORTIGUAMIENTO PARA CAMBIAR LAS VELOCIDADES CRITICAS.

Los resultados obtenidos del análisis de sensibilidad estableci<u>e</u> ron que la simple modificación de rigidez no sería suficiente p<u>a</u> ra cambiar las velocidades críticas en forma substancial, por lo - que es indispensable adicionar amortiguadores.

 A continuación, se analiza el nuevo modelo icónico, mostrado
 en la Fig. 8, en forma semejante a lo hecho para el modelo de la Fig.
 4; pero con la inclusión de amortiguadores b₁ y b₂ en las su<u>s</u> pensiones primaria y secundaria respectivamente.

De acuerdo con la Fig. 8, el modelo matémático toma la forma

$$MX + Bx + Kx = 0$$
 (9)

donde las matrices $M \neq K$ son las mismas que aparecen en la ecua ción (5) y B es la matriz de amortiguamiento

$$B = \begin{bmatrix} b_{11} & b_{12} & 0 \\ b_{12} & b_{22} & b_{23} \\ 0 & b_{23} & b_{33} \end{bmatrix}$$
(10)

obtenida como la matriz hessiana con respecto a $\stackrel{\star}{\sim}$ de la función de disipación D dada como

$$D = \frac{1}{2} b_1 (\dot{x}_2 - \dot{x}_1)^2 + \frac{1}{2} b_2 (\dot{x}_3 - \dot{x}_2)^2$$
(11)

Los elementos de B son

$$b_{11} = b_1, \ b_{12} = -b_1, \ b_{22} = b_1 + b_2$$

 $b_{23} = -b_2, \ b_{33} = b_2$ (12)

siendo b₁ y b₂ el amortiguamiento de las suspensiones primaria y secundaria, respectivamente.

La etapa inicial del proceso de solución fue tratar de dete<u>r</u> minar los valores óptimos de amortiguamiento; peró esto hizo notar que uno de los amortiguadores tenía poco o ningún efecto en las velocidades críticas. Por esta razón, se decidió analizar el efe<u>c</u> to simple de cada uno de los amortiguadores. Para hacer esto, se consideró conveniente utilizar el método del lugar geométrico de las raíces [4].

Para efectuar tal análisis, la ecuación (9) se escribe en la

forma usual de variables de estado

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} \tag{13}$$

dönde

•

$$\tilde{A} = \begin{pmatrix} 0 & I \\ M^{-1} K & M^{-1} B \end{pmatrix}$$
(14)

e \underline{I} es la matriz de identidad de 3x3.

El polinomio característico asociado con la ecuación (13) es $\begin{vmatrix} s_1 - A \\ - A \end{vmatrix} = s^6 + a_5 s^5 + a_4 s^4 + a_3 s^2 + a_1 s + a_0$ (15)

donde

$$a_{5} = \frac{b_{11}}{2m_{2}} + \frac{b_{33}}{m_{3}} + \frac{b_{22}}{m_{1}}$$

$$a_{4} = \frac{b_{11}}{m_{1}m_{3}} + \frac{b_{11}}{2m_{2}} \cdot \left(\frac{b_{33}}{m_{1}} + \frac{b_{33}}{m_{3}}\right) + \frac{k_{11}}{2m_{2}} + \frac{k_{22}}{m_{1}} + \frac{k_{33}}{m_{3}}$$

$$a_{3} = \frac{b_{23}}{m_{1}m_{3}} + \frac{b_{11}}{m_{1}m_{3}} + \frac{k_{11}}{2m_{2}} + \frac{k_{12}}{2m_{2}} + \frac{b_{33}}{m_{3}} + \frac{k_{11}}{2m_{2}} + \frac{k_{12}}{m_{1}} + \frac{k_{33}}{m_{3}} + \frac{k_{11}}{2m_{2}} + \frac{k_{13}}{m_{1}} + \frac{k_{33}}{m_{3}} + \frac{k_{11}}{2m_{2}} + \frac{k_{22}}{m_{1}} + \frac{k_{33}}{m_{3}} + \frac{k_{12}}{2m_{2}} + \frac{k_{23}}{m_{1}} + \frac{k_{12}}{2m_{2}} + \frac{k_{33}}{m_{3}} + \frac{k_{11}}{2m_{2}} + \frac{k_{22}}{m_{1}} + \frac{k_{33}}{m_{3}} + \frac{k_{11}}{2m_{2}} + \frac{k_{22}}{m_{1}} + \frac{k_{33}}{m_{3}} + \frac{k_{13}}{2m_{2}} + \frac{k_{33}}{m_{3}} + \frac{$$

$$a_{1} = \frac{(b_{11}k_{33} + b_{23}k_{12})(k_{11} + k_{12})}{2m_{1}m_{2}m_{3}}$$
$$a_{0} = \frac{-(k_{11} + k_{12})k_{12}k_{33}}{2m_{1}m_{2}m_{3}}$$

Entonces, la ecuación característica es

$$s^{6} + a_{5}s^{5} + a_{4}s^{4} + a_{3}s^{3} + a_{2}s^{2} + a_{1}s^{4} + a_{0} = 0$$
 (16)

y puede ser manipulada para que adquiera una forma adecuada para el análisis del lugar geométrico de las raices. Se considerarán tres casos: (1) $b_1 = 0$, $b_2 \neq 0$, (2) $b_1 \neq 0$, $b_2 = 0$, y (3) $b_1 \neq 0$, $b_2 \neq 0$.

Para el caso (1), la ecuación (16) se puede escribir como

$$\frac{b_{33}s (ds^4 + es^2 + f)}{s^6 + as^4 + bs^2 + c} = -1$$
(17)

donde

$$a = \frac{k_{11}}{2m_2} + \frac{k_{22}}{m_1} + \frac{k_{33}}{m_3}$$

$$b = \frac{k_{12}k_{33}}{m_1m_3} + \frac{k_{11}}{2m_2m_2} + \frac{k_{12}}{m_1} + \frac{k_{22}}{m_1} + \frac{k_{33}}{m_3} - \frac{k_{12}}{2m_2} - (\frac{k_{33}}{m_1} + \frac{k_{33}}{m_3})$$

$$c = \frac{-(k_{11} + k_{12}) - k_{12}k_{33}}{2m_1m_2m_3}$$

$$d = \frac{1}{m_1} + \frac{1}{m_3}$$

$$e = \frac{-k_{12}}{m_1m_3} + (\frac{k_{31} + k_{12}}{2m_2}) - (\frac{1}{m_1} + \frac{1}{m_3}) - \frac{k_{12}}{2m_2} - (\frac{1}{m_1} + \frac{1}{m_3})$$

$$\mathbf{f} = \frac{-k_{12} (k_{11} + k_{12})}{2m_1 m_2 m_3}$$

En la ecuación (17), usando $b_{33} = b_2$ como un parámetro que v<u>a</u> ría de 0 a ∞ , se obtienen las curvas del lugar geométrico de las raíces, que se muestran en las Figs. 3 y 10.

Para el caso (2), la ecuación (16) se puede escribir como

$$\frac{b_{11}s(d's'+e's^2+f')}{s^6+a's^4+b's^2+c'} = -1$$

donde

a' = a
b' = b
c' = c
d' =
$$\frac{1}{2m_2} + \frac{1}{m_1}$$

e' = $\frac{k_{33}}{m_1m_3} + \frac{k_{11} + k_{12}}{2m_2} \frac{1}{m_1} + \frac{1}{2m_2} (\frac{k_{33}}{m_1} + \frac{k_{33}}{m_3})$
f' = $\frac{k_{33} (k_{11} + k_{12})}{\frac{2m_1m_2m_3}{m_3}}$

Ahora, $b_{33}=b_1$ es el parámetro, y la curva del lugar geométrico de las rafces se muestra en la Fig. 11.

Para hacer la curva del caso (3) se requiere de los llamados contornos de las raices [5], puesto que hay dos parámetros que co<u>n</u> siderar. Sin embargo, el resultado en el caso (2) indica que el amortiguador b₁ casi no tiene ningún efecto en la modificación de las velocidades críticas. Por tal razón, se le dio un valor f<u>i</u> jo a b₁ (b₁ = 1.632 x 10³ N s/m), y b₂ se tomó como el parámetro, de lo cual se obtuvo la curva que se muestra en la Fig. 12.

CONCLUSIONES

Las curvas que aparecen en las Figs. 5 a 7 muestran que cam bios considerables en las rigideces de los resortes no modifican substancialmente el comportamiento dinámico del sistema. De hecho, las rigideces $k_1 y k_2$ no tienen ningún efecto en tal comportamien to. Por esta razón, se decidió considerar la segunda alternativa.

Los lugares geométricos de las raíces, dibujados en las Figs. 9 a 12, muestran la variación de las raíces características al cam biar los valores del amortiguamiento. De los tres ramales que se muestran, sólo dos son de interés: los que se encuentran dentro de la región prohibida. Estas raíces están directamente relacion<u>a</u> das con las velocidades críticas por medio de la ecuación (8) y, por tanto, la posibilidad de mover las raíces características del eje imaginario a otras posiciones en el plano complejo, implica la modificación de las velocidades críticas.

El amortiguamiento de la suspensión primaria (caso 2) no tiene ningún efecto en la modificación de las velocidades críticas, ya que el sistema se vuelve incontrolable y las raíces de interés pe<u>r</u> manecen en la misma posición (ver la región prohibida en Fig. 11).

Por otro lado, el amortiguamiento en la suspensión secundaria (caso 1) genera una solución comprometida puesto que las raíces de interés se mueven en direcciones opuestas, de tal manera que mie<u>n</u> tras un ramal se aleja de la región prohibida, el otro se acerca a ella (ver Fig. 10). Por tal motivo, se escogió solamente un valor de amortiguamiento como la solución más adecuada, siendo este: $b_2 = 2.471 \times 10^6$ N s/m. Usando este valor de amortiguamiento, las raíces de interés permanecen fuera de la región prohibida y, cons<u>e</u> cuentemente, generan velocidades críticas adecuadas.

Con el uso de amortiguamiento en las suspensiones primaria y secun daria (caso 3) los resultados no se alteran puesto que, como se puede ver en la Fig. 12, los ramales de interés en el lugar geométrico de las raíces no sufren ninguna variación apreciable, dado que solamente el tercer ramal, que se encuentra fuera de la región prohibida, cambia su forma. Es fácil inferir que este resultado es válido para todos los valores de b_1 en el caso (3), puesto que se requiere de valores muy altos de b_1 para obtener modificaciones muy ligeras del lugar geométrico correspondiente. Consecuentemente, la suspensión prima ria no requiere amortiguamiento.

12

En trenes de alta velocidad, el amortiguamiento no elimina la condición vibratoria, pero se han determinado valores óptimos para disminuirla [6].

Sin embargo, en el sistema de transporte aquí presentado, el problema no es la alta velocidad y por tanto, el comportamiento dinámico del tren podría ser mejorado satisfactoraimente mediante la inclusión de amortiguadores en la suspensión secundaria. No obstante, al igual que en [6], también sería conveniente estudiar las propiedades del riel y su alojamiento, así como su influencia en la dinámica vertical del tren para poder obtener un mejor conoc<u>i</u> miento del sistema, que permita recomendar soluciones más adecuadas.

RECONDCIMIENTO

Este proyecto de investigación fue costeado conjuntamente por el Sistema de Transporte Colectivo del Distrito Federal y la División de Estudios Superiores (hoy de Posgrado) de la Facultad de Ingeniería de la Universidad Nacional Autónoma de México.

ы

REFERENCIAS

1 Chávez E. B., y Hernández, H. R., "Vibraciones en los carros del metro y fatiga" Primer Simposio México-Montreal, Junio 1975. (SMEMO B3-003).

2 Chávez E. B., "Vibraciones sobre los carros del metro de México", Segundo Simposio México-Montreal, Montreal, Oct. 1976.

3 <u>System/360 Scientific Package Version III Programmer's Manual</u>, IBM Technical Publications, White Plains, H20-0205-3, 1970.

4 D'Azzo, J. J., and C. H. Houpis, <u>Feedback Control System Analysis</u> and <u>Synthesis</u>, McGraw-Hill, New York, 1966.

5 Ogata, K., <u>Modern Control Engineering</u>, Prentice Hall, Englewood Cliffs, N. J., 1970.

6 Mixson, J. S., y R. Steiner, "Optimization of a Simple Dynamic Model of a Railroad Car under Random and Sinusoidal Inputs", en Bogdanoff, J. L., y A. Piersol (Presidentes), <u>Proc. Symp. on Stochastic</u> Processes in Dynamical Problems, ASME, New York, 1969, pp. 29-40.

FIG. 1 VAGON DE TRANSPORTE MASIVO

FIG. 2 "BOGIE" DE LA SUSPENSION

× .7

15.

FIG. 3 DISPOSICION DE LOS ELEMENTOS DEL SISTEMA DE SUSPENSION

17

FIG. 4 MODELO ICONICO DEL SISTEMA DE SUSPENSION SIN AMORTIGUAMIENTO

FIG. 8 MODELO ICONICO DEL SISTEMA DE SUSPENSION AMORTIGUADO

centro de educación continua división de estudios de posgrado facultad ingenieria de unam

ANALISIS SINTESIS Y OPTIMACION EN INGENIERIA MECANICA

5. SYNTHESIS OF LINKAGES

DR. JORGE ANGELES ALVAREZ

AGOSTO, 1980

México 3, D. F.

. • . · · 1 . · · ·, t -

> . .

۲

5. SYNTHESIS OF LINKAGES

5.1 <u>INTRODUCTION</u>. The problem of linkage synthesis of Applied Kinematics was outlined in Chapter 3. In the present chapter, the problem of exact synthesis is discussed and current methods of synthesis are presented. The three usual problems of synthesis are discussed, namely

i) funtion generation

ii) rigid body guidance

iii) path generation

and exact solutions to the resulting design equations are meant to be obtained, these solutions being exact up to round-off and/or measuring errors. Chapter 6 deals with the problem where no exact solution can be found, in which case the <u>best approximation</u> is sought, in the sense of rendering the <u>minimum</u> quadratic error in the approximation.

5.2 SYNTHESIS FOR FUNCTION GENERATION

Due to the fact that a linkage is a coupling of rigid bodies, a finite number of parameters (like those of the notation of Denavit and Hartenverg, Ch. 3) defines it. Hence, the set of design equations is of an algebraic character, i.e. no derivatives of the design parameters appear in them, and the number of these parameters is finite. Hence, no linkage can be obtained to produce an arbitrarily prescribed input/output function pointwise in the <u>whole continuum</u> of values of the input where the function is prescribed. The said function can only be produced at a finite set of $\int_{0}^{\infty} \int_{0}^{\infty} \int_{$

"Given a function $f=f(x_i)$ (i=1,2,...,n), defined over a discrete set $\{x_i\}_1^n$,

find the relevant dimensions of a linkage of a given topology* to produce an input-output relationship that coincides with the function f at the given discrete set $\{x_i\}_{i=1}^{n}$ of input values*. The method to solve this problem consits of two stages, namely

 Derivation of the input-output relationship for the prescribed topology, and

ii) Determination of the linkage parameters from the above relationship. The first stage is now discussed. In ch. 4 it was shown that the MDH** can be applied to obtain an input-output relationship that, hopefully, does not contain other variables than the input and the output. It was also shown that an alternate method, less complex than that of Denavit and Hartenberg, guarantees that only the input and the output variables will appear in the input-output relationship. That method, however, is restricted to singleloop mechanisms, whereas that of DH can be extended to multiple-loop mechanisms. Hence, either method can be applied in the first stage of this problem, for single-loop linkages. The second stage is carried out by two different approaches, which are next discussed. It is assumed that an input-outout implicit function has been obtained, this function having the general form

$$(x_i, y_i, p) = 0, i = 1, 2, ..., n$$
 (5.2.1)

where $\{(x_1, y_1)\}_1^n$ is a set of n pairs of values relating the <u>ith</u> value of the input x to the <u>ith</u> value of the output y, and p is an n-dimensional vector containing the parameters of the linkage under consideration. Notice that (5.2.1) represents in fact a system of n synthesis equations

*See Section 3.6 **Nathod of Denavit and Hartenborg 2

ł

in the n unknowns that constitute vector p. Hence, the synthesis problem can be solved through eq. (5,2,1), However, the system (5,2.1) is, if general, nonlinear, and no unique solution is guaranteed to exist; even more, the system might have no solution at all. If the system has one or more solutions, these can be obtained via the method of Newton-Raphsin, as shown in Section 1.13. This is the first approach to the solution of the synthesis equations.

The second approach introduces a nonlinear transformation of the synthesis parameters which transforms the synthesis equations into a linear system. Let

be this tranformation. When (5.2.2) is introduced into eq. (5.2.1), the following linear system is obtained

Aq=b System (5.2.3) can be solved very efficiently via the LU decomposition algorithm, as was shown in Section 1.12. Once the unique solution q to (5.2.3) has been obtained, this is introduced into eq. (5.2.2), which is nonlinear if the original system of synthesis equations was nonlinear as well, and, if this tranformation -eq. (5.2.2) - is chosen in such a way that the synthesis parameters appear in it very weakly coupled, then the linkage parameter vector p can be obtained without the need of a numerical method. The synthesis procedure is illustrated by means of the following example.

Example 5.2.1 Given the RSSR linkage appearing in Fig 5.2.1, determine its geometric parameters $a_1, a_2, a_3, a_4, a_1, a_4$ and a_4 that produce a given input-output relationship

1,1

(5.2.3)

Fig 5.2.1 RSSR Function generating linkage

Using the method of Section 4.3, define sets of axes $X_i Y_i Z_i$ and $X_0 Y_0 Z_0$ whose X-axes coincide with the axes of R_{j2} and R_{4j} respectively, its Z-axes being parallel to the common normal OI, and define their positive directions from 0 to I. Finnally, the Y-axes form with the previous ones right-hand rectangular sets of coordinate axes, as shown in Fig 5.2.2.

너

Fig 5.2.2 Coordinate axes fixed at input and output axes

Define:

e = vector directed from B to A b = vector directed from A to D c = vector directed from B to C d = yector directed from C to D From the geometry of the linkage, then a+b≈c+d (5.2.4)Hence, _b=c+d-a (5.2.5)and $b^{T}=c^{T}+d^{T}-a^{T}$

Let a_j, b_j and $d_j(j=0, 1, 2, ..., n)$ be the values attained by vectors a, b and d respectively, at the successive configurations j.

5

(5.2.6)

. .

Substituting the yalues of a, b and d at their current configuration j in eqs. (5.2.5a and b) and multiplying termwise the resulting equations leads to

$$||\mathbf{b}_{j}||^{2} = ||\mathbf{c}||^{2} + ||\mathbf{a}_{j}||^{2} + ||\mathbf{a}_{j}||^{2} + 2\mathbf{c}^{T}\mathbf{a}_{j} - 2\mathbf{c}^{T}\mathbf{a}_{j} - 2\mathbf{a}_{j}^{T}\mathbf{a}_{j}$$
(5.2.7)

where, due to the rigid-body condition,

$$\frac{||a_{j}||^{2}=a_{3}^{2}}{||b_{j}||^{2}=a_{2}^{2}}$$
(5.2.3a)

$$\frac{||b_{j}||^{2}=a_{2}^{2}}{(5.2.3c)}$$
(5.2.3c)

From fig 5.2.2, vector c is given as

$$c = \vec{B}\vec{O} + \vec{O}\vec{I} + \vec{I}\vec{C}$$
 (5.2.3)

where, with reference to i-coordinates,

$$\vec{p}\vec{0} = (s_4 ca_4, -s_4 sa_4, 0)^T$$
 (5.2.10a)
 $\vec{0}\vec{l} = (0, 0, a_4)^T$ (5.2.10b)

where the notation cx, ax has been introduced to represent cosx and sinx, respectively, whenever the variable x has been previously defined as an angle. Thus, eq. (5.2.9) leads to

$$\left(\mathbf{c} \right)_{1} = \left(\mathbf{s}_{4} \mathbf{c}_{4}^{\alpha} \mathbf{a}_{4}^{+ \mathbf{s}_{1}^{- - \mathbf{s}_{4}^{- \mathbf{s}_{4$$

Furthermore,

(ạ) ₁ -	$(0, -a_1 \sin \phi, a_1 \cos \phi)^T$	(5.2.11a)
(a) -	$\left(0, -a_3 \sin \phi, a_3 \cos \phi\right)^{\mathrm{T}}$	 (5.2.11b)

•	C0504	sina ₄	.º)	i
(<u>s</u>) ₁ = 1	-sina4	cosa4	0,	(5.2.12)
-	0	0	3 J	

6

and so

$$\left(\underbrace{a}_{1} = \left(\underbrace{s}_{1} \right)_{1} \left(\underbrace{a}_{n} \right)_{0} = a_{3} \left(\begin{array}{c} -\sin \alpha_{4} \sin \psi \\ -\cos \alpha_{4} \sin \psi \\ \cos \psi \end{array} \right)$$
(5.2.13)

.

Other terms appearing in eq. (5.2.7), besides those of eqs. (5.2.8), can now be computed. These are

$$||g||^2 = s_1^2 + s_4^2 + 2s_1 s_4 \cos q_4 + a_4^2$$
 (5.2.14a)

$$\mathbf{c}^{\mathbf{T}}\mathbf{d}_{j}^{*} = \mathbf{a}_{1}(\mathbf{s}_{4}\mathbf{s}\mathbf{i}\mathbf{n}\mathbf{\alpha}_{4}\mathbf{s}\mathbf{i}\mathbf{n}\boldsymbol{\phi}_{j} + \mathbf{a}_{4}\mathbf{c}\mathbf{o}\mathbf{s}\boldsymbol{\phi}_{j})$$
(5.2.14b)

$$c_{4j}^{T} = a_{3}(a_{4}c_{0}s\psi_{j}-s_{1}sina_{4}sin\psi_{j})$$
(5.2.14c)

$$d_{j=j}^{T_a} = a_1 a_3 (\cos a_4 \sin \phi_j \sin \phi_j + \cos \phi_j \cos \phi_j) \qquad (5.2.14d)$$

Substituting expressions (5.2.8) and (5.2.14) into eq. (5.2.7) one obtains

$$a_{2}^{2} = s_{1}^{2} + s_{4}^{2} + 2s_{1}s_{4}\cos\alpha_{4} + a_{4}^{2} + a_{1}^{2} + a_{3}^{2} + + 2a_{1}(a_{4}\cos\phi_{j} + s_{4}\sin\alpha_{4}\sin\phi_{j}) - 2a_{3}(a_{4}\cos\phi_{j} - s_{1}\sin\alpha_{4}\sin\phi_{j}) - 2a_{1}a_{3}(\cos\alpha_{4}\sin\phi_{j}\sin\phi_{j}+\cos\phi_{j}\cos\phi_{j})$$
(5.2.15)

which is the desired input-output relationship. Now, if angle ϕ is measured from certain reference ϕ_0 by letting

$$\phi_{j} = \phi_{0} + p_{j} \qquad (5.2.16a)$$

$$k_{j} = \frac{a_{4} + s_{4} \sin a_{4} \tan \phi_{0}}{a_{3}} \qquad (5.2.16b)$$

$$k_2 = \frac{s_4 s_{1n_4} - a_4 t_{an_{0}}}{a_3}$$
 (5.2.16c)

$$k_{3} = -\frac{a_{4}}{a_{1}\cos\phi_{0}}$$
(5.2.16d)

$$k_4 = \frac{a_1 cos_{\phi_1}}{a_1 cos_{\phi_1}}$$
 (5.2.16e)

$$k_{5} = \frac{\tan \phi_{0}}{a_{1} - \frac{a_{2}^{2} + a_{3}^{2} + a_{4}^{2} + s_{1}^{2} + s_{4}^{2} + 2s_{1} - s_{4}^{2} \cos \alpha_{4}}{2a_{1} a_{2} \cos \phi_{0}}$$
(5.2.16g)

eq. (5.2.15) becomes

 $k_{j} \cos p_{j} + k_{2} \sin p_{j} + k_{3} \cos \psi_{j} + k_{4} \sin \psi_{j} + k_{5} (\cos \psi_{j} \sin p_{j} - \cos \alpha_{4} \sin \psi_{j} \cos p_{j}) + k_{6} = \cos \psi_{j} \cos p_{j} + \cos \alpha_{4} \sin \psi_{j} \sin p_{j}, j = 1, \dots, 6$ (5.2.17)

Eqs. (5.2.17) constitute then a linear algebraic system of six equations in six unknowns (k1,...,k6). This system can be solved efficiently by application of subroutines DECOMP and SOLVE, of Sect. 1.12. In order to compute the linkage parameters a_1 , a_2 , a_3 , a_4 , s_1 , s_4 , $\cos a_4$ and $\cos \phi_0$, however, * the nonlinear system (5.2,16) has to be solved for the said parameters. The equations of this system, though nonlinear, are weakly coupled, for which reason its solution can be performed without having to resort to a numerical method. The aforementioned nonlinear system, nevertheless, contains a surplus of two unknowns. One of these unknowns can be eliminated through division by it, the surplus of unknowns thus reducing to one. In fact, the solution a, = 0 is ruled out, for this would lead to a topologically different layout, namely a coupling of three, instead of four, links. Scaling the linkage by a factor $1/a_{2}$, i.e. setting $a_{2} = 1$ does not alter the input-output relationship, for this does not depend upon the absolute but upon the relative lengths of the different links. The remaining unknown in excess can be eliminated by assigning a value to it.

For the linkage appearing in Fig 5.2.1 let

1"	1	2	3	4	5	6	
+ <u>i</u>	ö	45° -	60*	90°	60° '	30°'	·
¥ 1	0	30°	45°	60°	90°	180°	

$$a_2 = 1, a_4 = 120^{\circ}$$

The arising linear system of equations was solved using subroutines DECOMP and SOLVE. The following results were obtained:

 $k_1^* = 0.840173$, $k_2^* 0.303087$, $k_3^* = 1.350247$ $k_4^* = 0.036659$, $k_5^* = 1.140727$, $k_6^* 0.489926$

a₁=- 0.175003, a₂= 1.000000, a₃=- 0.724996

$$\mathbf{n}_4 = 0.155769, \quad \mathbf{s}_1 = 0.007284, \quad \mathbf{s}_4 = -0.684495$$

¢_=- 0.851042 rad

which is the solution to Example 5.2.1.

