Índice

				Pág.
Agra	decimier	ıtos		. i
Índic	e	•••••		. ii
Lista	de Figu	ras		. V
Lista	de Tabla	as		X
Abre	eviaturas.			xii
CAP	PÍTULO	1: INTR	ODUCCIÓN	. 1
1.1	Antece	dentes		. 2
1.2	Estruct	tura de la	tesis	. 2
CAP	PÍTULO		CCTOS GENERALES DE SISTEMAS ELÉCTRICOS DE ENCIA	
2.1	Defini	iciones		4
2.2	Antec	edentes		6
	2.2.1	Constan	te de inercia H	9
	2.2.2	Respues	stas de los SEP ante disturbios	10
		2.2.2.1	Respuesta eléctrica.	10
		2.2.2.2	Respuesta inercial.	11
2.3	Cantio	lades por	unidad	11

CAP	ÍTULO	3: MODELADO DE DISPOSITIVOS ELÉCTRICOS PARA ESTUDIOS DE ESTABILIDAD TRANSITORIA	14
3.1	Repres	sentación de Máquinas Síncronas	14
3.2	Model	ado de Cargas	17
	3.2.1	Modelado Clásico de la Carga en función del Voltaje	17
3.3	Modela	ado de Líneas de Transmisión	21
	3.3.1	Aspectos generales	21
	3.3.2	Estudio de flujos de carga.	22
	3.3.3	Cálculo de fallas	22
	3.3.4	Relaciones entre la tensión y la corriente de una línea de transmisión	30
	3.3.5	Flujo de potencia en la línea de transmisión	41
3.4	Modela	ado de transformadores de potencia	47
	3.4.1	Impedancia por unidad de transformadores de tres devanados	47
3.5	Modela	ado de elementos en derivación	54
	3.5.1	Capacitores en derivación.	54
	3.5.2	Reactores en derivación.	55
	3.5.3	Condensadores síncronos	55
3.6	Modela	ado de elementos serie	56
	3.6.1	Capacitores serie	56
3.7	Método	os de control de voltaje	57
	3.7.1	Producción y absorción de potencia reactiva	57
CAP	TULO ·	4: OPERACIÓN DEL CEV EN ESTADO ESTACIONARIO	59
4.1	Tipos	de CEV's	59
	4.1.1	Frecuencia fundamental de un sistema estático de VAR's	60
	4.1.2	Interacción del CEV con el sistema eléctrico	61
	4.1.3	Efecto del uso de capacitores conmutados	65
	4.1.4	Los sistemas estáticos de VAR's prácticos	67

	4.1.5	Aplicación de los compensadores estáticos de VAR's	68
4.2	Forma	as alternativas de compensación	69
4.3	Princi	pio de compensación en el sistema de transmisión	71
		4.3.1 Compensación serie fija distribuida uniformemente y	
		compensación en derivación	71
	4.3.2	Efecto de la compensación en el voltaje de la línea	73
	4.3.3	Efectos de la compensación en potencia máxima	74
	4.3.4	Compensación en derivación regulada distribuida uniformemente	74
	4.3.5	Compensación regulada a intervalos discretos.	76
	4.3.6	Compensación regulada en medio.	76
CAPÍ	TULO	5: PRUEBAS Y ANÁLISIS DE RESULTADOS	78
5.1	Sistem	na de prueba de Anderson-9 nodos	78
	5.1.1	Contingencias en líneas de transmisión	81
	5.1.2	Salida de transformadores	92
5.2	Sistem	na de prueba Micro-Red	103
	5.2.1	Salida de los generadores y los CEV's	110
	5.2.2	Salida de los CEV's y disparo de líneas adyacentes a ellos	126
CAPÍ	TULO	6: CONCLUSIONES Y SUGERENCIAS PARA TRABAJOS FUTUROS	132
6.1	Concl	usiones	132
6.2	Trabaj	jos futuros	133
REFE	RENCI	'AS	134

Lista de Figuras

Pág

2.1	Rangos de tiempo para los fenómenos dinámicos	6
3.1	Diagrama esquemático de una máquina síncrona trifásica	14
3.2	Ejemplo de una sección transversal de una línea de transmisión	24
3.3	Caída de voltaje a lo largo de una sección de la línea de transmisión	25
3.4	Corrientes de carga en una línea de transmisión	26
3.5	Distribución típica de los conductores en línea trifásica de circuitos paralelos	29
3.6	El generador alimenta una carga equilibrada en Y a través de una línea de	
	transmisión	31
3.7	Equivalente monofásico de un generador, carga y línea de transmisión con	
	parámetros concentrados R, L y C	31
3.8	Circuito equivalente de una línea corta de transmisión	32
3.9	Diagramas vectoriales de una línea corta de transmisión. Todos ellos para los	
	mismos valores de V _R e I _R	33
3.10	Circuito nominal en π de una línea de transmisión de longitud media	34
3.11	Circuito nominal en T de una línea de transmisión de longitud media	35
3.12	Voltaje y corriente de carga en un segmento de una línea de transmisión	
	elemental	38
3.13	Circuito equivalente π de una línea de transmisión.	39
3.14	Circuito equivalente exacto de una línea de transmisión de longitud L a una	
	frecuencia dada	40
3.15	Vectores de la ec. (3.95) dibujados en el plano complejo con magnitudes y	
	ángulos	43
3.16	Diagrama de potencia obtenido por el desplazamiento del origen de los ejes	
	coordenados de la Fig. 3.15	44

3.17	Circuito equivalente de una línea de transmisión corta bajo una banda de	
	frecuencia reducida respecto a una relación de frecuencia	46
3.18	Circuito equivalente de un transformador de tres devanados y símbolo	
	correspondiente que debe utilizarse en el diagrama unifilar. Los puntos p , s y	
	t unen el circuito del transformador a los circuitos equivalentes apropiados que	
	representan las partes del sistema conectados a los arrollamientos primario,	
	secundario y terciario	49
3.19	Transformador regulante para el control de la magnitud del voltaje	50
3.20	Transformador regulante para control del ángulo de fase. Los devanados	
	dibujados paralelos entre sí están enrollados sobre el mismo núcleo magnético	50
3.21	Diagrama vectorial para el transformador regulante que se muestra en la	
	Fig. 3.20	51
3.22	Transformadores con diferente relación de espiras conectados en paralelo.	
	(a) Diagrama unifilar; (b) Diagrama de reactancia por unidad. La	
	relación de espiras 1/a es igual a n/n'	51
3.23	Diagrama detallado de reactancia por unidad del transformador de la	
	Fig. 3.22b, cuya relación de espiras es 1/a	52
3.24	Circuito con las admitancias de nodo de las ecuaciones (3.116) cuando a	
	es real	54
4.1	Sistema estático de VAR's ideal.	60
4.2	Características V/I de un compensador ideal	60
4.3	Características compuestas de un SVS	61
4.4	Característica V-I con pendiente > 0 para CEV tipo TCR / TSC	62
4.5	Diagrama mostrando la interacción CEV-SEP	62
4.6	Característica del SEP para cambios de corrientes nodales. Característica	
	de Voltaje-Corriente reactiva.	62
4.7	Voltaje del SEP respecto a la característica de la corriente reactiva.	
	a) Variación de las características del SEP por condiciones de operación	
	b) Características de SEP para distintos niveles de falla	63
4.8	Solución gráfica del punto de operación de CEV para una condición dada del	
	sistema	63

4.9	Interacción V-I en régimen permanente de CEV-SEP. Carga Baja	64
4.10	Interacción V-I en régimen permanente de CEV-SEP. Carga Alta	64
4.11	Uso de capacitores conmutados para ampliar el rango de control continuo	65
4.12	Circuito de un tiristor	66
4.13	Conexión antiparalelo de dos tiristores	66
4.14	Válvula real de tiristores	66
4.15	Típico sistema estático de VAR's	67
4.16	Características del SVS en estado estable.	
	a) Característica Voltaje-Corriente	
	b) Característica de Voltaje-Potencia reactiva	68
4.17	Línea con compensación regulada en medio	76
5.1	Diagrama unifilar del sistema Anderson-9 nodos en condiciones de pre-falla	80
5.2	Flujos de potencia ante la condición de apertura de la línea 4-5	81
5.3	Flujos de potencia ante la apertura de la Línea 4-5. Se incluye un CEV en el	
	nodo 6	82
5.4	Resultados de flujos de potencia ante la apertura de la Línea 4-5, incluyendo	
	un CEV en el nodo 8	83
5.5	Resultados de flujos de potencia ante la apertura de la Línea 4-5, incluyendo	
	un CEV en el nodo 5	84
5.6	Perfiles de voltaje en nodos del sistema, con la apertura de la Línea 4-5 con y	
	sin el CEV en los nodos 5, 6 y 8	85
5.7	Flujos de potencia resultantes de la apertura de la Línea 5-7	86
5.8	Flujos de potencia resultantes de la apertura de la Línea 5-7 incluyendo	
	un CEV en el nodo 6	87
5.9	Resultado de flujos de potencia ante la apertura de la Línea 5-7, incluyendo	
	un CEV en el nodo 8.	88
5.10	Flujos de potencia resultantes de la apertura de la Línea 5-7 considerando	
	un CEV en el nodo 5	89
5.11	Perfiles de voltaje en nodos del sistema, con la apertura de la línea 5-7 con y	
	sin el CEV en los nodos 5, 6 y 8	90