Mohan Rao et al. (5.2) have extended Denavit and Hartenberg's idea up to ten accuracy-point synthesis. For seven-point synthesis, they introduce the zero location of the input dial, ψ_0 , as one additional unknown in the above formulation, ending up with the following synthesis equations: $k_1 c \psi_j + k_2 s \psi_j + k_3 c \phi_j + k_4 s \phi_j - k_5 (c a_4 c \phi_j s \psi_j - c \psi_j s \phi_j) - k_6 (s \phi_j c \psi_j c a_4 - c \phi_j s \psi_j) + k_7 - k_8 (c a_4 c \phi_j c \psi_j + s \phi_j s \psi_j) = c a_4 s \phi_j s \psi_j + c \phi_j c \psi_j$, j = 1, 2, ..., 7 (5.7.20)

where

$$k_{1} = \frac{a_{1}c_{4}}{a_{1}c_{6}}$$
(5.2.21a)

$$k_{2} = \frac{a_{4}^{tan\psi_{0}+s} t^{s_{0}} 4}{a_{1}^{c\psi_{0}}}$$
(5.2.21b)

$$k_{3} = \frac{a_{4}^{+}a_{4}^{+}a_{4}^{+}a_{4}^{+}a_{4}^{+}a_{1}^{+}a_{0}^{+}}{a_{3}^{-}a_{0}^{+}a_{0}^{+}}$$
(5.2.21c)

$$k_4 = \frac{s_4 s_4 - a_4 tan\phi_0}{a_3 c_0}$$
(5.2.21d).

$$k_5 = \tan \phi_0 \tag{5.2.21e}$$

$$k_6 = tan\psi_0$$
 (5.2.21f)

$$k_7 = \frac{a_1^2 - 1 + a_3^2 + a_4^2 + s_1^2 + s_2^2 + 2s_1 s_4 c\alpha_4}{2a_1 a_3 c_{\phi_0} c_{\psi_0}}$$
(5.2.21g)

$$K_{\mu} = \tan \phi_{\mu} \tan \phi_{\mu}$$

(5,2.21h)

Eqs. (5.2.20) constitute a linear system of seven equations in eight unknowns. However, the eight k_1 are not independent, for they are related by

k₈=k₅k₆ (5.2.22)

Thus, the synthesis equations comprise the seven equations (5.2.20) plus eq. (5.2.22), i.e. a system of eight equations in eight unknowns, out of which, seven are linear and one is nonlinear.

To solve this system, the aforementioned authors proposed a method based on the principle of superposition of linear systems*, i.e. the principle under which if x_1 and x_2 are solutions to Ax=b and Ax=c, respectively, then $\beta x_1 + \gamma x_2$ is the solution to $Ax=\beta b+\gamma c$. The method is next outlined: i) Write eqs. (5.2.20) in the form

 $k_{1}c\psi_{j}+k_{2}s\psi_{j}+k_{3}c\psi_{j}+k_{4}s\psi_{j}-k_{5}(ca_{4}c\psi_{j}s\psi_{j}-c\psi_{j}s\phi_{j})-k_{6}(s\psi_{j}c\psi_{j}ca_{4}-c\psi_{j}s\psi_{j})+ \\ +k_{7}=(ca_{4}s\psi_{j}s\psi_{j}+c\phi_{j}c\psi_{j})+k_{8}(ca_{4}c\phi_{j}c\psi_{j}+s\phi_{j}s\psi_{j}), j=1,2,...,7.$ (5.2.20a)

ii) Define the following vectors

$$\underline{\mathbf{x}} = \left(\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_7\right)^{\mathrm{T}}$$
$$\underline{\mathbf{b}} = \left(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_7\right)^{\mathrm{T}}$$
$$\underline{\mathbf{c}} = \left(\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_7\right)^{\mathrm{T}}$$

where

$$b_{j} = c_{4}^{s\phi_{j}} = \psi_{j} + c_{j}^{c} c_{j}^{c} + c_{j}$$

* See Section 1.11

iii) Rewrite system (5.2.20a) in the form

AX=b+kac

(5,2,205)

(5.2.23)

- iv) Solve for x_1 and x_2 from $\frac{Ax_1 = b}{Ax_2} = c$
 - v) Write the solution to system (5.2.20b) as $x = x_1 + k_B x_2$

where k_R is not known as yet

- vi) Letting λ_1 and μ_1 be the 5<u>th</u> and 6<u>th</u> components of x_1 , respectively, and defining λ_2 and μ_2 analogously, one obtains from (5.2.23),
 - $k_{6}^{\mu}\mu_{1}^{\mu}k_{B}^{\mu}\mu_{2}$ (5.2.24) $k_{6}^{\mu}\mu_{1}^{\mu}k_{B}^{\mu}\mu_{2}$ (5.2.25)

vii) Substitute (5.2.24) and (5.2.25) into (5.2.22), thus obtaining

 $\lambda_{2}\mu_{2}k_{8}^{2} + (\lambda_{1}\mu_{2} + \lambda_{2}\mu_{1} - 1)k_{8} + \lambda_{1}\mu_{1} = 0 \qquad (5.2.26)$

from which two values for k_8 can be obtained $\frac{1}{2} = \frac{1}{2} \frac{$

eq. (5,2,23)

ix) The linkage parameters can now be obtained from eqs. (5.2.21), thus . completing the proposed synthesis.

By leaving a_4 unspecified in the above formulation, the same authors, (5.2) state the 8-point synthesis problem as ($k_1 c \psi_j + k_2 s \psi_j + k_3 c \phi_j + k_4 s \phi_j - k_5 c \phi_j s \psi_j - k_6 c \psi_j s \phi_j - k_7 s \phi_j s \psi_j + k_8 = c \psi_j c \phi_j$ $j=1,2,\ldots,8$ (5.2.27) i thus obtaining a <u>linear system</u> of eight equations in eight unknowns, (

which can readily be solved via the LU algorithm. In the above system

 $k_{1} = \frac{s_{1} \tan \psi_{0} s_{4} - a_{4}}{a_{1} c_{0} (1 + \tan \psi_{0} \tan \psi_{0} c_{4})}$ (5.2.28a)

H

$$k_{2} = \frac{a_{4} \tan \psi_{0} + s_{3} a_{4}}{a_{1} c \phi_{0} (1 + \tan \phi_{0} \tan \psi_{0} c_{4})}$$
(5.2.26b)

$$k_{3}^{\mu} = \frac{-4^{-2}4^{-10}}{a_{3}c\psi_{0}^{()+\tan\phi_{0}}\tan\phi_{0}c^{0}}$$
(5.2.28c)

$$k_{4} = \frac{s_{4}^{\alpha} s_{4}^{\alpha} - a_{4}^{\alpha} tan \phi_{0}}{a_{3}^{c} \psi_{0}^{(1 + tan \phi_{0}^{\alpha} tan \psi_{0}^{c} \alpha_{4})}}$$
(5.2.28d)

$$k_{5} = \frac{\tan \phi_{0} c_{4} - \tan \phi_{0}}{1 + \tan \phi_{0} c_{4} q_{0}}$$
(5.2.28e)

$$k_{6} = \frac{\tan \psi_{0} c_{4}^{\alpha} - \tan \phi_{0}}{1 + \tan \phi_{0} \tan \psi_{0} c_{4}^{\alpha}}$$
(5.2.28f)

$$k_7 = \frac{c^{\alpha}_4 + \tan\phi_0 \tan\psi_0}{1 + \tan\phi_0 \tan\psi_0 c^{\alpha}_4}$$
(5.2.28g)

$$\kappa_{8} = \frac{a_{1}^{2} + a_{2}^{2} + a_{3}^{2} + a_{4}^{2} + s_{1}^{2} + s_{4}^{2} 2 s_{1} s_{4} c^{\alpha}}{2 a_{1} a_{3} c^{\phi} o^{c_{1} \psi_{0}} (1 + \tan^{\phi} o^{\tan^{\psi} o^{c_{1}}} 4)}$$
(5.2.28h)

The obtention of the linkage parameters from eqs. (5.2.28) is not a simple matter, for these appear strongly coupled in those equations. A method to solve for the said parameters is also presented in (5.2). In the same paper, the authors propose that the RSSR linkage synthesis can be extended up to 10 points if scale parameters for the function intended to be generated are introduced.

Since the RSSR linkage lends itself very suitably to be used as a function generator, it has received much attention. Luck presents in (5.3) a method of synthesis of this linkage that allows for optimization, by the introduction of a free parameter. Referring to Fig 5.2.3, this author writes the input-

à

 $| \cdot |$

12 615

ω.

where

$$A_{0} = \frac{2a_{1}}{4} \left(\frac{a_{4}}{4} \frac{a_{4}}{3} \frac{c_{4}}{4} \frac{c_{4}}{4} \right)$$
 (5.2.30a)

$$B_0^{=2a_1(a_4^{-a_3}s\phi)}$$
 (5.2.30b)

$$C_{0} = s_{1}^{2} + s_{4}^{2} + a_{1}^{2} - a_{2}^{2} + a_{3}^{2} a_{4}^{2} - 2(s_{1}s_{4}ca_{4} + s_{1}a_{3}sa_{3}c\phi + a_{3}a_{4}s\phi)$$
(5.2.30c)

Normalizing the linkage lengths with respect to s_4 , the following variables are defined

$$x_1 = \frac{a_1}{a_4}, x_2 = \frac{a_2}{s_4}, x_3 = \frac{a_1}{a_4}, \lambda = \frac{s_1}{s_4}, e = \frac{a_4}{s_4}, s_4 = 1$$
 (5.2.31)

The input-output function is then transformed into

$$f_{(\phi,\psi)=x_{1}^{2}-x_{2}^{2}+x_{3}^{2}+1+\lambda^{2}-2\lambda ca_{4}+e_{-2x_{1}}(\lambda sa_{4}c\phi+e_{5}\phi)+2x_{3}(e_{5}\phi+ea_{4}c\phi)$$

$$-2x_{1}x_{3}(s\psi s\phi+ca_{4}c\psi c\phi)=0 \qquad (5.2.32)$$

Moreover, define

$$\phi_{j} = a + \Delta \phi_{j}, \phi_{j} = \beta + \Delta \phi_{j}, j = 1, 2, ..., n$$
 (5.2.33)

with

Δψ₀=Δφ₀Ξ0

Subtracting $f(\phi_0, \psi_0) = 0$ from $f(\phi_j, \psi_j) = 0$ (j=1,2,...,n) leads to the following linear homogenous system

$$f(\Delta\phi_{j},\Delta\psi_{j}) = f(\phi_{j},\psi_{j}) - f(\phi_{0},\psi_{0}) = A_{j}u_{1} + B_{j}u_{2} + C_{j}u_{3} + D_{j}u_{4} + E_{j}u_{5} + F_{j}u_{6} = 0$$
(5.2.34)

where

$$u_1 = \frac{e}{x_1}, u_2 = \frac{sa_4}{x_1}, u_3 = -\frac{e}{x_3}$$
 (5.2.35a)

$$u_4 = \frac{15u_4}{x_3}, u_5 = -ca_4, u_6 = 1$$
 (5.2.35b)

 $\lambda_{j} = \alpha \left(\beta + \Delta \phi_{j}\right) - \beta \beta \qquad (5.2.36a)$

$$B_{j} = c \left(\beta + \Delta \psi_{j}\right) - c\beta \qquad (5.2.36b)$$

$$C_{j} = s (\alpha \delta \phi_{j}) - s \alpha$$
 (5.2.36c)

$$D_{j} = c (\alpha + \Delta \phi_{j}) - c \alpha \qquad (5.2.36d)$$

$$E_{j} = c (\alpha + \Delta \phi_{j}) c (\beta + \Delta \psi_{j}) - c \alpha c \beta$$
 (5.2.36e)

$$\mathbf{F}_{j} = -s \left(\alpha + \Delta \phi_{j} \right) s \left(\beta + \Delta \psi_{j} \right) + s \alpha s \beta$$
(5.2.36f)

System (5.2.34) has non-trivial solutions if and only if its determinant vanishes. In the problem of synthesis for function generation, the values of $\Delta \phi_j$ and $\Delta \phi_j$ (j=1,2,...,n) are given. Hence, the determinant δ is a function of o and β only. This determinant has, in fact, the following form

The function $\delta(\alpha,\beta)$ vanishes along the curve $\beta=\beta(\alpha)$ defined over the plane $\alpha-\beta$, as shown in Fig.5.2.4

Luck proposes in (5.3) a numerical method to find pairs of values $(\alpha_{\pm}, \beta_{\pm})$ along which δ vanishes, this method being based on the "regula-falsi" algorithm. A different method is proposed here.

For a given value of β , say β_i , δ can be regarded as a function of the real variable, namely, α , i.e.

 $\delta_i = \delta_i (\alpha)$

To find the roots of δ_{j} , the method of Newton-Raphson is applied, as follows

-Fig.5.2.4 Set of values of α and β along which δ vanishes.

1.1) Estimate (or guess) a starting value of α , say α° , to begin the iterative procedure

1.11) From the current value α^{k} of the sought root, α_{i} , of δ_{i} , compute an improved value of α_{i} , say α^{k+1} as

- $\alpha^{k+1} = \alpha^{k} \frac{\delta_{i}(\alpha^{k})}{\delta_{i}^{1}(\alpha^{k})}$ (5.2.38)
- 1.11) If the correction value $\delta_i(a^k)/\delta_i(a^k)$ is greater than a given tolerence ε , return to Step 1.11. Otherwise, verity if $|\delta_i(a^k)| \le \varepsilon$. If so, stop the procedure and accept the current value a^k as the value of the sough root, a_i . If not, repeat the procedure starting \sim at Step 1.1, with a different value of a^0 .

Expression (5.2.38) greaty simplifies when the formula for the derivative of a determinant is introduced, namely

$$\delta_{\underline{i}}^{\dagger}(\alpha) = \delta_{\underline{i}}^{\dagger}(\alpha) \operatorname{Tr}\left(\underline{M}^{-1}(\alpha) \underline{M}^{\dagger}(\alpha)\right)$$
(5.2.39)

Where <u>M</u> is the matrix whose determinant is δ and <u>M'(a)</u> is the matrix whose entries are the derivatives, with respect to a, of the corresponding entries of <u>M</u>. Since formula (5.2.39) is not very popular, its derivation is presented in Appendix 2, Substitution of eq. (5.2.39) into eq. (5.2.39) leads to

$$a^{k+1} = a^{k} \frac{1}{Tr\left(M^{-1}(a^{k})M^{1}(o^{k})\right)}$$
(5.2.40)

to compute $\underline{M}^{-1}(\underline{\alpha}^k)\underline{M}^*(\underline{\alpha}^k)$, let

i.e., after dropping the argument for shortness,

In eq. (5.2.41), let p_p and m'_p denote vectors identical to the <u>pth</u> columns of matrices N and M', respectively. Hence, matrix N can be computed by solving the 6 linear systems

$$M_{n} = 1^{2}, ..., 6$$
 (5.2.42)

which can be done via the LU decomposition algorithm. At this stage there are two simplifications, namely,

- 2.1) Subroutine DECOMP need only once be applied at the kth iteration for, once the LU decomposition of M is obtained, this can be used to solve the 6 systems appearing in (5.2.42)
- 2.11) Since A and B do not contain a explicitly, the first two columns of M' vanish. Therefore, $n_1 = n_2 = 0$ and subroutine SOLVE need be applied only four times. Furthermore,

2.111) If at any of the iterations DECOMP detects matrix M to be singular,

the system of (5.2.42) cannot be solved, but this is not necessary any more, for precisely what one is seeking is that value of 2, for a given value of β_{1} , that renders matrix M singular, i.e. that makes ξ zero.

Once the value α_{i} that, for a given β_{i} makes the determinant vanish, has been found, a new value of β_{i} , say β_{i+1} , is introduced and the process starting in 1.i. is repeated, except that a new starting value α^{0} need not be guassed, for a good estimate for α_{i+1} is, of course, α_{i} , provided β_{i} and β_{i+1} are sufficiently close to each other. This way, a set of discrete values (α_{i}, β_{i}) , that zero δ , can be given in tabular form; however, if a continuous function $\beta=\beta(\alpha)$ is necessary, this can be approximated by interpolation. The post efficient way of interpolating such a function is by means of <u>spline</u> functions (5.4).

SUBROUTINE ZERDET, appearing in Fig 5.2.5 implements the algorithm cutlined in 1.1-1.111. This subroutine was used to find the graph β vs. α arising from the following problem for seven-point accuracy synthesis (Example) of (5.3).

$$\Delta \phi_2 = 30^\circ, \quad \Delta \psi_2 = -16.1^\circ$$

$$\Delta \phi_3 = 75^\circ, \quad \Delta \psi_3 = -11.5^\circ$$

$$\Delta \phi_4 = 135^\circ, \quad \Delta \psi_4 = 22.5^\circ$$

$$\Delta \phi_5 = 195^\circ, \quad \Delta \psi_5 = 53.5^\circ$$

$$\Delta \phi_6 = 240^\circ, \quad \Delta \psi_6 = 57.9^\circ$$

$$\Delta \phi_7 = 300^\circ, \quad \Delta \psi_7 = 41.3^\circ$$

This graph appears in Fig 5.2.6 Given one pair of values of the aforementioned set $\{\alpha_i, \beta_i\}$ and recalling that $u_6^{=1}$, the following linear inhomogeneous system is obtained Gu=-f (5.2.43)

where G is the submatrix of M containing the first five rows and columns of it, $u = (u_1, u_2, \dots, u_5)^T$ and $f = (F_2, F_3, \dots, F_6)^T$. Vector u can be obtained

Fig 5.2.6 Free-parameter relationship for the synthesis of a function generator linkage with seven specified points.

.12

from eq. (5.2.43) via the LU decomposition algorithm. With u known, the normalized lengths x_1, x_3, λ, e and the angle a_4 can be obtained by substitution into eqs. (5.2.35). The remaining length, x_2 , is readily obtained from eq. (5.2.32) when, for convenience, the values of Ψ_1 and ϕ_1 are introduced in that equation. Thus, the synthesis problem is totally solved. Two observations are in order: i) This method allows to synthesize a function generator for up to seven precision points and ii) since infinitely many combinations of a and β (that turn the determinant δ zero) exist, that combination rendering the best transmission angle can be used, thus allowing for optimization.

So far no velocity nor acceleration nor higher-derivative conditions have been considered. The introduction of such conditions, rendering a synthesis problem for <u>infinitesimally-separated positions</u> is, however, straightforward. In fact, all that need be done is to differentiate the input-output function with respect to time as many times as necessary, substitute in the resulting equations the prescribed values of the input, the output and their derivatives and form a system of synthesis equations similar to that appearing in eqs. (5.2.17). This is next illustrated with an example.

Example 5.2.2 Synthesis of the RSSR linkage for function generation with prescribed dead-points.

It is required to determine the dimensions of the linkage shown in Fig 5.2.1, for a given value of angle α_4 , to produce an oscillation of link BC of 90° in such a way that the return motion (under no load) be performed twice as faster as the first half (under full load). The input link should be a crank, i.e. it should rotate through 360?

Solution:

In the synthesis equation 5.2.17, let

iP

$$k_1 = \frac{s_1}{a_1}, k_2 = \frac{a_4}{a_3}, k_3 = \frac{a_4}{a_3}, k_4 = \frac{s_4}{a_3}$$
 (5.2.44a)

$$k_{5} = - \frac{a_{1}^{2} - a_{2}^{2} + a_{4}^{2} + a_{4$$

thus obtaining the suitable synthesis equation in the form

$$k_1 = \alpha_4 = b_2 = b_2 = b_3 = b_4 = b_4 = b_4 = b_5 = b_5 = b_4 = b_5 = b_5$$

To meet the problem conditions, assume that the no-load motion is performed during a 120° rotation of the input crank, the load motion being executed during the remaining 240° rotation of the said crank. Thus, the following conditions can be imposed

$$\phi_1 = 0; \psi_1 = 0, \dot{\psi}_1 = 0$$
 (5.2.46a)

$$\psi_2 = 120^\circ, \psi_2 = 90^\circ, \psi_2 = 0$$
 (5.2.46b)

These conditions do not suffice for the present problem for, even if they are met, the output linkage could rotate through an angle of 270° and not one of 90°, as required. To ensure the proper motion to be performed by the linkage, the additional following condition is imposed

which arises from the assumption that, when the input link has rotated through an angle of $60^{\circ} (=\phi_3^{-}-\phi_2^{-})$ of the load motion (1/4 of this motion), the output link has rotated through an angle of 22.5° (= $\psi_2 - \psi_3^{-}$) of the same motion (1/4 of this motion, also). To specify the velocity conditions, the synthesis equation (5.2.45) is

differentiated with respect to time, thus obtaining

 $k_1 \dot{\phi} s a_4 c \phi + k_2 \dot{\phi} s \phi - k_3 \dot{\psi} s \psi + k_4 \dot{\psi} s a_4 c \psi - (-\dot{\phi} s \phi c \psi - \dot{\psi} c \phi s \psi$ $+ \dot{\phi} c a_4 c \phi s \psi + \dot{\psi} c a_4 s \phi c \psi) = 0 \qquad (5.2.47)$

14

It is then noticed that five synthesis equations can be obtained to produce five unknowns, thereby justifying the use of a synthesis equation of the form. of eq. (5.2.45). The said five synthesis equations are:

For $\phi_1=0$ and $\phi_1=0$, eq. (5.2.45) leads to

$$-k_2+k_3+k_5-1=0$$
 (5.2.48a)

For $\phi_1 = 0$, $\psi_1 = 0$ and $\dot{\psi}_1 = 0$, with $\dot{\phi}_1 \neq 0$, which can then be dropped, eq. (5.2.47) leads to

For $\phi_2 = 120^\circ$ and $\psi_2 = 90^\circ$, eq. (5.2.45) leads to

$$\frac{\sqrt{3}}{2} s_{4} k_{1} + \frac{1}{2} k_{2} + s_{4} k_{4} + k_{5} - \frac{\sqrt{3}}{2} c_{4} = 0 \qquad (5.2.48c)$$

For $\phi_2 = 120^\circ$, $\psi_2 = 90^\circ$ and $\psi_2 = 0$, with $\phi_2 \neq 0$ eq. (5.2.47) leads to

$$\frac{1}{2} \mathbf{s}^{\alpha} \mathbf{4}^{k} \mathbf{1}^{+ \frac{3}{2} k} \mathbf{2}^{+ \frac{1}{2} c \alpha} \mathbf{4}^{= 0}$$

Finally, from condition (5.2.46c), eq. (5.2.45) leads to

$$k_2 + c67.5^{\circ}k_3 + s67.5^{\circ}sa_4k_4 + k_5 + c67.5^{\circ}=0$$
 (5.2.48d)

Solving for the five unknowns in the foregoing system (5.2.48), one obtains

$$k_{1} = 0$$

$$k_{2} = -\frac{\sqrt{3}}{3}ca_{4}$$

$$k_{3} = \frac{1}{1-c} \left(1 + c + \frac{2\sqrt{3}}{3}ca_{4}(s-1)\right)$$

$$k_{4} = \frac{2\sqrt{3}}{3}cota_{4}$$

$$k_{5} = 1 - \frac{\sqrt{3}}{3}ca_{4} - \frac{1}{1-c} \left(1 + c + \frac{2\sqrt{3}}{3}ca_{4}(s-1)\right)$$

t

where cEcos 67.5°, sEsin 67.5°

Putting the above expressions into a computer and computing them for different values of α_4 yields numerous linkages, out of which the best (in a given sense, e.g., the one with the best transmission angle) can be selected.

The transmission angle, μ , defined as angle BAD of the linkage appearing in Fig 5.2.1, is a measure of the mechanical advantage of the linkage, i.e. the ratio of output torque (M_g) to input torque (M_g). From Fig 5.2.1, the definition of vectors a,b,c and d following it, and eqs. (5.2.5), (5.2.11), (5.2.14) and (5.2.16c), it follows that

$$cos \mu = - \frac{b^{T} a}{a_{2}^{a_{3}}} - \frac{(c+d-a)^{T} a}{a_{2}^{a_{3}}}$$

from which

$$\cos \mu = - \frac{a_4 c \psi - s_1 s a_4 s \psi + a_1 c a_4 s \psi s \phi + a_1 c \psi c \phi - a_3}{a_2}$$
(5.2.49)

The reason why the transmission angle is a measure of the mechanical advantage of the linkage is the following: disregarding the inertia forces of the (inks, the input torque, M_{ϕ} , is transmitted from link CD to link AB (Fig 5.2.1) through the coupler link AD by means of a force collinear with line AD. If this force, F, is resolved into two components, one parallel to line AB and the other perpendicular to it, the working component is that perpendicular to AB and its value is F sinµ, whereas the nonworking component is that parallel to AB and its value is F cosµ. Thus, for a "good" force transmission, the parallel component of F should be as small as possible, which is attained if cosµ lies close to zero, i.e. if µ lies close to either 90° or 270°.

An expression for the mechanical advantage of the RSSR linkage can be obtained via a static analysis of the linkage, thus finding an expression 172

for M_{ϕ} in terms of the linkage parameters, ψ, ϕ and M_{ϕ} . This approach would be too tedious. A different approach is next pressented. Disrogarding the effect of friction forces for simplicity, the output power is equated to the input power, i.e.

$$N_{\phi} = M_{\psi} \psi$$
 (5.2.50)

from which, the mechanical advantage, m, is obtained as

$$m = \frac{M}{M_{\phi}} = \frac{\dot{\phi}}{\dot{\psi}}$$
(5.2.51)

From eq. (5.4.47),

$$m = \frac{k_3^{5\psi-k_4^{2}a_4^{}}c\psi - s\psi c\phi + c\alpha_4^{}c\phi s\psi}{k_1^{5\alpha_4^{}}c\phi + k_2^{5\phi+c\psi}s\phi - c\alpha_4^{}c\phi s\psi}$$
(5.2.32)

An analogous procedure can be followed to determine the mechanical advantage of other types linkages.

Exercise 5.2.1 Determine the mechanical advantage of the following linkages: Spherical RRRR, RSRP, RSRC

Exercise 5.2.2. Using the results of Example 5.2.2, find the dimensions of the linkage whose transmission angle lies between 40° and 140° (or between 220° and 1320°) throughout the performance of the linkage.

Mobility analysis

In synthesising function- generating linkages one is interested in producing a link with certain mobility conditions. These conditions refer to the range of motion of either the input- or the output link or of both. With this respect, one of these links is to be either a crank (possibility of rotation through 360°) or a rocker (possibility of rotation through a fraction of a complete turn). The conditions under which these mobility specifications are mot are next discussed.

Referring to Fig 5.2.1 the following analysis is performed to establish

the conditions under which the input link, CD, is a crank.

For a given position of the input link, i.e. for a given value of ϕ , the relative position of the pairs D and A is depicted in Fig 5.2.7. In that Figure, the locus of A is the circle centered at B with a radius a_3 , n_1 being the unit normal to the plane of the circle, i.e. the vector paralel to the axis of the the revolute pair R_{41} .

Fig 5.2.7 Relative position of pairs A and D of Fig 5.2.1 In what follows the following Theorem will be resorted to <u>THEOREM 5.2.1</u> Given a circle and a point not lying on its circomference and not necessarily in the plane of the circle, the points on the circomference lying the closest and the farthest from the point, Q and P, respectively, have the property that lines QD and PD are perpendicular to the tangent to the circle passing through Q and through P.

Exercise 5.2.3 Using the method of the Lagrange multipliers, prove Theorem 5.2.1

From Theorem 5.2.1 it follows that P and Q are determined as the intersections of the circle with line IB. Line IB is in turn determined by the center of the circle, B, and the intersection of the plane of the circle with its perpendicular from D. Let $L(\phi)$ and $L(\phi)$ be the lenght of segments DQ and DP, respectively. Hence, the condition for the input link to be a crank is that a_2 , the lenght of the coupler link, lie within the maximum value of A-and the minimum value L, i.e.

Exercise 5.2.4 Derive the following expressions.

$$\ell(\phi) = \{ \left[\sqrt{a_1^2 + s_1^2 + a_4^2 + 2a_4 a_1 \cos \phi} - (s_1 \cos \alpha_4 + a_1 \sec \alpha_4 \sec \phi)^2 - a_3 \right]^2 + (s_4 + s_1 \cos \alpha_4 + a_1 \sec \alpha_4 \sec \phi)^2 \}^{1/2}$$

$$L(\phi) = \{ \left\{ \sqrt{a_1^2 + s_1^2 + a_4^2 + 2a_4 a_1 \cos \phi} - (s_1 \cos \alpha_4 + a_1 \sec \alpha_4 \sec \phi)^2 + a_3 \right\}^2$$

$$L(\phi) = \{ \left\{ \sqrt{a_1^2 + s_1^2 + a_4^2 + 2a_4 a_1 \cos \phi} - (s_1 \cos \alpha_4 + a_1 \sec \alpha_4 \sec \phi)^2 + a_3 \right\}^2 + a_3 \right\}^2$$

24

5.3 MECHANISM SYNTHESIS FOR RIGID-BODY GUIDANCE.

A complete account of the theory and applications of this subject appears in (5.5-5.12). Different approaches to this problem are presented, all of them regarding the calculation of geometric parameters of one dyad* at a time, but the most unified treatment is that of Tsai and Roth (5.11). The method introduced by these authors is based on formulae relating the different screw angles and displacements of composed motions (carrying the rigid body intended to be guided from its reference configuration to its n specified successive configurations} to the directions and positions of the screw axes involved, as is shown next.

Let a rigid body B occupy configuration B_0 initially (henceforth called "the reference configuration") and assume it is intended to conduct this rigid body through n successive configurations $B_j(j=1,2,\ldots,n)$, all of them being finitely separated, i.e. the screw motions relating one of these configurations to each other and to the reference one contain parameters (angle and displacement) with only finite values (Fig 5.3.1) The motion carrying B from B_0 to B_j can be regarded as the composition of two motions; one, given by a screw M_j ** carrying B from B_0 to B_j , followed by a second one, given by a screw F_j , carrying B from B_j to B_j . The axes of both screws M_j and F_j are lines M_j and F_j , shown in Fig 5.3.1, where F_j is fixed in space, i.e. its position relative to B_0 does not change after the motion is completed, whereas line M_j is a moving one. Let u_j and w_j be is the scalar displacements of M_j and F_j , respectively, and a_j and γ_j their

^{*}See Section 3.2.

^{**}M, denotes a screw, whereas M,, its axis.

respective angles. The screw \S_1 resulting from the composition of M_1 and P_1

Fig 5.3.1 Successive configurations of a rigid body

has an axis s_j passing through point A_j , its displacement being denoted by t_j and its angle by θ_j . All three screws form what Roth calls a "screw triangle", Next, relationships among the screw displacements, angle and axes are obtained.

In what follows, let \underline{m}_{j} , \underline{f}_{j} and \underline{s}_{j} be unit vectors parallel to the axes of \underline{M}_{j} , \underline{F}_{j} and \underline{S}_{j} . Moreover, let \underline{q}_{j} , \underline{q}_{j} , and \underline{a}_{j} be the position vectors of points \underline{Q}_{j} , \underline{G}_{j} and \underline{A}_{j} , located on \underline{M}_{j} , \underline{F}_{j} and \underline{S}_{j} , respectively. For short, the indices are dropped from the screw parameters in the following derivations. Starting with Rodrigues' formula (2.5.3) the following relation is readily obtained (5.13,5.14)

$$\tan \frac{\theta}{2^{\frac{\alpha}{2}}} = \frac{\tan \frac{\alpha}{2^{\frac{\alpha}{2}+\tan \frac{\gamma}{2} f + \tan \frac{\alpha}{2} \tan \frac{\gamma}{2} f \times m}}{1 - \tan \frac{\alpha}{2} \tan \frac{\gamma}{2^{\frac{\alpha}{2}} \dots f}}$$
(5.3.1)

27

12.

Multiplying both sides of the above equations times xf yields

$$\tan \frac{\theta}{2} \sum_{i=1}^{\infty} \frac{\tan \frac{\alpha}{2} \max f + \tan \frac{\alpha}{2} \tan \frac{\gamma}{2} (f \times m) \times f}{1 - \tan \frac{\alpha}{2} \tan \frac{\gamma}{2} m \cdot f}$$
(5.3.2)

Multiplying both sides of the above equation times.g, the left hand side clearly vanishes thus leading to

$$\tan \frac{\alpha}{2} \left(\max_{s=1}^{n} \frac{1}{s} + \tan \frac{\gamma}{2} (f_{s} m) \times f_{s} \frac{s}{s} \right) = 0$$
 (5.3.3)

۰.

which, for non-zero values of α , vanishes only if the term in brackets does, i.e. if

$$\tan \frac{\gamma}{2} = \frac{mxf.s}{(mxf).(fxs)}$$
(5.3.4)

which is one of the relations sought.

To stablish a second relation, multiply both sides of eq. (5.3.1) times x_{m} , thus obtaining

$$\tan \frac{\theta}{2} = \frac{\tan \frac{\gamma}{2} f_{xm} + \tan \frac{\alpha}{2} \tan \frac{\gamma}{2} (f_{xm}) \times f}{1 - \tan \frac{\alpha}{2} \tan \frac{\gamma}{2} m \cdot f}$$
(5.3.5)

Multiplying both sides of the latter equation times .s renders its left hand side zero, thus leading to

$$\tan \frac{Y}{2} \left(f_{xm}, s + \tan \frac{\alpha}{2} (f_{xm}) \times m, s \right) \neq 0$$
 (5.3.6)

which, for non-zero values of Y, vanishes only if the term in brackets does, i.e. if

$$\tan \frac{\alpha}{2} = \frac{f \cdot s_{xm}}{(s_{xm}) \cdot (mxf)}$$

thereby obtaining one second relationship

To obtain a third relationship, one connecting θ to m,f and s, proceed as follows:

Eq. (5.3.1) was obtained by first rotating B through an angle : about an axis parallel to m, and then through an angle γ about an axis parallel to f. The resulting rotation is equivalent to a single one through an angle θ about an axis parallel to s. If now configuration B' is regarded as the reference one, B₀ can be reached from B' through B_j.B_j can be reached from B' in exactly the same way as described previously, i.e. by means of z rotation through an angle γ about an axis parallel to f; but now B₀ can be reached from be reached from B by means of the inverse of the rotation carrying B₀ to B_j, i.e., via a rotation through an angle - θ about an axis parallel to s.

$$\tan\left(-\frac{\theta}{2}\right) = \frac{\tan\frac{\gamma}{2}f - \tan\frac{\gamma}{2}s - \tan\frac{\theta}{2}\tan\frac{\gamma}{2}sxf}{1 + \tan\frac{\gamma}{2}\tan\frac{\theta}{2}f \cdot s}$$
(5.3.8)

Proceeding in a fashion analogous to the one used to obtain (5.3.4) and (5.3.7), i.e. multiplying both sides of eq. (5.3.8) times xs.m, one finally obtains

$$\tan\frac{\theta}{2} = \frac{\frac{1}{2} \cdot \frac{8 \times m}{8}}{(\frac{1}{2} \times \frac{5}{2}) \cdot (\frac{5 \times m}{8})}$$
(5.3.9)

as the third relationship sought. In the following, expressions for u, w and t are obtained. The composition of screws M and F is shown in Fig. 5.3.2. In This figure, \underline{r} is the original. position vector of a point P of a rigid body undergoing first a screw motion of scalar displacement u, parallel to vector \underline{m} , and rotation u about an axis passing through Q and parallel to \underline{m} . After this screw motion the

(5,3.7)

position vector of P is r'. Next, the rigid body undergoes one second screw motion of scalar displacement w parallel to f, and rotation γ about an axis passing through G and parallel to f. The final position vector of point P is r".

The composition of both screws is equivalent to one single screw of scalar displacement t parallel to \underline{s} , and rotation θ about an axis passing through A and parallel to \underline{s} . This screw is shown in Fig 5.3.3.

Let Q_1 and Q_2 be the rotations of screws M and F, respectively, Q_3 being that of the equivalent screw S. Thus, applying eqs. (2.6.18) and (2.6.19),

$$\underline{r}^{*} = \underline{r}^{*} + \underline{w} \underline{f} + (\underline{\rho}_{2} - \underline{I}) (\underline{r}^{*} - \underline{q})$$
 (5.3.10)

where, applying the same result again,

$$\underline{r}' = \underline{r} + u\underline{m} + (\underline{Q}_1 - \underline{I}) (\underline{r} - \underline{q})$$
 (5.3.11)

Substitution of (5.3.11) into (5.3.10) yields, after cancellations and rearrangement of terms,

$$\mathfrak{r}^{"}=\mathfrak{r}^{+}\mathfrak{w}\mathfrak{f}^{+}\mathfrak{u}\mathfrak{Q}_{2}\mathfrak{m}^{+}(\mathfrak{Q}_{3}-\mathfrak{l})\mathfrak{r}^{-}(\mathfrak{Q}_{2}-\mathfrak{l})\mathfrak{q}^{-}\mathfrak{Q}_{3}\mathfrak{q}^{+}\mathfrak{Q}_{2}\mathfrak{q} \qquad (5.3.12)$$

in which $\mathfrak{Q}_{3}=\mathfrak{Q}_{3}\mathfrak{Q}_{3}$, has been substituted.

On the other hand, using the equivalent screw to compute r^{n} ,

$$\underline{r}^{"}=\underline{r}+ts+(\underline{Q}_{3}-\underline{I})(\underline{r}-\underline{a})$$
 (5.3.13)

Equating the right hand sides of (5,3,12) and (5,3,13), one obtains

$$wf + u Q_2 m - t s + (Q_3 - 1) (a - q) + (Q_2 - 1) (q - q) = 0$$
 (5.3.14)

from (5.13, p.5),

$$Q_m = m + (1 - c\gamma) fx (fxm) + s\gamma fxm$$
 (5.3.15)*

*cyEcosy, syEsiny

,

えっらいら

$$(Q_2 - I) (q-q) = (1-c\gamma) fx(fx(q-q)) + s\gamma fx(q-q)$$
 (5.3.16)

• 3.

62.

. -

$$(Q_2-I)(a-q) = (1-c\theta) \exp(\sigma x (a-q)) + s\theta \exp(a-q)$$
 (5.3.17)

Substitution of (5.3.15)-(5.3.17) into (5.3.14) yields

$$w_{z}^{2} - t_{z}^{2} + u_{m}^{2} + u(1 - c_{\gamma}) f_{x}(f_{xm}) + u_{z}^{2} f_{xm}^{2} + (1 - c_{\gamma}) f_{x}(f_{x}(q - q)) + s_{\gamma}f_{x}(q - q) = 0$$

$$+ (1 - c_{\gamma}) f_{x}(f_{x}(q - q)) + s_{\gamma}f_{x}(q - q) = 0$$

$$(5, 3, :8)$$

Multiplying both sides of eq. (5.3.18) times xf.s yields

.

$$umxf.s+u(1-c\gamma)(fx(fxm))xf.s+us\gamma(fxm)xf.s++(1-c\theta)(sx(sx(a-q)))xf.s+s\theta(sx(a-q))xf.s++(1-c\gamma)(fx(fx(q-q)))xf.s+s\gamma(fx(q-q))xf.s=0$$
(5.3.:9)

Define

.

$$p_1 = \max_{1} f_1 = \max_{2} f_2 = \max_{2} f_1 \cdot (f_{xs}), p_3 = (f_{xs}) \cdot (s_{xm})$$
 (5.3.20)

From eq. (5.3.4), the corresponding trigonometric identities and definitions (5.3.20), one obtains

$$c\gamma = \frac{p_2^2 - p_1^2}{p_1^2 + p_2^2}$$
, $1 - c\gamma = \frac{2p_1^2}{p_1^2 + p_2^2}$, $B\gamma = \frac{2p_1 p_2}{p_1^2 + p_2^2}$ (5.3.21)

$$c\theta = \frac{p_3^2 - p_1^2}{p_1^2 + p_3^2}, \quad 1 - c\theta = \frac{2p_1^2}{p_1^2 + p_3^2}, \quad \theta = \frac{2p_1 p_3}{p_1^2 + p_3^2}$$
(5.3.22)

Substituting eqs. (5,3,20) - (5,3,22) into eq. (5,3,19), $f^{(5)}$

$$u\{p_{1} + \frac{2p_{1}^{2}}{p_{1}^{2}+p_{2}^{2}} (fx(fxm))xf.s + \frac{2p_{1}p_{2}}{p_{1}^{2}+p_{2}^{2}} (fxm)xf.s + \frac{2p_{1}p_{2}}{p_{1}^{2}+p_{2}^{2}} (fx(q-q))xf.s + \frac{2p_{1}p_{2}}{p_{1}^{2}+p_{3}^{2}} (fx(q-q))xf.s + \frac{2p_{1}p_{$$

where

$$(f_{x}(f_{x}, 0)) \times f_{x} = -m_{x} f_{x} = -p_{y}$$
 (5.3.24)

and

$$(f_{xm}) \times f_{s} = (f_{xm}) \cdot (f_{xs}) = -p_2$$
 (5.3.25)

Let A be the coefficient of u. Then,

$$A = p_{1} - \frac{2p_{1}^{3}}{p_{1}^{2} + p_{2}^{2}} - \frac{2p_{1}p_{2}^{2}}{p_{1}^{2} + p_{2}^{2}} = p_{1} \left(1 - \frac{2p_{1}^{2}}{p_{1}^{2} + p_{2}^{2}} - \frac{2p_{2}^{2}}{p_{1}^{2} + p_{2}^{2}}\right) =$$
$$= p_{1} \frac{p_{1}^{2} + p_{2}^{2} - 2(p_{1}^{2} + p_{2}^{2})}{p_{1}^{2} + p_{2}^{2}} = -p_{1}$$
(5.3.26)

Let B be the sum of the next two terms in (5,3,23). Then

$$B = \frac{2p_1}{p_1^2 + p_2^2} \left(p_1 gxf + p_2(fxg)xf \right) . (q+g)$$
(5.3.27)

Let C be sum of the last two terms in (5.3.23),

$$C = -\frac{2p_1}{p_1^2 + p_3^2} \left(p_1 f_{xs} + p_3 (f_{xs}) x_5 \right), \quad (a-g)$$
(5.3.28)

Substituting (5.3.26)-(5.3.26) into eq. (5.3.23), dropping the common factor p_1 in it and solving for u/2, one obtains

$$\frac{u}{2} c_1, (q-q) - c_2, (q-q)$$
(5.3.29)

where

$$e_1 \frac{1}{p_1^2 + p_2^2} \left(p_1 \underbrace{sxf}_{p_1} + p_2 (fxs)xf \right), e_2 \frac{1}{p_1^2 + p_3^2} \left(p_1 \underbrace{fxs}_{p_1} + p_3 (fxs)xs \right)$$
(5.3.30)

. 2

To simplify expression (5.3.29), expand the terms in the denominators and those in the brackets of expressions (5.3.30).

$$p_1^2 + p_2^2 = (mxf,s)^2 + ((mxf),(fxs))^2 = (mxf,s)^2 + ||mxf||^2 ||fxs||^2 \cos^2(mxf,fxs) (5.3.31)$$
$$\cos^{2}(\max f, fx_{S}) = 1 - \sin^{2}(\max f, fx_{S}) = 1 - \frac{\left| \left| (\max f) x (x_{S}) \right| \right|^{2}}{\left| \left| \max f \right| \right|^{2} \left| \left| fx_{S} \right| \right|^{2}}$$
(5.3.32)

4

Substituting expression (5.3.32) into (5.3.31), one obtains

$$p_{1}^{2}+p_{2}^{2}=(\max f,s)^{2}+||\max f||^{2}||f \times s||^{2}-||(\max f) \times (f \times s)||^{2}$$
(5.3.33)

where

$$\left\| \left\| \max_{f} f \right\|^{2} = (\max_{f} f) \cdot (\max_{f} f) = (\max_{f} f) \times \min_{f} f = (f - f, \min_{f}) \cdot f = 1 - (\min_{f} f)^{2}$$
(5.3.34)

and, similarly,

$$||f_{xs}||^2 = 1 - (s, f)^2$$
 (5.3.35)

Furthermore,

$$||(\underline{mxf}) \times (\underline{fxs})||^{2} = ||(\underline{mxf}) \cdot \underline{sf} - (\underline{mxf}) \cdot \underline{fs}||^{2}$$
$$= ||(\underline{mxf} \cdot \underline{s})\underline{f}||$$
$$= (\underline{mxf} \cdot \underline{s})^{2} ||\underline{f}||^{2} = (\underline{mxf} \cdot \underline{s})^{2}$$
(5.3.36)

Substitution of eqs. (5.3.34)-(5.3.36) into eq. (5.3.33) leads to

$$p_{1}^{2} + p_{2}^{2} = \left(1 - \left(\frac{m}{2}, \frac{f}{2}\right)^{2}\right) \left(1 - \left(\frac{s}{2}, \frac{f}{2}\right)^{2}\right)$$
(5.3.37)

and, similarly

1

$$p_{1}^{2}+p_{2}^{2}=\left(1-\left(\underline{B},\underline{f}\right)^{2}\right)\left(1-\left(\underline{B},\underline{m}\right)^{2}\right)$$
(5.3.38)

But

Moreover,

$$p_1 \underbrace{\operatorname{sxf}}_{p_1} \underbrace{\operatorname{sxf}}_{p_2} \underbrace{\operatorname{sxf$$

Each of the two terms in the brackets of expression (5.3.39) are next expanded

Lat

Thus, the dyadic frees can be written as**

fxssxf=ab

* <u>1</u> is the identity dyadic, i.e. a dyadic that is isomorphic to the 3x3 identity matrix. Thus, in matrix notation, if the components of <u>f</u> are f_1f_2 and f_3 , then

 $(1-ff) = \begin{pmatrix} 1-f_1^2 & -f_1f_2 & -f_1f_3 \\ -f_1f_2 & 1-f_2^2 & -f_1f_3 \\ -f_1f_3 & -f_2f_3 & 1-f_3^2 \end{pmatrix}$

** For a short account on the algebra of dyadics see Appendix 1.

33.

(5, 3.40)

Introducing the usual index notation (5,15),

$$(\underbrace{fxssxf}_{ij})_{ij} = \underbrace{b}_{ij}$$
(5.3.41)

34

where, from definitions (5.3.40),

$$a_{j} = \epsilon_{ik\ell} f_k s_{\ell} + b_{j} = \epsilon_{jmn} s_n f_n$$
(5.3.42)

Непсе

$$(f x s s x f)_{ij} = \epsilon_{ik} \ell^{\epsilon} j m n^{f} k^{s} \ell^{s} n^{f} n$$
(5.3.43)

where, as is shown in Appendix 3,

$$\epsilon_{ik\ell}\epsilon_{jmn}=\delta_{ij}(\delta_{km}\delta_{\ell n}-\delta_{kn}\delta_{\ell m})+\delta_{jk}(\delta_{m\ell}\delta_{in}-\delta_{im}\delta_{\ell n}) +\delta_{j\ell}(\delta_{in}\delta_{kn}-\delta_{km}\delta_{in}), \qquad (5,3,44)$$

Substituting (5.3.44) into (5.3.43), one obtains finally

Substitution of the latter expression into (5.3.39) and simplifying the resulting expression leads to

$$P_1 = \sum_{i=1}^{\infty} (f \times g) \times f = m \cdot (1 - (f \cdot g)^2) (f f - 1)$$
 (5.3.46)

Similarly,

$$p_1 fx_s + p_3 (fx_s) x_s = m \cdot (1 - (f,s)^2) (1 - s_s)$$
 (5.3.47)

Substituting (5.3.37), (5.3.38), (5.3.46) and (5.3.47) into (5.3.30) and the corresponding expressions for c_1 and c_2 into (5.3.29), one obtains.

$$\frac{u}{2} = \frac{\underline{m}.(\underline{1}-\underline{f}\underline{f})}{1-(\underline{m},\underline{f})^2}; \quad (\underline{g}-\underline{q}) + \frac{\underline{m}.(\underline{1}-\underline{s}\underline{s})}{1-(\underline{s},\underline{m})^2}; \quad (\underline{a}-\underline{q})$$
(5.3.48)

which is identical to the corresponding expression obtained by Roth and Tsai $\{5,11\}$

Multiplying eq. (5.3.14) times $\varrho_2^{\rm T}$ one obtains

$$w_{z}^{x} + u_{z}^{m} - t_{Q}^{2} = (Q_{1}^{z} - Q_{2}^{T}) (a - q) - (Q_{2}^{T} - I) (q - q) = Q$$
 (5.3.49)

Multiplying the latter equation times $x_{f,m}$ and proceeding in a manner similar to that leading to eq. (5.3.48) starting from eq. (5.3.15), one obtains

$$\frac{t}{2} = -\frac{\frac{s}{(a,m)m}}{\frac{1}{(s,m)^2}} \frac{\frac{s}{(q-a)} + \frac{\frac{s}{(s,f)f}}{\frac{1}{(s,f)^2}}}{\frac{1}{(s,f)^2}} (q-a)$$
(5.3.50)

Now multiplying eq. (5.3.14) times Q_3^T leads to

$$w Q_{3}^{T} \underline{f} + u \underline{m} - t \underline{s} - (Q_{3}^{T} - \underline{I}) (\underline{a} - \underline{q}) + (Q_{1}^{T} - Q_{3}^{T}) (\underline{q} - \underline{q}) = 0$$
(5.3.51)

Finally, multiplying eq. (5.3.51) times xm.s and proceeding as before, one obtains

$$\frac{1}{2} = \frac{f - (f.s)s}{1 - (f.s)^2} \cdot (n-g) - \frac{f - (f.m)m}{1 - (f.m)^2} \cdot (q-g)$$
(5.3.52)

Equations (5.3.4), (5.3.7), (5.3.9), (5.3.48), (5.3.50) and (5.3.52) are the synthesis equations which were meant to be obtained.

Remarks about the synthesis equations:

- i) They are useful to synthesise spatial linkages, but not plane ones, because in the latter case, f, m and s are parallel. Hence angles α , γ and θ are undetermined in eqs. (5.3.4), (5.3.7) and (5.3.9) and displacements u, t and w are undertermined in eqs. (5.3.48), (5.3.50) and (5.3.52). Thus, to synthesise plane linkages, other equations should be used, like those developed by Suh (5.16) or by Angeles (5.17). Equations appearing in (5.17) are derived in the Appendix.
- ii) They enable the designer to synthesise dyads of any combination of the six kinematic lower pairs introduced in Ch. 3, except for the planar one. Notice, however, that since the axis of one of the two pairs of

the dyad is fixed and the other one is moving, the dyad is not symmetric, for which reason the R-S dyad, for instance, is different from the S-R dyad. Hence, the total number of dyads that can be designed with the foregoing equations is $5^2=25$. The syntheses of all these dyads, except for the P-P one, are discussed in (5.11). As Roth and Tsai point out in (5.11), unless the guided rigid body undergoes pure translation, in general a P-P dyad does not exist for an arbitrary rigid body motion.

- iii) If the different configurations of a rigid body meant to be guided are specified, not via their screws (referred to a common original configuration), but via the successive positions of a set of three nor-collinear points of the rigid body, then the corresponding screws must first be computed. This can be done with the computer subroutine SCREW, whose listing appears in Fig 2.6.6.
- iv) The path-generation problem of synthesis, discussed in Section 5.5,can also be treated using the equations under consideration.

The outlined synthesis procedure is illustrated by means of an example regarding the design of an R-R dyad for rigid-body guidance. The synthesis of this dyad has been studied extensively. It was first shown that the maximum number of specified configurations of the rigid body is three (See Section 5.4), if exact solutions are to be obtained, these solutions heing exact up to round-off and/or measuring errors. This statement can be readily, proved by the reader; besides, it is reported in several papers, e.g. in (5.11, p. 94). Roth (5.18) showed that the aforementioned exact synthesis problem has no more than 24 real solutions, whereas Suh (5.19) showed that these solutions always come in pairs, each pair forming a Bennett mechanism (5.20), i.e. an RRRR spatial linkage with degree of

freedom 1*. Finally, Roth and Tsai (5.12) showed that this problem has only one pair of real solutions, which constitute a Bennett mechanism. Example 5.3.1 Synthesise an RRRR spatial linkage to guide a rigid body whose points A,B and C attain the following successive positions:

The two involved screws, S_1 and S_2 , transporting the rigid body from configuration 0 to configurations 1 and 2, respectively were obtained with the aid of SUBROUTINE SCREW, the resulting parameters being those obtained from the computer printout of the program that was written for this purpose. These are the following:

$$\mathbf{g}_{1} = \begin{bmatrix} -0.769 \\ 0.590 \\ -0.245 \end{bmatrix}, \ \mathbf{a}_{1} = \begin{bmatrix} 0.454 \\ 0.787 \\ 0.470 \end{bmatrix}, \ \mathbf{t}_{1} = 0.245, \ \theta_{1} = -56.600^{\circ} \\ 0.470 \end{bmatrix}$$

$$\mathbf{g}_{2} = \begin{bmatrix} -0.906 \\ 0.194 \\ 0.375 \end{bmatrix}, \ \mathbf{a}_{2} = \begin{bmatrix} 0.305 \\ 0.176 \\ 0.645 \end{bmatrix}, \ \mathbf{t}_{2} = -1.282, \ \theta_{2} = -129.736^{\circ}$$

In this problem, θ_j , s_j , a_j , u_j and w_j (j=1,2) are known. In fact, $u_j = w_j = 0$ (j=1,2), for the corresponding motions are produced by revolute pairs, thereby not allowing for any sliding; the reamaining aforementioned parameters are those obtained via SUBROUTINE SCREW. The synthesis equations that are applied are eqs. (5,3.9), (5,3.48), (5.3.50) and (5.3.52), all of

^{*} If the Grübler-Kutzbach 3.5 formula is applied to this linkage, it is found that its degree of freedom is -2

them taken twice, once for each value of j.