5.12	Perfiles de voltaje en nodos del sistema, ante la apertura de las líneas L4-6,	
	L6-9, L7-8 y L8-9	91
5.13	Flujos de potencia resultantes de la salida del Banco de Unidad TR 1	92
5.14	Diagrama resultante con la salida del Banco 2 de transformación	93
5.15	Distribución de flujos de potencia ante la salida del Banco TR 2, incluyendo	
	una carga D y un CEV en el nodo 5	94
5.16	Flujos de potencia resultantes de la salida del Banco TR 2 incluyendo una	
	carga D y un CEV en el nodo 6	95
5.17	Distribución de flujos de potencia ante la salida del Banco TR 2 incluyendo	
	una carga D y un CEV en el nodo 8	96
5.18	Perfiles de voltaje en nodos del sistema ante la salida del Banco TR 2	
	incluyendo una carga D y un CEV	97
5.19	Flujos de potencia resultantes con la salida del Banco TR 3	98
5.20	Flujos de potencia resultantes de la salida del Banco TR 3 incluyendo una	
	carga D y un CEV en el nodo 5	99
5.21	Resultados de flujos de potencia ante la salida del Banco TR 3 incluyendo	
	una carga D y un CEV en el nodo 6	100
5.22	Distribución de flujos de potencia ante la salida del Banco TR 3 incluyendo	
	una carga D y un CEV en el nodo 8	101
5.23	Perfiles de voltaje en nodos del sistema ante la salida de alguno de los bancos	
	de transformación	102
5.24	Diagrama unifilar del anillo de 400 KV del Sistema Micro-red	108
5.25	Diagrama unifilar del anillo de 230 KV del Sistema Micro-red	109
5.26	Perfiles de voltaje de nodos del sistema ante la pérdida de la unidad	
	generadora Antlia-U1 y algunos CEV's	.111
5.27	Perfiles de voltaje de nodos del sistema ante la pérdida de la unidad	
	generadora Velorum-U1 y algunos CEV's	113
5.28	Perfiles de voltaje de nodos del sistema ante la pérdida de la unidad	
	generadora Kentaurus-UA y los CEV's	115
5.29	Perfiles de voltaje en nodos del sistema ante la pérdida de la unidad	
	generadora Pollux-U1 y cada uno de los CEV's	117

5.30	Perfiles de voltaje en nodos del sistema ante la pérdida de la unidad	
	generadora Tur-U1 y cada uno de los CEV's	119
5.31	Perfiles de voltaje en nodos del sistema ante la pérdida de la unidad	
	generadora Tauro-U3 y cada uno de los CEV's	121
5.32	Perfiles de voltaje en nodos del sistema ante la pérdida de la unidad	
	generadora Crux-U1 y cada uno de los CEV's	123
5.33	Perfiles de voltaje en nodos del sistema ante la pérdida de las unidades	
	generadoras Velorum-U1, Ballena-U2, Ballena-U3 y cada uno de los CEV's.	125
5.34	Perfiles de voltaje en nodos del sistema ante la pérdida del CEV	
	Telescopium y cada una de las líneas adyacentes al CEV	127
5.35	Perfiles de voltaje de los buses ante la pérdida del CEV Fénix y cada una de	
	las líneas cercanas al CEV	129
	es de voltaje en nodos del sistema ante la pérdida del CEV Cráter y cada líneas adyacentes al CEV	una 131

Lista de Tablas

		Pág.
4.1	Dispositivos utilizados para el control de la Potencia Reactiva	69
5.1	Datos de Generadores	78
5.2	Datos de Transformadores	78
5.3	Datos de Líneas de Transmisión.	79
5.4	Datos de Cargas	79
5.5	Datos de Generadores.	103
5.6	Datos de CEV's	104
5.7	Datos de Líneas de 400 KV	104
5.8	Datos de Líneas de 85 KV.	104
5.9	Datos de Líneas de 230 KV	105
5.10	Datos de Transformadores.	106
5.11	Aportación de potencia activa y reactiva de las unidades generadoras y los	
	CEV's ante la pérdida de generación de la unidad Antlia-U1 y cada uno de los	
	CEV's	110
5.12	Aportación de potencia activa y reactiva de las unidades generadoras y los	
	CEV's ante la pérdida de generación de la unidad Velorum-U1 y cada uno de	
	los CEV's	112
5.13	Aportación de potencia activa y reactiva de las unidades generadoras y los	
	CEV's ante la pérdida de generación de la unidad Kentaurus-UA y cada uno de	
	los CEV's	114
5.14	Aportación de potencia activa y reactiva de las unidades generadoras y los	
	CEV's ante la pérdida de generación de la unidad Pollux-U1 y cada uno de los	
	CEV's	116

5.15	Aportación de potencia activa y reactiva de las unidades generadoras y los	
	CEV's ante la pérdida de generación de la unidad Tauro-U1 y cada uno de los	
	CEV's	118
5.16	Aportación de potencia activa y reactiva de las unidades generadoras y los	
	CEV's ante la pérdida de generación de la unidad Tauro-U3 y cada uno de los	
	CEV's	120
5.17	Aportación de potencia activa y reactiva de las unidades generadoras y los	
	CEV's ante la pérdida de generación de la unidad Crux-U1 y cada uno de los	
	CEV's	122
5.18	Aportación de potencia activa y reactiva de las unidades generadoras y los	
	CEV's ante la pérdida de generación de las unidades Velorum-U1, Ballena-U2,	
	Ballena-U3 y cada uno de los CEV's	124
5.19	Aportación de potencia activa y reactiva de las unidades generadoras y los	
	CEV's ante la pérdida del CEV Telescopium y cada una de las líneas cercanas	
	al CEV	126
5.20	Aportación de potencia activa y reactiva de las unidades generadoras y los	
	CEV's ante la pérdida del CEV Fénix y cada una de las líneas adyacentes al	
	CEV	128
5.21	Aportación de potencia activa y reactiva de las unidades generadoras y los	
	CEV's ante la pérdida del CEV Cráter y cada una de las líneas cercanas al	
	CEV	130

Abreviaturas

Abreviaturas de términos conceptuales

CEV Compensador Estático de VAR's

FACTS Sistemas Flexibles de Transmisión de Corriente Alterna

Fcem Fuerza contra electromotriz

fmm Fuerza magnetomotriz

H Constante de Inercia

MVAR Mega Volt Amper Reactivos

MW Mega Watts

km kilómetro

p. u. Por unidad.

P_a Potencia acelerante

P_e Potencia eléctrica

P_m Potencia mecánica

rpm Revoluciones por minuto

SEP Sistemas Eléctricos de Potencia

SVC Static VAR compensator

SVS Sistema estático de VAR's

TCR Reactor controlado con tiristores

TSC Capacitor conmutado con tiristores

Abreviaturas de los nodos del Sistema Micro-Red

ACH Achernar

ACU Acuarius

ALC Alcor

ALG Algol

ALI Alioth

ALT Altair

ANT Antares

APO Apodis

AQU Aquila

ARA Auriga

ARI Aries

ATL Antlia

AUT Australis

BLN Ballena

BOR Boreal

CAN Canopus

CAS Castor

CAR Carina

CCR Cáncer

CEF Cefeo

CEH Cepheus

CFD Cefeida

CHA Chamaéleon

CLM Caelum

CMB Columba

CPA Capela

CPE Casiopea

CPR Capricornius

CRT Cráter

CRX Crux

CTS Cetus

DFN Delfin

DNB Deneb

DOR Doradus

DPA Diphda

DRA Dragón

DRM Andrómeda

DRN Aldebarán

ESP Espiga

ETA Beta

EYD Pléyades

FEX Fénix

FRT Formalhaut

GRU Grulla

HAD Hadar

HAM Hamal

HAS Hiades

HKT Phakt

HYD Hydra

INS Indus

JRF Jirafa

KEN Kentaurus

KLP Kitalpha

LCE Lince

LCT Lacerta

LEO León

LEP Lepus

MES Messier

MIR Mira

MIZ Mizar

MRK Mirkaf

MRP Microscopium

NOS Naos

ORI Orión

PAO Pavo

PAS Pegaso

PEK Peacock

PIC Pictor

POC Procyon

POL Pollux

PON Phoenicis

POR Polaris

PRC Praecipua

PSO Perseo

PYX Pyxis

REL Rigel

RET Reticulum

SAG Sagitta

SAL Sadalsuud

SCP Sculptor

SGN Sygnus

SIS Sirius

SRP Serpens

STM Scutum

STS Sextans

TBA Thuban

TEP Telescopium

TUC Tucana

TUR Tauro

VEG Vega

VIG Virgo

VLM Velorum