Additionally, the unity-magnitude (i.e. normality) condition on vectors f and m yields two more equations. Finally, specifying the location of points G and Q, on the axes of the F and M screws, respectively, in such a way as to render GQ perpendicular to both axes, one obtains two additional equations. Summarizing, the problem leads to a system of 12 nonlinear algebraic equations in 12 unknowns. Roth and Tsai (5.12) introduced an algorithm that reduces the problem to finding the unique positive real root of a cubic equation. In the course of the description of their algorithm, they show that the system admits exactly two real different solutions which, as Sub (5.19) proved before, are bound to constitute a Bennett mechanism. Roth and Tsai also show that spurious solutions to the said system also appear, which contain, as solutions to f or m, either s_1 or s_2 . The author has found, following a different approach, that other spurious solutions can also appear, these solutions being inadmissible in the sense of yielding, for instance, point Q of the second solution identical to point G of the first one, thus making impossible the construction of the linkage.

The solution to the present problem is now obtained following a different procedure as that proposed by Roth and Tsai. In fact, although the algorithm proposed by these authors can be implemented even with a desk calculator (not necessarily a programmable one), the author could not see how to extend it to overdetermined problems, i.e. problems that involve the guidance of a rigid body through more than three different configurations, thus not allowing for an exact solution, in which case the best approximation (See Section 6.3) should be sought. The procedure followed here is based on the use of SUBROUTINE NRDAMP. First the synthesis equations are simplified considering that vector g-q is perpendicular to both f and m. Thus, the synthesis equations reduce to

For i=1,2:

$$F_{1} = \tan \frac{2}{2} f^{T} (I - \mathbf{s}_{1} \mathbf{s}_{1}^{T}) = 0$$
 (5,3.53a)
 $F_{1+2} = f^{T} (I - \mathbf{s}_{1} \mathbf{s}_{1}^{T}) (\mathbf{a}_{1} - \mathbf{q}) = 0$ (5.3,53b)
 $F_{1+4} = m_{1}^{T} (I - \mathbf{s}_{1} \mathbf{s}_{1}^{T}) (\mathbf{a}_{1} - \mathbf{q}) = 0$ (5,3.53c)
 $F_{1+4} = \mathbf{s}_{1}^{T} (\mathbf{q} - \mathbf{q}) - \frac{\mathbf{t}_{1}}{2} = 0$ (5,3.53d)
 $F_{1+6} = \mathbf{s}_{1}^{T} (\mathbf{q} - \mathbf{q}) - \frac{\mathbf{t}_{1}}{2} = 0$ (5,3.53d)
 $F_{9} = f^{T} f - 1 = 0$ (5,3.53e)
 $F_{10} = m_{1}^{T} m - 1 = 0$ (5,3.53f)
 $F_{11} = f^{T} (\mathbf{q} - \mathbf{q}) = 0$ (5.3.53g)

$$P_{12} = \mu^{T}(q-q) = 0$$
 (5.3.53b)

The Jacobian matrix of the system, which is needed by NRDAMP, is now formed by computing the partial derivatives of the above functions with respect to the unknowns f,m,q and q. Thus, For i=1,2:

$$\frac{\partial \mathbf{F}_{i}}{\partial f} = \tan \frac{1}{2} (\mathbf{I} - \mathbf{s}_{i} \mathbf{s}_{i}^{T}) \mathbf{m} + \max_{i}$$
(5.3.54a)

$$\frac{dr_i}{\partial m} = \tan \frac{1}{2} (\mathbf{I} - \mathbf{s}, \mathbf{s}^T) \mathbf{f} - \mathbf{f} \mathbf{x} \mathbf{s}, \qquad (5, 3, 54b)$$

 $\frac{\partial \mathbf{F}_{1}}{\partial \mathbf{g}} = \mathbf{Q}, \quad \frac{\partial \mathbf{F}_{1}}{\partial \mathbf{q}} = \mathbf{Q}$ (5.3.34c)

$$\frac{\partial F_{i+2}}{\partial f} = (I - s_1 s_1^T) (a_1 - g), \quad \frac{\partial F_{i+2}}{\partial g} = 0$$
 (5.3.54d)

$$\frac{\partial \mathbf{F}_{i+2}}{\partial q} = -(\mathbf{I} - \mathbf{s}_{i-1} \mathbf{s}_{i}^{T}) \mathbf{f}, \quad \frac{\partial \mathbf{F}_{i+2}}{\partial q} = \mathbf{0}$$
(5.3.54e)

$$\frac{\partial \mathbf{F}_{i+4}}{\partial \underline{f}} = 0, \quad \frac{\partial \mathbf{F}_{i+4}}{\partial \mathbf{m}} = (\mathbf{I} - \mathbf{s}_i \mathbf{s}_i^{\mathrm{T}}) (\mathbf{a}_i - \mathbf{q})$$
(5.3.54f)

$$\frac{\partial \mathbf{F}_{i+4}}{\partial \mathbf{g}} = \mathbf{0}, \quad \frac{\partial \mathbf{F}_{i+4}}{\partial \mathbf{q}} = -(\mathbf{I} - \mathbf{s}_{i} \mathbf{a}^{\mathrm{T}})\mathbf{m}$$
(5.3.54g)

$$\frac{\partial \mathbf{F}_{i+6}}{\partial \underline{f}} = 0, \quad \frac{\partial \mathbf{F}_{i+6}}{\partial \underline{m}} = 0, \quad \frac{\partial \mathbf{F}_{i+6}}{\partial \underline{q}} = \frac{\partial \mathbf{F}_{i+6}}{\partial \underline{q}} = -\frac{\partial \mathbf{F}_{i+$$

$$\frac{\partial F_{g}}{\partial \underline{f}} = 2\underline{f}, \quad \frac{\partial F_{g}}{\partial \underline{m}} = 0, \quad \frac{\partial F_{g}}{\partial \underline{q}} = 0, \quad \frac{\partial F_{g}}{\partial \underline{q}} = 0$$
(5.3.541)

$$\frac{\partial F_{10}}{\partial f} = \underline{0}, \quad \frac{\partial F_{10}}{\partial \underline{m}} = 2\underline{m}, \quad \frac{\partial F_{10}}{\partial \underline{q}} = \underline{0}, \quad \frac{\partial F_{10}}{\partial \underline{q}} = \underline{0}$$
(5.3.54j)

$$\frac{\partial F_{11}}{\partial f} = g - g, \quad \frac{\partial F_{11}}{\partial m} = 0, \quad \frac{\partial F_{11}}{\partial g} = f, \quad \frac{\partial F_{11}}{\partial g} = -f \qquad (5.3, 54k)$$

$$\frac{\partial F_{12}}{\partial \underline{f}} = \underline{0}, \quad \frac{\partial F_{12}}{\partial \underline{m}} = \underline{g} - \underline{g}, \quad \frac{\partial F_{12}}{\partial \underline{g}} = \underline{m}, \quad \frac{\partial F_{12}}{\partial \underline{g}} = -\underline{m}$$
(5.3.541)

Subroutines FUN and DFDX, required by NRDAMP, compute functions F_i (i=1,...12) and the Jacobian matrix. For this purpose, a vector x of twelve components is defined in the following manner:

$$x_{i} = f_{i}, i = 1, 2, 3$$

$$x_{i+3} = m_{i}, i = 1, 2, 3$$

$$x_{i+6} = g_{i}, i = 1, 2, 3$$

$$x_{i+9} = q_{1}, i = 1, 2, 3$$

Analogously, a vector \underline{p} of given parameters is defined as

ing.

For 1=1,2,3,

 $p_{i}^{=5}_{1i}$ $p_{i+3}^{=5}_{2i}_{2i}$ $p_{i+6}^{=a}_{1i}$ $p_{i+9}^{=a}_{2i}$ for i=1,2, $p_{i+12}^{=6}_{i}$ $p_{i+14}^{=t}_{i}$

In order to automate the calculations, the following arrays are defined: VE(I,J), for I=1,2,...,7 and J=1,2,3, is the J<u>th</u> component of the I<u>th</u> vector

of the array, where

 $f = 1 \underline{at} \text{ vector of the array}$ $\underline{a} = 2 \underline{nd} \text{ vector of the array}$ $\underline{a}_1 - \underline{q} = 3 \underline{rd} \text{ vector of the array}$ $\underline{a}_2 - \underline{q} = 4 \underline{th} \text{ vector of the array}$ $\underline{a}_1 - \underline{q} = 5 \underline{th} \text{ vector of the array}$ $\underline{a}_2 - \underline{q} = 5 \underline{th} \text{ vector of the array}$ $\underline{a}_2 - \underline{q} = 5 \underline{th} \text{ vector of the array}$ $\underline{q}_2 - \underline{q} = 5 \underline{th} \text{ vector of the array}$

MA(I,J,K), for I=1,2, and J,K=1,2,3, is the (J,K)<u>th</u> entry of the I<u>th</u> matrix of the array, where

 $I-s_1s_1^T$ the ith matrix of the array.

Other subsidiary subroutines are the following: SUBROUTINE MAVE (I,MA,J,VE,PROV) computes the product of matrix I of MA times vector J of VE and stores this product in array PROV. SUBROUTINE VEVE(I,VE,V,PROS) computes the inner product of vector I of VE times V and stores this product in PROS.

SUBROUTINE CROSS (I,X,J,P,CROS) Computes the cross product of either f(I=1) or m(I=2), stored in X, timos either $s_1(J=1)$ or $s_2(J=2)$, both stored in P. It stores the product in array CROS. The listings of the aforezentioned subroutines appear in Figs 5.3.4, 5.3.6, 5.3.7 and 5.3.8 The two meaningful solutions that were obtained, using the Newton-Rephson method, are

$$\mathbf{f}_{1} = \begin{pmatrix} 0.819 \\ -0.569 \\ 0.073 \end{pmatrix}, \\ \mathbf{m}_{1} = \begin{pmatrix} 0.083 \\ -0.349 \\ -0.933 \end{pmatrix}, \\ \mathbf{g}_{1} = \begin{pmatrix} 1.048 \\ 0.317 \\ 0.658 \end{pmatrix}, \\ \mathbf{g}_{1} = \begin{pmatrix} 0.246 \\ -0.793 \\ 1.002 \end{pmatrix}$$

$$\mathbf{f}_{2} = \begin{pmatrix} -0.660 \\ -0.744 \\ 0.107 \end{pmatrix}, \\ \mathbf{m}_{2} = \begin{pmatrix} -0.866 \\ 0.480 \\ -0.140 \end{pmatrix}, \\ \mathbf{g}_{2} = \begin{pmatrix} 1.039 \\ 0.121 \\ -0.761 \end{pmatrix}, \\ \mathbf{g}_{2} = \begin{pmatrix} 0.963 \\ 0.388 \\ 0.624 \end{pmatrix}$$

The conditions for the above linkage to constitute a Bennett mechanism (5.20) are, according to Fig 9.3.9,

Fig 5.3.9 A Bennett Mechanism

$$\overline{G_1 Q_1} = \overline{G_2 Q_2}^{=a}$$

$$\overline{G_1 G_2} = \overline{Q_1 Q_2}^{=b}$$

$$\left(f_1^T f_2\right) = \left(m_1^T m_2\right)$$

$$\left(f_{1-1}^T f_2 = f_{2-2}^T m_2\right)$$

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b}$$

It can be readily proved that the linkage just designed satisfies the above conditions and thus constitutes a Bennett mechanism.

The algorithm of Roth and Tsai requires referring the problem to a particular set of coordinate axes, in such a way that, letting i,j,k denote unit vectors along new X,Y and Z axes, respectively, these vectors are defined as

> <u>k==</u>1 j=<u>_______</u> j=<u>_______</u> [=_1×s_2]] j=jxk

Furthermore, the origin of coordinates is to be placed at the intersection of the common perpendicular to the axes of screws S_1 and S_2 with the axis of S_1 . This way, in the new coordinates,

$$\mathbf{s}_{1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \mathbf{a}_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \mathbf{s}_{2} = \begin{bmatrix} u \\ 0 \\ v \end{bmatrix}, \mathbf{a}_{2} = \begin{bmatrix} 0 \\ h \\ 0 \end{bmatrix}$$

where h is the distance between the axes of S_1 and S_2 times the sign of $a_1 x s_2$. $(a_2 - a_1)$. The solution obtained using the data in the new coordinate axes must be then transformed into the original coordinates. This is done via the following affine transformation:

 $(\mathbf{f})_{o} = (\mathbf{R})_{o} (\mathbf{f})_{n}$

$$\begin{array}{c} \left(\underline{m}\right)_{o} = \left(\underline{R}\right)_{o} \left(\underline{m}\right)_{n} \\ \left(\underline{g}\right)_{o} = \left(\underline{a}_{1}\right)_{o} + \left(\underline{R}\right)_{o} \left(\underline{g}\right)_{n} \\ \left(\underline{g}\right)_{o} = \left(\underline{a}_{1}\right)_{o} + \left(\underline{R}\right)_{o} \left(\underline{g}\right)_{n} \end{array}$$

where subscripts o and n refer to original and new coordinates, respectively. Matrix $\left(R \right)_{D}$ can be obtained via Definition 1.2.1, as

$$\left(\underline{\mathbf{R}}\right)_{\mathbf{O}}^{\mathbf{w}}\left(j\mathbf{x}\underline{\mathbf{k}}\right| \frac{\underbrace{\mathbf{s}_{1}\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{2}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{1}}{\prod_{\mathbf{s}_{1}}\underbrace{\mathbf{x}\underline{\mathbf{s}}_{2}}{\prod_{\mathbf{s}_{1}}}}}$$

where the transpose of the given matrix should be taken because the matrix taken as such (without transposing) represents the rotation of the original axes the new ones.

Exercise 5.3.1 Check the solution given above to Example 5.3.1, applying Tsai and Roth's algorithm (5.12).

5.4 <u>A DIFFERENT APPROACH TO THE SYNTHESIS PROBLEM FOR RIGIL-BODY GUDANCE</u>. For dyads containing any combination of revolute and spherical pairs, this problem can be formulated in an alternative way, which formally resembles the plane linkage synthesis problem (5.17) discussed in Appendix 4. Let $X_0Y_0Z_0$ be coordinate axes attached to the rigid body intended to guide, in its reference configuration, and $X_jY_jZ_j$ those attached to it in its jth configuration. Furthermore, let S_{12} and S_{23} be spherical pairs contacting the dyad to synthesize to the frame of the mechanism (linkage 1) and to the rigid body (linkage 3). Then, from Fig 5.4.1, the next relationship follows

$$\underline{\mathbf{z}}_{j}^{\dagger} \underline{\mathbf{a}}_{j}^{\dagger} \underline{\mathbf{b}}_{j}^{\dagger} \underline{\mathbf{a}}_{0}^{\dagger} \underline{\mathbf{b}}_{0}$$
 (5.4.1)

Q, being the rotation matrix of the screw carrying the rigid body from its -j reference to its $j\frac{th}{c}$ configuration.

Fig 5.4.1 S-S dyad conducting a rigid body

15

12.

Introducing eq. (5.4.2) into eq. (5.4.1) and solving for \underline{b}_{j} one obtains

$$b_{1} = (I - Q_{1})a_{0} + b_{0} - r_{1}$$
(5.4.3)

Since the dyad is rigid,

$$||\mathbf{b}_{j}|| = ||\mathbf{b}_{0}||$$
 (5.4.4)

Substituting eq. (5.4.3) into eq. (5.4.4) and squaring both sides of the resulting equation yields

$$\left|\left(\mathbf{I}-\mathbf{Q}_{j}\right)_{=0}^{a}+\mathbf{b}_{0}-\mathbf{r}_{j}\right|^{2}=\left|\left|\mathbf{b}_{0}\right|\right|^{2}, j=1,2,\ldots,n$$
(5.4.5)

which constitute, in general, a nonlinear system of n synthesis equations to solve for the unknowns \underline{a}_0 and \underline{b}_0 . Since these unknowns contain 6 scalar components, for exact synthesis the largest value that n can attain is 6, and hence, with an S-S dyad, a rigid body can be conducted through 7 configurations, counting the reference configuration as the seventh one. <u>Exercise 5.4.1</u> If it is intended to conduct the rigid body through 4 configurations only, then 3 unknowns must be specified to render the problem determined. These specified unknowns can be any combination of the six involved coordinates. Show that, if the three components of \underline{a}_0 are specified, the system of equations becomes linear.

Regarding the four-configuration synthesis problem discussed in Exercise 5.4.1; if a happens to be specified in such a way that for the $k^{\frac{\text{th}}{-0}}$ configurations the next holds.

$$\mathbf{r}_{\mathbf{k}} = (\mathbf{I} - \mathbf{Q}_{\mathbf{k}}) \mathbf{a}_{\mathbf{0}} \tag{5.4.6}$$

then the $k^{\underline{th}}$ synthesis equation becomes an identity, thus leading to an underdetermined system of equations, which can be rendered determined by either specifying one fifth configuration or by specifying one of the components of b_0 . An alternative way of handling this situation, amply discussed in Ch. 6, is to leave the system of equations undertermined but imposing some optimality condition like, for instance, to minimize $||b_0||$,

thus enabling the designer to obtain the minimum-length dyad.

From the above discussion it is apparent that it is highly desirable to be able to specify \underline{a}_0 so as to satisfy eq. (5.4.6). However, it is not possible to solve for \underline{a}_0 from this equation, for the matrix involved is singular, as discussed in Section 2.6. In that section it was also mentioned that in a system of equations like the one "defining" \underline{a}_0 in eq. (5.4.6), two of the three equations are linearly dependent. Hence, this system is underdetermined and, properly speaking, <u>does not</u> actually <u>define</u> \underline{a}_0 . This vector can, however, be defined by imposing the condition that its magnitude be a minimum, which can be done via the pseudoinverse matrix of the system of 2 (linearly independent) equations in three unknowns obtained from eq. (5.4.6). <u>Exercise 5.4.2</u> Show that if \underline{r}_k is parallel to the axis of the screw carrying the rigid body from its reference configuration to its $k^{\frac{th}{th}}$ configuration, then it is not possible to find a vector \underline{a}_0 satisfying eq. (5.4.6). If vector \underline{r}_k is not on the null space of $\underline{I}=\underline{Q}_k$ (Sect. 1.3), i.e., if it is not parallel to the axis of rotation of \underline{Q}_k , then a minimum-norm vector \underline{a}_0 can be

obtained from the underdetermined system of the two linearly independent equations contained in eq. (5.4.6). This is a very useful result, because, as the length of vector a_0 is made the shortest possible, the weight and the dimensions of the linkage are minimized, thus allowing to construct a linkage with the smallest amount of material, driving it with the least possible amount of power and placing it in the narrowest space. More on linkage optimization will be discussed in Ch. 6

Synthesis of R-S dyads. In this case a configuration analogous to the one shown in Fig 5.4.1 is obtained, except that pair S_{12} is replaced by pair R_{12} . Similarly, for n+1 rigid-body configurations, the same synthesis equations (5.4.5) follow. Since this dyad can only rotate abount the axis

of R_{12} , suitable constraints must be introduced in order to insure the normality between vectors b_j (j=0,1,...,n) and the unit vector c_i directed along the axis of R_{12} . This normality condition is equivalent to the coplanarity condition among all vectors b_j . Algebraically, the latter condition can be stated as

thus obtaining n-1 additional synthesis equations. The number of synthesis parameters (unknowns) in this case is again six, i.e. the three scalar components of vectors a_0 and b_0 . Hence, in order to match the number of equations to that of unknowns, one must have

2n~1=6

i.e.

 $n=\frac{7}{2}$

which, unfortunately is not an integer.

From the foregoing discussion it follows that some parameters should be specified beforehand. If m parameters are specified, then n must have the value

Thus, letting N=n+1 be the number of prescribed rigid body configurations, the following table is obtained

It is pointed out, again, that if three parameters are specified, these can be chosen to be the three components of a satisfying the two linearly independent equations of (5.4.6), for one k, such that the magnitude of

43

a is a minimum. If no constraint equations (5.4.7) were to be present in this case, this would allow one to preacribe one fourth configuration of the rigid body under guidance. The presence of the said equations, however, does not prevent the introduction of such an extra configuration, for, from equations (5.4.3) and (5.4.6), $b_{\mu}=b_{0}$, for that k for which (5.4.6) holds, the $k^{\underline{th}}$ equation of (5.4.7) thereby being identically satisfied. In conclusion, the R-S dyad can be synthesised for a maximum of 4 prescribed configurations of a rigid body in such a way that $||a_0||$ is minimised, therefore allowing for a minimum-weight synthesis. The latter result could also be concluded from the discussions of the same problem appearing in (5.11) and (5.21), where the authors show that the said rigid-body guidance problem leads to an . underdetermined system of equations. The synthesis of S-R dyads is essentially the same as that of R-S dyads

Synthesis of R-R dyads. Again the picture shown in Fig 5.4.1 relating the reference-and the $j \frac{th}{dt}$ configurations for an S-S dyad, still holds for R-R dyads, except that pairs S_{12} and S_{23} are replaced by R_{12} and R_{23} , respectively, as shown in Fig 5.4.2. In addition to the synthesis equations (5.4.5), constraint equations for these pairs should be introduced. In fact, if both revolute pairs are connected by means of a link of axis parallel to the common perpendicular to the axis of both revolute pairs, this perpendicularity should be observed throughout the different specified configurations.

The perpendicularity of the axis of the link with the axis of R12 can be stated - i - • つうせい まうう **a**8 u^Tb.=0, j=0,1,...,n (5.4.8)

12.

Additionally, the perpendicularity of the said link axis with the axis of R_{23} can be stated as

or, introducing eq. (5.4.3), and the fact that

$$y_{j} = 0, y_{0}, j = 0, 1, \dots, n$$

the latter perpendicularity condition appears as

$$v_0^T Q^T ((1 - Q) a_0 + b_0 - r_j) = 0, j = 0, 1, ..., n$$
 (1.4.9)

where

From Fig 5.4.2, it is clear that vectors \underline{u} and \underline{v} belong to the same rigid body, namely the R-R link to be synthesised.

Equations (5.4.8) and (5.4.9), however, do not guarantee that these vectors undergo a rigid body motion from the reference to the $j\frac{th}{t}$ configuration. In fact, a 180-degree rotation of vector y_j about the link axis (vector \underline{b}_j) -thus producing a reflexion of the link- could not be detected from eq. (5.4.9), for this would still hold after such a reflection. Hence, an additional constraint should be imposed, namely the constancy of the angle between vectors y and y, i.e.

$$u^{T}v_{j} = u^{T}v_{0}, j = 1, 2, ..., n$$
 (5.4.10)

Finally, the normality of vectors y and y leads to

$$||y||=1, ||y_0||=1$$
 (5.4.11)

Summarizing, eqs. (5.4.5), (5.4.8-11) constitute a system of 4n+4 equations to compute the 12 unknown components of vectors a_0, b_0, u and v_0 . To match the number of equations to that of unknowns, one must have .

4n+4=12,i.e. n=2

Hence, by means of an R-R dynd, a rigid body can be guided through 3 configurations (counting the reference as the third configuration), a result which was mentioned in Section 5.3. As in the two foregoing cases, it is possible to realize an optimal synthesis of this linkage. In fact, instead of obtaining the unknown vectors from the 12 derived equations, find \underline{a}_0 from eq. (5.4.6) such that its magnitude be a minimum. Hence, the number of unknowns reduces to nine, but the number of equations to satisfy is nine, too, thus making it possible to obtain one or, several exact solutions to the problem. In fact, find \underline{a}_0 from eq. (5.4.6) for $\underline{r}_j = \underline{r}_2$; then the system of equations is: eq. (5.4.5) for j=1; additional equations are eq. (5.4.9a) - next derivedfor j=0,1, eq. (5.4.10) for j=1,2 and the two eqs. (5.4.11). Eqs. (5.4.5) (5.4.8) and (5.4.9a) are identically satisfied for j=2 if \underline{a}_0 is obtained from eq. (5.4.6). Eq. (5.4.9a) is an alternate form of the perpendicularity condition between \underline{b}_1 and \underline{v}_0 , i.e.

$$y_{j}^{T}((I-Q_{j})a_{0}+b_{0}-z_{j})=0, j=0, 1, ..., n$$
 (5.4.9a)

Exercise 5.4.3 Show that, if a_0 is chosen so as to satisfy eq. (5.4.6), with $r_j = r_2$, then eqs. (5.4.5), (5.4.8) and (5.4.9a) are identically satisfied for j=2.

Using the latter approach to the synthesis problem under study would yield two of the specified configurations of the body corresponding to two conjugate configurations of the linkage, as can be readily proved. Regarding this approach, a word of caution is in order, however: As is proposed to show in Exercise 5.4.2, it is possible that situations arise where it is not possible to find \underline{a}_0 from eq. (5.4.6)

Example 5.4.1 Synthesis an R-R dyad to conduct a rigid body -to which axes $x_1 y_1^z$ (1=0,1,2) are attached- throught the three positions shown in Fig 5.4.3

Fig 5.4.3 Rigid-body guidance throught three configurations.

Solution:

In what follows all vectors and matrices are referred to $X_{i}Y_{i}Z_{i}$ axes. Matrices Q_{1} and Q_{2} rotating axes from the reference configuration 0 to configurations 1 and 2 are obtained using Definition 1.2.1, as is shown in Section 2.3. Hence,

Then a is determined from the following equation, so that its lenght is a minimum

$$(1-\varphi_2)a_0=r_2$$
 (5.4.13)

12

As shown in Section 2.6, $I-Q_2$ is singular of rank 2; hence eq. (5.4.13) contains exactly 2 linearly independent equations, these being

$$\begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix} \begin{vmatrix} a_{01} \\ a_{02} \\ a_{03} \end{vmatrix} = \begin{pmatrix} 0 \\ 1 \end{vmatrix}$$

whose minimum norm solution is readily obtained via the Moore-Penrose pseudo-inverse (See Section 1.12). The computed solution is

$$\mathbf{a}_{0} = \left\{-\frac{1}{3}, \frac{2}{3}, -\frac{1}{3}\right\}_{1}^{T}$$

Let the unknown vectors b_0 , u and v_0 have the following components:

$$b_{00} = \begin{pmatrix} b_{01} \\ b_{02} \\ b_{03} \end{pmatrix}, \ \ u = \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix}, \ \ v_{00} = \begin{pmatrix} v_{01} \\ v_{02} \\ v_{03} \end{pmatrix}$$
(5.4.16)

Eq. (5.4.5) for j=1 takes on the form

$$\frac{2}{3}b_{02} = \frac{4}{3}b_{03} \approx -\frac{5}{9}$$
(5.4.17a)

Vectors b_1 and b_2 are computed from eq. (5.4.3), from which it can readily be checked that $b_2=b_0$, thereby satisfying eq. (5.4.5) for j=2 identically. Eq. (5.4.8) for j=0.1 then, takes on the forms

$$^{1}b_{01}^{+1}2_{02}^{+1}3_{03}^{+1}=0$$
 (5.4.17b) (5.4.17b)

$$u_1 b_{01} + u_2 \left\{ \frac{1}{3} + b_{02} \right\} + u_3 \left\{ -\frac{2}{3} + b_{03} \right\} = 0$$
 (5.4.17c)

Eq. (5.4.9a), for j=0,1 leads to

$$v_{03}b_{01}v_{02}b_{02}v_{03}b_{03}=0$$
 , (5.4.17d)

$$v_{01}b_{01}+v_{02}(\frac{1}{3}+b_{02})+v_{03}(-\frac{2}{3}+b_{03})=0$$
 (5.4.17e)

Eq. (5.4.10), for j=1,2 yields

$$^{u_1}v_{03} - ^{u_2}v_{02} + ^{u_3}v_{01} - ^{u_1}v_{01} + ^{u_2}v_{02} + ^{u_3}v_{03}$$
 (5.4.17f)

$${}^{u}_{1}{}^{v}_{03}{}^{+u}_{2}{}^{v}_{01}{}^{+u}_{3}{}^{v}_{02}{}^{=u}_{1}{}^{v}_{01}{}^{+u}_{2}{}^{v}_{02}{}^{+u}_{3}{}^{v}_{03}$$
 (5.4.17g)

where v, was computed performing the product 0 v. Finally, eqs. (5.4.11) $= j_{-0}$ take on the form

$$u_1^2 + u_2^2 + u_3^2 = 1$$
 (5.4.17h)

$$v_{01}^2 + v_{02}^2 + v_{03}^2 = 1$$
 (5.4.171)

The solutions to eqs. (5.4.17) provide the different possible dyads that guide the rigid body through the different configurations shown in Fig 5.4.2. This system of nine equations in nine unknowns, though nonlinear, can be solved without the aid of a digital computer, as is shown next. To refer to the foregoing equations, only the letter attached to each is mentioned, for shortness.

Subtracting (b) from (c),

Subtracting (f) from (g),

Substituting (a') into (b'),

 $u_3(v_{01}+3v_{02})=0$

First solution:

To satisfy eq. (c') there are two possibilities. One is

(a*)

(Ъ')

6 i s

(c1)

(d') in (a') leads to

u_an0

(d') and (c') in h yields

In what follows, this solution is developed taking only the plus sign of eq. (f'). Substitution of (f') into (f) yields

Subtracting (d) from (e),

$$v_{02}^{-2v}_{03} = 0$$
 (h¹)

Solving for v_{01} and v_{02} in (g') and (h'), in terms of v_{03} and substituting the resulting expressions into (i), one obtains

from which

 $v_{03} = \frac{\sqrt{6}}{6}$ (1')

and

 $v_{01} = \frac{\sqrt{6}}{6}$ (j')

Substituting (d'), (e') and (f') into eq. (b) leads to

Substituting (i'), (j') and (k') into eq. (d) leads to

$$2b_{02} + b_{03} = 0$$
 (m')

5%

(d')

(a')

£ .

57

11

Solving for b_{02} and b_{03} from eqs. (a) and (m'),

$$b_{02} = -\frac{1}{6}$$
 (n')
 $v_{03} = \frac{1}{3}$ (p')

Hence, the first solution to this problem is

$$\mathbf{b}_{0} = \begin{pmatrix} 0 \\ -1/6 \\ 1/3 \end{pmatrix}, \quad \mathbf{u}_{0} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1/3 \end{pmatrix}, \quad \mathbf{v}_{0} = \begin{pmatrix} \sqrt{6}/6 \\ \sqrt{6}/3 \\ \sqrt{6}/6 \end{pmatrix}$$
(5.4.19)

Second solution:

If now v_3 is assumed to have a nonzero value, it is possible to divide eq. (c') by it and obtain

$$v_{01}^{+3}v_{02}^{}=0$$
 (a")

From (h') and (a") it is possible to solve for v_{01} and v_{03} in terms of v_{02} .

$$v_{01}^{-3}v_{02}$$
 (b")
 $v_{-1}^{-3}v_{02}$ (c")

Substitution of (b") and (c") into (i) yields

$$v_{02} = \frac{2\sqrt{41}}{41}$$
 (d*)

Hence

$$v_{01} = -\frac{6\sqrt{41}}{41}$$
 (e")
 $v_{03} = -\frac{\sqrt{41}}{41}$ (f")

Substituting (d"), (e") and (f") into eqs. (f) and (g) leads to

$$u_1^{-2u_2^{-6u_3^{-6u_1^{+2u_2^{+u_3}}}}$$
 (g*)

 $u_1 = 6u_2 + 2u_3 = -6u_1 + 2v_2 + u_3$ (h")

from which one can solve for u_1 and u_2 in terms of u_3 , thus obtaining

$$u_{j} = \frac{15}{7} u_{3}$$
 (1^P)

Substitution of (i") and (j") into eq. (h) leads to

$$u_3 = \frac{7\sqrt{470}}{470}$$
 (k*)

Hence,

$$u_1 = \frac{15\sqrt{470}}{470}$$
 (1")

$$n_2 = \frac{14\sqrt{470}}{470}$$
 (m")

Substituting (k^*) , (1^*) and (m^*) into eq. (b) one obtains

$$^{15b}_{01}^{+14b}_{02}^{+7b}_{03}^{=0}$$
 (n*)

Performing a similar substitution into eq. (d), one obtains

$$-6b_{01}+2b_{02}+b_{03}=0$$
 (p*)

Solving eqs. (n*) and (p*) for b_{01} and b_{02} in terms of b_{03} ,

$$b_{02} = \frac{1}{2} b_{03}$$
 (r*)

Substitution of (r^*) into eq. (a) leads finally to

Thus, the second solution is

1.27 126

$$\mathbf{b}_{0} = \begin{pmatrix} 0 \\ 5/18 \\ 5/9 \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} 7 \\ 15 \\ 14 \end{pmatrix}, \quad \mathbf{v}_{0} = \begin{pmatrix} -6 \\ 2 \\ 1 \end{pmatrix} \beta$$

where

$$\alpha = \frac{\sqrt{470}}{470}, \beta = \frac{\sqrt{41}}{41}$$

Both dyads defined by \underline{a}_0 as given by (5.4.13) and both expressions for \underline{b}_0 , (5.4.16) and (5.4.17), are optimal in the sense that \underline{a}_0 is of minimum length. However, with respect to \underline{b}_0 , the first solution is the best.

In conclusion, regarding R-R dyad synthesis, it has been shown how to obtain an optimal dyad for a problem usually known to have only two real solutions, thus not allowing for any optimisation. 14.

٠.

| #i ------

5.5 <u>LINKAGE SYNTHESIS POR PATH GENERATION</u>. This problem can be stated as: "Synthesise a linkage of a given topology such that a point R of one of its links attains successively the <u>specified</u> positions R_0 , R_1 ..., R_n ". This problem can be regarded as one of rigid-body guidance with incompletely epecified displacements (5.22), for the motion of one single point of a rigid body does not define the body motion (its orientation thus remains undefined). To formulate the synthesis equations, use is made of eq. (5.3.12., written in the form

$$\sum_{j=1}^{n} \sum_{j=1}^{n} (\frac{1}{2})^{j} \sum_{$$

where $\underline{r}_{0}, \underline{r}_{j}$ (j=1,...,n) are the position vectors of points R_{0}, R_{j} (j=1,...,n), respectively. Other variables indexed with j are parameters of the involved screws -defined in Section 5.3- relating the jth configuration of the rigid body under study to its reference configuration, indexed with 0. Notice that vectors $\underline{f}, \underline{m}, \underline{q}$ and \underline{q} are not indexed, this being due to the fact that they remain the same throughout the rigid-body motion, except when dealing with spherical pairs, as is shown later.

Differently from what occurs with the rigid-body guidance problem, in this case the dyads, constituting the linkage intended to design, are not synthesised separately; the linkage is synthesised as a whole, instead. In fact, since in this case the rigid-body rotations involved are not specified, the composed-screw-axis directions, g_j , as well as the corresponding rotations, θ_j , are unknown. These are not independent, once the directions of $\frac{1}{10}$ $\frac{1}{10}$

 y_j, f, u_j, m, q , and g change from one dyad to the other, the s_j vectors are common. The synthesis procedure is illustrated with one example.

Example 5.5.1 Synthesis of an RRSS path generator linkage.

With no loss of generality, it can be assumed that $\underline{r}_0 = 0$ in eqs. (5.5.1). Then, the R-R dyad synthesis is first formulated, although, as mentioned previously, this synthesis cannot be performed independently from the one of the S-S dyad. This is due to the fact that the synthesis equations for both dyads are coupled via the \underline{s}_j vectors. In performing the R-R dyad synthesis, the different variables have the following meanings (See Fig 5.3.1 and its description): \underline{u}_j and \underline{w}_j are the displacements associated with the fixed and the moving R pairs of the dyad, respectively. Hence, they vanish.

f and m are unit vectors pointing in the direction of the axes of the fixed and the moving R pairs of the dyad. s_{-j} is the unit vector pointing in the direction of the axis of the screw carrying the body from its reference- to its $j\frac{th}{c}$ configuration.

g and q are position vectors of points located along the axes of the screws F_j and M_j , respectively. As in Section 5.3, those points will be located at the intersections of the said axes with their common normal. Under these circumstances, eqs. (5.5.1) take on the form

 $\begin{array}{l} r_{j} = (Q_{3j} - I) q + (Q_{2j} - I) (q - q) = r_{j} (f, m, s_{j}, q, q) \\ \text{where, clearly} \\ Q_{2j} = Q_{2j} (f, \gamma_{j}), \gamma_{j} = \gamma_{j} (f, m, s_{j}) \\ Q_{3j} = Q_{3j} (s_{j}, \theta_{j}), \theta_{j} = \theta_{j} (f, m, s_{j}) \\ \text{The normality of vectors } f, m and s_{j} (j = 1, 2, \dots, n) is expressed as \\ \end{array}$

||f||=1, ||m||=1, ||s_j||=1, j=1,...,n (5.5.3)

whereas the specific locations of points G and Q along the screw axes are expressed as

$$(q-g)^{T}f \neq 0, \quad (q-g)^{T}m = 0$$
 (5.5.4)

Thus, the synthesis of this dyad leads to a system of 3n+12 unknowns: f, m, s; (3n unknown scalars), q and g, in the 4n+4 equations: 3n equations (5.5.2) (one for each direction of the physical space)+ n+2 equations (5.5.3) + 2 equations (5.5.4).

The synthesis of the S-S dyad is formulated in the following way: Referring to Fig 5.5.1, let S_{12} and S_{23} be the spherical pairs of the dyad under consideration. Let \tilde{B}_0 and B_j be the reference- and the $j\frac{th}{t}$ configurations of body B, and B_j^* an intermediate configuration. Now, the guidance of B from B_0 through B_j is performed in two stages: first, B_0 is rotated about point Q through a rotation of axis m_j and angle a_j (it will be seen next that neither m_j nor a_j appear explicitly in the resulting synthesis equations for this dyad). Let B_j^* be the configuration of B after this rotation. Next, fixing B_j to the dyad, rotate the whole assembly as one single rigid body about point G through an axis f_j and an angle γ_j , B_j being the final configuration of the rigid body.

1.10

1) · · · · · [

Fig 5.5.1 Displacement of a rigid by means of an S-S dyad

Since in this case also $u_j = w_j = 0$, and r_0 can be equated to 0, eq. (5.5.1) takes on the form

where

 $\begin{array}{c} Q_{2j} = Q_{2j} \begin{pmatrix} f_{j}, \gamma_{j} \end{pmatrix}, \gamma_{j} = \gamma_{j} \begin{pmatrix} f_{j}, m_{j}, s_{j} \end{pmatrix} \\ Q_{3j} = Q_{3j} \begin{pmatrix} s_{j}, \theta_{j} \end{pmatrix}, \theta_{j} = \theta_{j} \begin{pmatrix} f_{j}, m_{j}, s_{j} \end{pmatrix} \end{array}$

ŀ

Clearly, vectors f_{j} and m_{j} are different from f and m appearing in eqs. (5.5.2)-(5.5.4), which is made(dlear) because the latter vectors are notion indexed. Vectors g_{j} , appearing in eqs. (5.5.2)-(5.5.3), however, are ident<u>i</u> cal to those appearing in eqs. (5.5.5); hence they do not add extra unknowns to the synthesis problem of the overall linkage.

Other synthesis equations are the following:

The normality of vectors f_j and m_j is expressed as

$$||_{f_j}||_{=1}, ||_{j}||_{=1}, j=1, 2, ..., n$$
 (5.5.6)

Since the S-S dyad can rotate about axis GQ without changing either configuration B_j or B_j , it can be assumed that the axes of rotation, given by unit vectors f_j and m_j , are both perpendicular to axis GQ, i.e.

$$(q-q)^{T} f_{j} = 0, j = 1, 2, ..., n$$
 (5.5.7)
 $(q-q)^{T} m_{j} = 0, j = 1, 2, ..., n$ (5.5.8)

Thus, the synthesis of the S-S dyad adds the following unknowns to the overall linkage synthesis problem: f_j , m_j (j=1,...,n), q and q, i.e. 6n+6 additional unknowns (Vectors s_j are not counted as new unknowns, since these were already taken into account when discussing the synthesis of the R-R dyad). The additional equations are: 3n equations (5.5.5) + 2n equations (5.5.6) +n equations (5.5.7)+n equations (5.5.8). Summarizing, then, the RRSS-linkage-synthesis problem for path generation gives rise to system of 11n+4 equations in 9n+18 unknowns. Matching the number of equations to that of unknowns, it is soon realized that n should have the value 7, i.e. it is possible to generate a path passing through 8 specified points (counting the reference- as the $\frac{6^{th}}{t}$ position), which coincides with the result obtained by Suh [5.23].

Remarks on the formulation of the RRSS linkage synthesis problem for path generation.

i) In the previous linkage-synthesis problem angles γ and θ appear in eq. (5.5.1) and angles γ_j and θ_j do in eq. (5.5.2). These angles, however, are not counted as additional unknowns, since they can be computed, via eqs. (5.5.4) and (5.5.9), with the values of $\frac{t}{2}$, $\frac{m}{2}$ (or $\frac{f}{2}$ and $\frac{m}{2}$) and $\frac{p}{2}$.

11) The problem, as just stated for 8-point synthesis, leads to a system of 81 equations in 81 unknowns which, because of being nonlinear, is diffecult to handle numerically. Suh's formulation (5.23) leads to a system of 39 equations in 39 unknowns, in this instance. Roth and Tsai (5.11) recommend that, for dyads containing revolute, prismatic, helical or cylindrical pairs, one point on the pair axis (G or Q of the previous formulation) be taken as the intersection of the axis with, say, the X-Y plane, thus diminishing the number of unknowns (one component of the f and of the m vectors is thus zero). This way, the number of equations and of unknowns is reduced to 65 which, anyway, is about twice that of Suh's. Thus, it might seem more advantageous to use the latter approach.

Since Suh's formulation is amply discused in (5.23), it is not presented here. An alternative approach, based on Section 5.4, is presented instead.

An alternative approach to the problem formulation for the RRSS linkage synthesis problem.

Referring to Figs 5.4.1 and 5.4.2, the synthesis equations are next written. To distinguish the position vectors of points A and B, in their reference configurations, belonging to the R-R dyad, from those belonging to the S-S dyad, the latter are starred. The synthesis equations for the R-R dyad are those derived in Section (5.4), i.e.

$$||(1-Q_{j})a_{0}+b_{0}-r_{j}||^{2} ||b_{0}||^{2}, j=1,...,n$$
(5.5.9)

where it is convenient to express Q_{j} as appearing in eq. (2.5.4), i.e. $Q_{j} = -P_{j}^{2} \cos \theta_{j} + P_{j} \sin \theta_{j} + R_{j}$ (5.5.10)

Calling e the unit vector parallel to the axis of Q and $(\alpha_j, \beta_j, \gamma_j)$ its components (in the $X_0 Y_0 Z_0$ axes), the matrices appearing at the right-hand side of eq. (5.5.10) are, from eq. (2.5.4a),

$$\mathbf{P}_{j} = \begin{bmatrix} \mathbf{0} & -\mathbf{\gamma}_{j} & \mathbf{\beta}_{j} \\ \mathbf{\gamma}_{j} & \mathbf{0} & -\mathbf{\alpha}_{j} \\ -\mathbf{\beta}_{j} & \mathbf{\alpha}_{j} & \mathbf{0} \end{bmatrix}, \quad \mathbf{R}_{j} = \begin{bmatrix} \alpha_{j}^{2} & \alpha_{j} \mathbf{\beta}_{j} & \alpha_{j} \mathbf{\gamma}_{j} \\ \alpha_{j} \beta_{j} & \beta_{j}^{2} & \beta_{j} \mathbf{\gamma}_{j} \\ \alpha_{j} \gamma_{j} & \beta_{j} \gamma_{j} & \gamma_{j}^{2} \end{bmatrix}$$
(5.5.11)

Additional equations for the R-R dyad are:

$$\underline{u}^{T}\underline{b}_{j}=0, j=1,...,n$$
 (5.5.12)

$$v_{0,j}^{T} b_{j} = 0, j = 1, \dots, n$$
 (5.5.13)

$$u^{T}v_{j} = u^{T}v_{0}, j = 1, 2, ..., n$$
 (5.5.14)

$$||\underline{u}||=1, ||\underline{v}_{0}||=1$$
 (5.5.15)

$$||e_{j}||=1, j=1,2,...,n$$
 (5.5.16)

The synthesis equations for the S-S dyad are

$$||(\underline{\mathbf{I}}-\underline{\mathbf{Q}})|\underline{\mathbf{a}}_{0}^{\star} + \underline{\mathbf{b}}_{0}^{\star} - \underline{\mathbf{r}}_{j}||^{2} = ||\underline{\mathbf{b}}_{0}^{\star}||^{2}, \ \mathbf{j}=1,\dots,n$$
(5.5.17)

Summarizing, the problem of an RRSS linkage synthesis for path generation leads to a system of 6n + 4 equations in 4n + 18 unknowns. The equations are: n equations (5.5.9)+(n+1) equations (5.5.12)+(n+1) equations (5.5.13)+nequations (5.5.14)+2 equations (5.5.15)+n equations (5.5.516)+n equations (5.5.17). The unknowns are:

 $\overset{a_0, b_0, e_j}{\overset{(j=1, \ldots, n)}{,}} \overset{\theta_j, u, v_0, a^*_0}{\overset{a_0}{,}} \text{ and } \overset{b^*_0}{\overset{b_0}{,}}.$

If the number of equations is to be matched with that of unknowns, it is readily concluded that the linkage thus synthesised can trace a spatial path passing through 8 prescribed points, which result coincides with that of Suh's Via the latter approach, however, the number of equations and unknowns (for 8-point synthesis) is 46, a number still greater than that of Suh's, yet smaller than that obtained using Roth and Tsai's equations. 5.6. <u>EPILOGUE</u>. The subject of linkage synthesis is far more extense than has been presented here. Topics that were not covered are, amongst others, linkage synthesis for rigid-body guidance and for path generation with infinitesimally-separated positions, i.e. to meet prescribed conditions on velocities and higher derivatives. The subject is treated in (5.9), (5.10) and (5.11), but was not included here due to space limitations.
REPERENCES

5,1	Denavit J. and R.S. Hartenberg, <u>Kinematic Synthesis of Linkages</u> , McGraw-Hill Book Co., N. York, 1964, p. 346
5,2	Mohan Rao A.V., G.N. Sandor, D. Kohli and A.H. Soni, "Closed form synthesis of spatial function generating mechanisms for the maximum number of precision points", <u>Journal of Engineering for Industry</u> ,
	Trans. ASME, Series B, vol. 95, Aug. 1973, pp. 725-736.
5.3	Luck K., "Computersynthese des viergliedrigen raumlichen Koppelgetriebes vom Typ RSSR", <u>Mechanism and Machine Theory</u> , vol. 11, 1976, pp.:213-225
5.4	Bjorck A. and G. Dahlquist, <u>Numerical Methods</u> , Prentice-Hall, Inc., Englewood Cliffs, 1974, pp. 131-136.
5.5	Suh C.H. and C.W. Radcliffe, "Synthesis of spherical linkages with use of the displacement matrix", <u>Journal of Engineering for Industry</u> , Trans. ASME, Series B, vol. 89, 1967, pp. 215-222
5.6	Suh C.H., "Design of space mechanisms for function generation", Journal of Engineering for Industry, Trans. ASME, Series B, vol. 90, 1968, pp. 507-512
5.7	Roth B., "The kinematics of motion through finitely separated positions", Journal of Applied Mechanics, Trans, ASME, Series E, vol. 89, 1967, pp.,591-5981.
5.B	Roth B., "Finite position theory applied to mechanism synthesis", Journal of Applied Mechanics, Trans. ASME, Series E, vol. 89, 1967, pp. 599-605
5,9	Chen P. and B. Roth, "A unified theory for the finitely and infinitesimally separated position problems of kinematic synthesis", <u>Journal of Engineering for Industry</u> , Trans. ASME, Series B, vol. 91, 1969, pp. 203-208
5.10	Chen P. and B. Roth, "Design equations for the finitely and infinitesimally separated position synthesis of binary links and combined chains", <u>Journal of Enginnering for Industry</u> , Trans. ASME, Series B, vol. 91, 1969, pp. 209-219
5.11	Tsai L.W. and B. Roth, "Design of dyads with helical, cylindrical, spherical and prismatic joints", <u>Mechanism and Machine Theory</u> , vol. 7, 1972, pp. 65-102
5.12	Tsai L.W. and B. Roth, "A note on the design of revolute-revolute cranks", <u>Mechanism and Machine Theory</u> , vol. 8, 1973, pp. 23-31

6-3

G

1

5.13 Fox E.A., Mechanics, Harper & Row, N. York, 1967, p. 8

5.14 Bisshopp K.E., "Rodrigues' Formula and the screw matrix", <u>Journal</u> of Engineering for Industry, Trans. ASME, Series E., vol. 91, 1969," pp. 179-185. - 1

- 5.15 Ericksen J.L." Tensor Fields 7 in Flugge S., ed. <u>Handbuch der Physik</u>, vol. III/1, Springer-Verlag, Berlin, 1960, pp. 794-796.
- 5.16 Suh C.H. and C.W. Radcliffe "Synthesis of plane linkages with use of the displacement matrix", <u>Journal of Engineering for Industry</u>, Trans. ASME, Series B, vol. 89, 1967, pp. 206-214
- 5.17 Angeles J., <u>Análisis y Síntesis Cinemáticos de Sistemas Mecánicos</u>, (in Spanish) Editorial Limusa, Mexico City, 1978.
- 5.19 Roth B., "Finite position theory applied to mechanism synthesis", Journal of Applied Mechanics, Trans. ASME, Series E, vol. 34, 1967, pp. 599-605
- 5.19 Suh C.H., "On the duality in the existence of R-R links for three positions", <u>Journal of Engineering for Industry</u>, Trans. ASME, Series B, vol. 91, 1969, 129-134.
- 5.20 Bennett G.T., "A new mechanism", <u>Engineering</u>, vol. 76, 1903, FF. 777-778
- 5.21 Sub C.H., "Design of space mechanisms for rigid-body guidance". Journal of Engineering for Industry, Trans. ASME, Series B, vcl. 90, No. 3, 1968, pp. '499-506.
- 5.22 Tsai L.W. and B. Roth, "Incompletely specified displacements: Geometry and spatial linkage synthesis", ASME paper No. 72-Mech-13.
- 5.23 Sub C.B. and C.W. Radcliffe, <u>Kinematics and Mechanisms Design</u>, John Wiley & Sons, Inc., N. York, 1978, pp. 201-202.

centro de educación continua división de estudios de posgrado facultad de ingenieria unam

ANALISIS, SINTESIS Y OPTIMACION EN INGENIERIA MECANICA

NOTAS COMPLEMENTARIAS

DR. JORGE ANGELES ALVAREZ

ACOSTO, 1980

÷

4

•

•

•

,

Terminología y notación
x,
$$\mathcal{L}$$
, etc.: vector de dimensión n.
A, B, etc.: matriz de m×n
y columnas
renglomo:
xi, \mathcal{L} ; etc.: i a componente de x, \mathcal{L} , etc.
 A_{ij} , bij, etc.: elemento en la ja co-
lumna y ja renglón de
 A_{j} , B_{j} , etc.
j \mathcal{L} columna
 $A = \begin{bmatrix} a_{i1} & a_{i2} \cdots & a_{ij} \cdots & a_{in} \\ a_{in} & a_{i2} \cdots & a_{ij} \cdots & a_{in} \\ a_{in} & a_{i2} \cdots & a_{ij} \cdots & a_{in} \\ a_{in} & a_{i2} \cdots & a_{ij} \cdots & a_{in} \\ a_{in} & a_{i2} \cdots & a_{ij} \cdots & a_{in} \\ a_{in} & a_{i2} \cdots & a_{ij} \cdots & a_{in} \\ a_{in} & a_{i2} \cdots & a_{ij} \cdots & a_{in} \\ A = b$
 $b_{i} = a_{ij} \times j = a_{in} \times a + a_{i2} \times z^{+} \cdots + a_{in} \times a_{in}$
 $A = C$
 $ij = a_{ik} b_{kj} = a_{in} b_{ij} + a_{i2} b_{ij} + \cdots + a_{in} b_{ij}$

;

f: escalar, x: vector de dim ni! $f = f(x_1) = f(x_1, x_2, ..., x_n)$ $\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \end{bmatrix}^T$ $\left(\frac{\partial f}{\partial x}\right)_{z} \equiv \frac{\partial f}{\partial x_{i}}$ m, x: vector f: vector de dim de dim £=£(≿) $f_1 = f_1(x_1, x_2, \dots, x_n)$ $f_2 = f_2 (\times_n, \times_2, \ldots, \times_n)$ $\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$ df. /2x dfm/2x 2f /

 $g = g(x) = \frac{\partial f}{\partial x}$ (gradiente) $\Rightarrow \frac{9\times}{98} = \frac{9\times_{5}}{9_{5}t} = H$ matiz Hessianaj 95-tu /9x 9x) $\frac{\partial^2 f}{\partial^2 f} = \int_{\partial_2 f} \frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial x^2} \cdot$ $\frac{\partial^2 f_m}{\partial x \partial x} = \frac{\partial^2 f_m}{\partial x \partial x}$ $f = \alpha \times^2$ $\Rightarrow \partial f = 2$ $\left(\frac{\partial^2 f}{\partial x^2}\right)^T = \frac{\partial^2 f}{\partial x^2}$ s: f = bౖ^T≿ => 0+ et = 2 Ax $S: f = x^T A x$ \Rightarrow

シャーち 4. ÷2., LL V men 1. i) m=n y~ ٢æ ii) m>n iii) m < n m=2, n=1Ľ p. ej. $\begin{cases} x_1 = 3 \\ x_1 = 5 \end{cases}$ e= Az-b Min 11 2 112 ×. Reflexioner de Householder J ዛ ፓ $\mathcal{G}_{\mathcal{M}}$

f(x) = 0 $\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}}$ 6. of: wxn ど) m>n Min ngin fTf = ゆ $\frac{\partial \phi}{\partial x} = 0 \Rightarrow \left(\frac{\partial f}{\partial x}\right) \frac{\partial \phi}{\partial f} = 2\left(\frac{\partial f}{\partial x}\right) \frac{f}{\partial f} = 0$ Condición de minimulidad: J^Tf=0 20 , A×1 $f(x + \Delta x_{1}) = f(x_{0}) + J(x_{0}) \Delta x_{1} + R^{2}$ $\int \int (x_{0}) \Delta x_{1} = -f(x_{0})$ ひょうと => とっ=(ATAJ^A」と=A」と $=) \Delta \Xi_{1} = -(J^{T}J)^{1}J^{T}f$ OXA=- [J(XA) J(XA)] J(XA) f(XA) 11 D× 1 = 0, se alconnen la converg.

iii) men $A \times = b (*)$ $Min \parallel \underline{\times} \parallel^2, s. a.$ - C+) $\phi = " \succeq "' + \lambda^{T} (A \succeq - b)$ $\frac{\partial \phi}{\partial x} = 0 \Rightarrow \frac{\partial f}{\partial x} = 2 \times + A^{T} \lambda = 0$ $\Rightarrow \Sigma = -\frac{1}{2} \Delta^T \lambda \quad (**)$ (**) en (*)=> - 2 AAZ= 5 ⇒ え= -2(なみ)15 $\Rightarrow \chi = \Delta^{T}(\Delta \Delta^{T})^{-1} = \Delta^{T} =$ No lineal f(x)=0 (mecs) 11 7 112 5. Min 中= いたい2+ えても $\frac{\partial \phi}{\partial x} = 0 = 2 \times + \mathcal{F} \stackrel{\partial f}{\leftarrow} \sqrt{\lambda} = 0 (necs)$ lineales mtnecs,

Sistem físico (máquina, mecanismo, etc.) Mo delado Modelo maternático Analisis y obtención de las Variables del sist. (Evaluación) ise acepta? Sintesis sanninetros pontantes del Sistema primación

Mödelos matemáticos de ecuaciones Sistem 1. Agebraicos 2. Diferenciales ordinerias { N.L. 3. Diferenciale parciales

•

i

-

1

1.1941.11

Im 223 Re { 2 } $= \operatorname{Re}\left\{ z \right\}, \ \mathcal{Y} = \operatorname{Im}\left\{ z \right\}$ z= x+2 y ... $\lambda = \sqrt{-1}$ $\lambda^2 =$ $\|2\| = \sqrt{\chi^2 + \gamma^2}$ 122 2 = ¥ $\theta = \tan^{-1} \frac{y}{x} =$ £ arg モミャピ = r eⁱ⁽⁰⁺⁴⁾

 $- \frac{11}{4} = -\frac{11}{4} = -\frac$

Problema: Determinar los values de a_{13} a_{2} , a_{3} y a_{4} tales que produce el conjunto de pares $\{\psi_{i}, \phi_{j}\}_{1}^{n}$ $k_{1} - k_{2}\cos\phi_{i} + k_{3}\cos\psi_{i} + \cos(\phi_{i} - \psi_{i}) = 0,$ $i = a_{1} \dots n$ $k_{4} = \frac{a_{1}^{2} - a_{1}^{2} - a_{4}^{2}}{2a_{2}a_{4}}, k_{2} = \frac{a_{1}}{a_{2}}, k_{3} = \frac{a_{1}}{a_{1}}$

hado der. $z + n i n \omega_{g}, x_{A}^{*}, y_{A}^{*}, \Theta_{j}^{i}, j = 1, \dots,$ $n \in c_{S}$

=> 7. n ecs. م دن م. n + (2 + n) - n =

2n=2+n

 $\Rightarrow n=2$

A <u>x</u> = <u>b</u> $A = \begin{bmatrix} 1 - \cos \phi_1 & \cos \psi_1 \\ 1 - \cos \phi_2 & \cos \psi_1 \\ 1 - \cos \phi_2 & \cos \psi_2 \end{bmatrix}, \quad X = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$ $b = \begin{bmatrix} -\cos(\phi_1 - \psi_1) \\ -\cos(\phi_2 - \psi_2) \\ -\cos(\phi_2 - \psi_2) \end{bmatrix}$ 13/10 200 Fra KA $k_{\eta} - k_{2} \cos(\phi + \beta) + k_{3} \cos(\eta + \alpha) + \cos(\phi - \gamma + \beta - \alpha) = 0$ $A = \begin{bmatrix} 1 - \cos \phi_{n} & \cos \psi_{n} \\ 1 - \cos \phi_{n} & \cos \psi_{n} \\ \vdots & \vdots \\ 1 & -\cos \phi_{n} & \cos \psi_{n} \end{bmatrix} = \begin{bmatrix} -\cos (\phi_{n} - \psi_{n}) \\ -\cos (\phi_{n} - \psi_{n}) \\ -\cos (\phi_{n} - \psi_{n}) \\ -\cos (\phi_{n} - \psi_{n}) \end{bmatrix}$ NRDAMC

a + b = c + dN ら u2 = n ら u2 + u と u2 + 2 ら d - 2 ら - 2 ら ~ a2 a2 as 1 co, 0, 947 23 حدي- 54 544 , 03 $\left(c_{j} \right)_{i} = \left[s_{y} c_{y} + s_{y} \right]_{i} - s_{y} s_{y} a_{y} - s_{y} s_{y} a_{y} \right]^{T}$ [4], = [0, - 0, 5 \$, 0, c \$]^T $[\alpha]_{o} = [o_{j} - \alpha_{j} \circ \psi], \alpha_{j} \in \psi_{j}$ $[\Sigma]_{i} = \begin{bmatrix} c \alpha_{ij} & S \alpha_{ij} & 0 \\ -S \alpha_{ij} & c \alpha_{ij} & 0 \end{bmatrix}; [\Sigma]_{i} = [\Sigma]_{i} [\Sigma]_{i}$ $\mathbb{L} \cong \mathbb{I}_{2} = \mathbb{A}_{2} \left[-Sd\psi s\psi, -cd\psi s\psi, c\psi \right]^{T}$ $\phi_j \leftarrow \phi_j, \ \psi_j \leftarrow \psi_{g_j}$ crej= a, (sy sky sd; + ay ch;) $\underline{c}^{\mathsf{T}}\underline{a}_{j} = a_{1}(a_{4}c_{4}) - s_{4}s_{4}s_{4}s_{j})$ AT a: D anas (cay sy; sq; + cd; cq;)

$$\begin{aligned} a_{2}^{2} &= s_{1}^{2} + s_{4}^{2} + 2 s_{1} s_{4} c_{4}^{2} + a_{4}^{2} + a_{3}^{2} + a_{3}^{2} + a_{3}^{2} + a_{4}^{2} + a_{3}^{2} + a_{3}^{2} + a_{4}^{2} + a_{4}^{2} + a_{3}^{2} + a_{3}^{2} + a_{4}^{2} + a_{4}^{2} + a_{3}^{2} + a_{3}^{2} + a_{4}^{2} + s_{4} s_{4} s_{4} + s_{5} s_{4} s_{4} c_{4} s_{4} \\ & s_{4}^{2} = \frac{a_{4}^{2} - a_{2}^{2} + a_{2}^{2} + a_{4}^{2} + s_{4}^{2} + s_{4} s_{4} s_{4} + s_{5} s_{4} s_{4} c_{4} s_{4} \\ & s_{4}^{2} = \frac{a_{4}^{2} - a_{2}^{2} + a_{2}^{2} + a_{4}^{2} + s_{4} s_{4} s_{4} + s_{5} s_{4} s_{4} c_{4} s_{4} \\ & s_{4}^{2} = \frac{a_{4}^{2} - a_{2}^{2} + a_{2}^{2} + a_{4}^{2} + s_{4} s_{4} s_{4} + s_{5} s_{4} s_{4} c_{4} s_{4} \\ & s_{4}^{2} = s_{4} s_{4} s_{5} s_{5} s_{5} s_{6} s_{6} s_{7} s_{7}$$

CO

 $\frac{7}{36} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2$ $b_{1} = \sum_{i=1}^{n} \sum_{i=1}^$ STI STR. G. W. 399 Coording and 6. A. B

 $\widehat{\tau}_{\vec{k}}$ 1 fine protein а •.у Repair Price i ste 🗤 ₹ E Z 10. St 0 -્યું. છુ A KO 3 34 7. **5** 3 12 • ; 9 M - July **≈**-K. 9 ≉^تر د è 0.20 C . . ø

..... Fan 1. O. , **5**451, 14 - 13 Lyne Bills in L 1 -14 Q. 1 - S - P 1 ntere in the second

centro de educación continua división de estudios de posgrado facultad de ingenieria unam

ANALISIS, SINTESIS Y OPTIMIZACIÓN EN INGENIERIA

MECANICA

Una Simbología Generalizada en TMM

Dr. Justo Nieto Nieto

Agosto 1980.

Polocio de Minería

.

.

.

•

.

.

• • • • •

.

•

.

PROPUESTA DE UNA SIMBOLOGIA GENERALIZADA PARA LA SINTESIS ESTRUCTURAL DE MECANISMOS

Por: Salvador BRESO y Justo NIETO

RESUMEN

En este trabajo se propone una simbologia generalizada para la r<u>e</u> presentación de las cadenas cinemáticas, de utilidad en el Análisis y -Síntesis de Mecanismos.

1. INTRODUCCION

La topologia de las cadenas cinemáticas es un tema abierto a la investigación. La razón por la que los cinemáticos sienten por el mismo una especial predilección se debe, aparte de lo anterior, a que es el te na de más contenido lógico-intuitivo de la T.M.M., teniendo, a demás, conexiones con las teorías de Grupos y Grafos. En este trabajo se preten de:

- Sacar a luz una nomenclatura general para cadenas cinemáticas con barras i-arias, y nudos i-arios, que tengan barras rígidas y flexibles.

- Encontrar a partir de esta nomenclatura, todas las posibles con figuraciones de nudos y todas las posibles configuraciones de cadenas cimemáticas.

- Determinar métodos de análisis de la movilidad de estas cadenas generalizadas, empleando estos resultados del análisis en la sintesis extructural de cadenas cinemáticas.

2. SIMBOLOGIA PROPUESTA PARA NUDOS

Se asimila el nudo a una "caja negra". Se empléa el término de nu do en ver de par, para distinguir precisamente este aspecto de caja negra, en donde lo que importa son las "salidas" que permite, o sea su mo vilidad; sin que importe la configuración interna de este, que hace posible esta movilidad. Otra razón es que se hace uso de concepto del gra fo directo asociado a una cadena cinemática, en donde los nudos (vértices) del grafo se corresponde con los pares generalizados, y las aristas del grafo a las barras.

De cada grafo directo se obtiene su matriz de incidencia nudos-barras, de términos a_{ij} , unos, si el nudo de la fila i conecta a la barra de la columna j, cero en caso contrario.

Algunas de las propiedades de esta matriz son:

- La suma de los elementos de una fila es el orden del nudo.

- La suma de los elementos de una columna es el orden de la barra
- La suma de todos los elementos de las filas, o de las columnas, de la matriz, o número total de incidencias es igual a:

$$S = 2n_{1} + 3n_{2} + 4n_{4}$$
,..... $b_{1} + 2b_{2} + 3b_{3}$

siendo:

 $N = n^2$ total de nudos $= n_2 + n_3 + n_4 + \dots$ $B = n^2$ total de barras $= b_1 + b_2 + b_3 + \dots$ 2

- b: = n² total de barras i-arias (que poseen o conectan, i nudos)
- $n_i = n^2$ total de nudos i-arios (que conectan i barras)

Cada unión de dos barras puede poseer alguno o todos de los siguientes movimientos independientes.

- Tres rotaciones $R_1 ext{ } R_2 ext{ } R_3$ - Tres traslaciones $T_1 ext{ } T_2 ext{ } T_3$ - Tres giros $G_1 ext{ } G_2 ext{ } G_3$ - Tres desplazamientos $D_1 ext{ } D_2 ext{ } D_1$

De este modo, cada nudo de dos barras puede poseer, como máximo, cinco de seis movimientos de cuerpo rígido y otros cinco como máximo, de seis cualitativamente distintos que, inicialmente, se asignan a movi mientos de barras flexibles.

Los subindices 1, 2, 3 representan direcciones cualesquiera pudien do ser estas ortogonales o no y / o concurrentes.

Por tanto, cada nudo de dos barras se representará por un conjunto de letras R, T, G, D y con los subindices correspondientes, tantas como movilidad tenga el nudo. Por ejemplo un par R sería R_i , un par C sería R_1T_1 . Como los nudos pueden tener conexionadas más de dos barras, en estos casos, en cada nudo i-ario, formado por las barras 1, m, n, p, ... es suficiente y necesario, para fijar su movilidad, distinguir las libertades de las barras dos a dos, o sea, las lm, mn, np,... Estos i-l subconjuntos lievan un subíndice que indican las dos barras que representan.

En general los nudos tendrán móvilidad, procedentes de conexionar barras flexibles y rígidas. A estos les llamamos MIXTOS, para distinguir los de los nudos RIGIDOS, que son los pares clásicos con barras rígidas, y de los FLEXIBLES que son aquellos pares con movilidad de flexibilidad únicamente.

Con esta idea es posible encontrar rápidamente todas las posibles j configuraciones de nudos. Se tendra en cuenta que;

- a) Las rotaciones paralelas de dos barras son redundantes, e igualocurre con las traslaciones, desplazamientos, etc.
- b) Dos barras solo pueden tener cinco grados de libertad relativos como máximo.

Como consecuencia de todo lo anterior surge la siguiente enumeración de pares.

3

			1		Cont.		1	_	
	C	ſ.	G=1	R 1 T .	-				R.RRR R.RRT R.RTT
			G = 2	RR RT TT		,		G=1.3	R . T T T T . T T T T . T T F T . T R F
		Binarios	G = 3	RRR RRT RTT TTT	-			G=1.4	
			G = 4	RRRT RRTT RTTT	NUDOS				T,RT T,RR T,RR
NUDOS	Rigidos		G = 5	RRRTT RRTTT			Ternarios	G = 1.5	R: RR R R R T . R R
			G = 1.1	R.R R.T T.T R.RR R.RT R.TT	•	Rigidos		G = 2,3	RR . RA RR . RA RR . RA RR . RA RR . TA RT . RA RT . RA RT . R RT . T
-			U=1.2	T.TT T.TR T.RR	-				ΤΤ . R ΤΤ . R ΤΤ . R ΤΤ . Γ

.
Cont	:	:	1				1
		: Ternarios	G = 4.5	R R RT R R RT R R TT R R TT R T TT R T TT	RRRTT RRTTT RRRTT RRTTT RRTTT RRTTT	č.	
	r .		G = 5.5	RRRIT RRRIT RRITT	RRRII RRIII RRIII RRIII	•	
			Ĝ = 1	G D	i		
	Flexibles	Binarios	Ĝ = 2	6 6 6 D 0 D			<u>-</u> -
	 						_
	· · ·		G;Ĝ=1;1	R.G R.D T.G T.D			
		Binarios	G;Ĝ=1;2	R.GG R.GD R.DD T.GG T.GD T.DD		·	
	Mixtos		G; Ĝ=2;1	RR.D RR.D RT.G RT.D	; ; ; ;	-	

•

. .

. .

•

• •

En cada combinación de libertades de los nudos pueden existir varios soluciones correspondientes a la situación de los ejes.

3. SIMBOLCOTA PROPUESTA PARA CADENAS

La representación que se propone para las cadenas cinemáticas con siste en la el comión simbólica de los nudos junto a la matriz de incidencias. Ec verá con algunos ejemplos.

	12	2				
_	. *0	1 s	1	2	3	4
:	$R_{1}R_{1}R_{3}$	A	1	1		
1 "	$R_1 R_0 R_1$	8		1	1	
!	R ₄	Ċ			1	1
_	R _L	D		•		1

ZLA			. — —	•
ۍ س	1	1	2	3	4
R,	A	1			1
R,	8	1	1		
R,	С		1	1	
R ₁	D			1	1

9

$ \begin{array}{c c} \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline & \\ \hline \hline & & \\ \hline \hline & \\ \hline \hline \hline & \\ \hline \hline \hline \hline & \\ \hline \hline \hline \hline$. 2	A							, 10	
	_		4 	~~~ 3	~~ <u>~</u>			¢. ₽		•
A B T						5 CA				
$(R_{\star})^{\mu} - (R_{\star})^{\mu}$	A	1	2		-4-	2			1	-
G, G, G, D,	в	1	<u> </u>	1		•		ĺ		
G, G, G, D,	С		· ·	1					1	
$(R, R, R,)^* - (R, R, R,)^*$	מ	1			1		1			
R, T,	E					1			7	÷
- G, D,	F				1	1				
									. 7	
	G						1	1		

.

.

.

· ·

.

.

.

4. MOVILIDAD DE LAS CADENAS CINEMATICAS

Se verá en primer lugar el caso de cadenas con nudos rígidos.

Se introduce la siguiente terminología adicional a la expuesta en el apartado 2.

M = Movilidad de la cadena cinemática = G + 6 - -

G = Grados de libertad del mecanismo

ni= Nº de nudos i-arios con movilidad total j

La movilidad total de un nudo se define como suma de las libertades que permiten las barras que conectan.

Por tanto, se puede hacer el siguiente esquema que representa las posibles movilidades de los nudos i-arios, y para una movilidad dada el tipo de pares parciales que la hacen posible.

<u> mov</u>	binarios	ternarios	cuaternarios	s pentarios +-
. 1				
2	0 (a V	, I.I		
() ()	clasic clase	I.I	I.I.I	
4	Pare de la	I II	I.I.II.	I.J.T.T
5		I.IV I.II	I.I.Ш I.II.U	\sim
ε		IV IV III	Т. Г. Ц Т. Г. Ц Ц. Г. Ц	
7	-	I.⊻ Ⅲ.IV	\sim	

Dada una configuración arbitraria de nudos y barras la movilidad M de la misma se puede obtener como:

 $M = A_1 + A_2 + A_3$

en donde:

A. = Grados de libertad de los nudos supuestos libres

A₂ = Grados de libertad que restringen las barras

A₃ = Grados de libertad adicionales en virtud de geometria especial (dimensional y direccional)

Para determinar A, se tiene que:

Cada nudo binario de movilidad uno necesita 6+1 parámetros para quedar definido. Luego si existen n_2^{\dagger} nudos de esta clase el total de parámetros será $7n_2^{\dagger}$

Cada nudo binario de movilidad dos necesita 6+2 parámetros para quedar definido. Luego si existen n_1^2 de esta clase el número total será $8n_1^2$

Cada nudo binario de movilidad tres necesita 6+3 parámetros para quedar definido. Luego si existen n_1^3 de esta clase el número total se rá 9 n_1^3

Cada nudo binario de novilidad cuatro necesita 6+4 parámetros para quedar definido. Luego si existen n⁴ de esta clase el número total será 10 n⁴

Cada nudo binario de movilidad cinco necesita 6+5 parámetros para quedar definido. Luego si existen n_2^5 de esta clase el número total será 11 n_1^5

Cada nudo ternario de movilidad dos necesita 6+2 parámetros para quedar definido. Luego si existen n_3^2 de esta clase el número total será $8n_3^2$

Cada nudo ternario de movilidad tres necesita 5+3 parámetros para quedar definido. Luego si existen nº3 de esta clase el número total será 9n²

Cada nudo ternario de movilidad cuatro necesita 6+4 parámetros para quedar definido. Luego si existen n_3^2 de esta clase el número total será 10 n_3^2 .

Cada nudo cuaternario de movilidad tres necesita 6+3 parámetros para quedar definido. Luego si existen n_i^3 de esta clase el número total será $5n_i^3$

Por tanto, el número de grados de libertad de los nudos supuestos

12

 $A_{1} = 7n_{2}^{*} + 2n_{2}^{*} + 9n_{1}^{*} + 10n_{2}^{*} + 11n_{2}^{*}$ $(\delta n_3^{5} + 9n_3^{3} + 10n_3^{4} + 11n_3^{5} + \dots + 16n_3^{6})^{2.5}$ $9n_{4}^{3} + 10n_{4}^{4} + 11n_{4}^{5} + \dots + 21n_{4}^{6}$

Para determinar A, se tiene que:

Cada barra monaria no restringe los grados de libertad del nudo al que está conectada, por tanto no hay que tenerlas en cuenta.

Cada barra binaria restringe en 6 el número de libertades que ten drían los nudos supuestos libres. Luego si existen b_2 de estas barras, la reducción será $6b_1$

Cada barra ternaria restringe en 12 el número de libertades que tendrían los nudos supuestos libres. Luego si existen b₃ de estas barras la reducción será 12b₂ ~

Cada barra cuaternaria, pentaria, restinge en 18, 24, ..., el número de libertades de los nudos que concetan supuestos libres.

Por tanto:

$$A_2 = 6(b_1+2b_2+3b_2+4b_2,...)$$

Por tanto, la expresión de la movilidad de una cadena, prescindie<u>n</u> do del término A₂ será:

$$M = 7n_{2}^{4} + 8(n_{2}^{4} + n_{3}^{2}) + 9(n_{2}^{3} + n_{3}^{3} + n_{4}^{3}) + \dots + 6(b_{2}^{4} + 2b_{3}^{2} + 3b_{4}^{4} + \dots + b_{4}^{2})$$

que puede quedar cema:

$$M = \sum_{i=1}^{k} (6+i) n^{i} - \sum_{k=2}^{k} 6(k-1) b_{k}$$

siendo n'el n'umero de nudos de movilidad i, y b'el número de barras de orden k

Otras expresiones para M pueden deducirse teniendo en cuenta las relaciones ya utilizadas:

$$N = n_{2} + n_{3} + n_{4} + \dots = (n_{2}^{1} + n_{3}^{2} + n_{3}^{2} + \dots) + \dots = n^{4} + n^{2} + n^{3} + \dots$$

$$B = b_{1}^{1} + b_{2}^{1} + b_{3} + b_{4} + \dots$$

$$n_{2} = n_{2}^{1} + n_{3}^{2} + n_{4}^{3} + \dots$$

$$m_{3} = n_{3}^{3} + n_{3}^{3} + n_{3}^{3} + \dots$$

$$m_{4}^{1} = n_{4}^{1}$$

$$n^{3} = n_{4}^{3} + n_{3}^{3} + n_{4}^{3}$$

$$m^{3} = n_{4}^{3} + n_{5}^{3} + \dots$$

$$2N + n_{3} + 2n_{5} + \dots = B + b_{2} + 2b_{3} + \dots$$

El valor de la movilidad M así obtenido, representa un valor mínimo de la movilidad, ya que factores de geometría especial introducen gr<u>a</u> dos de libertad minicipales.

Estos factores pueden ser de tipo direccional como ocurre en:

- el'clásico cuerro barras plano que sólo es móvil por que tiene los cuerro ejes de los nudos paralelos. (al aplicar la fórmula da 'G = -2)
- el cuatro barras esférico, que sólo es móvil por que los cuatro

ejes de los nudos se cortan en un punto, centro de la esfera.

- el meranismo de Bennet

- todos los mecanismos planos.

o de tipo dimensional, por ejemplo, cuando existen barras de igual longi tud (doble paralelogramo de cinco barras)

1º Un cado típico de direccionalidad es en la cadena EE

que al ser tratados sus nudos como binarios con movilidad tres la movilidad de la cadena resulta_ser.6, cuando en realidad tiene 7

La explicación de esta anomalía-se debe-a-que-un nudo binario en tres grados de libertad sería, en realidad, el de la figura

y evidentemente, al conexionar dos pares de este tipo para formar la ca dena

la aplicación de la fórmula es correcta, es decir, el número de grados de libertad del mecanismo es cero. Sin embargo, en los casos de los dos pares esféricos, siempre existe un eje de rotación común (alineado) a ambos pares, que es el que permite este grado de libertad adicional. Análogamente ocurre para dos pares planos directamente unidos.

Si la cadena está formada por nudos flexibles o mixtos la expresión que se propone para la movilidad generalizada estará formada por dos tér minos diferenciados, uno correspondiente a los movimientos de cuerpo rigido y otro correspondiente a las flexibilidades.

$M_{\rm g}=M,M^{*}$

5. SINTESIS ESTRUCTURAL DE CADENAS CINEMATICAS GENERALIZADAS

Las posibilidades, caminos, de síntesis estructural son las siguien tes: -

a) Si todos los nudos son rígidos

- a.1. A partir de la expresión de la movilidad buscando soluciones enteras de las variables que intervienen, cuando se fija el nº de.barras, movilidad, etc
- a.2. Fara cualquiera de las soluciones anteriores del caso
 a.1. cada n admite diversas soluciones tanto en el orden del nudo como en la chase de las conexiones parcía les que configuran el nudo
- a.3. A su vez cada solución a.2. admite más variantes solución, según la tabla de enumeración de nudos ya vista en el apartado 2 según los subíndices 1.2.3. del par.
- a.4. A partir de una matriz de incidencias especificada según convenga, se obtiene el grafo, y a partir de las consideraciones a.2. y a.3. se pueden obtener otras so luciones.

b) Si todos los nudos no son rígidos Valen las mismas observaciones que en el caso anterior; solo que, la expresión de la movilidad generalizada, tiene una complejidad que la hace poco tratable. En este caso es preferible usar la matriz de incidencia y el grafo asociado como elemento de síntesis.

BIBLIOGRAFIA

A Survey of Flexible Link Mechanisms, Having Lower Pairs, T.E. Shoup J.M. Vol 6 pp 99 - 105. 1.971 16

• . . . • • . .

centro de educación continua división de estudios de posgrado facultad de ingenieria unam

ANALISIS, SINTESIS Y OPTIMIZACION EN INGENIERIA

MECANICA

Sobre la Situación de los Centros Instantáneos de Aceleración en el Movimiento Plano.

Dr. Justo Nieto Nieto.

Agosto 1980.

. . . . , ,

.

SOBRE LA SITUACIÓN DE LOS CIA EN MOVIMIENTO PLAN

Por: IGNACIO CUADRADO Y JUSTO NIETO

RESUMEN

En este trabajo se obtiener algunas propiedades asociadas a la dig tribución de los CIA en el movimiento plano de un mecanismo articulado de cuatro barras. En particular se encuentra: (a) la situación de los mismos para entrada variable, que viene expresada por una transforma ción bilineal, b; la expresión del coeficiente B de influencia en barras contiguas.

1. INTRODUCCION

La creencia de que las propiedades de la distribución de los centros instantáneos de aceleración, CIA, en el movimiento plano, no han sido suficientemente utilizados para el análisis cinemático de mecanis mos, nos ham hecho elaborar este trabajo, cuyaifinalidadno es otra que tutorial, es decir, de interés docente. El trabajo se dedica a un cuatro barras plano, pero, de modo análogo, podría ser extrapolado a otro mecanismo, p.e. el biela manivela.

Sea el 4.b. de la figura. Para nominar los CIA, a diferencia de los CIR, empleamos los dos números de las barres que representan, colo cando en primer lugar el púmero mayor. La situación del centro instantáreo 42, se obtiene haciendo uso de la clásica expresión de las acele raciones relativas:

O

Empleande la dualidad plane vectorial-plane compleje: $\vec{E} \times \vec{a} = \mathcal{E} \cdot a \cdot i$

(con i unifad imaginaria), definiendo unos coeficientes de influencia λ^{x} , B, para las tarras 1 y 2 dados por

$$\begin{aligned}
\mathcal{W}_{2} &= A^{T} \mathcal{U}_{4} \\
\mathcal{E}_{2} &= A^{T} \mathcal{E}_{4} + B^{T} \mathcal{U}_{4}^{2}
\end{aligned}$$
(2)

y sacando a luz un parámetro de la entrada, con su signo dependiente de \mathcal{E}_{i} dado por:

$$C = \frac{\overline{c}_{A}}{\omega_{A}^{2}}$$
(3)

se obtiene, suscituvendo en (1),

$$\overline{\mu} - \overline{a}' = \frac{\ell - \frac{\pi}{2}}{\frac{\ell}{2}(2^{\prime} + 3^{\prime}) - \alpha^{2}} \overline{a}$$
(4)

De igual forma, se puede proceder para el CIA 31. En este caso

$$\vec{n} = \frac{A^2 - \lambda (A + 3)}{A^2 - 1 - \lambda (e - A - 3)} \vec{d}$$
(5)

Ø

siendo A y 2 los coeficientes de influencia de las barras 1 y 3

2. CONSECUENCI'S

Algunas de l'es consecuencias obtenidas de las anteriores expresiones son las siguientes:

- a- De (4) resulta evidente que $\overline{\mathcal{U}} \cdot \overline{\mathcal{Q}} \neq \overline{\mathcal{V}}$ no dependen, como es obvio, del sentido de \mathcal{U}_4 . La distribución de $\overline{\mathcal{U}} \cdot \overline{\mathcal{Q}} \neq \overline{\mathcal{V}}$ no es simétrica con la entrada \mathcal{C} .
 - b-si $\omega_{i} = cie \implies \mathcal{E}_{i} = 0 \iff \mathcal{C} = 0$ entonces:

$$\vec{u} - \vec{a} = \frac{1}{18^{n} - A^{n^{2}}} \vec{a}$$
$$\vec{v} = \frac{A^{n} - 18}{A^{n} - 1 - 18} \vec{d}$$

que permite obtener la distribución de los CIA, en un caso bastante corriente.

c- Si $\omega_i = 0$, $\omega_i = cie$ nipitesis valida, solo en el instante inicial.

$$\vec{\mathcal{U}} - \vec{\mathcal{C}} = - \frac{1}{A} \vec{\mathcal{C}} \vec{\mathcal{C}} = \frac{A}{A-1} \vec{\mathcal{C}} \vec{\mathcal{C}} \vec{\mathcal{C}}$$

lo que indica la colinealidad de las barras con los CIA

d- Si la entrada ext{ es variable y la posición constante, la distri bución de los CIA viene expresada por una transformación bilíneal

$$\frac{\Omega}{\overline{\Omega}} = \frac{\overline{u} \cdot \overline{\alpha}}{\overline{\Omega}} = \frac{1 - ei}{i(A^* e + 6^*) \cdot A^{*^2}}$$
$$\frac{\Omega}{\overline{d}} = \frac{A^2 - i(Ae + 8)}{A^2 - i + i(e - Ae - 6)}$$

que transforma el eje real C en una circunferencia. Los puntos correspondientes a $C=0,\infty$. A etc. y los inversos del plano \mathcal{A} , así coto las intersecciones reales, tangentes, etc se obtienen fácilmente haciendo uso de dicha transformación bilineal, p.e. el otro valor real de \mathcal{A} que corresponde a la colineación de $\overline{\mathcal{A}}$ - $\overline{\mathcal{A}}$ $\overline{\mathcal{A}}$ se obtiegne por

$$\mathcal{Z} = \frac{3^{*}}{A^{*}(A^{*}-1)}$$
$$\overline{U} - \overline{a} = \left[\frac{A^{*2}(A^{*}-1)^{2} + B^{*2}}{(A^{*}-1)^{2}A^{*} + A^{2}B^{*2}}\right]\overline{a}$$

lo que dice que siempre esta opuesto a $\overline{\alpha}$ e- Si la entrada es constante y la geometría A^*, B^* variable, la distribución de los CIA, viene dada, supuesto p.e. $\mathcal{E}_1 = 0$, por:

$$\overline{u} - \overline{a} = \frac{1}{iB^* - A^{*2}} \overline{a}$$

$$\overline{v} = \frac{A^2 - iB}{A^2 - 1 - iB} \overline{d}$$

3. NOTAS FINALES.

Los coeficientes geométricos de influencia vienen dados, para el 4.b.det la figura, por:

$$\vec{H} = \frac{\vec{G} \cdot \vec{G}}{\vec{G}_{1}} = \frac{\vec{X}}{\vec{X} + 0}$$

$$\vec{\Theta} = \frac{\vec{G} \cdot \vec{G}_{1}}{\vec{G}_{1}} = \frac{\vec{A} \cdot (1 - A)}{t_{0} \cdot A}$$

$$\vec{A}^{*} = \frac{\vec{G} \cdot \vec{G}_{1}}{\vec{G}_{1}} = -\frac{\vec{A}}{m_{1}}$$

$$\vec{B}^{*} = \frac{\vec{O}^{*} \cdot \vec{G}_{1}}{\vec{G}_{1}} = \frac{\vec{A}^{*} (1 - A)}{t_{0} (\vec{G}_{3} - \vec{G}_{3})} + \frac{\vec{A}^{*} (\vec{A}^{*} - A)}{t_{0} (\vec{G}_{3} - \vec{G}_{3})}$$

(M)

centro de educación continua división de estudios de posgrado facultad de ingeniería unam

ANALISIS, SINTESIS Y OPTIMIZACION EN INGENIERIA

MECANICA

Optimización de la Síntesis de Guiado de Cuerpo Rígido por el Método de la Métrica Variable.

DR. JUSTO NIETO NIETO

Agosto, 1980.

· · · • . · · • • 1

-

OPTIMIZACION DE LA SINTESIS DE CUIADO DE CUERPO RIGIDO POR EL METODO DE LA METRICA VARIABLE

Por Juan Ignacio CUADRADO, Javier FUENMAYOR y Justo NIETO

1. RESUMEN

Este trabajo trata de la aplicación de un método de optimización humérico, el de la Métrica Variable, a la Síntesis de guiado de cuerpo rigido.

Con dient zéroco, dada una serie de posiciones del cuerpo rígido, se encuentran pultos con propiedades de mínima distancia a rectas y cir cunferencias, pudiendose por tanto guiar al cuerpo con deslizaderas o zanivelas acopladas respectivamente a los mismos puntos.

2. INTRODUCCION

El quisdo de ouerpo rígido, consiste en encontrar puntos especiales del clamo, tales que au posición se encuentre sobre trayectorias de fácil generación.

Le éstas has dés usuales son la recta y la circunferencia.

Las travestorias rectas se podrán generar mediante deslizadores y las circumferencias mediante barras articuladas por una parte al punto que describe la trayectoria circular y por otra parte a un centro fijo que será el centro de la circunferencia.

El probleca se plantes de la siguiente forma

Encontrar pintos pertenecientes al cuerpo rígido, que tengan una propiedia de distincia cero o minima, a trayectorias determinadas tales como concurraren ila o reitas.

re estivati, al optimizar minimizando una función error que se ulige cumo (a suma de los quairados de las distancias de un punto qualquiera tel querpo région a la trayectoria, quando el anterior va varian do de pasa de:

Uny set of filesting is función error F, el problema se puede soly bionar de los formas alforentes.

la porte matién amplitica, planteando las condiciones de mínico.

 $F = F(x_1, x_2, x_3, ...)$

 $\nabla F = 0$

Catriz Ressiana definida positiva en los puntos anteriores.

a resolución de las ecuaciones anteriores, se obtendrán todos A serioris de la función.

La cesventaja de este método para este problema es la complejidad del alitema de ecuaciones que lo hace dificil de resolver.

o Cotimización numérica

Este us al camino elegido para realizar este trabajo

Suis que la función error es no lineal, que se aborda el problema en restricciones, y que tanto la función como las derivadas son relat<u>i</u> valente fuciles de evaluar, se ha escógido como método el de la Métrica france o de Davidon - Fletcher - Powell

Plateriormente, en el Anexo se hace una descripción del método.
3. J.AL RECTITIVIO

de l'un suerpo rígido, sistema de referencía móvil (x, y), definido en el poestatón por las coordenadas del orígen X_{ox} , Y_{ox}) y el áng<u>u</u>

 (\mathcal{O})

t

lo de inclinación del eje x con respecto al X, \triangleleft_J , dado un punto P cualquiera del mismo, de coordenadas (x, y) con respecto al sistema nóvil, y dada una recta definida por los puntos de corte con los ejes de referencia (A,3).

La ecuación de la recta en su forma canónica será

$$\frac{X}{A} + \frac{Y}{B} = 1$$

La distancia del punto P a la recta será

$$d(P,r) = \frac{BX_{p} + AY_{p} - AB}{\sqrt{B^{2} + A^{2}}}$$

donde según la figura anterior

$$X_{p} = X_{on} + x_{p} \cos \alpha_{N} - y_{p} \sin \alpha_{N}$$

La función error en este caso será

$$F = \sum_{i=1}^{N} d_{i}^{2} = \sum_{i=1}^{N} \frac{(BX_{Pi} + AY_{Pi} - AB)^{2}}{B^{2} + A^{2}}$$

N es el número de posiciones del cuerpo rígido

En este caso los datos de partida son X_{on} , Y_{on} , A_N de cada posición, por tanto

A partir de esta función hallada, se ha resuelto el problema mediante la aplicación del zétodo anteriormente señalado, minimizando en cuatro dimensiones.

De la resolución del problema se obtienen las coordenadas del punto del suerpo rígido (x,y) respecto al sistema móvil y los puntos de corte de la recta con los ejes (A,B)

4

4. GUIADO EN UNA CIRCUNFERENCIA

En las misúas condiciones del caso anterior, y según la figura, la circunferencia vendrá definida por las coordenadas de su centro (X_c, Y_c) y por su radio R

La distancia del punto P a una circunferencia será

$$d(P,c) = \sqrt{(X_{P} - X_{c})^{2} + (Y_{P} - Y_{c})^{2}} - R$$

Los valores X p Y, pueden ponerse al igual que en el caso anterior en función de X, $y_{p}^{\prime}, X_{ow}, Y_{ow}$; \mathfrak{R}_{W} La función error será

5

X son los diversos puntos de iteración

D son las direcciones de minimización

H es una matriz cuadrada N x N siendo N el número de dimensiones del problema

Esta matriz en la primera iteración puede ser la matriz identidad y a lo largo de las diversas iteraciones tiende a la inversa de la matriz Hessiana

En cada iteración a partir de un punto, se halla una dirección de minimización

$$D_i = -H \nabla F(x_i)$$

. El siguiente punto de iteración será el mínimo de F en esta nueva iteración _____- --- --

En este trabajo para minimizar en una dirección se ha dividido un intervalo grande en dicha dirección, en subintervalos; en los cuales se ha evaluado la función cogiendo aquel en que se hace mínima; se ha buscado el mínimo dentro de él, mediante el método Golden.

Lo anterior se hace para evitar en lo posible que converja a un punto que sea mínimo relativo

Una vez hallado el nuevo punto de iteración, se observa su conve<u>r</u> gencia y en el caso de no ser suficiente, se vuelve a evaluar una nueva H.

 $H_{i+1} = H_{i} + \frac{z_{i} z_{i}'}{z_{i} Y_{i}} - \frac{(H_{i} Y_{i}) (H_{i} Y_{i})'}{Y_{i} H_{i} Y_{i}}$

donde

 $z_i = x_{i+1} - x_i \qquad ; \qquad y_i = \nabla F(x_{i+1}) - \nabla F(x_i)$

Después se repite el proceso en cada iteración

د_مه

 $F = \sum_{i=1}^{N} d_{i}^{2} = \sum_{i=1}^{N} \left(\sqrt{\left(X_{p} - X_{c}\right)^{2} + \left(Y_{p} - Y_{c}\right)^{2}} - R \right)^{2}$

6

En este caso

 $F = F(x, y, X_c, Y_c, R)$

Luego tendremos una minimización en cinco dimensiones 5. CONCLUSIONES.

En este trabajo se ha puesto a punto un programa en lenguaje BASIC procesado en máquina IBM-5100, que permite encontrar puntos de un cuer po rígido que siguen trayectorias casi rectilíneas o casi circulares para diversas posiciones de este.

Se ha comprobado la efectividad del método operando con las funciones propuestas

ANEXO

Este arixo describe la forma de operación con el método de la Mé . trica Variabli o de Davidon - Fletcher - Powell

El diagrama de bloques del cálculo por este método es el siguiente

centro de educación continua división de estudios de posgrado facultad de ingeniería unam

ANALISIS, SINTESIS Y OPTIMIZACION EN INGEN ERIA MECANICA

Algunos Resultados Teóricos para Bandas

con Grandes Deformaciones

Dr. Justo Nieto Nieto

Agosto 1980.

;

. .

· ·

.

·

.

.

4.1. ALGUNOS RESULTADOS TEORICOS PARA BANDAS CON GRANDES DEFORMACIONES

Por Salvador Bresó y Justo Nieto

RESUMEN

La obtención de algunas propiedades relativas a las deformadas elás ticas en bandas con grandes deformaciones, así como las ecuaciones elastodinámicas son los resultados más significativos de este trabajo.

INTRODUCCION

En un trabajo previo se distinguieron cuatro casos en el estudio de una banda flexible, de espesor pequeño en relación con las otras dos di menciones, cuando algunos de sus puntos se ven obligados a moverse a lo largo de trayectorias específicadas. En el caso del mecanismo de la figura, los cuatro casos son los siguientes:

a) CASO ELESTGESTATICO

ł

Encuentra la posición del equilibrio elástico de la banda cualquier posición prefijada de los puntos A y B

5) CASC ELASTODINAMICO

Encuentra la respuesta dinámica a la deformada anterior, es decir superpune 21 caso anterior el problema elastodinámico, (efectos inerciales, etc.)

c) CASO ELASTOCINEMATICO

Consiste en obtener la sucesión de deformadas estáticas (caso a) cuando los puntos A y S tienen leyes de movimiento preestablecidas. (El punto A se mueve sobre una circunferencia y el punto B permanece fijo)

d; CASS CRNERAL'ELASTODINAMICO

Introduce los efectos simultáneos de los casos b) y c)

2. OBTENDION DE LAS ECUACIONES DE COMPORTAMIENTO

CASO ELASTOESTATICO

2.

1.2.1

Las tres ecuaciones de equilibrio estático del elemento diferencial en ausencia de carga sobre el mismo son:

$$\frac{d}{2\pi} = 0 \tag{1}$$

que junto con la relación

$$\frac{31}{R}$$
 (2)

forman un sistema de cuatro ecuaciones que permiten, entre otras posibilidades, la eliminación de P.Q.M., obteniendo una ecuación en dos cuales quiera de las cinco variables X.g.Q. β , β , que permiten expresar la deformada. Por eje tio, en las variables X, y la E.D. resultante es

$$\frac{d}{dx}\left(\frac{1+3^{n+2}}{9^{n+2}}\frac{d}{dx}\left(\frac{d}{(1+9^{n+2})^{3/2}}\frac{d}{dx}\left(\frac{y^{n+2}}{(1+9^{n+2})^{3/2}}\frac{d}{dx}\left(\frac{y^{n+2}}{(1+9^{n+2})^{3/2}}\right)\right)\right) = -\frac{9^{n+2}}{(1+9^{n+2})^{3/2}}\frac{d}{dx}\left(\frac{y^{n+2}}{(1+9^{n+2})^{3/2}}\right)^{(3)}$$

en las R, 24

$$\frac{1}{R} \circ \left(\frac{1}{R}\right) = o\left(-\frac{1}{\sigma \alpha} \left(\frac{1}{R \sigma \alpha} \left(\frac{1}{R \sigma \alpha}\right)\right)\right)$$
(4)

o bien

$$\alpha \left[\frac{1/R^2}{2} + \frac{d^2}{2\alpha_1} \left(\frac{1/R^2}{2} \right) \right] = 0$$
(5)

y en las X.S

$$\frac{d}{ds}\left(2\frac{d}{ds^{2}}\left(\frac{L}{2}\right)\right) + \frac{1}{2}\frac{d}{ds}\left(\frac{L}{2}\right) = 0$$
(c)

Estas expresionas (3), (4), (5) y (6) se han obtenido en la hipóte tosis de É.L. constantes

Si dul 1970 en dal las anteniores se modifican ligeramento p.e. la (d) quedaria

$$\dot{\underline{e}}_{5}\left(\hat{\boldsymbol{x}}_{5}, (\underline{\mathbf{x}}_{5})\right) + \frac{1}{2} \dot{\underline{e}}_{5}\left(\underline{\mathbf{x}}_{5}\right) \tag{7}$$

1.8

Por etca parte, si se considera la ausencia de cargas sobre la banda El constantes y articulación sin rozamiento en A, tiene interés usar. Un cuerpo libre diferente con lo que las expresiones de las deformadas se simplificam

que originan las siguientes ecuaciones en dos de las cinco variables an teriormente consideradas que permiten obtener, cualquiera de ellos, la deformación estática

$$R_{\rm eg} = \frac{E_{\rm eg}^2}{E_{\rm eg}^2} \qquad (9)$$

$$-\frac{4j^{V}}{\frac{V}{(1+y)^{2}}^{3}/c} = \left[\frac{1}{L}\int_{0}^{t}\sqrt{-\frac{V}{y}} dx\right]^{3} = \frac{F}{E_{1}} = 0.$$
(10)

$$\frac{1}{2} = 2 \alpha \left(\cos \alpha \cdot \cos \alpha_{*} \right)$$
(11)

$$y^2 = \frac{2}{2} \left(\cos \alpha - \cos \alpha_* \right) \tag{12}$$

$$\alpha \quad \text{sen} \alpha = \frac{d}{ds} \left(\frac{d\alpha}{ds} \right) \iff \left(\frac{d\alpha}{ds} \right)^{2} = 2\alpha \left(\cos \alpha - \cos \alpha_{0} \right) \quad (13)$$

(8)

Observese de estas últimas que

a. Se han presentado solo cinco de las diez posibles expresiones

b. Que las dies, solo tresslas (9), (11) y (12), pueden ser expresa das en forta finita, no diferencial, entre las variables, y las otra. dete restantes tienen como solución integrales elípticas.
c. De (3 y /12)

d: De (12) y (14)
$$\left(\frac{y}{y_{min}}\right)^2 = \frac{\cos (\alpha - \cos \alpha)}{1 - \cos \alpha}$$

5

Ł

que permite obtener répidamente las pendientes u ordenadas para oada posición inicial \mathcal{A}_* . En particular, si se conoce Y max y \mathcal{A}_* , se halla para cualquier y el ∞ , y viceversa. Observese que punto 1.1. del plano UV es de paso obligado para todo \mathcal{K}_* y que V solo toma valores positivos y de valor unidad como máx<u>i</u> mo

- e. La deformada elastoestática es independiente del producto E.I..
 Es decir, varillas de igual L y l pero diferentes geometrígas y material tionen la misma deformada
- f. Evidentemente, las ecuaciones diferenciales anteriores están re mitidas a las de contorno del problema
- g. La deformada es simétrica

CASO ELASTODINAMICO

Las ecunciones de equilibrio elastodinámico a considerar serían:

$$\frac{\partial M}{\partial A} = Q^{T} \qquad (16)$$

$$= \partial P^{T} + Q^{T} \partial a^{T} = (\mathcal{U} \cos a^{T} + \mathcal{U} \sin a^{T}) \cdot A \cdot \delta \cdot \partial A \downarrow \cdot \qquad (17)$$

$$= \partial Q^{T} + P^{T} \partial a^{T} = (\mathcal{U} \cos a^{T} - \mathcal{U} \sin a^{T}) \cdot A \cdot \delta \cdot \partial A \downarrow$$

$$M^* = \frac{\varepsilon I}{R^*}$$
(18)

$$\mathcal{E} = \frac{\partial s_{-} \partial s}{\partial s} = \frac{P - P}{A z}$$
(19)

Observese que:

- 1. En las (10) se ha incluído la acción de inercia de la masa distribu<u>i</u> da
- Se ha emitido la existencia de - Cargas distribuidas
 - Inercia schuturia

6

ţ¢,

- Amontiguamiento escructural
- Efecto del contante

ţ

4.

3. La inclusión de los efectos anteriores es posible, asi por ejemplo: la invreia rotatoria se tendría en cuenta sustituyendo en la (16) M^{*} por:

el amortig miento estructural se tendría en cuenta sustituyendo en la (18) Mipur

$$M^{*} = c_{g} I \stackrel{\geq}{\underset{\leq i}{\leq}} \begin{pmatrix} i \\ k \end{pmatrix}$$

$$\tag{21}$$

$$\partial \mathcal{D} = \frac{1}{2} \overline{\left(\frac{1}{2} + \frac{3}{2} \frac{1}{2} \right)^2} + \left(\frac{1}{2} + \frac{3}{2} \frac{1}{2} \right)^2 \quad \partial \mathcal{I}$$
(22)

$$den \alpha'_{2} (y' + \frac{2}{2\pi}) (1 (1 + \frac{2}{2} (y' + \frac{2}{2}$$

$$COS \propto = (1+\partial u/\partial x)(\overline{n} + \partial u/\partial x)^2 + (g' + \partial V/\partial x)^2)$$

$$R_{\pm}^{\pm} = \frac{\left[1 + \left(\frac{y' + \frac{\partial y}{\partial x}}{1 + \frac{\partial u}{\partial x}}\right)^{2}\right]^{\frac{1}{2}}}{-\left[\frac{(y' + \frac{\partial^{2} y}{\partial x^{2}})(1 + \frac{\partial u}{\partial x}) - (y' + \frac{\partial w}{\partial x})(\frac{\partial^{2} u}{\partial x^{2}})\right]}{(1 + \frac{\partial u}{\partial x})^{3}}\right]$$
(25)

- 5. La (19) puete tomar cualquiera de las cuatro formas siguientes según se utilide la
 - 5.1. Minétesis lineal

$$\hat{\mathcal{E}} = \frac{\mathcal{U}_{x} + \mathcal{Y}' \mathcal{V}_{x}}{1 + \mathcal{Y}'^{2}}$$

$$(26)$$

5.2. Hipótesis media $\bar{C}^{2} < E \qquad U_{\pm}^{2} < C U_{\pm} < C I$ $\bar{C}_{\pm} = \frac{U_{\pm} + 9' N_{\pm} + N_{\pm}^{2}/2}{I + {y_{\pm}}^{2}}$ (27)

5.3. Hipótesis no lineal $\mathcal{E}' \prec \mathcal{E}$

7

con lo que

$$\mathcal{E} = \frac{i}{2} \left[\left(1 - \frac{1}{2z} \right)^2 + \left(y' + \sqrt{z} \right)^2 \right] / \left(1 + y'' \right) - \frac{i}{2}$$

5.4. Mipótesis general

$$C_{z} \left[\left(\frac{\left(1 + \frac{1}{2} y_{z}^{2}\right)^{2} + \left(y_{z}^{2} + y_{z}^{2}\right)^{2}}{1 + y^{2}} - 1 \right]$$
(29)

6. Las ecuaciones a considerar son CINCO: Tres relaciones de equilibrio estático del elemento diferencial, la relación momento curvatura y, la relación deformación desplazamientos, en las variables 44, 17, 17, 19, 19, 10 Con lo que de puede cotener la deformada dinámica para cada matante t y cada punto x. y. ya que la deformada estática es conocida.

CASO ELASTOCINEMATICO

Las leyes función del tiempo para las variables x, y, P.Q.M. etc. se obtienen de (Fig. 1)

$$l = \int \frac{d^2 + b^2 - 2ab\cos\theta}{\theta = \frac{1}{2}(a)} \quad \text{p.e. } \theta \cdot \omega t \quad .$$

y en un sistema de referencia X.Y.

$$\begin{bmatrix} \overline{y} \\ \overline{y} \end{bmatrix} = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & -\cos \varphi \end{pmatrix} \begin{pmatrix} \overline{X} - \alpha \cos \theta \\ \overline{Y} - \alpha \sin \theta \end{pmatrix}$$

$$= \frac{\alpha \sin \theta}{b - \alpha \cos \theta}$$

CASC GENERAL

Las ecuaciones a considerar son las mismas del caso elastodinámico en las condicientes del caso elastocinemático, introduciendo los valores absolutos para fas aceleraciones, así, en las (17).

$$\ddot{\mathcal{U}} = -\dot{\mathcal{U}} = (-\alpha \vec{e}^2 \cos \theta) + (-\dot{\phi}^2)(x \cdot u) + (-\dot{\phi})(y \cdot v) - 2\vec{v}\vec{\phi}$$

$$\vec{\mathcal{U}} = -\dot{\mathcal{U}} + (-\dot{\phi}^2)(y \cdot v) + (\ddot{\phi})(x \cdot u) + 2\vec{v}\vec{\phi}$$

8

(Z8)
. • . ~

÷

-

·

.

.

.

.

,

centro de educación continua división de estudios de posgrado facultad de ingeniería unam

ANALISIS, SINTESIS Y OPTIMACION EN INGENIERIA MECANICA

COEFICIENTE DE SEGURIDAD Y FIABILIDAD DE SISTEMAS MECANICOS

DR. JUSTO NIETO NIETO

AGOSTO,1980

.

-

•

•

COEFICIENTE DE SEGURIDAD Y FIABILIDAD DE SISTEMAS MECANICOS

INTRODUCCION

El concepto de fiabilidad (reliability), expresa una medida de la capacidad de un equipo (desde un elemento al sistema más complicado) para funcionar sin fallos cuando está en servicio. En lenguaje sencillo, podriamos decir que una cosa es fiable cuando está bien hecha. Una definición de fiabilidad es: "La probabilidad de que un equipo funcione satisfactoriamente durante un período de tiempo dado, y bajo unas condiciones de funcionamiento especificadas".

Obsérvese que le fiabilidad se caracteriza por cuatro conceptos:

- es una probabilidad
 - -- por ello, la herramienta matemática forma parte de la estadística aplicada, por tanto, no puede predecir sucesos discretos, sino probabilidades medias.
- realice una función satisfactoria
 - -- La función exigida es un concepto que demanda ser cuidadosamente definido y depende exclusivamente del caso bajo estudio, por tanto, es un concepto subjetivo.
- en un tiempo dado
 - -- Que no ha de expresarse necesariamente en horas (unidades de tiempo) sino, por ejemplo, en: No. de cíclos, No. de funciones, distancias, etc.
- condiciones de funcionamiento especificado
 - -- Estas condiciones pueden ser de muy variada naturaleza, por ejemplo, temperaturas, corrosión, desgaste, tensiones de tracción, flexión, etc. estáticas o dinámicas.

Realmente, la fiabilidad no es algo que se haya inventado ahora; lo que es reciente es la sistematización de los medios y el desarrollo de técnicas para el estudio de la fiabilidad.

En el campo de la electrónica, en donde primero se desarrolló (desde 1960), la fiabilidad ha sido muy utilizada, La razón de ello es que un equipo electrónico es un conjunto de piezas elementales que realizan funciones de vida relativamente corta y sometidas a solicitaciones sencillas, en donde la fiabilidad de cada componente puede ser bien conocida y por ello, la fiabilidad del equipo puede ser bien estudiada.

En Mecánica no ocurre ésto. La Mecánica es de evolución más lenta que la electrónica, las piezas que forman los equipos pertenecen a series pequeñas, en donde las funciones que puede realizar un mismo componente son muy variadas (obsérvese, por ejemplo, la diferencia entre las funciones que puede realizar y solicitaciones que pueden afectarle, en caso de un tornillo y de una resistencia eléctrica). Las solicitaciones son más complejas en Mecánica que en Eléctrica y, como una consecuencia de la falta de normalización, no se díspone de datos estadísticos suficientes.

175

Otra razón de la lenta aplicación de la fiabilidad en Mecánica es que el Ingeniero Mecánico, es un hombre que le gusta la concreción, es escéptico en relación a la fiabilidad y no está dispuesto a juzgar por probabilidades si una pieza se rompe o desgasta. En Ingeniería Mecánica la experiencia juega un papel importante.

Por todo lo anterior, estamos en los balbuceos de la fiabilidad en Mecánica.

Pero cexiste necesidad de introducir la fiabilidad en Mecánica?

Observando, por ejemplo, cualquier ecuación emanada de la resistencia de materiales, se comprueba en ella la existencia de tres ingredientes básicos: Propiedades del material, acciones (cargas), y geometría del elemento solicitado. Cualquiera de los tres ingredientes tiene naturaleza aleatoria, es decir, las propiedades del material varían según el lingote utilizado, las cargas presentan una variabilidad evidente, y las dimensiones de la pieza están sujetas a las aleatoriedades de las tolerancias. En consecuencia, cualquier concepto obtenido con estos ingredientes, por ejemplo, un coeficiente clásico de seguridad, tiene dicho carácter estadístico. Así pues, la Fiabílidad (probabilidad de que un equipo funcione, etc.) es una ampliación natural del modelo matemático que rige el fenómeno físico, aproxi mándolo a este fenómeno real, y en ningún caso es un concepto intrusista o de forzamiento de las condiciones que rodean al fenómeno.

En la determinación del coeficiente de seguridad clásico influye:

- Probabilidad de que un fallo pueda causar lesiones o pérdida de vidas humanas.
- Probabilidad de que el fallo sea de reparación costosa,
- La incertidumbre en el conocimiento de las cargas que se han tenido en cuenta.
- Las hipótesis hechas en el análisis, así como la determinación de los factores de concentración de esfuerzos, inducidos por fatiga e impacto.
- El conocimiento de las condiciones ambientales.
- El conocimiento de las tensiones residuales inducidas en el montaje y conformación.
- Influencia de la corrosión.

Valòres típicos de n oscilan desde

1,25 ÷ 1.50 a 3 ÷ 4

- 2 -

Analicemos con más detalle el coeficiente clásico (o determinista) de seguridad. De todas las fases del proyecto de máquinas (sistemas mecánicos) la elección del grado de seguridad ha sido la más importante que compete al proyectista, ya que de esta decisión dependen la economía del proyecto, riesgo de accidentes irreparables, etc. Este tradicional método de diseñar, involucra: 10. un posible modo de fallo (teoría de rotura, de falla, etc.) 20. un posible valor de la acción aplicada y 30. un valor representativo de una relevante propiedad del material (por ejemplo, energía de distorsión, resistencia última, etc.), la cual gobíerna la resistencia del elemento bajo la carga aplicada y con el modo de fallo supuesto.

Una expresión para tal factor de seguridad puede ser

Aunque con estos procedimientos los resultados hasta la fecha no han sido necesariamente malos (quiză un cierto sobredimensionado).:Los hechos siguientes:

a. La variabilidad aleatoria de las propiedades del mateiral, carga aplicada, y dimensiones, es algo cierto. Estas variaciones se han intentado resolver introduciendo un coeficiente de seguridad mínimo dado por

$$n = \frac{S - \Delta S}{C + \Delta C} = \frac{\text{Tensión de rotura mínima}}{\text{Tensión aplicada máxima}}$$

evidentemente

y el

minimum minimorum.

$$S - \Delta S = C + \Delta C = 2$$
 $\frac{S}{C} = \frac{1 + \frac{\Delta C}{C}}{1 - \Delta S}$

Otro coeficiente de seguridad usado es el cociente de los valores medios de las respectivas distribuciones de resistencia y carga

 $n = -\frac{f_s}{f_c}$ (coeficiente central de seguridad)

. ··

evidentemente, en este caso, manteniendo constante n los resultados pueden ser muy diferentes para las distribuciones de tensión y resistencias que se indican

Ľ

El valor de R depende del grado de solapamiento de las distribuciones y se halla:

La probabilidad de que una tensión se encuentre en el área rayada

4

$$\Pr_{\mathcal{O}}\left(\mathbb{C}-\frac{d\mathcal{G}}{2}\leq\mathbb{C}\leq\mathbb{C}+\frac{d\mathcal{O}}{2}\right)=\left|\left(\mathbb{C}\right)d\mathcal{O}\right|$$

Las probabilidades de que la resistencia S sea mayor que $V_{\mathbf{r}}$ es

$$\operatorname{Prob}(S > G_{e}) = \int_{G} f(s) ds$$

La probabilidad de tener una tensión ⁰ en el intervalo ³⁵ y que la resistencia S sea mayor que 🛛 🗸 es el producto de las dos probabilidades, y esto es por tanto la fiabilidad relativa a la posibilidad de una tensión () ~^

$$dR = \int (G) dG \int_{G} \int f(s) ds$$

La fiabilidad es la probabilidad de que la resistencia ^S sea mayor a todos los posibles valores de 🧯 es decir:

$$R = \int_{-\infty}^{+\infty} \left| (\mathbf{r}) \left(\int_{\mathbf{r}}^{\infty} f(\mathbf{s}) \, d\mathbf{s} \right) \, d\mathbf{r} \right|$$

Se puede razonar de la misma forma considerando una resistencia 5 y la probabilidad de que la tensión 6 sea inferior. En este caso

$$P = \int_{-\infty}^{\infty} f(s) \left(\int_{-\infty}^{s} f(s) ds \right) ds$$

b. Diseños con relativamente grandes coeficientes de seguridad, a veces fallan en servicios, indicando esto que la incertidumbre, asociada con las entradas de diseño no puede ser ignorada.

A menudo se piensa que un factor de seguridad mayor que una cantidad no origina fallos. Realmente, con altos factores de seguridad la probabilidad de fallo puede variar de un valor satisfactorio a uno indeseable. Por ejemplo: Un coeficiente de seguridad de uno, según el esquema clásico, indicaría que el fallo ocurre en un 100% de los casos, porque no hay seguridad, en cambio, si las distribuciones son normales el fallo ocurre en un 50% de los casos.

c. El método tradicional es incapaz de predecir el riesgo implicado por el coeficiente de seguridad, o la fracción de fallos de los elementos en servicio de una máquina.

Estos hechos, como decimos, han originado una insatisfacción con el uso de este coeficiente clásico de seguridad.

La teoría de la fiabilidad permite abordar problemas tales como:

a. Obtener la fiabilidad de un componente o de un sistema, es decir

1 .

R(t) = P(t<T) = probabilidad de no fallo en t<T</pre>

- b. Mejorar la fiabilidad de un equipo o sistema
 - Reduciendo la complejidad del sistema al minimo necesario, eliminando los componentes complejos e innecesarios y las configura ciones complejas que aumentan la probabilidad de que el sistema falle.
 - Aumentando la fiabilidad de los componentes en el sistema.
 - Por redundancia en caliente (paralelo), o en frío
 - Mantenimiento preventivo y de reparación
- c. Diseño para una fiabilidad dad(sintesis de fiabilidad). Maximizar la fiabilidad de un sistema para un peso tamaño o cogte dado, o inversamento, para una fiabilidad dada obtener un peso minimo. ek.
- 2. ALGUNAS BASES ESTADISTICAS DE LA FIABILIDAD

Si f(t) es la función de distribución de(densidad de probabilidad) de la probabilidad de fallo en un tiempo t (o mortalidad del componente)

$$\mathcal{R}(k) = \lambda - F(k) = 1 - \int_{0}^{k} \int_{0}^{k} k \, dk \Rightarrow \mathcal{R}'(k) = -\int_{0}^{k} \int_{0}^{k} k \, dk = 0$$

Evidentemente $\begin{array}{c} R_{(\bullet)} > 1 \\ R_{(\leftarrow)} = \end{array} \Rightarrow R_{(\bullet)} \text{ es una función monótona decreciente.} \\ \textbf{Siendo } F_{(\texttt{t})} \text{ la infibilidad a una edad inferior a t} \end{array}$

Tasa porcentaje de fallo instantâneo (relación de azar, probabilidad instantânea de fallo por componente)

Sean N_(t) el número de dispositivos que sobreviven a un tiempo t (o que funcionan de forma satisfactoria) de N_o

 $\frac{N(\frac{1}{D})}{N_{O}}$ es un estimador de la fiabilidad de los dispositivos en el tiempo t. El límite de $\frac{N(t)}{N_{O}}$ cuando $N_{O} \rightarrow \infty$ representa la probabilidad de sobrevivir en el instante t y por ello la fiabilidad de los dispositivos. En el intervalo dt, dn dispositivos habrán fallado. Se define la tasa de fallo o probabilidad instantánea de fallo por componente como el número de fallas en intervalo por unidad de tiempo y unidad de componente

$$\lambda(t) = \frac{-cN}{dt \cdot N}$$

$$\lambda(t) = \frac{\lim_{\Delta t \to 0} N(t) - N(t+\Delta t)}{\Delta t + 0} = \lim_{\Delta t \to 0} \frac{N(t) - N(t+\Delta t)}{N(0)} \Delta t = \frac{dR(t)}{R(t) \cdot dt} = \frac{dR(t)}{R(t) \cdot dt}$$

$$= \frac{R'(t)}{R(t)} = \frac{f(t)}{R(t)}$$

4

$$\lambda(t) = \frac{\lim_{\Delta t \to 0} \frac{\Delta N(t)}{N(t) \Delta t}}{N(t) \Delta t}$$
 y representa el coeficiente medio de
extinción del colectivo expresado en
tanto por uno.

Por integración de (1)

$$\int \lambda(t) dt \cdot R(t) = \Theta$$

£.

si se expresa en el intervalo t₁, t₂ se tiene

$$R(t_{1}, t_{1}) = \frac{R(t_{1})}{R(t_{1})} = e^{-\int_{t_{1}}^{t_{1}} \lambda(t) dt}$$

$$P(t_{1}/t_{1}) = \frac{N_{2}}{N_{1}} = \frac{N_{2}/N_{0}}{N_{1}}$$
Si $\lambda(t)$ es constante
$$R(t_{1}, t_{2}) = e^{-\lambda t_{1}}$$

$$R(t) = e^{-\lambda t_{1}}$$

$$R(t) = t - e^{-\lambda t_{1}}$$

$$F(t) = t - e^{-\lambda t_{1}}$$

Se llama tanto medio de fallo λt correspondiente a un período \overline{a} .

¢

$$\lambda t = \frac{1}{T} \int_0^T \lambda(t) dt.$$

Se llama tiempo medio para fallos (tiempo medio para el 1er. fallo).

$$\overline{T} = M\overline{T} TF = \int_{0}^{\infty} \frac{t}{t} f(t) dt = -\int_{0}^{\infty} t \frac{dR(t)}{dt} dt = \int_{0}^{\infty} R(t) dt,$$

Se llama tiempo medio entre fallos, (Tiempo medio entre fallos consecutivos)

 $\overline{\mathfrak{T}} = \int_{0}^{\infty} R(\mathbf{t}) d\mathbf{t}.$

el MTBF se aplica a sistemas con n de superiounde elevados

el MTTF se aplica a componentes

La relación entre ellos es

$$\frac{1}{\text{MTBF}} = \frac{\overline{5}}{\overline{j=1}} \frac{1}{\overline{T_{ij}}}$$

п

Si el sistema opera con todos los componentes nuevos \overline{T} y $\overline{\overline{T}}$ son idénticos.

MODOS DE FALLO

En Mecánica, como en Electrónica, se distinguen tres categorías de fallo, que aparecen en diferentes fases de la edad del dospositivo. Estas son: período de fallos precoces, período de fallos accidentales y período de fallos por envej@cimiento.

Los fallos precoces son los que se producen en un período inicial de funcionamiento. Son debidos a fallos en unidades que pasaron indebidamente el control de calidad, o a defectos de fabricación. Este tipo de fallos hay que reducirlos al mínimo a través de END o del rodaje.

Los fallos accidentales o (catastróficos) son los que se producen aleatoriamente en cualquier momento del intevalo, sobrevienen de modo inesperado, motivados generalmente por un aumento violento de las tensiones o esfuerzos que actúan sobre las unidades. Las acciones "fuera de misión no se consideran", por todo ello, se puede suponer que

los fallos por envejecimiento son los debidos a las pérdidas de aptitud de las unidades por el uso, por ejemplo, desgastes, fatigas, modificaciones de estructura interna, etc. Puede afirmarse que el envejecimiento es una enfermedad que gravita sobre todas las unidades componentes o sistemas en funcionamiento. La tasa de fallos se obtiene como proposición de ambos tipos de fallos.

Los fallos por envejecimiento, aparecen en Mecánica más tarde, aunque más rápidamente que en la Electrônica. Si los END son eficaces para eliminar los fallos precoces y si las condiciones de funcionamiento son normales y no existen sobretensiones imprevistas, se puedo esperar una tasa de fallos nulos, hasta la aparición de las primeras manifestaciones de envejecimiento.

 $\mathbf{r} \in \mathcal{I}_{0}$

3. FIABILIDAD DE SISTEMAS

SERIE

Sean n componentes independientes

"El sistema falla si falla uno al menos" 🔿 que el sistema es fiable si todos son fiables al mismo tiempo.

siste lo que el eslabón más débil".

PARALELO

"El sistema funciona cuando uno al menos funciona"

COMBINADOS

SERIES PARALELO

- Sistema m series en paralelo

$$m \left\{ -\frac{1}{1-0} - \frac{1}{0} - \frac{1}{0$$

- Sistema n_ paralelos en serie

$$= \left(1 - (1-R)^{m}\right)^{n}$$

- mixtos serie paralelos. Se reducen a los anteriores

SISTEMAS June (fries)

Estas unidades no funcionan hasta que ellas son llamadas a operar, en contraste con el sistema en paralelo en que todos operan simultáneamente.

Caso de dos

La fiabilidad R del sistema es igual =

- El equipo (1) funcione hasta el tiempo t
- El equipo (1) falle a partir de t, y que (2) no falle a partir de t, hasta t.

'(Suponiendo un 100% de habilidad en el sensor y contacto $R_{5:5} = R_{j}(t) + 1 - R_{j}(t_{j})$, $R_{2}(t-t_{j})$

Superiord $\lambda_{3} = \text{constante}$ $\lambda_{3} = \frac{-\lambda_{2}t}{-\lambda_{2}t} - \frac{-\lambda_{2}t}{-\lambda_{1}e} \left(e^{-(\lambda_{1} - \lambda_{2})t}\right)$ $\lambda_{3} = e^{-\lambda_{3}t} - \frac{\lambda_{1}e}{-\lambda_{1}-\lambda_{2}} \left(e^{-(\lambda_{1} - \lambda_{2})t}\right)$

La probabilidad de un suceso (fiabilidad del sistema mixto) es igual a la probabilidad de funcionamiento supuesto que el componente C funciona por la probabilidad de que este componente funcione más la probabilidad del sistema supuesto que C no funcione por la infabilidad de éste.

$$R_{s/bien} = R_{c} R_{c} R_{c} R_{c} R_{c}$$

luego

$$R_{sm} = \begin{pmatrix} R_{d}R_{e} - R_{e}R_{d} \\ Q e e e^{-d} \end{pmatrix} \begin{pmatrix} R_{c} + \left(R_{a}R_{c} + R_{b}R_{d} - R_{a}R_{c}R_{b}R_{d} \right) \begin{pmatrix} 1-R_{c} \\ -R_{c} \end{pmatrix}$$

SISTEMAS MULTIMODOS

- Hasta ahora se ha supuesto que los sistemas funcionan o no funcionan. Sin embargo, algunos componentes pueden funcionar de muchas maneras

L

La fiabilidad de un sistema de esta naturaleza puede determinarse por:

a) Calculat todas las posibles permutaciones de los M, modos de funcionamiento'para los N, componentes

- 13 -

Permutación = $SM_x^{N_i} = M_x^{N_1} \cdot M_2^{N_2}$.

- b) Hallar (escribir) (por un procedimiento sistemático) todas las permutaciones.
- c) Encontrar aquellos modos que hagan que el sistema funcione, es decir, se desechan los incompatibles con el funcionamiento.
- d) Se calculan las probabilidades de todos los modos posibles.
- e) La fiabilidad total es la suma de las fiabilidades.

4. APLICACIONES DE LA FIABILIDAD

- Hallar el coeficiente de seguridad (fiabilidad) de dos distribucio-4.1 nes de resistencia y de tensión
 - Distribuciones cualesquiera a.
 - R = Probabilidad (5)の)のPCarb. (3-5>0) (当っく)

Solución: 1 Por aplicación de las fórmulas del apartado (1)

2. Por palicación de las transformadas de MCLLIN

Método de Montecarlo

b. Distribuciones normales

e,

Aplicando el Algebra de variables aleatorias independientej se viene

: 1

dist. normales
Adición (x + y)
$$\int_{x_{reg}}^{h} = \int_{x_{reg}}^{h} \int_{y_{reg}}^{h} \int_{x_{reg}}^{h} = \left(\int_{x_{reg}}^{x} + \int_{y_{reg}}^{y} \right)^{1/2}$$

Resta (x - y) $\int_{x_{reg}}^{h} = \int_{x_{reg}}^{h} - \int_{y_{reg}}^{h} \int_{x_{reg}}^{y} = \left(\int_{x_{reg}}^{x} + \int_{y_{reg}}^{y} \right)^{1/2}$
Multiplic. x,y $\int_{x_{reg}}^{h} = \int_{x_{reg}}^{h} \int_{y_{reg}}^{y} \int$

-14-

La media es

L

\$ /= /s-/s

La derivación típica es

$$\vec{\nabla} = \left(\vec{\nabla_s}^2 - \vec{\nabla}_{\sigma}^2 \right)$$

Si se fija una fiabilidad, por ejemplo 0.99865 $rac{d}{d}$ que $\mu = -\frac{\hbar}{\sigma} = -3$.

sí se desea mayor fiabilidad entonces

$$\int \frac{h}{\sigma} = \frac{\mu_s - h\sigma}{\sqrt{\sigma_s^2 + \sigma_s^2}} > 3.$$

. , . · • •

-.

. .

.

•

-

,

•

- Raúl Alvarez Delgado Industria del Hierro, S.A. de C. V. Parques Industriales s/n Querétaro, Qro. 2 21 34 Ext. 19
- Jesús Humberto Alvarez Serna -Investigación Fic Fideicomiso Guerrero Nte. 3200 Monterrey, N.L. 51 02 38
- Rosa María Arredondo Romero Malpica Centro Nal. de Enseñanza Téc. Ind.

 Miguel Humberto Calderón Quintero Investigación FIC Fideicomiso Guerrero Nte. 3200 Monterrey, N.L. 51 69 87

- 5. Ulises Delgado Tellez
 UNAM
 Cuautitlán Izcalli, Edo. de Méx.
 3 31 Il Ext. 372
- Gabriel Domínguez Tellez SICARTSA Dom. Conocido Lázaro Cardenas 2 03 33 Ext. 1725
- Enrique González Flores CRISTALERIA S.A. Doblado y Progreso Col. Terminal Monterrey, N.L. 72 40 83
- José David C. Hernández Hernández Secc. de Graduados de la ESIME I P N Unidad Profesional Zacatenco Z.P. 14 586 27 49

Ingeniería 18 Querétaró, Qro.

Jalapa Ote. 119 Col. Paraiso Guadalupe, Monterrey

Periférico Sur 3190 Padierna Contreras Z.P.20 568 14 04

Universidad de Jalisco 204 Villa Universidad SN Nicolás, Monterrey 52 68 34

Conv.Sn.Jerónimo 23 Jard. Sta. Mónica Edo. & México

Casa No. 55 La Mira Camp. Minero Lázaro Cárdenas

Golfo de Méx. 2115 Fracc. B. Reyes Monterrey, N.1. 70 63 32

Circ. de las Flores 40 Col. Miraflores Tlanepantla, Edo.de Méx. 392 35 04

- Rafael Jesús Huacuja Galván Facultad de Ingeniería UNAM México 20, D.F. 548 58 78
- 10. José María Rico Martínez Inst. Tecnológico Regional de Celaya Av. Tecnológico e Irrigación Celaya, Gto. 2 20 23
- Pedro Reyes Monroy SPI Ingenieros, S.A. de CV Melchor Ocampo 445 Z.P. 5 525 02 90
- Eduardo Salas Córdova Fac. Est. Superiores Cuautitlán Campo 3 Edo. de México
- 13. Héctor Francisco Santillán Cuevas CENETI Av. de las Granjas 682 Azcapotzalco Z.P.16 561 80 11
- 14. Miguel Angel Treviño Treviño Investigación FIC Guerrero 3200 Nte. Monterrey, N.L. 51 69 87
- 15. J. Antonio Villalón Calderón Industria del Hierro, S.A. Parques Industriales S/N Querétaro, Qro. 2 13 16

Insurgentes Sur 4411 Edif. 32 J Tialpán Z.P. 22 573 40 60

Benito Juárez 636 Celaya, Gto. 2 08 16

Rep. de Costa Rica IIO IV Secc. de Chamapa Naucalpan, Edo. de Méx.

Diana 52 Col. Ensueños Cuautitlán Izcalli, Edo.de Méx.

Sta. maría la Ribera 10-28 Z.P.4 546 00 91

Fray Luis de León 211 Col. Anahúac Monterrey, N.L.

Pasteur Nte, 32-5 Querétaro, Qro. 2 75 00 2